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Preface

As MLOps veterans, we have often seen the following
scenario play out across enterprises building their data
science practices.
Traditionally, when enterprises built their data science
practice, they would start by building a model in the lab,
with a small team, often working on their laptops and with
a small, manually extracted dataset. They developed the
model in operational isolation, and the results were
incorporated manually into applications. Then, once the
model was complete and predicting with accuracy, the true
struggle of trying to bring it to production, to generate real
business value, began.
At this point, the enterprise faced challenges such as
ingestion of production data, large scale training, serving in
real-time, and monitoring/management of the models in
production. These hurdles would often take months to
overcome, presenting a huge cost in resources and lost
time.
The AI pipeline is siloed, with teams working in isolation
and with many different tools and frameworks that don’t
necessarily play well with each other. This results in a huge
waste of resources and businesses not being able to
capitalize on their investment in data science. According to
Gartner, as many as 85% of data science projects fall short
of expectations.
In this book, we propose a mindset shift, one that addresses
these existing challenges that prevent bringing models to
production. We recommend a production-first approach:

https://oreil.ly/hqsHu


starting out not with the model but rather by designing a
continuous operational pipeline, and then making sure the
various components and practices map into it. By
automating as many components as possible and making
the process fast and repeatable, the pipeline can scale
along with the organization’s needs and provide rapid
business value while answering dynamic and enterprise
MLOps needs.
Today, more businesses understand the vast potential of AI
models to positively impact the business across many new
use cases. And with generative AI opening up new
opportunities for business innovation across industries, it
seems that AI adoption and usage are set to skyrocket in
the coming years. This book explores how to bring data
science to life for these real-world MLOps scenarios.



Who This Book Is For

This book is for practitioners in charge of building,
managing, maintaining, and operationalizing the data
science process end to end: the heads of data science,
heads of ML engineering, senior data scientists, MLOps
engineers, and machine learning engineers.
These practitioners are familiar with the nooks and
crannies (as well as the challenges and obstacles) of the
data science pipeline, and they have the initial
technological know-how, for example, in Python, pandas,
sklearn, and others.
This book can also be valuable for other technology leaders
like CIOs, CTOs, and CDOs who want to efficiently scale the
use of AI across their organization, create AI applications
for multiple business use cases, and bridge organizational
and technological silos that prevent them from doing so
today.
The book is meant to be read in three ways. First, in one
go, as a strategic guide that opens horizons to new MLOps
ideas. Second, when making any strategic changes to the
pipeline that require consultation and assistance. For
example, when introducing real-time data into the pipeline,
scaling the existing pipeline to a new data source/business
use case, automating the MLOps pipeline, implementing a
Feature Store, or introducing a new tool into the pipeline.
Finally, the book can be referred to daily when running and
implementing MLOps. For example, for identifying and
fixing a bottleneck in the pipeline, pipeline monitoring, and
managing inference.

Navigating This Book



This book is built according to the phases of the MLOps
pipeline, guiding you through your first steps with MLOps
up to the most advanced use cases:

Chapters 1–3 show how organizations should approach
MLOps, how data science teams can get started, and
what to prepare for your first MLOps project.

Chapters 4–7 explain the components of a resilient and
scalable MLOps pipeline and how to build a machine
learning pipeline that scales across the organization.

Chapter 8 covers deep learning pipelines and also dives
into GenAI and LLMs.

Chapters 9 and 10 show how to adapt pipelines for
specific verticals and use cases, like hybrid
deployments, real-time predictions, composite AI, and
so on.

Throughout the book, you will find real code examples to
interactively try out for yourself.
After reading this book, you will be a few steps closer to
being able to:

Build an MLOps pipeline.

Build a deep learning pipeline.

Build application-specific solutions (for example, for
NLP).

Build use-case specific solutions, (for example, for
fraud prediction).

Conventions Used in This Book



The following typographical conventions are used in this
book:
Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.



WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, and so
on) is available for download at
https://github.com/mlrun/demo-fraud and
https://github.com/mlrun/demo-llm-tuning.
If you have a technical question or a problem using the
code examples, please send email to
bookquestions@oreilly.com.
This book is here to help you get your job done. In general,
if example code is offered with this book, you may use it in
your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a
program that uses several chunks of code from this book
does not require permission. Selling or distributing
examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into
your product’s documentation does require permission.
We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Implementing MLOps in the

Enterprise by Yaron Haviv and Noah Gift (O’Reilly).
Copyright 2024 Yaron Haviv and Noah Gift, 978-1-098-
13658-1.”
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mailto:bookquestions@oreilly.com


If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and
a vast collection of text and video from O’Reilly and 200+
other publishers. For more information, visit
https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this
book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/


707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at https://oreil.ly/mlops-in-the-enterprise.
Email bookquestions@oreilly.com to comment or ask
technical questions about this book.
For news and information about our books and courses,
visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-

media.
Follow us on Twitter: https://twitter.com/oreillymedia.
Watch us on YouTube: https://youtube.com/oreillymedia.
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Chapter 1. MLOps: What Is

It and Why Do We Need It?

At the root of inefficient systems is an interconnected web
of incorrect decisions that compound over time. It is
tempting to look for a silver bullet fix to a system that
doesn’t perform well, but that strategy rarely, if ever, pays
off. Consider the human body; there is no shortage of quick
fixes sold to make you healthy, but the solution to health
longevity requires a systematic approach.1

Similarly, there is no shortage of advice on “getting rich
quick.” Here again, the data conflicts with what we want to
hear. In Don’t Trust Your Gut (HarperCollins, 2022), Seth
Stephens-Davidowitz shows that 84% of the top 0.1% of
earners receive at least some money from owning a
business. Further, the average age of a business founder is
about 42, and some of the most successful companies are
real estate or automobile dealerships. These are hardly get-
rich-quick schemes but businesses that require significant
skill, expertise, and wisdom through life experience.
Cities are another example of complex systems that don’t
have silver bullet fixes. WalletHub created a list of best-run
cities in America with San Francisco ranked 149 out of 150
despite having many theoretical advantages over other
cities, like beautiful weather, being home to the top tech
companies in the world, and a 2022-2023 budget of $14
billion for a population of 842,000 people. The budget is
similar to the entire country of Panama, with a population
of 4.4 million people. As the case of San Francisco shows,
revenue or natural beauty alone isn’t enough to have a

https://oreil.ly/yDbvb
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well-run city; there needs to be a comprehensive plan:
execution and strategy matter. No single solution is going
to make or break a city. The WalletHub survey points to
extensive criteria for a well-run city, including
infrastructure, economy, safety, health, education, and
financial stability.
Similarly, with MLOps, searching for a single answer to
getting models into production, perhaps by getting better
data or using a specific deep learning framework, is
tempting. Instead, just like these other domains, it is
essential to have an evidence-based, comprehensive
strategy.

What Is MLOps?

At the heart of MLOps is the continuous improvement of all
business activity. The Japanese automobile industry refers
to this concept as kaizen, meaning literally “improvement.”
For building production machine learning systems, this
manifests in both the noticeable aspects of improving the
model’s accuracy as well the entire ecosystem supporting
the model.
A great example of one of the nonobvious components of
the machine learning system is the business requirements.
If the company needs an accurate model to predict how
much inventory to store in the warehouse, but the data
science team creates a computer vision system to keep
track of the inventory already in the warehouse, the wrong
problem is solved. No matter how accurate the inventory
tracking computer vision system is, the business asked for
a different requirement, and the system cannot meet the
goals of the organization as a result.



So what is MLOps? A compound of Machine Learning (ML)
and Operations (Ops), MLOps is the processes and
practices for designing, building, enabling, and supporting
the efficient deployment of ML models in production, to
continuously improve business activity. Similar to DevOps,
MLOps is based on automation, agility, and collaboration to
improve quality. If you’re thinking continuous
integration/continuous delivery (CI/CD), you’re not wrong.
MLOps supports CI/CD. According to Gartner, “MLOps
aims to standardize the deployment and management of
ML models alongside the operationalization of the ML
pipeline. It supports the release, activation, monitoring,
performance tracking, management, reuse, maintenance,
and governance of ML artifacts“.

MLOps in the Enterprise

There are substantial differences between an enterprise
company and a startup company. Entrepreneurship expert
Scott Shane wrote in The Illusions of Entrepreneurship

(Yale University Press, 2010) “only one percent of people
work in companies less than two years old, while 60
percent work in companies more than ten years old.”
Longevity is a characteristic of the enterprise company.
He also says, “it takes 43 startups to end up with just one
company that employs anyone other than the founder after
ten years.” In essence, the enterprise builds for scale and
longevity. As a result, it is essential to consider
technologies and services that support these attributes.

https://oreil.ly/fizFl


NOTE

Startups have technological advantages for users, but they also have
different risk profiles for the investors versus the employees. Venture
capitalists have a portfolio of many companies, diversifying their risk.
According to FundersClub, a typical fund “contains 135 million” and
is “spread between 30-85 startups.” Meanwhile, startup employees
have their salary and equity invested in one company.

Using the expected value to generate the actual equity value at a
probability of 1/43, an enterprise offering a yearly 50k bonus returns
200k at year four. A startup produces $4,651.16 in year four. For
most people, on average, startups are a risky decision if judged on
finance alone. However, they might offer an excellent reward via an
accelerated chance to learn new technology or skills with the slight
chance of a huge payout.

On the flip side, if a startup’s life is dynamic, it must pick
very different technology solutions than the enterprise. If
there is a 2.3% chance a startup will be around in 10 years,
why care about vendor lock-in or multicloud deployment?
Only the mathematically challenged startups build what
they don’t yet need.
Likewise, if you are a profitable enterprise looking to build
upon your existing success, consider looking beyond
solutions that startups use. Other metrics like the ability to
hire, enterprise support, business continuity, and price
become critical key performance indicators (KPIs).

Understanding ROI in Enterprise Solutions

The appeal of a “free” solution is that you get something for
nothing. In practice, this is rarely the case. Figure 1-1
presents three scenarios. In the first scenario, the solution
costs nothing but delivers nothing, so the ROI is zero. In
the second scenario, high value is at stake, but the cost
exceeds the value, resulting in a negative ROI. In the third

https://oreil.ly/LHfhl
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scenario, a value of one million with a cost of half a million
delivers half a million in value.
The best choice isn’t free but is the solution that delivers
the highest ROI since this ROI increases the velocity of the
profitable enterprise. Let’s expand on the concept of ROI
even more by digging into bespoke solutions, which in
some sense are also “free” since an employee built the
solution.

Figure 1-1. Evaluating ROI for technology platform solutions

In Figure 1-2, a genuinely brilliant engineer convinces
management to allow them to build a bespoke system that
solves a particular problem for the Fortune 100 company.
The engineer not only delivers quickly, but the system
exceeds expectations. It would be tempting to think this is
a success story, but it is actually a story of failure. One year
later, the brilliant engineer gets a job offer from a trillion-
dollar company and leaves. About three months later, the
system breaks, and no one is smart enough to fix it. The
company reluctantly replaces the entire system and
retrains the company on the new proprietary system.



Figure 1-2. Bespoke system dilemma

The ultimate cost to the organization is the lack of
momentum from using a superior system for a year,
alongside the training time necessary to switch from the
old system to the new system. Thus, a “free” solution with
positive ROI can have long-term negative ROI for an
organization. This scenario isn’t just hypothetical; you may
have seen it yourself.2

In Fooled by Randomness: The Hidden Role of Chance in

Life and the Markets (Random House, 2008), Nassim Taleb
argues, “it does not matter how frequently something
succeeds if failure is too costly to bear.” This statement
directly applies to a successful enterprise that wants to
implement MLOps. Taking the right kind of strategic risk is
of critical importance. In the following section, we discuss
the concept of risk in more detail.

Understanding Risk and Uncertainty in the

Enterprise



Not all risk is the same, just as not all uncertainty is the
same. Unlike a startup, an enterprise has made it to the
survival phase. There are some risks that enterprises do
not need to take. In his book about the enterprise, Good to

Great (Harper Business, 2011), Jim Collins asks, “How do
good-to-great organizations think differently about
technology?” He found that in every case a “good-to-great”
company found technological sophistication and became a
pioneer in applying technology. Further, Collins states that
technology is an accelerator, not a creator, of momentum.

NOTE

Mark Spitznagel makes a case for considering the geometric mean in
financial investment in Safe Haven (Wiley, 2021). He states, “Profit is
finite. Risk is infinite.” The percentage of your wealth you can lose is
more important than the absolute value of the wealth you could lose
when investing. This fact is well suited to the enterprise. Why take a
risk with unbounded loss?

Collins’ key point about technology directly applies to
MLOps in the enterprise. The purpose of machine learning
is to accelerate the business value that is already there.
The reason to use machine learning isn’t to pivot the
organization to becoming machine learning researchers
competing with companies that specialize in research; it is
to accelerate the strategic advantages of the organization
through technology.
The calculated risk of adopting machine learning as a
business accelerator is acceptable if done in a manner that
allows an organization to limit the downsides of technology
change management. There is essentially unbounded risk
in a company creating bespoke machine learning solutions
and platforms when its core strength is in some other



industry, such as manufacturing, hospitality, or financial
services.
Many options exist to accelerate technological
advancement in the enterprise, including using pretrained
models like Hugging Face or TensorFlow Hub, computer
vision APIs like AWS Rekognition, or open source AutoML
solutions like Ludwig or MLOps orchestration frameworks
like MLRun. Enterprises that adopt MLOps with an
approach of using the right level of abstraction give
themselves a “good-to-great” advantage over organizations
that “hired 15 data scientists” who do “research.” In the
latter example, it is often the case that after years of
research, in the best case nothing is done, but in the worst
case, a lousy solution creates a worse outcome than doing
nothing.
Economist Frank Knight clearly articulates the difference
between risk and uncertainty: the reward for taking a
known risk is very different than a risk that is
immeasurable and impossible to calculate. This form of
risk, called Knightian uncertainty, was named after Knight.
An enterprise doing machine learning should deeply
consider which risk they are taking: a regular risk that is
knowable, or are they embarking on a path with Knightian
uncertainty? In almost all cases, it is better to take
knowable risks in machine learning and AI since technology
is not the creator of growth; instead, it is the accelerator.
Knowing that acceleration is the crucial insight into great
companies that use technology, let’s look at some of the
differences in technology acceleration between MLOps and
DevOps.

MLOps Versus DevOps

https://oreil.ly/t6t2-
https://tfhub.dev/
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Without DevOps, you cannot do MLOps. DevOps is a
foundational building block for doing MLOps, and there is
no substitute. DevOps is a methodology for releasing
software in an agile manner while constantly improving the
quality of both business outcomes and the software itself. A
high-level DevOps practitioner has much in common with a
gourmet chef. The chef has deep knowledge of ingredients
and years of practical experience creating beautiful and
delicious meals, and they can make these meals in an
industrialized and repeatable manner. The repetition allows
a restaurant to stay open and earn a profit.
Similarly, with DevOps, an expert in the domain has
detailed knowledge of how to build software and deploy it
in a high-quality and repeatable manner. One of the biggest
challenges for experts in data science to transition to
MLOps is a lack of experience doing DevOps. There is no
substitute for experience; many data science practitioners
and machine learning researchers should get experience
building and deploying software with the DevOps
methodology to get the foundational knowledge and
experience necessary to be an expert at MLOps.

NOTE

You can learn more about DevOps from Python for DevOps (O’Reilly)
by Noah Gift, Kennedy Behrman, Alfredo Deza, and Grig Gheorghiu.

There are apparent differences, though, between
traditional DevOps and MLOps. One clear difference is the
concept of data drift; when a model trains on data, it can
gradually lose usefulness as the underlying data changes. A
tremendous theoretical example of this concept comes from
Nassim Taleb in Fooled by Randomness (Random House,

https://learning.oreilly.com/library/view/python-for-devops/9781492057680/


2021), where he describes how a “naughty child,” as shown
in Figure 1-3, could disrupt the understanding of the
underlying distribution of red versus black balls in a
container.

Figure 1-3. “Naughty child” data drift problem

In a static condition, the more balls pulled from a
container, the more confident a person can be of the
underlying distribution of red versus black balls. In a
dynamic condition, if the balls are constantly changing,
then a model trained on an older data version won’t be
accurate. This example captures one of many unique
elements specific to MLOps not found in DevOps.



The takeaway is that DevOps is a necessary foundation for
MLOps, but MLOps’ additional requirements, like data
drift, don’t appear in traditional DevOps.

NOTE

Microsoft notes, “Data drift is one of the top reasons model accuracy
degrades over time.”

What Isn’t MLOps?

One way to understand more about MLOps is to define
what it is not. Here are some common MLOps anti-
patterns:
Hiring a team of data scientists and hoping for the best

Perhaps the most common of the MLOps anti-patterns is
hiring a team of data scientists and expecting an excellent
solution to appear. Without organizational support that
understands MLOps and technology infrastructure to
support them, there will not be an ideal outcome.

Building only bespoke machine learning solutions

A fundamental problem with building only customized
solutions is that they may not be necessary for an
organization’s business goals. Training a bespoke machine
learning model on propriety data for a self-driving company
is essential to a competitive advantage. Training a similar
model for a Fortune 500 delivery company could be a costly
experiment adding no real value to the business.

Dismissing DevOps importance

Teams that work in silos are not following the best practices
of DevOps. For example, it is impractical to have a data

https://oreil.ly/gTwJ2


science team in Texas that builds models in R and then
throws them over to the DevOps team in San Francisco’s
financial district to put into the software stack in Python.

Ultimately, MLOps requires a business and production-first
mindset. The purpose of machine learning is to accelerate
business value. This means the teams building solutions
must be agile in their approach to solving machine learning
problems.

Mainstream Definitions of MLOps

A challenge in technology is separating marketing strategy
from technology strategy. In the case of MLOps, it is not a
marketing strategy; it is a specific solution to a severe
problem in the enterprise. The bottom line is that models
are not making it into production; if they do, they are
brittle and fall apart when faced with the complexities of
the actual world. Various surveys show that 50-70% of
organizations have failed to deliver AI pilots or models to
production.
With the condition identified, let’s find the cure. The cure
needs to address the following key issues (among others):

Model deployment and development time

Collaboration between different teams

Operational excellence of ML systems

Data governance

Enhancing the ROI of the enterprise deploying the
model

https://oreil.ly/9XbAP


One minimalist way to define MLOps is that it supports ML
development like DevOps supports software development.

What Is ML Engineering?

One way to define ML engineering is to look at popular
certifications. Google’s Professional Machine Learning
Engineer explains the following criteria for a professional
ML engineer:
Frame ML problems

Which model to choose depends on business constraints and
the context. For example, a business may decide to classify
damaged shipped boxes versus successfully delivered
packages. In that context, a classification model would be
more appropriate than a regression model.

Architect ML solutions

An ML engineer develops a solution to solve the correctly
framed problem using machine learning alongside other
team members.

Design data preparation and processing systems

Two critical steps in data preparation and processing are
constructing the dataset and then transforming the data.

Develop ML models

The detailed modeling process involves a team or individual
that creates a model correctly suited to initial model
framing.

Automate and orchestrate ML pipelines

A pipeline serves to create a process for reproducible and
maintainable ML.

https://oreil.ly/qudLc
https://oreil.ly/I1c1s
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Monitor, optimize, and maintain

It is better to be proactive than reactive in building complex
systems. Building monitoring allows for a proactive
approach to maintaining ML systems.

ML engineering aims to build high-quality ML models that
solve specific business problems while creating ROI.

NOTE

Several O’Reilly books discuss machine learning engineering,
including Data Science on the Google Cloud Platform, Machine

Learning Design Patterns, and Practical MLOps.

MLOps and Business Incentives

A classic problem in business school is incentives, often
described as “who moved the cheese?” This scenario refers
to a rat in a maze that moves depending on where the
cheese is. Similarly, there are two common incentives
worth discussing in MLOps: negative externalities and
hiring data scientists without regard for ROI:
Negative externalities

Negative externalities, like a company creating a profit
dumping toxic waste into a river instead of the more
expensive appropriate disposal, are classic examples of the
fundamental problems in capitalism. In machine learning,
the negative externalities could be biased algorithms that
send an innocent person to jail or deny a person credit
based on race, religion, national origin, and other categories.
Even an unintentionally created bias in a model is still illegal
(e.g., denying credit based on age). Enterprises that fail to

https://oreil.ly/Av_sW
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look into the future could expose themselves to existential
risk if system bias against elderly applications, for example,
were accidentally baked into a machine learning model.

Hiring data scientists without regard for ROI

It has recently been in vogue to hire data scientists without
regard for the problem they are solving. As we discussed,
this strategy ultimately doesn’t work because models are not
in production at most organizations doing AI and ML.

MLOps in the Cloud

MLOps methodology leverages several critical advantages
of cloud computing. First, the cloud is an elastic resource
that enables both the efficient use of computing and
storage and the ability to scale to meet almost any demand.
This capability means that cloud computing has on-demand
access to essentially infinite resources.
Second, the cloud has a network effect in that cloud
technologies benefit from integrating other cloud
technologies. A great example is AWS Lambda, a serverless
technology. AWS Lambda is a valuable service to build
applications with, not because of what it does alone, but
because of the deep integration with other AWS services
like AWS Step Functions, Amazon SageMaker, or AWS S3.
For any active cloud platform, you can assume that the
integrated network of services further strengthens its
capabilities as the platform develops more features.
Third, all cloud vendors have MLOps platforms. AWS has
SageMaker, Azure has Azure Machine Learning, and
Google has Vertex AI. Even smaller niche clouds like
Alibaba Cloud has their Machine Learning Platform for AI.
By using a cloud platform, an organization will likely use
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some of the offerings of the native ML platform and
potentially augment it with custom solutions and third-
party solutions.
Fourth, all cloud vendors have Cloud Development
Environments. A significant trend is the use of a
combination of lightweight CloudShell environments like
AWS CloudShell, heavier full interactive development
environment (IDE) options like AWS Cloud9, and notebook
environments, both free like SageMaker Studio Lab or
Google Colab and those with rich IDE integration like
SageMaker Studio.
Finally, depending on what a company is doing, it may have
no option but to use cloud computing. Some cloud
computing components are a hard requirement for
organizations specializing in building bespoke deep
learning solutions because deep learning requires
extensive storage and compute capabilities.
In addition to the public cloud vendors, several additional
players offer MLOps solutions in the cloud (see later in this
section). These vendors can operate on the public cloud or
on private clouds. The advantage of using a smaller vendor
is the customization level that such a company provides its
customers. In addition, an MLOps vendor will have more in-
depth expertise in MLOps since that is its only focus.
Integrated vendors often ensure more relevant features
and many more integrations. Finally, by choosing a vendor
that is agnostic to a specific cloud provider, you, as a
customer, aren’t connected to it either. Instead, you can
use the vendor across multiple clouds or on additional
infrastructure that you may have (see later in this section).
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NOTE

One helpful resource for machine learning vendor analysis is the AI
Infrastructure Alliance (AIIA). This organization provides data
scientists and engineers with clarity and information about AI/ML
tools to build robust, scalable, end-to-end enterprise platforms. One
resource is a comprehensive MLOps landscape that maps out all the
players in the industry. This document includes an updated MLOps
landscape that will map out open source and enterprise solutions for
MLOps. The new landscape will encompass multiple categories and
hundreds of companies while detailing the capabilities of each
vendor solution.

In Figure 1-4, notice a typical pattern among all clouds in
which there is a set of cloud development environments,
flexible storage systems, elastic compute systems,
serverless and containerized managed services, and third-
party vendor integration.

Figure 1-4. Cloud MLOps landscape

Here is more detail about these categories:

https://oreil.ly/ezPlN


Cloud development environments

Generally, developer-centric tools like cloud shells and IDEs
are on one extreme and machine learning-centric tools on
the other. Storage query tools like Google BigQuery, Amazon
Athena, or Azure Databricks Integration are in the middle.

MLOps platforms that operate in the cloud

MLOps platforms are built specifically for running MLOps
for enterprises on the cloud or across any environment.
Solutions like Iguazio, Valohai, DataRobot, Azure Databricks
and Outerbounds, and many others offer a wide variety of
MLOps solutions for the enterprise.

Elastic storage systems and elastic computing systems

Deep learning systems thrive on big data, and flexible
compute capabilities from GPUs, CPUs, and AI Accelerator
application-specific integrated circuits (ASICs) like Tensor
Processing Units (TPU). As a result, MLOps platforms, both
native and third party, heavily use this elastic capability to
provide managed solutions.

Serverless and containerized managed services

Cloud platforms evolve toward more serverless solutions
like AWS Lambda or Google Cloud functions and solutions
with fully managed containerized solutions such as Google
Cloud Run or AWS Fargate. These managed services, in turn,
have deep platform integration, which enhances the value
proposition of the cloud platform through a network effect.

Third-party vendor integrations

A cloud platform can’t have the exact right mix of
everything and at the right quality. A trip to a large
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warehouse store yields a wide variety of offerings at a
reasonable price. However, they may not have the authentic
gourmet food you like or the exact appliance features you
need. Just like that large warehouse store, a cloud provider
cannot go deep on everything. As a result, third-party
integrations handle these specialized or advanced use cases.

With the common aspects of cloud computing for MLOps
covered, let’s move on to discuss the cloud environments in
more detail.

Key Cloud Development Environments

One of the best new products from Microsoft is GitHub
Codespaces, a cloud-based development environment with
many customizable features and a great place to practice
MLOps. In particular, what is helpful about this
environment is the deep integration with GitHub and the
ability to customize it with a specialized runtime. Finally,
the synergy with GitHub Actions allows for a great CI/CD
story.

NOTE

Learn more about GitHub Codespaces with the following videos:

“Building with the GitHub EcoSystem: Copilot, Codespaces, and
GitHub Actions”

“GitHub Codespaces and Custom Dotfiles”

“Compiling Python from Scratch with GitHub Codespaces”

“GitHub Copilot Driven: Python DevOps from Functions to
Continuous Delivery of Microservices on AWS”

“GitHub Codespaces Course”
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Three different flavors of cloud-based developments are
available from Google: Colab notebooks, Google Cloud
Shell, and Google Cloud Shell Editor.
Figure 1-5 shows a full editor available for Google Cloud
Platform (GCP).

Figure 1-5. Google Cloud Shell Editor

In Figure 1-6, API docs integrate with the development
environment.
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Figure 1-6. Google Cloud Shell Editor API

In Figure 1-7, the terminal shows a standard view of the
experience using the cloud shell.

Figure 1-7. Google Cloud Shell terminal



NOTE

Learn more about Colab notebooks from the following videos:

“Data Science on Your First Day with Python”

“Python for Data Science with Colab and pandas in One Hour
Video Course”

“What are Google Colab Notebooks and How Do You Share
Them for Data Science Projects?”

Finally, the AWS platform has cloud shell environments, as
shown in Figure 1-8.

NOTE

One quick way to learn about multiple clouds simultaneously is by
setting up a multicloud continuous integration. You can learn how to
set this up with the video “GitHub Actions Hello World All Cloud and
Codespaces”.

Figure 1-8. AWS Cloud Shell terminal
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All of this leads to the concept of the cloud developer
workspace advantage, as shown in Figure 1-9. A laptop or
workstation is expensive and nondeterministic due to
preinstalled software and, by definition, not the deploy
target. When you look at a cloud-based workspace, it has
many incredible advantages, including power, disposability,
preloading, and deep integration with advanced tools.

Figure 1-9. Cloud developer workspace advantages

NOTE

You can learn more about the cloud developer workspace advantage
in the video “52 Weeks of AWS-The Complete Series” or on YouTube.

The Key Players in Cloud Computing

Know someone who wants to earn $200k or more a year?
According to the 2022 Cloud Salary Survey by Mike
Loukides (O’Reilly), the average salary for certified
professionals on AWS, Azure, and GCP is over 200k.
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Further backing this up is the data from Statista, as shown
in Figure 1-10. As of Q2 2022, there were three key players
in the worldwide market. AWS had about 33% of the
market share, Azure had about 21%, and Google Cloud had
about 10%. Combined, these three vendors controlled two-
thirds of a market that generates almost $200 billion in
revenue. Service revenue increased by 37% from the last
year.

Figure 1-10. Cloud computing market

A reasonable strategy for an organization wishing to use
cloud computing is to use the platform of the largest
providers. The Matthew effect3 saying, “the rich get richer,
and the poor get poorer,” applies to cloud computing for
several reasons:
Available employees and vendors to hire



Leveraging the most prominent cloud platforms makes
hiring employees and finding vendors that work with the
platform more accessible.

Training material available

The availability of training material for the most prominent
platforms makes it easier to train employees.

Services available

Larger platforms can hire more software engineers and
product managers, meaning you can count on a
continuation of new features and maintenance in their
platform.

Cost of service

Economies of scale mean that the most significant providers
benefit the most from economies of scale. They can leverage
pricing advantages by buying in bulk and then passing them
on to the customer.

NOTE

You can study for the AWS Cloud Certifications by viewing “AWS
Solutions Architect Professional Course” and “AWS Certified Cloud
Practitioner Video Course” by Noah Gift.

Now that you know the top providers in cloud computing,
let’s discuss how each vendor views the world of cloud
computing as it relates to MLOps.

AWS view of cloud computing as it relates to MLOps

The best place to get a high-level summary of AWS cloud
computing is the Overview of Amazon Web Services AWS
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Whitepaper. In particular, they mention six advantages of
cloud computing:
Trade fixed expense for variable expense

Avoiding large capital expenditures encourages agility and
efficiency.

Benefit from massive economies of scale

As prices decrease for the supplier, they fall for the customer,
allowing for lower pricing than if the customer bought the
same product. Similarly, managed services on the platform
will have a steady schedule of new features.

Stop guessing capacity

There isn’t a need to preprovision resources since systems
get built with an elastic ability to scale as needed.

Increase speed and agility

Focusing on an organization’s comparative advantage and
not building nonessential-to-business IT allows an
organization to move faster.

Stop spending money running and maintaining data centers

Cost savings accumulate from outsourcing this component of
IT.

Go global in minutes

Going global is a highly challenging problem that goes away
with AWS due to its comprehensive offerings.
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NOTE

You can learn more about AWS in Developing on AWS with C#

(O’Reilly) by Noah Gift and James Charlesworth.

These features ultimately drive into the core MLOps
offering of Amazon SageMaker in Figure 1-11 as the
project’s lifecycle goes from preparation to building to
training, to finally deploying and managing the solution. At
the center of the workflow is tight integration with
developer tools from Studio and RStudio.

Figure 1-11. Amazon SageMaker MLOps workflow

NOTE

In the video “Amazon SageMaker Studio Labs: First Thoughts”, you
can see a complete walkthrough of SageMaker Studio Lab.

With the AWS view of the MLOps complete, let’s look at
Azure next.

Azure view of cloud computing as it relates to MLOps

https://oreil.ly/uinxg
https://oreil.ly/h3oa3


Microsoft Azure sees the world of MLOps as a way to
“efficiently scale from a proof of concept or pilot project to
a machine learning workload in production.” As shown in
Figure 1-12, the model’s lifecycle includes training,
packaging, validating, deploying, monitoring, and
retraining.

Figure 1-12. Azure MLOps

Next, let’s next look at how Google views MLOps.

GCP view of cloud computing as it relates to MLOps

An ideal place to look at how Google sees the world is by
looking through the Production ML Systems crash course.
One of the items the company points out is how tiny the
modeling part of the problem is, as shown in Figure 1-13.
Instead, the combination of other tasks, including data
collection, serving infrastructure, and monitoring, take up
much more of the problem space.
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Figure 1-13. Google’s view of MLOps

Ultimately this leads to how Google’s Vertex AI platform
handles the MLOps workflow, shown in Figure 1-14. The
ML development process occurs, including model framing
for the business problem. The data processing phase leads
to an operationalized training process that can scale up as
needed. Then the model deployment occurs along with a
workflow orchestration alongside artifact organization. The
model has monitoring baked into the deployment process.

https://oreil.ly/WFpn_


Figure 1-14. Google’s view of MLOps

While public cloud providers offer their own solutions,
sometimes enterprises might need a solution that is more
tailored to their specific needs. Let’s look at two more
deployment options: on-premises deployment and hybrid
cloud deployment.

MLOps On-Premises

In some use cases, enterprises cannot use the public cloud.
Business restrictions like the need to secure sensitive data
or having to adhere to strict regulations (e.g., data
localization privacy regulations) require an MLOps solution
that can operate on-premises. Many MLOps solutions offer
the ability to deploy them either in the cloud or on-
premises. The only down side to this approach is that on-
premises solutions require the enterprise to provide the
servers and equipment that will support the intense
computing power needed to run ML algorithms at scale.
They will also need to update and maintain the
infrastructure.



On the other hand, an on-premises deployment will almost
certainly require some sort of customization. This
installation gives enterprises more control over the
product, and they can make specific requests to tailor it to
their needs. More specifically, if the deployed solution is a
startup solution, they will be attentive and work hard to
ensure satisfaction and adoption. If it’s an open source
product, then enterprises not only can leverage the
community’s development power but also go inside with
their own developers and tinker with the product to ensure
it suits their needs.

MLOps in Hybrid Environments

Similar to on-premises deployment, some enterprises might
prefer a hybrid cloud deployment. This involves deploying
on the public cloud(s), on-premises, and perhaps even on a
private cloud or on edge devices. Naturally, this makes
things a lot more complex, since the MLOps solution must
enable total separation of the data path from the control
path and must be delivered by a highly available, scalable
entity that orchestrates, tracks, and manages ML pipelines
across types of infrastructure deployments. Lest we forget,
this has to occur at high speed and with optimal
performance. Finally, the solution ideally provides a single
development and deployment stack for engineers across all
infrastructure types.
Finding a vendor or open source solution that meets all
these requirements might not be simple, but as mentioned
before, your best bet is with startups or mature OSS
solutions that can be customized to the specific needs of
your infrastructure.



Enterprise MLOps Strategy

With a high-level overview of the critical issues involved in
MLOps completed, it is time to turn to strategy, as shown
in Figure 1-15. There are four key categories to consider
when implementing an MLOps strategy: cloud, training and
talent, vendor, and executive focus on ROI.

Figure 1-15. Enterprise MLOps strategy

Let’s discuss each of these four categories:
Cloud

There is no perfect answer for which cloud platform to use.
Any central platform will offer the advantages of economies
of scale. What is essential in an MLOps strategy is to be
aware of how a cloud platform fits into the unique goals of
each organization and how it aligns with other strategic
components like hiring or third-party vendor integration.

Training and talent

Often, organizations look only at the power of new
technology and don’t consider the training and talent
component of using the technology. In almost all cases, an
organization should use a less powerful technology if hiring



and training are better with a less powerful solution. This
fact means widespread technology is crucial when
implementing new technology. Ultimately, the latest
technology is dead on arrival if you cannot hire or train your
staff.

Vendor

An often overlooked issue with using cloud computing is
that it usually needs to be augmented by specialized vendors
to help an organization reach its goals with the technology.
These strategic choices can lead to better ROI for both the
cloud and the business strategies. Examples include using
vendor technology specializing in Hadoop, Kubernetes, or
pretrained models. The vendors will be unique to each
organization and its business goals.

NOTE

In “Enterprise MLOps Interviews”, CEO of Outerbounds and author of
Metaflow, Ville Tuulos, mentions that while all companies use the
base layer of the cloud, say storage and databases, they often need to
augment with vendors at higher layers.

Executive focus on ROI

Ultimately, the preceding three categories don’t mean
anything if the executive focus isn’t on ROI. The purpose of
technology is to drive long-term business value, meaning
problems need accurate scoping.

Conclusion
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This chapter sets the stage for understanding the crisis in
enterprises getting machine learning and AI into
production. From a common sense approach, the idea of
“just hiring more data scientists” to increase ROI is as
sensible as “just hiring more software engineers” to make a
traditional software project go faster. In the case of the
conventional software company, if there is no product, no
goal, and no oversight, then hiring more developers
increases the capital expenditure of the organization
without any added value.
Instead of this scenario, MLOps aims to add a methodology
that builds on the successful lessons of DevOps while
handling the unique characteristics of machine learning.
Finally, at the enterprise level, ultimately data science
comes down to ROI. Technology is an accelerant of value
for most organizations, not the value. Organizations that
create a hunger for ROI can quickly adopt the MLOps
mindset.

Critical Thinking Discussion

Questions

There are many methods for deploying machine
learning models to production, including pretrained
models, APIs, AutoML, and bespoke training. What are
the pros and cons of each of these approaches?

What strategies could an enterprise implement to
attract new machine learning engineering talent and
train and retrain current talent?

If your organization currently doesn’t do any DevOps, a
foundational component necessary for MLOps, how



could they start a first DevOps project to test concepts
like CI/CD and infrastructure as code (IaC)?

If your organization doesn’t have large quantities of
proprietary data, how can it use machine learning to
gain a competitive advantage anyway?

What is your organization’s cloud strategy: single
cloud, multicloud, hybrid cloud, private cloud, or
something else? How does this help your organization
reach your MLOps goals?

Exercises

Go to a popular model hosting site like TensorFlow Hub
or Hugging Face and deploy one of their models to your
favorite cloud platform.

Pick a cloud-based development environment like
GitHub Codespaces, Amazon SageMaker Studio Lab, or
Google Colab and explore the interface with an eye for
building a machine learning engineering project.

Use a machine learning app framework like Gradio or
Streamlit to build a simple machine learning
application.

Brainstorm several organizational problems that may
benefit from using machine learning and build a simple
prototype using an MLOps technology.

Convert a Kaggle project to an MLOps project by
downloading the dataset and coding an MLOps
technology to serve predictions.
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1  Dr. Luks summarizes the systematic evidence-based strategy: “Create a
caloric deficit, then stay lean. Get sleep. Eat real food. Move often,
throughout the day. Push and pull heavy things. Socialize. Have a sense of
purpose.”

2  In Principles of Macroeconomics (McGraw Hill, 2009), Ben S. Bernanke
shares the story of how a talented chef could extract all of the profit from
restaurants in a scenario of perfect competition since they would
continuously leave for a higher salary at a competing restaurant,
ultimately removing all profit for the owner.

3  Sociologists Robert K. Merton and Harriet Zuckerman first coined this
term.
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Chapter 2. The Stages of

MLOps

MLOps is not about tracking local experiments and is not
about placing an ML model behind an API endpoint.
Instead, MLOps is about building an automated
environment and processes for continuously delivering ML
projects to production.
MLOps consists of four major components (and is not
confined to model training):

Data collection and preparation

Model development and training

ML service deployment

Continuous feedback and monitoring

This chapter explores these components in detail.

Getting Started

Begin with the end in mind. The first step in any ML project
is to articulate:

The problem that needs to be solved using ML.

What you want to predict.

How to extract business value from the answer.
Examples of business value we might require include
decreasing fraud, increasing revenue by attracting new



customers, cutting operational costs by automating
various manual processes, and so on.

Once you define the goal, don’t rush straight into
implementation. First, consider the following:

Which historical and operational data can be gathered
and used in both the training and serving pipelines

How to incorporate the ML model results in a new or
existing application in a way that can make an impact

How to verify and reliably measure that the ML model
meets the target and generates valuable business
outcomes

Figure 2-1 illustrates the different stages in an ML project.
Note the feedback loop where the observations are used to
recalibrate the business goals, data collection, and
preparation logic.

Figure 2-1. ML project life cycle

If you focus only on the ML model, you may encounter
pitfalls such as these:

Using the wrong datasets, which can easily lead to
inaccurate or biased results

Lacking enough labeled data to build a model

Finding out historical features used to train the model
are unavailable in the production or real-time
environment
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Discovering there is no practical way to integrate the
model predictions into the current application

Realizing the ML project costs are higher than the
generated value or, in a worst-case scenario, cause
losses in revenue or customer satisfaction

Choose Your Algorithm

The next phase is to determine the type of ML problem and
algorithm.
In supervised learning, labels are required and known:
Classification

The algorithm will answer binary yes-or-no questions (fraud
or not, is it an apple, will the customer churn) or make a
multiclass classification (type of tree, and so on). You also
need enough labeled data for the algorithm to learn from.

Regression

The algorithm predicts continuous numeric values based on
various independent variables. For example, regression
algorithms can aid in estimating the right price for a stock,
the expected lifetime of a component, temperature, and so
on.

Figure 2-2 compares the two algorithms.



Figure 2-2. Regression versus classification

In unsupervised learning, labels are not required and
known:
Clustering

The algorithm will look for meaningful groups or collections
in the data (customer segmentation, medical imaging, music
genre, anomaly detection, and so on) based on their
similarity without the help of pre-labeled data.

Dimensionality reduction

The algorithm will reduce the dimensionality (the number of
input variables in a dataset) from a high-dimensional space
into a low-dimensional space so that the low-dimensional
representation retains some meaningful properties of the
original data, ideally close to its intrinsic dimension.
Dimensionality reduction allows you to avoid overfitting,
reduce the model computation overhead, and handle fewer
features than originally required.

Recommendation and ranking



The algorithm recommends or ranks objects by considering
their relevance, importance, and content score.
Recommendation algorithms can be used to rank web pages,
recommend movies or music in streaming services, or show
the products that a customer might purchase with a high
probability based on their previous search and purchase
activities. Recommendation engines can be used either for
supervised or unsupervised learning.

Transformers and generative AI

A neural network architecture that can automatically
transform a sequence of inputs into another a set of outputs;
for example transforming a chat question into an answer
(like Chat GTP), or text description into a relevant image.

Note that ranking algorithms relies on search queries
provided by users who know what they are looking for.
Recommender systems, on the other hand, operate without
any explicit inputs from users and aim to discover things
the users might not have found otherwise.
Some applications may incorporate multiple algorithms.
For example, using a natural language processing (NLP)
algorithm to determine the sentiment in the text and using
the sentiment as an input for making a purchase decision.

Design Your Pipelines

ML models have a limited lifetime since data patterns
change (drift) over time, and models may have limited
scope. For example, when creating specific models per user
or device (trained on the relevant subset of the data). In
many cases, we would like to train multiple models using
different parameters or algorithms and compare or
combine them.
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For those reasons, the goal is not to build a model but
rather to create an automated ML pipeline (factory) that
can accept inputs (code, data, and parameters), produce
high-quality model artifacts, and deploy them in the
application pipeline.
The ML pipelines can be triggered every time the data,
code, or parameters change or can be executed in a loop
(each time with a different dataset or parameters) to
produce multiple models. To understand, compare, or
explain the model results, all the inputs (code, data,
parameters), operational data (type of hardware, logs, and
so on), and results must be recorded and versioned.
A model is usually deployed as part of a more extensive
application pipeline, including API integration, real-time
data enrichment and preparation, model serving, actions,
and monitoring. The automated deployment cannot focus
solely on the model but on deploying or updating the entire
application pipeline.
The typical ML pipeline consists of data preparation,
training, testing, registering, and deployment. In real life,
the ML pipelines can incorporate additional steps for data
validation, optimization, and so on. In addition, some ML
pipelines build and use multiple models.
Figure 2-3 demonstrates a recommendation engine
application that uses two models in cascade. The first
model is used to identify similar products. The second
model will use the output from the first model and other
user data to determine the buying probability (and filter
the results).
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Figure 2-3. ML pipeline example: real-time product recommendations

Data Collection and Preparation

There is no ML without data. Before everything else, ML
teams need access to historical or online data from multiple
sources. They must ingest, prepare, and explore the data
before building any model.
The first step is to define your goal, which problem or
challenge you intend to solve, and which data sources or
features can help you predict the outcome. Once you
identify the target and raw datasets, you must gather
enough data, prepare, label, and explore it for use in your
model.
In most cases, the raw data cannot be used as-is for
machine learning algorithms, for various reasons, including



the following:

The data is low quality (missing fields, wrong spelling,
null values, and so on) and requires cleaning and
imputing.

The data needs to be grouped or aggregated to make it
meaningful.

The data needs to be converted to numerical or
categorical values, which algorithms can process.

Feature values should be normalized and scaled to
guarantee they have equal importance.

The data is encoded or requires joins with reference
information.

According to IDC, by 2025, 90% of data will be
unstructured, so an essential part of building operational
data pipelines is to convert unstructured textual, audio, and
visual data into machine learning- or deep learning-friendly
data organization or vector formats.
The ML process starts with manual exploratory data
analysis and feature engineering on small extractions from
historical data. However, to bring accurate models into
production, ML and data engineering teams must work on
larger, more up-to-date datasets and automate the
collection and preparation process.
Furthermore, batch collection and preparation
methodologies and batch analytics don’t work well for
operational or real-time pipelines. As a result, ML teams
often build separate real-time data pipelines (pipelines that
handle a very large number of events at scale in real time)
that use stream processing (the ingestion and processing of
a continuous data stream).
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Some vendors provide data labeling as a service using a
combination of automated tools and crowd-sourcing (for
example Amazon SageMaker Ground Truth). Many
algorithms require labeled data for training the model.
Therefore, you must design and implement labeling
solutions for the historical data as part of the data
preparation process.
In addition, many applications require constant retraining
to maintain the model’s accuracy and relevancy. Therefore,
you should design a pipeline for automatically generating
data labels in such cases.
Models are as good as the data they are trained on. To
compare or explain model behavior and to address
regulatory compliance, you must have access to the data
used in training. Therefore, you must save information
about the data origin with the model or save a unique copy
of the dataset used for every training run. Data lineage and
versioning solutions are a must in every MLOps solution.
A key component in any modern MLOps solution is a
feature store, which automates the collection,
transformation, cataloging, versioning, and serving of
offline and online data.

Data Storage and Ingestion

Data is the foundation for AI and ML. It can be persistent
or in transit and can be broken into two main categories:
structured and unstructured. Unstructured data is usually
stored in file systems, object storage (data lakes), logging,
or messaging systems (such as email). Structured data has
some schema and is stored in tables, documents, or graphs.
Since it is scalable and cost-effective, we usually use object
storage for deep learning workloads that process images,

https://oreil.ly/d8Hjl
https://oreil.ly/gZGuL
https://oreil.ly/1jg0J


video, and text (NLP). In some cases, we will use local or
distributed file storage.
When the data is structured, we can use files (CSV, Excel,
and so on) to do simple exploration and model training, but
this cannot scale for production. In production, we store
data in one of those two categories:
Archival data systems

These are data warehouses or objects with structured file
formats like CSV, Parquet, JSON, and so on. They record all
the historical transactions and allow efficient analytics
queries.

Operational or real-time databases

These are frequently updated and enable fast data retrieval
by index.

Use archival storage (data warehouses or data lakes with
structured objects) for the training process since a model is
an equation that learns how to predict results based on
historical data patterns. Suppose the data source is a real-
time or operational data system. In that case, you first need
to copy and transform the data to the archival system,
which is better at analytical workloads, for example, using
an ETL process (Extract, Transform, Load). Structured
object formats are usually the cheapest storage option,
especially when using efficient compression techniques
(like Parquet files). But data warehouses (like Google
BigQuery, Snowflake, Amazon Redshift, and so on) support
faster and more flexible data queries and are easier to
update.

https://oreil.ly/rp32r
https://oreil.ly/oPn3G
https://oreil.ly/TaRA7


WARNING

When you collect data for training, it is essential to make sure there
is no bias in the data since this can lead to poor model results and
even a total failure of your project (see Amazon scrapped sexist AI

tool).

MLOps solutions and the training flow should incorporate
data version control. Every training job should point to a
unique version of the data, which allows for reconstructing
the exact content of the data. While this may be simple for
static historical content, it is harder for continuous and
dynamic data like user information or transactions, which
can change frequently.
The solution is to snapshot and store the dataset in archival
storage and add the appropriate link (data lineage) to the
job and model objects, allowing viewing of the data
associated with each run easily. Some MLOps frameworks
and feature stores (like MLRun) provide this as a built-in
feature.
In the serving process, a request arrives with partial data,
for example, a user ID; you enrich the data with additional
features for that user (such as age, gender, income, and so
on) from an online database and pass it to the model. You
cannot use archival storage for serving since it’s too slow
and cannot support a high number of concurrent requests.
Instead, indexed NoSQL or SQL databases (like Redis,
DynamoDB, or MySQL), also referred to as the online

feature store, are better since they are faster and you have
the index key (user ID).
To use the online features, you must first copy them to the
online database; this can be simple with static features
(like age or gender) but challenging with transactional

https://oreil.ly/BGSZ1
https://www.mlrun.org/
https://redis.io/
https://oreil.ly/MSC5K
https://www.mysql.com/


features (like the total number of purchases in the last
hour) that are frequently updated. Stream processing is
usually used to calculate and update real-time features
efficiently. This means the real-time data pipeline uses a
different implementation than the offline feature
calculation (implemented for training).
Figure 2-4 demonstrates different components used in the
data ingestion flow.

Figure 2-4. Offline and online data ingestion flow

Using different databases and data processing technologies
in training and serving leads to higher complexity and data
synchronization challenges. Feature stores, which we
discuss in the next sections, are used to abstract away
much of that complexity.

NOTE

Learn more about feature stores from the blog post “What Are
Feature Stores and Why Are They Critical for Scaling Data Science?”
by Adi Hirschtein.

https://oreil.ly/MqReq


Data Exploration and Preparation

In most cases, you cannot use data in its raw format, so the
first step is applying cleaning, transformations, or
calculations to the data. Once you have a clean set of
meaningful features, you can start evaluating the data and
selecting the best features for your model.
Here are some examples of required data conversions:

Data arrives in a JSON format, and you need to convert
it to an array or vector.

Data contains a string (like a city name), and you need
to convert it to a numeric value using some encoding
strategy.

You have a transaction log, but you need the total value
of transactions in the last month.

You have a person’s zip code, but you need to translate
it to a numeric value representing a social-economical
score.

Dataset has missing values or misspelled names.

It is easier to start data exploration with a subset of the
data and use interactive visual tools or standard Python
packages like pandas, Matplotlib, Bokeh and Plotly.
First you should visually inspect the data’s nature and
quality (inconsistencies, outliers, anomalies, missing data,
and so on) and clean the data. Next, transform and add
derived features, examine the correlation between the data
or its derivatives and the target feature (goal), to support
or disprove your theory, and generate a training set
(feature vector). Creating new derived features to improve
a model’s output is the main craft of data scientists.

https://oreil.ly/q4sL1
https://matplotlib.org/
https://docs.bokeh.org/
https://plotly.com/


Choosing relevant features to analyze and eliminate
irrelevant or redundant ones is also essential.
Note that in the production implementation, there is a need
to process more significant amounts of data in an
automated way. Therefore, you must reimplement the data
cleansing and transformations steps as part of a scalable
and automated data processing pipeline and may need to
use scalable or real-time data processing engines (like
Spark, Flink, Nuclio, and so on) instead of interactive tools.
Figure 2-5 illustrates the data preparation and feature
engineering flow.

https://oreil.ly/4d-vx
https://oreil.ly/iZKM5
https://nuclio.io/


Figure 2-5. Feature engineering flow

The most common data transformations operations include:
Drop rows/columns

Drop rows/columns with too much missing data.

Imputing



Replace missing values with a constant or a statistical value
(for example, median of the column).

Outlier detection

Drop rows where the values don’t fall under the expected
range (for example, compare the row value with mean +/- N
* stddev).

Binning

Group multiple values into a single category (for example,
Chile and Brazil map to South America).

Log transform

Convert a linear scale to a log scale.

One-hot encoding

Map different categorical values to a binary (yes/no) feature.

Grouping and aggregations

Aggregate column values by time (hour, day, month, and so
on) or by category (for example, number of units sold by
product type).

Scaling

Rescale column values (normalization, standardization).

Date extractions

Convert a date time to the hour, day of the week, month,
season, is it a holiday, and so on.

Time recency



The time distance between two events (for example, time
from the last login).

For unstructured data, there can be many more types of
transformations (extract text elements, resize or rotate an
image, and so on).
In training and during serving, you must use the same
features; this requires you to implement two data pipelines:
a batch pipeline for training and a real-time (streaming)
pipeline for serving.
Some feature stores provide simple ways to define the data
transformation logic and will automatically deploy and
manage both offline and online data pipelines for you.

Data Labeling

Data labeling, or data annotation, is part of the
preprocessing stage required for supervised learning. You
add tags to raw data (numeric, text, images, and so on) to
show a machine learning model the expected target
attribute (prediction). Some prominent examples include
Amazon SageMaker Ground Truth, Label Studio,
DataTurks, and CVAT.
For numeric values, labeling can be deducted from the raw
data. So, for example, in a churn model that tries to predict
which customers are about to churn, you can examine
historical records and mark the customers who churned by
looking to see whether they remained a customer in the
consecutive month. A simple analytics query will do the
trick and shift the results back by one month.
Labeling is harder for unstructured data (text, images,
video, audio, and so on) and usually involves a manual
labeling process (by a human). However, many solutions in

https://oreil.ly/HpDAs
https://labelstud.io/
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the market can simplify and automate parts of the process.
Nevertheless, some challenges remain, like the need for
domain expertise, the risk of inconsistency, and the error
proneness of the process.
When the historical datasets are static, the labeling is done
once. So, for example, the problem of classifying images as
cats or dogs probably won’t change anytime soon. But
when the data is dynamic, for instance, in a face or finger
recognition application, new people can be added any day.
In such cases, the labeling solution must be part of the
application. For example, new users can take their pictures
and attach their ID (for the application to verify their
identity). If an image is not classified, it should alert or fall
into a manual identification flow. When new pictures are
added, the model training process needs to be triggered,
and the online models must be refreshed to take the new
images into account.
Data can be associated with labels and tags during
ingestion time. For example, images arrive from a car along
with metadata (car ID, model, driver) and telemetry
(geolocation, timestamp, speed, weather, sensor metrics,
and so on). This information should be stored and linked to
the image and can be used to generate labels.
When considering MLOps with an automated (re)training
flow, you should consider a mechanism for automated
labeling. In some applications, the labels arrive in a delay
(for example, if the user churned, if the stock price went
up, or if the customer purchased the product). Therefore,
the training dataset should be shifted to accommodate the
delay (if you retrain the churn model based on the last
three months, the data range should be between four and
one months ago).



Feature Stores

As we’ve established, most of the complexities in any ML
project arise from the data:

Work typically done in silos (data scientists and
engineers)

Labor-intensive data engineering to produce high-
quality features

Duplicate efforts and resources in generating offline
and online features that also lead to inaccurate results

Hard to incorporate data versioning and governance

Feature development work duplicated for every new
project

Lack of simple access to production-ready features at
scale

Disjointed or nonexistent model and feature monitoring

ML teams need to continuously deploy AI applications in a
way that creates real, ongoing business value for the
organization. Features are the fuel driving AI for the
organization, and feature stores are the architectural
answer that can simplify processes, increase model
accuracy, and accelerate the path to production.
A feature store provides a single pane of glass for sharing
all available features across the organization along with
their metadata. When data scientists start a new project,
they can access this catalog and easily find features. But a
feature store is not just a data layer; it is also a data
transformation service enabling users to manipulate raw
data and store it as features ready to be used for offline
(training) and online (serving), without duplicating the

https://oreil.ly/dqLtd


work. In addition, some feature stores support strong
security, versioning, and data snapshots, enabling better
data lineage, compliance, and manageability.
Some of the largest tech companies that deal extensively
with AI have built their own feature stores (Uber, Twitter,
Google, Netflix, Facebook, Airbnb, and so on). The open
source and commercial landscape for feature stores has
exploded in the last few years. This is a good indication to
the rest of the industry of how important it is to use a
feature store as part of an efficient ML pipeline.
Most feature stores are limited to structured data handling
(ML), but some can support both structured and
unstructured data (text, documents, images, audio, and so
on).
Feature stores are described in detail in Chapter 4. As
illustrated in Figure 2-6, they provide a mechanism to read
data from various online or offline sources, conduct a set of
data transformations, and persist the data in online and
offline storage. Features are stored and cataloged along
with all their metadata (schema, labels, statistics, and so
on), allowing users to compose feature vectors (joint
multiple features from different feature sets) and use them
for training or serving. The feature vectors are generated
when needed, taking into account data versioning and time
correctness (time traveling). Different engines are used for
feature retrieval, a real-time engine for serving, and a
batch one for training.



Figure 2-6. Common feature store architecture

Here are some major benefits of a feature store:

Faster development with far fewer engineering
resources

Smooth migration from development to production

Increased model accuracy (same pipeline for online and
offline)

Better collaboration and security across teams

Ability to track lineage and address regulatory
compliance

NOTE

Not all feature stores are born equal. Some are focused on cataloging
and don’t automate the process of ingestion and online or offline
transformation, which are the most labor-intensive tasks. Therefore,
make sure you properly evaluate before selecting a solution.

Model Development and Training



Data scientists generally go through the following process
when developing models:

1. Extracting data manually from external sources

2. Data labeling, exploration, and enrichment to identify
potential patterns and features

3. Model training and validation

4. Model evaluation and testing

5. Going back to step one and repeating until the desired
outcomes (accuracy, loss, and so on) have been
achieved

The traditional way is to use notebooks, small-scale data,
and manual processes, but this does not scale and is not
reproducible. Furthermore, to achieve maximum accuracy,
experiments often need to be run with different parameters
or algorithms (AutoML).
With MLOps, ML teams build machine learning pipelines
that automatically collect and prepare data, select optimal
features, run training using different parameter sets or
algorithms, evaluate models, and run various model and
system tests. All the executions, along with their data,
metadata, code, and results, must be versioned and logged,
providing quick results visualization, comparing them with
past results, and understanding which data was used to
produce each model.
Pipelines can be more complex: for example, when ML
teams need to develop a combination of models or use deep
learning or NLP. You can see a basic model development
flow example in Figure 2-7.



Figure 2-7. Model development flow

ML pipelines can be started manually or (preferably)
triggered automatically when:

The code, packages, or parameters change.

The input data or feature engineering logic change.

Concept drift is detected, and the model needs to be
retrained with fresh data.

ML pipelines have the following features:

Built using microservices (containers or serverless
functions), usually over Kubernetes.

Track all their inputs (code, package dependencies,
data, parameters) and the outputs (logs, metrics,
data/features, artifacts, models) for every step in the
pipeline in order to reproduce or explain experiment
results.

Version all the data and artifacts used throughout the
pipeline.

Store code and configuration in versioned Git
repositories.

Use CI techniques to automate the pipeline initiation,
test automation, review, and approval process.

Pipelines should be executed over scalable services or
functions, which can span elastically over multiple servers
or containers. This way, jobs complete faster, and



computation resources are freed up once they are
complete, saving high costs.
The resulting models are stored in a versioned model
repository along with metadata, performance metrics,
required parameters, statistical information, and so on.
Models can be loaded later into batch or real-time serving
microservices or functions.

Writing and Maintaining Production ML Code

Many data scientists like the usability and interactivity of
Jupyter Notebook when they develop and evaluate models.
It is convenient indeed to manipulate some code and
immediately see a visual table or a chart, and most ML
tutorials, examples, and Kaggle projects are consumed as
notebooks.
You can find projects where the data preparation, training,
evaluation, and even prediction are all made in one huge
Notebook, but this approach can lead to challenges when
moving to production, for example:

Very hard to track the code changes across versions (in
Git).

Almost impossible to implement test harnesses and unit
testing.

Functions cannot be reused in various projects.

Moving to production requires code refactoring and
removal of visualization or scratch code.

Lack of proper documentation.

