

Table of Contents

Preface 4 ..

Why You Didn't Understand Indexes Until Now 5 ...

1. Fundamentals 6 ..

1.1 A Different View on B+ Trees 7 ...

1.2 The Interaction of Indexes and Tables 10 ...

2. Index Access Principles 13 ...

2.1 Principle 1: Fast Lookup 14 ...

2.2 Principle 2: Scan in One Direction 15 ..

2.3 Principle 3: From Left To Right 16 ...

2.4 Principle 4: Scan On Range Conditions 22 ..

3. Index Supported Operations 24 ...

3.1 Inequality (!=) 25 ..

3.2 Nullable Values (IS NULL and IS NOT NULL) 28 ...

3.3 Pattern Matching (LIKE) 30 ..

3.4 Sorting Values (ORDER BY) 31 ..

3.5 Aggregating Values (DISTINCT and GROUP BY) 33 ...

3.6 Joins 39 ...

3.7 Subqueries 43 ...

3.8 Data Manipulation (UPDATE and DELETE) 47 ..

4. Why Isn’t the Database Using My Index? 48 ...

4.1 The Index Can’t Be Used 49 ..

4.2 No Index Will Be the Fastest 52 ..

4.3 Another index is faster 56 ...

5. Pitfalls and Tips 59 ..

5.1 Indexes on Functions 60 ...

5.2 Boolean Flags 61 ...

5.3 Transforming Range Conditions 63 ...

5.4 Leading Wildcard Search 67 ..

5.5 Type Juggling 69 ...

5.6 Index-Only Queries 70 ...

5.7 Filtering and Sorting With Joins 72 ..

5.8 Exceeding the Maximum Index Size 74 ...

5.9 JSON Objects and Arrays 77 ..

5.10 Unique Indexes and Null 80 ..

5.11 Location-Based Searching With Bounding-Boxes 82 ...

4

Preface

Hey, welcome to Indexing Beyond the Basics! I am happy you decided it's time to learn
everything you need about indexes.

Like everyone, I always wished I could solve the slow SQL queries I had written on my own.
But even after reading some tutorials, I didn't get any closer to my goal.

So I learned everything about databases over the next 15+ years from countless books,
conferences, trainings, articles and much practice. Finally, I could fix any slow query entirely
without help. But during my consulting work, I found that most developers still face the
same problem.

Unfortunately, I could never recommend good educational resources. All explanations are
complex, difficult to understand and more tailored to database experts. They are just not
helpful for a developer using databases.

So I worked for months on a completely new concept that you are now looking at: The entire
book is enriched with dozens of illustrations that make it much easier to understand all
concepts. Furthermore, the balance of practical and theoretical knowledge teaches you
everything you need without being boring or daunting.

I hope that Indexing Beyond the Basics proves helpful! I am happy to hear your feedback.

5

Why You Didn't Understand
Indexes Until Now

The reason database indexes are still not understood by developers is the depth of the
existing content. Whether it is books, articles or videos - they all have their own problems
that limit the ability to understand database indexing.

Blog articles and YouTube videos explain indexes by short examples on the most trivial
problems (e.g. a missing single-column index) and won't go in-depth any further. But you
cannot learn the broad topic of indexes from small examples. After all, the minimal
knowledge taught is not enough to apply it to your more complex queries.

More knowledge is communicated in published books. However, they challenge everyone in
another way: They are written for database administrators (DBA) and teach everything from
backup approaches over complex database internals to obscure tuning settings that make it
hard for developers to get actionable advice. Most likely, you have already stopped reading
at least one of these books with 500+ pages because they include too many topics you are
not interested in. In the end, database indexes were only covered on a few pages and were
not sufficiently explained to fix your complex queries because the target audience of these
books is interested in other topics.

These resources are based on either practice or theory. But both approaches must be
combined for database indexes: You cannot learn theory from examples. And it is
challenging to learn the practical application possibilities from theory. Therefore, theory and
practice will alternate in the following chapters and you will only learn necessary theory that
is needed later on. This book is exclusively about everything you must know about database
indexes as a developer without any unnecessary topics!

Indexes are a complex subject because you need to understand all the involved concepts to
master them. Therefore, the book should be read from cover to cover the first time as the
later chapters build on the knowledge of the previous ones. After that, you can use each
chapter independently as a manual to look up specific topics because they are written to be
self-contained. All references to previous or later chapters only exist to read up on needed
foundational knowledge again or point out some problems and optimizations you should
know of.

I also recommend reading the book several times with some time in between. As your
knowledge increases, you will discover new things you have missed before.

6

1. Fundamentals

I understand you want to jump in and create great indexes as fast as possible. But you'll
have to be patient for a very short moment. Because if you focus purely on the practical
stuff, you will miss critical foundational knowledge.

Databases are very complex technologies that consist of hundreds of thousands to millions
of lines of code. A small amount of theory is necessary even though this book is focused only
on practical topics.

I beg you not to skip this part. It is intentionally kept short - only a few pages. That said,
understanding the basic idea of B+ trees and how they work together with tables is
essential. And you will also learn an important lesson about schema design in this chapter.

7

1.1 A Different View on B+ Trees

B+ trees are the data structure why indexes are so fast. Every other book would start by
explaining all the technical aspects: The distinction of leaf nodes (the most bottom
rectangles) vs. inner nodes (the one on top and all in the middle), the different algorithms to
insert and delete new values, rebalance the tree and much more.

You can read all the details about them on Wikipedia. But I won't repeat it for a specific
reason: Do you want to know how often that knowledge is really needed? Honestly? This is
just theoretical knowledge that will not take you any further. The number of people needing
to know these technical details is tiny. And you are not one of them.

As a matter of fact, it will even complicate your understanding of indexes. You must read
lengthy explanations and have difficulty understanding them because those damn trees can
be complicated. As you read further chapters, you will never forget that you probably didn't
fully comprehend a fundamental topic and never get the feeling of understanding
everything. This is not a good learning experience.

A More Understandable Approach

From now on, the simplified index visualization of Fig. B will be used. It may look too simple,
but B+ trees are not complicated if you focus on the principles they provide and not their
technical implementation.

Their core idea is to provide:

8

a sorted list of values (B+ tree leaf nodes) for all columns used in the index
represented as the table
multiple levels of index summaries (B+ tree internal nodes) as shown on the left

Finding a specific value is simple using these hierarchical ranges of values. Even with
millions of rows, only a few steps following the ranges to the index records are needed.

Another reason for not having to know the details is that the database manages the index
fully automatically. You don't have to worry about anything. These steps are executed for
every change to a table without you having to do anything:

Row Added: A new index entry for the row's values is created.
Row Removed: The index entry for the row is removed.
Row Changed: The index entry is removed and a new one is added when any column
used within the index is changed. No modifications are required for changes to
unindexed columns.

So the index is automatically changed for every table modification of indexed columns. From
this, you can conclude that every index has an impact. The more indexes you create, the
slower write operations become as more indexes must be modified. But searching for any
data without them would be slow. So you would guess it is always a balancing act on how
many indexes must be created to keep the tradeoff between read and write queries within
limits. But you don't have to think about this tradeoff in most cases because data is more
read than written and tables only have a few indexes.

9

Sorted vs. Unsorted Values

The B+ tree has been optimized to add new entries anywhere within this sorted list. But
adding them to the end is always faster and needs fewer operations. You will learn about
this behavior in arguments that e.g. random UUID keys are slower than sorted values like
UUIDv7, incremental numbers etc. But these discussions never specify the databases they
are for - this makes a big difference. In the next chapter (“The Interaction of Indexes and
Tables”) you will learn that randomly ordered Primary Keys significantly impact performance
with MySQL. For other databases, you can follow this advice for the best performance but
also safely ignore this optimization if you don't have millions or billions of rows with many
new ones inserted all the time.

10

1.2 The Interaction of Indexes and Tables

Knowing that indexes speed up queries is essential for fast performance. But you also need
to understand how indexes, tables and loading of table rows work together. This cooperation
opens up possibilities for optimization but is also the reason for queries continuing to be
slow despite using an index.

The default operation to execute queries is doing a table scan - also called a full table scan.
The database will load each row one after another and check whether they match the
query's conditions. Matching ones will be kept while the other ones are discarded. This is
becoming slower the more rows a table has.

An index is a lookup structure linking specific index entries to table rows so the matching
ones can be found directly compared to scanning the entire table. But how is this done?

First, all matching index entries for queries are calculated - as explained by the following
chapters (“1. Index Access Principles” and “2. Index Supported Operations”). Then, all rows
referenced by the index entries are loaded one by one from the table. Any condition that
was not part of the index will now be evaluated on the loaded row to decide whether to keep
or discard it. Therefore, a query can still be slow even when using indexes: An index can
reduce the millions of records in a table to a few thousand that must be loaded. But another
condition (not part of the indexes columns) further reduces the rows to just a few. Although
an index was used, thousands of rows were loaded pointlessly from the table, even though
only a few were needed.

Performance

Using an index is not a guarantee for fast queries. Conditions on non-indexed
columns should not significantly reduce the number of selected rows by the index.
For these cases, a better index should be created including these columns.

Furthermore, how tables are stored also has a significant impact on performance. They can
be stored in different ways (Heap Tables vs. Clustered Index) with different performance
characteristics. You can specify which approach a table should use to benefit from these
differences in some databases like Microsoft SQL Server or Oracle. While with MySQL
(InnoDB), every table uses the clustered index approach and PostgreSQL will always use
heap tables.

