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Preface

Quantum artificial intelligence (QAI) is a new interdisciplinary research field that
combines quantum computing with artificial intelligence (AI). It aims to use the
unique properties of quantum computers, which leverage quantum mechanical effects
(such as superposition and entanglement) to enhance the capabilities of AI systems.
In QAI, progress is being made quickly. What was a scientific dream some years ago
is becoming more real, and you are now (by reading this book) at the forefront of the
revolution in QAI.

Quantum algorithms for AI have been proposed, including a quantum tree search
algorithm and a quantum production system that will be demonstrated by qiskit
simulation step by step. Qiskit is an open-source software development kit (SDK) for
working with quantum computers at the level of circuits and algorithms [21], IBM
Quantum, https://quantum-computing.ibm.com/. It provides tools for creating and
manipulating quantum programs and running them on prototype quantum devices
on IBM Quantum Experience or on simulators on a local computer. It follows the
quantum circuit model for universal quantum computation and can be used for any
quantum hardware that follows this model. Qiskit is based on Python and you can
find all information about it at https://qiskit.org.

This book provides tools for creating and manipulating quantum programs and
running them on prototype quantum devices or simulators on a local computer,
such as a simple personal laptop. It follows the quantum circuit model for univer-
sal quantum computation and can be used with any quantum hardware that follows
this model. You can download all the examples (Jupyter notebooks) from the book
https://github.com/andrzejwichert/qai.1

In the book, we will introduce quantum computation and its application to AI.
AI can be divided into different areas: symbolical artificial intelligence and machine
learning (ML), the same is true for the QAI.

Artificial Intelligence – Chapter 1

AI is a subfield of computer science that models the mechanisms of intelligent human
behavior. This approach is accomplished via simulation with the help of artificial
artifacts, typically with computer programs on a machine that performs calcula-
tions. However, the terms “intelligence” and “intelligent human behavior” are not
very well defined and understood. That is why over the years the definition of AI

1The author acknowledges the use of IBM Quantum services for this work. The views expressed
are those of the author and do not reflect the official policy or position of IBM or the IBM Quantum
team.
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changed following the development of more powerful computers. For example, it is
now common to identify AI with deep learning.

We divide the present AI domain into two main branches: symbolic AI and sta-
tistical ML. Symbolic AI deals with symbolic representations and problem solving,
and statistical ML is based on distributed representations.

We first give a short history of AI, and then we describe the principles of the two
main branches of AI, symbolic AI and ML.

Quantum Physics and Quantum Computation – Chapter 2

Statistical laws govern the totality of observations in physics. An object can be de-
scribed in classical mechanics by a vector which describes the position and its mo-
mentum. Classical mechanics is usually valid at the macro scale. The changes in the
position and the momentum of the object over time are described by the Hamiltonian
equation of motion. The state of the object is described by the Hamiltonian function.
At a micro scale the observations are described by quantum physics. Light appears
only in chunks that can be quantized. An individual chunk is called quantum and
a quantum of light is called a photon [27]. Quantum theory gets its name from this
property, which it attributes to all measurable physical quantities. A photon can be
described by a wave function if it is isolated from its environment. The wave func-
tion in quantum mechanics, if unobserved, evolves into a smooth and continuous way
according to the Schrödinger equation, which is related to the Hamiltonian equation
of motion. This equation describes a linear superposition of different states at time.
During the observation (measurement by the observer, by us), the wave collapses into
one definite state with a certain probability.

The mathematical framework of quantum theory is based on linear algebra in
Hilbert space. A two-state quantum system is described by a two-dimensional Hilbert
space. Thus, a two-state quantum system corresponds to a qubit. A register is com-
posed of several qubits and is defined by the tensor product. We describe the principles
of computation with one and m qubits, and we introduce the principles of entangle-
ment, cloning, and the matrix representation of quantum Boolean gates, as well as
an example of a simple quantum Boolean circuit.

Qiskit – Chapter 3

We describe how to install qiskit and demonstrate the two main backend simulator
functions we will use. We demonstrate the working principles of the qiskit software de-
velopment kit on the simple example of a quantum coin. We indicate how to represent
simple quantum circuits by unitary matrices using the qiskit get unitary command.
We indicate step by step how to define quantum circuits on an example of a four-bit
conjunction. The concept of un-computation is introduced since in quantum comput-
ing we cannot reset qubits to zero. The Deutsch algorithm determines if an unknown
function f :B1 → B1:f(x) = y of one bit is constant or not by calling the function
one time. The Deutsch algorithm was the first algorithm (1985) that demonstrated a
quantum advantage: it is a proof of concept that, in certain settings, quantum com-
puters are strictly more powerful than classical ones by reduction in query complexity
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Quantum Gates – Chapter 4

Quantum gates are the building blocks of quantum circuits, like classical logic gates
are for conventional digital circuits. Unlike classical logic gates, quantum logic gates
are reversible and can be described by unitary matrices. First, we introduce Boolean
quantum gates that allow us to map any Boolean circuit in such a way that the
circuit becomes reversible. Such a circuit represents a permutation in Hilbert space
and can be represented by a permutation matrix composed of the unitary matrices
representing the quantum gates. Then we describe quantum gates for one qubit, like
for example, Clifford gates that are the elements of the Clifford group and can be
efficiently simulated with a classical computer. Parameterized gates play an important
role in quantum ML. A parameterized rotation gate is a parameterized gate with the
parameter being the amount of rotation to be performed around the three axes.
We introduce the controlled-U gates and introduce the unitary decomposition and
formulate the process of transpilation. Translation is a complex problem of finding
an optimal decomposition into the present quantum gates for a quantum computer.

Grover’s Amplification – Chapter 5

We describe the Grover’s amplification algorithm. We represent n state by a super-
position; each state has the same real positive amplitude. A parallel computation is
applied to all the n states, and the state with the solution is marked by a minus
sign, and the amplitude is now negative. We then apply a linear operation based on
the Householder reflection, and by the reflection, the value of the marked amplitude
grows linearly. For dimensions higher than four, the operations of marking and the
Householder reflection must be repeated

√
n times, since at each step the amplitude

only grows linearly. After
√
n steps we measure the solution. The algorithm guaran-

tees us a quadratic speed up over a classical computer that would require n steps.
The Grover’s amplification algorithm is optimal and one can prove that a better al-
gorithm cannot exist. We will demonstrate the principles of Grover’s amplification
using the matrix notation NumPy. Then we explain how to represent the algorithm
with quantum gates by a qiskit example of three qubits representing eight states using
one and two rotations.

SAT Problem – Chapter 6

The Boolean satisfiability problem (SAT problem) is the problem of determining if
there exists an interpretation that satisfies a given Boolean formula, whether the
formula evaluates true [22]. Each variable of the formula can have the values true
(one) or false (zero). We formulate the formula satisfiability problem and indicate an
example step by step. Then we discuss the relation between the SAT problem and
the time complexity. Computational complexity theory addresses questions regarding
which problems can be solved in a finite amount of time on a computer. A decision

compared to the classical case. Finally, we give an example how to run the Deutsch
algorithm on a real small quantum computer.
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problem is a computational problem with instances formulated as a question with
a binary answer. An example is the question of whether a certain number n is a
prime number. Most problems can be converted into a decision problem. The time
complexity describes the amount of computer time it takes to run an algorithm. Time
complexity is commonly estimated by counting the number of elementary operations
performed by the algorithm. The amount of time taken is linearly related to the
number of elementary operations performed by the algorithm. A problem is easy if
an algorithm on a computer can determine the instances related to the input for
the answer in polynomial time. Polynomial-time algorithms are said to be fast since
they can be executed in an acceptable time on a computer. Otherwise, we state that
the problem is hard, meaning the time required grows exponentially and cannot be
executed in an acceptable time on a computer. We describe a simple SAT problem
with a Boolean formula with three Boolean variables and indicate it step by step
using the qiskit framework of how to solve the problem using Grover’s amplification
algorithm by a quantum circuit.

Symbolic State Representation – Chapter 7

An economic symbolic representation of objects and attributes that can represent a
state during problem solving is introduced. This representation is motivated by the
biological what where principle and requires a low number of bits. Such an economical
symbolical representation is ideal for the current generation of quantum computers.
We describe the tree search on which problem solving is based. Nodes and edges
represent a search tree. Each node represents a state, and each edge represents a
transition from one state to the following state. The path descriptors is the basis
idea of quantum tree search. In a quantum tree search we represent all possible path
descriptors simultaneously and can use Grover’s amplification algorithm to determine
the solution.

Quantum Production System – Chapter 8

A production system is a model of human problem solving. It is composed of long-
term memory and working memory, which is also called the short-term memory.
Problem-solving can be modeled by a production system that implements a search
algorithm. The search defines a problem space and can be represented as a tree. Using
Grover’s algorithm, we search through all possible paths and verify, for each path,
whether it leads to the goal state.

A pure production system has no mechanism for recovering from an impasse.
We describe an example of a simple pure production systems for sorting of a string
and indicate how to port this simple pure production systems into the quantum
production system. Then we indicate that a quantum production system can be the
basis of a unified theory of cognition.

3 Puzzle – Chapter 9

We demonstrate the working principles of quantum production system and the quan-
tum tree search by a qiskit implementation of a toy example from symbolical AI, the
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3-puzzle. The goal is to find a series of moves that changes the board from the initial
configuration to a desired configuration. We describe the representation of the rules
(productions) of the long-term memory and describe the search of depth one, two and
three. The search of depth three results in eight possible states. The solution is marked
by an oracle and a Grover’s amplification is applied once. To increase the probability
value of the solution we will apply two Grover’s amplification. The solution corre-
sponds to the path descriptor that indicates the sequence of rules (productions) that
changes the board from the initial configuration to a desired configuration.

8 Puzzle – Chapter 10

The n puzzle is a classical problem for modeling algorithms. For n-puzzle there are
n + 1 different objects: n cells and one empty cell. Each object can be coded by
ρ = dlog2 n+ 1e qubits and a configuration of n + 1 objects can be represented by
a register of z := ρ · (n + 1) qubits |x〉. The function g(x) is represented a unitary
operator T . T acts on the z + 1 qubits with x ∈ Bz and c ∈ B1

T · |x〉|c〉 = |x〉|f(x)⊕ c〉.

We indicate how to extend the 3-puzzle to the 8-puzzle resulting in a non-constant
branching factor. We show that the branching factor is reduced by Grover’s ampli-
fication to the square root of the average branching factor and not to the maximal
branching factor. Simple experiments of the search of the depth one requires already
49 qubits. The experiments indicate that the presented methods can be extended to
a search of any depth, given that more qubits are present.

Blocks World – Chapter 11

The blocks world is a planning domain in AI [73]. The blocks can be placed at the
table and picked up and set down on a table or another block, and the goal is to build
one or more vertical stacks of blocks. Only one block may be moved at a time and
any blocks that are under another block cannot be moved. There are three different
types of blocks. They differ by attributes such as color (red, green, and blue) or
marks, but not by form. In AI, they are traditionally called A, B, C blocks [61]. The
simplicity of this toy problem allows to compare classical approach with quantum
computing approach. We indicate how the binding of the stats is achieved through
the entanglement. We indicate how to represent the states with a class descriptor and
the position descriptor (adjective) and perform a search of depth one. The A, B, C
blocks planning problem results in a non-constant branching factor. We show again
that the branching factor is reduced by Grover’s amplification to the square root of
the average branching factor and not to the maximal branching factor.

Five Pennies Nim Game – Chapter 12

Games involving two players represent one of the classic applications of symbolic
problem solving. Starting with some initial game position, the algorithm explores the
tree of all legal moves down to the requested depth. An example is the nim game in
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which two players take turns removing objects from distinct piles. A simplified version
is the nim game with no piles, the five pennies nim game. Two players alternate
remove either one, two, or three pennies from a stack that initially contains five
pennies. The player who pick up last penny loses. The five pennies nim game is a
zero game where neither player has any legal options. The first player loses, and the
second-player wins if correct moves are chosen.

We indicate the architecture for the five pennies nim game and indicate that a
quantum tree search cannot implement the minimax-algorithm. We can determine
the search path, but we cannot model the behavior of the player that choses the best
move since we cannot compare different states that are described by different path
descriptors.

Basis Encoding of Binary Vectors – Chapter 13

Quantum encoding is a process to transform classical information into quantum
states. It plays a crucial role in using quantum algorithm. Basis encoding is the most
intuitive way to encode classical binary vectors into a quantum state. It encodes n
dimensional binary vector to an n-qubit quantum state represented computational
basis state. We will describe two possible approaches, a method that was developed
by Ventura and Martinez and the method of entanglement of binary patterns vectors
with index qubits in superposition.

Quantum Associative Memory – Chapter 14

Quantum associative memory (QuAM) in the domain of quantum computation is
a model with a capacity exponential in the number of neurons. Quantum Nearest
Neighbor (QNN) is related to the QuAM. In QNN the binary patterns are stored
by entanglement with index qubits. For Grover’s amplification to the index qubits,
we have to un-compute the entanglement of index qubits with the patterns. In QNN
we need to un-compute. However, in QuAM we do not un-compute. In the QuAM
as proposed by Venture and Martinez, a modified version of Grover’s search algo-
rithm is applied to determine the answer vector to a query vector so that instead
of un-computing one can apply Grover’s algorithm to all qubits. Most quantum ML
algorithms including quantum associative memory suffer from the input destruction
problem where the classical data must be read and after the measurement the super-
position collapses. However, the input destruction problem is not solved until today,
and usually theoretical speed ups are analyzed. We will demonstrate a simple QNN
model, and a modified version of Grover’s search algorithm as proposed by Venture
and Martinez. Then we analyze the input destruction problem.

Quantum Lernmatrix – Chapter 15

We introduce quantum Lernmatrix based on where n units are stored in the quan-
tum superposition. Lernmatrix is an associative-memory-like architecture. During
the retrieval phase, quantum counting of ones based on Euler’s formula is used
for the pattern recovery as proposed by Trugenberger. We demonstrate how to
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represent the quantum Lernmatrix by a quantum circuit and preform experiments
using qiskit. Then we introduce a tree-like structure that increases the measured value
of correct answers. During the active phase the quantum Lernmatrices are queried
and the results are estimated efficiently. The required time is much lower compared
to the conventional approach or Grover’s algorithm.

Amplitude Encoding – Chapter 16

Amplitude encoding encodes a real or complexed value vector of the length one into
the amplitudes of a quantum state. We describe the top-down strategy and indicate
the algorithm step by step. Then we describe the combining states strategy. Instead
of representing the binary tree by multi-control rotation gates, we can use controlled
SWAP operators with simple rotation gates. The resulting circuits depth is less than
the top-down divide strategy; however, we require the same number of qubits as the
number of rotation gates, and the qubits are entangled after the operation. Then we
describe the possibility of initializing the desired states using qiskit commands. We
cannot access the amplitudes that represent vectors, but we estimate the value of the
scalar product between them using the swap test. We give two examples of the swap
test.

Quantum Kernels – Chapter 17

A quantum computer can estimate a quantum kernel, and the estimate can be used
by a kernel method on a classical computer. This is because the exponential quantum
advantage in evaluating inner products allows us to estimate the quantum kernel di-
rectly in the higher dimensional space. We give an example of quantum kernels and
the swap test. Then we describe quantum kernels and the inversion test. Quantum
feature maps encode classical data into quantum data via a parametrized quantum
circuit. Parameterized quantum circuits are based on superposition and entangle-
ment. They are hard to simulate classically and could lead to an advantage over the
classical ML approach. The inversion test is based on the usual idea of estimating
the fidelity (similarity) between two states. We describe an example using the qiskit
command ZZFeatureMap. Then we indicate how the quantum kernel is plugged into
classical kernel methods like support vector machines.

qRAM – Chapter 18

Quantum memory is proposed as an analogue to classical computer memory, like the
random-access memory (RAM). RAM is a form of computer memory that can be
read and changed in any order, typically used to store working data. In a quantum
ML domain, the usage of quantum random access memory (qRAM) is proposed to
avoid the input destruction problem. We demonstrate the bucket brigade architecture
of qRAM . The method of qRAM is related to the entanglement of the index qubits
that are in the superposition with the patterns. We demonstrate an example of binary
patterns and indicate why the representation of amplitude coding leads to the same
complexity as a recall operation on a classical RAM .
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Quantum Fourier Transform – Chapter 19

A periodic function can be represented in the frequency space. The frequency is the
number of occurrences of a repeating event per one unit of time. If something changes
rapidly, then we say that it has a high frequency. If it does not change rapidly, i.e., it
changes smoothly, we say that it has a low frequency. The discrete Fourier transform
converts discrete time-based or space-based data into the frequency domain.

We describe the discrete Fourier transforms (DFT) and indicate the relation to the
quantum Fourier transform (QFT). The we indicate how the QFT can be factored into
the tensor product of m single-qubit operations and implemented by basic quantum
gates. We demonstrate examples of QFT for two, three, and four qubits. Then we
indicate that the circuit for m qubits can be imported from the qiskit library. We
analyze the QFT costs and give a simple example of its operation.

Phase Estimation – Chapter 20

The Kitaev’s Phase Estimation Algorithm (also referred to as a quantum eigenvalue
estimation algorithm), is a quantum algorithm to estimate the phase (or eigenvalue)
of an eigenvector of a unitary operator. We explain the algorithm and indicate an
example of the determination of the eigenvalue of the T gate. Then we introduce the
quantum counting algorithm based on the quantum phase estimation algorithm and
on the Grover’s search algorithm. The quantum counting algorithm is a quantum
algorithm for counting the number of solutions for a given search problem.

Quantum Perceptron – Chapter 21

The classical perceptron describes an algorithm for supervised learning that consid-
ers only linearly separable problems in which groups can be separated by a line or
hyperplane. The quantum perceptron does not usually include learning, but instead
computes the output of a binary unit (neuron) efficiently. It is based on the Kitaev’s
phase estimation algorithm. A quantum perceptron can be used as a building block
of larger systems and it can process an arbitrary number of input vectors in parallel.
We present a simple example of the quantum perceptron for two-dimensional input.

HHL – Chapter 22

The quantum algorithm for linear systems of equations is one of the main fundamental
algorithms expected to provide a speedup over their classical counterparts. In the
honor of its inventors Aram Harrow, Avinatan Hassidim, and Seth Lloyd, it is called
the HHL algorithm. HHL is going to be one of the most useful subroutines for any
quantum ML algorithm because almost all ML uses some form of a linear system
of equations. For example, in support vector machines and quantum support vector
machines, maximizing the objective function with the optimum values of the Lagrange
multipliers are based on solving linear equations. We describe the HHL algorithm,
give an example step by step using qiskit command HamiltonianGate, and indicate
the constrains of the algorithm.
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Hybrid Approaches – Variational Classification – Chapter 23

Variational approaches are characterized using a classical optimization algorithm
to iteratively update a parameterized quantum trial solution also called an ansatz
(from the German word Ansatz which means approach). The parameterized quan-
tum trial solution is defined by a parametrized quantum circuit, for example, the
ZZFeatureMap. We indicate the basic principles of a variational classifier by a sim-
ple example. Then we describe the cross entropy loss function and the Simultaneous
Perturbation Stochastic Approximation (SPSA). The optimizer performs stochastic
gradient approximation, which requires only two measurements of the loss function.
Qiskit implements the variational quantum classifier (VQC) that can be embedded
in classical ML tasks. We indicate a simple example of the VQC classifier whose
learning is based on SPSA.

Conclusion – Chapter 24

We conclude our journey with quantum artificial intelligence (QAI). A quantum com-
puter is a computer that exploits quantum mechanical phenomena such as superposi-
tion and entanglement. The quantum advantage is based on two principles related to
Grover’s algorithm and the phase estimation algorithm. Quantum computing is still
in its early stages, and there are many technical challenges that must be overcome
before it can be used to implement QAI. However, for the quantum computing race
is on; what was a scientific dream some years ago, is becoming more real. You are
now at the forefront of the revolution in quantum computing.
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C H A P T E R 1

Artificial Intelligence

Artificial intelligence (AI) is a subfield of computer science that models the mecha-
nisms of intelligent human behavior (intelligence). This approach is accomplished via
simulation with the help of artificial artifacts, typically with computer programs on
a machine that performs calculations. However, the term “intelligence” and “intelli-
gent human behavior” are not very well-defined and understood. That is why over
the years the definition of AI changed following the development of more powerful
computers. For example, it is now common to identify AI with deep learning.

We divide the present AI domain into two main branches: symbolical AI and
statistical machine learning (ML). Symbolic AI deals with symbolic representations
and problem solving, and statistical (ML) is based on distributed representations.

We first give a short history of AI, and then we describe the principles of the two
main branches of AI, symbolic AI and statistical ML.

1.1 A SHORT HISTORY OF AI

1.1.1 Cybernetics

Cybernetics has its origins in the intersection of the fields of control systems, electri-
cal network theory, mechanical engineering, logic modeling, fuzzy logic, evolutionary
biology, neuroscience, anthropology, and psychology [123]. In 1943, McCulloch, a
neuroscientist, and Walter Pitts, a logician, developed the artificial neuron, a math-
ematical model that mimics the functionality of a biological neuron [67]. This model
is called the McCulloch-Pitts model of a neuron. The perceptron algorithm was in-
vented in 1957 by Frank Rosenblatt [86] and was inspired by the McCulloch-Pitts
model of a neuron. Perceptron describes a simple algorithm for supervised learning. In
the 1960s, an active research program concerning ML with artificial neural networks
was carried out by Rosenblatt.

During the early years analog computers were predominant. They were developed
in the years 1930–1950. An analog computer represents information by analog means,
such as voltage. In such a computer, information is represented by a voltage wave
and the algorithm is represented by an electrical circuit. Such a circuit is composed
of resistors and capacitors that are connected together. An algorithm represents a
mathematical model of a physical system, which can be described, for example, by
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specific differential equations. The input and output of the computation are voltage
waves that can be observed by an oscilloscope. The represented values are usually
less accurate than digitally represented values. The results of each computation can
vary due to external influences. For this reason, each result of the computation is
unique.

1.1.2 Symbolic Artificial Intelligence

Analog computers started to decline with the advent of the development of the mi-
croprocessor, which led to the development of digital computers and a possible re-
production of a calculation without an error. The Electronic Numerical Integrator
and Calculator (ENIAC) was a digital computer build and developed (1943–1944)
by John Mauchly and J. Presper Eckert. They proposed the EDVAC’s (Electronic
Discrete Variable Automatic Computer) construction in August 1944. Unlike its pre-
decessor the ENIAC, it was binary rather than decimal, and was designed to be a
stored-program computer [116], [9]. A digital computer is a device that processes
information represented in discrete means such as symbols. Usually, the symbols are
represented in binary form. In a digital circuit, the information is represented by bi-
nary digits. Due to a digital representation, the exact values of each computation can
be reproduced since there is no external influences. The computation can be repeated,
and the result remains the same. Binary digits are represented by the minimal unit
of information, the bit with the values 0 or 1. The binary information is manipulated
by Boolean digital circuits.

With the rise of digital computers, AI was founded as a distinct discipline at the
Dartmouth workshop in 1956. The term itself was invented by the American com-
puter scientist John McCarthy and used in the title of the conference. During this
meeting, programs were presented that played chess and checkers, proved theorems
and interpreted texts. Arthur Samuel developed ML algorithms for checkers. Check-
ers requires intelligence when the algorithm for playing is unknown. As soon as the
algorithm is known, playing checkers no longer requires intelligence. AI is a subfield
of computer science that models the mechanisms of intelligent human behavior (in-
telligence). Problems of this kind are solved by algorithms studied by AI. The key
idea behind these algorithms is the symbolic representation of the domain in which
the problems are solved. Usually symbolical algorithms requires less computational
power as ML algorithms that require expensive vector operations.

1.1.3 Connectionist Movement

The simple perceptron describes an algorithm for supervised learning that consid-
ers only linearly separable problems in which groups can be separated by a line or
hyperplane [68]. These limitations do not apply to feedforward networks with non-
linear units, also called multilayer perceptrons. Such networks can be trained by the
backpropagation learning algorithm. The algorithm itself was invented independently
several times [19], [117], [77], [65]. However, it became popular with the books Paral-
lel Distributed Processing (PDP) published by David Rumelhart and his colleagues,
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[65], [66], [64]. The authors returned to perceptrons and claimed that the pessimism
about learning in perceptrons during the raise of symbolical AI was misplaced. The
books consist of three volumes, foundations, psychological and biological models and
a handbook of models, programs, and exercises that included software on a diskette
written in the programming language C. With the development of the personal com-
puter in 1980–1986 by Apple and IBM lead to the popularization of the backpropa-
gation algorithm through the PDP books. The popularization led to a connectionist
movement that resulted in the “symbol wars” with the old symbolic AI school. The
symbol wars describe the emotional discussion of the two camps around the question
as to whether the departure from the symbolic approach leads to something new and
worthwhile.

1.1.4 Deep Learning

GPUs (Graphics Processing Units) were originally designed to accelerate the ren-
dering of 3D graphics. Over time, they became more flexible and programmable,
enhancing their capabilities. Nvidia was the very first company to bring GPUs into
the world in 1999. The first GPU in history was known as the Geforce 256.

With more computer power by GPUs, it is possible to train huge data by deep ar-
tificial networks (Deep Learning) that use many hidden layers to increase the model’s
power in statistical learning. The models achieved tremendous results in handling vi-
sion, speech recognition, speech synthesis, image generation, and machine translation.
It is now common to identify AI with deep learning and not with symbol manipu-
lating systems, assuming that the symbolic approach is no longer relevant. However,
the downside of the deep learning (DL) approach is requirement of huge computing
power, large data sets, and the lack of comprehensibility and explanation contrary to
the symbolic approach.

1.1.5 Quantum Artificial Intelligence

With the appearance of first small quantum computers by IBM, Google, Microsoft
and developing quantum artificial intelligence (QAI) emerged. The quantum comput-
ers execute some quantum circuits with a certain error, their capacity varies from 5
qubit to 127 qubit, but the race is set up. One of the most popular software develop-
ment kits (SDK) for working with quantum computers is Qiskit [21], IBM Quantum,
https://quantum-computing.ibm.com/. It provides tools for creating and manipulating
quantum programs and running them on prototype quantum devices or on simulators
on a local computer, like your own simple laptop. It follows the quantum circuit model
for universal quantum computation and can be used for any quantum hardware that
follows this model. This allows to investigate the possibilities for the realization of AI
by means of quantum computation through computer experiments [118]. If we relate
qubits to bits, it becomes clear that the symbolic approach is an ideal candidate for
quantum computation since the algorithms requirs much lower capacity compared to
the ML algorithms. We will discuss first symbolic quantum artificial AI, and only in
the second part we cover the quantum ML [119].

https://quantum-computing.ibm.com
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1.2 SYMBOLICAL ARTIFICIAL INTELLIGENCE

Logical symbolical representation is motivated by philosophy and mathematics [53,
109, 61]. Predicates are functions that map objects’ arguments into true or false
values. They describe the relation between objects in a world which is represented by
symbols. Whenever a relation holds with respect to some objects, the corresponding
predicate is true when applied to the corresponding object symbols.

Predicates can be negated by the function ¬ (not) and combined by the logical
connectives ∨ (disjunction), ∧ ( conjunction), and the implies (→) operator. ¬, ∨,
∧, and→ determine the predicate’s value. To signal that an expression is universally
true, the universal quantifier and a variable standing for possible objects is used.

∀ x[Feathers(x) → Bird(x)].
An Object having feathers is a bird.

Some expressions are true only for some objects. This is represented by an existential
quantifier and a variable.

∃ x[Bird(x)].
There is at least one object which is a bird.

An interpretation is an accounting of the correspondence between objects and
object symbols and between relations and predicates. An interpretation can be only
either true or false. These are some basic ideas about representation in predicate
calculus, which is a subset of formal logic.

Symbols in general are defined by their occurrence in a structure and by a formal
language (for example predicate calculus), which manipulates these structures [101,
71] (see Figure 1.1).

In this context, symbols do not, by themselves, represent any utilizable knowl-
edge. For example, they cannot be used for a definition of similarity criteria between
themselves. The use of symbols in algorithms which imitate human intelligent behav-
ior led to the famous physical symbol system hypothesis by Newell and Simon (1976)
[70]: “The necessary and sufficient condition for a physical system to exhibit intelli-
gence is that it be a physical symbol system”. Symbols are not present in the world;
they are the constructs of a human mind and simplify the process of representation
used in communication and problem solving.

1.2.1 Bits

The symbols are represented in a computer by bits. The smallest information unit is
called a binary digit, or bit. To represent n symbols we require dlog2 ne. For example,
to represent 9 symbols we require four bits with 16 = 24 possible generated codes
16 = 24. For 7 bits, there are 128 = 27 alternative symbols that can represent different
characters. A set of 128 different characters is described by the American Standard
Code for Information Interchange, the ASCII character set, is the most popular code.
It was developed based on the English alphabet around 1963. In addition to all
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Figure 1.1 Object represented by symbols and relation represented by predicate.

normal alphabetic characters, numeric characters and printable characters, the set
also includes a number of control characters. The character set was extended to 8
bits by adding additional character definitions after the first 128 characters.

1.2.2 Rules and Operators

A world state can be described including properties and relations using predicate
calculus. This kind of description can be used to define operators like those used
in the STRIPS computer science approach (see Figure 1.2) [29, 73, 33]. ABC block
world has been a popular planning domain in AI research exemplified using three
blocks named A, B, and C. Three blocks lie arranged in some initial configuration
over a table (as in Figure 1.2). Each may have at most one block over it, and each
may be either over the table or another block. A robot arm can stack, unstack, and
move the blocks on the table.
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ontable(A).
ontable(C).
on(B,A).
clear(B).
clear(C).

gripping().

A

B

C

Figure 1.2 ABC block world.

Using the block examples, four operations “pickup”, “putdown”, “stack”, and “un-
stack” can be defined [73]. The expressions are always universally true, and therefore
the universal quantifier ∀ is omitted.

pickup(x)


P : gripping() ∧ clear(x) ∧ ontable(x)
A : gripping(x)
D : ontable(x) ∧ gripping()

putdown(x)


P : gripping(x)
A : ontable(x) ∧ gripping() ∧ clear(x)
D : gripping(x)

stack(x, y)


P : gripping(x) ∧ clear(x)
A : on(x, y) ∧ gripping() ∧ clear(x)
D : clear(y) ∧ gripping(x)

unstack(x, y)


P : gripping() ∧ clear(x) ∧ on(x, y)
A : gripping(x) ∧ clear(y)
D : on(x, y) ∧ gripping()
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Each of the operators is represented as triples of description. The first element is the
precondition, the world state that must be met for an operator to be applied. It can
be true or false when variables become identified with the values, which describe the
state. The second element is the additions to the state description that are a result
of applying the operator. The last element is the items that are removed from the
state description to create a new state when the operator is applied. These operators
obey the frame axiom since they specify what is true in one state of the world and
what exactly has changed by performing some action by an operator. The problem
of specifying which part of the description should change and which should not is
called the frame problem [125].

ontable(A).
clear(A)

ontable(C).
clear(C).

gripping(B).

The state after the operator pickup(B) was applied to the state of Figure 1.2 (see
Figure 1.3).

Instead of operators, we can as well use simple rules. A rule [125, 88, 61] contains
several “if” patterns and one or more “then” patterns. A pattern in the context of
rules is an individual predicate which can be negated together with arguments. The
rule can establish a new assertion by the “then” part, the conclusion whenever the
“if” part, the premise, is true.

A C

B

Figure 1.3 The state after the operator pickup(B) was applied to the state of Figure
1.2.
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1.2.3 Production Systems

Problems in symbolical AI are often described by the representation of a problem
space and a search procedure [73]. Problem-solving can be modeled by a production
system that implements a search algorithm. The search defines a problem space and
can be represented by a tree. The production system in the context of classical AI
and Cognitive Psychology is one of the most successful computer models of human
problem solving. The production system theory describes how to form a sequence of
actions, which lead to a goal, and offers a computational theory of how humans solve
problems [7].

Production systems are composed of if-then rules that are also called productions.
A production system is composed of [17, 61]:

• The long-term memory is modeled by a set of productions.

• The short-term memory or working memory that represents the states. This
memory contains a description of the state in a problem solving process. The
state is described by logically structured representation and is simply called a
pattern. Whenever a premise is true, the production (the rule) fires (is exe-
cuted). It means that the conclusions of the productions change the contents
of the working memory.

• The focus of attention, also called the recognize-act cycle. If several productions
can be applied to the working memory, conflict resolution chooses a production
from the conflict set for firing. There are different conflict resolution strategies,
such as choosing a random production from the set, or selecting a production
using some function.

The computation is done in the following steps. The working memory is initial-
ized with the initial state description. The patterns in working memory are matched
against the premise of the production. The premise of the productions that match the
patterns in working memory produces a set, which is called the conflict set. One of
the productions of this set is chosen using the conflict resolution and the conclusion of
the production changes the content of the working memory. This process is denoted
as firing of the production. This cycle is repeated on the modified working memory
until a goal state is reached or no productions can fire. An example of a production
system is the 8-puzzle. The 8-puzzle is composed of eight numbered movable tiles in
a 3× 3 frame. One cell of the frame is empty; as a result, tiles can be moved around
to form different patterns. The goal is to find a series of moves off tiles into the blank
space that changes the board from the initial configuration to a goal configuration.

The long-term memory is specified by four productions [61]:

• If the empty cell is not on the top edge, then move the empty cell up;

• If the empty cell is not on the left edge, then move the empty cell left;

• If the empty cell is not on the right edge, then move the empty cell right;

• If the empty cell is not on the bottom edge, then move the empty cell down.
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Figure 1.4 The first pattern (upper left) represents the initial configuration and the
last (low right) the goal configuration. The series of moves describe the solution to
the problem.

The control strategy for the search would be:

• Halt when goal is in the working memory.

• Chose a random production.

• Do not allow loops.

In Figure 1.4, we see an example representing a sequence of states that lead form the
initial configuration to the goal configuration.

Production system implements a search algorithm that defines a problem space
and can be represented as a tree.

1.2.4 Tree Search

The search represented by a search tree is performed from an initial state through the
following states until a goal state is reached. A search tree is represented by nodes
and edges. Each node represents a state, and each edge represents a transition from
one state to the following state. The initial state defines the root of the tree. From
each state ν, either Bν states can be reached or the state is a leaf. Bν represents the
branching factor of the node v. A leaf represents either the goal of the computation
or an impasse when no valid transition to a succeeding state exists. In contrast to
a real tree in computer science, the root of a tree structure is at the top of the tree
and the leaves are at the bottom. Every node besides the root has a unique node
from which it was reached, called the parent. The parent is the node above it and
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is connected by an edge. Each parent ν has Bν children. The depth of a node ν is
the number of edges to the root node. Nodes with the same depth k define the level
k. For a tree with a constant branching factor B, each node at each level k has B
children, and at each level k, there are B ·k nodes [73], [60], [87]. Breadth-first search
performs a level-wise search. All nodes at a level have to be visited before visiting
a node at the next level. Depth-first search always expands the deepest node in the
search tree until a goal is reached or all nodes are impasse states.

1.2.5 Informed Tree Search

Heuristic search is based on a heuristic function h(ν) that estimates the cheapest cost
from the node ν to the goal.

We will demonstrate the principles of heuristic function h(ν) on the 8-puzzle
example. Two common heuristics for this task are the number of misplaced tiles,
and the “city-block distance” [73, 78, 61]. The first heuristic counts the number of
misplaced tiles out of place in each state compared to the desired goal. However, this
heuristic fails to take into account all available information such as the distance the
tiles must be moved. The “city-block distance” sums all the distances by which the
tiles are out of place, with one count for each square a tile must be moved to reach a
position of the desired state. The “city-block distance”, also called the “Manhattan
distance”, is often better than the “number of misplaced tiles”.

Greedy best-first search expands the node ν that is closest to the goal according
to a heuristic function h(ν). Out of the B children the node νi is chosen with

min
1≤i≤B

(h(νi)). (1.1)

Like depth-first search it follows a single path to the goal. It always expands the
deepest node in the search tree according to h(ν) until a goal is reached or all nodes
are impasse states. The A search evaluates the nodes through a function f(ν) that
estimates the cheapest solution that passes through the node ν. The function f(ν)
is composed out of the heuristic function h(ν) and the function g(ν) that indicates
the cheapest costs of reaching the node ν from the root node representing the initial
state. Finally the A∗ search is equivalent to the A search with the constraint that the
function h(ν) is an admissible heuristic, it never overestimates the cost to reach the
goal. Generally the invention of heuristic functions is difficult.

1.3 MACHINE LEARNING

Many of the ML techniques are derived from the efforts of psychologists and biolo-
gists to make more sense of human learning through computational models [7],[121].
There are some parallels between humans and ML. During learning, humans attempt
to gain some knowledge, which involves some modification of behavioral tendencies
by experience. In ML, we can distinguish between supervised learning and unsuper-
vised learning. In supervised learning, the algorithm is presented with examples of
inputs and their desired outputs. The goal is to learn a general rule that maps inputs
to outputs. Supervised learning is frequently referred to as learning with a teacher
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because the desired outputs are indicated by some kind of a teacher. Consequently,
unsupervised learning is referred to as learning without a teacher. In unsupervised
learning, the algorithm groups information that is primarily represented by vectors
into groups. The algorithm attempts to find the hidden structure of unlabeled data;
clustering is an example of such an algorithm [121]. Statistical ML is mostly based
on distributed representation using vector representation.

1.3.1 Vector Representation

In ML a sub-symbolical or distributed representation is used. One form of distributed
representation corresponds to vectors. A vector x of dimension D is represented as

x =


x1
x2
...
xD

 = (x1, x2, · · · , xD)T ,

with each dimension xi representing a value like for example a real number. One can
measure the distance between two D dimensional vectors by a distance function like
the Euclidean distance function

d(x,y) = ‖x− y‖ =
√
|x1 − y1|2 + |x2 − y2|2 + · · ·+ |xD − yD|2,

or the Taxicab or Manhattan metric d1 with

d1(x,y) = ‖x− y‖1 = |x1 − y1|+ |x2 − y2|+ · · ·+ |xD − yD|. (1.2)

The dot product or scalar product is represented as,

〈x|y〉 =
D∑
i=1

yj · xj .

The scalar product is commutative

〈x|y〉 = xT · y = yT · x = 〈y|x〉.

However, matrix multiplication between vectors is not commutative, since

xT · = 〈x|y〉 =
(
y0 y1

)
·
(
x0
x1

)
= y0 · x0 + y1 · x1

is very different from

x · yT = |y〉〈x| =
(
y0
y1

)
·
(
x0 x1

)
=
(
y0 · x0 y0 · x1
y1 · x0 y1 · x1

)
.

In quantum physics, a shorthand notation for a column vector and a vector is
used which is less confusing. Related to the scalar product 〈x|y〉, row vectors xT are
〈x| “bra” and column vectors y are |y〉 “kets” from bra(c)kets.
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1.3.2 Nearest Neighbor

The Nearest Neighbors (NN) classifier works under the assumption that objects rep-
resented by a feature vector that share similar features will likely have the same
class [69]. With that, if we represent every example as a feature vector, we can, for
instance, compute the Euclidean distance between a new example and some known
training data to find out what previously seen examples are similar to the new one.
We can then use that information to perform classification.

Let DB be a database of s objects xk represented by vectors of dimension n in
which the index k is an explicit key identifying each object,

{xk ∈ DB | k ∈ {1..s}},

with
x1,x2,x3, · · · ,xs.

The NN-similarity is defined for one solution. For a query vector y one vector xj is
NN-similar to y according to the distance function d with

xi = min
j
d(xj ,y). (1.3)

Since in quantum computation we cannot simply compare vectors, the ε-similarity is
more useful. The ε-similarity is defined for a range queries. For a query vector y all
vectors xj are ε-similar to y according to the distance function d with

d(xj ,y) < ε. (1.4)

The search is sensitive to the value of ε, too big ε results in the whole dataset, too
small value in no solution.

1.3.3 Associative Memory

A complex system that is based on self-organization is the associative memory that
is modeled by interacted neurons.

The associative memory incorporate the following abilities in a natural way [75,
44, 7, 49]:

• The ability to correct faults if false information is given.

• The ability to complete information if some parts are missing.

• The ability to interpolate information. In other words, if a sub-symbol is not
currently stored, the most similar stored sub-symbol is determined.

When an incomplete pattern is given, the associative memory is able to complete
it by a dynamical process.

Human memory is based on associations with the memories it contains. Just a
snatch of well-known tune is enough to bring the whole thing back to mind. A forgotten
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Figure 1.5 In a Hopfield network all units are connected to each other by the weights.
Each unit has a value −1 indicated by white pixel or 1 indicated by black pixel. All
the activation of the units represent a pattern at a state t. Usually the units are
updated asynchronously, updated them one at the time t. After the training we start
with some configuration and the network will converge after several steps using the
update rule to an attractor if the state at t is the same at t+ 1.

joke is suddenly completely remembered when the next-door neighbor starts to tell it
again. This type of memory has previously been termed content-addressable, which
means that one small part of the particular memory is linked - associated -with the
rest. Cited from [18], page 104.

The Hopfield network represents a model of the associative memory [46], [44]. In a
Hopfield network all units are connected to each other by the weights, see Figure 1.5.
Patterns that the network uses for training (called retrieval states) become attractors
of the system. After the training we start with some configuration and the network
will converge after several steps using the update rule to an attractor representing a
fixed point (a vector), see Figure 1.6.

1.3.4 Artificial Neuron

With two vectors of the same dimension D, the vector x represents an input pattern
(signals incoming from other neurons) and the vector w represents a stored pattern
(in the weights of each synapse). We can define a scalar product also called the dot
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Figure 1.6 Example how Hopfield network restores distorted pattern. The network will
converge after several steps using the update rule to an attractor representing the
stored pattern or a spurious state composed of a linear combination of an odd number
of stored patterns.

product

〈x|w〉 =
D∑
j=1

wj · xj = cosω · ‖x‖ · ‖w‖, (1.5)

that measures the projection of one vector onto another. The dot product is a linear
representation usually represented by the value net,

net =
D∑
j=1

wj · xj .

The components wj are called weights, they model the synapses representing the
traces of memory. Nonlinearity of the linear representation can be achieved by a
threshold operation in which the threshold T has a certain value with

o =
{

1 if net ≥ T
−1 if net < T

, (1.6)

being the output of the artificial neuron. This threshold operation can be described
by a nonlinear transfer function like sgn for T = 0

o = sgn(net) =
{

1 if net ≥ 0
−1 if net < 0 , (1.7)

The sgn(net) operation is related to the threshold operation of a real biological
neuron with −1 meaning not firing and 1 firing. Firing indicates that the neuron sends
output information to other neurons to which it is connected. Not firing indicates that
no information is sent. The transfer function is also called the activation function,
with o being the output of the artificial neuron

o = sgn(net) = sgn(〈x|w〉) = sgn

 D∑
j=1

wj · xj

 . (1.8)

This model is also known as the linear threshold unit (LTU).
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1.3.5 Perceptron

Perceptron describes an algorithm for supervised learning that considers only linearly
separable problems in which groups can be separated by a line or hyperplane [67],
[86]. Defining x0 = 1 [42, 44], the perceptron implements the mathematical function
sgn(net) with

net :=
D∑
j=0

wj · xj =
D∑
j=1

wj · xj + w0 = 〈x|w〉+ w0 · x0 (1.9)

and o being the output of the artificial neuron with

o := sgn(net) =
{

1 if net ≥ 0
−1 if net < 0 , (1.10)

The value w0 is called the “bias”, it is a constant value that does not depend on any
input value. The goal of the perceptron is to learn how to correctly classify patterns
into one of two classes C1 = 1 and C2 = −1. To achieve this task, the model needs
examples of correct associations between patterns and their respective classes.

Data = {(x1, t1), (x2, t2), · · · , , (xN , tN )}

with
tk ∈ {−1, 1},

the output for class C1 is o = −1 and for C2 is o = 1 with

o = sgn

 D∑
j=0

wj · xj

 = sgn (〈x|w〉+ w0 · x0) (1.11)

and x0 = 1.
Simplified, the perceptron tries to learns the function f(x)

f(x) =
{

1 if 〈x|w〉+ w0 ≥ 0
−1 otherwise. (1.12)

With this approach, the perceptron is only able to solve linearly separable problems
(see Figure 1.7), that is, ones that can be separated by a line or hyperplane.

The hyperplane is described by the model weights w and w0. The correct weights
can be determined by a supervised learning algorithm.

Before learning, the weight values wj are initialized to some small random values,
so, the hyperplane is placed randomly in the space. Then, the perceptron learning
algorithm verifies whether, for a given input xk, the output value ok belongs to the
desired class represented by tk. If the output matches the class, the algorithm does
not touch the boundary, if it does not, then, the algorithm moves the boundary in
a direction where the input xk is closer to being correctly classified. This movement
corresponds to the following updated rule

∆wj = η · (tk − ok) · xj , (1.13)
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Figure 1.7 The hyperplane is described by w and w0, in two dimensions by a line
w0 +w1 · x1 +w2 · x2 = 0. The perceptron only solves linearly separable problems, in
our example class 1 and class 2.

and
wnewj = woldj + ∆wj , (1.14)

where η is called the learning rate that defines the size of the movement that is
applied to the boundary with

0 < η ≤ 1.

The algorithm converges to the correct classification if the training data are lin-
early separable, and η is sufficiently small. When assigning a value to η, we must
consider two conflicting requirements: averaging of past inputs to provide stable
weight estimates, which requires small η; however, fast adaptation with respect to
real changes in the underlying distribution of the process responsible for generating
the input vector x, which requires a large η.

This simple algorithm is the basis for many supervised ML algorithms.
If the training set is not linearly separable, then no solution exists. In this setting,

after several epochs, the weights begin to oscillate. To get an approximate solution,
the learning rate η has to decrease slowly to zero as the epochs go by.

1.3.6 Support Vector Machine

Given a training set {xi, ti}Ni=1, with ti ∈ {−1,+1} of linearly separable patterns we
have

wT · xi + w0 ≥ 0, for ti = +1

wT · xi + w0 < 0, for ti = −1
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with a hyperplane
wT · x + w0 = wT · x + b = 0

We want to have a margin between each class and the boundary, we want to find the
parameters wopt and bopt such that

wT
opt · xi + bopt ≥ 1, for ti = +1 (1.15)

wT
opt · xi + bopt ≤ −1, for ti = −1 (1.16)

for the hyperplane
wT
opt · xi + bopt = 0. (1.17)

The value of 1 is set for convenience because we can always rescale wopt and bopt
correspondingly [24]. The data points that are closest to the boundary, that is, those
points {xi, ti} for which

wT
opt · xi + bopt = ±1 (1.18)

are called support vectors x(s). That is why the algorithm is called a support vector
machine. All the remaining examples in the training sample are really irrelevant to
determine where to place the hyperplane. After some optimization, we get

w =
N∑
i=1

αi · ti · xi,
N∑
i=1

αi · ti = 0, (1.19)

and we define the dual optimization problem that depends entirely on the training
data and the Lagrange multipliers. Given the training sample {xi, ti}Ni=1, with ti ∈
{−1,+1} of linearly separable patterns, we want to find the Lagrange multipliers
{αi}Ni=1 that maximize

Q(α) =
N∑
i=1

αi −
1
2 ·

N∑
i=1

N∑
j=1

αi · αj · ti · tj · xTi xj (1.20)

subject to the usual constraints

N∑
i=1

αi · ti = 0 (1.21)

and adding a new constraint

0 ≤ αi ≤ C, i = 1, 2, · · · , N (1.22)

where C is a user specified positive parameter. Having determined the optimum
Lagrange multipliers αopt,i (not equal to zero) by solving a system of N × N linear
equations, we may recover

wopt =
N∑
i=1

αopt,i · ti · xi, (1.23)
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wT
opt · xi + bopt = ±1 (1.24)

and
bopt = 1−wT

opt · x(s), for t(s) = 1 (1.25)

since

bopt = 1−
(

N∑
i=1

αopt,i · ti · xTi

)
· x(s), for t(s) = 1.

1.3.7 Support Vector Machine as a Kernel Machine

Let x be a vector from the input space of dimension D and let {φj(x)}∞j=1 be a set of
nonlinear functions, from D dimension to infinite dimension. In that feature space,
the hyperplane would be defined as

wT · Φ(x) + b = 0 (1.26)

with Φ(x) being a feature vector with infinite dimension and w being the wight
vector with infinite dimension. With Ns being the number of support vectors, we can
represent the weight vector as

w =
Ns∑
i=1

αi · ti · Φ(xi). (1.27)

We do not need the weight vector itself, all we need is the boundary or decision
surface and we can represent it by

Ns∑
i=1

αi · ti · ΦT (xi)Φ(x) = 0. (1.28)

All we need are inner products between support vectors 〈Φ(xi)|Φ(x)〉. We can look
at these inner products as the result of a kernel function

k(x,xi) = ΦT (xi)Φ(x) = 〈Φ(xi)|Φ(x)〉 (1.29)

Specifying the kernel k(x,xi) is sufficient, we need never explicitly compute the weight
vector wopt [98]. Having the kernel we can take full advantage of the fact that

∞∑
j=1

wj · φj(x) + b =
Ns∑
i=1

αi · ti · k(x,xi) + b = 0. (1.30)

We can compute kernel matrix or Gram matrix where k(xi,xj) is the ij-th element
of the N ×N matrix. Resulting in something like

K =


k(x1,x1) k(x1,x2) k(x1,x3) · · · k(x1,xN )
k(x2,x1) k(x2,x2) k(x2,x3) · · · k(x2,xN )

...
... . . . ...

k(xN ,x1) k(xN ,x2) k(xN ,x3) · · · k(xN ,xN )

 (1.31)
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In the dual problem, we replace the scalar multiplication

xTi xj = 〈xi|xj〉

by the kernel
k(xi,xj),

everything else stays the same. So, given the training sample {xi, ti}Ni=1, with ti ∈
{−1,+1} we want to find the Lagrange multipliers {αi}Ni=1 that maximize

Q(α) =
N∑
i=1

αi −
1
2 ·

N∑
i=1

N∑
j=1

αi · αj · ti · tj · k(xi,xj) (1.32)

subject to constraints
N∑
i=1

αi · ti = 0 (1.33)

0 ≤ αi ≤ C, i = 1, 2, · · · , N (1.34)

where C is a user specified positive parameter. To compute the output

1. First we determine the bias

b = 1
Ns

Ns∑
i=1

ti − Ns∑
j=1

αj · tj · k(xi,xj)

 , (1.35)

2. then the output

o = sgn

(
Ns∑
i=1

αi · ti · k(x,xi) + b

)
. (1.36)

1.3.7.1 Example: XOR Problem

The XOR Problem is described by four vectors [41], instead of 0 we will use (−1)

x1 =
(
−1
−1

)
,x2 =

(
1
1

)
,x3 =

(
1
−1

)
,x4 =

(
1
1

)
,

and the corresponding target of the two classes is indicated as

t1 = −1, t2 = 1, t3 = 1, t4 = −1.

We will use a polynomial kernel

k(xi,xj) = (1 + xTi xj)2

with

k(xi,xj) = 1 + x2
i1 · x2

j1 + 2 · xi1 · xi2 · xj1 · xj2 + x2
i2 · x2

j2 + 2 · xi1 · xj1 + 2 · xi2 · xj2
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with the feature vectors (not required, indeed for certain kernels the vector can have
an infinite dimension)

Φ(xi) =



1
x2
i1√

2 · xi1 · xi2
x2
i2√

2 · xi1√
2 · xi2

 , Φ(xj) =



1
x2
j1√

2 · xj1 · xj2
x2
j2√

2 · xj1√
2 · xj2


We obtain the Gram

K =


k(x1,x1) k(x1,x2) k(x1,x3) k(x1,x4)
k(x2,x1) k(x2,x2) k(x2,x3) k(x2,x4)
k(x3,x1) k(x3,x3) k(x3,x3) k(x4,x3)
k(x4,x1) k(x4,x4) k(x4,x3) k(x4,x4)

 =


9 1 1 1
1 9 1 1
1 1 9 1
1 1 1 9


The objective function for the dual form of optimization is

Q(α) =
4∑
i=1

αi −
1
2 ·

4∑
i=1

4∑
j=1

αi · αj · ti · tj · k(xi,xj)

Q(α) = α1 + α2 + α3 + α4 −
1
2 · (9α

2
1 − 2α1α2 − 2α1α3 + 2α1α4

9α2
2 + 2α2α3 − 2α2α4 + 9α2

3 − 2α3α4 + 9α2
4)

We maximize the objective function Q(α) by determining the partial derivatives

∂Q(α)
∂α1

= 1− 9 · α1 + α2 + α3− α4 = 0

∂Q(α)
∂α2

= 1−+α1− 9 · α2− α3 + α4 = 0

∂Q(α)
∂α3

= 1 + α1− α2− 9 · α3 + α4 = 0

∂Q(α)
∂α4

= 1− α1 + α2 + α3− 9 · α4 = 0

that lead to four equations that can be solved by
9 −1 −1 1
−1 9 1 −1
−1 1 9 −1
1 −1 −1 9

 ·

α1
α2
α3
α4

 =


1
1
1
1


with the optimum values of the Lagrange multipliers

αopt,1 = αopt,2 = αopt,3 = αopt,4 = 1
8

with all input vectors being support vectors.
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Figure 1.8 Empirical experiments indicate that “deep” neural networks (left) give bet-
ter results than “fat” neural networks (right).

1.3.8 Deep Learning

The limitations of a perceptron do not apply to feedforward networks with nonlin-
ear units, also called multilayer perceptrons trained by the backpropagation learning
algorithm. According to the universality theorem, a neural network with a single
nonlinear hidden layer trained by backpropagation is capable of approximating any
continuous function. Attempting to build a network with only one layer to approx-
imate complex functions often requires a very large number of nodes (“fat” neural
networks). The immediate solution to this is to build networks with more hidden
layers. Empirical experiments indicate that “deep” neural networks give better re-
sults than “fat” neural networks, see Figure 1.8. The term “Deep Learning” was
introduced to the ML community by Rina Dechter in 1986 [25] and to artificial neu-
ral networks by Igor Aizenberg and colleagues in 2000 [4]. Deep artificial network
uses many hidden layers to increase the model’s power in statistical learning, see
Figure 1.9.

