O'REILLY"

Implementing
MLOps In the

Enterprlse

A Production-First
Approach

Yaron Haviv
& Noah Gift

Implementing MLOps in
the Enterprise
A Production-First Approach

Yaron Haviv and Noah Gift

Beijing + Boston + Farnham - Sebastopol - Tokyo

Implementing MLOps in the Enterprise
by Yaron Haviv and Noah Gift

Copyright © 2024 Yaron Haviv and Noah Gift. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available
for most titles (http://oreilly.com). For more information,
contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

« Acquisition Editor: Nicole Butterfield

« Development Editor: Corbin Collins

« Production Editor: Beth Kelly

« Copyeditor: Piper Editorial Consulting, LLC
« Proofreader: Heather Walley

« Indexer: WordCo Indexing Services, Inc.
 Interior Designer: David Futato

« Cover Designer: Karen Montgomery

. Illustrator: Kate Dullea

« December 2023: First Edition

Revision History for the First Edition

http://oreilly.com/

e 2023-11-30: First Release

See http://oreilly.com/catalog/errata.csp?
isbn=9781098136581 for release details.

The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Implementing MLOps in the Enterprise, the
cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the authors
and do not represent the publisher’s views. While the
publisher and the authors have used good faith efforts to
ensure that the information and instructions contained in
this work are accurate, the publisher and the authors
disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains
or describes is subject to open source licenses or the
intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with
such licenses and/or rights.

978-1-098-13658-1
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098136581

Preface

As MLOps veterans, we have often seen the following
scenario play out across enterprises building their data
science practices.

Traditionally, when enterprises built their data science
practice, they would start by building a model in the lab,
with a small team, often working on their laptops and with
a small, manually extracted dataset. They developed the
model in operational isolation, and the results were
incorporated manually into applications. Then, once the
model was complete and predicting with accuracy, the true
struggle of trying to bring it to production, to generate real
business value, began.

At this point, the enterprise faced challenges such as
ingestion of production data, large scale training, serving in
real-time, and monitoring/management of the models in
production. These hurdles would often take months to
overcome, presenting a huge cost in resources and lost
time.

The Al pipeline is siloed, with teams working in isolation
and with many different tools and frameworks that don’t
necessarily play well with each other. This results in a huge
waste of resources and businesses not being able to
capitalize on their investment in data science. According to
Gartner, as many as 85% of data science projects fall short
of expectations.

In this book, we propose a mindset shift, one that addresses
these existing challenges that prevent bringing models to
production. We recommend a production-first approach:

https://oreil.ly/hqsHu

starting out not with the model but rather by designing a
continuous operational pipeline, and then making sure the
various components and practices map into it. By
automating as many components as possible and making
the process fast and repeatable, the pipeline can scale
along with the organization’s needs and provide rapid
business value while answering dynamic and enterprise
MLOps needs.

Today, more businesses understand the vast potential of Al
models to positively impact the business across many new
use cases. And with generative Al opening up new
opportunities for business innovation across industries, it
seems that Al adoption and usage are set to skyrocket in
the coming years. This book explores how to bring data
science to life for these real-world MLOps scenarios.

Who This Book Is For

This book is for practitioners in charge of building,
managing, maintaining, and operationalizing the data
science process end to end: the heads of data science,
heads of ML engineering, senior data scientists, MLOps
engineers, and machine learning engineers.

These practitioners are familiar with the nooks and
crannies (as well as the challenges and obstacles) of the
data science pipeline, and they have the initial
technological know-how, for example, in Python, pandas,
sklearn, and others.

This book can also be valuable for other technology leaders
like CIOs, CTOs, and CDOs who want to efficiently scale the
use of Al across their organization, create Al applications
for multiple business use cases, and bridge organizational
and technological silos that prevent them from doing so
today.

The book is meant to be read in three ways. First, in one
go, as a strategic guide that opens horizons to new MLOps
ideas. Second, when making any strategic changes to the
pipeline that require consultation and assistance. For
example, when introducing real-time data into the pipeline,
scaling the existing pipeline to a new data source/business
use case, automating the MLOps pipeline, implementing a
Feature Store, or introducing a new tool into the pipeline.
Finally, the book can be referred to daily when running and
implementing MLOps. For example, for identifying and
fixing a bottleneck in the pipeline, pipeline monitoring, and
managing inference.

Navigating This Book

This book is built according to the phases of the MLOps
pipeline, guiding you through your first steps with MLOps
up to the most advanced use cases:

« Chapters 1-3 show how organizations should approach
MLOps, how data science teams can get started, and
what to prepare for your first MLOps project.

« Chapters 4-7 explain the components of a resilient and
scalable MLOps pipeline and how to build a machine
learning pipeline that scales across the organization.

« Chapter 8 covers deep learning pipelines and also dives
into GenAl and LLMs.

« Chapters 9 and 10 show how to adapt pipelines for
specific verticals and use cases, like hybrid
deployments, real-time predictions, composite Al, and
SO on.

Throughout the book, you will find real code examples to
interactively try out for yourself.

After reading this book, you will be a few steps closer to
being able to:

Build an MLOps pipeline.

Build a deep learning pipeline.

Build application-specific solutions (for example, for
NLP).

Build use-case specific solutions, (for example, for
fraud prediction).

Conventions Used in This Book

The following typographical conventions are used in this
book:

Italic

Indicates new terms, URLS, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, and so
on) is available for download at
https://github.com/mlrun/demo-fraud and
https://github.com/mirun/demo-llm-tuning.

If you have a technical question or a problem using the
code examples, please send email to
bookquestions@oreilly.com.

This book is here to help you get your job done. In general,
if example code is offered with this book, you may use it in
your programs and documentation. You do not need to
contact us for permission unless you're reproducing a
significant portion of the code. For example, writing a
program that uses several chunks of code from this book
does not require permission. Selling or distributing
examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Implementing MLOps in the
Enterprise by Yaron Haviv and Noah Gift (O’Reilly).
Copyright 2024 Yaron Haviv and Noah Gift, 978-1-098-
13658-1.”

https://github.com/mlrun/demo-fraud
https://github.com/mlrun/demo-llm-tuning
mailto:bookquestions@oreilly.com

If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and
a vast collection of text and video from O’Reilly and 200+
other publishers. For more information, visit
https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this
book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

707-829-7019 (international or local)

707-829-0104 (fax)
support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at https://oreil.ly/mlops-in-the-enterprise.

Email bookquestions@oreilly.com to comment or ask
technical questions about this book.

For news and information about our books and courses,
visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-
media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

We’d like to thank the people behind the scenes who
assisted, guided, and supported us throughout this book’s
journey. Without them, this book wouldn’t have been
brought to life.

Thank you to the dedicated team at O’Reilly, who provided
feedback and guidance, drove the writing process of this
book, and helped polish the content. We’d especially like to
thank Corbin Collins for being our partner throughout the
process, paying close attention to all the details and

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/mlops-in-the-enterprise
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

helping us meet deadlines, and to Nicole Butterfield, for
her unwavering support and valuable input.

We’'re deeply appreciative of our tech reviewers,
Dhanasekar Sundararaman, Tigran Harutyunyan, Nivas
Durairaj, and Noga Cohen for their expertise and wisdom.

Yaron

I am thrilled to present my first book, a culmination of
years of experience and knowledge, as I eagerly share it
with readers worldwide.

I am deeply grateful to my family, Dvori, Avia, Ofri, and
Amit, for their love and support throughout my career and
the long process of writing this book. Their patience and
encouragement have meant a lot to me.

Special thanks go to Sahar, who encouraged me to write
this book, and to Guy and the Iguazio team, who shared
their knowledge, experiences, and code examples.

Noah

It is always an honor to have the opportunity to work on an
O’Reilly book. This book marks my fifth O’Reilly and likely
my last technical book as I shift to other writing and
content creation forms. Thank you to everyone I worked
with at O’Reilly, including current and former editors and
collaborators and authors of the recent book.

Also, thanks to many of my current and former students,
faculty, and staff at Duke MIDS, Duke Artificial Intelligence
Masters in Engineering, as many ideas in this book came
from courses I taught and questions brought up by
students.

https://oreil.ly/2SWqF
https://oreil.ly/bTcbr

Finally, thank you to my family, Leah, Liam, and Theodore,
who put up with me working on weekends and late at night
to hit deadlines.

Chapter 1. MLOps: What Is
It and Why Do We Need It?

At the root of inefficient systems is an interconnected web
of incorrect decisions that compound over time. It is
tempting to look for a silver bullet fix to a system that
doesn’t perform well, but that strategy rarely, if ever, pays
off. Consider the human body; there is no shortage of quick
fixes sold to make you healthy, but the solution to health

longevity requires a systematic approach.!

Similarly, there is no shortage of advice on “getting rich
quick.” Here again, the data conflicts with what we want to
hear. In Don’t Trust Your Gut (HarperCollins, 2022), Seth
Stephens-Davidowitz shows that 84% of the top 0.1% of
earners receive at least some money from owning a
business. Further, the average age of a business founder is
about 42, and some of the most successful companies are
real estate or automobile dealerships. These are hardly get-
rich-quick schemes but businesses that require significant
skill, expertise, and wisdom through life experience.

Cities are another example of complex systems that don’t
have silver bullet fixes. WalletHub created a list of best-run
cities in America with San Francisco ranked 149 out of 150
despite having many theoretical advantages over other
cities, like beautiful weather, being home to the top tech
companies in the world, and a 2022-2023 budget of $14
billion for a population of 842,000 people. The budget is
similar to the entire country of Panama, with a population
of 4.4 million people. As the case of San Francisco shows,
revenue or natural beauty alone isn’t enough to have a

https://oreil.ly/yDbvb
https://oreil.ly/2pktd
https://oreil.ly/8TBXm

well-run city; there needs to be a comprehensive plan:
execution and strategy matter. No single solution is going
to make or break a city. The WalletHub survey points to
extensive criteria for a well-run city, including
infrastructure, economy, safety, health, education, and
financial stability.

Similarly, with MLOps, searching for a single answer to
getting models into production, perhaps by getting better
data or using a specific deep learning framework, is
tempting. Instead, just like these other domains, it is
essential to have an evidence-based, comprehensive
strategy.

What Is MLOps?

At the heart of MLOps is the continuous improvement of all
business activity. The Japanese automobile industry refers
to this concept as kaizen, meaning literally “improvement.”
For building production machine learning systems, this
manifests in both the noticeable aspects of improving the
model’s accuracy as well the entire ecosystem supporting
the model.

A great example of one of the nonobvious components of
the machine learning system is the business requirements.
If the company needs an accurate model to predict how
much inventory to store in the warehouse, but the data
science team creates a computer vision system to keep
track of the inventory already in the warehouse, the wrong
problem is solved. No matter how accurate the inventory
tracking computer vision system is, the business asked for
a different requirement, and the system cannot meet the
goals of the organization as a result.

So what is MLOps? A compound of Machine Learning (ML)
and Operations (Ops), MLOps is the processes and
practices for designing, building, enabling, and supporting
the efficient deployment of ML models in production, to
continuously improve business activity. Similar to DevOps,
MLOps is based on automation, agility, and collaboration to
improve quality. If you're thinking continuous
integration/continuous delivery (CI/CD), you're not wrong.
MLOps supports CI/CD. According to Gartner, “MLOps
aims to standardize the deployment and management of
ML models alongside the operationalization of the ML
pipeline. It supports the release, activation, monitoring,
performance tracking, management, reuse, maintenance,
and governance of ML artifacts”.

MLOps in the Enterprise

There are substantial differences between an enterprise
company and a startup company. Entrepreneurship expert
Scott Shane wrote in The Illusions of Entrepreneurship
(Yale University Press, 2010) “only one percent of people
work in companies less than two years old, while 60
percent work in companies more than ten years old.”
Longevity is a characteristic of the enterprise company.

He also says, “it takes 43 startups to end up with just one
company that employs anyone other than the founder after
ten years.” In essence, the enterprise builds for scale and
longevity. As a result, it is essential to consider
technologies and services that support these attributes.

https://oreil.ly/fizFl

NOTE

Startups have technological advantages for users, but they also have
different risk profiles for the investors versus the employees. Venture
capitalists have a portfolio of many companies, diversifying their risk.
According to FundersClub, a typical fund “contains 135 million” and
is “spread between 30-85 startups.” Meanwhile, startup employees
have their salary and equity invested in one company.

Using the expected value to generate the actual equity value at a
probability of 1/43, an enterprise offering a yearly 50k bonus returns
200k at year four. A startup produces $4,651.16 in year four. For
most people, on average, startups are a risky decision if judged on
finance alone. However, they might offer an excellent reward via an
accelerated chance to learn new technology or skills with the slight
chance of a huge payout.

On the flip side, if a startup’s life is dynamic, it must pick
very different technology solutions than the enterprise. If
there is a 2.3% chance a startup will be around in 10 years,
why care about vendor lock-in or multicloud deployment?
Only the mathematically challenged startups build what
they don’t yet need.

Likewise, if you are a profitable enterprise looking to build
upon your existing success, consider looking beyond
solutions that startups use. Other metrics like the ability to
hire, enterprise support, business continuity, and price
become critical key performance indicators (KPIs).

Understanding ROl in Enterprise Solutions

The appeal of a “free” solution is that you get something for
nothing. In practice, this is rarely the case. Figure 1-1
presents three scenarios. In the first scenario, the solution
costs nothing but delivers nothing, so the ROI is zero. In
the second scenario, high value is at stake, but the cost
exceeds the value, resulting in a negative ROI. In the third

https://oreil.ly/LHfhl
https://oreil.ly/DOTpa

scenario, a value of one million with a cost of half a million
delivers half a million in value.

The best choice isn’t free but is the solution that delivers
the highest ROI since this ROI increases the velocity of the
profitable enterprise. Let’s expand on the concept of ROI
even more by digging into bespoke solutions, which in
some sense are also “free” since an employee built the
solution.

#1novalue/nocost/ #2highvalue/high cost/ #3 high value/low cost/

no ROI negative ROI positive ROI
P . ; : 3 "
Value=0 Value = 1Million Value =1Million
\ \ y \
r ™ a 5 '
Cost=0 Cost = 2 Million Cost = 1/2 Million
\ y

m ROI =-1 Million ROI=1/2 Million

Figure 1-1. Evaluating ROI for technology platform solutions

In Figure 1-2, a genuinely brilliant engineer convinces
management to allow them to build a bespoke system that
solves a particular problem for the Fortune 100 company.
The engineer not only delivers quickly, but the system
exceeds expectations. It would be tempting to think this is
a success story, but it is actually a story of failure. One year
later, the brilliant engineer gets a job offer from a trillion-
dollar company and leaves. About three months later, the
system breaks, and no one is smart enough to fix it. The
company reluctantly replaces the entire system and
retrains the company on the new proprietary system.

Leaves for 10x pay i
[Brilliant engineer nggﬁlﬂpg?]uar

lBqus solutions for organization

" D System breaks three
B.ES poke system not months after employee leaves .
in core business of Proprietary system
enterprise

o

Ll]l ey e] [New system delivers]

retrain on new ‘
system superior results

— Yearone Year two

Figure 1-2. Bespoke system dilemma

The ultimate cost to the organization is the lack of
momentum from using a superior system for a year,
alongside the training time necessary to switch from the
old system to the new system. Thus, a “free” solution with
positive ROI can have long-term negative ROI for an
organization. This scenario isn’t just hypothetical; you may

have seen it yourself.?

In Fooled by Randomness: The Hidden Role of Chance in
Life and the Markets (Random House, 2008), Nassim Taleb
argues, “it does not matter how frequently something
succeeds if failure is too costly to bear.” This statement
directly applies to a successful enterprise that wants to
implement MLOps. Taking the right kind of strategic risk is
of critical importance. In the following section, we discuss
the concept of risk in more detail.

Understanding Risk and Uncertainty in the
Enterprise

Not all risk is the same, just as not all uncertainty is the
same. Unlike a startup, an enterprise has made it to the
survival phase. There are some risks that enterprises do
not need to take. In his book about the enterprise, Good to
Great (Harper Business, 2011), Jim Collins asks, “How do
good-to-great organizations think differently about
technology?” He found that in every case a “good-to-great”
company found technological sophistication and became a
pioneer in applying technology. Further, Collins states that
technology is an accelerator, not a creator, of momentum.

NOTE

Mark Spitznagel makes a case for considering the geometric mean in
financial investment in Safe Haven (Wiley, 2021). He states, “Profit is
finite. Risk is infinite.” The percentage of your wealth you can lose is
more important than the absolute value of the wealth you could lose
when investing. This fact is well suited to the enterprise. Why take a
risk with unbounded loss?

Collins’ key point about technology directly applies to
MLOps in the enterprise. The purpose of machine learning
is to accelerate the business value that is already there.
The reason to use machine learning isn’t to pivot the
organization to becoming machine learning researchers
competing with companies that specialize in research; it is
to accelerate the strategic advantages of the organization
through technology.

The calculated risk of adopting machine learning as a
business accelerator is acceptable if done in a manner that
allows an organization to limit the downsides of technology
change management. There is essentially unbounded risk
in a company creating bespoke machine learning solutions
and platforms when its core strength is in some other

industry, such as manufacturing, hospitality, or financial
services.

Many options exist to accelerate technological
advancement in the enterprise, including using pretrained
models like Hugging Face or TensorFlow Hub, computer
vision APIs like AWS Rekognition, or open source AutoML
solutions like Ludwig or MLOps orchestration frameworks
like MLRun. Enterprises that adopt MLOps with an
approach of using the right level of abstraction give
themselves a “good-to-great” advantage over organizations
that “hired 15 data scientists” who do “research.” In the
latter example, it is often the case that after years of
research, in the best case nothing is done, but in the worst
case, a lousy solution creates a worse outcome than doing
nothing.

Economist Frank Knight clearly articulates the difference
between risk and uncertainty: the reward for taking a
known risk is very different than a risk that is
immeasurable and impossible to calculate. This form of
risk, called Knightian uncertainty, was named after Knight.
An enterprise doing machine learning should deeply
consider which risk they are taking: a regular risk that is
knowable, or are they embarking on a path with Knightian
uncertainty? In almost all cases, it is better to take
knowable risks in machine learning and Al since technology
is not the creator of growth; instead, it is the accelerator.

Knowing that acceleration is the crucial insight into great
companies that use technology, let’s look at some of the
differences in technology acceleration between MLOps and
DevOps.

MLOps Versus DevOps

https://oreil.ly/t6t2-
https://tfhub.dev/
https://oreil.ly/Fgj2k
https://oreil.ly/Oo1EF
https://www.mlrun.org/
https://oreil.ly/KcqtU

Without DevOps, you cannot do MLOps. DevOps is a
foundational building block for doing MLOps, and there is
no substitute. DevOps is a methodology for releasing
software in an agile manner while constantly improving the
quality of both business outcomes and the software itself. A
high-level DevOps practitioner has much in common with a
gourmet chef. The chef has deep knowledge of ingredients
and years of practical experience creating beautiful and
delicious meals, and they can make these meals in an
industrialized and repeatable manner. The repetition allows
a restaurant to stay open and earn a profit.

Similarly, with DevOps, an expert in the domain has
detailed knowledge of how to build software and deploy it
in a high-quality and repeatable manner. One of the biggest
challenges for experts in data science to transition to
MLOps is a lack of experience doing DevOps. There is no
substitute for experience; many data science practitioners
and machine learning researchers should get experience
building and deploying software with the DevOps
methodology to get the foundational knowledge and
experience necessary to be an expert at MLOps.

NOTE

You can learn more about DevOps from Python for DevOps (O’Reilly)
by Noah Gift, Kennedy Behrman, Alfredo Deza, and Grig Gheorghiu.

There are apparent differences, though, between
traditional DevOps and MLOps. One clear difference is the
concept of data drift; when a model trains on data, it can
gradually lose usefulness as the underlying data changes. A
tremendous theoretical example of this concept comes from
Nassim Taleb in Fooled by Randomness (Random House,

https://learning.oreilly.com/library/view/python-for-devops/9781492057680/

2021), where he describes how a “naughty child,” as shown
in Figure 1-3, could disrupt the understanding of the
underlying distribution of red versus black balls in a
container.

Every new ball
Every new ball [
pullgd doesn't pulled gives more
reflect actual information about
distribution frequency of red/
black balls

1
O O
O @

e —

—

a—

-~

Naughty child constantly
filling container with new balls

Figure 1-3. “Naughty child” data drift problem

In a static condition, the more balls pulled from a
container, the more confident a person can be of the
underlying distribution of red versus black balls. In a
dynamic condition, if the balls are constantly changing,
then a model trained on an older data version won't be
accurate. This example captures one of many unique
elements specific to MLOps not found in DevOps.

The takeaway is that DevOps is a necessary foundation for
MLOps, but MLOps’ additional requirements, like data
drift, don’t appear in traditional DevOps.

NOTE

Microsoft notes, “Data drift is one of the top reasons model accuracy
degrades over time.”

What Isn’t MLOps?

One way to understand more about MLOps is to define
what it is not. Here are some common MLOps anti-
patterns:

Hiring a team of data scientists and hoping for the best

Perhaps the most common of the MLOps anti-patterns is
hiring a team of data scientists and expecting an excellent
solution to appear. Without organizational support that
understands MLOps and technology infrastructure to
support them, there will not be an ideal outcome.

Building only bespoke machine learning solutions

A fundamental problem with building only customized
solutions is that they may not be necessary for an
organization’s business goals. Training a bespoke machine
learning model on propriety data for a self-driving company
is essential to a competitive advantage. Training a similar
model for a Fortune 500 delivery company could be a costly
experiment adding no real value to the business.

Dismissing DevOps importance

Teams that work in silos are not following the best practices
of DevOps. For example, it is impractical to have a data

https://oreil.ly/gTwJ2

science team in Texas that builds models in R and then
throws them over to the DevOps team in San Francisco’s
financial district to put into the software stack in Python.

Ultimately, MLOps requires a business and production-first
mindset. The purpose of machine learning is to accelerate
business value. This means the teams building solutions
must be agile in their approach to solving machine learning
problems.

Mainstream Definitions of MLOps

A challenge in technology is separating marketing strategy
from technology strategy. In the case of MLOps, it is not a
marketing strategy; it is a specific solution to a severe
problem in the enterprise. The bottom line is that models
are not making it into production; if they do, they are
brittle and fall apart when faced with the complexities of
the actual world. Various surveys show that 50-70% of
organizations have failed to deliver Al pilots or models to
production.

With the condition identified, let’s find the cure. The cure
needs to address the following key issues (among others):

« Model deployment and development time

Collaboration between different teams

Operational excellence of ML systems

Data governance

Enhancing the ROI of the enterprise deploying the
model

https://oreil.ly/9XbAP

One minimalist way to define MLOps is that it supports ML
development like DevOps supports software development.

What Is ML Engineering?

One way to define ML engineering is to look at popular
certifications. Google’s Professional Machine Learning
Engineer explains the following criteria for a professional
ML engineer:

Frame ML problems

Which model to choose depends on business constraints and
the context. For example, a business may decide to classify
damaged shipped boxes versus successfully delivered
packages. In that context, a classification model would be
more appropriate than a regression model.

Architect ML solutions

An ML engineer develops a solution to solve the correctly
framed problem using machine learning alongside other
team members.

Design data preparation and processing systems

Two critical steps in data preparation and processing are
constructing the dataset and then transforming the data.

Develop ML models

The detailed modeling process involves a team or individual
that creates a model correctly suited to initial model
framing.

Automate and orchestrate ML pipelines

A pipeline serves to create a process for reproducible and
maintainable ML.

https://oreil.ly/qudLc
https://oreil.ly/I1c1s
https://oreil.ly/OJZ8Q
https://oreil.ly/5Qxpk
https://oreil.ly/ao6rA

Monitor, optimize, and maintain

It is better to be proactive than reactive in building complex
systems. Building monitoring allows for a proactive
approach to maintaining ML system:s.

ML engineering aims to build high-quality ML models that
solve specific business problems while creating ROI.

NOTE

Several O’Reilly books discuss machine learning engineering,
including Data Science on the Google Cloud Platform, Machine
Learning Design Patterns, and Practical MLOps.

MLOps and Business Incentives

A classic problem in business school is incentives, often
described as “who moved the cheese?” This scenario refers
to a rat in a maze that moves depending on where the
cheese is. Similarly, there are two common incentives
worth discussing in MLOps: negative externalities and
hiring data scientists without regard for ROI:

Negative externalities

Negative externalities, like a company creating a profit
dumping toxic waste into a river instead of the more
expensive appropriate disposal, are classic examples of the
fundamental problems in capitalism. In machine learning,
the negative externalities could be biased algorithms that
send an innocent person to jail or deny a person credit
based on race, religion, national origin, and other categories.
Even an unintentionally created bias in a model is still illegal
(e.g., denying credit based on age). Enterprises that fail to

https://oreil.ly/Av_sW
https://learning.oreilly.com/library/view/data-science-on/9781491974551/
https://learning.oreilly.com/library/view/machine-learning-design/9781098115777/
https://learning.oreilly.com/library/view/practical-mlops/9781098103002/

look into the future could expose themselves to existential
risk if system bias against elderly applications, for example,
were accidentally baked into a machine learning model.

Hiring data scientists without regard for ROI

It has recently been in vogue to hire data scientists without
regard for the problem they are solving. As we discussed,
this strategy ultimately doesn’t work because models are not
in production at most organizations doing Al and ML.

MLOps in the Cloud

MLOps methodology leverages several critical advantages
of cloud computing. First, the cloud is an elastic resource
that enables both the efficient use of computing and
storage and the ability to scale to meet almost any demand.
This capability means that cloud computing has on-demand
access to essentially infinite resources.

Second, the cloud has a network effect in that cloud
technologies benefit from integrating other cloud
technologies. A great example is AWS Lambda, a serverless
technology. AWS Lambda is a valuable service to build
applications with, not because of what it does alone, but
because of the deep integration with other AWS services
like AWS Step Functions, Amazon SageMaker, or AWS S3.
For any active cloud platform, you can assume that the
integrated network of services further strengthens its
capabilities as the platform develops more features.

Third, all cloud vendors have MLOps platforms. AWS has
SageMaker, Azure has Azure Machine Learning, and
Google has Vertex Al. Even smaller niche clouds like
Alibaba Cloud has their Machine Learning Platform for Al.
By using a cloud platform, an organization will likely use

https://oreil.ly/-xt41
https://oreil.ly/l-2bj
https://oreil.ly/A4iUq
https://oreil.ly/_sGX4

some of the offerings of the native ML platform and
potentially augment it with custom solutions and third-
party solutions.

Fourth, all cloud vendors have Cloud Development
Environments. A significant trend is the use of a
combination of lightweight CloudShell environments like
AWS CloudShell, heavier full interactive development
environment (IDE) options like AWS Cloud9, and notebook
environments, both free like SageMaker Studio Lab or
Google Colab and those with rich IDE integration like
SageMaker Studio.

Finally, depending on what a company is doing, it may have
no option but to use cloud computing. Some cloud
computing components are a hard requirement for
organizations specializing in building bespoke deep
learning solutions because deep learning requires
extensive storage and compute capabilities.

In addition to the public cloud vendors, several additional
players offer MLOps solutions in the cloud (see later in this
section). These vendors can operate on the public cloud or
on private clouds. The advantage of using a smaller vendor
is the customization level that such a company provides its
customers. In addition, an MLOps vendor will have more in-
depth expertise in MLOps since that is its only focus.
Integrated vendors often ensure more relevant features
and many more integrations. Finally, by choosing a vendor
that is agnostic to a specific cloud provider, you, as a
customer, aren’t connected to it either. Instead, you can
use the vendor across multiple clouds or on additional
infrastructure that you may have (see later in this section).

https://oreil.ly/kmetl
https://oreil.ly/Lf3kY
https://oreil.ly/7iF37
https://oreil.ly/uScZa
https://oreil.ly/GFd1X

NOTE

One helpful resource for machine learning vendor analysis is the Al
Infrastructure Alliance (AIIA). This organization provides data
scientists and engineers with clarity and information about AI/ML
tools to build robust, scalable, end-to-end enterprise platforms. One
resource is a comprehensive MLOps landscape that maps out all the
players in the industry. This document includes an updated MLOps
landscape that will map out open source and enterprise solutions for
MLOps. The new landscape will encompass multiple categories and
hundreds of companies while detailing the capabilities of each
vendor solution.

In Figure 1-4, notice a typical pattern among all clouds in
which there is a set of cloud development environments,
flexible storage systems, elastic compute systems,
serverless and containerized managed services, and third-
party vendor integration.

Elastic compute

sytems
Nearinfinite disk /0,
storage, CPU, GPU,
and ASICs)
__1 | . Networkeffect
integrati Specialized
Cloud integrated - Cloud development i f;i:ﬁéf; Third-party
tools and SDK environments vendor
L integrations
75551
Developer Machine learning
centric engineering centr'ﬁ
Storage query Free Jupyter
Cloudshell Cloud IDE tools and Notebook MLOps platform
dashboards platform

Figure 1-4. Cloud MLOps landscape

Here is more detail about these categories:

https://oreil.ly/ezPlN

Cloud development environments

Generally, developer-centric tools like cloud shells and IDEs
are on one extreme and machine learning-centric tools on
the other. Storage query tools like Google BigQuery, Amazon
Athena, or Azure Databricks Integration are in the middle.

MILOps platforms that operate in the cloud

MLOps platforms are built specifically for running MLOps
for enterprises on the cloud or across any environment.
Solutions like Iguazio, Valohai, DataRobot, Azure Databricks
and Outerbounds, and many others offer a wide variety of
MLOps solutions for the enterprise.

Elastic storage systems and elastic computing systems

Deep learning systems thrive on big data, and flexible
compute capabilities from GPUs, CPUs, and Al Accelerator
application-specific integrated circuits (ASICs) like Tensor
Processing Units (TPU). As a result, MLOps platforms, both
native and third party, heavily use this elastic capability to
provide managed solutions.

Serverless and containerized managed services

Cloud platforms evolve toward more serverless solutions
like AWS Lambda or Google Cloud functions and solutions
with fully managed containerized solutions such as Google
Cloud Run or AWS Fargate. These managed services, in turn,
have deep platform integration, which enhances the value
proposition of the cloud platform through a network effect.

Third-party vendor integrations

A cloud platform can’t have the exact right mix of
everything and at the right quality. A trip to a large

https://oreil.ly/j3yGc
https://oreil.ly/IBVG1
https://oreil.ly/odarD
http://iguazio.com/
https://valohai.com/
https://oreil.ly/N5aeL
https://oreil.ly/QUFn8
https://oreil.ly/h600P
https://oreil.ly/Ootq5
https://oreil.ly/YIsop
https://oreil.ly/T8_q-
https://oreil.ly/8LCsU

warehouse store yields a wide variety of offerings at a
reasonable price. However, they may not have the authentic
gourmet food you like or the exact appliance features you
need. Just like that large warehouse store, a cloud provider
cannot go deep on everything. As a result, third-party
integrations handle these specialized or advanced use cases.

With the common aspects of cloud computing for MLOps
covered, let’s move on to discuss the cloud environments in
more detail.

Key Cloud Development Environments

One of the best new products from Microsoft is GitHub
Codespaces, a cloud-based development environment with
many customizable features and a great place to practice
MLOps. In particular, what is helpful about this
environment is the deep integration with GitHub and the
ability to customize it with a specialized runtime. Finally,
the synergy with GitHub Actions allows for a great CI/CD

story.

NOTE

Learn more about GitHub Codespaces with the following videos:

« “Building with the GitHub EcoSystem: Copilot, Codespaces, and
GitHub Actions”

“GitHub Codespaces and Custom Dotfiles”
« “Compiling Python from Scratch with GitHub Codespaces”

“GitHub Copilot Driven: Python DevOps from Functions to
Continuous Delivery of Microservices on AWS”

“GitHub Codespaces Course”

https://oreil.ly/k0neJ
https://oreil.ly/BRL8A
https://oreil.ly/vGqtx
https://oreil.ly/3olfO
https://oreil.ly/nQovA
https://oreil.ly/tbgPw
https://oreil.ly/-69Zg

Three different flavors of cloud-based developments are
available from Google: Colab notebooks, Google Cloud
Shell, and Google Cloud Shell Editor.

Figure 1-5 shows a full editor available for Google Cloud
Platform (GCP).

Google Cloud 3+ cloudai «

CLOUD SHELL EEaaalS i

Editor -
File Edit Selection View Go Run Terminal Help

EXPLORER

» OPEN EDITORS
“ NOAH_GIFT 1) P oees
B README-cloudshell.txt

050 ¢ Cloud Code minikube

Figure 1-5. Google Cloud Shell Editor

In Figure 1-6, API docs integrate with the development
environment.

https://oreil.ly/LhvZ5
https://oreil.ly/HKcTG
https://oreil.ly/O2RCY

CLOUD SHE "cF'HI:MI:i-i'.!.L
Eldi:m' e B OpenTerminal B [1 v (]

File Edit Selection View Go PRun Terminal Help

B3 Essential Contacts AP1 PREVIEV
~ B BigQuery (Product Group) I

2

@ CLOUD CODE - CLOUD APIS £ B # Google Cloud AP Datail %
P r> BigQuery API y
I

B9 BigQuery AP 4]
B3 BigQuery Connection AP J Service version: v2 | View Product Homepage [}

B3 BigQuery Data Transter Service A data platform for customaers to create, manage, share and query
F7 BigQuery Reservation AP| data.
I~ P Bigtable (Product Group)

o B Cloud Bigtable Admin AP Gat Started Code Samples

&y v B Basiness Application Platform ———
APl Gateway AP Language
Eaﬂh:»ud o = Fitter Coda Samplas Python -
o
B Clowd Matural Language APl
B3 Cloud TPU AFI (D) W are in the process of creating mars snippets for BigQuery AP,
{E} B Glowd Transtation AP1

P Cloud Vislon AP

0 € Cloud Code minikube

Figure 1-6. Google Cloud Shell Editor API

In Figure 1-7, the terminal shows a standard view of the
experience using the cloud shell.

= GoogleCloud 3* cloudai «

DASHBOARD ACTIVITY RECOMMENDATIONS

o® Project info H -@- App Engine : & Googl
Project name Summary (count/sec) Al servi
cloudai

(cloudai-194723) X # OpenEditor B} s B &

= [cloudai-194723)% gsutil --help

T T M aummadlll - [= e e
. it] T [=¢ on:flag=val

osite ocbject.

e buckets

Figure 1-7. Google Cloud Shell terminal

NOTE

Learn more about Colab notebooks from the following videos:

« “Data Science on Your First Day with Python”

« “Python for Data Science with Colab and pandas in One Hour
Video Course”

« “What are Google Colab Notebooks and How Do You Share
Them for Data Science Projects?”

Finally, the AWS platform has cloud shell environments, as
shown in Figure 1-8.

NOTE

One quick way to learn about multiple clouds simultaneously is by
setting up a multicloud continuous integration. You can learn how to
set this up with the video “GitHub Actions Hello World All Cloud and
Codespaces”.

aws e== Services | \Q, cloud9 cloudshell * /B

AWS CloudSh

Search results for ‘cloud9 cloudshell'

us-gast-1 : -
Services (40) Services

@ If the arrow keys Features (21)

Don't show this n Blogs (4,261) #3 CloudShell) ¥

. Abrowser-based shell with AWS
Preparing your 1 Documentation (8)

Try these commar
aws help or
[cloudshell-usei Tutorials (22)

Knowledge Articles (30) @ Cloud9 5%
i

A Cioud IDE for Writing, Running

Figure 1-8. AWS Cloud Shell terminal

https://oreil.ly/mV7la
https://oreil.ly/wXbsY
https://oreil.ly/7BFTZ
https://oreil.ly/ygf5A

All of this leads to the concept of the cloud developer
workspace advantage, as shown in Figure 1-9. A laptop or
workstation is expensive and nondeterministic due to
preinstalled software and, by definition, not the deploy
target. When you look at a cloud-based workspace, it has
many incredible advantages, including power, disposability,
preloading, and deep integration with advanced tools.

« Powerful « Deep integration cloud development
+ Disposable *SDK
+ Preloaded « Colocated in network

v

GitHub GCP Cloud Azure Cloud
Cloudspaces AWS Cloud? IDE IDE
Azure
AWS Cloudshell GCP Cloudshell
« Nondeterministic { o o Cloudshell
- Cost>$$3$
» Not same as deploy ENV I T
« Lightweight
AWS SageMaker Colab + CLISDK loaded
Studio Lab Notebooks
GPU + Jupyter

Figure 1-9. Cloud developer workspace advantages

NOTE

You can learn more about the cloud developer workspace advantage
in the video “52 Weeks of AWS-The Complete Series” or on YouTube.

The Key Players in Cloud Computing

Know someone who wants to earn $200k or more a year?
According to the 2022 Cloud Salary Survey by Mike
Loukides (O’Reilly), the average salary for certified
professionals on AWS, Azure, and GCP is over 200k.

https://oreil.ly/DdxUG
https://oreil.ly/ObobL
https://oreil.ly/o8N97

Further backing this up is the data from Statista, as shown
in Figure 1-10. As of Q2 2022, there were three key players
in the worldwide market. AWS had about 33% of the
market share, Azure had about 21%, and Google Cloud had
about 10%. Combined, these three vendors controlled two-
thirds of a market that generates almost $200 billion in
revenue. Service revenue increased by 37% from the last
year.

Amazon leads $200 billion cloud market
Worldwide market share of leading cloud infrastructure service providersin Q2 2022*

- I -+

reure [2 %
Google Cloud _10%
Albaba Cloud [5%

IBM Cloud - 4% ‘
Salesforce - 3% Cloud infrastructure market size
(12 months ended June 2022):
Tencent Cloud - 3% ‘ $203.5 billion

Oracle . 2%

*Includes platform as a service (Poa%) and infrastructure as a servie (laaS) as well as hosted private doud services,
Source: Synergy Research Group

Figure 1-10. Cloud computing market

A reasonable strategy for an organization wishing to use
cloud computing is to use the platform of the largest
providers. The Matthew effect3 saying, “the rich get richer,

and the poor get poorer,” applies to cloud computing for
several reasons:

Available employees and vendors to hire

Leveraging the most prominent cloud platforms makes
hiring employees and finding vendors that work with the
platform more accessible.

Training material available

The availability of training material for the most prominent
platforms makes it easier to train employees.

Services available

Larger platforms can hire more software engineers and
product managers, meaning you can count on a
continuation of new features and maintenance in their

platform.

Cost of service

Economies of scale mean that the most significant providers
benefit the most from economies of scale. They can leverage
pricing advantages by buying in bulk and then passing them
on to the customer.

NOTE

You can study for the AWS Cloud Certifications by viewing “AWS
Solutions Architect Professional Course” and “AWS Certified Cloud
Practitioner Video Course” by Noah Gift.

Now that you know the top providers in cloud computing,
let’s discuss how each vendor views the world of cloud
computing as it relates to MLOps.

AWS view of cloud computing as it relates to MLOps

The best place to get a high-level summary of AWS cloud
computing is the Overview of Amazon Web Services AWS

https://oreil.ly/r2cyW
https://oreil.ly/LhQRn
https://oreil.ly/dSVU0
https://oreil.ly/ZPVnz

Whitepaper. In particular, they mention six advantages of
cloud computing:

Trade fixed expense for variable expense

Avoiding large capital expenditures encourages agility and
efficiency.

Benefit from massive economies of scale

As prices decrease for the supplier, they fall for the customer,
allowing for lower pricing than if the customer bought the
same product. Similarly, managed services on the platform
will have a steady schedule of new features.

Stop guessing capacity

There isn’t a need to preprovision resources since systems
get built with an elastic ability to scale as needed.

Increase speed and agility

Focusing on an organization’s comparative advantage and
not building nonessential-to-business IT allows an
organization to move faster.

Stop spending money running and maintaining data centers

Cost savings accumulate from outsourcing this component of
IT.