Heap Tables

Heap tables are the standard database approach because their implementation is simple.
Any row inserted into a table is just appended to the end which is a fast operation because

11

the end of the table will always be cached in the memory (because inserts are always done
there). It does not matter if you insert the rows in the correct order of the primary key or not
- they are always physically stored in the insertion order.

Index entries store the physical location of the row they refer to (Fig. A). So there is no
difference between primary keys, indexes and unique indexes, as they all reference table
row positions.

Clustered Index

There is no distinction between the primary key and the table when the database uses the
clustered index storage method. They are the same: The table is eliminated by the primary
key directly storing all the row's values. And indexes will not point to the table (as there isn't
one) but instead reference the primary key by storing a copy of the primary key columns
(Fig. B).

The most significant benefit of the clustered index is the increased primary key lookup
performance: If rows are selected by their primary key (e.g. CRUD apps), all row values are
directly available when the index entry is found. With the heap table approach, only the
row's physical location in the table is known and the row still needs to be fetched. With
secondary index lookups, there isn't a difference as both approaches need another step to
load the identified rows.

12

However, there are some pitfalls to be aware of. First, understanding the primary key
behavior is critical when designing your schema. You shouldn't use a random value like
UUIDv4 for your primary key because every new row must be inserted into a random
position to guarantee the index order. The speed penalty of inserts to random offsets
compared to just the end (with e.g. incremented integers) is massive. Don't do this!

You also need to take special care when choosing the primary key type: The database size
will grow significantly if you use new identifiers like the 26-byte ULID string (if not using the
smaller binary format) compared to a 4-byte incremented integer because the primary key
columns are copied to every other index: A 22-byte bigger primary key for e.g. 4-5 indexes
with a table of a million rows will increase the size by about 88-110MB. This may sound little
but your server's memory is limited and you will have many more tables than just one.
Therefore, the primary key type should be chosen considering its advantages and
disadvantages. Just sticking to an incrementing integer is always a safe choice.

13

2. Index Access Principles

The most important aspect of creating good indexes is understanding how they are used by
queries. And I don't mean to memorize and apply some examples. You have to build up an
understanding of how a query can be mapped to an index. It is the only way to master index
creation.

But nobody invented a rule system before to describe how to build good indexes. So, I
created these four principles explained in this chapter that guide you on how any SQL
operation can utilize an index.

Fast Lookup1.
Scan in One Direction2.
From Left To Right3.
Scan on Range Conditions4.

These principles teach you all the fundamental ways an index is used and the important
concept of ordering columns in multi-column indexes. All following chapters build on this
knowledge and the graphical illustrations showcasing the workflow of these principles.

The objective is to learn a mental model to test whether a query can be mapped to an
index! Drawing the visualizations shown here on paper is very helpful in the beginning. With
more practice, you can do this entirely in your mind.

14

2.1 Principle 1: Fast Lookup

The most straightforward operation for an index is to find any value stored within it: You can
expect it to jump almost directly at e.g. the offset for WHERE release_year = 2019
within the sorted list without scanning it from start to finish by utilizing the index summary.
This is visualized in Fig. A by the pointer right to the index entry that will indicate a fast
lookup to a specific offset from now on.

It is still a common myth that a bigger index will result in slower queries. Indexes have been
designed and optimized for this use case over the past decades! Searching within millions or
billions of rows with an index is not slower than just a few thousand ones.

15

2.2 Principle 2: Scan in One Direction

The second important rule of indexes is that they can do more than fast lookups. Whenever
an offset within the index is found, the database can continue scanning the sorted list of
values in either the ascending or descending direction. This is pictured in Fig. A, which
executes WHERE age >= 35 ORDER BY age ASC LIMIT 3 on the index:

The offset for the first index entry matching age >= 35 is found.1.
The index entries are scanned in ascending direction2.
The process stops after the first three values are selected3.

The same can be done by iterating the index values in the descending direction (WHERE
age <= 35 ORDER BY age DESC LIMIT 3). But it is not possible to scan ascending and
descending at the same time - it wouldn't make any sense either.

16

2.3 Principle 3: From Left To Right

An index on a single column is simple and easy to understand but the real problem and
performance improvement opportunity is always with multi-column indexes - also called
composite indexes. Once you have mastered using them, you can fix all slow queries
yourself. Because of this, most of the rest of this book will focus on multi-column indexes.

The rule for multi-column indexes can be summarized as “From Left to Right Without
Skipping a Column”. This simple sentence describes precisely how these indexes are used.
However, it is hard to fully understand.

The fundamental constraint is that an index on the columns firstname, lastname and
country (Fig. A) can only be used to speed up a certain type of query:

SELECT * FROM contacts WHERE firstname = 'James'
SELECT * FROM contacts WHERE firstname = 'James' AND lastname =
'Walker'
SELECT * FROM contacts WHERE firstname = 'James' AND lastname =
'Walker' AND country = 'US'

Indexes Are Used From Left to Right

It is important to remember that index entries are always sorted by the value of the first

17

column, all duplicate values are then by the second one and so on. The index summary can
then be imagined as a funnel to narrow down the offset within the index by each column
(Fig. B).

The condition firstname = 'James' AND lastname = 'Walker' AND country =
'US' is executed like:

Start at the top of the index by choosing the funnel for firstname = 'James'
For the lastname = 'Walker' condition, choose now the middle row in the second
column of the funnel. The row above for Smith and below for Young are now ignored
as they can't have a result for the WHERE conditions.
Go one step further to the right on the funnel and choose from the options GB and US
the last one.

Finding the correct index entry was easy with the funnel-searching approach. But coming up
with a funnel for doing this step so effortlessly sounds like cheating - it can't be that easy. In
reality, the database is doing something exactly like that. The funnel imagination is just
abstracting some B+ tree behavior from a complicated technical implementation to an easy-
to-understand mental image. It is a simple way to decide whether a specific multi-column
index would fit a query well.

The Ordering Is Important

You will find the incorrect advice repeated again and again that your multi-column index
should start with the most selective (most different values) column first. The former index

18

has been rebuilt by this rule on the columns lastname, firstname, country (Fig. C). You
can see that the number of funnel steps to get to the index entry is still the same - just
ordering them by selectivity doesn't make a difference.

But the ordering is still essential as an index has to fulfill your querying needs. If all your
queries use all the index columns, the order won't make a difference (except for the next
principle in the following chapter). But usually, most of your queries will use a subset of the
indexes columns, while a tiny fraction will use all. In these cases, the ordering is critical!

If you want to find all contacts from the United States (WHERE country = 'US'), neither
the initial index on firstname, lastname and country (Fig. B) nor the one ordered by
selectivity on lastname, firstname, country (Fig. C) can be used. Remember, an index
is used from left to right because of the funneling approach. The country column would
have to be the first one in the index to use the funnel - having them at the end does not
help.

The correct approach to ordering index columns is to cover as many distinct queries as
possible. The index of Fig. D on country, lastname and firstname is a perfect match if
you execute these statements:

SELECT * FROM contacts WHERE country = 'US'
SELECT * FROM contacts WHERE country = 'US' AND lastname =
'Walker'
SELECT * FROM contacts WHERE country = 'US' AND lastname =
'Walker' AND firstname = 'James'

19

There is no generic rule to follow for the ordering of index columns. A multi-column index is
always built with the left-to-right rule to fit the funnel approach for as many queries as
possible - not only for the one you optimize currently.

Skipping a Column

There is another common misunderstanding in addition to the ordering myth explained
before. It is believed that a condition like firstname = 'James' AND country = 'US'
won't use the index (firstname, lastname, country).

The database can use the firstname of the funnel but then can't continue with the next
step as a condition on the last name is not used. With a multi-column index, the database
can't skip any funnel steps to jump to the matching index entries (Index Access Principle 1:
Fast Lookup)!

However, the index will still be used by the database but is less efficient than a perfect one
on (firstname, country, lastname) or (firstname, country). The steps involved
are more complex (Fig. E):

The database will use as many funnel steps as possible (without skipping a column) to
narrow the potential index entries that could match the query. So in this example,
there will be a fast lookup to the first index entry of James by using only the first
column of the index (Index Access Principle 1: Fast Lookup).
It will then proceed by iterating all index entries for James (Index Access Principle 2:
Scan in One Direction).

20

Each index entry will be validated whether they match the country = 'US'
condition. Matching ones (green) are used, while non-matching ones (red) are
discarded.

This procedure has to iterate over five index entries in this example and keep only two.
While the perfect index would have been able to do a fast lookup on the first matching index
entry and select both by scanning forwards. The difference may not be important for this
small example. But your index may have hundreds of thousands of index entries for James in
an actual application. Iterating over all of them to keep only the matching ones is much
slower than directly finding the correct index entries when having a fitting funnel.

Although this approach is slower than the perfect index, it is still faster than a single-column
index on (firstname). Again, a single funnel step and iteration over the five index entries
would be done. However, the iteration on the multi-column index can filter on the country
column within the index and only load the two table rows that match the condition. The
single-column index can't do this pre-filtering and has to load all five rows from the table to
filter on the table's country column. The single column-index has to load more rows from
the table which you want to avoid for best performance. Remember, for real applications,
there could be thousands of rows for James but only a few would match the condition.

Overlapping Indexes

You may have overlapping indexes in your tables like the last index on (country,
lastname, firstname) and e.g. a single-column index on (country). Both indexes can
be used to search for all contacts from the United States, while the multi-column index can

21

be used for more queries to further narrow down that selection. As indexes must be changed
on every table modification, you should remove the single-column index in this example.
You don't get any benefits by keeping it - the multi-column index speeds up the same
queries.

