
Algebraic Geometry

J.S. Milne

November 2, 2023



These notes are an introduction to the theory of algebraic varieties emphasizing the simi­
larities to the theory of manifolds. In contrast to most such accounts they study abstract 
algebraic varieties, and not just subvarieties of affine and projective space. This approach 
leads more naturally into scheme theory.

Before learning scheme theory everyone should understand algebraic varieties over 
algebraically closed fields: first the geometric intuition and then the abstractions. Algebraic 
varieties over algebraically closed fields are the reduced geometric fibres of morphisms of 
schemes.
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Notations

We use the standard (Bourbaki) notations: N D f0; 1;2; : : :g, Z D ring of integers, R D field 
of real numbers, C D field of complex numbers, Fp D Z=pZ D field of p elements, p a 
prime number. Given an equivalence relation, [*] denotes the equivalence class containing *. 
A family of elements of a set A indexed by a second set I, denoted .ai /i2I, is a function 
i 7! ai W I ! A. We sometimes write jSj for the number of elements in a finite set S.

Throughout, k is an algebraically closed field. Unadorned tensor products are over k . For 
a k-algebra R and k-module M, we often write Mr for R <8> M. The dual Homk-linear(E,k/ 
of a finite-dimensional k-vector space E is denoted by E_ .

All rings will be commutative with 1, and homomorphisms of rings are required to map 
1 to 1.

We use Gothic (fraktur) letters for ideals:

ab cmnp qAB CMNPQ 
abcmnpqABCMNPQ

Finally

X dDef Y X is defined to be Y , or equals Y by definition;
X C Y X is a subset of Y (not necessarily proper, i.e., X may equal Y);
X Y X and Y are isomorphic;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism).

A reference “Section 3m” is to Section m in Chapter 3; a reference “3.45 ” is to this 
item in chapter 3; a reference “(67)” is to (displayed) equation 67 (usually given with a page 
reference unless it is nearby).

Prerequisites

The reader is assumed to be familiar with the basic objects of algebra, namely, rings, modules, 
fields, and so on.
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There is almost nothing left to discover in geometry. 
Descartes, March 26, 1619

Question: If we try to explain to a layman what algebraic geometry is, it seems to me that 
the title of the old book of Enriques is still adequate: Geometrical Theory of Equations .....
Grothendieck: Yes! but your “layman” should know what a system of algebraic equations 
is. This would cost years of study to Plato.
Question: It should be nice to have a little faith that after two thousand years every good 
high school graduate can understand what an affine scheme is . . .

From the notes of a lecture series that Grothendieck gave at SUNY at Buffalo in the 
summer of 1973 (in 167 pages, Grothendieck manages to cover very little).
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Introduction

I believe that you should begin by getting a solid foundation 
in what I call “elementary algebraic geometry,” that is, the 
theory of “Serre varieties” as defined in FAC. I think that 
at the beginning you should should strictly limit yourself to 
varieties over an algebraically closed field (but of arbitrary 
characteristic).
Dieudonne, Letter to Ribenboim, 1972.

Just as the starting point of linear algebra is the study of the solutions of systems of 
linear equations, 

n

aij Xj D bi; i D 1;:::;m; (1)
jD1

the starting point for algebraic geometry is the study of the solutions of systems of polynomial 
equations,

fi .Xl;:::;Xn/ D 0; i D 1,:::,^, ^ 2 k\X 1 ,:::,Xn^

One immediate difference between linear equations and polynomial equations is that theo­
rems for linear equations don’t depend on which field k you are working over,* 1 but those for 
polynomial equations depend on whether or not k is algebraically closed and (to a lesser 
extent) whether k has characteristic zero.

1For example, suppose that the system (1) has coefficients aij 2 k and that K is a field containing k . Then
(1) has a solution in kn if and only if it has a solution in Kn , and the dimension of the space of solutions is the 
same for both fields.

A better description of algebraic geometry is that it is the study of polynomial functions 
and the spaces on which they are defined (algebraic varieties), just as topology is the study 
of continuous functions and the spaces on which they are defined (topological spaces), 
differential topology the study of infinitely differentiable functions and the spaces on which 
they are defined (differentiable manifolds), and so on:

algebraic geometry regular (polynomial) functions algebraic varieties

topology continuous functions topological spaces

differential topology differentiable functions differentiable manifolds

complex analysis analytic (power series) functions complex manifolds.

The approach adopted in this course makes plain the similarities between these different 
areas of mathematics. Of course, the polynomial functions form a much less rich class than 
the others, but by restricting our study to polynomials we are able to do calculus over any 
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10 Introduction

field: we simply define
dX XaiXi D X iaiXi-1:

Moreover, calculations with polynomials are easier than with more general functions.
Consider a nonzero differentiable function f.x; y; z/. In calculus, we learn that the 

equation
f.x;y;z/ D C (2)

defines a surface S in R2 3, and that the tangent plane to S at a point P D .a; b; c/ has

2Think of S as a level surface for the function f , and note that the equation is that of a plane through 
.a; b; c/ perpendicular to the gradient vector .Of /P of f at P .

3Weil, Andre. Foundations of algebraic geometry. American Mathematical Society, Providence, R.I. 1946.
4Nor did Weil use the Zariski topology in 1946.

equation2
(f .x - a/ + ff} .y _ b/ + f f .z _ c/ D 0: 

@x P @y P @z P
(3)

The inverse function theorem says that a differentiable map aw S ! S0 of surfaces is a local 
isomorphism at a point P 2 S if it maps the tangent plane at P isomorphically onto the 
tangent plane at P 0 D a.P /.

Now consider a nonzero polynomial f .x; y; z/ with coefficients in a field k . In these 
notes, we shall learn that the equation (2) defines a surface in k3, and we shall use the 
equation (3) to define the tangent space at a point P on the surface. However, and this is 
one of the essential differences between algebraic geometry and the other fields, the inverse 
function theorem doesn’t hold in algebraic geometry. One other essential difference is that 
1/X is not the derivative of any rational function of X, and nor is Xnp_1 in characteristic 
p ^ 0 — these functions cannot be integrated in the field of rational functions k.X/.

These notes form a basic first course on algebraic geometry. Throughout, we require the 
ground field to be algebraically closed in order to be able to concentrate on the geometry. 
Additional chapters, treating more advanced topics, can be found on my website.

The approach to algebraic geometry taken in these notes

In differential geometry it is important to define differentiable manifolds abstractly, i.e., not 
simply as submanifolds of some Euclidean space. For example, it is difficult even to make 
sense of a statement such as “the Gauss curvature of a surface is intrinsic to the surface but 
the principal curvatures are not” without the abstract notion of a surface.

Until the mid 1940s, algebraic geometry was concerned only with algebraic subvarieties 
of affine or projective space over algebraically closed fields. Then, in order to give substance 
to his proof of the congruence Riemann hypothesis for curves and abelian varieties, Weil 
was forced to develop a theory of algebraic geometry for “abstract” algebraic varieties over 
arbitrary fields,3 but his “foundations” are unsatisfactory in two major respects:
❖ Lacking a sheaf theory, his method of patching together affine varieties to form abstract 

varieties is clumsy.4
❖ His definition of a variety over a base field k is not intrinsic; specifically, he fixes some 

large “universal” algebraically closed field Q and defines an algebraic variety over k 
to be an algebraic variety over Q together with a k-structure.
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In the ensuing years, several attempts were made to resolve these difficulties. In 1955, 
Serre resolved the first by borrowing ideas from complex analysis and defining an algebraic 
variety over an algebraically closed field to be a topological space with a sheaf of functions 
that is locally affine.5 Then, in the late 1950s Grothendieck resolved all such difficulties by 
developing the theory of schemes.

5Serre, Jean-Pierre. Faisceaux algebriques coherents. Ann. of Math. (2) 61, (1955). 197-278, commonly 
referred to as FAC.

In these notes, we follow Grothendieck except that, by working only over a base field, 
we are able to simplify his language by considering only the closed points in the underlying 
topological spaces. In this way, we hope to provide a bridge between the intuition given by 
advanced calculus and the abstractions of scheme theory.





Chapter

Preliminaries from commutative 
algebra

Algebraic geometry and commutative algebra are closely intertwined. For the most part, we 
develop the necessary commutative algebra in the context in which it is used. However, in 
this chapter, we review some basic definitions and results from commutative algebra.

a. Rings and ideals

Basic definitions

Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition, 
multiplication, and the formation of negatives. An A-algebra is a ring B together with a 
homomorphism iBW A ! B. A homomorphism of A-algebras B ! C is a homomorphism 
of rings 'W B ! C such that '.iB.a// D iC .a/ for all a 2 A.

Elements x1 ; : : : ; xn of an A-algebra B are said to generate it if every element of B can 
be expressed as a polynomial in the xi with coefficients in iB.A/, i.e., if the homomorphism 
of A-algebras A[X1,..., Xn] ! B acting as iA on A and sending Xi to xi is surjective.

When A c B and x1 ,...,xn 2 B, we let A[x1,...,xn] denote the A-subalgebra of B 
generated by the xi .

A ring homomorphism A ! B is said to be of finite-type, and B is a finitely generated 
A-algebra if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A ! B is finite, and B is a finite1 A-algebra, if B is finitely 
generated as an A-module.

1The term “module-finite” is also used.

Let k be a field, and let A be a k-algebra. When 1A ^ 0 in A, the map k ! A is injective, 
and we can identify k with its image, i.e., we can regard k as a subring of A. When 1A D 0 
in a ring A, then A is the zero ring, i.e., A D f0g.

A ring is an integral domain if it is not the zero ring and if ab D 0 implies that a D 0 or 
b d 0; in other words, if ab d ac and a ^ 0, then b d c.

For a ring A, Ax is the group of elements of A with inverses (the units in the ring).

Ideals

Let A be a ring. An ideal a in A is a subset such that

13



14 1. Preliminaries from commutative algebra

(a) a is a subgroup of A regarded as a group under addition;
(b) a 2 a, r 2 A ) ra 2 a:

The ideal generated by a subset S of A is the intersection of all ideals a containing S — it 
is easy to see that this is in fact an ideal, and that it consists of all finite sums of the form 
Prisi with ri 2 A, si 2 S. The ideal generated by the empty set is the zero ideal f0g. When 
S D fs1; s2; : : :g, we write .s1; s2; : : :/ for the ideal it generates.

Let a and b be ideals in A. The set fa C b j a 2 a; b 2 bg is an ideal, denoted by a C b. 
The ideal generated by fab j a 2 a; b 2 bg is denoted by ab. Clearly ab consists of all finite 
sums Paibi with ai 2 a and bi 2 b, and if a D .a1 ; : : : ;am/ and b D .b1 ; : : : ; bn/, then 
ab D .a1b1; : : : ;aibj; : : : ; ambn/. Note that

ab c a\ b: (4)

The kernel of a homomorphism A ! B is an ideal in A. Conversely, for any ideal a in A, 
the set of cosets of a in A forms a ring A=a, and a 7! a C a is a homomorphism 'W A ! A=a 
whose kernel is a. The map b ! ‘~1 .b/ is a one-to-one correspondence between the ideals 
of A=a and the ideals of A containing a.

An ideal p is prime if p ^ A and ab 2 p ) a 2 p or b 2 p. Thus p is prime if and only if 
A=p is nonzero and has the property that

ab D 0 H) a D 0 or b D 0;

i.e., A=p is an integral domain. Note that if p is prime and a 1 • • • an 2 p, then at least one of 
the ai 2 p.

An ideal m in A is maximal if it is maximal among the proper ideals of A. Thus m is 
maximal if and only if A=m is nonzero and has no proper nonzero ideals, and so is a field. 
Note that

m maximal H) m prime.

The ideals of A x B are all of the form a x b with a and b ideals in A and B. To see 
this, note that if c is an ideal in A x B and .a;b/ 2 c, then .a,0/ d .1,0/.a,b/ 2 c and 
.0;b/ d .0; 1/.a;b/ 2 c. Therefore, c d ax b with

a D fa j .a;0/ 2 cg; b D fb j .0; b/ 2 cg:

Ideals a and b in A are coprime (or relatively prime) if a C b D A. Assume that a and b 
are coprime, and let a 2 a and b 2 b be such that a C b D 1. For x; y 2 A, let z D ay C bx ; 
then

z = bx = x mod a
z = ay = y mod b,

and so the canonical map
A ! A=a x A=b (5)

is surjective. Clearly its kernel is a \ b, which contains ab. Let c 2 a \ b; then

c D c1 D ca Ccb 2 ab:

Hence, (5) is surjective with kernel ab. This statement extends to finite collections of ideals.
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THEOREM 1.1 (CHINESE REMAINDER THEOREM). Let a1; : : : ; an be ideals in a ring A. 
If ai is coprime to aj whenever i ^ j, then the canonical map

A ! A=ai x-x A=an (6)

is surjective, with kernel Q ai D T ai .

Proof. We have proved the statement for n D 2, and we use induction to extend it to n > 2. 
For i > 2, there exist elements ai 2 a1 and bi 2 ai such that

ai Cbi D 1:

The product Qi >2(ai C bi / lies in ai C a2 ••• an and equals 1, and so

ai C a2••• an d A:

Therefore,

A=ai ••• an d A=ai • .a2••• an/
' A=a1 x A=a2■■■ an by the n d 2 case
' A=a1 x A=a2 x---x A=an by induction. n

We let spec.A/ denote the set of prime ideals in a ring A and spm.A/ the set of maximal 
ideals.

Noetherian rings

Proposition 1.2. The following three conditions on a ring A are equivalent:
(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals ai c a2 C ••• eventually becomes constant, i.e., 

am d amc1 d ••• for some m;
(c) every nonempty set of ideals in A has a maximal element.

Proof. (a) h) (b): Let a1 C a2 c ••• be an ascending chain of ideals. Then U ai is an 
ideal, and hence has a finite set fai; : : : ;ang of generators. For some m, all the ai belong to 
am, and then

am D amC 1 D " ’ D U ai :
(b) h) (c): Let S be a nonempty set of ideals in A. If S has no maximal element, 

then the axiom of dependent choice2 implies that there exists an infinite strictly ascending 
chain of ideals in S, contradicting (b).

2This says the following: let R be a binary relation on a nonempty set X, and suppose that, for each a in X, 
there exists a b such that aRb; then there exists a sequence .an/n2N of elements of X such that an R anC1 for 
all n. This axiom is strictly weaker than the axiom of choice (q.v. Wikipedia).

(c) H) (a): Let a be an ideal, and let S be the set of finitely generated ideals contained 
in a. Then S is nonempty because it contains the zero ideal, and so it contains a maximal 
element c d (ai,...,ar/.If c ^ a, then there exists an a 2 a x c, and (ai,...,ar ,a) will be 
a finitely generated ideal in a properly containing c. This contradicts the definition of c, and 
so c d a. □
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A ring A is noetherian if every nonempty set of ideals has a maximal element. Applying 
this to the set of proper ideals containing a fixed ideal, we see that every proper ideal in a 
noetherian ring is contained in a maximal ideal. This last assertion is, in fact, true for all 
rings, but the proof for non-noetherian rings requires Zorn’s lemma (CA 2.2).

A ring A is said to be local if it has exactly one maximal ideal m. Because every nonunit 
is contained in a maximal ideal, for a local ring Ax d A x m.

PROPOSITION 1.3 (NAKAYAMA’ S LEMMA). Let A be a local ring with maximal ideal m, 
and let M be a finitely generated A-module.

(a) If M D mM , then M D 0:
(b) If N is a submodule of M such that M D N C mM, then M D N .

Proof. (a) Suppose that M ^ 0. Choose a minimal set of generators fe1;...; eng, n > 1, 
for M, and write

e1 d a1e1 C-----Canen; ai 2 m.

Then
(1 -ai/ei d a2e2 C-----Canen

and, as (1 — a 1/ is a unit, e2,...,en generate M, contradicting the minimality of the set.
(b) The hypothesis implies that M=N d m(M/N), and so M=N d 0. □

Now let A be a local noetherian ring with maximal ideal m. Then m is an A-module, and 
the action of A on m=m2 factors through k dDef A=m.

CoRoLLARY 1.4. Elements a1 ; . . . ; an of m generate m as an ideal if and only if their 
residues modulo m2 span m=m2 as a vector space over k . In particular, the minimum 
number of generators for the maximal ideal is equal to the dimension of the vector space 
m=m2.

PRooF. If a1 ; . . . ; an generate m, it is obvious that their residues span m=m2 . Conversely, 
suppose that their residues span m=m2, so that m D (a1 ; . . . ; an/ C m2. Because A is 
noetherian, m is finitely generated, and Nakayama’s lemma shows that m d (ai,...;a„). □

DEFINITIoN 1.5. Let A be a noetherian ring.
(a) The height ht(p/ of a prime ideal p in A is the greatest length d of a chain of distinct 

prime ideals
P D Pd 3 Pd-1 D-D Po. (7)

(b) The Krull dimension of A is supfht(p/ j p a prime ideal in Ag.

Thus, the Krull dimension of a noetherian ring A is the supremum of the lengths of 
chains of prime ideals in A (the length of a chain is the number of gaps). For example, a 
field has Krull dimension 0, and conversely an integral domain of Krull dimension 0 is a 
field. The height of every nonzero prime ideal in a principal ideal domain is 1, and so such a 
ring has Krull dimension 1 (provided it is not a field).

The height of every prime ideal in a noetherian ring is finite, but the Krull dimension 
of the ring may be infinite because it may contain a sequence of prime ideals p1 ;p2;p3;... 
such that ht(pi/ tends to infinity (CA, p. 13).

DEFINITIoN 1. 6. A local noetherian ring of Krull dimension d is said to be regular if its 
maximal ideal can be generated by d elements.
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It follows from Corollary 1.4 that a local noetherian ring is regular if and only if its Krull 
dimension is equal to the dimension of the vector space m=m2 .

Lemma 1 .7. In a noetherian ring, every set of generators for an ideal contains a finite 
generating subset.

PROOF. Let a be an ideal in a noetherian ring A, and let S be a set of generators for a. An 
ideal maximal among those generated by a finite subset of S must contain every element of 
S (otherwise it wouldn’t be maximal), and so equals a. □

In the proof of the next theorem, we use that a polynomial ring over a noetherian ring is 
noetherian (see Theorem 2.8).

Theorem 1.8 (Krull Intersection Theorem). LetA be a noetherian local ring with 
maximal ideal m; then Qn>1 mn d f0g:

PROOF. Let a1 ; : : : ; ar generate m. Then mn consists of all finite sums

^2 Cil-ir al11 ••• airr ; Cil-ir 2 A.
ilC--------Cir Dn

In other words, mn consists of the elements of A of the form g.a1; : : : ;ar/ for some homo­
geneous polynomial g.X1 ;.::;Xr / 2 A[X1 ;.::;Xr ] of degree n. Let Sm denote the set of 
homogeneous polynomials f of degree m such that f(a1,...,ar/ 2 Tn>1 mn, and let a 
be the ideal in A[X1,...,Xr] generated by the set Um Sm. According to the lemma, there 
exists a finite set ff1 ; . . . ; fsg of elements of Sm Sm that generates a. Let di D degfi, and 
let d d max di. Let b 2 Tn>1 mn; then b 2 md+1, and so b d f.a1,...,ar / for some 
homogeneous polynomial f of degree d C 1. By definition, f 2 Sd+1 c a, and so

f D g1f1 C----- C gs fs

for some gi 2 A[X1 ;...;Xr]. As f and the fi are homogeneous, we can omit from each gi 
all terms not of degree deg f — deg fi, since these terms cancel out. Thus, we may choose the 
gi to be homogeneous of degree deg f — deg fi d d C 1 — di >0. Then gi (ai,...,ar / 2 m, 
and so

b D f.ai;:::,ar ) i gi (.01,..:,^ ^ ' fi (^ 1 ,...,a f ^ 2 TO n>1 mn.

Thus, T mn d m • T mn, and Nakayama’s lemma implies that T mn d 0. □

aside 1.9. Let A be the ring of germs of analytic functions at 0 2 R (see p. 60 for the notion 
of a germ of a function). Then A is a noetherian local ring with maximal ideal m D .x/, and mn 

consists of the functions f that vanish to order n at x D 0. The theorem says (correctly) that only 
the zero function vanishes to all orders at 0. By contrast, the function e~1=x shows that the Krull 
intersection theorem fails for the ring of germs of infinitely differentiable functions at 0 (this ring is 
not noetherian).

b. Rings of fractions

A multiplicative subset of a ring A is a subset S with the property:

1 2 S, a, b 2 S H) ab 2 S.
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Define an equivalence relation on A x S by

(a;s) ~ (b,f) ^” u(at — bs) d 0 for some u 2 S.

Write aS or a=s for the equivalence class containing (a,s), and define addition and multipli­
cation of equivalence classes in the way suggested by the notation:

a c b   atCbs a b   ab
s ' t st ; st st :

It is easy to check that these do not depend on the choices of representatives for the equiva­
lence classes, and that we obtain in this way a ring

S~1A d na j a 2 A;S 2 S0

and a ring homomorphism a ! j w A ! S~1 A, whose kernel is

fa 2 A j sa D 0 for some s 2 Sg:

For example, if A is an integral domain an 0 0 S, then a ! 1 is injective, but if 0 2 S, then 
S~1 A is the zero ring.

Write i for the homomorphism a ! 1 w A ! S~1A.

Proposition 1.10. Thepair (S ~1A,i) has the following universal property: every ele­
ment s 2 S maps to a unit in S~1A, and any other homomorphism aw A ! B with this 
property factors uniquely through i,

A —S-1A
^"9\I

B

PROOF. If P exists,

sas D a H) P(s)P(as) D P(a') H) P(a) D a(a)a.s)-1,

and so P is unique. Define
P(a) d a(a)a(s)-1:

Then

c d db h) s.ad — bc) d 0 some s 2 S h) a(a)a(d) — a(b)a(c) d 0

because a(s) is a unit in B, and so P is well-defined. It is obviously a homomorphism. □

As usual, this universal property determines the pair (S-1A, i) uniquely up to a unique 
isomorphism.

When A is an integral domain and S d A x f0g, F d S~1A is the field of fractions 
of A, which we denote F (A). In this case, for any other multiplicative subset T of A not 
containing 0, the ring T~1 A can be identified with the subring f aa 2 F j a 2 A, t 2 Sg of F.

We shall be especially interested in the following examples.
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EXAMPLE 1.1 1. Let h 2 A. Then Sh D f1; h; h2; : : :g is a multiplicative subset of A, and 
we let Ah d S^1 A. Thus every element of Ah can be written in the form ham, a 2 A, and

3First check m is an ideal. Next, if m d Ap, then 1 2 m; but if 1 d as for some a 2 p and s 0 p, then
u(s — a) d 0 some u 0 p, and so ua d us 0 p, which contradicts a 2 p. Finally, m is maximal because every 
element of Ap not in m is a unit.

hmm D hn " ” hN (ahn - bhm) d 0; some N.

If h is nilpotent, then Ah D 0, and if A is an integral domain with field of fractions F and 
h ^ 0, then Ah is the subring of F of elements of the form hmm, a 2 A, m 2 N.

EXAMPLE 1.12. Let p be a prime ideal in A. Then Sp D A Xp is a multiplicative subset of 
A, and we let Ap d Sp_1 A. Thus each element of Ap can be written in the form a, c 0 p, and

c d b ■<=” s(ad — bc) d 0, some s 0 p.

The subset m == f s j a 2 p;S 0 pg is a maximal ideal in Ap, and it is the only maximal ideal, 
i.e., Ap is a local ring.3 When A is an integral domain with field of fractions F, Ap is the 
subring of F consisting of elements expressible in the form s, a 2 A, s 0 p.

Lemma 1.13. For every ring A and h 2 A, the map ^2 ai Xi ! 7? hi defines an isomor­
phism

'
A[X]/(1 - hX) -! Ah.

Proof. If h == 0, both rings are zero, and so we may suppose that h ^ 0. Let x be the class 
of X in the quotient ring A[X]/(1 — hX). Then A[x] is generated by x subject to the relation 
1 d hx, and so h is a unit. Let aw A ! B be a homomorphism of rings such that a(h) is 
a unit in B. The homomorphism 72aiXi ! 72a(ai-)a(h)_iw A[X] ! B factors through 
A[x] because 1 — hX ! 1 — a(h)a(h)-1 == 0, and, because a(h) is a unit in B, this is the 
unique extension of a to A[x]. Therefore A[x] has the same universal property as Ah, and 
so the two are (uniquely) isomorphic by an isomorphism that fixes elements of A and makes 
h~1 correspond to x. □

Let S be a multiplicative subset of a ring A, and let S-1A be the corresponding ring of 
fractions. Any ideal a in A, generates an ideal S-1a in S-1A, If a contains an element of S, 
then S-1 a contains a unit, and so is the whole ring. Thus some of the ideal structure of A is 
lost in the passage to S-1 A, but, as the next proposition shows, much is retained.

PRoPoSITIoN 1.14. Let S be a multiplicative subset of the ring A. The map

p! S-ip d (S-1A)p

is a bijection from the set of prime ideals of A disjoint from S to the set of prime ideals of 
S-1A with inverse q ! (inverse image of q in A).

Proof. For an ideal b of S-1 A, let bc denote the inverse image of b in A, and for an ideal 
a of A, let ae == (S-1 A)a denote the ideal in S-1A generated by the image of a.

For an ideal b of S-1A, certainly, b D bce. Conversely, if s 2 b, a 2 A, s 2 S, then 
1 2 b, and so a 2 bc. Thus a 2 bce, and so b == bce.

For an ideal a of A, certainly a c aec. Conversely, if a 2 aec, then 1 2 ae, and so 1 == s 
for some a0 2 a, s 2 S. Thus, t(as — a0) == 0 for some t 2 S, and so ast 2 a. If a is a prime 
ideal disjoint from S, this implies that a 2 a: for such an ideal, a D aec.
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If b is prime, then certainly bc is prime. For any ideal a of A, S-1 A=ae ' S“1 .A=a/, 
where S is the image of S in A=a. If a is a prime ideal disjoint from S, then S~1.A=a/ is 
a subring of the field of fractions of A=a, and is therefore an integral domain. Thus, ae is 
prime.

We have shown that p 7! pe and q 7! qc are inverse bijections between the prime ideals 
of A disjoint from S and the prime ideals of S~1A. □

LEMMA 1 .15. Let m be a maximal ideal of a ring A, and let n D mAm. For all n, the map

a C mn! 1 Cnnw A=mn ! Am=nn (8)

is an isomorphism. Moreover, it induces isomorphisms

mr=mn ! nr=nn

for all r < n.

Proof. The second statement follows from the first, because of the exact commutative 
diagram .r < n/:

0 ------ > mr =mn ------> A=mn -------> A=mr -------> 0
1 > >

0 ------ )• nr =nn ----------)• Am=nn --------- > Am=nr --------- >• 0:

Let S d A x m. Then Am d S~1A and nn d mn Am d {b 2 Am j b 2 mn; s 2 S}. In 
order to show that the map (8) is injective, it suffices to show that

1 d b with a 2 A; b 2 mn;S 2 S h) a 2 mn.

But if 1 d b, then tas d tb 2 mn for some t 2 S, and so tas d 0 in A=mn. The only 
maximal ideal in A containing mm is m (because m0 D mm h) m0 D m/, and so the only 
maximal ideal in A=mn is m=mn . As st is not in m=mn, it must be a unit in A=mn , and as 
sta D 0 in A=mn, a must be 0 in A=mn, i.e., a 2 mn:

We now prove that the map (8) is surjective. Let a 2 Am, a 2 A, s 2 S. Because the only 
maximal ideal of A containing mn is m, no maximal ideal contains both s and mn . It follows 
that .s/ C mn D A. Therefore, there exist b 2 A and q 2 mn such that sb C q D 1 in A. It 
follows that s is invertible in Am=nn, and so a is the unique element of this ring such that 
sOS d a. As s.ba/ C qa d a, the image of ba in Am=nn also has this property and therefore 
equals as in Am=nn. □

Proposition 1.16. In a noetherian ring, only 0 lies in all powers of all maximal ideals.

Proof. Let a be an element of a noetherian ring A. If a ^ 0, then fb 2 A j ba d 0g is a 
proper ideal, and so is contained in some maximal ideal m. Then 1 is nonzero in Am, and so 
1 0 .mAm/n for some n (by the Krull intersection theorem 1.8), which implies that a 0 mn 
(by 1.15). □

Notes. For more on rings of fractions, see CA §5.
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Modules of fractions

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an 
equivalence relation on M x S by

(m;s/ ~ (n,f) ^” u.tm — sn/ D 0 for some u 2 S:

Write mm for the equivalence class containing (m,s), and define addition and scalar multipli­
cation by the rules:

m C n _ mtCns a m _ am 2 M t 2 S 2 A
s C t D st ; st D st ; m;n 2 M; s;t 2 S a 2 A:

It is easily checked that these do not depend on the choices of representatives for the 
equivalence classes, and that we obtain in this way an S _1 A-module

S-1M D f m j m 2 M;s 2 S g

and a homomorphism m ! mmw M —! S~1M of A-modules whose kernel is

fa 2 M j sa D 0 for some s 2 Sg:

Proposition 1.17. The elements of S act invertibly on S ~1M, and every homomorphism 
from M to an A-module N with this property factors uniquely through iS ,

M S-1M
^’

N:

PROOF. Similar to the proof of 1.10. □

Proposition 1.18. The functor M v> S~1M is exact. In other words, if the sequence of 
A-modules

M 0 -! M -! M00

is exact, then so also is the sequence of S~1 A-modules

S-1M 0 S-1! S-1M —! S-1M 00:

Proof. Because fi oa D 0, we have 0 D S~1(fi ia/ D S~1fi i S~1a. Therefore Im(S-1o) c 
Ker.S~1fi/. For the reverse inclusion, let m 2 Ker.S~1 fi/, where m 2 M and s 2 S. Then 
^.m/ D 0 and so, for some t 2 S, we have tfi.m/ D 0. Then fi.tm/ D 0, and so tm D a(m0) 
for some m0 2 M0. Now

m D tm D «(m0/ 2 im.S-1a/
s D ts D ts 2 Im(S a/: □

PRoPoSiTioN 1.19. Let A be a ring, and let M be an A-module. The canonical map

M! fMm j m a maximal ideal in Ag

is injective.
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PROOF. Let m 2 M map to zero in all Mm. The annihilator a D fa 2 A j am D 0g of m 
is an ideal in A. Because m maps to zero Mm, there exists an s 2 A X m such that sm D 0. 
Therefore a is not contained in m. Since this is true for all maximal ideals m, a D A, and so 
it contains 1. Now m d 1m d 0. □

COROLLARY 1. 20. An A-module M D 0 if Mm D 0 for all maximal ideals m in A.

Proof. Immediate consequence of the lemma. □

Proposition 1.21. Let A be a ring. A sequence of A-modules

M0 -! M -! M00 (*)

is exact if and only if
M^ ^! Mm ^! M" (**)

is exact for all maximal ideals m.

PRooF. The necessity is a special case of Proposition 1.18. For the sufficiency, let N D 
Ker.^/=Im.a/. Because the functor M m Mm is exact,

Nm d Ker.^m/= Im.On/.

If (**) is exact for all m, then Nm D 0 for all m, and so N D 0 (by 1.20). But this means 
that (*) is exact. □

CoRoLLARY 1. 22. A homomorphism M ! N of A-modules is injective (resp. surjective) 
if and only if Mm ! Nm is injective (resp. surjective) for all maximal ideals m.

Proof. Apply the proposition to 0 ! M ! N (resp. M ! N ! 0). □

Direct limits

A directed set is a pair .I; </ consisting of a set I and a preorder4 < on I such that for all 
i;j 2 I, there exists a k 2 I with i;j < k.

4A preorder is a reflexive transitive binary relation.
5Regard I as a category with I lorn .a.// empty unless a < b, in which case it contains a single element. 

Then a direct system is a functor from I to the category of A-modules.

Let .I; </ be a directed set, and let A be a ring. A direct system of A-modules indexed 
by .I; </ is a family .Mi/i2i of A-modules together with a family .ajw Mi ! Mj/i<j- of 
A-linear maps such that aii d idMi and aj i aj d a^ all i < j < k.5 An A-module M 
together with A-linear maps ai w Mi ! M such that ai d aj i aj for all i < j is the direct 
limit of the system .Mi ; aij/ if

(a) M D i2I a .Mi/, andS i

(b) mi 2 Mi maps to zero in M if and only if it maps to zero in Mj for some j > i.
Direct limits of A-algebras are defined similarly.

Proposition 1.23. For every multiplicative subset S of A, S-1A ' lim Ah,where h runs 
over the elements of S (partially ordered by division).
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Proof. When hjh0, say, h0 d hg, there is a canonical homomorphism hh ! hg w Ah ! 
Ah0, and so the rings Ah form a direct system indexed by the set S. When h 2 S, the 
homomorphism A ! S ~1 A extends uniquely to a homomorphism hh ! aa w Ah ! S~1 A 
(1.10), and these homomorphisms are compatible with the maps in the direct system. Now it 
is easy to see that S~1 A satisfies the conditions to be the direct limit of the Ah. □

c. Unique factorization

Let A be an integral domain. An element a of A is irreducible if it is not zero, not a unit, 
and admits only trivial factorizations, i.e.,

a D bc H) b or c is a unit.

An element a is said to be prime if .a/ is a prime ideal, i.e.,

ajbc H) ajb or ajc .

An integral domain A is called a unique factorization domain (or a factorial domain) 
if every nonzero nonunit in A can be written as a finite product of irreducible elements in 
exactly one way up to units and the order of the factors: Principal ideal domains, for example, 
Z and k[X], are unique factorization domains,

PRoPoSITIoN 1.24. Let A be an integral domain, and let a be an element of A that is 
neither zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A is 
a unique factorization domain.

PRooF. Assume that a is prime. If a D bc , then a divides bc and so a divides b or c . 
Suppose the first, and write b D aq. Now a D bc D aqc, which implies that qc D 1 because 
A is an integral domain, and so c is a unit. Therefore a is irreducible.

For the converse, assume that a is irreducible and that A is a unique factorization domain. 
If ajbc, then

bc D aq, some q 2 A:

on writing each of b , c , and q as a product of irreducible elements, and using the uniqueness 
of factorizations, we see that a differs from one of the irreducible factors of b or c by a unit. 
Therefore a divides b or c. □

CoRoLLARY 1.25. Let A be an integral domain. If A is a unique factorization domain, 
then every prime ideal of height 1 is principal.

PRooF. Let p be a prime ideal of height 1. Then p contains a nonzero element, and hence 
an irreducible element a. We have p D (a/ D .0/. As (a/ is prime and p has height 1, we 
must have p d (a/. □

PRoPoSITIoN 1.26. Let A be an integral domain in which every nonzero nonunit element 
is a finite product of irreducible elements. If every irreducible element of A is prime, then A 
is a unique factorization domain.

PRooF. Suppose that
ai ••• am d bi ••• bn (9) 
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with the ai and bi irreducible elements in A. As a1 is prime, it divides one of the bi, which 
we may suppose to be b1 . As b1 is irreducible, b1 D ua1 for some unit u. On cancelling a1 

from both sides of (9), we obtain the equality

a2 ■■■ am D .ub2/b3 ••• bn:

Continuing in this fashion, we find that the two factorizations are the same up to units and 
the order of the factors. □

Proposition 1.27 (Gauss’ S Lemma). Let A be a unique factorization domain with field 
of fractions F .If f .X/ 2 A[X] factors into the product of two nonconstant polynomials 
in F[X], then it factors into the product of two nonconstant polynomials in A[X].

Proof. Let f == gh in F[X]. For suitable C;d 2 A, the polynomials g1 == cg and h1 == dh 
have coefficients in A, and so we have a factorization

cdf d g1h1 in A[X].

If an irreducible element p of A divides cd, then, looking modulo .p/, we see that

0 d g1 • hl in (A/(p//[X].

According to Proposition 1.24, (p/ is prime, and so (A/(p// [X] is an integral domain. 
Therefore, p divides all the coefficients of at least one of the polynomials g1; h1, say g1, so 
that g1 d pg2 for some g2 2 A[X]. Thus, we have a factorization

(cd/p/f d g2hi in A[X],

Continuing in this fashion, we can remove all the irreducible factors of cd, and so obtain a 
factorization of f in A[X]. □

Let A be a unique factorization domain. A nonzero polynomial

f d ao C a 1X C • •• C amXm

in A[X] is said to be primitive if the coefficients ai have no common factor (other than units). 
Every polynomial f in F[X] can be written f == c(f / • f1 with c(f / 2 F and f1 primitive. 
The element c(f/, which is well-defined up to multiplication by a unit, is called the content 
of f. Note that f 2 A[X] if and only if c(f / 2 A.

Lemma 1 .28. The product of two primitive polynomials is primitive.

PRooF. Let

f d ao C a 1X C • •• CamXm 
g d bo C biX C C bnXn;

be primitive polynomials, and let p be an irreducible element of A. Let ai0, i0 < m, be the 
first coefficient of f not divisible by p, and let bj0, j0 < n, the first coefficient of g not 
divisible by p. Then all the terms in the sum PiCj Di0Cj0 aibj are divisible by p, except 
ai0 bj0, which is not divisible by p. Therefore, p doesn’t divide the (io C jo/th-coefficient 
of fg . We have shown that no irreducible element of A divides all the coefficients of fg, 
which must therefore be primitive. □ 
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Proposition 1.29. Let A be a unique factorization domain with field of fractions F . For 
polynomials f,g 2 F[X],

c.fg) D cf) • c.g) I
hence every factor in A[X] of a primitive polynomial is primitive.

Proof. Let f == c(f) • f1 and g == c.g) • g1 with f1 and g1 primitive. Then

fg d c.f) • c.g) • figl

with figi primitive, and so c.fg) == c.f )c(g). □

Corollary 1.30. An element f 2 A[X] is irreducible if and only if either
(a) f is constant, say f D a, with a an irreducible element ofA, or
(b) f is a nonconstant primitive polynomial that is irreducible in F[X].

Proof. (: If f is as in (a) and f == gh in A[X], then g and h both lie in A and one must 
be a unit in A, and hence a unit in A[X]. If f is as in (b) and f == gh, then one of g or h 
must be constant because otherwise f would be reducible in F[X]. If it is g that is constant, 
then, because f is primitive, g must be a unit in A, hence in A[X].

): Let f 2 A[X] be irreducible. If f is a constant polynomial, say f == a, then a is 
obviously irreducible in A. If f nonconstant, then it must be primitive because otherwise 
f d c.f) • f1 would be a nontrivial factorization in A[X]. It must also be irreducible in 
F[X], because otherwise it would have a nontrivial factorization in A[X] (by 1.27). □

Proposition 1.31. If A is a unique factorization domain, then so also is A[X].

PRooF. We shall check that A satisfies the conditions of Proposition 1.26.
Let f 2 A[X], and write f d c.f )f 1. Then c.f) is a product of irreducible elements in 

A, and fi is a product of irreducible primitive polynomials. This shows that f is a product 
of irreducible elements in A[X].

Let a be an irreducible element of A. If a divides fg, then it divides c.fg) D c.f )c.g). 
As a is prime (1.24), it divides c.f) or c.g), and hence also f or g.

Let f be an irreducible primitive polynomial in A[X]. Then f is irreducible in F[X], 
and so if f divides the product gh of g;h 2 A[X], then it divides g or h in F[X]. Suppose 
the first, and write fq d g with q 2 F[X]. Then c.q) d c.f )c.q) d c.fq) d c.g) 2 A, 
and so q 2 A[X]. Therefore f divides g in A[X].

We have shown that every element of A[X] is a product of irreducible elements and that 
every irreducible element of A[X] is prime, and so A[X] is a unique factorization domain 
(1.26). □

Polynomial rings

Let k be a field. The elements of the polynomial ring k[X1 ,...,Xn] are finite sums

X ' cai-an X1 1 ■■■ Xnn ; cai~«„ 2 k; aj 2 N;

with the obvious notions of equality, addition, and multiplication. In particular, the monomi­
als form a basis for k[X1 ,...,Xn] as a k-vector space.

The degree, deg.f ), of a nonzero polynomial f is the largest total degree of a monomial 
occurring in f with nonzero coefficient. Since deg.fg) d deg.f ) C deg.g), k[X1 ,...,Xn] 
is an integral domain and k[X1,...,Xn]x d kx. An element f of k[X1,...,Xn] is irre­
ducible if it is nonconstant and f D gh H) g or h is constant.
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Theorem 1.32. The ring k[X1;..., Xn] is a unique factorization domain.

Proof. Note that 
k[X1;:::;Xn_1][Xn] D ,...,X„].

This simply says that every polynomial f in n symbols X1 ; : : : ; Xn can be expressed uniquely 
as a polynomial in Xn with coefficients in k[X1 ,...,Xn_ 1 ],

f .X1 ; : : : ; Xn^ D aO^^ . . . ^n^^^ C----C 6^ ^l ; : : : ^n - 1 b

Since, as we noted, k[X] is a unique factorization domain, the theorem follows by induction 
from Proposition 1.31. □

Corollary 1.33. A nonzero proper principal ideal (f) in k[X1;...;Xn] isprimeifand 
only if f is irreducible.

Proof. Special case of Proposition 1.24. □

d. Integral dependence

Let A be a subring of a ring B. An element a of B is said to be6 integral over A if it is a 
root ofa monic7 polynomial with coefficients in A, i.e., ifit satisfies an equation

6More generally, if f W A ! B is an A-algebra, an element a of B is integral over A ifit satisfies an equation 

an + f(a1)an“1 C------ C f(an) d 0; ai 2 A.

Thus, a is integral over A if and only if it is integral over the subring f .A) of B .
7A polynomial is monic if its leading coefficient is 1, i.e., f .X) D Xn C terms of degree less than n.

an C a1an-1 C-----C an d 0; ai 2 A.

If every element of B is integral over A, then B is said to be integral over A.
In the next proof, we shall need to apply a variant of Cramer’s rule: if x1; . . . ;xm is a 

solution to the system of linear equations
m

cij xj D 0; i D 1; . . . ; m; 
jD1

with coefficients in a ring A, then

det(C)• xj d 0; j d 1,...,m, (10)

where C is the matrix of coefficients. To prove this, expand out the left hand side of 

det
c11

...
cm1

clj-1
...

cm j — 1

Pi c1i xi c1 jC1

icmixi cmjC1

c1m
...

cmm

D0

using standard properties of determinants.
An A-module M is faithful if aM D 0, a 2 A, implies that a D 0.

PRoPoSITIoN 1.34. Let A be a subring of a ring B. An element a of B is integral over A 
if and only if there exists a faithful A[a] -submodule M of B that is finitely generated as an 
A-module.
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Proof. )W Suppose that

an C a1an~1 C------C an d 0; ai 2 A.

Then the A-submodule M of B generated by 1, a, ..., an~1 has the property that aM C M, 
and it is faithful because it contains 1.
(w Let M be a faithful A[a]-submodule of B admitting a finite set fei,...,e„g of 

generators as an A-module. Then, for each i,

aei D aij ej , some aij 2 A.

We can rewrite this system of equations as

.a -an/ei -ai2e2 -ai3e3------ d 0
—a2iei C (a — a22)e2 — a23e3-------d 0

••• d 0.

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells us that 
det(C/ • ei d 0 for all i. As M is faithful and the ei generate M, this implies that det(C/ d 0. 
On expanding out the determinant, we obtain an equation

an C cian“i C c2an-2 C------C cn d 0; ci 2 A. □

Proposition 1.35. An A-algebra B is finite if it is generated as an A-algebra by a finite 
set of elements each of which is integral over A.

Proof. Suppose that B d A[ai,.. .,am] and that

a”i Caiia”i-i C------Caini d 0; aij 2 A; i d 1,...,m.

Any monomial in the ai divisible by some aini is equal (in B) to a linear combination of 
monomials of lower degree. Therefore, B is generated as an A-module by the finite set of 
monomials aj1 ••• arm, 1 < ri < ni. □

CoRoLLARY 1.36. An A-algebra B is finite if and only if it is finitely generated and integral 
over A.

PRooF. (: Immediate consequence of 1.35.
): We may replace A with its image in B. Then B is a faithful A[a]-module for all 

a 2 B (because 1B 2 B), and so 1.34 shows that every element of B is integral over A. As 
B is finitely generated as an A-module, it is certainly finitely generated as an A-algebra. □

Proposition 1.37. Consider rings A c B C C .If B is integral over A and C is integral 
over B , then C is integral over A.

Proof. Let y 2 C. Then
yn C b_yn 1 C-----C bn d 0

for some bi 2 B. Now A[bi,...,b„] is finite over A (see 1.35), and A[bi;...;bn][y] is finite 
over A[bi;...; bn], and so it is finite over A. Therefore y is integral over A by 1.34. □

THEoREM 1.38. Let A be a subring of a ring B. The elements of B integral over A form 
an A-subalgebra of B.
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Proof. Let a and fi be two elements of B integral over A. Then A[a,fi] is finitely generated 
as an A-module (1.35). It is stable under multiplication by a ± fi and afi and it is faithful 
as an A[a ± fi]-module and as an A[afi]-module (because it contains 1a). Therefore 1.34 
shows that a ± fi and afi are integral over A. □

DEFINITIoN 1.39. Let A be a subring of the ring B. The integral closure of A in B is the 
subring of B consisting of the elements integral over A.

PRoPoSITIoN 1.40. Let A be an integral domain with field of fractions F, and let a be an 
element of some field containing F . If a is algebraic over F , then there exists a d 2 A such 
that da is integral over A.

PRooF. By assumption, a satisfies an equation

am C a1am-1 C-----C am d 0; ai 2 F.

Let d be a common denominator for the ai, so that dai 2 A for all i, and multiply through 
the equation by dm :

(da/m C a1d(da/m-1 C----- C amdm d 0:

As a1d;:::;amd m 2 A, this shows that da is integral over A. □

CoRoLLARY 1.41. Let A be an integral domain and let E be an algebraic extension of the 
field of fractions of A. Then E is the field of fractions of the integral closure of A in E .

PRooF. In fact, the proposition shows that every element of E is a quotient fi=d with fi 
integral over A and d 2 A. □

DEFINITIoN 1.42. An integral domain A is said to be integrally closed if it is equal to its 
integral closure in its field of fractions F , i.e., if

a 2 F; a integral over A H) a 2 A:

An integrally closed integral domain is called an integrally closed domain or normal domain.

PRoPoSITIoN 1.43. Unique factorization domains are integrally closed.

PRooF. Let A be a unique factorization domain, and let a=b be an element of its field of 
fractions. If a=b 0 A, then b divisible by some prime element p not dividing a. If a=b is 
integral over A, then it satisfies an equation

(a=b/n C a1(a=b/n-1 C------C an d 0; ai 2 A:

on multiplying through by b n , we obtain the equation

an C a1an-1b C----- C anbn d 0:

The element p then divides every term on the left except an , and hence divides an . Since it 
doesn’t divide a, this is a contradiction. □
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Let F c E be fields, and let a 2 E be algebraic over F. The minimal polynomial of 
a over F is the monic polynomial of smallest degree in F [X] having a as a root. If f is 
the minimal polynomial of a, then the homomorphism X ! aw F[X] ! F[a] defines an 
isomorphism F[X]/(f) ! F[a], i.e., F[x] ' F[a], x $ a.

Proposition 1.44. Let A be an integrally closed domain, and let E be a finite extension 
of the field of fractions F of A. An element of E is integral over A if and only if its minimal 
polynomial over F has coefficients in A.

Proof. Let a 2 E be integral over A, so that

am C a 1am-1 C------C am d 0; some ai 2 A; m > 0.

Let f(X) be the minimal polynomial of a over F, and let a0 be a conjugate of a, i.e., a root 
of f in some splitting field of f. Then f is also the minimal polynomial of a0 over F, and 
so (see above), there is an F -isomorphism

a w F[a] ! F[a0]; a (a) d a0:

On applying a to the above equation we obtain the equation

a0m C a1a0m-1 C----- C am d 0;

which shows that a0 is integral over A. As the coefficients of f are polynomials in the 
conjugates of a, it follows from (1.38) that the coefficients of f(X) are integral over A. 
They lie in F , and A is integrally closed, and so they lie in A. This proves the “only if” part 
of the statement, and the “if”’ part is obvious. □

Corollary 1.45. Let A c F C E be as in the proposition, and let a be an element of E 
integral over A. Then NmE = F (a) 2 A, and a divides NmE = F (a) in A[a].

PRooF. Let
f(X) d Xm Ca1Xm-1 C---Cam

be the minimal polynomial of a over F. Then Nm(a) d (—1)mnam, where n d [Ew F[a]] 
(FT 5.45), and so Nm(a) 2 A. Because f(a) D 0,

0 d am-1 (am C a 1am-1 C-----C am)
d a(am-1am-1 C-------- C am-1am-i) C (-1)mnNm(a);

and so a divides NmE=F (a) in A[a]. □

CoRoLLARY 1.46. Let A be an integrally closed domain with field of fractions F, and 
let f (X) be a monic polynomial in A[X]. Then every monic factor of f (X) in F [X] has 
coefficients in A.

Proof. It suffices to prove this for an irreducible monic factor g of f in F[X]. Let a be a 
root of g in some extension field of F. Then g is the minimal polynomial of a. As a is a 
root of f, it is integral over A, and so g has coefficients in A. □

Proposition 1.47. Let A c B be rings, and let A0 be the integral closure of A in B. For 
any multiplicative subset S of A, S ~1A0 is the integral closure of S _1 A in S ~1B.
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Proof. Let b 2 S~1A0 with b 2 A0 and s 2 S. Then

bn C a1bn~1 C------C an D 0

for some ai 2 A, and so

(b\n a1 (b\n 1 an(?) C T( ?) C'"C Sn D °:

Therefore b=s is integral over S~1A. This shows that S~1A0 is contained in the integral 
closure of S ~1B.

For the converse, let b=s (b 2 B, s 2 S) be integral over S~1A. Then

(b\n a1 (b\n 1 an
C CC D °.s s1 s sn

for some ai 2 A and si 2 S. On multiplying this equation by sns1 ••• sn, we find that 
s1 ••• snb 2 A0, and therefore that b == SS'^.s.Sb 2 S“1 A0. □

Corollary 1.48. Let A c B be rings, and let S be a multiplicative subset of A. If A is 
integrally closed in B, then S~1A is integrally closedin S~1 B.

Proof. Special case of the proposition in which A0 == A. □

PRoPoSITIoN 1.49. The following conditions on an integral domain A are equivalent:
(a) A is integrally closed;
(b) Ap is integrally closed for all prime ideals p;
(c) Am is integrally closed for all maximal ideals m.

PRooF. The implication (a))(b) follows from 1.48, and (b))(c) is obvious. It remains 
to prove (c))(a). If c is integral over A, then it is integral over each Am, and hence lies in 
each Am. It follows that the ideal consisting of the a 2 A such that ac 2 A is not contained 
in any maximal ideal m, and therefore equals A. Hence 1 • c 2 A. □

Let E=F be a finite extension of fields. Then

(a,P)! Tre=f «)w E x E ! F (11)

is a symmetric bilinear form on E regarded as a vector space over F.

Lemma 1 .50. If E=F is separable, then the trace pairing (11) is nondegenerate.

Proof. Let Pi,...,Pm be a basis for E as an F-vector space. We have to show that the 
discriminant det(Tr(PiPj)) of the trace pairing is nonzero. Let a1;...,am be the distinct 
F-homomorphisms of E into some large Galois extension P of F. Recall (FT 5.45) that

TrL=K (P) D o1P C----- C OmP (12)

By direct calculation, we have

det(Tr(Pi Pj )) d det.Pk Ok (Pi- Pj )) (by 12)
d det(Pk Ok (Pi) • Ok (Pj)) 
d det(ak (Pi)) • det(ak (Pj)) 
d det(ak(Pi))2.
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Suppose that det.ai Pj / d 0. Then there exist ci ,...,cm 2 P such that

X ci oi .Pj / d 0 all j. 
i

By linearity, it follows that Pi ci07 .P/ d 0 for all P 2 E, but this contradicts Dedekind’s 
theorem on the independence of characters (FT 5.14). □

Proposition 1.51. Let A be an integrally closed domain with field of fractions F, and let 
B be the integral closure of A in a separable extension E of F of degree m. There exist free 
A-submodules M and M0 of E such that

M C B C M0. (13)

If A is noetherian, then B is a finite A-algebra.

PROOF. Let fP1; :::; Pmg be a basis for E over F. According to Proposition 1.40, there 
exists a d 2 A such that d • Pi 2 B for all i. Clearly f d • P1,...,d ■ Pmg is still a basis for E 
as a vector space over F , and so we may assume to begin with that each Pi 2 B. Because 
the trace pairing is nondegenerate, there is a dual basis fP10 ; ...; Pm0 g of E over F with the 
property that Tr.Pi ■ Pj/ d lij for all ij. We shall show that

AP1 C AP2 C----C APm C B C AP0 C AP2 C---- C APm.

Only the second inclusion requires proof. Let P 2 B. Then P can be written uniquely as a 
linear combination P D PbjPj0 of the Pj0 with coefficients bj 2 F, and we have to show 
that each bj 2 A. As Pi and P are in B, so also is P • Pi, and so Tr.P • Pi/ 2 A (1.44). But

Tr.P • Pi / d Tr.X bj Pj • Pi / d X bj Tr.Pj • Pi / d X bj • lij d bi. 
jj j

Hence bi 2 A.
If A is Noetherian, then M0 is a Noetherian A-module, and so B is finitely generated as 

an A-module. □

Lemma 1 .52. Let A be a subring of a field K. If K is integral over A, then A is also a field.

Proof. Let a be a nonzero element of A. Then a-1 2 K, and it is integral over A:

.a 1 /n C a 1 .a /n C***C an d 0; ai 2 A.

On multiplying through by an-1, we find that

a 1 C a 1 C***C an an d 0;

from which it follows that a-1 2 A. □

Theorem 1.53 (Going-Up Theorem). Let A c B be rings with B integral over A.
(a) For every prime ideal p of A, there is a prime ideal q of B such that q \ A D p.
(b) Let p D q \ A; then p is maximal if and only if q is maximal.
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PROOF. (a) If S is a multiplicative subset of a ring A, then the prime ideals of S“1 A are in 
one-to-one correspondence with the prime ideals of A not meeting S (see 1.14). It therefore 
suffices to prove (a) after A and B have been replaced by S_1 A and S~1B, where S d A — p. 
Thus we may assume that A is local, and that p is its unique maximal ideal. In this case, for 
all proper ideals b of B, b \ A c p (otherwise b D A 3 1/. To complete the proof of (a), we 
shall show that for all maximal ideals n of B, n \ A D p.

Consider B=n D A=.n \ A/. Here B=n is a field, which is integral over its subring 
A=.n \ A/, and n \ A will be equal to p if and only if A=.n \ A/ is a field. This follows 
from Lemma 1.52.

(b) The ring B=q contains A=p, and it is integral over A=p. If q is maximal, then Lemma 
1.52 shows that p is also. For the converse, note that any integral domain integral over 
a field is a field because it is a union of integral domains finite over the field, which are 
automatically fields (left multiplication by an element is injective, and hence surjective, 
being a linear map of a finite-dimensional vector space). □

Corollary 1.54. Let A c B be rings with B integral over A. Let p c p0 be prime ideals 
of A, and let q be a prime ideal of B such that q \ A D p. Then there exists a prime ideal q0 
of B containing q and such that q0 \ A D p0,

B q C q0

A p C p0:

Proof. We have A=p c B=q, and B=q is integral over A=p. According to the (1.53), there 
exists a prime ideal q00 in B=q such that q00 \ .A=p/ D p0=p. The inverse image q0 of q00 in B 
has the required properties. □

Aside 1.55. Let A be a noetherian integral domain, and let B be the integral closure of A in a finite 
extension E of the field of fractions F of A. Is B always a finite A-algebra? When A is integrally 
closed and E is separable over F , or A is a finitely generated k -algebra, then the answer is yes (1.51, 
8.3). However, in 1935, Akizuki found an example of a noetherian integral domain whose integral 
closure in its field of fractions is not finite (according to Matsumura 1986, finding the example cost 
him a year’s hard struggle). F.K. Schmidt found another example at about the same time.8

8For a discussion of the examples Akizuki and Schmidt and generalizations, see olberding, Bruce, one­
dimensional bad Noetherian domains. Trans. Amer. Math. Soc. 366 (2014), no.8, 4067-4095.

e. Tensor Products

Tensor products of modules

Let A be a ring, and let M, N, and P be A-modules. A map 0w M x N ! P of A-modules 
is said to be A-bilinear if

0.x Cx0,y) D ^.x>y) C ^.x0;y/; x; x0 2 M; y 2 N
^.x;y c y 0/ d ^(x>y) c <£(x;y 0); x 2 M; y;y0 2 N

^.ax;y/ d a^.x.y), a 2 A; x 2 M; y 2 N
0.x,ay) d a^.x.y), a 2 A; x 2 M; y 2 N;

i.e., if 0 is A-linear in each variable.
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An A-module T together with an A-bilinear map

w M X N ! T
M x N —T

is called the tensor product of M and N over A if it has 
the following universal property: every A-bilinear map

0w M x N ! T0

• 9! linear

T 0:

factors uniquely through .
As usual, the universal property determines the tensor product uniquely up to a unique 

isomorphism. We write it M <8A N. Note that

HomA-bilinear .M X N; T/ ' HomA-linear .M <8A N; T/.

Construction

Let M and N be A-modules, and let A.MxN/ be the free A-module with basis M x N. Thus 
each element A.MxN/ can be expressed uniquely as a finite sum

ai.xi;yi/; ai 2 A; xi 2 M; yi 2 N:

Let P be the submodule of A.MxN/ generated by the following elements

.x C x0; y/ - .x;y/ - .x°, y/; 

.x;y c y0/ - .x>y/ - .x;y 0/; 
.ax;y/-a.x,y/, 
.x;ay/-a.x,y/,

x; x0 2 M; y 2 N
x 2 M; y;y0 2 N
a 2 A; x 2 M; y 2 N
a 2 A; x 2 M; y 2 N;

and define
M 0A N d A.MxN/=P:

Write x <8> y for the class of .x,y/ in M <8A N. Then

.x; y / ! x <8> y w M x N ! M <8A N

is A-bilinear — we have imposed the fewest relations necessary to ensure this. Every element 
of M <8>a N can be written as a finite sum9

9“An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors, 
but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with the 
state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement which so 
displeased Einstein.” Georges Elencwajg on mathoverflow.net.

XX.xi ® yi/; ai. 2 A; xi 2 M; yi 2 N;

and all relations among these symbols are generated by the following relations

.x C x0/ <8> y d x <8> y C x0 <8> y
x ® .y C y 0/ d x ® y C x ® y 0

a.x <8> y/ d (ax/ <8> y d x <8> ay:

The pair .M <8A N; .x; y/ ! x <8> y/ has the correct universal property because any bilinear 
map 0w M x N ! T0 defines an A-linear map A.MxN/ ! T0, which factors through 
A.MxN/=K, and gives a commutative triangle.

mathoverflow.net
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Tensor products of algebras

Let A and B be k-algebras. A k-algebra C together with homomorphisms iW A ! C and 
j W B ! C is called the tensor product of A and B if it has the following universal property: 
for every pair of homomorphisms (of k -algebras) a w A ! R and fl w B ! R, there is a unique 
homomorphism y w C ! R such that y i i = a and y i j = /!:

A ----- i---- > C <—j----- B

3! ।Y 

R:

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by 
this property. We write it A 0/ B. Note that

Hom/ (A 0/ B,R) ' Hom/ (A,R) x Hom/ (B,R)

(homomorphisms of k -algebras).

Construction

Form the tensor product A 0/ B of A and B regarded as k-vector spaces. There is a 
multiplication map A 0/ B x A 0/ B ! A 0/ B for which

.a 0 b).a0 0 b0) D aa0 0 bb0.

This makes A 0/ B into a ring, and the homomorphism

c 7! c.1 0 1) D c 0 1 D 1 0 c

makes it into a k -algebra. The maps

a 7! a 0 1w A ! C and b 7! 1 0 b w B ! C

are homomorphisms, and they make A 0/ B into the tensor product of A and B in the above 
sense.

Example 1.56. The algebra B, equipped with the given map k ! B and the identity map 
B ! B, has the universal property characterizing k 0/ B, so k 0/ B ' B. In terms of the 
constructive definition of tensor products, the isomorphism is c 0b 7! cbwk 0/ B ! B.

Example 1.57. The ring k[X1,...,Xm,Xm+1,...,Xm+n], equipped with the obvious 
inclusions

k[X1;...;Xm] ! k[X1,...,XmCn] k[Xm+i,...,Xm+„]

is the tensor product of k[X1,.. .,Xm] and k[Xmc1,.. .,Xmcn]. To verify this we only have 
to check that, for every k-algebra R, the map

Hom/-alg (k[Xi ,...,Xmcn],R) ! Hom/-alg (k[Xi ,...],R) x Hom/-alg (k [Xmc i ,...],R)

induced by the inclusions is a bijection. But this map can be identified with the obvious 
bijection

RmCn ! Rm x Rn.

In terms of the constructive definition of tensor products, the isomorphism is

f 0 g ! fgW k[X1 ^^ , Xm] 0/ k[XmC1,..., XmCn] ! k[X1,... , XmCn].
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Remark 1.58. (a) If (ba/ is a family of generators (resp. basis) for B as a k-vector space, 
then .1 0 ba/ is a family of generators (resp. basis) for A 0/ B as an A-module.

(b) Let k ! P be fields. Then

^ ®k k[X1,...,X„] ' ^[1 ® X1;:::;1 ^ X„] ' ^[X 1 ,...,X„j.

If A D k[Xi,...,Xn]/(gi,...,gm/, then

^ 0/ A ' ^ [X1 ; : : : ; Xn]/(g1 ; . . . ; g m^

(c) If A and B are algebras of k -valued functions on sets S and T respectively, then 
(f 0 g/(x>y/ d f (x/g(y/ realizes A 0/ B as an algebra of k-valued functions on S x T.

f. Transcendence bases

We review the theory of transcendence bases. For the proofs, see Chapter 9 of FT.

1.59. Elements a ।;...; an of a k-algebra A are said to be algebraically dependent over k 
there exists a nonzero polynomial f (X1,...,Xn/ 2 k[X1;:::;Xn] such that f (a1,...,an/ — 0. 
Otherwise, the ai are said to be algebraically independent over k.

Now let P be a field containing k.

1.60. For a subset A of P, we let k(A/ denote the smallest subfield of P containing k and 
f Pnr pvvim tilf if f f Yi v X llipn f f f 1 ill" flip niii'itipnl’c f .x 1;:::;Xm g willi/i. .ror example, n ./i — fx1;:::;x^mg, men x(^1/ consists oi me quotients g.xx g wim 
f;g 2 k[X1,..., Xm], A subset B of P is algebraically dependent on A if each element of 
B is algebraic over k(A/.

1.61 (Fundamental Theorem). Let A — fa1; ...,am} and B — !/< i ;■■■;/<« J be two sub­
sets of P. Assume that

(a) A is algebraically independent (over k), and
(b) A is algebraically dependent on B (over k).

Then m < n.

The reader should note the similarity of this to the statement in linear algebra with 
“algebraically” replaced by “linearly”.

1.62. A transcendence basis for P over k is an algebraically independent set A such that 
P is algebraic over k(A/.

1.63. Assume that there is a finite subset A c ^ such that P is algebraic over k(A/. Then 
(a) every maximal algebraically independent subset of P is a transcendence basis;
(b) every subset A minimal among those such that P is algebraic over k(A/ is a transcen­

dence basis;
(c) all transcendence bases for P over k have the same finite number of elements (called 

the transcendence degree, tr deg/P, of P over k).

1.64. Let k c L C ^ be fields. Then

tr deg/P — tr deg/L C tr degLP.

More precisely, if A is a transcendence basis for L/k and B is a transcendence basis for 
^/L, then A [ B is a transcendence basis for ^/k.
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Exercises

1-1. Let k be an infinite field (not necessarily algebraically closed). Show that an f 2 
k[X1;:::; Xn ] that is identically zero on kn is the zero polynomial (i.e., has all its coefficients 
zero).

1-2. Find a minimal set of generators for the ideal

.XC2Y;3XC6Y C3Z;2XC4Y C3Z/

in k[X,Y,Z], What standard algorithm in linear algebra will allow you to answer this 
question for any ideal generated by homogeneous linear polynomials? Find a minimal set of 
generators for the ideal

.XC2YC1;3XC6YC3XC2;2XC4Y C3ZC3/:

1-3. A ring A is said to be normal if Ap is a normal integral domain for all prime ideals 
p in A. Show that a noetherian ring is normal if and only if it is a finite product of normal 
integral domains.

1-4. Prove the statement in 1.64.
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Algebraic Sets

a. Definition of an algebraic set

An algebraic subset V.S/ of kn is the set of common zeros of some collection S of 
polynomials in k[Xi ,...,Xn],

V.S/ D f.a1;:::;an/ 2kn j f.a1;:::;an/ D0 all f 2 Sg:

We refer to V.S/ as the zero set of S. Note that

S C S0 H) V.S/ D V.S0/I

— more equations means fewer solutions.
Recall that the ideal a generated by a set S consists of the finite sums

X fi gi ; fi 2 k[X1;:::;Xn]; gi 2 S.