Go global in minutes

Going global is a highly challenging problem that goes away
with AWS due to its comprehensive offerings.

https://oreil.ly/ZPVnz
https://oreil.ly/Dn0Tb

NOTE

You can learn more about AWS in Developing on AWS with C#
(O’Reilly) by Noah Gift and James Charlesworth.

These features ultimately drive into the core MLOps
offering of Amazon SageMaker in Figure 1-11 as the
project’s lifecycle goes from preparation to building to
training, to finally deploying and managing the solution. At
the center of the workflow is tight integration with
developer tools from Studio and RStudio.

| .‘ : | .‘ Train and | .‘ Deploy and
[Prepare Build fire manage]

Developer tools story

Studio | RStudio
MLOps: pipelines | projects | model registry
Canvas

Figure 1-11. Amazon SageMaker MLOps workflow

NOTE

In the video “Amazon SageMaker Studio Labs: First Thoughts”, you
can see a complete walkthrough of SageMaker Studio Lab.

With the AWS view of the MLOps complete, let’s look at
Azure next.

Azure view of cloud computing as it relates to MLOps

https://oreil.ly/uinxg
https://oreil.ly/h3oa3

Microsoft Azure sees the world of MLOps as a way to
“efficiently scale from a proof of concept or pilot project to
a machine learning workload in production.” As shown in
Figure 1-12, the model’s lifecycle includes training,
packaging, validating, deploying, monitoring, and
retraining.

: Package Validate Deplo Monitor
[Tralnmudel]I[model I 'l model H mnde¥ I " model]
A

Retrain model

Figure 1-12. Azure MLOps

Next, let’s next look at how Google views MLOps.

GCP view of cloud computing as it relates to MLOps

An ideal place to look at how Google sees the world is by
looking through the Production ML Systems crash course.
One of the items the company points out is how tiny the
modeling part of the problem is, as shown in Figure 1-13.
Instead, the combination of other tasks, including data
collection, serving infrastructure, and monitoring, take up
much more of the problem space.

https://oreil.ly/dv8mz
https://oreil.ly/LD-TI

il N N y '
Data Data Eggnlrg:
collection verification
management
\ y,)
i ™ N
Feature ML [Analysis tools Serving
extraction code 7 |
\ J 1
(— A Monitoring
Configuration
management & J
tool
. v, . v

Figure 1-13. Google’s view of MLOps

Ultimately this leads to how Google’s Vertex Al platform
handles the MLOps workflow, shown in Figure 1-14. The
ML development process occurs, including model framing
for the business problem. The data processing phase leads
to an operationalized training process that can scale up as
needed. Then the model deployment occurs along with a
workflow orchestration alongside artifact organization. The
model has monitoring baked into the deployment process.

https://oreil.ly/WFpn_

[ML development H Data processing H UDE{?;:EHJ;II_Iainzed]

|
* i B
Model development ML workflow Artifact
and serving orchestration organization

v

i ™

Model monitoring

e -

r
\

Figure 1-14. Google’s view of MLOps

While public cloud providers offer their own solutions,
sometimes enterprises might need a solution that is more
tailored to their specific needs. Let’s look at two more
deployment options: on-premises deployment and hybrid
cloud deployment.

MLOps On-Premises

In some use cases, enterprises cannot use the public cloud.
Business restrictions like the need to secure sensitive data
or having to adhere to strict regulations (e.g., data
localization privacy regulations) require an MLOps solution
that can operate on-premises. Many MLOps solutions offer
the ability to deploy them either in the cloud or on-
premises. The only down side to this approach is that on-
premises solutions require the enterprise to provide the
servers and equipment that will support the intense
computing power needed to run ML algorithms at scale.
They will also need to update and maintain the
infrastructure.

On the other hand, an on-premises deployment will almost
certainly require some sort of customization. This
installation gives enterprises more control over the
product, and they can make specific requests to tailor it to
their needs. More specifically, if the deployed solution is a
startup solution, they will be attentive and work hard to
ensure satisfaction and adoption. If it’s an open source
product, then enterprises not only can leverage the
community’s development power but also go inside with
their own developers and tinker with the product to ensure
it suits their needs.

MLOps in Hybrid Environments

Similar to on-premises deployment, some enterprises might
prefer a hybrid cloud deployment. This involves deploying
on the public cloud(s), on-premises, and perhaps even on a
private cloud or on edge devices. Naturally, this makes
things a lot more complex, since the MLOps solution must
enable total separation of the data path from the control
path and must be delivered by a highly available, scalable
entity that orchestrates, tracks, and manages ML pipelines
across types of infrastructure deployments. Lest we forget,
this has to occur at high speed and with optimal
performance. Finally, the solution ideally provides a single
development and deployment stack for engineers across all
infrastructure types.

Finding a vendor or open source solution that meets all
these requirements might not be simple, but as mentioned
before, your best bet is with startups or mature OSS
solutions that can be customized to the specific needs of
your infrastructure.

Enterprise MLOps Strategy

With a high-level overview of the critical issues involved in
MLOps completed, it is time to turn to strategy, as shown
in Figure 1-15. There are four key categories to consider
when implementing an MLOps strategy: cloud, training and
talent, vendor, and executive focus on ROI.

- Executive
Clu ud Tralglgﬁ tand Vendor focus on ROI
of technology

Eloud Internal J|[f APY | Correct |
MLOps Certification | and external problem
platfurrn training Wiops I framing)
Cloud albud aey platform Use
managed tools tools and Models technology
services |integrations J|[|as accelerant

Fzgure 1-15. Enterprise MLOps strategy
Let’s discuss each of these four categories:
Cloud

There is no perfect answer for which cloud platform to use.
Any central platform will offer the advantages of economies
of scale. What is essential in an MLOps strategy is to be
aware of how a cloud platform fits into the unique goals of
each organization and how it aligns with other strategic
components like hiring or third-party vendor integration.

Training and talent

Often, organizations look only at the power of new
technology and don’t consider the training and talent
component of using the technology. In almost all cases, an
organization should use a less powerful technology if hiring

and training are better with a less powerful solution. This
fact means widespread technology is crucial when
implementing new technology. Ultimately, the latest
technology is dead on arrival if you cannot hire or train your
staff.

Vendor

An often overlooked issue with using cloud computing is
that it usually needs to be augmented by specialized vendors
to help an organization reach its goals with the technology.
These strategic choices can lead to better ROI for both the
cloud and the business strategies. Examples include using
vendor technology specializing in Hadoop, Kubernetes, or
pretrained models. The vendors will be unique to each
organization and its business goals.

NOTE

In “Enterprise MLOps Interviews”, CEO of Outerbounds and author of
Metaflow, Ville Tuulos, mentions that while all companies use the
base layer of the cloud, say storage and databases, they often need to
augment with vendors at higher layers.

Executive focus on ROI

Ultimately, the preceding three categories don’t mean
anything if the executive focus isn’t on ROI. The purpose of
technology is to drive long-term business value, meaning
problems need accurate scoping.

Conclusion

https://oreil.ly/lCMXU

This chapter sets the stage for understanding the crisis in
enterprises getting machine learning and Al into
production. From a common sense approach, the idea of
“just hiring more data scientists” to increase ROI is as
sensible as “just hiring more software engineers” to make a
traditional software project go faster. In the case of the
conventional software company, if there is no product, no
goal, and no oversight, then hiring more developers
increases the capital expenditure of the organization
without any added value.

Instead of this scenario, MLOps aims to add a methodology
that builds on the successful lessons of DevOps while
handling the unique characteristics of machine learning.
Finally, at the enterprise level, ultimately data science
comes down to ROI. Technology is an accelerant of value
for most organizations, not the value. Organizations that
create a hunger for ROI can quickly adopt the MLOps
mindset.

Critical Thinking Discussion
Questions

« There are many methods for deploying machine
learning models to production, including pretrained
models, APIs, AutoML, and bespoke training. What are
the pros and cons of each of these approaches?

« What strategies could an enterprise implement to
attract new machine learning engineering talent and
train and retrain current talent?

« If your organization currently doesn’t do any DevOps, a
foundational component necessary for MLOps, how

could they start a first DevOps project to test concepts
like CI/CD and infrastructure as code (IaC)?

If your organization doesn’t have large quantities of
proprietary data, how can it use machine learning to
gain a competitive advantage anyway?

« What is your organization’s cloud strategy: single

cloud, multicloud, hybrid cloud, private cloud, or
something else? How does this help your organization
reach your MLOps goals?

Exercises

Go to a popular model hosting site like TensorFlow Hub
or Hugging Face and deploy one of their models to your
favorite cloud platform.

Pick a cloud-based development environment like
GitHub Codespaces, Amazon SageMaker Studio Lab, or
Google Colab and explore the interface with an eye for
building a machine learning engineering project.

Use a machine learning app framework like Gradio or
Streamlit to build a simple machine learning
application.

Brainstorm several organizational problems that may
benefit from using machine learning and build a simple
prototype using an MLOps technology.

Convert a Kaggle project to an MLOps project by
downloading the dataset and coding an MLOps
technology to serve predictions.

https://oreil.ly/o4DEx
https://oreil.ly/t6t2-
https://oreil.ly/ku6bO
https://oreil.ly/BLd3W
https://oreil.ly/FcDKX
https://gradio.app/
https://streamlit.io/

1 Dr. Luks summarizes the systematic evidence-based strategy: “Create a
caloric deficit, then stay lean. Get sleep. Eat real food. Move often,
throughout the day. Push and pull heavy things. Socialize. Have a sense of
purpose.”

2 1n Principles of Macroeconomics (McGraw Hill, 2009), Ben S. Bernanke
shares the story of how a talented chef could extract all of the profit from
restaurants in a scenario of perfect competition since they would
continuously leave for a higher salary at a competing restaurant,
ultimately removing all profit for the owner.

3 Sociologists Robert K. Merton and Harriet Zuckerman first coined this
term.

https://oreil.ly/arWr-

Chapter 2. The Stages of
MLOps

MLOps is not about tracking local experiments and is not
about placing an ML model behind an API endpoint.
Instead, MLOps is about building an automated
environment and processes for continuously delivering ML
projects to production.

MLOps consists of four major components (and is not
confined to model training):

- Data collection and preparation

« Model development and training

« ML service deployment

« Continuous feedback and monitoring

This chapter explores these components in detail.

Getting Started

Begin with the end in mind. The first step in any ML project
is to articulate:

« The problem that needs to be solved using ML.
« What you want to predict.

« How to extract business value from the answer.
Examples of business value we might require include
decreasing fraud, increasing revenue by attracting new

customers, cutting operational costs by automating
various manual processes, and so on.

Once you define the goal, don’t rush straight into
implementation. First, consider the following:

« Which historical and operational data can be gathered
and used in both the training and serving pipelines

« How to incorporate the ML model results in a new or
existing application in a way that can make an impact

« How to verify and reliably measure that the ML model
meets the target and generates valuable business
outcomes

Figure 2-1 illustrates the different stages in an ML project.
Note the feedback loop where the observations are used to
recalibrate the business goals, data collection, and
preparation logic.

Define the Collect and Build and Integrate with Monitor
busmess goal prepare data deploy model application impact

Figure 2-1. ML project life cycle

If you focus only on the ML model, you may encounter
pitfalls such as these:

« Using the wrong datasets, which can easily lead to
inaccurate or biased results

- Lacking enough labeled data to build a model

- Finding out historical features used to train the model
are unavailable in the production or real-time
environment

https://oreil.ly/a2uxo

« Discovering there is no practical way to integrate the
model predictions into the current application

- Realizing the ML project costs are higher than the
generated value or, in a worst-case scenario, cause
losses in revenue or customer satisfaction

Choose Your Algorithm

The next phase is to determine the type of ML problem and
algorithm.

In supervised learning, labels are required and known:
Classification

The algorithm will answer binary yes-or-no questions (fraud
or not, is it an apple, will the customer churn) or make a
multiclass classification (type of tree, and so on). You also
need enough labeled data for the algorithm to learn from.

Regression

The algorithm predicts continuous numeric values based on
various independent variables. For example, regression
algorithms can aid in estimating the right price for a stock,
the expected lifetime of a component, temperature, and so
on.

Figure 2-2 compares the two algorithms.

04 100

02 80

0 60

02 40

04 20
-06 0 L1 N B B B
-05-04 -03-02-01 0 01 02 20 30 40 50 60 70 80 90 100

Classification Regression

Figure 2-2. Regression versus classification

In unsupervised learning, labels are not required and
known:

Clustering

The algorithm will look for meaningful groups or collections
in the data (customer segmentation, medical imaging, music
genre, anomaly detection, and so on) based on their
similarity without the help of pre-labeled data.

Dimensionality reduction

The algorithm will reduce the dimensionality (the number of
input variables in a dataset) from a high-dimensional space
into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the
original data, ideally close to its intrinsic dimension.
Dimensionality reduction allows you to avoid overfitting,
reduce the model computation overhead, and handle fewer
features than originally required.

Recommendation and ranking

The algorithm recommends or ranks objects by considering
their relevance, importance, and content score.
Recommendation algorithms can be used to rank web pages,
recommend movies or music in streaming services, or show
the products that a customer might purchase with a high
probability based on their previous search and purchase
activities. Recommendation engines can be used either for
supervised or unsupervised learning.

Transformers and generative Al

A neural network architecture that can automatically
transform a sequence of inputs into another a set of outputs;
for example transforming a chat question into an answer
(like Chat GTP), or text description into a relevant image.

Note that ranking algorithms relies on search queries
provided by users who know what they are looking for.
Recommender systems, on the other hand, operate without
any explicit inputs from users and aim to discover things
the users might not have found otherwise.

Some applications may incorporate multiple algorithms.
For example, using a natural language processing (NLP)
algorithm to determine the sentiment in the text and using
the sentiment as an input for making a purchase decision.

Design Your Pipelines

ML models have a limited lifetime since data patterns
change (drift) over time, and models may have limited
scope. For example, when creating specific models per user
or device (trained on the relevant subset of the data). In
many cases, we would like to train multiple models using
different parameters or algorithms and compare or
combine them.

https://oreil.ly/zkK3z

For those reasons, the goal is not to build a model but
rather to create an automated ML pipeline (factory) that
can accept inputs (code, data, and parameters), produce
high-quality model artifacts, and deploy them in the
application pipeline.

The ML pipelines can be triggered every time the data,
code, or parameters change or can be executed in a loop
(each time with a different dataset or parameters) to
produce multiple models. To understand, compare, or
explain the model results, all the inputs (code, data,
parameters), operational data (type of hardware, logs, and
so on), and results must be recorded and versioned.

A model is usually deployed as part of a more extensive
application pipeline, including API integration, real-time
data enrichment and preparation, model serving, actions,
and monitoring. The automated deployment cannot focus
solely on the model but on deploying or updating the entire
application pipeline.

The typical ML pipeline consists of data preparation,
training, testing, registering, and deployment. In real life,
the ML pipelines can incorporate additional steps for data
validation, optimization, and so on. In addition, some ML
pipelines build and use multiple models.

Figure 2-3 demonstrates a recommendation engine
application that uses two models in cascade. The first
model is used to identify similar products. The second
model will use the output from the first model and other
user data to determine the buying probability (and filter
the results).

https://oreil.ly/-G5FK

S em——
. | Data . .
Ingest prep Train Serve
= g)
=] (B =] | [
ETL : . XGBoost Model
Product, store, || & [| Derived | buying serving
| customer tables) | 3 | | features | P probability |} ﬂ
Stream |||} | TensorFlow _E {
’ Tramact;ggs. : | | Data prep Embedding
ocation updates | ||
] e g) I s |
/ " . - ﬁ Logs/telemetry
Scrape
Environment H Base Learned Model < -
_(e.g., weather) | _features | features UseriD Top K products

| | \,
| |
Microservice Featurestore Model artifact

Figure 2-3. ML pipeline example: real-time product recommendations

Data Collection and Preparation

There is no ML without data. Before everything else, ML
teams need access to historical or online data from multiple
sources. They must ingest, prepare, and explore the data
before building any model.

The first step is to define your goal, which problem or
challenge you intend to solve, and which data sources or
features can help you predict the outcome. Once you
identify the target and raw datasets, you must gather
enough data, prepare, label, and explore it for use in your
model.

In most cases, the raw data cannot be used as-is for
machine learning algorithms, for various reasons, including

the following:

- The data is low quality (missing fields, wrong spelling,
null values, and so on) and requires cleaning and
imputing.

« The data needs to be grouped or aggregated to make it
meaningful.

« The data needs to be converted to numerical or
categorical values, which algorithms can process.

« Feature values should be normalized and scaled to
guarantee they have equal importance.

- The data is encoded or requires joins with reference
information.

According to IDC, by 2025, 90% of data will be
unstructured, so an essential part of building operational
data pipelines is to convert unstructured textual, audio, and
visual data into machine learning- or deep learning-friendly
data organization or vector formats.

The ML process starts with manual exploratory data
analysis and feature engineering on small extractions from
historical data. However, to bring accurate models into
production, ML and data engineering teams must work on
larger, more up-to-date datasets and automate the
collection and preparation process.

Furthermore, batch collection and preparation
methodologies and batch analytics don’t work well for
operational or real-time pipelines. As a result, ML teams
often build separate real-time data pipelines (pipelines that
handle a very large number of events at scale in real time)
that use stream processing (the ingestion and processing of
a continuous data stream).

https://oreil.ly/8jztC
https://oreil.ly/UQ_6o
https://oreil.ly/y31pn
https://oreil.ly/bSGDw

Some vendors provide data labeling as a service using a
combination of automated tools and crowd-sourcing (for
example Amazon SageMaker Ground Truth). Many
algorithms require labeled data for training the model.
Therefore, you must design and implement labeling
solutions for the historical data as part of the data
preparation process.

In addition, many applications require constant retraining
to maintain the model’s accuracy and relevancy. Therefore,
you should design a pipeline for automatically generating
data labels in such cases.

Models are as good as the data they are trained on. To
compare or explain model behavior and to address
regulatory compliance, you must have access to the data
used in training. Therefore, you must save information
about the data origin with the model or save a unique copy
of the dataset used for every training run. Data lineage and
versioning solutions are a must in every MLOps solution.

A key component in any modern MLOps solution is a
feature store, which automates the collection,
transformation, cataloging, versioning, and serving of
offline and online data.

Data Storage and Ingestion

Data is the foundation for Al and ML. It can be persistent
or in transit and can be broken into two main categories:
structured and unstructured. Unstructured data is usually
stored in file systems, object storage (data lakes), logging,
or messaging systems (such as email). Structured data has
some schema and is stored in tables, documents, or graphs.

Since it is scalable and cost-effective, we usually use object
storage for deep learning workloads that process images,

https://oreil.ly/d8Hjl
https://oreil.ly/gZGuL
https://oreil.ly/1jg0J

video, and text (NLP). In some cases, we will use local or
distributed file storage.

When the data is structured, we can use files (CSV, Excel,
and so on) to do simple exploration and model training, but
this cannot scale for production. In production, we store
data in one of those two categories:

Archival data systems

These are data warehouses or objects with structured file
formats like CSV, Parquet, JSON, and so on. They record all
the historical transactions and allow efficient analytics
queries.

Operational or real-time databases

These are frequently updated and enable fast data retrieval
by index.

Use archival storage (data warehouses or data lakes with
structured objects) for the training process since a model is
an equation that learns how to predict results based on
historical data patterns. Suppose the data source is a real-
time or operational data system. In that case, you first need
to copy and transform the data to the archival system,
which is better at analytical workloads, for example, using
an ETL process (Extract, Transform, Load). Structured
object formats are usually the cheapest storage option,
especially when using efficient compression techniques
(like Parquet files). But data warehouses (like Google
BigQuery, Snowflake, Amazon Redshift, and so on) support
faster and more flexible data queries and are easier to
update.

https://oreil.ly/rp32r
https://oreil.ly/oPn3G
https://oreil.ly/TaRA7

When you collect data for training, it is essential to make sure there
is no bias in the data since this can lead to poor model results and
even a total failure of your project (see Amazon scrapped sexist Al
tool).

MLOps solutions and the training flow should incorporate
data version control. Every training job should point to a
unique version of the data, which allows for reconstructing
the exact content of the data. While this may be simple for
static historical content, it is harder for continuous and
dynamic data like user information or transactions, which
can change frequently.

The solution is to snapshot and store the dataset in archival
storage and add the appropriate link (data lineage) to the
job and model objects, allowing viewing of the data
associated with each run easily. Some MLOps frameworks
and feature stores (like MLRun) provide this as a built-in
feature.

In the serving process, a request arrives with partial data,
for example, a user ID; you enrich the data with additional
features for that user (such as age, gender, income, and so
on) from an online database and pass it to the model. You
cannot use archival storage for serving since it’s too slow
and cannot support a high number of concurrent requests.
Instead, indexed NoSQL or SQL databases (like Redis,
DynamoDB, or MySQL), also referred to as the online
feature store, are better since they are faster and you have
the index key (user ID).

To use the online features, you must first copy them to the
online database; this can be simple with static features
(like age or gender) but challenging with transactional

https://oreil.ly/BGSZ1
https://www.mlrun.org/
https://redis.io/
https://oreil.ly/MSC5K
https://www.mysql.com/

features (like the total number of purchases in the last
hour) that are frequently updated. Stream processing is
usually used to calculate and update real-time features
efficiently. This means the real-time data pipeline uses a
different implementation than the offline feature
calculation (implemented for training).

Figure 2-4 demonstrates different components used in the
data ingestion flow.

s ~

Sources

Data lakes

Operational
databases

Batch ' —
processing Offline store T[aInI!ng
(ETL, etc.) datawarehouse/lake pipeline

Stream
processing

Real-time sources

- -

Online store
NoSQL/SQL

Figure 2-4. Offline and online data ingestion flow

Using different databases and data processing technologies
in training and serving leads to higher complexity and data
synchronization challenges. Feature stores, which we
discuss in the next sections, are used to abstract away
much of that complexity.

NOTE

Learn more about feature stores from the blog post “What Are
Feature Stores and Why Are They Critical for Scaling Data Science?”
by Adi Hirschtein.

https://oreil.ly/MqReq

Data Exploration and Preparation

In most cases, you cannot use data in its raw format, so the
first step is applying cleaning, transformations, or
calculations to the data. Once you have a clean set of
meaningful features, you can start evaluating the data and
selecting the best features for your model.

Here are some examples of required data conversions:

- Data arrives in a JSON format, and you need to convert
it to an array or vector.

- Data contains a string (like a city name), and you need
to convert it to a numeric value using some encoding
strategy.

« You have a transaction log, but you need the total value
of transactions in the last month.

« You have a person’s zip code, but you need to translate
it to a numeric value representing a social-economical
score.

« Dataset has missing values or misspelled names.

It is easier to start data exploration with a subset of the
data and use interactive visual tools or standard Python
packages like pandas, Matplotlib, Bokeh and Plotly.

First you should visually inspect the data’s nature and
quality (inconsistencies, outliers, anomalies, missing data,
and so on) and clean the data. Next, transform and add
derived features, examine the correlation between the data
or its derivatives and the target feature (goal), to support
or disprove your theory, and generate a training set
(feature vector). Creating new derived features to improve
a model’s output is the main craft of data scientists.

https://oreil.ly/q4sL1
https://matplotlib.org/
https://docs.bokeh.org/
https://plotly.com/

Choosing relevant features to analyze and eliminate
irrelevant or redundant ones is also essential.

Note that in the production implementation, there is a need
to process more significant amounts of data in an
automated way. Therefore, you must reimplement the data
cleansing and transformations steps as part of a scalable
and automated data processing pipeline and may need to
use scalable or real-time data processing engines (like
Spark, Flink, Nuclio, and so on) instead of interactive tools.

Figure 2-5 illustrates the data preparation and feature
engineering flow.

https://oreil.ly/4d-vx
https://oreil.ly/iZKM5
https://nuclio.io/

Raw data | Feature engineering

nd | BN Y N | o W
Any data from any source, fanseem
historic and real time,
structured and unstructured Examples: customer age,
current location, mood, items
- * v Training |
Features
g e | I
e ax purchase
CUSROME group amount &]
1 7 $12 (=
> 3 533 Serving
Product Total —>
ID Category purchased
3001 5 1254 \)
3002 6 908 [Governance |
Example: Happy customers
who purchased hoodies —> m

Figure 2-5. Feature engineering flow
The most common data transformations operations include:
Drop rows/columns

Drop rows/columns with too much missing data.

Imputing

Replace missing values with a constant or a statistical value
(for example, median of the column).

Outlier detection

Drop rows where the values don’t fall under the expected
range (for example, compare the row value with mean +/- N
* stddev).

Binning

Group multiple values into a single category (for example,
Chile and Brazil map to South America).

Log transform

Convert a linear scale to a log scale.

One-hot encoding

Map different categorical values to a binary (yes/no) feature.

Grouping and aggregations

Aggregate column values by time (hour, day, month, and so
on) or by category (for example, number of units sold by
product type).

Scaling

Rescale column values (normalization, standardization).

Date extractions

Convert a date time to the hour, day of the week, month,
season, is it a holiday, and so on.

Time recency

The time distance between two events (for example, time
from the last login).

For unstructured data, there can be many more types of
transformations (extract text elements, resize or rotate an
image, and so on).

In training and during serving, you must use the same
features; this requires you to implement two data pipelines:
a batch pipeline for training and a real-time (streaming)
pipeline for serving.

Some feature stores provide simple ways to define the data
transformation logic and will automatically deploy and
manage both offline and online data pipelines for you.

Data Labeling

Data labeling, or data annotation, is part of the
preprocessing stage required for supervised learning. You
add tags to raw data (numeric, text, images, and so on) to
show a machine learning model the expected target
attribute (prediction). Some prominent examples include
Amazon SageMaker Ground Truth, Label Studio,
DataTurks, and CVAT.

For numeric values, labeling can be deducted from the raw
data. So, for example, in a churn model that tries to predict
which customers are about to churn, you can examine
historical records and mark the customers who churned by
looking to see whether they remained a customer in the
consecutive month. A simple analytics query will do the
trick and shift the results back by one month.

Labeling is harder for unstructured data (text, images,
video, audio, and so on) and usually involves a manual
labeling process (by a human). However, many solutions in

https://oreil.ly/HpDAs
https://labelstud.io/
https://oreil.ly/w989M
https://oreil.ly/V7uPV

the market can simplify and automate parts of the process.
Nevertheless, some challenges remain, like the need for
domain expertise, the risk of inconsistency, and the error
proneness of the process.

When the historical datasets are static, the labeling is done
once. So, for example, the problem of classifying images as
cats or dogs probably won’t change anytime soon. But
when the data is dynamic, for instance, in a face or finger
recognition application, new people can be added any day.
In such cases, the labeling solution must be part of the
application. For example, new users can take their pictures
and attach their ID (for the application to verify their
identity). If an image is not classified, it should alert or fall
into a manual identification flow. When new pictures are
added, the model training process needs to be triggered,
and the online models must be refreshed to take the new
images into account.

Data can be associated with labels and tags during
ingestion time. For example, images arrive from a car along
with metadata (car ID, model, driver) and telemetry
(geolocation, timestamp, speed, weather, sensor metrics,
and so on). This information should be stored and linked to
the image and can be used to generate labels.

When considering MLOps with an automated (re)training
flow, you should consider a mechanism for automated
labeling. In some applications, the labels arrive in a delay
(for example, if the user churned, if the stock price went
up, or if the customer purchased the product). Therefore,
the training dataset should be shifted to accommodate the
delay (if you retrain the churn model based on the last
three months, the data range should be between four and
one months ago).

Feature Stores

As we’ve established, most of the complexities in any ML
project arise from the data:

« Work typically done in silos (data scientists and
engineers)

- Labor-intensive data engineering to produce high-
quality features

- Duplicate efforts and resources in generating offline
and online features that also lead to inaccurate results

« Hard to incorporate data versioning and governance

« Feature development work duplicated for every new
project

« Lack of simple access to production-ready features at
scale

« Disjointed or nonexistent model and feature monitoring

ML teams need to continuously deploy Al applications in a
way that creates real, ongoing business value for the
organization. Features are the fuel driving Al for the
organization, and feature stores are the architectural
answer that can simplify processes, increase model
accuracy, and accelerate the path to production.

A feature store provides a single pane of glass for sharing
all available features across the organization along with
their metadata. When data scientists start a new project,
they can access this catalog and easily find features. But a
feature store is not just a data layer; it is also a data
transformation service enabling users to manipulate raw
data and store it as features ready to be used for offline
(training) and online (serving), without duplicating the

https://oreil.ly/dqLtd

work. In addition, some feature stores support strong
security, versioning, and data snapshots, enabling better
data lineage, compliance, and manageability.

Some of the largest tech companies that deal extensively
with Al have built their own feature stores (Uber, Twitter,
Google, Netflix, Facebook, Airbnb, and so on). The open
source and commercial landscape for feature stores has
exploded in the last few years. This is a good indication to
the rest of the industry of how important it is to use a
feature store as part of an efficient ML pipeline.

Most feature stores are limited to structured data handling
(ML), but some can support both structured and
unstructured data (text, documents, images, audio, and so
on).

Feature stores are described in detail in Chapter 4. As
illustrated in Figure 2-6, they provide a mechanism to read
data from various online or offline sources, conduct a set of
data transformations, and persist the data in online and
offline storage. Features are stored and cataloged along
with all their metadata (schema, labels, statistics, and so
on), allowing users to compose feature vectors (joint
multiple features from different feature sets) and use them
for training or serving. The feature vectors are generated
when needed, taking into account data versioning and time
correctness (time traveling). Different engines are used for
feature retrieval, a real-time engine for serving, and a
batch one for training.

Sources Feature store

' Control layer
Data lakes . 2 J

: Offline
Operational SOUrces
databases

E Online
SOurces
A [EN

Real-time sources

Offline -
" Traini
retrieval | pipeligg

| (+snapshot) |

Batch
transformer |

Stream
transformer

Online Lp| Serving

Online
' retrieval pipeline

store

Figure 2-6. Common feature store architecture

Here are some major benefits of a feature store:

« Faster development with far fewer engineering
resources

« Smooth migration from development to production

« Increased model accuracy (same pipeline for online and
offline)

« Better collaboration and security across teams

« Ability to track lineage and address regulatory
compliance

NOTE

Not all feature stores are born equal. Some are focused on cataloging
and don’t automate the process of ingestion and online or offline
transformation, which are the most labor-intensive tasks. Therefore,
make sure you properly evaluate before selecting a solution.

Model Development and Training

Data scientists generally go through the following process
when developing models:

1. Extracting data manually from external sources

2. Data labeling, exploration, and enrichment to identify
potential patterns and features

3. Model training and validation
4. Model evaluation and testing

5. Going back to step one and repeating until the desired
outcomes (accuracy, loss, and so on) have been
achieved

The traditional way is to use notebooks, small-scale data,
and manual processes, but this does not scale and is not
reproducible. Furthermore, to achieve maximum accuracy,
experiments often need to be run with different parameters
or algorithms (AutoML).

With MLOps, ML teams build machine learning pipelines
that automatically collect and prepare data, select optimal
features, run training using different parameter sets or
algorithms, evaluate models, and run various model and
system tests. All the executions, along with their data,
metadata, code, and results, must be versioned and logged,
providing quick results visualization, comparing them with
past results, and understanding which data was used to
produce each model.

Pipelines can be more complex: for example, when ML
teams need to develop a combination of models or use deep
learning or NLP. You can see a basic model development
flow example in Figure 2-7.

Expioratory data Feature selection - Model evaluation
[Data H analysis and preparation Model training and testing
|

Figure 2-7. Model development flow

ML pipelines can be started manually or (preferably)
triggered automatically when:

The code, packages, or parameters change.
The input data or feature engineering logic change.

Concept drift is detected, and the model needs to be
retrained with fresh data.

ML pipelines have the following features:

Built using microservices (containers or serverless
functions), usually over Kubernetes.

Track all their inputs (code, package dependencies,
data, parameters) and the outputs (logs, metrics,
data/features, artifacts, models) for every step in the
pipeline in order to reproduce or explain experiment
results.

Version all the data and artifacts used throughout the
pipeline.

Store code and configuration in versioned Git
repositories.

Use CI techniques to automate the pipeline initiation,
test automation, review, and approval process.

Pipelines should be executed over scalable services or
functions, which can span elastically over multiple servers
or containers. This way, jobs complete faster, and

computation resources are freed up once they are
complete, saving high costs.

The resulting models are stored in a versioned model
repository along with metadata, performance metrics,
required parameters, statistical information, and so on.
Models can be loaded later into batch or real-time serving
microservices or functions.

Writing and Maintaining Production ML Code

Many data scientists like the usability and interactivity of
Jupyter Notebook when they develop and evaluate models.
It is convenient indeed to manipulate some code and
immediately see a visual table or a chart, and most ML
tutorials, examples, and Kaggle projects are consumed as
notebooks.

You can find projects where the data preparation, training,
evaluation, and even prediction are all made in one huge
Notebook, but this approach can lead to challenges when
moving to production, for example:

« Very hard to track the code changes across versions (in
Git).

- Almost impossible to implement test harnesses and unit
testing.

« Functions cannot be reused in various projects.

« Moving to production requires code refactoring and
removal of visualization or scratch code.

« Lack of proper documentation.

The best approach is to use functional programming for
code segments and notebooks for interactive and

visualization parts. Example 2-1 implements a data
preparation function that accepts a dataset (DataFrame)
and some properties as inputs and returns the manipulated
dataset. The function is documented and allows users to
understand the purpose and usage.

Example 2-1. Data prep function (data prep.py)

import as

def add_date_features(
data, time_column: str = "timestamp", drop_timestamp: bool = False
):

"""Add numeric date features (day of week, hour, month) to a dataframe

:param time_column: The name of the timestamps column in the data
:param drop_timestamp: set to True to drop the timestamp column from
the original dataframe

:return datafarame
timestamp = pd.to_datetime(data[time_column])
data["day_of_week"] = timestamp.dt.day_of_week
data["hour"] = timestamp.dt.hour
data["month"] = timestamp.dt.month
if drop_timestamp:

data.drop([time_column], axis=1, inplace=True)
return data

Place the function in a separate Python file data prep.py,
and you can call it from the Notebook, inject data, and
examine or visualize its output using the following code
cell:

import as
from import add_date_features
df = pd.read_csv("data.csv")

df = add_date_features(df, "timestamp", drop_timestamp=True)
df.head()

Once the code is well defined, use the Python test
framework (pytest) and implement unit testing for each of
the functions as show in Example 2-2:

Example 2-2. Data prep test function (test data prep.py)

import
import
import as

tell pytest to test both drop values (True/False)
.mark.parametrize("drop_timestamp", [True, False])
def test_add date_features(drop_timestamp):
df = pd.DataFrame({'times':['2022-01-01 08:00",
'2022-02-02 09:00',
'2022-03-03 10:00'],
'vals':[1,2,31})
new_df = data_prep.add _date features(df, "times",
drop_timestamp=drop_timestamp)

verify the results are as expected

assert new df["day of week"].to_list() == [5, 2, 3]

assert new_df["month"].to_list() == [1, 2, 3]

assert new_df["hour"].to_list() == [8, 9, 10]

assert ("times" in new_df.columns.values) != drop_timestamp
The code in Example 2-2 will execute the

add_date_features() function with different input options and
verify that the outputs are correct.

Using this approach, you gain some immediate benefits:

- Easily see changes to your data prep code in the
version control.

- The same code can be tested later with a test harness
(for example, using pytest).

. The function can be moved to production without the
need to refactor the notebook.

« The function is documented, and you can easily
understand how to use it and what to expect.

« The function can later be saved to a shared library and
used across different projects.

« The code becomes more readable.

Another benefit of the functional approach is demonstrated
in the upcoming chapters: an automated way to convert
development code into production services and pipelines
using tools such as MLRun (MLOps orchestration
framework).

Tracking and Comparing Experiment Results

When running ML experiments, it is essential to track every
run so that you can reproduce experiment results (for
example, which parameters and inputs yield the best
results), visualize the various metrics, and compare the
results of different algorithms or parameter sets.

Each execution involves input and output datasets. It is
crucial to track and version the datasets, not just the
parameters. Any MLOps solution should provide a
mechanism to version data and track the data propagation
(lineage) together with the rest of the execution
parameters, outputs, and metadata.

Today various open source and commercial frameworks
track the results of every experiment run, store it in a
database, and visualize it. Some examples shown in
Figure 2-8 include MLflow, Weights & Biases, MLRun and
ClearML.

In the real world, experiments can run in an automated ML
pipeline (see Figure 2-9), which comprises different steps
(data prep, train, test, and so on). Each stage of the
pipeline accepts parameters, inputs data, and generates
results such as output values, metrics, and data to be used
in subsequent pipeline steps. In addition, the tracking
should be extended to operational data (which code was
used, packages, allocated and used resources, systems, and
SO on).

https://www.mlrun.org/
https://mlflow.org/
https://wandb.ai/
https://clear.ml/

Weights & Biases

MLRun
re= =
PR WE |
Figure 2-8. Different tools for ML execution tracking
Data, parameters, results, and
Source control models are passed behmn steps
Code+
parameters)
Trammg,-' Validation Model
- preparatir:m I " AutoML | " andtesting I "uptlmizaUmI " Deployment
Dataset ~
snapshot
Feature store [Monitor results and data at every step

* Production artifacts and data provide feedback

Figure 2-9. Multi-stage (pipeline) execution tracking

Figure 2-10 shows the general architecture of an execution
tracking system. Inputs may include parameters, the user,
or system-defined tags (to allow filtering and comparisons),
secrets (hidden credentials used by the execution), and
data objects (files, tables, and so on). Outputs include the
result metrics, logs, usage data, output data objects, and
artifacts. A good tracking system also records the code

version, used packages, runtime environment and
parameters, resources, code profiling, and so on.

Inputs Outputs

0S + runtime

) Tags []
a . Results
O | Execution environment }—— @ |II_T_I_

(D) | o

Packages/frameworks 0 -
E — “

e — i

Data Data

Data/feature > Artifacts. datasets,

stores and models

Resources

L

Figure 2-10. Execution tracking: what and how do we track?

The downside of execution tracking is that it requires code
instrumentation (adding code to explicitly log parameters,
tags, results, and data). Some MLOps frameworks provide
auto-logging for ML/DL workloads where you can import a
library that automatically records all the ML framework-
specific metrics.

A new technology, AutoMLOps, is pioneered in the MLRun
framework. It records metrics along with the parameters,
data lineage, code versioning, and operational data. It also
automatically adds production features for auto-scaling,
resource management, auto-documentation, parameter
detection, code profiling, security, model registry, and so
on, eliminating significant engineering efforts.

Distributed Training and Hyperparameter
Optimization

To get to the best model results, try out various algorithms
or parameter combinations and choose the best one based
on a target metric like best accuracy. This work can be
automated using multiple hyperparameter optimization and
AutoML frameworks, which try out the different
combinations, record all the metrics for each run, and mark
the best. To shorten training time, some frameworks
support executing each individual run on a different
compute resource. Figure 2-11 shows the tracking of
multiple children runs in a hyperparameter job and the
best-selected result.

nin > Jobe (==l
Monltor Jobs Manilor Workfows Sched

+ trakner-train

Figure 2-11. Execution tracking of a hyperparameter job (in the MLRun
framework)

Parallel hyperparameter jobs are not limited to model
training. They can be used for parallel loading and
preparation of many data objects, parallel testing of
different test cases, and so on.

There are several hyperparameter execution strategies:
Grid search

Running all the parameter combinations

Random

Running a sampled set from all the parameter combinations

Bayesian optimization

Building a probability model of the objective function and
using it to select the most promising hyperparameters to
evaluate in the true objective function

List

Running the first parameter from each list followed by the
second from each list and so on

You can specify selection criteria to select the best run
among the different child runs (for example, the model’s
accuracy) and the stop condition to stop the execution of
child runs when certain criteria, based on the returned

results, are met (for example: stop
condition="accuracy>=0.9").

Some data engineering, ML, or DL jobs cannot fit into a
single container or virtual machine and must be distributed
across multiple containers. A few open source frameworks,
including Spark, Dask, Horovod, and Nuclio, support
workload distribution. When distributing the workload in
combination with the parallel run of child (hyperparameter)
tasks, you need to control and limit the total amount of
resources used.