The best approach is to use functional programming for
code segments and notebooks for interactive and



visualization parts. Example 2-1 implements a data
preparation function that accepts a dataset (DataFrame)
and some properties as inputs and returns the manipulated
dataset. The function is documented and allows users to
understand the purpose and usage.
Example 2-1. Data prep function (data_prep.py)

import pandas as pd 

 

def add_date_features( 

    data, time_column: str = "timestamp", drop_timestamp: bool = False 

): 

    """Add numeric date features (day of week, hour, month) to a dataframe 

 

    :param time_column:    The name of the timestamps column in the data 

    :param drop_timestamp: set to True to drop the timestamp column from 

                           the original dataframe 

    :return datafarame 

    """ 

    timestamp = pd.to_datetime(data[time_column]) 

    data["day_of_week"] = timestamp.dt.day_of_week 

    data["hour"] = timestamp.dt.hour 

    data["month"] = timestamp.dt.month 

    if drop_timestamp: 

        data.drop([time_column], axis=1, inplace=True) 

    return data

Place the function in a separate Python file data_prep.py,
and you can call it from the Notebook, inject data, and
examine or visualize its output using the following code
cell:

import pandas as pd 

from data_prep import add_date_features 

 

df = pd.read_csv("data.csv") 

df = add_date_features(df, "timestamp", drop_timestamp=True) 

df.head()

Once the code is well defined, use the Python test
framework (pytest) and implement unit testing for each of
the functions as show in Example 2-2:



Example 2-2. Data prep test function (test_data_prep.py)

import pytest 

import data_prep 

import pandas as pd 

 

# tell pytest to test both drop values (True/False) 

@pytest.mark.parametrize("drop_timestamp", [True, False]) 

def test_add_date_features(drop_timestamp): 

    df = pd.DataFrame({'times':['2022-01-01 08:00', 

                                '2022-02-02 09:00', 

                                '2022-03-03 10:00'], 

                       'vals':[1,2,3]}) 

    new_df = data_prep.add_date_features(df, "times", 

drop_timestamp=drop_timestamp) 

 

    # verify the results are as expected 

    assert new_df["day_of_week"].to_list() == [5, 2, 3] 

    assert new_df["month"].to_list() == [1, 2, 3] 

    assert new_df["hour"].to_list() == [8, 9, 10] 

    assert ("times" in new_df.columns.values) != drop_timestamp

The code in Example 2-2 will execute the
add_date_features() function with different input options and
verify that the outputs are correct.
Using this approach, you gain some immediate benefits:

Easily see changes to your data prep code in the
version control.

The same code can be tested later with a test harness
(for example, using pytest).

The function can be moved to production without the
need to refactor the notebook.

The function is documented, and you can easily
understand how to use it and what to expect.

The function can later be saved to a shared library and
used across different projects.

The code becomes more readable.



Another benefit of the functional approach is demonstrated
in the upcoming chapters: an automated way to convert
development code into production services and pipelines
using tools such as MLRun (MLOps orchestration
framework).

Tracking and Comparing Experiment Results

When running ML experiments, it is essential to track every
run so that you can reproduce experiment results (for
example, which parameters and inputs yield the best
results), visualize the various metrics, and compare the
results of different algorithms or parameter sets.
Each execution involves input and output datasets. It is
crucial to track and version the datasets, not just the
parameters. Any MLOps solution should provide a
mechanism to version data and track the data propagation
(lineage) together with the rest of the execution
parameters, outputs, and metadata.
Today various open source and commercial frameworks
track the results of every experiment run, store it in a
database, and visualize it. Some examples shown in
Figure 2-8 include MLflow, Weights & Biases, MLRun and
ClearML.
In the real world, experiments can run in an automated ML
pipeline (see Figure 2-9), which comprises different steps
(data prep, train, test, and so on). Each stage of the
pipeline accepts parameters, inputs data, and generates
results such as output values, metrics, and data to be used
in subsequent pipeline steps. In addition, the tracking
should be extended to operational data (which code was
used, packages, allocated and used resources, systems, and
so on).

https://www.mlrun.org/
https://mlflow.org/
https://wandb.ai/
https://clear.ml/


Figure 2-8. Different tools for ML execution tracking

Figure 2-9. Multi-stage (pipeline) execution tracking

Figure 2-10 shows the general architecture of an execution
tracking system. Inputs may include parameters, the user,
or system-defined tags (to allow filtering and comparisons),
secrets (hidden credentials used by the execution), and
data objects (files, tables, and so on). Outputs include the
result metrics, logs, usage data, output data objects, and
artifacts. A good tracking system also records the code



version, used packages, runtime environment and
parameters, resources, code profiling, and so on.

Figure 2-10. Execution tracking: what and how do we track?

The downside of execution tracking is that it requires code

instrumentation (adding code to explicitly log parameters,
tags, results, and data). Some MLOps frameworks provide
auto-logging for ML/DL workloads where you can import a
library that automatically records all the ML framework-
specific metrics.
A new technology, AutoMLOps, is pioneered in the MLRun
framework. It records metrics along with the parameters,
data lineage, code versioning, and operational data. It also
automatically adds production features for auto-scaling,
resource management, auto-documentation, parameter
detection, code profiling, security, model registry, and so
on, eliminating significant engineering efforts.

Distributed Training and Hyperparameter

Optimization



To get to the best model results, try out various algorithms
or parameter combinations and choose the best one based
on a target metric like best accuracy. This work can be
automated using multiple hyperparameter optimization and
AutoML frameworks, which try out the different
combinations, record all the metrics for each run, and mark
the best. To shorten training time, some frameworks
support executing each individual run on a different
compute resource. Figure 2-11 shows the tracking of
multiple children runs in a hyperparameter job and the
best-selected result.

Figure 2-11. Execution tracking of a hyperparameter job (in the MLRun

framework)

Parallel hyperparameter jobs are not limited to model
training. They can be used for parallel loading and
preparation of many data objects, parallel testing of
different test cases, and so on.
There are several hyperparameter execution strategies:
Grid search

Running all the parameter combinations

Random

Running a sampled set from all the parameter combinations



Bayesian optimization

Building a probability model of the objective function and
using it to select the most promising hyperparameters to
evaluate in the true objective function

List

Running the first parameter from each list followed by the
second from each list and so on

You can specify selection criteria to select the best run
among the different child runs (for example, the model’s
accuracy) and the stop condition to stop the execution of
child runs when certain criteria, based on the returned
results, are met (for example: stop
condition="accuracy>=0.9").
Some data engineering, ML, or DL jobs cannot fit into a
single container or virtual machine and must be distributed
across multiple containers. A few open source frameworks,
including Spark, Dask, Horovod, and Nuclio, support
workload distribution. When distributing the workload in
combination with the parallel run of child (hyperparameter)
tasks, you need to control and limit the total amount of
resources used.
Tracking a distributed workload may be more challenging.
Make sure the MLOps framework you use supports that.

Building and Testing Models for Production

When models are used in real-world applications, it is
critical to ensure they are robust and well-tested.
Therefore, in addition to traditional software testing (unit

https://www.dask.org/
https://horovod.ai/


tests, static tests, and so on), testing should cover the
following categories:
Data quality tests

The dataset used for training is of high quality and does not
carry bias.

Model performance tests

The model produces accurate results.

Serving application tests

The deployed model along with the data pre- or post-
processing steps are robust and provide adequate
performance.

Pipeline tests

Ensuring the automated development pipeline handles
various exceptions and the desired scale.

When the training dataset is of low quality, you may
presume that the model is accurate, but it can make
harmful predictions. Therefore, it is essential to validate
that the data is high quality. Here are some examples of
data quality tests:

There are no missing values.

Values are of the correct type and fall under an
expected range (for example, user age is between 0-
120, with anticipated average and standard deviation).

Category values fall within the possible options (for
example, city names match the options in a city name
list).



There is no bias in the data (for example, the gender
feature has the anticipated percentage of men and
women).

The data quality tests can be implemented in the data
pipeline (and feature store) or in the ML pipeline before
the training. Note that some feature stores automate the
data quality validation using built-in functions.
Once you train the model, the next step is to make sure it is
accurate and resilient. Beyond the common practice of
setting aside a test dataset and measuring the model
accuracy using that dataset, several additional tests can
improve the model quality:

Verify the performance is maintained across essential
slices of the data (for example, devices by model, users
by country or other categories, movies by genre) and
that it does not drop significantly for a specific group.

Compare the model results with previous versions or a
baseline version and verify the performance does not
degrade.

Test different parameter combinations
(hyperparameter search) to verify you chose the best
parameter combination.

Test for bias and fairness by verifying that the
performance is maintained per gender and specific
populations.

Check feature importances and whether there are
features with a marginal contribution that can be
removed from the model.

Test for immunity to fake, random, or malicious input
vectors to increase robustness and defend against



adversarial attacks.

Particular attention should be given to how you generate
the test set independently that considers fairness and lack
of bias and minimizes the dependencies on the training set.
When the models are deployed into production serving
applications, they contain additional data pre- or post-
processing logic (extraction, formatting, validation,
transformations, API integration, and so on). In addition,
the model code may depend on various software packages
or infrastructure (memory, CPUs, GPUs, and so on).
Therefore, models must be thoroughly tested in their target
serving application environment and through the API
before they are deployed into the production environment.
Here are some examples for serving application tests:
API coverage

All serving APIs behave as expected.

Performance tests

Verify the serving application can sustain the target number
of requests per second and respond within the required
latency.

Package consistency

Verify that the model training and serving are using the
same framework version (for example, sklearn).

Test data validation logic

Verify the model endpoint fails or logs the request if
improper data is sent to the model.

Test resiliency



Test that the serving application can resist malicious attacks
and impersonation.

Test correctness

Verify that the model prediction results via the serving API
are the same as those in the model validation step.

Test the outcome

Verify that prediction results translate to the proper action
(writing to a database, generating an alert, updating the user
interface, and so on).

The different tests all should be part of an automated
CI/CD pipeline. Every time the dataset or code changes,
the pipeline is executed and produces a new set of
deployable objects (models, applications, features, and so
on) and logs all the results to enable reproducibility and
explainability.
Some attention should be given to testing the ML pipeline,
ensuring that it will run correctly every time it’s triggered,
will not fail due to missing parameters or inadequate
resources, and can handle data at scale.
Once the model and other production artifacts are ready,
they must be stored in a versioned artifacts repository
along with all their metadata and the parameters required
to generate the production deployments.
In many cases, the trained model can be further optimized
for production and higher performance, for example, by
performing feature selection and removing redundant
features or by compressing the models and storing them in
more machine-efficient formats like ONNX. Therefore, ML
pipelines may incorporate model optimization steps.

https://onnx.ai/


Figure 2-12 illustrates how different test and optimization
steps can be used as part of an ML pipeline.

Figure 2-12. Adding tests and optimizations to an ML pipeline

Deployment (and Online ML Services)

Once an ML model has been built, it needs to be integrated
with real-world data and the business application or
frontend services. The whole application or parts thereof
need to be deployed without disrupting the service.
Deployment can be extremely challenging if the ML
components aren’t treated as an integral part of the
application or production pipeline.
ML application pipelines usually consist of the following:

API services or application integration logic

Real-time data collection, enrichment, validation, and
feature engineering logic

One or more model serving endpoints

Data and model monitoring services

Resource monitoring and alerting services

Event, telemetry, and data/features logging services

A set of actions following the prediction results

You can see a real-time pipeline example in Figure 2-13.



The different services are interdependent. For example, if
the inputs to a model change, the feature engineering logic
must be upgraded along with the model serving and model
monitoring services. These dependencies require online
production pipelines (graphs) to reflect these changes.

Figure 2-13. Building online ML services

Application pipelines can be more complex when using
unstructured data, deep learning, NLP, or model
ensembles, so having flexible mechanisms to build and wire
up our pipeline graphs is critical.
Application pipelines are usually interconnected with fast
streaming or messaging protocols, so they should be elastic
to address traffic and demand fluctuations, and they should
allow nondisruptive upgrades to one or more elements of
the pipeline. These requirements are best addressed with
fast serverless technologies.
Application pipeline development and deployment flows do
the following:

Develop production components:

API services and application integration logic

Feature collection, validation, and transformation

Model serving graphs

Test online pipelines with simulated data.



Deploy online pipelines to production.

Monitor models and data and detect drift.

Retrain models and reengineer data when needed.

Upgrade pipeline components (nondisruptively) when
needed.

From Model Endpoints to Application Pipelines

Today’s common practice is to build model serving
endpoints that merely accept the numeric feature vector
and respond with a prediction. The pre- or post-processing
logic, usually tightly coupled with the model, is done in
separate microservices. This complicates the delivery,
scaling, and maintenance of the ML application.
In some cases, the prediction is made using a combination
of models, for example, by implementing an ensemble of
models that cover different time scopes (recent time and
seasonal models) or other algorithms. Another example is
cascading two models. The first extracts sentiments from
text, and the second makes a prediction based on the
sentiments and other features.
A preferred approach is to design online (or real-time)
application pipelines where the model serving is just one
step, and be able to deploy, upgrade, or roll back that
pipeline as a whole. Unlike the data and model training
pipelines that run slow batch tasks, the application pipeline
should process thousands of requests per second and use
streaming or serverless processing engines.
Figure 2-14 demonstrates a simple application pipeline that
accepts a user request (via HTTP or a stream message),
processes it, predicts a result using a three-model
ensemble, and does post-processing (for example, response



to the user, updated the result in a database, generates an
alert, and so on).

Figure 2-14. Online application pipeline example

ML or DL applications may work with unstructured data
and complex processing stages such as image
manipulations (detect objects, resize, sample, recolor, crop,
and so on) or text manipulations (parse, format, tokenize,
and so on). Application pipelines are not limited to
structured data. As illustrated in Figure 2-15, a pipeline
can branch and process different parts of the data using
various technologies and models. In the example, a
document URL is sent to the pipeline (via a Kafka stream)
and the first step fetches the document from an object
storage repository. This is followed by text and image
processing steps, and finally the results are combined and a
search database is updated that hosts the document
information.

Figure 2-15. Advanced online application pipeline



Some examples of open source and commercial frameworks
for building multistage online pipelines:
AWS Step Functions

AWS cloud service composing online pipelines from AWS
Lambda serverless functions and other AWS cloud services.

MLRun serving graphs

Open source and commercial MLOps framework, its serving
layer enables the composition of online data and ML/DL
pipelines (graphs), provisioned automatically into auto-
scaling real-time serverless functions.

Apache Beam

Open source stream processing framework, focused on
online structured data processing. (Google Dataflow is a
managed version of Apache Beam.)

Seldon

Open source and commercial model serving framework
with basic online pipeline capabilities.

Online Data Preparation

A dominant part of the online application pipeline is data
processing, with tasks such as data parsing, formatting,
validations, transformations, aggregations, logging,
persisting, joining, and so on.
Processing data in a batch is a common practice. For
example, you can use data warehouse queries, ETL
processes, Spark, and so on. But the same technologies
don’t work for online pipelines where thousands of events
or user requests arrive every second and may need to be
answered within milliseconds.

https://oreil.ly/kIW72
https://www.mlrun.org/
https://oreil.ly/JTUIQ
https://oreil.ly/Al-6F
https://www.seldon.io/


In online data pipelines, the features are accumulated in
memory or a fast SQL/NoSQL database, fetched per event
to enrich the user request and passed into the model for
prediction. When the features are based on historical or
static data (such as gender, age, annual income, and so
on), you can use a periodic batch process to copy such
features to the online database. However, this won’t work
when the features are frequently updated (current
geolocation, last transaction value, money spent last hour,
time from the previous login, and so on).
Online data pipelines are implemented using stream
processing (Spark Streaming, Flink, Amazon Kinesis Data
Analytics, Nuclio, and so on), where events are ingested,
transformed, or aggregated on the fly to form real-time
feature vectors and a fast key/value database is used to
persist and share the distributed state. Figure 2-16
illustrates how stateful stream processing works. Events
arrive and are distributed to stream workers (partitioned
by the user key). Each worker processes the data and
merges or aggregates it with the accumulated state.
The major challenge is that stream processing code and
methodologies differ quite a bit from batch data analytics
approaches and require reimplementing the batch pipeline
used for the training into a real-time streaming pipeline.
However, some feature stores allow you to define the data
pipeline using high-level primitives and automatically
generate the batch or streaming pipelines, ensuring the
same logic is preserved and saving you significant
engineering effort.

https://oreil.ly/Vofzj


Figure 2-16. How stateful stream processing works (source:

https://beam.apache.org)

Online data pipelines are not limited to structured data.
Modern applications need to process unstructured visual
and textual data with operations such as resizing or
rotating images, parsing text, tokenizing statements, and so
on. Therefore, the technology and framework you select
need to support such applications.

NOTE

The line between data processing and ML or DL can be blurry. For
example, text can be converted to sentiment or a category feature
using an NLP model. Is that model serving or a data transformation?

Continuous Model and Data

Monitoring

AI services and applications are becoming an essential part
of any business. Poor model performance can lead to

https://beam.apache.org/


liabilities, revenue loss, damage to the brand, and
dissatisfied customers. Therefore, it is critical to monitor
the data, the models, and the entire online applications
pipeline, and guarantee that models continue to perform
and that business KPIs are met. Thanks to well-
implemented monitoring solutions, you can quickly react to
the problems by notifying users, retraining models, or
adjusting the application pipeline.
Monitoring systems track various infrastructure, data,
model, and application metrics and can report or alert on
different situations, including the following:
Data or concept drift

The statistical attributes of the model inputs or outputs
change (an indication that the model will underperform).

Model performance problems

The results of the model are inaccurate.

Data quality problems

The data provided to the model is of low quality (missing
values, NaNs, values are out of the expected range,
anomalies, and so on).

Model bias

Detect changes between the overall scoring and scoring for
specific populations (such as male and female and
minorities).

Adversarial attacks

Malicious attempts have been made to deceive the model.

Business KPIs



Verify that the model meets the target business goals
(revenue increase, customer retention, and so on).

Application performance

The application manages to properly serve requests without
delays.

Infrastructure usage

Track the usage of computing resources.

Model staleness

Alert if it is too long since the last time a model version was
deployed.

Anomaly detection

Model data or results don’t fall under the expected norm or
classes (for example, using an encoder-decoder neural
network model).

Figure 2-17 shows a typical model monitoring architecture.
The data inputs, outputs, and application metrics are sent
to a stream. A real-time stream processing application
reads the data. It can detect or alert on immediate
problems, aggregate the information, and write to various
data targets (key/value, time series, and files or data
warehouse).
Alerts generated by the monitoring system can notify users
(via emails, Slack, and so on) or trigger a corrective action
such as retraining a model with newer data, changing
model weights, and so on.
Feature stores can play a significant part in monitoring
data and models. They store the schema and statistics per



feature, which can be used in the different validation and
analysis tasks. If the production data is returned to the
feature store, it’s easier to analyze, join, and compare
production datasets with other historical or offline
datasets.

Figure 2-17. Online model and data monitoring architecture

Monitoring Data and Concept Drift

Concept drift is a phenomenon where the statistical
properties of the target variable (y, which the model is
trying to predict) change over time. Data drift (virtual drift)
happens when the statistical properties of the inputs
changes. In drift, the model built on past data no longer
applies, and assumptions made by the model on past data
need to be revised based on current data. Figure 2-18
illustrates the differences between concept drift and virtual
(data) drift.



Figure 2-18. Concept drift versus virtual (data) drift

Going back to the business level, you can see examples of
drift in the following use cases:
Wind power prediction

When predicting the electric power generated from wind
from an offline dataset based model, we have concept drift
versus online training models due to the nonstationary
properties of winds and weather.

Spam detection

Email content and presentation change constantly (data
drift). Since the collection of documents used for training
changes frequently, the feature space representing the
collection changes. Also, users themselves change their
interests, causing them to start or stop considering some
emails as spam (concept drift).

Concept drift changes can be:
Sudden

The move between an old concept and a new one happens
simultaneously. The behavioral patterns associated with the
COVID-19 pandemic have provided us with striking
examples, like the lockdowns that abruptly changed
population behaviors worldwide.



Incremental/gradual

The change between concepts happens over time as the new
concept emerges and starts to adapt. The move from
summer to winter could be an example of gradual drift.

Recurring/seasonal

The changes recur after the first observed occurrence. An
example is a seasonal shift in weather, which dictates that
consumers buy coats in colder months, cease these
purchases when spring arrives, and then begin again in the
fall.

Figure 2-19 shows how model drift detection works. First,
the model inputs and outputs are collected, and the system
calculates the statistics over a time window and compares
them with the sample set statistics (saved at training time)
or with the data from an older time window.
The monitoring system saves the various feature statistics
(min, max, average, stddev, histogram, and so on), and the
drift level is calculated using one or more of the following
metrics:

Kolmogorov–Smirnov test

Kullback–Leibler divergence

Jensen–Shannon divergence

Hellinger distance

Standard score (Z-score)

Chi-squared test

Total variance distance



Figure 2-19. Drift detection logic

Figure 2-20 demonstrates how drift can be detected.



Figure 2-20. Drift detection types

Drift is easily detected using these methods when the data
consists of simple numeric metrics, but how can it be
detected when the data is unstructured, an image, or a
piece of text?
One trick is to convert the input data to flat metrics that
represent the data and monitor the drift on those metrics.
For example, let’s say you classify images of fruits. Then
you can convert the images to their RGB color metrics and
check that the color distribution in production is the same
as in training.

Monitoring Model Performance and Accuracy

An important metric is to measure model accuracy in
production. For that, you must have the ground truth (the
actual result that matches the prediction). In some models
obtaining the ground truth is relatively simple. For
example, if we predict that a stock price will go up today,
we can wait a few hours and know if the prediction was
accurate. This is the same with other prediction
applications like predicting customer churn or machine
failure where the actual result arrives with some delay.
In some applications, a prediction is made for a specific
transaction (for example, exposure or click on an



advertisement). The transaction or prediction can be
tagged with a UID (unique identifier) in such a case. Once
the actual result is known (the customer bought the
product), you can update the transaction (identified by the
UID) with the ground truth value. This requires that the
model serving and monitoring frameworks has the ability to
store or generate a UID per prediction and add the ground
truth values to specific transactions/predictions.
The accuracy monitoring is done periodically (for example,
every hour or day). First, a dataset is generated with the
predicted y values (calculated by the model) and the
ground truth values (the actual result with the proper time
shifting or obtained using the UID). Then it is used to
calculate the accuracy metrics and compare them with the
accuracy during training. This is illustrated in Figure 2-21.

Figure 2-21. Monitoring model accuracy in production

NOTE

The ground truth values calculated for the accuracy monitoring are
the same y labels required for retraining the model. Therefore, the
best approach is to generate them once, store them in the feature
store, and use them for both retraining and accuracy monitoring.

Just like in training, it is recommended to use several
metrics to determine the prediction accuracy, especially in
the case when classes are not balanced:



Accuracy

General overall accuracy

Recall

What fraction of overall positives were correct

Precision

Determine when the costs of false positive are high

F1 Score

Analysis of the trade-off between recall and precision

NOTE

Be aware that the ground truth may contain bias. For example, in an
application that predicts fraud to approve or reject transactions, the
ground truth includes only information on the approved transactions.
There is no data about declined transactions that may not have been
fraudulent, which can lead to bias.

The Strategy of Pretrained Models

One of the most prolific authors on business strategy is
Harvard Business School professor Michael Porter, who
has often said, “The essence of strategy is choosing what
not to do.” With most organizations struggling to
implement machine learning projects that provide ROI,
there is a need for a better strategy. In particular,
organizations should ask what they should not be doing
while doing machine learning projects. In many cases, they
shouldn’t be building a specific type of model and should
instead use pretrained models.

https://oreil.ly/06BQW


In Understanding Michael Porter (Harvard Business
Review Press, 2011), Joan Magretta summarizes the
essence of competitive advantage as outlined by Michael
Porter in Figure 2-22. Companies that compete on
execution become part of a prisoner’s dilemma game
theory problem, where both competitors increasingly lower
prices and costs while lowering the company’s profit. This
is the best-case scenario; in many cases, it is impossible for
a company to out-execute a bigger rival, say training a
better NLP or computer vision model.

Figure 2-22. Competing on strategy, not execution (source: Understanding

Michael Porter by Joan Magretta)

This conceptual understanding of strategy shows why
pretrained models are an essential component of a holistic
strategy to create unique competitive advantages while
implementing machine learning projects.
There are several vendors of pretrained models. The most
popular platform is Hugging Face, which has over 60,000
models. Google’s TensorFlow Hub has a unique collection
of pretrained models in various formats, including formats
targeting runtimes like Javascript or embedded hardware

https://oreil.ly/a1u__
https://oreil.ly/MAUmT
https://oreil.ly/X_8rL
https://oreil.ly/yPkJA


or mobile. One more format and repository is ONNX, which
contains many examples of pretrained computer vision and
language models.

Building an End-to-End Hugging Face

Application

The best way to understand pretrained models is to build
an end-to-end solution with one. Fortunately, Hugging Face
makes it simple to do this. First, you need to sign up for a
free account.
Next, let’s look at the application architectures in Figure 2-
23. A user account creates an authentication token that
later becomes part of a continuous delivery pipeline in a
cloud-based build system in GitHub Actions. The code itself
develops in GitHub Codespaces. A Hugging Face model
then lives inside a Gradio application, allowing for quick
prototyping of an MLOps workflow by providing a user
interface. Finally, the Hugging Face Spaces functionality
allows users to create applications hosted on the platform
using Gradio, a technology for building machine learning
apps.

https://oreil.ly/yPkJA
https://oreil.ly/E1Eij
https://oreil.ly/h_Xv0
https://oreil.ly/phKWU
https://www.gradio.app/


Figure 2-23. MLOps prototyping with Hugging Face pretrained models

NOTE

You can view a walkthrough of this Hugging Face application on
YouTube or the O’Reilly platform. The application source code is in
GitHub.

Let’s break each core application file; first there is the
app.py:

from transformers import pipeline 

import gradio as gr 

 

model = pipeline("summarization")  

 

def predict(prompt):  

https://oreil.ly/nrdLj
https://oreil.ly/0VYCf
https://oreil.ly/_BYK1


p (p p )

    summary = model(prompt)[0]["summary_text"] 

    return summary 

 

with gr.Blocks() as demo:  

    textbox = gr.Textbox(placeholder="Enter text block to summarize", lines=4) 

    gr.Interface(fn=predict, inputs=textbox, outputs="text") 

 

demo.launch()

Use Hugging Face transformers (pretrained model).

Create the predict function.

Build the Gradio UI.

The other key file is main.yml, which controls the
continuous delivery to Hugging Face. The actions are as
follows:

name: Sync to Hugging Face hub 

on: 

  push:  

    branches: [main] 

 

  # to run this workflow manually from the Actions tab 

  workflow_dispatch: 

 

jobs: 

  sync-to-hub: 

    runs-on: ubuntu-latest 

    steps: 

      - uses: actions/checkout@v2 

        with: 

          fetch-depth: 0 

      - name: Add remote 

        env:  

          HF: ${{ secrets.HF }}  Use the token from Hugging Face 

        run: git remote add space <your account> 

      - name: Push to hub 

        env: 

          HF: ${{ secrets.HF }} 

        run: git push --force <your account>



On push to GitHub, build the project.

Use the Hugging Face authentication token.

Finally, with the build process set up, you can see the
working application in Figure 2-24. Any text passed into the
submit box is then summarized using the Hugging Face
pretrained model. Later, different models could be
swapped out with just a line of code changed, and the
entire application and the model would go live. A key
takeaway is pretrained models deployed in this MLOps
fashion allow for rapid prototyping of what could later
become a more sophisticated MLOps system.

Figure 2-24. Gradio application summarizing The Old Man and the Sea text

Flow Automation (CI/CD for ML)



CI/CD is an agile development approach for managing the
life cycle of software and continuously deploying robust
code updates to production. Using CI/CD, multiple
developers can contribute code updates to a shared project
repository, conduct automated testing, and have a
controlled and continuous deployment process. The
outcome is faster time to market using fewer resources and
lower software failure rates.
However, the development of ML models and applications
brings additional challenges that are not present in
traditional software development:

Multiple people participate in the development (data
scientists, data engineers, software developers, ML
engineers, and so on), each with different development
skills, tools, and practices.

A version definition extends beyond code and
incorporates data source objects, parameters, and
multiple artifacts.

The different data and ML workloads (data preparation,
model training, model, data and application testing,
and so on) require high scalability and distributed
processing using CPUs and GPUs.

Deploying new versions to production involves merging
different data assets and states (for example, tables
may change the schema, streams may be partially
processed, new features are added and require
historical values or imputing missing values, and so
on).

Monitoring and observability are far more complex and
less deterministic (as discussed in the previous section
about model and data monitoring).



To address the data- and ML-specific challenges,
organizations must extend their CI/CD practices with
MLOps automation practices and ensure that the
engineering and data science teams are aligned on the
same development methodologies and tools. Here are some
practices to follow:

Data scientists’ code can no longer be maintained in
giant notebooks but rather must be broken into smaller
functional code components (see “Writing and
Maintaining Production ML Code”).

All data, code, parameters, artifacts, and results must
be automatically collected, versioned, and correlated
(see “Tracking and Comparing Experiment Results”).

Tests should be extensive and cover all data, model,
and application aspects (see “Building and Testing
Models for Production”).

Pipelines must support high-performance, distributed
processing, efficient movement, and versioning of data
assets across the pipeline.

Model and data monitoring solutions should provide a
feedback loop and be incorporated into the automation
flow (see “Continuous Model and Data Monitoring”).

Figure 2-25 demonstrates a typical CI/CD flow for ML
applications. It consists of three main parts:
Development

A user (data scientist, data engineer, software developer, and
so on) creates a development branch from the latest code,
adds features, and conducts local tests using sample data.

Staging (or integration)

https://oreil.ly/O7Kcv


The user requests to merge the new feature into the
development branch. At this point, automated test
procedures run over the new code with a larger dataset, and
distributed or more scalable computation resources. Once
the new code passes the tests and is approved, it merges into
the development release and may undergo additional stress
testing.

Deployment to production

The development release is partially promoted to production
(use canary or A/B testing deployment method to process
small parts of the actual transactions). Once the new version
is verified to work correctly and is compared to the prior
release, it is approved and released to production. In case of
failures or lower model performance, the system can be
rolled back to the previous release.

Figure 2-25. Automating the flow from development to production



The MLOps framework must have a tight integration with
the source control (Git) and CI/CD framework you choose
(Jenkins, GitHub Actions, Gitlab CI/CD, and so on). Various
metadata and configuration objects must be stored in the
source repository along with the code, data referencing
should be abstract and versioned, and reporting and APIs
should be integrated to have everything versioned in one
place and avoid manual or complex integrations. You can
see an example for integration in Figure 2-26.

Figure 2-26. A view of automated data and ML test reports inside the version

control (Git) system

Conclusion

https://www.jenkins.io/
https://oreil.ly/dvYtI
https://oreil.ly/HiIc1


This chapter provided an in-depth exploration of the stages
of MLOps, emphasizing the significance of going beyond
just model training. MLOps is a holistic approach that
includes four essential components: data collection and
preparation, model development and training, ML service
deployment, and continuous feedback and monitoring. This
approach not only strengthens the technical quality of ML
projects, but also ensures they align with and drive
business objectives.
In this chapter, we dived into each of these components,
covering topics like how to store and ingest data, data
preparation, feature stores, model development, distributed
training and hyperparameter optimization, and the
importance of a production-first mindset that involved
maintaining quality standards, automating the development
and testing, and ensuring model robustness and reliability,
among many others. Additionally, we explored further
strategic activities that enhance MLOps efficiency, like
using pretrained models and CI/CD. Now that you’ve read
this chapter, and after practicing the exercises, you’re
ready to move on to building your first project and
advanced MLOps use cases.

Critical Thinking Discussion

Questions

Let’s review the topics we discussed in this chapter. Can
you answer the following questions?

Why is problem framing the initial suggested step for
implementing a project following the MLOps
philosophy?



Name two or three examples of problems an
organization could solve more effectively with a
heuristic rather than with machine learning?

How could your organization design an effective data
governance strategy that proactively prevents personal
identifiable information (PII), bias, or regulatory risk
problems?

How could you use a feature store to decrease a
model’s computational training time?

Consider a situation in which your organization faces
issues with data drift and another when it encounters
problems with concept drift. What would be the most
significant impact if not resolved?

Exercises

Use MLRun serving to serve out a Hugging Face model.

Use a feature store on an MLOps platform to train a
model that requires data transformation before
training.

Use an experiment tracking technology like MLflow,
MLRun, ClearML, SageMaker, or another MLOps
platform to train multiple versions of a model and
compare the accuracy of numerous runs.

Use an open source framework like Spark, Dask,
Horovod, or Nuclio for workload distribution to perform
distributed hyperparameter tuning.

Write a serving application test using one of the
examples covered earlier in the book.

https://oreil.ly/ZQjTX
https://huggingface.co/


Chapter 3. Getting Started

with Your First MLOps

Project

If you’re itching to get started with building your MLOps
project and pipelines, you’re at the right chapter.
Surprisingly (or not, if you’ve been carefully reading the
book so far), the first step doesn’t require a notebook or
IDE. Instead, it requires a proper discussion with the
decision makers at your company. AI and ML open up new
technological frontiers, but outside of academia, they have
to be connected to a business use case. This is what makes
them valuable to people. Therefore, the first thing to do is
to figure out the business use case that justifies your
project, as well as the goals and the expected ROI.
Once the business side is clear, it’s time to go to your
computer. But don’t open your notebook just yet. The next
step is to plan the ML project. This includes the resources
you will need, processes that will run, prototyping the
solution, the pipeline structure, and the design. Once these
components are approved, it’s finally time to develop your
ML pipeline. In this chapter, we explore each of these
stages in detail.

Identifying the Business Use Case

and Goals

AI is transforming businesses and global economies. A PwC
report predicts that AI could contribute as much as $15.7

https://oreil.ly/pyheD


trillion to the global economy by 2030. Moreover, 45% of
total economic gains will come from product
enhancements, stimulating consumer demand. This is
because AI will drive greater product variety, with
increased personalization, attractiveness, and affordability
over time. AI helps businesses increase their revenue, cut
operational costs, improve productivity, and reduce
friction. Furthermore, it helps long-term strategic goals,
such as increasing competitiveness, reducing risks,
growing user base and consumer loyalty, enhancing
employee retention, and enhancing brand value, which will
translate to higher profitability and valuation in the long
run.
For example, according to McKinsey, up to 35% of
Amazon’s revenue comes from AI-powered
recommendations. By introducing the Frequently Bought

Together recommendations (and other recommendations),
Amazon was able to increase the average customer
shopping cart size and order amount (upselling and cross-
selling), which in turn increases average revenue per
customer and Amazon’s e-commerce generated revenue
per quarter.
Netflix estimates its personalized recommendation engine
is worth $1 billion per year. According to the Netflix team,
“consumer research suggests that a typical Netflix member
loses interest after perhaps 60 to 90 seconds of choosing,
having reviewed ten to twenty titles on one or two screens.
After that, the user either finds something of interest or the
risk of the user abandoning our service increases
substantially.” So Netflix executives believe they could lose
at least $1 billion annually if its subscribers aren’t offered a
proper recommendation.

https://oreil.ly/GMKOD
https://oreil.ly/nUpKL


LATAM Airlines is the largest South American airline
carrier. Its business was struck hard by COVID-19. It lost
80% of its revenue and went into chapter 11. The CEO
decided to double down on AI to reduce costs and increase
profitability. While cutting costs left and right, it
significantly grew its data science and MLOps teams and
automated almost all parts of its business. Now it is in a
much better financial situation. In one of the use cases, the
goal was to improve the precision of flight fuel calculation
to avoid carrying extra fuel. The project saved LATAM tens
of millions of dollars annually and significantly reduced CO₂

emissions (which is also an important environmental
benefit). In another use case, it used customer data to
deliver custom packages and upsell options and the project
resulted in tens of millions of dollars in additional revenue.
Another typical example of the significant cost savings AI
can bring is in the use of chatbots. A report from Juniper
Research has found that adopting chatbots across the
retail, banking, and healthcare sectors will realize business
cost savings of $11 billion annually by 2023, up from an
estimated $6 billion in 2018. When implemented correctly,
chatbots address customer service staff scalability needs,
boost customer service quality, and collect valuable
consumer data.
Governments and nonprofit organizations also use AI. They
address universal needs such as national security,
improved healthcare, environmental protection, child
safety, education, and more, which are not tied to
measurable business goals but benefit the entire
population. The information in Table 3-1 is from the
McKinsey report “Applying Artificial Intelligence for Social
Good” and lists the different use cases. For more
information, check out a summary of the report.

https://oreil.ly/Pbz4R
https://oreil.ly/1uhjm
https://oreil.ly/PTj0n


Table 3-1. AI for social good use cases

Category Application

Crisis
response

Disease outbreak, migration crises,
natural and human-made disasters,
search and rescue

Economic
empowerment

Agricultural quality and yield, financial
inclusion, initiatives for economic
growth, labor supply and demand
matching

Education Access and completion of education,
maximizing student achievement,
teacher and administration productivity

Environment Animal and plant conservation, climate
change and adaptation, energy efficiency
and sustainability, land, air, and water
conservation

Equality and
inclusion

Accessibility and disabilities,
exploitation, marginalized communities

Health and
hunger

Treatment delivery, prediction and
prevention, treatment and long-term
care, mental wellness, hunger

Information
verification
and validation

False news, polarization



Category Application

Infrastructure Energy, real estate, transportation,
urban planning, water and waste
management

Public and
social sector

Effective management of public sector,
effective management of social sector,
fundraising, public finance management,
services to citizens

Security and
justice

Harm prevention, fair prosecution,
policing

AI is also making a difference in the world by tackling
significant sustainability challenges. One example Yaron
was involved in addressed flash flooding and freshwater
availability in a new and innovative way. The
Hydroinformatics Institute of Singapore began using
thousands of CCTV cameras dispersed throughout this
large Asian city as real-time sensors to analyze and
measure rainfall. It uses this to generate spatially
distributed ground-level rainfall data. Then, the data is fed
into complex deep learning algorithms it built and deployed
with an automated MLOps pipeline to create accurate, real-
time rainfall predictions. It used these rainfall predictions
to manage floods by moving floodgates ahead and routing
excess rainfall to reservoirs that can store and convert it
into drinking water for the population.

Finding the AI Use Case



When defining an AI project, the goal or hypothesis can’t
remain at the abstract level of wanting to increase top-line
revenue or cutting costs. Rather, it should address a
specific use case or business problem and have measurable
outcomes and ROI. For example, an application can provide
purchasing recommendations based on products likely to
be purchased together and increase average customer
order size by X%, which will positively impact top-level
goals like increasing average revenue per customer and
top-line revenue.
Use cases will generally fall under one or more of the
following categories (in order of complexity and value):

Intelligent forecasting and data analysis to support
various decisions

Innovative process or service automation to reduce
costs and increase productivity

New products and services that generate incremental
value

Simpler or better user experience, and autonomous
systems (bots, robots, cars, and so on)

The same project may address cost reduction and, at the
same time, increase revenue or improve user experience.
An example would be setting a goal around building an AI
model to predict demand for a specific product. The
prediction can help retailers ensure they do not run out of
stock, which could result in lost revenue. An added benefit
is an improved customer experience, which results in
happier and more loyal customers who purchase the
products they were looking for.
You can read the McKinsey’s state of AI in 2021 report or
10 Ways Artificial Intelligence Helps Business: Uses &
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Examples, which describe the adoption of the most
common AI use cases.
Here are some common AI use cases:
Product recommendations

Recommendation systems that offer products to users based
on their behavior, purchase history, profile segmentation,
and other factors. Think about the “Additional Products You
May Like” or “Customers Also Bought” sections that appear
when you shop online.

Chatbots

Chatbots that engage with users, offering support, guidance,
and assistance across the entire user journey. Engagement
can start as early as marketing by answering questions and
providing resources to read, through selling via chatbots,
and all the way to customer support and professional
services. AI enables chatbots to deliver an accurate,
personalized experience (one that doesn’t require the user
to ask to speak to a human representative after a few
unsuccessful attempts to get answers from poorly
programmed bots).

Marketing and content

Generative AI can develop marketing strategies and plans,
run competitive analyses, create marketing assets like blogs
and emails, and even generate images for social media or
media campaigns.

Customer sentiment analysis

Measurement of the feelings and opinions expressed by
customers online, across websites, forums, social media, and

https://oreil.ly/_yNRG


other channels. This information informs business decisions,
especially marketing and sales.

Sales forecasting

Calculating the probability of customer purchases, revenue,
and conversions. This helps build the sales pipeline and
predict quarterly and annual sales performance.

Price optimization

Calculating factors like your previous prices, the quality of
your brand, competitor pricing, operating costs, the market
situation, and more, to identify the optimal price.

Cybersecurity

Strengthening defenders by detecting and predicting attacks,
helping security professionals learn new technologies and
methods, and assisting in building cybersecurity solutions.

Fraud prediction

Analyzing transactions to identify real-time threats and
block them before they occur.

Resource optimization

Finding ways to use computational resources more
efficiently to cut costs and encourage sustainability.

Demand forecasting

Accurately predicting demand and tracking manufacturing
to avoid waste.

Healthcare

Predicting medical conditions and patient deterioration, as
well assisting with treatment, medication, and triaging in



ICUs.

Predictive maintenance

Detecting malfunctions before they occur to save time and
keeping operations running.

The curated list of the top 100 artificial intelligence use
cases by vertical and importance can give you more ideas.
Figure 3-1 (from the Smart Insights article “How AI-
Powered Content Marketing Can Fuel Your Business
Growth”) illustrates how AI can be used in different
marketing use cases.
The best way to start is to organize a brainstorming session
with all the different business and technology stakeholders
to get use case ideas and validate their feasibility.

Figure 3-1. How AI can be used in different marketing use cases

Defining Goals and Evaluating the ROI

https://oreil.ly/X7B0m
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Although there is an apparent increase in the success ratio
of AI projects, many projects result in minimal or no value
from their AI investments. One of the reasons is that
relatively few projects are deployed into production, mainly
due to cultural and organizational challenges; in many
cases, they were treated as a bunch of small science
projects that failed to realize an ROI. Moreover, production
deployments are complex since they usually require
integration with existing systems, processes, online data
assets, and applications in a scalable and robust fashion.

TIP

One of the ways to increase the success rate is to define achievable
and measurable goals. Identifying, prioritizing, and setting goals is a
multifunctional team effort that should include business owners,
domain experts, data science and engineering teams, and more. This
helps ensure alignment with company goals while having the
necessary business and domain expertise. AI initiatives may also
require effective governance, compliance, ethics, cost, and risk
considerations.

To evaluate the ROI of the project, consider the
investments and returns, both direct (hard) and indirect
(soft).
Investments:

People (data scientists, data engineers, MLOps, and so
on)

Compute and data infrastructure

Software licenses and services

Consultants and training

Returns:



Cost savings

Increased revenue

Time-saving or increased productivity

Increased competitiveness or user base

It is essential to factor in the uncertainty of the benefits. AI
models are likely to have errors—their accuracy is lower
than 100%. So it helps to estimate both the error rate and
the cost of making mistakes. Also, the fact that you made
the correct prediction does not mean your action yields the
expected user behavior. For example, you might predict
that a user would like the suggested product, but the
recommendation was not delivered on time or wasn’t
visible to the user.
Figure 3-2 illustrates how to calculate the ROI for an ML
project.

Figure 3-2. Calculating ML project ROI

Another challenge is that while historical data may be
accessible, real-world data may behave differently or not be
accessible, leading to different results in production
deployments. As a result, machine learning–based AI
models may deteriorate in performance over time. ROIs
and KPIs should be monitored constantly so the value does



not decay. Budgeting for MLOps solutions and continuous
development and deployment models is also essential.
AI applications also bring possible risks and expose the
organization to liability, security vulnerabilities, compliance
or legal challenges, and more.
On the upside, many of the investments in AI can be shared
across multiple projects. Building common AI platforms,
practices, and knowledge sharing (an AI Factory) in the
organization can significantly impact the ROI. According to
McKinsey’s state of AI in 2021 report, “The companies
seeing the biggest bottom-line impact from AI adoption are
more likely to follow core and advanced AI best practices,
including MLOps; move their AI work to the cloud; and
spend on AI more efficiently and effectively than their
peers.”

TIP

A significant impact on the ROI of a project is to find the right
balance of buy versus build. Many products and services in the
market today already incorporate AI, which can help reduce long
development cycles and risks. Pretrained or partially trained ML
models can save time, resources, and data. MLOps platforms can
save significant development overhead and technical debt and allow
you to focus on business problems.

How to Build a Successful ML Project

Various surveys indicate that the major impediments to the
success of AI in the organization are cultural challenges,
such as slow adaptability to change, reengineering of
business processes, staff education, data literacy
requirements, organizational alignment, and elimination of
silos to support business objectives. Many organizations

https://oreil.ly/AfGG7


report that direct involvement from C-level executives is
essential to the success of AI projects. The Harvard

Business Review dedicated an article to the vital role of
CEOs in leading a data-driven culture; McKinsey also
writes about the role of the CEO and MLOps.
Addressing the cultural challenges is not enough. To
achieve a successful AI strategy, you need to redesign all
your business processes and tasks around data and AI:

Build systems and processes for continuously
collecting, curating, analyzing, labeling, and
maintaining high-quality data. The most significant
impediment to effective algorithms is insufficient or
poor data.

Develop effective and reliable algorithms that can be
explained; are not biased against particular groups or
individuals; and are correctly fit, continuously
monitored, and regularly updated using fresh data.

Integrate a business application’s data assets, AI
algorithms, software, and user interface into a single
project with clear ownership and milestones. Avoid
organizational silos.

Build robust engineering and MLOps practices to
continuously develop, test, deploy, and monitor end-to-
end ML applications.

Approving and Prototyping the Project

Before committing to a project, you need to build and
approve your plan. To do so, answer the following
questions:
Objective

https://oreil.ly/ekNmK
https://oreil.ly/hAdib
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What are the objectives of this AI use case and are they
aligned with the strategic business goals?

KPIs

What will qualify as success and how will it be measured?

Data

Do you have enough data (and labels) to train the models?
Can you obtain the same data in production and inference?
Does the data contain bias? Can you get fresh labeled data
for retraining?

People

Who will be responsible (the owner) for the project? Which
resources and skills are needed? Are they available or do
you need to hire them?

Algorithms

Which AI approach and algorithms are you planning to use?
Can you find an existing model?

Ethics and risks

Are there any ethical or legal issues regarding this use case
(privacy, GDPR, bias)? Are any security risks introduced? Can
you protect the model from malicious attacks?

Infrastructure

What are the technology and infrastructure challenges and
requirements? What are the implementation challenges?
What are the expected infrastructure costs?

Continuity



Can you continuously monitor and maintain the
application? Can you update the data and model frequently
enough? How do you verify the KPIs and ROI once the
application is deployed?

After answering these questions and getting approval for
the project, the next step is to validate the hypothesis and
prototype the application by using rapid prototyping and
simulation tools:

Manually gather data from different sources. Make
sure the data you use can, later on, be ingested and
prepared continuously at scale.

Explore the data and look for patterns and signals.
Verify which datasets and features are required and
which don’t add value. Next, try out derived features
(date extractions, aggregates, indirect values such as
turning zip code numbers to demographics or
geolocation data, and so on).

Prepare the data, train a model using a relevant subset
of the data, validate that it performs as expected, and
try out different frameworks, algorithms, and existing
models.

Build a prototype application that simulates the end-to-
end flow: receives a request, prepares the data, infers
using the model, drives actions, integrates with
external APIs/systems, logs vital metrics for
performance and KPI monitoring, and so on.

Building a prototype can save time, reduce risks, and
improve the results. An excellent way to save time and
energy is to have project templates with an application
skeleton and best practices. Moving from the prototype to a



production ML application can be done in multiple
iterations, adding more data, logic, and robustness in every
iteration. It is essential to break the project into functional
modules from day one (for example, data preparation,
training, testing, serving, and so on) and define interfaces
between the modules. This allows independent
development of each module and better collaboration
between team members.
You must define the initial prototype’s scope, milestones,
and objectives. Once it is implemented and the goals can be
evaluated, the executive team must approve the
productization of the project and allocate the extended
required resources for its success.

Scaling and Productizing Projects

ML projects that are designed for production and scale
consist of three pipelines:
Data pipeline

Tap into the full-scale historical, operational, and real-time
data sources and transform the raw data into features for
use in the training and inference stages. Feature stores can
accelerate the development of a data pipeline and enable the
reuse of existing data features from other projects.

Model development (CI/CD) pipeline

Automate the process of getting relevant data, data
validation, training with different parameters and
frameworks, evaluating and testing the model, deploying the
inference pipeline, and so on.

Application pipeline

https://oreil.ly/MR3sh
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Intercept requests or events; enrich and process data; use
the model for inference; apply relevant actions; and monitor
various resources, data, model, and KPI metrics.

The pipelines must be designed for continuous
development and operations. New versions can be deployed
without disrupting the overall application. It is
recommended to work in sprints (weekly, monthly). At the
end of each sprint, look at the complete application in
action. Each sprint provides more functionality or
robustness until you reach a deployable and production-
quality application. After deploying the application, keep
iterating with feature improvements or bug fixes. Figure 3-
3 illustrates the project engineering flow.



Figure 3-3. MLOps engineering flow (adapted from https://oreil.ly/cAUKU)

In most cases, each pipeline uses a different framework
and is maintained by different teams with different skills,
for example: Spark, Flink, and Airflow for data pipelines,
Kubeflow for model development, and plain containers or
serverless functions for the application pipelines. Having
such a large variety of tools and frameworks creates
operational challenges. Furthermore, each framework
works with different metadata layouts and APIs, forcing
additional glue logic and conversions. Therefore, working
with standard metadata and abstractions across
frameworks is essential for simplifying and streamlining
deployments.

https://oreil.ly/cAUKU
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ML projects are developed continuously and collaboratively
by different team members. Therefore, a versioned source
control system like Git, an agile development process, and
CI/CD automation are mandatory requirements for a
successful outcome.

Project Structure and Lifecycle

ML project is a container for all your work on a particular
ML application. Projects host functions, workflows,
artifacts, notebooks, features, and configurations. Projects
have owners and members with role-based access control,
which should define who can access what and how. Project
components are as follows (see Figure 3-4):
Functions

Code elements along with their package requirements,
configuration, metadata, resource definitions, and more.

Workflows

Pipeline (DAG) definitions, like which step comes after which
and how parameters are passed between steps.

Artifacts

Metadata and pointers to various data artifacts (files,
datasets, models, and more) used in the project.

Notebooks

Jupyter Notebook is used for interactive development, data
exploration, and visualization. It is recommended to only
store production code in notebooks since it’s harder to test,
automate, and track changes in them.

Features

https://git-scm.com/
https://jupyter.org/


Definitions of feature store features and the data pipelines
that generate or retrieve those features (usually called
feature sets and feature vectors).

Configurations

Parameters, secrets, build and installation instructions, and
more.

Projects should be stored and versioned in a source control
system (Git) or archived. Then they can be opened and
edited as a project in the different IDEs (Jupyter, PyCharm,
VSCode, and others). This approach enables versioning,
collaboration, and CI/CD.

Figure 3-4. ML project components

You can define best practices and project templates for
your team. This can simplify creating new projects and
helps focus and prioritize existing projects. Example 3-1
demonstrates how you can define the project directory
structure:
Example 3-1. Project directory layout example

https://oreil.ly/0pH4H
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my-project           # Parent directory of the project (context) 

├── data             # Project data for local tests or outputs (not tracked by 
                     # version control) 

├── docs             # Project documentation 
├── src / pkg-name   # Project source code (functions, libs, workflows) 
├── tests            # Unit tests (pytest) for the different functions 
├── notebooks        # directory for storing notebooks 
├── README.md        # Project README 
├── requirements.txt # Default Python requirements file (may have per function 
                     # requirements files) 

├── setup.py         # Python package setup file 
├── LICENSE          # License file 
└── ...

MLOps frameworks such as MLflow and MLRun store
additional metadata and configuration files (MLproject,
project.yaml) in the project directory. This allows loading a
project from Git, reconstructing all its objects and
configurations automatically, and versioning the
configurations and metadata (a.k.a. GitOps).
In a continuous development and integration flow
(illustrated in Figure 3-5), developers create an ML project
and write and test their code and models. Once it is ready,
they push the changes into the source control system (Git).
Next, the project is loaded into a development cluster to
run an additional set of automated tests on larger datasets
and a system that resembles the production setup. Then,
bug fixes are applied to the code until the project becomes
stable and the release is due. Finally, a version tag is
assigned to the project when the release is ready, and that
version is deployed on the production cluster in a rolling
upgrade process.

https://mlflow.org/
https://www.mlrun.org/


Figure 3-5. ML project lifecycle

Dividing the project into functional building blocks
(functions, workflows, features, and so on) and using Git
enables continuous and collaborative development.
Furthermore, placing code, ML objects, metadata, and
configurations in the same versioned project repository
simplifies testing, deployment into production, and rollback
to older versions in case of problems.

ML Project Example from A to Z

This section demonstrates a complete ML project and the
development flow from initial exploration to continuous
deployment at scale. The development and productization
flow consists of the following steps:

1. Initial data gathering (for exploration).

2. Exploratory data analysis (EDA) and modeling.

3. Data and model pipeline development (data
preparation, training, evaluation, and so on).

4. Application pipeline development (intercept requests,
process data, inference, and so on).

5. Scaling and productizing the project (adding tests,
scale, hyperparameter tuning, experiment tracking,
monitoring, pipeline automation, and so on).



6. Continuous operations (CI/CD integration, upgrades,
retraining, live ops).

Exploratory Data Analysis

Exploratory data analysis (EDA) enables an in-depth
understanding of your datasets, their quality, and how they
influence the target variable. EDA is vital for determining
which raw and derived features should be used in the
model and for examining your hypotheses. In many cases,
EDA requires domain-specific knowledge (or intuition) to
determine which variables can be used and how they can
impact the model. EDA is usually a manual and interactive
process but can use various tools to automate and better
visualize the information gathering and analysis.
The EDA process consists of the following steps:

1. Importing relevant datasets (extraction from the overall
data)

2. Understanding the data structure and statistics

3. Cleaning and sanitizing

4. Transforming (generating derived features)

5. Feature analysis

6. Cross-feature relationships and correlation analysis

7. Prototyping a model and evaluating feature importance

The process is iterative. You may need to obtain more data
from other sources, find that some of the data is useless
and doesn’t contribute to your model, or find that various
transformations yield better results.



The first step is understanding the data shape, types,
statistical distribution, categories, missing values, and so
on. Next comes data cleansing, removal of useless columns
or rows, handling missing values, removing duplicates, and
identifying and fixing recording errors.
In many cases, the raw features are not a good indicator
and you will need to create derived features that correlate
better with the target results. Some examples are:

Extracting date/time components (hour of the day, day
of the week, is_weekend, and so on) from a date/time
field

Value mappings (log scale, binning, encoding,
grouping, and so on)

Aggregation over time or entity (number of clicks in the
last hour, total purchases by customer)

Important features obtained by joining data from a
secondary dataset (map zip code to geolocation or
social-economic information, map product ID to its
price or category, and so on)

Once you have all the features, it’s time to analyze and
visualize their behavior, histograms, outliers, and
categorization. Potentially you can apply transformations to
improve the data quality and impact.
The next step is to find interesting relationships that show
the influence of one variable on another, preferably on the
target. Some features may not have any impact and can be
removed while some may need to be transformed to
increase their influence. At this stage, you can also
evaluate the data for potential bias.



When the features are sanitized and prepared, you can
build a basic model or use AutoML tools for prototyping a
model. Once you have a model, examine your hypothesis to
see if you can predict the target variable and evaluate the
importance and necessity of the features you used.

Data and Model Pipeline Development

In the EDA phase, the process was exploratory and
interactive. Now it’s time to build the data preparation,
modeling, and testing to turn them into high-quality,
robust, and reusable code. As discussed in Chapter 2, a
preferred approach is to create individual Python functions
for each stage, give them parameters, record their outputs,
and create unit tests. Then, notebooks can execute those
functions interactively and visualize their results.
Once the individual functions work, you can create a
workflow (directed acyclic graph, or DAG), run the
different tasks in an automated pipeline over scalable local
or cloud resources, and integrate that workflow into an
automated CI/CD process.
A minimal pipeline includes the following steps:
Data preparation

Prepare the training and testing datasets.

Model training

Train the model with the dataset and some parameters.

Evaluation

Evaluate the model against the test dataset and generate
various reports and metrics.



Real-world pipelines will have more test and deployment
steps and will run the training step with different
parameter combinations (hyperparameter tuning).
Example 3-2 demonstrates accepting a DataFrame and
required test size, processing the data, and splitting it to
train and test datasets.
Example 3-2. Data preparation function code example

(partial)

def data_preparation(dataset: pd.DataFrame, test_size=0.2): 

    """A function which preparation training dataset 

 

    :param dataset: input dataset dataframe 

    :param test_size: the amount (%) of data to use for test 

 

    :return train_dataset, test_dataset, label_column 

    """ 

    dataset = clean_df(dataset).dropna(how="any", axis="rows") 

 

    ... additional processing 

 

    train, test = train_test_split(dataset, test_size=test_size) 

    return train, test, label_column 

...

NOTE

Using the feature store is a more powerful and automated way to
process data. This will be discussed in the next chapter.

The next step is to train the model with the newly prepared
dataset. For example, the following function (see
Example 3-3) accepts the training dataset and various
parameters (which will be used for hyperparameter tuning
in the following sections), trains the model, and returns the
ML model.
Example 3-3. Model trainer function code



def train( 

    dataset: pd.DataFrame, 

    label_column: str = "label", 

    n_estimators: int = 100, 

    learning_rate: float = 0.1, 

    max_depth: int = 3, 

    model_name: str = "cancer_classifier", 

): 

    # Initialize the x & y data 

    x = dataset.drop(label_column, axis=1) 

    y = dataset[label_column] 

 

    # Initialize the ML model 

    model = ensemble.GradientBoostingClassifier( 

        n_estimators=n_estimators, learning_rate=learning_rate, 

max_depth=max_depth 

    ) 

 

    # Train the model 

    model.fit(x, y) 

    return model

The final step is to evaluate the model using the test set.
The evaluate function (Example 3-4) accepts the trained
model and training set as inputs and generates various
reports and charts (such as ROC curves, feature
importance, and so on). Since the evaluate function is
generic, it can be implemented once, stored in a shared
repository like MLRun’s functions hub, and used in multiple
projects. A complete implementation of the training and
evaluation functions can be viewed in MLRun’s train and
evaluate hub function.
Example 3-4. Evaluation function code example (partial)

def evaluate( 

    model, 

    dataset: pd.DataFrame, 

    label_columns: Optional[Union[str, List[str]]] = None, 

): 

    """ 

    Evaluating a model and generate reports and artifacts. 

 

    :param model:             The model path or object. 

    :param dataset:           The dataset to evaluate the model on. 

https://oreil.ly/xm81j


    :param label_columns:     The target label(s) of the column(s) in the 

dataset. 

                              for Regression or Classification tasks. 

    """ 

 

    # load the model and dataset 

    # run prediction using the test dataset 

    # generate plots and reports and log them to the artifacts store 

    # update the model, the result metrics and metadata in the model registry

Once you have implemented the three functions, you can
define an execution pipeline (DAG) to run a function and
feed its results to the next step, and so on.
A big part of MLOps is to be able to record all the inputs,
metadata, data, and results per experiment (a.k.a.
experiment tracking) to make it possible to understand and
explain how specific model results were obtained. For
example, MLflow and MLRun MLOps frameworks track the
execution of the functions and log the data and results. This
will be covered in more detail in the following chapters.

Application Pipeline Development

Models bring value only if deployed and integrated into an
actual application. For example, an ML application receives
relevant data or requests from users or other services,
processes it, and uses it with the model to make predictions
and generate some actions. In addition, production
applications require monitoring, logging, lifecycle
management, and so on. The flow of application, data,
model, and monitoring activities is called an application

pipeline.
There are two types of application pipelines: real-time (or
online) pipelines, which constantly accept events or
requests and respond immediately, and batch pipelines,
which are triggered through an API or at a given schedule.



