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Preface to the Fourth Edition

The third edition of this book has been published more than 10 years ago. During
this time, the field of molecular charge- and energy-transfer processes evolved
tremendously. Therefore, we consider it timely to provide an update of our 2011
edition. Among the most important developments in quantum dissipative dynamics
has been the further elaboration of nonperturbative and non-Markovian approaches
such as the hierarchy equation of motion (HEOM) method. Although already known
at the time of the publication of the third edition, the past decade has witnessed not
only numerous applications but also a broader development of methods being based
on the hierarchy idea. For the common system-reservoir models it provides a feasi-
ble numerical exact reference such that HEOM can be considered a game changer.
The derivation of the HEOM and applications are covered in this fourth edition. In
this context, the discussion of spectral density models has also been considerably
enhanced. A second method that has matured to a versatile tool for studying various
transfer processes is two-dimensional spectroscopy. In the expanded Chapter 4, we
provide an introduction into the formulation of two-dimensional spectroscopy in
terms of dipole correlation functions, knowing that a full account of this fascinating
method is far beyond the scope of this book. Besides these two mentioned additions,
we have included many minor modifications introducing up-to-date material in
terms of both methodology and applications. We have also replaced some of the
older examples from the literature by more recent ones.

Each chapter contains a section entitled “Further Reading”, which should serve
as a starting point to explore the original literature. Additionally, at the end of each
chapter, the reader will find a brief list of references pointing to the sources of the
given examples and to the origins of those fundamental concepts that have been
directly integrated into the text. As in previous editions, we emphasize that these lists
are by no means exhaustive. It is not the purpose of this book to review all relevant
literature on molecular charge and energy transfer dynamics.

Among the recent developments that are not covered in this book, we would
like to mention the fields of Attosecond Physics and X-ray Spectroscopy. While
femtochemistry successfully explored nuclear dynamics over the past three decades,
Attosecond Physics has the focus on the dynamics of electronic degrees of free-
dom on time scales where the nuclei are essentially frozen. In contrast to, for
instance, Marcus theory of electron transfer where the electron motion is intimately
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connected to nuclear rearrangement, the driving forces of attosecond electron
dynamics are different. They originate, for instance, in electron correlations or
spin–orbit coupling. X-ray science has a long tradition, but it is the availability
of novel light sources offering, for instance, intense X-ray flashes that enable
time-resolved studies of charge and energy transfer. In contrast to optical spec-
troscopy of valence transitions, core-level excitation by X-ray radiation is element
specific, thus providing a complementary local view on electronic structure changes.
The recent development in these two areas has already been impressive, but many
exciting insights into the dynamics of charge- and energy-transfer processes are
yet to come. A number of concepts and methods introduced in this book, such
as the correlation function description of transfer rates, can be adopted to serve
these fields. However, in particular, phenomena due to the interaction of molecular
systems with strong external fields require a different theoretical framework.

As with the previous editions, this book would not have been possible without
the help and the many discussions with a number of students, postdocs, and col-
leagues. In particular, we would like to express our sincere thanks to A. A. Ahmed,
O. S. Bokareva, S. I. Bokarev, F. Fennel, F. Gottwald, S. D. Ivanov, S. Karsten,
X. Liu, S. Lochbrunner, Th. Plehn, P. A. Plötz, S. P. Polyutov, T. Pullerits, B. Röder,
M. Schröter, J. Schulze, M. F. Shibl, J. Seibt, L. Wang, Y. Zelinskyy, Y. Zhang, and
D. Ziemann.

The work on the manuscript of this fourth edition greatly benefited from the
scientific atmosphere provided by the Rostock Collaborative Research Center
Sfb 652 “Strong Correlations and Collective Effects in Radiation Fields” and Sfb
1477 “Light–Matter Interactions at Interfaces” and the Berlin Sfb 951 “Hybrid
Inorganic/Organic Systems for Opto-Electronics” funded by the German Research
Foundation.

Volkhard May and Oliver Kühn
Berlin and Rostock, December 2022
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Preface to the Third Edition

The continued interest in our book since its first publication in 2000 and its second
edition in 2004 triggered the idea to prepare a third edition in order to account for
more recent developments in the field of molecular charge- and energy-transfer
research.

Following the concept of the previous editions, we start by providing some general
background on gas- and condensed-phase interaction potentials and Hamiltonians,
now including a discussion of quantum mechanics/molecular mechanics hybrid
methods for the explicit treatment of condensed-phase environments. The method-
ologically oriented Chapter 3 on the dynamics of quantum systems has been
extended in several respects. Most notable is an exposition on the calculation of
transfer rates within the Liouville space approach. Here, special emphasis is put on
the fourth-order rates that are crucial for an understanding of the more involved
electron- and excitation energy-transfer processes. Further, we give an account
on the multiconfiguration time-dependent Hartree method that in recent years
has been proven to be a versatile tool for the numerically exact treatment of the
quantum dynamics of thousands of degrees of freedom.

The introduction to basic theoretical concepts has been expanded by a new
Chapter 4 devoted to some general aspects of the interaction between light and
molecular systems. This comprises a derivation of the interaction Hamiltonian in
dipole approximation, an introduction to field quantization for the description of
emissions, and an outline of the basics of linear and nonlinear spectroscopy. In
the second edition, laser control was covered in a separate chapter. For the present
edition, we have incorporated a discussion of the topic into the text, which reflects
the development of laser control into an almost routine tool for the investigation of
molecular dynamics phenomena. The theoretical foundations and, in particular,
optimal control theory are now part of Chapter 4, while the various applications are
covered in Chapters 7–9.

The applications start with Chapter 5, where the discussion of vibrational dynam-
ics has been expanded to include quantum-classical approaches to the calculation
of pure dephasing-induced line broadening. Chapter 6, focusing on intramolecular
electronic transitions, now contains a section on pump–probe spectroscopy and its
role in interrogating molecular dynamics in the condensed phase. Major changes in
Chapter 7 on electron transfer include the incorporation of heterogeneous electron
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transfer at surfaces as well as of single-molecule electron transfer in the context
of molecular electronics. The quantum dynamics treatment of proton-transfer
reactions has flourished recently due to the development of time-dependent
multiconfiguration approaches, as mentioned above; an example is discussed in
Chapter 8. Finally, Chapter 9, on excitation energy (Frenkel exciton) transfer, has
been substantially rewritten. Topics that have been added include Dexter transfer
and two-electron-assisted as well as photon-mediated exciton transfer.

The “Suggested Reading” section of the previous editions, which served to give
a systematic starting point to explore the original literature, has been merged into
the main text to become a list of “Further Reading” suggestions at the end of each
chapter. As before, we would like to emphasize that these lists are by no means
exhaustive; that is, it is not the purpose of this book to review all the relevant lit-
erature on the title subject.

While working on the manuscript of this third edition, we enjoyed the inspir-
ing atmosphere of the Berlin Collaborative Research Center (Sfb450) “Analysis and
Control of Ultrafast Photoinduced Reactions” and the Rostock Sfb652 “Strong Cor-
relations and Collective Effects in Radiation Fields.”

Finally, we wish to thank E. Petrov (Bogolyubov Institute for Theoretical Physics,
Kiev) and L. Wang (University of Science and Technology, Beijing) for reading parts
of the new manuscript and K. Mishima (University of Tokyo) for drawing our atten-
tion to corrections required for the second edition.

Volkhard May and Oliver Kühn
Berlin and Rostock, October 2010
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Preface to the Second Edition

The positive response to the First Edition of this text has encouraged us to prepare
the present Revised and Enlarged Second Edition. All chapters have been expanded
to include new examples and figures and also to cover more recent developments in
the field. The reader of the First Edition will notice that many of the topics that were
addressed in its “Concluding Remarks” section have now been integrated into the
different chapters.

The introduction to dissipative quantum dynamics in Chapter 3 now gives a
broader view on the subject. Particularly, we elaborated on the discussion of hybrid
quantum-classical techniques that promise to be able to incorporate microscopic
information about the interaction of some quantum system with a classical bath
beyond the weak coupling limit. In Chapter 4, we give a brief account on the
state-space approach to intramolecular vibrational energy and the models for treat-
ing the intermediate time scale dynamics, where the decay of the survival probability
is nonexponential. Chapter 5 now compares different methodologies to compute the
linear absorption spectrum of a molecule in a condensed-phase environment. Fur-
thermore, the basic aspects of nonlinear optical spectroscopy have been included to
characterize a primary tool for the experimental investigation of molecular transfer
processes. Bridge-mediated electron transfer is now described in detail in Chapter 6
also including a number of new examples. Chapter 7 on proton transfer has been
supplemented by a discussion of the tunneling splitting and its modification
due to the strong coupling between the proton-transfer coordinate and other
intramolecular vibrational modes. Chapter 8 dealing with exciton dynamics has
been considerably rearranged and includes now a discussion of two-exciton states.

Finally, we have added a new Chapter 9, which introduces some of the fundamen-
tal concepts of laser field control of transfer processes. This is a rapidly developing
field which is stimulated mostly by the possibility to generate ultrafast laser pulse
of almost any shape and spectral content. Although there are only few studies on
molecular transfer processes so far, this research field has an enormous potential
not only for a more detailed investigation of the dynamics but also with respect to
applications, for instance, in molecular-based electronics.

Following the lines of the First Edition, we avoided to make extensive use of
abbreviations. Nevertheless, the following abbreviations are occasionally used:
DOF (degrees of freedom), ET (electron transfer), IVR (intramolecular vibrational
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redistribution), PES (potential energy surface), PT (proton transfer), QME (quantum
master equation), RDM (reduced density matrix), RDO (reduced density operator),
VER (vibrational energy relaxation), and XT (exciton transfer).

We have also expanded the “Suggested Reading” section which should give a sys-
tematic starting point to explore the original literature and also to become familiar
with alternative views on the topics. Additionally, at the end of each chapter, the
reader will find a brief list of references. Here, we included the information about the
sources of the given examples and refer to the origin of those fundamental concepts
and theoretical approaches that have been directly integrated into the text. We would
like to emphasize, however, that these lists are by no means exhaustive. In fact, given
the broad scope of this text, a complete list of references would have expanded the
book’s volume enormously, without necessarily serving its envisaged purpose.

It is our pleasure to express sincere thanks to the colleagues and students
N. Boeijenga, B. Brüggemann, A. Kaiser, J. Manz, E. Petrov, and B. Schmidt,
who read different parts of the manuscript and made various suggestions for
an improvement. While working on the manuscript of this Second Edition, we
enjoyed the inspiring atmosphere, many seminars, and colloquia held within the
framework of the Berlin Collaborative Research Center (Sfb450) “Analysis and
Control of Ultrafast Photoinduced Reactions.” This contributed essentially to our
understanding of charge- and energy-transfer phenomena in molecular systems.
Finally, we would like to acknowledge the financial support from the Deutsche
Forschungsgemeinschaft and the Fonds der Chemischen Industrie (O. K.).

Volkhard May and Oliver Kühn
Berlin, September 2003
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Preface to the First Edition

The investigation of the stationary and dynamical properties of molecular systems
has a long history extending over the whole century. Considering the past decade
only, one observes two tendencies: First, it became possible to study molecules on
their natural scales, that is, with a spatial resolution of some Ångström (10−10 m)
and on a time scale down to some femtoseconds (10−15 s). And second, one is
able to detect and manipulate the properties of single molecules. This progress
comes along with a steadily growing number of theoretical and experimental efforts
crossing the traditional borderlines between chemistry, biology, and physics. In
particular, the study of molecular transfer processes involving the motion of elec-
trons, protons, small molecules, and intramolecular excitation energy resulted in
a deeper understanding of such diverse phenomena as the photoinduced dynamics
in large molecules showing vibrational energy redistribution or conformational
changes, the catalysis at surfaces, and the microscopic mechanisms of charge and
energy transfer in biological systems. The latter are of considerable importance
for unraveling the functionality of proteins and all related processes such as the
primary steps of photosynthesis, the enzymatic activity, and the details of the repair
mechanisms in DNA strands, to mention just a few examples. In a more general
context, molecular electronics, that is, the storage and processing of information
in molecular structures on a nanometer length scale, has also triggered enormous
efforts. Finally, with the increasing sophistication of laser sources, first steps toward
the control of chemical reaction dynamics have been taken.

The ever-growing precision of the experiments requires on the theoretical side to
have microscopic models for simulating the measured data. For example, the inter-
pretation of optical spectroscopies in a time region of some tenths of femtoseconds
demands for an appropriate simulation of the molecular dynamics for the considered
system. Or, understanding the characteristics of the current flowing through a single
molecule in the context of scanning tunneling microscopy needs detailed knowledge
of the electronic level structure of the molecule as well as the role of its vibrational
degrees of freedom. These few examples already demonstrate that advanced theoret-
ical concepts and numerical simulation techniques are required, which are the com-
bination of methods known from general quantum mechanics, quantum chemistry,
molecular reaction dynamics, solid-state theory, nonlinear optics, and nonequilib-
rium statistical physics.
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Such a broad approach is usually beyond the theoretical education of chemists and
biologists. On the other hand, quantum chemistry and chemical reaction dynamics
are quite often not on the curriculum of physics students. We believe that this dis-
crepancy quite naturally does not facilitate communication between scientists hav-
ing different backgrounds. Therefore, it is one of the main intentions of the present
book to provide a common language for bridging this gap.

The book starts with an introduction and general overview of different concepts
in Chapter 1. The essentials of theoretical chemical physics are then covered in
Chapter 2. For chemistry students this will be mostly a repetition of quantum
chemistry and in particular the theory of electronic and vibrational spectra. It is by
no means a complete introduction into this subject but intended to provide some
background mainly for physics students. The prerequisites from theoretical physics
for the description of dynamical phenomena in molecular systems are presented
in Chapter 3. Here, we give a detailed discussion of some general aspects of the
dynamics in open and closed quantum systems, focusing on transfer processes in
the condensed phase.

The combination of qualitative arguments, simple rate equations, and the pow-
erful formalism of the reduced statistical operator constitutes the backbone of the
second part of the book. We start in Chapter 4 with a discussion of intramolecular
transfer of vibrational energy that takes place in a given adiabatic electronic state.
Here, we cover the limits of isolated large polyatomic molecules, small molecules
in a matrix environment, up to polyatomics in solution. In Chapter 5, we then turn
to processes that involve a transition between different electronic states. Special
emphasis is put on the discussion of optical absorption, which is considered to be
a reference example for more involved electron-vibrational transfer phenomena
such as internal conversion, which is also presented in this chapter. Chapter 6
then outlines the theoretical frame of electron-transfer reactions, focusing mainly
on intramolecular processes. Here, we develop the well-known Marcus theory of
electron transfer, describe nuclear tunneling and superexchange electron trans-
fer, and discuss the influence of polar solvents. In Chapter 7, it will be shown
that, even though proton transfer has many unique aspects, it can be described
by adapting various concepts from electron-transfer theory. The intermolecular
excitation energy transfer in molecular aggregates is considered in Chapter 8. In
particular, the motion of Frenkel excitons coupled to vibrational modes of the
aggregate will be discussed. In the limit of ordinary rate equations, this leads us to
the well-known Förster expression for the transfer rate in terms of emission and
absorption characteristics of the donor and acceptor molecules, respectively.

By presenting a variety of theoretical models that exist for different types of
transfer processes on a common formal background, we hope that the underlying
fundamental concepts are becoming visible. This insight may prepare the reader
to take up one of the many challenging problems provided by this fascinating
field of research. Some personal reflections on the current and possible future
developments are given in Chapter 9.

The idea for writing this book emerged from lectures given by the authors at
the Humboldt University Berlin, the Free University Berlin, and at the Johannes
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Gutenberg University Mainz during the past decade. These courses have been
addressed to theoretically and experimentally oriented undergraduate and graduate
students of Molecular Physics, Theoretical Chemistry, Physical Chemistry, and
Biophysics, being interested in the fast developing field of transfer phenomena.
The book is self-contained and includes detailed derivations of the most impor-
tant results. However, the reader is expected to be familiar with basic quantum
mechanics. Most of the chapters contain a supplementary part where more involved
derivations as well as special topics are presented. At the end of the main text, we
also give some comments on selected literature, which should complement the
study of this book.

Of course, this book would not have been possible without the help, the critical
comments, and the fruitful discussions with many students and colleagues. In this
respect, it is a pleasure for us to thank I. Barvik, N. P. Ernsting, W. Gans, L. González,
O. Linden, H. Naundorf, J. Manz, S. Mukamel, A. E. Orel, T. Pullerits, R. Scheller,
and D. Schirrmeister. We are also grateful for continuous financial support that
has been provided by the Deutsche Forschungsgemeinschaft, in particular through
the Sonderforschungsbereich 450 “Analysis and Control of Ultrafast Photoinduced
Reactions.”

Volkhard May and Oliver Kühn
Berlin, September 1999
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Introduction

The understanding of transfer phenomena in molecular systems calls for a unified
theoretical treatment that should have its foundation in a microscopic definition
of the constituent parts and their interactions. There are three important questions
that need to be answered in this regard. First, what is the appropriate theoretical
description of the molecular system? Second, what is the form of the dynamical
equations that describe the transfer process? And third, how can the computed
results be related to experimental observations?

In what follows the term “molecular system” will cover single molecules and
simple molecular aggregates as well as larger arrangements of molecules such as
supramolecular complexes. In particular, molecules embedded in different types of
environments will be of interest. Here, the scope ranges from molecules in solution
to biological macromolecules such as membrane-bound protein complexes. The
common link between these molecular systems is that they show transfer processes.
By “transfer process,” we understand the flow of vibrational energy and the
dynamics of electrons, protons, and electronic excitation energy.

From a general point of view, quantum mechanics gives the framework for all phe-
nomena occurring in molecular systems. Given the broad scope of transfer processes
to be discussed, it is clear that an exact quantum mechanical treatment is impossi-
ble if we go beyond the level of simple model systems. Therefore, it is a particular
challenge for theory to develop versatile models that provide answers to the initially
raised three questions.

Chapter 2 addresses the first question discussing the steps that lead us from
the formally exact to some approximate molecular Hamilton operator. Given a
molecule in gas phase (vacuum) as shown in Figure 1.1a, the Born–Oppenheimer
separation of nuclear and electronic motions can be performed. Here, the molecular
wave function is split up into an electronic and a nuclear part, a procedure that is
justified by the large mass difference between both types of particles. This results
in a Schrödinger equation for the electronic wave function alone, for given fixed
positions of the nuclei. Calculating the electronic energy spectrum for different
positions of the nuclei, one obtains potential energy surfaces that govern the motion
of the nuclei. These potential energy surfaces are at the heart of our understanding
of stationary molecular spectra and molecular dynamics. If nuclear and electronic
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Figure 1.1 The problem of the interaction between electrons and nuclei is transformed to
some tractable level by employing the Born–Oppenheimer separation of their motions.
(a) Three-atomic molecule (H2O) with the electron density shown for the equilibrium
distance (left) as well as for a stretched bond (right). The electron density adjusts
instantaneously to the configuration of the nuclei. As a result, a potential energy curve is
formed determining the dynamics of the bond distance coordinate. (b) If the molecule is
taken from the gas into the condensed phase, its stationary and dynamic properties have to
take into account the interaction with the surrounding molecules. This may give rise, for
instance, to a change in equilibrium geometry and electron density (figure courtesy of
Ashour Ahmed).

motion are adiabatically separable, that is if the coupling between different elec-
tronic states is negligible, one can carry out the Born–Oppenheimer approximation.
Under certain conditions, however, the so-called nonadiabatic transitions between
different electronic states as a consequence of the nuclear motions take place.

If we move from the gas to the condensed phase as shown in Figure 1.1b, the effect
of the molecule–environment interaction has to be taken into account. The simplest
way to do this is to add an additional external potential to the molecular Hamilto-
nian. Often, the environment can be described as a macroscopic dielectric, and its
influence can be judged from its dielectric properties.

Having discussed the stationary molecular properties, we turn in Chapter 3 to
the second question related to molecular dynamics. Here, the reader will become
familiar with the concepts ranging from incoherent to coherent transfer events. The
connection between these limits is provided by the relevant time scales; of particu-
lar importance is the relation between intramolecular relaxation and intermolecular
transfer times. In view of experimental advances in ultrafast spectroscopy, our treat-
ment reflects the historical evolution of knowledge about molecular dynamics from
simple transfer rates to quantum mechanical wave packet dynamics.

An important ingredient for the theoretical modeling is the concept of an open
molecular system S interacting with its environment (reservoir) R by collision
processes or via other means of energy exchange. A schematic illustration of this
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Reduced descriptionComplete description

Reduction

S

R

Figure 1.2 The total system consisting of a relevant system (S) interacting with a reservoir
(R) is completely described by the quantum-statistical operator Ŵ . By means of a reduction
procedure, one can focus on the relevant system using the reduced statistical operator �̂�.
Effects of the S–R interaction are still accounted for. In addition, the system may be
influenced by external fields (wiggly line).

situation is given in Figure 1.2. The relevant system S may represent any type of
molecule, but it may also comprise selected so-called active degrees of freedom of a
particular molecule.

The most general description of the total system, S plus R, is given by the
quantum-statistical operator Ŵ , as indicated in the left-hand part of Figure 1.2. This
operator is based on the concept of a mixed quantum state formed by S and its macro-
scopic environment. However, the operator Ŵ contains much more information
than will ever be needed, for instance, to simulate a particular experiment. Indeed, it
is the relevant system S whose properties we are interested in. Making use of a reduc-
tion procedure, we obtain a reduced statistical operator �̂� that contains the informa-
tion on the dynamics of S only but including the influence of the environment R
(right-hand part of Figure 1.2). When deriving equations of motion for the reduced
statistical operator, the so-called quantum master equations, a number of approxi-
mations have to be invoked. Most fundamental in this respect will be the assumption
of a weak interaction between the system S and the reservoir R, which in practice
requires a proper separation into relevant and environmental coordinates for the
molecular system at hand. Under certain conditions, however, a numerical exact
description of the dynamics of the relevant system becomes possible. If there is no
interaction at all, the quantum master equation is equivalent to the time-dependent
Schrödinger equation. This is the regime of coherent dynamics. If the interaction
is not negligible, however, the system dynamics gradually changes with increasing
coupling strength from a partially coherent one to an incoherent one. The incoherent
motion of a quantum system is commonly described using ordinary rate equations
that are based on the Golden Rule rate expression of quantum mechanics.

The concept of the statistical operator provides a quantum-statistical description of
S and R. However, in many situations it is sufficient to describe R by means of classi-
cal mechanics. Then, S can be characterized by a wave function Ψ, and the dynamics
of the environmental degrees of freedom is governed by Newton’s equations. Often,
the dynamics is split up in such a way that the classical particles move in the mean
field of the quantum particle. This situation is visualized in Figure 1.3.

The overwhelming amount of data on transfer processes in molecular systems
is obtained by spectroscopic techniques working in the infrared, the visible to
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Figure 1.3 Mixed quantum–classical
description of condensed phase dynamics.
The classical particles move in the mean
field generated by the quantum particle
described by the wave function Ψ.

ultraviolet, and, more recently, also in the X-ray region. We will discuss the third
question related to experimental observation mostly in the context of spectroscopy,
with focus on the infrared to ultraviolet domain. As a means of preparation,
Chapter 4 gives a brief account on the general theoretical concepts of the interaction
of molecular systems with the electromagnetic radiation field. Further, a formula-
tion of linear and nonlinear spectroscopy in terms of correlation functions will be
introduced.

The general concepts presented in Chapters 2–4 are then applied to describe differ-
ent transfer phenomena. In principle, transfer processes can be classified according
to the type of transferred particle. In addition, one can distinguish between intra- and
intermolecular particle transfer. The common frame is provided by the molecular
Schrödinger equation together with the Born–Oppenheimer separation of electronic
and nuclear motions as mentioned above.

The coupled nuclear dynamics in polyatomic molecules that might be immersed
in some condensed phase environment is treated in Chapter 5. We show how an ini-
tially prepared vibrational state decays while its excitation energy is distributed over
all possible environmental modes, as illustrated in the left-hand part of Figure 1.4.
For small polyatomic molecules, the energy flow out of the initial state is called
intramolecular vibrational energy redistribution. For condensed phase situations, the
dissipation of energy into the environment is called vibrational energy relaxation. In
both cases, the transferred objects are the quanta of vibrational energy.

The preparation of the initial state can be due to an optical transition between
two electronic states as a consequence of the interaction between the molecular sys-
tem and an external electromagnetic field (cf. Figure 1.4). In Chapter 6, we discuss
the processes of photon absorption and emission sketched in Figure 1.4. It will be
shown that the coupled electron-vibrational dynamics responsible for the absorp-
tion line shape can be described by a combined density of states that is the Fourier
transform of some correlation function. This theoretical result will turn out to be
quite general. In particular, we show that different types of transfer processes can be
accommodated in such a framework. For example, the internal conversion dynamics
of nonadiabatically coupled electronic states (right-hand part of Figure 1.4) can, in
the incoherent limit, be described by a combined density of states.

The external field interaction, on the other hand, provides the means for prepar-
ing nonequilibrium initial states that can act as a donor in a photoinduced
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Figure 1.4 Scheme of molecular potential energy surfaces including the levels of the
quantized motion of some reaction coordinate. After optical preparation of an electronically
and vibrationally excited initial state (absorption), different transfer processes can occur. If
the electronic state is not changed, but there is a coupling to some manifold of vibrational
states, intramolecular vibrational energy redistribution (IVR) or vibrational energy
relaxation (VER) can be observed. If there is some coupling to another electronic state,
intramolecular internal conversion (IC), or electron transfer (ET) takes place. At the same
time, one has VER as indicated by the wiggly lines. In addition, the system may return to the
ground state by emitting a photon.

electron-transfer reaction, which is discussed in Chapter 7. The concerted
electron-vibrational dynamics accompanying electron-transfer reactions can often
be modeled in the so-called curve-crossing picture of two coupled potential energy
surfaces representing two electronic states along a reaction coordinate (right-hand
part of Figure 1.4). Generalizations of this picture to larger molecular systems and
to the case where the molecule is in contact with metal electrodes and a voltage is
applied will also be discussed.

In contrast, the proton or hydrogen atom transfer investigated in Chapter 8 usually
does not involve electronic transitions. In Figure 1.5, we have sketched a typical situ-
ation for intramolecular proton transfer that is realized as an isomerization reaction
in the adiabatic electronic ground state. Since the proton has a rather small mass,
tunneling processes may play an important role for proton transfer. The small mass
ratio between the proton and the other heavy atoms provides the background for

Figure 1.5 Hydrogen bonding, which
governs the proton transfer (PT) dynamics,
often leads to a double minimum potential
along a reaction coordinate. The interaction
between the proton and some environment
may cause vibrational relaxation (wiggly
lines).
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n
e
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Figure 1.6 Excitation energy transfer (EET), which occurs after optical preparation of an
electronically and vibrationally excited initial state (donor, left). The Coulomb interaction is
responsible for deexcitation of the donor and excitation of the acceptor (right). The nuclear
dynamics may be subject to relaxation processes (wiggly lines). Often, two independent
nuclear (reaction) coordinates are used for the donor and the acceptor molecules.

the introduction of a second Born–Oppenheimer separation. This will enable us to
adapt most of the concepts of electron-transfer theory to the case of proton transfer.

In Chapter 9, we discuss excitation energy transfer or the so-called exciton transfer
in molecular aggregates as another example of coupled electron-vibrational motion.
In Figure 1.6, the mechanism of excitation energy transfer in the limit of localized
excitations is shown. The donor (left) is initially excited, for example, by an external
field. As a consequence of the Coulomb interaction, excitation energy is transferred
between the excited molecule and some acceptor molecule (right). Often, donors and
acceptors retain their chemical identity upon aggregation and, therefore, are usually
described by different sets of nuclear (reaction) coordinates. In the incoherent limit,
the rate of the process can be expressed in terms of an overlap integral between donor
emission and acceptor absorption spectra. If the Coulomb interaction between dif-
ferent molecules becomes large enough, then excitation energy transfer has to be
discussed by introducing quantum mechanical superposition states of all excited
molecules, the so-called Frenkel excitons. Their introduction gives a new view on
excitation energy transfer via the motion of spatially delocalized states. A rigorous
nonequilibrium quantum-statistical model can describe both the incoherent and the
coherent limits.
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2

Electronic and Vibrational Molecular States

This chapter provides the background material for the subsequent development
of a microscopic description of charge- and energy-transfer processes in molec-
ular systems. After introducing the molecular Hamilton operator, we discuss
the Born–Oppenheimer separation of electronic and nuclear motions as the key
to the solution of the molecular Schrödinger equation. Next, the Hartree–Fock
method, which is a simple yet very successful approach to the solution of the
ground state electronic structure problem, is explained. It enables us to obtain,
for instance the potential energy surface for nuclear motions. To prepare for
the treatment of condensed-phase situations, we further introduce the dielectric
continuum model as a means for incorporating static solvent polarization effects
into the electronic structure calculations.
The topology of the potential energy surface can be explored by calculating the
first and second derivatives with respect to the nuclear coordinates. Of partic-
ular interest are the stationary points on a potential energy surface that may
correspond to stable conformations of the molecule. In the vicinity of a local min-
imum it is often possible to analyze nuclear motions in terms of small ampli-
tude normal mode vibrations. If one wants to model chemical reaction dynam-
ics, however, the shape of the potential energy surface away from the stationary
points is required as an input. We present two different approaches in this respect:
the minimum energy reaction path and the Cartesian reaction surface model.
Particularly, the latter will provide the microscopic justification for the generic
Hamiltonians used later on to simulate molecular systems embedded in some
environment. Finally, we discuss the diabatic and the adiabatic representations
of the molecular Hamiltonian.

2.1 Introduction

The development of quantum theory in the 1920s was to a considerable extent
triggered by the desire to understand the properties of atoms and molecules. It
was soon appreciated that the Schrödinger equation together with the probabilistic

Charge and Energy Transfer Dynamics in Molecular Systems,
Fourth Edition. Volkhard May and Oliver Kühn.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.



8 2 Electronic and Vibrational Molecular States

interpretation of its solutions provides a powerful tool for tackling a variety of
questions in physics and chemistry. The mathematical description of the hydrogen
atom’s spectral lines could be given and developed to a textbook example of the
success of quantum mechanics. Stepping into the molecular realm, one faces a
complicated many-body problem involving the interactions of all electrons and
all nuclei of the considered molecule. Its solution can be approached using the
fact that nuclei and electrons have quite different masses, allowing their motion
to be adiabatically separated. This concept was first introduced by Born and
Oppenheimer in 1927. Within the Born–Oppenheimer adiabatic approximation,
the simplest molecule, the hydrogen molecule ion, H+

2 , can be treated.
From the electronic point of view, the appearance of one more electron, for

instance in H2, necessitates the incorporation of the repulsive electronic interac-
tion. Moreover, since one deals with two identical electrons, care has to be taken
that the wave function has the proper symmetry with respect to an exchange
of any two particle labels. In a straightforward way this is accomplished by the
self-consistent field method according to Hartree, Fock, and Slater. Despite its
deficiencies Hartree–Fock theory has played an enormous role in the process of
exploring the electronic structure of molecules. It still serves as the basis for many
of the more advanced approaches used nowadays. In terms of practical applications
to large systems, Density Functional Theory has emerged as the method of choice
during the past decades.

However, it is not only the electronic structure at the equilibrium configuration of
the nuclei that is of interest, the form of the potential energy hypersurfaces obtained
upon varying the positions of the nuclei also proves crucial for the understanding of
the vibrational and rotational structures of molecular spectra. Moreover, it provides
the key to chemical reaction dynamics. While the adiabatic Born–Oppenheimer
ansatz is an excellent approximation in the vicinity of the ground state equilibrium
configuration, nonadiabatic couplings leading to transitions between electronic
states become an ubiquitous phenomenon if the nuclei are exploring their potential
surface in processes such as photodissociation and electron-transfer reactions, for
example.

This chapter introduces the concepts behind the keywords given so far and sets
up the stage for the following chapters. Having this intention it is obvious that we
present a rather selective discussion of a broad field. We first introduce the molecular
Hamiltonian and the respective solutions of the stationary Schrödinger equation in
Section 2.2. This leads us directly to the Born–Oppenheimer separation of electronic
and nuclear motions in Section 2.3. A brief account of electronic structure theory for
polyatomic molecules is given next (Section 2.4). This is followed by a short summary
of the dielectric continuum model in Section 2.7.1, which allows for incorporation
of solvent effects into electronic structure calculations. On this basis we continue in
Section 2.5 to discuss the potential energy surfaces (PESs) and the related concepts
of harmonic vibrations and reaction paths. In Section 2.6 we focus attention to the
problem of nonadiabatic couplings, which are neglected in the Born–Oppenheimer
adiabatic approximation. Finally, the issue of diabatic versus adiabatic pictures that
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emerges from this discussion is explained, and alternative representations of the
molecular Hamiltonian are given.

2.2 Molecular Schrödinger Equation

In what follows we will be interested in situations where atoms made of interacting
point-like nuclei and electrons are forming of stable molecules. Let us consider such
a molecule composed of Nnuc atoms having atomic numbers z1,… , zNnuc

. The Carte-
sian coordinates and conjugate momenta for the Nel electrons are denoted rj and pj,
respectively. For the Nnuc nuclei, we use Rn and Pn. The Hamiltonian operator of the
molecule has the general form

Hmol = Tel + Vel−nuc + Vel−el + Tnuc + Vnuc−nuc. (2.1)

Here, the kinetic energy of the electrons is given by (mel is the electron mass)

Tel =
Nel∑
j=1

p2
j

2mel
, (2.2)

and for the nuclei, it is

Tnuc =
Nnuc∑
n=1

P2
n

2Mn
, (2.3)

with Mn being the mass of the nth nucleus.1) Since both kinds of particles are
charged, they interact via Coulomb forces. The repulsive Coulomb pair interaction
between electrons is

Vel−el =
1
2
∑
i≠j

e2|ri − rj| , (2.4)

and for the nuclei, we have

Vnuc−nuc =
1
2
∑
m≠n

zmzne2|Rm − Rn| . (2.5)

(Note that the factor 1∕2 compensates for double counting.) The attractive interac-
tion between electrons and nuclei is given by

Vel−nuc = −
∑
j,n

zne2|rj − Rn| . (2.6)

Since there are Nel electrons and Nnuc nuclei, the molecule has 3(Nel + Nnuc) spa-
tial degrees of freedoms (DOFs). Each electron is assigned an additional quantum
number 𝜎j to account for its spin. The purely quantum mechanical (QM) concept of
electron spin was introduced to explain the fine structure of certain atomic spectra

1) In the following discussion, we will skip the summation bounds unless it is required by the
specific context.
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by Uhlenbeck and Goudsmit in 1925. Later, its theoretical foundation was laid in
the relativistic extension of quantum mechanics developed by Dirac in 1928. When
using the nonrelativistic Hamiltonian equation (2.1) we have no means to rigorously
introduce spin operators and to derive the interaction potential between coordinate
and spin variables (spin–orbit coupling). Therefore, the existence of spin operators is
usually postulated, and their action on spin functions defined. We will not consider
relativistic effects in this text and therefore carry the spin variable along with the
electron coordinate only in the formal considerations of Section 2.4.

All QM information about the stationary properties of the molecular system
defined so far is contained in the solutions of the time-independent nonrelativistic
Schrödinger equation,

HmolΨ(r, 𝜎;R) = Ψ(r, 𝜎;R). (2.7)

Here and in the following equations we will combine the set of electronic Carte-
sian coordinates in the multi-index r = (r1, r2,… , rNel

). A similar notation is
introduced for the nuclear Cartesian coordinates, R = (R1,R2,… ,RNnuc

). In addi-
tion, we will frequently use the more convenient notation (R1,R2,… ,RNnuc

) →
(R1,… ,R3Nnuc

) = R. Momenta and masses of the nuclei will be written in the same
way. (In this notation, M1 = M2 = M3 is the mass of nucleus number 1, etc.) For the
spin we use the notation 𝜎 = (𝜎1, 𝜎2,… , 𝜎Nel

).
As it stands, Eq. (2.7) does not tell much about what we are aiming at, namely

electronic excitation spectra and equilibrium geometries. However, some general
points can be made immediately: first, the solution of Eq. (2.7) will provide us with
an energy spectrum 

𝜆
and the corresponding eigenfunctions, Ψ

𝜆
(r, 𝜎;R). The ener-

getically lowest state 0 is called the ground state. If 
𝜆

is negative, the molecule is
in a stable bound state. Note that in what follows we will also make use of the more
formal notation where the eigenstates of the molecular Hamiltonian are denoted
by the state vector ||Ψ𝜆

⟩
. The wave function is obtained by switching to the (r, 𝜎;R)

representation: Ψ
𝜆
(r, 𝜎;R) = ⟨r, 𝜎;R|Ψ

𝜆
⟩.

Second, owing to the Pauli principle, which states that the wave function of a sys-
tem of electrons has to be antisymmetric with respect to the interchange of any two
electronic indices, Ψ(r, 𝜎;R) will be antisymmetric in electronic Cartesian plus spin
coordinates. The fact that there can be identical nuclei as well is frequently neglected
when setting up the exchange symmetry of the total wave function. This is justified
since the nuclear wave function is usually much more localized as compared with
the electronic wave function, and the indistinguishability is not an issue. Exceptions
may occur in systems containing, for example several hydrogen atoms.

Third, the probability density distribution, ||Ψ𝜆
(r, 𝜎;R)||2, contains the information

on the distribution of electrons as well as on the arrangement of the nuclei. Having
this quantity at hand, one can calculate, for example the charge density distribution
𝜌
𝜆
(x) for a particular molecular state at some spatial point x. The expression due to

classical physics,

𝜌(x) = −e
∑

j
𝛿(x − rj) + e

∑
n

zn𝛿(x − Rn), (2.8)



2.3 Born–Oppenheimer Separation 11

is quantized by replacing the coordinates by the respective operators. Taking the
matrix elements of the resulting charge density operator with respect to the state
Ψ
𝜆
(r, 𝜎;R), we get

𝜌
𝜆
(x) = −e

∑
j

∑
𝜎

∫
dr dR 𝛿(rj − x)||Ψ𝜆

(r, 𝜎;R)||2
+
∑

n
ezn

∑
𝜎

∫
dr dR 𝛿(Rn − x)||Ψ𝜆

(r, 𝜎;R)||2. (2.9)

Finally, since the Hamiltonian does not depend on spin, the solution of Eq. (2.7)
can be separated according to

Ψ(r, 𝜎;R) = 𝜓(r;R) 𝜁(𝜎). (2.10)

Here, 𝜁(𝜎) is the electronic spin function, which is obtained by projecting the
molecule’s spin state vector |𝜁⟩ onto the spin states of the individual electrons,
𝜁(𝜎) = (⟨𝜎1

|| ⟨𝜎2
||… ⟨𝜎Nel

|) |𝜁⟩. The individual spin states, ||𝜎i
⟩

, describe electrons
whose spin is parallel (spin up) or antiparallel (spin down) with respect to some
spatial direction.

2.3 Born–Oppenheimer Separation

The practical solution of Eq. (2.7) makes use of the fact that due to the large mass
difference (mel∕Mn < 10−3), on average electrons can be expected to move much
faster than nuclei. Therefore, in many situations the electronic DOFs can be consid-
ered to respond instantaneously to any changes in the nuclear configuration, that
is their wave function corresponds always to a stationary state. This is called adia-
batic regime in which the motion of the nuclei does not cause transitions between
different stationary electronic states. Thus, it is reasonable to define an electronic
Hamiltonian that carries a parametric dependence on the nuclear coordinates:

Hel(R) = Tel + Vel−nuc + Vel−el. (2.11)

As a consequence, the solutions of the time-independent electronic Schrödinger
equation describing the state of the electrons in the electrostatic field of the fixed
nuclei (leaving aside the electron’s spin),

Hel(R) 𝜙a(r;R) = Ea(R) 𝜙a(r;R), (2.12)

will parametrically depend on the set of nuclear coordinates as well. Here, the index
a labels the different electronic states. The adiabatic electronic wave functions
𝜙a(r;R) = ⟨r;R ||𝜙a

⟩
define a complete basis in the electronic Hilbert space. Hence,

given the solutions to Eq. (2.12), the spatial part of the molecular wave function can
be expanded in this basis set as follows:

𝜓(r;R) =
∑

a
𝜒a(R) 𝜙a(r;R). (2.13)
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The expansion coefficients in Eq. (2.13), 𝜒a(R), depend on the configuration of the
nuclei. It is possible to derive an equation for their determination after inserting
Eq. (2.13) into Eq. (2.7). One obtains

Hmol𝜓(r;R) = (Hel(R) + Tnuc + Vnuc−nuc)
∑

a
𝜒a(R) 𝜙a(r;R)

=
∑

a
[Ea(R) + Vnuc−nuc] 𝜒a(R) 𝜙a(r;R)

+
∑

a
Tnuc𝜒a(R) 𝜙a(r;R)

= 
∑

a
𝜒a(R) 𝜙a(r;R). (2.14)

Multiplication of Eq. (2.14) by 𝜙∗
b(r;R) from the left and integration over all elec-

tronic coordinates yields the following equation for the expansion coefficients 𝜒a(R)
(using the orthogonality of the adiabatic basis):

∫
dr 𝜙∗

b(r;R) Hmol 𝜓(r;R) = [Eb(R) + Vnuc−nuc]𝜒b(R)

+
∑

a ∫
dr 𝜙∗

b(r;R) Tnuc 𝜙a(r;R)𝜒a(R)

=  𝜒b(R). (2.15)

Since the electronic wave functions depend on the nuclear coordinates, we have,
using Pn = −iℏ𝛁n and the product rule for differentiation,

Tnuc 𝜙a(r;R) 𝜒a(R) =
∑

n

1
2Mn

{
P2

n𝜙a(r;R)] 𝜒a(R)

+2
[
Pn𝜙a(r;R)

]
Pn𝜒a(R)

+ 𝜙a(r;R) P2
n 𝜒a(R)

}
. (2.16)

The last term is simply the kinetic energy operator acting on 𝜒a(R). The other terms
can be comprised into the so-called nonadiabaticity operator,

Θab = ∫
dr 𝜙a(r;R) Tnuc 𝜙b(r;R)

+
∑

n

1
Mn

[
∫

dr 𝜙a(r;R)Pn𝜙b(r;R)
]

Pn. (2.17)

Thus, we obtain from Eq. (2.15) an equation for the coefficients 𝜒a(R) that reads(
Tnuc + Ea(R) + Vnuc−nuc + Θaa − 

)
𝜒a(R) = −

∑
b≠a

Θab𝜒b(R). (2.18)

This result can be interpreted as the stationary Schrödinger equation for the motion
of nuclei, with the 𝜒a(R) being the respective wave functions. The solution of
Eq. (2.18), which is still exact, requires knowledge of the electronic spectrum for
all configurations of the nuclei that are covered during their motion. Transitions
between individual adiabatic electronic states become possible due to the electronic
nonadiabatic coupling operator, Θab. This is a consequence of the motion of the
nuclei as expressed by the fact that their momenta enter Eq. (2.17). The diagonal
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part of the nonadiabaticity operator, Θaa, is usually only a small perturbation to the
nuclear dynamics in a given electronic state.

Looking at Eq. (2.18), we realize that it will be convenient to introduce the follow-
ing effective potential for nuclear motion if the electronic system is in its adiabatic
state ||𝜙a

⟩
:

Ua(R) = Ea(R) + Vnuc−nuc(R) + Θaa. (2.19)

This function defines a hypersurface in the space of nuclear coordinates, the PES,
which will be discussed in more detail in Section 2.5. Its exceptional importance for a
microscopic understanding of molecular dynamics phenomena will become evident
in Chapters 5–9.

The solution to Eq. (2.18) is given by 𝜒aM(R) = ⟨R|𝜒aM⟩. The index M denotes the
(set of) vibrational quantum numbers. The molecular wave function is

𝜓M(r,R) =
∑

a
𝜒aM(R) 𝜙a(rR). (2.20)

By virtue of the expansion (2.20) it is clear that the vibrational quantum number M in
general is related to the total electronic spectrum and not to an individual electronic
state.

2.3.1 Born–Oppenheimer Approximation

Solving the coupled equations (2.18) for the expansion coefficients in Eq. (2.20)
appears to be a challenging task. However, in practice, it is often possible to neglect
the nonadiabatic couplings altogether or take into account the couplings between
certain adiabatic electronic states only. In order to investigate this possibility let us
consider Figure 2.1. Here, we have plotted different adiabatic electronic states for a
diatomic molecule as a function of the bond distance. Without going further into
the details of the different states, we realize that there is one state, the electronic
ground state ||𝜙0

⟩
, which particularly close to its minimum is well separated from

the other states ||𝜙a>0
⟩

. Intuitively, we would expect the nonadiabatic couplings,
Θ0a, to be rather small in this region. In such situations it might be well justified to
neglect the nonadiabatic couplings, that is we can safely set Θ0a = 0 in Eq. (2.18).
The nuclear Schrödinger equation then simplifies considerably. Consider the
general case Θab = 0,

Ha(R)𝜒a(R) =
(

Tnuc + Ua(R)
)
𝜒a(R) = 𝜒a(R), (2.21)

where Ha(R) defines the nuclear Hamiltonian for the state ||𝜙a
⟩

. Thus, the nuclei
can be considered to move in an effective potential Ua(R) generated by their mutual
Coulomb interaction and the interaction with the electronic charge distribution
corresponding to the state ||𝜙a

⟩
and the actual configuration R. The solutions of

Eq. (2.21) are again labeled by M, but this quantum number is now related to the
individual adiabatic electronic states. The total adiabatic wave function becomes

𝜓
(adia)
aM (r,R) = 𝜒aM(R)𝜙a(r;R). (2.22)
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Figure 2.1 Potential energy curves Ua(R)
for different adiabatic electronic states||𝜙a

⟩
along the bond distance R of a

diatomic molecule (ground and valence
states of I2).

The neglect of the nonadiabatic couplings leading to the wave function (2.22) is
called the Born–Oppenheimer approximation.2)

Going back to Figure 2.1, it is clear, however, that in particular for excited elec-
tronic states one might encounter situations where different potential curves are very
close to each other. If Θab does not vanish for symmetry reasons, it can no longer be
neglected. The physical picture is that electronic and nuclear motions are no longer
adiabatically separable, that is the change of the nuclear configuration from R to
some R + ΔR causes an electronic transition.

In order to estimate the magnitude of this effect, we consider a perturbation expan-
sion of the energy with respect to the nonadiabaticity operator. The second-order
correction to the adiabatic energies  (adia)

aM is obtained as


(2)
aM = 

(adia)
aM +

∑
bN

|||⟨𝜒aM
||Θab

||𝜒bN
⟩|||2


(adia)
aM − 

(adia)
bN

, (2.23)

where the 𝜒aM(R) = ⟨R ||𝜒aM
⟩

are the Born–Oppenheimer nuclear wave functions.
Apparently, the matrix elements

⟨
𝜒aM

||Θab
||𝜒bN

⟩
have to be small compared

to the energy difference | (adia)
aM − 

(adia)
bN | in order to validate the adiabatic

Born–Oppenheimer approximation. Looking at the definition of Θab, it is clear
that this operator will be a small perturbation whenever the character of the
electronic wave function does not change appreciably with R. On the other hand,
the denominator in Eq. (2.23) will become small if two electronic states approach
each other. Thus, knowledge about the adiabatic states is necessary to estimate
the effect of nonadiabatic couplings. The actual calculation of Θab is possible but
often cumbersome, and an alternative representation of the Hamiltonian will be
discussed in Section 2.6.

2) Note that neglecting only the off-diagonal elements of Θab is referred to as the adiabatic
approximation.
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2.4 Electronic Structure Methods

Our knowledge about the microscopic origin of properties of molecules, their sta-
ble configurations, and their ability to break and make chemical bonds derives to a
large extent from the progress made in electronic structure theory in recent decades.
Nowadays, modern quantum chemical methods routinely achieve almost quantita-
tive agreement with experimental data, for example for transition energies between
the lowest electronic states of small- and medium-sized molecules. With increas-
ing number of electrons the computational resources limit the applicability of the
so-called ab initio methods (that is, based on fundamental principles and not on
experimental data), and alternatives have to be exploited. Semiempirical methods
simplify the exact ab initio procedure in a way that gives results consistent with the
experimental data. On the other hand, ongoing developments in Density Functional
Theory shift the attention to this more accurate method. Switching to situations of
molecules in the condensed phase, for example in solution, requires more approx-
imate methods as given, for example by the reduction of the solvent to a dielectric
continuum surrounding the solute3) (see Section 2.7.1).

In what follows we will outline a tool for the practical solution of the electronic
Schrödinger equation (2.12) for fixed nuclei. For simplicity, our discussion will
mostly be restricted to the electronic ground state E0(R). Specifically, we will
discuss the Hartree–Fock self-consistent field procedure in some detail. It is the
working horse of most more advanced ab initio methods which also include the
effect of electronic correlations missing in the Hartree–Fock approach. While these
methods are based on the electronic wave function, Density Functional Theory
(discussed afterward) builds on the electron density function. We note in caution
that this section by no means presents a complete treatment of the field of electronic
structure theory. The intention is rather to provide a background for the following
discussions. The reader interested in a more comprehensive overview of the state of
the art is referred to the literature quoted at the end of the book.

Let us start with the situation in which the Coulomb interaction between the
electrons is switched off. Then, the electronic Hamiltonian (2.11) becomes a sum
of single-particle Hamiltonians, Hel(R) =

∑
jhel(rj), containing the kinetic energy of

the jth electron and the Coulomb energy due to its interaction with the static nuclei.
Note that in the following discussion we will drop the parametric dependence on the
nuclear coordinates. The stationary Schrödinger equation for hel(ri) is solved by the
single-particle wave function 𝜑

𝛼j
(rj, 𝜎j),

hel(rj)𝜑𝛼j
(rj, 𝜎j) = [Tel(j) + Vel−nuc(rj)]𝜑𝛼j

(rj, 𝜎j)

= 𝜖
𝛼j
𝜑
𝛼j
(rj, 𝜎j). (2.24)

3) Throughout, we will use the terms solute and solvent to describe a molecule (solute) embedded
in a medium (solvent), no matter whether the latter is really a solvent in the usual sense or, for
instance a solid-state matrix.
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Here, the index 𝛼i runs over all possible single-particle states (including spin) of
the Nel-electron system, which have the energy 𝜖

𝛼j
. The single-particle functions

𝜑
𝛼j
(rj, 𝜎j) are called spin orbitals.

There are several points to make concerning the solutions of Eq. (2.24): First, since
we are dealing with identical particles, the single-particle spectrum 𝜖

𝛼j
is the same

for all electrons. Second, for the spin-independent Hamiltonian we use here, the spin
function can be separated from the spatial orbital in the single-particle wave func-
tion according to 𝜑

𝛼j
(rj, 𝜎j) = 𝜑aj

(rj)𝜁aj
(𝜎j) and 𝛼j = (aj, 𝜎j). As mentioned above, the

orthogonal spin functions 𝜁aj
(𝜎j) describe spin-up or spin-down electrons. There-

fore, for Nel spatial orbitals 𝜑aj
(rj), there will be 2Nel possible spin orbitals 𝜑

𝛼j
(rj, 𝜎j).

Thus, given Nel electrons, the electronic ground state would correspond to the situ-
ation where we fill in electrons in the different spin orbitals starting from the one
with the lowest energy. Of course, we must be mindful of the Pauli principle, that
is each electron must have a distinct set of quantum numbers. In the present case,
this implies that each spatial orbital may be occupied by two electrons having spin
up and spin down, respectively. The result of the distribution of electrons over the
available spin orbitals is referred to as an electronic configuration.

Depending on whether there is an even number of electrons in the ground state
(closed-shell configuration) or an odd number (open-shell configuration), all elec-
trons will be paired or not, respectively. For simplicity, we focus in what follows on
the electronic ground state of closed-shell systems only. Here, Nel spin orbitals are
occupied. One can further require the spatial orbitals to be identical for spin-up and
spin-down electrons so that there will be Nel∕2 doubly-occupied spatial orbitals in
the ground state. The total spin of this many-electron system is zero. A closed-shell
situation is shown for the water molecule in Figure 2.2.

The Pauli principle, which we invoked above, can be traced back to a fundamental
property of the total wave function of a many-electron system. First, we observe that
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Figure 2.2 Orbital diagram for water calculated using Hartree–Fock theory (the energy is
given in atomic units (Eh = ℏ

2∕(ea2
0)). There are Nel∕2 = 5 doubly-occupied orbitals; the

empty orbitals are called virtual. The highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) are assigned and shown on the right (different
colors correspond to positive and negative values).
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in contrast to classical mechanics, in quantum mechanics the electrons described
by a wave function are not distinguishable. This means that the total probability
distribution, |𝜙(r, 𝜎)|2, should be invariant with respect to the exchange of any two
particle indices. The permutation of the particle indices is conveniently written using
a permutation operator  which, when acting on a many-particle wave function,
exchanges the indices of any two particles. After the application of  the wave func-
tion can change at most by a constant factor 𝜉 (of modulus 1). Therefore, applying
 twice one should recover the original wave function, that is we have 𝜉2 = 1 or
𝜉 = ±1. For spin 1∕2 particles like electrons, it turns out that 𝜉 = −1, and therefore,
the total wave function has to be antisymmetric with respect to the exchange of any
two electron indices.

If we go back to the single-particle spin orbitals defined by Eq. (2.24), it is clear
now that even in the absence of the electron interaction the so-called Hartree product
ansatz,

𝜙
HP
{𝛼j}

(r, 𝜎) =
Nel∏
j=1
𝜑
𝛼j
(rj, 𝜎j), (2.25)

cannot be correct since it does not have the required antisymmetry ({𝛼j} comprises
the set of quantum numbers 𝛼j). However, Eq. (2.25) can be used to generate an
antisymmetric wave function. To this end, we make use of the permutation operator
 . Keeping track of the number of permutations, p, which have been performed, one
obtains an antisymmetric wave function by the prescription

𝜙(r, 𝜎) = 1√
Nel!

∑
perm

(−1)p
[
𝜙

HP
{𝛼j}

(r, 𝜎)
]
. (2.26)

Here, the summation is carried out over all Nel! possible permutations of the elec-
tron indices (rj, 𝜎j) (j = 1,… ,Nel) in the Hartree product. Alternatively, Eq. (2.26)
can be written in the form of a determinant, the so-called Slater determinant, where
the rows contain the single-particle spin orbitals for a given state and all possible
electron coordinates, and the different electronic states for a given coordinate are
recorded in the columns. The elementary properties of determinants then guarantee
the antisymmetry of the ansatz for the total electronic wave function.

2.4.1 The Hartree–Fock Equations

So far we have not considered the effect of the Coulomb interaction between the
electrons. Within Hartree–Fock theory this is usually done by starting from the anti-
symmetric ansatz (2.26) for the wave function. Then, the goal is to optimize the
single-particle spin orbitals such that the total energy is minimized. This can be
achieved by invoking the calculus of variation. Consider a Slater determinant𝜙(r, 𝜎),
which will be a function of some parameters. In practice, the spatial orbitals are
expanded in terms of some fixed basis set, and the expansion coefficients then take
the role of the parameters (linear variational problem). The basis set is usually cho-
sen to consist of functions that are centered at the different atoms in the molecule
(linear combination of atomic orbitals, LCAO).
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The expectation value of the energy is then given by

⟨
Hel
⟩
=
∫

dr
∑
𝜎

𝜙
∗(r, 𝜎)

[ Nel∑
j=1

hel(rj) +
1
2

Nel∑
i,j=1

Vel−el(ri, rj)

]
𝜙(r, 𝜎).

(2.27)

The first term denotes the single-particle Hamiltonian including the electron–nuclei
Coulomb interaction, Eq. (2.24), and the second term describes the electron–electron
repulsion, Eq. (2.4). The variational optimization of Eq. (2.27) leads to the following
so-called Hartree–Fock integrodifferential equations for determination of the opti-
mal orbitals for a closed-shell configuration[

hel(x) +
Nel∕2∑

b
[2Jb(x) − Kb(x)]

]
𝜑a(x) = 𝜀a𝜑a(x). (2.28)

Here, 𝜀a is the energy associated with the spatial orbital𝜑a(x).4) Further, the operator
on the left hand side is called the Fock operator; it is an effective one-electron operator.

Without the electron–electron interaction and wave function antisymmetrization
the Fock operator reduces to the single-electron Hamiltonian, hel(x). Different spa-
tial orbitals are coupled by means of the Coulomb operator

Jb(x) = ∫
d3x′||𝜑b(x′)||2 V(x′

, x) (2.29)

and the exchange operator

Kb(x)𝜑a(x) =
[
∫

d3x′
𝜑
∗
b(x

′) V(x, x′) 𝜑a(x′)
]
𝜑b(x). (2.30)

The Coulomb operator represents the average local potential of an electron in orbital
𝜑b(x) felt by the electron in 𝜑a(x). Thus, the exact two-particle Coulomb interaction
is replaced by an effective one-electron potential. The fact that each electron only
experiences the mean field generated by all other electrons is a basic characteristic of
the Hartree–Fock approach. Of course, in this way, the interaction between electrons
becomes blurred, and correlations between their individual motions are lost.

For electrons having parallel spins there is a particular correlation introduced
by the antisymmetric ansatz for the wave function. This effect is contained in the
exchange operator. However, the action of Kb(x) on the orbital 𝜑a(x) obviously can-
not be viewed in terms of a local potential for the electron in 𝜑a(x). In fact, it is the
exchange operator that makes the Fock operator nonlocal in space.

The Hartree–Fock equations are nonlinear since the Fock operator itself depends
on the orbitals𝜑a(x). Their numerical solution can be obtained by iteration. Starting
from some trial orbitals, one first constructs the Fock operator and then uses it to
obtain improved orbitals that are the input for a new Fock operator. This iterative
procedure is continued until the operators Ja(x) and Ka(x) are consistent with the
solutions for the orbitals. Therefore, the approach is usually termed Hartree–Fock
self-consistent field method.

4) Note the use of the general electron coordinate x.
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Given the solution of the Hartree–Fock equations, one has at hand the ground
state energy as well as the ground state adiabatic electronic wave function, which
follows from a single Slater determinant built up by the optimal molecular orbitals.
For the common LCAO basis, a given number of atomic orbitals yields M spin
orbitals. Usually, Nel < M, and one distinguishes the Nel occupied spin orbitals
from the M − Nel unoccupied (the so-called virtual) spin orbitals (cf. Figure 2.2).
Orbitals and their energies are functions of the nuclear coordinates; by exploring
the possible nuclear configurations, the ground state Hartree–Fock PESs can be
constructed according to Eq. (2.19). However, if, for instance the bond in a diatomic
molecule is stretched toward dissociation, the character of the electronic state will
change considerably, for example from a closed-shell to an open-shell system. This
effect of having contributions from different electronic configurations cannot be
described by a single Slater determinant, Eq. (2.26); the predicted potential energy
curve will be qualitatively incorrect. The effect of the simultaneous presence of
different electronic configurations, which is also an ubiquitous phenomenon for
electronically excited states in the region where potential curves intersect (cf.
Figure 2.1), is called static correlation. It has to be distinguished from dynamic
correlations, which are related to that part of the electron–electron interaction
that is not accounted for by the mean-field approximation based on a single Slater
determinant.

Conceptually, the simplest approach to account for such correlations is the con-
figuration interaction (CI) method. Here, one starts with the Hartree–Fock ground
state and generates a basis for expanding the total electronic wave function by form-
ing all possible Slater determinants that result from promoting different numbers of
electrons from the occupied to the unoccupied orbitals, that is

|𝜙(CI)⟩ = C0|𝜙(0)⟩ + C1|𝜙(1)⟩ + C2|𝜙(2)⟩ +… . (2.31)

Here, ||𝜙(0)⟩ stands for the Hartree–Fock ground state, and ||𝜙(1)⟩ and ||𝜙(2)⟩ com-
prise all possible single and double excitations, respectively, starting from the ground
state. The coefficients Ci give the weight for these configurations. Upon diagonal-
ization of the electronic Hamiltonian in this basis set the expansion coefficients are
obtained, and the problem of electron correlations is solved in principle. In practice,
the number of possible excitations increases rapidly5), and the approach has to be
restricted, for instance to include at most double excitations. Several alternatives to
the CI method have been developed, and the reader is referred to the literature list
at the end of the chapter for more details.

2.4.2 Density Functional Theory

The methods discussed so far have been based on the electronic wave function;
that is, the Hartree–Fock ground state energy was assumed to be a functional of the
wave function, and variational minimization has been applied. A different strategy

5) Given M spin–orbitals, there are
(

M
Nel

)
possibilities for the distribution of Nel electrons.
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is followed in Density Functional Theory where the one-electron probability
density,6)

𝜌(x) = Nel

∑
𝜎

∫
dr 𝛿(x − r1) |𝜙(r, 𝜎)|2 (2.32)

is the central object of interest. The foundation of Density Functional Theory is
laid by the Hohenberg–Kohn theorems. They state that for a given electron–nuclear
interaction potential,7) the full many-particle ground state energy, E0, is a unique
functional of the electronic density, and that any density 𝜌(x) other than the ground
state density 𝜌0(x) will give an energy higher than the ground state energy, that is
E[𝜌] ≥ E[𝜌0] ≡ E0, implying that a variational principle can be applied.

The energy functional can be decomposed as follows:

E[𝜌] = e
∫

d3x Vel−nuc(x) 𝜌(x) + Tel[𝜌] +
e2

2 ∫
d3x d3x′ 𝜌(x)𝜌(x′)|x − x′| + EXC[𝜌].

(2.33)

The different terms correspond to the interaction between electrons and nuclei, the
kinetic energy of the electrons,8) the classical electron–electron interaction energy,
and the nonclassical contribution from the electron–electron interaction due to
exchange and correlation effects. It should be noted that apart from the first term
all contributions to the energy functional (2.33) are universal, that is not molecule
specific. They are comprised in what is called the Hohenberg–Kohn functional and
depend only on the properties of the electronic DOFs.

The practical calculation of the electron density starts from the variational
principle. Here, the stationarity condition for the energy 𝛿E[𝜌]∕𝛿𝜌 = 0 has to be
fulfilled subject to the constraint that the system must contain a fixed number of
electrons. The variational freedom is provided by expressing the density in terms of
the so-called Kohn–Sham orbitals 𝜑KS

𝛼
(x), that is 𝜌(x) =

∑
𝛼

||𝜑KS
𝛼
(x)||2. This leads to

the Kohn–Sham equations[
Tel + Vel−nuc + e

∫
d3x′ 𝜌(x′)|x − x′| + VXC(x)

]
𝜑

KS
𝛼
(x) = 𝜀KS

𝛼
𝜑

KS
𝛼
(x),

(2.34)

which can be used to determine the Kohn–Sham orbitals as well as the respective
orbital energies 𝜀KS

𝛼
, which are determined in a self-consistent manner. Apart

from the exchange-correlation potential, here, VXC(x) = 𝛿EXC[𝜌(x)]∕𝛿𝜌(x), Eq.
(2.34) resembles the Hartree–Fock equations (2.28). However, it is important to
emphasize that upon adding VXC the Kohn–Sham equations become formally exact.

6) Note that in order to obtain this equation from the first term on the right-hand side of Eq. (2.9),
one has to make use of the exchange symmetry of the electronic wave function with respect to the
electronic coordinates. This gives the factor Nel.
7) In fact, the first Hohenberg–Kohn theorem holds for an arbitrary external potential for the
electron motion.
8) Note that Tel[𝜌] refers to the kinetic energy of some noninteracting reference system which has
the same density as the real system. The difference between the real and the reference kinetic
energy is assumed to be part of the unknown exchange-correlation energy.
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Moreover, VXC and therefore the Kohn–Sham equations are local in space.9) This
has to be contrasted with the Hartree–Fock equations where the exchange operator
introduces a nonlocal spatial dependence of the orbitals.

But, unfortunately, the form of the exchange-correlation functional is not speci-
fied by the Hohenberg–Kohn theorems, and in fact it is not known. In practice, this
problem is approached by developing approximate functionals that may incorporate
sum rules, asymptotic properties of the electron density, information from approxi-
mations to the electron density, and fits to exact numerical results available for some
test systems. A simple form for the exchange-correlation energy is given, for example
by the so-called local density approximation,

ELDA
XC [𝜌] =

∫
d3x 𝜌(x) 𝜀XC[𝜌(x)], (2.35)

where 𝜀XC[𝜌(x)] is the known exchange-correlation energy per particle for a homo-
geneous electron gas moving on a positive background charge density. This model
works rather well, for example for perfect metals. For molecules, the electron den-
sity is far from being uniform, and hence, the local density approximation in general
does not show a reasonable performance. A substantial improvement is achieved
by including in addition the gradient of the density as well a portion of the exact
Hartree–Fock exchange. This leads to a number of popular functionals, with the
Becke three-parameter Lee–Yang–Parr (B3LYP) functional being the most success-
ful one. For more information on Density Functional Theory, we refer the reader to
the literature list given at the end of this chapter.

Despite this fundamental deficiency of an unknown EXC[𝜌], in practical appli-
cations modern Density Functional Theory often outperforms the Hartree–Fock
method, for example when predicting barrier heights for chemical reactions,
because it includes correlation effects at least approximately. Compared to
high-level wave function-based methods, it is numerically much less expensive,
making it a tool for studying larger molecules.

2.5 Potential Energy Surfaces

In the previous sections it was indicated that the potential energy hypersurface
defined by Eq. (2.19) is the key quantity when it comes to investigate chemical
reaction dynamics or, more generally, nuclear motions. In the following discussion,
we will consider some properties of the adiabatic Born–Oppenheimer PES (Θab = 0)
for a particular electronic state,

Ua(R) = Ea(R) + Vnuc−nuc(R). (2.36)

In general, Ua(R) is a function of all the 3Nnuc nuclear coordinates R (recall the
notation R = (R1,… ,R3Nnuc

)). Since the energy is independent of the overall trans-
lations and rotations of the molecule, there are actually only 3Nnuc − 6 coordinates

9) This does not imply that the actual dependence of VXC on the density or its coordinate
dependence itself is simple.
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necessary to completely specify the energy of the molecule in the configuration space
of the nuclear coordinates (for linear molecules, there are only 3Nnuc − 5 indepen-
dent coordinates).

Let us assume for the moment that we have obtained Ua(R). Then, we are in a
position to draw several conclusions, for example on the nature of the bonding as
well as on the dynamical behavior to be expected in the considered system. To this
end we define the gradient of the potential as

∇Ua(R) = {𝜕Ua(R)∕𝜕R1,… , 𝜕Ua(R)∕𝜕R3Nnuc
}. (2.37)

This vector points along the direction of the steepest rise of the potential, and its neg-
ative is just the force acting along that particular direction in the configuration space.
Another quantity of great importance is the 3Nnuc × 3Nnuc force constant matrix or
Hessian matrix whose elements are defined as

𝜅
(a)
mn =

𝜕
2Ua(R)
𝜕Rm𝜕Rn

(m,n = 1,… , 3Nnuc). (2.38)

The points in configuration space for which the gradient of the potential vanishes,

∇Ua(R) = 0, (2.39)

are called stationary points. Suppose that we have located a stationary point at the
equilibrium configuration R(a). The nature of the PES in the vicinity of this stationary
point can then be investigated by looking at the eigenvalues of the Hessian matrix.
In general, there will be six eigenvalues equal to zero reflecting the fact that there
are only 3Nnuc−6 independent coordinates necessary to determine the energy (see
below). If the remaining eigenvalues of the Hessian matrix are all positive, we are at
a minimum of the PES. In Figure 2.3, this situation is plotted for a diatomic molecule
where R is the bond length. The minimum of U(R) at R = Req gives the equilibrium
distance between the two atoms. As a consequence of QM zero-point motion, the
lowest possible energy eigenvalue is above the bottom of the potential minimum
(solid line in Figure 2.3). The molecule is said to be stable if the difference between
this zero-point energy and the energy it takes to separate the atoms, U(R → ∞), is
finite (dissociation energy, D0 in Figure 2.3).

Figure 2.3 corresponds to the situation where U(R) only has a single global mini-
mum. In fact, there are many systems that support multiple minima in the potential
energy landscape. In Figure 2.4, we have plotted a potential showing two equivalent
minima. These minima in U(R)may correspond to different isomers of the molecule.

Req R

U
(R

)

De D0

R

Figure 2.3 Schematic view of a typical
potential energy curve of a diatomic
molecule. Here, Req denotes the
equilibrium bond length, and D0 (De) the
dissociation energy which does (does
not) take into account the quantum
mechanical zero-point energy.
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Figure 2.4 Schematic view of a
potential energy curve typical for
isomerization reactions. Reactants and
products are separated by a reaction
barrier of height EB along the reaction
coordinate R. EB

R

U
(R

)

Figure 2.5 Schematic view of typical
ground and excited state potential
energy curves of diatomic molecules. If
the molecule is promoted to the excited
state, for example by means of an
external field, dissociation will occur.

Req R

U
(R

)

Such situations occur, for example in systems showing intramolecular hydrogen
transfer. Another standard example is the umbrella vibration of NH3. In the course
of isomerization the system has to pass a maximum of the potential curve that cor-
responds to a saddle point of U(R). At such a simple saddle point the Hessian matrix
will have one negative eigenvalue.

Finally, we consider a case one typically encounters in excited states. In Figure 2.5,
we plotted potential energy curves for the adiabatic ground and excited states of a
diatomic molecule. Apparently, the excited state potential has no minimum. This
implies that an electronically excited molecule will experience a force, −𝜕U∕𝜕R,
leading to dissociation as indicated in the figure.

For larger molecules it is no longer possible to plot the potential energy as a func-
tion of all coordinates. It goes without saying that in addition the calculation of these
PES becomes computationally very demanding. Fortunately, quite often, one has to
deal with situations where only few coordinates are important for a reaction. Then,
it becomes possible to describe this reaction by taking into account only the motion
along a single so-called reaction coordinate while keeping the remaining coordinates
fixed at their equilibrium positions. Consider, for instance the dissociation of the
A−−B bond of a triatomic molecule ABC. If the internal excitation of the BC frag-
ment during the cleavage of the A−−B bond is negligible, BC can be treated as an
entity characterized by its center of mass. Before discussing the more advanced con-
cepts (applicable for polyatomic molecules) in Section 2.5.3, we focus on the nuclear
dynamics in the vicinity of stationary points.
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2.5.1 Harmonic Approximation and Normal Mode Analysis

Having discussed some general aspects of adiabatic PES, we turn to the problem
of solving the nuclear Schrödinger equation. Let us assume that we have located
a stationary point R(a) in the configuration space corresponding to a global min-
imum of Ua(R). Restricting our discussion to small deviations, ΔR(a)

n = Rn − R(a)
n

(n = 1,… , 3Nnuc), from the stationary point the potential can be approximated by a
second-order Taylor expansion with respect to R(a),

Ua(R) = Ua(R(a)) +
3Nnuc∑
m,n=1

1
2
𝜅
(a)
mnΔR(a)

m ΔR(a)
n . (2.40)

Here, the Hessian matrix has to be taken at the point R(a). Note that at the station-
ary point the first derivatives vanish because of the condition (2.39). According to
Eq. (2.21), the Hamiltonian for the nuclear DOFs in the adiabatic approximation
reads

Ha = Ua(R(a)) +
3Nnuc∑
n=1

P2
n

2Mn
+

3Nnuc∑
m,n=1

1
2
𝜅
(a)
mnΔR(a)

m ΔR(a)
n . (2.41)

The linear transformation,

ΔR(a)
n =

∑
𝜉

M−1∕2
n A(a)

n𝜉 qa𝜉 , (2.42)

can be used to diagonalize the potential energy operator, whereas the kinetic energy
operator remains in diagonal form due to the Cartesian character of the displace-
ments. Expressed in the so-called normal mode coordinates qa𝜉 , Eq. (2.41) becomes
(note that the normal mode coordinates are mass weighted)

Ha = Ua(qa𝜉 = 0) + H(nm)
a , (2.43)

with the normal mode Hamiltonian defined as

H(nm)
a = 1

2
∑
𝜉

(
p2
𝜉
+ 𝜔2

a𝜉q
2
a𝜉

)
. (2.44)

Here, the normal mode frequencies 𝜔a𝜉 have been introduced, with 𝜔2
a𝜉 being the

nonzero eigenvalues of the Hessian matrix.
The nuclear motions according to Eq. (2.44) can be understood as a superposi-

tion of independent harmonic vibrations around the equilibrium configuration R(a),
which corresponds to qa𝜉 = 0. It is noteworthy that the harmonic oscillations of the
individual atoms within a normal mode have all the same frequency, 𝜔a𝜉 , but differ-
ent amplitudes determined by their masses (cf. Eq. (2.42)). In Figure 2.6, we show

Figure 2.6 The displacement vectors for the three normal modes of water. The different
amplitudes are determined by the atomic masses (cf. Eq. (2.42)).



2.5 Potential Energy Surfaces 25

as an example the displacement vectors for the three normal modes of water. The
different amplitudes are represented by arrows of different lengths. It should be
noted that the normal mode vibrations do not lead to any translations or rotations
of the molecules as a whole, that is linear and angular momenta are conserved. In
addition to the 3Nnuc − 6 normal mode frequencies, the diagonalization of the Hes-
sian will result in six eigenvalues which are equal to zero. In terms of the PES, this
means that there is no restoring force along these zero-frequency normal mode dis-
placements. Thus, it is clear that the eigenvectors obtained for the zero eigenvalues
must correspond to the free translation and rotation of the molecule.

Having specified the vibrational Hamiltonian for the adiabatic electronic state||𝜙a
⟩

in Eq. (2.44), the nuclear Schrödinger equation can be solved by making a fac-
torization ansatz with respect to the normal modes for the wave function. Using the
standard textbook solution for harmonic oscillators, we have (q comprises all normal
mode coordinates)

H(nm)
a 𝜒

(adia)
aN (q) = aN𝜒

(adia)
aN (q), (2.45)

with

𝜒
(adia)
aN (q) =

∏
𝜉

𝜒aN
𝜉

(qa𝜉). (2.46)

Here, the set of quantum numbers is written as N = {N1,N2,…}, and the eigenfunc-
tions for mode 𝜉 are given by

𝜒aN
𝜉

(qa𝜉) =
𝜆a𝜉√√
𝜋 2N

𝜉 N
𝜉
!

exp
(
−1

2
𝜆

2
a𝜉q

2
a𝜉

)
HN

𝜉

(𝜆a𝜉 qa𝜉), (2.47)

with 𝜆2
a𝜉 = 𝜔a𝜉∕ℏ. The HN

𝜉

in Eq. (2.47) are the Hermite polynomials. The eigenen-
ergies in Eq. (2.45) read

aN =
∑
𝜉

ℏ𝜔a𝜉(N𝜉
+ 1

2
), (2.48)

with the vibrational quantum numbers for mode 𝜉 being N
𝜉
= 0,1, 2,…

In Figure 2.7, we have plotted the oscillator potential for a single mode together
with the eigenfunctions corresponding to the lowest eigenenergies. Note that in
contrast to classical mechanics, the lowest possible state has finite energy due
to QM zero-point motion (see Eq. (2.48)). Having solved the electronic and the

Figure 2.7 Harmonic oscillator potential
together with the eigenfunctions for the
lowest energy eigenstates along the
normal mode coordinate q.
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E
n

e
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y

q(e)q(g) qξ

U(0)
e

U(0)
g

ξ ξ

Figure 2.8 Shifted harmonic oscillator potential
surfaces for two electronic states described by the
same normal coordinate q

𝜉
. Here, we have used

the notation U(0)
a = Ua(q

(a)
𝜉
).

nuclear problems separately, we are in a position to give the solutions, Ψ(adia)
N (r, 𝜎;R)

(Eq. (2.22)), to the molecular Schrödinger equation (2.7) within the adiabatic
Born–Oppenheimer approximation.

In preparation of the following chapters, we now address the issue of the relation
between normal modes belonging to different electronic states. Suppose that we have
made a normal mode analysis for the electronic ground state PES, Ua=g(R), which
had a stationary point at R(g). We then proceed by searching for the minima in some
excited state PES Ua=e(R). This excited state will be selected, for instance because it
is accessible from the ground state via an optical transition (see Chapter 6). Let us
assume that we found a stationary point for the configuration R(e). Assuming further
the harmonic approximation to the PES in the vicinity of R(e) to be valid, we can write

Ue(R) = Ue(R(e)) +
3Nnuc∑
m,n=1

1
2
𝜅
(e)
mn ΔR(e)

m ΔR(e)
n . (2.49)

According to Eq. (2.42), the normal modes are obtained by a linear transformation of
the Cartesian displacements. We can relate the displacement vectors for the excited
state to those for the ground state via

ΔR(e)
n = Rn − R(g)

n − (R(e)
n − R(g)

n ) =
∑
𝜉

M−1∕2
n A(g)

n𝜉 (qg𝜉 − Δqe𝜉). (2.50)

Here, the Δqe𝜉 are defined by the deviations between the ground and excited state
minima. This situation is illustrated in Figure 2.8 for a single normal mode.

In the general case, the shape of the PES may be different in different electronic
states. This would imply that the normal mode transformation does not bring the
Hamiltonian for the ground and the excited states into diagonal form simultane-
ously.10) Thus, the Hessian 𝜅(e)mn is not diagonalized by the transformation matrix of
the ground state, A(g)

n𝜉 . In what follows, we will assume for simplicity that the ground
and excited states can be described by the same normal mode coordinates. We allow,
however, for state-dependent normal mode frequencies, 𝜔a𝜉 . With this restriction,
we can write the Hamiltonian for the excited state as

He = Ue(q𝜉 = q(e)
𝜉
) + 1

2
∑
𝜉

(
p2
𝜉
+ 𝜔2

e𝜉(q𝜉 − q(e)
𝜉
)2
)
. (2.51)

10) The resulting mixing between the ground and the excited state normal modes is called
Duschinsky rotation.
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Here, and in what follows, we will drop the electronic state index at the normal
coordinates, qg𝜉 = qe𝜉 = q

𝜉
, and introduce the abbreviation q(e)

𝜉
= Δqe𝜉 . Typical PESs

along some normal coordinate valid for the ground and the excited states are plotted
in Figure 2.8. The solutions of the stationary Schrödinger equation for the excited
state Hamiltonian, (2.51), are now shifted oscillator states, which read for mode 𝜉

𝜒eN
𝜉

(q
𝜉
− q(e)

𝜉
) =

𝜆e𝜉√√
𝜋 2N

𝜉 N
𝜉
!

exp
(
−1

2
𝜆

2
e𝜉(q𝜉 − q(e)

𝜉
)2
)

HN
𝜉

(𝜆e𝜉(q𝜉 − q(e)
𝜉
)).

(2.52)

This procedure is easily generalized to incorporate any excited electronic state that
can be described by the normal modes of the electronic ground state. The displace-
ment q(e)

𝜉
gives a measure for the strength of the coupling of a particular mode on the

electronic transition. This allows for a classification of modes into active and passive
ones (see also Chapters 5 and 6).

2.5.2 Operator Representation of the Normal Mode Hamiltonian

The properties of harmonic oscillators are conveniently derived using the so-called
creation and annihilation operators of second quantization. We define the anni-
hilation operator (dropping the electronic state index, which is unnecessary if the
frequency is state independent as will be assumed in the following discussion).11)

C
𝜉
=
√
𝜔
𝜉

2ℏ
q̂
𝜉
+ i 1√

2ℏ𝜔
𝜉

p̂
𝜉
. (2.53)

Its Hermitian conjugate C+
𝜉

is called the creation operator. Then, the coordinate and
momentum operators can be expressed by means of these operators as

q̂
𝜉
=
√

ℏ

2𝜔
𝜉

(C
𝜉
+ C+

𝜉
) (2.54)

and

p̂
𝜉
= −i

√
ℏ𝜔

𝜉

2
(C

𝜉
− C+

𝜉
). (2.55)

Frequently, we also use dimensionless coordinates that are defined according to

Q̂
𝜉
= q̂

𝜉

√
2𝜔

𝜉

ℏ

= C
𝜉
+ C+

𝜉
, (2.56)

and dimensionless momenta

P̂
𝜉
= p̂

𝜉

√
2
ℏ𝜔

𝜉

= −i(C
𝜉
− C+

𝜉
). (2.57)

11) In what follows, p̂
𝜉

and q̂
𝜉

denote abstract operators in Hilbert space spanned by the vectors||𝜒N
⟩

.
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The action of creation and annihilation operators is conveniently described using
the occupation number representation. For a general f -dimensional wave function
like Eq. (2.46), this corresponds to the following change (skipping the electronic state
index):|||𝜒N1

,… , 𝜒Nf

⟩
≡ |N1,… ,Nf ⟩, (2.58)

that is the f -dimensional state is completely characterized by the quantum num-
bers N

𝜉
. For the present case of bosons, these so-called occupation numbers can have

values N
𝜉
= 0,1, 2,…. The effect of the action of the annihilation operator on an

occupation number state is to decrease that occupation number by 1, that is

C
𝜉
|N

𝜉
⟩ =√N

𝜉
|N

𝜉
− 1⟩ (2.59)

and

C
𝜉
|0
𝜉
⟩ = 0. (2.60)

The creation operator, C+
𝜉

, increases the occupation number in mode 𝜉 by 1

C+
𝜉
|N

𝜉
⟩ =√N

𝜉
+ 1 |N

𝜉
+ 1⟩. (2.61)

These operators obey the boson commutation relation

[C
𝜉
,C+

𝜉′
] = C

𝜉
C+
𝜉′
− C+

𝜉′
C
𝜉
= 𝛿

𝜉𝜉′ . (2.62)

Using these relations the normal mode Hamiltonian (2.44) takes the simple form

H(nm) =
∑
𝜉

ℏ𝜔
𝜉

(
C+
𝜉

C
𝜉
+ 1

2

)
. (2.63)

The operator C+
𝜉

C
𝜉
= N̂

𝜉
is the so-called occupation number operator whose eigen-

value equation is N̂
𝜉
|N

𝜉
⟩ = N

𝜉
|N

𝜉
⟩. All eigenstates |N

𝜉
⟩ of Eq. (2.63) can be obtained

by successive application of the creation operator C+
𝜉

on the ground state |0
𝜉
⟩

|N
𝜉
⟩ = 1√

N
𝜉
!
(C+

𝜉
)N

𝜉 |0
𝜉
⟩. (2.64)

Of course, the eigenenergies do not change, that is they are given by Eq. (2.48).
In the previous section we learned that the nuclear motion in two different elec-

tronic states can – under certain conditions – be described using the same normal
mode coordinates. The different equilibrium positions of the normal mode oscil-
lators are then accounted for by shifting the equilibrium position of the potential
and the respective oscillator wave function by q(a)

𝜉
. Introducing dimensionless coor-

dinates according to Eq. (2.56), the Hamiltonian for the shifted oscillator, (2.51),
becomes

H(nm)
a = U (0)

a +
∑
𝜉

ℏ𝜔
𝜉

(
C+
𝜉

C
𝜉
+ 1

2

)
+
∑
𝜉

ℏ𝜔
𝜉
[ga(𝜉)(C+

𝜉
+ C

𝜉
) + g2

a(𝜉)]. (2.65)
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Here, we introduced the dimensionless shift of the PES belonging to state a as

ga(𝜉) = −
√
𝜔
𝜉

2ℏ
q(a)
𝜉
. (2.66)

The respective energy offset has been abbreviated as U (0)
a = Ua(q

(a)
𝜉
). In order to find

a suitable representation of the shifted oscillator functions (2.52) in terms of occupa-
tion number states, we introduce the so-called displacement operator. Suppose that
we expand the wave function 𝜒aN

𝜉

(q
𝜉
− q(a)

𝜉
) (Eq. (2.52)) in powers of the displace-

ment according to

𝜒aN
𝜉

(q
𝜉
− q(a)

𝜉
) =

∞∑
n=0

(−q(a)
𝜉
)n

n!
dn

dqn
𝜉

𝜒aN
𝜉

(q
𝜉
)

= exp
{
− i
ℏ

q(a)
𝜉

p
𝜉

}
𝜒aN

𝜉

(q
𝜉
), (2.67)

where we have used the coordinate representation of the momentum operator for
mode 𝜉, p̂

𝜉
= −iℏd∕dq

𝜉
. Using Eqs. (2.55) and (2.66), the exponent can be written in

operator form as

− i
ℏ

q(a)
𝜉

p̂
𝜉
= ga(𝜉)(C𝜉

− C+
𝜉
). (2.68)

This suggests the introduction of the displacement operator according to

D+(ga(𝜉)) = exp
{

ga(𝜉)(C𝜉
− C+

𝜉
)
}
. (2.69)

Thus, if |||N𝜉

⟩
corresponds to an eigenstate of some nonshifted reference oscillator

Hamiltonian, the eigenstates of the shifted oscillator Hamiltonian can be generated
as follows:|||N(a)

𝜉

⟩
= 1√

N
𝜉
!

D+(ga(𝜉)) (C+
𝜉
)N

𝜉
|||0𝜉⟩

= D+(ga(𝜉)) |N𝜉
⟩. (2.70)

The displacement operator is unitary, that is

D+(ga(𝜉)) = D(−ga(𝜉)) = D−1(ga(𝜉)). (2.71)

Further, the following useful property can be derived by expanding the displacement
operator in a power series:

D(ga(𝜉)) C+
𝜉

D+(ga(𝜉)) = [D(ga(𝜉)) C
𝜉

D+(ga(𝜉))]+ = C+
𝜉
− ga(𝜉). (2.72)

Changing from ga(𝜉) to −ga(𝜉), we directly conclude that

D+(ga(𝜉)) C+
𝜉

D(ga(𝜉)) = C+
𝜉
+ ga(𝜉). (2.73)

Then, we can rewrite the vibrational Hamiltonian, (2.51), in the form

H(nm)
a = U (0)

a +
∑
𝜉

ℏ𝜔
𝜉

[
(C+

𝜉
+ ga(𝜉)) (C𝜉

+ ga(𝜉)) +
1
2

]
= U (0)

a +
∑
𝜉

ℏ𝜔
𝜉

[
D+(ga(𝜉)) C+

𝜉
C
𝜉

D(ga(𝜉)) +
1
2

]
, (2.74)

where we used the unitarity of the displacement operator.
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Comparing Eqs. (2.74) and (2.51), we realize that the introduction of the dis-
placement operator yields a very compact notation for the Hamiltonian of a set
of harmonic oscillators whose equilibrium positions are displaced with respect to
each other. We will encounter this situation in Chapters 6 and 7. There, the overlap
integral between two shifted oscillator states will play an important role. Assuming||𝜒aM

⟩
and ||𝜒bN

⟩
to be two normal mode eigenstates for a particular mode belonging

to the electronic states a and b, respectively, the overlap integral can be written as
(skipping the mode index)

⟨𝜒aM
||𝜒bN

⟩
= ⟨M|D(ga)D+(gb) |N⟩ . (2.75)

In order to rewrite the product of the two displacement operators, we make use of
the operator identity

e𝛼(A+B) = e𝛼Ae𝛼Be−𝛼2[A,B]∕2
, (2.76)

which holds if [A,B] commutes with A and B. Here, 𝛼 is some parameter. For the
displacement operators, we obtain with the help of Eq. (2.62),

D(ga)D+(gb) = D(Δgab)
= eΔgabC+e−ΔgabCe−Δg2

ab∕2
, (2.77)

with Δgab = ga − gb. The action of the exponential operator on the oscillator states
is calculated using a Taylor expansion

e−ΔgabC |N⟩ = N∑
n=0

(−Δgab)n

n!
Cn |N⟩

=
N∑

n=0

(−Δgab)n

n!

√
N!

(N − n)!
|N − n⟩ , (2.78)

where we made use of the properties (2.59) and (2.60). Applying the same expansion
to the bra vector, we obtain for the matrix elements

⟨𝜒aM
||𝜒bN

⟩
= e−(Δgab)2∕2

M∑
m=0

N∑
n=0

(−1)n(Δgab)m+n

m!n!

×
√

M!N!
(M − m)!(N − n)!

𝛿M−m,N−n. (2.79)

This overlap expression is called the Franck–Condon factor (see Chapter 6). The most
apparent property of this overlap expression, Eq. (2.79), is certainly the fact that,
due to the exponential prefactor, for any given pair of states, the overlap decreases
upon increasing the shift between the two PESs. The elements of Eq. (2.79), which
are diagonal in the vibrational quantum number, can be further simplified. Since
𝛿N−m,N−n = 𝛿mn, we have

⟨𝜒aN
||𝜒bN

⟩
= e−(Δgab)2∕2

N∑
n=0

(−1)n(Δgab)2n

n!2
N!

(N − n)!

= e−(Δgab)2∕2LN ((Δgab)2), (2.80)
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where LN (x) is a Laguerre polynomial. We will discuss Franck–Condon factors in
Chapter 6. A generalization to the case of different frequencies as well as a numerical
recipe for an efficient calculation is given in Section 2.8.1.

2.5.3 Construction of System–Bath Models

Chemical reaction dynamics can be understood in terms of the adiabatic
Born–Oppenheimer PES for nuclear motion.12) Let us consider the simple
example of a PES for an isomerization reaction shown in Figure 2.4. Suppose that
initially the positions of the nuclei correspond to a reactant configuration (left
minimum). The properties of nuclear motion in the vicinity of this minimum
(equilibrium configuration) were considered in the previous section. In order
to understand how the nuclei move to the right minimum corresponding to the
product state, it is necessary to explore the properties of the PES away from the
stationary points. For this purpose, we return to the general Hamiltonian

Hnuc =
3Nnuc∑
n=1

P2
n

2Mn
+ U(R1,… ,R3Nnuc

). (2.81)

This expression poses a serious problem for polyatomic molecules since the numeri-
cal calculation of a full 3Nnuc–6-dimensional PES becomes prohibitive with increas-
ing Nnuc. In practice, however, the case that all DOFs move appreciably during a
reaction is rather unlikely. This observation suggests to separate all DOFs into active
and spectator or substrate coordinates. This concept can be realized in several ways
that differ in the way the substrate DOFs are treated and in the choice of the coordi-
nate system.

First, let us consider the standard approach of quantum chemistry. Suppose that
we have performed a search for stationary points and transitions states on the multi-
dimensional PES (geometry optimization). For simplicity, we assume that there are
two minima separated by a single transition state as shown in Figure 2.9.

This situation may correspond to an isomerization reaction occurring, for example
in the course of intramolecular proton transfer (cf. Chapter 8). In order to learn
more about the way the reaction takes from the reactant to the product well via
the transition state, one can follow the so-called minimum energy path. This path
is obtained by starting from the transition state configuration13) and following the
steepest descent path to the reactant and product well minima (see the solid line in
Figure 2.9).14)

12) As discussed in Section 2.3, in the general case it might be necessary to include the
nonadiabatic coupling between PESs belonging to different electronic states.
13) In principle, one could also start at a minimum and follow the shallowest ascent path to the
transition states. However, it is numerically very difficult to reach to transition state this way,
because at a minimum the potential energy increases in all directions; at a transition state, there is
only one downward path.
14) In practice, one follows the steepest descent path defined in mass-weighted coordinates,
which can be viewed as the path taken by a particle of unit mass sliding down at high friction.
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Figure 2.9 (a) Schematic plot of a two-dimensional PES. The coordinate s is a reaction
coordinate, while q describes a harmonic vibration orthogonal to the reaction coordinate.
Also shown is the minimum energy path (solid line) as well as a straight line path (dashed
line) connecting the reactant and the product wells. In (b), we show the contour view (left)
together with a cut along the straight line path where q = 0 (right). The energetic
difference between both paths is the reorganization energy of the oscillator coordinate
(see Eq. (2.91)) (figure courtesy of H. Naundorf ).

The 3Nnuc-dimensional vector R(p), which points to the minimum energy path,
defines a curve in the 3Nnuc-dimensional space of the nuclear coordinates. This curve
s = s(R(p)), which is the arc length along the minimum energy path, can be consid-
ered as the one-dimensional reaction coordinate. This one-dimensional description
provides a valuable framework for the understanding of many reaction mechanisms.
Looking at Figure 2.9 it becomes clear, however, that restricting the reaction dynam-
ics to take place on the minimum energy path only may be a rather crude approxi-
mation. In many cases, the minimum energy path will be considerably curved in full
3Nnuc-dimensional space. Let us imagine a (classical) ball starting at the transition
state with some very small velocity. It is clear that unless the ball moves very slowly
down into the reactant/product valley, the trajectory of the ball will not follow the
minimum energy path if this path is curved. This implies that a one-dimensional
description of the dynamics is not adequate.

There are several ways to account for the motion away from the minimum energy
path. In the following discussion we will outline a strategy leading to a Hamiltonian
that is particularly suited for large molecules or condensed-phase situations as will
be encountered in later chapters.15) The first step consists in the identification of
those Cartesian coordinates, which describe large displacements, s = (s1,… , sNrc

).

15) For an alternative formulation, which is based on the minimum energy path and harmonic
vibrations perpendicular to it, see Miller et al. [1].
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These are the active coordinates. Typical choices are atomic coordinates or certain
collective coordinates that span the relevant part of the PES. They are separated from
the remaining 3Nnuc − Nrc substrate coordinates Z. The key assumption is that the
substrate coordinates stay close to their equilibrium configurations Z(0)(s) during the
reaction. As indicated, this equilibrium configuration may depend on the positions
of the reaction coordinates s. As an example, consider the transfer of a light atom
A between two heavy fragments B and C, that is B−A · · · C → B · · · A−C. Such a
situation is typical for intramolecular hydrogen-transfer reactions, for instance (see
Chapter 8). Proper choice of the coordinate system allows a one-dimensional treat-
ment of the A atom motion along the coordinate s1. The coordinates describing the
fragments are then comprised into the vector Z.

Since the substrate atoms perform only small-amplitude motion around their
equilibrium Positions, U(R) = U(s,Z) can be expanded in terms of the deviations
ΔZ(s) = (Z − Z(0)(s)) as follows:

U(R) ≈ U(s,Z(0)(s)) +
(
𝜕U(s,Z)
𝜕Z

)
Z=Z(0)(s)

ΔZ(s)

+1
2
ΔZ(s)

(
𝜕

2U(s,Z)
𝜕Z𝜕Z

)
Z=Z(0)(s)

ΔZ(s). (2.82)

The different terms have a straightforward interpretation: U(s,Z(0)(s)) is the poten-
tial energy on the (in general multidimensional) Cartesian reaction surface, with
the spectator DOFs frozen at some reference geometry. This can be, for example the
equilibrium geometry of the spectator atoms at a given value of the reaction coor-
dinates. The second term in Eq. (2.82) contains the forces exerted on the substrate
atoms due to the motion of the important DOFs away from their equilibrium posi-
tions:

f(s) = −
(
𝜕U(s,Z)
𝜕Z

)
Z=Z(0)(s)

. (2.83)

Finally, the third term describes the Hessian matrix

𝜿(s) =
(
𝜕

2U(s,Z)
𝜕Z𝜕Z

)
Z=Z(0)(s)

(2.84)

(and thus of the vibrational frequencies) due to the motion along s.
Since the substrate atoms are assumed to perform small-amplitude harmonic

motions, we can introduce normal modes. Note that the normal modes have to be
defined with respect to some fixed reference configuration Z(0)(sref) to preserve the
decoupling from the external motions (rotations and translation). Thus, we have

ΔZ(s) = Z − Z(0)(sref) + Z(0)(sref) − Z(0)(s)
= M−1∕2Aq + Z(0)(sref) − Z(0)(s), (2.85)

where M is the diagonal matrix containing the atom masses, and A is the normal
mode transformation matrix (see also Eq. (2.42)). Straightforward application of
this transformation to the Hamiltonian with the potential equation (2.82) gives the
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all-Cartesian form16)

H = Ts + U(s,Z(0)(s)) + Uadd(s,Z(0)(s))

+ Tq + 1
2

qK(s)q − F(s)q. (2.86)

Here, Ts and Tq are the diagonal kinetic energy operator for the reaction coordi-
nates and the substrate modes, respectively, and the transformed Hessian is given
by K(s) = A+M−1∕2

𝜿(s)M−1∕2A. Note that it includes a coupling between different
substrate modes due to the motion of the reaction coordinates away from the refer-
ence configuration sref. Since this motion is not restricted to some minimum energy
path, there is also a force acting on the substrate modes

F(s) =
[
f(s) − (Z(0)(sref) − Z(0)(s))𝜿(s)

]
M−1∕2A. (2.87)

Finally, the special choice of the reference configuration for the definition of the
normal modes leads to an additional potential defined by

Uadd(s,Z(0)(s)) = −f(s)(Z(0)(sref) − Z(0)(s))

+ 1
2
(Z(0)(sref) − Z(0)(s))𝜿(s)(Z(0)(sref) − Z(0)(s)).. (2.88)

Of course, not all substrate modes will couple strongly to the reaction coordinates. A
convenient measure for this coupling is the substrate oscillator’s displacement from
their equilibrium value of zero taken at the reference geometry Z(0)(sref), that is

q(0)(s) = −[K(s)]−1 F(s). (2.89)

Introducing this quantity into Eq. (2.86) yields after some rearrangement

H = Ts + U(s,Z(0)(s)) + Uadd(s,Z(0)(s)) − E
𝜆
(s)

+ Tq + 1
2
(q − q(0)(s))K(s)(q − q(0)(s)). (2.90)

Here, we introduced the so-called reorganization energy defined as

E
𝜆
(s) = 1

2
q(0)(s)K(s)q(0)(s). (2.91)

The interpretation of the substrate mode part of Eq. (2.90) (second line) is straightfor-
ward. It is the Hamiltonian for a set of shifted oscillators whose equilibrium positions
depend on the coupling to the reaction coordinates. In our considerations of PESs
for different electronic excited states we have already met this type of Hamiltonian.
There, the shift of the PES was due to different electronic charge distributions in the
considered electronic states. In the present case, the shift is a consequence of the
motion of the reaction coordinates s away from a stationary point on the PES. This

16) Note that an arbitrary displacement of some active atom in general does not conserve linear
and angular momenta of the total system. Strictly speaking, a rigorous treatment of the molecule’s
rotation would require the use of curvilinear coordinates and therefore destroy the all-Cartesian
character of the Hamiltonian. However, since we focus on a description of large molecules or even
condensed-phase reactions, rotation/translation does not play an important role. In the numerical
implementation of this approach it is accounted for approximately by projecting out infinitesimal
rotations and translations of the substrate atoms from the Hessian before performing the normal
mode transformation (for details see Ruf and Miller [2]).
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can be rationalized by looking at the two-dimensional case shown in Figure 2.9. Let
us further assume that the configuration of the left minimum has served as a refer-
ence for the expansion in Eq. (2.82). Therefore, at this minimum, the force on the
substrate oscillator is zero. Now, we move the reaction coordinate on a straight line
toward the right potential well (dashed line). This force is trying to push the oscilla-
tor back to the minimum energy path (solid line). Restoring the equilibrium position
of the substrate oscillator requires the reorganization energy E

𝜆
(s) as indicated in the

lower right panel of Figure 2.9.
Keeping track of the dependence of the reference geometry for the spectator

modes on the value of the reaction coordinates is important whenever one wishes
to describe a reaction where reactants and products have quite different geometries
and atomic reaction coordinates have been chosen. This is due to the fact that
complex molecular rearrangements cannot be described effectively in terms of
the change of just a few atomic coordinates, and the molecular skeleton has to be
adjusted accordingly. On the other hand, collective reaction coordinates might be
able to capture most of the rearrangements such that the references geometry for the
harmonic expansion can be fixed, thus simplifying the resulting Hamiltonian (the
additional potential as well as the second term in the force equation (2.87) vanish).
A convenient choice for symmetric reactions such as isomerizations (cf. Figure 2.9)
are the so-called reaction plane coordinates.17) Suppose that we denote the 3Nnuc
vector pointing to the left and right minimum as well as to the transition state
geometry by R(L), R(R), and R(TS), respectively. Then, the following two vectors span
a two-dimensional reaction plane:18)

d1 = R(R) − R(L)|R(R) − R(L)| , (2.92)

d2 = R(C) − R(TS)|R(C) − R(TS)| . (2.93)

Here, we defined the center geometry R(C) = (R(R) + R(L))∕2. The interpretation
of these collective coordinates becomes clear by the inspection of the example in
Figure 2.10. Here, hydrogen atom transfer in tropolon is described by a coordinate
d1 that essentially gives the hydrogen atom motion in transfer direction and a
coordinate d2 that accounts for the deformation of the skeleton, which takes place
upon passing the transition state (cf. generic example in Figure 2.9).

Finally, we simplify the reaction surface Hamiltonian equation (2.90) to estab-
lish the contact with a widely used system-reservoir Hamiltonian. To this end, we
neglect the change of the reference geometry as well as the coupling between dif-
ferent substrate modes. Furthermore, the normal mode frequencies are assumed to
be independent of the reaction coordinate, that is we have K

𝜉𝜉′ (s) ≈ 𝛿
𝜉𝜉′𝜔

2
𝜉
. Then,

the Hamiltonian can be written as H = HS + HR + HS−R, with HS and HR describ-
ing the motion of the system (s) and bath (q

𝜉
) DOFs, respectively. HS−R contains the

17) For the formulation and application to proton tunneling, see also Takada and Nakamura [3].
18) Note that R(L) and R(R) are unique only up to an arbitrary rotation. This arbitrariness can be
removed by minimizing the distance |R(R) − R(L)|; likewise, |R(C) − R(TS)| is minimized.
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Figure 2.10 Two-dimensional Cartesian reaction plane for the hydrogen atom transfer in
tropolon. The coordinates d1∕2 spanning the reaction plane are shown next to the axes. The
solid line corresponds to the projection of the minimum energy path onto the reaction
plane (coordinate units a0(a.m.u.)1∕2, contour spacing is 500 cm−1, and maximum contour at
6000 cm−1) (figure courtesy of K. Giese ).

interaction between both subsystems:

HR + HS−R = 1
2

3Nnuc−Nrc−6∑
𝜉=1

⎡⎢⎢⎣p2
𝜉
+ 𝜔2

𝜉

(
q
𝜉
−

F
𝜉
(s)
𝜔

2
𝜉

)2⎤⎥⎥⎦ , (2.94)

where we used q(0)
𝜉
(s) = −F

𝜉
(s)∕𝜔2

𝜉
. With the reorganization energy given by E

𝜆
(s) =∑3Nnuc−Nrc−6

𝜉=1 F2
𝜉
(s)∕2𝜔2

𝜉
, the renormalized system Hamiltonian becomes

HS =
Nrc∑
n=1

p2
n

2Mn
+ U(s,Z(0)) − E

𝜆
(s). (2.95)

2.6 Adiabatic versus Diabatic Representation of the
Molecular Hamiltonian

2.6.1 Adiabatic Picture

In Section 2.3, we gave the general form of the molecular wave function as (cf.
Eq. (2.20))

𝜓M(r,R) =
∑

a
𝜒aM(R) 𝜙a(r;R). (2.96)
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In principle, the summation has to be carried out over the complete set of adiabatic
electronic states. These states are possibly coupled through the nonadiabaticity oper-
ator (Eq. (2.17)). Fortunately, in practice, reasonable results are often obtained by
including only a finite number of states in the actual calculation. This happens, for
example if one is interested in the electronic excitation spectrum of a molecule, or
if one wants to model photodissociation dynamics occurring upon irradiation by a
laser having a certain fixed wavelength (see, for example Figure 2.1).

Let us suppose that we have obtained the adiabatic electronic wave function
𝜙a(r;R) = ⟨r;R|𝜙a⟩. The representation of the molecular Hamiltonian in this
electronic basis is then obtained as (using the definitions (2.17) and (2.21))

H(adia)
mol =

∑
ab

(
𝛿ab Ha(R) + (1 − 𝛿ab)Θab

) ||𝜙a
⟩⟨

𝜙b
|| . (2.97)

Note that Ha(R) and Θab are still operators with respect to the nuclear coordinates.
We can go one step further and write down the molecular Hamiltonian in the
matrix representation of the adiabatic states ||𝜓aM

⟩
= ||𝜙a

⟩ ||𝜒aM
⟩

, which define the
Born–Oppenheimer wave function (2.22), 𝜓 (adiab)

aM (r,R) = ⟨r,R|𝜓aM⟩. We have

H(adia)
mol =

∑
aM

aM
||𝜓aM

⟩⟨
𝜓aN

|| + ∑
aM,bN

ΘaM,bN
||𝜓aM

⟩⟨
𝜓bN

|| , (2.98)

where we introduced

ΘaM,bN =
∫

dR𝜒∗
aM(R)

[⟨
𝜙a
||Tnuc

||𝜙b
⟩

−
∑

n

ℏ
2

Mn

⟨
𝜙a
||𝛁n

||𝜙b
⟩
𝛁n

]
𝜒bN (R). (2.99)

We note that the coupling is mediated by the momentum operator Pn = −iℏ𝛁n. It is
therefore referred to as dynamic coupling, and its calculation requires knowledge of
the first and second derivatives of the electronic wave function. This poses a com-
putational challenge, especially for polyatomics. Further, the second term in Θab
is often rather sharply peaked if not singular, indicating that the character of the
electronic wave function changes rapidly within a narrow range of configuration
space (see Figure 2.11). Such a behavior of the coupling may cause numerical prob-
lems, for example in a quantum dynamical calculation based on the Hamiltonian
(2.98) and using the methods which will be introduced in Chapter 3. On the other
hand, since the adiabatic electronic states contain information on the instantaneous
nuclear configuration, it can be expected that they will lead to a very compact rep-
resentation of the molecular wave function.

2.6.2 Diabatic Picture

In what follows we will present an alternative to the adiabatic representation of the
Hamiltonian. Let us consider an electronic basis 𝜙a(r;R(0)), where the positions of
the nuclei are fixed at some point R(0) in configuration space. A typical choice for
R(0) could be, for instance some local minimum of the PES in the electronic state
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Figure 2.11 Potential energy curves for the ground and the lowest excited states of NaCl.
In the vicinity of the ground state equilibrium bond length, the ground and the excited
adiabatic states are of ionic and covalent characters, respectively. In the asymptotic region
this energetic order is reversed. The nature of the electronic states changes in the region
around 17.9 a0. As a consequence, the nonadiabatic coupling ∝

⟨
𝜙1
||𝛁n

||𝜙2

⟩
takes large

values (upper inset), and there is an avoided crossing between the adiabatic curves (lower
inset). The diabatic potential curves essentially coincide with the adiabatic ones, except in
the crossing region. Here, the diabatic curves (black lines) cross, and their coupling is given
by V12 (lower inset) (Reproduced with permission from Persico and Granucci [4]/Springer
Nature).

a. Of course, 𝜙a(r;R(0)) is no longer an eigenfunction of Hel except at R(0). Defining
Hel(R(0)) = H(0), the electronic Hamiltonian can be written as

Hel(R) = H(0)(R(0)) + V(R,R(0)), (2.100)

with the potential coupling given by

V(R,R(0)) = Hel(R) − H(0)(R(0)). (2.101)

The molecular wave function expanded in this so-called diabatic basis set19) reads

𝜓(r,R) =
∑̄

a
𝜒ā(R) 𝜙ā(r;R(0)), (2.102)

where we have used the quantum number ā to distinguish diabatic states from adi-
abatic ones.

Suppose that the diabatic basis is complete, and the summations in Eqs. (2.96) and
(2.102) are carried out with respect to the whole set of quantum numbers; both repre-
sentations will give identical results. In practice, however, one is interested only in a
certain subset of the electronic state manifold in order to model some property of the

19) Note that the special choice of 𝜙a(r;R(0)) as a diabatic basis is sometimes also called crude
adiabatic basis.
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molecule. Since 𝜙ā(r;R(0)) does not account for the change in nuclear configuration,
it can in general be assumed that the diabatic representation is not as compact as
the adiabatic one. Thus, more terms in the expansion (2.102) may be needed to rep-
resent some feature of the molecular wave function. On the other hand, all matrix
elements of the nonadiabaticity operator vanish because the diabatic basis functions
are not R-dependent. The coupling between different electronic states is now due
to V(R;R(0)) defined in Eq. (2.101); the respective matrix elements are Vāb(R;R(0)) =⟨
𝜙ā
||V(R,R(0)) |||𝜙b

⟩
. Thus, the representation of the molecular Hamiltonian in terms

of the diabatic electronic states is

H(diab)
mol =

∑
āb

(
𝛿ābHā + (1 − 𝛿āb)Vāb

) ||𝜙ā
⟩ ⟨𝜙b|. (2.103)

Here, we introduced the Hamiltonian for the motion of the nuclei in the diabatic
electronic state ||𝜙ā

⟩
as

Hā(R) = Tnuc + Uā(R), (2.104)

with

Uā(R) = Eā(R(0)) + Vnuc−nuc + Vāā(R,R(0)) (2.105)

being the diabatic PES. The Eā(R(0)) are the diabatic electronic energies according to
H(0). The shift of the electronic state coupling from the kinetic to the potential energy
operator is the general feature for a diabatic basis as compared to the adiabatic basis.

It is straightforward to derive the equation for the expansion coefficients in (2.102),
that is the diabatic nuclear wave functions, along the lines outlined in Section 2.3.
One obtains

(Hā(R) − )𝜒ā(R) = −
∑
b≠ā

Vāb(R,R
(0))𝜒b(R) (2.106)

Neglecting the coupling between different states, we get

Hā(R)𝜒āM(R) = āM𝜒āM(R). (2.107)

The solutions of this equation, 𝜒āM(R), together with the diabatic electronic states
can be used to define the molecular Hamiltonian in the diabatic representation
(||𝜓āM

⟩
= ||𝜙ā

⟩ ||𝜒āM
⟩

),

H(diab)
mol =

∑̄
aM

āM
||𝜓āM

⟩⟨
𝜓āM

|| + ∑
āM,bN

VāM,bN
||𝜓āM

⟩ ⟨𝜓bN |. (2.108)

Here, EāM are the eigenvalues following from Eq. (2.107) and

VāM,bN =
∫

dR 𝜒
∗
āM(R)Vāb(R,R

(0))𝜒bN (R). (2.109)

In contrast to the adiabatic representation, the Hamiltonian matrix contains only
coupling terms between different electronic states, which stem from the potential
energy operator. To distinguish this from the dynamic coupling, the potential cou-
pling is called static. Static couplings are usually not as sharply peaked as dynamic
ones and in general easier to treat in numerical applications (see Figures 2.11).
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But, as already pointed out for a choice such as the crude adiabatic basis, it may
be required to take into account many terms in the expansion of the total wave
function. Thus, the dimension of the diabatic Hamiltonian matrix in this case is
likely to be higher than that of the adiabatic matrix.

Quantum chemical ab initio calculations usually provide adiabatic PESs and wave
functions. Thus, the question arises whether it is possible to construct a diabatic
basis that provides a compact representation of the molecular wave function.

Having a broad definition of a diabatic representation, it should be clear that the
crude adiabatic basis, 𝜙ā(r;R(0)), is not the only possible choice of a diabatic basis.
In general, one can argue that any complete basis set is suited that solves the sta-
tionary Schrödinger equation for a part of the Hamiltonian and yields negligibly
small matrix elements of the nonadiabaticity operator. The potential coupling term
has to be properly adjusted for each case. A typical situation will be encountered in
Chapter 7, where electron transfer in donor–acceptor complexes is considered. In
this case, one can define the local electronic states with respect to the donor and
acceptor groups.

An alternative can be developed by starting from a diabatic basis which is con-
structed in a way that certain properties such as the dipole moments of the molecule
behave smoothly. A related constraint is that the electronic wave function should not
change appreciably when moving in the configuration space of the nuclear coordi-
nates. Thus, diabatic wave functions for neighboring points should overlap consid-
erably. The simplest approach in this respect is certainly to use some parameterized
form for the diabatic potential surface, the static coupling, and if necessary also
for other quantities such as the dipole moment. The parameters are then chosen
to make observables, for example those relevant for dynamic processes, agree with
the experiment.

2.6.3 Two-State Case

In this section, we focus on the adiabatic-to-diabatic transformation and the result-
ing shapes of the PES for the case of two electronic states and a single nuclear coor-
dinate R (cf. Figure 2.11). Thereby, we will make use of the results for the diago-
nalization of a coupled two-state Hamiltonian derived in Section 2.8.2. Labeling the
adiabatic states as a = ±, Eq. (2.97) becomes in matrix notation (assuming Θaa = 0)

H(adia)
mol =

(
Tnuc Θ+−
Θ+− Tnuc

)
+
(

U+(R) 0
0 U−(R)

)
. (2.110)

For the diabatic states denoted as ā = 1,2, Eq. (2.103) becomes

H(diab)
mol =

(
Tnuc 0

0 Tnuc

)
+
(

U1(R) V12(R)
V12(R) U2(R)

)
. (2.111)

The two representations are related by an orthogonal transformation; for instance,
we can express the adiabatic states in terms of the diabatic states:||𝜙±

⟩
=
∑

ā=1,2
C±(ā) ||𝜙ā

⟩
. (2.112)
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The coefficients Ca(ā) were determined in Section 2.8.2 (cf. Eqs. (2.171) and (2.172),
for instance). They depend on the so-called mixing angle, Eq. (2.170), which in the
present case will depend on the coordinate R, that is

𝛾(R) = 1
2

arctan
(

2|V12(R)||U1(R) − U2(R)|
)
. (2.113)

The adiabatic potentials following from the diabatic ones upon including the cou-
pling reads (Eq. (2.153))

U±(R) =
1
2

(
U1(R) + U2(R) ±

√
[U1(R) − U2(R)]2 + 4||V12(R)||2 ) .

(2.114)

In Figure 2.12, diabatic and adiabatic potentials as well as expansion coefficients
are shown for the case where the diabatic states are described by two shifted har-
monic oscillator potentials. For the coupling V12(R), a Gaussian form centered at the
crossing point, R = Rc = 0, has been chosen. While the diabatic potentials cross at Rc,
the adiabatic ones show a splitting of 2|V12(Rc)|. This can be rationalized as follows:
The crossing condition for the diabatic potentials, U1(R) = U2(R), can in principle
be fulfilled for any R. For the adiabatic ones, according to Eq. (2.114), the conditions
U1(R) = U2(R) and V12(R) = 0 should be fulfilled simultaneously to obtain a cross-
ing. Thus, unless V12(R) vanishes due to the symmetry of the diabatic wave functions,
the crossing of the diabatic potentials is replaced by an avoided crossing of the adi-
abatic ones. The case V12(R) = 0 usually occurs if the symmetry of the two diabatic
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Figure 2.12 (a) Diabatic (dashed) and adiabatic (solid) potential energy curves for two
shifted diabatic oscillator potentials coupled by a diabatic coupling V12 (dashed).
(b) Coordinate-dependent expansion coefficients, Eq. (2.112). The two columns correspond
to two different values of the displacement between the coupled diabatic oscillator
potentials.
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states is different. Because diabatic and adiabatic Hamiltonians describe the same
molecular system, adiabatic potential curves of states having the same symmetry
will not cross, which is called the noncrossing rule.

Returning to Figure 2.12, we further notice that the change in the character of the
wave function is restricted to a range around the crossing where V12(R) takes values
comparable to the energy gap. Comparing the left and right columns it becomes clear
that the actual shape of the adiabatic potentials, for instance single versus double
well, is dictated by the form of the diabatic potential curves.

The situation is different in polyatomic molecules. Here, the crossing conditions
U1(R) = U2(R) and V12(R) = 0 can be simultaneously fulfilled even for states
having the same symmetry. However, for an N-dimensional PES these are only
two conditions, that is the crossing will only be in N − 2 dimensions (if V12(R) = 0
due to symmetry, the crossing is in N − 1 dimensions only). For instance, in the
two-dimensional case, the PES of two electronic states of the same symmetry will
intersect in a single point (N − 2 = 0). The topography of the PES in the vicinity of
this point is that of a double cone and usually called a conical intersection (this was
first introduced by E. Teller in 1937). A numerical example is shown in Figure 2.13.
A frequently used model Hamiltonian describing this situation will be discussed in
Section 6.6.2.

2.7 Condensed-phase Approaches

In the previous sections we were concerned with the electronic structure of poly-
atomic molecules and their parametric dependence on the positions of the nuclei.
The numerical effort for calculating ground state energies or PES clearly prohibits
an application to systems of hundreds of interacting molecules or to macroscopic
systems such as molecules in solution.

A straightforward but approximate solution of this problem is the inclusion of
a few solvent molecules or, if possible, the first solvation shell into the quantum
chemical calculation. This so-called supermolecule approach has the advantage
that short-range interactions between solute and solvent molecules are reasonably
accounted for. Thus, one can learn about the local structure of the solvent around
the solute. Such a treatment is necessary, for instance to describe the formation of
hydrogen bonds that may occur if the solvent is water.

The long-range electrostatic interactions are, of course, not included in the super-
molecule approach. They are, however, accounted for in the so-called continuum
models, which are in turn applicable whenever short-range interactions are negligi-
ble. The model implies that we discard the discrete nature of the solvent and treat
it as a homogeneous entity fully characterized by its macroscopic properties. This
approach will be discussed in Section 2.7.1. Indeed, it is flexible enough to accom-
modate the supermolecule approach yielding a mixed description that may distin-
guish between the first solvation shell and the rest of the solvent. Another strategy
is followed in the so-called Quantum Mechanics/Molecular Mechanics (QM/MM)
approach, where a quantum chemical calculation of the solute or an active site is
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Figure 2.13 (a) Two intersection diabatic harmonic PESs along the so-called tuning and
coupling coordinates qt and qc, respectively. (b) Adiabatic PES obtained by including a
coupling of the form V12 ∝ qc.

combined with point charges resulting from a classical but atomistic treatment of
the environment. The QM/MM approach will be addressed in Eq. (2.138).

2.7.1 Dielectric Continuum Model

In the following section, we give a brief summary of some concepts of classical elec-
trostatics. The selection will provide a background for the reaction field approach
discussed in Section 2.7.1.2 as well as for the elaboration of electron-transfer theory
in Chapter 7.

2.7.1.1 Medium Electrostatics
Consider a solvent in a container whose dimension is such that the effects due to
the walls can be neglected. If there are no free charges, the solvent is a dielectric. The
mth solvent molecule can be characterized by its charge density distribution 𝜌m(x).
Using the definition of Section 2.2, the classical expression for 𝜌m(x) reads

𝜌m(x) = −e
N(m)

el∑
j=1
𝛿(x − r(m)

j ) + e
N(m)

nuc∑
n=1

z(m)
n 𝛿(x − R(m)

n ), (2.115)
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where the additional index m is used to label the respective molecule here and in
what follows.

For the present electrostatic considerations, it suffices to consider the stationary
version of Maxwell’s equations∇E(x) = 4𝜋𝜌(x) and∇ × E(x) = 0, which enables one
to compute the electric field E(x) induced by the complete molecular charge distri-
bution

𝜌(x) =
∑

m
𝜌m(x). (2.116)

The field is related to the scalar potential by E(x) = −∇Φ(x). The scalar potential can
be obtained from the Poisson equation ΔΦ(x) = −4𝜋𝜌(x), which gives

Φ(x) =
∫

d3x′ 𝜌(x′)|x − x′| . (2.117)

Often, the complete information on the microscopic electric field contained in these
expressions is of little practical use. In many experiments, one is only interested in
macroscopic quantities, which are averaged with respect to their microscopic con-
tributions. This averaging is equivalent to the elimination of the short-range part of
the field from all expressions.

In order to explore this point further, let us assume that we have divided the macro-
scopic probe volume into smaller volumes ΔV(xs) that still contain a large number
of molecules. Here, xs is a vector pointing to the sth small volume (see Figure 2.14).
Replacing the total integration of Eq. (2.117) by integrations with respect to the
ΔV(xs), we get

Φ(x) =
∑

s ∫
ΔV(xs)

d3x′ 𝜌(x′)|x − x′| . (2.118)

We are only interested in the long-range contributions of the charges located
in ΔV(xs) to the potential. Therefore, we take x to be far away from xs such that|x − xs|≫ |x′ − xs|. This inequality enables us to expand the factor |x − x′|−1 into a
Taylor series with respect to x′ − xs. Keeping only the first two terms, we get

1|x − xs − (x′ − xs)| ≈ 1|x − xs| − (x′ − xs)∇x
1|x − xs| . (2.119)

Inserting this into Eq. (2.118), one obtains the first two contributions of the so-called
multipole expansion of Φ(xs). The monopole term

Φmp(x) =
∑

s

1|x − xs| ∫
ΔV(xs)

d3x′
𝜌(x′) (2.120)

corresponds to the potential of a point charge located at x = xs. If there is no net
charge in ΔV(xs) this contribution vanishes. Introducing the dipole moment of
ΔV(xs) as

ds = ∫
ΔV(xs)

d3x′ (x′ − xs)𝜌(x′), (2.121)
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the second term in the above expansion can be written as

Φdp(x) =
∑

s
ds

x − xs||x − xs
||3 . (2.122)

The dipole moment is the quantity we will be concerned with in the following discus-
sion of dielectric media. In the spirit of the Taylor expansion (2.119), the contribution
of higher-order multipole moments is usually small compared to the dipole term. An
important exception occurs if the dipole moment vanishes for symmetry reasons.

The dipole moment of the small volume element ds can of course be traced to the
individual molecular dipole moments. We have

ds =
∑

m∈ΔV(xs)
dm, (2.123)

with

dm =
∫

d3x′x′
𝜌m(x′). (2.124)

Apparently, whether a molecule has a permanent dipole moment or not is deter-
mined by its symmetry. Systems such as CCl4 or diatomics such as H2 or N2 do not
have a permanent dipole; the dielectric is nonpolar. However, application of an exter-
nal field can lead to a distortion of the molecular charge density and in this way
induce a dipole moment. On the other hand, H2O and NH3, for instance, do have a
permanent dipole and form polar dielectrics (see Figure 2.14).

For the description of the behavior of the dielectric in some external field, for
example, it is customary to introduce the dipole density or the polarization, which
is defined as

P(xs) =
ds

ΔV(xs)
. (2.125)

Suppose that the discrete nature of our subdivision into the ΔV(xs) can be neglected.
Then, xs becomes a continuous quantity, and we can write the macroscopic potential
in dipole approximation and under the assumption of charge neutrality as

Φmac(x) =
∑

s
ds

x − xs||x − xs
||3 ≈

∫
d3x′ P(x′) x − x′|x − x′|3

=
∫

d3x′ P(x′)∇x′
1|x − x′| = −

∫
d3x′ ∇x′P(x′)|x − x′| . (2.126)

O

HH

dm

0

xs

x

x′

ΔV(xs)

(a) (b)

Figure 2.14 (a) Dipole moment of H2O (left). (b) Macroscopic electrostatic quantities are
obtained by averaging over the volume elements ΔV (xs). The ΔV (xs) contain a large
number of individual molecules but have a dimension small enough to neglect the discrete
nature of the vector xs pointing to it. The distance |x − xs| should be large.
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Here, the integration is with respect to the entire probe volume. Furthermore, the
last line has been obtained by making use of the Gauss theorem.

Comparison of this expression with Eq. (2.118) suggests the interpretation of −𝛁P
as a charge density. Specifically, we can define the (macroscopic) polarization charge
density

𝜌P (x) = −𝛁P(x). (2.127)

Besides this density, an additional externally controlled charge density 𝜌ext may be
present. By this, we mean, for example, the charge density is introduced in a dielec-
tric if a solute molecule is placed into it (see below). Note that we are only interested
in the long-range contribution of the solute to the electric field. The equation for the
macroscopic electric field in the medium is then given by

∇Emac(x) = 4𝜋(𝜌ext(x) + 𝜌P (x)). (2.128)

Defining the dielectric displacement vector as

D = Emac + 4𝜋P, (2.129)

the macroscopic source equation becomes

𝛁D(x) = 4𝜋𝜌ext(x). (2.130)

According to this relation, the dielectric displacement field can be interpreted as the
external field.

So far, we discussed how a given charge distribution of the medium results in an
electric field. But one can also ask the question: how an external field leads to a
change in the medium charge distribution? Within the present approach, the answer
to this question is that the polarization of the medium will be an unknown func-
tional of the total macroscopic electric field, P = P[Emac]. If we assume that the
perturbation of the medium due to the electric field is weak, a Taylor expansion of
the polarization in terms of Emac is justified. In linear approximation, the relation
between the electric field and the polarization is expressed in terms of the so-called
linear susceptibility 𝜒 as

P(x) = 𝜒Emac(x). (2.131)

Here, we assumed that the medium is homogeneous and isotropic. In general, how-
ever, the susceptibility is a tensor, that is the vectors of the polarization and the
electric field do not have to be parallel. Further, for an inhomogeneous medium,
the relation between polarization and electric field may be nonlocal in space. One
can introduce the dielectric constant

𝜀 = 1 + 4𝜋𝜒 (2.132)

and write

Emac(x) = 𝜀
−1D(x). (2.133)

This expression shows that the total macroscopic field Emac(x) results from the
response of the medium to the external field. The response properties of the medium
are contained in the inverse dielectric function.
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Finally, we give the expression for the potential energy of a charge distribution:

W = 1
2 ∫

d3x 𝜌(x)Φ(x). (2.134)

2.7.1.2 Reaction Field Model
In this section we address the influence a continuously distributed solvent has on
the solute’s electronic properties. In principle, we expect the following behavior:
The solute’s electrons and nuclei feel the charge of the solvent molecules and vice
versa. As a result, the charge distribution in the solute changes and, consequently,
its electronic spectrum. But at the same time, the charge distribution of the solvent
is rearranged too.

In what follows, this situation will be discussed using a model where the solute
is treated by its electronic Schrödinger equation, and the solvent enters through its
macroscopic dielectric properties. The solute molecule is placed inside a cavity (Vcav
with dielectric constant equal to 1 (vacuum)) within the dielectric (Vsol). We will
assume for simplicity that the solvent is homogeneous and isotropic, that is we can
characterize it by a dielectric constant 𝜀sol. This neglects, for instance the effects com-
ing from a locally inhomogeneous distribution of the solvent molecules in the first
solvation shell.

The first important step is the definition of the size and the shape of the cavity.
Various cavity shapes are possible, which should in the ideal case give a reasonable
approximation to the molecular charge distribution. The simplest and most approx-
imate model is that of a spherical cavity. More elaborate calculations could be based,
for instance on the union of overlapping spheres centered at the different nuclei (see
Figure 2.15). The size of the cavity is also an important parameter. In particular, one
must be aware that serious errors can be expected if the cavity size is too small to
accommodate most of the charge distribution as described by the molecular wave
function. Thus, we assume that the solute’s charge distribution, 𝜌mol(x), is confined
inside Vcav.

Figure 2.15 Molecule (doubly-charged glyphosate) and cavity within a dielectric
continuum (water). The gray scale on the surface of the enclosing cavity is drawn to
illustrate the variation of the electrostatic potential Φpol(x) (figure courtesy of A. Ahmed ).
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Provided that the molecular charge distribution 𝜌mol(x) is given and the size and
the shape of the cavity have been defined, we still have to account for the coupling
between solvent and solute. In the spirit of the dielectric continuum description
of the solvent, the exact microscopic Coulomb interaction (cf. Eq. (2.1)) is approxi-
mated by the respective expressions for a dielectric discussed in Section 2.7.1.1.

We first note that the solute’s charge distribution generates an electrostatic
potential which is obtained from ΔΦ(x) = −4𝜋𝜌mol(x) inside the cavity and from
ΔΦ(x) = 0 within Vsol. The boundary conditions at the cavity surface are given by
Φ(x ∈ Vcav) = Φ(x ∈ Vsol) and 𝜕Φ(x ∈ Vcav)∕𝜕n = 𝜀sol𝜕Φ(x ∈ Vsol)∕𝜕n. Here, n is a
unit vector on cavity surface pointing outward.

The potential of the solute’s charge density induces a polarization of the dielec-
tric. This polarization gives rise to a potential Φpol(x). In the present case, Φpol(x)
depends on the polarization charge densities that are induced at the cavity surface.
The total electrostatic potential inside Vcav is therefore Φpol(x) + Φ(x). According
to Eq. (2.134), we can calculate the interaction energy (polarization energy)
between the solute’s charge distribution and the induced so-called reaction field as
follows:

Wpol =
1
2 ∫

d3x 𝜌mol(x)Φpol(x). (2.135)

In a next step, the electrostatic problem has to be linked to the QM treatment of
the solute molecule. This is straightforwardly done by replacing the discrete classi-
cal charge distribution in Eq. (2.135) by the QM expectation value of the respective
charge density operator: 𝜌mol(x) →

⟨
�̂�mol(x)

⟩
. It is customary to stay with a classical

description of the nuclei such that
⟨
�̂�mol(x)

⟩
= 𝜌nuc(x) +

⟨
�̂�el(x)

⟩
. Here, the nuclear

and the electronic parts are given by the second term in Eq. (2.8) and the first term
in Eq. (2.9), respectively. Using the Born–Oppenheimer separation of electronic and
nuclear motions, the integration in (2.9) is performed with respect to an adiabatic
electronic state for a fixed nuclear configuration. In order to incorporate the effect of
the continuous dielectric on the solute’s electronic properties, we have to interpret
Wpol as the expectation value of the single-particle operator

V̂ int =
1
2 ∫

d3x�̂�mol(x)Φpol(x). (2.136)

Within Hartree–Fock theory, this operator is simply added to the single-particle
Hamiltonian in the Fock operator in Eq. (2.28).

At this point, it is important to notice that Φpol(x) itself depends on the molecu-
lar charge distribution. This makes the determination of the electronic states of the
solute a nonlinear problem which has to be solved iteratively: starting from some
initial guess for the reaction field potential, one first calculates the charge distribu-
tion of the molecule. The resulting potential is then used to generate a new Φpol(x).
This procedure is repeated until some convergence criteria are fulfilled. Finally, one
obtains the electronic energies and the respective wave functions for the molecule
inside the cavity.

The reaction field method has found various applications. In particular, one is
frequently interested in knowing the energy required to adjust the solvent molecules
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(in the present case, their dipole moments) in response to the introduction of a solute
(solvation energy). This solvation energy, for example often is responsible for the
stabilization of certain isomers of the solute.

In preparation of the following Chapter 3, we point out that the reaction field
approach has also a dynamical aspect. In order to appreciate this, we have to recall
that it is the (quantum mechanically) averaged charge distribution of the solute that
is “seen” by the solvent. The time scale for electronic motion is typically of the order
of 10−15–10−16 seconds. Thus, for the solvent to experience only the mean field due
to the solute’s electrons, it is necessary to assume that the time scale required for
building up a polarization in the solvent is much longer than that of the electronic
motion. If we consider, for example rotational motion of the solvent molecules on a
time scale of about 10−12 seconds (orientational polarization), this reasoning is cer-
tainly valid. However, if the polarization is of electronic character, the description in
terms of a static dielectric constant is likely to fail.

2.7.2 Explicit Quantum-classical Solvent Model

In Section 2.7.1 we have adopted the point of view that the environment can be
described by means of a dielectric continuum model, implying that its molecular
structure does not matter for the process under consideration. As mentioned before,
this idea can be extended by explicitly including, for example a solvation shell
within a supermolecule approach. However, there are situations where a contin-
uum description might fail. Consider, for example cases of long-range structural
correlations as they occur in proteins whose structures and functions are often not
only determined by local properties, but an explicit account of the full atomistic
details is also required.

Keeping in mind the explicit description of many DOFs prohibits the use of QM
approaches for the generation of the forces that act on the nuclei as outlined in
Section 2.4. Most of the interaction potentials between different atoms, groups
of atoms within a molecule, or molecules can ultimately be traced back to the
Coulomb interaction between electronic and nuclear charges (see Section 2.2).
Instead of taking into account the Coulomb interactions on an ab initio level,
it is customary to use parameterized empirical potentials (Molecular Mechanics
[MM] force fields) whose parameters are chosen in a way to obtain agreement with
experimental results, for example for thermodynamic properties of the solvent.
These empirical interaction potentials are usually partitioned into parts involving
only a single atom (for instance, potentials describing external fields or container
walls), pairs of atoms (bonding or repulsive interaction), three atoms (for instance,
bending motions), four atoms (for instance, dihedral motions), etc. A prominent
pair potential is the so-called Lennard-Jones potential

VLJ(|Rm − Rn|) = 4𝜖mn

((
𝜎mn|Rm − Rn|

)12

−
(

𝜎mn|Rm − Rn|
)6
)
.

(2.137)



50 2 Electronic and Vibrational Molecular States

It has a steeply rising repulsive wall for interparticle separations less than 𝜎mn
(effective particle diameter due to nonbonding interactions in the region of wave
function overlap, which is specific to the type of atoms), a negative well of depth
𝜖mn, and a long-range attractive r−6 tail (van der Waals interaction, for instance due
to the so-called dispersion interactions originating from the correlated electronic
motion in different molecules). We would like to stress that this effective pair
potential should account for the effect of complicated many-body interactions in
an averaged way. Further, it should be noted that for situations where electro-
static interactions are important (for example, if the system contains ions), the
Lennard-Jones potential is not sufficient, and the classical Coulomb interaction has
to be taken into account explicitly.

However, the QM character of the electronic DOFs cannot always be neglected, for
example if the bond-making and -breaking processes need to be described accurately.
This calls for a combination of QM and MM force calculations, which is achieved in
the QM/MM approach. Here, the total system is separated into a QM and an MM
part

Htotal = HQM + HMM + VQM/MM, (2.138)

where VQM/MM is the interaction potential between the two regions. Separation
schemes can be distinguished according to whether or not the QM/MM boundary
cuts through molecular bonds. Bonds are cut, for instance in cases where only the
active site, for instance of an enzyme, is treated quantum mechanically, and all
other atoms including the solvent are taken into the MM part. There are different
ways of dealing with this situation such as capping the dangling bonds with link
atoms such as hydrogen. In the simpler case where, for example a solute is treated
quantum mechanically and embedded in a classical solvent such that there is
negligible overlap of electron densities in the boundary region, one can proceed
as follows. For the QM part, one takes the full Hamiltonian, Eq. (2.1), whereas
the classical part is composed of empirical force fields such as Eq. (2.137) as well
as bonding and Coulomb terms. For the interaction Hamiltonian, one includes a
Lennard-Jones potential for the nonbonded interaction as well as a Coulomb term
for the interaction between QM electrons (first term) as well as nuclei (second term)
with the classical environment as follows:

VQM/MM =
∑

m∈QM

∑
n∈MM

VLJ(|Rm − Rn|) + ∑
i∈QM

∑
n∈MM

eqn|ri − Rn|
+
∑

m∈QM

∑
n∈MM

ezmqn|Rm − Rn| . (2.139)

Here, qm are the partial charges assigned to the molecules in the classical MM force
field.20) For the solution of the electronic Schrödinger equation, only the first term
of this expression is of relevance since it contains the electronic position operator of
the QM part. However, we notice that this is merely a one-electron operator (such

20) Note that in general the charges do not have to be multiples of e and are not restricted to
atomic positions. Further, one distinguishes electronic and polarizable embedding, depending on
whether or not the MM force field contains fixed or polarizable charges.
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as Vel−nuc), which can be included, for example into the Hartree–Fock scheme in a
straightforward manner, thereby allowing one to treat the effect of an explicit atom-
istic environment on the electronic structure of the solute.

2.8 Supplement

2.8.1 Franck–Condon Factors

In Section 2.5.2, we have discussed the Franck–Condon factors that describe the
overlap between wave functions of different PESs. The expression equation (2.79)
is limited to the case of two harmonic potentials of equal curvature. If the curva-
tures are different, the resulting expressions become more complicated. In terms of
the numerical implementation, however, it is much more convenient to express the
Franck–Condon factors via recursion relations. Their derivation for the general case
of different curvatures will be outlined as follows.

Using the operator notation introduced in Section 2.5.2, the Franck–Condon factor
reads

⟨𝜒aM
||𝜒bN

⟩
= ⟨0a| (Ca)M√

M!
D(ga)D+(gb)

(C+
b )

N√
N!

||0b
⟩
, (2.140)

where we skipped the normal mode index but accounted for the fact that the opera-
tors and the vacuum states depend on the index of the PES because of the different
frequencies. To proceed, we have to reformulate Eq. (2.140) into a state vector prod-
uct that only contains one type of oscillator operator, for example Ca, and one type
of vacuum, ∣ 0a⟩. This is possible if we use the so-called squeezing operator

S+
b (z) = exp(z(C2

b − C+2
b )∕2) (2.141)

to write

Ca = S+
b (zab) Cb Sb(zab) (2.142)

with zab = ln(𝜔a∕𝜔b)∕2. After some algebra, one finds the following expression for
the Franck–Condon factor:

⟨𝜒aM
||𝜒bN

⟩
= ⟨0 ∣ CM√

M!
D(g) S(z) C+N√

N!
∣ 0⟩. (2.143)

Here, we have introduced g = ga − gb
√
𝜖, 𝜖 = 𝜔a∕𝜔b, C = Ca, |0⟩ = ||0a

⟩
, and

z = zab = (ln 𝜖)∕2. Starting with the interchange of one annihilation operator from
the left to the right in Eq. (2.143), a recursion relation for the Franck–Condon factor
can be derived. One obtains

⟨𝜒aM
||𝜒bN

⟩
=
√

N − 1
N

1 − 𝜖
1 + 𝜖

⟨𝜒aM
||𝜒bN−2

⟩
−

2g
√
𝜖√

N(1 + 𝜖)
⟨𝜒aM

||𝜒bN−1
⟩

+
√

M𝜖

N
2

1 + 𝜖
⟨𝜒aM−1

||𝜒bN−1
⟩

(2.144)
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and

⟨𝜒aM
||𝜒bN

⟩
= −

√
M − 1

M
1 − 𝜖
1 + 𝜖

⟨𝜒aM−2
||𝜒bN

⟩
+

2g√
M(1 + 𝜖)

⟨𝜒aM−1
||𝜒bN

⟩
+
√

N𝜖
M

2
1 + 𝜖

⟨𝜒aM−1
||𝜒bN−1

⟩
. (2.145)

Notice that terms with “negative” quantum numbers have to be set equal to zero. The
initial value for the recursion relations can be simply calculated in the coordinate
representation, which gives

⟨𝜒a0
||𝜒b0

⟩
=

√
2
√
𝜖√

1 + 𝜖
exp

(
−

g2

1 + 𝜖

)
. (2.146)

Equations (2.144)–(2.146) together with the relation ⟨𝜒aM
||𝜒bN

⟩
=
(⟨𝜒bN

||𝜒aM
⟩)∗

allow for a numerically stable determination of the Franck–Condon overlap
integrals.

2.8.2 The Two-level System

There are many situations where the relevant molecular system can be modeled as
an effective two-level system. A prominent example is given by the one-dimensional
double minimum potential shown in Figure 2.16. This type of potential describes
isomerization reactions such as intramolecular proton transfer. Provided the tem-
perature is low enough such that thermal occupation of higher states is negligible,
the dynamics for the situation of Figure 2.16 is readily described in terms of the two
lowest states. In the following discussion we will study the eigenstates as well as the
population dynamics of a generic two-level system. This exactly solvable model will
provide a reference case for the subsequent discussions.

The Hamiltonian for a two-level system can be written in two alternative ways.
First, we can assume that we know the eigenstates |±⟩ and eigenenergies ±, for
instance of the model potential shown in Figure 2.16. Then, we can write

H =
∑
𝜅=±


𝜅
|𝜅⟩ ⟨𝜅| . (2.147)

Reaction coordinate

E
ne

rg
y

Figure 2.16 Potential energy
surface along a reaction
coordinate describing the
intramolecular proton transfer
in asymmetrically substituted
malonaldehyde. The potential
supports two below barrier
states whose probability
density is plotted here with a
vertical offset corresponding
to the respective
eigenenergies (figure courtesy
of H. Naundorf ).
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If we do not know the eigenstates but some zeroth-order states |1⟩ and |2⟩ that cor-
respond to a situation where, for instance the coupling between the left and the right
well in Figure 2.16 is switched off, the Hamiltonian reads

H = 𝜀1|1⟩⟨1| + 𝜀2|2⟩⟨2| + V |1⟩⟨2| + V∗|2⟩⟨1|. (2.148)

Here, the level energies of the zeroth-order states are denoted 𝜀a=1,2, and the cou-
pling between these states is given by V . Independent of the specific situation, the
Hamiltonian (2.148) can be transformed to take the form (2.147). In what follows,
we outline how this diagonalization of (2.148) is achieved.

In a first step, we determine the eigenvalues and eigenstates that follow from the
stationary Schrödinger equation

H|Ψ⟩ = |Ψ⟩. (2.149)

We expand the state vector with respect to the states |a = 1,2⟩,|Ψ⟩ = C(1)|1⟩ + C(2)|2⟩, (2.150)

which leads to a matrix equation for the expansion coefficients C(a = 1,2),(
𝜀1 V
V∗

𝜀2

)(
C(1)
C(2)

)
= 

(
C(1)
C(2)

)
. (2.151)

The eigenvalues are obtained from the secular equation,

( − 𝜀1)( − 𝜀2) − |V |2 = 0. (2.152)

Solving this quadratic equation gives


𝜅=± = 1

2

{
𝜀1 + 𝜀2 ±

√
(𝜀1 − 𝜀2)2 + 4|V |2 } . (2.153)

To determine the expansion coefficients, and thus the eigenstates, the 
𝜅=± are

inserted into the eigenvalue equation (2.151),(

𝜅
− 𝜀1 −V

−V∗ 
𝜅
− 𝜀2

)(
C
𝜅
(1)

C
𝜅
(2)

)
= 0. (2.154)

Note that the expansion coefficients C(m) have been labeled by the quantum num-
bers 𝜅 = ±. If we make use of the normalization condition∑

m

||C𝜅
(m)||2 = 1, (2.155)

we obtain

||C𝜅
(1)||2 =

(

𝜅
− 𝜀2

)2(

𝜅
− 𝜀2

)2 + |V |2 . (2.156)

From Eq. (2.153), we get the relations

(
𝜅
− 𝜀1)(𝜅 − 𝜀2) = |V |2 (2.157)

and

+ + − = 𝜀1 + 𝜀2, (2.158)
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which, if inserted into (2.156), gives

||C𝜅
(1)||2 = (

𝜅
− 𝜀2)2

(
𝜅
− 𝜀2)2 + (

𝜅
− 𝜀1)(𝜅 − 𝜀2)

=

𝜅
− 𝜀2


𝜅
− 𝜀2 + 

𝜅
− 𝜀1

=

𝜅
− 𝜀2


𝜅
− 

𝜅

. (2.159)

To have compact notation, we introduced 𝜅 = ±, if 𝜅 = ∓. The complex expansion
coefficient itself reads

C
𝜅
(1) =

√

𝜅
− 𝜀2


𝜅
− 

𝜅

ei𝜒1(𝜅), (2.160)

where the phase 𝜒1(𝜅) remains open at this point. In a similar manner, we can derive

|C
𝜅
(2)| =√ 

𝜅
− 𝜀1


𝜅
− 

𝜅

. (2.161)

However, the phase of C
𝜅
(2) is not free but has to be determined from

C
𝜅
(2) = |C

𝜅
(2)|ei𝜒2(𝜅) = |V |e−i arg(V)


𝜅
− 𝜀2

√

𝜅
− 𝜀2


𝜅
− 

𝜅

ei𝜒1(𝜅). (2.162)

We note that for 𝜅 = +, it is 
𝜅
> 𝜀2, and for 𝜅 = −, one has 

𝜅
< 𝜀2. Consequently,

the phase 𝜒2(𝜅) is given by 𝜒2(+) = 𝜒1(+) − arg(V) and 𝜒2(−) = 𝜒1(−) − arg(V) + 𝜋.
There exist alternative formulas for ||C𝜅

(1)||2 and ||C𝜅
(2)||2. Before presenting them

we note that |C
𝜅
(1)| = |C

𝜅
(2)|, which is easily demonstrated using, for example

Eq. (2.158). To get the first alternative to Eqs. (2.160) and (2.162), one introduces

ΔE = − − 𝜀2 ≡
1
2

{
𝜀1 − 𝜀2 +

√
(𝜀1 − 𝜀2)2 + 4|V |2 } . (2.163)

Using the abbreviation

𝜂 = ΔE|V | , (2.164)

it follows that||C+(1)||2 = ||C−(2)||2 = 𝜂
2

1 + 𝜂2 (2.165)

and ||C−(1)||2 = ||C+(2)||2 = 1
1 + 𝜂2 . (2.166)

To arrive at another alternative notation, one defines the ratio

𝜆 = 2|V ||Δ𝜀| , (2.167)

with Δ𝜀 = 𝜀1 − 𝜀2. We obtain for the expansion coefficients (“sgn” is the sign func-
tion)

||C𝜅
(1)||2 = 1

2

(
1 + 𝜅

sgn(Δ𝜀)√
1 + 𝜆2

)
. (2.168)
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Next, we use the trigonometric relation

cos2
𝛾 = 1

2

⎛⎜⎜⎜⎝1 + 1√
1 + tan2(2𝛾)

⎞⎟⎟⎟⎠ , (2.169)

which is also valid for the sine function after replacing the plus sign in the bracket
on the right-hand side by a minus sign. We identify

𝛾 = 1
2

arctan
2|V ||Δ𝜀| (2.170)

and obtain from Eq. (2.168) the expressions||C+(1)||2 = ||C−(2)||2 = cos2
(
𝛾 + 𝜋

4
[1 − sgn(Δ𝜀)]

)
(2.171)

and ||C−(1)||2 = ||C+(2)||2 = sin2
(
𝛾 − 𝜋

4
[1 − sgn(Δ𝜀)]

)
. (2.172)

The quantity 𝛾 is the so-called mixing angle. Finally, we point out that the coefficients
fulfill the condition∑

𝜅

C∗
𝜅
(m)C

𝜅
(n) = 𝛿mn, (2.173)

which is obtained by expanding the orthogonal zeroth-order states in terms of the
eigenstates.