Tracking a distributed workload may be more challenging.
Make sure the MLOps framework you use supports that.

Building and Testing Models for Production

When models are used in real-world applications, it is
critical to ensure they are robust and well-tested.
Therefore, in addition to traditional software testing (unit

https://www.dask.org/
https://horovod.ai/

tests, static tests, and so on), testing should cover the
following categories:

Data quality tests

The dataset used for training is of high quality and does not
carry bias.

Model performance tests

The model produces accurate results.

Serving application tests

The deployed model along with the data pre- or post-
processing steps are robust and provide adequate
performance.

Pipeline tests

Ensuring the automated development pipeline handles
various exceptions and the desired scale.

When the training dataset is of low quality, you may
presume that the model is accurate, but it can make
harmful predictions. Therefore, it is essential to validate
that the data is high quality. Here are some examples of
data quality tests:

« There are no missing values.

« Values are of the correct type and fall under an
expected range (for example, user age is between 0-
120, with anticipated average and standard deviation).

« Category values fall within the possible options (for
example, city names match the options in a city name
list).

« There is no bias in the data (for example, the gender
feature has the anticipated percentage of men and
women).

The data quality tests can be implemented in the data
pipeline (and feature store) or in the ML pipeline before
the training. Note that some feature stores automate the
data quality validation using built-in functions.

Once you train the model, the next step is to make sure it is
accurate and resilient. Beyond the common practice of
setting aside a test dataset and measuring the model
accuracy using that dataset, several additional tests can
improve the model quality:

« Verify the performance is maintained across essential
slices of the data (for example, devices by model, users
by country or other categories, movies by genre) and
that it does not drop significantly for a specific group.

« Compare the model results with previous versions or a
baseline version and verify the performance does not
degrade.

« Test different parameter combinations
(hyperparameter search) to verify you chose the best
parameter combination.

« Test for bias and fairness by verifying that the
performance is maintained per gender and specific
populations.

« Check feature importances and whether there are
features with a marginal contribution that can be
removed from the model.

« Test for immunity to fake, random, or malicious input
vectors to increase robustness and defend against

adversarial attacks.

Particular attention should be given to how you generate
the test set independently that considers fairness and lack
of bias and minimizes the dependencies on the training set.

When the models are deployed into production serving
applications, they contain additional data pre- or post-
processing logic (extraction, formatting, validation,
transformations, API integration, and so on). In addition,
the model code may depend on various software packages
or infrastructure (memory, CPUs, GPUs, and so on).
Therefore, models must be thoroughly tested in their target
serving application environment and through the API
before they are deployed into the production environment.

Here are some examples for serving application tests:
API coverage

All serving APIs behave as expected.

Performance tests

Verify the serving application can sustain the target number
of requests per second and respond within the required
latency.

Package consistency

Verify that the model training and serving are using the
same framework version (for example, sklearn).

Test data validation logic

Verify the model endpoint fails or logs the request if
improper data is sent to the model.

Test resiliency

Test that the serving application can resist malicious attacks
and impersonation.

Test correctness

Verify that the model prediction results via the serving API
are the same as those in the model validation step.

Test the outcome

Verify that prediction results translate to the proper action
(writing to a database, generating an alert, updating the user
interface, and so on).

The different tests all should be part of an automated
CI/CD pipeline. Every time the dataset or code changes,
the pipeline is executed and produces a new set of
deployable objects (models, applications, features, and so
on) and logs all the results to enable reproducibility and
explainability.

Some attention should be given to testing the ML pipeline,
ensuring that it will run correctly every time it’s triggered,
will not fail due to missing parameters or inadequate
resources, and can handle data at scale.

Once the model and other production artifacts are ready,
they must be stored in a versioned artifacts repository
along with all their metadata and the parameters required
to generate the production deployments.

In many cases, the trained model can be further optimized
for production and higher performance, for example, by
performing feature selection and removing redundant
features or by compressing the models and storing them in
more machine-efficient formats like ONNX. Therefore, ML
pipelines may incorporate model optimization steps.

https://onnx.ai/

Figure 2-12 illustrates how different test and optimization
steps can be used as part of an ML pipeline.

e,

Model test
and validation
Data quality | .‘ Model tralnm Model N —

tests {h’nyEfparam nptlmlzatmn . \
Deploy serving Test serving
application application

‘W

Figure 2-12. Adding tests and optimizations to an ML pipeline

Deployment (and Online ML Services)

Once an ML model has been built, it needs to be integrated
with real-world data and the business application or
frontend services. The whole application or parts thereof
need to be deployed without disrupting the service.
Deployment can be extremely challenging if the ML
components aren’t treated as an integral part of the
application or production pipeline.

ML application pipelines usually consist of the following:

API services or application integration logic

Real-time data collection, enrichment, validation, and
feature engineering logic

One or more model serving endpoints

Data and model monitoring services

Resource monitoring and alerting services

Event, telemetry, and data/features logging services

« A set of actions following the prediction results

You can see a real-time pipeline example in Figure 2-13.

The different services are interdependent. For example, if
the inputs to a model change, the feature engineering logic
must be upgraded along with the model serving and model
monitoring services. These dependencies require online
production pipelines (graphs) to reflect these changes.

Application
response
Event or H ’_,‘ i I " Serve one or * /
[request AP Enrichment more models . .
Model and

data monitoring

Figure 2-13. Building online ML services

Application pipelines can be more complex when using
unstructured data, deep learning, NLP, or model
ensembles, so having flexible mechanisms to build and wire
up our pipeline graphs is critical.

Application pipelines are usually interconnected with fast
streaming or messaging protocols, so they should be elastic
to address traffic and demand fluctuations, and they should
allow nondisruptive upgrades to one or more elements of
the pipeline. These requirements are best addressed with
fast serverless technologies.

Application pipeline development and deployment flows do
the following:

« Develop production components:
« API services and application integration logic
« Feature collection, validation, and transformation

« Model serving graphs

« Test online pipelines with simulated data.

Deploy online pipelines to production.

Monitor models and data and detect drift.

Retrain models and reengineer data when needed.

Upgrade pipeline components (nondisruptively) when
needed.

From Model Endpoints to Application Pipelines

Today’s common practice is to build model serving
endpoints that merely accept the numeric feature vector
and respond with a prediction. The pre- or post-processing
logic, usually tightly coupled with the model, is done in
separate microservices. This complicates the delivery,
scaling, and maintenance of the ML application.

In some cases, the prediction is made using a combination
of models, for example, by implementing an ensemble of
models that cover different time scopes (recent time and
seasonal models) or other algorithms. Another example is
cascading two models. The first extracts sentiments from
text, and the second makes a prediction based on the
sentiments and other features.

A preferred approach is to design online (or real-time)
application pipelines where the model serving is just one
step, and be able to deploy, upgrade, or roll back that
pipeline as a whole. Unlike the data and model training
pipelines that run slow batch tasks, the application pipeline
should process thousands of requests per second and use
streaming or serverless processing engines.

Figure 2-14 demonstrates a simple application pipeline that
accepts a user request (via HTTP or a stream message),
processes it, predicts a result using a three-model
ensemble, and does post-processing (for example, response

to the user, updated the result in a database, generates an
alert, and so on).

Ensemble
Model 1
Incoming Parse Validate Enrich Ensemble Model 2 Post.
requests message data feaures logic processing
Model 3

Figure 2-14. Online application pipeline example

ML or DL applications may work with unstructured data
and complex processing stages such as image
manipulations (detect objects, resize, sample, recolor, crop,
and so on) or text manipulations (parse, format, tokenize,
and so on). Application pipelines are not limited to
structured data. As illustrated in Figure 2-15, a pipeline
can branch and process different parts of the data using
various technologies and models. In the example, a
document URL is sent to the pipeline (via a Kafka stream)
and the first step fetches the document from an object
storage repository. This is followed by text and image
processing steps, and finally the results are combined and a
search database is updated that hosts the document
information.

Text processing (NLP)

Identify Identify
entities +sentiments
Kafka \ J \) Update
Parse \) Cﬂrnl:une
request HdmumentHducument - — ~ results search l

(doc UR (index
Detect and -

resize M Classify

| objects |

images

Image processing

Figure 2-15. Advanced online application pipeline

Some examples of open source and commercial frameworks
for building multistage online pipelines:

AWS Step Functions

AWS cloud service composing online pipelines from AWS
Lambda serverless functions and other AWS cloud services.

MLRun serving graphs

Open source and commercial MLOps framework, its serving
layer enables the composition of online data and ML/DL
pipelines (graphs), provisioned automatically into auto-
scaling real-time serverless functions.

Apache Beam

Open source stream processing framework, focused on
online structured data processing. (Google Dataflow is a
managed version of Apache Beam.)

Seldon

Open source and commercial model serving framework
with basic online pipeline capabilities.

Online Data Preparation

A dominant part of the online application pipeline is data
processing, with tasks such as data parsing, formatting,
validations, transformations, aggregations, logging,
persisting, joining, and so on.

Processing data in a batch is a common practice. For
example, you can use data warehouse queries, ETL
processes, Spark, and so on. But the same technologies
don’t work for online pipelines where thousands of events
or user requests arrive every second and may need to be
answered within milliseconds.

https://oreil.ly/kIW72
https://www.mlrun.org/
https://oreil.ly/JTUIQ
https://oreil.ly/Al-6F
https://www.seldon.io/

In online data pipelines, the features are accumulated in
memory or a fast SQL/NoSQL database, fetched per event
to enrich the user request and passed into the model for
prediction. When the features are based on historical or
static data (such as gender, age, annual income, and so
on), you can use a periodic batch process to copy such
features to the online database. However, this won’t work
when the features are frequently updated (current
geolocation, last transaction value, money spent last hour,
time from the previous login, and so on).

Online data pipelines are implemented using stream
processing (Spark Streaming, Flink, Amazon Kinesis Data
Analytics, Nuclio, and so on), where events are ingested,
transformed, or aggregated on the fly to form real-time
feature vectors and a fast key/value database is used to
persist and share the distributed state. Figure 2-16
illustrates how stateful stream processing works. Events
arrive and are distributed to stream workers (partitioned
by the user key). Each worker processes the data and
merges or aggregates it with the accumulated state.

The major challenge is that stream processing code and
methodologies differ quite a bit from batch data analytics
approaches and require reimplementing the batch pipeline
used for the training into a real-time streaming pipeline.
However, some feature stores allow you to define the data
pipeline using high-level primitives and automatically
generate the batch or streaming pipelines, ensuring the
same logic is preserved and saving you significant
engineering effort.

https://oreil.ly/Vofzj

Events (all users)

Partition events by
user (for scalability)

State

Combine with
[g historical use state

Figure 2-16. How stateful stream processing works (source:
https://beam.apache.org)

>p<{{H—Em

L]

L]
OO F—F

L4

A

Online data pipelines are not limited to structured data.
Modern applications need to process unstructured visual
and textual data with operations such as resizing or
rotating images, parsing text, tokenizing statements, and so
on. Therefore, the technology and framework you select
need to support such applications.

NOTE

The line between data processing and ML or DL can be blurry. For
example, text can be converted to sentiment or a category feature
using an NLP model. Is that model serving or a data transformation?

Continuous Model and Data
Monitoring

Al services and applications are becoming an essential part
of any business. Poor model performance can lead to

https://beam.apache.org/

liabilities, revenue loss, damage to the brand, and
dissatisfied customers. Therefore, it is critical to monitor
the data, the models, and the entire online applications
pipeline, and guarantee that models continue to perform
and that business KPIs are met. Thanks to well-
implemented monitoring solutions, you can quickly react to
the problems by notifying users, retraining models, or
adjusting the application pipeline.

Monitoring systems track various infrastructure, data,
model, and application metrics and can report or alert on
different situations, including the following:

Data or concept drift

The statistical attributes of the model inputs or outputs
change (an indication that the model will underperform).

Model performance problems

The results of the model are inaccurate.

Data quality problems

The data provided to the model is of low quality (missing
values, NaNs, values are out of the expected range,
anomalies, and so on).

Model bias

Detect changes between the overall scoring and scoring for
specific populations (such as male and female and
minorities).

Adversarial attacks

Malicious attempts have been made to deceive the model.

Business KPIs

Verify that the model meets the target business goals
(revenue increase, customer retention, and so on).

Application performance

The application manages to properly serve requests without
delays.

Infrastructure usage

Track the usage of computing resources.

Model staleness

Alert if it is too long since the last time a model version was
deployed.

Anomaly detection

Model data or results don’t fall under the expected norm or
classes (for example, using an encoder-decoder neural
network model).

Figure 2-17 shows a typical model monitoring architecture.
The data inputs, outputs, and application metrics are sent
to a stream. A real-time stream processing application
reads the data. It can detect or alert on immediate
problems, aggregate the information, and write to various
data targets (key/value, time series, and files or data
warehouse).

Alerts generated by the monitoring system can notify users
(via emails, Slack, and so on) or trigger a corrective action
such as retraining a model with newer data, changing
model weights, and so on.

Feature stores can play a significant part in monitoring
data and models. They store the schema and statistics per

feature, which can be used in the different validation and
analysis tasks. If the production data is returned to the
feature store, it’s easier to analyze, join, and compare
production datasets with other historical or offline
datasets.

'Dataffeature store]

Application Time series = Dashboards
and metrics :]

mode/

Serving . :

j I Real-time : Analysis
functions l analysis Re:!;ttgne — {d;gpf[catluns }
 OCCUFacy, ...

System metrics and logs / Offl ' -
ine
files/DW +

Infrastructure
monitoring

Real-time
alerts/triggers

Figure 2-17. Online model and data monitoring architecture

Monitoring Data and Concept Drift

Concept drift is a phenomenon where the statistical
properties of the target variable (y, which the model is
trying to predict) change over time. Data drift (virtual drift)
happens when the statistical properties of the inputs
changes. In drift, the model built on past data no longer
applies, and assumptions made by the model on past data
need to be revised based on current data. Figure 2-18
illustrates the differences between concept drift and virtual
(data) drift.

Original data Real concept drift Virtual drift

o©o o©% o
0% 00 . 0% 00 ° , ot
00 © o 00 0 o 777", .
s e O _ o ee=e® @ S .0
0o ;o9 : '-.9-9'. o .' e o S0 o.:
o /o °® oo e
P e o0] P
2 : o® o ©° o ® o%0.
__o' .' ° e @ .. ® 9-‘
ply|X) changes p(X) changes, but not p(y|X)

Figure 2-18. Concept drift versus virtual (data) drift

Going back to the business level, you can see examples of
drift in the following use cases:

Wind power prediction

When predicting the electric power generated from wind
from an offline dataset based model, we have concept drift
versus online training models due to the nonstationary
properties of winds and weather.

Spam detection

Email content and presentation change constantly (data
drift). Since the collection of documents used for training
changes frequently, the feature space representing the
collection changes. Also, users themselves change their
interests, causing them to start or stop considering some
emails as spam (concept drift).

Concept drift changes can be:
Sudden

The move between an old concept and a new one happens
simultaneously. The behavioral patterns associated with the
COVID-19 pandemic have provided us with striking
examples, like the lockdowns that abruptly changed
population behaviors worldwide.

Incremental/gradual

The change between concepts happens over time as the new
concept emerges and starts to adapt. The move from
summer to winter could be an example of gradual drift.

Recurring/seasonal

The changes recur after the first observed occurrence. An
example is a seasonal shift in weather, which dictates that
consumers buy coats in colder months, cease these

purchases when spring arrives, and then begin again in the
fall.

Figure 2-19 shows how model drift detection works. First,
the model inputs and outputs are collected, and the system
calculates the statistics over a time window and compares
them with the sample set statistics (saved at training time)
or with the data from an older time window.

The monitoring system saves the various feature statistics
(min, max, average, stddev, histogram, and so on), and the
drift level is calculated using one or more of the following

metrics:

« Kolmogorov-Smirnov test

Kullback-Leibler divergence

Jensen-Shannon divergence

Hellinger distance

Standard score (Z-score)

Chi-squared test

Total variance distance

Model serving

Inouts Model Outputs
g | I I | (prediction)

\ 4’
Drift Y ¥)
monitoring
system
Calculate statistics
(over time window) =
Policy = * =P Alerts

[Detect changes J

Sample or training
dataset statistics

Figure 2-19. Drift detection logic

Figure 2-20 demonstrates how drift can be detected.

Out of range detection Statistical drift detection

Upper
~ Threshold

Lrwnur
Threshold

Current Distribution Expected Distribution

Figure 2-20. Drift detection types

Drift is easily detected using these methods when the data
consists of simple numeric metrics, but how can it be
detected when the data is unstructured, an image, or a
piece of text?

One trick is to convert the input data to flat metrics that
represent the data and monitor the drift on those metrics.
For example, let’s say you classify images of fruits. Then
you can convert the images to their RGB color metrics and
check that the color distribution in production is the same
as in training.

Monitoring Model Performance and Accuracy

An important metric is to measure model accuracy in
production. For that, you must have the ground truth (the
actual result that matches the prediction). In some models
obtaining the ground truth is relatively simple. For
example, if we predict that a stock price will go up today,
we can wait a few hours and know if the prediction was
accurate. This is the same with other prediction
applications like predicting customer churn or machine
failure where the actual result arrives with some delay.

In some applications, a prediction is made for a specific
transaction (for example, exposure or click on an

advertisement). The transaction or prediction can be
tagged with a UID (unique identifier) in such a case. Once
the actual result is known (the customer bought the
product), you can update the transaction (identified by the
UID) with the ground truth value. This requires that the
model serving and monitoring frameworks has the ability to
store or generate a UID per prediction and add the ground
truth values to specific transactions/predictions.

The accuracy monitoring is done periodically (for example,
every hour or day). First, a dataset is generated with the
predicted y values (calculated by the model) and the
ground truth values (the actual result with the proper time
shifting or obtained using the UID). Then it is used to
calculate the accuracy metrics and compare them with the
accuracy during training. This is illustrated in Figure 2-21.

Validation/training 1 Production

[redions | B @ WMD) B & M|
[Gmundtruth—arztuals - - |__._| - J . - |:| -]

Figure 2-21. Monitoring model accuracy in production

NOTE

The ground truth values calculated for the accuracy monitoring are
the same y labels required for retraining the model. Therefore, the
best approach is to generate them once, store them in the feature
store, and use them for both retraining and accuracy monitoring.

Just like in training, it is recommended to use several
metrics to determine the prediction accuracy, especially in
the case when classes are not balanced:

Accuracy

General overall accuracy

Recall

What fraction of overall positives were correct

Precision

Determine when the costs of false positive are high

F1 Score

Analysis of the trade-off between recall and precision

NOTE

Be aware that the ground truth may contain bias. For example, in an
application that predicts fraud to approve or reject transactions, the

ground truth includes only information on the approved transactions.
There is no data about declined transactions that may not have been
fraudulent, which can lead to bias.

The Strategy of Pretrained Models

One of the most prolific authors on business strategy is
Harvard Business School professor Michael Porter, who
has often said, “The essence of strategy is choosing what
not to do.” With most organizations struggling to
implement machine learning projects that provide ROI,
there is a need for a better strategy. In particular,
organizations should ask what they should not be doing
while doing machine learning projects. In many cases, they
shouldn’t be building a specific type of model and should
instead use pretrained models.

https://oreil.ly/06BQW

In Understanding Michael Porter (Harvard Business
Review Press, 2011), Joan Magretta summarizes the
essence of competitive advantage as outlined by Michael
Porter in Figure 2-22. Companies that compete on
execution become part of a prisoner’s dilemma game
theory problem, where both competitors increasingly lower
prices and costs while lowering the company’s profit. This
is the best-case scenario; in many cases, it is impossible for
a company to out-execute a bigger rival, say training a
better NLP or computer vision model.

Competing on Competingon
execution strategy
| Perform SAME activities [tz tl®) 333:15 1]

Activities asrivals, execute better activities from rivals

| Meet the SAME needs at [V 23323 L Alelis
Value created lower cost same needs at lower cost

”

[Cost advantage but hard [EENSEIGELAEGE (S
Advantage to sustain and/or lower costs

Results | Bethe Y ekl - Be UNIQUE, compete on
EXECUTION STRATEGY

M

Figure 2-22. Competing on strategy, not execution (source: Understanding
Michael Porter by Joan Magretta)

This conceptual understanding of strategy shows why
pretrained models are an essential component of a holistic
strategy to create unique competitive advantages while
implementing machine learning projects.

There are several vendors of pretrained models. The most
popular platform is Hugging Face, which has over 60,000
models. Google’s TensorFlow Hub has a unique collection
of pretrained models in various formats, including formats
targeting runtimes like Javascript or embedded hardware

https://oreil.ly/a1u__
https://oreil.ly/MAUmT
https://oreil.ly/X_8rL
https://oreil.ly/yPkJA

or mobile. One more format and repository is ONNX, which
contains many examples of pretrained computer vision and
language models.

Building an End-to-End Hugging Face
Application

The best way to understand pretrained models is to build
an end-to-end solution with one. Fortunately, Hugging Face
makes it simple to do this. First, you need to sign up for a
free account.

Next, let’s look at the application architectures in Figure 2-
23. A user account creates an authentication token that
later becomes part of a continuous delivery pipeline in a
cloud-based build system in GitHub Actions. The code itself
develops in GitHub Codespaces. A Hugging Face model
then lives inside a Gradio application, allowing for quick
prototyping of an MLOps workflow by providing a user
interface. Finally, the Hugging Face Spaces functionality
allows users to create applications hosted on the platform
using Gradio, a technology for building machine learning

apps.

https://oreil.ly/yPkJA
https://oreil.ly/E1Eij
https://oreil.ly/h_Xv0
https://oreil.ly/phKWU
https://www.gradio.app/

[Authentication]4—[Hugging Face

[Hugging Face | GitHub Codespaces

Spaces and GitHub Actions

v

[Hugging Face]

models

Text
summarization

Figure 2-23. MLOps prototyping with Hugging Face pretrained models

NOTE

You can view a walkthrough of this Hugging Face application on
YouTube or the O’Reilly platform. The application source code is in

GitHub.

Let’s break each core application file; first there is the
app.py:

from transformers import pipeline
import gradio as gr

model = pipeline("summarization")@

def predict(prompt): @

https://oreil.ly/nrdLj
https://oreil.ly/0VYCf
https://oreil.ly/_BYK1

Summary = model(prompt)[o][”summary_text”]
return summary

with gr.Blocks() as demo: @
textbox = gr.Textbox(placeholder="Enter text block to summarize", lines=4)
gr.Interface(fn=predict, inputs=textbox, outputs="text")

demo.launch()

% Use Hugging Face transformers (pretrained model).

® Create the predict function.

® Build the Gradio UL

The other key file is main.yml, which controls the
continuous delivery to Hugging Face. The actions are as
follows:

name: Sync to Hugging Face hub
on:
push: @
branches: [main]

to run this workflow manually from the Actions tab
workflow_dispatch:

jobs:
sync-to-hub:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Add remote
env: @
HF: ${{ secrets.HF }} Use the token from Hugging Face
run: git remote add space <your account>
- name: Push to hub
env:
HF: ${{ secrets.HF }}
run: git push --force <your account>

® on push to GitHub, build the project.

® Usethe Hugging Face authentication token.

Finally, with the build process set up, you can see the
working application in Figure 2-24. Any text passed into the
submit box is then summarized using the Hugging Face
pretrained model. Later, different models could be
swapped out with just a line of code changed, and the
entire application and the model would go live. A key
takeaway is pretrained models deployed in this MLOps
fashion allow for rapid prototyping of what could later
become a more sophisticated MLOps system.

He'was an old manwhao fished alone in a skiff in the Gulf Stream and he
had gane eighty-four days now without taking a fish, bn the first forty
days a boy had been with him, But after forty days withouwt a fish the
bey™s parents had told kim that the old man was now definitely and
finally salag, which is the woest form of unlucky, and the boy had gone at
their orders in ancther baat which caught three good fish the first week.
It rade tha boy 53 to see the obd man come in each day with his shaff
empty and he always went down to help him carry either the coiled lines
or the gafl and harpeon and the s that was furled around the mast, The
sail was patched with flowr sacks and, furled, it locked like the flag of
permanent deloat

Theee e man was thin and gaunt with deep wrinkles in the back of his
neck. The brown blotches of the benevolent skin cancer the sun brings
Trom it reflection on the tropet sea wine on his cheeks. The blotches an
well down the sides of his face and his hands had the deep-creased scars
Trom handling heavy fish on the conds, But none of these Scans were
fresh. They were as old as eroslons in a fighless desert.

Everything about himwas old except his eyes and thiry wers thie same
color a8 the Sea and wene cheerful and undefested

Clear Submit

/= Hugging Face Search models, datasets, usd # Models & Datasets W Spaces ? Docs & Solutions Pricing =
B Spaces: @ noahgift deme T T e 0 4 Seslogs
App 7 Files @ Community Settings
pramgt output

the cld man had gone eighty-seven days without taking a fish . the boy's
parents had told Rim he was now definitely snd inally 18180 . he Shavays
wienit dorwn to belp him carry sither the costed lines or the gaff and
harpean .

Figure 2-24. Gradio application summarizing The Old Man and the Sea text

Flow Automation (Cl/CD for ML)

CI/CD is an agile development approach for managing the
life cycle of software and continuously deploying robust
code updates to production. Using CI/CD, multiple
developers can contribute code updates to a shared project
repository, conduct automated testing, and have a
controlled and continuous deployment process. The
outcome is faster time to market using fewer resources and
lower software failure rates.

However, the development of ML models and applications
brings additional challenges that are not present in
traditional software development:

« Multiple people participate in the development (data
scientists, data engineers, software developers, ML
engineers, and so on), each with different development
skills, tools, and practices.

« A version definition extends beyond code and
incorporates data source objects, parameters, and
multiple artifacts.

« The different data and ML workloads (data preparation,
model training, model, data and application testing,
and so on) require high scalability and distributed
processing using CPUs and GPUs.

- Deploying new versions to production involves merging
different data assets and states (for example, tables
may change the schema, streams may be partially
processed, new features are added and require
historical values or imputing missing values, and so
on).

« Monitoring and observability are far more complex and
less deterministic (as discussed in the previous section
about model and data monitoring).

To address the data- and ML-specific challenges,
organizations must extend their CI/CD practices with
MLOps automation practices and ensure that the
engineering and data science teams are aligned on the
same development methodologies and tools. Here are some
practices to follow:

- Data scientists’ code can no longer be maintained in
giant notebooks but rather must be broken into smaller
functional code components (see “Writing and
Maintaining Production ML Code”).

. All data, code, parameters, artifacts, and results must
be automatically collected, versioned, and correlated
(see “Tracking and Comparing Experiment Results”).

. Tests should be extensive and cover all data, model,
and application aspects (see “Building and Testing
Models for Production”).

« Pipelines must support high-performance, distributed
processing, efficient movement, and versioning of data
assets across the pipeline.

« Model and data monitoring solutions should provide a
feedback loop and be incorporated into the automation
flow (see “Continuous Model and Data Monitoring”).

Figure 2-25 demonstrates a typical CI/CD flow for ML
applications. It consists of three main parts:

Development

A user (data scientist, data engineer, software developer, and
so on) creates a development branch from the latest code,
adds features, and conducts local tests using sample data.

Staging (or integration)

https://oreil.ly/O7Kcv

The user requests to merge the new feature into the
development branch. At this point, automated test
procedures run over the new code with a larger dataset, and
distributed or more scalable computation resources. Once
the new code passes the tests and is approved, it merges into
the development release and may undergo additional stress
testing.

Deployment to production

The development release is partially promoted to production
(use canary or A/B testing deployment method to process
small parts of the actual transactions). Once the new version
is verified to work correctly and is compared to the prior
release, it is approved and released to production. In case of
failures or lower model performance, the system can be
rolled back to the previous release.

Interactive test
using small dataset

,

rDeveInpment

scale, hyperparams

[muops platform

Commit to 1Dataprep - - Manual
feature branch 2. Train and test .
3. Deploy and test tummﬂted test, large |:| In Cl systemn

' /Z Staging

1. Data prep
2. Train and test Rr;Tﬂrst
3. Deploy and test

Approve and
merge

Production

Business Manual Tagand Rollin
approval upgrade

Periodic
regression
tests

Figure 2-25. Automating the flow from development to production

The MLOps framework must have a tight integration with
the source control (Git) and CI/CD framework you choose
(Jenkins, GitHub Actions, Gitlab CI/CD, and so on). Various
metadata and configuration objects must be stored in the
source repository along with the code, data referencing
should be abstract and versioned, and reporting and APIs
should be integrated to have everything versioned in one
place and avoid manual or complex integrations. You can
see an example for integration in Figure 2-26.

github-actions | bot | commented on Jun 10, 2020

Pipeline started id=0a%9b38-fc9c-4577-8e1a-3cd 1d5adad 5, commit=400a634
click here to check progress

@

github-actions | bot | commented on Jun 10, 2020

Run Results

Workflow 0a929b38-fc9c-4577-Bela-3od 1d5adad 5 finished, status=5Succeeded
click the hyper links below to see detailed results

uid start state nanme results artifacts

tatal_tests=15
emors=0

tch=14
Ld514dcd Jun 10 13:00:39 completed model-tester i latency

awg_latency=7307
min_latency=5300
max_latency=48788

rocauc=03333333333333333

avg_precscore=0.3673982494785104 | |

bT6ddded | Jun101300:28 | completed | test accuracy=09333333333333333 :::sr‘ll'::uandS
f1_score=059333333333333333 Sost
test_set

best_iteration=2
tocau 2090 R 11 TR0 1 FRAR

roc

Figure 2-26. A view of automated data and ML test reports inside the version
control (Git) system

Conclusion

https://www.jenkins.io/
https://oreil.ly/dvYtI
https://oreil.ly/HiIc1

This chapter provided an in-depth exploration of the stages
of MLOps, emphasizing the significance of going beyond
just model training. MLOps is a holistic approach that
includes four essential components: data collection and
preparation, model development and training, ML service
deployment, and continuous feedback and monitoring. This
approach not only strengthens the technical quality of ML
projects, but also ensures they align with and drive
business objectives.

In this chapter, we dived into each of these components,
covering topics like how to store and ingest data, data
preparation, feature stores, model development, distributed
training and hyperparameter optimization, and the
importance of a production-first mindset that involved
maintaining quality standards, automating the development
and testing, and ensuring model robustness and reliability,
among many others. Additionally, we explored further
strategic activities that enhance MLOps efficiency, like
using pretrained models and CI/CD. Now that you've read
this chapter, and after practicing the exercises, you're
ready to move on to building your first project and
advanced MLOps use cases.

Critical Thinking Discussion
Questions

Let’s review the topics we discussed in this chapter. Can
you answer the following questions?

« Why is problem framing the initial suggested step for
implementing a project following the MLOps
philosophy?

« Name two or three examples of problems an
organization could solve more effectively with a
heuristic rather than with machine learning?

« How could your organization design an effective data
governance strategy that proactively prevents personal
identifiable information (PII), bias, or regulatory risk
problems?

« How could you use a feature store to decrease a
model’s computational training time?

« Consider a situation in which your organization faces
issues with data drift and another when it encounters
problems with concept drift. What would be the most
significant impact if not resolved?

Exercises

« Use MLRun serving to serve out a Hugging Face model.

« Use a feature store on an MLOps platform to train a
model that requires data transformation before
training.

« Use an experiment tracking technology like MLflow,
MLRun, ClearML, SageMaker, or another MLOps
platform to train multiple versions of a model and
compare the accuracy of numerous runs.

« Use an open source framework like Spark, Dask,
Horovod, or Nuclio for workload distribution to perform
distributed hyperparameter tuning.

- Write a serving application test using one of the
examples covered earlier in the book.

https://oreil.ly/ZQjTX
https://huggingface.co/

Chapter 3. Getting Started
with Your First MLOps
Project

If you're itching to get started with building your MLOps
project and pipelines, you're at the right chapter.
Surprisingly (or not, if you've been carefully reading the
book so far), the first step doesn’t require a notebook or
IDE. Instead, it requires a proper discussion with the
decision makers at your company. AI and ML open up new
technological frontiers, but outside of academia, they have
to be connected to a business use case. This is what makes
them valuable to people. Therefore, the first thing to do is
to figure out the business use case that justifies your
project, as well as the goals and the expected ROIL.

Once the business side is clear, it’s time to go to your
computer. But don’t open your notebook just yet. The next
step is to plan the ML project. This includes the resources
you will need, processes that will run, prototyping the
solution, the pipeline structure, and the design. Once these
components are approved, it’s finally time to develop your
ML pipeline. In this chapter, we explore each of these
stages in detail.

Identifying the Business Use Case
and Goals

Al is transforming businesses and global economies. A PwC
report predicts that Al could contribute as much as $15.7

https://oreil.ly/pyheD

trillion to the global economy by 2030. Moreover, 45% of
total economic gains will come from product
enhancements, stimulating consumer demand. This is
because Al will drive greater product variety, with
increased personalization, attractiveness, and affordability
over time. Al helps businesses increase their revenue, cut
operational costs, improve productivity, and reduce
friction. Furthermore, it helps long-term strategic goals,
such as increasing competitiveness, reducing risks,
growing user base and consumer loyalty, enhancing
employee retention, and enhancing brand value, which will
translate to higher profitability and valuation in the long
run.

For example, according to McKinsey, up to 35% of
Amazon’s revenue comes from Al-powered
recommendations. By introducing the Frequently Bought
Together recommendations (and other recommendations),
Amazon was able to increase the average customer
shopping cart size and order amount (upselling and cross-
selling), which in turn increases average revenue per
customer and Amazon’s e-commerce generated revenue
per quarter.

Netflix estimates its personalized recommendation engine
is worth $1 billion per year. According to the Netflix team,
“consumer research suggests that a typical Netflix member
loses interest after perhaps 60 to 90 seconds of choosing,
having reviewed ten to twenty titles on one or two screens.
After that, the user either finds something of interest or the
risk of the user abandoning our service increases
substantially.” So Netflix executives believe they could lose
at least $1 billion annually if its subscribers aren’t offered a
proper recommendation.

https://oreil.ly/GMKOD
https://oreil.ly/nUpKL

LATAM Airlines is the largest South American airline
carrier. Its business was struck hard by COVID-19. It lost
80% of its revenue and went into chapter 11. The CEO
decided to double down on Al to reduce costs and increase
profitability. While cutting costs left and right, it
significantly grew its data science and MLOps teams and
automated almost all parts of its business. Now it is in a
much better financial situation. In one of the use cases, the
goal was to improve the precision of flight fuel calculation
to avoid carrying extra fuel. The project saved LATAM tens
of millions of dollars annually and significantly reduced CO:
emissions (which is also an important environmental
benefit). In another use case, it used customer data to
deliver custom packages and upsell options and the project
resulted in tens of millions of dollars in additional revenue.

Another typical example of the significant cost savings Al
can bring is in the use of chatbots. A report from Juniper
Research has found that adopting chatbots across the
retail, banking, and healthcare sectors will realize business
cost savings of $11 billion annually by 2023, up from an
estimated $6 billion in 2018. When implemented correctly,
chatbots address customer service staff scalability needs,
boost customer service quality, and collect valuable
consumer data.

Governments and nonprofit organizations also use Al. They
address universal needs such as national security,
improved healthcare, environmental protection, child
safety, education, and more, which are not tied to
measurable business goals but benefit the entire
population. The information in Table 3-1 is from the
McKinsey report “Applying Artificial Intelligence for Social
Good” and lists the different use cases. For more
information, check out a summary of the report.

https://oreil.ly/Pbz4R
https://oreil.ly/1uhjm
https://oreil.ly/PTj0n

Table 3-1. Al for social good use cases

Category
Crisis

response

Economic
empowerment

Education

Environment

Equality and
inclusion

Health and
hunger

Information
verification
and validation

Application

Disease outbreak, migration crises,
natural and human-made disasters,
search and rescue

Agricultural quality and yield, financial
inclusion, initiatives for economic
growth, labor supply and demand
matching

Access and completion of education,
maximizing student achievement,
teacher and administration productivity

Animal and plant conservation, climate
change and adaptation, energy efficiency
and sustainability, land, air, and water
conservation

Accessibility and disabilities,
exploitation, marginalized communities

Treatment delivery, prediction and
prevention, treatment and long-term
care, mental wellness, hunger

False news, polarization

Category Application

Infrastructure Energy, real estate, transportation,
urban planning, water and waste
management

Public and Effective management of public sector,

social sector effective management of social sector,
fundraising, public finance management,
services to citizens

Security and Harm prevention, fair prosecution,
justice policing

Al is also making a difference in the world by tackling
significant sustainability challenges. One example Yaron
was involved in addressed flash flooding and freshwater
availability in a new and innovative way. The
Hydroinformatics Institute of Singapore began using
thousands of CCTV cameras dispersed throughout this
large Asian city as real-time sensors to analyze and
measure rainfall. It uses this to generate spatially
distributed ground-level rainfall data. Then, the data is fed
into complex deep learning algorithms it built and deployed
with an automated MLOps pipeline to create accurate, real-
time rainfall predictions. It used these rainfall predictions
to manage floods by moving floodgates ahead and routing
excess rainfall to reservoirs that can store and convert it
into drinking water for the population.

Finding the Al Use Case

When defining an Al project, the goal or hypothesis can’t
remain at the abstract level of wanting to increase top-line
revenue or cutting costs. Rather, it should address a
specific use case or business problem and have measurable
outcomes and ROI. For example, an application can provide
purchasing recommendations based on products likely to
be purchased together and increase average customer
order size by X%, which will positively impact top-level
goals like increasing average revenue per customer and
top-line revenue.

Use cases will generally fall under one or more of the
following categories (in order of complexity and value):

 Intelligent forecasting and data analysis to support
various decisions

« Innovative process or service automation to reduce
costs and increase productivity

« New products and services that generate incremental
value

« Simpler or better user experience, and autonomous
systems (bots, robots, cars, and so on)

The same project may address cost reduction and, at the
same time, increase revenue Or improve user experience.
An example would be setting a goal around building an Al
model to predict demand for a specific product. The
prediction can help retailers ensure they do not run out of
stock, which could result in lost revenue. An added benefit
is an improved customer experience, which results in
happier and more loyal customers who purchase the
products they were looking for.

You can read the McKinsey’s state of Al in 2021 report or
10 Ways Artificial Intelligence Helps Business: Uses &

https://oreil.ly/5ST6I
https://oreil.ly/_yNRG

Examples, which describe the adoption of the most
common Al use cases.

Here are some common Al use cases:
Product recommendations

Recommendation systems that offer products to users based
on their behavior, purchase history, profile segmentation,
and other factors. Think about the “Additional Products You
May Like” or “Customers Also Bought” sections that appear
when you shop online.

Chatbots

Chatbots that engage with users, offering support, guidance,
and assistance across the entire user journey. Engagement
can start as early as marketing by answering questions and
providing resources to read, through selling via chatbots,
and all the way to customer support and professional
services. Al enables chatbots to deliver an accurate,
personalized experience (one that doesn’t require the user
to ask to speak to a human representative after a few
unsuccessful attempts to get answers from poorly
programmed bots).

Marketing and content

Generative Al can develop marketing strategies and plans,
run competitive analyses, create marketing assets like blogs
and emails, and even generate images for social media or
media campaigns.

Customer sentiment analysis

Measurement of the feelings and opinions expressed by
customers online, across websites, forums, social media, and

https://oreil.ly/_yNRG

other channels. This information informs business decisions,
especially marketing and sales.
Sales forecasting

Calculating the probability of customer purchases, revenue,
and conversions. This helps build the sales pipeline and
predict quarterly and annual sales performance.
Price optimization
Calculating factors like your previous prices, the quality of
your brand, competitor pricing, operating costs, the market
situation, and more, to identify the optimal price.
Cybersecurity

Strengthening defenders by detecting and predicting attacks,
helping security professionals learn new technologies and
methods, and assisting in building cybersecurity solutions.
Fraud prediction
Analyzing transactions to identify real-time threats and
block them before they occur.
Resource optimization
Finding ways to use computational resources more
efficiently to cut costs and encourage sustainability.
Demand forecasting
Accurately predicting demand and tracking manufacturing
to avoid waste.
Healthcare

Predicting medical conditions and patient deterioration, as
well assisting with treatment, medication, and triaging in

ICUs.