This advice is also valid when comparing two multi-column indexes when their ordering is
the same but one has more columns included than the other, e.g. (country, lastname)
can be removed in favor of (country, lastname, firstname). But based on the left-
to-right rule, the indexes on (country, lastname, telephone) and (country,
lastname, email) are different because one is not a strict superset of the other.

Performance

"From left to right without skipping a column" is a sentence that should be burned
into your brain. While the first part of the rule is a requirement, the second one is
optional. But for acceptable performance, both of them should always be satisfied!

22

2.4 Principle 4: Scan On Range Conditions

There is one last rule for multi-column indexes you need to understand. All examples before
have been using equality checks, but the behavior slightly changes when you use a range
condition like < <= >= >.

How do you believe a condition like WHERE country = 'US' AND married = 'yes'
AND age > 28 is executed for an index on (country, age, married)? You may expect
a fast lookup for the first index entry, a scan in ascending direction and skipping non-
matching index entries by using the last step of the funnel - as pictured in Fig. A.

But the behavior is different: When starting a scan in one direction, the database can't skip
any index entries anymore. Any range condition will always start the scanning process and
the number of index entries to touch can't be reduced anymore! The workflow will look as
pictured in Fig. B by doing a fast lookup and scanning all matching index entries for the
condition on the age column. As in the last chapter, the married column is still used to
filter index entries and load only the matching rows from the table, but it can't limit the
number of index entries scanned.

The ordering must always be adjusted so that columns with an equality check are used
before a range condition to reduce the number of scanned index entries (Fig. C).

23

The statement that index entries cannot be skipped is not always valid. Some databases can
do this for spcific GROUP BY queries that want to get the minimum or maximum value for
each group. MySQL calls this “Loose Index Scan” and Microsoft SQL Server and Oracle use
the term “Skip Scan” to describe this optimization. However, it is not available with all
databases - e.g. PostgreSQL.

24

3. Index Supported Operations

The index access principles explained before are everything you need to create perfect
indexes for any query. By following those guidelines, you can spot whether e.g. the column
order for a multi-column index violates some principles and needs to be changed. But your
queries are not only using a few WHERE conditions with equality checks. Let's expand these
principles to see how they work on complex queries and operations.

The SQL execution order (Fig. A) is essential when dealing with more complex queries.
Before rows are sorted (ORDER BY), they must be processed by all former steps
(WHERE/JOIN and GROUP BY) - if used by the query. An index must consequently always
satisfy all prior execution steps to be used for a specific step: A query using filtering and
ordering must have the filtering columns in the index before the sorting ones. But more on
that in each specific chapter.

Info

This chapter follows the introduction of the index access principles to continue the
learned theory with many practical examples. Some comments that an index may not
be used may appear weird to you. If you stumble upon such a passage, reread it after
finishing the chapter “4. Why Isn’t the Database Using My Index?”.

25

3.1 Inequality (!=)

Inequality conditions can quickly kill your performance. A condition to e.g. search for all
payments not in a specific state (WHERE status != 'open') is quite complicated to
execute. This condition can only be mapped to an index by iterating all index entries and
checking each for a matching status value (Fig. A). Remember, a scan operation can not
skip index entries so the entire index needs to be scanned.

Unfortunately, the database can not predict how many index entries would match the
condition and consequently falls back to scanning the entire table (not the index!) to satisfy
the query. You will learn more about this behavior in chapter 4. “Why Isn’t the Database
Using My Index?”.

So inequality conditions are problematic for tables with more than a few hundred rows and
impossible to improve by just creating an index. You always have to make query changes to
make those queries fast.

Combine With More Columns

An inequality condition is rarely used alone. The simplest form of optimization is to include
another column of the query's condition in the index. For example, the query can be
constrained to all payments for a specific shop. An index on both columns (Fig. B) will only
scan all of this shop's index records. The database will no longer fallback to a table scan as it
can predict an upper bound for the matching rows (all rows for the specific shop). Again, you

26

will understand the reasons behind this after reading the formerly referenced chapter about
the cost model. For now, you have to trust this explanation.

Transformation to an Equality Rule

The previous optimization made the query faster but it is still not optimal. Although only two
index entries could match the condition, three entries had to be checked based on the
query's shop_id. The ratio would have been much worse with more data and a different
distribution of values in the table. Furthermore, adding additional conditions to a query is
not always possible. So the previous optimization can not be used for all circumstances.

An excellent technique here is to convert the inequality condition to a boolean value: Either
the condition matches the row (yes) or not (no). Therefore, a simple equality condition with
a corresponding index must only scan the matching index entries (Fig. C). This optimization
is further explained in chapter 5.3 Transforming Range Conditions.

27

28

3.2 Nullable Values (IS NULL and IS NOT
NULL)

The NULL value is an interesting edge case in SQL. It has a special meaning that describes
the absence of a value - something that is unknown. Consequently, you have to handle this
one differently: Following the SQL standard, an unknown (non-existent) value can't be
compared to any other unknown (non-existent) value. Therefore, the equality check (NULL
= NULL) and inequality check (NULL != NULL) will always be false. You must use the
specialized conditions IS NULL and IS NOT NULL instead.

The SQL standard has never defined the exact order of whether NULL values are before or
after other values. This decision is left to the database. For all our examples, NULL values
will be placed before existing values.

IS NULL

The IS NULL condition works with the same semantics as an equality condition. Therefore,
everything you learned before applies to IS NULL too. An index to search for the employee
Mia who has no supervisor (WHERE supervisor_id IS NULL AND name = 'Mia') can
be created with the supervisor_id column first (Fig. A) or last (Fig. B). Both work the
same and have the same efficiency. Which one to use depends on the other queries the
application executes and which indexes can be reused most often by them (Index Access
Principle 3: From Left to Right).

29

IS NOT NULL

Again, the IS NOT NULL condition has the same semantics as the inequality condition,
which also means that the index may not be used. Likewise, the same optimizations should
be used.

30

3.3 Pattern Matching (LIKE)

Searching with wildcards is used in many applications. Sometimes you search for a customer
(type = 'customer') and only know that their first name starts with Tobi (firstname
LIKE 'Tobi%'). You are searching for rows matching a pattern and not a specific value.

A pattern matching condition is internally rewritten as a range condition (firstname >=
'Tobi' AND firstname < 'Tobj') from the first possible value Tobi (exact match) to
anything before Tobj (the first value that wouldn't match anymore).

So pattern-matching conditions start a scan in one direction with all their implied
characteristics for query tuning (Index Access Principle 4: Scan On Range Conditions).
Therefore, the column with the wildcard search should be after the equality column (Fig. A).

Pitfall

An index can only be used when the wildcard is placed in the middle or the end of the
search string. The chapter “5.4 Leading Wildcard Search” explains why leading
wildcards are not using an index.

31

3.4 Sorting Values (ORDER BY)

Database indexes can be utilized for more operations than efficiently filtering WHERE
conditions. If you add the sorting columns last to the index, you can also get index entries in
sorted order so that no additional sorting step is needed.

A GitHub-like issue search functionality may filter by the type (WHERE type = 'new') and
sort to show the highest severity issues with the most comments first (ORDER BY
severity DESC, comments_num DESC). As pictured in Fig. A, the first matching index
entry can be found with a fast lookup for new issues and the highest value for both columns.
From there, the index entries can be read by scanning in sorted order because all index
values are pre-sorted according to the sorting condition.

Avoid Additional Sorting Steps

An extra sorting step is needed when rows can not be read in the correct order directly from
the index. This is reasonable when sorting a few rows, but you will experience severe
performance problems sorting medium to big results.

Every database has a threshold for the maximum (temporary) query result size that can be
kept in memory. If you exceed this limit, the data can no longer be sorted fast in the
memory. A much slower approach using the disk is needed: All rows must be written to a file
on the disk in small chunks to circumvent the limit of memory used at any time. Multiple
chunks will then be read from the disk, sorted in the memory and written to the disk
repeatedly until all rows are correctly ordered.

This complicated workflow clearly shows that you should absolutely avoid it. Remember,

32

even with a LIMIT all rows must be sorted first to throw away the unneeded ones later.
Always create an index to get rows sorted from the index when the conditions match many
rows!

Expert Knowledge

With MySQL, you can increase the memory threshold for in-memory sorting with the
sort_buffer_size configuration that defaults to 256KB to a more reasonable
value. While PostgreSQL uses the generic work_mem setting that applies to any
temporary in-memory results and is by default set to 4MB.

33

3.5 Aggregating Values (DISTINCT and
GROUP BY)

Queries involving GROUP BY and DISTINCT are the most challenging problems when solving
a performance problem. They are always left out when discussing indexes for some
inexplicable reason. However, it is important to understand them since they often aggregate
tens of thousands of rows. Minor issues like loading some information from tables rather
than only using the index will slow down a query from a few milliseconds to many seconds.

Distinct

DISTINCT is the same as GROUP BY for query optimization. It is just syntactic sugar to make
writing some queries easier as you must type less. The database will execute both following
queries the same. So the rules you will learn for GROUP BY will also apply for DISTINCT when
remembering that the query is internally executed like a GROUP BY query.

SELECT DISTINCT country FROM users;

SELECT country FROM users GROUP BY country;

GROUP BY

The essential idea of GROUP BY is to aggregate many rows by an aggregation function (e.g.
count, avg, etc.) into one result for every group of similar columns. As many rows are
involved in this operation, you want this to be as fast as possible and work entirely on an
index's columns. Loading each involved row would result in a very slow query when
aggregating hundreds of thousands of rows.