2.8.3 The Linear Molecular Chain and the Molecular Ring

The linear molecular chain represents a simple model system for studying the
transfer phenomena as well as the behavior of energy spectra in dependence on the
system size. In different contexts it is also known as the tight-binding or the Hückel
model. We will encounter this model when discussing electron and excitation
energy transfer in Chapters 7 and 9, respectively. In the present section, we focus on
the most simple setup consisting of an arrangement of N identical quantum states
at energy 𝜀0 and being coupled via the matrix element Vm,m+1 = Vm−1,m = V ; that
is, only nearest-neighbor couplings are assumed. This situation might describe, for
example the diabatic states ||𝜑m

⟩
of different parts of an electron-transfer system

(donor, bridge, and acceptor, see Chapter 7). The potential coupling between these
diabatic electronic states is then given by V (see also Eq. (2.103)).

This results in the following Hamiltonian:

Hchain =
N∑

m=1
𝜀0
||𝜑m

⟩⟨
𝜑m
|| + N−1∑

m=1

(
V ||𝜑m+1

⟩⟨
𝜑m
|| + H. c.

)
. (2.174)

In a first step, we determine the eigenstates ||Ψa
⟩

of the chain by solving the station-
ary Schrödinger equation

Hchain
||Ψa

⟩
= a

||Ψa
⟩
. (2.175)
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Since the states ||𝜑m
⟩

are supposed to be known, we can expand the ||Ψa
⟩

in this
basis: ||Ψa

⟩
=
∑

m
Ca(m) ||𝜑m

⟩
. (2.176)

Inserting Eq. (2.176) into Eq. (2.175) and using Eq. (2.174), we obtain the equation
for the expansion coefficients Ca(m):

(a − 𝜀0)Ca(m) = V[Ca(m + 1) + Ca(m − 1)], (2.177)

which is valid for 1 < m < N. For m = 1 and m = N, we have to take into account
the finite structure of the chain. This gives two additional equations:

(a − 𝜀0)Ca(1) = VCa(2) (2.178)

and

(a − 𝜀0)Ca(N) = VCa(N − 1). (2.179)

The set of Eqs. (2.177), (2.178), and (2.179) can be solved using the following ansatz:

Ca(m) = C sin(am), (2.180)

where C is a real constant. Inserting Eq. (2.180) into Eq. (2.177) gives

(a − 𝜀0) sin(am) = V (sin(a[m + 1]) + sin(a[m − 1])) . (2.181)

With the help of some theorems for trigonometric functions, this equation can be
transformed into

a = 𝜀0 + 2V cos a. (2.182)

This expression tells us how the energy spectrum depends on the yet unknown
quantum number a; the same result is obtained from Eq. (2.178). Equation (2.179),
however, gives the condition

(a − 𝜀0) sin(aN) = V sin(a[N − 1]), (2.183)

which can be rewritten as(
(a − 𝜀0) − 2V cos a

)
sin(aN) = −V (sin(aN) cos a + cos(aN) sin a)

= 0, (2.184)

where the second line follows from Eq. (2.182). Rearranging the right-hand side of
Eq. (2.184) gives the condition for the eigenvalues

sin (a(N + 1)) = 0, (2.185)

which is solved by

a =
𝜋j

N + 1
(j = 0,±1,±2,…). (2.186)

Thus, the energy spectrum becomes

a = 𝜀0 + 2V cos
(

𝜋j
N + 1

)
. (2.187)
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The normalization constant C appearing in Eq. (2.180) is obtained from the relation:
N∑

m=1

||Ca(m)||2 = C2
∑

m
sin2(am) = 1. (2.188)

Using the tabulated result for the sum, one arrives at

C =
√

2
N + 1

. (2.189)

If one considers the expansion coefficients, Eq. (2.180), it is obvious that they are
identical to zero for j = 0 and for multiples of N + 1. Furthermore, an inspection of
Eqs. (2.187) and (2.180) shows that identical results are obtained for j being in the
interval 1,… ,N and for all other j which differ from j by multiples of N. Therefore,
j has to be restricted to the interval 1,… ,N.

In the remaining part of this section we discuss the model of a molecular
ring. Such a system we will encounter, for instance in Chapter 9. To arrive at a
Hamiltonian for a molecular ring, that is a circular and regular arrangement of
identical molecules, the following specification of the model for the chain becomes
necessary. The first molecule of the chain is connected with the last one in a way
that the coupling strength between both takes the value V , which is the strength
of the nearest-neighbor couplings between all other molecules too. For this model,
we may use the ansatz, Eq. (2.176), but the expansion coefficients have to fulfill
Ca(m) = Ca(m + 𝜈N) (where 𝜈 is an integer). This requirement can be satisfied by
choosing

Ca(m) = C exp(iam), (2.190)

with a = 2𝜋j∕N (j = 0,… ,Nmol − 1). Since ||Ca(m)||2 = |C|2, one easily verifies that
C = 1∕

√
N. Inserting the expansion coefficients into Eq. (2.177) (Eqs. (2.178) and

(2.177) are dispensable), it again follows Eq. (2.187) for the eigenvalues Ea, but now
with a modified definition of the quantum numbers a as given above.
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3

Dynamics of Isolated and Open Quantum Systems

A quantum mechanical description of time-dependent phenomena in two
types of molecular systems is given. First, we consider small systems that
are isolated from their surroundings. This situation can be modeled using
the time-dependent Schrödinger equation. Some basic properties of the
time-evolution operator are discussed, and the concept of the scattering operator
is introduced, which can serve as a starting point of a perturbation expansion.
Further the multiconfiguration time–dependent Hartree method is presented,
which allows to treat high–dimensional wave packet propagation. It is shown
that with increasing dimensionality of the considered system, the treatment of
transitions between different manifolds of quantum states can be replaced by a
rate description based on the Golden Rule of quantum mechanics.
To go beyond a description of the system by a single wave function, the density
operator (statistical operator) is introduced. This concept, when specified to the
reduced density operator, is used to treat the dynamics of the system when inter-
acting with some macroscopic environment. The interaction can be systemati-
cally incorporated using the projection operator formalism. The latter is shown to
provide a means to develop a perturbation theory in line with a reduction scheme
onto the state space of the small system. Restricting ourselves to the second order
of the perturbation expansion, we derive a generalized master equation, which is
the basic equation for the considered system–reservoir situation.
The approach is contrasted with a generalized rate theory that focusses on the
computation of diagonal matrix elements of the density operator taken with
respect to some basis. The rate expressions of the Golden Rule type are obtained,
as are the higher order extensions.
Finally, we give a brief introduction into nonperturbative methods for dealing
with condensed-phase dynamics. In particular, we discuss the path integral rep-
resentation of the reduced density operator, the hierarchy equation of motion
method, and the quantum–classical hybrid approach.

Charge and Energy Transfer Dynamics in Molecular Systems,
Fourth Edition. Volkhard May and Oliver Kühn.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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3.1 Introduction

In the development of quantum theory, the focus has been on simple systems such as
the harmonic oscillator or the hydrogen atom assuming them to be isolated from the
rest of the universe. The dynamics of such isolated quantum systems is completely
described by the time-dependent Schrödinger equation for the wave functionΨ(x, t),

iℏ 𝜕
𝜕t
Ψ(x, t) = HΨ(x, t). (3.1)

Here, x comprises some set of degrees of freedoms (DOFs). An unambiguous solu-
tion of this first-order differential equation is obtained by fixing an initial wave func-
tionΨ(x, t0). Provided Eq. (3.1) has been solved for a particular Hamilton operator H,
the time dependence of physical observables of the system is given by the expectation
values of the associated Hermitian operators, Ô, with respect to the time-dependent
wave function, O(t) = ⟨Ψ(t)|Ô|Ψ(t)⟩.1)

However, the model of an isolated system is an oversimplification, and different
perturbations from the environment have to be taken into account. One may ask
the question how the dynamics of the quantum system of interest (the system S)
is influenced by some environment. Of course, the answer depends on the actual
type of environment and in particular on its coupling strength to the system. If the
environment comprises only a small number of DOFs, one can attempt to solve
the time-dependent Schrödinger equation, but now for the system plus the small
environment. A typical example are small clusters embedding a diatomic molecule.
Such an approach is impossible if the environment is large and forms a macroscopic
system R (see Figure 3.1). If the environment stays in thermal equilibrium at tem-
perature T as it is the case for many applications, it represents a heat bath for the
system S, and one has to resort to statistical methods as we will see below.

Any coupling to external DOFs results in energy exchange between the system S
and its environment. If initially energy is deposited into S, it will be transferred to
the reservoir over the course of time. The DOFs of the reservoir accept the energy
and distribute it among themselves. If the environment is a macroscopic system, the
energy is distributed over its huge number of DOFs. At the end of this process, the
environment does not “feel” this negligibly small increase in its internal energy. If
the environment stays in thermal equilibrium, S will eventually relax into a state of
thermal equilibrium with R. The situation is different for the case of a small envi-
ronment. Here, all DOFs may become noticeably excited, and it may be possible that
the energy moves back into the system S. This phenomenon is known as recurrence.
The energy transfer from S to its surroundings (possibly followed by a recurrence)
is termed relaxation. If there is no chance for the energy to move back into S, the
unidirectional energy flow into the environment is called dissipation. Obviously, on
short time scales, the distinction between relaxation and dissipation is likely to be
blurred. Hence, there is often no strict discrimination between the two terms in the
literature.

1) Note that whenever the context requires to distinguish operators from observables, we use a
“hat” to mark the operator.
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Dissipation

Relaxation

External field

Microenvironment

(a) (b)

Figure 3.1 (a) Schematic view of a typical situation encountered in condensed-phase
dynamics. A small system interacting with its surroundings (thermal reservoir or
microenvironment) is investigated by means of an externally applied field. The
system–reservoir interaction leads to unidirectional dissipation or bidirectional relaxation
of energy initially deposited into the system. (b) Illustration of system–reservoir
partitioning using the example of the myoglobin protein in the carbon monoxide-ligated
state. Here, the CO molecule can be considered as the relevant system, interacting with its
microenvironment (heme complex) as well as with the surrounding protein; for protein
structure, see Kachalova et al. [1].

In the short time limit, it is possible that one enters a regime where the interaction
of S with its surroundings is negligible. An upper limit for this time scale would be
given, for example by the mean time between two scattering events of the molecule
of interest with the surrounding molecules. In this time range, the time-dependent
Schrödinger equation for the system S alone may provide an adequate description.
This means that for a short time there exists a time-dependent wave function that,
however, will be strongly disturbed in its evolution at later times. To indicate the
existence of a quantum mechanical wave function during this early state of the time
evolution of S, the motion is called coherent. If the coupling to the environment
becomes predominant, the motion changes to an incoherent one.

The incoherent motion can be described by time-dependent occupation probabil-
ities, Pa(t), of certain quantum states of the system, |a⟩. The Pa(t) are obtained as the
solution of rate equations of the type

𝜕

𝜕t
Pa = −

∑
b

(
ka→bPa − kb→aPb

)
. (3.2)

This equation contains the rates of probability transfer per unit time, ka→b, for the
transition from |a⟩ to |b⟩. In the first term on the right-hand side, the decrease in Pa
with time due to probability transfer from |a⟩ to all other states is given. The reverse
process is described by the second term which contains the transfer from all other
states |b⟩ into the state |a⟩. Equation (3.2) was “intuitively derived” by W. Pauli in
1928. It is frequently called Pauli master equation or just master equation. It is already
obvious at this point that a method is required that allows to connect the description
of coherent and incoherent motions. Before dealing with this problem, we give a more
general characterization of the quantum system interacting with an environment.
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There are an impressive number of different experiments that are of the type that
rather small systems are studied under the influence of a thermal environment
using external electromagnetic fields. A typical example is optical spectroscopy of
dye molecules (the system S) in solution (the reservoir R). Studying electronic and
vibrational transitions in these molecules, which are induced by the absorption of
photons, one simultaneously detects the influence of the solvent molecules. This
influence is often given by a random sequence of scattering events between the dye
and the solvent molecules.2) As a consequence, there is a stochastic modulation of
the initial and final states involved in the optical transition. A closer look at this
example provides us with some general aspects of condensed-phase dynamics.

First, experimentalists seek to arrange their setup in such a manner that the exter-
nal field exclusively acts on the dye molecule (solute), without directly influenc-
ing the solvent molecules. This situation demands a theoretical description that is
focused on the DOFs of the molecular system but does not a priori neglect the influ-
ence of the environment. In terms of the probabilistic aspect inherent in quantum
mechanics, this means that reduced probabilities valid only for the molecular system
S have to be introduced.

Second, if molecular properties are sensitive to the so-called microenvironment,
that is if energy levels and other intramolecular quantities change their values with
a change in the molecular structure in close proximity to the studied molecule, a
careful description of the system–reservoir coupling has to be carried out, or S is
supplemented by the microenvironment. An example for a microenvironment is the
first solvation shell of molecules in solution or the rest of a molecule if S refers to
one of its DOFs (see Figure 3.1).

Third, experiments can be performed on single molecules. The standard scheme
of spectroscopy deals with a large number of molecules excited simultaneously by
the external field. Therefore, an averaging with respect to this ensemble has to be car-
ried out in the theoretical description. According to statistical physics, the ensemble
average can be replaced by an average taken with respect to the possible states of
the environment R, provided all molecules are identical. The standard example is a
thermal environment where this averaging is done using the canonical distribution
function for a given temperature T.

Fourth, one often studies a system of identical molecules. But, it is very likely that
every molecule feels a somewhat different environment, and as a result, molecular
properties such as the electronic energy spectrum, vibrational frequencies, and
dipole moments may differ from molecule to molecule. In this case, we have some
static disorder in the system, and an additional averaging over the different possible
values of, for example the transition frequencies is necessary. This particular
situation may lead to a broad absorption band in the linear optical spectroscopy
of the respective transition. Since this broadening is caused by different values of
the transition frequency found for different molecules located at different points
in the probed sample, it is called inhomogeneous broadening. In contrast, the line
broadening caused by the rapid stochastic fluctuations of the molecular properties
is called homogeneous.

2) Note that a polar solvent may also act on the dye via long-range electrostatic forces.
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And finally, if the reservoir is noticeably disturbed by the dynamics of the
molecular system, the state of the microenvironment may be driven away from
equilibrium, and a description in terms of a thermal equilibrium distribution of the
whole reservoir becomes invalid.

The density matrix formalism is the key to the theoretical description of
condensed-phase experiments. It was introduced by L. Landau and J. von Neumann
in 1927. Before looking at the concept of density matrices in more detail, we
introduce some useful definitions. In what follows, we refer to the molecular
system of interest or more specifically to all those DOFs of a molecule that actively
participate in a particular experiment as the relevant system or active system S.
All other DOFs form the irrelevant part of the system. For nearly all applications
discussed below, this irrelevant part forms a macroscopic reservoir R and is assumed
to stay in thermal equilibrium at some temperature T; that is, it can be considered
as a heat bath (see Figure 3.1).

Usually, the relevant quantum system S consists of a small number of DOFs
(< 103) and has a relatively simple energy spectrum. It is the aim of the theory
explained in the following to study the dynamic properties of S on a microscopic
basis. In contrast, the reservoir R consists of a large number of DOFs (103 … 1023) and
may form a macroscopic system. Since the reservoir does not participate in an active
manner in the dynamics initiated, for example by an externally applied field, we do
not aim at its detailed description. As a matter of fact, statistical physics tells us that
such a detailed knowledge is not only impossible but useless as well. Instead, a for-
mulation in terms of quantum statistics, classical statistics, or of stochastic concepts
is appropriate. Here, the choice of the approach is dictated by the problem at hand.
For instance, most liquid-phase environments are very likely to behave classically.

One basic question that will be answered by the theory introduced in this chapter
is: How do the equilibrated reservoir DOFs influence the externally induced
dynamics of the relevant system? Our starting point for developing the formalism
is the general Hamiltonian

H = HS + HS–R + HR. (3.3)

It is composed of the Hamiltonian HS of the relevant system, the Hamiltonian
HR of the reservoir, and the interaction HS–R between them. For the moment,
let the system be characterized by the set of coordinates s = {sj} and their con-
jugate momenta p = {pj}. The reservoir coordinates and momenta are Z = {Z

𝜉
}

and P = {P
𝜉
}, respectively. Note that this type of Hamiltonian has already been

considered in Section 2.5.3. There, however, isolated polyatomics were discussed.
We will see in Chapter 5 how the concept of a Taylor expansion of the global PES
around some stable equilibrium configurations leads to Hamiltonians of the type
(3.3) even in the context of condensed-phase problems. Chapters 6–9 will also
present different variants of this system–reservoir Hamiltonian. Here, we only quote
a generic example that is based on the picture of a reservoir, which carries out small
vibrations around some equilibrium configuration; that is, it can be characterized
by normal-mode oscillations. Thus, we have

HR = 1
2
∑
𝜉

(
P2
𝜉
+ 𝜔2

𝜉
Z2
𝜉

)
. (3.4)
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The Hamiltonian of the relevant part can be simply taken as HS = T(p) + V(s)
with the kinetic and potential energy contributions T(p) and V(s), respectively.
Concerning the coupling part in Eq. (3.3), we notice the small amplitude vibrations
of the reservoir coordinates and restrict HS–R to a linear expansion with respect to
the various Z

𝜉
:

HS–R =
∑
𝜉

K
𝜉
(s)Z

𝜉
. (3.5)

The expansion coefficients K
𝜉
(s) are just functions of the system coordinates. If

a linearization with respect to these coordinates is also included, we arrive at
the frequently used bilinear system–reservoir coupling model (Caldeira–Leggett
model), see Eq. (2.94).

Since S and R are coupled by means of HS–R, it is impossible to introduce a wave
function of the system or the reservoir alone. There only exists the total wave func-
tion, Ψ(s,Z), which does not factorize into a system part ΦS(s) and a reservoir part
𝜒R(Z),

Ψ(s,Z) ≠ ΦS(s) 𝜒R(Z), (3.6)

unless the coupling between S and R vanishes.
To accomplish the aim of the present approach, that is to treat the system dynam-

ics without an explicit consideration of the reservoir dynamics, one could attempt
to reduce the wave function Ψ(s,Z) to a part depending on the system coordinates
s alone. But, in quantum mechanics, we have a probabilistic interpretation of the
square of the wave function. Thus, the only reduced quantity that can be introduced
is the reduced probability density following from an integration of |Ψ(s,Z)|2 with
respect to all reservoir coordinates Z.

We encounter a generalization of this reduced probability distribution if we try to
define the expectation value of an observable described by the Hermitian operator
O = O(s), which acts in the state space of S only. (A dependence on the momenta p
is possible but does not change any conclusion given below.) The expectation value
reads

⟨O⟩ =
∫

ds dZ Ψ∗(s,Z)O(s)Ψ(s,Z). (3.7)

If we introduce

𝜌(s, s) =
∫

dZ Ψ(s,Z)Ψ∗(s,Z), (3.8)

Equation (3.7) can be rewritten as

⟨O⟩ =
∫

ds
[
O(s)𝜌(s, s)

]
s=s. (3.9)

In this notation, the averaging with respect to the large number of reservoir
coordinates is absorbed in the definition of 𝜌(s, s). Changing from the coordinate
representation to a representation with respect to some discrete system quantum
numbers a, b,…, the name density matrix introduced for 𝜌ab becomes obvious. The
density matrix 𝜌(s, s) or 𝜌ab will be more precisely called reduced density matrix
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(RDM) since it is the result of a reduction in the total probability density onto the
state space of the relevant system. If there is no coupling between the system and the
reservoir, that is if HS–R = 0, the density matrix is given as a product of wave functions

𝜌(s, s) = ΦS(s)Φ∗
S(s). (3.10)

Since this expression contains no more information than the wave function itself, it
should be clear that in the case of a quantum system isolated from its environment,
the characterization by a wave function should be sufficient.

In order to get some first insight into the time evolution of the density matrix, the
total wave function (at time t = 0) is expanded with respect to a complete basis set
𝜙a of the system state space:

Ψ(s,Z; t = 0) =
∑

a
𝜙a(s)𝜒a(Z). (3.11)

The 𝜒a are wave functions defined in the reservoir state space and follow from

𝜒a(Z) = ∫
ds 𝜙∗

a(s)Ψ(s,Z; t = 0). (3.12)

The expansion (3.11) reflects Eq. (3.6), and the summation over the various 𝜒a can
be interpreted as a manifestation of system–reservoir correlations.

The time evolution of the total wave function is determined by the related
time-dependent Schrödinger equation, and the expansion similar to that at t = 0
reads

Ψ(s,Z; t) =
∑

a
𝜙a(s)𝜒a(Z, t), (3.13)

now including the time-dependent reservoir wave functions. Since the total wave
function Ψ is normalized, we may deduce

1 =
∑

a
⟨𝜒a(t)|𝜒a(t)⟩ ≡ ∑

a
Pa(t), (3.14)

with Pa(t) = ⟨𝜒a(t)|𝜒a(t)⟩ = ∫ dZ 𝜒a(Z, t)𝜒∗
a (Z, t). This quantity gives the probabil-

ity that a particular system state 𝜙a is realized at time t. Noting Eq. (3.8), we may
introduce the time-dependent density matrix using the expansion (3.13). It follows
that

𝜌(s, s; t) =
∑
a,b

⟨𝜒b(t)|𝜒a(t)⟩𝜙a(s)𝜙∗
b(s)

=
∑

a
Pa(t)𝜙a(s)𝜙∗

a(s) +
∑

a,b
a≠b

⟨𝜒b(t)|𝜒a(t)⟩𝜙a(s)𝜙∗
b(s). (3.15)

The first part of the density matrix proportional to the Pa(t) is different from zero
at all times. However, the second part determined by the overlap expressions⟨𝜒b(t)|𝜒a(t)⟩ of reservoir wave functions belonging to different system states
typically decays in time as ⟨𝜒b(t)|𝜒a(t)⟩ ∼ exp(−𝛾abtr) (r = 1, 2) due to the different
time evolution with respect to the two states. This phenomenon is known as
decoherence. In other words, while the probabilities Pa to have the system state
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𝜙a always sum up to 1, interrelations between different system states 𝜙a and 𝜙b
expressed by the part of the sum in Eq. (3.15) with a ≠ b decay.

Often, the decay of the off-diagonal elements of the density matrix is called dephas-
ing, which is rather a statement about the effect and not the underlying mechanism.
In this sense, decoherence could be a particular cause for dephasing. However, going
from a single system to an ensemble decoherence is complemented by the destruc-
tive interference among observables belonging to different members of the ensemble
in the course of the time evolution. This would also lead to a decay of the off-diagonal
elements of the density matrix, but it is not related to quantum properties of the
individual systems. In addition, experiments can be designed where this type of
dephasing is compensated such that a rephasing occurs.

Besides the convenience of notation, density matrices offer a systematic way
to describe the dynamics of the reduced quantum system embedded in a ther-
mal reservoir. This theme will be explored in the remainder of this chapter. In
Section 3.2, we start with reviewing some fundamental aspects of time-dependent
quantum mechanics as based on the Schrödinger equation. This will lead us to
the important result of the Golden Rule description of quantum transitions in
the relevant system. In Section 3.4, the density matrix formalism will be intro-
duced in detail. Equations of motion for the reduced density operator (RDO) are
derived whose approximate treatment is considered in Sections 3.5–3.8. Further
methods for describing the quantum dynamics in a molecular system are given in
Sections 3.13 and 3.14.

3.2 Time-dependent Schrödinger Equation

3.2.1 Wave Packets

The time-dependent Schrödinger equation given in Eq. (3.1) in the coordinate
representation will be discussed without using a particular representation in what
follows. To this end, the state vector |Ψ⟩ is introduced, which is related to the wave
function Ψ(x) through ⟨x|Ψ⟩ (|x⟩ comprises the eigenstates of the system coordinate
operator). Using the state vector notation, Eq. (3.1) becomes

iℏ 𝜕
𝜕t

|Ψ(t)⟩ = H|Ψ(t)⟩, (3.16)

and the initial value of the state vector is |Ψ0⟩ ≡ |Ψ(t0)⟩. If the Hamiltonian is time
independent, a formal solution of Eq. (3.16) is given by

|Ψ(t)⟩ = e−iH(t−t0)∕ℏ|Ψ0⟩. (3.17)

The exponential function that contains the Hamiltonian is defined via a Taylor
expansion: exp{−iHt∕ℏ} = 1 − iHt∕ℏ +…. This expression is conveniently written
by introducing the time-evolution operator

U(t, t0) ≡ U(t − t0) = e−iH(t−t0)∕ℏ. (3.18)



3.2 Time-dependent Schrödinger Equation 67

Note that in the case of a time-dependent Hamiltonian, U(t, t0) ≠ U(t − t0) (see
below). The operator U(t, t0) is unitary and obeys the following equation of motion:

iℏ 𝜕
𝜕t

U(t, t0) = HU(t, t0), (3.19)

with the initial condition U(t0, t0) = 1. The time-evolution operator has the
important property that it can be decomposed as

U(t, t0) = U(t, tN−1)U(tN−1, tN−2)…U(t2, t1)U(t1, t0), (3.20)

where t1 ≤ t2 … ≤ tN−1 are arbitrary times in the interval [t0, t]. Note that
Eqs. (3.19)–(3.20) are also valid if the Hamiltonian depends explicitly on time
(see below).

If the solution of the stationary Schrödinger equation

H|a⟩ = Ea|a⟩ (3.21)

with eigenstates |a⟩ and eigenvalues Ea is known, it is straightforward to solve the
time-dependent Schrödinger equation (3.16). To do this we expand the state vector
with respect to the states |a⟩ that form a complete basis. We have|Ψ(t)⟩ = ∑

a
ca(t)|a⟩. (3.22)

Since the state vector is time dependent, the expansion coefficients ca(t) = ⟨a|Ψ(t)⟩
are time dependent as well. Using Eq. (3.17) and the eigenvalue equation (3.21), we
may write

ca(t) = ⟨a|e−iEa(t−t0)∕ℏ|Ψ0⟩ = e−iEa(t−t0)∕ℏca(t0), (3.23)

and the solution of the time-dependent Schrödinger equation is obtained as a super-
position of oscillatory terms3)

|Ψ(t)⟩ = ∑
a

ca(t0)e−iEa(t−t0)∕ℏ|a⟩. (3.24)

Which oscillations are present is determined by the expansion coefficients ca(t0) =⟨a|Ψ(t0)⟩ of the state vector’s initial value. As an instructive example, Section 3.12
gives a detailed discussion of the dynamics of a simple yet nontrivial case, the cou-
pled two-level system.

The superposition state equation (3.24) is known as a wave packet. This name has
its origin in the fact that such a superposition of state vectors may correspond to a
localized probability distribution if it is transformed into the coordinate representa-
tion. Since the state vector |Ψ(t)⟩ is given here as a superposition of (time-dependent)
states ca(t)|a⟩, it is alternatively called coherent superposition state. This coherent
superposition is phase sensitive, and the so-called quantum beats in the time evolu-
tion of the occupation probability of eigenstates can occur (see Figure 3.2).

If we choose the initial state for the solution of the time-dependent Schrödinger
equation according to |Ψ0⟩ = |a⟩, we get |Ψ(t)⟩ = exp(−iE

𝛼
(t − t0)∕ℏ)|a⟩. Here, the

3) If the Hamiltonian also has a continuous spectrum, the sum over the states has to be extended
by an integral with respect to the continuous energy.
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initial state is multiplied by a time-dependent phase factor that cancels when calcu-
lating probabilities, |Ψ(t)|2. Hence, we can state that time-dependent phenomena
such as quantum beats in an isolated quantum system can only be expected if a
noneigenstate, that is a superposition of eigenstates, is initially prepared.

Let us calculate the time-dependent expectation value of the operator Ô:

O(t) = ⟨Ψ(t)|Ô|Ψ(t)⟩ = ∑
a,b

c∗b(t0)ca(t0)⟨b|Ô|a⟩e−i(Ea−Eb)(t−t0)∕ℏ. (3.25)

The different time-dependent contributions are determined by transition frequen-
cies 𝜔ab = (Ea − Eb)∕ℏ, which follow from combinations of the eigenvalues of the
Hamiltonian H. The time-dependent expectation value, Eq. (3.25), can be rewritten
using the time-evolution operator, Eq. (3.18), as

O(t) = ⟨Ψ(t0)|U+(t, t0)ÔU(t, t0)|Ψ(t0)⟩. (3.26)

By means of this relation, the time dependence of the state vector can be transferred
to the operator. This yields the so-called Heisenberg picture where time-dependent
operators are defined as

Ô(H)(t) = U+(t, t0)ÔU(t, t0), (3.27)

and the state vector is time independent.
In the case where the states |a⟩ are also eigenstates of Ô with eigenvalues oa, Eq.

(3.25) simplifies to

O(t) =
∑

a
|ca(t0)|2oa, (3.28)

that is, the expectation value becomes time independent. If Ô is the Hamiltonian
itself, this relation reflects energy conservation during the time evolution of a wave
function which is not an eigenstate of the system Hamiltonian.

If Ô is the projector |Ψ0⟩⟨Ψ0| on the initial State, we obtain (note t0 = 0)

Psurv(t) = ⟨Ψ(t)|Ψ0⟩⟨Ψ0|Ψ(t)⟩ = ∑
a,b

|ca(0) cb(0)|2e−i𝜔abt
. (3.29)

The expression is called survival probability since ⟨Ψ0|Ψ(t)⟩ gives the probability
amplitude for the initial state to be present in the actual state |Ψ(t)⟩ at time t. Psurv(t)
has a time-independent part given by all terms with a = b. The summation over the
different terms with a ≠ b that oscillate with time give rise to a decay of survival
probability. Since this is due to the fact that the different terms are running out of
phase, one speaks about a dephasing at this point.4) Depending on the number of
eigenstates, a rephasing triggering a recurrence peak in Psurv(t) may occur during a
later stage of the evolution.

In order to illustrate dephasing, we show in Figure 3.2 the survival probability
for a system with N eigenstates whose energy spectrum is given by that of a linear
molecular chain (cf. Section 2.8.3). To get a pronounced behavior, we take as the
initial state an equal distribution of probability (ca(0) = 1∕

√
N). It is evident from

4) Notice that following the discussion in the introductory part of this chapter, it would be more
appropriate to speak about decoherence.
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Figure 3.2 Survival probability for a system with N eigenstates (N = 20, 100). The energy
spectrum is that of a linear regular chain according to Eq. (2.182), and the initial values
ca(0) have been set equal to 1∕

√
N.

this figure that with increasing N, the structured behavior of Psurv(t) seen for N = 20
disappears in the considered time interval. Note that for N = 100, there is some
indication of a partial rephasing after about 200 fs.

We notice that even when there is complete dephasing, the survival amplitude
does not decay to zero but to the time-independent limit Psurv(t ≫ 0) =

∑
a|ca(0)|4.

Since the coefficients are normalized, the asymptotic value Psurv(t ≫ 0) will be
proportional to the inverse number of basis states |a⟩ present in the initial state|Ψ0⟩. Thus, only in the case of an infinite number of eigenstates participating in the
dynamics is it possible that the survival amplitude vanishes completely.

3.2.2 The Interaction Representation

If the Hamiltonian H of the system under consideration can be decomposed as
H = H0 + V , where V represents a small perturbation of the dynamics given by
H0, an expansion with respect to V can be performed. Usually, one will attempt to
separate H such that the eigenvalue problem of H0 can be solved analytically or by
means of numerical diagonalization. Provided such a separation can be made, the
time-dependent state vector|Ψ(t)⟩ = U(t, t0)|Ψ(t0)⟩ (3.30)

is conveniently written as|Ψ(t)⟩ = U0(t, t0)|Ψ(I)(t)⟩. (3.31)

This representation makes use of the formal solution that is available for the
unperturbed time-dependent Schrödinger equation for H0, Eq. (3.17), that is

U0(t, t0) = e−iH0(t−t0)∕ℏ. (3.32)
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The new state vector |Ψ(I)(t)⟩ is called the state vector in the interaction representa-
tion. Since U(t0, t0) = 1, we have|Ψ(I)(t0)⟩ = |Ψ(t0)⟩. (3.33)

The equation of motion for the state vector in the interaction representation follows
directly from the original time-dependent Schrödinger equation,

iℏ 𝜕
𝜕t

|Ψ(t)⟩ = U0(t, t0)
(

H0|Ψ(I)(t)⟩ + iℏ 𝜕
𝜕t

|Ψ(I)(t)⟩) = H|Ψ(t)⟩. (3.34)

After some rearrangement, we get (note that U−1
0 = U+

0 )

iℏ 𝜕
𝜕t

|Ψ(I)(t)⟩ = U+
0 (t, t0)VU0(t, t0)|Ψ(I)(t)⟩ ≡ V (I)(t)|Ψ(I)(t)⟩. (3.35)

The quantity V (I)(t) is the interaction representation of the perturbational part of
the Hamiltonian. This representation is defined for an arbitrary operator Ô as

Ô(I)(t) = U+
0 (t, t0)ÔU0(t, t0). (3.36)

The formal solution of Eq. (3.35) is obtained by introducing the so-called S-operator
(the scattering operator) defined via|Ψ(I)(t)⟩ = S(t, t0)|Ψ(I)(t0)⟩ ≡ S(t, t0)|Ψ(t0)⟩, (3.37)

where we made use of Eq. (3.33). Comparison with Eq. (3.31) yields

U(t, t0) = U0(t, t0)S(t, t0). (3.38)

The S-operator can be determined by the iterative solution of the equation of motion
(3.35) for |Ψ(I)⟩. The formal time integration gives

|Ψ(I)(t)⟩ = |Ψ(I)(t0)⟩ − i
ℏ

t

∫
t0

d𝜏V (I)(𝜏)|Ψ(I)(𝜏)⟩. (3.39)

This equation is suited to develop a perturbation expansion with respect to V (I). If
there is no interaction, one gets|Ψ(I,0)(t)⟩ = |Ψ(I)(t0)⟩. (3.40)

If we insert this result into the right-hand side of Eq. (3.39), we get the state vector
in the interaction representation, which is the first-order correction to |Ψ(I,0)(t)⟩ in
the presence of a perturbation,

|Ψ(I,1)(t)⟩ = − i
ℏ

t

∫
t0

d𝜏1V (I)(𝜏1)|Ψ(I,0)(𝜏1)⟩. (3.41)

Upon further iteration of this procedure, one obtains the nth-order correction as

|Ψ(I,n)(t)⟩ = − i
ℏ

t

∫
t0

d𝜏nV (I)(𝜏n)|Ψ(I,n−1)(𝜏n)⟩. (3.42)

Thus, the total formally exact state vector in the interaction representation is

|Ψ(I)(t)⟩ = ∞∑
n=0

|Ψ(I,n)(t)⟩. (3.43)
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Let us consider the total wave function containing the effect of the interaction up
to the order n. This function is obtained by explicit insertion of all orders into the
right-hand side of Eq. (3.42)

|Ψ(I,n)(t)⟩ =(
− i
ℏ

)n
t

∫
t0

d𝜏nV (I)(𝜏n)

𝜏n

∫
t0

d𝜏n−1V (I)(𝜏n−1)×

· · · ×

𝜏2

∫
t0

d𝜏1V (I)(𝜏1)|Ψ(I)(t0)⟩
=

(
− i
ℏ

)n 1
n!

T̂

t

∫
t0

d𝜏n · · · d𝜏1V (I)(𝜏n) · · ·V (I)(𝜏1)|Ψ(I)(t0)⟩. (3.44)

In the last part of this expression, all integrals are carried out to the upper limit t.
Double counting is compensated for by the factor 1∕n!. In order to account for the
fact that the time-dependent operators V (I) do not commute for different time argu-
ments, the time-ordering operator T̂ has been introduced. It orders time-dependent
operators from the right to the left with increasing time arguments; that is, if t1 > t2,
T̂[V (I)(t2)V (I)(t1)] = V (I)(t1)V (I)(t2). This formal rearrangement enables us to write for
the exact state vector in the interaction representation

|Ψ(I)(t)⟩ = T̂
∞∑

n=0

1
n!

n∏
k=1

⎛⎜⎜⎝− i
ℏ

t

∫
t0

d𝜏kV (I)(𝜏k)
⎞⎟⎟⎠ |Ψ(I)(t0)⟩. (3.45)

The summation on the right-hand side is formally identical to the expansion of the
exponential function. Comparing this expression with Eq. (3.37), we see that the
S-operator can be written as a time-ordered exponential function

S(t, t0) = T̂ exp
⎧⎪⎨⎪⎩−

i
ℏ

t

∫
t0

d𝜏V (I)(𝜏)
⎫⎪⎬⎪⎭ . (3.46)

This expression is an example for a compact notation of a resumed perturba-
tion expansion which is very useful when doing formal manipulations with the
time-evolution operator. Nevertheless, for any specific calculation, it is necessary to
go back to the expansion equation (3.44).5)

3.2.3 Multidimensional Wave Packet Dynamics

Before discussing density matrix theory which can account for the dynamics of a
few relevant DOFs embedded in a macroscopic environment at finite temperature,
we briefly review a method for the solution of the multidimensional time-dependent
Schrödinger equation. While being of interest on its own, it may also serve as a

5) Note also that the derived expression may serve as the time-evolution operator, Eq. (3.18), for
the case of a time-dependent Hamiltonian H(t) (therefore, V (I)(𝜏) has to be replaced by H(𝜏)).
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reference for judging approximations in condensed-phase dynamics. Such type of
comparative studies became possible with the development of the multiconfigu-
ration time-dependent Hartree (MCTDH) approach. It enables one to treat typical
system–reservoir Hamiltonians on the basis of discretized bath DOFs but approach-
ing the continuous limit.

In what follows we consider the time-dependent Schrödinger equation, Eq. (3.1),
for f -coupled DOFs s = {s1,… , sf }. In order to derive working equations for its
solution, we use the time-dependent Dirac–Frenkel variational principle,

⟨𝛿Ψ|H(t) − iℏ 𝜕
𝜕t

|Ψ⟩ = 0, (3.47)

where 𝛿Ψ denotes the variation of the wave function. A straightforward generaliza-
tion of Eq. (3.22) starts from an expansion of the wave packet into a product basis set
of known wave functions for the different DOFs, 𝜒 j

𝜅

(s
𝜅
),

Ψ(s1,… sf , t) =
N1∑

j1=1
· · ·

Nf∑
jf =1

cj1…jf
(t) 𝜒 j1

(s1) · · ·𝜒 jf
(sf ). (3.48)

Here, N
𝜅

denotes the number of basis functions employed for the 𝜅th DOF. From
the variational principle, Eq. (3.47), we obtain a set of coupled first-order differential
equations

iℏ 𝜕
𝜕t

cj1 ,…,jf
(t) =

∑
k1 ,…,kf

⟨𝜒 j1
…𝜒 jf

|H|𝜒k1
…𝜒kf

⟩ck1,…,kf
(t). (3.49)

The numerical solution of this set of equations becomes unfeasible due to the
exponential scaling of the number of configurations that have to be considered
on the right-hand side of Eq. (3.48) with increasing dimensionality. However, the
large number of configurations derives from the fact that a fixed basis set has to
accommodate a moving wave packet during the whole time interval of the dynamics.
It can be expected that a more compact representation of the wave packet can be
achieved using time-dependent basis functions. The simplest ansatz would consist
of just a single Hartree product of time-dependent basis functions, which are called
single-particle functions (SPFs), that is6)

Ψ(s1,… , sf , t) = A(t) 𝜒1(s1, t)…𝜒f (sf , t). (3.50)

The SPFs are expanded into a static basis as before, that is

𝜒j
𝜅

(s
𝜅
, t) =

N
𝜅∑

i
𝜅
=1

ci
𝜅

(t)𝜒 i
𝜅

(s
𝜅
). (3.51)

In analogy to electronic structure theory, this is called time-dependent Hartree
(TDH) ansatz. Notice that this ansatz is not unique since every function can
be multiplied by some factor if another one is divided by the same factor. This
arbitrariness is distributed by the redundant factor A(t), but at the same time one

6) Note that the basis functions for the 𝜅th DOF will also be abbreviated by 𝜒 (𝜅).
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has to introduce some constraints such as i⟨𝜒 (𝜅) ∣ 𝜕𝜒 (𝜅)∕𝜕t⟩ = 07) for each DOF to
fix these free factors.

Using the Dirac–Frenkel variational principle, Eq. (3.47), one gets upon variation
with respect to A(t)(

E(t)A(t) − iℏ 𝜕
𝜕t

A(t)
)
𝛿A(t) = 0, (3.52)

where we introduced the expectation value of the Hamiltonian

E(t) = ⟨𝜒 (1) …𝜒
(f ) ∣ H ∣ 𝜒 (1) …𝜒

(f )⟩. (3.53)

Equation (3.52) gives immediately

iℏ 𝜕
𝜕t

A(t) = E(t)A(t), (3.54)

which can readily be integrated to give

A(t) = A(0) exp
⎛⎜⎜⎝− i
ℏ

t

∫
0

d𝜏E(𝜏)
⎞⎟⎟⎠ . (3.55)

Variation with respect to 𝜒 (𝜅) yields using Eq. (3.54)

0 = A∗(t)
(

A(t)⟨𝜒 (1) …𝜒
(𝜅−1)

𝜒
(𝜅+1) …𝜒

(f ) ∣ H ∣ 𝜒 (1) …𝜒
(f )⟩

−iℏ 𝜕
𝜕t
(A(t)|𝜒 (𝜅)⟩)) 𝛿𝜒 (𝜅)

= |A(0)|2
([

H(𝜅) − E(t) − iℏ 𝜕
𝜕t

] |𝜒 (𝜅)⟩) 𝛿𝜒 (𝜅)
. (3.56)

Here, we introduced the so-called mean-field Hamiltonian which is an operator in
the space of the 𝜅th DOF

H(𝜅) = ⟨𝜒 (1) …𝜒
(𝜅−1)

𝜒
(𝜅+1) …𝜒

(f ) ∣ H ∣ 𝜒 (1) …𝜒
(𝜅−1)

𝜒
(𝜅+1) …𝜒

(f )⟩. (3.57)

Note that mean-field expressions of this type will appear later on, for example
when considering the equation of motion for the density matrix treating the
interaction between system and environment in first-order perturbation theory (cf.
Section 3.5.3).

We can rewrite Eq. (3.56) using E|𝜒 (𝜅)⟩ = |𝜒 (𝜅)⟩⟨𝜒 (𝜅)|H(𝜅)|𝜒 (𝜅)⟩ and obtain the fol-
lowing equation of motion:

iℏ 𝜕
𝜕t

|𝜒 (𝜅)⟩ = (1 − |𝜒 (𝜅)⟩⟨𝜒 (𝜅)|)H(𝜅)|𝜒 (𝜅)⟩ 𝜅 = 1,… , f . (3.58)

Notice that the projection operator on the right-hand side of Eq. (3.58) ensures that
the change of a certain basis function is orthogonal to the space already spanned by
this function. This triggers the exploration of new regions of space according to the
wave packet dynamics.

Equation (3.58) reveals that the f -dimensional quantum problem has been
separated into f one-dimensional problems. However, underlying the use of the
TDH method is the assumption that the interaction between the different DOFs can

7) Note that, in general, any real function can appear on the right-hand side of this equation.
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be reasonably described by their mean fields. In order to go beyond the mean-field
description, Eq. (3.50) has to be extended to include more than just a single Hartree
product. This is achieved in the MCTDH method which combines the standard
ansatz, Eq. (3.48), with the TDH idea of time-dependent basis functions, that is

Ψ(s1,… sf , t) =
n1∑

j1=1
…

nf∑
jf =1

Aj1…jf
(t) 𝜒j1

(s1, t)…𝜒jf
(sf , t). (3.59)

First, we notice that in the limit where n
𝜅
= 1 we recover the TDH ansatz, Eq.

(3.50). On the other hand, if we choose n
𝜅
= N

𝜅
we have the numerically exact

wave packet of Eq. (3.48) in the reduced Hilbert space, and the expansion basis will
be time independent (see below). The actual advantage comes if n

𝜅
< N

𝜅
; that is, if

compared with the fixed basis, less time-dependent basis function can be used to
describe the moving wave packet. Equations of motion can be obtained again from
the Dirac–Frenkel principle. For the expansion coefficient one derives an equation
similar to Eq. (3.49) (although in the present case the Hamiltonian matrix is time
dependent), whereas the basis functions follow from

iℏ 𝜕
𝜕t

|𝛘(𝜅)⟩ = (1 −  (𝜅))(𝝆(𝜅))−1H(𝜅)|𝝌 (𝜅)⟩. (3.60)

Here, 𝝌 (𝜅) = (𝜒1,… , 𝜒n
𝜅

)T is a vector containing all basis functions for the 𝜅th DOF.
Further, H(𝜅) is the matrix of mean-field operators acting on the 𝜅th DOF. It has the
dimension n

𝜅
× n

𝜅
and is formed with respect to the basis functions 𝝌 (𝜅).

Similar to Eq. (3.58), a projection operator onto the space spanned by the 𝜅th DOF

 (𝜅) =
n
𝜅∑

j
𝜅
=1

|𝜒j
𝜅

⟩⟨𝜒j
𝜅

| (3.61)

appears ensuring the exploration of configuration space according to the wave
packet motion. Note that, in the complete basis set limit, the right-hand side of this
equations becomes equal to the unit operator, and the expansion functions will
not change in time according to Eq. (3.60). Additionally, a density matrix enters
Eq. (3.60), which is defined as

𝜌
(𝜅)
jl (t) =

∑
j1

…
∑
j
𝜅−1

∑
j
𝜅+1

…
∑

jf

A∗
j1…j

𝜅−1 jj
𝜅+1…jf

(t)Aj1…j
𝜅−1lj

𝜅+1…jf
(t). (3.62)

The equation for the expansion coefficients and Eq. (3.60) constitute a set of
nonlinear equations that need to be solved numerically. The range of applicability
strongly depends on the type of system and in particular on the number of strongly
coupled DOFs. Systems with some thousands of DOFs become accessible upon
further structuring the time-dependent wave packet. Strongly coupled DOFs can
be combined into multidimensional SPFs. The time dependence of the latter is not
obtained via an expansion into a static basis as in Eq. (3.51) but using again the
MCTDH ansatz equation (3.59). This procedure is repeated until one reaches the
level of Eq. (3.51). The resulting approach is called multilayer MCTDH. A method
for incorporating effects due to finite temperature into wave packet propagation is
outlined in the supplementary Section 3.15.1. Applications of the MCTDH method
will be discussed in Chapters 8 and 9.
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3.3 The Golden Rule of Quantum Mechanics

The Golden Rule rate formula (also called Fermi’s Golden Rule) is certainly one of
the most important and widely used expressions of quantum mechanics. It offers
a simple way to determine the transition rate between different quantum states of
some zeroth-order Hamiltonians in the presence of a small coupling. Therefore, the
formula enables one to calculate the change in probability of some initial state due
to transition events as a function of time. The basic assumption is that these transi-
tions are irreversible. As discussed earlier (cf. Sections 3.1 and 3.2), such a behavior
can be found whenever the transition proceeds into a macroscopic number of final
states forming an energetic continuum. In such a situation, the mutual interferences
among the final states and with the initial state preclude any recurrence of proba-
bility back into the initial state. The recurrences are additionally suppressed when
the coupling between the initial and final states is sufficiently weak. Such an irre-
versible transition can also be found if a fast relaxation from the final state to further
additional states is possible. Here, the final state itself may be discrete, but there is a
coupling to another continuum of states.

There exist different situations that lead to a description by the Golden Rule for-
mula. In what follows we present alternatives before we embed the formalism into
a more general framework in Section 3.4.5.

3.3.1 Transition from a Single State into a Continuum

Let us consider quantum transitions between some state |0⟩ with energy E0 and a
continuum of states |𝛼⟩ with energies E

𝛼
. The state |0⟩ is supposed to be initially

populated, and the transitions into the states |𝛼⟩ are due to some interstate cou-
pling expressed by V0𝛼 . The situation is sketched in Figure 3.3. The total system is
described by the Hamiltonian8)

H = E0|0⟩⟨0| + ∑
𝛼

(
E
𝛼
|𝛼⟩⟨𝛼| + V0𝛼|0⟩⟨𝛼| + V

𝛼0|𝛼⟩⟨0|) . (3.63)

Our goal is to obtain an expression that tells us how the initially prepared state|0⟩ decays into the set of states |𝛼⟩. This transfer of occupation probability can be
characterized by looking at the population of state |0⟩, which reads

P0(t) = |⟨0|U(t)|0⟩|2
. (3.64)

Figure 3.3 Coupling of the single-state |0⟩ to the
manifold of states |𝛼⟩ as described by the Hamiltonian
(3.63).

E0 V0α Eα

8) This setup is similar to a system of two adiabatic states where |0⟩ denotes an initial
electron-vibrational state, and the set |𝛼⟩ contains the vibrational states belonging to the final
electronic state.
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U(t) is the time-evolution operator, already introduced in Eq. (3.18), and defined
here by the Hamiltonian equation (3.63). Note that P0(t) is a survival probability as
introduced in Eq. (3.29).

Provided that one would know the eigenstates of the Hamiltonian (3.63), the sur-
vival amplitude would take the form (3.29). Of course, introducing the eigenstates
of (3.63) is not the appropriate way to compute, for example the decay time since a
large Hamiltonian has to be diagonalized.

As an alternative, let us derive equations of motion for the matrix elements of the
time-evolution operator

A
𝜈𝜇
(t) = 𝜃(t)⟨𝜈|U(t)|𝜇⟩. (3.65)

The quantum numbers 𝜇 and 𝜈 represent the states |0⟩ and |𝛼⟩, and the unit-step
function 𝜃(t) has been introduced to restrict the definition of A

𝜈𝜇
(t) to times larger

than zero. The quantity A
𝜈𝜇
(t) is called transition amplitude and tells us how the state|𝜈⟩ is contained in the propagated state U(t)|𝜇⟩ at time t if at time t = 0 the system

was in the state |𝜇⟩. The survival amplitude, P0(t), is equal to |A00(t)|2.
The equations of motion for the transition amplitudes read9)

iℏ d
dt

A
𝜈𝜇

= iℏ𝛿(t) 𝛿
𝜈𝜇

+
∑
𝜅

⟨𝜈|H|𝜅⟩A
𝜅𝜇
. (3.66)

In order to solve Eq. (3.66), we introduce the Fourier transform of the transition
amplitudes

A
𝜈𝜇
(𝜔) =

∫
dt ei𝜔tA

𝜈𝜇
(t). (3.67)

Taking the Fourier transform of Eq. (3.66), we obtain for the transition amplitudes
the following equations:

ℏ𝜔A
𝜈𝜇
(𝜔) = iℏ 𝛿

𝜈𝜇
+

∑
𝜅

⟨𝜈|H|𝜅⟩A
𝜅𝜇
(𝜔). (3.68)

In particular, for 𝜈 = 𝜇 = 0, this gives

ℏ𝜔A00(𝜔) = iℏ + E0A00(𝜔) +
∑
𝛼

V0𝛼A
𝛼0(𝜔). (3.69)

The off-diagonal elements, A
𝛼0(𝜔), can be obtained from

ℏ𝜔A
𝛼0(𝜔) = E

𝛼
A
𝛼0(𝜔) + V

𝛼0A00(𝜔). (3.70)

Inserting the solution of this equation into the equation for A00 yields a closed
equation for the latter quantity, which can be solved to give

A00(𝜔) = iℏ

(
ℏ𝜔 − E0 −

∑
𝛼

|V0𝛼|2

ℏ𝜔 − E
𝛼
+ i𝜀

+ i𝜀

)−1

. (3.71)

Here, 𝜀 has to be understood as a small and positive number that we will let go to
zero at the end of the calculation. It guarantees that A00(𝜔) is an analytical func-
tion in the upper part of the complex frequency plane, and consequently, that the

9) Note that Dirac’s delta function appears on the right-hand side since the time derivative of the
unit-step function is given by d𝜃(t)∕dt = 𝛿(t).
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inverse Fourier transform becomes proportional to 𝜃(t). Carrying out the backtrans-
formation into the time domain, we obtain the desired occupation probability as
P0(t) = |A00(t)|2.

The contributions in the denominator of A00(𝜔), which are proportional to the
square of the coupling matrix, result in a complicated frequency dependence of
A00(𝜔). One effect is apparent: the coupling to the continuum shifts the energy E0
of the initial state to a new value. This shift, which is in general a complex quantity,
is commonly called self-energy

Σ(𝜔) =
∑
𝛼

|V0𝛼|2

ℏ𝜔 − E
𝛼
+ i𝜀

. (3.72)

The separation into a real and imaginary part gives10)

Σ(𝜔) ≡ ℏΔΩ(𝜔) − iℏΓ(𝜔) =
∑
𝛼


|V0𝛼|2

ℏ𝜔 − E
𝛼

− iπ
∑
𝛼

|V0𝛼|2
𝛿(ℏ𝜔 − E

𝛼
). (3.73)

If the energies E
𝛼

form a continuum, the summation with respect to 𝛼 has to be
replaced by an integration. In this case, and provided that the coupling constant has
no strong dependence on the quantum number 𝛼, the variation in the self-energy in
the region whereℏ𝜔 ≈ E0 can be expected to be rather weak. This means that the fre-
quency dependence of A00(𝜔) is dominated by the resonance at ℏ𝜔 = E0. Since this
will give the major contribution to the inverse Fourier transform, we can approx-
imately replace ℏ𝜔 in Σ(𝜔) by E0. In contrast, if the levels E

𝛼
were discrete, Σ(𝜔)

would go to infinity at ℏ𝜔 = E
𝛼
, and the frequency dependence of the self-energy

can no longer be neglected.
To carry out the inverse Fourier transformation, we replace the quantity Σ(𝜔) by

the frequency-independent value Σ(E0∕ℏ) and obtain the desired state population
P0(t) as

P0(t) =
|||| ∫ d𝜔

2π
e−i𝜔t iℏ

ℏ𝜔 − (E0 + ℏΔΩ(E0∕ℏ)) + iℏΓ(E0∕ℏ)
||||2

= 𝜃(t) e−2Γ(E0∕ℏ)t. (3.74)

The integral has been calculated using the residue theorem of the theory of complex
functions. As expected, the occupation probability of the initially occupied state |0⟩
decreases in time due to transitions into the manifold of states |𝛼⟩. For the time evo-
lution of P0, one gets from Eq. (3.74) the simple equation

d
dt

P0(t) = −2ΓP0(t), (3.75)

which is a particular example for Eq. (3.2).11) Following Eq. (3.2), the rate of change
of the survival probability is called k. It is defined as

k = 2Γ = 2π
ℏ

∑
𝛼

|V0𝛼|2
𝛿(E0 − E

𝛼
). (3.76)

10) Here, we used the Dirac identity, which states that expressions ∝ 1∕(ℏ𝜔 + i𝜀) appearing in a
frequency integral can be rewritten as  1∕ℏ𝜔 − iπ𝛿(ℏ𝜔), where  denotes the principal part
evaluation of the integral.
11) Note that, in principle, the right-hand side of the equation has to be supplemented by the term
𝛿(t)P0(0) which stems from the time derivate of the unit-step function.
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This type of expression is known as the Golden Rule of quantum mechanics. It was
first discussed by P. A. M. Dirac and E. Fermi. According to Eq. (3.76), the Golden
Rule allows the determination of the rate for occupation probability transfer from
some initial state |0⟩ into the manifold of final states |𝛼⟩. The delta function appear-
ing in the rate expression can be interpreted as the energy conservation law for the
transition. Only those transitions from |0⟩ to |𝛼⟩ are possible for which the energy
of the initial state E0 matches some energy E

𝛼
of the final states. The rate is pro-

portional to the square of the interstate coupling V0𝛼 . This is a direct consequence
of replacing the variable energy argument of the self-energy, ℏ𝜔, by E0. Otherwise,
higher order approximations with respect to the coupling would have been obtained.
Furthermore, it should be taken into account that the derivation assumed an initial
population of the discrete state |0⟩, which is not an eigenstate of the complete sys-
tem. Therefore, Eq. (3.76) is only justified for the case of a weak coupling matrix V0𝛼 .
For cases with stronger coupling, the Golden Rule expression for the transition rate
would be valid at best for times less than the recurrence time.

3.3.2 Transition Rate for a Thermal Ensemble

Let us extend the considerations of the preceding section in two respects. We intro-
duce a manifold of initial states labeled by |a⟩ that is coupled to some final states |𝛽⟩
(see Figure 3.4; to have a clear notation, the final state manifold quantum numbers
𝛼 have been replaced by 𝛽). Moreover, we change from the consideration of a single
system to an ensemble of N independent but identical systems that are in thermal
contact to a reservoir. The generalization of the Hamiltonian (3.63) reads

H =
∑

a
Ea|a⟩⟨a| + ∑

𝛽

E
𝛽
|𝛽⟩⟨𝛽| + ∑

a,𝛽

(
Va𝛽 |a⟩⟨𝛽| + h.c.

)
. (3.77)

The situation described by this Hamiltonian is typical, for example for the nonadi-
abatic coupling between two electronic states in a molecule where the manifolds
{|a⟩} and {|𝛽⟩} take the role of the different vibrational states. Various realizations
of this scenario are discussed in the forthcoming chapters.

Since we consider an ensemble of systems, where the initially prepared state |a⟩
may be different for each member of the ensemble, we count the different systems
by the index m. The population Pma(t) gives the probability that the system m is in
the particular state |a⟩. Its time dependence follows as

Pma(t) = 𝜃(t)e−katPma(0), (3.78)

Ea

Vaβ

Eβ

Figure 3.4 Coupling of the manifold of initial states
{|a⟩} to the manifold of final states {|𝛽⟩} as described by
the Hamiltonian (3.77).
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where Pma(0) defines the probability to have system m initially in the particular state|a⟩. The transition rate characterizing the population decay of this state is

ka = 2π
ℏ

∑
𝛽

|Va𝛽 |2
𝛿(Ea − E

𝛽
). (3.79)

Since different systems are in different states, the quantity Pm(t) =
∑

aPma(t) gives
the probability to have system m in the initial manifold independent of the actual
state. Therefore, Pm(t) represents a reduced probability. Often, observables measured
in the experiment are only determined by such a reduced quantity. We assume that
initially all considered systems have been prepared in one of the states |a⟩. Then,
we get

∑
mPm(0) = N. It is suitable to introduce the probability to have the state |a⟩

realized in the ensemble. This probability takes the form

Pa(t) =
1
N

∑
m

Pma(t). (3.80)

The overall probability to have the initial state manifold populated follows as
Pi(t) =

∑
a Pa(t). Since we assumed that the ensemble stays initially in thermal

equilibrium with some environment at temperature T, we can write

Pa(0) = fa, (3.81)

where we introduced the quantum statistical equilibrium distribution

fa =
exp(−Ea∕kBT)∑
a′ exp(−Ea′ ∕kBT)

. (3.82)

To discuss the actual situation where a finite coupling to the environment is present,
two characteristic times will be introduced. First, we have the time scale 𝜏S–R, which
characterizes the coupling of the different members of the ensemble to the ther-
mal reservoir. For example, 𝜏S–R could be the collision time of the system of interest
with the atoms or molecules forming the reservoir. Second, the interstate coupling
introduces a time scale given by 1∕ka. Now, we can distinguish the cases 𝜏S–R ≫ 1∕ka
(slow thermalization compared to the transition), 𝜏S–R ≪ 1∕ka (fast thermalization),
and 𝜏S–R ≈ 1∕ka (intermediate case).

Case 𝜏S–R ≫ 1/ka:
We suppose that the interaction with an external field promotes the ensemble into
the state manifold {|a⟩}, where each state occurs Na times in the ensemble. Since
the interaction with the environment is weak compared to the state coupling, the
overall initial state manifold population will evolve according to Pi(t) =

∑
aNa∕N ×

exp(−kat) (absence of thermalization on the time scale of the transfer).

Case 𝜏S–R ≪ 1/ka:
Here, thermalization proceeds at every time step of the transfer, and we may set
Pa(t) = faPi(t). It remains to determine Pi(t). To derive the appropriate equation,
let us introduce the time step Δt ≈ 𝜏S–R. Usually, we will be interested in the time
evolution of the system on time scales much longer than Δt. Therefore, we can con-
sider Δt to be a continuous quantity on the time scale of observation (coarse graining
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of the time axis). We obtain for t + Δt:

Pa(t + Δt) ≈ (1 − kaΔt)faPi(t). (3.83)

The total initial state population follows as

Pi(t + Δt) ≈ Pi(t) −
∑

a
ka faPi(t)Δt. (3.84)

Because Δt has been assumed to be very small, we can rewrite the expression as
Pi(t + Δt) − Pi(t)

Δt
≈ d

dt
Pi(t) = −ki→f Pi(t), (3.85)

where we introduced the rate for transitions from a thermalized state manifold

ki→f =
∑

a
faka = 2π

ℏ

∑
a,𝛽

fa|Va𝛽 |2
𝛿(Ea − E

𝛽
). (3.86)

The strong coupling of the system of interest to a thermal reservoir results in a rate
expression which is the thermal average of the transition rate ka, Eq. (3.79).

Case 𝜏S–R ≈ 1/ka:
In this case, one can no longer make a separation of time scales, and the reason-
ing used in the previous two cases breaks down. A more general description of the
simultaneous influence of the interstate coupling and the coupling to the reservoir
is necessary; this more general approach is offered by the density matrix theory.

Up to now our discussion has been concentrated on the transitions from the states|a⟩ (the initial states) to the states |𝛽⟩ (the final states). Of course, one can also con-
sider the reverse process along the same line of arguments. We expect that the rate
ki→f of the forward transition from the initial to the final state manifold and the
population Pi have counterparts, which are the reverse rate kf→i and the final state
population Pf , respectively. kf→i follows from Eq. (3.86) by interchanging fa with the
thermal distribution f

𝛽
(transfer starts from the thermalized distribution at the state

manifold |𝛽⟩)

kf→i =
2π
ℏ

∑
𝛽,a

f
𝛽
|V

𝛽a|2
𝛿(E

𝛽
− Ea). (3.87)

Instead of a single rate equation for Pi(t), one obtains the Pauli master equations
already discussed in Section 3.1

d
dt

Pi(t) = −ki→f Pi(t) + kf→iPf (t), (3.88)
d
dt

Pf (t) = −kf→iPf (t) + ki→f Pi(t). (3.89)

The population Pi decreases due to transitions into the final state manifold. However,
it increases by the reverse process. The same holds for the population Pf (a more
rigorous derivation will be offered in Sections 3.4.5 and 3.14).

The possible transfer forth and back between the state manifolds {|a⟩} and {|𝛽⟩}
needs comments. It seems as if recurrences (as a result of constructive wave function
interference) are incorporated. However, on a much shorter time scale and resulting
from the coupling to the reservoir, any phase relation among the states |a⟩ has been
destroyed. We can therefore state that a completely incoherent transfer takes place.
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It is easy to find the solution of the above given coupled rate equations. Because
conservation of probability Pi(t) + Pf (t) = 1 holds, the two equations can be trans-
formed to a single one for Pi(t) − Pf (t). Taking as the initial condition Pi(0) = 1, the
solutions read (note K = ki→f + kf→i)

Pi(t) =
1
K

(
ki→f e−Kt + kf→i

)
, Pf (t) =

ki→f

K
(
1 − e−Kt)

. (3.90)

It is instructive to put both solutions (𝜅 = i, f ) into the form

P
𝜅
(t) = P

𝜅
(∞) +

(
P
𝜅
(0) − P

𝜅
(∞)

)
e−Kt

, (3.91)

with Pi(∞) = kf→i∕K and Pf (∞) = ki→f∕K. As it has to be expected, the result indi-
cates a complete depletion of the initial state if there is no backtransfer (kf→i = 0).
Otherwise, both manifolds remain populated.

A generalization of the Pauli master equation to a larger set of different states is
straightforward. As an example, one may consider adiabatic Born–Oppenheimer
states, where each state manifold would represent the vibrational eigenstate
for a particular electronic state. To obtain a general solution of Eq. (3.2), we
denote the right-hand side as −

∑
b KabPb with the general rate-matrix Kab = 𝛿ab∑

c≠a ka→c −(1 − 𝛿ab)kb→a. Given the eigenvalues 𝜅(𝜂) and (normalized) eigen-
vectors ea(𝜂) of Kab, the general solution for the population of state |a⟩ reads as
Pa(t) =

∑
𝜂
c(𝜂)ea(𝜂) exp(−𝜅(𝜂)t) (𝜂 counts the rate matrix eigenvalues). The addi-

tional factors c(𝜂) are determined from the initial conditions. The decay of the
various populations is multiexponential. Since the smallest 𝜅(𝜂) equals zero, the
respective term in Pa(t) fixes Pa(∞). It is obvious that the given solution (except for
some special examples) can be only achieved by numerical computations.

The Pauli master equation has found numerous applications, and we will return
to it in the subsequent chapters. However, the basic assumptions are those leading to
the Golden Rule for the transition rates, which are not always fulfilled (see above). In
order to go beyond this level of description, a more flexible theory for open quantum
systems has to be introduced. This will be done in the following section where we
discuss the density matrix approach. It goes without saying that the Pauli master
equation will be recovered as a limiting case of the more general quantum master
equation which is derived below.

3.3.3 Green’s Function Approach

The computation scheme used in the foregoing section to calculate the transition
rate from level |0⟩ into the manifold of levels |𝛼⟩ can be casted into a more formal
frame. Instead of working with time-evolution operator matrix elements of the type
given in Eq. (3.65), we introduce

Ĝ(t) = −i𝜃(t)e−iHt∕ℏ
. (3.92)

This quantity is known as the Green’s operator defined by the Hamiltonian H,
Eq. (3.63). Let us write the Hamiltonian as

H = H0 + H1 + V , (3.93)
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where H0 corresponds to level |0⟩, H1 covers all levels |𝛼⟩, and the coupling between
them is V . The equation of motion for Ĝ(t) simply reads

iℏ 𝜕
𝜕t

Ĝ(t) = ℏ𝛿(t) + HĜ(t). (3.94)

Introducing the Fourier transform

Ĝ(𝜔) =
∫

dt ei𝜔tĜ(t) (3.95)

translates the equation of motion into

(𝜔 − H∕ℏ)Ĝ(𝜔) = 1. (3.96)

We may also compute the Fourier-transformed Green’s operator directly, which gives

Ĝ(𝜔) = −i

∞

∫
0

dt ei𝜔te−iHt∕ℏ = 1
𝜔 − H∕ℏ + i𝜀

. (3.97)

The obtained expression has to be understood as the inverse of the operator𝜔 − H∕ℏ
with a small imaginary contribution i𝜀 indicating the form of the solution of
Eq. (3.96) for Ĝ(𝜔) (it should have a pole below the real axis in the complex
frequency plane).

To get the time dependence of the population of level |0⟩, Eq. (3.64), we have to
compute

P0(t) = |⟨0|Ĝ(t)|0⟩|2
. (3.98)

The respective matrix elements of the Green’s operator are deduced from its equation
of motion by introducing projection operators. The operator

Π̂0 = |0⟩⟨0| (3.99)

projects on the single-state |0⟩, and the operator

Π̂1 =
∑
𝛼

|𝛼⟩⟨𝛼| (3.100)

on the manifold of states |𝛼⟩. Both projection operators enter the completeness
relation

Π̂0 + Π̂1 = 1, (3.101)

which can be used, for example to write Π̂1 = 1 − Π̂0.
The goal of the following derivation is to obtain an explicit expression for the

population, Eq. (3.98). First, we determine the reduced Green’s operator

Ĝ0(t) = Π̂0Ĝ(t)Π̂0 (3.102)

instead of directly focusing on its matrix element with state |0⟩. Using the equation
of motion for the Fourier-transformed Green’s operator Ĝ(𝜔), we may derive an
equation for Ĝ0(𝜔). By applying Π̂0 to Eq. (3.96) from the left and from the right,
we get

Π̂0(𝜔 − H∕ℏ)
(
Π̂0 + Π̂1

)
Ĝ(𝜔)Π̂0 = Π̂0. (3.103)
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For further computations, we note that Π̂0HΠ̂0 = H0, Π̂1HΠ̂1 = H1, and Π̂0HΠ̂1 =
Π̂0VΠ̂1 (cf. Eq. (3.93)). It gives

(𝜔 − H0∕ℏ)Ĝ0 − Π̂0(V∕ℏ)Π̂1 × Π̂1Ĝ(𝜔)Π̂0 = Π̂0. (3.104)

The new quantity Π̂1Ĝ(𝜔)Π̂0 obeys

Π̂1(𝜔 − H∕ℏ)
(
Π̂0 + Π̂1

)
Ĝ(𝜔)Π̂0 = Π̂1Π̂0 = 0 (3.105)

or

−Π̂1V∕ℏΠ̂0Ĝ0(𝜔) + (𝜔 − H1∕ℏ)Π̂1Ĝ(𝜔)Π̂0 = 0. (3.106)

We define

[Ĝ(0)
1 (𝜔)]−1 = 𝜔 − H1∕ℏ, (3.107)

which represents the inverse of a zeroth-order Green’s operator (it is defined without
the coupling V). Then, the equation for Π̂1Ĝ(𝜔)Π̂0 can be rewritten as

Π̂1Ĝ(𝜔)Π̂0 = Ĝ(0)
1 (𝜔)Π̂1(V∕ℏ)Π̂0Ĝ0(𝜔). (3.108)

If inserted into the equation for Ĝ0, we obtain(
𝜔 − H0∕ℏ − Π̂0(V∕ℏ)Π̂1Ĝ(0)

1 (𝜔)Π̂1(V∕ℏ)Π̂0

)
Ĝ0 = Π̂0. (3.109)

We analyze the extra term, which depends on V , and get

Π̂0(V∕ℏ)Π̂1Ĝ(0)
1 (𝜔)Π̂1(V∕ℏ)Π̂0 =

1
ℏ2

∑
𝛼

V0𝛼V
𝛼0

𝜔 − E
𝛼
∕ℏ + i𝜀

Π̂0

≡ Σ̂(𝜔)∕ℏ. (3.110)

The operator Σ̂ is the self-energy operator. It represents the operator version of
Eq. (3.72), and its introduction gives for the reduced Green’s operator

Ĝ0(𝜔) =
Π̂0

𝜔 − H0∕ℏ − Σ̂(𝜔)∕ℏ + i𝜀
. (3.111)

Let us separate the self-energy operator into a Hermitian and an anti-Hermitian part

Σ̂(𝜔) =1
2

(
Σ̂(𝜔) + Σ̂+(𝜔)

)
+ 1

2

(
Σ̂(𝜔) − Σ̂+(𝜔)

)
≡ ΔH(𝜔) − iπℏΓ̂(𝜔).

(3.112)

Noting Eq. (3.73), we can identify the Hermitian part as

ΔH(𝜔) = ℏΔΩ(𝜔)Π̂0, (3.113)

and the anti-Hermitian part as

Γ̂(𝜔) = Γ(𝜔)Π̂0. (3.114)

Inserting Eq. (3.111) for Ĝ0 into the above given expression for the level population
P0(t), we reproduce Eq. (3.74). At first glance, the derivation of known results may
seem as a useless exercise. However, the Green’s operator approach will show its
advantages later on if more complex quantum systems are considered.
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3.4 The Nonequilibrium Statistical Operator and the
Density Matrix

3.4.1 The Density Operator

According to quantum mechanics, a complete description of a system is only possible
if a set of observables exists from which all physical quantities can be measured
simultaneously. This situation is described by a set of commuting operators {Â

𝛼
};

that is, the relation[
Â
𝛼
,Â

𝛼′

]
− = Â

𝛼
Â
𝛼′ − Â

𝛼′Â𝛼
= 0 (3.115)

has to be fulfilled for all possible pairs of indices. If for the considered system
the maximal number of such operators is known, a complete description can be
accomplished.

The measurement of some set of observables corresponds to the application of the
respective operators Â

𝛼
on the state vector |Ψ⟩. If this exclusively gives the eigenval-

ues a
𝛼
; that is, if

Â
𝛼
|Ψ⟩ = a

𝛼
|Ψ⟩, (3.116)

the state |Ψ⟩ is called a pure state. Alternatively, one can say that a pure state is
prepared if a measurement of all observables belonging to the operators Â

𝛼
has been

carried out (complete measurement). The expectation value of any operator Ô can
be determined as⟨Ô⟩ = ⟨Ψ|Ô|Ψ⟩. (3.117)

The choice of a complete set of observables is not unique. There may exist another
complete set {B̂

𝛽
}, independent of the set {Â

𝛼
}. The respective pure states are

denoted as |Φ
𝜈
⟩. Then, the superposition principle of quantum mechanics states that

the superposition of all pure states related to the complete set {B̂
𝛽
} reproduces any

pure state |Ψ⟩:|Ψ⟩ = ∑
𝜈

c
𝜈
|Φ

𝜈
⟩. (3.118)

If the complete measurement of all Â
𝛼

has not been carried out, for example because
the complete set of observables is principally unknown, only an incomplete descrip-
tion of a quantum system is possible (incomplete preparation or measurement of the
system). In this case, the state of the quantum system has to be described as a statis-
tical mixture of pure states |Ψ

𝜈
⟩. The probability of a single state to be in the mixture

will be denoted as 𝑤
𝜈
. The states |Ψ

𝜈
⟩ are assumed to be normalized, and therefore,

the 𝑤
𝜈

must satisfy the relation∑
𝜈

𝑤
𝜈
= 1. (3.119)

Although it is not necessary to demand that the states |Ψ
𝜈
⟩ form an orthonormal set,

it is convenient to do so in what follows. Hence, we require in addition that⟨Ψ
𝜇
|Ψ

𝜈
⟩ = 𝛿

𝜇𝜈
. (3.120)
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According to this characterization of a mixture of pure states, the expectation value
of an observable becomes

⟨Ô⟩ = ∑
𝜈

𝑤
𝜈
⟨Ψ

𝜈
|Ô|Ψ

𝜈
⟩. (3.121)

This expression provides the idea of the density operator (the statistical operator),
which will be defined as

Ŵ =
∑
𝜈

𝑤
𝜈
|Ψ

𝜈
⟩⟨Ψ

𝜈
|. (3.122)

It is a summation of projection operators on the states |Ψ
𝜈
⟩ weighted by the proba-

bilities 𝑤
𝜈
. This definition allows a simple notation of the expectation value of any

observable using the trace formula

⟨Ô⟩ = tr{ŴÔ}. (3.123)

The abbreviation “tr” is defined as the trace with respect to the matrix formed by all
matrix elements that are determined in a complete orthonormal basis |a⟩

tr{…} =
∑

a
⟨a|… |a⟩. (3.124)

If Ô and P̂ are two operators acting in the Hilbert space spanned by the basis set |a⟩,
we have

tr(ÔP̂) =
∑
𝛼

⟨a|ÔP̂|a⟩ = ∑
a,b

⟨a|Ô|b⟩⟨b|P̂|a⟩
=

∑
a,b

⟨b|P̂|a⟩⟨a|Ô|b⟩ = tr(P̂Ô). (3.125)

This property is called cyclic invariance of the operator arrangement in a trace expres-
sion (it is also valid if three or more operators are involved). The density operator is
normalized such that tr{Ŵ} = 1. If this is not the case it can always be achieved by
replacing Ŵ with Ŵ∕tr{Ŵ}. Furthermore, we mention that the density operator is
Hermitian, Ŵ = Ŵ+, which follows from Eq. (3.122).

As an example we give the canonical density operator for the thermal equilibrium

Ŵeq = 1


e−H∕kBT = 1


∑
𝛼

e−E
𝛼
∕kBT |𝛼⟩⟨𝛼|. (3.126)

Here,  is the partition function tr[exp{−H∕kBT}] ensuring proper normalization
of Ŵeq. The second part of Eq. (3.126) is obtained using the eigenenergies E

𝛼
and

eigenstates |𝛼⟩ of the Hamiltonian H.
Further, we quote the density operator of a pure state |Ψ⟩, which is defined via the

operator projecting onto the pure state

Ŵpure = |Ψ⟩⟨Ψ| = Π̂Ψ. (3.127)

Comparing this expression with the general definition of the density operator
equation (3.122), it is obvious that Ŵpure corresponds to the special case where all
probabilities 𝑤

𝜈
are equal to zero except the one related to the state vector |Ψ⟩.
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Suppose that we expand the state vector |Ψ⟩ with respect to the complete orthog-
onal basis |𝛼⟩,|Ψ⟩ = ∑

𝛼

c
𝛼
|𝛼⟩. (3.128)

Introducing this expansion into the expression for the pure state density operator,
one obtains

Ŵpure =
∑
𝛼,𝛼

c
𝛼
c∗
𝛼
|𝛼⟩⟨𝛼| ≠ ∑

𝛼

|c
𝛼
|2|𝛼⟩⟨𝛼|. (3.129)

The last part of this equation indicates that this expansion does not result in projec-
tions onto the basis states |𝛼⟩. Instead, the flip operators |𝛼⟩⟨𝛼| introduce a mixture of
states |𝛼⟩ and |𝛼⟩, which results in nonvanishing off-diagonal elements of the matrix
(c∗
𝛼

c
𝛼
). This is typical for pure states expanded in a particular basis set.

There exists a measure that tells us whether the state is a pure state or not. This
measure is called the degree of coherence and is defined as

C = tr{Ŵ2}. (3.130)

It takes the value 1 for pure states since the statistical operator in this case is a
projector

Cpure = tr{Ŵ2
pure} = tr{Π̂2

Ψ} = tr{Π̂Ψ} = tr{Ŵpure} = 1, (3.131)

where the projector property Π̂2
Ψ = Π̂Ψ has been used. For a mixed state, it follows

that

Cmixed = tr {Ŵ2} =
∑
𝜇,𝜈

𝑤
𝜇
𝑤
𝜈

tr
{
Π̂Ψ

𝜇

Π̂Ψ
𝜈

}
=

∑
𝜇,𝜈

∑
𝛼

𝑤
𝜇
𝑤
𝜈
⟨𝛼|Ψ

𝜇
⟩⟨Ψ

𝜇
|Ψ

𝜈
⟩⟨Ψ

𝜈
|𝛼⟩

=
∑
𝜇

∑
𝛼

𝑤
2
𝜇
⟨Ψ

𝜇
|𝛼⟩⟨𝛼|Ψ

𝜇
⟩ = ∑

𝜇

𝑤
2
𝜇
< 1. (3.132)

Hence, the degree of coherence becomes less than 1. If one studies this quantity for
time-dependent density operators, the decrease in C indicates the loss of coherence
during the time evolution, which is caused by the interaction of the relevant system
with the reservoir.

3.4.2 The Density Matrix

In Section 3.1, the concept of the density matrix has been introduced. In order to
discuss the density matrix formalism in more detail, we consider a complete orthog-
onal basis of states |a⟩. Using the completeness relation, the density operator can be
expanded as

Ŵ =
∑
a,b

⟨a|Ŵ |b⟩ |a⟩⟨b|. (3.133)

The expansion coefficients are called density matrix and denoted by

𝜌ab = ⟨a|Ŵ |b⟩. (3.134)
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Alternatively, we may use the flip operator |b⟩⟨a| to write the density matrix as the
quantum statistical average of this operator

𝜌ab = tr
{

Ŵ |b⟩⟨a|} . (3.135)

Since the density operator Ŵ is Hermitian, the density matrix fulfills the relation

𝜌ab = 𝜌
∗
ba, (3.136)

from which one simply deduces

Re 𝜌ab = Re 𝜌ba , Im 𝜌ab = −Im 𝜌ba. (3.137)

In particular, it follows from this expression that the diagonal elements of the density
matrix are real:

𝜌aa = Re 𝜌aa. (3.138)

Alternatively, one can use the definition (3.122) of the density operator to write

𝜌aa = ⟨a|Ŵ |a⟩ = ∑
𝜈

⟨a|𝑤
𝜈
|Ψ

𝜈
⟩⟨Ψ

𝜈
|a⟩

=
∑
𝜈

𝑤
𝜈

||⟨a|Ψ
𝜈
⟩||2
, (3.139)

which also yields the real diagonal elements. Additionally, it shows that 𝜌aa gives us
the probability for the state |a⟩ being contained in the statistical mixture described
by Ŵ . And indeed, 𝜌aa ≥ 0, since 𝑤

𝜈
and ||⟨a|Ψ

𝜈
⟩||2 are larger than 0. Taking the

off-diagonal matrix elements of the density operator, it follows that

𝜌ab =
∑
𝜈

𝑤
𝜈
ca(𝜈)c∗b(𝜈), (3.140)

with the expansion coefficients ca(𝜈) = ⟨a|Ψ
𝜈
⟩. Apparently, the density matrix 𝜌ab

describes an incoherent superposition of contributions from different pure states.
Depending on the basis set {|a⟩}, the different terms on the right-hand side of
Eq. (3.140) can cancel each other or give a finite 𝜌ab. The off-diagonal density
matrices are also called coherences.

Since the definition of the density matrix, Eq. (3.133), represents a quadratic form,
the Schwarz inequality,

𝜌aa𝜌bb ≥ |𝜌ab|2
, (3.141)

holds. Equation (3.141) is particularly useful for checking the quality of any numer-
ical or analytical approximation to the density matrix.

The representation of the statistical operator equation (3.133) via the density
matrix introduced in Eq. (3.134) is frequently termed state representation. If
eigenstates of some Hamiltonian are used, it is also called energy representation.
Alternatively, it is possible to use, for example eigenstates of the coordinate operator|s⟩ = ∏

j
|sj⟩ (3.142)

or the momentum operator|p⟩ = ∏
j

|pj⟩, (3.143)
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with coordinate |sj⟩ and momentum states |pj⟩ for the jth DOF of the system, respec-
tively. Consequently, the coordinate representation of the statistical operator (density
matrix in the coordinate representation) reads

𝜌(s, s) = ⟨s|Ŵ |s⟩. (3.144)

In the same way, the momentum representation can be introduced. This allows us
to define the respective probability distribution 𝜌(s, s) in coordinate space and the
distribution 𝜌(p, p) in momentum space.

Both types of density matrices cannot straightforwardly be related to the classical
distribution function in phase space. This limit is conveniently approached using
the so-called Wigner representation, which is defined as

𝜌(x, p) =
∫

dr e−ipr∕ℏ
𝜌(x + r∕2, x − r∕2). (3.145)

To simplify the notation, we first concentrate on the case of a single coordinate.
The arguments of the density matrix in the coordinate representation, 𝜌(s, s), have
been transformed to a difference coordinate r = s − s and to a sum coordinate
x = (s + s)∕2. The dependence on the momentum p enters via a Fourier trans-
formation with respect to the difference coordinate. Apparently, 𝜌(x, p) is a phase
space representation of the density operator. Its generalization to the case of many
coordinates requires the introduction of difference and sum coordinates for every
DOF. Given 𝜌(x, p), the probability distribution with respect to the coordinate x and
the momentum p can be obtained by integration over p and x, respectively. The
advantage of this representation is that in the classical limit (ℏ→ 0), the density
matrix 𝜌(x, p) can be directly related to the phase space distribution of classical
statistical physics (Section 3.4.4).

3.4.3 Equation of Motion for the Density Operator

According to the definition of the density operator Ŵ , Eq. (3.122), the probabilities
𝑤
𝜈

represent our reduced knowledge about the state of the system. Furthermore,
we note that the state vectors |Ψ

𝜈
(t)⟩ of the mixed state evolve in time, of course,

according to the time-dependent Schrödinger equation

iℏ 𝜕
𝜕t

|Ψ
𝜈
(t)⟩ = H|Ψ

𝜈
(t)⟩. (3.146)

Although any individual state of the mixture changes in time, there is no change
whatsoever in our knowledge about the system. In particular, the probabilities 𝑤

𝜈

weighting the contribution of the different states |Ψ
𝜈
⟩ to the mixed state are con-

stant (𝑤
𝜈
≠ 𝑤

𝜈
(t)). The only exception occurs if a measurement has been done on

the system. It is known from the basics of quantum mechanics that the result of a
measurement process is a reduction in the state of the system onto an eigenstate of
the operator corresponding to the observable that has been measured. This means
that the mixed state collapses into a pure state. If the pure state is, for example |Ψ

𝜈0
⟩,

all 𝑤
𝜈

will be zero except the one related to the final pure state, which is equal to
unity: 𝑤

𝜈
= 𝛿

𝜈𝜈0
.
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According to this reasoning, the time-dependent density operator has the
following form:

Ŵ(t) =
∑
𝜈

𝑤
𝜈
|Ψ

𝜈
(t)⟩⟨Ψ

𝜈
(t)|. (3.147)

In order to derive an equation of motion, we write the solution of the time-dependent
Schrödinger equation by means of the time-evolution operator, Eq. (3.18), |Ψ

𝜈
(t)⟩ =

U(t, t0)|Ψ𝜈
(t0)⟩. Then, we obtain for the density operator

Ŵ(t) =
∑
𝜈

𝑤
𝜈
U(t, t0)|Ψ𝜈

(t0)⟩⟨Ψ𝜈
(t0)|U+(t, t0)

= U(t, t0)Ŵ(t0)U+(t, t0). (3.148)

Taking the time derivative of this expression, it follows
𝜕

𝜕t
Ŵ(t) = − i

ℏ

(
HŴ(t) − Ŵ(t)H

)
≡ − i

ℏ

[
H, Ŵ(t)

]
−. (3.149)

This is the equation of motion for the density operator Ŵ . It is called Liouville–von
Neumann or quantum Liouville equation because of its formal analogy to the
equation for the classical statistical distribution function.12) The advantage of the
Liouville–von Neumann equation is its capability to directly propagate mixed states
without reference to the underlying time-dependent Schrödinger equations. It is
also obvious from Eq. (3.149) that any density operator which is given by a mixture
of eigenstates of the respective Hamiltonian remains stationary. For a concrete
example, we refer to the canonical density operator, Eq. (3.126).

Next, we give the Liouville–von Neumann equation (3.149) in the state represen-
tation, Eq. (3.134). One easily derives:

𝜕

𝜕t
𝜌ab = −i

Haa − Hbb

ℏ

𝜌ab −
i
ℏ

∑
c≠a

Hac𝜌cb +
i
ℏ

∑
c≠b

Hcb𝜌ac. (3.150)

The difference of the diagonal matrix elements of the Hamiltonian defines the
transition frequency𝜔ab = (Haa − Hbb)∕ℏ, whereas the off-diagonal matrix elements
describe the interstate coupling.

There exists an alternative notation of the Liouville–von Neumann equation that
has its origin in the so-called Liouville space formulation of quantum statistical
dynamics. The Liouville space is a linear vector space whose elements are the
ordinary operators of the Hilbert space. An operator acting in Liouville space is
called a superoperator. We will not make full use of this concept here but introduce
superoperators as a convenient shorthand notation. The most important example
for a superoperator is the Liouville superoperator defined via the commutator with
the Hamiltonian:

… = 1
ℏ

[H,…]−. (3.151)

We see immediately that the Liouville–von Neumann equation can be written as
𝜕

𝜕t
Ŵ(t) = −iŴ(t), (3.152)

12) The classical distribution function depends on all coordinates and momenta and is defined in
the so-called phase space spanned by all coordinates and momenta.
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with the solution

Ŵ(t) = e−i(t−t0) Ŵ(t0). (3.153)

The exponential function of the superoperator is defined via the respective
power expansion. In analogy to Eq. (3.18), one can introduce the time-evolution
superoperator as follows:

 (t, t0) = e−i(t−t0). (3.154)

Comparing Eqs. (3.153) and (3.148), we see that  (t, t0) is acting on some operator
from the left and the right, that is

Ŵ(t) =  (t, t0)Ŵ(t0) = U(t, t0)Ŵ(t0)U+(t, t0). (3.155)

This is, of course, a consequence of the definition of  in terms of a commutator.

3.4.4 Wigner Representation of the Density Operator

In Section 3.4.2 it was discussed that the matrix elements of the density operator
can be considered in the coordinate representation, momentum representation, and
also in a mixture of both, which is the Wigner representation 𝜌(x, p), Eq. (3.145).
Here, we derive the Liouville–von Neumann equation for the density operator in
the Wigner representation. As we will see, for instance in Section 3.9, it is not only
of conceptional but also of great practical interest to carry out the classical limit,
giving the classical phase space distribution.

Inspecting Eq. (3.149), it is clear that one needs to find the Wigner representation
of some operator product Ẑ = X̂Ŷ . First, we introduce the coordinate representation
of Ẑ

Z(s, s) =
∫

ds′ X(s, s′) Y (s′, s). (3.156)

As in Eq. (3.145), we concentrate on the case of a single coordinate and obtain the
Wigner representation for Z(s, s) as

Z(x, p) =
∫

dr ds′ e−ipr∕ℏX(x + r∕2, s′) Y (s′, x − r∕2). (3.157)

This expression is not yet satisfactory since it contains the coordinate representation
of X̂ and Ŷ on the right-hand side. We introduce the Wigner representation for these
functions by using the inverse of Eq. (3.145) and obtain the expression

Z(x, p) = 1
(2πℏ)2 ∫

dr ds′ dp′dp′′

× exp
{ i
ℏ

(
−pr + (x + r∕2 − s′)p′ + (s′ − x + r∕2)p′′)}

× X((x + r∕2 + s′)∕2, p′) Y ((s′ + x − r∕2)∕2, p′′). (3.158)

In what follows, the quantities X and Y have to be written as functions of the single
coordinate argument x only; that is, the r and s′ dependence has to be eliminated.
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We achieve this using the shift operator introduced in Eq. (2.67). For example, for X ,
it gives

X((x + r∕2 + s′)∕2, p′) = X(x − (x − r∕2 − s′)∕2, p′)

= exp
{
−

x − r∕2 − s′

2
𝜕

𝜕x

}
X(x, p′). (3.159)

Inserting this result and the similar one for the function Y into Eq. (3.158), one
obtains

Z(x, p) = 1
(2πℏ)2 ∫

dr ds′ dp′dp′′

× exp
( i
ℏ

(
− rp + (x + r∕2 − s′)p′ − (x − r∕2 − s′)p′′))

×
{

exp
(
−

x − r∕2 − s′

2
𝜕

𝜕x′
−

x + r∕2 − s′

2
𝜕

𝜕x′′

)
× X(x′, p′)Y (x′′, p′′)

}
x′=x′′=x

. (3.160)

A more compact notation is obtained if we take into account that the prefactors of
the coordinate derivatives in the shift operators appear again in the first exponential
function. Therefore, we write the integrand in Eq. (3.160) as

Z(x, p) = 1
(2πℏ)2 ∫

dr ds′ dp′dp′′

×

{{
exp

[
− iℏ

2
𝜕

𝜕p′′
𝜕

𝜕x′
+ iℏ

2
𝜕

𝜕p′
𝜕

𝜕x′′

]

× exp

[
i
ℏ

(x + r∕2 − s′)p′ − i
ℏ

(x − r∕2 − s′)p′′
]}|p′=p′

|p′′=p′′

× X(x′, p′)Y (x′′, p′′)

}
x′=x′′=x

. (3.161)

This notation enables us to carry out all four integrations. To do this, we order the
terms with respect to s′, x, and r. The integration with respect to s′ results in the delta
function 𝛿(p′ − p′′). At the same time, the term proportional to x in the exponent and
the p′′-integration vanishes. Finally, the integration with respect to r leads to p = p′,
which removes the p′-integration. The final result can be put into a compact notation
if one introduces the operator

Θ̂ = 𝜕

𝜕x
𝜕

𝜕p′ −
𝜕

𝜕x′
𝜕

𝜕p
. (3.162)

It results in the Wigner representation of the operator product Ẑ = X̂Ŷ as

Z(x, p) =
{

eiℏΘ̂∕2X(x, p)Y (x′, p′)
}|x=x′

|p=p′
. (3.163)

Frequently, the operator equation (3.162) is also written as

Θ̂ =
←−
𝜕

𝜕x

−→
𝜕

𝜕p
−
←−
𝜕

𝜕x

−→
𝜕

𝜕p
, (3.164)
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where the arrows indicate the direction of the action of the derivative. Using this
notation, Eq. (3.163) can be written as

Z(x, p) = X(x, p)eiℏΘ̂∕2Y (x, p) = Y (x, p)e−iℏΘ̂∕2X(x, p). (3.165)

Although exact, this compact expression for the Wigner transformation can only
be handled after expanding the exponential function. Since this corresponds to an
expansion in powers of ℏ, it can be used to obtain the classical limit.

To introduce the Wigner representation of the Liouville–von Neumann equation,
we consider from now on the case where any coordinate argument x and any
momentum argument p have to be understood as a set of coordinates and momenta,
x = {xj} and p = {pj}, respectively. This requires generalizing Eq. (3.162) to an
expression where a summation with respect to all derivatives has to be taken.
Additionally, we take into account that the Wigner representation of an operator
exclusively defined via the coordinate operator or the momentum operator is
a function depending on the coordinate or the momentum, respectively, alone.
Therefore, one obtains for the potential operator the Wigner representation U(x),
and for kinetic energy T(p). Let us start with the following form of the Liouville–von
Neumann equation:

𝜕𝜌(x, p; t)
𝜕t

= − i
ℏ ∫

dr e−ipr∕ℏ ⟨x + r∕2|[H, Ŵ(t)
]
−|x − r∕2⟩. (3.166)

To obtain the classical limit, ℏ→ 0, Eq. (3.165) has to be expanded up to the first
order in the Θ̂-operator:

𝜕𝜌(x, p; t)
𝜕t

= − i
ℏ

{[
1 + iℏ

2
Θ̂

] [
H(x, p)𝜌(x′, p′; t) − 𝜌(x, p; t)H(x′, p′)

]}|x=x′

|p=p′
.

(3.167)

The zero-order contribution vanishes, and the classical limit results in
𝜕𝜌(x, p; t)

𝜕t
= cl𝜌(x, p; t)

=
∑

j

{
𝜕U(x)
𝜕xj

𝜕

𝜕pj
𝜌(x, p; t) −

𝜕T(p)
𝜕pj

𝜕

𝜕xj
𝜌(x, p; t)

}
. (3.168)

This relation is known from classical statistical mechanics as the Liouville equation,
andcl is the classical Liouville operator. It describes the reversible time evolution of
the phase space probability distribution. To determine 𝜌(x, p; t), one has to fix an ini-
tial distribution 𝜌0(x, p). Then, one can solve the partial differential equation (3.168).
The solution can be written as

𝜌(x, p; t) =
∫

dxdp 𝛿
(

x − x(x, p; t)
)
𝛿

(
p − p(x, p; t)

)
𝜌0(x, p), (3.169)

where x(x, p; t) and p(x, p; t) denote the solution of the classical equations of motion
for the coordinates and momenta, respectively, following from the initial values x
and p. The x, p-integral accounts for all those initial values that constitute the initial
distribution 𝜌0(x, p).
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3.4.5 Dynamics of Coupled Multilevel Systems in a Heat Bath

As a first application of the density operator method, we consider two coupled
multilevel systems as already introduced in Eq. (3.77). It is not the aim here to
derive new results, rather we would like to give an alternative derivation of what
has been introduced in Section 3.3.2. In particular, a number of approximations are
introduced, which we will discuss again later on in Section 3.6.1. Following Section
3.3.2, each multilevel system is described by the energies Ea and E

𝛽
, respectively,

and the coupling between them is due to the matrix element Va𝛽 of the coupling
operator V . For both quantum numbers, a and 𝛽, we again use the running indices
𝜇, 𝜈, etc. Accordingly, the Hamiltonian equation (3.77) can be expressed by the
common energies E

𝜇
and coupling matrices V

𝜇𝜈
(of course, Vaa′ = V

𝛽𝛽′ = 0). The
density matrix relevant for this system is 𝜌

𝜇𝜈
(t) = ⟨𝜇|Ŵ(t)|𝜈⟩, and it obeys an

equation of motion of the type given in Eq. (3.150) with the transition frequencies
𝜔
𝜇𝜈

= (E
𝜇
− E

𝜈
)∕ℏ.

As in Section 3.3, the subject of the following consideration is to derive a closed
set of equations of motion for the total population of the state manifold {|a⟩} (the
initial state manifold)

Pi(t) =
∑

a
𝜌aa(t) ≡

∑
a

Pa(t), (3.170)

and the total population of the manifold {|𝛽⟩} (the final state manifold)

Pf (t) =
∑
𝛽

𝜌
𝛽𝛽
(t) ≡

∑
𝛽

P
𝛽
(t). (3.171)

The coupling of the two multilevel systems to the heat bath will not be specified
any further here. The only assumption we will make is that this coupling is much
stronger than the interstate coupling Va𝛽 (this is identical to the assumption of
Section 3.3.2). Thus, the rates for transitions within the two manifolds, ka→a′ and
k
𝛽→𝛽′ , are supposed to be much larger than those for interstate probability transfer.

As a consequence, the populations of the initial and final states can be assumed
to be thermalized within the two manifolds on the time scale of the intermanifold
transfer. Accordingly, the populations are written as

Pa(t) = Pi(t) fa , P
𝛽
(t) = Pf (t) f

𝛽
. (3.172)

Recall that this ansatz corresponds to a coarse graining of the time axis, which has
already been introduced in Section 3.3.2. Within this framework, we search for
equations of motion obeyed by the total populations Pi and Pf , which are based on
Eq. (3.150). Since the coupling matrix element should be small, a perturbational
treatment is appropriate. We start with an equation of motion for the diagonal
elements of the density matrix, 𝜌

𝜇𝜇
= P

𝜇
, and get from Eq. (3.150), assuming

V
𝜇𝜇

= 0,

𝜕

𝜕t
P
𝜇
= − i

ℏ

∑
𝜅

(
V
𝜇𝜅
𝜌
𝜅𝜇

− V
𝜅𝜇
𝜌
𝜇𝜅

)
≡

2
ℏ

Im
∑
𝜅

V
𝜇𝜅
𝜌
𝜅𝜇
. (3.173)
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The off-diagonal density matrix elements that appear on the right-hand side have to
be determined too. They obey

𝜕

𝜕t
𝜌
𝜅𝜇

= −i𝜔
𝜅𝜇
𝜌
𝜅𝜇

− i
ℏ

∑
𝜆

(
V
𝜅𝜆
𝜌
𝜆𝜇

− V
𝜆𝜇
𝜌
𝜅𝜆

)
≈ −i𝜔

𝜅𝜇
𝜌
𝜅𝜇

− i
ℏ

V
𝜅𝜇

(
𝜌
𝜇𝜇

− 𝜌
𝜅𝜅

)
. (3.174)

Since we are looking for the lowest order approximation in V
𝜇𝜈

, off-diagonal density
matrix elements have been neglected in the second line. Fixing the initial condition
as 𝜌a𝛽(0) = 0 (absence of a superposition state between both subsystems) or more
generally 𝜌

𝜇𝜈
= 0 for 𝜇 ≠ 𝜈, we can solve Eq. (3.174) by formal integration and obtain

𝜌
𝜅𝜇
(t) = − i

ℏ

V
𝜅𝜇

t

∫
0

dt e−i𝜔
𝜅𝜇

(t−t) [P
𝜇
(t) − P

𝜅
(t)]. (3.175)

Inserting the result into Eq. (3.173) yields (note the replacement of t by t − 𝜏)

𝜕

𝜕t
P
𝜇
= − 1

ℏ2

∑
𝜅

|V
𝜇𝜅

|2 2Re

t

∫
0

d𝜏 e−i𝜔
𝜅𝜇

𝜏 [P
𝜇
(t − 𝜏) − P

𝜅
(t − 𝜏)]. (3.176)

The total state populations Pi and Pf are obtained by making use of the thermal-
ization condition, Eq. (3.172). If these expressions are introduced into Eq. (3.176),
we get

𝜕

𝜕t
Pi = −

t

∫
0

d𝜏 [Ki→f (𝜏) Pi(t − 𝜏) − Kf→i(𝜏) Pf (t − 𝜏)], (3.177)

with the integral kernel given by

Ki→f (𝜏) =
2
ℏ2

∑
a,𝛽

|Va𝛽 |2 fa cos(𝜔a𝛽𝜏). (3.178)

The kernel referring to the inverse transition is obtained in replacing fa by f
𝛽
. Inter-

changing i and f leads to the equation for Pf (t). The quantity Ki→f (𝜏) is usually named
memory kernel since it reflects that Eq. (3.177) is not an ordinary rate equation as
Eq. (3.2). As a consequence of the time integral, the state populations enter the
equation at a time 𝜏 earlier than t. In other words, the system retains the memory of
its past dynamics. Master equations, such as Eq. (3.177), that include memory effects
are called generalized master equations (GMEs).

The time dependence of the memory kernel is determined by the structure of
the energy spectrum related to the initial and the final states. If these spectra are
dense, Ki→f (𝜏) would decay in a certain time interval 𝜏mem due to destructive inter-
ference (cf. Section 3.2). If 𝜏mem is short compared to the characteristic time where
the populations Pi and Pf change, the variation in both quantities within the interval
[t − 𝜏mem, t] can be neglected, and we can replace Pi(t − 𝜏) and Pf (t − 𝜏) by Pi(t) and
Pf (t), respectively, in the integrand. Note that this corresponds to a further coarse
graining of the time axis. According to both coarse graining approximations, the
populations Pi and Pf are only valid for times much larger than 𝜏mem. Therefore,
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the result of the integration does not change if the upper limit is put to infinity, and
we arrive at the ordinary rate equation

𝜕

𝜕t
Pi = −ki→f Pi(t) + kf→i Pf (t), (3.179)

where the transition rates take the form

ki→f =

∞

∫
0

d𝜏 Ki→f (𝜏) =
2
ℏ2

∑
a,𝛽

|Va𝛽 |2 fa Re

∞

∫
0

d𝜏 exp(i𝜔a𝛽𝜏). (3.180)

We note that Rez = (z + z∗)∕2 (where z is an arbitrary complex number) and replace
the integral by one along the total time axis. Using the Fourier representation of the
𝛿-function

𝛿(𝜔) = 1
2π

∞

∫
−∞

dt ei𝜔t
, (3.181)

we get

ki→f =
2π
ℏ

∑
a,𝛽

fa |Va𝛽 |2
𝛿(Ea − E

𝛽
). (3.182)

The derived rate formula is identical to the Golden Rule expression of the transition
rates of Eq. (3.87). Of course, this is not surprising since our derivation of Eq. (3.182)
followed the same arguments. A strong coupling to the reservoir is assumed to give
fast thermalization, and a quasi-continuous final-state energy spectrum is required
to prevent probability revivals from the final to the initial states. Note that the
demand for a quasi-continuous energy spectrum was found to correspond to a short
memory time of the kernel entering the GME.

It is instructive to view the transition rates from a different perspective. Let us go
back to Eq. (3.178) and write

Ki→f (t) =
2
ℏ2 Re

∑
a,𝛽

|Va𝛽 |2 fa ei(Ea−E
𝛽
)t∕ℏ

= 2
ℏ2 Re

∑
a,𝛽

fa⟨a|eiEat∕ℏVe−iE
𝛽

t∕ℏ|𝛽⟩⟨𝛽|V |a⟩. (3.183)

Introducing the part H0 =
∑

aEa|a⟩⟨a| +
∑
𝛽
E
𝛽
|𝛽⟩⟨𝛽| of the total Hamiltonian,

Eq. (3.77), we can replace the energies Ea and E
𝛽

by H0 (the coupling part of the
Hamiltonian, Eq. (3.77), is denoted by V). Using the completeness relation with
respect to the state manifold |𝛽⟩ gives

Ki→f (t) =
2
ℏ

2 Re
∑

a
⟨a|Ŵ (i)

eq eiH0t∕ℏVe−iH0t∕ℏV |a⟩
=2Re Ci→f (t). (3.184)

Here, the distribution fa has been replaced by the equilibrium density operator of
the initial state Ŵ (i)

eq , Eq. (3.126), and we introduced the correlation function Ci→f (t),
which can also be written as

Ci→f (t) =
1
ℏ

2 tri{Ŵ (i)
eq V (I)(t)V (I)(0)}. (3.185)
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This represents an autocorrelation function of the interstate coupling V (I)(t) written
in the interaction representation and taken with respect to the thermal equilibrium
(tri{· · · } abbreviates

∑
a⟨a| · · · |a⟩). Thus, the memory kernel turns out to be

proportional to the autocorrelation function of the interstate coupling. A short
memory time thus implies a rapid decay of this correlation function. The fact that
rate expressions such as (3.182) in general can be written in terms of correlation
functions of the perturbational part of the Hamiltonian is of great importance for
the understanding as well as the numerical modeling of condensed-phase processes.
We will frequently return to this point in the following considerations.

3.5 The Reduced Density Operator and the Reduced
Density Matrix

3.5.1 The Reduced Density Operator

Having discussed the concept of the density operator, we are ready to put the idea
of the RDM introduced in Section 3.1 into a more rigorous framework. The starting
point will be a Hamiltonian H that is separable into a system part HS, a reservoir part
HR, and the system–reservoir interaction HS–R (cf. Eq. (3.3))

H = HS + HS–R + HR. (3.186)

First, as in Section 3.1, we introduce the density matrix in the coordinate represen-
tation, Eq. (3.144), using the states equation (3.142) separated now into|s⟩ = ∏

j
|sj⟩, (3.187)

defined in the state space of the relevant system, and into the states|Z⟩ = ∏
𝜉

|Z
𝜉
⟩, (3.188)

defined in the state space of the reservoir. According to the general form of the
time-dependent density operator Ŵ(t), Eq. (3.147), the density matrix in the
coordinate representation reads

𝜌(s,Z; s′,Z′; t) = ⟨s| ⟨Z| Ŵ(t) |Z′⟩ |s′⟩
=

∑
𝑣

𝑤
𝜈
Ψ
𝜈
(s,Z; t) Ψ∗

𝜈
(s′,Z′; t), (3.189)

with Ψ
𝜈
(s,Z; t) = ⟨s|⟨Z|Ψ

𝜈
(t)⟩. Following the reasoning of Section 3.1, we introduce

the RDM defined in the state space of the relevant system only. This quantity is
obtained by carrying out an integration with respect to the set of reservoir coordi-
nates Z, that is,

𝜌(s, s′; t) =
∫

dZ ⟨s|⟨Z| Ŵ(t) |Z⟩|s′⟩ = ⟨s|�̂�(t)|s′⟩, (3.190)

where the RDO of the relevant system

�̂�(t) =
∫

dZ ⟨Z|Ŵ(t)|Z⟩ (3.191)



3.5 The Reduced Density Operator and the Reduced Density Matrix 97

has been introduced. It is defined by taking the trace of the total density operator
with respect to a particular basis in the reservoir state space. Instead of the coordinate
states |Z⟩, any basis |𝛼⟩ in the reservoir state space may be chosen,

�̂�(t) =
∑
𝛼

⟨𝛼|Ŵ(t)|𝛼⟩ = trR
{

Ŵ(t)
}
, (3.192)

that is, the trace with respect to the reservoir states reduces the total density operator
Ŵ to the RDO �̂�.

Besides the coordinate representation of the density matrix equation (3.190), any
basis |a⟩ in the state space of the system can be used to define the RDM

𝜌ab(t) = ⟨a|�̂�(t)|b⟩. (3.193)

As in the case of the total density operator, we expect the following relation to be
fulfilled:

trS{�̂�(t)} ≡
∑

a
𝜌aa(t) = 1. (3.194)

The relation is easily confirmed if we note that Ŵ(t) entering Eq. (3.192) obeys
tr{Ŵ(t)} = 1.

3.5.2 Equation of Motion for the Reduced Density Operator

An equation of motion for the RDM is derived by starting from the respective
operator equation for the RDO. From the Liouville–von Neumann equation (3.149),
we obtain

𝜕

𝜕t
�̂�(t) = trR

{
𝜕

𝜕t
Ŵ(t)

}
= − i

ℏ

trR
{[

HS + HS–R + HR, Ŵ(t)
]
−

}
= − i

ℏ

[
HS, �̂�(t)

]
− − i

ℏ

trR
{[

HS–R + HR, Ŵ(t)
]
−

}
. (3.195)

In the first part of this equation, we used the fact that the basis that defines the trace
in the reservoir space state is time independent. Then, we took into account that
the system Hamiltonian HS is not influenced by the reservoir trace. Therefore, it is
possible to introduce the commutator of HS with respect to the RDO directly. Indeed,
we could have anticipated such a contribution since for HS–R = 0, the equation for
the RDO should reduce to the Liouville–von Neumann equation (3.149).

The commutator notation for the RDO is not possible for the contributions propor-
tional to HS–R and HR. To calculate the commutator with HR, we take into account
Eq. (3.125). The cyclic interchange of operators can be carried out here since HR
exclusively acts in the state space of the reservoir. As a result, the term proportional
to HR vanishes, and the equation of motion for the RDO follows as

𝜕

𝜕t
�̂�(t) = − i

ℏ

[
HS, �̂�(t)

]
− − i

ℏ

trR {
[
HS–R, Ŵ(t)

]
−}. (3.196)

Before dealing with the case HS–R ≠ 0, we note that the type of equation (3.149) is
recovered if HS–R is neglected. But this Liouville–von Neumann equation is defined
by HS instead of the full Hamiltonian H, and it describes the isolated time evolution
of the relevant quantum system. As already pointed out in Section 3.1, the density
matrix description of coherent dynamics contains some redundancy, and a wave
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function formulation is more appropriate in this case. However, if the RDO describes
a mixed state of the isolated system, a generalization of the ordinary time-dependent
Schrödinger equation has been achieved. Changing to the more interesting case of
the presence of HS–R, we realize that Eq. (3.196) is not yet a closed equation for the
RDO. Because of the appearance of HS–R in the commutator on the right-hand side,
it still contains the total density operator. It will be the main task of the following
sections to develop approximations that yield the second term in Eq. (3.196) as a
functional of the RDO only, such that one has a closed equation for the RDO.

3.5.3 Mean-field Approximation

In a first attempt to close Eq. (3.196), we take the most simple route. Since the total
density operator appears on the right-hand side of Eq. (3.196), which includes HS–R
in all orders (according to the given time dependence of Ŵ(t)), we expect that a
perturbation theory with respect to HS–R can be developed. Let us start with the
first-order approximation, which is obtained if we replace the total density opera-
tor by its HS–R → 0 limit. In this limit, there are no interactions between the two
subsystems. Ŵ(t) factorizes into �̂�(t) and an operator R̂(t) that is defined only in the
Hilbert space of the reservoir and which obeys trR{R̂} = 1.

According to our assumptions, the approximated equation of motion for the RDO
becomes

𝜕

𝜕t
�̂�(t) = − i

ℏ

[
HS + trR{HS–RR̂(t)}, �̂�(t)

]
−. (3.197)

This equation is of the type of a Liouville–von Neumann equation for the RDO,
but with the only difference here that HS has been supplemented by trR{HS–RR̂(t)}.
The additional term is the expectation value of the system–reservoir coupling taken
with respect to the actual state of the reservoir. (Note that HS–R and R̂(t) can be
interchanged under the trace giving the compact notation of Eq. (3.197)). Since the
bath part of HS–R has been replaced by an expectation value, the result is called
mean-field approximation13). The meaning becomes more obvious if we assume that
the system–reservoir interaction Hamiltonian can be factorized into system parts
Ku = Ku(s) and into reservoir parts Φu = Φu(Z), that is,

HS–R =
∑

u
KuΦu. (3.198)

The index u counts the different contributions that may follow from a particular
microscopic model for the coupling of the system to the reservoir. Note that it is
not necessary that the single operator Ku or Φu is Hermitian. Only the complete
coupling Hamiltonian needs to be Hermitian. Since no further restriction has been
introduced with respect to these two functions, Eq. (3.198) is sufficiently general to

13) The term mean-field approximation indicates that quantum fluctuations are not considered,
and that the quantum mechanical operators act only via the “mean field” given by their
expectation values. Such a type of approximation has been already considered in Section 2.4 in the
framework of the derivation of the Hartree–Fock equations. Therefore, the mean-field
approximation is often also called Hartree approximation.
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comprise all cases of practical importance. In the subsequent chapters, we discuss
several examples supporting this point of view.

Taking the factorized form of HS–R, Eq. (3.197) becomes

𝜕

𝜕t
�̂�(t) = − i

ℏ

[
HS +

∑
u

Ku trR{ΦuR̂(t)}, �̂�(t)

]
−

. (3.199)

For further use, we define the mean-field Hamiltonian

Hmf =
∑

u
Ku trR{ΦuR̂(t)}. (3.200)

Because the time dependence of the reservoir density operator is not known, the
equation for the RDO is not closed. But taking an equilibrium assumption for the
reservoir and replacing R̂(t) by

R̂eq = e−HR∕kBT∕trR{e−HR∕kBT}, (3.201)

Equation (3.199) defines a closed equation. As a convenient abbreviation, we
introduce here and for what follows

trR{R̂eq …} = ⟨· · · ⟩R. (3.202)

The effect of ⟨Φu⟩R, and thus of the mean-field term, is a shift of the energy scale; that
is, it does not give the relaxation behavior discussed in the context of the Golden Rule
approach. As we will see below, relaxation is caused by fluctuations, Φu − ⟨Φu⟩R,
around the mean-field energies. In order to take these into account, we need to go
one step further in our perturbation expansion.

But before doing this, we consider the more general case where the mean-field
term remains time dependent. In such a situation, we have to set up an additional
equation for R̂(t). Understanding it as the RDO of the reservoir and setting

R̂(t) = trS{Ŵ(t)}, (3.203)

we can repeat the derivation, which leads us to Eq. (3.197) (or Eq. (3.199)), and obtain

𝜕

𝜕t
R̂(t) = − i

ℏ

[
HR +

∑
u
ΦutrS{Ku�̂�(t)}, R̂(t)

]
−

. (3.204)

This equation together with Eq. (3.199) represents a closed set to determine
the coupled evolution of the relevant system and the reservoir once respective
initial conditions for both types of RDO have been set up. Because the solution of
Eq. (3.204) for a macroscopic reservoir becomes impossible, the approach is not
suited to describe energy dissipation out of the relevant system. An application of
the coupled set of Eqs. (3.199) and (3.204) only makes sense when both subsystems
are sufficiently small.

3.5.4 The Interaction Representation of the Reduced Density Operator

In the foregoing section, an equation of motion for the RDO has been derived, which
is of first order in HS–R. In the following section, we apply a projection operator
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technique. It allows to handle separately the projection of the operator equation onto
the subspace of the relevant system and the formulation of a perturbation theory
with respect to the system–reservoir coupling HS–R. The latter is conveniently devel-
oped by changing to the interaction representation as explained in what follows.

Recall that the formal solution of the Liouville–von Neumann equation can be
written as (Eq. (3.148))

Ŵ(t) = U(t − t0)Ŵ(t0)U+(t − t0), (3.205)

where the time-evolution operator U(t − t0) is defined with respect to the total
Hamiltonian H. One can separate this operator into the “free” time-evolution
operator

U0(t − t0) = exp
(
− i
ℏ

HS(t − t0)
)

exp
(
− i
ℏ

HR(t − t0)
)

≡ US(t − t0) UR(t − t0) (3.206)

(note that HS and HR commute with each other) and the related S-operator (cf.
Section 3.2.2)

S(t, t0) = T exp
⎛⎜⎜⎝− i
ℏ

t

∫
t0

d𝜏H(I)
S–R(𝜏)

⎞⎟⎟⎠ . (3.207)

This expression contains the system–reservoir coupling Hamiltonian in the interac-
tion representation

H(I)
S–R(t) = U+

0 (t − t0)HS–RU0(t − t0). (3.208)

For the total density operator, we can write

Ŵ(t) = U0(t − t0)Ŵ (I)(t)U+
0 (t − t0), (3.209)

where the density operator in the interaction representation reads

Ŵ (I)(t) = U+
0 (t − t0)Ŵ(t)U0(t − t0) = S(t, t0)Ŵ(t0)S+(t, t0). (3.210)

Using this equation, the time derivative of Eq. (3.209) can be written as

𝜕

𝜕t
Ŵ(t) = − i

ℏ

[H0, Ŵ(t)]− + U0(t − t0)
𝜕

𝜕t
Ŵ (I)(t)U+

0 (t − t0). (3.211)

If we set this expression equal to the right-hand side of the Liouville–von Neumann
equation, −i[H, Ŵ(t)]−∕ℏ, we get after some rearrangement

𝜕

𝜕t
Ŵ (I)(t) = − i

ℏ

[H(I)
S–R(t), Ŵ

(I)(t)]−. (3.212)

Notice that this equation can be viewed as the generalization of Eq. (3.35) to the case
of a density operator. Next, we transform the RDO into the interaction representation
(using Eq. (3.206))

�̂�(t) = trR{Ŵ(t)} = trR
{

U0(t − t0)Ŵ (I)(t)U+
0 (t − t0)

}
= US(t − t0)trR

{
UR(t − t0)Ŵ (I)(t)U+

R (t − t0)
}

U+
S (t − t0). (3.213)
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Using the cyclic invariance of the trace, we can write

�̂�(t) = US(t − t0)�̂�
(I)(t)U+

S (t − t0), (3.214)

with the RDO in the interaction representation defined as

�̂�
(I)(t) = trR

{
Ŵ (I)(t)

}
. (3.215)

With these definitions, the equation of motion for 𝜌(I)(t) follows from Eq. (3.212) as
𝜕

𝜕t
�̂�

(I)(t) = − i
ℏ

trR

{[
H(I)

S–R(t), Ŵ
(I)(t)

]
−

}
. (3.216)

3.5.5 The Nakajima–Zwanzig Equation

The generation of equations for the RDO of higher order in the system–reservoir cou-
pling requires the combination of a perturbation theory with a scheme for restricting
the operator equations to the state space of the relevant system. Suppose that Ô is an
operator acting in the space of the system and the reservoir states. Let us consider
the quantity  that acts on Ô as follows

Ô = R̂ trR{Ô}. (3.217)

By definition,  separates Ô defined in the full space into the part trR{Ô} acting only
in the system space and an operator R̂ which by definition exclusively acts in the state
space of the reservoir. In other words,  factorizes any operator into a system part
and into a reservoir part. Since  is not an operator acting on a wave function, but
manipulates operators by itself, it is another example of a superoperator.

If we apply  to the full density operator, we obtain by definition the RDO �̂� and
some reservoir operator

Ŵ(t) = R̂ �̂�(t). (3.218)

If trR{R̂} = 1, which we will assume in what follows, the superoperator  is a
projector or more precisely a projection superoperator, that is, 2 =  , as can be
easily proved

2Ô = R̂ trR{R̂ trR{Ô}} = R̂ trR{R̂} trR{Ô} = Ô. (3.219)

Since R̂ has a trace equal to unity, it can be interpreted as a statistical operator
restricted to the state space of the reservoir. Although in principle, a time depen-
dence is possible, we take R̂ as the (time-independent) equilibrium density operator
of the reservoir; that is, we define

 … = R̂eq trR{· · · }. (3.220)

It is useful to introduce in addition to  its orthogonal complement

 = 1 −  . (3.221)

The operator  is a projection superoperator as well, and by construction, we have

 =  = 0. (3.222)
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The action of  on the total density operator leads to

Ŵ(t) = Ŵ(t) − �̂�(t)R̂eq. (3.223)

This is often called the irrelevant part of the statistical operator.
Both projectors,  and , can be used to systematically develop a perturba-

tion expansion with respect to HS–R in the equation of motion for the RDO. To
achieve this goal, we start our considerations in the interaction representation.
We have

Ŵ (I)(t) = R̂eqtrR{Ŵ (I)(t)} = R̂eq�̂�
(I)(t). (3.224)

Using the identity Ŵ (I)(t) = Ŵ (I)(t) +Ŵ (I)(t), the Liouville–von Neumann
equation (3.149) can be split into two coupled equations. First, we have


𝜕

𝜕t
Ŵ (I)(t) = − i

ℏ



[
H(I)

S–R(t),Ŵ (I)(t) +Ŵ (I)(t)
]
−
. (3.225)

Taking the trace with respect to the reservoir states, it follows that

trR

{

𝜕

𝜕t
Ŵ (I)(t)

}
= 𝜕

𝜕t
�̂�

(I)(t)

= − i
ℏ

trR

{[
H(I)

S–R(t), R̂eq�̂�
(I)(t) +Ŵ (I)(t)

]
−

}
. (3.226)

In a similar manner, one obtains the equation of motion for Ŵ (I) as
𝜕

𝜕t
Ŵ (I)(t) = − i

ℏ



[
H(I)

S–R(t), R̂eq�̂�
(I)(t) +Ŵ (I)(t)

]
−
. (3.227)

By means of these formal manipulations, we have been able to reduce the equation
of motion for Ŵ (I) to a coupled set of equations for �̂�(I) and Ŵ (I).

Next, we show that a solution of Eq. (3.227) allows to generate a perturbation
expansion with respect to HS–R on the right-hand side of Eq. (3.226). If we neglect
Ŵ (I) altogether, we recover the result of the previous section; that is, we obtain
the mean-field correction to the system dynamics which is of first order in HS–R (see
Eq. (3.197)). The second-order contribution is calculated by inserting a solution
of Eq. (3.227) which is of first order in HS–R. The commutator structure of the
right-hand side of Eq. (3.226) then results in second-order terms. The formal
first-order solution of the equation for Ŵ (I) is obtained by neglecting Ŵ (I) on the
right-hand side of Eq. (3.227). One obtains

Ŵ (I)(t) = Ŵ (I)(t0) −
i
ℏ

t

∫
t0

d𝜏 

[
H(I)

S–R(𝜏), R̂eq�̂�
(I)(𝜏)

]
−
. (3.228)

Here, the first part on the right-hand side tells us whether or not Ŵ (I) initially fac-
torizes into a system and a reservoir part. It is easy to verify that this term vanishes
if the total density operator factorizes at t = t0, Ŵ(t0) → 𝜌(t0)R̂eq. If such a factoriza-
tion is not possible, the so-called initial correlations between the relevant system
and the reservoir have to be taken into account. The time scale for the decay of
these initial correlations depends on the details of the system–reservoir coupling.
For simplicity, we will not consider this effect in what follows; that is, we assume
that Ŵ (I)(t0) = 0.
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The third-order contribution to Eq. (3.226) can be obtained by inserting Eq. (3.228)
into the right-hand side of Eq. (3.227). The formal solution of the resulting equation
is then used in Eq. (3.226). This iteration procedure can be continued to gen-
erate all orders of the perturbation expansion. However, one of the advantages
of the projection operator approach is that a formal exact summation of the
perturbation series is possible. To this end, we start again with Eqs. (3.226) and
(3.227). To have a more compact notation, the commutator with the interaction
Hamiltonian H(I)

S–R is replaced by the interaction Liouville superoperator 
(I)
S–R

defined as


(I)
S–R … = 1

ℏ

[H(I)
S–R,…]−. (3.229)

We introduce this notation into Eq. (3.227) and obtain the solution of the inhomo-
geneous differential equation as

Ŵ (I)(t) = (t, t0)Ŵ (I)(t0) − i

t

∫
t0

dt (t, t)
(I)
S–R(t)R̂eq�̂�

(I)(t). (3.230)

Here, the time-ordered superoperator

(t, t) =  exp
⎧⎪⎨⎪⎩−i

t

∫

t

d𝜏 
(I)
S–R(𝜏)

⎫⎪⎬⎪⎭ (3.231)

is introduced. It solves the homogeneous part of Eq. (3.230). As all other types
of S-operators, Eq. (3.231) is defined via the Taylor expansion of the exponential
function.14)

Since we are not interested in the problem of initial correlations, the first term
on the right-hand side of Eq. (3.230) will be neglected by assuming that at time t0,
the density operator of the total system factorizes into the density operator of the
relevant system and the reservoir, W(t0) = �̂�(t0)R̂eq.

Inserting Eq. (3.230) into Eq. (3.226), we get an equation of motion that allows an
exact determination of the reduced statistical operator of the relevant system. This
so-called Nakajima–Zwanzig equation reads

𝜕

𝜕t
�̂�

(I)(t) = − i trR{
(I)
S–R(t)R̂eq}�̂�

(I)(t)

−

t

∫
t0

dt trR{
(I)
S–R(t)(t, t)

(I)
S–R(t)R̂eq}�̂�

(I)(t). (3.232)

Since according to Eq. (3.231), S–R is contained in the time-ordered exponential
operator, the system–reservoir interaction enters the right-hand side of Eq. (3.232)

14) The expansion of 


Ô in powers of (I)
S–R(𝜏) introduces multiple commutators with H(I)

S–R (the
quantity Ô is an arbitrary operator). Those H(I)

S–R appearing left from Ô are ordered with increasing
time from right to left, while the H(I)

S–R appearing right from Ô are arranged in the reverse manner.
These two different types of time ordering have been abbreviated by the symbol  .
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in infinite order. In other words, the whole perturbation series with respect to HS–R
is summed up in Eq. (3.232). A more compact notation of the Nakajima–Zwanzig
equation is given by

𝜕

𝜕t
�̂�

(I)(t) = −i ⟨(I)
S–R(t)⟩R �̂�

(I)(t) −

t

∫
t0

dt (I)(t, t)�̂�(I)(t). (3.233)

Here, we used the short-hand notation, Eq. (3.202), for the averaging with respect
to the reservoir equilibrium density operator: ⟨· · · ⟩R = trR{… R̂eq}. The first term in
(3.233) can easily be identified as the mean-field contribution (cf. Section 3.5.3). In
the second term of Eq. (3.233), we have introduced the memory kernel superoperator
(in the interaction representation)

(I)(t, t) = ⟨(I)
S–R(t)(t, t)

(I)
S–R(t)⟩R. (3.234)

According to the definition of the kernel, we have t > t, and additionally, any expan-
sion of the S-superoperator guarantees time-ordered expressions. Therefore, the
approach leading to the Nakajima–Zwanzig equation is often named chronological
time-ordering prescription (COP). In most practical cases, it is impossible to derive
a closed expression for this memory kernel even if we restrict ourselves to a partial
summation only. However, the formal exact Nakajima–Zwanzig equation is well
suited for the development of approximation schemes to the propagation for the
RDO. For example, the quantum master equation (QME) (3.237) is easily recovered
if the -operator is treated in zeroth order with respect to the system–reservoir
coupling.

Finally, it is important to note here that the special choice equation (3.220) for
the projection operator does not imply that the reservoir stays in equilibrium in
the course of the time evolution of the relevant system. Instead, a time dependence
of the RDO of the reservoir can be expected. This nonequilibrium behavior is
induced by the coupling to the relevant system. Let us define the RDO for the
reservoir as

R̂(I)(t) = trS{Ŵ (I)(t)} ≡ trS{Ŵ (I)(t) +Ŵ (I)(t)}. (3.235)

Using the definition of the projection operator  and Eq. (3.230), we may write

R̂(I)(t) = R̂eq − i

t

∫
t0

dt trS{(t, t)
(I)
S–R(t)R̂eq�̂�

(I)(t)}. (3.236)

Since it is only the equilibrium density operator R̂eq that enters the Nakajima–
Zwanzig equation (3.232), the time dependence of R̂(I)(t) does not affect �̂�(I)(t)
directly. It is only indirectly accounted for via 

(I)
S–R, which is contained in the

S-superoperator equation (3.231).
In the following section, we focus on the second-order contribution to the

equations of motion of the RDO.
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3.5.6 Second-order Equation of Motion for the Reduced Density
Operator

Inserting Eq. (3.228) into Eq. (3.226), we obtain the equation of motion for the RDO,
which is of second order with respect to HS–R, as

𝜕

𝜕t
�̂�

(I)(t) = − i
ℏ

trR

{
R̂eq1

[
H(I)

S–R(t), �̂�
(I)(t)

]
−

}
− 1
ℏ2

t

∫
t0

d𝜏 trR

{[
H(I)

S–R(t), (1 − )
[

H(I)
S–R(𝜏), R̂eq�̂�

(I)(𝜏)
]
−

]
−

}
.

(3.237)

In what follows, we discuss this equation for the factorized form equation (3.198)
of the system–reservoir coupling. The first-order term on the right-hand side corre-
sponds to that in Eq. (3.197). In order to show this, one has to use the cyclic invari-
ance of the trace, Eq. (3.125), in the space of the reservoir states. The mean-field
contribution (in the interaction representation) to the dynamics of the relevant sys-
tem results as

trR{R̂eq

[
H(I)

S–R(t), �̂�
(I)(t)

]
−
} =

∑
u

[
K(I)

u (t)⟨Φu⟩R, �̂�
(I)(t)

]
−

≡

[
H(I)

mf(t), �̂�
(I)(t)

]
−
. (3.238)

The general form of the mean-field Hamiltonian Hmf was introduced in Eq. (3.200).
Here, the expectation value has to be taken with the equilibrium reservoir density
operator (cf. Eq. (3.202)).

Next, the second term in Eq. (3.237) is considered in more detail. Due to the factor
(1 − ), there are altogether eight terms, where those containing the factor include
two trace operations. We consider the four terms corresponding to the unit operator
“1” of (1 − ) and write

1 = trR

{[
H(I)

S–R(t),
[

H(I)
S–R(𝜏), R̂eq𝜌

(I)(𝜏)
]
−

]
−

}
, (3.239)

or in more detail

1 =
∑
u,𝑣

(
trR

{
Φ(I)

u (t)Φ(I)
𝑣
(𝜏)R̂eq

}
K(I)

u (t)K(I)
𝑣
(𝜏)�̂�(I)(𝜏)

− trR

{
Φ(I)

u (t)R̂eqΦ
(I)
𝑣
(𝜏)

}
K(I)

u (t)�̂�(I)(𝜏)K(I)
𝑣
(𝜏)

− trR

{
Φ(I)
𝑣
(𝜏)R̂eqΦ

(I)
u (t)

}
K(I)
𝑣
(𝜏)�̂�(I)(𝜏)K(I)

u (t)

+ trR

{
R̂eqΦ

(I)
𝑣
(𝜏)Φ(I)

u (t)
}
�̂�

(I)(𝜏)K(I)
𝑣
(𝜏)K(I)

u (t)
)
. (3.240)

For the second term proportional to  , we write

2 = trR

{[
H(I)

S–R(t), R̂eqtrR

{[
H(I)

S–R(𝜏), R̂eq�̂�
(I)(𝜏)

]
−

}]
−

}
, (3.241)

which leads to

2 =
∑
u,𝑣

⟨Φu⟩R⟨Φ
𝑣
⟩R

[
K(I)

u (t),
[

K(I)
𝑣
(𝜏), �̂�(I)(𝜏)

]
−

]
−
. (3.242)
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Next, we apply the results of Section 3.5.3 to rewrite the expectation values of the
reservoir part of HS–R as follows (first term in Eq. (3.240)):

trR

{
Φ(I)

u (t)Φ(I)
𝑣
(𝜏)R̂eq

}
= trR

{
R̂eqU+

R (t − 𝜏)ΦuUR(t − 𝜏)Φ𝑣

}
= ⟨Φ(I)

u (t − 𝜏)Φ(I)
𝑣
(0)⟩R. (3.243)

Using similar steps, we obtain for the remaining terms in Eq. (3.239)

trR

{
Φ(I)

u (𝜏)R̂eqΦ
(I)
𝑣
(t)

}
= ⟨Φ(I)

𝑣
(0)Φ(I)

u (t − 𝜏)⟩R, (3.244)

trR

{
Φ(I)
𝑣
(t)R̂eqΦ

(I)
u (𝜏)

}
= ⟨Φ(I)

u (t − 𝜏)Φ(I)
𝑣
(0)⟩R, (3.245)

and

trR

{
R̂eqΦ

(I)
𝑣
(𝜏)Φ(I)

u (t)
}
= ⟨Φ(I)

𝑣
(0)Φ(I)

u (t − 𝜏)⟩R. (3.246)

Apparently, the integrand of Eq. (3.237) can be cast into a form that has only four
terms, each containing the following type of function (the superscript I on the bath
operators will be suppressed in what follows)

Cu𝑣(t) =
1
ℏ2 ⟨Φu(t)Φ𝑣

(0)⟩R − 1
ℏ2 ⟨Φu⟩R⟨Φ

𝑣
⟩R = 1

ℏ2 ⟨ΔΦu(t)ΔΦ𝑣
(0)⟩R. (3.247)

Here, we combined the reservoir operators with their expectation values to the
operator

ΔΦu(t) = Φu(t) − ⟨Φu⟩R. (3.248)

This operator describes the fluctuations of the reservoir part of HS–R with respect to its
average value. The function Cu𝑣(t) in Eq. (3.247) which is called reservoir correlation
function therefore establishes a connection between the fluctuations of the opera-
tors Φ

𝑣
and Φu at different times (see also Section 3.4.5, a detailed discussion of

the correlation functions can be found in the following section). For most systems,
the correlations of the fluctuations decay after a certain correlation time 𝜏c. Note
that these fluctuations do not change the quantum mechanical state of the reservoir,
which is still described by the canonical density operator.

If Φu is a Hermitian operator, we have⟨Φ
𝑣
(0)Φu(t)⟩R =

[⟨Φu(t)Φ𝑣
(0)⟩R

]∗ = ⟨Φ
𝑣
(−t)Φu(0)⟩R, (3.249)

from which we get the important property

C∗
u𝑣(t) = C

𝑣u(−t). (3.250)

Using the definition of the correlation function, the equation of motion for the RDO
finally follows as

𝜕

𝜕t
�̂�
(I)(t) = − i

ℏ

∑
u

⟨Φu⟩R

[
K(I)

u , �̂�
(I)(t)

]
−

−
∑
u,𝑣

t

∫
t0

d𝜏
(

Cu𝑣(t − 𝜏)
[

K(I)
u (t),K(I)

𝑣
(𝜏)�̂�(I)(𝜏)

]
−

− C
𝑣u(−t + 𝜏)

[
K(I)

u (t), �̂�(I)(𝜏)K(I)
𝑣
(𝜏)

]
−

)
. (3.251)
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This equation is valid for non-Hermitian operators Ku and Φu. If the reservoir
operators Φu are Hermitian, then C

𝑣u(−t + 𝜏) can be replaced by C∗
u𝑣(t − 𝜏). Since

every term on the right-hand side of Eq. (3.251) is given by a commutator, it is easy
to demonstrate that the RDO equation ensures conservation of total probability,
that is trS{𝜕�̂�(t)∕𝜕t} = 0. Furthermore, by computing the Hermitian conjugated of
the right-hand side of Eq. (3.251), one may demonstrate that the Hermiticity of �̂�(I)

is assured for all times (note that in the case of non-Hermitian operators Ku and Φu,
the whole u, 𝑣-summation realizes Hermitian operators).

Equation (3.251) is frequently called QME since it generalizes ordinary rate
equations (master equations) of the type given in Eq. (3.2) to the quantum case
(represented by the RDO). Alternatively, the term density matrix equation in
the second Born approximation is common. Here, one refers to the second-order
perturbation theory applied to the system–reservoir coupling.

The right-hand side of this equation reveals that the change over time of the RDO
is not only determined by its actual value but by the history of its own time depen-
dence. Therefore, Eq. (3.251) is specified as the QME with memory effects. This
type of memory effect has been already encountered in our introductory example
in Section 3.4.5. In the present case, the memory time 𝜏mem is obviously determined
by the reservoir correlation function but is not necessarily identical to the correlation
time 𝜏c. Before we concentrate on the properties of the reservoir correlation function,
the QME will be discussed in more detail in the following section.

3.6 Quantum Master Equation

So far, we have derived the QME in the interaction representation. For a number of
applications it may be useful to stay in the interaction representation. Often, how-
ever, it is more appropriate to go back to the Schrödinger representation. Following
Section 3.5.3, the equation of motion for the RDO can be transformed from the inter-
action representation into the Schrödinger representation according to

𝜕

𝜕t
�̂�(t) = 𝜕

𝜕t

[
US(t − t0)�̂�

(I)U+
S (t − t0)

]
−

= − i
ℏ

[
HS, �̂�(t)

]
− + US(t − t0)

𝜕

𝜕t
�̂�

(I)(t)U+
S (t − t0). (3.252)

For Eq. (3.251), this gives

𝜕

𝜕t
�̂�(t) = − i

ℏ

[
HS +

∑
u

⟨Φu⟩RKu, �̂�(t)

]
−

− US(t − t0)

×
∑
u,𝑣 ∫

t

t0

dt
{

Cu𝑣(t − t)
[
U+

S (t − t0)KuUS(t − t0),

U+
S (t − t0)K𝑣

US(t − t0)U+
S (t − t0)�̂�(t)US(t − t0)

]
−

− C
𝑣u(−t + t)

[
U+

S (t − t0)KuUS(t − t0),

U+
S (t − t0)�̂�(t)US(t − t0)U+

S (t − t0)K𝑣
US(t − t0)

]
−

}
× U+

S (t − t0). (3.253)
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Combining the products of time-evolution operators and replacing t − t by 𝜏, we
obtain the QME in the Schrödinger representation

𝜕

𝜕t
�̂� = − i

ℏ

[
HS +

∑
u

⟨Φu⟩RKu, �̂�

]
−

−
∑
u,𝑣

t−t0

∫
0

d𝜏
(

Cu𝑣(𝜏)
[
Ku,US(𝜏)K𝑣

�̂�(t − 𝜏)U+
S (𝜏)

]
−

−C
𝑣u(−𝜏)

[
Ku,US(𝜏)�̂�(t − 𝜏)K𝑣

U+
S (𝜏)

]
−

)
. (3.254)

Before discussing the details of this equation, we estimate the range of validity for
the second-order perturbation theory. Let us assume that the integrand in Eq. (3.251)
is constant within the memory time. Then, the contribution of the integral to the
right-hand side of the QME is of the order of 𝜏mem⟨HS–R⟩2∕ℏ2. In order to justify the
perturbation expansion, this quantity (which has the dimension of a rate) has to be
small compared to the first term on the right-hand side of Eq. (3.254), ⟨HS⟩∕ℏ.

The term ∼ ⟨Φu⟩R on the right-hand side of Eq. (3.254) is already known from
Section 3.5.3. It contains the mean-field contribution to the system dynamics,
which is of first order in the system–reservoir interaction. The dynamics including
this mean-field term is reversible. The second term on the right-hand side, which
depends on the complex-valued correlation function Cu𝑣(t), leads to a quite different
behavior. This can be rationalized by neglecting the time integration for a moment
and considering only the diagonal elements of the density operator (in an arbitrary
representation), which are real. In this case, the resulting differential equation is of
the type 𝜕f (t)∕𝜕t = −kf (t), where k is proportional to the real part of the correlation
function. The solution of this type of equation will decay exponentially in time,
indicating an irreversible flow of probability in the system. It will be shown in more
detail below that the second term in Eq. (3.254) is responsible for energy dissipation
from the relevant system into the reservoir. Finally, as already discussed at the end
of Section 3.5.6, Eq. (3.254) also guarantees hermiticity of �̂� and conservation of
total probability.

In the QME (3.254), the RDO �̂� appears with a retarded time argument, t − 𝜏, in
the integrand. This means that the actual change of probabilistic information in time
(that is, the right-hand side of Eq. (3.254)) is determined by the probabilistic infor-
mation not only at the same time t but also by that of earlier times t − 𝜏. This type
of equation is known from probabilistic theory as a non-Markovian equation. It is
encountered whenever time-local equations of motion are reduced to equations that
only describe a part of the original set of DOFs. In the present case, we changed from
the Liouville–von Neumann equation (3.149) for the full density operator, which
is Markovian, to the non-Markovian QME for the RDO. In Section 3.6.1, we show
under which conditions the right-hand side only depends on �̂�(t) and the dynamics
becomes Markovian again.

The characteristic feature of non-Markovian behavior is the appearance of memory
effects in the determination of the time dependence of the RDO. The time span for
this memory is mostly determined by the reservoir correlation functions Cu𝑣(t). The
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time dependence of Cu𝑣(t) can often be characterized by a single or a set of correlation
times, 𝜏c; more details will be discussed in Section 3.7.

For illustration, let us assume that this correlation time is short compared
to any other characteristic time scale of the considered system. This allows us
to write

Cu𝑣(t) ≈ 𝛿(t) c(u, 𝑣). (3.255)

Inserting Eq. (3.255) into the non-Markovian QME (3.254), it becomes Markovian,
and the dissipative part reads(

𝜕�̂�

𝜕t

)
diss

= −
∑
u,𝑣

{
c(u, 𝑣)

[
Ku,K𝑣

�̂�

]
− − c∗(u, 𝑣)

[
Ku, �̂�K

𝑣

]
−

}
. (3.256)

If the c(u𝑣) are real and diagonal, this expression reduces to15)(
𝜕�̂�

𝜕t

)
diss

= −
∑

u
c(u,u)

{[
K2

u, �̂�
]
+ − 2Ku�̂�Ku

}
. (3.257)

This is the so-called Lindblad form of dissipation (for another example,
see Section 3.8.4). Quite often in practical calculations, one starts from the
rather general expression (3.257) without making any particular model for the
system–reservoir interaction operator. In this case, the choice of the operators Ku as
well as of the prefactor c(u,u) has to be guided by intuition.

The QME (3.254) is a fundamental result of the relaxation theory. It has
found many applications in different areas of physics, mainly in quantum optics,
nuclear magnetic resonance, and solid state and molecular physics. When using
a QME, however, one should keep in mind that the perturbative treatment of
the system–reservoir coupling restricts its applicability and demands for a careful
separation of the full system at hand. In Chapters 5–9, we will discuss several
examples in this respect.

3.6.1 Markov Approximation

In what follows, we explain in detail the transition from the non-Markovian QME
(3.254) to a Markovian equation. Let us assume that a characteristic time 𝜏mem (mem-
ory time) exists that characterizes the time span of memory effects. Now, if the RDO
�̂� (that is any of its matrix elements) does not change substantially on the time scale
given by 𝜏mem, the memory effects will be negligible. In this case, one can invoke the
Markov approximation, which amounts to setting

�̂�(t − 𝜏) ≈ �̂�(t) (3.258)

in the time integral equation (3.254).
An alternative view is provided, if we suppose that within the Markov approxima-

tion the minimum time step, Δt, for which information on the RDM is obtainable is
restricted by the memory time, that is Δt > 𝜏mem. In case that the continuous time

15) If the c(u, 𝑣) are not diagonal, we can diagonalize the complete matrix to get a similar result as
in Eq. (3.257).
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axis is coarse grained with a mesh size dictated by 𝜏mem, memory effects do not play
any role for the dissipative dynamics of the system. Due to this requirement, the
upper limit of the integration in Eq. (3.254) exceeds the time interval where the inte-
grand is finite. Thus, we can increase this limit without changing the value of the
integral; that is, we will set t − t0 → ∞ in what follows.