Such a sum P fi gi is zero at every point at which the gi are all zero, and so V.S/ C V.a/, 
but the reverse conclusion is also true because S c a. Thus V.S/ d V.a/ — the zero set of 
S is the same as the zero set of the ideal generated by S. Therefore the algebraic subsets of 
kn can also be described as the zero sets of ideals in k[X1 ;...;Xn].

An empty set of polynomials imposes no conditions, and so V.;/ D kn . Therefore kn is 
an algebraic subset. It is also the zero set of the zero ideal .0/. We write An for kn regarded 
as an algebraic set.

Examples

2.1. If S is a set of homogeneous linear equations,

aiiXi C----- CainXn d 0; i d 1,...,m,

then V.S/ is a subspace of kn. If S is a set of nonhomogeneous linear equations,

aiiXi C----- CainXn d di, i d 1,...,m,

then V.S/ is either empty or is the translate ofa subspace of kn.

37
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2.2. If S consists of the single equation

Y2 D X3 C aX C b; 4a3 c 27b2 / 0;

then V .S/ is an elliptic curve. For example,

We generally visualize algebraic sets as though the field k were R, i.e., we draw the real 
locus of the curve. However, this can be misleading — see the examples 4.11 and 4.17 
below.
2.3. If S consists of the single equation

Z2DX2CY2;

then V .S/ is a cone.

2.4. A nonzero constant polynomial has no zeros, and so the empty set is algebraic.

2.5. The proper algebraic subsets of k are the finite subsets, because a polynomial f.X/ in 
one variable X has only finitely many roots.

2.6. Some generating sets for an ideal will be more useful than others for determining what 
the algebraic set is. For example, the ideal

a d .X2 c Y2 c Z2 - 1; X2 c Y2 - Y, X - Z/

can be generated by1
X - Z, Y2 - 2Y C 1, Z2 - 1 C Y:

The middle polynomial has (double) root 1, from which it follows that V .a/ consists of the 
single point .0; 1; 0/.

b. The Hilbert basis theorem

In our definition of an algebraic set, we didn’t require the set S of polynomials to be finite, 
but the Hilbert basis theorem shows that, in fact, every algebraic set is the zero set of a finite 
set of polynomials. More precisely, the theorem states that every ideal in k[X1,..., Xn] can 
be generated by a finite set of elements, and we have already observed that a set of generators 
of an ideal has the same zero set as the ideal.

1This is, in fact, a Grobner basis for the ideal.
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Theorem 2.7 (Hilbert Basis Theorem). The ring k[X1,...,X„] is noetherian.

As we noted in the proof of 1.32,

k[X1;:::;Xn] D k[X 1 ;.. .,X„_ 1 ][X„ ].

Thus an induction argument shows that the theorem follows from the next statement.

Theorem 2.8. If A is noetherian, then so also is A[X].

Proof. We shall show that every ideal in A[X] is finitely generated. Recall that for a 
polynomial

f(X) d a0Xr C a1Xr-1 C-----C ar, ai 2 A; a0 ^ 0;

a0 is called the leading coefficient of f.
Let a be a proper ideal in A[X], and let a(i) denote the set of elements of A that occur 

as the leading coefficient of a polynomial in a of degree i (we also include 0). Clearly, a(i) 
is an ideal in A, and a(i) c a(i C 1) because, if cXi C— 2 a, then X(cXi C—) 2 a.

Let b be an ideal of A[X] contained in a. Then b(i) c a(i), and if equality holds for all 
i , then b D a. To see this, let f be a polynomial in a. Because b(deg f ) D a(deg f ), there 
exists a g 2 b such that deg(f — g) < deg(f). In other words, f d g C f1 with g 2 b and 
deg(f1) < deg(f ). similarly, f1 D g1 C f2 with g1 2 b and deg(f2) < deg(f1). Continuing 
in this fashion, we find that f d g C g1 C g2 C 2 b..

As A is noetherian, the sequence

a(1) c a(2) c ••• c a(i) c •••

eventually becomes constant, say a(d) D a(d C 1) D . . . (and then a(d) contains the leading 
coefficient of every polynomial in a). For each i < d, there exists a finite generating set 
fai1; ai 2; . . . ; aini g of a(i ), and for each (i;j), there exists an fij 2 a with leading coefficient 
aij. The ideal b of A[X] generated by the (finitely many) fij is contained in a and has the 
property that b(i) d a(i) for all i. Therefore b d a, and a is finitely generated. □

Aside 2.9. One may ask how many elements are needed to generate a given ideal a in k[X1,..., Xn], 
or, what is not quite the same thing, how many equations are needed to define a given algebraic set V . 
For n d 1, the ring k[X] is a principal ideal domain, which means that every ideal is generated by a 
single element. Also, if V is a linear subspace of kn , then linear algebra shows that it is the zero set 
of n — dim(V) polynomials. All one can say in general, is that at least n — dim(V) polynomials are 
needed to define V (see 3.45), but often more are required. Determining exactly how many is an area 
of active research — see 3.55.

c. The Zariski topology

Recall that, for ideals a and b in k[X1 ,...,Xn],

a c b h) V(a) D V(b).

PRoPos iTioN 2. 10. There are the following relations:
(a) V(0) d kn; V(k[Xi.....Xn]) d ;i

(b) V(ab) D V(a\b) D V(a)[V(b)I
(c) V(Pi2I ai) D Ti2I V(ai) for every family of ideals (ai )i2I.
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Proof. (a) This is obvious.
(b) Note that

ab c a \ b c a; b h) V.ab/ D V.a \ b/ D V.a/ [ V.b/.

For the reverse inclusions, observe that if a 0 V.a/ [ V.b/, then there exist f 2 a, g 2 b 
such that f .a/ ^ 0, g.a/ ^ 0; but then .fg/.a/ ^ 0, and so a 0 V.ab/.

(c) Recall that, by definition, P ai consists of all finite sums of the form P fi , fi 2 ai .
Thus (c) is obvious. □

Proposition 2.10 shows that the algebraic subsets of An satisfy the axioms to be the 
closed subsets for a topology on An : both the whole space and the empty set are algebraic; 
a finite union of algebraic sets is algebraic; an arbitrary intersection of algebraic sets is 
algebraic. Thus, there is a topology on An for which the closed subsets are exactly the 
algebraic subsets — this is called the Zariski topology on An. The induced topology on a 
subset V of An is called the Zariski topology on V.

The Zariski topology has many strange properties, but it is nevertheless of great impor­
tance. For the Zariski topology on k, the closed subsets are just the finite sets and the whole 
space, and so the topology is not Hausdorff (in fact, there are no disjoint nonempty open 
subsets at all). We shall see in 2.68 below that the proper closed subsets of k2 are finite 
unions of points and curves. Note that the Zariski topologies on C and C2 are much coarser 
(have fewer open sets) than the complex topologies.

2Nullstellensatz = zero-points-theorem.

d. The Hilbert Nullstellensatz

We wish to examine the relation between the algebraic subsets of An and the ideals of 
k[X1;...; Xn] more closely, but first we must answer the question of when a collection S of 
polynomials has a common zero, i.e., when the system of equations

g.X1 ; . . . ; Xn/ D 0; g 2 S;

is “consistent”. Obviously, equations

gi.X1;...;Xn/ D 0; i D 1;...;m

are inconsistent if there exist fi 2 k[X1;...;Xn] such that P fi gi d 1,i.e.,if 1 2 (gi,...,gm) 
or, equivalently, .g1,...,gm/ d k[X1,...,Xn]. The next theorem provides a converse to 
this.

Theorem 2.11 (Hilbert Nullstellensatz). 2 Every proper ideal a in k[X1,..., Xn] 
has a zero in kn .

A point P D .ai ; . . . ;an/ in kn defines a homomorphism “evaluate at P”

k[X1,...,X„] ! k; AXi,...^/! f^i,...,^/,

whose kernel contains a if P 2 V.a/. Conversely, from a homomorphism ' w k[X1,.. .,Xn]! 
k of k -algebras whose kernel contains a, we obtain a point P in V.a/, namely,

P D .'.X1/,...,'.Xn//.
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Thus, to prove the theorem, we have to show that there exists a k -algebra homomorphism 
k[X1;: : . ^n fl ! ^

Since every proper ideal is contained in a maximal ideal (see p. 16), it suffices to prove 
this for a maximal ideal m. Then K D k[X1,..., Xn]=m is a field, and it is finitely generated 
as an algebra over k (with generators X1 C m; : : : ; Xn C m/. To complete the proof, we must 
show that K D k . The next lemma accomplishes this.

In the next lemma, we need to allow k to be arbitrary in order to make the induction 
in the proof work. We shall also need to use that k[X] has infinitely many distinct monic 
irreducible polynomials. When k is infinite, the polynomials X — a, a 2 k, are distinct 
and irreducible. When k is finite, we can adapt Euclid’s argument: if p1; : : : ; pr are monic 
irreducible polynomials in k[X], then p1 ••• pr C 1 is divisible by a monic irreducible 
polynomial distinct from p1 ; : : : ; pr .

Lemma 2.12 (Zariski’s Lemma). Let k c K be fields, not necessarily algebraically 
closed. If K is finitely generated as an algebra over k , then K is algebraic over k . (Hence 
K D k if k is algebraically closed.)

in other words, if K is finitely generated as a ring over k, then it is finitely generated as 
a module.

Proof. We shall prove this by induction on r, the minimum number of elements required 
to generate K as a k -algebra. The case r D 0 being trivial, we may suppose that

K = k[X1; : : : ;Xr f 1:

If K is not algebraic over k, then at least one xi, say x1, is not algebraic over k. Then, k[x1] 
is a polynomial ring in one symbol over k , and its field of fractions k.x1 / is a subfield of 
K. Clearly K is generated as a k.x1 /-algebra by x2; : : : ; xr , and so the induction hypothesis 
implies that x2 ; : : : ; xr are algebraic over k.x1 /. From 1.40, we see that there exists a 
c 2 k[x1] such that cx2;...; cxr are integral over k[x1].

Let f 2 k(x1/. Then f 2 K = k[x1,...,xr] and so, for a sufficiently large N, cNf 2 
k[x1,cx2,...,cxr]. Therefore cNf is integral over k[x1] by 1.38, which implies that 
cNf 2 k[x1] because k[x1] is integrally closed in k(x1) (1.43). But this contradicts the fact 
that that k[x1] has infinitely many distinct monic irreducible polynomials that can occur as 
the denominator of an f in k(x1). □

e. The correspondence between algebraic sets and radical ideals

The ideal attached to a subset of kn

For a subset W of kn, we write I(W/ for the set of polynomials that are zero on W :

I(W) = ff 2 k[Xi,...,X„] j f(P) = 0 all P 2 Wg.

Clearly, it is an ideal in k[X1 ,...,Xn], There are the following relations:
(a) V c W h) I(V) D I(W);
(b) I.;/ = k[Xi,...,X„]; I(kn) = 0;
(c) I(SWi) = TI(Wi).

Only the statement I(kn) = 0 is (perhaps) not obvious. It says that every nonzero polynomial 
in k[X1,.. .,Xn] is nonzero at some point of kn. This is true for any infinite field k (see 
Exercise 1-1). Alternatively, it follows from the strong Hilbert Nullstellensatz (2.19 below).
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EXAMPLE 2.13. Let P be the point .a1 ; : : : ; an/, and let

mp D (X1 - ai;:::;Xn ~ S „/.

Clearly I(P} D mp, but mp is a maximal ideal, because “evaluation at (a1;.. .,an)” defines 
an isomorphism

k[Xi;...;X«]/(X1 _a 1;...; Xn — an) ! k.
As I(P) is a proper ideal, it must equal mp .

PROPOSITION 2. 14. Let W be a subset of kn. Then VI(W) is the smallest algebraic subset 
of kn containing W . In particular, VI(W ) D W if W is an algebraic set.

PROOF. Certainly VI(W) is an algebraic set containing W . Let V D V(a) be another 
algebraic set containing W. Then a c I(W), and so V(a) D VI(W). □

Radicals of ideals

The radical of an ideal a in a ring A is

rad(a) Ddef ff j f r 2 a, some r 2 Ng.

PROPOSITION 2. 15. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad(rad(a)) D rad(a).

PROOF. (a) If a 2 rad(a), then clearly fa 2 rad(a) for all f 2 A. Suppose that a;b 2 rad(a), 
with say ar 2 a and bs 2 a. When we expand (a C b)r Cs using the binomial theorem, we 
find that every term has a factor ar or bs , and so lies in a.

(b) If ar 2 rad(a), then ars d (ar)s 2 a for some s. □

An ideal is said to be radical if it equals its radical. Thus a is radical if and only if the 
ring A/a is reduced, i.e., without nonzero nilpotent elements. Since integral domains are 
reduced, prime ideals (a fortiori, maximal ideals) are radical. Note that rad(a) is radical 
(2.15b), and hence is the smallest radical ideal containing a.

If a and b are radical, then a \ b is radical, but a C b need not be: consider, for example, 
a d (X2 — Y) and b == (X2 C Y); they are both prime ideals in k[X, Y], but X2 2 a C b, 
X 0 a C b. (See 2.22 below.)

The strong Nullstellensatz

For a polynomial f and point P 2 kn, f r(P) D f (P)r. Therefore f r is zero on the same 
set as f, and it follows that the ideal I(W) is radical for every subset W c kn. In particular, 
I V(a) D rad(a). The next theorem states that these two ideals are equal.

Theorem 2.16 (Strong Nullstellensatz). For every ideal a in k[X1,...,Xn],

I V(a) D rad(a)I

in particular, IV(a) D a if a is a radical ideal.
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Proof. We have already noted that IV.a/ D rad.a/. For the reverse inclusion, we have 
to show that if a polynomial h vanishes on V.a/, then hN 2 a for some N > 0. We may 
assume h ^ 0. Let g1;...; gm generate a, and consider the system of m C 1 equations in 
n C 1 symbols,

( £j .X1;:::;Xn/ D 0; i D 1,...,m,
। 1 - Yh.X1;:::;Xn/ D 0:

If .a1 ; : : : ;an;b/ satisfies the first m equations, then .a1 ; : : : ;an/ 2 V.a/; consequently, 
h.a1 ; : : : ;an/ D 0, and .a1 ; : : : ;an ;b/ doesn’t satisfy the last equation. Therefore, the 
equations are inconsistent, and so, according to the original Nullstellensatz, there exist 
fi 2 k\X1; :::;Xn;Y] su^ that

m

1 D X fi ■ gi C fmCi • .1 - Yh/ 
iD1

(in the ring k\X1 ;...;Xn; Y]). On applying the homomorphism

Xi 7! Xi
Y ! h~1 W k\X1;:::;Xn;Y] ! 1 ; . . . ; Xn / 

to the above equality, we obtain the identity

m
1 D X fi .X1;:::;Xn;h-1/ ’ gi 1 ; . . . ; Xn /

iD1

in k.X1 ; : : : ; Xn/. Clearly

fi.XI........ X..^/ D p°lyn°mialhNX1........Xn
for some Ni . Let N be the largest of the Ni . on multiplying (*) by hN we obtain an equation 

m
hN d ^2(polynomial in Xi,...,X„)• g(Xi,...,X„),

iD1

which shows that hN 2 a. □

CoRoLLARY 2.17. The map a 7! V.a/ defines a one-to-one correspondence between the 
set of radical ideals in k \X1,..., Xn] and the set of algebraic subsets of kn; its inverse is I.

PRooF. We know that I V.a/ D a if a is a radical ideal (2.16), and that VI.W / D W if W 
is an algebraic set (2.14). Therefore, I and V are inverse bijections. □

Corollary 2.18. The radical of an ideal in k\X1;..., Xn] is equal to the intersection of 
the maximal ideals containing it.

Proof. Let a be an ideal in k[X1,...,Xn], Because maximal ideals are radical, every 
maximal ideal containing a also contains rad.a/, and so

rad.a/ c m.
mDa
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For each P d .a i,..., an) 2 kn, the ideal mp d .X1 — a 1,... ,Xn — an) is maximal in 
k[Xi,...,X„], and

f 2mP ” f.P/D0
(see 2.13). Thus

mp D a ■<=” P 2 V.a).
If f 2 mP for all P 2 V.a/, then f is zero on V.a/, and so f 2 IV.a/ D rad.a/. We have 
shown that

rad.a) D mp D Q m.

Remarks

2.19. Because V.0/ D kn,

I.kn/ D IV.0/ D rad.0/ D0I

in other words, only the zero polynomial is zero on the whole of kn . In fact, this holds 
whenever k is infinite (Exercise 1-1).

2.20. The one-to-one correspondence in Corollary is order reversing. Therefore the 
maximal proper radical ideals correspond to the minimal nonempty algebraic sets. But 
the maximal proper radical ideals are simply the maximal ideals in k[X1 ,...,Xn], and the 
minimal nonempty algebraic sets are the one-point sets. As

 2.17 

I((ai,...,a„)) d .Xi - ai,...,X„ - an/

(see 2.13), this shows that the maximal ideals of k[X1,.. .,Xn] are exactly the ideals (X1 — 
a ।;...; Xn — an) with (a1,... ,an) 2 kn.

2.21. The algebraic set V.a) is empty if and only if a d ^X^.^Xn] (Nullstellensatz, 
.2.11)

2.22. Let W and W0 be algebraic sets. As W \ W0 is the largest algebraic subset contained 
in both W and W 0, I.W \ W 0) must be the smallest radical ideal containing both I.W ) and 
I.W 0):

I.W \W0) D rad.I.W )CI.W 0)).

For example, let W d V.X2 — Y) and W0 d 
V.X2CY);then

I.W\ W0) D rad.X2,Y ) D .X, Y)

(assuming characteristic ^ 2). Note that W \ 
W0 D f.0, 0)g, but when realized as the intersec­
tion of Y d X2 and Y d —X2, it has “multiplicity 
2”.

-Y)

+Y)

2.23. Let P be the set of subsets of kn and let Q be the set of subsets of k[X1,.. .,Xn]. 
Then I W P ! Q and V W Q ! P define a simple Galois correspondence between P and Q 
(see FT 7.19). It follows that I and V define a one-to-one correspondence between I .P) 
and V .Q). But the strong Nullstellensatz shows that I .P) consists exactly of the radical 
ideals, and (by definition) V .Q) consists of the algebraic subsets. Thus we recover Corollary 
2.17.
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Aside 2.24. The algebraic subsets of An capture only part of the ideal theory of k[X1;..., Xn] 

because two ideals with the same radical correspond to the same algebraic subset. There is a finer 
notion of an algebraic scheme over k for which the closed algebraic subschemes of An are in 
one-to-one correspondence with the ideals in k[X1;..., Xn] (see Chapter 11 on my website).

f. Finding the radical of an ideal

Typically, an algebraic set V is defined by a finite set of polynomials fg1 ; : : : ; gs g, and we 
need to find I.V / D rad.g1; : : : ; gs/.

Proposition 2.25. A polynomial h 2 rad(a) if and only if 1 2 (a,1 — Yh) (the ideal in 
k[X1 ,...,Xn ,Y] generated by the elements of a and 1 — Yh).

Proof. We saw that 1 2 (a,1 — Yh/ implies h 2 rad(a) in the course of proving 2.16. 
Conversely, from the identities

1 d YNhN c (1 - YNhN) d YNhN c (1 - Yh)• (1 c Yh c-.-c YN~1hN-1)

we see that, if hN 2 a, then 1 2 aC (1 — Yh). □

Given a set of generators of an ideal, there is an algorithm for deciding whether or not 
a polynomial belongs to the ideal, and hence an algorithm for deciding whether or not a 
polynomial belongs to the radical of the ideal. There are even algorithms for finding a set of 
generators for the radical. These algorithms have been implemented in the computer algebra 
systems CoCoA and Macaulay 2.

g. Properties of the Zariski topology

We now examine more closely the Zariski topology on An and on an algebraic subset of An . 
Proposition 2.14 says that, for a subset W of An, VI(W ) is the closure of W , and 2.17 says 
that there is a one-to-one correspondence between the closed subsets of An and the radical 
ideals of k[X1 ,...,Xn]. Under this correspondence, the closed subsets of an algebraic set V 
correspond to the radical ideals of k[X1,...,Xn] containing I(V).

PRoPosiTioN 2.26. Let V be an algebraic subset of An.
(a) The points ofV are closed for the Zariski topology.
(b) Every ascending chain of open subsets U1 c U2 C ••• of V eventually becomes 

constant. Equivalently, every descending chain of closed subsets of V eventually 
becomes constant.

(c) Every open covering of V has a finite subcovering.

Proof. (a) We have seen that f(a 1,..., an)g is the algebraic set defined by the ideal (X1 — 
a 1;...; Xn an).

(b) We prove the second statement. A sequence V1 D V2 D ••• of closed subsets of V 
gives rise to a sequence of radical ideals I(V1) C I(V2) C ..., which eventually becomes 
constant because k[X1, ...,Xn] is noetherian.

(c) Given an open covering of V , let U be the collection of open subsets of V that 
can be expressed as a finite union of sets in the covering. if U does not contain V, then 
every element of U is properly contained in another element, and so there exists an infinite 
ascending chain of sets in U (axiom of dependent choice), contradicting (b). □
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A topological space whose points are closed is said to be T1 ; the condition means 
that, for any pair of distinct points, each has an open neighbourhood not containing the 
other. A topological space having the property (b) is said to be noetherian. The condition 
is equivalent to the following: every nonempty set of closed subsets of V has a minimal 
element. A topological space having property (c) is said to be quasicompact (by Bourbaki at 
least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). The 
proof of (c) shows that every noetherian space is quasicompact. Since an open subset of a 
noetherian space is again noetherian, it is also quasicompact.

h. Decomposition of an algebraic set into irreducible algebraic 
sets

A topological space is said to be irreducible if it is not the union of two proper closed subsets. 
Equivalent conditions: every pair of nonempty open subsets has nonempty intersection; 
every nonempty open subset is dense. By convention, the empty space is not irreducible. 
Obviously, every nonempty open subset of an irreducible space is irreducible.

In a Hausdorff topological space, any two points have disjoint open neighbourhoods. 
Therefore, the only irreducible Hausdorff spaces are those consisting of a single point.

Proposition 2.27. An algebraic set W is irreducible if and only if I.W / is prime.

Proof. Let W be an irreducible algebraic set, and let fg 2 I.W / — we have to show 
that either f or g is in I.W /. At each point of W , either f is zero or g is zero, and so 
W C V.f / [ V.g/. Hence

WD .W\V.f//[.W\V.g//:

As W is irreducible, one of these sets, say W \ V.f/, must equal W . But then f 2 I.W/.
Let W be an algebraic set such that I.W/ is prime, and let W D V.a/ [ V.b/ with a and 

b radical ideals — we have to show that W equals V.a/ or V.b/. The ideal a\ b is radical, 
and V.a \ b/ d V.a/ [ V.b/ (2.10); hence I.W/ d a \ b. If W ^ V.a/, then there exists an 
f 2 aX I.W/. Let g 2 b. Then fg 2 a \ b D I.W /, and so g 2 I.W/ (because I.W/ is 
prime). We conclude that b c I.W/, and so V.b/ D V.I.W// d W. □

Summary 2.28. There are one-to-one correspondences,

radical ideals in k[X1 ;:::;Xn] $ algebraic subsets of An

prime ideals in k[X1 ,...,Xn] $ irreducible algebraic subsets of An 

maximal ideals in k[X1;:::;Xn] $ one-point sets of An:

Example 2.29. Let f 2 k[Xi,...,Xn], We saw (1.32) that k[X1;:::;Xn] is a unique 
factorization domain, and so .f/ is a prime ideal if and only if f is irreducible (1.33). Thus

f is irreducible H) V.f/ is irreducible.

On the other hand, suppose f factors as

f D fimi ; fi distinct irreducible polynomials.
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Then
.f/ D T fimi fimi distinct ideals

rad.f / D .fi/ .fi/ distinct prime ideals

V.f / D V.fi/ V.fi/ distinct irreducible algebraic sets.

LEMMA 2.30. Let W be an irreducible topological space. If W D W1 [ : : : [ Wr with each 
Wi closed, then W is equal to one of the Wi .

Proof. When r D 2, the statement is the definition of “irreducible”. Suppose that r > 2. 
Then W D W1 [.W2[:::[ Wr/, and so W D W1 or W D .W2[:::[Wr/; if the latter, 
then W d W2 or W3 [... [ Wr, etc. □

Proposition 2.31. Let V be a noetherian topological space. Then V is a finite union of 
irreducible closed subsets, V D V1 [ . . . [ Vm . If the decomposition is irredundant in the 
sense that there are no inclusions among the Vi, then the Vi are uniquely determined up to 
order.

Proof. Suppose that V cannot be written as a finite union of irreducible closed subsets. 
Then, because V is noetherian, there will be a nonempty closed subset W of V that is 
minimal among those that cannot be written in this way. But W itself cannot be irreducible, 
and so W D W1 [ W2 , with W1 and W2 proper closed subsets of W . Because W was 
minimal, each Wi is a finite union of irreducible closed subsets. Hence W is also, which is a 
contradiction.

Suppose that
V D V1 [ . . . [ Vm D W1 [ . . . [ Wn

are two irredundant decompositions of V . Then Vi D Sj .Vi \ Wj/, and so, because Vi is 
irreducible, Vi D Vi \ Wj for some j. Consequently, there is a function f W f1; . . . ;mg ! 
f 1,...,ng such that Vi C Wf(i/ for each i. Similarly, there is a function gwf 1,...,ng ! 
f1,...,mg such that Wj c Vgj/ for each j. Since Vi c Wf.i/ C Vgf.i/, we must have 
gf .i/ D i and Vi D Wf.i/; similarly fg D id. Thus f and g are bijections, and the 
decompositions differ only in the numbering of the sets. □

The Vi given uniquely by the proposition are called the irreducible components of V . 
They are exactly the maximal irreducible closed subsets of V .3 In Example 2.29, the V.fi/ 
are the irreducible components of V.f /.

3 In fact, they are exactly the maximal irreducible subsets of V because the closure of an irreducible subset 
is also irreducible.

An algebraic set with two irreducible components.

V.fi/
V.fi/
V.fi/
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Corollary 2.32. The radical of an ideal a in k[X1,...,Xn] is a finite intersection of 
prime ideals, a D p1 \ : : : \ pn. If there are no inclusions among the pi, then the pi are 
uniquely determined up to order (and they are exactly the minimal prime ideals containing 
a).

PRooF. Write V.a/ as a union of its irreducible components, V.a/ D SinD1 Vi, and let 
pi D I.Vi /. Then rad.a/ D p1 \ : : : \ pn because they are both radical ideals and

V.rad.a//DV.a/D[V.pi/2DbV.\ip/:

The uniqueness similarly follows from the proposition. □

Remarks

2.33. An irreducible topological space is connected, but a connected topological space 
need not be irreducible. For example, V .X1 X2/ is the union of the coordinate axes in A  , 
which is connected but not irreducible. An algebraic subset V of An is disconnected if and 
only if there exist radical ideals a and b such that V is the disjoint union of V.a/ and V.b/, 
that is,

2

( V d V.a/ [ V.b) d V.a \ b) ” a \ b d i.V)
j ;d V.a/ \ V.b/ D V.ac b) ” ac b d k[Xi,...,X„],

Note that then
k k[X1;:::;Xn] ^....X,,]

[ J' a X b
(Chinese remainder theorem, 1.1).

2.34. A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible 
components are the one-point sets.

2.35. In k[X1 ,...,Xn], a principal ideal .f / is radical if and only if f is square-free, in 
which case f is a product of distinct irreducible polynomials, f D f1 : : : fr , and .f / D 
.f1/ \... .\.fr/

2.36. In a noetherian ring, every proper ideal a has a decomposition into primary ideals: 
a d D qi (see CA §19). For radical ideals, this becomes a simpler decomposition into prime 
ideals, as in the corollary. For an ideal .f/ with f D Q fimi , the primary decomposition is 
the decomposition .f/ D T.fimi / in Example 2.29.

i. Regular functions; the coordinate ring of an algebraic set

Let V be an algebraic subset of An, and let I.V/ D a. The coordinate ring of V is

k[V] defk[Xi,...,X„]/a.

This is a finitely generated k -algebra. It is reduced (because a is radical), but not necessarily 
an integral domain.

An f 2 k[X 1,...,Xn ] defines a function

P 7! f.P/WV !k.

/.fr/
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Functions of this form are said to be regular. Two polynomials f,g 2 k[X1 ,...,Xn] define 
the same regular function on V if and only if they define the same element of k[V], and so 
k[V] is the ring of regular functions on V. The coordinate function

xi W V ! k; .a1 ; . . . ; an/ 7! ai

is regular, and k[V] d k[x1,.. .,xn], In other words, the coordinate ring of an algebraic set 
V is the k -algebra generated by the coordinate functions on V .

For an ideal b in k[V], set

V.b/ D fP 2Vjf.P/D0,allf2bg

— it is a closed subset of V. Let W D V.b/. The quotient maps

k[Xi;...;Xn] k[V] D ^X1;.^^ k[W] D kP
ab

send a regular function on kn to its restriction to V and then to its restriction to W.
Write n for the quotient map k[X1;...,Xn] k[V]. Then b ! n-1 (b/ is a bijection 

from the set of ideals of k[V] to the set of ideals of k[X1;:::; Xn] containing a, under which 
radical, prime, and maximal ideals correspond to radical, prime, and maximal ideals (because 
each of these conditions can be checked on the quotient ring, and k[X1;:::; Xn\=x-1 (b/ ' 
k[V]=b). Clearly

V(*-1(h)/ d V(b/;

and so b ! V(b/ is a bijection from the set of radical ideals in k[V] to the set of algebraic 
sets contained in V.

Now 2.28 holds for ideals in k[V] and algebraic subsets of V,

radical ideals in k[V] $ algebraic subsets of V
prime ideals in k [V] $ irreducible algebraic subsets of V 

maximal ideals in k [V] $ one-point sets of V.

Moreover (see 2.33), the decompositions of a closed subset W of V into a disjoint union of 
closed subsets correspond to pairs of radical ideals a; b 2 k[V] such that

k[W] d k[V]=a \ b ‘ k[V]=a x k[V]=b.

For h 2 k[V], set
D(h/ d fa 2 V j h(a/ / 0g.

It is an open subset of V, because its complement is the closed set V((h//. It is empty if and 
only if h is zero (2.19).

Proposition 2.37. The sets D(h/, h 2 k[V], are a base for the topology on V, i.e., each 
D(h/ is open, and every open set is a (finite) union of this form.

Proof. We have already observed that D(h/ is open. Every open subset U c V is the 
complement of a set of the form V(b/, with b an ideal in k[V]. If fi ,...,fm generate b, then 
U D SD(fi/. □
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The D.h/ are called the basic (or principal) open subsets of V . We sometimes write Vh 
for D.h/. Note that

D.h/ C D.h0/ ” V.h/ D V.h0/
■<=” rad..h// c rad..h0// 
” hr 2 .h0/ some r 
” hr D h0g, some g:

Some of this should look familiar: if V is a topological space, then the zero set of a 
family of continuous functions f W V ! R is closed, and the set where a continuous function 
is nonzero is open.

Let V be an irreducible algebraic set. Then I.V/ is a prime ideal, and so k[V] is an 
integral domain. Let k.V/ be its field of fractions — k.V/ is called the function field of V 
or the field of rational functions on V.

j. Regular maps

Let W c km and V c kn be algebraic sets. Let xi denote the i th coordinate function

.b1;:::;bn/7!biWV !k

on V . The i th component of a map ' W W ! V is

'i D Xi 1 ' .

Thus, ' is the map

P ! '.P/ D .'1 (P)„. :;'n.P//W W ! V C kn:

DEFINITION 2.38. A continuous map 'W W ! V of algebraic sets is regular if each of its 
components 'i is a regular function.

As the coordinate functions generate k[V], a continuous map ' is regular if and only if f 1' 
is a regular function on W for every regular function f on V. Thus a regular map 'W W ! V 
of algebraic sets defines a homomorphism f ! f 1 ‘w k[V] ! k[W] of k-algebras, which 
we sometimes denote by ‘*.

k. Hypersurfaces; finite and quasi-finite maps

A hypersurface in AnC1 is the algebraic set H defined by a single nonzero nonconstant 
polynomial,

HW f.T1;:::;Tn;X/D0.

We examine the regular map H ! An defined by the projection

.t1;:::;tn;x/ 7! .t1;:::;tn/:

We can write f in the form

f d a0Xm Ca1Xm~1 C----- Cam; ai 2 k[X1,...,Xm], a0 ^ 0; m 2 N.
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We assume that m ^ 0, i.e., that X occurs in f (otherwise, H is a cylinder over a hypersurface 
in An). The fibre of the map H ! An over .t1 ; : : : ; tn/ 2 kn is the set of points .t1 ; : : : ; tn; c/ 
such that c is a root of the polynomial

ao.t/Xm Cai.t/Xm~1 C------Cam(t/, ai(t/ Df ai(ti,...,tn/ 2 k.

Suppose first that a0 2 k, so that a0.t / is a nonzero constant independent of t. Then the 
fibre over t consists of the roots of the polynomial

aoXm Cai(t/Xm 1 C---Cam(t/; (14)

4I’m ignoring the possibility that D is identically zero. Then the open set where D / 0 is empty. This case 
occurs when the characteristic is p ^ 0, and f is a polynomial in Ti,..., Tn, and Xp.

in k[X]. Counting multiplicities, there are exactly m of these. More precisely, let D be the 
discriminant of the polynomial

a0Xm Ca1Xm~1 C----- Cam.

Then D 2 k[X1,..., Xm], and the fibre has exactly m points over the open subset D ^ 0, 
and fewer then m points over the closed subset D D 0.4 We can picture it schematically as 
follows (m D 3):

An -----------------------------------------------

Now drop the condition that ao is constant. For certain t, the degree of (14) may drop, 
which means that some roots have “disappeared off to infinity”. Consider, for example, 
f (T;X/ d TX — 1; for each t ^ 0, there is one point (t,1/t/, but there is no point with 
t D 0 (see the figure p. 71). Worse, for certain t all coefficients may be zero, in which case 
the fibre is a line. There is a nested collection of closed subsets of An such that the number 
of points in the fibre (counting multiplicities) drops as you pass to a smaller subset, except 
that over the smallest subset the fibre may be a full line.

Definition 2.39. Let ‘w W ! V be a regular map of algebraic subsets, and let'*w k[V] ! 
k[W] be the map f ! f 1 ‘.

(a) The map ' is dominant if '.W/ is dense in V.
(b) The map ' is quasi-finite if '~1 (P/ is finite for all P 2 V.
(c) The map ' is finite if k[W] is a finite k[V]-algebra.

As we shall see (8.28), finite maps are indeed quasi-finite.
As k[W] is finitely generated as a k-algebra, a fortiori as a k[V]-algebra, to say that 

k[W] is a finite k[V]-algebra means that it is integral over k[V] (1.36).
The map H ! An considered above is finite if and only if ao is constant, and quasi-finite 

if and only if the polynomials ao ; . . . ; am have no common zero in kn .
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Proposition 2.40. Aregularmap ‘ w W ! V is dominant if and only if ‘ *w k[V] ! k[W] 
is injective.

Proof. Let f 2 k[V]. If the image of ' is dense, then

f 1 ' D 0 H) f D 0:

on the other hand, if the image of ' is not dense, then its closure Z is a proper closed subset 
of V, and so there exists a nonzero regular function f zero on Z. Then f 1' == 0. □

PRoPoSITIoN 2.41. A dominant finite map is surjective.

Proof. Let ‘w W ! V be dominant and finite. Then ‘*wk[V] ! k[W] is injective, and 
k[W] is integral over the image of k[V]. According to the going-up theorem (1.53), for every 
maximal ideal m of k[V] there exists a maximal ideal n of k[W] such that m == n \ k[V]. 
Because of the correspondence between points and maximal ideals, this implies that ' is 
surjective. □

l. Noether normalization theorem

Let H be a hypersurface in AnC1 . We show that, after a linear change of coordinates, the 
projection map .x1 ; : : : ; xnC1 / 7! .x1 ; : : : ; xn /w AnC1 ! An defines a finite map H ! An.

PRoPoSITIoN 2.42. Let
Hw f.X1;:::;XnC1/D0

be a hypersurface in AnC1. There exist c1; : : : ;cn 2 k such that the map H ! An defined by 

(X1 ; : : : ; XnC ! ^l c 1 X«C 1 ; ’ ’ : ; xn cnxnC1 /

is finite.

Proof. Let c1 ,...,cn 2 k. In terms of the coordinates x0 == xi — cixnc 1, the hyperplane 
H is the zero set of

f (X1 C c1XnC1 ; : : : ;^ C ^nCl ^nC^ D a 0 XmC 1 C a 1 XmC 1 1 C------ .

The next lemma shows that the ci can be chosen so that a0 is a nonzero constant. This 
implies that the map H ! An defined by (x1,..., xnc 1/ ! (x11,...,xn/ is finite. □

Lemma 2.43. Let k be an infinite field (not necessarily algebraically closed), and let 
f 2 k[X ,...,Xn,T]. There exist ci,...,cn 2 k such that

f(X1 CciT,...,X„ CcnT;T/ d aoTm CaiTm~1 C-Cam

with a0 2 kx and all ai 2 k[X1,..., Xn].

PRooF. Let F be the homogeneous part of highest degree of f and let r D deg(F /. Then

F(X1 C c1T; . . . ;Xn C cnT; T/ D F(c1 ; . . . ; cn; 1/Tr C terms of degree < r in T,

because the polynomial F(X1 C c1T; . . . ;Xn C cnT; T/ is still homogeneous of degree r 
in X1 ; . . . ; Xn ; T, and so the coefficient of the monomial Tr can be obtained by setting 
each Xi equal to zero in F and T to 1. As F(X1 ; . . . ; Xn; T/ is a nonzero homogeneous 



l. Noether normalization theorem 53

polynomial, F.X1; : : : ; Xn; 1/ is a nonzero polynomial, and so we can choose the ci so that 
F.c1;::: ;Cn,1/ ^ 0 (Exercise 1-1). Now

f .X1 C c1 T; : : : ; Xn C cn T; T / D F .c1 ; : : : ; cn ; 1/T r C terms of degree < r in T;

with F(ci,...,cn,1/ 2 kx, as required. □

In fact, every algebraic set V admits a finite surjective map to Ad for some d .

Theorem 2.44. Let V be an algebraic set. For some natural number d, there exists a finite 
surjective map 'W V ! Ad .

This follows from the next statement applied to A d k[V]: the regular functions 
x1;::.;Xd define a map V ! Ad, which is finite and surjective because k[x1 ,...,xd ] ! A 
is finite and injective.

Theorem 2.45 (Noether Normalization Theorem). Let A be a finitely generated 
k -algebra. There exist elements xi ; . . . ; xd 2 A that are algebraically independent over k, 
and such that A is finite over k[x 1 ,...,xd ].

Itis not necessary to assume that A is reduced in Theorem 2.45, nor that k is algebraically 
closed, although the proof we give requires it to be infinite (for the general proof, see CA 
8.1).

Let A d k[x1 ,...,xn]. We prove the theorem by induction on n. If the xi are alge­
braically independent, there is nothing to prove. Otherwise, the next lemma shows that 
A is finite over a subring B d k[yi,...,yn-1]. By induction, B is finite over a subring 
C d k[z 1 ,...,zd ] with z 1 ,...,zd algebraically independent, and A is finite over C.

Lemma 2.46. Let A d k[x1,.. .,xn] be a finitely generated k -algebra, and let fx^.^xd g 
be a maximal algebraically independent subset of fx1 , . . . , xn g. If n > d , then there exist 
c1,...,cd 2 k such that A is finite overk[x1 — c1xn,...,xd — cdxn,xdc1,...,xn_1].

PROOF. By assumption, the set fx1 , . . . ,xd,xng is algebraically dependent, and so there 
exists a nonzero f 2 k[X1 ^.^Xd ,T] such that

f.x1,...,xd,xn/ D 0. (15)

Because fx1 ,. . . ,xdg is algebraically independent, T occurs in f , and so

f(Xi,...,Xd,T/ d aoTm CaiTm~1 C---Cam

with ai 2 k[X1,...,Xd], a0 ^ 0, and m > 0.
If a0 2 k, then (15) shows that xn is integral over k[x1,...,xd]. Hence x1,...,xn are 

integral over k[x1,.. .,xn_1], and so A is finite over k[x1,...,xn_1].
If a0 0 k, then, for a suitable choice of (c1 ^.^cd/ 2 k, the polynomial

g.X1,...,Xd,T/dDeff.X1Cc1T,...,XdCcdT,T/

takes the form
g(Xi,...,Xd,T/ d bTr Cb1T C-Cbr

with b 2 kx (see 2.43). As

g(x1 - cixn,...,xd - cd xn,xn/ d 0 (16)

this shows that xn is integral over k[xi — ^xn^.^xd — cdxn], and so A is finite over 
k[xi - cix„,...,xd - cdxn,xdci,...^] as before. □



54 2. Algebraic Sets

Remarks

2.47. For an irreducible algebraic subset V of An, the above argument can be modified to 
prove the following more precise statement:

Let x1 ; : : : ; xn be the coordinate functions on V ; after possibly renumbering 
the coordinates, we may suppose that fx1; : : : ;xdg is a maximal algebraically 
independent subset of fx1; : : : ; xng; then there exist cij 2 k such that the map

z n n x
(X1,...,x„/! Ixi C1j Xj ;:::;Xd cdj xjj W An ! Ad

jddc1 jddc1

induces a finite surjective map V ! Ad :
Indeed, Lemma 2.46 shows that there exist c1,...,cn 2 k such that k[V] is finite over 
k[X1 — C1Xn;:: :;Xd ~ Cd Xn;Xd C 1 ;:::;Xn - 1 ] . NOW fX1;:::;Xd g is a^^aiCa^ dCpCD- 
dent on fx1 — c1xn;:::;Xd — cdxng. If the second set were not algebraically indepen­
dent, we could drop one of its elements, but this would contradict 1.61. Therefore fx1 — 
c 1 xn ;:::;Xd — cd xng is a maximal algebraically independent subset of f x 1 — c 1 xn ;:::;Xd — 
cd xn;xd c 1 ;:::;xn_1 g and we can repeat the argument.

m. Dimension

The dimension of a topological space

Let V be a noetherian topological space whose points are closed.

DEFINITION 2.48. The dimension of V is the supremum of the lengths of the chains

Vo D V1 D ••• D Vd

of distinct irreducible closed subsets (the length of the displayed chain is d).

2.49. Let V1 ; : : : ; Vm be the irreducible components of V. Then (obviously)

dim(V / D maxi (dim(Vi //:

2.50. Assume that V is irreducible, and let W be a proper closed subspace of V. Then every 
chain W0 D W1 D •• • in W extends to a chain V D W0 D • ••, and so dim(W/ C 1 < dim(V/. 
If dim(V / < 1, then dim(W / < dim(V /.

Thus an irreducible topological space V has dimension 0 if and only if it is a point; it 
has dimension < 1 if and only if every proper closed subset is a point; and, inductively, V 
has dimension < n if and only if every proper closed subset has dimension < n — 1.

The dimension of an algebraic set

DEFINITION 2.51. The dimension of an algebraic set is its dimension as a topological 
space.

Because of the correspondence between the prime ideals in k[V] and irreducible closed 
subsets of V,

dim(V/ d Krull dimension of k[V]:
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Note that, if V1 ; : : : ; Vm are the irreducible components of V , then

dim V D max dim.Vi /: 
i

When the Vi all have the same dimension d, we say that V has pure dimension d . A 
one-dimensional algebraic set is called a curve; a two-dimensional algebraic set is called a 
surface; and an n-dimensional algebraic set is called an n-fold.

Let V be an irreducible algebraic set and W an algebraic subset of V . If W is irreducible, 
then its codimension in V is

codim V W d dim V — dim W.

Dimension and transcendent degree

Theorem 2.52. Let V be an irreducible algebraic set. Then

dim.V / D tr degkk.V/.

The proof will occupy the rest of this subsection.
Let A be an arbitrary commutative ring. Let x 2 A, and let Sfxg denote the multiplicative 

subset of A consisting of the elements of the form

xn(1 — ax/; n 2 N; a 2 A.

The boundary Afxg of A at x is defined to be the ring of fractions SfxgA.
We write dim(A/ for the Krull dimension of A.

proposition 2.53. Let A be a ring and let n 2 N. Then

dim (A/ < n ■<=” for all x 2 A, dim.Afxg/ < n — 1.

Proof. We shall use (1.14) that there is a one-to-one correspondence between the prime 
ideals of S-1A and the prime ideals of A disjoint from S. We begin with two observations.

(a) For every x 2 A and maximal ideal m C A, m \ Sfxg ^ ;. Indeed, if x 2 m, then 
certainly x 2 m \ Sfxg. On the other hand, if x 0 m, then it is invertible modulo m, 
and so there exists an a 2 A such that 1 — ax 2 m (hence also m \ Sfxg).

(b) Let m be a maximal ideal, and let p be a prime ideal contained in m; for every 
x 2 m x p, we have p \ Sfxg d ;. Indeed, if xn(1 — ax/ 2 p, then 1 — ax 2 p (as 
x 0 p/; hence 1 — ax 2 m, and so 1 2 m, which is a contradiction.

Statement (a) shows that every chain of prime ideals beginning with a maximal ideal is 
shortened when passing from A to Afxg, while statement (b) shows that a maximal chain of 
length n is shortened only to n — 1 when x is chosen appropriately. From this, the proposition 
is follows. □

Proposition 2.54. Let A be an integral domain, and let k be a subfield of A. Then

dim(A/ < trdegkF(A/;

where F (A/ is the field of fractions of A.
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PROOF. Iftr degkF.A/ D 1, there is nothing to prove, and so we suppose that tr degk F.A/ D 
n 2 N. We argue by induction on n. We can replace k with its algebraic closure in A without 
changing tr degkF.A/.

Let x 2 A. If x 0 k, then it is transcendental over k, and so

trdegk.x/F.A/ d n - 1

by 1.64; since k(x) C Afxg, this implies (by induction) that dim.Afxg/ < n — 1. If x 2 k, 
then 0 d 1 — x~1x 2 Sfxg, and so Afxg d 0; again dim.Afxg/ < n — 1. We deduce from 2.53 
thatdim.A/ < n. □

Corollary 2.55. The polynomial ring k[X1;... ;Xn] has Krull dimension n.

Proof. The existence of the sequence of prime ideals

(X1,...,X„) D (X1,...,X„-1) D---D (X1) D .0/

shows that k[X1;... ;Xn] has Krull dimension at least n. Now 2.54 completes the proof. □

CoRoLLARY 2.56. Let A be an integral domain and let k be a subfield of A. If A is finitely 
generated as a k -algebra, then

tr degk F.A) D dim.A).

PRooF. According to the Noether normalization theorem (2.45), A is integral over a poly­
nomial subring k[x1 ,...,xn], Clearly n d trdegkF(A). The going up theorem (1.54), 
implies that a chain of prime ideals in k[x1 ,...,xn] lifts to a chain in A, and so dim (A) > 
dim(k[x1;.. .,xn]) d n. Now 2.54 shows that dim(A) d n. □

CoRoLLARY 2.57. Let V be an irreducible algebraic set. Then V has dimension n if and 
only if there exists a finite surjective map V ! An.

Proof. The d in Theorem 2.44 is the dimension of V. □

ASIDE 2.58. In linear algebra, we justify saying that a vector space V has dimension n by proving 
that its elements are parametrized by n-tuples. It is not true in general that the points of an algebraic 
set of dimension n are parametrized by n-tuples. All we can say is Corollary 2.57.

ASIDE 2.59. The inequality in Proposition 2.54 may be strict; for example, A D k(x) has dimension 
0 but its field of fractions k(x) has transcendence degree 1 over k. It is possible to deduce 2.54 from 
2.56 — see mo79959.

NoTES. The above proof of 2.55 is based on that in Coquand and Lombardi, Amer. Math. Monthly 
112 (2005), no. 9, 826-829.

Examples

EXAMPLE 2.60. Let V D An. Then k(V) D k(X1;... ; Xn), which has transcendence basis 
X1 ; . . . ; Xn over k, and so dim(V ) D n.
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EXAMPLE 2.61. If V is a linear subspace of kn (or a translate of a linear subspace), then 
the dimension of V as an algebraic set is the same as its dimension in the sense of linear 
algebra — in fact, k[V] is canonically isomorphic to k[Xi1;.. :;Xid ], where the Xij are the 
“free” variables in the system of linear equations defining V .

More specifically, let c be an ideal in k[X1 ,...,Xn ] generated by linear forms ' 1 ,...,'r, 
which we may assume to be linearly independent. Let Xi1,..., Xin_r be such that

f'i ; : : : ;'r ;Xi1 ;: : : ; X i n r g

is a basis for the linear forms in Xi ; . . . ; Xn . Then

k[X1;:::;Xn\ = C ' 1 .....X^ ].

This is obvious if the forms are Xi; . . . ; Xr. In the general case, because fXi; . . . ; Xng 
and f'1;:::;'r ,Xi 1,..., Xin_r g are both bases for the linear forms, each element of one set 
can be expressed as a linear combination of the elements of the other. Therefore,

k[X1;...; Xn] D k['1;... ;'r ;Xi1;...; Xin_r ];

and so

k[X1;:::;Xn\ = C D 1 ,...,'r ^ .....Xi  ̂]/C
' k[Xi1 ;:::;Xin_r ].

Example 2.62. If W is a proper algebraic subset of an irreducible algebraic set V , then 
dim.W / < dim.V / (see 2.50).

Example 2.63. Every nonempty algebraic set contains a point, which is a closed irre­
ducible subset. Therefore an irreducible algebraic set has dimension 0 if and only if it 
consists of a single point.

Example 2.64. A hypersurface in An has dimension n — 1. It suffices to prove this for an 
irreducible hypersurface H. Such an H is the zero set of an irreducible polynomial f (see 
2.29). Let

k[X1,...,xn] D k[X1,...,Xn]/(f), Xi D Xi C (f);

and let k(x1,.. .;xn) be the field of fractions of k[x1,... ,xn]. As f is not the zero polyno­
mial, some Xi, say, Xn, occurs in it. Then Xn occurs in every nonzero multiple of f, and so 
no nonzero polynomial in X1,..., Xn_1 belongs to (f). This means that x1,..., xn_1 are 
algebraically independent. On the other hand, xn is algebraic over k(x1,.. .,xn_1), and so 
fx1,...,xn_1g is a transcendence basis for k(x1,...,xn) over k. (Alternatively, use 2.57.)

Example 2.65. Let F(X; Y) and G(X; Y) be nonconstant polynomials with no common 
factor. Then V(F(X; Y)) has dimension 1 by 2.64, and so V(F(X; Y)) \ V(G(X; Y)) must 
have dimension zero; it is therefore a finite set.

Proposition 2.66. Let W be a closed set of codimension 1 in an algebraic set V; if k[V] 
is a unique factorization domain, then I(W) D (f) for some f 2 k[V].

PRooF. Let W1 ; . . . ; Ws be the irreducible components of W ; then I(W ) D T I(Wi ), and 
so if we can prove I(Wi) D (fi), then I(W) D (f1 ••• fr). Thus we may suppose that 
W is irreducible. Let p D I(W); it is a prime ideal, and it is not zero because otherwise 
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dim.W / D dim.V /. Therefore it contains an irreducible polynomial f . From (1.33) we 
know .f / is prime. If .f / ^ p , then we have

p D .f / D .0/ (distinct prime ideals)

and hence

W d V.p/ C V.f / C V (distinct irreducible closed subsets).

But then (2.62)
dim.W / < dim.V.f// < dimV,

which contradicts the hypothesis. □

COROLLARY 2.67. The closed sets of codimension 1 in An are exactly the hypersurfaces.

Proof. Combine 2.64 and 2.66. □

example 2.68. We classify the irreducible algebraic sets V of A2. If V has dimension 
2, then (by 2.62) it can’t be a proper subset of A2, so it is A2. If V has dimension 1, then 
V D V.f/, where f is any irreducible polynomial in I.V/ (see 2.66 and its proof). Finally, 
if V has dimension zero, then it is a point. Correspondingly, the following is a complete list 
of the prime ideals in k[X; Y]:

.0/; .f/ with f irreducible, .X — a;Y — b/ with a;b 2 k.

Exercises

2-1. Find I.W /, where W D .X2;XY 2/. Check that it is the radical of.X2;XY 2/.

2-2. Identify kmn with the set of m x n matrices, and let r 2 N. Show that the set of matrices 
with rank < r is an algebraic subset of kmn.

2-3. Let V D f.t; t2 ; : : : ; tn/ j t 2 kg. Show that V is an algebraic subset of kn , and that 
k[V] k[X] (polynomial ring in one variable). (Assume k has characteristic zero.)

2-4. Let f1; :::;fm 2 Q[X1; ...,Xn ]. If the fi have no common zero in C, prove that there 
exist gi;..:;gm 2 Q[X1 ;..:;Xn] such that figi C----- C fmgm D 1. (Hint: linear algebra).

2-5. Let k c K be algebraically closed fields, and let a be an ideal in k[X1,..., Xn]. Show 
that if f 2 K[X1;.. .,Xn] vanishes on V.a/, then it vanishes on Vk.a/. Deduce that the zero 
set V.a/ of a in kn is dense in the zero set VK.a/ of a in Kn. [Hint: Choose a basis .ei /i 2I 

for K as a k-vector space, and write f == Pei fi (finite sum) with fi 2 k[X1 ,...,Xn].]

2-6. Let A and B be (not necessarily commutative) Q-algebras of finite dimension over 
Q, and let Qal be the algebraic closure of Q in C. Show that if there exists a C-algebra 
homomorphism C <8>q A ! C <8>q B, then there exists a Qal-algebra homomorphism Qal <8>q 
A ! Qal 0q B. (Hint: The proof takes only a few lines.)

2-7. Let A be finite dimensional k -algebra, where k is an infinite field, and let M and N be 
A-modules. Show that if kal <8>k M and kal <8>k N are isomorphic kal <8>k A-modules, then 
M and N are isomorphic A-modules.

2-8. Show that the subset f.z; ez/ j z 2 Cg is not an algebraic subset of C2 .



Chapter

Affine Algebraic Varieties

In this chapter, we define the structure of a ringed space on an algebraic set. In this way, we 
are led to the notion of an affine algebraic variety — roughly speaking, this is an algebraic set 
with no preferred embedding into An . This is in preparation for Chapter 5, where we define 
an algebraic variety to be a ringed space that is a finite union of affine algebraic varieties 
satisfying a natural separation axiom.

a. Sheaves

Let k be a field (in this section 3a, k need not be algebraically closed).

Definition 3.1. Let V be a topological space, and suppose that, for every open subset U 
of V we have a set OV .U/ of functions U ! k. Then U OV .U/ is a sheaf of k-algebras 
if the following statements hold for every open U in V :

(a) OV .U/ is a k-subalgebra of the algebra of all k-valued functions on U, i.e., OV .U/ 
contains the constant functions and, if f;g lie in OV .U/, then so also do f C g and 
fg;

(b) the restriction of an f in OV .U/ to an open subset U0 of U is in OV .U0/I
(c) a function f W U ! k lies in OV .U/ if there exists an open covering U D Si 2I Ui of 

U such that f jUi 2 OV .Ui/ for all i 2 I.

In other words, OV is a sheaf if, for all U, OV .U/ is a k-subalgebra and a function f W U ! k 
lies in OV .U / if and only if every point P of U has a neighbourhood UP such that f jUP 
lies in OV .UP/ (so the condition for f to lie in OV .U/ is local).

Note that, for disjoint open subsets Ui of V , condition (c) says that OV .U/ ' Qi OV .Ui /.

Examples

3.2. Let V be a topological space, and for each open subset U of V let OV .U/ be the set 
of all continuous real-valued functions on U . Then OV is a sheaf of R-algebras.

3.3. Recall that a function f W U ! R on an open subset U of Rn is said to be smooth (or 
infinitely differentiable) if its partial derivatives of all orders exist and are continuous. Let 
V be an open subset of Rn , and for each open subset U of V , let OV .U / be the set of all 
smooth functions on U. Then OV is a sheaf of R-algebras.

59
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3.4. Recall that a function f W U ! C on an open subset U of Cn, is said to be analytic (or 
holomorphic) if it is described by a convergent power series in a neighbourhood of each 
point of U. Let V be an open subset of Cn, and for each open subset U of V , let OV .U/ be 
the set of all analytic functions on U. Then OV is a sheaf of C-algebras.

3.5. Let V be a topological space, and, for each open subset U of V , let OV .U/ be the 
set of all constant functions U ! k . If V is not connected, then OV is not a sheaf: let U1 

and U2 be disjoint open subsets of V , and let f be the function on U1 [ U2 that takes the 
constant value 0 on U1 and the constant value 1 on U2 ; then f is not in OV .U1 [ U2/, and 
so condition ) fails. When “constant” is replaced with “locally constant”, OV becomes 
a sheaf of k-algebras (in fact, the smallest such sheaf).

(3.1c

3.6. Let V be a topological space, and, for each open subset U of V , let OV .U/ be the set 
of all functions U ! k . The OV is a sheaf of k-algebras. By definition, all our sheaves of 
k -algebras are subsheaves of this one.

b. Ringed spaces

A pair .V; OV/ consisting of a topological space V and a sheaf of k-algebras on V will be 
called a k -ringed space (or just a ringed space when the k is understood). For historical 
reasons, we sometimes write r.U, Ov/ for Ov .U/ and call its elements the sections of Ov 
over U.

Let .V; Ov/ be a k-ringed space. For each open subset U of V , the restriction Ov to 
the collection of open subsets of U is a sheaf of k-algebras on U .

Let .V; Ov/ be a k-ringed space, and let P 2 V . A germ of a function at P is an 
equivalence class of pairs .U; f / with U an open neighbourhood of P and f 2 Ov.U/; 
two pairs .U; f / and .U0 ; f 0/ are equivalent if the functions f and f 0 agree on some open 
neighbourhood of P in U \ U0. The germs of functions at P form a k-algebra Ov;P, called 
the stalk of Ov at P . In other words,

Ov;P D lim Ov.U/ (direct limit over open neighbourhoods U of P).

In the interesting cases, Ov;P is a local ring with maximal ideal mP the set of germs that 
are zero at P . We often write OP for Ov;P.

EXAMPLE 3.7. Let Ov be the sheaf of holomorphic functions on V D C, and let c 2 C. 
A power series Pn>0 an.z — c/n, an 2 C, is said to be convergent if it converges on some 
open neighbourhood of c . The set of such power series is a C-algebra, and I claim that it is 
canonically isomorphic to the stalk Ov;c of Ov at c .

To prove this, let f be a holomorphic function on a neighbourhood U of c . Then f 
has a unique power series expansion f d Pan.z — c/n in some (possibly smaller) open 
neighbourhood of c (Cartan 19631, II 2.6). Moreover, another holomorphic function f 0 on a 
neighbourhood U0 of c defines the same power series if and only if f and f 0 agree on some 
neighbourhood of c contained in U \ U0 (ibid. I, 4.3). Thus we have a well-defined injective 
map from the ring of germs of holomorphic functions at c to the ring of convergent power 
series, which is obviously surjective.

1 Cartan, Henri. Elementary theory of analytic functions of one or several complex variables. Hermann, 
Paris; Addison-Wesley; 1963.
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c. The ringed space structure on an algebraic set

Let V be an algebraic subset of kn . Recall that the basic open subsets of V are those of the 
form

D.h/ DfQ j h.Q/ / 0g; h 2 k[V]:
A pair g;h 2 k[V] with h ^ 0 defines a function

g.Q/
Q! h.QW D.h/ ! k.

A function on an open subset of V is regular if it is locally of this form. More formally:

DEFINITION 3.8. Let U be an open subset of V . A function f W U ! k is regular at P 2 U 
if there exist g;h 2 k[V] with h.P/ ^ 0 such that f .Q/ d g.Q/=h.Q/ for all Q in some 
neighbourhood of P. A function fW U ! k is regular ifit is regular at every P 2 U.

Let OV .U/ denote the set of regular functions on an open subset U of V.

Proposition 3.9. The map U OV .U/ is a sheaf of k-algebras on V.

Proof. We have to check the conditions of (3.1).
(a) Clearly, a constant function is regular. Suppose f and f 0 are regular on U , and let 

P 2 U .By assumption, there exist g;g ,h,h' 2 k[V], with h.P/ ^ 0 ^ h0.P/ such that f 
and f0 agree with gh and h respectively on a neighbourhood U0 of P. Then f C f0 agrees

gh Cgh 00 0 gg 0with hh on u , and so f -C f is regular at P . Similarly, f f agrees with hhz on u , 
and so is regular at P .

(b,c) The definition is local. □

We next determine OV .U/ when U is a basic open subset of V.

Lemma 3.10. Letg;h 2 k[V] with h ^ 0. The function

P 7! g.P /= h.P /mW D.h/ !k

is zero if and only if and only if gh d 0 in k[V].

PROOF. If g= hm is zero on D.h/, then gh is zero on V because h is zero on the complement 
of D.h/. Therefore gh is zero in k[V]. Conversely, if gh d 0, then g.P/h.P/ d 0 for all 
P 2 V, and so g.P/ d 0 for all P 2 D.h/. □

Let k[V]h denote the ring k[V] with h inverted (see 1.11). The lemma shows that 
the map k[V]h ! Ov.D.h// sending g= hm to the regular function P ! g.P/= h.P/m is 
well-defined and injective.

Proposition 3.11. Theabovemap k[V]h ! Ov .D.h// is an isomorphism of k-algebras.

Proof. It remains to show that every regular function f on D.h/ arises from an element of 
k[V]h. By definition, we know that there is an open covering D.h/ d S Vi and elements 
gi, hi 2 k[V] with hi nowhere zero on Vi such that f j Vi d gi. We may assume that each 
set Vi- is basic, say, Vi d D.ai/ for some ai 2 k[V]. By assumption D.ai/ C D.hi/, and so 
aiN d hig0 for some N 2 N and gi< 2 k[V] (see p. 50). On D.ai/,

gi gi gi0 gi gi0
f D hiD higD -ON-:
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Note that D.aiN / D D.ai /. Therefore, after replacing gi with gi gi0 and hi with aiN, we can 
assume that Vi D D.hi /.

We now have that D.h/ d S D.hi/ and that f j D.hi/ = ghi. Because D.h/ is quasicom­
pact, we can assume that the covering is finite. As gi d j on D.hi/ \ D.hj/ d D.hihj/,

hihj .gi hj - gjhi/ d 0, i.e., hi h2gi d h2hjgj (*)

— this follows from Lemma 3.10 if hi hj ^ 0 and is obvious otherwise. Because D.h/ d 
SD.hi/ D SD.hi2/,

V..h// D V..h12;:::;h2m//;

and so h lies in rad.h^;...,hm/: there exist ai 2 k[V] such that
m

hN D Xaihi2. (**)
iD1

for some N. I claim that f is the function on D.h/ defined by aigihi.
Let P be a point of D.h/. Then P will be in one of the D.hi /, say D.hj /. We have the 

following equalities in k[V]:
mm

h2 X ai gi hi D X ai gj h2hj d gj hj hN.
iD1 iD1

But f jD.hj/ d j, i.e., f hj and gj agree as functions on D.hj/. Therefore we have the 
following equality of functions on D.hj /:

m

hj2 X aigi hi D f hj2hN .
iD1

Since hj2 is never zero on D.hj /, we can cancel it, to find that, as claimed, the function f hN 

on D.hj/ equals that defined by Pa igihi. □

On taking h D 1 in the proposition, we see that the definition of a regular function on V 
in this section agrees with that in Section 2i.

Corollary 3.12. For every P 2 V, there is a canonical isomorphism OP ! k[V]mP, 
where mP is the maximal ideal I.P /.

PRooF. In the definition of the germs of a sheaf at P , it suffices to consider pairs .f; U / 
with U lying in a some basis for the neighbourhoods of P , for example, the basis provided 
by the basic open subsets. Therefore,

(3.11) (1.23)
OP d lim F.D.h/;OV/ ' lim k[V]h ' k[V]mP.

h(P/^0 h!P □
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Remarks

3.13. Let V be an algebraic set and let P be a point on V . Proposition shows that there 
is a one-to-one correspondence between the prime ideals of k[V] contained in mp and the 
prime ideals of OP . In geometric terms, this says that there is a one-to-one correspondence 
between the irreducible closed subsets of V passing through P and the prime ideals in OP . 
The irreducible components of V passing through P correspond to the minimal prime ideals 
in OP . The ideal p corresponding to an irreducible closed subset Z consists of the elements 
of OP represented by a pair .U; f / with f jZ\U D 0.

 1.14 

3.14. The local ring OV;P is an integral domain if P lies on a single irreducible component 
of V . As OV;P depends only on .U; OV jU/ for U an open neighbourhood of P, we may 
suppose that V itself is irreducible, in which case the statement follows from  On the 
other hand, if P lies on more than one irreducible component of V , then OP contains more 
than one minimal prime ideal  and so the ideal .0/ can’t be prime.

 3.12.