Time-intensive operations like sorting or temporary tables can be required if the query can
not use an index or only for parts of the GROUP BY. Creating a suitable index is therefore
absolutely necessary.

Tip

You must add all non-aggregated columns (e.g. price but not AVG(price)) within
the SELECT part to the list of GROUP BY columns. But if you add the primary key of a
table to the GROUP BY, you don't have to add any columns for that table anymore.
The database will add all of them automatically in the background for you.

34

A Simple Group BY

SELECT is_paying, COUNT(*)
FROM users
GROUP BY is_paying

Similar values for the is_paying column should be stored consecutively one after another
(Fig. A) so that the database can just loop over the index and count the values. The counter
is incremented when the current loop's value is the same as the last one. But when a new
value is discovered, the counting for the old value is finished and a new counter is started
for the new grouping. This is very efficient and doesn't need any auxiliary temporary tables.

The query can be extended to group by multiple columns with different indexing
requirements.

SELECT is_paying, gender, COUNT(*)
FROM users
GROUP BY is_paying, gender

When grouping by multiple columns, an index must always have the same columns in the
same order. Therefore, the index must be created on the is_paying and gender columns
used with the GROUP BY (Fig. B).

35

Adding WHERE Conditions

SELECT is_paying, gender, COUNT(*)
FROM users
WHERE onboarding = 'yes'
GROUP BY is_paying, gender

You must imagine how the database executes a query that filters the rows with a WHERE
and applies a GROUP BY: The rows are filtered before the GROUP BY part is executed (SQL
execution order). Therefore, the columns used in the WHERE part must always be added
before the columns in the GROUP BY (Fig. C). By this specific ordering, the database can look
up the first matching row and then scan forward to do the grouping.

36

But what happens if the WHERE is extended to use a range condition and an index is created
similar to before (Fig. D)?

SELECT is_paying, gender, COUNT(*)
FROM users
WHERE age BETWEEN 20 and 29
GROUP BY is_paying, gender

37

The index is perfectly suitable for the WHERE condition but can't be used for the GROUP BY
anymore: The grouping columns added to the index are intermingled because of the
increasing age numbers. They are correctly sorted by the is_paying and gender columns
for every age column but no longer form a consecutive block. The database can't apply the
simple aggregation algorithm by just looping through the data anymore. Each new row in
the loop may belong to a different group so a temporary mapping table is needed to store
the intermediate results for each combination of is_paying and gender.

This query could again be optimized by transforming the age condition to a boolean value
(5.3. Transforming Range Conditions).

Using Aggregate Functions

SELECT is_paying, gender, avg(projects_cnt)
FROM users
GROUP BY is_paying, gender

Special care must be taken when using aggregation functions that calculate a set of values
into a single value (e.g. avg(projects_cnt)). The former index (Fig. B) will be used, but it
will not be efficient. As the projects_cnt column is missing from the index, the database
has to load it for all rows matching the WHERE condition. This will be very slow if e.g. tens of
thousands of rows remain after filtering.

38

The used columns in the SELECT part should be added to the index last (Fig. E) so that
filtering and grouping work efficiently and the columns to be aggregated are available
without loading the rows.

39

3.6 Joins

Optimizing joins is a fascinating topic. When looking first at them, none of the things you
learned before appear to match this complicated thing. How should the following query be
optimized? This is using multiple tables and not just one!

SELECT employee.*
FROM employee
JOIN department USING(department_id)
WHERE employee.salary > 100000 AND department.country = 'NR'

You must de-construct a query using joins to understand how it will be executed and which
indexes are needed. The basic way databases execute a join is called a “nested-loop join”. It
works precisely like a for-each or for-in loop in any programming language: One table is
accessed with all the filters applied (e.g. the employee table), and the matching rows will
be the iteration data for the loop. For every one of these rows, logic similar to a new query
on the department table will be executed by filling in the values from the employee table.
You can imagine a join as highly efficient queries being executed within loops.

SELECT *
FROM employee
WHERE salary > 100000;

-- for each matching row from employee:
SELECT *
FROM department
WHERE country = 'NR' AND department_id = :value_from_employee_table;

The join optimization approach is now more manageable by having two independent
queries. All the existing knowledge can be used to create the indexes on the employee (Fig.
A) and department (Fig. B) table. For this example, the column order of Fig. B doesn't matter
as both are equality checks and there are no other queries to optimize for (Index Access
Principle 3: From Left To Right).

40

The approach for a two-table join can also be applied to queries involving joins with many
more tables. The database will just do more nested loops than the one used in this simple
example.

41

The Join-Order Is Not Fixed

SQL is a declarative language that specifies what data you want, e.g., how tables are linked
together, how the rows should be sorted, and more. But you are not telling the database
how to do this. How to execute each query is up to the database optimizer to find the fastest
approach to retrieve your result.

We see an interesting case when looking at the aggregated example data for the query (Fig.
C): The company only has departments in North America (Canada and United States) except
for the small island of Nauru. Our approach filtered first on the employee table by narrowing
it down to the 511 employees earning more than $100k/year. For each one, the department
table was checked to only keep employees working for a department in Nauru. But couldn't
the query be faster considering that Nauru has only 2 departments in total?

SELECT *
FROM department
WHERE country = 'NR';

-- for each matching row from department:
SELECT *
FROM employee
WHERE salary > 100000 AND department_id = :value_from_department_table;

The number of operations needed is reduced by switching the join order: First, the two
departments of Nauru are found. Then, the employee table is searched with the new index
of Fig. D for people earning more than $100k/year in each department. Only two queries are

42

executed within the loop compared to 511 ones.

The order in which you write joined tables is not the order in which they are executed! As
shown, a different execution order can make a query much faster and the database will try
to estimate the fastest approach. But the correct indexes need to exist to let the database
make this choice. Therefore, you should always add all indexes to execute joins in any
possible ordering. If you omit an essential index, the database may never use the fastest
join order.

43

3.7 Subqueries

Subqueries are still believed to be slow, although they are just missing matching indexes.
Creating good ones for subqueries is not particularly complicated: You always optimize them
one by one independently, whether they are used e.g. in WHERE to do more fancy filtering
or in SELECT to add new columns based on data from other tables.

It is essential to understand the difference between independent and dependent subqueries
as both have different requirements for a good index.

Independent Subqueries

SELECT *
FROM products
WHERE remaining > 500 AND category_id = (
 SELECT category_id
 FROM categories
 WHERE type = 'book' AND name = 'Science fiction'
)

The query searches for products within a specific category and huge remaining stock to free
up storage space by selling them with a considerable discount. This is an independent
subquery because no tables from the query surrounding the subquery are used within the
subquery. It is executed independently only once and the condition of the surrounding query
is rewritten to use the resulting category_id from the subquery.

Indexes for independent subqueries are created by ignoring that they are part of a much
more complex query. With this approach, the subquery index is created using the type and
name columns (Fig. A).

44

The subquery used for the example yields precisely one value as expected by the outer
query. So when that value has been computed, it replaces the subquery in the SQL
statement. The index is now built for a simple query with only two equality conditions. With
the range condition for remaining in mind, the final index uses the category_id and
remaining columns (Fig. B).

45

Dependent Subqueries

SELECT *
FROM products
WHERE remaining = 0 AND EXISTS (
 SELECT *
 FROM sales
 WHERE created_at >= '2023-01-01' AND product_id = products.product_id
)

The query searches for products with empty stock and recent sales to reorder them again.
This is a dependent subquery because it references a table from the surrounding query - it
depends on the product_id column from the products table.

The indexes for dependent queries are created like joins: The surrounding query is executed
first and only needs an index on the remaining column (Fig. C). The subquery is executed
repeatedly for each matching row of products with the products.product_id column
being a different value each time. The suberquery's index (Fig. D) has to use the
product_id and created_at columns.

46

The index access for the subquery is stopped after finding the first result because the
EXISTS condition of the surrounding query is already satisfied with one matching row.
Scanning all matching index entries would be a wasted effort. You can imagine that a
subquery wrapped in EXISTS() always has a LIMIT 1 applied automatically. Nevertheless,
the index must be built according to range condition principles (Index Access Principle 4:
Scan On Range Conditions) for the best efficiency.

47

3.8 Data Manipulation (UPDATE and DELETE)

Many times neither UPDATE nor DELETE queries are considered for optimization. Those
queries are allowed to be much slower because they have to modify rows rather than just
read them. The slower execution time is valid but is only part of the truth.

Both have to find matching rows before they can modify or delete them. You can imagine
them as a SELECT query that does not return the rows at the end but modifies them. And
the part of finding the rows can be optimized by every principle and trick the same as
SELECT queries. You can rewrite them into SELECT queries and optimize them.

48

4. Why Isn’t the Database Using
My Index?

It is always a frustrating experience when a recently created index is not used. You only
want to make one query faster. But for some reason, you can't get the result you want to
have.

You should know what to look out for if you discover that an index is not used. There are
many different reasons, all of which have unique causes.

Understanding how a query is executed is essential to know why the index you expected to
be used is ignored. Each query follows the process illustrated in Fig. A:

The query is first parsed, i.e. split into its components, so that the intention behind the1.
query can be identified.
A simple plan is created for the execution of this query. At this stage, all operations2.
are still full-table scans because they can always be executed - no matching indexes
etc. are required. The idea is to always start with a possible way of execution.
After creating the initial query plan, it is optimized. The indexes are checked to3.
determine whether they would make the query faster and many other optimizations
are evaluated. It is important to remember that the former query plan is kept if no
better optimization has been found.