Figure 1.9 A feed forward network many hidden layers is called a deep network, in
our example the network has five hidden layers. They are referred to as hidden layers
because the outputs of the units in the hidden layer is not the output of the network.
The input of the network is x1, x2, · · ·XD and the output y1, y2, and y3 that indicates
a presence of a classified object.
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These layers are trained by backpropagation. As a result, after the training during
the classification no explanation can be given why a certain input was mapped to a
certain class. Deep learning enables high-level abstractions in data by architectures
composed of multiple nonlinear transformations. It offers a natural progression from
low-level structures to high-level structures, as demonstrated by natural complexity.
[56, 84, 85, 83].

By increasing the number of layers we can increase the number of parameters
faster. By doing so, we can add enough degrees of freedom to model large training
sets. This is extremely helpful since nowadays a really large amount of data is collected
for specific tasks.

The models achieved tremendous results, however they requires high computa-
tional resources of very large training sets which is a bottleneck in current quantum
ML applications. However, quantum basic linear algebra subroutines can be to speed
up the deep learning algorithms, a kind of “mathematical” quantum coprocessor that
can be used with a conventional computer.



C H A P T E R 2

Quantum Physics and
Quantum Computation

Statistical laws govern the totality of observations in physics. An object can be de-
scribed in classical mechanics by a vector which describes the position and its mo-
mentum. Classical mechanics is usually valid at the macro scale. The changes in the
position and the momentum of the object over time are described by the Hamiltonian
equation of motion. The state of the object is described by the Hamiltonian function.
At micro scale the observations are described by quantum physics. Light appears only
in chunks that can be quantized. An individual chunk is called quantum, a quantum
of light is called a photon [27]. Quantum theory gets its name from this property,
which it attributes to all measurable physical quantities. A photon can be described
by a wave function if it is isolated from its environment. The wave function in quan-
tum mechanics, if unobserved, evolves in a smooth and continuous way according to
the Schrödinger equation, which is related to the Hamiltonian equation of motion.

This equation describes a linear superposition of different states at time. During the
observation (measurement by the observer, by us), the wave collapses into one definite
state with a certain probability.

The mathematical framework of quantum theory is based on linear algebra in
Hilbert space. A 2-state quantum system is described by a two-dimensional Hilbert
space. Such a 2-state quantum system corresponds to a qubit. A register is composed
of several qubits and is defined by the tensor product. We describe the principles
of computation with one and m qubits, introduce the principles of entanglement,
cloning and the matrix representation of quantum Boolean gates, and an example of
a simple quantum Boolean circuit.

2.1 QUANTUM MEASUREMENT

The wave function in quantum mechanics, if unobserved, evolves in a smooth and
continuous way according to the Schrödinger equation, which is related to the Hamil-
tonian equation of motion. This equation describes a linear superposition of different
states at time t. A general solution of the Schrödinger equation represents the uni-
tary (linear) evolution that is deterministic and reversible. Reversible means that no
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information is lost. According to Susskind this is the “Zero law” of physics [105]. The
vector x(t) (for simplicity we will call it as well a wave) describes the probability
of the presence of certain states at time t. A dimension represents each state, and
the value of the vector is related to the probability of the state being present. This
evolution is done in parallel over all states of the vector x(t). During the observation
(measurement by the observer, by us), the wave collapses into one definite state with
a certain probability. This state corresponds to one dimension of the vector x(t).
The measurements always find the physical system to be in a definite state. It does
something to the wave function represented by the vector x(t). This something is
not explained by quantum theory. The best known example of this type kind of this
“something” is the Schrödinger’s cat paradox [93] and it tells us that our universe is
non-deterministic. A Geiger counter measures the decay of a radioactive substance.
There is a fifty percent chance that, in a given time frame, decay is measured. The
Geiger counter is connected to a device that kills the cat, if decay is measured. Be-
cause the cat and the Geiger counter are in a closed room, we do not know whether
the cat is dead or alive. Each of these possibilities is associated with a specific fifty
percent probability. The cat is dead and alive at the same time. One can think that
there is one world where the cat is alive and another where the cat is dead. They
are at the same time present in the closed room. The two states are “really” present
at the same time, one says that the cat is in a superposition state. A measurement
always finds either an alive cat or a dead cat with a probability of fifty percent.

2.1.1 Interpretations of Quantum Mechanics

During the observation (measurement by the observer, by us), the wave collapses
into one definite state with a certain probability. A quantum system that is perfectly
isolated maintains its wave representation, its coherence. If it is not perfectly isolated,
during interaction with the environment the wave representation of an event is lost,
this is called the quantum decoherence. Quantum decoherence happens during the
measurement. Decoherence is usually viewed as the loss of information from a system
into the environment. However, the quantum decoherence provides us only with a
framework for apparent wave-function collapse and it does not explain the collapse
itself. Since quantum systems are not isolated in a the large scale (macro scale), the
effects are mostly present at the scale of atoms and subatomic particles (micro scale).
During the measurement true randomness is present, but after the measurement the
physical system is always in a definite state. Measurement doses something to the
wave function. This something is not explained by quantum theory itself, however
there are two common interpretations:

• The most popular interpretation, the Copenhagen interpretation, claims that
quantum mechanics is a mathematical tool that is used in the calculation of
probabilities and has no physical existence; all other questions are metaphysical
[43] and should be avoided.

• The many-worlds is less popular due to some philosophical difficulties. The
many-worlds theory views reality as a many-branched tree in which every
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possible quantum outcome is realized [28], [20]. Every possible outcome to ev-
ery event exists in its own world. In one world, randomness exists, but not in
the universe (multiverse) that describes all possible worlds [27].

2.2 PRINCIPLES OF QUANTUM COMPUTATION

Richard Feynman asked in the early eighties whether a quantum system can be simu-
lated on an imaginary quantum computer. Today, 40 years later first small quantum
computers begin to appear. A quantum computer represents information by qubits.
A qubit can be represented by the spin state of a particle, either spin down or spin up.
Several qubits to represent different states at the same time. The qubits need to be
coherent for a long enough time so that a computation can take place. During recent
years a huge progress was achieved in keeping the quits perfectly isolated (coherent),
opening the road to a universal quantum computer.

2.2.1 Qubits

A qubit is represented abstractly by a two-dimensional vector. The first dimension
of the vector corresponds to zero and the second to a one. The values of the two
dimensions correspond to the probabilities that when measured, one of the two states
is present. We can combine a qubit to several qubits by a tensor operation. Two
qubits have four possible states, the first dimension represents the state zero-zero,
the second zero-one, the third one-zero, and the fourth one-one. They are described
by a four-dimensional vector. Four qubits would represent 16 different combinations,
eight 256 combinations, represented by a 256-dimensional vector, and so on. The
number of possible states grows exponentially in relation to the number of qubits,
with the number of states being equal to two power the number of represented qubits
[119]. In a vector representing several possible states, each dimension corresponds to
the probabilities of measuring a state. The probabilities values are represented by
amplitudes. The relation between an amplitude and the probability is the absolute
value of the amplitudes power two. For example the probability value 0.25 corresponds
to an amplitude 0.5, since |0.5|2 is 0.25. The amplitude can be negative, since |−0.5|2
is 0.25 or even imaginary numbers since | − 0.5 ∗ i|2 = 0.25. As a consequence of this
relation, the Euclidean length of the vector representing the probabilities is always
one, all probabilities sum to one. If a dimension of the state vector represents the
probability zero, the corresponding state will be never measured. If one dimension
of the state vector represents the probability one, all other dimensions represent
the probabilities zero, and the corresponding dimension will be measured for sure.
If the represented probabilities are bigger than zero or smaller than one, they will
be measured with certain probability. Repeating the same experiment several times
the measured values converge to the represented probability values, the individual
measurement is random. A qubit with the probability values 0.5 (amplitude

√
0.5)

and 0.5 (amplitude
√

0.5) represents a true random process when measured, True
random numbers are generated during the measurement.
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2.2.2 Representation

A quantum mechanical description of a physical system is related to a probabilistic
representation; it is described by a vector in Hilbert space. This description extends
the two- or three-dimensional Euclidean space into spaces that have any finite or
infinite number of dimensions. In such a space, the Euclidean norm is induced by the
inner product

‖x‖ =
√
〈x|x〉. (2.1)

Without a scalar product there is no orthogonality. In a Hilbert space, two vectors
are orthogonal if and only if the scalar product is zero. A basis of n dimensional
Hilbert spaceHn is chosen. A 2-state system is described by a two-dimensional Hilbert
space H2. For the basis

e1 =
(

1
0

)
, e2 =

(
0
1

)
(2.2)

the system is described by a vector x with complex numbers ω1, ω2 that represent
the amplitude of each dimension

x = ω1 · e1 + ω2 · e2 =
(
ω1
ω2

)
. (2.3)

The probabilities are real numbers between 0 and 1. The probability that the system
is in e1 and e2 is |ω1|2 and |ω2|2 . This is because the product of complex number
with is conjugate is always a real number

ω∗ · ω = (x− y · i) · (x+ y · i) = x2 + y2 = |ω|2. (2.4)

The vector representing a state is normalized. Its length is one. The amplitudes
correspond to the probability with

|ω1|2 + |ω2|2 = 1.

Paul Dirac introduced the following notation for a vector x describing a state

|x〉 = ω1 · |e1〉+ ω2 · |e2〉 = ω1 · |x1〉+ ω2 · |x2〉 =
(
ω1
ω2

)
(2.5)

with
|e1〉 = |x1〉, |e2〉 = |x2〉.

It is a shorthand notation for a column vector. Related to the scalar product 〈x|x〉
row vector are 〈x| “bra” and column vectors are |x〉 “kets” from bra(c)kets. A state
vector is just a particular instance of a ket vector. It is specified by a particular choice
of basis and refers to observable that can have some system properties.
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2.2.3 Linear Operators

The computation on the coherent qubits (before the measurement) is described by
linear operators that change the distribution of the quantum probabilities represented
by amplitudes in a linear way [119]. The operators are represented by orthogonal
matrices for real amplitudes (inverse of the matrix is the transpose of the matrix),
for complex amplitudes by unitary matrices (inverse matrix is the conjugate transpose
of the matrix).

Operators represented by a square matrix give mathematical description how
something changes in the quantum world. For a 2-state quantum system, an operator
that acts on the memory register would be represented by a 2×2 dimensional unitary
matrix. In Unitary matrices, its conjugate transpose is equal to its inverse.

U∗ = U−1. (2.6)

For example a quantum coin is a system with two basis states 0 and 1 with

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (2.7)

The mapping is represented as

|0〉 → 1√
2
· |0〉+ 1√

2
· |1〉 (2.8)

and
|1〉 → 1√

2
· |0〉 − 1√

2
· |1〉. (2.9)

The corresponding operator is indicated by the following unitary matrix,

H =
( 1√

2
1√
2

1√
2 − 1√

2

)
= 1√

2
·
(

1 1
1 −1

)
. (2.10)

called a Hadamard or Hadamard Walsh, matrix. If the system starts in state |0〉 and
undergoes the time evolution, the probability of observing 0 or 1 is

∣∣∣ 1√
2

∣∣∣2 = 1
2 . If we do

not preform a measurement and repeat the mapping, the probability of observing 0
becomes 1 and observing 1 becomes zero. This is due to the fact, that the amplitudes
of |1〉 cancel each other. This effect is called destructive interference and cannot occur
in the probability distribution since all its coefficients are non-negative real numbers.

2.3 COMPOUND SYSTEMS

A 2-state quantum system (qubit) is described by a two-dimensional Hilbert space
H2,

|x1〉 =
(

1
0

)
, |x2〉 =

(
0
1

)
(2.11)
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is described by a vector |x〉 with complex numbers ω1, ω2 that represent the amplitude
of each dimension.

|x〉 = ω1 · |x1〉+ ω2 · |x2〉 =
(
ω1
ω2

)
. (2.12)

Such a 2-state quantum system corresponds to a qubit with the basis

|0〉 = |x1〉, |1〉 = |x2〉.

The qubit is described by a vector |x〉 with complex numbers ω1, ω2 that represent
the amplitude of each dimension

|x〉 = ω0 · |0〉+ ω1 · |1〉. (2.13)

The vector has length one with

|ω0|2 + |ω1|2 = 1→ ‖|x〉‖ = 1.

The unitary matrix H (Hadamard matrix) performs the following mapping in the ket
notation

H · |0〉 = 1√
2
· |0〉+ 1√

2
· |1〉

with the vector notation

1√
2
·
(

1 1
1 −1

)
·
(

1
0

)
=
( 1√

2
1√
2

)
.

Applying H again results in

H ·
( 1√

2
· |0〉+ 1√

2
· |1〉

)
= H · 1√

2
· |0〉+W · 1√

2
· |1〉 = |0〉

with the vector notation

1√
2
·
(

1 1
1 −1

)
·
( 1√

2
1√
2

)
=
(

1
0

)
.

How can we represent a register composed of two qubits? Such a register would
represent 22 possible states and would be represented in a Hilbert space H4. The first
qubit is represented by a two-dimensional Hilbert space H2,

|x〉 = ω0 · |0〉+ ω1 · |1〉 =
(
ω0
ω1

)

and the second as
|y〉 = ω0 · |0〉+ ω1 · |1〉 =

(
ω0
ω1

)
.
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The register of two qubits is represented as a direct product of |x〉 and |y〉

|x〉 ⊗ |y〉 = |x〉|y〉 = |xy〉 =
(
ω0
ω1

)
⊗
(
ω0
ω1

)
=


ω0 · ω0
ω0 · ω1
ω1 · ω0
ω1 · ω1

 =


ω0
ω1
ω2
ω3

 (2.14)

or
|xy〉 = (ω0 · |0〉+ ω1 · |1〉)⊗ (ω0 · |0〉+ ω1 · |1〉)

|xy〉 = ω0 · |00〉+ ω1 · |01〉+ ω2 · |10〉+ ω3 · |11〉 (2.15)

with the new basis

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 . (2.16)

A register of three qubits represents 23 different states represented in a Hilbert space
H8.

|xyz〉 = |x〉 ⊗ |y〉 ⊗ |z〉 =

ω0 · |00〉+ ω1 · |001〉+ ω2 · |010〉+ ω3 · |011〉+

+ω4 · |100〉+ ω5 · |001〉+ ω6 · |110〉+ ω7 · |111〉. (2.17)

A quantum register of length m represents m qubits in a Hilbert space of dimen-
sion n = 2m. A state in a n-dimensional Hilbert spaceHn is defined by an orthonormal
basis

|x1〉, |x1〉, · · · |xn〉

and is represented as a unit-lengt vector

ω1 · |x1〉+ ω2 · |x2〉+ · · ·+ ωn · |xn〉

that determines the probability of distribution of the states. Each dimension corre-
spond to a possible combination. The state is in a basis state |xi〉 with a probability
|ωi|2.

The compound system of the Hilbert space Hn and a w-dimensional Hilbert space
Hw defined by a orthonormal basis |y1〉, |y1〉. · · · |yw〉 is defined by the tensor product

Hn·w = Hn ⊗Hw (2.18)

According to this definition we can apply an operator on two qubits as

H · (ω0 · |0〉+ ω1 · |1〉)⊗H · (ω0 · |0〉+ ω1 · |1〉) =(
H ·

(
ω0
ω1

))
⊗
(
H ·

(
ω0
ω1

))
(2.19)
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(H ⊗H) · (ω0 · |0〉+ ω1 · |1〉)⊗ (ω0 · |0〉+ ω1 · |1〉) = (H ⊗H) ·


ω0
ω1
ω2
ω3

 (2.20)

it follows (
H ·

(
ω0
ω1

))
⊗
(
H ·

(
ω0
ω1

))
= (H ⊗H) ·


ω0
ω1
ω2
ω3

 . (2.21)

The tensor product between matrix is defined as

A⊗B =
(
a11 ·B a12 ·B
a21 ·B a22 ·B

)
=


a11 · b11 a11 · b12 a12 · b11 a12 · b12
a11 · b21 a11 · b22 a12 · b21 a12 · b22
a21 · b11 a21 · b12 a22 · b11 a22 · b12
a21 · b21 a21 · b22 a22 · b21 a22 · b22

 .
For example H ⊗H is

H ⊗H = 1√
2
·
(

1 1
1 −1

)
⊗ 1√

2
·
(

1 1
1 −1

)
= 1

2 ·


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

2.4 MEASUREMENT

After a unitary information processing starting form an initial basis state the result
of the algorithm is determined by the measurement. The measurement corresponds
to the collapse of the state vector, a projection into a basis state. The projection is
not reversible and it is not consistent with the unitary time evolution. For a state
represented by a unit-length vector

ω1 · |x1〉+ ω2 · |x2〉+ · · ·+ ωn · |xn〉

in a n-dimensional Hilbert space |xk〉 is observed. After the measurement (observa-
tion) the state is in a basis state

1 · |xk〉.
The state of a compound system is projected to the subspace that corresponds to

the observed state and the vector representing the state is renormalized to the unit
length. An observable describes a subspace for some dimensions with a special case
of one dimension. A part of the system can be observed by a projection in a subspace
with a dimension higher one. The compound system of n-dimensional Hilbert space
|x〉 ∈ Hn and a w-dimensional Hilbert space |y〉 ∈ Hw defined by a orthonormal basis
|xy〉 ∈ Hn·w. A state of the system is represented as

|xy〉 =
n∑
i=1

w∑
j=1

ωij |xi〉|yj〉. (2.22)
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For example

|xy〉 =
2∑
i=1

2∑
j=1

ωij |xi〉|yj〉 =

= ω11 · |x1〉|y1〉+ ω12 · |x1〉|y2〉+ ω21 · |x2〉|y1〉+ ω22 · |x2〉|y2〉.

For simplicity we use the following notation for a qubit register

|xy〉 = ω0 · |00〉+ ω1 · |01〉+ ω2 · |10〉+ ω3 · |11〉

The probability of observing xk is
∑w
j=1 |ωkj |2. If we observe xk, the system after the

observation is projected into

|xy〉 = 1√∑w
j=1 |ωkj |2

w∑
j=1

ωkj |xk〉|yj〉.

Suppose the two qubits are in the following state

√
0.25 · |00〉+

√
0.25 · |01〉+

√
0.25 · |10〉+

√
0.25 · |11〉 =


1
2
1
2
1
2
1
2

 .
The observed first qubit is |0〉. The probability of the observation is

|ω00|2 + |ω01|2 = |ω0|2 + |ω1|2 = |
√

0.25|2 + |
√

0.25|2 = 0.25 + 0.25 = 0.5

the system after the observation is projected into

√
0.25 · |00〉+

√
0.25 · |01〉√

0.5
=
√

0.5 · |00〉+
√

0.5 · |01〉 =


√

1
2√
1
2

0
0

 .

2.5 COMPUTATION WITH ONE QUBIT

A unitary operator on a qubit is called an unary quantum gate. It is described by a
unitary matrix of the dimension 2× 2. For the qubit with the basis

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

the quantum not gate X does the not operation on a qubit

X|0〉 = |1〉, X|1〉 = |0〉

and is represented by the unitary matrix

X =
(

0 1
1 0

)
. (2.23)
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The not operation can be written using XOR = ⊕ for x ∈ B1 (Bm stands for binary
string of length m representing a binary number)

X|x〉 = |x⊕ 1〉

X|0〉 = |0⊕ 1〉 = |0〉, X|1〉 = |1⊕ 1〉 = |1〉.
The square root of the not gate X =

√
X ·
√
X is represented by the unitary matrix

√
X =

(
1+i

2
1−i

2
1−i

2
1+i

2

)
(2.24)

with
X =

(
1+i

2
1−i

2
1−i

2
1+i

2

)
·
(

1+i
2

1−i
2

1−i
2

1+i
2

)
=
(

0 1
1 0

)
(2.25)

and it is unitary because(
1+i

2
1−i

2
1−i

2
1+i

2

)
·
(

1−i
2

1+i
2

1+i
2

1−i
2

)
=
(

1 0
0 1

)
(2.26)

with
X|0〉 = 1 + i

2 · |0〉+ 1− i
2 · |1〉

and
X|1〉 = 1− i

2 · |0〉+ 1 + i

2 · |1〉.

The probability of measuring |0〉 and |1〉 is 0.5, because∣∣∣∣1− i2

∣∣∣∣2 =
∣∣∣∣1 + i

2

∣∣∣∣2 = 1
2 .

−
√
X has the same behavior with

X = −
√
X · −

√
X.

The identity gate preforms no operation on a qubit, it is defined as the identity matrix

I1 =
(

1 0
0 1

)
. (2.27)

The square root of the identity matrix is the identity I matrix is I and −I

−I1 =
(
−1 0

0 −1

)
. (2.28)

−I1 changes the sign of the amplitude but not the probabilities. The introduced
Hadamard matrix H maps a basis state in a superposition.

|0〉 → 1√
2
· |0〉+ 1√

2
· |1〉

|1〉 → 1√
2
· |0〉 − 1√

2
· |1〉

The probability of measuring |0〉 and |1〉 is 0.5.
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2.6 COMPUTATION WITH M QUBIT

The register of m qubits is represented as a direct product of m qubits. It defines
n = 2m dimensional Hilbert space Hn with an orthonprmal basis |x1〉, |x1〉, · · · |xn〉.
For example, four qubits define a 16 dimensional Hilbert space H16 with the basis

|0000〉 =



1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



, |0001〉 =



0
1
0
0
0
0
0
0
0
0
0
0
0
0
0



, |0010〉 =



0
0
1
0
0
0
0
0
0
0
0
0
0
0
0



, · · · , |1111〉 =



0
0
0
0
0
0
0
0
0
0
0
0
0
0
1



. (2.29)

It is difficult to simulate more than few of tens bits on an ordinary computer because
the dimension of the Hilbert space grows exponentially in relation to the number of
represented qubits. For example 16 qubits are represented by a 65536 dimensional
Hilbert space H65536.

The Hadamard matrix H on one qubit has the dimension 2 × 2 is also called
a Hadamard gate and is indicated as H1. A Hadamard operator for m qubits Hm

is represented by a 2m × 2m dimensional matrix built by a direct product of m H1
matrices. The complexity of the operator Hm corresponds to m Hadamard gates H1.

Hm =
⊗m

H1 = H1 ⊗H1 · · · ⊗H1 (2.30)

The Hadamard matrix is also called the Hadamard transform and can be defined
recursively with H0 = 1 and

Hm = 1√
2
·
(
Hm−1 Hm−1
Hm−1 −Hm−1

)
(2.31)

with H3
H3 = H1 ⊗H1 ⊗H1
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H3 = 1√
2
·
(
H2 H2
H2 −H2

)
= 1√

23
·



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 −1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.

The Hadamard operator Hm maps m qubits |z〉 representing a basis state in a Hilbert
space H2m with z ∈ Bm (Bm stands for binary string of length m representing a
binary number)

Hm|z〉 = 1√
2m

∑
x∈Bm

(−1)〈z|x〉 · |x〉 (2.32)

with a scalar product (〈z|x〉) over the binary field with two elements corresponding
to the bits 0 and 1. The multiplication of two bits is equal to the AND operation
with

0 · 0 = 0 ∧ 0 = 0, 0 · 1 = 0 ∧ 1 = 0, 1 · 0 = 1 ∧ 0 = 0, 1 · 1 = 1 ∧ 1 = 1

and the addition is equal to the XOR operation ⊕

0 + 0 = 0⊕ 0 = 0, 0 + 1 = 0⊕ 1 = 1,

1 + 0 = 1⊕ 0 = 1, 1 + 1 = 1⊕ 1 = 0.

For the state zero represented by m qubits

|0〉⊗m = |0〉|0〉|0〉 · · · |0〉 =


1
0
...
0
0


the Hadamard operator Hm maps a basis state into a superposition of all possible
states with no negative sign,

Hm|0〉⊗
m = 1√

2m
∑
x∈Bm

|x〉. (2.33)

For example
H3|0〉⊗

3 = H3|000〉 = 1√
23

∑
x∈B3

|x〉

H3|000〉 =

= 1√
23

(|000〉+ |001〉+ |000〉+ |010〉+ |011〉+ |100〉+ |101〉+ |111〉) .
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It can be expressed as

H3|000〉 = H1|0〉 ⊗H1|0〉 ⊗H1|0〉 =
( |0〉+ |1〉√

2

)
·
( |0〉+ |1〉√

2

)
·
( |0〉+ |1〉√

2

)
and

H3 ·H3|000〉 = |000〉.
This is because Hm = H∗m so that Im = Hm · Hm. The basis states |11〉 is mapped
into

H2|11〉 = H1|1〉 ⊗H1|1〉 =
( |0〉 − |1〉√

2

)
·
( |0〉 − |1〉√

2

)
H2|11〉 = 1

2 · (|00〉 − |01〉 − |10〉+ |11〉) .

2.6.1 Matrix Representation of Serial and Parallel Operations

A serial computation corresponds to a multiplication of matrices that represent the
gates. The multiplication of matrices is usually not commutative, for exampleH1·X 6=
XH1 ( 1√

2
1√
2

1√
2 − 1√

2

)
·
(

0 1
1 0

)
6=
(

0 1
1 0

)
·
( 1√

2
1√
2

1√
2 − 1√

2

)
( 1√

2
1√
2

− 1√
2

1√
2

)
6=
( 1√

2 − 1√
2

1√
2

1√
2

)
,

it means
H1 ·X · |0〉 = H1 · |1〉 = |0〉 − |1〉√

2
and

X ·H1 · |0〉 = X ·
( |0〉+ |1〉√

2

)
=

= X · |0〉+X · |1〉√
2

= |1〉+ |0〉√
2

= |0〉+ |1〉√
2

and it follows
X ·H1 · |0〉 = H1 · |0〉.

Only the multiplication with the identity matrix and the inverse matrix are commu-
tative operations. Parallel operations correspond to the direct product, also called
the tensor product or Kronecker product when dealing with matrices. For example
with

X ⊗ I1 ⊗H1 · |000〉 = (X · |0〉)⊗ (I1 · |0〉)⊗ (H1 · |0〉) =

|10〉 · |0〉+ |1〉√
2

= |100〉+ |101〉√
2

in vector representation as((
0 1
1 0

)
·
(

1
0

))
⊗
((

1 0
0 1

)
·
(

1
0

))
⊗
(( 1√

2
1√
2

1√
2 − 1√

2

)
·
(

1
0

))
=
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

0 0 0 0 1√
2

1√
2 0 0

0 0 0 0 1√
2 − 1√

2 0 0
0 0 0 0 0 0 1√

2
1√
2

0 0 0 0 0 0 1√
2 − 1√

2
1√
2

1√
2 0 0 0 0 0 0

1√
2 − 1√

2 0 0 0 0 0 0
0 0 1√

2
1√
2 0 0 0 0

0 0 1√
2 − 1√

2 0 0 0 0


·



1
0
0
0
0
0
0
0


=



0
0
0
0
1√
2

1√
2

0
0


.

Matrices representing quantum operators can be decomposed, for example

H4 = H2 ⊗H2 = H1 ⊗H1 ⊗H1 ⊗H1.

There are however matrices representing quantum operators that can be not decom-
posed easily.

2.7 ENTANGLEMENT

It can happen that we cannot decompose a register into individual qubits after certain
linear operations. For example a register of two qubit is decomposable if it can be
represented as a tensor product of two qubits. A state that is not decomposable is
called entangled. If two qubits are entangled in a state, then observing one of them
will result in the same value of the other one. Both qubits behave as one unit and
are called an ebit. The two qubits in an ebit behave as one unit, even if the qubits
are separated. Once either qubit of an ebit is measured, the states of both qubits
become definite. Experiments have shown that this correlation can remain even if the
qubits are separated over a distance of several kilometers. It is possible to teleport a
qubit from one location to another using an ebit [12]. More than two qubits can be
entangled.

The following operator cX is unitary and defends an injective mapping on two
qubits that is reversible

cX|00〉 = |00〉, cX|01〉 = |01〉,

cX|10〉 = |11〉, cX|11〉 = |10〉.

The operator cX is called a controlled not gate. The first qubit counting from the
left is not changed. The second qubit is only flipped in the case that the first qubit
is 1. In this case a not operation X on the second qubit is executed. The control not
gate can as well perform the fan-out operation. For this operation the second qubit
has to be zero. In this case the value of the first qubit is copied into the second one.
The cX operator can be represented by a matrix

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.34)
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CX cannot be expressed as a tensor product of 2×2 matrices. Suppose we start with
the state |00〉 and map the first qubit bit into the superposition using the Hadamard
gate

H1 ⊗ I · |00〉 = (H1 · |0〉)⊗ |0〉 = |0〉+ |1〉√
2
⊗ |0〉 = |00〉+ |10〉√

2
.

To this state represented by the two qubit we apply CX gate

CX ·
( |00〉+ |10〉√

2

)
= CX · |00〉+ CX · |10〉√

2
= |00〉+ |11〉√

2
.

A register of two qubit is decomposable if it can be represented as a direct product
of two qubits. For example the state

|00〉+ |01〉+ |10〉+ |11〉
2 =

( |0〉+ |1〉√
2

)
⊗
( |0〉+ |1〉√

2

)
is decomposable. In vector notation it is represented as

1
2
1
2
1
2
1
2

 =
( 1√

2
1√
2

)
⊗
( 1√

2
1√
2

)
.

However, the state of two qubits

|00〉+ |11〉√
2

(2.35)

is not decomposable. We preform a proof by contradiction. From the assumption that
the state is decomposable follows a contradiction,

|00〉+ |11〉√
2

= (ao · |0〉+ a1|1〉)⊗ (bo · |0〉+ b1|1〉) = (2.36)

= a0 · b0 · |00〉+ a0 · b1 · |01〉+ a1 · b0 · |10〉+ a1 · b1 · |11〉

→ a0 · b0 = 1√
2
, a0 · b1 = 0, a1 · b0 = 0, a1 · b1 = 1√

2
that is a contradiction.

A state that is not decomposable is called entangled. If two qubits are entangled
in a state |00〉+|11〉√

2 , then observing one of them will result in either |0〉 or |1〉 with
probability 1

2 . However, it is not possible to observe a different value on the other,
non-observed qubit. Both qubits behave as one unit and are called an ebit. There are
four known ebits:

|00〉+ |11〉√
2

,
|00〉 − |11〉√

2
,
|01〉+ |10〉√

2
,
|01〉 − |10〉√

2
. (2.37)
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Quantum collapse during measurement is a non-local force. A non-local interac-
tion is not limited by the speed of light, and its strength is not mediated with distance.
This arrangement conflicts with Einstein’s theory of special relativity, which states
that nothing can travel faster than light. The conflict is resolved by the fact that one
cannot use an ebit to send any information. If two qubits of an ebit are separated
over a distance in two places, A and B, and there are no other means of commu-
nication, then measuring the qubit on place A determines the outcome on place B,
but at place B, the outcome is unknown. Measuring at place B is a random process
without the knowledge of the results of place A. Also to preform teleportation we
need a conventional channel to send an information how to map the teleported qubit
in a correct state.

2.8 CLONING

A linear operation that would produce a copy of an arbitrary quantum state is not
possible. We cannot copy an unknown amplitude distribution of a state. This has
profound implications in the field of quantum computing, since we cannot reuse an
arbitrary quantum state.

To preform this task we define a copy machine. We chose one orthonormal basis
state of the orthonormal basis, for example |x1〉 and define a unitary copy operator
that copies an state |x〉 ∈ Hn as

Ucopy(|x〉, |x1〉) = |x〉|x〉. (2.38)

Does Ucopy exist? For basis states Ucopy is defined. It can be realized for example by
CX with |x1〉 = |0〉 and |x2〉 = |1〉,

Ucopy(|x1〉, |x1〉) = |x1〉|x1〉, Ucopy(|x2〉, |x1〉) = |x2〉|x2〉.

If the state is in a superposition

|x〉 = |x1〉+ |x2〉√
2

it implies that

Ucopy(|x〉, |x1〉) = |x〉|x〉 =
( |x1〉+ |x2〉√

2

)
⊗
( |x1〉+ |x2〉√

2

)
=

1
2 · (|x1〉|x1〉+ |x1〉|x2〉+ |x2〉|x1〉+ |x2〉|x2〉) .

Because of the linearity of Ucopy it follows,

Ucopy(|x〉, |x1〉) = Ucopy

( |x1〉+ |x2〉√
2

, |x1〉
)

=

Ucopy(|x〉, |x1〉) = Ucopy

( |x1〉|x1〉+ |x2〉|x1〉√
2

)
=
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Ucopy(|x1〉|x1〉) + Ucopy(|x2〉|x1〉)√
2

= 1√
2
· (|x1〉|x1〉+ |x2〉|x2〉)

it leads to a contradiction. An operation that would produce a copy of an arbitrary
quantum state is not possible and we cannot copy an unknown amplitude distribution
of a state. For example we cannot copy an unknown qubit α·|0〉+β ·|1〉. The amplitude
distribution is specified by the values of α and β.

2.9 PHASE KICK-BACK

If we apply CX gate to the target value |0〉−|1〉√
2 with the control qubit |1〉 we get

CX|1〉 ·
( |0〉 − |1〉√

2

)
= |1〉 ·

(
X · |0〉 −X · |1〉√

2

)

CX|1〉 ·
( |0〉 − |1〉√

2

)
= |1〉 ·

(
(−1) ·

( |0〉 − |1〉√
2

))
CX|1〉 ·

( |0〉 − |1〉√
2

)
= −|1〉 ·

( |0〉 − |1〉√
2

)
.

For the control qubit |0〉 nothing happens,

CX|0〉 ·
( |0〉 − |1〉√

2

)
= |0〉 ·

( |0〉 − |1〉√
2

)
.

We say that the target value (phase) is being “kicked back” to the control register.

2.10 QUANTUM BOOLEAN GATES

A reversible circuit that is composed of m bits corresponds to a unitary mapping
that represents a permutation on m bits, defining an injective mapping Bm → Bm.
A unitary permutation matrix can represent this unitary mapping. A more elegant
method is to map the reversible circuit into the quantum Boolean gates. Such a
mapping allows us to determine the complexity of the circuit by the number of gates.
The following quantum gates are Boolean quantum gates: the identity gate I, the not
gate X and the control not gate cX. The control not gate performs the essential fan-
out operation. What is missing are the AND and OR operations. These operations
can be represented by the universal reversible. A reversible Toffoli gate ccX is a
unitary mapping. It defines a quantum gate on three qubits and can be represented
by a unitary matrix CCX in Hilbert space H8

CCX =


I1 0 0 0
0 I1 0 0
0 0 I1 0
0 0 0 X

 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (2.39)
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The unitary matrix CCX can be decomposed in several ways using non-Boolean
quantum gates. However each decomposition involves the CX matrix, indicating that
an entanglement may arise when applying a quantum Toffoli gate. With the basis of
three qubits of the Hilbert space H8

|000〉 =



1
0
0
0
0
0
0
0


, |001〉 =



0
1
0
0
0
0
0
0


, |010〉 =



0
0
1
0
0
0
0
0


, |011〉 =



0
0
0
1
0
0
0
0


,

|100〉 =



0
0
0
0
1
0
0
0


, |101〉 =



0
0
0
0
0
1
0
0


, |110〉 =



0
0
0
0
0
0
1
0


, |111〉 =



0
0
0
0
0
0
0
1


the reversible ccX(x1, x2, x3) = (x1, x2, (x1 ∧ x2) ⊕ x3) operator corresponds to the
unitary mapping

CCX · |xyz〉 = CCX · |x〉|y〉|z〉 = |x〉|y〉|(x ∧ y)⊕ z〉. (2.40)

For the AND operation, the ancilla bit z is set to 0

CCX · |x〉|y〉|0〉 = |x〉|y〉|(x ∧ y)〉. (2.41)

The OR operation is represented by the unitary mapping according to the De Mor-
gan’s laws

x1 ∨ x2 = ¬(¬x1∧,¬x2)

((I2 ⊗X) · CCX · (X ⊗X ⊗ I1)) · |xy0〉 = xy(x ∨ y)〉.



C H A P T E R 3

Qiskit

We describe how to install qiskit and demonstrate the two main backend simulator
functions that we will use. We demonstrate the working principles of qiskit soft-
ware development kit on the simple example of a quantum coin. We indicate how
to represent simple quantum circuits by unitary matrices using qiskit get unitary
command. We indicate step by step how to define quantum circuits on an example of
four-bit conjunction. The concept of un-computation is introduced since in quantum
computing we cannot reset qubits to zero. The Deutsch algorithm determines if a
unknown function f : B1 → B1 : f(x) = y of one bit is constant or not by call-
ing the function one time. Deutsch’s algorithm was the first algorithm (1985) that
demonstrated a quantum advantage; it is a proof of concept that, in certain settings,
quantum computers are strictly more powerful than classical ones by reduction in
query complexity compared to the classical case. Finally, we give an example how to
run Deutsch algorithm on a real small quantum computer.

3.1 SOFTWARE DEVELOPMENT KIT

Qiskit is an open-source software development kit (SDK) for working with quan-
tum computers at the level of circuits and algorithms [21], IBM Quantum1,
https://quantum-computing.ibm.com/. It provides tools for creating and manipulating
quantum programs and running them on prototype quantum devices or on simula-
tors on a local computer. It follows the quantum circuit model for universal quantum
computation, and can be used for any quantum hardware that follows this model.
Qiskit is based on Python, you can find all information about it at https://qiskit.org.

3.2 INSTALLATION

Before installing qiskit you should either install Anaconda, a cross-platform Python
distribution for scientific computing that includes Jupyter. You can as well install
Miniconda, a free minimal installer for conda. It is a small, bootstrap version of Ana-
conda that includes only conda, Python, the packages they depend on, and a small

1The author acknowledges the use of IBM Quantum services for this work. The views expressed
are those of the author, and do not reflect the official policy or position of IBM or the IBM Quantum
team.
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number of other useful packages. Additionally you could install Visual Studio Code.
Visual Studio Code is a code editor redefined to run Jupyter notebooks and au-
tomatically recognizes different environments https : //code.visualstudio.com/docs.
You can find installation instruction for qiskit at the site:

https : //qiskit.org/documentation/getting started.html.
From there you have as well access to online tutorials.

Before installing qiskit you have to launch a prompt in Anaconda or a terminal.
From there you can call conda. To install qiskit execute following commands. Create
an environment with the name qiskit (or any other name you like)

conda create -n qiskit python 3

You can list all your environments with command

conda-env list

You activate the qiskit environment with the name ENV NAME . Then you can
activate it with the command

conda activate ENV_NAME

You start the installation with the commands

pip install qiskit
pip install qiskit[visualization]

and for newer versions of macOS

pip install ’qiskit[visualization]’

We can check the installed qiskit version with (see Figure 3.1).

import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright

3.3 BACKEND SIMULATOR FUNCTIONS

Qiskit provides different backend simulator functions by Aer package. We will use
use two simulators.

• The statevector simulator performs an ideal execution of qiskit circuits and
returns the final state vector off the simulator after application (all qubits).
The state vector of the circuit can represent the probability values (quasi prob-
ability in newer version) that correspond to the multiplication of the state vector
by the unitary matrix that represents the circuit. The statevector simulator will
take longer than other simulation methods and requires more computer mem-
ory, since the state vector dimension grows exponentially with the number of
qubits with n = 2m (with m number of qubits).

https://code.visualstudio.com
https://qiskit.org
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(a) (b)

Figure 3.1 (a) Qiskit 0.34.2 version running on an older computer with 8 Gb. (b) Qiskit
0.43.0 version running on an modern computer with 16 Gb.

• The qasm simulator promises to behave like an actual device of today, which
is prone to noise resulting from decoherence. It returns count, which is the
sampling of the measured qubits that have to be defined in the circuit. It is
much smaller in size and will not increase in size exponentially as the number
of qubits increases.

3.4 COMPATIBILITY

The presented quantum circuits in the book involve mostly simple quantum circuits
using basic quantum gates that can be easily ported to other quantum software
development kits. You can download the examples (Jupyter notebooks) from the
book from https : //github.com/andrzejwichert/qai.

The qiskit software development kit (SDK) is in constant development and there
are some changes between different versions. The programs were tested with Qiskit
0.34.2 version running on an older computer with 8 Gb and Qiskit 0.43.0 ver-
sion running on a modern computer with 16 Gb. The main differences concerning
the examples is the annotation on the legends of the histograms. In the older ver-
sion the histogram annotation on the left side is always “Probabilities”. In newer
version the annotation depends on the used simulator. For the statevector simulator
the annotation is “Quasi-probability” and for the qasm simulator “Count”. Quasi-
probability concept is introduced in order to apply quantum corrections to classical
statistical mechanic. Quasi-probability distribution does not satisfy all the proper-
ties of a conventional probability distribution, for example it can take on negative
values for states which have no classical model due to quantum-mechanical interfer-
ence. However, the corresponding effects do not play any role in our simulations as
described in this book.

https://github.com
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Another difference is present in the qiskit machine learning algorithms library.
We will use one example in the chapter 23 where two different notebooks for of the
variational classifier are present.

3.5 EXAMPLE: QUANTUM COIN

We start with a very simple example, the quantum coin. The quantum coin is a
system with two basis states 0 and 1 with

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (3.1)

The mapping is represented as

|0〉 → 1√
2
· |0〉+ 1√

2
· |1〉 (3.2)

and
|1〉 → 1√

2
· |0〉 − 1√

2
· |1〉. (3.3)

The corresponding operator is indicated by the following unitary matrix,

W =
( 1√

2
1√
2

1√
2 − 1√

2

)
= 1√

2
·
(

1 1
1 −1

)
. (3.4)

If the system starts in state |0〉 and undergoes the time evolution, the probability of
observing 0 or 1 is

∣∣∣ 1√
2

∣∣∣2 = 1
2 . If we do not preform a measurement and repeat the

mapping, the probability of observing 0 becomes 1 and observing 1 becomes zero.
This is due to the fact, that the amplitudes of |1〉 cancel each other. This effect is
called destructive interference and cannot occur in the probability distribution since
all its coefficients are non-negative real numbers.

Either start the Anaconda Navigator or the Visual Studio Code editor (or any
other editor that supports Jupyter). Indicate New file, Jupyeter Notebook, select the
correct channel by indicating the environment name. Hadamard matrix H is repre-
sented in qiskit by the Hadamard gate qc.h(qubit) where qc is a quantum circuit with
the chosen name qc (you can choose as well another name, through the book we use
the name qc). The quantum coin is defined with the basis stat as |0〉

H · |0〉 = 1√
2
· |0〉+ 1√

2
· |1〉. (3.5)

First we define a quantum circuit with one qubit by

qc = QuantumCircuit(1)

In a qiskit quantum circuit, all qubits are initialized wit the state |0〉. The Hadamard
gate H acts on the qubit zero, the qubits in a circuit are numbered 0, 1, · · · . In our
circuit we have just one qubit.
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Figure 3.2 Quantum coin represented by a H gate.

qc.h(0)

The program is defined as,

from qiskit import QuantumCircuit, Aer,execute
from qiskit.visualization import plot_histogram

qc = QuantumCircuit(1)
qc.h(0)
qc.draw()

First we load the necessary libraries and then we define the circuit and draw it. After
typing the program and executing it you should see the drawing of the circuit (see
Figure 3.2).

3.5.1 Statevector Evaluation

In the next step we will perform a statevector simulation and plot the result in a
histogram.

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

The probability values after the measurement are indicated in the Figure 3.3. We can
represent the state vector before the measurement indicating its amplitude values
using the build in LaTeX command (when using editor that supports jupyter)

final_state = execute(qc,simulator).result().get_statevector()
from qiskit.visualization import array_to_latex
array_to_latex(final_state, prefix="\\text{Statevector} = ")

with the output
Statevector =

[ 1√
2

1√
2

]
If Jupyter is not supported replace

array_to_latex function by print(final_state).

If we change out quantum circuit to represent the mapping using a NOT gate X, we
get different amplitudes

H ·X · |0〉 = H · |1〉 = 1√
2
· |0〉 − 1√

2
· |1〉 (3.6)
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Figure 3.3 Two generated new states represented by one qubit. The state vector of
the circuit can represent the probability values that correspond to the multiplication
of the state vector by the unitary matrix H. Total count are: {′0′ : 0.5,′ 1′ : 0.5}
indicating the probability values.

Figure 3.4 NOT gate X and a a H gate.

that are represented by the following program. The quantum gate X that changes
the initial value of the qubit |0〉 to |1〉
from qiskit import QuantumCircuit, Aer,execute
from qiskit.visualization import plot_histogram

qc = QuantumCircuit(1)
qc.x(0)
qc.h(0)
qc.draw()

See the drawing of the circuit (see Figure 3.4). The probability values after the
measurement are still the same, see Figure 3.3. However the state vector before the
measurement (using the build in LaTeX command) differs as expected

Statevector =
[ 1√

2
− 1√

2

]
.

In a real quantum computer we have no direct access to the amplitudes before the
measurement.

3.5.2 Qasm Simulator Evaluation

The qasm simulator promises to behave like an actual device of today, which is
prone to noise resulting from decoherence. It returns count, which is a sampling
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Figure 3.5 Quantum coin represented by a H gate and the measurement of the qubit
represented by M . The value of the measurement is represented by one classical bit
c.

of the measured qubits that have to be defined in the circuit, the measured values
are stored in conventional bits. In our example of quantum coin, we define by the
command qc = QuantumCircuit(1, 1) a quantum circuit, the first number indicates
the number of quantum qubits, the second of conventional bits.

qc = QuantumCircuit(1,1)
qc.h(0)
qc.measure(0,0)
qc.draw()

The command qc.measure(0, 0) indicated that we measure the qubit (the counting
begins with zero and not one) and store the result of the measurement in the con-
ventional bit c. The quantum circuit is represented in the Figure 3.5.

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=10).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

The command result = execute(qc, simulator, shots = 10).result() executes the
simulator 10 times, the number of samples (shots) is indicated by the command
qc, simulator, shots = 10. A histogram represents the frequency of the two states 0
and 1 as measured by one bit is indicated in the Figure 3.6 in relation to the number
of shots.

Applying the quantum coin twice

H ·
( 1√

2
· |0〉+ 1√

2
· |1〉

)
= H · 1√

2
· |0〉+H · 1√

2
· |1〉 = |0〉

qc = QuantumCircuit(1,1)
qc.h(0)
qc.h(0)
qc.measure(0,0)
qc.draw()

results in the quantum circuit indicated in the Figure 3.7. and in the histogram see
Figure 3.8.
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(a) (b)

(c) (d)

Figure 3.6 Two states 0 and 1 and their frequency of outcome as measured by one
bit. The normalized frequencies are represented as probabilities. (a) The number of
samples is 10, the total count are: {′1′ : 6,′ 0′ : 4}. (b) The number of samples is
100, the total count are: {′1′ : 42,′ 0′ : 52}. (c) The number of samples is 1000, the
total count are: {′1′ : 502,′ 0′ : 498}. (d) The number of samples is 1000, the total
count are: {′1′ : 5026,′ 0′ : 4974}. With growing number of samples, the distribution
approaches the true values of Figure 3.3.

3.6 MATRIX REPRESENTATION

The Hadamard operator H3 maps 3 qubits |000〉 representing a basis state in a Hilbert
space H23

H3 · |000〉 = H1 · |0〉 ⊗H1 · |0〉 ⊗H1 · |0〉 =
1√
8
· (|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉) .

Figure 3.7 Applying quantum coin represented by two H gates and the measurement
of the qubit represented by M . The value of the measurement is represented by one
classical bit c.
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Figure 3.8 One generated new states represented by one qubit.

This corresponds to the simple program of three qubits 0, 1, 2 using the state vector
simulation

qc = QuantumCircuit(3)
qc.h(0)
qc.h(1)
qc.h(2)
qc.draw()

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

in the quantum circuit in the Figure 3.9. and in the histogram see Figure 3.10. We
can represent the state vector before the measurement indicating its amplitude values
using the build in LaTeX command (when using editor that supports jupyter)

final_state = execute(qc,simulator).result().get_statevector()
from qiskit.visualization import array_to_latex
array_to_latex(final_state, prefix="\\text{Statevector} = ")

Figure 3.9 The Hadamard operator H3 maps 3 qubits |000〉 representing a basis state
in a Hilbert space H23 . This represented by three H gates on the qubits numbered
0, 1 and 2.
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Figure 3.10 Eight generated new states represented by three qubit.

with the output

Statevector =
[ 1√

8
1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

]
We can represent the quantum circuit by a matrix with the following commands. We
will use NumPy that is included in the qiskit installation. NumPy is a library for the
Python programming language, adding support for large, multi-dimensional arrays
and matrices that are highly related to MATLAB
import numpy as np
from qiskit.visualization import array_to_latex
from qiskit import assemble

simulator = Aer.get_backend(’qasm_simulator’)
qc.save_unitary()
result = simulator.run(qc).result()
unitary = result.get_unitary(qc)
print("\nSize of the unitary matrix:",np.asarray(unitary).shape)
array_to_latex(unitary, prefix="\\text{Circuit = }\n")

with the following output
Size of the unitary matrix: (8, 8)

Circuit =



1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8 − 1√

8
1√
8 − 1√

8
1√
8 − 1√

8
1√
8 − 1√

8
1√
8

1√
8 − 1√

8 − 1√
8

1√
8

1√
8 − 1√

8 − 1√
8

1√
8 − 1√

8 − 1√
8

1√
8

1√
8 − 1√

8 − 1√
8

1√
8

1√
8

1√
8

1√
8

1√
8 − 1√

8 − 1√
8 − 1√

8 − 1√
8

1√
8 − 1√

8
1√
8 − 1√

8 − 1√
8 − 1√

8 − 1√
8

1√
8

1√
8

1√
8 − 1√

8 − 1√
8 − 1√

8 − 1√
8

1√
8

1√
8

1√
8 − 1√

8 − 1√
8

1√
8 − 1√

8
1√
8

1√
8 − 1√

8


.
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Since the size of the matrix grows exponential, it is not possible to represent quantum
circuits with a higher number of qubits by a matrix.

3.7 QUANTUM CIRCUITS

The four bit conjunction x ∧ y ∧ z ∧ v requires three quantum Toffoli gates ccX and
three additional qubits that are zero. With the input state

|x〉|y〉|0〉|z〉|0〉|v〉|0〉.

First quantum Toffoli gate

(CCX · |x〉|y〉|0〉)⊗ (I4| · |z〉|0〉|v〉|0〉) = |x〉|y〉|x ∧ y〉|z〉|0〉|v〉|0〉.

Second quantum Toffoli gate

(I2 · |x〉|y〉)⊗ (CCX · |x ∧ y〉|z〉|0)⊗ (I2 · |v〉|0〉) =

= |x〉|y〉|x ∧ y〉|z〉|x ∧ y ∧ z〉|v〉|0〉.

Third quantum Toffoli gate

(I4 · |x〉|y〉|x ∧ y〉|z〉)⊗ (CCX · |x ∧ y ∧ z〉|v〉|0〉) =

= |x〉|y〉|x ∧ y〉|z〉|x ∧ y ∧ z〉|v〉|x ∧ y ∧ z ∧ v〉.

The circuit corresponds to the following unitary mapping

((I4 ⊗ CCX) (I2 ⊗ CCX ⊗ I2) · (CCX ⊗ I4)) · |xy0z0v0〉

with the result
|x〉|y〉|x ∧ y〉|z〉|x ∧ y ∧ z〉|v〉|x ∧ y ∧ z ∧ v〉.

We define a quantum circuit with seven qubits and name them using the com-
mand QuantumRegister(size, name), with size is number of qubits to include in
the register and the name of the register as it appears in the drawing of the quan-
tum circuit. We create the register x, y, z v, two auxiliary register and a regis-
ter r with the name result and generate the quantum circuit with the command
QuantumCircuit(x, y, z, v, aux, r). We initialize the qubits x, y, z v to one with the
not gate X. Note, we change the order of the aux qubits to make it cleared to read.
After the initialization we use the command qc.barrier(), it separates the represen-
tation in the circuit. It is not a gate and prevents the merging of the gate operations
during the computation. Then we use three three quantum Toffoli gates, also called
the ccX gate (CCNOT gate – controlled controlled not gate) and the final result or
the operation is represented in the quantum qubit r. Qiskit uses the little endian
notation, it stores the least-significant byte at the smallest address. Qubits are rep-
resented from the most significant bit (MSB) on the left to the least significant bit
(LSB) on the right (little-endian). This is similar as binary numbers or to bitstring
representation on classical computers, in our example we represent we represent x by
the first qubit, y by the second qubit and so on representing the state |r, aux, v, z, y, x〉
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from qiskit import QuantumCircuit,QuantumRegister, execute
from qiskit.visualization import plot_histogram
from qiskit.quantum_info import Statevector

x = QuantumRegister(1, ’x’)
y = QuantumRegister(1, ’y’)
z = QuantumRegister(1, ’z’)
v = QuantumRegister(1, ’v’)
aux = QuantumRegister(2,’aux’)
r = QuantumRegister(1, ’result’)
qc = QuantumCircuit(x,y,z,v,aux,r)
qc.x(x)
qc.x(y)
qc.x(z)
qc.x(v)
qc.barrier()
qc.ccx(x,y,aux[0])
qc.ccx(aux[0],z,aux[1])
qc.ccx(aux[1],z,r)

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

The quantum circuit is represented in the Figure 3.11. and the results after the
statevector “measurement” are indicated in Figure 3.12.

3.7.1 Un-computing

The qubits aux0=1, aux1 = 1 are usually not required for further computation be-
cause the result is represented in the output qubit result. However they are entangled
with the output qubit. It is not possible to reset them to zero. Instead they are un-
computed. Because for the matrix CCX−1 = CCX, we recompute the first and the
second quantum Toffoli gate after determining the result. The steps are reversed as
indicated in the listing after the command qc.barrier()

qc.barrier()
qc.ccx(x,y,aux[0])
qc.ccx(aux[0],z,aux[1])
qc.ccx(aux[1],z,r)
#un-computing of the aux registers
qc.ccx(aux[0],z,aux[1])
qc.ccx(x,y,aux[0])

as indicated in the Figure 3.13 and the results after the statevector “measurement”
are indicated in Figure 3.14.
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Figure 3.11 We initialize the qubits x, y, z, v to one with the not gate X. After the
initialization we use the command qc.barrier() that will separate the representation
in the circuit. It is not a gate and prevents the merging of the gate operations during
the computation. Then we use three three quantum Toffoli gates, also called the ccX
gate (CCNOT gate, controlled controlled not gate) and the result is represented in
the quantum qubit r.