 3.13,

3.15. Let V be an algebraic subset of kn, and let A = k[V]. Propositions and  
allow us to describe .V; OV / purely in terms of A:

 2.37  3.11

❖ V is the set of maximal ideals in A.
❖ For each f 2 A, let D(f ) ={m j f 0 mg; the topology on V is that for which the 

sets D.f/ form a base.
❖ For f 2 Ah and m 2 D.h/, let f.m/ denote the image of f in Ah=mAh ' k; in this 

way Ah becomes identified with a k-algebra of functions D.h/ ! k, and OV is the 
unique sheaf of k-valued functions on V such that F(D(h); Ov) = Ah for all h 2 A.

3. 16. When V is irreducible, all the rings attached to it can be identified with subrings of 
its function field k(V). For example,

r(D(h),Ov) = nhN 2 k(V) I g 2 k[V]; N 2 N

Op = nh 2 k(V) I h(P) / oO

m OV) = \p 2U Op

= \ F(D(hi);Ov) if U = [D(hi).

Note that every element of k(V) defines a function on some dense open subset of V. 
Following tradition, we call the elements ofk(V) rational functions on V.2

2The terminology is similar to that of “meromorphic function”, which is also not a function on the whole 
space.

Examples

3.17. The ring of regular functions on An is k[X1 ,...,Xn], For a nonzero polynomial 
h(X1; . . . ; Xn), the ring of regular functions on D(h) is

n hN 2 k(X1;:::;Xn) |g 2 k^ ,...,X„ ], N 2 :

For a point P = (a1; . . . ; an), the local ring at P is

Op = {h 2 k(Xi,...,X„) j h(P) / 0}

k[X1 ^.^ Xn](Xi—ai;:::;Xn—an/;
and its maximal ideal consists of those g= h with g(P) = 0.
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3.18. Let U D A  X f.0; 0/g. It is an open subset of A , but it is not a basic open subset 
because its complement f.0; 0/g has dimension 0, and therefore can’t be of the form V..f // 
(see . Since U D D.X/ [ D.Y /, the ring of regular functions on U is

2 2

 2.64)

r.U;Oa2/ D k[X,Y]x \k[X,Y]r

(intersection inside k.X; Y/). Thus, a regular function f on U can be expressed

f g(X,Y/ h(X,Y/
f X N Y M :

We may assume that X - g and Y -h. On multiplying through by XNYM, we find that

g(X,Y /Y M Dh(X,Y/XN:

Because X doesn’t divide the left hand side, it can’t divide the right hand side either, and so 
N d 0. Similarly, M == 0, and so f 2 k[X,Y]. We have shown that every regular function 
on U extends uniquely to a regular function on A2 :

r.U; Oa2/ D k[x,Y] D f.a2, Oa2/.

d. Morphisms of ringed spaces

A morphism of k-ringed spaces (V,OV/ ! (W,OW/ is a continuous map 'W V ! W such 
that

f 2 Ow (U/ H) f 1' 2 Ov ('-1U/

for all open subsets U of W. Then, for every pair of open subsets U c W and U0 c V with 
'(U0/ C U, we get a homomorphism of k-algebras

f 7!f1'WOW(U0/!OV(U/,

and these homomorphisms are compatible with restriction to smaller open subsets. Some­
times we write ' *(f / for f 1' .A morphism of ringed spaces is an isomorphism if it is 
bijective and its inverse is also a morphism of ringed spaces (in particular, it is a homeomor­
phism).

If U is an open subset of V , then the inclusion U ,! V is a morphism of k -ringed spaces 
(U,OVjU/! (V,OV /.

A morphism of ringed spaces maps germs of functions to germs of functions. More 
precisely, a morphism 'W (V,OV / ! (W,OW / induces a k-algebra homomorphism

OW;'.P / ! OV;P

for each P 2 V , which sends the germ represented by (U, f / to the germ represented by 
('-1(U),f 1'/. In the interesting cases, Ov;p is a local ring with maximal ideal mp 
consisting of the germs represented by pairs (U, f/ with f(P/ D 0. Therefore, the homo­
morphism OW;'.P / ! OV;P defined by ' maps m'.P / into mP: it is a local homomorphism 
of local rings.
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Examples

3.19. Let V and W be topological spaces endowed with their sheaves OV and OW of 
continuous real valued functions . Every continuous map 'W V ! W is a morphism of 
ringed structures .V; OV / ! .W; OW /.

(3.2)

3.20. Let V and W be open subsets ofRn and Rm respectively, and let xi be the coordinate 
function .a1; : : : ;an/ 7! ai W V ! R. Recall from advanced calculus that a map

'W V ! W c Rm

is said to be smooth if each of its component functions 'i Df xi i' w V ! R is smooth. If 
' is smooth, then f i' is smooth for every smooth function f w W ! R. Since a similar 
statement is true for functions f on open subsets of W , we see that a continuous map 
' w V ! W is smooth if and only if it is a morphism of the associated ringed spaces (3.3).

3.21. Same as  but replace R with C and “smooth” with “analytic”. 3.20,

e. Affine algebraic varieties

We have just seen that every algebraic set V c kn gives rise to a k-ringed space .V; Ov/. A 
k-ringed space isomorphic to one of this form is called an affine algebraic variety over k. 
We usually denote an affine algebraic variety .V; OV / by V.

Let .V; OV / and .W; OW / be affine algebraic varieties. A map ' w V ! W is regular 
(or a morphism of affine algebraic varieties) if it is a morphism of k-ringed spaces. With 
these definitions, the affine algebraic varieties become a category. We usually shorten “affine 
algebraic variety” to “affine variety”.

In particular, the regular functions define the structure of an affine variety on every 
algebraic set. We usually regard An as an affine variety. The affine varieties we have 
constructed so far have all been embedded in An . We now explain how to construct affine 
varieties with no preferred embedding.

An affine k -algebra is a reduced finitely generated k-algebra. For such an algebra A, 
there exist xi 2 A such that A == k[xi,...,xn], and the kernel of the homomorphism

Xi ! xi W k[X 1 ; : : : ; Xn] ! A

is a radical ideal. Therefore 2.18 implies that the intersection of the maximal ideals in A is 0. 
Moreover, 2.12 implies that, for every maximal ideal m C A, the map k ! A ! A=m is an 
isomorphism. Thus we can identify A=m with k . For f 2 A, we write f.m/ for the image 
of f in A=m D k, i.e., f.m/ D f (mod m/. This allows us to identify elements of A with 
functions spm.A/ ! k .

We attach a ringed space .V; OV / to A by letting V be the set of maximal ideals in A. 
For f 2 A, let

D.f / d fm j f.m/ / 0g d fm j f £ mg.
Since D.f g/ D D.f/ \ D.g/, there is a topology on V for which the D.f/ form a base. A 
pair of elements g;h 2 A, h ^ 0, defines a function

g.m/m^ ——w D.h/ 
h.m/

k.

For U an open subset of V, we define OV .U/ to be the set of functions fw U ! k that are 
of this form in some neighbourhood of each point of U .
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Proposition 3.22. The pair .V; Ov/ is an affine algebraic variety with F.D.h); Ov/ ' 
Ah for each h 2 A X f0g.

PROOF. Represent A as a quotient k[X1;.. .,Xn]/a d k[x1,...,xn]. Then .V;Ov/ is iso­
morphic to the k-ringed space attached to the algebraic set V.a) (see 3.15). □

We write spm.A/ for the topological space V, and Spm.A/ for the k-ringed space 
.V; Ov/.

ASiDE 3.23. We have attached to an affine k-algebra A an affine variety whose underlying topologi­
cal space is the set of maximal ideals in A. it may seem strange to be describing a topological space 
in terms of maximal ideals in a ring, but the analysts have been doing this for more than 70 years. 
Gel’fand and Kolmogorov in 19393 proved that if S and T are compact topological spaces, and the 
rings of real-valued continuous functions on S and T are isomorphic (just as rings), then S and T are 
homeomorphic. The proof begins by showing that, for such a space S, the map

3 on rings of continuous functions on topological spaces, Doklady 22, 11-15. See also Allen Shields, Banach 
Algebras, 1939-1989, Math. Intelligencer, Vol 11, no. 3, p15.

P 7!mP dDef ff WS !R j f.P/ D 0g

is one-to-one correspondence between the points in the space and maximal ideals in the ring.

f. The category of affine algebraic varieties

For each affine k -algebra A, we have an affine variety Spm.A/, and conversely, for each 
affine variety .V; Ov/, we have an affine k-algebra k[V] d F.V Ov). We now make this 
correspondence into an equivalence of categories.

Let aw A ! B be a homomorphism of affine k-algebras. For every h 2 A, a.h) is 
invertible in B«.h/, and so the homomorphism A ! B ! Ba.h/ extends to a homomorphism

g a.g/
hm a.h/m W h^ a(h/:

For every maximal ideal n of B, m d a-1 .n) is maximal in A because A=m ! B=n d k is 
an injective map of k-algebras which implies that A=m D k . Thus a defines a map

'w spmB ! spm A; '.n/ d a-1(n) d m.

For m d a-1 .n) d '.n), we have a commutative diagram:

A ---- -—> B

'A=m ------ > B=n.

Recall that the image of an element f of A in A=m ' k is denoted f .m). Therefore, the 
commutativity of the diagram means that, for f 2 A,

f.'.n)) d a.f ).n), i.e., f 1' d a 1 f (*)

Since '-1D.f) d D.f 1') (obviously), it follows from (*) that

'-1.D.f)) d D.a.f));
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and so ' is continuous.
Let f be a regular function on D.h/, and write f D g= hm, g 2 A. Then, from (*) we 

see that f i' is the function on D.a.h// defined by a(g)/a(h)m. In particular, it is regular, 
and so f ! f i' maps regular functions on D.h/ to regular functions on D.a.h//. It 
follows that f 7! f i ' sends regular functions on any open subset of spm.A/ to regular 
functions on the inverse image of the open subset. Thus a defines a morphism of ringed 
spaces Spm.B / ! Spm.A/.

Conversely, by definition, a morphism of 'W .V; OV / ! .W; OW / of affine algebraic 
varieties defines a homomorphism of the associated affine k-algebras k[W] ! k[V]. Since 
these maps are inverse, we have shown:

Proposition 3.24. For all affine algebras A and B,

'Homk-alg.A; B/ ! Mor.Spm.B /; Spm.A//I

for all affine varieties V and W ,
'

Mor.V;W/ ! Homk—aig.k[W];k[V]/:

In terms of categories, Proposition 3.24 can be restated as:

Proposition 3.25. The functor A SpmA is a (contravariant) equivalence from the 
category of affine k -algebras to the category of affine algebraic varieties over k , with 
quasi-inverse .V; Ov/ v> r(V, Ov/.

g. Explicit description of morphisms of affine varieties

Proposition 3.26. Let V c km and W c kn be algebraic subsets. The following condi­
tions on a continuous map ' W V ! W are equivalent:

(a) ' is a morphism of ringed spaces .V;Ov / ! .W; OW/;
(b) the components '1 ; : : : ;'m of ' are regular functions on V;
(c) f 2 k[W] h) f i‘ 2 k[V],

PRooF. (a) H) (b). By definition 'i D yi i ' , where yi is the coordinate function

.b1;:::;bn/7!biWW !k:

Hence this implication follows directly from the definition of a regular map.
(b) H) (c). The map f 7! f i ' is a k -algebra homomorphism from the ring of all 

functions W ! k to the ring of all functions V ! k , and (b) says that the map sends the 
coordinate functions yi on W into k[V]. Since the yigenerate k[W] as a k-algebra, this 
implies that it sends k[W] into k[V].

(c) h) (a). The map f ! f i' is a homomorphism awk[W] ! k[V]. It therefore 
defines a map spm .k[V]/ ! spm .k[W]/, and it remains to show that this coincides with ' 
when we identify spm.k[V]/ with V and spm .k[W]/ with W. Let P 2 V, let Q d '.P/, 
and let mp and mQ be the ideals of elements of k[V] and k[W] that are zero at P and Q 
respectively. Then, for f 2 k[W],

a.f/ 2 mP ” f.'.P // D 0 ” f.Q/ D 0 ” f 2 mQ:

Therefore a“1.mp/ d mQ, which is what we needed to show. □
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The equivalence of (a) and (b) means that ' W V ! W is a regular map of algebraic sets 
(in the sense of Chapter 2) if and only if it is a regular map of the associated affine algebraic 
varieties.

Now consider equations

Y1 D f1.X1;:::;Xm/
:::

Yn D fn.X1;:::;Xm/:

On the one hand, they define a regular map ' W Am ! An , namely, 

.a1;:::;am/ 7! .f1.a1; : ::;am/;:::; fn.a1;:::;am//:

On the other hand, they define a homomorphism awk[Yi,..., Yn] ! k[Xi,..., Xm] of k- 
algebras, namely, that sending Yi to fi (Xi,..., Xm). This map coincides with g ! g i', 
because

a(g)(P) D g(...;fi(P);...) D g('(P)).

Now consider closed subsets V(a) c Am and V(b) c An with a and b radical ideals. I claim 
that ‘ maps V(a) into V(b) if and only if a(b) c a. Indeed, suppose '(V(a)) c V(b), and 
let g 2 b; for Q 2 V(a),

a(g)(Q) D g('(Q)) D 0;

and so a(g) 2 I V(a) d a. Conversely, suppose a(b) c a, and let P 2 V(a); for f 2 b,

f('(P))Da(f)(P)D0;

and so '(P) 2 V(b). When these conditions hold, ' is the morphism of affine varieties 
V(a) ! V(b) corresponding to the homomorphism k[Y1,...,Yn]/b ! k[X1 ,...,Xm]/a 
defined by a .

Thus, we see that the regular maps

V(a) ! V(b)

are all of the form

P! (fi(P),...,fn(P))( fi 2 k[Xi,...,Xm].

In particular, they all extend to regular maps Am ! An .

Examples of regular maps

3.27. Let R be a k-algebra. To give a k-algebra homomorphism k[X] ! R is the same as 
giving an element (the image of X under the homomorphism):

Homk-alg(k[X];R) ' R.

Therefore
Mor(V; A1) 3'4 Homk-alg(k[X];k[V]) ' k[V].

In other words, the regular maps V ! Ai are simply the regular functions on V (as we 
would hope).
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3.28. Let A0 d Spmk. Then A0 consists of a single point and F(A0;OAo/ D k. Every 
map A0 ! V from A0 to an affine variety, sends A0 to a point of V , and so Mor.A0 ; V / ' V . 
Alternatively,

Mor(A0;V/ ' Homk-alg(k[V];k/ ' V;
where the last map sends a:k[V] ! k to the point corresponding to the maximal ideal 
Ker (a).

3.29. Consider the regular map t 7! (t2;t3/WA1 ! A2. This is 
bijective onto its image,

VW Y2DX3;

but it is not an isomorphism onto its image because the inverse 
map is not regular. In view of 3.25, to prove this it suffices to 
show that t 7! (t2; t3) does not induce an isomorphism on the 
rings of regular functions. We have k[A1] d k[T] and k[V] d /
k[X; Y]/(Y2 — X3) d k[x,y]. The map on rings is

x! T2; y! T3; k[x,y] ! k[T]; \

which is injective, but its image is k[T2,T3] ^ k[T]. In fact, 
k[x,y] is not integrally closed: (y/x)2 — x d 0, and so (y/x) 
is integral over k[x,y], but y/x 0 k[x,y] (it maps to T under the 
inclusion k(x; y) ,! k(T )).

3.30. Let k have characteristic p ^ 0, and consider the regular map

(a1 ; : : : ; an) 7! (a1p ; : : : ; anp )W An ! An :

This is a bijection, but it is not an isomorphism because the corresponding map on rings,

Xi ! XP W k[X1;:::;Xn] ! ,...,X„ ],

is not surjective.
This is the famous Frobenius map. Take k to be the algebraic closure of Fp , and write F 

for the map. Recall that for each m > 1 there is a unique subfield Fpm of k of degree m over 
Fp, and that its elements are the solutions of Xpm D X (FT 4.23). The fixed points of Fm 

are precisely the points of An with coordinates in Fpm. Let f(X1 ; . . . ; Xn) be a polynomial 
with coefficients in Fpm , say,

f D X Civ-in Xi1 ••• xnn ; Ci1-in 2 Fpm .

If f(a1 ; . . . ; an) D 0, then

0 D (Xc.a'1 ...an-)pm D Xc.ap"'1---apmn.

pm pmand so f(a1 ; . . . ; an ) D 0. Here we have used that the binomial theorem takes the simple 
form (X C Y)pm D Xpm C Ypm in characteristic p. Thus Fm maps V(f) into itself, and 
its fixed points are the solutions of

f(X1;...;Xn)D0

in Fpm .
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Aside 3.31. In one of the most beautiful pieces of mathematics of the second half of the twentieth 
century, Grothendieck defined a cohomology theory (etale cohomology) and proved a fixed point 
formula that allowed him to express the number of solutions of a system of polynomial equations 
with coordinates in Fpm as an alternating sum of traces of operators on finite-dimensional vector 
spaces, and Deligne used this to obtain very precise estimates for the number of solutions. See my 
article The Riemann hypothesis over finite fields: from Weil to the present day and my notes Lectures 
on Etale Cohomology.

h. Subvarieties

Let A be an affine k -algebra. For any ideal a in A, we define

V.a/ D fP 2 spm.A/ j f.P/ D 0all f 2 ag 
d fm maximal ideal in A j a C mg:

This is a closed subset of spm.A/, and every closed subset is of this form.
Now let a be a radical ideal in A, so that A=a is again reduced. Corresponding to the 

homomorphism A ! A=a, we get a regular map

Spm.A=a/ ! Spm.A/:

The image is V.a/, and spm.A=a/ ! V .a/ is a homeomorphism. Thus every closed subset 
of spm.A/ has a natural ringed structure making it into an affine algebraic variety. We call 
V .a/ with this structure a closed subvariety of V:

Proposition 3.32. Let .V; OV/ be an affine variety and let h be a nonzero element of 
k[V]. Then

.D.h/;OV jD.h//'Spm.Ah/I

in particular, it is an affine variety.

PROOF. The map A ! Ah defines a morphism spm.Ah/ ! spm.A/. The image is D.h/, 
and it is routine (using (1.13)) to verify the rest of the statement. □

If V d V.a/ c An, then

(ai;:::;an/ ! 1 ;:::;0 n ^0 1 ;:::;0 n / “ 1 / W D^ ! An ' ' ;

defines an isomorphism of D(h/ onto V(a,1 — hXnc1/. For example, there is an isomor­
phism of affine varieties

a ! (a; 1=a/w A1 xf0g ! V C A2;
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with V equal to the subvariety xy D 1 of A2,

By an open affine (subset) U of an affine algebraic variety V , we mean an open subset 
U such that .U; OV jU / is an affine algebraic variety. Thus, the proposition says that, for 
all nonzero h 2 F.V O v/, the open subset of V, where h is nonzero is an open affine. An 
open affine subset of an irreducible affine algebraic variety V is irreducible with the same 
dimension as V (2.52).

Remark 3.33. We have seen that all closed subsets and all basic open subsets of an affine 
variety V are again affine varieties with their natural ringed structure, but this is not true for 
all open subsets of V. For an open affine subset U, the natural map U ! spm r.U, Ov/ is 
a bijection. However, for

U def A2 xf.0;0/g D D.X/ [ D.Y/ c A2;

we know that r.U,OA2/ d k[X;Y] (see 3.18), but U ! spmk[X;Y] is not a bijection, 
because the ideal .X; Y/ is not in the image. Clearly .U; OA2 jU/ is a union of affine 
algebraic varieties, and in Chapter 5 we shall recognize it as a (nonaffine) algebraic variety.

i. Properties of the regular map Spm.a/

Proposition 3.34. Let aw A ! B be a homomorphism of affine k -algebras, andlet

'WSpm.B/ ! Spm.A/

be the corresponding morphism of affine varieties.
(a) The image of' is dense for the Zariski topology if and only ifa is injective.
(b) The morphism ' is an isomorphism from spm.B / onto a closed subvariety of spm.A/ 

if and only ifa is surjective.

PRooF. (a) Let f 2 A. if the image of ' is dense, then

f 1 ‘ d 0 h) f d 0:
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On the other hand, if the image of ' is not dense, then the closure of its image is a proper 
closed subset of Spm.A/, and so there is a nonzero function f 2 A that is zero on it. Then 
f i ‘ d 0. (See 2.40.)

(b) If a is surjective, then it defines an isomorphism A=a ! B, where a is the kernel 
of a. This induces an isomorphism of Spm(B) with its image in Spm(A). The converse 
follows from the description of the closed subvarieties of Spm.A/ in the last section. □

A regular map ' W V ! W of affine algebraic varieties is said to be a dominant if its 
image is dense in W . The proposition then says that:

' is dominant ■<=” f! f o 'W F(W, Ow/ ! F.V,Ov/ is injective.

A regular map ' W V ! W of affine algebraic varieties is said to be a closed immersion if 
it is an isomorphism of V onto a closed subvariety of W. The proposition then says that

' is a closed immersion ■<=” f ! f i'w F(W, Ow/ ! F.V, O v/ is surjective.

j. Affine space without coordinates

Let E be a vector space over k of dimension n. The set A.E/ of points of E has a natural 
structure of an algebraic variety: the choice of a basis for E defines a bijection A.E/ ! An, 
and the inherited structure of an affine algebraic variety on A.E/ is independent of the choice 
of the basis (because the bijections defined by two different bases differ by an automorphism 
of An).

We now give an intrinsic definition of the affine variety A.E /. Let V be a finite­
dimensional vector space over a field k . The tensor algebra of V is

T*V D M V®i D k © V © (V © V/ © (V © V © V/ ©...

i >0

with multiplication defined by

(vi © ••• © Vi/ • (v11 © • •• © vjj) D V1 © ••• © Vi © v11 © •• • © Vj :

It is a noncommutative k -algebra, and the choice of a basis e1; : : : ; en for V defines an 
isomorphism

ei ■■■ ei ! ei ©••• © ei w k {ei,...,e„} ! T *(V)

to T* V from the k-algebra of noncommuting polynomials in the symbols ei ,...,en.
The symmetric algebra S *(V) of V is defined to be the quotient of T * V by the two­

sided ideal generated by the elements

V © W — W © V; V; W 2 V.

This algebra is generated as a k -algebra by commuting elements (namely, the elements 
of V d V®1), and so is commutative. The choice of a basis ei,...,en for V defines an 
isomorphism

ei ••• ei- ! ei ©•••©ei-wk[ei,...,en] ! S*(V)

to S*(V) from the commutative polynomial ring in the symbols ei,...,en. This shows 
that S*(V) is an affine k-algebra. The pair (S*(V),i) consisting of S*(V) and the natural
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k-linear map i w V ! S*.V/ has the following universal property: every k-linear map V ! A 
from V into a k-algebra A extends uniquely to a k-algebra homomorphism S* .V/ ! A:

V -----i---- > S*.V/

9! k-algebra

A:

(17)

As usual, this universal property determines the pair .S*.V),i) uniquely up to a unique 
isomorphism.

We now define A.E) to be Spm.S*.E_//, where E_ is the dual vector space. For an 
affine k -algebra A,

Mor.Spm.A/; A.E// ' Homk-algebra.S*.E_),A) 
' Homk-linear.E_; A/ 
' E <8>k A

.3.24/

.17/

.linear algebra/:

In particular,
A.E/.k/ ' E:

Moreover, the choice of a basis e1; : : : ; en for E determines a (dual) basis f1 ; : : : ; fn of E_, 
and hence an isomorphism of k-algebras k[f1,...,/«] ! S* .E_/. The map of algebraic 
varieties defined by this homomorphism is the isomorphism

A.E/ ! An

whose map on the underlying sets is the isomorphism E ! kn defined by the basis of E.

k. Birational equivalence

Recall that if V is irreducible, then k[V] is an integral domain, and we write k.V/ for its 
field of fractions. If U is an open affine subvariety of V, then k[V] C k[U] C k.V/, and so 
k.V/ is also the field of fractions of k[U].

DEFINITION 3.35. Two irreducible affine algebraic varieties over k are birationally equiv­
alent if their function fields are isomorphic over k .

Proposition 3.36. Irreducible affine varieties V and W are birationally equivalent if and 
only if there exist open affine subvarieties UV and UW of V and W respectively such that 
Uv Uw .

Proof. Let V and W be birationally equivalent irreducible affine varieties, and let A d k[V] 
and B d k[W]. We use the isomorphism to identify k.V/ and k.W/. This allows us to 
suppose that A and B have a common field of fractions K. Let x1 ; . . . ; xn generate B as 
k -algebra. As K is the field of fractions of A, there exists a d 2 A such that dxi 2 A for all 
i; then B C Ad. The same argument shows that there exists an e 2 B such that Ad C Be. 
Now

B C Ad C Be h) Be C Ade C .Be/e d Be,

and so Ade d Be. This shows that the open subvarieties D.de/ C V and D.e/ C W are 
isomorphic. We have proved the “only if”’ part, and the “if”’ part is obvious. □

D.de/
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Theorem 3.37. Every irreducible affine algebraic variety of dimension d is birationally 
equivalent to a hypersurface in Ad C1.

Proof. Let V be an irreducible variety of dimension d . According to (3.38) below, there 
exist rational functions x1; : : : ;xdC1 on V such that k.V/ D k.x1 ; : : : ;xd;xdC1/. Let 
f 2 k[X1;...;Xdc1] be an irreducible polynomial satisfied by the xi, and let H be the 
hypersurface f d 0. Then k.V) k.H) and so V and H are birationally equivalent. □

We review some definitions from FT, Chapter 2. Let F be a field. A polynomial 
f 2 F [X] is separable if it has no multiple roots. Equivalent condition: gcd.f; f/ d 1. 
When f is irreducible, this just says that f ^ 0 because deg f < deg f. An element 
of an algebraic extension E of F is separable over F if its minimal polynomial over F is 
separable, and E is separable over F if all its elements are separable over F .

Proposition 3.38. Let Q be a finitely generated field extension of k of transcendence 
degree d. If k isperfect, then thereexist x1,...,xd+1 2 Q such that Q d k(x1,...,xd+1). 
After renumbering, fx1; . . . ;xdg will be a transcendence basis for Q over k and xdC1 will 
be separable over k.x1 ; . . . ; xd).

PRooF. Let Q D k.x1 ; . . . ; xn ). After renumbering, we may suppose that x1 ; . . . ; xd are 
algebraically independent, hence a transcendence basis (1.63).

if F has characteristic zero, then xd C1; . . . ;xn are separable over k.x1; . . .xd), and 
so the primitive element theorem (FT 5.1) shows that there exists a y 2 Q for which 
Q D k.x1;...;xd;y).

Thus, we may suppose that k has characteristic p ^ 0. Because k is perfect, every 
polynomial in Xp,..., Xi with coefficients in k is a pth power in k[X1,..., Xn]:

Xaii...inXi1p ...Xiinp D
■ 1 \p
X a,'...in, Xi1 ■■■Xi" (18)

Let .x1; :::; xi) be a generating set for Q over k with the fewest elements. We shall as­
sume that n > d C 1 and obtain a contradiction. As before, we may suppose that x1 ; :::; xd 
are algebraically independent. Then f.x1; :::;xdC1) D 0 for some nonzero irreducible 
polynomial f.X1; :::; Xd C1) with coefficients in k. Not all polynomials @f =@Xi are zero, 
for otherwise f would be a polynomial in X1p; :::;XdpC1, and hence a pth power. After 
renumbering, we may suppose that @f=@Xd+1 ^ 0. Now xd+1 is separably algebraic 
over k.x1; :::; xd) and xdC2 is algebraic over k.x1; :::;xdC1) (hence over k.x1; :::; xd)). 
According to the primitive element theorem (FT 5.1), there exists a y 2 Q such that 
k.x1; :::; xdC2) D k.x1; :::;xd;y). Now Q D k.x1; :::;xd;y;xdC3; :::;xi), contradict­
ing the minimality of n.

We have shown that Q D k.z1 ; :::; zd C1) for some zi 2 Q . The argument in the last 
paragraph shows that, after renumbering, zdC1 will be separably algebraic over k.z1; :::; zd), 
and this implies that fz1,... ;Zdg is a transcendence basis for Q over k (1.63). □

l. Noether Normalization Theorem

DEFiNiTioN 3.39. The dimension of an affine algebraic variety is the dimension of the 
underlying topological space (2.48).

DEFiNiTioN 3.40. A regular map 'W W ! V of affine algebraic varieties is finite if the 
map ‘*w k[V] ! k[W] makes k[W] a finite k[V]-algebra.
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Theorem 3.41. Let V be an affine algebraic variety of dimension n. Then there exists a 
finite map V ! An .

Proof. Immediate consequence of (2.45). □

m. Dimension

By definition, the dimension d of an affine variety V is the maximum length of a chain

Vo D Vi D •••

of distinct closed irreducible affine subvarieties. In this section, we prove that it is the length 
of every maximal chain of such subvarieties.

THEoREM 3.42. Let V be an irreducible affine variety, and let f be a nonzero regular 
function on V. If f has a zero in V, then its zero set is of pure codimension 1.

The Noether normalization theorem allows us to deduce this from the special case V D An , 
proved in 2.64.

PRooF. 4Let Z1; : : : ; Zn be the irreducible components of V.f /. We have to show that 
dim Zi d dim V — 1 for each i. There exists a point P 2 Zi not contained in any other Zj. 
Because the Zj are closed, there exists an open affine neighbourhood U of P in V not 
meeting any Zj with j ^ i. Now V.f j U/ d Zi \ U, which is irreducible. Therefore, on 
replacing V with U, we may assume that V.f/ is irreducible.

4This proof was found by John Tate.

As V.f / is irreducible, the radical of .f ) is a prime ideal p in k[V]. According to the 
Noether normalization theorem (2.45), there exists an inclusion k[Ad] ! k[V] realizing 
k[V] as a finite k[Ad]-algebra. Let f0 d Nmk.v^.Ad/ f. Then f0 2 k[Ad] and f divides 
f0 in k[V] (see 1.45). Hence f0 2 .f ) C p, and so rad.f0/ C p \k[Ad]. We claim that, in 
fact,

rad(f)) d P \ k[Ad ]•

Let g 2 p \k[Ad]. Then g 2 p = rad.f), and so gm d f h for some h 2 k[V], m 2 N. 
Taking norms, we find that

gme d Nm.f h) d f0 • Nm.h) 2 .f0);

where e d [k.V) w k.An)], and so g 2 rad.f0), as claimed.
The inclusion k[Ad] ! k[V] therefore induces an inclusion

k[Ad ]/rad.f))! k[V]/p.

This makes k[V]/p into a finite algebra over k[Ad]/rad.f0), and so the fields of fractions 
of these two k -algebras have the same transcendence degree:

dim V.p) D dim V.f0).

Clearly f ^ 0 ) f0 ^ 0, and f0 2 p ) f0 is nonconstant. Therefore dim V.f0) d d — 1 
by (2.64). □
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We can restate Theorem 3.42 as follows: let V be a closed irreducible subvariety of An 

and let F 2 k[X1;.. .,Xn]; then

V
V \V.F/ D ;

pure codimension 1

if F is identically zero on V 
if F has no zeros on V 
otherwise.

Corollary 3.43. Let V be an irreducible affine variety, and let Z be a maximal proper 
irreducible closed subset of V. Then dim.Z/ d dim.V/ — 1.

Proof. Because Z is a proper closed subset of V, there exists a nonzero regular function 
f on V vanishing on Z. Let V.f / be the zero set of f in V. Then Z C V.f / C V, and Z 
must be an irreducible component of V.f/ for otherwise it wouldn’t be maximal in V . Thus 
Theorem 3.42 shows that dim Z d dim V — 1. □

Corollary 3.44. Let V be an irreducible affine variety. Every maximal (i.e., nonrefin- 
able) chain

V d Vo D Vi D---D Vd (19)
of distinct irreducible closed subsets ofV has length d D dim.V /.

Proof. The last set Vd must be a point and each Vi must be maximal in Vi_1, and so, from 
3.43, we find that

dim Vo d dim V1 C 1 d dim V2 C 2 d---d dim Vd C d d d. n

CoRoLLARY 3.45. Let V be an irreducible affine variety, and let f1 ; : : : ; fr be regular 
functions on V. Every irreducible component Z of V.f1; : : : fr/ has codimension at most r:

codim.Z/ < r.

For example, if the fi have no common zero on V, so that V.f1; : : : ; fr/ is empty, then 
there are no irreducible components, and the statement is vacuously true.

Proof. We use induction on r. Because Z is an irreducible closed subset of V.f1,..., fr_ 1/, 
it is contained in some irreducible component Z0 of V.f1,... fr_ 1/. By induction, codim.Z0/ 
r — 1. Also Z is an irreducible component of Z0 \ V.fr/ because

Z C Z0 \ V.fr/ c V(fi,...,fr/

and Z is a maximal irreducible closed subset of V.f1 ; . . . ; fr/. If fr vanishes identically on 
Z0, then Z d Z0 and codim.Z/ d codim.Z0/ < r — 1; otherwise, the theorem shows that Z 
has codimension 1 in Z0, and codim.Z/ d codim.Z0/ C 1 < r. □

EXAMPLE 3.46. In the setting of 3.45, the components of V.f1 ; . . . ; fr/ need not all have 
the same dimension, and it is possible for all of them to have codimension < r without any 
of the fi being redundant. For example, let V be the cone

X1X4 - X2X3 D 0

in A4. Then v.x1/ \ V is the union of two planes:

V.X1/ \ V D f.0;0; *; *) g [ f ^; *,0, g .

V.fr/
V.fr/
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Both of these have codimension 1 in V (as required by 3.42). Similarly, V.X2/ \ V is the 
union of two planes,

V.X2/ \ V D f.0;0; *; */g[ f.*,0; *;0/g:

However V.X1, X2/ \ V consists of a single plane f .0,0, *, */g: it still has codimension 1 
in V, but it requires both X1 and X2 to define it.

Proposition 3.47. Let Z be an irreducible closed subvariety of codimension r in an 
affine variety V . Then there exist regular functions f1 ; : : : ; fr on V such that Z is an 
irreducible component of V.f1 ; : : : ; fr/ and all irreducible components of V.f1; : : : ; fr/ 
have codimension r .

Proof. We know that there exists a chain of irreducible closed subsets

V D Z1 D ••• D Zr d Z

with codim Zi == i. We shall show that there exist f1,...,fr 2 k[V] such that, for all 
s < r, Zs is an irreducible component of V.f1,..., fs/ and all irreducible components of 
V.f1 ; . . . ; fs/ have codimension s.

We prove this by induction on s. For s == 1, take any f1 2 I.Z1/, f1 ^ 0, and apply 
Theorem 3.42. Suppose f1,...,fs-1 have been chosen, and let Y1,Y2,...,Ym, be the 
irreducible components of V./b...,^^/, numbered so that Zs_1 == Y1. We seek an 
element fs that is identically zero on Zs but is not identically zero on any Yi — for such 
an fs, all irreducible components of Yi \ V.fs/ will have codimension s, and Zs will be an 
irreducible component of Y1 \ V.fs/. But no Yi is contained in Zs because Zs has smaller 
dimension than Yi, and so I.Zs/ is not contained in any of the ideals I.Yi/. Now the prime 
avoidance lemma (see below) tells us that there exist an fs 2 I.Zs/ X Si I.Yi / , and this is 
the function we want. □

LEMMA 3.48 (PRIME AVOIDANCE LEMMA). If an ideal a of a ring A is not contained in 
any of the prime ideals p1; . . . ;pr, then it is not contained in their union.

PROOF. We may assume that none of the prime ideals pi is contained in a second, because 
then we could omit it. For a fixed i, choose an fi 2 a x pi and, for each j ^ i, choose an 
fj 2 pj Xpi. Then hi Ddef QjrD1 fj lies in each pj with j ^ i and a, but not in pi (here we 
use that pi is prime). The element PiD 1 hi is therefore in a but not in any pi. □

Example 3.49. When V is an affine variety whose coordinate ring is a unique factorization 
domain, every closed subset Z of codimension 1 is of the form V.f / for some f 2 k[V] 
(see 2.66). The condition that k[V] be a unique factorization domain is definitely needed. 
Again consider the cone,

V w X1X4 - X2X3 d 0
in A4 and let Z and Z0 be the planes

Z Df.*;0; *;0/g Z0 D f.0; t ,0, g .

Then Z \ Z0 D f.0; 0; 0; 0/g, which has codimension 2 in Z0. If Z D V.f/ for some regular 
function f on V, then V.f jZ0/ D f.0, . . . , 0/g, which has codimension 2, in violation of 
3.42. Thus Z is not of the form V.f/, and so

k [X1 ,X2, X3, X4]/.X1 X4 - X2X3/

is not a unique factorization domain.
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Restatement in terms of affine algebras

We restate some of these results in terms of affine algebras.

3.50. Theorem says the following: let A be an affine k-algebra; if A is an integral 
domain and f 2 A is neither zero nor a unit, then every prime ideal p minimal among those 
containing .f / has height 1 (principal ideal theorem).

 3.42 

3.51. Corollary says the following: let A be an affine k-algebra; if A is integral 
domain, then every maximal chain

 3.44 

pd D pd_i D ••• D po

of distinct prime ideals has length equal to the Krull dimension of A. In particular, every 
maximal ideal in A has height dim.A/.

3.52. Let A be an affine k-algebra; if A is an integral domain and every prime ideal of 
height 1 in A is principal, then A is a unique factorization domain. In order to prove this, it 
suffices to show that every irreducible element f of A is prime . Let p be minimal 
among the prime ideals containing .f /. According to  p has height 1, and so it is 
principal, say p d .g/. As .f / c .g/, f d gq for some q 2 A. Because f is irreducible, q 
is a unit, and so .f/ D .g/ D p — the element f is prime.

(1.26)
 3.50,

3.53. Proposition says the following: let A be an affine k -algebra, and let p be a prime 
ideal in A. If p has height r , then there exist elements fi ; : : : ; fr 2 A such that p is minimal 
among the prime ideals containing .fi ; : : : ; fr/.

 3.47 

Aside 3.54. Statements 3.50 and 3.53 are true for all noetherian rings (CA 21.3, 21.8). However, 
3.51 may fail. For example, as we noted on p. 16 a noetherian ring may have infinite Krull dimension. 
Moreover, a noetherian ring may have finite Krull dimension d without all of its maximal ideals 
having height d. For example, let A d R[X], where R d k[t].t/ is a discrete valuation ring with 
maximal ideal .t/. The Krull dimension of A is 2, and .t,X/ D .t/ D .0/ is a maximal chain of 
prime ideals, but the ideal .tX — 1/ is maximal (because A=.tX — 1/ ' Rt, see 1.13) and of height 1 
(because it is in k[t; X] and A is obtained from k[t; X] by inverting the elements of k[t] x .t/).

ASIDE 3.55. Proposition 3.47 shows that a curve C in A3 is an irreducible component of V.fi ; f2/ 
for some f1, f2 2 k[X; Y, Z]. In fact C d V(f1, f2, f3/ for suitable polynomials f1, f2, and f3 — 

this is an exercise in Shafarevich 1994 (I 6, Exercise 8; see also Hartshorne 1977, I, Exercise 2.17). 
Apparently, it is not known whether two polynomials always suffice to define a curve in A3 — see 
Kunz 1985, p136.* 5 The union of two skew lines in P3 can’t be defined by two polynomials (ibid. 
p. 140), but it is unknown whether all connected curves in P3 can be defined by two polynomials. 
Macaulay (the man, not the program) showed that for every r > 1, there is a curve C in A3 such that 
I.C/ requires at least r generators (see the same exercise in Hartshorne for a curve whose ideal can’t 
be generated by 2 elements).6

5Kunz, Ernst Introduction to commutative algebra and algebraic geometry. Birkhauser Boston, Inc., Boston,
MA

6In 1882 Kronecker proved that every algebraic subset in Pn can be cut out by n C 1 polynomial equations. 
In 1891 Vahlen asserted that the result was best possible by exhibiting a curve in P3 which he claimed was not 
the zero locus of 3 equations. It was only 50 years later, in 1941, that Perron gave 3 equations defining Vahlen’s 
curve, thus refuting Vahlen’s claim which had been accepted for half a century. Finally, in 1973 Eisenbud and 
Evans proved that n equations always suffice to describe (set-theoretically) an algebraic subset of Pn (mo35468 
Georges Elencwajg).



m. Dimension 79

In general, a closed variety V of codimension r in An (resp. Pn/ is said to be a set-theoretic com­
plete intersection if there exist r polynomials fi 2 k[X1;..., Xn] (resp. homogeneous polynomials 
fi 2 k[X0; :::; Xn sLldl that

V D V.f1;:::;fr/:

Such a variety is said to be an ideal-theoretic complete intersection if the fi can be chosen so that 
I.V / D .f1; : : : ; fr/. Chapter V of Kunz’s book is concerned with the question of when a variety 
is a complete intersection. Obviously there are many ideal-theoretic complete intersections, but 
most of the varieties one happens to be interested in turn out not to be. For example, no abelian 
variety of dimension > 1 is an ideal-theoretic complete intersection (being an ideal-theoretic complete 
intersection imposes constraints on the cohomology of the variety, which are not fulfilled in the case 
of abelian varieties).

Let P be a point on an irreducible variety V C An. Then 3.47 shows that there is a neighbourhood 
U of P in An and functions f1; : : : ; fr on U such that U \ V D V.f1 ; : : : ; fr/ (zero set in U/. Thus 
U \ V is a set-theoretic complete intersection in U . One says that V is a local complete intersection 
at P 2 V if there is an open affine neighbourhood U of P in An such that the ideal I.V \ U / can be 
generated by r regular functions on U . Note that

ideal-theoretic complete intersection ) local complete intersection at all p:

It is not difficult to show that a variety is a local complete intersection at every nonsingular point (cf. 
4.36).

Exercises

3-1. Show that a map between affine varieties can be continuous for the Zariski topology 
without being regular.

3-2. Let V d Spm(A), and let Z d Spm(A=a/ c Spm(A). Show that a function f on an 
open subset U of Z is regular if and only if, for each P 2 U, there exists a regular function 
f 0 on an open neighbourhood U0 of P in V such that f and f 0 agree on U0 \ U.

3-3. Find the image of the regular map

.x; y/ 7! .x; xy/W A2 ! A2

and verify that it is neither open nor closed.

3-4. Show that the circle X2 C Y2 D 1 is isomorphic (as an affine variety) to the hyperbola 
XY d 1, but that neither is isomorphic to A1. (Assume char(k) ^ 2./

3-5. Let C be the curve Y2 D X2 C X3, and let ' be the regular map

t ! (t2 — 1,t(t2 — 1))w A1 ! C.

Is ' an isomorphism?





Chapter

Local Study

Geometry is the art of drawing correct conclusions 
from incorrect figures. (La geometrie est l’art de 
raisonner juste sur des figures fausses.)
Descartes

In this chapter, we examine the structure of an affine algebraic variety near a point. We 
begin with the case of a plane curve, since the ideas in the general case are the same but the 
proofs are more complicated.

a. Tangent spaces to plane curves

Consider the curve V in the plane defined by a nonconstant polynomial F.X; Y/,

V W F.X;Y/ D0:

We assume that F.X; Y/ has no multiple factors, so that .F.X; Y// is a radical ideal and 
I.V/ D .F.X; Y//. We can factor F into a product of irreducible polynomials, F.X; Y/ D 
Q Fi .X; Y/, and then V D S V.Fi/ expresses V as a union of its irreducible components 
(see 2.29). Each component V.Fi/ has dimension 1 (by 2.64) and so V has pure dimension 
1.

If F .X; Y / itself is irreducible, then

k[V] d k[X;Y]=(F(X;Y// d k[x;y]

is an integral domain. Moreover, if F ^ X — c, then x is transcendental over k and y 
is algebraic over k(x/, and so x is a transcendence basis for k(V / over k . Similarly, if 
F ^ Y — c, then y is a transcendence basis for k(V/ over k.

Let (a; b/ be a point on V. If we were doing calculus, we would say that the tangent 
space at P D (a; b/ is defined by the equation

@F(a;b/(X - a/ C @F(a;b/(Y - b/ d 0:
@X @Y

@F @F This is the equation of a line unless ooni @x (a; b/ and @y (a; b/ are zero, in which case it is 
the equation of a plane.

We are not doing calculus, but we can define @X and @y by

@X (XaijXiYj) D XiaijXi-1Yj; @Y (XaijXiYj) d X jaijXiYj“1,

(20)

81

V.Fi/
V.Fi/
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and make the same definition.

DEFINITION 4.1. The tangent space TP V to V at P D .a; b/ is the algebraic subset defined 
by equation (20).

If @@X.a; b/ and @F.a,b/ are not both zero, then Tp .V/ is a line through (a,b/, and we 
say that P is a nonsingular or smooth point of V . Otherwise, TP.V/ has dimension 2, and 
we say that P is singular or multiple. The curve V is said to be nonsingular or smooth if 
all its points are nonsingular.

Examples

For each of the following examples, the reader is invited to sketch the curve. Assume that 
char.k/ ^ 2,3.

4.2. Xm C Ym D 1. The tangent space at .a; b/ is given by the equation

mam~1.X - a/ C mbm“1.Y - b/ d 0:

All points on the curve are nonsingular unless the characteristic of k divides m, in which 
case Xm C Ym — 1 has multiple factors,

Xm c ym _ i d xm0p c ym0p _ i d .xm0 c ym0 _ i/p:

4.3. Y  D X  (sketched in below). The tangent space at .a; b/ is given by the equation2 3  4.12 

—3a2.X - a/ C 2b.Y - b/ d 0:

The only singular point is .0; 0/.

4.4. Y  D X .X C i/ (sketched in below). Here again only .0; 0/ is singular.2 2  4.10 

4.5. Y  D X  C aX C b. In we sketched two nonsingular examples of such curves, 
and in and we sketch two singular examples. The singular points of the curve are 
the common zeros of the polynomials

2 3  2.2 
 4.10  4.11 

Y2 - X3 -aX - b, 2Y, 3X2 C a,

which consist of the points .c; 0/ with c a common zero of

X3CaXCb, 3X2Ca.

As 3X2 C a is the derivative of X3 C aX C b, we see that V is singular if and only if 
X 3 C aX C b has a multiple root.

4.6. V D V.FG/ where FG has no multiple factors (so F and G are coprime). Then 
V D V.F/ [ V.G/, and a point .a, b/ is singular if and only ifit is

0 a singular point of V.F/,
0 a singular point of V.G/, or
0 a point of V.F/ \ V.G/.

This follows immediately from the product rule:

@.FG/ D F @G C @F G @.FG/ D F @G C @FG
@X ' @X C @X ' ; @Y ' @Y C @Y ' :
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The singular locus

Proposition 4.7. The nonsingular points of a plane curve form a dense open subset of 
the curve.

Proof. Let V d V.F), where F is a nonconstant polynomial in k[X; Y] without multiple 
factors. It suffices to show that the nonsingular points form a dense open subset of each 
irreducible component of V, and so we may assume that V (hence F) is irreducible. It 
suffices to show that the set of singular points is a proper closed subset. Since it is the set of 
common zeros of the polynomials

F; £• @Y;
it is obviously closed. It will be proper unless @F =@X and @F =@Y are both identically 

zero on V, and hence both multiples of F, but, as they have lower degree than F, this is impossible unless they are both zero. Clearly @F =@X D 0 if and only if F is a polynomial in 

Y (k of characteristic zero) or is a polynomial in Xp and Y (k of characteristic p/. A similar remark applies to @F =@Y . Thus if @F =@X and @F =@Y are both zero, then F is constant 

(characteristic zero) or a polynomial in Xp, Yp, and hence a pth power (characteristic p, 
see (18)). These are contrary to our assumptions. □

Thus the singular points form a proper closed subset, called the singular locus.

Aside 4.8. In common usage, “singular” means uncommon or extraordinary as in “he spoke with 
singular shrewdness”. Thus the proposition says that singular points (mathematical sense) are singular 
(usual sense).

b. Tangent cones to plane curves

A polynomial F .X; Y / can be written (uniquely) as a finite sum

F d Fo C Fi C F2 C------C Fm C--- (21)

with each Fm a homogeneous polynomial of degree m. The term F1 will be denoted F' and 
called the linear form of F, and the first nonzero term on the right of (21) (the homogeneous 
summand of F of least degree) will be denoted F* and called the leading form of F.

If P D .0; 0/ is on the curve V defined by F, then F0 D 0 and (21) becomes

F D aX C bY C higher degree terms,

and the equation of the tangent space is

aX C bY D 0:

DEFINITIoN 4.9. Let F.X;Y/ be a polynomial without square factors, and let V be the 
curve defined by F. If .0;0/ 2 V, then the geometric tangent cone to V at .0; 0/ is the zero 
set of F*. The tangent cone is the pair .V(F*), k [X; Y]/F*). To obtain the tangent cone at 
any other point, translate to the origin, and then translate back.

Note that the geometric tangent cone at a point on a curve always has dimension 1. 
While the tangent space tells you whether a point is nonsingular or not, the tangent cone also 
gives you information on the nature of a singularity.
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In general we can factor F* as

F*(X, Y/ d cXr0 Yi (Y - ai X/ri.

Then deg F* d ^2 r is called the multiplicity of the singularity, multp (V/. A multiple point 
is ordinary if its tangents are nonmultiple, i.e., ri D 1 all i . An ordinary double point is 
called a node. There are many names for special types of singularities — see any book, 
especially an old book, on algebraic curves.

Examples

The following examples are adapted from Walker, Robert J., Algebraic Curves. Princeton 
Mathematical Series, vol. 13. Princeton University Press, Princeton, N. J., 1950 (reprinted 
by Dover 1962).

4.10. F(X; Y/ d X3 C X2 — Y2. The tangent cone at 
(0;0/ is defined by Y2 — X2. It is the pair of lines Y d ±X, 
and the singularity is a node.

4.11. F(X; Y/ d X3 - X2 - Y2. The origin is an iso­
lated point of the real locus. It is again a node, but the 
tangent cone is defined by Y2 C X2 , which is the pair of 
lines Y d ±iX. In this case, the real locus of the tangent 
cone is just the point (0,0).

4.12. F(X;Y/ d X3 — Y2. Here the origin is a cusp. 
The tangent cone is defined by Y2, which is the X -axis 
(doubled).

4.13. F(X;Y/ d 2X4 - 3X2 Y C Y2 - 2Y 3 C Y 4. The 
origin is again a double point, but this time it is a tacnode. 
The tangent cone is again defined by Y 2 .

4.14. F(X; Y/ d X4 C X2Y2 - 2X2Y - XY2 - Y2. 
The origin is again a double point, but this time it is a 
ramphoid cusp. The tangent cone is again defined by Y 2 .
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4.15. F.X;Y/ d .X2 C Y2/2 C 3X2Y - Y3. The origin 
is an ordinary triple point. The tangent cone is defined 
by 3X2Y - Y3, which is the triple of lines Y d 0, Y d 
±P3x .

4.16. F.X; Y/ d .X2 C Y2/3 - 4X2 Y2. The origin has 
multiplicity 4. The tangent cone is defined by 4X2Y2, 
which is the union of the X and Y axes, each doubled.

4.17. F.X;Y/ d X6 - X2Y3 - Y5. The tangent cone 
is defined by X2Y3 C Y5, which consists of a triple line 
Y3 d 0 and a pair of lines Y d ±iX.

Aside 4.18. Note that the real locus of the algebraic curve in 4.17 is smooth even though the curve 
itself is singular. Another example of such a curve is Y3 C 2X2Y — X4 d 0. This is singular at .0,0/, 
but its real locus is the image of R under the analytic map t 7! .t3 C 2t; t .t 3 C 2//, which is injective, 
proper, and immersive, and hence an embedding into R2 with closed image. See Milnor, J., Singular 
points of complex hypersurfaces. PUP, 1968, or mo98366 (Elencwajg).

c. The local ring at a point on a curve

PROPOSITION 4.19. Let P be a point on a plane curve V , and let m be the correspond­
ing maximal ideal in k[V]. If P is nonsingular, then dimk .m=m2/ d 1, and otherwise 
dimk .m=m2/ D 2.

Proof. Assume first that P d .0;0/. Then m d (x,y/ in k[V] d k[X,Y]/(F(X,Y// d 
k[x,y]. Note that m2 d .x2;Xy;y2/, and

m/m2 D .X;Y//.m2CF.X;Y// D .X; Y//.X2; XY; Y2; F.X; Y//:

In this quotient, every element is represented by a linear polynomial cx C dy, and the 
only relation is F'.x,y) d 0. Clearly dimk .m/m2/ d 1 if F ^ 0, and dimk .m/m2/ d 2 
otherwise. Since F'd 0 is the equation of the tangent space, this proves the proposition in 
this case.

The same argument works for an arbitrary point .a; b/ except that one uses the variables 
X0 d X — a and Y0 d Y — b; in essence, one translates the point to the origin. □

We explain what the condition dimk.m/m2/ d 1 means for the local ring Op d k[V]m. 
Let n be the maximal ideal mk[V]m of this local ring. The map m ! n induces an isomor­
phism m/m2 ! n/n2 (see 1.15), and so we have

P nonsingular ” dimk m/m2 D 1 ” dimk n/n2 D 1:

Nakayama’s lemma (1.3) shows that the last condition is equivalent to n being a principal 
ideal. As OP has Krull dimension one (2.64), for its maximal ideal to be principal means 
that it is a regular local ring of dimension 1 (see 1.6). Thus, for a point P on a curve,

P nonsingular ” OP regular.
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Proposition 4.20. Every regular local ring of dimension one is a principal ideal domain.

Proof. Let A be such a ring, and let m d (n) be its maximal ideal. According to the Krull 
intersection theorem (1.8), p)r>0 mr d (0/. Let a be a proper nonzero ideal in A. As a is 
finitely generated, there exists an r 2 N such that a c mr but a£ mrC1. Therefore, there 
exists an a d cnr 2 a such that a 0 mrC1. The second condition implies that c 0 m, and so 
it is a unit. Therefore (nr/ d (a/ c a C (nr/, and so a d (nr/ d mr. We have shown that 
all ideals in A are principal.

By assumption, there exists a prime ideal p properly contained in m. Then A=p is an 
integral domain. As n 0 p, it is not nilpotent in A=p, and hence not nilpotent in A.

Let a and b be nonzero elements of A. There exist r; s 2 N such that a 2 mr X mrC1 and 
b 2 ms xmsC1. Then a d unr and b d 'vns with u and v units, and ab d uvnrCs ^ 0. 
Hence A is an integral domain. □

It follows from the elementary theory of principal ideal domains that the following 
conditions on a principal ideal domain A are equivalent:

(a) A has exactly one nonzero prime ideal;
(b) A has exactly one prime element up to associates;
(c) A is local and is not a field.

A ring satisfying these conditions is called a discrete valuation ring.

THEoREM 4.21. A point P on a plane algebraic curve is nonsingular if and only if OP is 
regular, in which case it is a discrete valuation ring.

Proof. The statement summarizes the above discussion. □

d. Tangent spaces to algebraic subsets of Am

Before defining tangent spaces at points of an algebraic subset of Am we review some 
terminology from linear algebra (which should be familiar from advanced calculus).

Linear algebra

For a vector space km, let Xi be the ith coordinate function a 7! ai. Thus X1; : : : ; Xm is the 
dual basis to the standard basis for km. A linear form aiXi can be regarded as an element 
of the dual vector space (km/_ D Hom(km ; k/.

Let A d (aij/ be an n x m matrix. It defines a linear map aw km ! kn, by

PjmD1 a1j aj
: : : 

PjmD1 anj aj
Write X1 ; : : : ; Xm for the coordinate functions on km and Y1 ; : : : ; Yn for the coordinate 

functions on kn . Then 
m

Yi1 a D^ aij Xj:
jD1

This says that the ith coordinate of a(a/ is
mm

aij(Xj a/ D aijaj:
jD1 jD1
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Tangent spaces

Definition 4.22. Let V c km be an algebraic subset of km, and let a d I.V/. The 
tangent space Ta.V / to V at a point a D .a1; : : : ;am/ of V is the subspace of the vector 
space with origin a cut out by the linear equations

™ @f z
-XT .Xi - ai / D 0

i D1 @i a
; F 2 a. (22)

a

in other words, Ta .Am/ is the vector space of dimension m with origin a, and Ta .V / is 
the subspace of Ta.Am/ defined by the equations (22).

Write .dXi/a for .Xi — ai/; then the .dXi/a form a basis for the dual vector space 
Ta .Am/_ to Ta .Am/ — in fact, they are the coordinate functions on Ta .Am/_. As in 
advanced calculus, we define the differential of a polynomial F 2 k[Xi ,■■:, Xm] at a by the
equation:

.dF /a
m @F

.dXi /
iD1 @Xi a

a:
a

it is again a linear form on Ta .Am/. in terms of differentials, Ta.V / is the subspace of 
Ta .Am/ defined by the equations:

.dF /a D 0; F 2 a: (23)

i claim that, in (22) and (23), it suffices to take the F to lie in a generating subset for a. The 
product rule for differentiation shows that if G D Pj Hj Fj , then

.dG/a D X Hj .a/ • .dFj/a C Fj .a/ • .dHj/a:
j

if F1 ; : : : ; Fr generate a and a 2 V.a/, so that Fj .a/ D 0 for all j, then this equation becomes

.dG/a D X Hj .a/ • .dFj/a: 
j

Thus .dF1/a; : : : ; .dFr /a generate the k-vector space f.dF /a j F 2 ag.

DEFiNiTiON 4.23. A point a on an algebraic set V is nonsingular (or smooth) if it lies on 
a single irreducible component W of V and the dimension of the tangent space at a is equal 
to the dimension of W ; otherwise it is singular (or multiple).

Thus, a point a on an irreducible algebraic set V is nonsingular if and only if dimTa.V / D 
dimV. As in the case of plane curves, a point on V is nonsingular if and only if it lies on a 
single irreducible component of V, and is nonsingular on it.

Let a D .F1 ; : : : ; Fr/, and let

J D Jac.F1; : : : ; Fr/ D @Fi 

@Xj

@ @F1 @F1 \
3X1 ; ■■■; 3Xm:: ■■ ■■
3Fr 3Fr

\ 3X1 ; :::; 3Xm /

Then the equations defining Ta.V / as a subspace of Ta.Am/ have matrix J.a/. Therefore, 
linear algebra shows that

dimk Ta .V/ D m — rank J (a), 
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and so a is nonsingular if and only if the rank of Jac.F1 ;:::;Fr /.a/ is equal to m — dim.V/.
For example, if V is a hypersurface, say I.V / D .F.X1 ; : : : ; Xm//, then

Jac.F /.a/ D @F @F
@X1 .a);:::;@xm .a/J

and a is nonsingular if and only if not all of the partial derivatives @F vanish at a. 
We can regard J as a matrix of regular functions on V. For each r,

fa 2 V j rank J.a) < rg

is closed in V , because it is the set where certain determinants vanish. Therefore, there 
is an open subset U of V on which rank J.a/ attains its maximum value, and the rank 
jumps on closed subsets. Later (4.37) we shall show that the maximum value of rank J.a/ is 
m — dim V, and so the nonsingular points of V form a nonempty open subset of V.

e. The differential of a regular map

Consider a regular map

WAm ! An; a 7! .P1.a1; : : : ;am/;: : : ; Pn.a1; : : : ; am//:

We think of ' as being given by the equations

Yi D Pi.X1;:::;Xm/; i D 1;:::;n:

It corresponds to the map of rings '*w k[Y1;:::;Yn] ! k[Xi,.. ,,Xm] sending Yi to Pi (Xi,.. .,Xm), 
i D 1;::: ;n.

Let a 2 Am, and let b D '.a/. Define .d'/aW Ta.Am/ ! Tb.An/ to be the map such that
X@P

^P- .dXj )a 
@Xj a

i.e., relative to the standard bases, .d'/a is the map with matrix

::;
Jac.P1 ; : : : ; Pn/.a/ D :::

@Pn .a)\ 3X1 .a);

@Xm
:::

-@Pn .a)::; @Xm .a) /

For example, suppose a D .0; : : : ; 0/ and b D .0; : : : ; 0/, so that Ta.Am/ D km and Tb .An/ D 
kn, and

m

Pi D cij Xj C .higher terms), i D 1; : : : ;n:
jD1

Then Yi i .d')a d Pj cij Xj, and the map on tangent spaces is given by the matrix .cij), 
i.e., it is simply t 7! .cij /t.

Let F 2 k[X1;:::; Xm]. We can regard F as a regular map Am ! A1, whose differential 
will be a linear map

.dF/aWTa.Am/ ! Tb.A1/; bDF.a/:

When we identify Tb .A1 / with k , we obtain an identification of the differential of F (F 
regarded as a regular map) with the differential of F (F regarded as a regular function).
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Lemma4.24. Let ‘ w Am ! An be as at the start of this subsection. If' maps V D V.a/ c 
km into W d V.b/ c kn, then .d’/a maps Ta.V/ into Tb.W), b D '.a/.

Proof. We are given that

and have to prove that
f 2 b ) f i' 2 a;

f 2 b ) .df/b i .d'/a is zero on Ta.V/:

The chain rule holds in our situation:

@f D XX f@Yj

@Xi @Yj @Xi;
jD1

Yj D Pj.X1;:::;Xm/; f D f.Y1;:::;Yn/:

If ' is the map given by the equations

Yj DPj.X1;:::;Xm/; j D 1;:::;n;

then the chain rule implies

d.fi'/a D .df/b i.d'/a; b D '.a/:

Let t 2 Ta .V/; then
.df/b i.d'/a.t/ D d.fi'/a.t/;

which is zero if f 2 b because then f i' 2 a. Thus .d’/a.t/ 2 Tb.W/. □

We therefore get a map .d'/aW Ta.V / ! Tb.W /. The usual rules from advanced calculus 
hold. For example,

.d /b i.d'/a D d. i'/a; b D '.a/:

f. Tangent spaces to affine algebraic varieties

The definition (4.22) of the tangent space at a point on an algebraic set uses the embedding 
of the algebraic set into An . In this section, we give an intrinsic definition of the tangent 
space at a point of an affine algebraic variety that makes clear that it depends only on the 
local ring at the point.

Dual numbers

For an affine algebraic variety V and a k-algebra R (not necessarily an affine k-algebra), we 
define V.R/ to be Homk-alg.k[V];R/. For example, if V c An and a D I.V/, then

V.R/ D f.a1 ;:::;an/ 2 Rn j f.a1 ;:::;an/ D 0 for all f 2 ag:

A homomorphism R ! S of k-algebras defines a map V.R/ ! V.S/ of sets.
The ring of dual numbers is k["] = k[X]=.X 2/, where " D X C .X 2/. Thus k["] D 

k ® k" as a k-vector space, and

.a C b"/.a0 C b0"/ D aa0 C .ab0 C a0b/"; a;b;a0;b0 2 k:

Note that there is a k-algebra homomorphism " ! 0w k["] ! k.
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Definition 4.25. Let P be a point on an affine algebraic variety V over k. The tangent 
space to V at P is

TP .V/ d fP0 2 V.k["]/ j P0 ! P under V.k["]/ ! V.k/g.

Thus an element of TP .V/ is a homomorphism of k-algebras aw k[V] ! k["] whose 
composite with k["] —> k is the point P. To say that k[V] ! k is the point P means that 
its kernel is mP, and so mP d a-1..")/.

PROPOSITION 4.26. Let V be an algebraic subset of An, and let V0 D .V; OV/ be V 
equipped with its canonical structure of an affine algebraic variety. Let P 2 V . Then

TP .V/ (as defined in 4.22) ' TP .V0/ (as defined in 4.25).

PROOF. Let I.V/ D a and let P D .a1; : : : ; an/. On rewriting a polynomial F.X1; : : : ; Xn/ 
in terms of the variables Xi — ai, we obtain the (trivial Taylor) formula,

@FF(X1,...,X„/ d F(ai,...,a„/ cJ2 @X .Xi _ ai/ C R
a

with R a finite sum of products of at least two terms .Xi — ai/.
According to 4.25, TP .V0/ consists of the elements a C "b of k["]n d kn ® kn" lying in 

V.k["]/. Let F 2 a. On setting Xi equal to ai C "bi in the above formula, we obtain:

F.a1 C "b1; . . . ;an C "bn/
a

Thus, .a1 C "b1,.. .,an C "bn/ lies in V.k["]/ if and only if .b1,.. .,b„/ 2 Ta.V/. □

We can restate this as follows. Let V be an affine algebraic variety, and let P 2 V . 
Choose an embedding V ,! An , and let P map to .a1 ; . . . ; an/. Then the point

.a1;...;an/C.b1;...;bn/"

of An.k["]/ is an element of TP .V/ (definition 4.25) if and only if .b1,.. .,bn/ is an element 
of TP.V/ (definition 4.22).

Proposition 4.27. Let V be an affine variety, and let P 2 V . There is a canonical 
isomorphism

TP .V/ ' Hom.OP ;k["]/ (local homomorphisms of local k-algebras).