So if a query is executed differently than expected, the optimizer did make a different
decision than you expected. The possible reasons for this are explained in the following
chapters.

49

4.1 The Index Can’t Be Used

The most common error is an index that does not match the query: The query optimizer will
never consider an index if it does not apply to the query.

Column Transformations

A widespread problem is transformations to a column. Any change to a column by an
operation causes an index to no longer be used. Common examples are conditions like
YEAR(birthdate) = 1970, col + 5 < 20 or CONCAT(firstname, ' ', lastname)
= 'Tobias Petry'.

Let's take a closer look at the example using the year(birthdate) = 1980 condition:
Looking at the index (Fig. A) of such a column, it is obvious that it refers to a whole date and
not just the year part. However, you can argue that the database should recognize that you
are only interested in the year and the query should be automatically rewritten to
birthdate BETWEEN 1980-01-01 AND 1980-12-31 so that it can use the index. After
all, the query optimizer's mission is to optimize a query and utilizing an index is its most
important task.

This opinion is indeed correct. However, it would massively increase the complexity of the
database implementation since special logic must be prepared for every possible
transformation. This is complicated to even impossible if several transformations are applied
to a column one after the other. The cases in which such automatic query rewriting could

50

work and not work would therefore be hard to understand. For this reason, databases do not
implement this kind of optimization to keep the basic principle always the same: An index
will never be used if a transformation is applied to the indexed column. But you can create
an index on the column's transformed value: CREATE INDEX contacts_birthdate on
contacts ((YEAR(birthdate))) (chapter “5.1 Indexes on Functions”).

Incompatible Column Ordering

As described in chapter “2.3. Index Access Principle 3 - From Left to Right”, the column
order in a multi-column index is essential: A condition on the column country can only be
used with the index of Fig. B if the query also uses the column firstname. However, it
would be better to use the column lastname as well.

Operations Not Supported by the Index

Another error source is assuming that an index can be used for an operation it is not
designed for: An index on firstname can't be used for a condition such as firstname
like '%Tobias%'. The details of this problem are described in the chapter “5.4 Leading
Wildcard Search. Beyond that, there are no noteworthy pitfalls in this category.

However, PostgreSQL has many more operators apart from the normal comparison
functions. For example, you can check whether keys exist in a JSON object (attributes ?
'key'), whether two date ranges overlap (checkin_checkout_time &&
tsrange(start, end)) and many more. All these new querying possibilities can use an

51

index but require either a particular type of index or specific index properties to be set. The
exact use should be taken from the related chapter of the PostgreSQL documentation since
the list of new operators is too big to be handled here.

The Index Is Invisible

As you can never be entirely sure if an index is still being used by some query, they are
often never deleted. Even one slow query could seriously impact the application and re-
creating the deleted index will take a long time for large tables. So with MySQL (but not
PostgreSQL) you can make indexes invisible before deleting them - and reactivate them in a
few seconds if needed.

However, these invisible indexes are not displayed correctly by all desktop tools (e.g.
TablePlus): Some continue to show them without indicating that they are hidden. When you
want to use this feature, check the behavior of your tools for this specific edge case or
delete indexes shortly after making them invisible.

52

4.2 No Index Will Be the Fastest

Sometimes you've made none of the former explained mistakes with your indexes and
queries: The query perfectly matches an index's capabilities but is still not used. These
issues seem to be strange but are easy to explain as they fit into a few very clearly defined
categories. However, you first need to learn a bit more background knowledge.

How an Index Is Selected

Every database stores statistics about the columns of a table with their possible values or
value ranges, as well as the frequency of occurrence.

Figure A visualizes the data distribution statistics of an example column. These statistics are
calculated by inspecting a set of random rows to have a reasonable sample. Of course, not
all rows can be considered as this would take a long time for tables with millions or billions
of rows. That not all rows are included in the statistics is not a problem. The sample size is
sufficient to extrapolate the values to the entire table and undiscovered values can be
calculated to exist at most until a certain percentage. The logic is very complex but works
exceptionally well.

These column statistics are used to make predictions about performance. They are the
source for estimating how many table rows will match the query's conditions and which
approach will be the fastest.

53

The performance rating for different approaches is calculated by using a cost model. Each
operation that must be performed is assigned an abstract cost value that closely describes
its impact. They are fine-tuned to be comparable but don't resemble an exact correlation to
the time spent or any other measurable metric. For example, Fig. B shows a simplified query
cost model on a table with 10,000 rows. The predicted costs for a table scan or using an
index are significantly different. A different approach must be chosen depending on how
many rows will likely match the conditions. Therefore, the query optimizer uses the cost
model to rate many possible query optimizations and selects the most efficient one.

The costs shown here are exemplary and are in reality much more complicated. In fact, the
developers of databases spend a great part of their time constantly improving the cost
model and optimizations. As the more advanced the cost model is, the better even the most
complicated queries are optimized.

Loading Many Rows

When an index is used, the matching index entries identify the rows to load. They are then
loaded one after another from the large data file of the table (chapter “1.2 The Interaction of
Indexes and Tables”). But this is complicated because these rows are all stored in the file at
different positions. So for each row, it is necessary to jump to a different offset in the file.
This is called random i/o because the data must be loaded from many seemingly random
locations.

Old hard drives with spinning disks could only perform a few such jump operations per
second. However, modern SSDs are much faster at this but still orders of magnitude slower

54

than simply loading data sequentially (sequential i/o).

As already seen in the above cost model, there is a specific threshold when iterating the
entire table's file sequentially is faster than loading only the needed rows with random i/o: A
query that loads at least 10%-30% of the rows in a table will usually be faster with a full-
table scan. This limit is not exact and can shift depending on the table size (e.g. millions of
rows) or the columns (e.g. the amount or size of columns). Nevertheless, it is a reasonable
estimate you should keep in mind.

Tuning Advice

In PostgreSQL, you can tune the configuration to tell the query optimizer you are
using a fast disk: You should set random_page_cost to 1.1 if your database fits
entirely into memory or you use an SSD.

Small Tables

The previous cost model was simplified to explain the general concept but didn't include all
the fine details of accurate cost models. When tables are small (e.g. 100-200 rows) just
loading all rows sequentially can be faster than using an index and loading only the required
ones with random i/o (Fig. C).

55

Outdated Statistics

The column statistics are generated once but are not dynamically adjusted. They will no
longer match the actual distribution after e.g. mass updates or many new rows are inserted
or deleted. However, every database has a heuristic to decide when the statistics are
outdated and must be recalculated. This happens completely in the background without you
having to do anything.

But you have a problem if the heuristic has not yet been triggered and the statistics differ
significantly from the actual distribution. The number of matching rows of a database query
will now be over- or underestimated and the cost model will be negatively influenced. This
can be seen in the example of Fig. D: With outdated statistics, it is estimated that slightly
more than 50% of the rows match a query and a full table scan is the best approach. In
reality, fewer than 25% match the query and using an index would be better. Significantly
skewed statistics can lead to bad optimizations.

Expert Advice

I always recommend to trigger a recalculating of the statistics after bulk changes to
tables using ANALYZE TABLE. Another frequently used solution is using a cron to
consistently recalculate the statistics e.g. hourly.

56

4.3 Another index is faster

The database can also select a different index than you expected because of the cost model.
There are many different manifestations of this behavior. Therefore, only the most frequent
ones will be discussed here to give an impression.

Multiple Conditions

A multi-column index is best for a query with the condition firstname = 'James' and
lastname = 'Walker'. However, frequently applications only have single-column
indexes. So the database must decide must select the one with the lowest for the query. A
different index may therefore be favorable depending on the varying values in a condition
(Fig. A).

Joins

Optimizing joins is much more complex. As explained in chapter “3.6 Joins”, the query
optimizer can change the join order to do fewer operations. For this optimization, the costs
of loading rows and the costs of loop cycles must be optimized. It is possible that a specific
join order is always more efficient (Fig. A) or must be decided depending on the conditions
(Fig. B).

57

Additionally, the number of joins is also important. A join with four tables yields 24 orders to
execute it - multiplied by the possible number of indexes. With many tables, the
optimization becomes more and more difficult as not all permutations can be calculated. So
you should only join a couple tables and not a dozen ones to get excellent and predictable
performance.

58

Ordering

Most tables don't have perfect indexes that simultaneously speed up filtering and sorting.
For a simplified example, there may be an index on type and one on date for the query
WHERE type = 'open' ORDER BY date DESC LIMIT 10. The database will have two
different ways to execute this (Fig. D):

The database will use the index on type and then do an additional sorting step. This1.
makes sense, as the number of open issues is significantly lower than the closed ones
and will probably fit into memory. The high filtering ratio of the condition led the
database to use this approach.
However, the database could also use the date index to read the rows in sorted2.
order. Loading many rows by the filtering index and sorting them could be a slower
approach than loading in sorted order and only keeping the matching ones. The
critical point is how many rows must be loaded for each approach and how much
sorting would cost.

59

5. Pitfalls and Tips

Understanding the fundamentals of how indexes are used and utilized by every SQL
operation is essential to create good indexes. But there are still a few things to be aware of
beyond the indexing principles and knowing when indexes are not used.

You will encounter some pitfalls with real applications that you may do occasionally, even if
you know all the rules. They are problems that are easy to overlook and should be focused
on.