3.7.2 General Multi-Controlled X Gate

Instead on can use as well the command MCXGate(4) without the need of defining
auxiliary registers. The MCXGate(n) gate is a general, multi-controlled X gate that
is controlled by n qubits, in our case by the qubits x, y, z, v, r

from qiskit.circuit.library import MCXGate
x = QuantumRegister(1, ’x’)
y = QuantumRegister(1, ’y’)
z = QuantumRegister(1, ’z’)

Figure 3.12 After the statevector “measurement” the values of the qubits the qubits
are x = 1, y = 1, z = 1, v = 1, aux0 = 1, aux1 = 1 and result = 1. The total count
are: {′1111111′ : 1.0}, 1.0 indicates the probability one.
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Figure 3.13 Because CCX−1 = CXX we recompute the first and the second quantum
Toffoli gate ccX after determining the result.

v = QuantumRegister(1, ’v’)
r = QuantumRegister(1, ’result’)
qc = QuantumCircuit(x,y,z,v,r)
qc.barrier()

gate = MCXGate(4)
qc.append(gate,[x,y,z,v,r])
qc.draw()

as indicated in the Figure 3.15.

Figure 3.14 After the statevector “measurement”, the values of the qubits the qubits
are x = 1, y = 1, z = 1, v = 1, aux0 = 0, aux1 = 0, and result = 1. The total count
are (indicated in reverse order): {′1001111′ : 1.0}, 1.0 indicates the probability one
of the state |1001111〉. Total count are: {′1001111′ : 1.0}.
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Figure 3.15 One can used as well the command MCXGate(4) without the need of
defining auxiliary registers.

3.7.3 OR Operation

The OR operation is represented by the unitary mapping according to the De Mor-
gan’s laws

x1 ∨ x2 = ¬(¬x1∧,¬x2)
((I2 ⊗X) · CCX · (X ⊗X ⊗ I1)) · |xy0〉 = xy(x ∨ y)〉.

x = QuantumRegister(1, ’x’)
y = QuantumRegister(1, ’y’)
r = QuantumRegister(1, ’result’)
qc = QuantumCircuit(x,y,r)
#Preparation
qc.x(x)
#qc.x(y)
qc.barrier()
#Or Operation according to De Morgan’s law
qc.x(x)
qc.x(y)
qc.x(r)
qc.ccx(x,y,r)
qc.x(x)
qc.x(y)

qc.draw()

resulting in the quantum circuit in the Figure 3.16 . For each quantum Boolean AND,
OR operation a naive implementation requires an auxiliary (ancilla) bit. These bits
can be reused for further computation only by reversing the preceding steps. The
complexity of the circuit corresponds to the number of used quantum gates.

3.8 DEUTSCH ALGORITHM

The Deutsch algorithm [26] exploits the superposition of qubits generated by
Hadamard gates and is more powerful than any classical algorithm. It determines
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Figure 3.16 The OR operation is represented by the unitary mapping according to the
De Morgan’s laws x1 ∨ x2 = ¬(¬x1∧,¬x2).

if an unknown function f : B1 → B1 : f(x) = y of one bit is constant or not by
calling the function one time. A classical algorithm requires two calls. A constant
function on one bit is either f(x) = 1 or f(x) = 0. A non-constant function is ei-
ther the identity function f(0) = 0 and f(1) = 1 or the flip function f(0) = 1 and
f(1) = 0. The condition of the function being constant f(0) = f(1) implies that the
XOR operation ⊕ is f(0)⊕ f(1) = 0 is zero. On the other hand if the function is not
constant f(0) 6= f(1) implies that the XOR operation ⊕ is f(0) ⊕ f(1) = 1 is one.
We can define a unitary operator Uf that acts on the two qubits

Uf · |xy〉 = |x〉|f(x)⊕ y〉.

Uf can be implemented by a quantum Boolean circuit including CNOT gate. There
are four different cases, for f(x) = 0 with the identity mapping

i) Uf |00〉 = |0〉|0⊕ 0〉 = |00〉, Uf |01〉 = |01〉,

Uf |10〉 = |10〉, Uf |11〉 = |11〉

for f(x) = 1 with the permutation of all elements.

ii) Uf |00〉 = |0〉|1⊕ 0〉 = |01〉, Uf |01〉 = |00〉,

Uf |10〉 = |11〉, Uf |11〉 = |10〉

and for a non-constant function, f(x) = x corresponds to a permutation of two
elements.

iii) Uf |00〉 = |0〉|0⊕ 0〉 = |00〉, Uf |01〉 = |01〉,

Uf |10〉 = |11〉, Uf |11〉 = |10〉

and f(x) = ¬x with a permutation of two elements as well

vi) Uf |00〉 = |0〉|1⊕ 0〉 = |01〉, Uf |01〉 = |00〉,

Uf |10〉 = |10〉, Uf |11〉 = |11〉.
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There are two classes:

• No permutation i) or permutation of all elements ii) indicates that the function
is constant.

• Permutation of two elements iii), iv) indicates that the function is non-constant.

The algorithm to determine if f(x) is constant or not is composed of four steps. In
the first step of the algorithm we build a superposition of two qubits

H2 · |01〉 = H1 · |0〉 ⊗H1 · |1〉 =
( |0〉+ |1〉√

2

)
⊗
( |0〉 − |1〉√

2

)
=

H2 · |01〉 = 1
2 · (|00〉 − |01〉+ |10〉 − |11〉) .

from qiskit import QuantumCircuit,Aer,execute
from qiskit.visualization import plot_histogram

qc = QuantumCircuit(2)
qc.x(0)
qc.h(0)
qc.h(1)

simulator = Aer.get_backend(’statevector_simulator’)
final_state = execute(qc,simulator).result().get_statevector()
from qiskit.visualization import array_to_latex
array_to_latex(final_state, prefix="\\text{Statevector} = ")

with the output
Statevector =

[1
2 − 1

2
1
2 − 1

2

]
.

In the second step we apply the Uf , gate.

Uf ·H2 · |01〉 = Uf

(1
2 · (|00〉 − |01〉+ |10〉 − |11〉)

)
=

= 1
2 · (Uf · |00〉 − Uf · |01〉+ Uf · |10〉 − Uf · |11〉) .

There are four possible outcomes. For constant function

i) = 1
2 · (|00〉 − |01〉+ |10〉 − |11〉) =

( |0〉+ |1〉√
2

)
⊗
( |0〉 − |1〉√

2

)
,

ii) = 1
2 · (|01〉 − |00〉+ |11〉 − |10〉) = 1

2 · (−|00〉+ |01〉 − |10〉+ |11〉)

=
(−|0〉 − |1〉√

2

)
⊗
( |0〉 − |1〉√

2

)
= −

( |0〉+ |1〉√
2

)
⊗
( |0〉 − |1〉√

2

)
,

and for non-constant function

iii) = 1
2 · (|00〉 − |01〉+ |11〉 − |10〉) = 1

2 · (|00〉 − |01〉|10〉+ |11〉)
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=
( |0〉 − |1〉√

2

)
⊗
( |0〉 − |1〉√

2

)
,

iv) = 1
2 · (|01〉 − |00〉+ |10〉 − |11〉) = 1

2 · (−|00〉+ |01〉+ |10〉 − |11〉)(−|0〉+ |1〉√
2

)
⊗
( |0〉 − |1〉√

2

)
= −

( |0〉 − |1〉√
2

)
⊗
( |0〉 − |1〉√

2

)
.

In the third step a Hadamard gate is applied to the first qubit

(H1 ⊗ I1) · Uf ·H2 · |01〉. (3.7)

There are four possible outcomes,

i) |0〉 ⊗
( |0〉 − |1〉√

2

)
,

ii) − |0〉 ⊗
( |0〉 − |1〉√

2

)
,

iii) |1〉 ⊗
( |0〉 − |1〉√

2

)
,

vi) − |1〉 ⊗
( |0〉 − |1〉√

2

)
.

In the fourth step the first qubit (that is in the basis state) is measured. It is |0〉 if
the function is constant, otherwise |1〉.

In our simulation, for simplicity we assume the unknown function is the identity
mapping f(x) = 0

i) Uf |00〉 = |0〉|0⊕ 0〉 = |00〉, Uf |01〉 = |01〉,

Uf |10〉 = |10〉, Uf |11〉 = |11〉

qc = QuantumCircuit(2,1)
qc.x(0)
qc.barrier()
qc.h(0)
qc.h(1)
#constant function f(x)=0, do nothing
qc.barrier()
qc.h(1)
#Measure the qubit 1
qc.measure(1,0)
qc.draw()

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)
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Figure 3.17 The quantum circuit representing the Deutsch algorithm for the unknown
function the identity mapping f(x) = 0.

see the Figures 3.17 and 3.18. For the non-constant function, f(x) = x corresponds
to a permutation of two elements.

iii) Uf |00〉 = |0〉|0⊕ 0〉 = |00〉, Uf |01〉 = |01〉,

Uf |10〉 = |11〉, Uf |11〉 = |10〉
This operation can be achieved by the Controlled NOT gate. The CNOT gate flips
the second qubit (the target qubit) if and only if the first qubit (the control qubit)
is one. In our case the control qubit is q1 is the target qubit q1, qc.cx(1, 0)

qc = QuantumCircuit(2,1)

qc.x(0)
qc.barrier()
qc.h(0)
qc.h(1)
#identity function f(x)=x
qc.cx(1,0)
qc.barrier()

Figure 3.18 In the fourth step the first qubit (that is in the basis state) is measured. It
is |0〉, the function is constant. Total count are: {′′0′ : 1024}. By default the number
of shots is 1024 if not specified.
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Figure 3.19 The quantum circuit representing the Deutsch algorithm for the unknown
function the he non-constant function, f(x) = x.

qc.h(1)
qc.measure(1,0)

qc.draw()

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

see the Figures 3.19 and 3.20.

3.9 DEUTSCH ALGORITHM ON A REAL QUANTUM COMPUTER

Richard Feynman asked in the early eighties whether a quantum system can be simu-
lated on an imaginary quantum computer. Today, 40 years later first small quantum
computers begin to appear. During recent years a huge progress was achieved in
keeping the quits coherent, opening the road to a universal quantum computer and

Figure 3.20 In the fourth step the first qubit (that is in the basis state) is measured.
It is |1〉, the function is non-constant. Total count are: {′′1′ : 1024}. By default the
number of shots is 1024 if not specified.
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Figure 3.21 Some free resources for general public access with 5–7 qubits.

the progress will continue. You can access for free (Open Plan) real small quantum
computer through the site

https://www.ibm.com/quantum

Figure 3.21 indicates some possible resources and Figure 3.22 for information about
a IBM quantum computer with 7 qubits. Follow the instruction and Sign in to IBM
Quantum. We perform following changes in the import part and execution of the
program

from qiskit import QuantumCircuit
from qiskit.visualization import plot_histogram

qc = QuantumCircuit(2,1)
qc.x(0)
qc.barrier()
qc.h(0)
qc.h(1)
#identity function f(x)=x

Figure 3.22 IBM quantum computer with 7 qubits and its hardware topology.

https://www.ibm.com
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qc.cx(1,0)
qc.barrier()
qc.h(1)
qc.measure(1,0)

from qiskit import IBMQ, transpile
from qiskit_ibm_provider import IBMProvider, least_busy

provider = IBMProvider()
device=provider.backends(min_num_qubits=5, simulator=False, operational=True)
backend = least_busy(device)
print("least busy backend: ", backend)

# Run our circuit on the least busy backend. Monitor the execution of the
job in the queue from qiskit.tools.monitor import job_monitor
shots = 100
transpiled_bv_circuit = transpile(qc, backend)
job = backend.run(transpiled_bv_circuit, shots=shots)
job_monitor(job, interval=2)

# Get the results from the computation
results = job.result()
counts = results.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

First we get the information about the name of the less busy devise and later the
status information

least busy backend: <IBMBackend(’ibmq_lima’)>
Job Status: job has successfully run

This can take some time, dependent on how many simulations all over the world are
running. The output histogram is represented in Figure 3.23.

Figure 3.23 In the fourth step the first qubit (that is in the basis state) is measured. It
is |1〉 with “probability” value 0.96 after 100 shots, the function is non-constant with
high probability. Total count are: {′0′ : 4,′ 1′ : 96}. The measurements of |0〉 result
from noise through decoherence.
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Quantum Gates

Quantum gates are the building blocks of quantum circuits, like classical logic gates
are for conventional digital circuits. Unlike classical logic gates, quantum logic gates
are reversible and can be described by unitary matrices. First, we introduce Boolean
quantum gates that allow us to map any Boolean circuit in such a way that the
circuit becomes reversible. Such a circuit represents a permutation in Hilbert space
and can be represented by a permutation matrix composed of the unitary matrices
representing the quantum gates. Then we describe quantum gates for one qubit, like
for example Clifford gates that are the elements of the Clifford group and can be ef-
ficiently simulated with a classical computer. Parameterized gates play an important
role in quantum machine learning. A parameterized rotation gate is a parameterized
gate with the parameter being the amount of rotation to be performed around the
three axes. We introduce the controlled-U gates and introduce the unitary decompo-
sition and formulate the process of transpilation. Translation is a complex problem
of finding an optimal decomposition into the present quantum gates for a quantum
computer.

4.1 BOOLEAN ALGEBRA AND THE QUANTUM GATES

The following quantum gates are Boolean quantum gates that allow us to map any
Boolean circuit in such a way that the circuit becomes reversible. To make a circuit
reversible, we must make each of the gates reversible. A necessary condition for a
reversible gate is that of a bijective transition function with m inputs and m outputs.
For each quantum Boolean AND, OR operation to be reversible an auxiliary qubit is
required. The complexity of the circuit corresponds to the number of used quantum
gates. A Boolean quantum circuit represents a permutation in Hilbert space and can
be represented by a unitary permutation matrix composed of the unitary matrices
representing the quantum gates. Such a mapping does not alter the distribution of the
amplitudes; the distribution remains unchanged during the execution of the quantum
Boolean gates. The probability of measuring certain states is the same before and
after the computation.
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4.1.1 Identity Gate – I

qc.id(qubit)

I|0〉 −→ |0〉 I|1〉 −→ |1〉

The identity gate defines a quantum gate on one qubit and can be represented by a
unitary matrix I in Hilbert space H2

I =
(

1 0
0 1

)
.

The identity gate does not perform any operation and does not play any role in qiskit.
In matrix notation, it indicates which qubits remain when composing a matrix using
the tensor product that represents a quantum circuit.

4.1.2 NOT Gate, Pauli X Gate – X

qc.x(qubit)

X|0〉 −→ |1〉 X|1〉 −→ |0〉

The not gate defines a quantum gate on one qubit and can be represented by a
unitary matrix X in Hilbert space H2

X =
(

0 1
1 0

)
.

The NOT gate is also called the Pauli X-gate.

4.1.3 Toffoli Gate – ccX

qc.ccx(control1,control2,target)

CCX|000〉 −→ |000〉 CCX|100〉 −→ |100〉

CCX|001〉 −→ |001〉 CCX|101〉 −→ |101〉

CCX|010〉 −→ |010〉 CCX|110〉 −→ |111〉

CCX|011〉 −→ |011〉 CCX|111〉 −→ |110〉



Quantum Gates � 65

Toffoli Gate, ccX CCNOT gate, controlled controlled not gate also called ccX CCNOT
gate – controlled controlled not gate, defines a quantum gate on three qubits and can
be represented by a unitary matrix CCX in Hilbert space H8

CCX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The Toffoli gate does not change the first input qubits x1 and x2. The operation is
described by the following mapping on three input qubits x1, x2, x3

ccX(x1, x2, x3) = (x1, x2, (x1 ∧ x2)⊕ x3)

A Toffoli gate performs following operations.

• It computes the AND operation, the ancilla (fixed) bit x3 is set to 0.

ccX(x1, x2, 0) = (x1, x2, x1 ∧ x2)

• It computes the XOR operation, the bit x1 is set to 1.

ccX(1, x2, x3) = (1, x2, x2 ⊕ x3)

• It computes the NOT operation on x3.

ccX(1, 1, x3) = (1, 1,¬x3)

• It computes the NAND operation, the ancilla (fixed) bit x3 is set to 1.

ccX(x1, x2, 1) = (x1, x2,¬(x1 ∧ x2))

• It computes the FANOUT operation (the value of bit x2 is copied into x3).

ccX(1, x2, 0) = (1, x2, x2)

The OR operation follows from the De Morgan’s laws

x1 ∨ x2 = ¬(¬x1∧,¬x2).

Because NAND and FANOUT are together universal, we can implement any re-
versible Boolean quantum circuit using the Toffoli gate.
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4.1.4 Controlled NOT Gate – cX

qc.cx(qubit1, qubit2)

CX|00〉 = |00〉 CX|01〉 = |01〉,

CX|10〉 = |11〉 CX|11〉 = |10〉.

The controlled not gate defines a quantum gate on two qubits and can be represented
by a unitary matrix CX in Hilbert space H4

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
A controlled not gate performs following operations.

• Controlled not operation. The second qubit is only flipped in the case that the
first qubit is 1. In this case a not operation X on the second qubit is executed.

cX(1, x) = (1,¬x1)

cX(0, x) = (1, x1)

• Fan-out operation. For this operation the second qubit has to be zero. In this
case the value of the first qubit is copied into the second one.

cX(x1, 0) = (x1, x1)

4.1.5 SWAP Gate – SWAP

qc.swap(qubit1, qubit2)

SWAP |00〉 = |00〉 SWAP |01〉 = |10〉,

SWAP |10〉 = |01〉 SWAP |11〉 = |11〉.

The SWAP gate defines a quantum gate two one qubits and can be represented by a
unitary matrix SWAP in Hilbert space H4

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
The SWAP gate swaps the two qubits

SWAP (x1, x2) = (x2, x1).
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4.1.6 Controlled SWAP Gate – cS

qc.cswap(control,qubit_1,qubit_2)

CSWAP |000〉 −→ |000〉 CSWAP |100〉 −→ |100〉

CSWAP |001〉 −→ |001〉 CSWAP |101〉 −→ |110〉

CSWAP |010〉 −→ |010〉 CSWAP |110〉 −→ |101〉

CSWAP |011〉 −→ |011〉 CSWAP |111〉 −→ |110〉

The Controlled SWAP Gate or Fredkin gate, defines a quantum gate on three qubits
and can be represented by a unitary matrix CSWAP in Hilbert space H8

CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


.

• If control qubit is zero no swap operation is performed

CSWAP (0, x1, x2) = (0, x1, x2)

• If control qubit is one swap operation on is performed

CSWAP (1, x1, x2) = (1, x2, x1).

4.2 GATES FOR ONE QUBIT

The corresponding quantum gates for one qubit alter the distribution of the ampli-
tudes that are represented by complex numbers.

4.2.1 Clifford Gates for One Qubit

The Clifford gates are the elements of the Clifford group is generated by three gates,
Hadamard, S, and CNOT gates. It is a set of mathematical transformations which
affect permutations of the three Pauli gates: X gate, Y gate, and the Z gate. Quantum
circuits that consist of only Clifford gates can be efficiently simulated with a classical
computer.
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4.2.1.1 Hadamard Gate – H

qc.h(qubit)

H|0〉 −→ 1√
2
· |0〉+ 1√

2
· |1〉 H|1〉 −→ 1√

2
· |0〉 − 1√

2
· |1〉

The Hadamard gate defines a quantum gate on one qubit and can be represented by
a unitary matrix H in Hilbert space H2

H =
( 1√

2
1√
2

1√
2 − 1√

2

)

The Hadamard gate is also called Hadamard-Walsh gate. If the system starts in state
|0〉 and undergoes the time evolution, the probability of observing 0 or 1 is

∣∣∣ 1√
2

∣∣∣2 = 1
2 .

If we do not preform a measurement and repeat the mapping, the probability of
observing 0 becomes 1 and observing 1 becomes zero. This is due to the fact, that
the amplitudes of |1〉 cancel each other. This effect is called destructive interference.

4.2.2 Pauli Y Gate – Y

qc.y(qubit)

Y |0〉 −→ i|1〉 Y |1〉 −→ i|0〉

The Pauli Y gate defines a quantum gate on one qubit and can be represented by a
unitary matrix Y in Hilbert space H2

Y =
(

0 −i
i 0

)

4.2.3 Pauli Z Gate – Z

qc.z(qubit)

Z|0〉 −→ |0〉 Z|1〉 −→ −|1〉

The Pauli Z gate defines a quantum gate on one qubit and can be represented by a
unitary matrix Y in Hilbert space H2

Z =
(

1 0
0 −1

)
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4.2.4 S Gate – S

qc.s(qubit)

S|0〉 −→ |0〉 S|1〉 −→ i|1〉

The S gate defines a quantum gate on one qubit and can be represented by a unitary
matrix S in Hilbert space H2

S =
(

1 0
0 i

)
The S gate is also called the Z90 gate.

4.2.5 Sdag Gate – S†

qc.sdg(qubit)

S†|0〉 −→ |0〉 S†|1〉 −→ −i|1〉

The S† gate defines a quantum gate on one qubit and can be represented by a unitary
matrix S in Hilbert space H2

S† =
(

1 0
0 −i.

)
Clifford gates together with the T gates are universal quantum gates since they

can approximate any desired quantum gate with a small error.

4.3 ROTATION GATES

4.3.1 T Gate – T

qc.t(qubit)

The T gate corresponds to the parameterized RZ gate with θ = π/4.

T |0〉 −→ |0〉 T |1〉 −→ ei
π
4 · |1〉 =

( 1√
2

+ i√
2

)
· |1〉

The T gate defines a quantum gate on one qubit and can be represented by a unitary
matrix T in Hilbert space H2

T =
(

1 0
0 ei

π
4

)
with T gate being the square root of the S gate

S = T 2
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4.3.2 T† Gate – T†

qc.tdg(qubit)

The T gate corresponds to the RZ with θ = −π/4.

T †|0〉 −→ |0〉 T †|1〉 −→ e−i
π
4 · |1〉 =

( 1√
2
− i√

2

)
· |1〉

The T gate defines a quantum gate on one qubit and can be represented by a unitary
matrix T in Hilbert space H2

T † =
(

1 0
0 e−i

π
4

)

with T † gate being the square root of the S gate

S =
(
T †
)2

4.4 PARAMETERIZED ROTATION GATES

Parameterized gates play an important role in quantum machine learning. A param-
eterized rotation gate is a parameterized gate with the parameter being the amount
of rotation to be performed around the three axes.

4.4.1 RX Gate – RX

qc.rx(theta,qubit)

The RX gate performs a rotation of one qubit along the x-axis by the rotation
angle θ. The rotation angle is in radiants.

With θ = π
RX|0〉 −→ −i|1〉 RX|1〉 −→ −i|0〉

With θ = π/2

RX|0〉 −→ 1√
2
· |0〉 − i√

2
· |1〉 RX|1〉 −→ − i√

2
· |0〉+ 1√

2
· |1〉

The RX gate defines a quantum gate on one qubit and can be represented by a
unitary matrix RX in Hilbert space H2

RX(θ) =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

) 
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4.4.2 RY Gate – RY

qc.ry(theta,qubit)

The RY gate performs a rotation of one qubit along the y-axis by the rotation
angle θ. The rotation angle is in radiants.

With θ = π
RY |0〉 −→ |1〉 RY |1〉 −→ −|0〉

With θ = π/2

RY |0〉 −→ 1√
2
· |0〉+ 1√

2
· |1〉 RY |1〉 −→ − 1√

2
· |0〉+ 1√

2
· |1〉

The RY gate defines a quantum gate on one qubit and can be represented by a
unitary matrix RX in Hilbert space H2

RY (θ) =

 cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos

(
θ
2

) 
4.4.3 RZ Gate – RZ

qc.rz(phi,qubit)

The RZ gate performs a rotation of one qubit along the z-axis by the rotation
angle φ. The rotation angle is in radiants.

With φ = π
RZ|0〉 −→ −i|0〉 RZ|1〉 −→ i|1〉

With φ = π/2

RZ|0〉 −→
( 1√

2
− i√

2

)
· |0〉 RZ|1〉 −→

( 1√
2

+ i√
2

)
· |1〉

The RZ gate defines a quantum gate on one qubit and can be represented by a
unitary matrix RZ(φ) in Hilbert space H2

RZ(φ) =
(
e−i

φ
2 0

0 ei
φ
2

)

4.4.4 U Gate – U

U gate is a single-qubit rotation gate with 3 Euler angles.

qc.u(theata, phi, lambda, qubit)
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The U gate performs a rotation of one qubit along the axes by the rotation angles θ,
φ, and λ. The rotation angle is in radiants. It can be represented by a unitary matrix
RZ in Hilbert space H2

U(θ, φ, λ) =

 cos
(
θ
2

)
−e−i·λ sin

(
θ
2

)
ei·φ sin

(
θ
2

)
ei·(φ+λ) cos

(
θ
2

) 
4.4.5 Phase Gate – P

qc.p(lambda)

the target and the control qubit can be exchanged since the phase is only applied if
both values are one

P |0〉 −→ |0〉 P |1〉 −→ ei·λ · |〉

The phase gate defines a quantum gate on one qubit and can be represented by a
unitary matrix H in Hilbert space H2

P (λ) =
(

1 0
0 ei·λ

)
.

4.5 CONTROLLED U GATES

The controlled-U gates perform a controlled operation described by the a unitary
matrix U

U =
(
u00 u01
u10 u11

)
.

The cU gate defines a quantum gate on two qubits and can be represented by a
unitary matrix CU in Hilbert space H4

CU =


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11


The controlled-U gates perform the following operations

CU |00〉 −→ |00〉 CU |01〉 −→ |01〉

CU |10〉 −→ |1〉 ⊗ U |0〉 CH|11〉 −→ |1〉 ⊗ U |1〉

The matrix U can be one of three Pauli gates: X gate (resulting in the controlled
NOT cX gate) , Y gate, and the Z gate or rotation gates with the syntax
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qc.cx(control,target)
qc.cy(control,target)
qc.cz(control,target)
qc.crx(theta,control,target)
qc.cry(theta,control,target)
qc.crz(phi,control,target)
qc.cu(theata, phi, lambda,control,target)

4.5.1 Controlled Phase Gate

qc.cp(lambda, control, target)

the target and the control qubit can be exchanged since the phase is only applied if
both values are one

CP (|00〉 −→ |00〉 CP |01〉 −→ |01〉

CP |10〉 −→ |10〉 CP |11〉 −→ ei·λ · |11〉

The controlled phase gate defines a quantum gate on two qubits and can be repre-
sented by a unitary matrix H in Hilbert space H4

CP (λ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei·λ


4.5.2 Controlled Hadamard Gate – cH

qc.ch(control,target)

CH|00〉 −→ |00〉 CH|01〉 −→ |01〉

CH|10〉 −→ 1√
2
· |10〉+ 1√

2
· |11〉 CH|11〉 −→ 1√

2
· |10〉 − 1√

2
· |11〉

The controlled Hadamard gate defines a quantum gate on two qubits and can be
represented by a unitary matrix H in Hilbert space H4

CH =


1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2 − 1√

2


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4.6 UNIVERSALITY

Unitary decomposition is the process of translating an arbitrary unitary operator
into a universal set of single and two-qubit gates. Unitary decomposition is necessary
because it is not otherwise possible to execute an arbitrary quantum operator. The
Z-Y decomposition theorem [72] provides a way of expressing an unitary operation
U on a single qubits by parametrized rotation gates

Z-Y Decomposition Theorem: If u is an unitary operation on single qubit, then
there exist real numbers α, β, and γ such that

U = ei·αRZ(β) ·RY (γ) ·RZ(δ) (4.1)

For example, in quantum machine learning a Hadamard-like transformation Sp is
used to store the patterns.

Sp =

 √
p−1
p

1√
p

−1√
p

√
p−1
p

 (4.2)

and can be represented by the parametrized U gate with φ = π, λ = π,

U(θ, π, π) =

 cos
(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
cos

(
θ
2

) 
With

sin
(
θ

2

)
= 1
√
p

θ = arcsin
(

1
√
p

)
· 2

cos
(
θ

2

)
=
√
p− 1
√
p

U(arcsin
(

1
√
p

)
· 2, π, π) =

 √
p−1
p

1√
p

−1√
p

√
p−1
p

 . (4.3)

4.7 QUANTUM CIRCUITS

The depth of a quantum circuit indicates the quantum gates that can be executed
in parallel to compute the entire circuit. The depth is related to the time to execute
the circuit. The depth is indicated with the command qc.size(). Either we simulate
a quantum circuit or execute it on a real quantum computer. The defined quantum
circuit is converted to the target quantum computer for execution. This process is
called transpilation contrary to the compilation task in classical programing lan-
guages. It is a translation problem determined by the available set of operations and
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the hardware topology. Finding an optimal decomposition of a quantum circuit into
the present quantum gates is a complex problem. For example, almost all quantum
gates that operate on n qubits require an exponential number of 2 qubits gates by
a naive implementation [72]. The transpilation should minimize the circuit’s depth
and the number of used gates.
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Grover’s Amplification

We describe the Grover’s amplification algorithm. We represent n state by a super-
position, each state has the same real positive amplitude. A parallel computation is
applied to all the n states, and the state with the solution is marked by a minus
sign, the amplitude is now negative. We then apply a linear operation that is based
on Householder reflection, by the reflection the value of the marked amplitude grows
linearly. For dimensions higher than four, the operations of marking and Householder
reflection must be repeated

√
n times, since at each step the amplitude only grows

linearly. After
√
n steps we measure the solution. The algorithm guarantees us a

quadratic speed up over a classical computer that would require n steps. Grover’s
amplification algorithm is optimal, one can prove that a better algorithm cannot
exist. We will demonstrate the principles of Grover’s amplification using the matrix
notation using NumPy. Then we explain how to represent the algorithm with quan-
tum gates by a qiskit example of three qubits representing eight states using one and
two rotations.

5.1 SEARCH AND QUANTUM ORACLE

For a function o(x)

oξ(x) =
{

1 if x = ξ
0 else

(5.1)

we want to find x for which o(x) = 1, x = ξ. The task is equivalent to a decision
problem with a binary answer 1 = yes and 0 = no and the instance x. Grover’s am-
plification algorithm implements exhaustive search in O(

√
n) steps in n-dimensional

Hilbert space [35], [36], [37], [38], [35], [35]. Hilbert space extends the two- or three-
dimensional Euclidean space into spaces that have any finite or infinite number of
dimensions. Grover’s amplification algorithm is as good as any possible quantum al-
gorithm for exhaustive search due to the lower bound Ω(

√
n) [2]. The algorithm is

based on the Householder reflection of state |x〉 of m qubits with n = 2m. Grover’s
amplification algorithm is optimal, one can prove that a better algorithm cannot exist
[11], [14]. It follows that using a quantum computer NP − complete problems remain
NP − complete. The algorithm guarantees us a quadratic speed up over a classical
computer that would require n steps.
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5.1.1 Quantum Oracle

We represent n states by a superposition, each state has the same real positive am-
plitude. A parallel computation is applied to all the n states, and the state with the
solution oξ(x) = 1 is marked by a minus sign, the amplitude is now negative. We then
apply a linear operation that is based on Householder reflection, by the reflection the
value of the marked amplitude grows linearly.

For the function o(x), the solution is encoded by (−1)o(x), the sign of the am-
plitude. To see why the solution is encoded by (−1)o(x), we indicate the derivative.
The unitary operator T represents the quantum oracle function o(x) that deter-
mines if the configuration is the goal configuration

T · |x〉|c〉 = |x〉|o(x)⊕ c〉.

The auxiliary qubit c is set to one, and the state is represented by m qubits |0⊗m〉.
First, we set qubits representing the states and the auxiliary qubit in superposition
by the Hadamard gate for m + 1 qubits Hm+1, and then we execute the unitary
operator T

T ·Hm+1 · |0⊗m〉|1〉 =

= 1√
2m+1 ·

∑
x∈Bm

T · |x〉|0〉 − 1√
2m+1 ·

∑
x∈Bm

T · |x〉|1〉

= 1√
2m+1 ·

∑
x∈Bm

|x〉|o(x)⊕ 0〉 − 1√
2m+1 ·

∑
x∈Bm

|x〉|o(x)⊕ 1〉

= 1√
2m+1 ·

( ∑
x∈Bm

|x〉|o(x)⊕ 0〉 −
∑

x∈Bm
|x〉|o(x)⊕ 1〉

)
.

(5.2)

There are four possible cases with the state |ξ〉 being the solution:

T · |x〉|0〉 = |x〉|o(x)⊕ 0〉 = |x〉|0〉,

T · |x〉|1〉 = |x〉|o(x)⊕ 1〉 = |x〉|1〉,

T · |ξ〉|0〉 = |ξ〉|f(ξ)⊕ 0〉 = |ξ〉|1〉,

T · |ξ〉|1〉 = |ξ〉|f(ξ)⊕ 1〉 = |ξ〉|0〉.

It follows that

= 1√
2m+1 ·

(∑
x6=ξ
|x〉|0〉+ |ξ〉|1〉 −

∑
x6=ξ
|x〉|1〉 − |ξ〉|0〉

)

1√
2m+1 ·

(∑
x6=ξ
|x〉 (|0〉 − |1〉) + |ξ〉 (|1〉 − |0〉)

)

= 1√
m

∑
x∈Bm

(−1)o(x) · |x〉 ⊗
(
|0〉−|1〉√

2

)
.

(5.3)

The value of the function o(x) is encoded by (−1)o(x), the operation is a phase kick-
back. We can set the auxiliary qubit c =

(
|0〉−|1〉√

2

)
to zero by the Hadamard gate.
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5.2 HOUSEHOLDER REFLECTION

The Householder reflection reflects one vector |x〉 to its negative and leaves invariant
the orthogonal complement of this vectors. It is described by the Householder matrix
Qx with ‖|x〉‖ = 1 representing m qubits with n = 2m and the projection matrix P

P = |x〉〈x|

and
Qx = Im − 2 · P (5.4)

Suppose Pm is generated by the normalized vector |x〉 indicating the direction of the
bisecting line,

|x〉 = 1√
n
· |x1〉+ 1√

n
· |x2〉+ · · ·+ 1√

n
· |xn〉 =


1√
n
...
1√
n

 (5.5)

then the projection matrix Pm is

Pm = |x〉〈x| =


1
n

1
n · · · 1

n
1
n

1
n · · · 1

n...
... . . . ...

1
n

1
n · · · 1

n

 (5.6)

The projection matrix P computes for each dimension the mean value

∑n

i=1 xi

n∑n

i=1 xi

n...∑n

i=1 xi

n

 =


1
n

1
n · · · 1

n
1
n

1
n · · · 1

n...
... . . . ...

1
n

1
n · · · 1

n

 ·


x1
x2
...
xn

 (5.7)

and the Householder reflection

Qx = Im − 2 · Pm. (5.8)

computes the following mapping,

xnewi = xoldi − 2 ·
∑n
i=1 x

old
i

n
. (5.9)

5.3 GROVER’S AMPLIFICATION

Grover’s amplification is based on −Qx. It is a unitary operator with

Gm := −Qx = −Im + 2 · Pm = 2 · Pm − Im (5.10)
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the mapping is defined as,

xnewi = 2 ·
∑n
i=1 x

old
i

n
− xoldi . (5.11)

Suppose only one amplitude of xj is negative and the other one are positive. Then
the corresponding amplitude grows with

xnewj = 2 ·
∑n
i=1 x

old
i

n
+ xoldj (5.12)

the other xi with i 6= j diminish. With j = 2 we get
2 ·
∑n

i=1 xi

n − x1

2 ·
∑n

i=1 xi

n + x2
...

2 ·
∑n

i=1 xi

n − xn

 =
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n

2
n

2
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n
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n · · · 2

n − 1

 ·


x1
−x2

...
xn

 . (5.13)

The probability of measuring the solution depending on the size n is

p(solution) =
∣∣∣∣ 3√
n
− 4
n ·
√
n

∣∣∣∣2 (5.14)

and non-solution
p(non− solution) =

∣∣∣∣ 1√
n
− 4
n ·
√
n

∣∣∣∣2 . (5.15)

5.3.1 Number of Iteration

The probability of seeing one solution should be as close as possible to 1 and the
number of iterations [121]. The number of iterations r is the largest integer not
greater than t∗,

r = bt∗c =
⌊
π

4 ·
√

2m
k
− 1

2

⌋
. (5.16)

The value of r depends on the relation of n versus k, with k being the number of
solutions. For n = 4 and k = 1 we need only one rotation, we need as well only one
rotation for

n

4 = k

to find one of the k solutions. For 16 qubits and one solution, k = 1, n = 65536 = 216,
with t∗ = 200.562. In this case we need 201 rotations that corresponds to the com-
plexity O(

√
n), means we get a quadratic speed up to a conventional computer.

When r is unknown (since we do not know k) we can repeatedly chose r randomly
between 1 and π

4 ·
√

2m. This simple strategy leads to success in O(
√
n) = O(

√
2m)

[82].
A more advanced approach is based on the periodic property of the Grover’s

amplification (see Figure 5.1). The period is related to k and can be determined by
quantum counting algorithm with the complexity O(

√
n). Quantum counting is based

on phase estimation algorithm and will be described in chapter 20 about the phase
estimation algorithm.
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Figure 5.1 Periodic property of the Grover’s amplification, y-axis indicates the ampli-
tude of the solution and x-axis the number r of rotation. m = 8 representing 256
states. With k = 1 the maximal amplitude values is one, with k = 8 the maximal
amplitude values is 0.3535 =

√
1
8 , also with a smaller period [121].

5.3.2 Circuit Representation

Grover’s amplification (for m ≥ 2) is based on Gm = −Qx. The unitary operator Λm

reverses the sign of |0〉
Λm · |0〉 = −|0〉

and for |x〉 6= |0〉
Λm · |x〉 = |x〉.

Then we can write

Gm = −Qx = −Im + 2 · Pm = 2 · Pm − Im = −(Hm · Λm ·Hm) (5.17)

with

Hm · Λm ·Hm =


1− 2

n − 2
n · · · − 2

n

− 2
n 1− 2

n · · · − 2
n...

... . . . ...
− 2
n − 2

n · · · 1− 2
n

 . (5.18)

5.4 NUMPY EXAMPLE WITH MATRIX NOTATION

We will demonstrate the principles of Grover’s amplification using the matrix notation
before explaining how to represent the algorithm with quantum gates. We will use
Python and the NumPy library that is a part of the qiskit installation. We will
demonstrate the example of m = 3, means 8 = 23 different states. First we will built
H3 matrix by (tensor) Kronecker product operation kron of H matrix.

import numpy as np
np.set_printoptions(precision=4)
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H=np.matrix([[1, 1], [1, -1]])
H=H*1/np.sqrt(2)
np.matrix.view(H)
print("H=\n",H)

Results in the Hadarmard matrix

H=
[[ 0.7071 0.7071]
[ 0.7071 -0.7071]]

and using the Kronecker product operation define H3

H2=np.kron(H,H)
H3=np.kron(H,H2)
print("H3=\n",H3)

H3=
[[ 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536]
[ 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536]
[ 0.3536 0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536]
[ 0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536]
[ 0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536]
[ 0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536]
[ 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536 0.3536 0.3536]
[ 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536 0.3536 -0.3536]]

Then we define Λm

L3=np.matrix([[-1., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.]])

and

G=-H3*L3*H3
print("G3=\n",G)
G3=
[[-0.75 0.25 0.25 0.25 0.25 0.25 0.25 0.25]
[ 0.25 -0.75 0.25 0.25 0.25 0.25 0.25 0.25]
[ 0.25 0.25 -0.75 0.25 0.25 0.25 0.25 0.25]
[ 0.25 0.25 0.25 -0.75 0.25 0.25 0.25 0.25]
[ 0.25 0.25 0.25 0.25 -0.75 0.25 0.25 0.25]
[ 0.25 0.25 0.25 0.25 0.25 -0.75 0.25 0.25]
[ 0.25 0.25 0.25 0.25 0.25 0.25 -0.75 0.25]
[ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 -0.75]]
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In the next step we represent the state vector with equally distributed amplitudes
and mark the solution with a minus sign

a=1/np.sqrt(8)
x1=np.array([a,a,a,a,-a,a,a,a])
print("x1=\n",x1)
x1=
[ 0.3536 0.3536 0.3536 0.3536 -0.3536 0.3536 0.3536 0.3536]

and perform a step in Grover’s amplification as with the resulting amplitudes

x1=G.dot(x1)
print("x1=\n",x1)
x1=
[[0.1768 0.1768 0.1768 0.1768 0.8839 0.1768 0.1768 0.1768]]

and the second iteration with the resulting amplitudes

x2=np.array([0.1768, 0.1768, 0.1768, 0.1768, -0.8839, 0.1768, 0.1768, 0.1768])
x2=G.dot(x2)
print("x2=\n",x2)
x2=
[[-0.0884 -0.0884 -0.0884 -0.0884 0.9723 -0.0884 -0.0884 -0.0884]].

With two rotations we achieved the maximal amplitude value that corresponds to
the probability value 0.945367 = |0.9723|2. After the third rotation the amplitudes
diminish because of the periodic property of Grover’s amplification (see Figure 5.1).

5.5 DECOMPOSITION

With the Grove’s amplification we have

Gm = −(Hm · Λm ·Hm).

How can we decompose Λm by quantum gates? We note that for one qubit with

1√
2

(
1 1
1 −1

)
· 1√

2

(
1 −1
1 1

)
=
(

1 0
0 −1

)
.

and (
0 1
1 0

)
· 1√

2

(
1 1
1 −1

)
· 1√

2

(
1 −1
1 1

)
·
(

0 1
1 0

)
=
(
−1 0
0 1

)
.

For three qubits we can define Λ3 accordingly with

X3 = X ⊗X ⊗X

H0 = I ⊗ I ⊗H

Λ3 = X3 ·H0 · CCX ·H0 ·X3
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and for the minus sign operation

RZ(2 · π)3 = RZ(2 · π)⊗RZ(2 · π)⊗RZ(2 · π)

it follows
Gm = −(H3 · Λ3 ·H3) = H3 · Λ3 ·H3 ·RZ(2 · π)3

and we can represent it by the following circuit

from qiskit import QuantumCircuit, Aer,execute
from qiskit.visualization import plot_histogram
import numpy as np
from math import pi

qc = QuantumCircuit(3)

#Difusor
qc.h([0,1,2])
qc.x([0,1,2])
qc.h(0)
qc.ccx(1,2,0)
qc.h(0)
qc.x([0,1,2])
qc.h([0,1,2])

#Multiply with (-1)
qc.rz(2*pi,0)
qc.rz(2*pi,1)
qc.rz(2*pi,2)

from qiskit.visualization import array_to_latex
from qiskit import assemble

simulator = Aer.get_backend(’qasm_simulator’)
qc.save_unitary()
qobj = assemble(qc)
unitary = simulator.run(qobj).result().get_unitary()
print("\nSize of the unitary matrix:",np.asarray(unitary).shape)
array_to_latex(unitary, prefix="\\text{G3 = }\n")

resulting in the matrix G3

G3 =
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Figure 5.2 Quantum oracle indicating marking the state |010〉 by writing a one in the
qubit 3.

5.6 QISKIT EXAMPLES

In the next step we apply Grover’s amplification to a marked state of three qubits.
Our solution corresponds to the Boolean formula

¬x ∧ y ∧ ¬z

for which it evaluates true, which is the case for x = 0, y = 1, and z = 0. In this case
the state determined by the oracle function is o(010) = 1 with the solution encoded
by (−1)o(x). The unitary operator T

T = (X ⊗ I ⊗X ⊗ I) ·MCX · (X ⊗ I ⊗X ⊗ I)

represents the oracle function o(x) that determines if the configuration is the goal
configuration

T · |x〉|c〉 = |x〉|o(x)⊕ c〉.

with
H0 = I ⊗ I ⊗ I ⊗H

and
H0 · T ·H4 · |0001〉 = 1√

8
∑
x∈B3

(−1)o(x) · |x〉 ⊗ |0〉

the value of the function o(x) is encoded by (−1)o(x), see as well Figure 5.2.

import numpy as np
from qiskit import QuantumCircuit, Aer
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import MCXGate
from math import pi

qc = QuantumCircuit(4)
qc.h([0,1,2])
qc.x(3)
qc.h(3)
qc.barrier()
qc.x(0)
qc.x(2)
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gate = MCXGate(3)
qc.append(gate, [0, 1, 2, 3])
qc.x(0)
qc.x(2)
qc.barrier()
qc.h(3)

qc.draw()

and we indicate the state vector

simulator = Aer.get_backend(’statevector_simulator’)
final_state = simulator.run(qc).result().get_statevector()

from qiskit.visualization import array_to_latex
array_to_latex(final_state,max_size=16,prefix="\\text{Statevector} = ")

Statevector =
[
0 0 0 0 0 0 0 0 0 0 1√

8
1√
8
− 1√

8
1√
8

1√
8

1√
8

1√
8

1√
8

]
indicating marking the state |010〉 by a minus sign and perform the Grover’s ampli-
fication (see Figure 5.3)

qc = QuantumCircuit(4)
qc.h([0,1,2])
#Preparation of Aux
qc.x(3)
qc.h(3)
#Oracle
qc.barrier()
qc.x(0)
qc.x(2)
gate = MCXGate(3)
qc.append(gate, [0, 1, 2, 3])
qc.x(0)
qc.x(2)
#Diffusor
qc.barrier()
qc.h(3)
qc.barrier()
qc.h([0,1,2])
qc.x([0,1,2])
qc.h(0)
qc.ccx(1,2,0)
qc.h(0)
qc.barrier()
qc.x([0,1,2])
qc.h([0,1,2])
#Corrrect the sign, not required...
qc.rz(2*pi,0)
qc.rz(2*pi,1)
qc.rz(2*pi,2)
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Figure 5.3 Quantum oracle indicating marking the state |010〉 by a minus sign and the
Grover’s amplification.

qc.draw(fold=140)

simulator = Aer.get_backend(’statevector_simulator’)
final_state = simulator.run(qc).result().get_statevector()

from qiskit.visualization import array_to_latex
array_to_latex(final_state,max_size=16,prefix="\\text{Statevector} = ")

Statevector = [0 0 0 0 0 0 0 0 0 0 0.1768 0.1768 0.8839 0.1768 0.1768 0.1768 0.1768 0.1768]

In the next step we will perform two rotations using qasm simulator. We do not minus
sign operation

G3 = −H3 · Λ3 ·H3

to get the correct result, what changes is the minus sign of over all amplitudes. This
has no consequence for the resulting probabilities, so the Grover’s amplification can
be simplified to (see Figures 5.4 and 5.5)

G3 = H3 · Λ3 ·H3

import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate

qc = QuantumCircuit(4,3)
qc.h([0,1,2])
#Preparation of Aux
qc.x(3)
qc.h(3)
#Oracle
qc.barrier()
qc.x(0)
qc.x(2)
gate = MCXGate(3)
qc.append(gate, [0, 1, 2, 3])
qc.x(0)
qc.x(2)
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#Diffusor
qc.barrier()
qc.h(3)
qc.barrier()
qc.h([0,1,2])
qc.x([0,1,2])
qc.h(0)
qc.ccx(1,2,0)
qc.h(0)
qc.x([0,1,2])
qc.h([0,1,2])
qc.barrier()
qc.h(3)
#Oracle
qc.barrier()
qc.x(0)
qc.x(2)
gate = MCXGate(3)
qc.append(gate, [0, 1, 2, 3])
qc.x(0)
qc.x(2)
qc.barrier()
qc.h(3)

#Diffusor

qc.barrier()
qc.h([0,1,2])
qc.x([0,1,2])
qc.h(0)
qc.ccx(1,2,0)
qc.h(0)
qc.x([0,1,2])
qc.h([0,1,2])

qc.barrier()
qc.measure(0,0)
qc.measure(1,1)
qc.measure(2,2)

qc.draw(fold=90)

5.7 UN-COMPUTATION

In quantum computation, it is not possible to reset the information to the pattern
representing the initial state. Instead, we un-compute the output back to the input.
In our oracle

T = (X ⊗ I ⊗X ⊗ I) ·MCX · (X ⊗ I ⊗X ⊗ I)
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Figure 5.4 Quantum oracle indicating marking the state |010〉 by a minus sign and
two Grover’s amplification.

the un-computation is represented by the operations (X ⊗ I ⊗X ⊗ I). We may ask
what would happen if we do not un-compute and define our oracle simply as

T = MCX · (X ⊗ I ⊗X ⊗ I).

import numpy as np

Figure 5.5 Histogram of Counts after two rotations of Grover’s amplification.
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from qiskit import QuantumCircuit, Aer
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import MCXGate
from math import pi

qc = QuantumCircuit(4)
qc.h([0,1,2])
qc.x(3)
qc.h(3)
qc.barrier()
qc.x(0)
qc.x(2)
gate = MCXGate(3)
qc.append(gate, [0, 1, 2, 3])
#No un-computation
#qc.x(0)
#qc.x(2)
qc.barrier()
qc.h(3)

In this case the other remaining qubits become entangled and we cannot apply
Grover’s amplification correctly to the three qubits 0, 1, and 2. The resulting his-
togram of cost does not indicate the correct solution, see Figure 5.6. We have to
un-compute the information to the pattern representing the initial state before ap-
plying the Grover’s algorithm.

Figure 5.6 Histogram of Counts after two rotations of Grover’s amplification without
the un-computation of the oracle. The resulting histogram of cost does not indicate
the correct solution.
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5.8 GENERALIZATION OF ΛM FOR M QUBITS

For m qubits we can define Λm accordingly using the MCX gate

gate = MCXGate(m)
qc.append(gate, [0, 1, 2,...., m, m+1])

with
Xm = X ⊗X ⊗ · · · ⊗X︸ ︷︷ ︸

M times

Hm
0 = I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

M − 1 times

⊗H

Λm = Xm ·Hm
0 ·MCX ·Hm

0 ·Xm

Alternatively Λm can be implemented efficiently with f0(x)

f0(x) =
{

1 if x = 0
0 else

(5.19)

as
1√
m

∑
x∈Bm

(−1)f0(x) · |x〉 ⊗
( |0〉 − |1〉√

2

)
. (5.20)
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SAT Problem

The Boolean satisfiability problem (SAT problem) is the problem of determining if
there exists an interpretation that satisfies a given Boolean formula, whether the
formula evaluates true [22]. Each variable of the formula can have the values true
(one) or false (zero). We formulate the formula satisfiability problem and indicate an
example step by step. Then we discuss the relation between the SAT problem and
the time complexity. Computational complexity theory addresses questions regarding
which problems can be solved in a finite amount of time on a computer. A decision
problem is a computational problem with instances formulated as a question with
a binary answer. An example is the question of whether a certain number n is a
prime number. Most problems can be converted into a decision problem. The time
complexity describes the amount of computer time it takes to run an algorithm. Time
complexity is commonly estimated by counting the number of elementary operations
performed by the algorithm. The amount of time taken is linearly related to the
number of elementary operations performed by the algorithm. A problem is easy if
an algorithm on a computer can determine the instances related to the input for
the answer in polynomial time. Polynomial-time algorithms are said to be fast since
they can be executed in an acceptable time on a computer. Otherwise, we state that
the problem is hard, means the time required grows exponentially and cannot be
executed in an acceptable time on a computer. We describe a simple SAT problem
with a Boolean formula with three Boolean variables and indicate it step by step using
qiskit framework how to solve the problem using Grover’s amplification algorithm by
a quantum circuit.

6.1 FORMULA SATISFIABILITY

The formula satisfiability problem is as follows, is a formula φ composed of

• m Boolean variables: x1, x2, · · · , xm;

• k Boolean connectivities: ∧ (AND), ∨ OR ¬ (NOT), → (implication), ↔ (if
and only if);

• parentheses.
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Table 6.1 Truth table for implication (→).
x y x→ y ¬x ∨ y
1 1 1 1
1 0 0 0
0 1 1 1
0 0 1 1

with the operation implication indicated in the Table 6.1 and the operation if and
only if indicated in the Table 6.2. For example, the formula [22]

φ = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

has the interpretation x1 = 0, x2 = 0, x3 = 1, and x4 = 1 that satisfies φ with

φ = ((0→ 0) ∨ ¬((¬0↔ 1) ∨ 1)) ∧ ¬0

φ = (1 ∨ ¬(1 ∨ 1)) ∧ 1

φ = 1

There are 2m possible assignments in a formula φ with m variables, the checking
every assignment requires 2m time on a conventional computer.

6.2 SAT PROBLEM AND NP COMPLETE

A decision problem, like the SAT-problem, is a computational problem with instances
formulated as a question with a binary “Yes” or “No” answer [22]. The time complex-
ity describes the amount of conventional computer time it takes to run an algorithm.
Time complexity is commonly estimated by counting the number of elementary op-
erations performed by the algorithm. The amount of time taken is linearly related
to the number of elementary operations performed by the algorithm. A problem is
easy if a conventional computer can determine the instances related to the input for
the answer “Yes” in polynomial time. Polynomial-time algorithms are said to be fast
since they can be executed in an acceptable time on a conventional computer and
are called P .

Otherwise, we state that the problem is hard, means the time required grows
exponentially and cannot be executed in an acceptable time on a conventional com-
puter, such a problem is called NP . For such a problem, a conventional computer

Table 6.2 Truth table for if and only if (↔).
x y x↔ y ¬(x XOR y)
1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 1
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can verify in polynomial time if one instance of many represents a solution, but no
algorithm on a conventional computer exists that determines the solution efficiently
in time. A problem is called NP−complete if all possible instances must be examined
by the conventional computer. A conventional computer can only solve a problem by
checking all possible instances one after the other one. No other algorithm exists, so
we cannot speed up the computation. It was not obvious that an NP − complete
problem exists. Cook-Levin described the first example of an NP − complete prob-
lem, the SAT problem. Until recently, thousands of other problems are known to be
NP − complete, including the well-known traveling salesman and Hamiltonian cycle
problem [23]. Clearly, the class P ⊆ NP is known, and it follows that NP 6= P or
NP = P ; however, other relationships are not known. The class NP − complete is
present if the problem is in NP and every other problem in NP can be reduced to
the class NP − complete.

Despite the fact the saving of Grover’s algorithm of = O(
√
n) = O(2m

2 ) compared
to O(n) = O(2m) is huge, NP − complete problems remain NP − complete on a
quantum computer.