In order to discuss in more detail the consequences of the assumption that the
RDO does not change on the time scale of 𝜏mem, we change to the representation of
�̂�(t) in the eigenstates of HS, Eq. (3.193). Without any coupling to the reservoir, the
solution for 𝜌ab can be directly deduced from Eq. (3.150) as

𝜌ab(t) = e−i𝜔ab(t−t0)𝜌ab(t0). (3.259)

The diagonal elements are time independent, but the off-diagonal elements may be
rapidly oscillating functions. If 1∕𝜔ab ≪ 𝜏mem, the above given reasoning leading
to the Markov approximation breaks down. Thus, it is advisable to split off the
oscillatory factor e−i𝜔abt from the RDM and invoke the Markov approximation
for the remaining slowly varying envelope. Therefore, we carry out the following
replacement:

𝜌ab(t − 𝜏) = e−i𝜔ab(t−𝜏−t0)�̃�ab(t − 𝜏)

≈ e−i𝜔ab(t−𝜏−t0)�̃�ab(t) = ei𝜔ab𝜏𝜌ab(t), (3.260)

where the tilde denotes the envelope part of the RDM. This approximation scheme is
equivalent to perform the Markov approximation in the interaction representation
since

𝜌ab(t) = ⟨a|e−iHS(t−t0)∕ℏ�̂�(I)(t)eiHS(t−t0)∕ℏ|b⟩
= e−i𝜔ab(t−t0)⟨a|�̂�(I)(t)|b⟩. (3.261)

Thus, the general prescription is that first we have to change to the interaction
Representation, and only then, the Markov approximation is made:

�̂�(t − 𝜏) = US(t − 𝜏 − t0)�̂�
(I)(t − 𝜏)U+

S (t − 𝜏 − t0)

≈ US(−𝜏)US(t − t0)�̂�
(I)(t)U+

S (t − t0)U+
S (−𝜏)

= U+
S (𝜏)�̂�(t)US(𝜏). (3.262)

Using this approximation, the dissipative part of the QME (3.254) becomes(
𝜕�̂�

𝜕t

)
diss

= −
∑
u,𝑣 ∫

∞

0
d𝜏

{
Cu𝑣(𝜏)

[
Ku,K

(I)
𝑣
(−𝜏)�̂�(t)

]
−

− C
𝑣u(−𝜏)

[
Ku, �̂�(t)K

(I)
𝑣
(−𝜏)

]
−

}
, (3.263)

where K(I)
𝑣
(−𝜏) = US(𝜏)K𝑣

U+
S (𝜏). A more compact form of this equation is obtained

after introduction of the operator

Λu =
∑
𝑣

∞

∫
0

d𝜏 Cu𝑣(𝜏)K
(I)
𝑣
(−𝜏) (3.264)
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and the operator Λ(+)
u following from Λu upon replacing Cu𝑣(𝜏) by C

𝑣u(−𝜏) (if any
term of HS–R is Hermitian, then Λ(+)

u = Λ+
u ). With this definition, Eq. (3.263) can be

written as(
𝜕�̂�

𝜕t

)
diss

= −
∑

u

[
Ku,Λu�̂�(t) − �̂�(t)Λ

(+)
u

]
−
. (3.265)

Carrying out the commutator, the resulting expression suggests supplementing the
system Hamiltonian by non-Hermitian contributions that are proportional to KuΛu.
Therefore, we introduce the effective non-Hermitian system Hamiltonian

H(eff)
S = HS +

∑
u

Ku
[⟨Φu⟩ − iℏΛu

]
. (3.266)

Note that for convenience we included the first-order mean-field term in the
definition of the effective Hamiltonian as well. Using Eq. (3.266), we obtain for the
QME in the Markov approximation the final result (H(eff) +

S has to be understood as
the Hermitian conjugated of H(eff) except that all Λu have been replaced by Λ(+)

u )
𝜕

𝜕t
�̂�(t) = − i

ℏ

(
H(eff)

S �̂�(t) − �̂�(t)H(eff) +
S

)
+

∑
u

(
Ku�̂�(t)Λ

(+)
u + Λu�̂�(t)Ku

)
. (3.267)

This equation can be interpreted as follows. We first note that the part of the
dissipative contributions acting exclusively from the left or from the right on
the RDO could be comprised to a non-Hermitian Hamiltonian. According to the
general structure of the density operator, Eq. (3.122), this action can be understood
as changing of the state vector norm. However, the remaining dissipative part
acting on the RDO from the left and the right simultaneously compensates for this
normalization change. As a result, the condition trS{�̂�} = 1 is fulfilled (together, of
course, with conservation of total probability).

We conclude the discussion of this section by giving an alternative notation of
the QME, Eq. (3.267), based on the superoperator formulation in Liouville space
which has already been introduced in connection with the Liouville–von Neumann
equation in Section 3.4.3. In the present case, a Liouville superoperator can only be
introduced for the reversible part of the QME. We setS … = [HS,…]−∕ℏ and obtain
from Eq. (3.265):

𝜕

𝜕t
�̂�(t) = −iS�̂�(t) −�̂�(t). (3.268)

In contrast to the first term on the right-hand side, the second one cannot be given via
a Liouville superoperator abbreviating a simple commutator. Instead, the so-called
dissipative (or relaxation) superoperator  has been introduced. Its concrete action
on the RDO can be obtained from the right-hand side of Eq. (3.265). Sometimes, it
is useful to introduce the formal solution of Eq. (3.268) as

�̂�(t) =  (t − t0)�̂�(t0), (3.269)

with the time-evolution superoperator

 (t − t0) = exp
(
−i(S − i)(t − t0)

)
. (3.270)
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The action of  can be characterized by considering the change in the internal
energy of the relevant system ES = trS{�̂�(t)HS}. Using Eq. (3.268), one immediately
obtains

𝜕

𝜕t
ES = −trS{HS�̂�(t)} = −

∑
u

trS{[HS,Ku]−
(
Λu�̂�(t) − �̂�(t)Λ

(+)
u

)
}. (3.271)

The second part of the right-hand side follows if  is introduced according to
Eq. (3.265). The resulting expression shows that for cases where the commutator
of the system Hamiltonian with every operator Ku vanishes, dissipation does not
alter the internal energy. This may be interpreted as an action of the environment
reduced to elastic scattering processes, which do not change the system energy but
probably the phase of the system. Because of this particular property, dissipative
processes that do not change the system energy are related to what is known as
pure dephasing. Assuming that the |a⟩ are eigenstates of HS, the coupling operator
Ku = |a⟩⟨a| represents an example for a system–reservoir coupling, which guar-
antees the conservation of the internal energy ES. This has to be expected since
the system part Ku of the system–reservoir coupling does not change the system
state. To be complete, we also emphasize that the internal energy remains constant
if the dissipation is of such a type that the second term in the trace expression of
Eq. (3.271) vanishes. We will discuss this case in more detail in Section 3.8.2

3.7 The Reservoir Correlation Function

3.7.1 General Properties of Cu𝒗(t)

The importance of the reservoir correlation function for the dynamics of a relevant
system interacting with a reservoir is apparent from the QME (3.251) and the discus-
sion in the previous section. Before turning to specific models for Cu𝑣(t), we discuss
some of the more general properties of this function as well as of its Fourier trans-
form

Cu𝑣(𝜔) = ∫
dt ei𝜔tCu𝑣(t). (3.272)

If Eq. (3.250) holds, that is Φu is hermitian, it follows immediately that

C
𝑣u(−𝜔) = ∫

dt ei𝜔tC∗
u𝑣(t), (3.273)

and that C∗
u𝑣(𝜔) = C

𝑣u(𝜔). It will further be convenient to introduce symmetric and
antisymmetric correlation functions

C(+)
u𝑣 (t) = Cu𝑣(t) + C∗

u𝑣(t), C(−)
u𝑣 (t) = Cu𝑣(t) − C∗

u𝑣(t), (3.274)

respectively. Note that C(+)
u𝑣 (t) is a real function, while C(−)

u𝑣 (t) is imaginary. Moreover,
C(+)

u𝑣 (−t) = C(+)
𝑣u (t) as well as C(−)

u𝑣 (−t) = −C(−)
𝑣u (t) holds.

Another fundamental property of Cu𝑣(𝜔) can be derived if one starts from the
definition (3.247) and introduces eigenstates |𝛼⟩ and eigenvalues E

𝛼
of the reservoir



3.7 The Reservoir Correlation Function 113

Hamiltonian. Using these eigenstates to perform the trace operation, we obtain

Cu𝑣(𝜔) =
1
ℏ2 ∫

dt ei𝜔t
∑
𝛼,𝛽

⟨𝛼|R̂eqeiHRt∕ℏΔΦue−iHRt∕ℏ|𝛽⟩⟨𝛽|ΔΦ
𝑣
|𝛼⟩

= 1
ℏ2

∑
𝛼,𝛽

∫
dt ei(𝜔−𝜔

𝛽𝛼
)tf
𝛼
⟨𝛼|ΔΦu|𝛽⟩⟨𝛽|ΔΦ

𝑣
|𝛼⟩. (3.275)

The 𝜔
𝛽𝛼

= (E
𝛽
− E

𝛼
)∕ℏ are the transition frequencies between the reservoir energy

levels, and

f
𝛼
≡ ⟨𝛼|R̂eq|𝛼⟩ = exp(−E

𝛼
∕kBT)∕

∑
𝛽

exp(−E
𝛽
∕kBT) (3.276)

denotes the thermal distribution function with respect to the reservoir states.
The time integration of the exponential function produces the delta function
(Eq. (3.181)); that is, we obtain

Cu𝑣(𝜔) =
2π
ℏ2

∑
𝛼,𝛽

f
𝛼
⟨𝛼|ΔΦu|𝛽⟩⟨𝛽|ΔΦ

𝑣
|𝛼⟩𝛿(𝜔 − 𝜔

𝛽𝛼
). (3.277)

Now we consider the Fourier transform of the correlation function where the
indices u and 𝑣 are interchanged. Interchanging also 𝛼 and 𝛽 gives

C
𝑣u(𝜔) =

2π
ℏ2

∑
𝛼,𝛽

f
𝛽
⟨𝛼|ΔΦu|𝛽⟩⟨𝛽|ΔΦ

𝑣
|𝛼⟩𝛿(𝜔 − 𝜔

𝛼𝛽
). (3.278)

According to the identity

exp
{
−

E
𝛽

kBT

}
𝛿(𝜔 − 𝜔

𝛼𝛽
) = exp

{
−

E
𝛼
− ℏ𝜔

kBT

}
𝛿(𝜔 + 𝜔

𝛽𝛼
), (3.279)

we arrive at the important result

Cu𝑣(𝜔) = exp
{
ℏ𝜔

kBT

}
C
𝑣u(−𝜔), (3.280)

which relates the correlation function with frequency argument 𝜔 to the one with
the negative argument. Note that Eq. (3.280) builds upon the definition of Cu𝑣(𝜔)
with respect to the thermal equilibrium of the reservoir.

Using Eq. (3.274), the Fourier transform of the symmetric and antisymmetric parts
of the correlation function can be written as

C(±)
u𝑣 (𝜔) = Cu𝑣(𝜔) ± C

𝑣u(−𝜔). (3.281)

If we replace C
𝑣u(−𝜔) in Eq. (3.281) by the result of Eq. (3.280), it follows that

Cu𝑣(𝜔) =
C(±)

u𝑣 (𝜔)
1 ± exp{−ℏ𝜔∕kBT}

≡ (1 + n(𝜔))C(−)
u𝑣 (𝜔). (3.282)

Here, the Bose–Einstein distribution function

n(𝜔) = 1
exp{ℏ𝜔∕kBT} − 1

(3.283)

has been used to rewrite the expression for Cu𝑣. Combining the two parts of
Eq. (3.282), we get a relation between the Fourier transforms of the symmetric and
antisymmetric parts of the correlation function, which reads

C(+)
u𝑣 (𝜔) = coth

(
ℏ𝜔

2kBT

)
C(−)

u𝑣 (𝜔). (3.284)
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Now, it is easy to express Cu𝑣(t) by C(−)
u𝑣 (𝜔). The inverse Fourier transform can then

be written in terms of the half-sided Fourier integral

Cu𝑣(t) =

∞

∫
−∞

d𝜔
2π

e−i𝜔t[1 + n(𝜔)]C(−)
u𝑣 (𝜔)

=

∞

∫
0

d𝜔
2π

(
e−i𝜔t[1 + n(𝜔)]C(−)

u𝑣 (𝜔) + ei𝜔tn(𝜔)C(−)
𝑣u (𝜔)

)
. (3.285)

To summarize, it is possible to express the reservoir correlation function either by its
symmetric or antisymmetric part. This freedom of choice will be particularly useful
in the context of classical simulations of the reservoir as we will see in Section 3.7.5.

3.7.2 Harmonic Oscillator Reservoir

The explicit quantum mechanical calculation of Cu𝑣(t) is not feasible in practice
since there is no way to calculate the states of a general macroscopic reservoir such
as a solvent surrounding some solute molecule. To overcome this difficulty, several
models for the reservoir and its interaction with the system have been developed.

In the case of a reservoir that is characterized by a stable crystalline structure,
the correlation function can readily be calculated using the following reasoning:
In many of such systems where the atoms (or molecules) form a regular lattice
with high symmetry, lattice vibrations only appear as small oscillations around
the equilibrium positions at sufficiently low temperature. In this case, a har-
monic approximation is possible; that is, the force driving the atoms back to their
equilibrium position can be taken to be proportional to the deviation from this
equilibrium position. In Section 2.5.1, we have seen that a harmonic approximation
to some global PES allows to introduce normal mode vibrations whose quantum
counterparts in the case of a crystalline structure are called (lattice) phonons. As
the main result of the introduction of normal mode oscillations, the individual
atom coordinates are mapped on a set of harmonic oscillator coordinates that are
independent of each other.

It should be remarked that this situation is not the rule: For example, in
low-temperature solutions, the solvent is essentially frozen into a disordered solid.
Here, it is more difficult to calculate Cu𝑣(t) because the solute is likely to interact
with system-specific localized vibrational modes of its immediate surroundings. If
the temperature is increased such that the reservoir becomes a liquid, the notion of
normal modes as small amplitude motions around stable structures loses its mean-
ing. In such situations, one has to resort to classical simulations of the reservoir.
This approach will be discussed in Section 3.13. In fact, as we will see in Section 5.3
on ultrashort time scales, it is often possible to introduce instantaneous normal
modes. Furthermore, assuming that anharmonicities of the PES are negligible, even
reservoirs such as proteins can be described in harmonic approximation.

Having in mind the important concept of a normal mode bath, we adapt the cor-
relation function to this situation now. In a first step, we introduce a more specific
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structure of the coupling Hamiltonian, HS–R. Let us assume that we have performed
a Taylor expansion of HS–R with respect to the reservoir coordinates. If we focus on
the lowest order contribution only, HS–R will become linear with respect to the har-
monic oscillator reservoir coordinates Z = {Z

𝜉
}. Further, HS–R given in Eq. (3.198) is

assumed to contain a single term only. This restriction is made basically to simplify
the notation. The extension to more general expressions for the coupling Hamilto-
nian is straightforward. Dropping the index u, we can write (cf. also Eq. (3.5))

HS–R = K(s)
∑
𝜉

ℏ𝛾
𝜉
Z
𝜉
. (3.286)

Here, s comprises the coordinates of the system, and 𝛾
𝜉

is the system–reservoir
coupling constant. The given expression for HS–R, if compared with Eq. (3.198),
corresponds to a reservoir part Φ =

∑
𝜉
ℏ𝛾

𝜉
Z
𝜉
. Note that ⟨Z

𝜉
⟩R = 0; that is, the

thermal fluctuations of the reservoir coordinates are taking place symmetrically
around Z

𝜉
= 0. Since we are dealing with decoupled normal mode oscillators,

the reservoir Hamiltonian can be written as HR =
∑
𝜉
H(R)
𝜉

. Here, the single-mode
Hamiltonian is given by H(R)

𝜉
= ℏ𝜔

𝜉
(C+

𝜉
C
𝜉
+ 1∕2), where C+

𝜉
and C

𝜉
denote the

normal mode oscillator creation and annihilation operators (cf. Section 2.5.2).
In terms of the creation and annihilation operators, the reservoir coordinates are
written as Z

𝜉
=

√
ℏ∕2𝜔

𝜉
×(C

𝜉
+ C+

𝜉
) (see Eq. (2.54)). Further,𝜔

𝜉
is the normal mode

frequency, and the harmonic oscillator eigenstates, |N
𝜉
⟩ = (C+

𝜉
)N

𝜉 |0
𝜉
⟩∕√N

𝜉
!, will

be labeled by the oscillator quantum number N
𝜉
. For the subsequent derivation, it

is more suitable to define Φ in terms of Q
𝜉
= C

𝜉
+ C+

𝜉
simply writing

Φ = ℏ

∑
𝜉

𝜔
𝜉
g
𝜉
Q
𝜉
, (3.287)

with g
𝜉
= 𝛾

𝜉

√
ℏ∕2𝜔3

𝜉
. To get the Fourier transformed correlation function C(𝜔), we

may use directly Eq. (3.277). Its determination becomes somewhat easier if we start
from the time-dependent version, Eq. (3.247), which takes the following form for the
present situation:

C(t) =
∑
𝜉,𝜉′

𝜔
𝜉
g
𝜉
𝜔
𝜉′g𝜉′ trR{R̂eqQ

𝜉
(t)Q

𝜉′ }. (3.288)

The time dependence of Q
𝜉

results in operators C
𝜉

and C+
𝜉

carrying a phase
with frequency 𝜔

𝜉
. To go on the trace is specified as the summation with respect

to the product of the normal-mode harmonic oscillator states weighted by the
respective thermal distributions fN

𝜉

= 1∕ × exp(−N
𝜉
ℏ𝜔

𝜉
∕kBT) (note the use of the

mode index 𝜁):

trR{R̂eqQ
𝜉
(t)Q

𝜉′ } =
∑
{N

𝜁
}

(∏
𝜁

fN
𝜁

⟨N
𝜁
|) Q

𝜉
(t)Q

𝜉′

(∏
𝜁 ′

fN
𝜁

|N
𝜁
⟩) . (3.289)

Since only operators are concerned with mode indices 𝜉 and 𝜉′, the trace reduces
to fN

𝜉

fN
𝜉′
⟨N

𝜉
|⟨N

𝜉′ |Q𝜉
(t)Q

𝜉′ |N𝜉
⟩|N

𝜉′⟩ (the remaining parts of
∑

{N
𝜁
} always give 1).
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We note that, for example ⟨N
𝜉′ |Q𝜉′ |N𝜉′⟩ = 0, and see that only the case 𝜉 = 𝜉

′ con-
tributes. Accordingly, the correlation function reads

C(t) =
∑
𝜉

𝜔
2
𝜉
g2
𝜉

∑
N
𝜉

fN
𝜉

⟨N
𝜉
|[C

𝜉
e−i𝜔

𝜉
t + C+

𝜉
ei𝜔

𝜉
t][C

𝜉
+ C+

𝜉
]|N

𝜉
⟩

=
∑
𝜉

𝜔
2
𝜉
g2
𝜉

∑
N
𝜉

fN
𝜉

(
[1 + N

𝜉
]e−i𝜔

𝜉
t + e−i𝜔

𝜉
tN

𝜉

)
. (3.290)

In the second part of this expression, it has been shown that only the operator combi-
nations C+

𝜉
C
𝜉

and C
𝜉
C+
𝜉

contribute. Finally, they have been replaced by the respective
occupation number N

𝜉
according to Eq. (2.63). The summations with respect to the

oscillator quantum numbers can be removed by introducing the mean occupation
number of a harmonic oscillator mode (Bose–Einstein distribution, see Eq. (3.283))∑

N
𝜉

N
𝜉
fN

𝜉

= n(𝜔
𝜉
). (3.291)

With the help of this expression, we obtain

C(t) =
∑
𝜉

(𝜔
𝜉
g
𝜉
)2 (

[1 + n(𝜔
𝜉
)]e−i𝜔

𝜉
t + n(𝜔

𝜉
)ei𝜔

𝜉
t]
. (3.292)

The Fourier transformed version follows as

C(𝜔) = 2π
∑
𝜉

(𝜔
𝜉
g
𝜉
)2 (

[1 + n(𝜔
𝜉
)]𝛿(𝜔 − 𝜔

𝜉
) + n(𝜔

𝜉
)𝛿(𝜔 + 𝜔

𝜉
)
)
. (3.293)

In principle, correlation functions that are of higher order with respect to the
oscillator coordinate could be obtained along the same lines.

3.7.3 The Spectral Density

To have a compact notation of the Fourier transformed correlation function,
Eq. (3.293), at hand, we introduce a new quantity J(𝜔) called spectral density, which
is defined as

J(𝜔) =
∑
𝜉

g2
𝜉
𝛿(𝜔 − 𝜔

𝜉
). (3.294)

Before proceeding, we point out that in the general case where HS–R has the form
(3.198), we arrive at a spectral density that depends on the same indices u and 𝑣 as
the reservoir correlation function; that is, J(𝜔) is replaced by Ju𝑣(𝜔). The dependence
of the coupling on some additional index could occur, for example if we consider
several electronic states that are characterized by different coupling strengths to the
environment. This point will be further discussed in Chapters 7 and 9.

With the help of (3.294), the correlation function (3.293) can be written as16)

C(𝜔) = 2π 𝜔2[1 + n(𝜔)] [J(𝜔) − J(−𝜔)] . (3.295)

16) It is important to note that in the literature, the factor 𝜔2 in (3.295) is often included into the
definition of the spectral density. However, the present notation will be more convenient in the
following chapters since g

𝜉
is directly related to the dimensionless shift between PES belonging to

different electronic states (cf. Eq. (2.66)).
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This notation points out the significance of the spectral density, which contains the
specific information about the reservoir and its interaction with the relevant system.
We emphasize that for the case that the reservoir can be modeled as a set of harmonic
oscillators in thermal equilibrium that are linearly coupled to the system DOFs, the
reservoir correlation function is described by a single function J(𝜔), which does not
depend on temperature.

The strength of the system–reservoir coupling is often characterized by the bath’s
reorganization energy defined as

E
𝜆
= ℏ

∫
d𝜔 𝜔J(𝜔). (3.296)

If there exists an unambiguous relation between the mode index 𝜉 and the mode
frequency 𝜔

𝜉
, the quantity g

𝜉
can be defined as a frequency-dependent function.

Using the abbreviation 𝜅(𝜔
𝜉
) = g2

𝜉
, it is then possible to rewrite the spectral density

by introducing the density of states (DOS) of the reservoir oscillators

R(𝜔) =
∑
𝜉

𝛿(𝜔 − 𝜔
𝜉
). (3.297)

We will meet such a quantity several times in the subsequent sections. Here, it gives
the number of oscillators in the reservoir one finds in the frequency interval Δ𝜔. It
follows the relation

J(𝜔) = 𝜅(𝜔)R(𝜔), (3.298)

which highlights that the spectral density can be viewed as the reservoir oscillator
DOS, which is weighted by the coupling strength between the system and reservoir
coordinates.

For a given J(𝜔), the time-dependent correlation function C(t) can be calculated
using Eq. (3.285) together with the relation (which can be obtained from Eq. (3.282))

C(−)(𝜔) = 2π 𝜔2 [J(𝜔) − J(−𝜔)] . (3.299)

The obtained expression can be separated into a real and an imaginary part:17),18)

C(t) =

∞

∫
0

d𝜔
(

cos(𝜔t) coth
(
ℏ𝜔

2kBT

)
− i sin(𝜔t)

)
𝜔

2J(𝜔). (3.300)

Although the spectral density, Eq. (3.294), is defined in terms of a sum of
delta functions, any macroscopic system will in practice have a continuous spec-
tral density. There exist different models for J(𝜔) that are adapted to particular
system–environment situations. They are often characterized by a frequency depen-
dence showing a power law rise for small frequencies that turns, after reaching a
cut-off frequency 𝜔c, into an exponential decay for large frequencies:

𝜔
2J(𝜔) = 𝜃(𝜔) j0 𝜔

p e−𝜔∕𝜔c . (3.301)

17) Here, we used coth(ℏ𝜔∕2kBT) = 1 + 2n(𝜔).
18) It should benoted that often C(t) is defined with a prefactor 1∕π. This prefactor is then
compensated by defining J(𝜔) accordingly.
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The unit-step function guarantees that J = 0 for 𝜔 < 0, and j0 is a normaliza-
tion factor, which can be expressed in terms of the reorganization energy as
j0 = E

𝜆
∕𝜔p

cΓ(p) (Γ(p) is the Euler Gamma function). For p = 1 and a cut-off fre-
quency 𝜔c, which is much larger than the relevant frequencies of the considered
system, we obtain the Ohmic form of the spectral density, 𝜔2J(𝜔) ∝ 𝜔. This expres-
sion has to be used with caution, since a real system cannot have oscillator modes
at arbitrarily high frequencies.

A different frequency dependence is given by the so-called Debye spectral density

𝜔
2J(𝜔) = 𝜃(𝜔)

j0𝜔

𝜔
2 + 𝜔2

D
, (3.302)

which is typically used to characterize the coupling between a solute and a polar
solvent. The frequency, 𝜔D, appearing in Eq. (3.302) is called the Debye frequency.
Further, the normalization factor can be expressed as j0 = E

𝜆
2𝜔D∕πℏ. Note that this

spectral density also reduces to the Ohmic case mentioned above if the Debye fre-
quency is assumed to be large.

A third example for a spectral density is related to the so-called Brownian
oscillator model. This model describes a harmonic system coordinate bilinearly
coupled to a harmonic bath. Typical applications are found in optical spectroscopy,
where the system coordinate corresponds to some high-frequency intramolecular
vibrational mode, while the surrounding solvent is described by the harmonic bath
(Section 6.2.6). The Brownian oscillator spectral density is defined as

𝜔
2J(𝜔) = 𝜃(𝜔) j0

𝜔𝜔
2
0𝛾0

(𝜔2 − 𝜔2
0)

2 + 𝜔2
𝛾

2
0
. (3.303)

Here, 𝜔0 is the frequency of the system oscillator, and 𝛾0 its damping.19) The nor-
malization factor can be specified for the particular applications, see, for example
Section 6.2.6. All three spectral densities are illustrated in Figure 3.5.

Given a spectral density, the correlation function C(t), Eq. (3.300), can be calcu-
lated. This will be done for a decomposition into real (symmetric) and imaginary
(antisymmetric) parts according to

C(t) = 1
2
[C(+)(t) + C(−)(t)]. (3.304)

Using complex contour integration, it is more convenient to start from Eqs. (3.285)
and (3.299). The real part of the correlation function is obtained as

C(+)(t) =

∞

∫
−∞

d𝜔 e−i𝜔t coth
(
ℏ𝜔

2kBT

)
𝜔

2[J(𝜔) − J(−𝜔)], (3.305)

and the imaginary part as

C(−)(t) =

∞

∫
−∞

d𝜔 e−i𝜔t
𝜔

2[J(𝜔) − J(−𝜔)]. (3.306)

19) Note that, in general, 𝛾0 could be a function of 𝜔 according to the spectral density of the bath
modes, which couple to the harmonic system mode. The present limit of a constant 𝛾0 is called
Ohmic dissipation limit.
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Figure 3.5 Ohmic spectral density with cut-off (dashed line), Eq. (3.301), with 𝜔c = 1 and
p = 1; Debye spectral density (solid line), Eq. (3.302), for 𝜔D = 1; and Brownian oscillator
spectral density (gray line), Eq. (3.303), for 𝜔0 = 2 and 𝛾0 = 𝜔0∕10.

The integrations can be performed using the residue theorem. For C(−)(t), one
obtains

C(−)(t) = 2πi
∑
{𝜔k}

Res{𝜔k}[𝜔
2J(𝜔)]e−i𝜔kt

, (3.307)

with {𝜔k} being the poles of 𝜔2J(𝜔). For C(+)(t), one usually assumes that the poles
of 𝜔2J(𝜔) and coth

(
ℏ𝜔∕2kBT

)
(labeled {𝜔l}) do not coincide. This allows to write

C(+)(t) = 2πi
∑
{𝜔k}

Res{𝜔k}[𝜔
2J(𝜔)] coth

(
ℏ𝜔k

2kBT

)
e−i𝜔kt

+2πi
∑
{𝜔l}

Res{𝜔l}

[
coth

(
ℏ𝜔

2kBT

)]
𝜔

2
l J(𝜔l)e−i𝜔l t. (3.308)

The contribution due to the residues of the coth
(
ℏ𝜔∕2kBT

)
term can be obtained

using the Matsubara decomposition technique that yields poles at i𝜔l with the
Matsubara frequencies 𝜔l = 2πlkBT∕ℏ.20),21)

Using Eqs. (3.307) and (3.308), correlation functions for particular spectral
density models can be obtained. First, the case of the Debye spectral density
introduced in Eq. (3.302) will be considered. The poles of the spectral density are
at {𝜔k} = {i𝜔D,−i𝜔D}. For t > 0, the integration contour is closed in the lower
part of the complex plane, whereas for t < 0, it is closed in the upper plane. Thus,
Eq. (3.307) can be written as

C(−)(t) = −iπj0sgn(t)e−𝜔D|t|
. (3.309)

20) The Matsubara method rests on the series expansion of the meromorphic function coth(x) in
terms of its poles and the residues at these poles; that is, coth

(
ℏ𝜔∕2kBT

)
= (2kBT∕ℏ)∑+∞

l=−∞ [𝜔 − i𝜔l]−1.
21) Note that, in practice, the Matsubara decomposition shows a slow convergence behavior, and
more convenient schemes, for example based on a Padé approximation have been developed, see
Hu et al. [2].
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Concerning the first term of C(+)(t), we note that coth(±ix) = ∓i cot(x) and write

C(+)(t) = πj0 cot
(
ℏ𝜔D

2kBT

)
e−𝜔D|t|

+
4πj0kBT

ℏ

∞∑
l=1

𝜔l

𝜔
2
l − 𝜔

2
D

e−𝜔l|t|. (3.310)

In the high-temperature limit, the Matsubara summation can be neglected, and
one can approximate cot

(
ℏ𝜔D∕2kBT

)
≈ 2kBT∕ℏ𝜔D. Thus, the total correlation

function becomes

C(t) ≈
πj0

2ℏ𝜔D
(2kBT − iℏ𝜔Dsgn(t)) e−𝜔D|t|

. (3.311)

It decays with a time constant 𝜏c determined by the inverse of 𝜔D. Notice that C(t)
is defined by bath operators; that is, the correlation time can be considered as a
reservoir property. If the Debye frequency is assumed to be large, the spectral den-
sity (3.302) has an Ohmic behavior, and the correlation time goes to zero, that is
C(t) ≈ 𝛿(t); this is the Markovian limit.

Second, the correlation function for the Brownian oscillator model, Eq. (3.303), is
calculated. For t > 0, one has to consider the two poles {𝜔k} = {−iΩ(+)

0 ,−iΩ(−)
0 } with

Ω(±)
0 = 𝛾0∕2 ± iΩ0 and Ω0 =

√
𝜔

2
0 − 𝛾

2
0∕4. For t < 0, the relevant poles are at {𝜔k} =

{iΩ(+)
0 , iΩ(−)

0 }. The residues are±ij0𝜔
2
0∕4Ω0 and∓ij0𝜔

2
0∕4Ω0, respectively. Hence, one

obtains for the antisymmetric correlation function a damped oscillation behavior

C(−)(t) = −i
πj0𝜔

2
0

Ω0
e−𝛾0|t|∕2sgn(t) sin(Ω0|t|). (3.312)

The symmetric part of the correlation function is given by

C(+)(t) = −
πj0𝜔

2
0

2Ω0

[
coth

(
iℏΩ(+)

0

2kBT

)
e−iΩ0|t| − coth

(
iℏΩ(−)

0

2kBT

)
eiΩ0|t|

]
× e−𝛾0|t|∕2

−
4πj0𝜔

2
0𝛾0kBT
ℏ

∞∑
l=1

𝜔l

(𝜔2
l + 𝜔

2
0)2 − 𝜔2

l 𝛾
2
0

e−𝜔l|t|. (3.313)

In the high-temperature limit, where coth(iℏΩ(±)
0 ∕2kBT) ≈ −i2kBT∕ℏΩ(±)

0 , this
expression can be written as

C(+)(t) = −
πj0𝜔

2
0kBT

ℏΩ0
2Im

(
e−iΩ0|t|
Ω(+)

0

)
e−𝛾0|t|∕2

. (3.314)

Applications of the Brownian oscillator model to absorption spectroscopy will be
discussed in Section 6.2.6.

3.7.4 Linear Response Theory for the Reservoir

In Section 3.5.6, we have seen that the correlation functions Cu𝑣(t) automatically
enter the QME as a result of the second-order approximation with respect to the
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system–reservoir coupling. In what follows, we demonstrate how these functions,
which are exclusively defined by reservoir quantities, can be introduced in an
alternative way. For this reason, we change the point of view taken so far. We will
not ask in what manner the system is influenced by the reservoir but how the
reservoir dynamics is modified by the system’s motion. To answer this question, it
will be sufficient to describe the action of the system on the reservoir via classical
time-dependent fields Ku(t). Therefore, we replace HS–R by

Hext(t) =
∑

u
Ku(t)Φu. (3.315)

The Φu are the various reservoir operators. The bath Hamiltonian becomes
time-dependent too and is denoted by

(t) = HR + Hext(t). (3.316)

As a consequence of the action of the fields Ku(t), the reservoir will be driven out of
equilibrium. In the case where the actual nonequilibrium state deviates only slightly
from the equilibrium, this deviation can be linearized with respect to the exter-
nal perturbations. We argue that in this limit the expectation value of the reservoir
operator Φu obeys the relation

⟨Φu(t)⟩ = ∑
𝑣

t

∫
t0

dt 𝜒u𝑣(t, t)Ku(t). (3.317)

The functions 𝜒u𝑣(t, t) are called linear response functions or generalized linear sus-
ceptibilities. In order to derive an expression for 𝜒u𝑣, we start with the definition of
the expectation value ⟨Φu(t)⟩, which reads (cf. Eq. (3.123))⟨Φu(t)⟩ = trR{U(t + t0)R̂eqU+(t + t0)Φu}, (3.318)

where the time evolution of the reservoir statistical operator starting with the
reservoir equilibrium density operator R̂eq has been explicitly indicated. The
time-evolution operator U(t, t0) does not depend on t − t0 since the Hamiltonian
(t), Eq. (3.316), is time dependent. A rearrangement of the time-evolution oper-
ators shows that the expectation value is identical with ⟨Φu(t)⟩R as introduced in
Eq. (3.202). To linearize this expression with respect to the external fields, U(t, t0)
is first separated into the free part UR(t − t0) defined by HR, and the S-operator (cf.
Section 3.2.2), which reads

S(t, t0) = T̂ exp
⎛⎜⎜⎝− i
ℏ

t

∫
t0

dt U+
R (t − t0)Hext(t)UR(t − t0)

⎞⎟⎟⎠ . (3.319)

In a second step, the S-operator is expanded up to first order in Hext(𝜏). The result is
inserted into Eq. (3.318), and we obtain

⟨Φu(t)⟩R ≈ trR

{
R̂eqΦ

(I)
u (t) − i

ℏ

t

∫
t0

dt trR

{
R̂eq

[
Φ(I)

u (t),Φ(I)
𝑣
(t)

]
−

}
K
𝑣
(t).

(3.320)
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Here, the time dependence of the reservoir operatorsΦ(I)
u (t) is given in the interaction

representation. Comparing Eq. (3.320) with Eq. (3.317), the linear response function
can be identified as22)

𝜒u𝑣(t, t) = − i
ℏ

⟨[
Φ(I)

u (t),Φ(I)
𝑣
(t)

]
−

⟩
R
. (3.321)

First, we notice that the right-hand side depends on the time difference t − t only
(cf. Eq. (3.243)), that is 𝜒u𝑣(t, t) = 𝜒u𝑣(t − t). Second, a comparison with Eq. (3.274)
shows that 𝜒u𝑣(t) = −iℏC(−)

u𝑣 (t). The important point is that if there exists an experi-
mental setup to measure the various ⟨Φu(t)⟩, one is able to deduce 𝜒u𝑣(t) if the K

𝑣
can

be changed in the measurement. Thus, the response functions 𝜒u𝑣(t) are quantities
that can be experimentally determined at least in principle. In contrast, the corre-
lation functions Cu𝑣(t) which are needed to study dissipation into the reservoir are
not directly related to an experiment. However, using Eq. (3.285), one can compute
Cu𝑣(t) if 𝜒u𝑣(t) is known.23)

Next, we consider how the internal energy of the reservoir changes via the
influence of the external fields Ku(t). We obtain the internal energy as

ER(t) = ⟨U+(t + t0)(t)U(t + t0)⟩R. (3.322)

The change in time follows as
𝜕

𝜕t
ER =

⟨ i
ℏ

(t)U+(t, t0)(t)U(t, t0)
⟩

R

−
⟨

U+(t, t0)(t) i
ℏ

(t)U(t, t0)
⟩

R

+
⟨

U+(t, t0)
(
𝜕

𝜕t
(t)

)
U(t, t0)

⟩
R
. (3.323)

The first two terms compensate each other, and one finally gets
𝜕

𝜕t
ER =

∑
u

⟨Φu(t)⟩R
𝜕

𝜕t
Ku(t). (3.324)

If the disturbance of the reservoir equilibrium state is weak enough, we can insert the
linear susceptibility, Eq. (3.317), and obtain the change in internal energy expressed
by the correlation function C(−)

u𝑣 (t). The latter describes fluctuations of certain oper-
ators of the reservoir, whereas the change in internal energy is a measure of energy
dissipation. Therefore, the relation is called fluctuation–dissipation theorem.

Finally, it should be noted that this discussion is not restricted to the present
situation. Whenever some system under the influence of a weak external field is
considered, its response can be described in the lowest order using an appropriate
linear response function. The latter is completely defined by an equilibrium
correlation function of some system operators (cf. also Chapter 4).

3.7.5 Classical Description of Cu𝒗(t)

As long as the reservoir can be described by independent harmonic oscillators,
one can compute the correlation functions Cu𝑣 using spectral densities, as has

22) Here, we assume that the equilibrium expectation values of Φ̂u vanish.
23) Note that the use of Eq. (3.285) requires in a first step according to Eq. (3.321) the
determination of C(−)

u𝑣 (𝜔) from 𝜒u𝑣(t).
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been shown in Section 3.7.2. If this is not possible, one can go back to a classical
description via molecular dynamics simulations using the Hamilton function
HR(P,Z) (which is defined by the sets P = {P

𝜉
} and Z = {Z

𝜉
} of momenta and coor-

dinates, respectively). In such a case, one has to clarify how the quantum statistical
correlation functions discussed so far have to be expressed via the results of the
classical molecular dynamic simulations. Let us denote the classical correlation
functions by

𝜁u𝑣(t) = ⟨Φu(t)Φ𝑣
⟩cl. (3.325)

Here, the Φu(t) are functions Φu(P(t),Z(t)) of the canonically conjugated variables,
and the classical average is performed with respect to the sets P0 ≡ {P(0)

𝜉
} and Z0 ≡

{Z(0)
𝜉
} of initial momenta and coordinates corresponding to the thermal equilibrium

distribution, f (P,Z) = exp(−HR(P,Z)∕kBT)∕ ( is the partition function). Thus, we
have

𝜁u𝑣(t) = ∫
dP0dZ0 f (P0,Z0)Φu (P(t),Z(t)) Φ𝑣

(
P0,Z0

)
. (3.326)

The classical correlation function is a real quantity that can be determined by a
molecular dynamics simulation of the reservoir equilibrium. The problem is that
it does not fulfill a relation as Cu𝑣(t) = C∗

𝑣u(−t). Upward and downward relaxation
become equally probable since the relation Cu𝑣(𝜔)∕C

𝑣u(−𝜔) = exp{−ℏ𝜔∕kBT} does
not exist (see Eq. (3.280)). In order to solve this problem, one identifies 𝜁u𝑣(t) with
half of the symmetric correlation function C(+)

u𝑣 , Eq. (3.274). For the Fourier trans-
form 𝜁u𝑣(𝜔), we use Eq. (3.282) and obtain

Cu𝑣(𝜔) = 2
(

1 + exp
{
− ℏ𝜔

kBT

})−1

𝜁u𝑣(𝜔) (3.327)

and

C
𝑣u(−𝜔) = 2

(
1 + exp

{
ℏ𝜔

kBT

})−1

𝜁u𝑣(𝜔). (3.328)

Due to the temperature-dependent prefactor, detailed balance is guaranteed by
these expressions. However, note that, for an arbitrary system, the replacement of
the symmetrized quantum correlation function by the classical correlation function
represents only an approximation.24)

3.8 Reduced Density Matrix in Energy Representation

3.8.1 The Quantum Master Equation in Energy Representation

In what follows, we transform the QME (3.254) into the energy (state) representation
with respect to the system Hamiltonian. Suppose that we have solved the eigenvalue
problem for HS,

HS|a⟩ = Ea|a⟩. (3.329)

24) For a systematic investigation of quantum corrections to classical correlation functions, see
Egorov et al. [3].
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Then, the RDM is given by 𝜌ab(t) = ⟨a|�̂�(t)|b⟩ (cf. Eq. (3.193)). Furthermore, we
introduce the matrix elements of the system part of the system–reservoir coupling
according to⟨a|Ku|b⟩ = K(u)

ab . (3.330)

It should be pointed out that even though any other choice of a complete basis set
for representing the density matrix is possible, the energy representation offers the
advantage that

US(𝜏)|a⟩ = e−iEa𝜏∕ℏ|a⟩, (3.331)

which simplifies the description of the coherent system dynamics. Taking the respec-
tive matrix element of the QME (3.254), we obtain after some rearrangement on the
right-hand side the following equation of motion for the RDM (𝜔ab = (Ea − Eb)∕ℏ):

𝜕

𝜕t
𝜌ab = − i𝜔ab𝜌ab +

i
ℏ

∑
c

∑
u

⟨Φu⟩R

(
K(u)

cb 𝜌ac − K(u)
ac 𝜌cb

)
−

∑
c,d

∑
u,𝑣

t−t0

∫
0

d𝜏
(

C
𝑣u(−𝜏)K

(u)
db K(𝑣)

cd ei𝜔da𝜏𝜌ac(t − 𝜏)

+ Cu𝑣(𝜏)K
(u)
ac K(𝑣)

cd ei𝜔bc𝜏𝜌db(t − 𝜏)

−
{

C
𝑣u(−𝜏)K

(u)
ac K(𝑣)

db ei𝜔bc𝜏

+ Cu𝑣(𝜏)K
(u)
db K(𝑣)

ac ei𝜔da𝜏
}
𝜌cd(t − 𝜏)

)
. (3.332)

A more compact notation of this equation is achieved by introducing the tetradic
matrix

Mab,cd(t) =
∑
u,𝑣

Cu𝑣(t)K
(u)
ab K(𝑣)

cd , (3.333)

which satisfies the relation25)

M∗
ab,cd(t) =

∑
u,𝑣

C
𝑣u(−t)K(u)

ba K(𝑣)
dc = Mdc,ba(−t). (3.334)

Apparently, Mab,cd(t) determines the time span for correlations. For this reason, it
will be called memory matrix or memory function. Using this notation, we can write
the dissipative part of the non-Markovian density matrix equation (3.332) as(

𝜕𝜌ab

𝜕t

)
diss

= −
∑
c,d

t−t0

∫
0

d𝜏
(

Mcd,db(−𝜏)ei𝜔da𝜏𝜌ac(t − 𝜏)

+ Mac,cd(𝜏)ei𝜔bc𝜏𝜌db(t − 𝜏)

−
[
Mdb,ac(−𝜏)ei𝜔bc𝜏 + Mdb,ac(𝜏)ei𝜔da𝜏

]
𝜌cd(t − 𝜏)

)
. (3.335)

In what follows, let us discuss two important properties of the solutions of the QME
in the energy representation. The first one concerns the normalization condition for

25) The expression requires the Hermiticity of HS–R and not necessarily that of the individual Ku
and Φu.



3.8 Reduced Density Matrix in Energy Representation 125

the RDM, Eq. (3.194), which expresses the fact that the total occupation probability
of the different eigenstates of HS is conserved, that is

∑
a𝜕𝜌aa∕𝜕t = 0. It should be

noted here that the basic property of a probability to be positive, that is 𝜌aa ≥ 0, can-
not be proven in the general case. This requires careful analysis when carrying out
the numerical calculation.

As a further property we expect that the stationary solution of the equations of
motion for 𝜌ab must correspond to a state that is in equilibrium with the reservoir.
Since the reservoir is at temperature T, we demand for the density matrix the limiting
behavior

lim
t→∞

𝜌ab(t) = 𝛿abe−Ea∕kBT ∕
∑

c
e−Ec∕kBT

. (3.336)

To verify this relation, we demonstrate that its right-hand side is an asymptotic solu-
tion of the QME (3.332). This means that the right-hand side of the QME should
vanish in the stationary limit, limt→∞𝜕𝜌aa∕𝜕t = 0. In the first step of the proof, we
introduce the limit t → ∞ in the time integral in Eq. (3.335). Since the reservoir cor-
relation time 𝜏c is finite, we can replace the time-dependent RDM 𝜌ab(t − 𝜏) in the
integrand by its asymptotic expression 𝜌ab(∞). For 𝜌ab(∞), we substitute Eq. (3.336)
(omitting the normalization constant), which is supposed to be the correct solution.
It follows that

0 = i
ℏ

∑
c

∑
u

⟨Φu⟩R(K
(u)
ca 𝛿ac − K(u)

ac 𝛿ca)e−Ea∕kBT

−
∑
c,d

∞

∫
0

d𝜏
[
{Mcd,da(−𝜏)ei𝜔da𝜏𝛿ac + Mac,cd(𝜏)ei𝜔ac𝜏𝛿da}e−Ea∕kBT

−{Mda,ac(−𝜏)ei𝜔ac𝜏 + Mda,ac(𝜏)ei𝜔da𝜏}𝛿cde−Ec∕kBT]
. (3.337)

Next, we use the properties of the memory matrix and combine various terms of the
dissipative part. Afterward, the Fourier transform of the correlation function Cu𝑣(𝜔)
will be introduced

0 = −
∑

c

∞

∫
0

d𝜏
(
{Mac,ca(−𝜏)ei𝜔ca𝜏 + Mac,ca(𝜏)ei𝜔ac𝜏}e−Ea∕kBT

−{Mca,ac(−𝜏)ei𝜔ac𝜏 + Mca,ac(𝜏)ei𝜔ca𝜏}e−Ec∕kBT)
= −

∑
c

∞

∫
−∞

d𝜏
(

Mac,ca(𝜏)ei𝜔ac𝜏e−Ea∕kBT − Mca,ac(𝜏)ei𝜔ca𝜏e−Ec∕kBT)
= −

∑
c

∑
u,𝑣

(
Cu𝑣(𝜔ac)K

(u)
ac K(𝑣)

ca e−Ea∕kBT − Cu𝑣(𝜔ca)K
(u)
ca K(𝑣)

ac e−Ec∕kBT
)
. (3.338)

To see that the last part vanishes, we use relation (3.280). Introducing it into
Eq. (3.337) gives∑

c

∑
u,𝑣

(
Cu𝑣(𝜔ac)K

(u)
ac K(𝑣)

ca − C
𝑣u(−𝜔ca)K

(u)
ca K(𝑣)

ac

)
= 0. (3.339)
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The final result is obtained after an interchange of u and 𝑣 in the second term. Thus,
the above given reasoning demonstrates that the asymptotic form of the RDO deter-
mined by the QME reads

lim
t→∞

�̂�(t) = 1


e−HS∕kBT
. (3.340)

The asymptotic form of the RDO, which is the equilibrium density operator of the rel-
evant system, was obtained as a result of the second-order perturbational treatment
of the system–reservoir coupling HS–R. Including all orders in a nonperturbative
treatment, the exact asymptotic form of the RDO has to be derived from the equilib-
rium density operator of the total system with the Hamiltonian H. This is achieved by
restricting it to the state space of the relevant system according to trR{exp(−H∕kBT)}.

3.8.2 Multilevel Redfield Equations

After having introduced the energy (state) representation of the RDO, let us discuss
the Markov limit. Equation (3.335) gives the dissipative part of the RDM equations
of motion. Carrying out the Markov approximation, that is using Eq. (3.260) and
shifting the upper bound of the time integral to infinity, we obtain(

𝜕𝜌ab

𝜕t

)
diss

= −
∑
c,d

∞

∫
0

d𝜏
(

Mcd,db(−𝜏)ei𝜔dc𝜏𝜌ac(t) + Mac,cd(𝜏)ei𝜔dc𝜏𝜌db(t)

− [Mdb,ac(−𝜏)ei𝜔bd𝜏 + Mdb,ac(𝜏)ei𝜔ca𝜏 ]𝜌cd(t)
)
.

(3.341)
(Note that we could have started from the operator equation (3.267) as well.)
The time integrals can be viewed as half-sided Fourier transforms of the memory
functions. These complex quantities define the dissipative part of the QME in the
Markov approximation. Their real part describes an irreversible redistribution of the
amplitudes contained in the various parts of RDM. The imaginary part introduces
terms that can be interpreted as a modification of the transition frequencies and
the respective mean-field matrix elements. These frequency shifts often give no
qualitative new contribution to the RDM equations. They can in these cases be
accounted for by changing the energy scale or adjusting the transition frequencies.
Therefore, we restrict ourselves to the discussion of the real part only, leading to the
following (damping) matrix:

Γab,cd(𝜔) = Re

∞

∫
0

d𝜏 ei𝜔𝜏Mab,cd(𝜏) = Re
∑
u,𝑣

K(u)
ab K(𝑣)

cd

∞

∫
0

d𝜏 ei𝜔𝜏Cu𝑣(𝜏). (3.342)

In the second part, we introduced Eq. (3.333) indicating that the damping matrix is
mainly determined by the half-sided Fourier transform of the reservoir correlation
functions. To establish the connection to the operator equation (3.267) derived
in the previous section, we note that the damping matrix can be written in the
alternative form

Γab,cd(𝜔dc) = Re
∑

u
⟨a|Ku|b⟩⟨c|Λu|d⟩. (3.343)
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(Note that the actual frequency argument of Γab,cd(𝜔) is fixed by the matrix elements
of ⟨c|K(I)

𝑣
(−𝜏)|d⟩ in Eq. (3.264).) Using Eq. (3.342), the dissipative part of the QME

in the state representation, Eq. (3.341), becomes(
𝜕𝜌ab

𝜕t

)
diss

= −
∑
c,d

(
Γbd,dc(𝜔cd)𝜌ac(t) + Γac,cd(𝜔dc)𝜌db(t)

−[Γca,bd(𝜔db) + Γdb,ac(𝜔ca)]𝜌cd(t)
)
. (3.344)

If we further introduce the relaxation matrix

Rab,cd =𝛿ac

∑
e
Γbe,ed(𝜔de) + 𝛿bd

∑
e
Γae,ec(𝜔ce)

− Γca,bd(𝜔db) − Γdb,ac(𝜔ca), (3.345)

the dissipative contribution to the RDM equations of motion can be finally written as(
𝜕𝜌ab

𝜕t

)
diss

= −
∑
c,d

Rab,cd𝜌cd(t). (3.346)

It should be noted that in the literature the tetradic relaxation matrix, Eq. (3.345), is
frequently termed the Redfield tensor after A. G. Redfield who introduced it in the
theory of nuclear magnetic resonance spectroscopy in the early 1960s.26)

Let us discuss in more detail the Redfield tensor and its effect on the dynamics of
the RDM 𝜌ab(t). Since the density matrix elements can be distinguished as popula-
tions (a = b) and coherences (a ≠ b), it is reasonable to discuss Rab,cd according to
its effect on the dynamics of 𝜌aa and 𝜌ab.

3.8.2.1 Population Transfer: a = b, c = d
Using Eq. (3.345), the respective matrix elements of the Redfield tensor can be
written as

Raa,cc = 2𝛿ac

∑
e
Γae,ea(𝜔ae) − 2Γca,ac(𝜔ca)

= 𝛿ac

∑
e

ka→e − kc→a. (3.347)

Here, we introduced the rate ka→b for the transition from state |a⟩ to state |b⟩
according to

ka→b = 2Γab,ba(𝜔ab) = 2Re

∞

∫
0

d𝜏ei𝜔ab𝜏Mab,ba(𝜏)

=

∞

∫
0

d𝜏ei𝜔ab𝜏Mab,ba(𝜏) +

∞

∫
0

d𝜏e−i𝜔ab𝜏M∗
ab,ba(𝜏). (3.348)

The two terms on the last line can be combined to give

ka→b =
∫

d𝜏 ei𝜔ab𝜏Mab,ba(𝜏) ≡ Mab,ba(𝜔ab). (3.349)

26) The original publication can be found in Redfield [4].
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From Eq. (3.347), we see that Raa,cc combines the rates for transitions between
different system eigenstates. The first term in Eq. (3.347) corresponds to transitions
from the state |a⟩ into all other system states |e⟩, thus decreasing the occupation
probability of the state |a⟩. Conservation of probability is established, then, by the
second term in Eq. (3.347), which represents transitions from all other states into
the state |a⟩.

Equation (3.349) shows that the transfer rate can also be written in terms of
the Fourier-transformed memory matrix at the transition frequency 𝜔ab. Using
Eq. (3.333) for the memory matrix gives the following alternative expression for the
energy relaxation rates:

ka→b =
∑
u,𝑣

Cu𝑣(𝜔ab)K
(u)
ab K(𝑣)

ba . (3.350)

The amplitude of the rate for a particular transition is determined by the matrix
elements of the operators Ku and by the value of the correlation function taken at the
respective transition frequency, Cu𝑣(𝜔 = 𝜔ab). This last dependence can be viewed
as a “probing” of the spectral density at this frequency (cf. Figure 3.6). In terms of the
harmonic reservoir model this implies that there has to be a reservoir oscillator mode
which can absorb or emit a reservoir quantum at the transition frequency of the
system. Since the transitions between the system states are therefore accompanied by
energy dissipation into the reservoir, the rates (3.349) are also called energy relaxation
rates.

We can use Eq. (3.280) for Cu𝑣(𝜔) to relate the forward rate for the transition from|a⟩ to |b⟩ to the respective backward rate. Interchanging the summation indices u
and 𝑣 in Eq. (3.350) yields

ka→b =
∑
u,𝑣

C
𝑣u(𝜔ab)K

(𝑣)
ab K(u)

ba = eℏ𝜔ab∕kBT
∑
u,𝑣

Cu𝑣(𝜔ba)K
(u)
ba K(𝑣)

ab

= eℏ𝜔ab∕kBTkb→a. (3.351)

This result, which is a direct consequence of Eq. (3.280), guarantees the proper
relation between excitations and deexcitation of the system’s quantum states
yielding the equilibrium according to Eq. (3.336). Equation (3.351) is also known as
the principle of detailed balance.

J(ω)

(a) (b)

Ea

ω

Figure 3.6 Transitions among five different quantum states |a⟩ of the relevant system with
energies Ea (a = 1,2,… , 5) (a). The transitions are induced by the interaction with the
reservoir, which is characterized by the spectral density J(𝜔) (b). The magnitude of the rate
is proportional to the value of the spectral density at the respective transition energy.
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3.8.2.2 Coherence Dephasing: a ≠ b, a = c, b = d
In this case, we have according to Eq. (3.345)

Rab,ab ≡ 𝛾ab =
∑

e

(
Γae,ea(𝜔ae) + Γbe,eb(𝜔be)

)
− Γaa,bb(0) − Γbb,aa(0). (3.352)

The expression determines the damping of the off-diagonal elements of the reduced
density matrix 𝜌ab(t). As already indicated, these are called coherences since they
represent phase relations between different states (here, eigenstates of HS). Con-
sequently, the decay of coherences is known as the dephasing process, and the 𝛾ab
are called dephasing rates. We notice that the first part of the dephasing rate can be
written as 𝛾a + 𝛾b, where 𝛾a and 𝛾b equal half of the relaxation rates, Eq. (3.349), for
the transitions out of the states |a⟩ and |b⟩, respectively. Thus, within the present
model, energy relaxation is a source of coherence dephasing. The second part of
Eq. (3.352) denoted by 𝛾 (pd)

ab is defined by the reservoir correlation function at zero fre-
quency; that is, it represents an elastic type of collision where no energy is exchanged
between the system and the reservoir. These rates are usually named pure dephasing
rates , and we write

𝛾ab = 1
2
∑

e
ka→e +

1
2
∑

e
kb→e + 𝛾

(pd)
ab , (3.353)

with

𝛾
(pd)
ab = −

∑
u,𝑣

K(u)
aa K(𝑣)

bb Cu𝑣(𝜔 = 0). (3.354)

However, the presence of pure dephasing not only requires nonzero correlation func-
tions at zero frequency but also nonvanishing diagonal matrix elements of the oper-
ators Ku. We already met this requirement at the end of Section 3.6.1 where we
discussed types of dissipation that do not change the internal energy.

Traditionally, the relation 1∕T2 = 1∕2T1 +1∕T∗
2 is used to indicate the different

contributions to the dephasing rate. Here, the total dephasing time T2 is called the
transverse relaxation time. (The term “transverse” is connected with its early use in
the field of magnetic resonance experiments where only two-level systems with a
single relaxation time have to be considered.) 1∕T2 has to be identified with 𝛾ab for
a particular pair of levels, and the pure dephasing rate 𝛾 (pd)

ab with 1∕T∗
2 . Moreover,

T1 is called longitudinal relaxation time and corresponds to the lifetime 2∕
∑

ekae
and the lifetime 2∕

∑
ekbe. It is important to note that we have related the different

relaxation times, which often serve as phenomenological parameters, to a particular
microscopic model for the system–reservoir interaction.

3.8.2.3 Remaining Elements of Rab,cd

The remaining elements of the Redfield tensor do not have a simple interpretation in
terms of energy relaxation and coherence dephasing rates. However, we can distin-
guish the following transitions induced by Rab,cd. First, coherences can be transferred
between different pairs of states: 𝜌ab → 𝜌cd (Rab,cd). Second, populations can change
to coherences: 𝜌aa → 𝜌cd (Raa,cd). And finally, the coherences can be transformed into
populations: 𝜌ab → 𝜌cc (Rab,cc). As a consequence, there is a mixing between different
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types of RDM elements. The conditions under which this reservoir induced mixing
of populations and coherences is negligible will be discussed in the following section.

Before doing this, we underline that the multilevel Redfield equations also guaran-
tee that the equilibrium density matrix equation (3.336) is a stationary solution. The
demand immediately leads to 0 =

∑
cRaa,cc exp(−Ec∕kBT). Noting Eq. (3.347) and

the principle of detailed balance, Eq. (3.351), it becomes obvious that the required
relation is fulfilled.

3.8.3 The Secular Approximation

The present form of the dissipative contribution to the QME in the state representa-
tion, Eq. (3.346), mixes diagonal and off-diagonal elements of the RDM, as pointed
out at the end of the previous section. In order to see under what conditions this
mixing between population and coherence-type density matrix elements can be
neglected, consider Eq. (3.346) in the interaction representation with respect to the
system Hamiltonian (see also Eq. (3.261)):(

𝜕𝜌
(I)
ab

𝜕t

)
diss

= −
∑
c,d

Rab,cd ei(𝜔ab−𝜔cd)(t−t0)𝜌
(I)
cd (t). (3.355)

The right-hand side contains various contributions that oscillate with the combined
frequency 𝜔ab − 𝜔cd. All contributions to the equations of motion where 1∕|𝜔ab −
𝜔cd| is much smaller than the time increment Δt for which the QME is solved will
cancel each other upon integration of the equations of motion due to destructive
interference. Let us suppose that we can neglect all those contributions to the dis-
sipative part for which the condition 1∕|𝜔ab − 𝜔cd| ≪ Δt is fulfilled. There are at
first glance two types of contributions that cannot be neglected since |𝜔ab − 𝜔cd| = 0
holds. These are related to those elements of Rab,cd that were discussed as cases 1
and 2 in the previous section. However, for systems with degenerate transition fre-
quencies such as a harmonic oscillator, |𝜔ab − 𝜔cd| = 0 can be fulfilled even if Rab,cd
belongs to the category 3 of the previous section. In general, the approximation that
builds upon the consideration of only those terms in the dissipative part of the QME
(3.346) for which |𝜔ab − 𝜔cd| = 0 holds is called secular approximation.27)

Note that within the Markov approximation, the smallest possible time step, Δt, is
determined by the memory time 𝜏mem. If, however, in systems with nearly degener-
ate transition frequencies, the condition 1∕|𝜔ab − 𝜔cd| > 𝜏mem is realized, the secular
approximation determines the coarse graining of the time axis and therefore imposes
a lower limit on the time resolution of the RDM. On the other hand, even in anhar-
monic systems, the condition |𝜔ab − 𝜔cd| = 0 can also be fulfilled accidentally. In
other words, in practice, one should always carefully examine the system at hand
and its time scales before using the secular approximation. All contributions to the
QME that are beyond the secular approximation will be called nonsecular in what
follows.

27) The approximation is often also termed rotating wave approximation.
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Thus, we have seen that even in the secular approximation, there is a chance that
populations and coherences are coupled via Rab,cd. If we neglect this coupling, that
is if we suppose that |𝜔ab − 𝜔cd| = 0 holds only in the cases 1 and 2 of the previous
section, we are at the level of the so-called Bloch model. This type of approxima-
tion is likely to be good in rather anharmonic systems. Within the Bloch model, the
right-hand side of Eq. (3.355) can be separately written down for the diagonal part of
the RDM, 𝜌(I)aa ≡ 𝜌aa = Pa, and the off-diagonal part. We obtain for the former using
a = b and c = d(

𝜕Pa

𝜕t

)
diss

= −
∑

c
Raa,ccPc(t) (3.356)

Next, we consider the off-diagonal part of Eq. (3.355), that is a ≠ b. Assuming
within the Bloch model that all transition frequencies are different, we obtain from
the secular condition 𝜔ab = 𝜔cd the relations a = c and b = d, that is case 2 of the
previous section. Changing from the interaction representation of the RDM to the
Schrödinger representation, the off-diagonal part becomes(

𝜕𝜌ab

𝜕t

)
diss

= −(1 − 𝛿ab)Rab,ab𝜌ab. (3.357)

Inspecting Eqs. (3.356) and (3.357), we find that these elements of the Redfield ten-
sor do not mix the diagonal and off-diagonal elements of the RDM as desired. This
means that we can consider the equations for the populations and the coherences
separately. The influence of the reservoir on these two types of RDM elements is
characterized by the energy relaxation and coherence dephasing rates introduced in
the foregoing section (Eqs. (3.350) and (3.350), respectively).

3.8.4 State Expansion of the System–Reservoir Coupling

To illustrate the formulas presented for the damping matrix in Section 3.8.2, we
introduce an expansion of HS–R in the eigenstates of HS:

HS–R =
∑
a,b

⟨a|HS–R|b⟩ |a⟩⟨b|. (3.358)

This expansion is very fundamental, and we will meet different versions of it in
the following sections. However, Eq. (3.358) is also a special version of the factor-
ized ansatz, Eq. (3.198), for the system–reservoir interaction Hamiltonian. This con-
clusion is obvious when identifying the index u with (ab), Ku with |a⟩⟨b| (that is
K(u)

cd = 𝛿ca𝛿db), and Φu with ⟨a|HS–R|b⟩. We also stress the fact that the Ku-operators
do not represent Hermitian operators. In a first step and in specifying Eq. (3.286),
we set ⟨a|HS–R|b⟩ ≡Φab =

∑
𝜉
ℏ𝜔

𝜉
gab(𝜉)Q𝜉

. From Eq. (3.350), the (energy) relaxation
rates are obtained as

ka→b = Cab,ba(𝜔ab). (3.359)

In accordance with Eq. (3.295), we get for the correlation function

Cab,cd(𝜔) = 2π𝜔2[1 + n(𝜔)]
[
Jab,cd(𝜔) − Jab,cd(−𝜔)

]
, (3.360)
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where we introduced the generalized spectral density

Jab,cd(𝜔) =
∑
𝜉

gab(𝜉)gcd(𝜉)𝛿(𝜔 − 𝜔
𝜉
). (3.361)

The relaxation rates follow as (using −n(−𝜔) = 1 + n(𝜔))

ka→b = 2π𝜔2
ab

(
[1 + n(𝜔ab)]Jab,ba(𝜔ab) + n(𝜔ba)Jab,ba(𝜔ba)

)
, (3.362)

and the dephasing rates 𝛾ab can be derived from Eq. (3.353). The pure dephasing
contribution may vanish if the correlation function equals zero for 𝜔 = 0.

Finally, we demonstrate that in the case of the Bloch model as introduced in
Section 3.8.3, it is possible to change back from the energy representation to an
operator notation of the QME. One immediately arrives at(

𝜕�̂�(t)
𝜕t

)
diss

= −
∑
a,b

{1
2
[
ka→b|a⟩⟨a|, �̂�(t)]+ − ka→b|b⟩⟨a|�̂�(t)|a⟩⟨b|}

−
∑
a,b
𝛾

(pd)
ab |a⟩⟨a|�̂�(t)|b⟩⟨b|. (3.363)

The first sum including an anticommutator is exclusively determined by the energy
relaxation rate ka→b, whereas the second sum incorporates the pure dephasing part
𝛾

(pd)
ab , Eq. (3.354).

Once pure dephasing vanishes, the whole dissipative part resembles what is often
called the Lindblad form, cf. Eq. (3.257) . It is possible to derive this type of dissipative
contribution to the equation of motion of the RDO in a more formal way starting
from the assumption that the diagonal elements of the RDO have to be greater or
equal to zero in any basis set. This has been shown by Lindblad in the 1970s. The
advantage of Eq. (3.363) is that the condition 𝜌aa(t) ≥ 0 is guaranteed by construction
in contrast to the case of the QME.

Using the Lindblad form of dissipation (or the Bloch model), which guarantees
positivity of the density matrix, one has to pay attention not to overinterpret the
results. In contrast to the multilevel Redfield theory, one may increase the system
reservoir coupling strength without obtaining results that apparently behave in a
wrong way. Nevertheless, one has already left the region of applicability of the whole
approach, which is of second order in the system reservoir coupling, and obtained
formally meaningless results.

3.8.4.1 Some Estimates
After Eq. (3.254), we already discussed the range of validity of the QME. Using the
energy representation introduced in this section, a more detailed account is possible.
To do this, we concentrate on the energy representation of the Markovian version of
Eq. (3.254) with the dissipative part given by Eq. (3.346). A necessary criterion for
the validity of the QME would be that the absolute value of any transition frequency
𝜔ab is larger than the respective level broadening determined by the dephasing rates
𝛾ab, Eq. (3.353). Using the expression for HS–R introduced in Eq. (3.358) and noting
the absence of pure dephasing, we have to compare |𝜔ab| with the dephasing rates
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following from Eqs. (3.350) and (3.360). Since every term stemming from Eq. (3.360)
has to be small and assuming zero temperature, we get ∣ 𝜔ab ∣ > 𝜔2

ae Jae,ea(𝜔ae) +𝜔2
be

Jbe,eb(𝜔be). If 𝜔ab ≈ 𝜔ae, 𝜔be, the respective values of the spectral densities have to
be small compared to 𝜔−1

ab . This restriction can be relaxed whenever the cut-off fre-
quencies of the spectral densities are smaller than𝜔ae, 𝜔be. If𝜔ab is much larger than
𝜔ae, 𝜔be, then the spectral densities have to be small compared to 𝜔ab∕𝜔2

ae. This lat-
ter case imposes to the spectral density a much stronger constraint of smallness as
the foregoing relations. The discussion indicates that the concrete structure of the
spectrum of the relevant system decides on the extent to which the system–reservoir
coupling can be increased such that the QME is still valid.

3.9 Coordinate and Wigner Representation of the
Reduced Density Matrix

In the preceding parts of this section, we concentrated on the energy representation
of the density matrix. There may be situations where the eigenstates of the Hamil-
tonian are not easily available, for example for problems involving dissociation.
In this case, the coordinate representation may offer a convenient alternative. In
what follows, we derive the coordinate representation of the QME in the Markov
approximation, Eq. (3.267).

As in Section 3.1, we assume that the total system has been separated into a
relevant part and a reservoir. The relevant system will be described by the set of
coordinates s ≡ {sj}. Then, according to Eq. (3.190), the density matrix in the coor-
dinate representation follows as 𝜌(s, s; t) = ⟨s|�̂�(t)|s⟩; that is, the matrix elements of
the RDO are taken with the eigenstates |s⟩ of the coordinate operators. In contrast
to the energy representation, the RDM introduced here is a continuous function of
the coordinates sj.

The equation of motion for 𝜌(s, s; t) is obtained by taking the respective matrix
elements of the Markovian QME, Eq. (3.267). First, we have to calculate the matrix
elements of the system Hamiltonian, ⟨s|HS|s⟩. It is well known from quantum
mechanics that these matrix elements follow as HS(s, p)𝛿(s − s) (here and in what
follows the 𝛿-function stands for a product of the single coordinate expressions
𝛿(sj − sj)). The momentum operators in HS are given by pj = −iℏ𝜕∕𝜕sj. The notation
HS(s, p) = T(p) + U(s) used in the following equation indicates the coordinate
representation of the system Hamiltonian with its kinetic energy part T(p) and the
potential energy U(s).

The QME in the Markov approximation follows as

𝜕

𝜕t
𝜌(s, s; t) = − i

ℏ

(
HS(s, p) − HS(s, p)

)
𝜌(s, s; t) + ⟨s|(𝜕�̂�

𝜕t

)
diss

|s⟩. (3.364)

The mean-field contribution is not considered explicitly. It is supposed to be included
into the definition of HS (see Eq. (3.266)). The dissipative part can be rewritten as a
nonlocal (integral) operator. For the present purpose, it is sufficient to assume that
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the operators Ku in Eq. (3.198) only depend on the coordinates s. Thus, we have⟨s|Ku|s⟩ = 𝛿(s − s)Ku(s), and the dissipative part reads

⟨s|(𝜕�̂�
𝜕t

)
diss

|s⟩ = −
∑

u

(
Ku(s) − Ku(s)

)
×
∫

ds′
(⟨s|Λu|s′⟩𝜌(s′, s; t) − 𝜌(s, s′; t)⟨s′|Λ(+)

u |s⟩) .
(3.365)

Note that ∫ ds′ abbreviates the multidimensional integration with respect to all coor-
dinates {s′j}.

To establish the relation to the approximations discussed in Section 3.8.2, we com-
pute the coordinate matrix elements of the Λ-operator Eq. (3.264). In doing so, it
is necessary to determine ⟨s|K(I)

𝑣
(−𝜏)|s⟩, which will have nonvanishing off-diagonal

elements for 𝜏 > 0. All elements are easily calculated if one uses the eigenstates𝜑a(s)
of HS. Inserting the result into the matrix elements of the Λ-operator gives (for the
matrix elements of the operators K

𝑣
see Eq. (3.330))

⟨s|Λu|s⟩ = ∑
a,b
𝜑a(s)𝜑∗

b(s)
∑
𝑣

∞

∫
0

d𝜏 Cu𝑣(𝜏)e−i𝜔ab𝜏K(𝑣)
ab . (3.366)

As in Section 3.8.2, we would like to relate the given description to the concept of
the spectral density, Eq. (3.294), of a harmonic oscillator environment. Therefore, the
system–reservoir coupling of Eq. (3.286) is used, resulting in a single K-operator and
a single correlation function C(t). The approximation made in Section 3.8.2, which
takes into account only the real expression Γab,cd(𝜔), Eq. (3.342), is in the present
context equivalent to the replacement of the half-sided Fourier transform of C(t) by
half of the fully transformed expression C(𝜔).28) Therefore, Eq. (3.366) is expressed
by C(−𝜔ab). Noting Eq. (3.295), which relates C(𝜔) to J(𝜔), we finally obtain⟨s|Λu|s⟩ = ∑

a,b
𝜑a(s)𝜑∗

b(s
′)Kab π𝜔2

ab
(
1 + n(𝜔ba)

) (
J(𝜔ba) − J(𝜔ab)

)
. (3.367)

Let us discuss a case where this expression reduces to a local one (∼ 𝛿(s − s)). First,
we concentrate on the high-temperature limit where n(𝜔) ≈ kBT∕ℏ𝜔 holds. If one
takes the Debye spectral density, Eq. (3.302), the 𝜔ba stemming from n(𝜔ba) and
those coming from the spectral density cancel each other. Moreover, we assume
that 𝜔ba ≪ 𝜔D. If Kaa = 0, there is no need to care about the case a = b, and the
a, b-summation gives ⟨s|K(s)|s′⟩ = 𝛿(s − s′)K(s). According to Eq. (3.365), we obtain
the dissipative part of the QME in the coordinate representation as(

𝜕𝜌(s, s; t)
𝜕t

)
diss

= −
2πkBTj0

ℏ𝜔
2
D

(
K(s) − K(s)

)2
𝜌(s, s; t). (3.368)

28) The half-sided Fourier transform if expressed by the complete Fourier-transformed correlation
function reads Ĉ(𝜔) = ∫

∞
0 dt exp(i𝜔t) ∫ d𝜔∕2π × exp(−i𝜔t)C(𝜔). A rearrangement of the

integrations leads to ∫
∞

0 dt exp(iΔ𝜔t) where we introduced Δ𝜔 = 𝜔 − 𝜔. The integral gives
i∕(Δ𝜔 + i𝜀) (with 𝜀 → +0). As a result, we obtain Ĉ(𝜔) = − ∫ d𝜔∕2πi ×C(𝜔)∕(Δ𝜔 + i𝜀). Since C(𝜔)
is a real function (cf. Section 3.7.1), the separation of Ĉ(𝜔) results in a principal-value integral and
a 𝛿-function from which the relation ReĈ(𝜔) = C(𝜔)∕2 can be verified.
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The s, s-dependence of the right-hand side nicely reflects the destruction of coher-
ences contained in the off-diagonal elements of the RDM. However, the present
derivation does not include contributions that describe energy dissipation.29)

Next, we use the coordinate representation of the RDO to introduce the respective
Wigner representation. For simplicity, we consider the case of a single coordinate
and a coupling function to the reservoir K(s) = s (that is, the so-called bilinear
system–reservoir coupling is used). In Section 3.4.4, the change in the Wigner rep-
resentation has been demonstrated for the total density operator, putting emphasis
on the relation to classical statistical mechanics. This will be repeated here for the
RDO but including the dissipative part. Following Section 3.4.4, we can directly
adopt Eq. (3.168) to transform the reversible part of the QME. One obtains(

𝜕𝜌(x, p; t)
𝜕t

)
rev

= 𝜕U(x)
𝜕x

𝜕

𝜕p
𝜌(x, p; t) −

𝜕T(p)
𝜕p

𝜕

𝜕x
𝜌(x, p; t). (3.369)

Next, we determine the dissipative part of the QME in the Wigner representation
using expression (3.368). To compute the respective Wigner representation, we
introduce sum and difference coordinates and take into account that

∫
dr e−ipr∕ℏ r2

𝜌(x, r; t) = −ℏ2 𝜕
2

𝜕p2 𝜌(x, p; t). (3.370)

This gives directly(
𝜕𝜌(s, p; t)

𝜕t

)
diss

=
2πkBTℏj0

𝜔
2
D

𝜕
2

𝜕p2 𝜌(x, p; t). (3.371)

Combining this expression with Eq. (3.369), we obtain the Markovian QME in the
Wigner representation as follows:(

𝜕

𝜕t
− 𝜕U(x)

𝜕x
𝜕

𝜕p
+
𝜕T(p)
𝜕p

𝜕

𝜕x
−

2πkBTℏj0

𝜔
2
D

𝜕
2

𝜕p2

)
𝜌(x, p; t) = 0. (3.372)

As required for a classical limit, Eq. (3.372) is of zeroth order in ℏ. Equation (3.372)
is also known as the Fokker–Planck equation (note that it is common to replace
2πℏj0∕𝜔2

D by the friction constant 𝜂).

3.10 The Path Integral Representation of the Density
Matrix

The second-order perturbational treatment of the system–reservoir coupling and the
Markov approximation are restrictions inherent to the density matrix theory pre-
sented particularly in Section 3.8.2. If we focus on harmonic oscillator reservoirs, it is

29) Using a slightly different derivation, terms proportional to derivatives of 𝜌(s, s; t) with respect
to the coordinates may also appear. Now, one focuses on K(s) = s, where s is a single coordinate.
Moreover, one uses again the Debye spectral density equation (3.302) but accounts for the full
complex correlation function. And, when calculating ⟨s|Λu|s⟩, one stays with ⟨s|s(I)(𝜏)|s⟩ (cf.
Eq. (3.264)). The use of a short-time approximation s(I)(𝜏) ≈ s − i[HS, s]−𝜏∕ℏ ≡ s − p𝜏∕m then
reproduces Eq. (3.368) together with the additional coordinate derivative terms.
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possible to derive an exact, that is nonperturbative and non-Markovian, expression
for the RDM within the framework of Feynman’s path integral approach to quantum
dynamics. This will be demonstrated in the present section.

In order to illustrate the basic idea, we go back to Section 3.4.3, where the time
evolution of the total density operator is given in Eq. (3.148). Let us suppose that
we slice the time interval [t0, t = tN ] into N pieces of length Δt = (tN − t0)∕N,
that is tj = t0 + jΔt (j = 0,… ,N). If we use the decomposition property of the
time-evolution operator, Eq. (3.20), the matrix elements of this operator with
respect to the coordinate representation become

⟨xN |U(tN , t0)|x0⟩ = ⟨xN |U(tN , tN−1)U(tN−1, tN−2)… × U(t2, t1)U(t1, t0)|x0⟩.
(3.373)

In a next step, we insert the identity 1 = ∫ dxj|xj⟩⟨xj| between all operator products
in Eq. (3.373). This gives

⟨xN |U(tN , t0)|x0⟩ = N−1∏
j=1

[
∫

dxj

] N∏
j=1

⟨xj|U(tj, tj−1)|xj−1⟩. (3.374)

Within this representation, the matrix elements of the time-evolution operator, that
is the transition amplitudes for the particle for going from point x0 to point xN in
the time interval [t0, tN ], have a simple interpretation, illustrated in Figure 3.7.

The vertical axis in this figure represents the coordinate, and the horizontal one
is the discretized time. Starting from a particular x0, the system explores all possi-
ble paths that lead to xN in the interval [t0, tN ], because at each intermediate time
step tj, Eq. (3.374) demands for an integration with respect to the coordinate xj.
Within this intuitive picture, the action of the time-evolution operator presented
in the previous sections is replaced by a high-dimensional integration in coordinate
space.

A fundamental property of the representation (3.374) can be derived starting for
simplicity from the single particle Hamiltonian H = T(p̂) + V(x̂). We further sup-
pose that the time step Δt is small enough to justify the decomposition

e−iHΔt∕ℏ ≈ e−iV(x̂)Δt∕ℏe−iT(p̂)Δt∕ℏ
. (3.375)

1 30 N–1 N t / Δt2

x0
+

xN
+

Figure 3.7 Visualization of
different time-sliced paths leading
from x+

0 to x+
N in the time interval

[t0, tN].
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According to Eq. (2.76), the error here will be of the order Δt2[V(x̂),T(p̂)]−. For the
matrix elements of the time-evolution operator in Eq. (3.374), we can then write⟨xj|U(tj, tj−1)|xj−1⟩ ≈ ⟨xj|e−iV(x̂)Δt∕ℏe−iT(p̂)Δt∕ℏ|xj−1⟩

=
∫

dx
∫

dp
2πℏ ∫

dpj

2πℏ
⟨xj|e−iV(x̂)Δt∕ℏ|x⟩

×⟨x|pj⟩⟨pj|e−iT(p̂)Δt∕ℏ|p⟩⟨p|xj−1⟩
=
∫

dpj

2πℏ
e−iV(xj)Δt∕ℏeipj(xj−xj−1)∕ℏe−iT(pj)Δt∕ℏ

,

(3.376)

where we used ⟨xj|V(x̂)|x⟩ = V(xj)𝛿(xj − x), ⟨x|pj⟩ = exp{ipjx∕ℏ}∕
√

2πℏ, and⟨pj|T(p̂)|p⟩ = T(pj)𝛿(pj − p). Inserting this expression into Eq. (3.374), we have

⟨xN |U(tN , t0)|x0⟩ = N−1∏
j=1

[
∫

dxj

] N∏
j=1

[
∫

dpj

2πℏ

]

× exp

{
i
ℏ

N∑
j=1

[
pj(xj − xj−1) − Δt[T(pj) + V(xi)]

]}
. (3.377)

The momentum integrals can be performed analytically if the kinetic energy opera-
tor has the form T = p2∕2m. One obtains

⟨xN |U(tN , t0)|x0⟩ = 1√
2πℏiΔt∕m

N−1∏
j=1

[
∫

dxj√
2πℏiΔt∕m

]

× exp

{
i
ℏ

Δt

[ N∑
j=1

m
2

(xj − xj−1

Δt

)2

− V(xj)

]}
. (3.378)

If we now take the continuum limit, Δt → 0, the sum in the exponent becomes an
integral over time in the interval [t0, tN ]. Since (xj − xj−1)∕Δt → ẋ(t), the integrand
turns into the Lagrange function known from classical mechanics. Introducing the
symbol x for the Δt → 0 limit of the integration over the different intermediate
points along the time sliced path, the matrix elements of the time-evolution operator
can be written as

⟨xN |U(tN , t0)|x0⟩ = ∫
x exp

{
i
ℏ∫

tN

t0

dt L(x, ẋ, t)
}
. (3.379)

The exponent is just the classical action corresponding to the Lagrangian
L(x, ẋ, t) = mẋ2∕2 − V(x, t). (Note that we have tacitly assumed a general
time-dependent potential here for which the derivation proceeds along the
same lines.) Since ∫ x denotes the integration over all possible paths leading from
x0 to xN , the interpretation of (3.379) is as follows: The transition amplitude for
going from x0 to xN during the time interval [t0, tN ] is obtained by summing all
different paths and assigning a phase to each path, which corresponds to i∕ℏ times
the classical action. The exponent in Eq. (3.379) is of course a rapidly oscillating
function on a scale given by Planck’s constant. Thus, most of the terms in this
sum will interfere in such a way that their net contributions are small. The main
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contribution is likely to come, however, from the classical path, which makes the
action stationary. This offers the intriguing possibility to understand quantum
mechanical transition amplitudes in terms of classical paths supplemented by
fluctuations around these paths that are responsible for quantum effects.

We now turn to the density matrix. Here, we have to account for the time evolution
of the bra and ket vectors. Going back to Eq. (3.205), we can write for the total density
operator using Eq. (3.379) (∫ dx±0 abbreviates the integration with respect to x+0 and
x−0 , and x± stands for x+x−.)

W(x+N , x
−
N ; tN ) = ∫

dx±0 ⟨x+N |U(tN , t0)|x+0 ⟩⟨x+0 |W(t0)|x−0 ⟩⟨x−0 |U+(tN , t0)|x−N⟩
=
∫

dx±0 ∫
x± exp

{
i
ℏ∫

tN

t0

dtL(x+, ẋ+, t)
}

× ⟨x+0 |W(t0)|x−0 ⟩ exp
{
− i
ℏ∫

tN

t0

dtL(x−, ẋ−, t)
}
. (3.380)

This path integral expression for the total system’s density matrix shows that the bra
and the ket parts of the density operator have to be propagated forward and back-
ward, respectively. Thereby, all paths x±(t) connecting x+0 with x+N and x−0 with x−N ,
respectively, in the interval [t0, tN ] have to be explored. The initial points are subject
to an additional integration.

For the purpose of illustration, we develop the expression for the RDM of a
one-dimensional system (s) embedded in a harmonic bath (Z = {Z

𝜉
}). We start with

the Lagrangian corresponding to the generic bilinear system–reservoir Hamiltonian
(cf. Sections 2.5.3, 3.1, and 3.7.2)

L =
msṡ2

2
− V(s) +

∑
𝜉

⎛⎜⎜⎝
Ż2
𝜉

2
−
𝜔

2
𝜉

2

(
Z
𝜉
−
ℏ𝛾

𝜉
s

𝜔
2
𝜉

)2⎞⎟⎟⎠ . (3.381)

Apparently, this Lagrangian is of the form L = LS + LR + LS–R. Using Eqs. (3.381)
and (3.380) with x = (s,Z), we obtain for the RDM

𝜌(s+N , s
−
N ; tN ) = ∫

dZN W(s+N ,ZN , s−N ,ZN ; tN ) (3.382)

the expression

𝜌(s+N , s
−
N ; tN ) = ∫

ds±0 dZ±
0 dZN ∫

s±Z±W(s+0 ,Z
+
0 , s

−
0 ,Z

−
0 ; t0)

× exp
{

i
ℏ∫

tN

t0

dt [LS(s+, ṡ+, t) − LS(s−, ṡ−, t)]
}

× exp
{

i
ℏ∫

tN

t0

dt [LR(Z+
, Ż+

, t) − LR(Z−
, Ż−

, t)]
}

× exp
{

i
ℏ∫

tN

t0

dt [LS–R(s+, ṡ+,Z+
, Ż+

, t)

−LS–R(s−, ṡ−,Z−
, Ż−

, t)]
}
. (3.383)

Note that, due to the trace operation with respect to the reservoir DOFs, the
endpoints for the forward and backward reservoir paths are identical (ZN ). For
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simplicity, let us assume that the density matrix factorizes initially according to

W(s+0 ,Z
+
0 , s

−
0 ,Z

−
0 ; t0) = 𝜌(s+0 , s

−
0 ; t0)Req(Z+

0 ,Z
−
0 ; t0). (3.384)

Then, Eq. (3.383) can be written as

𝜌(s+N , s
−
N ; tN ) = ∫

ds±0 ∫
s±𝜌(s+0 , s

−
0 ; t0)

× exp
{ i
ℏ

SS(s+, tN )
}
 (s±) exp

{
− i
ℏ

SS(s−, tN )
}
. (3.385)

Here, we have introduced the classical action of the system part SS(s, t) =
∫

t
t0

dt′LS(s, ṡ, t′). The structure of the equation is such that all the influence of the
environment on the system dynamics is contained in the so-called Feynman–Vernon
influence functional, which is defined as

 (s±) =  [s+(t), s−(t)] =
∫

dZ±
0 dZN ∫

Z±

× exp
⎧⎪⎨⎪⎩

i
ℏ

tN

∫
t0

dt (LR(Z+
, Ż+

, t) − LR(Z−
, Ż−

, t)
⎫⎪⎬⎪⎭ Req(Z+

0 ,Z
−
0 ; t0)

× exp
⎧⎪⎨⎪⎩

i
ℏ

tN

∫
t0

dt (LS–R(s+, ṡ+,Z+
, Ż+

, t) − LS–R(s−, ṡ−,Z−
, Ż−

, t)
⎫⎪⎬⎪⎭ . (3.386)

Even though we arrived at Eqs. (3.385) and (3.386) in a rather straightforward man-
ner, the physical content of these expressions is remarkable. The system’s density
matrix evolution is given as a path integral over all paths s+(t), connecting s+0 with
s+N (forward time evolution), and all paths s−(t), connecting s−0 with s−N (backward
time evolution). The free system dynamics is modified by the interaction with the
environment introduced by the influence functional  (s±). Inspecting Eq. (3.386),
we realize immediately that  (s±) contains interactions that are nonlocal in time
and span, in principle, the whole time interval of the density matrix evolution. This
is just another way of saying that Eq. (3.385) contains all memory effects. Further,
we notice that LS–R can be interpreted as an extra potential for the environmental
oscillators; they experience a force that changes along the system paths. For the
Lagrangian (3.381), it is possible to obtain an analytical expression for the influence
functional. It reads

 (s±) = exp
⎧⎪⎨⎪⎩−

1
ℏ

tN

∫
t0

dt′
t′

∫
t0

dt′′ [s+(t′) − s−(t′)]

× [C(t′ − t′′)s+(t′′) − C∗(t′ − t′′)s−(t′′)]
⎫⎪⎬⎪⎭

× exp
⎧⎪⎨⎪⎩−

i
ℏ

tN

∫
t0

dt′
∑
𝜉

(ℏ𝛾
𝜉
)2

2𝜔2
𝜉

[s+(t′)2 − s−(t′)2]
⎫⎪⎬⎪⎭ . (3.387)
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Here, C(t) is the correlation function for the harmonic oscillator reservoir coor-
dinates, discussed in Section 3.7.2. The second exponent contains the so-called
counter term.

Equations (3.385) and (3.386) represent an exact analytical solution to the problem
of the time evolution of the RDM for a one-dimensional system in a harmonic oscilla-
tor bath. However, the bottleneck for its straightforward numerical implementation
is the multidimensional integration of a highly oscillatory function. Since the time
step and the number of integrations are directly related (cf. Eqs. (3.373)–(3.375)),
one would expect that only the short-time dynamics is accessible by this method.
However, in a typical condensed-phase situation, the memory time of the bath
DOFs does not extend over arbitrarily large time intervals. Stated in another way, the
spectral density of the environment is often a rather smooth function in the spectral
range of interest. Thus, the correlation function C(t) can be expected to decay rather
rapidly. Note that the extreme limit C(t) ∝ 𝛿(t) leads directly to the Markov approxi-
mation. Here, the interactions introduced by the influence functional become local
in time, and the time evolution of the density matrix can be solved in an iterative
fashion. Needless to say, that this does not yet correspond to the level of theory
adopted in Section 3.6.1; the system–reservoir interaction is still treated nonper-
turbatively. Along these lines it is possible now to develop a systematic procedure
for incorporation of finite memory effects. A limitation of the approach outlined so
far is its restriction to harmonic oscillator reservoirs. A generalization to arbitrary
reservoirs is possible, however, only at the expense of additional assumptions.

3.11 Hierarchy Equations of Motion Approach

There is an alternative formulation of the equations of motion for the RDM that
provides for a certain class of spectral densities a numerical protocol for obtaining
the dynamics in the nonperturbative and non-Markovian regime. The derivation
builds on the path integral representation introduced in the previous section.30) For
simplicity, we will not consider the counter term, and the system bath coupling will
be taken to be of the form

HS–R =
∑

u
Ku(s)Φu(Z). (3.388)

The reservoir part is assumed to consist of harmonic oscillators. For this model, the
influence functional, Eq. (3.387), can be written as (setting tN = t)

 (s±) = exp
⎧⎪⎨⎪⎩−

t

∫
t0

dt′
∑
u,𝑣

Δu[s±(t′)]Au𝑣[s±(t′)]
⎫⎪⎬⎪⎭ . (3.389)

Here, we have introduced the functions

Δu[s±(t)] =
1
ℏ

(Ku[s+(t)] − Ku[s−(t)]) (3.390)

30) Note that the following derivation can be generalized to cases where the system operator Ku is
not given in the coordinate representation.
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and

Au𝑣[s±(t)] =

t

∫
t0

d𝜏{Cu𝑣(t − 𝜏)K𝑣
[s+(𝜏)] − C∗

u𝑣(t − 𝜏)K𝑣
[s−(𝜏)]}, (3.391)

with Cu𝑣(t) being the correlation function of the bath operator Φu(Z). In the present
notation, the time evolution of the RDM can be written as

𝜌(s±, t) =
∫

ds±0  (s±, t, s±0 , t0)𝜌(s
±
0 , t0), (3.392)

with the time-evolution operator given by

 (s±, t, s±0 , t0) =

s±(t)

∫
s±(t0)

s± exp
{ i
ℏ

SS(s+, t)
}
 (s±) exp

{
− i
ℏ

SS(s−, t)
}
. (3.393)

To obtain the equation of motion, the time derivate of the evolution operator needs
to be calculated. For the influence functional, we obtain

𝜕

𝜕t
 (s±) = −

∑
u,𝑣

Δu[s±(t)]Au𝑣[s±(t)] (s±)

= −i
∑
u,𝑣

Δu[s±(t)]u𝑣(s±), (3.394)

with the auxiliary influence functional

u𝑣(s±) = −iAu𝑣[s±(t)] (s±). (3.395)

Next, an equation of motion is derived for this auxiliary influence functional, that is
𝜕

𝜕t
u𝑣(s±) = −i

(
𝜕

𝜕t
Au𝑣[s±(t)]

)
 (s±) − iAu𝑣[s±(t)]

𝜕

𝜕t
 (s±)

= −i
(
𝜕

𝜕t
Au𝑣[s±(t)]

)
 (s±) − i

∑
u′ ,𝑣′

Δu′ [s±(t)]u𝑣,u′𝑣′ (s±), (3.396)

with

u𝑣,u′𝑣′ (s±) = −iAu𝑣[s±(t)]u′𝑣′ (s±)
= (−iAu𝑣[s±(t)])(−iAu′𝑣′ [s±(t)]) (s±). (3.397)

Obviously, this procedure can be continued by deriving an equation of motion for
u𝑣,u′𝑣′ (s±) and so on. Whether this set of coupled equations can be closed depends
on the properties of Au𝑣[s±(t)]. Taking its time derivative yields

𝜕

𝜕t
Au𝑣[s±(t)] = Cu𝑣(t0)K𝑣

[s+(t)] − C∗
u𝑣(t0)K𝑣

[s−(t)]

+

t

∫
t0

d𝜏
{
𝜕Cu𝑣(t − 𝜏)

𝜕t
K
𝑣
[s+(𝜏)] −

𝜕C∗
u𝑣(t − 𝜏)
𝜕t

K
𝑣
[s−(𝜏)]

}
.

(3.398)

Assuming that the bath correlation function can be written as a sum of exponential
terms, the integral can be explicitly evaluated. That is, we suppose that for t ≥ 0
Cu𝑣(t) can be written as

Cu𝑣(t) =
∑

k
𝜂u𝑣,ke−Ωu𝑣,kt (3.399)
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where 𝜂u𝑣,k and Ωu𝑣,k are complex parameters. Examples for model spectral densities
have been given in Section 3.7.3. For illustration, let us consider the case of a Debye
spectral density generalized to correlated bath modes (cf. Eq. (3.311))

Cu𝑣(t) = 𝜂u𝑣e−𝛾u𝑣t
, (3.400)

where we have 𝜕Cu𝑣(t)∕𝜕t = −𝛾u𝑣Cu𝑣(t). Hence, we obtain
𝜕

𝜕t
Au𝑣[s±(t)] = 𝜂u𝑣K

𝑣
[s+(t)] − 𝜂∗u𝑣K

𝑣
[s−(t)] − 𝛾u𝑣Au𝑣[s±(t)].

(3.401)

Equation (3.396) can now be rewritten as
𝜕

𝜕t
u𝑣(s±) = Bu𝑣[s±(t)] (s±) − 𝛾u𝑣u𝑣(s±) − i

∑
u′ ,𝑣′

Δu′ [s±(t)]u𝑣,u′𝑣′ (s±), (3.402)

with

Bu𝑣[s±(t)] = −i(𝜂u𝑣K
𝑣
[s+(t)] − 𝜂∗u𝑣K

𝑣
[s−(t)]). (3.403)

In order to arrive at the general structure of the equations of motion, the compos-
ite indices u = (u, 𝑣) and n = (nu,nu′ ,…) with nu ≥ 0 are introduced. The auxiliary
influence functional can then be written as (skipping the path argument)

n =
[
(−iAu)nu (−iAu′ )nu′ × …

]
 =

[∏
u
(−iAu)nu

]
 , (3.404)

and the equations of motion follow as

𝜕

𝜕t
n = −

(∑
u

nu𝛾u

)
n +

∑
u

(
nuBun−

u
− iΔun+

u

)
. (3.405)

Here, n±
u implies that the index nu within the multiindex n is shifted to nu ± 1.

From the complete time evolution can now be expressed via the (auxiliary) influence
functionals as 𝜌n(t) = n(t, t0)𝜌(t0). Using

𝜕

𝜕t
exp

{
± i
ℏ

SS(s, t)
}
= ∓ i

ℏ

HS exp
{
± i
ℏ

SS(s, t)
}
, (3.406)

which follows from the Hamilton–Jacobi equation, we obtain31)

𝜕

𝜕t
𝜌n = −

(
iS +

∑
u

nu𝛾u

)
𝜌n +

∑
u

(
nuBu𝜌n−

u
− iΔu𝜌n+

u

)
. (3.407)

These equations constitute an infinite hierarchy, which upon solution contains
all orders of perturbation theory. According to Eq. (3.392), the physical RDO is
given by 𝜌0,0,…(t). For practical applications, the hierarchy of equations needs to be
truncated at a particular order; for a discussion, see suggested reading at the end
of this chapter. Finally, we note that there is an alternative, wave function-based,
formulation of hierarchical equations starting from a stochastic unraveling of the
Feynman–Vernon expression equation (3.385). This so-called hierarchy of pure
states approach is outlined in the supplementary Section 3.15.2.

31) Note that in general one could have a summation of terms containing exponential factors
according to the decomposition Eqs. (3.307) and (3.308). In this case the dimension of the index
array for the multiindex n increases according to the number of terms in the summation.
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3.12 Coherent to Dissipative Dynamics of a Two-level
System

In what follows, we discuss the dynamics of a coupled two-level system using the
methods developed in Sections 3.2, 3.8.2, and 3.11. It should be noted that despite
its simplicity, the model of a two-level system provides an important reference for
understanding the dynamics in complicated condensed-phase situations. We start
by solving the time-dependent Schrödinger equation for the two-level system. After-
ward, the density matrix theory based on the QME in the Markov approximation and
using the hierarchy equations of motion will be applied.

3.12.1 Coherent Dynamics

In Section 2.8.2, we obtained the eigenvalues 
𝜅=± and eigenvectors |𝜅 = ±⟩ for a

system consisting of two zeroth-order states |m = 1,2⟩ with energies 𝜀m=1,2 coupled
by some interaction V (cf. Eq. (2.148)). The time-evolution operator for the isolated
two-level system U(t) = e−iHt∕ℏ is conveniently expressed in terms of the eigenstates|𝜅 = ±⟩. One obtains

U(t) =
∑
𝜅,𝜆=±

⟨𝜅|U(t)|𝜆⟩ |𝜅⟩⟨𝜆| = ∑
𝜅=±

e−i
𝜅

t∕ℏ|𝜅⟩⟨𝜅|. (3.408)

This expression can be used to determine, for instance how the initially prepared
zeroth-order state |1⟩ evolves in time. To this end, we calculate the probability for
transitions between |1⟩ and |2⟩, which is defined as

P1→2(t) = |⟨2|U(t)|1⟩|2
. (3.409)

Once this quantity is known, the survival probability is obtained as P1→1(t) = 1 −
P1→2(t). Using Eqs. (2.160) and (2.162), we get (�̂� = ∓, if 𝜅 = ±)

⟨2|U(t)|1⟩ = ∑
𝜅=±

e−i
𝜅

t∕ℏ⟨2|𝜅⟩⟨𝜅|1⟩ = ∑
𝜅=±

e−i
𝜅

t∕ℏ C
𝜅
(2) C∗

𝜅
(1)

=
∑
𝜅=±

e−i
𝜅

t∕ℏ
(

𝜅
− 𝜀2


𝜅
− 

�̂�


𝜅
− 𝜀1


𝜅
− 

�̂�

) 1
2

ei(𝜒2(𝜅)−𝜒1(𝜅))

= e−i arg(V) |V |
+ − −

(
e−i+t∕ℏ − e−i−t∕ℏ)

. (3.410)

This gives for the transition probability

P1→2(t) =
|V |2

(ℏΩ)2
|||e−i−t∕ℏ{e−iΩt − 1}|||2

= |V |2

(ℏΩ)2

(
[cos(Ωt) − 1]2 + sin2(Ωt)

)
, (3.411)

where we introduced

ℏΩ = + − − ≡

√
(𝜀1 − 𝜀2)2 + 4|V |2. (3.412)
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Figure 3.8 Transition
amplitude P1→2(t) following
from Eq. (3.414) for different
(rescaled) detunings|𝜀1 − 𝜀2|∕2|V | = 0 (thin solid),
1 (thick solid), and 2 (dashed),
plotted versus (scaled) time.

Using

[cos(Ωt) − 1]2 + sin2(Ωt) = 2 (1 − cos(Ωt)) = 4sin2 Ωt
2
, (3.413)

we finally get

P1→2(t) =
4|V |2

(ℏΩ)2 sin2(Ωt∕2). (3.414)

For the case that the zeroth-order states have the same energy, this expression sim-
plifies to

P1→2(t) = sin2 (|V |t∕ℏ) . (3.415)

The time dependence of the transition probability is shown in Figure 3.8 for different
detunings, |𝜀1 − 𝜀2|∕2|V |, between the zeroth-order states. From (3.414), we realize
that P1→2(t)will oscillate with frequencyΩ∕2, which depends on the detuning. Given
a constant coupling V , the oscillation frequency will increase with increasing detun-
ing. At the same time, due to the prefactor in Eq. (3.414), the transfer will be less
complete. A complete population switching occurs only if the two zeroth-order states
are degenerate. The oscillation frequency is then V∕ℏ, and according to Eq. (3.415),
a complete transfer is realized for the condition t = (2N + 1)πℏ∕2|V |, where N is an
integer.

We would like to point out that this simple result reflects the general statement
made earlier, namely that time-dependent phenomena in a closed quantum system
appear whenever a noneigenstate, that is a superposition of eigenstates, has been
prepared initially. In the present case, the initial preparation of state |1⟩ corresponds
to a particular superposition of the two eigenstates |+⟩ and |−⟩.

3.12.2 Dissipative Dynamics Using Eigenstates

The dissipative dynamics of the two-level system will be described using the density
matrix in the state representation. Here, in principle, we have two possibilities: In
a situation where some zeroth-order initial state has been prepared, one is often
interested in the survival amplitude related to this initial state, which is given by
𝜌mm(t) (cf. Section 3.2.1). On the other hand, one could also use the representation



3.12 Coherent to Dissipative Dynamics of a Two-level System 145

in terms of the eigenstates: 𝜌
𝜅𝜆

. It seems as if there were no difference between these
two representations because we can relate them via

𝜌mn(t) =
∑
𝜅,𝜆

C
𝜅
(m)C∗

𝜆
(n) 𝜌

𝜅𝜆
(t). (3.416)

However, we should recall that in Section 3.6 and Eq. (3.267), the equations of
motion for the RDM have been derived in the eigenstate representation. As a
consequence, all approximations (Markovian dynamics and secular approximation)
make reference to the spectrum of the full Hamiltonian (2.147) and not only to
the zeroth-order states. In what follows, we show that simulations using either
eigenstates or zeroth-order states can yield different results.

Let us start by specifying the coupling of the two-level system to its environment.
We assume that the latter can be described by uncoupled harmonic oscillators with
coordinates Z = {Z

𝜉
}. To account for energy dissipation from the two-level system

into the reservoir, we consider the simplest version of the coupling Hamiltonian (cf.
the final part of Section 3.8.2). Using the general notation, Eq. (3.198), we take the
system part to be

Ku = |m⟩⟨n|. (3.417)

The index u in Eq. (3.198) has to be identified with the pair (m,n), and the reservoir
part of Eq. (3.198) is written as a linear expression in the reservoir coordinates:

Φu ≡ Φmn =
∑
𝜉

ℏ𝜔
𝜉
gmn(𝜉) Q

𝜉
. (3.418)

Here, we have introduced the dimensionless coupling constant gmn(𝜉), which has
already been used in Section 3.7.2. Concentrating on energy exchange with the envi-
ronment via transitions between both the zeroth-order system states, we assume that
gmn(𝜉) has only off-diagonal elements.

The definition of the system–environment coupling in terms of the zeroth-order
states will often have practical reasons. For instance, in Chapter 7, we discuss the
electron transfer between a donor and an acceptor state (that is, in an electronic
two-level system). Since the electronic donor and acceptor states are well defined,
it may be more straightforward to model their interaction with the environment
separately, that is without taking into account their mutual interaction.

The eigenstate representation of the system–reservoir coupling Hamiltonian HS–R
is easily obtained. For the system part, we have

Ku = |𝜅⟩⟨𝜆| (3.419)

(u ≡ (𝜅, 𝜆) in Eq. (3.198)). The reservoir part has diagonal and off-diagonal
contributions

Φu ≡ Φ
𝜅𝜆

=
∑
𝜉

ℏ𝜔
𝜉

g
𝜅𝜆
(𝜉) Q

𝜉
(3.420)

where the coupling matrix is now given by

g
𝜅𝜆
(𝜉) =

∑
m,n

C∗
𝜅
(m)gmn(𝜉)C𝜆

(n). (3.421)
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The density matrix equations in the eigenstate representation are directly obtained
from the QME (3.344). Restricting ourselves to the secular approximation (cf.
Section 3.8.3), we get for the state populations the equation of motion

𝜕

𝜕t
𝜌++ = −k+→− 𝜌++ + k−→+ 𝜌−−. (3.422)

Due to the secular approximation, this equation is decoupled from the equation for
the coherence, which reads (Ω = (+ − −)∕ℏ):

𝜕

𝜕t
𝜌+− = −i(Ω − i𝛾)𝜌+−. (3.423)

(The other two matrix elements follow from 𝜌−− = 1 − 𝜌++ and 𝜌−+ = 𝜌
∗
+−.) The tran-

sition rates can be directly adapted from Eq. (3.362). We obtain for the particular rate
from state |+⟩ to state |−⟩ (note Ω > 0),

k+→− = 2πΩ2[1 + n(Ω)]J+−(Ω), (3.424)

and for the reverse process

k−→+ = 2πΩ2n(Ω)J+−(Ω). (3.425)

The definition of the spectral density in Eq. (3.362) has been specified here to

J+−(𝜔) =
∑
𝜉

|g+−|2(𝜉) 𝛿(𝜔 − 𝜔
𝜉
). (3.426)

The dephasing rate follows from Eq. (3.353) as

𝛾 = 1
2
(k+→− + k−→+) + 𝛾 (pd)

. (3.427)

In the low-temperature limit, kBT ≪ ℏΩ, we can neglect n(Ω), and the rate for
upward transitions k−→+ vanishes.

The solutions for the equations of motion, (3.422) and (3.423), can be given right
away. Considering the low-temperature limit for simplicity, we obtain

𝜌++(t) = 𝜌++(0) e−k+→−t (3.428)

and

𝜌+−(t) = 𝜌+−(0) e−i(Ω−i𝛾)t
. (3.429)

Thus, nonequilibrium populations of the eigenstates decay exponentially, while the
coherences will oscillate with the transition frequencyΩ. The amplitude of this oscil-
lation will decrease exponentially, too; that is, any initial coherence between the two
eigenstates is destroyed.

This time dependence can be easily translated into the picture of the zeroth-order
states using Eq. (3.416). For illustration, let us consider the case of an initially
prepared zeroth-order state, that is 𝜌mn(t = 0) = 𝛿mn𝛿m1. Since the transformation
(3.416) couples populations and coherences in the different representations, the
respective initial density matrix in the eigenstate representation will have nonzero
diagonal and off-diagonal elements. In Figure 3.9, we show the subsequent time
evolution of the density matrix in both representations. Notice that the dynamics of
the zeroth-order state population reflects the oscillatory behavior obtained for the
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Figure 3.9 Dissipative dynamics in a coupled two-level system as obtained from the
eigenstate representation (a) and the zeroth-order state representation (b). The parameters
are: detuning, |𝜀1 − 𝜀2|∕2|V | = 1; relaxation rate, k+→− = 0.5|V |∕ℏ; and initial state, |1⟩
(figure courtesy of H. Naundorf ).

coherent regime in Figure 3.8. Further, the off-diagonal elements 𝜌12 do not vanish
at long times. This reflects the fact that the eigenstate |−⟩, which is populated in
the stationary limit, is a superposition state with respect to the zeroth-order states|1⟩ and |2⟩ (cf. Eq. (2.150)).

Figure 3.10 compares the perturbative and Markovian QME dynamics with
numerical exact hierarchy equation of motion results for the Debye spectral density,
Eq. (3.302). In panels (a,c), 𝜔D = 8Ω such that in the weak coupling limit (a) the
correlation time exceeds the relaxation time and the system is in the Markovian
regime, that is both curves agree approximately. Increasing the system–reservoir
coupling strength (panel (c)) yields a faster relaxation, and hence, the Markov
approximation breaks down. In addition, higher order effects contribute to the
difference between QME and exact results. In panels (b,d), 𝜔D = 0.4Ω, that is even
in the weak coupling case (panel (b)), non-Markovian effects play a role. Once
additional higher order contributions come into play (panel (d)), QME and exact
results differ markedly. As a note in caution, we emphasize that despite the failure
of the QME, the population dynamics does not look suspicious.

3.12.3 Dissipative Dynamics Using Zeroth-order States

Let us compare the eigenstate formulation of the QME with its zeroth-order version.
In this case, the equations of motion read

𝜕

𝜕t
𝜌11 = 2

ℏ

Im(V𝜌21) − k1→2𝜌11 + k2→1𝜌22 (3.430)
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Figure 3.10 Dissipative dynamics in a coupled two-level system as obtained from the
hierarchy equations of motion (black) and Redfield (gray) approach. The detuning has been
set to |𝜀1 − 𝜀2|∕2|V | = 1 such that Ω = 50 cm−1 (cf. Eq. (3.412)). For the system–reservoir
coupling, a Debye spectral density, Eq. (3.302), has been chosen. In panels (a,c)
𝜔D = 400 cm−1, whereas in panels (b,d) 𝜔D = 20 cm−1. The coupling strength j0 has been
adjusted such as to have C(Ω) = 2.3 and 36.9 in panels (a,b) and (c,d), respectively (figure
courtesy of J. Seibt ).

and (note ℏ𝜔21 = 𝜀2 − 𝜀1)
𝜕

𝜕t
𝜌21 = −i[𝜔21 − i(𝛾2 + 𝛾1)] 𝜌21 −

i
ℏ

V (𝜌11 − 𝜌22). (3.431)

Suppose that we consider a problem that involves many zeroth-order states such that
the diagonalization of the Hamiltonian may be rather time consuming. In this case,
it would be tempting to formulate the rates in the zeroth-order states only, that is

km→n = 2π𝜔2
mn[1 + n(𝜔mn)]

(
Jmn(𝜔mn) − Jmn(−𝜔mn)

)
, (3.432)

with the spectral density now given by

Jmn(𝜔) =
∑
𝜉

g2
mn(𝜉) 𝛿(𝜔 − 𝜔

𝜉
). (3.433)

At first glance, there appears to be nothing wrong with this expression. However,
writing down the detailed balance condition, which follows from Eq. (3.432) (cf.
Eq. (3.351)),

k2→1 = eℏ𝜔21∕kBTk1→2, (3.434)

we realize that this will guide the system to an equilibrium distribution with respect
to the zeroth-order states; that is, the coupling V is not accounted for. In order
to understand the reason for this behavior, we have to go back to Section 3.6.1.
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There, we had introduced the operators Λu in Eq. (3.264), which contain the
information about the system–reservoir interaction. In particular, they include the
operators Ku defined in the interaction representation with respect to HS. Let us
inspect the matrix elements of the operator Λu with respect to the zeroth-order
basis (u ≡ (mn)),

⟨m|Λmn|n⟩ = ∑
k,l

∞

∫
0

d𝜏 Cmn,kl(𝜏)⟨m|K(I)
kl (−𝜏)|n⟩. (3.435)

Strictly speaking, the calculation of ⟨m|K(I)
kl (−𝜏)|n⟩ would require to use the eigen-

states. This would result in the expression⟨m|K(I)
kl (−𝜏)|n⟩ = ∑

𝜅,𝜆

e−i(
𝜅
−

𝜆
)𝜏∕ℏ C

𝜅
(m)C∗

𝜅
(k)C

𝜆
(l)C∗

𝜆
(n). (3.436)

Inserting this into Eq (3.435) gives

⟨m|Λmn|n⟩ = ∑
k,l

∑
𝜅,𝜆

C
𝜅
(m)C∗

𝜅
(k)C

𝜆
(l)C∗

𝜆
(n)

∞

∫
0

d𝜏 e−i(
𝜅
−

𝜆
)𝜏∕ℏCmn,kl(𝜏).

(3.437)

On the other hand, neglecting the coupling V in Eq. (3.436), one gets⟨m|K(I)
kl (−𝜏)|n⟩ = 𝛿mk𝛿lne−i𝜔kl𝜏 . (3.438)

Whether the half-sided Fourier transform of the correlation function Cmn,cd(t) is
taken with respect to (

𝜅
− 

𝜆
)∕ℏ or 𝜔kl determines the frequency argument in the

Bose–Einstein distribution function. This in turn fixes the detailed balance condition
to the respective spectrum.

Finally, we point out that the quality of the approximation that neglects the
detailed structure of the spectrum and only takes into account some zeroth-order
states depends, of course, on the strength of the coupling. Moreover, if one is
only interested in the short-time behavior and not in the stationary solutions
of the equations of motion, a formulation of the relaxation rates in terms of
zeroth-order states may be acceptable. We return to this point in the context of
electron (Section 7.9) and exciton (Section 9.6) transfer.

3.13 Trajectory-based Methods

3.13.1 The Mean-field Approach

The theoretical description of condensed-phase dynamics given so far has been
focused on situations where the reservoir DOFs can be modeled by a collection of
harmonic oscillators. Of course, in many cases, for example in a liquid environment,
this will be an oversimplification. Here, one can often resort to a description of the
reservoir (the solvent) in terms of classical mechanics. For the solute, however,
quantum effects may be important, and a quantum approach is necessary. In what
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follows, we introduce some basic concepts behind such a quantum-classical hybrid
description, often also called mixed quantum classical approach.

In a first step, let us consider an approach based on the time-dependent
Schrödinger equation. We start with the Hamiltonian (3.186). The quantum coor-
dinates will be labeled by s, and the classical reservoir coordinates and momenta
are denoted Z = {Z

𝜉
} and P = {P

𝜉
}, respectively. As before, we assume that

HS–R = HS–R(s,Z), where s is the coordinate (set of coordinates) of the relevant
quantum system. HS–R can be considered as an external potential acting on the
relevant quantum system, and the Schrödinger equation for the quantum system
reads

iℏ 𝜕
𝜕t
Ψ(s, t) =

(
HS + HS–R(s,Z(t))

)
Ψ(s, t). (3.439)

It describes the quantum part of the coupled quantum mechanical and classical
dynamics of the full system. HS–R(s,Z(t)) is now time dependent, where the time
dependence is induced by the classical reservoir coordinates.

Let us take now the perspective of the classical reservoir. If the coupling among
both subsystems vanishes; that is, if we have HS–R = 0, the reservoir coordinates Z

𝜉

and momenta P
𝜉

satisfy the canonical equations of motion

𝜕Z
𝜉

𝜕t
=
𝜕HR

𝜕P
𝜉

,

𝜕P
𝜉

𝜕t
= −

𝜕HR

𝜕Z
𝜉

. (3.440)

If the coupling is taken into account, we would expect to have an additional poten-
tial on the right-hand side of Eq. (3.440). In order to link classical and quantum
mechanics, this potential is taken as the quantum mechanical expectation value of
the system–reservoir coupling according to the instantaneous values of the classical
coordinates and the wave function of the quantum DOFs

⟨HS–R(Z, t)⟩S =
∫

ds Ψ∗(s, t)HS–R(s,Z)Ψ(s, t). (3.441)

The canonical equations are then given by Eq. (3.440), where HR has to be replaced
by HR+ ⟨HS–R(Z, t)⟩S. This leads to an additional force,

F
𝜉
(t) = − 𝜕

𝜕Z
𝜉
∫

ds Ψ∗(s, t) HS–R(s,Z) Ψ(s, t), (3.442)

on the classical coordinates Z.
The coupled equations of motion (3.439) and (3.440) are solved simultaneously by

imposing appropriate initial conditions such as

Ψ(s, t = 0) = Ψ0(s) ,
Z
𝜉
(t = 0) = Z(0)

𝜉
, P

𝜉
(t = 0) = P(0)

𝜉
. (3.443)

The set of Eqs. (3.439) and (3.440) (extended by the system–reservoir coupling)
determines the quantum dynamics of the relevant quantum system coupled to
the reservoir, which is described by classical mechanics. While the presence of the
classical DOFs is an additional potential for the motion of the quantum system, the
classical reservoir feels the quantum mechanically averaged force of the relevant
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quantum system. This method is named after P. Ehrenfest and represents just
another example for a mean-field approach.

Within this description it is possible to determine how the small quantum system
is influenced by the macroscopic reservoir. In many applications the reservoir is in
thermal equilibrium characterized by a temperature T. Then, the quantum system
is influenced by external forces that change with time due to the sampling of the
thermal equilibrium state of the reservoir. We also note that besides the action of the
reservoir on the system dynamics, it is also possible that the system dynamics drives
the reservoir out of the equilibrium. In this case, a nonequilibrium state of the reser-
voir influences the system dynamics. This can also be viewed as a backreaction of
the system dynamics on itself by means of the nonequilibrium state of the reservoir.
Such a behavior may be observed for strong system–reservoir couplings. In the case
of a sufficiently weak coupling, it is appropriate to study the system dynamics under
the influence of a reservoir staying in thermal equilibrium.

To describe the coupling between the thermal reservoir and the quantum sys-
tem within the hybrid approach, classical molecular dynamics simulations for the
reservoir have to be performed. Although the concept of a thermal reservoir is not
applied directly, a temperature can be introduced by choosing the initial conditions
for the reservoir according to a thermal distribution. To this end, we introduce a
set of different initial conditions (Z(0,i)

,P(0,i)) with i = 1 … N for which the coupled
equations (3.439) and (3.440) have to be solved. The initial conditions are taken from
the related thermal distribution; that is, they have to fulfill

f (Z(0,i)
,P(0,i)) = 1

R
e−HR(Z(0,i)

,P(0,i))∕kBT
, (3.444)

where R is the reservoir partition function. The solutions of the time-dependent
Schrödinger equation can then be labeled by the specific initial condition,

Ψi(s, t) = Ψ(s, t;Z(0,i)
,P(0,i)). (3.445)

Calculating the expectation value of a system operator Ô, we have to introduce an
additional averaging with respect to the distribution of the initial values of the reser-
voir coordinates

⟨⟨Ô⟩S⟩R =
N∑

i=1
f (Z(0,i)

,P(0,i))
∫

ds Ψ∗
i (s, t) Ô Ψi(s, t). (3.446)

The performance of a numerical implementation of this approach depends on
the proper choice of representative initial values (Z(0,i)

,P(0,i)) such that N does not
become too large. Here, the thermal distribution function can be used, as it gives a
weight to the different (Z(0,i)

,P(0,i)).
There are some characteristics of the hybrid approach that we would like to

point out: First, the dynamics is obtained starting with a specific initial state of
the reservoir; that is, no thermal averaged equation of motion is introduced. Any
averaging with respect to the reservoir can be carried out after solving the coupled
equations of motion (see Eq. (3.446)). Second, the approach does not contain any
approximation with respect to the coupling between S and R, and any type of
complex reservoir dynamics can be introduced. Third, it is necessary to note that
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the simulation of a thermal reservoir acting on a quantum system assumes that
there are no initial correlations between the system and the reservoir. Any coupling
between S and R in the initial state of the correlated dynamics has been removed
by choosing the initial reservoir state from a distribution defined by the reservoir
Hamiltonian function HR(P,Z) alone. Finally, a clear disadvantage of the described
method is the fact that the reservoir coordinates move only under the influence
of the quantum mechanically averaged system–reservoir coupling. This is very
different from the quantum dynamics where the reservoir wave function would
“feel” a concrete system–reservoir coupling Hamiltonian (as it is the case for a
dependence on the electronic states of the system). The method outlined in the
following section is designed such as to compensate for this disadvantage.

3.13.2 The Surface Hopping Method

In the previous section, we did not elaborate on the solution of the time-dependent
Schrödinger equation (3.439), which has to be determined simultaneously with the
classical propagation of the coordinates Z. For condensed-phase systems, this is a
tremendous task. Therefore, most applications focus on the special case of a light
particle (electron and proton) in a heavy atom environment. To solve Eq. (3.439), one
can define adiabatic basis functions in the spirit of the Born–Oppenheimer ansatz
(introduced in Section 2.3 to solve the electron–nuclear Schrödinger equation).
These basis functions follow as solutions of the stationary Schrödinger equation(

HS(s) + HS–R(s,Z)
)
𝜙a(s;Z) = Ea(Z)𝜙a(s;Z). (3.447)

This includes the influence of the classical coordinates via HS–R. In analogy to
Eq. (2.12), the eigenstates as well as the eigenvalues of Eq. (3.447) depend para-
metrically on the reservoir coordinates Z. The solution of the time-dependent
Schrödinger equation (3.439) can then be obtained by expanding Ψ(s, t) with respect
to 𝜙a(s,Z):

Ψ(s, t) =
∑

a
ca(t)𝜙a(s,Z). (3.448)

Inserting the expansion into Eq. (3.439), one may derive an equation of motion for
the ca(t). However, we have to be aware that the basis functions become time depen-
dent according to the time dependence of the reservoir coordinates. It follows that

iℏ 𝜕
𝜕t

ca(t) = Ea (Z(t)) ca(t) − iℏ
∑

b
⟨𝜙a (Z(t)) | 𝜕

𝜕t
|𝜙b (Z(t))⟩cb(t). (3.449)

The matrix elements that couple different adiabatic basis states read

⟨𝜙a (Z(t)) | 𝜕
𝜕t

|𝜙b (Z(t))⟩ = ∫
ds 𝜙∗

a(s,Z(t))
𝜕

𝜕t
𝜙b(s,Z(t))

=
∑
𝜉

⟨𝜙a (Z(t)) | 𝜕

𝜕Z
𝜉

|𝜙b (Z(t))⟩𝜕Z
𝜉

𝜕t
. (3.450)

This coupling is a consequence of the fact that the reservoir coordinates Z change
with time so that there will be an overlap between state 𝜙a and the time deriva-
tive of state 𝜙b. Consequently, the coupling is of the nonadiabatic type. Notice that
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according to the correspondence principle, we have −iℏ𝜕Z
𝜉
∕𝜕t → ℏ

2∕M2
𝜉
𝛻
𝜉
. Thus,

the type of coupling between different adiabatic states in Eq. (3.450) corresponds to
the second contribution to the nonadiabaticity operator in Eq. (2.17). The first terms
in Eq. (2.17), that is the matrix elements of the kinetic energy operator, do not appear.

If one computes the expectation value, Eq. (3.441),

⟨HS–R(Z, t)⟩S =
∑
a,b

c∗a(t)cb(t)∫ ds 𝜙∗
a(s,Z(t))HS–R(s,Z(t))𝜙b(s,Z(t)), (3.451)

it appears to be a sum of diagonal as well as off-diagonal contributions with respect to
the basis states. Thus, in principle, Eq. (3.451) contains the information on the forces,
which are specific for a given adiabatic state of the quantum system. Moreover, there
is a contribution from nonadiabatic transitions between these states. However, this
information has to be disentangled in order to go beyond the mean-field treatment
of the previous section. A recipe for turning this concept into a practical scheme is
the surface hopping approach, which is sketched in what follows.

Let us assume that there is some initial set of classical reservoir coordinates
Z(0) for which the Schrödinger equation (3.448) has been solved. Suppose that the
quantum system is initially in the state 𝜙i(s,Z(0)) such that ca(0) = 𝛿ai in Eq. (3.449).
Thus, only the initial state contributes the expectation value ⟨𝜙i|HS–R|𝜙i⟩ to
Eq. (3.451). The forces (3.442) are calculated, and the classical DOFs are propagated
for one time step Δt. For the new configuration, Eq. (3.447) is solved, and the
new expansion coefficients are obtained from Eq. (3.449). Due to the nonadiabatic
couplings entering Eq. (3.449), other states |𝜙a≠i⟩ may become populated at time Δt.

The information about these population changes can now be used to decide
whether the adiabatic state for calculating the expectation value of HS–R, that is the
forces in Eq. (3.442), is switched during the propagation of the classical trajectory.

Let us consider two adiabatic states for simplicity. Suppose that we have calculated
the coefficients as |ci(t + Δt)|2

< |ci(t)|2 and |ca(t + Δt)|2
> |ca(t)|2; that is, a transi-

tion from |𝜙i⟩ to |𝜙a⟩ occurred. The quantum mechanical probability pi→a(t, t + Δt)
for switching from |𝜙i⟩ to |𝜙a⟩ within the time step Δt is therefore equal to

pi→a(t, t + Δt) =
|ci(t)|2 − |ci(t + Δt)|2|ci(t)|2 . (3.452)

Whether the potential for the actual trajectory is really changed is decided by draw-
ing a random number 𝛿 in between 0 and 1; if pi→a(t, t + Δt) < 𝛿, the potential for
the trajectory is changed; otherwise, it stays the same during the next propagation
step. If the state is changed, the trajectory is interrupted and continues to move
according to the potential ⟨𝜙a|HS–R|𝜙a⟩. Energy conservation is introduced by
rescaling the momenta P

𝜉
such as to accommodate the change in potential energy.

This procedure is repeated for every time step, and it introduces a discontinuous
classical dynamics, which mimics the population changes of the quantum states.
Notice, however, that these interruptions are influencing the time evolution of the
expansion coefficients as well since Eq. (3.449) also depends on Z(t). Moreover, it
should be clear that along a trajectory many jumps between different quantum states
are possible, which introduces some averaging with respect to the random choice of
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Figure 3.11 Surface hopping (FSSH) versus exact description of wave packet reflection at
two coupled adiabatic PES. (a) Wave packet entering the coupling region on the lower
adiabatic PES leading to a bifurcation. (b) Reflection of the wave packet on the upper PES.
(c) Probability of reflection on the lower PES as a function of the incoming momentum
(exact [dashed line] and FSSH [solid line]) (figure courtesy of J. E. Subotnik; for more
information, see also Subotnik et al. [6] ).

the parameter 𝛿 at every time step. Finally, the whole procedure has to be repeated
for an ensemble of classical trajectories starting from different initial conditions.

Since the method introduces jumps from one potential ⟨𝜙a|HS–R|𝜙a⟩ to another
potential (PES) ⟨𝜙b|HS–R|𝜙b⟩, it is frequently called surface hopping method.32) It
is important to emphasize that the quantum jumps are introduced in an ad hoc
fashion; that is, the method has no strict theoretical foundation. There are numer-
ous studies of the performance of surface hopping that enable one to appreciate
its advantages and shortcomings (cf. Figure 3.11). A particular challenge is pro-
vided by the so-called overcoherence error. In condensed-phase dynamics, according
to Eq. (3.15), decoherence between two system states emerges from the decay of

32) Note that the procedure has been suggested in Tully [7]. The prescription for state changes
yields the minimum number of hops and, therefore, is also called fewest switches surface hopping
(FSSH).
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the overlap between the reservoir wave functions. In surface hopping, the reservoir
is described by classical point particles. Their trajectories are independent of each
other, and the Schrödinger equation (3.449) is propagated fully coherent along each
individual trajectory. This causes spurious effects such as the oscillations as seen in
Figure 3.11c. Various schemes for introducing decoherence have been developed,
see suggested reading.

3.14 Generalized Rate Equations: The Liouville Space
Approach

In Sections 3.6 and 3.8, we have focused on a second-order perturbational treat-
ment of the system–reservoir coupling. This approach is particularly useful if it
can be combined with a normal-mode description of the reservoir. Of course,
second-order perturbation theory may not always be appropriate, even if we did
our best to separate the total system into active and spectator DOFs. Including
higher order perturbation terms is, of course, a way for improvement, but the
resulting expressions become very soon rather cumbersome. In Sections 3.10–3.13,
we introduced approaches that may overcome the second-order treatment of the
system–reservoir coupling, either within a full quantum description or using a
quantum–classical approach. The present section is devoted to a derivation of
generalized rate equations that are also going beyond a perturbational treatment of
the system–reservoir coupling.

The approach focuses on the derivation of generalized rate equations (or GMEs)
for the populations Pa(t) of the system eigenstates (an elementary version of what
will follow here we already encountered in Section 3.4.5). Once such equations have
been established, one can easily extract the transition rates that are valid in any
order of perturbation theory. To this end, we use the projection operator technique.
Since the projection operator  is a superoperator acting in the Liouville space
formed by the usual operators, we refer to the following treatment as the Liouville
space approach. But before introducing the projection operator  , we separate the
total Hamiltonian, Eq. (3.3), into a zeroth-order and coupling term. This separation
starts from the expansion of HS–R with respect to the system eigenstates (cf.
Section 3.8.4.1). Here, we assume that the diagonal elements of Φab = ⟨a|HS–R|b⟩
are much larger than the off-diagonal ones. Therefore, a different treatment of the
two types of couplings is reasonable. In particular, a perturbational description of
the off-diagonal elements might be possible. But the diagonal elements should be
so large that they cannot be handled in a perturbation theory. (Such a situation,
for example is typical for nonadiabatic electron transfer and will be discussed in
greater detail in Sections 7.4, 7.5, and 7.6.)

We write the system–reservoir Hamiltonian as follows:

H = H0 + V̂ , (3.453)

where the “zeroth-order” part is given by

H0 = HS +
∑

a
Φaa(Z)|a⟩⟨a| + HR ≡

∑
a

(
Ea + HR + Φaa(Z)

) |a⟩⟨a|. (3.454)
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The second part suggests that we can introduce the vibrational Hamiltonian

Ha = Ea + HR + Φaa(Z), (3.455)

which describes the reservoir coordinate motion when the system is in its eigenstate|a⟩. The perturbation V̂ accounts for the off-diagonal elements of Φab(Z) and reads

V̂ =
∑
a,b

(1 − 𝛿ab)Φab(Z)|a⟩⟨b|. (3.456)

Once the diagonal matrix elements Φaa can be accounted for exactly, a nonpertur-
bative description of the system–reservoir coupling has been achieved.

3.14.1 Projection Operator Technique

In order to establish a nonperturbative description of the system–reservoir coupling,
let us introduce an appropriate projection operator. Since a simultaneous description
of various states |a⟩ is necessary, we generalize the projection operator  introduced
in Section 3.5.5. If the latter acts on an arbitrary operator Ô, it reads

Ô = R̂eqtrR{Ô} ≡ R̂eq

∑
a,b

trR{⟨a|Ô|b⟩}|a⟩⟨b|. (3.457)

This projector is constructed in such a way as to introduce a common equilibrium
state of the reservoir modes represented by R̂eq. In contrast, the new projection oper-
ator takes the form

̃Ô =
∑

a
R̂a trR{⟨a|Ô|a⟩}|a⟩⟨a|. (3.458)

Instead of including the full state space related to the system Hamiltonian as it would
be the case for the projection operator , the new quantity ̃ projects on the diagonal
system states matrix element. And every system state is characterized by a separate
reservoir equilibrium statistical operator

R̂a =
exp(−Ha∕kBT)

trR{exp(−Ha∕kBT)}
. (3.459)

The introduction of the vibrational Hamiltonians Ha, Eq. (3.455), consequently
results in such equilibrium statistical operators. For further use, we introduce the
projector Π̂a = |a⟩⟨a| and the combined system–reservoir equilibrium statistical
operator

Ŵa = R̂aΠ̂a. (3.460)

If ̃ acts on the complete statistical operator, we obtain

̃Ŵ(t) =
∑

a
Pa(t)Ŵa. (3.461)

The expression indicates a specification to the various reservoir equilibrium states
(with statistical operators R̂a) controlled by the actual population of the respective
system states. The state populations are extracted if we take the diagonal system state
matrix element and the trace with respect to the reservoir state space

Pa(t) = trR{⟨a|̃Ŵ(t)|a⟩}. (3.462)
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3.14.2 Generalized Rate Equations

We start with the Liouville–von Neumann equation33)

𝜕

𝜕t
Ŵ(t) = −iŴ(t), (3.463)

where … = [H,…]−∕ℏ. Introducing the orthogonal complement, ̃ = 1 − ̃ , a
separation into two orthogonal parts yields

𝜕

𝜕t
̃Ŵ(t) = −ĩ

(
̃Ŵ(t) + ̃Ŵ(t)

)
(3.464)

and
𝜕

𝜕t
̃Ŵ(t) = −ĩ

(
̃Ŵ(t) + ̃Ŵ(t)

)
. (3.465)

The solution of the equation for ̃Ŵ , including the assumption ̃Ŵ(t0) = 0, can be
written as follows:

̃Ŵ(t) = −i

t

∫
t0

dt ̃(t − t)̃̃Ŵ(t), (3.466)

where the time-propagation superoperator,

̃(t) = exp
{
−ĩt

}
, (3.467)

has been introduced. The resulting equation for ̃Ŵ (the Nakjima–Zwanzig
equation, Eq. (3.232)) is a closed equation with respect to ̃Ŵ and reads

𝜕

𝜕t
̃Ŵ(t) = −ĩ̃Ŵ(t) −

t

∫
t0

dt ̃ ̃(t − t)̃ ̃Ŵ(t). (3.468)

Using Eq. (3.462), it is possible to derive the related equations of motion for the state
populations. In order to do this, we consider the general expressions

trR
{⟨a|̃Ô|a⟩} ≡ trR

{⟨a|Ô|a⟩} . (3.469)

Ô may take the form

Ô1 = ̃Ŵ(t) (3.470)

as well as

Ô2 = ̃(t − t)̃̃Ŵ(t). (3.471)

If we insert Ô1 into Eq. (3.469), we easily verify that the resulting expression vanishes.
The term with Ô2 suggests the definition of the so-called memory kernels Kab of the
related GME. First, we get

trR
{⟨a|Ô2|a⟩} =

∑
b

trR

{⟨a| (
̃(t − t)̃Ŵb

) |a⟩} Pb(t). (3.472)

33) In what follows, we do not change to the interaction representation as it had been done, for
example in Section 3.5.6. Instead, we stay in the Schrödinger representation, which has the
technical advantage that we can avoid the introduction of a time-ordered S-superoperator
(compare Eq. (3.231)). However, the basic idea to arrive at a closed equation for ̃Ŵ is the same.
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To arrive at the memory kernel, we multiply the trace expression by −1 and the
unit-step function 𝜃(t − t) and obtain

Kab(t − t) = −𝜃(t − t) trR

{⟨a| (
̃(t − t)̃Ŵb

) |a⟩} . (3.473)

To set up the GME, we change to 𝜏 = t − t and obtain from Eq. (3.468) the following
compact relation:

𝜕

𝜕t
Pa(t) =

∑
b

t−t0

∫
−∞

d𝜏 Kab(𝜏)Pb(t − 𝜏). (3.474)

The time t0 can be moved to −∞ if we directly account for the initial time in the
definition of the populations (Pa ∼ 𝜃(t − t0)).

A closer inspection of the memory kernels leads to some simplifications. First, we
note that the introduction of the projector Π̂a allows to replace the trace with respect
to the reservoir states by a complete trace. Moreover, we introduce the Green’s super-
operator

̃(𝜏) = −i𝜃(𝜏)̃(𝜏) (3.475)

and may write

Kab(𝜏) = −itr{Π̂ã(𝜏)̃Ŵb}. (3.476)

For a further simplification, we separate  into the zeroth-order part 0 … =
[H0,…]−∕ℏ as well as into the coupling V … = [V̂ ,…]−∕ℏ and arrive at

̃0 = 0̃ = 0. (3.477)

These relations are easily verified when being applied to an arbitrary operator Ô. In
the same way, we may deduce

̃V ̃ = 0. (3.478)

Using these identities and replacing Π̂a in Eq. (3.476) again by Π̂ã, we have
̃̃(t) = ̃Ṽ(t). Moreover, we note that ̃Ŵb = ̃̃Ŵb = V Ŵb, resulting
in the following notation of the memory kernels:

Kab(𝜏) = −itr{Π̂aṼ(𝜏)V Ŵb} ≡ tr{Π̂a (𝜏)Ŵb}. (3.479)

In the last expression, we introduced the transfer superoperator

 (𝜏) = −iṼ(𝜏)V . (3.480)

It offers a suitable interpretation of the memory kernel as describing probability
transfer from state b to state a via time evolution of the statistical operator Ŵb =
R̂bΠ̂b. The time evolution starts at 𝜏 = 0 and proceeds to 𝜏 > 0 as specified by the
transfer superoperator  (𝜏). The reservoir state-space trace and the diagonal state
matrix element ⟨a| · · · |a⟩ give the memory kernel.

Finally, we notice the existence of a particular sum rule for the memory kernels:∑
a

Kab(𝜏) =
∑

a
tr{Π̂a (𝜏)Ŵb} = tr{ (𝜏)Ŵb} = 0. (3.481)

The result follows if we take into consideration that  (𝜏)Ŵb can be written as V
acting on −ĩ(𝜏)V Ŵb. This results in the trace of a commutator, which likewise
vanishes.
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3.14.3 Rate Equations

Before further dealing with the Kab(𝜏), we briefly explain their relation to ordinary
transition rates. Suppose that the kernels in Eq. (3.474) change fast compared to the
time dependence of the populations. Then, we can neglect memory effects and may
write

∫
d𝜏 Kab(𝜏)Pb(t − 𝜏) ≈ ∫

d𝜏 Kab(𝜏)Pb(t). (3.482)

We introduce the Fourier-transformed kernels

Kab(𝜔) = ∫
d𝜏 ei𝜔𝜏Kab(𝜏) (3.483)

and set

kab = Kab(𝜔 = 0). (3.484)

Then, Eq. (3.474) changes to an ordinary rate equation
𝜕

𝜕t
Pa(t) =

∑
b

kabPb(t). (3.485)

The rates are interpreted as the zero-frequency part of the Fourier-transformed
kernels. To demonstrate the conservation of total probability∑

a

𝜕

𝜕t
Pa(t) = 0. (3.486)

The conservation is guaranteed because of the memory kernel sum rule, Eq. (3.481),
which apparently remains valid after Fourier transformation

0 =
∑

a
kab. (3.487)

This relation also yields

kbb = −
∑
a≠b

kab. (3.488)

We introduce transition rates for a ≠ b

kab = kb→a (3.489)

and obtain rate equations in their standard form:
𝜕

𝜕t
Pa = −

∑
b
(ka→bPa − kb→aPb). (3.490)

3.14.4 The Memory Kernels

For calculating rate expressions, it is important to replace the Green’s superoperator
̃ by an expression that does not contain the projector ̃. In order to do this, we
first introduce the Fourier-transformed Green’s superoperator

̃(𝜔) = ∫
dt ei𝜔t ̃(t) =

(
𝜔 − ̃ + i𝜀

)−1
. (3.491)
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The Fourier-transformed version of the kernel, Eq. (3.479), may be written as

Kab(𝜔) = −itr{Π̂aṼ(𝜔)V Ŵb}. (3.492)

The Green’s superoperator, which should replace ̃(𝜔) and which should be
independent on the projector ̃, takes the form

(𝜔) = (𝜔 −  + i𝜀)−1
. (3.493)

We note the identity

1 = −1
̃
(𝜔)̃(𝜔) =

(
−1(𝜔) + ̃V

)
̃(𝜔) (3.494)

and obtain after multiplying with  from the left

̃(𝜔) = (𝜔) − (𝜔)̃Ṽ(𝜔). (3.495)

If this relation is inserted into the rate expression, we arrive at

Kab(𝜔) = −itr{Π̂aV(𝜔)V Ŵb} + itr{Π̂aV(𝜔)̃Ṽ(𝜔)V Ŵb}.
(3.496)

Noting the definition of ̃ , Eq. (3.458), the second trace on the right-hand side can
be rewritten as

tr{Π̂aV(𝜔)̃Ṽ(𝜔)V Ŵb}

=
∑

c
tr{Π̂aV(𝜔)Ŵc} tr{Π̂cṼ(𝜔)V Ŵb}. (3.497)

The second trace in the c-sum is identical to iKca(𝜔). To rewrite the first trace in
the c-sum, we introduce the zeroth-order Green’s superoperator

0(𝜔) =
(
𝜔 − 0 + i𝜀

)−1
. (3.498)

This allows us to set up the relations

(𝜔) = 0(𝜔) + 0(𝜔)V(𝜔) (3.499)

and

(𝜔) = 0(𝜔) + (𝜔)V0(𝜔). (3.500)

Both equations are a version of the ubiquitous Dyson equation. Then, we can rear-
range the first trace expression on the right-hand side of Eq. (3.497) as

tr{Π̂aV(𝜔)Ŵc} = tr{Π̂aV0(𝜔)Ŵc} + tr{Π̂aV(𝜔)V0(𝜔)Ŵc}

= 1
𝜔 + i𝜀

tr{Π̂aV(𝜔)V Ŵc}. (3.501)

The last line follows from the fact that trace expressions of first order in V Vanish,
and that 0(𝜔) applied to Ŵc simply produces a frequency denominator. We denote
the kernel, which does not depend on the projector ̃, by

Lab(𝜔) = −itr{Π̂aV(𝜔)V Ŵb} (3.502)
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and arrive at the following equation, which relates the two types of kernels to each
other:

Kab(𝜔) = Lab(𝜔) −
i

𝜔 + i𝜀
∑

c
Lac(𝜔)Kcb(𝜔). (3.503)

Once all Lab have been determined, the rates Kab entering the rate equations can be
computed according to this equation.

Let us consider a perturbation expansion of Lab in powers of the coupling V̂ ,
Eq. (3.456). This expansion would be of even order in V̂ and can be generated by a
respective expansion of Eq. (3.499) or Eq. (3.500). We count the orders with respect
to V̂ by m, n, and n′ and get a recursion relation

∞∑
m=1

K(2m)
ab (𝜔) =

∞∑
m=1

L(2m)
ab (𝜔) − i

𝜔 + i𝜀
∑

c

∞∑
n=1

∞∑
n′=1

L(2n)
ac (𝜔)K(2n′)

cb (𝜔). (3.504)

In particular, the relation indicates that (note also the replacement of  by 0 in
Eq. (3.502))

K(2)
ab (𝜔) ≡ L(2)

ab (𝜔) = −itr{Π̂aV0(𝜔)V Ŵb}. (3.505)

However, all higher order contributions K(2m) are determined not only by L(2m) but
also by products of lower order rates. When solving, for example rate equations such
as Eq. (3.490) including rates up to a particular order m, and computing related state
populations, the combination of L(2n) with K(2n′) (n,n′

< m) avoids multiple counting
of the lower order rates (an application can be found in Section 7.6).

3.14.5 Second-order Rate Expressions

In what follows, we specify the formal results of the foregoing discussion to the
second-order rate, Eq. (3.505). In doing so, we expect a zero-frequency expression
that is identical to the Golden Rule rate already computed in Sections 3.3.2 and 3.4.5.
Noting the definition of 0(𝜔), we may write for the second-order rate

K(2)
ba (𝜔) = −

∞

∫
0

dt ei𝜔ttrR{⟨b|(V0(t)V Ŵa)|b⟩}. (3.506)

In the trace expression under the time integral, the action of the coupling Liou-
villian V is combined with that of the time-evolution superoperator. Starting
with Ŵa, the operator V̂ acts either from the left or the right. The resulting two
expressions are propagated from time zero to time t according to U0(t) · · ·U+

0 (t).
After calculating the commutator with V̂ , the matrix element with respect to |b⟩ is
taken. Finally, the trace concerning the reservoir coordinate states has to be carried
out. The parenthesis guarantees that the matrix elements are calculated after the
sequence of superoperators has affected Ŵa.

The whole procedure seems to be easy in the case of second-order rates but
becomes much more involved when considering fourth-order rate expression.
Therefore, it is already useful in the case of second-order rates to introduce a
graphical scheme for rate computation as displayed in Figure 3.12. To distinguish
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U0 (t1)

U0 (t1)
+

Figure 3.12 Graphical scheme for second-order rate computation. The diagonal line
indicates an embedding of the operator products that are crossed by this line into the
action of time-evolution operators according to U0(t1) · · · U+

0 (t1) (note the sign rule, which
results in the appearance of a minus sign for every action of V̂ from the right; for more
details, see text).

the two possible actions of V̂ , we move downward to the next row of the scheme
if V̂ acts from the left and rightward to the next column if V̂ acts from the right.
(Here, we have to note the sign rule, which results in the appearance of a minus
sign for every action of V̂ from the right.) The first action of this type is followed by
an application of the time-evolution operator. It is indicated by the gray line and
labeled by the time-evolution operators with the actual time argument. As also
visible from Figure 3.12, there result three different types of arranging two V̂ around
Ŵa. The different ways to reach these arrangements in the scheme of Figure 3.12
are known as Liouville space pathways. Of interest here are only those two pathways
leading to the symmetric arrangement VWaV . Since the matrix element with
respect to the state |b⟩, which is different from |a⟩, only has to be calculated, the
operator arrangements VVWa and WaVV do not contribute (to indicate the formal
character of this notation, we removed the operator hat). Consequently, we may
write

K(2)
ba (𝜔) =

∞

∫
0

dt ei𝜔t (
Cba(t) + c.c.