Apart from possible mistakes, there are still some tricks for indexing. They can make your
life much easier and simplify certain queries. Knowing them is beyond the basics but is
absolutely essential.

60

5.1 Indexes on Functions

As chapter “4.1 The Index Can’t Be Used” explains, an index on birthday cannot be used
for a condition like WHERE year(birthday) = 1988 because the column was
transformed. This exemplary condition can be rewritten to an equivalent one using an index
(WHERE birthday BETWEEN '1988-01-01 AND 1988-12-31), but it is impossible to do
for all transformations. The transformation WHERE month(birthday) = 5 cannot be
rewritten to involve an index.

For this purpose, most databases (MySQL, PostgreSQL, SQLite, Oracle, etc.) have so-called
functional indexes: An index is created on a transformation (e.g. by a function call) instead
of the column directly. They are created identically to regular indexes by using a
transformation wrapped in parentheses (to indicate them as functional indexes) instead of a
regular column. The index will be used automatically if the exact same transformation is
used in a query.

CREATE INDEX contacts_birthmonth ON contacts ((month(birthday)));

SELECT * FROM contacts WHERE month(birthday) = 5;

Virtual Columns

Not every database supports functional indexes. Some databases, such as MariaDB or
Microsoft SQL Server require a more manual approach: You have to create a new virtual
column for the transformation instead of being able to create an index on it. Take a look at
the following example of how it is done with e.g. MariaDB:

CREATE TABLE contacts (
 id bigint PRIMARY KEY AUTO_INCREMENT,
 birthday datetime NOT NULL,
 birthday_month datetime AS (month(birthday)) VIRTUAL NOT NULL,
 INDEX contacts_birthmonth (birthday_month)
);

The usage of these generated columns is also different for every database. With e.g.
Microsoft SQL Server, you can use the transformation in a query (WHERE
month(birthday) = 5) and it will automatically use an index created on a matching
virtual column. But this does not work for e.g. MariaDB: You have to use the newly
generated column (WHERE birthday_month = 5) instead of the transformation in every
query.

61

5.2 Boolean Flags

A common problem is indexing columns with boolean values. No index is used if the
distribution of values is similar to 50:50 or a mere 80:20. This decision is again due to the
cost model (“4.2 No Index Will Be the Fastest”): The number of matching rows for each
value storing an unprocessed or processed state exceeds the threshold range for a full-table
scan being faster than using indexes (Fig. A). After a time, fewer rows with unprocessed
status remain and an index will be used. But until falling below the threshold every query is
a slow full-table scan.

But even no index will be used when loading just a few rows with WHERE status =
'unprocessed' LIMIT 5. Let's assume a distribution of 80:20 with only 20% of the rows
matching the condition. An index could be used here, but statistically, only 100 rows must
be loaded on a full-table scan on average to find five matching ones. Using an index and
loading those rows somewhere from the table takes longer than just loading 20 times more
rows sequentially. Of course, the values in the table do not have to be equally distributed.
The 20% matching values could be at the very end but the database does not know this and
therefore can't consider this when calculating the costs.

The behavior is also identical for columns that do not store boolean values but have an
uneven distribution. For example, a gender column will store many identifiers, including a
NULL value for missing information. This is illustrated by Fig. C, which combines several
gender values as "Other" for simplicity. The full-table scan threshold is reached for most
values, although more are possible compared to a boolean type. It is important to know how

62

values are distributed in reality and not only how many distinct values are possible - a
property that is often not considered when benchmarking an approach.

This issue also appears in many more columns. For example, an issue tracker will store the
current state of each software bug. This time, an unfavorable value distribution will appear
after a longer time because the number of closed issues will far exceed the open ones after
a few months or years.

Info

Boolean columns are always a bad fit for indexes: Their property of having only two
values usually leads to them having unfavourable values distribution making an
index useless. You should only index them in rare cases when searching for an
uncommon value only used for a low single-digit percentage of the rows.

63

5.3 Transforming Range Conditions

Queries involving range conditions (e.g. WHERE stars > 1000) additionally to other filters
or index operations are problematic. Anytime a range condition is used, the index columns
right to that condition can not narrow the index entries to check (Index Access Principle 4:
Scan On Range Conditions).

Let's take a closer look at this on a simple query searching for popular TypeScript
repositories on GitHub defined by a large stars count (WHERE language = 'TypeScript'
AND stars > 1000) and an index on the stars and language columns (Fig. A). The
entire range for the stars condition is scanned and the index entries are filtered by the
language constraint.

Moving the stars column last makes the index more efficient because the index records
can be first filtered on the language condition (Fig. B). Due to the misplaced range column,
more records than necessary had to be evaluated in the previous index.

Solving the problem for simple filter conditions is easy. However, more than sorting columns
is required if a query has several range conditions. Furthermore, you want to apply more
operations to the index than filtering.

64

Let's extend the query by also sorting on the number of sponsors the repository has (WHERE
language = 'TypeScript' AND stars > 1000 ORDER BY sponsors ASC). The
values in the index (Fig. C) are sorted in ascending order for each star count and not in a
consecutive way to get them in the sorting order. Thus, an additional sorting step is needed
after selecting the matching index entries. You should carefully consider whether an index
fits a query if range conditions are used.

65

Virtual Columns

One way to optimize a query with range conditions is to introduce virtual columns. The idea
is to remove the problematic behavior of range conditions that have to scan over many
index entries and can't use columns in an index on the right anymore. The range condition is
transformed into a popularity value that indicates whether the condition matches (1) or
not (0) and can be used with an equality condition (Fig. D). The filtering and sorting can now
be applied to the index as the values are optimally arranged.

Unfortunately, not every database supports virtual columns (e.g. PostgreSQL). You can use
stored generated columns, but they require more space: The value must be stored in the
table and index.

Functional Indexes

Those who do not like columns in tables for this purpose can also use functional indexes.
The idea is to execute the transformation directly in the query and create a suitable index.
For example, with MySQL the short form of the condition can be declared as IF(stars >
1000, 1, 0). The query would then be WHERE language = 'TypeScript' AND
IF(stars > 1000, 1, 0) = 1 ORDER BY sponsors ASC and a suitable index would
contain the corresponding transformation (Fig. E).

66

67

5.4 Leading Wildcard Search

The chapter “3.3 Pattern Matching” explained the indexing strategy for pattern matching
with wildcards: A pattern matching condition like WHERE name LIKE 'Tob%s' is
transformed to a range condition ('WHERE name >= 'Tob' AND name < 'Toc') to scan
for any value following Tob (the first possible match) to anything before Toc (the first match
that wouldn't fit anymore). Those index entries are checked to see whether they match the
pattern (Fig. A).

Conditions using a wildcard as the first character for the pattern (called leading wildcards)
are problematic. You would expect the query to be executed as shown in Fig. B, but this is
different from what is happening: The database cannot estimate how many index entries will
match a pattern with leading wildcards and therefore can not calculate the cost to load
these matching rows. An index will only be used when it is possible to evaluate whether
using it would be fast or slow! Therefore, the database will fall back to using a full-table
scan. For this reason, you should always avoid leading wildcards.

68

Unfortunately, creating an index for this special case is impossible. However, there is one
exception: PostgreSQL is the only database with a unique index type for this. It ships with a
standardly available extension (pg_trgm) to create trigram indexes that allow wildcards at
any position.

CREATE EXTENSION IF NOT EXISTS pg_trgm;

CREATE INDEX trgm_idx ON contacts USING GIN (name gin_trgm_ops);

The way this index works is very original: Words are fragmented into all possible three-
character long strings (trigram). For example, 'Tobias Petry' is split into the lowercase
trigrams 'tob', 'obi', 'bia', 'ias', 'as ', 's p', ' pe', 'pet', 'etr', 'try'.

Such a trigram index can now be used if the search pattern contains at least three
consecutive characters without a wildcard. However, these indexes can become very large
due to the vast number of trigrams.

69

5.5 Type Juggling

Like programming languages, databases can be loosely typed, strictly typed, or somewhere
in between. This decision has far-reaching consequences. A loosely typed database is easier
to work with as you can be inaccurate with types but it also has to do a lot of implicit type
conversions. Some of them are totally fine and some are just weird. One of those odd issues
is a common problem affecting anyone using MySQL.

SELECT *
FROM orders
WHERE payment_id = 57013925718

The former query searching for a specific order by a payment provider's ID looks fine and
should work fast when an index has been created on the column. However, the person
making the schema didn't know whether the payment provider's IDs were integers or
character sequences. So they used a varchar(255) column.

The problem with this query is matching two incompatible types to compare them (type
juggling): The schema uses a varchar(255) column but the query uses an int
comparison value. One would expect the integer to be converted to a string, as this is the
most sensible way to compare them. But in MySQL, a string is always converted to an
integer in these cases.

SELECT *
FROM orders
WHERE CAST(payment_id AS UNSIGNED) = 57013925718

Therefore, the index can no longer be used because the column is transformed - as
explained in chapter “4.1 The Index Can’t Be Used”. This problem often appears with older
applications when the schema is not updated to reflect refactorings or business changes.
You should remember this problem whenever you see a text column storing numbers.

The opposite case with WHERE int = varchar(255) does not lead to a problem: By
converting strings to integers, the transformation only happens on the value and not the
column (WHERE int = CAST(varchar(255) AS UNSIGNED)).

70

5.6 Index-Only Queries

Another simple and powerful performance optimization has not been discussed so far. All
table columns of rows an index identified are loaded from the disk (“1.2 The Interaction of
Indexes and Tables”). But sometimes we only need precisely one or two columns and the
remaining ones are not needed. The effort to load all of them is unnecessary.