6.3 SAT PROBLEM AND GROVER’S ALGORITHM

In the next step we apply Grover’s amplification to a marked state of three qubits.
Our solution corresponds to the Boolean formula

φ = (x1 ↔ x2) ∧ (x1 ∧ x2) ∧ ¬x3

that evaluates true, which is the case for x1 = 1, x2 = 1, and x3 = 0. In this case,
the state determined by the oracle function with the solution encoded by (−1)o(x).

6.3.1 Quantum Boolean Circuit

We define the oracle function using the quantum gates and six qubits using the Toffoli
gates and NOT gates and six qubits.

The operation (x1 ∧ x2) is represented by the AND operation, the ancilla qubit
2 is set to 0, x1 is represented by qubit 0, and x2 by qubit 1

ccX(x0, x1, 0) = (x0, x2, x1 ∧ x2)

qc.ccx(0,1,2)

and the result of the operation is represented in the qubit 2.
The operation (x1 ↔ x2) is represented by the XOR and NOT operation, x1 is set
to 1 corresponding to the qubit 3. The XOR operation is executed

ccX(1, x2, x3) = (1, x2, x2 ⊕ x3)

the result of the XOR operation is written in qubit 1, then the NOT operation is
performed

X(x2 ⊕ x3) = ¬(x2 ⊕ x3)
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Figure 6.1 The circuit representing the Boolean formula φ = (x1 ↔ x2)∧(x1∧x2)∧¬x3.
The input are the qubits 0, 1, and 4 and the output is represented in the qubit 5.

qc.x(3)
qc.ccx(3,0,1)
qc.x(1)

and the result of the operation is represented in the qubit 1. We execute the AND
operation of the result represented in the qubit 1 and 2 and write the result in qubit
3. We reset the qubit 3 to zero

qc.x(3)
qc.ccx(1,2,3)

and write result of the operation in the qubit 3, which corresponds to the Boolean
formula (x1 ↔ x2) ∧ (x1 ∧ x2). The remaining part of the formula is represented by
NOT and AND operation of ¬x3 represented by qubit 4

qc.x(4)
qc.ccx(3,4,5)

and write result of the operation in the qubit 5, resulting in the circuit indicated in
the Figure 6.1

6.3.2 Un-Computation

In quantum computation, it is not possible to reset the information to the pattern
representing the initial state. Instead, we un-compute the output back to the input
as indicated in the following listing:

from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from qiskit.quantum_info import Statevector

qc = QuantumCircuit(6)
#Input 0,1,4
qc.h(0)
qc.h(1)
qc.h(4)
qc.barrier()
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#First And 2 is zero
qc.ccx(0,1,2)
qc.barrier()
#Result in 2

#If AND IF
qc.x(3)
qc.ccx(3,0,1)
qc.x(1)
#Result in 1

#Make 3 zero
qc.x(3)
qc.ccx(1,2,3)
qc.barrier()
#Result in 3

#Input 4
qc.x(4)
qc.ccx(3,4,5)

#Un-compute
qc.barrier()
qc.barrier()
qc.x(4)
qc.barrier()
qc.ccx(1,2,3)
qc.x(3)
qc.barrier()
qc.x(1)
qc.ccx(3,0,1)
qc.x(3)
qc.barrier()
qc.ccx(0,1,2)

qc.draw(fold=120)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=1000).result()
counts = result.get_counts()
print("\nTotal count are:",counts)

plot_histogram(counts)

The circuit is represented in the Figure 6.2 and the resulting histogram in the Figure
6.3. The qubit 5 indicates a solution.
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Figure 6.2 The circuit representing the Boolean formula φ = (x1 ↔ x2)∧(x1∧x2)∧¬x3.
In quantum computation, it is not possible to reset the information to the pattern
representing the initial state. Instead, we un-compute the output back to the input.
The input are the qubits 0, 1, and 4 mapped in superposition by Hadamard gates.
The output is represented in the qubit 5 indicating by the value 1 the presence of the
solution. The solution itself is indicated in the qubits 0, 1, and 4.

6.3.3 Grover’s Amplification

In the next step we apply the Grover’s algorithm with two rotations, see Figures 6.4
and 6.5. The listing of the definition of the circuit:

qc = QuantumCircuit(6,3)

#Input 0,1,4
qc.h(0)
qc.h(1)
qc.h(4)

Figure 6.3 The circuit representing the Boolean formula φ = (x1 ↔ x2)∧(x1∧x2)∧¬x3.
The output is represented in the qubit q5 indicating by the value 1 the presence of
the solution. The solution is indicated in the qubits q0 = 1, q1 = 1, and q4 = 0 by
the right column representing the state |q5q4q3q2q1q0〉 = |100011〉.
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Figure 6.4 The circuit representing the Boolean formula φ = (x1 ↔ x2)∧(x1∧x2)∧¬x3
and two rotations of Grover’s algorithm. The input are the qubits 0, 1, and 4 is
mapped in superposition by Hadamard gates. The rotations itself are separated by
two qc.barrier() commands. We could as well simplify the circuit by eliminating the
two Hadamard gates of the auxiliary qubit after the first and second rotation, however
by doing so the circuit loses its modular structure (less readable) and the redundant
operations are simplified during the transpiration process. The qubits 0, 1, and 4 are
measured.

Figure 6.5 The qubits 0, 1, and 4 indicate the eight possible instantiations for x1, x2,
and x3 for the φ = (x1 ↔ x2)∧ (x1 ∧ x2)∧¬x3 SAT problem. The solution after two
rotations for the SAT problem has the highest count with the measured state |011〉.
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#Preparation of Aux
qc.x(5)
qc.h(5)
qc.barrier()

#First And 2 is zero
qc.ccx(0,1,2)
qc.barrier()
#Result in 2

#If AND IF

qc.x(3)
qc.ccx(3,0,1)
qc.x(1)
#Result in 1

#Make 3 zero
qc.x(3)
qc.ccx(1,2,3)
qc.barrier()
#Result in 3

#Input 4
qc.x(4)
qc.ccx(3,4,5)

#Un-compute
qc.barrier()
qc.x(4)
qc.barrier()
qc.ccx(1,2,3)
qc.x(3)
qc.barrier()
qc.x(1)
qc.ccx(3,0,1)
qc.x(3)
qc.barrier()
qc.ccx(0,1,2)

qc.barrier()
#Preparation of Aux
qc.h(5)
#Diffusor
qc.barrier()
qc.h([0,1,4])
qc.x([0,1,4])
qc.h(0)
qc.ccx(1,4,0)
qc.h(0)
qc.barrier()
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qc.x([0,1,4])
qc.h([0,1,4])

#Second Iteration

#Preparation of Aux
qc.barrier()
qc.barrier()
qc.h(5)
qc.barrier()

#First And 2 is zero
qc.ccx(0,1,2)
qc.barrier()
#Result in 2

#If AND IF

qc.x(3)
qc.ccx(3,0,1)
qc.x(1)
#Result in 1

#Make 3 zero
qc.x(3)
qc.ccx(1,2,3)
qc.barrier()
#Result in 3

#Input 4
qc.x(4)
qc.ccx(3,4,5)

#Un-compute
qc.barrier()
qc.x(4)
qc.barrier()
qc.ccx(1,2,3)
qc.x(3)
qc.barrier()
qc.x(1)
qc.ccx(3,0,1)
qc.x(3)
qc.barrier()
qc.ccx(0,1,2)

qc.barrier()
#Preparation of Aux
qc.h(5)
#Diffusor
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qc.barrier()
qc.h([0,1,4])
qc.x([0,1,4])
qc.h(0)
qc.ccx(1,4,0)
qc.h(0)
qc.barrier()
qc.x([0,1,4])
qc.h([0,1,4])

qc.measure(0,0)
qc.measure(1,1)
qc.measure(4,2)

qc.draw(fold=165)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=1000).result()
counts = result.get_counts()
print("\nTotal count are:",counts)

plot_histogram(counts)

6.3.4 No Solution

For the Boolean formula

φ = (x1 ↔ x2) ∧ (¬x1 ∧ x2) ∧ ¬x3

no solution exists, the formula can never evaluate to the value true. We change our
circuit correspondingly with

#First And 2 is zero
qc.x(0)
qc.ccx(0,1,2)
qc.x(0)
qc.barrier()
#Result in 2

In the next step we apply Grover’s amplification; however no state is marked. In
Figure 6.6 the distribution of the eight possible instantiations for x1, x2, and x3 after
one Grover’s amplification and two Grover’s amplifications are indicated.
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(a) (b)

Figure 6.6 For the Boolean formula φ = (x1 ↔ x2) ∧ (¬x1 ∧ x2) ∧ ¬x3 no solution
exists. The qubits 0, 1, and 4 indicate the eight possible instantiations for x1, x2, and
x3. (a) The distribution of the eight possible instantiations for x1, x2, and x3 after
one rotation. (b) The distribution after two rotations. Each instantiation has nearly
the same count, no solution exists.

The qubits 0, 1, and 4 indicate the eight possible instantiations for x1, x2 and x3
for the φ = (x1 ↔ x2)∧ (x1 ∧ x2)∧¬x3 SAT problem. Each instantiation has nearly
the same count after applying Grover’s amplification and no solution exists.



C H A P T E R 7

Symbolic State
Representation

An economic symbolic representation of objects and attributes that can represent a
state during problem solving is introduced. This representation is motivated by the
biological what where principle and requires a low number of bits. Such an economical
symbolical representation is ideal for the current generation of quantum computers.
We describe the tree search on which problem solving is based. Nodes and edges
represent a search tree. Each node represents a state, and each edge represents a
transition from one state to the following state. The path descriptors is the basis
idea of quantum tree search. In a quantum tree search we represent all possible path
descriptors simultaneously and can use Grover’s amplification algorithm to determine
the solution.

7.1 BIT REPRESENTATION OF OBJECTS AND ATTRIBUTES

We can represent n symbols with dlog2 ne bits. To represent four symbols A, B, C,
D we require two bits with the following code: A = 00, B = 01, C = 10, D = 11.
To represent a string B A D C we code each symbol at a corresponding position:
01 00 11 10. In this representation the attribute is fixed, and the code descriptors of
the object moves. Each symbol can represent an object. Each object can have one or
more attributes (adjectives), like position in one or two dimensions. In our case the
attribute corresponds to the position in the representation. Instead of coding symbols
we could alternatively code the positions, for four positions we could code the first
position by 00, second position by 01, third position by 10 and the fourth position by
11. A symbol would be represented by the order, to represent a string D B A C we
code 10 01 11 00, A at position 10 (fourth position in the string), B at position 01
(second position in the string), C at position 11 (fourth position in the string), and D
at position 00 (first position in the string). In this representation the code descriptors
of the object are fixed, and the attribute moves. In the case several attributes are
present, it is more economical to represent the code descriptors of the object fixed
since some attributes may change while the other remain fixed. During the problem
solving the number of objects remains fixed, only the values of the attributes change.
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Objects cannot disappear or appear. A state is of object and attributes is described by
fixed number of bits that change its position, a rule corresponds to the permutation
of bits. This kind of representation is related to the biological what where principle.

7.1.1 “What” and “Where”

Gross and Mishkkin [34] suggested that the brain includes two mechanisms for visual
categorization: one for the representation of the object and the other for the repre-
sentation of the localization [57, 52, 79]. The first mechanism is called the “what”
pathway and is composed of the temporal lobe. The second mechanism is called the
“where” pathway and is composed by the partial lobe [52, 79]. According to this
division, the identity of a visual object can be coded apart from the location and the
size of the object.

7.2 TREE SEARCH AND THE PATH DESCRIPTORS

Nodes and edges represent a search tree. Each node represents a state, and each edge
represents a transition from one state to the following state. The initial state defines
the root of the tree. From each state, either B ∈ N states can be reached, or the state
is a leaf. From a leaf, no other state can be reached. B represents the branching factor
of the node, the number of possible choices. A leaf represents either the goal of the
computation or an impasse when there is no valid transition to a succeeding state.
Every node besides the root has a unique node from which it was reached, which is
called the parent. Each node and its parent are connected by an edge. Each parent
has B children. If B = 2, each of the m questions has a reply of either “yes” or “no”
and can be represented by a bit (see Figure 7.1). The m answers are represented by
a binary number of length m. There are n = 2m = Bm possible binary numbers of
length m. Each binary number represents a path from the root to a leaf. For each
goal, a certain binary number indicates the solution. For a constant branching factor
B > 2, each question has B possible answers. The m answers can be represented
by m digits. For example, with B = 8, the number is represented by 23 bits. These
numbers represent all paths from the root to the leaves.

7.3 QUANTUM TREE SEARCH

In a quantum computation, we can simultaneously represent all possible path de-
scriptors. There is one path descriptor for each leaf of the tree. Using Grover’s al-
gorithm, we search through all possible paths and verify whether each path leads
to the goal state. This type of procedure is called a quantum tree search [107, 119].
For n = Bm possible paths, the costs are (approximately)

√
n = B

m
2 (see Figure 7.2).

A constraint of this approach is that we must know the depth m of the search tree
in advance. The constraint can be overcome by iterative deepening in an iterative
deepening search. During the iterative deepening search, the states are generated
multiple times [51, 87]. The time complexity of the iterative deepening search is of
the same order of magnitude as a search to the maximum depth [51], as explained
by Richard E. Korf: Since the number of nodes on a given level of the tree grows
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Figure 7.1 (a) Search tree for B = 2 and m = 2. (b) Each question can be represented
by a bit. Each binary number (11, 10, 01, 00) represents a path from the root to the
leaf.

Figure 7.2 For branching factor B from 2 to 4 and the depth of the tree search m

from 1 to 10. The cost on a conventional computer are n = Bm, upper plane. On a
quantum computer we need only

√
n = B

m
2 steps, plane below.
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exponentially with depth, almost all time is spent in the deepest level, even though
shallower levels are generated an arithmetically increasing number of times. The para-
dox can be explained using the arithmetic–geometric sequence. A quantum iterative
deepening search is equivalent to the iterative deepening search [108]. For each limit
max, a quantum tree search is performed from the root, where max is the maximum
depth of the search tree. The possible solutions are determined using a measurement.
We gradually increase the limit of the search from one, to two, three and four and
continue to search until the goal is found. For each limit m, a quantum tree search
is performed from the root, with m being the maximum depth of the search tree.
The possible solutions are determined by a measurement. The time complexity of
an iterative deepening search has the same order of magnitude as the quantum tree
search. The total costs of m iterations with m measurements are

O(1) +O(B
1
2 ) +O(B

2
2 ) +O(B

3
2 ) + · · ·+O(B

m
2 ) = O(B

m
2 ), (7.1)

the equation is based on the geometric series [108].
A second constraint is represented by the constant branching factor. If the branch-

ing factor is not constant, the maximal branching factor Bmax must be used for the
quantum tree search [107]. It turns out in the chapters 10 and 11 that this problem
may be overcome elegantly.



C H A P T E R 8

Quantum Production System

A production system is a model of human problem solving. It is composed of long-
term memory and working memory, which is also called the short-term memory.
Problem-solving can be modeled by a production system that implements a search
algorithm. The search defines a problem space and can be represented as a tree. Using
Grover’s algorithm, we search through all possible paths and verify, for each path,
whether it leads to the goal state.

A pure production system has no mechanism for recovering from an impasse.
We describe an example of a simple pure production systems for sorting of a string
and indicate how to port this simple pure production systems into the quantum
production system. Then we indicate that a quantum production system can be the
basis of a unified theory of cognition.

8.1 PURE PRODUCTION SYSTEMS

The pure production system model has no mechanism for recovering from an impasse
[80]. The system halts if no production can fire. It is composed of the set of produc-
tions L (the long-term memory) and control system C. A pure production system is
a sextuple:

(Σ, L,W, γi, γg, C) (8.1)

with

• Σ is a finite alphabet;

• W is the working memory. It represents a state γ ∈ Σ.

• L is the long-term memory. It is the set ofB productions. A production p has the
form (precondition, conclusion) ∈ Σ. The precondition is matched against the
contents of the working memory. If the precondition is met then the conclusion
is preformed and changes the contents of the working memory;

• γi ∈ Σ is the initial state. The working memory is initialized with the initial
state γi;

• γg ∈ Σ is the goal state;
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• δ is the control function of the form Σ → L × Σ × h. It chooses a production
and fires it or halts h.

If C(γ) = (p, γ′, h), then the working memory contains symbol γ. It is substituted by
a production p by γ′ or the computation halts h. The computation halts if the goal
state γg is reached or an impasse is present, means no production can be applied. An
impasse is solved during tree search by backtracking to a previous state.

Production systems are closely related to the approach of Markov algorithms [62];
similar to these approaches, production systems are equivalent in power to a Turing
machine [113]. A Turing machine can also be easily simulated by a production system;
thus, a production system is a complete model of computation. The search represented
by a search tree is performed from an initial state through the following states until
a goal state is attained.

8.1.1 Quantum Production Systems

Quantum production systems are related to pure production systems since the com-
putation is not continued in the branch if an impasse is present, no backtracking to
a previous state is done. Contrary to the pure production systems no control system
C exists since all productions are executed simultaneously.

Quantum production system can operate independently of whether the computa-
tion terminates; in the case of non-termination, the computation continues forever,
and the iterations do not terminate. The quantum production system also provides
a maximal speedup of O(

√
n) if the Turing machine simulation allows n multiple

computational branches [108].
A future quantum computer based on a quantum production system will involve

classical artificial-intelligence programing languages, such as OPS5 [17]. OPS5 pro-
grams are executed by matching the working memory elements with productions in
the long-term memory [30]. Thus, the programmer is not required to contend with
quantum gates, nor is he or she required to address the principles of quantum compu-
tation. It is equivalent to current programmers who specify their algorithms in high-
level languages, such as Java or Python, without the requirement of understanding
the nature of electronic circuits or semiconductor devices, such as a transistor.

8.2 EXAMPLE: SORTING A STRING

We demonstrate a simple pure production systems for sorting of a string with:

• Σ: a, b, c, d composed of four letters

• W is the working memory. It represents a state γ ∈ Σ by a string of five letters

• The long-term memory L, the set of B = 6 productions

1. ab → ba

2. ac → ca

3. ad → da
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Table 8.1 Execution of a simple pure production system or sorting a string.
Iteration Working Memory Conflict Set Rule Fired

0 cdcab 1, 6 1
1 cdcba 6 6
2 dccba Halt

4. bc → cb

5. bd → db

6. cd → dc

The production (rule) can fire if the precondition matches portion of the string
in the working memory.

• γi ∈ Σ is the initial state: cdcab

• γg ∈ Σ is the goal state: dccba

• δ is the control function: random choice of a production

The execution is indicated in the Table 8.1.

8.2.1 Quantum Production System for Sorting a String

To port this simple pure production systems into the quantum production system,
we represent first the finite alphabet Σ by two qubits and approximate a problem by
reformulation of the rules without a precondition that has to be tested.

• Σ: a = |00〉, b = |01〉, c = |10〉, d = |11〉

• W is the working memory. It represents a state of teen qubits γ ∈ Σ, two qubits
represent a position pi

|x7x6x5x4x3x2x1x0〉 = |p5p4p3p2p1〉

• The long-term memory L, the set of B = 4 productions that manipulate the
position of the string, indexed by two qubits that represent the path descriptor.
Each precondition determines the rule, each rule can be always applied

– index |11〉: p2p1 → p1p2

– index |10〉: p3p2 → p2p3

– index |01〉: p4p3 → p3p4

– index |00〉: p5p4 → p4p5

At each search step all four rules can be applied in parallel.

• γi ∈ Σ is the initial state: cdcab = |1011100001〉
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Figure 8.1 The working memory W and the long-term memory L are represented in
the quantum circuit by teen qubits 0 to 9. The qubit 10 is used as an internal flag
to mark the execution of the rule in relation to the path descriptor. The marking of
the flag is implemented by the Toffoli gate, also called the ccX gate, it recognizes
the corresponding index represented by the path descriptor. Since we are searching
for the depth two we require two path descriptors represented by the qubits 11 to
14, since each index has four values. The path descriptor is indexes are indicated
by the NOT gates. To implement the oracle that marks the solution we will use the
MCXGate, a multi-controlled X (Toffoli) gate. The auxiliary qubit 14 indicates by
one the presence of a solution |1110100100〉 by the oracle function.

• γg ∈ Σ is the goal state is represented by the oracle : dccba = |1110100100〉

The working memory W and the long-term memory L are represented in the quantum
circuit by teen qubits 0 to 9. The qubit 10 is used as an internal flag to mark the
execution of the rule in relation to the path descriptor. The marking of the flag is
implemented by the Toffoli gate, also called the ccX gate (CCNOT gate, controlled
controlled not gate), it recognizes the corresponding index represented by the path
descriptor. The long-term memory L and γg are represented by the following circuit
with the path descriptor that index the four rules. Since we are searching for the
depth two, two path descriptors are required represented by the qubits 11 to 14,
since each index has four values. The path descriptor is indexes are indicated by the
NOT gates.

The oracle that marks the solution is implemented bz the MCXGate, a multi-
controlled X (Toffoli) gate. A multi-controlled X gate is composed in of simple (Tof-
foli) gate and temporary working registers. It is represented in the qiskit circuit li-
brary. The auxiliary qubit 14 indicates by one the presence of a solution |1110100100〉
by the oracle function, see Figure 8.1

from qiskit import QuantumCircuit, Aer,execute
from qiskit.visualization import plot_histogram
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import MCXGate

qc = QuantumCircuit(16)

#State Preparation 0-9
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#Working Memory for Flag bit 10
#1St Path descriptor 11-12
#1th Path descriptor 13-14

#Initial state b,a,c,d,c
#First Position 01 is b 01
qc.x(0)
#Second Position 23 is a 00
#Third Position 45 is c 10
qc.x(5)
#Fourth Position 67 is d 11
qc.x(6)
qc.x(7)
#Fifth Position 89 is c 10
qc.x(9)

#Path Descriptor
qc.h(11)
qc.h(12)
qc.barrier()

#First Rule
#Set flag 10 dependent on the path descriptor
qc.ccx(11,12,10)
# Move
qc.cswap(10,0,2)
qc.cswap(10,1,3)
#Reset flag
qc.ccx(11,12,10)
#Second Rule
#Set flag 10 dependent on the path descriptor
qc.x(11)
qc.ccx(11,12,10)
# Move
qc.cswap(10,2,4)
qc.cswap(10,3,5)
#Reset flag
qc.ccx(11,12,10)
qc.x(11)
#Third Rule
#Set flag 10 dependent on the path descriptor
qc.x(12)
qc.ccx(11,12,10)
# Move
qc.cswap(10,4,6)
qc.cswap(10,5,7)
#Reset flag
qc.ccx(11,12,10)
qc.x(12)
#Fourth Rule
#Set flag 10 dependent on the path descriptor
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qc.x(11)
qc.x(12)
qc.ccx(11,12,10)
# Move
qc.cswap(10,6,8)
qc.cswap(10,7,9)
#Reset flag
qc.ccx(11,12,10)
qc.x(12)
qc.x(11)
qc.barrier()

#Depth two: 2th Path Descriptor
qc.h(13)
qc.h(14)
qc.barrier()
#First Rule
#Set flag 10 dependent on the path descriptor
qc.ccx(13,14,10)
# Move
qc.cswap(10,0,2)
qc.cswap(10,1,3)
#Reset flag
qc.ccx(13,14,10)
#Second Rule
#Set flag 10 dependent on the path descriptor
qc.x(13)
qc.ccx(13,14,10)
# Move
qc.cswap(10,2,4)
qc.cswap(10,3,5)
#Reset flag
qc.ccx(13,14,10)
qc.x(13)
#Third Rule
#Set flag 10 dependent on the path descriptor
qc.x(14)
qc.ccx(13,14,10)
# Move
qc.cswap(10,4,6)
qc.cswap(10,5,7)
#Reset flag
qc.ccx(13,14,10)
qc.x(14)
#Fourth Rule
#Set flag 10 dependent on the path descriptor
qc.x(13)
qc.x(14)
qc.ccx(13,14,10)
# Move
qc.cswap(10,6,8)
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qc.cswap(10,7,9)
#Reset flag
qc.ccx(13,14,10)
qc.x(14)
qc.x(13)
qc.barrier()

#Oracle
gate = MCXGate(5)
#Mark the goal state
#Initial state a,b,c,c,d
qc.append(gate, [2,5,7,8,9,15])

We will use the qiskit def function to reduce the complexity of the quantum
circuit. Using the def function we define the circuit that represents the four rules.
def rules():

qc = QuantumCircuit(15)
#First Rule
#Set flag 10 dependent on the path descriptor
qc.ccx(11,12,10)
# Move
qc.cswap(10,0,2)
qc.cswap(10,1,3)
#Reset flag
qc.ccx(11,12,10)
#Second Rule
#Set flag 10 dependent on the path descriptor
qc.x(11)
qc.ccx(11,12,10)
# Move
qc.cswap(10,2,4)
qc.cswap(10,3,5)
#Reset flag
qc.ccx(11,12,10)
qc.x(11)
#Third Rule
#Set flag 10 dependent on the path descriptor
qc.x(12)
qc.ccx(11,12,10)
# Move
qc.cswap(10,4,6)
qc.cswap(10,5,7)
#Reset flag
qc.ccx(11,12,10)
qc.x(12)
#Fourth Rule
#Set flag 10 dependent on the path descriptor
qc.x(11)
qc.x(12)
qc.ccx(11,12,10)
# Move



Quantum Production System � 113

qc.cswap(10,6,8)
qc.cswap(10,7,9)
#Reset flag
qc.ccx(11,12,10)
qc.x(12)
qc.x(11)

#depth two
#First Rule
#Set flag 10 dependent on the path descriptor
qc.ccx(13,14,10)
# Move
qc.cswap(10,0,2)
qc.cswap(10,1,3)
#Reset flag
qc.ccx(13,14,10)
#Second Rule
#Set flag 10 dependent on the path descriptor
qc.x(13)
qc.ccx(13,14,10)
# Move
qc.cswap(10,2,4)
qc.cswap(10,3,5)
#Reset flag
qc.ccx(13,14,10)
qc.x(13)
#Third Rule
#Set flag 10 dependent on the path descriptor
qc.x(14)
qc.ccx(13,14,10)
# Move
qc.cswap(10,4,6)
qc.cswap(10,5,7)
#Reset flag
qc.ccx(13,14,10)
qc.x(14)
#Fourth Rule
#Set flag 10 dependent on the path descriptor
qc.x(13)
qc.x(14)
qc.ccx(13,14,10)
# Move
qc.cswap(10,6,8)
qc.cswap(10,7,9)
#Reset flag
qc.ccx(13,14,10)
qc.x(14)
qc.x(13)
qc.name="RULES"
return qc
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In quantum computation it is not possible to reset the information to the pattern
representing the initial state. Instead we un-compute the output back to the input
before applying the amplification step of the Grover’s algorithm. We use the qiskit
inverse command inverse() to define the inverse operation by a function.

def rules_inv():
qc=rules()
qc_inv=qc.inverse()
qc_inv.name="RULES_INV"
return qc_inv

A search of depth two is described by a path descriptor of four qubits, 11, 12, 13,
and 14. The Grover amplification act on the qubits 13, 18, and 23 that describe the
path descriptor resulting in 16 states and we use the qiskit def function.

def Grover():
qc = QuantumCircuit(15)
#Diffusor 11, 12, 13, 14
qc.h([11,12,13,14])
qc.x([11,12,13,14])
qc.h(11)
gate = MCXGate(3)
qc.append(gate, [12,13,14,11])
qc.h(11)
qc.x([11,12,13,14])
qc.h([11,12,13,14])
qc.name="G"
return qc

We apply the Grover’s algorithm with two rotations (see Figure 8.2).

qc = QuantumCircuit(16,4)

#State Preparation 0-9
#Working Memory for Flag bit 10
#1St Path descriptor 11-12
#1th Path descriptor 13-14

#Initial state b,a,c,d,c

#First Position 01 is b 01
qc.x(0)
#Second Position 23 is a 00

#Third Position 45 is c 10
qc.x(5)

#Fourth Position 67 is d 11
qc.x(6)
qc.x(7)

#Fifth Position 89 is c 10
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qc.x(9)

#Path Descriptor
qc.h(11)
qc.h(12)
qc.h(13)
qc.h(14)

#Preparation of Aux
qc.x(15)
qc.h(15)

qc.append(rules(),range(15))
#Oracle
gate = MCXGate(5)
#Mark the goal state
#Initial state a,b,c,c,d
qc.append(gate, [2,5,7,8,9,15])

qc.append(rules_inv(),range(15))
qc.barrier()
qc.h(15)
qc.barrier()
qc.append(Grover(),range(15))

qc.barrier()

qc.h(15)

qc.append(rules(),range(15))
#Oracle
gate = MCXGate(5)
#Mark the goal state
#Initial state a,b,c,c,d
qc.append(gate, [2,5,7,8,9,15])

qc.append(rules_inv(),range(15))
qc.barrier()
qc.h(15)
qc.barrier()
qc.append(Grover(),range(15))

qc.measure(11,0)
qc.measure(12,1)
qc.measure(13,2)
qc.measure(14,3)

qc.draw(fold=220)

simulator = Aer.get_backend(’qasm_simulator’)



116 � Quantum Artificial Intelligence with Qiskit

Figure 8.2 Quantum circuit for a simple quantum production systems for sorting of a
string. We apply the Grover’s algorithm with two rotations.

result=execute(qc,simulator,shots=1000).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

Two marked state results after two iterations are indicated in the histogram of Figure
8.3. The two solutions correspond to the path descriptor |1100〉 and the symmetric
path descriptor |0011〉.

The solution of the path descriptor |1100〉 corresponds to:

• index |11〉: p2p1 → p1p2, working memory: cdcab → cdcba

• index |00〉: p5p4 → p4p5, working memory: cdcba → dccba

The solution of the path descriptor |0011〉 corresponds to:

• index |00〉: p5p4 → p4p5, working memory: cdcab → dccab

• index |11〉: p2p1 → p1p2, working memory: dccab → dccba

8.2.2 Number of Iteration

The number of iterations r is

r = bt∗c =
⌊
π

4 ·
√

2m
k
− 1

2

⌋
. (8.2)
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Figure 8.3 Two solutions correspond to the path descriptor |0011〉 and the symmetric
path descriptor |1100〉.

The value of r depends on the relation of n versus k, with k being the number of
solutions. When r is unknown we can repeatedly chose r randomly between 1 and
π
4 ·
√

2m. This simple strategy leads to success in O(
√
n) = O(

√
2m) [82].

A more advanced approach is the quantum counting algorithm with the complex-
ity O(

√
n). Quantum counting is based on phase estimation algorithm and will be

described later.

8.3 COGNITIVE ARCHITECTURE

A quantum production system can be the basis of a unified theory of cognition.
Unified theories of cognition is a theory that attempts to unify all of the theories of the
mind in a single framework. Allen Newell proposed the SOAR cognitive architecture
[55], [71], [31]. SOAR is an architecture of the mind: a fixed structure underlying
the flexible domain of cognitive processing as well as an architecture for intelligent
agents. All problem solving activity is formulated as the selection and application of
productions to a state, to achieve some goal. The decision takes place in the context
of earlier decisions. Those decisions are rated utilizing preferences and added by
chosen rules. Preferences are determined together with the rules by an observer using
knowledge about a problem. SOAR models the psychological phenomena of chunking,
the association of expressions, or symbols (chunks) into a new single expression or
symbol (chunk). Chunking represents a theory of learning. A chunk is a new rule
(production) that describes the processing that was present due to lack of applicable
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knowledge [54], [71]. A lack of applicable knowledge is present if it cannot be decided
which rule to use or no rule can be applied for a certain mental state represented in
the working memory.

An extension of the proposed SOAR cognitive architecture by a quantum pro-
duction system would lead to a hybrid architecture. The quantum production system
would be invoked if an impasse were present. Such a hybrid approach would speed up
the learning process without a need for domain-specific control knowledge. Quantum
SOAR architecture described by a quantum computer would allow faster planning of
actions, like for example flying a plane or support better face-to-face dialogues with
humans.

8.4 CONTROL FUNCTION

In the following chapters 9–11 we will give examples how quantum production sys-
tems may be used to solve popular artificial intelligence applications and describe the
implementation in more details. In these applications all productions cannot fire at
the same time, instead several instantiations of certain productions can be executed.
The control function determines if a production can fire or not. The preconditions are
matched against the contents of the working memory. If the preconditions are met,
then the productions can fire at the same time. All the productions that can fire are
mapped in superposition and are instantiated. In the next step all instantiated pro-
ductions fire and change the contents of the working memories in the superposition.



C H A P T E R 9

3 Puzzle

We demonstrate the working principles of quantum production system and the quan-
tum tree search by a qiskit implementation of a toy example from symbolical artificial
intelligence, the 3-puzzle. The goal is to find a series of moves that changes the board
from the initial configuration to a desired configuration. We describe the representa-
tion of the rules (productions) of the long-term memory and describe the search of
depth one, two, and three. The search of depth three results in eight possible sates.
The solution is marked by an oracle and a Grover’s amplification is applied once. To
increase the probability value of the solution we will apply two Grover’s amplifica-
tion. The solution corresponds to the path descriptor that indicates the sequence of
rules (productions) that changes the board from the initial configuration to a desired
configuration.

9.1 3 PUZZLE

The 3-puzzle is composed of three numbered movable tiles in a 2×2 frame (see Figure
9.1).

One cell of the frame is empty, and because of this, tiles can be moved around
to form different patterns [119]. The goal is to find a series of moves of tiles into
the blank space that changes the board from the initial configuration to a desired
configuration. There are 12 possible configurations (see Figure 9.2). For any of these
configurations, only two movements are possible. The movement of the empty cell is
either a clockwise or counter-clockwise movement.

The 3-puzzle is tractable and requires fewer qubits to encode. There are four
different objects: three cells and one empty cell. Each object can be coded by two
qubits (22) and a configuration of the four objects can be represented by a register of
eight qubits |x〉. In this representation, position description (adjective) is fixed and
the class descriptors moves. The control function of the quantum production system
needs to fulfill two requirements [106]:

• For a given board, configuration and a production rule determine the
new board configuration.

• To determine if the configuration is the goal configuration.

DOI: 10.1201/9781003374404-9 119
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Figure 9.1 The desired configuration of the 3-puzzle.

The new board configuration is determined by productions that are represented
by the function p. There are four possible positions of the empty cell. The input of
the function p is the current board configuration and a bit m that indicates whether
the blank cell should perform a clockwise (m = 1) or counter-clockwise movement
(m = 0). Together, there are 8 possible mappings, which are represented by 8 produc-
tions. There are four possible positions of the empty cell times two possible moves.
For simplicity, we represent the mappings of the function p by a unitary permutation
matrix L(1). For each mapping, the empty tile can have three different neighbors.
It follows that, in total, there are 24 = 8× 3 instantiated rules. They correspond to
permutations in the unitary permutation matrix L(1). The matrix acts on the 8 + 1
qubits with m ∈ B1 and x ∈ B8

L(1) · |m〉|x〉 = |m〉|γ〉. (9.1)

The L(1) matrix represents the long-term memory of our production system.
The function o(x), called oracle, determines if the configuration is the goal configuration.

o(x) = o(x0, x1, x2, x3, x4, x5, x6, x7︸ ︷︷ ︸
board configuration

) =
{

1 if goal
0 otherwise. (9.2)

Function o(x) oracle is represented by a unitary operator T (for target). T acts
on the 8 + 1 qubits, with x ∈ B8 and c ∈ B1 being the auxiliary qubit

T · |x〉|c〉 = |x〉|o(x)⊕ c〉. (9.3)

An important open question is whether the permutation matrix L(1) of dimension
512 = 29 can be decomposed. It is possible to determine if a permutation is tensor
decomposable and to choose an efficient tensor decomposition if present [50, 119].
An alternative less costly representation of the long-term memory can be realized by
a uniformly polynomial circuit that describes the function p.

Figure 9.2 There are 12 possible configurations. For any of this configuration only two
movements are possible. The movement of the empty cell are either a clockwise or
counter-clockwise movement.
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Figure 9.3 3-puzzle coding representing the state of the Figure 9.1. The four objects
are by a register of eight qubits. We indicate the state, its representation and below
the position of the 8 qubits. In this representation, position description (adjective) is
fixed and the class descriptors moves.

9.2 REPRESENTATION

There are four different objects: three cells and one empty cell. Each object can be
coded by two qubits (22), and a configuration of the four objects can be represented
by a register of eight qubits |x〉. The object 1 is represented by 00, 2 is represented
by 01, 3 is represented by 10, and empty space x is represented by 11. The state is
represented by 8 qubits x0, x1, x2, x3, x4, x5, x6, x7, and the state of the Figure 9.1 is
represented by the qubits 10 11 00 01, see Figure 9.3.

In this representation, position description (adjective) is fixed and the class de-
scriptors moves. In the qiskit circuit, all qubits before the computation are in the
state 0, so the state of the Figure 9.3 is prepared with the NOT gate with the
following commands of the qubits 0 to 7:

qc.x(0)
qc.x(4)
qc.x(5)
qc.x(7)

In the 3-puzzle task, we have four different rules defined by the position of the empty
space. Each of the rules has two instantiations, either moving the empty space clock-
wise or a counter-clockwise movement. We recognize the four rules and indicate the
presence of a rule by a qubit. We use four qubits that indicate the presence of the
four rules and call them the trace. We need the trace represented by the four qubits,
since we cannot delete the information and we cannot un-compute the output back.
By un-computing, we would redo the rules. Additionally, we require a flag represented
by a qubit that indicates to us if the rule with the corresponding instantiation can be
executed or not. Finally, we need a qubit that represents the path descriptor that will
be present by superposition using a Hadamard gate. Altogether, we need 14 qubits,
and we define the following circuit:

qc = QuantumCircuit(14,8)
#State Preparation 0-7
qc.x(0)
qc.x(4)
qc.x(5)
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qc.x(7)
#Flag represented by qubit 8
#1St Trace represented by qubits 9-12
#1St Path descriptor in superposition
qc.h(13)
qc.barrier()

QuantumCircuit(14, 8) defines a quantum circuit with the name qc that uses 14
qubits and measures 8 qubits.

9.2.1 Rules and Trace

The if part of the rules is implemented by the Toffoli gate, also called the ccX gate
(CCNOT gate, controlled controlled not gate), it recognizes the position of the empty
space and indicates it by setting one qubit of the four qubits 9 to 11 to one.

#If part of rules marked in trace (empty state)
qc.ccx(0,1,9)
qc.ccx(2,3,10)
qc.ccx(4,5,11)
qc.ccx(6,7,12)

The execution of the rules uses the Fredkin gate, also called controlled swap (CSWAP)
gate, using the trace information and the path descriptor setting the flag qubit (qubit
8) to indicate if the rule is going to be executed. The reset is performed by un-
computing, by repeating the operation to set the flag again in the state zero. We
change the path descriptor by the NOT gate and execute the second instantiation of
the rule depending on the trace value; the qc.barrier() will separate the representation
in the circuit, resulting in the quantum circuit indicated in the Figure 9.4.

#If then rule (1) for empty at 0, 1 -> 4 , 5 or 2, 3
#Search empty state with the descriptor
qc.ccx(9,13,8)
#Execute 1st then part by moving the empty space clockwise
qc.cswap(8,0,4)
qc.cswap(8,1,5)
#Secod then part with changed descriptor
#Reset Flag
qc.ccx(9,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(9,13,8)
#Execute 2th then part by moving the empty space anti-clockwise
qc.cswap(8,0,2)
qc.cswap(8,1,3)
#Reset Flag
qc.ccx(9,13,8)
#Restore descriptor
qc.x(13)
qc.barrier()
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Figure 9.4 Quantum circuit representing the generation of two instantiations of rules
in the 3-puzzle task of one depth search.

The second rule is represented accordingly.

#If then rule (2) for empty at 2, 3 -> 6 , 7 or 0, 1
#Search empty state with the descriptor
qc.ccx(10,13,8)
#Execute 1st then part
qc.cswap(8,2,6)
qc.cswap(8,3,7)
#Secod then part with changed descriptor
#Reset Flag
qc.ccx(10,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(10,13,8)
#Execute 2th then part
qc.cswap(8,0,2)
qc.cswap(8,1,3)
#Reset Flag
qc.ccx(10,13,8)
#Restore descriptor
qc.x(13)
qc.barrier()
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Figure 9.5 Two generated new states represented by eight qubits using the qasm sim-
ulator.

The third and the fourth rules are represented in the same way. Finally we measure
the state represented by the 8 qubits
qc.measure(0,0)
qc.measure(1,1)
qc.measure(2,2)
qc.measure(3,3)
qc.measure(4,4)
qc.measure(5,5)
qc.measure(6,6)
qc.measure(7,7)

resulting in the quantum circuit indicated in the Figure 9.4.
By performing the simulation

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

we get the following representation of the two generated new states represented by
the histogram represented in the Figure 9.5.

9.3 SEARCH OF DEPTH TWO

Grover’s amplification cannot be applied to fewer than four states. A search of depth
one for the 3-puzzle results in two states and a search of depth two in four states.
The operator L(2) that describes the search of depth two is represented as

L(2) · |m2,m1〉|x〉 = |m2,m1〉|γ〉, (9.4)

using two qubits, m2,m1, representing the path descriptor. The unitary operator T
represents the oracle function o(x) that determines if the configuration is the goal
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configuration
T · |x〉|c〉 = |x〉|o(x)⊕ c〉.

For the function o(x), the solution is encoded by (−1)o(x), the sign of the amplitude.
If the path descriptor is represented by m qubits, it can represent n = 2m states.
To see why the solution is encoded by (−1)o(x), we indicate the derivative. The aux-
iliary qubit c is set to one, and the path descriptor is represented by m qubits |0⊗m〉.
First, we set the path descriptor and the auxiliary qubit in superposition by the
Hadamard gate for m+ 1 qubits Hm+1, and then we execute the unitary operator T

T ·Hm+1 · |0⊗m〉|1〉 =

= 1√
2m+1 ·

∑
x∈Bm

T · |x〉|0〉 − 1√
2m+1 ·

∑
x∈Bm

T · |x〉|1〉

= 1√
2m+1 ·

∑
x∈Bm

|x〉|o(x)⊕ 0〉 − 1√
2m+1 ·

∑
x∈Bm

|x〉|o(x)⊕ 1〉

= 1√
2m+1 ·

( ∑
x∈Bm

|x〉|o(x)⊕ 0〉 −
∑

x∈Bm
|x〉|o(x)⊕ 1〉

)
.

(9.5)

There are four possible cases with the path descriptor |ξ〉 being the solution:

T · |x〉|0〉 = |x〉|o(x)⊕ 0〉 = |x〉|0〉,

T · |x〉|1〉 = |x〉|o(x)⊕ 1〉 = |x〉|1〉,
T · |ξ〉|0〉 = |ξ〉|f(ξ)⊕ 0〉 = |ξ〉|1〉,
T · |ξ〉|1〉 = |ξ〉|f(ξ)⊕ 1〉 = |ξ〉|0〉.

It follows that

= 1√
2m+1 ·

(∑
x6=ξ
|x〉|0〉+ |ξ〉|1〉 −

∑
x6=ξ
|x〉|1〉 − |ξ〉|0〉

)

1√
2m+1 ·

(∑
x6=ξ
|x〉 (|0〉 − |1〉) + |ξ〉 (|1〉 − |0〉)

)

= 1√
n

∑
x∈Bm

(−1)o(x) · |x〉 ⊗
(
|0〉−|1〉√

2

)
.

(9.6)

The value of the function o(x) is encoded by (−1)o(x), (phase kick-back). We can set
the auxiliary qubit c =

(
|0〉−|1〉√

2

)
to zero by the Hadamard gate. For simplicity, we

ignore the trace and the flag qubit and we obtain

(I2 ⊗ T ) · (L(2)⊗ I1) · (L(2)⊗ I1) · |m2,m1, x0, x1, x2, x3, x4, x5, x6, x7, c〉

(I2 ⊗ T ) · (L(2)⊗ I1)2 · |m2,m1, x1, x2, x3, x4, x5, x6, x7, x8, c〉.
(9.7)

The operator that describes the application of the production rules for the 3-puzzle
for the depth search t, and a test condition in order to determine if the final board
is a target configuration board, is represented with

L(t) · |mt, · · · ,m1〉|x〉 = |mt, · · · ,m1〉|γ〉
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and
|κt〉 = |mt, · · · ,m1〉

as
(It ⊗ T ) · (L(t)⊗ I1)t · |κt, x1, x2, x3, x4, x5, x6, x7, x8, c〉. (9.8)

With depth search t = 2 additional four qubits are needed to represent the new trace,
one additional qubit for the path descriptor of the depth two and one auxiliary qubit
for the oracle operation. The quantum circuit is represented by 20 qubits. We will
measure the path descriptor represented by two qubits 13 and 18.

qc = QuantumCircuit(20,2)
#State Preparation 0-7
# Flag bit 8
#1St Trace 9-12
#1St Path Descriptor in superposition
qc.h(13)
#1St Trace 14-17
#2th Path Descriptor in superposition
qc.h(18)
#Aux Bit c indicating the solution is negated and put in superposition
qc.x(19)
qc.h(19)

In the following we will use the qiskitdef function to define the oracle using the
MCXGate command. The MCXGate is a multi-controlled X (Toffoli) gate. A multi-
controlled X gate is composed in of simple (Toffoli) gate and temporary work registers.
It is represented in the qiskit circuit library.

def oracle():
qc = QuantumCircuit(20)
gate = MCXGate(4)

#Goal Configurations
qc.append(gate,[2, 3, 4, 7, 19])
#Alternative Goal Configurations
#qc.append(gate,[0, 2, 3, 5, 19])
#Grover in depth two cannot resolve this since

two solutions out of four are marked.
#qc.append(gate,[0, 4, 5, 7, 19])
qc.name="O"
return qc

We define rules for the depth one and rules for the depth two using the qiskit def
function.

def rules1():

qc = QuantumCircuit(14)

#If part of rules marked in trace (empty state)
qc.ccx(0,1,9)
qc.ccx(2,3,10)
qc.ccx(4,5,11)



3 Puzzle � 127

qc.ccx(6,7,12)

qc.barrier()

#Rules

#If then rule (1) for empty at 0, 1 -> 4 , 5 or 2, 3

#Search empty state with the descriptor
qc.ccx(9,13,8)

#Execute 1st then part
qc.cswap(8,0,4)
qc.cswap(8,1,5)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(9,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(9,13,8)

#Execute 2th then part
qc.cswap(8,0,2)
qc.cswap(8,1,3)

#Reset WM
qc.ccx(9,13,8)
#Restore descriptor
qc.x(13)
qc.barrier()

#If then rule (2) for empty at 2, 3 -> 6 , 7 or 0, 1

#Search empty state with the descriptor
qc.ccx(10,13,8)

#Execute 1st then part
qc.cswap(8,2,6)
qc.cswap(8,3,7)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(10,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(10,13,8)

#Execute 2th then part
qc.cswap(8,0,2)
qc.cswap(8,1,3)
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#Reset WM
qc.ccx(10,13,8)
#Restore descriptor
qc.x(13)
qc.barrier()

#If then rule (3) for empty at 4, 5 -> 6 ,7 or 0, 1

#Search empty state with the descriptor
qc.ccx(11,13,8)

#Execute 1st then part
qc.cswap(8,4,6)
qc.cswap(8,5,7)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(11,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(11,13,8)

#Execute 2th then part
qc.cswap(8,0,4)
qc.cswap(8,1,5)

#Reset WM
qc.ccx(11,13,8)
#Restore descriptor
qc.x(13)
qc.barrier()

#If then rule (4) for empty at 6, 7 -> 4 ,5 or 2, 3

#Search empty state with the descriptor
qc.ccx(12,13,8)

#Execute 1st then part
qc.cswap(8,4,6)
qc.cswap(8,5,7)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(12,13,8)
#Fetch second superposition
qc.x(13)
qc.ccx(12,13,8)

#Execute 2th then part
qc.cswap(8,2,6)
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qc.cswap(8,3,7)

#Reset WM
qc.ccx(12,13,8)
#Restore descriptor
qc.x(13)

qc.name="R1"
return qc

qc.name="R1"
return qc

and
def rules2():

qc = QuantumCircuit(19)

#If part of rules marked in trace (empty state)
qc.ccx(0,1,14)
qc.ccx(2,3,15)
qc.ccx(4,5,16)
qc.ccx(6,7,17)

qc.barrier()

#Rules

#If then rule (1) for empty at 0, 1 -> 4 , 5 or 2, 3

#Search empty state with the descriptor
qc.ccx(14,18,8)

#Execute 1st then part
qc.cswap(8,0,4)
qc.cswap(8,1,5)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(14,18,8)
#Fetch second superposition
qc.x(18)
qc.ccx(14,18,8)

#Execute 2th then part
qc.cswap(8,0,2)
qc.cswap(8,1,3)

#Reset WM
qc.ccx(14,18,8)
#Restore descriptor
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qc.x(18)
qc.barrier()

#If then rule (2) for empty at 2, 3 -> 6 , 7 or 0, 1

#Search empty state with the descriptor
qc.ccx(15,18,8)

#Execute 1st then part
qc.cswap(8,2,6)
qc.cswap(8,3,7)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(15,18,8)
#Fetch second superposition
qc.x(18)
qc.ccx(15,18,8)

#Execute 2th then part
qc.cswap(8,0,2)
qc.cswap(8,1,3)

#Reset WM
qc.ccx(15,18,8)
#Restore descriptor
qc.x(18)
qc.barrier()

#If then rule (3) for empty at 4, 5 -> 6 ,7 or 0, 1

#Search empty state with the descriptor
qc.ccx(16,18,8)

#Execute 1st then part
qc.cswap(8,4,6)
qc.cswap(8,5,7)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(16,18,8)
#Fetch second superposition
qc.x(18)
qc.ccx(16,18,8)

#Execute 2th then part
qc.cswap(8,0,4)
qc.cswap(8,1,5)

#Reset WM
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qc.ccx(16,18,8)
#Restore descriptor
qc.x(18)
qc.barrier()

#If then rule (4) for empty at 6, 7 -> 4 ,5 or 2, 3

#Search empty state with the descriptor
qc.ccx(17,18,8)

#Execute 1st then part
qc.cswap(8,4,6)
qc.cswap(8,5,7)

#Secod then part with changed descriptor
#Reset WM
qc.ccx(17,18,8)
#Fetch second superposition
qc.x(18)
qc.ccx(17,18,8)

#Execute 2th then part
qc.cswap(8,2,6)
qc.cswap(8,3,7)

#Reset WM
qc.ccx(17,18,8)
#Restore descriptor
qc.x(18)

qc.name="R2"
return qc

In quantum computation it is not possible to reset the information to the pattern
representing the initial state. Instead we un-compute the output back to the input
before applying the amplification step of the Grover’s algorithm. Because of the
unitary evolution it follows that

((L(t)⊗ I1)∗)t · (It ⊗ T ) · (L(t)⊗ I1)t · |κt, x, c〉 (9.9)

the computation can be undone and the corresponding path is marked by a negative
sign using the auxiliary qubit c.

We use the qiskit inverse command inverse() to perform the inverse operation

def rules1_inv():
qc=rules1()
qc_inv=qc.inverse()
qc_inv.name="R1_INV"
return qc_inv
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def rules2_inv():
qc=rules2()
qc_inv=qc.inverse()
qc_inv.name="R2_INV"
return qc_inv

The Grover’s amplification is applied to the two qubits 13 and 16 representing the
path descriptor

def Grover():
qc = QuantumCircuit(19)
#Diffusor
qc.h([13,18])
qc.z([13,18])
qc.cz(13,18)
qc.h([13,18])
qc.name="G"
return qc

The quantum circuit using the defined functions is represented as

qc = QuantumCircuit(20,2)
#State Preparation 0-7
# Flag bit 8
#1St Trace 9-12
#1St Path Descriptor in superposition
qc.h(13)
#1St Trace 14-17
#2th Path Descriptor in superposition
qc.h(18)
#Aux Bit c indicating the solution is negated and put in superposition
qc.x(19)
qc.h(19)
qc.barrier()
#Preperation of state
qc.append(state_A(),range(8))
#Depth1
qc.append(rules1(),range(14))
#Depth2
qc.append(rules2(),range(19))
#Oracle
qc.append(oracle(),range(20))
#Depth2
qc.append(rules2_inv(),range(19))
#Depth1
qc.append(rules1_inv(),range(14))
#Redo Preperation
qc.append(state_A(),range(8))
qc.barrier()
#Redo Superposition of Aux Bit
qc.h(19)
qc.barrier()
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qc.append(Grover(),range(19))
qc.measure(13,0)
qc.measure(18,1)

The quantum circuit is indicated in the Figure 9.6.

9.4 SEARCH DEPTH THREE

A search of depth three is described by a path descriptor of three qubits. We define
rules for the depth three using the qiskit def function and use the qiskit inverse
command inverse() to perform the inverse operation in the same way as before. The
Grover amplification act on the qubits 13, 18, and 23 that describe the path descriptor
resulting in eight states.

def Grover():
qc = QuantumCircuit(24)
#Diffusor
qc.h([13,18,23])
qc.x([13,18,23])
qc.h(13)
qc.ccx(18,23,13)
qc.h(13)
qc.x([13,18,23])

Figure 9.6 The quantum circuit of 3-puzzle task of the depth search 2. The circuits
depth in the number of quantum gates is 12. The path descriptor has four possible
states represented by two qubits. One marked state results in a certain solution 01
after one iteration, since for one marked qubit one requires only one rotation.
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Figure 9.7 The quantum circuit for the 3-puzzle task of the depth search 3. Since
we are using the statevector simulator, we do not need any measurement since the
simulator determines the exact probabilities of each qubit. The circuits depth in the
number of quantum gates is 13. The depth of a circuit is a metric that calculates the
longest path between the data input and the output. The path descriptor has eight
possible states represented by three qubits. One marked state results in a solution
after one iteration indicated in the histogram of Figure 9.8.

qc.h([13,18,23])
qc.name="G"
return qc

The circuit is indicated in Figure 9.7. The statevector simulator without any mea-
surements represent all probabilities of all qubits.