Batch pipelines usually read and process larger datasets on
every run.

Real-time application pipelines

Figure 3-6 illustrates a typical real-time application
pipeline and its different steps. An application pipeline may
receive a request and respond in real time (synchronous
pipeline) or it may process the request and write the
results to another service or a storage/database system
(asynchronous or streaming pipeline).

Figure 3-6. Real-time application pipelines

Real-time pipelines can be implemented manually by
chaining individual containerized functions or can be
automated by using a real-time pipeline framework such as
MLRun serving graphs, Apache Beam, or AWS Step
Functions. Chapter 6 covers the different options in detail.

NOTE

Some of the data processing logic implemented for the training
pipeline is now reimplemented for an event-driven architecture
(processing in real time, event by event versus working with large
data frames). This engineering overhead can be eliminated when
using a feature store. The feature transformation logic is generated
automatically for batch and real time from the same abstract
definition (called a feature set).



Once the application pipeline and models are deployed,
they can be automatically tracked and monitored to identify
resource usage, model drift, model performance, and more.

Batch application pipelines

Figure 3-7 illustrates a typical batch (offline) application
pipeline and its different steps. For example, an API call or
a scheduled event may trigger the batch pipeline. It loads
and processes one or more datasets, conducts batch
inference and post-processing, and writes the results to the
target storage.

Figure 3-7. Batch application pipelines

The batch application pipeline can be executed with the
same pipeline engine used for training.

Scaling and Productizing the Project

After building the model development components (data
prep, training, evaluation) and the application pipeline, it’s
time to add tests and automate and scale the project.

Adding tests

The first step for increasing your ML application’s quality is
adding unit tests for each component. The common
practice is to use pytest and place the test files under the
/test directory. For example, the following code
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demonstrates an implementation of unit tests for the
data_prep function:

def test_data_preparation_pipline(): 

    df = get_data() 

    train, test, label = data_preparation(df, 0.2) 

 

    assert label == 'fare_amount' 

 

    # check for expected types 

    assert isinstance(train, pd.DataFrame) 

    assert isinstance(test, pd.DataFrame)

You can build additional unit tests for each function or
module and verify that you’ve properly covered the usage
patterns. To run the tests, simply execute pytest and point
to the tests directory. Repeat these steps each time you
push changes to the source repository:

python -m pytest tests

Numerous Python packages test your code for formatting,
conformance, quality, coverage, and more; for example,
black, isort, Flake8, and interrogate. You can add them to
your project and execute them before committing the code
or as part of the CI process.
For example, formatting the code in /src and /tests using
black:

python -m black src tests

Additional tests (validating the data, model, and APIs)
should be implemented as part of the ML pipeline.

ML pipelines and hyperparameter optimization
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To find the best model, run the same training code with
different parameter combinations (hyperparameter
search). However, doing that on your laptop can take time
and resources. Instead, define the search options and let it
run in parallel in the cloud or over a cluster. Many MLOps
frameworks support hyperparameter jobs. If you provide
the hyperparameter options (strategy, selection criteria,
parallelism level, resources, early stop, and so on), they will
execute all the permutations for you and automatically
select the best results.
Model development is a multistage process. It requires
data ingestion, preparation, validation, training one or
more models, and testing and evaluating the models. You
can also deploy and test the application pipeline with the
newly generated model and data items.
Most MLOps platforms have a way to describe and run a
complete workflow (DAG) of steps. Some of the well-known
open source workflow execution tools are Airflow and
Kubeflow pipelines. There are some CI frameworks like
GitHub Actions, Gitlab CI, and Jenkins, which can run
simple workflows. But the CI workflow tools lack MLOps
capabilities such as handling large datasets, tracking
execution and artifacts, running distributed workloads, and
others.
Frameworks such as MLRun add the missing MLOps
features to the CI/CD system and simplify the way ML
pipelines are built and executed. After you have
implemented, executed, and tested each function, you only
need to place it in a DAG and run it. MLRun works with
different underline workflow engines, such as Kubeflow
pipelines, and can work with all the CI frameworks.

https://oreil.ly/TiRyU
https://oreil.ly/q5yWX
https://oreil.ly/DsxuL


A CI/CD pipeline for an ML application will likely
implement the following steps:

1. Data preparation

2. Model training using hyperparameters and grid search

3. Model evaluation

4. Application pipeline deployment (with the best model)

When the pipeline is executed with MLRun, MLRun tracks
the progress and results, and you can view them in the
client (IDE, Jupyter, or others) or in the MLRun UI.
Figure 3-8 shows an example of the workflow tracking UI in
MLRun.

Figure 3-8. MLRun workflow tracking screen

CI/CD and Continuous Operations

You now have all the ingredients: data pipelines, model
development pipelines, and application pipelines. However,
those components will continuously develop and become



enhanced. They require an agile process for monitoring
results, pushing updates, testing, and deployment.

Continuously monitoring data and models

In traditional services, we monitor application
performance, resource usage, errors, and more. However,
it is critical in ML applications to also monitor the data and
models (see “Continuous Model and Data Monitoring”).
The data and model monitoring layers take metadata
collected at the data preparation and model training phase
(data types, statistics, and others) and compare it with
production data and metrics. MLRun automates this
process. The metadata is automatically recorded with the
model and the features at development time and compared
in real time or periodically with metadata and behavior of
the production data (which is generated automatically by
the model serving classes).
You probably want to avoid constantly staring at
dashboards for model or data performance problems.
Instead, you can define triggering policies and actions. For
example, when a certain threshold is reached, a notification
can alert the administrator or initiate an automated process
for retraining a model or mitigating potential errors.

Integrating with a CI/CD service

CI/CD is the standard approach for building and
maintaining modern services in an agile process. Chapter 2
covered REFTO: CI/CD for ML and the differences from
traditional CI/CD. The reference project uses MLRun to
extend the GitHub Actions CI service to ML and data
applications.
As a first step, you need to create scripts that will execute
the different tests and verifications. The standard approach



is to use a Makefile. In the Makefile, add commands to
build, test, and so on. Here are some examples for make

commands (see the complete Makefile in the project
directory):

.PHONY: lint 

lint: fmt-check flake8 ## Run lint on the code 

 

.PHONY: fmt-check 

fmt-check: ## Format and check the code (using black and isort) 

 @echo "Running black+isort fmt check..." 

 $(PYTHON_INTERPRETER) -m black --check --diff src tests 

 $(PYTHON_INTERPRETER) -m isort --check --diff src tests 

 

.PHONY: flake8 

flake8: ## Run flake8 lint 

 @echo "Running flake8 lint..." 

 $(PYTHON_INTERPRETER) -m flake8 src tests 

 

.PHONY: test 

test: clean ## Run tests 

 $(PYTHON_INTERPRETER) -m pytest -v --capture=no --disable-warnings 

tests

With this Makefile, typing make lint or make test will run the
lint and pytest tests.

NOTE

The CI/CD system (such as Jenkins or GitHub Actions) examines your
project and searches for CI scripts in a reserved directory and
executes them when the code is changed or merged.

In addition to static tests, you should automatically run the
ML pipeline. However, since ML pipelines can consume
significant computation, you may want the user to explicitly
request running the ML pipeline. This can be done by
typing a command in the Git pull request (for example



/run), which will trigger the execution of the ML pipeline on
cloud resources and automate the execution, data
movement, and tracking.
You can use the same approach to automate deployment,
run exhaustive testing, apply governance, and more, while
adding more CI scripts and ML pipelines to match them
and restricting who can execute which workflow and at
what stage (development, staging, production).

Conclusion

In this chapter we dove into the hands-on work and started
building our very first MLOps project. Since we believe in a
production-first approach, we started with the “why” and
discussed various AI use cases and how to identify goals.
Our projects should always have the business value in
mind, since that is their raison d’etre. Then, we moved on
to the planning phase and defined its phases and which
questions to answer to get the project approved. After
these steps, we were finally able to move on to the project
itself. We covered an entire project from A to Z, at a high
level. We discussed data gathering, data exploring and
models, model pipeline development, application pipeline
development, scaling and productizing, and CI/CD,
including monitoring. Together, these are all the important
components and phases of an ML project.

Critical Thinking Discussion

Questions

List three ways AI can provide social and business
value.



Which investments does an ML project require? What
are the returns?

What are the components of an ML project?

Why do we need hyperparameter optimization?

What is monitored with CI/CD and why?

Exercises

Create a mockup plan for an ML project. Answer the
questions required to build and approve your plan
based on your current stack.

Write a function code for data preparation, model
training, and evaluation you can use in your company.

Write unit tests for the functions you just wrote in the
previous exercise.

Choose a CI/CD tool and list the steps required to
integrate it into your MLOps project.

Write commands for running your ML project locally
and in the cloud.



Chapter 4. Working with

Data and Feature Stores

Machine learning takes data and turns it into predictive
logic. Data is essential to the process, can come from many
sources, and must be processed to make it usable.
Therefore, data management and processing are the most
critical components of machine learning. Data can originate
from different sources:
Files

Data stored in local or cloud files

Data warehouses

Databases hosting historical data transactions

Online databases

SQL, NoSQL, graph, or time series databases hosting up to
date transactional or application data

Data streams

Intermediate storage hosting real-time events and messages
(for passing data reliably between services)

Online services

Any cloud service that can provide valuable data (this can
include social, financial, government, and news services)

Incoming messages



Asynchronous messages and notifications, which can arrive
through emails or any other messaging services (Slack,
WhatsApp, Teams)

Source data is processed and stored as features for use in
model training and model flows. In many cases, features
are stored in two storage systems: one for batch access
(training, batch prediction, and so on) and one for online
retrieval (for real-time or online serving). As a result, there
may be two separate data processing pipelines, one using
batch processing and the other using real-time (stream)
processing.
The data sources and processing logic will likely change
over time, resulting in changes to the processed features
and the model produced from that data. Therefore,
applying versioning to the data, processing logic, and
tracking data lineage are critical elements in any MLOps
solution.
Delivery of accurate and high-quality production models
requires high volumes of data and significant processing
power. Processing of production data can be scaled using
distributed analytics engines (Apache Spark, Dask, Google
BigQuery, and more), stream processing technologies (like
Apache Flink), or multistage data pipelines.
One of the mechanisms to automate integration with data
sources, scalable batch and real-time data processing, data
versioning, and feature management is to use a feature
store. A feature store is a central hub for producing,
sharing, and monitoring features. Feature stores are
essential in modern MLOps implementations and will be
described in further detail in this chapter.

https://oreil.ly/Bhrtg
https://oreil.ly/sVAyi
https://www.dask.org/
https://oreil.ly/0g4fI
https://oreil.ly/YRL25


Data Versioning and Lineage

Models and data products are derived from data.
Therefore, collecting metadata and tracing the origin of the
data allow better control and governance for data products.
Furthermore, if you want to examine a specific version of a
data product, you must understand the original data used
to produce that product or model.
Data versioning, lineage, and metadata management are a
set of essential MLOps practices that address the following:
Data quality

Tracing data through an organization’s systems and
collecting metadata and lineage information can help
identify errors and inconsistencies. This makes it possible to
take corrective action and improve data quality.

Model reproducibility and traceability

Access to historical data versions allows us to reproduce
model results and can be used for model debugging,
troubleshooting, and trying out different parameter sets.

Data governance and auditability

By understanding the origin and history of data,
organizations can ensure that data follows expected policies
and regulations, tracks sources of errors, and performs
audits or investigations.

Compliance

Data lineage can help organizations demonstrate
compliance with regulations such as GDPR and HIPAA.

Simpler data management



Metadata and lineage information enables better data
discovery, mappings, profiling, integration, and migrations.

Better collaboration

Data versioning and lineage can facilitate cooperation
between data scientists and ML engineers by providing a
clear and consistent view of the data used in ML models and
when handling upgrades.

Dependency tracking

Understanding how each data, parameter, or code change
contributes to the results and providing insights into which
data or model objects need to change due to data source
modification.

How It Works

As shown in Figure 4-1, the data generation flow can be
abstracted as having a set of data sources and parameters
that are used as inputs to a data processing (computation)
task that produces a collection of data products or artifacts.
The output artifacts can be of different types, files, tables,
machine learning models, charts, and so on.

Figure 4-1. Data lineage flow

The data tracking system records the information about the
inputs (data sources and versions, parameters) and



computation tasks (code, packages, resources, executing
user, and more). Then, it adds it as metadata in the output
artifacts. The metadata may include additional information
like user-provided labels or tags, information about the
data structure, schema, statistics, and so on. The metadata
is usually not copied to each output artifact but is instead
referenced (by a link) to eliminate data duplication.
As shown in Figure 4-2, output artifacts from the first task
(for example, data preparation) can be used as data inputs
to the following tasks (for example, model training,
testing).

Figure 4-2. Data lineage in a multistage pipeline

When accessing a data product through a user interface or
an SDK, the metadata lets us see the exact data sources,
parameters, and the full details of the computation task.
We can also trace the progress of the data generated in a
multistage flow and examine all the additional metadata.
Every time the data processing task runs, a new version of
the output artifacts is created (see Figure 4-3). Each
version is marked with a unique version identifier (commit



id) and can also be tagged with a meaningful version name,
such as master, development, staging, production, and so
on. This is similar to the Git flow when versioning source
code.
Let’s assume you are repeatedly running a specific task
every hour. It has the same inputs and parameters or you
might make small changes that do not change the output
data results. This can lead to vast piles of redundant data,
and multiple versions will store the same content. Many
data versioning solutions implement content deduplication

to address this challenge.
When an artifact is produced, a cryptographic hash value of
the content is calculated (for example, using the MD5 or
SHA1 algorithms), which represents the uniqueness of the
content. Finally, the hash value is compared with older
versions or is used as an index in the storage system. This
way, the content is stored only once.
Since the nature of data versioning solutions is to track
various attributes in addition to the source data (code,
parameters, users, resources, and more), it must be well
integrated with the source control system (Git) and the job
or pipeline execution framework. Otherwise, the user must
manually glue the frameworks together and provide the
reference metadata for recording it along with the data.



Figure 4-3. How data, parameters, and code changes affect artifact versions

Many frameworks (MLflow, MLRun, and more) provide a
logging API, where the user calls a log_artifact() method,
which automatically records and versions the new data
along with the code and execution metadata. Many might
offer an auto logging solution that does not require code
instrumentation. Instead, it will automatically figure out
which data and metadata need to be saved and versioned
by understanding the user code and the ML framework’s
capabilities.

Common ML Data Versioning Tools

A set of open source and commercial frameworks for data
versioning exists. This book focuses on explaining and
comparing the open source options DVC, Pachyderm,
MLflow, and MLRun.

Data Version Control

Data Version Control (DVC) started as a data versioning
tool for ML and was extended to support basic ML
workflow automation and experiment management. It takes
advantage of the existing software engineering toolset

https://mlflow.org/
https://www.mlrun.org/
https://dvc.org/
https://oreil.ly/AlPut
https://oreil.ly/FNbPT


you’re already familiar with (Git, your IDE, CI/CD, and so
on).
DVC works just like Git (with similar commands) but for
large file-based datasets and model artifacts. This is its
main advantage but also its weakness. DVC stores the data
content in files or an object storage (AWS S3, GCS, Azure
Blob, and so on) and keeps a reference to those objects in a
file (.dvc), which is stored in the Git repository.
The following command will add a local model file
(model.pkl) to the data versioning system:

dvc add model.pkl

DVC will copy the content of the model.pkl file into a new
file with a new name (derived from the content md5 hash
value) and place it under the .dvc/ directory. It also creates
a file named model.pkl.dvc, which points to that content file.
Next, the new metadata file needs to be tracked by Git, the
content should be ignored, and the changes should be
committed. This is done by typing the following commands:

git add model.pkl.dvc .gitignore 

git commit -m "Add raw data"

When you want to upload the data to your remote storage,
you will need to set up a remote object repository (not
shown here) and use the DVC push command:

dvc push

The data flow is illustrated in Figure 4-4.

https://oreil.ly/BdGyy


Figure 4-4. DVC data flow (source: DVC)

As you can see from the example, DVC provides reliable
synchronization between code and file data objects, but it
requires manual configuration and does not store extended
metadata about the execution, workflow, parameters, and
so on. Instead, DVC handles parameters and results metrics
using JSON or YAML files stored and versioned alongside
the code.
Users can define workflow stages that wrap an executable
(for example, a Python program) and specify which
parameters (-p) are the file inputs or dependencies (-d) and
outputs (-o) to that executable (see Example 4-1).
Example 4-1. Adding a workflow step in DVC

dvc stage add -n featurize \ 

              -p featurize.max_features,featurize.ngrams \ 

              -d src/featurization.py -d data/prepared \ 

              -o data/features \ 

              python src/featurization.py data/prepared data/features

When you run the dvc repro command, it will evaluate if the
dependencies have changed, execute the required steps,
and register the outputs.



DVC does not use an experiment database. It uses Git as
the database, and every execution or parameter
combination is mapped to a unique Git commit.
Furthermore, DVC is focused on local development.
Therefore, using it at scale or in a containerized or
distributed workflow environment can be challenging and
require scripting and manual integrations.
In summary, DVC is an excellent tool for versioning large
data artifacts and mapping them to Git commits in a local
development environment. In addition, DVC implements
data deduplication to reduce the actual storage footprint.
On the other hand, DVC is command-line oriented (Git
flow) and has limited capabilities for running in production,
executing pipelines, and tracking extended attributes and
structured data. It also comes with a minimal UI (studio).

Pachyderm

Pachyderm is a data pipeline and versioning tool built on a
containerized infrastructure. It provides a versioned file
system and allows users to construct multistage pipelines,
where each stage runs on a container, accepts input data
(as files), and generates output data files.
Pachyderm provides a versioned data repository that can
be implemented over object storage (for example, AWS S3,
Minio, GCS) and accessed through a file API or the
SDK/CLI. Every data commit or change is logged similarly
to Git. Data is deduplicated to preserve space.
The Pachyderm data pipeline executes containers and
mounts a slice of the repository into the container (under
the /pfs/ directory). The container reads files, processes
them, and writes the outputs back into the Pachyderm
repository.



Example 4-2 shows a simple pipeline definition that takes
all the data from the data repository on the master branch,
runs the word count logic (using the specified container
image), and writes the output to the out repository.
Example 4-2. Pachyderm pipeline example

pipeline: 

    name: 'count' 

description: 'Count the number of lines in a csv file' 

input: 

    pfs: 

        repo: 'data' 

        branch: 'master' 

        glob: '/' 

transform: 

    image: alpine:3.14.0 

    cmd: ['/bin/sh'] 

    stdin: ['wc -l /pfs/data/iris.csv > /pfs/out/line_count.txt']

Pipelines can be triggered every time the input data
changes, and data can be processed incrementally (only
new files will be passed into the container process). This
can save time and resources.
Pachyderm has a nice user interface for managing pipelines
and exploring the data. See Figure 4-5.



Figure 4-5. Pachyderm user interface

Pachyderm can work with large or continuous structured
data sources by breaking the data into smaller CSV or
JSON files.
In summary, Pachyderm is an excellent tool for building
versioned data pipelines, where the code is simple enough
to read and write files. It handles deduplication and
incremental processing. However, it requires separate
tracking of the source code (runs prebuilt images),
execution or experiment parameters, metadata, metrics,
and more.

MLflow Tracking

MLflow is an open source platform for managing the end-
to-end machine learning lifecycle. One of its core
components is MLflow Tracking, which provides an API and
UI for logging machine learning runs, their inputs and
outputs, and visualizing the results. MLflow Tracking runs



are executions of some data science code. Each run records
the following information:
Code version

Git commit hash used for the run.

Start and end time

The start and end time of the run.

Source

The name of the file to launch the run, or the project name
and entry point for the run if running from an MLflow
Project.

Parameters

Key-value input parameters of your choice. Both keys and
values are strings.

Metrics

Key-value metrics, where the value is numeric. MLflow
records and lets you visualize the metric’s full history.

Artifacts

Output files in any format. For example, you can record
images (for example, PNGs), models (for example, a pickled
scikit-learn model), and data files (for example, a Parquet
file) as artifacts.

MLflow Tracking is not a complete data versioning solution
since it doesn’t support features such as data lineage
(recording data inputs and which data was used to create a
new data item) or deduplication. However, it enables
logging and indexing the data outputs of every run along



with the source code, parameters, and some execution
details. MLflow can be manually integrated with other tools
like DVC to track data and experiments.
MLflow’s advantage is tracking the data outputs with
additional metadata about the code and parameters and
visualizing or comparing them in a graphical UI. However,
this is not free. The user code needs to be instrumented
with the MLflow Tracking code.
Example 4-3 demonstrates a partial code snippet that
tracks a run using the MLflow API. First, the command line
arguments are parsed manually and the input data is
passed as a string URL, just like any other parameter.
Then, the loading and transformation of the data are done
manually.
After the logic (data preparation, training, and so on) is
executed, the user logs the tags, input parameters, output
metrics, and data artifacts (dataset and model) using the
MLflow log commands.
Example 4-3. MLflow Tracking code example

if __name__ == "__main__": 

    # parse the input parameters 

    parser = argparse.ArgumentParser() 

    parser.add_argument("--data", help="input data path", type=str) 

    parser.add_argument('--dropout',  type=float, default=0.0, help='dropout 

ratio') 

    parser.add_argument("--lr", type=float, default=0.001, help='learning rate') 

    args = parser.parse_args() 

 

    # Read the csv file 

    try: 

        data = pd.read_csv(args.data) 

    except Exception as e: 

        raise ValueError(f"Unable to read the training CSV, {e}") 

 

    # additional initialization code ... 

 

    with mlflow.start_run(): 

 



        # training code ... 

 

        # log experiment tags, parameters and result metrics 

        mlflow.set_tag("framework", "sklearn") 

        mlflow.log_param("dropout", args.dropout) 

        mlflow.log_param("lr", args.lr) 

        mlflow.log_metric("rmse", rmse) 

        mlflow.log_metric("r2", r2) 

        mlflow.log_metric("mae", mae) 

 

        # log data and model artifacts 

        mlflow.log_artifacts(out_data_path, "output_data") 

        mlflow.sklearn.log_model(model, "model", 

                                 registered_model_name="ElasticnetWineModel")

MLflow sends the run information to the tracking server
and stores the data elements in local files or remote objects
(for example, in S3). The run information can be viewed or
compared in the MLflow user interface (see Figure 4-6).

Figure 4-6. MLflow user interface

MLflow does not manage or version data objects. Run is the
primary element, and you cannot directly access or search
data objects and artifacts. In addition, there is no lineage
tracking, which means there is no tracking of which data
objects were used to produce a new data object or artifact.



When you run a pipeline, you cannot see the artifacts from
the different steps in one place or chain output from one
stage to the input of the next step.
With MLflow, the storage capacity can become significant
since every run saves the outputs in a new file directory,
even when nothing has changed. There is no data
deduplication like in the other frameworks.
In summary, MLflow tracking is an excellent tool for
tracking and comparing ML experiment results in a
development environment. In addition, MLflow is easy to
install and use. However, it is not a data tracking or
versioning system and may require significant storage
capacity. Furthermore, MLflow requires developers to add
custom code and MLOps teams to add glue logic to fit into
production deployments and CI/CD workflows.

MLRun

MLRun is an open source MLOps orchestration framework
with multiple sub-components to handle the complete ML
lifecycle. Data objects are first-class citizens in MLRun and
are well integrated with the other components to provide
seamless experience and automation.
Whereas most frameworks manage file data objects,
MLRun supports a variety of data objects (data stores,
items/files, datasets, streams, models, feature sets, feature
vectors, charts, and more), each with unique metadata,
actions, and viewers.
Every object in MLRun has a type, a unique version ID, tags
(named versions like development, production, and so on),
user-defined labels (for grouping and searching across
objects), and relations to other objects, and it is a project
member. For example, a run object has links to the source

https://oreil.ly/7Kttp


and output data objects and to function (code) objects,
forming a graph of relations.
Figure 4-7 shows the run screen with information tabs for
general and code attributes, data input objects,
data/artifact output objects, result metrics, auto-collected
logs, and so on. Users can view the information from
different perspectives. For example, look at all the datasets
in the project (regardless of which run generated them).

Figure 4-7. MLRun job run user interface

MLRun data objects and artifacts carry detailed metadata,
including information on how they were produced (by
whom, when, code, framework, and so on), which data
sources were used to create them, and type-specific
attributes such as schema, statistics, preview, and more.
The metadata is auto-generated, which provides better
observability and eliminates the need for additional glue
logic.



NOTE

MLFlow users can continue using MLFlow for tracking APIs, and
MLRun will automatically register the logged data, metadata, and
models as production artifacts along with additional operational
metadata and context.

MLRun provides an extensive API/SDK for tracking and
searching across data and experiments. However, the real
power is that it can deliver most of the features and
automation without requiring additional coding.
Example 4-4 accepts input data and parameters and
generates output data and results. Note that, unlike the
previous examples, the code doesn’t include argument
parsing, data loading, conversion, logging, and so on.
Example 4-4. MLRun code example

def data_preparation(dataset: pd.DataFrame, test_size=0.2): 

    # preform processing on the dataset 

    dataset = clean_df(dataset).dropna(how="any", axis="rows") 

    dataset = dataset.drop(columns=["key", "pickup_datetime"]) 

    train, test = train_test_split(dataset, test_size=test_size) 

    return train, test, "fare_amount"

When executing the function and specifying the input data
object URL or path (a file, a remote object, or a complex
type), it is automatically loaded into the function. For
example, using AWS boto drivers to access S3 objects or
BigQuery drivers to access a BigQuery table. Then the data
is converted to the accepting format (DataFrame) and
injected into the user code.
MLRun can auto-detect the returned value type (for
example, train and test are of type DataFrame) and store it
in the best form, along with auto-generated metadata, links
to the job details and data input objects, and versioning



information. If the data repeats itself, it is deduplicated and
stored only once to preserve storage space.
Data objects have type-specific visualized in the UI and
client SDK regardless of how and where they are stored;
for example, tabular formats with table metadata (schema,
stats, and more) for datasets or interactive graphics for
chart objects (see Figures 4-8 and 4-9).
In summary, MLRun is a complete MLOps orchestration
framework with a significant focus on data management,
movement, versioning, and automation. In addition, MLRun
has a rich object model that covers different types of data
and execution objects (functions, runs, workflows, and
more), how they are related, and how they are used.
MLRun focuses on abstraction and automation to reduce
development and deployment efforts. However, MLRun is
not a general data management and versioning solution,
and its value is maximized when used in the context of
MLOps.

Figure 4-8. View a dataset artifact in MLRun (with autogenerated preview,

schema, and statistics)



Figure 4-9. Visualize an interactive chart artifact using MLRun’s SDK (in

Jupyter)

Other Frameworks

Some tools, such as Delta Lake and lakeFS, handle data
lake versioning. However, those tools are not focused on
the ML lifecycle and may require integration to make them
useful for MLOps.
Cloud vendors provide solutions that are usually tightly
bound to their internal services. For example, see Amazon
SageMaker ML Lineage Tracking and Azure ML datasets.

Data Preparation and Analysis at

Scale

Data processing is used extensively across the data, ML,
and application pipelines. When working with production
data, there is a need to support more extensive scale and

https://delta.io/
https://oreil.ly/x_WzP
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performance, and, in some cases, handle data as it arrives
in real time.
Practices that work during interactive development, for
example, storing the data in a CSV file and reading it into
the notebook, don’t work with gigabytes or terabytes of
data. They require distributed or parallel data processing
approaches.
The general architecture for distributed data processing is
the same, with differences in how data is distributed and
collected and which APIs they use. For example, the data is
partitioned across multiple computer nodes, the processing
requests or queries arrive at one or more nodes for local
processing, and the results are collected and merged for a
single answer. In addition, complex queries may shuffle
data between nodes or execute multiple processing and
movement steps.
Figure 4-10 demonstrates how distributed data processing
works using the map-reduce approach for counting words
in a document.



Figure 4-10. Distributed word counting with map-reduce architecture (source:

O’Reilly)

Structured and Unstructured Data

Transformations

Data can be structured, meaning it conforms to a specific
format or structure and often has a predefined schema or
data model. Structured data can be a database table or files
with a structured layout (for example, CSV, Excel, JSON,
ML, Parquet). However, most of the world’s data is
unstructured, usually more complex, and more difficult to
process than structured data. This includes free text, logs,
web pages, images, video, and audio.
Here are some examples of analytic transformations that
can be performed on structured data:
Filtering

https://oreil.ly/gd8Lz


Selecting a subset of the data based on certain criteria, such
as a specific date range or specific values in a column.

Sorting

Ordering the data based on one or more columns, such as
sorting by date or by a specific value.

Grouping

Organizing the data into groups based on one or more
columns, such as grouping by product category or by city.

Aggregation

Calculating summary statistics, such as count, sum, average,
maximum, and standard deviation, for one or more
columns.

Joining

Combining data from multiple tables or datasets based on
common columns, such as joining a table of sales data with a
table of customer data.

Mapping

Mapping values from one or more columns to new column
values using user-defined operations or code. Stateful
mapping can calculate new values based on original values
and accumulated states from older entries (for example,
time passed from the last login).

Time series analysis

Analyzing or aggregating data over time, such as identifying
trends, patterns, or anomalies.



The following techniques can be used to process
unstructured data or convert it to structured data:
Text mining

Using NLP techniques to extract meaning and insights from
text data. Text mining can extract information such as
sentiment, entities, and topics from text data.

Computer vision

Using image and video processing techniques to extract
information from visual data. Computer vision can extract
information such as object recognition, facial recognition,
and image classification.

Audio and speech recognition

Using speech-to-text and audio processing techniques to
extract meaning and insights from audio data. Audio and
speech recognition can extract information such as speech-
to-text, sentiment, and speaker identification.

Data extraction

Using techniques such as web scraping and data extraction
to pull out structured data from unstructured data sources.

Various ML methods can be used to transform raw data
into more meaningful data, for example:
Clustering

Grouping similar data points based on certain
characteristics, such as customers with similar purchasing
habits

Dimensionality reduction



Reducing the number of features in a dataset to make it
easier to analyze or visualize

Regression and classification

Predicting a class or a value based on other data features

Imputing

Determining the expected value based on other data points
in case of missing data

Embedding

Representing a sequence of text, audio, or an image as a
numeric vector that preserves the semantic relationships or
contextual characteristics.

Distributed Data Processing Architectures

Data processing architectures can be broken into three
main categories:
Interactive

A request or an update arrives, is processed, and a response
is returned immediately; for example, SQL and NoSQL
databases, data warehouses, key/value stores, graph
databases, time series databases, and cloud services.

Batch

A job is started on a request or a scheduled time, data is
fetched and processed, and the results are written to the
target storage after completion. Batch jobs usually take
longer to process. Example frameworks for batch data
processing include Hadoop, Spark, and Dask.

Streaming

https://oreil.ly/a6LM4
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Continuous processing of incoming requests or chunks of
data and writing the results in real time to a target storage
or message queue.

Batch processing is usually more efficient for processing
large data quantities. However, interactive and stream data
processing deliver faster responses with shorter delays. In
addition, building data stream processing pipelines is
usually more complex than batch jobs.
Some frameworks like Spark may support different
processing methods (interactive, batch, streaming), but
they will usually be more optimal only in one of the
processing methods.

Interactive Data Processing

Interactive systems are expected to respond immediately,
so the requesting client or interactive dashboard will not
need to wait. Furthermore, production services may
depend on the reliability and robustness of the results. This
is why interactive systems have simple APIs with limited
data operations. In some cases, interactive systems provide
mechanisms to define custom logic through stored
procedures and user-defined functions (UDFs).
The main difference between the types of interactive data
systems is how they index and store data to minimize
response retrieval time. For example, NoSQL, in-memory,
and key/value stores are optimized for retrieval by an index
key (such as a user id, product id, and so on). The data is
divided by the key (or a crypto hash or the key) and stored
in different nodes. When a request arrives, it is passed to
the specific node, which manages the data for that key
(user, product, and so on) and can quickly calculate and



retrieve the answer. On the other hand, complex or cross-
key calculations require coordination between all the nodes
and take much longer.
Analytical databases and data warehouses are designed to
traverse many records with different index key values. They
organize the data in columns (by field) and use various
columnar compression technologies and filtering and
hinting tricks (like bloom filtering) to skip data blocks.
Other systems like time series or graph databases have
more advanced data layouts and search strategies that
combine multidimensional indexes and columnar
compression. For example, accessing the time series metric
object by the metric key (name) and using columnar
compression technologies to scan or aggregate the
individual values (by time).
Many interactive systems use the SQL language or SQL-like
semantics to process data.
Some subcategories of notable data systems are listed in
Table 4-1.



Table 4-1. Data systems categories and descriptions

Category Description

Relational Store structured data, access through SQL
command. Examples include MySQL,
PostgreSQL, Oracle, and Microsoft SQL
Server.

NoSQL Examples include MongoDB, Cassandra,
Redis, Elasticsearch, AWS DynamoDB,
Google BigTable, and nontabular databases.

Time series Store and query time series data. Examples
include InfluxDB, Prometheus, and
TimescaleDB.

Graph Store and query data in a graph format.
Examples include Neo4j and Titan.

Vector A vector database indexes and stores high-
dimensional vector embeddings for fast
retrieval and similarity search. Examples
include Chroma, Pinecone, Milvus ,
Weaviate, and Pgvector.

Analytical systems usually traverse and process larger
datasets. As a result, they support more extensive
transformations (filtering, grouping, joining, aggregating,
mapping, and so on) and user-defined functions. In
addition, some can process and aggregate data from other
databases or data stored in files. For example, solutions
like Spark SQL or PrestoDB have connectors to many data
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sources and can process queries that span many datasets
and are stored in different systems.
One of the most popular distributed SQL-based analytical
engines is PrestoDB and its follow-on project, Trino. Presto
was initially developed by Facebook and contributed to
open source. Later, it was forked into projects like the
Trino and commercial products such as Amazon Athena
cloud service. Trino has a long list of data connectors.
Figure 4-11 illustrates Presto and Trino architectures.
Queries arrive through HTTP requests, are parsed, and are
broken by the planner and the scheduler into smaller tasks
that are processed and merged by the individual workers.

Figure 4-11. PrestoDB and Trino architecture (source: Presto)

Batch Data Processing

Batch data processing is used when there is a need to
process large amounts of data and run a sequence of data
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transformations, and the processing time is less of a
concern. In batch processing, the data is read and broken
into chunks passed to multiple workers for processing.
Once the result is ready, it is written to the target system.
Batch processing is often used to process large amounts of
historical data and generate the dataset for training ML
models.
One of the best known batch data processing frameworks
was Apache Hadoop, an open source software framework
for distributed storage and large-scale processing of data-
intensive tasks. Hadoop was initially developed by Yahoo!
engineers and was based on the MapReduce programming
model, which consists of two main functions: Map and Reduce.
The Map function takes an input dataset and processes it
into a set of intermediate key-value pairs, which are then
grouped by key and processed by the Reduce function to
produce the final output.
Hadoop has since been replaced with more modern and
cloud-native architectures based on cloud object storage,
containerized infrastructure, and computation frameworks
such as Spark, Flink, Beam, Dask, and others.
An everyday use for batch processing is found in ETL tasks.
ETL refers to extracting data from multiple sources,
transforming it, and loading it into a target database, data
warehouse, or data lake. ETL is a crucial step in the data
integration process, as it allows organizations to extract,
clean, and transform data from multiple sources into a
single, centralized repository.
Batch-processing pipelines may be complex and have
multiple steps and dependencies. Apache Airflow is one of
the most popular open source frameworks for authoring,
scheduling, and monitoring batch data pipelines.
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Airflow was initially developed by Airbnb and is now
maintained by the Apache Software Foundation. It provides
a simple and easy-to-use interface for defining workflows as
DAGs of tasks, where each task represents an individual
processing step. The tasks can be written in Python and run
in various environments, including locally, over
Kubernetes, or in the cloud.
Airflow also provides a web-based user interface (see
Figure 4-12) for managing and monitoring workflows,
including the ability to see the status of each task, retry
failed tasks, and manually trigger or schedule tasks. It also
includes features for managing and organizing workflows,
such as defining dependencies between tasks and setting
up task retry logic.

Figure 4-12. Airflow user interface

Example 4-5 is an example of Python code that can be used
to create a DAG in Apache Airflow that reads data from a
CSV file, processes it, and writes it to a destination.
Example 4-5. Airflow data pipeline code example
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import csv 

from airflow import DAG 

from airflow.operators.python_operator import PythonOperator 

from datetime import datetime, timedelta 

 

def process_data(**kwargs): 

    ti = kwargs['ti'] 

    input_file = ti.xcom_pull(task_ids='read_file') 

    processed_data = do_data_processing(input_file) 

    return processed_data 

 

def do_data_processing(input_file): 

    # Placeholder function that performs data processing 

    processed_data = input_file 

    return processed_data 

 

def read_csv_file(file_path): 

    with open(file_path, 'r') as file: 

        reader = csv.reader(file) 

        return list(reader) 

 

def write_csv_file(file_path, data): 

    with open(file_path, 'w') as file: 

        writer = csv.writer(file) 

        writer.writerows(data) 

 

default_args = { 

    'owner': 'airflow', 

    'depends_on_past': False, 

    'start_date': datetime(2021, 1, 1), 

    'email_on_failure': False, 

    'email_on_retry': False, 

    'retries': 1, 

    'retry_delay': timedelta(minutes=5), 

} 

 

dag = DAG( 

    'data_processing_dag', 

    default_args=default_args, 

    description='A DAG that reads data from a CSV file, processes it' 

                ', and writes it to a destination', 

    schedule_interval=timedelta(hours=1), 

) 

 

read_file = PythonOperator( 

    task_id='read_file', 

    python_callable=lambda: read_csv_file('/path/to/input_file.csv'), 

    xcom_push=True, 



_p ,

    dag=dag, 

) 

 

process_data = PythonOperator( 

    task_id='process_data', 

    python_callable=process_data, 

    provide_context=True, 

    dag=dag, 

) 

 

write_file = PythonOperator( 

    task_id='write_file', 

    python_callable=lambda: write_csv_file('/path/to/output_file.csv', 

                                           

ti.xcom_pull(task_ids='process_data')), 

    provide_context=True, 

    dag=dag, 

) 

 

read_file >> process_data >> write_file

There are several cloud-based batch data pipeline services
such as AWS Glue, Google Cloud Composer (based on
Airflow), and Azure Data Factory.
One of the disadvantages of Hadoop or other batch
pipelines is the need to read data from disk, process it, and
write it again to disk at every step. However, frameworks
such as Spark and Dask know how to compile the
processing pipeline into an optimal graph where tasks are
done in memory where possible, which minimizes the IO to
disk and maximizes performance.
Example 4-6 demonstrates a Spark code that reads a CSV
file, processes the data, and writes the result into a target
file.
Example 4-6. PySpark data pipeline code example

from pyspark.sql import SparkSession 

 

# Create a Spark session 

spark = SparkSession.builder.appName("SimpleBatchProcessing").getOrCreate() 
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# Load a CSV file into a Spark DataFrame 

df = spark.read.csv("/path/to/input_file.csv", header=True, inferSchema=True) 

 

# Perform some data processing on the DataFrame 

processed_df = df.groupBy("column_name").agg({"column_name": "mean"}) 

 

# Write the processed DataFrame to a new CSV file 

processed_df.write.csv("/path/to/output_file.csv", header=True) 

 

# Stop the Spark session 

spark.stop()

Example 4-7 shows the same task, implemented using
Dask. The advantage of Dask is that the operations are very
similar to Python pandas, which is a tremendous advantage
for data scientists. However, Spark is usually more scalable
and robust.
Example 4-7. Dask data pipeline code example

import dask.dataframe as dd 

 

# Load a CSV file into a Dask DataFrame 

df = dd.read_csv('/path/to/input_file.csv') 

 

# Perform some data processing on the DataFrame 

processed_df = df.groupby('column_name').column_name.mean().compute() 

 

# Write the processed DataFrame to a new CSV file 

processed_df.to_csv('/path/to/output_file.csv', index=False)

You can see that the Spark and Dask examples are much
simpler compared to the Airflow ones. However, Airflow
can be more suitable for managing and tracing long,
complex jobs.

Stream Processing

Stream processing enables scalable, fault-tolerant, and
real-time data processing. It is often used in applications
that process large amounts of data in real time, such as
real-time analytics, fraud detection, or recommendations.



In stream processing, data and incoming events are pushed
into a stream (queue) and read by one or more workers.
The workers process the data sequentially, make
transformations, aggregate results, and write the results
into a database or an output stream. Unlike traditional
message queues, stream processing occurs in order. For
example, assume the stream contains two events: one for
customer login and another for customer logout. Not
processing them in order can lead to a broken state.
Another example is a money deposit operation, followed by
a withdrawal. The withdrawal may be declined if operations
are processed in the wrong order.
Streams are designed to scale. They are broken into
partitions, and each partition handles a specific set of data
objects, so it will not violate the order. For example, a user
activity stream is partitioned by the user ID so that a
specific user’s activities will always be stored in the same
partition and processed by the same worker.
Streams such as Kafka, AWS Kinesis, and others are
different than message queues like RabbitMQ, AMQP,
Amazon SQS, Google Pub/Sub, and so on. Message queues
do not guarantee message ordering. However, they
guarantee reliable delivery of messages, while the client
manages the reliability in the case of streams.
Furthermore, they are much faster due to the more
straightforward logic and parallelism offered with streams.
Figure 4-13 illustrates a streaming application in which
clients publish data that is distributed between the
individual partitions (based on a hash of the partition key).
One worker is reading from each partition and processing
the data. The worker can use a database to store the state
on known intervals (checkpoints), so the state can be
recovered in case of a failure, or the worker can free
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unused memory. Finally, the results can be written into a
target database or an output stream.
Streams provide “at-least-once semantics.” Therefore, the
same message may appear multiple times. A way to provide
“exactly once” semantics (the same message is processed
only once) is with the help of checkpoints. Streams are
processed in order, and the state can be persisted after
every micro-batch. In the case of a failure, the worker can
restore the last checkpoint data (state), process the events
from that point forward, and ignore older events.

Figure 4-13. Streaming application architecture

Stream Processing Frameworks

Doing real-time analytics on real-time streams differs from
doing it in batch or SQL. With streams, the workers can go
over the data only once, in sequential order, and see a
portion of the data (in the same partition). This is why real-
time analytics frameworks such as Spark Streaming,
Apache Flink, Apache Beam, Apache NiFi, and others, focus
on stream processing and implement the standard analytic
and statistic methods in a stream-optimized way.
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A typical scenario in stream processing is to aggregate
values over time; for example, examining the total value of
customer transactions in the last hour to detect fraud. It is
not feasible to calculate the total for every new event with
stream processing. It will take a considerable amount of
time and memory. Instead, the values are grouped into
windowed buckets, for example, six buckets or more, each
holding the total per 10 minutes. The process sums the
values of only the last six buckets and drops the oldest
bucket every 10 minutes. Figure 4-14 illustrates
overlapping sliding windows with a one-minute window
duration and 30-second window periods.

Figure 4-14. Sliding windows (source: Apache Beam)

Example 4-8 shows the Apache Beam code for defining
such a window.



Example 4-8. Defining the sliding window using Apache

Beam

from apache_beam import window 

sliding_windowed_items = ( 

    items | 'window' >> beam.WindowInto(window.SlidingWindows(60, 30)))

Coding with stream processing frameworks requires
advanced data engineering knowledge. This is why many
users avoid real-time data, even though it can provide
much better business value and more accurate model
scoring results. Feature stores come to the rescue, as they
can automatically generate the batch and the streaming
pipeline from the same higher-level data processing logic.

Feature Stores

Feature stores are a factory and central repository for
machine learning features. Feature stores handle the
collection of raw data from various sources, the
transformation pipeline, storage, cataloging, versioning,
security, serving, and monitoring. They automate many
processes described in this chapter, while accelerating
production time and reducing engineering efforts. Feature
stores form a shared catalog of production-ready features,
enable collaboration and sharing between teams, and
accelerate the innovation and delivery of new AI
applications.
The first feature store implementations came from large
service providers like Uber, Twitter, and Spotify. In those
providers, AI is core to the business, and feature stores
helped them accelerate the development and deployment of
new AI applications and improve collaboration and reuse.
Today there are multiple commercial and open source
implementations to choose from.
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Advanced feature stores provide the following capabilities:
Data connectivity

Glueless integration with multiple offline (data lakes, data
warehouses, databases, and so one) and online (streams,
message queues, APIs, managed services, and so on) sources.

Offline and online transformation

Some feature stores offer capabilities to automatically build
and manage the batch and streaming pipelines from higher-
level logic.

Storage

Storing the generated features in an offline store (such as an
object store) and an online store (usually a key/value
database).

Metadata management

Auto-generating, storing, and managing all feature
metadata, including lineage, schemas, statistics, labels, and
more.

Versioning

Managing multiple versions of each feature and the process
of promoting features from development to production and
integrating with CI/CD.

Generating and managing feature vectors

Correctly joining multiple features into a single dataset for
use in training or serving applications.

Central cataloging



Providing centralized access to generate, label, or search
features.

Security and governance

Controlling the access to features and raw data and to
logging feature access.

Easy-to-use UI and SDK

Simple access through APIs and a user interface to abstract
the underline complexity, visualize features, and make it
usable by data scientists.

Monitoring and high availability

Monitoring the assets and data processing tasks
automatically while reliably recovering from failures.

Feature validation and analysis

Executing various data processing tasks automatically or as
initiated by the user, to validate feature correctness or to
generate a deep analysis of features, correlation, and so on.

You should thoroughly compare capabilities before
choosing a feature store. For example, many have very
partial functionality, may focus on cataloging features, or
lack automated transformations, data management at
scale, and real-time functionality. These capabilities
provide the most significant value in accelerating time to
production.

Feature Store Architecture and Usage

Figure 4-15 illustrates a feature store’s general
architecture and usage. Raw data is ingested and



transformed into features, and features are cataloged and
served to different applications (training, serving,
monitoring). APIs and a UI allow data scientists, data
engineers, and ML engineers to update, search, monitor,
and use features.
The core components of a feature store are:
Transformation layer

Converts raw offline or online data into features and stores
them in both an online (key/value) and offline (object) store.

Storage layer

Stores multiple versions of a feature in feature tables
(feature sets) and manages the data lifecycle (create, append,
delete, monitor, and secure the data). The data layer stores
each feature in two forms: offline for training and analysis
and online for serving and monitoring.

Feature retrieval

Accepts requests for multiple features (feature vectors) and
other properties (such as time ranges and event data), and
produces an offline data snapshot for training or a real-time
vector for serving.

Metadata management and cataloging

Stores the feature definition, metadata, labels, and relations.



Figure 4-15. Feature store usage and architecture

Ingestion and Transformation Service

This chapter has discussed the complexities of
implementing large-scale processing for batch and real-
time data, data versioning, and metadata management.
Feature stores aim to reduce that complexity through
abstraction and automation. With modern feature stores,
data pipelines are described using high-level
transformation logic. This logic is converted to the
underlying processing engine semantics and deployed as a
continuous and production-grade service, saving significant
engineering efforts.
Pipeline implementation is different for local development
(using packages like pandas), large-scale offline data (using
batch processing), and real-time data (using stream
processing). The advantage of a feature store that supports



automated transformations is that it uses one definition for
all three deployment modes and eliminates the
reengineering involved in porting data pipelines from one
method to another. In some feature stores, the data
pipeline technology will be determined by the data sources,
whether offline (data lakes, data warehouses, databases,
and so on) or online (streams, message queues, APIs,
managed services, and others).
Feature stores implement the data ingestion and
transformation on groups of features (called feature sets or
feature groups) that originate from the same source; for
example, all the features extracted from a credit card
transaction log. Feature sets take data from offline or
online sources, build a list of features through a set of
transformations, and store the resulting features along with
the associated metadata and statistics.
Figure 4-16 illustrates the transformation service (feature
set). Once the data is ingested from the source, it passes
through a graph (DAG) of transformations, and the
resulting features are written into the offline and online
stores.

Figure 4-16. Feature transformation service (feature set) pipeline example

Examples of transformation (by data type):
Structured

Filter, group, join, aggregate, OneHot encoding, map, extract,
and classify



Textual

Extract, parse, disassemble, detect entities, sentiments, and
embeddings

Visual (images and videos)

Frame, resize, detect objects, crop, recolor, rotate, map, and
classify

The generated transformation service should be
production-grade and support auto-scaling, high
availability, live upgrades, and more. In addition, it should
support continuous data ingestion and processing. For
example, new data may arrive continuously (for real time)
or in scheduled intervals (for offline). Therefore, serverless
function technologies are an excellent fit.

Feature Storage

The features are usually stored in two forms: offline storage
for training and analytics applications and online storage
for real-time serving and monitoring applications. See
Figure 4-17.

Figure 4-17. Feature storage



The offline store holds all the historical data and often uses
data lakes, object storage, or data warehouse technologies.
For example, a common choice is to use compressed
Parquet files stored in object storage like AWS S3.
The online store holds the most recent data and often uses
NoSQL or key/value stores like Redis, AWS DynamoDB,
Google BigTable, and others. The online store needs to
support reading features in milliseconds.

Feature Retrieval (for Training and Serving)

Training, serving, and analysis applications require
multiple features from multiple datasets and sources. In
contrast, feature stores organize features in groups (called
feature sets) based on their origin and entity (primary key
such as a user id, product id, and so on).
Retrieving multiple features from different sources, times,
and with different indexes can be a complex analytics task.
Feature stores automatically determine the parameters
required for the JOIN query based on the features metadata,
entity names, and user request data. In addition, when the
datasets are transactional (records are marked with a
timestamp), the join operation needs to take into account
time correctness and time traveling to return only the
values known at the time of the event (also referred to as
as of join analytics operation).
Offline feature sets can be generated through SQL queries
generated by the feature store. However, with real-time
serving applications that need to respond in milliseconds,
this creates considerable overhead, and other real-time
methods are used. In addition, time-based features (such as
the number of requests in the last hour) cannot be
precalculated and require special handling to generate an



accurate result (for example, by combining precalculated
time windowed data and ad-hoc last-mile calculations).
Figure 4-18 illustrates the feature retrieval flow with two
separate engines, one for offline retrieval and the other for
real-time retrieval. Note that in the case of offline, the
dataset is snapshotted or preserved in a new dataset to
allow data lineage tracking and explainability.

Figure 4-18. Feature retrieval

The get_offline_features request can accept event data to
base the query on, a valid time range (for example, if we
want to train the model based on data from the last month),
and which features and columns should return (for
example, whether to include the index, time, or label
columns). Then, it initiates a local or serverless analytics
job that computes the results and returns the features
vector dataset.
In real-time retrieval, the system initializes the retrieval
service (configuring a local or remote real-time analytics
function once to save time on requests). Then, user
requests are pushed with the entity keys (taken from the
event data) and accept a result vector. In addition, some
feature stores allow real-time imputing (replacing missing
or NaN data with statistical feature values taken from the
feature metadata).



Feature Stores Solutions and Usage

Example

Feature stores started as internal platforms in leading
cloud services providers (such as Uber, Spotify, and
Twitter). But now, many open source and commercial
feature store solutions are in the market. However, as in
every important new technology space, there are many
functionality differences between those solutions; you need
to be aware so you can choose the right one.
The most notable and essential difference is if the feature
store platform manages the data (transformation) pipeline
for you and whether it supports both offline and real-time
(streaming) pipelines. As you’ve read in this chapter,
building and managing a scalable data pipeline is the major
challenge. If you are forced to do it manually, it
significantly undermines the value of a feature store.
Table 4-2 compares the leading feature store solutions:



Table 4-2. Feature store solution comparison

Category Feast Tecton MLRun Sag

Open
source

Yes No Yes No

Managed
option

No major
clouds

cloud + on-
prem

on A

Offline
pipelines

No Yes Yes No

Real-time
pipelines

No Yes Yes No

Feature
retrieval

Yes Yes Yes Yes

Engines Spark Spark Python,
Dask,
Spark,
Nuclio

Non

Feature
analytics

No Yes Yes No

Versioning
and lineage

No Yes Yes No

Features
security

No Yes Yes Yes



Category Feast Tecton MLRun Sag

Monitoring No Yes Yes No

Glueless
training
and serving

No No Yes No

The following sections will demonstrate how feature stores
are used with the two leading open source frameworks:
Feast and MLRun. Note that MLRun is more fully featured
and provides offline and online transformation services
(based on MLRun’s serverless engines) along with many
other unique features.

Using Feast Feature Store

Feast does not provide a transformation service. Data
should be prepared upfront and stored in a supported
source (like S3, GCS, BigQuery). Feast registers the source
dataset and its metadata (schema, entity, and so on) in a
FeatureView object, as shown in Example 4-9.
Example 4-9. Defining Feast FeatureView (source: Feast)

# Read data from parquet files. Parquet is convenient for local development mode. 

# For production, you can use your favorite DWH, such as BigQuery. See Feast 

# documentation for more info. 

driver_hourly_stats = FileSource( 

    name="driver_hourly_stats_source", 

    path="/content/feature_repo/data/driver_stats.parquet", 

    timestamp_field="event_timestamp", 

    created_timestamp_column="created", 

) 

 

# Define an entity for the driver. You can think of entity as a primary key used 

to 
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# fetch features. 

driver = Entity(name="driver", join_keys=["driver_id"]) 

 

# Our parquet files contain sample data that includes a driver_id column, 

timestamps 

# and three feature column. Here we define a Feature View that will allow us to 

serve 

# this data to our model online. 

driver_hourly_stats_view = FeatureView( 

    name="driver_hourly_stats", 

    entities=[driver], 

    ttl=timedelta(days=1), 

    schema=[ 

        Field(name="conv_rate", dtype=Float32), 

        Field(name="acc_rate", dtype=Float32), 

        Field(name="avg_daily_trips", dtype=Int64), 

    ], 

    online=True, 

    source=driver_hourly_stats, 

    tags={}, 

)

Feast does not provide an online transformation or
ingestion service. Instead, the user needs to run a
materialization task to copy the offline features into the
real-time store (database). Unfortunately, this also means
that the data stored in the online store is inaccurate
between materializations, and running materialization too
frequently can result in significant computation overhead.
Running the materialization task via the SDK:

store = FeatureStore(repo_path=".") 

store.materialize_incremental(datetime.now())

The project may contain one or more feature views, and
each is defined and materialized independently. Features
can be retrieved from one or more feature views (will
initiate a JOIN operation).
To retrieve offline features (directly from the offline
source), use the get_historical_features() API call as shown



in Example 4-10.
Example 4-10. Retrieve offline features with Feast (source:

Feast)

# The entity dataframe is the dataframe we want to enrich with feature values 

# see https://docs.feast.dev/getting-started/concepts/feature-retrieval for 

details 

# for all entities in the offline store instead 

entity_df = pd.DataFrame.from_dict( 

    { 

        # entity's join key -> entity values 

        "driver_id": [1001, 1002, 1003], 

        # "event_timestamp" (reserved key) -> timestamps 

        "event_timestamp": [ 

            datetime(2021, 4, 12, 10, 59, 42), 

            datetime(2021, 4, 12, 8, 12, 10), 

            datetime(2021, 4, 12, 16, 40, 26), 

        ], 

        # (optional) label name -> label values. Feast does not process these 

        "label_driver_reported_satisfaction": [1, 5, 3], 

        # values we're using for an on-demand transformation 

        "val_to_add": [1, 2, 3], 

        "val_to_add_2": [10, 20, 30], 

    } 

) 

 

store = FeatureStore(repo_path=".") 

 

# retrieve offline features, feature names are specified with <view>:<feature-

name> 

training_df = store.get_historical_features( 

    entity_df=entity_df, 

    features=[ 

        "driver_hourly_stats:conv_rate", 

        "driver_hourly_stats:acc_rate", 

        "driver_hourly_stats:avg_daily_trips", 

        "transformed_conv_rate:conv_rate_plus_val1", 

        "transformed_conv_rate:conv_rate_plus_val2", 

    ], 

).to_df() 

 

print("----- Example features -----\n") 

print(training_df.head())

To retrieve online features from the online store, we use
the get_online_features() API call, as shown in Example 4-



11.
Example 4-11. Retrieve online features with Feast (source:

Feast)

from pprint import pprint 

from feast import FeatureStore 

 

store = FeatureStore(repo_path=".") 

 

feature_vector = store.get_online_features( 

    features=[ 

        "driver_hourly_stats:acc_rate", 

        "driver_hourly_stats:avg_daily_trips", 

        "transformed_conv_rate:conv_rate_plus_val1", 

        "transformed_conv_rate:conv_rate_plus_val2", 

    ], 

    entity_rows=[ 

        # {join_key: entity_value} 

        { 

            "driver_id": 1001, 

            "val_to_add": 1000, 

            "val_to_add_2": 2000, 

        }, 

        { 

            "driver_id": 1002, 

            "val_to_add": 1001, 

            "val_to_add_2": 2002, 

        }, 

    ], 

).to_dict() 

 

pprint(feature_vector) 

 

# results: 

{'acc_rate': [0.86463862657547, 0.6959823369979858], 

 'avg_daily_trips': [359, 311], 

 'conv_rate_plus_val1': [1000.6638441681862, 1001.1511893719435], 

 'conv_rate_plus_val2': [2000.6638441681862, 2002.1511893719435], 

 'driver_id': [1001, 1002]}

Using MLRun Feature Store

MLRun supports the registration of existing sources (like
Feast) or the definition of a data pipeline for transforming
source data into features. When defining the data pipeline



(called a graph), MLRun provisions the selected data
processing engine based on the abstract user definitions.
MLRun supports a few processing engines, including local
Python, Dask, Spark, and Nuclio (a real-time serverless
engine).
In MLRun, by default, the pipeline writes into online and
offline stores, so there is no need for separate
materialization jobs, and the online and offline features are
always in sync. In addition, MLRun can auto-detect the data
schema, making it more straightforward and robust.
MLRun separates the definition of the feature set (a
collection of features generated by the same pipeline) from
the data source definitions. This way, you can use the same
feature set in interactive development and in production.
Just swap the source from a local file in development to a
database or real-time Kafka stream in the production
deployment.
Example 4-12 shows an example of defining a feature set
for processing credit card transactions to detect credit card
fraud. The definition includes the entity, timestamp, and
transformation graph using built-in operators and
aggregations. Note that a user can also add their custom
Python operators. See the full example.
The data pipeline consists of the following:

Extracting the data components (hour, day of week).

Mapping the age values

One-hot encoding for the transaction category and the
gender

Aggregating the amount (avg, sum, count, max over
2/12/24 hour time windows)

https://oreil.ly/G3zOh


Aggregating the transactions per category (over 14 day
time windows)

Writing the results to offline (Parquet) and online
(NoSQL) targets

Example 4-12. Defining MLRun FeatureSet (source:

MLRun)

import mlrun.feature_store as fs 

 

# Define the credit transactions FeatureSet 

transaction_set = fs.FeatureSet("transactions", 

                                entities=[fs.Entity("source")], 

                                timestamp_key='timestamp', 

                                description="transactions feature set") 

 

# Define and add value mapping 

main_categories = ["es_transportation", "es_health", "es_otherservices", 

       "es_food", "es_hotelservices", "es_barsandrestaurants", 

       "es_tech", "es_sportsandtoys", "es_wellnessandbeauty", 

       "es_hyper", "es_fashion", "es_home", "es_contents", 

       "es_travel", "es_leisure"] 

 

# One Hot Encode the newly defined mappings 

one_hot_encoder_mapping = {'category': main_categories, 

                           'gender': list(transactions_data.gender.unique())} 

 

# Define the data pipeline (graph) steps 

transaction_set.graph\ 

    .to(DateExtractor(parts = ['hour', 'day_of_week'], 

        timestamp_col = 'timestamp'))\ 

    .to(MapValues(mapping={'age': {'U': '0'}}, with_original_features=True))\ 

    .to(OneHotEncoder(mapping=one_hot_encoder_mapping)) 

 

 

# Add aggregations for 2, 12, and 24 hour time windows 

transaction_set.add_aggregation(name='amount', 

                                column='amount', 

                                operations=['avg','sum', 'count','max'], 

                                windows=['2h', '12h', '24h'], 

                                period='1h') 

 

 

# Add the category aggregations over a 14 day window 

for category in main_categories: 



    transaction_set.add_aggregation(name=category,column=f'category_{category}', 

                                    operations=['count'], windows=['14d'], 

                                        period='1d')

The data pipeline can be visualized using
transaction_set.plot(rankdir="LR", with_targets=True), as
seen in Figure 4-19.