)
, (3.507)

where the correlation function is formed by the trace expression (U+
a and Ub are

time-evolution operators defined by the vibrational Hamiltonians, Eq. (3.455))

Cba(t) =
1
ℏ2 trR{⟨b|U(t)V̂ŴaU+(t)V̂ |b⟩}

= 1
ℏ2 trR{Ub(t)ΦbaR̂aU+

a (t)Φab}

= 1
ℏ2 trR{R̂aU+

a (t)ΦabUb(t)Φba}. (3.508)

This expression is complemented by the complex conjugated trace when determin-
ing the rate, Eq. (3.507). We note that

C∗
ba(t) =

1
ℏ2 trR{ΦabUb(−t)ΦbaU+

a (−t)R̂a}

= 1
ℏ2 trR{R̂aU+

a (−t)ΦabUb(−t)Φba} = Cba(−t) (3.509)
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and obtain

K(2)
ba (𝜔) =

∞

∫
0

dt ei𝜔t (
Cba(t) + Cba(−t)

)
. (3.510)

It is also of interest to introduce the Fourier-transformed correlation function

Cba(𝜔) = ∫
dt ei𝜔tCba(t). (3.511)

Its zero-frequency expression as well as that of K(2)
ba gives the transition rate

ka→b = Cba(𝜔 = 0) = K(2)
ba (𝜔 = 0). (3.512)

A similar expression has been already derived in Section 3.4.5.
We analyze Cba(𝜔) in more detail by introducing the eigenstates (eigenvalues) 𝜒a𝜇

(𝜒b𝜈) and 𝜔a𝜇(𝜔b𝜈) of the Hamiltonians Ha and Hb, respectively (cf. Eq. (3.455)). We,
first, get

Cba(t) =
1
ℏ2

∑
𝜇,𝜈

fa𝜇|⟨𝜒a𝜇|Φab|𝜒b𝜈⟩|2ei(𝜔a𝜇−𝜔b𝜈 )t, (3.513)

which immediately results in

Cba(𝜔) =
2π
ℏ2

∑
𝜇,𝜈

fa𝜇|⟨𝜒a𝜇|Φab|𝜒b𝜈⟩|2
𝛿(𝜔 + 𝜔a𝜇 − 𝜔b𝜈). (3.514)

This expression indicates that it is a real and positive function of frequency. The
equilibrium distribution fa𝜇 takes the form exp(−ℏ𝜔a𝜇∕kBT)∕Za (Za is the state sum).
The zero-frequency limit reproduces the Golden Rule rate formula already derived
in Section 3.3.2.

To relate the (forward) rate ka→b to that of the reverse process (backward rate) kb→a,
we consider

Cab(𝜔) =
2π
ℏ2

∑
𝜈,𝜇

fb𝜈|⟨𝜒b𝜈|Φba|𝜒a𝜇⟩|2
𝛿(𝜔 + 𝜔b𝜈 − 𝜔a𝜇). (3.515)

It is related to Cba by noting that fb𝜈𝛿(𝜔 + 𝜔b𝜈 − 𝜔a𝜇) equals fa𝜇𝛿(−𝜔 + 𝜔b𝜈 − 𝜔a𝜇)
multiplied by a∕b × exp(−ℏ𝜔∕kBT), thus arriving at

Cab(𝜔) =
a

b
eℏ𝜔∕kBTCba(−𝜔). (3.516)

The type of correlation function, Eq. (3.508), is of interest whenever the dependence
of the coupling matrices Φ on the reservoir coordinates is included. Otherwise,
the Φ can be removed from the trace. For this case and separating the Hamilto-
nian Ha into the reference energy Ea = ℏ𝜔a (at the minimum of the respective
PES) and a remaining vibrational Hamiltonian ha, we obtain the correlation
function, Eq. (3.508), as

Cba(t) =
|Φab|2

ℏ2 ei𝜔abttrR{R̂aeihat∕ℏe−ihbt∕ℏ} + c.c. (3.517)
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3.14.6 Fourth-order Rate Expressions

According to Eq. (3.504), the fourth-order (frequency-dependent) rate expression
takes the form

K(4)
ba (𝜔) = L(4)

ba (𝜔) −
i

𝜔 + i𝜀
∑

c
K(2)

bc (𝜔)K
(2)
ca (𝜔). (3.518)

The fourth-order frequency-dependent rate L(4)
ba forms the total rate K(4)

ba after
subtracting the products of the two second-order rates. Those describe transitions
from the initial state |a⟩ to all intermediate states |c⟩ and, afterward, from these
intermediate states to the final state |b⟩. The possible divergence of the prefactor
1∕(𝜔 + i𝜀) in the zero-frequency limit indicates the need for a careful analysis. One
expects a cancellation of the factorized part

∑
cK(2)

bc K(2)
ca by parts of L(4)

ba to arrive at a
finite overall fourth-order rate.

The second-order rates have been already presented in Eq. (3.506). To obtain an
expression for L(4)

ba (𝜔), we note the general form of Lba(𝜔), Eq. (3.502). It indicates
that the fourth order in V̂ is obtained if we compute the Green’s superoperator up to
the second order

(𝜔) ≈ 0(𝜔) + 0(𝜔)V0(𝜔) + 0(𝜔)V0(𝜔)V0(𝜔). (3.519)

Inserting this expression into Lba(𝜔) gives the fourth-order rate

L(4)
ba (𝜔) = −itr{Π̂bV0(𝜔)V0(𝜔)V0(𝜔)V Ŵa}. (3.520)

Noting the definition of 0(𝜔), we may write

L(4)
ba (𝜔) =

∞

∫
0

dt3 dt2 dt1 ei𝜔(t3+t2+t1)

× trR{⟨b|(V0(t3)V0(t2)V0(t1)V Ŵa)|b⟩}. (3.521)

As in the case of the second-order rate expression, the trace combines the action of
the coupling Liouvillian and that of the time-evolution superoperator. However, this
combined action is applied here three times. Obviously, the whole procedure results
in eight different terms. Finally, and again in similarity to the foregoing section,
the commutator with V̂ has to be calculated. Afterward, the matrix element with
respect to |b⟩ and the trace concerning the reservoir coordinate states have to be
taken. Figure 3.13 gives a graphical representation according to the rules already
explained in relation to Figure 3.12. Now, there result five different types of arrang-
ing four V̂s around Ŵa. The arrangements WaVVVV and VVVVWa appear each once.
Again, since L(4)

ba also has to be calculated for b ≠ a only, these arrangements do not
contribute. The arrangements VWaVVV and VVVWaV appear four times, and the
symmetric arrangement VVWaVV six times. Compared to the foregoing section, the
present number of different arrangements of Ŵa with respect to the four V̂s, that
is the number of different Liouville space pathways in the scheme of Figure 3.13,
is much larger. It reflects the different possibilities to include the three types of
time-evolution operators (with time argument t1, t2, and t3). Which paths really con-
tribute depends on the mutual level position and coupling. The most simple case is
considered in the following section.
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Figure 3.13 Graphical scheme for fourth-order rate computation. The three diagonal
lines indicate an embedding into the action of time-evolution operators according to
U0(t) · · ·U

+
0 (t) at the three different times t1, t2, and t3 (note the sign rule, which results in

the appearance of a minus sign for every action of V̂ from the right; for more details,
see text).

Denoting the trace expression under the triple time integral in Eq. (3.521) as
C(t3, t2, t1) + C∗(t3, t2, t1), we may write the transition rate (for transitions from a to
b) as

ka→b = K(4)
ba (𝜔 = 0) =

∞

∫
0

dt3 dt2 dt1
{(

Cba(t3, t2, t1) + C∗
ba(t3, t2, t1)

)
−

∑
c

(
Cbc(t3) + C∗

bc(t3)
) (

Cca(t1) + C∗
ca(t1)

)}
. (3.522)

This formula does not require us to carry out the zero-frequency limit. It again indi-
cates, however, the need to achieve partial compensation between the fourth-order
correlation functions Cba + C∗

ba and the products Cbc and Cca of the second-order
ones. This becomes necessary since the divergent t2-integral in the second part has
to be removed.

3.14.6.1 Three-level System with Sequential Coupling
As an application of the fourth-order rate theory of the preceding section, we dis-
cuss a three-level system a = 1, 2, 3 with a coupling Φ12 connecting the first to the
second level and a coupling Φ23 that relates the second to the third level (see also the
examples in Sections 7.6, 9.10.2, and 9.8). The direct coupling between the first and
the third levels does not exist. This sequential type of coupling initiates transfer from
the first to the third level exclusively via the second level. It can proceed stepwise
via second-order rates or directly via a fourth-order rate. Because of the structure
of the level coupling, we get for VWaVVV the contributions Φ21W1Φ12Φ23Φ32 and
Φ21W1Φ12Φ21Φ12. They represent transition rates from the first to the second state
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Figure 3.14 Three different pathways in the graphical scheme of the fourth-order rate
computation contributing to the transition rate of the three-level system with sequential
coupling.

but do not contribute to the rate from the first to the third state (this is also valid for
contributions from VVVWaV). There remain the six different terms corresponding
to the arrangement VVWaVV . They are pairwise complex conjugated. The three dif-
ferent terms if included into the trace expression are labeled by the number of the
paths shown in Figure 3.14, that is we may write

C31(t3, t2, t1) = C(I)
31 (t3, t2, t1) + C(II)

31 (t3, t2, t1) + C(III)
31 (t3, t2, t1). (3.523)

The different parts read in detail

C(I)
31 (t3, t2, t1)

= 1
ℏ4 trR{⟨3|U(t3 + t2)V̂U(t1)V̂Ŵ1U+(t1 + t2)V̂U+(t3)V̂ |3⟩}, (3.524)

C(II)
31 (t3, t2, t1)

= 1
ℏ4 trR{⟨3|U(t3)V̂U(t2 + t1)V̂Ŵ1U+(t1)V̂U+(t2 + t3)V̂ |3⟩}, (3.525)

and

C(III)
31 (t3, t2, t1)

= 1
ℏ4 trR{⟨3|V̂U(t3 + t2 + t1)V̂Ŵ1U+(t1)V̂U+(t2)V̂U+(t3)|3⟩}. (3.526)

We specify V̂ and obtain

C(I)
31 (t3, t2, t1)

= 1
ℏ4 trR{U3(t3 + t2)Φ32U2(t1)Φ21R̂1U+

1 (t1 + t2)Φ12U+
2 (t3)Φ23}

= 1
ℏ4 trR{R̂1U+

1 (t1 + t2)Φ12U+
2 (t3)Φ23U3(t3 + t2)Φ32U2(t1)Φ21}, (3.527)
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C(II)
31 (t3, t2, t1)

= 1
ℏ4 trR{U3(t3)Φ32U2(t2 + t1)Φ21R̂1U+

1 (t1)Φ12U+
2 (t2 + t3)Φ23}

= 1
ℏ4 trR{R̂1U+

1 (t1)Φ12U+
2 (t2 + t3)Φ23U3(t3)Φ32U2(t2 + t1)Φ21}, (3.528)

and

C(III)
31 (t3, t2, t1)

= 1
ℏ4 trR{Φ32U2(t3 + t2 + t1)Φ21R̂1U+

1 (t1)Φ12U+
2 (t2)Φ23U+

3 (t3)}

= 1
ℏ4 trR{R̂1U+

1 (t1)Φ12U+
2 (t2)Φ23U+

3 (t3)Φ32U2(t3 + t2 + t1)Φ21}. (3.529)

The derived expressions will be used later in Sections 7.6, 9.10.2, and 9.8. In order to
take a closer look on the fourth-order rate expression, we consider a simple example
where only the discrete energies ℏ𝜔a (a = 1, 2, 3) contribute and a respective reser-
voir coordinate dependence is neglected (the Hamiltonians Ha are replaced by ℏ𝜔a).
This yields

C(I)
31 (t3, t2, t1) =

|Φ12Φ23|2

ℏ4 exp
(

i𝜔12t1 + i𝜔13t2 + i𝜔23t3
)
, (3.530)

C(II)
31 (t3, t2, t1) =

|Φ12Φ23|2

ℏ4 exp
(

i𝜔12t1 + i𝜔23t3
)
, (3.531)

and

C(III)
31 (t3, t2, t1) =

|Φ12Φ23|2

ℏ4 exp
(

i𝜔12t1 + i𝜔32t3
)
. (3.532)

Be aware of the fact that C(I)
31 depends on t2, but C(II)

31 and C(III)
31 do not. This indicates

a possible factorization in a t1-dependent and a t3-dependent part and a resulting
compensation by the product of two second-order correlation functions (depending
either on t1 or t3, cf. Eq. (3.522)). It can also be interpreted as a transition from level 1
to level 3 but interrupted by level 2 (the extent of this interruption depends on the
used model).

We use these expressions to compute K(4)
31 (𝜔). The respective approximation for

the second-order rate takes the form (see Eqs. (3.510) and (3.517) and note the
abbreviation �̃� = 𝜔 + i𝜀)

K(2)
ba (𝜔) = −

|Φab|2

ℏ2

(
i

�̃� + 𝜔ab
+ i
�̃� − 𝜔ab

)
. (3.533)

Accordingly, we get the fourth-order expression as

K(4)
31 (𝜔) = L(4)

31 (𝜔) −
i
�̃�

K(2)
32 (𝜔)K

(2)
21 (𝜔) = −i

|Φ12Φ23|2

ℏ4

×
(

1
(�̃� + 𝜔12)(�̃� + 𝜔13)(�̃� + 𝜔23)

+ 1
(�̃� − 𝜔12)(�̃� − 𝜔13)(�̃� − 𝜔23)

+ 1
(�̃� + 𝜔12)�̃�(�̃� + 𝜔23)

+ 1
(�̃� − 𝜔12)�̃�(�̃� − 𝜔23)
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+ 1
(�̃� + 𝜔12)�̃�(�̃� + 𝜔32)

+ 1
(�̃� − 𝜔12)�̃�(�̃� − 𝜔32)

− 1
�̃�

[
1

�̃� − 𝜔23
+ 1
�̃� + 𝜔23

] [
1

�̃� − 𝜔12
+ 1
�̃� + 𝜔12

])
. (3.534)

One easily verifies that only the first two terms contribute (corresponding to the first
Liouville space pathway I of Figure 3.14). Thus, the fourth-order rate due to pathways
II and III is completely compensated by the factorized part of the rate. This will not
be the case if more sophisticated energy level schemes are considered. Note also
that in the 𝜔→ 0-limit, the mentioned terms vanish independently. Accordingly,
we obtain the ordinary rate expression as

k(4)
1→3 =

2|Φ12Φ23|2

ℏ4 Im
(

1
(𝜔12 + i𝜀)(𝜔13 + i𝜀)(𝜔23 + i𝜀)

)
=

2π|Φ12Φ23|2

ℏ4

(
𝛿(𝜔13)
𝜀

2
12

−
𝛿(𝜔23)
𝜀

2
12

−
𝛿(𝜔12)
𝜀

2
23

+ π2
𝛿(𝜔13)𝛿(𝜔23)𝛿(𝜔12)

)
.

(3.535)

We assume that 𝜔12 ≠ 0 and 𝜔32 ≠ 0 and arrive at

k(4)
1→3 = 2π

ℏ

||||Φ12Φ23

ℏ𝜔12

||||
2
𝛿(ℏ𝜔13), (3.536)

which is the standard formula used whenever transfer processes are studied that are
mediated by an intermediate (bridge level). The present discussion demonstrates,
however, that the intermediate level has to be off-resonant to the initial and final
levels. If this is not the case, the more general expression has to be used.

Finally, we use Eq. (3.522) to directly calculate the fourth-order rate circumventing
the introduction of frequency-dependent rates

k1→3 =
|Φ12Φ23|2

ℏ4

∞

∫
0

dt3 dt2 dt1
((

ei𝜔12t1+i𝜔13t2+i𝜔23t3

+ ei𝜔12t1+i𝜔23t3 + ei𝜔12t1+i𝜔32t3 + c.c.
)
−

(
ei𝜔23t3 + c.c.

) (
ei𝜔12t1 + c.c.

))
=

|Φ12Φ23|2

ℏ4

∞

∫
0

dt3 dt2 dt1
(

ei𝜔12t1+i𝜔13t2+i𝜔23t3 + c.c.
)
. (3.537)

The derivation again displays a complete cancellation of the second and third Liou-
ville space pathway contributions by the factorized part. A modification of these
formulas including interstate dephasing is introduced in Section 9.8.

3.15 Supplement

3.15.1 Thermofield Dynamics

In Section 3.2.3, we have introduced the MCTDH method as a powerful tool to solve
the time-dependent Schrödinger equation for many DOFs. The question arises if
temperature effects can be accounted for in wave packet propagations. In what
follows, we sketch thermofield dynamics as one possible approach that serves this
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task. Given a system in thermal equilibrium according to the canonical ensemble,
thermal expectation values of an operator Ô are calculated according to Eq. (3.123)
with the statistical operator given by Eq. (3.126). The goal of thermofield dynamics
is to formulate the trace expression in terms of an expectation value with respect to
a temperature-dependent vacuum state |0T⟩, that is

⟨Ô⟩ = 1


tr{e−H∕kBTÔ} = 1


∑
𝛼

e−E
𝛼
∕kBTO

𝛼𝛼

= ⟨0T|Ô|0T⟩ (3.538)

(with H|𝛼⟩ = E
𝛼
|𝛼⟩). The correspondence can be achieved if one augments the orig-

inal physical Hilbert space with a so-called tilde space; that is, the new states are|𝛼�̃�⟩ = |𝛼⟩|�̃�⟩. The states |�̃�⟩ are eigenstates of a tilde Hamiltonian

H̃|�̃�⟩ = E
𝛼
|�̃�⟩. (3.539)

Note that by definition, H̃ has the same eigenvalues as H, and it holds that ⟨𝛽|�̃�⟩ =
𝛿
�̃�𝛽

. Further, for an operator in physical space, one has the relation⟨�̃�′𝛼|Ô|𝛽𝛽′⟩ = ⟨𝛼|Ô|𝛽⟩𝛿
𝛼′𝛽′ . (3.540)

Using these rules and defining|0T⟩ = 1
1∕2

∑
𝛼

e−E
𝛼
∕2kBT|𝛼�̃�⟩, (3.541)

Eq. (3.538) holds, since due to Eq. (3.540), we have⟨0T|Ô|0T⟩ = 1


∑
𝛼,𝛽

e−E
𝛼
∕2kBTe−E

𝛽
∕2kBT⟨�̃�𝛼|Ô|𝛽𝛽⟩

= 1


∑
𝛼,𝛽

e−E
𝛼
∕2kBTe−E

𝛽
∕2kBT⟨𝛼|Ô|𝛽⟩𝛿

𝛼𝛽

= 1


∑
𝛼

e−E
𝛼
∕kBTO

𝛼𝛼
. (3.542)

This approach can be extended to time-dependent expectation values⟨Ô⟩(t) = tr{Ŵ(t)Ô} = ⟨ΨT(t)|Ô|ΨT(t)⟩, (3.543)

where |ΨT(t)⟩ = Ŵ1∕2(t)
∑
𝛼

|𝛼�̃�⟩. (3.544)

The Hamiltonian entering the Schrödinger equation in the augmented Hilbert space
is defined as34)

H = H − H̃, (3.545)

such that

iℏ 𝜕
𝜕t

|ΨT(t)⟩ = H|ΨT(t)⟩. (3.546)

For an initial state in a thermal ensemble, this equation is solved subject to the
initial condition |ΨT(0)⟩ = |0T⟩. Indeed, since physical and tilde operators act in

34) Note that in a more general formulation, one can introduce a so-called tilde conjugation. Here,
it holds that (cÔ)̃ = c∗Õ. The choice of Eq. (3.545) guarantees that the time-evolution operator is
invariant with respect to tilde conjugation.
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different spaces and thus commute, using the time-evolution operators correspond-
ing to Eq. (3.546), we have⟨ΨT(t)|Ô|ΨT(t)⟩ = ⟨ΨT(0)|ei(H−H̃)t∕ℏÔe−i(H−H̃)t∕ℏ|ΨT(0)⟩

= ⟨ΨT(0)|eiHt∕ℏÔe−iHt∕ℏ|ΨT(0)⟩. (3.547)

Inserting Eq. (3.544) yields the proper expectation value. The actual implementation
of this approach depends on the quantum statistical properties of the considered
system. Since harmonic oscillator Hamiltonians play a central role in the theoreti-
cal description of charge and energy transfer processes, we focus on these bosonic
systems and use the second quantization introduced in Section 2.5.2. In order to sim-
plify the notation, we consider a single mode only and neglect the zero-point energy;
that is, we have instead of Eq. (2.63)

H = ℏ𝜔 C+C. (3.548)

The tilde-space Hamiltonian then reads35)

H̃ = ℏ𝜔 C̃+C̃. (3.549)

The extension of Eq. (3.550) to the augmented space is given by

|NÑ⟩ = 1
N!

(C+)N (C̃+)N |00̃⟩. (3.550)

With this definition, Eq. (3.541) can be written as

|0T⟩ = 1
1∕2

∑
N

e−Nℏ𝜔∕2kBT 1
N!

(C+)N (C̃+)N |00̃⟩
= [1 − exp(−ℏ𝜔∕kBT)]1∕2 exp

{
C+C̃+e−ℏ𝜔∕2kBT

} |00̃⟩
= e−iGT |00̃⟩, (3.551)

where the argument of the square root is the inverse of the harmonic oscillator
partition function (without zero-point energy). In the last line, we introduced the
thermal Bogoliubov transformation with the operator

GT = G+
T = −i𝜃T(CC̃ − C+C̃+), (3.552)

where

𝜃T = ln(uT + 𝑣T), (3.553)

and using the Bose–Einstein distribution equation (3.283),

uT = [1 − exp(−ℏ𝜔∕kBT)]−1∕2 = [1 + n(𝜔)]1∕2
, (3.554)

𝑣T = [exp(ℏ𝜔∕kBT) − 1]−1∕2 = [n(𝜔)]1∕2
. (3.555)

Alternatively, one can write

uT = cosh(𝜃), (3.556)

𝑣T = sinh(𝜃). (3.557)

35) The tilde-space operators C̃+ and C̃ obey the bosonic commutation rules. Physical and tilde
operators do commute.
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Using this transformation, the Schrödinger equation (3.546) can be written as

iℏ 𝜕
𝜕t

|Ψ
𝜃
(t)⟩ = H

𝜃
|Ψ

𝜃
(t)⟩, (3.558)

where we introduced the backtransformed state vector |Ψ
𝜃
(t)⟩ = exp(iGT)|ΨT(t)⟩

and the Hamiltonian

H
𝜃
= eiGT He−iGT . (3.559)

Equation (3.558) has to be solved subject to the initial condition |Ψ
𝜃
(0)⟩ = |00̃⟩.

To achieve the unitary transformation of the Hamiltonian H, we first inspect the
creation and annihilation operators. For instance, we have36)

eiGT Ce−iGT = C cosh(𝜃T) − C̃+ sinh(𝜃T). (3.560)

Thus, for products of two operators as in the vibrational Hamiltonian, Eq. (3.548),
we have (using sinh2(𝜃T) − cosh2(𝜃T) = 1)

eiGT (C+C − C̃+C̃)e−iGT = C+C − C̃+C̃. (3.561)

It follows that

H
𝜃
= ℏ𝜔(C+C − C̃+C̃) . (3.562)

Applications of harmonic oscillator models to charge and energy transfer processes
often rest on the shifted oscillator Hamiltonian, Eq. (2.65). Its transformation is read-
ily performed; that is, we define for a single mode

Ha = ℏ𝜔(C+C − C̃+C̃) + ℏ𝜔ga(C+ + C) (3.563)

and obtain

Ha,𝜃 = ℏ𝜔(C+C − C̃+C̃)

+ ℏ𝜔ga[(C+ + C) cosh(𝜃T) − (C̃+ + C̃) sinh(𝜃T)]. (3.564)

The extension to an arbitrary number of normal modes is straightforward. Treating
systems with different electronic states (for instance, the electronic excitation
between the ground and some excited states), thermal population of electronic
excited states is usually negligible. This allows to introduce the tilde states for the
vibrational subspace only and treat the electronic states in the physical Hilbert
space. This has been the motivation for subtracting the ground state vibrational
tilde Hamiltonian only in Eq. (3.563).

From the solution of the time-dependent Schrödinger equation (3.558), one
obtains expectation values taking temperature effects into account. This comes
at the price of doubling the number of DOFs. Using methods such as multilayer
MCTDH introduced in Section 3.2.3, such simulations are possible even for
high-dimensional systems. For instance, the MCTDH wave packet dynamics
simulation shown in Figure 9.18 has also been performed at finite temperature
using the approach outlined in this section; see Further Reading.

36) This can be shown using the relation exp(aÂ)B̂ exp(−aÂ) =
∑∞

n=0
an

n!
[Â, B̂]n, with [Â, B̂]0 = B̂

and [Â, B̂]n>0 = [Â, [Â, B̂]n−1], which follows from the Baker–Campbell–Hausdorff formulae, cf.
also Eq. (2.76).
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3.15.2 Stochastic Schrödinger Equation

In Sections 3.10 and 3.11, the dynamics of the RDM was expressed in terms of the
Feynman–Vernon influence functional. The closed-form expression for  (s±) could
be obtained for the common case of a relevant system coordinate s coupled to a har-
monic oscillator reservoir. In Section 3.11, we have shown that for a bath correlation
function that can be expressed as a sum of exponential terms, a nonperturbative and
non-Markovian HEOM for the RDM can be derived. Suppose that the relevant sys-
tem has N states, the dimension of the RDM is N × N. In what follows, we address
the question whether the information contained in the RDM can also be obtained
by propagation of an N-dimensional state vector.

To simplify the notation, we consider a system–reservoir coupling, Eq. (3.198),
having a single term only, that is37)

HS–R = K(s)Φ(Z) = s
∑
𝜉

ℏ𝛾
𝜉
Z
𝜉
. (3.565)

Note that we do not take into account the counter term in Eq. (3.381). Setting tN = t,
t0 = 0, and recalling that  [s+(t), s−(t)] =  (s±), Eq. (3.387) can be written as

 (s±) = exp

{
− 1
ℏ ∫

t

0
dt′

∫

t′

0
dt′′ [s+(t′) − s−(t′)]

× [C(t′ − t′′)s+(t′′) − C∗(t′ − t′′)s−(t′′)]

}

= exp

{
− 1
ℏ ∫

t

0
dt′

∫

t′

0
dt′′ [s+(t′)C(t′ − t′′)s+(t′′)

+ s−(t′)C∗(t′ − t′′)s−(t′′)]

}

× exp

{
1
ℏ ∫

t

0
dt′

∫

t′

0
dt′′ [s+(t′)C∗(t′ − t′′)s−(t′′)

+ s−(t′)C(t′ − t′′)s+(t′′)]

}
. (3.566)

Here, C(t) is the harmonic oscillator correlation function (cf. Section 3.7.2). Further,
 (s±) has been rewritten such as to reveal the coupling between the paths s+(t) and
s−(t) due to the second exponential factor. Interchanging the integration variables,
this expression can be rewritten as

exp

{
1
ℏ ∫

t

0
dt′

∫

t′

0
dt′′ [s+(t′)C∗(t′ − t′′)s−(t′′) + s−(t′)C(t′ − t′′)s+(t′′)]

}
= exp

{
1
ℏ ∫

t

0
dt′

∫

t

0
dt′′ [s+(t′)C∗(t′ − t′′)s−(t′′)]

}
. (3.567)

37) Note that a formulation in terms of a general system operator K(s) as in Section 3.11 is
straightforward. Here, we use K(s) = s to compare with the standard Feynman–Vernon path
integral expression given in Section 3.10.
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Next, we define a complex Gaussian stochastic process 𝜁(t) with the following
properties: ⟨⟨𝜁(t)⟩⟩ = 0, (3.568)⟨⟨𝜁(t)𝜁(t′)⟩⟩ = 0, (3.569)⟨⟨𝜁(t)𝜁∗(t′)⟩⟩ = C∗(t − t′), (3.570)⟨⟨𝜁∗(t′)𝜁(t)⟩⟩ = C(t′ − t) . (3.571)

where ⟨⟨…⟩⟩ denotes the classical ensemble average with respect to the stochastic
process. With the help of these definitions, the exponential function in Eq. (3.567)
can be written as

exp
{

1
ℏ ∫

t

0
dt′

∫

t

0
dt′′ [s+(t′)C∗(t′ − t′′)s−(t′′)]

}
=

⟨⟨
exp { i

ℏ ∫

t

0
dt′[s+(t′)𝜁(t′) − s−(t′)𝜁∗(t′)]

⟩⟩
. (3.572)

This equality can be verified using the cumulant expansion method that will be
explained in detail in Section 4.3.4. What has been achieved with the introduction
of the stochastic variables is a decoupling of the paths s+(t) and s−(t). Inspecting the
time-evolution superoperator in path integral representation entering Eq. (3.392),
that is

 (s±, t, s±0 , 0) = ∫

s±(t)

s±0
s± exp

{ i
ℏ

SS(s+, t)
}
 (s±) exp

{
− i
ℏ

SS(s−, t)
}
, (3.573)

we notice that upon introduction of the stochastic variables, it can be written in
terms of two independent time-evolution operators

 (s±, t, s±0 , 0) =
⟨⟨

U
𝜁
(s+, t, s+0 , 0) U∗

𝜁
(s−, t, s−0 , 0)

⟩⟩
, (3.574)

with the path integral expression

U
𝜁
(s, t, s0, 0) = ∫

s(t)

s0

s exp
{

i
ℏ

SS(s, t) +
i
ℏ ∫

t

0
dt′s(t′)𝜁(t′)

− 1
ℏ ∫

t

0
dt′

∫

t′

0
dt′′ s(t′)C(t′ − t′′)s(t′′)

}
. (3.575)

Hence, given some initial state vector |Ψ0⟩, its time evolution can be written as (recall
the definition in Eq. (3.379))|Ψ

𝜁
(t)⟩ = U

𝜁
(t, 0)|Ψ0⟩. (3.576)

It is important to note that this equation gives the relevant system’s state vector for
a single stochastic trajectory 𝜁(t). The RDO in this pure state case is obtained by the
ensemble average, that is

�̂�(t) = ⟨⟨|Ψ
𝜁
(t)⟩⟨Ψ

𝜁
(t)|⟩⟩. (3.577)

For mixed states, the conditions must be adjusted accordingly (cf. Section 3.4.1). We
conclude that the sketched procedure decouples bra and ket state evolution of the
RDO, while being exact for the model Hamiltonian that has been used in the deriva-
tion of the influence functional. The method is also called stochastic unraveling of
the influence functional.
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In what follows, we derive the equation of motion for |Ψ
𝜁
(t)⟩. Using Eqs. (3.575)

and (3.576), the time derivative is given by
𝜕

𝜕t
|Ψ

𝜁
(t)⟩ = − i

ℏ

[HS − s(t)𝜁(t)]|Ψ
𝜁
(t)⟩

− 1
ℏ

s(t)
∫

t

0
dt′ C(t − t′)s(t′)|Ψ

𝜁
(t)⟩. (3.578)

Considering the last term of this equation, one needs to take care of the fact that the
state vector is actually a functional of the stochastic variable, that is |Ψ[𝜁(t)]⟩. The
functional derivative of U

𝜁
(t, 0) with respect to 𝜁(t′) is given by

𝛿U
𝜁
(t, 0)

𝛿𝜁(t′)
= i
ℏ

s(t′)U
𝜁
(t, 0) . (3.579)

Using this expression, Eq. (3.581) can be rewritten, and we obtain the stochastic
Schrödinger equation,

𝜕

𝜕t
|Ψ

𝜁
(t)⟩ = − i

ℏ

[HS − s𝜁(t)]|Ψ
𝜁
(t)⟩

− i
ℏ

s(t)
∫

t

0
dt′ C(t − t′)

𝛿|Ψ
𝜁
(t)⟩

𝛿𝜁(t′)
. (3.580)

The appearance of the time integral on the right-hand side indicates the
non-Markovian nature of this equation. The Markov limit is obtained by setting
C(t) ∝ 𝛿(t), which renders the equation to become local in time.

In order to account for the non-Markovian time evolution, one follows an idea,
which reminds on the derivation of the HEOM method in Section 3.11. Let us define
the operator

A(t) =
∫

+∞

−∞
dt′ C(t − t′) 𝛿

𝛿𝜁(t′)
(3.581)

and introduce the auxiliary state vector

A(t)|Ψ
𝜁
(t)⟩ = |Ψ(1)

𝜁
(t)⟩. (3.582)

Equation (3.580) thus becomes38)

𝜕

𝜕t
|Ψ

𝜁
(t)⟩ = − i

ℏ

[HS − s𝜁(t)]|Ψ
𝜁
(t)⟩ − i

ℏ

s|Ψ(1)
𝜁
(t)⟩. (3.583)

To proceed, one needs to derive an equation of motion for the auxiliary state vector|Ψ(1)
𝜁
(t)⟩, that is

𝜕

𝜕t
|Ψ(1)

𝜁
(t)⟩ = (

𝜕

𝜕t
A(t)

) |Ψ
𝜁
(t)⟩ + A(t)

(
𝜕

𝜕t
|Ψ

𝜁
(t)⟩) . (3.584)

The time derivative of the operator A(t) is given by(
𝜕

𝜕t
A(t)

) |Ψ
𝜁
(t)⟩ =

∫

t

0
dt′ 𝜕C(t − t′)

𝜕t
𝛿|Ψ

𝜁
(t)⟩

𝛿𝜁(t′)
. (3.585)

38) Note that as compared to Eq. (3.580), the integration in A(t) has been extended over the whole
time axis. This is possible since system and reservoir are assumed to be initially uncorrelated such
that 𝛿|Ψ

𝜁
(t = 0)⟩∕𝛿𝜁 (t′) = 0 for t′ ∈ ℝ. This makes the state vector at time t independent of the

trajectory 𝜁 (t′) for t′ ∉ [0, t].
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Similar to the case of the HEOM method, a closed set of equations can be obtained
if the correlation function has a sum-of-exponentials form, Eq. (3.399). To keep the
notation simple, let us assume that there is only one term

C(t) = 𝜂e−Ωt
. (3.586)

As already noted in Section 3.11, 𝜂 and Ω can be complex-valued. Using this expres-
sion as well as Eq. (3.580), one has

𝜕

𝜕t
|Ψ(1)

𝜁
(t)⟩ = −Ω|Ψ(1)

𝜁
(t)⟩

+ A(t)
(
− i
ℏ

[HS − s𝜁(t)]|Ψ
𝜁
(t)⟩ − i

ℏ

s|Ψ(1)
𝜁
(t)⟩) . (3.587)

Note that A(t) commutes with the operators of the relevant system but not with the
stochastic variable. For the latter, it holds that [A(t), 𝜁(t′)]− = C(t − t′) such that we
can write

𝜕

𝜕t
|Ψ(1)

𝜁
(t)⟩ = (

− i
ℏ

HS − Ω + s𝜁(t)
) |Ψ(1)

𝜁
(t)⟩ + sC(0)|Ψ

𝜁
(t)⟩

− i
ℏ

sA(t)|Ψ(1)
𝜁
(t)⟩. (3.588)

Introducing |Ψ(0)
𝜁
(t)⟩ = |Ψ

𝜁
(t)⟩ and |Ψ(2)

𝜁
(t)⟩ = A(t)|Ψ(1)

𝜁
(t)⟩, we have

𝜕

𝜕t
|Ψ(1)

𝜁
(t)⟩ = (

− i
ℏ

HS − Ω + s𝜁(t)
) |Ψ(1)

𝜁
(t)⟩ + sC(0)|Ψ(0)

𝜁
(t)⟩

− i
ℏ

s|Ψ(2)
𝜁
(t)⟩. (3.589)

One can proceed by deriving an equation of motion for |Ψ(2)
𝜁
(t)⟩ and so on. Eventu-

ally, one obtains the hierarchy of pure states (HOPS) equations
𝜕

𝜕t
|Ψ(k)

𝜁
(t)⟩ = (

− i
ℏ

HS − kΩ + s𝜁(t)
) |Ψ(k)

𝜁
(t)⟩

+ skC(0)|Ψ(k−1)
𝜁

(t)⟩ − i
ℏ

s|Ψ(k+1)
𝜁

(t)⟩. (3.590)

This is a formally exact equation of motion for the physical state |Ψ(0)
𝜁
(t)⟩, which is

coupled to the auxiliary states |Ψ(k>0)
𝜁

(t)⟩. It has to be solved subject to the initial
conditions |Ψ(0)

𝜁
(t)⟩ = |Ψ(0)⟩ and |Ψ(k>0)

𝜁
(0)⟩ = 0. Of course, in practice, one needs

to truncate the hierarchy of equations such that it does not influence the resulting
physical state evolution. Using the solution of the HOPS equations for an ensemble
of stochastic trajectories expectation values are obtained using Eq (3.577). In numer-
ical applications, Eq. (3.590) is used only after transformation to a form that enables
better sampling when calculating the ensemble average. For more details and appli-
cations, see Further Reading.
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4

Interaction of Molecular Systems with Radiation Fields

Charge and energy transfer processes can be investigated by means of laser
spectroscopy. This gives access not only to the properties of stationary states but
also to the real-time nonequilibrium dynamics. In this chapter, we review some
fundamental aspects of the interaction between molecular systems and radiation
fields. First, we present the interaction Hamiltonian in dipole approximation,
which can be derived from the minimal coupling Hamiltonian describing the
coupled system of interacting charges and the radiation field. The considerations
will be extended to dielectrics, and the polarization field will be introduced,
which depends on the dynamics of the molecules driven by the external electric
field.
Next, the linear absorption coefficient will be derived on the basis of Beer’s law.
It will be shown that it can be written as the Fourier transform of the autocorre-
lation function of the molecular dipole operator. Further, we address the rate of
spontaneous emission, which requires to consider a quantized description of the
radiation field.
Nonlinear response functions are introduced starting from a systematic repre-
sentation of the polarization field in powers of the electric field strength com-
bined with time-dependent perturbation theory. Explicit expressions are given for
a three-level model with weak system–bath coupling, and for a two-level model
with strong coupling to vibrational degrees of freedom. The third-order polariza-
tion is discussed, and its relation to different experimental techniques is estab-
lished. Here, pump–probe and two-dimensional spectroscopy are discussed in
some detail. We also give a brief account on nonperturbative methods for obtain-
ing the polarization by wave packet propagation under explicit inclusion of the
electric field.

Charge and Energy Transfer Dynamics in Molecular Systems,
Fourth Edition. Volkhard May and Oliver Kühn.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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4.1 Introduction

In what follows we give a brief review of classical electrodynamics. The starting point
are the Maxwell equations, which read

∇ × E(r, t) = −1
c
𝜕B(r, t)
𝜕t

, (4.1)

∇ × B(r, t) = 1
c
𝜕E(r, t)
𝜕t

+ 4𝜋
c

j(r, t), (4.2)

∇ ⋅ E(r, t) = 4𝜋𝜌(r, t), (4.3)

∇ ⋅ B(r, t) = 0, (4.4)

where E and B are the electric and magnetic fields, respectively. Further, we have
the charge density 𝜌(r, t) and the current density j(r, t). The latter two quantities are
used to characterize the motion of electrons and nuclei in the considered material
system.

Instead of the physical fields, one usually introduces a vector and a scalar potential
A(r, t) and U(r, t), respectively, which are related to the fields via

B(r, t) = ∇ × A(r, t), (4.5)

E(r, t) = −1
c
𝜕A(r, t)
𝜕t

− ∇U(r, t). (4.6)

The ambiguity with respect to gauge transformations can be removed by requiring
(Coulomb gauge)

∇ ⋅ A(r, t) = 0. (4.7)

Note that this condition makes the vector potential a transverse vector field A =
A⟂.1) Furthermore, this vector field can be supplemented by a contribution of an
externally applied field to account for the interaction of the particle system, e.g. with
a laser field. The Hamiltonian in the Coulomb gauge is given by (minimal coupling
Hamiltonian)

H =
∑

u

1
2mu

[
pu −

qu

c
A(xu, t)

]2
+ 1

2
∑
u≠𝑣

quq
𝑣|xu − x
𝑣
| + Hfield. (4.8)

The expression corresponds to an abbreviated notation of the molecular Hamilto-
nian, Eq. (2.1), with u and 𝑣 counting electrons and nuclei simultaneously (mu are
the respective masses, xu the coordinates, pu the momenta, and qu the charges). The
Hamiltonian of the free radiation field is given by the transverse electric field and
the magnetic field according to

Hfield = 1
8𝜋 ∫

dr[E⟂2(r) + B2(r)]. (4.9)

1) If the field is expanded with respect to plane waves ∼ exp(ikr), the transversal part of the field is
given by that contribution where all expansion coefficients are perpendicular to the actual
wavevector k, here kA⟂(k) = 0.
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For molecular systems it is usually a good approximation to account for the Coulomb
interaction between the charges only and to consider the coupling between particles
and the transverse external field, i.e. A = Aext. Further, the contribution of Hfield to
the total Hamiltonian is neglected. Another simplification arises upon restriction to
wavelengths of the external field that exceed the spatial extension of the molecu-
lar system (long wavelength approximation). In this case, the canonical momentum
becomes pu − quA(Xm, t)∕c, where Xm is a representative point for the mth molecule
(for example, the center of mass). Note that Eq. (4.8) contains two radiation–matter
interaction terms, i.e. ∝ pu ⋅ A and ∝ A2. Within the long wavelength approxima-
tion a simplification arises upon using the time-dependent unitary transformation
(displacement operator, cf. Section 2.5.2)

D(t) = exp

{
− i
ℏc

∑
u

quxuA(Xm, t)

}
= exp

{
− i
ℏc

�̂�mA(Xm, t)
}
, (4.10)

where we introduced the dipole operator for the mth molecule �̂�m =
∑

uquxu.
Application of the transformation to the momentum operator gives

D(t)puD+(t) = pu +
qu

c
A(Xm, t). (4.11)

Since the transformation operator is time dependent, the unitary transformation of
the Hamiltonian reads as

H̃(t) = D(t)HD+(t) + iℏ
(
𝜕D(t)
𝜕t

)
D+(t). (4.12)

Using Eq. (4.6), we have

iℏ
(
𝜕D(t)
𝜕t

)
D+(t) = 1

c
�̂�m

𝜕A(Xm, t)
𝜕t

= −�̂�mE(Xm, t). (4.13)

Thus, the transformed Hamiltonian becomes

H̃(t) =
∑

u

1
2mu

p2
u + 1

2
∑
u≠𝑣

quq
𝑣|xu − x
𝑣
| − �̂�mE(Xm, t). (4.14)

The first two terms reproduce the molecular Hamiltonian Hmol, Eq. (2.1), and the
last term represents the interaction of the dipole moment �̂�m of molecule m with
the electric field at the chosen point Xm. It gives the dipole approximation of the
molecule–field interaction and is written in what follows as

H(m)
field(t) = −E(Xm, t) �̂�m. (4.15)

So far, we have considered the case of individual molecules. In order to proceed to
condensed phase situations, we will make several assumptions: (i) We will not be
concerned with magnetization effects in the medium, and the respective contri-
butions that are proportional to the magnetic field will be skipped. (ii) We adopt
the point of view that molecules in the condensed phase form a dielectric medium
with electronically polarizable units that are sufficiently described as dipoles



180 4 Interaction of Molecular Systems with Radiation Fields

(cf. Section 2.7.1). (iii) There are no free charges giving rise to respective densities
and currents. (iv) Only those spectroscopic experiments are considered that probe
macroscopic properties of the matter so that one can use Maxwell’s macroscopic
electrodynamics for dielectrics.

The term macroscopic indicates that the description does not account for those
parts of the electromagnetic field varying on a microscopic length scale of some
nanometers. These parts are not measurable in those experiments where the spec-
trometer is far away from the illuminated sample. In other words, only the so-called
far field is of interest, and any near-field contribution is eliminated from the theory.2)

To include the far field only, we proceed as in Section 2.7.1 and carry out an averag-
ing of the field with respect to a volume element ΔV . This volume element should
contain a sufficiently large number of molecules. In particular, ΔV has to be large
in comparison to the size of the molecules. Furthermore, the externally applied field
should vary weakly inside ΔV . Then, we can discretize the sample volume by the
elements ΔV and label every element by the spatial vector x. These vectors are dis-
crete on the length scale of the volume elements, but from a macroscopic point of
view, they can be considered as continuous quantities.

The key quantity of the electrostatics as well as of the electrodynamics of
dielectrics is the macroscopic polarization field vector P(x, t) that, according to our
assumption, corresponds to the dipole density of the medium. As a macroscopic
vector field its definition must contain the averaging with respect to the volume
elements ΔV . This has already been done in Eq. (2.125), which can be generalized
from the static to the dynamic case as follows:

P(x, t) = 1
ΔV(x)

∑
m∈ΔV(x)

dm(t). (4.16)

It gives the polarization as the sum of molecular dipole moments dm(t) contained
in the volume element ΔV(x) in the neighborhood of the point x versus ΔV
(dipole density). Since molecules are treated quantum mechanically, dm(t) is the
time-dependent expectation value of the molecular (electric) dipole operator �̂�m
given by

�̂�m =
∑
u∈m

quxu = −
∑

j
er(m)

j +
∑

n
ez(m)

n R(m)
n . (4.17)

With the help of this operator the interaction Hamiltonian follows from Eq. (4.15)
as

Hint(t) =
∑

m
H(m)

field(t) = −
∑

m
E(Xm, t) �̂�m. (4.18)

This expression is often termed the semiclassical molecule–field interaction Hamil-
tonian. This Hamiltonian of light–matter interaction supplements the Hamiltonian
of the molecular system. In contrast to the subsequent chapters we have neglected
molecule–molecule interactions responsible for charge and energy transfer here.

2) The situation is different in near-field spectroscopy where the near field on a subwavelength
scale is measured.
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Therefore, the Hamiltonian of all molecules in the sample can be written as a sum
of individual molecular contributions.3)

Neglecting intermolecular interactions the macroscopic optical properties of the
material system are calculated by determining the interaction of a single molecule
with the radiation field first. In a second step all individual molecular contributions
are summed to give the macroscopic response.

The time-dependent expectation value of the dipole operator entering Eq. (4.16)
can be written in two ways:

dm(t) = tr{ŴeqU+(t, t0)�̂�mU(t, t0)} ≡ tr{Ŵ(t)�̂�m}. (4.19)

In the first expression, Ŵeq = exp{−Hmol∕kBT}∕ is the equilibrium statistical oper-
ator in the absence of an external field. The time dependence of the dipole operator
is given by the Hamiltonian, which includes the external electric field via H(m)

field(t)
(see Eq. (4.15)). In the second part of Eq. (4.19), the time evolution has been trans-
ferred to the statistical operator to give Ŵ(t) = U(t, t0)ŴeqU+(t, t0). Both variants to
compute dm(t) will be used in what follows.

Introducing an expansion with respect to the (adiabatic) electronic states of the
mth molecule ||𝜙ma

⟩
as

�̂�m =
∑
a,b

⟨
𝜙ma

|| �̂�m
||𝜙mb

⟩ ||𝜙ma
⟩⟨

𝜙mb
|| , (4.20)

it is straightforward to select all those electronic states involved in a particular exper-
iment and to exclude all unimportant states from the summation. For example, if the
molecules do not possess a permanent dipole moment, it suffices to use off-diagonal
matrix elements only, leading to the transition dipole moments (transition matrix
elements)

d(m)
ab =

⟨
𝜙ma

|| �̂�m
||𝜙mb

⟩
. (4.21)

A special case arises when the ensemble of molecular systems does not show the phe-
nomenon of inhomogeneous broadening. In such a situation, all molecules within
the volume element ΔV(x) around point x are identical, and we may replace the
summation with respect to the various dipole moments in Eq. (4.16) by a represen-
tative dipole moment at x times the volume density nmol of molecules in the sample
volume:

P(x; t) = nmold(x; t). (4.22)

Note that in the present case the spatial variation of d is exclusively determined by
the spatial dependence of the radiation field. In order to discuss this issue in more
detail, we recall Maxwell’s macroscopic equations for dielectric media under the
assumption of vanishing free charges and nonmagnetic systems

3) This noninteracting single-molecule concept is extended in the so-called local field
approximation to include the effect of the averaged field of all other molecules on a particular
molecule. While this approach is reasonable for weakly to moderately interacting molecules, it
cannot account for many effects that occur in strongly interacting molecular aggregates (see
Chapter 9).
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∇ × E = −1
c
𝜕B
𝜕t
, (4.23)

∇ × B = 1
c
𝜕D
𝜕t
, (4.24)

∇ ⋅ D = 0, (4.25)

∇ ⋅ B = 0, (4.26)

where the dielectric displacement vector D = E + 4𝜋P has been introduced.
According to Eq. (4.19), the determination of P requires the solution of the

dynamical equations for the molecule under the action of the field, that is the
time-dependent Schrödinger equation or the density operator equation. If this
has been accomplished, the response of the molecules is available. Further the
polarization introduced in Eq. (4.16) is known as a function (functional) P[E] of
the electric field strength. Taking the curl of the equation for ∇ × E, one obtains a
closed equation for the electric field strength(

𝜕
2

𝜕t2 − c2Δ
)

E = −4𝜋 𝜕
2

𝜕t2 P[E]. (4.27)

Since this equation contains again the polarization which is obtained from the
dynamical equations of the molecular system, a self-consistent solution of this
closed set of equations is required.

In general, the polarization P will be a nonlinear functional of the electric field E.
In the following section we will discuss the simplest case of a linear relationship, that
is P = 𝜒E (cf. Section 2.7.1.1), where the response of the molecular system is com-
pletely determined by the linear electric susceptibility 𝜒 . The nonlinear response
will be considered in Section 4.3.

4.2 Absorption of Light

4.2.1 Linear Absorption Coefficient

If the polarization depends linearly on the external field, Eq. (4.27) is solved by a
plane wave ansatz for the electric field,

E(x, t) = nE0 exp{i(kx − 𝜔t)} + c.c. (4.28)

Here, n and E0 are the polarization vector and field amplitude, respectively.
Further, the field is assumed to be monochromatic with carrier frequency 𝜔 and
wavevector k.

For the determination of the linear absorption coefficient 𝛼, we consider a platelet
of a dielectric medium of thickness d extending into the z-direction. In the x and y
directions (lateral directions), there should be no geometric restriction. The strictly
monochromatic light is supposed to propagate in the z-direction with perpendicular
incidence on the platelet. For simplicity, we let the platelet thickness d go to infin-
ity, d → ∞, such that there is a single reflecting boundary between the dielectric



4.2 Absorption of Light 183

and the vacuum (dielectric half-space). Thus, the electric field strength along the
propagation direction can be written as

E(z, t) = n e−i𝜔t (
𝜃(−z){E0eikvacz + Ere−ikvacz} + 𝜃(z)Eteikmedz) + c.c. (4.29)

The unit-step function 𝜃(z) has been used to discriminate between the part in the
medium (transmitted part) with amplitude Et and wavenumber kmed = 𝜔

√
𝜀∕c in

the z-direction and the field in the vacuum. The latter contains the incoming part
with amplitude E0 and the reflected part with amplitude Er, both with wavenum-
ber kvac = 𝜔∕c. The unit vector n defines the polarization direction of the field. The
different field components are determined via the boundary conditions.

In general, the dielectric function 𝜀(𝜔) is complex. The decay of the field inten-
sity inside the medium is determined by the imaginary part of kmed according to
Beer’s law

I(z) = I(0) e−𝛼z
, (4.30)

where the absorption coefficient 𝛼(𝜔) = 2Im(kmed) = 2𝜔Im
√
𝜀(𝜔)∕c depends on the

frequency of the light wave traveling through the platelet. Usually one has Re(𝜀)≫
Im(𝜀), so that Im

√
𝜀 ≈ Im(𝜀)∕2

√
Re(𝜀). Assuming a frequency-independent index

of refraction n =
√

Re(𝜀), we obtain

𝛼(𝜔) = 4𝜋𝜔
nc

Im𝜒(𝜔), (4.31)

where 𝜒(𝜔) = (𝜀(𝜔) − 1)∕4𝜋 is the linear dielectric susceptibility. The actual fre-
quency dependence of the absorption coefficient is determined by the properties of
the molecules.

Provided that the rate of absorption kabs of a certain molecule is known, the absorp-
tion coefficient 𝛼(𝜔) can be obtained as follows. Consider a macroscopic sample
volume V containing Nmol noninteracting molecules absorbing light at frequency
𝜔. The sample volume should have a surface cross section of area A where the light
goes through perpendicularly. We take a small section of length dz and volume Adz
and determine the change in the radiation field energy dE if absorption takes place.
It is given during the time interval dt as

dE = −Nmol
Adz

V
ℏ𝜔 kabs dt. (4.32)

Here, NmolAdz∕V gives the fraction of molecules inside the considered segment, and
ℏ𝜔kabsdt is the mean energy absorbed by a single molecule in the time interval dt.
Since the field energy decreases, the minus sign has been introduced.

Instead of dE, we can calculate the change in the field energy density
du = dE∕Adz. Given the volume density nmol = Nmol∕V of the absorbing molecules,
the change in energy density per time follows as

du
dt

= −nmol ℏ𝜔 kabs. (4.33)
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The continuity equation du∕dt = dI∕dz, which is a direct consequence of Maxwell’s
equations, allows to change from the energy density to the field intensity I. We fur-
ther note that I = c E2

0∕2𝜋, which is valid for a monochromatic field, and get

dI
dz

= −
2𝜋nmol

c E2
0

ℏ𝜔 kabs. (4.34)

Comparing this expression with the definition of the absorption coefficient 𝛼 accord-
ing to dI∕dz = −𝛼I (cf. Eq. (4.30)) enables us to identify the frequency-dependent
absorption coefficient as

𝛼(𝜔) =
2𝜋nmol

c E2
0

ℏ𝜔 kabs. (4.35)

Comparing Eqs. (4.31) and (4.35), we notice the relation between Im𝜒(𝜔) and kabs.
The absorption rate can be determined either from the knowledge of the system’s
eigenstates (Golden Rule) or using the time correlation functions (Im𝜒(𝜔)). In the
following section, a correlation function expression will be derived. The relation to
the Golden Rule will be discussed in Chapter 6.

4.2.2 Dipole–Dipole Correlation Function

Our objective is to obtain a formula for the absorption coefficient that does not rely
on a particular representation of the Hamiltonian but is based on a general prescrip-
tion of Eq. (4.19).

For simplicity, let us focus on a homogeneous sample and therefore start
with Eq. (4.22) for the macroscopic polarization including Eq. (4.19) for the
time-dependent expectation value of the dipole operator. In order to carry out a
perturbation expansion with respect to Hfield(t) (index m skipped), that is in powers
of the electric field strength, we separate U(t, t0) in Eq. (4.19) into the molecular
part Umol(t − t0) = exp(−iHmol(t − t0)∕ℏ) and into the S-operator (cf. Section 3.2.2)

S(t, t0) = T̂ exp
⎛⎜⎜⎝− i
ℏ

t

∫
t0

dt′ H(I)
field(t

′)
⎞⎟⎟⎠ . (4.36)

The coupling Hamiltonian in the interaction representation reads H(I)
field(t) = U+

mol
(t − t0)Hfield(t) Umol(t − t0). Accordingly, Eq. (4.19) becomes4)

d(x; t) = tr{ŴeqS+(t, t0)�̂�
(I)(t)S(t, t0)}. (4.37)

The different contributions in powers of the field strength are obtained by a series
expansion of S(t, t0). Here, we concentrate on the first-order contribution (higher
order terms have to be considered in the case of nonlinear spectroscopy, cf. Section
4.3). The expansion up to the first order in the field strength gives (the zeroth-order

4) We remind here on the fact that the operator �̂�(I)(t) is independent of the spatial position x since
the sample’s heterogeneity has been neglected. However, the electric field depends on x due to the
plane wave factor, and just this dependence enters the expectation value via the S-operator.
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term does not contribute because of the assumed absence of a macroscopic dipole
density in the equilibrium)

d(x; t) ≈ tr
{

Ŵeq
[
1 + S(1)+(t, t0)

]
�̂�
(I)(t)

[
1 + S(1)(t, t0)

]}
. (4.38)

Here, S(1) denotes the first-order term of the S-operator expansion, Eq. (4.36), with
respect to the electric field strength

S(1)(t, t0) =
i
ℏ

t

∫
t0

d𝜏 E(𝜏)�̂�(I)(𝜏). (4.39)

Collecting the terms that are linear in the field, one obtains the linear polarization
from Eqs. (4.22) and (4.38) as follows (using t0 → −∞):

P(1)(x, t) =

∞

∫
0

dt1 R(1)(t1)E(x, t − t1). (4.40)

Here, R(1)(t) is the linear response function, which is a second rank tensor according
to

R(1)(t) = i
ℏ

𝜃(t)nmoltr
{

Ŵeq

[
�̂�

(I)(t), �̂�(I)(0)
]
−

}
. (4.41)

The right-hand side of this equation contains the dipole–dipole correlation function

C(d–d)
jj′ (t) = tr

{
Ŵeq

[
�̂�

(I)
j (t), �̂�(I)

j′ (0)
]
−

}
. (4.42)

In the following equation, we only consider the case of randomly oriented molecules
where it is sufficient to use

Cd–d(t) =
∑

j
C(d–d)

jj (t). (4.43)

In order to establish the relation to Eq. (4.31), we introduce the Fourier transform
of the polarization P(1)(x, 𝜔). Due to the 𝜃-function in Eq. (4.41), the lower limit of
the integral in Eq. (4.40) can be extended to −∞, and the convolution-type integral
gives

P(1)(x, 𝜔) = 𝜒(𝜔)E(x, 𝜔), (4.44)

where the linear dielectric susceptibility is defined as

𝜒(𝜔) =

∞

∫
−∞

dt ei𝜔t R(1)(t). (4.45)

Combining Eqs. (4.31), (4.42), and (4.45), the absorption coefficient can be expressed
in terms of the Fourier transform of the dipole–dipole correlation function,

𝛼(𝜔) =
4𝜋𝜔nmol

3ℏc
Re

∞

∫
0

dt ei𝜔t Cd–d(t). (4.46)

Finally, we emphasize that in the derivation we did not refer to any spe-
cific form of the molecular Hamiltonian. It can in principle describe any
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type of PES but can also contain contributions from an environment. Thus,
Eq. (4.46) is suitable for computation of the absorption spectrum of molecular
systems in the condensed phase.

4.3 Nonlinear Optical Response

4.3.1 Nonlinear Polarization

The field of nonlinear optics is of a diversity that goes far beyond the scope of
this book. Therefore, we will only outline some basic concepts that provide the
background for the understanding of the methods for detecting the elementary
charge and the energy transfer processes. For a more detailed discussion, we refer
the reader to the various textbooks existing on the different facets of this field (see
Further Reading).

Extending the treatment of Section 4.2.1, the polarization field can be expanded
in powers of the electric field strength according to

P(x; t) = P(1)(x; t) + P(2)(x; t) + P(3)(x; t) +…
= P(1)(x; t) + P(NL)(x; t). (4.47)

Here, P(n) (n = 1,2,…) is the nth-order polarization, that is it is of the nth order in
the field strength E (a zeroth-order contribution does not appear since we assumed
the absence of a permanent polarization). Inserting Eq. (4.47) into Eq. (4.27), one
has

ΔE − 1
c2
𝜕

2

𝜕t2

(
E + 4𝜋P(1)) = 4𝜋

c2
𝜕

2

𝜕t2 P(NL)
. (4.48)

Assuming that the nonlinear experiment is performed such that losses due to linear
absorption can be neglected, and that the index of refraction nr is not frequency
dependent, one obtains (note Eq. (4.44))

ΔE −
n2

r

c2
𝜕

2

𝜕t2 E = 4𝜋
c2

𝜕
2

𝜕t2 P(NL)
. (4.49)

The right-hand side expresses the fact that the nonlinear interaction of the incoming
fields with the molecular system leads to a nonlinear polarization field that is the
source of the generated signal field.

In general, the incoming fields can be written as

E(x, t) =
N∑

p=1
npEp(t) exp{i(kpx − 𝜔pt)} + c.c. (4.50)

Here, N different partial waves (counted by p) with polarization unit vector np,
envelope Ep, wavevector kp, and frequency 𝜔p form the total field. These partial
waves may interfere or may be separated in time to give different independent pulses
(see Figure 4.1).

The polarization field, Eq. (4.22), given by the time-dependent expectation value
of the dipole operator according to Eq. (4.37) is obtained as a function of the electric
field strength. This can be appreciated by recalling the expression of the expectation
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k3

k1

k2

ks

Figure 4.1 Scheme of a three-pulse experiment with the different pulses p = 1,2, 3 with
wavevector kp, frequency 𝜔p. After, the sample signal fields are propagating into different
phase-matching directions ks (only one shown). In the right part, a view of a screen placed
after the sample is given. It shows various spots corresponding to directly transmitted
incoming fields as well as to the phase-matched signal field (right panel, figure courtesy of
T. Pullerits ).

value of the molecular dipole operator in terms of the field-dependent S-operator,
Eq. (4.36). Once the S-operator has been expanded in powers of H(I)

field(t), we have,
at the same time, an expansion in powers of the field strength E(x, t) (cf. discussion
in previous section). The resulting expression will contain all powers of the electric
field strength, and every partial wave of the total electric field, Eq. (4.50), should
appear with any power. Therefore, we expect the following form of the polarization
field:

P(x, t) =
∞∑

n1=−∞
· · ·

∞∑
nN=−∞

e(n)P(n, t) exp{i(K(n)x − Ω(n)t)}. (4.51)

Note that n abbreviates the whole set {n1,… ,nN} of numbers counting the power at
which the respective partial wave appears in the actual part of the total polarization
field. The multiples of the wavevector and the frequency are abbreviated by K(n) =∑

pnpkp and by Ω(n) =
∑

pnp𝜔p, respectively. The resulting polarization direction
e(n) depends on the field combination as well.

According to Eq. (4.49), the polarization generates a signal field Es(x, t), which can
be decomposed analogous to Eq. (4.51). Thus, in total, there are N + 1 fields that mix
while propagating through the sample (the so-called N + 1 wave mixing process).
The problem of N + 1 coupled propagating fields is usually linearized by assuming
that the signal field is much weaker than the incoming fields such that the latter are
unaffected by the wave mixing. Thus, the signal field whose intensity is measured is
given by the solution of Eq. (4.49). It propagates along the so-called phase-matching
directions K(n), expressing momentum conservation. The signal and polarization
field components for this direction are proportional to each other and phase-shifted
by 𝜋∕2, that is Es(n, t) ∝ iΩ(n)P(n, t).5) In homodyne detection, the signal is propor-
tional to the absolute square of the respective field component Es(n, t). In heterodyne
detection, a so-called local oscillator field copropagates with the signal field. At the

5) This dependence is obtained by solving the linearized wave equation in one dimension under
the slowly varying envelope approximation, i.e. |𝜕P(n, t)∕𝜕t|≪ |Ω(n)P(n, t)| and similar for Es(n, t)
(for details, see Mukamel [1]).
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detector, the intensity of the superposition of the signal and the local oscillator field
is measured. It has a contribution that is proportional to the signal field component
itself, which enhances sensitivity as compared to the quadratic homodyne case.

Two basic ways to characterize the optical response of an ensemble of molecular
systems can be distinguished. On the one hand, one can solve the time-dependent
Schrödinger equation (or the density operator equation) including explicitly the
radiation–matter coupling, Eq. (4.18). As a result, one obtains the polarization field
according to Eq. (4.51) without resorting to any type of perturbation theory. The
information on the signal field that is radiated in a particular spatial direction is
then contained in the function P(n, t), which has to be extracted numerically from
P(x, t). However, often such a rigorous treatment is unnecessary since the field
is weak enough that an expansion of the polarization field in powers of the field
strength is sufficient. This leads to the response function formalism, which will be
outlined in Section 4.3.2.

However, we start with a general discussion of Eq. (4.51). In a first step of our
analysis, we consider the case that the total electric field is given by a single wave
(case N = 1). As a result, we obtain Ω(n) ≡ Ω(n1) = 𝜔1, 2𝜔1, 3𝜔3,… (negative
frequencies appear too). Here, the nth multiple of 𝜔1 corresponds to the nth-order
nonlinear response of the molecular system (generation of the nth-order har-
monic). Apart from the linear response, there may appear frequency doubling as the
quadratic response and frequency triplication as the third-order nonlinear response
(two- and three-photon absorption, respectively). Besides the frequency of the
polarization field, we have to consider the wavevector K(n). It contains multiples of
k1 but all having the same direction, which indicates that the field corresponding
to the nonlinear response propagates in the same direction as the incoming
field.

Changing to the case of two partial waves with frequency 𝜔1 and 𝜔2, the resulting
frequencies of the polarization Ω(n) ≡ Ω(n1,n2) may take the following values: 𝜔1,
𝜔1 ± 𝜔2,𝜔1 ± 2𝜔2, etc. as well as𝜔2,𝜔2 ± 𝜔1,𝜔2 ± 2𝜔1, etc. These frequency combi-
nations may be of the first, second, and third orders in the field strength, respectively,
but may also contain higher orders. This is due to the fact that the combination of
the positive and the negative frequency parts of every partial wave, that is exp(−i𝜔pt)
× exp(i𝜔pt), results in a vanishing contribution to the total frequency. For example,
we have 𝜔1 = 𝜔1 + 𝜔2 − 𝜔2 indicating that it may belong to a third-order process.
This type of process is of basic importance for the pump–probe spectroscopy, which
will be discussed in more detail in Section 4.3.6.

Considering, however, frequency doubling with Ω(n1 = 1,n2 = 1) = 𝜔1 + 𝜔2, in
the general case, the respective wavevector k1 + k2 shows neither into the direc-
tion of partial wave 1 nor in that of partial wave 2. This is also valid for the case
with Ω(n1 = 2,n2 = −1) = 2𝜔1 − 𝜔2, where the wavevector is given by 2k1 − k2. If
the magnitude of both frequencies is comparable, the mixed frequency 2𝜔1 − 𝜔2
lies in the same region. Thus, this type of nonlinear response does not include fre-
quency multiplication, but it forms a type of response that propagates in the direction
2k1 − k2 and that is known as the photon echo (if subpulse 1 corresponding to par-
tial wave 1 and subpulse 2 corresponding to partial wave 2 are clearly separated in
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time, and pulse 2 comes first) and the transient grating technique (pulse 1 comes
first).

When studying the case of the three partial waves N = 3, the situation becomes
even more complex, and we will restrict ourselves to some selected examples
(cf. Figure 4.1). First of all, a new frequencyΩ(n1 = 1,n2 = 2,n3 = 3) =𝜔1 + 𝜔2 + 𝜔3
may be generated that has to be considered as a generalization of the third-order
harmonic generation. Furthermore, we may introduce Ω(n1 = 1,n2 = 2,n3 = −1) =
−𝜔1 + 𝜔2 + 𝜔3. If all three basic frequencies lie in the same spectral region, this
is also valid for the mixed frequency Ω(−1,1, 1) as well all other combinations
Ω(1,−1,1) and Ω(1,1,−1). However, the wavevector −k1 + k2 + k3 as well as the
two other combinations may define directions different from that of k1, k2, and k3,
in which all these third-order response signal fields propagate. These four-wave
mixing signals are usually classified to be of rephasing, kR = −k1 + k2 + k3, and
nonrephasing, kNR = k1 − k2 + k3, types. The three-pulse photon echo is an example
for a rephasing signal. In two-dimensional spectroscopy, a broader perspective on
these signals is provided. It will be discussed in Section 4.3.7.

Apparently, the extent to which higher order processes become important essen-
tially depends on the considered molecular system. To obtain a more detailed under-
standing we have to carry out an expansion with respect to the field strength.

4.3.2 Nonlinear Response Functions

In what follows we will consider the third-order nonlinear response only, which
accounts for the most frequently used spectroscopic techniques. Extending the treat-
ment of Section 4.2.2, the S-operator entering the expectation value of the dipole
operator is expanded up to third order in the field strength

d(t) = tr{Ŵeq
[
1 + S(1)+(t, t0) + S(2)+(t, t0) + S(3)+(t, t0)

]
�̂�
(I)(t)

×
[
1 + S(1)(t, t0) + S(2)(t, t0) + S(3)(t, t0)

]
}. (4.52)

The first-order part has been given in Eq. (4.39), and the other contributions read

S(2)(t, t0) =
( i
ℏ

)2
t

∫
t0

d𝜏1

𝜏1

∫
t0

d𝜏2 E(x, 𝜏1)�̂�
(I)(𝜏1) E(x, 𝜏2)�̂�

(I)(𝜏2) (4.53)

and

S(3)(t, t0) =
( i
ℏ

)3
t

∫
t0

d𝜏1

𝜏1

∫
t0

d𝜏2

𝜏2

∫
t0

d𝜏3

× E(x, 𝜏1)�̂�
(I)(𝜏1) E(x, 𝜏2)�̂�

(I)(𝜏2) E(x, 𝜏3)�̂�
(I)(𝜏3). (4.54)

After insertion into Eq. (4.52) and keeping only those terms, which are of third order
in the field, the third-order polarization can be written in terms of the third-order
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response function R(3) in analogy to Eq. (4.40) as follows:6)

P(3)(x, t) =

∞

∫
0

dt3dt2dt1 R(3)(t3, t2, t1)

× E(x, t − t3)E(x, t − t3 − t2)E(x, t − t3 − t2 − t1). (4.55)

Here, we have introduced the time arguments t1 = 𝜏2 − 𝜏1, t2 = 𝜏3 − 𝜏2, and
t3 = t − 𝜏3. Note that in comparison with Eq. (4.51), we select only a particular term
of the general nonperturbative expression. Due to the vector character of the dipole
moment operator, the response function is a tensor of rank 4 given by

R(3)(t3, t2, t1) =
( i
ℏ

)3
𝜃(t3)𝜃(t2)𝜃(t1)nmol

× tr
{

Ŵeq

[[[
�̂�

(I)(t3 + t2 + t1)
]
−
, �̂�

(I)(t2 + t1)
]
−
, �̂�

(I)(t1)
]
−
, �̂�

(I)(0)
]
−

}
.

(4.56)

The threefold commutator structure of R(3) results in eight different terms contribut-
ing to the third-order nonlinear response.7) These multitime correlation functions of
the dipole operator can be expressed as8)

R(3)(t3, t2, t1) = nmol

( i
ℏ

)3
𝜃(t3)𝜃(t2)𝜃(t1)

8∑
i=1

Ri(t3, t2, t1), (4.57)

with

R1(t3, t2, t1) = tr
{

Ŵeq�̂�
(I)(t1)�̂�

(I)(t2 + t1)�̂�
(I)(t3 + t2 + t1)�̂�

(I)(0)
}
,

R2(t3, t2, t1) = tr
{

Ŵeq�̂�
(I)(0)�̂�(I)(t2 + t1)�̂�

(I)(t3 + t2 + t1)�̂�
(I)(t1)

}
,

R3(t3, t2, t1) = tr
{

Ŵeq�̂�
(I)(0)�̂�(I)(t1)�̂�

(I)(t3 + t2 + t1)�̂�
(I)(t2 + t1)

}
,

R4(t3, t2, t1) = tr
{

Ŵeq�̂�
(I)(t3 + t2 + t1)�̂�

(I)(t2 + t1)�̂�
(I)(t1)�̂�

(I)(0)
}
,

Ri(t3, t2, t1) = −R∗
i−4(t3, t2, t1) i = 5,… , 8. (4.58)

These representation-free expressions contain the information about possible
third-order nonlinear spectroscopic techniques. Be aware of the relation to the
fourth-order rates discussed in Section 3.14.6. In the following sections, we first
specify the response functions to the cases of a multilevel system weakly coupled to
a bath and to an electronic two-level system strongly coupled to vibrational DOFs.
Subsequently, two different nonlinear spectroscopic techniques will be discussed in
more detail.

6) The present perturbation expansion treats the bra and ket evolutions of the density matrix
separately. In principle, this type of perturbation theory can also be formulated using a
time-evolution superoperator. While the resulting expressions are identical, the superoperator
formulation gives Eq. (4.55) directly, whereas the present case requires some rearrangement of the
time integrals.
7) Note that in analogy to the linear case, one can introduce a third-order nonlinear susceptibility
after switching to the frequency domain.
8) In the following equations, we will skip the vector notation which is important for experiments
only where explicit use of the laser field polarization is made.
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4.3.3 Eigenstate Expansion of the Response Functions

In order to illustrate the structure of the linear and nonlinear response functions,
Eqs. (4.41) and (4.58), we consider an electronic three-level system with states𝜙a and
energies Ea (a = g, e, f ). It is assumed that the dipole operator allows for transitions
between 𝜙g and 𝜙e and 𝜙e and 𝜙f only; that is, neglecting the vector character, we
have

�̂� = deg
||𝜙e

⟩⟨
𝜙g | + dfe|𝜙f

⟩⟨
𝜙e
|| + h.c. (4.59)

Further, the transition frequencies 𝜔eg = (Ee − Eg)∕ℏ and 𝜔fe = (Ef − Ee)∕ℏ shall be
comparable, that is 𝜔eg ≈ 𝜔fe. Initially, the system is in its ground state 𝜙g, and the
reservoir in thermal equilibrium (density operator R̂g), that is Ŵeq = R̂g|𝜙g⟩⟨𝜙g|.
Here, the equilibrium statistical operator for the reservoir in the electronic ground
state is given by

R̂g =
e−Hg∕kBT

trvib{e−Hg∕kBT}
. (4.60)

According to Eq. (3.269), the time evolution of the reduced density matrix is
obtained by taking the appropriate matrix elements of �̂�(t) =  (t − t0)�̂�(t0), with
 (t) describing the evolution of the three-level system subject to the interaction
with the reservoir vibrations. For the purpose of illustration, we use a simplified
Bloch model (Section 3.8.3).9) Within the Bloch model, the dynamics of coherences
and populations is decoupled. Using Eqs. (3.353) and (3.357), we can write for a ≠ b

𝜌ab(t) = Iab(t)𝜌ab(0), (4.61)

with

Iab(t) = e−(i𝜔ab+𝛾ab)t. (4.62)

For the population decay, we assume that it proceeds into states different from
those of the relevant three-level system. For the ground state there should be no
decay, whereas the two excited states should have a finite lifetime. Using Eq. (3.347)
together with the relation 𝛾

(pd)
aa = 0, one notices that the time evolution of the

diagonal elements can as well be given in the form of Eqs. (4.61) and (4.62).
The linear response function, Eq. (4.41), can be written as follows:

R(1)(t) = i
ℏ

𝜃(t)nmol
(
tr
{

ŴeqU+
mol(t)�̂� Umol(t)�̂�

}
− c.c.

)
(4.63)

Note that the trace still contains the time evolution of the total system, that is
three-level system plus reservoir. Performing the trace with respect to the reservoir
DOFs gives the dissipative time-evolution superoperator  (t), and the response
function becomes

R(1)(t) = i
ℏ

𝜃(t)nmol

(
trS

{
�̂�  (t)�̂� |||𝜙g

⟩⟨
𝜙g

|||} − c.c.
)

(4.64)

9) Note that going beyond the Bloch model is straightforward, but the resulting expressions are
less transparent and therefore not suitable for the present discussion.
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The trace contains the dissipative time evolution of the operator �̂� |||𝜙g
⟩⟨

𝜙g | =
deg

||𝜙e
⟩⟨

𝜙g | (cf. discussion in Section 6.3.2). Taking the trace yields |||deg
|||2𝜌eg(t)

such that

R(1)(t) = i
ℏ

𝜃(t)nmol

(|||deg
|||2Ieg(t) − c.c.

)
(4.65)

For this model, the linear susceptibility is readily obtained according to Eq. (4.45).
Performing the integration, one has

𝜒(𝜔) = −
|||deg

|||2nmol

ℏ

{
1

𝜔 − 𝜔eg + i𝛾eg
− 1
𝜔 + 𝜔eg + i𝛾eg

}
. (4.66)

For 𝜔 ≈ 𝜔eg > 0, the second term can be neglected. Viewed from the perspective of
the Fourier transform, it corresponds to a rapidly oscillating term ∝ ei(𝜔+𝜔eg)t, which
yields a vanishing time integral (rotating wave approximation, cf. Section 4.3.5). The
linear susceptibility can be split into real (dispersive) and imaginary (absorptive)
parts as follows:

𝜒(𝜔) =
|||deg

|||2nmol

ℏ

𝜔eg − 𝜔 + i𝛾eg

(𝜔 − 𝜔eg)2 + 𝛾2
eg
. (4.67)

According to Eq. (4.31), the imaginary part is proportional to the absorption coeffi-
cient. Thus, for the present model, one obtains a Lorentzian lineshape centered at
𝜔eg and having the width 𝛾eg.

Next, we focus on the third-order response functions. As an exemplary case, let us
consider R1(t3, t2, t1), Eq. (4.58), which can be written as

R1(t3, t2, t1) = tr
{

ŴeqU+
mol(t1)�̂�Umol(t1)U+

0 (t1 + t2)�̂�Umol(t1 + t2)

×U+
mol(t1 + t2 + t3)�̂�Umol(t1 + t2 + t3)�̂�

}
= tr

{
U+

mol(t1)�̂�U+
mol(t2)�̂�U+

mol(t3)�̂�Umol(t1 + t2 + t3)�̂�Ŵeq
}

= tr
{
�̂�Umol(t1 + t2 + t3)�̂�ŴeqU+

mol(t1)�̂�U+
mol(t2)�̂�U+

mol(t3)
}
.

(4.68)

The result of this rearrangement is an expression containing all time evolution oper-
ators Umol(t) on the left of the initial state, that is acting on its ket vector, whereas all
time evolution operators U+

mol(t) are on the right of the initial state, that is acting on
its bra vector.10)

Similar to the linear response function in Eq. (4.64), Eq. (4.68) still contains the
time evolution of the total system. In order to obtain an expression in terms of the
time-evolution superoperator for the three-level system in the three time intervals,
 (ti) (i = 1,2, 3), one has to make an additional assumption. Specifically, one has
to write the trace with respect to the reservoir in terms of separate traces for the
different time intervals. This requires that the reservoir correlation time is ultrashort

10) Note that this particular form provides the starting point for the development of a
diagrammatic representation of the response functions in terms of the so-called double-sided
Feynman diagrams (see Further Reading).
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such that correlations of the reservoir DOFs between different time intervals ti can
be neglected. In other words, the bath trace with respect to the whole time evolution
separates into a product of averaged time evolutions for the different time intervals.
This gives the response function (note that the superoperators act on the operators
inside the brackets only)

R1(t3, t2, t1) = trS

{
�̂�  (t3)

[
 (t2)

[
 (t1)

[
�̂�
|||𝜙g

⟩⟨
𝜙g

|||] �̂�] �̂�]} . (4.69)

Inserting Eq. (4.59) and taking the trace gives two terms:

R1(t3, t2, t1) =
|||deg

|||4Ieg(t3)Iee(t2)Ieg(t1)

+ |||deg
|||2|||dfe

|||2Ief (t3)Iee(t2)Ieg(t1). (4.70)

The interpretation of this expression in terms of the time evolution of the electronic
density matrix is as follows: Initially, the system is in the electronic ground state
when the interaction with the field promotes it into a coherence Ieg(t1)where it prop-
agates during t1. The second interaction (on the bra side) generates an electronic
population evolving during t2, Iee(t2). A third interaction with the field on the bra
side yields again an electronic coherence during t3. For the three-level system, this
coherence is between the first excited state and either the ground, Ieg(t2), or the sec-
ond excited state, Ief (t3). A further action of the dipole moment operator (coming
from the definition of the polarization, Eq. (4.22)) closes the trace.

The other response functions in Eq. (4.58) can be derived along the same lines,
and one obtains

R2(t3, t2, t1) = trS

{
�̂�  (t3)

[
 (t2)

[
�̂�  (t1)

[|||𝜙g
⟩⟨

𝜙g
||| �̂�]] �̂�]}

= |||deg
|||4Ieg(t3)Iee(t2)Ige(t1)

+ |||deg
|||2|||dfe

|||2Ief (t3)Iee(t2)Ieg(t1), (4.71)

R3(t3, t2, t1) = trS

{
�̂�  (t3)

[
�̂�  (t2)

[
 (t1)

[|||𝜙g
⟩⟨

𝜙g
||| �̂�] �̂�]]}

= |||deg
|||4Ieg(t3)Igg(t2)Ige(t1)

+ |||deg
|||2|||dfe

|||2Ief (t3)Igf (t2)Ige(t1), (4.72)

R4(t3, t2, t1) = trS

{
�̂�  (t3)

[
�̂�  (t2)

[
�̂�  (t1)

[
�̂�
|||𝜙g

⟩⟨
𝜙g

|||]]]}
= |||deg

|||4Ieg(t3)Igg(t2)Ieg(t1)

+ |||deg
|||2|||dfe

|||2Ief (t3)Ifg(t2)Ieg(t1). (4.73)

The respective expressions for Ri=5−8 can be obtained using the relation given
in Eq. (4.58). Compared to R1, we notice that R3 and R4 contain Igg(t2); that is,
after two interactions with the field, the system is in a ground state population;
note that for the present simple model, there is actually no time evolution in
state 𝜙g. Overall, the expressions can be distinguished by the phase factors of the
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different time intervals, for instance R1(t3, t2, t1) ∝ exp(−i𝜔eg(t1 + t3)), whereas
R2(t3, t2, t1) ∝ exp(i𝜔eg(t1 − t3)). This will be important for the classification
according to the phase-matching directions as given in Section 4.3.7.

4.3.4 Cumulant Expansion of the Response Functions

In what follows, an alternative to the simple three-level model with Bloch-type
relaxation will be introduced. It does not make use of the perturbation theory for
the system–reservoir coupling and takes into account the full system–reservoir
correlations when calculating the traces in Eqs. (4.41) and (4.58). It can be applied
to coupled electron-vibrational dynamics (Chapter 6) as well as to the dynamics
of high-frequency vibrations coupled to a low-frequency vibrational reservoir
(Chapter 5). Further, it is an eigenstate-free approach, that is it does not require
knowledge of the vibrational (reservoir) states of the considered system. It is based
on a method known from probability theory as the cumulant expansion. In what
follows, the cumulant expansion will be illustrated for the case of an electronic
two-level system, coupled to a not-further-specified number of vibrational DOFs, q.
The molecular Hamiltonian reads

H =
∑
g,e

Ha(q) ||𝜙a
⟩⟨

𝜙a
|| , (4.74)

and the dipole operator is given by

�̂� = deg
||𝜙e

⟩⟨
𝜙g

||| + dge
|||𝜙g

⟩⟨
𝜙e
|| . (4.75)

Often, the dependence of the transition dipole matrix elements on the vibrational
coordinates is weak and can be neglected. This so-called Condon approximation
will be used in the following derivation. Further, we assume that the system is ini-
tially in the electronic ground state with the equilibrium statistical operator Ŵeq =
R̂g

|||𝜙g
⟩⟨

𝜙g
|||; R̂g is given in Eq. (4.60), with Hg = Hg(q).

Taking the trace with respect to the electronic states and using the Condon approx-
imation, the linear response function, Eq. (4.41), can be written as

R(1)(t) = i
ℏ

𝜃(t)nmol

(|||deg
|||2trvib

{
R̂gU+

g (t)Ue(t)
}
− c.c.

)
(4.76)

Next, we introduce ΔHeg = He − Hg − Δeg and rewrite the time-evolution operator
for He as follows:

Ue(t) = e−iHet∕ℏ = e−iΔegte−i(Hg+ΔHeg)t∕ℏ

= e−iΔegtℏUg(t)Seg(t, 0), (4.77)

with Ug(t) = exp(−iHgt∕ℏ) and the real constant Δeg. The S-operator has the form

Seg(t, 0) = T̂ exp
⎧⎪⎨⎪⎩−

i
ℏ

t

∫
0

dt ΔH(g)
eg (t)

⎫⎪⎬⎪⎭ , (4.78)

where the abbreviation ΔH(g)
eg (t) = U+

g (t)ΔHegUg(t) has been introduced.
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Since U+
g (t)Ug(t) = 1, the trace expression in Eq. (4.76) becomes

trvib{R̂gSeg(t, 0)} = ⟨Seg(t, 0)⟩g = 1 − i
ℏ

t

∫
0

dt1⟨ΔH(g)
eg (t1)⟩g

+
( i
ℏ

)2
t

∫
0

dt1

t1

∫
0

dt2

⟨
ΔH(g)

eg (t1)ΔH(g)
eg (t2)

⟩
g
+… . (4.79)

In the cumulant expansion method, the following ansatz is used:⟨
Seg(t, 0)

⟩
g = eΓ(t), (4.80)

where Γ(t) has still to be computed. To this end, let us introduce a power expansion
with respect to ΔH(g)

eg such as

Γ(t) = Γ1(t) + Γ2(t) + Γ3(t) +… , (4.81)

where Γn(t) is of the nth order in ΔH(g)
eg . It is reasonable that this expansion exists

because it exists for
⟨

Seg(t, 0)
⟩

g. Since the exponent of the (time-ordered) S-operator
is of the first order with respect to ΔH(g)

eg , there is no zeroth-order contribution in
Eq. (4.81). In order to compare the present approach with the direct expansion of⟨

Seg(t, 0)
⟩

g in Eq. (4.79), we expand Eq. (4.80) and insert Eq. (4.81). This gives

eΓ(t) = 1 +
(
Γ1(t) + Γ2(t) + Γ3(t) +…

)
+ 1

2
(
Γ1(t) + Γ2(t) + Γ3(t) +…

)2 +… . (4.82)

Restricting ourselves to terms up to the second order with respect to ΔH(g)
eg yields

eΓ(t) ≈ 1 +
(
Γ1(t) + Γ2(t)

)
+ 1

2
(
Γ1(t) + Γ2(t)

)2 +…

≈ 1 + Γ1(t) +
(
Γ2(t) +

1
2
Γ2

1(t)
)
. (4.83)

A direct comparison with Eq. (4.79) gives

Γ1(t) = − i
ℏ

t

∫
0

dt1⟨ΔH(g)
eg (t1)⟩g (4.84)

and

Γ2(t) = − 1
ℏ

2

t

∫
0

dt1

t1

∫
0

dt2⟨𝛿H(g)
eg (t1)ΔH(g)

eg (t2)⟩g +
1
2
Γ2

1(t)

= − 1
ℏ

2

t

∫
0

dt1

t1

∫
0

dt2⟨ΔH(g)
eg (t2)ΔH(g)

eg (0)⟩g +
1
2
Γ2

1(t). (4.85)

The cumulant expansion provides a partial resummation of the perturbation series.
Clearly, even if only some low-order contributions such as Γ1 or Γ2 would be known,
we would have ⟨Seg(t, 0)⟩g for any order in ΔH(g)

eg . However, in general, retaining
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only low-order terms in Γ(t) would not give the exact expression for ⟨Seg(t, 0)⟩g. In
the present case, including Γ1 and Γ2 only would be called second-order cumulant
approximation. In Chapter 6, the example of harmonic vibrational DOFs will be dis-
cussed. Here, the second-order cumulant expansion is exact (cf. Section 6.2.5).

The constant Δeg has not yet been specified. The choice

Δeg = ⟨He − Hg⟩g (4.86)

is of particular advantage since in this case, one has

ΔH(g)
eg (t) = U+

g (t)(He − Hg)Ug(t) − ⟨He − Hg⟩g (4.87)

and ⟨ΔH(g)
eg (t)⟩g = 0. In other words, the first-order cumulant vanishes,Γ1(t) = 0, and

the response function can be written as

R(1)(t) = i
ℏ

𝜃(t)nmol

(|||deg
|||2e−iΔegt∕ℏeΓ2(t) − c.c.

)
(4.88)

Thus, the response function is determined by Γ2(t), which contains the autocorrela-
tion function of the thermal fluctuation of the energy gap between the two electronic
states.

Using the cumulant expansion technique, the higher-order response functions can
be expressed in terms of Γ2(t) as well. This can be shown by considering the general
four-time dipole correlation function

C(𝜏4, 𝜏3, 𝜏2, 𝜏1) = tr
{

Ŵeq�̂�
(I)(𝜏4)�̂�

(I)(𝜏3)�̂�
(I)(𝜏2)�̂�

(I)(𝜏1)
}
. (4.89)

For the purpose of illustration, we consider the same two-level system as before, Eqs.
(4.74) and (4.75).11) Taking the trace with respect to the electronic states and using
the Condon approximation, one obtains

C(𝜏1, 𝜏2, 𝜏3, 𝜏4) =
|||deg

|||4tr
{

R̂gU+
g (𝜏1)Ue(𝜏1)U+

e (𝜏2)Ug(𝜏2)U+
g (𝜏3)Ue(𝜏3)

× U+
e (𝜏4)Ug(𝜏4)

}
= |||deg

|||4e−iΔeg(𝜏1−𝜏2+𝜏3−𝜏4)∕ℏ

×
⟨

Seg(𝜏1, 0)S+
eg(𝜏2, 0)Seg(𝜏3, 0)S+

eg(𝜏4, 0)
⟩

g. (4.90)

Next, one expands all time-order exponentials according to Eq. (4.79) and reorders
the different terms to compare with the cumulant expansion equation (4.82). Assum-
ing the choice Eq. (4.86), the correlation function Eq. (4.90) can be cast into the form

C(𝜏1, 𝜏2, 𝜏3, 𝜏4) =
|||deg

|||4e−iΔeg(𝜏1−𝜏2+𝜏3−𝜏4)∕ℏ

× eΓ2(𝜏1−𝜏2)−Γ2(𝜏1−𝜏3)+Γ2(𝜏2−𝜏3)

× eΓ2(𝜏1−𝜏4)−Γ2(𝜏2−𝜏4)+Γ2(𝜏3−𝜏4). (4.91)

11) Note that along the same lines, the inclusion of a higher excited state, which enables excited
state absorption, is straightforward.
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The third-order response functions follow as:

R1(t3, t2, t1) = C(t1, t1 + t2, t1 + t2 + t3, 0), (4.92)

R2(t3, t2, t1) = C(0, t1 + t2, t1 + t2 + t3, t1), (4.93)

R3(t3, t2, t1) = C(0, t1, t1 + t2 + t3, t1 + t2), (4.94)

R4(t3, t2, t1) = C(t1 + t2 + t3, t1 + t2, t1, 0). (4.95)

These second-order cumulant expressions are valid for arbitrary strong coupling
between the electronic and vibrational coordinates. They are often used together
with model spectral densities to obtain analytical expressions for the response func-
tions (cf. Chapter 6). However, one should note that they describe gap fluctuations
only; that is, effects due to population relaxation between the electronic states are
not taken into account. Thus, the obtained line broadening is due to pure dephasing
only.12)

4.3.5 Rotating Wave Approximation

In what follows we determine the polarization component, P(n, t), using the
response functions for the case of three well-separated pulses acting sequentially
with the system. Neglecting the vector character of the field, we have

E(x, t) = E1(t + T + 𝜏)ei(k1x−𝜔1(t+T+𝜏)) + E2(t + T)ei(k2x−𝜔2(t+T))

+ E3(t)ei(k3x−𝜔3t) + c.c. (4.96)

Thus, the pulses are centered at t = −T − 𝜏, t = −T, and t = 0. Further, for the field
frequencies, we assume that 𝜔p ≈ 𝜔eg, with 𝜔eg being a characteristic transition fre-
quency of the system. The polarization itself is given by Eq. (4.55). According to the
general discussion of wave mixing in Section 4.3.1, the combination fields give rise
to a resultant wavevector K(n) and frequency Ω(n), with n = (n1,n2,n3).

In principle, the product of the three fields in Eq. (4.55) gives 63 terms. In addition,
the response function consists of eight terms. However, not all of the resulting inte-
grals are equally important. First, in the phase-matching direction, we are looking
for those combinations of fields that contribute a plane wave factor eiK(n)x. Second, as
already mentioned in Section 4.3.3, the response functions in Eqs. (4.70)–(4.73) (and
their complex conjugates, cf. Eq. (4.58)) each have a distinct combination of phase
factors. Within the so-called rotating wave approximation only those field combi-
nations are kept where the phase factors coming from the fields match those of the
response functions. For example, we have R1(t3, t2, t1) ∝ e−i𝜔eg(t1+t3), that is the respec-
tive factor from the fields would be ∝ ei(𝜔1t1+𝜔3t3). Terms without such a match yield,

12) For the present two-level system, population relaxation is likely to play a minor role on the
time scales of ultrafast spectroscopic experiments due to the large energy gap. If several excited
states are present, nonadiabatic coupling could lead to population flow between these states. Such
effects can be taken into account using perturbation theory; for details, see, for instance Mukamel
and Abramavicius [2].
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for example a factor ∝ e−i(𝜔eg+𝜔1)t1 . It is highly oscillatory and will give a vanishing
contribution upon time integration.

For well-separated pulses and combining Eqs. (4.55) and (4.96), the polarization
field envelope can be written in rotating wave approximation as

P(n, t) = e−iΩ(n)t−i(n1𝜔1+n2𝜔2)T−in1𝜔1𝜏

∫

∞

0
dt3dt2dt1 R(3)

n (t3, t2, t1)

× eiΩ(n)t3+i(n1𝜔1+n2𝜔2)t2+in1𝜔1t1 E3(t − t3)

× E2(t − t3 − t2 + T)E1(t − t3 − t2 − t1 + T + 𝜏). (4.97)

Here, R(3)
n (t3, t2, t1) is the rotating wave approximation contribution of the response

function in the phase-matching direction K(n). In what follows, this expression will
be specified to the cases of pump–probe and two-dimensional spectroscopy.

4.3.6 Pump–Probe Spectroscopy

Pump–probe spectroscopy is a widely applied method for the investigation of molec-
ular dynamics. In particular, charge and energy transfer processes can be followed on
their natural time scale. The method appeals to the intuitive picture where a pump
pulse, E1(t + T), prepares the system in a nonequilibrium state whose dynamics is
followed by monitoring the spectral changes experienced by a time-delayed probe
pulse, E2(t), passing through the sample. Specifying Eq. (4.96) to the present case,
we have

E(x, t) = E1(t + T)ei(k1x−𝜔1(t+T)) + E2(t)ei(k2x−𝜔2t) + c.c. (4.98)

A schematic view of the setup is given in Figure 4.2. With the wavevectors k1 and k2,
the resulting wavevector of the relevant polarization field component in Eq. (4.51)

Pump GSB SE

ESA

D

Pump QB

k1

ks

k2

T f

e e
e′

g g

Figure 4.2 Scheme of a pump–probe experiment with the pump and probe pulse being
characterized by the wavevectors k1 and k2, respectively. The delay between both pulses
(pulse maxima) is given by T . The field intensity for a given delay time along the direction
ks = k2 is measured at the detector D. To obtain spectral information, the signal field can be
dispersed, for example using a prism. The level schemes on the right show different
situations and the corresponding contributions to the pump–probe signal. First, for a
three-level system with 𝜔eg ≈ 𝜔fe , one has ground state bleach (GSB), stimulated emission
(SE), and excited state absorption (ESA). If 𝜔eg ≈ 𝜔e′g, quantum beats (QBs) can be observed.
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will be

kPP = K(−1,1, 1) = K(1,−1,1) = k2, (4.99)

and likewise,Ω(−1,1, 1) = Ω(1,−1,1) = 𝜔PP = 𝜔2. Thus, the signal field travels in the
probe field direction, and the probe field acts simultaneously as a heterodyne field.
The respective polarization field component will be called P(n, t) = PPP(t) in what
follows.

In this so-called self-heterodyned detection, the total intensity of the local
oscillator (here, the probe field E2(t)) plus signal (EPP(t)) fields is given by
Itotal(t) = (nr(𝜔PP)c∕4𝜋)||E2(t) + EPP(t)||2. Here, nr(𝜔PP) is the index of refraction
at the signal field frequency. Eliminating the known probe field intensity and
assuming that the bare signal field intensity is negligible, the intensity of the
self-heterodyned pump–probe signal is given by

IPP(t) =
nr(𝜔PP)c

4𝜋
Re[E∗

2(t)EPP(t)]. (4.100)

As pointed out in Section 4.3.1, the signal and polarization fields are proportional,
that is EPP(t) ∝ i𝜔PPPPP(t). Inserting this relation into Eq. (4.100) and assum-
ing a constant index of refraction across the spectrum of the probe pulse, the
time-integrated pump–probe signal is given by (skipping the constant prefactors
and indicating the delay time dependence of the polarization)13)

SPP(𝜔2,T) = 𝜔2

∞

∫
−∞

dt Im[E2(t)P∗
PP(t,T)]. (4.101)

Note that P∗
PP(t,T) refers to the third-order polarization only, whereas in general,

there would also be a contribution of the first order in the probe field along the direc-
tion k2. In the actual experiment, this separation is realized by subtracting the signal
obtained without a pump field from the total signal.

Using a Fourier decomposition of E2(t) and PPP(t,T), Eq. (4.101) can be written as

SPP(𝜔2,T) = 𝜔2

∞

∫
−∞

d𝜔
2𝜋

Im[E2(𝜔)P∗
PP(𝜔,T)]. (4.102)

The integrand defines the so-called dispersed pump–probe signal,

Sdisp(𝜔,T) = Im[E2(𝜔)P∗
PP(𝜔,T)]. (4.103)

It can be obtained after passing the signal through a monochromator (cf. Figure 4.2).
Notice that apart from the effects due to the finite spectral width of the probe pulse
(E2(𝜔)), the dispersed signal carries the same information as the time-integrated sig-
nal, if for the latter the probe pulse frequency is varied.

The polarization field component, Eq. (4.97), can be specified to the present case.
Note that one has to take into account that according to Eq. (4.99) there are two

13) Note that experimental signals are often normalized with respect to the total incoming
intensity (nr(𝜔2)c∕4𝜋) ∫ dt||E2(t)||2.
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possibilities to obtain kPP. They differ in the order of the first two field interactions.
This results in (note that the field envelopes are assumed to be real-valued functions)

PPP(t,T) = −i
nmol

ℏ3 e−i𝜔2t

∞

∫
0

dt3dt2dt1

× E2(t − t3)E1(t − t3 − t2 + T)E1(t − t3 − t2 − t1 + T)
×
{

e−i𝜔1t1+i𝜔2t3 RR(t3, t2, t1) + ei𝜔1t1+i𝜔2t3 RNR(t3, t2, t1)
}
.

(4.104)

Here, we introduced the so-called rephasing,

RR(t3, t2, t1) = R2(t3, t2, t1) + R3(t3, t2, t1) + R5(t3, t2, t1), (4.105)

and nonrephasing,

RNR(t3, t2, t1) = R1(t3, t2, t1) + R4(t3, t2, t1) + R6(t3, t2, t1), (4.106)

response functions. Equation (4.104) can be used to calculate either the
time-integrated, Eq. (4.101), or the dispersed, Eq. (4.103), signal. However,
due to the multiple convolution of the response functions with the fields, this
provides little physical insight. Time-resolved experiments are often performed for
situations where the so-called impulsive limit applies. Here, the pulses are much
shorter than the typical molecular dynamics time scales but longer than the optical
period. In this limit, the pulse envelopes can be approximated by delta functions,
and the time integrations can be performed. Notice, however, that such pulses will
be spectrally extremely broad such that no frequency resolution is available. For the
detection, this problem is circumvented by spectrally dispersing the signal.

Applying this limit to the pump pulse, one notices that the two pulse actions
coincide such that only t1 = 0 contributes to the integral, that is E1(t − t3 −
t2 + T)E1(t − t3 − t2 − t1 + T) ≈ A2

1𝛿(t1)𝛿(t − t3 − t2 + T), where A1 is the field
amplitude. For the probe field, we have E2(t − t3) ≈ A2𝛿(t − t3). Hence, in the
impulsive limit, Eq. (4.104) becomes

PPP(t,T) = −i
nmol

ℏ3 A2
1A2𝜃(t)

{
RR(t,T, 0) + RNR(t,T, 0)

}
. (4.107)

For illustration, let us consider the three-level system 𝜙g, 𝜙e, 𝜙f sketched in
Figure 4.2. In the Bloch-type limit, the relevant response functions, Eqs. (4.70)–(4.73),
take the following form:

Ri=1,2(t,T, 0) =
|||deg

|||4Ieg(t)Iee(T), (4.108)

Ri=3,4(t,T, 0) =
|||deg

|||4Ieg(t)Igg(T), (4.109)

Ri=5,6(t,T, 0) = −|||deg
|||2|||dfe

|||2Ife(t)Iee(T). (4.110)

These expressions show that after the pump pulse action, the system is in a popula-
tion state either with respect to the ground state𝜙g or the first excited state𝜙e. There,
it evolves during the delay time T before the probe pulse converts the population into
a coherence Ieg(t) or Ife(t).
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The dispersed pump–probe signal, Eq. (4.103), becomes (using 𝛾gg = 0 for the
ground state 𝜙g and E2(𝜔) ≈ A2 for the impulsive limit)

Sdisp(𝜔,T) = 2A2
1A2

2
nmol

ℏ3 Re
∫

∞

0
dt ei𝜔t

×
{

R1(t,T, 0) + R3(t,T, 0) + R5(t,T, 0)
}

= 2A2
1A2

2
nmol

ℏ3

⎧⎪⎨⎪⎩
|||deg

|||4𝛾eg(e−𝛾eeT + 1)

(𝜔 − 𝜔eg)2 + 𝛾2
eg

−
|||deg

|||2|||dfe
|||2𝛾fee−𝛾eeT

(𝜔 − 𝜔fe)2 + 𝛾2
fe

⎫⎪⎬⎪⎭ .
(4.111)

The signal consists of three contributions as shown in Figure 4.2: (i) stimulated
emission (SE) from the state 𝜙e prepared by the pump pulse (R1), (ii) ground state
bleaching (GSB) where the system is in the ground state 𝜙g after the pump pulse
interactions,14) and (iii) excited state absorption (ESA) between the excited state pre-
pared by the pump pulse,𝜙e, and the second excited state,𝜙f . Compared to the linear
absorption, GSB and SE cause a reduction, whereas ESA gives an increase in the sig-
nal around 𝜔eg and 𝜔fe, respectively.15) With increasing delay time T, the signal will
diminish. In fact, if the system relaxes back to the ground state, we have in equi-
librium Sdisp(𝜔,T → ∞) = 0. The present simple relaxation model does not capture
this behavior, and a more elaborate treatment, for example according to the Redfield
model, is needed. The application of pump–probe spectroscopy to the relaxation of a
high-frequency vibrational mode is given in Figure 5.12, and the pump–probe signal
of a solvated dye molecule is shown in Figure 6.3.

In cases where there is a third state,𝜙e′ , with𝜔eg ≈ 𝜔e′g, a new type of contribution
can be expected besides SE and GSB. As sketched in Figure 4.2, the two interactions
with the pump pulse can prepare a coherence between states 𝜙e and 𝜙e′ , leading to
a time evolution Ie′e(t2) (and Iee′ (t2)) in the response function R1. Using the same
approximations as for Eq. (4.111), this contribution to the response function reads

R1(t,T, 0) =
|||deg

|||2|||de′g
|||2Ie′g(t)Ie′e(T)

= |||deg
|||2|||de′g

|||2e−i𝜔e′gt−𝛾e′gte−i𝜔e′eT−𝛾e′eT
. (4.112)

Therefore, there is an oscillatory behavior of the signal with frequency 𝜔e′e (the
so-called quantum beats [QBs]) as a function of the delay time T.

Pump–probe spectroscopy has the drawback that time and excitation–frequency
resolution are interdependent. The impulsive limit used for illustration provides
optimal resolution with respect to the delay time dependence. But, such an excita-
tion will be spectrally very broad, which reduces the spectral resolution. Conversely,
a spectrally narrow pump pulse will be broad in time domain, thus diminishing the

14) The name GSB derives from the fact that due to the pump pulse interaction there are fewer
molecules in their ground state. Since the pump–probe signal is taken as the difference with respect
to the nonexcited case, the ground state appears to be bleached, that is there is less absorption.
15) Note that experimental data are often shown with a different sign, that is GSB/SE are taken
negative, and ESA positive.



202 4 Interaction of Molecular Systems with Radiation Fields

time resolution (see also the discussion in Section 6.5). Hence, there will be some
optimum concerning the separation of transitions and time scales of dynamics as
far as the observation with pump–probe spectroscopy is concerned. It is important
to note that using the frequency-dispersed signal detection, this problem is resolved
as far as the probe pulse is concerned. Here, according to Eq. (4.103), a spectrally very
broad probe field is even desirable to recover the full spectral information contained
in the signal field.

4.3.7 Two-dimensional Spectroscopy

The response function R(3)(t3, t2, t1) depends on three time intervals. Pump–probe
spectroscopy makes use of two of these intervals only, that is the time before, t2, and
after, t3, the interaction of the probe pulse. The full information contained in R(3) can
be explored using three distinct pulses according to Eq. (4.96). The signal is detected
in the heterodyne mode with the additional local oscillator field having the envelope
ELO(t − tLO). Hence, the signal becomes (neglecting prefactors)

Ss(tLO,T, 𝜏) =

∞

∫
−∞

dt Im[ELO(t − tLO)P∗
s (t,T, 𝜏)]. (4.113)

The two-dimensional spectrum is obtained by taking the Fourier transform with
respect to tLO and 𝜏, that is

Ss(Ωd,Ωe,T) =

∞

∫
0

dtLO

∞

∫
0

d𝜏 eiΩdtLO eiΩe𝜏S2D(tLO,T, 𝜏). (4.114)

As far as the detection of the signal field is concerned, this is analogous to
pump–probe spectroscopy. However, by scanning the pulse separation variable
𝜏 and performing a Fourier transformation of the signal with respect to this
variable, one circumvents the time–frequency interdependence and obtains a
frequency-resolved signal using excitation pulses with a very broad spectrum. In
fact, all pulses can be taken in the impulsive limit, and still, spectral resolution is
obtained. In this limit, the three time arguments of S2D in Eq. (4.114) correspond
to the delay times between the four pulses. In terms of the response functions, we
have (t1, t2, t3) = (tLO,T, 𝜏). Two-dimensional spectra are presented in the plane of
the excitation, Ωe, and detection, Ωd, frequencies as a function of the delay time T.

In two-dimensional spectroscopy, one distinguishes three phase-matching direc-
tions given by the following conditions for the wavevector K(n1,n2,n3):

kR = K(−1,1, 1) = −k1 + k2 + k3, (4.115)

kNR = K(1,−1,1) = k1 − k2 + k3, (4.116)

kDQ = K(1,1,−1) = k1 + k2 − k3, (4.117)



4.3 Nonlinear Optical Response 203

and accordingly for the frequencies Ω(n1,n2,n3). The respective contributions are
called rephasing, kR, nonrephasing, kNR, and double-quantum coherence, kDQ,
signals. The related polarization components are readily obtained from Eq. (4.97)
within the rotating wave approximation.

The rephasing, RR(t3, t2, t1), and nonrephasing, RNR(t3, t2, t1), response func-
tions have already been defined in Eqs. (4.105) and (4.106), respectively. The
double-quantum coherence response function is given by

R(3)
DQ(t3, t2, t1) = R4(t3, t2, t1) + R7(t3, t2, t1). (4.118)

In what follows we specify these contributions for a three-level system 𝜙g, 𝜙e, 𝜙f
sketched in Figure 4.2 with the simple relaxation model, according to Eqs.
(4.70)–(4.73). For the rephasing contribution, we obtain

R(3)
R (t3, t2, t1) =

|||deg
|||4Ieg(t3)Iee(t2)Ige(t1)

+ |||deg
|||4Ieg(t3)Igg(t2)Ige(t1)

− |||deg
|||2|||dfe

|||2Ife(t3)Iee(t2)Ige(t1). (4.119)

For the nonrephasing contribution, we have

R(3)
NR(t3, t2, t1) =

|||deg
|||4Ieg(t3)Iee(t2)Ieg(t1)

+ |||deg
|||4Ieg(t3)Igg(t2)Ieg(t1)

− |||deg
|||2|||dfe

|||2Ife(t3)Ife(t2)Ieg(t1). (4.120)

Inspecting these two expressions, we notice that the rephasing contributions have
a phase dependence ∝ e−i𝜔eg(t1−t3), whereas for the nonrephasing contributions, it is
∝ e−i𝜔eg(t1+t3). Thus, for the rephasing contribution, the phase cancels for t1 = t3. This
fact is not only responsible for the name, but it is also explored in photon echo exper-
iments (see Further Reading).

Finally, we have for the double-quantum coherence contribution:

R(3)
DQ(t3, t2, t1) =

|||deg
|||2|||dfe

|||2Ieg(t3)Ifg(t2)Ieg(t1)

− |||deg
|||2|||dfe

|||2Ife(t3)Ifg(t2)Ieg(t1), (4.121)

which is not observed for a two-level system.
Two-dimensional spectroscopy is an ideal time-domain experiment such that the

impulsive limit can be taken for all fields. This allows to perform all four time inte-
grations in Eq. (4.113) to obtain for the signal in a particular phase-matching direc-
tion (Ai are the field amplitudes)

Ss(tLO,T, 𝜏) = ALOA3A2A1
nmol

ℏ3 Re[Rs(tLO,T, 𝜏)], (4.122)
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with s = (R, NR, DQ). For the purpose of illustration let us discuss the rephasing
and nonrephasing signals for the case where T = 0, that is there is no evolution
during the population time. This implies that R2 = R3 and R1 = R4 in Eqs. (4.119)
and (4.120), respectively. For the rephasing signal, we have

SR(Ωd,Ωe, 0) = ALOA3A2A1
nmol

2ℏ3

⎧⎪⎨⎪⎩
2|||deg

|||4
[i(Ωe + 𝜔eg) − 𝛾eg][i(Ωd − 𝜔eg) − 𝛾eg]

+
|||deg

|||4
[i(Ωe − 𝜔eg) − 𝛾eg][i(Ωd + 𝜔eg) − 𝛾eg]

−
|||dfe

|||2|||deg
|||2

[i(Ωe + 𝜔eg) − 𝛾eg][i(Ωd − 𝜔fe) − 𝛾fe]

−
|||dfe

|||2|||deg
|||2

[i(Ωe − 𝜔eg) − 𝛾eg][i(Ωd + 𝜔fe) − 𝛾fe]

⎫⎪⎬⎪⎭ , (4.123)

and for the nonrephasing signal, we obtain

SNR(Ωd,Ωe, 0) = ALOA3A2A1
nmol

2ℏ3

⎧⎪⎨⎪⎩
2|||deg

|||4
[i(Ωe − 𝜔eg) − 𝛾eg][i(Ωd − 𝜔eg) − 𝛾eg]

+
2|||deg

|||4
[i(Ωe + 𝜔eg) − 𝛾eg][i(Ωd + 𝜔eg) − 𝛾eg]

−
|||dfe

|||2|||deg
|||2

[i(Ωe − 𝜔eg) − 𝛾eg][i(Ωd − 𝜔fe) − 𝛾fe]

−
|||dfe

|||2|||deg
|||2

[i(Ωe + 𝜔eg) − 𝛾eg][i(Ωd + 𝜔fe) − 𝛾fe]

⎫⎪⎬⎪⎭ . (4.124)

Inspecting these expressions, we first notice that rephasing and nonrephasing spec-
tra will be observed in different quadrants of the (Ωe,Ωd) plane. That is, for rephas-
ing, one has (−,+) and (+,−), whereas for nonrephasing, the quadrants are (+,+)
and (−,−). Often, one assumes Ωd > 0 such that half of the terms in Eqs. (4.123) and
(4.124) can be neglected.

Second, the Fourier transform yields a complex signal where each dimension, Ωd
and Ωe, contains a real and an imaginary part being called absorptive and dispersive
contributions, respectively (cf. Eq. (4.67)). In the two-dimensional spectrum, both
contributions are overlaid such that by taking the real part of Eqs. (4.123) and (4.124)
one does not obtain a purely absorptive spectrum but rather a mixture of the indi-
vidual absorptive and dispersive components. This circumstance complicates the
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overall shape of the spectrum, which for multilevel systems renders the analysis to
become a difficult task. To cope with this situation, one can extract the absorptive
part of the two-dimensional signal by adding rephasing and nonrephasing contribu-
tions according to

Sabs(Ωd,Ωe, 0) = Re
{

SR(Ωd,−Ωe, 0) + SNR(Ωd,Ωe, 0)
}

= ALOA3A2A1
nmol

ℏ3

⎧⎪⎨⎪⎩
2|||deg

|||4𝛾2
eg

[(Ωe − 𝜔eg)2 + 𝛾2
eg][(Ωd − 𝜔eg)2 + 𝛾2

eg]

−
deg|2|dfe|2𝛾eg𝛾fe

[(Ωe − 𝜔eg)2 + 𝛾2
eg][(Ωd − 𝜔fe)2 + 𝛾2

fe]

}
. (4.125)

Different situations are sketched in Figure 4.3. In panel (a), the case of a two-level
system is plotted (that is, only the first term of Eq. (4.125)). Adding a third level
(panel (b)) yields ESA for excitation at 𝜔eg and detection at 𝜔fe. For level schemes
having coupled transitions, the so-called cross-peaks appear for Ωe ≠ Ωd (panel (c)).

(a)

(b)

(c)

(d)

Figure 4.3 Schematic view of different scenarios of two-dimensional spectroscopy. The
signal is shown as a function of excitation, Ωe, and detection, Ωd, frequencies with the
diagonal (Ωe = Ωd) being marked by the line (cf. Eq. (4.125)). (a) For a two-level system, one
observes a peak on the diagonal due to GSB (1) and SE (2) processes. (b) For a three-level
system, one has in addition a peak due to ESA (3), which has a different sign. (c) For a
three-level system with close-lying excited states (in the observation window), there are
peaks due to GSB/SE on the diagonal. If both transitions share the same ground state as is
the case for interacting systems, there appear cross-peaks off the diagonal. For example, (1)
for excitation of the higher transition but detection at the lower transition where GSB is
observed. If population relaxation is included with rate krel, the intensities of the peaks
change, and new contributions become possible such as SE (2) below the diagonal. (d)
Chemical exchange spectroscopy measures the interconversion of two species in
equilibrium by tagging a transition with the excitation pulses. With increasing population
time, cross-peaks appear, allowing to extract the exchange rate kexc.
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They provide information, for example on the existence and strength of the coupling
(an example is given in Figure 5.16).

Taking into account the population relaxation, redistribution of intensity between
peaks and appearance of new peaks can be observed. This is shown in Figure 4.3c,
where population relaxation between the two excited states leads, for instance, to a
redistribution of intensity from the upper diagonal peak to the peak below the diag-
onal due to the stimulated emission channel (an example is given in Figure 9.4).16)

Two-dimensional spectroscopy can also be used to investigate the so-called chem-
ical exchange, that is the interconversion between species, for instance, due to iso-
merization (cf. Figure 2.4) in equilibrium. Here, a transition of one species is initially
tagged by the excitation pulses. If the lifetime of this excitation exceeds the time scale
for interconversion, the emergence of the new species having a different transition
frequency can be observed in the cross-peak region, as shown in Figure 4.3d (for an
application, see Figure 8.4).

4.4 Field Quantization and Spontaneous Emission
of Light

If an excited electronic state has been prepared as a result of a photoabsorption
process in the molecule, this state has a finite lifetime. It is a consequence of spon-
taneous transitions to the electronic ground state accompanied by a photoemission
process. The radiative decay results from the coupling of the molecule to the vacuum
state of the electromagnetic field. The appropriate description therefore demands
for a quantization of the radiation field. Here, we only give an intuitive picture and
present some formulas for further use in Chapter 9.

Since the radiation field can be considered as a reservoir coupled to the molecu-
lar electronic states, the spontaneous emission of a photon is described in analogy
to the transition processes resulting from system–reservoir coupling discussed in
Chapter 3. The specific point here, of course, is the form of the coupling operator
Hint between the electronic states and the quantized radiation field. One usually
starts with the minimal coupling Hamiltonian, Eq. (4.8). However, instead of treat-
ing the radiation field classically, a quantum description is introduced. In doing so,
we assume that the radiation field is of low intensity such that the term ∝ A2 can
be neglected as compared with the one ∝ pjA. Specifying our consideration to elec-
tronic transitions only, the interaction Hamiltonian follows as17)

Hint = − e
melc

∑
j

pjA(rj). (4.126)

Field quantization can be achieved by expanding the vector potential A(r) in terms
of plane waves, with wavevectors k pointing in the propagation direction. Usually,

16) Population relaxation effects can be accounted for using, for instance, a response function
formulation in terms of direct propagations, see Further Reading.
17) Note that, in principle, both terms of the minimal coupling Hamiltonian can be accounted for
by applying a unitary transformation similar to Eq. (4.10). For the calculation of the emission rate,
it suffices to stay with the linear term alone (see also Section 9.10.2).
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this is done assuming that the radiation field is contained in a volume L3 (box with
lengths L, quantization volume). This gives

A(r) =
∑
𝜆,k

Nkn
𝜆k
[
â
𝜆keikr + h.c.

]
. (4.127)

The vector potential is a transverse field, and every partial wave can be character-
ized by two (linear independent) transverse (kn

𝜆k = 0) polarization directions with
unity vectors n

𝜆k (𝜆 = 1,2). Further, we introduced the normalization constant Nk =
(2𝜋ℏc2∕L3

𝜔k)1∕2 as well as the photon dispersion relation𝜔k = c|k|. Finally, we have
the photon creation and annihilation operators, â+

𝜆k and â
𝜆k, respectively, which ful-

fill the commutation relations of the harmonic oscillator operators (cf. Section 2.5.2).
With the help of these operators, the energy of the photon field can be written as18)

Hphot =
∑
𝜆,k
ℏ𝜔k(a+

𝜆ka
𝜆k + 1∕2). (4.128)

Returning to Eq. (4.126), we arrive at the following interaction Hamiltonian:

Hint = − e
melc

∑
j

∑
𝜆,k

Nkpjn𝜆k
[
â
𝜆keikrj + h.c.

]
. (4.129)

In the remaining part of this section, this interaction Hamiltonian will be used
to calculated the rate ke→g for transitions from the excited electronic state ||𝜙e

⟩
to

the ground state |||𝜙g
⟩

accompanied by the spontaneous emission of a photon with
energy ℏ𝜔k and polarization 𝜆. In doing so, we take the continuum limit for the
quantization volume (L3 → ∞) and use

∑
k → (L∕2𝜋)3 ∫ dk. This gives

ke→g =
2𝜋
ℏ

∑
𝜆

L3

(2𝜋)3 ∫
d3k

∑
M,N

feM
|||⟨0| ⟨𝜙e

|| ⟨𝜒eM
||Hint

|||𝜒gN
⟩ |||𝜙g

⟩ |𝜆k⟩|||2
× 𝛿(EeM − ℏ𝜔k − EgN ). (4.130)

The excited electron-vibrational state with energy EeM and with zero photons (vac-
uum state |0⟩) decays into the state, with the energy EgN of the electronic ground
state releasing a photon in state |𝜆k⟩ and of energy ℏ𝜔k. The initial population of
the vibrational levels of the excited electronic states has been described by the ther-
mal distribution feM , and a summation with respect to all vibrational levels of the
final state is performed. Inserting the expression for the interaction Hamiltonian,
one obtains

ke→g =
e2

2𝜋m2
elc

3

∑
𝜆

∫
do

∞

∫
0

d𝜔k 𝜔k

∑
M,N

feM

×
∑

j
∣
⟨
𝜙e
|| ⟨𝜒eM

|| eikrj n
𝜆kpj

|||𝜒gN
⟩ |||𝜙g

⟩
∣2 𝛿(EeM − EgN − ℏ𝜔k). (4.131)

Here, the three-dimensional wavevector integral has been rewritten by introducing
spherical coordinates and, afterward, by replacing the ∣ k ∣-integral by a frequency
integral. The integration with respect to the unit sphere in k-space gives ∫ dΩ∕2𝜋.

18) In order to derive this expression, one has to start from Eq. (4.9) and use the relations (4.5) and
(4.6) to obtain the quantized form of the physical fields.
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The long-wavelength approximation can be used to simplify this expression, that is
employing that krj ≈ kXm is a small quantity to replace the exponential function in
the matrix element by 1. This corresponds to the dipole approximation since one can
replace the electronic matrix element of the momentum operator by the transition
dipole moment. To show this, we start with the equation of motion for the electronic
coordinate operator rj given by

iℏ 𝜕
𝜕t

rj = [rj,Hel]− = iℏ
pj

mel
. (4.132)

Thus, the matrix elements of the momentum operator can be written as

⟨𝜙e|∑
j

n
𝜆kpj|𝜙g⟩ = −i

mel

ℏ

n
𝜆k

∑
j
⟨𝜙e|(rjHel − Hel rj)|𝜙g⟩

= −i
mel

ℏ

n
𝜆k(Eg − Ee)

∑
j
⟨𝜙e|rj|𝜙g⟩

= i
mel

ℏe
(Ee − Eg)n𝜆kdeg. (4.133)

Here, deg is the transition dipole matrix element (which should be independent
of the nuclear coordinates), and Ee and Eg are the electronic energy levels. To
get the final formula used in Section 6.4 to calculate the emission spectrum
related to the transition between two electronic states coupled to nuclear DOFs,
we have to compute

∑
𝜆
∫ do |n

𝜆kdeg|2. In order to do this, we note that an arbi-
trary vector A if expanded in the basis that is spanned by the two transversal
polarization unit vectors n

𝜆k and the longitudinal unit vector k∕|k| is written as
A = [kA]k∕k2 +

∑
𝜆
[n

𝜆kA]n
𝜆k. Thus, we may write for the expression including the

transition dipole moment
∑
𝜆
|n

𝜆kdeg|2 = |deg|2 − |degk|2∕k2. Carrying out the solid
angle integration ∫ do, we obtain 8𝜋|deg|2∕3 and the rate results as (note 𝜔k → 𝜔

and |deg|2 → |deg|2)

ke→g =

∞

∫
0

d𝜔
4𝜔3|||deg

|||2
3c3

∑
M,N

feM|⟨𝜒eM|𝜒gN⟩∣2 𝛿(EeM − EgN − ℏ𝜔). (4.134)

Since the frequency integration is restricted by the 𝛿-function, we replaced Ee − Eg
by ℏ𝜔.
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5

Vibrational Dynamics: Energy Redistribution, Relaxation,
and Dephasing

In Chapter 3, we introduced some fundamental concepts for the description of
quantum dynamics ranging from the coherent (Schrödinger equation) to the
incoherent (Pauli master equation) regime. Density matrix theory was shown
to provide a versatile tool for all types of dynamics, thus establishing the link
between these two limits. The type of dynamics realized in an actual system,
of course, depends on the Hamiltonian describing the way active and reservoir
DOFs interact with each other. The definition of active coordinates is closely
related to the type of preparation of the initial state, for instance due to photon
absorption.
In the present chapter, we discuss different scenarios for vibrational dynamics in
systems ranging from simple diatomic molecules in solution to large polyatomic
molecules in the gas or condensed phase. The key to the derivation of vibrational
energy transfer rates for inter- and intramolecular vibrational energy flow
within a given adiabatic electronic state is provided by a low-order expansion
of the respective interaction Hamiltonian. This approach allows to define the
parameters entering the system–reservoir Hamiltonian on a microscopic level.
For the specific case of the Caldeira–Leggett model, a generalized Langevin
equation for the dynamics of an active coordinate under the influence of
dissipative and stochastic forces is derived. It provides a route to the calculation
of spectral densities. Finally, a quantum-classical approach is introduced, where
the quantized active coordinate is coupled to a classical bath. It is particularly
well suited for the calculation of stationary and time-resolved infrared spectra.

5.1 Introduction

The investigation of vibrational energy flow in polyatomic molecules is of pivotal
importance for the understanding of chemical reaction dynamics. In Section
2.5.3, it was pointed out that the definition of reaction coordinates comes along
with the incorporation of a large number of environmental DOFs. If the latter are
only weakly coupled, they still might cause energy dissipation out of the reaction
coordinate. If there is a stronger coupling to specific environmental motions, this

Charge and Energy Transfer Dynamics in Molecular Systems,
Fourth Edition. Volkhard May and Oliver Kühn.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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might provide a means, for instance to accelerate the reaction dynamics by helping
to overcome potential barriers. These two examples already indicate that the type
of dynamics may cover the whole range from the incoherent to the coherent
regime.

The starting point for the description of vibrational energy flow will be a situation
in which energy is contained in specific vibrational modes of a molecule. Such a state
could have been prepared, for example by an external laser field (cf. Section 6.5).
Taking a time-dependent point of view, this initial state often can be thought of as
a superposition of eigenstates of the vibrational Hamiltonian (cf. Eq. (6.104)). Then,
the subsequent dynamics of the system as characterized, for example by the survival
amplitude equation (3.29), will show a behavior similar to the ones depicted
in Figure 3.2. An experimental example is given in Figure 5.1, where results are
shown for the creation and observation of a superposition state composed of a
so-called Fermi resonance pair of states (cf. Section 5.2.1 and Figure 5.3).

For large polyatomics, knowledge of these eigenstates is, however, hardly avail-
able. Therefore, the interpretation of experiments conveniently starts with some
zeroth-order states chosen according to the preparation conditions. For an excitation
with a laser field, for instance, this leads to a definition of the zeroth-order states
in close relation to the classification into optically (or infrared) bright and dark
states, depending on whether there is some oscillator strength for the transition
to the considered state. Typical choices for the zeroth-order states are derived from,
for example normal modes or localized vibrational modes along particular internal
coordinates. In terms of the vibrational Hamiltonian, this approach could imply a
Taylor expansion of the adiabatic PES allowing the specification of the zeroth-order
states and the couplings between them. In more general terms, the PES can be
written using the following correlation expansion (here for N coupled DOFs, not
necessarily normal-mode coordinates):

V(q1,… , qN ) =
N∑

n=0
V (n)(q1,… , qN ). (5.1)

Here, V (0) = V({qj = 0}) is the energetic off-set, the one-mode potential is given
by V (1)(q1,… , qN ) =

∑
iV({qj≠i = 0}, qi), the two-mode correlation potential is

V (2)(q1,… , qN ) =
∑

i<jV({qk≠i,j = 0}, qi, qj)) − (N − 2)V (1)(q1,… , qN ), and so on.
While this concept is straightforwardly applied to polyatomics in the gas phase,

under certain conditions, it can be transferred to the condensed phase as well
where, for instance the system and the reservoir part of the Hamiltonian are cou-
pled by a potential due to a correlation expansion. The relaxation of energy from an
initially excited state into other vibrational DOFs of a polyatomic molecule is called
intramolecular vibrational redistribution (IVR). IVR will be on focus in Section 5.2
where we consider collision-free polyatomic molecules being observable in a molec-
ular beam, for instance. Neglecting radiative couplings leading to emission also, it is
clear from the outset that the total energy of the molecule is conserved. Depending
on the number of DOFs and the couplings between them, the vibrational dynamics
as observed in time-domain spectroscopy can cover a broad range of regimes. It
may extend from a damped oscillation to an exponential decay at early times and to
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Figure 5.1 Pump–probe signal corresponding to the
[
C6H5OH

]+ ion yield after excitation
of a pair of vibrational states (so-called Fermi resonance, cf. Figure 5.3) in the S1 electronic
state of phenol. In the signal, the population of one of the zeroth-order states is projected
out, that is it is proportional to Psurv(t) (see Eq. (3.29)). The overall decay of the signal is
caused by H atom abstraction due to tunneling. Panels (a) and (c) correspond to different
pairs having different initial vibrational energies. While in (a) IVR can be neglected, in panel
(c) it causes a dephasing of the regular oscillations. Panel (b) shows the initial behavior
of (a), with the red lines giving the result of a decomposition into decaying (dashed line)
and oscillatory (thin line) contributions (figure courtesy of Kyung Chul Woo, for more details
see also Woo and Kim [1]).

a power law decay at intermediate times before a stationary value is reached. In
Section 5.2, how these different regimes can be rationalized will be discussed.
Golden Rule-type approaches to IVR apparently cannot account for such a rich
dynamics. However, going beyond the simple Golden Rule requires knowledge
of the molecule’s Hamiltonian, which is not easily obtained for larger systems. The
useful concepts of the tier model and the state space approach will be introduced
in Section 5.2.
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The simplest condensed-phase situation one can study is the vibrational dynam-
ics of a single diatomic solute molecule in an atomic solvent (infinite dilution limit).
Here, the interaction between both subsystems will lead to energy dissipation into
the solvent, where it is stored as translational motion. The irreversible energy trans-
fer between the solute and the solvent is termed vibrational energy relaxation (VER)
and will be on focus in Section 5.3.1) An example for the case that the solvent is a
rare gas matrix is shown in Figure 5.2.

The dynamics will of course become more complex if we go to molecular solvents.
However, as will be shown in Section 5.3, the theoretical framework for modeling
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Figure 5.2 Pump–probe spectroscopy of the vibrational dynamics of a diatomic molecule
(I2) in a rare gas lattice (Kr). (a) Potential energy curves of the ground state X , the valence B
state, and an ionic E state of I2 if embedded in the Kr lattice. The solid lines correspond
to calculations where the Kr lattice is relaxed to its minimum configuration for a given I2
bond distance R. In contrast, the dashed lines display results for the Kr lattice frozen at its
equilibrium configuration (in the absence of the guest molecule). The dotted ionic state
curve corresponds to a fixed lattice as well. (b) Pump–probe spectra (the signal is measured
in terms of the fluorescence from the ionic states) for pumping at 500 nm (transition from
the X to the B state) and probing at different wavelengths (from the B to the E state, cf.
the arrows in (a)). Shown are the probe beam absorption spectra versus the delay time
between the pump and the probe pulse and for different probe wavelengths (numbers
at the curves in (b)). Upon increasing the probe wavelength, the wave packet dynamics is
tested at different energies and thus the bond lengths in the B state. The phase
and frequency of the oscillations due to coherent I2 bond vibration change as does
the decay time of the oscillatory signal. This information from different pump–probe
measurements can be used to construct an effective potential, which is shown with solid
squares in (a) (Bargheer [2] – Reproduced by permission of the PCCP Owner Societies ).

1) Note that according to our classification, this type of energy transfer would be of the dissipative
type. Using the term “VER” in this chapter, we follow the convention which is widely adopted.
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VER dynamics is rather generic, provided that the abovementioned low-order
expansion of the total PES can be performed. This is most straightforward if the sol-
vent is, for instance a low-temperature solid-state matrix. Here, the atoms perform
only small amplitude motions around their equilibrium positions (Section 5.3).
In the case of a solvent at liquid-state temperatures, a low-order expansion of the
interaction potential leads to relaxation rates that are determined by the equilibrium
correlation function of the force which is exerted by the solvent on the static solute
(Section 5.3). Often, the decay of these types of correlation functions takes place
on a rather short time scale. This allows for a modeling of the solvent in terms
of collective harmonic oscillators in the vicinity of instantaneous configurations,
even though the liquid’s dynamics is inherently anharmonic on longer time scales
(Section 5.3).

The most general situation of a polyatomic molecule in solution will be treated
in Section 5.4. Here, it is shown how the system–reservoir concept can be applied
resulting in relaxation rates that enter the density matrix equations of motion dis-
cussed in Section 3.6. Since energy conservation constrains relaxation dynamics,
different types of multiple quantum transitions will become important, in particular
for the relaxation of high-frequency modes.

There are various motivations for studying vibrational energy flow besides its gen-
eral importance for reaction dynamics mentioned in the beginning of this section.
On a fundamental level, the understanding of such processes requires knowledge
about the molecular Hamiltonian, and in particular of the PES for nuclear motions
as well as a sophisticated treatment of the dynamics. Thus, combining experimental
observations with theoretical predictions provides an excellent testing ground
for theoretical models in this respect. On the more practical side, one can imagine,
for instance that vibrational energy has been deposited into a particular mode
in order to trigger a chemical reaction. In such a case, it would be desirable to know
to what extent this energy is lost, for example due to the release of heat into
the surrounding solvent.

5.2 Intramolecular Vibrational Energy Redistribution

5.2.1 Zeroth-order Basis and State Mixing

In this section, we consider the case of isolated polyatomic molecules in a single adi-
abatic electronic state. We are interested in the redistribution of vibrational energy
after it has been deposited into a certain vibrational state, for example by means of
an electronic or infrared laser excitation.2) The central question concerns the micro-
scopic origins and mechanism of IVR. Let us recall that in Section 2.5.1 we learned
about the normal mode expansion of the vibrational Hamiltonian obtained from
the Born–Oppenheimer separation of electronic and nuclear DOFs. This description

2) We do not take into account the effect of rotations in the following discussion. While the overall
rotation of large molecules can be safely neglected on the time scale of interest here (< 1 ns),
internal rotations will have an effect on the density of states.



216 5 Vibrational Dynamics: Energy Redistribution, Relaxation, and Dephasing

was based on the harmonic approximation to the PES in the vicinity of stationary
points. Away from these stationary points, with increasing vibrational energy, the
harmonic approximation breaks down, and anharmonic effects have to be included.
An empirical anharmonic one-dimensional potential is given by the Morse potential
shown in Figure 2.3. In more general terms, the PES can be expanded with respect
to the (mass-weighted) normal-mode coordinates, {q

𝜉
} = (q

𝜉1
, q

𝜉2
,… , q

𝜉N
), to obtain

the N-dimensional vibrational Hamiltonian

Hvib =
1
2
∑
𝜉

(
p2
𝜉
+ 𝜔2

𝜉
q2
𝜉

)
+
∑
𝜉i𝜉j𝜉k

K
𝜉i𝜉j𝜉k

q
𝜉i

q
𝜉j

q
𝜉k

+
∑
𝜉i𝜉j𝜉k𝜉l

K
𝜉i𝜉j𝜉k𝜉l

q
𝜉i

q
𝜉j

q
𝜉k

q
𝜉l
+… (5.2)

Here, K
𝜉i… are the anharmonic coupling constants, that is the derivatives of the PES

with respect to the normal-mode coordinates.3)

It should be emphasized that the usually collective normal-mode coordinates are
not the only choice for a representation of the vibrational Hamiltonian. Alterna-
tively, we could have used, for instance local modes pertaining to individual bonds.
Then, the Hamiltonian contains couplings between these local modes, in general,
due to potential and kinetic energy operators. Furthermore, anharmonicity can be
accounted for by representing the n-mode potentials in Eq. (5.1) on a numerical
grid. A combination of grid potentials and potentials from anharmonic coupling
constants is possible as well.

An eigenstate of the harmonic part of Hvib in Eq. (5.2) can be classified according
to the quanta contained in the different normal modes, that is|||M𝜉1

,M
𝜉2
,… ,M

𝜉N

⟩
= |||M𝜉1

⟩
… |||M𝜉N

⟩
(M

𝜉i
= 0, 1,…). (5.3)

Given that the anharmonic coupling constants are small, Eq. (5.3) provides a reason-
able choice for a zeroth-order basis. Concerning the anharmonic terms in Eq. (5.2),
one distinguishes diagonal (all indices are equal, for instance K

𝜉i𝜉i𝜉i
) and off-diagonal

contributions. While the former lead to anharmonic dynamics of a particular mode,
the latter couple different modes.

The effect of anharmonic mode coupling can be illustrated using the example of
a so-called Fermi resonance interaction, which is typical for the coupling between a
hydrogenic vibrational stretching (q

𝜉1
= q1) fundamental and a bending (q

𝜉2
= q2)

overtone transition. For this example, the harmonic frequencies are 𝜔1 ≈ 2𝜔2,
the relevant coupling term is K122q1q2

2, and the state space is composed of the
zeroth-order states |0, 0⟩, |0, 1⟩,|0, 2⟩, |1, 0⟩, and so on (see Figure 5.3). In order to
obtain a matrix representation of the vibrational Hamiltonian in this basis, one
needs the matrix elements of the type

⟨M1,M2
|| q1q2

2
||N1,N2⟩ = ⟨M1

|| q1
||N1⟩ ⟨M2

|| q2
2
|||N𝜉2

⟩
. (5.4)

3) To simplify the notation, the factor 1∕n! due to the nth order Taylor expansion has been
included into the definition of the K

𝜉i…
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Figure 5.3 Mixing of zeroth-order vibrational states due to a Fermi resonance anharmonic
coupling. (a) Zeroth-order harmonic oscillator states with quantum numbers (M1,M2) for a
two-mode model where the second excited state of mode q2, (0, 2), is close to resonance
with the first excited state of mode q1, (1, 0). The anharmonic coupling ∝ K122q1q2

2 leads to
the formation of eigenstates with mixed character. (b,c) Infrared absorption spectrum in
dependence on the coupling strength for 𝜔1 − 2𝜔2 = 0 (b) and 𝜔1 − 2𝜔2 = 1 (c). The
distribution of oscillator strengths is according to Eq. (5.8) with explicit expressions for the
coefficients as given in Section 2.8.2.

Using the results of Section 2.5.2, one has

⟨M1
|| q1
||N1⟩ = 1√

2𝜆1

(
𝛿M1,N1−1

√
N1 + 𝛿M1,N1+1

√
N1 + 1

)
(5.5)

and ⟨M2
|| q2

2
||N2⟩ = 1

2𝜆2
2

(
𝛿M2,N2

(2N2 + 1) + 𝛿M2,N2−2
√

N2(N2 − 1)

+ 𝛿M2,N2+2
√
(N2 + 1)(N2 + 2)

)
. (5.6)

Restricting ourselves to the coupling between the states |0, 2⟩ and |1, 0⟩, we obtain
a two-level Hamiltonian with diagonal entries 𝜀1 = 𝜔1 and 𝜀2 = 2𝜔2 and the
off-diagonal term V = K112∕𝜆1𝜆

2
2. The respective eigenvalue problem was solved in

Section 2.8.2. The eigenstates can be written in terms of the zeroth-order states as
follows:|𝜅 = ±⟩ = ∑

M1,M2

C
𝜅
(M1,M2) ||M1,M2⟩

= C
𝜅
(1, 0) |1, 0⟩ + C

𝜅
(0, 2) |0, 2⟩, (5.7)

and the eigenenergies are given by Eq. (2.153).
It is instructive to discuss the mixing of zeroth-order states according to Eq. (5.7)

in terms of the infrared absorption spectrum. For simplicity, we consider the simple
Lorentzian lineshape model leading to Eq. (4.67). The dipole moment will depend
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linearly on the vibrational coordinates, that is �̂� = 𝜇1q1 + 𝜇2q2. If the system is ini-
tially in its ground state, |0, 0⟩, the strength of a transition to the eigenstate |𝜅⟩ is
given by the absolute square of the respective dipole matrix element. Using Eqs.
(5.5) and (5.6), one obtains

|⟨±| �̂� |0, 0⟩|2 = ||C∗
±(1, 0) ⟨0, 1|𝜇1q1 |0, 0⟩ + C∗

±(0, 2) ⟨2, 0|𝜇2q2 |0, 0⟩||2
=
||𝜇1
||2

2𝜆2
1

||C±(1, 0)||2. (5.8)

Notice that both transitions obtain their oscillator strength from the bright q1 mode.
In Figure 5.3, the effect of Fermi resonance coupling on the infrared spectrum
is illustrated for the cases of a perfect resonance 𝜔1 = 2𝜔2 and a mismatch Δ𝜀.
According to Section 2.8.2, Eqs. (2.171) and (2.172), for the perfect resonance it
holds that ||C±(1, 0)||2 = ||C±(0, 2)||2 = 1∕2. Thus, each eigenstate is composed of
equal contributions from the two zeroth-order states. Since a transition having no
oscillator strength (dark q2 overtone) contributes to a bright state of the anharmon-
ically coupled system, the dark transition is said to “borrow” oscillator strength
from the bright one.

In principle, there are different possibilities for the so-called zeroth-order basis,
and the best choice will depend on the experimental situation at hand. For example,
using the normal mode Hamiltonian (5.2), the presence of, for instance a strong
Fermi resonance between two DOFs leaves the question whether or not to diagonal-
ize the Hamiltonian in the subspace of these two modes and work with the respective
eigenstates whose residual coupling to the remaining modes, of course, would be
modified. At this point, the type of preparation of the initial state plays an important
role as shown in Figure 5.3. Let us assume that the excitation is due to an infrared
laser having a narrow spectral bandwidth. In this case, the prepared state will be
close to an eigenstate of the full Hamiltonian. Therefore, a prediagonalization of
the Fermi resonance interaction might be suitable, that is the zeroth-order basis set
would include the strongest anharmonic coupling. On the other hand, if the excita-
tion is due to an ultrafast broadband laser infrared pulse, a coherent superposition
state is prepared, which could be of more local character (cf. Section 6.5); that is, in
our example, it could be closer to the fundamental stretching transition. In this case,
the use of the normal mode basis would be appropriate.

Let us assume that we would be able to obtain the eigenstates of the full Hamil-
tonian, Eq. (5.2), although this is, of course, impossible for larger systems. In terms
of high-resolution frequency-domain spectra, this gives the means to reproduce the
numerous spectral lines that upon increasing the excitation energy merge into a
quasi-continuum. However, unless these eigenstates are expressed as superposition
states of, for instance harmonic oscillator states, there would be little insight gained
into the nature of the eigenstates and the resulting transitions. In time-domain
experiments, the initially prepared wave packet will be a complicated superposition
of many eigenstates. However, as in our Fermi-resonance example, only the choice
of a suitable basis that captures the nature of the initially excited state enables a
straightforward analysis of the vibrational dynamics, see also Figure 5.3.
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Figure 5.4 Preparation of bright
(zeroth-order) states (for example, by laser light
absorption, cf. Chapter 6) starting from some
set of initial states. The subsequent dynamics
will be influenced by the coupling between the
bright and the dark states. In the lower right
part, the structure of the Hamiltonian is
sketched for the case of a single bright state|0⟩ (E0, black) and a large number of dark states|𝛼⟩ (E

𝛼
, light gray). The residual couplings V0𝛼

(V
𝛽0) are shown as dark gray areas.
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This discussion reflects the influence of selection rules and the initial state
preparation time scale on the choice of the zeroth-order basis for the description of
the IVR process. In any case, there will be a residual coupling between the initially
excited bright states and the usually large number of dark states. This situation,
which comprises the essential theme of IVR dynamics, is illustrated in Figure 5.4.

5.2.2 Golden Rule and Beyond

The zeroth-order bright state basis that is shown in Figure 5.4 recalls the discussion
of the Golden Rule in Section 3.3. In the context of IVR, the Golden Rule description
has been given by Bixon and Jortner in the 1960s.4) In order to emphasize the
basic idea, let us assume that there is initially only a single bright state appreciably
populated. For simplicity, we suppose that the vibrational Hamiltonian has been
prediagonalized with the single bright state |0⟩, with energy E0 projected out.
Let E

𝛼
denote the energy of the prediagonalized bath (dark) states, and V0𝛼 the

coupling of the bright state to the prediagonalized bath (cf. Figure 5.4). If we further
assume that the bath has a quasi-continuous spectrum, we recover the Hamiltonian
equation (3.63), and the Golden Rule rate for IVR is according to Eq. (3.76) given by

kIVR = 2𝜋
ℏ

∑
𝛼

||V0𝛼
||2𝛿(E0 − E

𝛼
). (5.9)

First, we should recall that Eq. (5.9) is a result that is valid in second-order pertur-
bation theory; that is, ||V0𝛼

||2 has to be sufficiently small. This assumption is reason-
able since upon prediagonalization of the bath the anharmonic coupling strengths
are redistributed over many bath eigenstates. It is important to remember, however,
that the coupling has to be much larger than the mean level spacing of the bath in
order to validate the Golden Rule description. In a next step, we replace the cou-
pling matrix by its root mean square value across the bath spectrum, V 2

rms. In other
words, we throw away all details of this coupling such as its energy dependence and

4) The original reference is Bixon and Jortner [3].
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correlations between different couplings. Replacing the sum over the delta functions
by the global density of states,

 (E) =
N
𝛼∑

𝛼=1
𝛿(E − E

𝛼
), (5.10)

we obtain the Bixon–Jortner rate for IVR,

kIVR = 2𝜋
ℏ

V 2
rms  (E0). (5.11)

Equation (5.11) expresses the IVR rate in terms of the quantities, V 2
rms and (E), that

are experimentally available from an analysis of the positions and relative intensi-
ties of spectral lines in high-resolution frequency domain vibrational spectroscopy.
Thus, provided that we have obtained these values, and the conditions leading to
the Golden Rule expression are fulfilled, the IVR rate will by construction match the
experimentally observed rate. But one should be aware at this point that there is no
direct link between Vrms and the anharmonic coupling constants entering Eq. (5.2).