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

The circuit’s depth in the number of quantum gates is 13. The depth of a circuit
is a metric that calculates the longest path between the input data and the output
data. The path descriptor has eight possible states represented by three qubits. One
marked state results after one iteration is indicated in the histogram of Figure 9.8. One
marked state resulted after one iteration is indicated with a probability value 0.781
and the path descriptor 001. The path descriptor can be verified by measurement
using the qasm simulator as well.
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Figure 9.8 One marked state results after one iteration is indicated with a probability
value 0.781 and the path descriptor 001 represented by the qubits 13, 18, and 23 by
the statevector simulator. All other states are zero due to un-computation. The path
descriptor can be verified by measurement using the qasm simulator of the qubits
representing the path descriptor as well.

9.5 SEARCH DEPTH THREE WITH TWO ITERATIONS

We apply the U3−puzzle operator ignoring the trace for simplicity for the depth t
resulting in 2t states represented by the path descriptor

U3−puzzle = ((L(t)⊗ I1)∗)t · (It ⊗ T ) · (L(t)⊗ I1)t (9.10)

With Grover amplification on t qubits representing the path descriptor by the
unitary operator Gt

Γt := (Gt ⊗ I10) · U3−puzzle. (9.11)

With r iterations
Γrt =

r∏
t=1

Γt (9.12)

and determine the solution by the measurement of the register that represents the
path descriptor. In our case t = 3 and r = 2, with Γ2

3 resulting in the circuit repre-
sented in the Figure 9.9.

qc = QuantumCircuit(25)

#State Preparation 0-7
#Working Memory for Flag bit 8
#1St Trace 9-12
#1St Descriptor in superposition
qc.h(13)
#1St Trace 14-17
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#2th Descriptor in superposition
qc.h(18)
#1St Trace 19-22
#2th Descriptor in superposition
qc.h(23)
#Aux Bit
qc.x(24)
qc.h(24)
qc.barrier()

qc.append(state_A(),range(8))
#Depth1
qc.append(rules1(),range(14))
#Depth2
qc.append(rules2(),range(19))
#Depth3
qc.append(rules3(),range(24))
#Oracle
qc.append(oracle(),range(25))
#Depth 3
qc.append(rules3_inv(),range(24))
#Depth2
qc.append(rules2_inv(),range(19))
#Depth1
qc.append(rules1_inv(),range(14))
#Redo Preperation
qc.append(state_A(),range(8))
qc.barrier()

#Redo Aux Bit
qc.h(24)
qc.barrier()
qc.append(Grover(),range(24))
qc.barrier()

#Second Iteration!!!!
#Aux Bit in Superposition
qc.h(24)
qc.barrier()

qc.append(state_A(),range(8))
#Depth1
qc.append(rules1(),range(14))
#Depth2
qc.append(rules2(),range(19))
#Depth3
qc.append(rules3(),range(24))
#Oracle
qc.append(oracle(),range(25))
#Depth 3
qc.append(rules3_inv(),range(24))
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#Depth2
qc.append(rules2_inv(),range(19))
#Depth1
qc.append(rules1_inv(),range(14))
#Redo Preperation
qc.append(state_A(),range(8))

qc.barrier()

#Redo Aux Bit
qc.h(24)
qc.barrier()
qc.append(Grover(),range(24))

print("\nCirquit depth:",qc.depth())

Cirquit depth: 25

One marked state results after two iterations are indicated in the histogram of
Figure 9.10. One marked state results after two iterations are indicated with a prob-
ability value of 0.945 and the path descriptor 001.

Figure 9.9 The quantum circuit for the 3-puzzle task of the depth search three with two
iterations. Since we are using statevector simulator we do not need any measurement
since the simulator determines the exact probabilities of each qubit. The circuits
depth in the number of quantum gates is 25. The path descriptor has eight possible
states represented by three qubits. An important operation before the second iteration
is the setting of the auxiliary qubit 24 in superposition by a Hadamard gate. We
could simplify the circuit by eliminating the two Hadamard gates of the auxiliary
qubit 24 after the first and second iteration, however by doing so the circuit loses its
modular structure (less readable) and the redundant operations are simplified during
the transpiration process. One marked state results in a solution after two iteration
indicated in the histogram of Figure 9.10.
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Figure 9.10 One marked state results after two iterations is indicated with a probability
value 0.945 by the statevector simulator. This is the optimum theoretical value for
one marked solution using Grover’s amplification of eight states. If we apply another
rotation, the theoretical probability would decrease.

The 3-puzzle quantum production system highlighted the principles of quantum
tree search and quantum production systems. It does not give any true computational
speed up due to the simplicity of the problem.
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8 Puzzle

The n-puzzle is a classical problem for modeling algorithms. For n-puzzle there are
n + 1 different objects: n cells and one empty cell. Each object can be coded by
ρ = dlog2 n+ 1e qubits and a configuration of n + 1 objects can be represented by
a register of z := ρ · (n + 1) qubits |x〉. The function g(x) is represented a unitary
operator T . T acts on the z + 1 qubits with x ∈ Bz and c ∈ B1

T · |x〉|c〉 = |x〉|f(x)⊕ c〉.

We indicate how to extend the 3-puzzle to the 8-puzzle resulting in a non-constant
branching factor. We show that the branching factor is reduced by Grover’s ampli-
fication to the square root of the average branching factor and not to the maximal
branching factor. Simple experiments of the search of the depth one requires already
49 qubits. The experiments indicate that the presented methods can be extended to
a search of any depth, given that more qubits are present.

10.1 REPRESENTATION

For 8-puzzle, there are 9 different objects: eight cells and one empty cell. Each object
has to be represented by four 4 qubits since 3 qubits allow only to represent 23 = 8
different states. The object 1 is represented by 001, 2 is represented by 010, and 3
is represented by 011, and we continue the representation as binary numbers with 8
represented as 1000. We represent the empty space x by 1111. The state is represented
by 36 qubits x0, x1, x2, x3, x4, x5, x6, x7, · · · , x35, see Figure 10.1. The empty cell can
be present in 9 different positions. The empty cell can move either up, down, left or
right. The new board configuration is determined by the function p. The input of
the function p is the current board configuration and two bits m = m1,m2 (qubits 46
and 47) indicating whether the blank cell should perform move right (m = 0 = |00〉),
left (m = 1 = |01〉), up (m = 2 = |10〉) or down (m = 3 = |11〉). There are 36 qubits
to represent the state and 9 qubits for the trace, together with the auxiliary qubit 49
qubits are represented by the quantum circuit.

qc = QuantumCircuit(49,2)
#State Preparation 0-35
#N3
qc.x(0)
qc.x(1)
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Figure 10.1 8-puzzle coding. The 9 objects are by a register of 36 qubits. We indicate
the state, its representation and below the position of the 36 qubits. In this repre-
sentation, position description (adjective) is fixed and the class descriptors move.

#2
#3
..
..

#Flag 36
#1St Trace 37-45
#1St Path Descriptor in superposition 46, 47
qc.h(46)
qc.h(47)
#Preparation of Aux
qc.x(48)
qc.h(48)

In the case the empty cell is in the center, four movements are possible. For a cell in
the edge only three movements are possible, for the corner only two movements are
possible

def if_rules():
qc = QuantumCircuit(46)
#Marke the trace indicate the rule group through trace
gate = MCXGate(4)
#Empty Space in corner, 2 movements
qc.append(gate, [0, 1, 2, 3, 37])
#Empty Space in edge, 3 movements
qc.append(gate, [4, 5, 6, 7, 38])
#Empty Space in corner, 2 movements
qc.append(gate, [8, 9, 10, 11, 39])
#Empty Space in edge, 3 movements
qc.append(gate, [12, 13, 14, 15, 40])
#Empty Space in center, 4 movements
qc.append(gate, [16, 17, 18, 19, 41])
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#Empty Space in edge, 3 movements
qc.append(gate, [20, 21, 22, 23, 42])
#Empty Space in corner, 2 movements
qc.append(gate, [24, 25, 26, 27, 43])
#Empty Space in edge, 3 movements

qc.append(gate, [28, 29, 30, 31, 44])
#Empty Space in corner, 2 movements
qc.append(gate, [32, 33, 34, 35, 45])
qc.name="IF"
return qc

For the empty space in the center, there are four instantiations corresponding to the
four movements.
def rules1():

qc = QuantumCircuit(48)
#Flag 36
#Path Descriptor 46, 47
#Trace 37-45
flag_gate = MCXGate(3)

#If then rule move right, for empty at 16, 17, 18, 19 -> 12, 13, 14, 15
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,12)
qc.cswap(36,17,13)
qc.cswap(36,18,14)
qc.cswap(36,19,15)
#Clear Flag
qc.append(flag_gate, [41, 46, 47, 36])

#If then rule move left, for empty at 16, 17, 18, 19 -> 20, 21, 22, 23
qc.x(46)
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,20)
qc.cswap(36,17,21)
qc.cswap(36,18,22)
qc.cswap(36,19,23)
#Clear Flag
qc.append(flag_gate, [41, 46, 47, 36])
qc.x(46)

#If then rule move up, for empty at 16, 17, 18, 19 -> 28, 29, 30, 31
qc.x(47)
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,28)
qc.cswap(36,17,29)
qc.cswap(36,18,30)
qc.cswap(36,19,31)
#Clear Flag
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qc.append(flag_gate, [41, 46, 47, 36])

qc.x(47)

#If then rule move down, for empty at 16, 17, 18, 19 -> 4, 5, 6, 7
qc.x(46)
qc.x(47)
qc.append(flag_gate, [41, 46, 47, 36])
#Move
qc.cswap(36,16,4)
qc.cswap(36,17,5)
qc.cswap(36,18,6)
qc.cswap(36,19,7)
#Clear Flag
qc.append(flag_gate, [41, 46, 47, 36])
qc.x(47)
qc.x(46)

qc.name="R1"
return qc

For the empty space in the center, there are four instantiations corresponding to
the four movements

• For the path descriptor 00, move right 16, 17, 18, 19→ 12, 13, 14, 15.

• For the path descriptor 00, move left 16, 17, 18, 19→ 20, 21, 22, 23.

• For the path descriptor 00, move up 16, 17, 18, 19→ 28, 29, 30, 31.

• For the path descriptor 00, move down 16, 17, 18, 19→ 4, 5, 6, 7.

For the empty space in the edge, there are four instantiations corresponding to
the three movements. The representation if performed in the same way as before,
in our example, the empty space is at the position 12, 13, 14, 15.

• For the path descriptor 00, move up 12, 13, 14, 15→ 24, 25, 26, 27.

• For the path descriptor 01, move down 12, 13, 14, 15→ 0, 1, 2, 3.

• For the path descriptor 10, move left 12, 13, 14, 15→ 16, 17, 18, 19.

• For the path descriptor 11, move left 12, 13, 14, 15→ 16, 17, 18, 19.

The only difference is that the rule move left is repeated twice. For the empty
space in the corner, there are four instantiations corresponding to the two movements.
The representation is performed in the same way as before, in our example, the empty
space is at the position 0, 1, 2, 3.

• For the path descriptor 00, move up 0, 1, 2, 3→ 12, 13, 14, 15.

• For the path descriptor 01, move up 0, 1, 2, 3→ 12, 13, 14, 15.
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• For the path descriptor 10, move left 0, 1, 2, 3→ 4, 5, 6, 7.

• For the path descriptor 11, move left 0, 1, 2, 3→ 4, 5, 6, 7.
The rule move up and the rule move left are repeated twice. The marked solution

cannot be bigger than the one fourth of the present states, which is present during
a deeper search. Simulating 49 qubits requires higher memory capacity, we cannot
use the statevector simulator or a search depth of two due to memory constraints.
We can measure the path descriptor after applying the function rules1 8 puzzle, see
Figure 10.2. These constraints can be overcome by higher memory capacity.

10.2 NUMBER OF ITERATIONS

For 8-puzzle, Bmax = 4, Bmin = 2, and

Baverage = 4 · 1 + 2 · 4 + 3 · 4
9 = 2.6667. (10.1)

Naively, we would assume that the branching factor is reduced by Grover’s amplifi-
cation to √

Bmax =
√

4 = 2 (10.2)
However, this is not the case in our coding strategy. With growing value n, the
branching factor is reduced by Grover’s amplification to√

Baverage =
√

2.6667 = 1.63299 (10.3)
For k solutions, the probability of measuring a state that represents one solution of
k solutions is related to the number r of iterations of the Grover’s operator. The
probability of seeing one solution should be as close as possible to 1, and the number
of iterations r should be as small as possible. After r iterations, the probability of
measuring a solution is nearly one, with m being the number of qubits describing the
path descriptor [45, 72]

r =
⌊
π

4 ·
√

2m
k
− 1

2

⌋
. (10.4)

The number of iterations r is the largest integer not greater than the computed value.
Simplified, we can state that

r =

√
(Bmax)m

k
(10.5)

The value of r depends on the relation of m versus k, and k is bigger than one since
we execute same rules several times. For the depth m, there are k solutions with

k =
(

Bmax
Baverage

)m
(10.6)

it follows
r =

√
(Baverage)m (10.7)

and the branching factor is reduced by Grover’s amplification to
√
Baverage√

Baverage =
√

2.6667 = 1.63299.
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Figure 10.2 The quantum circuit for the 9-puzzle task of the depth search 1. The empty
space is in the center and the desired state is represented by the empty space at top.
Simulating 49 qubits requires higher memory capacity, we cannot use the statevector
simulator or a search depth of two due to memory constraints. The path descriptor is
represented by two qubits and is measured after applying the function rules1, which
corresponds in moving the empty space up.
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Blocks World

The blocks world is a planning domain in artificial intelligence [73]. The blocks can
be placed at the table and picked up and set down on a table or another block,
and the goal is to build one or more vertical stacks of blocks. Only one block may
be moved at a time and any blocks that are under another block cannot be moved.
There are three different types of blocks. They differ by attributes such as color (red,
green, and blue) or marks, but not by form. In Artificial intelligence (AI), they are
traditionally called A, B, and C blocks [61]. The simplicity of this toy problem allows
to compare classical approach with quantum computing approach. We indicate how
the binding of the stats is achieved through the entanglement. We indicate how to
represent the states with a class descriptor and the position descriptor (adjective) and
perform a search of depth one. The A, B, and C blocks planning problem results in a
non-constant branching factor. We show again that the branching factor is reduced
by Grover’s amplification to the square root of the average branching factor and not
to the maximal branching factor.

11.1 REPRESENTATION

The class descriptor is fixed and the position descriptor (adjective) moves. It is re-
versed as in the puzzle examples, since the reverse in this case is a more economic
representation requiring 9 qubits, three qubits for each block (see Figures 11.1 and
11.2). The architecture uses 27 qubits, 9 for representation of the state, 1 for flag
and 13 qubits to represent the 13 different categories of rules. The path descriptor
for the depth search one is represented by three qubits, since the number of maximal
instantiations is six.

qc = QuantumCircuit(27)
#State Preparation 0-8
# Flag 9
#1st Trace (ten) 10-22 Rule Classes
#1st Path descriptor represented by three qubit
qc.h(23)
qc.h(24)
qc.h(25)
#Preparation of Aux
qc.x(26)
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Figure 11.1 Three qubits (bits) for each block represent its state. The first qubit equal-
ing one indicates that the block is on top of one other block. The second qubit equaling
one indicates that the block is on top of two other blocks. The third qubit equaling
one indicates that the block is clear with nothing on top of it.

qc.h(26)

The architecture is indicated in the Figure 11.3. All blocks on the floor are represented
as:

def state_floor():
qc = QuantumCircuit(9)
#All Blocks are on floor
#BLOCK A qubits 0-2
qc.x(2)
#BLOCK B qubits 3-5
qc.x(5)

Figure 11.2 Representing a state of A,B, and C blocks by 9 qubits (bits). The class
descriptor is fixed and the position descriptor (adjective) moves (is changed). Three
qubits (bits) for each block represent its state. Their value changes indicating different
states. On top, we see the three blocks A, B, and C and the 9 positions of the qubits by
the index from 0 to 9, x indicates that the qubit is equal to one. Below, we represent
the corresponding state and the corresponding binary string.
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Figure 11.3 The quantum circuit for the ABC blocks task of the depth search 1. Since
we are using the statevector simulator, we do not need any measurement since the
simulator determines the exact probabilities of each qubit. The circuit’s depth in
the number of quantum gates is 13. The path descriptor has eight possible states
represented by three qubits. One marked state results in a solution after one iteration
indicated for the initial state “all blocks on the floor” in the histogram of Figure 11.7.

#BLOCK C qubits 6-8
qc.x(8)

qc.name="S_FL"
return qc

11.1.1 Rules (Productions)

Different classes of rules are recognized during the if rules() function. The class all
blocks on floor has one combination (see Figure 11.4), the class tower appears in six
different combinations (see Figure 11.5) as well as the class small tower and a block
on table (like BC tower and block A, see Figure 11.6)

def if_rules():
qc = QuantumCircuit(23)

Figure 11.4 The class all blocks on floor has one combination.
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Figure 11.5 The classes tower appears in six different combinations.

gate = MCXGate(3)

#All blocks on table
qc.append(gate, [2, 5, 8, 10])

#ABC tower
qc.append(gate, [1, 2, 3, 11])
#ACB tower
qc.append(gate, [1, 2, 6, 12])
#BAC tower
qc.append(gate, [4, 5, 1, 13])
#BCA tower
qc.append(gate, [4, 5, 6, 14])
#CAB tower
qc.append(gate, [1, 7, 8, 15])
#CBA tower
qc.append(gate, [4, 7, 8, 16])

#BC tower and block A
qc.append(gate, [2, 5, 3, 17])
#BA tower and block C

Figure 11.6 The class small tower and a block on table appears in six different combi-
nations.
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qc.append(gate, [8, 5, 3, 18])
#CA tower and block B
qc.append(gate, [8, 6, 5, 19])
#CB tower and block A
qc.append(gate, [8, 6, 2, 20])
#AC tower and block B
qc.append(gate, [0, 2, 5, 21])
#AB tower and block C
qc.append(gate, [0, 2, 8, 22])

qc.name="IF"
return qc

The class tower like for example ABC tower has just one instantiation, the class small
tower and a block on table (like BC tower and block A) have three instantiations. All
blocks on table have six different instantiations, for each block there are two rules.

def rules_floor():
qc = QuantumCircuit(26)
gate4 = MCXGate(4)

qc.append(gate4, [10 ,23 ,24 ,25, 9])
#All blocks on floor

# Moving A
#A on B
qc.cswap(9,0,5)
#Secod then part with changed descriptor
#Reset WM (Working Memory)
qc.append(gate4, [10 ,23 ,24 ,25, 9])
#Fetch second superposition
qc.x(23)
qc.append(gate4, [10 ,23 ,24 ,25, 9])
#A on C
qc.cswap(9,0,8)
#Reset WM
qc.append(gate4, [10 ,23 ,24 ,25, 9])
#Restore descriptor
qc.x(23)

# Moving B
qc.x(24)
qc.append(gate4, [10 ,23 ,24 ,25, 9])
# B on A
qc.cswap(9,2,3)
#Secod then part with changed descriptor
#Reset WM
qc.append(gate4, [10 ,23 ,24 ,25, 9])
qc.x(24)
#Fetch second superposition
qc.x(23)
qc.x(24)
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qc.append(gate4, [10 ,23 ,24 ,25, 9])
#B on C
qc.cswap(9,3,8)
#Reset WM
qc.append(gate4, [10 ,23 ,24 ,25, 9])
#Restore descriptor
qc.x(24)
qc.x(23)

# Moving C
qc.x(25)
qc.append(gate4, [10 ,23 ,24 ,25, 9])
#C on A
qc.cswap(9,6,2)
#Secod then part with changed descriptor
#Reset WM
qc.append(gate4, [10 ,23 ,24 ,25, 9])
qc.x(25)
#Fetch second superposition
qc.x(25)
qc.x(23)
qc.append(gate4, [10 ,23 ,24 ,25, 9])
# C on B
qc.cswap(9,6,5)
#Reset WM
qc.append(gate4, [10 ,23 ,24 ,25, 9])
#Restore descriptor
qc.x(23)
qc.x(25)

#We have only six rules, but eight possible paths!!!
#To get rid of the initial state we will move C again!!!

# Moving C Again
qc.x(24)
qc.x(25)
qc.append(gate4, [10 ,23 ,24 ,25, 9])
# A clear goes to high of B
qc.cswap(9,6,2)
#Secod then part with changed descriptor
#Reset WM
qc.append(gate4, [10 ,23 ,24 ,25, 9])
qc.x(25)
qc.x(24)
#Fetch second superposition
qc.x(23)
qc.x(24)
qc.x(25)
qc.append(gate4, [10 ,23 ,24 ,25, 9])
# C clear goes to high of B
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qc.cswap(9,6,5)
#Reset WM
qc.append(gate4, [10 ,23 ,24 ,25, 9])
#Restore descriptor
qc.x(25)
qc.x(24)
qc.x(23)

qc.name="R_FL"
return qc

The class tower (like for example ABC tower) appears in six different combinations.
For each combination there is only one instantiation that is represented through all
eight states:

def rules_tw():
qc = QuantumCircuit(17)
#There is a tower (6 different towers indicated by 11,12,..,16
qc.cswap(11,1,5)
qc.cswap(12,1,8)
qc.cswap(13,2,4)
qc.cswap(14,2,8)
qc.cswap(15,2,7)
qc.cswap(16,5,7)
qc.name="R_TW"
return qc

There are six combinations of the class small tower and a block on table (like BC
tower and block A). Each of this combination has three instantiations. Since there
are eight possible states represented by the path descriptor for each combination the
three instantiations are executed twice with two additional instantiations.

def rules_tw_bl():
qc = QuantumCircuit(26)
gate4 = MCXGate(4)
#Flag 9
#Path Descriptor 23, 24, 25

#The three instantiations
#BC tower and block A
#qc.append(gate, [2, 5, 3, 17])
#Put it on Floor
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,3,8)
#Clear WM
qc.append(gate4, [17 ,23 ,24 ,25, 9])
#Make Tower BCA
qc.x(23)
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,5,1)
#Clear WM
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qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.x(23)
#Move C on the other block A
qc.x(24)
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,2,8)
#Clear WM
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.x(24)

#Repeat three instantiations again for the states 4-6 of the path descriptor
#Put it on Floor
qc.x(24)
qc.x(23)
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,3,8)
#Clear WM
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.x(24)
qc.x(23)
#Make Tower BCA
qc.x(25)
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,5,1)
#Clear WM
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.x(25)
#Move C on the other block A
qc.x(25)
qc.x(23)
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,2,8)
#Clear WM
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.x(25)
qc.x(23)

#Repeat two instantiations again for the states 7-8 of the path descriptor
#Make Tower BCA
qc.x(25)
qc.x(24)
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,5,1)
#Clear WM
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.x(25)
qc.x(24)
#Move C on the other block A
qc.x(25)
qc.x(24)
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qc.x(23)
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.cswap(9,2,8)
#Clear WM
qc.append(gate4, [17 ,23 ,24 ,25, 9])
qc.x(25)
qc.x(24)
qc.x(23)

#In the same way
#BA tower and block C
#CA tower and block B
#CB tower and block A
#AC tower and block B
#AB tower and block C
.....
qc.name="R_TB"
return qc

11.1.2 Oracle

The goal states AC and B is represented by the oracle

def oracle():
qc = QuantumCircuit(27)
#Specify goal state
gate = MCXGate(3)
#AC B
qc.append(gate,[3, 5, 8, 26])
qc.name="O"
return qc

11.1.3 Architecture

The quantum circuit for the ABC blocks task of the depth search 1, (see Figure 11.3)

qc = QuantumCircuit(27)
#State Preparation 0-8

#Working Memory, Flag 9

#1St Trace (ten) 10-22 Rule Classes

#1St Descriptor in superposition, one, three, six possible actions
represented by three qubit
#Possible instantiations

qc.h(23)
qc.h(24)
qc.h(25)
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#Preparation of Aux
qc.x(26)
qc.h(26)

qc.append(state_floor(),range(9))
qc.append(if_rules(),range(23))
qc.append(rules_tw(),range(17))
qc.append(rules_floor(),range(26))
qc.append(rules_tw_bl(),range(26))
qc.append(oracle(),range(27))
qc.append(rules_tw_bl_inv(),range(26))
qc.append(rules_floor_inv(),range(26))
qc.append(rules_tw_inv(),range(17))
qc.append(if_rules_inv(),range(23))
qc.append(state_floor(),range(9))

qc.barrier()
qc.h(26)
qc.barrier()
qc.append(Grover(),range(26))
print("\nCirquit depth:",qc.depth())

11.2 EXAMPLES

One solution is marked, after one iteration of Grover’s amplification, the probabilities
of measuring a state using the statevector simulator are indicated in the Figure 11.7.
Three marked states results in a solution after one iteration indicated for the initial
state BC and A and the goal states AC and B, the probabilities of measuring a state
using the statevector simulator are indicated in the Figure 11.8.

11.3 NUMBER OF ITERATIONS

For A, B, C blocks Bmax = 6, Bmin = 1, and

Baverage = 6 · 1 + 1 · 6 + 3 · 6
13 = 2.30769. (11.1)

Näıvely, we would assume that the branching factor is reduced by Grover’s am-
plification to the number 8 represented by three qubits

√
8 = 2.82843 (11.2)

With growing value m, the branching factor is reduced by Grover’s amplification
to √

Baverage =
√

2.30769 = 1.51911 (11.3)
For k solutions, the probability of measuring a state that represents one solution of

k solutions is related to the number r of iterations of the Grover’s operator. Simplified,
we can state that

r =

√
(8)m

k
(11.4)
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Figure 11.7 One marked state results in a solution after one iteration indicated for
the initial state all blocks on the floor and the goal states AC and B. The solution
is described by the path descriptor by the qubits 23, 24, and 25 with the binary
value 101, the fifth branch. There are 8 branches described by 8 possible transitions
0, 1 · · · 7.

The value of r depends on the relation of m versus k. For the depth m

k =
(

8
Baverage

)m
(11.5)

Figure 11.8 Three marked states results in a solution after one iteration indicated for
the initial state BC and A and the goal states AC and B by the statevector simulator.
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it follows

r =
√

(Baverage)m (11.6)

and the branching factor is reduced by Grover’s amplification to
√
Baverage = 1.5191.
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Five Pennies Nim Game

Games involving two players represent one of the classic applications of symbolic
problem solving. Starting with some initial game position, the algorithm explores the
tree of all legal moves down to the requested depth. An example is the nim game in
which two players take turns removing objects from distinct piles. A simplified version
is the nim game with no piles, the five pennies nim game. Two players alternate
remove either one, two, or three pennies from a stack that initially contains five
pennies. The player who pick up last penny loses. The five pennies nim game is a
zero game where neither player has any legal options. The first player loses, and the
second-player wins if correct moves are chosen.

We indicate the architecture for the five pennies nim game and indicate that a
quantum tree search cannot implement the minimax-algorithm. We can determine
the search path, but we cannot model the behavior of the player that choses the best
move since we cannot compare different states that are described by different path
descriptors.

12.1 QUANTUM CIRCUIT

In our implementation of the five pennies nim game we explore of legal moves to the
depth of two [73]. In initial game the five pennies are represented by the qubits 0
to 4. The player A starts the game, he can remove one, two, or three pennies. The
path descriptor is represented by two qubits 6 and 7. The qubit 5 is the flag that
indicates the entanglement of a rule with the path descriptor. The first rule removes
three pennies, the second two pennies and the third one penny. Since we have four
possible paths, the rule three and four are identical. The player B has either a stack
with four, three, or two pennies. Depending on the number of pennies, different rule
types can be executed, either the rule of the type 1, type 2 or type 3. The correct
type is identified and marked in the trace represented by the qubits 8, 9, and 10, see
Figure 12.1. Each of the three rules is instantiated with the path descriptor and can
be executed in parallel. The resulting states corresponding to one penny are marked
by the oracle, see Figure 12.2. They correspond to the loss of player A, since the
player who picks up the last penny loses.
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Figure 12.1 In initial game the five pennies are represented by the qubits 0 to 4. The
path descriptor is represented by two qubits 6 and 7. The qubit 5 is a flag. The first
rule removes three pennies, the second two pennies and the third one penny. Since
we have four possible paths the rule three is executed twice in parallel. Depending of
the number of pennies different rules types can be executed, either the type 1, type
2, or type 3. The correct type is identified and marked in the trace by the qubits 8,
9, and 10.

Figure 12.2 The search tree for the five pennies nim game of the depth two. In ini-
tial game the five pennies are present. They are represented by five qubits |11111〉.
The player A starts the game, he can remove one, two, or three pennies. The path
descriptors are represented by two qubits |00〉, |01〉, |10〉, |11〉. The first rule removes
three pennies, the second two pennies, and the third one penny. Since we have four
possible paths, the rule three and four are identical. The player B has either a stack
with four, three, or two pennies. Depending of the number of pennies, different rule
types can be executed, either the type 1, type 2, or type 3. Each of the three rules
is instantiated with the path descriptors |00〉, |01〉, |10〉, |11〉. The resulting states
corresponding to one penny |10000〉 are marked by the oracle, they are indicated in
the figure by a triangle. They correspond to the loss of player A, since the player
who picks up the last penny loses. Similar states and equal rules are marked by gray
rectangles. We can determine the search path, but we cannot model the behavior of
the player that choses the best move, since we cannot compare different states that
are described by different path descriptors.
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We can determine the search path, but we cannot model the behavior of the
player that choses the best move since we cannot compare different states that are
described by different path descriptors.

12.1.1 Representation of Rules

The first rule removes three pennies, the second two pennies and the third one penny.
Since we have four possible paths, the rule three is executed twice in parallel.

import numpy as np
from qiskit import QuantumCircuit, transpile, Aer,assemble,execute
from qiskit.providers.aer import QasmSimulator
from qiskit.visualization import plot_histogram
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import MCXGate

def rules_depth1():
qc = QuantumCircuit(8)
#First Rule
#Set flag 5 dependent on the path descriptor
qc.ccx(6,7,5)
# Move
qc.cx(5,0)
qc.cx(5,1)
qc.cx(5,2)
#Reset flag
qc.ccx(6,7,5)

#Second Rule
#Set flag 5 dependent on the path descriptor
qc.x(6)
qc.ccx(6,7,5)
# Move
qc.cx(5,0)
qc.cx(5,1)
#Reset flag
qc.ccx(6,7,5)
qc.x(6)

#Third Rule
#Set flag 5 dependent on the path descriptor
qc.x(7)
qc.ccx(6,7,5)
# Move
qc.cx(5,0)
#Reset flag
qc.ccx(6,7,5)
qc.x(7)

#Fourth=Third Rule
#Set flag 5 dependent on the path descriptor
qc.x(6)
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qc.x(7)
qc.ccx(6,7,5)
# Move
qc.cx(5,0)
#Reset flag
qc.ccx(6,7,5)
qc.x(7)
qc.x(6)
qc.name="RULES_1"
return qc

def rules_depth1_inv():
qc=rules_depth1()
qc_inv=qc.inverse()
qc_inv.name="RULES_1Ę"
return qc_inv

Depending of the number of pennies different rule types can be executed, either
the rule 1, rule 2, or rule 3. The correct rule is identified and marked in the trace
represented by the qubits 8, 9, and 10.

def if_depth2():
qc = QuantumCircuit(11)

#If part of rules depth 2 marked in trace
gate = MCXGate(5)

#IF Rule 2 Coins
qc.x(0)
qc.x(1)
qc.x(2)
qc.append(gate, [0,1,2,3,4,8])
qc.x(2)
qc.x(1)
qc.x(0)
#IF Rule 3 Coins
qc.x(0)
qc.x(1)
qc.append(gate, [0,1,2,3,4,9])
qc.x(1)
qc.x(0)
#IF Rule 4 Coins
qc.x(0)
qc.append(gate, [0,1,2,3,4,10])
qc.x(0)
qc.name="IF_2"
return qc

Each of the three rules is instantiated with the path descriptor represented by the
qubits 11 and 12.

def rules_depth2():
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qc = QuantumCircuit(13)
#Flag 5
#Path Descriptor 11, 12
#Trace 8-10
flag_gate = MCXGate(3)

#First Rule: trace 8

#First instantiation
qc.append(flag_gate, [8, 11, 12, 5])
# Move
qc.cx(5,3)
qc.cx(5,4)
#Clear Flag
qc.append(flag_gate, [8, 11, 12, 5])

#Second instantiation
qc.x(11)
qc.append(flag_gate, [8, 11, 12, 5])
# Move
qc.cx(5,3)
qc.cx(5,4)
#Clear Flag
qc.append(flag_gate, [8, 11, 12, 5])
qc.x(11)

#Third instantiation
qc.x(12)
qc.append(flag_gate, [8, 11, 12, 5])
# Move
qc.cx(5,3)
#Clear Flag
qc.append(flag_gate, [8, 11, 12, 5])
qc.x(12)

#Fourth instantiation
qc.x(11)
qc.x(12)
qc.append(flag_gate, [8, 11, 12, 5])
# Move
qc.cx(5,3)
#Clear Flag
qc.append(flag_gate, [8, 11, 12, 5])
qc.x(12)
qc.x(11)

#Second Rule: trace 9

#First instantiation
qc.append(flag_gate, [9, 11, 12, 5])
# Move
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qc.cx(5,2)
qc.cx(5,3)
qc.cx(5,4)
#Clear Flag
qc.append(flag_gate, [9, 11, 12, 5])

#Second instantiation
qc.x(11)
qc.append(flag_gate, [9, 11, 12, 5])
# Move
qc.cx(5,2)
qc.cx(5,3)
#Clear Flag
qc.append(flag_gate, [9, 11, 12, 5])
qc.x(11)

#Third instantiation
qc.x(12)
qc.append(flag_gate, [9, 11, 12, 5])
# Move
qc.cx(5,2)
#Clear Flag
qc.append(flag_gate, [9, 11, 12, 5])
qc.x(12)

#Fourth instantiation
qc.x(11)
qc.x(12)
qc.append(flag_gate, [9, 11, 12, 5])
# Move
qc.cx(5,2)
#Clear Flag
qc.append(flag_gate, [9, 11, 12, 5])
qc.x(12)
qc.x(11)

#Third Rule: trace 10

#First instantiation
qc.append(flag_gate, [10, 11, 12, 5])
# Move
qc.cx(5,1)
qc.cx(5,2)
qc.cx(5,3)
#Clear Flag
qc.append(flag_gate, [10, 11, 12, 5])

#Second instantiation
qc.x(11)
qc.append(flag_gate, [10, 11, 12, 5])
# Move
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qc.cx(5,1)
qc.cx(5,2)
#Clear Flag
qc.append(flag_gate, [10, 11, 12, 5])
qc.x(11)

#Third instantiation
qc.x(12)
qc.append(flag_gate, [10, 11, 12, 5])
# Move
qc.cx(5,1)
#Clear Flag
qc.append(flag_gate, [10, 11, 12, 5])
qc.x(12)

#Fourth instantiation
qc.x(11)
qc.x(12)
qc.append(flag_gate, [10, 11, 12, 5])
# Move
qc.cx(5,1)
#Clear Flag
qc.append(flag_gate, [10, 11, 12, 5])
qc.x(12)
qc.x(11)

qc.name="RULES_2"
return qc

def rules_depth2_inv():
qc=rules_depth2()
qc_inv=qc.inverse()
qc_inv.name="RULES_2Ę"
return qc_inv

12.1.2 Oracle

The states representing one penny are marked by the oracle. They correspond to the
loss of player A.

def oracle():
qc = QuantumCircuit(14)
gate = MCXGate(5)
qc.x(0)
qc.x(1)
qc.x(2)
qc.x(3)
qc.append(gate, [0, 1, 2, 3, 4, 13])
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qc.x(3)
qc.x(2)
qc.x(1)
qc.x(0)

qc.name="O"
return qc

def Grover():

qc = QuantumCircuit(13)
#Diffusor 6, 7, 11, 12

qc.h([6,7,11,12])
qc.x([6,7,11,12])
qc.h(6)
gate = MCXGate(3)
qc.append(gate, [7,11,12,6])
qc.h(6)
qc.x([6,7,11,12])
qc.h([6,7,11,12])

qc.name="G"
return qc

12.1.3 Search of Depth Two

The following listing calls the defined functions. It represents the search of depth two,
including the un-computing and the Grover’s amplification of the marked state, see
Figure 12.3.

qc = QuantumCircuit(14,4)

#State Preparation 0-4
qc.x(0)
qc.x(1)
qc.x(2)
qc.x(3)
qc.x(4)
#Working Memory for Flag bit 5
#1St Path descriptor 6, 7
qc.h(6)
qc.h(7)
#2th trace 8-11
#2St Path descriptor 11,12
qc.h(11)
qc.h(12)
#Auxiliary qubit 13
qc.x(13)
qc.h(13)
qc.barrier()
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Figure 12.3 The circuit for the five pennies nim game representing the quantum tree
search for the depth two.

qc.append(rules_depth1(),range(8))
qc.append(if_depth2(),range(11))
qc.append(rules_depth2(),range(13))
qc.append(oracle(),range(14))
qc.append(rules_depth2_inv(),range(13))
qc.append(if_depth2_inv(),range(11))
qc.append(rules_depth1_inv(),range(8))
qc.barrier()
qc.h(13)
qc.barrier()
qc.append(Grover(),range(13))

qc.measure(6,0)
qc.measure(7,1)
qc.measure(11,2)
qc.measure(12,3)

qc.draw(fold=200)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=1000).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

The resulting histogram represents the measured path descriptor of the depth two
after one rotation of Grover’s amplification of the marked states with one penny, see
Figure 12.4.



166 � Quantum Artificial Intelligence with Qiskit

Figure 12.4 The resulting histogram represents the measured path descriptor of the
depth two after one rotation of Grover’s amplification of the marked states with one
penny, see Figure 12.2.

12.2 LIMITATIONS OF QUANTUM TREE SEARCH

In quantum tree search we cannot use the minimax-algorithm [125], [61]. We can
determine the search path, but we cannot model the behavior of the player that
choses the best move, since we cannot compare different states described by different
path descriptors. The comparison of alternative states is the basis of the minimax-
algorithm. The minimax-algorithm explores the tree of all legal moves down to the
requested depth. Scores associated with leaves of the tree are calculated using an
evaluation function. A positive score indicates a good position for player A and a
negative score indicates a good position for player B. For each player, the transition
from one position to another is either maximized for player A or minimized for player
B. By comparing the scores the players try to select the moves in a manner that will
be most profitable for them.
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Basis Encoding of Binary
Vectors

Quantum encoding is a process to transform classical information into quantum
states. It plays a crucial role in using quantum algorithm. Basis encoding is the most
intuitive way to encode classical binary vectors into a quantum state. It encodes n-
dimensional binary vector to an n-qubit quantum state represented computational
basis state. We will describe two possible approaches, a method that was developed
by Ventura and Martinez and the method of entanglement of binary patterns vectors
with index qubits in superposition.

13.1 BINARY VECTORS

A set of binary vectors is represented by the basis encoding. A uniform superposition
of binary vectors can be easily generated by Hadamard gates. For example, for two-
dimensional binary vectors we generate the uniform superposition by Hadamard gates

H2|00〉 = H1|0〉 ⊗H1|0〉 = 1√
22

∑
x∈B2

|x〉 = 1
2 (|00〉+ |01〉+ |10〉+ |11〉)

with the amplitude representation

α =


1
2
1
2
1
2
1
2

 .
But how to generate the superposition

1√
3

(|10〉+ |01〉+ |11〉)

with the amplitude representation

α =


0
1
3
1
3
1
3


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We will describe two possible approaches, a method that was developed by Ventura
and Martinez [114, 115] and the method of entanglement of binary patterns vectors
with index qubits in superposition.

13.2 SUPERPOSITIONS OF BINARY PATTERNS

To generate a superposition of m binary linear independent vectors with dimension
n with n > m a method was proposed by Ventura and Martinez [114, 115] and
later simplified by [111]. The procedure is based on successively dividing present
superposition into processing and memory branches. Into each new generated memory
branch an input pattern is loaded step by step. The method is linear in the number
of stored patterns and their dimension [95].

At the initial step the system is in the basis state with load qubits, memory
qubits, and the control qubits c1, c2.

|memory; c2, c1; load〉

We use the qiskit little endian notation. Note, that the original work a use big endian
notation [111] |register; c1, c2;memory〉. The idea is to split this basis state step by
step using the control register until the required superposition is present

1√
m

m∑
j=1
|memory; c2, c1; load〉j

with the memory register in the required superposition

1√
m

m∑
j=1

= |memory; 0, 0; 0 · · · 0〉j =

 1√
m

m∑
j=1
|memory〉j

⊗ |0, 0; 0 · · · 0〉,

also called memory branches.
We make a distinction between a processing branch indicated by the control qubit

c2 with the value one (c2 = 1) and the memory branches in superposition with the
control qubit c2 with the value zero (c2 = 0). The control qubit c1 = 1 indicates the
split of the qubit c2 by the operator CSp represented by the parametrized U gate
U(θ, φ, λ) = with φ = π, λ = π, and θ = arcsin

(
1√
p

)
· 2

CSp = CU(arcsin
(

1
√
p

)
· 2, π, π) =


1 0 0 0
0 1 0 0
0 0

√
p−1
p

1√
p

0 0 −1√
p

√
p−1
p


with CSp|c2, c1〉

CSp|01〉 = |01〉, CSp|11〉 = 1
√
p
· |10〉+

√
p− 1
p
· |11〉.
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Since the control qubit c1 = 1 is entangled with the memory register, we create the
memory branch (c2 = 0) with 1√

p · |memory; 01〉 and processing branch (c2 = 1)√
p−1
p · |memory; 11〉 by the split operation on the preceding processing branch. We

store the new pattern in the generated memory register of the new generated memory
branch.

13.2.1 Storage Algorithm

The initial state is
|ψ〉0 = |0 · · · 0; 1, 0; patternp〉

with control qubit c2 = 1 indicating that the state is a processing branch. In the next
steps are described by a loop that stores m binary paterns

|patternm〉, |patternm−1〉, · · · |pattern1〉

FOR p = m TO 2 STEP −1

• We load the pattern patternp into the load register.

• IF P = m THEN BEGIN

– We invert the ground state of the memory register of the processing branch
to |11 · · · 1〉 using NOT gates.

• ELSE BEGIN

– We copy the pattern patternp into the memory register of the processing
branch c2 = 1 using ccX gate (CCNOT gate, controlled controlled not
gate).

– We copy the pattern patternp into the memory register of the memory
branch c2 = 0 and processing branch c2 = 1 using cX gate (CNOT gate,
controlled not gate, we ignore c2 ). As a result the memory register of the
processing branch is in the ground state |00 · · · 0〉, this is not the case for
the memory register of memory branches where the bits are flipped.

– We invert the ground state of the memory register of the processing branch
to |11 · · · 1〉 using NOT gates to all memory registers. Only the memory
register of the processing branch represents |11 · · · 1〉.

• The control qubit c1 = 1 is entangled with the memory register |11 · · · 1〉 by
the multi-controlled X (Toffoli) gate. As a result the control qubit c1 = 1 is
entangled with the processing branch.

• The processing branch is split by the operator CSp. Since the control qubit
c1 = 1 is entangled with the memory register we create a new memory branch
and a processing branch.
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• We redo the entanglement of control qubit c1 = 1 with the memory register
|11 · · · 1〉.

• We redo the NOT gates operation to all memory registers.

• We apply the CNOT gate controlled by the load register (patternp) to the
memory registers of all the branches. As a result:

– The patternp is represented in the new created memory registers of the
memory branch and in the processing branch.

– The memory registers of the already present memory branches are recon-
structed by the flip back operation of the CNOT gate.

• We un-compute the memory register of the processing branch (c2 = 1) to the
ground state |00 · · · 0〉 by the ccX gate.

• We reset the load register to the ground state

NEXT

We convert the processing branch into a memory branch and store the last pat-
tern |pattern1〉 in its memory register. We reset the load register to the ground state.
As a result we represent the stored patterns in the superposition

|ψ〉 =

 1√
m

m∑
j=1
|pattern〉j

⊗ |0, 0; 0 · · · 0〉,

13.2.2 Qiskit Example

In this example we store three binary patterns,

|01〉3, |10〉2, |11〉1

Qiskit uses little endian notation

|memory; c2, c1; register〉 = |q5, q4, q3, q2; q1, q0〉,

Qubts 0 and 1 represent the load register, qubits 2 and 3 are the control qubits and
the qubits 4 and 5 represent the memory register. We use the statevector simulator
to check the value of all 6 qubits. The initial state is represented by the processing
branch

|ψ〉0 = |0, 0; 1, 0; 0, 0〉.

• Figure 13.1. The qubit 3 is set to one indicating by c2 = 1, that the basis state
represents a processing branch. In the load register pattern |10〉 is generated
and the memory register is set to |11〉. The resulting state is

|ψ〉1 = |1, 1; 1, 0; 0, 1〉.
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(a)
(b)

Figure 13.1 (a) The qubit 3 is set to one indicating (by c2 = 1), that the basis state
represents a processing branch. The pattern |10〉 is generated in the load register and
the memory register is set to |11〉. (b) The resulting state is |ψ〉1 = |1, 1; 0, 1; 0, 1〉.

• Figure 13.2. The control qubit 2 (c1 = 1 ) is entangled with the memory register
|11〉 by the multi-controlled X (Toffoli) gate. The processing branch is split by
the operator CS3 (p = 3), creating a new memory and processing branch. The
resulting state is

|ψ〉2 = 1√
3
|1, 1; 0, 1; 0, 1〉+

√
2
3 |1, 1; 1, 1; 0, 1〉.

• Figure 13.3. We un-compute the entanglement of control qubit 2 (c1 = 1)
with the memory register |11〉 (using the multi-controlled X (Toffoli) gate). We
apply the NOT gates operation and the controlled NOT operation (CNOT
gate) to the memory register of both branches. As result we write 10 into the
memory registers. The resulting state is

(a)

(b)

Figure 13.2 (a) The control qubit 2 (c1 = 1 ) is entangled with the memory register |11〉
by the multi-controlled X (Toffoli) gate. The processing branch is split by the operator
CS3 (p = 3), creating a new memory and processing branch. (b) The resulting state
is |ψ〉2 = 1√

3 |1, 1; 0, 1; 0, 1〉+
√

2
3 |1, 1; 1, 1; 0, 1〉.
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(a)

(b)

Figure 13.3 (a) We un-compute the entanglement of control qubit 2 (c1 = 1) with
the memory register |11〉 (using the multi-controlled X (Toffoli) gate). We apply the
NOT gates operation and the controlled NOT operation (CNOT gate) to the memory
register of both branches. As result we write 10 into the memory registers. (b) The
resulting state is |ψ〉3 = 1√

3 |0, 1; 0, 0; 0, 1〉+
√

2
3 |0, 1; 1, 0; 0, 1〉.

|ψ〉3 = 1√
3
|0, 1; 0, 0; 0, 1〉+

√
2
3 |0, 1; 1, 0; 0, 1〉.

• Figure 13.4. We un-compute the memory register of the processing branch,
setting it to the ground state |00〉 (the memory register before the operation
is in the ground state). We use the ccX gate (CCNOT gate) controlled by the
load register and the control qubit 3 (c2 = 1 indicates the processing branch).
We reset the load register to the ground state |00〉. The resulting state is

|ψ〉4 = 1√
3
|0, 1; 0, 0; 0, 0〉+

√
2
3 |0, 0; 1, 0; 0, 0〉.

• Figure 13.5. The pattern |10〉 is generated in the load register. We copy |10〉 into
the memory register of the processing branch. We use the ccX gate (CCNOT
gate) controlled by the load register and the control qubit 3 (c2 = 1 indicates
the processing branch). The resulting state is

|ψ〉5 = 1√
3
|0, 1; 0, 0; 1, 0〉+

√
2
3 |1, 0; 1, 0; 1, 0〉.

• Figure 13.6. We perform the controlled NOT operation controlled by the pattern
|10〉 with the memory register of both branches using cX gate. As a result the
memory register of the processing branch is in the ground state |00〉. This is not
the case for the memory register of memory branch, where the bits are flipped
leading to the state |11〉. We apply the NOT operation to the memory register
of bot branches. As a result the memory register of the processing branch is
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(a)
(b)

Figure 13.4 (a) We un-compute the memory register of the processing branch, setting
it to the the ground state |00〉. We use the ccX gate (CCNOT gate) controlled by
the load register and the control qubit 3 (c2 = 1 indicates the processing branch).
We reset the load register to the ground state |00〉. (b) The resulting state is |ψ〉4 =

1√
3 |0, 1; 0, 0; 0, 0〉+

√
2
3 |0, 0; 1, 0; 0, 0〉.

in the state |11〉. The control qubit 2 (c1 = 1 ) is entangled with the memory
register |11〉 by the multi-controlled X (Toffoli) gate. The resulting state is

|ψ〉6 = 1√
3
|0, 0; 0, 0; 1, 0〉+

√
2
3 |1, 1; 1, 1; 1, 0〉.

• Figure 13.7 The control qubit 2 (c1 = 1 ) is entangled with the memory regis-
ter |11〉 of the proscessing ranch by the multi-controlled X (Toffoli) gate. The
processing branch is split by the operator CS2 (p = 2), creating a new memory
branch. The resulting state is

|ψ〉7 = 1√
3
|0, 0; 0, 0; 1, 0〉+ 1√

3
|1, 1; 0, 1; 1, 0〉+ 1√

3
|1, 1; 1, 1; 1, 0〉.

• Figure 13.8. We un-compute the entanglement of control qubit 2 (c1 = 1)
with the memory register |11〉 (using the multi-controlled X (Toffoli) gate). We
apply the NOT gates operation and the controlled NOT operation (CNOT gate)
to the memory register of the three branches. As result we un-flip (recover)
the memory register of the first memory branch to |10〉 and copy |01〉 into
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(a)
(b)

Figure 13.5 The pattern |10〉 is generated in the load register. We copy |10〉 into the
memory register of the processing branch (the memory register before the operation
is in the ground state). We use the ccX gate (CCNOT gate) controlled by the load
register and the control qubit 3 (c2 = 1 indicates the processing branch). (b) The
resulting state is |ψ〉5 = 1√

3 |0, 1; 0, 0; 1, 0〉+
√

2
3 |1, 0; 1, 0; 1, 0〉.

the memory register of the other two branches. We un-compute the memory
register of the processing branch, setting it to the the ground state |00〉. We
use the ccX gate (CCNOT gate) controlled by the load register and the control
qubit 3 (c2 = 1 indicates the processing branch). We reset the load register to
the ground state |00〉. The resulting state is

|ψ〉8 = 1√
3
|0, 0; 1, 0; 0, 0〉+ 1√

3
|0, 1; 0, 0; 0, 0〉+ 1√

3
|1, 0; 0, 0; 0, 0〉.

• Figure 13.9. In the load register pattern |11〉 is generated. The first qubit of the
pattern |11〉, qubit 0, is entangled with the qubit 3 of control register c2 = 1
using the controlled NOT gate cX.

qc.cx(3,0)
qc.x(1)

We copy |11〉 into the memory register of the processing branch by the ccX gate
(CCNOT gate) controlled by the load register and the control qubit 3 (c2 = 1
indicates the processing branch).

qc.ccx(0,3,4)
qc.ccx(1,3,5)
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(a)
(b)

Figure 13.6 We perform the controlled NOT operation controlled by the pattern |10〉
with the memory register of both branches using cX gate. As a result the memory
register of the processing branch is in the ground state |00〉. This is not the case
for the memory register of memory branch, where the bits are flipped leading to the
state |11〉. We apply the NOT operation to the memory register of bot branches. As
a result the memory register of the processing branch is in the state |11〉. The control
qubit 2 (c1 = 1 ) is entangled with the memory register |11〉 by the multi-controlled
X gate. (b) The resulting state is |ψ〉6 = 1√

3 |0, 0; 0, 0; 1, 0〉+
√

2
3 |1, 1; 1, 1; 1, 0〉.

We convert the processing branch into a memory branch by setting the qubit
3 of the control register c2 to zero by the entangled qubit 0 of the pattern |11〉
(using controlled NOT gate cX).

qc.cx(0,3)

We reset the load register to the ground state |00〉. The entangled qubit in the
load register is set to zero by the ccX gate (CCNOT gate) with the control
qubits represented by the memory register of the stored pattern |11〉.

qc.ccx(4,5,0)
qc.x(1)

We measure the memory register: qubit 4 and 5 using the qasm simulator
with shots = 10000. The results of the measurement represent the desired
distribution The resulting state is

|ψ〉9 = 1√
3
· (|0, 1〉+ |1, 0〉+ |1, 1〉)⊗ |0, 0; 0, 0〉.
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(a)
(b)

Figure 13.7 (a) The control qubit 2 (c1 = 1 ) is entangled with the memory register
|11〉 of the proscessing ranch by the multi-controlled X (Toffoli) gate. The processing
branch is split by the operator CS2 (p = 2), creating a new memory branch. (b) The
resulting state is |ψ〉7 = 1√

3 |0, 0; 0, 0; 1, 0〉+ 1√
3 |1, 1; 0, 1; 1, 0〉+ 1√

3 |1, 1; 1, 1; 1, 0〉.