Figure 4-19. Feature set plot

Once you have the feature set definition, you can test and
debug it with the preview() method that runs the data
pipeline locally and lets you view the results:

df = fs.preview(transaction_set, transactions_data) 

df.head()

When the feature set definition is done, you can deploy it as
a production job that runs on demand, on a given schedule,
or as a real-time pipeline.

For running batch ingestion, use the ingest() method. For
real-time ingestion from HTTP or streams, use
deploy_ingestion_service_v2(), which starts a real-time
Nuclio serverless pipeline. See Example 4-13.
Example 4-13. Ingest data into MLRun FeatureSet (source:

MLRun)

# Batch ingest the transactions dataset (from CSV file) through the defined 

pipeline 

source = CSVSource("mycsv", path="measurements.csv") 

fs.ingest(transaction_set, source=source) 

 

# Deploy a real-time pipeline with HTTP API endpoint as the source 

# MLRun support other real-time sources like Kafka, Kinesis, etc. 

source = HTTPSource() 

fs.deploy_ingestion_service_v2(transaction_set, source)



You can watch the feature sets, their metadata, and
statistics in the MLRun feature store UI. See Figure 4-20.
The feature retrieval in MLRun is done using the feature

vector object. Feature vectors hold the definitions of the
requested features and additional parameters. In addition,
they also store calculated values such as the features
metadata, statistics, and so on, which can be helpful in
training, serving, or monitoring tasks. For example, feature
statistics are used for automated value imputing in the case
of missing or NaN feature values and for model drift
monitoring in the serving application.

Figure 4-20. MLRun FeatureSet in UI

Feature vectors can be created, updated, and viewed in
MLRun’s UI.
Users first define the feature vector, then they can use it to
obtain offline or online features. See how to retrieve offline
features and use the get_offline_features() method in
Example 4-14.



Example 4-14. Get offline features from MLRun (source:

MLRun)

# Define the list of features you will be using (<feature-set>.<feature>) 

features = ['transactions.amount_max_2h', 

            'transactions.amount_sum_2h', 

            'transactions.amount_count_2h', 

            'transactions.amount_avg_2h', 

            'transactions.amount_max_12h'] 

 

# Import MLRun's Feature Store 

import mlrun.feature_store as fstore 

 

# Define the feature vector name for future reference 

fv_name = 'transactions-fraud' 

 

# Define the feature vector using our Feature Store 

transactions_fv = fstore.FeatureVector(fv_name, features, 

                                   label_feature="labels.label", 

                                   description= 

                                       'Predicting a fraudulent transaction') 

 

# Save the feature vector definition in the Feature Store 

transactions_fv.save() 

 

# Get offline feature vector as dataframe and save the dataset to a parquet file 

train_dataset = fstore.get_offline_features(transactions_fv, 

target=ParquetTarget()) 

 

# Preview the dataset 

train_dataset.to_dataframe().tail(5)

To get real-time features, you first need to define a service
(which initializes the real-time retrieval pipeline), followed
by .get() methods to request feature values in real time.
The separation between the service creation (one-time
initialization) and individual requests ensures lower
request latencies. In addition, MLRun supports automatic
value imputing based on the feature’s metadata and
statistics. This can save significant development and
computation overhead. See Example 4-15.
Example 4-15. Get online features from MLRun (source:

MLRun)



# Create the online feature service, substitute NaN values with 

# the feature mean value 

svc = fstore.get_online_feature_service('transactions-fraud:latest', 

                                    impute_policy={"*": "$mean"}) 

 

# Get sample feature vector 

sample_fv = svc.get([{'source': 'C76780537'}]) 

 

# sample_fv Result 

[{'amount_max_2h': 14.68, 

  'amount_max_12h': 70.81, 

  'amount_sum_2h': 14.68, 

  'amount_count_2h': 1.0, 

  'amount_avg_2h': 14.68}]

NOTE

MLRun’s feature stores provide accurate real-time aggregations and
low latency by combining precalculated values during the ingestion
process with real-time calculations at feature request time.

The MLRun framework provides a model development and
training pipeline, real-time serving pipelines, and
integrated model monitoring. MLRun’s feature store is
natively integrated with the other components, eliminating
redundant glue logic, metadata translation, and so on, thus
accelerating time to production.

Conclusion

With data management and processing being the most
critical components of ML, it’s important to understand
how to optimally perform data-related tasks. This chapter
explores the recommended tools and practices for the
various stages of working with your data. We started the
chapter by discussing data versioning and lineage, which
are essential for tracing data origin. Then we explored data



preparation and analysis at scale, which is how the data is
handled so it can be used in production. In this section, we
also discussed the architecture of interactive data
processing solutions and the differences between batch
data processing and real-time processing.
After reviewing the challenges of implementing these
practices at scale, we moved on to present the concept of
feature stores, which are a central repository for ML
features. We covered the capabilities of a feature store,
such as data connectivity and offline and online
transformation. We also showed where the feature store
fits in the MLOps pipeline, from ingesting raw data to
supporting the use of that data in training, serving,
monitoring, and more. Finally, we reviewed different
feature store solutions and how to use them.

Critical Thinking Discussion

Questions

Which details does metadata provide? As data
professionals, why do we need this information?

Which open source data versioning tools are available?
Which one could be a good fit for your organization?

What’s the difference between batch processing and
stream processing? When is each one used?

How does a feature store simplify data management
and processing practices? Which capabilities enable
this?

What are the differences between the Feast and the
MLRun feature stores? Which one could be a good fit
for your organization?



Exercises

Choose an open source solution (DVC, Pachyderm,
MLflow, or MLRun) and create a data versioning script
or workflow that will record and version data and
metadata.

Create a prototype of a batch processing pipeline with
the tool of your choice.

Connect a Trino data connector to a data source.

Train a demo model (you can use Hugging Face if you
need a sample model) with a feature store.

Create a feature set and ingestion pipeline in MLRun.
You can use this project as a reference.

https://oreil.ly/hlovk


Chapter 5. Developing

Models for Production

Developing ML models is no longer confined to
experimental labs and research papers. It’s about real-
world applications, and that means production. That’s why
building high-performing models is at the heart of
developing models for production.
A production-first mindset ensures that the models actually
make it to production and answer real-life business cases.
Otherwise, models get stuck throughout the ML pipeline
due to lack of collaboration between teams, technological
discrepancies, or other types of friction.
This chapter focuses on building the best models you can.
It details all the steps and processes to implement and run
on models throughout the ML pipeline before production.
This includes running, tracking, and comparing ML jobs,
automations, training and ML at scale; testing; resource
management; and much more. It details various
methodologies, tools, and approaches, together with code
examples you can follow.
When following the steps and trying out the exercises at
the end of the chapter, be conscious of the entire MLOps
pipeline and how your work could be integrated and
automated together with the other steps you or other team
members are taking. By taking these steps with a
production-first approach in mind, you can assure the
reliability, stability, and performance of your ML models.



AutoML

Building the best ML model is an iterative process that
relies on data science experience and intuition. The data
scientist attempts various strategies, like creating new
features from the data, selecting the suitable algorithm,
and choosing the optimal model parameters to get the best
predictor model.
Automated Machine Learning, or AutoML, tries to
automatically infer from the data and the model’s goal the
possible processing tasks and experiments that should be
tested and run in a sequence until the best model result is
achieved. AutoML reduces the data scientist’s effort and
allows less experienced individuals to develop high-
performing ML models quickly and efficiently. However, it
may result in the use of more computation resources.
AutoML platforms and tools aim to streamline the process
of building ML models by automating repetitive and
complex tasks.
Key components of AutoML include:
Data preprocessing

Tasks such as data cleaning, imputing missing values,
encoding categorical variables, and scaling features to
prepare the data for modeling.

Feature engineering

Automatically generating and selecting relevant features or
transformations of features to enhance model performance.

Model selection

Exploring and selecting appropriate algorithms or models
for a given dataset and problem. This can include trying



various types of models (like decision trees, neural
networks, or SVMs) and evaluating their performance.

Hyperparameter tuning

Selecting optimal hyperparameters for models. This can
involve techniques like grid search, random search,
Bayesian optimization, or other optimization algorithms.

Ensemble methods

Combining predictions from multiple models to improve
overall performance.

Model evaluation

Using metrics such as accuracy, precision, recall, F1 score,
and more, which help users assess the model’s effectiveness.

Pipeline construction

Constructing end-to-end pipelines, from data preprocessing
to model deployment, allowing users to generate production-
ready workflows.

Interpretability and explainability

Offering explanations for model predictions, helping users
understand and interpret how the model arrives at its
decisions.

DataRobot, founded in 2012, was one of the pioneers in
AutoML. Other companies followed in 2017/2018: H2O
with its Driverless AI platform and Google with
technologies like Cloud AutoML. Expansion to the rest of
the cloud providers soon followed: Azure Machine Learning
Studio AutoML; SageMaker Autopilot; and a slew of open
source projects such as Auto-sklearn, Auto-Keras, Tree-
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based Pipeline Optimization Tool (TPOT), MLBox,
AutoGluon, AutoWEKA, and Ludwig.
Some of the benefits of AutoML include:
Efficiency

Automates repetitive tasks like feature selection and
hyperparameter tuning.

Accessibility

User-friendly interfaces make machine learning accessible
to nonexperts.

Cost-effectiveness

Reduces the need for specialized talent, making it more
affordable.

Improved accuracy

Thanks to advanced algorithms for automatic model tuning.

Scalability

Capable of handling large datasets and high-dimensional
feature spaces.

Experimentation

Allows for rapid testing of different features, models, and
hyperparameters.

Some of the drawbacks of AutoML:
Limited customization

AutoML platforms often have preset algorithms and
configurations, limiting fine-tuning options.

https://oreil.ly/8x7IU
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Overfitting risk

Automated processes may lead to overfitting, especially if
not properly managed.

Resource intensive

AutoML can be computationally expensive, requiring
powerful hardware for large datasets.

Lack of domain knowledge

AutoML solutions may lack the domain-specific expertise
needed for specialized tasks.

Interpretability

Models generated by AutoML can be complex and difficult to
interpret, posing challenges for explainability.

Cost

While it can be cost-effective in some scenarios, the initial
investment in AutoML platforms can be high.

Dependency on data quality

The effectiveness of AutoML is highly dependent on the
quality of the input data; garbage in, garbage out.

Ethical concerns

Automated model selection could unintentionally introduce
or perpetuate biases present in the data.

Where does the future of AutoML lie? Noah defines the
automation process as the automator’s law; once you talk
about something being automated, it is eventually



automated. Many software engineering tasks are starting
to go away with tools like ChatGPT or AWS CodeWhisperer.
What may happen is that AutoML and generative AI are
combined to create sophisticated ML systems that require
very little manual human interaction. The new interface
may not be Jupyter Notebook or Visual Studio code, but a
voice assistant like in Star Trek. Imagine saying, “Hey Siri,
build me a new housing price prediction model for ZIP code
90210.” It may not be that far off.

Running, Tracking, and Comparing ML

Jobs

Running, tracking, and comparing ML jobs are the building
blocks of a robust and agile ML workflow. They enable
organizations to develop and use accurate and reliable
models that deliver value.
Running ML jobs includes the model training,
hyperparameter tuning, data preprocessing, and testing,
and requires computational resource allocation and
pipeline automation. This is the execution phase, and
efficiency in this stage means quicker development and
deployment.
Google Vertex AI and Amazon SageMaker are considered
mainstream, fully managed cloud MLOps platforms. They
incorporate tools for running and tracking ML jobs and
simplifying ML workflow automation in their respective
cloud ecosystems (Google Cloud and AWS). In addition,
they handle provisioning and Ops so developers can focus
on models.
Other frameworks like MLflow, ClearML, and Weights &
Biases (W&B) don’t provide the underlying infrastructure.



They are cloud-agnostic and can run on any infrastructure,
filling gaps the cloud vendors don’t address. For example,
ClearML does advanced hyperparameter optimization,
W&B provides excellent visualization for comparing
experiments, and MLflow offers model packaging.
Tracking ML jobs includes logging of metrics, version
control across the different elements, experiment tracking,
results visualization, and collaboration tools. This stage
ensures that the development is transparent and that
models are reproducible, allowing data scientists to
understand what works and what doesn’t, while facilitating
collaboration and compliance with industry standards.
Comparing the jobs includes performance evaluation,
hyperparameter comparison, analyzing the resource usage,
cost analysis, and interpretability analysis. Through this
comparison, data scientists can select the model that best
meets the business objectives. It also enables continuous
improvement by learning from previous iterations and
adapting to new data or changing requirements.
Most of these concepts are covered throughout this book,
so this section focuses on the most important ones that do
not appear elsewhere.

Experiment Tracking

Experiment tracking is the practice of systematically
recording and managing the different parts of the ML
development process. This includes tracking and
documenting different experimental setups, as well as the
configurations, code, parameters, data inputs and outputs,
logs, returned metrics, and various artifacts (datasets,
models, charts, and others).



ML experiment tracking has many advantages. The main
ones are:
Reproducibility

Ensuring that ML experiments can be reliably reproduced
by maintaining a detailed record of every aspect of the
experiment.

Comparative analysis

Comparing different models, algorithms, and techniques to
identify the most effective solutions.

Debugging and troubleshooting

Pinpointing and resolving issues, making debugging and
troubleshooting more efficient.

Collaboration

Allowing team members to understand, reproduce, and
build upon each other’s work.

Decision-making

Making data-driven decisions about the best strategies.

Documentation

Detailed records are useful for report writing and sharing
results.

Time and resource management

Helping avoid redundant work, saving both time and
resources.

Governance



Allowing the traceability and explainability of models, how
they were trained, and so on.

Collecting data and metadata required for production

deployment automatically

Ensuring that the data is there instead of having to do it
manually.

On top of these, experiment tracking can also be used to
support additional use cases, like auto-tuning and AutoML,
controlling and governing the ML process to ensure
implementation of responsible and ethical AI, and
simplifying pipelines by using the outputs of one step as
inputs to another.
Some popular ML experiment tracking tools include
TensorBoard, a visualization toolkit that comes with
TensorFlow, MLflow, Weights & Biases, Comet, ClearML,
and Sacred.
Example 5-1 demonstrates how to implement experiment
tracking using MLflow. The developer adds code to record
the parameters, metrics, and model output.
Example 5-1. Experiment tracking with MLflow

import mlflow 

import mlflow.sklearn 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score 

 

# Create a machine learning model 

model = LogisticRegression() 

 

# Start an MLflow run context 

with mlflow.start_run() as run: 

    # Log parameters 

    mlflow.log_param("model_algo", "LogisticRegression") 

    mlflow.log_param("C", 1.0) 
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    # Train and test the model 

    model.fit(X_train, y_train) 

    y_pred = model.predict(X_test) 

    accuracy = accuracy_score(y_test, y_pred) 

 

    # Log the model and its metrics 

    mlflow.log_metric("accuracy", accuracy) 

    mlflow.sklearn.log_model(model, "model")

Saving Essential Metadata with the Model

Artifacts

When developing machine learning models, it is essential to
save metadata about the model and the model artifacts.
This metadata can include information such as:

Links and metadata describing the original training
data used

Performance metrics like accuracy and loss

Hyperparameters used for training

The model architecture and framework version

Computing infrastructure and software packages used
for training

Version history and lineage information

Project, experiment, and run IDs for traceability

Capturing this information serves several purposes:

Helps reproduce and rebuild the model later.

Can debug performance issues by comparing metadata
across models.

Enables rollbacks to previous versions.

Allows auditing model origin throughout the lifecycle.



Enables model comparison, retraining, and
improvement.

Records information needed for deploying the model
(such as required packages and files, input and output
schema, and so on).

Tools like MLflow, SageMaker Experiments, and MLRun
provide ways to capture experiment and training dataset
metadata and store them in the model registry along with
the model artifact automatically.
Once models are registered, you can download them along
with their configuration and metadata. In example
Example 5-2, the model downloads locally using the MLflow
API.
Example 5-2. Model downloading with MLflow

from mlflow.store.artifact.models_artifact_repo import ModelsArtifactRepository 

from mlflow.tracking import MlflowClient 

 

client = MlflowClient() 

my_model = client.download_artifacts( 

  "68baff0203344dfebe89a6c73c6d6cfe", path="model") 

print(f"Placed model in: {my_model}")

You can list models as shown in the API call in Example 5-3,
which allows you to search for models that meet the
criteria you are looking for in terms of type, accuracy, and
others:
Example 5-3. Model searching with MLflow

from pprint import pprint 

from mlflow.tracking import MlflowClient 

 

client = MlflowClient() 

for rm in client.list_registered_models(): 

    pprint(dict(rm), indent=4)

Comparing ML Jobs: An Example with MLflow



Comparing ML jobs involves analyzing and contrasting
different runs or iterations of a model to identify the best
performing one or to understand how changes in
parameters, data, or algorithms affect the results.
By comparing ML jobs, data scientists and engineers can
evaluate different models or different configurations of the
same model. This allows them to identify which model
performs best, according to specific metrics like accuracy,
precision, recall, or custom evaluation criteria. This
comparison is essential for model selection,
hyperparameter tuning, and understanding the impact of
changes in the data or features.
ML jobs can be compared through these three methods:
Visual comparison

MLflow, TensorBoard, or custom visualization scripts can
provide graphical representations of metrics and
parameters. Scatter plots, line charts, and heat maps are
commonly used to visualize differences.

Statistical comparison

Statistical tests can be used to determine if differences in
performance are statistically significant. This approach
provides a more rigorous understanding of the variations
between models.

Programmatic comparison

Using APIs and scripting languages like Python, data
scientists can write custom code to compare models on
specific criteria. This method offers flexibility and can be
tailored to unique project needs.



Comparing two jobs in MLflow can be done through the
MLflow Tracking component, which allows logging and
comparing different model runs of your machine learning
models.
To compare two jobs in MLflow, follow these steps:

1. Open the MLflow UI in your web browser.

2. Select the experiment containing the runs you want to
compare.

3. Find the runs you want to compare in the list. You can
use filters to narrow down the runs if you have many of
them.

4. Click the checkboxes next to the runs you want to
compare, then click the “Compare” button. This will
take you to a comparison view where you can see
various metrics, parameters, and other details side by
side.

5. In the comparison view, you can analyze the differences
between the runs. This includes metrics, parameters,
tags, and artifacts. You can visualize the differences in
various ways, such as scatter plots, line charts, or
tables. Figure 5-1 compares two jobs in MLflow.



Figure 5-1. MLflow job comparison UI

6. If you want to share the comparison with others, you
can export the comparison view as a CSV file or take a
screenshot.

7. If you prefer working programmatically, you can use
the MLflow Python API to fetch details about the runs
and perform comparisons in your preferred
environment, such as Jupyter Notebook.

Example 5-4 shows how you might use the MLflow Python
API to compare two runs.
Example 5-4. MLflow job comparison using code

python 

import mlflow 

 

# Get the runs by ID 

run1 = mlflow.get_run(run_id="run_id_1") 

run2 = mlflow.get_run(run_id="run_id_2") 

 

# Compare metrics 

metric_name = "accuracy" 

metric1 = run1.data.metrics[metric_name] 

metric2 = run2.data.metrics[metric_name] 

 

print(f"Comparison of {metric_name}:") 

print(f"Run 1: {metric1}") 

print(f"Run 2: {metric2}")



The code snippet fetches two runs by their IDs and prints a
comparison of a specific metric.

Hyperparameter Tuning

Hyperparameter tuning is the part of the ML model
training process that involves selecting the optimal set of
hyperparameters. These parameters govern the learning
process but are not learned from the data, which means
that choosing the right hyperparameters can significantly
affect the model’s performance.
Some of the most common hyperparameter tuning
strategies include:
Grid search

Defining a grid of possible hyperparameter values and
exhaustively searching through all possible combinations.
This method is simple but can be computationally expensive
when dealing with a large number of hyperparameters or a
wide range of values.

Random search

Selecting random combinations of hyperparameter values
from predefined ranges. This approach can be more efficient
than grid search in terms of computation time and can often
yield good results.

Genetic algorithms

Inspired by natural evolution, genetic algorithms involve
creating a population of hyperparameter configurations,
evaluating their performance, and using selection, mutation,
and crossover operations to generate new configurations for
the next generation. This process continues iteratively to
improve the configurations.



Gradient-based optimization

This approach uses gradient information to optimize
hyperparameters. It requires access to the gradients of the
model’s performance with respect to the hyperparameters.
This method can be effective but might not be feasible for all
types of models.

Hyperband

Hyperband combines random search with the idea of early
stopping. It trains a range of configurations for different
numbers of iterations and focuses more resources on the
promising configurations while early stopping unpromising
ones.

SMBO (Sequential Model-Based Optimization)

Building probabilistic surrogate models to approximate the
relationship between hyperparameters and model
performance. These models guide the search process to
explore the most promising regions.

RL (reinforcement learning) for hyperparameter tuning

Some advanced techniques use reinforcement learning
algorithms to optimize hyperparameters. These methods
treat hyperparameter tuning as a sequential decision-
making problem and learn how to make decisions that lead
to better model performance over time.

Some common tools that can be used for hyperparameter
tuning include GridSearchCV and RandomizedSearchCV,
which are part of the scikit-learn library, Hyperopt, Optuna,
Keras Tuner, Ray Tune, Spearmint, SMAC (Sequential
Model-based Algorithm Configuration), SigOpt, AWS
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Hyperparameter Tuning (part of Amazon SageMaker),
Azure HyperDrive, and MLRun.
Example 5-5 shows how to use a training function and run
multiple jobs in parallel for hyperparameters tuning in
MLRun using the default grid search strategy. It will select
the best run for maximum accuracy.
Example 5-5. Running a hyperparameters job using MLRun

hp_tuning_run = project.run_function( 

    "trainer", 

    inputs={"dataset": gen_data_run.outputs["dataset"]}, 

    hyperparams={ 

        "n_estimators": [100, 500, 1000], 

        "max_depth": [5, 15, 30] 

    }, 

    selector="max.accuracy" 

)

Auto-Logging

Auto-logging can automatically capture key metrics,
parameters, and metadata during machine learning
processes without manually adding calls to the experiment
tracking/logging API. This approach can reduce tedious
coding work for developers by replacing the need to
manually insert logs into code. Auto-logging provides
organization-wide observability into ML experiments.
The auto-logging solutions are integrated with the specific
ML frameworks (sklearn, TensorFlow, and others) and
know how to automatically extract the key model metrics
and metadata from the framework and save it as
experiment parameters, metrics, and artifacts without
extra coding. This way developers don’t need to understand
the nuances of each framework or develop complex reports
or visualization.

https://oreil.ly/MYoy4
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Auto-logging solutions can automatically log and export the
model into the model registry along with its metrics and
metadata, allowing simple deployment later on.
There are two main approaches to auto-logging:
Intrusive

Requires modifying the ML training code to add auto-logging
using an MLOps SDK like MLflow

Nonintrusive

Automatically intercepts and logs metrics without code
changes (done by patching the ML framework or wrapping
the user code)

ClearML, for example, supports nonintrusive auto-logging
through patching and can turn it off if needed.
MLRun can auto-log function input args, return values and
objects (such as datasets and models), and all the relevant
metadata without code instrumentation. In addition, it is
integrated with MLflow and can auto-record metadata and
models logged using the MLflow API.
Example 5-6 shows how to use MLflow’s auto-logging in
Python.
Example 5-6. Auto-logging in Python using MLflow

import mlflow 

from sklearn.ensemble import RandomForestRegressor 

 

mlflow.autolog() 

 

rf = RandomForestRegressor() 

rf.fit(X_train, y_train) 

 

rf.predict(X_test) 

 

print(mlflow.active_run().data.metrics) # logged automatically!



Example 5-7 uses SageMaker Debugger.
Example 5-7. Auto-logging in Python using SageMaker

Debugger

# Train model using SageMaker SDK 

 

import sagemaker 

 

ml = sagemaker.estimator.Estimator() 

 

# SageMaker automatically enables Debugger 

ml.fit(data) 

 

# View logs 

ml.debugger_rules_analysis.load_analytics()

Another example, Example 5-8, also uses MLflow. One of
the valuable aspects of MLflow is that it can automatically
log what is going on in the MLflow inference in the project.
It accomplishes this using mlflow.autolog().
Example 5-8. Auto-logging in Python using MLflow

import mlflow 

 

from sklearn.model_selection import train_test_split 

from sklearn.datasets import load_diabetes 

from sklearn.ensemble import RandomForestRegressor 

 

mlflow.autolog() 

 

db = load_diabetes() 

X_train, X_test, y_train, y_test = train_test_split(db.data, db.target) 

 

# Create and train models. 

rf = RandomForestRegressor(n_estimators = 100, max_depth = 6, max_features = 3) 

rf.fit(X_train, y_train) 

 

# Use the model to make predictions on the test dataset. 

predictions = rf.predict(X_test) 

autolog_run = mlflow.last_active_run()

MLOps Automation: AutoMLOps

https://oreil.ly/RzIiG


One of the major challenges causing organizations to fail to
deliver ML applications to production is the extensive
engineering effort it takes to move from the research
playground, using notebooks and sample data, to large-
scale deployment, using microservices, production data,
automation, and observability. Many tools focus on an
interactive development flow, but the move to production
involves manual work, refactoring code and notebooks, and
glue logic.
A way to accelerate production and reduce the engineering
effort is to apply automation to the different MLOps tasks
and extend automation from AutoML and auto-logging to
full AutoMLOps. For example, instead of ML engineers
running manual and complex processes, code can be built
into fully managed microservices with “codeless”
observability and read directly from production datasets in
just one click or API call. MLRun pioneered the AutoMLOps
approach.
Tasks that can be automated with AutoMLOps tools
include:

Inject parameters or code into tasks and log the results.

Convert code to managed microservices and reusable
components.

Distribute the workloads automatically across
containers or VMs.

Pass data to and from cloud resources and databases.

Gather the data and metadata for operational aspects.

Ensure security hardening and protection.

Version across components and steps.



Auto-track experiments, metrics, artifacts, data, and
models.

Register models along with their required metadata
and optimal production formats.

Auto-scale and automatically optimize resource usage
(such as CPUs/GPUs).

Integrate with CI/CD, Git, and reporting systems.

Correlate and visualize the relationship between source
data, runs, models, and others.

AutoMLOps eliminate many of the manual and tedious
engineering efforts when productizing ML solutions,
resulting in faster time to production, use of fewer
engineering resources, higher quality, and better visibility.

Example: Running and Tracking ML Jobs Using

Azure Databricks

Let’s look at Azure Databricks as a simplified example of
running, tracking, and comparing ML jobs, as seen in
Figure 5-2. At a high level, this is an end-to-end MLOps
solution that allows you to use AutoML to create an
experiment, serve a model, and then serve out the model in
many different environments, including Databricks itself
via a Databricks endpoint or a containerized deployment in
Azure, AWS, GitHub Codespace, or others.



Figure 5-2. Building things in a dedicated environment

Let’s break it down further and talk about each step along
the way. Notice that a Kaggle dataset on classifying fake
news begins the journey. Next, that dataset uploads into
the DBFS (Databricks File System). The DBFS is a
distributed file system mounted into a Databricks
workspace and available on Databricks clusters. You can
experiment with this workflow with many simple Kaggle
datasets. In Figure 5-3, the Databricks UI maps out many of
the sequential steps in this pipeline, from data to compute
to models to serving, and so on.

https://oreil.ly/Q_oHi


Figure 5-3. Exploring the Databricks UI

One of the dependencies of this end-to-end MLOps pipeline
is that a compute cluster is necessary for hosting the DBFS
and doing the AutoML. In Figure 5-4, a default cluster in
Azure Databricks launches with an exemplary configuration
of a minimum of two workers and a max of eight workers,
and terminates after 120 minutes.
Once this is up and running, uploading data to the DBFS
and running experiments unlocks the ability to run AutoML



jobs in Figure 5-5 by dragging and dropping a Databricks
dataset into the UI and selecting the prediction target. The
critical inputs to the AutoML experiment are the cluster,
the ML problem type (in this case, Classification), the input
training, which lives on the DBFS, and finally, the
“Prediction target,” which is the column to predict. The
Databricks AutoML system does the rest.
One of the very cool features of Databricks is that it will
create a notebook for you of the exact training run. Here is
the notebook it generated for this AutoML project.

Figure 5-4. Databricks cluster configuration

https://oreil.ly/JKMS8


Figure 5-5. Databricks AutoML experiment setup

You can see a great example of this using the default
diamonds dataset with the DBFS. Notice in Figure 5-6 that
multiple training runs work to optimize the accuracy
metrics, creating notebooks and models as artifacts.



Figure 5-6. Databricks AutoML interface for diamonds dataset

If you drill down into the model further, you can see in
Figure 5-7 that there are three modes:

Real-time, which sets up an endpoint running on virtual
machines

Streaming (Delta Live Tables)

Batch inference

In a nutshell, the AutoMLOps workflow enables you to build
once and produces many styles so you can serve the model
in many ways.



Figure 5-7. Databricks model inference

Handling Training at Scale

In cases where you need to train a large model or use a
large training dataset that doesn’t fit into the system
memory, you will need to distribute the training job across
multiple systems. Distributed training can also shorten the
training time by computing the model or processing the
data in parallel. In addition, when training a model using
hyperparameters or AutoML, the platform can distribute
the individual runs across multiple containers and run it in
parallel.
Distributed computing frameworks such as Spark, Dask,
Ray, and MPI (with Horovod) can distribute the training
task across computers efficiently. In addition, frameworks

https://oreil.ly/fO1oC
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like TensorFlow and PyTorch provide integrated distributed
training capabilities.
Distributed training adds the complexity of managing a
cluster, orchestrating jobs across machines, distributing
the data, and collecting and monitoring the results. Use it
when the need outweighs the complexity, or use managed
services that handle it.
Distributed ML training framework examples include:

scikit-learn over Dask or Ray

XGBoost and LightGBM over Dask or Ray

Spark MLlib

H2O.ai

Distributed deep learning is covered in more detail in
Chapter 9.

Building and Running Multi-Stage Workflows

An excellent example of why you want to use a platform for
MLOps is tying together the multiple stages of a lifecycle.
These include data collection and preparation, feature
engineering, model training, model selection and tuning,
and deployment and monitoring. Orchestrating all of this
ad hoc is not scalable in the real world.
Developing production-ready ML systems requires
coordinating multiple stages in the machine learning
lifecycle. In the data collection and preparation phase,
issues include:

Gathering quality training and test data



Cleaning, preprocessing, labeling, and transforming
data

Splitting data into training, validation, and test sets

In the feature engineering phase, issues include:

Selecting informative input features for the model

Creating derived features like embeddings or
interactions

Performing dimensionality reduction if needed

In the model training phase, issues include:

Choosing a model architecture suitable for the problem
and data

Training on prepared data and iterating with
hyperparameters

Leveraging capabilities like AutoML for acceleration

In the model evaluation phase, issues include:

Analyzing performance metrics on test data

Performing error analysis to identify weaknesses

Tuning model artifacts, such as thresholds, to optimize
metrics

In the model deployment and monitoring phase, issues
include:

Containerizing models and integrating into production
infrastructure

Monitoring datasets, model performance, drift, and so
on, after deployment



Retraining models on new data to maintain accuracy

Coordinating these multiple phases requires workflow
orchestration tools like MLflow Pipelines, Kubeflow
Pipelines, Amazon SageMaker Pipelines, and Azure
Machine Learning Pipelines. These platforms provide ways
to build reusable components for each lifecycle stage and
connect them into an end-to-end automated workflow.

Managing Computation Resources Efficiently

The challenge in MLOps at scale is orchestrating the
continuum between stops ingesting data, doing exploratory
data analysis, modeling, and then building a conclusion, as
shown in Figure 5-8.



Figure 5-8. SageMaker architectural map of compute and storage

Each step in building and deploying models requires
extensive, scalable resources, for example, S3, to store the
raw data and the model placeholder. The training jobs also
need elastic resources, as do the inference jobs. MLOps is a
distributed computing problem, and dealing with a
platform is one of the most reasonable ways to solve this
difficult problem.
Here are some practical tips for managing computation
resources more efficiently in ML training pipelines:
Spot/preemptible instances

Cloud providers like AWS and GCP offer discounted, short-
lived compute instances. These options can significantly cut



costs for parallel training jobs.

Checkpointing

Save model snapshots periodically during training so
progress isn’t lost if a spot instance gets terminated. Resume
from the last checkpoint.

Distributed training

Train models faster by scaling across multiple GPU/TPU
machines. But linear scaling isn’t guaranteed, so benchmark
speedup versus cost. Also, remember Amdahl’s law:
parallelization is “no free lunch,” and there are diminished
returns with scaling out.

Quantization/pruning

Compress models to reduce compute requirements. But
beware the impact on accuracy. This technique is an
emerging field of research in the deployment of large
language models (LLMs).

Caching data

Avoid repeated preprocessing/loading of datasets in each
run—cache prepared data on fast storage like solid state
drives.

Reuse work

Chain together outputs from previous jobs to avoid
redundant computation.

Understand bottlenecks

Profile jobs to identify whether issues are
data/network/compute-bound or suboptimal model
architecture design.



TIP

The key is measuring and optimizing end-to-end pipeline
cost/performance, not individual components. Spotting instances,
caching, and reusing intermediate outputs can provide big wins. But
balancing cost savings versus impacts on training time, accuracy,
and development velocity is also important.

Apple’s CreateML tool is another excellent example of how
vital scalability is. In Figure 5-9 the dogs and cats dataset
from Kaggle gets dropped onto the UI to set up a training
job.

Figure 5-9. Create ML

Next, a Mac Pro M2 Max with 38 GPU cores and 10 CPU
cores can fully utilize these GPU cores (Figure 5-10). The
tooling here is the key, in that fast merging of software and
hardware allows a developer to prototype models quickly
and then later export them from CoreML format to ONNX.

https://oreil.ly/vJixR
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Figure 5-10. Create ML saturating GPU

Yet another example of a high-level framework is ML.NET
framework shown in Figure 5-11 saturating the CPU cores
as it does AutoML.

Figure 5-11. ML.NET saturating CPU cores

In the end, not only is there a model created that efficiently
works with ONNX but also a console application in C# is
part of the framework’s build process enabling tight
integration with C#, Visual Studio Code, the model format,
and ultimately a build once, deploy many tool.

https://oreil.ly/AXtWw


Many emerging examples of tools couple hardware,
software, model format, and the ultimate deliverable in the
MLOps space, and it is worth having these frameworks
evaluated for your organization’s goals.



GUEST SECTION ON GITHUB ACTIONS WITH

AZURE MACHINE LEARNING STUDIO

We contacted O’Reilly author Alfredo Deza, a developer
advocate for Azure. He worked extensively with DevOps
and MLOps workflows in education and shared this
technique:
One of the things I tend to use when working with Azure
Machine Learning Studio is to add GitHub Actions,
making it a powerful combination. GitHub Actions work
with YAML files called workflow files. These files are
easy to read and, therefore, easy to maintain: an
essential mix when working with enterprise-level
software.
There are two common patterns I use, and a base to
build on further:

Registering models or datasets from GitHub to
Azure ML Studio

Retrieving specific versions of models for packaging

Any time you are interacting with Azure to create or
retrieve data from your account will require
authentication. You can authenticate in different ways
with GitHub Actions, but I tend to use an Azure service
principal. a service principal is a way to create accounts
that have limited scope to resources and it needs only
one simple command.
Using the Azure Cloud Shell, run the following
command to find your subscription ID:

az account show --query id -o tsv

https://oreil.ly/wy_2u
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Capture the resulting ID and use it in the next step,
replacing $AZURE_SUBSCRIPTION_ID with the result from the
previous command:

az ad sp create-for-rbac  --sdk-auth --name "github-actions" \ 

   --role contributor --scopes /subscriptions/$AZURE_SUBSCRIPTION_ID

That command will generate a JSON output for a GitHub
repository secret. A repository secret is a way to
securely store sensitive information like the one
provided by the Azure CLI command. In the GitHub
repository where you want to use GitHub Actions with
Azure, click Settings > Actions > New. For the name,
use AZURE_CREDENTIALS, and for the value, paste the JSON
output from the last command.
Although you will need to configure the YAML workflow
with more components, this is the step you would use to
authenticate to Azure:

  - uses: azure/login@v1 

    with: 

     creds: ${{ secrets.AZURE_CREDENTIALS }}

The fact that it requires only three lines to authenticate
properly with Azure with an account that has enough
permissions allows you to concentrate on the other
aspects of your ML project rather than spend time
trying to make authentication work. This is one of the
main reasons I like GitHub Actions.
I assume that you already have created an Azure
Machine Learning workspace and you have access to its
portal. One common use for the Azure ML workspace is
to create and store models in Azure. You can use these
registered models with GitHub Actions after

https://oreil.ly/er-Zz


authenticating to perform different workflows, including
packaging.
The following example shows how to make sure that the
Azure CLI will have everything it needs to work with the
Azure ML workspace and retrieve the model:

- name: set auto-install of extensions 

  run: az config set extension.use_dynamic_install=yes_without_prompt

Next, replace workspace-name and workspace-group with
your Azure ML workspace and resource group,
respectively, so that GitHub Actions can attach the
workspace to the job:

- name: attach workspace 

  run: az ml folder attach -w "workspace-name" -g "workspace-group"

Finally, you can retrieve a model with a specific version.
The version comes after the colon in the value to --
model-id. The following example uses a GPT-2 model in
the ONNX format that was previously registered in
Azure ML:

- name: retrieve the ONNX model 

  run: az ml model download -t "." --model-id "GPT-2-onnx:1"

Although I haven’t gone into more details to build an
end-to-end example, hopefully I’ve demonstrated some
powerful building blocks you can use to create more
complex jobs using Azure ML and GitHub Actions. In the
past, I’ve used these examples to package ML models
and deploy them to a container registry. The increased
readability of GitHub Actions, with the ease of the Azure
CLI, makes this an outstanding combination worth
experimenting with.



Conclusion

This chapter discussed the context of building high-quality
machine learning models for production, which involved
various automation techniques such as AutoML,
hyperparameter tuning, auto-logging, AutoMLOps, and
pipelines. When building models, the runs and pipelines are
tracked, and the different inputs and results are logged to
enable higher quality, traceability, reproducibility, and
explainability.
Implementing automation and observability in the model
development process allows for higher-quality models and
continuous development and deployment flows, bringing
business velocity.

Critical Thinking Discussion

Questions

What factors influence a model’s performance in a
production deployment? How can you stack the deck in
favor of your organization to achieve a successful
outcome?

Which methods can you implement to improve the
model accuracy, and what are the cost versus
performance tradeoffs?

What is your organization’s data management and
model-building governance policy? Can using an
enterprise data catalog improve governance?

How can you protect the privacy of your ML systems’
users? Are there approaches that will comply with all

https://oreil.ly/8P3J4


near-term government regulations?

How can you simplify the development process of
production ML pipelines for data scientists who need
more software development experience without
reimplementing their code?

Exercises

Experiment tracking: Run a training task and use
MLflow to log the parameters, metrics, and model. Do
the same using MLflow auto-logging.

AutoML: Train a machine learning model using cloud
services such as SageMaker Autopilot, AzureML, or
Google Cloud AutoML. Compare the results to a
manually trained model.

ML Pipeline: Build a multi-stage ML pipeline with data
preparation, training, and evaluation steps using one of
the frameworks mentioned in the chapter, and attach
your pipeline to a CI/CD flow (where the pipeline will
run anytime you push code or data changes).

Building a scalable text classification pipeline: Train a
deep learning model for text classification on a large
dataset and develop a scalable pipeline for inference
using Ludwig.

Implementing a model versioning system: Build a
versioning system for models that allows the team to
track the evolution of models over time from scratch.
The system should follow the model’s code, data, and
hyperparameters, and allow for easy rollback to
previous versions. Use Git for version control and tools
like DVC for managing data and models.

https://oreil.ly/QeJI6


Creating a model retraining pipeline: Develop a
pipeline that automates the retraining models as new
data becomes available. The project should monitor
data sources for changes, retrain the model on the
latest data, and deploy the new model to production.
Consider using technologies like Apache Airflow for
workflow management, Kubernetes for deployment,
Amazon SageMaker, or Azure ML Studio.



Chapter 6. Deployment of

Models and AI

Applications

Processing data, training, and validating models are
precursors to the real thing: building and deploying an
application that uses the data you generated and the model
you have built to drive decisions and actions.
To deliver machine learning applications, start by building
and registering the model(s) for use in the production
application. Then, create an application pipeline that
accepts events or data, prepares the required model
features, infers results using one or more models, and
drives actions. Finally, monitor the data, models, and
applications to guarantee their availability and
performance. In cases of problems or degraded model
performance, drive corrective actions.
Many organizations still think of “serving a model” or
creating a model endpoint. However, they need to pay more
attention to the bigger picture of delivering an ML
application as a whole instead of dividing the application
delivery responsibility between data science and
engineering teams. Ignoring the bigger picture will lead to
significant functionality gaps, failures, unnecessary risks,
and long delays.

Model Registry and Management

https://oreil.ly/TqMu3


A model registry is a central repository for storing ML
models and their metadata and managing the model
lifecycle and versions. Once a model training process
completes, it saves the model and its metadata in the
registry. Then different functions (such as evaluation,
testing, and optimization) extend the model metadata or
update the model files. Finally, the serving functions or
application pipelines load the model and use it for making
predictions.
Model registries provide the following functionality:

Storing models along with their metadata and labels
(tags)

Managing model access, versions, and lifecycle

Enabling finding, grouping, and comparing models
based on metadata attributes or labels

Storing information required for the model deployment
and monitoring

Tracking the model status and approval process

Providing a simple or automated mechanism to deploy
models into production

The model registry is usually integrated with the
experiment tracking system. This way, the essential
metadata from the training or experiment is automatically
recorded in the registry without manual intervention.
However, most model registry solutions provide APIs to
register models trained on other systems.
A model consists of the following data and metadata
elements:
Base metadata
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Unique model name, identifier, description, project, owner,
version information, and so on

Labels

A set of key/value tags used to label, filter, group, and search
the model

Model files

The saved model (for example, in PKL, JSON, or HDF5
formats) and auxiliary files used by the model serving
process

Tracking information

References to how the model was trained, parameters, data
sources, code version, training framework, and so on

Model metrics

Performance metrics collected during the training,
evaluation, and testing processes; for example, model
accuracy, loss, F1 score, ROC curves, and feature importance

Dataset schema

The schema of the model inputs (X) and outputs (Y),
including field names, order, and types

Deployment data

Information and parameters required for the model
deployment, such as package dependencies, container
image, and runtime parameters

Monitoring metadata

Information required for monitoring the model
performance or drift; for example, statistical information
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and histograms per feature to determine if there is a drift
between training and serving data

Status and state

Information about the current model state, usage, and
approvals

In many cases, the training pipelines generate multiple
models, for example, when trying different algorithms or
parameter combinations. In such cases, we will use
different names or labels per model and can compare the
models to select the most suitable option. In addition, the
same model pipeline may produce multiple models, one for
every subset of the data (for example, a model per user, per
device, per country, and so on).
Model registries provide APIs and a user interface to
create, update, retrieve, list, compare, and deploy models.
Model registries are a component of an MLOps or data
science platform. For example, open source solutions
include MLflow and MLRun. In addition, there are
commercial solutions from Amazon SageMaker, Google
Vertex AI, and DataRobot. Although registries can import
or export models, the best approach is to use the built-in
registry once you choose the MLOps platform.

Solution Examples

Some solutions (for example, in SageMaker and Vertex AI)
require you to package the model in a container and
provide minimal visibility into the model origin and
metadata. This approach may lead to additional work,
functional limitations (cannot serve multiple models in the
same container), and limited observability.
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SageMaker Example

Example 6-1 shows a code example for registering a model
in Amazon SageMaker. It covers the following steps that
are required to register a model:

1. Save the model and the code in a tar.gz package and
upload it to S3.

2. Build a container image or use a pre-built Docker
image.

3. Create a model package group.

4. Create a model package and specify the information
about the model package: image, runtime preference,
metadata, and so on.

Example 6-1. Registering a model in Amazon SageMaker

import boto3 

from sagemaker import image_uris 

 

region = boto3.Session().region_name 

client = boto3.client('sagemaker', region) 

 

# Require you to first package the model in tar.gz and upload to S3 

 

# Specify the S3 location of the model package 

model_package_location = 's3://my-bucket/my-model-package.tar.gz' 

 

# Find the image url for a SageMaker built-in inference image 

inference_image = image_uris.retrieve( 

    framework="sklearn", 

    region=region, 

    version="1.0-1", 

    py_version="py3", 

    instance_type="ml.m5.large", 

) 

 

 

# Define the model package metadata 

model_package_name = 'my-model-package' 

model_package_group_name = model_package_name + "-group" 

model_package_description = 'A sample model package' 



model_package_framework = 'scikit-learn' 

model_package_runtime = 'Python 3.8' 

 

print(model_package_group_name) 

group_response = client.create_model_package_group( 

    ModelPackageGroupName=model_package_group_name, 

    ModelPackageGroupDescription="My group description", 

) 

 

model_package_version_response = client.create_model_package( 

    ModelPackageGroupName=model_package_group_name, 

    ModelPackageDescription="scikit-learn demo", 

    ModelPackageVersion='1.0', 

    MetadataProperties={ 

        'GeneratedBy': 'my-username' 

    }, 

    InferenceSpecification={ 

        "Containers": [ 

            { 

                "ContainerHostname": "scikit-learn", 

                "Image": inference_image, 

                "ModelDataUrl": model_package_location, 

                "Framework": "SAGEMAKER-SCIKIT-LEARN", 

                "Environment": { 

                    "SAGEMAKER_CONTAINER_LOG_LEVEL": "20", 

                    "SAGEMAKER_PROGRAM": "inference.py", 

                    "SAGEMAKER_REGION": region, 

                }, 

            }, 

        ], 

        "SupportedRealtimeInferenceInstanceTypes": [ 

            "ml.c5.xlarge", 

            "ml.m5.xlarge", 

        ], 

        "SupportedContentTypes": ["text/csv"], 

        "SupportedResponseMIMETypes": ["application/json"], 

    }, 

)

MLflow Example

In MLflow, the experiment tracking service can save model
artifacts (with the experiment metadata), and the model
registry can register artifacts as models. See Example 6-2,



which demonstrates how a training job logs and registers a
model artifact.
Example 6-2. Registering a model in MLflow

from sklearn import ensemble, metrics 

from sklearn.model_selection import train_test_split 

 

import mlflow 

import mlflow.sklearn 

import pandas as pd 

 

dataset = pd.read_cvs("data.csv") 

 

with mlflow.start_run(run_name="YOUR_RUN_NAME") as run: 

    params = {"n_estimators": 5, "learning_rate": 0.1} 

    model = ensemble.GradientBoostingClassifier(**params) 

 

    # Initialize the x & y data and split to train and test sets 

    x = dataset.drop("label", axis=1) 

    y = dataset["label"] 

    x_train, x_test, y_train, y_test = train_test_split(x, y) 

 

    # Log parameters and metrics using the MLflow APIs 

    mlflow.log_params(params) 

 

 

    # Train the model and log the metrics 

    model.fit(x_train, y_train) 

    predicted_probs = model.predict_proba(x_test) 

    roc_auc = metrics.roc_auc_score(y_test, predicted_probs[:,1]) 

    mlflow.log_metric("test_auc", roc_auc) 

 

    # Log the sklearn model and register as version 1 

    mlflow.sklearn.log_model( 

        sk_model=model, 

        artifact_path="sklearn-model", 

        registered_model_name="sk-learn-reg-model" 

    )

Once the model is registered, it can be viewed in the
MLflow UI, as shown in Figure 6-1.



Figure 6-1. MLflow model registry UI

MLRun Example

In MLRun, the training function can use the framework-
specific apply_mlrun() method to automatically grab all the
model details, metadata, data schema, and statistics and
save the model in the registry (see Example 6-3). Notice
that MLRun automates data movement and the collection of
experiment metadata, parameters, and metrics.
Example 6-3. Registering a model in MLRun

import pandas as pd 

from sklearn import ensemble 

from sklearn.model_selection import train_test_split 

from mlrun.frameworks.sklearn import apply_mlrun 

 

def train( 

    dataset: pd.DataFrame, 

    label_column: str = "label", 

    n_estimators: int = 100, 

    learning_rate: float = 0.1, 

    model_name: str = "cancer_classifier", 

): 

    # Initialize the x & y data and split to train and test sets 

    x = dataset.drop(label_column, axis=1) 

    y = dataset[label_column] 

    x_train, x_test, y_train, y_test = train_test_split(x, y) 

 

    # Pick an ideal ML model 

    model = ensemble.GradientBoostingClassifier( 

        n_estimators=n_estimators, learning_rate=learning_rate 

    ) 

 

    # Generate and register model artifact along with all its metrics and 

metadata 



    # MLRun auto extracts the model schema and drift metadata from the test set 

    apply_mlrun(model=model, model_name=model_name, x_test=x_test, y_test=y_test) 

 

    # Train the model 

    model.fit(x_train, y_train)

Once the model is registered, it can be viewed in the
MLRun UI along with all the automatically gathered
metadata. See Figure 6-2.

Figure 6-2. MLRun model registry UI

If you have an existing code function that returns a model
object, you don’t have to add the auto_mlrun() method.
Instead, MLRun will automatically detect the model object
and save it. However, it will not include all the metadata
and statistics. You can add those later using the
update_model() method.
You can register models you trained on other systems with
the project.log_model() method:

model_object = project.log_model('my-model', model_file=model_path, ..)



MLRun also provides a simple way to export models and all
their metadata into a .zip file and load it back into another
system, as Example 6-4 shows.
Example 6-4. Export and import MLRun models

# In the source platfrom export the model artifact into a .zip object 

model_object.export("s3://my-bucket/model.zip") 

 

# In the destination system import the model files + metadata from 

# zip into the project 

model_object = project.import_artifact("my-model", "s3://my-bucket/model.zip")

Model Serving

Models are a form of equation. They accept numeric values
(X) and respond with results or predictions (Y). Models
have unique dependencies and development lifecycles.
Therefore, it is better to package and deploy them as
microservices (containers) and access them through an
API. In addition, using an API allows independent scaling of
the model (add/remove containers), high availability,
granular security, and rolling upgrades.
The most basic approach is manually wrapping the model
prediction code with a protocol, for example, using Python
Flask or FastAPI packages to add HTTP REST API on top of
the model. However, this simplistic approach means you
must write and maintain a lot of code to handle the
different API calls, exceptions, scaling, security, upgrades,
and other tasks.
Serving frameworks handle the model deployment,
protocol, lifecycle, and monitoring for you. Many of the
frameworks require you to build the container package,
and they add the deployment, scaling, and so on. Some
frameworks (like MLRun) use serverless functions
architecture to automatically create the container package

https://oreil.ly/_MxKj
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and inject advanced functionality and observability into the
serving microservice. In addition, there are managed
model-serving solutions in the cloud in which you upload
the model and don’t need to control the infrastructure.
You can deploy and serve models through an online
endpoint (using HTTP REST or gRPC protocols), which
accepts the input dataset and either responds with the
prediction immediately or through a streaming or
messaging protocol; for example, Kafka, Kinesis, Pub/Sub,
or others. The streaming or messaging protocol receives
the input events, makes a prediction, and writes the results
to a database or an upstream stream/queue.
You can deploy models as part of a batch pipeline. For
example, the first step is to prepare the dataset. Then the
model prediction step generates predictions from the
incoming dataset and writes the results to the next step or
a storage system. The batch pipeline can run on demand or
be scheduled at regular intervals.
Figure 6-3 illustrates different model-serving deployment
options: online (synchronous), stream (asynchronous), and
batch.

https://oreil.ly/CKxgU
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Figure 6-3. Model serving modes

Online serving protocols support multiple operations to
handle the entire model lifecycle, for example:
Predict

Send an input dataset and return the predicted results.

Get model metadata

Get information about the model and its schema.

Get health

Get the health and readiness of the model.

List

List the models and the versions served by the endpoint.

Explain

Send the input data and return a description (explanation)
of the prediction response.



NVIDIA Triton (TensorRT), KServe (KFServing), Seldon
Core, and MLRun support a standard model serving
protocol.
In the advanced solutions, you can control how models are
loaded and evicted from memory, and a model endpoint can
serve multiple models to preserve memory space and
computation resources. In addition, they can handle data
pre- and post-processing and advanced functionality, such
as ensembles, canaries, and monitoring.
Table 6-1 lists the leading model serving solutions.
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Table 6-1. Model serving solutions comparison

Category SageMaker Vertex AI MLRun Sel

Open
source

No No Yes Yes

Managed
option

AWS GCP cloud + on-
prem

clou
pre

Serverless Yes Yes Yes No

Protocol Proprietary Proprietary Standard Sta

Multi-stage
pipelines

No No Yes Yes

Streaming No No Yes Bas

Model
monitoring

Yes Yes Yes Yes

Amazon SageMaker

In SageMaker, you can retrieve a model from the registry,
deploy it to an endpoint, and call it to generate predictions
(see the code in Example 6-5).
Example 6-5. Deploy a registered model in SageMaker

import sagemaker 

 

sagemaker_session = sagemaker.Session() 

role = sagemaker.get_execution_role() 

 

https://oreil.ly/epj-o


# Get the model package from the registry 

model = sagemaker.ModelPackage( 

    role=role, 

    model_package_arn=model_package_arn, 

    sagemaker_session=sagemaker_session) 

 

# Deploy the model as an endpoint 

predictor = model.deploy( 

    initial_instance_count=1, 

    instance_type='ml.m5.xlarge', 

    endpoint_name="some-name") 

 

# Test the model by sending a request to the endpoint 

test_data = {"input": [1, 2, 3, 4, 5]} 

response = predictor.predict(test_data) 

print(response)

If you train the model with SageMaker’s built-in
frameworks, you can skip the part of registering the model
and immediately deploy it to an endpoint (see Example 6-
6).
Example 6-6. Deploy a built-in trained model in SageMaker

from sagemaker.pytorch import PyTorch 

 

# Train the model using an estimator 

pytorch_estimator = PyTorch(entry_point='train_and_deploy.py', 

                            instance_type='ml.p3.2xlarge', 

                            instance_count=1, 

                            framework_version='1.8.0', 

                            py_version='py3') 

pytorch_estimator.fit('s3://my_bucket/my_training_data/') 

 

# Deploy my estimator to a SageMaker Endpoint and get a Predictor 

predictor = pytorch_estimator.deploy(instance_type='ml.m4.xlarge', 

                                     initial_instance_count=1) 

 

# `data` is a NumPy array or a Python list. 

# `response` is a NumPy array. 

response = predictor.predict(data)



TIP

SageMaker model serving is a great choice when you build your
models inside SageMaker. However, it requires more work when
using external or standard open source frameworks. In addition, data
processing or application logic is not handled by the serving endpoint
and will require external services or serverless functions.

Seldon Core

Seldon Core is an open source model serving solution that
can deploy over Docker or Kubernetes. Seldon can deploy a
single model or a multistage pipeline with multiple models
and processing steps. In addition, it supports model
monitoring and explainability.
Seldon Core supports two types of model servers (see
Figure 6-4):
Reusable

Allows deploying a family of standard models using pre-built
images. The models are often fetched from a central
repository (such as AWS S3 storage)

Nonreusable

Using a custom model server that requires building a custom
Docker image with the code and dependent packages.

https://oreil.ly/hppX7
https://www.docker.com/
https://kubernetes.io/
https://oreil.ly/p3SNz


Figure 6-4. Seldon Core model types (source: Seldon Core)

Seldon models and pipelines are defined using a YAML file
and deployed using the Kubernetes command-line tool
(kubectl). See Example 6-7.
Example 6-7. Deploy a model using Seldon Core (source:

Seldon Core)

Step 1: Create a YAML file describing a single (reusable)
model server:
apiVersion: machinelearning.seldon.io/v1 

kind: SeldonDeployment 

metadata: 

  name: sklearn 

spec: 

  name: iris 

  protocol: v2 

  predictors: 

  - graph: 

      children: [] 

      implementation: SKLEARN_SERVER 

      modelUri: gs://seldon-models/sklearn/iris-0.23.2/lr_model 

      name: classifier 

    name: default 

    replicas: 1

Step 2: Deploy the model to the Kubernetes cluster:



> kubectl apply -f resources/iris-sklearn-v2.yaml 

seldondeployment.machinelearning.seldon.io/sklearn created

Step 3: Test the new endpoint:
import requests 

 

inference_request = { 

    "inputs": [ 

        {"name": "predict", "shape": [1, 4], "datatype": "FP32", 

         "data": [[1, 2, 3, 4]]} 

    ] 

} 

 

endpoint = "http://localhost:8003/seldon/seldon/sklearn/v2/models/infer" 

response = requests.post(endpoint, json=inference_request) 

 

print(response.json())

Seldon Core supports various model deployment options,
multistage pipelines, and a standard (v2) protocol.
However, it is more DevOps-oriented and requires manual
configuration and an understanding of the Kubernetes API.