So far, we have assumed that there is an infinite number of accessible bath states.
However, at not too high energies, the number of accessible states, NIVR, in poly-
atomic molecules may be rather large but still finite. This fact is characterized by
the so-called dilution factor 𝜎 = Psurv(t → ∞), that is the time-averaged long-time
survival probability. Assuming that all states are equally populated, the latter is pro-
portional to N−1

IVR and experimentally accessible (Figure 5.6), compare the discussion
of Figure 3.2. Taking this into account, the decay of the survival probability should
be characterized by the function:

Psurv(t) ≡ |⟨0(t)| 0⟩|2 = (1 − 𝜎)e−kIVRt + 𝜎. (5.12)

There are many examples where this Golden Rule approach has been successfully
applied. In the following discussion, we concentrate, however, on situations where
the dynamics cannot be described by a single exponential decay. In Figure 5.1, we
show experimental data indicating a quantum beat-type behavior with and without
disturbance by IVR. The possibility of such dynamics has already been discussed
in more general terms in Section 3.3. In principle, the existence of a finite dilution
factor already indicates that there is the possibility for a revival of the survival ampli-
tude after a finite time. In the context of IVR, there are more points that need to be
addressed.

First, given an initial bright state, one can imagine that it is not equally coupled
to all energetically possible dark states, in contrast to the assumption that led to
Eq. (5.11). Thus, there will be a certain finite set of dark states coupled to the initial
state |0⟩. This can be seen as a direct consequence of the local character of chemical
bonding. This reasoning can be extended to the first set of strongly coupled dark
states; that is, they in turn will be strongly coupled to another finite set of dark states
only. This leads to the so-called tier model of IVR, which is illustrated in Figure 5.5.
Given a normal-mode expansion of the vibrational Hamiltonian, the partitioning of
the dark states into different tiers can proceed, for instance using a classification
with respect to the order of the anharmonic coupling. However, one has to keep in
mind that resonance conditions have to be considered as well when judging efficient
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Figure 5.5 Hierarchical structure of IVR as described by the tier model. A single bright
state is strongly coupled only to a finite set of dark states constituting the first tier. The
first tier is then coupled to another set of dark states in the second tier and so on. With
increasing tier number, the density of states increases, but the anharmonic coupling
strength decreases.

IVR pathways. For instance, it is possible that high-order couplings dominate when
the respective dark states are in better resonance than those coupled via low-order
anharmonicities.

The tier model is in fact a two-dimensional projection of the vibrational state space
model. Here, the energy flow is considered in the space spanned, for example by the
N-dimensional harmonic oscillator vectors |||M𝜉1

,M
𝜉2
,… ,M

𝜉N

⟩
. This is illustrated in

Figure 5.6 where we also see another important feature of IVR, namely its energy
dependence. For a given state |0⟩, there is a certain threshold below which this state
will be effectively isolated from the rest of the state space. Upon increasing the energy
of the initial state, the average number of dark states increases, and so does the
average strength of anharmonic couplings. Figure 5.6a–c schematically shows three
different cases realized when moving across the IVR threshold. They correspond to
a situation of small, moderate, and large couplings. Clearly, the number of relevant
couplings indicated by thick lines increases with energy such that from some initial
state |0⟩ an increasing number of states becomes accessible. Notice, however, that
the IVR threshold is not a strictly defined quantity but reflects the averaged structure
of state space.

In the tier model, these possible pathways are projected onto a single axis. In terms
of the observed light absorption, the increasing number of couplings results in a
spectrum that becomes more and more structured as seen in the right panels of
Figure 5.6a–c. In other words, due to the coupling, the zeroth-order states share
oscillator strength and appear as pairs (see also Figure 5.3). Still not all states are
equally accessible, and one has to state that it is not the total but the local density of
states that is responsible for the energy flow. Furthermore, Figure 5.6 illustrates that
there are likely to exist correlations between different couplings. In other words, the
basic assumption made in the derivation of the Golden Rule expression Eq. (5.11) is
not fulfilled here.
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Figure 5.6 IVR in a polyatomic system. (a)–(c) The IVR process in a three-dimensional
section of the space of quantum numbers (M

𝜉1
,M

𝜉2
,… ,M

𝜉N
) (shown as open circles; thick

solid lines connect strongly coupled states; and the dashed triangle is a surface of constant
vibrational energy). The position corresponding to some initial state |0⟩ is indicated by a
full circle. The coupling strength of |0⟩ to other states increases from (a) to (c) (depending
on the energetic position relative to the IVR threshold). The related (infrared) absorption
lines (right panels) show an increasing splitting. In (d) and (e), the decay of the survival
probability is shown for SCCl2 as obtained from experiment (fluorescence and stimulated
emission pumping) and quantum dynamics simulation, respectively. Exponential (Eq. (5.12))
and power law (Eq. (5.13)) fits of the decay are shown as thin lines (figure courtesy of M.
Gruebele; for more details see also Gruebele [4]).
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How is this reflected in the behavior of the survival probability? Once the state
is at the IVR threshold, there might be a few other states (denoted |1⟩ and |2⟩
in Figure 5.6b) that dominate the coupling and lead to quantum beats (cf. also
Figure 5.1). Going beyond this threshold, the number of possible zeroth-order states
for energy transfer increases, and Psurv will decay almost exponentially. During a
certain time interval the decay is reasonably reproduced by a single exponential
function. After a characteristic time, however, the energy flow will become domi-
nated by the details of the local density of states and the local anharmonic couplings
for a given point in state space. It was found that in this intermediate time range, the
decay of Psurv will no longer be exponential, and it is better described by a power law:

Psurv(t) ∼ (1 − 𝜎)t−𝛿∕2 + 𝜎. (5.13)

Here, the exponent 𝛿 is a parameter that reflects the local dimensionality of IVR;
usually one finds 𝛿 ≪ N (cf. Figure 5.6d,e). This period of power law decay is
considerably longer than the initial exponential decay. Finally, Psurv will fluctuate
around the value of the dilution factor, which is a manifestation of the finite size of
the state space.

5.3 Intermolecular Vibrational Energy Relaxation

In the previous section, we considered the intramolecular energy flow in large poly-
atomic molecules. The latter were assumed to be isolated from any environment
such that intermolecular processes could be neglected. The IVR dynamics already
indicated that large polyatomics may form a reservoir on their own. In the follow-
ing sections we extend the scope and add an additional external reservoir that is
provided by a solid-state matrix, a protein, or a solvent. On general grounds, it is to
be expected that this will considerably enhance the density of states for vibrational
energy flow such that for an appropriate separation of relevant and bath DOFs, one
may recover rate dynamics. To set the stage, we start with the discussion of a single
relevant coordinate coupled to some reservoir before focusing on the combined effect
of inter- and intramolecular energy flow in Section 5.4.

5.3.1 The System–Reservoir Hamiltonian

The simplest setup for studying vibrational relaxation is certainly the situation
of a single diatomic molecule in a monoatomic solid-state environment. Typical
examples are dihalogens such as I2 and Br2, for instance built into a rare gas matrix
at low temperatures, as shown in Figure 5.7 (cf. also Figure 5.2). The separation
into system and reservoir DOFs in the sense of Chapter 3 strongly depends on the
considered dynamics. If, for instance the diatomic molecule is photoexcited onto
a PES that is dissociative in the gas phase, the fragments might be able to escape
the matrix cage. However, if their energy is not sufficient, they will recombine
after collision with the nearest matrix atoms, as shown in Figure 5.7 (cage effect).
This process will be accompanied by a nonadiabatic transition, for example back
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Figure 5.7 Photodissociation of a diatomic molecule (Br2) in a rare gas lattice (Ar), see
inset. The potential energy curves correspond to the lowest singlet states (X and C) as well
as a triplet state (B). Upon X → C photoexcitation, the Br2 bond elongates, and there is a
certain probability for a transition to the B state, triggered by spin–orbit coupling. In the
Ar lattice, the atoms recombine after collision with the lattice atoms (figure courtesy of
A. Borowski ).

onto the electronic ground state. Here, the vibrationally hot diatomic bond will
relax into thermal equilibrium as a consequence of the interaction with the matrix
environment. Clearly, the theoretical modeling of the collision process requires to
take into account the solvent cage explicitly. On the other hand, for the vibrational
relaxation in the electronic ground state, the matrix acts merely as a heat bath.
It is the latter process of vibrational relaxation that we discuss in what follows.
It also occurs, for example upon infrared excitation of a normal-mode vibration of
a solvated molecule and subsequent energy dissipation into the solvent. Here, the
relevant DOF is selected, for instance by the frequency of the excitation light.

In what follows, the one-dimensional coordinate of the relevant system will
be labeled by s, and the remaining coordinates of the reservoir by Z ≡ {Zk}. The
Hamiltonian can therefore be written in the standard form:

H = HS + HR + HS–R, (5.14)

where

HS =
p2

2𝜇s
+ VS(s), (5.15)

HR =
∑

k

P2
k

2Mk
+ VR(Z), (5.16)

and

HS–R = V(s,Z). (5.17)

To simplify our considerations, we restrict ourselves to the case where the rele-
vant system (for instance, the diatomic guest molecule) does not appreciably dis-
turb the dynamics of the reservoir (for instance, the host lattice of rare gas atoms).
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Usually, this will imply only small amplitude motion with respect to the equilib-
rium positions. Concerning the reservoir DOFs, it is customary to map the small
amplitude vibrations of the coordinates Z with respect to their equilibrium values to
collective normal modes q = {q

𝜉
} (Section 2.5.1). In the case of a solid-state matrix,

this amounts to the introduction of lattice phonons. Concepts applicable to other
environments will be discussed below. Thus, the reservoir Hamiltonian becomes a
sum of decoupled harmonic oscillators (cf. Eq. (2.44)):

HR = 1
2
∑
𝜉

(
p2
𝜉
+ 𝜔2

𝜉
q2
𝜉

)
. (5.18)

The interaction potential in Eq. (5.17) is written in terms of the introduced
normal-mode coordinates, V(s, {q

𝜉
}). Suppose that we expand this potential with

respect to the equilibrium configuration (s = 0, {q
𝜉
} = 0); the lowest order nontrivial

term is of first order with respect to both types of coordinates

V(s, {q
𝜉
}) = 1

2
∑
𝜉

𝜕
2V(s, {q

𝜉
})

𝜕s𝜕q
𝜉

|||||s=0,{q
𝜉
}=0

s q
𝜉

= s
∑
𝜉

c
𝜉
q
𝜉
. (5.19)

Note that we will frequently assume that the trivial zeroth-order term V(s = 0,
{q

𝜉
} = 0) has been included in the definition of either the system or the bath

Hamiltonian. Further, we assume that the Taylor expansion is performed around
a minimum of the total PES, where first-order derivatives vanish. In the last line of
Eq. (5.19), we introduced the coupling constant c

𝜉
, thus transforming the interaction

Hamiltonian into the form of Eq. (3.286), which was discussed in Section 3.7.2. Note
that in Section 3.7.2, the system part K(s) of the interaction Hamiltonian was chosen
to be dimensionless. This can be achieved by proper scaling for the system at hand.

The resulting system–reservoir Hamiltonian resembles the Cartesian reaction
surface Hamiltonian derived in Section 2.5.3, provided that the force is linear in
the system coordinate. Although derived here having in mind the special case of a
diatomic in a rare gas environment, it has found wide applications as a model for
studying dissipative dynamics of nuclear DOFs. We stress that this also includes
situations where, for example the system describes a single bond or normal-mode
vibration of a solvated polyatomic molecule. Since V(s, {q

𝜉
}) is linear in the system

coordinate, the system itself moves in an effective potential, which can be substan-
tially distorted. Often, one is interested in the effect of dissipation only, neglecting the
renormalization of the system potential. This is achieved by adding a counter term,
that is the reorganization energy introduced in Eq. (2.94), to the system–reservoir
coupling. It gives the system–reservoir Hamiltonian in Caldeira–Leggett form5)

H =
p2

2𝜇s
+ VS(s) +

1
2
∑
𝜉

⎡⎢⎢⎣p2
𝜉
+ 𝜔2

𝜉

(
q
𝜉
−

c
𝜉
s

𝜔
2
𝜉

)2⎤⎥⎥⎦ . (5.20)

5) Strictly speaking, it would have been necessary to subtract the reorganization energy from the
system potential (cf. Eq. (2.95)), which is usually not done if the Hamiltonian is taken as a
model only.
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General application of this Hamiltonian raises the question whether a real system
can be mapped onto the Caldeira–Leggett form. For the considered case of diatomics
in low-temperature rare gas environments, such a mapping is most reasonable.
However, in general, the validity of this mapping has to be checked carefully for
the case at hand.6) An approximate mapping can be achieved using the concept of
instantaneous normal modes introduced in the following section.

5.3.2 Instantaneous Normal Modes

Solvent autocorrelation functions, for instance of the velocity or the position,
are often characterized by a rapid initial decay stage. Focusing on this short-term
dynamics of the solvent, the instantaneous normal-mode approach maps the motions
of the solvent molecules onto the dynamics of independent collective oscillators that
interact with the solute. This results in a microscopically defined system–reservoir
Hamiltonian.

Suppose that we have chosen some initial configuration for the solute and solvent
coordinates, (s(0),Z(0)), from the classical equilibrium distribution function as given
in Eq. (3.326). For short enough times it is possible to expand the potential energy in
terms of the deviation from this initial configuration, Δs(t) = s(t) − s(0) and ΔZ(t) =
Z(t) − Z(0). Considering, for example the solvent potential in Eq. (5.16), one can
write

VR(Z(t)) = VR(Z(0)) +
∑

k

𝜕VR(Z)
𝜕Zk

||||Z=Z(0)
ΔZk(t)

+1
2
∑

kl

𝜕
2VR(Z)
𝜕Zk𝜕Zl

|||||Z=Z(0)
ΔZk(t)ΔZl(t). (5.21)

Of course, the time range where this expansion applies is intimately connected to
the specific situation, that is to the form of the potential, the masses of the particles,
and so on. With this type of potential, the Hamiltonian (5.16) is readily diagonal-
ized by a linear normal-mode transformation (see Eq. (2.42)), ΔZk(t) =

∑
𝜉
M−1∕2

k
Ak𝜉(Z(0)) q

𝜉
(t), leading to the time-dependent collective (mass-weighted) reservoir

coordinates q
𝜉
(t). The reservoir potential then becomes

VR(q𝜉(t)) = VR(Z(0)) −
∑
𝜉

(
F
𝜉
(Z(0)) q

𝜉
(t) + 1

2
𝜔

2
𝜉
(Z(0)) q2

𝜉
(t)
)
. (5.22)

Here, the frequencies are resulting from the diagonalization of the (mass-weighted)
Hessian matrix (see Section 2.5.1) at the initial configuration, and the forces for this
configuration are

F
𝜉
(Z(0)) = −

∑
k

M−1∕2
k

𝜕VR(Z)
𝜕Zk

||||Z=Z(0)
Ak𝜉(Z(0)). (5.23)

6) For a protocol based on the generalized Langevin equation introduced in Section 5.3.3, see
Gottwald [5].
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Figure 5.8 Instantaneous normal-mode
density of states for an Ar13 cluster at 10 K
(a) and 40 K (b) (Reproduced with permission
from Stratt [6]; copyright (1995)/American
Chemical Society).
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Let us neglect the presence of the solute for a moment. In this case, the spectral
distribution of the instantaneous eigenvalues of the Hessian gives important infor-
mation about the solvent. To discuss the instantaneous density of states for the liquid
normal modes it is appropriate to use the following quantity:

INM(𝜔) =

⟨∑
𝜉

𝛿(𝜔 − 𝜔
𝜉
(Z(0))

⟩
Z(0)

, (5.24)

which contains the average with respect to different initial configurations. In
Figure 5.8, we show the instantaneous normal-mode density of states for a small
Argon cluster at different temperatures. Within the instantaneous normal-mode
approach, it is typical that the Hessian also has negative eigenvalues, 𝜔2

𝜉
(Z(0)) < 0,

implying “imaginary” frequencies. This indicates that the chosen initial configu-
ration is not a minimum in all directions of the PES as it is reasonable for liquids.
Notice, however, that upon decreasing the temperature, the cluster is frozen,
and the negative frequency contributions disappear, as shown in the example of
Figure 5.8.

We now return to the solute–solvent system and consider the interaction Hamil-
tonian (5.17). Assuming that the same type of short-term expansion is valid, we can
write after introducing the solvent normal modes

VS–R(s,Z) = VS–R(s(0),Z(0)) + Δs(t)
∑
𝜉

c
𝜉
(s(0),Z(0)) q

𝜉
(t). (5.25)

Here, we have retained the bilinear term only (cf. Eq. (5.19)), and the solvent–solute
coupling constant is given by

c
𝜉
(s(0),Z(0)) =

∑
k

Ak𝜉(s(0),Z(0))M
−1∕2
k

𝜕VS–R(s,Z)
𝜕Zk𝜕s

||||s=s(0),Z=Z(0)
. (5.26)
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Comparing Eq. (5.25) with (3.286), we realize that we have obtained the classical
system–reservoir Hamiltonian function in the generic form with all parameters
microscopically well defined. Therefore, the results of Section 3.7 can readily be
adapted to the present case. In Particular, one can define a spectral density within
the instantaneous normal-mode approach.7)

Despite the fact that a liquid is inherently unstable as compared with a solid-state
environment, the idea of extracting information on the solute–solvent dynamics
from the short-term behavior of classical trajectories has proven to give valuable
insight. In addition, from the conceptually desirable link between the formal
system–reservoir Hamiltonian and the actual microscopic dynamics, the analysis
of instantaneous normal modes provides the key to the understanding of energy
relaxation processes in terms of collective solvent motions. In contrast, within
standard molecular dynamics simulations, the collective character of the solvent
response is usually hidden in the correlation functions.

5.3.3 Generalized Langevin Equation

For the system–reservoir Hamiltonian of the Caldeira–Leggett form, one can derive
equations of motion for the system’s coordinate and momentum under the influence
of the system–reservoir interaction. The Heisenberg equations of motion for system
operators read

ṡ = − i
ℏ

[s,H]− =
ps

𝜇s
, (5.27)

ṗs = − i
ℏ

[ps,H]− = Fs +
∑
𝜉

c
𝜉

(
q
𝜉
−

c
𝜉
s

𝜔
2
𝜉

)
, (5.28)

with Fs −
𝜕VS

𝜕s
. For the bath operators, we have

q̇
𝜉
= p

𝜉
, (5.29)

ṗ
𝜉
= −𝜔2

𝜉

(
q
𝜉
−

c
𝜉
s

𝜔
2
𝜉

)
. (5.30)

The last two equations can be combined to a second-order inhomogeneous differen-
tial equation for q

𝜉
having the general solution

q
𝜉
(t) = q(H)

𝜉
(t) + c

𝜉∫

t

0
d𝜏

sin(𝜔
𝜉
(t − 𝜏))
𝜔
𝜉

s(𝜏), (5.31)

with the homogeneous solution

q(H)
𝜉

(t) = q
𝜉
(0) cos(𝜔

𝜉
t) + p

𝜉
(0)

sin(𝜔
𝜉
t)

𝜔
𝜉

. (5.32)

7) The connection between instantaneous normal modes and spectral densities can be found in
Goodyear and Stratt [7].
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The integral coming from the particular solution of the inhomogeneous equation
can be rewritten using integration by parts. This yields

q
𝜉
(t) −

c
𝜉
s(t)
𝜔

2
𝜉

= q(H)
𝜉

(t) −
c
𝜉
s(0)
𝜔

2
𝜉

cos(𝜔
𝜉
t)

− c
𝜉 ∫

t

0
d𝜏 cos(𝜔

𝜉
(t − 𝜏))

ps(𝜏)
𝜇s

. (5.33)

Inserting this expression into Eq. 5.28, one obtains the Generalized Langevin
Equation (GLE)

𝜇ss̈ = Fs − ∫

t

0
d𝜏 K(t − 𝜏)ṡ(𝜏) + R(t), (5.34)

with the dissipative memory kernel

K(t) =
∑
𝜉

c2
𝜉

𝜔
2
𝜉

cos(𝜔
𝜉
t). (5.35)

The memory kernel can be expressed in terms of a spectral density,

K(t) =
∫

d𝜔JGLE(𝜔) cos(𝜔t), (5.36)

with8)

JGLE(𝜔) =
∑
𝜉

c2
𝜉

𝜔
2
𝜉

𝛿(𝜔 − 𝜔
𝜉
). (5.37)

We notice that K(t) has a structure similar to Eq. (3.178). Following our previous
argument, for a dense spectrum of reservoir oscillators, K(t) will decay on the time
scale of the memory time 𝜏mem. If this time scale is short as compared to the system
evolution, K(t − 𝜏) can be approximated by a delta function, and one obtains the
Markovian Langevin equation. In terms of the spectral density entering Eq. (5.36),
this implies JGLE(𝜔) ≈ const.

The last term in Eq. (5.34) is given by

R(t) =
∑
𝜉

c
𝜉
q(H)
𝜉

(t) −
∑
𝜉

c2
𝜉

𝜔
2
𝜉

s(0) cos(𝜔
𝜉
t)

=
∑
𝜉

c
𝜉

(
q
𝜉
(0) −

c
𝜉
s(0)
𝜔

2
𝜉

)
cos(𝜔

𝜉
t) +
∑
𝜉

c
𝜉

p
𝜉
(0)
𝜔
𝜉

sin(𝜔
𝜉
t). (5.38)

In a macroscopic condensed-phase system, the initial state of the reservoir is uncer-
tain but characterized by a thermal distribution. Hence, R(t) is defined by a sum
of essentially random variables, and it is just a random force acting on the system
coordinate s. This function is usually characterized by its average and autocorrela-
tion function. Here, care has to be taken when defining the reservoir Hamiltonian

8) To establish the connection to the spectral density defined in Eq. (3.294), one should be aware
of the different forms of the bath part of the system–reservoir interaction in Eq. (3.287), with the
relation c2

𝜉
∕𝜔2

𝜉
= 2ℏ𝜔

𝜉
g2
𝜉
.
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that enters the equilibrium statistical operator R̂eq in Eq. (3.202). According to Eq.
(5.20), the reservoir equilibrium is shifted due to the interaction with the system. In
R(t), this appears as a shift of q

𝜉
(0) according to the initial value of the system coor-

dinate s(0). At this point, one usually assumes that initially, the reservoir has been
equilibrated according to some fixed position of the system coordinate; that is, the
Hamiltonian entering Eq. (3.202) is given by

H′
R = 1

2
∑
𝜉

⎡⎢⎢⎣p2
𝜉
+ 𝜔2

𝜉

(
q
𝜉
−

c
𝜉
s(0)
𝜔

2
𝜉

)2⎤⎥⎥⎦ . (5.39)

In this case, it follows immediately that (cf. Section 3.7.2)⟨R(t)⟩R = 0 (5.40)

and

⟨R(t)R(0)⟩R =
∑
𝜉

c2
𝜉

⎡⎢⎢⎣
⟨(

q
𝜉
(0) −

c
𝜉
s(0)
𝜔

2
𝜉

)2⟩
R

cos(𝜔
𝜉
t)

+ 1
𝜔
𝜉

⟨
p
𝜉
(0)

(
q
𝜉
(0) −

c
𝜉
s(0)
𝜔

2
𝜉

)⟩
R

sin(𝜔
𝜉
t)

]

=
∑
𝜉

c2
𝜉

[
coth

(
ℏ𝜔

𝜉

2kBT

)
cos(𝜔

𝜉
t) − i

𝜔
𝜉

sin(𝜔
𝜉
t)
]
. (5.41)

It is instructive to consider the symmetrized correlation function of the random force
(cf. Eq. (3.274))⟨R(t)R(0)⟩R + ⟨R(t)R(0)⟩∗R =

∑
𝜉

A(+)
𝜉
(t)

= 2
∑
𝜉

c2
𝜉

coth
(
ℏ𝜔

𝜉

2kBT

)
cos(𝜔

𝜉
t). (5.42)

Comparison with Eq. (5.36) yields the relation

K(t) =
∑
𝜉

A(+)
𝜉
(t) 1
𝜔
𝜉

tanh
(
ℏ𝜔

𝜉

2kBT

)
. (5.43)

Since this expression connects the dissipative memory kernel with the correlation
function of the thermal noise, it is also called quantum fluctuation–dissipation
theorem (see also Section 3.7.4). We note that this is an exact relation for the
system–reservoir Hamiltonian Eq. (5.20).

An important feature of the Caldeira–Leggett model is that quantum and classical
GLE have the same form, Eq. (5.34). However, the classical fluctuation–dissipation
theorem differs from Eq. (5.43). Calculating the noise autocorrelation function
according to a classical phase space average (cf. Eq. (3.326)), the integrals with
respect to the Gaussian distributions can be performed straightforwardly (note that
the second term in Eq. (5.41) vanishes due to symmetry), and one obtains

⟨R(t)R(0)⟩cl,R = kBT
∑
𝜉

c2
𝜉

𝜔
2
𝜉

cos(𝜔
𝜉
t). (5.44)
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Comparison with Eq. (5.35) yields the classical fluctuation–dissipation theorem9)

⟨R(t)R(0)⟩cl,R = kBTK(t). (5.45)

The classical GLE provides a means for calculation of the spectral density using
classical molecular dynamics provided that the total system can be described by
the Caldeira–Leggett model. According to Eq. (5.36), the spectral density can be
expressed via the one-sided Fourier transform (denoted by the tilde) of the memory
kernel according to

JGLE(𝜔) =
2
𝜋

Re K̃(𝜔) = 2
𝜋

Re
∫

∞

0
dtei𝜔tK(t). (5.46)

In order to obtain a protocol solely based on correlation functions, first, the GLE is
expressed in terms of the system’s momentum. Next, both sides are multiplied by
ps(0), and a canonical average with respect to the total system is performed. This
gives

Ċpp(t) = CpF(t) − ∫

t

0
d𝜏K(t − 𝜏)Cpp(𝜏), (5.47)

with Cpp(t) = ⟨ps(t)ps(0)⟩cl, CpF(t) = ⟨Fs(t)ps(0)⟩cl, and the initial momenta and noise
being uncorrelated. Taking the one-sided Fourier transform, one obtains

−i𝜔C̃pp(𝜔) − Cpp(t = 0) = C̃pF(𝜔) − K̃(𝜔)C̃pp(𝜔), (5.48)

which can be rearranged to

K̃(𝜔) =
Cpp(t = 0) + C̃pF(𝜔)

C̃pp(𝜔)
+ i𝜔. (5.49)

Calculating Cpp(t) and CpF(t) using classical molecular dynamics simulations, one
thus obtains the memory kernel that, according to Eq. (5.46), gives the spectral den-
sity of the Caldeira–Leggett model. Two examples are shown in Figure 5.9.

5.3.4 Classical Force–Force Correlation Functions

The introduction of normal modes for the bath in Eq. (5.18) assumes an environ-
ment that performs only small oscillations around its equilibrium configuration or
an approximate treatment, for instance in terms of instantaneous normal modes. In
what follows we aim at a more general description of the bath dynamics in terms
of classical molecular dynamics. It makes use of the availability of empirical force
fields as discussed in Section 2.7.2. Hence, for the following equation, we assume
that the potentials for the interaction between the solvent molecules and between
solvent and solute, V(s,Z), are known. Here, Z = {Zk} is the respective set of the

9) Notice that often this fluctuation–dissipation theorem is used in the sense that for a given K(t),
the noise R(t) entering the GLE is generated as a stochastic zero-centered Gaussian process
fulfilling this theorem.
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Figure 5.9 Spectral densities obtained using GLE-based simulation according to Eq. (5.49).
(a) The spectral density for the I2 bond vibration in an Ar crystal and (b) the spectral density
for the C–H stretching vibration of an H atom on a graphene surface. The dashed line marks
the frequency of the considered stretching vibrations (figure courtesy of F. Gottwald, for
more details see also Gottwald [8]).

nuclear solvent molecule coordinates. In a first step, we suppose that this potential
can be expanded in terms of the relevant system coordinate s as follows:

V(s,Z) = V(s = 0,Z) + 𝜕V(s,Z)
𝜕s

||||s=0
s +… (5.50)

The first term is a potential for the bath coordinates if the system coordinate is kept
fixed at its equilibrium value, s = 0. It can be incorporated into the reservoir Hamilto-
nian HR. The second part is the force of the solvent acting on the relevant coordinate
that is kept fixed at its equilibrium position. This term is the system–reservoir cou-
pling we are looking for, and we write

HS–R = s 𝜕V(s,Z)
𝜕s

||||s=0
= −sF(Z). (5.51)

Notice that this form would reduce to the Caldeira–Leggett model for F = −
∑
𝜉
c
𝜉
q
𝜉

(Eq. (5.19)). Following the discussion of the GLE in the previous section, it provides
the random force R(t) acting on the system coordinate. At this point, F is still
an operator. Its autocorrelation function ⟨F(t)F(0)⟩R is the reservoir correlation
function whose Fourier transform, according to Eq. (3.350), enters the desired
relaxation rates. Since we are aiming at a classical description of the reservoir, the
quantum correlation function has to be replaced by its classical counterpart given
in Eq. (3.325) (Φu = Φ

𝑣
= F). As explained in Section 3.7.5, the detailed balance

can be fulfilled despite the time reversal symmetry of the classical correlation
function, if we identify ⟨F(t)F(0)⟩cl,R with the symmetrized quantum correlation
function C(+)(t).



5.3 Intermolecular Vibrational Energy Relaxation 233

Suppose that the eigenvalue problem, HS |M⟩ = EM |M⟩, for the system part of the
Hamiltonian has been solved, the relaxation rates are obtained from Eq. (3.350) as
(ℏΩMN = EM − EN )

kMN =
||sMN
||2

1 + exp(−ℏΩMN∕kBT) ∫

∞

−∞
dt eiΩMN t C(+)(t)

=
2||sMN

||2
1 + exp(−ℏΩMN∕kBT) ∫

∞

0
dt cos(ΩMN t) ⟨F(t)F(0)⟩cl,R

=
2||sMN

||2 c(ΩMN )
1 + exp(−ℏΩMN∕kBT)

. (5.52)

Here, c(ΩMN ) is the Fourier cosine transform of the classical force–force auto-
correlation function, which is obtained within the present model using classical
equilibrium molecular dynamics simulations. Since the system coordinate is fixed
in this approach, it is also called rigid bond method. In the limit that the system is
harmonic, we can calculate the matrix elements sMN and obtain for the relaxation
rate between the first excited state and the ground state k1→0 = (ℏ∕𝜇sΩs)c(Ωs)∕
(1 + exp(−ℏΩs∕kBT)).

In Figure 5.10a, we plot as an example the correlation function of the force an
ethanol solvent exerts on the bond of HgI, which is obtained as a fragment in the
photodissociation of HgI2. The force of the solvent projected onto the HgI bond is
given by

F(t) = Mredn12

[
F1(t)
M1

−
F1(t)
M1

]
, (5.53)

with Fk and Mk being the force vector and mass, respectively, for atom k, Mred is
the reduced mass of the atom pair, and n12 is the unit vector pointing from atom 1
to atom 2.
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Figure 5.10 Molecular dynamics simulations of HgI in ethanol solution. (a) Classical
autocorrelation function of the force acting along the HgI bond, and (b) the respective
Landau–Teller relaxation rate. In the actual experiment, the diatomic molecule is produced
as a fragment in the photodissociation of HgI2 (Reproduced with permission from
Gnanakaran and Hochstrasser [9]/ AIP Publishing).
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There are two regimes easily discernible in Figure 5.10a. First, there is a rapid
decay on a time scale of about 60–100 fs, which is rationalized as follows. Given
some initial configuration chosen from an equilibrium ensemble (see Eq. (3.326)),
the molecules perform inertial motions up to a point where collisions with neigh-
boring molecules set in. After such collisions, the forces get randomized. Thus, the
decay time of the correlation function represents the average time between two colli-
sion events; that is, it reflects mostly the short-range part of the interaction potential.
After this initial phase, the correlation function does not decay to zero in the time
window shown in Figure 5.10. Instead, the decay rate slows done appreciably. In
this regime, the long-range forces give the major contributions to the correlation
function. There appears to be also some oscillatory behavior that can be traced back
to the internal vibrations of the solvent. The vibrational relaxation rate is shown in
Figure 5.10b. In order to see what types of motions of the solvent are responsible for
the relaxation of the HgI bond vibration in the harmonic approximation, one has to
analyze the spectrum at the vibrational frequency, which is 130 cm−1. This leads to
the conclusion that mostly the Lennard-Jones-type collisions are responsible for the
relaxation in this system. The high-frequency peaks (>900 cm−1), which are due to
the internal modes of the ethanol, have no influence on the relaxation of HgI.

Finally, we would like to point out that there is a limitation involved in the calcula-
tion of the relaxation rates we have outlined so far. Remember that the system coor-
dinate has been fixed at its equilibrium value. For the symmetric oscillator potential
this can be viewed as if the environment only sees the time-averaged position of the
system oscillator. Any type of backreaction, where the reservoir notices the actual
position of the system coordinate whose dynamics it influences, would be beyond the
QME treatment. In the spirit of an adiabatic separation of system and bath motions,
the rigid bond approximation should be particularly good for high-frequency system
oscillators coupled to a low-frequency bath.10)

5.3.5 Dissipative Dynamics of a Harmonic Oscillator

In order to illustrate the vibrational relaxation dynamics, we consider the case of a
harmonic system with the potential

VS(s) =
𝜇sΩ

2
s

2
s2
. (5.54)

Here, 𝜇s is the reduced mass, and Ωs the vibrational frequency. In this case, the
eigenfunctions and -energies of HS are given by Eqs. (2.47) and (2.48), respectively.
The interaction between the relevant system and the reservoir is taken according to
Eq. (5.19). To obtain a dimensionless system part, the following scaling can be used
K(s) = s

√
2𝜇sΩs∕ℏ. Accordingly, the reservoir part of the interaction Hamiltonian is

given by Φ(q) =
√
ℏ∕2𝜇sΩs

∑
𝜉
c
𝜉
q
𝜉
.

The dynamics will be described using the QME in the representation of the rele-
vant system’s eigenstates {|N⟩}. Further, we invoke the Markov approximation and

10) A detailed study of the validity of both the Caldeira–Leggett model and the rigid bong method
can be found in Gottwald [10].
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for simplicity also the secular approximation. Thus, the equations of motion given
in Section 3.8.3 can be straightforwardly adapted to the present situation. We obtain
the expression

𝜕

𝜕t
𝜌MN = −𝛿MN

∑
K

(
kMK𝜌MM − kKM𝜌KK

)
−(1 − 𝛿MN ) (iΩs(M − N) + 𝛾M + 𝛾N )𝜌MN . (5.55)

According to Eq. (3.350), the energy relaxation rates, kMN = kM→N , are given by

kMN = |⟨M|K(s) |N⟩|2 C(𝜔MN ). (5.56)

Assuming that C(0) = 0 holds, we have for the dephasing rates 𝛾M =
∑

N kMN∕2. The
correlation function C(𝜔) has been given in Eq. (3.295). The transition rates can be
calculated straightforwardly for the interaction Hamiltonian given in Eq. (5.19). We
obtain for the matrix elements of the system part (cf. Eq. (5.5))

⟨M|K(s) |N⟩ = (√N 𝛿M,N−1 +
√

N + 1 𝛿M,N+1

)
. (5.57)

Using this result, the rate for the vibrational transition between the states |M⟩ and|N⟩, Eq. (3.350), becomes

kMN =
(
𝛿M,N−1(M + 1)C(−Ωs) + 𝛿M,N+1MC(Ωs)

)
. (5.58)

For the oscillator reservoir, the Fourier transform of the correlation function was
given in Eq. (3.293). Inspecting this rate, one can draw a number of conclusions as
visualized in Figure 5.11:

First, only transitions between neighboring system oscillator states are possible if
HS–R is linear in the system coordinate s. Second, the relaxation rates grow linearly
with the quantum number of the excited state. If we define the inverse lifetime of
the state |M⟩, 𝜏−1

M , in terms of all possibilities for making transitions out of this state,
we obtain

𝜏
−1
M =

∑
N

kMN =
(
(M + 1)C(−Ωs) + MC(Ωs)

)
. (5.59)

Thus, with increasing quantum number, the lifetime decreases as 1∕M.
Third, according to Eq. (3.295), the correlation function C(𝜔) is proportional to the

spectral density of the reservoir. From Eq. (5.58), we see that the spectral density is
“probed” only at the system’s oscillator frequency Ωs (cf. Section 3.8.2).

Figure 5.11 Schematic
view of vibrational
relaxation out of the
harmonic oscillator state
with quantum number M
due to the coupling to
some environment,
characterized by the
spectral density J(𝜔).
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Finally, for the bilinear coupling, upward transitions from |M⟩ to |M + 1⟩ require
that there be a bath mode at frequency Ωs that is also thermally accessible according
to the distribution function n(Ωs) (see Eq. (3.295)). Downward transitions release
energy into the bath and occur due to the factor 1 + n(Ωs) even if the temperature
goes to zero. They also require a bath mode having the same frequency. Thus, in both
cases, energy conservation is fulfilled.

The above treatment is readily extended to anharmonic system potentials. In such
cases, the eigenstates and matrix elements have to be obtained numerically. In any
case, connecting the dynamics in eigenstate representation to wave packet dynamics
such as shown in Figure 5.2, a transformation to the probability distribution for the
system coordinate has to be performed as follows:

P(s, t) ≡ 𝜌(s, s; t) =
∑
M,N

𝜒M(s)𝜒∗
N (s)𝜌MN (t). (5.60)

Experimentally, vibrational relaxation can be monitored using time-resolved
infrared pump–probe spectroscopy (cf. Section 4.3.6). According to Eq. (4.111), the
dispersed pump–probe signal consists of contributions from ground state bleach
(GSB) and stimulated emission (SE) due to transitions between states |M = 0⟩ and|M = 1⟩ as well as from excited state absorption (ESA) due to a transition from state|M = 1⟩ to state |M = 2⟩. For an anharmonic system, 𝜔10 > 𝜔21; that is, the ESA
spectrum is shifted to lower frequencies as compared with the GSB/SE spectrum;
recall that GSB/SE and ESA contributions differ in sign. Initially, the pump pulse
prepares the system in a nonequilibrium state. The relaxation back to equilibrium
is observed by the probe pulse as a function of the delay time. This gives access to
the associated relaxation rate. An example demonstrating vibrational relaxation of
an azide ion in liquid water is given in Figure 5.12.
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Figure 5.12 Infrared pump–probe signal showing the vibrational relaxation of the
asymmetric stretching vibration of azide ions in liquid water at a pressure of 500 bar and a
temperature of 333 K. The signal is given as a difference in optical density ΔOD=OD(pump
on)–OD(pump off) at the probe frequency 𝜔pr. The vibrational lifetime was determined to
be 650 fs. (a) Dispersed signal for different delay times showing ESA and GSB/SE
contributions. Also shown is the linear absorption spectrum (gray-shaded area). (b) Time
traces of signal at different probe frequencies (figure courtesy of P. Vöhringer, for more
details see Olschewski [11]).
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5.4 Polyatomic Molecules in Solution

5.4.1 System–Reservoir Hamiltonian

Having discussed the aspects of intramolecular vibrational dynamics of isolated
polyatomics as well as VER of a single relevant DOF in solution, we are now in
the position to address the general situation of a polyatomic solute in a polyatomic
solvent. On the one hand, we know that the intramolecular motions can be ade-
quately described in terms of zeroth-order states such as given by the normal-mode
expansion. On the other hand, we have seen that even the complex dynamics of a
polyatomic solvent can be mapped onto a set of collective harmonic oscillators, pro-
vided one is interested in the short-time behavior of solvent correlation functions,
for instance. Given this information, there appears to be still some freedom in the
choice of the zeroth-order states for the solute plus the solvent. The most frequently
used approach to this problem is as follows. Assume that we have identified a bright
state of the solute corresponding, for example to a local vibrational mode. In this
case, the system Hamiltonian is given by

HS =
p2

2𝜇s
+ VS(s), (5.61)

with VS(s) being the system potential along the considered mode, which in the
general case may be anharmonic. The remaining DOFs, that is the intramolecular
as well as the solvent DOFs, are then treated within the harmonic approximation.
If the corresponding normal-mode coordinates, {q

𝜉
}, are introduced, HR is given by

Eq. (5.16). For the solvent, this may imply, for instance the introduction of instan-
taneous normal modes. Since it is assumed that the bath has been diagonalized
without the system DOF, there will be a coupling between both subsystems

HI
S–R = VS–R(s, {q

𝜉
}) ≡ VS–R(s, q). (5.62)

In the next step, we introduce a Taylor expansion of this interaction potential with
respect to both types of coordinates. We write

VS–R(s, q) = VS–R(s = 0, q = 0)

+
𝜕VS–R(s, 0)

𝜕s
||||s=0

s +
∑
𝜉

𝜕VS–R(0, q)
𝜕q

𝜉

|||||q=0
q
𝜉

+1
2
𝜕

2VS–R(s, q)
𝜕s2

|||||s=0
s2 + 1

2
∑
𝜉1𝜉2

𝜕
2VS–R(s, q)
𝜕q

𝜉1
𝜕q

𝜉2

|||||q=0

q
𝜉1

q
𝜉2

+
∑
𝜉

𝜕
2VS–R(s, q)
𝜕s𝜕q

𝜉

|||||s=0,q=0
sq
𝜉
+… (5.63)

Note that this expansion illustrates the appropriateness of the ansatz we made for
HS–R in Eq. (3.198) since it is a sum of terms that can be factorized into a system
part (K(s)) and a reservoir part (Φ(q)). This is in accord with another statement
made in Section 3.5.3; that is, the factorized system–reservoir interaction Hamilto-
nian provides sufficient flexibility to model dissipative quantum dynamics. Taking
into account only the bilinear term ∝ sq

𝜉
, one recovers the Caldeira–Leggett model,
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Eq. (5.20). Its dynamics can be described by the GLE, Eq. (5.34). Assuming that
the Caldeira–Leggett model provides a valid description, spectral densities can be
extracted from molecular dynamics simulations according to Eq. (5.49). An example
is given in Figure 5.9.

Before continuing, it is useful to compare this approach with an alternative one
that assumes that the normal modes of all DOFs, denoted here as {q̃

𝜉
} to distin-

guish them from the set {q
𝜉
}, are used as a zeroth-order basis. For simplicity, suppose

that we are able to identify the bright mode mentioned above as q̃
𝜉1

. Let us further
assume that the Hamiltonian has been expanded in these normal modes according
to Eq. (5.2). Then, we can partition the Hamiltonian to fourth order as follows:

HS = 1
2

(
p̃2
𝜉1
+ 𝜔2

𝜉1
q̃2
𝜉1

)
+ K

𝜉1𝜉1𝜉1
q̃3
𝜉1
+ K

𝜉1𝜉1𝜉1𝜉1
q̃4
𝜉1
, (5.64)

HR = 1
2
∑
𝜉2≠𝜉1

(
p̃2
𝜉2
+ 𝜔2

𝜉2
q̃2
𝜉2

)
+
∑

𝜉2𝜉3𝜉4≠𝜉1

K
𝜉2𝜉3𝜉4

q̃
𝜉2

q̃
𝜉3

q̃
𝜉4

+
∑

𝜉2𝜉3𝜉4𝜉5≠𝜉1

K
𝜉2𝜉3𝜉3𝜉4

q̃
𝜉2

q̃
𝜉3

q̃
𝜉4

q̃
𝜉5
, (5.65)

and

HII
S–R = q̃

𝜉1

( ∑
𝜉2𝜉3≠𝜉1

K
𝜉1𝜉2𝜉3

q̃
𝜉2

q̃
𝜉3
+
∑

𝜉2𝜉3𝜉4≠𝜉1

K
𝜉1𝜉2𝜉3𝜉4

q̃
𝜉2

q̃
𝜉3

q̃
𝜉4

)

+ q̃2
𝜉1

(∑
𝜉2≠𝜉1

K
𝜉1𝜉1𝜉2

q̃
𝜉2
+
∑

𝜉2𝜉3≠𝜉1

K
𝜉1𝜉1𝜉2𝜉3

q̃
𝜉2

q̃
𝜉3

)
+ q̃3

𝜉1

∑
𝜉2≠𝜉1

K
𝜉1𝜉1𝜉1𝜉2

q̃
𝜉2
. (5.66)

For a large polyatomic molecule in a complex solvent, exact microscopic knowledge
about the individual anharmonic couplings is hardly available. So, one may as well
assume that the K

𝜉1𝜉2𝜉3
, K

𝜉1𝜉1𝜉2
, K

𝜉1𝜉1𝜉1𝜉2
, etc. factorize into a system and a bath part.

If we treat the bath in harmonic approximation, we are back to the level of approxi-
mation of Eq. (5.63). Note that the coupling constants are defined differently because
of the different basis sets used. Comparing HI

S–R and HII
S–R, however, we notice that

there is no bilinear term in HII
S–R since we have assumed a normal-mode expansion

with respect to all DOFs around a minimum of the total PES.
This consideration can be viewed as a variation on the theme of which basis should

be used for actual calculations. Depending on the choice, that is here zeroth-order
system and bath Hamiltonian plus coupling versus expansion of the total Hamilto-
nian and subsequent partitioning into system and bath, different types of transitions
between the considered system and bath states due to the coupling may occur. For
a comparable level of approximation, both representations should give the same
results for experimental observable quantities such as relaxation rates.

5.4.2 Higher Order Multiquantum Relaxation

In what follows, we focus on the effect of higher order terms in the normal-mode ex-
pansion Eq. (5.63); that is, we use the interaction Hamiltonian HI

S–R (the superscript
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will be omitted). For simplicity, we will take a single contribution K(s)Φ(q) of the
complete expansion of VS–R(s, q). Which part of the expansion we take, that is the
concrete structure of K(s) and Φ(q), will be specified below. In Section 3.8.2, we saw
that the transition rates between the vibrational states |M⟩ and |N⟩ of the relevant
system (HS |N⟩ = EN |N⟩) could be written as

kMN = 1
ℏ2 |⟨M|K(s) |N⟩|2 +∞

∫
−∞

dt ei𝜔MN t⟨ΔΦ(I)(q, t)ΔΦ(I)(q, 0)⟩R
= |⟨M|K(s) |N⟩|2C(𝜔MN ). (5.67)

It has also been shown that this is just a particular element of the damping matrix
ΓKL,MN , which can be calculated by the same procedure we follow now. The rates
for the bilinear form of the interaction Hamiltonian were already discussed after
Eq. (5.58) (we just have to keep in mind that the coupling constant entering the
spectral density is defined differently in the present case).

In connection with Eq. (5.58), we have highlighted the role of energy conservation
in the relaxation process. A particularly interesting case in this respect is the relax-
ation of an intramolecular high-frequency mode. If we assume that intramolecular
and solvent modes do not mix appreciably, there are two possibilities: Either there is
another intramolecular mode in this frequency range, or the solvent normal-mode
spectrum supports such a high-frequency mode. Usually, the collective solvent
modes are of rather low frequency (see Figure 5.14). Thus, vibrational energy accep-
tors in the solvent can only be specific intramolecular modes of the solvent molecules
in the surrounding of the solute or of the solute itself. From these restricting con-
ditions, it is clear that relaxation of high-frequency vibrations due to the bilinear
coupling term is not always possible since this implies a one-quantum transition.

As an example, we mention the studies of the CO asymmetric stretch relaxation of
tungsten hexacarbonyl (W(CO)6) in chloroform (CHCl3). Here, the 1976 cm−1 CO
mode cannot relax via a mechanism involving a single transition in the bath only.
The next W(CO)6 vibrational normal mode is at 580 cm−1, and CHCl3 supports a
mode at 1250 cm−1, both out of reach for the CO stretch. Therefore, a quartic process
is most likely to be responsible for the relaxation behavior. Changing the solvent to
carbon tetrachloride (highest frequency mode 780 cm−1) even led to the conclusion
that a quintic order process might be involved.11)

This is where the higher order terms in the expansion of HS–R in Eq. (5.63) come
into play. Here, the relaxation proceeds with the participation of different bath
modes; that is, multiquantum transitions occur in the bath. For a given order in
the system coordinate s, we have to identify the bath part of HS–R in Eq. (5.63) with
Φ(Q

𝜉
= q

𝜉

√
ℏ∕2𝜔

𝜉
), which will contain a product of harmonic bath coordinates.

The calculation of the rates in Eq. (5.67) requires us to determine the multitime
correlation function of these bath coordinates:⟨ΔΦ(I)(q, t)ΔΦ(I)(q, 0)⟩R =

∑
m,n

∑
𝜉,𝜉

g(m)
𝜉

g(n)
𝜉

C(m,n)
𝜉,𝜉

(t), (5.68)

11) Details of the experimental investigation can be found in Tokmakoff [12].



240 5 Vibrational Dynamics: Energy Redistribution, Relaxation, and Dephasing

with

C(m,n)
𝜉,𝜉

(t) = ⟨Q
𝜉1
(t)…Q

𝜉m
(t)Q

𝜉1
…Q

𝜉n
⟩R, (5.69)

and 𝜉 = (𝜉1, 𝜉2,… , 𝜉m) and 𝜉 = (𝜉1, 𝜉2,… , 𝜉n). The coupling constant g(m)
𝜉

comprises
the mth derivative of the coupling with respect to the bath coordinates as well as the
factor

∏m
i=1

√
ℏ∕2𝜔

𝜉i
.12)

In order to illustrate the principal effect of the higher order system–reservoir inter-
actions, let us consider the term linear in the system coordinate but quadratic in the
bath normal-mode coordinates. This requires the calculation of the bath correlation
function C(2,2)

𝜉,𝜉

(t), which is straightforward for harmonic oscillators.13) Collecting the
different contributions, we obtain⟨ΔΦ(I)(q, t)ΔΦ(I)(q, 0)⟩R = 2

∑
𝜉1 ,𝜉2

[g(2)
𝜉1 ,𝜉2

]2

× [(1 + n(𝜔
𝜉1
))e−i𝜔

𝜉1 t + n(𝜔
𝜉1
)ei𝜔

𝜉1 t]

× [(1 + n(𝜔
𝜉2
))e−i𝜔

𝜉2 t + n(𝜔
𝜉2
)ei𝜔

𝜉2 t]. (5.70)

The frequency–domain correlation function entering Eq. (5.67) can be written as

C(Ω) = 4𝜋
∑
𝜉1,𝜉2

[g(2)
𝜉1 ,𝜉2

]2
[
𝛿(Ω − 𝜔

𝜉1
− 𝜔

𝜉2
)(1 + n(𝜔

𝜉1
))(1 + n(𝜔

𝜉2
))

+ 𝛿(Ω − 𝜔
𝜉1
+ 𝜔

𝜉2
)(1 + n(𝜔

𝜉1
))n(𝜔

𝜉2
)

+ 𝛿(Ω + 𝜔
𝜉1
− 𝜔

𝜉2
)n(𝜔

𝜉1
)(1 + n(𝜔

𝜉2
))

+ 𝛿(Ω + 𝜔
𝜉1
+ 𝜔

𝜉2
)n(𝜔

𝜉1
)n(𝜔

𝜉2
)
]
. (5.71)

If the system is harmonic with frequency Ωs, we have upward and downward
transitions with rates proportional to C(Ωs) (see Eq. (5.58)). For illustration of
the transitions that are possible according to Eq. (5.71), let us consider downward
relaxation. Note that all transitions are weighted with the proper thermal equilib-
rium distribution for the environmental modes. In Figure 5.13, we show diagrams
visualizing the different terms in Eq. (5.71). The first term (a) corresponds to an
excitation of two vibrational modes of the environment, while the second (b) and
the third (c) terms incorporate excitation as well as deexcitation. The last term
(d) represents the simultaneous deexcitation of the system and the environment.
This last process is very unlikely and is usually neglected within the rotating wave
approximation. However, if we considered upward transitions, this process of
deexcitation of two bath modes and simultaneous excitation of the system mode in
principle could give a contribution.

The exact resonance conditions will be hardly met in any realistic solute–solvent
system taking into account only high-frequency intramolecular modes. However, we
have not yet discussed the low-frequency collective modes of the solvent. Often, they

12) Notice that in the present model, the coupling constants do not depend on the system
coordinate. This is a consequence of the fact that in Eq. (5.63) the derivatives are taken at the
minimum of the PES.
13) A general prescription can be found in May and Kühn [13], Sect. 3.6.3.
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Figure 5.13 Multiquantum relaxation processes in a two-level system. Downward
relaxation of the system mode (left) can be accompanied by different transitions in the
reservoir if the system–reservoir coupling is quadratic in the reservoir coordinates.
Diagrams (a)–(d) correspond to the four terms of the right-hand side of Eq. (5.71).

will provide the continuum of states, which is necessary to ensure energy conserva-
tion (Figure 5.14). To be specific, suppose that the modes with index 𝜂 belong to
the low-frequency solvent continuum of states; the intramolecular high-frequency
modes are labeled 𝜎. Let us further assume that the coupling matrix factorizes with
respect to the oscillators having quite different origin such that we can use [g(2)

𝜂,𝜎
]2 →

c2
𝜂
c2
𝜎
. If we then introduce the spectral density of the low-frequency solvent modes as

Jlf(𝜔) =
∑
𝜂

c2
𝜂
𝛿(𝜔 − 𝜔

𝜂
), (5.72)

we can cast the correlation function into the form:14)

C(Ω) = 4𝜋
∑
𝜎

c2
𝜎

[
(1 + n(𝜔

𝜎
))(1 + n(Ω − 𝜔

𝜎
))Jlf(Ω − 𝜔

𝜎
)

− (1 + n(𝜔
𝜎
))(1 + n(Ω − 𝜔

𝜎
))Jlf(−Ω + 𝜔

𝜎
)

+ n(𝜔
𝜎
)(1 + n(Ω + 𝜔

𝜎
))Jlf(Ω + 𝜔

𝜎
)

− n(𝜔
𝜎
)(1 + n(Ω + 𝜔

𝜎
))Jlf(−Ω − 𝜔

𝜎
)
]
. (5.73)

If we think of the mode 𝜎 as a high-frequency mode of the solute itself or of the
neighboring solvent molecules whose frequency we know, the transfer rates can
be immediately calculated, provided we have knowledge about the spectral density,
for instance derived from full force–force autocorrelation functions. An example for
solvent-assisted intramolecular relaxation is given in Figure 5.14.

Generalizing the results we have obtained for the case of a system–reservoir inter-
action quadratic in the bath normal modes, we want to point out that of course the
next (cubic) term gives rise to three-quantum transitions in the bath and so on. Even
though the coupling might at first glance seem to be rather weak compared to the
low-order terms in the Taylor expansion, energy conservation can take over such
that higher order quantum transitions provide the only relaxation channel.

Up to this point we have considered the situation typical for the relaxation of a
high-frequency solute mode, which is basically a transition between the first excited

14) Here, we have taken only those contributions into account that mix low- and high–frequency
modes.
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Figure 5.14 Solvent-assisted vibrational energy cascading after excitation of the
OH-stretching vibration in the intramolecular hydrogen bond in phthalic acid monomethyl
ester in CCl4 solution. In panel (a), normal-mode displacements of the five-dimensional
intramolecular relevant system are shown. Panel (b) gives the diabatic potential curves
along mode 𝜈HB for fundamental, combination, and overtone transitions of the
high-frequency modes. The relevant system is coupled quadratically to another
intramolecular mode as well as to the solvent. This leads to a cascaded vibrational energy
relaxation as indicated by the arrows and quantified by the populations of the different
high-frequency states in panel (c) (populations range from 0.05 to 0.001). The (normalized)
spectral density for the coupling of the solvent to mode 𝜈HB (solid line – simulation, dashed
line – Ohmic fit, Eq. (3.301), arrow marks – frequency of 𝜈HB) is shown in panel (d).
For more details on the model and the experiment, see Heyne [14].

state and the ground vibrational state of that mode. In the following we would like
to discuss the relaxation of a mode having some intermediate frequency. The initial
condition might be provided by an excitation of an electronic transition. In the elec-
tronically excited state, we suppose an excitation along a vibrational mode involv-
ing high quantum number states (see also Chapter 6). In the bilinear model, the
relaxation would proceed via relaxation down the vibrational ladder step by step.
What happens if we include the next higher order, that is the term quadratic in
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the system coordinate? For simplicity, we assume that the environment provides
a dense spectrum, and all relaxation takes place via single quantum transition in
the bath. The system coordinate is assumed to describe a harmonic oscillator with
frequency Ωs. The quadratic contribution to the interaction Hamiltonian can be
written in dimensionless form as K(s) = s22Ωs𝜇s∕ℏ. The respective transition rate is
given by

kMN = |⟨M|K(s) |N⟩|2C(𝜔MN ), (5.74)

with C(𝜔) according to Eq. (3.295). The matrix elements have been given in Eq. (5.6),
and we obtain

kMN =
[
𝛿MN (2M + 1)2 + 𝛿M,N+2M(M − 1)
+𝛿M,N−2(M + 1)(M + 2)

]
C(ΩMN ). (5.75)

As to be expected, two-quantum transitions become possible at this point. Provided
that the spectral density is flat such that J(Ωs) ≈ J(2Ωs), the difference between
the one-quantum and two-quantum transitions comes from the thermal prefactor.
Thus, the rates for downward transitions behave like (1 + n(Ωs))∕(1 + n(2Ωs)) =
(1 + exp(−Ωs∕kBT)), and for upward transitions, we have n(Ωs)∕n(2Ωs) = (1 + exp
(Ωs∕kBT)). Therefore, for moderate temperatures in particular, the two-quantum
upward transitions will be much less probable than the respective one-quantum
transitions. In general, however, estimating the relative importance of one- and
two-quantum transitions, one has to take into account the form of the spectral
density. There is another term in Eq. (5.75) which is proportional to 𝛿MN . This term
is nothing but energy conserving pure dephasing.

5.5 Quantum–Classical Approaches to Relaxation
and Dephasing

Classical molecular dynamics simulations have the advantage that realistic
condensed-phase situations can be described using forces that are determined on
the fly from molecular mechanics force fields or quantum chemical calculations.
However, often, one needs to account for the quantum nature of high-frequency
vibrations, and therefore, hybrid quantum–classical approaches are used (see also
Section 3.13). Since in vibrational problems, the relevant system, that is the
vibrational coordinate is not appreciably displaced from its equilibrium value, the
feedback of the quantum to the classical system can often be neglected. Further-
more, the relevant system Hamiltonian and the system–reservoir coupling are
comprised into a system Hamiltonian that depends on the classical solvent coor-
dinates Z = {Z

𝜉
}, that is HS + HS–R = HS(Z(t)). Hence, the quantum states of the

relevant system are to be defined for a given solvent configuration. Here, a straight-
forward method is to generate a PES for the relevant system along the molecular
dynamics trajectory (the so-called snapshot potentials where the reservoir DOFs are
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Figure 5.15 (a) Fluctuations of the fundamental transition frequency of the N–H vibration
in an adenine–uracil base pair in deuterochloroform solution as obtained from snapshot
potentials within a QM/MM simulation. (b) The related IR absorption spectrum is shown
according to Eq. (5.77) (solid) as well as within a second-order cumulant expansion (dashed,
see Section 4.3.4). The experimental result (bullets) is taken from Woutersen and Cristalli
[15] (figure courtesy of Y. Yan).

fixed) and diagonalize the respective Hamiltonian to obtain the vibrational eigen-
states, see Eq. (3.447). A numerically less-expensive approach is to employ certain
mapping relations. In hydrogen-bonded systems, for instance, the frequency of the
hydrogen motion within a hydrogen bond depends on the length of that bond (see
Chapter 8), and simple empirical relations have been established from experimental
data.

A more accurate procedure employs the fact that by virtue of the Stark effect
the vibrational energy levels of some high-frequency vibration depend on the local
electric field due to the surrounding solvent. Employing gas-phase simulation of
the relevant system in an electric field, a mapping between the system Hamiltonian
and the field parameters (for example, field plus field gradient) can be established.
Extensions to include, for instance, dispersive interactions are possible. This
so-called vibrational spectroscopy map approach enables one to assign the system
Hamiltonian based on the field, which is obtained along the molecular dynamics
trajectory in the condensed phase. This approach has the advantage that using ab
initio quantum chemical methods in the gas phase, one circumvents the problem
that classical force fields are usually designed to reproduce structural and thermo-
dynamic properties but not vibrational spectra. On the other hand, it is limited to
purely electrostatic effects, not accounting for, for instance covalent bonding. This
approach has been widely used for the investigation of water and peptide dynamics.

Pure vibrational dephasing and its effect on the lineshape of the infrared absorp-
tion spectrum is readily discussed within a quantum–classical approach. Let us con-
sider the two lowest states of a high-frequency mode, |0⟩ and |1⟩, with transition
frequency 𝜔10 and dipole operator (in Condon approximation and neglecting the
vector character) �̂� = 𝜇10 |1⟩ ⟨0| + h.c. An expression for the absorption spectrum
in terms of the dipole–dipole correlation function is given in Eq. (4.46). For the
present model, we can use the results of Section 4.3.4. This implies that we assume
H0(Z) and H1(Z) being the Hamiltonian operators for the Z DOFs in the ground and
excited states, respectively. Next, we introduce the fluctuation operator ΔH(0)

10 (t) =
H1(t) − H0(t) − Δ10, with Δ10 =

⟨
ℏ𝜔10

⟩
and the thermal average taken with respect
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to the equilibrium statistical operator for the Z DOFs, R̂0(Z). The S-operator in Eq.
(4.78) takes the form

S10(t, 0) = T̂ exp
⎧⎪⎨⎪⎩−

i
ℏ

t

∫
0

dt ΔH(0)
10 (t)
⎫⎪⎬⎪⎭ . (5.76)

Instead of performing a cumulant expansion as in Section 4.3.4, the classical approx-
imation is taken for the Z DOFs.15) In this case, the time ordering in the S-operator
can be neglected, and the average is performed with respect to a classical ensemble.
The absorption spectrum becomes (cf. Section 4.2.2)

𝛼(𝜔) =
4𝜋𝜔nmol

3ℏc
Re

∞

∫
0

dt ei(𝜔−Δ(cl)
10 ∕ℏ)t

⟨
exp
⎧⎪⎨⎪⎩−i

t

∫
0

dt 𝛿𝜔10(t)
⎫⎪⎬⎪⎭
⟩

cl,R

. (5.77)

Here, we introduce the gap fluctuation function 𝛿𝜔10(t) as the time-dependent devi-
ation of the transition energy from its average value, Δ(cl)

10 ∕ℏ, due to the classical
motion of the Z DOFs. Notice that the classical equilibrium dynamics of the Z DOFs
takes place with respect to the ground state of the high-frequency mode, which is a
consequence of the partitioning in Eq. (4.77). Alternatively, the excited state could
have taken as a reference, which, however, would imply to adapt molecular dynam-
ics force fields. An example is given in Figure 5.15. Note that the line width according
to Eq. (5.77) is not necessarily Lorentzian; that is, in general, the simple Bloch model
of dephasing does not apply. Nevertheless, a pure dephasing time T∗

2 is often esti-
mated on the basis of a fitting to a Lorentzian lineshape.

The classical approximation can also be applied to the nonlinear response func-
tions introduced in Section 4.3.2, Eqs. (4.92)–(4.95). For example, for R1(t3, t2, t1), we
obtain for the present two-level system the expression

R1(t3, t2, t1) = ||d10
||4e−iΔ(cl)

10 (t1+t3)ℏ

×

⟨
exp
⎧⎪⎨⎪⎩−i

t1

∫
0

dt 𝛿𝜔10(t) − i

t1+t2+t3

∫
t1+t2

dt 𝛿𝜔10(t)
⎫⎪⎬⎪⎭
⟩

cl,R

. (5.78)

Hence, provided that the gap correlation function has been calculated, linear and
nonlinear spectroscopic signals can be determined as far as the contributions due to
pure dephasing are concerned. In Figure 5.16, results of the classical simulations of
the two-dimensional IR spectrum of an adenine–uracil base pair in deuterochloro-
form solution are shown (cf. Figure 5.15). The spectrum can be analyzed in terms
of features discussed in Figure 4.3. Peaks I and I′ on the diagonal (Ωe = Ωd) cor-
respond to the response of the N–H· · ·N (I) and N–H· · ·O vibrations. The corre-
sponding ESA signals due to vibrational anharmonicity are marked by II and II′.

15) Note that the expression still contains ℏ and therefore is formally not a classical limit in the
strict sense.
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Figure 5.16 (a) IR absorption
spectrum of N–H· · ·N and
N–H· · ·O vibrations in an
adenine–uracil base pair in
deuterochloroform solution
(cf. Figure 5.15). (b)
Two-dimensional IR spectrum,
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Two cross-peaks, III and III′, are also visible, indicating the coupling between the
two vibrations.

In order to describe population dynamics, one makes use of the assumption that
the relevant quantum system does not react back onto the classical bath. This system
part is defined with parameters depending on the actual position of the bath coordi-
nates obtained using a vibrational spectroscopy map. To be specific, we consider the
example of a system formed by two DOFs coupled via a Fermi resonance (cf. Section
5.2.1), that is

HS(Z(t)) =
1
2
∑
𝜉=1,2

(
p2
𝜉
+ 𝜔2

𝜉
(Z(t))q2

𝜉

)
+ K122(Z(t)) q1q2

2. (5.79)

Using an expansion into a basis set such as harmonic oscillator states, one obtains a
set of differential equations for the expansion coefficients that can be solved numer-
ically including a sampling of the bath fluctuations, for instance along a molecular
dynamics trajectory (cf. Eq. (3.449) where, however, an eigenstate expansion had
been used). As a result, the population dynamics as well as spectroscopic signals
can be investigated. One should be aware, however, that as a consequence of the
neglected backreaction of the system to the reservoir, this approach cannot describe
thermalization to the proper equilibrium.
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6

Intramolecular Electronic Transitions

Photoinduced intramolecular electronic transitions as well as transitions
caused by intramolecular state couplings will be discussed below. In contrast
to more complex transfer reactions, which we will encounter in later chapters,
these processes exclusively take place in a single molecule where an electron is
promoted from an initial electronic state |𝜙i⟩ to a final electronic state |𝜙f ⟩. We
explain in detail that the interplay of the dynamics of the electronic transition
and the accompanying vibrational motion is at the heart of such transitions.
If the vibrational relaxation within the considered potential energy surface is
fast compared to the electronic transition, a simple perturbational treatment
with respect to the electronic coupling between the states |𝜙i⟩ and |𝜙f ⟩ becomes
possible. As an important example for such a transition, linear optical absorp-
tion is discussed. Here, the state coupling is due to an external electromagnetic
field. Different ways for calculating the absorption spectrum are introduced
that highlight particular aspects of the coupled electronic and nuclear motions
during the transition event and demonstrate different types of approximations.
Nonlinear optical processes are also briefly addressed.
On the basis of this discussion, we are in the position to describe the internal
conversion process, which is an intramolecular electronic transition that results
from the nonadiabatic coupling between different adiabatic electronic states.
Here, we focus on the cases of slow and fast vibrational relaxation as compared
to the electronic transition rate.

6.1 Introduction

Adiabatic electronic states are approximate solutions of the stationary electronic
Schrödinger equation for the molecule (cf. Section 2.3). Since they are not eigen-
states of the molecular Hamiltonian, there exists a residual interaction between
adiabatic states. Different situations can be identified where this nonadiabatic
coupling has to be taken into account. For example, if bound electronic states are
considered, an overlap of the related PES indicates that nonadiabatic transitions
may be important. If a molecule is initially prepared in a particular excited adiabatic
state, a spontaneous transition to the electronic ground state will take place. In the

Charge and Energy Transfer Dynamics in Molecular Systems,
Fourth Edition. Volkhard May and Oliver Kühn.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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general case, this may involve a sequence of transitions via intermediate electronic
states. Such a type of transition is called internal conversion (IC). It is characterized
by the conservation of the total molecular spin. Hence, starting in an excited singlet
state Sn, IC proceeds down to the singlet ground state S0. Normally, the transitions
down to the first excited singlet state, S1, are rather rapid (so-called Kasha rule).
However, the nonradiative transition S1 → S0 is so slow that it competes with
possible radiative transitions (luminescence). IC processes are also observed within
the manifold of triplet (or higher spin) states, whereas singlet–triplet transitions
(and vice versa) are known as intersystem crossing processes.

The equilibrium configuration of the nuclei depends on the electronic state (see
Section 2.19). This is why the dynamics of intramolecular electronic transitions
may strongly depend on the coupling between electronic and nuclear DOFs. Let us
consider transitions between two adiabatic electronic states, |𝜙i⟩ (initial state) and|𝜙f ⟩ (final state). If the relaxation of the nuclear DOFs in these two electronic states
(for instance, due to the coupling to a reservoir) is fast compared to the time needed
for a transition between these two states, the process is electronically incoherent.
Electronic coherences between the two states can exist if the nuclear motion is
comparable or slow in relation to the electronic dynamics. Then, a time-dependent
wave function is formed that is a superposition of the initial and final states. In
general, intramolecular electronic transitions are not necessarily induced by inter-
nal couplings, such as nonadiabatic or spin–orbit couplings. Scattering processes
of the considered molecule with other molecules as well as the interaction with
external electromagnetic fields can cause electronic transitions, too. The most
common example is the absorption of light energy via an electronic transition from
the ground state of the molecule to a particular excited state. This process conserves
the total spin; it is a transition from the singlet ground state S0 to an excited singlet
state Sn (n = 1,2,…).1) We expect many similarities between externally induced
electronic transitions and those induced by internal perturbations. In particular,
this holds when the coupling is weak, which allows for a perturbational treatment.
This provides the motivation to discuss the theoretical description of optical
absorption in some detail. Many of the relations we introduce here will also
be valid for other types of transfer processes to be treated in the following
chapters.

6.1.1 Optical Transitions

We start with some qualitative considerations of optical absorption; details on the
theoretical background of molecule radiation field interaction have been already
presented in Chapter 4. Let us focus on the simple case of a diatomic molecule. The
ground state will be characterized by the PES Ug(R), whereas the excited state PES
is given by Ue(R). R denotes the relative distance between the two atoms, and rota-
tional motion will be neglected. Both PESs are assumed to have a single minimum at
Ra (a = g, e). Usually, Re > Rg, since an electronic excitation results in a weakening

1) Notice that, of course, the electronic ground state could have a higher multiplicity as well.
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Figure 6.1 Ground and excited state PESs of a diatomic molecule versus bond distance R
with exemplary transitions for absorption at energy ℏ𝜔abs and emission at ℏ𝜔em.
(a) Different vertical transitions are shown that correspond to different relative positions in
the sense of classical physics. (b) Different vibrational states in both electronic states
together with the respective wave function are sketched. Transitions to and from the
excited electronic state are possible for different values of the bond length R.

of the bond. The electronic transition can be considered to take place on a time scale
that is fast compared to the relative motion of both nuclei (bond vibration).2) There-
fore, we can disregard the nuclear motion during the electronic transition. In the
picture of PES, this means that the electronic transition is vertical, and the nuclei
are frozen during the transition, as shown in Figure 6.1. This scheme for optical
transitions in molecules is known as the Franck–Condon principle.

Next, we discuss how this principle affects the details of the absorption spectra. We
start with a classical description of the relative motion of the two nuclei. Although
the nuclear motion in molecules is of quantum nature, the classical description
is appropriate if the energy of a characteristic vibrational quantum ℏ𝜔vib is much
smaller than a characteristic mean energy of the vibrational motion, for example
smaller than the thermal energy kBT.

According to the classical description, the state of the lowest energy in the elec-
tronic ground state PES Ug corresponds to R = Rg; that is, the bond distance takes its
equilibrium value. After the optical excitation the electronic state has been changed
to the excited state without any change in R. Optical absorption is possible when-
ever the photon energy ℏ𝜔 equals Ue(Rg) − Ug(Rg). This results in a sharp absorption
line at this photon energy. Usually we have R = Rg < Re, and the bond is elongated
according to the new equilibrium length Re. As a consequence, following the excita-
tion, there will be vibrational motion with respect to Re.

If collisions with other molecules take place, for example in a condensed
phase environment (solvent), R may deviate from Rg in the initial state, and
absorption becomes possible at photon energies different from Ue(Rg) − Ug(Rg).

2) Although this picture is useful, we remind the reader on the fact that quantum mechanics does
make any statement neither concerning the actual time nor on the duration of the electronic
transition. We exclusively get information on the change of the particle wave function with time
(cf. Section 6.5).
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Since the experiments we have in mind are done with a macroscopically large
number of molecules, a multitude of transitions become possible at photon energy
ℏ𝜔 = Ue(R) − Ug(R), with values of R being determined by the type and the strength
of the collision processes.3) If system and environment are in thermal equilibrium
with temperature T, we can use statistical mechanics to determine the possible
values of R from the thermal distribution

f (R) = 1


e−Ug(R)∕kBT
, (6.1)

with the partition function  = ∫ dR exp(−Ug(R)∕kBT). As a consequence of the
thermal distribution of bond lengths, the measured absorption spectrum will be
broadened so that it has a width approximately equal to kBT. Since R = Rg occurs
with highest probability, the maximum of the absorption spectrum is located at the
photon energy Ue(Rg) − Ug(Rg) (vertical transition).

Next, we assume that kBT < ℏ𝜔vib and change to a quantum description as
illustrated in Figure 6.1b. In this case, the vibrational motion is characterized by
discrete vibrational levels EgM and EeN of the electronic ground and excited states,
respectively. Consequently, (one-photon) absorption processes of a monochromatic
radiation field take place only if the energy ℏ𝜔 of a photon equals a possible
transition energy EeN − EgM . Let us again make use of the Franck–Condon principle
to understand the details of these transitions. For simplicity, we assume that only
the vibrational ground state, 𝜒gM=0(R), is populated before the absorption process.
The description in terms of a wave function implies that the coordinate R does
not possess the sharp value Rg but is distributed around it. As a consequence,
vertical transitions to the excited state are also possible for R ≠ Rg. The mentioned
coordinate distribution is also valid for the vibrational states, 𝜒eN (R), of the PES Ue.
Here, 𝜒eN (R) determines the possible values of R in the excited state. To what extent
these vibrational states are excited follows from the overlap between the initial
wave function 𝜒g0(R) and the final state wave functions 𝜒eN (R):

∫
dR 𝜒

∗
eN (R)𝜒g0(R) ≡ ⟨𝜒eN |𝜒g0⟩. (6.2)

These overlap matrix elements are called Franck–Condon factors. The square of
these Franck–Condon factors is proportional to the respective transition strength
(see below); the individual spectral lines will be sharp in the simple one-dimensional
model considered here. If excited vibrational states in the electronic ground state
are thermally occupied, additional transitions to the excited electronic state are
possible. Considering a large number of molecules in thermal equilibrium with a
particular environment, every transition is weighted by the probability,

fgM =
exp(−EgM∕kBT)∑

N
exp(−EgN∕kBT)

, (6.3)

that a molecule of the thermal ensemble is in the initial state |𝜒gM⟩.
3) In such a situation one has to include the kinetic energy Tvib of the nuclear motion resulting in
the energy Tvib + Ug(R) of the initial state and the energy Tvib + Ue(R) of the final state of the
transition. However, the difference again amounts to Ue(R) − Ug(R).
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So far, we have assumed that the spectrum can be calculated from the knowledge
of the eigenstates of the relevant system. In a condensed phase environment, how-
ever, one has to account for the interaction between the relevant system and the
reservoir (for example, the solvent). Without adopting a specific model for the reser-
voir and its interaction with the system, we can discuss two principal effects. To
this end, we assign a certain time scale to the modulation of the system’s proper-
ties (for example, the transition energies) by the reservoir. If this time scale is long
compared with some characteristic time for the experiment (typically given by the
optical pulse length, which can be nanoseconds for absorption measurements), the
effect of the environment is to introduce static disorder. This means that there will be
a static distribution of transition energies. This induces a broadening of the molecu-
lar absorption caused by the fact that the absorption spectra of individual molecules
are not identical. Usually, it is referred to as inhomogeneous broadening of absorption
lines (cf. Section 6.7). In contrast, if the modulation of molecular properties by the
environment is fast with respect to the time of the measurement, we have dynamic
disorder. It results in the so-called homogeneous broadening, which can be rational-
ized in terms of dephasing rates, which have to be added to the transition energies in
Eq. (6.17). In Section 6.2.4, these two limits will emerge from a particular model for a
spectral density that can be introduced Section 3.7.3. Figure 6.3 shows the broadened
absorption spectrum of a perylene bisimide dye molecule.

Having discussed the optical process where a single photon is absorbed by the
molecule, we now turn to the case of higher intensities of the incoming radiation
or multiple fields. The resulting nonlinear absorption processes are used in non-
linear spectroscopies such as pump–probe spectroscopy. Pump–probe spectroscopy
has been introduced in Section 4.3.6. Adapting the level scheme in Figure 4.2 to
the present case, one arrives at the picture of shifted PES. Here, the pump–pulse
excites a wave packet on state |𝜙e⟩whose dynamics can be probed by a second pulse,
for instance by excited state absorption (ESA) to a higher bound state, |𝜙f ⟩, as in
Figure 5.2 or by photoionization as illustrated in Figure 6.2.

If the molecule is in condensed phase, the interaction with the environment will
lead to vibrational energy relaxation and equilibration in the excited state. Provided
that the lifetime of the electronic state is long, the pump–probe spectrum (transient
absorption) gives valuable information about the properties of the excited state PES,
such as electronic energy differences and relative shifts of the PES. An example is
given in Figure 6.3.

In the preceding discussion we concentrated on the absorption of photons, but
the reverse process is also possible. Optical recombination, that is emission, is
simply the inversion of the optical absorption process, as shown in Figure 6.1b.
Since the lifetime of the first excited singlet state is in most cases large compared to
the characteristic times of the vibrational motion and relaxation, a thermal equilib-
rium is established of the vibrational motion in the excited electronic state before
recombination. Therefore, the initial state of this process has to be characterized
by a thermal distribution function as in Eq. (6.3) but related to the first excited
state. Emission from this equilibrium distribution in the excited electronic state
takes place to different excited vibrational states belonging to the electronic ground
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Figure 6.2 Pump–probe spectroscopy of wave packet dynamics. (a) Wave packet motion of
Na2 after preparation of a nonstationary state in the electronic state A1Σ+

u by means of a
pump pulse. The subsequent probe pulse ionizes the molecule such that the observed
signal shown in (b) corresponds to the ion yield as a function of the delay time between the
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of the evolving wave packet (Reproduced with permission from Baumert et al. [1]/American
Physical Society).
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Figure 6.3 Steady-state absorption and fluorescence spectrum (a) of a perylene bisimide
dye (in chloroform). Both spectra exhibit a broadened vibrational or Franck–Condon
progression. The transient absorption spectrum (dispersed pump–probe spectrum,
Eq. (4.103), given as change in optical density [OD]) is shown in (b) 5 ps after excitation at
480 nm. The spectrum is decomposed according to the contributions coming from ground
state bleaching, stimulated emission, and excited state absorption to a higher electronic
state (Sn); see also Figure 4.2 (figure courtesy of S. Lochbrunner).
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Figure 6.4 Internal conversion of the
population of electronic levels with energy
E1M into a population of electronic levels
with energy E2N . Every vibrational level
loses its population via transitions induced
by the nonadiabatic coupling. If the
nonadiabatic transition is fast compared to
vibrational relaxation, recurrences of
population become possible. In the
contrary case, the transfer is irreversible,
and the energetic degeneracy between the
levels of state 1 and state 2 is a necessary
condition for the transition.
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state. Finally, we note that emission can take place as a spontaneous as well as a
stimulated process (cf. Figure 6.3).

6.1.2 Internal Conversion Processes

A possible scheme for IC processes is given in Figure 6.4, indicating the transition
from the adiabatic electron–vibrational states E1M to the states E2N . If the nona-
diabatic coupling is weak so that the characteristic time for the transition is long
compared to the time vibrational relaxation needs to establish thermal equilibrium,
the IC process starts from such a thermal distribution among the vibrational levels
E1M . However, if the transition is also fast, vibrational relaxation is accompanied by
transitions to the vibrational levels E2N . Of course, the details of this process are not
only determined by the strength of the nonadiabatic coupling, there is also a con-
siderable influence of the initial state preparation. For instance, if the preparation
time is long compared to the time of the nonadiabatic transition, any detail of the IC
process may be smeared out (for more details on the problem of state preparation,
see Section 6.5).

6.2 The Optical Absorption Coefficient

6.2.1 Golden Rule Formulation

We start our discussion of the absorption coefficient by deriving the expression
for the rate kg→e of transitions between the electronic ground state |𝜙g⟩ and some
excited state |𝜙e⟩ due to the absorption of a single photon. During this process,
energy of the electromagnetic field is converted into molecular excitation energy. For
the molecular Hamiltonian, the representation in terms of the electron–vibrational
states |𝜙a⟩|𝜒aN⟩ will be used (cf. Section 2.6). The interaction with the field is
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Figure 6.5 Description of
optical absorption as a
curve-crossing problem with
initial state PES ℏ𝜔 + Ug and
final state PES Ue. The type of
curve crossing determines
the degree of the initial and
final state vibrational wave
function overlap. (S is the
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accounted for in the semiclassical approximation discussed in Section 4.1. Note
that describing electronic transitions in a system of two electronic states with the
Golden Rule formula implies that the coupling between both states is weak, and
that any coherence between the initial and final states is suppressed.

It will be the main aim of the following considerations to determine the transition
rate for a single molecule using a point of view that establishes a relation between
optical absorption and other types of electronic transitions induced by intra-
molecular perturbations. Therefore, the absorption process is viewed as the transi-
tion from the initial state |𝜙g⟩|𝜒gM⟩ with energy levels ℏ𝜔 + EgM to the final states|𝜙e⟩|𝜒eN⟩ in the excited electronic state with energy levels EeN . In other words, the
energy of the absorbed photon ℏ𝜔 is incorporated by defining the PES for the initial
state as Ug + ℏ𝜔 (cf. Figure 6.5). We consider situations where this PES overlaps
with the final state PES Ue. Then, the optical absorption can be interpreted as a
charge transfer between PESs belonging to different adiabatic electronic states. Such
an arrangement of two overlapping PESs is usually called a curve-crossing system.

First, the concept of the energetically shifted electronic ground state PES is
introduced into the molecular Hamiltonian (two-level version of Eq. (2.98) with
the neglect of nonadiabatic couplings). Including the external field also, the
Hamiltonian reads (cf. Eq. (4.15))

H(t) =
∑

a=g,e
Ha(q)|𝜙a⟩⟨𝜙a| − E(t)

(
deg|𝜙e⟩⟨𝜙g| + h.c.

)
. (6.4)

Here, q comprises the relevant nuclear coordinates of the molecule. The external
field is taken to be monochromatic: E(t) = E0 exp(−i𝜔t) + c.c. Let us rearrange the
Hamiltonian according to

H(t) = 0 +1(t), (6.5)

with 0 = − ℏ𝜔|𝜙g⟩⟨𝜙g|. The remaining part gives the Hamiltonian with the shifted
electronic ground state spectrum

1(t) =
(

Hg(q) + ℏ𝜔
) |𝜙g⟩⟨𝜙g| + He(q)|𝜙e⟩⟨𝜙e|

−E(t)
(

deg|𝜙e⟩⟨𝜙g| + h.c.
)
. (6.6)

Next, we use this particular representation to calculate the transition rate kge ≡ kg→e.
To do so, we follow the approach presented in Section 3.3, where the Golden Rule
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formula has been derived. The manifold of initial states |a⟩ is identified with the
adiabatic electron–vibrational states |𝜙g⟩|𝜒gM⟩, whereas the final states |𝛽⟩ are the
excited electron–vibrational states |𝜙e⟩|𝜒eN⟩.

To apply the results of Section 3.3, we have to specify the time-evolution
operator. This is done here by taking the (zeroth-order) time-evolution operator
U0(t) = exp{−i0t∕ℏ} and changing to the interaction picture with respect to the
(zeroth-order) Hamiltonian 0. According to Section 3.2.2, the total time-evolution
operator reads U(t) = U0(t)S(t, 0). The S-operator is defined as the time-ordered
exponential of 1(t) taken in the interaction picture

S(t, 0) = T̂ exp
⎛⎜⎜⎝− i
ℏ

t

∫
0

dt′ (I)
1 (t′)

⎞⎟⎟⎠ , (6.7)

with 
(I)
1 (t) = U+

0 (t)1(t)U0(t). One easily verifies that

U0(t)|𝜙g⟩ = ei𝜔t|𝜙g⟩ , U+
0 (t)|𝜙g⟩ = e−i𝜔t|𝜙g⟩ , U0(t)|𝜙e⟩ = |𝜙e⟩. (6.8)

Applying these results, we get


(I)
1 (t) =

(
Hg(q) + ℏ𝜔

)
e−i𝜔t|𝜙g⟩⟨𝜙g|ei𝜔t + He(q)|𝜙e⟩⟨𝜙e|

−E0e−i𝜔t (deg|𝜙e⟩⟨𝜙g|ei𝜔t + d∗
ege−i𝜔t|𝜙g⟩⟨𝜙e|)

−E∗
0ei𝜔t (deg|𝜙e⟩⟨𝜙g|ei𝜔t + d∗

ege−i𝜔t|𝜙g⟩⟨𝜙e|) . (6.9)

This transformed Hamiltonian contains a time-independent part,


(I)
rw =

(
Hg(q) + ℏ𝜔

) |𝜙g⟩⟨𝜙g| + He(q)|𝜙e⟩⟨𝜙e|
−E0deg|𝜙e⟩⟨𝜙g| − E∗

0d∗
eg|𝜙g⟩⟨𝜙e|, (6.10)

and a part oscillating at twice the field frequency 𝜔. If one neglects these
high-frequency oscillations, the interaction picture introduced in this way leads to
a time-independent Hamiltonian 

(I)
rw. This is known as the Hamiltonian in the

rotating wave approximation.4)

Accepting the time-independent Hamiltonian as a good approximation for (I)
1 (t),

the S-operator becomes very simple since no time ordering is necessary. We obtain
the complete time-evolution operator as

U(t) = exp{i𝜔t|𝜙g⟩⟨𝜙g|} exp{i(I)
rwt∕ℏ}. (6.11)

Following the derivation of the Golden Rule formula in Section 3.3, we introduce
the transition amplitude, Eq. (3.65), AgM,eN (t) = 𝜃(t) ⟨𝜙g|⟨𝜒gM|U(t) |𝜙e⟩ |𝜒eN⟩, which
simplifies to AgM,eN (t) = 𝜃(t) exp(i𝜔t)⟨𝜙g|⟨𝜒gM| exp{i(I)

rwt∕ℏ} |𝜙e⟩ |𝜒eN⟩. Except for
the unimportant time-dependent phase factor, the transition amplitude is identical
to that discussed in Sections 3.3.1 and 3.86. We identify the Hamiltonian, Eq. (6.10),
with that of Eq. (3.63) and get from Eq. (3.87) the desired transition rate:

kg→e =
2𝜋
ℏ

∑
M,N

fgM|⟨𝜒gM|E∗
0d∗

eg|𝜒eN⟩|2 𝛿(ℏ𝜔 + EgM − EeN ). (6.12)

4) Since 
(I)
rw is time independent, one can imagine that it has been defined in a frame rotating

with the frequency of the externally applied light field.
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Using Eq. (6.12) together with Eq. (4.35), we obtain the absorption coefficient (here
and in the following c has to be understood as the medium velocity of light ncvacuum)

𝛼(𝜔) =
4𝜋2

𝜔nmol

c
∑
MN

fgM|⟨𝜒gM|deg|𝜒eN⟩|2 𝛿(ℏ𝜔 + EgM − EeN ). (6.13)

This result assumes that the molecular transition matrix elements deg of the non-
interacting single molecules are identical, and that all molecules possess the same
spatial orientation. Then, the scalar product degE0 can be calculated. The quantity
deg in Eq. (6.13) is the component of the vector deg along the direction of the field
vector.5) Often, one simplifies the matrix element ⟨𝜒gM|deg|𝜒eN⟩ to the expression
deg⟨𝜒gM|𝜒eN⟩. This approximation is known as the Condon approximation, which
replaces the exact matrix element by the pure electronic matrix element deg of the
dipole operator and the Franck–Condon factor ⟨𝜒gM|𝜒eN⟩. The simplification is
possible whenever the dependence of deg on the nuclear DOFs (via the parametric
dependence of the electronic wave functions 𝜙a(r;R), cf. Section 2.3) is sufficiently
weak to be negligible.

6.2.2 The Density of States

The obtained result for the absorption coefficient will be transformed into a more
compact form by introducing the lineshape function abs. We assume that the Con-
don approximation can be used and get for a sample of randomly oriented molecules

𝛼(𝜔) =
4𝜋2

𝜔nmol

3c
|deg|2 abs(𝜔 − 𝜔eg), (6.14)

with

abs(𝜔 − 𝜔eg) =
∑
N,M

fgM |⟨𝜒eN |𝜒gM⟩|2 𝛿 (ℏ𝜔 − (EeN − EgM)
)
. (6.15)

For convenience, the transition frequency,

ℏ𝜔eg = U (0)
e − U (0)

g , (6.16)

defined via the values of the PES at the respective vibrational equilibrium configu-
ration has been introduced.

The lineshape function can be understood as a density of states (DOS) that com-
bines two electronic states, the ground state and the considered excited state. There-
fore, it is often called Franck–Condon weighted and thermally averaged combined
density of states. The actual calculation of abs(𝜔 − 𝜔eg) and thus of the absorption
coefficient requires the detailed knowledge of the vibrational energy spectrum for
both PESs. This knowledge may be attained for small systems in the gas phase, or
whenever only a small number of vibrational DOFs is coupled to an electronic tran-
sition. However, Eq. (6.15) is inadequate for more complex systems or for systems
in the condensed phase. Therefore, our aim is to formulate abs(𝜔 − 𝜔eg) without

5) In the case of random orientations, an additional factor 1/3 appears on the right-hand side of
Eq. (6.13) as a consequence of orientational averaging.
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making use of any eigenstates of the system. For this purpose, abs will be written
in an alternative way after introduction of the Fourier representation of the delta
function. Then, it follows from Eq. (6.15) that

abs(𝜔 − 𝜔eg) =
1

2𝜋ℏ
∑
N,M ∫

dt fgM |⟨𝜒eN |𝜒gM⟩|2 ei(𝜔−(EeN−EgM )∕ℏ)t
. (6.17)

This expression is better suited even though at first glance the replacement of the
delta function may appear as a formal mathematical trick. However, we should recall
that in Section 3.4.5, where the Golden Rule had been derived via the Liouville–von
Neumann equation of the statistical operator, this type of time integration emerged
in a natural way. In Section 6.3, we discuss such a time-dependent formulation for
the absorption coefficient. Here, we only derive some general relations used later in
this chapter.

Let us follow Section 3.4.5 and eliminate the vibrational energy spectra using the
vibrational eigenvalue equations Ha|𝜒aN⟩ = EaN |𝜒aN⟩. We obtain

|⟨𝜒eN |𝜒gM⟩|2 ei(EeN−EgM )t∕ℏ = ⟨𝜒gM|eiEgM t∕ℏe−iEeN t∕ℏ|𝜒eN⟩⟨𝜒eN |𝜒gM⟩
= ⟨𝜒gM|eiHgt∕ℏe−iHet∕ℏ|𝜒eN⟩⟨𝜒eN |𝜒gM⟩. (6.18)

If we introduce this result into abs(𝜔 − 𝜔eg) and use the completeness relation for
the vibrational states, it follows that

abs(𝜔 − 𝜔eg) =
1

2𝜋ℏ ∫
dt ei𝜔t

∑
M
⟨𝜒gM|R̂g eiHgt∕ℏ e−iHet∕ℏ|𝜒gM⟩

= 1
2𝜋ℏ ∫

dt ei𝜔t trvib{R̂g eiHgt∕ℏ e−iHet∕ℏ}. (6.19)

Here, we inserted the equilibrium statistical operator for the vibrational motion
in the electronic ground state, Eq. (4.60). This way the DOS (lineshape function)
has been obtained as a Fourier-transformed correlation function, which relates the
vibrational motion in the electronic ground state PES to the motion in the excited
state PES. The averaging has to be taken with respect to the vibrational equilibrium
statistical operator for the electronic ground state.

For later use, we give an alternative notation of Eq. (6.19) that connects the present
results to the response functions introduced in Chapter 4 (cf. Section 4.3.4). It is
based on the separation of an S operator in analogy to Eq. (4.78). In the present case,
we introduce ΔHeg = He − Hg − ℏ𝜔eg and rewrite the time-evolution operator for He
as follows:

Ue(t) = e−iHet∕ℏ = e−i𝜔egte−i(Hg+ΔHeg)t∕ℏ

= e−i𝜔egtUg(t)Seg(t, 0), (6.20)

with Ug(t) = exp(−iHgt∕ℏ). The S-operator has the form

Seg(t, 0) = T̂ exp
⎧⎪⎨⎪⎩−

i
ℏ

t

∫
0

dt ΔH(g)
eg (t)

⎫⎪⎬⎪⎭ , (6.21)
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where the abbreviation ΔH(g)
eg (t) = U+

g (t)ΔHegUg(t) has been introduced. Using this
notation, the lineshape function is obtained in the compact form:

abs(𝜔 − 𝜔eg) =
1

2𝜋ℏ ∫
dt ei(𝜔−𝜔eg)t trvib{R̂gSeg(t, 0)}. (6.22)

The existence of the time integral requires that the trace expression vanishes if
t goes to ±∞. In the most simple case, the trace expression may become propor-
tional to exp(−|t|∕𝜏) at t → ±∞. The time constant 𝜏 is known as the dephasing
time. It describes the temporal decay of correlations between the electronic ground
and excited state vibrational dynamics (cf. Eq. 6.19). In particular, it determines the
broadening of the transition from the vibrational ground state level Eg0 in the elec-
tronic ground state to the vibrational ground state level Ee0 in the excited electronic
states (so-called zero-phonon transition).

Although Eqs. (6.19) and (6.22) do not require any knowledge about the system’s
eigenstates, the determination of the correlation function is still a formidable task.
The best strategy depends on the details of the system under consideration. For
systems with a few number of vibrational DOFs, the time-dependent Schrödinger
equation subject to particular initial conditions can be solved, as will be presented
in Section 6.3.1. For larger systems, a direct solution of the Schrödinger equation
(either time dependent or stationary) is impossible. Instead, approximations have to
be introduced. One possibility we have already encountered in Section 4.3.4 is the
cumulant expansion. Further, an approximate description of the vibrational DOFs
as a thermal reservoir in the spirit of the QME can be used (cf. Section 6.3.2 for this
approach to the absorption spectrum). A classical description of the vibrational coor-
dinates (or a part of it) is given in Section 6.3.3. In the case that the vibrational motion
can be described in the harmonic approximation such that it can be mapped onto
those of independent harmonic oscillators (via a normal-mode analysis, see Section
2.5.1), an analytical computation of the correlation function in Eq. (6.19) becomes
possible.

6.2.3 Absorption Coefficient for Harmonic Potential Energy Surfaces

In the case where the vibrations are described by independent harmonic oscilla-
tors, an analytical expression for Eq. (6.19) can be derived starting from the vibra-
tional Hamiltonian introduced in Eq. (2.51). The various vibrational frequencies
should be independent of the electronic state, but both PESs are shifted relative to
each other along the different normal-mode coordinates. The related dimensionless
displacements ga(𝜉) are given in Eq. (2.66). Within this model, we obtain the line-
shape function as (for details see the supplementary Section 6.7.1)

abs(𝜔 − 𝜔eg) =
1

2𝜋ℏ ∫
dt ei(𝜔−𝜔eg)t−G(0)+G(t)

, (6.23)

with the transition frequency introduced in Eq. (6.16). The time-dependent function
in the exponent of Eq. (6.23) reads

G(t) =
∑
𝜉

(
ge(𝜉) − gg(𝜉)

)2 [
(1 + n(𝜔

𝜉
))e−i𝜔

𝜉
t + n(𝜔

𝜉
)ei𝜔

𝜉
t]
. (6.24)



6.2 The Optical Absorption Coefficient 261

This expression includes the dimensionless relative displacement ge(𝜉) − gg(𝜉)
between both PESs. The 𝜔

𝜉
denote the frequencies of the normal-mode oscillators,

and n(𝜔) is the Bose–Einstein distribution, which introduces the temperature
dependence. Obviously, the function G(t) carries the complete information on the
influence of the nuclear DOFs. Neglecting G(t), the absorption profile reduces to a
sharp line at 𝜔 = 𝜔eg. The time-independent part,

G(0) =
∑
𝜉

(ge(𝜉) − gg(𝜉))2(1 + 2n(𝜔
𝜉
)), (6.25)

includes the so-called Huang–Rhys factor
∑
𝜉
(ge(𝜉) − gg(𝜉))2. It is related to the

expression

S = 2ℏ
∑
𝜉

𝜔
𝜉

(
ge(𝜉) − gg(𝜉)

)2
, (6.26)

which is known as the Stokes shift (cf. Figure 6.5).
Starting with the Golden Rule expression, Eq. (6.15), where the thermal averaging

with respect to the initial vibrational eigenstates has to be carried out directly, the
final result includes thermally averaged quantities in the exponent. This can be for-
mally rationalized by means of the cumulant expansion as shown in Section 6.2.5.
Once the function G(t) is given, a single time integration generates the complete
absorption spectrum according to

𝛼(𝜔) =
2𝜋𝜔nmol

3ℏc
|deg|2e−G(0)

∫
dt ei(𝜔−𝜔eg)t+G(t)

. (6.27)

The general character of this expression becomes obvious when discussing the lim-
iting cases for G(t). We start in considering the limit where only a single vibrational
mode with frequency 𝜔vib couples to the electronic transition. From Eq. (6.24) it
follows that (Δg = ge − gg)

G(t) = Δg2 (e−i𝜔vibt(1 + n(𝜔vib)) + ei𝜔vibtn(𝜔vib)
)
. (6.28)

Expanding the exponential function in Eq. (6.23) yields

exp{G(t)} =
∞∑

M=0

1
M!

[
Δg2(1 + n(𝜔vib))

]Me−iM𝜔vibt

×
∞∑

N=0

1
N!

[
Δg2 n(𝜔vib)

]N eiN𝜔vibt
. (6.29)

Inserting this result into the expression of the combined DOS allows to carry out the
time integration for every contribution in the double sum. It simply gives

abs(𝜔 − 𝜔eg) =
1
ℏ

e−Δg2(1+2n(𝜔vib))
∞∑

M,N=0

1
M!

[
Δg2(1 + n(𝜔vib))

]M

× 1
N!

[
Δg2n(𝜔vib)

]N
𝛿(𝜔 − 𝜔eg − (M − N)𝜔vib). (6.30)

Using this expression, the absorption coefficient, Eq. (6.14), becomes a collection
of sharp lines corresponding to transitions at frequencies 𝜔eg − (M − N) 𝜔vib (vibra-
tional or Franck–Condon progression). In contrast to Eq. (6.15), the Franck–Condon
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Figure 6.6 Stick spectrum of the absorption described by Eq. (6.31). The weighting factors,
Eq. (6.32), are plotted versus frequency: (a) Δg2 = 0.5 and (b) Δg2 = 2.5.

factor and the thermal distribution have been replaced by powers of Δg and n(𝜔vib),
respectively.

Before discussing this result further, we consider the zero-temperature case
(n(𝜔vib) = 0):

abs(𝜔 − 𝜔eg)|T=0 = 1
ℏ

e−Δg2
∞∑

M=0

Δg2M

M!
𝛿(𝜔 − 𝜔eg − M𝜔vib). (6.31)

The absorption spectrum is a sequence of sharp lines (see Figure 6.6) at frequencies
𝜔eg + M𝜔vib with weighting factors

𝑤M = e−Δg2 Δg2M

M!
. (6.32)

Thus, these weighting factors follow from the Poisson distribution. They become
maximal at M ≈ Δg2 or, in terms of energies, at Mℏ𝜔vib ≈ ℏ𝜔vibΔg2. Note that the
vibrational quantum number at which the absorption reaches its maximum is given
by the difference Ue(q = qg) − Ue(q = qe) = ℏ𝜔vibΔg2 = S∕2. This corresponds to a
vertical transition which is in accord with the Franck–Condon principle introduced
at the beginning of this chapter. The shape of the spectrum following from Eq. (6.31)
is illustrated in Figure 6.6.

At finite temperatures, we have to consider the double summation in Eq. (6.30).
Nevertheless, a more compact expression can be derived. If M > N, we introduce
K = M − N and N = L, where L and K run from 0 to ∞. In case that M < N, we set
M = L, which again runs from 0 to ∞, but K is in between the interval from 0 to −∞.
Rearranging the combined DOS gives

abs(𝜔 − 𝜔eg) =
1
ℏ

∞∑
K=−∞

( n(𝜔vib)
1 + n(𝜔vib)

)|K|∕2

𝛿(𝜔 − 𝜔eg − K𝜔vib)

×
∞∑

L=0

1
L!(L + |K|)! (Δg4n(𝜔vib)[1 + n(𝜔vib)]∕4)L+|K|∕2

. (6.33)

Using the definition of the modified Bessel function

IK(z) =
∞∑

L=0

1
L!(L + |K|)! (z2∕4)L+|K|∕2

, (6.34)
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we get

abs(𝜔 − 𝜔eg) =
1
ℏ

∞∑
K=−∞

IK

(
Δg2

√
n(𝜔vib)[1 + n(𝜔vib)]

)
×
( n(𝜔vib)

1 + n(𝜔vib)

)|K|∕2

𝛿(𝜔 − 𝜔eg − K𝜔vib). (6.35)

This compact expression contains only a single sum with respect to the difference in
vibrational quanta between the electronic ground and the excited states. It gives the
temperature-dependent intensity of transitions between the two electronic states.

6.2.4 Absorption Lineshape and Spectral Density

If many intramolecular vibrational modes couple to the electronic transition, or if
additionally there is a coupling to modes of a reservoir, we expect a quasi-continuous
spectrum of vibrational frequencies. In such a case, it is convenient to introduce the
spectral density into Eq. (6.24). This can be done in complete analogy to Section 3.7.3,
Eq. (3.294). Here, we define

Jeg(𝜔) =
∑
𝜉

(
ge(𝜉) − gg(𝜉)

)2
𝛿(𝜔 − 𝜔

𝜉
). (6.36)

The spectral density enables us to write Eq. (6.24) as follows:

G(t) =

∞

∫
0

d𝜔
[
(1 + n(𝜔))e−i𝜔t + n(𝜔)ei𝜔t] Jeg(𝜔). (6.37)

Furthermore, we can use the spectral density to write the Stokes shift introduced in
Eq. (6.26) as

S = 2ℏ

∞

∫
0

d𝜔 𝜔Jeg(𝜔). (6.38)

It is convenient to introduce the real and imaginary parts of the function G(t),
Eq. (6.37),

G(t) = G1(t) − iG2(t), (6.39)

where

G1(t) =

∞

∫
0

d𝜔 cos(𝜔t)[1 + 2n(𝜔)]Jeg(𝜔), (6.40)

and

G2(t) =

∞

∫
0

d𝜔 sin(𝜔t)Jeg(𝜔). (6.41)

Note that the imaginary part is temperature independent, whereas the real part
includes all temperature effects. Apparently, the real and imaginary parts of
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G(t), Eq. (6.37), have to obey G1(t) = G1(−t) and G2(t) = −G2(−t), respectively. In
particular, these properties have to be fulfilled if both functions are calculated from
the model spectral density.

According to this separation of G(t), the DOS equation (6.23) reads

abs(𝜔 − 𝜔eg) =
1

2𝜋ℏ
e−G1(0)

∫
dt ei

[
(𝜔−𝜔eg)t−G2(t)

]
+G1(t). (6.42)

The imaginary part of G(t) introduces a shift of the electronic transition frequency
𝜔eg, whereas the real part leads to an exponential decay of the integrand in Eq. (6.42).
We expect that this exponential decay is reflected in the broadening of the absorption
lines.

It is instructive to compare the expressions in Eqs. (6.37) and (6.38) with the results
obtained for the reservoir correlation function in Section 3.7. The system–reservoir
coupling, Eqs. (3.286) and (3.287), and the shifted oscillator Hamiltonian, Eq. (2.65),
involve the same linear coupling of the system and electronic transitions, respec-
tively, to a set of oscillator coordinates. The reservoir correlation function C(t) in
Eq. (3.300) differs from G(t) insofar as 𝜔2J(𝜔) instead of Jeg(𝜔) appears in the inte-
grand. This is a consequence of the definition of G(t) via the S-operator (cf. Eq.
(6.22)), which becomes apparent in the cumulant approach discussed in the follow-
ing section. As has been mentioned in Section 3.7.2, in condensed phase dynamics,
the factor 𝜔2 is often included into the definition of the spectral density. The current
definition solely in terms of the dimensionless coupling constant is more convenient
for describing processes related to electronic transitions. Finally, we would like to
point out that the Stokes shift in Eq. (6.38) corresponds to twice the reorganization
energy, E

𝜆
, of the system bath model in Eq. (3.296).

6.2.5 Cumulant Expansion of the Absorption Coefficient

In Section 4.3.4, the cumulant expansion of the response functions for a two-level
system has been discussed. In principle, it applies to arbitrary, that is anharmonic
PES. In what follows, we connect the cumulant expansion to the results of the
previous section by showing that in the limit of harmonic PES identical results
are obtained for the absorption coefficient. In particular, we demonstrate that the
second-order cumulant expansion (up to Γ2(t), see Eq. (4.85)) is exact for harmonic
vibrations.

We prove this statement by reproducing Eq. (6.23) in what follows and start with
a calculation of ΔH(g)

eg (t) entering Eq. (4.79). Within the model of shifted harmonic
potentials, the vibrational Hamiltonians He and Hg take the form, Eq. (2.74), and we
obtain ΔHeg = D+

e HvibDe− D+
g HvibDg. It follows that

ΔH(g)
eg (t) = D+

g U+
vib(t)DgΔHegD+

g Uvib(t)Dg

= D+
g U+

vib(t)
(

D+
egHvibDeg − Hvib

)
Uvib(t)Dg. (6.43)

Here, Deg stands for DeD+
g . The Hamiltonian Hvib defines a fictitious reference oscilla-

tor system introduced in Eq. (2.74). Inserting the explicit expressions for the Hamil-
tonians yields finally (note the application of the displacement operator and the
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abbreviation geg(𝜉) = ge(𝜉) − gg(𝜉))

ΔH(g)
eg (t) = D+

g

∑
𝜉

ℏ𝜔
𝜉

(
Q
𝜉
(t) + geg(𝜉)

)
geg(𝜉)Dg. (6.44)

The time dependence of the dimensionless oscillator coordinate Q
𝜉
(t) is determined

by Hvib and reads Q
𝜉
(t) =C

𝜉
exp(−i𝜔

𝜉
t) +C+

𝜉
exp(i𝜔

𝜉
t). The trace operation necessary

to calculate the different correlation functions of ΔH(g)
eg (t) will be rewritten in terms

of the nondisplaced vibrational states of the oscillator Hamiltonian Hvib as ⟨· · ·⟩g ≡

trvib{R̂vibDg …D+
g }, with R̂vib = exp(−Hvib∕kBT)∕.

Now we can determine the two expectation values entering Γ1 and Γ2, Eqs. (4.84)
and (4.85), respectively. The expression

⟨ΔH(g)
eg (t)⟩g = trvib

{
R̂vib

∑
𝜉

ℏ𝜔
𝜉

(
Q
𝜉
(t) + geg(𝜉)

)
geg(𝜉)

}
=
∑
𝜉

ℏ𝜔
𝜉
g2

eg(𝜉) ≡
S
2

(6.45)

becomes time independent. Here, we took into account that the equilibrium expec-
tation values of C

𝜉
and C+

𝜉
vanish. Further, we recovered the expression for the Stokes

shift already introduced in Eq. (6.38). In a similar manner, we obtain

⟨ΔH(g)
eg (t)ΔH(g)

eg (t)⟩g = trvib

⎧⎪⎨⎪⎩R̂vib

∑
𝜉,𝜉

ℏ𝜔
𝜉
ℏ𝜔

𝜉

(
Q
𝜉
(t) + geg(𝜉)

)
× geg(𝜉)

(
Q
𝜉
(t) + geg(𝜉)

)
geg(𝜉)

}
=
∑
𝜉

(
ℏ𝜔

𝜉
geg(𝜉)

)2trvib{R̂vibQ
𝜉
(t)Q

𝜉
(t)} + S2∕4. (6.46)

The trace with respect to the dimensionless oscillator coordinate vanishes for 𝜉 ≠ 𝜉

and reads (cf. Section 3.7.2)

trvib{R̂vibQ
𝜉
(t)Q

𝜉
(t)} =

(
1 + n(𝜔

𝜉
)
)

e−i𝜔
𝜉
(t−t) + n(𝜔

𝜉
)ei𝜔

𝜉
(t−t)

. (6.47)

Now, it is easy to determine Γ1 and Γ2. It follows directly from Eqs. (4.84) and (6.45)
that Γ1(t) = −iSt∕2ℏ. To obtain Γ2, some additional calculations have to be carried
out. First, we note that the double time integration necessary to get Γ2 gives the
contribution (St∕ℏ)2∕2. This follows directly from the part of Eq. (6.46) containing
S2. It can be written as −Γ2

1(t)∕2. With this result and according to Eq. (4.85), Γ2 can
be reduced to

Γ2(t) =
∑
𝜉

(𝜔
𝜉
geg(𝜉))2

×

t

∫
0

dt1

t1

∫
0

dt2
{(

1 + n(𝜔
𝜉
)
)

e−i𝜔
𝜉
(t1−t2) + n(𝜔

𝜉
)ei𝜔

𝜉
(t1−t2)

}
. (6.48)
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The calculation of the time integrals gives Γ2(t) = Γ1(t) + G(t), with the function G(t)
introduced in Eq. (6.24). Thus, we get as the final result

Γ1(t) + Γ2(t) = −G(0) + G(t) (6.49)

and reproduced the expression (6.23) for the combined DOSabs(𝜔). Since Eq. (6.23)
gives the exact result for the combined DOS, the cumulant expansion only contains
contributions up to the second-order cumulant Γ2. Cumulants of type Γ3 and higher
are not necessary to calculate ⟨Seg(t, 0)⟩g within the model of shifted harmonic oscil-
lator PESs.

Finally, we note that for the present case of linearly shifted oscillators, Γ2(t) can
be expressed in terms of the reservoir correlation function introduced in Eq. (3.292),
that is

Γ2(t) = −
∫

t

0
dt1 ∫

t1

0
dt2 C(t1 − t2). (6.50)

This connection between the shifted oscillator model and the system–reservoir
model of Section 3.7 was already discussed in the previous section.

6.2.6 Absorption Coefficient for Model Spectral Densities

To be more specific, let us discuss the absorption in terms of model spectral densities
introduced in Section 3.7.3. Since these spectral densities describe harmonic oscilla-
tor reservoirs, the connection to spectroscopy can immediately be established using
the second-order cumulant expansion and Eq. (6.49). Specifically, we can use the
relation (6.50) together with the correlation functions calculated in Section 3.7.3.

The Debye spectral density was already introduced in Eq. (3.302). Adopting the
notation common in spectroscopy, it reads (note that E

𝜆
= S∕2)

Jeg(𝜔) = 𝜃(𝜔)
S𝜔D

𝜋ℏ

1
𝜔

1
𝜔

2 + 𝜔2
D
. (6.51)

In the context of spectroscopy, it is often used to describe the response of
low-frequency reservoir modes to the change in the electron density upon optical
excitation (for example, reorientation of the solvation shell or collective protein
vibration in photosynthetic complexes). In the following equation we only consider
the high-temperature limit (kBT ≫ ℏ𝜔D) and use the correlation function given in
Eq. (3.311). Inserting this expression into Eq. (6.50) and performing the integrations
yields

Γ2(t) = − S
2(ℏ𝜔D)2 (2kBT − iℏ𝜔D)

(
e−𝜔Dt + 𝜔Dt − 1

)
. (6.52)

With the help of Γ2(t) and Γ1(t) = −iSt∕2ℏ, one can identify

G1(t) = −
kBTS
(ℏ𝜔D)2 (e

−𝜔Dt + 𝜔Dt − 1) (6.53)

and

G2(t) =
S

2ℏ𝜔D
(1 − e−𝜔Dt). (6.54)
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The frequency-dependent combined DOS is obtained after the time integration in
Eq. (6.42) has been carried out.

In order to discuss this result we introduce two time scales. First, the time scale
for vibrational motion characterized by Tvib ≈ 1∕𝜔D. The second time scale is
related to the strength of the coupling between electronic and nuclear motions
(S). We have Tfluc = ℏ∕

√
kBTS, where the square root contains the mean energy of

thermal motion and nuclear displacement upon excitation (both quantities result
in energy gap fluctuations).

We can distinguish two limits reflecting in distinct absorption lineshapes. In the
limit of slow nuclear motion, we suppose that Tvib ≫ Tfluc such that it is possible to
perform a short-time expansion of G(t) with respect to 𝜔Dt. One obtains

abs(𝜔 − 𝜔eg) =
1

2𝜋ℏ ∫
dt exp

{
i(𝜔 − 𝜔eg − S∕2ℏ)t − 1

2

(
t

Tfluc

)2
}

=
Tfluc√
2𝜋 ℏ

exp
{
−1

2
(

Tfluc(𝜔 − 𝜔eg − S∕2ℏ
)2
}
. (6.55)

This case is known as the limit of inhomogeneous broadening, where the time scale
for nuclear motion is such that the nuclei can be considered to be frozen. We have a
Gaussian absorption lineshape centered around the vertical Franck–Condon transi-
tion 𝜔 = 𝜔eg + S∕2 (cf. Figure 6.5).

In the fast nuclear motion limit, we have Tvib ≪ Tfluc, and the exponential fac-
tors in G(t) can be neglected. Setting 𝜔Dt − 1 ≈ 𝜔Dt and neglecting G2(t), which is of
the order of (Tvib∕Tfluc)2

ℏ𝜔D∕kBT, one arrives at G(t) ≈ Tvib|t|∕T2
fluc. The absorption

lineshape follows as a Lorentzian

abs(𝜔 − 𝜔eg) =
1

2𝜋ℏ ∫
dt exp

{
(i(𝜔 − 𝜔eg)t − Tvib|t|∕T2

fluc

}
= 1
𝜋ℏ

𝛾

(𝜔 − 𝜔eg)2 − 𝛾2 . (6.56)

The linewidth is given by 𝛾 = Tvib∕T2
fluc. This is the limit of homogeneous broadening.

Note that the absorption is now centered at the electronic transition frequency, and
the Stokes shift does not appear. This can be rationalized by the fact that the nuclear
motion is so fast that only the electronic transition, which is averaged with respect
to the nuclear dynamics, is detected in the experiment.

Finally, we point out that the transition between the limits of inhomogeneous and
homogeneous broadening can be observed upon changing the temperature. While
at low temperature the nuclear motions are frozen and the lineshape is Gaussian,
at higher temperature, it becomes Lorentzian. This phenomenon is also known as
motional line narrowing.

As a second example we discuss the Brownian oscillator model introduced in Eq.
(3.303). In the context of spectroscopy it describes a single active vibrational coordi-
nate bilinearly coupled to further vibrations being either of intramolecular character
or due to solvent motions (reservoir). The single active coordinate is characterized
by a strong coupling to an electronic transition such that it leads to a vibrational
progression in the absorption spectrum as shown, for instance in Figure 6.6. The
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coupling to the reservoir causes a broadening of the sharp absorption lines as seen
in Figure 6.3.

The related Hamiltonian represents a particular example for the generic
system–reservoir Hamiltonian, Eq. (3.3). The system part, HS, is identical with the
molecular part of Eq. 6.4 (here restricted to a single vibration with frequency 𝜔0,
although the extension to many active coordinates is straightforward), that is

HS =
∑

a=g,e

[
Ua(q = q(a)) + 1

2
(

p2 + 𝜔2
0(q − q(a))2) ] |𝜙a⟩⟨𝜙a|. (6.57)

The system–reservoir coupling is of Caldeira–Leggett form, Eq. (5.20), and reads

HS+R + HR = 1
2
∑
𝜉

⎡⎢⎢⎣p2
𝜉
+ 𝜔2

𝜉

(
q
𝜉
−

c
𝜉
q

𝜔
2
𝜉

)2⎤⎥⎥⎦ . (6.58)

This model can be described by the spectral density given in Eq. (3.303). Specifi-
cation to the notation commonly used in spectroscopy gives

Jeg(𝜔) = 𝜃(𝜔) S
𝜋ℏ

1
𝜔

𝜔
2
0𝛾0

(𝜔2 − 𝜔2
0)

2 + 𝜔2
𝛾

2
0
. (6.59)

The correlation function for this model was calculated in Section 3.7.3, Eqs. (3.312)
and (3.314). Employing the high-temperature limit (kBT ≫ ℏ𝜔0), one obtains

C(t) =
S𝜔2

0

4ℏΩ0

[(
1 + i

2kBT

ℏΩ(+)
0

)
e−Ω

(+)
0 t −

(
1 + i

2kBT

ℏΩ(−)
0

)
e−Ω

(−)
0 t

]
. (6.60)

Since Ω(±)
0 = 𝛾0∕2 ± iΩ0, the correlation function decays as exp(−𝛾0t∕2), which is

a consequence of the dephasing due to the system–reservoir interaction. From
C(t), the second-order cumulant can readily be obtained according to Eq. (6.50).
In Figure 6.7, we give an example for a spectrum in case of weak damping. As
compared to Figure 6.6, the lines are broadened. In addition, the thermal population
of higher vibrational states in the electronic ground state leads to the appearance of
peaks at frequencies smaller than the electronic transition frequency 𝜔eg.
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Figure 6.7 Absorption
(solid line) and emission
(dashed line) spectrum (in
arbitrary units) of a single
harmonic mode bilinearly
coupled to a harmonic
oscillator reservoir
(Brownian oscillator model
in high-temperature limit).
The mode frequency is 𝜔0,
the Stokes shift S = 2ℏ𝜔0,
the damping 𝛾0 = 0.05𝜔0,
and temperature kBT =
2ℏ𝜔0.
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6.3 Absorption Coefficient and Dipole–Dipole
Correlation Function

In Section 4.2.2, the frequency-dependent linear absorption coefficient was
expressed by the time-dependent dipole–dipole correlation function, Eq. (4.42). In
the following equations, different derivations of the latter quantity will be given
based on the solution of dynamic equations for the respective time-dependent wave
functions or density matrices. The basic idea behind these approaches has already
been encountered in Section 6.2.2, where the absorption coefficient was expressed
in terms of a Fourier transform of a particular correlation function (see Eq. (6.19)).
Having different ways of calculating correlation functions is of great importance
not only to get the linear absorption coefficient but to compute different types of
transfer rates in molecular systems. In particular, it will be a goal of the following
sections to provide a means for the description of systems beyond the harmonic
oscillator model. The actual numerical wave packet propagations can be performed,
for instance using the method outlined in Section 3.2.3.

In order to keep the connection with the previous section, we adopt the same
electronic two-level model for our discussion. The time-dependent description of
the stationary absorption will also enable us to bridge the gap between the fast
intramolecular dynamic phenomena, that is phenomena in the time domain, and
properties observed in the frequency domain.

6.3.1 Absorption Coefficient and Wave Packet Propagation

Starting from Eq. (4.42), one can derive an expression for the dipole–dipole correla-
tion function based on the time evolution of a particular statistical operator. To this
end, Eq. (4.42) is rewritten as (note that the Cartesian index on both dipole operators
has been omitted since the scalar product of the orientation unit vectors just gives a
number)

Cd–d(t) = tr{�̂�Umol(t) [�̂�, Ŵeq]− U+
mol(t)} ≡ tr{�̂��̂�(t)}. (6.61)

This formula results from a simple rearrangement of the various operators under the
trace in Eq. (4.42), and we introduced �̂�(t) = Umol(t) [�̂�, Ŵeq]− U+

mol(t). Now, we may
calculate the correlation function via a propagation of the commutator of the equi-
librium statistical operator with the dipole operator (which induces the transitions
according to the coupling with the radiation field).

This statement can be put into a more transparent formula if one changes from the
propagation of mixed states to that of pure states. Such a situation is encountered in
the gas phase, where any environmental influence is absent. Hence, we replace Ŵeq
by |Ψ⟩⟨Ψ|, where |Ψ⟩ is an eigenstate of Hmol with energy  . Using Umol(t)|Ψ⟩ =
exp(−i t∕ℏ)|Ψ⟩, we obtain for the dipole–dipole correlation function

Cd–d(t) = tr{�̂�
(

Umol(t)�̂�|Ψ⟩⟨Ψ|ei t∕ℏ − e−i t∕ℏ|Ψ⟩⟨Ψ|�̂�U+
mol(t)

)
}. (6.62)

Next, we rearrange the matrix elements formed by the pure state vector |Ψ⟩ and those
states used to calculate the trace. We can profit from the completeness relation for
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the state vectors defining the trace formula and obtain

Cd–d(t) = ei t∕ℏ⟨Ψ|�̂�Umol(t) �̂�|Ψ⟩ − c.c. (6.63)

The interpretation of Eq. (6.63) is straightforward: the dipole operator induces
a transition from the initial state |Ψ⟩ to the state �̂�|Ψ⟩. This is usually not an
eigenstate of Hmol. Therefore, one can expect wave packet motion to take place.
At time t, the propagated state Umol(t)�̂�|Ψ⟩ is multiplied by ⟨Ψ|�̂� to give the
dipole autocorrelation function ⟨Ψ|�̂�Umol(t)�̂�|Ψ⟩. Its half-sided Fourier transform
determines the absorption according to Eq. (4.46). The first term on the right-hand
side of Eq. (6.63) gives resonant contributions to the absorption coefficient, Eq.
(4.46). We expect that Umol(t)�̂�|Ψ⟩ will oscillate with different excited state energies
exc. Therefore, the absorption coefficient will have a frequency dependence of the
type 𝜔 − (exc − )∕ℏ. These resonances at positive frequencies are absent in the
second term on the right-hand side of Eq. (6.63) (labeled by “c.c.”). It is therefore
often called antiresonant contribution.

In the specific case of an electronic two-level system, the state |Ψ⟩ is replaced by
the vibrational ground state in the electronic ground state, |𝜙g⟩|𝜒g0⟩. Provided that
the Condon approximation is valid, we obtain �̂�|𝜙g⟩|𝜒g0⟩ = deg|𝜙e⟩|𝜒g0⟩. Therefore,
due to the action of the dipole operator, the vibrational state |𝜒g0⟩ of the electronic
ground state PES has been promoted to the excited electronic state |𝜙e⟩. The resulting
time dependence reads

Umol(t)�̂�|𝜙g⟩|𝜒g0⟩ = deg|𝜙e⟩e−iHet∕ℏ|𝜒g0⟩. (6.64)

The vibrational state |𝜒g0⟩ propagates under the action of the vibrational Hamilto-
nian of the excited electronic state, where |𝜒g0⟩ is not an eigenstate of He.

We neglect the antiresonant contribution and get the absorption coefficient as

𝛼(𝜔) =
4𝜋𝜔nmol

3ℏc
|deg|2 Re

∞

∫
0

dt ei(𝜔+Eg0∕ℏ)t ⟨𝜒g0|𝜒 (e)
g0 (t)⟩. (6.65)

Thus, the absorption coefficient is obtained by solving the time-dependent
Schrödinger equation for nuclear motion on the electronic excited PES (indicated
by the superscript “e” at 𝜒 (e)

g0 ). The initial condition is given by |𝜒 (e)
g0 (t = 0)⟩ = |𝜒g0⟩.

At each time, the overlap integral between the propagated and the initial wave
function has to be calculated to get the absorption spectrum. In Figure 6.8, wave
packet dynamics, autocorrelation function, and absorption spectrum are shown for
the example of a Morse oscillator potential.

The wave packet description of absorption is particularly useful if the excited elec-
tronic state |𝜙e⟩ is dissociative. Because no reference is made to eigenstates, there
is no need to calculate the continuous energy spectrum. Instead, one solves the
Schrödinger equation in the coordinate representation. Additionally, Eq. (6.65) com-
bines a frequency domain quantity, 𝛼(𝜔), with a time domain quantity, 𝜒 (e)

g0 (R, t).
Therefore, the approach enables one to draw conclusions on the molecular system,
both in the frequency and in the time domain.6)

6) As a note in caution, we point out that in principle only the full time propagation of the wave
packet up to t → ∞ gives the absorption coefficient. In practice, an additional factor exp(−γt) is
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Figure 6.8 From wave packet motion to the absorption spectrum of a Morse oscillator
potential surface (cf. Figure 2.3). (a) Excited state potential, initial state according to a
vertical transition from the electronic ground state (dark gray) and wave packet after 100 fs
(light gray). (b) Contour plot of wave packet dynamics (|𝜒 (e)

g0 (R, t)|2). (c) Autocorrelation

function |⟨𝜒g0|𝜒 (e)
g0 (t)⟩| (normalized). (d) Absorption spectrum according to Eq. (6.65) with an

exponential damping of the correlation function of 𝛾 = 0.01 1/fs (𝜔0 is the transition
frequency between the two lowest vibrational states).

In Figure 6.9, we show the results of a numerical wave packet simulation of
the S0 − S1 absorption spectrum of the three-atomic molecule FNO. The initial
wave packet on the excited state is given according to 𝜒

(e)
g0 (RN–O,RF–NO; t = 0) =

𝜒g0(RN–O,RF–NO) (cf. Figure 6.9a). The subsequent dynamics is characterized by
an oscillatory motion in the bound region of the potential and a simultaneous
dissociation indicated by those parts of the wave packet that leave along the exit
channel RF–NO → ∞. The interplay between bond vibration and dissociation is
reflected in the damped oscillations of the correlation function shown in the lower
part of Figure 6.9b. Consequently, the Fourier transform of this correlation function,
which gives the absorption spectrum, is quite structured (Figure 6.9c).

It is easy to extend the considerations carried out so far to the case where the
absorption process starts from a mixed state (as already included in Eq. (6.61)). We
may generalize Eq. (6.65) using for the equilibrium statistical operator in Eq. (6.61)
Ŵeq =

∑
M fgM |𝜒gM⟩⟨𝜒gM|; that is, we assume a thermal distribution over the vibra-

tional levels of the electronic ground state. Since every (pure) state in this mixtures

often introduced to mimic, for instance the effect of system–reservoir coupling in terms of
absorption line broadening. It also provides a cut-off for the upper integration boundary.
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Figure 6.9 Numerical results for the S0 − S1 absorption spectrum of FNO obtained using
the wave packet propagation method. (a) The dynamics has been restricted to two
dimensions, that is the NO bond distance RN–O (from 1.8 to 3.2 Å) and the distance between
F and the center of mass of the NO fragment RF–NO (from 2.5 to 5 Å). (b and c) The
correlation function |⟨𝜒g0|𝜒 (e)

g0 (t)⟩| and the linear absorption spectrum, respectively
(Reproduced with permission from Suter et al. [2]/AIP Publishing).

enters the formula for the absorption coefficient independently, we directly obtain

𝛼(𝜔) =
4𝜋𝜔nmol

3ℏc
|deg|2 ∑

M
fgM Re

∞

∫
0

dt ei(𝜔+EgM∕ℏ)t ⟨𝜒gM|𝜒 (e)
gM(t)⟩. (6.66)

Instead of a single wave function overlap as in Eq. (6.65), we now have multi-
ple overlaps ⟨𝜒gM|𝜒 (e)

gM(t)⟩ between the vibrational wave functions 𝜒gM and its
time-dependent form propagated on the excited state PES. Moreover, every term is
weighted by the thermal distribution function.

A complication appears if several coupled electronic states become accessible after
photon Absorption, and nonadiabatic dynamics has to be taken into account. Let us
consider the case of two coupled states |𝜙e⟩ and |𝜙f ⟩. Here, the excited state can-
not be described by the single vibrational Hamiltonian He but by the Hamiltonians
He and Hf coupled via the operator Vfe (here, we use the diabatic picture). This is
another example for a curve-crossing problem. The coupling has to be accounted for
in the numerical solution of the Schrödinger equation for the wave function deter-
mining the correlation function in Eq. (6.65). As a consequence of the nonadiabatic
coupling, the spectrum changes; that is, the positions of the transitions are modified,
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Figure 6.10 Linear absorption spectrum for a curve crossing system (states |𝜙e⟩ and |𝜙f ⟩)
along a one-dimensional reaction coordinate Q (dimensionless oscillator coordinate). The
ground state is at Q = 0, and the transition dipole moment is assumed to be constant; that
is, only the Franck–Condon factors between the ground state wave function and the
eigenstates of the coupled excited states determine the spectrum. The left column shows
the adiabatic potential curves and the coordinate probability distribution for the lowest
eigenstates ( the detuning between the diabatic potentials is 0.5ℏ𝜔vib). The right column
shows the absorption spectrum (in arbitrary units) for the case of no (Vef = 0), weak
(Vef = 0.1), and strong (Vef = 0.5) interstate coupling. Upon increasing the interstate
coupling, new peaks appear, and the spectrum is shifted.

and new transitions appear (cf. Figure 6.10). We will return to the dynamics within
coupled PES in more detail in Section 6.6 as well as in Chapter 7.

6.3.2 Absorption Coefficient and Reduced Density Operator
Propagation

In the foregoing section, we used the rearrangement Eq. (6.61) of the dipole–dipole
correlation function to give an interpretation of the absorption coefficient in terms
of a wave packet propagation, which holds if the initial state of the transition is a
pure or a mixed state. Here, we briefly demonstrate how to proceed if the system
that undergoes the optical transition is in a condensed phase environment and is
characterized by an RDO. To be more specific, we assume that the vibrational DOFs



274 6 Intramolecular Electronic Transitions

described in the preceding section by the states𝜒aM (a = g, e) are coupled to a solvent
that acts as a thermal bath in the sense of Section 3.6. As a result, every state 𝜒aM has
a finite lifetime because of transitions accompanied by the emission or absorption
of environmental quanta.

The simplest example for such a situation would be a diatomic molecule in a sol-
vent where the bond distance coordinate is linearly coupled to some solvent coordi-
nates (cf. Section 5.3.3). If both types of coordinates are assumed to move in parabolic
PES, the bilinear coupling allows to introduce common harmonic coordinates, and
the whole system can be described exactly as outlined in Section 6.2.3. It is the
advantage of the following treatment that it is also valid in the case of a general
coupling to the condensed phase environment. Nevertheless, the treatment of the
system–reservoir coupling is still approximately according to the use of the QME.

To obtain the dipole–dipole correlation function in the present case, we again have
to start from Eq. (4.22) for the polarization and have to introduce its linearized ver-
sion with respect to the radiation field. However, if the radiation field only affects
the (active) molecular system and does not induce optical transitions in the envi-
ronment, Eq. (4.19) for the dipole operator expectation value can be written as

d(t) = trS{�̂��̂�(t)}. (6.67)

Here, the trace is taken with respect to the state space of the active molecular system
responsible for the absorption processes. �̂�(t) denotes the RDO, which is propagated
under the action of the external field starting with the equilibrium value �̂�eq. The
environment enters the expression via the time evolution of �̂�(t). In a next step, we
linearize Eq. (6.67) with respect to the electric field strength to find the generaliza-
tion of Eq. (6.61) for the dipole–dipole correlation function:

Cd–d(t) = trS {�̂��̂�(t)} . (6.68)

The operator �̂�(t) has to be propagated according to the respective QME master
equation (without the external field) and with the initial value [�̂�, �̂�eq]− (at t = 0).
Therefore, we may write �̂�(t) =  (t)[�̂�, �̂�eq]−, where  (t) denotes the dissipative
time-evolution superoperator (cf. Eq. (3.269)).

To obtain a deeper insight into the expression for the dipole–dipole correlation
function, we again specify it to a system with two electronic states (𝜙g and𝜙e) already
used in the preceding sections. Introducing an expansion with respect to these elec-
tronic states and using �̂�eq = R̂g|𝜙g⟩⟨𝜙g|, where R̂g is the vibrational equilibrium
statistical operator of the electronic ground state, we get from Eq. (6.68)

Cd–d(t) = trvib
{

dge⟨𝜙e|�̂�(t)|𝜙g⟩ + deg⟨𝜙g|�̂�(t)|𝜙e⟩} . (6.69)

This expression allows to generalize Eq. (6.65) to the condensed phase situation. The
propagation of the electronic ground state vibrational wave functions on the excited
state PES (cf. Eq. (6.65)) has been replaced by a propagation of the off-diagonal elec-
tronic matrix elements of the density operator �̂�.

If the equation of motion for the density matrix elements follows, for example
from the Bloch approximation (Section 3.8.3), an analytical expression for the linear
absorption coefficient may be derived. The Bloch approximation has the advantage
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that the propagation of the off-diagonal density matrix elements is separated from
that of the diagonal elements. We introduce the electron-vibrational energy repre-
sentation 𝜎aN,bM(t) = ⟨𝜒aN |⟨𝜙a|�̂�(t) |𝜙g⟩|𝜒bM⟩ and obtain for a ≠ b:

𝜕

𝜕t
𝜎aN,bM(t) = −i

(
𝜔aN,bM − i𝛾aN,bM

)
𝜎aN,bM(t). (6.70)

The 𝜔aN,bM are the transition frequencies, and the 𝛾aN,bM describe the dephasing
rates (cf. Eqs. (3.352), (3.353), and (3.357)). After specifying the initial conditions,
𝜎eN,gM(0) = deg ⟨𝜒eN |𝜒gM⟩ fgM , the time dependence of 𝜎aN,bM is simply obtained as
a damped oscillation. A Fourier transformation as in Eq. (4.46) results in the final
expression for the absorption coefficient. If 𝜎eN,gM(t) is Fourier transformed, there
appears the exponent 𝜔 − 𝜔eN,gM , which describes the resonant transitions. In con-
trast, 𝜎gN,eM(t) results in the exponent 𝜔 − 𝜔gN,eM , which is completely off-resonant.
These contributions can be neglected (cf. Eq. (6.65)), and we only consider 𝜎eN,gM(t).
Then, the trace formula in Eq. (6.69) can be specified as follows:

trvib{⟨𝜙e|�̂�(t)|𝜙g⟩} =∑
M
⟨𝜒gM|⟨𝜙e|�̂�(t)|𝜒gM⟩|𝜙g⟩

=
∑
M,N

⟨𝜒gM|𝜒eN⟩ 𝜎eN,gM(t), (6.71)

where in the last part the complete set of vibrational states belonging to the excited
electronic state has been introduced. The final expression for the absorption coeffi-
cient reads

𝛼(𝜔) =
4𝜋𝜔nmol

3ℏc
|dge|2∑

M,N
fgM|⟨𝜒gM|𝜒eN⟩|2 𝛾eN,gM

(𝜔 − 𝜔eN,gM)2 + 𝛾2
eN,gM

. (6.72)

This expression is a direct generalization of Eq. (6.13) since the various sharp transi-
tions (described by a 𝛿-function) are broadened here to a Lorentzian-like lineshape
(note the use of frequency instead of energy arguments here). The amount of broad-
ening is determined by the dephasing rates γeN,gM . Pure dephasing, which was intro-
duced in Section 6.2.2, is described here by the line-broadening γe0,g0 corresponding
to a transition between the vibrational ground states of both the considered elec-
tronic levels. Whether γe0,g0 gives a contribution or not depends on the concrete
model of the system–reservoir coupling.

6.3.3 Mixed Quantum–Classical Computation of the Absorption
Coefficient

We complete our considerations of different ways to compute the linear absorption
spectrum of a molecular system by an approach that accounts for the vibrational
DOFs (either of an intramolecular nature or of the surrounding solvent) using clas-
sical mechanics. Again, we demonstrate this for a transition including an electronic
excitation.

The easiest way to achieve this goal is based on Eq. (6.22), where the S-operator is
obtained by a classical quantity that is not time ordered and where the trace has
been replaced by the phase space integral over initial vibrational coordinates q0
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and momenta p0 weighted by the thermal distribution fg (defined by the vibrational
Hamilton function Hg(q, p)):

trvib{R̂gSeg(t, 0)} →
∫

dq0dp0 fg(q0, p0) exp
⎧⎪⎨⎪⎩−

i
ℏ

t

∫
0

dt Ueg

(
q(t)

)⎫⎪⎬⎪⎭ . (6.73)

This approximation, which is known as the dynamical classical limit (DCL), includes
the PES difference (cf. Section 5.5):

Ueg

(
q(t)

)
= Ue

(
q(t; q0, p0)

)
− Ug

(
q(t; q0, p0)

)
. (6.74)

It replaces the difference Hamiltonian ΔH(g)
eg (t) appearing in the exact formula,

Eq. (6.22). The nuclear kinetic energy contributions cancel each other, and the
q(t; q0, p0) are understood as solutions of Newton’s equations obtained with the
initial coordinates and momenta q0 and p0, respectively (note the similarity to
the Ehrenfest theory introduced in Section 3.13.1). As indicated, the latter quanti-
ties are subject to a thermal averaging procedure. Thus, the DCL determines the
absorption coefficient via the fluctuating PES difference (energy gap function),
which is sampled by a trajectory in the electronic ground state (cf. discussion in
Section 5.5). How this approximation compares to the exact behavior of the absorp-
tion coefficient is shown in Figure 6.11. Although the DCL approximation cannot
reproduce the sharp absorption lines at low temperature (or weaker coupling to the
secondary oscillators), it gives a satisfactory reproduction of the spectrum and the
correct position of the various lines in the overall spectrum.

In the following equation, we invoke the classical (as well as quasi-classical)
description of the vibrational dynamics when calculating the absorption coefficient
in a more rigorous way. This is achieved by changing to a partial Wigner representa-
tion of the statistical operator �̂� entering Eq. (6.61) for the dipole–dipole correlation
function. Taking the Wigner transformation partially, that is only with respect to
the nuclear DOFs, allows to treat them classically, while the electronic DOFs are
still considered quantum mechanically (cf. Section 3.4.4). As in Eq. (6.69) and after
specifying the trace with respect to the vibrational states to coordinate operator
eigenstates, we write

Cd–d(t) = ∫
dq

{
dge⟨𝜙e|⟨q|�̂�(t)|q⟩|𝜙g⟩ − deg⟨𝜙g|⟨q|�̂�(t)|q⟩|𝜙e⟩}. (6.75)

Here, q ≡ {q
𝜉
} denotes the  vibrational coordinates, |q⟩ is the product of the

respective eigenstates of the coordinate operators, and �̂�(t) is given by Umol(t)
[�̂�, R̂g|𝜙g⟩⟨𝜙g|]−U+

mol(t). The introduction of the partial Wigner representation of
�̂�(t) results in the quantity �̂�(x, p; t), which is an operator in the electronic state
space. The equation of motion for �̂�(t) yields upon Wigner transformation (using
the definition Eq. (3.164))

𝜕

𝜕t
�̂�(x, p; t) = − i

ℏ

[
Hmol(x, p)eiℏΘ̂∕2

�̂�(x, p; t)

−�̂�(x, p; t)eiℏΘ̂∕2Hmol(x, p)
]
. (6.76)
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Figure 6.11 Linear absorption coefficient for an MBO model, Eqs. (6.57) and (6.58),
incorporating a single harmonic coordinate (Δg = −4) coupled to 100 reservoir modes, with
a coupling derived from a discretized spectral density of type Eq. (3.301), with different
coupling strengths in the ground and excited electronic states (Ja = 𝜂aJ, a = g, e, with
𝜂g = 0.05, 𝜂e = 0.125 ((a) and (b)); 𝜂g = 0.0625, 𝜂e = 0.025 ((c) and (d)); and 𝜂g = 0.125,
𝜂e = 0.05 ((e) and (f))). The two columns correspond to two different temperatures as
indicated. The quantum mechanical (QM) results are contrasted to the DCL and SCL limits
(Reproduced with permission from Egorov et al. [3]/AIP Publishing).

The classical limit for the vibrational DOFs is obtained by expanding the exponen-
tial, exp(iℏΘ̂∕2), to first order (cf. Eq. (3.167)), which gives

𝜕

𝜕t
�̂�(x, p; t) = − i

ℏ

[
Hmol(x, p), �̂�(x, p; t)

]
−

+1
2

[
Hmol(x, p)Θ̂�̂�(x, p; t) − �̂�(x, p; t)Θ̂Hmol(x, p)

]
. (6.77)

As it is the case for �̂�, the Hamiltonian Hmol depends on the classical coordi-
nates and momenta but remains an operator in the electronic state space. Therefore,
Planck’s constant also appears in Eq. (6.77). Let us neglect for a moment the second
term on the right-hand side. Then, the remaining equation is solved by

�̂�(x, p; t) = Umol(x, p; t)�̂�(x, p; 0)U+
mol(x, p; t). (6.78)
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The time-evolution operators have been defined by Hmol, and therefore, they depend
on the classical coordinates and momenta, too. Moreover, we note the initial condi-
tion �̂�(0) = [�̂�, R̂g|𝜙g⟩⟨𝜙g|]−. In the classical limit, this leads to the Wigner represen-
tation as �̂�(x, p; 0) = degfg(x, p) |𝜙e⟩⟨𝜙g|−h.c.Then, after taking the electronic matrix
elements, it follows for �̂�(x, p; t) (as in the foregoing Section 6.3.2 we concentrate on
the resonant contribution)

⟨𝜙e|�̂�(x, p; t)|𝜙g⟩ = ⟨𝜙e|Umol(x, p; t)degfg|𝜙e⟩⟨𝜙g|U+
mol(x, p; t)|𝜙g⟩

= degfg(x, p) exp
(
− i
ℏ

Ueg(x)t
)
. (6.79)

Since the time-evolution operators are defined in terms of the classical vibrational
Hamiltonians Hg(x, p) and He(x, p), the exponent in the last part only contains the
difference Ueg(x) = Ue(x) − Ug(x) of the related PES. If we insert Eq. (6.79) into
Eq. (6.75) for the dipole–dipole correlation function, the absorption coefficient is
obtained as

𝛼(𝜔) =
4𝜋𝜔nmol

3ℏc
|deg|2 Re

∞

∫
0

dt ei𝜔t
∫

dx
dp

(2𝜋ℏ)
fg(x, p)e−iUeg(x)t∕ℏ

=
4𝜋2

𝜔nmol

3c
|deg|2 ∫ dxfg(x)𝛿

(
ℏ𝜔 − (Ue(x) − Ug(x))

)
. (6.80)

In the final expression, the momentum integration has been carried out, leading
to the reduced distribution function fg(x) ∼ exp(−Ug(x)∕kBT). The 𝛿-function fol-
lows from the time integral. The result for the linear absorption coefficient reflects
the qualitative discussion carried out in Section 6.1 in connection with Figure 6.1a.
The absorption of a photon becomes possible if its energy ℏ𝜔 equals the difference,
Ue(x) − Ug(x), between the PES of the ground and the excited electronic states (ver-
tical transitions). This is also the essence of Eq. (6.80).