The complete circuit is defined by

qc = QuantumCircuit(6,2)
#0-1 loading register
#2-3 control register
#4-5 storage, memory
qc.x(3)
qc.x(0)
qc.barrier()

qc.x(4)
qc.x(5)
qc.barrier()
qc.ccx(4,5,2)
qc.cu(1.230959417340775,pi,pi,0,2,3)
qc.ccx(4,5,2)
qc.barrier()
qc.x(4)
qc.x(5)
qc.cx(1,5)
qc.cx(0,4)
#Uncompute
qc.barrier()
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(a)
(b)

Figure 13.8 (a) We un-compute the entanglement of control qubit 2 (c1 = 1) with the
memory register |11〉 (using the multi-controlled X gate). We apply the NOT gates
operation and the controlled NOT operation (CNOT gate) to the memory register
of the three branches. As result we un-flip (recover) the memory register of the first
memory branch to |01〉 and copy |10〉 into the memory register of the other two
branches. We un-compute the memory register of the processing branch, setting it
to the ground state |00〉. We use the ccX gate (CCNOT gate) controlled by the
load register and the control qubit 3 (c2 = 1 indicates the processing branch). We
reset the load register to the ground state |00〉. (b) The resulting state is |ψ〉8 =

1√
3 |0, 0; 1, 0; 0, 0〉+ 1√

3 |0, 1; 0, 0; 0, 0〉+ 1√
3 |1, 0; 0, 0; 0, 0〉.

qc.ccx(0,3,4)
qc.ccx(1,3,5)

qc.barrier()
qc.x(0)

qc.barrier()
qc.x(1)
qc.barrier()

qc.ccx(0,3,4)
qc.ccx(1,3,5)
qc.barrier()
qc.cx(1,5)
qc.cx(0,4)
qc.barrier()
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(a)
(b)

Figure 13.9 In the load register, pattern |11〉 is generated. The first qubit of the pattern
|11〉, qubit 0, is entangled with the qubit 3 of control register c2 = 1 using the
controlled NOT gate cX. We copy |11〉 into the memory register of the processing
branch by the ccX gate (CCNOT gate) controlled by the load register and the control
qubit 3 (c2 = 1 indicates the processing branch). We convert the processing branch
into a memory branch by setting the qubit 3 of the control register c2 to zero by
the entangled qubit 0 of the pattern |11〉 (using controlled NOT gate cX). We reset
the load register to the ground state |00〉. The entangled qubit in the load register
is set to zero by the ccX gate (CCNOT gate) with the control qubits represented
by the memory register of the stored pattern |11〉. We measure the memory register:
qubit 4 and 5 using the qasm simulator with shots = 10000. (b) The results of the
measurement represent the desired distribution.

qc.x(4)
qc.x(5)
qc.barrier()
qc.ccx(4,5,2)
qc.cu(1.5707963267948966,pi,pi,0,2,3)
qc.ccx(4,5,2)

qc.barrier()
qc.x(4)
qc.x(5)
qc.cx(1,5)
qc.cx(0,4)
#Uncompute
qc.barrier()
qc.ccx(0,3,4)
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qc.ccx(1,3,5)
qc.x(1)

qc.barrier()
qc.cx(3,0)
qc.x(1)
qc.ccx(0,3,4)
qc.ccx(1,3,5)
qc.cx(0,3)
qc.ccx(4,5,0)
qc.x(1)
qc.barrier()

qc.measure(4,0)
qc.measure(5,1)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=10000).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

13.3 ENTANGLEMENT OF BINARY PATTERNS

The method is based the on the entanglement of the index qubits that are in the
superposition with the patterns. To stores m binary paterns

|patternm〉, |patternm−1〉, · · · |pattern1〉

we entangle the index qubits using multi-controlled NOT gates (ccX gate or MCX-
Gate). First, we generate v = |log2(m) index qubits using v Hadamard gates

H⊗
v |0〉⊗v = 1√

m

m∑
j=1
|indexj〉.

and entangle m binary pattern with the index qubits with a resulting superposition

|ψ〉 = 1√
m

 m∑
j=1
|indexj〉|patternj〉

 , (13.1)

13.3.1 Qiskit Example

In this example we store four binary patterns,

|101〉4, |011〉3, |111〉2, |010〉1

by entanglement with the four index qubits |indexj〉 in superposition

|index4〉 = |11〉 |index3〉 = |10〉 |index2〉 = |01〉 |index1〉 = |00〉

using controlled NOT gates (ccX gates) with the circuit (see Figure 13.10):
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(a)

(b)

Figure 13.10 The method is based the on the entanglement of the index qubits that
are in the superposition with the pattern vectors. (b) The histogram representing the
superposition, qubits 0,1, and 2 represent the patterns and the qubits 4 and 5 the
index qubits.

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate

qc = QuantumCircuit(5)
#0-2 data
#Index
#3-4
qc.h(3)
qc.h(4)

#First patern
qc.ccx(3,4,0)
qc.ccx(3,4,2)
qc.barrier()
#Second patern
qc.x(3)
qc.ccx(3,4,0)
qc.ccx(3,4,1)
qc.x(3)

qc.barrier()
#Third patern
qc.x(4)
qc.ccx(3,4,0)
qc.ccx(3,4,1)
qc.ccx(3,4,2)
qc.x(4)

qc.barrier()
#Fourth patern
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qc.x(3)
qc.x(4)
qc.ccx(3,4,1)
qc.x(4)
qc.x(3)

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

The superposition of patterns with their indexes is represented as

|ψ〉 = 1
2 · (|00010〉1 + |01111〉2 + |10011〉3 + |11101〉4) .

We can entangle several copies of superposition binary pattern vectors that can
be processed and measured independently, see Figure 13.11.

Figure 13.11 We can entangle several copies of superposition binary pattern vectors
that can be processed and measured independently.



182 � Quantum Artificial Intelligence with Qiskit

13.4 COMPARISON

The method developed by Ventura and Martinez [114, 115] leads to the superposition

|ψ〉 =

 1√
m

m∑
j=1
|patternj〉 ⊗ |0 · · · 0; 0, 0〉

 ,
while the entanglement of binary pattern vectors leads to the superposition

|ψ〉 = 1√
m

 m∑
j=1
|indexj〉|patternj〉

 .
The method of entanglement of binary pattern is easier to understand and implement
an allows us to address the patterns through the index. The same pattern can be
represented several times with a different index, however the dimension of the vectors
in superposition is dim(n + log2(m) compared to the dimension dim(n) of Ventura
and Martinez method.



C H A P T E R 14

Quantum Associative
Memory

Quantum associative memory (QuAM) in the domain of quantum computation is
a model with a capacity exponential in the number of neurons. Quantum Nearest
Neighbor (QNN) is related to the QuAM. In QNN the binary patterns are stored by
entanglement with index qubits. For Grover’s amplification to the index qubits, we
have to un-compute the entanglement of index qubits with the patterns. In QNN we
need to un-compute. However, in QuAM we do not un-compute. In the QuAM as
proposed by Venture and Martinez, a modified version of Grover’s search algorithm
is applied to determine the answer vector to a query vector so that instead of un-
computing one can apply Grover’s algorithm to all qubits. Most quantum machine
learning algorithms including quantum associative memory suffer from the input
destruction problem where the classical data must be read and after the measurement
the superposition collapses. However, the input destruction problem is not solved till
today, and usually theoretical speed ups are analyzed. We will demonstrate a simple
QNN model, and a modified version of Grover’s search algorithm as proposed by
Venture and Martinez. Then we analyze the input destruction problem.

14.1 QUANTUM NEAREST NEIGHBOR

We store In four binary patterns,

|101〉4, |011〉3, |111〉2, |010〉1

by entanglement with the four index qubits |indexj〉 in superposition

|index4〉 = |11〉 |index3〉 = |10〉 |index2〉 = |01〉 |index1〉 = |00〉

The four patterns with their indexes represented in a uniform distribution of the
states

|ψ〉 = 1
2 · (|00010〉1 + |01111〉2 + |10011〉3 + |11101〉4) .

We represent the patterns by the qubits 0, 1, and 2 and the index by the qubits 3
and 4. The qubit 5 represents the auxiliary qubit for the Grover’s amplification (see
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(a)

(b)

Figure 14.1 (a) The patterns are represented by the qubits 0, 1, and 2 and the index
by the qubits 3 and 4. The qubit 5 represents the auxiliary qubit for the Grover’s
amplification. Our query vector is represented by the pattern |111〉. The ccX gate
(controlled controlled not gate) marks the solution by writing a one in the qubit
5. (b) The histogram representing the four patterns and their indexes produces a
uniform superposition. The solution |111〉 with the the index |index2〉 = |01〉 and the
auxiliary qubit equal one, corresponds to the state |01111〉.

Figure 14.1 (a)). For simplicity our query vector is represented by the pattern |111〉.
The quantum oracle marks the solution by writing a one in the qubit 5. The solution
is the stored pattern |111〉 with the index |index2〉 = |01〉 (see Figure 14.1 (b)). In
the next step, we perform Grover’s amplification to the index qubits 3 and 4 (see
Figure 14.2 (a)). However, since the index qubits are entangled with the patterns we
do not get the correct results (see Figure 14.1 (b)). To apply Grover’s amplification
to the two index qubits, the entanglement of the index qubits with the patterns has
to be un-computed (see Figure 14.3 (a)). The definition of the qiskit circuit:

import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from math import pi
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(a)

(b)

Figure 14.2 (a) Grover’s amplification to the index qubits 3 and 4. (b) Since the index
qubits are entangled with the patterns we do not get the correct results.

def store():
qc = QuantumCircuit(5)
#First patern
qc.ccx(3,4,0)
qc.ccx(3,4,2)
qc.barrier()
#Second patern
qc.x(3)
qc.ccx(3,4,0)
qc.ccx(3,4,1)
qc.x(3)
qc.barrier()
#Third patern
qc.x(4)
qc.ccx(3,4,0)
qc.ccx(3,4,1)
qc.ccx(3,4,2)
qc.x(4)
qc.barrier()
#Fourth patern
qc.x(3)
qc.x(4)
qc.ccx(3,4,1)
qc.x(4)
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(a)

(b)

Figure 14.3 (a) For Grover’s amplification to the index qubits, we have to un-compute
the entanglement of index qubits are with the patterns. For the four state we require
just one rotation. (b) We measure the correct result represented by one state with
the |index2〉 = |01〉.

qc.x(3)
qc.name="Store"
return qc

def store_inv():
qc=store()
qc_inv=qc.inverse()
qc_inv.name="StoreĘ"
return qc_inv

qc = QuantumCircuit(6)
#0-2 data
#Index
#3-4
qc.h(3)
qc.h(4)

#Aux Bit
qc.x(5)
qc.h(5)
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qc.barrier()
qc.append(store(),range(5))
qc.barrier()
#Oracle
gate = MCXGate(3)
qc.append(gate,[0, 1, 2, 5])
qc.barrier()
qc.append(store_inv(),range(5))
qc.barrier()
#Redo Aux Bit
qc.h(5)
qc.barrier()
#Diffusor
qc.h([3,4])
qc.z([3,4])
qc.cz(3,4)
qc.h([3,4])

For the four state we require just one rotation. We measure the correct result rep-
resented by one state with the index2〉 = |10〉 (see Figure 14.3 (b)). Instead of un-
computing, we would like to apply Grover’s algorithm to the five qubits representing
the patterns and the indexes. Measuring the states after one rotation of Grover’s
amplification indicates us that something wired is happening.

14.2 QUANTUM ASSOCIATIVE MEMORY (QuAM)

In the QuAM as proposed by Venture and Martinez, a modified version of Grover’s
search algorithm is applied to determine the answer vector to a query vector [114, 115,
110]. To prepare superposition of m binary linear independent vectors with dimension
n with n > m, a method was proposed by Ventura and Martinez [114, 115] and later
simplified by [111], with preparation cost O(n ·m) requiring log2(m) units. The query
costs are O(n ·

√
m) compared to O(n ·m) on a conventional computer. To understand

the modified version of Grover’s search algorithm and the results of Figure 14.4, we
generate simple superposition

|ψ〉 = 1
2 · (|1100〉+ |1001〉+ |1111〉+ |0110〉) .

so that we can track the amplitude distribution

1
2(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1)T .

We notice that the amplitude distribution is not uniform, a uniform distribution of
amplitudes of four qubits would correspond to

1
4(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T .

Could this be the cause of the problem?
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(a)

(b)

Figure 14.4 (a) Instead of un-computing, we would like to apply Grover’s algorithm to
the five qubits representing the patterns and the indexes. (b) Measuring the states
after one rotation of Grover’s amplification indicates us that something wired is
happening.

14.2.1 Non-Uniform Distribution

From the initial distribution we mark the target state |0110〉 by a negative phase
1
2(0, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 1)T .

and perform a Grover’s rotation with the result
1
8(−1,−1,−1, 3,−1,−1,−5,−1,−1, 3,−1,−1,−1,−1,−1, 3)T

We mark again and the target state |0110〉 by a negative phase and perform a Grover’s
rotation with the result

(−0.2,−0.2,−0.2, 0.3,−0.2,−0.2, 0.6,−0.2,−0.2, 0.3,−0.2,−0.2,−0.2,−0.2,−0.2, 0.3)T .

The four states that represent our distribution have high non-negative values of am-
plitude (the results are rounded for representation clarity). After marking the target
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state |0110〉 by a negative phase and a Grover’s rotation

(0.02, 0.02, 0.02, 0.5, 0.02, 0.02,−0.4, 0.02, 0.02, 0.5, 0.02, 0.02, 0.02, 0.02, 0.02, 0.5)T

all four basis states have nearly equal distribution and the information of the target
state |0110〉 is negative. If we mark the target by a negative phase, the information
about it will be lost. How can we deal with non-uniform distributions?

14.2.2 Ventura Martinez Trick

Venture and Martinez, proposed a modified version of Grover’s search algorithm
[114, 115]. As before, from the initial distribution we mark the target state |0110〉 by
a negative phase

1
2(0, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 1)T .

and perform a Grover’s rotation with the result

1
8(−1,−1,−1, 3,−1,−1,−5,−1,−1, 3,−1,−1,−1,−1,−1, 3)T

However, now me mark all four states that represent our distribution by a negative
phase and perform a Grover’s rotation with the result

1
8(1, 1, 1,−1, 1, 1, 7, 1, 1,−1, 1, 1, 1, 1, 1,−1)T

We mark again all four states that represent our distribution by a negative phase and
perform a Grover’s rotation

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

with the amplitude one indicating the target state. The qiskit circuit (see Figure 14.5)
is represented as:

import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from math import pi

qc = QuantumCircuit(5)
#0-1 data
#Index
#2-3
qc.h(2)
qc.h(3)

#Aux Bit
qc.x(4)
qc.h(4)
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qc.barrier()
#First patern
qc.ccx(2,3,0)
qc.ccx(2,3,1)

qc.barrier()
#Second patern
qc.x(2)
qc.ccx(2,3,0)
qc.x(2)

qc.barrier()
#Third patern
qc.x(3)
qc.ccx(2,3,1)
qc.x(3)

qc.barrier()
#Fourth patern
qc.x(2)
qc.x(3)
qc.ccx(2,3,0)
qc.ccx(2,3,1)
qc.x(3)
qc.x(2)

#Oracle
qc.barrier()
qc.x(0)
qc.x(3)
gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])
qc.x(3)
qc.x(0)
qc.barrier()
qc.h(4)
#Diffusor 0, 1, 2, 3
qc.barrier()

qc.h([0,1,2,3])
qc.x([0,1,2,3])
qc.h(0)
gate = MCXGate(3)
qc.append(gate, [1,2,3,0])
qc.h(0)
qc.x([0,1,2,3])
qc.h([0,1,2,3])

#Secend rotation
qc.barrier()
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qc.h(4)
qc.barrier()

#Oracle Trick
qc.x(0)
qc.x(3)
gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])
qc.x(3)
qc.x(0)

qc.x(2)
qc.x(3)
gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])
qc.x(3)
qc.x(2)

qc.x(1)
qc.x(2)
gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])
qc.x(2)
qc.x(1)

gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])

qc.barrier()
qc.h(4)
#Diffusor 0, 1, 2, 3
qc.barrier()

qc.h([0,1,2,3])
qc.x([0,1,2,3])
qc.h(0)
gate = MCXGate(3)
qc.append(gate, [1,2,3,0])
qc.h(0)
qc.x([0,1,2,3])
qc.h([0,1,2,3])

#Third rotation
qc.barrier()
qc.h(4)
qc.barrier()

#Oracle Trick
qc.x(0)
qc.x(3)
gate = MCXGate(4)
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qc.append(gate, [0,1,2,3,4])
qc.x(3)
qc.x(0)

qc.x(2)
qc.x(3)
gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])
qc.x(3)
qc.x(2)

qc.x(1)
qc.x(2)
gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])
qc.x(2)
qc.x(1)

gate = MCXGate(4)
qc.append(gate, [0,1,2,3,4])
qc.barrier()
qc.h(4)

#Diffusor 0, 1, 2, 3
qc.barrier()

qc.h([0,1,2,3])
qc.x([0,1,2,3])
qc.h(0)
gate = MCXGate(3)
qc.append(gate, [1,2,3,0])
qc.h(0)
qc.x([0,1,2,3])
qc.h([0,1,2,3])

simulator = Aer.get_backend(’statevector_simulator’)

result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

and to indicate the state vector (together with the auxilaiary qubit 4)

final_state = simulator.run(qc).result().get_statevector()
from qiskit.visualization import array_to_latex
array_to_latex(final_state,max_size=256,precision=4,prefix=
"\\text{Statevector} = ")

Depending on the distribution and the relation between m (the number of patterns)
and n (the dimension of patterns), we have to correct by marking all present state
till all states without the target state reach an uniform distribution. The correction
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Figure 14.5 The circuit representing the three Grover’s rotations with two times the
cost of marking all present states.

cost influence the cost of Grover’s amplification algorithm. In our case we need three
Grover’s rotation with two times the cost of marking all present states (see Figure
14.5). For four states in superposition and one target value, we would only need one
rotation.

14.3 INPUT DESTRUCTION PROBLEM

Most quantum machine learning algorithms including quantum associative memory
suffer from the input destruction problem (ID problem) [3, 126, 1]:

• The input (reading) problem: The amplitude distribution of a quantum state is
initialized by reading n data points. Although the existing quantum algorithm
requires only O(

√
n) steps or less and is faster than the classical algorithms,

n data points must be read. Hence, the complexity of the algorithm does not
improve and is O(n) = O(n) +O(

√
n).

• The destruction problem: A quantum associative memory [114, 115, 110],
[111, 112] for n data points for dimension m requires only m · log(n) or fewer
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units (quantum bits). An operator, which acts as an oracle [110] indicates the
solution. However, this memory can be queried only once because of the col-
lapse during measurement (destruction); hence, quantum associative memory
does not have any advantages over classical memory.

The efficient preparation of data is possible in part for spares data [39]. However,
the input destruction problem is not solved till today, and usually theoretical speed
ups are analyzed [94] by ignoring the input problem, which is the main bottleneck
for data encoding. We name the preparation of the input data the sleep phase. The
query operation is extremely fast and will be called the active phase. The naming of
the phases is in analogy to a living organism that prepares itself during the sleep for
an active day. The advantage of quantum approach is present in the active phase.
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Quantum Lernmatrix

We introduce quantum Lernmatrix based on Lernmatrix where n units are stored in
the quantum superposition. Lernmatrix is an associative-memory-like architecture.
During the retrieval phase quantum counting of ones based on Euler’s formula is
used for the pattern recovery as proposed by Trugenberger. We demonstrate how to
represent the quantum Lernmatrix by a quantum circuit and preform experiments
using qiskit. Then we introduce a tree-like structure that increases the measured value
of correct answers. During the active phase the quantum Lernmatrices are queried
and the results are estimated efficiently. The required time is much lower compared
to the conventional approach or the of Grover’s algorithm.

15.1 LERNMATRIX

Different associative memory models have been proposed over the years [5], [42, 49],
[6, 10]. The Hopfield model represents a recurrent model of the associative memory [5],
[46], [44], it is a dynamical system that evolves until it has converged to a stable state.
The Lernmatrix, or Willshaw’s associative memory also simply called “associative
memory” (if no confusion with other models is possible [6, 10]), it was developed
by Steinbuch in 1958 as a biologically inspired model from the effort to explain the
psychological phenomena of conditioning [103, 104]. The goal was to produce a
network that could use a binary version of Hebbian learning to form associations
between pairs of binary vectors. Later this model was studied under biological and
mathematical aspects mainly by Willshaw [124] and Palm [75, 76] and it was shown
that this simple model has a tremendous storage capacity.

Lernmatrix is composed of a cluster of units. Each unit represents a simple model
of a real biological neuron. Each unit is composed of binary weights, which correspond
to the synapses and dendrites in a real neuron (see Figure. 15.1). They are described
by wij ∈ {0, 1} in Figure 15.2. T is the threshold of the unit. The presence of a
feature is indicated by a “one” component of the vector, its absence through a “zero”
component of the vector. A pair of these vectors is associated and this process of
association is called learning. The first of the two vectors is called the query vector
and the second, the answer vector. After learning, the query vector is presented to
the associative memory and the answer vector is determined by the retrieval rule.
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dendrites
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unitneuron

Figure 15.1 A unit is an abstract model of a biological neuron [63, 76, 44, 74, 97].

15.1.1 Learning and Retrieval

Initially, no information is stored in the associative memory. Because the information
is represented in weights, all unit weights are initially set to zero. In the learning
phase, pairs of binary vector are associated. Let x be the query vector and y the
answer vector, the learning rule is:

wnewij =
{

1 if yi · xj = 1
woldij otherwise. (15.1)

y y y y
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T T T T
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Figure 15.2 The Lernmatrix is composed of a set of units which represent a simple
model of a real biological neuron. The unit is composed of weights, which correspond
to the synapses and dendrites in the real neuron. In this Figure they are described
by wij ∈ {0, 1} where 1 ≤ i ≤ m and 1 ≤ j ≤ n. T is the threshold of the unit.
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This rule is called the binary Hebbian rule [75]. Every time a pair of binary vectors
is stored, this rule is used.

In the one-step retrieval phase of the associative memory, a fault tolerant answer-
ing mechanism recalls the appropriate answer vector for a query vector x.

The retrieval rule for the determination of the answer vector y is:

neti =
n∑
j=1

wijxj , (15.2)

yi =
{

1 if net ≥ T
0 otherwise.

where T is the threshold of the unit. The threshold T is set to the number of “one”
components in the query vector x, T := |x|. If the output of the unit is 1 we say
that the units fires, for the output 0 the unit does not fire. The cost of the one-step
retrieval is O(n ·m). The retrieval is called:

• hetero-association if both vectors are different x 6= y,

• association, if x = y, the answer vector represents the reconstruction of the
disturbed query vector.

For simplicity we assume that the dimension of the query vector and the answer
vector are the same, n = m.

Example In Figure 15.3, the vector pair x1 = (1, 0, 0, 0, 1) and y1 = (0, 1, 1, 1, 0) is
learned. The corresponding binary weights of the associated pair are indicated by a
black square. In the next step the vector pair x2 = (0, 1, 1, 0, 1) and y2 = (1, 1, 0, 0, 1)
is learned. The corresponding binary weights of the associated pair are indicated
by a black circle. In third step the retrieval phase is preformed (see Figure 15.4).
The query vector xq = (0, 1, 0, 0, 1) differs by one bit to the learned query vector
x2 = (0, 1, 1, 0, 1). The threshold T is set to the number of “one” components in the
query vector xq, T = 2. The retrieved vector is the vector y2 = (1, 1, 0, 0, 1) that was
stored.

15.1.2 Storage Capacity

We analyze the optimal storage costs of the Lernmatrix. For an estimation of the
asymptotic number L of vector pairs (x,y) that can be stored in an associative
memory before it begins to make mistakes in the retrieval phase, it is assumed that
both vectors have the same dimension n. It is also assumed that both vectors are
composed of k ones, which are equally likely to be in any coordinate of the vector. In
this case it was shown [75, 42, 102] that the optimum value for k is approximately

k
.= log2(n/4). (15.3)

For example, for a vector of the dimension n=1000000 only k = 18 ones should be used
to code a pattern according to the Equation 15.3. For an optimal value for k according
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Figure 15.3 The vector pair x1 = (1, 0, 0, 0, 1) and y1 = (0, 1, 1, 1, 0) is learned. The
corresponding binary weights of the associated pair are indicated by a black square.
In the next step the vector pair x2 = (0, 1, 1, 0, 1) and y2 = (1, 1, 0, 0, 1) is learned.
The corresponding binary weights of the associated pair are indicated by a black
circle.

to the Equation 15.3 with ones equally distributed over the coordinates of the vectors,
approximately L vector pairs can be stored in the associative memory [75, 42]. L is
approximately

L
.= (ln 2)(n2/k2). (15.4)

This value is much greater than n. The estimate of L is very rough because Equa-
tion 15.3 is only valid for very large networks, however the capacity increase is still

Figure 15.4 The query vector xq = (0, 1, 0, 0, 1) differs by one bit to the learned query
vector x2 = (0, 1, 1, 0, 1). The threshold T is set to the number of “one” components
in the query vector xq, T = 2. The retrieved vector is the vector y2 = (1, 1, 0, 0, 1)
that was stored.
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considerable. The upper bound for large n is

I = n2 log 2 = n2 · 0.693 (15.5)

the asymptotic capacity is 69.311 percent per bit which is much higher than most
associative memories. This capacity is only valid for sparse equally distributed ones
[75]. The promise of Willshaw’s associative memory that it can store much more
patterns than the number of units. The cost of loading L = (ln 2)(n2/k2) patterns in
n units with k = log2(n/4) is O(n2). It is much lower than storing the L patterns in
a list of L units O(n · L) This is because L > n, or

O

(
n2

log(n)2

)
> O(n)

since √
n > log(n).

The Lernmatrix has a tremendous storage capacity [75, 42], it can store much more
patterns then the number of units.

The description of how to generated efficiently binary sparse codes of visual pat-
terns or other data structure is described in [122, 89, 90]. For example, real vector
patterns have to binarized.

15.2 MONTE CARLO LERNMATRIX

The suggested probabilistic retrieval rule for the determination of the answer vector
y for the query vector x is

p(yi = 1|x) = 1
n
·
(

neti∑n
v=1 netv

)
(15.6)

and
p(yi = 0|x) = 1

n
·
(

1− neti∑n
v=1 netv

)
(15.7)

describing the probability of firing or not firing of one unit with

1 =
n∑
i=1

(p(yi = 1|x) + p(yi = 0|x)) . (15.8)

During the query operation one unit is randomly sampled and either it fires or not
according to the probability distribution. To determine the answer vector, we have
to sample the Monte Carlo Lernmatrix several times. For the reconstructed vector,
three states will be present: 1 for fired units, 0 for not fired units, and unknown for
silent units. The Monte Carlo Lernmatrix is a close description of the quantum Lern-
matrix. In quantum Lernmatrix units are represented by quantum states, sampling
corresponds to the measurement.
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15.3 QUANTUM COUNTING ONES

In a binary string of the length N we can represent the fraction of k ones by the simple
formula k/N and of the zeros as (N − k)/N resulting in a linear relation. We can
interpret these numbers as probability values. We can map these linear relations into
the sigmoid-like probability functions for the presence of ones using Euler’s formula
[111] in relation to trigonometry

(
sin
(
π · k
2 ·N

))2
=
∣∣∣∣∣ei·

π·k
2·N − e−i· π·k

2·N

2

∣∣∣∣∣
2

∈ [0, 1] (15.9)

and of zeros with (
cos

(
π · k
2 ·N

))2
=
∣∣∣∣∣ei·

π·k
2·N + e−i·

π·k
2·N

2

∣∣∣∣∣
2

∈ [0, 1] (15.10)

together with (
sin
(
π · k
2 ·N

))2
+
(

cos
(
π · k
2 ·N

))2
= 1

In the Figure 15.5 the sigmoid-like probability functions for N = 8 are indicated. To
count the number of ones we introduced the control qubit in superposition 1/

√
2 ·

(|0〉 + |1〉). For the superposition part represented by the control qubit 0, the phase
ei·

π
2·3 is applied for each one. For the superposition part represented by the control

qubit 1, the phase e−i· π2·3 is applied for each one.

1√
2
· |0〉 ⊗

(
ei·

π
2·3 · |1〉 ⊗ |0〉 ⊗ ei·

π
2·3 · |1〉

)
+

Figure 15.5 Sigmoid-like probability functions for N = 8 is indicated by continuous
line, the linear relation by the dashed lines. The x-axis indicates the k values, the
y-axis the probabilities.
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1√
2
· |1〉 ⊗

(
e−i·

π
2·3 · |1〉 ⊗ |0〉 ⊗ e−i·

π
2·3 · |1〉

)
= (15.11)

ei·
π·2
2·3
√

2
|0101〉+ e−i·

π·2
2·3
√

2
|1101〉

If we apply a Hadamard gate to the control qubit [111] we get

(H ⊗ I ⊗ I ⊗ I) ·
(
ei·

π·2
2·3
√

2
|0101〉+ e−i·

π·2
2·3
√

2
|1101〉

)
=

ei·
π·2
2·3 + e−i·

π·2
2·3

2 |0101〉+ ei·
π·2
2·3 − e−i· π·2

2·3

2 |1101〉 =

cos
(
π · 2
2 · 3

)
· |0101〉+ i · sin

(
π · 2
2 · 3

)
· |1101〉 =(

cos
(
π · 2
2 · 3

)
· |0〉+ i · sin

(
π · 2
2 · 3

)
· |1〉

)
⊗ |101〉 (15.12)

The probability of measuring the control qubit |0〉 is

p(|0〉) = p(|0101〉) =
(

cos
(
π · 2
2 · 3

))2
= 0.25

and the probability of measuring the control qubit |1〉 is

p(|1〉) = p(|1101〉) =
(

sin
(
π · 2
2 · 3

))2
= 0.75

indicating the presence of two ones. The representation of the circuit in qiskit is given
by

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from math import pi

qc = QuantumCircuit(4)
#Input is |101>
qc.x(0)
qc.x(2)
qc.barrier()
qc.h(3)
qc.cp(-pi/6,0,3)
qc.cp(-pi/6,1,3)
qc.cp(-pi/6,2,3)
qc.x(3)
qc.cp(pi/6,0,3)
qc.cp(pi/6,1,3)
qc.cp(pi/6,2,3)
qc.x(3)
qc.h(3)
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(a)

(b)

Figure 15.6 (a) Quantum counting circuit with N = 3 and k = 2. (b) p(|0101〉) = 0.25
and p(|1101〉) = 0.75.

simulator = Aer.get_backend(’statevector_simulator’)
# Run and get counts
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

the resulting quantum circuit is represented in the Figure 15.6 (a) and the resulting
histogram of the measured qubits is represented in the Figure 15.6 (b).

15.4 QUANTUM LERNMATRIX

Useful associative properties of Euler’s formula result from equally distributed weights
over the whole weight matrix and are only present in large matrices, in our examples.
We examine toys examples as a proof of concept for future quantum associative
memories.

The superposition of the weight vectors of the units is based on the entangle-
ment of the index qubits that are in the superposition with the weight vectors. The
count is represented by a unary string of qubits that controls the phase operation.
It represents to the net value of the Lernmatrix. The phase information is the ba-
sis of the quantum counting of ones that increases the probability of measuring the
correct units representing ones in the answer vector. We will represent n units in
superposition by entanglement with the index qubits.

To represent four units we need two index qubits in superposition. Each index
state of the qubit is entangled with a pattern by the Toffoli gate also called the ccX
gate (CCNOT gate, controlled controlled not gate), by setting a corresponding qubit
to one. In our example we store three patterns x1 = (1, 0, 0, 1); y1 = (1, 0, 0, 1),
x2 = (1, 0, 0, 0); y2 = (0, 1, 0, 0), and x3 = (0, 0, 1, 0); y3 = (0, 0, 1, 0) resulting in the
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Figure 15.7 Wight matrix represented by four units after learning the correlation of
the three patterns x1 = (1, 0, 0, 1); y1 = (1, 0, 0, 1), x2 = (1, 0, 0, 0); y2 = (0, 1, 0, 0)
and x3 = (0, 0, 1, 0); y3 = (0, 0, 1, 0). The learning is identical with the learning phase
of the Lernmatrix.

weight matrix represented by four units (see Figure 15.7). After the entanglement of
index qubits |indexj〉 in superposition

|index1〉 = |11〉 |index2〉 = |10〉

|index3〉 = |01〉 |index4〉 = |00〉

with the weight vectors the following state is present, the state countj and unitj are
represented by four qubits each for the four binary weights, with

|unitj〉 = |(w4w3w1w1)j〉

(see Figure 15.8)
1
2 ·

 4∑
j=1
|indexj〉|countj〉|unitj〉

 . (15.13)

The value |countj〉 is the unary representation of the Lernmatrix value netj . We
include the query vector is xq = (1, 0, 0, 1),

1
2 ·

 4∑
j=1
|indexj〉|countj〉|unitj〉

⊗ |query〉 =

1
2 ·

 4∑
j=1
|(i2i1)j〉|(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉 (15.14)

the resulting histogram of the measured qubits is represented in the Figure 15.9. In
the next steps, we describe the active phase (see Figure 15.10). For simplicity, we will
ignore the index qubits since they are not important in the active phase. We perform
quantum counting using the control bit that is set in superposition resulting in

1√
2
· (|0〉+ |1〉)⊗ 1

2 ·

 4∑
j=1
|(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉 =
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Figure 15.8 The quantum circuit that produces the sleep phase. The qubits 0 to 3
represent the query vector, the qubits 4 to 7 the associative memory, the qubits 8 to
11 represent the count, and the qubits 12 and 13 are the index qubits whereas the
qubit 14 is the control qubit.

1
2 ·
√

2
· |0〉

 4∑
j=1
|(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉+

1
2 ·
√

2
· |1〉

 4∑
j=1
|(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉 (15.15)

Applying controlled phase operation with N = 2 since two ones are present in the
query vector and countj ≤ 2

1
2 ·
√

2
· |0〉

 4∑
j=1

ei·
π·countj

2·2 · |(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉+

1
2 ·
√

2
· |1〉

 4∑
j=1

e−i·
π·countj

2·2 · |(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉 (15.16)

and applying the Hadamard gate to the control qubit we get 4∑
j=1

1
2 ·
(

cos
(
π · countj

2 · 2

))
· |0〉|(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉+

 4∑
j=1

1
2 ·
(
i · sin

(
π · countj

2 · 2

))
· |1〉|(c4c3c2c1)j〉|(w4w3w2w1)j〉

⊗ |1001〉. (15.17)
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Figure 15.9 Four superposition state corresponding to the four units of the associative
memory. The qubits 0 to 3 represent the query vector xq = (1, 0, 0, 1), the qubits 4
to 7 the associative memory, the qubits 8 to 11 represent the count, and the qubits
12 and 13 are the index qubits whereas, the control qubit 14 is zero. Note that the
units are counted in the reverse order by the index qubits: 11 first unit, 10 for the
third unit, 01 for second unit, and 00 for the fourth unit.

The architecture is described by 15 qubits. The qubits 0 to 3 represent the query
vector, the qubits 4 to 7 the associative memory, the qubits 8 to 11 represent the
count and the qubits 12 and 13 are the index qubits, the qubit 14 is the control qubit.
The count operation is done by the ccX gate (see Figures 15.8 and 15.10).

Figure 15.10 The quantum circuit that produces the active phase. The query and the
amplification operations on the count qubits, the qubits 8 to 11. The control qubit
14.
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from qiskit import QuantumCircuit, Aer, execute
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from math import pi

qc = QuantumCircuit(15)
#0-3 query
#4-7 data
#8-11 count
#Index Pointer
#12-13
#Aux
#14

#Sleep Phase
#Index Pointer
qc.h(12)
qc.h(13)
qc.barrier()
#1st weights
qc.ccx(12,13,4)
qc.ccx(12,13,7)
qc.barrier()
#2th weights
qc.x(12)
qc.ccx(12,13,4)
qc.x(12)
qc.barrier()
#3th weights
qc.x(13)
qc.ccx(12,13,6)
qc.x(13)
qc.barrier()
#4th weights
qc.x(12)
qc.x(13)
qc.ccx(12,13,4)
qc.ccx(12,13,7)
qc.x(13)
qc.x(12)
qc.barrier()

#Active Phase
#query
qc.x(0)
qc.x(3)
qc.barrier()
qc.ccx(0,4,8)
qc.ccx(1,5,9)
qc.ccx(2,6,10)
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qc.ccx(3,7,11)
#Dividing
qc.h(14)
qc.barrier()
#Marking
qc.cp(-pi/4,8,14)
qc.cp(-pi/4,9,14)
qc.cp(-pi/4,10,14)
qc.cp(-pi/4,11,14)
qc.barrier()
qc.x(14)
qc.cp(pi/4,8,14)
qc.cp(pi/4,9,14)
qc.cp(pi/4,10,14)
qc.cp(pi/4,11,14)
qc.h(14)
qc.draw(fold=110)

simulator = Aer.get_backend(’statevector_simulator’)
# Run and get counts
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

With the query vector xq = (1, 0, 0, 1) units represented by the states have following
values

• The first unit has the value count1 = 2 and the two corresponding states are:
for the control qubit = 1, the value is 1 = sin π

2 with the measured probability∣∣sin π
2 ·

1
2
∣∣2 = 0.25, and for the control qubit = 0, the value is 0 = cos π2 with

the measured probability 0.

• The second unit has the value count2 = 1 and the two corresponding states are:
for the control qubit = 1, the value is 1√

2 = sin π
4 with the measured probability∣∣sin π

4 ·
1
2
∣∣2 = 0.125, and for the control qubit = 0, the value is 1√

2 = cos π4 with
the measured probability

∣∣cos π4 ·
1
2
∣∣2 = 0.125.

• The third unit has the value count3 = 0 and the two corresponding states are:
for the control qubit = 1, the value is 0 = sin 0 with the measured probability
=0, and for the control qubit = 0, the value is 1 = cos 0 with the measured
probability =0.

• The fourth unit has the (decimal) value count4 = 2 and the two corresponding
states are: for the control qubit = 1, the value is 1 = sin π

2 with the measured
probability

∣∣sin π
2 ·

1
2
∣∣2 = 0.25, and for the control qubit = 0, the value is 0 =

cos π2 with the measured probability 0.

There are five states with probabilities not equal to zero, see Figure 15.11. The
measured probability (control qubit = 1) indicating a firing of the units is 0.625.
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Figure 15.11 Five superposition states not equal to zero. The control qubit 14 equal to
one indicates the firing of the units. The measured value is 0.625. The two probabilities
0.25 express the perfect match and the solution (1, 0, 0, 1), indicated by the index
qubits 12 and 13, with the values (11) for the first unit and (00) for the fourth unit.
Note that the units are counted in the reverse order by the index qubits: (11) first
unit, (10) for the second unit, (01) for third unit, and (00) for the fourth unit. The
control qubit 14 equal to zero indicates the units that do not fire. The measured value
is 0.375. The probability 0.25 with the index qubits 12 and 13, with the value (01)
for the third unit indicates the most dissimilar pattern (0, 0, 1, 0).

15.4.1 Generalization

We can generalize the description for n units. After the entanglement of index qubits
in superposition with the weight vectors the following state is present, the state countj
and unitj are represented by [111], [112],

1√
n
·

 n∑
j=1
|indexj〉|countj〉|unitj〉

⊗ |query〉. (15.18)

with the cost O(n2). We apply the control qubit (ignoring the index qubits)

1√
2
· (|0〉+ |1〉)⊗ 1√

n
·

 n∑
j=1
|countj〉|unitj〉

⊗ |query〉 =

1√
2 · n

· |0〉

 n∑
j=1
|countj〉|unitj〉

⊗ |query〉+
1√
2 · n

· |1〉

 n∑
j=1
|countj〉|unitj〉

⊗ |query〉. (15.19)
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Applying controlled phase operation with N for present ones in the query vector and
countj ≤ N

1√
2 · n

· |0〉

 n∑
j=1

ei·
π·countj

2·N · |countj〉|unitj〉

⊗ |query〉+
1√
2 · n

· |1〉

 n∑
j=1

e−i·
π·countj

2·N · |countj〉|unitj〉

⊗ |query〉 (15.20)

and applying the Hadamard gate to the control qubit we get the final result with n∑
j=1

1√
n
·
(

cos
(
π · countj

2 ·N

))
· |0〉|countj〉|unitj〉

⊗ |query〉+
 n∑
j=1

1√
n
·
(
i · sin

(
π · countj

2 ·N

))
· |1〉|countj〉|unitj〉

⊗ |query〉 (15.21)

The cost of one query is O(n) and for k = log2(n/4) queries O(log(n) · n).

15.4.2 Example

In this example we store three patterns representing three associations: x1 =
(1, 1, 0, 0, 0, 0, 1, 0); y1 = (1, 1, 0, 0, 0, 0, 1, 0), x2 = (0, 1, 0, 1, 1, 0, 0, 0); y2 =
(0, 1, 0, 1, 1, 0, 0, 0) and x3 = (0, 0, 1, 0, 0, 1, 0, 1); y3 = (0, 0, 1, 0, 0, 1, 0, 1). The weight
matrix after the learning phase is represented by eight units (see Figures 15.12 and
15.13). After the entanglement of index qubits in superposition

|index1〉 = |111〉 |index2〉 = |110〉

|index3〉 = |101〉 |index4〉 = |100〉

|index5〉 = |011〉 |index6〉 = |010〉

|index7〉 = |001〉 |index8〉 = |000〉

with the weight vectors the following state is present, the state countj and unitj are
represented by eight qubits [111], [112],

1√
8
·

 8∑
j=1
|indexj〉|countj〉|unitj〉

 .
With the query vector xq = (1, 1, 0, 0, 0, 0, 0, 0) we get (see Figure 15.13 (a))

1√
8
·

 8∑
j=1
|indexj〉|countj〉|unitj〉

⊗ |00000011〉.
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Figure 15.12 Weight matrix represented by eight units after learning the corre-
lation of the three patterns x1 = (1, 1, 0, 0, 0, 0, 1, 0); y1 = (1, 1, 0, 0, 0, 0, 1, 0),
x2 = (0, 1, 0, 1, 1, 0, 0, 0); y2 = (0, 1, 0, 1, 1, 0, 0, 0) and x3 = (0, 0, 1, 0, 0, 1, 0, 1);
y3 = (0, 0, 1, 0, 0, 1, 0, 1). The learning is identical with the learning phase of the
Lernmatrix.

and the answer vector (ignoring the index qubits) according to 8∑
j=1

1√
8
·
(

cos
(
π · countj

2 ·N

))
· |0〉|countj〉|unitj〉

⊗ |00000011〉+

 8∑
j=1

1√
8
·
(
i · sin

(
π · countj

2 ·N

))
· |1〉|countj〉|unitj〉

⊗ |00000011〉

is (1, 1, 0, 0, 0, 0, 1, 0) (see Figure 15.14 (b)).

from qiskit import QuantumCircuit, Aer, execute
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from math import pi

qc = QuantumCircuit(28)

#0-7 query
qc.x(0)
qc.x(1)

#qc.x(6)

#8-15 data
#16-23 net
#24-26 index
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(a)

(b)

Figure 15.13 (a) The quantum circuit that produces the sleep phase. The qubits 0 to
7 represent the query vector, the qubits 8 to 15 the associative memory, and the
qubits 16 to 23 represent the count, whereas the qubits 24, 25, and 26 are the index
qubits (8 states) and the qubit 27 is the control qubit. (b) The quantum circuit that
produces the active phase. The query and the amplification operations on the count
qubits, the qubits 16 to 23 and the control qubit 27.

#Aux 27

#Pointer
qc.h(24)
qc.h(25)
qc.h(26)

qc.barrier()
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Figure 15.14 Teen superposition states not equal to zero. The qubits 24, 25, and 26 are
the index qubits. Note that the units are counted in the reverse order by the index
qubits: 111 first unit, 110 for the second unit, till 000 being the eighth unit. The
measured value for the control qubit 27 equal to one indicates the firing of the units.
The measured value is just 0.5. This happens since the weight matrix is relatively
small and not homogenously filled. For the query vector xq = (1, 1, 0, 0, 0, 0, 0, 0), the
three values 0.125 indicate the answer vector (1, 1, 0, 0, 0, 0, 1, 0) by the index qubits
24, 25, and 26; for the first unit with the value (111), the second unit (110), and
seventh unit (001). The control qubit 27 equal to zero indicates the units that do not
fire.

gate = MCXGate(3)

#1st weights
qc.append(gate, [24, 25, 26, 8])
qc.append(gate, [24, 25, 26, 9])
qc.append(gate, [24, 25, 26, 14])

#2th weights
qc.x(24)
qc.append(gate, [24, 25, 26, 8])
qc.append(gate, [24, 25, 26, 9])
qc.append(gate, [24, 25, 26, 11])
qc.append(gate, [24, 25, 26, 12])
qc.append(gate, [24, 25, 26, 14])
qc.x(24)
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#3th weights
qc.x(25)
qc.append(gate, [24, 25, 26, 10])
qc.append(gate, [24, 25, 26, 13])
qc.append(gate, [24, 25, 26, 15])
qc.x(25)

#4th weights
qc.x(24)
qc.x(25)
qc.append(gate, [24, 25, 26, 9])
qc.append(gate, [24, 25, 26, 11])
qc.append(gate, [24, 25, 26, 12])
qc.x(25)
qc.x(24)

#5th weights
qc.x(26)
qc.append(gate, [24, 25, 26, 9])
qc.append(gate, [24, 25, 26, 11])
qc.append(gate, [24, 25, 26, 12])
qc.x(26)

#6th weights
qc.x(26)
qc.x(24)
qc.append(gate, [24, 25, 26, 10])
qc.append(gate, [24, 25, 26, 13])
qc.append(gate, [24, 25, 26, 15])
qc.x(24)
qc.x(26)

#7th weights
qc.x(26)
qc.x(25)
qc.append(gate, [24, 25, 26, 8])
qc.append(gate, [24, 25, 26, 9])
qc.append(gate, [24, 25, 26, 14])
qc.x(25)
qc.x(26)

#8th weights
qc.x(26)
qc.x(25)
qc.x(24)
qc.append(gate, [24, 25, 26, 10])
qc.append(gate, [24, 25, 26, 13])
qc.append(gate, [24, 25, 26, 15])
qc.x(24)
qc.x(25)
qc.x(26)
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qc.barrier()
#query
qc.ccx(0,8,16)
qc.ccx(1,9,17)
qc.ccx(2,10,18)
qc.ccx(3,11,19)
qc.ccx(4,12,20)
qc.ccx(5,13,21)
qc.ccx(6,14,22)
qc.ccx(7,15,23)

#Dividing
qc.barrier()
qc.h(27)

#Marking
qc.cp(-pi/4,16,27)
qc.cp(-pi/4,17,27)
qc.cp(-pi/4,18,27)
qc.cp(-pi/4,19,27)
qc.cp(-pi/4,20,27)
qc.cp(-pi/4,21,27)
qc.cp(-pi/4,22,27)
qc.cp(-pi/4,23,27)

qc.barrier()
qc.x(27)
qc.cp(pi/4,16,27)
qc.cp(pi/4,17,27)
qc.cp(pi/4,18,27)
qc.cp(pi/4,19,27)
qc.cp(pi/4,20,27)
qc.cp(pi/4,21,27)
qc.cp(pi/4,22,27)
qc.cp(pi/4,23,27)

qc.barrier()

qc.h(27)

qc.draw(fold=210)

15.4.3 Applying Trugenberger Amplification Several Times

According to Trugenberger [112] applying control qubit sequential, b times results in
b∑

v=0

 n∑
j=1

1√
n
·
(

cos
(
π · countj

2 ·N

))b−v
·
(
i · sin

(
π · countj

2 ·N

))v
·

·|v〉|indexj〉|countj〉|unitj〉
)
⊗ |query〉. (15.22)



Quantum Lernmatrix � 215

Figure 15.15 Circuit representing the application of the control qubit two times for the
quantum circuit of Figure 15.8.

with |v〉 being the binary representation of the decimal value v. The idea is then to
measure b control qubits b times, until the desired state is obtained. In Trugenberger
identifies the inverse parameter b as temperature t = 1/b and concludes that accuracy
of pattern recall can be tuned by adjusting a parameter playing the role of an effec-
tive temperature [112]. In Figure 15.15, the control qubit was applied two times for
quantum circuit of the Figure 15.8. Figure 15.16 represents the resulting histogram
of the measured qubits. With the assumption of independence, measuring the control
qubits in the sequence results in a low probability. For example, measuring the two
control qubits with the value one is 0.5625 = 0.625 · 0.9.

qc = QuantumCircuit(23)
#0-3 query
qc.x(0)
qc.x(3)
#4-7 data agregated
#8-11 data
#12-19 net/count
#Index Pointer
#20-21
#Aux
#22
#Index Pointer
qc.h(20)
qc.h(21)

#1st weights
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.ccx(20,21,11)
#2th weights
qc.x(20)
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
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Figure 15.16 Seven superposition states not equal to zero. This is because the states
with the former values 0.125 were divided into two values 0.125/2 = 0.0625 by the
two control qubits. The first control qubit 15 equal to one indicates the firing of the
units. The measured value is 0.625. After measuring the first control qubit equal to
one, the measured value of the second control qubit 14 equal to one is 0.9. Assuming
independence, the value of measuring the two control qubits with the value one is
0.5625 = 0.625 · 0.9. As before, the two values 0.25 indicate the perfect match and
the solution (1, 0, 0, 1) with the values of the index qubits 12 and 13: (11) for the first
unit and (00) for the fourth unit.

qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.x(20)
#3th weights
qc.x(21)
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,6)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,10)
qc.x(21)
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#4th weights
qc.x(20)
qc.x(21)
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,6)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.ccx(20,21,11)
qc.x(21)
qc.x(20)
qc.barrier()
#query, counting
#OR Aggregated
qc.ccx(0,4,12)
qc.ccx(1,5,13)
qc.ccx(2,6,14)
qc.ccx(3,7,15)
#Original
qc.ccx(0,8,16)
qc.ccx(1,9,17)
qc.ccx(2,10,18)
qc.ccx(3,11,19)
#Dividing
qc.barrier()
qc.h(22)
#Marking
qc.barrier()
qc.cp(-pi/8,12,22)
qc.cp(-pi/8,13,22)
qc.cp(-pi/8,14,22)
qc.cp(-pi/8,15,22)
qc.cp(-pi/8,16,22)
qc.cp(-pi/8,17,22)
qc.cp(-pi/8,18,22)
qc.cp(-pi/8,19,22)
qc.barrier()
qc.x(22)
qc.cp(pi/8,12,22)
qc.cp(pi/8,13,22)
qc.cp(pi/8,14,22)
qc.cp(pi/8,15,22)
qc.cp(pi/8,16,22)
qc.cp(pi/8,17,22)
qc.cp(pi/8,18,22)
qc.cp(pi/8,19,22)
qc.barrier()
qc.h(22)
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qc.draw()

15.4.4 Tree-Like Structures

We want to increase the probability of measuring the correct units representing the
ones in the answer vector and decrease the probability of measuring the zeros. For
example, in a sparse code with k ones, k measurements of different ones reconstruct
the binary answer vector and we cannot use the idea of applying Trugenberger am-
plification several times as indicated before. Instead we can increase the probability
of measuring a one by the introduced tree-like structure [91]. The tree-like hierarchi-
cal associative memory approach is based on aggregation neighboring units [91]. The
aggregation is a Boolean OR based transform for two or three neighboring weights
of units results resulting in a more dense memory, see Figure 15.17. It was shown
by computer experiments that the aggregation value between two and three is an
optimal one [92]. The more dense memory is copied on top or the original memory.
Depending on the number of units we can repeat the process in which we aggregate
groups of two to three neighboring groups of equal units. We can continue the pro-
cess till we arrive in two different groups of different units, the number of possible
different aggregated memories is logarithmic, with log(n − 1). Since in our example
only four units are present we aggregate two units resulting in a memory of four units
described by 2 identical units each.

The query vector is composed of log(n − 1) concatenated copies of the original

Figure 15.17 a) In our example, we store three patterns x1 = (1, 0, 0, 1), y1 =
(1, 0, 0, 1); x2 = (1, 0, 0, 0), y2 = (0, 1, 0, 0) and x3 = (0, 0, 1, 0), y3 = 0, 0, 1, 0) and
the query vector is xq = (1, 0, 0, 1). (b) The aggregation is a Boolean OR based trans-
form for two neighboring weights of units results resulting in a more dense memory
with xq = (1, 0, 0, 1, 1, 0, 0, 1)
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query vector, in our example xq = (1, 0, 0, 1, 1, 0, 0, 1). We apply controlled phase
operation with N = 4 with countj ≤ 4, see Figure 15.17, and the qiskit definition of
the circuit

qc = QuantumCircuit(23)
#0-3 query
#4-7 data aggregated
#8-11 data
#12-19 count
#Index Pointer
#20-21
#Aux
#22

#Sleep Phase
#Index Pointer
qc.h(20)
qc.h(21)
#1st weights
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.ccx(20,21,11)
#2th weights
qc.x(20)
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.x(20)
#3th weights
qc.x(21)
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,6)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,10)
qc.x(21)
#4th weights
qc.x(20)
qc.x(21)
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#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,6)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.ccx(20,21,11)
qc.x(21)
qc.x(20)

#Active Phase
#query
qc.barrier()
qc.x(0)
qc.x(3)
qc.barrier()
#query, counting
#OR Aggregated
qc.ccx(0,4,12)
qc.ccx(1,5,13)
qc.ccx(2,6,14)
qc.ccx(3,7,15)
#Original
qc.ccx(0,8,16)
qc.ccx(1,9,17)
qc.ccx(2,10,18)
qc.ccx(3,11,19)
#Dividing
qc.barrier()
qc.h(22)
#Marking
qc.barrier()
qc.cp(-pi/8,12,22)
qc.cp(-pi/8,13,22)
qc.cp(-pi/8,14,22)
qc.cp(-pi/8,15,22)
qc.cp(-pi/8,16,22)
qc.cp(-pi/8,17,22)
qc.cp(-pi/8,18,22)
qc.cp(-pi/8,19,22)
qc.barrier()
qc.x(22)
qc.cp(pi/8,12,22)
qc.cp(pi/8,13,22)
qc.cp(pi/8,14,22)
qc.cp(pi/8,15,22)
qc.cp(pi/8,16,22)
qc.cp(pi/8,17,22)
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Figure 15.18 Five superposition states not equal to zero. The measured probability
(control qubit equal to one) indicates the firing of the units is 0.838, the measured
probability values are 0.213, 0.125, and 0.25.

qc.cp(pi/8,18,22)
qc.cp(pi/8,19,22)
qc.barrier()
qc.h(22)
qc.draw()

The measured probability (control qubit = 1) indicating a firing of the units is 0.838
and there are six states not equal to zero, see Figure 15.18, and compare with Figure
15.11.