Proof. By definition, an element of TP .V/ is a homomorphism aw k[V] ! k["] such that 
a-1.."// d mP. Therefore a maps elements of k[V] xmP into .k["] x ."// d k["]x, and 
so a extends (uniquely) to a homomorphism a0w OP ! k["]. By construction, a0 is a local 
homomorphism of local k-algebras, and clearly every such homomorphism arises in this 
way from an element of TP .V/. □
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Derivations

DEFINITION 4.28. Let A be a k-algebra and M an A-module. A k-derivation is a map 
DWA ! M such that

(a) D.c/ D 0 for all c 2 k;
(b) D.f Cg/DD.f/CD.g/;
(c) D.fg/ d f ■ Dg C g • Df (Leibniz’s rule).

Note that the conditions imply that D is k-linear (but not A-linear). We write Derk.A; M/ 
for the k-vector space of all k-derivations A ! M .

For example, let A be a local k-algebra with maximal ideal m, and assume that A=m D k .
For f 2 A, let f .m/ denote the image of f in A=m. Then f — f .m/ 2 m, and the map

f ! df = f - f.m/ mod m2

is a k -derivation A ! m=m2 because, mod m2 ,

0 d .f - f.m//.g-g.m//
d -fg C f .m/g.m/ C f • .g - g.m// C g.f - f.m//
d -d.fg/ C f • dg C g • df

PROPOSITION 4.29. Let .A; m/ be as above. There are canonical isomorphisms

Homlocal k-algebra.A;k["]/ ! Derk (A,k) ! Homk-linear.m=m2;k/:

c7!c f 7!f.m/
Proof. The composite k----- > A----------> k
k -vector space, A decomposes into

is the identity map, and so, when regarded as

A d k © m, f $ .f.m/;f - f.m//:

Let aw A ! k["] be a local homomorphism of k-algebras, and write a.a/ d a0 C Da .a/". 
Because a is a homomorphism of k-algebras, a0 d a .m/. We have

a.ab/ d .ab/0 C Da.ab/", and
a.a/a.b/ d .ao C /.)„•.a/e/.bo C D.b/"/ d aobo C .floD«.b/ C boDa.a//":

On comparing these expressions, we see that D satisfies Leibniz’s rule, and therefore is a 
k-derivation A ! k. Conversely, if DW A ! k is a k-derivation, then

aW a 7! a.m/ C D.a/"

is a local homomorphism of k-algebras A ! k["], and all such homomorphisms arise in this 
way.

A derivation D W A ! k is zero on k and on m2 (by Leibniz’s rule). It therefore defines 
a k-linear map m=m2 ! k . Conversely, a k-linear map m=m2 ! k defines a derivation by 
composition

f 7!df
A-------> m=m2 ! k: n
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Tangent spaces and differentials

We now summarize the above discussion in the context of affine algebraic varieties.

4.30. Let V be an affine algebraic variety, and let P be a point on V . Write mP for the 
corresponding maximal ideal in k[V] and np for the maximal ideal mpOv;p in the local 
ring at P . There are canonical isomorphisms

Tp (V) ----------------- > Derk(k[V],k) ------ > Homk-linear.mp =mp;k)
(24)

Homlocal k-algebra (Op ;k["]) ------ > Derk (Op ;k) ------- > Homk-linear(np =np2 ;k):

In the middle term on the top row, k[V] acts on k through k[V] ! k[V]=mp ' k,1 and on 
the bottom row Op acts on k through Op ! Op =np ' k . The maps have the following 
descriptions.

(a) By definition, Tp (V) is the fibre of V(k["]) ! V(k) over P. To give an element of 
Tp (V) amounts to giving a homomorphism aw k[V] ! k["] such that a~1 ((")) d mp.

(b) The homomorphism a in (a) can be decomposed,

a(f) d f(mp) ® Da(f)"; f 2 k[V], f(mp) 2 k, D«(f) 2 k.
The map Da is a k-derivation k[V] ! k, and Da induces a k-linear map mp =mp ! k.

(c) The homomorphism aw k[V] ! k["] in (a) extends uniquely to a local homomorphism 
Op ! k["]. Similarly, a k-derivation k[V] ! k extends uniquely to a k-derivation 
Op ! k.

(d) The two right hand groups are related through the isomorphism mp =mp2 ! np =np2 

of .(1.15)

4.31. A regular map 'w V ! W defines a map 
'(k["])w V(k["]) ! W(k["]). If Q d '(P), then ' maps 
the fibre over P to the fibre over Q, i.e., it defines a map

d'w Tp(V) ! TQ(W ).

This map of tangent spaces is called the differential of ' at 
P.

(a) When V and W are embedded as closed subvarieties of An , d' has the description in 
p. 89.

(b) As a map Hom (Op ,k["]) ! Hom(OQ ,k["]), d' is induced by '*w Oq ! Op.
(c) As a map Hom(mp =mp2 ; k) ! Hom(mQ =m2Q ; k), d' is induced by the map mQ =m2Q ! 

mp =mp defined by '*w k[W] ! k[V].

Example 4.32. Let E be a finite dimensional vector space over k. Then

To(A(E)) ' E.

Aside 4.33. A map Spm(k["]) ! V should be thought of as a curve in V but with only the first 
infinitesimal structure retained. Thus, the descriptions of the tangent space provided by the terms in 
the top row of (24) correspond to the three standard descriptions of the tangent space in differential 
geometry (Wikipedia: Tangent S pace).

1Thus, Derk(k[V];k) depends on P.

Tp (V) —Tq (W)

I 1
V(k["]) W(k["])

j,"!0 j,"!°

V(k) ---- W(k)
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g. Tangent cones

Let V be an algebraic subset of km, and let a D I.V /. Assume that P D .0; : : : ; 0/ 2 V . 
Define a* to be the ideal generated by the polynomials F* for F 2 a, where F* is the leading 
form of F (see p. 83). The geometric tangent cone at P, Cp .V/ is V.a*/, and the tangent 
cone is the pair .V.a*/;k[Xi;.. .,X„]/a*). Obviously, Cp .V/ c Tp .V/.

Caution. If a is principal, say a d .F/, then a* d (F*/, but if a d .F1,..., Fr/, then it 
need not be true that a* d .F1*,...; Fr*/. Consider for example a d .XY;XZ c Z.Y2 — 
Z2//. One can show that this is an intersection of prime ideals, and hence is radical. As the 
polynomial

YZ.Y2 - Z2/ d Y • .XZ C Z.Y2 - Z2// - Z • .XY/
lies in a and is homogeneous, it lies in a*, but it is not in the ideal generated by XY, XZ. In 
fact, a* is the ideal generated by

XY; XZ; YZ.Y2 - Z2/.

Let A be a local ring with maximal ideal n. The associated graded ring is

gr.A/ d Mi>0 ni =ni C1.

Note that if A D Bm and n D mA, then gr.A/ D Lmi=miCi (because of 1.15).

Proposition 4.34. The map k[X1,...,X„]/a* ! gr.Op/ sending the class of Xi in 
k[X1,...,X„]/a* totheclassof Xi in gr.Op / is an isomorphism.

PROOF. Let m be the maximal ideal in k[X1,..., Xn]=a corresponding to P. Then

gr.Op / D Xmi=miC1

DX.X1;...;Xn/i=.X1;...;Xn/iC1Ca\.X1;...;Xn/i

DX.X1;...;Xn/i=.X1;...;Xn/iC1Cai;

where ai is the homogeneous piece of a* of degree i (that is, the subspace of a* consisting 
of homogeneous polynomials of degree i ). But

.X1;.. .;Xn/i =.X1;.. .;Xn/iC1 C ai d ith homogeneous piece of k[X1;.. .;Xn]=a*. n

For an affine algebraic variety V and P 2 V , we define the geometric tangent cone 
Cp .V / of V at P to be Spm.gr.Op /red/, where gr.Op /red is the quotient of gr.Op / by its 
nilradical, and we define the tangent cone to be .Cp .V /; gr.Op //.

As in the case of a curve, the dimension of the geometric tangent cone at P is the same 
as the dimension of V (because the Krull dimension of a noetherian local ring is equal to 
that of its graded ring). Moreover, gr.Op / is a polynomial ring in dimV variables if and 
only if Op is regular. Therefore, P is nonsingular (see below) if and only if gr.Op / is a 
polynomial ring in d variables, in which case Cp .V / D Tp .V/.

A regular map ' W V ! W sending P to Q induces a homomorphism gr.OQ / ! gr.Op /, 
and hence a map Cp .V / ! CQ .V / of the geometric tangent cones.

Caution. The map on the rings k[X1,... ;Xn]=a* defined by a map of algebraic varieties 
is not the obvious one, i.e., it is not necessarily induced by the same map on polynomial 
rings as the original map. To see what it is, it is necessary to use Proposition 4.34, i.e., it is 
necessary to work with the rings gr.Op /.
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h. Nonsingular points; the singular locus

DEFINITION 4.35. A point P on an affine algebraic variety V is said to be nonsingular 
or smooth if it lies on a single irreducible component W of V and dimTP.V/ D dimW ; 
otherwise the point is said to be singular. A variety is nonsingular if all of its points are 
nonsingular. The set of singular points of a variety is called its singular locus.

Thus, on an irreducible variety V of dimension d ,

P is nonsingular ” dimk TP .V/ D d ” dimk.nP =nP2 / D d.

Proposition 4.36. Let V be an irreducible variety of dimension d, and let P be a non­
singular point on V . Then there exist d regular functions f1 ; : : : ; fd defined in an open 
neighbourhood U of P such that P is the only common zero of the fi on U .

PROOF. Suppose that P is nonsingular. Let f1 ; : : : ; fd generate the maximal ideal nP in 
OP . Then f1 ; : : : ; fd are all defined on some open affine neighbourhood U of P , and I 
claim that P is an irreducible component of the zero set V.f1; : : : ; fd/ of f1 ; : : : ; fd in U. If 
not, there will be some irreducible component Z ^ P of V(f1 ,...,fd/ passing through P. 
Write Z d V.p) with p a prime ideal in k[U]. Because V.p) c V(f1,..., fd) and because 
Z contains P and is not equal to it, we have

(fi,...,fd) c p c mp (ideals in k[U]).

On passing to the local ring Op d k[U]mP, we find (using 1.14) that

(fi ,...,fd) pOp C np (ideals in Op).

This contradicts the assumption that the fi generate np . Hence P is an irreducible compo­
nent of V.fi; . . . ; fd). On removing the remaining irreducible components of V.fi; . . . ; fd) 
from U, we obtain an open neighbourhood of P with the required property. □

Let P be a point on an irreducible variety V , and let fi ; . . . ; fr generate the maximal 
ideal np in Op . The proof of the proposition shows that P is an irreducible component 
of V(f1,..., fr), and so r > d (see 3.45). Nakayama’s lemma (1.3) shows that f1 ,...,fr 

generate np if and only if their images in np =np span it. Thus dim Tp .V) > dim V, with 
equality if and only if P is nonsingular.

A point P on V is nonsingular if and only if there exists an open affine neighbourhood U 
of P and functions fi; . . . fd on U such that .fi; . . . ; fd) is the ideal of all regular functions 
on U zero at P .

Theorem 4.37. The set of nonsingular points of an affine algebraic variety is dense and 
open.

Proof. Let V be an irreducible component of the variety. It suffices to show that the 
singular locus of V is a proper closed subset.2

2Let Vi;...; Vr be the irreducible components of V. Then Vi \ (Qy ^i Vy) is a proper closed subset of Vi. 
We show that .Vi )sing is a proper closed subset of Vi . It follows that Vi \ Vsing is the union of two proper closed 
subsets of Vi , and so it is proper and closed in Vi . Hence the points of Vi that are nonsingular on V form a 
nonempty open (hence dense) subset of Vi .
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We first show that it is closed. We may suppose that V d V.a/ c An. Let Pi;...;Pr 
generate a. Then the singular locus is the zero set of the ideal generated by the .n — d> x 

.n — d> minors of the matrix 

Jac.Pi ; . . . ; Pr /.a/ D

@ @Pi 
3x1 .a/

...
@Pr .a>

\ 3X1 .a/

@X <-> A
...

@Pn .a> A

which is closed.
We now show that the singular locus is not equal to V . According to 3.36 and 3.37 some 

nonempty open affine subset of V is isomorphic to a nonempty open affine subset of an 
irreducible hypersurface in Ad Ci , and so we may suppose that V itself is an irreducible 
hypersurface in Ad Ci, say, equal to the zero set of the nonconstant irreducible polynomial 
F.Xi; . . . ; Xd Ci/. By 2.64, dim V D d. The singular locus is the set of common zeros of 
the polynomials

@ @F @F
F;@xi ;:::;@xdCi;

and so it will be proper unless the polynomials @F=@Xi are identically zero on V. As 
in the proof of 4.7, if@F=@Xi is identically zero on V.F/, then it is the zero polyno­
mial, and so F is a polynomial in X1 ,...,Xi-_ 1 ,Xi-+1,...Xd+ 1 (characteristic zero) or in 
Xi ; . . . ; Xip ; . . . ; XdCi (characteristic p). Therefore, if the singular locus equals V, then 
F is constant (characteristic 0) or a pth power (characteristic p), which contradicts the 
hypothesis. □

Corollary 4.38. If V is irreducible, then

dim V D min dim TP .V /.
P2V

PROOF. By definition dim Tp .V> > dim V, with equality if and only if P is nonsingular.
As there exists a nonsingular P, dim V is the minimum value of dim Tp .V>. □

This formula can be useful in computing the dimension of a variety.

Corollary 4.39. An irreducible algebraic variety is nonsingular if and only if the tangent 
spaces Tp .V/, P 2 V, have constant dimension.

Proof. The constant dimension is the dimension of V, and so all points are nonsingular.n

Corollary 4.40. Every variety on which a group acts transitively by regular maps is 
nonsingular.

Proof. The group must act by isomorphisms, and so the tangent spaces have constant 
dimension. □

In particular, every group variety (see p. 109) is nonsingular.
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Examples

4.41. For the surface Z  D XY , the only singular point is .0; 0; 0/. The tangent cone at 
.0; 0; 0/ has equation X Y D 0, and so it is the union of two planes intersecting in the z-axis.

3

3In fact, it belongs to the worst class of singularities (sx2848895, KReiser).

4.42. For the surface V W Z  D X2Y , the singular locus is the line X D 0 D Z (and the 
singularity at .0; 0/ is very bad: for example, it lies in the singular set of the singular set  
The intersection of the surface with the surface Y D c is the cuspidal curve X2 D Z =c:

3

.3
3

4.43. Let V be the union of the coordinate axes in A , and let W be the zero set of 
XY.X — Y/ in A2. Each of V and W is a union of three lines meeting at the origin. Are they 
isomorphic as algebraic varieties? Obviously, the origin o is the only singular point on V or 
W . An isomorphism V ! W would have to send the singular point o to the singular point o 
and map To.V / isomorphically onto To.W /. But V D V.X Y; YZ; XZ/, and so To.V / has 
dimension 3, whereas ToW has dimension 2. Therefore, V and W are not isomorphic.

3

i. Nonsingularity and regularity

Theorem 4. 44. Let P be a point on an irreducible variety V . Every generating set for the 
maximal ideal nP of OP has at least d elements, and there exists a generating set with d 
elements if and only if P is nonsingular.

PROOF. If f1; : : : ; fr generate nP, then the proof of 4.36 shows that P is an irreducible 
component of V.f1; : : : ; fr/ in some open neighbourhood U of P. Therefore 3.45 shows 
that 0 > d — r, and so r > d. The rest of the statement has already been noted. □

Corollary 4.45. A point P on an irreducible variety is nonsingular if and only if OP is 
regular.

Proof. This is a restatement of the second part of the theorem. □

According to CA 22.3, a regular local ring is an integral domain. If P lies on two 
irreducible components of a V, then OP is not an integral domain (3.14), and so OP is not 
regular. Therefore, the corollary holds also for reducible varieties.
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j. Examples of tangent spaces

The description of the tangent space in terms of dual numbers is particularly convenient 
when our variety is given to us in terms of its points functor. For example, let Mn be the set 
of n x n matrices, and let I be the identity matrix. Write e for I when it is to be regarded as 
the identity element of GLn .

4.46. A matrix I C "A has inverse I — "A in Mn.k["]/, and so lies in GLn.k["]/. In fact,
Te .GLn/ D fI C "A j A 2 Mn g

' Mn .k/:
4.47. On expanding det.I C "A/ as a sum of signed products and using that "2 D 0, we 

find that
det.I C "A/ D I C "trace.A/:

Hence
Te .SLn/ D fI C "A j trace.A/ D 0g

' fA 2 Mn.k/ j trace.A/ D0g:
4.48. Assume that the characteristic ^ 2, and let On be the orthogonal group:

On DfA 2 GLn j Atr • A d I g:
(Atr denotes the transpose of A). This is the group of matrices preserving the quadratic form 
X2 C----- C Xn2. The determinant defines a surjective regular homomorphism detw On ! f±1g,
whose kernel is defined to be the special orthogonal group SOn. For I C "A 2 Mn .k ["]/,

.I C "A/tr • .I C "A/ d I C "Atr C"A;
and so

Te.On/ d Te.SOn/ d fI C "A 2 Mn.k["]/ j A is skew-symmetricg
' fA 2 Mn .k/ j A is skew-symmetricg:

ASIDE 4.49. On the tangent space Te.GLn/ ' Mn of GLn, there is a bracket operation

[M, N] Df MN - NM

which makes Te.GLn / into a Lie algebra. For any closed algebraic subgroup G of GLn, Te.G/ is 
stable under the bracket operation on Te .GLn / and is a sub-Lie-algebra of Mn , which we denote 
Lie.G/. The Lie algebra structure on Lie.G/ is independent of the embedding of G into GLn (in fact, 
it has an intrinsic definition in terms of left invariant derivations), and G 7! Lie.G/ is a functor from 
the category of linear group varieties to that of Lie algebras.

This functor is not fully faithful, for example, every etale homomorphism G ! G0 defines an 
isomorphism Lie.G/ ! Lie.G0/, but it is nevertheless very useful.

Assume that k has characteristic zero. A connected algebraic group G is said to be semisimple 
if it has no closed connected solvable normal subgroup (except feg). Such a group G may have a 
finite nontrivial centre Z.G/, and we call two semisimple groups G and G0 locally isomorphic if 
G=Z.G/ « G0=Z.G0/. For example, SLn is semisimple, with centre //„, the set of diagonal matrices 
diag.f, ...,£/, fn d 1, and SLn =//n d PSLn. A Lie algebra is semisimple if it has no commutative 
ideal (except f0g). One can prove that

G is semisimple ” Lie.G/ is semisimple;

and the map G 7! Lie.G/ defines a one-to-one correspondence between the set of local isomorphism 
classes of semisimple algebraic groups and the set of isomorphism classes of Lie algebras. The 
classification of semisimple algebraic groups can be deduced from that of semisimple Lie algebras 
and a study of the finite coverings of semisimple algebraic groups — this is quite similar to the 
relation between Lie groups and Lie algebras.
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Exercises

4-1. Find the singular points, and the tangent cones at the singular points, for each of
(a) Y3 - Y  C X3 - X  C 3Y2X C 3X2Y C 2XYI2 2

(b) X4 C Y4 — X  Y  (assume that the characteristic is not 2).2 2

4-2. Let V C An be an irreducible affine variety, and let P be a nonsingular point on V. Let 
H be a hyperplane in An (i.e., the subvariety defined by a linear equation aiXi D d with 
not all ai zero) passing through P but not containing TP.V/. Show that P is a nonsingular 
point on each irreducible component of V \ H on which it lies. (Each irreducible component 
has codimension 1 in V — you may assume this.) Give an example with H D Tp .V/ and 
P singular on V \ H. Must P be singular on V \ H if H D Tp .V/?

4-3. Given a smooth point on a variety and a tangent vector at the point, show that there 
is a smooth curve passing through the point with the given vector as its tangent vector (see 
mo111467).

4-4. Let P and Q be points on varieties V and W . Show that

T.P;Q/ .V x W/ d Tp .V/ © Tq .W/:

4-5. For each n, show that there is a curve C and a point P on C such that the tangent 
space to C at P has dimension n (hence C can’t be embedded in An-1).

4-6. Let I be the n x n identity matrix, and let J be the matrix *'| 0 . The symplectic 

group Spn is the group of 2n x 2n matrices A with determinant 1 such that Atr • J • A d J. 
(It is the group of matrices fixing a nondegenerate skew-symmetric form.) Find the tangent 
space to Spn at its identity element, and also the dimension of Spn.

4-7. Find a regular map aw V ! W which induces an isomorphism on the geometric tangent 
cones Cp .V/ ! Ca.p/.W/ but is not etale at P.

4-8. Show that the cone X2 C Y2 D Z2 is a normal variety, even though the origin is 
singular (characteristic ^ 2). See p. 174.

4-9. Let V d V.a/ c An. Suppose that a ^ I.V/, and for a 2 V, let Taz be the subspace 
of Ta.An/ defined by the equations .df /a d 0, f 2 a. Clearly, Ta D Ta.V/, but need they 
always be different?

4-10. Let W be a finite-dimensional k-vector space, and let RW D k©W endowed with the 
k-algebra structure for which W2 D 0. Let V be an affine algebraic variety over k. Show that 
the elements of V.Rw/ def Homk-algebra.k[V], Rw/ are in natural one-to-one correspondence 
with the pairs (P, t/ with P 2 V and t 2 W © Tp .V/ (cf. Mumford, Lectures on curves ..., 
1966, p25).
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Algebraic Varieties

An algebraic variety is a ringed space that is locally isomorphic to an affine algebraic variety, 
just as a topological manifold is a ringed space that is locally isomorphic to an open subset 
of Rn . We require both to satisfy a separation axiom.

a. Algebraic prevarieties

As motivation, recall the following definitions.

DEFINITION 5.1. (a) A topological manifold of dimension n is a ringed space .V; OV/ 
such that V is Hausdorff and every point of V has an open neighbourhood U for which 
.U; OV jU / is isomorphic to the ringed space of continuous functions on an open subset of 
Rn (cf. 3.2).

(b) A differentiable manifold of dimension n is a ringed space such that V is Hausdorff 
and every point of V has an open neighbourhood U for which .U; OV jU/ is isomorphic to 
the ringed space of smooth functions on an open subset of Rn (cf. . 3.3)

(c) A complex manifold of dimension n is a ringed space such that V is Hausdorff and 
every point of V has an open neighbourhood U for which .U; OV jU / is isomorphic to the 
ringed space of holomorphic functions on an open subset of Cn (cf. . 3.4)

These definitions are easily seen to be equivalent to the more classical definitions in 
terms of charts and atlases.1 Often one imposes additional conditions on V , for example, 
that it be connected or that it have a countable base of open subsets.

1Provided the latter are stated correctly, which is frequently not the case.

DEFINITION 5.2. An algebraic prevariety over k is a k-ringed space .V; OV/ such that V 
is quasicompact and every point of V has an open neighbourhood U for which .U; OV jU / 
is isomorphic to the ringed space of regular functions on an algebraic set over k .

Thus, a ringed space .V; OV/ is an algebraic prevariety over k if there exists a finite open 
covering V D S Vi such that .Vi ; OV jVi/ is an affine algebraic variety over k for all i. An 
algebraic variety will be defined to be an algebraic prevariety satisfying a certain separation 
condition.

An open subset U ofan algebraic prevariety V such that .U, OV jU/ is an affine algebraic 
variety is called an open affine (subvariety) in V . Because V is a finite union of open 
affines, and in each open affine the open affines (in fact the basic open subsets) form a base 
for the topology, it follows that the open affines form a base for the topology on V .

99
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Let .V; OV/ be an algebraic prevariety, and let U be an open subset of V . The functions 
f w U ! k lying in r(U, Ov/ are called regular. Note that if .Ui/ is an open covering of 
V by affine varieties, then fW U ! k is regular if and only if f jUi \ U is regular for all 
i (by 3.1(c)). Thus understanding the regular functions on open subsets of V amounts to 
understanding the regular functions on the open affine subvarieties and how these subvarieties 
fit together to form V .

EXAMPLE 5.3. (Projective space). Let Pn denote knC1 X foriging modulo the equivalence 
relation

.a0;:::;an/ ~ 0 ;:::^ ^ ^” 0 ;:::  ̂^ D 0 ;:::;^ Some C 2 ^

Thus the equivalence classes are the lines through the origin in knC1 (with the origin omitted). 
Write .a0W : : : W an/ for the equivalence class containing .a0; : : : ; an/. For each i, let

Ui D f .a0 W ::: W a i' W ::: W an) 2 Pn j a i' ^ 0g:

Then Pn D S Ui , and the map

.a0W ::: W an) ! aO ; : : : ; 0^ ;: : : ; a!^ W Ui  ! ^

(the term ai =ai is omitted) is a bijection. In Chapter 6 we shall show that there is a unique 
structure of a (separated) algebraic variety on Pn for which each Ui is an open affine 
subvariety of Pn and each map ui is an isomorphism of algebraic varieties.

b. Regular maps

In each of the examples (5.1a,b,c), a morphism of manifolds (continuous map, smooth map, 
holomorphic map respectively) is just a morphism of ringed spaces. This motivates the 
following definition.

Let .V; OV/ and .W; OW/ be algebraic prevarieties. A map 'W V ! W is said to be 
regular if it is a morphism of k-ringed spaces. In other words, a continuous map ' W V ! W 
is regular if f ! f i' sends a regular function on an open subset U of W to a regular 
function on '~1.U/. A composite of regular maps is again regular (this is a general fact 
about morphisms of ringed spaces).

Note that we have three categories:

(affine varieties) c (algebraic prevarieties) c (ringed spaces).

Each subcategory is full, i.e., the morphisms Mor.V; W / are the same in the three categories.

Proposition 5.4. Let .V; OV/ and .W; OW/ be prevarieties, and let 'W V ! W be a 
continuous map (of topological spaces). Let W D Wj be a covering of W by open affines, 
and let ‘~1 .Wj) == S Vji be a covering of ‘~1 .Wj) by open affines. Then ‘ is regular if 
and only if its restrictions

'jVjiWVji !Wj

are regular for all i; j .

Proof. We assume that ' satisfies this condition, and prove that it is regular. Let f be a 
regular function on an open subset U of W. Then fjU \ Wj is regular for each Wj (sheaf 
condition 3.1(b)), and so f i'j‘-1.U) \ Vji is regular for each j,i (this is our assumption). 
It follows that f i' is regular on ‘-1 .U) (sheaf condition 3.1(c)). Thus ' is regular. The 
converse is even easier. □
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ASIDE 5.5. A differentiable manifold of dimension n is locally isomorphic to an open subset of 
Rn . In particular, all manifolds of the same dimension are locally isomorphic. This is not true for 
algebraic varieties, for two reasons:

(a) We are not assuming our varieties are nonsingular (see Chapter 4).
(b) The inverse function theorem fails in our context: a regular map that induces 

an isomorphism on the tangent space at a point P need not induce an isomorphism in a neighbourhood 
of P . However, see below. 5.55 

c. Algebraic varieties

In the study of topological manifolds, the Hausdorff condition eliminates such bizarre 
possibilities as the line with the origin doubled in which a sequence tending to the origin has 
two limits (see 5.10 below).

Itis not immediately obvious how to impose a separation axiom on our algebraic varieties, 
because even affine algebraic varieties are not Hausdorff. The key is to restate the Hausdorff 
condition. Intuitively, the significance of this condition is that it prevents a sequence in 
the space having more than one limit. Thus a continuous map into the space should be 
determined by its values on a dense subset, i.e., if '1 and '2 are continuous maps Z ! V 
that agree on a dense subset U of Z, then they should agree on the whole of Z.2 Equivalently, 
the set where two continuous maps ‘1 ;‘2w Z =# U agree should be closed. Surprisingly, 
affine varieties have this property, provided '1 and '2 are required to be regular maps.

2Let z 2 Z, and let z D lim un with un 2 U . Then ‘1.z/ D lim‘1 .un/ because ‘1 is continuous, and 
lim‘1 .un/ D lim‘2.un/ D ‘2.z/.

3These are sometimes called “algebraic varieties in the sense of FAC” (Serre, Jean-Pierre. Faisceaux 
algebriques coherents. Ann. of Math. (2)61,(1955). 197-278; §34). In Grothendieck’s language, they are 
separated and reduced schemes of finite type over k (assumed to be algebraically closed), except that we omit 
the nonclosed points; cf. EGA iV, 10.10. Some authors use a more restrictive definition — they may require a 
variety to be connected, irreducible, or quasi-projective — usually because their foundations do not allow for a 
more flexible definition.

Lemma 5.6. Let ‘1 ;‘2w Z z# V regular maps of affine algebraic varieties. The subset of 
Z on which '1 and '2 agree is closed.

PROOF. There are regular functions xi on V such that P 7! .x1 .P/; : : : ; xn.P // identifies 
V with a closed subset of An (take the xi to be any set of generators for k[V] as a k-algebra). 
Now xi i ‘1 and xi i ‘2 are regular functions on Z, and the set where ‘1 and ‘2 agree is 
TnD1 V.xi i ‘1 — xi i ‘2/, which is closed. □

DEFINITION 5.7. An algebraic prevariety V is said to be separated if it satisfies the follow­
ing additional condition:

Separation axiom: for every pair of regular maps ‘1;‘2w Z =# V with Z an 
affine algebraic variety, the set fz 2 Z j ‘1 .z/ D ‘2 .z/g is closed in Z.

An algebraic variety over k is a separated algebraic prevariety over k .3

Proposition 5.8. Let ‘1 and ‘2 be regular maps Z =# V from an algebraic prevariety Z 
to a separated prevariety V. The subset of Z on which ‘1 and ‘2 agree is closed.

PRooF. Let W be the set on which ‘1 and ‘2 agree. For any open affine U of Z, W \ U is 
the subset of U on which ‘1 jU and ‘2 jU agree, and so W \ U is closed. This implies that 
W is closed because Z is a finite union of open affines. □ 
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example 5.9. The open subspace U D A2 X f.0; 0/g of A2 becomes an algebraic variety 
when endowed with the sheaf OA2 jU (cf. 3.33).

4This is the algebraic analogue of the standard example of a non Hausdorff topological space. Let R* 
denote the real line with the origin removed but with two points a ^ b added. The topology is generated by 
the open intervals in R together with the sets of the form .u; 0/ [ fag [ .0; v/ and .u; 0/ [ fbg [ .0; v/, where 
u < 0 < v. Then X is not Hausdorff because a and b cannot be separated by disjoint open sets. Every sequence 
that converges to a also converges to b; for example, 1=n converges to both a and b.

A subvariety of an affine variety is said to be quasi-affine. For example, A2 X f.0; 0/g is 
quasi-affine but not affine.

example 5.10. (The affine line with the origin doubled.)4 Let V1 and V2 be copies of A1. 
Let V* d V1 t V2 (disjoint union), and give it the obvious topology. Define an equivalence 
relation on V * by

x (in V1/ ~ y (in V2/ ■<=” x d y and x ^ 0:

Let V be the quotient space V d V *=— with the quotient topology (a set is open if and only 
if its inverse image in V* is open):

Then V1 and V2 are open subspaces of V, V d V1 [ V2, and V1 \ V2 d A1 — f0g. Define a 
function on an open subset to be regular if its restriction to each Vi is regular. This makes V 
into a prevariety, but not a variety: it fails the separation axiom because the two maps

A1 D V1 ! V*; A1 D V2 ! V*

agree exactly on A1 — f 0g, which is not closed in A1.

Let Vark denote the category of algebraic varieties over k and regular maps. The 
functor A Spm.A/ is a fully faithful contravariant functor Affk ! Vark, and defines an 
equivalence of the first category with the subcategory of the second whose objects are the 
affine algebraic varieties.

5.11. When V is irreducible, all the rings attached to it have a common field of fractions 
k.V/ (see p. below). Moreover, 113 

Op Dfg=h 2 k.V/ j h.P/ / 0g
Ov .U/ d \fOv (U0/ j U0 C U, U0 open affineg

D \fOP j P 2 Ug:

d. Maps from varieties to affine varieties

Let .V; Ov/ be an algebraic variety, and let aw A ! D.V; O v/ be a homomorphism from an 
affine k-algebra A to the k-algebra of regular functions on V. For any P 2 V, f ! a.f/.P/ 
is a k-algebra homomorphism A ! k , and so its kernel '.P / is a maximal ideal in A. In 
this way, we get a map

' W V ! spm.A/
which is easily seen to be regular. Conversely, from a regular map ' W V ! Spm.A/, we get 
a k-algebra homomorphism f ! f i‘w A ! D.V,Ov/. Since these maps are inverse, we 
have proved the following result.
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Proposition 5. 12. For an algebraic variety V and an affine k-algebra A, there is a canon­
ical one-to-one correspondence

Mor.V; Spm.A// ' Homk-algebra.A; F.V Ov//.

Let V be an algebraic variety such that F.V, Ov/ is an affine k-algebra. The proposition 
shows that the regular map 'w V ! Spm.F.V; Ov// defined by idr(V;OV/ has the following 
universal property: every regular map from V to an affine algebraic variety U factors 
uniquely through ' :

V Spm.r.V; Ov//

U:

Caution 5.13. For a nonaffine algebraic variety V, F.V, Ov/ need not be finitely gener­
ated as a k-algebra.

e. Subvarieties

Let .V;Ov / be an algebraic variety over k.

Open subvarieties

Let U be an open subset of V. Then U is a union of open affines, and it follows that 
.U;Ov jU / is a variety, called an open subvariety of V. A regular map 'W W ! V is an open 
immersion if '.W / is open in V and ' defines an isomorphism W ! '.W / of varieties.

Closed subvarieties

Let Z be a closed subset of V. A function f on an open subset U of Z is regular if, for every 
P 2 U, there exists a germ .U0; f 0/ of a regular function at P on V such that f 0jU0 \ U D 
f jU0 \ U. This defines a ringed structure OZ on Z. To show that .Z; OZ/ is a variety it 
suffices to check that, for every open affine U c V, the ringed space .U \ Z; Oz j U \ Z/ 
is an affine algebraic variety, but this is only an exercise (Exercise 3-2 to be precise). Such 
a pair .Z; OZ/ is called a closed subvariety of V. A regular map 'W W ! V is a closed 
immersion if '.W / is closed in V and ' defines an isomorphism W ! '.W / of varieties.

Subvarieties

A subset W of a topological space V is said to be locally closed if every point P in W has 
an open neighbourhood U in V such that W \ U is closed in U. Equivalent conditions: 
W is the intersection of an open and a closed subset of V ; W is open in its closure. A 
locally closed subset W of a variety V acquires a natural structure as a variety: write it as the 
intersection W D U \ Z of an open and a closed subset; Z is a variety, and W (being open 
in Z/ therefore acquires the structure of a variety. This structure on W has the following 
characterization: the inclusion map W ,! V is regular, and a map ' W V 0 ! W with V 0 
a variety is regular if and only if it is regular when regarded as a map into V . With this 
structure, W is called a subvariety of V. A regular map 'W W ! V is an immersion if it 
induces an isomorphism of W onto a subvariety of V. Every immersion is the composite of 
an open immersion with a closed immersion (in both orders).
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Application

Proposition 5. 14. A prevariety V is separated if and only if two regular maps from a 
prevariety to V agree on the whole prevariety whenever they agree on a dense subset of it.

Proof. If V is separated, then the set on which a pair of regular maps '1 ;'2w Z =# V agree 
is closed, and so must be the whole of the Z.

Conversely, consider a pair of maps '1 ;‘2w Z =# V, and let S be the subset of Z on 
which they agree. We assume that V has the property in the statement of the proposition, and 
show that S is closed. Let S be the closure of S in Z. According to the above discussion, 
S has the structure of a closed prevariety of Z and the maps '1 jS and '2 jS are regular. 
Because they agree on a dense subset of SN they agree on the whole of SN , and so S D SN is 
closed. □

f. Prevarieties obtained by patching

PRoPoSITIoN 5. 15. Suppose that the set V is a finite union V D Si2I Vi of subsets Vi and 
that each Vi is equipped with ringed space structure. Assume that the following “patching” 
condition holds:

for all i; j, Vi \ Vj is open in both Vi and Vj and OVi jVi \ Vj D OVj jVi \ Vj . 
Then there is a unique structure of a ringed space on V for which

(a) each inclusion Vi ,! V is a homeomorphism of Vi onto an open set, and
(b) for each i 2 I, OV jVi D OVi .

If every Vi is an algebraic prevariety, then so also is V, and to give a regular map from 
V to a prevariety W amounts to giving a family of regular maps 'i W Vi ! W such that 
'i jVi \ Vj D 'j jVi \ Vj:

Proof. One checks easily that the subsets U c V such that U \ Vi is open for all i are the 
open subsets for a topology on V satisfying (a), and that this is the only topology to satisfy 
(a). Define OV .U/ to be the set of functions f W U ! k such that f jU \ Vi 2 OVi .U \ Vi/ 
for all i . Again, one checks easily that OV is a sheaf of k-algebras satisfying (b), and that it 
is the only such sheaf.

For the final statement, if each .Vi; OVi/ is a finite union of open affines, so also 
is .V; OV /. Moreover, to give a map ' W V ! W amounts to giving a family of maps 
'i W Vi ! W such that 'i jVi \ Vj D 'j jVi \ Vj (obviously), and ' is regular if and only 'jVi 
is regular for each i. □

Clearly, the Vi may be separated without V being separated (see, for example, 5.10). 
In 5.29 below, we give a condition on an open affine covering of a prevariety sufficient to 
ensure that the prevariety is separated.

g. Products of varieties

Let V and W be objects in a category C. A triple

.V x W; pw V x W ! V; qw V x W ! W/



g. Products of varieties 105

is said to be the product of V and W if it has the following universal property: for every pair 
of morphisms Z ! V, Z ! W in C, there exists a unique morphism Z ! V x W making 
the diagram

Z

V < " V x W W
commute. In other words, the triple is a product if the map

! .p i';q i'/wHom.Z; V x W/ ! Hom.Z; V/ x Hom.Z; W/

is a bijection. The product, if it exists, is uniquely determined up to a unique isomorphism 
by its universal property.

For example, the product of two sets (in the category of sets) is the usual cartesian 
product of the sets, and the product of two topological spaces (in the category of topological 
spaces) is the product of the underlying sets endowed with the product topology.

We shall show that products exist in the category of algebraic varieties. Suppose, for the 
moment, that V x W exists. For any prevariety Z, Mor.A0;Z/ is the underlying set of Z; 
more precisely, for any z 2 Z, the map A0 ! Z with image z is regular, and these are all 
the regular maps (cf. 3.28). Thus, from the definition of products we have

(underlying set of V x W/ ' Mor.A0, V x W/
' Mor.A0; V/ x Mor.A0; W/
' (underlying set of V/ x (underlying set of W).

Hence, our problem can be restated as follows: given two prevarieties V and W, define on 
the set V x W the structure of a prevariety such that

(a) the projection maps P;qw V x W z# V;W are regular, and
(b) a map 'W T ! V x W of sets (with T an algebraic prevariety) is regular if its compo­

nents p i '; q i ' are regular.
There can be at most one such structure on the set V x W.

Products of affine varieties

Example 5.16. Let a and b be ideals in k[Xi;...,Xm] and k[Xmci;...,Xmcn] respec­
tively, and let .a; b/ be the ideal in k[X1,..., Xmcn] generated by the elements of a and b. 
Then there is an isomorphism

k[Xi,...,Xm] k[Xm+i,...,Xm+n]
® g ! fgW -----------------  ®kab

k[Xi,...,XmCn]

.a; b/

Again this comes down to checking that the natural map

Homk-alg.k[Xi;. ..,Xmcn]/(a, b/;R/

Homk-alg .k[Xi ,...,Xm]/a;R/ x Hom^ .k[Xmc i ,...,Xmcn]/ b ;R/

is a bijection. But the three sets are respectively
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V .a; b/ D zero set of .a; b/ in RmCn;
V .a/ D zero set of a in Rm ;
V .b/ D zero set of b in Rn ; 

and so this is obvious.

The tensor product of two k -algebras A and B has the universal property to be a product 
in the category of k-algebras, but with the arrows reversed. Because of the category anti­
equivalence (3.25), this shows that Spm.A 0k B/ will be the product of Spm A and Spm B 
in the category of affine algebraic varieties once we have shown that A 0 k B is an affine 
k-algebra.

Proposition 5.17. Let A and B be k-algebras with A finitely generated.
(a) If A and B are reduced, then so also is A 0 k B.
(b) If A and B are integral domains, then so also is A 0 k B.

Proof. Let a 2 A 0k B. Then a = pnD1 at 0 bi, some ai 2 A, bi 2 B. If one of the bj 

is a linear combination of the remaining bi, say, bn d Pn=1 ci bi, ci 2 k, then, using the 
bilinearity of 0, we find that

n— 1 n— 1 n — 1

a D ai 0bi C cian0bi D .ai Ccian/0bi:
iD1 iD1 iD1

Thus we can suppose that in the original expression of a, the bi are linearly independent 
over k .

Now assume A and B to be reduced, and suppose that a is nilpotent. Let m be a maximal 
ideal of A. From a 7! aN W A ! A=m D k we obtain homomorphisms

'a 0 b 7! aN 0 b 7! aNbW A 0k B ! k 0k B ! B:

The image aNibi of a under this homomorphism is a nilpotent element of B, and hence 
is zero (because B is reduced). As the bi are linearly independent over k , this means that 
the aNi are all zero. Thus, the ai lie in all maximal ideals m of A, and so are zero (see 2.18). 
Hence a D 0, and we have shown that A 0k B is reduced.

Now assume that A and B are integral domains, and let a, a0 2 A 0k B be such that 
aa0 D 0. As before, we can write a D Pai 0bi and a0 D Pai0 0bi0 with the sets fb1 ; b2; : : :g 
and fb10 ; b20 ; : : :g each linearly independent over k. For each maximal ideal m of A, we know 
.PaNibi/.PaN0b0/ D 0 in B, and so either .PaNibi/ D 0 or .PaN0b0/ D 0. Thus either all ii ii
the ai 2 m or all the a0 2 m. This shows thati

spm.A/ D V.a1; : : : ;am/ [ V.a01; : : : ;an0 /:

As spm.A/ is irreducible (see 2.27), it follows that spm.A/ equals either V.a1; : : : ;am/ or 
V.a0;:: .,a'n/. In the first case a = 0, and in the second a0 d 0. □

Remark 5.18. The proof of 5.17 fails when k is not algebraically closed, because then 
A=m may be a finite extension of k over which the bi become linearly dependent (see 
sx599391). The following examples show that the statement of 5.17 also fails in this case.

(a) Suppose that k is nonperfect of characteristic p, so that there exists an element a in 
an algebraic closure of k such that a 0 k but ap 2 k. Let k0 d k[a], and let ap d a. Then 
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.a <8> 1 — 1 <8> a/ ^ 0 in k0 <8>k k0 (in fact, the elements a1 <8> aj, 0 < i,j < p — 1, form a basis 
for k0 ®k k0 as a k-vector space), but

.a <8> 1 — 1 <8> a/p d .a <8> 1 — 1 <8> a/
d .1 <8> a — 1 <8> a/ .because a 2 k/
D 0:

Thus k0 <8>k k0 is not reduced, even though k0 is a field.
(b) Let K be a finite separable extension of k and let P be a second field containing k.

By the primitive element theorem (FT 5.1),

K d k[a] d k[X]=.f.X//;

for some a 2 K and its minimal polynomial f .X/. Assume that P is large enough to split 
f, say, f .X/ d Qi .X — ai / with ai 2 P. Because K= k is separable, the ai are distinct, 
and so

^ ®k K ' ^[X]/.f.X// (1.58(b))
' Y^[X]/.X-ai/; (1.1)

which is not an integral domain. For example,

C 0RC ' C[X]/.X -i/xC[X]/.X Ci/ ' C X C:

The proposition allows us to make the following definition.

DEFINITION 5.19. The product of the affine varieties V and W is

.V X W;OvXW/ D Spm.k[V] ®kk[W]/

with the projection maps p,qw V x W ! V;W defined by the homomorphisms

f ! f <8> 1w k[V] ! k[V] <8>k k[W]
g ! 1 <8>gwk[W] ! k[V] <8>k k[W]:

Proposition 5.20. Let V and W be affine varieties.
(a) The variety .V x W, Ovx w/ is the product of .V; Ov/ and .W, Ow/ in the category 

of affine algebraic varieties; in particular, the set V x W is the product of the sets V 
and W and p and q are the projection maps.

(b) If V and W are irreducible, then so also is V x W.

Proof. (a) As noted at the start of the subsection, the first statement follows from 5.17(a), 
and the second statement then follows by the argument on p. 105.

(b) This follows from 5.17(b) and 2.27. □

Corollary 5.21. Let V and W be affine varieties. For every prevariety T, a map 'w T ! 
V x W is regular if p i' and q i' are regular.

Proof. If p i ‘ and q i' are regular, then 5.20 implies that' is regular when restricted to 
any open affine of T, which implies that it is regular on T. □
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The corollary shows that V x W is the product of V and W in the category of prevarieties 
(hence also in the categories of varieties).

EXAMPLE 5.22. (a) It follows from 1.57 that AmCn endowed with the projection maps

Am p AmCn !q An ; p.a1; : : : ; amCn/ D .a1; : : : ;am/
q.a1; : : : ; amCn/ D .amC1 ; : : : ; amCn/;

is the product of Am and An .
(b) It follows from 5.16 that

pq
V.a/ V.a; b/ ! V.b/

is the product of V.a/ and V.b/.

Caution. When V and W have dimension > 0, the topology on V x W is strictly finer 
than product topology. For example, for the product topology on A2 d A1 x A1, every 
proper closed subset is contained in a finite union of vertical and horizontal lines, whereas 
A2 has many more closed subsets (see 2.68).

If V is affine, then the diagonal in V x V is closed for the Zariski topology. Therefore, if 
the Zariski topology on V x V is equal to the product topology, then V is Hausdorff. We 
deduce that the Zariski topology on V x V is the product topology if and only if V is finite.

Products in general

We now define the product of two algebraic prevarieties V and W.
Write V as a union of open affines V D S Vi , and note that V can be regarded as the 

variety obtained by patching the .Vi ; OVi /; in particular, this covering satisfies the patching 
condition (5.15). Similarly, write W as a union of open affines W D S Wj . Then

V x W d [ Vi x Wj

and the .Vi' x Wj; Ovi xwj / satisfy the patching condition. Therefore, we can define (V x 
W; OvxW/ to be the variety obtained by patching the (Vi- x Wj, Ovi xwj/.

Proposition 5.23. With the sheaf of k-algebras O vx w just defined, V x W becomes the 
product of V and W in the category of prevarieties. In particular, the structure of prevariety 
on V x W defined by the coverings V d S Vi' and W d S Wj- are independent of the 
coverings.

Proof. Let T be a prevariety, and let ‘w T ! V x W be a map of sets such that p i ‘ and 
q i‘ are regular. Then 5.21 implies that the restriction of ‘ to ‘_ 1 (Vi x Wj-/ is regular. As 
these open sets cover T, this shows that ‘ is regular. □

Proposition 5.24. If V and W are separated, then so also is V x W.

Proof. Let ‘1,‘2 be two regular maps U ! V x W. The set where ‘1,‘2 agree is the 
intersection of the sets where p i '1 ;P i '2 and q i ‘i ,q i ‘2 agree, which is closed. □

Proposition 5.25. If V and W are connected, then so also is V x W.
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Proof. For v0 2 V , we have continuous maps

W ' v0 X W eclosed V x W:

Similarly, for w0 2 W, we have continuous maps

V ' V x w0 eclosed v x W:

The images of V and W in V x W intersect in .v0; w0/ and are connected, which shows 
that .v0; w/ and and .v, w0/ lie in the same connected component of V x W for all v 2 V 
and w 2 W . Since v0 and w0 were arbitrary, this shows that any two points lie in the same 
connected component. □

Group varieties

A group variety is an algebraic variety G together with a group structure defined by regular 
maps

mw G x G ! G; invw G ! G; ew A0 ! G.

A homomorphism of group varieties is a regular map that is also a homomorphism of groups. 
The algebraic variety,

8 ,,, o k[X11;X12;:::;Xnn]
SLn D Spm <det(X0 / -1//

SLn.k/ D fM 2 Mn.k/ j detM D 1g

becomes a group variety when endowed with its usual group structures. Matrix multiplication

.aij/ ’ .bij/ D .cij/; cij D Pil = i ail blj ;

is given by polynomials, and Cramer’s rule gives an explicit expression of the entries of A-1 

as polynomials in the entries of A. The only affine group varieties of dimension 1 over k are

Gm D Spmk[X;X-1] and Ga D Spmk[X]:

Every finite group N can be made into a group variety by setting

N D Spm.A/

with A the k-algebra of all maps f w N ! k .

h. The separation axiom revisited

By way of motivation, consider a topological space V and the diagonal A c V x V, A def 

(x,x) j x 2 V .If A is closed for the product topology, then every pair of points (x,y) 0 A 
has an open neighbourhood U x U0 such that .U x U0/ \ A D 0. In other words, if x 
and y are distinct points in V, then there are open neighbourhoods U and U0 of x and y 
respectively such that U \ U0 D 0. Thus V is Hausdorff. Conversely, if V is Hausdorff, the 
reverse argument shows that A is closed.

For a variety V, we let A D Av (the diagonal) be the subset f .V;V/ j v 2 Vg of V x V.
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Proposition 5.26. An algebraic prevariety V is separated if and only if Av is closed.5

Proof. We shall use the criterion 5.8: V is separated if and only if, for every pair of regular 
maps '1 ;'2w Z =# V, the subset of Z on which ‘1 and '2 agree is closed.

Suppose that Av is closed. The map

.'1;'2/W Z ! V X V; Z! .'1.z/;'2.z//

is regular because its components '1 and '2 are regular (see p. 105). in particular, it is 
continuous, and so .‘1, ‘2/_1 .Av/ is closed, but this is exactly the subset on which ‘1 and 
'2 agree.

Conversely, A v is the set on which the two projection maps V x V ! V agree, and so it 
is closed if V is separated. □

Corollary 5.27. For any prevariety V, the diagonal is a locally closed subset of V x V.

PROOF. Let P 2 V, and let U be an open affine neighbourhood of P. Then U x U is an 
open neighbourhood of .P;P/ in V x V, and Av \ .U x U/ d Au, which is closed in 
U x U because U is separated (5.6). □

Thus Av is always a subvariety of V x V, and it 
is closed if and only if V is separated. The graph 
r‘ of a regular map ‘ w V ! W is defined to be

f.V;‘.v// 2 V x W j v 2 Vg:

Corollary 5.28. For any morphism ‘ w V ! W of prevarieties, the graph r‘ of ‘ is 
locally closed in V x W, and it is closed if W is separated. The map v ! (v,‘(v// is an 
isomorphism of V onto r‘ (as algebraic prevarieties).

PRooF. The map
.V; w/ ! .‘.v/; w/w V X W ! W X W

is regular because its composites with the projections are ‘ and idW which are regular. 
In particular, it is continuous, and as r‘ is the inverse image of Aw under this map, this 
proves the first statement. The second statement follows from the fact that the regular map 

p
F‘ ! V x W ! V is an inverse to v ! .V;‘.v//w V ! F‘. □

THEoREM 5.29. The following three conditions on a prevariety V are equivalent:
(a) V is separated;
(b) for every pair of open affines U and U0 in V, U \ U0 is an open affine, and the map

f ® g! f ju\U0 • gju\U0wk[U] ®kk[U0] ! k[U \ U0]

is surjective;

5Recall that the topology on V x V is not the product topology. Thus the statement does not contradict the 
fact that V is not Hausdorff.
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(c) the condition in (b) holds for the sets in some open affine covering of V .

Proof. Let U and U0 be open affines in V . We shall prove that
(i) if A is closed then U \ U0 affine,
(ii) when U \ U0 is affine,

.U x U0/ \ A is closed ■<=” k[U] <8>k k[U0] ! k[U \ U0] is surjective:

Assume (a); then these statements imply (b). Assume that (b) holds for the sets in an 
open affine covering .Ui/i2i of V. Then .Ui x Uj/.i;j/2iXI is an open affine covering of 
V x V, and Av \ .Ui x Uj/ is closed in Ui x Uj for each pair .ij/, which implies (a). Thus, 
the statements (i) and (ii) imply the theorem.

Proof of (i): The graph of the inclusion U \ U0 ! V is the subset .U x U0/ \ A of 
.U \ U0/ x V: If A v is closed, then .U x U0/ \ Av is a closed subvariety of an affine variety, 
and hence is affine. Now 5.28 implies that U \ U0 is affine.

Proof of (ii): Assume that U \ U0 is affine. Then

.U x U0/ \ A v is closed in U x U0

■<=” v ! .V; v/w U \ U0 ! U x U0 is a closed immersion
■<=” k[U x U0] ! k[U \ U0] is surjective (3.34).

Since k[U x U0] == k[U] <8>k k[U0], this completes the proof of (ii). □

In more down-to-earth terms, condition (b) says that U \ U0 is affine and every regular 
function on U \ U0 is a sum of functions of the form P 7! f.P/g.P/ with f and g regular 
functions on U and U 0 .

example 5.30. (a) Let V D P1, and let U0 and U1 be the standard open subsets (see 
5.3). Then U0 \ U1 D A1 X f0g, and the maps on rings corresponding to the inclusions 
U0 \ U1 ,! Ui are

f.X/! f.X/wk[X] ! k[X;X-1] 

f.X/! f.X -1)W k[X] ! k[X;X-1]:

Thus the sets U0 and U1 satisfy the condition in (b).
(b) Let V be A1 with the origin doubled (see 5.10), and let U and U0 be the upper and 

lower copies of A1 in V. Then U \ U0 is affine, but the maps on rings corresponding to the 
inclusions U0 \ U1 ,! Ui are

X! Xwk[X] ! k[X;X-1]

X! X W k[X] ! k[X;X -1]:

Thus the sets U0 and U1 fail the condition in (b).
(c) Let V be A2 with the origin doubled, and let U and U0 be the upper and lower copies 

of A2 in V. Then U \ U0 is not affine (see 3.33).

i. Fibred products

Let ' W V ! S and W W ! S be regular maps of algebraic varieties. The set

V XS W dDf f.V;W/ 2 V X W j ‘.v/ D ^(w/g 
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is closed in V x W, because it is the set where ' i p and 1i q agree, and so it has a 
canonical structure of an algebraic variety (see p. 103). The algebraic variety V xs W is 
called the fibred product of V and W over S. Note that if S consists of a single point, then 
V xS W d V x W.

Write ‘0 for the map (v,w) ! ww V x$ W — W and i//0 for the map (v,w) ! vw V x$ 
W ! V . We then have a commutative diagram:

V xS W —‘^- W

V -----'----> S:

The system (V xs W,‘0, 0/h has the following universal property: for any regular maps 
aw T ! V, ^w T ! W such that ‘a d ^, there is a unique regular map (a,^)w T ! V xs W 
such that the following diagram

commutes. In other words,

Hom.T, V xs W) ‘ Hom.T, V) xta.T;s/ Hom.T, W).

Indeed, there is a unique such map of sets, namely, t ! (a(t),^ (t)), which is regular because 
it is as a map into V x W.

The map '0 in the above diagrams is called the base change of ' with respect to . 
For any point P 2 S, the base change of 'w V ! S with respect to P,! S is the map 
‘-1 (P) ! P induced by ‘, which is called the fibre of V over P.

Example 5.31. If f w V ! S is a regular map and U is a subvariety of S, then V xs U is 
the inverse image of U in V.

Notes

5.32. Since a tensor product of rings A <8>r B has the opposite universal property to that of 
a fibred product, one might hope that

Spm(A) XSpm.R/ Spm(B) = Spm(A <8>r B).

This is true if A <8>r B is an affine k-algebra, but in general it may have nonzero nilpotent 
elements. For example, let k have characteristic p, let R d k[X], and consider the k[X]- 
algebras

( k[X] —— k, X i—— a
( k[x] — k[X], X — Xp.
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Then
A 0r B ' k <8>k[xp] k[X] ' k[X]/.Xp — a),

1
which contains the nilpotent element x — a p .

The correct statement is

Spm.A) Xspm.R/ Spm.B) ' Spm.A ®r B/N), (25)

where N is the ideal of nilpotent elements in A <8>r B. To prove this, note that for any 
algebraic variety T ,

Mor.T, Spm.A <8>r B/N)) ' Hom.A <8>r B/N, OT .T)) (5.12)
‘ Hom.A ®r B, Ot .T))
' Hom.A, OT.T)) x Hom.B, OT.T))

Hom.R;OT.T //

' Mor.T, Spm.A)) x ^Mor.T, Spm.B)) .5.12).

For the second isomorphism we used that the ring OT .T) is reduced, and for the third 
isomorphism, we used the universal property of A <8>r B.

5.33. Fibred products may differ depending on whether we are working in the category of 
algebraic varieties or algebraic schemes. For example,

Spec.A) XSpec.R/ Spec.B) ' Spec.A <8>r B)

in the category of schemes. Consider the map x ! x2w A1 —> A1 (see 5.49). The fi­
bre '-1.a) consists of two points if a ^ 0, and one point if a d 0. Thus '-1.0) d 
Spm.k[X]/.X)). However, the scheme-theoretic fibre is Spec.k[X]/.X2)), which reflects 
the fact that 0 is “doubled” in the fibre over 0.

5.34. Fibred products exist also for prevarieties. In this case, V xs W is only locally closed 
in V x W.

j. Dimension

Recall p. 46 that, in an irreducible topological space, every nonempty open subset is dense 
and irreducible.

Let V be an irreducible algebraic variety V, and let U and U0 be nonempty open affines 
in V. Then U \ U0 is also a nonempty open affine (5.29), which is dense in U, and so the 
restriction map OV .U ) ! OV .U \ U 0) is injective. Therefore

k[U] C k[U \ U0] C k.U),

where k.U) is the field of fractions of k[U], and so k.U) is also the field of fractions of 
k[U \ U 0] and of k[U 0]. Thus, attached to V there is a field k.V), called the function field 
of V or the field of rational functions on V, which is the field of fractions of k[U] for 
any open affine U in V. The dimension of V is defined to be the transcendence degree 
of k.V) over k. Note the dim.V ) D dim.U ) for any open subset U of V. In particular, 
dim.V) d dim.U) for U an open affine in V. It follows that some of the results in §2 carry 
over — for example, if Z is a proper closed subvariety of V, then dim.Z ) < dim.V ).
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Proposition 5.35. Let V and W be irreducible varieties. Then

dim.V x W/ d dim.V/ C dim.W/.

Proof. We may suppose V and W to be affine. Write

k[V] D k[X1;:::;Xm]

^W] D k[yi;:::;yn\;

where the x and y have been chosen so that fx1 ; : : : ;xdg and fy1; : : : ; yeg are maximal alge­
braically independent sets of elements of k[V] and k[W]. Then fx1,.. .,xd g and fy1,.. .,ye g 
are transcendence bases ofk.V/ and k.W/ (see 1.63), and so dim.V / D d and dim.W / D e. 
Now6

6In general, it is not true that if M0 and N0 are R-submodules of M and N, then M0 0r N0 is an R- 
submodule of M 0r N. However, this is true if R is a field, because then M0 and N0 will be direct summands 
of M and N , and tensor products preserve direct summands.

k[V x W] defk[V] ®k k[W] D k[xi,...,xd] <8>k k[yi,...,ye],

which is a polynomial ring in the symbols x1 <8> 1,...,xd <8> 1,1 <8> y1,...,1 <8> ye (see 1.57). In 
particular, the elements x1 <8> 1,...,xd <8> 1,1 <8> y1 ,...,1 <8> ye are algebraically independent in 
k[V] <8>k k[W]. Obviously k[V x W] is generated as a k-algebra by the elements xi <8> 1, 1 <8> 

yj, 1 < i < m, 1 < j < n, and all of them are algebraic over k[x1,.. .,xd] <8>k k[y1,.. .,ye]. 

Thus the transcendence degree of k.V x W/ is d C e. □

We extend the definition of dimension to an arbitrary variety V as follows. An algebraic 
variety is a finite union of noetherian topological spaces, and so is noetherian. Consequently 
(see 2.31), V is a finite union V D Vi of its irreducible components, and we define 
dim.V / D max dim.Vi /. When all the irreducible components of V have dimension n, V is 
said to be pure of dimension n (or to be of pure dimension n).

PROPOSITION 5.36. Let V and W be closed subvarieties of An; for any (nonempty) irre­
ducible component Z of V \ W,

dim.Z/ > dim.V/ C dim.W/ — ni

that is,
codim.Z/ < codim.V/ C codim.W/.

Proof. In the course of the proof of Theorem 5.29, we saw that V \ W is isomorphic to 
A \ .V x W/, and this is defined by the n equations Xi == Yi in V x W. Thus the statement 
follows from 3.45. □

Remark 5.37. (a) The subvariety

( X2 c Y2 d Z2 

Z D0

of A3 is the curve X2 C Y2 d 0, which is the pair of lines Y d ±iX if k d C; in particular, 
the codimension is 2. Note however, that real locus is f.0, 0/g, which has codimension 3. 
Thus, Proposition 5.36 becomes false if one looks only at real points (and the pictures we 
draw can mislead).
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(b) Proposition 5.36 becomes false if An is replaced by an arbitrary affine variety. 
Consider for example the affine cone V

X1X4 - X2X3 D 0:

It contains the planes,

Z W X2 D 0 D X4I Z Df.*;0; *;0/g
Z0 W X1 D 0 D X31 Z0 Df.0; *;0; */g

and Z \ Z0 D f.0; 0; 0; 0/g. Because V is a hypersurface in A4, it has dimension 3, and each 
of Z and Z0 has dimension 2. Thus

codim Z \ Z0 D 3 —1 C 1 D codim Z C codim Z0:

The proof of 5.36 fails because the diagonal in V x V cannot be defined by 3 equations 
(it takes the same 4 that define the diagonal in A4) — the diagonal is not a set-theoretic 
complete intersection.

k. Dominant maps

As in the affine case, a regular map ' W V ! W is said to be dominant if the image of ' is 
dense in W . Suppose V and W are irreducible. If V0 and W0 are open affine subsets of V 
and W such that '.V0/ C W0, then 3.34 implies that the map f ! f 1'w k[W0] ! k[V0] is 
injective. Therefore it extends to a map on the fields of fractions, k.W / ! k.V /, and this 
map is independent of the choice of V0 and W0.

l. Rational maps; birational equivalence

Loosely speaking, a rational map from a variety V to a variety W is a regular map from a 
dense open subset of V to W, and a birational map is a rational map admitting a rational 
inverse.

Let V and W be varieties over k , and consider pairs .U; 'U /, where U is a dense open 
subset of V and 'U is a regular map U ! W. Two such pairs .U;'U/ and .U0;'U0/ are 
said to be equivalent if 'U and 'U0 agree on U \ U0. An equivalence class of pairs is called 
a rational map ‘w V —— W. A rational map ‘ is said to be defined at a point v of V if 
v 2 U for some .U; 'U/ 2 '. The set U1 of v at which ' is defined is open, and there is 
a regular map '1W U1 ! W such that .U1;'1/ 2 ' — clearly, U1 D S.U;'U /2' U and we 
can define '1 to be the regular map such that '1jU D 'U for all .U; 'U / 2 ' . Hence, in the 
equivalence class, there is always a pair .U;'U/ with U largest (and U is called “the open 
subvariety on which ' is defined”).

Proposition 5.38. Let V and V0 be irreducible varieties over k. A regular map 'W U0 ! 
U from an open subset U0 of V0 onto an open subset U of V defines a k-algebra homomor­
phism k.V/ ! k.V 0/, and every such homomorphism arises in this way.

Proof. The first part of the statement is obvious, so let k.V/ ,! k.V 0/ be a k-algebra 
homomorphism. We identify k.V/ with a subfield of k.V 0/. Let U (resp. U0) be an open 
affine subset of V (resp. U0). Let k[U] d k[x1,...,xm], Each xi 2 k.V0/, which is the 
field of fractions of k[U0], and so there exists a nonzero d 2 k[U0] such that dxi 2 k[U0]
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for all i. After inverting d, i.e., replacing U0 with basic open subset, we may suppose that 
k[U] C k[U0]. Thus, the inclusion k.V) ! k.V0/ is induced by a dominant regular map 
'W U0 ! U. According to Theorem 9.1 below, the image of ' contains an open subset U0 of 
U. Now '“1 .Uo) —* Uo is the required map. □

A rational (or regular) map ' w V —— W is birational if there exists a rational map 
‘0w W —— V such that '0i' d idv and ' i'0 d idw as rational maps. Two varieties V and 
V0 are birationally equivalent if there exists a birational map from one to the other. In this 
case, there exist dense open subsets U and U0 of V and V0 respectively such that U U0.

Proposition 5.39. Two irreducible varieties V and V0 are birationally equivalent if and 
only if their function fields are isomorphic over k .

Proof. Assume that k.V) k.V0). We may suppose that V and W are affine, in which 
case the existence of U U0 is proved in 3.36. This proves the “if”’ part, and the “only if” 
part is obvious. □

PRoPoSITIoN 5.40. Every irreducible algebraic variety of dimension d is birationally 
equivalent to a hypersurface in Ad C1 .

PRooF. Let V be an irreducible variety of dimension d. According to Proposition 3.38, there 
exist X1;: ::;Xd C1 2 k.V) such that k.V) D k.Xl,...,Xd ,Xrf +1). Let f 2 k[X1;:::;Xd C1]
be an irreducible polynomial satisfied by the xi , and let H be the hypersurface f D 0. Then 
k.V) k.H). □

m. Local study

Everything in Chapter 4, being local, extends mutatis mutandis, to general algebraic varieties.