Assuming parabolic PES, the x-integration in Eq. (6.80) can be carried out. This
will be demonstrated in detail in Section 7.4.1, where the electron transfer between
two states is discussed (see calculations following Eq. (7.62)). Here, we use only the
result (cf. Eq. (7.71)) adopted to the case of the absorption coefficient

𝛼(𝜔) =
4𝜋2

𝜔nmol

3c
|deg|2 √ 1

2𝜋kBTS
exp

⎧⎪⎨⎪⎩−
[
ℏ(𝜔 − 𝜔eg) − S∕2

]2

2SkBT

⎫⎪⎬⎪⎭ . (6.81)

Note the introduction of the transition frequency 𝜔eg according to Eq. (6.16) and
of the Stokes shift, Eq. (6.26). In Section 6.2.4, this type of expression was derived
for the case of slow nuclear motion (cf. Eq. (6.55)). This can be brought into a dif-
ferent perspective; that is, the neglect of any dynamic corrections to the solution,
Eq. (6.79), of the density operator equation in the Wigner representation (Eq. (6.77))
results in a static approximation (static classical limit [SCL]). In other words, during
the absorption process, there is no classical vibrational motion. Because the static
approximation is of fundamental character, we will come across it again at various
places in the later chapters.
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Next, we consider the effect of the second term in Eq. (6.77). Taking the electronic
matrix elements, one obtains using Eq. (3.165)

𝜕

𝜕t
⟨𝜙e|�̂�(x, p; t)|𝜙g⟩ = − i

ℏ

Ueg(x) ⟨𝜙e|�̂�(x, p; t)|𝜙g⟩
+1

2
[He(x, p) + Hg(x, p)] Θ̂ ⟨𝜙e|�̂�(x, p; t)|𝜙g⟩. (6.82)

The second term contains the classical Liouvillian for the evolution with respect
to the average of ground and excited state Hamiltonians, cl = [He(x, p) +
Hg(x, p)] Θ̂∕2. The formal solution of Eq. (6.82) can be written in Condon
approximation as

⟨𝜙e|�̂�(x, p; t)|𝜙g⟩ = exp
⎧⎪⎨⎪⎩

i
ℏ

0

∫
−t

dt Ūeg(t)
⎫⎪⎬⎪⎭ e−clt⟨𝜙e|�̂�(x, p; 0)|𝜙g⟩

= deg exp
⎧⎪⎨⎪⎩

i
ℏ

0

∫
−t

dt Ūeg(t)
⎫⎪⎬⎪⎭ e−cltfg(x, p), (6.83)

with ecltUeg(x) = Ūeg(t). Notice that fg(x, p) = exp(−Hg(x, p)∕kBT)∕g is not station-
ary if propagated with the average Liouvillian cl. However, we can write

fg(x, p) =
av

g
eUeg(x)∕2kBTfav(x, p), (6.84)

where fav and av are defined with respect to the average Hamiltonian (He + Hg)∕2.
In order to obtain the absorption spectrum, a phase space average has to be per-

formed with respect to the distribution fav(x, p). Due to the time invariance of this
equilibrium average, one can shift the time arguments in the exponential functions
by t. This yields, using Eq. (6.84), the absorption spectrum

𝛼(𝜔) =
4𝜋𝜔nmol

3ℏc
|deg|2 Re

∞

∫
0

dt ei𝜔t

×
∫

dx
dp

(2𝜋ℏ)
exp

⎧⎪⎨⎪⎩
i
ℏ

t

∫
0

dt Ūeg(t)
⎫⎪⎬⎪⎭ fg(x, p). (6.85)

In contrast to Eq. (6.80), the energy gap Ueg(x) is propagated with the average
Hamiltonian, (He + Hg)∕2, instead of Hg. Therefore, this approximation is also called
the averaged classical limit (ACL).7)

In Figure 6.11, the DCL and SCL approximations are compared to the exact quan-
tum mechanical (QM) results for a discretized MBO model, Eqs. (6.57) and (6.58).
The QM absorption spectrum shows a pronounced Franck–Condon progression that
is broadened with increasing temperature. The SCL spectra are structureless but

7) For a discussion of this approximation in the context of nonlinear spectroscopy, see
Shemetulskis and Loring [4].
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wrap the more exact spectra. The DCL approximation presents an improvement as
compared with the SCL case but without being able to reproduce the correct posi-
tions of the peaks. The ACL approximations are essentially indistinguishable from
the exact results (not shown).8)

6.4 The Emission Spectrum

The rate of spontaneous emission of a photon by a molecule via a transition from
an excited electronic state to the ground state has been derived in Section 4.4. Here,
we discuss the respective frequency-resolved emission spectrum I(𝜔) in some detail.
I(𝜔) is obtained by introducing the radiative lifetime 𝜏rad of the excited electronic
state. The latter quantity follows from the inverse of the transition rate ke→g. We
write

ke→g ≡
1
𝜏rad

=

∞

∫
0

d𝜔 I(𝜔), (6.86)

where the emission spectrum I(𝜔) gives the photon emission rate per frequency
interval. According to Eq. (4.134), one obtains for the emission spectrum

I(𝜔) =
4𝜔3|deg|2

3c3

∑
M,N

feM|⟨𝜒eM|𝜒gN⟩|2𝛿(EeM − EgN − ℏ𝜔). (6.87)

This expression will be encountered in Chapter 9 in the context of the Förster theory
of resonance energy transfer in molecular aggregates. It is obvious from the general
structure that the emission spectrum can be calculated in complete analogy to the
absorption coefficient. Following Section 6.2.1, we obtain

I(𝜔) =
4𝜔3|deg|2

3c3 em(𝜔 − 𝜔eg), (6.88)

where the combined DOS em characterizes the emission process. In analogy to Eq.
(6.19), we may write

em(𝜔 − 𝜔eg) =
∑
M,N

feM|⟨𝜒eM|𝜒gN⟩|2𝛿(EeM − EgN − ℏ𝜔). (6.89)

This expression differs in two respects from the DOS characterizing the absorption
process, Eq. (6.19). First, the electronic quantum numbers g and e have been inter-
changed (resulting in a replacement of fgM by feM), and second, 𝜔 has been replaced
by −𝜔. Thus, we obtain (R̂e is the vibrational equilibrium statistical operator refer-
ring to the excited electronic state)

em(𝜔 − 𝜔eg) =
1

2𝜋ℏ ∫
dt e−i𝜔t trvib{R̂e eiHet∕ℏ e−iHgt∕ℏ}. (6.90)

8) For a comprehensive comparison of the different trajectory-based approaches to the absorption
spectra, see Karsten et al. [5].
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Reducing this expression to the case of harmonic PES as demonstrated in Section
6.2.3, we have

em(𝜔 − 𝜔eg) =
1

2𝜋ℏ ∫
dt e−i(𝜔−𝜔eg)t−G(0)+G(t)

, (6.91)

directly demonstrating the property em(𝜔 − 𝜔eg) = abs(−𝜔 + 𝜔eg). This shows
that for harmonic oscillator PES (with the same curvature in the ground as well as
the excited state), the absorption and emission spectra are mirror symmetric with
respect to 𝜔 = 𝜔eg, as shown in Figure 6.7. The difference between the absorption
and emission maxima is equal to the Stokes shift S. Notice that in condensed phase
experiments, there is an additional contribution to the Stokes shift, which is due
to the reorganization energy required to adjust, for instance the solvation shell
to the respective electronic state (cf. the main peak separation of the absorption
and emission spectra in Figure 6.3). This effect can be described, for instance by a
Debye-type spectral density.

6.5 Optical Preparation of an Excited Electronic State

The following considerations will focus on the temporal behavior of molecular exci-
tation due to the interaction with an external field. In particular, we consider the
preparation of an excited electronic state via an optical transition from the electronic
ground state. A detailed understanding of such a transition is of great importance
for the study of photoinduced transfer phenomena starting from an excited elec-
tronic state. This goes beyond the linear absorption and, thus, linear optics since the
preparation, and possible detection, of the excited state dynamics includes the field
in higher than the first order. Before studying the preparation in the general frame
of the density matrix theory, a simpler approach will be given, which is based on the
solution of the time-dependent Schrödinger equation.

6.5.1 Wave Function Formulation

Let us consider again the two-state Hamiltonian equation 6.4; however, instead of
a strictly monochromatic electromagnetic field, a pulsed field (laser pulse) will be
assumed. It has the form

E(t) = nE(t)e−i𝜔t + c.c. (6.92)

The vector n defines the polarization of the field, and𝜔 is the carrier frequency (cen-
ter frequency of the pulse spectrum). E(t) ≡ Af (t) denotes the pulse envelope with
the pulse amplitude A and the normalized pulse envelope f (t) (∫ dtf (t) = 1). The
pulse duration is fixed by the pulse envelope. Frequently, a Gaussian pulse shape
centered at t = tp is used:

f (t) = 1√
2𝜋𝜏2

p

exp

{
−
(t − tp)2

2𝜏2
p

}
. (6.93)
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The time integral of this envelope is normalized to unity and contains 𝜏p as the pulse
duration.9) To solve the time-dependent Schrödinger equation,

𝜕

𝜕t
|Ψ(t)⟩ = − i

ℏ

H(t)|Ψ(t)⟩, (6.94)

defined by the time-dependent Hamiltonian, Eq. 6.4, and the initial condition|Ψ(t0)⟩, we change to the interaction representation (compare Section 3.2.2). The
unperturbed Hamiltonian is given by the molecular part Hmol =

∑
a=g,eHa(q)|𝜙a⟩⟨𝜙a|

of Eq. 6.4, whereas the perturbation is represented by the external-field contribution
Hfield(t) = −E(t)deg|𝜙e⟩⟨𝜙g| + h.c. Consequently, the state vector in the interaction
representation reads |Ψ(I)(t)⟩ = U+

mol(t − t0)|Ψ(t)⟩, with the time-evolution operator
Umol defined via Hmol. The determination of |Ψ(I)(t)⟩ can be reduced to the solution
of an integral equation of type (3.43). Here, we concentrate on the first-order
correction with respect to the external field and obtain

|Ψ(I)(t)⟩ ≈ |Ψ(t0)⟩ − i
ℏ

t

∫
t0

dt H(I)
field(t) |Ψ(I)(t0)⟩. (6.95)

After switching back to the Schrödinger representation, the complete state vector
including the first-order correction reads10)

|Ψ(t)⟩ = |Ψ(0)(t)⟩ + |Ψ(1)(t)⟩ = Umol(t − t0)|Ψ(t0)⟩
− i
ℏ

t

∫
t0

dt Umol(t − t0)U+
mol(t − t0)Hfield(t)Umol(t − t0)|Ψ(t0)⟩. (6.96)

The initial condition will be specified to

|Ψ(t0)⟩ = 𝛿ag|𝜙g⟩|𝜒g0⟩, (6.97)

thus assuming that the system is in the vibrational ground state of the electronic
ground state. In a next step, we take into account that

Umol(t) =
∑

a
e−iHat∕ℏ|𝜙a⟩⟨𝜙a| (6.98)

and expand the time-dependent state vector, Eq. (6.96), with respect to the electronic
basis. The zeroth-order part |Ψ(0)(t)⟩ corresponds to a stationary vibrational state on
the electronic ground state PES. The expansion of the first-order contribution with
respect to the excited electronic state gives the related state vector for vibrational
motion:

9) Gaussian pulse envelopes are also characterized by the full width at half maximum, which is√
8 ln 2 𝜏p.

10) Note that as long as we concentrate on a strict linearization with respect to the external field, a
normalization of the state vector is not necessary since it gives terms that are of higher order in the
field.
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|𝜒e(t)⟩ = ⟨𝜙e|Ψ(1)(t)⟩
= − i

ℏ

t

∫
t0

dt e−iHe(t−t)∕ℏ
(
−degE(t)

)
e−iHg(t−t0)∕ℏ|𝜒g0⟩. (6.99)

This expression suggests a simple picture of the excitation process. From the initial
time t0 up to time t, the initial vibrational state |𝜒g0⟩ is propagated on the electronic
ground state PES (t0 has to be taken well before the pulse acts). Since the initial
state is an eigenstate of Hg, one obtains the phase factor exp{−iEg0(t − t0)∕ℏ}. The
dynamics on the excited state PES starts at t and proceeds up to the actual time t.
Note that the transition occurs instantaneously, which supports the picture of ver-
tical transitions discussed in the introduction to this chapter. But the moment of
transition to the excited state is not fixed; instead, an integration over all possible
times t has to be performed. In which way the time t contributes depends on the
amplitude of the pulse envelope. If the time t lies in the region where the pulse is
present, Eq. (6.99) describes the preparation process. For larger times it shows how
the optically prepared state develops further in the absence of the field.

To determine the t-dependence of the integrand in Eq. (6.99), we switch to the
representation given by the eigenstates |𝜒eM⟩ of the excited state Hamiltonian He.
The expansion of |𝜒e(t)⟩ gives an example for a wave packet (see Eq. (3.24))

|𝜒e(t)⟩ = ∑
M

ceM(t)|𝜒eM⟩. (6.100)

The expansion coefficients are obtained as (𝜔aM = EaM∕ℏ)

ceM(t) = ⟨𝜒eM|𝜒e(t)⟩
= i

ndegA
ℏ

e−i𝜔eM t

t

∫
t0

dt ei(𝜔eM−𝜔g0−𝜔)t f (t)

×ei𝜔g0t0⟨𝜒eM|𝜒g0⟩. (6.101)

The magnitude of the expansion coefficients is determined by the Franck–Condon
factors ⟨𝜒eM|𝜒g0⟩ and by a certain time integral. If we let t0 → −∞ and take t at a
time at which the pulse has already passed through the sample (t ≫ tp), the time
integral reduces to the Fourier-transformed pulse envelope f (Ω), with Ω = 𝜔eM −
𝜔g0 − 𝜔. Thus, the different vibrational states |𝜒eM⟩ of the expansion, (6.100) are
weighted according to the form of the Fourier-transformed pulse envelope. For the
Gaussian-shaped envelope, Eq. (6.93), we get

f (Ω) =

+∞

∫
−∞

dt eiΩt 1√
2𝜋𝜏2

p

exp

{
−
(t − tp)2

2𝜏2
p

}
= e−Ω

2
𝜏

2
p∕2 eiΩtp . (6.102)

This function becomes maximal for Ω ≈ 𝜔eM − 𝜔g0 (vertical Franck–Condon transi-
tion) and goes to zero for values of Ω that are larger than the inverse pulse duration
1∕𝜏p. Apparently, the shorter the pulse duration, the larger its spectral width.
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6.5.1.1 Case of Short Pulse Duration
In order to populate vibrational levels away from the vertical Franck–Condon transi-
tion, the inverse pulse duration 1∕𝜏p has to cover the respective frequency difference
on the excited state PES. If a sufficient range of vibrational levels is covered, a trans-
fer of the complete ground state wave function 𝜒g0(q) to the excited electronic state
becomes possible. This picture can be idealized in the limit of impulsive excitation
(𝜏p → 0), where one replaces the pulse envelope by a delta function. Then, the expan-
sion coefficients introduced in Eq. (6.101) read (t > tp)

ceM(t) = i
ndegA
ℏ

e−i𝜔eM (t−tp) e−i𝜔tp e−i𝜔g0(tp−t0) ⟨𝜒eM|𝜒g0⟩. (6.103)

A vibrational wave packet is formed on the excited state PES, which results from a
projection of the initial state |𝜒g0⟩ onto the excited state PES at time tp. The related
population of the vibrational levels is exclusively determined by the Franck–Condon
factors,

PeM(t) = |ceM(t)|2 = 𝜃(t − tp)
1
ℏ

2 |ndegA|2 |⟨𝜒eM|𝜒g0⟩|2. (6.104)

It is also of interest to obtain the total electronic occupation probability, Pe(t), trans-
ferred to the excited state. It can be calculated from Eq. (6.104) or directly from Eq.
(6.99) as Pe(t) = ⟨Ψ(1)(t)|𝜙e⟩⟨𝜙e|Ψ(1)(t)⟩. According to the case of impulsive excita-
tion, one gets

Pe(t) =
∑

M
|ceM(t)|2 =

𝜃(t − tp)

ℏ
2 |degE(tp)𝜏p|2. (6.105)

Note that we wrote E(tp)𝜏p instead of using the amplitude A. This corresponds to the
more realistic case of a finite but still short pulse duration. The expression shows the
dependence on the field intensity via the factor |E|2. Note that |E|2 has to be small
enough to guarantee that Pe ≪ 1 as required for the perturbational treatment.

6.5.1.2 Case of Long Pulse Duration
Upon increasing 𝜏p, the Fourier-transformed envelope f (Ω) concentrates around the
vertical Franck–Condon transition region, and for a very long pulse (𝜏p → ∞), we
obtain f (Ω) =

√
2𝜋𝜏p𝛿(Ω). An optical excitation is only possible for 𝜔 = 𝜔eM − 𝜔g0,

which corresponds to the condition found in the previous section for stationary lin-
ear absorption.

6.5.2 Density Matrix Formulation

In this section, we generalize the results of the previous section and formulate
the optical preparation of an excited state via the density matrix, 𝜌aM,bN (t), given
in a representation with respect to the electron–vibrational states. In the preceding
section, we obtained a nonvanishing excited state population, Pe, indicating that den-
sity matrix elements diagonal in the excited state electronic quantum numbers and
proportional to the field intensity have to be considered. Concerning the vibrational
quantum numbers, however, diagonal as well as off-diagonal elements may appear
(Figure 6.12).
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Figure 6.12 Population of an excited state
PES via an ultrashort laser pulse. In the
Franck–Condon transition region, the wave
packet is shown for the case of an impulsive
preparation. The distribution f (Ω), Eq.
(6.102), is drawn on the right versus the
frequency around the Franck–Condon
transition region. The cases of a shorter
laser pulse (full line) and longer pulse
(dashed line) are given. Note that the actual
excitation probability also depends on the
Franck–Condon factors.
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Let us consider the density matrix taken with respect to electronic states only,

Ŵab(t) = ⟨𝜙a|Ŵ(t)|𝜙b⟩, (6.106)

which is still an operator in the state space of the vibrational DOFs. The equations
of motion obtained from the general equation (3.149) reads

𝜕

𝜕t
Ŵab = − i

ℏ

(HaŴab − ŴabHb)

+ i
ℏ

∑
c

(
dacE(t)Ŵcb − dcbE(t)Ŵac

)
. (6.107)

Writing down the equation of motion for the desired density operator elements Ŵee
gives a contribution linear in E(t), which is also proportional to Ŵeg (and the her-
mitian conjugate expression). The solution reads (the Ua denote the time-evolution
operators defined by the vibrational Hamiltonian Ha, and we assume that
Ŵee(t0) = 0)

Ŵee(t) = − i
ℏ

t

∫
t0

dt
(

dgeE(t)Ue(t − t)Ŵeg(t)U+
e (t − t) − h.c.

)
. (6.108)

The equation for Ŵeg gives again contributions linear in the electric field strength,
but now proportional to both types of diagonal density operators, that is Ŵee and
Ŵgg. Since we are interested in the second order of perturbation theory with respect
to E(t), we can use the zeroth-order approximation for these diagonal density opera-
tors. Thus, Ŵee = 0, and Ŵgg = R̂g. The last quantity defines the thermal equilibrium
of the vibrational coordinates in the electronic ground state (cf. Eq. (4.60)). Conse-
quently, the electronic off-diagonal density operator reads

Ŵeg(t) =
i
ℏ

t

∫
t0

dt degE(t)Ue(t − t)R̂gU+
g (t − t). (6.109)

If we insert this expression into Eq. (6.108), the excited state population linearized
in the field intensity can be determined. In general, this requires the solution of a
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double time integral. However, in the impulsive limit, the integrations can be per-
formed analytically. We obtain the optically prepared electronic density matrix as

Ŵee(tp) =
1
ℏ

2 |degE(tp)𝜏p|2R̂g. (6.110)

Resulting from the impulsive excitation, the vibrational state in the electronic
ground state, as represented by the ground state equilibrium density operator R̂g, is
instantaneously transferred onto the excited electronic state. Therefore, Eq. (6.110)
is a mixed-state generalization of Eq. (6.104). This becomes obvious if we note that
R̂g ∝

∑
M exp{−EgM∕kBT} |𝜒gM⟩⟨𝜒gM|. At low temperatures, it corresponds to the

transfer of the ground state vibrational wave function to the excited state.
The initially prepared wave packet will move on the excited state PES. Provided

that the time resolution in a pump–probe experiment is comparable to the time
scale of this motion, the latter can be investigated in real time. This is illustrated in
Figure 6.2, where the time evolution of the bond vibration of a diatomic molecule
was observed after it has been prepared on an electronically excited state. Often,
wave packet dynamics on electronically excited PES is influenced by nonadiabatic
couplings. The resulting internal conversion dynamics is addressed in the following
section.

6.6 Internal Conversion Dynamics

In Section 6.2.1, we already stressed the similarity of optical absorption and
intramolecular electronic transitions induced by the nonadiabatic coupling (inter-
nal conversion). We focus on the latter in more detail now. If a higher lying
singlet state Sn (n > 1) is excited, it is the internal conversion process that induces
transitions to lower electronic states. Within this process the electronic excitation
energy is distributed among the different vibrational DOFs. Since the radiation field
does not take part in this type of transition, it is also called radiationless.11)

If the internal conversion is slow compared to the time scale of vibrational relax-
ation within an electronic state, it can be characterized by a transition rate. This
is the situation where the Golden Rule formula introduced in Chapter 3 can be
applied. The respective rate will be calculated in the following section. If the nona-
diabatic coupling becomes stronger, one cannot assume complete vibrational equi-
librium for every step of the transition. In case that vibrational relaxation can be
completely neglected, a description of ultrafast internal conversion in terms of wave
functions becomes possible, as shown in Section 6.6.2. The intermediate case needs
a more involved description. However, having followed the present discussion and
in anticipation of Chapter 7 dealing with electron transfer, one realizes a number
of similarities. Therefore, the subject of internal conversion dynamics is outlined
only very briefly. More involved questions related to charge transfer dynamics will
be discussed in the context of electron transfer reactions in Chapter 7.

11) Kasha’s rule states that because of dominant internal conversion processes, any appreciable
fluorescence from Sn states (n > 1) is absent in polyatomic molecules. However, even fluorescence
from the S1 state can be reduced by radiationless transitions to the ground state.
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6.6.1 The Internal Conversion Rate

In order to describe internal conversion via a rate expression such as k(IC)
a→b, the char-

acteristic time for the transition process 1∕k(IC)
a→b must be long compared to any vibra-

tional relaxation time scale (in the initial as well as in the final state of the transition,
also compare the similar discussion on electron transfer reactions in Section 7.3). If
this condition implies that the nonadiabatic coupling can be considered as a weak
perturbation, we can follow the argument of Section 6.2.1. In analogy to Eq. (6.12),
the rate of nonadiabatic transitions from state |𝜙a⟩ to state |𝜙b⟩ can be determined
by a Golden rule expression. Before doing this, we briefly recall the Hamiltonian
describing the system that undergoes an internal conversion process. In Chapter
2, we introduced the following notation for the molecular Hamiltonian (compare
Eq. (2.97)):

Hmol =
∑
a,b

(𝛿abHa + (1 − 𝛿ab)Θab)|𝜙a⟩⟨𝜙b|. (6.111)

Here, Ha denotes the vibrational Hamiltonian for the adiabatic electronic state |𝜙a⟩.
The nonadiabatic coupling between different states is described by the nonadiabatic-
ity operator Θab acting on the nuclear coordinates. The Hamiltonian is similar to
expression 6.4 but with Θab replacing the interaction term, −E(t)dab.

According to the form of the molecular Hamiltonian, the internal conversion rate
follows as

k(IC)
a→b = 2𝜋

ℏ

∑
M,N

faM|⟨𝜒aM|Θab|𝜒bN⟩|2 𝛿(EaM − EbN ). (6.112)

As indicated in Figure 6.4, the internal conversion process is a transition from an
initial manifold EaM of vibrational levels into the final manifold EbN . Since there
is no time-dependent external field involved, the argument in the delta function of
Eq. (6.112) contains only the bare molecular transition frequencies (cf. Eq. (6.12)).
For optical transitions, one often neglects the nuclear coordinate dependence of the
electronic transition dipole moment (Condon approximation). A similar approxi-
mation, which replaces the operator Θab by a constant (or by a certain averaged
value Θab with respect to the nuclear coordinates), results here in the replacement
of the full matrix element by the simpler expression Θab⟨𝜒aM|𝜒bN⟩. Introducing the
zero-frequency DOS (see Eq. (6.15))

ab(0) =
∑
M,N

faM |⟨𝜒aN |𝜒bM⟩|2 𝛿(EaM − EbN ), (6.113)

we can write

k(IC)
a→b = 2𝜋

ℏ

|Θab|2ab(0). (6.114)

As in the case of the absorption coefficient, the result for the zero-frequency DOS
can be put into a more specific form if the model of parabolic PES is used. Then, we
obtain (cf. Eq. (6.23))

ab(0) =
1

2𝜋ℏ ∫
dt ei𝜔abt+Gab(t)−Gab(0). (6.115)
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The function Gab(t) has been introduced in Eq. (6.24). The index “ab” indicates for
which states the displacements enter in Eq. (6.24). This clearly demonstrates the
formal analogy between the different transition processes as stressed above.

For illustration, let us consider the T = 0 K case. Here, we can use the result for the
harmonic oscillator given in Eq. (6.31). For the present case, it reads (Δg = gb − ga)

ab(0) = e−Δg2
∞∑

N=0

Δg2N

N!
𝛿(ℏ(𝜔ab − N𝜔vib)). (6.116)

Next, we introduce N = int[𝜔ab∕𝜔vib] as a measure for electronic energy gap and
perform the summation. We obtain

ab(0) ≈
1

ℏ𝜔vib
e−Δg2 Δg2N

N!
. (6.117)

Provided that N ≫ 1, one can use Stirling’s formula, that is

N! ≈
√

2𝜋N
(

N
e

)N

=
√

2𝜋N exp[N(ln(N) − 1)]. (6.118)

Thus, we obtain the following expression for the DOS:

ab(0) ≈
1

ℏ𝜔vib

√
2𝜋N

e−Δg2 exp{−N[ln(N∕Δg2) − 1]}. (6.119)

For ln(N∕Δg2) > 1, a condition that is usually fulfilled, the DOS, and thus the rate
k(IC)

a→b, is an exponentially decaying function of the electronic energy gap 𝜔ab. This
is called the energy gap law. It is the decisive factor in the competition between
radiative and nonradiative deactivation processes of electronically excited states; an
example is given in Figure 6.13.

6.6.2 Ultrafast Internal Conversion

In many organic molecules, the internal conversion process after photoexcitation
proceeds on a time scale that is much shorter than any vibrational relaxation
time. As already pointed out, it is possible to neglect in this ultrafast limit any
vibrational energy dissipation and to describe the internal conversion process
by the solution of the respective time-dependent Schrödinger equation. For the
treatment of high-dimensional quantum dynamics on coupled electronic states
the multiconfiguration time–dependent Hartree (MCTDH) method introduced in
Section 3.2.3 provides an efficient and flexible tool. To accommodate the electronic
state coupling, the total state vector is expanded as follows:|Ψ(t)⟩ = ∑

a
|𝜒a(t)⟩|𝜙a⟩. (6.120)

For the vibrational wave functions on the electronic state |𝜙a⟩, 𝜒a(q, t) = ⟨q|𝜒a(t)⟩,
an MCTDH ansatz can be made according to Eq. (3.59). From the MCTDH
propagation, one then obtains, for instance |𝜒a(t)⟩ and thus the electronic state
population as

Pa(t) = ⟨𝜒a(t)|𝜒a(t)⟩. (6.121)
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Figure 6.13 Experimental verification of the energy gap law, Eq. (6.119). The IC rate is
shown as a function of the energy gap (semilogarithmic scale) for a series of chromophores
(flavylium and chromenylium heptamethine and pentamethine fluorophores as well as two
laser dyes). The dashed line gives a linear fit according to the energy gap law. The solid line
corresponds to the case of a vibrational mode at 3000 cm−1, indicating that high-frequency
modes beyond 3000 cm−1 are dominating the IC process (figure courtesy of J.R. Caram, for
more details, see also Friedman et al. [6]).

MCTDH quantum dynamics calculations according to Section 3.2.3 require the
a priori knowledge of PES. Here, the diabatic representation is commonly used.
According to Eq. (2.103), the molecular Hamiltonian in diabatic representation can
be written as (skipping the “overbar notation”)

Hmol =
∑
ab

(
𝛿abHa(q) + (1 − 𝛿ab)Vab(q)

) |𝜙a⟩⟨𝜙b|. (6.122)

Following the discussion of this section, we assume that the diabatic PESs are har-
monic with state-independent frequencies. It is customary to approximate the diag-
onal part as follows:

Ha(Q) = Tnuc + Ua(q𝜉 = 0) + 1
2
∑
𝜉

𝜔
2
𝜉
q2
𝜉
+
∑
𝜉

𝜅a,𝜉q𝜉 +… (6.123)

Here, the normal-mode Hamiltonian, Eq. (2.43), is supplemented by an electronic
state-dependent Taylor expansion of the PES in terms of normal mode coordinates.
The coupling parameter 𝜅a,𝜉 is given by the derivative of the PES with respect to q

𝜉
,

taken at q
𝜉
= 0 (ground state equilibrium configuration).12)

The diabatic state coupling Vab(q) is also expanded in terms of the normal mode
coordinates, that is

Vab(q) = V (0)
ab +

∑
𝜉

𝜆ab,𝜉q𝜉 +… (6.124)

12) Notice that in linear order this expression is identical to Eq. (2.51). This holds because for the
model of shifted oscillators, the vertical excitation energy in Eq. (6.123) and the adiabatic
excitation energy in Eq. (2.51) are related via Ua(q𝜉 = 0) = Ua(q

(a)
𝜉
) + (1∕2)

∑
𝜉
𝜔

2
𝜉
q(a) 2
𝜉

.
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Here, V (0)
ab = Vab(q𝜉 = 0) is a constant coupling, and the parameter 𝜆ab,𝜉 is given by

the derivative of Vab with respect to q
𝜉
, taken at q

𝜉
= 0. Equation (6.122) with Ha

and Vab approximated in linear order with respect to q
𝜉

defines the linear vibronic
coupling (LVC) Hamiltonian. The modes leading to a displacement of the PES and
thus to a modification of the energy gap between electronic states (𝜅a,𝜉 ≠ 0) are called
tuning modes. Modes triggering diabatic state coupling (𝜆ab,𝜉 ≠ 0) are called coupling
modes. In case of molecules having a certain symmetry, tuning and coupling modes
are totally and nontotally symmetric, respectively. For two coupled states, the adi-
abatic PESs of the LVC model along a tuning and a coupling mode form a conical
intersection (cf. Figure 2.13).

In cases where a low-order expansion of the PES is not appropriate (for instance,
for dissociation or isomerization reactions) and also for larger molecules or
molecules embedded in some environment, quantum dynamics simulations
become unfeasible, and one has to resort to methods based on classical trajectories
such as surface hopping (see Section 3.13.2). Surface hopping simulations are per-
formed in the adiabatic representation and do not require an a priori determination
of the PES.

Figure 6.14 shows a comparison of results of MCTDH and surface hopping sim-
ulations for the same three electronic state plus nine vibrational modes model of
pyrazine. Initially, the system is prepared in the B2u state. The population of this state
rapidly decays within the first 50 fs via transfer to the A1u and, to a lesser extent, to
the B3u state. The latter two states show a population exchange that reminds of the
two-state dynamics in Figure 3.8. This sequence of events is determined by the loca-
tion of the potential curve crossings (𝜅a,𝜉) and state couplings 𝜆ab,𝜉 ; cuts of the PES
along the tuning modes are given in Figure 6.14a–d. For this model, MCTDH and
surface hopping simulations give rather similar results.

6.7 Supplement

6.7.1 Absorption Coefficient for Displaced Harmonic Oscillators

In this section, we show how to simplify expression (6.19) for the lineshape function
abs(𝜔) of linear absorption, if the two vibrational Hamiltonians Hg and He describe
independent harmonic oscillators (normal mode vibrations). The derivation will
be particularly illuminating since the model is exactly solvable. For simplicity, the
normal mode oscillators should not change their vibrational frequencies if the elec-
tronic state changes but merely attain a new equilibrium position (see Section 2.5.1
and Figure 2.8). Using the displacement operator (cf. Eq. (2.69))

D+
a = exp

{∑
𝜉

ga(𝜉)(C𝜉
− C+

𝜉
)

}
≡
∏
𝜉

D+
𝜉
(ga(𝜉)), (6.125)

the two vibrational Hamiltonians can be generated from the Hamiltonian of a non-
shifted oscillator,

Ha = U (0)
a + D+

a HvibDa. (6.126)

.
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Figure 6.14 Ultrafast internal conversion dynamics in a three electronic state plus nine
vibrational modes model of pyrazine. (a–d) Cuts of the diabatic PES along the four totally
symmetric tuning modes. The five nontotally symmetric coupling modes (not shown) lead
to conical intersections of the adiabatic PES in analogy to Figure 2.13. (e–g) Population
dynamics after initial excitation of the B2u state, calculated using MCTDH (black line) and
trajectory surface hopping (gray line) as introduced in Sections 3.2.3 and 3.13.2,
respectively (figure courtesy of N. Dos˘ lić; for more details, see also Xie et al. [7]).

Here,

Hvib =
∑
𝜉

ℏ𝜔
𝜉
(C+

𝜉
C
𝜉
+ 1∕2) (6.127)

denotes the reference vibrational Hamiltonian. Accordingly, the trace formula
introduced in Eq. (6.19) can be rewritten as (the statistical operator R̂g is given in
Eq. (4.60))
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trg{R̂g eiHgt∕ℏ e−iHet∕ℏ} = e−i𝜔egt trvib{Dg D+
g R̂vib Dg D+

g eiHvibt∕ℏ

×Dg D+
e e−iHvibt∕ℏDe D+

g }
= e−i𝜔egt

× trvib{R̂vib eiHvibt∕ℏ DgD+
e e−iHvibt∕ℏDeD+

g }
= e−i𝜔egt trvib{R̂vib eiHvibt∕ℏ Dgee−iHvibt∕ℏD+

ge}. (6.128)

Here, we have used the notations trg and trvib to distinguish between the trace taken
with respect to the electronic ground state vibrations and the eigenstates |N⟩ of the
nondisplaced reference Hamiltonian Hvib, respectively. Additionally, we introduced
ℏ𝜔eg = U (0)

e − U (0)
g ,

R̂vib =
exp{−Hvib∕kBT}

tr{exp() − Hvib∕kBT)}
≡

1


e−Hvib∕kBT
, (6.129)

and the combined displacement operator

Dge = DgD+
e . (6.130)

Using the Heisenberg representation of Dge, which is given by

Dge(t) = eiHvibt∕ℏ Dgee−iHvibt∕ℏ
, (6.131)

the trace formula becomes

T(t) = trg{R̂g eiHgt∕ℏ e−iHet∕ℏ} = e−i𝜔egt trvib{R̂vib Dge(t)D+
ge(0)}. (6.132)

This is the autocorrelation function of the combined displacement operators taken
with respect to the equilibrium of the nondisplaced reference oscillators.

Since we are dealing with normal mode oscillators, there is no coupling among
the modes. The vibrational Hamiltonian Hvib is additive with respect to the mode
index 𝜉, and the vibrational state |N⟩ factorizes into the single oscillator states |N

𝜉
⟩.

As a result, the trace in Eq. (6.132) factorizes into single-mode traces

T(t) =
∏
𝜉

T
𝜉
(t). (6.133)

Therefore, we can deal in what follows with a single-mode contribution T
𝜉
(t) to the

complete trace. To simplify the notation, the mode index 𝜉 will be dropped, and 𝜔
𝜉

is replaced by 𝜔vib. First, we note that

Dge = D(gg) D+(ge) = D(gg − ge) = D(Δg), (6.134)

where Δg = gg − ge. The time-dependent displacement operator appearing in
Eq. (6.132) (the single-mode contribution to it) can be written as

Dge(t) = D(Δg; t) = ei𝜔vibC+Ct D(Δg) e−i𝜔vib C+Ct

= exp
{
−Δg(Ce−i𝜔vibt − C+ei𝜔vibt)

}
. (6.135)

Consequently, the single-mode contribution to the trace reads ( is the single-mode
partition function)

T
𝜉
(t) = 1


𝜉

∑
N
⟨N| e−ℏ𝜔vibN∕kBT D(Δg; t) D+(Δg; 0)|N⟩. (6.136)
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For the further treatment of this expression, we make use of Eq. (2.76)) and utilize
the relation

(N) = ⟨N|D(Δg; t) D+(Δg; 0) |N⟩
= ⟨N|e−𝛼(t)C+𝛼∗(t)C+ e𝛼(0)C−𝛼∗(0)C+ |N⟩, (6.137)

with 𝛼(t) = Δg exp(−i𝜔vibt). We can write

(N) = ⟨N|e−|𝛼(t)|2∕2 e𝛼∗(t) C+ e−𝛼(t) C e−|𝛼(0)|2∕2 e−𝛼∗(0) C+ e𝛼(0) C|N⟩
= e−

1
2
(𝛼(t)|2+|𝛼(0)|2)

×⟨N|e𝛼∗(t) C+ e𝛼(t) 𝛼∗(0) e−𝛼∗(0) C+ e−𝛼(t) C e𝛼(0) C |N⟩
= e−

1
2
(|𝛼(t)|2+|𝛼(0)|2−2𝛼(t)𝛼∗(0))

×⟨N|e(𝛼∗(t)−𝛼∗(0))C+ e−(𝛼(t)−𝛼(0))C |N⟩. (6.138)

Next, we introduce the abbreviation Δ𝛼(t) = 𝛼(t) − 𝛼(0) = Δg(exp(−i𝜔vibt) − 1) and
take into account that

|𝛼(t)|2 + |𝛼(0)|2 − 2𝛼(t) 𝛼∗(0) = |Δ𝛼(t)|2 − 2 i Im(𝛼(t) 𝛼∗(0)). (6.139)

Then, we obtain the normal ordering of the original matrix elements in the trace
formula as

⟨N|D(Δg; t) D+(Δg; 0)|N⟩ = exp
{
−|Δ𝛼|2∕2 − i Im(𝛼∗(t) 𝛼(0))

}
×⟨N|eΔ𝛼∗C+ e−Δ𝛼C|N⟩. (6.140)

To determine the oscillator matrix elements, we use Eqs. (2.78)–(2.80) and obtain for
Eq. (6.136)

T
𝜉
(t) = (1 − e−ℏ𝜔vib∕kBT) e−z∕2−iIm (𝛼∗(t)𝛼(0))

∞∑
N=0

e−ℏ𝜔vibN∕kBT LN (z). (6.141)

Note the introduction of z = |Δ𝛼(t)|2 and of the Laguerre polynomial LN (z) of order
N (cf. Eq. (2.80)). The relation between the Laguerre polynomials and their generat-
ing function,

∞∑
N=0

𝜆
N LN (z) =

1
1 − 𝜆

e−𝜆z∕(1−𝜆) (|𝜆| < 1), (6.142)

results in T
𝜉
(t) = exp{E

𝜉
(t)}, with

E
𝜉
(t) = −z∕2 − iIm(𝛼∗(t) 𝛼(0)) − e−ℏ𝜔vib∕kBT

1 − e−ℏ𝜔vib∕kBT
z. (6.143)

The Bose–Einstein distribution n(𝜔vib) (cf. Section 3.7.1) allows us to rewrite the
last term of the exponent. The final result for T

𝜉
(t) will be obtained if the exponent

is rearranged with respect to Δ𝛼(t) and Δ𝛼∗(t) according to

E
𝜉
(t) = −z∕2 − i Im 𝛼

∗(t)𝛼(0) − n(𝜔vib)z

= −1
2
(
1 + 2n(𝜔vib)

)
Δg2(2 − ei𝜔vibt − e−i𝜔vibt)
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−1
2
Δg2 (ei𝜔vibt − e−i𝜔vibt)

=
Δg2

2
(
2
(
1 + n(𝜔vib)

)
(e−i𝜔vibt − 1) + 2n(𝜔vib)(ei𝜔vibt − 1)

)
. (6.144)

The result contains two terms E
𝜉
(t) = −G

𝜉
(0) + G

𝜉
(t), with

G
𝜉
(t) = Δg2(𝜉)

[
e−i𝜔

𝜉
t(1 + n(𝜔

𝜉
)) + ei𝜔

𝜉
tn(𝜔

𝜉
)
]
. (6.145)

The complete trace is the product with respect to the various single-mode contribu-
tions T

𝜉
(t); hence, the total exponent is determined by

G(t) =
∑
𝜉

G
𝜉
(t). (6.146)

This exact result is used in the definition of the DOS, Eq. (6.23).
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7

Electron Transfer

Spatial electronic charge redistribution in single molecules as well as in
molecular complexes will be described. The charge transfer process occurs as
a spontaneous transition from a metastable initial state to a stable final state.
The initial state is prepared either by photoabsorption or charge injection from
external sources. The electronic transition can be understood as a tunneling
process through barriers separating different localization centers of the moving
electron. This causes a modification of the electrostatic field in the molecule,
which leads to a change in the nuclear equilibrium configuration. To develop an
understanding for the interplay between electron transfer and the accompanying
nuclear rearrangement is the principal aim of electron transfer theories.
Different transfer regimes will be discussed, which are distinguished by the time
scales for electronic and nuclear motion. The limits of classical and quantum
mechanical descriptions of the nuclear dynamics are described, and appropriate
rate expressions will be derived. The specialty of heterogeneous electron transfer
is explained where charge exchange between a molecule and a metal or semi-
conductor surface to which the molecule has been attached is of interest. Here,
current formation through a molecule is explained, which is contacted by two
nanoelectrodes and subject to an applied voltage. Finally, ultrafast photoinduced
electron transfer is introduced as a phenomenon whose theoretical description is
beyond a simple rate equation.

7.1 Classification of Electron Transfer Reactions

Electron transfer (ET) is one of the basic types of chemical processes. It represents
the initial step of a number of reactions such as the making and breaking of chem-
ical bonds and the change in molecular conformations (Figure 7.1). In all fields
of inorganic, organic, and biochemistry, ET reactions are common. For example,
corrosion is caused by the ET between a metal surface and oxygen. ET is also an
important part of many photocatalytic reactions such as those leading to water split-
ting (Figure 7.2). In biological systems, ET reactions are a basic step of enzymatic
activity in the living cells of bacteria, plants, and animals. ET in proteins or protein
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Na -CH2-Br -CH2+ Na+ + + Br

Figure 7.1 ET from sodium to benzyl halide resulting in bond breaking and benzyl halide
radical formation.
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Figure 7.2 Photoinduced ET from triethylamine (TEA) to IrPS ([Ir(ppy) 2(bpy)] +), which
form an encounter complex in tetrahydrofuran solution. IrPS acts as a photosensitizer
within an iron-based photocatalytic system. (a) Initially, IrPS is photoexcited into a
charge-separated triplet state (the difference electron density of this metal to ligand charge
transfer state is shown with respect to the ground state density). The hole at the metal
center is filled by ET from TEA. (b) ET leads to a reduction in the photoluminescence lifetime
𝜏 in dependence on the TEA concentration (for further details, see Neubauer et al. [1]).

complexes plays an important role in the cell metabolism and energy balance.
ATP, for instance, is produced in oxidative phosphorylation where NADH releases
electrons.1) These are captured by dioxygen to form water; the total process gener-
ates a large amount of excess energy. Another prominent example is given by the
electron transferring system of photosynthesis. Here, a transmembrane potential
is created that supports a proton pump to produce ATP. ET in the reaction center
of purple bacteria has been unraveled on an atomic length scale and a time scale
down to the femtosecond region (Figure 7.3).

To give a working definition of ET, we characterize it as a spontaneous charge redis-
tribution between an initially prepared reactant state and a well-defined product
state. ET reactions proceed in such a manner that the transferred electron remains
in a bound state with respect to the particular molecule or molecular system. In other
words, the electron is not activated above the ionization threshold and in this way
transferred to a different region of the molecular complex. This means that ET reac-
tions occur as tunneling processes; the reaction barriers, which the moving electron
experiences, are penetrated via tunneling.2)

1) ATP is the abbreviation for adenosine triphosphate, the compound that acts as an energy
storage in any living system. NADH stands for nicotinamide adenine dinucleotide, which plays an
important role in respiration.
2) This definition of ET excludes processes in biological systems where special enzymes act as
charge carriers transporting electrons over large spatial distances.
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Figure 7.3 Chromophores of the
photosynthetic bacterial reaction center
(side group capped) of Rhodobacter
sphaeroides. After excitation of the special
pair of coupled bacteriochlorophyll
molecules (P), ET proceeds along the left
branch via bacteriochlorophyll BA,
bacteriopheophytin HA, and ubiquinone QA to
QB. The initial two-step charge separation to
form P+H−

A is nearly 100% efficient and takes
less than 10 ps (Figure courtesy of A. Ahmed;
adapted from Protein Data Bank, 1PCR).
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In this respect, it is important to note that the motion of the considered electron
does not take place while the configuration of the other electrons is fixed. Instead,
the electronic wave function changes from that describing the reactant state (𝜙rea) to
that of the product state (𝜙pro), cf. Figure 7.2. According to the ansatz, (2.26) intro-
duced in Section 2.4, we may say that in principle all molecular orbitals (MOs) of the
system will be modified during this transition. This change can be characterized by
the electronic charge density (a = rea, pro)

𝜚
(el)
a (r) = eNel

⎛⎜⎜⎝
∏
rj≠r

∫
d3rj

⎞⎟⎟⎠ |𝜙a({rj})|2, (7.1)

which is the probability distribution for the Nel electrons reduced to a single-particle
density. Although the whole electronic wave function changes in the course of
the ET, in many reactions the change in the electronic charge density corresponds
to the change induced by a single electron. Therefore, it is often sufficient to discuss
ET as the result of the transition of a single electron from an initial MO (donor state)
to the MO of the final state (acceptor state).

Due to the change in the electronic charge distribution during an ET reaction,
the internal electrostatic field of the molecular complex is modified. This in turn
causes new equilibrium positions of the nuclei. First, when mentioning the nuclei,
we have in mind those of the considered molecule. If the environment is polariz-
able as it is the case for a polar solvent, a polarization and rearrangement of the
solvent molecules may take place too. Hence, an ET reaction (as any other change in
the electronic state of the molecule) is accompanied by a change in the equilibrium
configuration of the nuclei. This process may be viewed as the motion of the elec-
tron carrying along a polarization cloud with respect to the surrounding molecular
structure.

There is some apparent similarity between intramolecular electronic transitions,
induced by the radiation field or by the nonadiabatic coupling, discussed in
Chapter 6, and the ET reaction. Therefore, one expects that in the case of ET also
there exists a coupling between the reactant and the product state. If this interstate
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Figure 7.4 (a) ET in a schematically drawn DA complex. The initial and final spatial
localizations of the electron are shown by the hatched areas (kET denotes the transfer rate).
(b) Double-well potential versus reaction coordinate, which can be some collective nuclear
coordinate triggering the adiabatic ET. In the initial state of the ET reaction the system is
localized in the left metastable well. It can reach the right stable state by crossing the
barrier (full line) or by tunneling through the barrier (broken line).

coupling V is small, one is in the limit of nonadiabatic ET. The opposite case is
called adiabatic transfer. These terms, and also the meaning of a small or large
coupling, will be explained in more detail below. At the moment, we only state that
in most cases nonadiabatic ET can be understood as a particular type of spatial
charge redistribution, as shown in Figure 7.4a.

In the reactant state, the transferred electron is localized at the electron donor part
of the molecular system (it occupies the donor MO). From the donor it moves to the
acceptor region, where it is in some spatially localized acceptor MO (product state).

In contrast, the adiabatic ET is not connected with a characteristic spatial redis-
tribution of charge. It is usually described in terms of chemical reaction kinetics
for which the double-well potential provides a good model (Figure 7.4b). In this
approach, the internal energy of the reaction (or if entropic effects are important, the
free energy) is considered in dependence on a reaction coordinate, which is a partic-
ularly chosen collective coordinate for the nuclei (cf. Section 2.5.3). The metastable
initial (reactant) state and the stable final (product) state are separated by a poten-
tial barrier along this reaction coordinate. To overcome this barrier the reaction
requires thermal activation. Alternatively, a tunneling transition through the bar-
rier is possible. This is in contrast to the electron motion, which occurs exclusively
via a tunneling process.

Given the definition of the donor (D) and acceptor (A) states of a molecular system,
the ET reaction is most simply characterized by the following scheme:

D−A → DA−
. (7.2)

D− means that in the reactant state there is a so-called excess electron localized at
the donor. After the electron has moved to the acceptor, the product state is formed.

This basic event can occur in different variants, and numerous generalizations
are possible. First, we have to distinguish whether or not the donor and the acceptor
belong to the same molecule. In the first case, the reaction is called intramolecular
ET or alternatively unimolecular ET. In contrast, if at least two distinct molecules are
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Figure 7.5 ET reaction of an excess electron in a
HOMO–LUMO scheme of a DA complex with
spatial donor position xD and acceptor position xA.
The reactant state electron configuration is
shown. The curved arrow indicates the pathway
the transferred electron takes toward the product
state.
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involved, the reaction is called intermolecular ET or bimolecular ET. Independent of
this distinction, the common structure formed by the donor and the acceptor that
enables the ET is called donor–acceptor (DA) complex.

In Figure 7.5, the energy level diagram is shown for the ET reaction according to
Scheme (7.2). We concentrate on the highest occupied molecular orbital (HOMO)
(cf. Section 2.4) as well as the lowest unoccupied molecular orbital (LUMO) of the
DA complex (remember that these states have to be computed in a self-consistent
way, as explained in Section 2.4). The excess electron initially occupies the LUMO
of the donor (donor state) and then moves to the LUMO of the acceptor (acceptor
state). The excess electron can be injected into the DA complex, for example from
a metal electrode to which the complex is attached, a redox compound contained
in the solution where DA complex has been dissolved, or via an electron beam.
Alternatively, the transferred electron may come from the donor itself. This is the
case if the ET reaction involves an excited electron:

D∗A → D+A−
. (7.3)

The excitation of the donor may be the result of a scattering process with another
molecule, or it may be introduced via excitation energy transfer (exciton transfer, see
Chapter 9). The excitation can also be achieved via optical absorption, as discussed
in Chapter 6.

After optical excitation, an electron of the donor is placed into the LUMO, D → D∗,
where D∗ indicates the excited state of the donor. Then, the ET proceeds between the
donor and the acceptor LUMOs, as shown in Figure 7.6a. This type of ET is usually
called a photoinduced reaction. After the transfer event there is an electron missing at
the donor, which becomes positively charged. Accordingly, the acceptor is negatively
charged, resulting in the formation of a dipole moment in the DA complex.

Figure 7.6a suggests the possibility of a backreaction where the transferred elec-
tron moves directly from the acceptor LUMO into the empty donor HOMO. In most
cases, this backreaction is much slower than the forward ET, which makes it possible
to clearly describe the reaction displayed in Figure 7.6a as an ET.

Alternatively to the transfer of the excited electron from the donor LUMO to the
acceptor LUMO, an unexcited electron may move in the opposite direction from the
acceptor HOMO to the donor HOMO:

D∗A → D−A+
. (7.4)
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Figure 7.6 Photoinduced ET (a) and hole transfer (b) reaction in a HOMO–LUMO scheme
of a DA complex (for further details, compare Figure 7.5).
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Figure 7.7 Porphyrin (D)–fullerene (A) dyads with a phenyl (a) and an additional
3,4-ethylenedioxythienylvinylene (b) spacer. In benzonitrile solution, ET from the
photoexcited state D∗A in case (a) proceeds via an intermediate excited state of the whole
complex, (AD) ∗. This intermediate state does not form when increasing the spacer length
and thus reducing the electronic coupling between D and A in case (b). In this case, the
electronic excitation energy is first transferred to the fullerene forming A∗D, before charge
separation occurs as a hole transfer to give A−D+ (Pelado et al. [2]/John Wiley & Sons).

Figure 7.6b shows this so-called hole transfer. The name has been introduced
since the reaction can be alternatively understood as the motion of a missing
electron (hole) from the donor to the acceptor. Figure 7.7 shows the example
of porphyrin–fullerene dyads, where ET versus hole transfer can be tuned by a
spacer unit.

Let us turn to the discussion of bimolecular ET as it occurs for an intermolecular
reaction in solution. If we suppose that initially the donor as well as the acceptor
molecules are moving randomly (see also Figure 7.2), any reasonable description
should include the mechanism that leads to the formation of the DA complex. For
this purpose, it is also necessary to assess the probability at which the two molecules
meet to form the so-called encounter complex. Within this encounter complex,
the donor and the acceptor are close together, allowing for the ET to proceed.
Afterward, the encounter complex is destroyed, and the donor and the acceptor
molecules move again independently. The following scheme displays the complete
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reaction assuming that the side groups R and R ′ of the individual molecules are
relevant for the formation of the encounter complex:

D− − R + R′ − A → D− − R · · ·R′ − A → D − R · · · R′ − A−

→ D − R + R′ − A−
. (7.5)

As already indicated, those ET reactions that occur in polar solvents are of particular
significance. Here, every solvent molecule carries a permanent dipole moment
that will be sensitive to the change in the charge distribution taking place in the
DA complex upon ET. If the ET is not too fast, the solvent molecules react via
the formation of a polarization cloud with an extension that is large compared
to that of the DA complex. Then, the macroscopic dielectric properties of the
solvent comprised in the dielectric function can be used to characterize the solvent
influence on the ET. If the ET is influenced mainly by solvent molecules, it is of
an outer-sphere type. On the other hand, it is of an inner-sphere type whenever
intramolecular nuclear motions are dominant.

The intramolecular ET reactions discussed above for a simple two-state DA
complex may also take place in this more difficult framework. From Scheme (7.5),
it is obvious that a particular bimolecular ET reaction can be realized at various
geometries and orientations of the donor and the acceptor parts of the complex.
Therefore, an experimental investigation of an ensemble of encounter complexes
will include an averaging with respect to these different realizations. (Note the
similarity to inhomogeneous broadening of optical lineshapes introduced in
Chapter 6.) An additional complication arises if one takes into account that in the
experiment the actual charge transfer act is masked by the random sequence of
formation and destruction of the encounter complex. In view of these difficulties,
it is of great advantage to focus on ET in systems with fixed DA distance. Such
experiments can be carried out, for example in frozen solutions or in other types of
solid carrier matrices such as polymer layers. But if the ET proceeds as a bimolecular
reaction, the DA distance still enters as a random quantity. In order to avoid all
these complications, we focus on the simpler case of intramolecular ET reactions in
the following discussion.

Next, we focus on ET reactions that are beyond the two-state model used so far
for the DA complex. For instance, various types of molecules or molecular building
blocks can bridge the donor and the acceptor. If the ET proceeds directly from the
donor to the acceptor, although some bridging units are separating them, the pro-
cess is called through-space transfer. If some LUMOs of the bridge participate in the
ET, the reaction is called through-bond transfer. The through-space transfer is only
possible for DA distances less than 20 Å. (We will see below that this value is mainly
determined by the overlap of the wave functions of the transferred electron in the
reactant and the product states.) The ET distance can become larger in the case of
the through-bond transfer. This long-range ET is typical for conducting polymers
or for the ET in proteins. Through-bond ET is alternative named bridge-assisted ET
(Figure 7.8):

D− BA → DB−A → DBA−
. (7.6)
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Figure 7.8 Bridge-mediated ET between a
donor and an acceptor level connected by a
linear chain of bridging units. To underline
the importance of vibrational levels, we
incorporated them here (thick lines –
electronic levels and thin lines – vibrational
levels). (a) The bridge levels are energetically
well separated from the donor and the
acceptor levels. (b) A situation where the
energy levels of the donor and the acceptor are
approximately resonant with the bridge levels.

The electron moves from the donor to the acceptor via different bridge molecules
(denoted here by the symbol B). Often, these bridging molecules are called spacers
since they fix the donor and the acceptor at a particular distance from one another
(this term is also common if the bridging molecules do not participate in the ET).
Note that in contrast to the bimolecular ET, in the encounter complex, the properties
of the bridge, B, are rather well defined as compared to R · · ·R′.

There are two distinct mechanisms for bridge-mediated ET as shown in Figure 7.8.
The LUMOs of donor and acceptor may be either resonant or off-resonant with
respect to the bridge levels. In the latter case, it is reasonable to assume that there
will be only a very small probability for population of these levels by the transferred
electron.3) This situation is called superexchange ET (Figure 7.8a). Here, the most
important function of the bridge units is to provide a means for delocalization of
the donor state wave function across the whole bridge. In the case of ET, the charge
jumps stepwise from one part to the other of the whole DBA chain (Figure 7.8b). This
process is often called sequential or hopping transfer. Obviously, superexchange and
sequential ET are through-bond transfer reactions. If the different bridge molecules
are not positioned in a linear arrangement but form a three-dimensional network,
the electron may move on different pathways from the donor to the acceptor.
Examples of bridge-mediated ET are further discussed in Section 7.5.

At the end of our introductory discussion, we focus on ET processes where
solid-state systems are involved. These ET reactions are known as heterogeneous
electron transfer (HET). They take place between a molecule and a solid-state
system to whose surface the molecule is attached. The former may be either a
metal or semiconductor (Figure 7.9). Depending on the direction of charge transfer
(from the molecule to the solid-state system or reverse), the solid with its huge
number of available electronic levels functions as the acceptor or as the donor. The
participation of a continuum of donor or acceptor levels distinguishes HET from
the ET reactions introduced earlier. As in the case of bimolecular ET, molecular
states are involved, which are positively or negatively charged.

3) Often, one characterizes this very small population of the bridge state as being a virtual one.
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Figure 7.9 (a–c) Possible HET reactions between a molecule represented in a
HOMO–LUMO scheme and a metal with a single band filled by electrons up to the Fermi
level EF (dark gray). (a) ELUMO < EF: charge injection proceeds from the Fermi sea into the
LUMO level, (b) ELUMO > EF but EHOMO < EF: charge injection into empty band state above
the Fermi edge (light gray) becomes possible after photoexcitation of an electron from the
HOMO to the LUMO, (c) EHOMO > EF: an electron can be transferred from the LUMO into an
empty band state. (d) HET reactions between a molecule represented in a HOMO–LUMO
scheme and a semiconductor with a filled valence band with energies EV (dark gray) and an
empty conduction band with energies (EC, light gray). Both band edges are separated by the
band gap (white).

We first consider HET between a molecule and a metal. Figure 7.9a–c gives
an overview of the possible reactions, either photoinduced or not. A simple
HOMO–LUMO scheme for the molecule and a band continuum scheme for the
metal has been introduced. The continuum is separated into occupied states
below the Fermi energy EF and empty states above EF. At finite temperatures, the
transition between the occupied and unoccupied states is continuous and regulated
by the Fermi distribution of electrons. The concrete type of reaction depends on
the position of the HOMO and LUMO levels relative to the Fermi energy. Charge
transfer from the metal into the molecule results in the formation of a molecular
anion. The reverse process forms a molecular cation.

Turning to the HET between a molecule and a semiconductor, we have to note the
specificity of the electron distribution in the latter (Figure 7.9d). On the one hand, it
includes the valence band with states completely occupied by electrons. This band
is separated via the band gap from the conduction band with empty states. If the
HOMO and LUMO lie entirely in the range of the valence band, the situation is
similar to Figure 7.9a. If both molecular levels cover the range of the conduction
band, the situation corresponds to Figure 7.9c. What is of particular interest for HET
involving a semiconductor is shown in Figure 7.9d. The HOMO is positioned in the
band gap, and the LUMO lies above the lower conduction band edge. Now, HET
becomes possible if an electron is promoted by photoabsorption to the LUMO since
it is degenerated with conduction band energies. A particular example of photoin-
duced HET is given in Figure 7.10.

If the molecule–solid coupling is strong enough, HET may proceed on a sub-
picosecond time scale. Such ultrafast photoinduced HET became of particular
interest in relation to the photovoltaic devices known as Grätzel cells. As a basic
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Figure 7.10 Ultrafast HET between
an Ru(2,2′-bipyridyl-4,4′-dicarboxylic
acid) 2 (NCS) 2 (RuN3) molecule and a
nanocrystalline TiO2 film; 60% of the
initial population of the excited singlet
state (S1) is quenched before
thermalization via hot electron
injection (it proceeds within 100 fs),
and 40% of the S1 state population is
transferred to the triplet state (T).
To indicate the two used excitation
frequencies, the absorption spectrum
is also drawn (Reproduced with
permission from Brueggemann
et al. [3]/American Physical Society).

part, it contains nanoparticles of the semiconductor TiO2 to which surface chro-
mophores such as perylene and others are attached (a so-called dye-sensitized
solar cell is formed, cf. also Figure 7.10). Photoinduced HET from the dye to the
nanoparticle may finally lead to a macroscopic current in the whole device.

A rather novel route of applying the concept of HET concerns charge trans-
mission through single molecules. This combines HET as well as long-range
and bridge-mediated ET and is related to the long-standing dream to achieve a
replacement of traditional semiconductor-based microelectronics by a Molecular
Electronics. Various molecular schemes have been suggested to realize the molecu-
lar pendant to a solid state-based transistor (Figure 7.11). Transistor-like behavior
became possible by contacting individual molecules with metal electrodes. Such a
contact requires the creation of a nanoelectrode. The tip of a scanning tunneling
microscope could form one contact to the molecule, while the other contact is
given by the conduction layer on which the molecule has been placed (Figure 7.30).
Contacts (leads) could also be formed using a tiny metal (gold) wire, which breaks
after careful stretching, thereby forming a so-called break junction. If one applies
a voltage across the molecule that is connected to two leads, the basic measured
quantity is the respective stationary current. Having a current induced by an applied
voltage, the so-called current voltage (IV) characteristics is the quantity of interest.
This is different from the ET in molecular DA complexes, which is discussed in
terms of transition rates.



7.2 Theoretical Models for Electron Transfer Systems 305

S

S
3.2 nm

5 nm Drain Is–d

Vs–d

Source

Vgate

Gate
2

Vs–d

2

Deposition
angle

–

Source

Molecule

Drain

Gate
Cg

Cs Cd

(a)

(b)

Figure 7.11 Single-molecule transistor including different charging states of the molecule
OPV5 ((E,E)-1,4-bis4-(E)-4-(tert-butylthio)styrylbenzene, see left upper panel). Also shown is
the field-effect transistor arrangement with source, drain, and gate electrode as well as the
device preparation procedure (first and second rows) (Reproduced with permission from
Kubatkin et al. [4]/Springer Nature).

7.2 Theoretical Models for Electron Transfer Systems

The derivation of the ET Hamiltonian proceeds in close analogy to the reasoning
that led to the molecular Schrödinger equation in Section 2.3. The problem is split
up into an electronic part for frozen nuclear configuration and a nuclear part.
However, since there are a number of approximations that are special to the
ET problem, we explain in some detail how to arrive at the electron–vibrational
Hamiltonian governing the transfer of a single electron through a DA complex.
The electronic Hamiltonian of the DA complex including possible bridging units
will be denoted as H(DBA)

el , whereas the full Hamiltonian, including vibrational
contributions, is written as HDBA.

7.2.1 The Electron Transfer Hamiltonian

Although ET comes along with the modification of many MOs, and thus has to be
considered as a process in which different electrons take part, we proceed here with
a simple and intuitive picture. It is based on the notion of a single excess electron
injected from the outside into the DA complex. The transfer of this excess electron
will be described by introducing an effective potential experienced by the excess elec-
tron after entering the DA complex

V(r) =
∑

m
Vm(r). (7.7)
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Figure 7.12 One-dimensional sketch of the pseudopotential V (r), introduced in Eq. (7.7)
(full line). xD , x1, etc. mark the spatial positions of the different units of the ET system.
The pseudopotentials Vm(r) of the individual molecular units (broken lines) and the levels
Em occupied by the excess electron are also shown. The motion of the excess electron
among the various energy levels proceeds as a tunneling process through the barriers
separating different potential wells.

The individual contributions Vm(r) belong to the donor, the acceptor, or to
some bridging molecules. (In what follows, the bridging units are counted by
m = 1,… , NB, starting at the donor site, whereas the donor and acceptor are labeled
by m = D and A, respectively; see Figure 7.12.)

The introduction of the effective potential V(r) appears to be reasonable, even
though there is no unique way of separating it into the various Vm(r). Only in the
case of bimolecular ET reactions, where independent molecules are involved, is the
separation scheme obvious. For unimolecular ET, one would relate the Vm(r) to
those fragments of the DA complex on which the excess electron is localized for an
appreciable time.

Each contribution Vm(r) can be understood as a so-called pseudopotential that
mimics the action of the total electronic system of the molecular fragment on the
excess electron. Within this picture all exchange and correlation effects among
the excess electron and the electrons of the molecule are replaced by a simple
single-particle potential that is local in space. The techniques and approximation
schemes for establishing these pseudopotentials are provided by the theory of
many-particle systems. Here, we define the various Vm(r) by demanding that their
ground state energy level Em should coincide with the electronic ground state of
the isolated molecular unit plus the excess electron. The mentioned approach is
not identical to a single-particle model, which neglects any charge relaxation in the
course of the excess electron motion. The excess electron does not move through
an arrangement of frozen MOs. It is taken into account that the full many-electron
wave function adjusts itself during the ET reaction. But this is done by reduc-
ing the many-particle dynamics to the action of an effective local single-particle
potential.

Independent of the specific definition of the localized states, the single-level
treatment is only a good approximation if the next unoccupied orbital has a much
higher energy. Otherwise, the number of unoccupied orbitals per pseudopotential
Vm(r) has to be adjusted. The pseudopotential Vm(r) enters the single-electron
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Schrödinger equation, which determines the single-particle energies Em and wave
functions 𝜑m(r):(

Tel + Vm(r)
)
𝜑m(r) = Em𝜑m(r). (7.8)

Again, only the lowest eigenvalue Em is of interest in the following discussion,
although higher energetic solutions may exist. Since the energies Em correspond
to different sites in the complex, they are usually called site energies. The states 𝜑m
are reminiscent of the diabatic states introduced in Section 2.6. Hence, using these
states as an expansion basis, a diabatic representation is provided. According to its
definition, the set of states 𝜑m does not form a normalized and orthogonal basis,
that is nonvanishing overlap integrals exist: ⟨𝜑m|𝜑n⟩ ≠ 𝛿mn.

In order to construct the ET Hamiltonian, we consider the electronic Schrödinger
equation for the total DA complex. Since we assume spin degeneracy of the consid-
ered excess electron states, spin quantum numbers do not appear in what follows.
The total DA Schrödinger equation reads

(Tel + V)|𝜙⟩ = |𝜙⟩. (7.9)

Let us expand this equation with respect to the basis set |𝜑m⟩:|𝜙 >=
∑

m
cm|𝜑m > . (7.10)

Inserting this into Eq. (7.9) and multiplying by ⟨𝜑n| from the left gives⟨𝜑n|Tel +
∑

k
Vk|𝜙⟩ = ⟨𝜑n|𝜙⟩ (7.11)

or ∑
m

cm

(
Em⟨𝜑n|𝜑m⟩ +∑

k≠m
⟨𝜑n|Vk|𝜑m⟩

)
= 
∑

m
cm⟨𝜑n|𝜑m⟩. (7.12)

This set of equations contains the overlap integrals and the three-center integrals⟨𝜑n|Vk|𝜑m⟩.4)

Although a more general description is possible, in what follows, we introduce
two approximations. First, we assume that the two-center overlap integrals can
be neglected; that is, we set ⟨𝜑n|𝜑m⟩ ≈ 𝛿nm. Within this approximation, the set
of states 𝜑m forms an orthogonal basis.5) Second, because of their smallness
compared to the two-center integrals, all three-center integrals are neglected.
We only take into account one- and two-center integrals. The latter contain terms
of the type ⟨𝜑m|Vk|𝜑m⟩, which introduce a shift of the site energies Em due to the
presence of the pseudopotential Vk at site k. The other two-center integrals are of
the type ⟨𝜑n|Vn|𝜑m⟩. This expression couples the state |𝜑m⟩ to the state |𝜑n⟩ via the
tail of the potential Vn at site m.

4) The integrand has contributions from sites n, k, and m, that is from three different spatial
positions.
5) Of course, a transformation to a new set of states may remove the overlap integrals. But in this
case, the intuitive picture of the states |𝜑m⟩ is lost.
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An expansion of the electronic part of the DA Hamiltonian gives

H(DBA)
el =

∑
m,n
⟨𝜑m|H(DBA)

el |𝜑n⟩|𝜑m⟩⟨𝜑n|, (7.13)

with the matrix elements of the Hamiltonian given by

⟨𝜑m|H(DBA)
el |𝜑n⟩ = 𝛿mn

(
Em +

∑
k≠m
⟨𝜑m|Vk|𝜑m⟩

)
+ (1 − 𝛿mn)⟨𝜑m|Tel + Vm + Vn|𝜑n⟩. (7.14)

The off-diagonal part can be rewritten in different forms. We use the eigenvalue Eq.
(7.8) and get

⟨𝜑m|Tel + Vm + Vn|𝜑n⟩ = 1
2
⟨𝜑m|(Tel + Vm) + (Tel + Vn) + (Vm + Vn)|𝜑n⟩

= 1
2
⟨𝜑m|Em + En + (Vm + Vn)|𝜑n⟩

= 1
2
⟨𝜑m|Vm + Vn|𝜑n⟩ = Vmn. (7.15)

The final expression Vmn is usually called transfer integral or, alternatively, interstate
coupling. Since the motion of the electron through the DA complex proceeds via tun-
neling processes, the term tunneling matrix element is also common. Alternatively
to Eq. (7.15), one can also write Vmn (m ≠ n) in terms of the matrix elements of the
kinetic energy operator:

Vmn = ⟨𝜑m|Tel + Vm + Tel + Vn − Tel|𝜑n⟩
= ⟨𝜑m|Em + En − Tel|𝜑n⟩ = −⟨𝜑m|Tel|𝜑n⟩. (7.16)

The complete electronic Hamiltonian for the DA complex reads

H(DBA)
el =

∑
m

Em|𝜑m⟩⟨𝜑m| +∑
m,n

Vmn|𝜑m⟩⟨𝜑n|. (7.17)

Here, we included the diagonal matrix elements of the pseudopotentials into the def-
inition of the site energies Em (note also the convention Vmm = 0). If convenient, we
will write in the following |D⟩, |B⟩, and |A⟩ instead of |𝜑D⟩, |𝜑m⟩, and |𝜑A⟩, respec-
tively (here, |B⟩ stands for a particular bridge state).6)

The construction of the Hamiltonian, Eq. (7.17), was mainly based on the concept
of a single excess electron moving in a particular spatial arrangement of pseudopo-
tentials that refer to the donor, the bridge, and the acceptor. But a derivation would
also be possible if a many-electron generalization of the wave functions for the excess
electron 𝜑m(r) could be achieved. Let Φ(r, 𝜎) be the full many-electron wave func-
tion of the neutral DA complex in its ground state (with the set of spatial and spin
coordinates r and 𝜎, respectively). Then, we assume the existence of the wave func-
tion Φ(−)

m (r, 𝜎; rexc, 𝜎exc) referring to the DA complex plus the excess electron that is
in a diabatic state localized at site m. The expansion of some suitable many-electron

6) In the solid-state-physics literature, the electronic part of the full DA complex Hamiltonian
(7.17) is often called tight-binding Hamiltonian.
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generalization of the DA Hamiltonian H(DBA)
el (whose definition starts from the gen-

eral expressions of Section 2.2) then gives the respective diabatic energies Em in the
diagonal parts.

Although this many-electron extension seems to be simple, it essentially depends
on the proper definition of the states Φ(−)

m (r, 𝜎; rexc, 𝜎exc). In particular, one has to
clarify how to define these states as diabatic states of the total DA complex, as well
as how to separate the DA complex into isolated units and to define the localized
excess electron states for these units. We will not further comment on these more
involved issues but refer the reader to the literature listed in the section “Further
Reading”.

In a similar way, it becomes possible to construct the Hamiltonian that describes
photoinduced ET (cf. Figure 7.6). Here, we have to assume the existence of the
many-electron wave functions Φm(r, 𝜎) that correspond to the excited donor state as
well as the presence of the transferred electron at the bridge units and the acceptor.
One may argue that for those states where the electron already left the donor the
Coulomb interaction should be accounted for between the donor without one
electron (D+) and the other parts of the DA complex with an additional electron
(e.g. A−). But often, one interprets the states Φm (and the related energies Em) as
constructed in such a manner that this Coulomb interaction is already contained
in their definition. Of course, all these states are not eigenstates of the electronic
part of the molecular Hamiltonian. They describe spatial charge localization in the
DA complex and should be coupled weakly one to another. (If this latter restriction
is not fulfilled, the introduction of the Φm becomes meaningless.) Expanding the
electronic part H(DBA)

el of the DA Hamiltonian with respect to these states Φm, we
again arrive at an expression as given by Eq. (7.17). This indicates the universal form
of the ET Hamiltonian, Eq. (7.17). Only the actual interpretation of the involved
matrix elements and expansion states specifies H(DBA)

el to a concrete type of ET
reaction.

The derivation of Eq. (7.17) provides the conceptional framework of the DBA
Hamiltonian. To conclude this section, we address the question: how the energies
Em and interstate couplings Vmn can be computed for a given molecular system? The
states |𝜑m⟩ form a diabatic basis, describing the localized charge densities. However,
starting with the electronic Schrödinger equation of the total DBA system, one will
obtain the adiabatic electronic states |𝜑a⟩. The two representations are related by a
linear transformation as outlined in Section 2.6 for a general two-state problem. In
the present situation, this transformation can be obtained using physical arguments
as follows. Since the electronic states are localized on different parts of the DBA
complex, it is assumed that the matrix elements of the dipole moment operator
connecting different diabatic states vanish. Provided that one has calculated the
dipole matrix in the adiabatic basis, that is 𝝁

(adia) with matrix elements dab, the
transformation C(𝜇) is chosen such as to bring this adiabatic dipole matrix into
diagonal form, that is

C(𝜇)T
𝝁
(adia)C(𝜇) = 𝝁

(diag)
, (7.18)
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with the diagonal matrix 𝝁
(diag), which is identified with the dipole matrix in

diabatic representation under the assumption that due to diabatic state localization,
the off-diagonal dipole matrix elements vanish. The vector character of the dipole
is incorporated by projection onto the direction of the difference vector between
the expectation values of the dipole moment for the initial and final adiabatic states
(in the case of more than two states, the average is taken). The diabatic repre-
sentation in Eq. (7.17) is obtained by transformation of the (diagonal) adiabatic
Hamiltonian with C(𝜇). To obtain an analytic expression, we consider a two-state
DA system, with the adiabatic transition dipole vector pointing along the difference
vector between the two adiabatic state dipoles, and use the following transformation
matrix (cf. Section 2.8.2):

C(𝜇) =
(

cos 𝛾 − sin 𝛾

sin 𝛾 cos 𝛾

)
. (7.19)

Performing the matrix multiplications on the right-hand side of Eq. (7.18) and
demanding that the off-diagonal elements of the resulting matrix vanish, one
obtains

𝛾 = 1
2

arctan
(

2d12|d11 − d22|
)

, (7.20)

where d12 is the projection along (d11 − d22)∕(|d11 − d22|). Applying the transfor-
mation to the diagonal Hamiltonian matrix with energies 

𝛼=1,2 yields the coupling
matrix elements:

V12 = 1
2
(2 − 1) sin(2𝛾). (7.21)

Inserting the expression for 𝛾 , one gets the interstate coupling (usually written in
terms of its absolute value)

|V12| = |2 − 1||d12|√|d11 − d22|2 + 4d2
12

. (7.22)

Thus, the interstate coupling can be expressed solely in terms of adiabatic quanti-
ties, that is the electronic energy difference and dipole matrix elements. Note that
this procedure does not make any assumption concerning the method by which the
adiabatic states have been obtained. In other words, they may contain many body
correlation effects. This approach is known as generalized Mulliken–Hush method.
An example is given in Figure 7.35.

7.2.2 The Electron–Vibrational Hamiltonian of a Donor–Acceptor
Complex

In general, one should distinguish between intra- and intermolecular nuclear DOFs.
While the former are more important for unimolecular ET, the latter play a promi-
nent role in bimolecular ET, although also in that case there will be intramolecular
vibrations for the separate D and A molecules. The following derivation is more
suitable for intramolecular ET. The case of separate sets of vibrational DOFs will
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be discussed in Section 7.4.2. The vibrational DOFs may couple in two different
ways to the transferred electron. In principle, one can distinguish between accepting
modes, which change their equilibrium configuration if the electronic charge density
changes, and promoting modes. The latter enter the transfer integral, Eq. (7.7), and
thus may accelerate the ET. (We note that in general this distinction is not always
clear; that is, accepting modes may act simultaneously as promoting modes and vice
versa.)

Including the vibrational DOFs, {Ru} ≡ R, along the lines of Section 2.5 (note that
we use the index u instead of n as in Chapter 2 to avoid confusion with the site
indices), the electron–vibrational Hamiltonian of the DA becomes

HDBA =
∑

m

(
Tnuc + Um(R)

) |𝜑m⟩⟨𝜑m| +∑
m,n

Vmn(R)|𝜑m⟩⟨𝜑n|, (7.23)

where we have introduced potential energy surface (PES) that relate to those state
with the excess electron localized at site m:

Um(R) = Em(R) + Vnuc-nuc(R). (7.24)

Here, we have neglected the dependence of the basis 𝜑m on the vibrational coor-
dinates. This reminds on the Born–Oppenheimer approximation and specifically
assumes that there is no ET triggered by the nonadiabaticity operator Θmn defined
in Eq. (2.17). This assumption is motivated by the localization of the wave functions
𝜑m(r) at the various units of the DA complex (its diabatic character).

The dependence on the nuclear coordinates can be made more specific by
introducing PESs, which depend on normal mode coordinates {q

𝜉
} ≡ q (see Section

2.5.1). In this case it is advantageous to choose a particular electronic state to define
a reference configuration of the nuclei. We take the electronic ground state of the
neutral DA complex for that purpose, that is the state where the excess electron
is absent. This state is supposed to be characterized by the PES Ug(R) having the
equilibrium configuration at {R(g)

u } ≡ R(g). Next, we carry out an expansion of Ug(R)
around R(g) up to the second order with respect to the deviations ΔR(g)

u = Ru − R(g)
u

and obtain after introducing normal-mode coordinates a Hamiltonian as given in
Eq. (2.43).

Using the same normal-mode transformation also for the electronic states with
an excess electron and following Section 2.5.1, one arrives at a particular model for
the PES of the DA system. The PESs are parabolic, their minima are shifted with
respect to each other in the space of the normal-mode coordinates, and they have
different energetic offsets (see Figure 7.13). If necessary, they can additionally be
characterized by vibrational frequencies depending on the site index m. The related
vibrational Hamiltonian reads

Hm(q) = Tvib + Um(q) = U (g)
m + 1

2
∑

𝜉

{
p2

𝜉
+ 𝜔

2
m𝜉

(
q

𝜉
− q(m)

𝜉

)2
}

. (7.25)

In the general case, the intersite couplings Vmn also depend on the nuclear coor-
dinates. Since the magnitude of Vmn is mainly determined by the overlap of the
exponential tail of the wave functions localized at sites m and n (see Eq. (7.15)),
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Figure 7.13 PES of the DA complex according to Eq. (7.25) versus a single normal mode
coordinate q

𝜉
≡ q (all other coordinates with 𝜉

′ ≠ 𝜉 are fixed at q(m)
𝜉′

for every PES Um).
While Ug is the electronic ground-state (reference) PES of the neutral complex, the PES Um
correspond to the situation where one excess electron is present at the donor (m = D),
the acceptor (m = A), or at a bridge unit (m = 1, 2, 3, note that the position of the PES along
the q-axis has nothing to do with the spatial position of the related electronic wave
functions 𝜑m).

we expect an exponential dependence on the distance xmn between the
two sites:

Vmn(R) = V (g)
mn exp

{
−𝛽mn(xmn − x(g)mn)

}
. (7.26)

The reference value V (g)
mn of the intersite couplings is reached for the reference

(equilibrium) distance x(g)mn, and 𝛽mn is some characteristic inverse length deter-
mined by the wave function overlap. Often, the dependence of Vmn on the nuclear
coordinates is neglected in comparison with the onsite vibrational dynamics. We use
this simplification in the following and set Vmn(R) ≈ Vmn (Condon approximation).

Using this model, the total Hamiltonian (7.23) becomes

HDBA =
∑
m,n

{
𝛿mnHm(q) + (1 − 𝛿mn)Vmn

} |𝜑m⟩⟨𝜑n|. (7.27)

The simplest but nontrivial version of the DA Hamiltonian, Eq. (7.27), is obtained if
one neglects any bridging unit and if the vibrational frequencies are independent of
the actual electronic state. We then have

HDA = HD(q)|D⟩⟨D| + HA(q)|A⟩⟨A| + VDA|D⟩⟨A| + VAD|A⟩⟨D|. (7.28)

7.2.2.1 The Spin-Boson Model
There exists a widely used alternative notation, which employs the formal similarity
of a two-level DA system, Eq. (7.28), with a spin one-half system. In analogy to the
quantum mechanical treatment of the spin, we define the spin-operator components
𝜎x, 𝜎y, and 𝜎z as

𝜎x = |D⟩⟨A| + |A⟩⟨D|,
𝜎y = i (|D⟩⟨A| − |A⟩⟨D|) ,
𝜎z = |D⟩⟨D| − |A⟩⟨A|. (7.29)
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Furthermore, we write the Hamiltonian (7.28) in a way similar to Section
2.5.2, where we introduced a reference vibrational Hamiltonian Hvib and a lin-
ear electron–vibrational coupling with dimensionless vibrational coordinates
q

𝜉

√
2𝜔

𝜉
∕ℏ = C+

𝜉
+ C

𝜉
and coupling constants gm(𝜉) = −q(m)

𝜉

√
𝜔

𝜉
∕2ℏ. It gives

HDA = U (g)
D |D⟩⟨D| + U (g)

A |A⟩⟨A| + Hvib

+
∑

𝜉

ℏ𝜔
𝜉
(C+

𝜉
+ C

𝜉
)
(

gD(𝜉)|D⟩⟨D| + gA(𝜉)|A⟩⟨A|)
+VDA|D⟩⟨A| + VAD|A⟩⟨D|. (7.30)

If we introduce

U (g)
D = Ū (g) + 𝜀∕2 (7.31)

and

U (g)
A = Ū (0) − 𝜀∕2, (7.32)

with Ū (0) = (U (0)
D + U (0)

A )∕2, 𝜀 = U (0)
D − U (0)

A , assume that the shift of the two PESs
along the q

𝜉
-axis is symmetric (gD(𝜉) = −gA(𝜉) = g

𝜉
), and take a real-valued transfer

coupling V = VDA = VAD, the Hamiltonian, (7.30) becomes

Hsb = Ū (0) + Hvib +
𝜀

2
𝜎z +
∑

𝜉

ℏ𝜔
𝜉
g
𝜉
(C+

𝜉
+ C

𝜉
)𝜎z + V𝜎x. (7.33)

(Note that |D⟩⟨D| + |A⟩⟨A| defines the completeness relation for the electronic
states, which can be replaced by the unit operator.)

According to this prescription, the electronic two-state DA system has been
mapped onto the problem of an effective spin one-half particle. Eq. (7.33) gives the
so-called spin-boson Hamiltonian. The term “boson” indicates that the equilibrium
vibrational energy distribution for the various normal modes follows Bose–Einstein
statistics. The spin-boson model represents the archetype to study the interplay of
particle (electron) transfer and vibrational motion.

7.2.2.2 Two Independent Sets of Vibrational Coordinates
In the foregoing considerations, we assumed that there exists a common set of
normal mode coordinates modulating the donor as well as the acceptor electronic
states. In the case of a bimolecular ET reaction, however, the electron moves
between two independent molecules. Therefore, it is more appropriate to separate
the sets of coordinates for the donor (qD ≡ {qD𝜉

}) and the acceptor (qA ≡ {qA𝜉
})

molecules. For simplicity, we consider the reaction scheme (7.5) without additional
bridging units and introduce four different electronic states for the expansion of the
Hamiltonian. They will be denoted by |𝜑D−⟩, |𝜑D⟩, |𝜑A⟩, and |𝜑A−⟩, and describe
the donor with the excess electron, the neutral donor, the neutral acceptor, and
the acceptor plus the excess electron, respectively. Thus, the reactant state is given
by |𝜑D− 𝜑A⟩, whereas the product state is |𝜑D 𝜑A−⟩. Generalizing Eq. (7.28), the
Hamiltonian for a bimolecular ET reaction follows as

H(bimol)
DA =

[
HD− (qD) + HA(qA)

] |𝜑D− 𝜑A⟩⟨𝜑D− 𝜑A|
+
(

HD(qD) + HA− (qA)
) |𝜑D 𝜑A−⟩⟨𝜑D 𝜑A− |

+
(

VDA|𝜑D− 𝜑A⟩⟨𝜑D 𝜑A− | + h.c.
)
. (7.34)
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All PESs are of the type entering Eq. (7.25), but here, we have four sets of equilib-
rium configurations {q(0)

m𝜉
}, with m = D−

, D, A, A− and four corresponding values of
U (0)

m . Additionally, there could be intermolecular coordinates that describe variations
of the distance between D and A. Such motions would in particular influence the
transfer coupling VDA.

7.2.3 Electron–Vibrational State Representation of the Hamiltonian

For further applications it is useful to give a representation of the DA Hamilto-
nian using the complete diabatic electron–vibrational basis defined by the states
(cf. Section 2.6)

|𝜇⟩ ≡ |mM⟩ ≡ |𝜒mM⟩|𝜑m⟩. (7.35)

The harmonic oscillator vibrational states |𝜒mM⟩ that belong to the electronic states|𝜑m⟩ are the eigenstates of the vibrational Hamiltonian, Eq. (7.25),

Hm|𝜒mM⟩ = EmM|𝜒mM⟩. (7.36)

The corresponding eigenvalues

EmM = U (0)
m +
∑

𝜉

ℏ𝜔m𝜉
(M

𝜉
+ 1∕2) (7.37)

give the energy spectrum of the normal-mode oscillators. According to the intro-
duction of normal-mode vibrations, the state vector |𝜒mM⟩ factorizes into products
corresponding to the different normal modes with mode index 𝜉

|𝜒mM⟩ =∏
𝜉

|𝜒mM
𝜉

⟩ . (7.38)

The Hamiltonian (7.27) can be expanded in the diabatic electron–vibrational basis
as follows:

HDBA =
∑
𝜇𝜈

(
𝛿

𝜇𝜈
E

𝜇
+ (1 − 𝛿mn)V𝜇𝜈

) |𝜇⟩⟨𝜈|. (7.39)

If the transfer integral Vmn is coordinate independent, the coupling matrix ele-
ment follows as V

𝜇𝜈
= Vmn⟨𝜒mM|𝜒nN⟩, where ⟨𝜒mM|𝜒nN⟩ is the overlap integral

of the vibrational wave functions belonging to different sites (Franck–Condon
factor).7)

The total DA system described by the Hamiltonian (7.39) can be viewed as a set of
multilevel systems with energy spectrum E

𝜇
and mutual level coupling V

𝜇𝜈
. A sim-

ilar system has already been considered in Section 3.4.5 from a more formal point
of view. There, we calculated the total transition rate for the transfer of occupation
probability from site m to site n. Here, we expect a similar relation for the descrip-
tion of ET reactions. Under what precise conditions this rate formula is valid will be
discussed in detail in the following section.

7) Obviously, this approximation is identical to the Condon approximation introduced for
computing the absorption spectrum in Chapter 5.
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7.3 Regimes of Electron Transfer

In the forthcoming discussion, we concentrate on a simple model of a DA complex,
neglecting any further bridging units. The corresponding Hamiltonian was intro-
duced in Eq. (7.28), where the diabatic donor and acceptor electronic states have
been abbreviated by |D⟩ ≡ |𝜑D⟩ and |A⟩ ≡ |𝜑A⟩, respectively (see also Figure 7.14).
For the time being it will be convenient to consider the vibrational DOFs in the
classical limit.

It is obvious from the previous section that one of the crucial parameters of
ET theory should be the intersite coupling. For the electronic two-state model, it
is a simple task to consider this coupling exactly, which means to change to the
adiabatic representation as an alternative to the diabatic representation. Therefore,
we start our discussion by introducing this representation. It is obtained after
diagonalization of the Hamiltonian, (7.28). According to the results for a two-level
system (see Section 2.8.2) and the fact that the vibrational kinetic energies are not
affected,8) we obtain the two adiabatic PESs U+ and U− as (compare Section 2.6)

U±(q) =
1
2

(
UD(q) + UA(q) ±

√
(UD(q) − UA(q))2 + 4|VDA|2) . (7.40)

These adiabatic PESs together with the diabatic PESs are plotted in Figure 7.14 ver-
sus a single coordinate q. The crossing point q∗ of the two diabatic PESs is defined by
UD(q∗) = UA(q∗). According to Eq. (7.40), there is a splitting of the adiabatic PESs by
2|VDA| at the crossing point of the diabatic PESs. The difference between adiabatic
and diabatic curves becomes smaller if q deviates from q∗ and both PESs coincide
for |q − q∗|≫ 0. Clearly, the shape of the adiabatic PES is much more complicated
if two or more vibrational coordinates are involved.

Which type of representation is more appropriate depends on the problem under
discussion. To give some guidance using qualitative arguments, we introduce two
characteristic times. A time typical for electronic quantum motion is

tel =
ℏ|VAD| . (7.41)

Figure 7.14 Donor and acceptor
PESs versus a single reaction
coordinate. The diabatic (full line)
as well as adiabatic curves (dashed
line) are shown. There is a splitting
between the adiabatic curves,
which has a magnitude of 2|VDA| at
the crossing point q∗.
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8) The nuclear kinetic energy operators enter as Tnuc|D⟩⟨D| +Tnuc|A⟩⟨A|. According to the
completeness relation for the electronic states, this is identical to Tnuc, which demonstrates that
the kinetic energy part remains unaffected by the transformation.
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This quantity is proportional to the time the electronic wave function needs to move
from the donor site to the acceptor site if the respective energy levels are degenerated
(cf. the discussion of the two-level system dynamics in Section 3.12). Degeneracy of
the electronic levels occurs if one fixes the vibrational configuration at the crossing
point q∗. Provided that the vibrational motion is not effected by strong damping, the
characteristic time of the vibrational motion is given by the vibrational frequency9)

tvib = 2𝜋

𝜔vib
. (7.42)

Let us first assume tel ≪ tvib. In this case, the electron will move many times
between the donor and acceptor before any change in the nuclear configuration
occurs. This is the same situation we used in Section 2.3 to motivate the introduction
of the Born–Oppenheimer (adiabatic) approximation. We expect that the electronic
states will be delocalized over the whole DA complex. The electron is in an adia-
batic state, and if one is interested in a time scale much larger than tel, it becomes
advantageous to change from the localized diabatic to the delocalized adiabatic
representation. In particular, any vibrational motion has to be described within
the adiabatic PES. Note that in the case that the vibrational motion triggers elec-
tronic transitions, a quantum mechanical treatment including the nonadiabaticity
operator may be required.

If the energetic difference between the lower and the upper adiabatic PESs is
large enough, one has the situation shown in Figure 7.4b where the motion along
the reaction coordinate is subject to a double-well potential. Now, we can specify
Figure 7.4b noting that for adiabatic ET the formal reaction coordinate can be iden-
tified with some – possibly collective – vibrational coordinates coupled to the ET.
Therefore, adiabatic ET has to be understood as the rearrangement of the vibrational
DOFs from their reactant configuration (minimum of diabatic donor PES) to the
product configuration (minimum of diabatic acceptor PES). This rearrangement is
connected with a barrier crossing, and we expect for the ET rate an expression of
the standard Arrhenius type

kET ∝ e−Eact∕kBT
, (7.43)

with the respective activation energy Eact.10)

The opposite situation is encountered if tel ≫ tvib, that is if the vibrational motion
is much faster than the electronic one. This reaction type is called nonadiabatic ET.
(This should not be confused with the “nonadiabatic” coupling.) The initial and
final states of the nonadiabatic ET reaction are spatially rather localized, and the
motion of the reaction coordinate through the crossing region is so fast that the elec-
tronic wave function has not enough time to move completely from the donor to the

9) Usually, molecular systems will have vibrational modes with different vibrational frequencies.
Then, 𝜔vib represents a mean frequency. Clearly, if the various frequencies are quite different, the
introduction of a mean frequency is meaningless. Instead, one can use different groups of
frequencies (high- and low-frequency vibrations, etc.). Of course, particular relations valid for one
type of frequencies may be invalid for the other type.
10) The use of the term activation energy becomes inadequate if there is a macroscopic number of
nuclear DOFs involved. For example, in the case of ET in polar solvents entropic effects enter the
description, and one has to replace the activation energy by the activation free energy.
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acceptor. Only a small fraction of the electronic probability density will reach the
acceptor state for each passage of the crossing region.11)

Since the coupling VDA is small, it is possible to describe the ET carrying out a
perturbation expansion with respect to VDA, where the diabatic states represent
the zeroth-order states. In the lowest order of perturbation theory (Golden Rule
formula), ET occurs if the donor and acceptor levels are degenerated, that is in the
crossing region of the two PESs. The transfer rate becomes proportional to |VDA|2,
but it also depends on the probability at which the crossing region on the donor PES
UD is reached by the vibrational coordinates. Accordingly, we expect the following
expression for the ET rate:

kET ∝ |VDA|2 e−Eact∕kBT
. (7.44)

Following Figure 7.14, Eact denotes the activation energy needed to reach the
crossing region starting at the minimum position of the donor PES; hence, we have
Eact = UD(q∗) − UD(q(D)). Of course, this activation energy is different from
the one appearing in the case of the adiabatic ET since the latter has been
introduced with respect to the barrier in the lower adiabatic PES U−, Eq. (7.40).

Although the two types of ET introduced so far are the result of very different
values of the two characteristic times tel and tvib, the adiabatic as well as the nona-
diabatic ET can cover a wide range of time scales up to milliseconds or even slower.
On the other hand, if there is a strong DA coupling, ET reactions can proceed ultra-
fast (in the picosecond to femtosecond range). This situation is usually encoun-
tered in photoinduced ET reactions (Section 7.9). Here, experimental observation
requires to use ultrafast preparation and detection schemes as well (cf. discussion in
Chapter 6).

The foregoing discussion was based on the characteristic times for the electronic
and vibrational motion. Alternatively, one can introduce characteristic energies. Let
us concentrate on the model of an excess electron. If the excess electron is absent,
the minimum position of the PES U0 is given by q

𝜉
= 0. If the excess electron is

introduced into the complex and its wave function is localized at the state m = D, A,
then the localization energy

Eloc =
1
2
∑

𝜉

𝜔
2
𝜉
q(m) 2

𝜉
(7.45)

is gained. By contrast, if the vibrational coordinates are fixed at the crossing point
such that the electronic wave function becomes delocalized, the system may gain
the delocalization energy (according to the energetic splitting between the D and A
levels)

Edel = |VAD|. (7.46)

11) It should be noted here that we use the term “electronic probability density” instead of
“electron,” indicating that quantum mechanics only fixes the change of the wave function in the
course of the time propagation. It is meaningless to ask how fast or slow the electron itself moves
within the ET reaction. The reader should also note the similarity between the nonadiabatic ET
and the electronic transition occurring in a linear absorption experiment. There, the weak transfer
coupling of ET is replaced by the weak external electromagnetic field, both realizing an interstate
coupling (cf. discussion in Chapter 6).
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According to the definition of the characteristic energies, we can conclude that nona-
diabatic ET occurs if Eloc ≫ Edel. If it is energetically more favorable for the electron
to be in a delocalized state (Eloc ≪ Edel), the ET is adiabatic.

Let us return to ET rate formulas whose limiting cases, the adiabatic and the
nonadiabatic ET, were estimated above. Both ET rates have been characterized by
formulas of type

kET = 𝜈e−Eact∕kBT
. (7.47)

This rate includes the activation energy for barrier crossing and the quantity 𝜈.
The latter has the dimension of a frequency and is usually called frequency factor.
In the case of adiabatic ET, the inverse of the frequency factor is simply given by
the time it takes to move along the reaction coordinate to the top of the barrier.
A more detailed inspection shows that this reasoning is not correct for every
type of adiabatic ET. For instance, consider a DA complex dissolved in a polar
solvent. Here, the transferred electron may be strongly coupled to the solvent, and
the motion of the reaction coordinate of the ET is overdamped. The rate will be
mainly determined by the way the reaction coordinate reaches the crossing point.
In particular, the frequency factor 𝜈 becomes proportional to 1∕𝜏rel, the inverse of
the solvent relaxation time. This type of ET is often called solvent-controlled. If the
nuclear coordinates (and solvent DOFs) that are coupled to the ET reaction move
in such a manner that the reaction coordinate is only weakly perturbed, the motion
is called uniform. If, however, there is a strong perturbation, the motion on the
respective PES becomes irregular diffusionlike.

This example shows that it is important to understand how one can formulate a
theory for ET reactions that is valid not only for the two described limiting cases but
also in the intermediate regime. To bridge the gap between the nonadiabatic ET and
the adiabatic ET with uniform reaction coordinate dynamics, Landau-Zener theory
is appropriate as will be explained in the following section.

The classical consideration of the vibrational motion assumes for the ET a thermal
activation of the vibrational DOFs to reach the crossing region. If the temperature
decreases such that kBT ≪ Eact, ET has to proceed via tunneling through the
barrier between the donor and acceptor nuclear equilibrium configurations. This
so-called nuclear tunneling case can be found in nonadiabatic as well as adiabatic
ET reactions. It requires a quantum mechanical treatment of the vibrational
coordinates.

In the case of nonadiabatic ET, one can use the Hamiltonian, Eq. (7.39), with
energy levels EmM . Considering a DA complex without bridge units and neglecting
the coupling to any environment, the system of the two sets of energy spectra, EDM
and EAN , represents a closed quantum system, and reversible quantum dynamics has
to be expected in this multilevel systems (cf. Figure 7.15). In the presence of an envi-
ronment, one has an open system, and every electron–vibrational state |mM⟩ has a
finite lifetime 𝜏mM . For simplicity, we assume the existence of a single representative
lifetime 𝜏rel for the following discussion. If 𝜏rel < tvib and tel, a fast relaxation occurs
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Reaction coordinate

EDM

τDM

EAN

PD (E) PA (E)

VDM,AN

Figure 7.15 Ultrafast ET in a system of two coupled PESs with donor, EDM , and acceptor,
EAN , vibrational levels as well as coupling matrix elements VDM,AN . Left scheme: population
PD of the donor levels after optical excitation (cf. Figure 6.12), right scheme: population PA
of the acceptor levels after ET and relaxation. (If both spectra are degenerated, a direct
transfer from a selected level EDM to a level EAN becomes possible, probably connected with
a backtransfer. If degeneracy is absent, a set of different levels is coupled simultaneously.)

before any ET takes place,12) and a description based on transition rates is suitable.
This will be the case for the nonadiabatic ET discussed in Section 7.4.

If the lifetime of the electron–vibrational states is larger than the characteristic
times tvib and tel, only a weak disturbance of wavelike nuclear motions in the course
of the ET appears. This is typical for photoinduced ET where vibrational coherences
at the donor and acceptor states can be observed on a subpicosecond time scale
(see Section 7.9).

7.3.1 Landau–Zener Theory of Electron Transfer

To characterize the general aspects of the ET in a DA complex, we introduce a
widely used classical treatment, developed by Landau and independently by Zener.
Originally, Landau considered the scattering between two atoms, whereas Zener
focused on the electronic levels of a diatomic molecule. In both cases, level coupling
has been considered under the condition that the level separation is changed by an
external perturbation. This approach is easily mapped onto the description of ET
in a DA complex. The advantage is that one can derive an analytical formula for
the transfer rate that is valid for any value of the coupling VDA spanning the range
between adiabatic and nonadiabatic ET. The actual derivation makes use of the
diabatic representation.

In order to deal with the ET reaction in a DA complex according to Landau and
Zener, one has to choose a classical description for a single vibrational coordinate.
To obtain the ET rate, we let the vibrational coordinate start to move on the donor
PES far away from the crossing point q∗ with the acceptor PES. If the coordinate

12) Note that we have to guarantee that the coupling to the particular environment is not too
strong. If 1∕𝜏rel ≫ 𝜔vib, the energy levels EmM become meaningless since in this case of strong
coupling, a separate definition of the diabatic energy spectrum EmM cannot be justified.
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moves through the crossing region, we will determine the probability that the elec-
tron will be transferred to the acceptor state as well as the probability for remaining
at the donor state.

The corresponding Hamiltonian of the DA complex was introduced in Eq.
(7.28). The vibrational Hamiltonian Hm(q) (m = D, A) includes the donor and
acceptor PESs UD(q) and UA(q), respectively. Both depend on the single vibrational
coordinate q and may in principle have an arbitrary shape. Since the crossing point
q∗ between the PESs is crucial for the transfer, we expand both PESs around q∗

Um(q) = U∗ − Fm(q∗)Δq. (7.48)

Here,

Fm(q∗) = −
𝜕Um(q)

𝜕q
||||q=q∗

(7.49)

denotes the force the vibrational coordinate experiences at the crossing point when
the electron is in state m = D, A. Furthermore, we introduced Δq = q − q∗, and U∗

abbreviates UD(q∗) = UA(q∗) (cf. Figure 7.16).
The time dependence of the coordinate q (or Δq) is unknown so far. Since we

expect the ET reaction to take place at the curve crossing around Δq ≈ 0, we set
Δq ≈ 𝑣

∗t, where 𝑣
∗ is the yet unknown velocity at the crossing point. It represents a

parameter of the theory that should be estimated. By virtue of these approximations,
the Hamiltonian becomes formally time dependent

HDA = Tvib + U∗ + H0(t) + V̂ . (7.50)

The classical part Tvib + U∗ is of less interest for the following; the time-dependent
part reads

H0(t) = −FD 𝑣
∗t |D⟩⟨D| − FA 𝑣

∗t |A⟩⟨A|. (7.51)

Further, the interstate coupling is comprised in

V̂ = VDA|D⟩⟨A| + h.c. (7.52)

The reactant state of the transfer corresponds to t = −∞ (Δq = −∞), whereas the
product state is characterized by t = ∞ (Δq = ∞, see Figure 7.16).

In a first step, we calculate the asymptotic value of the survival probability of the
electron for remaining at the donor, PD ≡ PD(t = ∞). This quantity follows as the
square of the transition amplitude (compare Section 3.3.1)

PD = |⟨D|U(∞,−∞)|D⟩|2, (7.53)

E
ne

rg
y

UD UA

–∞ ←  Δq Δq → ∞

Figure 7.16 The coupled PES of a
DA complex versus a single reaction
coordinate. According to the treatment in
the Landau–Zener theory, the PESs are
approximated by straight lines around
the crossing point. The asymptotic
regions Δq → ±∞ are also indicated.
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where the time-evolution operator U(t, t′) is given by the Hamiltonian H0(t) + V̂ ,
Eq. (7.50). Interestingly, the present model allows to calculate this transition
amplitude exactly, as demonstrated in detail in the supplementary Section 7.10.1.
Here, we only quote the result for the donor survival probability:

PD = e−Γ. (7.54)

It depends on the so-called Massey parameter, which is defined as

Γ = 2𝜋

ℏ𝑣∗
|VDA|2|FD − FA| . (7.55)

Although it is of interest to have an expression for the survival probability PD,
we aim to get the ET rate kDA based on our knowledge of PD. The ET rate can be
defined by the redistribution of probability density between the donor and acceptor
within the characteristic time interval tvib = 2𝜋∕𝜔vib. This time interval is a good
estimate for the time the vibrational coordinate needs to go from the region around
the minimum of the donor PES to that around the minimum of the acceptor PES and
back. Considering the coordinate Δq, this vibrational motion formally corresponds
to the motion between the two asymptotic values ±∞, that is to the transition from
Δq = −∞ to Δq = ∞ and back to Δq = −∞ (cf. Figure 7.16). Determining the rate
for a single transition event from the donor to the acceptor within the time interval
tvib, one has to account for two alternative ways: Either one goes from Δq = −∞
to Δq = ∞ and a transition to the acceptor takes place; then, on the way back to
Δq = −∞, the system has to remain at the acceptor state. Or, the system remains at
the donor state during the motion from Δq = −∞ to Δq = ∞, but on the way back,
when passing the crossing region, it moves to the acceptor state.

To calculate the ET rate for the first pathway, we note that the probability for going
to the acceptor as the coordinate moves from Δq = −∞ to Δq = ∞ is 1 − PD. Due
to the symmetry of the problem, the probability to make no transition on the way
back to Δq = −∞ is identical to PD. In conclusion, we obtain the change in the prob-
ability within a single oscillation period as (1 − PD)PD. In the second case of realizing
the ET, the system remains with probability PD in the donor state as the coordinate
moves from Δq = −∞ to Δq = ∞. On the way back, a transition to the acceptor state
occurs with probability 1 − PD. This is indeed the same result as for the first transi-
tion pathway. Therefore, we obtain the transition rate as

kDA =
𝜔vib

2𝜋

2(1 − PD)PD ≡
𝜔vib

𝜋

e−Γ
(
1 − e−Γ

)
. (7.56)

The expression is valid for every value of VDA, thus covering the case of adiabatic as
well as nonadiabatic ET. For large Γ (and hence large VDA), we obtain the rate for
adiabatic ET13)

k(adia)
DA =

𝜔vib

𝜋

e−Γ, (7.57)

while for small Γ, the nonadiabatic limit follows:

k(nonad)
DA =

2𝜔vib

ℏ𝑣∗
|VDA|2|FD − FA| , (7.58)

13) Obviously, the limit VDA → ∞ is meaningless, since for this case kDA vanishes.
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with a rate proportional to the square of the electronic coupling. For the intermediate
regime that rate has to be calculated according to Eq. (7.56).

Introducing the Landau–Zener length,

lLZ =
2𝜋|VDA||FD − FA| , (7.59)

the Massey parameter becomes

Γ = lLZ
|VDA|
ℏ𝑣∗

. (7.60)

The Landau–Zener length can be understood as the distance from the crossing
point where the difference UD − UA in the potential energy equals the magnitude of
the electronic coupling VDA.14) Therefore, it gives an estimate for those Δq values up
to which the coupling VDA has some influence on the transfer dynamics.

Let us consider a liquid phase situation next. Here, ET reactions can be char-
acterized by introducing a mean free path length lf for the reaction coordinate.
It corresponds to the average distance between two collision events of the reaction
coordinate with solvent molecules. If lf ≫ lLZ, the reaction coordinate can be
considered to carry out a ballistic motion (or uniform motion) on the time scale
of the ET with only minor influence of collisions with the solvent molecules.
In the opposite case lf ≪ lLZ, the motion is diffusive on the time scale of the ET.
Of course, in both cases, the ET can take place either in the adiabatic or nonadi-
abatic regime, depending on the actual value of Γ. This situation is visualized in
Figure 7.17.
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Γ Figure 7.17 Schematic representation of
the different ET regions. The horizontal axis
distinguishes between the uniform and
diffusive motion of the reaction coordinate
by plotting the Landau–Zener length lLZ, Eq.
(7.59), in relation to a given mean free path
length lf. Along the vertical axis, adiabatic and
nonadiabatic transfer is differentiated using
the Massey parameter Γ defined in Eq. (7.60).

14) To show this, let us consider the expression UD(q∗ + Δq) − UA(q∗ + Δq), which measures the
potential energy difference between the case where the electron is at the donor and the case where
it is at the acceptor. Expanding this expression with respect to the deviation Δq from the crossing
point of both PESs, we estimate the PES difference as |FD − FA| |Δq|. Using now Eq. (7.59), we
may write |(FD − FA)|lLZ = 2𝜋|VDA|, which justifies the given explanation of the Landau-Zener
length.
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7.4 Nonadiabatic Electron Transfer in a Donor–Acceptor
Complex

The concept of nonadiabatic ET was introduced in the preceding section as a charge
transition process for which the vibrational motion is much faster than the motion
of the transferred electron. The type of rate equation we have to expect can be
found in Eq. (7.44). In what follows, we consider this important type of ET reaction
in more detail. The interest in nonadiabatic ET reactions stems from the fact that
bridge-mediated long-range ET usually proceeds in this limit. This more complex
type of ET will be dealt with in Section 7.5. Here, we concentrate on nonadiabatic
ET in a simple DA complex.

Since for nonadiabatic ET we have to account for the transfer coupling between
the donor and the acceptor in the lowest order of perturbation theory, we are in the
position to write down the general rate formula (valid at any temperature) using
the results of Chapter 6, which deals with transitions between different electronic
states. There, it has been shown that the computation of the transition rate can
be reduced to the determination of a properly defined spectral density. Once this
quantity is obtained (which requires the harmonic oscillator approximation for the
related PES), the transfer rate can be calculated for all temperatures. In addition,
vibrational modes with frequencies extending over a broad range can be incorpo-
rated. However, to provide an overview of the various approaches that can be found
in the literature, we discuss different limiting cases of nonadiabatic ET. Thus, we
approach the most general description of ET dynamics step by step, starting our
considerations with the high-temperature limit.

7.4.1 High-temperature Case

The high-temperature limit is applicable if the relation kBT ≫ ℏ𝜔
𝜉

holds for all
vibrational modes 𝜉. In such a situation, it is possible to describe the vibrational
dynamics in the framework of classical physics. If the classical description is not
possible for all types of vibrations, one has to study the subset of the high-frequency
quantum modes by means of quantum mechanics (see the following section).

To derive the rate expression for the ET process, we consider the case of an excess
electron in the DA complex. Then, the appropriate Hamiltonian is given by Eq.
(7.28), where the PES Um(q) (q ≡ {q

𝜉
}) for the electron at the donor or acceptor site

(m = D, A) follows from Eq. (7.25). Since we consider classical vibrational dynamics,
the Hamiltonian Hm is replaced by the Hamiltonian functions Hm(q(t), p(t)) defined
via the time-dependent vibrational momenta and coordinates for a given electronic
state. As was demonstrated in Section 3.13, the incorporation of classical dynam-
ics into the quantum dynamical description of transfer process is conveniently done
using the Wigner representation (cf. Section 3.4.4). Its application to reaction rates is
outlined in the supplementary Section 7.10.3. In what follows, we give a discussion
of the rate kET ≡ kDA for the ET from the donor to the acceptor, which is based on
more simpler arguments.
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Since the vibrational coordinates are described classically, the ET system reduces
to a simple electronic two-level DA system. But the two-level system is characterized
by a time-dependent modulation of the energetic position of the two states due to the
classical vibrational motion. Furthermore, in typical experimental situations, only
an average with respect to a large number of identical DA complexes is of interest.
This average can be replaced by an ensemble average with respect to the thermal
equilibrium distribution function f (q, p) (cf. Section 3.86), which represents the
probability distribution for the vibrational DOFs in the reactant state. Applying
the reasoning that leads to the Golden Rule of quantum mechanics, we arrive at
a formula for the rate similar to Eq. (3.86) (however, the summation with respect
to the quantum levels has been replaced by an integration over all vibrational
coordinates and momenta). Since HD(q, p) and HA(q, p) enter the 𝛿-function part
of the Golden Rule formula, the kinetic energy contributions compensate each
other. The average with respect to the momenta can be carried out leading to the
coordinate distribution function

f (q) = 1


e−UD(q)∕kBT
, (7.61)

and the following rate expression is obtained:

kET = 2𝜋

ℏ ∫
dq f (q)|VDA|2𝛿 (UD(q) − UA(q)

)
. (7.62)

This formula gives the ET rate as the transition rate between the initial electronic
state with energy UD(q) and the final state with energy UA(q) averaged with respect
to all possible configurations of the vibrational coordinates. The averaging is
weighted by the thermal distribution, Eq. (7.61). Therefore, Eq. (7.62) implies that
there is no change of the vibrational kinetic energy during ET. In the supplementary
Section 7.10.3, we give a justification for the present treatment (as well as a possible
extension), and Section 7.4.3 demonstrates that the high-temperature case can be
obtained as a certain limit of a rate expression valid for any temperature.

If parabolic PESs are used, an analytical expression for the ET rate can be obtained.
Let us start with the simple case of a single coordinate q oscillating with frequency
𝜔vib. Note that we also will neglect any dependence of the transfer integral VDA on
this coordinate (Condon-like approximation). We obtain for the argument of the
delta function in Eq. (7.62)

UD(q) − UA(q) = U (0)
D − U (0)

A +
𝜔

2
vib

2

((
q − q(D))2 − (q − q(A))2)

= ΔE − 𝜔
2
vib(q

(D) − q(A))q +
𝜔

2
vib

2
(q(D)2 − q(A)2). (7.63)

Here, we introduced the energetic difference between the donor and acceptor PESs

ΔE = U (0)
D − U (0)

A , (7.64)

which is frequently called the driving force of the ET reaction. The argument of the
delta function in (7.62) is linear with respect to q and vanishes at

q∗ =
ΔE +

𝜔
2
vib

2
(

q(D)2 − q(A)2)
𝜔

2
vib(q

(D) − q(A))
. (7.65)
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Figure 7.18 Potential energy
surfaces for a DA complex in
harmonic approximation.
The definition of the driving force ΔE
and the reorganization energy E

𝜆
are

indicated.

E
ne

rg
y

q(D) q(A) qq*

UD

UA

Eλ

ΔE

This particular value of q defines the crossing point of both PESs (Figure 7.18).
The thermal distribution introduced in Eq. (7.61) reads

f (q) =

√
𝜔

2
vib

2𝜋kBT
exp

{
−

𝜔
2
vib(q − q(D))2

2kBT

}
, (7.66)

and performing the q-integration results in

kET = 2𝜋

ℏ

|VDA|2√
2𝜋kBT𝜔

2
vib

(
q(D) − q(A)

)2 exp

{
−

𝜔
2
vib

(
q∗ − q(D))2
2kBT

}
. (7.67)

The obtained rate formula is of the type of Eq. (7.44). It represents the activation law
for reaching the crossing point q = q∗ between the donor and the acceptor PESs. The
activation energy is given by

Eact =
1
2

𝜔
2
vib
(

q∗ − q(D))2
. (7.68)

This expression can be rewritten to give

Eact =
(ΔE − E

𝜆
)2

4E
𝜆

. (7.69)

The quantity

E
𝜆
=

𝜔
2
vib

2
(

q(A) − q(D))2 (7.70)

is the potential energy of the vibrational coordinate, which corresponds to the
following situation: Initially, the electron is at the donor, and the vibrational
coordinate has the value q = q(D). Then, a sudden change in the electronic state
occurs (see Figure 7.18). In order to reorganize the vibrational coordinate (nuclear
configuration) to the new equilibrium value q(A), the energy E

𝜆
has to be removed

from the system. Therefore, this energy is usually called reorganization energy
(cf. the discussion of the reaction path Hamiltonian in Chapter 2). If the ET reaction
proceeds in a solvent, the change in the electronic charge density in the DA complex
is accompanied by a rearrangement of the solvent polarization field. Thus, the
name polarization energy is also common for E

𝜆
.15)

15) A detailed account on the formulation of nonadiabatic ET in polar solvents can be found in
May and Kühn [5].
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The rate expression that follows upon introducing E
𝜆

is named after R. A. Marcus,
who pioneered the theory of ET reactions starting in the 1950s. It reads

kET = |VDA|2√ 𝜋

ℏ2kBTE
𝜆

exp
{
−
(ΔE − E

𝜆
)2

4E
𝜆
kBT

}
. (7.71)

Before discussing this result in detail, we note that the same expression is valid if
we consider not a single but a large number of vibrational coordinates for the donor
and acceptor PESs as introduced in Eq. (7.25). The only change concerns the reor-
ganization energy, which has to be generalized from Eq. (7.70) to the case of many
vibrational DOFs according to (details can be found in the supplementary Section
7.10.2)16)

E
𝜆
=
∑

𝜉

𝜔
2
𝜉

2

(
q(D)

𝜉
− q(A)

𝜉

)2
. (7.72)

It is the main advantage of the Marcus formula that it allows one to describe the
complex vibrational dynamics accompanying the electronic transition by a small
number of parameters, namely the transfer coupling VDA, the driving force ΔE, and
the reorganization energy E

𝜆
.17) In particular, the introduction of the reorganization

energy reduces the complicated influence of many intra- and intermolecular nuclear
DOFs (or the polarization in the case of a polar solvent) to a single number.

Since the Marcus formula includes only three unknown quantities, a straightfor-
ward fit of experimental ET data often becomes possible, particularly if the temper-
ature dependence of the rate is measured. Usually, one plots log kET versus 1∕T in
the so-called Arrhenius plot. Doing experiments on ET reactions in DA complexes
dissolved in a polar solvent, the reorganization energy can be varied using solvents
with different polarity. A controllable change in ΔE and VDA is also possible altering
the details of the chemical structure of the complex (cf. Figure 7.20).

Equation (7.71) describes the ET reaction proceeding from the donor to the accep-
tor. The rate of the backtransfer from the acceptor to the donor can be easily derived
in the used model of donor and acceptor PESs with identical parabolic shapes. It is
only necessary to interchange the donor and acceptor indices, leading to a change
in the sign of ΔE. We get

kAD = kDA(−ΔE) = e−ΔE∕kBT kDA(ΔE). (7.73)

The ratio of the forward and backward rates is given by exp{ΔE∕kBT}; that is, the
validity of the detailed balance condition is guaranteed.

Let us consider the ET rate in dependence on the driving force ΔE of the reaction
at a given value of VDA and E

𝜆
. The situation already displayed in Figure 7.18 is called

the normal region of ET. Starting in this ET region and increasing ΔE moves q∗ to
the left until the activation energy becomes zero for ΔE = E

𝜆
(Figure 7.19). This is

16) If the shapes of the two coupled PESs differ, that is if the vibrational frequencies become
electronic state dependent, a generalization of Eq. (7.71) can be derived as shown in
Casado-Pascual et al. [6].
17) If the number of vibrational DOFs is macroscopic, the energy difference of the PES minima
has to be replaced by the free energy difference.
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Figure 7.19 The normal region (a), the
activationless case (b), and the inverted
region (c) of ET in a DA complex.
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the activationless case. This regime of ET is observed in the experiment if the rate
becomes independent of temperature. Increasing ΔE further, the activation energy
increases again. This is the so-called inverted region. Looking at Figure 7.19c one may
notice the possible strong overlap of vibrational wave functions corresponding to
the presence of the transferred electron at the donor and the acceptor. Hence, in the
inverted region, nuclear tunneling may become important instead of the thermally
activated transfer studied so far.

ET in the inverted region has been originally proposed by R. A. Marcus in the
1950s, but it could be verified experimentally only in the late 1980s. Figure 7.20
shows how one enters the inverted region by changing systematically the acceptor
compound such that ΔE is increased.

7.4.2 High-temperature Case: Two Independent Sets of Vibrational
Coordinates

In the foregoing section, we applied a model that assumed a common set of
vibrational coordinates q ≡ {q

𝜉
} for both the reactant and the product states. This is

typical for unimolecular reactions. Next, let us consider a bimolecular ET reaction
proceeding in solution where the separate donor and acceptor molecules form an
encounter complex to trigger ET, cf. Figure 7.2. Here, it is more appropriate to use
a separate set of vibrational coordinates qD ≡ {qD𝜉

} for the donor molecule and
qA ≡ {qA𝜉

} for the acceptor molecule as discussed in Section 7.2.2.2. Of course,
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Figure 7.20 ET rate versus driving force of the reaction for a DA complex showing transfer
in the inverted region. A steroid spacer (androstane) links a 4-biphenylyl donor group with
different acceptors (shown below the curve). An excess electron has been attached to
the donor by means of a pulsed electron beam. The complex was dissolved in
methyltetrahydrofuran. The full curve has been computed from Eq. (7.104) using known
parameters for the specific system (Reproduced with permission from Closs and Miller [7]/
American Association for the Advancement of Science).

if solvent contributions become important, the two separate sets of vibrational coor-
dinates have to be supplemented by an additional third set of common coordinates.
The same holds true if coordinates modulating the DA intermolecular distance are
of importance.

Having distinct sets of coordinates for the donor and acceptor requires a separate
description of the initial and final states of the donor and the acceptor. We consider
Scheme (7.5) to be valid; that is, the reactant state is |𝜙D− , 𝜙A⟩ with PESs UD− and
UA, and the product state is |𝜙D, 𝜙A−⟩ with PESs UD and UA− (cf. Figure 7.21 and
Section (7.2.2.2) for the notation).
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Figure 7.21 PES for the case of independent vibrational coordinates of the donor and the
acceptor parts. (a) PES of the negatively charged and neutral donor and (b) the respective
PESs of the acceptor. Related reorganization energies and driving forces (for ℏ𝜔 = 0) are
also shown.
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The ET rate equation (7.62) is easily generalized to the present case and reads (note
that ∫ dqD dqA is a shorthand notation for the multidimensional integration)

k(bimol)
ET = 2𝜋

ℏ

|VDA|2 ∫ dqD dqA fD− (qD)fA(qA)

× 𝛿

([
UD− (qD) + UA(qA)

]
−
[
UD(qD) + UA− (qA)

])
. (7.74)

Since there is a separation into vibrational coordinates belonging to the donor and
the acceptor, the energy conserving delta function in the rate formula can be split up
into a donor part and an acceptor part. This is achieved by introducing an additional
frequency integral according to

𝛿

(
[UD− (qD) + UA(qA)] − [UD(qD) + UA− (qA)]

)
=
∫

dℏ𝜔 𝛿

(
UD− (qD) − ℏ𝜔 − UD(qD)

)
× 𝛿

(
UA(qA) + ℏ𝜔 − UA− (qA)

)
. (7.75)

Let us define the auxiliary functions

d(𝜔) =
∫

dqD fD− (qD) 𝛿

(
UD− (qD) − ℏ𝜔 − UD(qD)

)
(7.76)

and

a(𝜔) =
∫

dqA fA(qA) 𝛿

(
UA(qA) + ℏ𝜔 − U−

A (qA)
)
. (7.77)

Then, the rate follows as a frequency overlap of the two auxiliary functions

k(bimol)
ET = 2𝜋

ℏ

|VDA|2 ∫ dℏ𝜔 d(𝜔)a(𝜔). (7.78)

Inspecting the argument of the delta functions in Eqs. (7.76) and (7.77), one can give
a physically appealing interpretation. The function d(𝜔) can be understood as the
frequency-resolved strength of the detachment process where the excess electron is
removed from the donor. In the same manner, we understand a(𝜔) as the spectrum
for the attachment of the excess electron at the acceptor.18)

Using the results of the preceding section, we are able to derive explicit expressions
for the auxiliary functions. We obtain

d(𝜔) = 1√
4𝜋kBTE(D)

𝜆

exp
⎧⎪⎨⎪⎩−
(
ΔED − E(D)

𝜆

)2

4E(D)
𝜆

kBT

⎫⎪⎬⎪⎭ (7.79)

and

a(𝜔) = 1√
4𝜋kBTE(A)

𝜆

exp
⎧⎪⎨⎪⎩−
(
ΔEA − E(A)

𝜆

)2

4E(A)
𝜆

kBT

⎫⎪⎬⎪⎭ . (7.80)

18) We will encounter such a type of rate formula again in Chapter 9 when studying the transfer of
intramolecular excitation energy.
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The two newly introduced driving forces read

ΔED = U (0)
D− − U (0)

D − ℏ𝜔 (7.81)

and

ΔEA = U (0)
A + ℏ𝜔 − U (0)

A− . (7.82)

The reorganization energies are obtained as

E(D)
𝜆

=
∑

𝜉

𝜔
2
𝜉

2

(
q(D−)

𝜉
− q(D)

𝜉

)2
(7.83)

and

E(A)
𝜆

=
∑

𝜉

𝜔
2
𝜉

2

(
q(A)

𝜉
− q(A−)

𝜉

)2
. (7.84)

The frequency integration in the rate formula (7.78) can be performed straightfor-
wardly. Again, one obtains the Marcus-type expression equation (7.71) but with the
driving force given by the electronic energy difference of the reactant and the product
states:

ΔE = U (0)
D− − U (0)

D + U (0)
A − U (0)

A− . (7.85)

The reorganization energy follows as the sum of the energies of the donor and the
acceptor:

E
𝜆
= E(D)

𝜆
+ E(A)

𝜆
. (7.86)

7.4.3 Low-temperature Case: Nuclear Tunneling

We now return to the case of a common set of vibrational coordinates for the donor
and acceptor. Additionally, we suppose that kBT < ℏ𝜔

𝜉
holds for all vibrational

DOFs participating in the ET reaction. Hence, a quantum mechanical description
becomes necessary. In this situation, the appropriate DA Hamiltonian is given by
Eq. (7.39) (neglecting any bridge units).

As in the case of the classical description of the nuclear motion discussed so far,
we consider ET reactions that proceed in an ensemble of identical DA complexes.
The initial state is characterized by the vibrational energy levels EDM , and the levels
EAN belong to the final acceptor states. How to obtain the rate of the total probability
transfer from the donor state to the acceptor state has been discussed in Section 3.3
and in another context in Section 3.4.5. Again, we remind the reader that the time
𝜏rel characterizing vibrational relaxation in the donor or the acceptor state has to
be much shorter than all other characteristic times (tel and tvib, see Eqs. (7.41) and
(7.42), cf. discussion at the end of Section 7.3). Adapting these earlier results to the
present situation, we obtain the rate of nonadiabatic ET as

kET = 2𝜋

ℏ

∑
M,N

fDM|VDM,AN |2𝛿(EDM − EAN ). (7.87)
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This Golden Rule formula describes the coupling of the initial manifold of states
with that of the final states via a certain interaction matrix element. A thermal
averaging of all initial vibrational states is carried out, and the rate contains
the sum with respect to all final vibrational states. Neglecting the dependence
of the electronic transfer integrals VDA on the nuclear DOFs, VDM,AN splits up
into the purely electronic transfer coupling VDA and the Franck–Condon overlap
integral ⟨𝜒DM|𝜒AN⟩.

As stated in Section 6.2, there is a formal similarity between the nonadiabatic
ET from the donor to the acceptor and the optically induced electronic transition
from the ground state to a particular excited electronic state of some molecule.
This analogy suggests the introduction of the combined thermally averaged and
Franck–Condon-weighted density of states, , such that for the present case the ET
rate becomes

kET = 2𝜋

ℏ

|VDA|2(ΔE∕ℏ). (7.88)

The density of states reads

(𝜔) =
∑
M,N

fDM|⟨𝜒DM|𝜒AN⟩|2𝛿
(

ℏ𝜔 +
∑

𝜉

ℏ𝜔
𝜉
(M

𝜉
− N

𝜉
)

)
. (7.89)

It has to be taken at the driving forceΔE introduced in Eq. (7.71) to get kET. Following
the considerations in Section 6.2.3, we can rewrite  via a time integral as

(ΔE∕ℏ) = 1
2𝜋ℏ

e−G(0)
∫

dt eiΔEt∕ℏ+G(t)
, (7.90)

with19)

G(t) =
∑

𝜉

(
gD(𝜉) − gA(𝜉)

)2 (e−i𝜔
𝜉
t(1 + n(𝜔

𝜉
)) + ei𝜔

𝜉
tn(𝜔

𝜉
)
)
. (7.91)

The function G(t) was introduced in Section 6.2.3. It is of a universal character and
appears whenever transitions among different electronic levels are accompanied by
the rearrangement of nuclear coordinates that have been mapped on a set of inde-
pendent harmonic oscillators (normal mode vibrations).

If the number of different vibrational modes becomes large, it is advisable to intro-
duce a special type of spectral density responsible for the ET reaction in a DA complex
(different types of spectral densities were already discussed in Sections 3.7.3 and
6.2.4). For the present application, we write in analogy to the case of nonadiabatic
transitions (cf. Eq. (6.36))

JDA(𝜔) =
∑

𝜉

(
gD(𝜉) − gA(𝜉)

)2
𝛿(𝜔 − 𝜔

𝜉
). (7.92)

If we write 𝜅
𝜉
= (gD(𝜉) − gA(𝜉))2 ≡ 𝜅(𝜔

𝜉
), we get the more transparent form of the

spectral density JDA(𝜔) = 𝜅(𝜔) (𝜔). Here, we used the oscillator DOS defined as
 (𝜔) =

∑
𝜉
𝛿(𝜔 − 𝜔

𝜉
). This reminds us one of the fact that the spectral density can

19) Here, gm(𝜉), m = D, A are dimensionless displacements of the vibrational coordinates q
𝜉

and
have been defined in Eq. (2.66).
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be interpreted as the density of oscillator states weighted by the electron–vibrational
coupling constant (cf. Section 3.7.3).

The reorganization energy equation (7.70) can be expressed via the spectral
density as

∞

∫
0

d𝜔 𝜔JDA(𝜔) =
∑

𝜉

𝜔
𝜉

(
gD(𝜉) − gA(𝜉)

)2 =
E

𝜆

ℏ

. (7.93)

The introduction of the spectral density enables us to write (see Eq. (6.37))

G(t) =

∞

∫
0

d𝜔

(
e−i𝜔t(1 + n(𝜔)) + ei𝜔tn(𝜔)

)
JDA(𝜔). (7.94)

At this point, it is useful to clarify what approximations will lead to the rate for-
mula of the high-temperature limit derived in Section 7.4.1. To this end, we note
that irrespective of the actual frequency dependence, the spectral density rapidly
goes to zero beyond a certain cut-off frequency 𝜔c. Hence, in the high-temperature
limit, we have kBT ≫ ℏ𝜔c. This enables us to introduce for all frequencies less than
𝜔c the approximation 1 + 2n(𝜔) ≈ 2kBT∕ℏ𝜔 ≫ 1.

To utilize this inequality next, we separate the function G(t) into its real and
imaginary parts:

G(t) =

∞

∫
0

d𝜔 cos(𝜔t) (1 + 2n(𝜔)) JDA(𝜔) − i

∞

∫
0

d𝜔 sin(𝜔t)JDA(𝜔). (7.95)

If 𝜔c|t|≪ 𝜋∕2, the term exp{G(t) − G(0)} in Eq. (7.90) rapidly approaches zero
since the expression cos(𝜔t) − 1, which appears in the exponent, is negative.
But for 𝜔c|t| > 𝜋∕2, the different contributions to the time integral may interfere
destructively. Consequently, it is possible to approximate G(t) in the exponent by
the leading expansion terms of the sine and cosine functions. (This is known as the
short-time expansion and identical with the slow fluctuation limit introduced in
Section 6.2.4.) Using the definition equation (7.92) of the spectral density gives

G(t) ≈ −

∞

∫
0

d𝜔
(𝜔t)2

2
2

kBT
ℏ𝜔

JDA(𝜔) − i

∞

∫
0

d𝜔 𝜔tJDA(𝜔). (7.96)

Both frequency integrals define the reorganization energy according to Eq. (7.93),
and the combined DOS determining the ET rate follows as

(ΔE∕ℏ) =

+∞

∫
−∞

dt
2𝜋ℏ

exp
{

i
(ΔE − E

𝜆
)t

ℏ

}
exp
{
−

kBTE
𝜆
t2

ℏ2

}
. (7.97)

The remaining integral is easily calculated as

(ΔE∕ℏ) = 1√
4𝜋kBTE

𝜆

exp
{
−
(ΔE − E

𝜆
)2

4E
𝜆
kBT

}
. (7.98)
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If inserted into expression (7.88), the classical (high-temperature) limit of the con-
sequent quantum description of nonadiabatic ET reactions reproduces the Marcus
formula, Eq. (7.71).

In principle, the concept of the spectral density enables us to describe nonadiabatic
ET also for vibrational modes differing strongly in their frequencies. For example, it
is typical for the ET in dissolved DA complexes that low-frequency solvent modes as
well as high-frequency intramolecular vibrations are involved in the ET reaction.
Therefore, one has to split up the spectral density into a solvent part Jsol(𝜔) and
an intramolecular part Jintra(𝜔). For simplicity, we assume that Jsol(𝜔) is different
from zero only in the low-frequency region (the cut-off frequency for collective sol-
vent modes typically amounts to values less than 100 cm−1). This makes a classical
description of the solvent modes possible. Further, it is reasonable to suppose that
there is no overlap with Jintra(𝜔). The ET rate expressed in terms of these spectral
densities will be given in Section 7.4.5. First, however, in the following section we
introduce a model for this situation that is more common in the literature.

7.4.4 The Mixed Quantum–Classical Case

Let us consider the case where the ET is coupled to high-frequency intramolecular
(quantum) modes and low-frequency (classical) modes, for example those of a
solvent. Then, the high-frequency modes are conveniently taken into account using
the electron–vibrational representation of the Hamiltonian given in Eq. (7.39).
The solvent modes, on the other hand, are described using classical mechanics.
Assuming a decoupling of both types of DOFs leads us to a combination of the
Hamiltonian equation (7.27) (where the vibrational Hamiltonian Hm is interpreted
as a classical Hamiltonian function) with the Hamiltonian equation (7.39) given
in the electron–vibrational representation. The respective vibrational energies E

𝜇

are supplemented by the vibrational Hamiltonian function Hm(q) of low-frequency
normal modes q ≡ {q

𝜉
}. Accordingly, the complete DA Hamiltonian can be

written as

HDA =
∑
𝜇𝜈

(
𝛿

𝜇𝜈

(
E

𝜇
+ Hm(q)

)
+ (1 − 𝛿mn)V𝜇𝜈

) |𝜇⟩⟨𝜈|. (7.99)

The PESs UD(q) and UA(q) related to HD and HA, respectively, are defined as in
Eq. (7.25) but with U (0)

m = 0. A more general expression would be obtained if the
PESs, and thus the related Hamilton function, differed for different vibrational states|𝜒mM⟩. But we assume that there is no considerable rearrangement of the solvent if
the vibrational state of the intramolecular modes changes.

Using this model one can generalize the ET rate, Eq. (7.62), to the case where tran-
sitions from a manifold of donor states |𝜑D⟩|𝜒DM⟩ to many acceptor states |𝜑A⟩|𝜒AN⟩
are included. The ET rate for this mixed case follows as

kET = 2𝜋

ℏ

∑
M,N ∫

dq fDMfD(q)|VDM,AN |2𝛿 (EDM + UD(q) − EAN − UA(q)
)
.

(7.100)
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Here, fDM is the quantum mechanical distribution for the vibrational states at the
donor. The rate can be determined similarly as in Section 7.4.1, leading to the fol-
lowing multichannel generalization of the Marcus formula (7.71):

kET =
∑
M,N

fDM kDM→AN , (7.101)

with

kDM→AN =
√

𝜋

ℏ
2kBTE

𝜆

|VDM,AN |2 exp

{
−
(ΔEDM,AN − E

𝜆
)2

4E
𝜆
kBT

}
. (7.102)

Each transfer channel from the initial vibrational level EDM to the final level EAN
contributes its own ET rate kDM→AN . The reorganization energy is identical with that
in Eq. (7.70), but the driving forces appear in the generalized form

ΔEDM,AN = EDM − EAN , (7.103)

which accounts for the different initial and final states of the high-frequency mode.
The rate expression simplifies if we note that usually the energy of the

high-frequency vibrational quanta exceeds the thermal energy even at room
temperature. Therefore, only the vibrational ground state of this mode is occupied
in the reactant state. We will concentrate on a single high-frequency normal mode,
that is EAN = EA + ℏ𝜔intra(N + 1

2
) (Figure 7.22), and get the rate as

kET =
√

𝜋

ℏ
2kBTE

𝜆

|VDA|2 ∞∑
N=0
|⟨𝜒D0|𝜒AN⟩|2 exp

{
−
(ΔE − ℏ𝜔intraN − E

𝜆
)2

4E
𝜆
kBT

}
.

(7.104)

Here, the reference driving force ΔE ≡ ED0 − EA0 has been introduced; its actual
value is reduced by ℏ𝜔intraN. Often, Eq. (7.104) for the ET rate is written using a
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Figure 7.22 PESs for the ET in the case of a single high-frequency intramolecular vibration
and a low-frequency solvent coordinate q. According to the assumption ℏ𝜔intra ≫ kBT ,
a single solvent coordinate PES EDM=0 + UD(q) has been drawn for the reactant state.
The various product state solvent coordinate PESs EAN + UA(q) (EAN = EA + ℏ𝜔intraN,
N = 0,… , 4) which can be reached in the course of the reaction are also shown.
The product state PES with N = 0 corresponds to the ET in the inverted region.
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more explicit expression for the Franck–Condon factor |⟨𝜒D0|𝜒AN⟩|2. Making use of
the derivations given in Section 2.5.2 (cf. Eq. (2.79)) and replacing the shift gintra of

the PES of the intramolecular vibration by
√

E(intra)
𝜆

∕ℏ𝜔intra, one easily obtains

|⟨𝜒D0|𝜒AN⟩|2 = 1
N!

(
E(intra)

𝜆

ℏ𝜔intra

)N

exp

{
−

E(intra)
𝜆

ℏ𝜔intra

}
. (7.105)

Figure 7.22 shows the various PESs involved in the ET reaction in the mixed
quantum–classical case. The product state PES with N = 0 corresponds to the ET in
the inverted region. But the character of the ET changes to the normal region with
increasing vibrational quantum number N (the PES with N = 1 nearly corresponds
to the activationless case). The presence of the intramolecular vibrations opens
additional channels for the ET reaction. Since the N = 0 state refers to the inverted
region, the PES with N > 0 may result in a reduction in the activation energy for
the solvent coordinate, and even the activationless case contributes to the total rate.
Assuming that already the N = 0 PES is in the normal region, the activation energy
for the solvent coordinate increases for those PESs with N > 0. Therefore, the rate
will be dominated by the transition into the N = 0 state of the acceptor.

7.4.5 Description of the Mixed Quantum–Classical Case by a Spectral
Density

Next, we make use of the spectral density introduced in Eq. (7.92) to calculate the
ET rate, Eq. (7.88). Specifically, we show how one can calculate the ET rate derived
in the foregoing section for the presence of a single high-frequency intramolecular
vibration and low-frequency solvent vibrations. We set

JDA(𝜔) = Jintra(𝜔) + Jsol(𝜔). (7.106)

The high-frequency contribution reads

Jintra(𝜔) = jintra𝛿(𝜔 − 𝜔intra). (7.107)

The prefactor is given by jintra = E(intra)
𝜆

∕ℏ𝜔intra, that is as the ratio of the related reor-
ganization energy and the energy of a vibrational quantum, which can be easily
verified using Eq. (7.93). A widely used form of a solvent spectral density is given
by the Debye type (with Debye frequency 𝜔D, cf. also Section 6.2.4)

Jsol(𝜔) = Θ(𝜔) jsol
1
𝜔

1
𝜔

2 + 𝜔
2
D

. (7.108)

Here, we can identify jsol = 2E(sol)
𝜆

𝜔D∕𝜋ℏ.
According to the partitioning of the spectral density, we can split up the function

G(t), Eq. (7.94), into the solvent and intramolecular contribution Gsol(t) and Gintra(t),
respectively. Using for Gintra(t) Eq. (7.94) and assuming that ℏ𝜔intra ≫ kBT, one can
write Gintra(t) ≈ e−i𝜔intratjintra. We insert Gsol(t) and Gintra(t) into Eq. (7.90) and after-
ward expand the expression exp{Gintra(t)} with respect to exp{−i𝜔intrat}. It yields

(ΔE∕ℏ) = e−jintra

∞∑
N=0

jN
intra

N!
sol(ΔE∕ℏ − N𝜔intra). (7.109)
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The solvent contribution to the DOS is similar to Eq. (7.90) but with ΔE∕ℏ − N𝜔intra
instead of ΔE∕ℏ, reflecting the presence of the high-frequency vibrational mode.

If we take sol in the slow fluctuation limit, Eq. (6.55) or Eq. (7.98), we can write

(note that Tfluc = ℏ∕
√

2kBTE(sol)
𝜆

in Eq. (6.55))

sol(𝜔) =
1√

4𝜋kBTE(sol)
𝜆

exp

{
− (ℏ𝜔)2

4kBTE(sol)
𝜆

}
. (7.110)

Since jintra = E(intra)
𝜆

∕ℏ𝜔intra, we have reproduced Eq. (7.104).

7.5 Bridge-Mediated Electron Transfer

In many cases the simple picture of a direct transfer of an electron from the donor
site to the acceptor site does not apply. The reaction may proceed across bridging
units between the donor and the acceptor (cf. Section 7.1). In cases where the donor
and the acceptor are connected by a rather rigid polymer strand, the bridging
units can be considered as a linear arrangement of identical sites; an example is
given in Figure 7.23. A less homogeneous bridge structure is encountered in the
ET system of the bacterial photosynthetic reaction center shown in Figure 7.3.
Considering ET in proteins, the bridge becomes a three-dimensional network
of LUMOs (of the amino acid residues) connecting the donor and the acceptor.

Bridge-mediated ET may take place via two different mechanisms: the superex-
change ET or the sequential (hopping) transfer (cf. Figure 7.8). In the first
case, the bridge units support a delocalization of the donor state wave function
(Figure 7.24a). This delocalization will essentially modify the (electronic) coupling
between the donor and the acceptor, which can be expressed by introducing an
effective DA transfer integral. Since an extended electronic wave function is formed,
a definite phase relation between the electronic states of the different bridge units
as well as the bridge and the donor exists. According to this picture, superexchange
ET is intimately connected to the presence of electronic coherences. Due to the
off-resonance conditions between the donor and the bridge levels, small energetic
fluctuations of the levels due to a weak coupling to vibrational modes should have
a minor effect. However, a strong vibrational modulation of the energy levels of the
bridge units, or of the transfer coupling between them, might prevent the formation
of a delocalized electronic wave function.

A delocalized wave function, and thus coherences in the ET, can also be found if
the bridge states are in near resonance to the donor and acceptor levels as is the case
in Figure 7.8b. But this requires that the time scale for electronic motion is compa-
rable to or even faster than the characteristic vibrational relaxation times. As men-
tioned above, the vibrational modulation of the electronic states and their mutual
coupling can become predominant such that an extended wave function cannot be
formed. The electron jumps between bridge levels, and one has a sequential ET,
as shown in Figure 7.24b. We expect that in the case of fast vibrational relaxation,
𝜏rel ≪ tel, this type of ET can be described by a set of rate equations (cf. Section 3.4.5),
which includes various ET rates connecting different bridging sites (Section 7.4).



7.5 Bridge-Mediated Electron Transfer 337

10 20 30 40
1010

1011

1012

R
at

e 
(s

–1
)

RDA (Å)

1

2

3
4

5

Wire = 1.

Wire N

O O

OO

N C8H17

Donor Acceptor

R = 2-ethylhexyl

2.
(a)

(b)

3.

4.

5.

RO

RO

RO

OR

OR

OR

Figure 7.23 Bridge-mediated ET using a molecular wire of p-phenylenevinylene
oligomers. The donor is given by tetracene, and the acceptor by pyromellitimide. The five
different types of wires together with the donor and acceptor are shown in (a) (donor
acceptor distances RDA for wire 1 up to 5 are 11.1, 17.7, 24.3, 30.9, and 38.0 Å). The distance
dependence of the transfer rate is shown in (b) (Reproduced with permission from Davis
et al. [8]/Springer Nature).

Figure 7.24 Bridge-mediated ET
between a donor and an acceptor
level. (a) A scheme of the
superexchange ET where the initial
state wave function (shaded area)
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the sequential ET (b), the electronic
wave function is localized on the
various sites during the transfer.
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In the subsequent discussion of bridge-mediated ET, we concentrate on the
superexchange mechanism. Usually, the transfer coupling between the various
units is not so strong, and the ET takes place in the nonadiabatic regime. Since
superexchange ET is of the through-bond type (cf. Section 7.1), the incorporation
of intermediate units increases the rate compared to the case where no bridging
units are present. In this latter through-space type of reactions, the ET rate is
proportional to the square of the transfer integral and therefore determined by the
tails of the overlapping donor and acceptor wave functions (cf. Eq. (7.26)). It will
be the aim of the following consideration to understand how the intermediate
bridge molecules influence the ET rate.

The appropriate Hamiltonian for the present case has already been introduced
in Eq. (7.27). In order to have a clear identification of the donor and acceptor levels,
we set |𝜑D⟩ = |D⟩ as well as |𝜑A⟩ = |A⟩ and get

HDBA = HD|D⟩⟨D| +∑
m

(
VDm|D⟩⟨𝜑m| + h.c.

)
+HA|A⟩⟨A| +∑

m

(
VAm|A⟩⟨𝜑m| + h.c.

)
+ Hbridge. (7.111)

The bridge Hamiltonian Hbridge is identical to expression (7.27) with the summa-
tion restricted to the bridge sites, m = 1,… , NB. Note that in the most general way,
the model should include that the donor and acceptor levels may couple to every
level of the bridge via the transfer integrals VDm and VAm. However, because of its
smallness, a direct donor–acceptor coupling is ignored.

7.5.1 The Superexchange Mechanism

To discuss the way a molecular bridge mediates the ET from the donor to the
acceptor, we first consider the case of a single bridging unit. For such a situation,
the bridge Hamiltonian is written as Hbridge = HB|B⟩⟨B|. We set |B⟩ ≡ |𝜑1⟩, and the
related vibrational Hamiltonian has been denoted as HB. Furthermore, two transfer
integrals, VDB and VAB, appear that couple the bridge to the donor and the acceptor,
respectively.