Predictive maintenance

Detecting malfunctions before they occur to save time and
keeping operations running.

The curated list of the top 100 artificial intelligence use
cases by vertical and importance can give you more ideas.
Figure 3-1 (from the Smart Insights article “How Al-
Powered Content Marketing Can Fuel Your Business
Growth”) illustrates how Al can be used in different
marketing use cases.

The best way to start is to organize a brainstorming session
with all the different business and technology stakeholders
to get use case ideas and validate their feasibility.

A Reach Act

[Propensity model
[Al application

[- Machine Jeumr‘.rrg‘

Predictive
customer service

content emails

= |E8 23 % Loyal

i |2 2 = customer
sl5= =

EE E}% customer \

i 2l

E E

v

Customer interactions and value

- B + .---__--
purchase Ono : customer
Indecisive
Demand generation customer
and purchase intent

Time

Figure 3-1. How AI can be used in different marketing use cases

Defining Goals and Evaluating the ROI

https://oreil.ly/X7B0m
https://oreil.ly/52bmE

Although there is an apparent increase in the success ratio
of Al projects, many projects result in minimal or no value
from their Al investments. One of the reasons is that
relatively few projects are deployed into production, mainly
due to cultural and organizational challenges; in many
cases, they were treated as a bunch of small science
projects that failed to realize an ROI. Moreover, production
deployments are complex since they usually require
integration with existing systems, processes, online data
assets, and applications in a scalable and robust fashion.

TIP

One of the ways to increase the success rate is to define achievable
and measurable goals. Identifying, prioritizing, and setting goals is a
multifunctional team effort that should include business owners,
domain experts, data science and engineering teams, and more. This
helps ensure alignment with company goals while having the
necessary business and domain expertise. Al initiatives may also
require effective governance, compliance, ethics, cost, and risk
considerations.

To evaluate the ROI of the project, consider the
investments and returns, both direct (hard) and indirect
(soft).

Investments:

People (data scientists, data engineers, MLOps, and so
on)

Compute and data infrastructure

Software licenses and services

Consultants and training

Returns:

Cost savings

Increased revenue

Time-saving or increased productivity

Increased competitiveness or user base

It is essential to factor in the uncertainty of the benefits. Al
models are likely to have errors—their accuracy is lower
than 100%. So it helps to estimate both the error rate and
the cost of making mistakes. Also, the fact that you made
the correct prediction does not mean your action yields the
expected user behavior. For example, you might predict
that a user would like the suggested product, but the
recommendation was not delivered on time or wasn’t
visible to the user.

Figure 3-2 illustrates how to calculate the ROI for an ML
project.

Benefits from model
(number of predictions

and value per prediction) -
= Return

Uncertainty of benefits
(cost and impact of errors) Return = ROl

Investment
Resources to build amodel
X = Investment
Cost of resources

Figure 3-2. Calculating ML project ROI

Another challenge is that while historical data may be
accessible, real-world data may behave differently or not be
accessible, leading to different results in production
deployments. As a result, machine learning-based Al
models may deteriorate in performance over time. ROIs
and KPIs should be monitored constantly so the value does

not decay. Budgeting for MLOps solutions and continuous
development and deployment models is also essential.

Al applications also bring possible risks and expose the
organization to liability, security vulnerabilities, compliance
or legal challenges, and more.

On the upside, many of the investments in Al can be shared
across multiple projects. Building common Al platforms,
practices, and knowledge sharing (an Al Factory) in the
organization can significantly impact the ROI. According to
McKinsey’s state of Al in 2021 report, “The companies
seeing the biggest bottom-line impact from Al adoption are
more likely to follow core and advanced Al best practices,
including MLOps; move their Al work to the cloud; and
spend on Al more efficiently and effectively than their
peers.”

TIP

A significant impact on the ROI of a project is to find the right
balance of buy versus build. Many products and services in the
market today already incorporate Al, which can help reduce long
development cycles and risks. Pretrained or partially trained ML
models can save time, resources, and data. MLOps platforms can
save significant development overhead and technical debt and allow
you to focus on business problems.

How to Build a Successful ML Project

Various surveys indicate that the major impediments to the
success of Al in the organization are cultural challenges,
such as slow adaptability to change, reengineering of
business processes, staff education, data literacy
requirements, organizational alignment, and elimination of
silos to support business objectives. Many organizations

https://oreil.ly/AfGG7

report that direct involvement from C-level executives is
essential to the success of Al projects. The Harvard
Business Review dedicated an article to the vital role of
CEOs in leading a data-driven culture; McKinsey also
writes about the role of the CEO and MLOps.

Addressing the cultural challenges is not enough. To
achieve a successful Al strategy, you need to redesign all
your business processes and tasks around data and Al:

« Build systems and processes for continuously
collecting, curating, analyzing, labeling, and
maintaining high-quality data. The most significant
impediment to effective algorithms is insufficient or
poor data.

« Develop effective and reliable algorithms that can be
explained; are not biased against particular groups or
individuals; and are correctly fit, continuously
monitored, and regularly updated using fresh data.

- Integrate a business application’s data assets, Al
algorithms, software, and user interface into a single
project with clear ownership and milestones. Avoid
organizational silos.

« Build robust engineering and MLOps practices to
continuously develop, test, deploy, and monitor end-to-
end ML applications.

Approving and Prototyping the Project

Before committing to a project, you need to build and
approve your plan. To do so, answer the following
questions:

Objective

https://oreil.ly/ekNmK
https://oreil.ly/hAdib
https://oreil.ly/T7ZKg

What are the objectives of this Al use case and are they
aligned with the strategic business goals?

KPIs

What will qualify as success and how will it be measured?

Data

Do you have enough data (and labels) to train the models?
Can you obtain the same data in production and inference?
Does the data contain bias? Can you get fresh labeled data
for retraining?

People

Who will be responsible (the owner) for the project? Which
resources and skills are needed? Are they available or do
you need to hire them?

Algorithms

Which AI approach and algorithms are you planning to use?
Can you find an existing model?

Ethics and risks

Are there any ethical or legal issues regarding this use case
(privacy, GDPR, bias)? Are any security risks introduced? Can
you protect the model from malicious attacks?

Infrastructure

What are the technology and infrastructure challenges and
requirements? What are the implementation challenges?
What are the expected infrastructure costs?

Continuity

Can you continuously monitor and maintain the
application? Can you update the data and model frequently
enough? How do you verify the KPIs and ROI once the
application is deployed?

After answering these questions and getting approval for
the project, the next step is to validate the hypothesis and
prototype the application by using rapid prototyping and
simulation tools:

« Manually gather data from different sources. Make
sure the data you use can, later on, be ingested and
prepared continuously at scale.

- Explore the data and look for patterns and signals.
Verify which datasets and features are required and
which don’t add value. Next, try out derived features
(date extractions, aggregates, indirect values such as
turning zip code numbers to demographics or
geolocation data, and so on).

« Prepare the data, train a model using a relevant subset
of the data, validate that it performs as expected, and
try out different frameworks, algorithms, and existing
models.

« Build a prototype application that simulates the end-to-
end flow: receives a request, prepares the data, infers
using the model, drives actions, integrates with
external APIs/systems, logs vital metrics for
performance and KPI monitoring, and so on.

Building a prototype can save time, reduce risks, and
improve the results. An excellent way to save time and
energy is to have project templates with an application
skeleton and best practices. Moving from the prototype to a

production ML application can be done in multiple
iterations, adding more data, logic, and robustness in every
iteration. It is essential to break the project into functional
modules from day one (for example, data preparation,
training, testing, serving, and so on) and define interfaces
between the modules. This allows independent
development of each module and better collaboration
between team members.

You must define the initial prototype’s scope, milestones,
and objectives. Once it is implemented and the goals can be
evaluated, the executive team must approve the
productization of the project and allocate the extended
required resources for its success.

Scaling and Productizing Projects

ML projects that are designed for production and scale
consist of three pipelines:

Data pipeline

Tap into the full-scale historical, operational, and real-time
data sources and transform the raw data into features for
use in the training and inference stages. Feature stores can
accelerate the development of a data pipeline and enable the
reuse of existing data features from other projects.

Model development (CI/CD) pipeline

Automate the process of getting relevant data, data
validation, training with different parameters and
frameworks, evaluating and testing the model, deploying the
inference pipeline, and so on.

Application pipeline

https://oreil.ly/MR3sh
https://oreil.ly/xL0S5
https://oreil.ly/MWCKB

Intercept requests or events; enrich and process data; use
the model for inference; apply relevant actions; and monitor
various resources, data, model, and KPI metrics.

The pipelines must be designed for continuous
development and operations. New versions can be deployed
without disrupting the overall application. It is
recommended to work in sprints (weekly, monthly). At the
end of each sprint, look at the complete application in
action. Each sprint provides more functionality or
robustness until you reach a deployable and production-
quality application. After deploying the application, keep
iterating with feature improvements or bug fixes. Figure 3-
3 illustrates the project engineering flow.

Feedback: new data from

logging

* Profiling 1L « Data versioning
« "IUnitdData”™

‘ Exploration Wrangling]_ model performance Mﬂgiﬁgring
and validation (cleaning) J‘
1

: . « Model format ~ +
: Test - ONNX '
: ~JAR i «Model
! y Code A . Code - PKI . versioning
s Model Model Model
engineering evaluation packaging
= Feature engineering f Params E'Ees!maﬂ'ﬂ Parom PRy '
* Hyperparameters " "TTTtTC selection :
tuning * Model perfomance :
r_mtrm v | *Model serving
ACELFCY i | -Service
- Precision ' - Docker
- Recall : - K8s
r

Buildand | een | Deployment
integration dev
testing production

Software
Code

Pipeline

« Trunk based dev
« Code versioning

Figure 3-3. MLOps engineering flow (adapted from https://oreil.ly/cAUKU)

In most cases, each pipeline uses a different framework
and is maintained by different teams with different skills,
for example: Spark, Flink, and Airflow for data pipelines,
Kubeflow for model development, and plain containers or
serverless functions for the application pipelines. Having
such a large variety of tools and frameworks creates
operational challenges. Furthermore, each framework
works with different metadata layouts and APIs, forcing
additional glue logic and conversions. Therefore, working
with standard metadata and abstractions across
frameworks is essential for simplifying and streamlining
deployments.

https://oreil.ly/cAUKU
https://oreil.ly/eiuq_
https://oreil.ly/dmKbL
https://oreil.ly/A8231
https://oreil.ly/162SC

ML projects are developed continuously and collaboratively
by different team members. Therefore, a versioned source
control system like Git, an agile development process, and
CI/CD automation are mandatory requirements for a
successful outcome.

Project Structure and Lifecycle

ML project is a container for all your work on a particular
ML application. Projects host functions, workflows,
artifacts, notebooks, features, and configurations. Projects
have owners and members with role-based access control,
which should define who can access what and how. Project
components are as follows (see Figure 3-4):

Functions

Code elements along with their package requirements,
configuration, metadata, resource definitions, and more.

Workflows

Pipeline (DAG) definitions, like which step comes after which
and how parameters are passed between steps.

Artifacts

Metadata and pointers to various data artifacts (files,
datasets, models, and more) used in the project.

Notebooks

Jupyter Notebook is used for interactive development, data
exploration, and visualization. It is recommended to only
store production code in notebooks since it’s harder to test,
automate, and track changes in them.

Features

https://git-scm.com/
https://jupyter.org/

Definitions of feature store features and the data pipelines
that generate or retrieve those features (usually called
feature sets and feature vectors).

Configurations

Parameters, secrets, build and installation instructions, and
more.

Projects should be stored and versioned in a source control
system (Git) or archived. Then they can be opened and
edited as a project in the different IDEs (Jupyter, PyCharm,
VSCode, and others). This approach enables versioning,
collaboration, and CI/CD.

ML project
Owner + members (policy)
Source repository Functions | [Workflows | [Artifacts
(versioned) r
l .
. . . & . 4 :
TAR Notebooks Features Configuration

Figure 3-4. ML project components

You can define best practices and project templates for
your team. This can simplify creating new projects and
helps focus and prioritize existing projects. Example 3-1
demonstrates how you can define the project directory
structure:

Example 3-1. Project directory layout example

https://oreil.ly/0pH4H
https://oreil.ly/RzhPc

my-project # Parent directory of the project (context)

— data # Project data for local tests or outputs (not tracked by
version control)

— docs # Project documentation

F— src / pkg-name # Project source code (functions, libs, workflows)

— tests # Unit tests (pytest) for the different functions

— notebooks # directory for storing notebooks

— README.md # Project README

F— requirements.txt # Default Python requirements file (may have per function
requirements files)

— setup.py # Python package setup file

— LICENSE # License file

; DR

MLOps frameworks such as MLflow and MLRun store
additional metadata and configuration files (MLproject,
project.yaml) in the project directory. This allows loading a
project from Git, reconstructing all its objects and
configurations automatically, and versioning the
configurations and metadata (a.k.a. GitOps).

In a continuous development and integration flow
(illustrated in Figure 3-5), developers create an ML project
and write and test their code and models. Once it is ready,
they push the changes into the source control system (Git).
Next, the project is loaded into a development cluster to
run an additional set of automated tests on larger datasets
and a system that resembles the production setup. Then,
bug fixes are applied to the code until the project becomes
stable and the release is due. Finally, a version tag is
assigned to the project when the release is ready, and that
version is deployed on the production cluster in a rolling
upgrade process.

https://mlflow.org/
https://www.mlrun.org/

Fix Fix

l <

Load
New project Addfedit code o o
(or copy template) and configuration

{version)
Runon
Run/debug

repository

development
locally or production
clusters

e

Figure 3-5. ML project lifecycle

Dividing the project into functional building blocks
(functions, workflows, features, and so on) and using Git
enables continuous and collaborative development.
Furthermore, placing code, ML objects, metadata, and
configurations in the same versioned project repository
simplifies testing, deployment into production, and rollback
to older versions in case of problems.

ML Project Example from A to Z

This section demonstrates a complete ML project and the
development flow from initial exploration to continuous
deployment at scale. The development and productization
flow consists of the following steps:

1. Initial data gathering (for exploration).
2. Exploratory data analysis (EDA) and modeling.

3. Data and model pipeline development (data
preparation, training, evaluation, and so on).

4. Application pipeline development (intercept requests,
process data, inference, and so on).

5. Scaling and productizing the project (adding tests,
scale, hyperparameter tuning, experiment tracking,
monitoring, pipeline automation, and so on).

6. Continuous operations (CI/CD integration, upgrades,
retraining, live ops).

Exploratory Data Analysis

Exploratory data analysis (EDA) enables an in-depth
understanding of your datasets, their quality, and how they
influence the target variable. EDA is vital for determining
which raw and derived features should be used in the
model and for examining your hypotheses. In many cases,
EDA requires domain-specific knowledge (or intuition) to
determine which variables can be used and how they can
impact the model. EDA is usually a manual and interactive
process but can use various tools to automate and better
visualize the information gathering and analysis.

The EDA process consists of the following steps:

1. Importing relevant datasets (extraction from the overall
data)

Understanding the data structure and statistics
. Cleaning and sanitizing
Transforming (generating derived features)

Feature analysis

ZE A T o

Cross-feature relationships and correlation analysis
7. Prototyping a model and evaluating feature importance

The process is iterative. You may need to obtain more data
from other sources, find that some of the data is useless
and doesn’t contribute to your model, or find that various
transformations yield better results.

The first step is understanding the data shape, types,
statistical distribution, categories, missing values, and so
on. Next comes data cleansing, removal of useless columns
or rows, handling missing values, removing duplicates, and
identifying and fixing recording errors.

In many cases, the raw features are not a good indicator
and you will need to create derived features that correlate
better with the target results. Some examples are:

« Extracting date/time components (hour of the day, day
of the week, is weekend, and so on) from a date/time
field

« Value mappings (log scale, binning, encoding,
grouping, and so on)

« Aggregation over time or entity (number of clicks in the
last hour, total purchases by customer)

« Important features obtained by joining data from a
secondary dataset (map zip code to geolocation or
social-economic information, map product ID to its
price or category, and so on)

Once you have all the features, it’s time to analyze and
visualize their behavior, histograms, outliers, and
categorization. Potentially you can apply transformations to
improve the data quality and impact.

The next step is to find interesting relationships that show
the influence of one variable on another, preferably on the
target. Some features may not have any impact and can be
removed while some may need to be transformed to
increase their influence. At this stage, you can also
evaluate the data for potential bias.

When the features are sanitized and prepared, you can
build a basic model or use AutoML tools for prototyping a
model. Once you have a model, examine your hypothesis to
see if you can predict the target variable and evaluate the
importance and necessity of the features you used.

Data and Model Pipeline Development

In the EDA phase, the process was exploratory and
interactive. Now it’s time to build the data preparation,
modeling, and testing to turn them into high-quality,
robust, and reusable code. As discussed in Chapter 2, a
preferred approach is to create individual Python functions
for each stage, give them parameters, record their outputs,
and create unit tests. Then, notebooks can execute those
functions interactively and visualize their results.

Once the individual functions work, you can create a
workflow (directed acyclic graph, or DAG), run the
different tasks in an automated pipeline over scalable local
or cloud resources, and integrate that workflow into an
automated CI/CD process.

A minimal pipeline includes the following steps:
Data preparation

Prepare the training and testing datasets.

Model training

Train the model with the dataset and some parameters.

Evaluation

Evaluate the model against the test dataset and generate
various reports and metrics.

Real-world pipelines will have more test and deployment
steps and will run the training step with different
parameter combinations (hyperparameter tuning).

Example 3-2 demonstrates accepting a DataFrame and
required test size, processing the data, and splitting it to
train and test datasets.

Example 3-2. Data preparation function code example
(partial)

def data_preparation(dataset: pd.DataFrame, test_size=0.2):
"""A function which preparation training dataset

:param dataset: input dataset dataframe
:param test_size: the amount (%) of data to use for test

:return train_dataset, test_dataset, label column

mmn

dataset = clean_df(dataset).dropna(how="any", axis="rows")
. additional processing

train, test = train_test_split(dataset, test_size=test_size)
return train, test, label _column

NOTE

Using the feature store is a more powerful and automated way to
process data. This will be discussed in the next chapter.

The next step is to train the model with the newly prepared
dataset. For example, the following function (see

Example 3-3) accepts the training dataset and various
parameters (which will be used for hyperparameter tuning
in the following sections), trains the model, and returns the
ML model.

Example 3-3. Model trainer function code

def train(
dataset: pd.DataFrame,
label column: str = "label",
n_estimators: int = 100,
learning_rate: float = 0.1,
max_depth: int = 3,
model _name: str = "cancer_classifier",

Initialize the x & y data
x = dataset.drop(label_column, axis=1)
y = dataset[label column]

Initialize the ML model
model = ensemble.GradientBoostingClassifier(
n_estimators=n_estimators, learning rate=1learning rate,
max_depth=max_depth
)

Train the model
model.fit(x, y)
return model

The final step is to evaluate the model using the test set.
The evaluate function (Example 3-4) accepts the trained
model and training set as inputs and generates various
reports and charts (such as ROC curves, feature
importance, and so on). Since the evaluate function is
generic, it can be implemented once, stored in a shared
repository like MLRun'’s functions hub, and used in multiple
projects. A complete implementation of the training and
evaluation functions can be viewed in MLRun’s train and
evaluate hub function.

Example 3-4. Evaluation function code example (partial)

def evaluate(
model,
dataset: pd.DataFrame,
label_columns: Optional[Union[str, List[str]]] = None,

mimn

Evaluating a model and generate reports and artifacts.

:param model: The model path or object.
:param dataset: The dataset to evaluate the model on.

https://oreil.ly/xm81j

:param label columns: The target label(s) of the column(s) in the
dataset.
for Regression or Classification tasks.

load the model and dataset

run prediction using the test dataset

generate plots and reports and log them to the artifacts store

update the model, the result metrics and metadata in the model registry

Once you have implemented the three functions, you can
define an execution pipeline (DAG) to run a function and
feed its results to the next step, and so on.

A big part of MLOps is to be able to record all the inputs,
metadata, data, and results per experiment (a.k.a.
experiment tracking) to make it possible to understand and
explain how specific model results were obtained. For
example, MLflow and MLRun MLOps frameworks track the
execution of the functions and log the data and results. This
will be covered in more detail in the following chapters.

Application Pipeline Development

Models bring value only if deployed and integrated into an
actual application. For example, an ML application receives
relevant data or requests from users or other services,
processes it, and uses it with the model to make predictions
and generate some actions. In addition, production
applications require monitoring, logging, lifecycle
management, and so on. The flow of application, data,
model, and monitoring activities is called an application
pipeline.

There are two types of application pipelines: real-time (or
online) pipelines, which constantly accept events or
requests and respond immediately, and batch pipelines,
which are triggered through an API or at a given schedule.

Batch pipelines usually read and process larger datasets on
every run.

Real-time application pipelines

Figure 3-6 illustrates a typical real-time application
pipeline and its different steps. An application pipeline may
receive a request and respond in real time (synchronous
pipeline) or it may process the request and write the
results to another service or a storage/database system
(asynchronous or streaming pipeline).

|iIiIIl Manitoring and observability

Incoming

Online applin:atiun pipeline
requests
(HTTP,

Parse Validate Enrich Model Post
message data features prediction processing
Kafka, ...)

T Return response (or write results to output storage/AP!)

Figure 3-6. Real-time application pipelines

Real-time pipelines can be implemented manually by
chaining individual containerized functions or can be
automated by using a real-time pipeline framework such as
MLRun serving graphs, Apache Beam, or AWS Step
Functions. Chapter 6 covers the different options in detail.

NOTE

Some of the data processing logic implemented for the training
pipeline is now reimplemented for an event-driven architecture
(processing in real time, event by event versus working with large
data frames). This engineering overhead can be eliminated when
using a feature store. The feature transformation logic is generated
automatically for batch and real time from the same abstract
definition (called a feature set).

Once the application pipeline and models are deployed,
they can be automatically tracked and monitored to identify
resource usage, model drift, model performance, and more.

Batch application pipelines

Figure 3-7 illustrates a typical batch (offline) application
pipeline and its different steps. For example, an API call or
a scheduled event may trigger the batch pipeline. It loads
and processes one or more datasets, conducts batch
inference and post-processing, and writes the results to the
target storage.

SEEEQEIE% |‘lﬂl Manitoring and observability
trigger !
Basic (asyn c) application pipeline

— Read Validate Enrich Model Post —
data data features prediction processing

outputs

sources

Figure 3-7. Batch application pipelines

The batch application pipeline can be executed with the
same pipeline engine used for training.

Scaling and Productizing the Project

After building the model development components (data
prep, training, evaluation) and the application pipeline, it’s
time to add tests and automate and scale the project.

Adding tests

The first step for increasing your ML application’s quality is
adding unit tests for each component. The common
practice is to use pytest and place the test files under the
/test directory. For example, the following code

https://oreil.ly/-a1NF

demonstrates an implementation of unit tests for the
data_prep function:

def test data_preparation_pipline():
df = get_data()
train, test, label = data_preparation(df, 0.2)

assert label == 'fare_amount'

check for expected types
assert isinstance(train, pd.DataFrame)
assert isinstance(test, pd.DataFrame)

You can build additional unit tests for each function or
module and verify that you’'ve properly covered the usage
patterns. To run the tests, simply execute pytest and point
to the tests directory. Repeat these steps each time you
push changes to the source repository:

python -m pytest tests

Numerous Python packages test your code for formatting,
conformance, quality, coverage, and more; for example,
black, isort, Flake8, and interrogate. You can add them to
your project and execute them before committing the code
or as part of the CI process.

For example, formatting the code in /src and /tests using
black:

python -m black src tests

Additional tests (validating the data, model, and APIs)
should be implemented as part of the ML pipeline.

ML pipelines and hyperparameter optimization

https://oreil.ly/WtiVz
https://oreil.ly/JOo13
https://oreil.ly/Gziqx
https://oreil.ly/5SFgG

To find the best model, run the same training code with
different parameter combinations (hyperparameter
search). However, doing that on your laptop can take time
and resources. Instead, define the search options and let it
run in parallel in the cloud or over a cluster. Many MLOps
frameworks support hyperparameter jobs. If you provide
the hyperparameter options (strategy, selection criteria,
parallelism level, resources, early stop, and so on), they will
execute all the permutations for you and automatically
select the best results.

Model development is a multistage process. It requires
data ingestion, preparation, validation, training one or
more models, and testing and evaluating the models. You
can also deploy and test the application pipeline with the
newly generated model and data items.

Most MLOps platforms have a way to describe and run a
complete workflow (DAG) of steps. Some of the well-known
open source workflow execution tools are Airflow and
Kubeflow pipelines. There are some CI frameworks like
GitHub Actions, Gitlab CI, and Jenkins, which can run
simple workflows. But the CI workflow tools lack MLOps
capabilities such as handling large datasets, tracking
execution and artifacts, running distributed workloads, and
others.

Frameworks such as MLRun add the missing MLOps
features to the CI/CD system and simplify the way ML
pipelines are built and executed. After you have
implemented, executed, and tested each function, you only
need to place it in a DAG and run it. MLRun works with
different underline workflow engines, such as Kubeflow
pipelines, and can work with all the CI frameworks.

https://oreil.ly/TiRyU
https://oreil.ly/q5yWX
https://oreil.ly/DsxuL

A CI/CD pipeline for an ML application will likely
implement the following steps:

1. Data preparation

2. Model training using hyperparameters and grid search
3. Model evaluation

4. Application pipeline deployment (with the best model)

When the pipeline is executed with MLRun, MLRun tracks
the progress and results, and you can view them in the
client (IDE, Jupyter, or others) or in the MLRun UI.

Figure 3-8 shows an example of the workflow tracking Ul in
MLRun.

feich-data o
! =

transform-dataszet

e e g e g emmiee B R R A AT Sy S S LTI 5

train e e o e e e i B sy e T

- 4 ———]

deploy-model-serving

Figure 3-8. MLRun workflow tracking screen

C1/CD and Continuous Operations

You now have all the ingredients: data pipelines, model
development pipelines, and application pipelines. However,
those components will continuously develop and become

enhanced. They require an agile process for monitoring
results, pushing updates, testing, and deployment.

Continuously monitoring data and models

In traditional services, we monitor application
performance, resource usage, errors, and more. However,
it is critical in ML applications to also monitor the data and
models (see “Continuous Model and Data Monitoring”).

The data and model monitoring layers take metadata
collected at the data preparation and model training phase
(data types, statistics, and others) and compare it with
production data and metrics. MLRun automates this
process. The metadata is automatically recorded with the
model and the features at development time and compared
in real time or periodically with metadata and behavior of
the production data (which is generated automatically by
the model serving classes).

You probably want to avoid constantly staring at
dashboards for model or data performance problems.
Instead, you can define triggering policies and actions. For
example, when a certain threshold is reached, a notification
can alert the administrator or initiate an automated process
for retraining a model or mitigating potential errors.

Integrating with a CI/CD service

CI/CD is the standard approach for building and
maintaining modern services in an agile process. Chapter 2
covered REFTO: CI/CD for ML and the differences from
traditional CI/CD. The reference project uses MLRun to
extend the GitHub Actions CI service to ML and data
applications.

As a first step, you need to create scripts that will execute
the different tests and verifications. The standard approach

is to use a Makefile. In the Makefile, add commands to
build, test, and so on. Here are some examples for make
commands (see the complete Makefile in the project
directory):

.PHONY: 1lint
lint: fmt-check flake8 ## Run lint on the code

.PHONY: fmt-check

fmt-check: ## Format and check the code (using black and isort)
@echo "Running black+isort fmt check..."
S(PYTHON_INTERPRETER) -m black --check --diff src tests
S(PYTHON_INTERPRETER) -m isort --check --diff src tests

.PHONY: flake8

flake8: ## Run flake8 lint
@echo "Running flake8 lint..."
S(PYTHON_INTERPRETER) -m flake8 src tests

.PHONY: test
test: clean ## Run tests

S(PYTHON_INTERPRETER) -m pytest -v --capture=no --disable-warnings
tests

With this Makefile, typing make lint or make test will run the
lint and pytest tests.

NOTE

The CI/CD system (such as Jenkins or GitHub Actions) examines your
project and searches for CI scripts in a reserved directory and
executes them when the code is changed or merged.

In addition to static tests, you should automatically run the
ML pipeline. However, since ML pipelines can consume
significant computation, you may want the user to explicitly
request running the ML pipeline. This can be done by
typing a command in the Git pull request (for example

/run), which will trigger the execution of the ML pipeline on
cloud resources and automate the execution, data
movement, and tracking.

You can use the same approach to automate deployment,
run exhaustive testing, apply governance, and more, while
adding more CI scripts and ML pipelines to match them
and restricting who can execute which workflow and at
what stage (development, staging, production).

Conclusion

In this chapter we dove into the hands-on work and started
building our very first MLOps project. Since we believe in a
production-first approach, we started with the “why” and
discussed various Al use cases and how to identify goals.
Our projects should always have the business value in
mind, since that is their raison d’etre. Then, we moved on
to the planning phase and defined its phases and which
questions to answer to get the project approved. After
these steps, we were finally able to move on to the project
itself. We covered an entire project from A to Z, at a high
level. We discussed data gathering, data exploring and
models, model pipeline development, application pipeline
development, scaling and productizing, and CI/CD,
including monitoring. Together, these are all the important
components and phases of an ML project.

Critical Thinking Discussion
Questions

« List three ways Al can provide social and business
value.

Which investments does an ML project require? What
are the returns?

What are the components of an ML project?

Why do we need hyperparameter optimization?

What is monitored with CI/CD and why?

Exercises

« Create a mockup plan for an ML project. Answer the
questions required to build and approve your plan
based on your current stack.

« Write a function code for data preparation, model
training, and evaluation you can use in your company.

« Write unit tests for the functions you just wrote in the
previous exercise.

« Choose a CI/CD tool and list the steps required to
integrate it into your MLOps project.

« Write commands for running your ML project locally
and in the cloud.

Chapter 4. Working with
Data and Feature Stores

Machine learning takes data and turns it into predictive
logic. Data is essential to the process, can come from many
sources, and must be processed to make it usable.
Therefore, data management and processing are the most
critical components of machine learning. Data can originate
from different sources:

Files

Data stored in local or cloud files

Data warehouses

Databases hosting historical data transactions

Online databases
SQL, NoSQL, graph, or time series databases hosting up to
date transactional or application data

Data streams
Intermediate storage hosting real-time events and messages
(for passing data reliably between services)

Online services
Any cloud service that can provide valuable data (this can

include social, financial, government, and news services)

Incoming messages

Asynchronous messages and notifications, which can arrive
through emails or any other messaging services (Slack,
WhatsApp, Teams)

Source data is processed and stored as features for use in
model training and model flows. In many cases, features
are stored in two storage systems: one for batch access
(training, batch prediction, and so on) and one for online
retrieval (for real-time or online serving). As a result, there
may be two separate data processing pipelines, one using
batch processing and the other using real-time (stream)
processing.

The data sources and processing logic will likely change
over time, resulting in changes to the processed features
and the model produced from that data. Therefore,
applying versioning to the data, processing logic, and
tracking data lineage are critical elements in any MLOps
solution.

Delivery of accurate and high-quality production models
requires high volumes of data and significant processing
power. Processing of production data can be scaled using
distributed analytics engines (Apache Spark, Dask, Google
BigQuery, and more), stream processing technologies (like
Apache Flink), or multistage data pipelines.

One of the mechanisms to automate integration with data
sources, scalable batch and real-time data processing, data
versioning, and feature management is to use a feature
store. A feature store is a central hub for producing,
sharing, and monitoring features. Feature stores are
essential in modern MLOps implementations and will be
described in further detail in this chapter.

https://oreil.ly/Bhrtg
https://oreil.ly/sVAyi
https://www.dask.org/
https://oreil.ly/0g4fI
https://oreil.ly/YRL25

Data Versioning and Lineage

Models and data products are derived from data.
Therefore, collecting metadata and tracing the origin of the
data allow better control and governance for data products.
Furthermore, if you want to examine a specific version of a
data product, you must understand the original data used
to produce that product or model.

Data versioning, lineage, and metadata management are a
set of essential MLOps practices that address the following:

Data quality

Tracing data through an organization’s systems and
collecting metadata and lineage information can help
identify errors and inconsistencies. This makes it possible to
take corrective action and improve data quality.

Model reproducibility and traceability

Access to historical data versions allows us to reproduce
model results and can be used for model debugging,
troubleshooting, and trying out different parameter sets.

Data governance and auditability

By understanding the origin and history of data,
organizations can ensure that data follows expected policies
and regulations, tracks sources of errors, and performs
audits or investigations.

Compliance

Data lineage can help organizations demonstrate
compliance with regulations such as GDPR and HIPAA.

Simpler data management

Metadata and lineage information enables better data
discovery, mappings, profiling, integration, and migrations.

Better collaboration

Data versioning and lineage can facilitate cooperation
between data scientists and ML engineers by providing a
clear and consistent view of the data used in ML models and
when handling upgrades.

Dependency tracking

Understanding how each data, parameter, or code change
contributes to the results and providing insights into which
data or model objects need to change due to data source
modification.

How It Works

As shown in Figure 4-1, the data generation flow can be
abstracted as having a set of data sources and parameters
that are used as inputs to a data processing (computation)
task that produces a collection of data products or artifacts.
The output artifacts can be of different types, files, tables,
machine learning models, charts, and so on.

Parameters Computation tasks

O

Output artifacts
(dataset models, ...)

Source data

Code, packages, users,
resources, etc.

Figure 4-1. Data lineage flow

The data tracking system records the information about the
inputs (data sources and versions, parameters) and

computation tasks (code, packages, resources, executing
user, and more). Then, it adds it as metadata in the output
artifacts. The metadata may include additional information
like user-provided labels or tags, information about the
data structure, schema, statistics, and so on. The metadata
is usually not copied to each output artifact but is instead
referenced (by a link) to eliminate data duplication.

As shown in Figure 4-2, output artifacts from the first task
(for example, data preparation) can be used as data inputs
to the following tasks (for example, model training,
testing).

Data prep

[

O

Data element Computation Extra metadata

Figure 4-2. Data lineage in a multistage pipeline

When accessing a data product through a user interface or
an SDK, the metadata lets us see the exact data sources,
parameters, and the full details of the computation task.
We can also trace the progress of the data generated in a
multistage flow and examine all the additional metadata.

Every time the data processing task runs, a new version of
the output artifacts is created (see Figure 4-3). Each
version is marked with a unique version identifier (commit

id) and can also be tagged with a meaningful version name,
such as master, development, staging, production, and so
on. This is similar to the Git flow when versioning source
code.

Let’s assume you are repeatedly running a specific task
every hour. It has the same inputs and parameters or you
might make small changes that do not change the output
data results. This can lead to vast piles of redundant data,
and multiple versions will store the same content. Many
data versioning solutions implement content deduplication
to address this challenge.

When an artifact is produced, a cryptographic hash value of
the content is calculated (for example, using the MD5 or
SHA1 algorithms), which represents the uniqueness of the
content. Finally, the hash value is compared with older
versions or is used as an index in the storage system. This
way, the content is stored only once.

Since the nature of data versioning solutions is to track
various attributes in addition to the source data (code,
parameters, users, resources, and more), it must be well
integrated with the source control system (Git) and the job
or pipeline execution framework. Otherwise, the user must
manually glue the frameworks together and provide the
reference metadata for recording it along with the data.

Te5fes ds12ef1 23811e0 efebblf 020c55¢cf

Update Update dataset Adjusting Add the new dataset Adjusting
features and parameters parameters and features parameters

Data Data Data
Params Params Params
Code Code Code

Figure 4-3. How data, parameters, and code changes affect artifact versions

Many frameworks (MLflow, MLRun, and more) provide a

logging API, where the user calls a log_artifact() method,
which automatically records and versions the new data
along with the code and execution metadata. Many might

offer an auto logging solution that does not require code
instrumentation. Instead, it will automatically figure out
which data and metadata need to be saved and versioned
by understanding the user code and the ML framework’s
capabilities.

Common ML Data Versioning Tools

A set of open source and commercial frameworks for data
versioning exists. This book focuses on explaining and
comparing the open source options DVC, Pachyderm,
MLflow, and MLRun.

Data Version Control

Data Version Control (DVC) started as a data versioning
tool for ML and was extended to support basic ML
workflow automation and experiment management. It takes
advantage of the existing software engineering toolset

https://mlflow.org/
https://www.mlrun.org/
https://dvc.org/
https://oreil.ly/AlPut
https://oreil.ly/FNbPT

you're already familiar with (Git, your IDE, CI/CD, and so
on).

DVC works just like Git (with similar commands) but for
large file-based datasets and model artifacts. This is its
main advantage but also its weakness. DVC stores the data
content in files or an object storage (AWS S3, GCS, Azure
Blob, and so on) and keeps a reference to those objects in a
file (.dvc), which is stored in the Git repository.

The following command will add a local model file
(model.pkl) to the data versioning system:

dvc add model.pkl

DVC will copy the content of the model.pkl file into a new
file with a new name (derived from the content md5 hash
value) and place it under the .dvc/ directory. It also creates
a file named model.pkl.dvc, which points to that content file.
Next, the new metadata file needs to be tracked by Git, the
content should be ignored, and the changes should be
committed. This is done by typing the following commands:

git add model.pkl.dvc .gitignore
git commit -m "Add raw data"

When you want to upload the data to your remote storage,
you will need to set up a remote object repository (not
shown here) and use the DVC push command:

dvc push

The data flow is illustrated in Figure 4-4.

https://oreil.ly/BdGyy

it push/git pull Remote code
lll-'I---'Illiiil---g-lp-i]l}f-g‘-;p --------------------- Sturage
.................... : Glt server
model.pkl.DVC '
[Local workspace [Local cache | [Remu%g ?rjcleg?: :]
DVCpull/ storage (S3, GCS,
Azure, SSH, etc.
_DVC checxout DVC push/DVC fetch)
-.-_.-_ _- SO R R R R
Reflink
model.pkl 3caf...874a

Figure 4-4. DVC data flow (source: DVC)

As you can see from the example, DVC provides reliable
synchronization between code and file data objects, but it
requires manual configuration and does not store extended
metadata about the execution, workflow, parameters, and
so on. Instead, DVC handles parameters and results metrics
using JSON or YAML files stored and versioned alongside
the code.

Users can define workflow stages that wrap an executable
(for example, a Python program) and specify which

parameters (-p) are the file inputs or dependencies (-d) and
outputs (-o0) to that executable (see Example 4-1).

Example 4-1. Adding a workflow step in DVC

dvc stage add -n featurize \
-p featurize.max_features,featurize.ngrams \
-d src/featurization.py -d data/prepared \
-0 data/features \
python src/featurization.py data/prepared data/features

When you run the dvc repro command, it will evaluate if the
dependencies have changed, execute the required steps,
and register the outputs.

DVC does not use an experiment database. It uses Git as
the database, and every execution or parameter
combination is mapped to a unique Git commit.
Furthermore, DVC is focused on local development.
Therefore, using it at scale or in a containerized or
distributed workflow environment can be challenging and
require scripting and manual integrations.

In summary, DVC is an excellent tool for versioning large
data artifacts and mapping them to Git commits in a local
development environment. In addition, DVC implements
data deduplication to reduce the actual storage footprint.
On the other hand, DVC is command-line oriented (Git
flow) and has limited capabilities for running in production,
executing pipelines, and tracking extended attributes and
structured data. It also comes with a minimal UI (studio).

Pachyderm

Pachyderm is a data pipeline and versioning tool built on a
containerized infrastructure. It provides a versioned file
system and allows users to construct multistage pipelines,
where each stage runs on a container, accepts input data
(as files), and generates output data files.