5.41. The tangent space TP .V) at a point P on an algebraic variety V is the fibre of 
V.k["]) ! V.k) over P. There are canonical isomorphisms

TP.V) ' Derk.OP; k) ' Homk-linear.nP =nP2 ;k);

where nP is the maximal ideal of OP .

5.42. A point P on an algebraic variety V is nonsingular (or smooth) if it lies on a single 
irreducible component W and dim TP .V) D dimW. A point P is nonsingular if and only if 
the local ring OP is regular. The singular points form a proper closed subvariety, called the 
singular locus.

5.43. A variety is nonsingular (or smooth) if every point is nonsingular.

n. Etale maps

Definition 5.44. A regular map ‘w V ! W of smooth varieties is etale ata point P of 
V if the map .d‘)p w Tp .V) ! T’.p/.W) is an isomorphism; ‘ is etale if it is etale at all 
points of V .
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Examples

5.45. A regular map

'WAn ! An, a 7! .P1.a1; : : : ; an/; : : : ; Pn.a1; : : : ; an//

is etale at a if and only if rankJac.P1,..., Pn/.a/ d n, because the map on the tangent 
spaces has matrix Jac.P1,..., Pn/.a/. Equivalent condition: det (@@P^.a/) ^ 0.

5.46. Let V d Spm.A/ be an affine variety, and let f d PciX  2 A[X] be such that 
A[X]/.f .X// is reduced. Let W d Spm(A[X]/(f (X))), and consider the map W ! V 
corresponding to the inclusion A ! A[X]/.f/. Thus

i

A[X]/.f/ «-----  A[X]

\T
A

W <----- > V X A1

V

The points of W lying over a point a 2 V are the pairs .a,b/ 2 V x A1 such that b is a root 
of P ci .a/Xi. I claim that the map W ! V is etale at .a; b/ if and only if b is a simple root 
of Pci.a/Xi.

To see this, write A d k[X1^. .,Xn]/a, a d .fi,..., fr/, so that

A[X]/.f/ D k[X1;:::;Xn]/.f1;:::;fr ,f/.

The tangent spaces to W and V at .a, b/ and a respectively are the null spaces of the matrices 

/ jfi .a/ 
3X1 .a/

. . .
fr- .a/3X1 .a/ ...

\f .a/ ...

3Xn .a/ 0 1
. . .

3fr /.. / 0
3X„ .a/ 0
3f .a/ f .a;b/7

3 fl .a/
3Xi .a/...
3fr .a/
3X .a/ ...

fi .a/
3Xn .a/

3fr a/3Xn

\

/

and the map T.a;b/.W / ! Ta.V / is induced by the projection map knC1 ! kn omitting the 
last coordinate. This map is an isomorphism if and only if f .a, b/^ 0, because then every 
solution of the smaller set of equations extends uniquely to a solution of the larger set. But

@f .a b/ D de i ci .a/X i / .b/ 
aX.a; / dX . /;

which is zero if and only if b is a multiple root of Pi ci .a/X i . The intuitive picture is that 
W ! V is a finite covering with deg.f / sheets, which is ramified exactly at the points where 
two or more sheets cross.

5.47. Consider a dominant map 'W W ! V of smooth affine varieties, corresponding to 
a map A ! B of rings. Suppose B can be written B d A[Y1,..., Yn]/.P1,..., Pn/ (same 
number of polynomials as variables). A similar argument to the above shows that' is etale 
if and only if det (^Pi- .a/) is never zero.

5.48. The example in is typical; in fact every etale map is locally of this form, provided 
V is normal, i.e., OP is a normal domain for all P 2 V. More precisely, let 'W W ! V 

 5.46 
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be etale at P 2 W, and assume V to be normal; then there exist a map ‘0w W0 ! V0 with 
k[W0] d k[V0][X]=.f .X//, and a commutative diagram

W <----- u U^t-^ U0 <----- > W 0
' j^etale Jjetale j,'0

V 4------U U2 U' ‘> V 0

with all the U open subvarieties and P 2 U1 .

The failure of the inverse function theorem for the Zariski topology

5.49. In advanced calculus (or differential topology, or complex analysis), the inverse 
function theorem says that a map ‘ that is etale at a point a is a local isomorphism there, i.e., 
there exist open neighbourhoods U and U0 ofa and '.a/ such that ' induces an isomorphism 
U ! U0. This is not true in algebraic geometry, at least not for the Zariski topology: a map 
can be etale at a point without being a local isomorphism. Consider for example the map

' W A1 X f0g ! A1 X f0g; a 7! a2 :

This is etale if the characteristic is ^ 2, because the Jacobian matrix is (2X), which has rank 
one for all X ^ 0 (alternatively, it is of the form 5.46 with f (X) d X2 — T, where T is the 
coordinate function on A1, and X2 — c has distinct roots for c ^ 0). Nevertheless, I claim 
that there do not exist nonempty open subsets U and U0 of A1 — f0g such that' defines an 
isomorphism U ! U0. If there did, then ' would define an isomorphism k[U0] ! k[U] 
and hence an isomorphism on the fields of fractions k.A1 / ! k.A1 /. But on the fields of 
fractions, ' defines the map k.X/ ! k.X /, X 7! X2, which is not an isomorphism.

5.50. Let V be the plane curve Y 2 D X and ' the map V ! A1, .x; y/ 7! x. Then ' is 

2 W 1 except over 0, and so we may view it schematically as

A1

V

However, when viewed as a Riemann surface, V.C/ consists of two sheets joined at a single 
point O . As a point on the surface moves around O , it shifts from one sheet to the other. 
Thus the true picture is more complicated. To get a section to ' , it is necessary to remove a 
line in C from 0 to infinity, which is not closed for the Zariski topology.
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It is not possible to fit the graph of the 
complex curve Y 2 D X into 3-space, 
but the picture at right is an early de­
piction of it (from Neumann, Carl, 
Vorlesungen uber Riemann’s theo- 
rie der Abel’schen integrale, Leipzig: 
Teubner, 1865).

7Atiyah, M. F.; Macdonald, I. G., Introduction to commutative algebra. Addison-Wesley Publishing Co., 
1969.

IJie II if maniVschc Windungsfladie crs ter Ordnimg.
Tergl. S ate 162 168,213-214mi 218-2 21

L-iik-Jhstv.HfSinger, Leiyizig.

Etale maps of singular varieties

Using tangent cones, we can extend the notion of an etale morphism to singular varieties. 
Obviously, a regular map aw V ! W induces a homomorphism gr.Oa.p// ! gr.Op/. We 
say that a is etale at P if this is an isomorphism. Note that then there is an isomorphism 
of the geometric tangent cones Cp .V/ ! Ca.p/ .W/, but this map may be an isomorphism 
without a being etale at P. Roughly speaking, to be etale at P, we need the map on 
geometric tangent cones to be an isomorphism and to preserve the “multiplicities” of the 
components.

It is a fairly elementary result that a local homomorphism of local rings a W A ! B 
induces an isomorphism on the graded rings if and only if it induces an isomorphism on 
the completions (Atiyah-MacDonald 1969, 10.23).7 Thus aw V ! W is etale at P if and 
only if the map Oa.p/ ! Op is an isomorphism. Hence 5.53 shows that the choice of a 
local system of parameters f1 ; : : : ; fd at a nonsingular point P determines an isomorphism _ __
O P ! k[[X1 ;:::;Xd ]].

We can rewrite this as follows: let t1 ; : : : ; td be a local system of parameters at a 
nonsingular point P; then there is a canonical isomorphism Op ! k[[t1 ;:„;td]]. For 
f 2 OP, the image of f 2 k[[t1 ;:„Td]] can be regarded as the Taylor series of f.

For example, let V d A1, and let P be the point a. Then t d X — a is a local parameter 
at a, OP consists of quotients f .X/ d g.X// h.X/ with h.a/ / 0, and the coefficients of 
the Taylor expansion Pn>0 an .X — a/n of f .X/ can be computed as in elementary calculus 
courses: an d f.n/ (a)/n!.

PROPOSITION 5.51. Let 'w W ! V be a map of irreducible affine varieties. If k.W/ is a 
finite separable extension of k.V/, then ' is etale on a nonempty open subvariety of W.

Proof. After passing to open subvarieties, we may assume that W and V are nonsin­
gular, and that k[W] d k[V][X]/.f .X//, where f.X/ is separable when considered as a 
polynomial in k.V/. Now the statement follows from 5.46. □ 
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Aside 5.52. There is an old conjecture that every etale map ‘w An ! An is an isomorphism. If we 
write ' D .P1 ; : : : ; Pn/, then this becomes the statement:

/ @pi \
if det ( —- (a/ is never zero (for a 2 kn), then ‘ has an inverse.

@Xj

I fx @ @ @ f . @ Pi I @p*i 1 ox oxmi* 'y any @ oxxxxl mo fix of @ Pi I @Pi I i o o .xxx o'ox n of o n f /"fxx 7 fix ox nilThe condition, det @x (a/ never zero, implies that det @x is a nonzero constant (by the lnuii 
stellensatz 2.11 applied to the ideal generated by det (@P^). This conjecture, which is known as the 

Jacobian conjecture, has not been settled even for k D C and n D 2, despite the existence of several 
published proofs and innumerable announced proofs. It has caused many mathematicians a good deal 
of grief. It is probably harder than it is interesting. See the Wikipedia: Jacobian conjecture.

o. Etale neighbourhoods

Recall that a regular map aw W ! V is said to be etale at a nonsingular point P of W if the 
map (da/p w Tp (W/ ! Ta(p/(V) is an isomorphism.

Let P be a nonsingular point on a variety V of dimension d . A local system of 
parameters at P is a family ff1 ; : : : ; fd g of germs of regular functions at P generating 
the maximal ideal np C Op. Equivalent conditions: the images of f1,...,fd in np =np 
generate it as a k-vector space (see 1.4); or (df1/p; : : : ; (dfd /p is a basis for the dual space 
to Tp (V/.

PROPOSITION 5.53. Let ff1; : : : ; fdg be a local system of parameters at a nonsingular point 
P of V. Then there is a nonsingular open neighbourhood U of P such that f1 ; f2; : : : ; fd 
are represented by pairs (f1,U),..., (fd, U/ and the map (f1,---,fd / w U ! Ad is etale.

PROOF. Obviously, the fi are represented by regular functions fi defined on a single open 
neighbourhood U0 of P, which, because of 4.37, we can choose to be nonsingular. The map 
a d (f1,:: :,fd/: U0 ! Ad is etale at P, because the dual map to (da/a is (dXi/o ! (dfi/a. 
The next lemma then shows that a is etale on an open neighbourhood U of P. □

Lemma 5.54. Let W and V be nonsingular varieties. If aw W ! V is etale at P, then it is 
etale at all points in an open neighbourhood of P.

Proof. The hypotheses imply that W and V have the same dimension d , and that their 
tangent spaces all have dimension d. We may assume W and V to be affine, say W c Am 

and V C An, and that a is given by polynomials Pi(X1,.. .,Xm/,.. .,Pn(X1,.. .,Xm}. Then 
(da/aw Ta(Am/ ! Ta(a/(An/ is a linear map with matrix (@@p^(a/), and a is not etale at a 

if and only if the kernel of this map contains a nonzero vector in the subspace Ta(V / of 
Ta(An/. Let f1 ,...,fr generate I(W/. Then a is not etale at a if and only if the matrix

/ fL (a/ 
@Xj(/ 
@Pi r a @Xj(a/

\

/
has rank less than m. This is a polynomial condition on a, and so it fails on a closed subset 
of W, which doesn’t contain P. □

Let V be a nonsingular variety, and let P e V .An etale neighbourhood of a point P of 
V is a pair ( Q,n w U ! V/ with n an etale map from a nonsingular variety U to V and Q a 
point of U such that n(Q'/ d P.
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Corollary 5.55. Let V be a nonsingular variety of dimension d, and let P 2 V . There 
is an open Zariski neighbourhood U of P and a map n w U ! Ad realizing (P, U) as an 
etale neighbourhood of (0,...,0) 2 Ad.

Proof. This is a restatement of the Proposition. □

Aside 5.56. Note the similarity to the definition of a differentiable manifold: every point P on a 
nonsingular variety of dimension d has an open neighbourhood that is also a “neighbourhood” of 
the origin in Ad . There is a “topology” on algebraic varieties for which the “open neighbourhoods” 
of a point are the etale neighbourhoods. Relative to this “topology”, any two nonsingular varieties 
are locally isomorphic (this is not true for the Zariski topology). The “topology” is called the etale 
topology — see my notes Lectures on Etale Cohomology.

The inverse function theorem (for the etale topology)

THEoREM 5.57 (INVERSE FUNCTIoN THEoREM). Ifa regular map of nonsingular vari­
eties ‘ w V ! W is etale at P 2 V, then there exists a commutative diagram

V o open u UP

w eta^- U'.P/

with UP an open neighbourhood of P, Uf(P) an etale neighbourhood '.P), and '0 an 
isomorphism.

PRooF. According to 5.54, there exists an open neighbourhood U of P such that the 
restriction ‘ jU of ‘ to U is etale. To get the above diagram, we can take UP d U, U‘.P/ to 
be the etale neighbourhood ‘jUw U ! W of '.P), and ‘0 to be the identity map. □

The rank theorem

For vector spaces, the rank theorem says the following: let aw V ! W be a linear map of 
k-vector spaces of rank r; then there exist bases for V and W relative to which a has matrix

. In other words, there is a commutative diagramIr 0
00

V ---------------- — W W

1‘
km

.x1 ;:::;xm /7!.x1 ;:::;xr ;0;:::/ kn:

A similar result holds locally for differentiable manifolds. In algebraic geometry, there is the 
following weaker analogue.

THEoREM 5.58 (RANK THEoREM). Let 'w V ! W be a regular map of nonsingular vari­
eties of dimensions m and n respectively, and let P 2 V. If rank.TP .')) D n, then there 
exists a commutative diagram

'j ___________________'jUp___________ . n
UP -------------------------------------------> U'.P/
^tele I etale

m .X1;:::;Xm/!.X1;:::;Xn/ A An
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in which UP and U'.P / are open neighbourhoods of P and '.P/ respectively and the 
vertical maps are etale.

Proof. Choose a local system of parameters g1;...;gn at '.P/, and let f1 d g11 ';...;fn d 
gn 1 ‘. Then df^^dfn are linearly independent forms on Tp.V/, and there exist 
fnC1 ; : : : ; fm such df1 ; : : : ; dfm is a basis for TP.V /_. Then f1 ; : : : ; fm is a local sys­
tem of parameters at P . According to 5.54, there exist open neighbourhoods UP of P and 
U'.P / of '.P/ such that the maps

.f1;:::;fm/WUP !Am

.g1 ; : : : ; gn/W U'.P / ! An

are etale. They give the vertical maps in the above diagram. □

Aside 5.59. Tangent vectors at a point P on a smooth manifold V can be defined to be certain 
equivalence classes of curves through P (Wikipedia: TANGENT SPACE). For V D An , there is a 
similar description with a curve taken to be a regular map from an open neighbourhood U of 0 
in A1 to V . In the general case there is a map from an open neighbourhood of the point P in X 
onto affine space sending P to 0 and inducing an isomorphism from tangent space at P to that at 0 
(5.53). Unfortunately, the maps from U C A1 to An need not lift to X, and so it is necessary to allow 
maps from smooth curves into X (pull-backs of the covering X ! An by the maps from U into An). 
There is a description of the tangent vectors at a point P on a smooth algebraic variety V as certain 
equivalence classes of regular maps from an etale neighbourhood U of 0 in A1 to V.

p. Smooth maps

DEFINITIoN 5.60. A regular map 'W V ! W of nonsingular varieties is smooth ata point 
P of V if .d'/P W TP.V/ ! T'.P/.W / is surjective; ' is smooth if it is smooth at all points 
of V .

THEoREM 5.61. A map 'W V ! W is smooth at P 2 V if and only if there exist open 
neighbourhoods UP and U'.P / of P and '.P/ respectively such that'jUP factors into

Up _ft! Adim V -dim W x U'(p/ _! U'(p/:

PRooF. Certainly, if ' jUP factors in this way, it is smooth. Conversely, if ' is smooth at P , 
then we get a diagram as in the rank theorem. From it we get maps

Up ! Am XAn U'(P/ ! U'(P/:

The first is etale, and the second is the projection of Am-n x U‘.p/ onto U‘.p/. □

CoRoLLARY 5.62. Let V and W be nonsingular varieties. If 'W V ! W is smooth at P, 
then it is smooth on an open neighbourhood of V .

Proof. In fact, it is smooth on the neighbourhood Up in the theorem. □
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Separable maps

A transcendence basis S of an extension E D F of fields is separating if the algebraic 
extension E D F.S/ is separable. A finitely generated extension E D F of fields is separable 
if it admits a separating transcendence basis.

DEFINITION 5.63. A dominant map 'W W ! V of irreducible algebraic varieties is separa­
ble if k.W / is a separable extension of k.V /.

Theorem 5.64. Let 'W W ! V be a map of irreducible varieties.
(a) If there exists a nonsingular point P of W such that 'P is nonsingular and .d'/P is 

surjective, then ' is dominant and separable.
(b) Conversely if ' is dominant and separable, then the set of P 2 W satisfying (a) is 

open and dense.

Proof. Replace W and V with their open subsets of nonsingular points. Then apply the 
rank theorem. □

q. Algebraic varieties as functors

Let R be an affine k-algebra, and let V be an algebraic variety. We define a point of V with 
coordinates in R (or an R-point of V) to be a regular map Spm.R/ ! V . For example, if 
V d V.a/ c An, then

V.R/ D f.a1;:::;an/ 2 Rn j f.a1;:::;an/ D 0 all f 2 ag;

which is what you should expect. In particular V.k/ D V (as a set), i.e., V (as a set) can be 
identified with the set of points of V with coordinates in k . Note that

.V x W/.R/ d V.R/ x W.R/

(property of a product).

CAUTION 5.65. If V is the union of two subvarieties, V D V1 [ V2, then it need not be true 
that V.R/ D V1 .R/ [ V2.R/. For example, for any polynomial f.X1 ; : : : ; Xn/,

An D Df [ V.f /;

where Df ' Spm.k[X1;:. .,X„,T]=(1 — Tf // and V.f / is the zero set of f, but

Rn /fa 2 Rn j f.a/ 2 Rxg [fa 2 Rn j f.a/ d 0g

in general.
In fact, it need not be true even when V1 and V2 are open in V . Indeed, this would 

say that every regular map U ! V with U affine must factor through V1 or V2 , which 
is nonsense. For example, the variety V D A2 n f.0; 0/g is the union of the open subsets 
V1 W X / 0 and V2 W Y / 0, but the affine subvariety U W X C Y D 1 of V is not contained in 
V1 or V2 .
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Theorem 5.66. A regular map 'W V ! W of algebraic varieties defines a family of maps 
of sets, '.R/W V.R/ ! W.R/, one for each affine k-algebra R, such that for every homo­
morphism aw R ! S of affine k -algebras, rhe diagram

V(R) _‘.R4 W(R) 

jv(a) J,v(^/ (*)
V(S) -‘.S4 W(S)

commutes. Every family of maps with this property arises from a unique morphism of 
algebraic varieties.

Let Vark (resp. Affk ) denote the category of algebraic varieties over k (resp. affine 
algebraic varieties over k). For a variety V, let haVff denote the functor sending an affine 
variety T D Spm(R) to V(R) D Hom(T; V). We can restate Theorem 5.66 as follows.

Theorem 5.67. The functor

V haVffW Vark ! Fun(Affk ; Sets)

if fully faithful.

Proof. For an algebraic variety V over k , let hV denote the functor

T Hom(T; V)W Vark ! Set:

According to the Yoneda lemma (q.v. Wikipedia) the functor

V hVW Vark ! Fun(Vark; Sets)

is fully faithful. Let ' be a morphism of functors haVff ! haVff0 , and let T be an algebraic 
variety. Let (Ui )i 2I be a finite affine covering of T . Each intersection Ui \ Uj is affine 
(5.29), and so ' gives rise to a commutative diagram

0 ------ > hv(T) ------ > Yi hv(Ui) ------ Yi j hv(Ui \ Uj/)

| '(Ui / '(Ui\Uj /

0 ------> hv0(T) ------> Yi hvo(Ui) ==£ Yi j hvo(Ui \ Uj/)

in which the pairs of maps are defined by the inclusions Ui \ Uj ,! Ui ; Uj . As the rows 
are exact (5.15, last sentence), this shows that 'v extends uniquely to a functor hv ! hv0, 
which (by the Yoneda lemma) arises from a unique regular map V ! V0. □

COROLLARY 5.68. To give an affine group variety is the same as giving a functor GWAffk ! 
Grp such that for some n and some finite set S of polynomials in k[Xi ,X2,..., Xn], G is 
isomorphic to the functor sending R to the set of zeros ofS in Rn.

Proof. Certainly an affine group variety defines such a functor. Conversely, the conditions 
imply that G D hv for an affine algebraic variety V (unique up to a unique isomorphism). 
The multiplication maps G(R) x G(R) ! G(R) give a morphism of functors hv x hv ! hv. 
As hv x hv ‘ hvxv (by definition of V x V), we see that they arise from a regular map 
V x V ! V. Similarly, the inverse map and the identity-element map are regular. □
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It is not unusual for a variety to be most naturally defined in terms of its points functor. 
For example:

SLnW R fM 2 Mn.R/ j det.M / D 1g
GLnW R - • {M e Mn.R/ j det.M/ e Rxg

GaWR .R;C/:

We now describe the essential image of h 7! hV W Vark ! Fun.Affk ; Sets/. The fibred 
product of two maps a1: F1 ! F3, a2w F2 ! F3 of sets is the set

F1 XF3 F2 D {.X1,X2/ j «1.xi/ D «2.X2/g:

When F1 ;F2; F3 are functors and a 1 ;«2 ;U3 are morphisms of functors, there is a functor 
F d F1 x f3 F2 such that

.F1 XF3 F2/.R/ D Fi.R/ XF3.R/ F2.R/

for all affine k-algebras R.
To simplify the statement of the next proposition, we write U for hU when U is an affine 

variety.

PROPOSITION 5.69. A functor FW Affk ! Sets is in the essential image of Vark if and only 
if there exists an affine variety U and a morphism U ! F such that

(a) the functor R D U x f U is a closed affine subvariety of U x U and the maps R U 
defined by the projections are open immersions;

(b) the set R.k/ is an equivalence relation on U.k/, and the map U.k/ ! F.k/ realizes 
F.k/ as the quotient of U.k/ by R.k/.

Proof. Let F D hV for V an algebraic variety. Choose a finite open affine covering 
V D S * * Ui of V , and let U D F Ui . It is again an affine variety (Exercise 5-2). The functor 
R is hU0, where U0 is the disjoint union of the varieties Ui \ Uj. These are affine (5.29), and 
so U0 is affine. As U0 is the inverse image of Av in U x U, it is closed (5.26). This proves 
(a), and (b) is obvious.

8Let a be an ideal in k[Xi,...]. If A has no nonzero nilpotent elements, then every k-algebra homomorphism
k [Xi,...] ! A that is zero on a is also zero on rad.a), and so

Homk.k[X1,.. .]/a, A/ ' Homk .k[X1,.. .]/rad.a/,A/.

This is not true if A has nonzero nilpotents.

The converse is omitted for the present. □

ASIDE 5.70. A variety V defines a functor R V.R/ from the category of all k-algebras to Sets. 
Again, we call the elements of V.R/ the points of V with coordinates in R.

For example, if V is affine,

V.R/ = HomWgebra(k[V].R/.

More explicitly, if V C kn and I.V/ = (f1,..., fm/, then V.R/ is the set of solutions in Rn of the 
system equations

fi.X1;...;Xn/ D0; i D 1;...;m.
Note that, when we allow R to have nilpotent elements, it is important to choose the fi to generate 
I.V/ (i.e., a radical ideal) and not just an ideal a such that V.a/ D V .8

For a general variety V , we write V as a finite union of open affines V D i Vi , and we define 
V.R/ to be the set of families .ai /i2I e i2I Vi .R/ such that ai agrees with aj on Vi \ Vj for all 
i; j e I. This is independent of the choice of the covering, and agrees with the previous definition 
when V is affine.
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The functor defined by A.E/ (see p. 72) is R R R 0k E.

A criterion for a functor to arise from an algebraic prevariety

5.71. By a functor we mean a functor from the category of affine k-algebras to sets. A 
subfunctor U of a functor X is open if, for all maps 'W hA ! X, the subfunctor ' ~1.U/ of 
hA is defined by an open subvariety of Spm.A/. A family .Ui /i 2I of open subfunctors of X 
is an open covering of X if each Ui is open in X and X.K/ D S Ui .K/ for every field K. 
A functor X is local if, for all k-algebras R and all finite families .fi /i of elements of A 
generating A as an ideal, the sequence of sets

9Actually, one needs to be more careful to ensure that o.u / is a set; for example, restrict U and A1 to the 
category of k-algebras of the form k [Xo ;X1 ;...]=a for a fixed family of symbols (Xi / indexed by N.

X.R/! Yi X.Rfi / Yi;j X.Rf. fy. /

is exact.
Let A1 denote the functor sending a k-algebra R to its underlying set. For a functor U, 

let O.U/ D Hom.U; A1/ — it is a k-algebra.9 A functor U is affine if O.U/ is an affine 
k-algebra and the canonical map U ! hO.U / is an isomorphism. A local functor admitting 
a finite covering by open affines is representable by an algebraic variety over k .

In the functorial approach to algebraic geometry, an algebraic prevariety over k is defined 
to be a functor satisfying this criterion. See, for example, I, §1, 3.11, p. 13, of Demazure 
and Gabriel, Groupes algebriques: geometrie algebrique, generalites, groupes commutatifs. 
1970.

r. Rational and unirational varieties

Definition 5.72. Let V be an algebraic variety over k.
(a) V is unirational if there exists a dominant rational map Pn —— V.
(b) V is rational if there exists a birational map Pn —— V.

In more down-to-earth terms, V is rational if k.V/ is a pure transcendental extension of 
k, and it is unirational ifk.V/ is contained in such an extension ofk.

In 1876 (over C), Luroth proved that every unirational curve is rational. For a proof over 
any field, see FT 9.19. The Luroth problem asks whether every unirational variety is rational.

Already for surfaces, this is a difficult problem. In characteristic zero, Castelnuovo and 
Severi proved that all unirational surfaces are rational, but in characteristic p ^ 0, Zariski 
showed that some surfaces of the form

ZpDf.X;Y/;

while obviously unirational, are not rational. Surfaces of this form are now called Zariski 
surfaces.

Fano attempted to find counter-examples to the Luroth problem in dimension 3 among 
the so-called Fano varieties, but none of his attempted proofs satisfies modern standards. In 
1971-72, three examples of nonrational unirational three-folds were found. For a description 
of them, and more discussion of the Luroth problem in characteristic zero, see: Arnaud 
Beauville, The Luroth problem, arXiv:1507.02476.
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A little history

In his first proof of the Riemann hypothesis for curves over finite fields, Weil made use of 
the Jacobian variety of the curve, but initially he was not able to construct this as a projective 
variety. This led him to introduce “abstract” algebraic varieties, neither affine nor projective 
(in 1946). Weil first made use of the Zariski topology when he introduced fibre spaces into 
algebraic geometry (in 1949). For more on this, see my article: The Riemann hypothesis 
over finite fields: from Weil to the present day.

Exercises

5-1. Show that the only regular functions on P1 are the constant functions. [Thus P1 is 
not affine. When k D C, P1 is the Riemann sphere (as a set), and one knows from complex 
analysis that the only holomorphic functions on the Riemann sphere are constant. Since 
regular functions are holomorphic, this proves the statement in this case. The general case is 
easier.]

5-2. Let V be the disjoint union of algebraic varieties V1; : : : ; Vn. This set has an obvious 
topology and ringed space structure for which it is an algebraic variety. Show that V is affine 
if and only if each Vi is affine.

5-3. Show that an algebraic variety G equipped with a group structure is an algebraic group 
if the map .x,y/ ! x~1yw G x G ! G is regular.

5-4. Let G be an algebraic group. Show:
(a) The neutral element e of G is contained in a unique irreducible component G1 of G, 

which is also the unique connected component of G containing e .
(b) The subvariety G1 is a normal subgroup of G of finite index, and every algebraic 

subgroup of G of finite index contains G1.

5-5. Show that every subgroup variety of a group variety is closed.

5-6. Show that a prevariety V is separated if and only if it satisfies the following condition: 
a regular map U X fP g ! V with U a curve and P a nonsingular point on U extends in at 
most one way to a regular map U ! V .

5-7. Prove the final statement in 5.71.





Chapter

Projective Varieties

Recall (5.3) that we defined Pn to be the set of equivalence classes in knC1 X foriging for 
the relation

.a0;:::;an/ ~ (bo,-..^^ ^” (fl Q ,-..,0 D C^O,-..^^ for SOHlC C 2

Let (a0 w ... w an/ denote the equivalence class of (a0;...; an/, and let n denote the map

knC1 xf(0,...,0)g ! Pn.

Let Ui be the set of (a0 w ... w an/ 2 Pn such that ai ^ 0, and let ui be the bijection

(a0w...wan/ ! (ai;...; bi...... On) w Ui -u+ An (ai omitted).

In this chapter, we show that Pn has a unique structure of an algebraic variety for which 
these maps become isomorphisms of affine algebraic varieties. A variety isomorphic to 
a closed subvariety of Pn is called a projective variety, and a variety isomorphic to a 
locally closed subvariety of Pn is called a quasiprojective variety. Every affine variety is 
quasiprojective, but not all algebraic varieties are quasiprojective. We study morphisms 
between quasiprojective varieties.

Projective varieties are important for the same reason compact manifolds are important: 
results are often simpler when stated for projective varieties, and the “part at infinity” often 
plays a role, even when we would like to ignore it. For example, a famous theorem of Bezout 
(see 6.37 below) says that a curve of degree m in the projective plane intersects a curve of 
degree n in exactly mn points (counting multiplicities). For affine curves, one has only an 
inequality.

a. Algebraic subsets of Pn

A polynomial F .X0; . . . ; Xn/ is said to be homogeneous of degree d if it is a sum of terms 
ai0;:::;in X 00 • • • Xn with io C----- C in d d; equivalently,

F.tX0;...;tXn/ DtdF.X0;...;Xn/

for all t 2 k. The polynomials homogeneous of degree d form a subspace k[X0;. ..,X«]d 

of k[X0;...;Xn], and
k[X0;... ; Xn] D M k[X0;... ; Xn]d I

d >0

129
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in other words, every polynomial F can be written uniquely as a sum F D Fd with Fd
homogeneous of degree d.

Let P d .a0 w ::: w an/ 2 Pn. Then P also equals .ca0 w ... w can/ for any c 2 kx, and 
so we can’t speak of the value of a polynomial F.X0; : : : ; Xn/ at P. However, if F is 
homogeneous, then F.ca0; : : : ; can/ D cd F.a0; : : : ; an/, and so it does make sense to say 
that F is zero or not zero at P . An algebraic set in Pn (or projective algebraic set) is the set 
of common zeros in Pn of some set of homogeneous polynomials.

example 6.1. Consider the projective algebraic subset of P2 defined by the homogeneous 
equation

EwY2Z D X3 CaXZ2 CbZ3. (26)

It consists of the points .x w y w 1/ on the affine curve E \ U2

Y2DX3CaXCb

(see 2.2) together with the point “at infinity” .0 w 1 w 0/. Note that E \ U1 is the affine curve

Z DX3CaXZ2CbZ3;

and that .0w 1 w 0/ corresponds to the point .0;0/ on E \ U1:

As .0; 0/ is nonsingular on E \ U1, we deduce from (4.5) that E is nonsingular unless 
X3 C aX C b has a multiple root. A nonsingular curve of the form (26) is called an elliptic 
curve.

An elliptic curve has a unique structure of a group variety for which the point at infinity
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is the zero:

When a; b 2 Q, we can speak of the zeros of (26) with coordinates in Q. They also form 
a group E.Q/, which Mordell showed to be finitely generated. It is easy to compute the 
torsion subgroup of E.Q/, but there is at present no known algorithm for computing the rank 
of E.Q/. More precisely, there is an “algorithm” which works in practice, but which has 
not been proved to always terminate after a finite amount of time. There is a very beautiful 
theory surrounding elliptic curves over Q and other number fields, whose origins can be 
traced back almost 1,800 years to Diophantus. (See my book on Elliptic Curves for all of 
this.)

An ideal a c k [X0 ,...,Xn] is said to be graded or homogeneous if it contains with any 
polynomial F all the homogeneous components of F , i.e., if

F 2 a H) Fd 2 a, all d.

It is straightforward to check that
0 an ideal is graded if and only if it is generated by (a finite set of) homogeneous 

polynomials;
❖ the radical of a graded ideal is graded;
❖ an intersection, product, or sum of graded ideals is graded.

For a graded ideal a, we let V.a/ denote the set of common zeros of the homogeneous 
polynomials in a. Clearly

a c b h) V(a) D V(b).

If F1; . . . ; Fr are homogeneous generators for a, then V.a/ is also the set of common zeros of 
the Fi . Clearly every polynomial in a is zero on every representative of a point in V (a). We 
write V aff(a) for the set of common zeros of a in knC1 . It is a cone in knC1 , i.e., together 
with any point P it contains the line through P and the origin, and

V(a) D V aff(a) x{(0,...,0)}

The sets V(a) in Pn have similar properties to their namesakes in An .
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Proposition 6.2. There are the following relations:
(a) V.0) d Pni V.a) d; ” rad.a) D (Xo,...,X„/i

(b) V.ab/ DV.a\b/ DV.a/[V.b/I
(c) V.Pai/DTV.ai/.

Proof. For the second statement in (a), note that

V.a) d; ” vaff.a/ Cf(0,...,0/g
■<=” rad.a/ D (Xo,..., Xn) (strong Nullstellensatz 2.16).

The remaining statements can be proved directly, as in (2.10), or by using the relation 
between V.a) and Vaff.a). □

Proposition 6.2 shows that the projective algebraic sets are the closed sets for a topology 
on Pn . This topology is called the Zariski topology on Pn .

If C is a cone in knC1, then I.C) is a graded ideal in k[X0;:: .,Xn]: if F(ca0;.. .;can) d 
0 for all c 2 kx, then

^Fd(ao,...,an)• cd d F(cao;...;Can/ d 0 
d

for infinitely many c, and so P Fd.ao; . . . ; an/Xd is the zero polynomial. For a subset S of
Pn, we define the affine cone over S in knC1 to be

C d n 1 (S) [ foriging

and we set
I.S/ D I.C/.

Note that if S is nonempty and closed, then C is the closure of n 1 (S) ^ ;, and that I.S) 
is spanned by the homogeneous polynomials in k[X0;. ..,Xn] that are zero on S.

Proposition 6.3. The maps V and I define inverse bijections between the set of algebraic 
subsets of Pn and the set of proper graded radical ideals of k [X0 ,...,Xn]. An algebraic set 
V in Pn is irreducible if and only ifI.V/ is prime; in particular, Pn is irreducible.

Proof. Note that we have bijections

falgebraic subsets of Png------------> fnonempty closed cones in knC1g

V I

f proper graded radical ideals in k[X0 ,...,Xn] g

Here the top map sends S to the affine cone over S, and the maps V and I are in the sense 
of projective geometry and affine geometry respectively. The composite of any three of these 
maps is the identity map, which proves the first statement because the composite of the top 
map with I is I in the sense of projective geometry. Obviously, V is irreducible if and only 
if the closure of n-1 .V) is irreducible, which is true if and only if I.V) is a prime ideal. □
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Note that the graded ideals (Xo,..., Xn) and k [X0 ,...,Xn] are both radical, but

V.X0;:::;Xn/ = 8 = V^ ,...,X„])

and so the correspondence between irreducible subsets of Pn and radical graded ideals is not 
quite one-to-one.

Aside 6.4. In English “homogeneous ideal” is more common than “graded ideal”, but we follow 
Bourbaki, Alg, II, §11. A graded ring is a pair (S, (Sd)d2N) consisting of a ring S and a family of 
additive subgroups Sd such that

( S D Md2N Sd

S Sd Se c Sdce, all d,e 2 N.

An ideal a in S is graded if and only if

aDMd2N.a\Sd);

this means that it is a graded submodule of .S, .Sd )). The quotient of a graded ring S by a graded 
ideal a is a graded ring S=a D d Sd =.a \ Sd).

b. The Zariski topology on Pn

For a graded polynomial F , let

D(F) DfP e Pn j F(P) / 0g.

Then, just as in the affine case, D.F) is open and the sets of this type form a base for the 
topology of Pn. As in the opening paragraph of this chapter, we let Ui D D.Xi ).

To each polynomial f .X1 , . . . , Xn), we attach the homogeneous polynomial of the same 
degree

f *(Xo,...,Xn) D Xdeg.f/f (X,..., XXn) ,

and to each homogeneous polynomial F.X0, . . . , Xn), we attach the polynomial

F*(Xi,... ,Xn) d F(1,Xi,..., Xn).

PROPOSITION 6.5. Each subset Ui of Pn is open in the Zariski topology on Pn, and when 
we endow it with the induced topology, the bijection

Ui $ An, (a0 w ... w 1 w ... w an) $ (a0,. ..,ai-1,aici,... ,an)

becomes a homeomorphism.

Proof. It suffices to prove this with i D 0. The set U0 D D.X0), and so it is a basic open 
subset in Pn. Clearly, for any homogeneous polynomial F e k[X0,..., Xn],

D(F(Xo,..., Xn)) \ Uo d D(F(1,Xi ,...,Xn)) = D(F*)

and, for any polynomial f e k[X1 ,...,Xn],

D(f) d D(f *) \ Uo.

Thus, under the bijection Uo $ An , the basic open subsets of An correspond to the in­
tersections with Ui of the basic open subsets of Pn , which proves that the bijection is a 
homeomorphism. □ 
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REMARK 6.6. It is possible to use this to give a different proof that Pn is irreducible. We 
apply the criterion that a space is irreducible if and only if every nonempty open subset is 
dense (see p. 46). Note that each Ui is irreducible, and that Ui \ Uj is open and dense in 
each of Ui and Uj (as a subset of Ui, it is the set of points .a0 W : : : W 1 W : : : W aj W : : : W an/ 
with aj ^ 0/. Let U be a nonempty open subset of Pn; then U \ Ui is open in Ui. For some 
i, U \ Ui is nonempty, and so must meet Ui \ Uj. Therefore U meets every Uj, and so is 
dense in every Uj. It follows that its closure is all of Pn.

c. Closed subsets of An and Pn

We identify An with U0, and examine the closures in Pn of closed subsets of An . Note that

Pn DAntH1; H1 D V.X0/:

With each ideal a in k[X1;.. .,Xn], we associate the graded ideal a* in k[X0;:: .,Xn] 
generated by ff * j f 2 ag. For a closed subset V of An, set V* d V(a*) with a d I(V).

With each graded ideal a in k[Xo,X1,. ..,Xn], we associate the ideal a* in ^X^.^Xn] 

generated by fF* j F 2 ag. When V is a closed subset of Pn, we set V* d V(a*/ with 
aDI(V/.

Proposition 6.7. (a) Let V be a closed subset of An. Then V * is the closure of V in Pn, 
and (V*)* d V. If V d S Vi is the decomposition of V into its irreducible components, 
then V* d |J Vi* is the decomposition of V* into its irreducible components.

(b) Let V be a closed subset of Pn. Then V* d V \ An, and if no irreducible component 
of V lies in H1 or contains H1, then V* is a proper subset of An, and (V*/* d V.

PROOF. Straightforward. □

Examples

6.8. For
VWY2DX3CaXCb;

we have
V*w Y2Z d X3 CaXZ2 C bZ3;

and (V*)* d V.

6.9. Let V D V(f1 ; . . . ; fm/; then the closure of V in Pn is the union of the irreducible 
components of V(f* ,...,/,£) not contained in H1. For example, let

V DV(X1;X12CX2/ D f(0;0/gI

then V(X0X1 ; X12 C X0X2/ consists of the two points (1W 0W 0/ (the closure of V) and (0W 0W 1/ 
(which is contained in H1).1

6.10. For V d Hi d V(Xo), we have V* d ; d V(1) and (V*)* d ; / V.

1Of course, in this case a d (Xi ; X2), a* d (X1; X2), and V* Df(1w 0w0)g, and so this example doesn’t 
contradict the proposition.
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d. The hyperplane at infinity

It is often convenient to think of Pn as being An D U0 with a hyperplane added “at infinity”. 
More precisely, we identify the set U0 with An ; the complement of U0 in Pn is

H1 D f.0 W a1 W : : : W an/ 2 Png;

which can be identified with Pn_1.
For example, P1 D A1 t H1 (disjoint union), with H1 consisting of a single point, and 

P2 D A2 [ H1 with H1 a projective line. Consider the line

1 C aX1 C bX2 D 0

in A2 . Its closure in P2 is the line

X0 C aX1 C bX2 D 0:

This line intersects the line H1 d V.X0/ at the point .0 w —b w a/, which equals .0 w 1 w —a=b/ 
when b ^ 0. Note that —a=b is the slope of the line 1 C aX1 C bX2 d 0, and so the point at 
which a line intersects H1 depends only on the slope of the line: parallel lines meet in one 
point at infinity. We can think of the projective plane P2 as being the affine plane A2 with 
one point added at infinity for each “direction” in A2.

Similarly, we can think of Pn as being An with one point added at infinity for each 
direction in An — being parallel is an equivalence relation on the lines in An , and there is 
one point at infinity for each equivalence class of lines.

We can replace U0 with Un in the above discussion, and write Pn D Un t H1 with 
H1 d f.a0w::: ' an-i: 0/g, as in Example 6.1. Note that in this example the point at infinity 
on the elliptic curve Y 2 D X3 C aX C b is the intersection of the closure of any vertical line 
with H1.

e. Pn is an algebraic variety

For each i, write Oi- for the sheaf on Ui C Pn defined by the homeomorphism ui w Ui ! An.

LEMMA 6.1 1. Let Uij D Ui \ Uj; then Oi jUij D Oj jUij. When endowed with this sheaf; 
Ujj is an affine algebraic variety; moreover, r.Uij, Oi/ is generated as a k-algebra by the 
functions .f jUij/.gjUj/ with f 2 r.U,Oi/, g 2 r.Uj,Oj/.

Proof. It suffices to prove this for .i;j/ D .0; 1/. All rings occurring in the proof will be 
identified with subrings of the field k.X0 ; X1 ; : : : ; Xn/.

Recall that

Uo d f.ao w ai w ... w an/ j ao / 0g; .ao w ai w ... w an/ $ . 01, 02.......  On / 2 An:a0 a0 a0

Let k[ XX1; X2;:::; Xn ] be the subring of k .Xo ;X1 ;:::;Xn/ generated by the quotients XXi 

— it is the polynomial ring in the n symbols XO,..., Xo. An element f.X1,..., XO/ 2 
k[ XX0;:::; Xn 1 defines a map

.ao w ai w ::: w an/! f. 01...... On/w Uo ! k,0O 0O 
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and in this way k[ XX1, X2,..., X0 ] becomes identified with the ring of regular functions on 
Uo, and Uo with Spm(k[XX1,...; Xn]).

Next consider the open subset of U0 ;

Uoi d f (ao w ::: w an/ j ao 0 0, ai 0 0g:
It is D(XX1 /, and is therefore an affine subvariety of (Uo; Oo/. The inclusion Uo1 ,! Uo 

corresponds to the inclusion of rings k[ X1,..., Xn ] ! k[ X1,..., Xn, XX0 ]. An element 
f( Xi............. X0, X0 / of k[ X0.............. X0; Xi ] defines the function (ao w ... w an/! f( ai.............. 00, ai /
on Uo1 .

Similarly,
Ui d f(ao w ai w ... w an/ j ai 0 0g; (ao w ai w ... w an/ $ (ai,...,ai/ 2 An;

and MpiiliTv 77, with Crim I Zd — X2 Xnll A nalvnnmial /TX0 Xn^il-TX0 Xnland we identify u i with Spin k [ x^, Xq ,..., x^ J • A- polynomial f ( X^,..., x^ / in k [ x^,..., x^ J 
defines the map (ao w ... w an/ ! f (00,..., an): U1 ! k.

When regarded as an open subset of Ui, Uoi d D(X0/, and is therefore an affine 
subvariety of (Ui ; Oi/, and the inclusion Uoi ,! Ui corresponds to the inclusion of rings 
k[ X0 Xn 1 ! k[ X0 Xn Xi 1 An element f( X0 Xn Xi / of k[ X0 Xn Xi 1 k[ Xi,..., Xi J ! k[ Xi,..., Xi, x0 !• An element fl Xi,..., Xi, x0 / oi k[ Xi,..., Xi , X0 1 
defines the function (ao w ... w an/ ! f( ai,..., ai, ai / on Uoi.

The two subrings k[,...,X0, Xo] and k[XXi,..., XXi,] of k(Xo,Xi,...,Xn/ are 
equal, and an element of this ring defines the same function on Uoi regardless of which of 
the two rings it is considered an element. Therefore, whether we regard Uoi as a subvariety 
of Uo or of Ui it inherits the same structure as an affine algebraic variety (3.15). This 
proves the first two assertions, and the third is obvious: k[Xi,..., Xn, XX0] is generated by 
hs subrings k[XXi.........Xo] and k[Xi; X^0...........Xi]. n

PROPOSITION 6. 12. There is a unique structure of an algebraic variety on Pn for which 
each Ui is an open affine subvariety of Pn and each map ui is an isomorphism of algebraic 
varieties. Moreover, Pn is separated.

PROOF. Endow each Ui with the structure of an affine algebraic variety for which ui is an 
isomorphism. Then Pn D S Ui, and the lemma shows that this covering satisfies the patching 
condition 5.15, and so Pn has a unique structure of a ringed space for which Ui ,! Pn is a 
homeomorphism onto an open subset of Pn and OPn jUi D OUi . Moreover, because each 
Ui is an algebraic variety, this structure makes Pn into an algebraic prevariety. Finally, the 
lemma shows that Pn satisfies the condition 5.29(c) to be separated. □

Example 6.13. Let C be the plane projective curve
CwY2ZDX3

and assume that char(k/ 0 2. For each a 2 kx, there is an automorphism

(x w y w z/ ! (ax w y w a3z/w C -! C.

Patch two copies of C x a1 together along C x (a1 — f0g/ by identifying (P,a/ with 
('a(P/,a-1/, P 2 C, a 2 A1 X f0g. One obtains in this way a singular surface that is not 
quasiprojective (see Hartshorne 1977, Exercise 7.13). It is even complete — see below — 
and so if it were quasiprojective, it would be projective. In Shafarevich 1994, VI 2.3, there 
is an example of a nonsingular complete variety of dimension 3 that is not projective. It 
is known that every irreducible separated curve is quasiprojective, and every nonsingular 
complete surface is projective, and so these examples are minimal.
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f. The homogeneous coordinate ring of a projective variety

Recall (p. 114) that attached to each irreducible variety V , there is a field k.V / with the 
property that k(V) is the field of fractions of k[U] for any open affine U C V. We now 
describe this field in the case that V d Pn. Recall that k[U0] d k[X,..., Xn]. We regard 
this as a subring of k(X0,..., Xn), and wish to identify the field of fractions of k[U0] as a 
subfield of k(X0,..., Xn). Every nonzero F 2 k[U0] can be written

F. X...... X0 / D
F *(Xo,...,Xn)

ydeg.F/X0

with F* homogeneous of degree deg(F), and it follows that the field of fractions of k[U0] is

k.Uo/ D G(Xo,...,Xn)
H(Xo,...,Xn)

G, H homogeneous of the same degree [ f0g.

Write k(Xo , . . . , Xn)o for this field (the subscript 0 is short for “subfield of elements of 
degree 0”), so that k(Pn) d k(X0,.. .,Xn)0. Note that for F d -G in k(X0,.. .,Xn)0,

G(ao, . . . ,an)
(a0.......... an) ! ------------Tw D(H) ! k,H(a0,...,an)

is a well-defined function, which is obviously regular (look at its restriction to Ui).
We now extend this discussion to any irreducible projective variety V. Such a V can 

be written V d V(p) with p a graded radical ideal in k[X0,...,Xn], and we define the 
homogeneous coordinate ring of V (with its given embedding) to be

khom [V] d k[X0,...,Xn]/p.

Note that khom[V] is the ring of regular functions on the affine cone over V; therefore its 
dimension is dim(V ) C 1. It depends, not only on V, but on the embedding of V into Pn, 
i.e., it is not intrinsic to V. For example,

(a0 w a1) ! (a2 w a0a1 w a2)wP1 —! P2

is an isomorphism from P1 onto its image v(P1)wX0X2 d X^ (see 6.23 below), but 
khom[P1] d k[X0,Xi], which is the affine coordinate ring of the smooth variety A2, whereas 
khom[v(P1)] d k[X0,X1, X2]/(X0X2 — X2), which is the affine coordinate ring of the sin­
gular variety X0X2 — X2.

We say that a nonzero f 2 khom[V] is homogeneous of degree d if it can be repre­
sented by a homogeneous polynomial F of degree d in k[X0,. ..,Xn], and we say that 0 is 
homogeneous of degree 0.

Lemma 6.14. Each element of khom[V] can be written uniquely in the form

f D f0 C----- C fd

with fi homogeneous of degree i .

Proof. Let F represent f; then F can be written F d F0 c----- C Fd with Fi homogeneous
of degree i ; when read modulo p, this gives a decomposition of f of the required type. 
Suppose f also has a decomposition f D Pgi, with gi represented by the homogeneous 
polynomial Gi of degree i. Then F — G 2 p, and the homogeneity of p implies that 
Fi - Gi d (F - G)i 2 p. Therefore fi- d gi. □
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It therefore makes sense to speak of homogeneous elements of k[V]. For such an element 
h, we define D(h) d fP 2 V j h(P) ^ 0g.

Since khom[V] is an integral domain, we can form its field of fractions khom(V). Define

khom(V)0 d j g 2 khom(V) | g and h homogeneous of the same degree| [f0g.

PROPOSITION 6. 15. The field of rational functions on V is k(V) Ddef khom(V )0.

Proof. Consider V0 def U0 \ V. As in the case of Pn, we can identify k[V0] with a subring 
of khom[V], and then the field of fractions of k[V0] becomes identified with khom(V)0. □

g. Regular functions on a projective variety

Let V be an irreducible projective variety, and let f 2 k(V ). By definition, we can write 
f d h with g and h homogeneous of the same degree in khom[V] and h ^ 0. For any 
P d (a0 w ... w an) with h(P) ^ 0,

f(P) Ddef
g(ao;... ;an) 
h(ao;...;an)

is well-defined: if (a0 ; . . . ; an) is replaced by (ca0 ; . . . ; can), then both the numerator and denominator are multiplied by c deg.g / D cdeg.h/ .

We can write f in the form h in many different ways,2 but if

2Unless khom[V] is a unique factorization domain, there will be no preferred representation f d h.

f d g d g0 (in k(V)o), 
h h0

then
gh0 d g0h (in khom[V])

and so
g(ao,...,an)• h0(ao;...;an) dg0(ao;...;an)• h(ao,...,an).

Thus, if h(P) ^ 0, the two representations give the same value for f (P).

PRoPoSITIoN 6. 16. For each f 2 k(V) dDef khom(V )o, there is an open subset U of V, 
where f (P ) is defined, and P 7! f (P ) is a regular function on U ; every regular function 
on an open subset of V arises from a unique element of k(V ).

PRooF. From the above discussion, we see that f defines a regular function on U D 
S D(h), where h runs over the denominators of expressions f d h with g and h homoge­
neous of the same degree in khom[V].

Conversely, let f be a regular function on an open subset U of V, and let P 2 U. Then 
P lies in the open affine subvariety V \ Ui for some i, and so f coincides with the function 
defined by some fP 2 k(V \ Ui) D k(V) on an open neighbourhood of P. If f coincides 
with the function defined by fQ 2 k(V) in a neighbourhood of a second point Q of U, then 
fP and fQ define the same function on some open affine U0, and so fP D fQ as elements 
of k[U0] C k(V). This shows that f is the function defined by fp on the whole of U. □ 
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REMARK 6. 17. (a) The elements of k.V/ D khom.V /0 should be regarded as the algebraic 
analogues of meromorphic functions on a complex manifold; the regular functions on an open 
subset U of V are the “meromorphic functions without poles” on U . [In fact, when k D C, 
this is more than an analogy: a nonsingular projective algebraic variety over C defines a 
complex manifold, and the meromorphic functions on the manifold are precisely the rational 
functions on the variety. For example, the meromorphic functions on the Riemann sphere 
are the rational functions in z .]

(b) We shall see presently (6.24) that, for any nonzero homogeneous h 2 khom[V], D(h) 
is an open affine subset of V . The ring of regular functions on it is

k[D.h/] d fg= hm j g homogeneous of degree m deg(h)} [ f0g:

We shall also see that the ring of regular functions on V itself is just k, i.e., any regular 
function on an irreducible (connected will do) projective variety is constant. However, if U 
is an open nonaffine subset of V, then the ring r.U, Ov/ of regular functions can be almost 
anything — it needn’t even be a finitely generated k-algebra!

h. Maps from projective varieties

We describe the morphisms from a projective variety to another variety.

Proposition 6.18. The map

nw AnC1 x forigin} — Pn, (a0;... ,an) — (a0 w ... w an/

is an open morphism of algebraic varieties. A map aw Pn — V with V a prevariety is regular 
if and only if a 1 n is regular.

Proof. The restriction of n to D.Xi) is the projection

.a0;:::;an) ! ( W ... W )W X V(Xt ) ! ^ ;ai ai

which is the regular map of affine varieties corresponding to the map of k-algebras

Xo Xn —11k ;...; —— k|X0;...;Xnl|X |.Xi ; ; Xi ; ; n i

(In the first algebra Xj is to be thought of as a single symbol.) It now follows from (5.4) that 
n is regular.

Let U be an open subset of knC1 X forigin}, and let U0 be the union of all the lines 
through the origin that meet U, that is, U0 d n~1n(U). Then U0 is again open in knC1 x 
forigin}, because U0 d ScU, c 2 kx, and x — cx is an automorphism of knC1 xforigin}. 
The complement Z of U0 in knC1 x forigin} is a closed cone, and the proof of (6.3) shows 
that its image is closed in Pn; but tf(U) is the complement of n(Z). Thus n sends open sets 
to open sets.

The rest of the proof is straightforward. □

Thus, the regular maps Pn — V are just the regular maps AnC1 x forigin} — V factoring 
through Pn (as maps of sets).
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REMARK 6. 19. Consider polynomials F0.X0;:::;Xm/;:::;Fn.X0;:::;Xm/ of the same 
degree. The map

.a0 W ::: W am/ 7! .F0.a0;:::;am/ W ::: W Fn.a0;:::;am//

obviously defines a regular map to Pn on the open subset of Pm , where not all Fi vanish, 
that is, on the set S D.Fi / D Pn X V.F1;:::;Fn/. Its restriction to any subvariety V of Pm 

will also be regular. It may be possible to extend the map to a larger set by representing it by 
different polynomials. Conversely, every such map arises in this way, at least locally. More 
precisely, there is the following result.

Proposition 6.20. Let V d V.a/ c Pm and W d V.b/ c Pn. A map ‘w V ! W is 
regular if and only if, for every P 2 V, there exist polynomials

F0.X0;:::;Xm/;:::;Fn .X0;:::;Xm/;

homogeneous of the same degree, such that

'..b0 W::: W bn// D.F0.b0;:::;bm/ W::: W Fn.b0;:::;bm//

for all points .b0 W ::: W bm / in some neighbourhood of P in V.a/.

PROOF. Straightforward. □

example 6.21. We prove that the circle X2 C Y 2 D Z2 is isomorphic to P1 . This equation 
can be rewritten .X C i Y/.X — iY/ d Z2, and so, after a change of variables, the equation 
of the circle becomes C W XZ D Y2. Define

'W P1 ! C , .a W b/ 7! .a2 W ab W b2/:

For the inverse, define

wC C P1 bv f .a w b w c/ ! .a w b/ if a ^ 0
WW C ! P Dy ( .a w b w c/! .b w c/ if b ^ 0:

Note that,
a ^ 0 ^ b; ac D b2 H) — D — ba

and so the two maps agree on the set where they are both defined. Clearly, both ' and are 
regular, and one checks directly that they are inverse.

i. Some classical maps of projective varieties

We list some of the classic maps.

Hyperplane sections and complements

6.22. Let L D ci Xi be a nonzero linear form in n C 1 variables. Then the map 

.a0 w w an/ 7! a0 an \
L.a);:::;L(a)J
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is a bijection of D.L/ C Pn onto the hyperplane L.X0;X1 ^.^Xn/ d 1 of AnC1, with 
inverse

.a0; : : : ; an/ 7! .a0 W : : : W an/:

Both maps are regular — for example, the components of the first map are the regular 
functions PXXjX . As V.L — 1/ is affine, so also is D.L/, and its ring of regular functions 

is k|\.X°v ;:::; XV 1. In this ring, each quotient X’ is to be thought of as a singleci Xi ci Xi ci Xi

symbol, and P cj PcjX d 1; thus it is a polynomial ring in n symbols; any one symbol 
v^XP for which Cj ^ 0 can be omitted.ci Xi

For a fixed P D .a0W : : : Wan/ 2 Pn, the set of c D .c0W : : : W cn/ such that

Lc.P/ = XCiai / 0

is a nonempty open subset ofPn (n > 0). Therefore, for any finite set S of points of Pn,

fc 2 Pn j S C D.Lc/g

is a nonempty open subset of Pn (because Pn is irreducible). In particular, S is contained in 
an open affine subset D.Lc/ of Pn. Moreover, if S c V, where V is a closed subvariety of 
Pn, then S C V \ D.Lc/: any finite set of points of a projective variety is contained in an 
open affine subvariety.

The Veronese map; hypersurface sections

6.23. Let
I Df.i0;:::;in/ 2 NnC1 j Xij Dmg:

Note that I indexes the monomials of degree m in n C 1 variables. It has mmCn elements3. 
Write vn;m d (m,Cn) — 1, and consider the projective space Pvnm whose coordinates are 
indexed by I; thus a point of Pvnm can be written .... w bi°:::in w .../. The Veronese mapping 
is defined to be

vwPn ! Pvn;m, (ao w ... w an/ ! .... w bi°:::in w .../, bi°„:in d a0° ...ann.

In other words, the Veronese mapping sends an n C 1-tuple .a0 w . . . w an/ to the set of 
monomials in the ai of degree m. For example, when n D 1 and m D 2, the Veronese map is

P1 ! P2, .ao w a1/ 7! .a2o w aoa1 w a12/.

3This can be proved by induction on m C n. If m d 0 d n, then (0) d 1, which is correct. A general 
homogeneous polynomial of degree m can be written uniquely as

F.X0;X1;...;Xn/ D F1.X1;...;Xn/CX0F2.X0;X1;...;Xn/

with Fi homogeneous of degree m and F2 homogeneous of degree m — 1. But

(men) d (men-1) c (mm",1)

because they are the coefficients of Xm in

.X C 1/mCn D .X C 1/.X C 1)mCn-1;

and this proves the induction.
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Its image is the curve v.P1/ w X0X2 d X2, and the map

.b2;0 W b1;1 W b0;2/ 7! (*2,0 W bi;i/ if b2;0 / 1 
.b1;1 W b0;2/ if b0;2 ^ 0

is an inverse v(P1/ ! P1. (Cf. Example 6.22.)
When n D 1 and m is general, the Veronese map is

P1 ! Pm, (a0 w a1/ ! (am w am 1a1 w ... w am/:

I claim that, in the general case, the image of v is a closed subset of Pvnm and that v 
defines an isomorphism of projective varieties vw Pn ! v(Pn/.

First note that the map has the following interpretation: if we regard the coordinates ai 

of a point P of Pn as being the coefficients of a linear form L D ai Xi (well-defined up 
to multiplication by nonzero scalar), then the coordinates of v(P/ are the coefficients of the 
homogeneous polynomial Lm with the binomial coefficients omitted.

As L ^ 0 ) Lm ^ 0, the map v is defined on the whole of Pn, that is,

(a0;::.;an/ ^ (0,...,0) ) i 0 ..j n ^.^ ^ (0,...,0).

Moreover, L1 ^ cL2 ) Lm ^ cLm, because k[X0;..., Xn] is a unique factorization domain, 
and so v is injective. It is clear from its definition that v is regular.

We shall see in the next chapter that the image of any projective variety under a regular 
map is closed, but in this case we can prove directly that v(Pn/ is defined by the system of 
equations:

bi0:::in ^.j D bk0::.kn b' 0 ...' n , C jh D C aU ^

Obviously Pn maps into the algebraic set defined by these equations. Conversely, let

Vi' Df(.... W bi0:::in W .^ । b0:::0m0:::0 ^ 0g

Then v.Ui/ C Vi' and v_ 1 (Vi/ == Ui. It is possible to write down a regular map Vi- ! Ui 
inverse to v j Ui: for example, define V0 ! Pn to be

(... W bi0:::in W ..^ ! (bm;0;:::;0 W b m - 1;1;0;:::;0 W b m - 1;0;1;0;:::;0 W W bm - 1;0;:::;0;1 ^

Finally, one checks that v (Pn/ C S Vi'.
For any closed variety W C Pn, v j W is an isomorphism of W onto a closed subvariety 

v(W/ of V(Pn/ C Pvn;m.

6.24. The Veronese mapping has a very important property. If F is a nonzero homogeneous 
form of degree m > 1, then V(F/ C Pn is called a hypersurface of degree m and V(F/ \ W 
is called a hypersurface section of the projective variety W. When m D 1, “surface” is 
replaced by “plane”.

Now let H be the hypersurface in Pn of degree m

X ai0:::in X^ X^ D 0,

and let L be the hyperplane in Pvnm defined by

ai0...inXi0...in.
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Then v.H/ d v(Pn/ \L, i.e.,

H.a/ d 0 ■<=” L.v.a// d 0:

Thus for any closed subvariety W of Pn, v defines an isomorphism of the hypersurface 
section W \ H of V onto the hyperplane section v.W/ \ L of v.W/. This observation often 
allows one to reduce questions about hypersurface sections to questions about hyperplane 
sections.

As one example of this, note that v maps the complement of a hypersurface section of 
W isomorphically onto the complement of a hyperplane section of v.W/, which we know 
to be affine. Thus the complement of any hypersurface section of a projective variety is an 
affine variety.

automorphisms of Pn

6.25. An element A D .aij / of GLnC1 defines an automorphism of Pn:

.x0 W : : : W xn/ 7! .: : : W aij xj W : : :/I

clearly it is a regular map, and the inverse matrix gives the inverse map. Scalar matrices act 
as the identity map.

Let PGLnc1 d GLnc1 = kxI, where I is the identity matrix, that is, PGLnc1 is the 
quotient of GLnc1 by its centre. Then PGLnc1 is the complement in p.nC1/ -1 of the 
hypersurface det.Xij / D 0, and so it is an affine variety with ring of regular functions

4This is related to the fundamental theorem of projective geometry — see E. Artin, Geometric Algebra, 
Interscience, 1957, Theorem 2.26.

k[PGLnC1] D fF(. : : ; Xj ; : : .)/ d^Xy । dCg^) D W ’ C ^[ ^.

It is an affine group variety.
The homomorphism PGLnC1 ! Aut.Pn/ is obviously injective. We sketch a proof that 

it is surjective.4 Consider a hypersurface

HWF.X0;...;Xn/ D 0

in Pn and a line
L D f.t a0 W ... W tan/ j t 2 kg

in Pn. The points of H \ L are given by the solutions of

F.ta0;...;tan/ D0,

which is a polynomial of degree < deg.F/ in t unless L C H. Therefore, H \ L contains 
< deg.F/ points, and it is not hard to show that for a fixed H and most L it will contain 
exactly deg.F / points. Thus, the hyperplanes are exactly the closed subvarieties H ofPn 

such that
(a) dim.H/ d n — 1;
(b) #.H \ L/ D 1 for all lines L not contained in H.

These are geometric conditions, and so any automorphism of Pn must map hyperplanes to 
hyperplanes. But on an open subset ofPn, such an automorphism takes the form

.b0 W ... W bn/ 7! .F0.b0;...;bn/ W ... W Fn.b0;...;bn//;

where the Fi are homogeneous of the same degree d (see 6.20). Such a map will take 
hyperplanes to hyperplanes if and only if d D 1.
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The Segre map

6.26. This is the mapping

..a0 W ::: W (^0 W ::: W bn^ ! ((... W a, bj W ^W Pm X Pn ! P^ C m C n :

The index set for pmnCmCn is f(i;j) j 0 < i < m, 0 < j < ng. Note that if we interpret 
the tuples on the left as being the coefficients of two linear forms L1 D ai Xi and 
L2 D PbjYj, then the image of the pair is the set of coefficients of the homogeneous 
form of degree 2, L1 L2 . From this observation, it is obvious that the map is defined on 
the whole of Pm x Pn (L 1 ^ 0 ^ L2 ) L1L2 ^ 0/ and is injective. On any subset of the 
form Ui x Uj it is defined by polynomials, and so it is regular. Again one can show that it 
is an isomorphism onto its image, which is the closed subset of PmnCmCn defined by the 
equations

Wij Wkl - Wil Wkj D 0
- see Shafarevich 1994,15.1. For example, the map

((a0 w a1/;(b0 w b1// ! (a0b0 w a0b1 w a1b0 w a1b1/wP1 xP1 ! P3

has image the hypersurface
H W WZ D XY:

The map
.w W x W y W z/ 7! ..w W y/; .w W x//

is an inverse on the set where it is defined. [Incidentally, P1 x P1 is not isomorphic to 
P2, because in the first variety there are closed curves, e.g., two vertical lines, that don’t 
intersect.]