MLRun Serving

The MLRun MLOps framework includes advanced model
and application serving functionality. MLRun serving
allows users to define multistage real-time pipelines and
quickly deploy them to production with the help of Nuclio,
a real-time serverless engine. Nuclio is a high-performance,
elastic, open source serverless framework focused on data,
I/O, and compute-intensive workloads. It supports
advanced functionality and many triggering options (such
as HTTP, cron, Kafka, Kinesis, and others). MLRun and
Nuclio’s serverless architecture converts the code and
high-level definitions into a hardened, high-performance,
self-healing, and auto-scaling service with built-in
monitoring and observability.
MLRun serving supports two topology options:

https://oreil.ly/9UEGF
https://nuclio.io/


Router

A basic serving of one or more models (the default option)

Flow

A multistage pipeline (directed acyclic graph) with built-in
or custom steps (for example, API integrations, data
enrichment and processing, model serving, routing, and
storage)

MLRun contains built-in serving classes for the major
ML/DL frameworks (scikit-learn, TensorFlow, ONNX,
XGBoost, LightGBM, PyTorch, and Hugging Face) and
supports a standard serving protocol (like KServe, Seldon,
and Triton). In addition, MLRun provides a few container
images with the required ML/DL packages pre-installed, or
you can choose a base image and additional package
requirements, which will automatically build the desired
image for you.
In MLRun, the first step is to define a function object that
specifies the code, packages, resources, triggers, and so
on. Then you define the serving topology (graph). Once the
serving function is fully defined, you can simulate it locally
or deploy it to a cluster using a single API call.
Example 6-8 demonstrates the use of MLRun serving. First,
define a function using a standard image, add a model, and
then simulate and debug the serving pipeline locally with
test data. Finally, deploy the function to the cluster and test
the live endpoint (using .invoke()).
Example 6-8. Define and deploy a basic MLRun serving

topology

serving_fn = mlrun.new_function("serving", image="mlrun/mlrun", 

                                kind="serving", requirements=[]) 

https://oreil.ly/GvBuC
https://oreil.ly/TaNCa
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# Add a model object or file (can be in S3, GCS, local file, etc.) 

serving_fn.add_model( 

    "my-model", 

    model_path=model_uri, 

    class_name="mlrun.frameworks.sklearn.SklearnModelServer") 

 

# Create a mock server (simulator) and test/debug the endpoint 

server = serving_fn.to_mock_server() 

sample = {"inputs": [[5.1, 3.5, 1.4, 0.2], [7.7, 3.8, 6.7, 2.2]]} 

server.test(path=f"/v2/models/my-model/infer", body=sample) 

 

# Result: 

{'id': '2b2e1703f98846b386965ce834a6c4ab', 

 'model_name': 'my-model', 

 'outputs': [0, 2]} 

 

# Deploy the serving function to the cluster 

project.deploy_function(serving_fn)
> 2023-02-14 12:29:12,008 [info] Starting remote function deploy 

> 2023-02-14 12:29:12  (info) Deploying function 

> 2023-02-14 12:29:12  (info) Building 

> 2023-02-14 12:29:12  (info) Staging files and preparing base images 

> 2023-02-14 12:29:12  (info) Building processor image 

> 2023-02-14 12:29:57  (info) Build complete 

> 2023-02-14 12:30:05  (info) Function deploy complete 

> 2023-02-14 12:30:05,918 [info] successfully deployed function
# Send prediction request to the live endpoint 

serving_fn.invoke(path=f"/v2/models/my-model/infer", body=sample)

The real power of MLRun serving graphs is the ability to
develop and deploy complex distributed AI applications
rapidly while ensuring maximum performance, scalability,
availability, and security. Example 6-9 shows an example of
a multistage NLP application with data pre- and post-
processing. You can extend the serving graphs to include
branching and parallelism. You can also add advanced data
processing steps, model ensembles, exception handling,
custom monitoring, and more.
Example 6-9. Define and deploy a multistage serving graph

topology

# Create an MLRun serving function from custom code 

serving_function = mlrun.code_to_function( 

    filename="src/serving.py", 

    kind="serving", 



    image="mlrun/mlrun", 

    requirements=[], 

) 

 

# Set the serving topology 

graph = serving_function.set_topology("flow", engine="async") 

 

# Define a 3 step graph (preprocess -> hugging face model -> postprocess) 

# the custom preprocess and postprocess functions are in serving.py 

# while the HuggingFaceModelServer is a built-in MLRun class 

graph.to(handler="preprocess", name="preprocess")\ 

     .to(mlrun.frameworks.huggingface.HuggingFaceModelServer( 

              name="sentiment-analysis", 

              task="sentiment-analysis", 

              model_name="distilbert-base-uncased", 

              model_class="AutoModelForSequenceClassification", 

              tokenizer_name="distilbert-base-uncased", 

              tokenizer_class="AutoTokenizer"))\ 

     .to(handler="postprocess", name="postprocess").respond() 

 

# Plot to graph: 

serving_function.plot(rankdir='LR')

# Deploy the pipeline 

project.deploy_function(serving_function) 

 

# Send a text request and get the sentiment results 

response = serving_function.invoke(path='/predict', body="good morning") 

print(response) 

 

# Result: 

['The sentiment is POSITIVE', 'The prediction score is 0.7876932144165039']

MLRun serving provides a rich user interface that natively
integrates with the platform’s other elements (see Figure 6-
5).



Figure 6-5. MLRun serving user interface

In summary, MLRun serving extends the notion of model
serving to rapid delivery of application pipelines and
accelerating the deployment of AI applications. In addition,
its serverless architecture reduces infrastructure costs and
engineering overhead and enables continuous operations.

Advanced Serving and Application

Pipelines

The previous sections explained the need to transition from
looking at the model endpoint as the production end goal to
thinking about AI applications. When you build
applications, you must address API integrations, data
enrichment, validations, processing, and storage. In
addition, the same application often requires routing,
cascading, or merging results from multiple models and
issuing one or more actions. Finally, you must monitor
every aspect, including resource usage, data, model
performance, and application KPIs. Therefore, you have to
define the deployment goals around application pipeline
design, implementation, and maintenance.
In the model development flow, the job execution time or
frequency may not be critical. However, in production,
applications may need to scale to serve thousands of
requests and terabytes of data. Sometimes the client is
waiting for an immediate answer, which requires more
focus on performance and latency. Therefore, enabling



parallelism and considering technologies that optimize the
data pipeline and model performance are necessary.
You will likely need to upgrade the model or enhance the
application pipeline at a certain point. However, upgrades
are not trivial when the application serves online clients or
critical business services. In addition, new models may
behave differently in production. As a result, you should
first test them in isolation or expose only a fraction of the
clients to the latest version before making the change
available to everyone. Production deployment should
include a strategy and implementation for live upgrades,
A/B testing, failure recovery, and rollbacks.

Implementing Scalable Application Pipelines

Serving application pipelines execute a set of activities; for
example, intercepting an event, enriching and processing
the data, using one or more models for prediction, and
returning a response or issuing an action. The activities can
run sequentially (one after the other), in parallel, or
combine sequential and parallel activities. Pipelines can be
synchronous (the client waits for the response) or
asynchronous (the client does not wait).
A simple sequential implementation uses a single process
that calls the different activities one after the other. For
example, Example 6-10 demonstrates a sequential
application pipeline using FastAPI with the following steps:

1. Reading and enriching the incoming request

2. Data preprocessing to generate a feature vector

3. Model prediction



4. Processing the model results and returning a response
to the client

Example 6-10. Sequential application pipeline example

using FastAPI

from fastapi import FastAPI, HTTPException 

from pydantic import BaseModel 

 

app = FastAPI() 

 

# Define the prediction request data (json) structure 

class PredictRequest(BaseModel): 

    user: str 

    # ... 

 

 

# API to get model endpoint status 

@app.get("/") 

async def get_status(): 

    return {"model": "my-model", "version": 1.0, "status": "ok"} 

 

 

# API to process data and make a prediction 

@app.post("/predict") 

async def predict(req: PredictRequest): 

 

    enriched_data = enrich_user(req) 

 

    data = pre_process(enriched_data) 

 

    prediction = model_predict(data) 

 

    return post_process(prediction, req) 

 

 

def enrich_user(req: PredictRequest): 

    ...

Suppose you want to distribute the work to multiple
microservices or avoid package dependencies. In that case,
the primary process can call the activities (implemented
through separate microservices) utilizing REST API calls.
However, the distributed architecture will require you to
handle additional complexities, such as partial failures,



retries, service authentication, and rolling upgrades across
multiple microservices.

NOTE

In both local and distributed architectures, the flow remains
sequential and synchronous, which can lead to slower performance.
Performance can be improved when adding parallelism. For example,
the primary process can use threads or async to execute multiple
activities in parallel. However, this adds more complexity to the code.

A way to achieve distributed processing, parallelism, and
simplicity is to use asynchronous or streaming pipeline
frameworks where you define a graph (DAG) of activities.
Then, the framework executes, scales, and tracks the
activities using distributed computing resources. In
addition, the application pipeline is monitored, deployed,
and upgraded as one managed service.
Figure 6-6 illustrates a few application pipeline
architecture options:

Sequential activities in the same process

Combining sequential and parallel activities using a few
processes

An asynchronous streaming pipeline

There are multiple commercial and open source distributed
pipeline frameworks in the industry. Some examples
covered here are AWS Step Functions, Apache Beam, and
MLRun serving graphs.
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Figure 6-6. Application pipeline architecture options

AWS Step Functions

AWS Step Functions is a workflow service that executes a
state machine of individual steps (as shown in Figure 6-7).
Steps can invoke a serverless Lambda function or call AWS
services. The Step Functions service controls the execution
of the workflows, and its graphical console shows your
application’s workflow as a series of event-driven steps.
Step Functions has two workflow types. Standard
workflows are ideal for long-running, auditable workflows,
as they show execution history and visual debugging.
Express workflows suit high-event-rate workloads like
streaming data processing and IoT data ingestion.



The Express workflows can be either synchronous (wait
until the workflow completes and then return the result) or
asynchronous (don’t wait for the workflow to complete).

Figure 6-7. AWS Step Functions user interface

While AWS Step Functions is feature-rich, can dynamically
scale resources, and has an excellent user interface, it adds
the complexity of creating a new Lambda function for every
step as well as performance overhead of networking and
data serialization between each step.
To build an ML application pipeline with data preparation
and model serving steps, you must first create serverless
Lambda functions for each step. For example, Example 6-
11 demonstrates a TensorFlow model serving Lambda
function.
Example 6-11. Serverless prediction function using AWS

Lambda

import json 

import boto3 

import tensorflow.keras.models as models 

 



s3 = boto3.client('s3') 

 

# Load the Keras model from S3 during initialization 

model_path = '<your-s3-bucket>/path/to/model.h5' 

response = s3.get_object(Bucket='<your-s3-bucket>', Key=model_path) 

model_bytes = response['Body'].read() 

model = models.load_model(model_bytes) 

 

def lambda_handler(event, context): 

    # Load input data from event 

    input_data = event['input_data'] 

 

 

    # Make predictions using the preloaded model 

    predictions = model.predict(input_data) 

 

    # Return predictions as JSON 

    return json.dumps(predictions.tolist())

Once you have all the functions, you can define the
multistage workflow. Example 6-12 demonstrates a simple
asynchronous pipeline with data preparation, model
prediction, and post-processing.
Example 6-12. AWS Step Functions workflow example

from stepfunctions.steps import LambdaStep, PassStep, Chain 

from stepfunctions.workflow import Workflow 

from stepfunctions.inputs import ExecutionInput 

 

def create_workflow(input_data): 

    # Define the workflow using the stepfunctions library 

    with Workflow('MyWorkflow') as workflow: 

        # Define the Lambda function to preprocess the data 

        preprocess_data_step = LambdaStep( 

            'PreprocessData', 

            parameters={ 

                'FunctionName': '<function-arn>', 

                'Payload': ExecutionInput(input=input_data) 

            } 

        ) 

 

        # Define the Lambda function to load and run the model 

        run_model_step = LambdaStep( 

            'RunModel', 

            parameters={ 

                'FunctionName': '<function-arn>', 



                'Payload': ExecutionInput( 

                    input=preprocess_data_step.output()['Payload']) 

            } 

        ) 

 

        # Data post processing 

        post_process_step = LambdaStep( 

            'PostProcess', 

            parameters={ 

                'FunctionName': '<function-arn>', 

                'Payload': ExecutionInput(input=run_model_step.output()

['Payload']) 

            } 

        ) 

 

    # Start the execution of the workflow 

    execution = workflow.execute(inputs={'input_data': input_data}) 

    return execution.execution_arn 

 

# Example usage 

input_data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] 

execution_arn = create_workflow(input_data)

Step Functions does not support streaming protocols such
as Kafka or Kinesis. However, you can create a front-end
function that will read from a stream and invoke the
workflow. See Example 6-13, an example Lambda function.
Example 6-13. AWS Lambda function that reads events

from a stream and executes the workflow

import os, base64, boto3 

 

sf = boto3.client("stepfunctions", os.environ['REGION']) 

 

def lambda_handler(event, context): 

    # Execute the workflow on every stream message 

    for record in event['Records']: 

        payload = base64.b64decode(record['kinesis']['data']) 

        sf.start_execution( 

            stateMachineArn=os.environ['WORKFLOW_ARN'], 

            input=payload, 

        )

Apache Beam



Apache Beam is an open source stream processing
framework, focused on online structured data processing.
(Google Dataflow is a managed version of Apache Beam.)
Beam lets you build an asynchronous pipeline (DAG)
consisting of multiple steps. The steps can use built-in data,
IO, and computing or user-defined functions. Beam
pipelines can be executed locally using the Direct Runner
or deployed to distributed runners such as Apache Spark,
Flink, and Google Dataflow.
Beam’s advantages are that it is open source, scalable, and
contains powerful data operators (such as calculating
aggregations over a time window). However, it does not
have the flexibility and control over the underline resources
and packages per step as with AWS Step Functions.
Example 6-14 defines a three-step pipeline: reading JSON
data; preprocessing, prediction, and serializing the output;
and writing it to a Kafka stream.
Example 6-14. Apache Beam pipeline with data processing

and prediction

import apache_beam as beam 

from tensorflow.keras.models import load_model 

import json 

 

# Define a custom DoFn that parses JSON strings 

class ParseJsonFn(beam.DoFn): 

    def process(self, element): 

        yield json.loads(element) 

 

# Define a custom DoFn that serializes Python dictionaries to JSON strings 

class SerializeJsonFn(beam.DoFn): 

    def process(self, element): 

        yield json.dumps(element).encode('utf-8') 

 

# Define a custom DoFn to make model predictions 

class MakePredictions(beam.DoFn): 

    def __init__(self, model_path): 

        self.model_path = model_path 

        self.model = None 
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    def setup(self): 

        self.model = load_model(self.model_path) 

 

    def process(self, element): 

        # Make a prediction using the loaded model 

        prediction = self.model.predict(element) 

 

        # Return the prediction 

        return [prediction] 

 

# Define the pipeline options 

options = beam.options.pipeline_options.PipelineOptions() 

options.view_as(beam.options.pipeline_options.StandardOptions).runner = 

    'DirectRunner' 

 

# Create the pipeline 

with beam.Pipeline(options=options) as p: 

    # Read data from a JSON file or message 

    messages = p | "Read JSON" >> 

beam.io.ReadFromText("path/to/json_message.json") 

 

    # Parse JSON strings into Python dictionaries 

    parsed_messages = messages | "Parse JSON" >> beam.ParDo(ParseJsonFn()) 

 

    # Make model predictions using the custom DoFn 

    predictions = parsed_messages | 'MakePredictions' \ 

        >> beam.ParDo(MakePredictions(model_path='my_model.h5')) 

 

    # Print the predictions 

    predictions | 'PrintPredictions' >> beam.Map(print) 

 

    # Serialize the processed messages to JSON strings 

    serialized_messages = predictions | "Serialize JSON" \ 

        >> beam.ParDo(SerializeJsonFn()) 

 

    # Write the output to a Kafka topic 

    serialized_messages | "Write to Kafka" >> beam.io.WriteToKafka( 

        producer_config={'bootstrap.servers': 'kafka-host:9092'}, 

        topic='my-topic' 

    )

MLRun serving graphs

Many solutions that are used to build application pipelines
started as batch or stream processing for structured data



(Apache Beam, Flink, Storm, Airflow, Spark Streaming, and
so on). Therefore, it’s more complicated to expand them to
the model serving and monitoring applications or to handle
unstructured data like text and video. Other solutions like
AWS Step Functions have emerged as a generic way to
chain microservices, and they require more customization
and logic to handle data processing and model serving at
scale.
MLRun serving graph combine the benefits of AWS Step
Functions as a versatile serverless function-based pipeline
(using Nuclio real-time serverless functions) with the
parallel data processing capabilities of Apache Beam and as
an easy way to build and debug scalable pipelines. In
addition, it adds machine learning and deep learning
functionality and built-in components (steps).
With MLRun serving graphs, you build a DAG with sources,
intermediate steps (tasks), routers, queues, and data
targets:
Sources

Real-time (HTTP endpoint, Kafka, Kinesis, and so on) or
offline (for example, read data periodically from a
file/object/database) data or event inputs.

Steps

Run a function, class handler, or REST API call. MLRun has a
list of pre-built steps, including data manipulation, readers,
writers, and model serving. You can also write your own
steps using standard or custom Python functions/classes.

Routers

A special type of step with routing logic and multiple
children. The routing logic defines how the data/events are
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passed to and collected from the child steps. For example,
the basic router class passes the event to a specific child
based on the event content or metadata. The Parallel router
passes the event to all the children and merges the results.
The Ensemble router is a derivative of the Parallel router,
which can intelligently combine the results from multiple
child models into one aggregate result. Users can create their
own routers and use custom logic.

Queue

Represents a queue or stream that accepts data from one or
more source steps and publishes to one or more output
steps. Queues are best used to connect independent
functions/containers. Queues can run in memory or be
implemented using a stream, which allows them to span
processes/containers.

Targets

Online or offline storage (streams, files, databases, and so
on).

Like Apache Beam or AWS Step Functions, every step in
the DAG accepts an event object, manipulates it, and
passes event(s) downstream. In the case of MLRun, there is
a long list of built-in flow control, parallel data processing,
and ML/DL steps (see documentation), such as filtering,
mapping, flattening, micro-batching events, aggregating,
joining, encoding, imputing, model serving, model
ensembles, and so on. The final result can be written
asynchronously to some destination (file, DB, stream, and
others) or returned immediately to the caller
(synchronously) by marking the result step (responder).

https://oreil.ly/vMSlz


Once users define the serving graph (DAG), they can test
and debug it using the built-in simulator (mock server) and
deploy it to production over one or more serverless
functions with a single command.
Example 6-15 demonstrates a multistage pipeline with data
preprocessing, feature enrichment (using MLRun’s feature
store), an ensemble of three models (returning the average
result between the three models), and a post-processing
step. The function pipeline code contains two custom pre-
and post-processing steps (implemented in _func.py_) and
the built-in EnrichmentVotingEnsemble router class.
Example 6-15. MLRun serving graphs with pre- and post-

processing and a three leg ensemble

# Define a serverless serving graph function 

function = mlrun.code_to_function("app-pipe", kind="serving", 

                                  image="mlrun/mlrun", 

                                  requirements='requirements.txt') 

 

# Define the graph topology and start with the pre-process step 

graph = function.set_topology("flow") 

 

pre_process = graph.to(handler="pre_process", name="pre-process") 

 

# add an EnrichmentVotingEnsemble router with 3 child models (routes) 

# The input data will be enriched with feature store features 

# nil values will be imputed (with stats from the feature vector metadata) 

router = pre_process.to(mlrun.serving.routers.EnrichmentVotingEnsemble( 

    name='VotingEnsemble',feature_vector_uri="my-vector", impute_policy= 

        {"*": "$mean"} 

)) 

for i, model in enumerate(models): 

    router.add_route(f"model{i}", model_path=model.uri) 

 

# Add the post-process step (after the router step) 

router.to(handler="post_process", name="post-process") 

 

# plot the graph topology (using Graphviz) 

graph.plot(rankdir='LR')

https://oreil.ly/0VdhJ


Once the function is defined, the pipeline can be simulated
by creating and using the mock server. It can then be
deployed into production microservices using the
_deploy_function()_ method. See Example 6-16.
Example 6-16. Test and deploy the pipeline

# Create a mock server (simulator) and test the graph with the test data 

server = function.to_mock_server() 

resp = server.test("/v2/models/infer", body={"inputs": test_data}) 

 

# Deploy the graph as a real-time serverless function 

project.deploy_function(function) 

 

# Invoke the remote function using the test data 

resp = function.invoke("/v2/models/infer", body={"inputs": test_data})

MLRun simplifies the migration to production. The
observability and model monitoring functionalities are built
in. Therefore, there is no need to pile on additional code to
collect and report metrics (only to turn on the tracking
feature). In addition, users can also define and report
custom real-time metrics, which will be collected and
shown in the monitoring dashboards, or report errors,
which will be centrally logged.
MLRun serving graphs provide flexible configuration of
pipeline steps, breaking into the underlining auto-scaling
and real-time Nuclio serverless functions, while gaining the
best scalability with optimal costs. For example, as
Figure 6-8 illustrates, you can specify which steps run on
the same microservice (thus eliminating network and
serialization overhead) and which ones must spread across
microservices (for allowing the use of different open source
software/software packages or resources like GPUs per the
steps).

https://oreil.ly/dMvCY


Figure 6-8. MLRun serving graph mapped to multiple Nuclio serverless

functions

Model Routing and Ensembles

The basic model serving implementation loads a model into
memory and makes a prediction every time a request
arrives. However, when you serve multiple models, you
may need more advanced topologies to optimize costs, to
deliver better results by combining various models, or to
dynamically shift traffic from one model to another.
Deploying one microservice per function can be expensive,
especially if you don’t call the models frequently or if you
are using costly compute instances with GPUs or a large
memory. In such cases, you may prefer to implement a
single microservice function that hosts multiple models in
memory and routes the request to a specific model based
on the URL or on elements in the request body. (For
example, select a country-specific model based on the
country code in the request). Furthermore, you can
dynamically load and unload models into memory based on



their usage (in other words, implement a caching
mechanism) to reduce memory consumption.
While model caching solutions can reduce costs and
memory consumption, they can also add delay to the first
(noncached) request. You should use caching only when
you are not sensitive to the first request latency.
Different models can come with different software package
dependencies or resource requirements (for example, they
need a GPU). In such cases, you should deploy models
using separate container microservices, each with a
specific package and resource requirements, or group
models into containers based on those requirements and
route the traffic to the particular microservice that hosts
the relevant model.
Collocating data processing with models in the same
microservice can help increase performance by keeping the
different transformations and prediction activities in
memory versus writing and reading into storage between
steps. However, this does not allow fine-grain scaling
(scaling a specific task in the pipeline) and requires
aggregating the resource and package requirements.
Therefore, consider the tradeoff between the two
approaches based on your needs. MLRun serving graphs
provide a simple way to specify which steps are collocated
in the same container and separated into individual
containers.
A common mechanism to improve the accuracy of a model
is to combine different models that were trained using
different datasets, algorithms, or parameters. For example,
train one model with seasonal data (transactions done in
the same period of the year) and another with temporal
data (recent transactions) and combine the results from



both models to preserve the seasonal and temporal effects
on the scoring result. Another example is combining
machine learning and deep learning models and returning
the average result.
Model ensemble is a technique in machine learning where
multiple models are trained and their predictions combined
to make a final prediction and, in this way, improve the
overall model performance.
There are two common approaches to creating an
ensemble:
Bagging

Training multiple models independently on different subsets
of the training data and then combining their predictions
using some aggregation technique, such as averaging or
majority voting. Use bagging to reduce the variance of the
predictions.

Boosting

Training multiple models sequentially, where each model is
trained to correct the errors of the previous model. Use
boosting to reduce the bias of the predictions.

TIP

It is essential to monitor the performance of each submodel in an
ensemble and, in this way, understand which approach yields better
accuracy. In some cases, you may want to control the weights
between models in an ensemble based on the individual performance.
(For example, favor the temporal model due to the higher impact of
recent events.)

The Multi-Armed Bandit (MAB) algorithms (such as epsilon-
greedy, UCB, or Thompson sampling) can be used to



adaptively select the best-performing model or a
combination of models over time. MAB algorithms can
assign a score to each model that reflects its expected
performance and uncertainty. The system can then direct
more inference requests to the top-performing models
while continuing to explore other models and updating
their scores.

Model Optimization and ONNX

Some models, especially deep learning models, can
consume significant computation resources. Using
optimization techniques, you can reduce resource
consumption and improve performance. Some examples of
optimizations include the following:
Feature reduction

Reducing the size of the feature vector by removing features
that do not add significant value to the result.

Code optimization

Moving critical sections of the code to faster binary code
implementations (for example, in C, C++, Go, Rust).

Hardware acceleration

Using GPUs, TPUs, or FPGAs can significantly improve
inference performance by offloading computations from the
CPU to specialized hardware that is optimized for matrix
multiplication.

Quantization

Reducing the precision of the model’s weights and
activations, typically from 32-bit floating-point to 8-bit
integer precision.



Pruning

Removing some of the model’s weights or neurons that have
little impact on the model’s accuracy.

Model compression

Reducing the size of the model by compressing its weight,
through techniques like weight sharing, low-rank
factorization, or Huffman coding.

These frameworks can optimize models:
ONNX Runtime

A high-performance engine for executing ONNX models. It
provides hardware acceleration support for CPUs, GPUs, and
FPGAs and supports model compression techniques, such as
quantization and pruning.

Intel OpenVINO

A toolkit for optimizing and deploying machine learning
models on Intel hardware, including CPUs, GPUs, and FPGAs.
It supports model compression techniques, such as
quantization and pruning, and provides optimized libraries
for deep learning operations.

NVIDIA TensorRT

A high-performance inference engine for NVIDIA GPUs that
supports model compression techniques, such as pruning
and quantization. It provides hardware acceleration support
for NVIDIA GPUs and includes optimized libraries for deep
learning operations.



ONNX is an open format built to represent machine
learning models. ONNX defines a common set of operators
—the building blocks of machine learning and deep
learning models—and a standard file format to enable AI
developers to use models with various frameworks, tools,
runtimes, and compilers.
The ONNX runtimes run in machine native (binary) code
and support model compression techniques and hardware-
specific optimizations, which deliver significantly faster
inference performance.

Data and Model Monitoring

Monitoring solutions can be broken into three main layers:
Resource monitoring

Monitoring the resources (CPUs, GPUs, memory, storage)
used by the the ML application, as well as their health and
the service’s availability

Model and data monitoring

Monitoring the performance of the model and the data used
by the model (accuracy, drift, bias, data quality, and so on)

Application monitoring

Monitoring the overall application performance
(throughput, latency, errors, and so on) across all pipeline
steps and measuring the business KPIs defined for the
application

You can use the same solution to monitor all three layers or
different services per layer. In any case, it is essential to
correlate the information across layers (using tags and
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labels) since resource or model performance problems will
usually impact the higher layers of the application.
Cluster monitoring solutions can monitor resources. For
example, in Kubernetes, the typical answer is to use
Prometheus and Grafana to track the microservice
resources. But first, you need to determine which model or
application is served by which container (and this can
change dynamically). Therefore, when deploying the
models as Kubernetes resources (containers, pods, and so
on), you should label them with the model and application
information.
If you use public clouds, you can use managed cloud
services for resource monitoring, such as Amazon
CloudWatch, Azure Monitor, Google Cloud Monitoring,
Datadog, and New Relic.
Model, data, and application performance metrics can also
be reported in the traditional resource and application
monitoring solutions. However, the real challenge is to
collect this information and reference metadata, and to
keep it cost-effective and scalable, given the enormous
volumes of data collected.
Model and data monitoring solutions have unique
challenges; they compare the data and model performance
in production with reference data collected at the model
development and training phases to calculate accuracy and
drift. In addition, data is collected for every model request
and must be stored for real-time dashboards and offline
access, while traditional resource and service monitoring
stores only use sampled metrics. Furthermore, there are no
one-to-one relations between the microservice and the
model, and the same container can host multiple models,
ensembles, and so on. Finally, model and data monitoring
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solutions must also work for batch workloads, still a
dominant place where models are used.
Most model monitoring solutions are limited to structured
(tabular) data and do not support unstructured data (text,
images, videos, and so on). However, you can address
unstructured data by creating a transformation from
unstructured data to tabular data and monitoring the
results. For example, you can convert an image to numeric
RGB values or detected object metrics.
Application monitoring spans the different stages of the ML
application (data enrichment, preparation, model
prediction, actions, and so on). It looks into application-
level metrics, such as overall requests latency and
throughput, application errors, application-level metrics,
business metrics, KPIs, and others.
Multiple versions of the same application pipeline may run
in parallel (for example, in the case of A/B testing).
Therefore, you want to compare the application KPIs across
versions, not just the model performance, since a better
model does not necessarily reflect a better KPI. For
example, if the model does not respond at the right time or
if the actions following the prediction do not generate the
right impact.
Considering application-level monitoring ahead of the
design and implementation is best since it requires custom
instrumentation in multiple application junctions and ways
to collect and use reference data for KPI measurements.
Monitoring results are shown in dashboards, but they can
bring more significant value when they trigger alerts and
corrective actions. For example, model drift indication can
start a retraining flow, change the weights in a model
ensemble, or send critical notifications to administrators to



correct the problem. Therefore, the solution should provide
a mechanism to easily define conditions, thresholds, and
actions.
Two types of solutions for model monitoring are described
in the following sections:
Integrated

An integral part of a data science or MLOps platform. It
usually has fewer features but does not require glue logic
and separated management.

Standalone

Dedicated monitoring solutions are usually feature-rich but
require manual integrations and separate management.

Integrated Model Monitoring Solutions

Data science or MLOps platforms support the tasks
required to develop and deploy models. When you deploy
the model, the platform often provides basic model
monitoring, which can be operated with minimal
configuration. Integrated monitoring solutions show the
model endpoints with essential performance and health
information. Most platforms support drift detection and a
few support additional monitoring classes.

Amazon SageMaker

Amazon SageMaker supports data and model drift
detection (see the architecture in Figure 6-9). The model
endpoints capture incoming requests and model results
into S3 objects and compare them with baseline and
ground truth datasets to calculate the drift and accuracy
metrics.
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In SageMaker, you manually generate and upload the
reference datasets into S3 and then define a scheduled
model monitoring job (see Amazon SageMaker Model
Monitor).
You can view the model metrics and drift indications in the
SageMaker UI (see Figure 6-10).

Figure 6-9. SageMaker model monitoring architecture

https://oreil.ly/8LDeR


Figure 6-10. SageMaker model monitoring UI

Google Vertex AI

Google model monitoring supports tracking model requests
and results into a BigQuery table and can issue email alerts
when the specified threshold is crossed. Figure 6-11
demonstrates how the user enables the monitoring, sets the
monitoring policy, and uploads the reference data (schema
and statistics).

https://oreil.ly/5V7rO


Figure 6-11. Configuring Google Vertex AI model monitoring

The essential model endpoint metrics and drift information
are visualized in the UI (see Figures 6-12 and 6-13), and
you can access the complete data through BigQuery.



Figure 6-12. View Google Vertex AI model endpoints

Figure 6-13. View Google Vertex AI model endpoint feature skew

MLRun



MLRun open source MLOps includes an integrated
monitoring service for batch and real-time workloads. As
shown in Figure 6-14, MLRun model serving endpoints
write the performance, inputs, outputs, and user-defined
metrics into a stream. Then, a real-time serverless Nuclio
function reads and processes the data and writes the
results into different types of storage (key/value, time
series database, and Parquet files). Scheduled MLRun jobs
run periodically, read the data, calculate various metrics
(drift, accuracy, and so on), and trigger appropriate alerts.

Figure 6-14. MLRun model monitoring architecture

You can view the model endpoint information in the MLRun
UI (see Figure 6-15), or in Grafana (see Figure 6-16); the
production datasets are stored in MLRun’s feature store
and can be used for post-production analytics (for example,
analyzing data quality, bias, and explainability) or used for
retraining a model.
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Figure 6-15. MLRun model endpoint features histogram

Figure 6-16. MLRun model endpoint in Grafana

MLRun eliminates many engineering efforts by
automatically generating reference and production
datasets, managing the data assets and lifecycle,
scheduling and scaling monitoring tasks, and more.
When you train the models in MLRun, the reference data
(schema, statistics, and so on) is auto-generated and saved
with the model. You can also update the reference data
manually through the API. To operate the monitoring
functionality, you should apply the _set_tracking()_ option
in the serving function.
MLRun supports monitoring plug-ins and has extensibility
to support advanced monitoring applications for structured



and unstructured data.

Standalone Model Monitoring Solutions

Several solutions are dedicated to model monitoring. They
usually have more advanced features and user interfaces
than the integrated options, but they require manual
integration with data assets, serving, and training
frameworks. In addition, they require working with
multiple management consoles.
Examples of commercial offerings include Aporia, Arize,
WhyLabs, and Mona.
The commercial frameworks usually support multiple
monitoring applications (drift, accuracy, data quality, and
so on), friendly and rich user interfaces, advanced policies,
and multiple alerting and triggering options (email, Slack,
webhooks, and more).
You can see an example Aporia UI wizard for creating a
new monitoring task in Figure 6-17.

Figure 6-17. Aporia new monitor wizard
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The challenge is uploading the prediction and reference
data to storage and managing the data lifecycle, rather
than getting it out of the box in integrated platforms such
as MLRun. See the code example in Example 6-17 for
uploading batch prediction data. (Real-time prediction data
requires an additional step of conversion from a stream to
Parquet files).
Example 6-17. Write prediction inputs and outputs into a

Parquet file (source: Aporia)

import fastparquet 

 

# Preprocess & predict 

X = preprocess(...) 

y = model.predict(X_pred) 

 

# Concatenate features, predictions and any other metadata 

df = ... 

 

# Store predictions 

fastparquet.write( 

    filename=f"s3://my-models/{MODEL_ID}/{MODEL_VERSION}/serving.parquet", 

    data=df, 

    append=True, 

)

An example of an Aporia monitoring dashboard is shown in
Figure 6-18.



Figure 6-18. Aporia model monitoring dashboard

A popular open source model monitoring framework is
Evidently, which monitors drift and data quality. Evidently
compares the reference dataset with the prediction dataset
and generates beautiful static HTML reports. In addition, it
can write the resulting metrics into Prometheus and show
them in pre-designed Grafana dashboards.
Example 6-18 demonstrates how you generate a report that
compares the reference data with the prediction inputs and
outputs data (current_data). In Figure 6-19, you can see
report examples.
Example 6-18. Generating Evidently report

report = Report(metrics=[ 

    DataDriftPreset(), 

]) 

 

report.run(reference_data=reference, current_data=current) 

report.save_html("file.html")
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Figure 6-19. Evidently reports

As you can see, the responsibility for generating the
reference and production datasets and generating the
report is on the user, who needs to add code for
monitoring, data generation, and lifecycle management.
Therefore, Evidently is an excellent interactive
development and comparison solution, and you can extend
it manually to handle batch prediction workloads. However,
it is unsuitable for continuous batch or real-time model
serving and lacks an interactive UI portal, central
management, alerts, security, and more.

Model Retraining

COVID-19 abruptly changed human behavior across the
globe. But the pandemic not only significantly impacted
human lives, it also disrupted ML models. Data engineers
woke up to find that their ML models, which were trained
on pre-pandemic data sets, had suddenly drifted and were
not delivering reliable results.



The models’ performance degraded because the pre-
pandemic data was not reflecting current behaviors and
therefore it was no longer relevant or accurate. These
models had to be retrained to ensure their validation and
efficacy for the pandemic era.
While COVID-19 is an extreme example, data keeps
changing because people change and the world changes.
This means models trained on outdated data lose relevance.
Model retraining, also known as continuous training or
continual training, is the act of training models again and
again on updated data and then redeploying them to
production.
By retraining, data engineers can ensure the models are
up-to-date, valid, and trustworthy. This ensures the
predictions and outputs of models are always accurate for
the business use cases they were designed to answer. If
models aren’t retrained, they will become stale.
Accurate models are essential for business success. If an
organization uses a model that provides inaccurate outputs,
the result could be loss of customers and profit. For
example, if a model is supposed to detect fraud but doesn’t
do so accurately, this will mean either that fraudsters get
away with fraud, costing the company its customers and
perhaps a loss of millions in insurance claims, or that there
will be too many false positives, resulting in frustrated end-
users (who won’t be able to make online purchases) and
adverse financial impact to the company’s customers
(again, losing customers).
Automating the process of model retraining makes it
reliable and optimized. Automation also reduces the chance
of manual errors or data engineers forgetting to retrain
models. With automation, data engineers and data

https://oreil.ly/Iio1T


scientists can ensure their measurements are defensible
and quantitative and that explainability tests are set up.

TIP

Automated retraining should take place as part of an MLOps
pipeline. It can be integrated as part of the CI/CD pipeline and may
be triggered automatically by the model monitoring service upon
drift detection.

When to Retrain Your Models

There’s no right or wrong answer when deciding when to
retrain (though not retraining is definitely the wrong
answer). The answer to “when to retrain?” depends on the
business use case. The ultimate goal, however, is to avoid
the two types of drift:
Data drift

When the statistical distribution of production data is
different from the baseline data used to train or build the
model. This happens when human behavior changes,
training data was inaccurate, or there were data quality
issues.

Concept drift

When the statistical properties of the target variable change
over time. In other words, the concept, or the relations
between the datasets, have drifted.

There are four main approaches for retraining:
Interval-based
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According to a certain schedule or repeating interval; for
example, retraining every Sunday night or every end of the
month. This ensures the models will always stay up-to-date
since they are constantly retrained. However, this method
can be costly since resources are used even when retraining
is unnecessary.

Performance-based

Retraining takes place when a predetermined threshold or
baseline is crossed, which indicates model degradation and
drift. This ensures the model can always answer the
business use case. However, if the threshold is inaccurately
determined or the data does not come in on time, the model
could turn stale before the organization is aware and can
retrain it.

Based on data changes

This type of retraining takes place when there are new data
sets or when code changes are made. Such retraining
ensures adaptivity to engineering changes but might miss
drift that degrades the model performance.

Manually on-demand

This nonautomated retraining method provides complete
control for data scientists but is prone to errors and could
mean retraining does not occur when needed.

Strategies for Data Retraining

Model retraining takes place by lifting the training data
into the retraining pipeline. This data includes features,
labels, model parameters, and pipeline parameters.



The question of how much data should be used for
retraining depends on the organization’s requirements and
restrictions, which determine the strategy. Data amounts
required for retraining can be determined through the
following approaches:
Fixed window

A practical yet simplistic approach

Dynamic window

Optimal for large datasets that are constantly updated but
also compute intensive

Representative subsample selection

Accurate since it’s similar to production data but time
consuming and uses a lot of resources

Model retraining can be an online or offline event, with
offline being the most popular approach. Offline retraining,
also known as batch retraining, usually uses all available
data or a considerable amount of existing data. It’s easy to
do but requires more thought about the retraining strategy.

TIP

Online retraining is recommended for real-time streaming use cases.
The data used for online retraining is new data, not samples already
seen by the models. This makes online retraining more accurate and
can help avoid drift, though it is also more costly.

To train models, you need labels (the target values), and
labels usually arrive in a delay after the features. For
example, a churn prediction application may have all the



input features immediately. However, the target label
(indicating if there was a churn) can come one month later.
Therefore, the training set data window should only cover
transactions with labels. In addition, since the model reacts
to an expected churn, it may influence the dataset and
require adaptations to the dataset, which will make it more
balanced.
When the data is complex or unstructured, it is challenging
to calculate the labels. In such cases, organizations use
manual labeling. They extract a sample of the data,
manually label it, compare it with the predicted results, and
use the labeled dataset for model retraining and tuning.
Despite the importance of model retraining, it’s important
to remember that it also comes at a cost. Model retraining
requires resources for data storage, computing, adjusting
your architecture for retraining, data professionals’ time,
and more. Therefore, some organizations are hesitant
about running it continuously. We recommend you adjust
your retraining schedule to your business requirements to
ensure cost-effectiveness while maintaining model
performance.

Model Retraining in the MLOps Pipeline

Retraining is achieved by triggering the model
development pipeline (data preparation, training,
validation, and so on). The trigger can be initiated based on
a scheduled event or after a drift indication (triggered by
the model monitoring component). An important step is
validating the model in a staging environment before
deploying it to production. If the results are not as
expected, then the models and pipelines need to be
retrained.



After retraining, we recommend leaving the old model
running and deployed to production for a specific period of
time or until the model has served a certain number of
requests. By running these A/B tests you can identify which
model performs better, by comparing its predictions with
those of the others. Another approach is to use an
ensemble with the old and new models and change the
weight or remove the old model over time.
Finally, model retraining also can be used for training new
models. This is called transfer learning, in which existing
models are reused to retrain new models. This is commonly
used in deep learning since it saves resources by reusing
models instead of rebuilding them.

Deployment Strategies

In production, models and applications must always be
ready to serve requests and they should not suffer from
downtime due to version upgrades. In addition, a more
advanced practice is gradually moving requests to the new
version, while validating that performance and quality
levels are met. Then, if the latest version fails or
underperforms, you can roll back to the previous version.
To guarantee no service disruption, you can use a rolling
upgrade deployment strategy. This strategy replaces the
application version used by the service, one instance at a
time. Rolling upgrades are supported out of the box in
cloud-native platforms and Kubernetes. However, when you
want to evaluate the candidate versions against the current
version, you need two or more versions to coexist and serve
requests until you can determine that the new version
meets your quality and performance goals. Or you can use



the other versions to serve as a baseline to compare
performance.
There are four standard model deployment and upgrade
strategies (see Figure 6-20):
A/B Testing

The new model is deployed alongside the old model, and
traffic is divided between the two. The output of both models
is then monitored to determine which one performs best,
and the best-performing model is promoted. This method is
a good fit for most use cases. In some cases, you may deploy
more than two models, for example: A/B/C testing, A/B/C/D
testing, and so on.

Blue/Green

Setting up two identical environments, dubbed Blue and
Green, with one being the live production environment and
the other a staging environment. The new model is deployed
to the staging environment. Once it operates as expected,
staging becomes production, the old version is removed, and
more recent models are deployed into staging. This method
is straightforward and relatively simple, although it incurs
high operational costs since you have to operate two
identical environments. This method is recommended for
use cases that cannot afford any downtime, like fraud
detection or e-commerce.

Canary

Incremental rollout of the new model to a percentage of
users to validate efficacy, performance, and functionality.
Once validated, the model is gradually rolled out to more
users and finally to everyone. This strategy enables
controlled rollout with no downtime. However, it is slow,



and testing occurs in production. Therefore, it is
recommended for noncritical applications that obtain value
from gradual testing in production, like social media.

Champion/Challenger (or Shadow)

Deploying the champion model to production alongside one
or more challenger models. Traffic is routed to all models
and the output of the champion is used as the result, while
the challenger’s output is only monitored. This strategy
enables the highest form of model validation, yet it is also
the most expensive.

Figure 6-20. Deployment and upgrade strategies

When traffic is split across multiple models, you must
ensure affinity (the same user is always routed to the same
model and has the same experience for every request). For



example, you can use a hash of the user ID to determine
where to route the request.
Offline and batch application pipelines do not need to
maintain running services or use rolling updates. They can
select which version to use on every run. However, you may
run two or more batch pipelines in parallel (in A/B or
Champion/Challenger deployments), with each pipeline
storing its results in different tables/files.
It’s important to remember that deployment is not a one-
time process. Instead, deployment is a recurring process
that occurs every time we retrain our models and want to
ensure the freshest and highest-performing models are
being used. Therefore, selecting the right deployment
strategy is important since you will use it repeatedly in
your MLOps pipeline. As always, the strategy you choose
depends on multiple factors. The primary considerations
are:

Your business use case

Retraining and deployment frequency

Your model size

Whether you stream data in real time or batches

How your model is impacted by drift

Your desired service uptime and quality

Measuring the Business Impact

Measuring an application’s business impact is essential for
determining the model’s performance. However, measuring
it can be a complex task since this involves evaluating the
effects of the model on various aspects of the business,



such as revenue, customer satisfaction, and operational
efficiency.
Here are some ways to measure the impact of ML models:
Define success metrics

Define measurable and trackable metrics that are aligned
with business objectives; for example: model accuracy,
precision and recall, the F1 score, Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), lift, conversion
rate, and customer satisfaction.

Establish a baseline

Create a benchmark for measuring the model’s impact on
the business. This should be determined before deploying
the model to production.

Conduct A/B testing

Compare the business metrics (costs, revenue, number of
active users, customer satisfaction, and so on) before and
after the deployment of the ML model. This will help
determine the model’s incremental impact.

Conduct a cost-benefit analysis

Determine the return on investment (ROI) of the ML model.
This will help assess the financial impact of the model on the
business; for example: how many new users registered,
what is the incremental revenue from the new service, or
how many calls were saved by using a chatbot.

Gather feedback

Gather feedback from stakeholders to assess the impact of
the ML model on their experience. This will help determine
the nonfinancial impact of the model on the business. You



can use surveys, user testing, reviews and ratings, support
ticket analysis, or net promoter score (NPS), among other
methods.

Overall, measuring the business impact of ML models
requires a comprehensive approach that considers both
financial and nonfinancial metrics, as well as stakeholder
feedback. By doing so, businesses can ensure that their ML
models deliver tangible value and drive meaningful
outcomes.

Conclusion

In this chapter we finally delved into the real thing:
building and deploying the application that uses the data
and the model that drives decisions and action. We
described the steps that will assist in delivering the ML
application as a whole. By looking at this bigger picture, we
can ensure there are no deficiencies in functionality,
operational failures, avoidable risks, and prolonged delays.
This chapter reviewed model registries and model serving,
while showing different solutions and how to use them.
Then, we discussed advanced serving and application
pipelines, which address requirements like API
integrations, data enrichment, validations, processing,
storage, routing, cascading, and merging results from
multiple models. Next, we explained about various
monitoring solutions and how they operate, and then
retraining and deployment strategies and conditions.
Finally, we discussed how to measure the business impact
of deployment, which is the most essential step for
determining model performance.



Critical Thinking Discussion

Questions

What is the importance of model registries?

Choose a model serving solution and describe its
capabilities. Could it be a good fit for your
organization?

In which cases will you need to enhance or upgrade
your application pipeline? Which considerations should
you take into account?

What are the different retraining strategies? When
would you choose each one?

Your manager does not see the need for measuring the
business value of your models. Convince them
otherwise.

Exercises

Write the code for registering one of your models in the
registry of your choice.

Choose an open source serving solution and define a
serverless serving graph function.

Choose an open source model monitoring solution and
configure it for your models (no need to actually
connect to production).

Build an integration for retraining as part of a CI/CD
pipeline.

Define four success metrics for one of your ML models.



Chapter 7. Building a

Production Grade MLOps

Project from A to Z

This chapter provides an example of an ML project with all
its components and the MLOps attributes required for
production deployment. It follows the practices presented
in Chapter 3. The example applications predict and prevent
credit transaction fraud by calculating user and transaction
features and feeding them into a classifier model, which
will determine if the transaction is a legitimate transaction.
All the code examples presented in this chapter are stored
in Git.
The project implementation consists of the following steps:

1. Exploring and analyzing the data (EDA)

2. Building the data ingestion and preparation pipeline

3. Building the model training and validation pipeline

4. Developing the application serving pipeline (intercept
requests, process data, inference, and so on)

5. Monitoring the data and model (drift and more)

6. Addressing continuous operations and CI/CD

The data preparation step will be implemented in two ways:
using standard Python packages and using a feature store.
Fraud prevention is a challenge as it requires processing
raw transactions and events in real time and being able to

https://oreil.ly/9OB5D
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respond quickly and block transactions before they occur.
Consider a case where you would like to evaluate the
average transaction amount. When training the model,
taking a DataFrame and calculating the average is
common. However, in real-time/online scenarios, the
average calculation is accumulative (incremental).
Subsequently, you must build two data processing
pipelines, one for training and another for real-time
serving. Alternatively, you can use a feature store (as will
be demonstrated) that will build both batch and real-time
data pipelines and deploy them automatically over a
scalable and resilient infrastructure.
The example is based on public credit card transaction data
with three datasets:
Transactions

Monetary activity between two parties to transfer funds

Events

Activity performed by a party, such as a login or password
change

Labels

Indications of fraudulent transactions (derived from the
historical transactions)

Figure 7-1 illustrates the overall project structure with data
ingestion, automated model training and validation,
application and model serving, model monitoring, and a
feature store as the data hub in the middle.



Figure 7-1. Fraud detection project architecture

Exploratory Data Analysis

Before you run any data processing or modeling, you must
start by getting to know the data you are working with. The
1-exploratory-data-analysis.ipynb notebook provides basic
explanatory data analysis (EDA) on the fraud example
datasets.
The first step (in Example 7-1) is loading sample datasets
and understanding the data shape, types, statistical
distribution, categories, missing values, and so on.
Example 7-1. Exploring the transactions dataset

# Fetch the transactions and event datasets from mlrun data samples 

data_path = mlrun.get_sample_path("data/fraud-demo-mlrun-fs-docs/") 

transactions_data = pd.read_csv(data_path + "data.csv", parse_dates=

["timestamp"]) 

https://oreil.ly/Mz-fq


user_events_data = pd.read_csv( 

    data_path + "events.csv", index_col=0, quotechar="'", parse_dates=

["timestamp"] 

) 

 

# Preview 

transactions_data.head(3)

# checking the data types per column 

transactions_data.dtypes
step                    int64 

age                    object 

gender                 object 

zipcodeOri              int64 

zipMerchant             int64 

category               object 

amount                float64 

fraud                   int64 

timestamp      datetime64[ns] 

source                 object 

target                 object 

device                 object 

dtype: object
# Examining the `age` column to understand why it is not an integer 

transactions_data['age'].value_counts()
2    149840 

3    117110 

4     86871 

5     50152 

1     46509 

6     21377 

0      1886 

U       928 

Name: age, dtype: int64
# Dropping the columns with Unknown (U) age and converting to int 

transactions_data = transactions_data[transactions_data.age != "U"] 

transactions_data['age'] = transactions_data['age'].astype(int) 

 

# Describe the column statistics 

transactions_data.describe()



# Check how many transactions are fraudulent (~1%) 

transactions_data['fraud'].value_counts()
0    467849 

1      5896 

Name: fraud, dtype: int64

After you understand the basic data structure and
distributions, it’s time for a few additional checks, such as
verifying there is no gender bias in the data (see
Example 7-2).
Example 7-2. Verifying there is no gender bias

transactions_data['gender'].value_counts()
F    258905 

M    214414 

U       426 

Name: gender, dtype: int64

Inspecting the results visually:
# Create the pie chart 

plt.pie( 

    transactions_data["gender"].value_counts(), 

    labels=["Male", "Female", "Unknown"], 

    autopct="%1.1f%%", 

    startangle=90, 

) 

 

# Add a title 

plt.title('Distribution of gender (bias)') 

 

# Display the chart 

plt.show()



According to the chart shown in Example 7-2, there is no
bias in the data since the percentage of men and women is
nearly equal.
In Example 7-3, we evaluate the different types of
transactions. Notice that the majority of the transactions
fall under the transportation category.
Example 7-3. Plot the transaction categories

# Count the occurrences of each category 

category_counts = transactions_data['category'].value_counts() 

 

# Plot the results as a bar plot 

category_counts.plot(kind='bar', ) 

 

# Set labels and title 

plt.xlabel('Category') 

plt.ylabel('Count') 

plt.title('Distribution of Categories') 

plt.xticks(rotation=80) 

 

# Show the plot 

plt.show()



It’s time to evaluate fraud distribution across hours and
days to understand whether the time factor correlates with
fraud. Example 7-4 demonstrates how to group the
transactions by hour or day and plot the percentage of
fraud per group.
Example 7-4. Plot the fraud distribution across hours and

days

transactions_data["timestamp"] = pd.to_datetime( 

        transactions_data["timestamp"], format="%Y-%m-%d %H:%M:%S UTC" 

    ) 

 

transactions_data["hour"] = transactions_data.timestamp.dt.hour 

transactions_data["day"] = transactions_data.timestamp.dt.day 

transactions_data["month"] = transactions_data.timestamp.dt.month 

transactions_data["weekday"] = transactions_data.timestamp.dt.weekday 

transactions_data["year"] = transactions_data.timestamp.dt.year 

 

grouped = transactions_data.groupby('hour')['fraud'].value_counts() \ 

    .unstack().fillna(0) 

# Plot the results 

grouped.plot(kind='bar', stacked=True) 
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# Set labels and title 

plt.xlabel('Hour') 

plt.ylabel('Count') 

plt.title('Count of fraud/not fraud grouped by hour')

grouped = transactions_data.groupby('weekday')['fraud'].value_counts() \ 

    .unstack().fillna(0) 

# Plot the results 

grouped.plot(kind='bar', stacked=True) 

 

# Set labels and title 

plt.xlabel('Day') 

plt.ylabel('Count') 

plt.title('Count of fraud/not fraud for each day of the week')



The next example (Example 7-5) demonstrates exploring
the events dataset and the distribution of the event
categories.
Example 7-5. Exploring the events dataset

# View a sample of the events dataset 

user_events_data.head()

# Count the occurrences of each event category 

category_counts = user_events_data['event'].value_counts() 

 

# Plot the results as a bar plot 

category_counts.plot(kind='bar', ) 

 

# Set labels and title 

plt.xlabel('Event') 

plt.ylabel('Count') 

plt.title('Distribution of Event Categories') 



plt.xticks(rotation=80) 

 

# Show the plot 

plt.show()

Now that you have explored each dataset independently,
you can join the two datasets and build a few additional
derived features that may help predict fraud.
Since both the credit transactions and user events datasets
are transactional, you cannot simply join them. Each user
may have multiple transactions or activities at different
times. Therefore, you need to use a special merge function
that also takes into account the event time (time traveling).
This function is called merge_asof().
Example 7-6 demonstrates how to merge two transactional
datasets using merge_asof(). (Note that before the merge,
you must verify that both datasets are sorted by time.)
Example 7-6. Merging the two datasets



# Sorting the two datasets by time 

transactions_data = transactions_data.sort_values(by='timestamp', axis=0) 

user_events_data = user_events_data.sort_values(by='timestamp', axis=0) 

 

# Merge asof (with time traveling) 

all_data  = pd.merge_asof( 

    transactions_data, 

    user_events_data, 

    on='timestamp', 

    by='source', 

) 

 

# Plot a sample of the interesting columns 

all_data.drop(columns=["device", "source", "target"]).sample(5)

Example 7-7 demonstrates how to add the categorical
features and plot the correlation map.
Example 7-7. Plotting the correlation map

# Extend categorical features (one hot encoding) 

all_data = pd.get_dummies(all_data, columns=['category', 'gender', 'event']) 

 

# Draw a correlation plot 

corr = all_data.corr() 

plt.figure(figsize=(12, 10)) 

 

sns.heatmap( 

    corr[(corr >= 0.1) | (corr <= -0.1)], 

    cmap="viridis", 

    vmax=1.0, 

    vmin=-1.0, 

    linewidths=0.1, 

    annot=True, 

    annot_kws={"size": 8}, 

    square=True, 

)



The code in the notebook represents a sample of the kind of
analysis possible with the data. There are a variety of tools
with great visualization capabilities that can offload or
automate the EDA process. You can also harness the power
of MLOps solutions to create or use pre-baked functions
and services that analyze your data.
The example notebook demonstrates using pre-baked
functions from the MLRun public functions hub to perform
EDA and modeling. Some examples:

The describe function takes a DataFrame/dataset, runs
different analysis types, and generates a set of plots
and reports.

The auto-trainer function takes a dataset, runs training,
and generates models along with reports and charts.

https://www.mlrun.org/


The feature-selection function can automatically select
the most important features based on their impact on
the model.

The advantage of using MLRun functions is that they are
microservices that come with preinstalled packages, so
there’s no need to start figuring out dependencies. These
functions also scale out over containers, have built-in
monitoring and tracking, can be placed as a step in the ML
pipeline, and are reusable.
Example 7-8 demonstrates how the MLRun hub function
(describe) can be used to process and visualize features.
Example 7-8. Using MLRun to accelerate EDA

all_data.to_csv("./data_set_describe.csv", index=False) 

project = mlrun.get_or_create_project( 

    name="fraud-demo", user_project=True, context="./" 

) 

 

# import and run the function 

describe = mlrun.import_function("hub://describe") 

describe_run = describe.run( 

    params={ 

        "label_column": "fraud", 

    }, 

    inputs={"table": "./data_set_describe.csv"}, 

    local=True, 

) 

# view generated artifact names (charts) 

describe_run.outputs.keys() 

 

[['describe-csv', 'hist', 'histograms', 'scatter-2d', 'violin', 'imbalance', 

  'imbalance-weights-vec', 'correlation-matrix-csv', 'correlation', 'dataset']] 

 

# View the generated violin plot: 

run.artifact("violin").show()



Interactive Data Preparation

Before training the model, you should clean the data and
create meaningful features that will be valid predictors for
the target variable (was there a fraud?). The notebook 2-

interactive-data-prep.ipynb demonstrates how to
interactively build features for training the model. While
this approach is simple, it is unsuitable for production
environments with continuous data ingestion, large scale,
or real time. In the next section, you will implement the
same logic for production using a feature store.
The training set is built from three datasets: credit
transactions, user events, and labels indicating if there was
fraud. In this example, we prepare each dataset separately
and combine them later for training.

Preparing the Credit Transaction Dataset

https://oreil.ly/qiY2D


The following transformations create more meaningful
features, which can have a more significant impact on the
prediction than the raw data:

Extracting the date components (hour, day of week)
from the timestamp

One-hot encoding for the age groups, transaction
category, and the gender

Aggregating the amount (avg., sum, count, max over
2/12/24 hour time windows)

Aggregating the transactions per category (over 14-day
time windows)

NOTE

In transactional datasets (with timestamps), aggregations are
significant predictors (more than the time value) since outcomes are
relative to what happened in the preceding time window (for
example, the number of withdrawals in the hour before the fraud).

The notebook starts with loading the datasets from files,
doing basic cleaning, and adjusting the dates to recent
dates.
The code in Example 7-9 creates the time features (day,
hour) and encodes the age, gender, and transaction
category features.
Example 7-9. Building categorical features

transactions_data.head(3)



processed_transactions = transactions_data 

 

# Generate day and hour columns from the timestamp 

processed_transactions['day_of_week'] = 

    processed_transactions['timestamp'].dt.weekday 

processed_transactions['hour'] = processed_transactions['timestamp'].dt.hour 

 

# Map age groups 

processed_transactions["age_mapped"] = processed_transactions["age"].map( 

    lambda x: {'U': '0'}.get(x, x) 

) 

 

# encode categories and gender groups (using one hot encoding) 

processed_transactions = pd.get_dummies( 

    processed_transactions, columns=["category", "gender"] 

)

The next part is aggregating the transaction amounts by
time windows and transaction categories (see Example 7-
10), providing a long list of derived features that can
potentially help you make better predictions.
Example 7-10. Building categorical features

transactions_for_agg = processed_transactions.set_index( 

    ["timestamp"], 

) 

 

# Group/Aggregate amount stats (mean, max, ..) by time windows 

windows = ["2H", "12H", "24H"] 

operation = ["mean", "sum", "count", "max"] 

for window in windows: 

    for op in operation: 

        processed_transactions[f"amount_{op}_{window}"] = ( 

            transactions_for_agg.groupby(["source", pd.Grouper(freq=window)])

["amount"] 

            .transform(op) 

            .values 

        ) 

# Group/Aggregate amount stats (mean, max, ..) by transaction category 

main_categories = [ 

    "es_transportation", 

    "es_health", 

    "es_otherservices", 

    "es_food", 

    "es_hotelservices", 

    "es_barsandrestaurants", 



    "es_tech", 

    "es_sportsandtoys", 

    "es_wellnessandbeauty", 

    "es_hyper", 

    "es_fashion", 

    "es_home", 

    "es_contents", 

    "es_travel", 

    "es_leisure", 

] 

for category in main_categories: 

    processed_transactions[f"{category}_sum_14D"] = ( 

        transactions_for_agg.groupby(["source", pd.Grouper(freq="14D")])[ 

            f"category_{category}" 

        ] 

        .transform("sum") 

        .values 

    ) 

 

processed_transactions.set_index(["source"], inplace=True) 

processed_transactions.head() 

 

# see the list of derived features (see the notebook for the full list) 

processed_transactions.dtypes
step                                       int64 

age                                       object 

zipcodeOri                                 int64 

zipMerchant                                int64 

amount                                   float64 

fraud                                      int64 

timestamp                         datetime64[ns] 

target                                    object 

device                                    object 

day_of_week                                int64 

hour                                       int64 

age_mapped                                object 

category_es_barsandrestaurants             uint8 

category_es_contents                       uint8 

category_es_fashion                        uint8 

... 

amount_mean_24H                          float64 

amount_sum_24H                           float64 

amount_count_24H                           int64 

amount_max_24H                           float64 

... 

es_hyper_sum_14D                           uint8 

es_fashion_sum_14D                         uint8 

es_home_sum_14D                            uint8 

es_contents_sum_14D                        uint8 



es_travel_sum_14D                          uint8 

es_leisure_sum_14D                         uint8 

dtype: object

Preparing the User Events (Activities) Dataset

The events dataset contains user activities such as login,
change of details, or password, which can hint at a fraud
attempt. Example 7-11 shows how to load the events
dataset and create categorical features per event type.
Example 7-11. Processing the events dataset

# Fetch the user_events dataset from the server 

user_events_data = pd.read_csv( 

    data_path + "events.csv", index_col=0, 

    quotechar="'", parse_dates=["timestamp"] 

) 

 

# Adjust to the last 2 days to see the latest aggregations in the online 

# feature vectors 

user_events_data = adjust_data_timespan(user_events_data, new_period="2d") 

 

# Preview 

user_events_data.head(3) 

 

# Generate categorical features from the event type 

processed_events = user_events_data 

processed_events = pd.get_dummies(processed_events, columns=["event"]) 

processed_events.set_index(["source"], inplace=True) 

processed_events.head()

Extracting Labels and Training a Model



The final step is to generate a target label column (the
fraud yes/no indication) and train a basic model to evaluate
your assumptions. Example 7-12 demonstrates how to
create the labels dataset and use sklearn to train and
evaluate a basic model.