Pachyderm provides a versioned data repository that can
be implemented over object storage (for example, AWS S3,
Minio, GCS) and accessed through a file API or the
SDK/CLI. Every data commit or change is logged similarly
to Git. Data is deduplicated to preserve space.

The Pachyderm data pipeline executes containers and
mounts a slice of the repository into the container (under
the /pfs/ directory). The container reads files, processes
them, and writes the outputs back into the Pachyderm
repository.

Example 4-2 shows a simple pipeline definition that takes

all the data from the data repository on the master branch,
runs the word count logic (using the specified container

image), and writes the output to the out repository.

Example 4-2. Pachyderm pipeline example

pipeline:
name: 'count'
description: 'Count the number of lines in a csv file'

input:
pfs:
repo: 'data’
branch: 'master'
glob: '/'
transform:

image: alpine:3.14.0

cmd: ['/bin/sh']

stdin: ['wc -1 /pfs/data/iris.csv > /pfs/out/line_count.txt']
Pipelines can be triggered every time the input data
changes, and data can be processed incrementally (only
new files will be passed into the container process). This
can save time and resources.

Pachyderm has a nice user interface for managing pipelines
and exploring the data. See Figure 4-5.

* Default

edges

€ Croate Repo l B images
———— Infa Spec Jobs
oD
O
edges
Q lobs
“ transform:
4 Pipeline | * B Ouiput)
image: pachyderm/console-opency: latest
€ Collapse —
o0 - python3
montage - fedges.py
= calm=gnu
L Pipeling » B Quiput

W input:

v pfs:
name: images
repo: images
repoType: user
branch: master
glob: fw

reprocessSpec: until_success

Figure 4-5. Pachyderm user interface

Pachyderm can work with large or continuous structured
data sources by breaking the data into smaller CSV or
JSON files.

In summary, Pachyderm is an excellent tool for building
versioned data pipelines, where the code is simple enough
to read and write files. It handles deduplication and
incremental processing. However, it requires separate
tracking of the source code (runs prebuilt images),
execution or experiment parameters, metadata, metrics,
and more.

MLflow Tracking

MLflow is an open source platform for managing the end-
to-end machine learning lifecycle. One of its core
components is MLflow Tracking, which provides an API and
UI for logging machine learning runs, their inputs and
outputs, and visualizing the results. MLflow Tracking runs

are executions of some data science code. Each run records
the following information:

Code version

Git commit hash used for the run.

Start and end time

The start and end time of the run.

Source

The name of the file to launch the run, or the project name
and entry point for the run if running from an MLflow
Project.

Parameters

Key-value input parameters of your choice. Both keys and
values are strings.

Metrics

Key-value metrics, where the value is numeric. MLflow
records and lets you visualize the metric’s full history.

Artifacts

Output files in any format. For example, you can record
images (for example, PNGs), models (for example, a pickled
scikit-learn model), and data files (for example, a Parquet
file) as artifacts.

MLflow Tracking is not a complete data versioning solution
since it doesn’t support features such as data lineage
(recording data inputs and which data was used to create a
new data item) or deduplication. However, it enables
logging and indexing the data outputs of every run along

with the source code, parameters, and some execution
details. MLflow can be manually integrated with other tools
like DVC to track data and experiments.

MLflow’s advantage is tracking the data outputs with
additional metadata about the code and parameters and
visualizing or comparing them in a graphical Ul. However,
this is not free. The user code needs to be instrumented
with the MLflow Tracking code.

Example 4-3 demonstrates a partial code snippet that
tracks a run using the MLflow API. First, the command line
arguments are parsed manually and the input data is
passed as a string URL, just like any other parameter.
Then, the loading and transformation of the data are done
manually.

After the logic (data preparation, training, and so on) is
executed, the user logs the tags, input parameters, output
metrics, and data artifacts (dataset and model) using the
MLflow log commands.

Example 4-3. MLflow Tracking code example

n

if __name__ == "__main__
parse the input parameters
parser = argparse.ArgumentParser()
parser.add_argument("--data", help="input data path", type=str)
parser.add_argument('--dropout', type=float, default=0.0, help="dropout
ratio')
parser.add_argument("--1r", type=float, default=0.001, help='learning rate')
args = parser.parse_args()

Read the csv file
try:
data = pd.read_csv(args.data)
except Exception as e:
raise ValueError(f"Unable to read the training CSV, {e}")

additional initialization code ...

with mlflow.start_run():

training code ...

log experiment tags, parameters and result metrics
mlflow.set_tag("framework", "sklearn")
mlflow.log_param("dropout", args.dropout)

mlflow.log param("1lr", args.lr)

mlflow.log metric("rmse", rmse)
mlflow.log_metric("r2", r2)

mlflow.log_metric("mae", mae)

log data and model artifacts
mlflow.log_artifacts(out_data_path, "output_data")
mlflow.sklearn.log_model(model, "model",

registered_model _name="ElasticnetWineModel")

MLflow sends the run information to the tracking server
and stores the data elements in local files or remote objects

(for example, in S3). The run information can be viewed or
compared in the MLflow user interface (see Figure 4-6).

> B 35000 bR LA e b
Run s3I 0003e 16794 8adbb0f7 2 1ec3Gdede

s) IO B TADRRNT S b BT e JO0T0R-10 JRO TR

A Curatinn: i Fibos| FRai-gD

e e Wi T

ol gk, wpacia

Figure 4-6. MLflow user interface

MLflow does not manage or version data objects. Run is the
primary element, and you cannot directly access or search
data objects and artifacts. In addition, there is no lineage
tracking, which means there is no tracking of which data
objects were used to produce a new data object or artifact.

When you run a pipeline, you cannot see the artifacts from
the different steps in one place or chain output from one
stage to the input of the next step.

With MLflow, the storage capacity can become significant
since every run saves the outputs in a new file directory,
even when nothing has changed. There is no data
deduplication like in the other frameworks.

In summary, MLflow tracking is an excellent tool for
tracking and comparing ML experiment results in a
development environment. In addition, MLflow is easy to
install and use. However, it is not a data tracking or
versioning system and may require significant storage
capacity. Furthermore, MLflow requires developers to add
custom code and MLOps teams to add glue logic to fit into
production deployments and CI/CD workflows.

MLRun

MLRun is an open source MLOps orchestration framework
with multiple sub-components to handle the complete ML
lifecycle. Data objects are first-class citizens in MLRun and
are well integrated with the other components to provide
seamless experience and automation.

Whereas most frameworks manage file data objects,
MLRun supports a variety of data objects (data stores,
items/files, datasets, streams, models, feature sets, feature
vectors, charts, and more), each with unique metadata,
actions, and viewers.

Every object in MLRun has a type, a unique version ID, tags
(named versions like development, production, and so on),
user-defined labels (for grouping and searching across
objects), and relations to other objects, and it is a project
member. For example, a run object has links to the source

https://oreil.ly/7Kttp

and output data objects and to function (code) objects,
forming a graph of relations.

Figure 4-7 shows the run screen with information tabs for
general and code attributes, data input objects,
data/artifact output objects, result metrics, auto-collected
logs, and so on. Users can view the information from
different perspectives. For example, look at all the datasets
in the project (regardless of which run generated them).

Foscty LS

‘s o

Moefion Sl Meiios Wi ey, Lk

S e v et e e e - 11 B P BE

R N . g S o g T - B [T T

Figure 4-7. MLRun job run user interface

MLRun data objects and artifacts carry detailed metadata,
including information on how they were produced (by
whom, when, code, framework, and so on), which data
sources were used to create them, and type-specific
attributes such as schema, statistics, preview, and more.
The metadata is auto-generated, which provides better
observability and eliminates the need for additional glue
logic.

NOTE

MLFlow users can continue using MLFlow for tracking APIs, and
MLRun will automatically register the logged data, metadata, and
models as production artifacts along with additional operational
metadata and context.

MLRun provides an extensive API/SDK for tracking and
searching across data and experiments. However, the real
power is that it can deliver most of the features and
automation without requiring additional coding.

Example 4-4 accepts input data and parameters and
generates output data and results. Note that, unlike the
previous examples, the code doesn’t include argument
parsing, data loading, conversion, logging, and so on.

Example 4-4. MLRun code example

def data_preparation(dataset: pd.DataFrame, test_size=0.2):

preform processing on the dataset

dataset = clean_df(dataset).dropna(how="any", axis="rows")

dataset = dataset.drop(columns=["key", "pickup_datetime"])

train, test = train_test_split(dataset, test_size=test_size)

return train, test, "fare_amount"
When executing the function and specifying the input data
object URL or path (a file, a remote object, or a complex
type), it is automatically loaded into the function. For
example, using AWS boto drivers to access S3 objects or
BigQuery drivers to access a BigQuery table. Then the data
is converted to the accepting format (DataFrame) and

injected into the user code.

MLRun can auto-detect the returned value type (for
example, train and test are of type DataFrame) and store it
in the best form, along with auto-generated metadata, links
to the job details and data input objects, and versioning

information. If the data repeats itself, it is deduplicated and
stored only once to preserve storage space.

Data objects have type-specific visualized in the Ul and
client SDK regardless of how and where they are stored;
for example, tabular formats with table metadata (schema,
stats, and more) for datasets or interactive graphics for
chart objects (see Figures 4-8 and 4-9).

In summary, MLRun is a complete MLOps orchestration
framework with a significant focus on data management,
movement, versioning, and automation. In addition, MLRun
has a rich object model that covers different types of data
and execution objects (functions, runs, workflows, and
more), how they are related, and how they are used.
MLRun focuses on abstraction and automation to reduce
development and deployment efforts. However, MLRun is
not a general data management and versioning solution,
and its value is maximized when used in the context of
MLOps.

» Datasets » train-skrf_test_set > Metadata m

aaaaaaaaaa

Figure 4-8. View a dataset artifact in MLRun (with autogenerated preview,
schema, and statistics)

Display HTML output artifacts
trainer_run.artifact(confusion-matrix”).show()

O} i
Confusion matrix

Real value

Predicted value

Figure 4-9. Visualize an interactive chart artifact using MLRun’s SDK (in
Jupyter)

Other Frameworks

Some tools, such as Delta Lake and lakeFS, handle data
lake versioning. However, those tools are not focused on
the ML lifecycle and may require integration to make them
useful for MLOps.

Cloud vendors provide solutions that are usually tightly
bound to their internal services. For example, see Amazon
SageMaker ML Lineage Tracking and Azure ML datasets.

Data Preparation and Analysis at
Scale

Data processing is used extensively across the data, ML,
and application pipelines. When working with production
data, there is a need to support more extensive scale and

https://delta.io/
https://oreil.ly/x_WzP
https://oreil.ly/GIW5B
https://oreil.ly/H0Ksb

performance, and, in some cases, handle data as it arrives
in real time.

Practices that work during interactive development, for
example, storing the data in a CSV file and reading it into
the notebook, don’t work with gigabytes or terabytes of
data. They require distributed or parallel data processing
approaches.

The general architecture for distributed data processing is
the same, with differences in how data is distributed and
collected and which APIs they use. For example, the data is
partitioned across multiple computer nodes, the processing
requests or queries arrive at one or more nodes for local
processing, and the results are collected and merged for a
single answer. In addition, complex queries may shuffle
data between nodes or execute multiple processing and
movement steps.

Figure 4-10 demonstrates how distributed data processing
works using the map-reduce approach for counting words
in a document.

Input Splitting Mapping Shuffling Reducing Final results
: : P K2, List(v2) : '

K1, V1 List (K2, V2)

e,

BEZEI'.
' Deer bear _;_.,

: river
: —

List(K3, V3)

Deer bear river | 5 - 7\ : N &
Carcarriver o ' Deer, 2
Deer carbear River, 2

| S—

[MapReduce word count process

Figure 4-10. Distributed word counting with map-reduce architecture (source:
O’Reilly)

Structured and Unstructured Data
Transformations

Data can be structured, meaning it conforms to a specific
format or structure and often has a predefined schema or
data model. Structured data can be a database table or files
with a structured layout (for example, CSV, Excel, JSON,
ML, Parquet). However, most of the world’s data is
unstructured, usually more complex, and more difficult to
process than structured data. This includes free text, logs,
web pages, images, video, and audio.

Here are some examples of analytic transformations that
can be performed on structured data:

Filtering

https://oreil.ly/gd8Lz

Selecting a subset of the data based on certain criteria, such
as a specific date range or specific values in a column.

Sorting

Ordering the data based on one or more columns, such as
sorting by date or by a specific value.

Grouping

Organizing the data into groups based on one or more
columns, such as grouping by product category or by city.

Aggregation
Calculating summary statistics, such as count, sum, average,

maximum, and standard deviation, for one or more
columns.

Joining
Combining data from multiple tables or datasets based on

common columns, such as joining a table of sales data with a
table of customer data.

Mapping
Mapping values from one or more columns to new column
values using user-defined operations or code. Stateful
mapping can calculate new values based on original values
and accumulated states from older entries (for example,
time passed from the last login).

Time series analysis

Analyzing or aggregating data over time, such as identifying
trends, patterns, or anomalies.

The following techniques can be used to process
unstructured data or convert it to structured data:

Text mining

Using NLP techniques to extract meaning and insights from
text data. Text mining can extract information such as
sentiment, entities, and topics from text data.

Computer vision

Using image and video processing techniques to extract
information from visual data. Computer vision can extract
information such as object recognition, facial recognition,
and image classification.

Audio and speech recognition

Using speech-to-text and audio processing techniques to
extract meaning and insights from audio data. Audio and
speech recognition can extract information such as speech-
to-text, sentiment, and speaker identification.

Data extraction

Using techniques such as web scraping and data extraction
to pull out structured data from unstructured data sources.

Various ML methods can be used to transform raw data
into more meaningful data, for example:

Clustering

Grouping similar data points based on certain

characteristics, such as customers with similar purchasing
habits

Dimensionality reduction

Reducing the number of features in a dataset to make it
easier to analyze or visualize

Regression and classification

Predicting a class or a value based on other data features

Imputing

Determining the expected value based on other data points
in case of missing data

Embedding

Representing a sequence of text, audio, or an image as a
numeric vector that preserves the semantic relationships or
contextual characteristics.

Distributed Data Processing Architectures

Data processing architectures can be broken into three
main categories:

Interactive

A request or an update arrives, is processed, and a response
is returned immediately; for example, SQL and NoSQL
databases, data warehouses, key/value stores, graph
databases, time series databases, and cloud services.

Batch

A job is started on a request or a scheduled time, data is
fetched and processed, and the results are written to the
target storage after completion. Batch jobs usually take
longer to process. Example frameworks for batch data
processing include Hadoop, Spark, and Dask.

Streaming

https://oreil.ly/a6LM4
https://oreil.ly/S9Co0
https://www.dask.org/

Continuous processing of incoming requests or chunks of
data and writing the results in real time to a target storage
Or message queue.

Batch processing is usually more efficient for processing
large data quantities. However, interactive and stream data
processing deliver faster responses with shorter delays. In
addition, building data stream processing pipelines is
usually more complex than batch jobs.

Some frameworks like Spark may support different
processing methods (interactive, batch, streaming), but
they will usually be more optimal only in one of the
processing methods.

Interactive Data Processing

Interactive systems are expected to respond immediately,
so the requesting client or interactive dashboard will not
need to wait. Furthermore, production services may
depend on the reliability and robustness of the results. This
is why interactive systems have simple APIs with limited
data operations. In some cases, interactive systems provide
mechanisms to define custom logic through stored
procedures and user-defined functions (UDF5s).

The main difference between the types of interactive data
systems is how they index and store data to minimize
response retrieval time. For example, NoSQL, in-memory,
and key/value stores are optimized for retrieval by an index
key (such as a user id, product id, and so on). The data is
divided by the key (or a crypto hash or the key) and stored
in different nodes. When a request arrives, it is passed to
the specific node, which manages the data for that key
(user, product, and so on) and can quickly calculate and

retrieve the answer. On the other hand, complex or cross-
key calculations require coordination between all the nodes
and take much longer.

Analytical databases and data warehouses are designed to
traverse many records with different index key values. They
organize the data in columns (by field) and use various
columnar compression technologies and filtering and
hinting tricks (like bloom filtering) to skip data blocks.

Other systems like time series or graph databases have
more advanced data layouts and search strategies that
combine multidimensional indexes and columnar
compression. For example, accessing the time series metric
object by the metric key (name) and using columnar
compression technologies to scan or aggregate the
individual values (by time).

Many interactive systems use the SQL language or SQL-like
semantics to process data.

Some subcategories of notable data systems are listed in
Table 4-1.

Table 4-1. Data systems categories and descriptions

Category

Relational

NoSQL

Time series

Graph

Vector

Description

Store structured data, access through SQL
command. Examples include MySQL,
PostgreSQL, Oracle, and Microsoft SQL
Server.

Examples include MongoDB, Cassandra,
Redis, Elasticsearch, AWS DynamoDB,
Google BigTable, and nontabular databases.

Store and query time series data. Examples
include InfluxDB, Prometheus, and
TimescaleDB.

Store and query data in a graph format.
Examples include Neo4j and Titan.

A vector database indexes and stores high-
dimensional vector embeddings for fast
retrieval and similarity search. Examples
include Chroma, Pinecone, Milvus ,
Weaviate, and Pgvector.

Analytical systems usually traverse and process larger
datasets. As a result, they support more extensive
transformations (filtering, grouping, joining, aggregating,
mapping, and so on) and user-defined functions. In
addition, some can process and aggregate data from other
databases or data stored in files. For example, solutions
like Spark SQL or PrestoDB have connectors to many data

https://www.mysql.com/
https://oreil.ly/xykB5
https://www.oracle.com/
https://oreil.ly/OEHWE
https://oreil.ly/XN5v3
https://oreil.ly/NUgmA
https://redis.io/
https://oreil.ly/a04cP
https://oreil.ly/OPDZQ
https://oreil.ly/KIdqI
https://oreil.ly/IWU-_
https://prometheus.io/
https://oreil.ly/BCkTq
https://neo4j.com/
https://oreil.ly/D3_qt
https://oreil.ly/HElAs
https://oreil.ly/VARzg
https://milvus.io/
https://oreil.ly/rOrIP
https://oreil.ly/-WIHz

sources and can process queries that span many datasets
and are stored in different systems.

One of the most popular distributed SQL-based analytical
engines is PrestoDB and its follow-on project, Trino. Presto
was initially developed by Facebook and contributed to
open source. Later, it was forked into projects like the
Trino and commercial products such as Amazon Athena
cloud service. Trino has a long list of data connectors.

Figure 4-11 illustrates Presto and Trino architectures.
Queries arrive through HTTP requests, are parsed, and are
broken by the planner and the scheduler into smaller tasks
that are processed and merged by the individual workers.

Coordinator

Metadata Data location .
m API API Pluggable

[a?arlsyigr]-)[Planner HScheduIer]

NS EEEEsEESEE S S ' Y
: Worker
v
W(‘}lrrker Data stream API -1—.
[.‘-.-“] [Worker]
[[;0200 Data stream API 1—.

L. o

Figure 4-11. PrestoDB and Trino architecture (source: Presto)

Batch Data Processing

Batch data processing is used when there is a need to
process large amounts of data and run a sequence of data

https://trino.io/
https://oreil.ly/WGusW
https://oreil.ly/E6jt3

transformations, and the processing time is less of a
concern. In batch processing, the data is read and broken
into chunks passed to multiple workers for processing.
Once the result is ready, it is written to the target system.
Batch processing is often used to process large amounts of
historical data and generate the dataset for training ML
models.

One of the best known batch data processing frameworks
was Apache Hadoop, an open source software framework
for distributed storage and large-scale processing of data-
intensive tasks. Hadoop was initially developed by Yahoo!
engineers and was based on the MapReduce programming
model, which consists of two main functions: Map and Reduce.

The Map function takes an input dataset and processes it
into a set of intermediate key-value pairs, which are then

grouped by key and processed by the Reduce function to
produce the final output.

Hadoop has since been replaced with more modern and
cloud-native architectures based on cloud object storage,
containerized infrastructure, and computation frameworks
such as Spark, Flink, Beam, Dask, and others.

An everyday use for batch processing is found in ETL tasks.
ETL refers to extracting data from multiple sources,
transforming it, and loading it into a target database, data
warehouse, or data lake. ETL is a crucial step in the data
integration process, as it allows organizations to extract,
clean, and transform data from multiple sources into a
single, centralized repository.

Batch-processing pipelines may be complex and have
multiple steps and dependencies. Apache Airflow is one of
the most popular open source frameworks for authoring,
scheduling, and monitoring batch data pipelines.

https://oreil.ly/S9Co0
https://oreil.ly/dmKbL
https://oreil.ly/ZMG1X
https://www.dask.org/
https://oreil.ly/A8231

Airflow was initially developed by Airbnb and is now
maintained by the Apache Software Foundation. It provides
a simple and easy-to-use interface for defining workflows as
DAGs of tasks, where each task represents an individual
processing step. The tasks can be written in Python and run
in various environments, including locally, over
Kubernetes, or in the cloud.

Airflow also provides a web-based user interface (see
Figure 4-12) for managing and monitoring workflows,
including the ability to see the status of each task, retry
failed tasks, and manually trigger or schedule tasks. It also
includes features for managing and organizing workflows,
such as defining dependencies between tasks and setting
up task retry logic.

xﬂ-irﬂuw DAGs Sequrity Broiwsa Admin Doss 10045 POT |-07100) FB

[sucoess [N
O example_bash_operator
® Teos [Calendar £ TaskDumtien S TaskTres Sk Landing Times = Gaem b Detaily <3 Code > 2 O
0 zovoeorTosererd | Rens | 25 v | Aun | manual2001.-06-02T18:27:26 7974040000 || Layout | Lefts Right w
Bashlrermio Cumeydearssor ‘g | [nurning tainc| | up_tor_retry | [up_tor_meachecie | [upstea_tuled | | sipped | [sohecied | ro_ssha

Aufe-ralraals O

(=E=h

[l'l.l‘i'M_'l H I'LI_-I"IQI'_W]_’ run_this_lxst

Figure 4-12. Airflow user interface

Example 4-5 is an example of Python code that can be used
to create a DAG in Apache Airflow that reads data from a
CSV file, processes it, and writes it to a destination.

Example 4-5. Airflow data pipeline code example

https://oreil.ly/aUqNr

import csv

from airflow import DAG

from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta

def

def

def

def

default_args

dag

)

process_data(**kwargs):

ti = kwargs['ti']

input_file = ti.xcom_pull(task_ids='read _file')
processed_data = do_data_processing(input_file)
return processed_data

do_data_processing(input_file):

Placeholder function that performs data processing
processed_data = input_file

return processed data

read_csv_file(file_path):

with open(file _path, 'r') as file:
reader = csv.reader(file)
return list(reader)

write_csv_file(file_path, data):

with open(file path, 'w') as file:
writer = csv.writer(file)
writer.writerows(data)

{

'owner': 'airflow',
'"depends_on_past': False,
'start_date': datetime(2021, 1, 1),
'email_on_failure': False,
'email_on_retry': False,

'retries': 1,

'retry_delay': timedelta(minutes=5),

= DAG(

'data_processing dag',

default_args=default_args,

description="A DAG that reads data from a CSV file, processes it'
', and writes it to a destination',

schedule_interval=timedelta(hours=1),

read_file = PythonOperator(

task_id='read_file',
python_callable=lambda: read csv_file('/path/to/input_file.csv'),
xcom_push=True,

dag=aég,
)

process_data = PythonOperator(
task_1id='process_data',
python_callable=process_data,
provide _context=True,
dag=dag,

)

write_file = PythonOperator(
task_id="write_file',
python_callable=1lambda: write_csv_file('/path/to/output_file.csv',

ti.xcom_pull(task_ids='process data')),
provide_context=True,
dag=dag,

)

read_file >> process_data >> write_file

There are several cloud-based batch data pipeline services
such as AWS Glue, Google Cloud Composer (based on
Airflow), and Azure Data Factory.

One of the disadvantages of Hadoop or other batch
pipelines is the need to read data from disk, process it, and
write it again to disk at every step. However, frameworks
such as Spark and Dask know how to compile the
processing pipeline into an optimal graph where tasks are
done in memory where possible, which minimizes the 10 to
disk and maximizes performance.

Example 4-6 demonstrates a Spark code that reads a CSV
file, processes the data, and writes the result into a target
file.

Example 4-6. PySpark data pipeline code example

from import SparkSession

Create a Spark session
spark = SparkSession.builder.appName("SimpleBatchProcessing").getOrCreate()

https://oreil.ly/-qv9o
https://oreil.ly/wEcFr
https://oreil.ly/HazOP
https://oreil.ly/UjtVC
https://www.dask.org/

Load a CSV file into a Spark DataFrame
df = spark.read.csv("/path/to/input_file.csv", header=True, inferSchema=True)

Perform some data processing on the DataFrame
processed_df = df.groupBy("column_name").agg({"column_name": "mean"})

Write the processed DataFrame to a new CSV file
processed_df.write.csv("/path/to/output_file.csv", header=True)

Stop the Spark session
spark.stop()

Example 4-7 shows the same task, implemented using
Dask. The advantage of Dask is that the operations are very
similar to Python pandas, which is a tremendous advantage

for data scientists. However, Spark is usually more scalable
and robust.

Example 4-7. Dask data pipeline code example

import as

Load a CSV file into a Dask DataFrame
df = dd.read_csv('/path/to/input_file.csv')

Perform some data processing on the DataFrame
processed_df = df.groupby('column_name').column_name.mean().compute()

Write the processed DataFrame to a new CSV file
processed_df.to_csv('/path/to/output_file.csv', index=False)

You can see that the Spark and Dask examples are much
simpler compared to the Airflow ones. However, Airflow
can be more suitable for managing and tracing long,
complex jobs.

Stream Processing

Stream processing enables scalable, fault-tolerant, and
real-time data processing. It is often used in applications
that process large amounts of data in real time, such as
real-time analytics, fraud detection, or recommendations.

In stream processing, data and incoming events are pushed
into a stream (queue) and read by one or more workers.
The workers process the data sequentially, make
transformations, aggregate results, and write the results
into a database or an output stream. Unlike traditional
message queues, stream processing occurs in order. For
example, assume the stream contains two events: one for
customer login and another for customer logout. Not
processing them in order can lead to a broken state.
Another example is a money deposit operation, followed by
a withdrawal. The withdrawal may be declined if operations
are processed in the wrong order.

Streams are designed to scale. They are broken into
partitions, and each partition handles a specific set of data
objects, so it will not violate the order. For example, a user
activity stream is partitioned by the user ID so that a
specific user’s activities will always be stored in the same
partition and processed by the same worker.

Streams such as Kafka, AWS Kinesis, and others are
different than message queues like RabbitMQ, AMQP,
Amazon SQS, Google Pub/Sub, and so on. Message queues
do not guarantee message ordering. However, they
guarantee reliable delivery of messages, while the client
manages the reliability in the case of streams.
Furthermore, they are much faster due to the more
straightforward logic and parallelism offered with streams.

Figure 4-13 illustrates a streaming application in which
clients publish data that is distributed between the
individual partitions (based on a hash of the partition key).
One worker is reading from each partition and processing
the data. The worker can use a database to store the state
on known intervals (checkpoints), so the state can be
recovered in case of a failure, or the worker can free

https://oreil.ly/LwyrQ
https://oreil.ly/DhkgF
https://oreil.ly/Rau1H
https://www.amqp.org/
https://oreil.ly/ZeRhw
https://oreil.ly/Mp6P0

unused memory. Finally, the results can be written into a
target database or an output stream.

Streams provide “at-least-once semantics.” Therefore, the
same message may appear multiple times. A way to provide
“exactly once” semantics (the same message is processed
only once) is with the help of checkpoints. Streams are
processed in order, and the state can be persisted after
every micro-batch. In the case of a failure, the worker can
restore the last checkpoint data (state), process the events
from that point forward, and ignore older events.

Real-time

Stream \ processing
P Partition | Worker1 Output
Distributed by D
: artition key =
Clients II P-E-----f-: ------ P Partition2 | rker 2
Real-time
R rker 3 database

Intermediate
state

Figure 4-13. Streaming application architecture

Stream Processing Frameworks

Doing real-time analytics on real-time streams differs from
doing it in batch or SQL. With streams, the workers can go
over the data only once, in sequential order, and see a
portion of the data (in the same partition). This is why real-
time analytics frameworks such as Spark Streaming,
Apache Flink, Apache Beam, Apache NiFi, and others, focus
on stream processing and implement the standard analytic
and statistic methods in a stream-optimized way.

https://oreil.ly/n3MYf
https://oreil.ly/kMRnL
https://oreil.ly/L3v58

A typical scenario in stream processing is to aggregate
values over time; for example, examining the total value of
customer transactions in the last hour to detect fraud. It is
not feasible to calculate the total for every new event with
stream processing. It will take a considerable amount of
time and memory. Instead, the values are grouped into
windowed buckets, for example, six buckets or more, each
holding the total per 10 minutes. The process sums the
values of only the last six buckets and drops the oldest
bucket every 10 minutes. Figure 4-14 illustrates
overlapping sliding windows with a one-minute window
duration and 30-second window periods.

Key O
Key1

Key 2

-
LR R

Window 1

: ; Window 2 .

H ‘ P — S

: . H Window 3 .

| —4 . & i . H
60s window duration : . : :
———8 : ' .

+ 30swindow ! : : '

: period | : : :

Time(s)

Figure 4-14. Sliding windows (source: Apache Beam)

Example 4-8 shows the Apache Beam code for defining
such a window.

Example 4-8. Defining the sliding window using Apache
Beam

from import window
sliding_windowed_items = (
items | 'window' >> beam.WindowInto(window.SlidingWindows(60, 30)))

Coding with stream processing frameworks requires
advanced data engineering knowledge. This is why many
users avoid real-time data, even though it can provide
much better business value and more accurate model
scoring results. Feature stores come to the rescue, as they
can automatically generate the batch and the streaming
pipeline from the same higher-level data processing logic.

Feature Stores

Feature stores are a factory and central repository for
machine learning features. Feature stores handle the
collection of raw data from various sources, the
transformation pipeline, storage, cataloging, versioning,
security, serving, and monitoring. They automate many
processes described in this chapter, while accelerating
production time and reducing engineering efforts. Feature
stores form a shared catalog of production-ready features,
enable collaboration and sharing between teams, and
accelerate the innovation and delivery of new Al
applications.

The first feature store implementations came from large
service providers like Uber, Twitter, and Spotify. In those
providers, Al is core to the business, and feature stores
helped them accelerate the development and deployment of
new Al applications and improve collaboration and reuse.
Today there are multiple commercial and open source
implementations to choose from.

https://oreil.ly/gcsbU

Advanced feature stores provide the following capabilities:
Data connectivity

Glueless integration with multiple offline (data lakes, data
warehouses, databases, and so one) and online (streams,
message queues, APIs, managed services, and so on) sources.

Offline and online transformation

Some feature stores offer capabilities to automatically build
and manage the batch and streaming pipelines from higher-
level logic.

Storage

Storing the generated features in an offline store (such as an
object store) and an online store (usually a key/value
database).

Metadata management

Auto-generating, storing, and managing all feature
metadata, including lineage, schemas, statistics, labels, and
more.

Versioning

Managing multiple versions of each feature and the process
of promoting features from development to production and
integrating with CI/CD.

Generating and managing feature vectors

Correctly joining multiple features into a single dataset for
use in training or serving applications.

Central cataloging

Providing centralized access to generate, label, or search
features.

Security and governance

Controlling the access to features and raw data and to
logging feature access.

Easy-to-use UI and SDK

Simple access through APIs and a user interface to abstract
the underline complexity, visualize features, and make it
usable by data scientists.

Monitoring and high availability

Monitoring the assets and data processing tasks
automatically while reliably recovering from failures.

Feature validation and analysis

Executing various data processing tasks automatically or as
initiated by the user, to validate feature correctness or to
generate a deep analysis of features, correlation, and so on.

You should thoroughly compare capabilities before
choosing a feature store. For example, many have very
partial functionality, may focus on cataloging features, or
lack automated transformations, data management at
scale, and real-time functionality. These capabilities
provide the most significant value in accelerating time to
production.

Feature Store Architecture and Usage

Figure 4-15 illustrates a feature store’s general
architecture and usage. Raw data is ingested and

transformed into features, and features are cataloged and
served to different applications (training, serving,
monitoring). APIs and a Ul allow data scientists, data
engineers, and ML engineers to update, search, monitor,
and use features.

The core components of a feature store are:
Transformation layer
Converts raw offline or online data into features and stores
them in both an online (key/value) and offline (object) store.
Storage layer

Stores multiple versions of a feature in feature tables
(feature sets) and manages the data lifecycle (create, append,
delete, monitor, and secure the data). The data layer stores
each feature in two forms: offline for training and analysis
and online for serving and monitoring.

Feature retrieval

Accepts requests for multiple features (feature vectors) and
other properties (such as time ranges and event data), and
produces an offline data snapshot for training or a real-time
vector for serving.

Metadata management and cataloging

Stores the feature definition, metadata, labels, and relations.

[Dataengineer | [Datascientist | MLOps engineer |

Bland data Notebooks/ Training
exploration IDEs and AutoML
Data integration Online snapshot *
and ETL platforms ‘
—_ — - ; 1 Online
Online and offline feature store }———y| Model
Data lakes and serving
warehouses N [Connect][Catalog]

8 . Raow data Metacéﬂtﬂ
_ an
Operational data [Transform][Serve] ¢ edbadk] Model
i) monitoring

[

Real-time sources

Figure 4-15. Feature store usage and architecture

Ingestion and Transformation Service

This chapter has discussed the complexities of
implementing large-scale processing for batch and real-
time data, data versioning, and metadata management.
Feature stores aim to reduce that complexity through
abstraction and automation. With modern feature stores,
data pipelines are described using high-level
transformation logic. This logic is converted to the
underlying processing engine semantics and deployed as a
continuous and production-grade service, saving significant
engineering efforts.

Pipeline implementation is different for local development
(using packages like pandas), large-scale offline data (using
batch processing), and real-time data (using stream
processing). The advantage of a feature store that supports

automated transformations is that it uses one definition for
all three deployment modes and eliminates the
reengineering involved in porting data pipelines from one
method to another. In some feature stores, the data
pipeline technology will be determined by the data sources,
whether offline (data lakes, data warehouses, databases,
and so on) or online (streams, message queues, APIs,
managed services, and others).

Feature stores implement the data ingestion and
transformation on groups of features (called feature sets or
feature groups) that originate from the same source; for
example, all the features extracted from a credit card
transaction log. Feature sets take data from offline or
online sources, build a list of features through a set of
transformations, and store the resulting features along with
the associated metadata and statistics.

Figure 4-16 illustrates the transformation service (feature
set). Once the data is ingested from the source, it passes
through a graph (DAG) of transformations, and the
resulting features are written into the offline and online
stores.

Transformation pipeline service

-Data- Data Values 1 OneHot Aggregate
Setemll T extraction mapping Filter encoding [™] (sum,Avg...)

Online
store

Figure 4-16. Feature transformation service (feature set) pipeline example
Examples of transformation (by data type):
Structured

Filter, group, join, aggregate, OneHot encoding, map, extract,
and classify

Textual

Extract, parse, disassemble, detect entities, sentiments, and
embeddings

Visual (images and videos)

Frame, resize, detect objects, crop, recolor, rotate, map, and
classify

The generated transformation service should be
production-grade and support auto-scaling, high
availability, live upgrades, and more. In addition, it should
support continuous data ingestion and processing. For
example, new data may arrive continuously (for real time)
or in scheduled intervals (for offline). Therefore, serverless
function technologies are an excellent fit.

Feature Storage

The features are usually stored in two forms: offline storage
for training and analytics applications and online storage
for real-time serving and monitoring applications. See
Figure 4-17.

Storage

)

Offline M1 Training
pipeline
~—

Transformation

service S

Serving
pipeline
—

- v

Figure 4-17. Feature storage

The offline store holds all the historical data and often uses
data lakes, object storage, or data warehouse technologies.
For example, a common choice is to use compressed
Parquet files stored in object storage like AWS S3.

The online store holds the most recent data and often uses
NoSQL or key/value stores like Redis, AWS DynamoDB,
Google BigTable, and others. The online store needs to
support reading features in milliseconds.

Feature Retrieval (for Training and Serving)

Training, serving, and analysis applications require
multiple features from multiple datasets and sources. In
contrast, feature stores organize features in groups (called
feature sets) based on their origin and entity (primary key
such as a user id, product id, and so on).

Retrieving multiple features from different sources, times,
and with different indexes can be a complex analytics task.
Feature stores automatically determine the parameters

required for the JOIN query based on the features metadata,
entity names, and user request data. In addition, when the
datasets are transactional (records are marked with a
timestamp), the join operation needs to take into account
time correctness and time traveling to return only the
values known at the time of the event (also referred to as
as of join analytics operation).

Offline feature sets can be generated through SQL queries
generated by the feature store. However, with real-time
serving applications that need to respond in milliseconds,
this creates considerable overhead, and other real-time
methods are used. In addition, time-based features (such as
the number of requests in the last hour) cannot be
precalculated and require special handling to generate an

accurate result (for example, by combining precalculated
time windowed data and ad-hoc last-mile calculations).

Figure 4-18 illustrates the feature retrieval flow with two
separate engines, one for offline retrieval and the other for
real-time retrieval. Note that in the case of offline, the
dataset is snapshotted or preserved in a new dataset to
allow data lineage tracking and explainability.

Feature serving
Offline .
retrieval —> Tfa"‘l!ng
(+snapshot) PIpEline
- Online : Online Serving
store retrieval —> pipeline

Figure 4-18. Feature retrieval

The get_offline_features request can accept event data to
base the query on, a valid time range (for example, if we
want to train the model based on data from the last month),
and which features and columns should return (for
example, whether to include the index, time, or label
columns). Then, it initiates a local or serverless analytics
job that computes the results and returns the features
vector dataset.

In real-time retrieval, the system initializes the retrieval
service (configuring a local or remote real-time analytics
function once to save time on requests). Then, user
requests are pushed with the entity keys (taken from the
event data) and accept a result vector. In addition, some
feature stores allow real-time imputing (replacing missing
or NaN data with statistical feature values taken from the
feature metadata).

Feature Stores Solutions and Usage
Example

Feature stores started as internal platforms in leading
cloud services providers (such as Uber, Spotify, and
Twitter). But now, many open source and commercial
feature store solutions are in the market. However, as in
every important new technology space, there are many
functionality differences between those solutions; you need
to be aware so you can choose the right one.

The most notable and essential difference is if the feature
store platform manages the data (transformation) pipeline
for you and whether it supports both offline and real-time
(streaming) pipelines. As you’ve read in this chapter,
building and managing a scalable data pipeline is the major
challenge. If you are forced to do it manually, it
significantly undermines the value of a feature store.

Table 4-2 compares the leading feature store solutions:

Table 4-2. Feature store solution comparison

Category Feast Tecton MLRun Sag
Open Yes No Yes No
source
Managed No major cloud + on- on 2
option clouds prem
Offline No Yes Yes No
pipelines
Real-time No Yes Yes No
pipelines
Feature Yes Yes Yes Yes
retrieval
Engines Spark Spark Python, Non
Dask,
Spark,
Nuclio
Feature No Yes Yes No
analytics
Versioning No Yes Yes No

and lineage

Features No Yes Yes Yes
security

Category Feast Tecton MLRun Sag

Monitoring No Yes Yes No
Glueless No No Yes No
training

and serving

The following sections will demonstrate how feature stores
are used with the two leading open source frameworks:
Feast and MLRun. Note that MLRun is more fully featured
and provides offline and online transformation services
(based on MLRun’s serverless engines) along with many
other unique features.

Using Feast Feature Store

Feast does not provide a transformation service. Data
should be prepared upfront and stored in a supported
source (like S3, GCS, BigQuery). Feast registers the source
dataset and its metadata (schema, entity, and so on) in a
FeatureView object, as shown in Example 4-9.