15.5 CONCLUSION

The cost of the sleep phase and the active phase are the same as one of a conventional
associative memory O(n2). We assume that in the sleep phase we have enough time to
prepare several quantum Lernmatrices in superposition. The quantum Lernmatrices
are kept in superposition until they are queried in the active phase. Each of the
copies of the quantum Lernmatrix can be queried only once. We argue that the
advantage to conventional associative memories is present in the active phase were
the fast determination of information O(log(n) ·n) is essential by the use of quantum
Lernmatrices in superposition compared to the cost of the classical Lernmatrix O(n2)
or the of Grover’s algorithm O(n ·

√
n) or for L sparse pattterns

O(n ·
√
L) = O

(
n2

log(n)

)
.
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Amplitude Encoding

Amplitude encoding encodes a real or complexed value vector of the length one into
the amplitudes of a quantum state. We describe the top-down strategy and indicate
the algorithm step by step. Then we describe the combining states strategy. Instead
of representing the binary tree by multi-control rotation gates, we can use controlled
SWAP operators with simple rotation gates. The resulting circuits depth is less than
top-down divide strategy, however, we require the same number of qubits as the
number of rotation gates and the qubits are entangled after the operation.

Then we describe the possibility to initialize the desired states using qiskit com-
mands. We cannot access the amplitudes that represent vectors, but we estimate the
value of the scalar product between them using the SWAP test. We give two examples
of the SWAP test.

16.1 AMPLITUDE ENCODING EXAMPLE

Amplitude encoding encodes data into the amplitudes ωi of a quantum state.

|ψ〉 =
N∑
i=1

ωi · |x〉 (16.1)

A complex normalized vector x (length one), for example

x =



√
0.03√
0.07√
0.15√
0.05√
0.1√
0.3√
0.2√
0.1


.

with qiskit little endian ordering |q2q1q0〉

|ψ〉 =
√

0.03 · |000〉+
√

0.07 · |001〉+
√

0.15 · |010〉+
√

0.05 · |011〉+

+
√

0.1 · |100〉+
√

0.3 · |101〉+
√

0.2 · |110〉+
√

0.1 · |111〉
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Figure 16.1 We build a top-down binary tree that divides the probability of observing
|q2〉 on the first level, to the probability of observing |q2q1〉 on the second level, and
finally the probability of observing |q2q1q0〉 on the third level representing the required
superposition |ψ〉 =

√
0.03 · |000〉 +

√
0.07 · |001〉 +

√
0.15 · |010〉 +

√
0.05 · |011〉 +

+
√

0.1 · |100〉+
√

0.3 · |101〉+
√

0.2 · |110〉+
√

0.1 · |111〉. The binary tree is represented
by multi-control rotation gates, the multi-control rotation gate are defined over the
values indicated by the gray ellipsoids.

16.2 TOP-DOWN DIVIDE STRATEGY

We build a top-down binary tree that divides the probability of observing |q2〉 on the
first level, to the probability of observing |q2q1〉 on the second level, and finally the
probability of observing |q2q1q0〉 on the third level representing the required super-
position |ψ〉 [8]. The binary tree is represented by multi-control rotation gates (see
Figure 16.1) and requires log2 n qubits to represent a vector of dimension n.

16.2.1 Level 1

The probability of observing q2 = 0 is
√

0.3;
√

0.03 · |000〉+
√

0.07 · |001〉+
√

0.15 · |010〉+
√

0.05 · |011〉

and probability of observing q2 = 1 is
√

0.7.

We use a parameterized RY gate

RY (θ) =

 cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos

(
θ
2

) 
to performs a rotation of one qubit along the y-axis by the rotation angle θ (in
radiants)

θ0 = 1.98231 = 2 · arccos(
√

0.3) (16.2)
with (see Figure 16.1)

RYθ0 |0〉 =
√

0.3 · |0〉+
√

0.7 · |1〉 (16.3)
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(a)

(b)

Figure 16.2 (a) Circuit representing the rotation of one qubit along the y-axis by the
rotation angle θ0. (b) The measured result representing the qubit in superposition√

0.3 · |0〉+
√

0.7 · |1〉.

resulting in the circuit (see Figure 16.2),
from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import RYGate
from math import pi

qc = QuantumCircuit(1)
#ang = Sqrt[0.3]
#ArcCos[ang]*2
qc.ry(1.98231,0)

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

16.2.2 Level 2

The probability of observing q2q1 = 00 is
√

0.1
√

0.03 · |000〉+
√

0.07 · |001〉

and the probability of observing q2q1 = 01 is
√

0.2 since both values divide the
probability of observing q2 = 0

√
0.3. To define the angle θ00, we normalize the value√

0.1 by division of the probability of observing q2 = 0

θ00 = 1.91063 = 2 · arccos
(√

0.1√
0.3

)
. (16.4)

The rotation generates a superposition

RYθ00

√
0.3 · |0〉

√
0.1 · |00〉+

√
0.2 · |01〉. (16.5)
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The probability of observing q2q1 = 10 is
√

0.4;
√

0.1 · |100〉+
√

0.3 · |101〉

and the probability of observing q2q1 = 11 is
√

0.3 since both values divide the
probability of observing q2 = 1

√
0.7. To define the angle θ10 we normalize the value√

0.4 by the division of the probability of observing q2 = 1

θ10 = 1.42745 = 2 · arccos
(√

0.4√
0.7

)
. (16.6)

The rotation generates a superposition

RYθ10

√
0.7 · |1〉 =

√
0.4 · |10〉+

√
0.3 · |11〉. (16.7)

Applying both rotations by two control rotation gates that are controlled by the qubit
q2 generates a superposition (see Figure 16.1)

RYθ00

√
0.3·|0〉+RYθ10

√
0.7·|1〉 =

√
0.1·|00〉+

√
0.2·|01〉+

√
0.4·|10〉+

√
0.3·|11〉. (16.8)

The circuit of level 1 and 2 decomposition is represented as (see Figure 16.3). Since in
the circuit only the two most important qubits (from the left) |q2q1q0〉 are represented,
their identification q1q0 corresponds to the qubits qubits q2q1 in the final circuit of
three qubits.

qc = QuantumCircuit(2)

#ang = Sqrt[0.3]
#ArcCos[ang]*2
qc.ry(1.98231,1)
qc.barrier()

#ang = Sqrt[0.4]/Sqrt[0.7];
#ArcCos[ang]*2
qc.cry(1.42745,1,0)
#ang = Sqrt[0.1]/Sqrt[0.3];
#ArcCos[ang]*2
qc.x(1)
qc.cry(1.91063,1,0)
qc.x(1)

16.2.3 Level 3

Finally we estimated eight individual values |q2q1q0〉 by four rotations on the level
three (see Figure 16.1).

θ110 = 1.23096 = 2 · arccos
(√

0.2√
0.3

)
, (16.9)
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(a)

(b)

Figure 16.3 (a) Circuit representing the controlled rotation of one q qubit
√

0.7 · |1〉
θ10 = 1.42745, and qubit

√
0.3 · |0〉 along the y-axis by the rotation angle θ00 =

1.91063. Since in the circuit only the two most important qubits (from the left)
|q2q1q0〉 are represented, their identification q1q0 corresponds to the qubits q2q1 in
the final circuit of three qubits. (b) The measured result representing the qubit in
superposition

√
0.1 · |00〉+

√
0.2 · |01〉+

√
0.4 · |10〉+

√
0.3 · |11〉.

RYθ110

√
0.3 · |11〉 =

√
0.2 · |110〉+

√
0.1 · |111〉. (16.10)

θ100 = 2.0944 = 2 · arccos
(√

0.1√
0.4

)
, (16.11)

RYθ100

√
0.4 · |10〉 =

√
0.1 · |100〉+

√
0.3 · |101〉. (16.12)

θ010 = 1.0472 = 2 · arccos
(√

0.15√
0.2

)
, (16.13)

with
RYθ010

√
0.2 · |01〉 =

√
0.15 · |010〉+

√
0.05 · |011〉. (16.14)

θ000 = 1.98231 = 2 · arccos
(√

0.03√
0.1

)
, (16.15)

with
RYθ000

√
0.1 · |00〉 =

√
0.03 · |000〉+

√
0.07 · |001〉. (16.16)
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(a)

(b)

Figure 16.4 (a) The top-down binary tree divides the probability of observing |q2〉 on
the first level, to the probability of observing |q2q1〉 on the second level, and finally
the probability of observing |q2q1q0〉 on the third level representing the multi-control
rotation gates. (b) The amplitudes of the superposition |ψ〉.

The four multi-control rotation gates are controlled by the qubits q2 and q1 resulting
in the desired superposition |ψ〉, (see Figure 16.4)

|ψ〉 =
√

0.03 · |000〉+
√

0.07 · |001〉+
√

0.15 · |010〉+
√

0.05 · |011〉+

+
√

0.1 · |100〉+
√

0.3 · |101〉+
√

0.2 · |110〉+
√

0.1 · |111〉

qc = QuantumCircuit(3)

#1
#ang = Sqrt[0.3] a0
#ArcCos[ang]*2
qc.ry(1.98231,2)
qc.barrier()
#2
#ang = Sqrt[0.4]/Sqrt[0.7]; a2
#ArcCos[ang]*2
qc.cry(1.42745,2,1)
#ang = Sqrt[0.1]/Sqrt[0.3]; a1
#ArcCos[ang]*2
qc.x(2)
qc.cry(1.91063,2,1)
qc.x(2)
qc.barrier()
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#3
#ang = Sqrt[0.2]/(Sqrt[0.3]); a6
#ArcCos[ang]*2
ccry = RYGate(1.23096).control(2)
qc.append(ccry,[2,1,0])
#ang = Sqrt[0.1]/(Sqrt[0.4]); a5
#ArcCos[ang]*2
#ccry = RYGate(2.0944).control(2,label=None)
ccry = RYGate(2.0944).control(2)
qc.x(1)
qc.append(ccry,[2,1,0])
qc.x(1)
qc.x(2)
#ang = Sqrt[0.15]/(Sqrt[0.2]); a4
#ArcCos[ang]*2
ccry = RYGate(1.0472).control(2)
qc.append(ccry,[2,1,0])
#ang = Sqrt[0.03]/(Sqrt[0.1]); a3
#ArcCos[ang]*2
ccry = RYGate(1.98231).control(2)
qc.x(1)
qc.append(ccry,[2,1,0])
qc.x(1)
qc.x(2)

16.3 COMBINING STATES

Instead of representing the binary tree by multi-control rotation gates, we can use
controlled SWAP operators with simple rotation gates [8].

16.3.1 Level 2

The binary tree at level two is represented by three qubits, to each qubit a rotation
gate is applied. To the qubit 1 we apply the rotation θ0 = 1.98231, to the qubit 0 we
apply the rotation θ10 = 1.42745, and to qubit 2 we apply the rotation θ00 = 1.9106.
The value of the qubit 1 controls the SWAP operation and the measured tensor
product of qubit 2 with qubit 1 represents the required distribution of the two qubits
representing four states (see Figure 16.5)

16.3.2 Level 3

The binary tree at level three is represented by seven qubits, to each qubit a rotation
gate is applied. To the qubit 3 we apply the rotation θ0 = 1.98231, to the qubit 1 we
apply the rotation θ10 = 1.42745, and to qubit 5 we apply the rotation θ00 = 1.9106.
The value of the qubit 3 controls the SWAP operation. For the level three we apply
the additional four rotations, we apply the rotation θ110 = 1.23096 to the qubit 0,
θ100 = 2.0944 to the qubit 2, θ010 = 1.0472 to the qubit 4, and θ000 = 1.98231 to
the qubit 6. The qubit 1 and 5 representing the level 2 control the rotation of the
two sub-trees. The two sub-trees are merged with the results of level one by the
controlled SWAP operation controlled by the qubit 3. The measured tensor product
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(a)
(b)

Figure 16.5 (a) The binary tree at level two is represented by three qubits, to each
qubit a rotation gate is applied. To the qubit 1 we apply the rotation θ0 = 1.98231,
to the qubit 0 we apply the rotation θ10 = 1.42745, and to qubit 2 we apply the
rotation θ00 = 1.9106. The value of the qubit 1 controls the SWAP operation and the
measured tensor product of qubit 1 with qubit 2 represents the required distribution
of the two qubits representing four states. (b) The required distribution of the two
qubits representing four states.

of qubit 3 with qubit 5 and 3 represents the required distribution of the three qubits
representing eight states (see Figure 16.6)
from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import RYGate
from math import pi

qc = QuantumCircuit(7,3)

qc.ry(1.23096,0)
qc.ry(1.42745,1)
qc.ry(2.0944,2)
qc.ry(1.91063,3)
qc.ry(1.0472,4)
qc.ry(1.91063,5)
qc.ry(1.98231,6)
qc.barrier()
qc.cswap(1,0,2)
qc.cswap(5,4,6)
qc.barrier()
qc.cswap(3,1,5)
qc.cswap(3,2,6)
#Measuring 0 1 3
qc.measure(6,0)
qc.measure(5,1)
qc.measure(3,2)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=10000).result()
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(a) (b)

Figure 16.6 ((a) The binary tree at level three is represented by seven qubits, to each
qubit a rotation gate is applied. To the qubit 3 we apply the rotation θ0 = 1.98231, to
the qubit 1 we apply the rotation θ10 = 1.42745, and to qubit 5 we apply the rotation
θ00 = 1.9106. The value of the qubit 3 controls the SWAP operation. For the level
three we apply the additional four rotations, we apply the rotation θ110 = 1.23096
to the qubit 0, θ100 = 2.0944 to the qubit 2, θ010 = 1.0472 to the qubit 4, and
θ000 = 1.98231 to the qubit 6. The qubit 1 and 5 representing the level 2 control
the rotation of the two sub-trees. The two sub-trees are merged with the results of
level one by the controlled SWAP operation controlled by the qubit 3. The measured
tensor product of qubit 3 with qubit 5 and 3 represents the required distribution of
the three qubits representing eight states. (b) The required distribution of the three
qubits representing eight states.

counts = result.get_counts()
plot_histogram(counts)

The circuits depth is less than top-down divide strategy, however we require the
same number of qubits as the rotation gates and the qubits are entangled after the
operation.

16.4 QISKIT AMPLITUDE CODING

Qiskit offers through the commands desired state and initialize(desiredstate, qubits)
a possibility to initialize the desired states and through the decompose command to
indicate the resulting quantum circuit (see Figure 16.7).

from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
import math
from qiskit import QuantumCircuit

desired_state = [
math.sqrt(0.03),
math.sqrt(0.07),
math.sqrt(0.15),
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Figure 16.7 Qiskit offers through the commands desired state and
initialize(desired state, qubits) a possibility to initialize the desired states and
through the decompose command to indicate the resulting quantum circuit. The
quantum circuit generating the amplitudes of the superposition |ψ〉.

math.sqrt(0.05),
math.sqrt(0.1),
math.sqrt(0.3),
math.sqrt(0.2),
math.sqrt(0.1),

]
qc = QuantumCircuit(3)
qc.initialize(desired_state, [0,1,2])

qc.decompose().decompose().decompose().decompose().decompose().decompose().
draw(fold=180)

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

16.5 SWAP TEST

We cannot access the amplitudes that represent vectors, but we estimate 〈x|y〉 using
the swap test. Each state represents a normalized vector for the dimension n repre-
sented by m = log2 n qubits. Note that the quantum |x〉 and |y〉 are of length one in
the l2 norm,

〈x|x〉 = ‖|x〉‖2 = 1, 〈y|y〉 = ‖|y〉‖2 = 1.

The additional auxiliary qubit |0〉 generates the

|0〉 ⊗ |x〉 ⊗ |y〉 = |0, x, y〉

Apply Hadamard gate on the control qubit |0〉,

(H ⊗ Im ⊗ Im) · |0〉|x, y〉 = 1√
2
· (|0, x, y〉+ |1, x, y〉) (16.17)

Apply controlled swap operator on |x〉 and |y〉 states which swaps |x〉 and |y〉

|x〉|y〉 → |y〉|x〉
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providing that the control qubit is in state |1〉 with

1√
2
· (|0, x, y〉+ |1, x, y〉)→ 1√

2
· (|0, x, y〉+ |1, y, x〉) (16.18)

We apply another Hadamard gate on the control qubit

(W ⊗ Im ⊗ Im) ·
( 1√

2
· (|0, x, y〉+ |1, y, x〉)

)
=

1
2 · |0〉 · (|x, y〉+ |y, x〉) + 1

2 · |1〉 · (|x, y〉 − |y, x〉) (16.19)

The probability of measuring the control qubit in state |0〉 is given by

p(|0〉) =
∣∣∣∣12 · 〈0|0〉 · (|0, x, y〉+ |1, y, x〉) + 1

2 · 〈0|1〉 · (|0, x, y〉 − |1, y, x〉)
∣∣∣∣2

p(|0〉) = 1
4 · |(|x〉|y〉+ |y〉|x〉)|2

p(|0〉) = 1
4 · (〈y|y〉〈x|x〉+ 〈y|x〉〈x|y〉+ 〈x|y〉〈y|x〉+ 〈x|x〉〈y|y〉)

p(|0〉) = 1
4 · (1 + 〈y|x〉〈x|y〉+ 〈x|y〉〈y|x〉+ 1)

p(|0〉) = 1
2 + 1

4 · (〈y|x〉〈x|y〉+ 〈x|y〉〈y|x〉)

p(|0〉) = 1
2 + 1

2 |〈x|y〉|
2 (16.20)

and
p(|1〉) = 1

2 −
1
2 |〈x|y〉|

2 (16.21)

with
|〈x|y〉| ≈

√
2 · p(|0〉)− 1 =

√
1− 2 · p(|1〉). (16.22)

The probability p(|0〉) = 0.5 means that the states |x〉 and |y〉 are orthogonal, whereas
the probability p(|0〉) = 1 indicates that the states are identical. We have to preform
several measurements to estimate p(|0〉) or p((|1〉). The estimated scalar product is
positive and since the vectors are normalized the inner product corresponds to the
angle ϕ between the vectors

0 ≤ cosϕ = |〈x|y〉| ≤ 1 (16.23)

and is usually called the cosine similarity. We can estimate the Euclidean distance as
well, since the distance for normalized vectors is constrained to a unit sphere with

0 ≤ ‖x− y‖2 ≤
√

2. (16.24)



Amplitude Encoding � 233

(a)

(b)

Figure 16.8 Qubit 0 represent the vector x and qubit 1 the vector y. After 10000 shots
we measure p(|0〉) = 0.5010.

16.5.1 Example for Two-Dimensional Vectors

x =
( √

0.5√
0.5

)
, y =

( √
0.5

−
√

0.5

)
.

with
〈x|x〉 = ‖|x〉‖2 = 1, 〈y|y〉 = ‖|y〉‖2 = 1.

and
〈x|y〉 = 0

Qubit 0 represents the vector x and qubit 1 the vector y. After 10000 shots we
measure p(|0〉) = 0.5010 (see Figure 16.8)

|〈x|y〉| ≈
√

2 · 0.501− 1 = 0.045.

Note that the results are probabilistic and that they might slightly differ from run to
run.

16.5.2 Example for Four-Dimensional Vectors

x =


√

0.1√
0.2√
0.4√
0.3

 , y =


0
0√
0.5√
0.5

 .
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with
〈x|x〉 = ‖|x〉‖2 = 1, 〈y|y〉 = ‖|y〉‖2 = 1.

and
〈x|y〉 = 0.8345

Qubits 0 and 1 represent the vector x and qubits 2 and 3 the vector y

from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import RYGate
from math import pi

qc = QuantumCircuit(5,1)

qc.h(4)
qc.barrier()
#vector x
#ang = Sqrt[0.3]
#ArcCos[ang]*2
qc.ry(1.98231,1)
qc.barrier()
#ang = Sqrt[0.4]/Sqrt[0.7];
#ArcCos[ang]*2
qc.cry(1.42745,1,0)
#ang = Sqrt[0.1]/Sqrt[0.3];
#ArcCos[ang]*2
qc.x(1)
qc.cry(1.91063,1,0)
qc.x(1)
qc.barrier()
#vector y
qc.h(2)
qc.x(3)
qc.barrier()
qc.cswap(4,0,2)
qc.cswap(4,1,3)
qc.h(4)
qc.measure(4,0)

simulator = Aer.get_backend(’qasm_simulator’)
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(a)

(b)

Figure 16.9 (a) Qubits 0 and 1 represent the vector x, qubits 2 and 3 the vector y. (b)
after 10000 shots we measure p(|0〉) = 0.8479.

result=execute(qc,simulator,shots=10000).result()
counts = result.get_counts()
plot_histogram(counts)

See Figure 16.9 , after 10000 shots we measure p(|0〉) = 0.8479

|〈x|y〉| ≈
√

2 · 0.8479− 1 = 0.8345.
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Quantum Kernels

A quantum computer can estimate a quantum kernel and the estimate can be used
by a kernel method on a classical computer. This is because the exponential quantum
advantage in evaluating inner products allows to estimate the quantum kernel directly
in the higher-dimensional space. We give an example of quantum kernels and the swap
test. Then we describe quantum kernels and the inversion test. Quantum feature
maps encodes classical data into quantum data via a parametrized quantum circuit.
Parameterized quantum circuits are based on superposition and entanglement. They
are hard to simulate classically and could lead to an advantage over classical machine
learning approach. The inversion test is based on the idea usual of estimating the
fidelity (similarity) between two states. We describe an example using qiskit command
ZZFeatureMap. Then we indicate how quantum kernel is plugged into classical kernel
methods like support vector machines.

17.1 QUANTUM KERNELS

For a quantum state |φ(x)〉| and |φ(y)〉|, the inner product of two such states is called
a quantum kernel

k(x,y) = 〈φ(x)|φ(y)〉 (17.1)

with a inner product
〈x|y〉 = xT · y. (17.2)

The absolute value of the inner product can be estimated by the swap test [95].

17.2 QUANTUM KERNELS AND SWAP TEST

A quantum computer can estimate a quantum kernel and the estimate can be used
by a kernel method on a classical computer [95]. This is because the exponential
quantum advantage in evaluating inner products allows to estimate the quantum
kernel machines directly in the higher-dimensional space. If the result is impossible
to be simulated on a classical computer, then the kernel is classically intractable [94].
We can map

|φ(x〉)→ |x〉 ⊗ · · · ⊗ |x〉 = |x〉⊗m (17.3)

DOI: 10.1201/9781003374404-17 236

https://doi.org/10.1201/9781003374404-17


Quantum Kernels � 237

(a) (b)

Figure 17.1 (a) Circuit representing k(x,y) = (xT · y)3 with the swap test. (b) After
10000 shots we measure p(|0〉) = 0.9395.

and define the homogenous polynomial kernel as

k(x,y) = 〈φ(x)|φ(y)〉 = 〈x|y〉 ⊗ · · · ⊗ 〈x|y〉 = (xT · y)m. (17.4)

Then the absolute value of the inner product can be estimated by the swap test.

17.2.1 Example for Two-Dimensional Vectors

x =
( √

0.3√
0.7

)
, y =

( √
0.5√
0.5

)
.

k(x,y) = 〈φ(x)|φ(y)〉 = 〈x|y〉 ⊗ 〈x|y〉 ⊗ 〈x|y〉 = (xT · y)3 (17.5)

with the circuit (see Figure 17.1)

from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import RYGate
from math import pi

qc = QuantumCircuit(7,1)
qc.h(6)
qc.barrier()
#ang = Sqrt[0.3]
#ArcCos[ang]*2
qc.ry(1.98231,0)
qc.ry(1.98231,1)
qc.ry(1.98231,2)
qc.h(3)
qc.h(4)
qc.h(5)
qc.barrier()
qc.cswap(6,0,3)
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qc.cswap(6,1,4)
qc.cswap(6,2,5)
qc.h(6)
qc.measure(6,0)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=10000).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

Using the swap test, after 10000 shots we measure p(|0〉) = 0.9395 with

k(x,y) = |(xT · y)3| ≈
√

2 · 0.9395− 1 = 0.93755.

17.3 QUANTUM KERNELS AND INVERSION TEST

Quantum feature maps encodes classical data into quantum data via a parametrized
quantum circuit [40]. Instead of coding the classical feature vector x of dimension z by
amplitudes, the feature vector defines by z parameters of the parametrized quantum
circuit Uφ(x) with z ≥ m

|φ(x)〉 = Uφ(x)|0〉⊗m (17.6)

with the dimension of φ(x) being 2m. Parameterized quantum circuits based on su-
perposition and entanglement are hard to simulate classically and could lead to an
advantage over classical machine learning approaches. The inversion test is based on
the idea usually of estimating the fidelity (similarity) between two states [40]. For an
input state |0〉⊗m if we map it by parametrized quantum circuit Uφ(x) with parame-
ters that are defined by x and un-compute it by U †φ(x), the inverse if the parametrized
quantum circuit Uφ(x) the probability of measuring the state |0〉⊗m is one. If we rep-
resent the quantum circuit by a matrix Uφ(x), the inverse quantum circuit represented
as a matrix corresponds to the conjugate transpose U∗φ(x), also written as U †φ(x). If
we parametrized quantum circuit U by x ( Uφ(x)) and inverse of the parametrized
quantum U † by y (U †φ(y) ) and if x and y are similar, the probability of measuring
|0〉⊗m for the input |0〉⊗m should be near 1,

U †φ(y)Uφ(x)|0⊗m〉 (17.7)

If x and y differ a lot, this probability is smaller. The quantum kernel is represented
as

k(x,y) = |〈φ(x)|φ(y)〉|2 = |〈0⊗m|U †φ(y)|Uφ(x)|0⊗m〉|2 (17.8)

We measure the final state several times and record the number of |0⊗m〉 and estimate
the value k(x,y).
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(a)

(b)

Figure 17.2 (a) Circuit representing U †φ(y)Uφ(x)|0⊗2〉 using the qiskit parameterized
quantum circuit Uφ(x) = ZZFeatureMap. (b) After 10000 shots we measure
p(|00〉) = 0.956.

17.3.1 Example

With the same x,y as in the preceding example using the qiskit parameterized quan-
tum circuit Uφ(x) = ZZFeatureMap [21] where the parameters are defined by the
data by the command bind parameters (see Figure 17.2)

from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from qiskit.quantum_info import Statevector
from qiskit.circuit.library import RYGate
import math
from qiskit.circuit.library import ZZFeatureMap
from math import pi
import numpy as np

data = [np.sqrt(0.3), np.sqrt(0.7)]
feature_map = ZZFeatureMap(2, reps=1)
feature_map = feature_map.bind_parameters(data) # <== here

data2 = [np.sqrt(0.5), np.sqrt(0.5)]
feature_map2 = ZZFeatureMap(2, reps=1).inverse()
feature_map2 = feature_map2.bind_parameters(data2) # <== here

qc = QuantumCircuit(2)
qc.compose(feature_map, inplace=True)
qc.barrier()
qc.compose(feature_map2, inplace=True)
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qc.decompose().draw(fold=180)

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

After 10000 shots we measure p(|00〈) = 0.956 with (see Figure 17.2 (b))

k(x,y) = |〈0⊗m|U †φ(y)|Uφ(x)|0⊗m〉|2 = 0.956.

17.3.2 Quantum Feature Maps

Quantum feature maps encodes classical data into quantum data via a parametrized
quantum circuit that are hard to simulate classically and is an active area of current
research. Vojtech Havlicek [40] and his collaborators propose a family of quantum
Pauli feature maps that are believed to be hard to simulate classically, and can be
implemented by circuit with few layers of gates. The Pauli feature maps of depth d
contains layers of Hadamard gates interleaved with a circuit that contain entangling
gates (such as CNOTs). The Pauli feature maps circuit of depth d is a data encoding
circuit that transforms input data x of dimension z = m

Uφ(x) =
∏
d

Uφ(x) ⊗H⊗m, Uφ(x) = exp

i · ∑
S⊆[m]

φS(x)
∏
jinS

Pj)

 (17.9)

where Pj corresponds to Pauli gates

Pj ∈ {I,X, Y, Z}

The index S indicates connectivity between different qubits represented by combina-
tion

S ∈
{
m · (m− 1) · · · (m− k + 1)

k · (k − 1) · · · 1 for k ≤ m

}
with

φS(x) =
{

xi if S = {i}
(π − xi) · (π − xj) if S = {i, j}

Qiskit implements these as the PauliFeatureMap. A special case for k = 2 using Z
gates is called the ZZFeatureMap

Uφ(x) = exp

i ·∑
jk

φ(j,k)Zj ⊗ Zk)

 exp

i ·∑
j

φj(x)Zj)H⊗m
d

(17.10)

represented by (Figure 17.3).
from qiskit.circuit.library import ZZFeatureMap
# 2 features, depth 1
map_zz = ZZFeatureMap(feature_dimension=2, reps=1)
map_zz.decompose().draw()
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(a)

(b)

(c)

Figure 17.3 (a) The ZZFeatureMap with 2 features and depth 1, this is the same feature
map that was used in the previous section. (b) The seme ZZFeatureMap indicated
using twice decompose().decompose() comand indicating the quantum gates that are
used. (c) The ZZFeatureMap with 3 features and depth 1.

17.4 QUANTUM SUPPORT VECTOR MACHINE

The quantum kernel is plugged into classical kernel methods like Support Vector
Machine (Kernel Machine). Only the Gram matrix (kernel matrix) is determined
by a quantum computer (or a simulation), the other parts of the computation are
performed on a conventional computer. Either one passes a function of the quantum
kernel to a conventional algorithm or one precomputes the training and testing kernel
matrices. Often the actual internal representations of the quantum kernel are hidden
from the outside.
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qRAM

Quantum memory is proposed as an analogue to classical computer memory, like the
random-access memory (RAM). RAM is a form of computer memory that can be
read and changed in any order, typically used to store working data. In quantum
machine learning domain, the usage of quantum random access memory (qRAM) is
proposed to avoid input destruction problem. We demonstrate the bucket brigade
architecture of qRAM . The method of qRAM is related to the entanglement of the
index qubits that are in the superposition with the patterns. We demonstrate an
example of binary patterns and indicate why the representation of amplitude coding
leads to the same complexity as a recall operation on a classical RAM .

18.1 QUANTUM RANDOM ACCESS MEMORY

In quantum machine learning domain, the usage of qRAM [32] is proposed to avoid
input destruction problem (ID problem) [59]. [39]. A qRAM copies basis states [32].
A qRAM queries a register |i〉 and load the ith binary patter into the second register

|i〉|0〉 → |i〉|xi〉, (18.1)

with |xi〉 being a basis state representing a binary vector. Such an operation can be
executed in parallel with

1√
m

m∑
i=1
|i〉|0〉 → 1√

n

m∑
i=1
|i〉|xi〉, (18.2)

with the time complexity ignoring the preparation cost of (due to the input problem)
is O(log(m)).

18.1.1 The Bucket Brigade Architecture of qRAM

The bucket brigade architecture of qRAM is inspired by the traditional RAM archi-
tecture and consists of three main parts:

• Addressing qubits: Address for the memory cell we wish to read. In order to
read a memory cell, the user has to encode the address of that memory cell on
to the addressing qubits. This address can be in superposition so that several
patterns can be read in one step.
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• Routing nodes: Determine the memory cell based upon the states of the ad-
dressing qubits. Once the addressing qubits have been set the states of the
routing node qubits will be effected. Whatever qubit in the routing nodes is |1〈
will lead to the memory cell that we wish to read.

• Memory cells: Store and readout patterns.

The method of qRAM is related to the entanglement of the index qubits that are
in the superposition with the patterns. As in the method of the entanglement of the
index qubits, the qubits of qRAM are entangled during the reading operation and
have to be un-computed after computation. An example of the qRAM (see Figure
18.1)

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram

qc = QuantumCircuit(9)
#address
#0-1
#Routing
#2-5
#Memory
#6-8
#address
qc.h(0) #two first elements of the memory
#Routing operation
#The addresses are ordered 00, 01, 10, 11
qc.barrier()
qc.x(0)
qc.x(1)
qc.ccx(0,1,2)
qc.x(1)
qc.x(0)
qc.barrier()
qc.x(1)
qc.ccx(0,1,3)
qc.x(1)
qc.barrier()
qc.x(0)
qc.ccx(0,1,4)
qc.x(0)
qc.barrier()
qc.ccx(0,1,5)
qc.barrier()
#Memory cells 6-8
#First memory cell
qc.barrier()
qc.cx(2,6)
qc.cx(2,8)
#Second memory cell
qc.barrier()
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(a)

(b)

Figure 18.1 (a) qRAM circuit: address is represented by qubits 0 and 1, routing by
qubits 2 to 5, and the memory by qubits 6 to 8. The addresses are ordered 00, 01,
10 and for the last pattern 11. (b) The address corresponds to the first qubit in
superposition, address 00 and 01. The first and the second patterns are recalled.

qc.cx(3,6)
qc.cx(3,7)
#Third memory cell
qc.barrier()
qc.cx(4,6)
qc.cx(4,7)
qc.cx(4,8)
#Fourth memory cell
qc.barrier()
qc.cx(5,7)

simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts).
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18.1.2 Amplitude Coding

An operation that would produce a copy of an arbitrary quantum state such as |ψ〉
is not possible; we cannot copy non-basis states because of the linearity of quantum
mechanics. However we can to some extent simulate the copy of non-basis states using
qRAM , with the complexity O(n log(m)) where n is the dimension of the resulting
superposition vector [119]. We a convert a basis state of m qubits |x〉 = |01 · · · 1〉 of
dimension 2m in Hilbert space into a n-dimensional superposition

|01 · · · 1〉 1√
n

n∑
i=1
|i〉 → |01 · · · 1〉

n∑
i=1

αi|i〉. (18.3)

We divide the binary vector of the dimension 2m into v parts, each substring repre-
senting codei a real number with n = 2m/v.

|01 · · · 1〉 1√
n

n∑
i=1
|i〉 → |code1code2 · · · coden〉

1√
n

n∑
i=1
|i〉 (18.4)

We add an auxiliary state |0⊗n〉

|code1 · · · coden〉
1√
n

n∑
i=1
|i〉 → |code1 · · · coden〉

1√
n

n∑
i=1
|i〉|0⊗n〉 (18.5)

For each codei represents a binary representation of a fractional real number that is
smaller than one

codei = αi < 1.

For each valuei, we preform a controlled rotation R(αi)(
C · αi|1〉+

√
1− C2 · α2

i |0〉
)

and preform a measurement. By measuring the corresponding auxiliary register with
the result 1 we know that the resulting state is correct. We repeat the procedure at
least n times with the resulting state

|01 · · · 1〉
n∑
i=1

αi|i〉. (18.6)

The resulting complexity of the routine is O(n), which is the same as reading a classic
information. However to read classically m vectors of dimension n, the complexity is
O(n ·m), using qRAM ignoring the preparation cost it is O(n log(m)). The described
routine is non-reversible since it is based on measurement.
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Quantum Fourier Transform

A periodic function can be represented in the frequency space. The frequency is the
number of occurrences of a repeating event per one unit of time. If something changes
rapidly, then we say that it has a high frequency. If it does not change rapidly, i.e., it
changes smoothly, we say that it has a low frequency. The discrete Fourier transform
(DFT) converts discrete time-based or space-based data into the frequency domain.

We describe the DFT and indicate the relation to quantum Fourier transform
(QFT). The we indicate how the QFT can be factored into the tensor product of m
single-qubit operations and implemented by basic quantum gates. We demonstrate
examples of QFT for two, three, and four qubits. Then we indicate that the circuit
for m qubits can be imported from the qiskit library. We analyze the QFT costs and
give an simple example of its operation.

19.1 DISCRETE FOURIER TRANSFORM

The DFTs discrete time-based or space-based data into the frequency sequence-based
data. Given a sequence α

αt : [1, 2, · · · , n]→ C. (19.1)

The DFT produces a sequence ω:

ωf : [1, 2, · · · , n]→ C. (19.2)

The DFT of α(t) is

ωf = 1√
n
·
n∑
t=1

αt · e−2·π·i·(t−1)· (f−1)
n (19.3)

its wave frequency is (f−1)
n events per sample. The inverse DFT of ωf is

αt = 1√
n
·
n∑
f=1

ωf · e2·π·i·(t−1)· (f−1)
n . (19.4)
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DFT can be seen as a linear transform F talking the column vector α to a column
ω1
ω2
...
ωn

 = 1√
n
·


e−2·π·i·(0)· (0)

n e−2·π·i·(0)· (1)
n · · · e−2·π·i·(0)· (n−1)

n

e−2·π·i·(1)· (0)
n e−2·π·i·(1)· (1)

n · · · e−2·π·i·(1)· (n−1)
n

...
... . . . ...

e−2·π·i·(n−1)· (0)
n e−2·π·i·(n−1)· (1)

n · · · e−2·π·i·(n)· (n−1)
n

 ·


α1
α2
...
αn


(19.5)

and the IDFT can be seen as a linear transform talking the column vector ω to a
column vector α

α1
α2
...
αn

 = 1√
n
·


e2·π·i·(0)· (0)

n e2·π·i·(0)· (1)
n · · · e2·π·i·(0)· (n−1)

n

e2·π·i·(1)· (0)
n e2·π·i·(1)· (1)

n · · · e2·π·i·(1)· (n−1)
n

...
... . . . ...

e2·π·i·(n−1)· (0)
n e2·π·i·(n−1)· (1)

n · · · e2·π·i·(n)· (n−1)
n

 ·


ω1
ω2
...
ωn

 .
(19.6)

An nth root of unity is a complex number ζ satisfying the equation

ζn = 1 (19.7)

with n = 1, 2, 3, · · · , n− 1 being a positive integer, for example

ζn = e−2·π·i· 1
n = cos

(
2 · π · 1

n

)
− i · sin

(
2 · π · 1

n

)
(19.8)

Using the nth root of unity, the matrix can be represented as a Vandermonde matrix

F = 1√
n
·



1 1 1 1 · · · 1
1 ζn ζ2

n ζ3
n · · · ζ

(n−1)
n

1 ζ2
n ζ4

n ζ6
n · · · ζ

2·(n−1)
n

1 ζ3
n ζ6

n ζ9
n · · · ζ

3·(n−1)
n

...
... . . . ... . . . ...

1 ζ
(n−1)
n ζ

2·(n−1)
n ζ

3·(n−1)
n · · · ζ

(n−1)·(n−1)
n


. (19.9)

The matrix F, also called DFT matrix is unitary

F−1 = F ∗ = IF. (19.10)

Because F is unitary it implies that the length of a vector is preserved as stated in
Parseval’s theorem

‖ω‖ = ‖F · α‖ = ‖α‖. (19.11)

19.2 QUANTUM FOURIER TRANSFORM

QFT can be used to determine the period of a periodic function in polynomial time,
see Figure 19.1. This exponentially faster than a conventional computer. It is used in
the framework for the factorization algorithm on which the famous Shor’s algorithm is
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Figure 19.1 On a conventional computer we needed to compute around 10000 steps
to determine the period of an unknown periodic function, on quantum computer we
need only 9 to 10 steps (log 10000).

based [100], [99]. Shor’s algorithm breaks conventional cryptographic codes efficiently.
Such codes cannot be broken by conventional computers since the calculations would
require an exponential amount of time.

The QFT on a state |x〉 of m qubits in a n-dimensional Hilbert space Hn = H2m

can be represented as [47]

|y〉 = Fm · |x〉 = 1√
n

∑
y∈Bm

e2·π·i· y
n
·x · |y〉. (19.12)

It is just the discrete inverse Fourier transform of α(t) in the bracket notation

ωf = 1√
n
·
n∑
t=1

αt · e2·π·i· (f−1)
n
·(t−1).

Conventions for the sign of the phase factor exponent vary; here the quantum Fourier
transform has the same effect as the inverse DFT and follows the qiskit notation. For
one qubit m = 1, n = 2

ζ2 = e2·π·i· 12 = e−π·i = eπ·i = −1

and the QFT F1 is

F1 = 1√
2
·
(

1 1
1 ζ2

)
= 1√

2
·
(

1 1
1 −1

)
= H1. (19.13)

For two qubits m = 2 , n = 4

ζ4 = e2·π·i· 14 = e·π·i·
1
2 = i
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and the QFT F2 is

F2 = 1√
4
·


1 1 1 1
1 ζ4 ζ2

4 ζ3
4

1 ζ2
4 ζ4

4 ζ6
4

1 ζ3
4 ζ6

4 ζ9
4

 = 1
2 ·


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (19.14)

and the inverse QFT is

IF2 = F ∗2 = 1
2 ·


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 . (19.15)

For three qubits m = 3 , n = 8

ζ8 = e2·π·i· 18 = eπ·i·
1
4 = 1 + i√

2

F3 = 1√
8
·



1 1 1 1 1 1 1 1
1 e

iπ
4 i e

3iπ
4 −1 e−

1
4 (3iπ) −i e−

1
4 (iπ)

1 i −1 −i 1 i −1 −i
1 e

3iπ
4 −i e

iπ
4 −1 e−

1
4 (iπ) i e−

1
4 (3iπ)

1 −1 1 −1 1 −1 1 −1
1 e−

1
4 (3iπ) i e−

1
4 (iπ) −1 e

iπ
4 −i e

3iπ
4

1 −i −1 i 1 −i −1 i

1 e−
1
4 (iπ) −i e−

1
4 (3iπ) −1 e

3iπ
4 i e

iπ
4


. (19.16)

The first row of F3 is the DC average of the amplitude of the input state when mea-
sured, the following rows represent the AC (difference) of the input state amplitudes.

19.3 QFT DECOMPOSITION

The QFT can be factored into the tensor product of m single-qubit operations [47],

|y〉 = Fm · |x〉 = 1√
n

∑
y∈Bm

e2·π·i· y
n
·x · |y〉 =

1√
n
·

 ∑
ym∈{0,1}

e2·π·i·ym·0.x1

 ·
 ∑
ym−1∈{0,1}

e2·π·i·ym−1·0.x2x1

 · · ·
· · ·

 ∑
y1∈{0,1}

e2·π·i·y1·0.xm···x2x1

 (19.17)

= 1√
n
·
(
|0〉+ e2·π·i·0.x1 · |1〉

)
⊗
(
|0〉+ e2·π·i·0.x2x1 · |1〉

)
⊗ · · ·⊗ (19.18)

⊗
(
|0〉+ e2·π·i·0.xm···x2x1 · |1〉

)
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using the binary fractions are represented as

0.xmxm 1xm−2 · · ·x2x1 = xm
21 + xm−1

22 + · · ·+ x1

2m .

The representation involves the input in the tensor decomposition. The product of m
single-qubit operations of the QFT allows us to define a quantum circuit. The circuit
will use a controlled phase gate CPk that performs following mapping on two qubits

CPk|00〉 = |00〉, CPk|01〉 = |01〉,

CPk|10〉 = |10〉, CPk|11〉 = e2·π·i·/2k · |11〉.

19.3.1 QFT for Two qubits

We demonstrate the definition of the quantum circuit on F2

F2 = 1√
4
·
(
|0〉+ e2·π·i·0.x1 · |1〉

)
⊗
(
|0〉+ e2·π·i·0.x2x1 · |1〉

)
(19.19)

on the input |x2x1〉. We define the circuit recursively from the back. Because

e2·π·i·0.x1 = e2·π·i· x1
2 = (−1)x1

it follows that
1√
2
·
(
|0〉+ e2·π·i·0.x1 · |1〉

)
= 1√

2
· (|0〉+ (−1)x1 · |1〉)

can be represented by
(I1 ⊗H1) · |x2x1〉.

The “first” operation can be represented as

1√
2
·
(
|0〉+ e−2·π·i·0.x2x1 · |1〉

)
= 1√

2
·
(
|0〉+ e−2·π·i· x2

21 · e−2·π·i· x1
22 · |1〉

)
and can be represented as

CP1 · (H1 ⊗ I1) · |x2x1〉.

Together we get
(I1 ⊗W1) · CP2 · (W1 ⊗ I1) · |x2x1〉 =

= 1√
4
·
(
|0〉+ e−2·π·i·0.x2x1 · |1〉

)
⊗
(
|0〉+ e−2·π·i·0.x1 · |1〉

)
(19.20)

The arrangement of the bits is not correct. This is because the last qubit in the result
uses the first input qubit and so on. To correct the order we have to apply swap gate
SWAP . The decomposition is given by

F2 · |x2x1〉 = SWAP · (I1 ⊗W1) · CR1 · (W1 ⊗ I1) · |x2x1〉. (19.21)

The circuit is represented as (see Figure 19.2)
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(a)

(b)

(c)

Figure 19.2 (a) QFT for two qubits. (b) Inverse QFT has a negative phase. (c) The
inverse QFT after calling the command inverse, represents the un-computing of QFT
with negative phase. The circuits (b) and (c) represent the same function.

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
import numpy as np
from numpy import pi
qc = QuantumCircuit(2)
qc.h(1)
qc.cp(pi/2, 0, 1) # CROT from qubit 0 to qubit 1, qc.cp(lambda, control,
target)
qc.h(0)
qc.swap(0,1)

We can define QFT for two qubits as a function, calling the function with the com-
mand inverse computes the inverse QFT (see Figure 19.2 (c)),

def qft2():
qc = QuantumCircuit(2)
qc.h(1)
qc.cp(pi/2, 0, 1) # CROT from qubit 0 to qubit 1
qc.h(0)
qc.swap(0,1)
qc.name="QFT_2"
return qc

qc = QuantumCircuit(2)
qc.append(qft2().inverse(),range(2))
qc.decompose().draw(fold=130).
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Figure 19.3 Circuit representing QFT for three qubits.

19.3.2 QFT for Three qubits

For F3 we need to define phase gate on three qubits |x3x2x1〉 and a swap operation
of the first and last qubit. The swap operation is simply the swap of the value of x1
with the value of of x3

F3 = 1√
8
·
(
|0〉+ e−2·π·i·0.x1 · |1〉

)
⊗
(
|0〉+ e−2·π·i·0.x2x1 · |1〉

)
⊗

⊗
(
|0〉+ e−2·π·i·0.x3x2x1 · |1〉

)
(19.22)

The circuit is represented as (see Figure 19.3)
qc = QuantumCircuit(3)
qc.h(2)
qc.cp(pi/2, 1, 2) # CROT from qubit 1 to qubit 2
qc.cp(pi/4, 0, 2) # CROT from qubit 0 to qubit 2
qc.h(1)
qc.cp(pi/2, 0, 1) # CROT from qubit 0 to qubit 1
qc.h(0)
qc.swap(0,2)

19.3.3 QFT for Four qubits

The circuit for four qubits is represented as (see Figure 19.4)
qc = QuantumCircuit(4)
qc.h(3)
qc.cp(pi/2, 2, 3) # CROT from qubit 2 to qubit 3
qc.cp(pi/4, 1, 3) # CROT from qubit 1 to qubit 3
qc.cp(pi/8, 0, 3) # CROT from qubit 0 to qubit 3
qc.barrier()
qc.h(2)
qc.cp(pi/2, 1, 2) # CROT from qubit 1 to qubit 2
qc.cp(pi/4, 0, 2) # CROT from qubit 0 to qubit 2
qc.barrier()
qc.h(1)
qc.cp(pi/2, 0, 1) # CROT from qubit 0 to qubit 1
qc.barrier()
qc.h(0)
qc.barrier()
qc.swap(0,3)
qc.swap(1,2)
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Figure 19.4 QFT for four qubits.

The circuit for m qubits can be imported from the qiskit library. In our example we
compose a circuit of 6 qubits, (see Figure 19.5)

from qiskit.circuit.library import QFT
qc = QuantumCircuit(6)
#qc = qc.compose(QFT(6, inverse=True))
qc = qc.compose(QFT(6))
qc.decompose().draw(fold=200).

19.3.4 QFT Costs

The first term requires one Hadamard gate, the second one requires a Hadamard gate
and a controlled phase gate. Each following term requires an additional controlled
phase gate. Summing up

1 + 2 + 3 + · · · (m− 1) +m = m · (m− 1)
2 = O(m2).

The costs of a QFT are O(m2) compared to the cost of O(2m ·m) on a conventional
computer, so the costs of QFT are exponentially less.

19.3.5 QFT

A periodic function can be represented as a superposition of qubits and their values
of amplitudes (representing the probabilities). For periodic function the amplitudes
representing the frequency of the function have positive value whereas all other am-
plitudes are zero. By measuring the register with high amplitude values, we can
reconstruct the period. In our example we generate a state vector of which the DFT

Figure 19.5 QFT for six qubits.
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results in the vector

α =



0
0
0
0
0
1
0
0


.

qc = QuantumCircuit(3)
#Initialize the signal
qc.h(0)
qc.h(1)
qc.h(2)
qc.p(5*pi/4,0)
qc.p(5*pi/2,1)
qc.p(5*pi,2)
simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
final_state = simulator.run(qc).result().get_statevector()
from qiskit.visualization import array_to_latex
array_to_latex(final_state, max_size=16,prefix="\\text{S} = "),

S = [0.35i,−0.25+0.25i,−0.35i, 0.25 +0.25i,−0.35i, 0.25−0.25i, 0.35i,−0.25−0.25i]
Computing the Iiverse QFT results in the binary representation of 5 (101), the am-
plitude representation the vector α,

qc = QuantumCircuit(3)
#Initialize the signal which frequency corresponds to five
qc.h(0)
qc.h(1)
qc.h(2)
qc.p(5*pi/4,0)
qc.p(5*pi/2,1)
qc.p(5*pi,2)
#And we can see this does indeed result in the Fourier state 5, 101
qc.barrier()
qc = qc.compose(QFT(3, inverse=True))
simulator = Aer.get_backend(’statevector_simulator’)
result=execute(qc,simulator).result()
counts = result.get_counts()
print(’The result is:’, counts)

The result is: {′101′ : 1.0}.
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Phase Estimation

The Kitaev’s Phase Estimation Algorithm (also referred to as quantum eigenvalue
estimation algorithm) is a quantum algorithm to estimate the phase (or eigenvalue)
of an eigenvector of a unitary operator. We explain the algorithm and indicate an
example of the determination of the eigenvalue of the T gate. Then we introduce
the quantum counting algorithm that is based on the quantum phase estimation
algorithm and on the Grover’s search algorithm. Quantum counting algorithm is a
quantum algorithm for counting the number of solutions for a given search problem.

20.1 KITAEV’S PHASE ESTIMATION ALGORITHM

Given a unitary operator U on m qubits with an eigenvector |u〉 with an unknown
eigenvalue e2·π·i·θ, we want to determine the phase θ [48], [47]. If we apply U to |u〉
we get

U · |u〉 = e2·π·i·θ · |u〉 (20.1)
if we apply U to |u〉 w times we get

Uw · |u〉 = Uw−1 ·
(
e2·π·i·θ · |u〉

)
=
(
e2·π·i·θ

)w
· |u〉 = e2·π·i·θ·w · |u〉. (20.2)

However, we will not gain any information because |u〉 and e2·π·i·θ·w ·|u〉 are equivalent
states and they represent the same state when a measurement is preformed. Instead
of the unitary operator Uw, we use the controlled Uw operator CUw. If the control
qubit is set then Uw is applied to the target qubits, otherwise not. The operator CUw

is unitary and defines an injective mapping on two qubits that is reversible

CUw · |0〉|u〉 = |0〉|u〉, CUw · |1〉|u〉 = |1〉
(
e2·π·i·θ·w · |u〉

)
= e2·π·i·θ·w · |1〉|u〉.

So with w = 2j

CU2j ·
(( |0〉+ |1〉√

2

)
· |u〉

)
=
(
|0〉+ e2·π·i·θ·2j |1〉√

2

)
· |u〉.

The QFT is represented as a tensor product of m single-qubit operations. The QFT
can be factored into the tensor product of m single-qubit operations,

|y〉 = Fm · |x〉 = 1√
n

∑
y∈Bm

e2·π·i· y
n
·x · |y〉 =

DOI: 10.1201/9781003374404-20 255

https://doi.org/10.1201/9781003374404-20


256 � Quantum Artificial Intelligence with Qiskit

= 1√
n
·
(
|0〉+ e2·π·i·0.x1 · |1〉

)
⊗
(
|0〉+ e2·π·i·0.x2x1 · |1〉

)
⊗ · · ·⊗ (20.3)

⊗
(
|0〉+ e2·π·i·0.xm···x2x1 · |1〉

)
.

If we set θ = 0.xm · · · x2x1, we can rewrite the equation as

|y〉 = Fm · |x〉 = 1√
n

∑
y∈Bm

e2·π·i·y·θ · |y〉 =

= 1√
n
·
(
|0〉+ e2·π·i·(θ·2m−1) · |1〉

)
⊗
(
|0〉+ e2·π·i·(θ·2m−2) · |1〉

)
⊗ · · ·⊗ (20.4)

⊗
(
|0〉+ e2·π·i·(θ·20) · |1〉

)
.

For m control qubits, we define Cj+1U
2j in the following way. For j ∈ {0, 1, 2, · · · ,m−

1}, the control qubit j+1 of the m qubits is set, then Cj+1U
2j is applied to the target

|u〉, otherwise not. The initial state of the algorithm is

|0⊗m〉|u〉

with u being the eigenvector of U . In the first step of the algorithm we build a
superposition of m control qubits

Hm · |0⊗m〉|u〉 = 1√
2m

∑
x∈Bm

|x〉|u〉 =

= 1√
n
· (|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉) |u〉. (20.5)

In the second step we apply m Cj+1U
2j operators to the target |u〉

m−1∏
j=0

Cj+1U
2j ·

( 1√
n
· (|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉) |u〉

)
=

= 1√
n
·
(
|0〉+ e2·π·i·(θ·2m−1) · |1〉

)
⊗
(
|0〉+ e2·π·i·(θ·2m−2) · |1〉

)
⊗ · · · (20.6)

⊗
(
|0〉+ e2·π·i·(θ·20) · |1〉

)
· |u〉

In the third step we apply inverse QFT to the m control qubits

IFm ·

 1√
n

∑
y∈Bm

e2·π·i·y·θ · |y〉

 · |u〉 =

= IFm ·

 1√
n

∑
y∈Bm

e2·π·i· y
n
·x · |y〉

 · |u〉 = |x〉|u〉. (20.7)

In the fourth step we measure the first register composed of m control qubits and
estimate θ

θ = 0.xm · · · x2x1 = x

n
= x

2m . (20.8)
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20.1.1 Example with T Gate

The T gate corresponds to the unitary matrix

T =
(

1 0
0 ei

π
4

)
.

With the eigenvector |1〉 and the eigenvalue e2·π·i·θ

U · |u〉 = T · |1〉 = e2·π·i·θ · |u〉 = e2·π·i·θ · |1〉 (20.9)

with the phase is θ = 1
8 since

T |1〉 = e2·π·i·θ = ei
π
4 · |1〉 = e2·i π8 · |1〉.

The phase estimation algorithm will write the phase of T to the m qubits in the
control register. The value of m determines the precision of the result. In our simple
case m = 3

θ = 0.x3x2x1 = x

8 = x

23 .