NOTE

In real-world scenarios, the labels can arrive after the transaction
data (in a delay after it was determined that the transaction is indeed
fraudulent). In addition, the training process will be done on a much
larger dataset and with hyperparameter tuning, and it will not fit into
the notebook’s memory.

Example 7-12. Processing the events dataset

def create_labels(df): 

    labels = df[['fraud','timestamp']].copy() 

    labels = labels.rename(columns={"fraud": "label"}) 

    labels['timestamp'] = labels['timestamp'].astype("datetime64[ms]") 

    labels['label'] = labels['label'].astype(int) 

    return labels 

 

# Create the target label dataset (fraud indication) 

labels_set = create_labels(processed_transactions) 

 

# Train a model based on the transactions, events, and labels 

from src.train_sklearn import train_and_val, prepare_data_to_train 

 

X_train, X_test, y_train, y_test = prepare_data_to_train( 

    processed_transactions, processed_events, labels_set 

) 

rf_best = train_and_val(X_train, X_test, y_train, y_test) 

 

# print the model results (Accuracy, ..) 

rf_best
Fitting 3 folds for each of 100 candidates, totalling 300 fits 

Accuracy: 0.9963177275118359 

Precision: 1.0 

Recall: 0.65 

F1 Score: 0.787878787878788



The training process seems successful, and the model can
accurately predict fraud!

Data Ingestion and Preparation Using

a Feature Store

In the previous section, you created ML features manually
on a small scale (using a notebook with pandas). However,
when deploying ML to production, the process of ingesting,
transforming, storing, versioning, and serving data should
be automated and run at scale. Organizations use
dedicated data and ML engineering teams to productize
and scale the data pipelines, which requires more time and
resources and can lead to errors and inconsistencies.
Furthermore, when the application works with real-time
transactional data, the data processing is based on
streaming technologies, forcing even more complex and
duplicate implementations.
Feature stores enable reuse and collaboration, where the
same features can be engineered once and used in different
applications. In addition, features can be updated and
refreshed constantly, resulting in more accurate and up-to-
date models and a simplified model retraining process.
Some feature stores (like MLRun and Tecton) automate the
development and deployment of the feature generation
(transformation) data pipelines. This section will show you
how to use MLRun to easily build feature engineering
pipelines and deploy them as batch or real-time scenarios.
Feature stores define groups of features (feature sets) that
are ingested and transformed together from the same
online or offline source. In the example, you will define
three feature sets (credit transactions, user activities, and

https://www.tecton.ai/


labels), each with its source, transformations, and target
store definitions. Feature set definitions can be saved and
later deployed in an application context, reading from
offline (for example, object storage or a database) or online
(for example, a Kafka stream or an HTTP endpoint)
sources.
After the features are stored and versioned in the feature
store, they can be combined into feature vectors that the
model training, serving, or monitoring applications will use.
See the complete code example in the GitHub repository.
In MLRun, all the assets and resources (functions,
workflows, data, features, models, and so on) are grouped
into projects. Projects can be deployed as a whole, have
access control and policies, and are usually mapped to a Git
repository for simple deployment and versioning. The first
step in the notebook is to create a new project or load an
existing project from the version control or database (see
Example 7-13).
Example 7-13. Create or load an MLRun project

import mlrun 

 

# Initialize the MLRun project object 

project = mlrun.get_or_create_project('fraud-demo', context="./")
> 2023-04-21 11:02:06,988 [info] loaded project fraud-demo from MLRun DB

Building the Credit Transactions Data Pipeline

(Feature Set)

Example 7-14 generates and aggregates new features from
the credit transactions dataset and stores them in offline
and online forms for training and real-time serving. First,
define the feature set, its main entity (index), timestamp,
and so on. Next, define the set of feature transformations
(mappings, encoding, aggregations, custom operators, and
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so on). Finally, specify how or where to store the results
(online and offline data stores) or use the system defaults.
Example 7-14. Defining the transactions feature set

# Import MLRun's Feature Store 

import mlrun.feature_store as fstore 

from mlrun.feature_store.steps import OneHotEncoder, MapValues, DateExtractor 

 

# Define the transactions FeatureSet 

transaction_set = fstore.FeatureSet( 

    "transactions", 

    entities=[fstore.Entity("source")], 

    timestamp_key="timestamp", 

    description="transactions feature set", 

) 

 

# Define and add value mapping 

main_categories = [ 

    "es_transportation", 

    "es_health", 

    "es_otherservices", 

    "es_food", 

    "es_hotelservices", 

    "es_barsandrestaurants", 

    "es_tech", 

    "es_sportsandtoys", 

    "es_wellnessandbeauty", 

    "es_hyper", 

    "es_fashion", 

    "es_home", 

    "es_contents", 

    "es_travel", 

    "es_leisure", 

] 

 

# One Hot Encode the newly defined mappings 

one_hot_encoder_mapping = { 

    "category": main_categories, 

    "gender": list(transactions_data.gender.unique()), 

} 

 

# Define the graph steps 

transaction_set.graph.to( 

    DateExtractor(parts=["hour", "day_of_week"], timestamp_col="timestamp") 

).to(MapValues(mapping={"age": {"U": "0"}}, with_original_features=True)).to( 

    OneHotEncoder(mapping=one_hot_encoder_mapping) 

) 



)

 

 

# Add aggregations for 2, 12, and 24 hour time windows 

transaction_set.add_aggregation( 

    name="amount", 

    column="amount", 

    operations=["avg", "sum", "count", "max"], 

    windows=["2h", "12h", "24h"], 

    period="1h", 

) 

 

 

# Add the category aggregations over a 14 day window 

for category in main_categories: 

    transaction_set.add_aggregation( 

        name=category, 

        column=f"category_{category}", 

        operations=["sum"], 

        windows=["14d"], 

        period="1d", 

    ) 

 

# Add default (offline-parquet & online-nosql) targets 

transaction_set.set_targets()

The MLRun feature set pipeline is implemented using a
graph (DAG) of multiple connected steps, where the .to()
operation links one step to the next in line.

NOTE

The code in Example 7-14 provides the same logic as the interactive
code in Examples 7-9 and 7-10. However, it can now be deployed into
production at scale or as a real-time streaming pipeline using a
single command with no additional coding or engineering.

You can visually inspect the generated pipeline using
.plot(), and test it with sample data to verify it produces
the expected results using .preview(). See Example 7-15.



Example 7-15. Visualize and test the transactions feature

set

# Plot the pipeline so you can see the different steps 

transaction_set.plot(rankdir="LR", with_targets=True)

# Preview the resulting features from ingesting sample data (transactions_data) 

fstore.preview(transaction_set, transactions_data)

You can watch the feature sets, their metadata, and
statistics in the MLRun feature store UI. See Figure 4-20.

Building the User Events Data Pipeline

(FeatureSet)

The events data pipeline is simpler and has a single
transformation for encoding the event category (using one-
hot encoding). Example 7-16 demonstrates defining the
user events feature set, adding the transformation, and
testing the feature set with sample data.
Example 7-16. Define, visualize, and test the events feature

set

user_events_set = fstore.FeatureSet( 

    "events", 

    entities=[fstore.Entity("source")], 

    timestamp_key="timestamp", 

    description="user events feature set", 

) 



 

# Define and add value mapping 

events_mapping = {"event": list(user_events_data.event.unique())} 

 

# One Hot Encode 

user_events_set.graph.to(OneHotEncoder(mapping=events_mapping)) 

 

# Add default (offline-parquet & online-nosql) targets 

user_events_set.set_targets() 

 

# Plot the pipeline so you can see the different steps 

user_events_set.plot(rankdir="LR", with_targets=True)

# Preview the resulting features from ingesting sample data (transactions_data) 

fstore.preview(user_events_set, user_events_data)

Building the Target Labels Data Pipeline

(FeatureSet)

The third feature set defines how to create the target labels
(see Example 7-17). Target labels are used only in training,
so they are stored only in the offline store. (During serving,
the target value is predicted by the model.) The basic



pandas engine is used, since real-time processing is
unnecessary, and the processing is simple and stateless.
Example 7-17. Define, visualize, and test the events feature

set

def create_labels(df): 

    labels = df[["fraud", "timestamp"]].copy() 

    labels = labels.rename(columns={"fraud": "label"}) 

    labels["timestamp"] = labels["timestamp"].astype("datetime64[ms]") 

    labels["label"] = labels["label"].astype(int) 

    return labels 

 

 

# Define the "labels" feature set, use "pandas" processing engine 

labels_set = fstore.FeatureSet( 

    "labels", 

    entities=[fstore.Entity("source")], 

    timestamp_key="timestamp", 

    description="training labels", 

    engine="pandas", 

) 

 

labels_set.graph.to(name="create_labels", handler=create_labels) 

 

 

# specify only Parquet (offline) target since its not used for real-time 

target = ParquetTarget( 

    name="labels", path=f"v3io:///projects/{project.name}/target.parquet" 

) 

labels_set.set_targets([target], with_defaults=False) 

 

# Visualize the feature set 

labels_set.plot(with_targets=True) 

 

# Preview and test the feature set 

fstore.preview(labels_set, transactions_data)

Ingesting Data into the Feature Store

Data must be ingested into the feature store before it can
be used in training or serving. There are three ways to
ingest data:
Direct ingestion



Ingest the data directly from the client/notebook
(interactively).

Batch/scheduled ingestion

Create a service/job that ingests data from the source (for
example, file, DB, and so on).

Real-time/streaming ingestion

Create an online service that accepts real-time events (from
a stream, HTTP, and so on) and pushes them into the feature
store.

Direct and batch ingestion are achieved using the ingest()
method, while real-time ingestion is done using the
deploy_ingestion_service_v2() method. Both methods are
demonstrated in the following sections. Direct ingestion is
great for development and testing, while real-time
ingestion is used mainly in production.

Batch data ingestion (for tests and training)

To run training or test the serving, you need to ingest and
transform the input datasets and store the results in the
feature store. The simplest way is to use the ingest()
method and specify the feature set and the source (for
example, DataFrame, file, and so on).
You can specify the desired target to overwrite the default
behavior. For example, set targets=[ParquetTarget()] to
specify that the data will only be written to parquet files
and will not be written to the NoSQL DB (meaning you
cannot run real-time serving).

The ingest() method has many other arguments/options.
See the MLRun documentation for details.

https://oreil.ly/o3CQq


Example 7-18 demonstrates interactive ingestion, using the
.ingest() method, of the sample datasets into the feature
store, allowing you to use the features in training or
serving applications.
Example 7-18. Batch ingestion to feature sets

# Ingest your transactions dataset through your defined pipeline 

transactions_df = fstore.ingest(transaction_set, transactions_data, 

                 infer_options=fstore.InferOptions.default()) 

 

# Ingestion of your newly created events feature set 

events_df = fstore.ingest(user_events_set, user_events_data) 

 

# Ingest the labels feature set 

labels_df = fstore.ingest(labels_set, transactions_data)

Real-time data ingestion (for production)

When dealing with real-time aggregation, it’s important to
be able to update these aggregations in real time. For this
purpose, create live serving functions that update the
online feature store of the transactions feature set and
events feature set.
Real-time feature set deployments use MLRun’s serving
runtime, which creates a real-time Nuclio serverless
function, loads it with the feature set’s computational
graph definition, and configures the source trigger (HTTP,
Kafka, Kinesis, v3io, and so on) for reading incoming
events.

NOTE

There is no need to rewrite the pipeline logic from batch to real-time
deployment. Just change the deployment mode.

Example 7-19. Deploy real-time feature set ingestion

pipeline

https://nuclio.io/


# Define the source stream trigger (use Kafka streams) 

source = mlrun.datastore.sources.KafkaSource( 

    brokers=brokers, 

    topics="TransactionTopic", 

    group="my_group", 

) 

 

# Deploy the feature set ingestion service over a real-time serverless function 

transaction_set_endpoint = fstore.deploy_ingestion_service_v2( 

    featureset=transaction_set, source=source)
> 2023-06-21 11:06:44,500 [info] Starting remote function deploy 

2023-06-21 11:06:44  (info) Deploying function 

2023-06-21 11:06:44  (info) Building 

2023-06-21 11:06:44  (info) Staging files and preparing base images 

2023-06-21 11:06:44  (info) Building processor image 

2023-06-21 11:08:30  (info) Build complete 

2023-06-21 11:08:40  (info) Function deploy complete 

> 2023-06-21 11:08:48,079 [info] successfully deployed function: ...

See the notebooks for the full example and how to test the
deployed real-time ingestion service.

Model Training and Validation

Pipeline

Now that you have created features, you can use them to
train one or more models. In this section, you will generate
feature vectors with multiple features from one or more
feature sets and feed them into an automated ML training
and testing pipeline to create high-quality models.
The ML pipeline can be triggered and tracked manually
during interactive development, or it can be saved (into
Git) and executed automatically on a given schedule or as a
reaction to different events (such as code modification,
CI/CD, data changes, or model drift). See MLRun project
and CI/CD documentation for details.

Creating and Evaluating a Feature Vector

https://oreil.ly/rKPb2


Models are trained with multiple features, which can arrive
from different feature sets and be collected into training
(feature) vectors. Feature stores know how to correctly
combine the features into a vector by implementing smart
JOINs and assessing the time dimension (time traveling).
To define a feature vector, you need to specify a name, the
list of features it contains, the target features (labels), and
other optional parameters. Features are specified as
<FeatureSet>.<Feature> or <FeatureSet>.* (all the features in a
feature set). Example 7-20 demonstrates how to create and
use a feature vector.
Example 7-20. Create a feature vector

# Import MLRun's Feature Store 

import mlrun.feature_store as fstore 

 

# Define the list of features to use 

features = ['events.*', 

            'transactions.amount_max_2h', 

            'transactions.amount_sum_2h', 

            'transactions.amount_count_2h', 

            'transactions.amount_avg_2h', 

            'transactions.amount_max_12h', 

            'transactions.amount_sum_12h', 

            'transactions.amount_count_12h', 

            'transactions.amount_avg_12h', 

            'transactions.amount_max_24h', 

            'transactions.amount_sum_24h', 

            'transactions.amount_count_24h', 

            'transactions.amount_avg_24h', 

            'transactions.es_transportation_sum_14d', 

            'transactions.es_health_sum_14d', 

            'transactions.es_otherservices_sum_14d', 

            'transactions.es_food_sum_14d', 

            'transactions.es_hotelservices_sum_14d', 

            'transactions.es_barsandrestaurants_sum_14d', 

            'transactions.es_tech_sum_14d', 

            'transactions.es_sportsandtoys_sum_14d', 

            'transactions.es_wellnessandbeauty_sum_14d', 

            'transactions.es_hyper_sum_14d', 

            'transactions.es_fashion_sum_14d', 

            'transactions.es_home_sum_14d', 



            'transactions.es_travel_sum_14d', 

            'transactions.es_leisure_sum_14d', 

            'transactions.gender_F', 

            'transactions.gender_M', 

            'transactions.step', 

            'transactions.amount', 

            'transactions.timestamp_hour', 

            'transactions.timestamp_day_of_week'] 

 

# Define the feature vector name for future reference 

fv_name = 'transactions-fraud' 

 

# Define the feature vector using the feature store (fstore) 

transactions_fv = fstore.FeatureVector(fv_name, 

                          features, 

                          label_feature="labels.label", 

                          description='Predicting a fraudulent transaction') 

 

# Save the feature vector in the feature store 

transactions_fv.save()

Once you have defined the feature vector, you can use
get_offline_features() to generate the vector dataset and
return it as a DataFrame or materialize it into a file (CSV or
Parquet). Example 7-21 demonstrates how to retrieve a
vector, materialize it, and view its results.
Example 7-21. Retrieve, materialize, and view a feature

vector

from mlrun.datastore.targets import ParquetTarget 

 

# Get offline feature vector as dataframe and save the dataset to parquet 

train_dataset = fstore.get_offline_features(fv_name, target=ParquetTarget()) 

 

# Preview your dataset 

train_dataset.to_dataframe().head()



NOTE

You can specify various properties in the get_offline_features()
method, such as the time window the data should fall in (important
for model retraining) and the vector processing engine (pandas,
Spark, or Dask).

Building and Running an Automated Training

and Validation Pipeline

MLRun allows the building of distributed ML pipelines that
can handle data processing, automated feature selection,
training, optimization, testing, deployments, and more.
Pipelines are composed of steps that run or deploy custom
or library (from the MLRun hub) serverless functions.
Pipelines can be run locally (for debugging or small-scale
tasks), on a scalable Kubernetes cluster (using Kubeflow),
or in a CI/CD system.
The example consists of the following pipeline steps (all
using predefined MLRun hub functions):

1. Materialize a feature vector (using
hub://get_offline_features).

2. Select the most optimal features (using
hub://feature_selection).

3. Train the model with multiple algorithms (using
hub://auto_trainer).

4. Evaluate the model (using hub://auto_trainer).

5. Deploy the model and its application to the test cluster
(using hub://v2_model_server). The next section will
explain the model and application pipeline in detail.



Each step can accept the previous steps’ results or data
and generate results, multiple visual artifacts/charts,
versioned data objects, and registered models.
The code in Example 7-22 implements the pipeline.
Example 7-22. ML Pipeline (data prep, train, validate, and

deploy)

# Create a Kubeflow Pipelines pipeline 

@dsl.pipeline( 

    name="Fraud Detection Pipeline", 

    description="Detecting fraud from a transactions dataset", 

) 

def pipeline(vector_name="transactions-fraud", features=[], 

label_column="is_error"): 

    project = mlrun.get_current_project()  # Get FeatureVector 

    get_vector = mlrun.run_function( 

        "hub://get_offline_features", 

        name="get_vector", 

        params={ 

            "feature_vector": vector_name, 

            "features": features, 

            "label_feature": label_column, 

            "target": {"name": "parquet", "kind": "parquet"}, 

            "update_stats": True, 

        }, 

        outputs=["feature_vector", "target"], 

    ) 

    # Feature selection 

    feature_selection = mlrun.run_function( 

        "hub://feature_selection", 

        name="feature-selection", 

        params={ 

            "output_vector_name": "short", 

            "label_column": project.get_param("label_column", "label"), 

            "k": 18, 

            "min_votes": 2, 

            "ignore_type_errors": True, 

        }, 

        inputs={ 

            "df_artifact": project.get_artifact_uri( 

                get_vector.outputs["feature_vector"], "feature-vector" 

            ) 

        }, 

        outputs=[ 

            "feature_scores", 



            "selected_features_count", 

            "top_features_vector", 

            "selected_features", 

        ], 

    ) 

    # train with hyper-paremeters 

    train = mlrun.run_function( 

        "hub://auto_trainer", 

        name="train", 

        handler="train", 

        params={ 

            "sample": -1, 

            "label_column": project.get_param("label_column", "label"), 

            "test_size": 0.10, 

        }, 

        hyperparams={ 

            "model_name": [ 

                "transaction_fraud_rf", 

                "transaction_fraud_xgboost", 

                "transaction_fraud_adaboost", 

            ], 

            "model_class": [ 

                "sklearn.ensemble.RandomForestClassifier", 

                "sklearn.linear_model.LogisticRegression", 

                "sklearn.ensemble.AdaBoostClassifier", 

            ], 

        }, 

        hyper_param_options=HyperParamOptions( 

            strategy="list", selector="max.accuracy" 

        ), 

        inputs={"dataset": feature_selection.outputs["top_features_vector"]}, 

        outputs=["model", "test_set"], 

    ) 

    # test and visualize your model 

    test = mlrun.run_function( 

        "hub://auto_trainer", 

        name="evaluate", 

        handler="evaluate", 

        params={ 

            "label_columns": project.get_param("label_column", "label"), 

            "model": train.outputs["model"], 

            "drop_columns": project.get_param("label_column", "label"), 

        }, 

        inputs={"dataset": train.outputs["test_set"]}, 

    ) 

    # Create a serverless function from the hub, add a feature enrichment router 

    # This will enrich and impute the request with data from the feature vector 

    serving_function = mlrun.import_function( 



g_ p _ (

        "hub://v2_model_server", new_name="serving" 

    ) 

    serving_function.set_topology( 

        "router", 

        mlrun.serving.routers.EnrichmentModelRouter( 

            feature_vector_uri="short", impute_policy={"*": "$mean"} 

        ), 

        exist_ok=True, 

    ) 

    # Enable model monitoring 

    serving_function.set_tracking() 

    serving_function.save() 

    # deploy the model server, pass a list of trained models to serve 

    deploy = mlrun.deploy_function( 

        serving_function, 

        models=[{"key": "fraud", "model_path": train.outputs["model"]}], 

    )

The workflow/pipeline can be executed using the MLRun
SDK (project.run() method) or using CLI commands (mlrun
project), and can run directly from the source repo (Git).
See details in MLRun Projects and Automation
documentation.
You can set arguments and destinations for the different
artifacts when you run the workflow. The pipeline progress
and results are shown in the notebook. Alternatively, you
can check the progress, logs, artifacts, and more in the
MLRun UI or the CI/CD system. Example 7-23
demonstrates how to run the pipeline with custom
arguments using the SDK.
Example 7-23. Running the ML Pipeline

# Register the workflow file as "main" 

project.set_workflow('main', 'src/new_train_workflow.py') 

project.save() 

 

 

run_id = project.run( 

    'main', 

    arguments={'vector_name':"transactions-fraud", 

                'label_column':"labels.label"}, 

    dirty=True, watch=True)

https://oreil.ly/OWXsR


Pipeline running (id=53d087b4-82c2-4b73-8c11-8e620f16f802), 

click here to view the details in MLRun UI

The pipeline progress and artifacts can be tracked in the
MLRun UI (see Figure 7-2).

Figure 7-2. Pipeline tracking in MLRun UI

Once the pipeline completes, you can use the saved model
in application pipelines or test the deployed application
pipeline with real requests.



Real-Time Application Pipeline

In this example, we define an application pipeline that
accepts a user request, enriches the request with real-time
features from the feature store, and feeds the features into
a three-legged ensemble that uses the newly trained
models.
You would typically need to implement and deploy multiple
microservices and complex logic to build such an
application pipeline. But with MLRun, you can define it in a
few lines of code and deploy it automatically into elastic
serverless functions. In addition, the MLRun serving
framework will automatically support real-time feature
imputing, model monitoring, and so on without requiring
extra coding.

Defining a Custom Model Serving Class

MLRun has many built-in model-serving classes for
different frameworks, such as sklearn, XGBoost, PyTorch,
TensorFlow, ONNX, and Hugging Face. You can also build
your custom model serving class as demonstrated in
Example 7-24. The serving class must support the load()
method for loading the model and the predict() method for
making a prediction. You can read MLRun documentation
to see all the hooks and advanced usage.
Example 7-24. Defining a custom serving class (in

serving.py)

import numpy as np 

from cloudpickle import load 

from mlrun.serving.v2_serving import V2ModelServer 

 

class ClassifierModel(V2ModelServer): 

 

    def load(self): 

        """load and initialize the model and/or other elements""" 

https://oreil.ly/v2BzO
https://oreil.ly/3QLG1
https://pytorch.org/
https://oreil.ly/8UGcs
https://onnx.ai/
https://oreil.ly/iIL8g


        model_file, extra_data = self.get_model('.pkl') 

        self.model = load(open(model_file, 'rb')) 

 

    def predict(self, body: dict) -> list: 

        """Generate model predictions from sample""" 

        print(f"Input -> {body['inputs']}") 

        feats = np.asarray(body['inputs']) 

        result: np.ndarray = self.model.predict(feats) 

        return result.tolist()

Building an Application Pipeline with

Enrichment and Ensemble

MLRun serving can produce managed real-time serverless
pipelines from various tasks, including MLRun models or
standard model files. These pipelines use the Nuclio real-
time serverless engine, which can be deployed anywhere.
Nuclio is a high-performance open source serverless
framework focused on data, I/O, and compute-intensive
workloads.

The EnrichmentVotingEnsemble router class auto-enriches the
request with data from the feature store. The router input
accepts a list of inference requests (each request can be a
dict or list of incoming features/keys). It enriches the
request with data from the specified feature vector
(feature_vector_uri), forwards the vector to one or more
models in an ensemble, and returns an aggregated
prediction value (for example, the average result across the
three models).

The features often have null values (None, NaN, Inf). The
Enrichment routers can substitute the null value with fixed or
statistical value per feature. This is done through the
impute_policy parameter, which accepts the impute policy
per feature (where * is used to specify the default). The
value can be a fixed number for constants or $mean, $max,

https://nuclio.io/


$min, $std, or $count for statistical values to substitute the
value with the equivalent feature stats (taken from the
feature store).
The code in Example 7-25 defines a new serving function
with the ClassifierModel class code (in serving.py) and a
router topology (using the EnrichmentVotingEnsemble router
class) with three child models.
Example 7-25. Defining a new serving function

# Create the serving function from your code above 

serving_fn = project.set_function('src/serving.py', name='test-function', 

                                  image="mlrun/mlrun", kind="serving") 

 

serving_fn.set_topology( 

    "router", 

    mlrun.serving.routers.EnrichmentVotingEnsemble( 

        feature_vector_uri=vector_name, 

        impute_policy={"*": "$mean"}), 

) 

 

# add the 3 trained models to the Ensemble 

for model in project.list_models('', tag='latest'): 

    name = model.spec.db_key 

    serving_fn.add_model(name, class_name="ClassifierModel", 

model_path=model.uri) 

 

# Plot the ensemble configuration 

serving_fn.spec.graph.plot()

If you would like to access the real-time features directly
from your application instead of using the
EnrichmentVotingEnsemble, you can call the feature store



get_online_feature_service() method as illustrated in
Example 7-26. This method is used internally in the
EnrichmentVotingEnsemble router class.
Example 7-26. Accessing the real-time features directly

import mlrun.feature_store as fstore 

 

# Create the online feature service 

svc = fstore.get_online_feature_service(vector_name, impute_policy={"*": 

"$mean"}) 

 

# Get sample feature vector 

sample_fv = svc.get([{'source': sample_id}]) 

sample_fv
[{'amount_max_2h': 60.98, 

  'amount_max_12h': 134.16, 

  'amount_max_24h': 143.87, 

  'amount_sum_2h': 73.78999999999999, 

  'amount_sum_12h': 927.7500000000001, 

  'amount_sum_24h': 1835.7, 

  'amount_count_2h': 2.0, 

  'amount_count_12h': 29.0, 

  'amount_count_24h': 58.0, 

  'es_transportation_sum_14d': 90.0, 

  'es_health_sum_14d': 1.0, 

  'es_otherservices_sum_14d': 2.0, 

  'amount_avg_2h': 36.894999999999996, 

  'amount_avg_12h': 31.991379310344833, 

  'amount_avg_24h': 31.650000000000002}]

Testing the Application Pipeline Locally

Before deploying the serving function, test and debug it in
the current notebook and verify that the model output is as
expected. In Example 7-27, you create a local mock server
for the serving pipeline and test it with a sample input.
Example 7-27. Testing the serving pipeline with a mock

server

# Create a mock server from the serving function 

local_server = serving_fn.to_mock_server() 

 

# Choose an id for your test 

sample_id = 'C1000148617' 



 

# Send your sample ID for prediction 

local_server.test(path='/v2/models/infer', 

            body={'inputs': [[sample_id]]})
{'id': '19fb16f5121e43108984523c07d04ab1', 

 'model_name': 'VotingEnsemble', 

 'outputs': [0], 

 'model_version': 'v1'}

Deploying and Testing the Real-Time

Application Pipeline

You can now deploy the function as shown in Example 7-28.
Once it is deployed, you get a function with an HTTP
endpoint and can call it using any HTTP client.
Example 7-28. Deploy the serving pipeline to a serverless

function

# Enable model monitoring 

serving_fn.set_tracking() 

 

# Deploy the serving function 

serving_fn.deploy()
> 2023-06-21 11:16:28,879 [info] Starting remote function deploy 

2023-06-21 11:16:29  (info) Deploying function 

2023-06-21 11:16:29  (info) Building 

2023-06-21 11:16:29  (info) Staging files and preparing base images 

2023-06-21 11:16:29  (info) Building processor image 

2023-06-21 11:18:15  (info) Build complete 

2023-06-21 11:18:38  (info) Function deploy complete 

> 2023-06-21 11:18:41,082 [info] successfully deployed function: ..
# Send your sample ID for prediction 

serving_fn.invoke(path='/v2/models/infer', 

                  body={'inputs': [[sample_id]]})
{'id': '343ec429-8c83-480f-a45a-d49f26da09f4', 

 'model_name': 'VotingEnsemble', 

 'outputs': [0], 

 'model_version': 'v1'}

Model Monitoring

MLRun serving functions automatically publish data and
model telemetry (if you call the set_tracking() serving
function method) to a monitoring service. The monitoring
service collects the operational, data, and model metrics;
analyzes and compares them against the historical



datasets; and visualizes them in the MLRun UI, SDK, or
external dashboard services like Grafana.
MLRun’s monitoring service supports built-in monitors to
detect problems, such as drift or accuracy loss, and accepts
custom monitoring classes to measure and detect
application-specific problems.
Figures 7-3 and 7-4 demonstrate the MLRun and Grafana
dashboards for monitoring data and model metrics (such as
resource usage, performance, drift, accuracy, and custom
application metrics).
You can define monitoring policies with triggers and
actions. For example, when a certain threshold is reached,
a notification can alert the administrator or initiate an
automated process for retraining a model or mitigating
potential errors.

Figure 7-3. MLRun model endpoint UI screen

https://grafana.com/


Figure 7-4. Model and data monitoring with MLRun and Grafana

CI/CD and Continuous Operations

The final step is operationalizing, scaling, and automating
the project to support continuous development, integration,
deployment, and servicing with minimal overhead.
The project should include installation scripts and static,
unit, and system or application tests. A simple approach
implemented in the example project uses a Makefile with
commands to install and test the project. For example, use
black, isort, and flake8 for static code testing and pytest for
unit testing. Those can be executed using make commands
such as make lint or make test.
You can automate the project tests with CI systems such as
GitHub Actions. It examines your project and searches for
CI (YAML) scripts in a reserved .github\workflows

directory. Example 7-29 defines an automated workflow
that will run every time you create a pull request or push
code and will run the lint and test commands.

https://oreil.ly/vYT7a


Example 7-29. GitHub Actions test workflow ci.yaml

(partial)

name: CI 

 

on: 

  pull_request: 

    branches: 

    - development 

  push: 

    branches: 

    - main 

 

jobs: 

  lint: 

    name: Lint code (Python ${{ matrix.python-version }}) 

    runs-on: ubuntu-latest 

    strategy: 

      matrix: 

        python-version: [3.9] 

    steps: 

    - uses: actions/checkout@v3 

    - name: Set up python ${{ matrix.python-version }} 

      uses: actions/setup-python@v4 

      with: 

        python-version: ${{ matrix.python-version }} 

 

... 

 

    - name: Install dependencies 

      run: | 

        python -m pip install --upgrade pip~=22.3.0 

        pip install -r dev-requirements.txt 

    - name: Lint 

      run: make lint

In addition to static tests, you should automatically run the
ML pipeline. However, since ML pipelines can consume
significant computation, you may want the user to explicitly
request running the ML pipeline. This can be done by
typing a command in the Git pull request (for example
/run), which will trigger the execution of the ML pipeline on
cloud resources and automate the execution, data
movement, and tracking using MLRun.



MLRun provides native integration with mainstream CI
services. For example, you can drop the standard GitHub
Actions script into your project, which will trigger the ML
pipeline execution every time you type the /run comment in
the pull request (see Figure 7-5).
You can use the same approach to automate deployment,
run exhaustive testing, apply governance, and more, while
adding more CI scripts and MLRun pipelines to match
them, as well as restricting who can execute which
workflow and at what stage (development, staging,
production).

https://oreil.ly/HTBJN
https://oreil.ly/8AXQO


Figure 7-5. Executing the MLRun ML pipeline from the GitHub PR screen and

viewing the results



Conclusion

In this chapter, we developed an example of an ML project
in its entirety. This includes all components and attributes
that you will need for production deployment. The example
in this chapter is for a fraud detection and prevention use
case. It shows how to determine whether the transaction is
fraudulent by calculating user and transaction features.
The steps in this chapter include EDA, interactive data
preparation, data ingestion and preparation using a feature
store, model training and validation, running a real-time
application pipeline, model monitoring, and CI/CD. Follow
them to experience what it’s like to build an ML project so
you can also build one at your own organization.

Critical Thinking Discussion

Questions

What are the challenges of fraud prevention from an
MLOps perspective?

What are the different steps of EDA and why are they
important?

What are the advantages of using a feature store for
data ingestion and preparation?

How can MLRun help build and deploy a real-time ML
pipeline?

Which tools can be used for CI automation?

Exercises



Since this chapter is a hands-on practice chapter, we did
not include any additional exercises.



Chapter 8. Building

Scalable Deep Learning

and Large Language

Model Projects

Deep learning (DL) is a machine learning subdomain
inspired by the human brain’s structure and functioning. In
deep learning, neural networks consisting of
interconnected layers of artificial neurons process data
hierarchically and can capture complex patterns in data.
Each layer learns and transforms the input data, gradually
capturing higher-level features and abstractions.
The DL training process involves feeding labeled data to
the neural network and adjusting the weights and biases of
the neurons iteratively. It can reduce the dependency on
manual feature engineering and achieve impressive results
in various domains such as computer vision, natural
language processing, speech recognition, and
reinforcement learning.
DL technologies are transforming the world with
innovations such as transformers, generative AI, ChatGPT,
and more. In addition, larger and more intelligent
foundation models can perform human-like tasks, generate
and understand content, and more.
Working and developing deep learning models introduce
additional operational complexities and scaling challenges.
This is where MLOps comes in to help simplify and abstract



complexities and operationalize the process of developing
and using complex models.
There are multiple deep learning frameworks. The major
ones are:
TensorFlow

Developed by Google, TensorFlow is one of the most widely
used deep learning frameworks. TensorFlow is open source
and provides a comprehensive ecosystem of tools, libraries,
and high-level APIs (such as Keras) for building and
deploying deep learning models.

PyTorch

Developed by Meta’s AI Research lab, PyTorch is an open
source deep learning library that has gained significant
popularity since it provides a flexible, dynamic computing
graph that makes it easy to build and train deep learning
models.

Keras

Initially a standalone library, Keras has become a part of
TensorFlow’s official API. Keras is open source and provides
a simpler, high-level API for building and training deep
learning models.

Caffe

Caffe is an open source deep learning framework developed
by Berkeley AI Research (BAIR) that allows building,
training, and deploying deep neural networks. Caffe is
focused on computer vision tasks and known for its speed
and efficiency.

https://oreil.ly/8UGcs
https://pytorch.org/
https://keras.io/
https://oreil.ly/yWA3W


These solutions provide a variety of features and
capabilities, including GPU acceleration, distributed
training, and pre-built models and architectures, making it
easier to develop and train complex deep learning models.

Distributed Deep Learning

As model size increases and the amounts of training data
pile up, a growing need exists to accelerate and distribute
the training process across multiple computers. The
distributed training process breaks the task into smaller
tasks or data elements and combines the results into a
larger model. Two widely used methods for distributed
(parallel) training are:
Data parallelism

Replicating the model to multiple systems, and each replica
is trained on a subset of the data. The gradients computed on
each replica are then averaged to update the shared model
parameters. Data parallelism is effective when the model
parameters are more significant than the data size.

Model parallelism

Distributing different parts of the model to multiple systems
or GPU devices. Each system or device is responsible for
computing its assigned model portion’s forward and
backward passes. This approach is used when the model is
too large to fit in the memory of one system or GPU.

Figure 8-1 demonstrates the differences between data and
model parallelism.



Figure 8-1. Data and model parallelism

In distributed training, large amounts of data are
exchanged between systems, requiring fast networks and
high-performance messaging protocols (such as Message
Passing Interface, or MPI).
TensorFlow and PyTorch provide built-in libraries and
solutions for distributing training. Those libraries can be
deployed over a Kubernetes cluster, which will allocate the
worker nodes.
A more generic and comprehensive option is to run the
training over a distributed computing framework such as
Horovod or Ray. Both options have tight integrations with
TensorFlow and PyTorch.

Horovod

Horovod is a distributed training framework developed by
Uber. It supports TensorFlow, PyTorch, and other deep
learning libraries. In addition, Horovod supports model
parallelism and data parallelism and implements efficient

https://oreil.ly/Jpjl0
https://oreil.ly/Vpsil
https://www.ray.io/
https://oreil.ly/nQBkO


ring-based communication to synchronize gradients across
distributed workers (see Figure 8-2). Designed to scale
efficiently to large clusters, it is widely used for distributed
deep learning. It can use the high-performance MPI
communication library for fast data exchange and
synchronization.

Figure 8-2. Horovod architecture

Ray

Ray is a general-purpose framework for distributed
computing that includes support for distributed deep
learning. It provides a set of dedicated tools for AI (AI
Runtime), like Ray Tune for hyperparameter optimization

https://www.ray.io/


and Ray Train for distributed deep learning training (see
Figure 8-3). Ray is designed to be flexible, scalable, and
easy to use, making it suitable for various distributed
computing and training scenarios. Ray is now widely used
for data processing, training, and serving LLMs.

NOTE

MLRun provides Horovod/MPI and Ray serverless functions,
eliminating deployment and scaling complexity. It takes code,
automatically orchestrates the cluster, and automatically executes
and tracks the distributed job.

DeepSpeed, developed by Microsoft Research, is another
essential framework for optimizing and distributing the
training and serving of large deep learning models.
DeepSpeed works on top of Ray or Horovod/MPI.

Figure 8-3. Ray architecture

Data Gathering, Labeling, and

Monitoring in DL

https://oreil.ly/Cj-RM


Getting enough data for model training is crucial for
building robust and accurate machine learning models.
However, there are several challenges in getting enough
data for model training. Inaccurate data can create drift,
which makes model performance unreliable. Here are some
of the critical challenges of obtaining relevant data for
model training:
Data availability

Sometimes the required data may not be available. This can
happen due to various reasons, such as data privacy, limited
access, or lack of data collection.

Data quality

Even when data is available, it may not be of sufficient
quality for training the model. The data may be incomplete,
noisy, or inconsistent, which can affect the model’s
performance.

Data diversity

A machine learning model needs to be trained on diverse
data to generalize well and avoid bias. However, getting
diverse data can be challenging as it may require collecting
data from various sources, which can be time consuming
and costly.

Imbalanced data

Sometimes, the data may be imbalanced, meaning that the
number of instances in each class is unequal. This can lead
to biased models that perform poorly on the
underrepresented class.

Cost

https://oreil.ly/CeLAs


Collecting large amounts of data can be expensive, especially
if the data needs to be collected manually or through
external sources.

Time

Gathering enough data for model training can be time
consuming. This can delay the development and deployment
of the model, which can be a significant challenge for
businesses and organizations.

Addressing these challenges requires careful planning and
execution of data collection and preprocessing strategies.
Data labeling, also known as data tagging, is the addition of
metadata to data samples as part of the data preparation
process for deep learning models. Data labeling helps
machine learning algorithms understand the data and make
accurate predictions.
Data labeling involves automatically or semiautomatically
assigning labels or tags to data samples to help the deep
learning algorithm classify and recognize patterns in the
data. This includes assigning categories, adding descriptive
tags, or annotating specific features in the data.
For example, in an image classification task, data labeling
would involve manually tagging each image with the
correct label to indicate what object or scene is depicted in
the image. In NLP, data labeling might involve assigning
categories or tags to individual words or phrases in a text
document to help the algorithm identify patterns and
relationships between them. For example, the labels on
photos might identify a face or a house, which words were
spoken in an audio recording, or tumors in an x-ray.



Data labeling is essential for training deep learning models,
as it helps the algorithm better understand and recognize
patterns in the data. Accurate labeling can help improve
the accuracy and effectiveness of these models, while
inaccurate or inconsistent labeling can lead to inaccurate
predictions and reduced performance.
Data labeling is most commonly used for:
Computer vision

Labeling images, pixels, key points, or a bounding box

NLP

Tagging important text sections for sentiment analysis,
entity name recognition, and character recognition

Audio

Converting sounds into a structured format

Data Labeling Pitfalls to Avoid

Several potential pitfalls can arise when labeling data for
deep learning models. Some common pitfalls include:
Lack of consistency

Inconsistency in labeling can lead to confusion and reduced
accuracy in the model.

Bias

Labeling can be influenced by the personal biases of the
labeler, which can lead to bias in the resulting model. For
example, suppose a labeler prefers a particular category or
characteristic. In that case, they may inadvertently label
data in a way that reinforces that preference, leading to bias
in the model.



Insufficient or irrelevant labels

Labeling data with insufficient or irrelevant information can
limit the effectiveness of the deep learning model. For
example, labeling an image with a generic category such as
“animal” may not provide enough information for the model
to accurately classify the image.

Insufficient data

Lack of sufficient labeled data can lead to poor performance
of the deep learning model, as it may not have enough
examples to learn from.

Time consuming and costly

Labeling large amounts of data can be time consuming and
costly, particularly for complex data types such as audio or
video.

Overfitting

Overfitting occurs when the deep learning model is trained
on a limited set of labeled data, which may not represent the
full range of possible data. This can lead to the model being
overly specialized and performing poorly on new, unseen
data.

Data Labeling Best Practices

Data labeling is a critical step in building effective deep
learning models. Several best practices can help ensure
accurate and consistent labeling:
Clearly define labels

Clearly define labels and provide detailed instructions and
guidelines for labelers. This helps ensure that all labelers



clearly understand the labeling task and can produce
consistent and accurate labels.

Use multiple labelers

Use multiple labelers to annotate each data sample to help
identify inconsistencies and improve accuracy. This can be
done by having each labeler annotate a subset of the data
and comparing the results.

Train labelers

Train labelers to help ensure they understand the labeling
task and can produce accurate and consistent labels. This
can include training on the labeling guidelines, examples of
correctly labeled data, and feedback on their performance.

Monitor and evaluate labelers

Regularly monitor and evaluate labelers to identify
inconsistencies or errors and improve labeling quality. This
can be done by regularly reviewing labeled data and
providing feedback to labelers.

Use quality control measures

Quality control measures such as spot-checking, test sets,
and inter-annotator agreement checks can help ensure
labeling accuracy and consistency.

Validate and refine labels

Validate and refine labels to improve the accuracy and
effectiveness of the deep learning model. This can include
evaluating the model’s performance on the labeled data and
adjusting the labeling process as needed.

Document the labeling process



Document the labeling process so that it is replicable and
transparent. This can include documenting the labeling
guidelines, training materials, and performance evaluation
results.

By following these best practices, data labeling can be done
accurately and consistently, leading to better performing
deep learning models.

Data Labeling Solutions

Many commercial solutions for data tagging can help
automate and streamline the process of labeling large
datasets. Here are some of the most popular ones:
Amazon SageMaker Ground Truth

Amazon SageMaker Ground Truth is a fully managed data
labeling service that makes it easy to build highly accurate
training datasets for machine learning.

Labelbox

The Labelbox data labeling platform provides various tools
and services for managing and labeling large datasets,
including image, video, and text data.

Figure Eight

Figure Eight (formerly CrowdFlower, acquired by Appen) is a
data annotation and collection platform that provides a wide
range of annotation services, including image labeling, text
annotation, and audio transcription.

Scale AI

Scale AI is a data labeling platform that provides various
annotation services, including image and video annotation,

https://oreil.ly/6_nAC
https://oreil.ly/xpHzn
https://oreil.ly/ZzEsA
https://scale.com/


3D point cloud labeling, and natural language processing
annotation.

SuperAnnotate

SuperAnnotate is a data annotation platform that provides
various tools and services for image and video annotation,
including object detection, segmentation, and classification.

Hasty

Hasty is a data labeling platform that provides various
annotation services, including image and video annotation,
text annotation, and audio transcription.

Many open source solutions are available for data tagging,
including:
Label Studio

Label Studio is an open source data labeling tool that
supports various annotation tasks, including image, text, and
audio data. It also supports a variety of ML frameworks,
including PyTorch.

OpenLabeling

OpenLabeling is an open source data labeling tool that
supports various annotation tasks, including object
detection, segmentation, and classification. It also supports
multiple data types, including images and videos.

VGG Image Annotator

VGG Image Annotator (VIA) is an open source image
annotation tool that supports various annotation tasks,
including object detection, segmentation, and classification.

https://oreil.ly/Th5qA
https://oreil.ly/Hm6kS
https://oreil.ly/DDOrT
https://oreil.ly/wtEV0
https://oreil.ly/ibKFC


It also supports multiple file formats, including JPEG, PNG,
and TIFF.

doccano

doccano is an open source text annotation tool that supports
various annotation tasks, including named entity
recognition, sentiment analysis, and text classification. It
also supports multiple languages and custom labeling
workflows.

Anno-Mage

Anno-Mage is an open source image annotation tool that
supports various annotation tasks, including object
detection, segmentation, and classification. It also supports
multiple annotation formats, including Pascal, VOC, and
COCO.

Figure 8-4 demonstrates the process of labeling a picture in
Label Studio.
These open source solutions provide a variety of features
and capabilities, including support for multiple data types,
customizable labeling workflows, and integration with ML
frameworks. They are also highly customizable and can be
modified to suit specific use cases and requirements.

https://oreil.ly/7ESrA
https://oreil.ly/Mhb5A


Figure 8-4. Labeling a picture in Label Studio

Using Foundation Models as Labelers

Until recently, the prevalent approach to data labeling
involved using services that employed individuals, known
as taggers, to construct datasets. Following this, ML teams
were required to meticulously examine a checklist to
ensure the data labeling met the necessary standards.
Some examples were provided in the previous section.
A new wave of innovation has recently emerged that
leverages foundation models and embedding technologies;
users can provide minimal guidance (prompts) or
examples, and the model can generalize the problem and
detect or classify similar objects or text without being
exposed to large amounts of labeled data. For example,
using ChatGPT, you can provide a prompt that describes
the classification problem and request it to classify a text
sentence without providing labeled examples. Innovative
companies like SeeDoo Insights and Landing-AI extended
this concept to computer vision. The user marks a few

https://www.seedoo.co/
https://landing.ai/


images, and the system will use a foundation model to
automatically generalize the problem, eliminate the need
for large amounts of labeled data, and save the complexity
of data preparation, training, and model monitoring with a
feedback loop.
Foundation models are new and spark creativity in this
space. For example, they can be used to generate labeled
datasets that will be used to train traditional models, test
or evaluate model results, and so on.

Monitoring DL Models with Unstructured Data

There are many simple ways to monitor ML models that use
structured data. For example, drift is detected by observing
the statistical skew between training data and production
data. Quality can be observed by ensuring values and
categories fall into a set or range of expected values.
However, monitoring models with unstructured data, such
as text and images, can be more complex.
One way to monitor drift in unstructured data is to convert
the unstructured data to a structured representation. Here
are some examples:

Transform an image to a set of average RGB color
values or texture and check if the color or texture
distribution changed.

In image or text classification problems, measure the
distribution of the target classes and the scoring
probability, or use clustering techniques and compare
the results between training and production.

Use image or text embeddings and track the change of
distribution of the embeddings.



In textual data, check for changes in word frequency or
extract topics from the text and measure changes in
topics.

Monitoring is not confined to drift. Additional model and
data attributes can be monitored, for example:
Performance

Measure various performance metrics such as latency,
throughput, errors, and so on.

Resource usage

Memory, GPU, CPU, and IO per task.

Accuracy

The prediction accuracy. This usually requires human
labeling to map the text or image to predefined classes.

Sentiments or toxicity

Check for toxic language or monitor sentiments in the
provided or responded text.

PII violations

Check if the requests or responses contain PII data, such as
credit card numbers, names, emails, phone numbers, social
security numbers, and more.

Bias and fairness

Measure the bias in the text along specific demographic
attributes.



Build Versus Buy Deep Learning

Models

Building a solution for training DL models involves creating
a custom system tailored to the organization’s or
individual’s specific needs and requirements. This can
include designing and building custom hardware,
developing custom software and algorithms, and acquiring
and cleaning large data sets. The key differences between
buying and building a solution for training DL models are:
Time to deployment

Buying a pre-built solution can allow for faster deployment
as the necessary tools and infrastructure are already in
place. On the other hand, building a custom solution can
take longer, as it requires designing, building, and testing the
necessary components.

Customizability

Building a custom solution allows for greater control and
customization over the training process, including flexibly
modifying and optimizing algorithms and infrastructure to
fit specific needs. Buying a pre-built solution may not offer
the same level of customization. For example, integrations
might be challenging.

Cost

Building a custom solution can seem more cost-effective
upfront but may be more expensive in the long run. The
resources required to design, build, maintain, and update
the solution will increase over time, taking a huge overhead
toll on the team. Foundation models and LLMs may cost tens
of millions of dollars just to train.



Access to expertise

Many pre-built solutions are developed and maintained by
experts in deep learning, meaning that users can benefit
from their expertise and experience. Building in-house
means the team needs to acquire this knowledge themselves.

Data

Large models are trained using large amounts of data, which
may take significant time and processing to prepare and, in
some cases, is not available or is too expensive to store.

Reduced risk

Pre-built solutions are typically tested and validated by the
vendor, which can reduce the risk of errors or failures
during the training process.

Vendor dependency

Users of pre-built solutions may depend on the vendor for
support, updates, and new features. This can be problematic
if the vendor goes out of business or discontinues support
for the product.

Today there are open source model repositories (such as
Hugging Face) where you can find pretrained models for
different applications and do not need to buy them from a
vendor.
Another option that doesn’t require training a model from
scratch: you can extend a commercial or open source
baseline model through transfer learning and fine-tuning.
Transfer learning lets you tune the parameters or weights,
improving the model performance for specific tasks or

https://oreil.ly/iIL8g


content. Later in this chapter we will provide an example of
tuning an LLM using a custom dataset.
Models require constant improvement by retraining the
model with new data or fixing model behavior through
reinforced learning with human feedback (RLHF). This
should be factored into the decision.

Foundation Models, Generative AI,

LLMs

A new generation of foundation models has emerged.
Transformative applications such as ChatGPT have sparked
the imagination as well as raised fears in people’s minds. In
this section, you will learn more about them, how to use
them, and how to develop solutions around them.
First, several terms used in this context require defining:
Foundation models (FMs)

Sizeable DL models (such as GPT-3, GPT-4) are pretrained
with attention mechanisms on massive datasets and
adaptable to various downstream tasks, including content
generation. FMs contrast with the traditional AI approach of
designing models for specific tasks.

Generative AI

These methods and tools generate content, such as images,
text, or music using algorithms, typically using foundation
models.

LLMs

A type of foundation model (like ChatGPT) that can perform
a variety of natural language processing tasks. LLMs are



trained on extensive text datasets and learn to generate
human-like text. These models can understand context,
answer questions, write essays, summarize texts, translate
languages, and even generate code.

Figure 8-5 illustrates the different use cases for foundation
models (and LLMs).

Figure 8-5. Foundation model use cases

Foundation models are trained on a broad data corpus. This
can include the entire content of Wikipedia, code in
GitHub, and other public sources of knowledge.
Unfortunately, training a foundation model is a costly and
lengthy task. For example, according to public sources, the
recent GPT-4 model was trained on a cluster with 25,000
GPUs. The training cycle took over a month and is
estimated to have cost over $10,000,000.



Today there is an arms race of foundation models. The
primary technology companies such as Microsoft (OpenAI),
Google, Meta, NVIDIA, and newer entrants are working on
new models that will be more intelligent, safer, faster, or
better in specific domains. In addition, open source LLM
efforts are gaining momentum, and they catch up on
intelligence and performance with their commercial
counterparts in many use cases. Therefore, make sure you
introduce flexibility into your solution, allowing you to
switch between baseline models without refactoring your
work.
Figure 8-6 shows the current foundation model landscape
(highlighted names indicate open source models).

Figure 8-6. Foundation model landscape (source: https://oreil.ly/OS_aV)

Most organizations can’t afford the luxury of training their
FMs (and really do not need to). Foundation models can be
tuned or customized to specific tasks without full training.
There are two main approaches to using FMs and LLMs:
Prompt engineering

https://oreil.ly/OS_aV


Feeding the model with engineered requests (prompts),
including specific content, details, clarifying instructions,
and examples that guide the model to the expected and most
accurate answer.

Fine tuning

Using an existing pretrained model and further training it
with an application-specific dataset, significantly reducing
the time and cost of computation and the training dataset
size and achieving better accuracy.

The advantage of prompt engineering is that you don’t
need to train or host the model. Instead, you access a
ready-made model through an API. However, the downside
is that inference performance is lower, and the API calls
cost is higher (due to the large prompt and prompt
processing overhead). In addition, the prompt is usually
limited to a few thousand words, limiting the input
content’s size or leading to multiple API requests. There
may also be other concerns, such as protecting or violating
intellectual property.
Fine tuning allows you to extend the model’s knowledge
with significantly more data and tuning it to your needs.
However, it adds the complexity and costs of training
(tuning) and validating the derived model. In addition, you
need to handle all the deployment, upgrade, and
maintenance aspects.
New technologies such as Low-Rank Adaptation (LoRA) and
Quantized Low-Rank Adaptation (QLoRA) make the fine
tuning process far more efficient and accessible by
significantly lowering the required amount of memory and
computation.



If you use the model frequently and need it to answer more
specific questions on well-defined content that stays the
same, then tuning and deploying your own model makes
sense. In addition, smaller, fine-tuned open-source models
often perform better than larger ones for specific tasks and
reduce hallucinations by grounding the model to specific
training data.
If you use the model rarely or the content you query is
dynamic, having a dedicated infrastructure and GPUs to
train and host a model may be too expensive. Instead,
consider using prompt engineering and Retrieval
Augmentation Generation (RAG) with an existing model.
Fine tuning and prompt engineering with RAG can be used
together using a hybrid approach. The LLM can be tuned to
incorporate domain-specific knowledge, semantics,
linguistic style, or corporate voice, and RAG can be used to
integrate external knowledge (from a vector database).
The hybrid approach enables dynamic and fresh content
with custom writing styles, vocabulary, or conventions that
resonate with a specific audience or domain area.
In many cases, FMs and LLMs don’t produce the expected
results and should be constantly improved and fixed.
Therefore, you should apply technologies such as RLHF to
continuously correct and “teach” the model. Of course, this
adds complexities and costs to the project.

Risks and Challenges with Generative AI

While large language models and ChatGPT are extremely
useful, they can be dangerous. There are several risks you
should be aware of and address as part of your solution.
They can be divided into the following categories:

https://oreil.ly/JJe9k


Fairness and bias

Models are trained on generic internet data containing
inherent bias, which may be amplified in the language or be
misinterpreted by the model. In addition, data may have an
underrepresentation of voices and communities, leading the
model to respond with biased and unfair answers.

Intellectual property and privacy

The training dataset comes from public sources. This can
lead to results that may include sensitive, personal, or
proprietary information that infringes copyright laws and
licensing.

Toxicity

Data collected from the internet includes toxic, offensive,
unethical, and harmful language. This may lead to outputs
that contain explicit or implicit toxicity, including hate
speech, harassment, misinformation, or discriminatory
content.

Regulatory

When you deploy or use a generative model, you are
responsible for all its outcomes and violations of legal
standards, compliance, intellectual property, security, safety,
and so on.

Misuse

Models can be misused to create harm, including generating
fake and deep fake content, harassment, abuse,
impersonation, terror, spam, and phishing.

Hallucination



Models generate answers based on statistical and
mathematical methods. They do not “understand” the
content but choose the most probable words based on
pattern learning. There are numerous examples of models
that sound confident but generate false and inaccurate
answers.

Figures 8-7 and 8-8 demonstrate examples of model
hallucination and misuse. Note that safeguard mechanisms
were added to GPT to avoid toxic language or misuse.
However, those are not yet bulletproof.

Figure 8-7. Model hallucination example



Figure 8-8. Model misuse examples

Organizations can mitigate the risks by ensuring that only
valid data is used to train the models, implementing data
protection and security, and ensuring compliance with
regulatory standards. In addition, higher quality, reliability,
and risk reduction can be achieved by implementing safety
and quality measures in your data processing, training,
testing, and serving pipelines.
Data processing and validation are the most critical tasks
when building a Generative AI application. Examples of
data processing steps include:



Data cleansing

Remove unwanted text, symbols, ads, spelling and grammar
mistakes, irrelevant information, URLs, and so on. Use a
heuristic-based approach, such as perplexity, to eliminate
low-quality text.

Toxicity detection and filtering

Identify toxic language, banned words, hate speech, and
racist remarks and remove them from the training dataset
or block the transaction in case of an interactive application.

Bias detection and mitigation

Measure the bias along specific demographic attributes and
balance it in the training set or alternatively remove
identifying details.

Privacy protection

Remove any PII, including names, phone numbers, credit
card numbers, IDs, and email addresses. Check for potential
leakage of private documents or code.

De-duplication

Remove duplicate text segments from the dataset to improve
model accuracy and reduce hallucinations.

Formatting and tagging

Organize and label the data in a contextual format to
improve model reliability. For example, break a document
into paragraphs or sections with clear headers (covering the
content of that section). Another example is organizing the
text as questions and answers or text and class pairs.



Vector embeddings and indexing

Convert paragraphs or images into a numerical vector
representation to capture the semantic and syntactic
relationships and index the vectors to quickly identify
similarities.

Tokenization

Break down text sequences into smaller units called tokens.
These tokens can be words, subwords, or characters,
depending on the chosen tokenization strategy. Tokenization
enables text transformation into a format that machines can
process and analyze.

Figure 8-9 illustrates a data processing pipeline in a
natural language processing application.

Figure 8-9. NLP or LLM data pipeline example

Data controls can be implemented in one or more of the
following tasks:
Data preprocessing

Data cleaning and preparation before the data is sent to the
model tuning or vector indexing process.



Model and application testing

Test the model with different input prompts and verify that
the outputs and model behavior conforms with the expected
standards and quality.

Processing user requests

Check the incoming user requests and prompts (in real time)
before they are sent to the model.

Validating model responses

Verify the compliance and quality of the results in real time
before they are returned to the user, and block them or
provide an alternative response.

Monitoring the application logs

Send all the requests (prompts) and responses to a
monitoring system that checks the compliance, accuracy,
and quality of the results.

There are advantages and disadvantages to each approach.
It is always better to address the problem in the earliest
stage (data preprocessing), but in many cases, you cannot
implement a solution on the application data path due to
performance or complexity reasons. The tracking is done in
the monitoring system and its feedback used to further
tune the system.
Monitoring and measuring the performance of an LLM
model is more challenging since the resulting text is not
deterministic or based on a huge training dataset.
However, some approximate methods exist to measure
drift, for example, by comparing the embedding similarity



between the reference data and the current requests,
measuring vocabulary frequency, perplexity, and so on.
The key challenge remains to detect if and when the model
is hallucinating. One way is to compare multiple results for
the same question; if they are semantically different, there
is a good chance the model is hallucinating. Another
approach in RAG systems is to evaluate the similarity
between the reference data and the generated text answer
(see BERTScore and Vectara). Text Summarization
applications can use the ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) method to evaluate the
results. Another practice is using LLMs as judges to assess
the correctness of the answer based on reference content
(in RAG) or by using another LLM.
Another significant element in ensuring high quality and
reliability is adding user feedback (humans in the loop).
This means sampling the results in the production data and
having humans verify that they meet the expected
behavior. If they don’t, correct them and retrain or tune the
model to fix that behavior.