Example 4-9. Defining Feast FeatureView (source: Feast)

Read data from parquet files. Parquet is convenient for local development mode.
For production, you can use your favorite DWH, such as BigQuery. See Feast
documentation for more info.
driver_hourly_stats = FileSource(
name="driver_hourly_stats_source",
path="/content/feature_repo/data/driver_stats.parquet",
timestamp_field="event timestamp",
created_timestamp_column="created",

)

Define an entity for the driver. You can think of entity as a primary key used
to

https://feast.dev/
https://oreil.ly/H0njK

fetch features.
driver = Entity(name="driver", join_keys=["driver_id"])

Our parquet files contain sample data that includes a driver_id column,
timestamps
and three feature column. Here we define a Feature View that will allow us to
serve
this data to our model online.
driver_hourly_stats_view = FeatureView(
name="driver_hourly stats",
entities=[driver],
ttl=timedelta(days=1),
schema=[
Field(name="conv_rate", dtype=Float32),
Field(name="acc_rate", dtype=Float32),
Field(name="avg_daily_trips", dtype=Inté64),
1,

online=True,

source=driver_hourly stats,

tags={},
)
Feast does not provide an online transformation or
ingestion service. Instead, the user needs to run a
materialization task to copy the offline features into the
real-time store (database). Unfortunately, this also means
that the data stored in the online store is inaccurate
between materializations, and running materialization too
frequently can result in significant computation overhead.

Running the materialization task via the SDK:

store = FeatureStore(repo_path=".")
store.materialize_incremental(datetime.now())

The project may contain one or more feature views, and
each is defined and materialized independently. Features
can be retrieved from one or more feature views (will
initiate a JOIN operation).

To retrieve offline features (directly from the offline
source), use the get_historical_features() API call as shown

in Example 4-10.

Example 4-10. Retrieve offline features with Feast (source:
Feast)

The entity dataframe is the dataframe we want to enrich with feature values
see https://docs. feast.dev/getting-started/concepts/feature-retrieval for
details
for all entities in the offline store instead
entity_df = pd.DataFrame.from_dict(
{
entity's join key -> entity values
"driver_id": [1001, 1002, 1003],
"event_timestamp" (reserved key) -> timestamps
"event_timestamp": [
datetime(2021, 4, 12, 10, 59, 42),
datetime(2021, 4, 12, 8, 12, 10),
datetime(2021, 4, 12, 16, 40, 26),
1,
(optional) label name -> label values. Feast does not process these
"label_driver_reported_satisfaction": [1, 5, 3],
values we're using for an on-demand transformation
"val_to_add": [1, 2, 3],
"val_to_add_2": [10, 20, 30],

)

store = FeatureStore(repo_path=".")

retrieve offline features, feature names are specified with <view>:<feature-
name>
training_df = store.get_historical_features(
entity_df=entity_df,
features=[
"driver_hourly stats:conv_rate",
"driver_hourly stats:acc_rate",
"driver_hourly_stats:avg_daily_trips",
"transformed_conv_rate:conv_rate_plus_val1l",
"transformed_conv_rate:conv_rate_plus_val2",

1,
). to_df()

print("----- Example features ----- \n")
print(training_df.head())

To retrieve online features from the online store, we use
the get_online_features() API call, as shown in Example 4-

11.

Example 4-11. Retrieve online features with Feast (source:
Feast)

from pprint import pprint
from feast import FeatureStore

store = FeatureStore(repo_path=".")

feature_vector = store.get_online features(
features=[
"driver_hourly_stats:acc_rate",
"driver_hourly_stats:avg _daily_trips",
"transformed_conv_rate:conv_rate_plus_valil",
"transformed_conv_rate:conv_rate_plus_val2",
]’
entity_rows=[
{join_key: entity value}

{
"driver_id": 1001,
"val_to_add": 1000,
"val_to_add_2": 2000,

s

{
"driver_id": 1002,
"val_to_add": 1001,
"val_to_add_2": 2002,

}s

1,
).to_dict()

pprint(feature_vector)

results:

{'acc_rate': [0.86463862657547, 0.6959823369979858],
'avg_daily_trips': [359, 311],
'conv_rate_plus_vall': [1000.6638441681862, 1001.1511893719435],
'conv_rate plus_val2': [2000.6638441681862, 2002.1511893719435],
'driver_1id': [1001, 1002]}

Using MLRun Feature Store

MLRun supports the registration of existing sources (like
Feast) or the definition of a data pipeline for transforming
source data into features. When defining the data pipeline

(called a graph), MLRun provisions the selected data
processing engine based on the abstract user definitions.
MLRun supports a few processing engines, including local
Python, Dask, Spark, and Nuclio (a real-time serverless
engine).

In MLRun, by default, the pipeline writes into online and
offline stores, so there is no need for separate
materialization jobs, and the online and offline features are
always in sync. In addition, MLRun can auto-detect the data
schema, making it more straightforward and robust.

MLRun separates the definition of the feature set (a
collection of features generated by the same pipeline) from
the data source definitions. This way, you can use the same
feature set in interactive development and in production.
Just swap the source from a local file in development to a
database or real-time Kafka stream in the production
deployment.

Example 4-12 shows an example of defining a feature set
for processing credit card transactions to detect credit card
fraud. The definition includes the entity, timestamp, and
transformation graph using built-in operators and
aggregations. Note that a user can also add their custom
Python operators. See the full example.

The data pipeline consists of the following:
« Extracting the data components (hour, day of week).
« Mapping the age values

« One-hot encoding for the transaction category and the
gender

« Aggregating the amount (avg, sum, count, max over
2/12/24 hour time windows)

https://oreil.ly/G3zOh

« Aggregating the transactions per category (over 14 day

time windows)

« Writing the results to offline (Parquet) and online
(NoSQL) targets

Example 4-12. Defining MLRun FeatureSet (source:
MILRun)

import mlrun.feature_store as fs

Define the credit transactions FeatureSet

transaction_set = fs.FeatureSet("transactions",
entities=[fs.Entity("source")],
timestamp_key='timestamp',
description="transactions feature set")

Define and add value mapping

main_categories = ["es_transportation", "es_health", "es otherservices",
"es food", "es_hotelservices", "es_barsandrestaurants",
"es_tech", "es_sportsandtoys", "es_wellnessandbeauty",
"es_hyper", "es_fashion", "es_home", "es_contents",
"es_travel", "es_leisure"]

One Hot Encode the newly defined mappings
one_hot_encoder_mapping = {'category': main_categories,
'"gender': list(transactions_data.gender.unique())}

Define the data pipeline (graph) steps
transaction_set.graph\
.to(DateExtractor(parts = ['hour', 'day of week'],
timestamp_col = 'timestamp'))\
.to(MapValues(mapping={'age': {'U': '0'}}, with_original_features=True))\
.to(OneHotEncoder(mapping=one_hot_encoder_mapping))

Add aggregations for 2, 12, and 24 hour time windows
transaction_set.add_aggregation(name="'amount',
column="amount"',
operations=['avg', 'sum', 'count', 'max'],
windows=['2h"', '12h', '24h'],
period="1h")

Add the category aggregations over a 14 day window
for category in main_categories:

transaction_set.add_aggregation(name=category,column=f'category_{category}',
operations=['count'], windows=["'14d'],
period='1d")

The data pipeline can be visualized using

transaction_set.plot(rankdir="LR", with_targets=True), as
seen in Figure 4-19.

@D ot Dol Do oot >+ mene 3

Figure 4-19. Feature set plot

Once you have the feature set definition, you can test and

debug it with the preview() method that runs the data
pipeline locally and lets you view the results:

df = fs.preview(transaction_set, transactions_data)
df.head()

When the feature set definition is done, you can deploy it as
a production job that runs on demand, on a given schedule,
or as a real-time pipeline.

For running batch ingestion, use the ingest() method. For
real-time ingestion from HTTP or streams, use

deploy_ingestion_service v2(), which starts a real-time
Nuclio serverless pipeline. See Example 4-13.

Example 4-13. Ingest data into MLRun FeatureSet (source:
MILRun)

Batch ingest the transactions dataset (from CSV file) through the defined
pipeline

source = CSVSource("mycsv", path="measurements.csv")
fs.ingest(transaction_set, source=source)

Deploy a real-time pipeline with HTTP API endpoint as the source
MLRun support other real-time sources like Kafka, Kinesis, etc.
source = HTTPSource()

fs.deploy_ingestion_service v2(transaction_set, source)

You can watch the feature sets, their metadata, and
statistics in the MLRun feature store Ul. See Figure 4-20.

The feature retrieval in MLRun is done using the feature
vector object. Feature vectors hold the definitions of the
requested features and additional parameters. In addition,
they also store calculated values such as the features
metadata, statistics, and so on, which can be helpful in
training, serving, or monitoring tasks. For example, feature
statistics are used for automated value imputing in the case
of missing or NaN feature values and for model drift
monitoring in the serving application.

Figure 4-20. MLRun FeatureSet in UI

Feature vectors can be created, updated, and viewed in
MLRun’s UL

Users first define the feature vector, then they can use it to
obtain offline or online features. See how to retrieve offline

features and use the get_offline features() method in
Example 4-14.

Example 4-14. Get offline features from MLRun (source:
MIL.Run)

Define the list of features you will be using (<feature-set>.<feature>)
features = ['transactions.amount_max_2h',

"transactions.amount_sum_2h',

"transactions.amount_count_2h',

"transactions.amount_avg 2h',

"transactions.amount_max_12h']

Import MLRun's Feature Store
import as

Define the feature vector name for future reference
fv_name = 'transactions-fraud'

Define the feature vector using our Feature Store
transactions_fv = fstore.FeatureVector(fv_name, features,
label feature="1labels.label",
description=
'"Predicting a fraudulent transaction')

Save the feature vector definition in the Feature Store
transactions_fv.save()

Get offline feature vector as dataframe and save the dataset to a parquet file
train_dataset = fstore.get offline features(transactions_fv,
target=ParquetTarget())

Preview the dataset
train_dataset.to_dataframe().tail(5)

To get real-time features, you first need to define a service
(which initializes the real-time retrieval pipeline), followed

by .get() methods to request feature values in real time.
The separation between the service creation (one-time
initialization) and individual requests ensures lower
request latencies. In addition, MLRun supports automatic
value imputing based on the feature’s metadata and
statistics. This can save significant development and
computation overhead. See Example 4-15.

Example 4-15. Get online features from MLRun (source:
MILRun)

Create the online feature service, substitute NaN values with

the feature mean value

svc = fstore.get_online_feature_service('transactions-fraud:latest',
impute_policy={"*": "$Smean"})

Get sample feature vector
sample_fv = svc.get([{'source': 'C76780537'}])

sample_fv Result
[{'amount_max_2h': 14.68,
"amount_max_12h': 70.81,
amount_sum _2h': 14.68,
amount_count_2h': 1.0,
amount_avg_2h': 14.68}]

NOTE

MLRun'’s feature stores provide accurate real-time aggregations and
low latency by combining precalculated values during the ingestion
process with real-time calculations at feature request time.

The MLRun framework provides a model development and
training pipeline, real-time serving pipelines, and
integrated model monitoring. MLRun'’s feature store is
natively integrated with the other components, eliminating
redundant glue logic, metadata translation, and so on, thus
accelerating time to production.

Conclusion

With data management and processing being the most
critical components of ML, it’s important to understand
how to optimally perform data-related tasks. This chapter
explores the recommended tools and practices for the
various stages of working with your data. We started the
chapter by discussing data versioning and lineage, which
are essential for tracing data origin. Then we explored data

preparation and analysis at scale, which is how the data is
handled so it can be used in production. In this section, we
also discussed the architecture of interactive data
processing solutions and the differences between batch
data processing and real-time processing.

After reviewing the challenges of implementing these
practices at scale, we moved on to present the concept of
feature stores, which are a central repository for ML
features. We covered the capabilities of a feature store,
such as data connectivity and offline and online
transformation. We also showed where the feature store
fits in the MLOps pipeline, from ingesting raw data to
supporting the use of that data in training, serving,
monitoring, and more. Finally, we reviewed different
feature store solutions and how to use them.

Critical Thinking Discussion
Questions

« Which details does metadata provide? As data
professionals, why do we need this information?

« Which open source data versioning tools are available?
Which one could be a good fit for your organization?

« What’s the difference between batch processing and
stream processing? When is each one used?

« How does a feature store simplify data management
and processing practices? Which capabilities enable
this?

« What are the differences between the Feast and the
MLRun feature stores? Which one could be a good fit
for your organization?

Exercises

Choose an open source solution (DVC, Pachyderm,
MLflow, or MLRun) and create a data versioning script
or workflow that will record and version data and
metadata.

Create a prototype of a batch processing pipeline with
the tool of your choice.

Connect a Trino data connector to a data source.

Train a demo model (you can use Hugging Face if you
need a sample model) with a feature store.

Create a feature set and ingestion pipeline in MLRun.
You can use this project as a reference.

https://oreil.ly/hlovk

Chapter 5. Developing
Models for Production

Developing ML models is no longer confined to
experimental labs and research papers. It’s about real-
world applications, and that means production. That’s why
building high-performing models is at the heart of
developing models for production.

A production-first mindset ensures that the models actually
make it to production and answer real-life business cases.
Otherwise, models get stuck throughout the ML pipeline
due to lack of collaboration between teams, technological
discrepancies, or other types of friction.

This chapter focuses on building the best models you can.
It details all the steps and processes to implement and run
on models throughout the ML pipeline before production.
This includes running, tracking, and comparing ML jobs,
automations, training and ML at scale; testing; resource
management; and much more. It details various
methodologies, tools, and approaches, together with code
examples you can follow.

When following the steps and trying out the exercises at
the end of the chapter, be conscious of the entire MLOps
pipeline and how your work could be integrated and
automated together with the other steps you or other team
members are taking. By taking these steps with a
production-first approach in mind, you can assure the
reliability, stability, and performance of your ML models.

AutoML

Building the best ML model is an iterative process that
relies on data science experience and intuition. The data
scientist attempts various strategies, like creating new
features from the data, selecting the suitable algorithm,
and choosing the optimal model parameters to get the best
predictor model.

Automated Machine Learning, or AutoML, tries to
automatically infer from the data and the model’s goal the
possible processing tasks and experiments that should be
tested and run in a sequence until the best model result is
achieved. AutoML reduces the data scientist’s effort and
allows less experienced individuals to develop high-
performing ML models quickly and efficiently. However, it
may result in the use of more computation resources.

AutoML platforms and tools aim to streamline the process
of building ML models by automating repetitive and
complex tasks.

Key components of AutoML include:
Data preprocessing

Tasks such as data cleaning, imputing missing values,
encoding categorical variables, and scaling features to
prepare the data for modeling.

Feature engineering

Automatically generating and selecting relevant features or
transformations of features to enhance model performance.

Model selection

Exploring and selecting appropriate algorithms or models
for a given dataset and problem. This can include trying

various types of models (like decision trees, neural
networks, or SVMs) and evaluating their performance.

Hyperparameter tuning

Selecting optimal hyperparameters for models. This can
involve techniques like grid search, random search,
Bayesian optimization, or other optimization algorithms.

Ensemble methods

Combining predictions from multiple models to improve
overall performance.

Model evaluation

Using metrics such as accuracy, precision, recall, F1 score,
and more, which help users assess the model’s effectiveness.

Pipeline construction

Constructing end-to-end pipelines, from data preprocessing
to model deployment, allowing users to generate production-
ready workflows.

Interpretability and explainability

Offering explanations for model predictions, helping users
understand and interpret how the model arrives at its
decisions.

DataRobot, founded in 2012, was one of the pioneers in
AutoML. Other companies followed in 2017/2018: H20
with its Driverless Al platform and Google with
technologies like Cloud AutoML. Expansion to the rest of
the cloud providers soon followed: Azure Machine Learning
Studio AutoML; SageMaker Autopilot; and a slew of open
source projects such as Auto-sklearn, Auto-Keras, Tree-

https://oreil.ly/pEZzD
https://oreil.ly/Oj_it
https://oreil.ly/vT8IT
https://oreil.ly/N4doL
https://oreil.ly/2s7Bp
https://oreil.ly/PAF59
https://autokeras.com/
https://oreil.ly/8x7IU

based Pipeline Optimization Tool (TPOT), MLBox,
AutoGluon, AutoWEKA, and Ludwig.

Some of the benefits of AutoML include:
Efficiency

Automates repetitive tasks like feature selection and
hyperparameter tuning.

Accessibility

User-friendly interfaces make machine learning accessible
to nonexperts.

Cost-effectiveness

Reduces the need for specialized talent, making it more
affordable.

Improved accuracy

Thanks to advanced algorithms for automatic model tuning.

Scalability

Capable of handling large datasets and high-dimensional
feature spaces.

Experimentation

Allows for rapid testing of different features, models, and
hyperparameters.

Some of the drawbacks of AutoML.:
Limited customization

AutoML platforms often have preset algorithms and
configurations, limiting fine-tuning options.

https://oreil.ly/8x7IU
https://oreil.ly/eRA6x
https://oreil.ly/b-Bu-
https://oreil.ly/TwYVP
https://oreil.ly/l1xgL

Overfitting risk

Automated processes may lead to overfitting, especially if
not properly managed.

Resource intensive

AutoML can be computationally expensive, requiring
powerful hardware for large datasets.

Lack of domain knowledge

AutoML solutions may lack the domain-specific expertise
needed for specialized tasks.

Interpretability

Models generated by AutoML can be complex and difficult to
interpret, posing challenges for explainability.

Cost

While it can be cost-effective in some scenarios, the initial
investment in AutoML platforms can be high.

Dependency on data quality

The effectiveness of AutoML is highly dependent on the
quality of the input data; garbage in, garbage out.

Ethical concerns

Automated model selection could unintentionally introduce
or perpetuate biases present in the data.

Where does the future of AutoML lie? Noah defines the
automation process as the automator’s law; once you talk
about something being automated, it is eventually

automated. Many software engineering tasks are starting
to go away with tools like ChatGPT or AWS CodeWhisperer.
What may happen is that AutoML and generative Al are
combined to create sophisticated ML systems that require
very little manual human interaction. The new interface
may not be Jupyter Notebook or Visual Studio code, but a
voice assistant like in Star Trek. Imagine saying, “Hey Siri,
build me a new housing price prediction model for ZIP code
90210.” It may not be that far off.

Running, Tracking, and Comparing ML
Jobs

Running, tracking, and comparing ML jobs are the building
blocks of a robust and agile ML workflow. They enable
organizations to develop and use accurate and reliable
models that deliver value.

Running ML jobs includes the model training,
hyperparameter tuning, data preprocessing, and testing,
and requires computational resource allocation and
pipeline automation. This is the execution phase, and
efficiency in this stage means quicker development and
deployment.

Google Vertex Al and Amazon SageMaker are considered
mainstream, fully managed cloud MLOps platforms. They
incorporate tools for running and tracking ML jobs and
simplifying ML workflow automation in their respective
cloud ecosystems (Google Cloud and AWS). In addition,
they handle provisioning and Ops so developers can focus
on models.

Other frameworks like MLflow, ClearML, and Weights &
Biases (W&B) don’t provide the underlying infrastructure.

They are cloud-agnostic and can run on any infrastructure,
filling gaps the cloud vendors don’t address. For example,
ClearML does advanced hyperparameter optimization,
W&B provides excellent visualization for comparing
experiments, and MLflow offers model packaging.

Tracking ML jobs includes logging of metrics, version
control across the different elements, experiment tracking,
results visualization, and collaboration tools. This stage
ensures that the development is transparent and that
models are reproducible, allowing data scientists to
understand what works and what doesn’t, while facilitating
collaboration and compliance with industry standards.

Comparing the jobs includes performance evaluation,
hyperparameter comparison, analyzing the resource usage,
cost analysis, and interpretability analysis. Through this
comparison, data scientists can select the model that best
meets the business objectives. It also enables continuous
improvement by learning from previous iterations and
adapting to new data or changing requirements.

Most of these concepts are covered throughout this book,
so this section focuses on the most important ones that do
not appear elsewhere.

Experiment Tracking

Experiment tracking is the practice of systematically
recording and managing the different parts of the ML
development process. This includes tracking and
documenting different experimental setups, as well as the
configurations, code, parameters, data inputs and outputs,
logs, returned metrics, and various artifacts (datasets,
models, charts, and others).

ML experiment tracking has many advantages. The main
ones are:

Reproducibility

Ensuring that ML experiments can be reliably reproduced
by maintaining a detailed record of every aspect of the
experiment.

Comparative analysis

Comparing different models, algorithms, and techniques to
identify the most effective solutions.

Debugging and troubleshooting
Pinpointing and resolving issues, making debugging and
troubleshooting more efficient.

Collaboration

Allowing team members to understand, reproduce, and
build upon each other’s work.

Decision-making

Making data-driven decisions about the best strategies.

Documentation

Detailed records are useful for report writing and sharing
results.

Time and resource management

Helping avoid redundant work, saving both time and
resources.

Governance

Allowing the traceability and explainability of models, how
they were trained, and so on.

Collecting data and metadata required for production
deployment automatically

Ensuring that the data is there instead of having to do it
manually.

On top of these, experiment tracking can also be used to
support additional use cases, like auto-tuning and AutoML,
controlling and governing the ML process to ensure
implementation of responsible and ethical Al, and
simplifying pipelines by using the outputs of one step as
inputs to another.

Some popular ML experiment tracking tools include
TensorBoard, a visualization toolkit that comes with
TensorFlow, MLflow, Weights & Biases, Comet, ClearML,
and Sacred.

Example 5-1 demonstrates how to implement experiment
tracking using MLflow. The developer adds code to record
the parameters, metrics, and model output.

Example 5-1. Experiment tracking with MLflow

import

import

from import LogisticRegression
from import accuracy_score

Create a machine learning model
model = LogisticRegression()

Start an MLflow run context

with mlflow.start_run() as run:
Log parameters
mlflow.log_param("model_algo", "LogisticRegression")
mlflow.log param("C", 1.0)

https://oreil.ly/fjBmj
https://oreil.ly/Z7ai-
https://mlflow.org/
https://wandb.ai/site
https://oreil.ly/PCpcC
https://clear.ml/
https://oreil.ly/AnFwY

Train and test the model
model.fit(X_train, y_train)

y _pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
Log the model and its metrics

mlflow.log metric("accuracy", accuracy)
mlflow.sklearn.log_model(model, "model")

Saving Essential Metadata with the Model
Artifacts

When developing machine learning models, it is essential to
save metadata about the model and the model artifacts.
This metadata can include information such as:

- Links and metadata describing the original training
data used

« Performance metrics like accuracy and loss
« Hyperparameters used for training
« The model architecture and framework version

« Computing infrastructure and software packages used
for training

« Version history and lineage information
« Project, experiment, and run IDs for traceability
Capturing this information serves several purposes:

Helps reproduce and rebuild the model later.

Can debug performance issues by comparing metadata
across models.

Enables rollbacks to previous versions.

Allows auditing model origin throughout the lifecycle.

« Enables model comparison, retraining, and
improvement.

« Records information needed for deploying the model
(such as required packages and files, input and output
schema, and so on).

Tools like MLflow, SageMaker Experiments, and MLRun
provide ways to capture experiment and training dataset
metadata and store them in the model registry along with
the model artifact automatically.

Once models are registered, you can download them along
with their configuration and metadata. In example

Example 5-2, the model downloads locally using the MLflow
APL

Example 5-2. Model downloading with MLflow

from import ModelsArtifactRepository
from import MlflowClient

client = MlflowClient()

my _model = client.download_artifacts(
"68baff0203344dfebe89a6c73c6d6cfe", path="model")

print(f"Placed model in: {my_model}")

You can list models as shown in the API call in Example 5-3,
which allows you to search for models that meet the

criteria you are looking for in terms of type, accuracy, and
others:

Example 5-3. Model searching with MLflow

from import pprint
from import MlflowClient

client = MlflowClient()
for rm in client.list_registered _models():
pprint(dict(rm), indent=4)

Comparing ML Jobs: An Example with MLflow

Comparing ML jobs involves analyzing and contrasting
different runs or iterations of a model to identify the best
performing one or to understand how changes in
parameters, data, or algorithms affect the results.

By comparing ML jobs, data scientists and engineers can
evaluate different models or different configurations of the
same model. This allows them to identify which model
performs best, according to specific metrics like accuracy,
precision, recall, or custom evaluation criteria. This
comparison is essential for model selection,
hyperparameter tuning, and understanding the impact of
changes in the data or features.

ML jobs can be compared through these three methods:
Visual comparison

MLflow, TensorBoard, or custom visualization scripts can
provide graphical representations of metrics and
parameters. Scatter plots, line charts, and heat maps are
commonly used to visualize differences.

Statistical comparison

Statistical tests can be used to determine if differences in
performance are statistically significant. This approach
provides a more rigorous understanding of the variations
between models.

Programmatic comparison

Using APIs and scripting languages like Python, data
scientists can write custom code to compare models on
specific criteria. This method offers flexibility and can be
tailored to unique project needs.

Comparing two jobs in MLflow can be done through the
MLflow Tracking component, which allows logging and
comparing different model runs of your machine learning
models.

To compare two jobs in MLflow, follow these steps:

1. Open the MLflow Ul in your web browser.

2. Select the experiment containing the runs you want to
compare.

3. Find the runs you want to compare in the list. You can
use filters to narrow down the runs if you have many of
them.

4. Click the checkboxes next to the runs you want to
compare, then click the “Compare” button. This will
take you to a comparison view where you can see
various metrics, parameters, and other details side by
side.

5. In the comparison view, you can analyze the differences
between the runs. This includes metrics, parameters,
tags, and artifacts. You can visualize the differences in
various ways, such as scatter plots, line charts, or
tables. Figure 5-1 compares two jobs in MLflow.

Parallel Coordinates
Comparing 14 runs

Figure 5-1. MLflow job comparison Ul

6. If you want to share the comparison with others, you
can export the comparison view as a CSV file or take a
screenshot.

7. If you prefer working programmatically, you can use
the MLflow Python API to fetch details about the runs
and perform comparisons in your preferred
environment, such as Jupyter Notebook.

Example 5-4 shows how you might use the MLflow Python
API to compare two runs.

Example 5-4. MLflow job comparison using code

python
import mlflow

Get the runs by ID
runl = mlflow.get run(run_id="run_1id 1")
run2 = mlflow.get_run(run_id="run_1id_2")

Compare metrics

metric_name = "accuracy"

metricl = runl.data.metrics[metric_name]
metric2 = run2.data.metrics[metric_name]

print(f"Comparison of {metric_name}:")
print(f"Run 1: {metrici}")
print(f"Run 2: {metric2}")

The code snippet fetches two runs by their IDs and prints a
comparison of a specific metric.

Hyperparameter Tuning

Hyperparameter tuning is the part of the ML model
training process that involves selecting the optimal set of
hyperparameters. These parameters govern the learning
process but are not learned from the data, which means
that choosing the right hyperparameters can significantly
affect the model’s performance.

Some of the most common hyperparameter tuning
strategies include:

Grid search

Defining a grid of possible hyperparameter values and
exhaustively searching through all possible combinations.
This method is simple but can be computationally expensive
when dealing with a large number of hyperparameters or a
wide range of values.

Random search

Selecting random combinations of hyperparameter values
from predefined ranges. This approach can be more efficient
than grid search in terms of computation time and can often
yield good results.

Genetic algorithms

Inspired by natural evolution, genetic algorithms involve
creating a population of hyperparameter configurations,
evaluating their performance, and using selection, mutation,
and crossover operations to generate new configurations for
the next generation. This process continues iteratively to
improve the configurations.

Gradient-based optimization

This approach uses gradient information to optimize
hyperparameters. It requires access to the gradients of the
model’s performance with respect to the hyperparameters.
This method can be effective but might not be feasible for all
types of models.

Hyperband

Hyperband combines random search with the idea of early
stopping. It trains a range of configurations for different
numbers of iterations and focuses more resources on the
promising configurations while early stopping unpromising
ones.

SMBO (Sequential Model-Based Optimization)

Building probabilistic surrogate models to approximate the
relationship between hyperparameters and model
performance. These models guide the search process to
explore the most promising regions.

RL (reinforcement learning) for hyperparameter tuning

Some advanced techniques use reinforcement learning
algorithms to optimize hyperparameters. These methods
treat hyperparameter tuning as a sequential decision-
making problem and learn how to make decisions that lead
to better model performance over time.

Some common tools that can be used for hyperparameter
tuning include GridSearchCV and RandomizedSearchCV,
which are part of the scikit-learn library, Hyperopt, Optuna,
Keras Tuner, Ray Tune, Spearmint, SMAC (Sequential
Model-based Algorithm Configuration), SigOpt, AWS

https://oreil.ly/giBpX
https://oreil.ly/O1n0d
https://optuna.org/
https://oreil.ly/LaJ0e
https://oreil.ly/CU2jD
https://oreil.ly/Jhqx0
https://oreil.ly/Laeaq
https://sigopt.com/
https://oreil.ly/MYoy4

Hyperparameter Tuning (part of Amazon SageMaker),
Azure HyperDrive, and MLRun.

Example 5-5 shows how to use a training function and run
multiple jobs in parallel for hyperparameters tuning in
MLRun using the default grid search strategy. It will select
the best run for maximum accuracy.

Example 5-5. Running a hyperparameters job using MLRun

hp_tuning_run = project.run_function(
"trainer",
inputs={"dataset": gen_data_run.outputs['"dataset"]},
hyperparams={
"n_estimators": [100, 500, 1000],
"max_depth": [5, 15, 30]
s

selector="max.accuracy"

)

Auto-Logging

Auto-logging can automatically capture key metrics,
parameters, and metadata during machine learning
processes without manually adding calls to the experiment
tracking/logging API. This approach can reduce tedious
coding work for developers by replacing the need to
manually insert logs into code. Auto-logging provides
organization-wide observability into ML experiments.

The auto-logging solutions are integrated with the specific
ML frameworks (sklearn, TensorFlow, and others) and
know how to automatically extract the key model metrics
and metadata from the framework and save it as
experiment parameters, metrics, and artifacts without
extra coding. This way developers don’t need to understand
the nuances of each framework or develop complex reports
or visualization.

https://oreil.ly/MYoy4
https://oreil.ly/kDBb6
https://www.mlrun.org/

Auto-logging solutions can automatically log and export the
model into the model registry along with its metrics and
metadata, allowing simple deployment later on.

There are two main approaches to auto-logging:
Intrusive

Requires modifying the ML training code to add auto-logging
using an MLOps SDK like MLflow

Nonintrusive

Automatically intercepts and logs metrics without code
changes (done by patching the ML framework or wrapping
the user code)

ClearML, for example, supports nonintrusive auto-logging
through patching and can turn it off if needed.

MLRun can auto-log function input args, return values and
objects (such as datasets and models), and all the relevant
metadata without code instrumentation. In addition, it is
integrated with MLflow and can auto-record metadata and
models logged using the MLflow API.

Example 5-6 shows how to use MLflow’s auto-logging in
Python.

Example 5-6. Auto-logging in Python using MLflow

import
from import RandomForestRegressor

mlflow.autolog()

rf = RandomForestRegressor()
rf.fit(X_train, y_train)

rf.predict(X_test)

print(mlflow.active_run().data.metrics) # logged automatically!

Example 5-7 uses SageMaker Debugger.

Example 5-7. Auto-logging in Python using SageMaker
Debugger

Train model using SageMaker SDK
import
ml = sagemaker.estimator.Estimator()

SageMaker automatically enables Debugger
ml.fit(data)

View logs
ml.debugger_rules_analysis.load_analytics()

Another example, Example 5-8, also uses MLflow. One of
the valuable aspects of MLflow is that it can automatically
log what is going on in the MLflow inference in the project.

It accomplishes this using mlflow.autolog().

Example 5-8. Auto-logging in Python using MLflow

import

from import train_test_split
from import load _diabetes

from import RandomForestRegressor

mlflow.autolog()

db = load _diabetes()
X_train, X_test, y_train, y_test = train_test_split(db.data, db.target)

Create and train models.
rf = RandomForestRegressor(n_estimators = 100, max_depth = 6, max_features = 3)
rf.fit(X_train, y_train)

Use the model to make predictions on the test dataset.

predictions = rf.predict(X_test)
autolog_run = mlflow.last_active_run()

MLOps Automation: AutoMLOps

https://oreil.ly/RzIiG

One of the major challenges causing organizations to fail to
deliver ML applications to production is the extensive
engineering effort it takes to move from the research
playground, using notebooks and sample data, to large-
scale deployment, using microservices, production data,
automation, and observability. Many tools focus on an
interactive development flow, but the move to production
involves manual work, refactoring code and notebooks, and
glue logic.

A way to accelerate production and reduce the engineering
effort is to apply automation to the different MLOps tasks
and extend automation from AutoML and auto-logging to
full AutoMLOps. For example, instead of ML engineers
running manual and complex processes, code can be built
into fully managed microservices with “codeless”
observability and read directly from production datasets in
just one click or API call. MLRun pioneered the AutoMLOps
approach.

Tasks that can be automated with AutoMLOps tools
include:

« Inject parameters or code into tasks and log the results.

« Convert code to managed microservices and reusable
components.

« Distribute the workloads automatically across
containers or VMs.

- Pass data to and from cloud resources and databases.
. Gather the data and metadata for operational aspects.
« Ensure security hardening and protection.

. Version across components and steps.

« Auto-track experiments, metrics, artifacts, data, and
models.

« Register models along with their required metadata
and optimal production formats.

« Auto-scale and automatically optimize resource usage
(such as CPUs/GPUs).

- Integrate with CI/CD, Git, and reporting systems.

« Correlate and visualize the relationship between source
data, runs, models, and others.

AutoMLOps eliminate many of the manual and tedious
engineering efforts when productizing ML solutions,
resulting in faster time to production, use of fewer
engineering resources, higher quality, and better visibility.

Example: Running and Tracking ML Jobs Using
Azure Databricks

Let’s look at Azure Databricks as a simplified example of
running, tracking, and comparing ML jobs, as seen in
Figure 5-2. At a high level, this is an end-to-end MLOps
solution that allows you to use AutoML to create an
experiment, serve a model, and then serve out the model in
many different environments, including Databricks itself
via a Databricks endpoint or a containerized deployment in
Azure, AWS, GitHub Codespace, or others.

Cloud development environment

AWS (ECR
Push to ECR e

registery)

Cloudshell Cloud9

GitHub
Codespaces

Azure][AWS

containerized

AWS app runner
MLFlow API

microservice
MLOps predictions
DBFSU| y 4
create table
Create AutoML Develop containerized
experiment microservice in cloud
development environment
Register
“best” model
Serve model
Databricks
endpoint

Figure 5-2. Building things in a dedicated environment

Let’s break it down further and talk about each step along
the way. Notice that a Kaggle dataset on classifying fake
news begins the journey. Next, that dataset uploads into
the DBFS (Databricks File System). The DBFS is a
distributed file system mounted into a Databricks
workspace and available on Databricks clusters. You can
experiment with this workflow with many simple Kaggle
datasets. In Figure 5-3, the Databricks Ul maps out many of
the sequential steps in this pipeline, from data to compute
to models to serving, and so on.

https://oreil.ly/Q_oHi

Machine Learning = Workspace A& Home

Workspace Shared -

. & Users -
> Repos

[ML End-to-End Example v

Recents

Data

Compute

Workflows

, Experiments

Feature Store

Models

Serving

Figure 5-3. Exploring the Databricks UI

One of the dependencies of this end-to-end MLOps pipeline
is that a compute cluster is necessary for hosting the DBFS
and doing the AutoML. In Figure 5-4, a default cluster in
Azure Databricks launches with an exemplary configuration
of a minimum of two workers and a max of eight workers,
and terminates after 120 minutes.

Once this is up and running, uploading data to the DBFS
and running experiments unlocks the ability to run AutoML

jobs in Figure 5-5 by dragging and dropping a Databricks
dataset into the UI and selecting the prediction target. The
critical inputs to the AutoML experiment are the cluster,
the ML problem type (in this case, Classification), the input
training, which lives on the DBFS, and finally, the
“Prediction target,” which is the column to predict. The
Databricks AutoML system does the rest.

One of the very cool features of Databricks is that it will
create a notebook for you of the exact training run. Here is
the notebook it generated for this AutoML project.

Clusters [New Cempute Ul praview Provide feedback

Noah Gift's Cluster »
Policy &

Unrastricted w
© Multinode () Single node

Access mode © Single user access @

Single user “ | | Noah Gift {(noah.gift@gmail. com) ~

Performance
Databricks runtime version @

Runtime: 12.1 ML (Scala 212, Spark 3.3.7) W
[use Photon Acceleration ©

Worker type @ Minworkers Max workers

Standard_DS3_v2 14 6B Memory, 4 Cores | o | | 2 8 O spatinstances @

Driver type

Same as worker 14 GB Memory, 4 Cores | s

Enable autoscaling @

Terminate after 120 | minutes of inactivity @

Tags ©
Add tags

Ky Value Add

» Automatically added tags

» Advanced options

Figure 5-4. Databricks cluster configuration

https://oreil.ly/JKMS8

Select training data

Databases

Figure 5-5. Databricks AutoML experiment setup

You can see a great example of this using the default
diamonds dataset with the DBFS. Notice in Figure 5-6 that
multiple training runs work to optimize the accuracy
metrics, creating notebooks and models as artifacts.

re i@ cotobricks G Seaech

ki Experimenis ¥
B color_diamonds-2022_10_27-19_12 &

Experimenit ID: S5880168TIS0534 Artifact Locabion: dibds:jdatabeicioimifiow -tracking/G58S01E8TIS0E34
~ Autobil
+ | Configne (W) Tirain

Oharview Warnings [5)

AuteL Evaluation (=) compiete
All nang have complated, and have been added 1o the table balow. Click 2 Bpeciic run 1o view datalls or rindaw the datas exploration nateboock

Model with kst val_1_score
The model is resdy 1o b registersd and deployed. O, Botess the source code for thi medsl raning b make modifications by cicking & roisbook under the Sourcs Colurmn ir

[view rctebook for best modal [View dats exploration notebook

> Description edn

b Chart wiew) o T} Som: val_11_scors ~ = Coke

Three creabed: ANl Bime = Slate: Active +

Lgtiics
@& Run Hame Craated Duratian B O Models wal_1_scoreTy
e B wEoost 2 & manths sga B by B Mobebos, = madeill [4]
a B cgzcant 2 4 =onths sgo 1fiemin B Matebos. B skdaarn 808
i) W gtgkm @ 4 =sonthi ago Bl b Matebos. B akiaarn 0504

Figure 5-6. Databricks AutoML interface for diamonds dataset

If you drill down into the model further, you can see in
Figure 5-7 that there are three modes:

« Real-time, which sets up an endpoint running on virtual
machines

« Streaming (Delta Live Tables)

« Batch inference

In a nutshell, the AutoMLOps workflow enables you to build
once and produces many styles so you can serve the model
in many ways.

Set up model inference Preview X

Select one of real-time inference, streaming via Delta Live Tables, or batch.

Real-time Streaming (Delta Live Tables)

Generates a notebook in your home folder that you can edit.

* Model version
Version 1 v
* Input table
Browse
* Qutput table location

[FileStore/batch-inference/ Il model

The default output path on DBFS is accessible to everyone in this

Workspace. Modify the notebook to disable writing data to DBFS.

Cancel Use model for batch inference

Figure 5-7. Databricks model inference

Handling Training at Scale

In cases where you need to train a large model or use a
large training dataset that doesn’t fit into the system
memory, you will need to distribute the training job across
multiple systems. Distributed training can also shorten the
training time by computing the model or processing the
data in parallel. In addition, when training a model using
hyperparameters or AutoML, the platform can distribute
the individual runs across multiple containers and run it in
parallel.

Distributed computing frameworks such as Spark, Dask,
Ray, and MPI (with Horovod) can distribute the training
task across computers efficiently. In addition, frameworks

https://oreil.ly/fO1oC
https://www.dask.org/
https://www.ray.io/
https://horovod.ai/

like TensorFlow and PyTorch provide integrated distributed
training capabilities.

Distributed training adds the complexity of managing a
cluster, orchestrating jobs across machines, distributing
the data, and collecting and monitoring the results. Use it
when the need outweighs the complexity, or use managed
services that handle it.