If V and W are closed subvarieties of Pm and Pn, then the Segre map sends V x W 
isomorphically onto a closed subvariety of PmnCmCn . Thus products of projective varieties 
are projective.

The product P1 x Pn contains many disjoint copies of Pn as closed subvarieties. There­
fore a finite disjoint union of copies of Pn is projective, which shows that a finite disjoint 
union of projective varieties is projective.

There is an explicit description of the topology on Pm x Pn w the closed sets are the sets 
of common solutions of families of equations

F .X0; : : : ; XmI Y0 ; : : : ; Yn/ D 0

with F separately homogeneous in the Xi and in the Yj .

Projections with given centre

6.27. Let L1;: ::;Ln_d be linearly independent linear forms in n C 1 variables. Their 
zero set E in knC1 has dimension d C 1, and so their zero set in Pn is a d -dimensional 
linear space. Define nw Pn — E ! Pn~d_1 by n(a) == (L1(a/ w ... w Ln-d (a//; such a map 
is called a projection with centre E. If V is a closed subvariety disjoint from E, then n 
defines a regular map V ! Pn~d _1. More generally, if F1 ;:::;Fr are homogeneous forms 
of the same degree, and Z D V(F1; : : : ; Fr/, then a 7! (F1 (a/ W : : : W Fr(a// is a morphism 
Pn - Z ! Pr-1.

By carefully choosing the centre E, it is possible to linearly project any smooth curve in 
Pn isomorphically onto a curve in P3 , and nonisomorphically (but bijectively on an open 
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subset) onto a curve in P2 with only nodes as singularities.5 For example, suppose we have 
a nonsingular curve C in P3. To project to P2 we need three linear forms L0, L1, L2 and 
the centre of the projection is the point P0 where all forms are zero. We can think of the 
map as projecting from the centre P0 onto some (projective) plane by sending the point P 
to the point where P0 P intersects the plane. To project C to a curve with only ordinary 
nodes as singularities, one needs to choose P0 so that it doesn’t lie on any tangent to C, any 
trisecant (line crossing the curve in 3 points), or any chord at whose extremities the tangents 
are coplanar. See for example Samuel, P., Lectures on Old and New Results on Algebraic 
Curves, Tata Notes, 1966.

Projecting a nonsingular variety in Pn to a lower dimensional projective space usually 
introduces singularities. Hironaka proved that every singular variety arises in this way in 
characteristic zero. See Chapter 8.

Application

Proposition 6.28. Every finite set S of points of a quasiprojective variety V is contained 
in an open affine subset of V .

PROOF. Regard V as a subvariety ofPn, let VN be the closure of V in Pn, and let Z D VN X V . 
Because S \ Z D ;, for each P 2 S there exists a homogeneous polynomial FP 2 I.Z/ 
such that Fp .P/ ^ 0. We may suppose that the Fp have the same degree. An elementary 
argument shows that some linear combination F of the FP, P 2 S, is nonzero at each P. 
Then F is zero on Z, and so V \ D.F/ is an open affine of V , but F is nonzero at each P, 
and so VN \ D.F/ contains S. □

j. Maps to projective space

Under construction.

NOTES. There is no nonconstant map Pn ! An . However, there is a surjective regular map AnC1 X 
f0/ ! Pn,namely, .Xo,...^/ ! .x0w---w xn). Somewhat surprisingly, there are surjective regular 
maps An ! Pn . Consider the map

.X0 W ::: W Xn / ! (X^ W ' ' ' W X^ W Pn ! Pn :

It is mW 1 with m > 1 except over the points .0:•••: 1: ■ • • w 0/. If H is a general hyperplane avoiding 
these points, then Pn x H « An still maps onto Pn. For example, when we take

H w Xo C ■ ■ ■ C xn d 0,

we obtain the surjective map

.X1;:::;Xn/ ! {X j W ' ' ' W X^W Q ~ X1-----------Xn / 2 / W An ! Pn:

k. Projective space without coordinates

Let E be a vector space over k of dimension n. The set P.E/ of lines through zero in E has 
a natural structure of an algebraic variety: the choice of a basis for E defines a bijection 
P.E/ ! Pn , and the inherited structure of an algebraic variety on P.E/ is independent of

5A nonsingular curve of degree d in P2 has genus .d~1/2d~2/. Thus, if g is not of this form, a curve of 
genus g can’t be realized as a nonsingular curve in P2 .

http://www.urbanfonts.com/blog/wp-content/uploads/2013/04/12.gif
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the choice of the basis (because the bijections defined by two different bases differ by an 
automorphism of Pn). Note that in contrast to Pn, which has n C 1 distinguished hyperplanes, 
namely, X0 D 0; : : : ; Xn D 0, no hyperplane in P.E/ is distinguished.

l. The functor defined by projective space

Let R be a k-algebra. A submodule M of an R-module N is said to be a direct summand of 
N if there exists another submodule M0 of M (a complement of M) such that N d M ® M0. 
Let M be a direct summand of a finitely generated projective R-module N. Then M is also 
finitely generated and projective, and so Mm is a free Rm-module of finite rank for every 
maximal ideal m in R. If Mm is of constant rank r, then we say that M has rank r. See CA 
§12.

Let
P n.R/ D fdirect summands of rank 1 of RnC1 g.

Then Pn is a functor from k-algebras to sets. When K is a field, every K -subspace of KnC1 

is a direct summand, and so Pn.K/ consists of the lines through the origin in KnC1.
Let Hi be the hyperplane Xi D 0 in knC1, and let

Pi(R) D fL 2 Pn.R/ j L ® HR d RnC1g:

Let L 2 Pi .R/; then
ei D ' +12 aj ej.

j &

Now
L ! .aj/j# W Pi (R) ! Ui .R/ ‘ Rn

is a bijection. These combine to give an isomorphism Pn .R/ ! Pn.R/:

Pn.R/ ------- » Y Pi(R) =| Y Pi (R) \ Pj(R)
। 0<i <n 0<ij <n

xk J/ 4/
Pn.R/ --------Y Y Ui (R) =} Y Ui .R/ \ Uj (R).

0<i <n 0<i;j <n

More generally, to give a regular map from a variety V to Pn is the same as giving 
an isomorphism class of pairs .L; .s0; : : : ; sn// where L is an invertible sheaf on V and 
s0; : : : ;sn are sections of L that generate it.

m. Grassmann varieties

Let E be a vector space over k of dimension n, and let Gd.E/ be the set of d -dimensional 
subspaces of E. When d D 0 or n, Gd .E/ has a single element, and so from now on we 
assume that 0 < d < n. Fix a basis for E, and let S 2 Gd.E/. The choice of a basis for S 
then determines a d x n matrix A.S/ whose rows are the coordinates of the basis elements. 
Changing the basis for S multiplies A.S/ on the left by an invertible d x d matrix. Thus, the 
family of d x d minors of A.S/ is determined up to multiplication by a nonzero constant, 
and so defines a point P .S/ in P 1.
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Proposition 6.29. The map S ! P.S/w Gd(E/ ! PP 1 is injective, with image a 
closed subset of P P-1.

We give the proof below. The maps P defined by different bases of E differ by an 
automorphism of P P 1, and so the statement is independent of the choice of the basis 
— later (6.34) we shall give a “coordinate-free description” of the map. The map realizes 
Gd .E/ as a projective algebraic variety called the Grassmann variety of d -dimensional 
subspaces of E.
example 6.30. The affine cone over a line in P3 is a two-dimensional subspace of k4. 
Thus, G2.k4/ can be identified with the set of lines in P3. Let L be a line in P3, and let 
x D .x0 w x1 w x2 w x3/ and y D .y0 w y1 w y2 w y3/ be distinct points on L. Then

P.L/ D .p01 w p02 w p03 w p12 w p13 w p23/ 2 P5; pij dDef xi
yi yj

xj

depends only on L. The map L 7! P.L/ is a bijection from G2.k4/ onto the quadric

n w X01X23 — X02X13 C X03X12 d 0
in P5. For a direct elementary proof of this, see (9.41, 9.42) below.

Remark 6.31. Let S0 be a subspace of E of complementary dimension n — d, and let 
Gd.E/S0 be the setofS 2 Gd.V/ such that S\S0 D f0g. Fix an S0 2 Gd.E/S0, so that 
E d S0 ® S0. For any S 2 Gd (V/s0, the projection S ! S0 given by this decomposition is 
an isomorphism, and so S is the graph of a homomorphism S0 ! S0:

s 7! s0 ” .s; s0/ 2 S:

Conversely, the graph of any homomorphism S0 ! S0 lies in Gd .V /S0. Thus,

Gd(V/s0 Hom.So;S0/ Hom(E=S0;S0/: (27)

The isomorphism Gd(V/s0 Hom(E=S0;S0/ depends on the choice of S0 — it is the 
element of Gd(V/s0 corresponding to 0 2 Hom(E=S0; S0/. The decomposition E d S0 ® S0 

gives a decomposition 

End.E/ D End.S0/
Hom.S0;S0/

Hom.S0;S0/
End.S 0/ ;

and the bijections (27) show that the group Hom.s1 0;s0/ 10 acts simply transitively on 
Gd.E/s0.

REMARK 6.32. The bijection (27) identifies Gd.E/s0 with the affine variety A.Hom.S0; S0// 
defined by the vector space Hom.S0 ; S0/ (cf. p. 72). Therefore, the tangent space to Gd .E/ 
at S0,

Ts0.Gd.E//'Hom.S0;S0/'Hom.S0;E=S0/: (28)

Since the dimension of this space doesn’t depend on the choice of S0, this shows that Gd.E/ 
is nonsingular (4.39).
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Remark 6.33. Let B be the set of all bases of E. The choice of a basis for E identifies
B with GLn, which is the principal open subset of An where det ^ 0. In particular, 
B has a natural structure as an irreducible algebraic variety. The map .e1 ; : : : ; en/ 7! 
he1 ; : : : ; ediW B ! Gd.E/ is a surjective regular map, and so Gd.E/ is also irreducible.

Remark 6.34. The exterior algebra V E d Ld>0 Vd E of E is the quotient of the tensor 
algebra by the ideal generated by all vectors e <8> e, e 2 E. The elements of Vd E are called 
(exterior) d -vectors:The exterior algebra of E is a finite-dimensional graded algebra over k 
with V0 E d k, V1 E d E; if e1 ;:::;en form an ordered basis for V, then the (n) wedge 
products

6If e 2 S0 \ S is nonzero, we may choose it to be part of the basis for S, and then the left-most d x d 
submatrix of A(S) has a row of zeros. Conversely, if the left-most d x d submatrix is singular, we can change 
the basis for S so that it has a row of zeros; then the basis element corresponding to the zero row lies in S0 \ S.

ei1 A ::: A gi'^ ^1 < ■■■ ^d /

form an ordered basis for Vd E. In particular, Vn E has dimension 1. For a subspace S of 
E of dimension d, Vd S is the one-dimensional subspace ofVd E spanned by e1 A : : :Aed 

for any basis e1 ; : : : ; ed of S. Thus, there is a well-defined map

S ! Ad SW Gd .E/ ! P.Ad E/ (29)

which the choice of a basis for E identifies with S 7! P .S/. Note that the subspace spanned 
by e1 ; : : : ; en can be recovered from the line through e1 A : : : A ed as the space of vectors v 
such that v A e1 A : : : A ed D 0 (cf. 6.35 below).

First proof of Proposition 6.29.

Fix a basis e1 ; : : : ;en of E, and let S0 D he1 ; : : : ;edi and S0 D hed C1 ; : : : ; eni. Order the 
coordinates in P A 1 so that

P.S/ D .a0W::: W aijW:::W : ::/;

where a0 is the left-most d x d minor of A.S/, and aij, 1 < i < d, d < j < n, is the minor 
obtained from the left-most d x d minor by replacing the i th column with the j th column. 
Let U0 be the (“typical”) standard open subset of P d^ 1 consisting of the points with 
nonzero zeroth coordinate. Clearly,6 P.S/ 2 U0 if and only if S 2 Gd.E/S0. We shall prove 
the proposition by showing that P W Gd .E/S0 ! U0 is injective with closed image.

For S 2 Gd .E/so, the projection S ! S0 is bijective. For each i, 1 < i < d, let

e0 D ei C Pd<j<n aijej (30)
denote the unique element of S projecting to ei . Then e10 ; : : : ;ed0 is a basis for S. Conversely, 
for any .aij/ 2 kd.n_d/, the ei defined by (30) span an S 2 Gd .E/so and project to the ei. 
Therefore, S $ .aij/ gives a one-to-one correspondence Gd .E/so $ kd.n_d/ (this is a 
restatement of (27) in terms of matrices).

Now, if S $ .aij /, then

P.S/D.1W:::WaijW:::W:::Wfk.aij/W:::/:
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where fk .aij / is a polynomial in the aij whose coefficients are independent of S. Thus, 
P.S/ determines .aij / and hence also S. Moreover, the image of PW Gd.E/S0 ! U0 is the 
graph of the regular map

.:::;aij ;:„/ ! (:::,f (fl jj /, W A d" d’ ! A( d ^-^t^^-d/-1 ,

7In more detail, the map

w ! (v ! v A w/w A E ! Homk (E, A E/

is injective and linear, and so defines an injective regular map

P(Ad E/,! P(Homk(E;AdC1E//:

The condition rank < n — d defines a closed subset W of P(Homk (E, VdC1 E// (once a basis has been chosen 
for E, the condition becomes the vanishing of the minors of order n — d C 1 of a linear map E ! VdC1 E), and

Gd(E/DP(VdE/\W:

which is closed (5.28).

Second proof of Proposition 6.29.

An exterior d -vector v is said to be pure (or decomposable) if there exist vectors e1 ; : : : ;ed 2 
V such that v d e 1 A :„ A ed. According to 6.34, the image of Gd (E/ in P(Vd E/ consists 
of the lines through the pure d -vectors.

Lemma 6.35. Let w be a nonzero d -vector and let

M(w/ D fv 2 E j v Aw D 0gI

then dimk M(w/ < d, with equality if and only if w is pure.

PROOF. Let e1 ; : : : ;em be a basis of M(w/, and extend it to a basis e1; : : : ;em; : : : ;en of V . 
Write

w D ai1:::id ei1 A:::Aeid; ai1:::id 2k.
1<i1<:::<td

If there is a nonzero term in this sum in which ej does not occur, then ej A w V 0. Therefore, 
each nonzero term in the sum is of the form ae1 A:„ A em A:::. It follows that m < d, and 
m d d if and only if w d ae1 A:„ A ed with a V 0. □

For a nonzero d-vector w, let [w] denote the line through w. The lemma shows that 
[w] 2 Gd (E/ if and only if the linear map v ! v A ww E ! VdC1 E has rank < n — d (in 
which case the rank is n — d). Thus Gd (E/ is defined by the vanishing of the minors of 
order n — d C 1 of this map. 7

Flag varieties

The discussion in the last subsection extends easily to chains of subspaces. Let d D 
(d1;:::; dr/ be a sequence of integers with 0 < d1 < ••• < dr < n, and let Gd(E/ be the set 
of flags

F w E D E 1 D---D Er D 0 (31) 
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with Ei a subspace of E of dimension di . The map

8For example, if ui is a pure di -vector and uiC1 is a pure di C1 -vector, then it follows from (6.35) that 
M.ui / C M.uici/ if and only if the map

v! (v A ui ;V A ui ci/w E ! ^ i E ® ^ iC1 E

has rank < n — di (in which case it has rank n — di). Thus, Gd.E/ is defined by the vanishing of many minors.

Gd.E/ F!.E!\ Qi Gdi .e/ c Qi p.Vdi e/

realizes Gd.E/ as a closed subset8 Qi Gdi .E/, and so it is a projective variety, called a flag 
variety. The tangent space to Gd .E/ at the flag F consists of the families of homomorphisms

‘i w Ei ! E=Ei; 1 < i < r (32)

that are compatible in the sense that

‘i jEiC1 = ‘iC1 mod EiC1.

ASIDE 6.36. A basis e1 ; : : : ; en for E is adapted to the flag F if it contains a basis e1 ; : : : ; eji for 
each Ei . Clearly, every flag admits such a basis, and the basis then determines the flag. As in (6.33), 
this implies that Gd.E/ is irreducible. Because GL.E / acts transitively on the set of bases for E, it 
acts transitively on Gd.E/. For a flag F, the subgroup P.F/ stabilizing F is an algebraic subgroup 
of GL.E /, and the map

g 7! gF0WGL.E/=P.F0/ ! Gd.E/

is an isomorphism of algebraic varieties. Because Gd.E/ is projective, this shows that P.F0/ is a 
parabolic subgroup of GL.E /.

n. Bezout’s theorem

Let V be a hypersurface in Pn (that is, a closed subvariety of dimension n — 1). For such a 
variety, I.V/ D .F.X0; . . . ; Xn// with F a homogenous polynomial without repeated factors. 
We define the degree of V to be the degree of F .

The next theorem is one of the oldest, and most famous, in algebraic geometry.

theorem 6.37. Let C and D be curves in P2 of degrees m andn respectively. If C and D 
have no irreducible component in common, then they intersect in exactly mn points, counted 
with appropriate multiplicities.

Proof. Decompose C and D into their irreducible components. Clearly it suffices to prove 
the theorem for each irreducible component of C and each irreducible component of D. We 
can therefore assume that C and D are themselves irreducible.

We know from 2.62 that C \ D is of dimension zero, and so is finite. After a change of 
variables, we can assume that a ^ 0 for all points .a w b w c/ 2 C \ D.

Let F.X; Y; Z/ and G.X; Y; Z/ be the polynomials defining C and D, and write

F d soZm csiZm-1 c-.-csm; G d toZn c tiZn~1 c-.-c tn

with si and tj polynomials in X and Y of degrees i and j respectively. Clearly sm ^ 0 ^ tn, 
for otherwise F and G would have Z as a common factor. Let R be the resultant of F and 
G, regarded as polynomials in Z. It is a homogeneous polynomial of degree mn in X and
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Y, or else it is identically zero. If the latter occurs, then for every .a; b/ 2 k2, F.a;b; Z/ 
and G.a; b; Z/ have a common zero, which contradicts the finiteness of C \ D. Thus R 
is a nonzero polynomial of degree mn. Write R.X; Y/ d XmnR*(Y/, where R*(T/ is a 
polynomial of degree < mn in T d Y.

Suppose first that deg R* d mn, and let ai,..., amn be the roots of R* (some of them 
may be multiple). Each such root can be written ai d Oi, and R.ai, bi/ d 0. According to 
7.28 this means that the polynomials F.ai ;bi ; Z/ and G.ai; bi; Z/ have a common root ci. 
Thus .ai W bi W ci/ is a point on C \ D, and conversely, if .a W b W c/ is a point on C \ D (so 
a ^ 0/, then O is a root of R*(T/. Thus we see in this case, that C \ D has precisely mn 
points, provided we take the multiplicity of .a w b w c/ to be the multiplicity of ba as a root of 
R*.

Now suppose that R* has degree r < mn. Then R(X,Y/ d Xmn~rP(X;Y/, where 
P.X; Y/ is a homogeneous polynomial of degree r not divisible by X. Obviously R.0; 1/ D 
0, and so there is a point (0 w 1 w c/ in C \ D, in contradiction with our assumption. □

Remark 6.38. The above proof has the defect that the notion of multiplicity has been too 
obviously chosen to make the theorem come out right. It is possible to show that the theorem 
holds with the following more natural definition of multiplicity. Let P be an isolated point 
of C \ D . There will be an affine neighbourhood U of P and regular functions f and g 
on U such that C \ U D V .f / and D \ U D V .g/. We can regard f and g as elements 
of the local ring OP , and clearly rad.f; g/ D m, the maximal ideal in OP. It follows that 
OP =.f; g/ is finite-dimensional over k, and we define the multiplicity of P in C \ D to be 
dimk.OP =.f; g//. For example, if C and D cross transversely at P, then f and g will form 
a system of local parameters at P — .f; g/ D m — and so the multiplicity is one.

The attempt to find good notions of multiplicities in very general situations motivated 
much of the most interesting work in commutative algebra in the second half of the twentieth 
century.

o. Hilbert polynomials (sketch)

Recall that for a projective variety V c Pn,

khom[V] D k[Xo;:::;Xn]=b dk[xo,...,xn],

where b d I(V/. We observed that b is graded, and therefore khom[V] is a graded ring:

khom[V] D m>o khom[V]m;

where khom[V]m is the subspace generated by the monomials in the xi of degree m. Clearly 
khom[V]m is a finite-dimensional k-vector space.

Theorem 6.39. Thereis a unique polynomial P(V;T/ such that P(V,m/ d dimk k[V]m 
for all m sufficiently large.

Proof. Omitted. □

Example 6.40. For V d Pn, khom[V] d k[X0,...,Xn], and (see the footnote on page 
141), dimkhom[V]m d (mCn) d (mCn)n-;(mC1/, and so

P.Pn;T/ D TCnn
(T Cn/••• (T C 1/

n!
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The polynomial P.V; T/ in the theorem is called the Hilbert polynomial of V . Despite 
the notation, it depends not just on V but also on its embedding in projective space.

Theorem 6.41. Let V be a projective variety of dimension d and degree 1; then

P.V,T) d dyT d C terms of lower degree.

Proof. Omitted.

The degree of a projective variety is the number of points in the intersection of the 
variety and of a general linear variety of complementary dimension (see later).

Example 6.42. Let V be the image of the Veronese map

.a0 w a1/ ! .ad w ad~1a1 w ... w ad/wP1 ! Pd.

Then khom[V]m can be identified with the set of homogeneous polynomials of degree m • d 
in two variables (look at the map A2 ! AdC1 given by the same equations), which is a 
space of dimension dm C 1, and so

P.V;T/ D dTC 1:

Thus V has dimension 1 (which we certainly knew) and degree d .

Macaulay knows how to compute Hilbert polynomials.
References: Hartshorne 1977, I.7; Harris 1992, Lecture 13.

p. Dimensions

The results for affine varieties extend to projective varieties with one important simplification: 
if V and W are projective varieties of dimensions r and s in Pn and r C s > n, then 
v \ w /;.

Theorem 6.43. Let V d V.a/ c Pn be a projective variety of dimension > 1, and let 
f 2 k[X0;: ::;Xn] be homogeneous, nonconstant, and 0 a; then V \ V.f / is nonempty and 
of pure codimension 1.

PRooF. Since the dimension of a variety is equal to the dimension of any dense open affine 
subset, the only part that doesn’t follow immediately from 3.42 is the fact that V \ V.f/ 
is nonempty. Let V aff.a/ be the zero set of a in AnC1 (that is, the affine cone over V/. 
Then V aff.a/ \ V aff.f / is nonempty (it contains .0; : : : ; 0/), and so it has codimension 1 in 
Vaff.a/. Clearly Vaff.a/ has dimension > 2, and so Vaff.a/ \ Vaff.f / has dimension > 1. 
This implies that the polynomials in a have a zero in common with f other than the origin, 
and so V.a/ \ V.f / / ;. □

Corollary 6.44. Let f1,...,fr be homogeneous nonconstant elements of k[Xo,...,Xn]; 
and let Z be an irreducible component of V \ V(f1,...fr/. Then codim.Z) < r, and if 
dim.V/ > r, then V \ V.f1,...fr/ is nonempty.

□PRooF. Induction on r , as before.
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Proposition 6.45. Let Z be an irreducible closed subvariety of V ; if codim.Z/ D r, 
then there exist homogeneous polynomials fi ,...,fr in k [X0 ,...,Xn] such that Z is an 
irreducible component of V \ V.f1 ; : : : ; fr/.

Proof. Use the same argument as in the proof 3.47. □

PROPOSITION 6.46. Every pure closed subvariety Z of Pn of codimension one is principal, 
i.e., I(Z) d (f) for some f homogeneous element of k[X0,...,Xn].

Proof. Follows from the affine case. □

Corollary 6.47. Let V and W be closed subvarieties of Pn; if dim(V) C dim(W) > n, 
then V \ W ^ ;, and every irreducible component of it has codim(Z) <codim(V)Ccodim(W).

PRooF. Write V D V(a) and W D V(b), and consider the affine cones V 0 D V(a) and 
W 0 D V (b) over them. Then

dim(V0) C dim(W0) d dim(V) C 1 C dim(W) C 1 > n C 2.

As V0 \ W0 ^ ;, V0 \ W0 has dimension > 1, and so it contains a point other than the origin. 
Therefore V \ W ^ ;. The rest of the statement follows from the affine case. □

PRoPoSITIoN 6.48. Let V be a closed subvariety ofPn of dimension r < n; then there is a 
linear projective variety E of dimension n — r — 1 (that is, E is defined by r C 1 independent 
linear forms) such that E \ V D ;.

PRooF. Induction on r . If r D 0, then V is a finite set, and the lemma below shows that 
there is a hyperplane in knC1 not meeting V.

Suppose r > 0, and let V1 ; . . . ; Vs be the irreducible components of V . By assumption, 
they all have dimension < r. The intersection Ei of all the linear projective varieties 
containing Vi is the smallest such variety. The lemma below shows that there is a hyperplane 
H containing none of the nonzero Ei ; consequently, H contains none of the irreducible 
components Vi- of V, and so each Vi- \ H is a pure variety of dimension < r — 1 (or is empty). 
By induction, there is an linear subvariety E0 not meeting V \ H. Take E d E0 \ H. □

Lemma 6.49. Let W be a vector space of dimension d over an infinite field k, and let 
E1 ; . . . ; Er be a finite set of nonzero subspaces of W. Then there is a hyperplane H in W 
containing none of the Ei .

PRooF. Pass to the dual space V of W. The problem becomes that of showing V is not 
a finite union of proper subspaces Ei_ . Replace each Ei_ by a hyperplane Hi containing 
it. Then Hi is defined by a nonzero linear form Li. We have to show that QLj is not 
identically zero on V. But this follows from the statement that a polynomial in n variables, 
with coefficients not all zero, cannot be identically zero on kn (Exercise 1-1). □

Let V and E be as in Proposition 6.48. If E is defined by the linear forms L0; . . . ; Lr 

then the projection a ! (L0(a) w ••• w Lr(a)) defines a map V ! Pr. We shall see later 
that this map is finite, and so it can be regarded as a projective version of the Noether 
normalization theorem.

In general, a regular map from a variety V to Pn corresponds to a line bundle on V 
and a set of global sections of the line bundle. All line bundles on An X foriging are trivial 
(see, for example, Hartshorne II 7.1 and II 6.2), from which it follows that all regular maps 
AnC1 X foriging ! Pm are given by a family of homogeneous polynomials. Assuming this, 
it is possible to prove the following result.
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Corollary 6.50. Let aw Pn ! Pm be regular; if m <n, then a is constant.

Proof. Let nw AnC1 — foriging ! Pn be the map (a0,... ,an) ! (a0 w... w an). Then a i n 
is regular, and there exist polynomials F0 ,...,Fm 2 k [X0 ,...,Xn] such that a i n is the map

.a0,::: ,an/ 7! .F0.a/ w ::: w Fm.a//:

As a i n factors through Pn, the Fi must be homogeneous of the same degree. Note that

a.a0 w ... w an/ D .F0.a/ w ... w Fm.a//.

If m < n and the Fi are nonconstant, then 6.43 shows they have a common zero and so a is 
not defined on all of Pn. Hence the Fi must be constant. □

q. Products

It is useful to have an explicit description of the topology on some product varieties.

The topology on Pm x Pn.

Suppose we have a collection of polynomials Fi .X0, . . . ,XmI Y0,. . . , Yn/, i 2 I, each of 
which is separately homogeneous in the Xi and Yj . Then the equations

Fi.X0,...,XmIY0,...,Yn/ D 0, i 2 I,

define a closed subset of Pm x Pn, and every closed subset of Pm x Pn arises in this way 
from a (finite) set of polynomials.

The topology on Am x Pn

The closed subsets of Am x Pn are exactly those defined by sets of equations

Fi.X1,...,XmIY0,...,Yn/ D 0, i 2 I,

with each Fi homogeneous in the Yj .

The topology on V x Pn

Let V be an irreducible affine algebraic variety. We look more closely at the topology 
on V x Pn in terms of ideals. Let A d k[V], and let B d A[X0,..., Xn]. Note that B d 
A <8>k k[X0,.. .,Xn], and so we can view it as the ring of regular functions on V x AnC1: for 
f 2 A and g 2 k[X0,..., Xn], f <8> g is the function

(v,a) ! f (v) • g(a)w V x AnC1 ! k.

The ring B has an obvious grading — a monomial aX0i0 . . .Xnin, a 2 A, has degree Pij — 
and so we have the notion of a graded ideal b c B .It makes sense to speak of the zero set 
V(b) c V x Pn of such an ideal. For any ideal a c A, aB is graded, and V(aB) d V(a) x Pn.

Lemma 6.51. (a) For each graded ideal b c B, the set V(b) is closed, and every closed 
subset of V x Pn is of this form.

(b) The set V(b) is empty if and only if rad(b) D (X0,..., Xn).
(c) IfV is irreducible, then V D V(b) for some graded prime ideal b.
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Proof. (a) In the case that A D k, we proved this in 6.1 and 6.2, and similar arguments 
apply in the present more general situation. For example, to see that V.b/ is closed, cover 
Pn with the standard open affines Ui and show that V.b/ \ Ui is closed for all i.

The set V.b) is empty if and only if the cone Vaff.b) C V x AnC1 defined by b is 
contained in V x foriging. But

X ' ai0:::in X00 : : : X^n ; ^00:::^ 2 kf^j^

is zero on V x foriging if and only if its constant term is zero, and so

Iaff.V x foriging/ d .X0;X1;:: . ,X„).

Thus, the Nullstellensatz shows that V.b/ D ; ) rad.b/ D .X0; : : : ; Xn/. Conversely, if 
XiN 2 b for all i , then obviously V.b/ is empty.

For (c), note that if V.b) is irreducible, then the closure of its inverse image in V x AnC1 

is also irreducible, and so I V.b) is prime. □

Exercises

6-1. Show that a point P on a projective curve F.X; Y; Z) D 0 is singular if and only if 
@F=@X, @F=@Y, and @F =@Z are all zero at P. If P is nonsingular, show that the tangent 
line at P has the (homogeneous) equation

.@F=@X)PX C.@F=@Y)PY C.@F=@Z)P Z D0.

Verify that Y2Z D X3 C aXZ2 C bZ3 is nonsingular if X3 C aX C b has no repeated root, 
and find the tangent line at the point at infinity on the curve.

6-2. Let L be a line in P2 and let C be a nonsingular conic in P2 (i.e., a curve in P2 defined 
by a homogeneous polynomial of degree 2). Show that either

(a) L intersects C in exactly 2 points, or
(b) L intersects C in exactly 1 point, and it is the tangent at that point.

6-3. Let V d V.Y - X2,Z - X3) c A3. Prove
(a) I.V) D .Y - X2;Z - X3);
(b) ZW - XY 2 I.V)* C k[W;X;Y;Z], but ZW - XY £ ..Y - X 2)*;.Z - X 3)*). 

(Thus, if F1;...; Fr generate a, it does not follow that Ff,..., F* generate a*, even 
if a* is radical.)

6-4. Let P0 ; . . . ; Pr be points in Pn . Show that there is a hyperplane H in Pn passing 
through P0 but not passing through any of P1 ; . . . ; Pr .

6-5. Is the subset
f.a w b w c) j a / 0; b / 0g[f.1 w 0 w 0)g

of P2 locally closed?

6-6. Show that the image of the Segre map Pm x Pn ! pmnCmCn (see 6.26) is not contained 
in any hyperplane of PmnCmCn .



156 6. Projective Varieties

6-7. Write 0, 1, 1 for the points .0W 1/, .1W 1/, and .1W 0/ on P1 .
(a) Let a be an automorphism of P1 such that

U(0) D 0; a(1/ D 1; a(l) D 1:

Show that a is the identity map.
(b) Let P0 , P1 , P2 be distinct points on P1 . Show that there exists an a 2 pgl2 (k) such 

that
a(0) D P0; a(1) D P1; a(1) D P2:

(c) Deduce that Aut(P1 ) ' pgl2 (k).

6-8. Show that the functor

R P n(R) D fdirect summands of rank 1 of RnC1g

satisfies the criterion 5.71 to arise from an algebraic prevariety. (This gives an alternative 
definition of Pn .)

6-9. (a) Let V c An and W c Pm be algebraic varieties and ‘w V ! W a map. Show that 
' is regular if and only if every point in V has an open neighbourhood U on which there are 
regular functions f0 ; : : : ; fm such that

'(a1;:::;an) D (f0(a1;:::;an)W:::Wfm(a1;:::;an))

for all (a1 ; : : : ; an) 2 U .
(b) Show that, for a regular map ' as in (a), it may not be possible to take U D V. Hint: 

Let V C A4 be the complement of (0;0;0;0) in

XY - ZW d 0;

and let 'W V ! P1 send (w;x;y;z) to (xW z) if one of x or z is nonzero and (w;0;y;0) to 
(wW y). See sx4626969 (Mohan).



Chapter

Complete Varieties

Complete varieties are the analogues in the category of algebraic varieties of compact 
topological spaces in the category of Hausdorff topological spaces. Recall that the image of 
a compact space under a continuous map is compact, and hence is closed if the image space 
is Hausdorff. Moreover, a Hausdorff space V is compact if and only if, for all topological 
spaces T, the projection map qw V x T ! T is closed, i.e., maps closed sets to closed sets 
(see Bourbaki, N., General Topology, I, 10.2, Corollary 1 to Theorem 1).

a. Definition and basic properties

Definition

DEFINITION 7.1. An algebraic variety V is complete if for all algebraic varieties T , the 
projection map qw V x T ! T is closed.

Note that a complete variety is required to be separated — we really mean it to be a 
variety and not a prevariety. We shall see 7.22 that projective varieties are complete.

Example 7.2. Consider the projection map

(x,y/ ! y w A1 x A1 ! A1:

This is not closed; for example, the variety V w X Y D 1 is closed in A2 but its image in A1 

omits the origin. However, when we replace V with its closure in P1 x A1, its projection 
becomes the whole of A1 . To see this, note that

VDf f((xwz/,y/ 2 P1 x A1 j xy d z2g

contains V as an open dense subset, and so must be its closure in P1 x A1. The point 
((x w 0/; 0/ of VN maps to 0.

Properties

7.3. Closed subvarieties of complete varieties are complete.

Let Z be a closed subvariety of a complete variety V. For any variety T, Z x T is closed in 
V x T, and so the restriction of the closed map qw V x T ! T to Z x T is also closed.

7.4. A variety is complete if and only if its irreducible components are complete.

157
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Each irreducible component is closed, and hence complete if the variety is complete (7.3). 
Conversely, suppose that the irreducible components Vi of a variety V are complete. If Z is 
closed in V x T, then Zi D Z \ (Vi x T/ is closed in Vi x T. Therefore, q(Zi/ is closed in 
T, and so q.Z/ D S q.Zi/ is also closed.

7.5. Products of complete varieties are complete.

Let V1;:::; Vn be complete varieties, and let T be a variety. The projection (Qi V-) x T ! T 
is the composite of the projections

V1 x-.-x Vn x T ! V2 x-.-x Vn x T ! ... ! Vn x T ! T;

all of which are closed.

7.6. If 'W W ! V is surjective and W is complete, then V is complete.

Let T be a variety, and let Z be a closed subset of V x T. Let Z 0 be the inverse image of Z 
in W x T. Then Z 0 is closed, and its image in T equals that of Z.

7.7. Let 'W W ! V be a regular map of varieties. If W is complete, then '.W/ is a 
complete closed subvariety of V. In particular, every complete subvariety of a variety is 
closed.

Let r‘ D f (w;‘(w//g c W x V be the graph of '. It is a closed subset of W x V (because 
V is a variety, see 5.28), and '(W/ is the projection of r‘ into V. Therefore '(W/ is closed, 
and 7.6 shows that it is complete. The second statement follows from the first applied to the 
identity map.

7.8. A regular map V ! P1 from a complete connected variety V is either constant or 
surjective.

The only proper closed subsets of P1 are the finite sets, and such a set is connected if and 
only if it consists of a single point. Because '(V/ is connected and closed, it must either be 
a single point (and ' is constant) or P1 (and ' is onto).

7.9. The only regular functions on a complete connected variety are the constant functions.

A regular function on a variety V is a regular map f w V ! A1 C P1, to which we can apply 
7.8.

7.10. A regular map 'W V ! W from a complete connected variety to an affine variety has 
image equal to a point. In particular, every complete connected affine variety is a point.

Embed W as a closed subvariety ofAn, and write ' D ('1 ; : : : ;'n/, where 'i is the composite 
of ' with the coordinate function xiWAn ! A1. Each 'i is a regular function on V, and 
hence is constant. (Alternatively, apply 5.12.) This proves the first statement, and the second 
follows from the first applied to the identity map.

7.11. In order to show that a variety V is complete, it suffices to check that qw V x T ! T 
is a closed mapping when T is affine (or even an affine space An).

Every variety T can be written as a finite union of open affine subvarieties T D S Ti. If Z 
is closed in V x T, then Zi def Z \ (V x Ti / is closed in V x Ti. Therefore, q (Zi / is closed 
in Ti for all i. As q(Zi/ D q(Z/ \ Ti, this shows that q(Z/ is closed. This shows that it 
suffices to check that V x T ! T is closed for all affine varieties T. But T can be realized 
as a closed subvariety of An, and then V x T ! T is closed if V x An ! An is closed.
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Remarks

7.12. The statement that a complete variety V is closed in every larger variety W perhaps 
explains the name: if V is complete, W is connected, and dim V D dim W , then V D W . 
Contrast An C Pn.

7.13. Here is another criterion: a variety V is complete if and only if every regular map 
C X fPg ! V extends uniquely to a regular map C ! V ; here P is a nonsingular point on a 
curve C. Intuitively, this says that all Cauchy sequences have limits in V and that the limits 
are unique.

b. Proper maps

DEFINITION 7.14. A regular map 'W V ! S of varieties is said to be proper if it is “univer­
sally closed”, that is, if for all regular maps T ! S, the base change ‘0w V xS T ! T of ‘ 
is closed.

7.15. For example, a variety V is complete if and only if the map V ! fpointg is proper.

7.16. From its very definition, it is clear that the base change of a proper map is proper. In 
particular,

(a) if V is complete, then V x S ! S is proper,
(b) if ' w V ! S is proper, then the fibre '_1 (P/ over a point P of S is complete.

7.17. If 'w V ! S is proper, and W is a closed subvariety of V, then W —> S is proper.

Proposition 7. 18. A composite of proper maps is proper.

Proof. Let V3 ! V2 ! V1 be proper maps, and let T be a variety. Consider the diagram

V3 <--------- V3 XV2 .V2 xvi T/ ‘ V3 xvi T
^closed

V2 <----------------- V2 XV1 T
^closed

V1 <---------------- T.

Both smaller squares are cartesian, and hence so also is the outer square. The statement is 
now obvious from the fact that a composite of closed maps is closed. □

Corollary 7. 19. If V ! S is proper and S is complete, then V is complete.

Proof. Special case of the proposition. □

Corollary 7.20. The inverse image of a complete variety under a proper map is com­
plete.

Proof. Let'w V ! S be proper, and let Z be a complete subvariety of S. Then V xS Z ! 
Z is proper, and V xs Z ' ‘-1 (Z/. □ 
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Example 7.21. Let f 2 k[T1;:::;Tn;X;Y] be homogeneous of degree m in X and Y, 
and let H be the subvariety of An x P1 defined by

f.T1;:::;Tn;X;Y/D0.

The projection map An x P1 ! An defines a regular map H ! An, which is proper (7.22, 
7.15). The fibre over a point .t1 ; : : : ;tn/ 2 An is the subvariety of P1 defined by the polyno­
mial

f(t1(...,tn,X,Y) d a0Xm Cfl1Xm“1Y C---Ca mYm, ai 2 k:

Assume that not all ai are zero. Then this is a homogeneous of degree m and so the fibre 
always has m points counting multiplicities. The points that “disappeared off to infinity” 
when P1 was taken to be A1 (see p. 51) have literally become the point at infinity on P1 .

c. Projective varieties are complete

The reader may skip this section since the main theorem is given a more explicit proof in 
Theorem 7.31 below.

Theorem 7.22. A projective variety is complete.

PROOF. After 7.3, it suffices to prove the Theorem for projective space Pn itself; thus we 
have to prove that the projection map Pn x W ! W is a closed mapping in the case that W 
is an irreducible affine variety (7.11).

Write p for the projection W x Pn ! W. We have to show that Z closed in W x Pn 
implies that p.Z/ closed in W. If Z is empty, this is true, and so we can assume it to 
be nonempty. Then Z is a finite union of irreducible closed subsets Zi of W x Pn, and it 
suffices to show that each p.Zi/ is closed. Thus we may assume that Z is irreducible, and 
hence that Z d V(b) with b a graded prime ideal in B d A[X0;:. .,X„] (6.51).

If p(Z) is contained in some closed subvariety W0 of W, then Z is contained in W0 x Pn, 
and we can replace W with W0. This allows us to assume that p.Z/ is dense in W, and we 
now have to show that p(Z) D W.

Because p(Z) is dense in W, the image of the cone Vaff(b) under the projection W x 
AnC1 ! W is also dense in W, and so (see 3.34a) the map A ! B=b is injective.

Let w 2 W: we shall show that if w 0 p(Z), i.e., if there does not exist a P 2 Pn such 
that (w; P) 2 Z, then p(Z) is empty, which is a contradiction.

Let m C A be the maximal ideal corresponding to w. Then mB C b is a graded ideal, 
and V(mB C b) d V(mB) \ V.b) d (w x Pn) \ V.b), and so w will be in the image of Z 
unless V(mB C b) ^ ;. But if V(mB C b) d ;, then mB C b D (X0,•• :;Xn)N for some N 
(by 6.51b), and so mB C b contains the set BN of homogeneous polynomials of degree N. 
Because mB and b are graded ideals,

Bn c mB C b h) Bn d mBN C Bn \ b:

In detail: the first inclusion says that an f 2 BN can be written f D g C h with g 2 mB 
and h 2 b. On equating homogeneous components, we find that fN D gN C hN . Moreover: 
fN D f; if g D Pmibi, mi 2 m, bi 2 B, then gN D PmibiN; and hN 2 b because b is 
homogeneous. Together these show f 2 mBN C BN \ b.

Let M D BN =BN \ b, regarded as an A-module. The displayed equation says that 
M D mM. The argument in the proof of Nakayama’s lemma (1.3) shows that (1 Cm)M D 0 
for some m 2 m. Because A ! B=b is injective, the image of 1 C m in B=b is nonzero. But
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M d Bn=Bn \ b C B=b, which is an integral domain, and so the equation .1 C m/M d 0 
implies that M d 0. Hence Bn C b, and so XiN 2 b for all i, which contradicts the 
assumption that Z d V.b/ is nonempty. □

Remarks

7.23. Every complete curve is projective.

7.24. Every nonsingular complete surface is projective (Zariski), but there exist singular 
complete surfaces that are not projective (Nagata).

7.25. There exist nonsingular complete three-dimensional varieties that are not projective 
(Nagata, Hironaka).

7.26. A nonsingular complete irreducible variety V is projective if and only if every finite 
set of points of V is contained in an open affine subset of V (Conjecture of Chevalley; proved 
by Kleima ; see for the necessity).n1  6.22 

d. Elimination theory

When given a system of polynomial equations to solve, we first use some of the equations 
to eliminate some of the variables; we then find the solutions of the reduced system, and 
go back to find the solutions of the original system. Elimination theory does this more 
systematically.

Note that the fact that Pn is complete has the following explicit restatement: for each 
system of polynomial equations

P1 .X1 ; : : : ; Xm I Y0 ; : : : ; Yn/ D 0
(*/ -

Pr .X1 ; : : : ; Xm I Y0; : : : ; Yn/ D 0

such that each Pi is homogeneous in the Yj, there exists a system of polynomial equations

R1.X1;:::;Xm/ D 0
.**/ <

Rs.X1; : : : ;Xm/ D 0

with the following property; an m-tuple .a1; : : : ;am/ is a solution of (**) if and only if there 
exists a nonzero n-tuple .b0; : : : ;bn/ such that .a1; : : : ;am;b0; : : : ;bn/ is a solution of (*). In 
other words, the polynomials Pi .a1 ; : : : ;amI Y0; : : : ; Yn/ have a common zero if and only if 
Rj .a1 ; : : : ;am/ D 0 for all j . The polynomials Rj are said to have been obtained from the 
polynomials Pi by elimination of the variables Yi .

Unfortunately, the proof we gave of the completeness of Pn , while short and elegant, 
gives no indication of how to construct (**) from (*). The purpose of elimination theory is 
to provide an algorithm for doing this.

1Kleiman, Steven L., Toward a numerical theory of ampleness. Ann. of Math. (2) 84 1966 293—344 
(Theorem 3, p. 327, et seq.). See also, Hartshorne, Robin, Ample subvarieties of algebraic varieties. Lecture 
Notes in Mathematics, Vol. 156 Springer, 1970, I §9 p45.
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Elimination theory: special case

Let P d s0Xm C s1Xm~1 --------- sm and Q d t0Xn C t1Xn~1 -------- - tn be polynomials.
The resultant of P and Q is defined to be the determinant

s0 s1 : : : sm
s0 : : : sm

::: :::
t0 t1 : : : tn

t0 : : : tn
::: :::

n rows

m rows

There are n rows with s0 ::: sm and m rows with t0 ... tn, so that the matrix is (m Cn) x 
.m C n/; all blank spaces are to be filled with zeros. The resultant is a polynomial in the 
coefficients of P and Q.

Proposition 7.27. The resultant Res.P; Q/ D 0 if and only if
(a) both s0 and t0 are zero; or
(b) the two polynomials have a common root.

Proof. If (a) holds, then Res.P; Q) d 0 because the first column is zero. Suppose that a is 
a common root of P and Q, so that there exist polynomials P1 and Q 1 of degrees m — 1 
and n — 1 respectively such that

P.X/ d .X-a)Pi(X), Q(X) d .X-a)Qi(X).

Using these equalities, we find that

P.X/Qi.X)- Q(X)Pi(X) d 0. (33)

On equating the coefficients of XmCn-1, ...,X,1 in (33) to zero, we find that the coefficients 
of Pi and Qi are the solutions of a system of m C n linear equations in m C n unknowns. 
The matrix of coefficients of the system is the transpose of the matrix

. . sm

. . sm C

.. ...

. . tn C

. . tn

.. ...

The existence of the solution shows that this matrix has determinant zero, which implies that 
Res.P;Q/ D0.

Conversely, suppose that Res.P; Q/ D 0 but neither s0 nor t0 is zero. Because the above 
matrix has determinant zero, we can solve the linear equations to find polynomials Pi and 
Qi satisfying (33). A root a of P must be also be a root of Pi or of Q. If the former, 
cancel X — a from the left hand side of (33), and consider a root ft of P1 = (X — a). As 
deg Pi < deg P, this argument eventually leads to a root of P that is not a root of Pi, and so 
must be a root of Q. □

s0 si
B s0

B t0 ti

B t0
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The proposition can be restated in projective terms. We define the resultant of two 
homogeneous polynomials

P(X,Y) D soXm CS1Xm-1Y C---CsmYm, Q(X,Y) d toXn C---CtnYn,

exactly as in the nonhomogeneous case.

Proposition 7.28. The resultant Res.P, Q/ D 0 if and only if P and Q have a common 
zero in P1 .

2Cartier, P., Tate, J., A simple proof of the main theorem of elimination theory in algebraic geometry.
Enseign. Math. (2) 24 (1978), no. 3-4, 311-317.

proof. The zeros of p.x, Y/ in P1 are of the form:
(a) .1 W 0/ in the case that so D 0;
(b) .a W 1/ with a a root of P.X, 1/.

Since a similar statement is true for Q(X, Y), 7.28 is a restatement of 7.27. □

Now regard the coefficients of P and Q as indeterminates. The pairs of polynomials 
(P, Q) are parametrized by the space AmC1 x AnC1 d AmCnC2 *. Consider the closed subset 
V(P, Q) in AmCnC2 x P1. The proposition shows that its projection on AmCnC2 is the set 
defined by Res.P, Q) D 0. Thus, not only have we shown that the projection of V.P, Q) is 
closed, but we have given an algorithm for passing from the polynomials defining the closed 
set to those defining its projection.

Elimination theory does this in general. Given a family of polynomials

Pi.T1, : : : , TmI Xo, : : : , Xn),

homogeneous in the Xi , elimination theory gives an algorithm for finding polynomials 
Rj .T1, : : : , Tm) such that the Pi .a1, : : : ,amI Xo, : : : , Xn) have a common zero if and only if 
Rj .a1, : : : ,am) D 0 for all j. (Theorem 7.22 shows only that the Rj exist.)

Maple can find the resultant of two polynomials in one variable: for example, entering 
“resultant((x C a)5,(x C b)5,x)” gives the answer (—a C b)25. Explanation: the polynomi­
als have a common root if and only if a D b , and this can happen in 25 ways. Macaulay 
doesn’t seem to know how to do more.

Elimination theory: general case

In this subsection, we give a proof of Theorem 7.22, following Cartier and Tate 1978,2 which 
is a more explicit proof than that given above. Throughout, k is a field (not necessarily 
algebraically closed) and K is an algebraically closed field containing k .

Theorem 7.29. For any graded ideal a in k[X0,:.: ,Xn], exactly one of the following 
statements is true:

(a) there exists an integer d0 > 0 such that a contains every homogeneous polynomial of 
degree d > d0;

(b) the ideal a has a nontrivial zero in KnC1 .

PROOF. Statement (a) says that the radical of a contains .Xo , : : : , Xn), and so the theorem 
is a restatement of 6.2(a), which we deduced from the strong Nullstellensatz. For a direct 
proof of it, see the article of Cartier and Tate. □ 
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THEOREM 7.30. Let R D d2N Rd be a graded k-algebra such that R0 D k, R is gener­
ated as a k-algebra by R1, and Rd is finite-dimensional for all d. Then exactly one of the 
following statements is true:

(a) there exists an integer d0 > 0 such that Rd d 0 for all d > d0;
(b) no Rd D 0, and there exists a k -algebra homomorphism R ! K whose kernel is not 

equal to RC def Ld>1 Rd.

Proof. The hypotheses on R say that it is a quotient of k [X0 ,...,Xn] by a graded ideal. 
Therefore 7.30 is a restatement of 7.29. □

Let P1,...,Pr be polynomials in k[T1,...,Tmi X0;.::;Xn] with Pj homogeneous of de­
gree dj in the variables Xo,...,Xn. Let J be the ideal (P1,..., Pr / in k[T1,...,Tmi Xo,...,Xn], 
and let A be the ideal of polynomials f in k[T1,..., Tm] with the following property: there 
exists an integer N > 1 such that f XN ,...,/ XN all lie in J.

THEOREM7.31. Let V be the zero set of J in An(K/ x Pn(K). The projection of V into 
An (K/ is the zero set ofA.

Consider the ring B d k[T1,...,TmiXo,...,Xn] and its subring B0 d k[T1,...,Tm]. 
Then B is a graded B0-algebra with Bd the B0-submodule generated by the monomials of 
degree d in X0; . . . ; Xn, and J is a homogeneous (graded) ideal in B. Let A D Ld2NAd 
be the quotient graded ring B=J D Ld2N Bd=(Bd \ J/. Let S be the ideal of elements a 
of A0 such that aAd D 0 for all sufficiently large d .

THEoREM 7.32. A ring homomorphism 'W A0 ! K extends to a ring homomorphism
w A ! K not annihilating the ideal AC def Ld >1 Ad if and only if '(S/ d 0.

Following Cartier and Tate, we leave it to reader to check that 7.32 is equivalent to 7.31.

Proof of Theorem 7.32

We shall prove 7.32 for any graded ring A d Ld>0 Ad satisfying the following two condi­
tions:

(a) as an A0-algebra, A is generated by A1 ;
(b) for every d > 0, Ad is finitely generated as an A0-module.

In the statement of the theorem, K is any algebraically closed field.
The proof proceeds by replacing A with other graded rings with the properties (a) and 

(b) and also having the property that no Ad is zero.
Let ' W A0 ! K be a homomorphism such that '(S/ D 0, and let P D Ker('/. Then P 

is a prime ideal of A0 containing S.
Step 1. Let J be the ideal of elements a of A for which there exists an s 2 A0 X P such 

that sa d 0. For every d > 0, the annihilator of the A0-module Ad is contained in S, hence 
in p, and so J \ Ad ^ Ad. The ideal J is graded, and the quotient ring A0 d A=J has the 
required properties.

Step 2. Let A00 be the ring of fractions of A0 whose denominators are in S def A0 xp. 
Let Add be the set of fractions with numerator in Add and denominator in S. Then A00 d 
Ld >0 Add is a graded ring with the required properties, and A0 is a local ring with maximal 
ideal p00 = p0 • A0.
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Step 3. Let R be the quotient of A00 by the graded ideal P00 • A00. As A'd is a nonzero 
00 00 00 00finitely generated module over the local ring -/Ao, iNakayaina s lemma sno^vs that sAd -p sAd.

Therefore R is graded ring with the required properties, and k D R0 dDef A000=P00 is a field.
Step 4. At this point R satisfies the hypotheses of Theorem 7.30. Let " be the composite 

of the natural maps
A ! A0 ! A00 ! R.

In degree 0, this is nothing but the natural map from A0 to k with kernel P. As ' has 
the same kernel, it factors through "0, making K into an algebraically closed extension of 
k. Now, by Theorem 7.30, there exists a k -algebra homomorphism f W R ! K such that 
f .RC/ ^ 0. The composite map d f i" has the required properties. □

For more on elimination theory, see Chapter 8, Section 5, of Cox, David A.; Little, John; 
O’Shea, Donal, Ideals, varieties, and algorithms. Springer, Cham, 2015.

Aside 7.33. Elimination theory became unfashionable several decades ago — one prominent alge­
braic geometer went so far as to announce that Theorem 7.22 eliminated elimination theory from 
mathematics,3 provoking Abhyankar, who prefers equations to abstractions, to start the chant “elimi­
nate the eliminators of elimination theory”. With the rise of computers, it has become fashionable 
again.

3Weil, A., Foundations of Algebraic Geometry, 1946/1962, p. 31: “The device that follows, which, it may 
be hoped, finally eliminates from algebraic geometry the last traces of elimination-theory, is borrowed from 
C. Chevalley’s Princeton lectures.” Demazure 2012 quotes Dieudonne as saying: “Il faut eliminer la theorie de 
l’elimination.”

e. The rigidity theorem; abelian varieties

The paucity of maps between complete varieties has some interesting consequences. First 
an observation: for any point w 2 W, the projection map V x W ! V defines an isomor­
phism V x fwg ! V with inverse v ! .V;W/w V ! V x W (this map is regular because its 
components are).

Theorem 7.34 (Rigidity Theorem). Let ‘w V x W ! T be a 
regular map, and assume that V is complete, V and W are irre­
ducible, and T is separated. If '.v; w0/ is independent of v for one 
w0 2 W, then '.v; w/ D g.w/ with g a regular map gw W ! T.

PRooF. Choose a v0 2 V, and consider the regular map

gw W ! T; w 7! '.v0; w/:

We shall show that ‘ d g i q. Because V is complete, the projection map qw V x W ! W is 
closed. Let U be an open affine neighbourhood U of '.v0 ; w0/; then T X U is closed in T, 
‘ _1 .T x U/ is closed in V x W, and

C def q.'-1.T x U//

is closed in W. By definition, C consists of the w 2 W such that ‘.v,w/ 0 U for some 
v 2 V , and so

W x C d fw 2 W j ‘.V x fwg/ c Ug:
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As '.V; w0/ D '.v0; w0/, we see that w0 2 W X C. Therefore W X C is nonempty, and 
so it is dense in W .As V x fwg is complete and U is affine, '.V x fwg) must be a point 
whenever w 2 W X C (see 7.10); in fact

'.V X fwg/ D '.V0;W/ D g(w).

We have shown that ‘ and g i q agree on the dense subset V x .W x C/ of V x W, and 
therefore on the whole of V x W. □

Corollary 7.35. Let ‘w V x W ! T be a regular map, and assume that V is complete, 
that V and W are irreducible, and that T is separated. If there exist points v0 2 V, w0 2 W, 
t0 2 T such that

‘.V xfwog/ DftogD '.fvogx W/,

then ‘.V x W/ == ft0g.

PRooF. With g as in the proof of the theorem,

‘.V;W/ D g.W/ D ‘.V0;W/ D t0 • □

In more colloquial terms, the corollary says that if ‘ collapses a vertical and a horizontal 
slice to a point, then it collapses the whole of V x W to a point, which must therefore be 
“rigid”.

DEFINITIoN 7.36. An abelian variety is a complete connected group variety.

Theorem 7.37. Every regular map aw A ! B of abelian varieties is the composite of a 
homomorphism with a translation; in particular, a regular map aw A ! B such that a.0/ d 0 
is a homomorphism.

PRooF. After composing a with a translation, we may suppose that a.0/ D 0. Consider the 
map

‘w A x A ! B; ‘.a;a0/ d a.a C a0/ — a.a/ — a.a0/:

Then ‘.A x 0/ d 0 d ‘.0 x A/ and so ‘ d 0. This means that a is a homomorphism. □

CoRoLLARY 7.38. The group law on an abelian variety is commutative.

PRooF. Commutative groups are distinguished among all groups by the fact that the map 
taking an element to its inverse is a homomorphism: if .gh/-1 d g-1h-1, then, on taking 
inverses, we find that gh d hg. Since the negative map, a ! —aw A ! A, takes the identity 
element to itself, the preceding corollary shows that it is a homomorphism. □

f. Chow’s Lemma

The next theorem is a useful tool in extending results from projective varieties to complete 
varieties. It shows that a complete variety is not far from a projective variety.

THEoREM 7.39 (CHoW’ S LEMMA). For every complete irreducible variety V, there exists 
a surjective regular map f w V0 ! V from a projective algebraic variety V0 to V such that, 
for some dense open subset U of V, f induces an isomorphism f-1 .U/ ! U (in particular, 
f is birational).
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Write V as a finite union of nonempty open affines, V D U1 [ : : : [ Un, and let U D Ui. 
Because V is irreducible, U is a dense in V . Realize each Ui as a dense open subset of a 
projective variety Pi . Then P dDef Qi Pi is a projective variety (6.26). We shall construct an 
algebraic variety V 0 and regular maps f W V 0 ! V and g W V 0 ! P such that

(a) f is surjective and induces an isomorphism f _1 .U/ ! U;
(b) g is a closed immersion (hence V 0 is projective).

Let '0 (resp. 'i ) denote the given inclusion of U into V (resp. into Pi), and let

' D .'0;'1;:::;'n/W U ! V * P1 ■*•••■* Pn;

be the diagonal map. We set U0 == '.U/ and V0 equal to the closure of U0 in V x P1 x---x Pn. 
The projection maps pw V x P ! V and qw V x P ! P restrict to regular maps f w V0 ! V 
and gW V0 ! P. Thus, we have a commutative diagram

(34)

Proof of (a)

In the upper-left triangle of the diagram (34), the maps ' and '0 are isomorphisms from U 
onto its images U0 and U. Therefore f restricts to an isomorphism U0 ! U. Note that

U0 D f.u;'1.u/;:::;'n.u// j u 2 Ug;

which is the graph of the map .'1,.. .,'n)w U ! P. Therefore, U0 is closed in U x P (5.28), 
and so

U0 d V0 \ .U x P/ d f “1 .U/.

The map f is dominant, and f.V0/ D p.V /, which is closed because P is complete. Hence 
f is surjective.

Proof of (b)

We first show that g is an immersion. As this is a local condition, it suffices to find 
open subsets Vi c P such that Sq_1.Vi'/ D V0 and each map V0 \ q-1(Vi/ —> Vi is an 
immersion.

We set
Vi D p-1.Ui/ D Pi x-.-x Ui x-.-x Pn

where pi is the projection map P ! Pi .
We first show that the sets q_ 1 .Vi/ cover V0. The sets Ui cover V, hence the sets 

f-1 .Ui / cover V0, and so it suffices to show that

q-1.V-/ D f-1.Ui/
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for all i . Consider the diagrams

q"1.Vi-/ ------ U Ui

4Chow, Wei-Liang. On the projective embedding of homogeneous varieties. Algebraic geometry and 
topology. A symposium in honor of S. Lefschetz, pp. 122—128. Princeton University Press, Princeton, N. J., 
1957.

j: . i‘

V x P ' Pi

f ~1(Ui /f Ui

■!•

V X P > Pi

U -^U Ui

j>

V X P Pi :

The diagram at left is cartesian, i.e., it realizes q 1 .Vi-/ as the fibred product

q-1.V')- d .V x P/ xp; Ui;

and so it suffices to show that the middle diagram commutes. But U0 is dense in V0, hence 
in f-1 .Ui/, and so it suffices to prove that the middle diagram commutes with f-1 .Ui/ 
replaced by U0. But then it becomes the diagram at right, which obviously commutes.

We next show that
V0 \ q~1.Vi/ -! Vi

is an immersion for each i . Recall that

Vi D Ui X P i; where P i d Yj ^i Pj.

and so
q~1.Vi/ d V x Ui x Pi C V x P:

Let ri denote the graph of the map

(Ui x pi -p! Ui ! v):

Being a graph, ri is closed in V x (Ui x Pi) and the projection map V x (Ui x Pi) ! 

Ui x P i restricts to an isomorphism ri ! Ui x P i .In other words, ri is closed in q-1 .Vi-/, 
and the projection map q-1 .Vi/ ! Vi restricts to an isomorphism ri ! Vi. As ri is closed in 
q-1.Vi/ and contains U0, it contains V0 \q-1.Vi-/, and so the projection map q-1.Vi/ ! Vi 
restricts to an immersion V0 \ q-1 .Vi/ ! Vi.

Finally, V x P is complete because V and P are, and so V0 is complete (7.3). Hence 
g.V/ is closed (7.7), and so g is a closed immersion.

Notes

7.40. Let V be a complete variety, and let V1; : : : ; Vs be the irreducible components of V. 
Each Vi is complete , and so there exists a surjective birational regular map Vi0 ! Vi 

with Vi0 projective . Now F Vi0 is projective  and the composite
(7.4)

(7.39)  6.26,

GVi0!GVi !V

is surjective and birational.

7.41. Chow (1956, Lemma 1 proved essentially the statement by essentially the 
above argument. He used the lemma to prove that all homogeneous spaces are quasiprojective. 
See also EGA II, 5.6.1.

)4  7.42 
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g. Analytic spaces; Chow’s theorem

We summarize a little of Serre, Jean-Pierre. Geometrie algebrique et geometrie analytique. 
Ann. Inst. Fourier, Grenoble 6 (1955-1956), 1-42, commonly referred to as GAGA.

7.42. The following is more general than Theorem : for every algebraic variety V , 
there exists a projective algebraic variety V 0 and a birational regular map ' from an open 
dense subset U of V0 onto V whose graph is closed in V0 x V; the subset U equals V0 if 
and only if V is complete. Ibid. p. 12.

 7.39

A subset V of Cn is analytic if every v 2 V admits an open neighbourhood U in Cn 

such that V \ U is the zero set of a finite collection of holomorphic functions on U. An 
analytic subset is locally closed.

Let V0 be an open subset of an analytic set V. A function f W V0 ! C is holomorphic 
if, for every v 2 V 0 , there exists an open neighbourhood U of v in Cn and a holomorphic 
function h on U such that f D h on V0 \ U. The holomorphic functions on open subsets of 
V define on V the structure of a C-ringed space.

DEFINITION 7.43. An analytic space is a C-ringed space .V; OV/ satisfying the following 
two conditions:

(a) there exists an open covering V D S Vi of V such that, for each i , the C-ringed space 
.Vi; OV jVi/ is isomorphic to an analytic set equipped with its sheaf of holomorphic 
functions;

(b) the topological space V is Hausdorff.

proposition 7.44. An algebraic variety V is complete if and only if V.C/ is compact in 
the complex topology.

Proof. The proof uses Chow’s lemma (ibid. Proposition 6, p. 12). □

There is a natural functor V Van from algebraic varieties over C to complex analytic 
spaces (ibid. §2).

We omit the definition of a coherent sheaf of OV -modules.

THEoREM 7.45. Let V be a projective variety over C. Then the functor F 7! Fan is an 
equivalence from the category of coherent OV -modules to the category of coherent OVan- 
modules, under which locally free modules correspond. In particular, r.Van; Ovan/ ‘ 
r.V; Ov/.