Let us first derive the bridge-mediated effective transfer integral without the con-
sideration of vibrational contributions. The delocalization of the donor wave func-
tion induced by the bridge can be estimated by perturbation theory. The lowest order
correction to the donor state |D⟩ following from the coupling to the bridge is given by

|ΔD⟩ = V∗
DB

ED − EB
|B⟩. (7.112)

In the nonadiabatic scheme of ET (cf. the qualitative discussion in Section 7.3), the
rate is calculated via the Golden Rule formula. According to Section 3.3, we need the
square of the effective coupling matrix element V (eff)

DA between the modified donor
state20) |D⟩ + |ΔD⟩ and the acceptor state |A⟩. The coupling is obtained as

V (eff)
DA =

(⟨D| + VDB

ED − EB
⟨B|) × VBA|B⟩⟨A| × |A⟩ = VDBVBA

ED − EB
. (7.113)

20) Note that the proper normalization of the state |D⟩ + |ΔD⟩ can be neglected since it is of
higher order in the respective transfer integrals.
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The formula holds as long as |ED − EB| is nonzero and larger than
√|VDBVBA|. This

simple calculation can easily be extended by incorporating the vibrational levels of
the DBA system. Now, the correction of the electron vibrational donor state |D⟩|𝜒DM⟩
follows as

|ΔD⟩|𝜒DM⟩ =∑
K

V∗
DB⟨𝜒DM|𝜒BK⟩∗
EDM − EBK

|B⟩|𝜒BK⟩. (7.114)

As in Section 7.2.3, we assumed that the coupling matrix elements are independent
of the vibrational coordinates. Additionally, we introduced the electron–vibrational
energies, Eq. (7.37). Then, the effective DA coupling, Eq. (7.113), is generalized to
the following expression:

V (eff)
DM,AN =

(⟨D|⟨𝜒DM| +∑
K

VDB⟨𝜒DM|𝜒BK⟩
EDM − EBK

⟨B|⟨𝜒BK|
)

VBA|B⟩⟨A| × |A⟩|𝜒AN⟩
=
∑

K

VDBVBA⟨𝜒DM|𝜒BK⟩⟨𝜒BK|𝜒AN⟩
EDM − EBK

. (7.115)

Since it directly connects the manifold of vibrational states of the donor with that
of the acceptor, we can introduce it into formula (7.87) to get the superexchange ET
rate as

k(sx)
ET = 2𝜋

ℏ

∑
M,N

fDM ∣ V (eff)
DM,AN ∣

2
𝛿(EDM − EAN ). (7.116)

The rate expression itself has been discussed at length in Section 7.4.3. What is
mainly of interest here is the structure of the effective coupling matrix element,
Eq. (7.115). Again, the energy denominator should not become equal to zero and
should be larger than the square root of the numerator to justify the perturbation
theory. However, the inclusion of vibrational levels may lead to the case EDM = EBK .
But if the electronic levels ED and EA are energetically rather different, this case leads
to very small vibrational overlap integrals ⟨𝜒DM|𝜒BK⟩ and ⟨𝜒BK|𝜒AN⟩, and the small-
ness of V (eff)

DM,AN is guaranteed. Following this reasoning, we may conclude that only
terms with EBK ≫ EDM contribute to V (eff)

DM,AN . Hence, it often suffices to replace the
denominator by the pure electronic energy difference ED − EB. The completeness
relation for the bridge vibrational states finally results in the effective coupling, Eq.
(7.113), and we may set in Eq. (7.116) V (eff)

DM,AN ≈ V (eff)
DA ⟨𝜒DM|𝜒AN⟩ to get

k(sx)
ET = 2𝜋

ℏ

|V (eff)
DA |2(ΔEDA∕ℏ). (7.117)

The combined density of states  depends on the driving force ΔEDA of
the donor–acceptor transition (as well as the vibrational overlap integrals⟨𝜒DM|𝜒AN⟩) and has been introduced in Eq. (7.89). The expressions for the
superexchange-mediated effective donor–acceptor coupling are widely used in the
literature. But the derivation given so far reveals the shortcomings of the approach.
First, it is only valid if the bridge levels are energetically well separated from the
donor as well as the acceptor levels. And second, any vibrational relaxation of
the transferred electron in the bridge is neglected. Therefore, it is instructive to
embed the description of superexchange ET in a more general treatment. This is
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based on a consequent perturbation expansion with respect to the transfer integral
and will be outlined in Section 7.6. First, however, we derive expressions for the
superexchange ET rate if the bridge is of a more complex structure than discussed
so far.

7.5.2 Electron Transfer Through Arbitrary Large Bridges

Having discussed bridge- mediated ET for the simple case where the whole bridge is
given by a single-electronic level, the more general case of a larger number of bridge
units will be described now (Figure 7.25). There are two possibilities to deal with
this case. First, one can extend the perturbational scheme of the foregoing section.
This would be possible if the transfer couplings Vmn among the bridge levels are
sufficiently small. However, one may also be confronted with the situation that all
these couplings are large (although the coupling of the bridge levels to the donor
and the acceptor remains small to justify the description of the ET as a nonadia-
batic process). In this latter case, one may change from the description of the bridge
levels by localized states (diabatic states) to a description by delocalized adiabatic
states.

7.5.2.1 Case of Small Intrabridge Transfer Integrals
For the sake of clarity, let us consider a linear arrangement of bridge molecules with
nearest-neighbor transfer coupling only. This represents a rather realistic model of
a molecular bridge realized by a polymer strand (Figure 7.23). Moreover, we will
not take into account vibrational levels when determining the effective transfer
coupling; that is, we follow the arguments of the foregoing section, which lead
us to a description in terms of electronic levels and electronic transfer integrals
only. Then, the superexchange mechanism of ET through the bridge is described as
follows. We first assume that the state |D…NB − 1⟩ of the DBA system is known,
where the electron is delocalized across all bridge units except the last one. Then, an
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Figure 7.25 Bridge-mediated ET between
a donor and an acceptor level.
(a) ET through the bridge is realized by the
individual levels of the bridge units;
(b) ET is mediated by the band Ea of bridge
eigenstates.
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effective DA coupling V (eff)
DA is obtained in a way demonstrated in the forgoing

section since the last bridge level remains as the single intermediate level:

V (eff)
DA =

V (eff)
D,NB

VNB,A

ED − ENB

. (7.118)

The formula contains the effective coupling V (eff)
D,NB

between the state |D…NB − 1⟩,
where the electron is delocalized up to the bridge unit NB − 1, and the last unit NB of
the bridge. To determine V (eff)

D,NB
, we introduce the similar effective coupling V (eff)

D,NB−1,
which now describes the interaction between the state |D…NB − 2⟩, where the elec-
tron is delocalized up to the bridge unit NB − 2, and the bridge unit NB − 1. We obtain

V (eff)
D,NB

=
V (eff)

D,NB−1VNB−1,NB

ED − ENB−1
. (7.119)

In the same way, we may compute V (eff)
D,NB−1. If this procedure is repeated until the

donor level is reached, the effective donor–acceptor coupling follows as

V (eff)
DA =

VD1

ED − E1

V12

ED − E2
...

VNB−1,NB

ED − ENB

VNB,A. (7.120)

Introducing this expression into Eq. (7.117), we obtain the superexchange ET rate for
cases where the transfer coupling within the bridge is weak enough to be handled
by perturbation theory.

To further characterize this special situation, we compute the dependence of k(sx)
ET

on the number NB of bridge units. We assume identical bridge units characterized
by the energy EB and the nearest-neighbor coupling VB (cf. Figure 7.8). The effec-
tive coupling, Eq. (7.118), follows as V (eff)

DA (NB) = V (eff)
DA (1) 𝜁

NB−1. Here, we introduced
V (eff)

DA (1) = VD1VNBA∕(ED − EB), which can be interpreted as the effective superex-
change coupling for the case of a single bridge unit. The parameter 𝜁 =VB∕(ED − EB)
describes the decrease in the coupling with increasing number of bridge units. The
decrease in the total rate follows an exponential law: k(sx)

ET (NB) ∝ 𝜁
2(NB−1).

7.5.2.2 Case of Large Intrabridge Transfer Integrals
If the intrabridge transfer integrals are large, the situation is best described by intro-
ducing the eigenstates of the bridge Hamiltonian. Again, we assume that there is a
large energetic distance of all bridge levels to the donor as well as to acceptor level,
and we also neglect any vibrational levels of the bridge. Then, the bridge eigenstates
𝜙a and eigenenergies Ea (cf. Figure 7.25) can be obtained by diagonalization of the
electronic part of the bridge Hamiltonian. The eigenstates are written as an expan-
sion with respect to the localized bridge states: |𝜙a⟩ = ∑mca(m)|𝜑m⟩. In general, the
coefficients ca(m) have to be determined numerically; for certain model bridge sys-
tems, an analytical solution might exist as well (see below). Expressed in the basis
of its eigenstates, the electronic part of the bridge Hamiltonian becomes

H(bridge)
el =

∑
a

Ea|𝜙a⟩⟨𝜙a|. (7.121)
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Since the intersite couplings are transformed to (X = D, A)

VXa =
∑

m
VXmca(m), (7.122)

Equation (7.27) can be written as

H(DBA)
el =

∑
X=D,A

{
HX |X⟩⟨X| +∑

a

(
VXa|X⟩⟨𝜙a| + h.c.

)}
+ H(bridge)

el . (7.123)

Now, we are in the position to derive the bridge-mediated effective transfer integral.
Although there is not a single intermediate bridge level as discussed in Section 7.5.1,
but a whole set of levels labeled by a, we can follow the reasoning of this section since
all bridge levels couple independently to the donor and the acceptor. In generalizing
Eq. (7.113), the effective DA coupling follows as

V (eff)
DA =

∑
a

VDaVaA

ED − Ea
. (7.124)

If inserted into Eq. (7.117), the superexchange ET rate in the case of a strong trans-
fer coupling in the bridge is obtained. Since the effective coupling enters the rate
as |V (eff)

DA |2, mixed expressions appear where the donor and the acceptor couple to
different bridge states.21)

To compute the bridge-length dependence of the ET rate, we consider the
model of a regular bridge with common energy levels EB and nearest-neighbor
couplings VB. The bridge energies Ea read EB + 2VB cos(a) where the quantum
number is a = 𝜋j∕(NB + 1), with j = 1,… , NB (cf. Section 2.8.3). The expansion
coefficients ca(m) follow as

√
2∕(NB + 1) sin(am). We obtain the coupling matrix

elements, Eq. (7.122), between the donor and the various bridge levels as VDa =
VD1
√

2∕(NB + 1) × sin(𝜋j∕[NB + 1]) and between the bridge levels and the acceptor
as VAa = VANB

√
2∕(NB + 1) × sin(𝜋jNB∕[NB + 1]). Then, the bridge-mediated

effective DA coupling, Eq. (7.124), can be calculated:

V (eff)
DA (NB) = V (eff)

DA (1)

(
1 −
√

1 − 4𝜁2

2𝜁

)NB−1

. (7.125)

The effective superexchange coupling in the case of a single bridge unit V (eff)
DA (1) =

VD1VNBA ∕(ED − EB) and the ratio 𝜁 = VB∕(ED − EB) have been already introduced
in relation to Eq. (7.120). (In the present case of large intrabridge transfer integrals,
the latter quantity may reach values of 0.1 and larger, whereas in the case of weak
intrabridge transfer integrals, 𝜁 remains a small quantity.)

To compare bridge-mediated ET with the direct through-space transfer, let
us recall that the through-space ET rate would become proportional to |V (0)

DA|2
exp{−2𝛽xDA} (cf. Eq. (7.26), xDA denotes the DA distance, and V (0)

DA is a reference
value of VDA taken at a reference distance). In the same way, we may write V (eff)

DA (1) =
V (0,eff)

DA (1) exp(−2𝛽xD1) exp(−2𝛽xNBA). The distance between the donor and the left

21) Particular dephasing mechanisms may remove the relevance of mixed expressions. Then,
every bridge level contributes independently to the rate.
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bridge terminal is given by xD1, and xNBA denotes the distance of the right bridge
terminal to the acceptor (see also Figure 7.8). For simplicity, we assumed all transfer
integrals to vary with the same constant 𝛽. The expression V (0,eff)

DA (1) is the reference
value of the effective coupling. The superexchange mechanism can increase the
ET rate drastically. Compared with the through-space ET rate, the small factor
exp{−2𝛽xB} (xB = xDA − xD1 − xNBA is the bridge length) has been replaced by
∣ V (0,eff)

DA (1)∣2 multiplied by 𝜁
NB−1 (case of weak intrabridge transfer integrals) or

multiplied by the square of the second factor on the right-hand side of Eq. (7.125).
In both cases, values larger than exp{−2𝛽xB} ≈ 10−9 are possible (𝛽 ≈ 1 Å −1 and
xB = 20 Å).

7.6 Nonequilibrium Quantum Statistical Description
of Electron Transfer

In this section, we generalize the treatment of ET reactions presented so far.
The approach will enable us to fully include the vibrational DOFs into the
bridge-mediated ET as well as to go beyond the nonadiabatic limit. To achieve
this goal, a nonequilibrium quantum statistical description will be utilized as
introduced in Section 3.14. There, the ubiquitous system–reservoir Hamiltonian has
been rearranged in a manner that is most suitable for the following considerations.
First, it has been expanded with respect to the eigenstates of the system part.
Following from this, the resulting matrix elements of the system–reservoir coupling
separate into diagonal and off-diagonal elements. The former enter the zeroth-order
Hamiltonian H0, whereas the latter form the perturbation V̂ . Then, applying a
particular projection operator approach, one can derive rate equations for the
populations of the system eigenstates containing rate expressions that are given as
a complete perturbational expansion with respect to V̂ .

It is already obvious from this short explanation that such an approach will be
capable of providing a unified description of ET reactions. If we identify the system
states of the general approach of Section 3.14 with the diabatic electronic states |𝜑m⟩
and the vibrational DOFs of the ET system with the reservoir coordinates of Section
3.14, we may derive general expressions for the ET rates km→n. These describe all
transitions in the system including nonadiabatic processes as well as processes that
are of higher order in the interstate couplings Vmn, among them the superexchange
ET rates.

To establish the relation with the approach of Section 3.14, we separate the ET
Hamiltonian, Eq. (7.27), according to HDBA = H0 + V̂ with

H0 =
∑

m
Hm(q)|𝜑m >< 𝜑m| (7.126)

and (remember the convention Vmm = 0)

V̂ =
∑
m,n

Vmn|𝜑m⟩⟨𝜑n|. (7.127)

As shown in Section 3.14, the approach has to be based on the general projection
superoperator  , Eq. (3.457), here, however, defined by the diabatic states |𝜑m⟩
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instead of the states |a⟩.22) The formalism leads to rate equations for the diabatic
state populations Pm and, simultaneously, to transition rates km→n. A power expan-
sion of the latter with respect to the interstate couplings Vmn can be deduced from
the recursion relation, Eq. (3.503). The following section should give the reader an
impression of the usefulness of this technique.

7.6.1 Unified Description of Electron Transfer in
a Donor–Bridge–Acceptor System

As explained in Section 7.5, the determination of rates for bridge-mediated ET
requires the consideration of higher order contributions with respect to the inter-
state coupling. Here, we may account for the simultaneous influence of the ordinary
nonadiabatic transition rates between the neighboring states and, for example, the
superexchange rates describing a direct transition from the donor to the acceptor
(or vice versa). We remind the reader that both cases correspond to weak intra-
bridge transfer integrals as discussed first in Section 7.5.2. The superexchange rates
would follow from Eq. (3.503) as K(2NB+2)

AD (𝜔 = 0), whereas the rates connecting
the neighboring states are second-order rates km→m±1, introduced in Eq. (3.511).
Of course, all other types of rates have to be examined concerning their relevance
for the whole ET reaction too.

To keep the matter simple, we deal in what follows with a three-site system of a
donor, a single-bridge unit, and an acceptor state (m = D, B, A). As in Section 7.5.2,
we consider the transfer integrals VDB and VBA but neglect the direct coupling VDA.
In this three-site system, we have to account for the rates kD→B, kB→A, and kD→A as
well as for the reverse ones. If expanded with respect to the transfer coupling, the
first two start with second-order rates (nonadiabatic rates k(2)

D→B and k(2)
B→A; cf. Section

7.4). The lowest order contribution to the rate kD→A would be of the fourth order
in Vmn and can be obtained from Eq. (3.521) by identifying a with the donor state
quantum number and b with that of the acceptor (the rate separates in a nonfactor-
izable fourth-order part and into a product of two second-order rate expressions).
Both types of rates will be used to solve the respective set of rate equations, that is
second-order rates for the nearest neighbor transitions (kD→B, kB→D, kB→A, and kA→B)
and fourth-order rates for the donor–acceptor transition (kD→A and kA→D). Details of
the derivation and specification of the second- and fourth-order rates can be found
in the supplementary Sections 7.10.3 and 7.10.4, respectively.

Having discussed the different approximations for the rate expressions, we present
the rate equations referring to the simple DBA system:

𝜕

𝜕t
PD(t) = −

(
kD→B + kD→A

)
PD(t) + kB→DPB(t) + kA→DPA(t),

𝜕

𝜕t
PB(t) = −

(
kB→D + kB→A

)
PB(t) + kD→BPD(t) + kA→BPA(t),

𝜕

𝜕t
PA(t) = −

(
kA→B + kA→D

)
PA(t) + kB→APB(t) + kD→APD(t). (7.128)

22) The action of  on an arbitrary operator Ô can be written as Ô =
∑

m tr{Π̂mÔ}Π̂mR̂m with
the vibrational equilibrium density operator R̂m of the diabatic state 𝜑m and the projection
operator Π̂m = |𝜑m⟩⟨𝜑m|.
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As the initial condition, we set up Pm(0) = 𝛿mD. A standard way to solve such dif-
ferential equations is to make the ansatz Pm(t) = exp(−Kt). In the present case, one
obtains two rates K that are nonzero, and one that is equal to zero. The first two are
simply computed using the conservation of total probability (for example, PB can
be replaced by 1 − PD − PA). Once the resulting two inhomogeneous rate equations
have been solved, the rates K read:

K± = 1
2

(
a + b ±

√
(a − b)2 + c

)
, (7.129)

with a = kD→B+ kB→D + kD→A, b = kA→B+ kB→A + kA→D, and c = 4(kD→A − kB→A)
(kA→D − kB→D). It is apparent from these formulas that the rates characterizing the
basic nearest-neighbor hopping transitions and the superexchange transitions are
strongly mixed. Only in a special case do they enter the total rate as independent con-
tributions. This special case is characterized by rates kB→D and kB→A describing the
outflow of charge from the bridge, which are much larger than all other rates. The
inequality would be realized for a DBA system with the bridge level being positioned
highly above the donor and the acceptor levels (EB − ED, EB − EA, ≫ ED − EA).
For such a situation, the thermally activated transfer into the bridge level is much
smaller than the transfer out of the bridge. Introducing an expansion of the rates K±
around the leading contribution kB→D + kB→A, one obtains K+ ≈ kB→D + kB→A and

K− ≡ KET = kD→A + kA→D +
kD→BkB→A + kA→BkB→D

kB→D + kB→A
. (7.130)

The rate K+ is responsible for a fast transfer process, but at the same time it only
causes a small deviation from the initial charge distribution. The actual but slower
ET is characterized by the rate KET. This overall donor–acceptor transfer rate con-
tains the superexchange forward and backward rates in its first and second terms,
respectively. The third term comprises the sequential transfer from the donor to
the bridge unit and, afterward, to the acceptor as well as the reverse part of this
transition. In this way, KET accounts for the superexchange and the sequential mech-
anism of ET by two independent contributions.

Although Eq. (7.130) has been derived for a single bridge unit only, it is well suited
to describe the change in the measured ET rate when increasing the number of
bridge units. Such an increase becomes possible when the total bridge is given by a
polymer strand whose length can be easily varied. Prominent examples are strands
of amino acids (cf. Figure 7.26a) as well DNA fragments. We briefly justify the use of
Eq. (7.130) to compute the ET rate for a case where all bridge units are identical (use
of a so called homopolymer as a bridge). Provided that the bridge-internal hopping
transitions are much faster than the transitions into and out of the bridge, one can
assume that a bridge-internal equilibrium distribution with Pm(t) = PB(t)∕NB has
been established. The relation supposes that the bridge units can also be described
by diabatic states with population Pm. The quantity PB(t) is the total bridge popula-
tion
∑

mPm(t), and m runs over all bridge units (from 1 to NB). It follows a reduction
on the multitude of rate equations for the bridge populations to a single one govern-
ing the total bridge population. Such an equation is similar to the second one of Eqs.
(7.128) but with the rates kD→B and kB→A (as well as the reverse ones) replaced by
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Figure 7.26 Length dependence of the overall ET rate at room temperature for the
donor–bridge–acceptor complex shown in (a) ([(bpy) 2Ru(II)L ⋅(Pro) nCo(III)(NH3) 5] 3+,
carbon atoms are shown in gray, nitrogen in weak gray, and oxygen as well as the
ruthenium and cobalt atoms in black). (b) Comparison of experimental data (open circles),
after Isied et al. [9], and theoretical computations (full squares). The thin dotted lines show
an estimate of the bridge number dependence of the rate if it is dominated by the
superexchange mechanism or the sequential one (Reproduced with permission from Petrov
and May [10]/American Chemical Society).

rates divided by the number of bridge units NB. Of course, the rates kD→A and kA→D
have to be computed with effective transfer couplings V (eff)

DA like that of Eq. (7.120).
If we again assume that the rates kB→D and kB→A are much larger than all

other rates, we can describe the bridge length dependence of the rate by Eq.
(7.130). In this case, the two basic mechanisms of bridge-mediated ET enter
the total rate by separate terms, and we expect that one of the two might domi-
nate the other for a given number of bridge units. Figure 7.26b displays such a
behavior via the length dependence of the overall ET rate in the DBA complex
[(bpy)2Ru(II)L⋅(Pro)nCo(III)(NH3)5]3+. The donor is given by a ruthenium, and
the acceptor by a cobalt complex, whereas an oligopeptide of the amino acid
proline connects the donor and the acceptor. The oligopeptide forms a linear
bridge, which has the advantage to be relatively stiff (when compared with other
oligopeptides). As demonstrated by Figure 7.26b, the ET is mainly determined by
the superexchange mechanisms if the bridge is short. If its length is increased,
a small transition region follows. ET in long bridges ends in a region where the
sequential mechanism of bridge-mediated ET characterizes the length dependence
of the rate.



7.7 Heterogeneous Electron Transfer 347

7.6.2 Transition to the Adiabatic Electron Transfer

Finally, we would like to return to the two-site system of a simple DA complex and
briefly sketch how to go beyond the second-order approximation with respect to the
DA transfer integral, that is to leave the regime of nonadiabatic ET. A number of
higher order approximations have been derived in the literature. Considering the
high-temperature limit, a typical expression for the rate reads

k(adia)
ET =

k(nonad)
ET

1 + 𝛿adia
, (7.131)

where k(nonad)
ET is the rate of nonadiabatic transfer given in Eq. (7.71) (Marcus-type

formula). The adiabatic correction obtained, for example for the ET in polar solvents,
is given by

𝛿adia = 4𝜋

|VDA|2𝜏long

ℏE
𝜆

. (7.132)

Here, 𝜏long is the so-called longitudinal relaxation time of the solvent, and E
𝜆

denotes
the reorganization energy. For a very small transfer coupling, the nonadiabatic rate
expression is recovered, whereas for a large |VDA|, the rate becomes independent of
the coupling. In this manner, expression (7.131) interpolates between the two limit-
ing cases of adiabatic and nonadiabatic ET.

An interpolation formula of this kind can also be generated using the so-called
Pade approximation. We note that an equation similar to Eq. (3.503) allows to deduce
an expansion of the ET rate like kDA = |VDA|2C(2)(𝜔 = 0) − |VDA|4C(4)(𝜔 = 0) +….
Here, the C(N) are Fourier-transformed N-time correlation functions of the type
encountered in Eq. (3.521). The Pade approximation leads to a rate expression
of infinite order in VDA but restricted to the two types, C(2) and C(4), of corre-
lation functions. Such a resummation of the rate reads kDA = |VDA|2C(2)(𝜔 =
0)∕[1 + |VDA|2C(4)(𝜔 = 0)∕C(2)(𝜔 = 0)]. The expression produces a reasonable
approximation for the adiabatic case where it becomes independent of the transfer
integral.

7.7 Heterogeneous Electron Transfer

ET taking place between a molecule and a solid state system is a particular charge
transmission process named HET (cf. Figure 7.9). The formation of a positively or
negatively charged molecule in the course of HET is an important aspect when dis-
cussing the energetics of HET. To get some insight into this energetics, let us consider
the transfer of a single electron from a metal electrode into a molecule that has been
in a neutral state. This reactant state of the molecule should have the energy E0 (the
number 0 describes the fact that the molecule is in its neutral state). The energy E1
is that of the molecular product state (an anion; the number 1 indicates the pres-
ence of a single excess electron). The prerequisite for such a charging reaction of the
molecule is that the energy difference E1 − E0 corresponds to an available energy
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in the metal electrode. As a macroscopic system its change in energy per change in
the electron number is given by the chemical potential 𝜇. If the relation 𝜇 > E1 − E0
is fulfilled, the HET reaction of the type shown in Figure 7.9a becomes possible.
Since the energy difference E1 − E0 can be roughly estimated by ELUMO (Koopmans
theorem), Figure 7.9 reflects the correct energetics of this reaction. In the contrary
case, 𝜇 < E1 − E0, no charge transfer is possible.23)

Considering arbitrary charging states of a molecule with energy EN and N excess
electrons (the case N < 0 corresponds to missing electrons, that is cationic states
of the molecule), the injection of a single electron may proceed if 𝜇 > EN+1 − EN .
This relation generalizes the above given one for the transition from the neutral to
the singly negatively charged molecule. Accordingly, transfer of an electron from
the metal to the singly positively charged molecule is possible if 𝜇 > E0 − E−1. The
positively charged state of the molecule remains stable provided that 𝜇 < E0 − E−1.
This case corresponds to the charge injection processes of Figure 7.9b,c. Although
not indicated explicitly, Figure 7.9b presumes that the energy of the neutral molecule
with one electron excited into the LUMO minus the energy of the molecule with one
electron missing in the HOMO is larger than 𝜇. Moreover, the energy of the molecule
with the filled HOMO minus the energy of the molecule with one electron missing
in the HOMO should be larger than 𝜇 in Figure 7.9c.

In general, the energetic relation for charging and discharge has to be extended
by the Coulomb interaction of the charged molecule with the metal electrons (if a
charge is positioned close to the metal surface, the electrons forming the Fermi
sea become polarized, inducing an attractive force to the molecule). Here and
in what follows we do not study this coupling in an explicit manner but assume
that the molecular levels have been defined by including this additional Coulomb
interaction.

7.7.1 Nonadiabatic Charge Injection into the Solid State Described in
a Single-Electron Model

The model explained in what follows is based again on a single-electron description,
as already introduced in Section 7.2. Therefore, it covers the case of HET to a metal
as well as to a semiconductor. The continuous energy of the conduction band of the
metal or semiconductor is labeled

Ek = ℏ𝜀k (7.133)

and counted by the Bloch vectors k (this description corresponds to bulk states of
the solid; the energies are spin degenerated). While in the case of a semiconductor
all these conduction band states are empty, they are partly occupied in the case of
the metal. This occupation is temperature dependent and regulated by the Fermi
distribution of electrons (𝜇 is the chemical potential of the metal):

fF(Ek − 𝜇) = 1
e(ℏ𝜀k−𝜇)∕kBT + 1

. (7.134)

23) Note that Figure 7.9 corresponds to the zero temperature case where occupied and empty
states of the lead electrode are separated by the Fermi energy EF.
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At low temperature, this expression can be approximated by a unit-step function
describing the total population of levels below the Fermi energy EF and empty levels
above.

The flexibility to start with a common model valid for the case of HET related to a
metal or a semiconductor surface is caused by the single-electron description where
we have to decide separately regarding the population of the solid-state band levels
after the computation of basic transition rates. In the present section, those should
be of the nonadiabatic type; that is, the transfer coupling can be accounted for in the
lowest order of perturbation theory (see Section 7.4).

We first consider charge injection from a molecular level into a solid-state energy
band. The latter is described by the single-electron band energies ℏ𝜀k and states 𝜑k,
while the neutral molecule has the energy ℏ𝜀0 and the state 𝜑0. Ignoring molec-
ular vibrations, charge injection becomes possible if ℏ𝜀0 = ℏ𝜀k is fulfilled; that is,
the single-electron molecular level is degenerated with the band continuum. This
equation replaces the general relation E0 > E−1 + 𝜇 discussed for a metal in the fore-
going section. We account for molecular vibrations by extending the band energies
by the vibrational Hamiltonian −1 referring to molecular cation and by adding the
vibrational Hamiltonian 0 to E0 = ℏ𝜀0.24) Related vibrational energies and states
are denoted as ℏ𝜔0𝜇

and ℏ𝜔−1𝜈
as well as 𝜒0𝜇

and 𝜒−1𝜈
, respectively. The injected

electron also has to be characterized by its spin. We assume that the charge transfer
is independent of the spin and neglect this internal electronic DOF. However, the
derived rate has to be multiplied by 2, noting that the probability per time to have a
transition event is realized by a spin-up as well as a spin-down electron.

For this model, the overall Hamiltonian of the considered HET reads

HHET =
(

E0 +0
) |𝜑0⟩⟨𝜑0| +∑

k

(
Ek +−1

) |𝜑k⟩⟨𝜑k|
+
∑

k

(
Vk|𝜑k⟩⟨𝜑0| + H.c.

)
, (7.135)

where Vk is the respective transfer coupling. The solid-state band energies are of
particular interest if one would like to study how atomic details of the solid-state sur-
face affect the HET reaction. For the following discussion, it is useful to introduce a
notation that directly accounts for the continuous distribution of electronic energy
levels in the solid-state system. The corresponding DOS of the band states reads
(if necessary, the electron spin can be accounted for by a prefactor of 2)

 (Ω) =
∑

k
𝛿(Ω − 𝜀k). (7.136)

Consequently, we may write down for an arbitrary function with Fk ≡ F(𝜀k) the
relation∑

k
Fk =

∫
dΩ  (Ω)F(Ω). (7.137)

24) An account for solid-state vibrations, so-called phonons, is possible in the same way but is not
included here because of the dominating strength of electron–vibrational coupling in the molecule.
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This will be used later to replace the summation with respect to bulk band states
by an energy integral. In this manner, one may account for an arbitrary form of the
solid-state electronic states by introducing a corresponding DOS.

Because of the presumed nonadiabatic character of the HET reaction, we can make
use of the rate formula, Eq. (7.88). The related transfer rate for electron injection into
the solid state then takes the form

k0→k = 2𝜋

ℏ

|Vk|20→−1(𝜀0 − 𝜀k). (7.138)

This standard expression we met several times before (see, for example Sections
3.4.5, 3.7, and 6.2). The function 0→−1(𝜔) describes the thermal-averaged and
Franck-Condon-weighted overlap between the vibrational state of the molecule
before and after charge injection. It can be expressed via the correlation function
of the considered transition that reads (R̂0 is the vibrational equilibrium statistical
operator of the neutral molecule)

0→−1(𝜔) =
1

2𝜋ℏ ∫
dt ei𝜔ttrvib{R̂0ei0t∕ℏe−i−1t∕ℏ}. (7.139)

The overall rate of HET has to account for the manifold of acceptor states in the
solid and the possibility that a certain subset is already populated. Accordingly, the
rate has to be written as

kHET =
∑

k

(
1 − fF(ℏ𝜀k − 𝜇)

)
k0→k. (7.140)

This formula describes nonadiabatic HET into the conduction band of a metal
including the occupied states of the Fermi sea as taken into consideration by the
Fermi distribution (the term 1 − fF ensures that transfer only takes place into
empty band levels). When considering charge injection into a semiconductor
conduction band, the Fermi distribution has to be removed since injection appears
into unoccupied band state.

We assume that the k-dependence of the transfer coupling can be replaced by a
direct dependence on 𝜀k. This enables us to write k(Ω) instead of k0→k. Using the
DOS, Eq. (7.136), as well as Eq. (7.137), we arrive at

kHET =
∫

dΩ  (Ω)
(
1 − fF(ℏΩ − 𝜇)

) 2𝜋

ℏ

|V(Ω)|20→−1(𝜀0 − Ω). (7.141)

It is suitable to introduce the molecule–solid coupling function

Γ(Ω) =  (Ω) |V(Ω)|2
ℏ2 ≡

1
ℏ2

∑
k
|Vk|2𝛿(Ω − 𝜀k), (7.142)

which represents a particular type of spectral density, as indicated on the right-hand
side where we moved back to a k-summation. Accordingly, the rate can be written as

kHET =
∫

dΩ
(
1 − fF(ℏΩ − 𝜇)

)
Γ(Ω)2𝜋ℏ0→−1(𝜀0 − Ω). (7.143)

For a given temperature, the ratio between the thermal and vibrational excitation
energy is determined by the concrete form of the vibrational correlation function
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entering 0→−1 (cf. discussion in Sections 7.4.1 and 7.4.3). And the position of
the molecular energy E0 in relation to the band edge determines the particular
influence of the DOS. If E0 lies deep in the band, the DOS may only change slightly
in the energy (frequency) interval where 0→−1 is different from zero. Then, one
usually introduces the wide-band limit and replaces the DOS and the transfer
coupling by their mean and frequency-independent values ̄ and V̄ , respectively,
resulting in

Γ = ̄
|V̄ |2
ℏ2 . (7.144)

As a consequence, Eq. (7.143) reduces to a frequency integral of 0→−1 taken with
respect to a region where band states are empty. This indicates that, in contrast to
ordinary ET, here the transfer coupling has been replaced by an expression that
includes

√
̄ΔΩ (the latter quantity ΔΩ determines the frequency range that con-

tributes to Eq. (7.143)). While the single transfer coupling into a particular state
might be small, the overall rate is increased by the factor ̄ΔΩ.

7.7.1.1 Low-temperature Case
From Eqs. (7.87) and (7.89), we may deduce a representation of 0→−1, which
includes the corresponding vibrational energies and wave functions. If adapted to
the present case, we have (f0𝜇

denotes the vibrational energy distribution of the
uncharged molecule)

0→−1(𝜀0 − Ω) = 1
ℏ

∑
𝜇,𝜈

f0𝜇
|⟨𝜒0𝜇
|𝜒−1𝜈
⟩|2𝛿(𝜀0 − Ω + 𝜔0𝜇

− 𝜔−1𝜈
). (7.145)

This turns the rate formula, Eq. (7.143), into

kHET = 2𝜋

∑
𝜇,𝜈

f0𝜇
|⟨𝜒0𝜇
|𝜒−1𝜈
⟩|2 (1 − fF(ℏ[𝜀0 + 𝜔0𝜇

− 𝜔−1𝜈
] − 𝜇)

)
× Γ(𝜀0 + 𝜔0𝜇

− 𝜔−1𝜈
). (7.146)

At T = 0, we may replace 1 − fF by the unit step function, and f0M is reduced to a
vibrational ground state population only. In the case of a single dominant vibrational
coordinate (with vibrational frequency 𝜔vib) and in the wide band limit, Eq. (7.144),
it yields (note the replacement of 𝜇 by the Fermi energy EF)

kHET = 2𝜋Γ
∑

𝜈

|⟨𝜒0𝜇=0|𝜒−1𝜈
⟩|2𝜃(E0 − EF − ℏ𝜔−1𝜈

). (7.147)

Charge injection into the solid state starts to take place if E0 reaches EF. In this
case, the charged molecule stays in its vibrational ground state. If the nuclear rear-
rangement upon charging the molecule is large, the vibrational overlap expression⟨𝜒0𝜇=0|𝜒−1𝜈

⟩ becomes small, as does the overall rate. Excited vibrational states of the
charged molecule are populated if E0 overcomes the Fermi energy and equals one
of the energies EF + ℏ𝜔−1𝜈

. Now, different transition channels for charging might
be open, and the transition rate may be increased by this fact as well as by a possibly
larger vibrational overlap.
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7.7.1.2 High-temperature Case
According to Eq. (7.98), which constitutes the Marcus formula of ET, we get the
correlation function 0→−1 as

0→−1(𝜀0 − Ω) = 1
2𝜋ℏ

√
𝜋ℏ

kBT𝜆0,−1
exp

{
−
(𝜀0 − Ω − 𝜆0,−1)2

4𝜆0,−1kBT∕ℏ

}
. (7.148)

The reorganization energy upon charging of the molecule is denoted as ℏ𝜆0,−1.
The HET rate, Eq. (7.143), follows as (note the use of a frequency-independent
coupling Γ)

kHET = Γ

√
𝜋ℏ

kBT𝜆0,−1 ∫
dΩ
(
1 − fF(ℏΩ − 𝜇)

)
exp

{
−
(𝜀0 − Ω − 𝜆0,−1)2

4𝜆0,−1kBT∕ℏ

}
.

(7.149)

Here, the position of ℏ(𝜀0 − 𝜆0,−1) relative to the Fermi energy determines the mag-
nitude of the rate.

7.7.1.3 HET-induced Lifetime
The coupling of molecular levels to the solid-state band continuum gives rise to
finite lifetime of the former. It is calculated in what follows for a photoinduced
charge injection from an excited state 𝜑0e (e labels the excited electronic state) of the
uncharged molecule into the conduction band of a semiconductor (cf. Figure 7.9d).
This example avoids the consideration of effects related to a possible occupation of
the band continuum, as it would be necessary in the case of a metal. The computa-
tion of the decay rate related to the lifetime of the molecular level will be achieved
by the inspection of the population P0e𝜇 of the initially excited electron–vibrational
state 𝜒0e𝜇𝜑0e. The Hamiltonian appropriate for these considerations is given in Eq.
(7.135), where the neutral molecular state has to be specified as the excited electronic
state 𝜑0e, and by a corresponding vibrational Hamiltonian 0e. To simplify the nota-
tion, the electronic state index e is suppressed in what follows. Accordingly, we have
to compute

P0𝜇
(t) =∣ ⟨𝜒0𝜇

|⟨𝜑0|e−iHt∕ℏ|𝜑0⟩|𝜒0𝜇
⟩∣2. (7.150)

For the determination of this expression, the methodology introduced in Section
3.3.3 is utilized. It is based on the replacement of the time-evolution operator by
the related Green’s operator (cf. Eq. (3.92)). Therefore, the initial state population is
written as

P0𝜇
(t) =∣

∫

d𝜔

2𝜋i
e−i𝜔t⟨𝜒0𝜇

|⟨𝜑0|Ĝ0(𝜔)|𝜑0⟩|𝜒0𝜇
⟩∣2. (7.151)

The Green’s operator Ĝ0 reduced to the electronic state of the neutral molecule takes
the form already given in Eq. (3.111). The only extension necessary here is the inclu-
sion of the vibrational Hamiltonians0 and−1. We get (introducing Π̂0 = |𝜑0⟩⟨𝜑0|
projecting on the electronic state of the neutral molecule):

Ĝ0(𝜔) =
Π̂0

𝜔 − 𝜀0 −0∕ℏ − Σ̂(𝜔) + i𝜖
, (7.152)
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where the self-energy operator, Eq. (3.110), now takes the form

Σ̂(𝜔) = 1
ℏ2

∑
k

|Vk|2
𝜔 − 𝜀k −−1∕ℏ + i𝜖

Π̂0. (7.153)

In order to compute the time dependence of the initial state population according to
Eq. (7.151), we set up an equation for the reduced Green’s operator matrix elements

G0𝜇,0𝜇
(𝜔) = ⟨𝜒0𝜇

|⟨𝜑0|Ĝ0(𝜔)|𝜑0⟩|𝜒0𝜇
⟩. (7.154)

Noting Eq. (7.152), we first move the inverse operator to the left-hand side and
form matrix elements as in the foregoing equation. In a second step, the product of
𝜔 − 𝜀0 −0∕ℏ − Σ̂ and Ĝ0 is turned into products of matrix elements by inserting
the completeness relation Π̂0 ×

∑
𝜈
|𝜒0𝜈
⟩⟨𝜒0𝜈
|. It follows that

(𝜔 − 𝜀0 − 𝜔0𝜇
)G0𝜇,0𝜇

(𝜔) −
∑

𝜈

Σ0𝜇,0𝜈
(𝜔)G0𝜈,0𝜇

(𝜔) = 1, (7.155)

where we introduced

Σ0𝜇,0𝜈
(𝜔) = ⟨𝜒0𝜇

|⟨𝜑0|Σ̂(𝜔)|𝜑0⟩|𝜒0𝜈
⟩. (7.156)

To compute the matrix elements of the self-energy operator, which includes the
vibrational Hamiltonian 1, we insert twice the vibrational completeness relation∑

𝜅
|𝜒−1𝜅

⟩⟨𝜒−1𝜅
| defined by the eigenfunctions of −1. We arrive at

Σ0𝜇,0𝜈
(𝜔) =

∑
𝜅

⟨𝜒0𝜇
|𝜒−1𝜅

⟩Σ(𝜔 − 𝜔−1𝜅
)⟨𝜒−1𝜅

|𝜒0𝜈
⟩. (7.157)

The self-energy,Σ(𝜔), reads (note the combination of 𝜔 with the vibrational frequen-
cies 𝜔−1𝜅

and the introduction of the DOS):

Σ(𝜔) = 1
ℏ2

∑
k

|Vk|2
𝜔 − 𝜀k + i𝜖

≡
1
ℏ2 ∫

dΩ  (Ω)|V(Ω)|2
𝜔 − Ω + i𝜖

. (7.158)

The matrix Σ0𝜇,0𝜈
, Eq. (7.157), is determined by the vibrational overlap expressions⟨𝜒0𝜇

|𝜒−1𝜅
⟩ and ⟨𝜒−1𝜅

|𝜒0𝜈
⟩ relating the states of the neutral molecule to those of the

singly charged one.
There are two limiting cases resulting in a simple expression for G0𝜇,0𝜈

(𝜔) onto
which we will concentrate in the following. First, let us assume that the reorganiza-
tion energy for the charge transfer is small. Then, we may conclude that ⟨𝜒0𝜇

|𝜒−1𝜅
⟩ ≈

𝛿
𝜇𝜅

and ⟨𝜒−1𝜅
|𝜒0𝜈
⟩ ≈ 𝛿

𝜅𝜈
. The self-energy matrix, Eq. (7.157), reduces to 𝛿

𝜇𝜈
Σ(𝜔).

Second, the same result is obtained if the wide-band limit is taken. In this case, we
directly arrive at

G0𝜇,0𝜇
(𝜔) = 1

𝜔 − 𝜀0 − 𝜔0𝜇
+ i𝜋Γ

, (7.159)

with Γ according to Eq. (7.144). If inserted into Eq. (7.151) for the initial state popu-
lation, we use the integration procedure outlined in Section 3.3.1 and obtain

P0𝜇
(t) = 𝜃(t)e−2𝜋Γt

. (7.160)

The initial state population decays exponentially in time with the decay rate (inverse
lifetime) 2𝜋Γ.
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7.7.2 Ultrafast Photoinduced HET from a Molecule into
a Semiconductor. A Case Study

The present section concentrates on the HET scheme shown in Figure 7.9d, but for
a molecule–solid coupling strong enough to lead out of the regime of nonadiabatic
transfer. These considerations complete the discussion of the foregoing section
where the decay of an excited state of the molecule into the semiconductor conduc-
tion band continuum has been described. Because of the assumed strong transfer
coupling, the HET rate, Eq. (7.141), cannot be used. A complete dynamic description
of the electron–vibrational motion becomes necessary. A similar case of ultrafast
photoinduced donor–acceptor ET will be discussed in Section 7.9. Here, however,
we do not use the density matrix approach but compute the time-dependent wave
function of the system. It is the specificity of the TiO2 dye system introduced in
Section 7.1 (see also Figure 7.10) that HET takes place as an ultrafast process; that
is, charge injection proceeds on a time scale below 100 fs. To follow such HET
requires an optical triggering and subsequent observation by femtosecond laser
pulses (cf. discussion of pump–probe spectroscopy in Section 4.3.6). The rapidness
of the process also justifies the neglect of any dissipation in the theory described
below.

To account for the optical excitation process, the model used in Section 7.7.1 and
condensed in the Hamiltonian, (7.135) has to be generalized. We replace the molecu-
lar part Hmol = (E0 +0)|𝜑0⟩⟨𝜑0| by an expression including the electronic ground
state of the molecule as well as its excited state together with an optical coupling
between both (a = g, e refers to the molecular electronic ground and first excited
states, respectively):

Hmol(t) =
∑

a

(
E0a +0a

) |𝜑0a⟩⟨𝜑0a| − E(t)
(

deg|𝜑0e⟩⟨𝜑0g| + H.c.
)
. (7.161)

This Hamiltonian becomes explicitly time dependent since the optical initiation of
ultrafast HET is incorporated by the electric field part E(t) of the exciting laser pulse
(deg denotes the transition dipole moment).

To study the photoinduced dynamics, the total wave function is expanded with
respect to the complete electron–vibrational states:|Ψ(t)⟩ =∑

a,𝜇

Aa𝜇
(t)|𝜒0a𝜇

𝜑0a⟩ +∑
k,𝜇

Ak𝜇
(t)|𝜒−1𝜇

𝜑k⟩. (7.162)

The expansion uses the electronic as well as the vibrational states of the molecule
before and after charge injection, that is 𝜒0a𝜇

and 𝜒−1𝜇
, respectively. It was assumed

that the vibrational states of the molecular cation, 𝜒−1𝜇
, are independent of the actual

electronic band state.
If the total wave function, Eq. (7.162), is inserted into the corresponding

time-dependent Schrödinger equation, the related equations of motion for the
expansion coefficients are easily obtained. To account for the band continuum, a
change from the k-vectors to a continuous energy ℏΩ again is advisable. Therefore,
the Ak𝜇

(t) are replaced by the A
𝜇
(Ω; t).25) The total populations of the different

25) To handle the continuous frequency dependence, the A
𝜇
(Ω; t) are expanded with respect to a

set of basis functions (orthogonal polynomials, for example), which are defined in the region of the
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Figure 7.27 HET between perylene attached by different bridge anchor groups to a TiO2
surface initiated by a 20 fs laser pulse (cf. also Figure 7.10). (a, c) Carboxylic acid bridge
corresponding to the strong transfer coupling and (b, d) propionic acid bridge constituting a
less-strong transfer coupling. Shown are the total populations of the perylene electronic
ground state (full line), the excited state (dashed line), and the TiO2 conduction band
continuum (chain dotted line, the dotted line displays the exciting laser pulse envelope).
The energetic distributions of the injected electron versus the conduction band energy
(from the lower band edge at zero energy up to 2 eV) are drawn in (c) and (d) (Reproduced
with permission from Wang et al. [11]/Springer Nature).

electronic states involved follow as Pa(t) =
∑

𝜇
|Aa𝜇

(t)|2 for the neutral molecular
states and Pband(t) =

∑
k,𝜇
|Ak𝜇

(t)|2 ≡ ∫ dΩ  (Ω)
∑

𝜇
|A

𝜇
(Ω; t)|2 for the probability

that the charge injection took place. The expression
∑

𝜇
|A

𝜇
(Ω; t)|2 gives the con-

tinuous distribution Pel(Ω; t) of the injected electron across the conduction band.
Some results for perylene attached to the semiconductor TiO2 are presented in
Figure 7.27.

7.7.3 Nonadiabatic Electron Transfer from the Solid State into
the Molecule

Charge injection from a metal into a molecular level is considered in what follows.
The reaction will again be described in a single-electron picture using solid-state
band energies and states as well as states and energies of the neutral and singly
negatively charged molecule. The basic relation for possible charge injection into
the molecule again reads E0 = Ek. To achieve HET, the relevant part of the band

conduction band from the lower to the upper band edge along the energy axis. An appropriate
truncation of the infinite set of functions renders the problem tractable. Other forms of
discretization are also possible.
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continuum has to be populated by electrons; that is, E0 has to be below the Fermi
energy (the general relation for this case reads E1 < E0 + 𝜇).

In analogy to the foregoing section, the overall Hamiltonian of the considered HET
reads (the positively charged state of the molecule is only replaced by the negatively
charged one)

HHET =
∑

k

(
Ek +0

) |𝜑k⟩⟨𝜑k| + (E1 +1
) |𝜑1⟩⟨𝜑1|

+
∑

k

(
Vk|𝜑1⟩⟨𝜑k| + H.c.

)
. (7.163)

The same manipulations as in the case of charge injection into the solid state result
here in the following overall rate:

kHET =
∫

dΩ fF(ℏΩ − 𝜇)Γ(Ω)2𝜋ℏ0→1(𝜀0 − Ω). (7.164)

The Fermi distribution ensures transitions from occupied band states, and the com-
bined DOS,

0→1(𝜔) =
1

2𝜋ℏ ∫
dt ei𝜔ttrvib{R̂0ei0t∕ℏe−i1t∕ℏ}, (7.165)

relates vibrational motion in the neutral molecular state to that in the singly nega-
tively charged state.

7.8 Charge Transmission Through Single Molecules

Charge transmission through single molecules is studied in terms of the current
induced by an applied voltage (Figure 7.28). This is in contrast to the traditional ET
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Figure 7.28 (a) IV characteristics of the single-molecule transistor of Figure 7.11. Shown
are the measurements (at T = 4.2 K) of the differential conductance dIs-d∕dVs-d (derivative
of the source–drain current Is-d with respect to the source–drain voltage Vs-d) as a function
of Vs-d as well as the gate potential Vg (the various numbers indicate the different charging
states; the full line at the top of the figure shows a typical Is-d − Vg trace).
(b) Current–voltage characteristics (Is-d − Vs-d curves) at different Vgs are drawn in the
bottom right panel (curves are shifted vertically for clarity, Reproduced with permission
from Kubatkin et al. [4]/Springer Nature).



7.8 Charge Transmission Through Single Molecules 357

in molecular DA complexes or the HET reactions discussed in the foregoing section,
where the focus is on the decay rates of state populations. Nevertheless, the whole
methodology of ET theory can be applied, as will be demonstrated in this section.
In order to calculate the electric current I passing through a single molecule, we
recall that I is defined as the amount of charge ΔQ that moves per time interval Δt
through a cross section of the given conductor, that is I = ΔQ∕Δt. Focusing on the
current from the left electrode into the molecule, we may write IL = −|e|𝜕NL∕𝜕t,
where the number of electrons in the left electrode has been denoted as NL (note
that the electron charge is counted negative, and we wrote −|e| instead of e).
If 𝜕NL∕𝜕t < 0, then negative charge flows from the left electrode through the
molecule into the right electrode, but the electric current becomes positive:
IL > 0.26) ET from one lead to the other may proceed via transitions that are of the
nonadiabatic type (cf. Sections 7.7.1 and 7.7.3). If the molecule–lead coupling is
weak enough, charge injection from the lead into the molecule is followed by a
relaxation of the charged molecule. Afterward, charge outflow into the lead may
appear. This type of charge transmission has been called inelastic or, alternatively,
sequential transfer (Figure 7.29). In the contrary case of strong molecule–lead
coupling, charge transmission can be considered as an elastic scattering process of
an electron (moving, for example from the left to the right) at the molecule. This is
the elastic or direct transmission process, which resembles the superexchange DA
ET (cf. Section 7.1).27)

To obtain the IV characteristics, two points have to be considered. First, how do
the properties of the molecule (electronic levels, nuclear equilibrium configurations,
vibrational frequencies, etc.) change if it is attached to nanoelectrodes. Second, how
is the change in the electrostatic potential 𝜙(r) across the molecule influenced by its
actual charge distribution. With respect to the properties of the molecule, we assume
that all elements of the respective Hamiltonian introduced below account for this
effect. To get the correct change of the applied voltage across the molecule electronic
structure, calculations are required including the presence of the external electro-
static potential 𝜙(r). On the one hand, the actual values of 𝜙(r) have to be computed
from Poisson’s equation, where the charge density is given by the single-electron
density deduced from the electronic wave function of the molecule (Eq. (2.9)). On the
other hand, the electronic wave function has to adjust to the presence of the external
potential. Such a coupled problem needs a self-consistent solution with the bound-
ary conditions 𝜙(rL) = 0 and 𝜙(rR) = V (rL and rR label positions at the left and the
right lead surfaces, respectively). This choice corresponds to a situation where the

26) A typical value of the current through a single molecule amounts to 1 nA. We can estimate the
residence time of a single electron in the molecule as Δt = |e|∕I = 1.6 × 10−19 As∕10−9 A ≈ 10−10

s = 100 ps.
27) Sequential and direct charge transmission can be distinguished more quantitatively by
relating the lifetime 𝜏life of an extra electron at the molecule to the time 𝜏rel of intramolecular
relaxation. The transmission is of the sequential type if 𝜏rel < 𝜏life and in the reverse case of the
direct type. In the foregoing Section 7.7 on HET, we learned that 𝜏life can be deduced from the
molecule solid coupling function Γ, Eq. (7.142), as 𝜏life = 1∕Γ. If ℏΓ lies in the range of some
10 meV, the lifetime is in the range below 0.1 ps, just being below typical values of 𝜏rel. Thus, such
large Γ values indicate that we are in the regime of direct transfer.
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(b)(a)

µL µL

µR µR

Figure 7.29 Charge transmission through a single molecule represented in a
HOMO–LUMO scheme. The charge comes from the left electrode (with chemical
potential 𝜇L) and moves to the right electrode (with chemical potential 𝜇R). Sequential
(inelastic) transmission is drawn in (a) (an electron hops into the molecule, relaxation
follows, and afterward it hops to the right electrode). Direct (elastic) transmission is
presented in (b) (the electron moving from the left to the right undergoes an elastic
scattering process at the molecular level).

chemical potential of the left lead stays constant but that of the right lead has been
shifted by −|e|V .

For the present needs, this approach is simplified by neglecting the change in the
electrostatic potential due to the presence of the molecule. We use 𝜙(r) = Vx∕d, that
is the potential change in the absence of the molecule (the two leads at distance d are
positioned parallel to the y–z plane of the used coordinate system). If, furthermore,
it is assumed that the molecular energy levels are changed by the potential present
at the center between both leads (at x = d∕2), they have to be shifted by the energy
−|e|V∕2. Alternatively, such a configuration can be accounted for if we keep the
molecular levels unchanged but move the chemical potentials up and down by half
of the applied voltage:

𝜇L = 𝜇0 + |e|V∕2 (7.166)

and

𝜇R = 𝜇0 − |e|V∕2. (7.167)

This choice is known as the case of a symmetrically applied voltage. The chemical
potential in the absence of an applied voltage is 𝜇0. It has been taken identically for
both leads. Because of its simplicity, we exclusively use this scheme in the following
equation. If 𝜇L and 𝜇R, as shown in Figure 7.29, are changed in this way, a current
starts to flow from left to right if 𝜇L overcomes the LUMO level and 𝜇R stays below.
If 𝜇R is positioned below the HOMO level, a current is formed by first moving an
electron out of the molecule into the right lead and afterward injecting another one
from the left lead. This charge transmission is often viewed as hole transport, with a
missing electron moving from the right to the left lead.

In recent years, the theoretical description of the current flow through sin-
gle molecules has been developed to a high degree of sophistication (see Further
Reading). The present description will be in line with the given theory of HET, again
utilizing an effective single-electron description. For simplicity, we additionally
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assume that the current through the molecule only includes the formation of singly
negatively charged molecular states (E0−1 ≪ 𝜇0).

Focusing again on two electrodes (left and right) to which the single molecule
is attached and across which a voltage is applied, the Hamiltonian, Eq. (7.163),
discussed in relation to HET reactions (Section 7.7.3), can be applied but has to
include the coupling to two metal surfaces

H =
∑
X ,k

(
EXk +0

) |𝜑Xk⟩⟨𝜑Xk| + (E1 +1
) |𝜑1⟩⟨𝜑1|

+
∑
X ,k

(
VXk|𝜑1⟩⟨𝜑Xk| + h.c.

)
. (7.168)

The index X = L, R counts the left and the right metal surfaces (nanoelectrodes),
which might have a different band structure but are considered here as identical (for
all other ingredients, see the explanations related to Eq. (7.163)). We also formulate a
spin-independent theory, finally multiplying all rates by the factor 2 (this implies that
all molecular levels considered are spin degenerated). Although unifying descrip-
tions exist, we derive in the following section separate current formulas based either
on a sequential (inelastic) or a direct (elastic) charge transmission scheme.

7.8.1 Inelastic Charge Transmission

Inelastic charge transmission proceeds via charge injection from one lead resulting
in a singly negatively charged molecule and afterward in a charge flow from the
molecule into empty states of the other lead (cf. Figure 7.29). Discharge and charg-
ing of the molecule can be characterized by rates of HET derived in the foregoing
Sections 7.7.1 and 7.7.3, respectively. The related stationary current will be deduced
as the steady-state solution of the respective rate equations. Those determine the
single-electron state populations PXk, which belong to the lead X ’s electronic states
(X = L, R) and the population P1 of the charged molecule. They read

𝜕

𝜕t
PXk(t) = −kXk→1PXk(t) + k1→XkP1(t) (7.169)

as well as
𝜕

𝜕t
P1(t) = −

∑
X ,k

(k1→XkP1(t) − kXk→1PXk(t). (7.170)

The charging rates kXk→1 are identical to the expression equation (7.164) and the
k1→Xk describing discharge with Eq. (7.138).

The current from electrode X = L, R into the molecule equals the negative change
of charge in the respective lead; that is, we may write (the factor 2 accounts for the
electron spin, see above)

IX = −2|e| 𝜕
𝜕t
∑

k
PXk(t). (7.171)

At steady-state conditions, we get I = IL = −IR; the current from the left electrode
coincides with the negative current from the right electrode. To get a finite current,
the time derivative of the total lead population

∑
kPXk should differ from zero. This is
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in contrast to the standard use of rate equations given so far. There, closed systems
have been considered. The total system population always stays constant. If a steady
state is reached, the state populations become time independent. The assumption of
a nonzero time derivative of the populations indicates that the rate equations refer
(implicitly) to an open system where a constant number of electrons in the leads are
guaranteed due to their connection to an external reservoir. As a consequence, we
may calculate the stationary current, for example from

I = IL = 2|e|∑
k

(
kLk→1PLk − k1→LkP1

)
. (7.172)

Since the left lead state populations PLk are those of a macroscopic system, they
should stay in thermal equilibrium, although electrons leave and enter the molecule
(as a consequence of a stationary current through it). Therefore, PLk is replaced by
the Fermi distribution, Eq. (7.134), specified to the left lead and the actually applied
voltage. Moreover, the net current through the molecule results in a stationary pop-
ulation P1. It can be determined from the balance equation

P1

∑
X ,k

k1→Xk =
∑
X ,k

kXk→1PXk. (7.173)

The right-hand side is easily calculated by again replacing the PXk by the corre-
sponding Fermi distributions. It results in charging rates kX→1 of the type given in
Eq. (7.164). The expression on the left-hand side of Eq. (7.173), however, is
incomplete. As discussed in relation to the HET reactions in Section 7.7, the used
single-electron theory does not account for the population of band states of the
lead where charge is injected. Therefore, the rates k1→Xk have to be completed
by 1 − fF(ℏ𝜀Xk − 𝜇X ). This results in rates k1→X of discharge of the molecule
similar to those introduced in Eq. (7.140). A simple solution of Eq. (7.173) follows:
P1 = (kL→1 + kR→1)∕(k1→L + k1→R), being the ratio of the net charge outflow from
the molecule and the net charge injection.

According to the given reasoning, the stationary current, Eq. (7.172), in its depen-
dence on the applied voltage V follows as

I(V) = 2|e|(kL→1 − k1→LP1) = 2|e|kL→1k1→R − kR→1k1→L

k1→L + k1→R
. (7.174)

The expression contains contributions from the left to right current proportional to
kL→1k1→R and the corresponding contributions from the backward right to the left
current proportional to kR→1k1→L. Just this combination of rates reflects the sequen-
tial character of the discussed transmission scheme (be aware of the similarity of
the current expression with the sequential part of the bridge-mediated transfer as
presented in Section 7.6.1, Eq. (7.130)).

7.8.1.1 An Example
To have a stable junction, the measurement of molecular IV characteristics is
favorably done at low temperatures. Therefore, we specify the transition rates
kX→1 and k1→X to this case and, additionally, assume the dominance of a single
vibrational coordinate that carries out harmonic vibrations. In the wide-band limit
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of the molecule–lead interaction and for a symmetrically applied voltage, it follows
that

kX→1 = 2𝜋Γ
∑

𝜈

|⟨𝜒0𝜇=0|𝜒1𝜈
⟩|2fF(ℏ[𝜀1 + 𝜔vib𝜈] − 𝜇X ) (7.175)

and

k1→X = 2𝜋Γ
∑

𝜈

|⟨𝜒1𝜇=0|𝜒0𝜈
⟩|2 (1 − fF(ℏ[𝜀1 − 𝜔vib𝜈] − 𝜇X )

)
. (7.176)

Charging of the molecule and thus current formation for a positive voltage
(current from left to right) becomes possible if ℏ𝜀1 − 𝜇0 = |e|V∕2 (recall Eq.
(7.166)); that is, the vibrational ground state of the charged molecule is populated.
If ℏ(𝜀1 − 𝜔vib) − 𝜇0 = |e|V∕2, a second transmission channel is opened with the
first excited vibrational state of the charged molecule also occupied. Higher excited
vibrational states follow if the applied voltage is further increased. How the
different channels contribute is mainly regulated by the Frank–Condon factors|⟨𝜒0𝜇=0|𝜒1𝜈

⟩|2. A large nuclear rearrangement of the molecule upon charging
suppresses those channels connected with the low-lying excited vibrational state
(this has been named the Franck–Condon blockade). Discharge of the molecule, in
the present case of V > 0 via the rate k1→R, proceeds if ℏ𝜀1 − 𝜇0 = 𝜈ℏ𝜔vib − |e|V∕2.
This goes along with the charging process explained earlier. The IV characteristics
include steps whenever a new transmission channel due to excited vibrational
states is opened.

Figure 7.30 displays measurements where it has been argued that the charge trans-
mission proceeds in this sequential way. The IV characteristics, however, do not
display distinct steps. The strong molecule–lead coupling smears out these steps,
and vibrational contributions are only clearly visible if the second derivative of the
current with respect to the voltage is drawn.

7.8.2 Elastic Charge Transmission

Next, charge transmission will be described as an elastic scattering process of
electrons at the single molecule. This approach incorporates cases with large
molecule–lead couplings where the nonadiabatic transition rates used in the pre-
ceding section are not valid. To achieve a clear view on the specificity of the
scattering approach, we neglect any inelastic contributions due to the participation
of molecular vibrations (this is done by removing the vibrational Hamiltonians 0
and 1 from Eq. (7.168)).

First, we determine the transition rate kLk→Rq describing an elastic scattering
process of an electron, coming from the left lead and moving to the right, at the
molecule. Using the detailed calculations given in the supplementary Section
7.10.5, one obtains the following expression for the transition rate (the rate of the
reverse transition is obtained by an interchange of Lk and Rq):

kLk→Rq = 2𝜋

ℏ4 𝛿(𝜀Rq − 𝜀Lk)|VR(𝜀Lk)⟨𝜑1|Ĝ(𝜀Lk)|𝜑1⟩V∗
L (𝜀Lk)∣2. (7.177)
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Figure 7.30 Vibrational contributions in the IV characteristics of a single copper
phthalocyanine molecule contacted by the tip of a scanning tunneling microscope (STM)
and an NiAl(110) surface with an ultrathin Al2O3 film separating the molecule from the
metal surface. (a–c) STM scans of different arrangements of the molecule at the NiAl(110)
surface (the different contact points of the STM tip are indicated, scan size 37 Å times 37 Å)
and the related molecular structures in the respective positions; (d, e) measured currents
versus applied voltage taken at the different contact points as well as their first (f, g) and
second (h, i) derivatives with respect to the applied voltage. The distinct equidistant peaks
in the latter are related to vibrations associated with the deformations of the inner ring of
the phthalocyanine macrocycle (h) and vibrations involving the out-of-plane motions of the
isoindole atoms (i) (Reproduced with permission from Qiu et al. [12]/American Physical
Society).

The presence of the 𝛿-function indicates the elastic character of the scattering
process, and we again assumed that the k-vector dependency of the molecule–lead
couplings can be replaced by the direct dependence on the band energies. Ĝ is
the Fourier-transformed Green’s operator defined by the time evolution operator,
Eq. (7.253), of the molecule–lead system (see also Section 3.3.3). It appears in a
matrix element taken with the single-electronic state that characterizes the singly
charged molecule.

The current related to the charge transmission from the left to the right electrode
follows as

IL→R = 2|e|∑
k,q

fF(ℏ𝜀Lk − 𝜇L)
[
1 − fF(ℏ𝜀Rq − 𝜇R)

]
kLk→Rq. (7.178)

Changing from the k-vector dependence to a continuous frequency dependence
(𝜀Lk → Ω and 𝜀Rq → Ω̄), we write this expression as

IL→R = |e|
2𝜋 ∫

dΩ fF(ℏΩ − 𝜇L) L→R(Ω)
[
1 − fF(ℏΩ − 𝜇R)

]
. (7.179)
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The double frequency integration is reduced to a single one because of the 𝛿-function
in the rate. Further, we define the transmission function for electrons moving from
the left to the right lead (note also the introduction of a DOS, Eq. (7.136), for each
electrode)

L→R(Ω) =
4𝜋

2

ℏ4 R(Ω) ∣ VR(Ω)⟨𝜑1|Ĝ(Ω)|𝜑1⟩V∗
L (Ω)∣

2L(Ω). (7.180)

We evaluate the absolute square and get

L→R(Ω) = 4𝜋
2ΓR(Ω)⟨𝜑1|Ĝ(Ω)|𝜑1⟩ΓL(Ω)⟨𝜑1|Ĝ+(Ω)|𝜑1⟩, (7.181)

where the definition of the molecule–lead coupling function equation (7.142) has
been used (note the specification to the left and the right electrodes). The operator
version Γ̂X = ΓX |𝜑1⟩⟨𝜑1| of the coupling function gives an appealing form for L→R:

L→R(Ω) = 4𝜋
2trmol{Γ̂R(Ω)Ĝ(Ω)Γ̂L(Ω)Ĝ+(Ω)}

≡ 4𝜋
2trmol{Γ̂L(Ω)Ĝ+(Ω)Γ̂R(Ω)Ĝ(Ω)}. (7.182)

The trace is restricted here to the single-state 𝜑1 referring to the singly-charged
molecule. However, the expression stays valid if more molecular states are involved.
Therefore, we introduced a labeling by the index mol. Since the Green’s operators
Ĝ+ and Ĝ are embedded in the molecule–lead coupling operators, we may change to
the reduced version:

Ĝmol(Ω) = Π̂molĜ(Ω)Π̂mol. (7.183)

The quantity Π̂mol projects on the states of the singly-charged molecule (here simply
identical with |𝜑1⟩⟨𝜑1|). We obtain

L→R(Ω) = 4𝜋
2trmol{Γ̂L(Ω)Ĝ+

mol(Ω)Γ̂R(Ω)Ĝmol(Ω)}, (7.184)

and for the reverse transition from the right to the left electrode,

R→L(Ω) = 4𝜋
2trmol{Γ̂R(Ω)Ĝ+

mol(Ω)Γ̂L(Ω)Ĝmol(Ω)}
≡ 4𝜋

2trmol{Γ̂L(Ω)Ĝmol(Ω)Γ̂R(Ω)Ĝ+
mol(Ω)}. (7.185)

If the coupling operators to the leads coincide, both transmission functions become
identical (L→R = R→L ≡  ).

The total stationary current follows as

I(V) = IL→R − IR→L = |e|
𝜋 ∫

dΩ
(

fF(ℏΩ − 𝜇L)
[
1 − fF(ℏΩ − 𝜇R)

]
L→R(Ω)

− fF(ℏΩ − 𝜇R)
[
1 − fF(ℏΩ − 𝜇L)

]
R→L(Ω)

)
. (7.186)

The current formula simplifies in the case of the identical molecule–lead couplings

I(V) = |e|
𝜋 ∫

dΩ
(

fF(ℏΩ − 𝜇L) − fF(ℏΩ − 𝜇R)
)
 (Ω). (7.187)

The expression can be used to calculate the IV characteristics of a particular
molecule attached to two nanoelectrodes. The transmission function regulates the
contribution of a particular transmission channel determined by a scattered elec-
tron with energy ℏΩ. All possible channels are accounted for by the Ω-integration.
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The difference in the Fermi function establishes a “transmission window” where
current flow becomes possible. The lead electronic states enter only in an implicit
way via the coupling operators as well as the related self-energies.

We demonstrate this by computing a concrete expression for the Green’s opera-
tor Ĝmol(Ω), Eq. (7.183), reduced to the states of the charged molecule. The general
methodology is given in Section 3.3.3. We note Eq. (3.111) for the reduced Green’s
operator and obtain here

Ĝmol(Ω) =
Π̂mol

Ω − 𝜀1 − Σ̂(Ω) + i𝜖
. (7.188)

The self-energy operator Σ̂ separates into a contribution from the left and the right
leads Σ̂ = Σ̂L + Σ̂R. According to Eq. (3.110), we have

Σ̂X (Ω) =
1
ℏ2

∑
k

|VXk|2
Ω − 𝜀k + i𝜖

Π̂mol ≡
1
ℏ2 ∫

dΩ̄
X (Ω̄)|VX (Ω̄)|2

Ω − Ω̄ + i𝜖
Π̂mol. (7.189)

Obviously, the molecule–lead coupling operators Γ̂X can be deduced from the
anti-Hermitian part according to Γ̂X = i∕2𝜋 × (Σ̂X − Σ̂+

X ) (cf. Eq. (3.112)). The
appearance of Σ̂ in the denominator of Ĝmol recalls the fact that the molecule–lead
coupling has been accounted for beyond any perturbation expansion (which
guarantees the validity of the approach also for a strong coupling of the molecule to
the leads).

Before presenting an explicit expression for the current, we compute the resistance
at T = 0 following from Eq. (7.187). Noting the T = 0 relation fF(ℏΩ − 𝜇L) − fF(ℏΩ −
𝜇R) = 𝜃(𝜇L − ℏΩ) − 𝜃(𝜇R − ℏΩ), the current follows as

I(V) = |e|
𝜋

EF∕ℏ+|e|V∕2ℏ

∫
EF∕ℏ−|e|V∕2ℏ

dΩ  (Ω). (7.190)

One easily computes the differential conductivity (inverse differential resistance) as
the derivative of the current with respect to the voltage g(V) = dI(V)∕dV . The con-
ductivity (V = 0) follows as

g(V = 0) = |e|2
𝜋ℏ

 (EF∕ℏ), (7.191)

where 𝜋ℏ∕|e|2 = h∕2|e|2 is known as the “quantum of resistance” (how it determines
the actual conductivity is determined by the value of the transmission function at the
Fermi energy).

7.8.2.1 An Example
We return to the case where the charged molecule is characterized by the single-level
𝜑1 with energy E1. Moreover, identical leads are assumed. Then, Eq. (7.187) for
the current can be used. When calculating the molecule–lead self-energy, we
neglect the hermitian part, thus ignoring a possible shift of the molecular energy
E1 by its coupling to the leads. The imaginary part (the molecule–lead coupling
function) is taken in the wide band limit, Eq. (7.144), leading to a common and
frequency-independent Γ. The transmission function entering Eq. (7.187) reads

 (Ω) = 4𝜋
2Γ2

(Ω − 𝜀1)2 + 4𝜋2Γ2 . (7.192)
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If the energy of the lead electron to be scattered is near the energy of the charged
molecule, then  (Ω) reaches values near unity. Otherwise, it is of minor importance.
The broadening of the molecular energy E1, and thus of the transmission peak, is reg-
ulated by the molecule–lead coupling (the magnitude of the latter is not restricted
within this description). The current formula, Eq. (7.187), accounts for all energies
ℏΩ that fit into the “transmission window.” Assuming E1 > EF, the current stays
small as long as E1 − EF > |e|V∕2. If the applied voltage is increase to fit the condi-
tion E1 − EF ≈ |e|V∕2, the current may increase abruptly but changes only a little bit
if V is further increased. The respective computations that focus on the transmission
function of an aromatic molecule are presented in Figure 7.31.

7.8.2.2 Inclusion of Vibrational Levels
We extend the considerations of the previous section to the inclusion of vibrational
DOFs of the molecule (attached again to a left and a right lead). Although the elec-
tron transmission through the molecule will be considered in the framework of the
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Figure 7.31 Vibrational contributions to the charge transmission through a
benzene-di(ethanethiolate) molecule attached to two pyramidal gold contacts. (a) Total
transmission probability (at V = 0) as a function of the initial hole energy (relative to the
Fermi energy). The two orbitals shown dominate the transmission function at the indicated
peaks. (b) IV characteristics including vibrational contributions (full line) and without
(dashed line). (c) The molecular normal mode vibrations included in the computations
(Reproduced with permission from Benesch et al. [13]/American Chemical Society).
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scattering theory, it becomes inelastic from the point of view of the transmitted elec-
trons. What is conserved is the electron–vibrational energy. For a transition from the
left to the right lead, the energy ELk + ℏ𝜔0𝜇

of the initial state has to coincide with
the energy ERq + ℏ𝜔0𝜇

of the final state (ℏ𝜔0𝜇
and ℏ𝜔0𝜈

denote the related vibrational
energies). Since the vibrational state may change in the course of the scattering pro-
cess, the electronic energy changes too. But note that any vibrational relaxation is
not included in this description.

The inclusion of vibrational contributions into the formalism used in the pre-
ceding section is rather straightforward. Instead of the transition relation (from the
left to the right lead) used before, we have to consider |𝜒0𝜇

⟩|𝜑Lk⟩ → |𝜒0𝜈
⟩|𝜑Rq⟩ (𝜒0𝜇

and 𝜒0𝜈
denote the vibrational states of the uncharged molecule). Accordingly, we

arrive at

kLk𝜇→Rq𝜈
= 2𝜋

ℏ4 𝛿(Ω̄ + 𝜔0𝜈
− Ω − 𝜔0𝜇

)|VR(Ω̄)⟨𝜑1𝜒0𝜈
|Ĝ(Ω + 𝜔0𝜇

)|𝜒0𝜇
𝜑1⟩V∗

L (Ω)∣
2
.

(7.193)

The vibrational wave functions of the initial and final scattering states appear
unchanged in this expression. However, the initial and final state band continuums
represented by the energies ℏΩ and ℏΩ̄, respectively, are shifted by vibrational
energies (the initial electronic energy is not necessarily identical to the final
electronic state energy).

When calculating the left to right current, we may introduce again an expression
as in Eq. (7.179), but generalized to the inclusion of inelastic contributions:

IL→R = |e|
𝜋 ∫

dΩdΩ̄ fF(ℏΩ − 𝜇L) L→R(Ω, Ω̄)
[
1 − fF(ℏΩ̄ − 𝜇R)

]
. (7.194)

The formula includes independent integrations with respect to the initial and final
electronic energies reflecting the inelastic character of the scattering process (the
transmission function also depends on two frequency arguments). Equation (7.194)
already accounts for the distribution of the initial electrons to be scattered as well
as the possible population of the final states. But a similar treatment of the initial
and final vibrational states becomes necessary now. The initial vibrational states are
distributed due to f0𝜇

. In contrast, there are no restrictions with respect to the final
states. Thus, the transmission function, (7.180) has to be generalized to

L→R(Ω, Ω̄) = 4𝜋
2

ℏ4

∑
𝜇,𝜈

f0𝜇
𝛿(Ω̄ + 𝜔0𝜈

− Ω − 𝜔0𝜇
)

×R(Ω̄)|VR(Ω̄)⟨𝜑1𝜒0𝜈
|Ĝ(Ω + 𝜔0𝜇

)|𝜒0𝜇
𝜑1⟩V∗

L (Ω)∣
2L(Ω).

(7.195)

We again introduce the molecule–lead coupling function, (7.142) and may write

L→R(Ω, Ω̄) = 4𝜋
2
∑
𝜇,𝜈

f0𝜇
𝛿(Ω̄ + 𝜔0𝜈

− Ω − 𝜔0𝜇
)

× ΓR(Ω̄) ∣ ⟨𝜑1𝜒0𝜈
|Ĝ(Ω + 𝜔0𝜇

)|𝜒0𝜇
𝜑1⟩∣2ΓL(Ω). (7.196)

To make this relation more explicit, concrete expressions for the Green’s opera-
tor matrix elements ⟨𝜑1𝜒0𝜈

|Ĝ(Ω + 𝜔0𝜇
)|𝜒0𝜇

𝜑1⟩ have to be calculated. Since the
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electronic matrix element with respect to the singly charged state appears, we may
calculate the Green’s operator Ĝ1 reduced to this state. Similar computations have
already been carried out in Section 7.7.1.3 in connection with the determination of
the finite electron lifetime due to a HET process. In a first step, one has to change to
vibrational matrix elements that belong to vibrational states of the singly charged
molecule; that is, we have to use the states 𝜒1𝜅

. Therefore, one introduces the
vibrational completeness relation

∑
𝜅
|𝜒1𝜅
⟩⟨𝜒1𝜅

| left and right from Ĝ in the original
matrix element (in the right-hand side case, we use the vibrational quantum
number 𝜆 instead of 𝜅). It results in matrix elements ⟨𝜑1𝜒1𝜅

|Ĝ1(Ω + 𝜔0𝜇
)|𝜒0𝜆

𝜑1⟩.
In the wide-band limit, we may derive an explicit expression for the Green’s operator
matrix elements, which read in the present case

G1𝜅,1𝜆
(Ω + 𝜔0𝜇

) =
𝛿

𝜅,𝜆

Ω + 𝜔0𝜇
− 𝜀1 − 𝜔1𝜅

+ i𝜋(ΓL + ΓR)
. (7.197)

This gives for the matrix element in the transmission function

⟨𝜑1𝜒0𝜈
|Ĝ(Ω + 𝜔0𝜇

)|𝜒0𝜇
𝜑1⟩ =∑

𝜅

⟨𝜒0𝜈
|𝜒1𝜅
⟩⟨𝜒1𝜅

|𝜒0𝜇
⟩

Ω + 𝜔0𝜇
− 𝜀1 − 𝜔1𝜅

+ i𝜋(ΓL + ΓR)
. (7.198)

Focusing again on a low-temperature region, f0𝜇
has to be replaced by 𝛿

𝜇,0, and fF
by the unit-step function. Then, the total current becomes identical to the left-right
current, and we may write (note the assumption of the wide-band limit and the
assumption of identical leads, that is ΓL = ΓR = Γ)

I = |e|
𝜋

∑
N

EF+|e|V∕2

∫
EF−ℏ𝜔0𝜈

−|e|V∕2

dΩ ∣
∑
𝜅

2𝜋 Γ⟨𝜒00|𝜒1𝜅
⟩⟨𝜒1𝜅

|𝜒0𝜈
⟩

Ω − 𝜀1 − 𝜔1𝜅
+ 2𝜋iΓ

∣2. (7.199)

In generalization of the current formula, Eq. (7.190), with the transmission function,
Eq. (7.192), scattering includes excited vibrational levels of the charged molecule.
Their contributions are regulated by vibrational overlap expressions between states
𝜒1𝜅

of the charged molecule and states 𝜒00 as well as 𝜒0𝜈
of the uncharged one.

And the “transmission window” is determined by vibrational energies of the neu-
tral molecular state. All these additional transmission channels should introduce a
certain fine structure in the IV characteristics. The corresponding computations are
displayed in Figure 7.31, where some vibrations coupling dominantly to the charging
of the molecule are included. The various steps in the low-temperature IV charac-
teristics are due to the participation of vibrational quanta.

7.9 Photoinduced Ultrafast Electron Transfer

Photoinduced ET reactions have already been introduced in Section 7.1 (cf.
Figure 7.6). In what follows, we concentrate on ET processes that are so fast that
in the course of the electron motion from the donor to the acceptor, no complete
vibrational relaxation is possible, that is 𝜏rel > tET. Since vibrational relaxation
usually occurs on a picosecond (10−12 seconds) or sub-picosecond time scale,
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ultrafast ET reactions have to proceed in the same time region. This is also valid for
the time resolution of the laser pulses used to initiate ET (to prepare the excited
donor state D∗, see scheme (7.3)) and to observe ET. Current laser technology
achieves pulse durations comparable to or even shorter than the relevant system
time scales tET and 𝜏rel. The vibrational motion is partly coherent, and the related
wave packet dynamics can be observed using nonlinear optical spectroscopy. In this
way, it is possible to take snapshots of the electron–vibrational dynamics.

If the inequality 𝜏rel > tET is valid, the ET is no longer of the nonadiabatic type. In
the foregoing section, we demonstrated how to go beyond the limit of nonadiabatic
ET by improving the lowest order perturbation theory with respect to the transfer
integral VDA. An alternative would be the use of the path integral or the hierarchy
equations of motion approach outlined in Section 3.10 and 3.11, respectively, that
can account for arbitrary state couplings, while providing at the same time an exact
treatment of the coupling to harmonic oscillator reservoirs. Here, we present a den-
sity matrix description that is numerically less demanding as compared, for instance
to a path integral study. The drawback, however, is that only a few vibrational DOFs
can be incorporated nonperturbatively; the majority forms a heat bath that is treated
by the quantum master equation (QME) approach.

Consequently, we derive equations of motion whose solutions describe the ET in
a nonperturbative manner with respect to the interaction strength VDA. To do this,
we introduce a density matrix approach capable of describing the time evolution of
an initially defined density matrix. Thus, the limits of adiabatic and nonadiabatic
ET are naturally included, and all types of electronic and vibrational coherences are
accounted for. Furthermore, it is a particular advantage of this approach that one can
easily include the radiation field and compute ultrafast optical spectra. In the sub-
sequent Section 7.9.2, different prescriptions for defining ET rates starting with the
time-dependent density matrix will also be discussed.

According to Scheme (7.3), the photoinduced ET considered in what follows
requires the excitation of an electron from the ground state of the DA complex to the
(diabatic) donor state. Therefore, the manifold of electronic states considered so far
has to be supplemented by the electronic ground state of the complex (cf. Figures 7.6
and 7.32). Often, only a small number of active vibrational coordinates couple to the
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Figure 7.32 Electronic ground-state PES as
well as donor and acceptor diabatic PESs
(plotted along the active coordinate s)
appropriate for photoinduced ET. If the initial
state preparation becomes ultrafast, the
limit of impulsive excitation can be applied,
resulting in an instantaneous shift of the
electronic ground state vibrational wave
function to the donor PES.
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external field and to the ET reaction (at least one coordinate s). All the remaining
inter- and intramolecular vibrational DOFs, denoted as Z = {Z

𝜉
}, are incorporated

in an indirect manner in the optical preparation process and the ET reaction. They
are assumed to form a heat bath (uncoupled normal-mode oscillators) for the
active coordinates. This assumption directly results in a separation of the complete
Hamiltonian into the (active) system part HS and the reservoir contribution HR.
(This was discussed in Chapter 3 as the basic idea behind the concept of the reduced
density operator.) We write

H(t) = HS(t) + HS-R + HR, (7.200)

where the time dependence points to the inclusion of the coupling to a laser field. To
derive the different parts of this Hamiltonian, we note the original form, Eq. (7.23), of
the ET Hamiltonian (with bridge molecule contributions neglected here). The vibra-
tional Hamiltonians referring to the electronic states as well as the transfer integral
depend on the active as well as the reservoir coordinates. If we neglect the respective
dependencies of the transfer integrals, there remain the diabatic state PES Um(s, Z).
The intended system reservoir separation is achieved if we presume the following
separation of the PES:

Um(s, Z) = Um(s) + Wm(s, Z) + U(Z). (7.201)

It splits into a part Um(s) that only depends on the active coordinate, a coupling part
Wm(s, Z), and a part U(Z). The latter expression is determined exclusively by the heat
bath (reservoir) coordinates. Since it does not depend on the diabatic state index m,
the coordinates Z, indeed, are not affected by the ET. Wm(s, Z) depends on both types
of coordinates and becomes responsible for energy dissipation from the ET system
into the reservoir. The system part of Eq. (7.200) takes the form

HS(t) = Hmol + HF(t). (7.202)

This Hamiltonian allows us to describe the excitation process of the donor and thus
the preparation process of the ET reactant state. Note that this extends our previ-
ous considerations where the preparation process of the initial state of the excess
electron had not been considered. HS(t) separates into the molecular part Hmol and
the coupling to the external field HF(t) (described in a semiclassical approach and
within the electric dipole approximation; cf. Eq. (4.18)). The molecular part com-
prises the vibrational Hamiltonian Hg of the electronic ground state |𝜑g⟩ and the
part describing the ET reaction. We have

Hmol = Hg|𝜑g⟩⟨𝜑g| + HDA. (7.203)

The system reservoir coupling part of Eq. (7.200) may be written as
∑

mWm(s;Z)|𝜑m⟩⟨𝜑m|. We concentrate on a bilinear coupling, that is an expression that depends
linearly on all system coordinates s as well as reservoir coordinates Z. For practical
reasons, HS-R is taken as in Eq. (3.198):

HS-R =
∑

m
Km(s)Φm(Z). (7.204)
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The reservoir part reads

Φu(Z) ≡ Φm(Z) =
∑

𝜉

k
𝜉
(m)Z

𝜉
. (7.205)

Concerning the system contribution to HS-R, we restrict ourselves to a single
harmonic reaction coordinate (vibrational frequency Ωs and reduced mass 𝜇s) and
obtain

Km(s) =
√

2𝜇sΩs

ℏ

(s − s(m))|𝜑m⟩⟨𝜑m|. (7.206)

The used system–reservoir coupling depends on the electronic state and increases
with the deviation of the system coordinate s from its equilibrium position s(m). (Note
that we introduced Km(s) as a dimensionless quantity (cf. discussion in Section 5.3.5.)
The spectral density Jmn(𝜔) referring to the given system–reservoir coupling can be
obtained in analogy to Eq. (3.294) (but here with an additional dependence on the
electronic quantum numbers m and n).

Before introducing the density matrix, we specify the preparation process of the
reactant state. A general description of the optical preparation of an excited elec-
tronic state has already been given in Section 6.5. We follow this scheme here and
assume an exclusive population of the donor state (Figure 7.32). Obviously, for large
values of VDA, a certain combination of donor and acceptor levels will be popu-
lated, and the description in terms of adiabatic states becomes more convenient.
Additionally, it is assumed that the pulse duration 𝜏 is short compared to the time
scales of vibrational motion as well as ET (limit of impulsive excitation, cf. Section
6.5). As shown in Section 6.5, this enables us to eliminate the nuclear dynamics on
the electronic ground state PES from the considerations. The optically prepared ini-
tial state for the ET reaction is obtained as (cf. Eq. (6.110))

�̂�(t0) =
1
ℏ

2 |dDgE(tp)𝜏|2 R̂m|D⟩⟨D|. (7.207)

Here, E(tp) is the electric field strength at pulse maximum tp, and 𝜏 denotes the corre-
sponding pulse duration. We emphasize that, as a result of the impulsive excitation,
the vibrational state in the electronic ground state represented by the ground state
vibrational equilibrium density operator R̂m has been instantaneously transferred
onto the donor diabatic electronic state. At low temperatures, this corresponds to
the projection of the ground state vibrational wave function onto the donor state as
shown in Figure 7.32. Again, although Eq. (7.207) contains the vibrational statistical
operator of the electronic ground state, the dynamics within the electronic ground
state could be eliminated. Equation (7.207) gives the initial value for the density
matrix, which is exclusively defined with respect to the electronic DA levels. If the
underlying time scale separation is not possible, it is necessary to incorporate the
coupled dynamics of the ground and excited states into the equations of motion.

Having specified the total Hamiltonian (7.200), we are in a position to use the den-
sity matrix theory, introduced in Section 3.8. However, our molecular Hamiltonian
(the HDA part) is not in diagonal form. This might become a problem insofar as a
direct use of the state representation of Section 3.8.2 requires the knowledge of the
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respective eigenstates (see also the similar discussion in Section 3.12 dealing with
the dynamics of a two-levels system).

Suppose that these eigenstates have been calculated from

HDA|𝜓𝛼
⟩ = 

𝛼
|𝜓

𝛼
⟩. (7.208)

This equation defines the adiabatic electron–vibrational states of the DA Hamilto-
nian. (Although it would be possible to classify the states according to their relation
to the upper and lower adiabatic PESs, Eq. (7.40), we do not introduce such a speci-
fication.) In general terms, diabatic |𝜑m⟩|𝜒mM⟩ and adiabatic states are related via a
linear transformation (see also Section 2.6)|𝜓

𝛼
⟩ =∑

m,M
c
𝛼
(mM) |𝜑m⟩|𝜒mM⟩. (7.209)

Once the adiabatic states and energies are known, it is possible to introduce the den-
sity matrix in the adiabatic state representation,

𝜌
𝛼𝛽
(t) = ⟨𝜓

𝛼
|�̂�(t)|𝜓

𝛽
⟩, (7.210)

and to derive the respective equations of motion (see Section 3.8.2). Such an
approach is most appropriate for the case of strong interstate coupling VDA.
In particular, VDA is nonperturbatively incorporated into the description of
dissipative processes via the Redfield tensor, Eq. (3.345).

Alternatively, one can define the density matrix in the diabatic state
representation,

𝜌
𝜇𝜈
(t) ≡ 𝜌mM,nN (t) = ⟨𝜒mM|⟨𝜑m|�̂�(t)|𝜑n⟩|𝜒nN⟩, (7.211)

where it is straightforward to compute the diabatic electronic state populations:

Pm(t) = trvib{⟨𝜑m|�̂�(t)|𝜑m⟩} =
∑

M
𝜌mM,mM(t), (7.212)

which can be directly related to the ET rate (for details, see Section 7.9.2). To char-
acterize the dynamics of the vibrational mode accompanying the ET reaction, one
can use the probability distribution

P(s, t) = ⟨s|trel{�̂�(t)}|s⟩ = ∑
m,M,N

𝜒mM(s)𝜌mM,mN (t)𝜒∗
mN (s), (7.213)

which replaces the square of the vibrational wave function in the case of dis-
sipative dynamics. For further use, we also give the internal energy of the DA
electron–vibrational system (for the notation, also compare Section 7.2.3):

Eint(t) =
∑
𝜇𝜈

(
𝛿

𝜇𝜈
E

𝜇
+ (1 − 𝛿mn)V𝜇𝜈

)
𝜌

𝜇𝜈
(t). (7.214)

Equations (7.212)–(7.214) demonstrate that observables of interest can be deter-
mined using the density matrix in the diabatic state representation. Finally, we
would like to point out that the diabatic state representation can be used in the case
of strong interstate coupling too. However, one has to make sure that the Redfield
tensor is calculated using the eigenstates (adiabatic states) of HDA. The last point is
of less importance if VDA is small. In this case, dissipation can often be simulated
using the diabatic states. This issue will be addressed in more detail in the following
section.
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7.9.1 Quantum Master Equation for Electron Transfer Reactions

In what follows, we IndexQuantum master equation for electron transfer reac-
tionsconsider photoinduced ultrafast ET in the limit where the dissipation of
electron–vibrational energy can be described within the Markov approximation.
The applicability of this approximation is not straightforward and deserves some
comments (cf. discussion in Section 3.6.1). Let us assume that the Markov approx-
imation is valid in the absence of an external field. It is obvious that the situation
would not change if the system interacts with an optical pulse that is long compared
to 𝜏mem (the characteristic time during which the memory function, describing
dissipation, decays; cf. Section 3.6.1). Also, in the limit of impulsive excitation, we
would expect that the Markov approximation is still valid (the initial state prepa-
ration is short compared to any other characteristic time of the system). However,
if the pulse duration is comparable to 𝜏mem, the external driving introduces a new
characteristic time, and no time scale separation is possible. As a consequence,
the theoretical description based on the QME in the Markov approximation
(as presented below) becomes invalid.

In the following discussion, we focus on the limit of impulsive excitation and
assume the validity of the Markov approximation. We consider the representation
of the QME in the diabatic basis. Using 𝜔

𝜇𝜈
= (E

𝜇
− E

𝜈
)∕ℏ, we have

𝜕

𝜕t
𝜌

𝜇𝜈
(t) = −i𝜔

𝜇𝜈
𝜌

𝜇𝜈
(t) − i

ℏ

∑
𝜅

(
V

𝜇𝜅
𝜌

𝜅𝜈
(t) − V

𝜅𝜈
𝜌

𝜇𝜅
(t)
)
+
(

𝜕𝜌
𝜇𝜈
(t)

𝜕t

)
diss

.

(7.215)

To obtain the dissipative part of the density matrix equation, we cannot directly
use the general Formulas given in Eq. (3.345), since the diabatic representation is
not an energy representation. Therefore, we start with the QME in the notation of
Eq. (3.265), which does not refer to any specific representation. The indices u and 𝑣

used in Eq. (3.267) can be directly identified with the electronic state index. Taking
the system part of the interaction operator, Km(s), from Eq. (7.206), we obtain for the
respective diabatic state matrix elements

⟨𝜒kK|⟨𝜑k|Km(s)|𝜑l⟩|𝜒lL⟩ = 𝛿km𝛿lm

(
𝛿K,L−1

√
L + 𝛿K,L+1

√
L + 1

)
. (7.216)

The operator Λu ≡ Λm (cf. Eq. (3.264))

Λm =
∑

n

∞

∫
0

d𝜏 Cmn(𝜏)UDA(𝜏)KnU+
DA(𝜏) (7.217)

contains time-evolution operators defined by the complete DA complex Hamilto-
nian HDA. To calculate the diabatic matrix elements of UDA(𝜏)Kn U+

DA(𝜏), we first
use the adiabatic states |𝜓

𝛼
⟩ introduced in Eq. (7.208) and obtain

⟨𝜓
𝛼
|UDA(𝜏)KnU+

DA(𝜏)|𝜓𝛽
⟩ = e−i𝜔

𝛼𝛽
𝜏⟨𝜓

𝛼
|Kn|𝜓𝛽

⟩. (7.218)
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The adiabatic matrix element can be expressed by the diabatic elements, Eq. (7.216),
using Eq. (7.209) as⟨𝜓

𝛼
|Kn|𝜓𝛽

⟩ =∑
k′ ,K′

∑
l′ ,L′

c∗
𝛼
(k′K′)c

𝛽
(l′L′)⟨𝜒k′K′ |⟨𝜑k′ |Kn|𝜑l′⟩|𝜒l′L′⟩

≡
∑
K′ ,L′

c∗
𝛼
(nK′)c

𝛽
(nL′)⟨𝜒nK′ |⟨𝜑n|Kn|𝜑n⟩|𝜒nL′⟩. (7.219)

As in the general treatment of Section 3.8.2, we omit the imaginary contribution
to the Redfield tensor. This is achieved in the present notation by replacing the
half-sided Fourier transform of the correlation function Cmn(𝜏), appearing in
Eq. (7.217), by half of its complete Fourier transform, that is by Cmn(𝜔)∕2. Then, the
diabatic matrix elements of the Λ-operator, Eq. (7.217), read⟨𝜒kK|⟨𝜑k|Λm|𝜑l⟩|𝜒lL⟩ = 1

2
∑

n

∑
𝛼,𝛽

Cmn(−𝜔
𝛼𝛽
)c

𝛼
(kK)c∗

𝛽
(lL)⟨𝜓

𝛼
|Kn|𝜓𝛽

⟩
= 1

2
∑

n

∑
𝛼,𝛽

(
1 + n(𝜔

𝛽𝛼
)
) (

Jmn(𝜔𝛽𝛼
) − Jmn(𝜔𝛼𝛽

)
)

× c
𝛼
(kK)c∗

𝛽
(lL)⟨𝜓

𝛼
|Kn|𝜓𝛽

⟩. (7.220)

Introducing this expression, together with the matrix elements of Km(s), into the
dissipative part of Eq. (7.215) gives the full density matrix equation in the diabatic
representation. This equation is exact with respect to the transfer integral VDA.
Consequently, ET for any value of VDA can be studied covering the range from the
adiabatic ET to the nonadiabatic ET. In contrast, possible values of the coupling
strength to the reservoir are limited by the second-order perturbational treatment.
However, this restriction is not crucial as long as the total system is properly
separated into a relevant system and a reservoir.

The density matrix equations of motion, if expanded with respect to the adia-
batic states, will give the canonical equilibrium distribution as a stationary solution
(cf. Section 3.8.2). Therefore, the density matrix in the diabatic representation reads

𝜌mM,nN (t → ∞) =
∑
𝛼

c
𝛼
(mM)c∗

𝛼
(nN) e−𝛼

∕kBT∑
𝛽

e−𝛽
∕kBT

. (7.221)

As a consequence of the diabatic representation, the density matrix contains nonzero
off-diagonal elements in thermal equilibrium.

For a weak coupling VDA, it is possible to consider the relaxation within the dia-
batic states, thus choosing the dissipative part in the zeroth-order approximation
with respect to the transfer integral. This has the advantage that there is no need for
diagonalizing the system Hamiltonian.

We do not give the complete Redfield tensor but consider the vibrational energy
relaxation rates that can be derived from the general formula (3.350) in the limit of
VDA = 0:

kmM→nN = 1
ℏ

2 𝛿mn
2𝜇sΩs

ℏ

|⟨𝜒mM|(s − s(m))|𝜒mN⟩|2Cmm(𝜔mM,mN )

= 𝛿mn
[
𝛿M+1,N (M + 1)n(Ωs) + 𝛿M−1,N M

(
1 + n(Ωs)

)]
Ω2

s Jmm(Ωs).
(7.222)



374 7 Electron Transfer

Note that all constants have been included in the definition of the spectral density.
In contrast to Eq. (7.220), only electronic diagonal contributions of the spectral den-
sity given at a single frequencyΩs enter the rate formula. The inverse lifetime of state|𝜇⟩ follows as28)

1
𝜏mM

=
∑

N
kmM→mN =

[
(M + 1)n(Ωs) + M

(
1 + n(Ωs)

)]
Ω2

s Jmm(Ωs).

(7.223)

This expression leads to the dephasing rate 𝛾mM,nN = 1∕2𝜏mM +1∕2𝜏nN (cf.
Eq. (3.353)). Figure 7.33 gives some examples for ultrafast ET reactions by showing
the probability distribution, Eq. (7.213), of the vibrational coordinate at different
instants of the time evolution. The vertical position indicates the actual value
of the internal energy, Eq. (7.214). As a consequence of energy dissipation, the
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Figure 7.33 Probability distribution of the
vibrational coordinate, Eq. (7.213), in the
system of a coupled donor and acceptor PESs
(ℏΩs = |VDA|2 = 100 meV, ℏJmm(Ωs) = 10 meV,
kBT ≪ ℏΩs). The position of the probability
distribution with respect to the energy axis
corresponds to the actual internal energy,
Eq. (7.214), at different time steps of the
propagation ( (a) t = 0,20, 40,100, and 500 fs,
(b) t = 0,20, 50,100, and 500 fs, and
(c) t = 0,20, 45,115, and 500 fs, (from top)).
The chosen configurations of both PESs
correspond to the different types of ET
reactions discussed in Section 7.4.1 ((a) normal
region of ET reactions, (b) activationless case,
and (c) ET in the inverted region).

28) The inverse lifetime of the vibrational ground 1∕𝜏m0 becomes proportional to n(Ωs). Because of
this fact, the bilinear system–reservoir coupling as applied here results in a long vibrational ground
state lifetime. The inverse lifetime leads to dephasing rates 𝛾mM,nN = 1∕2𝜏mM +1∕2𝜏nN + 𝛾

(pd)
mM,nN ,

which may also be small if the vibrational ground state is involved and no pure dephasing 𝛾
(pd)
mM,nN is

present (cf. Eq. (3.353)).
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vibrational wave packet performs a damped motion within the coupled PESs. As an
initial state, the vibrational ground state probability distribution displaced into the
donor PES has been taken. Moving to Figure 7.33a from the left to the crossing
point of both PESs, the wave packet splits up into two parts. This results from a
partial reflection in the region around the crossing point. Destructive as well as
constructive interference of both parts of the wave packet follows. In Figures 7.33b
(activationless case of ET, cf. Section 7.4.1) and 7.33c (inverted case), this behavior
is not so clear. The relaxation down to the vibrational ground state of the acceptor
PES is most pronounced in Figure 7.33c.

The derived formulas (with or without the inclusion of VDA in the dissipative part)
give a solid basis for the simulation of ultrafast photoinduced ET reactions. And,
if compared with more involved approaches, they are sufficiently accurate in the
appropriate limit (cf. Figure 7.34). Complemented by the study of the response to
additional radiation fields, the given density matrix approach allows to describe dif-
ferent nonlinear optical experiments. In fact, one can directly include the external
fields into the density matrix equations. An alternative description is given by a per-
turbation expansion with respect to external fields. This leads to nonlinear response
functions characterizing the molecular system (cf. Chapter 4). However, as a conse-
quence of the expansion with respect to the electric field strength, one is practically
limited to low-order processes. The outlined density matrix approach, however, pro-
vides the tools to study effects depending on the field intensity as well, such as the
dynamical Stark effect.
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Figure 7.34 Population P2 of the acceptor in a system of a coupled donor and acceptor
PESs similar to Figure 7.33a (T = 0: panels (a–c), T = 300 K: panel (d), spectral density
according to Eq. (3.301), j0 = 0: panel (a), j0 = 0.2∕𝜋: panel (b), and j0 = 1∕𝜋: panels (c, d)).
Dashed lines: solution of Eq. (7.215), dotted-dashed line: use of a time-dependent version of
the Redfield tensor, and full line: results of computations based on the description of the
reservoir modes by a multiconfiguration version of the approach discussed in Section 3.5.3
(Reproduced with permission from Egorova et al. [14]/American Institute of Physics).
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Finally, we point out that in cases where there is no prominent vibrational
mode with particular strong coupling, all vibrational DOFs can be treated as a
reservoir. The system Hamiltonian includes the electronic DOFs only, and the
system–reservoir coupling is of the type discussed in Section 3.12.2. The QME is
formulated in terms of the electronic states, either diabatic or adiabatic, depending
on the strength of the interstate coupling. An example showing the photoinduced
ET dynamics of a molecular triad is given in Figure 7.35.
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Figure 7.35 Photoinduced ET in a molecular triad (a). Upon excitation of the antenna (An),
ET is triggered, yielding either D-An+-A− or D+-An−-A, which converts into D+-An-A− before
charge recombination to the ground state (b). (c) The HOMO–LUMO transitions for the
adiabatic case that have been used to construct a generalized Mulliken–Hush
parametrization of the ET Hamiltonian. (d) Population dynamics on different time scales
(as indicated), obtained from the solution of the Redfield equations. The system–bath
coupling parameters were calculated using a normal mode expansion of the PESs,
cf. Section 7.2.3, treating all modes as part of the bath (figure courtesy of T. Hansen, for
more details, see Storm et al. [15].)
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7.9.2 Rate Expressions

In the previous section, photoinduced ET has been described via the time-dependent
density matrix. In order to establish the connection with the considerations of
Sections 7.5 and 7.6, we concentrate on the question of how to introduce transfer
rates within the present approach.

According to the general type of rate equations (3.2), we expect an exponential
decay, for example for the donor state population, PD(t) ∝ exp{−kETt}. Although
such a behavior is unlikely at early times (here, it could be oscillatory and multiex-
ponential), it is reasonable to expect it after all coherences have decayed. Therefore,
one can define the ET rate kET as

kET = −lim
t→∞

1
t

ln PD(t), (7.224)

where the donor state population is obtained from the solution of the general density
matrix equations (7.215). The deviation from an exponential decay at early times
reflects an initial time dependence of kET.

Alternatively, one can introduce a transfer rate via the inverse of the mean lifetime
of the electron at the donor state as

kET =
⎛⎜⎜⎝
∞

∫
0

dt PD(t)
⎞⎟⎟⎠
−1

. (7.225)

Finally, in the nonadiabatic limit, it is also possible to compute an explicit expression
for kET. The derivation is similar to that of Section 3.4.5, which resulted in the Golden
Rule formula. In correspondence to Eq. (3.173), we start with an equation of motion
for the diagonal density matrix elements 𝜌

𝜇𝜇
. We get the same type of equation as in

Section 3.4.5, but supplemented by relaxation contributions −
∑

𝜈
(k

𝜇𝜈
𝜌

𝜇𝜇
− k

𝜈𝜇
𝜌

𝜈𝜈
).

In Eq. (3.174), for the off-diagonal part, the transition frequency 𝜔
𝜇𝜈

has to include
dephasing rates 𝛾

𝜇
, resulting in the replacement of 𝜔

𝜇𝜈
by the complex transition

frequency �̃�
𝜇𝜈

= 𝜔
𝜇𝜈

− i(𝛾
𝜇
+ 𝛾

𝜈
). Then, one can follow the reasoning in Section 3.4.5

up to Eq. (3.182) taking into account, however, the coupling to a thermal reservoir.
If the rates k

𝜇𝜈
are large, the theory describes fast relaxation within the two diabatic

states. This point had to be introduced as an additional assumption in the derivation
of Section 3.4.5. Here, the approach automatically gives the thermalization intro-
duced via the assumptions in Eq. (3.172). Taking Eq. (3.182), the only difference is
the appearance of complex transition frequencies, leading to a “broadened” delta
function. Thus, we have the final rate

kET ≡ kDA =
2𝜋|VDA|2

ℏ
2

∑
M,N

f (EDM)|⟨𝜒DM|𝜒AN⟩|2 (𝛾DM + 𝛾AN )∕𝜋
𝜔

2
DM,AN + (𝛾DM + 𝛾AN )2 .

(7.226)

The expression describes nonadiabatic ET from the different vibrational donor
levels EDM to the final acceptor levels, broadened by ℏ𝛾DM and ℏ𝛾AN , respectively.
A thermal averaging and weighting by the respective Franck–Condon factors is also
incorporated.
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7.10 Supplement

7.10.1 Landau–Zener Transition Amplitude

The description of the ET reaction in a DA complex according to Landau and Zener
can be reduced to the calculation of a particular transition amplitude as explained
in Section 7.3.1. Here, we show how to compute the transition amplitude, Eq. (7.53).
In a first step, the time-evolution operator is split up into a part U0 defined by H0
and a remaining S-operator related to the transfer coupling V̂ . Reversing the general
treatment given in Section 3.2.2, the Hamiltonian defining U0 is time dependent.
Nevertheless, it can be calculated analytically. Let us consider this operator in more
detail:

U0(t, t̄) = T̂ exp
⎧⎪⎨⎪⎩−

i
ℏ

t

∫
t̄

d𝜏 H0(𝜏)
⎫⎪⎬⎪⎭ . (7.227)

The two parts forming H0 and proportional to |D⟩⟨D| and to |A⟩⟨A|, however,
commute with each other, and the time-evolution operator can easily be calcu-
lated as

U0(t, t̄) = exp
(

i(𝑣∗FD)(t2 − t̄2)∕2ℏ

) |D⟩⟨D| + exp
(

i(𝑣∗FA)(t2 − t̄2)∕2ℏ

) |A⟩⟨A|.
(7.228)

If we want to calculate the S-operator, the interaction representation V̂ (I) of the inter-
state coupling has to be determined. It reads

V̂ (I)(t, t̄) = exp
(

i𝑣∗(FA − FD)(t2 − t̄2)∕2ℏ

)
VDA|D⟩⟨A| + c.c.. (7.229)

Therefore, the transition amplitude can be written as

ADD = ⟨D|U0(∞,−∞)S(∞,−∞)|D⟩ = ⟨D|S(∞,−∞)|D⟩. (7.230)

The part related to U0 can be eliminated from the matrix element, since it reduces
to 1 in the limits t → ∞ and t̄ → −∞. It remains to calculate the S-operator matrix
element. This will be done by expanding the S-operator with respect to the interstate
coupling. It gives (cf. Section 3.2.2)

⟨D|S(∞,−∞)|D⟩ = ∞∑
n=0

( i
ℏ

)n
+∞

∫
−∞

dtn

tn

∫
−∞

dtn−1 …

t2

∫
−∞

dt1

× ⟨D|V̂ (I)(tn,−∞) V̂ (I)(tn−1,−∞)… V̂ (I)(t1,−∞)|D⟩.
(7.231)

The matrix element corresponds to n jumps of the electron between the donor and
the acceptor levels starting at the donor level but also ending there. Consequently,
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the number of jumps must be even. Taking into account the concrete structure of
the interstate coupling, Eq. (7.229), we can write

⟨D|S(∞,−∞)|D⟩ = ∞∑
n=0

(|VDA|
iℏ

)2n
+∞

∫
−∞

dt2n

t2n

∫
−∞

dt2n−1 …

t2

∫
−∞

dt1

× lim
𝜏→−∞

exp
{

i
ℏ

𝑣
∗(FA − FD)

2
(
(t2

2n − 𝜏
2) − (t2

2n−1 − 𝜏
2)

±… −(t2
1 − 𝜏

2)
)}

. (7.232)

The contributions proportional to 𝜏
2 cancel, and we introduce new time variables

(𝜏1,… , 𝜏n) and (T1,… , Tn) which replace the set (t1,… , t2n). This is done such that
the Jacobian of this transformation remains unchanged. We set 𝜏1 = t1, 𝜏m = t1
+
∑m−1

j=1 (t2j+1 − t2j) for 2 ≤ m ≤ n, and Tm = t2m − t2m−1 for 1 ≤ m ≤ n. For the
transition amplitude, we obtain

⟨D|S(∞,−∞)|D⟩ = ∞∑
n=0

(−1)n
(

VDA|
ℏ

)2n
+∞

∫
−∞

d𝜏1

∞

∫
𝜏1

d𝜏2 …

×…

∞

∫
𝜏n−1

d𝜏n

∞

∫
0

dT1 … dTn

× exp
⎧⎪⎨⎪⎩

i
ℏ

𝑣
∗(FA − FD)

2

⎛⎜⎜⎝2
n∑

m=1
𝜏mTm +

[ n∑
m=1

Tm

]2⎞⎟⎟⎠
⎫⎪⎬⎪⎭ .

(7.233)

Any interchange of the variables 𝜏m does not alter the total integral. Therefore, we
can extend all 𝜏m-integrations to −∞. Doing so, it is necessary to introduce the pref-
actor 1∕n! The remaining integrals can be calculated, and we have

⟨D|S(∞,−∞)|D⟩ = ∞∑
n=0

(−1)n|VDA∕ℏ|2n 1
n!

(
𝜋ℏ

𝑣
∗|FA − FD|

)n

= e−Γ∕2
, (7.234)

with

Γ = 2𝜋

ℏ𝑣∗
|VDA|2|FD − FA| . (7.235)

This result has been used in Section 7.3.1.

7.10.2 The Multimode Marcus Formula

In what follows, we explain in some detail how to derive the Marcus formula,
Eq. (7.71), in the case of many vibrational DOFs leading to the multimode reorga-
nization energy, Eq. (7.72). To achieve this goal, we start again with formula (7.62)
for the ET rate. However, to tackle the rate calculation it is advantageous to replace
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the delta function by its respective Fourier integral. We obtain (notice that q = {q
𝜉
}

and the introduction of the partition function )

kET =
|VDA|2
ℏ

2

+∞

∫
−∞

dt
∫

dq exp

{
−

UD(q) − U (0)
D

kBT
+ it

ℏ

[UD(q) − UA(q)]

}
.

(7.236)

In a first step, one calculates the integrals with respect to the vibrational coordinates.
Due to the replacement of the delta function by a Fourier integral, the multiple coor-
dinate integral factorizes into a product of simple integrals. These can be reduced to
integrals with respect to Gaussian functions. We obtain

∫
dq exp

{
−

UD(q) − U (0)
D

kBT
+ i

ℏ

t[UD(q) − UA(q)]

}

=

(∏
𝜉

√
2𝜋kBT

𝜔
2
𝜉

)
exp
{
−

kBT
ℏ

2 [UA(qD) − U (0)
A ] t2

}
× exp

{
i
ℏ

[
UD(0) − UA(0) −

∑
𝜉

𝜔
2
𝜉
(q(D)

𝜉
− q(A)

𝜉
)q(D)

𝜉

]
t

}
.

(7.237)

The expression UA(qD) − U (0)
A can be identified as the reorganization energy,

Eq. (7.72). The remaining time integral again is of Gaussian type and can easily
be performed. A proper collection of all constants finally yields the multimode
Marcus-type formula, Eq. (7.71).

7.10.3 Second-order Electron Transfer Rate

The rate that is of second order with respect to the transfer coupling describes nona-
diabatic ET and is computed in Sections 7.4. Here, we give an alternative view on
the high-temperature version of this rate. It is based on a mixed quantum–classical
description of ET, with the vibrational dynamics accompanying the ET considered
in the framework of classical mechanics. In this way, the treatment will justify the
ansatz we used in Section 7.4.1 (cf. also Section 6.3.3). Furthermore, this approach
will be applied when calculating higher order transfer rates in the supplementary
Section 7.10.4.

The mixed quantum–classical description starts from the frequency-dependent
rate expression, Eq. (3.505), connecting here diabatic states 𝜑m and 𝜑n. The intended
approximation can be easily introduced if the vibrational part of the trace expression
in Eq. (3.505) is transformed into the Wigner representation (cf. Section 3.4.4). In
order to do this, we define the operator

�̂�m(t) = 0(t)V Ŵm = U0(t)
(
V R̂mΠ̂m

)
U+

0 (t), (7.238)

where 0(t)… = U0(t)…U+
0 (t) defines the time evolution based on the Hamil-

tonian H0, Eq. (7.126). We further introduced the Liouvillian V of the transfer
coupling, Eq. (7.127). Finally, Π̂m denotes the projector on 𝜑m, and R̂m is the
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corresponding vibrational equilibrium statistical operator. The trace expression of
Eq. (3.505) adopted to the present notation follows as

trvib{⟨𝜑n|V �̂�m(t)}|𝜑n⟩} = 1
ℏ

∑
k

(
Vnk⟨𝜑k|trvib{�̂�m(t)}|𝜑n⟩

−(k ↔ n)) . (7.239)

The advantage of introducing �̂�m is related to the fact that its equation of motion is
easily derived, and that it can be transformed into the Wigner representation without
further difficulties. We note that

trvib{�̂�m(t)} =
∫

dq ⟨q|�̂�m(t)|q⟩ ≡ ∫
dx

dp
(2𝜋ℏ)

�̂�m(x, p; t). (7.240)

In the first part of this equation, we specialized the trace using the complete set of
vibrational coordinate operator eigenstates |q⟩ ≡ |{q

𝜉
}⟩. Then, in the second part,

this particular choice of the trace has been transformed from the coordinate repre-
sentation of �̂�m to the Wigner representation. The transformation of ⟨q|�̂�m(t)|q⟩ cor-
responds to a partial Wigner transformation as introduced in Section 6.3.3. �̂�m(x, p; t)
depends on the set of  classical vibrational coordinates x = {x

𝜉
} and vibrational

momenta p = {p
𝜉
} but remains an operator in the electronic state space (the inte-

grations in Eq. (7.240) abbreviate  -fold integrals with respect to the vibrational
coordinates and momenta). According to Eq. (7.238), we obtain the initial value

�̂�m(x, p; t = 0) = 1
ℏ

fm(x, p)
∑

k

(
Vkm|𝜑k⟩⟨𝜑m| − (k ↔ m)

)
. (7.241)

As a result of the Wigner representation, the equilibrium statistical operator R̂m has
been replaced by the equilibrium distribution fm(x, p) of the vibrational coordinates
and momenta.

Having introduced the (partial) Wigner representation of �̂�m(t), we can directly
obtain an equation of motion for �̂�m(x, p; t) in the mixed quantum–classical limit. It
reads (note the appearance of commutators and anticommutators)

𝜕

𝜕t
�̂�m(x, p; t) = − i

ℏ

[
H0, �̂�m

]
− + 1

2
∑

𝜉

{[
𝜕H0

𝜕x
𝜉

,

𝜕�̂�m

𝜕p
𝜉

]
+
−
[
𝜕H0

𝜕p
𝜉

,

𝜕�̂�m

𝜕x
𝜉

]
+

}
.

(7.242)

As it is the case for �̂�m, the Hamiltonian H0 derived from Eq (7.126) also depends
on the classical coordinates and momenta but remains an operator in the electronic
state space. Let us neglect the second term on the right-hand side. Then, it is easy
to solve the remaining equation. After taking electronic matrix elements, it follows
that ⟨𝜑k|�̂�m(x, p; t)|𝜑l⟩ = ⟨𝜑k|U0(t)�̂�m(x, p; t = 0)U+

0 (t)|𝜑l⟩
= 1

ℏ

(𝛿mlVkm − 𝛿mkVml)fm(x, p) exp
(
− i

ℏ

[Uk − Ul]t
)

.

(7.243)

Since the vibrational kinetic energy is independent of the actual electronic state, the
action of the time-evolution operators U0 and U+

0 present in the first part of this
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equation reduces to exp(−i[Uk − Ul]t∕ℏ). The latter expression carries the only time
dependence of Eq. (7.243). There is no direct time dependence of the coordinates and
momenta, and their distribution remains fixed at the initial equilibrium distribution
fm(x, p). Because of this special property of the solution, Eq. (7.243), of Eq. (7.242), it
is called a static approximation (cf. Section 6.3.3).29)

To finally get the (frequency-independent) nonadiabatic rate according to Eq.
(3.505), we have to insert Eq. (7.243) into Eq. (7.239). It follows for the rate that

k(2)
m→n =

∣ Vmn∣2

ℏ2 ∫
dt

∫
dx

dp
(2𝜋ℏ)

fm(x, p) exp
(
− i

ℏ

(Um − Un)t
)

. (7.244)

Two types of integrations contained in this formula can be carried out. The momen-
tum integration simply reduces fm(x, p) to the coordinate distribution function fm(x),
Eq. (7.61), and the time integral can be computed resulting in 𝛿(Um − Un). Thus, we
arrive at a type of ET rate as given in Eq. (7.62). With this result, we justify the ansatz
taken to start with Eq. (7.62) and to compute the ET rate in the high-temperature
limit. As shown, the static approximation of Eq. (7.242) results in the 𝛿-function,
which guarantees ET at the crossing of the PES. To go beyond the static approxima-
tion is equivalent to a consideration of ET outside the PES crossing points.

The given derivation puts the obtained rate expression into an alternative frame
indicating, in particular, how MD simulations for the vibrational coordinates may
be used to compute transition rates. Furthermore, the adopted static approximation
offers an easy way to compute higher order rates, as demonstrated in the following
section.

7.10.4 Fourth-order Donor–Acceptor Transition Rate

In what follows, the details are given for the calculation of the fourth-order rate,
k(4)

D→A, which describes a direct transition from the donor via a single bridge molecule
to the acceptor. Fourth-order rates that describe the transfer of the neighboring
sites will be briefly mentioned at the end of this section. In calculating this rate, we
follow the approach given in the preceding section, which takes advantage of
changing to the Wigner representation and applying a static approximation for the
classical vibrational dynamics.

In a first step, we write the nonfactorized trace expression of the fourth-order rate,
Eq. (3.520), as

tr{Π̂AV0(t3)V0(t2)V0(t1)V R̂DΠ̂D} = trvib{⟨𝜑A|V �̂�
(3)
D (t3)}|𝜑A⟩}.

(7.245)

To change to the Wigner representation of the operator expressions under the trace,
we defined, in analogy to Eq. (7.238), the operator

�̂�
(3)
D (t3) = 0(t3)V �̂�

(2)
D (t2). (7.246)

29) To account for the derivatives in Eq. (7.242) becomes more involved. A discussion can be
found in Casado–Pascual et al. [16].
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The newly introduced operator �̂�
(2)
D (t2) is defined in the same way but with �̂�

(1)
D (t1)

on the right-hand side. The expression for �̂�
(1)
D (t1) coincides with Eq. (7.238) but with

m replaced by D. The initial value of �̂�
(1)
D (t1) is given by V R̂DΠ̂D. Since one operator

determines the initial value of the following one, a sequential computation of the
total rate becomes possible. The related electronic matrix elements will be selected
according to the three pathways of Figure 3.14.

Let us start with the Wigner representation �̂�
(1)
D (x, p; t1) of �̂�

(1)
D (t1) (cf. Eq.

(7.240)), which is a partial representation taken with respect to the vibrational
DOFs. The combination of the various electronic matrix elements of �̂�

(1)
D (x, p; t1)

needed to get the rate will be constructed in using the Liouville space pathway
scheme of Figure 3.14 (the state labeling 1, 2, and 3 used in Section 3.14.6 have
to be replaced by D, B, and A, respectively). In any case, the coordinate and
momentum dependence is exclusively given by the equilibrium distribution
fD(x, p). The determination of �̂�

(1)
D (x, p; t1) in the static approximation follows,

similar to Eq. (7.243). The arbitrary electronic matrix element ⟨𝜑m|�̂�(1)
D (x, p; t1)|𝜑n⟩

reads as exp(−i(Um − Un)t1∕ℏ) ⟨𝜑m|V R̂DΠ̂D|𝜑n⟩. If we carry out the single-side
Fourier-transformation (with t from 0 to ∞), we end up with ℏ⟨𝜑m|V R̂DΠ̂D|𝜑n⟩∕
Δmn. The energy denominator is determined by the PESs Um and Un and has the
form Δmn(x) = ℏ𝜔 + i𝜖 − [Um(x) − Un(x)] (with 𝜖 → +0).

To get the contribution of �̂�
(2)
D (t2) to the total rate, we proceed similarly as in the

case of �̂�
(1)
D (t1). The initial value for �̂�

(2)
D (t2) is given by the solution constructed for

�̂�
(1)
D (t1) and the action of V . The electronic matrix elements of the static solution for

the Wigner representation �̂�
(2)
D (x, p; t2) read ℏ⟨𝜑m|�̂�(2)

D (x, p; t2 = 0)|𝜑n⟩ ∕Δmn. In the
same way, the contribution of �̂�

(2)
D (t2) to the rate can also be calculated. Then, all

three single contributions have to be collected to obtain the rate expression.
We order the rate according to the different pathways given in Figure 3.14 and

start with the computation of the contribution due to pathway I. It is the sequence of
transitions starting at W (eq)

DD and moving across W (1)
BD, W (2)

AD, and W (3)
AB to arrive at W (3)

AA.
Since only the thermal distribution function depends on the vibrational momenta,
the whole expression can be reduced to a multiple coordinate integral together with
the coordinate distribution function fD(x). It follows that

L(4,I)
AD (𝜔) = − i

ℏ ∫
dx
{

VAB

ΔAD(x)
VBDfD(x)
ΔBD(x)

VDB

ΔAB(x)
VBA

+VAB
VBD

ΔBA(x)
fD(x)VDB

ΔDB(x)
VBA

ΔDA(x)

}
. (7.247)

Pathway I of Figure 3.14 can be directly identified by the different factors in the first
term on the right-hand side (the second term on the right-hand side corresponds
to the equivalent pathway, which finally results in a complex conjugated expression).
The second factor∼ VBD originates from �̂�

(1)
D , and the first factor∼ VAB from �̂�

(2)
D . The

third factor ∼ VDB follows from �̂�
(3)
D , and the fourth factor is the result of the final

action of V .
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According to the described scheme, one can also calculate the contributions
due to pathways II and III. If combined with the factorized part of the total rate
(cf. Eq. (3.521)), one obtains the difference of the full frequency-dependent rate and
the contribution due to the Liouville space pathway I. It reads

K(4)
AD(𝜔) − L(4,I)

AD (𝜔) =
∣ VDBVBA∣2

ℏ(ℏ𝜔 + i𝜖) ∫
dxdy

(
−i𝛿(x − y) + fB(y)

)
fD(x)

×
(

1
ΔBD(x)

+ 1
ΔDB(x)

)(
1

ΔAB(y)
+ 1

ΔBA(y)

)
. (7.248)

To achieve this combination, we introduced a second integration with respect to
the vibrational coordinates (abbreviated by y). The term ∼ 𝛿(x − y) with 𝛿(x − y) ≡∏

𝜉
𝛿(x

𝜉
− y

𝜉
) refers to the pathway II’s and III’s contributions, while the factorized

part of the rate is given by the term proportional to the bridge molecule vibrational
coordinate distribution fB(y) (note the similarity of the present expression to some
of the terms in Eq. (3.533), which describes a fourth-order transition in a three-level
system as discussed in Section 3.14.6.1). The prefactor 1∕(ℏ𝜔 + i𝜖) stems from 1∕ΔBB,
which is obtained when one follows pathways II and III; it directly appears in the
factorized part of the fourth-order rate as well. If common denominators are intro-
duced in the two last brackets, the resulting expression becomes proportional to 𝜔

2.
As a consequence, K(4)

AD − L(4,I)
AD is proportional to 𝜔 and vanishes in the 𝜔 = 0-limit.

In this limit, the whole rate reads as

k(4)
D→A = L(4,I)

AD (𝜔 = 0). (7.249)

The expression will be specified for the case ΔEBD,ΔEBA ≫ ΔEDA > 0 (note ΔEmn =
Em − En). If we ignore the vibrational coordinate dependence of the transition ener-
gies to the bridge state, we obtain

k(4)
D→A = 2𝜋

ℏ

∣ VDBVBA∣2

ΔEBDΔEBA ∫
dx fD(x)𝛿(UD(x) − UA(x))

= 2𝜋

ℏ

|V (eff)
DA |2DA(ΔEDA∕ℏ), (7.250)

with

|V (eff)
DA |2 =

∣ VDBVBA∣2

ΔEBDΔEBA
(7.251)

and with the combined DOS DA used in Section 7.4.3. We already encountered
the effective bridge–molecule-mediated coupling V (eff)

DA in Eq. (7.117). It describes
the superexchange mechanism of ET. Here, we obtained a symmetric expression
that contains ΔEBD as well as ΔEBA. Nevertheless, the structure of the effective cou-
pling, Eq. (7.251), justifies the assignment of the rate L(4,I)

AD (and the related pathway
of Figure 3.14) to the superexchange mechanism.

However, k(4)
D→A is determined by the superexchange mechanism alone, only in the

framework of the static approximation. Fourth-order rates such as k(4)
D→B and k(4)

B→A
(which give a higher order correction to the nonadiabatic transition rates) also van-
ish for the static approximation. If we go beyond the static approximation, pathways
II and III of Figure 3.14 as well as k(4)

D→B and k(4)
B→A contribute too.
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7.10.5 Rate of Elastic Charge Transmission Through a Single Molecule

To describe elastic charge transmission through a single molecule, as was done in
Section 7.8.2, we give here a detailed derivation of the corresponding transition
rate kLk→Rq. It describes the transition of the electron from the left to the right lead|𝜑Lk⟩ → |𝜑Rq⟩ with the scattering center given by the molecule. The basic quantity
for the following considerations is the transition amplitude

ALk→Rq(t, t̄) = ⟨𝜑Rq|U(t − t̄)|𝜑Lk⟩. (7.252)

It is defined by the time-evolution operator

U(t − t̄) = exp
(
− i

ℏ

H(t − t̄)
)

, (7.253)

where H is the overall Hamiltonian, Eq. (7.168). The transition amplitude has to be
computed in the limits t → ∞ and t̄ → −∞. To achieve the infinite time limit and to
finally determine the transition rate kLk→Rq, the S-matrix formalism will be applied
(cf. Section 3.2.2). Since the S-operator will be defined by the operator V , which cor-
responds to the electrode–molecule interaction of Eq. (7.168), the approach allows
us to replace the overall time-evolution operator by a quantity that is reduced to the
state space of the charged molecule.

In contrast to Eq. (3.38), we introduce the S-operator as30)

U(t − t̄) = U0(t)S̃(t, t̄)U+
0 (t̄). (7.254)

The zero-order time evolution with its Hamiltonian H0 is obtained from H, Eq.
(7.168), by neglecting the molecule–lead coupling V . It reads

U0(t − t̄) = exp
(
− i

ℏ

H0(t − t̄)
)

. (7.255)

The S-operator takes the form

S̃(t, t̄) = T̂ exp
⎛⎜⎜⎝− i

ℏ

t

∫
t̄

d𝜏e−𝜖|𝜏|U+
0 (𝜏)VU0(𝜏)

⎞⎟⎟⎠ . (7.256)

To ensure an asymptotic vanishing of the coupling potential, the factor exp(−𝜖|𝜏|)
with 𝜖 → +0 has been introduced.31) We abbreviate

V(𝜏) = e−𝜖|𝜏|U+
0 (𝜏)VU0(𝜏). (7.257)

The S-operator obeys

S̃(t, t̄) = 1 − i
ℏ

t

∫
t̄

d𝜏 V(𝜏)S̃(𝜏, t̄) (7.258)

30) The version used here is obtained if in Eq. (3.46) the coupling Hamiltonian in the interaction
representation V (I)(𝜏) = U+

0 (𝜏 − t0)VU0(𝜏 − t0) is written as U0(t0)U
+
0 (𝜏)VU0(𝜏)U

+
0 (t0). Removing

U0(t0) and U+
0 (t0) from the exponential using the related power expansion,

S(t, t0) = U0(t0)S̃(t, t0)U
+
0 (t0) follows.

31) This procedure avoids the introduction of scattering states referring to the full Hamiltonian
H0 + V . In the infinite time limit before and after the scattering event, the free states 𝜑Lk and 𝜑Rq
are identical with the scattering states.
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as well as

S̃(t, t̄) = 1 − i
ℏ

t

∫
t̄

d𝜏 S̃(t, 𝜏)V(𝜏). (7.259)

If this latter relation is inserted into the former one, it follows for S̃

S̃(t, t̄) = 1 − i
ℏ

t

∫
t̄

d𝜏 V(𝜏) − 1
ℏ2

t

∫
t̄

d𝜏1

𝜏1

∫
t̄

d𝜏2 V(𝜏1)S̃(𝜏1, 𝜏2)V(𝜏2). (7.260)

With this expression, one can rewrite the matrix elements constituting the transition
amplitude, Eq. (7.252). If we insert the derived equation for S̃, there only remains the
term with V appearing two times explicitly (note the introduction of the unit step
function):

ALk→Rq(t, t̄) = − 1
ℏ2

t

∫
t̄

d𝜏1d𝜏2

× ⟨𝜑Rq|U0(t)V(𝜏1)𝜃(𝜏1 − 𝜏2)S̃(𝜏1, 𝜏2)V(𝜏2)U+
0 (t̄)|𝜑Lk⟩. (7.261)

We replace S̃ by U by inverting Eq. (7.254) and introduce the Green’s operator Ĝ(𝜏) =
−i𝜃(𝜏)U(𝜏) (cf. Section 3.3.3). This yields

ALk→Rq(t, t̄) = − i
ℏ2

t

∫
t̄

d𝜏1d𝜏2

× ⟨𝜑Rq|U0(t − 𝜏1)e−𝜖|𝜏1|VĜ(𝜏1 − 𝜏2)Ve−𝜖|𝜏2|VU+
0 (t̄ − 𝜏2)|𝜑Lk⟩.

(7.262)

After introducing the continuous energies ℏΩ and ℏΩ̄ of the initial and final states
of the scattering process, respectively, as well as the coupling matrix elements of the
molecule lead interaction V , it follows that

ALk→Rq(t, t̄) = − i
ℏ2

t

∫
t̄

d𝜏1d𝜏2

× e−iΩ̄(t−𝜏1)−𝜖|𝜏1|VR(Ω̄)⟨𝜑1|Ĝ(𝜏1 − 𝜏2)|𝜑1⟩V∗
L (Ω)e

iΩ(t̄−𝜏2)−𝜖|𝜏2|.
(7.263)

As required, a matrix element with respect to the state of the charged molecule
is obtained. In a final step, the Green’s operator Ĝ(𝜏1 − 𝜏2) is replaced by its
Fourier-transformed version Ĝ(𝜔) via a Fourier integral:

ALk→Rq(t, t̄) = − i
2𝜋ℏ2 ∫

d𝜔 VR(Ω̄)⟨𝜑1|Ĝ(𝜔)|𝜑1⟩V∗
L (Ω)

×

t

∫
t̄

d𝜏1d𝜏2 e−iΩ̄tei(Ω̄−𝜔)𝜏1−𝜖|𝜏1|e−i(Ω−𝜔)𝜏2−𝜖|𝜏2|eiΩt̄
. (7.264)
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Next, the limit t, t̄ → ∞ (or t = 𝜏∕2, t̄ = −𝜏∕2 with 𝜏 → ∞) is taken together with
𝜖 → +0. One arrives at

ALk→Rq(∞,−∞) = −2𝜋i
ℏ2 lim

𝜏→∞
e−i(Ω̄+Ω)𝜏∕2

×
∫

d𝜔 𝛿(Ω̄ − 𝜔)𝛿(Ω − 𝜔)VR(Ω̄)⟨𝜑1|Ĝ(𝜔)|𝜑1⟩V∗
L (Ω).

(7.265)

After carrying out the 𝜔-integration, the absolute square of the transition amplitude
(the population of the final scattering states) takes the form

|ALk→Rq(∞,−∞)|2 = 𝛿
2(Ω̄ − Ω) (2𝜋)2

ℏ4 ∣ VR(Ω)⟨𝜑1|Ĝ(Ω)|𝜑1⟩V∗
L (Ω)∣

2
.

(7.266)

The 𝛿-function ensures that the energy of the final state ℏΩ̄ coincides with the energy
of the initial state ℏΩ (the relative orientation of the wave vector of the incoming and
outgoing electrons remains arbitrary). The highly divergent square of the 𝛿-function
can be removed when calculating the rate as the transfer of probability per time.
In order to do this, we first note

(2𝜋𝛿(𝜔))2 =
⎛⎜⎜⎝ lim
𝜏→∞

𝜏∕2

∫
−𝜏∕2

dtei𝜔t
⎞⎟⎟⎠

2

= lim
𝜏→∞

(
2 sin(𝜔𝜏∕2)

𝜔

)2

(7.267)

= lim
𝜏→∞

2𝜋𝜏

sin2(𝜔𝜏∕2)
𝜋𝜔2𝜏∕2

= lim
𝜏→∞

2𝜋𝜏𝛿(𝜔). (7.268)

If inserted into Eq. (7.266), we can compute the population per time. It follows the
rate as given in Eq. (7.177).
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8

Proton Transfer

We discuss fundamental aspects of the theory of proton transfer across
inter- or intramolecular hydrogen bonds in gas as well as in condensed phase.
Since the strength of the hydrogen bond depends on the distance between the
proton donor and acceptor entities, vibrational motions modifying the latter
are strongly coupled to the proton transfer. We give a classification of such
vibrational modes and elaborate on their effect on quantum mechanical proton
tunneling.
A central observation is that often the proton dynamics can be adiabatically
separated from the slow motions of the environmental degrees of freedom.
This suggests a close analogy to the treatment of coupled electronic–nuclear
dynamics presented in Chapters 2, 6, and 7. Similar to the case of electron
transfer, proton transfer can occur in the adiabatic as well as in the nonadiabatic
limit. The former requires the proton wave function to adjust instantaneously
to any change in the environmental configuration, whereas the latter assumes
that the proton dynamics is slow compared to the typical relaxation times for
the environment.
Since proton transfer reactions usually take place in the condensed phase, we
discuss the application of approximate quantum and quantum–classical hybrid
methods to the solution of the nuclear Schrödinger equation in some detail.
A powerful tool in this respect is provided by the surface hopping method, which
allows to treat nonadiabatic transitions between the adiabatic proton states
while retaining the classical nature of the environment. This is indispensable in
the nonadiabatic limit where proton transfer takes place via tunneling between
different diabatic states. In the limit of weak coupling, the introduction of
diabatic proton states allows to express transfer rates in close analogy to the case
of electron transfer. Finally, we briefly address some aspects of proton-coupled
electron transfer.

8.1 Introduction

As a second type of charge transfer, we consider the proton transfer (PT) in intra-
and intermolecular hydrogen bonds as shown in Figure 8.1. At first glance, one

Charge and Energy Transfer Dynamics in Molecular Systems,
Fourth Edition. Volkhard May and Oliver Kühn.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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Figure 8.1 (a) Single PT in malonaldehyde, which is one of the standard examples for an
intramolecular PT system with strong coupling between the proton motion and heavy atom
vibration. In particular, the O–O wagging vibration modulates the reaction barrier
for isomerization. (b) Double PT across the intermolecular hydrogen bonds in carboxylic
acid dimers (typical examples for R are R—H or R—CH3).

might wonder why dealing with the transfer of a positive charge to that of a neg-
ative charge (electron transfer, ET) has been discussed in quite some detail before.
And indeed, there are many similarities between ET and PT, for example in the
interaction with a polar environment. However, there are also some features that are
unique to PT. After all, protons are much heavier than electrons, and therefore, their
wave function will be much more localized in space. On the other hand, the proton
is still a quantum particle. This means that its motion has to be treated quantum
mechanically, and PT is influenced not only by zero-point energy effects but also
by quantum tunneling even at room temperature. Further, the simultaneous motion
of several protons may be subject to strong correlation effects. As an example, we
have shown the intermolecular double PT in carboxylic acid dimers in Figure 8.1b.
Here, an important question is related to the type of transfer, that is, the double
PT can proceed either step-wise or concerted. For larger systems with many hydro-
gen bonds such as water clusters, the correlated motion of several protons may lead
to interesting collective phenomena.

Many intriguing possibilities in PT studies are opened by the fact that there are
four isotopes of hydrogen with mass ratios higher than for any other element of the
periodic table. This gives rise to the so-called kinetic isotope effect, that is the depen-
dence of transfer rates on the isotopic species. This effect can be used, for instance
to investigate the relative importance of tunneling for the transfer process.

Finally, PT transfer is often strongly coupled to specific low-frequency (heavy
atom) modes of its immediate surroundings. A standard example in this respect
is malonaldehyde shown in Figure 8.1a. Here, the intramolecular O–O wagging
vibration has a strong influence on the reaction barrier and therefore on the
isomerization reaction shown in Figure 8.1a. The interplay between quantum
mechanical tunneling and the strong coupling to low-frequency skeleton modes
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in PT reactions has some interesting consequences for the tunneling splittings or
the related tunneling transfer rates. Some ideas in this respect will be discussed
in Section 8.2.3.

PT has an enormous importance for many processes in biology and chemistry.
We have already discussed the initial ET steps of photosynthesis in Chapter 7.
Subsequent to the ET, a PT across the membrane occurs, and the concerted action
of ET and PT ultimately establishes the storage of solar energy in terms of a trans-
membrane electrochemical potential. This is one example for a proton pump. A
second one is given, for instance by the transmembrane protein bacteriorhodopsin
that encapsulates a chain of water molecules (water wire) through which a proton
can be transferred (Figure 8.2). The transfer of excess protons in water networks,
as well as PT processes taking place in ice, has also attracted a lot of attention. In
particular, PT on ice surfaces is believed to have some importance for the ozone
depletion in the stratosphere. PT is often a key event in enzyme catalysis, where
it leads to activation of the proton donor after PT has been triggered, for instance
by polar residues in the protein surroundings. Indeed, often PT and ET reactions

Tyr57
Tyr57

Thr205

Thr205

Glu204
Glu204

Glu194 Glu194

Tyr79
Tyr79

Arg82
Arg82

(a) (b)

Figure 8.2 Protonated water networks in bacteriorhodopsin encompass different transient
binding motifs during PT such as the solvated Zundel ((a), center) and Eigen (b) type.
In the Zundel cation, H5O+

2 , the hydrogen bond is symmetric; that is, the proton is shared
by the two terminal water molecules. In the Eigen cation, H3O+ ⋅ (H2O)3, the proton is
localized at the solvated hydronium core H3O+. The simulation has been performed using a
QM/MM method (Eq. (2.138)) at T = 300 K. Further shown are some important residues
as well as the protein backbone. Hydrogen bonds are visualized by thin broken lines
(Reproduced with permission from Rousseau et al. [1]/John Wiley & Sons).
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are strongly coupled to each other and occur simultaneously in the so-called
proton-coupled electron transfer (PCET) reactions (Section 8.6).

Traditionally, hydrogen bonds are characterized by means of their stationary
infrared (IR) spectra. While this allows a general characterization, for instance
in terms of the strength of the hydrogen bond (Section 8.2.1), it was shown that
ultrafast IR spectroscopy allows to uncover the details of such spectra in the con-
densed phase. An example is given in Figure 8.3: In Figure 8.3c,d, IR pump–probe
signals are displayed for different laser frequencies across the broad absorption band
of phthalic acid monomethyl ester in the OH-stretching region. The analysis of the
oscillations in the signal provided evidence for a mechanism where the laser excites
a superposition of states involving a low-frequency mode that modulates the O–H–O
distance (cf. Section 4.3.6). In the linear absorption spectrum (Figure 8.3a) these
transitions are hidden under a broad band.

Two-dimensional IR spectroscopy can be applied to study the PT reactions
by observing cross-peaks due to chemical exchange (cf. Section 4.3.7). A prominent
example is the PT from a hydronium ion (H3O+) to a hydrogen-bonded water
molecule yielding again a hydronium ion. This process is important, for instance
for explaining the rapid diffusion of protons in water by means of the Grotthuss
mechanism. Here, the newly formed hydronium will pass a proton (not necessarily
the same) to another water molecule and so on. In Figure 8.4, the results of a
two-dimensional IR investigation of the elementary PT step are shown. The actual
IR probe is the hydrogen bonding to a nearby CN group. Analysis in combination
with molecular dynamics simulations gave a PT time of about 1.6 ps.

While the dynamics observed with IR spectroscopy occurs in the electronic
ground state, photochemical reactions involving PT in excited electronic states
have also been studied extensively. The sudden change in the electronic state
leads to a strong modification of the charge distribution within the hydrogen bond
(acidity/basicity), thus giving rise to a large driving force for PT, which occurs on a
time scale below 100 fs. This transfer can be strongly coupled to intramolecular
vibrational modes of the molecular skeleton, and indeed, signatures of multidi-
mensional coherent nuclear wave packet motion have been observed for a number
of excited state PT reactions (Figure 8.5). Ultrafast excited state PT can also occur
simultaneously with nonadiabatic transitions at conical intersections. This type
of photochemical reaction has been found to play a role in the photoprotection
of nucleic acid base pairs.

The theoretical description of PT often rests on the large mass difference between
the proton and the heavier atoms being involved in the reaction. This makes it
possible to introduce a second Born–Oppenheimer separation after the electronic
problem has been split off as shown in Section 2.3. As with ET, PT can then be
characterized as being in the adiabatic or in the nonadiabatic limit (or in between).
If the proton motion is fast, and the proton is able to adjust instantaneously to the
actual configuration of the environmental DOFs, a description in terms of adia-
batic proton states and a corresponding delocalized wave function is appropriate
(Section 8.3). The PT rate may become proportional to some frequency factor
characterizing the shape of the adiabatic reaction barrier. On the other hand,
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Figure 8.3 Coherent oscillations in a hydrogen bond after ultrashort IR pulse excitation.
(a) Linear absorption spectrum of phthalic acid monomethyl ester (solid line, cf. also
the lower part of Figure 8.7) and its deuterated form (dashed line) in solution (C2Cl4).
(b) IR pump pulse intensity profiles for the different excitation conditions leading to the
pump–probe signals, which are shown as a function of the delay time between the pulses
in (c) and (d). The oscillatory component of the signal can be attributed to the excitation
of a wave packet with respect to a low-frequency mode (100 cm−1) which couples strongly
to the OH stretching vibration. The decay of the signal is due to relaxation and dephasing
processes introduced by the interaction with the solvent. (e) The signal that comes solely
from the solvent (Reproduced with permission from Madsen et al. [2]/The Chemical Society
of Japan).
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Figure 8.4 Two-dimensional IR spectroscopy monitoring PT between water
and hydronium bonded to methyl thiocyanate (MeSCN) in HCl solution. (a) Equilibrium
between MeSCN, hydrogen-bonded to H2O and H3O+. The reaction proceeds by shifting a
proton to a neighboring water molecule. (b) The two species can be distinguished by their
different contributions to the IR absorption spectrum in the range of the CN stretching
vibration as indicated. (c) In 2D IR spectra, this forward and backward PT is observed as the
appearance of cross-peaks (asterisks) with increasing population time (chemical exchange,
cf. Section 4.3.7). The top row is experimental data at two population times. The middle
and bottom rows are calculated data with and without inclusion of chemical exchange,
respectively (figure courtesy of M. D. Fayer, for more details see Yuan et al. [3]).

in the nonadiabatic limit, the proton motion is much slower than the charac-
teristic time scales for the environment (Section 8.4). The PES is conveniently
described in terms of weakly interacting diabatic proton states, and the transfer
occurs via tunneling. As with the case of ET, the related transfer rates will be
proportional to the square of the coupling matrix elements (cf. Section 7.44).
In both cases, the surrounding solvent has an important influence, for it may
stabilize reactants and products but also provide the fluctuating force that triggers
the transfer event.