SELECT user_id FROM sessions WHERE token = 'b3437db01';

Queries like this are present in all applications. They are usually simple lookup queries that
map one piece of information (e.g. email address, country) to another (e.g. user id, tax rate).
Such queries can be optimized to read the mapping information from the index and not the
table's row (Fig. A).

Any columns added to the end of an index can be used to directly retrieve those values
without loading the referenced row. This may not sound like a great feature on its own at
first. However, the performance of such queries is much better than those that must load
table rows - there is one action less to do. This is called an index-only query as it can be
completed entirely from the index without touching any table row. But you should use this
optimization carefully as the storage size increases with each column added to an index.

It is recommended to use them for simple but frequently executed queries like the
authentication check or mapping one piece of information to another. By far, the best usage

71

is for m:n tables connecting two tables with a join: They are constantly searched for an ID,
and another ID is used from the row to look up rows in the next table. Creating indexes for
these tables with this optimization is always a good idea.

72

5.7 Filtering and Sorting With Joins

Tables are always structured according to logical boundaries and dictate how data is
separated. This often reflects the object-oriented data model but only partially fits the
querying needs. Again and again, several tables have to be linked to any data. This doesn't
seem like a problem as joins are designed for this and (hopefully) perfect indexes have been
created. But every join iteration slows down your query a little bit...

Let's imagine a ToDo application that organizes tasks into individual projects. As usual, all
open tasks should be displayed on the dashboard. However, when a project is marked as
completed, its tasks should no longer appear.

SELECT tasks.*
FROM tasks
JOIN projects USING(project_id)
WHERE tasks.team_id = 4 AND taks.status = 'open' AND projects.status =
'open';

Executing this query on your test data will always be fast. However, the query is slow for big
teams with thousands of tasks and hundreds of projects in production with a lot more data.
The problem is the table structure rather than the use of joins.

The real problem is both tables alone could not filter the rows significantly and need to join
many times to calculate the result (Fig. B): Starting with the tasks table would match about
20,000 rows for the team, which will be filtered to just 40 results by joining the projects
table and removing all tasks for closed projects. Alternatively, 120,000 open projects are
reduced to the same result by joining the tasks table and only keeping the rows for the
specific team.

With both approaches, thousands of join iterations are needed to get the intended result and
each one costs time. This query can not be improved with better indexes. The schema must
be changed to enable all filtering on just one table instead of needing both. The most
straightforward approach is marking tasks as done when the project is no longer active or
storing a copy of the project status in the tasks table. With both approaches, the join is no

73

longer needed.

An identical problem exists with the following query: The filtering is executed on one table
and the sorting on another. Again, many rows must be joined and then sorted afterward,
only to throw away the majority and keep 30 of them.

SELECT *
FROM invoices
JOIN invoices_metadata USING(invoice_id)
WHERE invoices.tenant_id = 4236
ORDER BY invoices_metadata.due_date
LIMIT 30

Tip

You should not limit your focus to the correct indexes for join conditions. A query that
has to execute tens or hundreds of thousands of join loops will always take a long
time.

74

5.8 Exceeding the Maximum Index Size

An index cannot be infinitely large. It must be significantly smaller than the table row to fit
into memory and thereby make a query faster. Consequently, you will get an error message
like "The index row size of 3480 bytes exceeds the maximum size of 2712 bytes for index
contacts_fullname"' if you try adding more and more columns at some point. The limit on
how big an index can be varies depending on the database. You won't reach the threshold
when adding dozens of number columns, but you will run into it for many columns storing
big strings.

Prefix Index

A simple approach is to limit the length of long text columns. Do all possible 1000 characters
of a blog title need to be indexed when a typical maximum length is much smaller? In most
cases, significantly fewer characters are sufficient.

CREATE INDEX articles_search ON articles (type, (substring(title, 1,
20)));

SELECT *
FROM articles
WHERE substring(title, 1, 20) = '...20 chars truncated title...' AND
title = '...full title...'

The idea of prefix indexes is to index only a tiny part of the whole column to save storage by
indexing only the first characters. Such an index is utilized using a condition on the same
truncation as the index definition (WHERE substring(title, 1, 20) = ?). But the
query's result can include unwanted rows with identical truncation but different actual
column values. So, another condition has to be used to reject these incorrect results by
comparing the entire string (WHERE title = '...full title...'). The index finds
prefix matches that will be filtered again when the whole string has been loaded from the
table's row.

With MySQL, this concept is easier to implement because the optimization is built-in: The
prefix length can be defined directly in the index definition for all large data types (e.g.
varchar, text, blob). Writing the query is also easier because the normal condition can
be used directly and MySQL takes care of all the needed logic for prefix-matching.

75

CREATE INDEX articles_search ON articles (type, title(20));

SELECT * FROM articles WHERE title = '...full title...'

With prefix indexes, you must always find a balance between the length of the prefix and
incorrect matches: If the prefix is too short, many rows must be loaded from the table to
check again the entire value. If the prefix is too long, the index is unnecessarily bloated and
requires more memory than needed.

Indexing Hash Values

Another approach is to store a hash value (e.g. md5, sha1) of the long content. Compared to
a prefix index, there is (almost) never a collision for the same hash value. So, there aren't
many table rows loaded and removed when the entire string is checked. The efficiency is
increased!

CREATE INDEX articles_search ON articles (type, (sha1(title)));

SELECT *
FROM articles
WHERE sha1(title) = '...hash of title...' AND title = '...full title...'

In some cases, the first characters of a prefix index are often identical but the increased
space required by hash values is undesirable. However, you do not have to choose one of
the two solutions as you can combine both: A hash value on the entire string will be
completely different and has uniformly distributed values even if multiple strings share a
common long prefix. This hash value can then be stored with the prefix approach that limits
it to a smaller size.

CREATE INDEX articles_search ON articles (type, (SUBSTRING(sha1(title),
1, 20)));

SELECT *
FROM articles
WHERE SUBSTRING(sha1(title), 1, 20)) = '...shortened hash of title...'
AND title = '...full title...'

You shouldn't store those hash values as text columns as this will take a lot of storage. The
best approach is to store them in binary format - the method for this depends on your

76

database.

You can easily optimize the size using a database like PostgreSQL or MariaDB that provides
storage-efficient UUID columns. The values of md5 hashes and UUIDs are interchangeable
because they are both 128-bit long. Below is an example for PostgreSQL in which a md5
value is calculated and converted to a storage-efficient UUID.

CREATE INDEX articles_search ON articles (type, (md5(title)::uuid));

SELECT *
FROM articles
WHERE md5(title)::uuid = md5('...full title...')::uuid AND title =
'...full title...'

Multiple Columns

Another possible optimization applies if your index includes several columns and is still
within the index size limit: The space requirement of several columns can be reduced by
hashing them together as a concatenated value. This can be beneficial for massive tables or
database servers with little memory.

77

5.9 JSON Objects and Arrays

A few years ago, NoSQL schemaless databases were widely promoted to replace relational
databases like MySQL or PostgreSQL completely. This hype significantly influenced the
development of databases: Everyone now has a JSON data type to store schema-less data.

Unfortunately, indexing JSON values is still not easy: An index on a JSON column can only be
used to search for rows with an identical JSON value but not for specific values within it. As
this is not very helpful, you can create specialized indexes for JSON objects and arrays - but
these are very different depending on the database used. Therefore, only MySQL and
PostgreSQL will be discussed in the following sections.

JSON Objects

It is impossible to create indexes for JSON objects that cover all keys - except for PostgreSQL
GIN indexes explained last. You must choose one of the following two approaches for every
JSON key that should be indexed.

Virtual Columns

The easiest way is to create virtual columns that extract a JSON value and are indexed like
any regular column. The example below shows the syntax for MySQL.

CREATE TABLE contacts (
 id bigint PRIMARY KEY AUTO_INCREMENT,
 attributes json NOT NULL,
 email varchar(255) AS (attributes->>"$.email") VIRTUAL NOT NULL,
 INDEX contacts_email (email)
);

SELECT * FROM contacts WHERE attributes->>"$.email" =
'admin@example.com';

Warning

Strings are extracted in MySQL from a JSON object with the collation utf8mb4_bin.
Therefore, values are compared case-sensitively unlike the usual behavior of
comparing them case-insensitive!

This approach is straightforward, but not everyone will like it: The table becomes more

78

confusing for every additional JSON attribute stored as a virtual column. Furthermore, the
approach takes more storage space if you use a database that doesn't support virtual
columns (e.g. PostgreSQL) because the JSON value has to be stored in the column and the
index.

Functional Indexes

You can also use functional indexes instead of virtual columns - the cleanest solution. As
explained in “5.1 Indexes on Functions”, you only have to create the index on the JSON
operation and the matching will automatically be used. The following is an example for
Postgresql.

CREATE INDEX contacts_email ON contacts ((attributes->>'email'));

SELECT * FROM contacts WHERE attributes->>'email' = 'admin@example.com';

But functional indexes on JSONs are more complicated with MySQL: Trying to create an
index similarly will cause an error (“Cannot create a functional index on an expression that
returns a BLOB or TEXT”). The value must first be cast to a string and then changed to the
collation used by MySQL for JSON values (utf8_mb4_bin). MySQL can only use the index
for queries if you follow all these steps.