The controlled T gate is represented by the controlled phase gate CP (λ) with
λ = π/4. The circuit is composed of 4 qubits, qubits 0, 1, 2 represent the 3 qubits
in the control register. The qubit 3 represents the eigenvector |1〉. The control reg-
ister is mapped into superposition by Hadamard gates and the qubit 4 is initialized
to the eigenvector |1〉 with the NOT gate. The control register controls the unitary
operations T applied to the target eigenvector |1〉 resulting in the Fourier basis repre-
sentation of the three control qubits. To estimate the phase θ, we perform the inverse
QFT to the 3 control qubits and measure the three quits and estimate θ with

x = |q2q1q0〉

and
θ = x

23 .

The circuit is represented as (See Figure 20.1)

import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
from qiskit.circuit.library import MCXGate
from math import pi
from qiskit.circuit.library import QFT
qc = QuantumCircuit(4, 3)
qc.h(0)
qc.h(1)
qc.h(2)
qc.x(3)
#qc.cp(lambda, control, target)
qc.cp(pi/4, 0, 3)
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(a)

(b)

Figure 20.1 (a) Circuit estimating the phase of a T gate with accuracy of three qubits.
The circuit is composed of 4 qubits, qubits 0, 1, 2 represent the control register
and qubit 3 represents the eigenvector |1〉. The control register controls the unitary
operations T applied to the target eigenvector |1〉. To estimate the phase θ, we perform
the inverse QFT to the 3 control qubits. (b) The measured value corresponds to the
binary value 001 equal to one indicating phase θ = 0.125 = 1/23.

qc.cp(pi/4, 1, 3)
qc.cp(pi/4, 1, 3)
qc.cp(pi/4, 2, 3)
qc.cp(pi/4, 2, 3)
qc.cp(pi/4, 2, 3)
qc.cp(pi/4, 2, 3)
qc.barrier()
qc = qc.compose(QFT(3, inverse=True), [0,1,2])
qc.barrier()
qc.measure(0,0)
qc.measure(1,1)
qc.measure(2,2)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=1000).result()
counts = result.get_counts()
plot_histogram(counts)

The measured value corresponds to the binary value 001 equal to one indicating
phase. The more control qubits (m) we use, the higher precision we get. However in
this simple example, three control qubits lead to good estimation of the phase θ

θ = 1
23 = 1

8 .
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20.2 QUANTUM COUNTING

Grover’s amplification is based on the unitary operator Gm∗ = 2 · Pm∗ − Im∗ in the
computational basis with n = 2m∗ states. (We use the notation m∗ to indicate that
the number of qubits used in the Grover’s amplification and the number of the control
qubits m do not need to be equal.) The probability of seeing one solution should be
as close as possible to 1 and the number of iterations. The number of iterations r is
the largest integer not greater than t∗,

r =
⌊
π

4 ·
√
n

k
− 1

2

⌋
. (20.10)

The value of r depends on the relation of n versus k, with k being the number of
solutions. We can estimate k by quantum counting. In quantum counting, we simply
use the quantum phase estimation algorithm to find an eigenvalue of a Grover search
iteration.

One can represent the state |τ〉 after t Grover’s amplification by two subspaces
|τsolution〉 and |τnon〉 representing the states representing the solutions and non-
solutions with

|τ〉 = αt · |τsolution〉+ βt · |τnon〉 (20.11)

Quantum counting algorithm is based on the inverse QFT period algorithm to esti-
mate the period of the sin wave period represented by the of the amplitude αt or βt
[16], [15], [47] after t iterations (see Figure 20.2). After the amplification we get (see
[119]) √

k

n
· |τsolution〉+

√
n− k
n
· |τnon〉 (20.12)

50 100 150 200

!1.0

!0.5

0.5

1.0

Figure 20.2 The two-dimensional subspace of amplitude and time t represents a peri-
odic function described by αt (the dotted curve) and βt (the continuous curve). The
x-axis indicates t and the y-axis the amplitude. The values are n = 256, k = 1, and
1 ≤ t ≤ 200.
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with
sin2 θ = k

n
(20.13)

and
cos2 θ = n− k

n
= 1− k

n
. (20.14)

We can represent the Grover’s amplification matrix in the two-dimensional basis
|τsolution〉 and |τnon〉

G =
(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)
The matrix G has two eigenvectors:

u1 =
(

i√
2

1√
2

)
, u2 =

( −i√
2

1√
2

)

with two eigenvalues λ1 = e2·iθ and λ2 = e−2·iθ. The eigenvectors u1 and u2 are
represented in the |τsolution〉 and |τnon〉 basis as

|τ1〉 = i√
2
· |τsolution〉+ 1√

2
· |τnon〉

|τ2〉 = i√
2
· |τsolution〉 −

1√
2
· |τnon〉 (20.15)

and
|τ〉 = eiθ · 1√

2
· |τ1〉+ e−iθ · 1√

2
· |τ2〉 (20.16)

In the original quantum phase estimation algorithm, the required eigenvector is

U · |u〉 = e2·π·i·θ · |u〉 (20.17)

However, we do not need to prepare our register in either of these eigenvectors, the
register is actually in a superposition of the eigenvectors of the Grover operator

G · |τ〉 = G ·
(
eiθ · 1√

2
· |τ1〉+ e−iθ · 1√

2
· |τ2〉

)
(20.18)

G · |τ〉 = λ1 ·
(
eiθ · 1√

2
· |τ1〉

)
+ λ2 ·

(
e−iθ · 1√

2
· |τ2〉

)
(20.19)

Since our eigenvalues are λ1 = e2·iθ and λ1 = e−2·iθ and we have m control qubits

θ = x · π
2m (20.20)

and with n being the number of state of Grover’s amplification

sin2 θ = k

n
(20.21)

with
k = sin2 θ · n = sin2

(
x · π
2m

)
· n.
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20.2.1 Example

The controlled Grover operator is implemented using the circuit library [21] with an
oracle that marks four solutions (k = 4) out of 16 states (m∗ = 4)

def grover_operator():
#Grover iteration circuit for oracle with 4/16 solutions
from qiskit.circuit.library import Diagonal, GroverOperator
oracle = Diagonal([1,1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,1])
grover_it = GroverOperator(oracle).to_gate()
grover_it.label = "G"
return grover_it

and we will use the .control() method to create a controlled gate from the Grover
operator. The circuit is composed of 8 qubits, qubits 0, 1, 2, 3 represent the 4 qubits in
the control register. The qubits 5 to 7 represent the four qubits in the computational
basis representing 16 states. All qubits are mapped into superposition by Hadamard
gates. The control register controls the unitary operations G by the control method
.control() with the first qubit being the control qubit of the control register, resulting
in the Fourier basis representation of the three control qubits. To estimate the phase
θ, we perform the inverse QFT to the 4 control qubits and measure the four quits
and estimate θ (see Figure 20.3 (a))

from qiskit.circuit.library import QFT
qft_dagger = QFT(4, inverse=True).to_gate()
qft_dagger.label = "QFTĘ"

import matplotlib.pyplot as plt
import numpy as np
import math
# importing Qiskit
from qiskit import QuantumCircuit, Aer, execute
# import basic plot tools
from qiskit.visualization import plot_histogram

qc = QuantumCircuit(8, 4)

qc.h([0,1,2,3,4,5,6,7])
cgrit = grover_operator().control()

qc.append(cgrit, [0,4,5,6,7])

qc.append(cgrit, [1,4,5,6,7])
qc.append(cgrit, [1,4,5,6,7])

qc.append(cgrit, [2,4,5,6,7])
qc.append(cgrit, [2,4,5,6,7])
qc.append(cgrit, [2,4,5,6,7])
qc.append(cgrit, [2,4,5,6,7])

qc.append(cgrit, [3,4,5,6,7])
qc.append(cgrit, [3,4,5,6,7])
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qc.append(cgrit, [3,4,5,6,7])
qc.append(cgrit, [3,4,5,6,7])
qc.append(cgrit, [3,4,5,6,7])
qc.append(cgrit, [3,4,5,6,7])
qc.append(cgrit, [3,4,5,6,7])
qc.append(cgrit, [3,4,5,6,7])
# Do inverse QFT on counting qubits
qc.append(qft_dagger, [0,1,2,3])
# Measure counting qubits
qc.measure([0,1,2,3], [0,1,2,3])

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=1000).result()
counts = result.get_counts()
plot_histogram(counts)

The maximal measured value corresponds to the binary value 0011 (3 decimal) or
1101 (13 decimal), see Figure 20.3 (b). The phase is either θ1 = π·3

16 or θ2 = π·13
16

corresponding to the two eigenvalues λ1 = e2·iθ or λ2 = e−2·iθ with positive and
negative phase with

sin2 (θ) = sin2 (−θ)

with approximately the correct answer

k = 4.9 ≈ sin2
(
π · 3
16

)
· 16 = sin2

(
π · 13

16

)
· 16.

The more control qubits (m) we use, the higher precision we get. In our example four
control qubits lead only to an approximate estimation of the phase θ. For example if
marks five solutions (k = 5) out of 16 states we measure exactly the same maximal
measured values 0011 (3 decimal) or 1101 (13 decimal). More control qubits would
be required for less approximate result. The counts of the two maximal values indi-
cating the phase θ1 and θ2 would be higher and the counts of the other states would
approximate the value zero.
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(a)

(b)

Figure 20.3 (a) The controlled Grover operator is implemented using use the circuit
library with an oracle that marks four solutions (k = 4) out of 16 states (m∗ = 4).
The circuit is composed of 8 qubits, qubits 0, 1, 2, 3 represent the 4 qubits in the
control register. The qubits 5 to 7 represents the four qubits in the computational
basis representing 16 states. All qubits are mapped into superposition by Hadamard
gates. The control register controls the unitary operations G resulting in the Fourier
basis representation of the three control qubits. To estimate the phase θ we perform
the inverse QFT to the 4 control qubits and measure the 4 qubits. (b) The maximal
measured value corresponds to the binary value 0011 (3 decimal) or 1101 (13 decimal)
indicating phase θ1 = π · 3/16 or θ2 = π · 13/16.
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Quantum Perceptron

The classical perceptron describes an algorithm for supervised learning that consid-
ers only linearly separable problems in which groups can be separated by a line or
hyperplane. The quantum perceptron does usually not include learning, instead it
computes the output of a binary unit (neuron) efficiently. It is based on the Kitaev’s
phase estimation algorithm. A quantum perceptron can be used as building block of
larger systems, it can process an arbitrary number of input vectors in parallel. We
present a simple example of the quantum perceptron for two-dimensional input.

21.1 COUNTING OF ONES WITH KITAEV’S PHASE ESTIMATION ALGO-
RITHM

The phase gate

P (λ) =
(

1 0
0 ei·λ

)
.

Has tow eigenvectors |1〉 and |0〉 with the eigenvalues ei·λ and 1. Setting λ to

λ = π · net

2(m−1)

results in the eigenvalue
e
i·π· net

2(m−1) .

Kitaev’s Phase Estimation Algorithm determines the eigenvalue using the controlled
phase gate with

P · |1〉 = e2·π·i·θ · |1〉 = e
2·π·i· net

2·2(m−1) · |1〉 = e2·π·i·net2m · |1〉. (21.1)

The phase estimation algorithm will write the phase of P to the m qubits in the
control register

net = xm · · ·x2x1

θ = 0.xm · · · x2x1 = x

2m = net

2m , (21.2)

λ = 2 · θ.
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21.2 QUANTUM PERCEPTRON

The classical perceptron describes an algorithm for supervised learning that consid-
ers only linearly separable problems in which groups can be separated by a line or
hyperplane. The quantum perceptron [96], [95] does usually not include learning and
instead it computes efficiently the binary representation of the function net modulo
D with x0 = 1

net :=

 D∑
j=0

wj · xj

 mod D =

 D∑
j=1

wj · xj + w0

 mod D = (〈x|w〉+ w0) mod D

(21.3)
with the constraint

xj ∈ {0, 1}, wj ∈ [−1, 1]
The value w0 is called the “bias”, it is a constant value that does not depend on any
input value. Each dimension j is represented by a controlled phase gate CPj with

λ = π · wj
2(m−1)

and D = 2m − 2 or log2(D + 2) = m. For D = 2

net = w0 + w1 · x1 + w2 · x2

will be represented by three controlled phase gate that perform the following compu-
tation

ei·π·
net

2 = ei·π·
w0
2 · ei·π·

w1·x1
2 · ei·π·

w2·x2
2 (21.4)

The estimated values of net is represented by two control qubits in the case net is
natural number the measured values are four possible values of the two qubits |q1q0〉

|00〉, |01〉, |10〉, |11〉.

In other case rational number value of net corresponds to a superposition of the four
states. A nonlinear activation function like

φ(net) := f(net) =
{

1 if net ≥ threshold
0 if net < threshold

(21.5)

with threshold = 10 can be implemented reading the more important qubit, in our
case the qubit q1 which can represent the output value of the Perceptron that is either
one or zero. A quantum Perceptron can be used as building block of larger systems,
it can process an arbitrary number of input vectors in parallel. when the input is
presented in superposition |ψ〉 representing the whole data set DB of s objects xk

{xk ∈ DB | k ∈ {1..s}}.

with
|ψ〉 = 1√

s

s∑
k=1
|xk〉

and then can be further processed.
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Figure 21.1 A a quantum Perceptron with D = 2 and two control qubits (m = 2)
qubit 0 and qubit 1. Qubits 2 and 3 representing the input x1 = 1, x2 = 1 and qubit
4 the bias x0 = 1 and the weights w0 = 0, w1 = 1 and w2 = 1.

21.3 SIMPLE EXAMPLE

In this example we implement a quantum Perceptron with D = 2 and two control
qubits (m = 2) qubit 0 and with qubit 2 and 3 representing the input and qubit 4
the bias x0 = 1 (see Figure 21.1),

import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from math import pi
from qiskit.circuit.library import QFT

qc = QuantumCircuit(5, 2)

#Free Parameters set by the User
#---------------------------------
#Setting the values of weihts
w0=0
w1=1
w2=1
#Setting the Input x1=qubit 2, x2=qubit 3
qc.x(2)
qc.x(3)
#---------------------------------
#constant values with N=m-1 (m number of controll qubits)
N=1
qc.h(0)
qc.h(1)
#Bias w0 qubit 4
qc.x(4)
qc.barrier()
#qc.cp(lambda, control, target)
#w1
qc.cp(w1*pi/(2*N), 0, 2)
#w2
qc.cp(w2*pi/(2*N), 0, 3)
#w0
qc.cp(w0*pi/(2*N), 0, 4)
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(a)
(b)

Figure 21.2 (a) The measured value of net = 2 for the input x1 = 1, x2 = 1 and the
weights w0 = 0, w1 = 1 and w2 = 1. (b) The measured value of net for the input
x1 = 1, x2 = 1 and the weights w0 = 0, w1 = 0.6 and w2 = 1 is in superposition
between 2 and 1 (net = 1.6).

qc.barrier()
#w1
qc.cp(w1*pi/(2*N), 1, 2)
qc.cp(w1*pi/(2*N), 1, 2)
#w2
qc.cp(w2*pi/(2*N), 1, 3)
qc.cp(w2*pi/(2*N), 1, 3)
#w0
qc.cp(w0*pi/(2*N), 1, 4)
qc.cp(w0*pi/(2*N), 1, 4)
qc.barrier()
qc = qc.compose(QFT(2, inverse=True), [0,1])
qc.barrier()

qc.measure(0,0)
qc.measure(1,1)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=1000).result()
counts = result.get_counts()
plot_histogram(counts)

The measured value of net for the input x1 = 1, x2 = 1, and the weights w0 = 0,
w1 = 1, and w2 = 1 and the measured value of net for the input x1 = 1, x2 = 1, and
the weights w0 = 0, w1 = 0.6, and w2 = 1, see Figure 21.2.
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HHL

The quantum algorithm for linear systems of equations for is one of the main fun-
damental algorithms expected to provide a speedup over their classical counterparts.
In the honor of its inventors Aram Harrow, Avinatan Hassidim, and Seth Lloyd, it is
called the HHL algorithm. HHL is going to be one of the most useful subroutines for
any quantum machine learning algorithm because almost all machine learning uses
some form of a linear system of equations. For example, in support vector machines
and quantum support vector machines, maximizing the objective function with the
optimum values of the Lagrange multipliers are based on solving linear equations. We
describe the HHL algorithm, give an example step by step using qiskit command
HamiltonianGate, and indicate the constrains of the algorithm.

22.1 QUANTUM ALGORITHM FOR LINEAR SYSTEMS OF EQUATIONS

We see systems of linear equations in many real-life applications across a wide range
of areas. For an invertible complex matrix n× n A and a complex vector b

A · x = b (22.1)

we want to find x. If A is Hermitian A∗ = A (for real matrix AT = A) then A can
be represented by the spectral decomposition as

A = λ1 · |u1〉〈u1|+ λ2 · |u2〉〈u2|+ · · ·+ λn · |un〉〈un|. (22.2)

and
A−1 = 1

λ1
· |u1〉〈u1|+

1
λ2
· |u2〉〈u2|+ · · ·+

1
λn
· |un〉〈un|. (22.3)

It follows
A−1 · |uj〉 = 1

λj
|uj〉 (22.4)

and writing |b〉 as a linear combination of the eigenvectors of A

|b〉 =
∑
j

|uj〉〈uj |b〉 (22.5)
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leads to
A · |b〉 =

∑
j

λj |uj〉〈uj |b〉 (22.6)

and
|x〉 = A−1 · |b〉 =

∑
j

λ−1
j |uj〉〈uj |b〉. (22.7)

How can we estimate the eigenvalues efficiently? We know that the function ei·A with
a Hermitian A is

U = ei·A = ei·λ1 · |u1〉〈u1|+ ei·λ2 · |u2〉〈u2|+ · · ·+ ei·λn · |un〉〈un|. (22.8)
and
U∗ = U−1 = e−i·A = e−i·λ1 · |u1〉〈u1|+ e−i·λ2 · |u2〉〈u2|+ · · ·+ e−i·λn · |un〉〈un|. (22.9)

with
U · U∗ = I

Using Kitaev’s phase estimation algorithm, we could estimate then unknown eigen-
value e2·π·i·θj If we apply U to |uj〉 we get

U · |u〉 = e2·π·i·θj · |uj〉 = ei·λj · |uj〉 (22.10)
We do not want to perform the decomposition of eigenvector and eigenvalues of

A since this would lead to a circular problem.

22.2 ALGORITHM

We notice that we can
• This representation is similar to the evolutionary operator Ut = e−i·t·H for t = 1

and A = H is the Hamiltonian operator. The process of implementing a given
Hamiltonian evolution on quantum computer is called Hamiltonian simulation
[58]. Hamiltonian simulation can be implemented efficiently for large if the
Hermitian matrix H is sparse.

• We do not need to know the eigenvector |uj〉 of U . Since a quantum state |b〉
can be decomposed into an orthogonal basis

|b〉 =
∑
j

|uj〉〈uj |b〉 =
∑
j

βj |uj〉 (22.11)

22.2.1 Hamiltonian Simulation

The process of implementing a given Hamiltonian evolution on quantum computer is
called Hamiltonian simulation [58]

|x(t)〉 = e−i·t·H · |x(0)〉 = Ut · |x(0)〉. (22.12)
The challenge is due to the fact that the application of matrix exponentials are
computationally expensive [95]. Finding reliable and accurate methods to compute
the matrix exponential is difficult, and this is still a topic of considerable current
research.
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22.2.1.1 Diagonalization

If the matrix H is diagonal

H =


a1 0 . . . 0
0 a2 . . . 0
...

... . . . ...
0 0 . . . an

 (22.13)

then its exponential can be obtained by exponentiating each entry on the main diag-
onal

eH =


ea1 0 . . . 0
0 ea2 . . . 0
...

... . . . ...
0 0 . . . ean

 (22.14)

This result also allows one to exponentiate diagonalizable matrices. If

H = U ·D · U−1 (22.15)

and D is diagonal, then
eH = U · eD · U−1 (22.16)

22.2.1.2 Product Formulas

If the hamiltonian H can be written as

H =
L∑
k=1

Hk (22.17)

and Hk commute,
Hj ·Hk = Hk ·Hj , for all j, k

then
e−i·t·H = e−i·t·H1 · e−i·t·H2 · · · · e−i·t·HL for all t. (22.18)

General case: For general case of non-commuting Hk

e−i·t·H 6= e−i·t·H1 · e−i·t·H2 · · · · e−i·t·HL for all t. (22.19)

However for non-commuting Hk the following asymptotic Suzuki-Trotter formula (Lie
product formula) is true for any real t.

e−i·t·H = lim
m→∞

(
e−i·t·H1/m · e−i·t·H2/m · · · · e−i·t·HL/m

)m
(22.20)

or we can write equivalently

e−i·t·H = e−i·t·H1 · e−i·t·H2 · · · · e−i·t·HL +O(t2) (22.21)

For small t the factorization is approximately valid,

Ut = e−i·t·H ≈ e−i·t·H1 · e−i·t·H2 · · · · e−i·t·HL . (22.22)
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22.2.2 Kitaev’s Phase Estimation

After applying Kitaev’s phase estimation algorithm to U that we estimated by the
Hamiltonian simulation for each value j, the values λ̃k|j approximate the true value
λj . For simplicity we assume

n∑
j=1

βj

T−1∑
k=0

αk|j · |λ̃k|j |uj〉 ≈
n∑
j=1

βj · |λ̃j〉|uj〉. (22.23)

22.2.3 Conditioned Rotation

We add an auxiliary state |0〉
n∑
j=1

βj · |λ̃j〉|uj〉|0〉 (22.24)

and perform the conditioned rotation on the auxiliary state |0〉 by the operator R

R =
(

cosα − sinα
sinα cosα

)
. (22.25)

with the relation
α = arccos

(
C

λ̃

)
(22.26)

with C being a constant of normalization. For each eigenvalue indicates a special
rotation we have

n∑
j=1

(
βj · |λ̃j〉|uj〉

(
R
(
λ̃−1
j

)
|0〉)

))
=

n∑
j=1

βj · |λ̃j〉|uj〉
C

λ̃j
|1〉+

√√√√1− C2

λ̃2
j

|0〉

 . (22.27)

22.2.4 Un-Computation

We un-compute the phase estimation procedure with Fm = IFm, CU∗ resulting in
the state

|0〉
n∑
j=1

βj · |uj〉
C

λ̃j
|1〉+

√√√√1− C2

λ̃2
j

|0〉

 =

|0〉
n∑
j=1

C · βj
λ̃j
|uj〉|1〉+

√√√√1− C2

λ̃2
j

· βj |uj〉|0〉

 . (22.28)
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22.2.5 Measurement

By measuring the auxiliary qubit with the result 0, we get

|0〉
n∑
j=1

√√√√1− C2

λ̃2
j

· βj |uj〉

 (22.29)

and with the result 1

C · |0〉
n∑
j=1

(
βj

λ̃j
|uj〉

)
= C · |0〉A−1|b〉 ≈ C · |0〉|x〉. (22.30)

We have to select the outcome of the measurement 1.

|x〉 = A−1|b〉 =
n∑
j=1

βj

λ̃j
|uj〉 (22.31)

22.2.6 Obtaining the Solution

Obtaining the required coefficient xi from |x〉 would require at least n measurements,
so the complexity of the algorithm would be O(n) which problematic since the cost
on a classical computer for an approximate solution for a sparse matrix via conju-
gate gradient descent are equivalent. Many applications are interested in the global
properties of |x〉 rather than the coefficients xi. Many features describing the vector
|x〉 can be extracted efficiently, like for example values in different parts. We can as
well efficiently estimate if two solutions of two different equations are the same or
not [39].

22.3 EXAMPLE

A =
(

1 −1
3

−1
3 1

)
, b =

(
1
0

)
. (22.32)

with eigenvectors

u1 = 1√
2
·
(

1
−1

)
, u2 = 1√

2
·
(

1
1

)
. (22.33)

and eigenvalues
λ1 = 4

3 , λ2 = 2
3 .

It follows

U = ei·
4
3 · |u1〉〈u1|+ ei·

2
3 · |u2〉〈u2| =

(
1
2e

2i
3 + 1

2e
4i
3 1

2e
2i
3 − 1

2e
4i
3

1
2e

2i
3 − 1

2e
4i
3 1

2e
2i
3 + 1

2e
4i
3

)
(22.34)

and

U∗ = e−i·
4
3 · |u1〉〈u1|+ e−i·

2
3 · |u2〉〈u2| =

(
1
2e

−2i
3 + 1

2e
−4i

3 1
2e

−2i
3 − 1

2e
−4i

3

1
2e

−2i
3 − 1

2e
−4i

3 1
2e

−2i
3 + 1

2e
−4i

3

)
(22.35)
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22.3.1 Kitaev’s Phase Estimation to Hamiltonian Simulation

Using Kitaev’s phase estimation algorithm, we get the relation

U · |u〉 = e2·π·i·θj · |uj〉

By using Hamiltonian simulation, the relation is

Ut · |u〉 = e−i·t·λj · |uj〉.

We will use during Kitaev’s phase estimation algorithm QFT instead of the inverse
QFT to deal with the minus sign. In this case the relation becomes

e2·π·i·θj · |uj〉 = ei·t·λj · |uj〉

with
θj = λj · t

2 · π
In our simulation, we will use two qubits in the control register and we chose t = 2·π/8
and we get

θj = 3
8 · λj

with
θ1 = 3

8 ·
4
3 = 2

4 , θ2 = 3
8 ·

2
3 = 1

4
with measured two control qubits being |10〉 representing 2 and |01〉 representing 1

θ = 0.x2x1 = x

4 = x

22 .

We represent

|b〉 = |0〉 = b =
(

1
0

)
with

|u1〉 = |0〉 − |1〉√
2

, |u2〉 = |0〉+ |1〉√
2

and with
|b〉 =

∑
j

βj |uj〉 = |0〉 = 1√
2
· |u1〉+ 1√

2
· |u2〉

|b〉 = 1√
2
· |0〉 − |1〉√

2
+ 1√

2
· |0〉+ |1〉√

2
= |0〉.

We will use qiskit command HamiltonianGate [21] where data is a Hermitian matrix
A is represented and time t = 2 ·π/8 to perform Hamiltonian evolution and use QFT
instead of inverse QFT (see Figure 22.1).
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(a)

(b)

Figure 22.1 (a) Circuit estimating Ut by Hamiltonian simulation with accuracy of two
qubits. The circuit is composed of 3 qubits, qubits 0, 1, represent the control register
and qubit 2 represents b = |0〉. To estimate the phase θ, we perform QFT to the 2
control qubits. (b) The measured values correspond to the binary values 10 and 01.

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from math import pi
from qiskit.quantum_info import Operator
from qiskit.extensions import HamiltonianGate

from qiskit.circuit.library import QFT
qft = QFT(2, inverse=False).to_gate()
qft.label = "QFT"

op = Operator([[1, -1/3],[-1/3, 1]])
# create gate which evolves according to exp(-i*op*3*pi/4)
gate = HamiltonianGate(op,3*pi/4).control()

qc = QuantumCircuit(3,2)
qc.h([0,1])
# apply gate to qubits [0, 1, 2] in circuit
qc.append(gate, [0,2])
qc.append(gate, [1,2])
qc.append(gate, [1,2])
# Do QFT on counting qubits
qc.append(qft, [0,1])
# Measure counting qubits
qc.measure([0,1], [0,1])
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simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=10000).result()
counts = result.get_counts()
plot_histogram(counts)

22.3.2 Conditioned Rotation and Un-Computation

We perform conditioned rotation on the auxiliary state |0〉 by

RY (α) =
(

cos
(
α
2
)
− sin

(
α
2
)

sin
(
α
2
)

cos
(
α
2
) )

with measured two control qubits being |10〉 representing λ̃1 = 2 and |01〉 representing
λ̃2 = 1,

α1 = 2 · arccos
( 1
λ̃1

)
= 2 · arccos

(1
2

)
= π

3 (22.36)

α2 = 2 · arccos
( 1
λ̃2

)
) = 2 · arccos

(1
1

)
= π (22.37)

using a conditional RY gate controlled by λ̃ represented by qubits 1 and 2, then we
un-compute. The result is represented in the qubit 3 in the case the qubit 0 is one
(see Figure 22.2).

from qiskit import QuantumCircuit, Aer, execute
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_histogram
from math import pi
from qiskit.quantum_info import Operator
from qiskit.extensions import HamiltonianGate

from qiskit.circuit.library import QFT
qft = QFT(2, inverse=False).to_gate()
qft.label = "QFT"
qft_dagger = QFT(2, inverse=True).to_gate()
qft_dagger.label = "QFTĘ"

op = Operator([[1, -1/3],[-1/3, 1]])
#op = Operator([[1, 0],[0, 1]])
# create gate which evolves according to exp(-i*op*3*pi/4)
gate = HamiltonianGate(op,3*pi/4).control()
gate_daggar = HamiltonianGate(op,3*pi/4).inverse().control()
qc = QuantumCircuit(4)
qc.h([1,2])

# apply gate to qubits [0, 1, 2] in circuit
qc.append(gate, [1,3])

qc.append(gate, [2,3])
qc.append(gate, [2,3])
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(a)

(b)

Figure 22.2 (a) The HHL circuit, we perform conditioned rotation on the auxiliary
state |0〉 using a RY gate controlled by λ̃ represented by qubits 1 and 2, then we
un-compute. (b) The measured result of our small HHL simulation is represented in
the qubit 3 if the qubit 0 is one, with the probability values 0.562 and 0.0622.

# Do QFT on counting qubits
qc.append(qft, [1,2])

#rotate
#10
qc.cry(pi/3,2,0)
#01
qc.cry(pi,1,0)

#un-computing
qc.append(qft_dagger, [1,2])

qc.append(gate_daggar, [2,3])
qc.append(gate_daggar, [2,3])

qc.append(gate_daggar, [1,3])
qc.h([1,2])

simulator = Aer.get_backend(’statevector_simulator’)
# Run and get counts
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)
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22.3.3 Obtaining the Solution

The solution to the problem

A =
(

1 −1
3

−1
3 1

)
, b =

(
1
0

)
.

is represented by

A−1 =
(

9
8

3
8

3
8

9
8

)
, x =

(
9
8
3
8

)
.

with the normalized vector being

xn = x
‖x‖

=
(

0.948683
0.316228

)
.

The measured result of our small HHL simulation is represented in the qubit 3 in
the case the qubit 0 is one (see Figure 22.2 (b))

x2
m =

(
0.56

0.562+0.0622
0.0622

0.562+0.062

)
with the measured value being

xm =
(

0.948869
0.31567

)
≈ xn =

(
0.948683
0.316228

)
.

Obtaining the required coefficient xi from |x〉 would require at least n measurements,
so the complexity of the algorithm would be O(n) which is problematic since the
cost on a classical computer for an approximate solution for a sparse matrix via
conjugate gradient descent are equivalent. Many applications are interested in the
global properties of |x〉 rather than the coefficients xi. For example, we can as well
efficiently estimate if two solutions of two different equations are the same or not [39].

22.4 CONSTRAINTS

In quantum we can efficiently determine the eigenvectors and eigenvalues by the
Kitaev’s phase estimation algorithm and the Hamiltonian simulation [39]. We will
compute

x = A · b (22.38)
or

x = A−1 · b. (22.39)
We assume A is Hermitian. In the case A is not Hermitian, we define

A′ =
(

0 A
A∗ 0

)
, b′ =

(
0
b

)
, x′ =

(
x
0

)
. (22.40)

and
A′ · x′ = b′. (22.41)
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with the constraints :

• The vectors |b〉, |x〉 have the length one in the l2 norm. |b〉 is represented by
log2 n qubits with

|b〉 =
∑n
i=1 bi|i〉

‖
∑n
i=1 bi|i〉‖

(22.42)

and
|x〉 =

∑n
i=1 xi|i〉

‖
∑n
i=1 xi|i〉‖

. (22.43)

• |b〉 has to be prepared efficiently with the cost log(n). For example being con-
stant with Hlog2 n · |0〉.

• The matrix A is sparse.

• For the output we are interested in the global properties of |x〉 rather than the
coefficients xi.

We will use the shorthand notation (Bachmann-Landau notation) since it mostly
used in the related literature with

Õ(f(n)) = O(f(n)poly(log(f(n)))) = O(f(n) log(f(n))k) (22.44)

for some k ignoring logarithmic factors. The point of that notation is to only show
the important part of the asymptotic complexity. If the constraints are fulfilled then
we can find the estimate of solution in Õ(log n). Gauss elimination requires O(n3)
and approximate solution for a sparse matrix via conjugate gradient descent requires
Õ(n) [81]. Taking into account the constraints the HHL algorithm on a quantum
computer is exponentially faster than any algorithm that solves linear systems on the
classical computer [39].
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Hybrid Approaches−
Variational Classification

Variational approaches are characterized using a classical optimization algorithm to
iteratively update a parameterized quantum trial solution also called ansatz (from
German Ansatz = approach). The parameterized quantum trial solution is defined by
a parametrized quantum circuit like for example the ZZFeatureMap. We indicate
the basic principles of a variational classifier by a simple example. Then we describe
the cross entropy loss function and the Simultaneous Perturbation Stochastic Approx-
imation (SPSA). The optimizer performs stochastic gradient approximation, which
requires only two measurements of the loss function. Qiskit implements the varia-
tional quantum classifier (VQC) that can be embedded in classical machine learning
tasks. We indicate a simple example of the VQC classifier whose learning is based on
SPSA.

23.1 VARIATIONAL CLASSIFICATION

The variational quantum classifier for a binary classification problem, with input data
vectors xk of dimension m and binary output labels tk with a training set

D = {(x1, t1), (x2, t2), · · · , , (xN , tN )}, tk ∈ {0, 1}.

For each input data vector xk a quantum feature maps encodes classical data into
quantum data via a parametrized quantum circuit [95]. circuit Uφ(xk) with m param-
eters

Uφ(x)k |0〉
⊗m. (23.1)

Additionally, we will use a variational quantum circuits that represents the free pa-
rameter w that will adapt during training

|ψ(xk,w)〉 = UW (w) · Uφ(x)k |0〉
⊗m. (23.2)

We measure the state |ψ(xk,w)〉 with some basis state |qm · · · q1q0〉 representing a
binary string. We define the binary output from the binary string by a parity function.
A parity function is a Boolean function whose value is one if and only if the input
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vector has an odd number of ones. The m-variable parity function is the Boolean
function f ∈ {0, 1}

f(q) = qm ⊕ qm−1 ⊕ · · · ⊕ q1 ⊕ q0 (23.3)

where ⊕ denotes exclusive or. For each input data vector xk we determine the output
function ok ∈ [0, 1] representing the probability distribution of odd number of ones in
basis state |qm · · · q1q0〉. Alternatively we could as well try to estimate the probability
of ok the by the inversion test

ok = |〈φ(x)|φ(y)〉|2 = |〈0⊗m|U †φ(y)|Uφ(x)|0⊗m〉|2 (23.4)

Assuming two opposite classes C1 and C2, we can interpret the probability of class
C1 given the input

p(C1|xk) = ok, p(C2|xk) = 1− p(C1|xk). (23.5)

In the training phase, we’re trying to find the values for w using an optimizer on a
classical computer.

23.1.1 Example

We use the parameterized qiskit quantum circuit over two qubits Uφ(x) =
ZZFeatureMap [21] with repetition two where the parameter are defined by the
data by the command bind parameters with the two-dimensional vector x. The vari-
ational quantum circuits that represents the free parameter w that will adapt during
training is the qiskit quantum circuit UW (w) = TwoLocal. The TwoLocal circuit
is a parameterized circuit consisting of alternating rotation layers and entanglement
layers. The rotation layers are single qubit gates applied on all qubits. The entangle-
ment layer uses two-qubit gates to entangle the qubits according to the definition.
In our example, we will use the rotation gates RX and RZ and the entanglement
gate controlled Z rotation, CZ, with two repetitions resulting in 12 free parameters.
The twelve-dimensional vector w defines the parameters by the bind parameters
command. After the operations we measure the two qubits (see Figure 23.1)

from qiskit import QuantumCircuit,QuantumRegister, Aer,execute
from qiskit.visualization import plot_histogram
import numpy as np
from qiskit.circuit.library import ZZFeatureMap, TwoLocal

x = [0.1, 0.1]
feature_map = ZZFeatureMap(feature_dimension=2, reps=2)
feature_map = feature_map.bind_parameters(x)
weights =np.array([3.28559355, 5.48514978, 5.13099949,

0.88372228, 4.08885928, 2.45568528,
4.92364593, 5.59032015, 3.66837805,
4.84632313, 3.60713748, 2.43546])

two_local = TwoLocal(2, [’ry’, ’rz’],’cz’, reps=2)
two_local = two_local.bind_parameters(weights)

qc = QuantumCircuit(2,2)
qc.compose(feature_map, inplace=True)
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(a)

(b)

Figure 23.1 (a) We use the parameterized over two qubits Uφ(x) = ZZFeatureMap

with repetition two. The TwoLocal circuit is a parameterized circuit consisting of
alternating rotation layers and entanglement layers. The rotation layers are single
qubit gates applied on all qubits. The entanglement layer uses two-qubit gates to
entangle the qubits according to the definition. In our example, we will use the
rotation gates RX and RZ and the entanglement gate controlled Z rotation, CZ,
with two repetitions resulting in 12 free parameters. (b) We perform 10000 shots. The
string 01 appears 5483 times and the string 10 appears 1892. We define the binary
output from the binary string by a parity function, p(1) = ok = (5483+1892)/1000 =
0.7375.

qc.barrier()
qc.compose(two_local, inplace=True)
qc.barrier()
qc.measure(0,0)
qc.measure(1,1)

simulator = Aer.get_backend(’qasm_simulator’)
result=execute(qc,simulator,shots=10000).result()
counts = result.get_counts()
print("\nTotal count are:",counts)
plot_histogram(counts)

We define the binary output from the binary string by a parity function, see Figure
23.1 (b). We perform 10000 shots. The string 01 appears 5483 times and the string
10 appears 1892, p(1) = ok = (5483 + 1892)/1000 = 0.7375.
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23.2 CROSS ENTROPY LOSS FUNCTION

For a given example, we can measure the likelihood that a variational quantum
circuit, with a given set of weights has generated a given output for a given input

p(tk|w,xk) = Bernoulli (p(C1|xk)) (23.6)

p(tk|w,xk) = p(C1|xk)tk · (1− p(C1|xk))1−tk (23.7)
Given that we know how to write the likelihood of one example [121] and if we assume
that the data are independent, we can write the likelihood for the whole data set by
simply multiplying the individual likelihoods

p(t|x1, · · · ,xN ,w) =
N∏
k=1

p(C1|xk)tk · (1− p(C1|xk))1−tk (23.8)

with
ok = p(C1|xk) = σ

(
wT · xk

)
= σ(netk), (23.9)

we can simply write

p(t|x1, · · · ,xN ,w) =
N∏
k=1

otkk · (1− ok)
1−tk . (23.10)

Having the likelihood, we can estimate the weights such that the likelihood is maxi-
mized. This is equivalent to minimizing the negative log likelihood, yielding the loss
function

L(w) = − log(p(t|w)) = −
N∑
k=1

(tk log ok + (1− tk) log(1− ok)) . (23.11)

The resulting loss function is exactly the cross entropy between targets and output

H(t, p) = −
N∑
k=1

(tk · log(p(C1|xk)) + ¬tk · log(p(C2|xk))) .

23.2.1 Multi-Class Loss Function

Assuming that the training set consists of N observations

X = (x1,x2, · · · ,xk, · · · ,xN )T

and respective target values represented as vectors of dimension K (since t is used
as an index, we will use ykt to indicate the specific target)

Y = (y1,y2, · · · ,yk, · · · ,yN )T .

During training, each variational quantum circuit is trained individually with its
target value ykt

ykt ∈ {0, 1},
K∑
t=1

ykt = 1
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The resulting cross entropy loss function is given by

L(w) = −
N∑
k=1

K∑
t=1

ykt · log okt, (23.12)

23.3 SPSA OPTIMIZER

Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer performs
stochastic gradient approximation (https : //www.jhuapl.edu/SPSA/), which re-
quires only two measurements of the loss function, regardless of the dimension of the
optimization problem [13]. The goal is to find

w∗ = arg min
w

L(w) (23.13)

with the gradient operator is

∇ =
[
∂

∂w1
,
∂

∂w2
, · · · , ∂

∂wD

]T

g(w) = ∇L(w) =
[
∂L

∂w1
,
∂L

∂w2
, · · · , ∂L

∂wD

]T
.

SPSA use the iterative process with τ indicating the iteration starting at τ = 1 with

wτ+1 = wτ − ητ · ĝτ (wτ ) (23.14)

with ητ being the learning rate that converges to zero and ĝτ (wτ ) estimation of the
gradient gτ(wτ ) with

ĝτ = L(wτ + cτ ·∆τ )− L(wτ − cτ ·∆τ )
2 · cτ ·∆τ

. (23.15)

∆τ is a random perturbation vector and cτ is a small positive number that decreases
with τ . The number of loss function measurements needed in the SPSA method
for each is always 2, independent of the dimension. SPSA with the random search
direction does not follow y the gradient path but approximates it. Ween using a
variational classifier on l quantum computer SPSA is therefore the most recommended
choice since it can be used in the presence of noise.

23.3.1 Qiskit Variational Quantum Classifier

Qiskit implements the variational quantum classifier (VQC) that can be embedded
in classical machine learning tasks.

In this simple qiskit example, we create 10 two-dimensional training data points
and 5 testing data points for two classes each. We use the same classification circuit
as before. We one hot encode our labels, as required by the algorithm using cross
entropy. Then, we set up our classical optimizer and the VQC algorithm using the
callback function. We plot the cost function with respect to optimization step,

https://www.jhuapl.edu
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from qiskit.utils import algorithm_globals
algorithm_globals.random_seed = 3142

import numpy as np
np.random.seed(algorithm_globals.random_seed)

from qiskit_machine_learning.datasets import ad_hoc_data
TRAIN_DATA, TRAIN_LABELS, TEST_DATA, TEST_LABELS = (

ad_hoc_data(training_size=10,
test_size=5,
n=2,
gap=0.3,
one_hot=False)

from qiskit.circuit.library import ZZFeatureMap, TwoLocal
FEATURE_MAP = ZZFeatureMap(feature_dimension=2, reps=2)
VAR_FORM = TwoLocal(2, [’ry’, ’rz’], ’cz’, reps=2)
AD_HOC_CIRCUIT = FEATURE_MAP.compose(VAR_FORM)

from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
train_labels_oh = encoder.fit_transform(TRAIN_LABELS.reshape(-1, 1)

).toarray()
test_labels_oh = encoder.fit_transform(TEST_LABELS.reshape(-1, 1)

).toarray()

from qiskit.algorithms.optimizers import SPSA

class OptimizerLog:
"""Log to store optimizer’s intermediate results"""
def __init__(self):

self.evaluations = []
self.parameters = []
self.costs = []

def update(self, evaluation, parameter, cost, _stepsize, _accept):
"""Save intermediate results. Optimizer passes five values
but we ignore the last two."""
self.evaluations.append(evaluation)
self.parameters.append(parameter)
self.costs.append(cost)

#initial_point = np.random.random(VAR_FORM.num_parameters)
initial_point = np.array([0.3200227 , 0.6503638 , 0.55995053,

0.96566328, 0.38243769, 0.90403094,
0.82271449, 0.26810137, 0.61076489,
0.82301609, 0.11789148, 0.29667125])

from qiskit_machine_learning.algorithms.classifiers import VQC
log = OptimizerLog()
vqc = VQC(feature_map=FEATURE_MAP,

ansatz=VAR_FORM,
loss=’cross_entropy’,
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Figure 23.2 Thee cost function with respect to optimization step converges to a mini-
mum.

optimizer=SPSA(callback=log.update),
initial_point=initial_point)

vqc.fit(TRAIN_DATA, train_labels_oh)

import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot(log.evaluations, log.costs)
plt.xlabel(’Steps’)
plt.ylabel(’Cost’)
plt.show()

We plot the cost function with respect to optimization step, we can see it starts to
converge to a minimum, see Figure 23.2. Finally we test our trained VQC classifier
by score.

# score == accuracy
vqc.score(TEST_DATA, test_labels_oh)

Score indicates the mean accuracy, it determines for the test set true values, in our
case the score is 0.9.
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Conclusion

We conclude our journey with quantum artificial intelligence (QAI). A quantum com-
puter is a computer that exploits quantum mechanical phenomena such as superposi-
tion and entanglement. The quantum advantage is based on two principles related to
Grover’s algorithm and the phase estimation algorithm. Quantum computing is still
in its early stages, and there are many technical challenges that must be overcome
before it can be used to implement QAI. However, for the quantum computing the
race is on, what was a scientific dream some years ago, is becoming more real. You
are now at the forefront of the revolution in quantum computing.

24.1 EPILOGUE

Quantum computation with the quantum gate model is based on principles to speed
up the computation: that lead to quantum advantage

• Grover’s algorithm can speed up the search quadratically for a given number
of possible solutions.

• The QFT can determine the period of a wave or be the basis of the phase
estimation algorithm.

• Variational Classifier can compute functions in extremely high dimensional
space that cannot be done easily by conventional computers.

Most quantum machine learning algorithms suffer from the input destruction
problem [1]. The efficient preparation of data is possible in part for sparse data
[39]. However, the input destruction problem has not yet been solved, and theoreti-
cal speed-ups are usually analyzed [94] by ignoring the input problem, which is the
main bottleneck for data encoding. The costs of data preparation, in which data
points must be read, and the query time are represented by two phases that are an-
alyzed independently; the quantum computing approach has advantages in solving
such problems. Linear algebra-based quantum machine learning is based on quantum
gates that describe basic quantum linear algebra subroutines. These subroutines can
achieve theoretical exponential speedups over their classical counterparts and are es-
sential for machine learning. Basic quantum linear algebra subroutines use a quantum
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coprocessor for extensive and nontrackable computation routines in machine learning.
Such “mathematical” quantum coprocessors can be used on a conventional computer.

Quantum supremacy means that programmable quantum devices can solve a
problem that no classical computer can solve in any feasible amount of time. Quantum
computers will dominate when enough qubits are available. Such gains in computing
power could change every aspect of our lives in the future.

Even without quantum supremacy, the quantum computing approach leads to
easier formulation of certain algorithms, such as certain feature maps that are difficult
to handle. Quantum computing creates a new way of thinking, making it possible to
perform calculations that could not be considered before. The face of the world could
be changed forever.

24.2 FURTHER READING

The most important books about quantum computing which you should not miss are
[72] and [47].

For a brighter mathematical coverage and the description of the adiabatic quan-
tum computation and quantum annealing, you can consult the book [119]. Adiabatic
quantum computation is an alternative approach to quantum computation and is
based on the time evolution of a quantum system and is a polynomial equivalent to
the quantum gate model. Quantum annealing on the other hand solves optimization
problems.

Finally, if you are interested in the philosophical consequences and the interpre-
tation of quantum physics itself motivated by the experiments that you performed
on your computer, you would be maybe interested in my other book “Mind, Brain,
Quantum AI, and the Multiverse” [120].
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Peres, and William K. Wootters. Teleporting an unknown quantum state
via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett.,
70(13):1895–1899, Mar 1993.

[13] S. Bhatnagar, H. L. Prasad, and L. A Prashanth. Stochastic Recursive Algo-
rithms for Optimization: Simultaneous Perturbation Methods. Springer, 2013.

289



290 � Bibliography

[14] Michel Boyer, Gilles Brassard, Peter Hoeyer, and Alain Tapp. Tight bounds
on quantum searching. Fortschritte der Physik, 46:493, 1998.

[15] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. Quantum Amplitude Amplifi-
cation and Estimation. eprint arXiv:quant-ph/0005055, May 2000.

[16] Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum counting, 1998.

[17] L. Brownston, R. Farell, E. Kant, and N. Martin. Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley, 1985.

[18] S. Brunak and B. Lautrup. Neural Networks Computers with Intuition. World
Scientific, 1990.

[19] Arthur E. Bryson and Yu-Ch Ho. Applied optimal control : optimization, esti-
mation, and control. Blaisdell Pub. Co., 1969.

[20] Peter Byrne. The many worlds of hugh everett. Scientific American Magazine,
pages 98–105, December 2007.

[21] Qiskit contributors. Qiskit: An open-source framework for quantum computing.
10.5281/zenodo.2573505, 2023.

[22] T. H. Cormen, C. E. Leiserson, L. R. Rivest, and C. Stein. Introduction to
Algorithms. Second. MIT Press, 2001.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 2/e. MIT Press, 2001.

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20:273–297, 1995.

[25] Rina Dechter. Learning while searching in constraint-satisfaction problems. In
AAAI-86 Proceedings, pages 178–183, 1986.

[26] D. Deutsch and R. Jozsa. Rapid Solution of Problems by Quantum Compu-
tation. Royal Society of London Proceedings Series A, 439:553–558, December
1992.

[27] David Deutsch. The Fabric of Reality. Penguin Group, 1997.

[28] Hugh Everett. “Relative state” formulation of quantum mechanics. Reviews of
Modern Physics, 29(3):454–462, 1957.

[29] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application
of theorem proving. Artificial Intelligence, 2, 1971.

[30] C. Forgy. Ops5 user’s manual cmu-cs-81-135. Technical report, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, Pensilvania USA,
1981.



Bibliography � 291

[31] Stan Franklin. Artificial Minds. MIT Press, 1997.

[32] Vittorio Giovannetti, Seth Lloyd, , and Lorenzo Maccone. Quantum random
access memory. Physical Review Letters, 100:160501, 2008.

[33] R Givan and T. Dean. Model minimization, regression, and propositional strips
planning. In 15th International Joint Conference on Artificial Intelligence,
pages 1163–8, 1997.

[34] C.G. Gross and Mishkin. The neural basis of stimulus equivalence across retinal
translation. In S. Harnad, R. Dorty, J. Jaynes, L. Goldstein, and Krauthamer,
editors, Lateralization in the nervous system, pages 109–122. Academic Press,
New York, 1977.

[35] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 212–219, New York, NY, USA, 1996. ACM.

[36] Lov K. Grover. Quantum mechanics helps in searching for a needle in a
haystack. Physical Review Letters, 79:325, 1997.

[37] Lov K. Grover. A framework for fast quantum mechanical algorithms. In
STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 53–62, New York, NY, USA, 1998. ACM.

[38] Lov K. Grover. Quantum computers can search rapidly by using almost any
transformation. Phys. Rev. Lett., 80(19):4329–4332, May 1998.

[39] A. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for solving linear
systems of equations. Physical Review Letters, 103:150502, 2009.

[40] Vojtcch Havlicek, Antonio D. Corcoles, Kristan Temme, Aram W. Harrow,
Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning
with quantum-enhanced feature spaces. Nature, 567:210–212, 2019.

[41] Simon O. Haykin. Neural Networks and Learning Machines (3rd Edition).
Prentice Hall, 2008.

[42] Robert Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1989.

[43] Werner Heisenberg. The Physical Principles of the Quantum Theory. Courier
Dover Publications, 1949.

[44] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory
of Neural Computation. Addison-Wesley, 1991.

[45] Mika Hirvensalo. Quantum Computing. Springer-Verlag, Berlin Heidelberg,
2004.



292 � Bibliography

[46] J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of
the USA, 79(8):2554–2558, 1982.

[47] Philip R. Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to
Quantum Computing. Oxford University Press, USA, 2007.

[48] Alexei Kitaev. Quantum measurements and the abelian stabilizer problem.
Electronic Colloquium on Computational Complexity, 3(TR96-003), 1996.

[49] Teuvo Kohonen. Self-Organization and Associative Memory. Springer-Verlag,
3 edition, 1989.

[50] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

[51] Richard E. Korf. Depth-first iterative-deepening : An optimal admissible tree
search. Artificial Intelligence, 27(1):97 – 109, 1985.

[52] Stephen M. Kosslyn. Image and Brain, The Resolution of the Imagery Debate.
The MIT Press, 1994.

[53] Raymond Kurzweil. The Age of Intelligent Machines. The MIT Press, 1990.

[54] John E. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in soar: The
anatomy of a general learning mechanism. Machine Learning, 1(1):11–46, 03
1986.

[55] John F. Laird, Allan Newell, and Paul S. Rosenbloom. SOAR: An architecture
for general intelligence. Artificial Intelligence, 40, 1987.

[56] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech,
and time series, pages 255–258. MIT Press, Cambridge, MA, USA, 1998.

[57] Margaret S. Livingstone. Kunst, Schein und Wahrnehmung. Spektrum der
Wissenschaft, 10, 1988.

[58] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[59] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal
component analysis. Nature Physics, 10:631–633, 2014.

[60] George F. Luger and William A. Stubblefield. Artificial Intelligence: Struc-
tures and Strategies for Complex Problem Solving: Second Edition. The Ben-
jamin/Cummings Publishing Company, Inc, Menlo Park, CA, USA, 1993.

[61] George F. Luger and William A. Stubblefield. Artificial Intelligence, Structures
and Strategies for Complex Problem Solving. Addison-Wesley, third edition,
1998.



Bibliography � 293

[62] Andrey Markov. The theory of algorithms. National Academy of Sciences,
USSR, 1954.

[63] J.L. McClelland and A.H. Kawamoto. Mechanisms of sentence processing: As-
signing roles to constituents of sentences. In J.L. McClelland and D.E. Rumel-
hart, editors, Parallel Distributed Processing, pages 272–325. The MIT Press,
1986.

[64] J.L. McClelland and D.E. Rumelhart. Explorations in Parallel Distributed Pro-
cessing - IBM version. The MIT Press, 1986.

[65] J.L. McClelland and D.E. Rumelhart. Explorations in the Microstructure of
Cognition. Volume 1: Foundations. The MIT Press, 1986.

[66] J.L. McClelland and D.E. Rumelhart. Explorations in the Microstructure of
Cognition. Volume 2: Psychological and Biological Models. The MIT Press,
1986.

[67] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[68] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Compu-
tational Geometry. MIT Press, 1972.

[69] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[70] A. Newell and H. Simon. Computer science as empirical inquiry: symbols and
search. Communication of the ACM, 19(3):113–126, 1976.

[71] Allen Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[72] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, MA, USA, 2000.

[73] Nils J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1982.
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