Distributed ML training framework examples include:
« scikit-learn over Dask or Ray
« XGBoost and LightGBM over Dask or Ray
« Spark MLlib
« H20.ai

Distributed deep learning is covered in more detail in
Chapter 9.

Building and Running Multi-Stage Workflows

An excellent example of why you want to use a platform for
MLOps is tying together the multiple stages of a lifecycle.
These include data collection and preparation, feature
engineering, model training, model selection and tuning,
and deployment and monitoring. Orchestrating all of this
ad hoc is not scalable in the real world.

Developing production-ready ML systems requires
coordinating multiple stages in the machine learning
lifecycle. In the data collection and preparation phase,
issues include:

« Gathering quality training and test data

- Cleaning, preprocessing, labeling, and transforming
data

« Splitting data into training, validation, and test sets
In the feature engineering phase, issues include:
« Selecting informative input features for the model

« Creating derived features like embeddings or
interactions

« Performing dimensionality reduction if needed
In the model training phase, issues include:

« Choosing a model architecture suitable for the problem
and data

- Training on prepared data and iterating with
hyperparameters

« Leveraging capabilities like AutoML for acceleration
In the model evaluation phase, issues include:

« Analyzing performance metrics on test data
« Performing error analysis to identify weaknesses

- Tuning model artifacts, such as thresholds, to optimize
metrics

In the model deployment and monitoring phase, issues
include:

« Containerizing models and integrating into production
infrastructure

- Monitoring datasets, model performance, drift, and so
on, after deployment

« Retraining models on new data to maintain accuracy

Coordinating these multiple phases requires workflow
orchestration tools like MLflow Pipelines, Kubeflow
Pipelines, Amazon SageMaker Pipelines, and Azure
Machine Learning Pipelines. These platforms provide ways
to build reusable components for each lifecycle stage and
connect them into an end-to-end automated workflow.

Managing Computation Resources Efficiently

The challenge in MLOps at scale is orchestrating the
continuum between stops ingesting data, doing exploratory
data analysis, modeling, and then building a conclusion, as
shown in Figure 5-8.

Datascience | () (k@) (@) (e2) (e2) (Ec2)

workflow SageMaker
hn;rspm-'ms
nge Zlrdier il Distributed hosting Distributed hosting
’ k-means endpoint PCA endpoint
Retrieve data 4 y
from AWS SageMaker host ' .
data lake (53) spawns endpoints #a E E Host mode/
¥ L}
EDA + Host model ;
* Drop missing values | &
+ Histogram .
» MinMaxScaler e sississahitadssshasinsnsannddng
Clean, visualize, - '
and scale data 1 ' :
: D snsfans Training data
SageMaker : 53 bucket
Jupyter Notebook

host instance

Distributed Machine AmazonS3
modeling tasks SageMaker host learnin
SageMaker spawns job #2 mode
creates clusters saved to 53 Mg |
to perform work : * Machine learning
pef SageMaker . W imodelsaved to $3
. host spawns et - . =
job #1 Distributed modeling Distributed modeling
) PCA k-means clustering

v 3 3 3 3 3
@ @ @ @ @ @

Figure 5-8. SageMaker architectural map of compute and storage

Each step in building and deploying models requires
extensive, scalable resources, for example, S3, to store the
raw data and the model placeholder. The training jobs also
need elastic resources, as do the inference jobs. MLOps is a
distributed computing problem, and dealing with a
platform is one of the most reasonable ways to solve this
difficult problem.

Here are some practical tips for managing computation
resources more efficiently in ML training pipelines:

Spot/preemptible instances

Cloud providers like AWS and GCP offer discounted, short-
lived compute instances. These options can significantly cut

costs for parallel training jobs.

Checkpointing

Save model snapshots periodically during training so
progress isn’t lost if a spot instance gets terminated. Resume
from the last checkpoint.

Distributed training

Train models faster by scaling across multiple GPU/TPU
machines. But linear scaling isn’t guaranteed, so benchmark
speedup versus cost. Also, remember Amdahl’s law:
parallelization is “no free lunch,” and there are diminished
returns with scaling out.

Quantization/pruning

Compress models to reduce compute requirements. But
beware the impact on accuracy. This technique is an
emerging field of research in the deployment of large
language models (LLMs).

Caching data

Avoid repeated preprocessing/loading of datasets in each
run—cache prepared data on fast storage like solid state
drives.

Reuse work

Chain together outputs from previous jobs to avoid
redundant computation.

Understand bottlenecks

Profile jobs to identify whether issues are
data/network/compute-bound or suboptimal model
architecture design.

TIP

The key is measuring and optimizing end-to-end pipeline
cost/performance, not individual components. Spotting instances,
caching, and reusing intermediate outputs can provide big wins. But
balancing cost savings versus impacts on training time, accuracy,
and development velocity is also important.

Apple’s CreateML tool is another excellent example of how
vital scalability is. In Figure 5-9 the dogs and cats dataset
from Kaggle gets dropped onto the Ul to set up a training
job.

= Geteon Ty Evelmion Prevew Ouipa =] LS [8%
B rr— [Y — f—
Data o ek a8, 7030
[—— ol
Truirieg Date @ Vet flata ® Tastireg Suete [A Gt 1
Tagrng bamea Lo Lt
eSS, et}
2 2,000 (T
Class o et -+

Becwtions 100 -]

Aesmanitiony i Lo
@
i Crog
o Dimces
& g
i sl

B Complened 100 Rerations

Figure 5-9. Create ML

Next, a Mac Pro M2 Max with 38 GPU cores and 10 CPU
cores can fully utilize these GPU cores (Figure 5-10). The
tooling here is the key, in that fast merging of software and
hardware allows a developer to prototype models quickly
and then later export them from CoreML format to ONNX.

https://oreil.ly/vJixR
https://oreil.ly/uSM5l
https://oreil.ly/Msorr

i @ O S+ [CP Memory Gramgy Dk Rbeork i
e, = CPUTEme TR M U = e i T o
i o bt ot r L I H gl M3 LT T T}
el WY s [are o o 1o o
[ar—— e I " e - " EPTTORE T R
[S——— e T . an 1w e
B o [freT e 5 afe BaM s
il Cinsll LN Mg) i [ren e FYR T
g Bogis B8 FM e
- n o W Bacis. PP
i tanwm | Creuss 2 i
e e 8
LR
- Getirgy [Tk Eveustion Peeves Chdpedt
Lo Loveny
o
B s

Extracting testures_

hoaie fomnza 1) * snomaed 158 of 2000 g 100 B ptns

Figure 5-10. Create ML saturating GPU

Yet another example of a high-level framework is ML.NET
framework shown in Figure 5-11 saturating the CPU cores
as it does AutoML.

m:’“‘f & O S~ CRU oy Dy Dak Heteos
P ame = i i i - s SPuTms | S
S —— 13067 st o e WM M e
—— " o dpn = i
...... saed Y i E st
TR, s T L Fres [T AE M megh
..... ' w3z 5 - B NP sgn
[T 1 et ra o A B e
Cabparnngiarios 7] nH w Lees Wl am L]
| JeT— 24 3asase i EERRTT J—_
LR e Thaads Y
[res | e
e
—

S b g = b B AL Btk Py = = (i fery UL g = vk = Ba T8
Experiment Kesults 1

Femmary 1

T ket N |\ MR T 1
ek T . : multiclane clanaificatien 1
e - et classification —dataset “yelp_labe [:“ nerafneahgi fEFRrc myALApR yolp Latallad, txt :
cparinest time : 53_8BM decu i
Dovmiosd Ma o P éasary ustier of medels explared: 31 1
... i

Trasin yioid

Top § sosels eaplered
Eeadugie yoR HarrohLowracy Suratioa

I
I Lbfgamaximuning ropyeled 2,011 LRl L

GeneralE ol
EbfgaEaximundnEropyRelid o, 8611 , PETR
LbfgaRax imuntnEropyRelti &, B .. 3150
Comwame yd FantTraedvs 98271 8. 1470
v 0. B2 e

Bt Sheg

save lentisestRedel. sb<osfif L8 Psers/ssabglfLrare/ny LARSS Sent ineat Madel
BEFALIAE @ costole project fer ERe Best pipelise at locatiea : fPsers/esakglf
isr:.funw FSeat ImentRone]

o, yALApp

WM
L and
neﬂlrmgrrw relried

Fzgure 5-11. ML.NET saturating CPU cores

In the end, not only is there a model created that efficiently
works with ONNX but also a console application in C# is
part of the framework’s build process enabling tight
integration with C#, Visual Studio Code, the model format,
and ultimately a build once, deploy many tool.

https://oreil.ly/AXtWw

Many emerging examples of tools couple hardware,
software, model format, and the ultimate deliverable in the
MLOps space, and it is worth having these frameworks
evaluated for your organization’s goals.

GUEST SECTION ON GITHUB ACTIONS WITH
AZURE MACHINE LEARNING STUDIO

We contacted O’Reilly author Alfredo Deza, a developer
advocate for Azure. He worked extensively with DevOps
and MLOps workflows in education and shared this
technique:

One of the things I tend to use when working with Azure
Machine Learning Studio is to add GitHub Actions,
making it a powerful combination. GitHub Actions work
with YAML files called workflow files. These files are
easy to read and, therefore, easy to maintain: an
essential mix when working with enterprise-level
software.

There are two common patterns I use, and a base to
build on further:

« Registering models or datasets from GitHub to
Azure ML Studio

« Retrieving specific versions of models for packaging

Any time you are interacting with Azure to create or
retrieve data from your account will require
authentication. You can authenticate in different ways
with GitHub Actions, but I tend to use an Azure service
principal. a service principal is a way to create accounts
that have limited scope to resources and it needs only
one simple command.

Using the Azure Cloud Shell, run the following
command to find your subscription ID:

az account show --query id -o tsv

https://oreil.ly/wy_2u
https://oreil.ly/VA8Dj

Capture the resulting ID and use it in the next step,

replacing $AZURE_SUBSCRIPTION_ID with the result from the
previous command:

az ad sp create-for-rbac --sdk-auth --name "github-actions" \
--role contributor --scopes /subscriptions/$AZURE_SUBSCRIPTION_ID

That command will generate a JSON output for a GitHub
repository secret. A repository secret is a way to
securely store sensitive information like the one
provided by the Azure CLI command. In the GitHub
repository where you want to use GitHub Actions with
Azure, click Settings > Actions > New. For the name,

use AZURE_CREDENTIALS, and for the value, paste the JSON
output from the last command.

Although you will need to configure the YAML workflow
with more components, this is the step you would use to
authenticate to Azure:

- uses: azure/login@vil
with:
creds: ${{ secrets.AZURE_CREDENTIALS }}

The fact that it requires only three lines to authenticate
properly with Azure with an account that has enough
permissions allows you to concentrate on the other
aspects of your ML project rather than spend time
trying to make authentication work. This is one of the
main reasons I like GitHub Actions.

I assume that you already have created an Azure
Machine Learning workspace and you have access to its
portal. One common use for the Azure ML workspace is
to create and store models in Azure. You can use these
registered models with GitHub Actions after

https://oreil.ly/er-Zz

authenticating to perform different workflows, including
packaging.

The following example shows how to make sure that the
Azure CLI will have everything it needs to work with the
Azure ML workspace and retrieve the model:

- name: set auto-install of extensions
run: az config set extension.use_dynamic_install=yes_without_prompt

Next, replace workspace-name and workspace-group with
your Azure ML workspace and resource group,
respectively, so that GitHub Actions can attach the
workspace to the job:

- name: attach workspace
run: az ml folder attach -w "workspace-name" -g "workspace-group"

Finally, you can retrieve a model with a specific version.
The version comes after the colon in the value to --

model-id. The following example uses a GPT-2 model in
the ONNX format that was previously registered in
Azure ML.:

- name: retrieve the ONNX model
run: az ml model download -t "." --model-id "GPT-2-onnx:1"

Although I haven’t gone into more details to build an
end-to-end example, hopefully I've demonstrated some
powerful building blocks you can use to create more
complex jobs using Azure ML and GitHub Actions. In the
past, I've used these examples to package ML models
and deploy them to a container registry. The increased
readability of GitHub Actions, with the ease of the Azure
CLI, makes this an outstanding combination worth
experimenting with.

Conclusion

This chapter discussed the context of building high-quality
machine learning models for production, which involved
various automation techniques such as AutoML,
hyperparameter tuning, auto-logging, AutoMLOps, and
pipelines. When building models, the runs and pipelines are
tracked, and the different inputs and results are logged to
enable higher quality, traceability, reproducibility, and
explainability.

Implementing automation and observability in the model
development process allows for higher-quality models and
continuous development and deployment flows, bringing
business velocity.

Critical Thinking Discussion
Questions

- What factors influence a model’s performance in a
production deployment? How can you stack the deck in
favor of your organization to achieve a successful
outcome?

« Which methods can you implement to improve the
model accuracy, and what are the cost versus
performance tradeoffs?

« What is your organization’s data management and
model-building governance policy? Can using an
enterprise data catalog improve governance?

« How can you protect the privacy of your ML systems’
users? Are there approaches that will comply with all

https://oreil.ly/8P3J4

near-term government regulations?

How can you simplify the development process of
production ML pipelines for data scientists who need
more software development experience without
reimplementing their code?

Exercises

Experiment tracking: Run a training task and use
MLflow to log the parameters, metrics, and model. Do
the same using MLflow auto-logging.

AutoML: Train a machine learning model using cloud
services such as SageMaker Autopilot, AzureML, or
Google Cloud AutoML. Compare the results to a
manually trained model.

ML Pipeline: Build a multi-stage ML pipeline with data
preparation, training, and evaluation steps using one of
the frameworks mentioned in the chapter, and attach
your pipeline to a CI/CD flow (where the pipeline will
run anytime you push code or data changes).

Building a scalable text classification pipeline: Train a
deep learning model for text classification on a large
dataset and develop a scalable pipeline for inference
using Ludwig.

Implementing a model versioning system: Build a
versioning system for models that allows the team to
track the evolution of models over time from scratch.
The system should follow the model’s code, data, and
hyperparameters, and allow for easy rollback to
previous versions. Use Git for version control and tools
like DVC for managing data and models.

https://oreil.ly/QeJI6

« Creating a model retraining pipeline: Develop a
pipeline that automates the retraining models as new
data becomes available. The project should monitor
data sources for changes, retrain the model on the
latest data, and deploy the new model to production.
Consider using technologies like Apache Airflow for
workflow management, Kubernetes for deployment,
Amazon SageMaker, or Azure ML Studio.

Chapter 6. Deployment of
Models and Al
Applications

Processing data, training, and validating models are
precursors to the real thing: building and deploying an
application that uses the data you generated and the model
you have built to drive decisions and actions.

To deliver machine learning applications, start by building
and registering the model(s) for use in the production
application. Then, create an application pipeline that
accepts events or data, prepares the required model
features, infers results using one or more models, and
drives actions. Finally, monitor the data, models, and
applications to guarantee their availability and
performance. In cases of problems or degraded model
performance, drive corrective actions.

Many organizations still think of “serving a model” or
creating a model endpoint. However, they need to pay more
attention to the bigger picture of delivering an ML
application as a whole instead of dividing the application
delivery responsibility between data science and
engineering teams. Ignoring the bigger picture will lead to
significant functionality gaps, failures, unnecessary risks,
and long delays.

Model Registry and Management

https://oreil.ly/TqMu3

A model registry is a central repository for storing ML
models and their metadata and managing the model
lifecycle and versions. Once a model training process
completes, it saves the model and its metadata in the
registry. Then different functions (such as evaluation,
testing, and optimization) extend the model metadata or
update the model files. Finally, the serving functions or
application pipelines load the model and use it for making
predictions.

Model registries provide the following functionality:
- Storing models along with their metadata and labels
(tags)
- Managing model access, versions, and lifecycle

- Enabling finding, grouping, and comparing models
based on metadata attributes or labels

« Storing information required for the model deployment
and monitoring

« Tracking the model status and approval process

« Providing a simple or automated mechanism to deploy
models into production

The model registry is usually integrated with the
experiment tracking system. This way, the essential
metadata from the training or experiment is automatically
recorded in the registry without manual intervention.
However, most model registry solutions provide APIs to
register models trained on other systems.

A model consists of the following data and metadata
elements:

Base metadata

https://oreil.ly/krzsX
https://oreil.ly/YHdkb
https://oreil.ly/Dr6s4

Unique model name, identifier, description, project, owner,
version information, and so on

Labels

A set of key/value tags used to label, filter, group, and search
the model

Model files

The saved model (for example, in PKL, JSON, or HDF5
formats) and auxiliary files used by the model serving
process

Tracking information

References to how the model was trained, parameters, data
sources, code version, training framework, and so on

Model metrics

Performance metrics collected during the training,
evaluation, and testing processes; for example, model
accuracy, loss, F1 score, ROC curves, and feature importance

Dataset schema

The schema of the model inputs (X) and outputs (Y),
including field names, order, and types

Deployment data

Information and parameters required for the model
deployment, such as package dependencies, container
image, and runtime parameters

Monitoring metadata

Information required for monitoring the model
performance or drift; for example, statistical information

https://oreil.ly/YI6XF
https://oreil.ly/Efhti

and histograms per feature to determine if there is a drift
between training and serving data

Status and state

Information about the current model state, usage, and
approvals

In many cases, the training pipelines generate multiple
models, for example, when trying different algorithms or
parameter combinations. In such cases, we will use
different names or labels per model and can compare the
models to select the most suitable option. In addition, the
same model pipeline may produce multiple models, one for
every subset of the data (for example, a model per user, per
device, per country, and so on).

Model registries provide APIs and a user interface to
create, update, retrieve, list, compare, and deploy models.
Model registries are a component of an MLOps or data
science platform. For example, open source solutions
include MLflow and MLRun. In addition, there are
commercial solutions from Amazon SageMaker, Google
Vertex Al, and DataRobot. Although registries can import
or export models, the best approach is to use the built-in
registry once you choose the MLOps platform.

Solution Examples

Some solutions (for example, in SageMaker and Vertex Al)
require you to package the model in a container and
provide minimal visibility into the model origin and
metadata. This approach may lead to additional work,
functional limitations (cannot serve multiple models in the
same container), and limited observability.

https://oreil.ly/PLNVb
https://oreil.ly/lZXaE
https://oreil.ly/CDN1j
https://oreil.ly/vHFxf
https://oreil.ly/1WaaU

SageMaker Example

Example 6-1 shows a code example for registering a model
in Amazon SageMaker. It covers the following steps that
are required to register a model:

1. Save the model and the code in a tar.gz package and
upload it to S3.

2. Build a container image or use a pre-built Docker
image.

3. Create a model package group.

4. Create a model package and specify the information
about the model package: image, runtime preference,
metadata, and so on.

Example 6-1. Registering a model in Amazon SageMaker

import
from import image_uris

region = boto3.Session().region_name
client = boto3.client('sagemaker', region)

Require you to first package the model in tar.gz and upload to S3

Specify the S3 location of the model package
model_package_location = 's3://my-bucket/my-model-package.tar.gz'

Find the image url for a SageMaker built-in inference image
inference_1image = image_uris.retrieve(

framework="sklearn",

region=region,

version="1.0-1",

py_version="py3",

instance_type="ml.m5.large",

Define the model package metadata

model_package_name = 'my-model-package'

model_package _group_name = model_package_name + "-group"
model_package description = 'A sample model package'

model_package_framework = 'scikit-learn'
model_package_runtime = 'Python 3.8'

print(model_package_group_name)

group_response = client.create_model_package_group(
ModelPackageGroupName=model_package_group_name,
ModelPackageGroupDescription="My group description",

)

model_package_version_response = client.create_model package(
ModelPackageGroupName=model_ package group_name,
ModelPackageDescription="scikit-learn demo",
ModelPackageVersion='1.0",
MetadataProperties={
'GeneratedBy': 'my-username'’
s
InferenceSpecification={
"Containers": [
{
"ContainerHostname": "scikit-learn",
"Image": inference_image,
"ModelDataUr1l": model_package location,
"Framework": "SAGEMAKER-SCIKIT-LEARN",
"Environment": {
"SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
"SAGEMAKER_PROGRAM": "inference.py",
"SAGEMAKER_REGION": region,
s
s
1,
"SupportedRealtimeInferencelnstanceTypes": [
"ml.c5.xlarge",
"ml.m5.xlarge",
1,
"SupportedContentTypes": ["text/csv"],
"SupportedResponseMIMETypes": ["application/json"],

3

MLflow Example

In MLflow, the experiment tracking service can save model
artifacts (with the experiment metadata), and the model
registry can register artifacts as models. See Example 6-2,

which demonstrates how a training job logs and registers a
model artifact.

Example 6-2. Registering a model in MLflow

from sklearn import ensemble, metrics
from sklearn.model_selection import train_test_split

import mlflow
import mlflow.sklearn
import pandas as pd

dataset = pd.read_cvs("data.csv")

with mlflow.start_run(run_name="YOUR_RUN_NAME") as run:
params = {"n_estimators": 5, "learning_rate": 0.1}
model = ensemble.GradientBoostingClassifier(**params)

Initialize the x & y data and split to train and test sets
x = dataset.drop("label", axis=1)

y = dataset["label"]

x_train, x_test, y_train, y_test = train_test_split(x, y)

Log parameters and metrics using the MLflow APIs
mlflow.log_params(params)

Train the model and log the metrics

model.fit(x_train, y_train)

predicted_probs = model.predict_proba(x_test)

roc_auc = metrics.roc_auc_score(y_test, predicted probs[:,1])
mlflow.log_metric("test_auc", roc_auc)

Log the sklearn model and register as version 1
mlflow.sklearn.log model(
sk_model=model,
artifact_path="sklearn-model",
registered_model_name="sk-learn-reg-model"

)

Once the model is registered, it can be viewed in the
MLflow UI, as shown in Figure 6-1.

Registered Models > Model A » Version 1 ~

Registered At: 2019-10-17 13:38:51 Creator:

Last Modified: 2019-11-12 09:56:00 Source Hun: Run b89a0fc567ae4d32994392c800c0bbce

= Description [
MNaona

Figure 6-1. MLflow model registry Ul

MLRun Example

Stage :

In MLRun, the training function can use the framework-
specific apply_mlrun() method to automatically grab all the
model details, metadata, data schema, and statistics and
save the model in the registry (see Example 6-3). Notice
that MLRun automates data movement and the collection of

experiment metadata, parameters, and metrics.

Example 6-3. Registering a model in MLRun

import as

from import ensemble

from import train_test_split
from import apply_mlrun

def train(

dataset: pd.DataFrame,

label column: str = "label",
n_estimators: int = 100,
learning_rate: float = 0.1,
model_name: str = "cancer_classifier",

Initialize the x & y data and split to train and test sets
= dataset.drop(label_column, axis=1)

= dataset[label_column]

_train, x_test, y train, y test = train_test_split(x, y)

X < X %

Pick an ideal ML model
model = ensemble.GradientBoostingClassifier(
n_estimators=n_estimators, learning rate=learning rate

)

Generate and register model artifact along with all its metrics and

metadata

MLRun auto extracts the model schema and drift metadata from the test set
apply_mlrun(model=model, model name=model_name, x_test=x_test, y test=y test)

Train the model
model.fit(x_train, y_train)

Once the model is registered, it can be viewed in the

MLRun UI along with all the automatically gathered
metadata. See Figure 6-2.

ii”}*{!-ililirni

e MRS 7 ST
e e b A e |

Figure 6-2. MLRun model registry Ul

If you have an existing code function that returns a model
object, you don’t have to add the auto_mlrun() method.
Instead, MLRun will automatically detect the model object
and save it. However, it will not include all the metadata
and statistics. You can add those later using the

update model() method.

You can register models you trained on other systems with
the project.log_model() method:

model_object = project.log_model('my-model', model_file=model_path, ..)

MLRun also provides a simple way to export models and all
their metadata into a .zip file and load it back into another
system, as Example 6-4 shows.

Example 6-4. Export and import MLRun models

In the source platfrom export the model artifact into a .zip object
model_object.export("s3://my-bucket/model.zip")

In the destination system import the model files + metadata from
zip into the project
model_object = project.import_artifact("my-model", "s3://my-bucket/model.zip")

Model Serving

Models are a form of equation. They accept numeric values
(X) and respond with results or predictions (Y). Models
have unique dependencies and development lifecycles.
Therefore, it is better to package and deploy them as
microservices (containers) and access them through an
API. In addition, using an API allows independent scaling of
the model (add/remove containers), high availability,
granular security, and rolling upgrades.

The most basic approach is manually wrapping the model
prediction code with a protocol, for example, using Python
Flask or FastAPI packages to add HTTP REST API on top of
the model. However, this simplistic approach means you
must write and maintain a lot of code to handle the
different API calls, exceptions, scaling, security, upgrades,
and other tasks.

Serving frameworks handle the model deployment,
protocol, lifecycle, and monitoring for you. Many of the
frameworks require you to build the container package,
and they add the deployment, scaling, and so on. Some
frameworks (like MLRun) use serverless functions
architecture to automatically create the container package

https://oreil.ly/_MxKj
https://oreil.ly/6wtCq

and inject advanced functionality and observability into the
serving microservice. In addition, there are managed
model-serving solutions in the cloud in which you upload
the model and don’t need to control the infrastructure.

You can deploy and serve models through an online
endpoint (using HTTP REST or gRPC protocols), which
accepts the input dataset and either responds with the
prediction immediately or through a streaming or
messaging protocol; for example, Kafka, Kinesis, Pub/Sub,
or others. The streaming or messaging protocol receives
the input events, makes a prediction, and writes the results
to a database or an upstream stream/queue.

You can deploy models as part of a batch pipeline. For
example, the first step is to prepare the dataset. Then the
model prediction step generates predictions from the
incoming dataset and writes the results to the next step or
a storage system. The batch pipeline can run on demand or
be scheduled at regular intervals.

Figure 6-3 illustrates different model-serving deployment
options: online (synchronous), stream (asynchronous), and
batch.

https://oreil.ly/CKxgU
https://oreil.ly/GnDoB
https://oreil.ly/RRmKE

[Request (HTTP/gRPC) +
Online Serving
(synchronous) < Response L container
\ Autoscale
container
(asynchronous) \" RN %) . databace
\ utoscale
Fetch Senflng
Batch Storage/ container Storage/
database - , database
Schedule triggered

Figure 6-3. Model serving modes

Online serving protocols support multiple operations to
handle the entire model lifecycle, for example:

Predict

Send an input dataset and return the predicted results.

Get model metadata

Get information about the model and its schema.

Get health
Get the health and readiness of the model.

List
List the models and the versions served by the endpoint.
Explain

Send the input data and return a description (explanation)
of the prediction response.

NVIDIA Triton (TensorRT), KServe (KFServing), Seldon
Core, and MLRun support a standard model serving
protocol.

In the advanced solutions, you can control how models are
loaded and evicted from memory, and a model endpoint can
serve multiple models to preserve memory space and
computation resources. In addition, they can handle data
pre- and post-processing and advanced functionality, such
as ensembles, canaries, and monitoring.

Table 6-1 lists the leading model serving solutions.

https://oreil.ly/a0FPH
https://oreil.ly/SWfKk
https://oreil.ly/YUEe1
https://oreil.ly/nHRvL
https://oreil.ly/ejOB4

Table 6-1. Model serving solutions comparison

Category SageMaker
Open No

source

Managed AWS

option

Serverless Yes
Protocol Proprietary
Multi-stage No
pipelines

Streaming No

Model Yes
monitoring

Amazon SageMaker

Vertex Al

No

GCP

Yes
Proprietary

No

No

Yes

MLRun

Yes

cloud + on-
prem

Yes

Standard

Yes

Yes

Yes

Sel

Yes

clot
pre

No

Sta

Yes

Bas

Yes

In SageMaker, you can retrieve a model from the registry,
deploy it to an endpoint, and call it to generate predictions
(see the code in Example 6-5).

Example 6-5. Deploy a registered model in SageMaker

import

sagemaker_session = sagemaker.Session()
role = sagemaker.get_execution_role()

https://oreil.ly/epj-o

Get the model package from the registry

model = sagemaker.ModelPackage(
role=role,
model_package_arn=model_package_arn,
sagemaker_session=sagemaker_session)

Deploy the model as an endpoint

predictor = model.deploy(
initial_instance_count=1,
instance_type='ml.m5.xlarge’,
endpoint_name="some-name")

Test the model by sending a request to the endpoint

test_data = {"input": [1, 2, 3, 4, 5]}

response = predictor.predict(test_data)

print(response)

If you train the model with SageMaker’s built-in
frameworks, you can skip the part of registering the model
and immediately deploy it to an endpoint (see Example 6-
0).

Example 6-6. Deploy a built-in trained model in SageMaker

from sagemaker.pytorch import PyTorch

Train the model using an estimator

pytorch_estimator = PyTorch(entry_point='train_and_deploy.py',
instance_type='ml.p3.2xlarge’,
instance_count=1,
framework_version='1.8.0",
py_version='py3')

pytorch_estimator.fit('s3://my_bucket/my training data/")

Deploy my estimator to a SageMaker Endpoint and get a Predictor
predictor = pytorch_estimator.deploy(instance_type='ml.m4.xlarge',
initial_instance_count=1)

‘data’ is a NumPy array or a Python list.
‘response’ is a NumPy array.
response = predictor.predict(data)

TIP

SageMaker model serving is a great choice when you build your
models inside SageMaker. However, it requires more work when
using external or standard open source frameworks. In addition, data
processing or application logic is not handled by the serving endpoint
and will require external services or serverless functions.

Seldon Core

Seldon Core is an open source model serving solution that
can deploy over Docker or Kubernetes. Seldon can deploy a
single model or a multistage pipeline with multiple models
and processing steps. In addition, it supports model
monitoring and explainability.

Seldon Core supports two types of model servers (see
Figure 6-4):
Reusable

Allows deploying a family of standard models using pre-built
images. The models are often fetched from a central
repository (such as AWS S3 storage)

Nonreusable

Using a custom model server that requires building a custom
Docker image with the code and dependent packages.

https://oreil.ly/hppX7
https://www.docker.com/
https://kubernetes.io/
https://oreil.ly/p3SNz

Reusable model servers Nonreusable model servers

Builds a container image that wraps the
model functionality every time the model
is trained. Leverages s2i functionality.

Built and optimized in a way that allows for

new trained models to be loaded without

the need to build a new image every time.
For example, Seldon's SKLearn server.

Higher cost in build resources and data
transfer. With many similar models, higher
maintenance effort.

Image registry } N“';LEW”:‘:E*’E Model

Lower engineering effort-one image can
serve many similar ML models.

Reusable

e Model

[Image registry }

Control :

repository
(3, ModelDB, ,.,)

Figure 6-4. Seldon Core model types (source: Seldon Core)

Seldon models and pipelines are defined using a YAML file
and deployed using the Kubernetes command-line tool
(kubectl). See Example 6-7.

Example 6-7. Deploy a model using Seldon Core (source:
Seldon Core)

Step 1: Create a YAML file describing a single (reusable)

model server:

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
name: sklearn
spec:
name: iris
protocol: v2
predictors:
- graph:
children: []
implementation: SKLEARN_SERVER
modelUri: gs://seldon-models/sklearn/iris-0.23.2/1r_model
name: classifier
name: default
replicas: 1

Step 2: Deploy the model to the Kubernetes cluster:

> kubectl apply -f resources/iris-sklearn-v2.yaml
seldondeployment.machinelearning.seldon.io/sklearn created

Step 3: Test the new endpoint:

import

inference_request = {
"{nputs": [
{"name": "predict", "shape": [1, 4], "datatype": "FP32",
"data": [[1, 2, 3, 4]1]1}

}
endpoint = "http://localhost:8003/seldon/seldon/sklearn/v2/models/infer"
response = requests.post(endpoint, json=inference_request)

print(response.json())

Seldon Core supports various model deployment options,
multistage pipelines, and a standard (v2) protocol.
However, it is more DevOps-oriented and requires manual
configuration and an understanding of the Kubernetes API.

MLRun Serving

The MLRun MLOps framework includes advanced model
and application serving functionality. MLRun serving
allows users to define multistage real-time pipelines and
quickly deploy them to production with the help of Nuclio,
a real-time serverless engine. Nuclio is a high-performance,
elastic, open source serverless framework focused on data,
I/O, and compute-intensive workloads. It supports
advanced functionality and many triggering options (such
as HTTP, cron, Kafka, Kinesis, and others). MLRun and
Nuclio’s serverless architecture converts the code and
high-level definitions into a hardened, high-performance,
self-healing, and auto-scaling service with built-in
monitoring and observability.

MLRun serving supports two topology options:

https://oreil.ly/9UEGF
https://nuclio.io/

Router

A basic serving of one or more models (the default option)

Flow

A multistage pipeline (directed acyclic graph) with built-in
or custom steps (for example, API integrations, data
enrichment and processing, model serving, routing, and
storage)

MLRun contains built-in serving classes for the major
ML/DL frameworks (scikit-learn, TensorFlow, ONNX,
XGBoost, LightGBM, PyTorch, and Hugging Face) and
supports a standard serving protocol (like KServe, Seldon,
and Triton). In addition, MLRun provides a few container
images with the required ML/DL packages pre-installed, or
you can choose a base image and additional package
requirements, which will automatically build the desired
image for you.

In MLRun, the first step is to define a function object that
specifies the code, packages, resources, triggers, and so
on. Then you define the serving topology (graph). Once the
serving function is fully defined, you can simulate it locally
or deploy it to a cluster using a single API call.

Example 6-8 demonstrates the use of MLRun serving. First,
define a function using a standard image, add a model, and
then simulate and debug the serving pipeline locally with

test data. Finally, deploy the function to the cluster and test

the live endpoint (using .1invoke()).

Example 6-8. Define and deploy a basic MLRun serving
topology

serving_fn = mlrun.new_function("serving", image="mlrun/mlrun",
kind="serving", requirements=[])

https://oreil.ly/GvBuC
https://oreil.ly/TaNCa
https://onnx.ai/
https://xgboost.ai/
https://oreil.ly/u4bRq
https://pytorch.org/
https://huggingface.co/

Add a model object or file (can be in S3, GCS, local file, etc.)
serving_fn.add _model(
"my-model",
model_path=model_ur1i,
class_name="mlrun.frameworks.sklearn.SklearnModelServer")

Create a mock server (simulator) and test/debug the endpoint
server = serving_fn.to_mock_server()

sample = {"inputs": [[5.1, 3.5, 1.4, 0.2], [7.7, 3.8, 6.7, 2.2]11}
server.test(path=f"/v2/models/my-model/infer", body=sample)

Result:
{'1d': '2b2e1703f98846b386965ce834a6c4ab’,
'model_name': 'my-model’,

'outputs': [0, 2]}

Deg the serv1ni%f0nctlon to the cluster

pr%g e&ﬂo% fﬁ%c oﬂ?geﬁb?ﬁ]f§3art1ng remote function deploy

info) Deploying function

2023- 02 14 12:29:12 (info) Building

2023-02-14 12:29:12 (info) Staging files and preparing base images
2023-02-14 12:29:12 (info) Building processor image

2023-02-14 12:29:57 (info) Build complete

2023-02-14 12:3 (info) Functlon deploy complete
§5Q§ Bfegicfiogerﬁgugf§ f?nfog éﬁggegggﬁffgtdeployed function

serving_fn.invoke(path=f"/v2/models/my-model/infer"™, body=sample)

vV V. V VvV V

ViV

The real power of MLRun serving graphs is the ability to
develop and deploy complex distributed Al applications
rapidly while ensuring maximum performance, scalability,
availability, and security. Example 6-9 shows an example of
a multistage NLP application with data pre- and post-
processing. You can extend the serving graphs to include
branching and parallelism. You can also add advanced data
processing steps, model ensembles, exception handling,
custom monitoring, and more.

Example 6-9. Define and deploy a multistage serving graph
topology

Create an MLRun serving function from custom code
serving_function = mlrun.code_to_function(
filename—"src/serving.py",
kind="serving",

image="mlrun/mlrun",
requirements=[],

)

Set the serving topology
graph = serving_function.set_topology("flow", engine="async")

Define a 3 step graph (preprocess -> hugging face model -> postprocess)
the custom preprocess and postprocess functions are in serving.py
while the HuggingFaceModelServer is a built-in MLRun class
graph.to(handler="preprocess", name="preprocess")\
.to(mlrun.frameworks.huggingface.HuggingFaceModelServer(
name="sentiment-analysis",
task="sentiment-analysis",
model_name="distilbert-base-uncased",
model_class="AutoModelForSequenceClassification",
tokenizer_name="distilbert-base-uncased",
tokenizer_class="AutoTokenizer"))\
.to(handler="postprocess", name="postprocess").respond()

Plot to graph:
serving_function.plot(rankdir='LR")

Out[4]:
postprocess

Deploy the pipeline
project.deploy_function(serving_function)

Send a text request and get the sentiment results
response = serving_function.invoke(path="'/predict', body="good morning")
print(response)

Result:
['The sentiment is POSITIVE', 'The prediction score is 0.7876932144165039']

MLRun serving provides a rich user interface that natively
integrates with the platform’s other elements (see Figure 6-
5).

Figure 6-5. MLRun serving user interface

In summary, MLRun serving extends the notion of model
serving to rapid delivery of application pipelines and
accelerating the deployment of Al applications. In addition,
its serverless architecture reduces infrastructure costs and
engineering overhead and enables continuous operations.

Advanced Serving and Application
Pipelines

The previous sections explained the need to transition from
looking at the model endpoint as the production end goal to
thinking about Al applications. When you build
applications, you must address API integrations, data
enrichment, validations, processing, and storage. In
addition, the same application often requires routing,
cascading, or merging results from multiple models and
issuing one or more actions. Finally, you must monitor
every aspect, including resource usage, data, model
performance, and application KPIs. Therefore, you have to
define the deployment goals around application pipeline
design, implementation, and maintenance.

In the model development flow, the job execution time or
frequency may not be critical. However, in production,
applications may need to scale to serve thousands of
requests and terabytes of data. Sometimes the client is
waiting for an immediate answer, which requires more
focus on performance and latency. Therefore, enabling

parallelism and considering technologies that optimize the
data pipeline and model performance are necessary.

You will likely need to upgrade the model or enhance the
application pipeline at a certain point. However, upgrades
are not trivial when the application serves online clients or
critical business services. In addition, new models may
behave differently in production. As a result, you should
first test them in isolation or expose only a fraction of the
clients to the latest version before making the change
available to everyone. Production deployment should
include a strategy and implementation for live upgrades,
A/B testing, failure recovery, and rollbacks.

Implementing Scalable Application Pipelines

Serving application pipelines execute a set of activities; for
example, intercepting an event, enriching and processing
the data, using one or more models for prediction, and
returning a response or issuing an action. The activities can
run sequentially (one after the other), in parallel, or
combine sequential and parallel activities. Pipelines can be
synchronous (the client waits for the response) or
asynchronous (the client does not wait).

A simple sequential implementation uses a single process
that calls the different activities one after the other. For
example, Example 6-10 demonstrates a sequential
application pipeline using FastAPI with the following steps:

1. Reading and enriching the incoming request
2. Data preprocessing to generate a feature vector

3. Model prediction

4. Processing the model results and returning a response
to the client

Example 6-10. Sequential application pipeline example
using FastAPI

from import FastAPI, HTTPException
from import BaseModel

app = FastAPI()

Define the prediction request data (json) structure
class PredictRequest(BaseModel):

user: str

7.

API to get model endpoint status
'get(ll/ll)
async def get_status():
return {"model": "my-model", "version": 1.0, "status": "ok"}

API to process data and make a prediction
.post("/predict")
async def predict(req: PredictRequest):

enriched_data = enrich_user(req)
data = pre_process(enriched_data)
prediction = model_predict(data)

return post_process(prediction, req)

def enrich_user(req: PredictRequest):

Suppose you want to distribute the work to multiple
microservices or avoid package dependencies. In that case,
the primary process can call the activities (implemented
through separate microservices) utilizing REST API calls.
However, the distributed architecture will require you to
handle additional complexities, such as partial failures,

retries, service authentication, and rolling upgrades across
multiple microservices.