Proof. This summarizes the main results of GAGA (ibid. Theoreme 2,3, p. 19, p. 20). □

THEoREM 7.46 (CHoW’ S THEoREM). Every closed analytic subset of a projective variety 
is algebraic.

PRooF. Let V be a projective space, and let Z be a closed analytic subset of Van. A theorem 
of Henri Cartan states that OZan is a coherent analytic sheaf on Van, and so there exists a 
coherent algebraic sheaf F on V such that Fan D OZan . The support of F is Zariski closed, 
and equals Z (ibid. p. 29). □

THEoREM 7.47. Every compact analytic subset of an algebraic variety is algebraic.
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Proof. Let V be an algebraic variety, and let Z be a compact analytic subset. By Chow’s 
lemma (7.42), there exists a projective variety V 0, a dense open subset U of V 0, and a 
surjective regular map 'W U ! V whose graph r is closed in V x V0. Let r0 d r \ .Z x V0/. 
As Z and V0 are compact and r is closed, r0 is compact, and so its projection V00 on V0 is 
also compact. On the other hand, V00 d f _1 .Z/, which shows that it is an analytic subset 
of U, and therefore also of V0. According to Chow’s theorem, it is a Zariski closed subset of 
V0 (hence an algebraic variety). Now Z D f.V00/ is constructible (Zariski sense; see 9.7 
below), and therefore its Zariski closure coincides with its closure for the complex topology, 
but (by assumption) it is closed. □

corollary 7.48. Let V and W be algebraic varieties over C. If V is complete, then 
every holomorphic map fW Van ! W an is algebraic.

Proof. Apply the preceding theorem to the graph of f. □

Example 7.49. The graph of z ! ezwC ! C x C is closed in C x C but it is not Zariski 
closed.

h. Nagata’s Embedding Theorem

A necessary condition for a prevariety to be an open subvariety of a complete variety is that 
it be separated. An important theorem of Nagata says that this condition is also sufficient.

THEoREM 7.50. Every variety V admits an open immersion V ,! W into a complete 
variety W .

If V is affine, then one can embed V ,! An ,! Pn , and take W to be the closure of V 
in Pn. The proof in the general case is quite difficult. See:

Nagata, Masayoshi. Imbedding of an abstract variety in a complete variety. J.
Math. Kyoto Univ. 2 1962 1-10; A generalization of the imbedding problem of
an abstract variety in a complete variety. J. Math. Kyoto Univ. 3 1963 89-102.

For a modern exposition, see:
Lutkebohmert, W. On compactification of schemes. Manuscripta Math. 80 
(1993), no. 1, 95-111.

In the 1970s, Deligne translated Nagata’s work into the language of schemes. His personal 
notes are available in three versions.

Deligne, P., Le theoreme de plongement de Nagata, Kyoto J. Math. 50, Number
4 (2010), 661-670.
Conrad, B., Deligne’s notes on Nagata compactifications. J. Ramanujan Math.
Soc. 22 (2007), no. 3, 205-257.
Vojta, P., Nagata’s embedding theorem, 19pp., 2007, arXiv:0706.1907.

See also:
Temkin, Michael. Relative Riemann-Zariski spaces. Israel J. Math. 185 (2011),
1-42.

A little history

When he defined abstract algebraic varieties, Weil introduced the term “complete variety” to 
denote the algebraic geometer’s analogue of a compact manifold.
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Exercises

7-1. Identify the set of homogeneous polynomials F.X; Y/ d P aij Xi Yj, 0 < i;j < m, 
with an affine space. Show that the subset of reducible polynomials is closed.

7-2. Let V and W be complete irreducible varieties, and let A be an abelian variety. Let 
P and Q be points of V and W. Show that any regular map hw V x W ! A such that 
h.P;Q/ d 0 can be written h d f i p C g i q where f w V ! A and gw W ! A are regular 
maps carrying P and Q to 0 and p and q are the projections V x W ! V;W.





Chapter

Normal Varieties; (Quasi-)finite maps;
Zariski’s Main Theorem

We begin by studying normal varieties. These varieties have some of the good properties 
of nonsingular varieties, and it is easy to show that every variety is birationally equivalent 
to a normal variety. After studying finite and quasi-finite maps, we discuss the celebrated 
Zariski’s Main Theorem (ZMT), which says that every quasi-finite map of algebraic varieties 
can be obtained from a finite map by removing a closed subset from the source variety. In its 
original form, the theorem says that a birational regular map to a normal algebraic variety 
fails to be a local isomorphism only at points where the fibre has dimension > 0.

a. Normal varieties

Recall (1.42) that an integrally closed domain is an integral domain that is integrally closed 
in its field of fractions. Moreover, that an integral domain A is normal if and only if Am is 
normal for every maximal ideal m in A (see 1.49).

DEFINITION 8.1. A point P on an algebraic variety V is normal if OV;P is an integrally 
closed domain. An algebraic variety is said to be normal if all of its points are normal.

Since the local ring at a point lying on two irreducible components can’t be an integral 
domain (see 3.14), a normal variety is a disjoint union of its irreducible components, which 
are therefore its connected components.

Proposition 8.2. The following conditions on an irreducible variety V are equivalent.
(a) The variety V is normal.
(b) For all open affine subsets U of V , the ring OV .U/ is an integrally closed domain.
(c) For all open subsets U of V , a rational function on V that satisfies a monic polynomial 

equation on U whose coefficients are regular on U is itself regular on U .

Proof. The equivalence of (a) and (b) follows from 1.49.
(a) H) (c). Let U be an open subset of V , and let f 2 k.V / satisfy

f n Caif n 1 C Can d 0; ai 2 OV(U/,

(equality in k.V/). Then ai 2 OV.U/ C OP for all P 2 U, and so f 2 OP for all P 2 U. 
This implies that f 2 OV.U/ (5.11).

173
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(c) H) (b). The condition applied to an open affine subset U of V implies that OV .U/ is 
integrally closed in k .V/. □

A regular local noetherian ring is normal — this is a difficult result that we don’t prove 
here (see CA 22.5 for references). Conversely, a normal local domain of dimension one is 
regular. Thus nonsingular varieties are normal, and normal curves are nonsingular. However, 
a normal surface need not be nonsingular: the cone

X2 C Y2 - Z2 d 0

is normal, but it is singular at the origin — the tangent space at the origin is k3.
The singular locus of a normal variety V must have dimension < dim V — 2 (see 8.12 

below). For example, a normal surface can only have isolated singularities — the singular 
locus can’t contain a curve. In particular, the surface Z3 D X2Y (see 4.42) is not normal.

The normalization of an algebraic variety

Let E D F be a finite extension of fields. The extension E=F is said to be normal if the 
minimal polynomial of every element of E splits in E. Let Fal be an algebraic closure 
of F containing E. The composite in Fal of the fields aE, a 2 Aut(E=F), is normal 
over F (and is called the normal closure of F in F al). If E is normal over F , then E is 
Galois over EAut.E=F/ (FT 3.10), and EAut.E=F/ is purely inseparable over F (because 
HomF .EAut.E=F /; Fal/ consists of a single element).

Proposition 8.3. Let A be a finitely generated k-algebra. Assume that A is an integral 
domain, and let E be a finite field extension of its field of fractions F . Then the integral 
closure A0 of A in E is a finite A-algebra (hence a finitely generated k-algebra).

Proof. According to the Noether normalization theorem (2.45), A contains a polynomial 
subalgebra A0 and is finite over A0. Now E is a finite extension of F.A0/ and A0 is the 
integral closure of A0 in E, and so we only need to consider the case that A is a polynomial 
ring k[X1;:::;Xd ].

Let E denote the normal closure of E in some algebraic closure of F containing E, and 
let A denote the integral closure of A in E. If A is finitely generated as an A-module, then 
so is its submodule A0 (because A is noetherian). Therefore we only need to consider the 
case that E is normal over F.

According to the above discussion, E D E1 D F with E Galois over E1 and E1 purely 
inseparable over F. Let A1 denote the integral closure of A in E1. Then A0 is a finite 
A1-algebra (1.51), and so it suffices to show that A1 is a finite A-algebra. Therefore we only 
need to consider the case that E is purely inseparable over F .

In this case, k has characteristic p ^ 0, and, for each x 2 E, there is a power q (x) of p 
such that xq.x/ 2 F. As E is finitely generated over F, there is a single power q of p such 
that xq 2 F for all x 2 E. Let Fal denote an algebraic closure of F containing E. For each 
i, there is a unique Yi 2 Fal such that Yiq D Xi . Now

F D k(X1;:::;Xd ) C E C. )

and
A D k[X1;:::;Xd ] C ^ G ^1 ]

because k[Yi,...,Yd ] contains A and is integrally closed (1.32,1.43). Obviously k[Y1,.. .;Yd ] 

is a finite A-algebra, and this implies, as before, that A0 is a finite A-algebra. □ 
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COROLLARY 8.4. Let A be as in 8.3. If Am is normal for some maximal ideal m in A, then 
Ah is normal for some h 2 A X m.

Proof. Let A0 be the integral closure of A in its field of fractions. Then A0 d A[f1,..., fm] 

for some fi 2 A0. Now .A0/m 1D7 .Am/0 D Am, and so there exists an h 2 A X m such that, 
for all i, hfi 2 A. Now Ah d Ah, and so Ah is normal. □

The proposition shows that if A is an integral domain finitely generated over k, then the 
integral closure A0 of A in a finite extension E of F .A/ has the same properties. Therefore, 
Spm.A0/ is an irreducible algebraic variety, called the normalization of Spm.A/ in E. This 
construction extends without difficulty to nonaffine varieties.

PRoPoSITIoN 8.5. Let V be an irreducible algebraic variety, and let K be a finite field 
extension of k.V /. Then there exists an irreducible algebraic variety W with k.W / D K 
and a regular map ‘w W ! V such that, for all open affines U in V, ‘_1 (U) is affine and 
k[‘_1(U)] is the integral closure of k[U] in K.

The map ' (or just W) is called the normalization of V in K.

PRooF. For each v 2 V, let W(v) be the set of maximal ideals in the integral closure of Ov 

in K. Let W D v2V W(v), and let 'W W ! V be the map sending the points of W(v) to v. 
For an open affine subset U of V,

‘~1(U) ' spm(k[U]0),

where k[U]0 is the integral closure of k[U] in K. We endow W with the k-ringed space 
structure for which

(‘-1(U);Owj‘-1(U)) ' Spm(k[U]0).

A routine argument shows that (W, Ow) is an algebraic variety with the required properties.□

Example 8.6. (a) The normalization of the cuspidal cubic VW Y2 D X3 in k(V) is the map 
A1 ! V, t 7! (t2,t3) (see 3.29).

(b) The normalization of the nodal cubic VW Y2 D X3 C X2  in k(V) is the map 
A1 ! V, t ! (t2 — 1,t3 — t).

(4.10)

PRoPoSITIoN 8.7. The normal points in an irreducible algebraic variety form a dense open 
subset.

PRooF. Corollary 8.4 shows that the set of normal points is open, and it remains to show 
that it is nonempty. Let V be an irreducible algebraic variety. According to (3.37, 3.38), V 
is birationally equivalent to a hypersurface H in Ad C1, d D dim V,

Hw a0Xm Ca1Xm~1 C------Cam, ai 2 k[T1,:::,Td], a0 ^ 0, m 2 Ni

moreover, T1 , : : : , Td can be chosen to be a separating transcendence basis for k(V) over 
k. Therefore the discriminant D of the polynomial a0Xm C C am is nonzero (it is an 
element of k [T1,..., Td]).

Let A d k[T1,.::,Td]; then k[H] d A[X]=(a0Xm C-----Cam) d A[x]. Let

y d co C-----Ccm-ixm-1, ci 2 k(Ti,.::,Td), (35)

be an element of k(H) integral over A. For each j 2 N, Trk.H /=F.A/ (yxj ) is a sum of 
conjugates of yxj, and hence is integral over A (cf. the proof of 1.44). As it lies in F(A), it 
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is an element of A. On multiplying (35) with xj and taking traces, we get a system of linear 
equations

c0 • Tr.xj/ C c1 • Tr.x1Cj/ C----- C cm_1 • Tr.xm-1Cj'/ d Tr.yxj/, j d 0,... ;m — 1:

By Cramer’s rule (p. 26),

det.Tr.X i Cj // • Cl 2 A; l D 0;:::;m ~ 1:

But det.Tr.xiCj// d D,1 and so ci 2 A[D-1]. Hence k[H] becomes normal once we invert 
the nonzero element D . We have shown that H contains a dense open normal subvariety, 
which implies that V does also. □

Proposition 8.8. For every irreducible algebraic variety V , there exists a surjective regu­
lar map 'W V0 ! V from a normal algebraic variety V0 to V such that, for some dense open 
subset U of V; ‘ induces an isomorphism '_1 .U/ ! U (in particular ' is birational).

Proof. Proposition 8.7 shows that the normalization of V in k.V/ has this property. □

8.9. More generally, for a dominant map 'W W ! V of irreducible algebraic varieties, there 
exists a normalization of V in W . For each open affine U in V we have

k[U] c r.'-1 .U/;Ow/ C k(W).

The integral closure k[U]0 of r\U, Ov/ in F.'_1.U/; Ow/ is a finite k[U]-algebra (because 
it is a k[U]-submodule of the integral closure of k[U] in k.W/). The normalization of V in 
W is a regular map '0W V0 ! V such that, for every open affine U in V,

.‘0-1.U/;Ov0/ D Spm.k[U]0/:

In particular, '0 is an affine map. For example, if W and V are affine, then V0 d Spm.k[V]0/, 
where k[V]0 is the integral closure of k[V] in k[W]. There is a commutative triangle

W --------- j-------- > V0
x//'/ 

V:

b. Regular functions on normal varieties

DEFINITIoN 8.10. An algebraic variety V is factorial at a point P if OP is a factorial 
domain. The variety V is factorial if it is factorial at all points P .

When V is factorial, it does not follow that Ov.U/ is factorial for all open affines U in V.
A prime divisor Z on a variety V is a closed irreducible subvariety of codimension 1. 

Let Z be a prime divisor on V, and let P 2 V; we say that Z is locally principal at P if there 
exists an open affine neighbourhood U of P and an f 2 k[U] such that I.Z \ U/ d .f/; 
the regular function f is then called a local equation for Z at P .If P 0 Z, then Z is locally 
principal at P because then we can choose U so that Z \ U D ;, and I.Z \ U/ D .1/.

1 See, for example, 2.34 of my notes Algebraic Number Theory.
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Proposition 8.11. An irreducible variety V is factorial at a point P if and only if every 
prime divisor on V is locally principal at P .

Proof. Recall that an integral domain is factorial if and only if every prime ideal of height 
1 is principal (1.24, 3.52). □

Proposition 8. 12. The codimension of the singular locus in a normal variety is at least 2.

Proof. Let V be a normal algebraic variety of dimension d , and suppose that its singular 
locus has an irreducible component W of codimension 1. After replacing V with an open 
subvariety, we may suppose that it is affine and that W is principal, say, W D .f / (see 
8.11). There exists a nonsingular point P on W (4.37). Let (U,f1),...,(U,fd_1/ be germs 
of functions at P (on V ) whose restrictions to W generate the maximal ideal in OW;P (cf. 
4.36). Then (U, f1),...,(U,fd _1/;.U;f'/ generate the maximal ideal in Ov;p , and so P is 
nonsingular on V. This contradicts the definition of W. □

Summary 8.13. For an algebraic variety V,

nonsingular h) factorial h) normal h) singular locus has codimension > 2.

0 The variety X2 C---- C X52 is factorial but singular.
e The cone Z2 d XY in A3 is normal but not factorial (see 9.39 below).
0 The variety Spm(k[X; X Y; Y2Y3]/ is a surface in A4 with exactly one singular point, 

namely, the origin. Its singular locus has codimension 2, but the variety is not normal 
(the normalization k[X;XY; Y2, Y3] is k[X; Y]).

0 Every singular curve has singular locus of codimension 1 (hence fails all conditions).

Zeros and poles of rational functions on normal varieties

Let V be a normal irreducible variety. A divisor on V is an element of the free abelian group 
Div.V / generated by the prime divisors. Thus a divisor D can be written uniquely as a finite 
(formal) sum

D D ni Zi ; ni 2 Z; Zi a prime divisor on V.

The support jD j of D is the union of the Zi corresponding to nonzero ni . A divisor is said 
to be effective (or positive) if ni > 0 for all i. We get a partial ordering on the divisors by 
defining D > D0 to mean D — D0 > 0.

Because V is normal, there is associated with every prime divisor Z on V a discrete 
valuation ring OZ. This can be defined, for example, by choosing an open affine subvariety 
U of V such that U \ Z 7^ 0; then U \ Z is a maximal proper closed subset of U, and so 
the ideal p corresponding to it is minimal among the nonzero ideals of R d F(U, O/i so Rp 
is an integrally closed domain with exactly one nonzero prime ideal pRp — it is therefore a 
discrete valuation ring (4.20), which is defined to be OZ. More intrinsically we can define 
OZ to be the set of rational functions on V that are defined an open subset U of V meeting 
Z.

Let ordz be the valuation k(V/x —! Z with valuation ring Oz ; thus, if n is a prime 
element of OZ, then

a d unit x nordZ.a/.
The divisor ofa nonzero element f of k.V/ is defined to be

div.f/ d X ordz (f / • Z.
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The sum is over all the prime divisors of V , but in fact ordZ.f / D 0 for all but finitely many 
Z . In proving this, we can assume that V is affine (because it is a finite union of affines), 
say V D Spm.R/. Then k.V / is the field of fractions of R, and so we can write f D g=h 
with g;h 2 R, and div.f / d div.g/ — div.h/. Therefore, we can assume f 2 R. The zero 
set of f, V.f/ either is empty or is a finite union of prime divisors, V D S Zi (see 3.42) 
and ordZ.f/ D 0 unless Z is one of the Zi.

The map
f ! div.f/wk.V/x ! Div.V/

is a homomorphism. A divisor of the form div.f / is said to be principal, and two divisors 
are said to be linearly equivalent, denoted D ~ D0, if they differ by a principal divisor.

When V is nonsingular, the Picard group Pic.V / of V is defined to be the group of 
divisors on V modulo principal divisors. (The definition of the Picard group of a general 
algebraic variety agrees with this definition only for nonsingular varieties; it may differ for 
normal varieties.)

Theorem 8.14. Let V be a normal variety, and let f be rational function on V . If f has 
no zeros or poles on an open subset U of V, then f is regular on U.

Proof. We may assume that V is connected, hence irreducible. Now apply the following 
statement (proof omitted):

a noetherian domain is normal if and only if Ap is a discrete valuation ring for 
all prime ideals p of height 1 and A D Tht.p/D1 Ap .

Corollary 8.15. A rational function on a normal variety, regular outside a subset of 
codimension > 2, is regular everywhere.

Proof. This is a restatement of the theorem. □

C orollary 8. 16. Let V and W be affine varieties with V normal, and let ' W V X Z ! W 
be a regular map defined on the complement of a closed subset Z of V. Ifcodim(Z) > 2, 
then ' extends to a regular map on the whole of V.

PRooF. We may suppose that W is affine, and embed it as a closed subvariety of An . The 
map V X Z ! W ,! An is given by n regular functions on V X Z, each of which extends to 
V. Therefore V x Z ! An extends to An, and its image is contained in W. □

c. Finite and quasi-finite maps

Finite maps

DEFINITIoN 8.17. A regular map 'W W ! V of algebraic varieties is finite if there exists 
a finite covering V d Si Ui of V by open affines such that, for each i, the set ‘~1.Ui/ is 
affine and k[‘ ~1.Ui/] is a finite k[Ui ]-algebra.

Example 8.18. Let V be an irreducible algebraic variety, and let 'W W ! V be the normal­
ization of V in a finite extension of k.V /. Then ' is finite. This follows from the definition 
8.5 and Proposition 8.3.

The next lemma shows that, for maps of affine algebraic varieties, the above definition 
agrees with Definition 2.39.
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Lemma 8. 19. A regular map 'W W ! V of affine algebraic varieties is finite if and only if 
k[W] is a finite k[V]-algebra.

Proof. The necessity being obvious, we prove the sufficiency. For simplicity, we shall 
assume in the proof that V and W are irreducible. Let .Ui /i be a finite family of open affines 
covering V and such that, for each i, the set '~1 (Ui/ is affine and k['~1(Ui)] is a finite 
k[Ui ]-algebra.

Each Ui is a finite union of basic open subsets of V. These are also basic open subsets 
of Ui, because D.f ) \ Ui D D.f jUi ), and so we may assume that the original Ui are basic 
open subsets of V, say, Ui D D.fi ) with fi 2 A.

Let A d k[V] and B d k[W]. We are given that (fi,..., fn) d A and that Bfi is a finite 
Afi -algebra for each i. We have to show that B is a finite A-algebra.

Let fbii, . . . , bimi g generate Bfi as an Afi -module. After multiplying through by a power 
of fi, we may assume that the bij lie in B. We shall show that the family of all bij generate 
B as an A-module. Let b 2 B. Then b=1 2 Bfi , and so

aii aimi
b D -y- bii C----- C “Trf bimifi i fi i i

some aij 2 A and ri 2 N.

The ideal .fir1 , . . . , fnrn ) D A because any maximal ideal containing .fir1 , . . . ,fnrn) would 
have to contain .fi , . . . , fn ) D A. Therefore,

1 d hifir1 C----- Chnfnn, some hi 2 A.
Now

b d b • 1 d hi • bfr1 +... + hn • bfnrn

2A sequence 0 ! M 0 ! M ! M 00 is exact if and only if 0 ! Am 0a M 0 ! Am 0>a M ! Am 0>a M 00 is
exactfor all maximal ideals m of A (1.21). This implies the claimbecause k [U]mp ' Ou p ' Ov p ' k[V]mp
for all P 2 U .

D hi.aiibii + ”• + aimi bimi / + "• + hn (ani bni + * * * + anmn bnmn /,
as required. □

Lemma 8.20. Let 'W W ! V be a regular map with V affine, and let U be an open affine 
in V. There is a canonical isomorphism of k -algebras

F(W; Ow) ®k[v] k[U] ! F('-i(U),Ow).

Proof. Let U0 D '-i (U). The map is defined by the k[V]-bilinear pairing

(f;g) ! (f ju 0 ;g 1' ju 0 )W T(W, Ow ) X k[U] ! T(U 0, Ow ).
When W is also affine, it is an isomorphism (see 5.31, 5.32).

Let W D S Wi be a finite open affine covering of W , and consider the commutative 
diagram:

0 —» r(W; Ow) <8>k[v] k[U] -» Q F(Wi; Ow) <8>k[v] k[U] Q F(Wj; Ow) <8>k[v] k[U]

0--------- > F(U0,Ow)----------- > Q F(U0 \ W, Ow) 3 F(U \ Wj,Ow).

Here Wij D Wi \ Wj . The bottom row is exact because Ow is a sheaf, and the top row is 
exact because Ow is a sheaf and k[U] is flat over k[V].2 * * The varieties Wi- and Wi- \ Wj are 
all affine, and so the two vertical arrows at right are products of isomorphisms. This implies 
that the first is also an isomorphism. □ 
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Proposition 8.21. Let 'W W ! V be a regular map of algebraic varieties. If ' is finite, 
then, for every open affine U in V, ‘_1 .U/ is affine and k[‘_1 .U/] is a finite k[U]-algebra.

PROOF. Let Vi be an open affine covering of V (which we may suppose to be finite) such 
that Wi Df ‘~1 .Vi/ is an affine subvariety of W for all i and k[Wi] is a finite k[Vi]-algebra. 
Let U be an open affine in V, and let U0 == ‘_1 .U/. Then r.U0;OW/ is a subalgebra of 
Qi F.U0 \ Wi;Ow/, and so it is an affine k-algebra finite over k[U].3 We have a morphism 
of varieties over V 

U0 ^Spm.r.U 0; Ow//canonical

(36)

which we shall show to be an isomorphism. We know that each of the maps

U0 \ Wi ! Spm.F.U0 \ Wi; OW//

is an isomorphism. But Spm.F.U0 \ Wi, OW// is the inverse image of Vi in Spm.F.U0; Ow//. 
Therefore the canonical morphism is an isomorphism over each Vi , and so it is an isomor­
phism. □

Summary 8 .22. Let ' W W ! V be a regular map, and consider the following condition on 
an open affine subset U of V:

(*) '~1.U) is affine and k['_1.U/] is a finite over k[U].
The map ' is finite if (*) holds for the open affines in some covering of V , in which case (*) 
holds for all open affines of V.

Proposition 8.23. (a) Closed immersions are finite.
(b) The composite of two finite morphisms is finite.
(c) The product of two finite morphisms is finite.

Proof. (a) Let Z be a closed subvariety of a variety V , and let U be an open affine 
subvariety of V. Then Z \ U is a closed subvariety of U. It is therefore affine, and the map 
Z \ U ! U corresponds to a map A ! A=a of rings, which is obviously finite.

This proves (a). As to be finite is a local condition, it suffices to prove (a) and (b) for 
maps of affine varieties. Then the statements become statements in commutative algebra.

(b) If B is a finite A-algebra and C is a finite B -algebra, then C is a finite A-algebra. 
To see this, note that if fbig is a set of generators for B as an A-module, and fcjg is a set of 
generators for C as a B -module, then fbicjg is a set of generators for C as an A-module.

(c) If B and B 0 are respectively finite A and A0-algebras, then B <8>k B 0 is a finite 
A ®k A0-algebra. To see this, note that if fbi g is a set of generators for B as an A-module, 
and fbjg is a set of generators for B0 as an A0-module, then fbi <8> bjg is a set of generators 
for B <8>a B 0 as an A <8> A0-module. □

3 Recall that a module over a noetherian ring is noetherian if and only if it is finitely generated, and that a 
submodule of a noetherian module is noetherian. Therefore, a submodule of a finitely generated module over a 
noetherian ring is finitely generated.
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By way of contrast, open immersions are rarely finite. For example, the inclusion 
A1 x f 0g ! A1 is not finite because the ring k[T; T-1] is not finitely generated as a k[T]- 
module (any finitely generated k[T]-submodule of k[T, T-1] is contained in T~nk[T] for 
some n).

Theorem 8.24. Finite maps of algebraic varieties are closed.

Proof. It suffices to prove this for affine varieties. Let ' W W ! V be a finite map of affine 
varieties, and let Z be a closed subset of W . The restriction of ' to Z is finite (by 8.23a 
and b), and so we can replace W with Z ; we then have to show that Im.'/ is closed. The 
map corresponds to a finite map of rings A ! B. This will factors as A ! A=a ,! B, from 
which we obtain maps

Spm.B / ! Spm.A=a/ ,! Spm.A/:

The second map identifies Spm.A=a/ with the closed subvariety V .a/ of Spm.A/, and so 
it remains to show that the first map is surjective. This is a consequence of the going-up 
theorem (1.53). □

The base change of a finite map

Recall that the base change of a regular map ' W V ! S is the map '0 in the diagram:

V xS W V

W S-^ S:

Proposition 8.25. The base change of a finite map is finite.

Proof. We may assume that all the varieties concerned are affine. Then the statement 
becomes: if A is a finite R-algebra, then A <8>r B=N is a finite B-algebra, which is obvious.□

Proposition 8.26. Finite maps of algebraic varieties are proper.

Proof. The base change of a finite map is finite, and hence closed. □

C orollary 8. 27. Let ' W V ! S be finite; if S is complete, then so also is V .

Proof. Combine 7.19 and 8.26. □

Quasi-finite maps

Recall that the fibres of a regular map ‘w W ! V are the closed subvarieties ' ~1(P/ of W 
for P 2 V. As for affine varieties (2.39), we say that a regular map of algebraic varieties is 
quasi-finite if all of its fibres are finite.

PRoPoSITIoN 8.28. A finite map 'W W ! V is quasi-finite.

Proof. Let P 2 V; we wish to show ‘~1(P/ is finite. After replacing V with an affine 
neighbourhood of P , we can suppose that it is affine, and then W will be affine also. The 
map ‘ then corresponds to a map aw A ! B of affine k-algebras, and a point Q of W maps 
to P if and only a~1(mQ/ d mp. But this holds if and only if mQ D a.mp/, and so the 
points of W mapping to P are in one-to-one correspondence with the maximal ideals of
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B=a(mp/B. Clearly B/«(mP/B is generated as a k-vector space by the image of any 
generating set for B as an A-module, and so it is a finite k-algebra. The next lemma shows 
that it has only finitely many maximal ideals. □

Lemma 8.29. A finite k-algebra A has only finitely many maximal ideals.

PROOF. Let m1 ; : : : ; mn be maximal ideals in A. They are obviously coprime in pairs, and 
so the Chinese Remainder Theorem (1.1) shows that the map

A ! A/m1 x ••• x A/mn, a ! (... ,ai mod mi,.../,

is surjective. It follows that

dimk A > ^dimk (A/mi / > n

— here dimk means dimension as a k-vector space. □

Finite and quasi-finite maps of prevarieties are defined as for varieties.

Examples

8.30. The projection from the curve XY D 1 onto the X axis (see p.  is quasi-finite but 
not finite — its image is not closed in A1, and k[X, X-1] is not finite over k[X].

 71)

8.31. The map
t ! (t2,t3/w A1 ! V(Y2-X3/ C A2

from the line to the cuspidal cubic is finite because the image of k[X; Y] in k[T] is k[T2, T3], 
and f1,Tg is a set of generators for k[T] as a k[T2, T3]-module (see 3.29).

8.32. The map A1 ! A1, a 7! am is finite.

8.33. The obvious map

.A1 with the origin doubled / ! A1

is quasi-finite but not finite (the inverse image of A1 is not affine).

8.34. The map A2 X foriging ,! A2 is quasi-finite but not finite, because the inverse image 
of A2 is not affine (see . The map 3.33)

A2Xf.0,0/gtfOg!A2

sending O to .0, 0/ is bijective but not finite (here fO g D Spm.k/ D A0).

8.35. The map in  and the Frobenius map 8.31,

.t1, . . . , tn/ 7! .t1p , . . . , tnp /W An ! An

in characteristic p ^ 0, are examples of finite bijective regular maps that are not isomor­
phisms.
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8.36. Let V d A2 d Spm.k[X; Y]) and let f be the map defined on the ring level by

X 7! X D A
Y 7! XY2CY C 1 D B:

Then f is (obviously) quasi-finite, but it is not finite. For this we have to show that k[X,Y] 
is not integral over its subring k[A,B]. The minimal polynomial of Y over k[A,B] is

AY2 C Y C 1 - B d 0;

which shows that it is not integral over k[A,B] (see 1.44). Alternatively, one can show 
directly that Y can never satisfy an equation

Ys C gi.A;B/Y s-1 C---C gs (A,B) d 0; gi (A,B) 2 k[A,B],

by multiplying the equation by A.

8.37. Let V be the hyperplane

X n C T1X n-1 C---C Tn d 0

in AnC1 , and consider the projection map

.a1 ; : : : ; an ; x/ 7! .a1 ; : : : ; an/W V ! An :

The fibre over a point .a1 ; : : : ;an/ 2 An is the set of solutions of

Xn Ca1Xn-1 C---Can d 0;

and so it has exactly n points, counted with multiplicities. The map is certainly quasi-finite; 
it is also finite because it corresponds to the finite map of k -algebras,

k[T1;:::;Tn] ! ^ ,. ...T, ,X ^X n C ^X C^C Tn/:

See also the more general example p. 51.

8.38. Let V be the hyperplane

T0X n C T1X n-1 C---C Tn D 0

in AnC2. The projection map

(a0,...,an,x) ! (ao;...;an/w V —> AnC1

has finite fibres except for the fibre above o D .0; . . . ; 0/, which is A1 . Its restriction to 
V x ‘~1 (o/ is quasi-finite, but not finite. Above points of the form (0,...,0, *,..., */ some 
of the roots “vanish off to 1”. (Example 8.30 is a special case of this.) See also the more 
general example p. 51.

8.39. Let
P(X,Y/ d T0X n C T’1X n~1Y C---C TnY n,

and let V be its zero set in P1 x (AnC1 x fog/. In this case, the projection map V ! 
AnC1 Xfog is finite.
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d. The fibres of finite maps

Let ' W W ! V be a finite dominant morphism of irreducible varieties. Then dim.W / D 
dim.V /, and so k.W/ is a finite field extension of k.V /. Its degree is called the degree of 
the map ' . The map ' is said to be separable if the field k.W / is separable over k.V /. 
Recall that jSj denotes the number of elements in a finite set S.

Theorem 8.40. Let 'W W ! V be a finite surjective regular map of irreducible varieties, 
and assume that V is normal.

(a) For all P 2 V, |‘_1.P/| < deg.'/.

(b) The set of points P of V such that | '“1.P) | d deg.'/ is an open subset of V ,andit 
is nonempty if ' is separable.

Before proving the theorem, we give examples to show that we need W to be separated 
and V to be normal in (a), and that we need k.W/ to be separable over k.V/ for the second 
part of (b).

Example 8.41. (a) The map

fA1 with origin doubled g ! A1

has degree one and is one-to-one except over the origin where it is two-to-one.
(b) Let C be the curve Y2 D X3 C X2, and consider the map

t ! .t 2 — 1;t.t2 — 1))W A1 ! C .

It is one-to-one except that the points t d ±1 both map to 0. On coordinate rings, it 
corresponds to the inclusion

k[x,y] ! k[T],

and so is of degree one. The ring k[x,y] is not integrally closed — in fact k[T] is the integral 
closure of k[x,y] in its field of fractions k(x,y) d k.T).

(c) The Frobenius map

.a1 ; : : : ; an/ 7! .a1p ; : : : ; anp /W An ! An

in characteristic p ^ 0 is bijective on points, but has degree pn. The field extension 
corresponding to the map is

k.X1;:::;Xn) D k^ ,...,X P )

which is purely inseparable.

LEMMA 8.42. Let Q ; : : : ; Qr be distinct points on an affine variety V. Then there is a 
regular function f on V taking distinct values at the Qi .

PROOF. We can embed V as closed subvariety of An , and then it suffices to prove the 
statement with V d An — almost any linear form will do. □ 

( X! T2 - 1
I y! T.T2 - 1)
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Proof (of 8.40). In proving (a) of the theorem, we may assume that V and W are affine, 
and so the map corresponds to a finite map of k-algebras, k[V] ! k[W]. Let'_1 (P) d 
f Q 1 ;:::;Qr g. According to the lemma, there exists an f 2 k[W] taking distinct values at 
the Qi . Let

F(T/ d Tm ca1Tm~1 c-cam

be the minimal polynomial of f over k(V/. It has degree m < [k(W/ w k(V/] d deg', 
and it has coefficients in k[V] because V is normal (see 1.44). Now F(f) d 0 implies 
F.f.Qi// D 0, i.e.,

f(Qi/m Ca1(P/ • f(Qi/m-1 C-Cam(P/ d 0:

Therefore the f.Qi / are all roots of a single polynomial of degree m, and so r < m < deg('/.
In order to prove the first part of (b), we show that, if there is a point P 2 V such that 

' “1 (P/ has deg('/ elements, then the same is true for all points in an open neighbourhood 
of P . Choose f as in the last paragraph corresponding to such a P . Then the polynomial

T m C a1(P/ • T m-1 C-C am(P/ d 0 (*)

has r D deg' distinct roots, and so m D r. Consider the discriminant disc F of F. Because 
(*) has distinct roots, disc(F/(P/ ^ 0, and so disc(F/ is nonzero on an open neighbourhood 
U of P . The factorization 

k[V] ! k[V][T]=(F/
T 7!f!f k[W]

gives a factorization
W ! Spm(k[V][T]=(F// ! V:

Each point P 0 2 U has exactly m inverse images under the second map, and the first map is 
finite and dominant, and therefore surjective (recall that a finite map is closed). This proves 
that ‘_1 (P0/ has at least deg('/ points for P0 2 U, and part (a) of the theorem then implies 
that it has exactly deg('/ points.

We now show that if the field extension is separable, then there exists a point such 
that '_1(P/ has deg' elements. Because k(W/ is separable over k(V/, there exists an 
f 2 k[W] such that k(V/[f ] d k(W/. Its minimal polynomial F has degree deg('/ and its 
discriminant is a nonzero element of k[V]. The diagram

W ! Spm(k[V][T]=(F// ! V

shows that j'_1 (P/ j > deg('/ for P a point such that disc(f/(P/ ^ 0. □

Let E D F be a finite extension of fields. The elements of E separable over F form a 
subfield Fsep of E, and the separable degree of E over F is defined to be the degree of Fsep 
over F. The separable degree of a finite surjective map 'W W ! V of irreducible varieties 
is the separable degree of k(W/ over k(V /.

Theorem 8.43. Let 'W W ! V be a finite surjective regular map of irreducible varieties, 
and assume that V is normal.

(a) For all P 2 V, |‘_1 (P/| < sepdeg('/, with equality holding on a dense open subset.
(b) For all i ,

Vi DfP 2 V j|‘-1(P/|< ig

is closed in V.
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Proof. If ' is separable, this was proved in 8.40. If ' is purely inseparable, then ' is 
one-to-one because, for some q, the Frobenius map V.q 1/ —! V factors through ‘. To 
prove the general case, factor ' as the composite of a purely inseparable map with a separable 
map. □

Aside 8.44. A finite map from a variety onto a normal variety is open (hence both open and closed). 
For an elementary proof, see Theorem 63.12 of Musili, C., Algebraic geometry for beginners. Texts 
and Readings in Mathematics, 20. Hindustan Book Agency, New Delhi, 2001.

e. Zariski’s main theorem

In this section, we explain a fundamental theorem of Zariski.

Statement and proof

One obvious way to construct a nonfinite quasi-finite map is to take a finite map W ! V 
and remove a closed subset of W . Zariski’s Main Theorem (ZMT) shows that, for algebraic 
varieties, every quasi-finite map arises in this way.

Theorem 8.45 (Zariski’ S Main Theorem). Every quasi-finite map of algebraic vari­
eties 'W W ! V factors into W ,!j V0 !' V with '0 finite and j an open immersion:

W open immersion
V V 0

quasi-finite

V:

When ' is a dominant map of irreducible varieties, the statement is true with '0W V0 ! V 
equal to the normalization of V in W (in the sense of 8.9).

The key result needed to prove 8.45 is the following statement from commutative algebra. 
For a ring A and a prime ideal p in A, K.p/ denotes the field of fractions of A=p.

Theorem 8.46 (local version of ZMT). Let A be a commutative ring, and let i W A ! 
B be a finitely generated A-algebra. Let q be a prime ideal of B, andlet p d i _1.q/. Finally, 
let A0 denote the integral closure of A in B. If Bq=pBq is a finite K.p/-algebra, then there 
exists an f 2 A0 not in q such that the map Af0 ! Bf is an isomorphism.

Proof. The proof is quite elementary, but intricate — see §17 of my notes CA. □

Recall that a point v in a topological space V is isolated if fvg is an open subset of V. 
The isolated points v of an algebraic variety V are those such that fvg is both open and 
closed. Thus they are the irreducible components of V of dimension 0.

Let ' W W ! V be a continuous map of topological spaces. We say that w 2 W is 
isolated in its fibre if it is isolated in the subspace '-1 .'.w// of W. Let ‘w A ! B be a 
homomorphism of finitely generated k-algebras, and consider spm.'/W spm.B / ! spm.A/; 
then n 2 spm.B / is isolated in its fibre if and only if Bn=mBn is a finite k-algebra; here 
m d ‘-1.n).

PRoPoSITIoN 8.47. Let 'W W ! V be a regular map of algebraic varieties. The set W0 of 
points of W isolated in their fibres is open in W .
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PROOF. Let w 2 W 0. Let Ww and Vv be open affine neighbourhoods of w and v D '.w/ 
such that ‘.Ww/ C Vv, and let A d k[Vv] and B d k[Ww]. Let n d f f 2 B j f .w/ d 0g — 
it is the maximal ideal in B corresponding to w .

Let A0 be the integral closure of A in B. Theorem 8.46 shows that there exists an f 2 A0 
not in m such that Af0 ' Bf . Write A0 as the union of the finitely generated A-subalgebras 
Ai of A0 containing f :

A0D[iAi:

Because A0 is integral over A, each Ai is finite over A (see 1.35). We have

Bf ' Af0 D [i Aif:

Because Bf is a finitely generated A-algebra, Bf D Aif for all sufficiently large Ai . As the 
Ai are finite over A, Bf is quasi-finite over A, and spm.Bf / is an open neighbourhood of w 
consisting of quasi-finite points. □

Proposition 8.48. Every quasi-finite map of affine algebraic varieties 'W W ! V factors 
into W j V0 -?! V with j a dominant open immersion and '0 finite.

Proof. Let A d k[V] and B d k[W]. Because ‘ is quasi-finite, Theorem 8.46 shows 
that there exist fi 2 A0 such that the sets spm.Bfi / form an open covering of W and 
Af0 ' Bfi for all i . As W quasicompact, finitely many sets spm.Bfi / suffice to cover 
W. The argument in the proof of (8.47) shows that there exists an A-subalgebra A00 of A0, 
finite over A, which contains f1; : : : ; fn and is such that Bfi ' Af00 for all i. Now the map 
W D Spm.B / ! Spm.A00/ is an open immersion because it is when restricted to Spm.Bfi / 
for each i. As Spm.A00/ ! Spm.A/ d V is finite, we can take V0 d Spm.A00/. □

Recall (Exercise 8-3) that a regular map ‘w W ! V is affine if ‘~1 .U/ is affine whenever 
U is an open affine subset of V.

PRoPoSITIoN 8.49. Let 'W W ! V be an affine map of irreducible algebraic varieties. 
Then the map j W W ! V0 from W into the normalization V0 of V in W (8.9) is an open 
immersion.

Proof. Let U be an open affine in V. Let A d k[U] and B d k[‘~1 .U/]. In this case, the 
normalization A0 of A in B is finite over A (because it is contained in the normalization of 
A in k.W /, which is finite over A (8.3)). Thus, in the proof of 8.48 we can take A00 D A0, 
and then ‘_1 (U/ ! Spm.A0/ is an open immersion. As Spm.A0/ is an open subvariety of 
V0 and the sets ‘_1 .U/ cover W, this implies that j w W ! V0 is an open immersion. □

As V0 ! V is finite, this proves Theorem 8.45 in the case that ' is an affine map of 
irreducible varieties. To deduce the general case of Theorem 8.45 from 8.44 requires an 
additional argument. See Theorem 12.83 of Gortz, U. and Wedhorn, T., Algebraic Geometry 
I., Springer Spektrum, Wiesbaden, 2020.

Notes

8.50. Let 'w W ! V be a quasi-finite map of algebraic varieties. In  we may replace 
V0 with the closure of the image of j. Thus, there is a factorization ‘ d ‘01 j with ‘0 finite 
and j a dominant open immersion.

 8.45,
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8.51. Theorem is false for prevarieties (see . However, it is true for separated 
maps of prevarieties. (A regular map ' W V ! S of algebraic prevarieties is separated if the 
image 4V=S of the map v ! (v,v/w V ! V xs V is closed; the map ‘ is separated if V is 
separated.)

 8.45  8.33)

8.52. Assume that V is normal in  Then '0 is open , and so ' is open. Thus, 
every quasi-finite map from an algebraic variety to a normal algebraic variety is open.

 8.45. (8.44)

Applications to finite maps

Zariski’s main theorem allows us to give a geometric criteria for a regular map to be finite.

Proposition 8.53. Every quasi-finite regular map 'w W ! V of algebraic varieties with 
W complete is finite.

Proof. The map j w W ,! V0 in 8.45 is an isomorphism of W onto its image j.W / in V0. 
If W is complete, then j.W/ is closed (7.7), and so the restriction of '0 to j.W/ is finite. □

Proposition 8.54. Every proper quasi-finite map 'w W ! V of algebraic varieties is 
finite.

Proof. Factor ' into W ! W0 ! V with a finite and j an open immersion. Factor j into

w 7!.w ;j w / .w ;w 0/7!w 0W----- . ;j ! W xV W0 ——---- ! W0:

The image of the first map is 7j, which is closed because W 0 is a variety (see 5.28; W 0 is 
separated because it is finite over a variety — exercise). Because ' is proper, the second 
map is closed. Hence j is an open immersion with closed image. It follows that its image is 
a connected component of W0, and that W is isomorphic to that connected component. □

Notes

8.55. When W and V are curves, every surjective map W ! V is closed. Thus it is easy 
to give examples of closed surjective quasi-finite, but nonfinite, maps. Consider, for example, 
the map

(A1 xfOg) t A0 ! A1;

sending each a 2 A1 X f0g to a and O 2 A0 to 0. This doesn’t violate the Proposition 8.54, 
because the map is only closed, not universally closed.

Applications to birational maps

Recall (p. 116) that a regular map ' w W ! V of irreducible varieties is said to be birational 
if it induces an isomorphism k.V/ ! k.W/ on the fields of rational functions.

8.56. one may ask how a birational regular map 'w W ! V can fail to be an isomorphism. 
Here are three examples.

(a) The inclusion of an open subset into a variety is birational.
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(b) The map  from A1 to the cuspidal cubic,(8.31)

A1 ! C; t 7! .t2; t3/;

is birational. Here C is the cubic Y2 d X3, and the map k[C] ! k[A1] d k[T] 
identifies k[C] with the subring k[T2,T3] of k[T]. Both rings have k(T) as their 
fields of fractions.

(c) For any smooth variety V and point P 2 V , there is a regular birational map ' W V 0 ! V 
such that the restriction of ' to V0 x '_1(P) is an isomorphism onto V x P, but 
‘~1 (P) is the projective space attached to the vector space Tp (V/. See the section 
on blow-ups below.

The next result says that, if we require the target variety to be normal (thereby excluding 
example (b)), and we require the map to be quasi-finite (thereby excluding example (c)), 
then we are left with (a).

Proposition 8.57. Let 'W W ! V be a birational regular map of irreducible varieties. If 
V is normal and the map ' is quasi-finite, then ' is an isomorphism from W onto an open 
subvariety of V.

Proof. Factor ' as in the Theorem 8.45 (so, in particular, '0W V0 ! V is the normalization 
of V in W). For each open affine subset U of V, k['0-1(U/] is the integral closure of k[U] 
in k(W). Because ' is birational, the inclusion k(V) C k(V0/ d k(W) is an equality. Now 
k[U] is integrally closed in k(V) (because V is normal), and so U d '0_1(U/ (as varieties). 
We have shown that '0W V0 ! V is an isomorphism locally on the base V, and hence an 
isomorphism. □

8.58. In topology, a continuous bijective map 'W W ! V need not be a homeomorphism, 
but it is if W is compact and V is Hausdorff. Similarly, a bijective regular map of algebraic 
varieties need not be an isomorphism. Here are three examples:

(a) In characteristic p, the Frobenius map

(x1 ; : : : ; xn/ 7! (x1p ; : : : ; xnp/W An ! An

is bijective and regular, but it is not an isomorphism even though An is normal.
(b) The map t 7! (t2; t3/ from A1 to the cuspidal cubic (see ) is bijective, but not an 

isomorphism.
 8.56b

(c) Consider the regular map A1 ! A1 sending x to 1/x for x ^ 0 and 0 to 0. Its graph 
r is the union of (0,0) and the hyperbola xy d 1, which is a closed subvariety of 
A1 x A1. The projection (x,y) ! xw r ! A1 is a bijective, regular, birational map, 
but it is not an isomorphism even though A1 is normal.

If we require the map to be birational (thereby excluding example (a)), V to be normal 
(thereby excluding example (b)), and the varieties to be irreducible (thereby excluding 
example (c)), then the map is an isomorphism.

Proposition 8.59. Let 'W W ! V be a bijective regular map of irreducible algebraic 
varieties. If the map ' is birational and V is normal, then ' is an isomorphism.

Proof. The hypotheses imply that ' is an isomorphism of W onto an open subset of V 
(8.57). Because ' is bijective, the open subset must be the whole of V. □
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In fact, example (a) can be excluded by requiring that ' be generically separable (instead 
of birational).

Proposition 8.60. Let 'W W ! V be a bijective regular map of irreducible varieties. If 
V is normal and k.W/ is separably generated over k.V /, then ' is an isomorphism.

Proof. Because ' is bijective, dim.W / D dim.V / (see Theorem 9.9 below) and the sep­
arable degree of k.W / over k.V / is 1 (apply 8.40 to the variety V 0 in 8.45). Hence ' is 
birational, and we may apply 8.59. □

8.61. In functional analysis, the closed graph theorem states that, ifa linear map 'W W ! V 
between two Banach spaces has a closed graph r =f {(w,‘w/ j w 2 Wg, then ‘ is continuous 
(q.v. Wikipedia). One can ask (cf. mo113858) whether a similar statement is true in algebraic 
geometry. Specifically, if'W W ! V is a map (in the set-theoretic sense) of algebraic varieties 
V; W whose graph is closed (for the Zariski topology), then is ' a regular map? The answer 
is no in general. For example, even in characteristic zero, the map .t2; t3/ ! t W C ! A1 

inverse to that in 8.56(b) has closed graph but is not regular. In characteristic p, the inverse 
of the Frobenius map x 7! xp provides another counterexample. For a third counterexample, 
see 8.58(c). The projection n from r to W is a bijective regular map, and so ' will be 
regular if n is an isomorphism. According to 8.60, n is an isomorphism if the varieties 
are irreducible, W is normal, and n is generically separable. In particular, a map between 
irreducible normal algebraic varieties in characteristic zero is regular if its graph is closed.

A condition for an algebraic monoid to be a group

A monoid variety is an algebraic variety G together with the structure of a monoid defined 
by regular maps

m: G x G ! G; ew A0 ! G:

Lemma 8.62. Let .G; m; e/ be an algebraic monoid. The map

.d m/.e e/Te G © Te G ' T.e;e/(G X G/ ------ .—! Te (G/

is addition.

Proof. The first isomorphism is .X;Y/ ! (da/e.X/ C (dfl/e.Y/, where a is the map 
x! (x,e/: G ! G x G and fl is x ! (e,x/. To compute (dm/.e;e/((dfl/e .X/ C (da/e (Y//; 
note that m 1 a = idG = m 1 fl. □

PRoPoSITIoN 8.63. Let .G; m; e/ be an algebraic monoid over k. If .G.k/; m.k// is a 
group with identity element e, then (G,m/ is an algebraic group, that is, the map a ! a-1 

is regular.

PRooF. Let a 2 G.k/. The translation map La w x ! ax is an isomorphism G ! G because 
it has an inverse La-i. Therefore G is homogeneous as an algebraic variety: for any two 
points in jGj, there is an isomorphism G ! G mapping one to the other. It follows that G is 
nonsingular, in particular, normal.

The map
(x,y/ ! .X;Xy/w G x G ! G x G
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is regular, a bijection on k-points, and induces an isomorphism on the tangent spaces at .e; e/ 
(apply the lemma). It is therefore an isomorphism of algebraic varieties over k . Therefore, 
its inverse .x,y/ ! (X;X_1y/ is regular, and so

.X; y/ ! x~1y w G x G ! G

is regular. This implies that .G; m/ is an algebraic group. □

Note that it is necessary in the proposition that G be reduced: consider G d Speck[T]=(Tn/, 
n > 1, with the trivial monoid structure G x G ! e ! G.

Variants of Zariski’s main theorem

Mumford, 1966,4 III, §9, lists the following variants of ZMT.
Original form (8.57) Let 'W W ! V be a birational regular map of irreducible varieties.

If V is normal and ' is quasi-finite, then ' is an isomorphism of W onto an open 
subvariety of V .

Topological form Let V be a normal variety over C, and let v 2 V . Let S be the singular 
locus of V . Then the complex neighbourhoods U of v such that U X U \ S is 
connected form a base for the system of complex neighbourhoods of v.

Power series form Let V be a normal variety, and let OV;Z be the local ring attached to 
an irreducible closed subset of V (cf. p. 177). If OV;Z is an integrally closed integral 
domain, then so also is its completion.

Grothendieck’s form (8.45) Every quasi-finite map of algebraic varieties factors as the 
composite of an open immersion with a finite map.

Connectedness theorem Let 'W W ! V be a proper birational map, and let v be a (closed) 
normal point of V. The '-1 (v/ is a connected set (in the Zariski topology).

The original form of the theorem was proved by Zariski using a fairly direct argument 
whose method doesn’t seem to generalize.4 5 The power series form was also proved by 
Zariski, who showed that it implied the original form. The last two forms are much deeper 
and were proved by Grothendieck. See the discussion in Mumford 1966.

4Introduction to Algebraic Geometry, Harvard notes. Reprinted as “The Red Book of Varieties and Schemes” 
(with the introduction of misprints) by Springer 1999.

5 See Lang, S., Introduction to Algebraic Geometry, 1958, V 2, for Zariski’s original statement and proof of 
this theorem. See Springer, T.A., Linear Algebraic Groups, 1998, 5.2.8, for a direct proof of (8.59).

Notes. The original form of the theorem (8.57) is the “Main theorem” of Zariski, O., Foundations 
of a general theory of birational correspondences. Trans. Amer. Math. Soc. 53, (1943). 490-542.

f. Stein factorization

The following important theorem shows that the fibres of a proper map are disconnected 
only because the fibres of finite maps are disconnected.

Theorem 8.64 (Stein factorization). Every proper map 'W W ! V of algebraic va- 
'1 '2

rieties factors into W ! W 0 ! V with '1 proper with connected fibres and '2 finite.
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When V is affine, this is the factorization

W ! Spm.OW .W // ! V:

The first major step in the proof of the theorem is to show that '*Ow is a coherent sheaf 
on V. Here '*Ow is the sheaf of Ov-algebras on V,

U OOW ('~1(U//:

To say that '*Ow is coherent means that, on every open affine subset U of V, it is the sheaf 
of Ou-algebras defined by a finite k[U]-algebra. This, in turn, means that there exists a 
regular map ‘2w Spm('*Ow) ! V that, over every open affine subset U of V, is the map 
attached by Spm to the map of k-algebras k[U] ! Ow ('_1(U)):

The Stein factorization is then

W J! w0 Df Spm(‘*Ow) -! V:

By construction, '2 is finite and '1 w W ! W0 has the property that Ow0 ! '1*Ow is 
an isomorphism. That its fibres are connected is a consequence of the following extension of 
Zariski’s connectedness theorem to non birational maps.

Theorem 8.65. Let ‘w W ! V be a proper map such that the map Ov ! '*Ow is an 
isomorphism. Then the fibres of ' are connected.

See Hartshorne 1977, III, §11.

Notes. The Stein factorization was originally proved by Stein for complex spaces (q.v. Wikipedia).

g. Blow-ups

Under construction.
Let P be a nonsingular point on an algebraic variety V, and let Tp (V) be the tangent 

space at P . The blow-up of V at P is a regular map V ! V that replaces P with the 
projective space P(TP (V )). More generally, the blow-up at P replaces P with P(CP (V )), 
where CP (V) is the geometric tangent cone at P.

Blowing up the origin in An

Let O be the origin in An, and let nwAn xfOg! Pn-1 be the map (a1;:::;an) ! 
(a 1 w ::: wa„)._J.-e( rn be the graph of n, and let An be the closure of rn in An x Pn_1. 
The map aw An ! An defined by the projection map An x Pn_1 ! An is the blow-up of An 

at O .

Blowing up a point on a variety

Examples

8.66. The nodal cubic

8.67. The cuspidal cubic

http://www.urbanfonts.com/blog/wp-content/uploads/2013/04/12.gif
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h. Resolution of singularities

Let V be an algebraic variety. A desingularization of V is birational regular map n w W ! V 
such that W is nonsingular and n is proper; if V is projective, then W should also be 
projective, and n should induce an isomorphism

W x n"1(Sing(V// ! V xSing.V/:

In other words, the nonsingular variety W is the same as V except over the singular locus of 
V. When a variety admits a desingularization, then we say that resolution of singularities 
holds for V .

Note that with “nonsingular” replaced by “normalization”, the normalization of V (see 
8.5) provides such a map (resolution of abnormalities).

Nagata’s embedding theorem 7.50 shows that it suffices to prove resolution of singu­
larities for complete varieties, and Chow’s lemma 7.39 then shows that it suffices to prove 
resolution of singularities for projective varieties. From now on, we shall consider only 
projective varieties.

Resolution of singularities for curves was first obtained using blow-ups (see Chapter 
7 of Fulton’s book, Algebraic Curves). Zariski introduced the notion of the normalization 
of a variety, and observed that the normalization n w V ! V of a curve V in k(V/ is a 
desingularization of V.

There were several proofs of resolution of singularities for surfaces over C, but the first 
to be accepted as rigorous is that of Walker (patching Jung’s local arguments; 1935). For a 
surface V, normalization gives a surface with only point singularities (8.12), which can then 
be blown up. Zariski showed that the desingularization of a surface in characteristic zero can 
be obtained by alternating normalizations and blow-ups.

The resolution of singularities for three-folds in characteristic zero is much more difficult, 
and was first achieved by Zariski (Ann. of Math. 1944). His result was extended to nonzero 
characteristic by his student Abhyankar and to all varieties in characteristic zero by his 
student Hironaka.

The resolution of singularities for higher dimensional varieties in nonzero characteristic 
is one of the most important outstanding problems in algebraic geometry. In 1996, de Jong 
proved a weaker result in which, instead of the map n being birational, k(W/ is allowed to 
be a finite extension of k(V /.

A little history

Normal varieties were introduced by Zariski in a paper, Amer. J. Math. 61, 1939, p. 249-194. 
There he noted that the singular locus of a normal variety has codimension at least 2 and 
that the system of hyperplane sections of a normal variety relative to a projective embedding 
is complete (i.e., is a complete rational equivalence class). Zariski’s introduction of the 
notion of a normal variety and of the normalization of a variety was an important insertion 
of commutative algebra into algebraic geometry. It is not easy to give a geometric intuition 
for “normal”. One criterion is that a variety is normal if and only if every surjective finite 
birational map onto it is an isomorphism (8.57). See mo109395 for a discussion of this 
question.
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Exercises

8-1. Prove that a finite map is an isomorphism if and only if it is bijective and etale. (Cf. 
Harris 1992, 14.9.)

8-2. Give an example of a surjective quasi-finite regular map that is not finite (different 
from any in the notes).

8-3. Let ‘ w W ! V be a regular map with the property that'-1 .U/ is an open affine subset 
of W whenever U is an open affine subset of V (such a map is said to be affine). Show that 
if V is separated, then so also is W.

8-4. For every n > 1, find a finite map 'W W ! V with the following property: for all 
1 < i < n,

Vi Df fP 2 V j ‘~1(P/ has < i pointsg

is a nonempty closed subvariety of dimension i .



Chapter

Regular Maps and Their Fibres

Consider again the regular map 'W A2 ! A2, .x ; y/ 7! .x; xy/ (Exercise 3-3). The line 
Y D c maps to the line Y D cX . As c runs over the elements of k , this line sweeps out the 
whole x; y-plane except for the y-axis, and so the image of ' is

C D .A2 X fy-axisg/ [ f.0; 0/g

which is neither open nor closed, and, in fact, is not even locally closed. The fibre

-1
point (a, b=a) if a ^ 0

.a; b/ D Y -axis if .a; b/ D .0; 0/
; if a d 0, b ^ 0:

From this unpromising example, it would appear that it is not possible to say anything about 
the image of a regular map or its fibres. However, it turns out that almost everything that can 
go wrong already goes wrong in this example. We shall show:

(a) the image of a regular map is a finite union of locally closed sets;
(b) the dimensions of the fibres can jump only over closed subsets;
(c) the number of elements (if finite) in the fibres can drop only on closed subsets, provided 

the map is finite, the target variety is normal, and k has characteristic zero.

a. The constructibility theorem

Theorem 9. 1. Let 'W W ! V be a dominant regular map of irreducible affine algebraic 
varieties. Then '.W / contains a dense open subset of V .

Proof. Because ‘ is dominant, the map f ! f i'wk[V] ! k[W] is injective (3.34). Ac­
cording to Lemma 9.4 below, there exists a nonzero a 2 k[V] such that every homomorphism 
awk[V] ! k such that a(a) ^ 0 extends to a homomorphism pk[W] ! k with P(1) ^ 0. 
In particular, for P 2 D(a), the homomorphism g ! g(P)w k[V] ! k extends to a nonzero 
homomorphism Pwk[W] ! k. The kernel of P is a maximal ideal of k[W] whose zero set is 
a point Q of W such that '(Q) d P. □

Before beginning the proof of Lemma 9.4, we should look at an example.

Example 9.2. Let A be an affine k-algebra, and let B d A[T]=(f) with f d amTm C 
---- C a0. When does a homomorphism aw A ! k extend to B? The extensions of a corre­
spond to roots of the polynomial a(am)Tm C----- C a(a0) in k, and so there exists an extension
unless this is a nonzero constant polynomial. In particular, a extends if a(am) ^ 0.

195
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Lemma 9.3. Let A c B be finitely generated k -algebras. Assume that A and B are integral 
domains, and that B is generated by a single element, say, B d A[t] ' A[T]=a. Let c C A be 
the set of leading coefficients of the polynomials in a. Then every homomorphism aw A ! k 
such that a(c) ^ 0 extends to a homomorphism B ! k.

PROOF. Note that c is an ideal in A. If a D 0, then every homomorphism a extends. Thus 
we may assume that a ^ 0. Let f d am Tm C----- C a0 be a nonzero polynomial of minimum
degree in a such that a(am) ^ 0. Because B ^ 0, we have that m > 1.

Extend a to a homomorphism aw A[T] ! k[T] by sending T to T. The k-submodule of 
k[T] generated by a (a) is an ideal (because T • P ci a (gi) d P ci a (gi T)).

Unless a(a) contains a nonzero constant, it generates a proper ideal in k[T], which will 
have a zero c in k (2.11). The homomorphism

A[T] ! k[T] h 'h'c"' k; T! T! c

then factors through A[T]=a d B and extends a.
In the contrary case, a contains a polynomial

g(T) D bnTn +••• + bo; a(bi) D 0 (i>0); a(bo) / 0:

On dividing f(T) into g(T ), we find that

amg(T) d q(T)f(T) + r(T); d 2 N; q;r 2 A[T], degr < m:

On applying aQ to this equation, we obtain

a(am)d a(b0) D aQ(q)aQ(f) C aQ(r):

Because aQ(f) has degree m > 0, we must have aQ(q) D 0, and so aQ(r) is a nonzero constant. 
After replacing g(T) with r(T), we may assume n < m. If m D 1, such a g(T) can’t exist, 
and so we may suppose m > 1 and (by induction) that the lemma holds for smaller values of 
m.

For h(T) d crTr + cr-1Tr-1 C-----C c0, let h0(T) d cr C + c0Tr. Then the A-
module generated by the polynomials Tsh0(T), s > 0, h 2 a, is an ideal a0 in A[T], Moreover, 
a0 contains a nonzero constant if and only if a contains a nonzero polynomial cTr, which 
implies t D 0 and A D B (since B is an integral domain).

If a0 does not contain nonzero constants, then set B0 d A[T]=a0 d A[t0], Then a0 contains 
the polynomial g0 d bn C-----C b0Tn, and a(b0)^ 0. Because degg0 < m, the induction
hypothesis implies that a extends to a homomorphism B0 ! k. Therefore, there is a c 2 k 
such that, for all h(T) d cr T r + cr _1T r~1 C C c0 2 a,

h0(c) d a(cr) + a(cr_1)c C----- C cocr d 0:

On taking h D g, we see that c D 0, and on taking h D f , we obtain the contradiction 
a(am) d 0. □

Lemma 9.4. Let A c B be finitely generated k -algebras. Assume that A and B are integral 
domains, and let b be a nonzero element of B . Then there exists a nonzero a 2 A with 
the following property: every homomorphism aw A ! k from A into k such that a(a) ^ 0 
extends to a homomorphism ^ w B ! k such that ^ (b) ^ 0.
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Proof Suppose that we know the proposition in the case that B is generated by a single 
element, and write B d A[x1;.. .,xn]. Then there exists an element bn_1 2 A[x1,.. .,xn_1] 

with the following property: every homomorphism aw A[x1;.. .,xn_1] ! k such that a(bn_1/ ^ 
0 extends to a homomorphism Pw B ! k such that P(b/ ^ 0. Then there exists a bn-2 2 
A[x1;.. . ,xn_2] etc. Continuing in this fashion, we obtain an element a 2 A with the required 
property.

Thus we may assume B d A[x]. Let a be the kernel of the homomorphism T ! x, 
A[T] ! A[x],

Case (i). The ideal a D (0/. Write

b d f(x/ d aoxn Ca1xn~1 C------Can; ai 2 A;

and take a d a0. If aw A ! k is such that a(a0/ ^ 0, then there exists a c 2 k such that 
f (c/ ^ 0, and we can take P to be the homomorphism P di xi ! P a(di /ci.

Case (ii). The ideal a ^ (0/. Let

f(T/ d amTm C---Cao; am / 0;

be an element of a of minimum degree. Let h(T/ 2 A[T] represent b. As b is nonzero, h 0 a. 
Because f is irreducible over the field of fractions of A, it and h are coprime over that field. 
Hence there exist U;V 2 A[T] and c 2 A xf0g such that

uh C vf D c .