CREATE INDEX contacts_email ON contacts ((
 CAST(attributes->>"$.email" AS CHAR(255)) COLLATE utf8mb4_bin
));

SELECT * FROM contacts WHERE attributes->>"$.email" =
'admin@example.com';

GIN Indexes

However, creating an index for every JSON key is very inconvenient. PostgreSQL provides
the GIN index type (Generalized Inverted Index) that can index an entire JSON object with all
values it contains. You no longer have to create multiple functional indexes!

CREATE INDEX contacts_attributes ON contacts USING gin (attributes);

But they come with a minor drawback: You must use specialized comparison operators
instead of the standard ones (e.g. = or >). However, these operators are also beneficial as
they can do different remarkable things:

79

json @> json: The left JSON value must contain the right JSON value.
json ? text: The text value must be present as a JSON key.
json ?| array: Any of the array values must be present as JSON keys.
json ?& array: All of the array values must be present as JSON keys.
json @? jsonpath: The JSON path has to match at least one element.

SELECT * FROM contacts WHERE attributes @> '{"email":
"admin@example.com"}';
SELECT * FROM contacts WHERE attributes ? 'email';
SELECT * FROM contacts WHERE attributes ?| array['email', 'phone'];
SELECT * FROM contacts WHERE attributes ?& array['email', 'phone'];
SELECT * FROM contacts WHERE attributes @? '$.tags[*] ? (@.type ==
"note" && @.severity > 3)';

JSON Arrays

In addition to JSON objects, you may also be interested in indexing JSON arrays. This is a
powerful but less-known feature. You can e.g. save the categories a product belongs to into
a JSON array to check whether a product belongs to two categories but not a specific other
one.

With PostgreSQL, you can use the same capabilities as described for JSON Objects to check
for overlapping JSON values:

CREATE INDEX products_categories ON products USING gin (categories);

SELECT * FROM products WHERE categories @> '["printed book", "ebook"]'
AND NOT categories @> '["audiobook"]';

For MySQL, you can use so-called multi-valued indexes that store multiple values for a given
column. However, this index type is limited to unsigned integers and the following example
therefore uses the category IDs instead of their names.

CREATE INDEX products_categories on products ((CAST(categories AS
UNSIGNED ARRAY)));

SELECT * FROM contacts WHERE JSON_CONTAINS(attributes, CAST('[17, 23]'
AS JSON)) AND NOT JSON_CONTAINS(attributes, CAST('[11]' AS JSON))

80

5.10 Unique Indexes and Null

NULL values have special behavior in SQL that they are not comparable to anything. So, any
NULL value is different from another NULL value. This sounds highly theoretical but severely
influences unique keys not behaving like you would expect them to.

Imagine a shop application where customers can order highly anticipated products - e.g., a
new game console or smartphone. To guarantee equal opportunities for everyone,
customers can only have one open order for these products at any time. An easy solution
would be to create a unique index on the columns customer_id and shipment_id that is
NULL when the customer is still waiting and will be replaced as soon as the order is shipped.
However, the index is different than expected due to the NULL behavior (Fig. A).

Both NULL values for customer 17 are claimed to be not identical as a NULL value can't be
compared to another NULL value. For this reason, several duplicate entries can exist in a
unique index - a circumstance that one would not expect. You should always look out for
unique indexes when they include nullable columns.

Transformations

An easy way to ensure the uniqueness of entries in unique indexes is to transform the null
values to non-null values. You can achieve this by creating a functional index applying the
transformation. Consequently, only comparable values exist in the index and the uniqueness
guarantee is satisfied again.

81

But keep in mind that the shipment_id column has been transformed. A query using a
condition on both columns can't use this index anymore. You have to create another one to
support searching the data.

CREATE UNIQUE INDEX uniqueness_idx ON orders (
 customer_id,
 (CASE WHEN shipment_id IS NULL THEN -1 ELSE shipment_id END)
);

NULLS NOT DISTINCT

The SQL standard suggests an elegant approach to solve the problem. You can tell the
database to treat all null values as identical for the unique index. However, this feature is
currently only implemented by PostgreSQL. This may change over time and more databases
will support it.

CREATE UNIQUE INDEX uniqueness_idx ON orders (
 customer_id, shipment_id
) NULLS NOT DISTINCT;

82

5.11 Location-Based Searching With
Bounding-Boxes

Many applications use location-based search for certain functionalities such as finding
restaurants in the local area to eat out today. These proximity searches are easy to
implement in SQL. A bounding box defined by the longitude (x-axis) and the latitude (y-axis)
is used to express a range to search within (Fig. A).

CREATE TABLE businesses (
 id bigint PRIMARY KEY NOT NULL,
 type varchar(255) NOT NULL,
 name varchar(255) NOT NULL,
 latitude float NOT NULL,
 longitude float NOT NULL
);
CREATE INDEX search_idx ON businesses (longitude, latitude);

SELECT *
FROM businesses
WHERE type = 'restaurant' longitude BETWEEN -73.9752 AND -74.0083 AND
latitude BETWEEN 40.7216 AND 40.7422

83

Even though this is the most used code, it could be better. The query is problematic because
two range conditions are used: Only the condition for the longitude can limit the index
records as an index scan is triggered on the first range condition (Index Access Principle 4:
Scan On Range Conditions). Therefore, all index records for the range longitude BETWEEN
-73.9752 AND -74.0083 are validated whether the latitude condition matches (Fig. B).
This is fine for small databases but not for larger ones storing entries for a whole country or
the world. The large number of index entries matching the longitude range but not the
latitude one will have severe performance impacts.

Additional Columns

A quick optimization method is to make the index more fitting. The condition on the type
column was previously not part of the index but can limit the amount of index records to
scan (Fig. C). However, the range scan problem has only improved a little in efficiency and
has not been solved. The number of index records scanned is still too high but the
performance could probably be sufficient for you now.

84

Spatial Indexes

Location-based searching cannot be executed efficiently with regular indexes. The
developers of databases realized this long ago and created specialized indexes: Spatial
Indexes.

This index type is designed to make points or more complex shapes efficiently searchable in
a multidimensional space (e.g. the three dimensions on earth). Using them is as easy as
using any other index. The following example shows the optimized example for PostgreSQL.
The table must be changed to store a point in spatial reference 4326 instead of separate
latitude and longitude values. This reference defines how geometry is referenced to
locations on earth's surface and is used to respect the earth's curvature in calculations. More
reference systems exist for more precise positioning - e.g., specific to countries or regions.

CREATE TABLE businesses (
 id bigint PRIMARY KEY NOT NULL,
 type varchar(255) NOT NULL,
 name varchar(255) NOT NULL,
 location geometry(point, 4326) NOT NULL
);
CREATE INDEX search_idx ON boundingbox USING GIST (type, location);

The query must only be rewritten slightly to use spatial search functions to check whether
any stored point is within the bounding box.

85

SELECT *
FROM boundingbox
WHERE type = 'restaurant' and location && ST_MakeEnvelope (
 /* longitude_min */ -73.9752, /* latitude_min */ 40.7216,
 /* longitude_max */ -74.0083, /* latitude_max */ 40.7422,
 /* spatial reference*/ 4326
)

The same optimization can be executed for MySQL, as shown with the following code. But
MySQL has some differences in its spatial implementation:

A spatial index can only have one column. So prefixing the index by the type column
to segment the spatial index will not work.
The global position reference (srid=4326) is not supported by all functions, e.g. by the
used ST_MakeEnvelope. Its not a problem for this purpose as we only need entries
within the bounding box but distance calculations would be slightly off because
earth's curvature will be ignored.

CREATE TABLE businesses (
 id bigint PRIMARY KEY NOT NULL,
 type varchar(255) NOT NULL,
 name varchar(255) NOT NULL,
 location point SRID 0 NOT NULL,
);
CREATE SPATIAL INDEX search_idx ON businesses (location);

SELECT *
FROM businesses
WHERE type = 'restaurant' and ST_CONTAINS(
 ST_MakeEnvelope(
 point(/* longitude_min */ -73.9752, /* latitude_min */ 40.7216),
 point(/* longitude_max */ -74.0083, /* latitude_max */ 40.7422)
),
 location
);

	Contents
	Preface
	Why You Didn't Understand Indexes Until Now
	1. Fundamentals
	1.1 A Different View on B+ Trees
	1.2 The Interaction of Indexes and Tables

	2. Index Access Principles
	2.1 Principle 1: Fast Lookup
	2.2 Principle 2: Scan in One Direction
	2.3 Principle 3: From Left To Right
	2.4 Principle 4: Scan On Range Conditions

	3. Index Supported Operations
	3.1 Inequality (!=)
	3.2 Nullable Values (IS NULL and IS NOT NULL)
	3.3 Pattern Matching (LIKE)
	3.4 Sorting Values (ORDER BY)
	3.5 Aggregating Values (DISTINCT and GROUP BY)
	3.6 Joins
	3.7 Subqueries
	3.8 Data Manipulation (UPDATE and DELETE)

	4. Why Isn’t the Database Using My Index?
	4.1 The Index Can’t Be Used
	4.2 No Index Will Be the Fastest
	4.3 Another index is faster

	5. Pitfalls and Tips
	5.1 Indexes on Functions
	5.2 Boolean Flags
	5.3 Transforming Range Conditions
	5.4 Leading Wildcard Search
	5.5 Type Juggling
	5.6 Index-Only Queries
	5.7 Filtering and Sorting With Joins
	5.8 Exceeding the Maximum Index Size
	5.9 JSON Objects and Arrays
	5.10 Unique Indexes and Null
	5.11 Location-Based Searching With Bounding-Boxes