NOTE

In both local and distributed architectures, the flow remains
sequential and synchronous, which can lead to slower performance.
Performance can be improved when adding parallelism. For example,

the primary process can use threads or async to execute multiple
activities in parallel. However, this adds more complexity to the code.

A way to achieve distributed processing, parallelism, and
simplicity is to use asynchronous or streaming pipeline
frameworks where you define a graph (DAG) of activities.
Then, the framework executes, scales, and tracks the
activities using distributed computing resources. In
addition, the application pipeline is monitored, deployed,
and upgraded as one managed service.

Figure 6-6 illustrates a few application pipeline
architecture options:

« Sequential activities in the same process

- Combining sequential and parallel activities using a few
processes

« An asynchronous streaming pipeline

There are multiple commercial and open source distributed
pipeline frameworks in the industry. Some examples
covered here are AWS Step Functions, Apache Beam, and
MLRun serving graphs.

https://oreil.ly/nrCxg
https://oreil.ly/GSyG7
https://oreil.ly/lcJgZ

Sequential activities | [Sequential + parallel | () Container

41— _l ‘ () Activity

i 2
i 2

< <
—
Asynchronous streaming I

Figure 6-6. Application pipeline architecture options

AWS Step Functions

AWS Step Functions is a workflow service that executes a
state machine of individual steps (as shown in Figure 6-7).
Steps can invoke a serverless Lambda function or call AWS
services. The Step Functions service controls the execution
of the workflows, and its graphical console shows your
application’s workflow as a series of event-driven steps.

Step Functions has two workflow types. Standard
workflows are ideal for long-running, auditable workflows,
as they show execution history and visual debugging.
Express workflows suit high-event-rate workloads like
streaming data processing and IoT data ingestion.

The Express workflows can be either synchronous (wait
until the workflow completes and then return the result) or
asynchronous (don’t wait for the workflow to complete).

(%] & % Unds 2 Reda i3 Zoomin B Toom eut @ Canner Definbtisn
Actions Flizre
— Workflow
AR Lamibala x
it o [P —— Start at
O Deteun Sermimenn Chacas which 1kste i the sharting poimt of S
- v
Gl Fuoin ' Distect Sertiment -
FS——
Gerarate Cuttomses Refienerse Mumber
Amanon ECS) Cernmie - aprianal
RunTask ! A Fagran e pardaibe g rigten of T o gl e b
o= i [
#"l_._._l AWE Sinp Functiar rn Cyneelf: PR A srailiks fore procinss with & number
el Starilaecuticn Sl Rrvord Trarnastion of useful referene components
AR e L]
StartlobRun Chald# 11308
Q G O B TimeoutSeconds - aplianal
a5 [- - Th i resmbes of wweonds sn mection of e
r e .
W - = 1 R | =, akte maching can rum H it rum longer thin S
Tl StartiobRun e 3peeiifed Brme, the enpcution ity with &
T Stati Tiesahingt
o [——
RSN sriaron §venivide .
ESl Putivents T Ba
lllll T T
Subemitiob - [P——
) MotBad sty Aderin By Email

'| Amarsn AP Gatewey
RN Reguest

Amaron hthena
o LRE TSt T

Figure 6-7. AWS Step Functions user interface

While AWS Step Functions is feature-rich, can dynamically
scale resources, and has an excellent user interface, it adds
the complexity of creating a new Lambda function for every
step as well as performance overhead of networking and
data serialization between each step.

To build an ML application pipeline with data preparation
and model serving steps, you must first create serverless
Lambda functions for each step. For example, Example 6-
11 demonstrates a TensorFlow model serving Lambda
function.

Example 6-11. Serverless prediction function using AWS
Lambda
import

import
import as

s3 = boto3.client('s3")

Load the Keras model from S3 during initialization

model_path = '<your-s3-bucket>/path/to/model.h5"

response = s3.get_object(Bucket='<your-s3-bucket>', Key=model_path)
model_bytes = response['Body'].read()

model = models.load_model(model bytes)

def lambda_handler(event, context):
Load input data from event
input_data = event['input_data']

Make predictions using the preloaded model
predictions = model.predict(input_data)

Return predictions as JSON
return json.dumps(predictions.tolist())

Once you have all the functions, you can define the
multistage workflow. Example 6-12 demonstrates a simple
asynchronous pipeline with data preparation, model
prediction, and post-processing.

Example 6-12. AWS Step Functions workflow example

from stepfunctions.steps import LambdaStep, PassStep, Chain
from stepfunctions.workflow import Workflow
from stepfunctions.inputs import ExecutionInput

def create_workflow(input_data):
Define the workflow using the stepfunctions library
with Workflow('MyWorkflow') as workflow:
Define the Lambda function to preprocess the data
preprocess_data_step = LambdaStep(
'"PreprocessData’,
parameters={
"FunctionName': '<function-arn>',
"Payload': ExecutionInput(input=input_data)

)

Define the Lambda function to load and run the model
run_model_step = LambdaStep(
'RunModel’,
parameters={
"FunctionName': '<function-arn>',

'"Payload': ExecutionInput(
input=preprocess_data_step.output()['Payload'])

)

Data post processing
post_process_step = LambdaStep(
'"PostProcess',
parameters={
"FunctionName': '<function-arn>',
'"Payload': ExecutionInput(input=run_model step.output()
['Payload'])
}
)

Start the execution of the workflow
execution = workflow.execute(inputs={'input_data': input_data})
return execution.execution_arn

Example usage

input_data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

execution_arn = create_workflow(input_data)

Step Functions does not support streaming protocols such
as Kafka or Kinesis. However, you can create a front-end
function that will read from a stream and invoke the
workflow. See Example 6-13, an example Lambda function.

Example 6-13. AWS Lambda function that reads events
from a stream and executes the workflow

import os, base64, boto3
sf = boto3.client("stepfunctions", os.environ['REGION'])

def lambda_handler(event, context):
Execute the workflow on every stream message
for record in event['Records']:
payload = base64.b64decode(record['kinesis']['data'])
sf.start_execution(
stateMachineArn=os.environ['WORKFLOW_ARN'],
input=payload,
)

Apache Beam

Apache Beam is an open source stream processing
framework, focused on online structured data processing.
(Google Dataflow is a managed version of Apache Beam.)

Beam lets you build an asynchronous pipeline (DAG)
consisting of multiple steps. The steps can use built-in data,
IO, and computing or user-defined functions. Beam
pipelines can be executed locally using the Direct Runner
or deployed to distributed runners such as Apache Spark,
Flink, and Google Dataflow.

Beam'’s advantages are that it is open source, scalable, and
contains powerful data operators (such as calculating
aggregations over a time window). However, it does not
have the flexibility and control over the underline resources
and packages per step as with AWS Step Functions.

Example 6-14 defines a three-step pipeline: reading JSON
data; preprocessing, prediction, and serializing the output;
and writing it to a Kafka stream.

Example 6-14. Apache Beam pipeline with data processing
and prediction
import as

from import load_model
import

Define a custom DoFn that parses JSON strings
class ParseJsonFn(beam.DoFn):
def process(self, element):
yield json.loads(element)

Define a custom DofFn that serializes Python dictionaries to JSON strings
class SerializeJsonFn(beam.DoFn):
def process(self, element):
yield json.dumps(element).encode('utf-8")

Define a custom DoFn to make model predictions
class MakePredictions(beam.DoFn):
def __init__(self, model_path):
self.model_path = model_path
self.model = None

https://oreil.ly/iyTvq
https://oreil.ly/iwsET
https://oreil.ly/Uylco
https://oreil.ly/AvkF9
https://oreil.ly/UoS5-

def setup(self):
self.model = load_model(self.model path)

def process(self, element):
Make a prediction using the loaded model
prediction = self.model.predict(element)

Return the prediction
return [prediction]

Define the pipeline options

options = beam.options.pipeline_options.PipelineOptions()

options.view_as(beam.options.pipeline_options.StandardOptions).runner =
'DirectRunner’

Create the pipeline
with beam.Pipeline(options=options) as p:
Read data from a JSON file or message
messages = p | "Read JSON" >>
beam.i0.ReadFromText("path/to/json_message.json")

Parse JSON strings into Python dictionaries
parsed_messages = messages | "Parse JSON" >> beam.ParDo(ParseJsonFn())

Make model predictions using the custom DoFn
predictions = parsed messages | 'MakePredictions' \
>> beam.ParDo(MakePredictions(model_path="my_model.h5"))

Print the predictions
predictions | 'PrintPredictions' >> beam.Map(print)

Serialize the processed messages to JSON strings
serialized_messages = predictions | "Serialize JSON" \
>> beam.ParDo(SerializeJsonFn())

Write the output to a Kafka topic

serialized_messages | "Write to Kafka" >> beam.io.WriteToKafka(
producer_config={'bootstrap.servers': 'kafka-host:9092'},
topic="my-topic'

)

MLRun serving graphs

Many solutions that are used to build application pipelines
started as batch or stream processing for structured data

(Apache Beam, Flink, Storm, Airflow, Spark Streaming, and
so on). Therefore, it’s more complicated to expand them to
the model serving and monitoring applications or to handle
unstructured data like text and video. Other solutions like
AWS Step Functions have emerged as a generic way to
chain microservices, and they require more customization
and logic to handle data processing and model serving at
scale.

MLRun serving graph combine the benefits of AWS Step
Functions as a versatile serverless function-based pipeline
(using Nuclio real-time serverless functions) with the
parallel data processing capabilities of Apache Beam and as
an easy way to build and debug scalable pipelines. In
addition, it adds machine learning and deep learning
functionality and built-in components (steps).

With MLRun serving graphs, you build a DAG with sources,
intermediate steps (tasks), routers, queues, and data
targets:

Sources

Real-time (HTTP endpoint, Kafka, Kinesis, and so on) or
offline (for example, read data periodically from a
file/object/database) data or event inputs.

Steps

Run a function, class handler, or REST API call. MLRun has a
list of pre-built steps, including data manipulation, readers,
writers, and model serving. You can also write your own
steps using standard or custom Python functions/classes.

Routers

A special type of step with routing logic and multiple
children. The routing logic defines how the data/events are

https://oreil.ly/pG4lR
https://oreil.ly/_5CDZ
https://oreil.ly/d9Gq1
https://oreil.ly/_PLsU

passed to and collected from the child steps. For example,
the basic router class passes the event to a specific child
based on the event content or metadata. The Parallel router
passes the event to all the children and merges the results.
The Ensemble router is a derivative of the Parallel router,
which can intelligently combine the results from multiple
child models into one aggregate result. Users can create their
own routers and use custom logic.

Queue

Represents a queue or stream that accepts data from one or
more source steps and publishes to one or more output
steps. Queues are best used to connect independent
functions/containers. Queues can run in memory or be
implemented using a stream, which allows them to span
processes/containers.

Targets

Online or offline storage (streams, files, databases, and so
on).

Like Apache Beam or AWS Step Functions, every step in
the DAG accepts an event object, manipulates it, and
passes event(s) downstream. In the case of MLRun, there is
a long list of built-in flow control, parallel data processing,
and ML/DL steps (see documentation), such as filtering,
mapping, flattening, micro-batching events, aggregating,
joining, encoding, imputing, model serving, model
ensembles, and so on. The final result can be written
asynchronously to some destination (file, DB, stream, and
others) or returned immediately to the caller
(synchronously) by marking the result step (responder).

https://oreil.ly/vMSlz

Once users define the serving graph (DAG), they can test
and debug it using the built-in simulator (mock server) and
deploy it to production over one or more serverless
functions with a single command.

Example 6-15 demonstrates a multistage pipeline with data
preprocessing, feature enrichment (using MLRun'’s feature
store), an ensemble of three models (returning the average
result between the three models), and a post-processing
step. The function pipeline code contains two custom pre-

and post-processing steps (implemented in _func.py_) and
the built-in EnrichmentVotingEnsemble router class.

Example 6-15. MLRun serving graphs with pre- and post-
processing and a three leg ensemble

Define a serverless serving graph function

function = mlrun.code_to_function("app-pipe", kind="serving",
image="mlrun/mlrun",
requirements='requirements.txt")

Define the graph topology and start with the pre-process step
graph = function.set_topology("flow")

pre_process = graph.to(handler="pre_process", name="pre-process")

add an EnrichmentVotingEnsemble router with 3 child models (routes)

The input data will be enriched with feature store features

nil values will be imputed (with stats from the feature vector metadata)

router = pre_process.to(mlrun.serving.routers.EnrichmentVotingEnsemble(
name='VotingEnsemble',feature_vector_uri="my-vector", impute_policy=

{"*": "Smean"}

))

for 1, model in enumerate(models):
router.add_route(f"model{i}", model_path=model.uri)

Add the post-process step (after the router step)
router.to(handler="post_process", name="post-process")

plot the graph topology (using Graphviz)
graph.plot(rankdir="LR")

https://oreil.ly/0VdhJ

Once the function is defined, the pipeline can be simulated
by creating and using the mock server. It can then be
deployed into production microservices using the

_deploy_function()_method. See Example 6-16.
Example 6-16. Test and deploy the pipeline

Create a mock server (simulator) and test the graph with the test data
server = function.to_mock_server()
resp = server.test("/v2/models/infer", body={"inputs": test _data})

Deploy the graph as a real-time serverless function
project.deploy_function(function)

Invoke the remote function using the test data

resp = function.invoke("/v2/models/infer", body={"inputs": test_data})

MLRun simplifies the migration to production. The
observability and model monitoring functionalities are built
in. Therefore, there is no need to pile on additional code to
collect and report metrics (only to turn on the tracking
feature). In addition, users can also define and report
custom real-time metrics, which will be collected and
shown in the monitoring dashboards, or report errors,
which will be centrally logged.

MLRun serving graphs provide flexible configuration of
pipeline steps, breaking into the underlining auto-scaling
and real-time Nuclio serverless functions, while gaining the
best scalability with optimal costs. For example, as

Figure 6-8 illustrates, you can specify which steps run on
the same microservice (thus eliminating network and
serialization overhead) and which ones must spread across
microservices (for allowing the use of different open source
software/software packages or resources like GPUs per the
steps).

https://oreil.ly/dMvCY

Function 2
(infer with
GPU)

Function 4 (post
process

Step 5 H Step6

Nuclio

Function 1(data prep)

Step | H Step2

[Kafka

: —
Function 3
d(wnte to
atabase)

Step 4

Figure 6-8. MLRun serving graph mapped to multiple Nuclio serverless
functions

Model Routing and Ensembles

The basic model serving implementation loads a model into
memory and makes a prediction every time a request
arrives. However, when you serve multiple models, you
may need more advanced topologies to optimize costs, to
deliver better results by combining various models, or to
dynamically shift traffic from one model to another.

Deploying one microservice per function can be expensive,
especially if you don’t call the models frequently or if you
are using costly compute instances with GPUs or a large
memory. In such cases, you may prefer to implement a
single microservice function that hosts multiple models in
memory and routes the request to a specific model based
on the URL or on elements in the request body. (For
example, select a country-specific model based on the
country code in the request). Furthermore, you can
dynamically load and unload models into memory based on

their usage (in other words, implement a caching
mechanism) to reduce memory consumption.

While model caching solutions can reduce costs and
memory consumption, they can also add delay to the first
(noncached) request. You should use caching only when
you are not sensitive to the first request latency.

Different models can come with different software package
dependencies or resource requirements (for example, they
need a GPU). In such cases, you should deploy models
using separate container microservices, each with a
specific package and resource requirements, or group
models into containers based on those requirements and
route the traffic to the particular microservice that hosts
the relevant model.

Collocating data processing with models in the same
microservice can help increase performance by keeping the
different transformations and prediction activities in
memory versus writing and reading into storage between
steps. However, this does not allow fine-grain scaling
(scaling a specific task in the pipeline) and requires
aggregating the resource and package requirements.
Therefore, consider the tradeoff between the two
approaches based on your needs. MLRun serving graphs
provide a simple way to specify which steps are collocated
in the same container and separated into individual
containers.

A common mechanism to improve the accuracy of a model
is to combine different models that were trained using
different datasets, algorithms, or parameters. For example,
train one model with seasonal data (transactions done in
the same period of the year) and another with temporal
data (recent transactions) and combine the results from

both models to preserve the seasonal and temporal effects
on the scoring result. Another example is combining
machine learning and deep learning models and returning
the average result.

Model ensemble is a technique in machine learning where
multiple models are trained and their predictions combined
to make a final prediction and, in this way, improve the
overall model performance.

There are two common approaches to creating an
ensemble:

Bagging

Training multiple models independently on different subsets
of the training data and then combining their predictions
using some aggregation technique, such as averaging or
majority voting. Use bagging to reduce the variance of the
predictions.

Boosting

Training multiple models sequentially, where each model is
trained to correct the errors of the previous model. Use
boosting to reduce the bias of the predictions.

TIP

It is essential to monitor the performance of each submodel in an
ensemble and, in this way, understand which approach yields better
accuracy. In some cases, you may want to control the weights
between models in an ensemble based on the individual performance.
(For example, favor the temporal model due to the higher impact of
recent events.)

The Multi-Armed Bandit (MAB) algorithms (such as epsilon-
greedy, UCB, or Thompson sampling) can be used to

adaptively select the best-performing model or a
combination of models over time. MAB algorithms can
assign a score to each model that reflects its expected
performance and uncertainty. The system can then direct
more inference requests to the top-performing models
while continuing to explore other models and updating
their scores.

Model Optimization and ONNX

Some models, especially deep learning models, can
consume significant computation resources. Using
optimization techniques, you can reduce resource
consumption and improve performance. Some examples of
optimizations include the following:

Feature reduction

Reducing the size of the feature vector by removing features
that do not add significant value to the result.

Code optimization

Moving critical sections of the code to faster binary code
implementations (for example, in C, C++, Go, Rust).

Hardware acceleration

Using GPUs, TPUs, or FPGAs can significantly improve
inference performance by offloading computations from the
CPU to specialized hardware that is optimized for matrix
multiplication.

Quantization

Reducing the precision of the model’s weights and
activations, typically from 32-bit floating-point to 8-bit
integer precision.

Pruning

Removing some of the model’s weights or neurons that have
little impact on the model’s accuracy.

Model compression

Reducing the size of the model by compressing its weight,
through techniques like weight sharing, low-rank
factorization, or Huffman coding.

These frameworks can optimize models:
ONNX Runtime

A high-performance engine for executing ONNX models. It
provides hardware acceleration support for CPUs, GPUs, and
FPGAs and supports model compression techniques, such as
quantization and pruning.

Intel OpenVINO

A toolkit for optimizing and deploying machine learning
models on Intel hardware, including CPUs, GPUs, and FPGAs.
It supports model compression techniques, such as
quantization and pruning, and provides optimized libraries
for deep learning operations.

NVIDIA TensorRT

A high-performance inference engine for NVIDIA GPUs that
supports model compression techniques, such as pruning
and quantization. It provides hardware acceleration support
for NVIDIA GPUs and includes optimized libraries for deep
learning operations.

ONNX is an open format built to represent machine
learning models. ONNX defines a common set of operators
—the building blocks of machine learning and deep
learning models—and a standard file format to enable Al
developers to use models with various frameworks, tools,
runtimes, and compilers.

The ONNX runtimes run in machine native (binary) code
and support model compression techniques and hardware-
specific optimizations, which deliver significantly faster
inference performance.

Data and Model Monitoring
Monitoring solutions can be broken into three main layers:
Resource monitoring

Monitoring the resources (CPUs, GPUs, memory, storage)
used by the the ML application, as well as their health and
the service’s availability

Model and data monitoring

Monitoring the performance of the model and the data used
by the model (accuracy, drift, bias, data quality, and so on)

Application monitoring

Monitoring the overall application performance
(throughput, latency, errors, and so on) across all pipeline
steps and measuring the business KPIs defined for the
application

You can use the same solution to monitor all three layers or
different services per layer. In any case, it is essential to
correlate the information across layers (using tags and

https://onnx.ai/

labels) since resource or model performance problems will
usually impact the higher layers of the application.

Cluster monitoring solutions can monitor resources. For
example, in Kubernetes, the typical answer is to use
Prometheus and Grafana to track the microservice
resources. But first, you need to determine which model or
application is served by which container (and this can
change dynamically). Therefore, when deploying the
models as Kubernetes resources (containers, pods, and so
on), you should label them with the model and application
information.

If you use public clouds, you can use managed cloud
services for resource monitoring, such as Amazon
CloudWatch, Azure Monitor, Google Cloud Monitoring,
Datadog, and New Relic.

Model, data, and application performance metrics can also
be reported in the traditional resource and application
monitoring solutions. However, the real challenge is to
collect this information and reference metadata, and to
keep it cost-effective and scalable, given the enormous
volumes of data collected.

Model and data monitoring solutions have unique
challenges; they compare the data and model performance
in production with reference data collected at the model
development and training phases to calculate accuracy and
drift. In addition, data is collected for every model request
and must be stored for real-time dashboards and offline
access, while traditional resource and service monitoring
stores only use sampled metrics. Furthermore, there are no
one-to-one relations between the microservice and the
model, and the same container can host multiple models,
ensembles, and so on. Finally, model and data monitoring

https://oreil.ly/ch4sa
https://oreil.ly/gO_S6
https://grafana.com/
https://oreil.ly/tMRra
https://oreil.ly/ECRa8
https://oreil.ly/CGA27
https://oreil.ly/EL65s
https://newrelic.com/

solutions must also work for batch workloads, still a
dominant place where models are used.

Most model monitoring solutions are limited to structured
(tabular) data and do not support unstructured data (text,
images, videos, and so on). However, you can address
unstructured data by creating a transformation from
unstructured data to tabular data and monitoring the
results. For example, you can convert an image to numeric
RGB values or detected object metrics.

Application monitoring spans the different stages of the ML
application (data enrichment, preparation, model
prediction, actions, and so on). It looks into application-
level metrics, such as overall requests latency and
throughput, application errors, application-level metrics,
business metrics, KPIs, and others.

Multiple versions of the same application pipeline may run
in parallel (for example, in the case of A/B testing).
Therefore, you want to compare the application KPIs across
versions, not just the model performance, since a better
model does not necessarily reflect a better KPI. For
example, if the model does not respond at the right time or
if the actions following the prediction do not generate the
right impact.

Considering application-level monitoring ahead of the
design and implementation is best since it requires custom
instrumentation in multiple application junctions and ways
to collect and use reference data for KPI measurements.

Monitoring results are shown in dashboards, but they can
bring more significant value when they trigger alerts and
corrective actions. For example, model drift indication can
start a retraining flow, change the weights in a model
ensemble, or send critical notifications to administrators to

correct the problem. Therefore, the solution should provide
a mechanism to easily define conditions, thresholds, and
actions.

Two types of solutions for model monitoring are described
in the following sections:

Integrated

An integral part of a data science or MLOps platform. It
usually has fewer features but does not require glue logic
and separated management.

Standalone

Dedicated monitoring solutions are usually feature-rich but
require manual integrations and separate management.

Integrated Model Monitoring Solutions

Data science or MLOps platforms support the tasks
required to develop and deploy models. When you deploy
the model, the platform often provides basic model
monitoring, which can be operated with minimal
configuration. Integrated monitoring solutions show the
model endpoints with essential performance and health
information. Most platforms support drift detection and a
few support additional monitoring classes.

Amazon SageMaker

Amazon SageMaker supports data and model drift
detection (see the architecture in Figure 6-9). The model
endpoints capture incoming requests and model results
into S3 objects and compare them with baseline and
ground truth datasets to calculate the drift and accuracy
metrics.

https://oreil.ly/fP9e0

In SageMaker, you manually generate and upload the
reference datasets into S3 and then define a scheduled
model monitoring job (see Amazon SageMaker Model
Monitor).

You can view the model metrics and drift indications in the
SageMaker Ul (see Figure 6-10).

@ % @ Ilrliﬁ.
AMazon |eip» —pp| AMAZON |egPp
SageMaker SageMaker N
| trainingjob | | Model | | endpoint | |Applications]
. —— = b1
Baseline ; Monitorin ' -
processing Baseline f—pf " b B
job statistics and s Requests, Inference
constraints ~ | predictions) Lground truthJ

I 2

Merge job (————

, , i

-
- Training data updates Results '
+ Retraining CloudWatch statistics, and Merged

-Modelupdates metrics violations data

f

Figure 6-9. SageMaker model monitoring architecture

https://oreil.ly/8LDeR

T

B Componesti bed gt

R A —
P e R i A

v heoked ekl

Figure 6-10. SageMaker model monitoring Ul

Google Vertex Al

Google model monitoring supports tracking model requests
and results into a BigQuery table and can issue email alerts
when the specified threshold is crossed. Figure 6-11
demonstrates how the user enables the monitoring, sets the
monitoring policy, and uploads the reference data (schema
and statistics).

https://oreil.ly/5V7rO

Edit endpoint

&) Define your endpoint
€) Model settings

€) Model monitoring

) Monitoring objectives

UPDATE CAMNCEL

Maodel manitoring applies 1o all models deployed on this endpaint.

Laam mong

Model monitoring

Models used in production require continuous monitoring 1o ensure that they
perform as expected. Use model monitoring to track training-serving skew or
prediction drift, then set up alerts to notify you when thresholds are crossed. Leamn
mode

Model monitoring supports AutoML tabular and custom-trained models
. Enable model monitoring for this endpaint

Mondtoring job display namae *
vertexal_model_monionng_job_4_telco_chum a

Define the display name of the monilodng job

Monitoring window length *

Sampling rate

Sampling rate *
100

Figure 6-11. Configuring Google Vertex AI model monitoring

The essential model endpoint metrics and drift information
are visualized in the Ul (see Figures 6-12 and 6-13), and
you can access the complete data through BigQuery.

Y

m Region Logs (ot recent monitoning job
o us-certrali View Logs 2 Jull 2 201, 20000 P
@

%

-]

i

Poaded T
ehsn 2 ke Erabied 100% fano (1 maniwem, 1 Custom

RIS rained

DEPLOY AROTHER MODEL

i Chartiterst | Thour Ghours 1ZRcurs Tdsy Zdmys ddeye Tdsys Tddeys 30 dep
M PERFORMANCE RESOURCE USAGE

@ Predictions/second

[]

[

4k WO data b avallable Tor the selected time frre.

Created 4

Jul 203, |
TINZLPM

Figure 6-12. View Google Vertex AI model endpoints

Feature: language

Feature distribution @
Snapshot of distributicns when job ran at Jul 2, 2021, 200:00 P

Latest prediction stats distribution
Hover aver the chavt to wiew stals

___—-.I—-

15

Training stats distribution

Figure 6-13. View Google Vertex AI model endpoint feature skew

MLRun

MLRun open source MLOps includes an integrated
monitoring service for batch and real-time workloads. As
shown in Figure 6-14, MLRun model serving endpoints
write the performance, inputs, outputs, and user-defined
metrics into a stream. Then, a real-time serverless Nuclio
function reads and processes the data and writes the
results into different types of storage (key/value, time
series database, and Parquet files). Scheduled MLRun jobs
run periodically, read the data, calculate various metrics
(drift, accuracy, and so on), and trigger appropriate alerts.

[Nucliofunction |
Requests Model Stream
server Model monitoring €~
(stream processor)
N .
I MLRun Ul
—
Time series Key/value
database database)
Grafana
’
| S

MLRun job

Model monitoring
(batch processor/drift)

O

Figure 6-14. MLRun model monitoring architecture

You can view the model endpoint information in the MLRun
Ul (see Figure 6-15), or in Grafana (see Figure 6-16); the
production datasets are stored in MLRun'’s feature store
and can be used for post-production analytics (for example,
analyzing data quality, bias, and explainability) or used for
retraining a model.

https://oreil.ly/b81-7

Figure 6-15. MLRun model endpoint features histogram

Figure 6-16. MLRun model endpoint in Grafana

MLRun eliminates many engineering efforts by
automatically generating reference and production
datasets, managing the data assets and lifecycle,
scheduling and scaling monitoring tasks, and more.

When you train the models in MLRun, the reference data
(schema, statistics, and so on) is auto-generated and saved
with the model. You can also update the reference data
manually through the API. To operate the monitoring
functionality, you should apply the _set_tracking()_ option
in the serving function.

MLRun supports monitoring plug-ins and has extensibility
to support advanced monitoring applications for structured

and unstructured data.

Standalone Model Monitoring Solutions

Several solutions are dedicated to model monitoring. They
usually have more advanced features and user interfaces
than the integrated options, but they require manual
integration with data assets, serving, and training
frameworks. In addition, they require working with
multiple management consoles.

Examples of commercial offerings include Aporia, Arize,
WhyLabs, and Mona.

The commercial frameworks usually support multiple
monitoring applications (drift, accuracy, data quality, and
so on), friendly and rich user interfaces, advanced policies,
and multiple alerting and triggering options (email, Slack,
webhooks, and more).

You can see an example Aporia Ul wizard for creating a
new monitoring task in Figure 6-17.

n ¢ Monitor Builder

Waunance Sales Presct o
@ A0 Enviroamencs n rrrrrr Saled Predestion B heane Devitoamnst (5 Chose veriion
T Overview
(5 nahees Hi Ronald, please select what you'd Bke 1o monitor with aporia mple
iy Men Select all 1
ﬂ Versony

C_; Prediction Drift C; Prediction Drift lfﬂ Data Drify
) Daza Segrrests *= -
& Cursom Meiric

E Data Drift Tus Model Activity }3 Percentage Change

B Data Polsis

ﬁ Migsing Values l: F1 Seore sl New Values
(B Tome Sawns = @

W Dasa Sums I

Figure 6-17. Aporia new monitor wizard

https://oreil.ly/lTy9T
https://arize.com/
https://whylabs.ai/
https://oreil.ly/Qo2GU

The challenge is uploading the prediction and reference
data to storage and managing the data lifecycle, rather
than getting it out of the box in integrated platforms such
as MLRun. See the code example in Example 6-17 for
uploading batch prediction data. (Real-time prediction data
requires an additional step of conversion from a stream to
Parquet files).

Example 6-17. Write prediction inputs and outputs into a
Parquet file (source: Aporia)

import

Preprocess & predict
X = preprocess(...)
y = model.predict(X_pred)

Concatenate features, predictions and any other metadata
df = ...

Store predictions

fastparquet.write(
filename=f"s3://my-models/{MODEL_ID}/{MODEL_VERSION}/serving.parquet",
data=df,
append=True,

)

An example of an Aporia monitoring dashboard is shown in
Figure 6-18.

u Insurance Sales Prediction

Predact wivach progperts will be nsenesoed in g veheche
T gepreaw s

Lasd Werpkon Wersion Firsl Seen L LT LY]

-
wi_nghbcond 4 Mow JOZT. V608
B s
- Lidn Prodicnesn Zdirs Prediction -
B o mingies 390
338
B e lagmaany & 8% L Day
PR
PR I
B S P
e
© et = svmee —— B
o et @ S S —— e H
W e i s ubgboosl WD
& s
Fots st
5528 - e == s m W -
Prodiction Diatribation Tap !lwr-fﬂl Diatrisution
1
oatillio T, Il =
FRp— P
PR [4 PO 11 [P | T O FYION L

Figure 6-18. Aporia model monitoring dashboard

A popular open source model monitoring framework is
Evidently, which monitors drift and data quality. Evidently
compares the reference dataset with the prediction dataset
and generates beautiful static HTML reports. In addition, it
can write the resulting metrics into Prometheus and show

them in pre-designed Grafana dashboards.

Example 6-18 demonstrates how you generate a report that
compares the reference data with the prediction inputs and

outputs data (current_data). In Figure 6-19, you can see

report examples.

Example 6-18. Generating Evidently report

report = Report(metrics=[
DataDriftPreset(),
D

report.run(reference_data=reference, current_data=current)
report.save_html("file.html")

https://oreil.ly/4SB2S

Data drift Model performance Target drift

e ik e e i
T p:n Pt 73 paxn -

Sy Ty R P e B T
- = = L |- P 2
el ™ .l [

["_""_""'“'_ IIIII - |I-|'.-l._l - J:fi £

PR

e

= i B, == A ST =
el e -| -|
e N e - £ FoE e 'I;;i"EiII:'II:E_: :E i!hi:!lli

== il R - e s - :

- - L L =

= = e B n - e =

== k. e == f o i lee: .=

LR]

Figure 6-19. Evidently reports

As you can see, the responsibility for generating the
reference and production datasets and generating the
report is on the user, who needs to add code for
monitoring, data generation, and lifecycle management.
Therefore, Evidently is an excellent interactive
development and comparison solution, and you can extend
it manually to handle batch prediction workloads. However,
it is unsuitable for continuous batch or real-time model
serving and lacks an interactive Ul portal, central
management, alerts, security, and more.

Model Retraining

COVID-19 abruptly changed human behavior across the
globe. But the pandemic not only significantly impacted
human lives, it also disrupted ML models. Data engineers
woke up to find that their ML models, which were trained
on pre-pandemic data sets, had suddenly drifted and were
not delivering reliable results.

The models’ performance degraded because the pre-
pandemic data was not reflecting current behaviors and
therefore it was no longer relevant or accurate. These
models had to be retrained to ensure their validation and
efficacy for the pandemic era.

While COVID-19 is an extreme example, data keeps
changing because people change and the world changes.
This means models trained on outdated data lose relevance.
Model retraining, also known as continuous training or
continual training, is the act of training models again and
again on updated data and then redeploying them to
production.

By retraining, data engineers can ensure the models are
up-to-date, valid, and trustworthy. This ensures the
predictions and outputs of models are always accurate for
the business use cases they were designed to answer. If
models aren’t retrained, they will become stale.

Accurate models are essential for business success. If an
organization uses a model that provides inaccurate outputs,
the result could be loss of customers and profit. For
example, if a model is supposed to detect fraud but doesn’t
do so accurately, this will mean either that fraudsters get
away with fraud, costing the company its customers and
perhaps a loss of millions in insurance claims, or that there
will be too many false positives, resulting in frustrated end-
users (who won’t be able to make online purchases) and
adverse financial impact to the company’s customers
(again, losing customers).

Automating the process of model retraining makes it
reliable and optimized. Automation also reduces the chance
of manual errors or data engineers forgetting to retrain
models. With automation, data engineers and data

https://oreil.ly/Iio1T

scientists can ensure their measurements are defensible
and quantitative and that explainability tests are set up.

TIP

Automated retraining should take place as part of an MLOps
pipeline. It can be integrated as part of the CI/CD pipeline and may
be triggered automatically by the model monitoring service upon
drift detection.

When to Retrain Your Models

There’s no right or wrong answer when deciding when to
retrain (though not retraining is definitely the wrong
answer). The answer to “when to retrain?” depends on the
business use case. The ultimate goal, however, is to avoid
the two types of drift:

Data drift

When the statistical distribution of production data is
different from the baseline data used to train or build the
model. This happens when human behavior changes,
training data was inaccurate, or there were data quality
issues.

Concept drift

When the statistical properties of the target variable change
over time. In other words, the concept, or the relations
between the datasets, have drifted.

There are four main approaches for retraining:

Interval-based

https://oreil.ly/1pv5q
https://oreil.ly/Lw1vW
https://oreil.ly/6lhh5

According to a certain schedule or repeating interval; for
example, retraining every Sunday night or every end of the
month. This ensures the models will always stay up-to-date
since they are constantly retrained. However, this method
can be costly since resources are used even when retraining
1S unnecessary.

Performance-based

Retraining takes place when a predetermined threshold or
baseline is crossed, which indicates model degradation and
drift. This ensures the model can always answer the
business use case. However, if the threshold is inaccurately
determined or the data does not come in on time, the model
could turn stale before the organization is aware and can
retrain it.

Based on data changes

This type of retraining takes place when there are new data
sets or when code changes are made. Such retraining
ensures adaptivity to engineering changes but might miss
drift that degrades the model performance.

Manually on-demand

This nonautomated retraining method provides complete
control for data scientists but is prone to errors and could
mean retraining does not occur when needed.

Strategies for Data Retraining

Model retraining takes place by lifting the training data
into the retraining pipeline. This data includes features,
labels, model parameters, and pipeline parameters.

The question of how much data should be used for
retraining depends on the organization’s requirements and
restrictions, which determine the strategy. Data amounts
required for retraining can be determined through the
following approaches:

Fixed window

A practical yet simplistic approach

Dynamic window

Optimal for large datasets that are constantly updated but
also compute intensive

Representative subsample selection

Accurate since it’s similar to production data but time
consuming and uses a lot of resources

Model retraining can be an online or offline event, with
offline being the most popular approach. Offline retraining,
also known as batch retraining, usually uses all available
data or a considerable amount of existing data. It’s easy to
do but requires more thought about the retraining strategy.

TIP

Online retraining is recommended for real-time streaming use cases.
The data used for online retraining is new data, not samples already
seen by the models. This makes online retraining more accurate and
can help avoid drift, though it is also more costly.

To train models, you need labels (the target values), and
labels usually arrive in a delay after the features. For
example, a churn prediction application may have all the

input features immediately. However, the target label
(indicating if there was a churn) can come one month later.
Therefore, the training set data window should only cover
transactions with labels. In addition, since the model reacts
to an expected churn, it may influence the dataset and
require adaptations to the dataset, which will make it more
balanced.

When the data is complex or unstructured, it is challenging
to calculate the labels. In such cases, organizations use
manual labeling. They extract a sample of the data,
manually label it, compare it with the predicted results, and
use the labeled dataset for model retraining and tuning.

Despite the importance of model retraining, it’s important
to remember that it also comes at a cost. Model retraining
requires resources for data storage, computing, adjusting
your architecture for retraining, data professionals’ time,
and more. Therefore, some organizations are hesitant
about running it continuously. We recommend you adjust
your retraining schedule to your business requirements to
ensure cost-effectiveness while maintaining model
performance.

Model Retraining in the MLOps Pipeline

Retraining is achieved by triggering the model
development pipeline (data preparation, training,
validation, and so on). The trigger can be initiated based on
a scheduled event or after a drift indication (triggered by
the model monitoring component). An important step is
validating the model in a staging environment before
deploying it to production. If the results are not as
expected, then the models and pipelines need to be
retrained.

After retraining, we recommend leaving the old model
running and deployed to production for a specific period of
time or until the model has served a certain number of
requests. By running these A/B tests you can identify which
model performs better, by comparing its predictions with
those of the others. Another approach is to use an
ensemble with the old and new models and change the
weight or remove the old model over time.

Finally, model retraining also can be used for training new
models. This is called transfer learning, in which existing
models are reused to retrain new models. This is commonly
used in deep learning since it saves resources by reusing
models instead of rebuilding them.

Deployment Strategies

In production, models and applications must always be
ready to serve requests and they should not suffer from
downtime due to version upgrades. In addition, a more
advanced practice is gradually moving requests to the new
version, while validating that performance and quality
levels are met. Then, if the latest version fails or
underperforms, you can roll back to the previous version.

To guarantee no service disruption, you can use a rolling
upgrade deployment strategy. This strategy replaces the
application version used by the service, one instance at a
time. Rolling upgrades are supported out of the box in
cloud-native platforms and Kubernetes. However, when you
want to evaluate the candidate versions against the current
version, you need two or more versions to coexist and serve
requests until you can determine that the new version
meets your quality and performance goals. Or you can use

the other versions to serve as a baseline to compare
performance.

There are four standard model deployment and upgrade
strategies (see Figure 6-20):

A/B Testing

The new model is deployed alongside the old model, and
traffic is divided between the two. The output of both models
is then monitored to determine which one performs best,
and the best-performing model is promoted. This method is
a good fit for most use cases. In some cases, you may deploy
more than two models, for example: A/B/C testing, A/B/C/D
testing, and so on.

Blue/Green

Setting up two identical environments, dubbed Blue and
Green, with one being the live production environment and
the other a staging environment. The new model is deployed
to the staging environment. Once it operates as expected,
staging becomes production, the old version is removed, and
more recent models are deployed into staging. This method
is straightforward and relatively simple, although it incurs
high operational costs since you have to operate