MLOps Pipelines for Efficiently Using and

Customizing LLMs

Earlier in this chapter, we described two methods to
customize LLMs for specific data and applications: prompt
engineering and fine tuning. In many applications, we will
use both to maximize performance and reliability. Data
preparation and validation are crucial parts of the process
in both cases.
In fine tuning, you ingest and prepare the application data
and feedback data, run a transfer learning job to tune the
base foundation model and extensive testing, and finally

https://oreil.ly/3HR6L
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deploy the newly built model into the staging or production
environment (see Figure 8-10).
The pipeline can run anytime you have new data or enough
feedback data (generated through human labeling). In
addition, since the target model is large, it requires
distributed training (tuning) and validation over multiple
systems and GPUs, which can be done with frameworks
such as Horovod/MPI or Ray.

Figure 8-10. LLM model tuning pipeline example

When you implement prompt engineering and need to feed
the prompt with reference documents or context, the
context should be prepared and indexed for efficient
retrieval; for example, using embeddings and vector or
keyword databases (see Figure 8-11). Furthermore, the
data fed and indexed in the database must be thoroughly
cleaned and prepared to maximize the response quality and
avoid risks.



Figure 8-11. LLM data preparation and indexing pipeline example

Multiple new frameworks target data processing and
indexing for language processing tasks, for example,
LangChain, LlamaIndex, spaCy, and Unstructured.
The pre-indexed data and tuned model are used in the
interactive or real-time pipeline, which intercepts the user
requests and responds with the expected answer. Figure 8-
12 illustrates the real-time pipeline. The first step is to
receive and process the request, followed by data
enrichment, prompt engineering, LLM prediction, post-
processing, and returning a response to the user. In
addition, the incoming data and responses are sent to the
monitoring system, stored, and used to identify drift,
performance problems, or risks. Finally, portions of the
monitored data can be sent to human labeling and used for
retuning the model (RLHF).

https://oreil.ly/1I-l5
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Figure 8-12. LLM real-time serving pipeline example

The real-time pipeline introduces several challenges:

Relative complexity and integration of disparate
elements (data processing and enrichment, application
logic, model prediction, monitoring, human feedback,
and so on)

Partitioning the large model to multiple GPU devices
and systems

Model performance (LLMs are notoriously slow and
may require multiple calls for a single user flow)

Real-time request and response validation to avoid risks

Continuous deployment and rolling upgrades

Elastic serverless frameworks and automation can reduce
the complexity.



Application Example: Fine-Tuning an LLM Model

The following tutorial provides an example of building and
operationalizing an intelligent question-and-answering
application using a fine-tuned large language model.
The tutorial contains two main parts:

Data preparation and tuning pipeline

Real-time application and model serving pipeline

The application is tuning an LLM with the content of
Iguazio’s MLOps blog, and it answers MLOps-related
questions. It uses MLRun to rapidly build, run, and monitor
the two pipelines.
The complete source code can be found at:
https://github.com/mlrun/demo-llm-tuning. Open the
tutorial.ipynb file to see the tutorial flow.

Data preparation and tuning

In this tutorial, the open source LLM model is downloaded
from Hugging Face and fine-tuned with the MLOps dataset
generated from the blog pages. The first steps of the
pipeline are reading the pages from the internet (blog),
converting them to cleaned-up text, and preprocessing
them to maximize the model’s performance. The following
step uses Horovod, MPI, and DeepSpeed to scale the tuning
process across multiple systems and GPUs. The final step
evaluates the model. See the flow described in Figure 8-13.

https://oreil.ly/cXZCT
https://www.mlrun.org/
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Figure 8-13. Data preparation and tuning pipeline

NOTE

Many more tests are likely to be added in a real-world application.



But first, let’s verify that the base LLM knows only a little
about MLOps by loading it and asking a question. See the
code in Example 8-1.
Example 8-1. Testing the base LLM (before tuning)

from transformers import AutoTokenizer, AutoModelForCausalLM, \ 

    GenerationConfig, pipeline 

 

model_name = "gpt2-medium" 

model_name = "tiiuae/falcon-7b" 

tokenizer = AutoTokenizer.from_pretrained(model_name) 

generation_config = GenerationConfig.from_pretrained(model_name) 

generator = pipeline("text-generation", model=model_name, tokenizer=tokenizer, 

                     trust_remote_code=True) 

 

def prompt_to_response(prompt: str) -> str: 

    return generator(prompt, generation_config=generation_config, max_length=50, 

                     pad_token_id=tokenizer.eos_token_id)[0]["generated_text"] 

 

print(prompt_to_response(prompt="What is a serving pipeline?")) 

 

> A serving pipeline is a set of tools that help you deliver your content.

Data preparation

Feeding the raw HTML pages into the model will likely
result in inaccurate answers. In that case, the data needs to
be cleaned from redundant symbols, broken into text
sections with clear titles (topics), and labeled with unique
tokens.

The function mark_header_tags() in the file data_collection.py

(see Example 8-2) converts the HTML text and headers into
marked text.
Example 8-2. Converting the HTML text and headers into

marked text

def mark_header_tags(soup: BeautifulSoup): 

    """ 

    Adding header token and article token prefixes to all headers in html, 

    in order to parse the text later easily. 

 

    :param soup: BeautifulSoup object of the html file 



    """ 

    nodes = soup.find_all(re.compile("^h[1-6]$")) 

    # Tagging headers in html to identify in text files: 

    if nodes: 

        content_type = type(nodes[0].contents[0]) 

        nodes[0].string = content_type( 

            ARTICLE_TOKEN + normalize(str(nodes[0].contents[0])) 

        ) 

        for node in nodes[1:]: 

            if node.string: 

                content_type = type(node.contents[0]) 

                if content_type == Tag: 

                    node.string = HEADER_TOKEN + normalize(node.string) 

                else: 

                    node.string = content_type(HEADER_TOKEN + 

str(node.contents[0]))

The function convert_textfile_to_data_with_prompts() in the
file data_preprocess.py (see Example 8-3) converts the
document text into a set of prompts and answers based on
the topics of each section.
Example 8-3. LLM data preprocessing

def convert_textfile_to_data_with_prompts(txt_file: Path): 

    """ 

    Formatting the html text content into prompt form. 

    Each header-content in the article is an element in the list of prompts 

 

    :param txt_file: text content as a string with tokens of headers. 

    :returns: list of prompts 

    """ 

    # Read file: 

    with open(txt_file, "r") as f: 

        lines = f.readlines() 

 

    start = 0 

    end = 0 

    subject_idx = [] 

    data = [] 

    # Dividing text into header - paragraph prompts: 

    for i, line in enumerate(lines): 

        if not start and line.startswith(ARTICLE_TOKEN): 

            start = i 

        elif HEADER_TOKEN + END_OF_ARTICLE in line: 

            end = i 

            break 



        if line.startswith(HEADER_TOKEN): 

            subject_idx.append(i) 

    article_content = lines[start:end] 

    subject_idx = [subject_i - start for subject_i in subject_idx] 

    article_name = article_content[0].replace(ARTICLE_TOKEN, "") 

    for i, subject in enumerate(subject_idx): 

        if subject + 1 in subject_idx: 

            continue 

        subject_data = article_content[subject].replace(HEADER_TOKEN, "") 

        if i + 1 == len(subject_idx): 

            content_end = len(article_content) 

        else: 

            content_end = subject_idx[i + 1] 

        content_limits = subject + 1, content_end 

        data.append( 

            DATA_FORMAT.format( 

                article_name, 

                subject_data, 

                "".join(article_content[content_limits[0] : content_limits[1]]), 

            ) 

        ) 

    return data

Model tuning and evaluation

MLRun provides a built-in function in MLRun functions hub
for fine tuning and evaluating Hugging Face LLM models.
The huggingface-auto-trainer contains the finetune_llm()
method that fine-tunes the LLM on the data. It distributes
the training run over multiple nodes and GPUs using
OpenMPI, logs the results, and saves the tuned model in
the model registry. The tuning process uses QLoRA
(Quantized Low-Rank Adaptation) to minimize the required
memory and computation.

https://oreil.ly/E_Nqh
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NOTE

Using pre-built functions from the MLRun function hub significantly
reduces the effort to support LLM fine tuning. It addresses all the
operational requirements, including GPU integration, distributed
training, reporting, logging, and so on. Function definitions can be
imported from the hub with a single instruction.

The evaluate() method in the huggingface-auto-trainer
function evaluates the model using the perplexity metric
and generates an evaluation report.

Defining an MLRun project and running the pipeline

In MLRun, the pipelines, artifacts, and models are parts of
a named project. Projects usually map to a Git project. They
are versioned and can be deployed into a development or
production environment using a single command. In
addition, projects are managed entities with strict
membership and access control. The first step is to create
or load a project and its assets (functions, pipelines, and so
on). See Example 8-4.
Example 8-4. MLRun project setup

import mlrun 

 

project = mlrun.load_project( 

    name="mlopspedia-bot", 

    context="./", 

    user_project=True, 

    parameters={ 

        "source": "git://github.com/mlrun/demo-llm-tuning.git#main", 

        "default_image": "yonishelach/mlrun-llm", 

    })

The next step is to run the pipeline. Pipelines are executed
with the project.run() command and accept a set of
arguments that can be used to parameterize the pipeline



and allow for potential reuse in different projects. See
Example 8-5.
Example 8-5. Running the tuning pipeline

workflow_run = project.run( 

    name="training_workflow", 

    arguments={ 

        "html_links": "/User/demo-llm-tuning/data/html_urls.txt", 

        "model_name": "falcon-7b-mlrun", 

        "pretrained_tokenizer": model_name, 

        "pretrained_model": model_name, 

        "epochs": 5, 

    }, 

    watch=True, 

    dirty=True, 

)

The pipeline progress can be viewed interactively in the
client or notebook. When the pipeline ends, it generates a
summary of the results (see Figure 8-14).

Figure 8-14. Data preparation and tuning pipeline report in Jupyter

However, the UI provides a richer, more interactive
experience (see Figure 8-15).
One of the unique features of MLRun is the ability to
seamlessly distribute the workload across multiple systems
and GPUs (by orchestrating the underlying Kubernetes,
containers, and MPI resources). For example, in Figure 8-
16 (taken from MLRun UI), we can see that MLRun
distributed the tuning task across 16 workers and GPUs.
When the pipeline ends, the model gets registered
automatically and can be used in the application pipeline.



Figure 8-15. Data preparation and tuning pipeline in MLRun UI

Figure 8-16. Distributed tuning with 16 workers and GPUs



NOTE

Add deployment tests that try to deploy the application and model
pipeline into a staging environment and run exhaustive tests on it to
verify its reliability and performance.

Application and model serving pipeline

The application pipeline, especially in LLM use cases,
consists of many steps to accept and process the request.
These include steps for data enrichment and preprocessing,
prompt engineering, model prediction, application control
flow, safety, risk control, data post-processing and
formatting, monitoring, and more. Therefore, building,
deploying, and scaling the application pipeline is
challenging. In addition, addressing operational
considerations—such as performance, security, availability
versioning, and rolling upgrades—can drain significant
engineering resources and time.
The MLRun framework uses elastic serverless functions to
automate the build and deployment of application pipelines
by allowing the composition of a graph (DAG) made of
multiple custom and built-in steps and translating it
automatically to a distributed pipeline running over
microservices.
This tutorial implements the application pipeline using
MLRun Serving Graph with four steps (see Figure 8-17):
Data preprocessing (preprocess)

Fit the user prompt into the model prompt structure
(“Subject - Content”).

LLM prediction (LLMModelServer)



Serve our trained model and perform inferences to generate
answers.

Post-processing (postprocess)

Check if the model generated reliable answers and format
the output.

Toxicity filter (ToxicityClassifierModelServer)

Use the Hugging Face Evaluate package model and perform
inferences to catch toxic prompts or responses and respond
with a proper answer instead.

Figure 8-17. Application and model pipeline

Steps 2 and 4 are generic and can be used in multiple
applications, while steps 1 and 3 are specific. You can see
the full code implementation of the steps in the Git
repository (in src/serving.py). Note that a real application
will likely include more steps and logic.
The code in Example 8-6 defines the graph by specifying
the function or class per step, step parameters, and graph
relations. The plot() method allows you to visualize the
graph topology.
Example 8-6. Define the serving graph topology

# Set the topology and get the graph object: 

graph = serving_function.set_topology("flow", engine="async") 

 

# Add the steps: 

graph.to(handler="preprocess", name="preprocess") \ 

     .to("LLMModelServer", 

         name="mlopspedia", 

         model_args=model_args, 



         tokenizer_name=model_name, 

         model_name=model_name, 

         peft_model=project.get_artifact_uri("falcon-7b-mlrun")) \ 

     .to(handler="postprocess", name="postprocess") \ 

     .to("ToxicityClassifierModelServer", 

         name="toxicity-classifier", 

         threshold=0.7).respond() 

 

# Plot to graph: 

serving_function.plot(rankdir='LR')

Once the real-time application graph is defined, you can
debug it locally, save it, or deploy it to the cluster with a
single API call or SDK command, as shown here:

# Configure (add a GPU and increase readiness timeout): 

serving_function.with_limits(gpus=1) 

serving_function.spec.readiness_timeout = 3000 

 

# Save the function to the project: 

project.set_function(serving_function, with_repo=True) 

project.save() 

 

# Deploy the serving function: 

deployment = mlrun.deploy_function("serving")

To test the deployed application, you can use the invoke()
method and specify the API parameters (the text question
and model parameters, in this case). The first example (see
Example 8-7) demonstrates a simple question and answer.
Example 8-7. Test the application pipeline

generate_kwargs = {"max_length": 150, "temperature": 0.9, "top_p": 0.5, 

                   "top_k": 25, "repetition_penalty": 1.0} 

 

response = serving_function.invoke( 

    path='/predict', body={"prompt": "What is MLRun?", **generate_kwargs} 

) 

print(response["outputs"])



MLRun is an open source MLOps orchestration framework
that streamlines the automation of machine learning
projects. MLRun empowers data scientists, data engineers,
and DevOps teams to develop, deploy, and manage machine
learning applications faster and more accurately. MLRun
integrates with popular tools such as Jupyter, PyCharm,
Spark, etc., and provides a robust set of built-in
orchestration and monitoring capabilities.
Example 8-8 sends a toxic question, and the model
responds with a controlled answer.
Example 8-8. Try the toxic language filter

response = serving_function.invoke( 

    path='/predict', body={"prompt": "You are stupid!", **generate_kwargs} 

) 

print(response["outputs"])
This bot does not respond to toxicity.

Adding a web interface

You can use Gradio to rapidly create a UI to demo the
behavior of your chat application pipeline. Example 8-9
defines a chat window and control widgets.
Example 8-9. Create the Gradio interactive UI

import json 

 

import gradio as gr 

import requests 

 

# Get the serving url to send requests to: 

serving_url = deployment.outputs["endpoint"] 

 

 

def generate(prompt, temperature, max_length, top_p, top_k, repetition_penalty): 

    # Build the request for our serving graph: 

    inputs = { 

        "prompt": prompt, 

        "temperature": temperature, 

        "max_length": max_length, 

        "top_p": top_p, 

        "top_k": top_k, 

        "repetition_penalty": repetition_penalty, 



    } 

 

    # call the serving function with the request: 

    resp = requests.post(serving_url, data=json.dumps(inputs).encode("utf-8")) 

 

    # Return the response: 

    return resp.json()["outputs"] 

 

 

# Set up a Gradio frontend application: 

with gr.Blocks(analytics_enabled=False, theme=gr.themes.Soft()) as demo: 

    gr.Markdown( 

        """# LLM Playground 

Play with the `generate` configurations and see how they make the 

LLM's responses better or worse. 

""" 

    ) 

    with gr.Row(): 

        with gr.Column(scale=5): 

            with gr.Row(): 

                chatbot = gr.Chatbot() 

            with gr.Row(): 

                prompt = gr.Textbox( 

                    label="Subject to ask about:", 

                    placeholder="Type a question and Enter", 

                ) 

 

        with gr.Column(scale=1): 

            temperature = gr.Slider( 

                minimum=0, 

                maximum=1, 

                value=0.9, 

                label="Temperature", 

                info="Choose between 0 and 1", 

            ) 

            max_length = gr.Slider( 

                minimum=0, 

                maximum=1500, 

                value=150, 

                label="Maximum length", 

                info="Choose between 0 and 1500", 

            ) 

            top_p = gr.Slider( 

                minimum=0, 

                maximum=1, 

                value=0.5, 

                label="Top P", 

                info="Choose between 0 and 1", 



,

            ) 

            top_k = gr.Slider( 

                minimum=0, 

                maximum=500, 

                value=25, 

                label="Top k", 

                info="Choose between 0 and 500", 

            ) 

            repetition_penalty = gr.Slider( 

                minimum=0, 

                maximum=1, 

                value=1, 

                label="repetition penalty", 

                info="Choose between 0 and 1", 

            ) 

            clear = gr.Button("Clear") 

 

    def respond( 

        prompt, 

        chat_history, 

        temperature, 

        max_length, 

        top_p, 

        top_k, 

        repetition_penalty, 

    ): 

        bot_message = generate( 

            prompt, temperature, max_length, top_p, top_k, repetition_penalty 

        ) 

        chat_history.append((prompt, bot_message)) 

 

        return "", chat_history 

 

    prompt.submit( 

        respond, 

        [prompt, chatbot, temperature, max_length, top_p, top_k, 

repetition_penalty], 

        [prompt, chatbot], 

    ) 

    clear.click(lambda: None, None, chatbot, queue=False)

See the resulting interactive window in Figure 8-18.
MLRun automated the packaging, delivery, and deployment
of the project. The project can be saved into a Git
repository along with the code, workflows, and



configurations and be loaded into a staging or production
environment with a single command or API call. In
addition, MLRun has a glueless integration with CI/CD
systems such as GitHub Actions, Jenkins, and GitLab CI,
which allow full automation and CI/CD without additional
coding or DevOps activities.

Figure 8-18. Gradio application for using the model

Conclusion

In this chapter we delved into some of the most cutting-
edge and transformative ML tech: DL and LLM projects.
We started out with an overview of the DL training process,
which is based on distributed deep learning. Then we
discussed the data used for training, important
considerations when labeling it, and the monitoring
process.
We then described the innovation in foundation models,
GenAI, and LLMs and dedicated a special section to
discussing their risks. Finally, we explained in great detail
how to build an MLOps pipeline for using and customizing
LLMs. This includes data preparation, model tuning, and



model evaluation. This chapter also included an extensive
demonstration of how such a pipeline operates.

Critical Thinking Discussion

Questions

What are the two main methods for distributed deep
learning and when should you use each one?

What are the risks of data labeling and how can you
overcome them?

What are the main considerations for buying DL
models?

How can organizations ensure the authenticity of data
trained on GenAI?

What is the value of model tuning?

Exercises

Choose an open source data labeling solution and build
a data labeling plan that would employ it.

Create a mockup process for ensuring the training data
isn’t toxic, biased, or poses a security risk.

Download an LLM model from Hugging Face (if you
don’t have one) and fine-tune it with content from your
favorite website.

Write the code for risk-free model training.

Build an application and model serving pipeline for
your model from the third bullet.



Chapter 9. Solutions for

Advanced Data Types

This chapter delves into the intricacies of data analysis and
interpretation, focusing on modern techniques and
approaches in time series analysis, NLP, video, and image
classification. It aims to comprehensively discuss advanced
data types and their applications in tackling complex
problems for seasoned data scientists as well as beginners.
The chapter discusses the challenges and options
associated with data processing and model selection,
particularly concerning time series data. We’ll explore
different types of solutions, weigh the trade-offs, and
discuss specific considerations in the field of MLOps. We
will broaden our scope to include various platforms such as
AWS, GCP, Hugging Face, and Apple’s CreateML. Each
platform offers a unique set of tools and services that can
effectively cater to different needs and preferences. By
providing an unbiased comparison of these platforms and
discussing their pros and cons, we aim to help you make a
well-informed decision.
To get a sense of the variety of data types MLOps
developers use, look at Apple’s CreateML interface in
Figure 9-1. As illustrated, there are categories in Image,
Video, Motion, Sound, Text, and Tables.
We’ll return to CreateML toward the end of the chapter.



Figure 9-1. Apple’s CreateML Project Types

ML Problem Framing with Time Series

An inflection point critical decision when dealing with time
series data is whether to use ML or to use traditional
statistical techniques. Time series data, which involves
observations of a particular variable over a specific period,
is widely used in many fields, including finance, economics,
and weather forecasting. Traditional statistical techniques
such as autoregressive integrated moving average
(ARIMA), error-trend-seasonality (ETS), and Holt-Winters
have long been used to analyze and forecast time series
data.
One way to phrase this dilemma is to call it machine
learning problem framing. Google refers to these steps as

https://oreil.ly/glJUh


“determining whether ML is the right approach for solving
a problem” and then, if suitable, “framing the problem in
ML terms.”

NOTE

If you want to learn more about problem framing in the context of
machine learning on the Google Cloud Platform, Noah has a
certification course on the topic at Google Professional Machine
Learning Engineer Course 2023.

Nevertheless, ML brings several advantages over
traditional statistical methods when analyzing time series
data:
Nonlinearity

ML models, especially techniques like neural networks, can
capture complex nonlinear relationships in the data that
traditional statistical methods might miss. Time series data
often exhibit nonlinear patterns, and ML can handle these
complexities with nuance.

Interactions among variables

ML algorithms can identify and leverage complex
interactions among multiple input features in ways that can
be challenging for traditional statistical techniques. For
instance, when the interaction of various variables
influences the output, ML can model these relationships
more effectively.

Automated feature engineering

Some ML techniques, like DL, can automatically extract
relevant features from the data, reducing the need for
manual feature engineering. This capability can be

https://oreil.ly/vUMCe


particularly beneficial when dealing with high-dimensional
data.

Signal to noise

ML algorithms are more immune to noise and anomalies in
the data. While outliers or irregularities can significantly
impact traditional statistical techniques, ML models can
handle these challenges more effectively.

Scalability

ML techniques can scale more effectively to large datasets
and use emerging technologies like custom silicon for ML.
Traditional statistical methods can become computationally
intractable as the size of the dataset increases, whereas ML
models, especially those designed for big data environments,
can handle large volumes of data more efficiently.

The choice between traditional statistical techniques and
machine learning sometimes needs to be clarified. It
depends on the specific requirements of the problem, the
nature of the data, the resources available, and even the
cloud platform or data platform you have immediate access
to. A hybrid approach that combines elements of both
might be the best solution in some cases.



ANALYZING SOCIAL MEDIA INFLUENCE

PATTERNS

Coauthor Noah Gift has a substantial background using
data to interpret and forecast patterns, especially in
sports performance and social media influence. He often
leverages standard tools like Excel for these tasks,
demonstrating that sophisticated insights can derive
from off-the-shelf technologies.
In a conference talk for O’Reilly, Gift explored the
relationship between social influence and the NBA. By
tracking and analyzing social media data related to NBA
players and games, he uncovered patterns in how
athlete performance and team outcomes can drive social
media trends and, in turn, how these trends can
influence the perception of the sport.
Excel was an instrumental tool in this analysis. With its
robust data manipulation features and the ability to
apply a variety of statistical and forecasting techniques,
Gift was able to draw meaningful insights from the
available data. When combined with an understanding
of the data and the right analytical approach, Excel’s
capabilities can be a powerful tool for data-driven
decision making in various contexts without needing to
dive into building a machine learning solution.

With some theory out of the way, let’s look at AWS-specific
solutions, followed by GCP for time series problems.

Navigating Time Series Analysis with AWS

Time series analysis, a method for analyzing data patterns
over time, is critical to understanding and forecasting

https://oreil.ly/QipVF


trends. While these techniques can be applied using
various tools and platforms, in this section we focus on how
AWS can facilitate this process.
We will explore methods such as ARIMA and Forecast
DeepAR+ for trend analysis and forecasting, which AWS
supports. These techniques help decipher insights from
time series data, guiding predictions for future outcomes.
The choice between AWS and other platforms, or even
deciding to build a custom solution, will depend on factors
like cost, complexity, scalability requirements, and your
team’s expertise.
AWS offers several services that perform time series
analysis, each accessible through Python. The three
primary ways to interact with AWS are:

AWS Management Console

AWS Command Line Interface (CLI)

AWS Software Development Kit (SDK)

Each method provides unique advantages, and choosing
the right one depends on your use case.
The AWS Management Console is a web-based graphical
interface that provides a simplified way to interact with
AWS services. You can use the console to perform tasks
such as launching EC2 instances, creating S3 buckets,
managing IAM users, and using AI/ML services like
Amazon Forecast.
The AWS CLI allows you to perform AWS tasks from the
command line. The AWS CLI provides a unified way to
interact with AWS services, and it is helpful for tasks such
as managing EC2 instances, uploading files to S3, and
doing a forecast. In many ways, the CLI is ideal for doing

https://oreil.ly/J2mu-
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high-level experiments, as shown in the following example
that creates an ARIMA forecast:

$ aws forecast create-predictor \ 

  --predictor-name "time-series-forecast-predictor" \ 

  --algorithm-arn "arn:aws:forecast:::algorithm/ARIMA" \ 

  --forecast-horizon 7 \ 

  --perform-auto-ml "false" \ 

  --input-data-config '{"DatasetGroupArn": \ 

  $(aws forecast list-dataset-groups | jq '.DatasetGroups[] \ 

  | select(.DatasetGroupName == "time-series-forecast-dataset-group") \ 

  | .DatasetGroupArn'), "SupplementaryFeatures

NOTE

The AWS CLI is recognized as a highly effective tool for managing
AWS resources, providing outstanding efficiency and flexibility
compared to the console or other GUIs. These strengths are due to
its ability to simply and rapidly execute complex commands while
providing granular control over AWS resources through a
comprehensive set of commands and options. The AWS CLI is
optimized for scalability and integrates easily with other AWS
services, making it well suited for managing large-scale deployments
and complex infrastructures. Try CLI when exploring a service with
complex inputs; it will often be more straightforward.

The AWS SDK is a collection of libraries and tools for
developing applications interacting with AWS services. It
provides a programmatic way to interact with AWS services
and supports multiple programming languages, including
Java, .NET, PHP, Python, and Rust. It includes the
following:
Amazon Forecast

A fully managed service that uses machine learning
algorithms to provide accurate forecasts based on historical
time series data:

https://oreil.ly/UKBtn
https://oreil.ly/OnM8a


import boto3 

 

forecast = boto3.client('forecast') 

response = forecast.create_dataset_group( 

    DatasetGroupName='forecast_dataset_group', 

    Domain='CUSTOM', 

)

Amazon QuickSight

A business intelligence service that provides fast and easy-
to-use data visualization and insights for time series data:

import boto3 

 

quicksight = boto3.client('quicksight') 

response = quicksight.create_data_source( 

    AwsAccountId='AWS_ACCOUNT_ID', 

    DataSourceId='data_source_id', 

    Name='data_source_name', 

    Type='ADOBE_ANALYTICS', 

)

Amazon Kinesis Data Streams

A service for streaming real-time data that is used for time
series analysis and visualization:

https://oreil.ly/M_Hju
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import boto3 

 

kinesis = boto3.client('kinesis') 

response = kinesis.create_stream( 

    StreamName='kinesis_stream_name', 

    ShardCount=1, 

)

Amazon Kinesis Data Analytics

A service for real-time data streams used for time series
analysis:

import boto3 

 

kinesis_analytics = boto3.client('kinesisanalytics') 

response = kinesis_analytics.create_application( 

    ApplicationName='kinesis_analytics_app', 

    RuntimeEnvironment='SQL-1.0', 

)

Amazon SageMaker

A service for building, training, and deploying machine
learning models, including time series models:

import boto3 

 

sagemaker = boto3.client('sagemaker') 

https://oreil.ly/8FTyZ
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response = sagemaker.create_notebook_instance( 

    NotebookInstanceName='notebook_instance_name', 

    InstanceType='ml.t2.medium', 

)

Amazon DynamoDB

A NoSQL database service that stores and retrieves time
series data:

import boto3 

 

dynamodb = boto3.client('dynamodb') 

response = dynamodb.create_table( 

    TableName='dynamodb_table_name', 

    KeySchema=[ 

        { 

            'AttributeName': 'attribute_name', 

            'KeyType': 'HASH' 

        }, 

    ], 

    AttributeDefinitions=[ 

        { 

            'AttributeName': 'attribute_name', 

            'AttributeType': 'S' 

        }, 

    ], 

https://oreil.ly/FUnjT


    ProvisionedThroughput={ 

        'ReadCapacityUnits': 5, 

        'WriteCapacityUnits': 5 

    } 

)

Amazon EMR

A service for processing big data useful for time series
analysis and visualization:

import boto3 

 

emr = boto3.client('emr') 

response = emr.run_job_flow( 

    Name='emr_cluster_name', 

    Instances={ 

        'InstanceGroups': [ 

            { 

                'Name': 'master_instance_group', 

                'InstanceRole': 'MASTER', 

                'InstanceType': 'm5.xlarge', 

                'InstanceCount': 1, 

            }, 

        ], 

        'Ec2KeyName': 'ec2_key_name', 

        'KeepJobFlowAliveWhenTerminationProtected': False, 

https://oreil.ly/m8FQk


    }, 

    JobFlowRole='EMR_EC2_DefaultRole', 

    ServiceRole='EMR_DefaultRole', 

    VisibleToAllUsers=True, 

    Applications=[ 

        { 

            'Name': 'Spark' 

        }, 

    ], 

)

These AWS services support time series analysis and can
be used to build and deploy scalable time series solutions
for MLOps projects.

Diving into Time Series with DeepAR+

DeepAR+, an AWS machine learning service, harnesses the
power of deep learning algorithms for time series
forecasting. Leveraging deep learning in time series can
offer unique capabilities, as discussed earlier in this
chapter. DeepAR+ excels in managing large-scale, intricate
time series data, providing valuable predictions for various
use cases, from demand forecasting to traffic and
equipment maintenance forecasting.
DeepAR+ builds upon the DeepAR algorithm, an advanced
deep learning algorithm developed specifically for time
series forecasting. Remember our definition of “signal to
noise” on the limitations of statistical techniques with
missing data or outliers earlier in the chapter? DeepAR+

https://oreil.ly/sPOoD


steps in here with its feature to handle data with missing
values and irregular intervals.
To employ DeepAR+, you must upload your time series data
to Amazon S3 and create a DeepAR+ model. Beyond
predictions, DeepAR+ also generates confidence intervals
for its forecasts, enabling organizations to perceive the
range of potential outcomes and make more informed
decisions.
The workflow in Figure 9-2 illustrates each step using the
AWS CLI interface to build up to the final forecast.

Figure 9-2. Deep AR+ Forecast Workflow

The following code examples mirror this process: you can
replace them with your time series dataset and adjust for
future AWS CLI changes. Through these examples, we
establish an S3 bucket, upload the time series data to S3,
create a DeepAR+ dataset, import the data into the
DeepAR+ dataset, create a DeepAR+ predictor, and finally,
create a forecast using the DeepAR+ predictor:

1. Create an S3 bucket to store the data:

$ aws s3 mb s3://deepar-example-bucket

2. Upload the time series data to S3:

$ aws s3 cp time-series-data.csv s3://deepar-example-bucket/data.csv

3. Create a DeepAR+ dataset following the pattern ^[a-zA-
Z][a-zA-Z0-9_]*:



$ aws forecast create-dataset \ 

  --dataset-name "DeepARExampleDataset" \ 

  --data-frequency "H" \ 

  --dataset-type "TARGET_TIME_SERIES" \ 

  --domain "CUSTOM" \ 

  --schema '{"Attributes":[{"AttributeName":"timestamp",\ 

  "AttributeType":"timestamp"},{"AttributeName":"target_value",\ 

  "AttributeType":"float"},{"AttributeName":"item_id",\ 

  "AttributeType":"string"}]}'

4. Import the time series data into the DeepAR+ dataset:

$ aws forecast create-dataset-import-job \ 

  --dataset-import-job-name "DeepARExampleDatasetImportJob" \ 

  --dataset-arn $(aws forecast list-datasets | \ 

  jq '.Datasets[] | select(.DatasetName == "DeepARExampleDatasett") | \ 

  .DatasetArn') \ 

  --data-source "S3" \ 

  --data-source-config '{"S3Config": {"Path": \ 

  "s3://deepar-example-bucket/data.csv", "RoleArn": \ 

  "arn:aws:iam::ACCOUNT_ID:role/ForecastRole"}}'

5. Create a DeepAR+ predictor:

$ aws forecast create-predictor \ 

  --predictor-name "DeeparExamplePredictor" \ 

  --algorithm-arn "arn:aws:forecast:::algorithm/Deep_AR_Plus" \ 

  --forecast-horizon 24 \ 

  --perform-auto-ml "false" \ 

  --input-data-config '{"DatasetGroupArn": 

    $(aws forecast list-dataset-groups | \ 

  jq '.DatasetGroups[] | select(.DatasetGroupName == 

    "DeepARExampleDatasetGroup") | \ 

  .DatasetGroupArn'), "SupplementaryFeatures": 



    [{"Name": "item_id", "Value": "item1"}, \ 

  {"Name": "timestamp", "Value": "yyyy-MM-dd HH:mm:ss"}]}' \ 

  --featurization-config '{"ForecastFrequency": "H"}'

6. Create a forecast using the DeepAR+ predictor:

# create a forecast using the DeepAR+ predictor 

$ aws forecast create-forecast \ 

  --forecast-name "DeeparExampleForecast" \ 

  --predictor-arn $(aws forecast list-predictors | \ 

  jq '.Predictors[] | select(.PredictorName == 

    "DeeparExamplePredictor") | \ 

  .PredictorArn')

The critical insight here is that the CLI offers an accessible
entry point for exploring cloud-based time series
forecasting, often proving simpler than starting with a
notebook or SDK when leveraging AWS ML and AI services.
We’ll pivot next to a contrasting methodology: utilizing SQL
through Google BigQuery. This shift introduces an
alternative avenue for our exploration, extending our
toolkit beyond notebooks and Python.

Time Series with the GCP BigQuery and SQL

One platform that takes time series analysis flexibility to
another level is Google BigQuery. The trade-offs discussed
earlier are less challenging because you can use both
statistical techniques and machine learning techniques
side-by-side. BigQuery is unique in modeling time series
data for several reasons:
Scalability

BigQuery handles large-scale data, making it ideal for
simultaneously analyzing millions of time series. It can



process petabytes of data quickly, making it possible to
analyze and forecast trends across multiple, large numbers
of time series columns.

Multiple time series forecasting

BigQuery ML allows forecasting multiple time series with a
single query. This capability is advantageous when dealing
with a vast quantity of time series variables, as it eliminates
the need for running individual queries for each one.

ARIMA and ARIMA_PLUS models

BigQuery ML supports ARIMA models, particularly suited to
time series data. The ARIMA_PLUS model also includes
holiday effects and can change model behavior based on
external factors, which is quite beneficial for certain types of
time series data.

Integration with Google Cloud

BigQuery is part of the GCP, allowing seamless integration
with other GCP services. This synergy makes it easier to
incorporate time series analysis into broader data
workflows.

SQL-based ML

BigQuery uses SQL, a language familiar to many data
professionals, for machine learning tasks. The SQL language
lowers the entry barrier for those who want to build time
series models but who don’t have a strong ML or
programming background. Additionally, many people prefer
SQL to query data instead of Python or R.

Evaluation tools



BigQuery provides built-in functions like ML.EVALUATE for
evaluating the accuracy of your time series forecasts. This
capability simplifies the process of assessing model
performance and making necessary adjustments.

This tutorial on Citi Bike trips in New York City
demonstrates how to efficiently train time series models
and perform multiple time series forecasts with a single
query using BigQuery. The tutorial utilizes the New York
City Citi Bike trip dataset hosted on GCP and the Iowa
liquor sales dataset. Key steps include:

Creating a dataset in BigQuery to store the ML model

Creating the time series to forecast using the Citi Bike
dataset

Simultaneously forecasting multiple time series with
default parameters speeds up the process compared to
using multiple CREATE MODEL queries

Evaluating forecasting accuracy for each time series
using the ML.EVALUATE function

Evaluating the overall forecasting accuracy for all the
time series

The gist of this style is the creation of a SQL query that
includes the model_type = 'ARIMA_PLUS' shown here:

CREATE OR REPLACE MODEL bqml_tutorial.nyc_citibike_arima_model_default 

OPTIONS 

  (model_type = 'ARIMA_PLUS', 

   time_series_timestamp_col = 'date', 

   time_series_data_col = 'num_trips', 

   time_series_id_col = 'start_station_name' 

  ) AS 

SELECT * 

https://oreil.ly/7y2va


FROM bqml_tutorial.nyc_citibike_time_series 

WHERE date < '2016-06-01'

Finally, run ML.EVALUATE to check the accuracy of the created
forecast:

SELECT * 

FROM 

  ML.EVALUATE(MODEL bqml_tutorial.nyc_citibike_arima_model_default, 

              TABLE bqml_tutorial.nyc_citibike_time_series, 

              STRUCT(7 AS horizon, TRUE AS perform_aggregation))

Once you get the hang of using SQL to forecast time series
data sets using BigQuery, it becomes easy to chain together
a complete pipeline ranging from the original problem
formation to data ingestion, to modeling, to the conclusion.
Let’s look at how to do those steps using the BigQuery
examples found here. First, let’s view the total Wikipedia
page views but filter out queries we don’t query about, like
the front page:

SELECT 

  views, 

  title 

FROM 

  `bigquery-public-data.wikipedia.pageviews_2023` 

WHERE 

  DATE(datehour) = "2023-04-18" 

  AND NOT (title LIKE "Main_Page" 

    OR title LIKE "Special:%" 

    OR title LIKE "Wikipedia:%" 

    OR title LIKE "Wikidata:%" 

    OR title LIKE "Cookie_(informatique)" 

    OR title LIKE "Wikipédia:Accueil_principal" 

    OR title LIKE "メインページ") 

ORDER BY 

  views DESC 

LIMIT 

  1000

https://oreil.ly/D6Q_A


You can see the Google BigQuery interface in Figure 9-3;
notice how you can also “explore the data;” this option even
allows you to export it into a Colab notebook.

Figure 9-3. Top Wikipedia pageviews

The code for Colab with visualization follows; notice how
easy it is to convert the results of the previous query into a
DataFrame that we chart with seaborn.

from google.colab import auth 

from google.cloud import bigquery 

from google.colab import data_table 

 

project = 'platinum-lead-379722'  # Project ID 

location = 'US'  # Location 

client = bigquery.Client(project=project, location=location) 

data_table.enable_dataframe_formatter() 

auth.authenticate_user() 

 

job = client.get_job('bquxjob_3f8ffc04_18795d1ee67')  # Job ID 

print(job.query) 

 

results = job.to_dataframe() 

 

 

# Group by title and sum the views 



results = results.groupby("title").sum().reset_index() 

 

# Sort by views in descending order 

results = results.sort_values(by="views", ascending=False) 

 

# Print the result 

print(results.head(10)) 

 

# Now visualize 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Visualize 

# Select top 25 pages by views 

top25 = results.head(25) 

 

# Create a bar plot using seaborn 

sns.set(style="whitegrid") 

plt.figure(figsize=(12, 8)) 

ax = sns.barplot(x="views", y="title", data=top25) 

ax.set_title("Top 25 Most Viewed Wikipedia Pages on 2023-04-18") 

ax.set_xlabel("Number of Views") 

ax.set_ylabel("Title") 

plt.show()

Figure 9-4 shows the results.

Figure 9-4. Top Wikipedia pageviews chart



Google BigQuery lets you run an entire pipeline for time
series data that fits within an MLOps workflow via SQL
queries.

Build Versus Buy for MLOps NLP

Problems

NLP is ubiquitous in organizations looking to implement
ML solutions. There are many ways to integrate solutions
with NLP, including building custom models from scratch
or purchasing pretrained models from vendors.
As language models become more sophisticated, deciding
whether to build or buy has significant implications for
businesses. This decision impacts cost, resources, time,
customization, and control.
This section delves into the considerations surrounding this
decision in the context of LLMs. These models, trained on
vast amounts of data, have shown an impressive ability to
analyze and generate human-like text, making them a
potent tool for many applications.
The build versus buy decision in the context of LLMs is
especially salient, given their resource requirements for
training and the expertise needed for customization. We
will explore these and other factors to provide a framework
for making this critical decision in your enterprise’s MLOps
strategy.

Build Versus Buy: The Hugging Face

Approach



In the age of LLMs, Hugging Face has emerged as an
influential player. Its hub acts as a repository for ML,
offering models, datasets, and demos. It’s a one-stop shop
for ML resources, akin to BigQuery’s expansive data
warehouse.
But what if you’re unsure whether to build your solution or
leverage Hugging Face’s offerings? Let’s delve into this
dilemma:
Models

Hugging Face provides a wide range of pretrained models
for NLP, vision, and audio tasks. Think of it as a ready-to-use
AWS library but focused on ML. Model cards provide
information about limitations, biases, tasks, and languages.
They’re like BigQuery’s schema descriptions but for ML
models.

Datasets

Similar to BigQuery’s vast datasets, Hugging Face hosts over
5,000 datasets in over 100 languages. Dataset Cards and
Dataset Previews offer insights into the data, just as
BigQuery provides table previews.

Spaces

Hugging Face Spaces are interactive apps to showcase your
models. Imagine Spaces as an AWS Lambda function but for
demoing your ML models. You can create your own space,
upgrade it for GPU support, and even showcase it at
conferences or meetings.

Organizations

Similar to AWS Organizations, Hugging Face provides a
feature for grouping accounts and managing datasets,



models, and Spaces. This feature enables better
collaboration and resource management across teams and
projects.

Security

Hugging Face has robust security features, similar to AWS’s
IAM roles and BigQuery’s access control. User Access Tokens,
access control for organizations, commit signing with GPG,
and malware scanning ensure your work is secure.

Hugging Face has emerged as a powerful and adaptable
platform for executing ML workflows. Building your
solution from scratch or harnessing an existing one is a
tough choice. Hugging Face achieves a desirable
equilibrium between ready-to-use resources and
customization opportunities that cater to your
requirements by allowing you to use a model as is or fine-
tune it. Numerous examples of Hugging Face exist
throughout this book for your perusal. However, to avoid
redundancy and conserve space, we will forego adding
another Hugging Face example here.

Exploring Natural Language

Processing with AWS

Before we dive into a hands-on example, let’s first set the
context for the role of NLP within MLOps. NLP is a branch
of AI that helps machines analyze, interpret, and generate
human language. In MLOps, NLP can play a crucial role in
various tasks, such as sentiment analysis, text
classification, language translation, and information
extraction. Organizations can make more data-driven



decisions, improve customer experiences, and optimize
business processes by automating these tasks.
Similar to our exploration of time series analysis, we’ll
examine how AWS provides a comprehensive suite of
ready-to-use solutions for NLP tasks, offering an alternative
to platforms like Hugging Face. AWS’s services enable
rapid implementation of NLP tasks, making it a practical
choice for MLOps workflows.
Now, let’s get our hands dirty with some NLP. Start by
downloading the Sentiment Labelled Sentences dataset
from the UCI Machine Learning Repository. After
downloading, open the yelp_labelled.txt file. Next, navigate
to the AWS Comprehend interface. To see AWS
Comprehend in action, paste a row from the
yelp_labelled.txt file into the AWS Comprehend console, as
shown in Figure 9-5. This platform allows you to quickly
prototype and visualize NLP tasks such as sentiment
analysis. The shift from the traditional notebook or Python
SDK methodologies to a more direct, user-friendly interface
underscores AWS’s commitment to providing practical and
accessible tools for NLP tasks within MLOps workflows.
The figure provides a graphical representation of the AWS
Comprehend console interface. This web-based user
interface allows you to interact with AWS Comprehend
without requiring programming or command-line
interactions. You can input text data directly into the
console, which the service analyzes to identify key
sentiment metrics.

https://oreil.ly/WOcO0
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Figure 9-5. AWS Comprehend sentiment analysis

A sentence from the Yelp-labelled dataset enters into the
console in this example. The console’s output shows the
sentiment analysis results from AWS Comprehend,
demonstrating the primary sentiments detected (Positive,
Negative, Neutral, or Mixed), and the confidence scores
associated with each emotion. These scores reflect the
probability assigned by the model for each sentiment
category. This visualization is an excellent example of how
AWS Comprehend lets you quickly prototype and test
sentiment analysis tasks, making it a valuable tool for



MLOps. It shows the ease of transitioning from data input
to insightful results, all within a user-friendly, intuitive
interface.

NOTE

Sentiment analysis, or opinion mining, is a facet of NLP concerned
with predicting words’ emotional tone. This inference evaluates
attitudes, opinions, and emotions expressed in text data. This
technique is common in areas like the voice of the customer (VoC)
analysis, brand monitoring, and social media monitoring. It’s a
powerful tool for understanding public sentiment, aligning closely
with the concepts we’ve explored around time series analysis and
forecasting. When paired with ML services like AWS Comprehend or
tools like Hugging Face, sentiment analysis can provide valuable
insights into trends, helping organizations make informed decisions.
Just as we used AWS CLI for time series forecasting, AWS
Comprehend can also be leveraged through similar means for
sentiment analysis, underscoring the versatility of these platforms.

We previously utilized AWS CLI to conduct time series
forecasting. Another service, AWS Comprehend, can
perform sentiment analysis using the CLI or SDK, further
demonstrating the adaptability and utility of these
pretrained model services in the MLOps context.
Now, let’s move to the hands-on part. It’s crucial to
understand that experimenting with the AWS Console and
the Python SDK provides a valuable feedback loop. This
iterative process allows you to better understand the ins
and outs of AWS services, making integrating them into
your MLOps workflows easier. An excellent example of this
is as follows:

import boto3 

 

# initialize comprehend client 

comprehend = boto3.client(service_name='comprehend', 



  region_name='your_aws_region') 

 

# input text for sentiment analysis 

text = 'Crust is not good.' 

 

# detect the sentiment of the input text 

response = comprehend.detect_sentiment(Text=text, LanguageCode='en') 

 

# print the sentiment score 

print(response['SentimentScore'])

Let’s use this approach again to start translating some text,
first with the console as shown in Figure 9-6. That exact
string of text translates from English to Portugal
Portuguese.

Figure 9-6. AWS Translate

Next, let’s build several Python functions to help us
translate text: the code lives in this repository. First, let’s
make a function that lists the available languages to build a
command-line tool that gives the end user many options:

def list_languages(): 

    """List available languages""" 

 

    client = boto3.client("translate") 

    result = client.list_languages() 

    return result["Languages"]

https://oreil.ly/oykRQ


The following function translates text:

def translate_text(text, source, target): 

    """Translate text from source to target language""" 

 

    client = boto3.client("translate") 

    result = client.translate_text( 

        Text=text, SourceLanguageCode=source, TargetLanguageCode=target 

    ) 

    return ( 

        result["TranslatedText"], 

        result["SourceLanguageCode"], 

        result["TargetLanguageCode"], 

    )

Next, build a click command-line tool with two
subcommands where each subcommand maps to the
functions:

#!/usr/bin/env python 

 

from awstools.translatelib import translate_text, list_languages 

import click 

from random import choices 

 

 

# build out click group 

@click.group() 

def cli(): 

    """A simple command line interface for AWS Translate""" 

 

 

# build out click command to list languages 

@cli.command("languages") 

def cli_list_languages(): 

    """List available languages""" 

 

    colors = ["red", "green", "blue", "yellow", "magenta", "cyan", "white"] 

    languages = list_languages() 

    for language in languages: 

        # randomly select a color 

        color = choices(colors) 

        # print the language name in the randomly selected color 

        result = f"{language['LanguageName']}, {language['LanguageCode']}" 

        click.secho(result, fg=color[0]) 

https://oreil.ly/dYtAB


 

 

@cli.command("translate") 

@click.argument("text") 

@click.option("--source", default="en", help="Source language") 

@click.option("--target", default="es", help="Target language") 

def translate(text, source, target): 

    """Translate text from source to target language 

 

    Example: 

    ./translator_cli.py translate "Hello World" --source en --target es 

 

    """ 

 

    text, source, target = translate_text(text, source, target) 

    # use colored text to highlight the source and target languages 

    click.secho("Source: {}".format(source), fg="blue") 

    click.secho("Target: {}".format(target), fg="yellow") 

    click.secho(text, fg="white") 

 

 

# run the cli 

if __name__ == "__main__": 

    # pylint: disable=no-value-for-parameter 

    cli()

Language translation, an integral part of NLP, is another
task that MLOps professionals often encounter. It is
beneficial in multilingual data environments, where
understanding and translating data across languages are
critical for global data-driven decision making. AWS,
Google Cloud, and other cloud services offer solutions for
this, but the choice of tool largely depends on your specific
needs and the context of your project.
The colored output in Figure 9-7 showcases the diversity of
languages supported by our chosen tool. This visualization
was created using a simple trick of randomizing the
alternate lines to give a rainbow color effect (note that
print readers will need to run this yourself to see the colors
on a terminal).



Figure 9-7. Output of the translation command

Next, we demonstrate a translation example from the
command line using a custom-built Python tool. The
following command translates the phrase “Crust is not
good” from English (en) to Portuguese (pt-PT):

python translator_cli.py translate --source en --target pt-PT "Crust is not 

good"

The translated text output is shown in Figure 9-8, again
with the customized terminal work.

Figure 9-8. Translated text

This example illustrates how easy it is to automate
language translation in an MLOps context, emphasizing the
role of command-line tools in facilitating these tasks. While
focusing on a custom tool, remember that cloud-based



services offer similar functionalities, often with more robust
and scalable solutions. The choice between using a custom
tool or a cloud service depends on your specific
requirements and the scale of your data.

Exploring NLP with OpenAI

OpenAI, a leading NLP player, provides robust solutions
that can significantly augment your MLOps workflow.
Leveraging their readily available tools, we will explore
constructing an “off-the-shelf” MLOps solution using
OpenAI’s Python SDK. This CLI tool exemplifies how pre-
existing solutions can effectively employ in an MLOps
context.
The following code does a few things: it grabs a URL,
parses the text, and summarizes it. Then it acts like a
question/answer bot:

#!/usr/bin/env python 

 

import openai 

import os 

import click 

import urllib.request 

from bs4 import BeautifulSoup 

 

 

def extract_from_url(url): 

    req = urllib.request.Request( 

        url, 

        data=None, 

        headers={ 

            "User-Agent": ("Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) " 

                           "AppleWebKit/537.36 (KHTML, like Gecko) " 

                           "Chrome/35.0.1916.47 Safari/537.36") 

        }, 

    ) 

    html = urllib.request.urlopen(req) 

    parser = BeautifulSoup(html, "html.parser") 

https://oreil.ly/hzRzU
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    text = ''.join(paragraph.text for paragraph in parser.find_all("p")) 

    return text[:1500]  # return a max of 1500 characters 

 

 

def submit_to_openai(text): 

    openai.api_key = os.getenv("OPENAI_API_KEY") 

    result = openai.Completion.create( 

        prompt=text, 

        temperature=0, 

        max_tokens=300, 

        top_p=1, 

        frequency_penalty=0, 

        presence_penalty=0, 

        model="text-davinci-002", 

    ) 

    return result["choices"][0]["text"].strip(" \n") 

 

 

def summarize(text): 

    return submit_to_openai(f"{text}\n\nTl;dr") 

 

 

def submit_question(text): 

    return submit_to_openai(text) 

 

 

@click.group() 

def cli(): 

    """An OpenAI tool to answer questions""" 

 

 

@cli.command("question") 

@click.argument("text") 

def question(text): 

    print(submit_question(text)) 

 

 

@cli.command("summarize") 

@click.argument("url") 

def summarize_url(url): 

    print(summarize(extract_from_url(url))) 

 

 

if __name__ == "__main__": 

    cli()



First, let’s parse a website, then use OpenAI to summarize
it:

./openaiAnswerbotCli.py summarize \ 

"https://en.wikipedia.org/wiki/2020_Summer_Olympics"

The utility of OpenAI in the realm of NLP is indeed
profound, as the tool significantly simplifies many complex
tasks. OpenAI is an invaluable resource for both developing
and seasoned MLOps professionals. The following example
showcases the tool’s ability to summarize lengthy text
concisely:

"The 2020 Summer Olympics were postponed to 2021 due to the global COVID-19 

pandemic. The event was largely held behind closed doors with no public 

spectators permitted due to the declaration of a state of emergency in the 

Greater Tokyo Area in response to the pandemic. The Games were the most 

expensive ever, with total spending of over $20 billion."

Other tools in the market also offer similar capabilities,
such as AWS Comprehend, Google Cloud’s Natural
Language API, and Microsoft’s Azure Text Analytics. Each
tool has its strengths and weaknesses, and the choice
between them often boils down to your project’s specific
requirements, budget, and comfort level with the
respective platforms.
OpenAI stands out due to its powerful machine learning
models like GPT-4 and user-friendly Python SDK, making it
accessible for developers with varying levels of expertise.
Its ability to generate human-like text makes it an
exceptional tool for summarizing text, developing content,
and answering context-based questions.
However, while OpenAI simplifies many tasks, it doesn’t
negate the need for a deeper understanding of NLP and its
underlying principles. A strong foundation in NLP will



enable you to leverage OpenAI’s capabilities more
effectively and tailor its use to your specific needs.
Next, we’ll explore another intriguing aspect of OpenAI: its
capabilities for image generation.

Video Analysis, Image Classification,

and Generative AI

OpenAI’s repertoire also includes a remarkable tool called
DALL·E 2. This model leverages the power of AI to
generate images from textual descriptions, demonstrating a
significant leap in AI image generation. It’s essentially an
artist at your command, creating visuals from mere
sentences.
DALL·E 2’s capacity to translate text into visual
representations can be valuable in numerous MLOps
scenarios. For instance, one use case is to generate data
for training other models, visualizing concepts for better
understanding, or creating illustrations for documentation
or presentations. Its capabilities can enhance data
understanding and exploratory data analysis and fuel
creativity in the MLOps space.
Its accessibility via the OpenAI API means it can
incorporate into existing MLOps workflows. This capability
facilitates swift prototyping and iterative development,
aligning with the principles of MLOps. Let’s now dive into
Python and code a solution that utilizes DALL·E 2 via the
OpenAI API:

#!/usr/bin/env python 

""" 

A command line tool that uses click to generate images using OpenAI. 

""" 

import click 
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from oalib.image_gen import generate_image 

 

# build a click command line tool that takes a prompt and returns an image 

@click.group() 

def cli(): 

    """A command line tool that uses click to generate images using OpenAI.""" 

 

 

@cli.command("generate") 

@click.option("--prompt", help="The prompt to use for image generation.") 

@click.option("--size", default="1024x1024", help="The size of the image.") 

def generate(prompt, size): 

    """Generate an image using OpenAI's API.""" 

    image_url = generate_image(prompt, size) 

    print(image_url) 

 

 

if __name__ == "__main__": 

    cli()

Next, let’s run this code example:

./imageGen.py generate --prompt "cats playing with dogs"

One of the exciting aspects of building your tools is their
level of customization and flexibility. You can tailor the AI
solutions to your specific needs, intertwining APIs with
your trained models or even integrating multiple APIs.
Combining AI solutions allows for creation of robust,
multifaceted systems that can handle complex tasks.
For MLOps professionals, this level of customization and
integration can be precious. For instance, DALL·E 2 can
generate synthetic data for model training or create visual
representations of complex concepts for better
comprehension. Combining different AI tools, you can build
a comprehensive system covering various aspects of the
MLOps lifecycle, from data collection and preprocessing to
model training and evaluation. The command prompt in
Figure 9-9 provides an example of what is achievable.



Figure 9-9. Cats playing with dogs

Image Classification Techniques with

CreateML

Let’s now look at a training-based prototyping tool, Apple’s
CreateML. We’ll undertake a high-level image classification
task to demonstrate its capabilities with a practical
example. You can download the cats and dogs dataset from
Kaggle or use any other image dataset you have.

https://oreil.ly/gU0Oi


As our final demonstration, Figure 9-10 shows how rapidly
a modest dataset of 200 images trains using these high-
level tools. It’s important to note that speed and efficiency
are paramount in MLOps. Quick model training allows for
more iterations, ultimately leading to better-performing
models. It also facilitates rapid prototyping and testing of
different models and hypotheses. This process underscores
the value of these high-level tools in an MLOps workflow,
as they can significantly streamline operations and increase
productivity.

Figure 9-10. Image classification

Instead of starting from scratch, an experienced MLOps
professional might use pretrained models, like those found
on Kaggle, as part of their workflow. These models have
been previously trained on extensive datasets and can
provide a solid foundation for many ML tasks.
Pretrained models can save considerable time and
computational resources, as training is primarily complete.
They can be instrumental when working with limited data,
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where training a complex model from scratch might be
challenging.
Figure 9-11 illustrates the various pretrained models
available on Kaggle. They cover a range of tasks from
image and text classification to regression and more. These
models can be easily integrated into your workflow, tuned
to your specific job, and deployed, making them a high-
level tool that bolsters efficiency in the MLOps landscape.

Figure 9-11. Availability of pretrained models on Kaggle

Composite AI

Composite AI is an emerging approach in artificial
intelligence that combines various AI technologies and
models to solve complex problems. It’s more than just the
sum of its parts; it’s about creating systems that can
leverage the strengths of various AI techniques, such as
NLP, image recognition, and machine learning, to deliver
more comprehensive and practical solutions.



In the context of MLOps, Composite AI can be a game-
changer. It allows for developing more sophisticated
models that can handle multifaceted tasks and significantly
enhance your AI solutions’ robustness and flexibility.
Composite AI combines different AI techniques and
integrates AI with other technologies, such as cloud
computing, big data analytics, and the Internet of Things
(IoT). This technique enables processing vast amounts of
data, real-time decision making, and automating complex
processes.
The potential of Composite AI is enormous. It can help
organizations tackle challenges that would be difficult or
even impossible to solve using a single AI technique, acting
as a significant driver of innovation in the AI industry.
While numerous platforms and tools are available for
implementing Composite AI solutions, AWS offers an
exceptionally comprehensive and versatile ecosystem. AWS
combines various services, from low-level tools like
SageMaker to high-level AI and ML services like AWS
Comprehend for NLP or AWS Rekognition for image
analysis.
However, AWS is one of many players in the field.
Platforms like Google Cloud, Microsoft Azure, and IBM
Watson also provide tools and services for building
Composite AI solutions. As an MLOps professional,
understanding the capabilities of these different platforms
and how to leverage them effectively is crucial to building
robust, efficient, and innovative AI systems.
Next, let’s explore how AWS builds a Composite AI
solution.
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Getting Started with Serverless for Composite

AI

The foundation of serverless on AWS is Lambda, a service
that allows you to run your code without provisioning or
managing servers. It executes your code only when needed
and scales automatically, making it an ideal component of a
serverless architecture.
Our focus is on how Lambda is part of a hybrid AI solution.
To illustrate this, let’s consider a simple example: Lambda
responds to events triggered by a timer, processes some
data, and places the results in a queue.
This architectural structure is shown in Figure 9-12.