It follows now that cam satisfies our requirements, for if a(cam/ ^ 0, then a can be extended 
to P w B ! k by the preceding lemma, and P (u(x/ • b/ d P(c/ ^ 0, and so P (b/ ^ 0. □

Aside 9.5. It is also possible to deduce Theorem 9.1 from the generic freeness theorem (CA 21.11).

In order to generalize 9.1 to arbitrary maps of arbitrary varieties, we need the notion of a 
constructible set. Let W be a topological space. A subset C of W is said to constructible if 
it is a finite union of sets of the form U \ Z with U open and Z closed. Obviously, if C is 
constructible in W and V C W, then C \ V is constructible in V, and it is constructible in 
W if V is open or closed.

A constructible subset of An is one that is definable by a finite number of polynomials. 
More precisely, it is defined by a finite number of statements of the form

f(X1;...;Xn/ D 0; g(X 1 ,...,Xn / / 0

combined using only “and” and “or” (or, better, statements of the form f D 0 combined 
using “and”, “or”, and “not”). The next proposition shows that a constructible set C that is 
dense in an irreducible variety V must contain a nonempty open subset of V. Contrast Q, 
which is dense in R (real topology), but does not contain an open subset of R, or an infinite 
subset of A1 that omits an infinite set.

Proposition 9.6. Let C be a constructible set whose closure CN is irreducible. Then C 
contains a nonempty open subset of its closure CN .

PROOF. We are given that C D S(Ui \ Zi/ with each Ui open and each Zi closed. We 
may assume that each set Ui \ Zi in this decomposition is nonempty. Clearly C c U Zi, 
and as CN is irreducible, it must be contained in one of the Zi . For this i 

—
C D Ui \ Zi D Ui \ (ND Ui \ C D Ui \ (Ui \ Zi / d Ui \ Zi.

Thus Ui \ Zi d Ui \ C is a nonempty open subset of C contained in C. □ 
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Theorem 9.7. Every regular map 'W W ! V sends constructible sets to constructible sets.

Proof We first show that it suffices to prove the theorem with W and V affine. Write V 
as a finite union of open affines, and then write the inverse image of each of the affines 
as a finite union of open affines. In this way, we get W D Si 2I Wi with each Wi open 
affine and '.Wi / contained in an open affine of V . If C is a constructible subset of W , then 
'.C/ D Si2I '.C \ Wi/, and so '.C/ is constructible if each set '.C \ Wi/ is constructible.

Now assume that W and V are affine, and let C be a constructible subset of W . Let Wi 

be the irreducible components of W . They are closed in W , and so C \ Wi is constructible 
in W . As '.W/ D S'.C \ Wi/, it is constructible if the '.C \ Wi/ are. Hence we may 
suppose that W is irreducible. Moreover, C is a finite union of its irreducible components. 
As these are closed in C, they are constructible in W . We may therefore assume that C is 
also irreducible; C is then an irreducible closed subvariety of W .

We prove the theorem by induction on the dimension of W . If dim.W / D 0, then the
j j j ’ 1 1 TT7 ’ ’ j T C / TT7 .1 T / X~< \ T /TT7\ 1 ZZ1X ’statement is obvious because W is a point. If C ^ W, then dim.C/ < dim.W/, and '(C) is 

constructible by the induction hypothesis applied to C —! V. We may therefore assume 
that C D W. Replace V with '.C/. According to Proposition 9.6, C contains a dense open 
subset U0 of W, and Theorem 9.1 applied to U0 —! V shows that '(C) contains a dense 
open subset U of V . Write

'(C) D U [ '.C \ '“1.V - U)).

Then '-1.V — U/ is a proper closed subset of W (the complement of V — U is dense 
in V and ' is dominant). As C \ '-1.V — U/ is constructible in '-1.V — U/, the set 
'.C \ '~1 .V — U// is constructible in V by induction, which completes the proof. □

ASIDE 9.8. Let X be a subset of Cn. If X is constructible for the Zariski topology on Cn, then the 
closure of X for the Zariski topology is equal to its closure for the complex topology.

b. The fibres of morphisms

We wish to examine the fibres of a regular map 'W W ! V. We can replace V by the closure 
of '.W/ in V and so assume that ' is dominant.

Theorem 9.9. Let 'W W ! V be a dominant regular map of irreducible varieties. Then
(a) dim.W/ > dim.V/;

(b) if P 2 '.W /, then
dim.'-1.P// > dim.W/ — dim.V/

for every P 2 V, with equality holding exactly on a nonempty open subset U of V.

(c) The sets
Vi DfP 2 V j dim.'-1.P// > ig

are closed in '.W/.

In other words, for P on a dense open subset U of V, the fibre '-1 .P/ has the expected 
dimension dim.W/ — dim.V/. On the closed complement of U (possibly empty), the 
dimension of the fibre is > dim.W/ — dim.V/, and it may jump further on closed subsets.

Before proving the theorem, we should look at an example.
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Example 9.10. Consider the subvariety W c V x Am defined by r linear equations

m

^a/j Xj = 0; aij 2 k[V]; i = 1,...,r,
jD1

and let' be the projection W ! V. For P 2 V, ‘~1 (P) is the set of solutions of system of 
equations

m

aij.P /Xj =0; aij.P/ 2k; i = 1;:::;r;
jD1

and so its dimension is m — rank(aj (P)). Since the rank of the matrix (aij- (P)) drops on 
closed subsets, the dimension of the fibre jumps on closed subsets. More precisely, for each 
r 2 N,

fP 2 V j rank(aj (P)) < r g

is a closed subset of V (see Exercise 2-2); hence, for each r0 2 N,

fP 2 V j dim‘-1(P) > r0g

is closed in V.

Proof. (a) Because the map is dominant, there is a homomorphism k(V ) ,! k(W ), and 
obviously tr degkk(V) < tr degkk(W) (an algebraically independent subset of k(V) remains 
algebraically independent in k(W )).

(b) In proving the first part of (b), we may replace V by any open neighbourhood of P . 
In particular, we can assume V to be affine. Let m be the dimension of V . From (3.47) we 
know that there exist regular functions f1 ; : : : ; fm such that P is an irreducible component 
of V(f1 ; : : : ; fm). After replacing V by a smaller neighbourhood of P , we can suppose that 
P = V(f1;:: .;fm). Then ' _ 1 (P ) is the zero set of the regular functions f1i ',...,fm i', 
and so (if nonempty) has codimension < m in W (see 3.45). Hence

dim‘-1(P) > dim W — m = dim(W) — dim(V):

In proving the second part of (b), we can replace both W and V with open affine subsets. 
Since ' is dominant, k[V] ! k[W] is injective, and we may regard it as an inclusion 
(we identify a function x on V with x i' on W). Then k(V) C k(W). Write k[V] = 
k[x1;:: .;xM] and k[W] = k[y1,...,yN], and suppose V and W have dimensions m and n 
respectively. Then k(W) has transcendence degree n — m over k(V), and we may suppose 
that y 1;:::; yn-m are algebraically independent over k[x1,...,xm], and that the remaining 
yi are algebraic over k[x1,.. .,xm,y1,.. .,yn_m], There are therefore relations

Fi (xi,...,xm,yi,...,yn-m,yi) = 0; i = n -m C 1,...,N, (37)

with Fi (X1;.. .,Xm,Y1,...; Yn_m;Yi) a nonzero polynomial. We write yi for the restriction 
of yi to '_1(P). Then

k['-1(P)] = k[yi,...,yN ].

The equations (37) give an algebraic relation among the functions x1 ; . . . ; yi on W. When 
we restrict them to ‘-1 (P), they become equations:

Fi(xi(P),...,Xm(P),yi,...,yn_m,yi) = 0; i = n-m C 1,...,N.
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If these are nontrivial algebraic relations, i.e., if none of the polynomials

Fi .Xi.P/;:::;Xm.P/;Yl;:::;Yn_m;Yi )

is identically zero, then the transcendence degree of k.;Ni ,...,;Nn/ over k will be < n — m.
Thus, regard Fi.x1 ;..:;Xm,Y1 ;..:;Yn-m;Yi/ as a polynomial in the Y’s with coeffi­

cients polynomials in the x’s. Let Vi be the closed subvariety of V defined by the simul­
taneous vanishing of the coefficients of this polynomial — it is a proper closed subset of 
V . Let U D V X S Vi — it is a nonempty open subset of V . If P 2 U , then none of the 
polynomials Fi .x1 (P),...,xm(P),Y1 ,...,Yn-m,Yi/ is identically zero, and so for P 2 U, 
the dimension of '-1 .P/ is < n — m, and hence d n — m by (a).

Finally, if for a particular point P, dim'-1 .P/ d n — m, then we can modify the above 
argument to show that the same is true for all points in an open neighbourhood of P .

(c) We prove this by induction on the dimension of V — it is obviously true if dim V D 0. 
We know from (b) that there is an open subset U of V such that

dim‘-1.P/ d n — m ■<=” P 2 U.

Let Z be the complement of U in V; thus Z d Vn-mc 1. Let Z1 ;..:;Zr be the irreducible 
components of Z. On applying the induction to the restriction of ' to the map '-1 (Zj/ ! 
Zj for each j, we obtain the result. □

Recall that a regular map ' W W ! V of algebraic varieties is closed if, for example, W 
is complete (7.7).

Proposition 9.11. Let 'W W ! V be a regular surjective closed map of varieties, and let 
n 2 N. If V is irreducible and all fibres '-1 .P/ of' are irreducible of dimension n, then W 
is irreducible of dimension dim.V / C n.

Proof. Let Z be an irreducible closed subset of W , and consider the map 'jZW Z ! V ; it 
has fibres .'jZ/-1 .P/ d '-1 .P/ \ Z. There are three possibilities.

(a) '.Z/ ^ V. Then '.Z/ is a proper closed subset of V.
(b) '.Z/ D V, dim.Z/ < n C dim.V /. Then (b) of  shows that there is a nonempty 

open subset U of V such that for P 2 U,
(9.9)

dim.'-1.P/ \ Z/ d dim.Z/ — dim.V/ < n.

Thus, for P 2 U, the fibre '-1 .P/ is not contained in Z.
(c) '.Z/ d V, dim.Z/ > n C dim.V/. Then b) shows that 9.9(

dim.'-1 .P/ \ Z/ > dim.Z/ — dim.V/ > n

for all P; thus '-1.P/ C Z for all P 2 V, and so Z d W; moreover dim Z d 
dim V C n.

Now let Z1 ; . . . ; Zr be the irreducible components of W. I claim that (c) holds for at least 
one of the Zi. Otherwise, there will be an open subset U of V such that for P in U, '-1 .P/ 
is contained in none of the Zi; but'-1 .P/ is irreducible and '-1 .P/ d S.'-1 .P/ \ Zi/, 
and so this is impossible. □

Caution. It is possible for all the fibres of regular map W ! V to be reducible without 
W being reducible. The variety in A2 x A2 with equation x2y1 — x2y2 d 0 is irreducible, 
but the fibres of the projection to the first factor (obtained by fixing the values of y1 and y2) 
are all reducible. Pass to the projective closure to extend this to P2 x P2.
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c. Flat maps and their fibres

Flat maps

Let A be a ring, and let B be an A-algebra. If the sequence of A-modules 

0 ! N0 -! N -! N00 ! 0

is exact, then the sequence of B -modules

B 0a N0 1! B 0a N 1! B 0a N00 ! 0

is exact,1 but B 0A N0 ! B 0A N need not be injective. For example, when we tensor the 
exact sequence of k[X]-modules

1The surjectivity of 1 0 fl is obvious. Let B 0 a N -! Q be the cokernel of 1 0 a. Because

(1 0 fl) i (1 0a) d 1 0 (fl ia) d 0;

there is a unique A-linear map f W Q ! B 0 a N00 such that f 10 = 1 0 fl. We shall construct an inverse g to 
f . Let b 2 B, and let n 2 N. If fl(n) D 0, then n D a(n0) for some n0 2 N0; hence b 0 n D b 0 a(n0), and so 
0(b 0n) = 0. It follows by linearity that 0(b 0 ni) = 0(b 0n2) if fl(n 1) = fl(n2), and so the A-bilinear map

B x N ! Q; (b,n)! 0(b 0 n)

factors through B x N00. It therefore defines an A-linear map gw B 0A N00 ! Q. To show that f and g are 
inverse, it suffices to check that g i f = idQ on elements of the form 0 (b 0 n) and that f i g = idB®A nu on 
elements of the form b 0 fl(n) — both are obvious.

f!Xf f!f mod .X/0 ! k[X]--------- ! k[X]--------------- ! k[X]/(X) ! 0

with k , we get the sequence
k —! k -! k ! 0:

DEFINITION 9. 12. An A-algebra B is flat if

M ! N injective h) B 0 a M ! B 0 a N injective.

It is faithfully flat if, in addition,

B 0 a M d 0 ) M d 0:

Therefore, an A-algebra B is flat if and only if the functor M B B 0 a M from A- 
modules to B -modules is exact.

Example 9.13. (a) Let S be a multiplicative subset of A. Then S-1A is a flat A-algebra 
(1.18). (b) Every open immersion is flat (obvious). (c) The composite of two flat maps is flat 
(obvious).

Proposition 9. 14. Let A ! A0 be a homomorphism of rings. If A ! B is flat, then so 
also is A0 ! B 0 a A0.

Proof. For any A0-module M,

(B 0a A0) ®ao M ‘ B 0 a (A0 0ao M) ' B 0a M.

In other words, tensoring an A0-module M with B 0 a A0 is the same as tensoring M 
(regarded as an A-module) with B. Therefore it preserves exact sequences. □ 
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Proposition 9.15. A homomorphism aw A ! B of rings is flat if and only if, for all 
maximal ideals n in B, the map Aa-i.n/ ! Bn is flat.

PROOF. Let n be a prime ideal of B, and let m d a-1 (n) — it is a prime ideal in A.
If A ! B is flat, then so is Am ! Am <8>a B ' S“1B (9.14). The map S“1B ! S„1B d 

Bn is flat (9.13a), and so the composite Am ! Bn is flat (9.13c).
For the converse, let N0 ! N be an injective homomorphism of A-modules, and let n 

be a maximal ideal of B. Then Am <8>a (N0 ! N) is injective (9.13). Therefore, the map

Bn ®A (N0 ! N) ' Bn ®Am (Am ®A (N0 ! N))

is injective, and so the kernel M of B <8>a (N0 ! N) has the property that Mn d 0. Let 
x 2 M, and let a D fb 2 B j bx D 0g. For each maximal ideal n of B, x maps to zero in Mn, 
and so a contains an element not in n. Hence a d B, and so x d 0. □

PRoPoSITIoN 9. 16. A flat homomorphism 'W A ! B is faithfully flat if and only if every 
maximal ideal m of A is of the form '-1 (n) for some maximal ideal n of B.

PRooF. ): Let m be a maximal ideal of A, and let M D A=m; then

B <8>a M ' B/'(m)B:

As B <8>a M ^ 0, we see that '(m)B ^ B. Therefore '(m) is contained in a maximal ideal 
n of B. Now '~1 (n) is a proper ideal in A containing m, and hence equals m.
(: Let M be a nonzero A-module. Let x be a nonzero element of M , and let a D 

ann(x) dDef fa 2 A j ax D 0g. Then a is an ideal in A, and M0 dDef Ax ' A/a. Moreover, 
B <8>a M0 ‘ B/‘(a) • B and, because A ! B is flat, B <8>a M0 is a submodule of B <8>a M. 
Because a is proper, it is contained in a maximal ideal m of A, and therefore

'(a) C '(m) C n

for some maximal ideal n of A. Hence '(a) • B C n ^ B, and so B <8>a M D B <8>a M0 ^ 0.n

C oRoLLARY 9. 17. A flat local homomorphism A ! B of local rings is faithfully flat.

PRooF. Let m and n be the (unique) maximal ideals of A and B. By hypothesis, nc D m, 
and so the statement follows from the proposition. □

Properties of flat maps

LEMMA 9.18. Let B be an A-algebra, and let p be a prime ideal ofA. The prime ideals 
of B contracting to p are in natural one-to-one correspondence with the prime ideals of 
B <8>a tf(p).

Proof. Let S d A x p. Then K(p) d S-1(A/p). Therefore we obtain B <8>a K(p) from B 
by first passing to B/pB and then making the elements of A not in p act invertibly. After the 
first step, we are left with the prime ideals q of B such that qc D p, and after the second step 
only with those such that qc \ S d ;, i.e., such that qc d p. □

PRoPoSITIoN 9. 19. Let B be a faithfully flat A-algebra. Every prime ideal p of A is of the 
form qc for some prime ideal q ofB.
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Proof. The ring B <8>a x(p/ is nonzero, because x(p/ ^ 0 and A ! B is faithfully flat, and 
so it has a prime (even maximal) ideal q. For this ideal, qc d p. □

Summary 9 .20. A flat homomorphism ' W A ! B is faithfully flat if the image of

spec.'/W spec.B / ! spec.A/

includes all maximal ideals of A, in which case it includes all prime ideals of A.

PRoPoSITIoN 9.21 (GoING-DoWN THEoREM FoR FLAT MAPS). LetA ! B be a flat ho­
momorphism. Let p D p0 be prime ideals in A, and let q be a prime ideal in B such that 
qc D p. Then q contains a prime ideal q0 such that q0c D p0:

B q D q0

A p D p0:

PRooF. Because A ! B is flat, the homomorphism Ap ! Bq is flat, and because pAp D 
.qBq /c, it is faithfully flat (9.16). The ideal p0Ap is prime (1.14), and so there exists a prime 
ideal of Bq lying over p0Ap (by 9.19). The contraction of this ideal to B is contained in q 
and contracts to p0 in A. □

DEFINITIoN 9.22. A regular map 'W W ! V of algebraic varieties is flat if, for all P 2 W , 
the map OV;'.P / ! OW;P is flat, and it is faithfully flat if it is flat and surjective.

PRoPoSITIoN 9.23. A regular map 'W W ! V of affine algebraic varieties is flat (resp. 
faithfully flat) if and only if the map f ! f i' w k[V] ! k[W] is flat (resp. faithfully flat).

Proof. Apply (9.15) and (9.16). □

Proposition 9.24. Let ‘w W ! V be a flat map of affine algebraic varieties. Let S c S0 
be closed irreducible subsets of V, and let T be a closed irreducible subset of W such that 
'.T/ is a dense subset of S. Then there exists a closed irreducible subset T0 of W containing 
T and such that '.T 0/ is a dense subset of S0.

Proof. Let p d I.S/, p0 d I.S0/, and q d I.T/. Then p D p0 because S c S0. Moreover 
qc d p because T —> S is dominant and so the map k[S] d k[V]=p ! k[T]=q is injective. 
According to (9.21), there exists a prime ideal q0 in k[W] contained in q and such that 
q0c d p0. Now V.q0/ has the required properties. □

THEoREM 9.25 (GENERiC FLATNESS). For every regular map 'w W ! V of irreducible 
algebraic varieties, there exists a nonempty open subset U of V such that ‘~1(U') —> U is 
faithfully flat.

PRooF. We may assume that W and V are affine, say, V D Spm.A/ and W D Spm.B /. 
Let F be the field of fractions of A. We regard B as a subring of F <8>a B.

As F <8>a B is a finitely generated F-algebra, the Noether normalization theorem (2.45) 
shows that there exist elements x1,...,xm of F <8>a B such that F[x1,.. .,xm] is a polynomial 
ring over F and F <8>a B is a finite F[x1,..., xm]-algebra. After multiplying each xi by 
an element of A, we may suppose that it lies in B. Let bi; . . . ;bn generate B as an A- 
algebra. Each bi satisfies a monic polynomial equation with coefficients in F[x1 ,...,xm].



204 9. Regular Maps and Their Fibres

Let a 2 A be a common denominator for the coefficients of these polynomials. Then each bi 

is integral over Aa. As the bi generate Ba as an Aa-algebra, this shows that Ba is a finite 
Aa[x1,...;Xm]-algebra (1.36). Therefore, after replacing A with Aa and B with Ba, we 
may suppose that B is a finite A[x1,.. .,xm]-algebra.

injective
B ------ ---------- > F <8>a B
finite finite

...;Xm] ----- F F[X1;...;X.

T T
A -------------------- > F.

> E ®A[X1;:::;Xm] B 
finite 

------E E f F(X1;...;Xm)

Let E d F(x1;...; xm) be the field of fractions of A[x1,..., xm], and let b1 ,...,br be 
elements of B that form a basis for E ®A[X1,...,xm] B as an E-vector space. Each element 
of B can be expressed as a linear combination of the bi with coefficients in E. Let q be 
a common denominator for the coefficients arising from a set of generators for B as an 
A[x1;.. .;Xm]-module. Then b1,...,br generate Bq as an A[x1,.. .,xm]? -module. In other 
words, the map

(C1;...;Cr ) ! P Ci bi W A[X1;...;Xm]q ! Bq (*)

is surjective. This map becomes an isomorphism when tensored with E over A[x1 ,...,xm]q, 
which implies that each element of its kernel is killed by a nonzero element of A[x1 ,...,xm]q 

and so is zero (because A[x1,...,xn]q is an integral domain). Hence the map (*) is an 
isomorphism, and so Bq is free of finite rank over A[x1,.. .,xm]q. Let a be some nonzero 
coefficient of the polynomial q , and consider the maps

Aa ! Aa [xi;...; xm] ! Aa [xi;...;xm]q ! Baq.

The first and third arrows realize their targets as nonzero free modules over their sources, 
and so are faithfully flat. The middle arrow is flat by (9.13). Let m be a maximal ideal in Aa. 
Then mAa [x1,..., xm] does not contain the polynomial q because the coefficient a of q is 
invertible in Aa. Hence mAa [x1,..., xm]q is a proper ideal of Aa [x1,...,xm]q, and so the 
map Aa ! Aa [x1,.. .,xm]q is faithfully flat (apply 9.16). This completes the proof. □

Lemma 9.26. Let V be an algebraic variety. A constructible subset C of V is closed if it 
has the following property: let Z be a closed irreducible subset of V ; if Z \ C contains a 
dense open subset of Z, then Z c C.

Proof. Let Z be an irreducible component of C. Then Z \ C is constructible and it is 
dense in Z, and so it contains a nonempty open subset U of Z (9.6). Hence Z C C. □

Theorem 9.27. A flat map 'W W ! V of algebraic varieties is open.

Proof. Let U be an open subset of W . Then '(U) is constructible (9.7) and the going­
down theorem (9.21) implies that V X'(U) satisfies the hypotheses of the lemma. Therefore 
V x ‘(U) is closed. □

Corollary 9.28. Let'W W ! V be a regular map of irreducible algebraic varieties. Then 
there exists a dense open subset U of W such that '(U) is open, U d ‘-1(‘U), and 
U -! '(U) is flat.
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Proof. According to 9.25, there exists a dense open subset U of V such that ‘_1 .U/ —! U 
is flat. In particular, '.‘_1 .U// is open in V (9.27). Note that ‘_1 .'.‘_1 .U// d ‘~1 .U/. 
Let U0 d ‘_1 .U/. Then U0 is a dense open subset of W, ‘.U0/ is open, U0 d ‘_1 .‘U0/, 
and U0 -! ‘.U0/ is flat. □

Fibres and flatness

The notion of flatness allows us to sharpen our earlier results.

PRoPoSITIoN 9.29. Let ‘W W ! V be a dominant map of irreducible algebraic varieties. 
Let P 2 ‘.W/. Then

dim (‘-1(P)) > dim.W/ -dim.V/; (38)

and equality holds if ‘ is flat.

PRooF. The inequality was proved in 9.9. If ‘ is flat, then we shall prove (more precisely) 
that, if Z is an irreducible component of ‘_1 .P/, then

dim.Z/ d dim.W/ -dim.V/:

After replacing V with an open neighbourhood of P and W with an open subset intersecting 
Z , we may suppose that both V and W are affine. Let

V D Vi D---D Vm DfPg

be a maximal chain of distinct irreducible closed subsets of V (so m D dim.V /). Now 
‘.Z/ D fPg, and so (see 9.24) there exists a chain of irreducible closed subsets

W D Wi D---D Wm d Z

such that ‘.Wi / is a dense subset of Vi. Let

Z D Zi D ••• D Zn

be a maximal chain of distinct irreducible closed subsets of V (so n D dim.Z/). The 
existence of the chain

W D Wi D---D Wm D Zi D---D Zn

shows that
dim.W/ > m C n d dim.V/ C dim.Z/:

Together with (38), this implies that we have equality. □

PRoPoSITIoN 9.30. Let ‘W W ! V be a dominant map of irreducible algebraic varieties. 
Let P 2 ‘.W/. Then

dim(‘^.P/) > dim.W/ — dim.V/:

There exists a dense open subset U of W such that ‘.U/ is open in V, U d ‘_i(‘(U//, 
and equality holds for all P 2 ‘.U /.

Proof. Let U be an open subset of W as in 9.28. □
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Proposition 9.31. Let 'W W ! V be a dominant map of irreducible varieties. Let S be a 
closed irreducible subset of V, and let T be an irreducible component of ‘~1 .S/ such that 
'.T/ is dense in S. Then

dim.T/ > dim.S/ C dim.W/ - dim.V/;

and equality holds if ' is flat.

Proof. The inequality can be proved by a similar argument to that in 9.9 — see, for 
example, Hochschild 1981, X, Theorem 2.1.2 The equality can be deduced by the same 
argument as in 9.29. □

2Hochschild, Gerhard P., Basic theory of algebraic groups and Lie algebras. Springer, 1981.

Proposition 9.32. Let 'W W ! V be a dominant map of irreducible varieties. There exists 
a nonempty open subset U of W suchthat '.U/ isopen, U d ‘~1 .'U/, and U —! ‘.U/ 
is flat. If S is a closed irreducible subset of V meeting '.U /, and T is an irreducible 
component of'_1 .S/ meeting U, then

dim.T/ d dim.S/ C dim.W/ - dim.V/:

Proof. Let U be an open subset of W as in 9.28. □

Finite maps

PRoPoSITIoN 9.33. Let V be an irreducible algebraic variety. A finite map 'W W ! V is 
flat if and only if

dimk OQ=mP OQ

Q7!P

is independent of P 2 V.

PRooF. It suffices to prove this with V affine, in which case it follows from CA 12.6 
(equivalence of (d) and (e)). □

The integer dimk OQ=mP OQ is the multiplicity of Q in its fibre. The theorem says that 
a finite map is flat if and only if the number of points in each fibre (counting multiplicities) 
is constant.

For example, let V be the subvariety of AnC1 defined by an equation

Xm Ca1Xm-1 C---Cam d 0; ai 2 k[T1 ,...,Tn]

and let 'W V ! An be the projection map (see p. 51). The fibre over a point P of An is the 
set of points .P ; c/ with c a root of the polynomial

X m C ai.P/X m-1 C---C am.P/ d 0:

The multiplicity of .P; c/ in its fibre is the multiplicity of c as a root of the polynomial.
Therefore Q7!P dimk OQ=mP OQ D m for every P, and so the map ' is flat.



c. Flat maps and their fibres 207

Criteria for flatness

Theorem 9.34. Let 'W A ! B be a local homomorphism of noetherian local rings, and let 
m be the maximal ideal of A. If A is regular, B is Cohen-Macaulay, and

dim.B / D dim.A/ C dim.B=mB /;

then ' is flat.

Proof. See Matsumura 1986, 23.1.3 □

9.35. We don’t define the notion of being Cohen-Macaulay here (see ibid. p. 134), but 
merely list some of its properties.

(a) A noetherian ring A is Cohen-Macaulay if and only if Am is Cohen-Macaulay for 
every maximal ideal m of A (this is part of the definition).

(b) Zero-dimensional and reduced one-dimensional noetherian rings are Cohen-Macaulay 
(ibid. p. 139).

(c) Regular noetherian rings are Cohen-Macaulay (ibid. p. 137).
(d) Let ' W A ! B be a flat local homomorphism of noetherian local rings, and let m be 

the maximal ideal of A. Then B is Cohen-Macaulay if and only if both A and B=mB 
are Cohen-Macaulay (ibid. p. 181).

PRoPoSITIoN 9.36. Let 'W A ! B be a finite homomorphism noetherian rings with A 
regular. Then ' is flat if and only if B is Cohen-Macaulay.

PRooF. Note that B=mB/ is zero-dimensional,3 4 hence Cohen-Macaulay, for every maximal 
ideal m of A (9.35b), and that ht.n/ D ht.nc / for every maximal ideal n of B. If ' is flat, 
then B is Cohen-Macaulay by (9.35d). Conversely, if B is Cohen-Macaulay, then ' is flat 
by (9.34). □

3Matsumura, Hideyuki, Commutative ring theory. Cambridge University Press, Cambridge, 1986.
4Note that C def B/mB = B 0a A=m is a finite k-algebra. Therefore it has only finitely many maximal 

ideals. Every prime ideal in C is an intersection of maximal ideals (2.18), but a prime ideal can equal a finite 
intersection of ideals only if it equals one of the ideals.

Example 9.37. Let A be a finite k[X1;:: :;Xn ]-algebra (cf. 2.45). The map k[X1;:: .,Xn] ! 
A is flat if and only if A is Cohen-Macaulay.

An algebraic variety V is said to be Cohen-Macaulay if OV;P is Cohen-Macaulay 
for all P 2 V. An affine algebraic variety V is Cohen-Macaulay if and only if k[V] is 
Cohen-Macaulay (9.35a). A nonsingular variety is Cohen-Macaulay (9.35c).

THEoREM 9.38. Let V and W be algebraic varieties with V nonsingular and W Cohen- 
Macaulay. A regular map ' W W ! V is flat if and only if

dim‘“1 (P) d dim W - dim V (39)

for all P 2 V.

Proof. Immediate consequence of (9.34). □
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ASIDE 9.39. The theorem fails with “nonsingular” weakened to “normal”. Let Z=2Z act on W dDef A2 

by .X;y/ ! .—X; — y/. The quotient of W by this action is the quadric cone V C A3 defined by 
T V D U2. The quotient map 'W W ! V is .x; y/ 7! .t; u; v/ D .x2; xy; y2/. The variety W is 
nonsingular, and V is normal because k[V] d k[X; Y]G (cf. CA 23.12). Moreover ' is finite, and so 
its fibres have constant dimension 0, but it is not flat because

dimk OQ=mP OQ D
Q7!P

if P D .0; 0; 0/ 
otherwise

3
2

(see 9.33). See mo117043.

d. Lines on surfaces

As an application of some of the above results, we consider the problem of describing the set 
of lines on a surface of degree m in P3. To avoid possible problems, we assume for the rest 
of this chapter that k has characteristic zero.

We first need a way of describing lines in P3 . Recall that we can associate with each 
projective variety V C Pn an affine cone over V in knC1. This allows us to think of points 
in P3 as being one-dimensional subspaces in k4 , and lines in P3 as being two-dimensional 
subspaces in k4. To such a subspace W c k4, we can attach a one-dimensional subspace 
V2 W in V2k4 & k6, that is, to each line L in P3, we can attach point p.L/ in P5. Not 
every point in P5 should be of the form p.L/ — heuristically, the lines in P3 should form a 
four-dimensional set. (Fix two planes in P3; giving a line in P3 corresponds to choosing a 
point on each of the planes.) We shall show that there is natural one-to-one correspondence 
between the set of lines in P3 and the set of points on a certain hyperspace n c P5. Rather 
than using exterior algebras, I shall usually give the old-fashioned proofs.

Let L be a line in P3 and let x D .x0 W x1 W x2 W x3/ and y D .y0 W y1 W y2 W y3/ be distinct 
points on L. Then

p.L/ D .p01 W p02 W p03 W p12 W p13 W p23/ 2 P5; pij Ddef
xjxi

yi yj

depends only on L. The pj are called the Plucker coordinates of L, after Plucker (1801­
1868).

In terms of exterior algebras, write e0, e1 , e2, e3 for the canonical basis for k4, so that x, 
regarded as a point of k4 is Pxiei , and y D Pyiei ; then V2k4 is a 6-dimensional vector 
space with basis ei a ej-, 0 < i < j < 3, and xa y d X pij eiA ej with pij given by the above 
formula.

We define pj for all ij, 0 < ij < 3 by the same formula — thus pj d —pji.

Lemma 9.40. The line L can be recovered from p.L/ as follows:

L D f.Pj ajp0j W Pj aj p1j W Pj aj p2j W Pjajp3j/ j .a0 W a1 W a2 W a3/ 2 P3g:

Proof. Let LQ be the cone over L in k4 — it is a two-dimensional subspace of k4 — and let 
x D .x0; x1; x2; x3/ and y D .y0; y1; y2; y3/ be two linearly independent vectors in L. Then

L D ff.y/x - f.x/y j f W k4 ! k linearg:

Write f D P aj Xj ; then

□f.y/x - f.x/y d .^aj Poj ^aj Pij ^aj P2j ;Y,aj P3j)■
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Lemma 9.41. The point p .L/ lies on the quadric n c P5 defined by the equation

X01X23 — X02X13 C X03X12 D 0:

Proof. This can be verified by direct calculation, or by using that

x0 x1 x2 x3

0 D y0 y1 y2 y3

x0 x1 x2 x3

y0 y1 y2 y3

(expansion in terms of 2 > 2 minors).

D 2.P01P23 — P02P13 C P03P12/

□

Lemma 9.42. Every point of n is of the form p.L/ for a unique line L.

Proof. Assume p03 ^ 0; then the line through the points .0 w p01 w p02 w p03/ and .p03 w 
p13 w P23 w 0/ has Pliicker coordinates

.-P01P03 W -P02P03 W -p23 W P01P23-P02P13 W “P03P13 W ~P03P23/
-P03P12

D .p01 w p02 w p03 w p12 w p13 w p23/:

A similar construction works when one of the other coordinates is nonzero, and this way we 
get inverse maps. □

Thus we have a canonical one-to-one correspondence

flines in P3g $ fpoints on ngI

that is, we have identified the set of lines in P3 with the points of an algebraic variety. We 
may now use the methods of algebraic geometry to study the set. (This is a special case of 
the Grassmannians discussed in §6.)

We next consider the set of homogeneous polynomials of degree m in 4 variables,

F.X0;X1;X2;X3/ D X ai0i1i2i3X0i0:::X3i3:
i0Ci1Ci2Ci3Dm

Lemma 9.43. The set of homogeneous polynomials of degree m in 4 variables is a vector 
space of dimension 3Cmm

Proof. See the footnote p. 141. □

Let v d (3mm) — 1 d .mC 1/.m+2/.mC3/ _ 1, and regard Pv as the projective space 
attached to the vector space of homogeneous polynomials of degree m in 4 variables (p. 145). 
Then we have a surjective map

Pv ! fsurfaces of degree m in P3g;

.::: w ai0i1i2i3 w:::/7!V.F/; F D Xai0i1i2i3X0i0X1i1X2i2X3i3:

The map is not quite injective — for example, X2Y and X Y 2 define the same surface — 
but nevertheless, we can (somewhat loosely) think of the points of Pv as being (possibly 
degenerate) surfaces of degree m in P3 .

Let rm Q n x Pv c P5 x Pv be the set of pairs .L, F/ consisting of a line L in P3 lying 
on the surface F.X0; X1 ; X2; X3/ D 0.
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Theorem 9.44. The set rm is an irreducible closed subset of n x Pv; it is therefore a 
projective variety. The dimension of rm is m.mCL.mC5/ c 3.

Example 9.45. For m d 1; rm is the set of pairs consisting of a plane in P3 and a line on 
the plane. The theorem says that the dimension of r1 is 5. Since there are 13 planes in P3, 
and each has 12 lines on it, this seems to be correct.

Proof. We first show that rm is closed. Let

p(L) D (P01 W P02 W :::/ F aiO^iS X00 ••• X33 :

From 9.40 we see that L lies on the surface F.X0; X1 ;X2; X3/ D 0 if and only if

F(Pbjp0j WPbjp1j WPbjp2j W Pbjp3j/ D 0, all(b0;:::;b3/ 2 k4:

Expand this out as a polynomial in the bj with coefficients polynomials in the ai0i1 i2i3 and 
pij . Then F(:::/ D 0 for all b 2 k4 if and only if the coefficients of the polynomial are all 
zero. But each coefficient is of the form

P(:::;ai0i1i2i3;:::Ip01;p02 W :::/

with P homogeneous separately in the a’s and p’s, and so the set is closed in n x Pv (cf. 
the discussion in 6.51).

It remains to compute the dimension of rm. We shall apply Proposition 9.11 to the 
projection map

(l,f) rm GnxPv
I i'

L n:

For L 2 n, '~1(L) consists of the homogeneous polynomials of degree m such that 
L G V(F) (taken up to nonzero scalars). After a change of coordinates, we can assume that 
L is the line

( Xo d 0
X1 D 0;

i.e., L d f (0,0; *; *)g. Then L lies on F(X0,X1,X2,X3) d 0 if and only if Xo or X1 occurs 
in each nonzero monomial term in F, i.e.,

F 2 ‘“1 (L) ■<=” ai0i1i2i3 d 0 whenever i0 d 0 d i1.

Thus '~1 (L) is a linear subspace of Pv; in particular, it is irreducible. We now compute its 
dimension. Recall that F has v C 1 coefficients altogether; the number with i0 d 0 d i1 is 
m C 1, and so '-1 (L) has dimension

(m C 1)(m C 2)(m C 3) m(m C 1)(m C 5)6 1 - (m C 1) D 6 1.

We can now deduce from 9.11 that rm is irreducible and that

dim(fm) d dim(n) Cdim('-1 (L)) d m(m C«m C5) C 3,

as claimed. □
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Now consider the other projection. By definition

f-1(F) = fL j L lies on V(F)g.

Example 9.46. Let m = 1. Then v = 3 and dimr1 = 5. The projection w/f w r1 ! P3 is 
surjective (every plane contains at least one line), and (9.9) tells us that dim f-1 (F) > 2. In 
fact of course, the lines on any plane form a 2-dimensional family, and so f-1 (F) = 2 for 
all F.

Theorem 9.47. When m>3, the surfaces of degree m containing no line correspond to 
an open subset of Pv.

Proof. We have

dim rm - dimP« = m(m C 1)(m C 5) C 3 - (m C 1)(m C 2)(m C 3) C 1 = 4- (m C 1). 
66

Therefore, if m > 3, then dim rm < dimPv, and so f (Tm) is a proper closed subvariety of 
Pv. This proves the claim. □

We now look at the case m = 2. Here dim rm = 10, and v = 9, which suggests that f 
should be surjective and that its fibres should all have dimension > 1. We shall see that this 
is correct.

A quadric is said to be nondegenerate if it is defined by an irreducible polynomial of 
degree 2. After a change of variables, any nondegenerate quadric will be defined by an 
equation

XW = YZ.
This is just the image of the Segre mapping (see 6.26)

(a0 w a1), (b0 w b1) ! (aobo w aob1 w a1b0 w a1b1) w P1 xP1 ! P3.

There are two obvious families of lines on P1 x P1, namely, the horizontal family and the 
vertical family; each is parametrized by P1 , and so is called a pencil of lines. They map to 
two families of lines on the quadric:

( toX = t1Z ( toX = t1Y
t0Y = t1W and t0Z = t1W.

Since a degenerate quadric is a surface or a union of two surfaces, we see that every quadric 
surface contains a line, that is, that f w r2 ! P9 is surjective. Thus (9.9) tells us that all the 
fibres have dimension > 1, and the set where the dimension is >1 is a proper closed subset. 
In fact the dimension of the fibre is >1 exactly on the set of reducible F’s, which we know 
to be closed (this was a homework problem in the original course).

It follows from the above discussion that if F is nondegenerate, then f-1(F) is iso­
morphic to the disjoint union of two lines, f-1 (F) P1 [ P1. Classically, one defines a 
regulus to be a nondegenerate quadric surface together with a choice of a pencil of lines. 
One can show that the set of reguli is, in a natural way, an algebraic variety R, and that, over 
the set of nondegenerate quadrics, f factors into the composite of two regular maps:

r2 — -1(S) = pairs, (F,L) with L on F;
#
R = set of reguli;
#

P9 — S = set of nondegenerate quadrics.
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The fibres of the top map are connected, and of dimension 1 (they are all isomorphic to P1 /, 
and the second map is finite and two-to-one. Factorizations of this type occur quite generally 
(see the Stein factorization theorem, 8.64).

5 Reid, Miles Undergraduate algebraic geometry. LMS Student Texts, 12, CUP, Cambridge, 1988. According 
to Reid, p. 126, every adult algebraic geometer knows the proof that every cubic contains a line.

We now look at the case m = 3. Here dim r3 = 19; v = 19 w we have a map

Wr. r3 ! P19:

Theorem 9.48. The set of cubic surfaces containing exactly 27 lines corresponds to an 
open subset of P19; the remaining surfaces either contain an infinite number of lines or a 
nonzero finite number < 27.

Example 9.49. (a) Consider the Fermat surface

X03 C X13 C X23 C X33 D 0:

Let £ be a primitive cube root of one. There are the following lines on the surface, 0 < i,j < 
2:

( Xo C £i Xi d 0 ( Xo C ti'X2 d 0 ( Xo C ti X3 d 0
( X2 C j X3 D 0 ( X1 C £j X3 D 0 ( X1 C j X2 D 0:

There are three sets, each with nine lines, for a total of 27 lines.
(b) Consider the surface

X1X2X3 D Xo3:
In this case, there are exactly three lines. To see this, look first in the affine space where 
Xo ^ 0 — here we can take the equation to be X 1X2X3 = 1. A line in A3 can be written in 
parametric form Xi D ait C bi, but a direct inspection shows that no such line lies on the 
surface. Now look where Xo D 0, that is, in the plane at infinity. The intersection of the 
surface with this plane is given by X1X2X3 D 0 (homogeneous coordinates), which is the 
union of three lines, namely,

X1 D 0; X2 D 0; X3 D 0:

Therefore, the surface contains exactly three lines.
(c) Consider the surface

X13 C X23 D 0:
Here there is a pencil of lines:

( toXi d t1Xo
1 toX2 d —tiXo-

(In the affine space where Xo ^ 0, the equation is X3 C Y3 = 0, which contains the line 
X = t, Y = -t, all t//

We now discuss the proof of Theorem 9.48. If w/f: r3 ! P19 were not surjective, then 
f (.F3) would be a proper closed subvariety of P19, and the nonempty fibres would all have 
dimension > 1 (by 9.9), which contradicts two of the above examples. Therefore the map is 
surjective, and there is an open subset U of P19 where the fibres have dimension 0; outside 
U , the fibres have dimension >0.

Given that every cubic surface has at least one line, it is not hard to show that there is an 
open subset U0 where the cubics have exactly 27 lines (see Reid 1988, pp. 106-110).5 In 
fact, U0 can be taken to be the set of nonsingular cubics. According to 8.26, the restriction 
of f to f-1 (U) is finite, and so we can apply 8.40 to see that all cubics in U — U0 have 
fewer than 27 lines.
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Remark 9.50. The twenty-seven lines on a cubic surface were discovered in 1849 by 
Salmon and Cayley, and have been much studied — see A. Henderson, The Twenty-Seven 
Lines Upon the Cubic Surface, Cambridge University Press, 1911. For example, it is known 
that the group of permutations of the set of 27 lines preserving intersections (that is, such that 
L \ L0 ^ ; ■<=” a.L/ \ a.L0/ ^ ;/ is isomorphic to the Weyl group of the root system of 
a simple Lie algebra of type E6 , and hence has 25920 elements.

It is known that there is a set of 6 skew lines on a nonsingular cubic surface V . Let L 
and L0 be two skew lines. Then “in general” a line joining a point on L to a point on L0 will 
meet the surface in exactly one further point. In this way one obtains an invertible regular 
map from an open subset of P1 x P1 to an open subset of V, and hence V is birationally 
equivalent to P2 .

e. Bertini’s theorem

Let X C Pn be a nonsingular projective variety. The hyperplanes H in Pn form a projective 
space Pn_ (the “dual” projective space). The set of hyperplanes H not containing X and 
such that X \ H is nonsingular, form an open subset of Pn_. If dim.X/ > 2, then the 
intersections X \ H are connected.

f. Birational classification

Recall that two varieties V and W are birationally equivalent if k.V/ k.W/. This means 
that the varieties themselves become isomorphic once a proper closed subset has been 
removed from each (3.36).

The main problem of birational algebraic geometry is to classify algebraic varieties up 
to birational equivalence by finding a particularly good representative in each equivalence 
class.

For curves this is easy: in each birational equivalence class there is exactly one non­
singular projective curve (up to isomorphism). More precisely, the functor V k.V/ is a 
contravariant equivalence from the category of nonsingular projective algebraic curves over 
k and dominant maps to the category of fields finitely generated and of transcendence degree 
1 over k .

For surfaces, the problem is already much more difficult because many surfaces, even 
projective and nonsingular, will have the same function field. For example, every blow-up of 
a point on a surface produces a birationally equivalent surface.

A nonsingular projective surface is said to be minimal if it cannot be obtained from 
another such surface by blowing up. The main theorem for surfaces (Enriques 1914, Kodaira 
1966) says that a birational equivalence class contains either

(a) a unique minimal surface, or
(b) a surface of the form C x P1 for a unique nonsingular projective curve C.

In higher dimensions, the problem becomes very involved, although much progress has 
been made — see Wikipedia: Minimal model program.

Exercises

9-1. Let G be a connected group variety, and consider an action of G on a variety V, i.e., a 
regular map G x V ! V such that .gg0/v d g.g0v/ for all g;g0 2 G and v 2 V. Show that 
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each orbit O D Gv of G is open in its closure O, and that O X O is a union of orbits of 
strictly lower dimension. Deduce that each orbit is a nonsingular subvariety of V , and that 
there exists at least one closed orbit.

9-2. Let G D GL2 D V , and let G act on V by conjugation. According to the theory of 
Jordan canonical forms, the orbits are of three types:

(a) Characteristic polynomial X2 C aX C b ; distinct roots.
(b) Characteristic polynomial X2 C aX C b ; minimal polynomial the same; repeated 

roots.
(c) Characteristic polynomial X2 C aX C b d .X — a)2; minimal polynomial X — a.

For each type, find the dimension of the orbit, the equations defining it (as a subvariety of 
V ), the closure of the orbit, and which other orbits are contained in the closure.

(You may assume, if you wish, that the characteristic is zero. Also, you may assume the 
following (fairly difficult) result: for any closed subgroup H of an group variety G, G=H 
has a natural structure of an algebraic variety with the following properties: G ! G=H 
is regular, and a map G=H ! V is regular if the composite G ! G=H ! V is regular; 
dim G=H d dim G — dim H.)

[The enthusiasts may wish to carry out the analysis for GLn.]

9-3. Find 3d 2 lines on the Fermat projective surface

X0d C Xd C Xd C Xd d 0; d > 3; (p,d) d 1; p the characteristic.

9-4. (a) Let 'W W ! V be a quasi-finite dominant regular map of irreducible varieties. Show 
that there are open subsets U0 and U of W and V such that ‘.U0/ c U and 'w U0 ! U is 
finite.

(b) Let G be a group variety acting transitively on irreducible varieties W and V , and let 
' W W ! V be G -equivariant regular map satisfying the hypotheses in (a). Then ' is finite, 
and hence proper.



Solutions to the exercises

1-1 Use induction on n. For n D 1, use that a nonzero polynomial in one variable has 
only finitely many roots (which follows from unique factorization, for example). Now 
suppose n > 1 and write f d ^2giXn with each gi 2 k[X1;...;Xn-1]. If f is not the zero 
polynomial, then some gi is not the zero polynomial. Therefore, by induction, there exist 
(a1;.. ^an-1/ 2 kn~1 such that f (a1;.. .;a n _ 1 ;Xn / is not the zero polynomial. Now, by 
the degree-one case, there exists a b such that f (a1,..., an-1 ;b/ ^ 0.
1-2 .X C 2Y; Z/; Gaussian elimination (to reduce the matrix of coefficients to row echelon 
form); (1/, unless the characteristic of k is 2, in which case the ideal is (X C 1; Z C 1/.

2-1 W D Y -axis, and so I(W/ D (X/. Clearly,

(X2;XY2/ C (X/ C rad(X2,XY2/

and rad((X // D (X/. On taking radicals, we find that (X/ D rad(X 2 ; XY 2/.

6 Choose bases for A and B as Q-vector spaces. Now a linear map from A to B is given by a matrix M . 
The condition on the coefficients of the matix for the map to be a homomorphism of algebras is polynomial.

2-2 The d x d minors of a matrix are polynomials in the entries of the matrix, and the set of 
matrices with rank < r is the set where all (r C 1/ x (r C 1/ minors are zero.
2-3 Clearly V d V(Xn - Xn ;..:;X2 - X2/. The map

Xi ! Tiwk[Xi,...,Xn] ! k[T]

induces an isomorphism k[V] ! k[T]. [Hence t ! (t,...,tn/ is an isomorphism of affine 
varieties A ! V.]

2-4 We use that the prime ideals are in one-to-one correspondence with the irreducible closed 
subsets Z of A2. For such a set, 0 < dim Z < 2.

Case dim Z D 2. Then Z D A2, and the corresponding ideal is (0/.
Case dim Z d 1. Then Z ^ A2, and so I(Z/ contains a nonzero polynomial f (X; Y). 

If I(Z/ / (f/, then dimZ d 0 by (2.64, 2.62). Hence I(Z/ d (f/.
Case dim Z d 0. Then Z is a point (a;b/ (see 2.63), and so I(Z/ d (X — a;Y — b/.

2-6 The statement Homk_algebras(A <8>q k;B <8>q k/ ^ ; can be interpreted as saying that 
a certain set of polynomials has a zero in k .6 If the polynomials have a common zero in 
C, then the ideal they generate in C[Xi,...] does not contain 1. A fortiori, the ideal they 
generate in Q[X,...] does not contain 1, and so the Nullstellensatz (2.11) implies that the 
polynomials have a common zero in k .

2-7 Regard HomA(M; N/ as an affine space over k; the elements not isomorphisms are the 
zeros of a polynomial; because M and N become isomorphic over kal, the polynomial is 
not identically zero; therefore it has a nonzero in k (Exercise 1-1).
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3-1 A map aw A1 ! A1 is continuous for the Zariski topology if the inverse images of finite 
sets are finite, whereas it is regular only if it is given by a polynomial P 2 k[T], so it is easy 
to give examples, e.g., any map a such that a-1 (point) is finite but arbitrarily large.

3-3 The image omits the points on the Y -axis except for the origin. The complement of the 
image is not dense, and so it is not open, but any polynomial zero on it is also zero at (0; 0), 
and so it not closed.

3-4 Let i be an element of k with square —1. The map (x;y) ! (x C iy;X — iy) from 
the circle to the hyperbola has inverse (x;y) ! ((x C y)/2;(x — y)/2i). The k-algebra 
k[X; Y]/(XY — 1) ' k[X;X-1], which is not isomorphic to k[X] (too many units).

3-5 No, because both C1 and —1 map to (0;0). The map on rings is

k[x,y] ! k[T]; x! T2 — 1; y! T(T2 — 1);

which is not surjective (T is not in the image).

5-1 Let f be regular on P1. Then f jU0 d P(X) 2 k[X], where X is the regular function 
(a0w a1) ! a1/a0w U0 ! k, and f jU1 d Q(Y) 2 k[Y], where Y is (a0wa1) ! a0/a1. On 
U0 \ U1, X and Y are reciprocal functions. Thus P(X) and Q(1/X ) define the same 
function on U0 \ U1 D A1 X f0g. This implies that they are equal in k(X ), and must both be 
constant.

5-2 Note that T'(V, Ov) d Q F(Vi, Ovi) — to give a regular function on F V is the same 
as to give a regular function on each Vi (this is the “obvious” ringed space structure). Thus, if 
V is affine, it must equal Specm(Q Ai), where Ai d F(Vi, Ovi), and so V d FSpecm(Ai) 
(use the description of the ideals in A x B on in Section 1a). Etc..
5-5 Let H be an algebraic subgroup of G. By definition, H is locally closed, i.e., open in 
its Zariski closure HN . Assume first that H is connected. Then HN is a connected algebraic 
group, and it is a disjoint union of the cosets of H. It follows that H D HN . In the general 
case, H is a finite disjoint union of its connected components; as one component is closed, 
they all are.

4-1 (b) The singular points are the common solutions to

8 4X3 - 2XY2 d 0 h) X d 0 or Y2 d 2X2

< 4Y3 - 2X 2Y d 0 h) Y d 0 or X2 d 2Y2

_ X4 C Y4 - X2Y2 d 0:

Thus, only (0; 0) is singular, and the variety is its own tangent cone.

4-2 Directly from the definition of the tangent space, we have that

Ta(V \ H) C Ta(V) \ Ta(H).

As
dimTa(V \ H) > dim V \ H d dim V - 1 d dimTa(V) \ Ta(H);

we must have equalities everywhere, which proves that a is nonsingular on V \ H. (In 
particular, it can’t lie on more than one irreducible component.)

The surface Y2 D X2 C Z is smooth, but its intersection with the X-Y plane is singular.
No, P needn’t be singular on V \ H if H D Tp (V) — for example, we could have 

H D V or H could be the tangent line to a curve.
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MSuch an A is of the form P N 
Q

4-4 We can assume V and W to affine, say

I.V/ D a C k[X1;:::;Xm]

I.W/ D b C k[XmC1;:::;XmCn]:

If a D (f1;:::;fr / and 6 D (g 1 ,...,gs/, then I.V X W/ D (f1;:::;fr ;g 1 ,...,gs/. ^US, 
T.a;b/ (V x W/ is defined by the equations

.df1/a D 0;...;.dfr/a D 0;.dg1/b D 0;...;.dgs/b D 0;

which can obviously be identified with Ta(V/ x Tb(W/.
4-5 Take C to be the union of the coordinate axes in An. (Of course, if you want C to be 
irreducible, then this is more difficult. . . )
4-6 A matrix A satisfies the equations

(I C "A/tr • J • (I C "A/ d I

if and only if
Atr • J C J • A d 0.

with M;N;P;Q n x n-matrices satisfying

Ntr d N; Ptr d P; Mtr d-Q.

The dimension of the space of A’s is therefore

n(nC 1/ (for N) C n(nC 1/ (for P) Cn2 (for M;Q) d 2n2 C n.

4-7 Let C be the curve Y2 D X3, and consider the map A1 ! C, t 7! (t2;t3/. The 
corresponding map on rings k[X; Y]/(Y2/ ! k[T] is not an isomorphism, but the map on 
the geometric tangent cones is an isomorphism.
4-8 The singular locus Vsing has codimension > 2 in V, and this implies that V is normal. 
[Idea of the proof: let f 2 k(V/ be integral over k[V], f 0 k[V], f d g/h, g;h 2 k[V]; 
for any P 2 V(h/ X V(g/, OP is not integrally closed, and so P is singular.]
4-9 No! Let a D (X2Y/. Then V(a/ is the union of the X and Y axes, and IV(a/ D (XY/. 
For a D (a; b/,

(dX2 Y/a d 2ab(X - a/ c a2(Y - b/ 
(dXY/a d b(X - a/ C a(Y - b/.

If a ^ 0 and b d 0, then the equations

(dX2Y /a D a2Y D0
(dXY/aDaY D0

have the same solutions.
6-1 Let P d (a w b w c/, and assume c ^ 0. Then the tangent line at P d (cw bw 1/ is

(@F) X C (@F) Y - ((@F) (a) C (@F) (b)) Z D 0.
@X P @Y P @X P c @Y P c
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Now use that, because F is homogeneous,

F .a; b; c/ D 0 H)
@F

a C@X P C
@F
@Y P C

@F
@Z P

c D 0.

(This just says that the tangent plane at .a; b; c/ to the affine cone F.X; Y; Z/ D 0 passes 
through the origin.) The point at 1 is .0 W 1 W 0/, and the tangent line is Z D 0, the line at 1. 
[The line at 1 meets the cubic curve at only one point instead of the expected 3, and so the 
line at 1 “touches” the curve, and the point at 1 is a point of inflexion.]

6-2 The equation defining the conic must be irreducible (otherwise the conic is singular). 
After a linear change of variables, the equation will be of the form X2 C Y2 D Z2 (this is 
proved in calculus courses). The equation of the line in aX C bY D cZ, and the rest is easy. 
[Note that this is a special case of Bezout’s theorem (6.37) because the multiplicity is 2 in 
case (b).]

6-3 (a) The ring

k^Y,/]^ - X 2;Z ~ X D ^ [X , J, Z] D ^[x] ' ^ [X],

which is an integral domain. Therefore, .Y — X2, Z — X3/ is a radical ideal.
(b) The polynomial F d Z - XY d .Z - X3/ - X.Y - X2/ 2 I.V/ and F* d Z W - 

XY . If
ZW - XY d .YW - X 2/f C .ZW 2 - X 3/g,

then, on equating terms of degree 2, we would find

ZW - XY d a.YW - X 2/,

which is false.

6-4 Let P d .a0w... w an/ and Q d .b0w... w bn/ be two points of Pn, n > 2. The condition 
that the hyperplane LcW Pci Xi D 0 pass through P and not through Q is that

Pai ci- d 0, Pbi ci ^ 0:

The .n C 1/-tuples .c0 ;: : : ; cn/ satisfying these conditions form a nonempty open subset of 
the hyperplane Hw PaiXi D 0 in AnC1. On applying this remark to the pairs .P0; Pi /, we 
find that the .n C 1/-tuples c D .c0;: : : ;cn/ such that P0 lies on the hyperplane Lc but not 
P1 ;: : : ;Pr form a nonempty open subset of H.

6-5 The subset
C Df.a w b w c/ j a ^ 0, b ^ 0g[f(1 w 0 w 0/g

of P2 is not locally closed. Let P D .1 w 0 w 0/. If the set C were locally closed, then P 
would have an open neighbourhood U in P2 such that U \ C is closed. When we look in 
U0, P becomes the origin, and

C \ U0 D .A2 X fX -axisg/ [ foriging.

The open neighbourhoods U of P are obtained by removing from A2 a finite number of 
curves not passing through P . It is not possible to do this in such a way that U \ C is closed 
in U (U \ C has dimension 2, and so it can’t be a proper closed subset of U; we can’t have 
U \ C D U because any curve containing all nonzero points on X -axis also contains the 
origin).
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6-6 Let cij Xij D 0 be a hyperplane containing the image of the Segre map. We then have

Pcij ai bj D 0

for all a D .a0; : : : ;am/ 2 kmC1 and b D .b0; : : : ; bn/ 2 knC1. In other words,

aCbt D 0

for all a 2 kmC1 and b 2 knC1, where C is the matrix .cij /. This equation shows that 
aC D 0 for all a, and this implies that C D 0.

7-2 Define f .v/ d h.v, Q/ and g.w/ d h.P,w/, and let ' d h — .f i p C g i q/. Then 
'.v; Q/ D 0 D '.P; w/, and so the rigidity theorem (7.35) implies that ' is identically zero.

8-2 For example, consider
.A1 X f1g/ !A1 x7!!xn A1

for n > 1 an integer prime to the characteristic. The map is obviously quasi-finite, but it is 
not finite because it corresponds to the map of k -algebras

X ! Xnwk[X] ! k[X,.X - 1/-1]

which is not finite (the elements 1/.X — 1/i, i > 1, are linearly independent over k[X], and 
so also over k[X”]).

8-3 Assume that V is separated, and consider two regular maps f,gw Z =# W. We have 
to show that the set on which f and g agree is closed in Z. The set where ' i f and 
' i g agree is closed in Z, and it contains the set where f and g agree. Replace Z 
with the set where ' if and ' ig agree. Let U be an open affine subset of V , and let 
Z0 d .‘ i f/-1.U/ d .‘ i g/-1.U/. Then f.Z0/ and g.Z0/ are contained in '-1.U/, 
which is an open affine subset of W , and is therefore separated. Hence, the subset of Z0 on 
which f and g agree is closed. This proves the result.

[Note that the problem implies the following statement: if ' w W ! V is a finite regular 
map and V is separated, then W is separated.]

8-4 Let V d An, and let W be the subvariety of An x A1 defined by the polynomial

QnDl.X - Ti / D 0:

The fibre over .t1 ,...,tn) 2 An is the set of roots of Q.X — ti/. Thus, Vn d An; Vn_1 is the 
union of the linear subspaces defined by the equations

Ti d Tj; 1 < i;j < n, i / j I

Vn_2 is the union of the linear subspaces defined by the equations

Ti d Tj d Tk; 1 < i;j;k < n, i,j,k distinct,

and so on.

9-1 Consider an orbit O D Gv. The map g 7! gvw G ! O is regular, and so O contains an 
open subset U of ON (9.7). If u 2 U, then gu 2 gU, and gU is also a subset of O which is 
open in ON (because P 7! gP w V ! V is an isomorphism). Thus O , regarded as a topological 
subspace of ON, contains an open neighbourhood of each of its points, and so must be open —in ON .



We have shown that O is locally closed in V , and so has the structure of a subvariety. 
From (4.37), we know that it contains at least one nonsingular point P. But then gP is 
nonsingular, and every point of O is of this form.

From set theory, it is clear that ON X O is a union of orbits. Since ON X O is a proper 
closed subset of ON, all of its subvarieties must have dimension < dim ON D dim O.

Let O be an orbit of lowest dimension. The last statement implies that O D O.

9-2 An orbit of type (a) is closed, because it is defined by the equations

Tr.A/ d —a; det.A/ d b;

a(as a subvariety of V ). It is of dimension 2, because the centralizer of 0 00 , a / j8,is
0

, which has dimension 2.0 *
An orbit of type (b) is of dimension 2, but is not closed: it is defined by the equations

Tr.A/ d— a; det.A/ d b, A ^ f^ 0 ); a D root of X2 CaX C b

aAn orbit of type (c) is closed of dimension 0: it is defined by the equation A D 0 

An orbit of type (b) contains an orbit of type (c) in its closure.

0
a

9-3 Let £ be a primitive dth root of 1. Then, for each i;j, 1 < i;j < d, the following 
equations define lines on the surface

( Xo C i X1

I X2 C ^j X3
0 ( Xo C ti' X2
0 ( X1 C j X3

( Xo C i X3 D 0
| X1C i;j X2 D 0:

0
0

There are three sets of lines, each with d2 lines, for a total of 3d2 lines.

9-4 (a) Compare the proof of Theorem 9.9.
(b) Use the transitivity, and apply Proposition 8.26.
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Nakayama’s, 16
prime avoidance, 77
Zariski’s, 41

linearly equivalent, 178
local equation, 176
local ring

regular, 16
local system of parameters, 120

manifold
complex, 99
differentiable, 99
topological, 99

map

affine, 194
bilinear, 32
birational, 116, 188
dominant, 51, 72, 115
etale, 116, 119
finite, 51, 74, 178, 182
Frobenius, 69
proper, 159
quasi-finite, 51, 181, 182
rational, 115
regular, 50
Segre, 144
separable, 123, 184
Veronese, 141

minimal surface, 213 
morphism

of affine algebraic varieties, 65
of ringed spaces, 64

mP , 42 
multiplicity, 206

of a point, 84

n-fold, 55 
neighbourhood

etale, 120
nilpotent, 42
node, 84
nondegenerate quadric, 211
normalization, 175, 176

open affine, 71
open subset

basic, 50
principal, 50

pencil of lines, 211
Picard group, 178
point

factorial, 176
multiple, 87
nonsingular, 82, 87
normal, 173
ordinary multiple, 84
singular, 87
smooth, 82, 87
with coordinates in a ring, 123 

polynomial
Hilbert, 152
homogeneous, 129
primitive, 24
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prevariety
algebraic, 99
separated, 101

product
fibred, 112
of algebraic varieties, 108
of objects, 105
tensor, 34

projection with centre, 144

multiplicative, 17 
subspace

locally closed, 103
subvariety, 103

closed, 70
open affine, 99

surface, 55

T1 space, 46
tangent cone, 83, 93

radical
of an ideal, 42

rational map, 115
real locus, 38
regular map, 100

of affine algebraic varieties, 65
of algebraic sets, 50

regulus, 211
resolution of singularities, 193
resultant, 162
ring

associated graded, 93
coordinate, 48
graded, 133
local, 16
noetherian, 16
normal, 36
of dual numbers, 89
reduced, 42

ringed space, 60

geometric, 83, 93
tangent space, 82, 87
tensor product

of modules, 33
theorem

Bezout’s , 150
Chinese Remainder, 15
going-up, 31
Hilbert basis, 39
Hilbert Nullstellensatz, 40
Noether normalization, 53
Stein factorization, 191
strong Hilbert Nullstellensatz, 42
Zariski’s main, 186

topological space
irreducible , 46
noetherian, 46
quasicompact, 46

topology
etale, 121
Zariski, 40, 132

section of a sheaf, 60
semisimple

group, 97
Lie algebra, 97

separable degree, 185
set

(projective) algebraic, 130
constructible, 197

sheaf
of algebras, 59

singular locus, 83
Spm.A/, 66
spm.A/, 66
stalk, 60
subring, 13
subset

algebraic, 37
analytic, 169

variety
abelian, 166 
affine algebraic, 65 
algebraic, 101
Cohen-Macaulay, 207 
complete, 157 
factorial, 176 
flag, 150
Grassmann, 147 
group, 109 
normal, 173 
projective, 129 
quasi-affine, 102 
quasi-projective, 129 
rational, 126 
unirational, 126

zero set, 37
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