Figure 9-12. Building a simple serverless AI Lambda



This figure shows how the event triggers the Lambda
function, which processes the data and places the results in
an Amazon Simple Queue Service (SQS) queue.
Figure 9-13 provides a visual representation of how the
SQS queue fits into the serverless architecture. Once the
Lambda function has processed the data, it places the
results in the SQS queue, ready to be consumed by other
system components.

Figure 9-13. Triggering an SQS queue in a serverless architecture

The complete code repository is in GitHub, but let’s look at
the highlights of this Python example:

def lambda_handler(event, context): 

    """Entry Point for Lambda""" 

    LOG.info(f"SURVEYJOB LAMBDA, event {event}, context {context}") 

 

    receipt_handle = event['Records'][0]['receiptHandle']  # sqs message 

    event_source_arn = event['Records'][0]['eventSourceARN'] 
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    names = []  # Captured from Queue 

 

    # Process Queue 

    for record in event['Records']: 

        body = json.loads(record['body']) 

        company_name = body['name'] 

 

        # Capture for processing 

        names.append(company_name) 

 

        extra_logging = {"body": body, "company_name": company_name} 

        LOG.info( 

            f"SQS CONSUMER LAMBDA, splitting sqs arn with value:" 

            f" {event_source_arn}", extra=extra_logging 

        ) 

        qname = event_source_arn.split(":")[-1] 

        extra_logging["queue"] = qname 

        LOG.info( 

            f"Attemping Deleting SQS receiptHandle {receipt_handle} " 

            f"with queue_name {qname}", extra=extra_logging 

        ) 

        res = delete_sqs_msg(queue_name=qname, receipt_handle=receipt_handle) 

        LOG.info( 

            f"Deleted SQS receipt_handle {receipt_handle} with res {res}", 

            extra=extra_logging 

        ) 

 

    # Make pandas dataframe with wikipedia snippets 

    LOG.info(f"Creating dataframe with values: {names}") 

    df = names_to_wikipedia(names) 

 

    # Perform Sentiment Analysis 

    df = apply_sentiment(df) 

    LOG.info(f"Sentiment from FANG companies: {df.to_dict()}") 

 

    # Write result to S3 

    write_s3(df=df, name=names.pop(), bucket="fangsentiment")

This code is a Python script that serves as the entry point
for an AWS Lambda function. The function triggers by
receiving a message from an Amazon SQS queue. The
purpose of the function is to process the message, perform
sentiment analysis on a list of company names contained in
the message, and write the result to an Amazon S3 bucket.



The script logs the event and context that triggered the
Lambda function. It extracts the receipt handle and event
source ARN from the SQS message. After processing, the
receipt handles and deletes the message from the queue.
The event source ARN determines the name of the SQS
queue.
Next, the script loops through all the records in the event
and extracts the company name from each record. The
company names pass to a function named
names_to_wikipedia, which returns a pandas DataFrame with
the names and their corresponding Wikipedia snippets.

The script then calls a function named apply_sentiment to
perform sentiment analysis on the DataFrame. The
sentiment analysis result is logged and then written to an
S3 bucket named fangsentiment.
Finally, the script deletes the processed SQS message
using the delete_sqs_msg function, passing in the queue
name and receipt handle. With a primary case out of the
way, let’s build on this and dive deeper into a hybrid AI
solution.

Use Cases of Composite AI with Serverless

Composite AI with serverless technologies presents a
powerful combination for tackling complex tasks cost-
efficiently. AWS provides various services, making it an
ideal platform for deploying these solutions. One such
scenario is hosting a pretrained machine learning model on
AWS’s Elastic File System (EFS) and leveraging AWS
Lambda, a serverless computing service, for inference.
The advantage of this setup is the ability to use a low
inference, low-memory language, which optimizes cost.



Serverless technology, particularly when combined with
well-optimized, high-performance code, can be cost-
effective due to AWS Lambda’s billing model, which
charges based on the number of requests and the duration
of code execution. In addition to Lambda and EFS, other
AWS services like Rekognition, which makes it easy to add
image and video analysis to applications, can be
incorporated for more comprehensive solutions. An
example of such a composite AI solution is shown in
Figure 9-14.

Figure 9-14. Using EFS with AWS Lambda for Inference

While this chapter focuses on AWS services, it’s worth
noting that similar concepts can be applied using other
cloud platforms. For instance, Google Cloud offers Cloud
Functions as a serverless execution environment, and
Azure provides Azure Functions. Both used their respective
storage and AI/ML services to create composite AI
solutions, as shown in Figure 9-15.



Figure 9-15. Lost efficiency from high memory runtime

Let’s wrap up the chapter and reflect on the key takeaways.

Conclusion

This chapter embraced diving into advanced data types and
doing so pragmatically, using APIs, GUI tools, and
pretrained models. We also showed how AWS is an
excellent base of operations for doing quick and dirty
prototypes that later get put into command-line tools.
Next, go through the critical thinking questions and
exercises to hammer home the ideas of this chapter.

Critical Thinking Discussion

Questions

What are the advantages and disadvantages of using
time series analysis for data interpretation and
prediction?

How can LLM NLP tools be used to address specific
challenges in sentiment analysis and text classification?



What are the key considerations when using video
analysis and image classification in real-world
applications?

What are the critical components of a composite AI
solution, and how can they be integrated to solve
complex data problems?

How can AWS be used to support the entire lifecycle of
a data science project, from data processing to model
deployment and monitoring?

Exercises

Train a time series forecasting model using Amazon
SageMaker and compare its performance to a
traditional time series analysis approach.

Build an NLP-based sentiment analysis model using
AWS Comprehend and evaluate its accuracy on a real-
world dataset.

Train an image classification model using AWS
DeepLens and deploy it to a real-time video stream for
object detection.

Use AWS Rekognition to perform object recognition in
video streams and compare its performance to other
video analysis techniques.

Create a composite AI solution using AWS services
such as SageMaker, Comprehend, and Rekognition to
analyze and interpret complex data sets.



Chapter 10. Implementing

MLOps Using Rust

Operational efficiency must be at the core of any
technology system. MLOps builds upon DevOps, which
builds on the concept of kaizen, the Japanese word for
continuous improvement. Without continuous
improvement, you wouldn’t have DevOps or, by extension,
MLOps.
At the heart of continuously improving operations is a
simple question: “Can we improve operational performance
—from training and inference to packaging and delivery—
by ten times or more?” If the answer is yes, as it will be
with many organizations using Python for data science, the
next question should be: “Why are we not doing it?”
For decades, organizations had few options other than pure
C, C++, or C# and Python for machine learning solutions.
C++ may provide more efficiency in terms of performance,
but Python is generally easier to learn, implement, and
maintain, which is why Python has taken off in data
science. The hard choice between the performant but
complex C++ and the easy-to-learn but comparatively slow
Python ultimately results in many companies choosing
Python.
But there’s another way. Rust consistently ranks among the
most performant and energy-efficient languages. It’s also
among the most loved languages in Stack Overflow’s
annual developer survey. Though some Python libraries
widely used in data science are written in C and can
provide some of the performance benefits of running a
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compiled language, Rust provides a more direct route to
bare metal while using a single language.
Rust is also far easier to learn and use than C or C++,
which makes it a realistic solution for those who want the
performance of a compiled language. That’s especially true
when using GitHub Copilot. This AI-powered pair
programming assistant uses the OpenAI Codex to suggest
code and entire functions in real time to developers while
they code. Let’s discuss this strategy next.

NOTE

The phrase AI-powered pair programming assistant refers to an
improvement over the classic pair programming style where you sit
next to another developer and write code together. With emerging
developer tools like GitHub Copilot X, you can chat with a coding
assistant to get ideas on a coding project as well as get coding
suggestions as you type.

The Case for Rust for MLOps

GitHub Copilot is a revolutionary new change in the way
developers work. GitHub Copilot and tools like it are game
changers since they minimize the impact of syntax on
productivity. With Rust, you spend more time compiling
code, which is an investment in future returns, much like
saving for the future in a retirement account. Rust has
excellent performance and safety, but the syntax can be
challenging. With GitHub Copilot, the syntax becomes less
of an issue since the suggestions eliminate many of the
difficulties in programming. Additionally, because of the
robustness of the Rust toolchain for linting, formatting, and
compiling, any errors or false starts from GitHub Copilot
are caught by these tools, making the combination of Rust
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and GitHub Copilot an emergent front-runner in AI-assisted
coding.

NOTE

There are several reasons to consider Rust other than performance.
Rust is a modern language that first appeared in 2010. It lacks the
baggage that older languages carry, but it is mature enough that it
isn’t going anywhere anytime soon. Further, other trends are
supporting a hard look at Rust.

Rust was designed from the ground up to support modern computing
capabilities, like multicore threads, that are often “bolted on” to
older languages like Python. By designing the language to support
these features from the start, Rust can avoid awkwardness in many
other languages. A great example of how simple multicore threads
are in Rust is the following snippet from the Rust rayon library:

    use rayon::prelude::*; 

    fn sum_of_squares(input: &[i32]) -> i32 { 

        input.par_iter() 

             .map(|i| i * i) 

             .sum() 

    }

There are no code gimmicks or hacks; the threads “just
work” across all the machine cores, and the code is just as
readable as Python.
Likewise, Rust natively supports typing, so the entire
toolchain, from the linter to the editor to the compiler, can
leverage this capability. Rust also makes packaging a
breeze. Cargo provides a Python-esque “one obvious way”
to install packages.
Of course, there are still areas where Python excels. It’s
fantastic for API documentation and readability in general.
If you need to try out an idea, it is hard to beat using
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Python in an interactive prompt, like IPython, to explore a
concept. But MLOps is more sensitive to performance
requirements than other data science fields and heavily
dependent on software engineering best practices
conducive to implementation in Rust. A new superset of
Python called Mojo might solve many performance and
deployment issues soon, but it’s still in development while
Rust is available here and now.
One common objection to using Rust is that it doesn’t have
as large and established an ecosystem as Python for
working with data. But remember that this ecosystem isn’t
necessarily optimal for the needs of MLOps. In particular,
the stack I call #jcpennys (Jupyter, Conda, pandas, NumPy,
sklearn) is straight from academia, heavyweight, and
optimized for use with small data. In academics, much is to
be said for a “God environment” with everything in one
spot. But in real-world production MLOps, you don’t want
extra packages or brittle tools that are difficult to test, like
notebooks. Meanwhile, the Rust ecosystem is growing. For
example, Polars is a performant data frame library taking
the data space by storm.

Leveling Up with Rust, GitHub Copilot, and

Codespaces

You can see how to use the GitHub ecosystem to level up to
a more robust language in Rust in Figure 10-1. Prompt
engineering occurs when you ask GitHub Copilot in step B
to generate code; you then test the idea for a CLI to ensure
it works and clean up any suggestions with a series of
Makefile commands.
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Figure 10-1. Prompt engineering with GitHub ecosystem

All Rust projects follow this pattern:

1. Create a new repo using Rust New Project Template.

2. Next, create a new Codespace and use it.

3. Use main.rs to call the handle CLI and lib.rs to handle
logic and import clap in Cargo.toml as shown in this
project.

4. Use cargo init --name 'hello' or whatever you want to
call your project.

5. Put your “ideas” in as comments in Rust to seed GitHub
Copilot (i.e., add a comment as shown: //build an add
function).

6. Run make format(i.e., cargo format).

7. Run make lint (i.e., cargo clippy --quiet).

8. Run project: cargo run -- --help.
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9. Push your changes to allow GitHub Actions to: format
check, lint check, and other actions like binary deploy.

NOTE

The video “Using VS Code, Copilot, and Codespaces to Level Up to
Rust from Python” shows this workflow using an example in GitHub.

Here’s an example repository. A good starting point for a
new Rust project is the following pattern.

To run: cargo run -- marco --name "Marco" Be careful to use
the name of the project in the Cargo.toml to call lib.rs as in:

[package] 

name = "hello"

For example, see the name hello invoked alongside
marco_polo, which is in lib.rs code:

/* A Marco Polo game. */ 

 

/* Accepts a string with a name. 

If the name is "Marco", returns "Polo". 

If the name is "any other value", it returns "Marco". 

*/ 

pub fn marco_polo(name: &str) -> String { 

    if name == "Marco" { 

        "Polo".to_string() 

    } else { 

        "Marco".to_string() 

    } 

}

main.rs code:

fn main() { 

    let args = Cli::parse(); 
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    match args.command { 

        Some(Commands::Marco { name }) => { 

            println!("{}", hello::marco_polo(&name)); 

        } 

        None => println!("No command was used"), 

    } 

}

This style is an emerging pattern ideal for systems
programming in Rust, as certain combinations lead to
further advances. GitHub Copilot’s suggestions, a next-
generation compiled language like Rust, and its ecosystem
of formatting, linting, and packaging tools, can lead to a
more robust software development experience than Python.
Let’s consider some potential benefits that Rust brings to
the world of MLOps:
Performance

Rust has a very efficient memory model with no garbage
collector, which can significantly increase the speed of your
MLOps pipelines. This capability is critical for MLOps tasks
that quickly handle large volumes of data.

Concurrency

Rust’s memory safety guarantees enable safe concurrency,
enabling you to quickly leverage multiple cores to speed up
your processing tasks.

Interoperability

Rust has excellent interoperability with C and can call C
libraries directly. This capability could allow MLOps
developers to leverage existing C libraries for numerical
computation and ML tasks.

Security



Rust’s emphasis on memory and type safety can lead to more
secure applications. This process is crucial for MLOps tasks
where security is critical, such as healthcare or finance.

Robustness

Rust’s compile-time error checking can catch many errors
before your code runs. This process can lead to more robust
MLOps pipelines less prone to runtime errors.

Developer productivity

Rust has a steeper learning curve than Python, so tools like
GitHub Copilot can help you write Rust code more quickly
and easily.

Of course, Rust is not a silver bullet, and Python will
continue to play an essential role in MLOps. However, for
MLOps tasks that need the performance, security, and
robustness that Rust can provide, it is an option worth
considering.
Another bolt-on problem with Python is the packaging.
Even though the Python standard library includes two tools
that make it relatively straightforward to install packages
in pip and virtualenv, as I demonstrate in a Python MLOps
repository, there is an explosion of tools to handle “edge
cases.” Ironically, the Zen of Python, actually cautioned
against this decades ago in the statement, “There should be
one—and preferably only one—obvious way to do it.”
Python means except packaging, which has an almost
exponential way of doing things. Additionally, distributing a
binary command-line tool efficiently in Python is nontrivial
since this capability is not part of the language; this is
different from a default workflow included in the language,
like it is with Rust or Go. An excellent example of good
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binary tool distribution is the Hugo framework written in
Go. One reason it is so popular is it is easy to install.
These critiques of Python don’t mean it is an imperfect
solution to what it excels at; it just isn’t the solution to
every single problem. Python is fantastic for API
documentation and readability in general. If you need to try
out an idea, it is hard to beat using Python in an interactive
prompt, like IPython, to explore a concept. It struggles with
packaging, performance, and language safety, all things
Rust excels at. This strength is why Rust is an ideal
language for enterprise MLOps.
What could be the alternative for MLOps if there is a better
solution than academic “data science” tools?

Is there a more performant DataFrame library? (Rust
has Polars.)

Why not have a compiler to optimize code?

Why not have a simple packaging solution with “one
way to install?” (Rust has Cargo.)

Why not have a breakneck computational speed for
ML? (Some benchmarking shows 25X speed
improvements.)

Why not be able to write both for the Linux kernel and
general-purpose scripting?

Why not see if there is a better solution than Python
(which is essentially two languages: scientific Python
and regular Python)?

Python is more or less the least green language in energy
efficiency, and Rust is more or less the best. With the rise
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of machine learning, it is important to consider carbon
footprint and sustainability goals.

NOTE

O’Reilly has several fantastic books on or involving Rust worth
referring to if you want to dive deeper:

Command-Line Rust by Ken Youens-Clark

Programming Rust by Jim Blandy, Jason Orendorff, and Leonora
F. S. Tindall

WebAssembly: The Definitive Guide by Brian Sletten (includes
Rust Web Assembly examples)

Two GitHub repositories you might look at are this brief
Rust tutorial and Rust MLOps template. With the case for
Rust made theoretically, let’s dive into more detail next.

In the Beginning Was the Command Line

What could MLOps and data science look like without
Jupyter Notebook and complex install tools as the center of
the universe? It could be the command line. The command
line was at the beginning of computing in the 1970s and
1980s, and it may be the best solution for the domain of
MLOps.
In 1999, science fiction author Neal Stephenson wrote the
essay “In the Beginning … Was the Command Line.” The
following excerpt highlights his thoughts at the time about
the emergence of GUI-based systems:
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What would the engineer say after you had explained

your problem and enumerated all the dissatisfactions in

your life? He would probably tell you that life is a very

hard and complicated thing; that no interface can change

that; that anyone who believes otherwise is a sucker; and

that if you don’t like having choices made for you, you

should start making your own.

Similarly, with the constantly evolving domain of MLOps, it
is easy to get caught in the trap of thinking of a notebook-
based workflow alone as the solution to every problem. In a
recent seminar, Noah discussed MLOps and some of the
drawbacks of notebooks, with one data scientist “cutting
and pasting” code from a notebook to a script file. In the
early days of web development in the 1990s, the concept of
cut-and-paste coding was debunked as an anti-pattern. But
in 2023, there are advocates for it in MLOps, and with a
straight face!
Ultimately the flexibility of command-line interfaces,
coupled with systems programming approaches like those
with C, C++, Go, and Rust, are too valuable to ignore,
especially if the language is approachable for a developer
more familiar with high-level languages. According to an
April 2021 newstack article about Rust for the Linux
kernel, developer Miguel Ojeda introduced a Request for
Comments (RFC) on making Rust a part of Linux. Linus
Torvalds, the creator of Linux, said, “Unless something odd
happens, it [Rust] will make it into 6.1” (i.e., late 2022 or
early 2023). And this happened in 6.1, and Rust has
continued updates in each subsequent release.
Similarly, Amazon is active in open source Rust
development via the Firecracker project, which is “an open
source virtualization technology.” One example of the
power of this technology is a firecracker demo repo, which
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shows 4,000 simultaneous VMs launching. Amazon also has
an alpha release of a Rust SDK on GitHub.
Finally, because Rust makes command-line tools so easy to
distribute, doing MLOps for the CLI is an optimal use case
for Rust. One of the more remarkable examples is the
diffusers-rs project that invokes Stable Diffusion using Rust
and PyTorch:

cargo run --example stable-diffusion --features clap --\ 

 --prompt "A rusty robot using the command-line terminal and throwing\ 

away notebooks"

The reason solutions like the Stable Diffusion example exist
along with bindings for Rust with PyTorch is the
exponential growth of Rust modules, as shown in
Figure 10-2.

Figure 10-2. Exponential growth of Rust modules
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Now that the case for Rust for MLOps exists, let’s dive into
getting started with Rust itself.

Getting Started with Rust for MLOps

Rust is one of the more accessible languages from an
installation perspective. You run the rustup command, and
that is all you need to install! Another option is to use
GitHub Codespaces as a development environment. One of
the advantages of Codespaces is that it has a generous free
tier and allows for easy customization. You can create a
new repository for developing with Rust using the Rust new
project template we made available for this book.
Once you install, check to see if things work by running
rustc --version.
Another option is to create a Makefile and put key
commands in it such as make rust-version, which checks
both the cargo and rust version. Several tools help you get
things done in Rust:

rust-version: 

    @echo "Rust command-line utility versions:" 

    rustc --version             #rust compiler 

    cargo --version             #rust package manager 

    rustfmt --version           #rust code formatter 

    rustup --version            #rust toolchain manager 

    clippy-driver --version     #rust linter

To run everything locally, you can do make all, which will
format/lint/test all projects in this repository.
Next, to build a hello-world example, you can use the built-
in cargo command. Cargo is one of the most substantial and
valuable parts of the Rust ecosystem.

https://rustup.rs/
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Create a project directory: cargo new hello. The cargo
command creates a structure you can see with tree hello:

hello/ 

├── Cargo.toml 
└── src 
    └── main.rs 
1 directory, 2 files

The Cargo.toml file is where the project configuration lives
(i.e., if you need to add a dependency). The source code file
has the following content in main.rs. It looks like Python or
any other modern language, and this function prints a
message:

fn main() { 

    println!("Hello, world MLOps!"); 

}

To run the project, you cd into hello and run cargo run. The
output looks like the following:

@noahgift > /workspaces/rust-mlops-template/hello (main) $ cargo run 

   Compiling hello v0.1.0 (/workspaces/rust-mlops-template/hello) 

    Finished dev [unoptimized + debuginfo] target(s) in 0.36s 

     Running `target/debug/hello` 

Hello, world MLOps!

Finally, run without all the noise: cargo run --quiet. If you
want to run the binary created, the following command
executes it: ./target/debug/hello. It is important to note how
awesome this is coming from Python because the binary
distribution of your code comes for free. In Python, the
concept of binary executable isn’t a workflow supported by
native Python. Instead, the closest way to achieve the same
portable executable would require packaging Python in a
Docker workflow.



A big takeaway with this hello-world project is that the Rust
ecosystem takes care of many complex programming parts,
namely linting, testing, formatting, and binary deployment
within Rust Cargo package manager. If the Rust code
passes lint and compiles, it should work when you run it.
You cannot say the same for Python since there is no
compiler. In addition to being more reliable, it gives you C-
level speed with a readable syntax similar to Python.
Finally, many features of the language, like immutable
variables and rational concurrency design, make the code
safer because the compiler will not compile code that isn’t
safe.
One more way to make Rust programming more effective is
including GitHub Copilot or a similar tool like Amazon
CodeWhisperer in the initial phase of code creation. The
synergy of Copilot with the robust Cargo ecosystem is a
recipe for productivity, as shown in Figure 10-3.

Figure 10-3. Modern Rust development with Copilot

Further, by including automation in the workflow via
GitHub Actions, these necessary automation steps also
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occur as part of CI/CD. The foundation of MLOps is the
automation of software engineering best practices
happening at the build system. This core capability enables
further automation down the line:

name: Rust CI/CD Pipeline 

on: 

  push: 

    branches: [ "main" ] 

  pull_request: 

    branches: [ "main" ] 

env: 

  CARGO_TERM_COLOR: always 

jobs: 

  build: 

    runs-on: ubuntu-latest 

    steps: 

    - uses: actions/checkout@v1 

    - uses: actions-rs/toolchain@v1 

      with: 

          toolchain: stable 

          profile: minimal 

          components: clippy, rustfmt 

          override: true 

    - name: update linux 

      run: sudo apt update 

    - name: update Rust 

      run: make install 

    - name: Check Rust versions 

      run: make rust-version 

    - name: Format 

      run: make format 

    - name: Lint 

      run: make lint 

    - name: Test 

      run: make test

One of the reasons a Makefile is an excellent component in a
project is that the steps locally, installing, linting,
formatting, and testing run in the same way on the build
system. This methodology eliminates potential errors in
building software automatically.



This style of Rust development is both new and an essential
advancement in developer productivity. With tools like
GitHub Copilot and AWS CodeWhisperer, switching to a
higher-performance language like Rust, C#, or Go can be
more manageable. This new form of software engineering
enables prompt engineering as a valid first phase in
software development. Next, the code formatted by the
Rust Cargo tool allows a fresh look from a service like
Copilot, potentially increasing the quality of the
recommendation.
Once that phase completes, the Cargo lint tool Clippy
further digs into the quality of the code and enhances it.
Finally, running tests ensures the business logic works, and
then a last step of compilation makes optimal and safe
code.
Now let’s go beyond a simple hello-world tool with PyTorch
and Hugging Face.

Using PyTorch and Hugging Face with

Rust

Hugging Face is an emerging platform for building
solutions with LLMs, and it works with Rust and PyTorch.
For this example, we put together a reasonably realistic
demo of the type of tool that would be useful using a
pretrained summarization model; the example project lives
here. The general structure of this demo is as follows. The
lyrics for “En El Muelle De San Blas” a song by Maná, are
in the lyrics.txt file:

├── Cargo.toml 
├── Makefile 
├── README.md 
├── lyrics.txt 
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└── src 
  ├── lib.rs 
  └── main.rs 
 

2 directories, 6 files

You can see the general architecture in Figure 10-4. The
idea is the performance of Rust alongside an SQLite
database, and Hugging Face is a repeatable pattern to
analyze song lyrics using a pretrained LLM.

Figure 10-4. Hugging Face PyTorch Zero Shot

A common problem in NLP is building solutions that
analyze text. The following example shows how to make a
reproducible, efficient, and secure solution to analyze song
lyrics:



use rust_bert::pipelines::sequence_classification::Label; 

use 

rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel; 

use std::fs::File; 

use std::io::BufRead; 

use std::io::BufReader; 

 

fn create_db() -> sqlite::Connection { 

    let db = sqlite::open(":memory:").unwrap(); 

    db.execute( 

        "CREATE TABLE zeroshotcandidates (id INTEGER PRIMARY KEY, label 

TEXT)", 

    ) 

    .unwrap(); 

    ["rock", "pop", "hip hop", "country", "latin"].iter().for_each(|&x| { 

        db.execute(&format!( 

            "INSERT INTO zeroshotcandidates (label) VALUES ('{}')", 

            x 

        )) 

        .unwrap(); 

    }); 

    db 

} 

 

pub fn get_all_zeroshotcandidates() -> Vec<String> { 

    let db = create_db(); 

    let mut candidates: Vec<String> = Vec::new(); 

    db.iterate("SELECT label FROM zeroshotcandidates", |pairs| { 

        for &(_column, value) in pairs.iter() { 

            candidates.push(value.unwrap().to_string()); 

        } 

        true 

    }) 

    .unwrap(); 

    candidates 

} 

 

pub fn read_lyrics(file: &str) -> Vec<String> { 

    let mut lyrics: Vec<String> = Vec::new(); 

    let file = File::open(file).expect("Unable to open file"); 

    let reader = BufReader::new(file); 

    for line in reader.lines() { 

        lyrics.push(line.unwrap()); 

    } 

    lyrics 

} 

 

pub fn classify_lyrics(lyrics: Vec<String>) -> Vec<Vec<Label>> { 



p y_ y ( y g ) {

    let temp_candidates = get_all_zeroshotcandidates(); 

    let candidate_labels: Vec<&str> = 

        temp_candidates.iter().map(|s| s.as_str()).collect(); 

    let lyrics: String = lyrics.join(" "); 

    let lyrics: &str = lyrics.as_ref(); 

    let zero_shot_model = ZeroShotClassificationModel::new(Default::default()) 

        .unwrap(); 

    zero_shot_model.predict_multilabel([lyrics], candidate_labels, None, 128) 

}

To run everything, you see the different commands exposed
via cargo:

cargo run -- candidates 

    Finished dev [unoptimized + debuginfo] target(s) in 0.13s 

     Running `target/debug/sqlitehf candidates` 

1 

rock 

2 

pop 

3 

hip hop 

4 

country 

5 

latin

cargo run -- lyrics 

   Compiling sqlitehf v0.1.0 (/Users/noahgift/src/rust-mlops-template/sqlite-

hf) 

    Finished dev [unoptimized + debuginfo] target(s) in 0.76s 

     Running `target/debug/sqlitehf lyrics` 

Lyrics lyrics.txt 

Uh-uh-uh-uh, uh-uh 

Ella despidió a su amor

@noahgift > /workspaces/rust-mlops-template/sqlite-hf (main) 

$ cargo run -- classify 

   Compiling sqlitehf v0.1.0 (/workspaces/rust-mlops-template/sqlite-hf) 

    Finished dev [unoptimized + debuginfo] target(s) in 8.76s 

     Running `target/debug/sqlitehf classify` 

Classify lyrics.txt 

rock: 0.06948944181203842 

pop: 0.27735018730163574 

hip hop: 0.034089818596839905 

country: 0.7835917472839355 

latin: 0.6906086802482605



Yet another example of Rust for MLOps is using PyTorch to
load pretrained models and create image predictions as
shown in the main.rs file. The PyTorch bindings are
straightforward to turn into a pretrained model tool:

/* 

Hello world Rust pytorch 

Download pretrained model here: 

https://github.com/LaurentMazare/tch-rs/releases/download/mw/resnet18.ot 

*/ 

 

use anyhow::{bail, Result}; 

use tch::nn::ModuleT; 

use tch::vision::{resnet, imagenet}; 

 

pub fn main() -> Result<()> { 

    let args: Vec<_> = std::env::args().collect(); 

    let (weights, image) = match args.as_slice() { 

        [_, w, i] => (std::path::Path::new(w), i.to_owned()), 

        _ => bail!("usage: main resnet18.ot image.jpg"), 

    }; 

    // Load the image file and resize it to the usual imagenet dimension 

    // of 224x224. 

    let image = imagenet::load_image_and_resize224(image)?; 

 

    // Create the model and load the weights from the file. 

    let mut vs = tch::nn::VarStore::new(tch::Device::Cpu); 

    let net: Box<dyn ModuleT> = match 

        weights.file_name().unwrap().to_str().unwrap() { 

        "resnet18.ot" => Box::new(resnet::resnet18( 

            &vs.root(), imagenet::CLASS_COUNT)), 

        _ => bail!("unknown model, use a weight file named e.g. resnet18.ot"), 

    }; 

    vs.load(weights)?; 

 

    // Apply the forward pass of the model to get the logits. 

    let output = net.forward_t( 

        &image.unsqueeze(0), /* train= */ false 

    ).softmax(-1, tch::Kind::Float); // Convert to probability. 

 

    // Print the top 5 categories for this image. 

    for (probability, class) in imagenet::top(&output, 5).iter() { 

        println!("{:50} {:5.2}%", class, 100.0 * probability) 

    } 

    Ok(()) 

}

https://oreil.ly/_ESn8


To run this example, do the following. Pretrained model: cd
into pytorch-rust-example and then run: cargo run --
resnet18.ot Walking_tiger_female.jpg. You can see the results
in Figure 10-5.

Figure 10-5. PyTorch pretrained model

Using Rust to Build Tools for MLOps

With some solid ideas on using Rust for deep learning, let’s
look at the ecosystem around Rust as it relates to MLOps.

Building Containerized Rust Command-Line

Tools

Another Rust capability is containerizing command-line
tools. Let’s look at a regular containerized command-line
tool and a Rust command-line tool with PyTorch.



The repo for the project is here. The lib.rs file holds a
function that returns the string “Polo” if the string “Marco”
passes in:

/* A Marco Polo game. */ 

 

/* Accepts a string with a name. 

If the name is "Marco", returns "Polo". 

If the name is "any other value", it returns "Marco". 

*/ 

pub fn marco_polo(name: &str) -> String { 

    if name == "Marco" { 

        "Polo".to_string() 

    } else { 

        "Marco".to_string() 

    } 

}

To invoke the command-line tool, the same pattern as most
examples in this chapter works where the library contains
the logic, and the main maps the functions to
subcommands, in this case, the subcommand Play:

//A command-line tool to play Marco Polo 

use clap::Parser; 

 

#[derive(Parser)] 

#[clap(version = "1.0", author = "Noah Gift", about = "A Marco Polo game")] 

struct Cli { 

    #[clap(subcommand)] 

    command: Option<Commands>, 

} 

 

#[derive(Parser)] 

enum Commands { 

    #[clap(version = "1.0", author = "Noah Gift")] 

    Play { 

        #[clap(short, long)] 

        name: String, 

    }, 

} 

 

fn main() { 

https://oreil.ly/nSjrO


    let args = Cli::parse(); 

    match args.command { 

        Some(Commands::Play { name }) => { 

            let result = containerized_marco_polo_cli::marco_polo(&name); 

            println!("{}", result); 

        } 

        None => println!("No subcommand was used"), 

    } 

}

Finally, the Dockerfile is tiny to turn this project into a
containerized tool. The first section of the Dockerfile builds
the project, and then a smaller container image,
debian:buster-slim allows for a reduced footprint:

FROM Rust:latest as builder 

ENV APP containerized_marco_polo_cli 

WORKDIR /usr/src/$APP 

COPY . . 

RUN cargo install --path . 

 

FROM debian:buster-slim 

RUN apt-get update && rm -rf /var/lib/apt/lists/* 

COPY --from=builder /usr/local/cargo/bin/$APP /usr/local/bin/$APP 

ENTRYPOINT [ "/usr/local/bin/containerized_marco_polo_cli" ]

Building and running the container is straightforward now:

docker build -t marco-polo . 

docker run --rm -it marco-polo --help 

docker run --rm -it marco-polo play --name Marco 

Polo

With this knowledge in our toolkit, let’s package our
previous PyTorch Rust pretrained model into a container.
The complete example project lives here.
The main relevant addition is the Dockerfile, which
leverages the existing Cargo ecosystem to install PyTorch:

FROM Rust:latest as builder 

ENV APP pytorch-rust-docker 
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https://oreil.ly/bwU4w
https://oreil.ly/87w3E


WORKDIR /usr/src/$APP 

COPY . . 

RUN apt-get update && rm -rf /var/lib/apt/lists/* 

RUN cargo install --path . 

RUN cargo build -j 6

The steps to invoke this container involve the following
commands to build and run it:

docker build -t pytorch-rust-docker . 

docker run -it pytorch-rust-docker 

#runs inside of container 

cargo run -- resnet18.ot Walking_tiger_female.jpg

GPU PyTorch Workflows

The synergy of performance gains from Rust really shines
when a GPU comes into the mix. This GitHub repository has
many repeatable GPU examples thanks to the excellent
toolchain from GitHub Codespaces.

As long as the environmental variable export
TORCH_CUDA_VERSION=cu117 exists, cargo builds an NVIDIA
CUDA project version. The following Modified National
Institute of Standards and Technology (MNIST) database
project shows a very brief training snippet:

// CNN model. This should reach 99.1% accuracy. 

 

use anyhow::Result; 

use tch::{nn, nn::ModuleT, nn::OptimizerConfig, Device, Tensor}; 

 

#[derive(Debug)] 

struct Net { 

    conv1: nn::Conv2D, 

    conv2: nn::Conv2D, 

    fc1: nn::Linear, 

    fc2: nn::Linear, 

} 

 

impl Net { 

https://oreil.ly/ob8kz
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    fn new(vs: &nn::Path) -> Net { 

        let conv1 = nn::conv2d(vs, 1, 32, 5, Default::default()); 

        let conv2 = nn::conv2d(vs, 32, 64, 5, Default::default()); 

        let fc1 = nn::linear(vs, 1024, 1024, Default::default()); 

        let fc2 = nn::linear(vs, 1024, 10, Default::default()); 

        Net { conv1, conv2, fc1, fc2 } 

    } 

} 

 

impl nn::ModuleT for Net { 

    fn forward_t(&self, xs: &Tensor, train: bool) -> Tensor { 

        xs.view([-1, 1, 28, 28]) 

            .apply(&self.conv1) 

            .max_pool2d_default(2) 

            .apply(&self.conv2) 

            .max_pool2d_default(2) 

            .view([-1, 1024]) 

            .apply(&self.fc1) 

            .relu() 

            .dropout(0.5, train) 

            .apply(&self.fc2) 

    } 

} 

 

pub fn run() -> Result<()> { 

    let m = tch::vision::mnist::load_dir("data")?; 

    let vs = nn::VarStore::new(Device::cuda_if_available()); 

    let net = Net::new(&vs.root()); 

    let mut opt = nn::Adam::default().build(&vs, 1e-4)?; 

    for epoch in 1..100 { 

        for (bimages, blabels) in m.train_iter(256) 

            .shuffle() 

            .to_device(vs.device()) { 

            let loss = net.forward_t(&bimages, true) 

                .cross_entropy_for_logits(&blabels); 

            opt.backward_step(&loss); 

        } 

        let test_accuracy = net 

            .batch_accuracy_for_logits( 

                &m.test_images, &m.test_labels, vs.device(), 1024); 

        println!("epoch: {:4} test acc: {:5.2}%", 

            epoch, 100. * test_accuracy,); 

    } 

    Ok(()) 

}



To run, cd into the pytorch-mnist directory and run cargo
run -- conv. The result shows a lightning fast training of a
model as shown in Figure 10-6. The nvidia-smi -l 1
command enabled GPU monitoring, verifying that the GPU
is doing the heavy lifting.

Figure 10-6. MNIST PyTorch GPU saturation

Yet another effective Rust GPU workflow is to run the latest
version of Stable Diffusion. First, clone the repo and then
follow the setup instructions.
Next, download the model weights and then run:

cargo run --example stable-diffusion --features clap -- --prompt 

  "A very rusty robot holding a fire torch to notebooks"

Yet again, you see the power of Rust and GPU as the GPU
gets completely saturated, as shown in Figure 10-7.
The result in Figure 10-8 is a robot picture that can easily
integrate into a complex pipeline due to the high-
performance nature of Rust.
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Figure 10-7. Stable Diffusion completely saturating the GPU

Figure 10-8. Rusty Robot with flame about to torch notebook

Using TensorFlow Rust

You don’t have to just use PyTorch. To run TensorFlow with
Rust, look at this example in GitHub.

First, look at the Cargo.toml file. Notice that the tensorflow
crate is all that’s needed to get started:

[package] 

name = "tf-rust-cli" 

version = "0.1.0" 
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edition = "2021" 

[dependencies] 

tensorflow = "0.19.1"

Next, in the main.rs file, a simple example involves only a
few lines of code. To see more ideas, visit the official crate
documentation page, including enabling GPU support
(something easily accomplished with GitHub Codespaces
with GPU):

/*Rust TensorFlow Hello World */ 

 

extern crate tensorflow; 

use tensorflow::Tensor; 

 

fn main() { 

    let mut x = Tensor::new(&[1]); 

    x[0] = 2i32; 

    //print the value of x 

    println!("{:?}", x[0]); 

    //print the shape of x 

    println!("{:?}", x.shape()); 

    //create a multidimensional tensor 

    let mut y = Tensor::new(&[2, 2]); 

    y[0] = 1i32; 

    y[1] = 2i32; 

    y[2] = 3i32; 

    y[3] = 4i32; 

    //print the value of y 

    println!("{:?}", y[0]); 

    //print the shape of y 

    println!("{:?}", y.shape()); 

}

Doing k-means Clustering with Rust

Rust also contains high-performance scientific libraries for
machine learning. An excellent example of a library is linfa.
There are many benchmarked examples.
Simple examples show a similar amount of code as machine
learning in Python using scikit-learn. A key and critical
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point from the library author is the statement, “No need to
have a second language for performance reasons,” as in
you don’t need C and Python; everything is fast with just
Rust. The following example from their website shows how
simple and clean the code is:

let (train, valid) = linfa_datasets::diabetes() 

    .split_with_ratio(0.9); 

 

// train pure LASSO model with 0.1 penalty 

let model = ElasticNet::params() 

    .penalty(0.1) 

    .l1_ratio(1.0) 

    .fit(&train)?; 

 

println!("z score: {:?}", model.z_score()); 

 

// validate 

let y_est = model.predict(&valid); 

println!("predicted variance: {}", y_est.r2(&valid)?);

A blog post of their k-means example shows 25 times faster
inference than scikit-learn. Noah created a command-line
tool example, available in GitHub.

Final Notes on Rust

Let’s discuss a few additional notes on Rust.

Ruff Linter

A new Rust-based linter called Ruff can significantly
decrease the time it takes to lint a codebase. You can see in
Figure 10-9 that Ruff gives speed improvements from 12 to
120 times regular Python.
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Figure 10-9. Rust-based linter in Python

According to Charlie Marsh, the added speed in linting
makes “instant” possible for millions of lines of code. In a
blog post about the tool, he wisely says, “Ultimately, my
goal with Ruff is to get the Python ecosystem to question
the status quo. How long should it take to lint a million
lines of code? In my opinion: it should be instant. And if
your developer tools were instant, what would that
unlock?”

rust-new-project-template

For beginners, a good idea is for Rust projects to follow this
pattern:

1. Create a new repo using Rust New Project Template.

2. Create a new Codespace and use it.

3. Use main.rs to call the handle CLI and lib.rs to handle
logic and import clap in Cargo.toml as shown in this
project.

4. Use cargo init --name 'hello' or whatever you want to
call your project.

5. Put your “ideas” in as comments in Rust to seed GitHub
Copilot: for example, //build an add function.
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6. Run make format i.e. cargo format.

7. Run make lint i.e. cargo clippy --quiet.

8. Run project: cargo run -- --help.

9. Push your changes to allow GitHub Actions to: format
check, lint check, and other actions like binary deploy.

This new emerging pattern is ideal for systems
programming in Rust.
Using this repository, you can do the following:

cargo run -- marco --name "Marco"

Be careful to use the NAME of the project in the Cargo.toml
to call lib.rs as in:

[package] 

name = "hello"

For example, see the name hello invoked alongside
marco_polo, which is in lib.rs.

lib.rs code:

/* A Marco Polo game. */ 

 

/* Accepts a string with a name. 

If the name is "Marco", returns "Polo". 

If the name is "any other value", it returns "Marco". 

*/ 

pub fn marco_polo(name: &str) -> String { 

    if name == "Marco" { 

        "Polo".to_string() 

    } else { 

        "Marco".to_string() 

    } 

}

https://oreil.ly/b6drF


main.rs code:

fn main() { 

    let args = Cli::parse(); 

    match args.command { 

        Some(Commands::Marco { name }) => { 

            println!("{}", hello::marco_polo(&name)); 

        } 

        None => println!("No command was used"), 

    } 

}

Conclusion

The purpose of this chapter has been to critically examine
the role of Python as the only option for MLOps. As Dr.
Patterson illuminates, we need new languages, new
hardware, and new ideas. The practice of MLOps is
different from data science. It orients toward software
engineering, especially that of distributed computing
systems.
As for MLOps with LLMs, deployment of Rust is a big deal.
For example, once you use whisper.py from OpenAI and see
how helpful it is for building accurate transcriptions of
audio and video files, the next logical goal is for a user to
try to make it go 25X faster. Suddenly, Rust makes a ton of
sense; this is 25X more performant. The “secret sauce” is
GitHub Copilot; it makes Rust syntax a breeze (we cannot
overstate this). After all, you don’t want to be the person
telling a client or boss “sorry, we cannot go faster,” when
you can!
Additionally, the idea that one language, Python, is a
panacea for all software engineering problems (even
though it is tremendously popular and valuable) is magical
thinking. Bolting more and more nonnative components
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onto Python is a suboptimal strategy versus choosing a new
language when appropriate. Additionally, the old paradigm
of suggesting people mix C with Python needs to be
reevaluated if a developer can replace both with Rust and
use one language.
The pragmatic practitioner looks for tools that efficiently
solve problems, which can mean having to give up a
favorite, familiar tool. Languages like Go and Rust have
emerged as solutions for high-performance computing, and
Rust, in particular, shines at cybersecurity safety, a
weakness of languages like C and Python. A fair question to
ask is if learning a new language that is similarly or slightly
more complex is worth improvements in performance,
energy efficiency, package deployment, and cybersecurity?
Rust makes a compelling case that there is.
In distributed computing, performance matters, as does
cybersecurity, energy usage, and binary software
distribution. Rust has many compelling use cases for
MLOps, and additional examples are in the Rust MLOp
repo as well as a Rust tutorial in the appendix.
Rust combines a low-level language’s performance with a
high-level language’s readability. Its emphasis on memory
safety, type safety, and error checking can lead to more
robust and secure MLOps pipelines. Furthermore, its
interoperability with C and its growing ecosystem make it a
strong contender for MLOps tasks that need to handle
large volumes of data quickly and securely. As the MLOps
field evolves, it will be interesting to see how Rust’s role
develops.
Remember, the best tool for the job depends on the job at
hand. Python has its strengths and will continue to have
wide adoption in MLOps. But if you’re looking for a
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language that offers more performance, security, and
robustness, Rust is worth a look.

Critical Thinking Discussion

Questions

What issues does Rust solve as a systems programming
language that provide an advantage over Python?

How could inference performance impact choosing
Rust as a core component in an MLOps pipeline?

What advantages are in play in using pretrained
models, such as LLMs, versus exclusively training these
models yourself? Additionally, how could Rust be an
advantage in deploying solutions with LLMs versus
Python?

Two of the most popular deep learning frameworks are
TensorFlow and PyTorch. What are the pros and cons
of these frameworks from a sustainability (i.e., energy
efficiency) standpoint? What about Rust versus Python?

How could deploying a statically linked binary solution
be advantageous over a scripting language solution?

Exercises

Build a command-line tool in Rust that uses a PyTorch
pretrained model. You can use this project as a
reference.

Using the linfa crate, build a k-means clustering
command-line tool that analyzes a well-known public
dataset. You can use this example as a starting point.

https://oreil.ly/DGYix
https://oreil.ly/H34iz
https://oreil.ly/anm01


Build a command-line summarization tool using the
rust-bert Hugging Face bindings. You can use this
project as a starting point.

Deploy a PyTorch pretrained model to AWS Lambda
using Rust.

Run Stable Diffusion in Rust, using this project as the
starting point.

https://oreil.ly/m-0Kq
https://oreil.ly/ms9_c
https://oreil.ly/VFVw0


Appendix A. Job Interview

Questions

The following section contains questions and answers that
may arise during a job interview. Python for DevOps

(O’Reilly), by Noah Gift, Kennedy Behrman, Alfredo Deza,
and Grig Gheorghiu, covers these topics in more detail.

What is the primary purpose of DevOps?

The primary purpose of DevOps is to increase the speed
and quality of software development while also reducing
costs. DevOps combines software development (Dev) and
information technology operations (Ops) to shorten the
time it takes to deliver customer features and updates.

What is an excellent example of the fundamental

processes necessary to implement MLOps?

An excellent example of the fundamental processes
necessary to implement MLOps would be establishing a
clear understanding of your organization’s goals for using
machine learning. Once you understand, you can develop
the strategies and infrastructure to support your ML
models. This process can include setting up a data pipeline,
establishing a model training and testing process, and
deploying models into a production environment.

What is a feature store?

A feature store is a database that stores the features
machine learning models can use. A feature store stores

https://learning.oreilly.com/library/view/python-for-devops/9781492057680/


features extracted from data sources and components
generated by feature engineering processes.

What is a Model Registry?

A Model Registry is a database that stores machine
learning models: a Model Registry stores models trained on
data and models generated by model development
processes.

What are the best practices for operationalizing a

microservice?

Best practices for operationalizing a microservice include
making sure that:

Your microservice is well-designed and well-tested
before deploying it.

You plan how you will update and deploy your
microservice.

You have a way to roll back changes to your
microservice if necessary.

You have a way to scale your microservice if necessary.

You have a way to monitor your microservice for errors
and performance issues.

What is GitHub Actions, and what are the primary use

cases?

GitHub Actions is a tool that allows you to automate your
software development workflows. GitHub Actions
integrates with GitHub, so you can use it to trigger actions
in your workflow when certain events occur, such as when
code pushes to a repository. Two primary use cases for
GitHub Actions are:



Continuous integration/continuous delivery. You can
use GitHub Actions to build, test, and deploy your code
when code pushes to a repository.

Automated security testing.

What is a data pipeline?

It performs an extract for data, transforms, and then loads
to a new destination. A data pipeline is a set of processes
that extract data from one or more sources, convert the
data into a format that can be used by downstream
processes, and load the data into one or more destinations.

What are the primary use cases for Jupyter

Notebook?

Jupyter Notebook allows you to create and share
documents that contain live code, equations, visualizations,
and explanatory text. It is helpful for data analysis, machine
learning, and scientific computing.

What is the purpose of linting Python code?

Linting is the process of checking Python code for errors
and potential problems. Linting can improve the quality of
your code and help find bugs that might otherwise be
difficult to find.

Why are cloud-based development environments like

GitHub Codespaces and AWS Cloud9 useful?

Cloud-based development environments are helpful
because they allow developers to work from anywhere in a
uniform environment with deep integration into the
deployment environment. Cloud-based development
environments also make sharing code and collaborating
with other developers easy. Finally, cloud-based



development environments can quickly scale up or down to
meet the needs of a project.

What is Big O Notation?

Big O Notation is a way to measure the efficiency of an
algorithm. Big O Notation is used to describe the worst-
case scenario for an algorithm. It is important to note that
Big O Notation is not a measure of the actual time or space
an algorithm takes but rather a way to compare the
efficiency of different algorithms.

What are business use cases for the mathematical

field of optimization?

There are many business use cases for the mathematical
field of optimization. Some examples include:

Finding the best route for a delivery driver

Scheduling employees to minimize overtime

Determining the most efficient production schedule for
a factory

Planning the layout of a store to maximize customer
traffic

Optimizing a website for search engine ranking

What is the traveling salesman problem?

Given a list of cities and the distances between each pair of
cities, the goal is to find the shortest possible route that
visits each city and returns to the origin city. The traveling
salesman problem is a classic problem in computer science
and mathematics.

Describe how the gradient descent algorithm works?



The gradient descent algorithm is an optimization
algorithm used to find a function’s local minimum. The
algorithm works by starting at a random point on the
function and then moving in the direction of the gradient
(the function’s derivative) until it reaches a point where the
gradient is zero.

The greedy coin problem is what type of

programming problem?

The greedy coin problem is a classic programming problem
that can be solved using a greedy algorithm, an algorithm
that makes the locally optimal choice at each step to try to
optimize the overall goal. In the case of the greedy coin
problem, the goal is to minimize the number of coins
needed to make a given amount of money.

What are the advantages of containers?

Containers are more efficient than virtual machines
because they don’t require the overhead of a complete
virtualization solution. Containers are portable and run on
any platform that supports container technology.
Containers provide isolation between applications, so one
application cannot interfere with another.

What is an HTTP API?

An HTTP API is an interface for communication between
two systems using the Hypertext Transfer Protocol (HTTP).
Another way to describe it would be a system that allows
two applications to communicate over the internet.

What are the advantages of containerized ML

applications?

There are several advantages to containerized machine
learning applications, including:



Increased portability and flexibility

Containers can be moved between different environments,
making testing and deploying machine learning applications
in various settings easy.

Improved resource utilization

Containers allow for more efficient use of resources, like
multiple applications running on a single server or cluster of
servers.

Isolation and security

Containers isolate applications from each other and the
underlying operating system, providing an additional layer
of security.

Reduced development and deployment time

Containers are quick to create and deploy, making it possible
to iterate rapidly on machine learning applications.

What are the advantages of using ONNX for model

interoperability?

There are several advantages to using ONNX for model
interoperability:

Its open standard is supported by many tools and
frameworks.

Models are easily exported from one framework to
another, allowing the best tool use for each task.

Models are portable and deployable on various devices
and platforms.



It provides a consistent interface for model
development, to easily switch between frameworks as
needs change.

What are the use cases for edge-based machine

learning models?

There are many potential use cases for edge-based machine
learning models; for example, these models could improve
the accuracy of predictions made by IoT devices or provide
real-time feedback to users based on their interactions with
a system. Additionally, edge-based machine learning
models could be used to monitor and optimize the
performance of industrial equipment, for example, to
automatically detect and diagnose problems with
machinery.

What is a Spark Cluster?

A group of machines that work together to run Spark
applications. A primary use case for Spark is data analytics
on large datasets. Leading platforms include Amazon EMR
and Databricks.

What problems does PySpark solve?

PySpark is a Python API for Spark that lets you harness the
simplicity of Python and the power of Apache Spark to
harness Big Data. PySpark solves the problem of learning
multiple languages to work with Big Data. Further, it
allows for a more streamlined and efficient workflow than
when working with Spark alone, as the power of Python is
combined with it.

What are the critical components of the Databricks

platform?



The Databricks platform consists of three key components:
Databricks Runtime, Databricks Workspace, and
Databricks CLI. Databricks Runtime is a managed
environment for running Apache Spark applications and
includes a version of Spark and all the necessary libraries
and dependencies required to run Spark applications.
Features involve creating and running Spark applications
and tools for managing and sharing data.
Databricks Workspace is a web-based interface for
interacting with Databricks. Databricks CLI is helpful to
develop and run Spark applications, as well as to manage
and share data.

What are the critical components of MLflow?

The critical components include tracking, model registry,
and project format:
Tracking Server

Tracks the experiments and runs performed using MLflow.

Tracking API

Allows MLflow integration with other tools and systems.

Model Registry

Stores and manages models trained using MLflow.

Project Format

Defines the structure of an MLflow project.

What is the critical difference between a Spark

DataFrame and a pandas DataFrame?

A Spark DataFrame is a distributed data collection
organized into named columns. A pandas DataFrame is a



local collection of data collected into named columns.
Spark DataFrames can be created from various sources,
including Hive tables, Parquet files, and JSON data, while
pandas DataFrames can only be from local data.

What is kaizen?

Kaizen is a Japanese business philosophy that emphasizes
continuous improvement in all aspects of an organization.
Historically, kaizen has been associated with
manufacturing and production settings, but the principles
apply to any business or organization. The basic idea
behind kaizen is that even minor improvements can
significantly impact over time and that everyone in an
organization should constantly look for ways to improve.

What is a data warehouse?

A data warehouse is a database that stores data for
reporting and analysis. Data warehouses store data from
multiple sources, such as sales, financial, and customer
data. Examples of commercial platforms include Microsoft
SQL Server, Oracle, and IBM DB2.

What is a scheduled data pipeline job?

Scheduled data pipeline jobs are jobs that run on a daily,
weekly, or monthly schedule. Platforms that support this
functionality include cron and Windows Task Scheduler.
From a data perspective, these include jobs that extract
data from a database or other data source, transform it,
and load it into another database or data store.

What is data engineering?

Data engineering is designing, building, and maintaining
systems that collect, store, and process data. Examples



include data warehouses, data lakes, and data pipelines.
Data engineers work with data scientists and other
stakeholders to understand the needs of the business and
design systems that meet those needs.

What is DataOps?

There is no one-size-fits-all answer to this question, as
DataOps can mean different things to different
organizations, depending on their specific needs and goals.
However, DataOps generally refers to the processes and
tools used to manage data throughout its lifecycle, from
acquisition and ingestion to storage, processing, and
analysis. This process includes operational tasks such as
data backup and recovery and data-driven tasks such as
data mining and machine learning.

What is Kubernetes?

Kubernetes is a system for managing containerized
applications running in a cluster across a group of servers.
It provides a platform for automating deployment, scaling,
and operations of application containers across clusters of
hosts, providing container-centric infrastructure.

Why are microservices a good fit for Kubernetes?

Kubernetes works well for microservices applications
because it supports declarative configuration and self-
healing capabilities. Organizations can achieve greater
flexibility and scalability in their application development
and deployment process by wrapping each microservice in
a container and deploying it on a Kubernetes cluster.

What is observability in software engineering?



Observability measures how well external outputs can infer
the system’s internal state or, put another way, how well a
system’s internal state presumes from its external
outcomes. In software engineering, observability refers to
instrumenting code to emit data for monitoring the
system’s health and performance.

What are the critical components of Kubernetes?

Kubernetes consists of control plane components that
contain the cluster and a group of worker nodes that run
applications. The control plane components include the API
server, scheduler, and controller manager. The worker
nodes run the applications and include management by the
control plane components.

What is the Kubernetes API?

The Kubernetes API is an API that manages the deployment
and scaling of the application. The Kubernetes API is a set
of RESTful APIs that expose the functionality of the
Kubernetes system. The API allows clients to interact with
the Kubernetes system to manage application deployment
and scaling.

What are the core components of a cloud native

architecture?

Scalability, elasticity, self-healing, and observability are
core components of a cloud native architecture. Scalability
is the system’s ability to handle the increased load by
adding resources. Elasticity is the system’s ability to
dynamically scale up or down in response to changes in
demand. Self-healing is the ability to detect and recover
from faults automatically. Observability is the ability to
monitor the system’s internal state to infer its health and
performance.



What are three cloud native data components?

Three cloud native data components include persistence,
streaming, and batch. Persistence is the system’s ability to
store data permanently. Streaming is the system’s ability to
process data in real time as it is generating. Batch is the
system’s ability to process data in batches.

What are the common fallacies of distributed

computing?

Common fallacies of distributed computing include:

The network is reliable.

Latency is zero.

Bandwidth is infinite.

The network is secure.

Topology doesn’t change.

There is one administrator.

Transport cost is zero.

The network is homogeneous, as stated by Sun
Microsystems.

How do you access network storage in Docker?

You access network storage in Docker using a volume
driver, which allows you to connect to network-attached
storage or cloud storage.

What is block storage?

Block storage is storage used with an operating system or
application data, organized into blocks, the smallest unit of
storage accessible. Block storage stores frequently

https://oreil.ly/ooXmG


accessed data, such as operating system files or application
data.



Appendix B. Enterprise

MLOps Interviews

The entire series of Enterprise MLOps Interviews is
available online.

Shubham Saboo and Sandra Kublik

Interview with Shubham Saboo and Sandra Kublik.

Piero Molino

Detailed conversation about declarative AutoML with Piero
Molino, author of Ludwig and cofounder of Predibase.

Asaf Somekh

Talk at Duke MIDS MLOps course with Asaf Somekh, CEO
of Iguazio, “Life of a Model: Or the Brutal Reality of
Applying ML in Enterprises and How to Deal with It”.

Javier Luraschi and Pedro Luraschi

Discussion about MLOps with Javascript, including no-code
and low-code approaches and Tensorflow.js, with the
cofounders of Hal9.ai.

Malcolm Smith Fraser

Interview with Malcolm Smith Fraser, Duke MIDS alumnus,
about real-world MLOps. Also available on YouTube and on
the “52 Weeks of Cloud” podcast.

Jon Reifschneider

https://oreil.ly/1UobK
https://oreil.ly/ppe6t
https://oreil.ly/j5uRY
https://oreil.ly/-4xCz
https://oreil.ly/xAmeB
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MLOps interview with Jon Reifschneider, head of the Duke
Artificial Intelligence for Product Innovation master’s
degree program. Also available on YouTube or on the “52
Weeks of Cloud” podcast.

Julien Simon

Discussion with Julien Simon of Hugging Face about the
use of MLOps via pretrained models and how to use MLOps
to build and deploy models and create a career

Shubham Saboo

Live Coding OpenAI with Shubham Saboo covers AWS and
OpenAI in Codespaces.

Brian Ray

A discussion of Enterprise MLOps with Brian Ray,
managing director of Maven Wave an Atos Company.

Simon Stebelena

A discussion of Enterprise MLOps with Simon Stebelena,
lead MLOps engineer at Transaction Monitoring
Netherlands.

Bindu Reddy

Bindu Reddy, the CEO of Abacus AI, talks about the role of
MLOps in the AI industry and how to use MLOps to build
and deploy models and opportunities in the space.

Dhanasekar Sundararaman

Dhanasekar Sundararaman, Duke PhD in computer
engineering and Microsoft researcher, discusses how to
process numbers in NLP models and discusses Hugging
Face.

https://oreil.ly/l94la
https://oreil.ly/JtT_s
https://oreil.ly/JjbDY
https://oreil.ly/QG1Yv
https://oreil.ly/dwT9H
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Ville Tuulos

Ville Tuulos, the CEO of Outerbounds and the Open Source
Framework Metaflow, has a conversation about MLOps,
including his time building systems for Netflix.

Lewis Tunstall and Leandro von Werra

Lewis Tunstall and Leandro von Werra of Hugging Face
discuss MLOps with Hugging Face and how to use MLOps
to build and deploy models and create a career.

Arvs Lat

Discussion with Arvs Lat, the author of Machine Learning

Engineering on AWS.

Julien Simon, Yaron Haviv, and Noah Gift

“How to Easily Deply Your Hugging Face Model to
Production at Scale”, from the MLRun Hugging Face
MLOps Seminar.

Nic Stone

Nic Stone, CTO of Crul, discusses building automated data
pipelines.

Doris Xin

Discussion with Doris Xin, founder of Linea AI.

https://oreil.ly/MxvTL
https://oreil.ly/_4PsQ
https://oreil.ly/f-GrB
https://oreil.ly/O-h8D
https://oreil.ly/6_VCN
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