Quantum effects are of considerable importance for the proton motion. However,
only if the dynamics can be reduced to a reasonably small number of DOFs will PT
be amenable to wave packet propagation methods, as outlined in Section 8.5.1. On
the other hand, for real condensed phase environments, solvent and low-frequency
intramolecular modes have to be treated classically within a quantum–classical
hybrid approach (cf. Section 3.13). Here, a unified description of the different
regimes of PT is provided by the surface hopping method, which combines classical
trajectories with quantum transitions (Sections 3.13.2 and 8.5.2).
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Figure 8.5 Infrared transient transmission change due to stimulated emission
of 2-(2-hydroxyphenyl)benzothiazole (upper left) detected at 500 nm after ultrafast
excitation at 340 nm. PT takes place as a wave packet motion from the enol (shown here)
to the keto (–O· · ·H–N–) form in about 50 fs. The reaction coordinate is dominated by a
low-frequency bending-type mode at 113 cm−1, which modulates the hydrogen bond such
that the donor–acceptor (O· · ·N) distance is reduced (right part). In the keto-form several
modes are coherently excited as seen from the Fourier transform of the oscillatory signal.
Most notable is a symmetric mode at 255 cm−1. The normal mode displacements shown
in the right correspond to the enol configuration of the electronic ground state. Their
character is assumed to change not appreciably in the excited electronic state (figure
courtesy of S. Lochbrunner, for more details see also Lochbrunner and Riedle [4]).

In the following section, we elaborate on the discussion of the properties
of hydrogen bonds. Further, we introduce the Hamiltonian for a PT complex that
sets the stage for the subsequent discussions of the different dynamics regimes.

8.2 Proton Transfer Hamiltonian

8.2.1 Hydrogen Bonds

In Section 2.3, the coupled motion of electronic and nuclear DOFs was treated by
making use of their adiabatic separability. This resulted in PESs for the nuclear
motion corresponding to the various adiabatic electronic states. As a consequence of
nonadiabatic couplings, electronic transitions between different adiabatic states are
possible, especially in the vicinity of avoided crossings. For the following discussion,
we assume that the electronic problem has been solved, and the adiabatic PES is
known. We restrict our considerations to the electronic ground state only, although
the concepts in principle apply to any other electronic state as long as nonadiabatic
couplings can be neglected.
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Considering the motion of the proton within the hydrogen-bonded complex, we
note that in general it is not a bare proton that is transferred, but part of the electronic
charge is dragged with the proton. This makes the distinction between PT and “hy-
drogen atom” transfer sometimes ambiguous. There is also some electronic charge
flow in the donor and acceptor groups that goes in the direction opposite to that of
the PT. This leads to a large variation in the molecule’s dipole moment, which is a
characteristic feature of PT. Consequently, the hydrogen bond is highly polarizable,
and a polar solvent or charged residues in a protein environment can be expected to
have a large influence on PT.

The PES U(R) will be a function of some PT coordinate(s), all other nuclear
coordinates of the PT complex, and the environmental coordinates. Of course,
such a high-dimensional PES cannot be obtained on an ab initio level of quantum
chemistry. This level of theory is usually reserved for a small subset of relevant
coordinates only, while the majority of DOFs is treated approximately (see below).
The most important coordinates are, of course, those that are directly related to the
proton motion. For simplicity, let us consider a linear hydrogen-bonded complex
as shown in Figure 8.6b. The hydrogen bond is formed between a proton donor,
X−H, and a proton acceptor, Y. Here, X and Y may represent parts of the same
molecule (intramolecular hydrogen bond) or of different molecules (intermolecular
hydrogen bond). In the case of a linear hydrogen bond as shown in Figure 8.6b,
the PT (reaction) coordinate s can be chosen as the difference between the X–H
distance, dXH, and the H–Y distance, dHY, that is s = dXH − dHY.

The minimum requirement for a PES of the simple system shown in Figure 8.6b
would include, besides the PT coordinate s, the information about the distance
dXH + dHY between the donor and the acceptor fragments. Depending on the com-
plexity of X and Y, an ab initio calculation of a two-dimensional PES U(s, dXH + dHY)
may be possible, for instance using the methods introduced in Section 2.5.3.

Before incorporating possible environmental DOFs of a solvent or a protein, let
us briefly discuss some general features of the hydrogen-bonded complex shown
in Figure 8.6b. First of all, hydrogen bonds may be characterized by the fact that
proton donor X–H and acceptor Y retain their integrity in the complex. While the
X–H bond is covalent, the hydrogen bond H· · ·Y is of a noncovalent character.
A widely accepted point of view is that often the hydrogen bond has the character-
istics of a strong van der Waals interaction. At long distances dHY, this comprises
electrostatic, dispersion, and induction contributions. At short distances, repulsive
exchange interactions between the overlapping electron densities of X–H and Y
dominate. The process of hydrogen bond formation comes along with a decrease in
the DA distance dXH + dHY and an increase in the X–H bond length dXH. The latter
effect weakens the X–H bond.

The strength of hydrogen bonding depends on the properties of the donor and
acceptor entities, that is in particular on their electronegativity. However, it is also
a function of the separation, dXH + dHY, between the donor and acceptor that may
be imposed by external means. We can distinguish between weak and strong hydro-
gen bonds.1) For weak hydrogen bonds, the DA distance is relatively large (>3 Å),

1) Note that this classification scheme is not rigorously defined in the literature and may vary in
dependence on the properties being used for characterizing the strength of the hydrogen bond.
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Figure 8.6 (a) Potential energy profile along a PT reaction coordinate, for example
s = dXH − dHY in the case of a linear hydrogen bond (as sketched in (b)), in dependence on
the donor–acceptor (DA) distance dXH + dHY. (The symmetric situation plotted here may
correspond to the case X = Y.) Compounds characterized by a large distance form weak
hydrogen bonds, while strong hydrogen bonds typically involve a small DA distance. The
strength of the hydrogen bond and the exact shape of the potential, of course, depend on
the donor and acceptor entities.

and the potential energy profile for moving the proton along the reaction coordinate
s between X and Y shows the typical double-minimum behavior plotted in Figure
8.6a (top). The barrier will be high enough to allow for several proton states to be
energetically below its top.

This situation might be characteristic of intramolecular hydrogen bonds, where
the DA distance is more or less fixed by the rigid molecular frame. On the other
hand, intermolecular hydrogen bonds are often much stronger, especially in ions.
Here, the larger structural flexibility allows for relatively short distances between
the donor and acceptor. Thus, the barrier along the PT coordinate s is rather low
if existent at all. This is sketched in Figure 8.6a (bottom). In between these two
extreme situations, we have medium-strong hydrogen bonds with moderate barrier
heights.

Weak and strong hydrogen bonds may also be distinguished by the extent to
which they modify the IR absorption spectra of the X–H stretching vibration. Upon
forming a weak hydrogen bond, the frequency of the X–H stretching vibration
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moves by about 100–300 cm−1 to lower frequencies due to the bond lengthening.
In addition, the IR X–H absorption band is broadened. This broadening is a
consequence of the larger anharmonicity of the PES in the region of the X–H
vibration, which may come along with a pronounced coupling to low-frequency
modes of the complex. A strong hydrogen bond, on the other hand, is characterized
by a much larger red shift and a more considerable broadening of the absorption
line. A comparison between the spectra of a free OH-stretching vibration and OH
vibrations in inter- and intramolecular hydrogen bonds is shown in Figure 8.7.
The interdependence of the hydrogen bond strength and length allows for the
establishment of empirical relations between the hydrogen bond length and the
X–H transition frequency as shown in Figure 8.8.

In what follows, we discuss the effect of the coupling between the PT coordinate
and the intramolecular modes first. The interaction with environmental DOFs will
be included in Section 8.2.4. The separate consideration of intramolecular modes
is motivated by their distinct influence in case of strong coupling, for instance on
the hydrogen bond geometry. The effect of the environment can often be character-
ized as leading to phase and energy relaxation or, in the case of polar environments,
to a stabilization of a specific configuration of the hydrogen bond. Of course, such a
separation is not always obvious, for instance for intermolecular PT in a protein envi-
ronment. Here, the motion of the protein in principle may influence the PT distance
as well.
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Figure 8.7 Infrared absorption
spectra show clear signatures of
hydrogen bond formation.
Compared to the narrow line of a
free OH-stretching vibration
(a), the absorption band shifts to
lower frequencies and broadens
considerably if a condensed phase
situation is considered such as the
OH vibration in deuterated water
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develop a peculiar substructure as
shown for an intramolecular
hydrogen bond (c) (Reproduced
with permission from Madsen
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Figure 8.8 Empirical correlation between the N–H stretching frequency and the N· · ·N
hydrogen bond distance, RN–N, obtained from experimental data on the crystal structures
for systems containing intermolecular N–H· · ·H hydrogen bonds and the respective infrared
absorption spectra (figure courtesy of Y. Yan, data taken from Novak [5]).

8.2.2 Reaction Surface Hamiltonian for Intramolecular Proton Transfer

We discuss the PES for the intramolecular DOFs of a system as that in Figure 8.6b.
Note that malonaldehyde, shown in Figure 8.1, would be a particular example for
such a system. Suppose that q = {q

𝜉
} comprises all the so-called heavy atom vibra-

tional coordinates of the total X–H· · ·Y complex that have a strong influence on
the PT insofar as they modulate, for instance the distance dXH + dHY. Further, we
assume that these modes can be treated in harmonic approximation. This scenario
has already been discussed in Section 2.5.3, where we derived a suitable reaction sur-
face Hamiltonian, Eq. (2.86); an example for a PT reaction is shown in Figure 2.10.
If we neglect the dependence of the force constant matrix on the proton coordinate,
the reaction surface Hamiltonian can be written as

H = Ts + U(s) +
∑
𝜉

[
p2
𝜉

2
+
𝜔

2
𝜉

2
q2
𝜉
− F(s)q

𝜉

]
. (8.1)

Here, the Ts is the kinetic energy operator for the proton motion, and U(s) is the
respective potential as obtained, for example from a quantum chemistry calculation
of the adiabatic electronic ground state energy in dependence on the proton posi-
tion (cf. Eq. (2.19)). The last term in Eq. (8.1) describes the coupling between the
PT coordinate and the heavy atom modes. Note that for a coordinate-independent
force constant matrix, these modes are not coupled by the motion of the proton
(cf. Eq. (2.86)).

The principal effect of the coupling term on the PT dynamics can be highlighted
by considering two typical cases, that is a linear coupling, F(s) = c1s and a quadratic
coupling, F(s) = c2s2. In Figure 8.9, we show some schematic PESs for both situa-
tions in the case of a single heavy atom mode. A linear coupling apparently is not
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Figure 8.9 Schematic view of two-dimensional PES for linear (a) and quadratic
(b) coupling between the PT coordinate (reaction coordinate) and a harmonic heavy atom
mode (coordinates are given in arbitrary units). For a specific example, see Figure 8.11.

favorable to PT since it effectively increases the distance between the donor and
acceptor, and therefore, according to Figure 8.6a, the barrier for PT will be increased.
A mode that is quadratically coupled, however, can reduce the barrier for PT dramat-
ically. In fact, if we follow the minimum energy path on the two-dimensional PES in
Figure 8.9b, we find that at the saddle point (transition state) the heavy atom mode
is compressed. This type of mode is frequently also called promoting or gating mode.
In fact, gating modes will often be of DA stretching type.2) A prominent example for
a promoting mode is the O–O wagging vibration in malonaldehyde (cf. Figure 8.1).
We note in passing that the principal behavior discussed in Figure 8.6a can be viewed
as representing cuts through the two-dimensional PES of Figure 8.9. In the follow-
ing section, we elaborate on the influence of intramolecular modes on the quantum
tunneling of the proton, which is expressed in terms of the spectroscopically acces-
sible tunneling splitting.

8.2.3 Tunneling Splittings

Quantum tunneling of the proton through the reaction barrier is one of the most
characteristic features in particular for PT in symmetric potentials. Proton tun-
neling can be viewed in time and energy domains. Consider, for example the case
of a one-dimensional reaction coordinate shown in Figure 8.10 and focus on the
two lowest eigenstates. If we neglect the higher excited states for the moment,
we have essentially recovered the two-level system discussed in Section 2.8.2
(cf. Figure 2.16). There the coupling between two localized states was shown to give
rise to a splitting of the respective eigenstates into a doublet containing a symmetric
“+” and an antisymmetric “−” state (with respect to the symmetry center at s = 0).
In the present case, the appearance of a splittingΔE0 can be viewed as a consequence

2) There is a third kind of coupling mode which is called squeezing type. Here, only the frequency
changes upon PT. Such modes are often related to out-of-plane motions of planar molecules.
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potential well are labeled by ±st for the lowest pair of states. (Energy is given in units
of barrier height, EB, and coordinate in units of its value at minimum s0.)

of the coupling between two almost localized states (in the left and right well) due
to the wave function overlap in the barrier region. The eigenfunctions in Figure 8.10
are then the symmetric and antisymmetric combinations of these local states.

An alternative view is provided by a time-domain approach. Let us take a state
that is localized in one of the minima (that is, a superposition of the two lowest
eigenstates shown in Figure 8.10) as an initial wave packet. This wave packet will
oscillate between the two wells; that is, it will tunnel through the potential barrier.
Adopting the results of Section 3.12, the oscillation period is given by 2𝜋ℏ∕ΔE0
(cf. Eq. (3.413)).

In what follows, we focus on the (energy-domain) tunneling splitting, which
is experimentally accessible, for example by high-resolution vibration–rotation
spectroscopy. In particular, we address the question: how the tunneling splitting is
influenced by the coupling to intramolecular modes? However, let us start with the
one-dimensional case shown in Figure 8.10. An expression for the splitting can
be obtained from the standard quasi-classical Wentzel–Kramers–Brillouin theory,
which gives

ΔE0 = ℏ𝜔

𝜋

exp
{
− 1
ℏ ∫

st

−st

ds
√

2mproton(E − U(s))
}
. (8.2)

Here, 𝜔 is a characteristic frequency in the left/right well, E is the energy of the
localized left/right states, and ±st are the turning points for the classical motion
at that energy. From Eq. (8.2) it is obvious that the tunneling splitting is rather sen-
sitive to the details of the PES and in particular to the energetic separation between
the considered state and the top of the barrier as well as to the tunneling distance
2st. Thus, the splitting increases for excited states as shown in Figure 8.10. From
the dynamics perspective, this implies that, for instance an initially prepared local-
ized wave packet on the left side of the barrier will be transferred faster with increas-
ing energy.
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So far, we have considered a one-dimensional situation. However, from Figure 8.9
it is clear that PT in principle is a multidimensional process, and an accurate treat-
ment has to take into account the coupling, for example to the heavy atom vibrations
of the immediate surrounding. Due to the exponential dependence of the tunneling
splitting on the details of the overlapping wave functions in the classically forbid-
den region, the calculation of tunneling splittings can be considered as a critical test
of the accuracy of theoretical methods. This holds in particular as tunneling split-
tings can be rather accurately measured, for example with gas-phase high-resolution
spectroscopy.

To discuss the multidimensionality in the context of tunneling splittings,
Herring’s formula is most suitable. The starting point is the exact pair of wave
functions for a certain doublet characterized by the quantum numbers 𝜈, that is
𝜒
±
𝜈
(s, q). These functions are solutions of the stationary Schrödinger equations

(using mass-weighted coordinates, V is the total potential energy operator)

∇2
𝜒
+
𝜈
(s, q) = 2

ℏ2 (V(s, q) − E+
𝜈
)𝜒+

𝜈
(s, q), (8.3)

∇2
𝜒
−
𝜈
(s, q) = 2

ℏ2 (V(s, q) − E−
𝜈
)𝜒−

𝜈
(s, q). (8.4)

Multiplication of Eq. (8.3) [(8.4)] by 𝜒
−
𝜈
(s, q) [𝜒+

𝜈
(s, q)] from the left, integrating

the resulting expression over the half-space s > 0, and subtracting the results yield
using Green’s theorem

2
ℏ2 (E

−
𝜈
− E+

𝜈
)
∫
s>0

ds
∫

dq𝜒+
𝜈
(s, q)𝜒−

𝜈
(s, q)

=
∫
s=0

dq
[
𝜒
+
𝜈
(s, q) 𝜕

𝜕s
𝜒
−
𝜈
(s, q) − 𝜒−

𝜈
(s, q) 𝜕

𝜕s
𝜒
+
𝜈
(s, q)

]
. (8.5)

Next, we assume that there are some functions, 𝜒 (L∕R)
𝜈

(s, q), localized in the left/right
wells such that

𝜒
±
𝜈
(s, q) = 1√

2

[
𝜒
(R)
𝜈

(s, q) ± 𝜒 (L)
𝜈

(s, q)
]
. (8.6)

Inserting this expression into Eq. (8.5), and assuming that for s > 0 the integrals over
𝜒
(L)
𝜈
𝜒
(L)
𝜈

and 𝜒 (L)
𝜈
𝜒
(R)
𝜈

are negligible, gives for the tunneling splitting

(E−
𝜈
− E+

𝜈
) = ℏ

2
∫
s=0

dq
[
𝜒
(L)
𝜈

(s, q) 𝜕
𝜕s
𝜒
(R)
𝜈

(s, q) − 𝜒 (R)
𝜈

(s, q) 𝜕
𝜕s
𝜒
(L)
𝜈

(s, q)
]
. (8.7)

This expression highlights the fact that the tunneling splitting is determined by the
properties of the wave functions on the symmetry plane defined by s = 0.

Let us discuss the effect of linear coupling (antisymmetric) and promoting
(symmetric) modes on the tunneling splitting. In Figure 8.11, we give an example
of a four-dimensional reaction surface calculation (Eq. (2.86)) for the PT in a
derivative of tropolone (for the reaction scheme, see Figure 8.11a). The potential



8.2 Proton Transfer Hamiltonian 403

–1

0

1

2

–1

0

1

–1

0

1

2

–1

0

1

–2 –1 0 1 2

–1

0

1

2

–2 –1 0 1 2

–1

0

1

O O

H

ClCl

O O

ClCl

H

(a)

(b)

(c) s (a0) s (a0)

q
sy

m
 (

a 0
)

q
as

 (
a 0

)

Figure 8.11 PES and eigenfunctions of (in-plane) PT in 3,7-dichlorotropolone (panel a).
The two-dimensional projections of the PES (first row of (c)) and the related probability
densities (second and third rows of (c)) correspond to some eigenfunctions of a
four-dimensional ab initio quantum chemical Cartesian reaction surface Hamiltonian,
Eq. (2.86). The influence of a symmetric (left column) and an antisymmetric (right column)
normal mode (displacement vectors in (b)) is shown. The results have been obtained for the
case that the proton moves on a straight line (s) orthogonal to the C2 symmetry axis going
through the transition state. The ground state tunneling splitting is 3 cm−1 (upper
eigenfunctions). For the excitation of the symmetric/antisymmetric mode (lower left/lower
right), the splitting amounts to 17/4 cm−1 (figure courtesy of K. Giese).



404 8 Proton Transfer

includes the two coordinates for the motion of the proton in the plane of the
molecule as well as a symmetrically and an antisymmetrically coupled skeleton
normal mode (for the normal mode displacement vectors, see Figure 8.11b).
We have also plotted two-dimensional projections of the full four-dimensional
potential as well as the selected eigenfunctions in Figure 8.11c.

Let us first consider the effect of a promoting type (symmetric coupling) mode.
Already from Figure 8.9 it is clear that a symmetric coupling leads to an effective
reduction in the barrier. In the left row of Figure 8.11 it is seen that the overall
bending of the two-dimensional potential is reflected in the ground state wave func-
tions. Thus, the overlap on the symmetry plane will be increased, and the tunneling
splitting is larger as compared to the case of no coupling to this mode. Upon exci-
tation of the symmetric mode only (not to be confused with the excited doublet
in Figure 8.10), the wave function overlap increases further, as does the splitting
in the excited doublet.

The situation is more complicated for the linear (antisymmetric) coupling mode
shown in the right row of Figure 8.11. From the projection of the ground state wave
function on the PT coordinate s and the antisymmetric coordinate qas, it is seen that
the presence of an antisymmetric mode may reduce the tunneling splitting since
the left and right parts of the ground state wave function are shifted in opposite
directions. In principle, one would expect such a behavior also for the excited
states with respect to this mode (lower right panel in Figure 8.11). However, for the
excited state wave functions, a comparison with the ground state already indicates
that the details of the overlap on the symmetry plane will strongly depend on the
position of the nodes along the oscillator coordinate in the left and right wells.
Therefore, in principle, it is possible that the magnitude of the tunnel splitting even
may oscillate when going to higher excited states due to the interference between
the localized wave functions that overlap on the symmetry plane and give rise to the
tunneling splitting.

8.2.4 The Proton Transfer Hamiltonian in the Condensed Phase

Having discussed the influence of intramolecular modes that are immediately
coupled to the PT coordinate, let us next include the interaction with some envi-
ronmental DOFs such as a solvent. In principle, one should distinguish between
intramolecular and environmental coordinates in the following discussion. This
would be particularly important if some intramolecular modes have a distinct
effect on the PT coordinate such that they cannot be treated on the same level of
approximation as the remaining environment. For simplicity, however, we do not
make this distinction and comprise all DOFs (intramolecular and environment)
into the coordinate Z = {Z

𝜉
}. The total Hamiltonian can then be written as follows:

H = Hproton(s) + HR(Z) + V(s,Z). (8.8)

Here, the Hamiltonian of the PT coordinate Hproton(s) is given by the first two terms
in Eq. (8.1) (notice that in general s can be a three-dimensional vector), HR(Z)
is the Hamiltonian for the environment (solvent or protein plus intramolecular
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modes), and V(s,Z) comprises the interaction between the PT coordinate and the
environment. Notice that Eq. (8.8) has the form of a system-bath Hamiltonian
(cf. Eq. (3.3)); in the spirit of Chapter 3, the proton coordinate can be considered as
being the relevant system, while the remaining coordinates Z form the reservoir.

The interaction potential V(s,Z) can be partitioned into a short- and a long-range
part. Often, it is reasonable to assume that the short-range part will be dominated
by the interaction of the solvent with the intramolecular modes, since the respective
donor and acceptor groups might shield the proton from direct collisions with the
solvent. The long-range Coulomb interaction, however, influences the PT directly,
since the latter is often accompanied by a large change in the dipole moment. In fact,
a polar solvent is very likely to stabilize one of the two configurations found in the
gas-phase double-well potential. This is typical, for instance for hydrogen-bonded
acid–base complexes, where the ionic form may be stabilized in polar solution.

In practical condensed phase calculations, the environmental DOFs are normally
treated by classical mechanics. On the other hand, it is often necessary to describe
the proton quantum mechanically. The Hamiltonian Hproton(s) may be obtained,
for instance by performing gas-phase quantum chemical calculations for an appro-
priately chosen reference system that contains the PT coordinate. The interaction
V(s;Z) then may enter via effective pair (for example, Lennard-Jones) and Coulomb
potentials. One of the essential ingredients here is a detailed model for the charge
distribution along the PT coordinate. Besides this atomistic view, one can also
introduce the solvent by means of a continuum model (cf. Section 2.7.1).

In what follows, we consider two different ways of rewriting the Hamiltonian (8.8)
such that it becomes suitable for treating PT in the adiabatic and nonadiabatic limits.

8.2.4.1 Adiabatic Representation
The Born–Oppenheimer separation of electronic and nuclear motions provided the
key to electronic and vibrational spectra and dynamics (cf. Chapter 2). In fact, the
small mass of the proton makes it tempting to separate its motion from the slow
dynamics of its environment (for example, intramolecular heavy atom modes and
collective protein modes). Assuming that the set {Z

𝜉
} of coordinates and the proton

coordinate s are adiabatically separable, it is reasonable to define an adiabatic proton
wave function as the solution of the following Schrödinger equation for fixed values
of the environmental coordinates Z:(

Hproton(s) + V(s,Z)
)
𝜒A(s,Z) = EA(Z)𝜒A(s,Z). (8.9)

Here, the eigenenergies EA(Z) (A = 0,1, 2,…) and the wave function 𝜒A(s,Z) depend
parametrically on the coordinates Z in analogy to the parametric dependence of the
electronic energies on the nuclear coordinates discussed in Chapter 2. Given the
adiabatic basis functions |𝜒A⟩, the total nuclear wave function can be expanded as
follows:

𝜙(s,Z) =
∑

A
ΞA(Z) 𝜒A(s,Z). (8.10)

Stressing the analogy with the electronic–nuclear situation discussed in Section
2.3, the ΞA(Z) can be considered as the wave functions for the motion of the
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Figure 8.12 Quantum–classical hybrid treatment of the hydride (H−) transfer reaction
catalyzed by the enzyme dihydrofolate reductase. In the three-dimensional structure
(for Escherichia coli (a)), the nicotinamide adenine dinucleotide phosphate (NADPH)
cofactors to the (protonated) 7,8-dihydrofolate (DHF) are labeled. The hydride transfer takes
place from the donor carbon (CD) of the NADPH to the acceptor carbon (CA) of DHF. In (b),
adiabatic wave functions are plotted for the hydride at three representative configurations
of the environmental (DHF substrate, NADPH cofactor, protein, solvating water molecules)
coordinates along the reaction path. The immediate surroundings of the donor and acceptor
sites are also shown (figure courtesy of S. Hammes–Schiffer; for more details, see also
Agarwal et al. [6]).

slow (environmental) DOFs in the proton adiabatic state |𝜒A⟩. The corresponding
equations for their determination follow in analogy to Eq. (2.18) and will not be
repeated here.

It should be pointed out that for a condensed phase environment a classical
treatment of the reservoir coordinates Z will be necessary using, for example the
quantum–classical hybrid methods discussed in Section 3.13. In Figure 8.12, we
show an example for an adiabatic proton wave function in a classical environment.
Three snapshots are plotted along the reaction path of a hydride (H−) transfer
reaction catalyzed by an enzyme.

8.2.4.2 Diabatic Representation
The diabatic representation is convenient if the proton wave function is rather
localized at the donor or the acceptor site of the hydrogen bond. This will be the
case for systems with a rather high barrier (weak hydrogen bonds). Following the
strategy discussed in Section 2.6, we define diabatic proton states for the reactant
and the product configuration according to some properly chosen Hamiltonian
HR(s,Z) and HP(s,Z), respectively. This means that we have to solve the eigenvalue
problem

HR∕P(s,Z)𝜒jR∕jP
(s,Z) = EjR∕jP

(Z)𝜒jR∕jP
(s,Z). (8.11)
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Here, EjR∕jP
(Z) define the diabatic PESs for the motion of the environmental DOFs in

the reactant/product state. The total PT Hamiltonian in the diabatic representation
can then be written as

H =
∑

j=(jR , jP)

∑
j′=(j′R , j

′
P)

[
𝛿jj′

(
Ej(Z) + HR(Z)

)
+ (1 − 𝛿jj′ )Vjj′ (Z)

] |𝜒j′⟩⟨𝜒j|. (8.12)

Here, the diabatic state coupling Vjj′ (Z) is given by (cf. Eq. (8.9))

Vjj′ (Z) = ∫
ds 𝜒∗

j (s,Z)[Hproton(s) + V(s,Z) − HR(s,Z) − HP(s,Z)]𝜒j′ (s,Z).

(8.13)

The diabatic basis can be used for the expansion of the total wave function:

𝜙(s,Z) =
∑

j=(jR , jP)
Ξj(Z) 𝜒j(s,Z). (8.14)

The analogy between the present treatment and that of the electron–vibrational
problem discussed in Chapters 2, 6, and 7 is apparent. In the spirit of the diabatic
representation introduced in Section 2.6, the diabatic Hamiltonians HR∕P(s,Z)
will be conveniently chosen such that the coupling is only in the potential energy
operator (static coupling).

8.3 Adiabatic Proton Transfer

The regime of adiabatic PT is characteristic of relatively strong hydrogen bonds.
In this situation, the potential energy curve often has only a rather low barrier. The
heavy atom coordinates will move so slowly that the proton can respond “instanta-
neously” to any change in Z. Thus, its wave functions 𝜒A(s,Z) as a solution of the
Schrödinger equation (8.9) will always correspond to the potential, which follows
from the actual configuration of Z (see Figures 8.12 and 8.13).

In order to explore some general features of the potential energy curve for adia-
batic PT, let us consider the situation of a reactant state with equilibrated heavy atom
coordinates as shown in the left panel of Figure 8.13. The potential obtained by vary-
ing the PT coordinate but keeping the heavy atom coordinates in V(s,Z) fixed will
be asymmetric. On the other hand, any displacement of the heavy atom coordinates
will influence the potential for PT. Suppose that we have moved the heavy atom
configuration such that it corresponds to some symmetric transition state. Then, the
potential for PT will be symmetric (upper panel of Figure 8.13) with the lowest eigen-
state along the proton coordinate being possibly above the top of the barrier. If we
promote the heavy atom coordinates to their equilibrated product configuration, the
PT potential will become asymmetric again but with the more stable configuration
being on the product side (right panel of Figure 8.13). For the asymmetric reactant
and product states, it is reasonable to assume that the proton wave function will be
rather localized in these states. In the symmetric case, however, it may be delocalized
with respect to the PT coordinate s.



408 8 Proton Transfer

R
P

PT coordinate

E
ne

rg
y

TS

χ0(s, Z)

Figure 8.13 Schematic view of the potential energy curve for PT in the adiabatic regime.
Here, the proton wave function, 𝜒0(s, Z), adjusts instantaneously to the actual configuration
Z of its environment. The three different panels correspond to environmental DOFs “frozen”
at their reactant (R), transition (TS), and product (P) configuration (from left to right). The
proton is always in its lowest eigenstate (for an application, see Figure 8.12).

Suppose that the system was initially in the lowest proton eigenstate 𝜒0(s,Z)
corresponding to the reactant configuration of Z. From the discussion above it
is clear that it requires some fluctuations of the heavy atom coordinates in order
to move the system from the reactant to the product state. In practice, it can be
either the fluctuation of the dipole moments of the solvent or the fluctuation of
some strongly coupled mode. Looking at Figure 8.13, we notice that adiabatic PT
corresponds to the situation where the proton remains in its lowest eigenstate when
the heavy atom coordinates move toward the product configuration.

In principle, we have separated our total system into a relevant and an environ-
mental part (cf. Eq. (8.8)). This would suggest to use the methods of nonequilibrium
quantum statistics, introduced in Chapter 3. In particular, one could straightfor-
wardly write down a QME for the time evolution of the reduced proton density
matrix. This would require to make some assumptions concerning the spectral den-
sity of the environment or to do some classical simulation of the spectral density
as outlined in Section 5.3. In fact, there might be cases where such a treatment
is justified. However, in general, the interaction with the surroundings cannot be
treated using perturbation theory. This already becomes obvious by inspecting the
schematic PES shown in Figure 8.13.

Therefore, a realistic modeling of PT in solution can only be achieved by resorting
to the quantum–classical hybrid approach; the proton coordinate is treated quantum
mechanically, and the environment classically. We note in passing that there may
be situations where some of the strongly coupled modes must be treated quantum
mechanically as well. This can occur especially for coupled intramolecular modes
whose frequency may exceed kBT at the given temperature.

According to Section 3.13, the hybrid approach requires to solve the coupled set
of Eqs. (3.438) and (3.439). In the present case of adiabatic dynamics, the simul-
taneous solution of the time-dependent Schrödinger equation is not necessary.
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Since the classical particles are assumed to move very slowly, it suffices to solve
the time-independent Schrödinger equation for fixed positions of the heavy atoms.
Thus, the hybrid approach can be cast into the following scheme: Given some
configuration of the environment, Z(t), the stationary Schrödinger equation (8.9) is
solved numerically. This defines, for instance the “instantaneous” adiabatic ground
state proton wave function 𝜒0(s,Z(t)) (for an example, see Figure 8.12).

This wave function is used to calculate the mean-field force F
𝜉

on the environmen-
tal DOFs, which is given by (cf. Eq. (3.441))

F
𝜉
= − 𝜕

𝜕Z
𝜉
∫

ds 𝜒∗
0 (s,Z(t))V(s,Z(t))𝜒0(s,Z(t))

= −

⟨
𝜒0

||||| 𝜕V
𝜕Z

𝜉

|||||𝜒0

⟩
. (8.15)

The expression (8.15) is a special case of the Hellmann–Feynman theorem, and F
𝜉

is the Hellmann–Feynman force.3) This force is now used to propagate the classical
DOFs by one time step according to the canonical equations:

𝜕Z
𝜉

𝜕t
= 𝜕

𝜕P
𝜉

HR(Z),

𝜕P
𝜉

𝜕t
= − 𝜕

𝜕Z
𝜉

HR(Z) + F
𝜉
. (8.16)

From the new positions obtained in this way, a new interaction potential V(s,Z) is
calculated, and the stationary Schrödinger equation for the proton wave function is
solved again. This procedure is continued until some desired final time. We empha-
size that, in contrast to the general situation discussed in Section 3.13, the adiabatic
limit does not require a simultaneous self-consistent solution of the time-dependent
Schrödinger equation and Newton’s equations of motion. This is due to the fact that
the problem is decoupled by fixing the classical coordinates on the time scale of the
motion of the quantum ones.

The results of such a simulation can be used to obtain, for instance reaction rates.
Let us consider the situation of a PT system where the position of the barrier along
the PT coordinate is at s = s∗. Then, the probability PR that the proton is in the reac-
tant configuration can be calculated from the adiabatic ground state proton wave
function as follows:

PR(Z(t)) =

s∗

∫
−∞

ds|𝜒0(s,Z(t))|2. (8.17)

This probability will be a function of time, since the adiabatic proton wave function
depends on the actual configuration of the classical coordinates, Z(t). The probabil-
ity PR will approach unity in the reactant state and zero after a complete transition
to the product state occurred. In Figure 8.14, we show PR for a model PT reaction
as described in the figure caption. Here, the interaction with the solvent is rather

3) The Hellmann–Feynman theorem states that given the Schrödinger equation H(Z)|𝜒(Z)⟩ =
E(Z)|𝜒(Z)⟩, with Z being a parameter, it holds that 𝜕E(Z)∕𝜕Z = ⟨𝜒(Z)|𝜕H(Z)∕𝜕Z|𝜒(Z)⟩, which can
be proven using the chain rule.
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Figure 8.14 The probability for the proton to be in the reactant configuration is shown for
an adiabatic PT situation. The model system is a strongly bonded XH+ − X complex
immersed in a polar aprotic diatomic solvent (Reproduced with permission from Borgis
et al. [7]/American Chemical Society).

strong such that the proton is most of the time stabilized either on the reactant or
the product side. Large fluctuations of the solvent dipoles, however, cause occasional
transitions between the two configurations; that is, the reaction barrier is crossed.
From the knowledge of the time dependence of the reactant state population, one
can in principle obtain the transition rate by simple counting the reactive barrier
crossings in Figure 8.14 during a long-time quantum–classical propagation or by
averaging over an initial distribution for the classical system.

8.4 Nonadiabatic Proton Transfer

Whenever we have a situation where the hydrogen bond is rather weak, the concepts
of adiabatic PT discussed in the previous section can no longer be applied. Here,
the reaction barrier will be rather high, and consequently, the splitting between the
two lowest eigenstates is small. Thus, the different adiabatic states come close to
each other, and nonadiabatic transitions become rather likely at normal tempera-
tures (cf. Figure 8.6a). On the other hand, the transfer time will be long compared
with the typical relaxation time scales for the environment. We have already seen
in Chapter 7 that this situation is most conveniently described using a diabatic rep-
resentation of the Hamiltonian as given by Eq. (8.12). We focus on a situation of
a protonic two-state system. This may be appropriate at temperatures low enough
such that the second pair of vibrational states (in an only modestly asymmetric PT
potential, cf. Figure 8.6) is thermally not occupied. The two states will be labeled as
j = (R,P).

Since we have assumed that the conditions for nonadiabatic PT are fulfilled, we
can straightforwardly write down the rate for transitions between the diabatic reac-
tant and the product states using the Golden Rule expression of Eq. (3.86). Suppose
that the stationary Schrödinger equation for the environmental DOFs

[Ej(Z) + HR(Z))] Ξj,N (Z) = Ej,N Ξj,N (Z), j = (R,P) (8.18)

has been solved, the Golden Rule transition rate reads

kR→P = 2𝜋
ℏ

∑
M

fR,M

∑
N
|⟨ΞR,M|VRP|ΞP,N⟩|2𝛿(ER,M − EP,N ). (8.19)
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Here, the N = {N
𝜉
} comprises the quantum numbers for the environmental DOFs

Z in the reactant and product diabatic states. Of course, expression (8.19) is only
of limited value since calculating the eigenstates of the environment is in the gen-
eral case impossible. However, as in the case of ET, one can obtain an analytical
expression for the limit of a harmonic oscillator environment. We are not going to
repeat the derivations given in Section 7.4, which can easily be adapted to the present
situation.

For PT reactions, however, it may often be necessary to include a coordinate depen-
dence of the diabatic state coupling, that is to go beyond the Condon approximation,
which has been used in the treatment of nonadiabatic ET. This is basically due to the
intramolecular promoting modes, which may have a drastic influence on the PT rate.
Note that this influence will be even more pronounced in the nonadiabatic regime,
where the tunneling coupling is rather small. Compared to the dominant effect of
possible promoting modes, the dependence of the diabatic coupling on the solvent
coordinates is often neglected. For the actual form of this dependence, it is reason-
able to assume a form similar to that used for ET in Eq. (7.26). Note, however, that
the parameter 𝛽, which characterizes the wave function overlap, is much larger for
PT than for ET since the proton wave functions will be more localized.

In the case of a coordinate-dependent state coupling, and also for more general
(not harmonic) environments, it is necessary to return to the definition of the trans-
fer rate in terms of correlation functions as given in Eq. (3.184). Adapting Eq. (3.184)
to the present situation, the PT rate can be written as

kR→P = 1
2ℏ

Re

∞

∫
0

dt trR

{
R̂ReiH(0)

R t∕ℏVRP(Z)e−iH(0)
P t∕ℏVPR(Z)

}
. (8.20)

Here, we used the shorthand notation H(0)
R∕P = ER∕P(Z) + HR(Z); R̂R is the statistical

operator for the reactant state, and the trace is also performed with respect to the
reactant states. Equation (8.20) can be transformed into a more convenient form
using the operator identity

e−iH(0)
P t∕ℏ = eiH(0)

R t∕ℏ T̂ exp
⎧⎪⎨⎪⎩−

i
ℏ

t

∫
0

dt′eiH(0)
R t′∕ℏ(H(0)

P − H(0)
R )e−iH(0)

R t′∕ℏ

⎫⎪⎬⎪⎭ . (8.21)

Introducing the time-dependent energy gap between the reactant and product state
configurations as

ΔH(I)(t) = eiH(0)
R t∕ℏ (H(0)

P − H(0)
R ) e−iH(0)

R t∕ℏ
, (8.22)

we can rewrite Eq. (8.20) as

kR→P = 1
2ℏ

Re

∞

∫
0

dt trR

⎧⎪⎨⎪⎩R̂R V (I)
RP(Z, t) T̂ exp

⎧⎪⎨⎪⎩−
i
ℏ

t

∫
0

dt′ΔH(I)(t′)
⎫⎪⎬⎪⎭V (I)

PR(Z, 0)
⎫⎪⎬⎪⎭ ,

(8.23)

where the interaction representation of VRP(Z) is with respect to H(0)
R . In the context

of linear optical spectroscopy of molecular systems, expressions of the type (8.23)
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have been shown to be amenable to a classical treatment (cf. Section 6.3.3). This
requires to replace the quantum dynamics of the environment, which is introduced
via V (I)

RP(Z, t) and ΔH(I)(t), by classical dynamics on the diabatic reactant state poten-
tial energy surface, or more specifically, V (I)

RP(Z, t) is replaced by VRP(Z(t)) andΔH(I)(t)
by ΔH(Z(t)). This reminds on the dynamical classical limit (DCL) limit discussed
in Section 6.3.3. Here, the time dependence of the coordinates is governed by the
equations of motion of classical mechanics. In addition, the time-ordered exponen-
tial in Eq. (8.23) can be replaced by an ordinary exponential in the classical approxi-
mation. Finally, the thermal averaging in Eq. (8.23) has to be performed with respect
to some classical thermal distribution function for the reactant state as detailed in
Section 3.13.

8.5 The Intermediate Regime: From Quantum
to Quantum–Classical Hybrid Methods

The Golden Rule description in the previous section was based on the assumption of
weak hydrogen bonding. In other words, the energetic separation between the two
lowest vibrational states of the PT coordinate (tunnel splitting) has to be small. One
consequence is that the adiabatic approximation is no longer justified, and transi-
tions between different proton states occur. In the previous section, this has been
described using coupled diabatic proton states.

In Section 8.2, we already mentioned that the actual barrier height and therefore
the tunneling splitting is subject to strong modifications in the presence of a fluctu-
ating environment. Thus, unless hydrogen bonding is really strong, there may be no
clear separation between the adiabatic regime and some intermediate, or even the
nonadiabatic, regime. In this case, one has to use an alternative formulation that is
suited for all regimes and in particular incorporates transitions between adiabatic
proton states.

In principle, one could apply the QME approach discussed in Chapter 3 and treat
the quantum dynamics of the relevant system under the influence of the dissipative
environment. We have already mentioned, however, that the consideration of only
a single relevant coordinate, that is the proton coordinate, may not be sufficient,
and it might be necessary to include, for instance several modes of the environ-
ment into the relevant system in order to allow for a perturbative treatment of the
system–environment coupling. But, in practice, the propagation of RDMs in more
than three dimensions requires a considerable numerical effort. As an alternative,
one could use the nonperturbative methods discussed in Sections 3.10 and 3.11.
Incorporating, for example weakly damped promoting modes into the reservoir will
be computationally demanding as well.

In what follows, we first discuss a fully quantum mechanical wave packet method
in Section 8.5.1 before focusing on a quantum–classical hybrid approach in Section
8.5.2.
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8.5.1 Multidimensional Wave Packet Dynamics

Suppose that it is sufficient to restrict the dynamics to the PT coordinate and a finite
number of nuclear coordinates. Let us further assume that the Hamiltonian is avail-
able in the reaction surface form given by Eq. (8.1), that is with some (intramolec-
ular) oscillator modes q

𝜉
. The simplest possible wave function would have the form

of a Hartree product (cf. Eq. (3.50)):

𝜙(s, q, t) = a(t)𝜒(s, t)
∏
𝜉

Ξ
𝜉
(q
𝜉
, t). (8.24)

In Section 3.2, we have shown how one can obtain a set of separate equations of
motion for the wave functions of the different DOFs using the time-dependent
Dirac–Frenkel variational principle. Applied to the present case, one finds the
Schrödinger equation for the reaction coordinate

iℏ 𝜕
𝜕t
𝜒(s, t) =

[
Ts + USCF(s, t)

]
𝜒(s, t), (8.25)

where the effective potential

USCF(s, t) = U(s) +
∑
𝜉

[1
2
𝜔

2
𝜉
⟨Ξ

𝜉
(t)|q2

𝜉
|Ξ

𝜉
(t)⟩ − F

𝜉
(s)⟨Ξ

𝜉
(t)|q

𝜉
|Ξ

𝜉
(t)⟩ ] (8.26)

has been introduced. It contains the time-dependent mean-field potential due to
the interaction with the oscillator modes. For the latter, we obtain the equations of
motion

iℏ 𝜕
𝜕t
Ξ
𝜉
(q
𝜉
, t) =

[
T
𝜉
+ 1

2
𝜔

2
𝜉
q2
𝜉
− F

𝜉
(t)q

𝜉

]
Ξ
𝜉
(q
𝜉
, t). (8.27)

Here, we define the time-dependent linear driving forces for the oscillator dynam-
ics F

𝜉
(t) = ⟨𝜒(t)|F

𝜉
(s)|𝜒(t)⟩. This quantity contains an average with respect to the

proton coordinate; that is, it describes the mean-field interaction for the oscillator
modes. Furthermore, notice that Eq. (8.27) corresponds to a harmonic oscillator with
time-dependent driving force. Therefore, if the reservoir is initially in the ground
state and described by an uncorrelated Gaussian wave packet, the dynamics, which
is initiated by the interaction with the proton coordinate, is that of a Gaussian wave
packet with a time-dependent mean value. Since the dynamics of both subsystems
is determined by simultaneous solution of Eqs. (8.25) and (8.27), this approach is
called time-dependent self-consistent field method.

The approach outlined so far is rather appealing for it allows to treat a fair number
of DOFs on a quantum mechanical level. It may provide a reasonable description
for hydrogen bond motion in the vicinity of a minimum on the PES or for strong
hydrogen bonds. On the other hand, for PT reactions between the reactant and prod-
uct potential wells, it is likely to fail. The reason lies in the mean-field character of
the coupling. To illustrate this, suppose that we are interested in the force that acts
on some oscillator coordinate if the proton is in its vibrational ground state 𝜒0(s).
For a symmetric double minimum potential, the ground state wave function will
obey 𝜒0(s) = 𝜒0(−s) (cf. Figure 8.10). Hence, given an antisymmetric coupling such
as F

𝜉
(s) ∝ s (cf. Figure 8.9a), the mean force will vanish. Although this is an extreme
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example, it becomes clear that upon PT, the force on the oscillator modes may change
considerably such that for a rather delocalized proton wave packet details of this
coupling are averaged out, leading to a qualitatively wrong behavior.

A recipe for including correlations beyond the mean-field approximation even
for rather large systems is most easily appreciated if we return to the diabatic
picture of some general system-bath Hamiltonian as given by Eq. (8.12).4) Having
defined the diabatic proton states for the reactant and product, we can use the
so-called coupled-channel approach. To this end, let us expand the time-dependent
total wave function in terms of the stationary diabatic proton states as follows
(cf. Eq. (8.14)):

𝜙(s,Z; t) =
∑

j=(jR ,jP)
Ξj(Z; t)𝜒j(s,Z). (8.28)

Inserting this ansatz into the time-dependent Schrödigner equation with the
Hamiltonian in Eq. (8.12), one obtains the coupled-channel equation for the
time-dependent wave function of the environment, Ξj=(jR ,jP)(Z; t),

iℏ 𝜕
𝜕t
Ξj(Z; t) =

(
Ej(Z) + HR(Z)

)
Ξj(Z; t) +

∑
j′≠j

Vjj′ (Z) Ξj′ (Z; t). (8.29)

Given a diabatic Hamiltonian as in Eq. (8.12), this equation is in principle exact.
However, unless the number of environmental DOFs can be restricted to just a
few, the numerical effort for solving the coupled-channel equations is prohibitive.
Therefore, it is customary to neglect correlations between different environmental
coordinates and assume that the wave function for the different diabatic states of
the proton, Ξj(Z; t), can be factorized as follows5):

Ξj(Z; t) =
∏

k
Ξj(Z𝜉 ; t). (8.30)

Using this factorization ansatz and employing again the Dirac–Frenkel time-
dependent variational principle (cf. Eq. (3.47)), one obtains the following equation
for the wave function Ξj(Z𝜉 ; t):

iℏ 𝜕
𝜕t
Ξj(Z𝜉 ; t) =

∑
j′

H(eff)
jj′ (Z

𝜉
; t) Ξj′ (Z𝜉 ; t). (8.31)

We can identify this as a mean-field approach; that is, the time evolution of the wave
function for the environmental DOF Z

𝜉
is determined by the averaged potential of

all other DOF Z
𝜉′≠𝜉 . The effective time-dependent Hamiltonian entering Eq. (8.31)

is given by

H(eff)
jj′ (Z

𝜉
; t) =

∫
dZ̃ Ξ∗

j (Z̃; t)
[
𝛿jj′

(
Ej(Z) + HR(Z)

)
+ (1 − 𝛿jj′ )Vjj′ (Z)

]
Ξj′ (Z̃; t).

(8.32)

4) It is rather straightforward to map this general Hamiltonian onto the specific reaction surface
Hamiltonian for an oscillator reservoir.
5) Note that the following treatment is not unique to PT; that is, it can be applied to the
electron–vibrational dynamics as well.
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Here, we introduce Z̃ as the shorthand notation for all coordinates Z except Z
𝜉
.

Further, we have used

Ξj(Z̃; t) =
∏
𝜉′≠𝜉

Ξj(Z𝜉′ ; t). (8.33)

This approximate treatment allows to consider much larger environments but
neglects any correlation effects in the dynamics of different environmental DOFs.
However, in contrast to the time-dependent self-consistent field approach, the
force acting on the reservoir particles depends on the diabatic state of the reaction
coordinate.

Whenever only a few DOFs have to be considered, one can resort to numerically
exact methods that allow to account for all relevant correlations.6) Here, the most
versatile approach is the multiconfiguration time-dependent Hartree method dis-
cussed in Section 3.2.3. In Figure 8.15, we show the results of MCTDH wave packet
propagations of PT along a chain of four water molecules. The model includes the
proton coordinates ri as well as the hydrogen bond length Ri (Figure 8.15a). In
Figure 8.15b, the probability density for an excess proton that is initially inserted
into the left most unit of the chain is shown for the central unit as a function of
time for the fully correlated seven-dimensional wave packet. Initially, the proton is
in the reactant well of this potential (the form of the PES is similar to that shown in
Figure 8.9a). After 100 fs, the wave packet has moved into the barrier region, where
the proton is shared between the two oxygen atoms, to proceed into the product
region. In Figure 8.15c, a simulation is shown where the heavy atom coordinates
Ri are treated by a single Hartree product only. Clearly, the mean-field nature of
this description has a dramatic influence on the wave packet that appears to be
considerably less structured during its evolution.

8.5.2 Surface Hopping

Due to the complexity of the environment, however, one often wants to retain its
classical description. From Eq. (8.28), it is obvious that in general the total system
is in a superposition state with respect to the diabatic proton states. This introduces
some conceptual difficulty since the classical environment cannot be in such a state;
that is, it cannot experience the forces due to both diabatic proton states at the same
time. One possibility to solve this problem approximately is to average the forces on
the classical DOFs with respect to the quantum states. However, this will only be a
good approximation if these forces are not very different in the two quantum states,
which is often not the case.

An alternative and simple classical approach incorporating quantum transitions is
given by the surface hopping method, introduced in Section 3.13.2. Here, the classical
propagation of the environmental DOFs is combined with certain prescriptions for
quantum transitions in the quantum subsystem.

6) Note that depending on the importance of correlations and on the representation of the
Hamiltonian (for example, harmonic oscillator based), hundreds of DOFs can be treated at
reasonable numerical costs.
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Figure 8.15 Wave packet dynamics of a seven-dimensional quantum model mimicking
excess PT in a water chain (a). (b) and (c) Probability densities for two selected coordinates
for the exact case and for an approximation where the heavy atom coordinates are treated
by a single Hartree product (Reproduced with permission from Vendrell and Meyer
[8]/American Institute of Physics).
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For the simulation of PT reactions, one employs the instantaneous adiabatic
proton states, which have to be determined according to Eq. (8.9) for each time step.
The proton wave function at any time step can then be expanded in terms of this
instantaneous adiabatic basis set according to7)

𝜒(s,Z; t) =
∑

A
cA(t) 𝜒A(s,Z(t)). (8.34)

Inserting this expression into the time-dependent Schrödinger equation with the
Hamiltonian given by Eq. (8.9), one obtains the following set of equations:

𝜕

𝜕t
cA = − i

ℏ

EA (Z)cA −
∑
𝜉

𝜕Z
𝜉

𝜕t
∑
A′

cA′

⟨
𝜒A

||||| 𝜕𝜕Z
𝜉

𝜒A′

⟩
. (8.35)

The last factor on the right-hand side can be identified with the nonadiabatic cou-
pling matrix (cf. Eq. (3.449)). The quantum–classical propagation then proceeds as
explained in Section 3.13.2. The surface hopping method gives a means to calculate,
for instance the transitions rates without referring to any particular limit of PT.8)

Since the proton coordinate is treated quantum mechanically, the effects of tunnel-
ing and zero-point motion are naturally included. It should be emphasized again that
the incorporation of nonadiabatic transitions relies on some ad hoc stochastic model
that, however, uses information about the probability distribution with respect to the
proton states.

In the enzymatic catalysis example given in Figure 8.12, the surface hopping
method was used to address the influence of quantum effects for hydride (H−)
transfer. Nonadiabatic transitions were found to have only a minor effect on the
rate for this process.

8.6 Proton-coupled Electron Transfer

PCET will be discussed in a scheme involving electron donor/acceptor Del/Ael and
proton donor/acceptor Dp/Ap configurations. In the latter case, the protonated
donor will be labeled D+

p = Dp − H+ and likewise for the acceptor. In principle, one
can distinguish between concerted and sequential PCET. In the case of concerted
PCET, PT and ET occur simultaneously and without a stable intermediate, that is9)

[D−
elAel][D+

p Ap] → [DelA−
el][DpA+

p ], (8.36)

7) Note that in general any suitable basis set can be used, but this would require to calculate
matrix elements of the proton Hamiltonian on the right-hand side of Eq. (8.35).
8) This can be done, for instance by partitioning the possible values of the PT coordinate into the
reactant and product side configuration. Based on the expectation value of the PT coordinate for a
given classical trajectory, it can be decided whether a reactive transition between the reactant and
the product configuration occurred.
9) Notice that in cases where electron and proton share the donor and acceptor, one obtains
hydrogen atom transfer.
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whereas in sequential PCET, either ET precedes PT

[D−
elAel][D+

p Ap] → [DelA−
el][D

+
p Ap] → [DelA−

el][DpA+
p ] (8.37)

or vice versa

[D−
elAel][D+

p Ap] → [D−
elAel][DpA+

p ] → [DelA−
el][DpA+

p ]. (8.38)

Concerted PCET often proceeds in the nonadiabatic limit, that is as a transition
between localized electron–proton states triggered by thermal fluctuations of a
reaction coordinate (such as a collective solvent coordinate).10) In this case, it can
be described adapting the Golden rule expression developed in the context of ET,
Eq. (7.101). Figure 8.16 illustrates the situation, which has a close analogy to the
case of ET shown in Figure 7.22. In the diabatic reactant state, [D−

elAel][D+
p Ap],

the electronic DOFs are in the respective ground state, |𝜙D⟩, whereas the proton
state is |𝜒DM⟩. At the same time, the reaction coordinate is in its reactant configura-
tion. In the product state, [DelA−

el][DpA+
p ], the situation is analogous, with electronic

ground state |𝜙A⟩ and proton state |𝜒AN⟩.
When calculating the rate, kPCET, according to Eq. (7.101), one has to be aware

of the fact that in general the diabatic state coupling will depend on the distance
between the proton donor and acceptor. According to Figure 8.6, even the shapes of
the local potential and thus the proton wave function may depend on this distance.
As outlined in Section 8.4, such cases can be treated using a correlation function
approach.

Sequential PCET can proceed via two pathways, Eqs. (8.37) and (8.38). In partic-
ular, for enzymatic reactions, it is found that the energy of the intermediate state is

Reaction coordinate

E
ne

rg
y

Proton coordinate

Proton coordinate

R P
[DelAel] [DpAp]– + [DelAel] [DpAp]– +

|ϕD〉| χDM〉 |ϕA〉| χAN〉

Figure 8.16 Potential energy curves for nonadiabatic PCET according to Eq. (8.36). On the
left and right sides, the potential for local proton motion is shown together with proton
wave functions. In the center, the diabatic reactant and product potentials of the reaction
coordinate (collective solvent coordinate) are given that correspond to particular local
proton states as indicated by their energetic positions (cf. Figure 7.22).

10) Note that within the nonadiabatic limit for the PCET reaction, one can further differentiate
according to the ratio of time scales for electron and proton tunneling. For instance, a reaction can
be electronically adiabatic with respect to the proton motion if the electronic time scale is much
shorter than that of the proton.
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higher than that of the initial state, and only the second reaction step proceeds ener-
getically downhill. Hence, forward as well as backward rates have to be considered
for the first reaction step. The appropriate system of coupled rate equations can be
obtained in analogy to the case of donor–bridge–acceptor ET, Eq. (7.128). The rates
for the individual ET and PT steps follow from the respective theories for PT and ET
discussed in the present and the previous chapters, respectively.
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9

Excitation Energy Transfer

The transfer of electronic excitation energy within a molecular aggregate will
be considered. The construction of the respective Hamiltonian is explained in
detail. We will discuss the coupling of electronic excitations between different
molecules, which causes excitation energy delocalization and transfer, as well as
the interaction with the various types of vibrational degrees of freedom. Attention
is focused on the so-called Frenkel exciton model, where the moving excitation
energy is completely described as an intramolecular excitation, and no charge
transfer between different molecules occurs. Excitation energy transfer in a situ-
ation of weak and strong dissipation is described. The latter case directly leads to
the well-established Förster theory for incoherent excitation energy hopping. It is
shown that the Förster transfer rate can be expressed in terms of the emission and
absorption spectra of the donor molecule and the acceptor molecule, respectively.
Next, we demonstrate how optical absorption spectra are influenced by the for-
mation of Frenkel exciton states. Finally, excitation energy transfer is discussed
in terms of photon exchange, and the formation of charge-transfer excitons and
the process of exciton–exciton annihilation are described.

9.1 Introduction

Let us start with the consideration of the electronic excitation energy transfer (EET)
between two molecules according to the general scheme

D∗ + A −−→ D + A∗ (9.1)

The excitation energy donor is labeled by D, and the excitation energy acceptor
A. The starting point is a situation where the donor molecule has been excited
(D∗), for instance, by absorption of a photon, and the acceptor molecule is in its
ground state (A). Then, the Coulomb interaction between these molecules leads to
a reaction where the donor molecule is deexcited, and the electrostatic energy is
transferred to the acceptor molecule, which becomes excited. Figure 9.1 displays
this process in a HOMO–LUMO scheme. Since the deexcitation of the donor
molecule recalls spontaneous photon emission (fluorescence, see Section 6.4),
the described process of EET is often also named fluorescence resonance energy

Charge and Energy Transfer Dynamics in Molecular Systems,
Fourth Edition. Volkhard May and Oliver Kühn.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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D* A D A*

Figure 9.1 Excitation energy transfer between an energy donor molecule D and an
acceptor molecule A. A HOMO–LUMO scheme has been used for both molecules. D is
initially in the excited state in which one electron has been promoted from the HOMO to
the LUMO. In the final state, D is in its ground state, and A is excited. The Coulomb
interaction triggers the exchange of excitation energy. If the excited donor is in the singlet
spin state, the electron spin of the LUMO electron may point upward and that of the HOMO
electron downward or vice versa. Such a spin configuration is also reached for the excited
acceptor after excitation energy transfer.

D* A D A* D* A D A*
(a) (b)

Figure 9.2 Excitation energy transfer between an energy donor molecule D and an
acceptor molecule A viewed as a two-electron-exchange process. Both molecules are
described in a HOMO–LUMO scheme (inverse spin orientation in D∗ and A∗ is also
possible). (a) Singlet–singlet transfer and (b) triplet–triplet transfer.

transfer (FRET, the term “resonance” expresses the requirement that the energy
of the initial and final EET states should coincide). The product state can also be
reached via an electron-exchange mechanism between the donor and the acceptor
molecules (see Figure 9.2). The electron in the LUMO of D moves to the LUMO
of A, and the hole in the HOMO of D is filled by an electron of the HOMO of A.
The latter process requires that the wave functions of D and A overlap, while the
former process (without electron exchange) may take place even if both molecules
are spatially well separated.

If the coupling responsible for EET becomes sufficiently large, the quantum
mechanical state |D∗A⟩ that corresponds to the initial state of the EET and the
state |DA∗⟩ that describes the result of the EET may form a superposition state
c1|D∗A⟩ + c2|DA∗⟩. If generalized to an arbitrary set of molecules, this state is
known as the Frenkel exciton. To distinguish the Frenkel exciton from other types of
excitons, it can be considered as an electron–hole pair with both particles residing
at the same molecule (the missing single electron in the HOMO of an excited
molecule is considered the hole).

Frenkel excitons are encountered in associated and noncovalently bound com-
plexes. Examples are molecular crystals of aromatic compounds such as benzene
and naphthalene and rare gases in the solid phase. Another important class of
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Figure 9.3 Cylindrical J-aggregate of an amphiphilic dye molecule. (a) Monomer cyanine
unit. (b) Schematic of self-assembled double-walled nanotube. (c) Schematic drawing
of monomer transition dipoles at angles 𝛽 with respect to the long axis of the tube.
(d) Monomer and aggregate fluorescence spectra; the two peaks in the latter case
correspond to the inner and outer ring excitons (reprinted by permission from Eisele
et al. [1], copyright Springer Nature (2009)).

Frenkel exciton systems are dye aggregates (for instance, cyanine dyes). Upon
aggregation, which occurs in solution or in thin solid films, the dyes form rod-like
arrangements consisting of several hundred molecules (see Figure 9.3). In the
past decades biological multichromophore complexes also attracted broad interest.
The light-harvesting complexes of natural photosynthetic antenna systems repre-
sent fascinating examples where the concept of Frenkel excitons can be applied.
Much effort has been devoted to the study of both the primary steps of photosynthe-
sis, that is directed EET in the antenna (solar energy collection) and charge transfer
in the reaction center (connected with charge separation). A schematic view of an
antenna system consisting of several so-called pigment–protein complex is shown
in Figure 9.4. In particular, the Fenna–Matthews–Olson (FMO) complex (panels (b)
and (c)) has attracted considerable attention. It transfers excitation energy between
the chlorosome antenna and the reaction center. Since its atomic structure is known
for a long time, it has become a model system for theoretical and spectroscopic
studies. Figure 9.4d shows two-dimensional spectra of the FMO complex at a
temperature of 77 K for two different population times (the room temperature
linear absorption spectrum can be found in Figure 9.21b). For short delay times,
the spectrum is essentially elongated along the diagonal line, resembling the linear
absorption spectrum. With increasing delay time, exciton relaxation proceeds
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Figure 9.4 (a) Time scales of energy flow and charge separation in the photosynthetic
apparatus of the green sulfur bacterium Chlorobaculum tepidum consisting of an assembly
of light-harvesting complexes, a chlorosome, Fenna–Matthews–Olson (FMO) proteins, and
reaction centers (RCs). The actual time scales have been obtained using two-dimensional
electronic spectroscopy. (b) Structure of the FMO trimer complex, which serves as an energy
transporter between the chlorosome and the RC (see panel (a)). (c) Arrangement of
bacteriochlorophyll (BChl) a molecules in a monomeric unit of FMO trimer. EET is often
assumed to be initiated at site 1 and to proceed toward site 3. (d) Two-dimensional
electronic spectra at T = 77 K for two population times (100 fs and 5 ps); the dashed lines
indicate the excitonic transition energies (panel (a) reprinted with permission from Dostál
[2], copyright Springer Nature (2016); panels (b, c) courtesy of A. A. Ahmed; panel
(d) courtesy of E. Thyrhaug and D. Zigmantas; for more information, see also Thyrhaug
et al. [3]).

toward the lowest excited state of the complex. This gives rise to peaks below
the diagonal due to ground state bleaching and stimulated emission processes
(cf. Section 4.3.7). Fitting such spectra provides access to energy relaxation rates.
For a quantum dynamical simulation of EET in the FMO complex, see Figure 9.18.

Finally, we point to organic–inorganic hybrid systems where molecules are
attached to semiconducting nanoparticles (quantum dots, see Figure 9.5), and
EET takes place between the nanoparticle and the molecule. The theoretical and
experimental investigation of the behavior of excitons in molecular aggregates
has a long history. Already in the 1930s, G. Scheibe and E. E. Jelley observed
characteristic changes of optical absorption bands upon changing conditions such
as to – in modern terms – promote supramolecular self-aggregation. The spectrum
changes from a broad monomeric absorption band to a comparatively sharp and
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Figure 9.5 Fluorescence resonance energy transfer (FRET) between a CdSe/ZnS core–shell
quantum dot (coated with a lipid layer) and a fluorescent protein (similar to the so-called
green fluorescent protein). Both are connected via a polyhistidine chain. Upon excitation of
the quantum dot, energy is nonradiatively transferred to the fluorescent protein, and
sensitized emission is observed (reprinted with permission from Dennis and Bao [4],
copyright 2008 American Chemical Society).

shifted aggregate absorption band (and likewise for emission of the so-called
J-aggregates as is shown in Figure 9.3). This effect will be discussed in more detail in
Section 9.7. Early theoretical contributions by T. Förster and D. L. Dexter were based
on an incoherent rate equation approach. The variety of phenomena highlighted
in recent discussions ranges from cooperative radiative decay (superradiance),
quantum coherent dynamics, and disorder-induced localization to nonlinear effects
such as exciton–exciton annihilation and multiexciton state formation. This is
paralleled by a large number of theoretical investigations focusing on exciton
transport in molecular systems beyond the rate limit. Historically, a prominent role
was played by the Haken–Strobl–Reineker model, which describes the influence
of the environment on the exciton motion in terms of a stochastic process. Recent
efforts focus on density matrix theories that treat the environment in an quantum
statistical way and that go beyond limitations set by the perturbation theory with
respect to the exciton–environment coupling (for instance, the HEOM approach
outlined in Section 3.11).

The case opposite to the Frenkel exciton, where electron and hole are separated
by a distance much larger than the spacing between the neighboring molecules,
is called a Wannier–Mott exciton. It occurs in systems with strong binding forces
between constituent molecules or atoms such as covalently bound semiconductors.1)

The charge-transfer exciton, an intermediate form, is also frequently discussed. Here,
electron and hole reside on molecules that are not too far apart. This type of exciton
appears if the wave functions of the involved molecules are sufficiently overlapping,
as is necessary for an electron-transfer reaction (cf. Chapter 7). Charge-transfer exci-
tons can be found, for example, in polymeric chains formed by silicon compounds
(polysilanes) or polythiophene assemblies and also in molecular crystals.

1) Frenkel and Wannier–Mott excitons are usually characterized by the electron–hole binding
energy, which is on the order of 1 eV and 10 meV, respectively. Within a simple H-atom picture of
electron–hole interaction, this difference can be rationalized in terms of the dielectric shielding of
the Coulomb interaction, which is much larger in inorganic than in organic materials.
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This chapter focuses on the description of EET and Frenkel excitons in molecu-
lar aggregates. The term “aggregate” is used to characterize a molecular system that
consists of noncovalently bound molecules, which will also be called monomers.
Occasionally, we also use the term “chromophore complex”. The electronic excita-
tion energy in an aggregate can move as an exciton over the whole system at least
in principle.2) The initial state relevant for the transfer process is often created by
means of photon absorption resonant to the corresponding S0 → S1 transitions of the
interacting monomers. In general, the excited state is a superposition of monomer
states, that is it may contain contributions of all monomers. In terms of the cor-
responding wave functions, this implies a delocalization over the whole aggregate.
The degree of delocalization and the type of motion initiated by the external field
(cf. Figure 9.6) depend crucially on the interaction between the exciton system and

E

P

(a)
(b)

(c)

(d)

Figure 9.6 Schematic illustration of exciton motion in a chromophore complex of
pheophorbide-a molecules. (a) Coherent limit where the shaded area symbolizes the
exciton wave packet extending over several monomers. (b) Coherent motion appears via
wave packet formation within the energy spectrum of delocalized exciton states. Here, the
horizontal sticks indicate the probability P that a certain exciton state is involved in the
wave packet. The probability distribution changes due to energy relaxation as indicated by
the arrows. (c) Incoherent limit where the excitation hops from molecule to molecule (at a
certain time, the excitation is present at different molecules with a certain probability
corresponding to the gray scale). (d) The molecules can often be described as an electronic
two-level systems (upper and lower ends of the vertical sticks) with the excitation of the
upper level moving along a particular path (indicated by the arrow).

2) Since in the experiment any regular structure of the aggregate is disturbed by external
influences, exciton motion is restricted to smaller parts of the whole aggregate (see below).
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the environmental DOFs such as intramolecular nuclear motions. As already dis-
cussed in connection with the electron-transfer reactions (cf. Section 7.3), the ratio
between the characteristic times of intramolecular (vibrational) relaxation and inter-
molecular transitions determines the particular way the EET proceeds. Two limit-
ing cases can be distinguished. If the intramolecular relaxation is slow (compared
with the intermolecular transfer), then the excitation may move as a delocalized
wave packet through the aggregate (cf. Figure 9.6a,b), that is the EET is a coherent
transfer process. In the opposite case, the excitation remains localized as shown in
Figure 9.6c,d, and the EET is called incoherent. A more detailed discussion will be
given in Section 9.4.

First, we outline in Section 9.2 some fundamentals of exciton theory, introduc-
ing the single- and the two-exciton states, and discussing the coupling to vibrational
DOFs. Although we introduce the higher excited aggregate states, which contain
two (or even more) excitations (cf. Figure 9.9), only the related phenomenon of
exciton–exciton annihilation will be discussed in the supplementary Section 9.9.
The techniques to describe the different regimes of exciton dynamics are presented
in Sections 9.5 and 9.6. The optical properties of different types of aggregates are
described in Section 9.7.

9.2 The Aggregate Hamiltonian

Let us consider a molecular aggregate consisting of Nmon molecules (monomers)
arranged in an arbitrary geometry and with the center of mass of the mth molecule
located at Xm. The aggregate Hamiltonian Hagg is separated into intra- and inter-
molecular contributions:

Hagg =
∑

m
Hm + 1

2
∑
m,n

Vmn. (9.2)

The intramolecular contributions Hm describe individual molecules and are
identical with the expression of Hmol in Eq. (2.97). They depend on the electronic
coordinates of molecule m abbreviated by rm as well as on the respective nuclear
coordinates denoted by Rm. Since we have in mind an expansion with respect to the
electronic states of the monomers, we first separate the Hamiltonians Hm into the
nuclear kinetic energy operators Tm and the remaining Hamiltonians H(el)

m , which
define the respective electronic states; that is, we write

Hm = Tm + H(el)
m . (9.3)

All types of intermolecular Coulomb interactions are included in Vmn: the inter-
molecular electron–electron interaction V (el−el)

mn , the intermolecular coupling among
the nuclei V (nuc−nuc)

mn , and the electron–nuclei coupling V (el−nuc)
mn (between the

electrons of molecule m with the nuclei of molecule n) as well as the coupling
V (nuc−el)

mn , where electrons and nuclei have been interchanged.
The present chapter is devoted to EET where electron delocalization across dif-

ferent molecules is unimportant. Therefore, we expand the aggregate Hamiltonian,
Eq. (9.2), in terms of the adiabatic electronic states, 𝜑ma(rm;Rm), of the individual
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molecules m. This facilitates a classification of transfer processes with respect to
intramolecular electronic excitations. The label a counts the actual electronic state
(S0, S1, etc.). These states are defined via the stationary Schrödinger equation for a
given monomer (cf. Eq. (2.12))

H(el)
m (Rm)𝜑ma(rm;Rm) = Uma(Rm)𝜑ma(rm;Rm). (9.4)

The Uma are the corresponding monomer PESs. Note that states belonging to differ-
ent monomers are not orthogonal.3)

Next, we construct an expansion basis for the electronic states of the total aggre-
gate. This will be done in analogy to the treatment presented in Section 2.4. First, we
define the Hartree product ansatz (see Eq. (2.25)),

𝜙
(HP)
A (r;R) =

Nmon∏
m=1

𝜑mam
(rm;Rm), (9.5)

with A covering the whole set of monomer quantum numbers am and describing the
electronic configuration of the total aggregate (r and R abbreviate the total aggregate
electronic and nuclear coordinates, respectively).

In a second step, we generate an antisymmetric wave function (see Eq. (2.26)):

𝜙
(AS)
A (r;R) = 1√

Np!

∑
perm

(−1)p
[
𝜙
(HP)
A (r;R)

]
. (9.6)

Here,  generates a permutation of electron coordinates of different monomers in
the aggregate, and p counts the number, Np, of permutations.4)

In contrast to the Hartree–Fock procedure of Section 2.4, however, for simplicity,
the monomer wave functions |𝜑mam

⟩ are assumed to be known and not the subject to
a variational procedure. We note again that the functions equation (9.6) are neither
orthogonal nor normalized. This becomes particularly obvious upon expanding the
Schrödinger equation for the aggregate electronic state |𝜓⟩ with respect to the basis
equation (9.6). We write

𝜓(r;R) =
∑

A
CA𝜙

(AS)
A (r;R) (9.7)

and obtain∑
B

(⟨
𝜙
(AS)
A |Hagg|𝜙(AS)

B

⟩
− E

⟨
𝜙
(AS)
A |𝜙(AS)

B

⟩)
= 0. (9.8)

As an example, let us consider a simple aggregate consisting of two monomers
(molecular dimer). At the moment, it suffices to concentrate on the electronic part
V (el–el)

12 of the intermolecular interaction. Then, one recovers matrix elements of the
Coulomb interaction, which describe the direct and the exchange contributions

3) The present use of nonorthogonal monomer states is similar to the treatment of
bridge-mediated electron transfer in a DA complex discussed in Section 7.2.1.
4) The number Np of necessary permutations is obtained as (

∑
mNm)!∕

∏
m(Nm!), where Nm

denotes the number of electrons of the monomer m.
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(cf. Coulomb and exchange operator in Eqs. (2.29) and (2.30)). For the dimer,
we have⟨

𝜙
(AS)
a1a2

|||V (el–el)
12

|||𝜙(AS)
b1b2

⟩
=
∫

dr1dr2
1√
Np!

∑
perm

(−1)p𝜑
∗
1a1

(r1;R1)𝜑∗
2a2

(r2;R2)

× V (el–el)
12

1√
Np!

∑
perm

(−1)p′
 ′

𝜑2b2
(r2;R2)𝜑1b1

(r1;R1)

≡ J(el–el)
12 (a1a2, b2b1) − K(el–el)

12 (a1a2, b2b1). (9.9)

The direct Coulomb interaction J12 is given by a single term. But the exchange part
K(el–el)

12 (a1a2, b2b1) contains different contributions, depending on the number of
electrons that have been interchanged between the two monomers. The case where
only a single electron has been exchanged between certain molecular orbitals
is given in Eq. (9.227). A closer inspection of Eq. (9.227) reveals that the spatial
overlap between the two molecular orbitals, which belong to monomers 1 and 2,
is responsible for the exchange contribution (cf. Figure 9.2). Such a wave function
overlap decreases exponentially with increasing intermolecular distance. Usually,
for distances larger than few angstroms, one can neglect the exchange contributions
to the interaction energy.

In the following discussion, we concentrate on aggregates where the mutual
distances between the molecules are large enough to neglect the intermolecular
exchange terms. This means that we can use the Hartree product ansatz (9.5) for
the electronic wave function of the aggregate. As a consequence of the neglect of
intermolecular wave function overlap, we can assume ⟨𝜑ma|𝜑nb⟩ = 𝛿ma,nb; thus,
the states 𝜙

(HP)
A form an orthogonal basis. The expansion of the Hamiltonian

equation (9.2)

Hagg =
∑
A,B
⟨𝜙(HP)

A |Hagg|𝜙(HP)
B ⟩ × |𝜙(HP)

A ⟩⟨𝜙(HP)
B | (9.10)

results in the following matrix elements:

⟨𝜙(HP)
A |Hagg|𝜙(HP)

B ⟩ =∑
m
⟨𝜙(HP)

A |Hm|𝜙(HP)
B ⟩ + 1

2
∑
m,n
⟨𝜙(HP)

A |Vmn|𝜙(HP)
B ⟩

=
∑

m
⟨𝜑mam

|Hm|𝜑mbm
⟩∏

k≠m
𝛿akbk

+1
2
∑
m,n
⟨𝜑mam

𝜑nan
|Vmn|𝜑nbn

𝜑mbm
⟩ ∏

k≠m,n
𝛿akbk

.

(9.11)

We abbreviate the monomer Hamiltonian by

Hm(ab) = ⟨𝜑ma|Hm|𝜑mb⟩, (9.12)

and the Coulomb matrix element by

Jmn(ab, cd) ≡ ⟨𝜑ma𝜑nb|Vmn|𝜑nc𝜑md⟩. (9.13)
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Accordingly, the overall aggregate Hamiltonian takes the form

Hagg =
∑

m

∑
a,b

Hm(ab)|𝜑ma⟩⟨𝜑mb|
+ 1

2
∑
m,n

∑
a,b,c,d

Jmn(ab, cd)|𝜑ma𝜑nb⟩⟨𝜑nc𝜑md|. (9.14)

The quantity |𝜑ma𝜑nb⟩⟨𝜑nc𝜑md| has to be understood as the product of the transition
operators |𝜑ma⟩⟨𝜑md| and |𝜑nb⟩⟨𝜑nc|. Moreover, the expression implies that Hagg acts
in the state space spanned by the states 𝜙

HP
{a}, Eq. (9.5), but avoids a notation where|𝜑ma⟩⟨𝜑mb| and |𝜑ma𝜑nb⟩⟨𝜑nc𝜑md| act on the unit operator 1 =

∑
A |𝜙(HP)

A ⟩⟨𝜙(HP)
A | of

the electronic state space. However, any use of Hagg has to be understood in this way.
Let us inspect the different types of matrix elements involved in Hagg, Eq. (9.14).

Those of the monomer Hamiltonians read in more detail

Hm(ab) = 𝛿ab(Tm + Uma) + (1 − 𝛿ab)Θ̂mab, (9.15)

with the operator Θ̂mab of nonadiabatic coupling, Eq. (2.17), and the PES that covers
the diagonal part of the nonadiabatic coupling operator (see Eq. (9.4)). The matrix
elements of the Coulomb interaction are analyzed in the following section.

9.2.1 The Intermolecular Coulomb Interaction

We specify Eq. (9.13) by noting the separation of the intermolecular Coulomb cou-
pling in electronic and nuclear contributions. The respective matrix elements of
Eq. (9.13) can be written as

Jmn(ab, cd) ≡
∫

drmdrn 𝜑
∗
ma(rm)𝜑∗

nb(rn)V
(el–el)
mn (rm, rn)𝜑nc(rn)𝜑md(rm)

+ 𝛿bc ∫
drm𝜑

∗
ma(rm)V

(el–nuc)
mn (rm, Rn)𝜑md(rm)

+ 𝛿ad ∫
drn𝜑

∗
nb(rn)V

(nuc–el)
mn (Rm, rn)𝜑nc(rn)

+ 𝛿ad𝛿bcV (nuc–nuc)
mn . (9.16)

To further simplify the matrix elements, we take into consideration the antisym-
metric character of the electronic wave functions. For example, focusing on the rm
integral in the electron–electron interaction part, we may write

∫
drm 𝜑

∗
ma(rm)V

(el–el)
mn (rm, rn)𝜑md(rm)

=
∫

drm

∑
i∈m

∑
j∈n

e2|rmi − rnj|𝜑∗
ma(rm1,… , rmN )𝜑md(rm1,… , rmN ). (9.17)

Here, the index i(j) refers to the electrons at monomer m(n) with respective coor-
dinates rmi (rnj). Next, the electron coordinate summation is rewritten, replacing
the actual coordinate rmi by rm1. Then, the antisymmetry of 𝜑∗

ma and 𝜑md allows us
to shift rm1 again to the first position in the electronic wave functions. The rm2- to
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rmN -integration only affects the wave function product, and we are motivated to
introduce

𝜚
(m)
ab (x) = eNm ∫

drm𝛿(x − rm1)𝜑∗
ma(rm)𝜑mb(rm). (9.18)

The 𝛿-function guarantees that the integration covers all electronic coordinates of
monomer m except the electronic coordinate rm1, which is replaced by the new
variable x. If Eq. (9.18) is considered when a = b, the quantity 𝜚

(m)
aa (x) gives the elec-

tronic charge density in the electronic state 𝜑ma of molecule m. If a ≠ b, the so-called
transition charge density 𝜚

(m)
ab is obtained connecting the electronic states 𝜑ma and

𝜑mb (see Figure 9.7).
For the further treatment of the matrix elements, Eq. (9.16), we rearrange the

Coulomb potentials and introduce densities according to Eq. (9.18). This results in
a twofold coordinate integration,

Jmn(ab, cd) =
∫

d3xd3x′
𝜚
(m)
ad (x)𝜚(n)bc (x

′)|x − x′|
−𝛿bc ∫

d3x
∑
𝜈∈n

𝜚
(m)
ad (x) eZ

𝜈|x − R
𝜈
| − 𝛿ad ∫

d3x′
∑
𝜇∈m

eZ
𝜇
𝜚
(n)
bc (x

′)|R
𝜇
− x′|

+𝛿ad𝛿cbV (nuc−nuc)
. (9.19)

This expression further simplifies if we introduce the molecular charge density
where electrons as well as nuclei contribute

n(m)
ab (x) = 𝜚

(m)
ab (x) − 𝛿ab

∑
𝜇∈m

eZ
𝜇
𝛿(x − R

𝜇
). (9.20)

Now, Eq. (9.19) turns into the form

Jmn(ab, cd) =
∫

d3xd3x′
n(m)

ad (x)n(n)
bc (x

′)|x − x′| . (9.21)

HOMO

LUMO

ρeg

deg

Figure 9.7 Transition density 𝜌eg (Eq. (9.18)) for the S0 to S1 transition of perylene
bisimide, which is well described by a HOMO to LUMO transition. Also shown is the
transition dipole vector, which follows from Eq. (9.27).
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The Coulomb matrix elements can be computed via simple spatial integrals with
respect to the charge density of molecules m and n. The introduced molecular charge
density n(m)

aa indicates the amount of unbalanced charge distribution in the neu-
tral molecule due to the continuous spatial distribution of the negative electron
charge and the localized positive charge of the nuclei. The neutrality of the molecule
(zero total charge) is guaranteed by the property ∫ d3x n(m)

aa (x) = 0. If a ≠ b, then the
molecular charge density reduces to the electronic transition density.

There exists an approximation of Eq. (9.21), which is of great practical value. Here,
the continuous charge distribution is replaced by atomic centered partial charges q

𝜇
:

Jmn(ab, cd) =
∑
𝜇,𝜈

qm𝜇
(ad)qn𝜈(bc)|Rm𝜇

− Rn𝜈| . (9.22)

The Rm𝜇
and Rn𝜈 give the spatial positions of all atoms of molecules m and n, respec-

tively, and the qm𝜇
(ad) and qn𝜈(bc) are the related partial charges.5) The electronic

quantum numbers indicate whether they belong to transition charges (a ≠ d and
b ≠ c) or not.

9.2.1.1 Dipole–Dipole Coupling
One cannot invoke any further approximation if the electron–nuclei densities in
Eq. (9.21) have a spatial extension that is comparable to the distance between
monomers. However, if the intermolecular distance is large compared to the
extension of the densities, there is no need to account for all the details of the latter.
To construct an approximate expression for the Coulomb matrix elements, we will
carry out a treatment similar to that of Section 2.7.1, where it is shown how to
remove the short-range part of the Coulomb interaction by employing a multipole
expansion. To this end, the Coulomb matrix element, Eq. (9.21), is written in terms
of coordinates related to the center of masses, Xm and Xn, of a pair of monomers. We
further introduce the intermolecular distance Xmn = Xm − Xn and replace 1∕|x − x′|
in Eq. (9.21) by 1∕|Xmn + x − x′|. In a next step, the multipole expansion in powers
of |x − x′|∕|Xmn| is performed up to the second-order term (cf. Section 2.7.1). Under
the assumption that the intermolecular distance is large compared to the extension
of the monomer densities at m and n, typical values of x and x′ are small compared
to |Xmn|.

We abbreviate Xmn = X and x − x′ = r and obtain
1|X + r| ≈ 1|X| + r∇X

1|X| + 1
2
(r∇X)(r∇X)

1|X| . (9.23)

The two types of derivatives read in detail

r∇X
1|X| = − rX|X|3 (9.24)

and
1
2
(r∇X)(r∇X)

1|X| = − r2

2|X|3 + 3(rX)2

2|X|5 . (9.25)

5) These partial charges can be obtained, for instance, by fitting the electrostatic field near
monomer m or n as shown by Madjet et al. [5].
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If we insert the obtained approximation into Eq. (9.21), the zero- and the first-order
contributions vanish due to charge neutrality (there remain x- or x′-integrals of the
density resulting in zero contributions). Looking at the second-order terms, only
those contribute that simultaneously contain an x- and an x′-dependence:

Jmn(ab, cd) ≈
∫

d3xd3x′ n(m)
ad (x + Xm)n

(n)
bc (x

′ + Xn)

×
(
− xx′|Xmn|3 −

3(xXmn)(x′Xmn)|Xmn|5
)

. (9.26)

We note the general definition of the molecular dipole moment, which is indepen-
dent of the actual choice of Xm; that is, we can set Xm = 0 and obtain

dmab =
∫

d3x xn(m)
ab (x) =

∫
d3x x𝜚(m)

ab (x) − 𝛿ab

∑
𝜇∈m

eZ
𝜇

R
𝜇

(9.27)

and arrive at the Coulomb matrix element in dipole–dipole approximation

Jmn(ab, cd) ≈
dmaddnbc|Xmn|3 − 3

(Xmndmad)(Xmndnbc)|Xmn|5 . (9.28)

Often, it is underlined that point dipoles are used to compute the interaction.6)

Figure 9.8 shows a comparison between the full Coulomb coupling (including the
exchange contribution) and the dipole approximation for a DA pair in different
alignments. From Figure 9.8c, it is seen that as expected the dipole approximation
breaks down for small DA distances.

9.2.2 The Two-level Model

In this section, we specify the Hamiltonian, Eq. (9.14), for a situation where, besides
the electronic ground state, S0, only the first excited singlet state, S1, of the different
molecules is involved in the EET. Such a restriction is possible, for example, if a
single S1 state is initially excited, and if the S1 states of all other molecules have
approximately the same transition energy. The incorporation of further states such
as higher excited singlet states or triplet states is straightforward.

9.2.2.1 Classification of the Coulomb Interactions
We consider the matrix elements of the Coulomb interaction, Jmn(ab, cd). According
to the two-level assumption, all electronic quantum numbers can take only two
values, corresponding to the ground state S0 (a = g) and the excited state S1 (a = e).
In Table 9.1, we summarize the physical processes described by the different matrix
elements and the combinations of electronic state indices they correspond to.
In row I, all matrix elements are listed that describe the electrostatic interaction
between charge densities located at monomers m and n. Row II of Table 9.1 contains

6) A so-called extended dipole is introduced if the negative and positive charges are represented
independently by their center of mass, and if the resulting two spatially separated point charges are
used to define a dipole moment.
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Figure 9.8 (a) Rylene diimide dyad with a perylene diimide (PDI) donor and a terrylene
diimide (TDI) acceptor. (b) Distance dependence of the full Coulomb coupling VDA (solid line,
including the exchange contribution) and the dipole approximation Jdip

DA (dashed line) for
different molecular alignments (S0–S1 transitions, the oligophenylene bridge was not
included; note the logarithmic scale). (c) Ratio between full Coulomb and dipole–dipole
coupling (reprinted with permission from Fückel et al. [6]; copyright (2008) American
Institute of Physics).

those matrix elements that are responsible for the interaction of the transition from
g to e (or reverse) at monomer m with the charge density either of the state g or
e at monomer n. Next, we have those matrix elements that cause the motion of
the excitation energy between different monomer sites in the aggregate (row III).
They describe the transition of monomer m from the ground to the excited state,
while the reverse process takes place at monomer n. This situation is sketched in
Figure 9.1. Finally, the last row IV contains the processes of simultaneous excitation
or deexcitation of both monomers.

If the deviation of n(m)
aa and n(n)

bb from zero is small enough (locally balanced
charge distributions in the monomers), the contributions of both quantities can
be neglected, and the matrix elements of types Jmn(ab, bd) and Jmn(ab, ca) vanish.
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Table 9.1 Classification of the Coulomb interaction matrix elements in Eq. (9.16) for
electronic two-level systems (note that Jmn is symmetric with respect to the site indices).

Matrix element Interaction process

(I) Jmn(gg, gg) Between charges
Jmn(ee, ee) at monomers m and n
Jmn(ge, eg)
Jmn(eg, ge)

(II) Jmn(eg, gg) Between transitions at
Jmn(gg, ge) monomer m with charges at n
Jmn(ge, ee)
Jmn(ee, eg)

(III) Jmn(eg, eg) Between S0 → S1 transition at monomer m
Jmn(ge, ge) and S1 → S0 transition at n (and reverse)

(IV) Jmn(ee, gg) Simultaneous excitation and deexcitation
Jmn(gg, ee) of monomers m and n

The whole set of Coulomb matrix elements, Eq. (9.21), reduces to the matrix
element of row III:

Jmn(eg, eg) ≡ Jmn =
∫

d3xd3x′
𝜚
(m)
eg (x)𝜚(n)ge (x′)|x − x′| . (9.29)

It is responsible for EET among different monomers and is usually called excitonic
coupling. The electronic transition densities give a measure for the degree of local
wave function overlap between the electronic ground state and the excited state of
monomer m.

To present the excitonic coupling in dipole–dipole approximation, we note that
the dipole moments, Eq. (9.27), dmeg ≡ dm reduce to electronic transition dipole
moments. Thus, the matrix element of Eq. (9.28) can be cast into the form

Jmn = 𝜅mn
|dm||d∗

n||Xmn|3 . (9.30)

Here, we introduced the orientation factor

𝜅mn = nm nn − 3(emn nm)(emn nn), (9.31)

where nm, nn, and emn are the unit vectors pointing in the directions of the transi-
tion dipole moments dm, dn, and the distance vector Xmn, respectively. As already
stated, this approximate form of the Coulomb interaction is applicable if the spatial
extension of both transition densities appearing in Eq. (9.29) is small compared to
the intermolecular distance |Xmn|.
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9.2.3 Single and Double Excitations of the Aggregate

The aggregate Hamiltonian equation (9.14) includes all possible excitations of the
molecular aggregate, with the majority never being observable in the experiment.
Therefore, it is advantageous to classify the total wave function according to the
number of excited molecules, N∗, starting with the ground state and including ele-
mentary single and double excitation states. In what follows this will be explained
for the case of the two-level model. This is particularly useful when studying optical
properties of aggregates where the number of excited molecules can be related to
the number of photons absorbed by a single aggregate. The following considerations
complement those of the foregoing section by introducing this ordering scheme.
According to possible nonbalanced charge distributions in the ground and excited
states of the various molecules, there appear different intermolecular electrostatic
interactions. However, in most of the exciton literature these couplings are not
considered. In passing, we note that such electrostatic couplings can also be intro-
duced between the molecules of the aggregate and those forming the environment
(a solvent, for example).

The quantum mechanical electronic state of the aggregate 𝜙
(HP)
A contains the

subset of N∗ excited molecules and the subset of Nmon − N∗ molecules in the ground
state. The superposition of all states with fixed N∗ can be used as an ansatz for
the N∗-exciton eigenstate of the Hamiltonian (9.14). Multiexciton states play an
important role for the nonlinear optical properties of molecular aggregates. As an
example, we consider single-exciton states (N∗ = 1) as well as two-exciton states
(N∗ = 2, cf. Figure 9.9). The single-exciton state can be reached from the aggregate
ground state via an optical excitation process that involves the absorption of a single
photon. A subsequent absorption step may lead from the single- to the two-exciton
state (excited state absorption).

(a) (b) (c)

m mn

m m n

E0

Figure 9.9 Schematic illustration of the presence of a singly excited state (a), Eq. (9.34),
and a doubly excited state (b), Eq. (9.35), in the type of chromophore complex introduced in
Figure 9.6. (c) Energy-level scheme of delocalized aggregate states including the 8
one-exciton states, Eq. (9.67), with energies E(𝛼) and the 28 two-exciton states, Eq. (9.70),
with energies E(𝛼). Optical excitation as well as nonradiative excited state decay is labeled
by arrows.
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The classification with respect to the number of excited molecules is eas-
ily achieved by the following rearrangement of the electronic aggregate state
completeness relation:∑

A
|𝜙(HP)

A ⟩⟨𝜙(HP)
A | = |0⟩⟨0| +∑

m
|m⟩⟨m| + ∑

m,n>m
|mn⟩⟨mn| + · · · (9.32)

The first term contains the aggregate ground state wave function|0⟩ =∏
m
|𝜑mg⟩. (9.33)

The presence of a single excitation in the aggregate is accounted for by the second
term according to (cf. Figure 9.9)|m⟩ = |𝜑me⟩∏

n≠m
|𝜑ng⟩. (9.34)

The third term in Eq. (9.32) corresponds to the presence of two excitations in the
aggregate (Figure 9.9, the expression does not exist for m = n due to the Pauli
principle):|mn⟩ = |𝜑me⟩|𝜑ne⟩ ∏

k≠m,n
|𝜑kg⟩. (9.35)

The restriction with respect to the m- and n-summation introduced in Eq. (9.32)
avoids double counting of twofold excited states. Higher excitations can be consid-
ered in the same manner but are of less importance for the interpretation of the
majority of experiments.

The introduced ordering of states results in the following separation of the total
Hamiltonian:

Hagg = H(0)
agg + H(1)

agg + H(2)
agg + H(od)

agg , (9.36)

with the ground state contribution

H(0)
agg = 0|0⟩⟨0|, (9.37)

the part describing the presence of a single excitation

H(1)
agg =

∑
m,n

mn|m⟩⟨n|, (9.38)

and the two excitation contribution

H(2)
agg =

∑
k,l>k

∑
m,n>m

kl,mn|kl⟩⟨mn|. (9.39)

Off-diagonal contributions (for example H(10)
agg ) are all included in H(od)

agg . They may
include terms describing optical transition due to the presence of a radiation field.
In contrast to the diagonal contributions, they do not conserve the number of exci-
tations.7) The quantities 0, mn, and kl,mn represent vibrational Hamiltonians,
partially with matrix character, and are derived next.

7) Note that there is an alternative representation of the exciton Hamiltonian in terms of creation
and annihilation operators defined in within second quantization. For details, see Section 9.10.1.
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9.2.3.1 The Ground State Matrix Element
From the matrix element, Eq. (9.11), of the overall aggregate Hamiltonian, we obtain
(all electronic quantum numbers refer to the electronic ground state)

0 ≡ ⟨0|Hagg|0⟩ =∑
m

Hmg +
1
2
∑
m,n

Jmn(gg, gg). (9.40)

The matrix element can be understood as an aggregate vibrational Hamiltonian sep-
arating into the overall nuclear kinetic energy Tnuc =

∑
mTm and a PES

0(R) =
∑

m
Umg(Rm) +

1
2
∑
m,n

Jmn(gg, gg)(Rm, Rn). (9.41)

This PES is formed by the contributions of the monomers as well as by the mutual
electrostatic (Coulomb) interaction among the different molecules. (The latter con-
tribution vanishes if we can replace all molecular charge densities n(m)

gg by zero.)

9.2.3.2 The Single Excited State Matrix Elements
For computing matrix elements of the type ⟨k|Hagg|l⟩, the index k may be equal or
unequal to l. We start with the first case and obtain, using Eq. (9.11),

⟨k|Hagg|k⟩ = Hke +
∑
m≠k

Hmg +
1
2
∑

n
Jkn(eg, ge) + 1

2
∑

m
Jmk(ge, eg)

+ 1
2
∑

m,n≠k
Jmn(gg, gg). (9.42)

The contributions due to the vibrational Hamiltonians are directly obtained by
considering am = e for m = k and am = g otherwise in Eq. (9.11). The matrix
elements of Eq. (9.11) concerning Vmn take into consideration that m ≠ n; therefore,
we have to deal with the cases m = k (am = e) but n ≠ k; n = k but m ≠ k; and
m, n ≠ k. If the charge distribution of electrons and nuclei is well balanced in
both molecules, the Coulomb interactions Jkn, Jmk, and Jmn do not contribute.
Changing to the off-diagonal parts of the matrix element, that is the case l ≠ k, we
arrive at

⟨k|Hagg|l⟩ = 1
2

Jkl(eg, eg) + 1
2

Jlk(ge, ge), (9.43)

where the monomer Hamiltonians in
∑

mHm do not contribute. If m = k (m = l),
then 𝛿albl

(𝛿akbk
) appear (see the product of 𝛿-symbols in Eq. (9.11)) and are equal to

zero. If m ≠ k and m ≠ l, the two expressions 𝛿albl
and 𝛿akbk

vanish simultaneously.
From the coupling Hamiltonian, only two nonvanishing contributions remain and
correspond to m = k, n = l and m = l, n = k.

The single-excitation matrix elements of the aggregate Hamiltonian can be cast
into the following form:

mn = ⟨m|Hagg|n⟩ = 𝛿mn[Tnuc +0(R)] +mn(R), (9.44)

with the PES matrix

mn(R) = 𝛿mnUmeg(R) + [1 − 𝛿mn]Jmn(eg, eg;Rm, Rn), (9.45)
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and with

Umeg(R) = Ume(Rm) − Umg(Rm)

+
∑
k≠m

(
Jmk(eg, ge;Rm, Rk) − Jmk(gg, gg;Rm, Rk)

)
. (9.46)

This expression defines the PES of the mth molecule’s excitation. It includes the
Coulomb interaction with all other molecules if the mth molecule is in its ground
state as well as in its first excited state. The Coulomb matrix elements may strongly
affect the PES for those cases where the distances and mutual orientations among
the molecules change. If this is not the case, however, the Jmk introduce a constant
energy shift to Ume as well as Umg.

9.2.3.3 The Double Excited State Matrix Elements
The matrix elements to be discussed are of the type ⟨kl|Hagg|k′l′⟩. We start with the
contributions due to the monomer Hamiltonians and get

⟨kl|∑
m

Hm|k′l′⟩ = 𝛿kk′𝛿ll′

(
Hke + Hle +

∑
m≠k,l

Hmg

)
. (9.47)

The two Kronecker 𝛿-functions are expected since we consider a monomer matrix
element with one of the two excited state wave functions producing an overlap
expression, for example ⟨𝜑le|𝜑la⟩ (the case k = l′ and l = k′ is impossible since k < l
and k′

< l′).
The discussion of the matrix element with respect to the intermolecular Coulomb

interaction, Vmn, requires more attention. We distinguish the cases where the indices
k and l from the bra part of the matrix elements do or do not coincide with m and n
of the Coulomb potential (note the replacement of 1∕2

∑
m,nVmn by

∑
m,n>m

Vmn). We

first treat the case m = k and n = l and obtain

⟨kl|Vkl|k′l′⟩ = 𝛿kk′𝛿ll′Jkl(ee, ee). (9.48)

Next, we consider m = k and n ≠ l

⟨kl|∑
n≠l

Vkn|k′l′⟩ = 𝛿kk′𝛿ll′
∑
n≠l

Jkn(eg, ge) + 𝛿lk′Jkl′ (eg, eg). (9.49)

The first and the second terms on the right-hand side follow from the case l = l′.
However, one may also consider the case l = k′, which leads to the third term on the
right-hand side. The case k = l′ does not contribute. In the same manner, we can
treat the case m ≠ k and n = l, that is

⟨kl|∑
m≠k

Vml|k′l′⟩ = 𝛿kk′𝛿ll′
∑
m≠k

Jml(ge, eg) + 𝛿kl′Jk′l(ge, ge). (9.50)

Finally, we get

⟨kl|∑
m≠k

∑
n≠l

Vmn|k′l′⟩ = 𝛿kk′𝛿ll′
∑
m≠k

∑
n≠l

Jmn(gg, gg). (9.51)
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Collecting all terms, we obtained the following expression for the matrix element
(remember m < n and k < l)):

mn,kl = ⟨mn|Hagg|kl⟩ = 𝛿mk𝛿nl[Tnuc +0(R)] +mn,kl(R), (9.52)

with the PES matrix

mn,kl(R) = 𝛿mk𝛿nl Umn,eg(R) + 𝛿nk Jml(eg, eg;Rm, Rl)

+ 𝛿ml Jnk(eg, eg;Rk, Rn), (9.53)

and with

Umn,eg(R) = Ume(Rm) − Umg(Rm) + Une(Rn) − Ung(Rn)
+ Jmn(ee, ee;Rm, Rn) − Jmn(gg, gg;Rm, Rn)
+
∑

k≠m,n

(
Jmk(eg, ge;Rm, Rk) − Jmk(gg, gg;Rm, Rk)

+ Jnk(eg, ge;Rn, Rk) − Jnk(gg, gg;Rn, Rk)
)
. (9.54)

When considering double excitations of the aggregate, the new Coulomb matrix
element Jmn(ee, ee) describes the interaction between both excited molecules. The
remaining Coulomb matrix elements refer to the coupling to the charge distributions
of those molecules staying in the electronic ground state.

9.2.3.4 Off-Diagonal Matrix Elements and Coupling to the Radiation Field
We start with considering the matrix element between a singly excited state and the
aggregate ground state and obtain⟨k|Hagg|0⟩ = Θkeg +

∑
m

Jkm(eg, gg). (9.55)

The expression is determined by the nonadiabatic coupling operator of molecule
k and the Coulomb matrix element accounting for the interaction of an excitation
at molecule k with the electronic ground state charge distribution of all other
molecules. The next type of matrix element we have to calculate is that between the
doubly excited aggregate state and the ground state⟨kl|Hagg|0⟩ = Jkl(ee, gg). (9.56)

It remains to compute the matrix elements coupling the singly excited state to the
doubly excited state

⟨kl|Hagg|k′⟩ = 𝛿kk′

(
Θleg + Jkl(ee, ge) +

∑
m≠k

Jml(ge, gg)

)

+𝛿lk′

(
Θkeg + Jkl(ee, eg) +

∑
n≠l

Jkn(eg, gg)

)
. (9.57)

All these matrix elements are of less interest when considering the stationary states
of the aggregate since they only offer nonresonant contributions. However, they
determine the processes where the degree of aggregate excitation changes (see
Section 9.9).
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9.2.3.5 Neglect of Intermolecular Electrostatic Coupling
For further use, we specify the results of the foregoing section to the commonly
used case where the molecular charge densities nm

gg and nm
ee, referring to the elec-

tronic ground state and the first excited state, respectively, can be neglected. Then,
the ground state contribution, Eq. (9.37), to the aggregate Hamiltonian takes the
form

H(0)
agg =

∑
m

Hmg|0⟩⟨0|. (9.58)

For the singly excited state part, Eq. (9.38), we get

H(1)
agg =

∑
m

(
Hme +

∑
n≠m

Hng

)|m⟩⟨m| +∑
m,n

Jmn|m⟩⟨n|. (9.59)

In the same way, one can specify the Hamiltonian of the doubly excited aggregate
states.

9.2.4 Introduction of Delocalized Exciton States

Frenkel exciton states will be introduced as a superposition of the local excited states|m⟩, Eq. (9.34), and in the case of two-exciton states by introducing a superposition
of the doubly excited states, Eq. (9.35) (cf. Figure 9.9). In order to do this we con-
sider the case where all atoms of the molecules forming the aggregate carry out only
small vibrations around a fixed structure and undergo only small rearrangements
upon electronic excitation. This fixed structure is characterized by the equilibrium
nuclear coordinates R0 of the aggregate electronic ground state. For such a situation,
it is customary to replace the nuclear coordinates by their equilibrium values and to
arrive at pure electronic Hamiltonians for the ground and excited states of the aggre-
gate. Moreover, we again assume that electrostatic couplings among the molecules
are of minor importance (the molecular charge densities, Eq. (9.20), should vanish).

For the electronic ground state, we have

E0 =
∑

m
Emg. (9.60)

The energies Emg follow from the PES Umg taken at the nuclear equilibrium config-
uration. The Hamiltonian for the singly excited state reads

H(1)
agg =

∑
m,n

(𝛿mnE0 + Emn)|m⟩⟨n|. (9.61)

It includes the energy matrix

Emn = 𝛿mnEm + [1 − 𝛿mn]Jmn(eg, eg). (9.62)

The so-called site energies are deduced from Eq. (9.46) as8)

Em = Ume(R0) − Umg(R0). (9.63)

8) They are also often called Franck–Condon transition energies, since in a scheme where the
energy has been drawn versus nuclear coordinates, Em corresponds to a vertical energy difference
starting at the ground state PES equilibrium value.
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In the same way, we obtain the Hamiltonian of the doubly excited aggregate state:

H(2)
agg =

∑
m,n>m

∑
k,l>k

Emn,kl|mn⟩⟨kl|, (9.64)

with

Emn,kl = 𝛿mk𝛿nl(Em + En) + 𝛿nkJml + 𝛿mlJkn. (9.65)

In the present model, there is no coupling between the aggregate ground state and
the singly and doubly excited states. Therefore, we may solve separate eigenvalue
equations for singly and doubly excited states. To remove the unimportant ground
state energy, we set in this section E0 = 0. In the case of a single excitation, the eigen-
value equation reads

H(1)
agg|𝛼⟩ = 

𝛼
|𝛼⟩. (9.66)

To construct the solutions to this equation, we expand the eigenstate |𝛼⟩with respect
to the complete basis of singly excited states:|𝛼⟩ =∑

m
c
𝛼
(m)|m⟩. (9.67)

This expansion highlights the Frenkel exciton as a superposition of excited states of
the individual molecules. Introducing this expansion into Eq. (9.66) and multiplying
it by ⟨n| from the left yields


𝛼
c
𝛼
(n) =

∑
m
⟨n|H(1)

agg|m⟩c𝛼(m) = Enc
𝛼
(n) +

∑
m

Jnmc
𝛼
(m). (9.68)

The state |𝛼⟩ is called the exciton state , and 
𝛼

is the exciton energy (to underline
the singly excited character of this state, it is often named one-exciton state); there
exist Nmon one-exciton states. An expansion of H(1)

agg with respect to the exciton states
leads to the exciton Hamiltonian

Hex =
∑
𝛼


𝛼
|𝛼⟩⟨𝛼|. (9.69)

To determine the eigenstates corresponding to the presence of two excitations in the
considered aggregate, we have to solve the eigenvalue equation (note the replace-
ment of 𝛼 by �̃�):

H(2)
el |�̃�⟩ = 

�̃�
|�̃�⟩. (9.70)

The two-exciton states are expanded as|�̃�⟩ = ∑
m,n>m

c
�̃�
(mn)|mn⟩, (9.71)

with the expansion coefficients following from (remember E0 = 0 and the definition
of Em and En)


�̃�
c
�̃�
(mn) = (Em + En)c𝛼(mn) +

∑
k

(
Jmkc

�̃�
(nk) + Jknc

�̃�
(km)

)
. (9.72)

Note that there are Nmon(Nmon − 1)∕2 possible two-exciton states. The two-exciton
state Hamiltonian can be written similar to Eq. (9.69). Before turning to the con-
sideration of the exciton–vibrational coupling, two examples of such single- and
two-exciton spectra are discussed for which analytical expressions are available.
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9.2.4.1 The Molecular Heterodimer
As the simplest example, we consider the so-called heterodimer, which consists of
two monomers with different excitation energies E1 and E2 and a coupling J = J12.
The eigenvalue problem for the two coupled two-level molecules has already been
solved in Section 2.8.2. The one-exciton eigenvalues are given by


𝛼=± =

E1 + E2

2
± 1

2

√
(E1 − E2)2 + 4|J|2. (9.73)

For the details of the corresponding eigenfunctions, refer Section 2.8.2. Here, we set
the arbitrary phase factors appearing in the solution of the two-level problem equal
to 1 and write|+⟩ = 1√

1 + 𝜂2

(
𝜂|1⟩ + e−i arg(J)|2⟩)

|−⟩ = 1√
1 + 𝜂2

(|1⟩ − 𝜂e−i arg(J)|2⟩) . (9.74)

The parameter 𝜂 (cf. Eq. (2.164)) is equal to zero for J = 0 and otherwise, given by

𝜂 = 1
2|J| ||||E1 − E2 +

√
(E1 − E2)2 + 4|J|2|||| . (9.75)

Equation (9.74) illustrates the delocalization of the wave function over the dimer.
The two-exciton state in a molecular dimer, |mn⟩, already extends over both
monomers; that is, a meaningful delocalized superposition state cannot be formed.
For the eigenenergy, we have 

�̃�
= E1 + E2.

9.2.4.2 The Finite Molecular Chain and the Molecular Ring
Next, we consider an aggregate that consists of a linear arrangement of Nmon iden-
tical molecules with S0 → S1 excitation energies Em = Eexc and nearest-neighbor
dipole–dipole coupling J. The neglect of long-range dipole–dipole interactions is jus-
tified in cases where the distance between the monomers is not too small (note that
according to Eq. (9.30), Jm,m+1 = 23Jm,m+2). Such regular structures can be found in
systems that show a rodlike arrangement of the molecules after aggregation.

The determination of the energy spectrum of a finite linear chain has already been
explained in Section 2.8.3. In the present notation, we obtain


𝛼
= Eexc + 2J cos(𝛼), (9.76)

with 𝛼 = 𝜋j∕(Nmon + 1) (j = 1,… , Nmon). The wave function expansion coefficients
read

c
𝛼
(m) =

√
2

Nmon + 1
sin(𝛼m). (9.77)

This result is confronted with that obtained for a regular molecular ring, a system
which was discussed already in Section 2.8.3. We again consider identical molecules
with excitation energy Eexc and nearest-neighbor dipole–dipole coupling J but
now in a ring-like spatial arrangement. Here, Eq. (9.76) remains valid but with
𝛼 = 2𝜋j∕Nmon (j = 0,… , Nmon − 1) and

c
𝛼
(m) = 1√

Nmon

ei𝛼m
. (9.78)
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Note that, due to the periodicity of the aggregate, the sine function in Eq. (9.77)
has been replaced by a complex exponential. Moreover, we get the site-independent
probability distribution |c

𝛼
(m)|2 = 1∕Nmon for the molecular ring, which is different

from the probability distribution following for the regular chain.
The two-exciton states for the linear chain can also be constructed.9) The respec-

tive eigenvalues read


�̃�
= 2Eexc + 4J (cos(𝛼) + cos(𝛽)) , (9.79)

with 𝛼 = 𝜋j∕Nmon and 𝛽 = 𝜋j′∕Nmon (j, j′ = 1, 3,… , 2Nmon − 1) and similar for 𝛽

(note that for this particular case, the quantum number �̃� is given by the pair 𝛼

and 𝛽). The expansion coefficients of the related eigenstates are obtained as

c
�̃�
(mn) =

sgn(m − n)
Nmon

ei(𝛼m+𝛽n)
, (9.80)

where sgn(m − n) = (1 − 𝛿mn)(m − n)∕|m − n|.
Apparently, for a more complex structure of the aggregate, excitonic spectra are

only obtainable by numerical means.

9.3 Exciton–Vibrational Interaction

The aggregate Hamiltonian introduced in Section 9.2.3 depends on the nuclear
coordinates. We can distinguish between intramolecular coordinates of a certain
monomer, intermolecular coordinates giving the relative position and orientation
between monomers, and environmental coordinates, for instance, of a surrounding
solvent or protein scaffold. The coupling between electronic excitations and nuclear
DOFs enters the Hamiltonian, Eq. (9.36), in two ways: via the monomer vibrational
Hamiltonian Hma (a = e, g) and the intermolecular Coulomb couplings Jmn. Recall-
ing the dipole approximation, Eq. (9.30), the latter quantities mainly depend on
the distances Xmn between molecules m and n as well as their mutual orientations.
Below, we focus on the influence of nuclear DOFs on single-exciton states for a
two-level description of each monomer only.

For illustration, we start with a description that is directly based on a diagonal-
ization of the single excitation Hamiltonian H(1)

agg, Eqs. (9.38) and (9.44). This results
in exciton levels already described in Section 9.2.4, but here in a more general way
because we account for the parametrical dependence on all nuclear coordinates of
the aggregate. Therefore, instead of Eq. (9.67), we write|Φ

𝛼
(R)⟩ =∑

m
c
𝛼
(m;R)|m⟩, (9.81)

where the exciton expansion coefficients as well as the exciton energies 
𝛼
(R)

depend on the nuclear coordinates (analogous to the case of molecular states in
Section 2.13). Therefore, the states introduced via Eq. (9.81) are often called

9) See, for instance, Mukamel [7].
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adiabatic exciton states.10) Incorporating nonadiabatic couplings among different
exciton states, we obtain the aggregate Hamiltonian as

H(1)
agg =

∑
𝛼,𝛽

(𝛿
𝛼𝛽
[Tnuc + U

𝛼
(R)] + [1 − 𝛿

𝛼𝛽
]Θ̂

𝛼𝛽
) |Φ

𝛼
⟩⟨Φ

𝛽
|. (9.82)

Here, U
𝛼
(R) = 

𝛼
(R) + Θ̂

𝛼𝛼
(R) represents the PES for exciton state |Φ

𝛼
⟩.

This approach appears to be rather attractive since it considers exciton formation
as well as the effect of the nuclear coordinates without any approximation. However,
for practical computations, it is usually impossible to proceed in such a strict manner.
The introduction of adiabatic excitons results in a complicated coordinate depen-
dence of state vectors and PES, and nonadiabatic effects have to be considered as
well. Both difficulties can be hardly tackled within a quantum description of nuclear
motion for realistic aggregates.

In order to proceed, the different dependences of the vibrational Hamiltonian
mn, Eq. (9.44), on the nuclear coordinates will be specified as follows: First, only
intramolecular vibrations are considered. This case applies when the molecules
in the aggregate are rather weakly coupled and, thus, can be characterized by
independent vibrational coordinates. Provided that the intramolecular DOFs,
possibly supplement by DOFs of the immediate surrounding, form a dense spec-
trum of states, this situation is usually characterized by a system–reservoir model
where each monomer couples to its own reservoir. Further, it is assumed that
reservoir DOFs of different monomers are uncorrelated. Second, a description of
all coordinates by respective normal-mode vibrations is given, which applies to
situations of closely packed systems. This case might include contributions of the
environment as well. In terms of a system–reservoir description, this implies that
all electronic transitions (system) couple to the same reservoir DOFs. In a third
variant, we consider an intermediate situation where electronic transitions are
coupled to intramolecular DOFs, which in turn interact with environmental DOFs.
The description by aggregate normal mode vibrations is finally transferred to a
coupling to delocalized exciton states. In what follows, we for simplicity neglect
electrostatic contributions and use Eqs. (9.58) and (9.59).

9.3.1 Exclusive Coupling to Intramolecular Vibrations

Concentrating on an exclusive consideration of intramolecular vibrations, all
single molecule PESs Uma only depend on the respective set Rm of intramolecular
nuclear coordinates (possibly supplement by DOFs of the immediate surrounding).
Although the Coulomb matrix elements Jmn may be modulated by their nuclear
coordinate dependence, we neglect this effect in what follows. This is justified for
small amplitude intramolecular motions that do change neither the intermolecular
distance nor the transition density appreciably. Often, the intramolecular nuclear
motions are described within harmonic approximation, that is by introducing

10) If the |Φ
𝛼
⟩ introduced here are taken at the nuclear configuration of the aggregate ground

state, they turn into the |𝛼⟩, Eq. (9.67).
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intramolecular normal-mode coordinates qm𝜉
. In this case, the monomeric

vibrational ground state Hamiltonian in Eq. (9.58) takes the form

Hmg =
1
2
∑
𝜉

{
p2

m𝜉
+ 𝜔

2
m𝜉

q2
m𝜉

}
. (9.83)

Here, we have set the energy at the reference geometry equal to zero (cf. Eq. (2.43)).
The diagonal part of the singly excited state Hamiltonian H(1)

agg, Eq. (9.59), can be
written as (q denotes all normal-mode coordinates of the aggregate, and {qm𝜉

} the
set of coordinate for monomer m)

Hme +
∑
n≠m

Hng = Tvib + Um(q). (9.84)

Here, Tvib is the normal-mode kinetic energy of all monomers. The PES referring to
a singly excited state takes the form

Um(q) = Ume({qm𝜉
}) +

∑
n≠m

Ung({qn𝜉}). (9.85)

The ground state normal-mode PES, Ung({qn𝜉)}, is given by the second term in
Eq. (9.83). An approximation to the excited state PES can be obtained by a first-order
Taylor expansion of the energy gap between the ground and the excited states
(cf. Eq. (9.46) expressed in normal-mode coordinates using Rm({qm𝜉

})),

Umeg({qm𝜉
}) ≈ Em +

∑
𝜉

(
𝜕Umeg({qm𝜉

})
𝜕qm𝜉

)
{qm𝜉

=0}
× qm𝜉

, (9.86)

with Em = Umeg({qm𝜉
= 0}) being the electronic site energy of monomer m.

It is common to introduce dimensionless normal mode coordinates according to
Qm𝜉

=
√

2𝜔m𝜉
∕ℏ qm𝜉

as well as the dimensionless coupling constant

gm(𝜉) =
(

𝜕Umeg(Qm𝜉
)

𝜕Qm𝜉

)
{Qm𝜉

=0}
× 1

ℏ𝜔m𝜉

. (9.87)

It can be related to the Huang–Rhys factor (cf. Section 6.2.3). Thus, Eq. (9.86)
becomes

Umeg({Qm𝜉
}) ≈ Em +

∑
𝜉

ℏ𝜔m𝜉
gm(𝜉)Qm𝜉

. (9.88)

Within the first-order Taylor expansion, the PES for a single excited state in
Eq. (9.85) takes the form

Um(Q) = Em −
∑
𝜉∈m

ℏ𝜔
𝜉
g2

m(𝜉) +
∑
𝜉∈m

ℏ𝜔m𝜉

4
(

Qm𝜉
+ 2gm(𝜉)

)2

+
∑
n≠m

∑
𝜉∈n

ℏ𝜔n𝜉

4
Q2

n𝜉 . (9.89)

Note that this PES describes the local excitation as a linearly shifted oscillator mode
in analogy to the discussion in Sections 2.5.1, 6.2.3, and 7.2.2. Further, we point
to the similarity with the description of bimolecular ET in terms of independent
sets of vibrational coordinates discussed in Section 7.4.2. The second term on the
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Figure 9.10 (a) PESs according to the model of Eq. (9.89) for a dimer with one mode per
monomer Qm. Each monomer is described by two electronic states, that is S0 and S1. Shown
are the harmonic PESs for the ground state (S0, S0) and the two singly excited states (S1, S0)
and (S0, S1). (b) Including the Coulomb coupling J12, one obtains excitonic PESs (cf. Eq.
(9.82)), here plotted along the symmetric, Q+, and antisymmetric, Q−, cuts as indicated in (a).

right-hand side is the reorganization energy, E(m)
𝜆

=
∑

𝜉
ℏ𝜔

𝜉
g2

m(𝜉), of the intramolec-
ular modes at monomer m.

The PES is shown for a dimer with one mode per monomer and electronic states
S0 and S1 in Figure 9.10a. Starting from the parabolic ground state PES with elec-
tronic configuration (S0, S0), the excited state PES is shifted either along mode Q1
(S1, S0) or mode Q2 (S0, S1). The respective excitonic PESs are given in Figure 9.10b
(cf. Eq. (9.82)). The resulting exciton–vibrational Hamiltonian for the model of lin-
early coupled intramolecular vibrations, which describes the motion of a single exci-
tation in the aggregate under the influence of the nuclear DOFs, reads

H(1)
agg = Hex + Hvib + Hex–vib. (9.90)

It contains the electronic (excitonic) part

Hex =
∑
m,n

(
𝛿mnEm + Jmn

) |m⟩⟨n|, (9.91)

the vibrational part (Pm𝜉
=
√

2∕ℏ𝜔m𝜉
pm𝜉

)11)

Hvib =
∑

m

∑
𝜉∈m

ℏ𝜔m𝜉

4
(P2

m𝜉
+ Q2

m𝜉
)
∑

n
|n⟩⟨n|, (9.92)

and the exciton–vibrational coupling

Hex–vib =
∑

m

∑
𝜉∈m

ℏ𝜔m𝜉
gm(𝜉)Qm𝜉

|m⟩⟨m|. (9.93)

This form of H(1)
agg is also known as the Holstein Hamiltonian. Provided that the

intramolecular modes form a dense spectrum, this Hamiltonian describes a system–
reservoir model where each monomer couples to its own reservoir. This description

11) The projector
∑

n|n⟩⟨n| ensures that the vibrational Hamiltonian acts in the state space of
single excitations of the aggregate.
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will be utilized, for instance, in Section 9.5 where a system is studied with molecules
well separated from each other, and where the intermolecular vibrations have only
a minor influence on the EET.

9.3.2 Coupling to Aggregate Normal Mode Vibrations

The model of Section 9.3.1 is readily adjusted to the situation where all nuclear
DOFs of the aggregate and the surrounding medium are treated as a single set of nor-
mal modes Q = {Q

𝜉
}; that is, the modes are not monomer specific and thus are not

labeled by the site index. This model would be appropriate in situations, for example,
with tightly packed aggregates that feature delocalized normal modes. Formally, this
model is analogous to the treatment of ET by a common set of nuclear coordinates
in Section 7.2.2.

For this model, the dimensionless coupling constant in Eq. (9.87) changes to

gm(𝜉) =
(

𝜕Umeg(Q𝜉
)

𝜕Q
𝜉

)
{Q

𝜉
=0}

× 1
ℏ𝜔

𝜉

. (9.94)

To account for the modification of the excitonic coupling by vibrational motions,
which now include variations in the intermolecular distance, we introduce the
equilibrium value J(0)mn for the coupling between molecule m and n. Performing an
expansion with respect to {Q

𝜉
} around the equilibrium configuration, we get in

first order12)

Jmn ≈ J(0)mn +
∑
𝜉

(
𝜕Jmn

𝜕Q
𝜉

)
Q

𝜉
=0

× Q
𝜉
= J(0)mn +

∑
𝜉

ℏ𝜔
𝜉
g̃mn(𝜉)Q𝜉

, (9.95)

where we defined the coupling matrix g̃mn(𝜉). The monomer coupling gm(𝜉) can be
combined with g̃mn(𝜉) to the exciton–vibrational coupling matrix

gmn(𝜉) = 𝛿mngm(𝜉) + (1 − 𝛿mn)g̃mn(𝜉). (9.96)

The resulting exciton–vibrational Hamiltonian for this model can be written as in
Eq. (9.90) but now with the excitonic part

Hex =
∑
m,n

(
𝛿mnEm + J(0)mn

) |m⟩⟨n|, (9.97)

the vibrational part

Hvib =
∑
𝜉

ℏ𝜔
𝜉

4
(P2

𝜉
+ Q2

𝜉
)
∑

m
|m⟩⟨m|, (9.98)

and the exciton–vibrational coupling

Hex–vib =
∑
m,n

∑
𝜉

ℏ𝜔
𝜉
gmn(𝜉)Q𝜉

|m⟩⟨n|. (9.99)

In the limit of a dense spectrum of modes, this Hamiltonian describes a
system–reservoir model where all monomers couple to the same reservoir.

12) Note that, in principle, this type of approximation would also be possible if it is necessary to
include the effect of variations of the transition densities due to intramolecular mode vibrations.
Further, it should be emphasized that restricting ourselves to small amplitude vibrations limits the
applicability of Eq. (9.95).
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9.3.3 Differentiating Between Intramolecular and Reservoir Normal
Mode Vibrations

The models introduced in the two foregoing sections treat all vibrational DOFs
on the same footing. However, often, it is necessary to distinguish between intra-
and intermolecular DOFs. For instance, typical chromophores often show a
Franck–Condon progression with respect to some high-frequency intramolecular
vibrations. Due to the interaction with the environment, the individual transitions
are broadened. Recalling the discussion of Section 6.2, such a situation could
be described by a (multimode) Brownian oscillator model. In the present case,
the intramolecular modes, Qm𝜉

, take the role of the active coordinates, whereas
intermolecular modes, Zi (for instance, solvent and protein), form the reservoir.13)

The model assumes that system and reservoir modes have been obtained by separate
diagonalization such that there is a coupling that is in lowest order bilinear in the
two coordinates (cf. Section 5.4 and Eq. (6.58)). Using the results of Section 9.3.1,
the resulting system–reservoir Hamiltonian for the description of a single excitation
in the aggregate has the standard form H = HS + HR + HS–R, with

HS =
∑
m,n

(
𝛿mn(Tvib + Um(Q)) + Jmn

) |m⟩⟨n|, (9.100)

where Um(Q) is given by Eq. (9.89). The system–reservoir interaction is of
Caldeira–Leggett form

HS–R =
∑
m,i

∑
𝜉∈m

cmi(𝜉)Qm𝜉
Zi|m⟩⟨m|, (9.101)

where cmi(𝜉) is the coupling constant. Finally, the reservoir corresponds to a har-
monic oscillator Hamiltonian equation (9.98) with coordinates Zi.

9.3.4 Exciton–Vibrational Hamiltonian and Excitonic Potential Energy
Surfaces

The aggregate Hamiltonian H(1)
agg, Eq. (9.90) (or likewise Eq. (9.90)), corresponds to a

diabatic representation in terms of the coupling between different monomers. Often,
it is rewritten in terms of the eigenstates of the exciton Hamiltonian, Eq. (9.91), that
is the exciton states, using the expansion, Eq. (9.67). Since these eigenstates have
been defined for a fixed nuclear configuration, they form a crude adiabatic basis in
contrast to Eq. (9.81) (cf. Section 2.6).

Assuming the same separation of H(1)
agg as in Eq. (9.90), we obtain the excitonic part

Hex as in Eq. (9.69), and the exciton–vibrational coupling reads

Hex–vib =
∑
𝛼,𝛽

∑
𝜉

ℏ𝜔
𝜉
g
𝛼𝛽
(𝜉)Q

𝜉
|𝛼⟩⟨𝛽|. (9.102)

The exciton–vibrational coupling matrix is given by

g
𝛼𝛽
(𝜉) =

∑
m,n

c∗
𝛼
(m)gmn(𝜉)c𝛽(n). (9.103)

13) Note that the actual partitioning depends on the situation at hand. For instance, modes of the
immediate surrounding of the molecule could be taken as part of the set Qm𝜉

. On the other hand,
in particular, low-frequency modes of the molecule could be included into the reservoir.
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The vibrational part remains unaffected; only
∑

m|m⟩⟨m| has to be replaced
by
∑

𝛼
|𝛼⟩⟨𝛼|.

If diagonal elements of g
𝛼𝛽
(𝜉) are much larger than the off-diagonal ones, one can

introduce a notation of H(1)
agg, leading to a certain type of PES (cf. Eq. (9.82)). To this

end, we take the potential energy part
∑

𝜉
ℏ𝜔

𝜉
Q2

𝜉
∕4 of Hvib and combine it with the

term ∝ Q
𝜉

of Eq. (9.102) to define the (shifted) excitonic PES

U
𝛼
(Q) = 

𝛼
−
∑
𝜉

ℏ𝜔
𝜉
g2
𝛼𝛼
(𝜉) +

∑
𝜉

ℏ𝜔
𝜉

4
(

Q
𝜉
+ 2g

𝛼𝛼
(𝜉)
)2
. (9.104)

The energy shift
∑

𝜉
ℏ𝜔

𝜉
g2
𝛼𝛼
(𝜉) is the reorganization energy E(𝛼)

𝜆
of the exciton state|𝛼⟩. Then, the exciton representation of the aggregate Hamiltonian is obtained as

H(1)
agg =

∑
𝛼,𝛽

(
𝛿
𝛼𝛽

{
Tvib + U

𝛼
(Q)

}
+(1 − 𝛿

𝛼𝛽
)
∑
𝜉

ℏ𝜔
𝜉
g
𝛼𝛽
(𝜉)Q

𝜉

)|𝛼⟩⟨𝛽|. (9.105)

This expression is similar to that of Eq. (9.82); however, the vibrational coordinate
dependence is simple, and instead of nonadiabatic couplings, here, a type of
static normal mode coordinate dependent coupling appears. It should be noted
that Eq. (9.105) resembles the linear vibronic coupling model introduced in
Section 6.6.2.14)

9.4 Regimes of Excitation Energy Transfer

Similar to the case of electron-transfer reactions in Chapter 7, the actual type of exci-
tation energy dynamics is determined by the relation between two time scales. The
intramolecular vibrational relaxation time, 𝜏rel, determines the time that the nuclear
vibrations of each molecule need to return to thermal equilibrium after the elec-
tronic transition takes place. The transfer time, 𝜏trans, is given by the inverse of the
characteristic interaction energy between two molecules. It is the time the excitation
energy needs to move between monomers, neglecting any additional perturbations.
The different regimes of EET are sketched in Figure 9.11 in dependence on the intra-
and intermolecular interaction strengths.

If 𝜏rel ≪ 𝜏trans, it is impossible to form a wave function involving different
molecules. Intramolecular relaxation introduces fast dephasing, and we are in the
regime of incoherent transfer labeled by I in Figure 9.11. The excitation energy
motion proceeds diffusively, similar to the random walk known from statistical

14) If the nuclear coordinates of the PES appearing in Eq. (9.82) are expanded around their
equilibrium configuration, one obtains something similar to but not identical with the excitonic
PES introduced in Eq. (9.104). In the latter case, the full exciton–vibrational Hamiltonian is
diagonalized at each configuration of the nuclear coordinates, cf. Figure 9.10b.
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Figure 9.11 Schematic representation of
different EET regimes. The strength of
intermolecular interactions increases along the
horizontal axis, and that of intramolecular
couplings along the vertical axis. Förster transfer
as described in Section 9.5 is typical for region I,
whereas the density matrix description given in
Section 9.6 can be applied in region II. In the
intermediate region III, delocalized exciton
formation and exciton–vibrational coupling have
to be dealt with on an equal footing.
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physics (see Figure 9.6c,d). This type of transfer is characterized by a probability
Pm(t) for the excitation energy to be at molecule m but not by a wave function
extending over different molecules. Incoherent EET will be discussed in Section 9.5.

If, on the other hand, 𝜏trans ≪ 𝜏rel, excitation energy can move almost freely from
molecule to molecule according to the corresponding Schrödinger equation. The
exciton propagates through the aggregate as a quantum mechanical wave packet
(see Figure 9.6a,b). Since such a type of motion requires fixed phase relations
between excited state wave functions of different molecules, it is called coherent
transfer. (In Chapter 3, we discuss that this type of motion is typical for closed
quantum systems not subject to the influence of environmental perturbations.) The
corresponding region of coherent motion is indicated as region II in Figure 9.11,
and the related theoretical description uses the density matrix 𝜌mn(t), here in local
state (site) representation or, alternatively, in the exciton representation 𝜌

𝛼𝛽
(t) (see

Section 9.6).
Clearly, there are regions between the coherent and the incoherent types

(𝜏rel ≈ 𝜏trans). This motion is called partially coherent exciton transfer (region II in
Figure 9.11), but notice that such a characterization of the intermediate region of
transfer processes is often not straightforward. In general, a concurrence of the
different types of motion within the same aggregate is possible. For example, if there
are two groups of closely packed molecules in the aggregate, EET within each group
may be coherent (or partially coherent), but between the groups the EET could take
place as a hopping process (cf. Section 9.6.4). Moreover, moving in region III of
Figure 9.11 to the upper right corner, both basic couplings become large. This region
characterizes qualitatively a type of EET motion where the excitation is delocalized
but connected with a noticeable displacement of the vibrational DOFs (we refer to
the similarity with the ultrafast ET described in Section 7.9). This regime where
nonperturbative and non-Markovian effects play a dominant role requires adequate
methods such as the HEOM approach introduced in Section 3.11.

The given discussion also applies if extended to doubly excited aggregate states
(two-exciton states). However, two-exciton dynamics are outside the scope of the
following discussion.
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9.4.1 Quantum Statistical Approaches to Excitation Energy Transfer

The basic quantity for the following theoretical description of EET dynamics in
molecular aggregates is the density operator reduced to the electronic (excitonic)
DOF:

�̂�(t) = trvib{Ŵ(t)}. (9.106)

Ŵ(t) is the total nonequilibrium statistical operator of the complete set of all involved
electrons and nuclei of the different molecules forming the aggregate as well as
of a particular environment. When starting with such a density operator, one sets
the focus on the electronic (excitonic) dynamics with all vibrational contributions
accounted for as a thermal environment and averaged out via trvib{…}. This choice
is to be preferred when considering aggregates where the spatial arrangement of the
various molecules does not undergo large changes on the time scale of EET. The
actual method for simulating EET depends on the particular regime as indicated
in Figure 9.11. One may carry out perturbation theory with respect to either the
excitonic coupling or the exciton–vibrational coupling.

The case where the excitonic coupling represents only a weak perturbation and
intramolecular couplings dominate will be discussed first in Section 9.5 (case of fast
intramolecular relaxation as compared to the transfer time). It will lead us to what is
known as the Förster theory of EET. Here, the formation of delocalized exciton states
can be neglected, and EET has to be considered as incoherent (see Figure 9.6c,d).
From our general discussion in Chapter 3, we know that incoherent quantum
particle motion is adequately described by rate equations for the state occupation
probabilities

Pm(t) = ⟨m|�̂�(t)|m⟩. (9.107)

Before utilizing the general rate equation approach of Section 3.14, we calculate the
EET rate using the Golden Rule approach of quantum mechanics.

If EET is dominated by excitonic couplings, it can be described via transitions
among delocalized exciton states (cf. Figure 9.6a,b) using the exciton level popu-
lations

P
𝛼
(t) = ⟨𝛼|�̂�(t)|𝛼⟩. (9.108)

Corresponding transition rates can be calculated in second order with respect to
the exciton–vibrational coupling in a standard Golden Rule scheme (a more gen-
eral approach would make use of excitonic PES). Such a second-order description of
the exciton–vibrational coupling is also possible in a density matrix theory based on

𝜌
𝛼𝛽
(t) = ⟨𝛼|�̂�(t)|𝛽⟩. (9.109)

Within this theory, rates responsible for population redistribution as well as coher-
ence change appear. The appropriate theoretical tool is introduced in Section 3.5.6.
We identify the electronic excitations (limited to the singly excited electronic states
of the aggregate) with the relevant system in the sense of Chapter 3. The vibra-
tional DOFs of the aggregate are considered as the reservoir (heat bath) responsi-
ble for electronic energy dissipation and dephasing of the coherent exciton motion.
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The adequate description of the exciton dynamics is given by the QME approach of
Section 3.6.

Of course, it is straightforward, for example, to calculate the probability Pm(t) that
the molecule m is excited at time t from the density matrix in the representation
of delocalized exciton states. Using the expansion coefficients c

𝛼
(m) introduced in

Eq. (9.67), it follows that

Pm(t) =
∑
𝛼,𝛽

c
𝛼
(m)c∗

𝛽
(m)𝜌

𝛼𝛽
(t). (9.110)

In principle, one may also choose directly the site representation of the density
operator in terms of the localized basis set |m⟩ defined in Eq. (9.34). This gives the
reduced density matrix

𝜌mn(t) = ⟨m|�̂�(t)|n⟩. (9.111)

Since the Förster transfer is realized as a hopping process between different sites, it is
reasonable to assume that a site representation is well suited for establishing the link
between Förster theory and the density matrix approach. However, this would only
be possible for the case of weak electron–vibrational coupling where Förster rate
may become similar to the second-order rate expression used in the density matrix
approach.

There is a further aspect of the density matrix approach on EET dynamics that par-
ticularly favors it for the study of optical properties. This statement is related to the
fact that the definition equation (9.109) can be easily extended to include the ground
state |0⟩ as well as the states |mn⟩, Eq. (9.35), with two excitations in the aggregate (or
the two-exciton state, Eq. (9.71)). Accordingly, one may compute off-diagonal den-
sity matrix elements such as ⟨𝛼|�̂�(t)|0⟩. The latter is proportional to the polarization
between the ground state and the one-exciton state |𝛼⟩ and allows to directly include
the coupling to the radiation field (written as in Eq. (4.18)) into the density matrix
equation. Then, as described in Section 4.3, there is no need to introduce any linear
or nonlinear response function characterizing the exciton system. Instead, the den-
sity matrix obtained at a finite strength of the radiation field offers a direct access to
nonlinear spectra.

9.5 Transfer Dynamics in the Case of Weak Excitonic
Coupling: Förster Theory

In this section, we will be concerned with the regime of incoherent transfer where a
localized excitation jumps from molecule to molecule. Therefore, the rates km→n of
EET from molecule m to molecule n will be calculated. According to Section 3.14,
the km→n should enter rate equations

𝜕

𝜕t
Pm(t) = −

∑
n

km→nPm(t) +
∑

n
kn→mPn(t), (9.112)

which determine the probabilities Pm to find molecule m in its excited state.
First, we consider the case where these rates are proportional to the square of the
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intermolecular Coulomb interaction. The Golden Rule formula derived in Section
3.4.5 is used to compute the rate. A more general description, by utilizing the rate
theory of Section 3.14, is presented afterward.

9.5.1 The Transfer Rate

The EET rate will be detailed for a system of two molecules that are not necessarily
identical (heterodimer). In analogy to the discussion of electron transfer, the het-
erodimer will be called a DA complex (the monomer index m will be m = D or
m = A, cf. Figure 9.12). First, we concentrate on the case of two independent sets
of vibrational coordinates, defined for either the donor or the acceptor part of the
dimer (cf. Section 7.4.2, where a similar situation has been discussed for the elec-
tron transfer). This case is of particular importance if intramolecular vibrations of
the donor and acceptor molecules dominate the transfer. The assumption that the
energy spectrum of each molecule m is only determined by its own set of coordinates
Rm is particularly reasonable at large intermolecular distances (>10 Å).

In order to describe the EET in such a DA complex, we introduce wave functions
for both molecules as ΨmaM(rm;Rm) = 𝜑ma(rm;Rm)𝜒maM(Rm) (m = D, A; a = g, e
≡ S0, S1). Here, rm stands for the electronic coordinates of molecule m, and Rm for
those of the corresponding nuclei. The S0 → S1 transition energies are given by
EmeM − EmgN .

According to Figure 9.12, the transfer proceeds via deexcitation of the donor and
the simultaneous excitation of the acceptor. This results in the following general
transfer rate:

kEET = 2𝜋
ℏ

∑
MD ,ND

∑
MA,NA

fDeMD
fAgNA

× |⟨ΨDeMD
ΨAgNA

|VDA|ΨAeMA
ΨDgND

⟩|2
×𝛿(EDeMD

+ EAgNA
− EAeMA

− EDgND
). (9.113)
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EET

(a) (b) QD

UDg UAg

UAe
UDe

QA

Figure 9.12 EET in a DA pair. (a) Both molecules are represented by electronic two-level
systems with related vibrational manifolds. The gray spheres indicate the type of excitation,
left part: initial state with the excited donor (D∗) and the deexcited acceptor (A), right part:
final state with the deexcited donor (D) and the excited acceptor (A∗). (b) Related PES drawn
versus a vibrational coordinate of the donor (QD) and the acceptor (QA); cf. two-dimensional
representation of PESs in Figure 9.10.
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The initial vibrational equilibrium in the donor and acceptor is described by the
distribution functions fDeMD

and fAgNA
, respectively. The matrix element of the com-

plete DA Coulomb interaction VDA has already been discussed in Section 9.2.2. Since
the DA distance should exceed ∼10 Å, intermolecular wave function overlap is of
no importance, and we neglected the exchange contributions. Assuming that the
resulting Coulomb matrix element JDA does not depend on the nuclear coordinates
(Condon approximation), we obtain

⟨ΨDeMD
ΨAgNA

|VDA|ΨAeMA
ΨDgND

⟩ = JDA⟨𝜒DeMD
|𝜒DgND

⟩
×⟨𝜒AgNA

|𝜒AeMA
⟩, (9.114)

which depends on the Franck–Condon-type overlap integrals. If the overall matrix
element is inserted into Eq. (9.113), the following expression is obtained:

kEET = 2𝜋
ℏ

|JDA|2EET. (9.115)

Here, we introduce the combined density of states (DOS) referring to the EET
process:

EET =
∑

MD,ND

∑
MA,NA

fDeMD
fAgNA

× |⟨𝜒DeMD
|𝜒DgND

⟩|2|⟨𝜒AgNA
|𝜒AeMA

⟩|2
×𝛿(EDeMD

+ EAgNA
− EAeMA

− EDgND
). (9.116)

Taking all assumptions together, we notice that we have recovered the model that
had been derived in the context of electron-transfer reactions in Section 7.4.2, where
it is shown that in the case of two independent sets of vibrational coordinates, the
energy conservation for the transfer reaction contained in the 𝛿-function of the
Golden Rule formula could be separated into two parts. This separation will also be
applied in the present case. In order to obtain this appealing form of the transfer
rate, we rewrite the 𝛿-function in Eq. (9.116) as

𝛿(EDeMD
+ EAgNA

− EAeMA
− EDgND

) =
∫

dE 𝛿(EDeMD
− EDgND

− E)

×𝛿(E + EAgNA
− EAeMA

). (9.117)

Here, the first 𝛿-function on the right-hand side accounts for the donor emission.
The energy, E = ℏ𝜔, that is set free in this process is used to excite the acceptor.
Introducing a product of two 𝛿-functions leads to the following compact expression
for the combined DOS (note the change to the frequency argument):

EET = ℏ
∫

d𝜔 
(em)
D (𝜔)(abs)

A (𝜔), (9.118)

where we introduce the combined DOS for the donor deexcitation (excitation energy
emission)


(em)
D (𝜔) =

∑
MD,ND

fDeMD
|⟨𝜒DeMD

|𝜒DgND
⟩|2 𝛿(EDeMD

− EDgND
− ℏ𝜔), (9.119)
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and for the acceptor excitation (absorption of excitation energy)


(abs)
A (𝜔) =

∑
MA,NA

fAgNA
|⟨𝜒AgNA

|𝜒AeMA
⟩|2 𝛿(EAgNA

− EAeMA
+ ℏ𝜔). (9.120)

Since the EET combined DOS, Eq. (9.118), follows as the frequency integral of the
overlap expression given by the donor and acceptor DOS,EET is often called spectral
overlap expression.

9.5.2 The Förster Rate

From Figure 9.12, it is clear that the process of EET can formally be viewed as the
combined process of optical recombination at the donor and simultaneous optical
absorption at the acceptor. The Förster approach is built upon this analogy. Hence,
the transfer rate will be expressed in terms of the S1 → S0 donor emission spectrum
and the S0 → S1 acceptor absorption spectrum. If the electronic coupling JDA is taken
in the dipole–dipole approximation, Eq. (9.30), we may replace 

(em)
D by the donor

emission spectrum as well as (abs)
A by the acceptor absorption spectrum and arrive

at the Förster formula of EET.
According to Eq. (9.119), the donor emission spectrum can be written as

(cf. Section 4.4 and Eq. (6.88))

ID(𝜔) =
4𝜔3

3c3 |dD|2(em)
D (𝜔). (9.121)

The acceptor absorption coefficient is (see Eq. (9.120), Section 4.2.1, and Eq. (6.14))

𝛼A(𝜔) =
4𝜋2

𝜔Nmon

3c
|dA|2(abs)

A (𝜔). (9.122)

Using Eqs. (9.115)–(9.122), we obtain the Förster formula that expresses the EET rate
in terms of the spectral overlap between the monomeric emission and the absorption
spectra (cf. Figure 9.13):

kEET =
9c4

𝜅
2
DA

8𝜋nagg|XDA|6
∞

∫
0

d𝜔
𝜔4 ID(𝜔) 𝛼A(𝜔). (9.123)

The orientation factor 𝜅DA is given by Eq. (9.31), and |XDA| is the DA distance. The
rate, Eq. (9.123), decreases like the inverse sixth power of the donor–acceptor dis-
tance. The distance, RF, for which the transfer rate is equal to the radiative decay
rate of the donor,

kEET(RF) =
1

𝜏
(D)
phot

=

∞

∫
0

d𝜔ID(𝜔), (9.124)

is called the Förster radius. In Table 9.2, we have listed Förster radii for some typical
biological DA systems. In terms of the Förster radius, the transfer rate is

kEET = 1
𝜏
(D)
phot

(
RF|XDA|

)6

. (9.125)
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Figure 9.13 EET in a donor (PDI) acceptor (TDI) pair (chemical structure – (a))
characterized by single molecule spectroscopy. (b) Ensemble averaged room temperature
absorption spectra (dotted curve: donor, dashed curve: acceptor). (c) Single donor
fluorescence emission spectrum (A, 1.4 K), single acceptor fluorescence excitation spectrum
(B, 20 K) with spectral overlap (C). (d) Experimentally determined EET rates versus spectral
overlap, which indicate a linear interrelation following equation (9.123) (the various data
are deduced from measurements on different single pairs) (reprinted with permission from
Métivier et al. [8]; copyright (2007) American Physical Society).
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Table 9.2 Förster radii for typical biological donor–acceptor systems.

Donor Acceptor RF [nm]

Chl a Chl a 8–9
Chl b Chl a 10
𝛽-Carotene Chl a 5

Source: data taken from van Grondelle [9]

The absolute value of the Förster rate is determined by the donor emission and the
acceptor absorption coefficient. As a note in caution, we would like to emphasize
that although the idea of the combination of an optical emission and absorption
process has been used to derive the Förster rate, the transfer does not involve the
exchange of a photon. The interaction equation (9.9) or (9.16) is of pure Coulomb
type. The term photon can only be used if the coupling between the donor and the
acceptor molecules includes retarded (transverse) contributions of the radiation field
(see the detailed discussion in Section 9.10.2).

The intuitive and experimentally accessible form of the transfer rate has led to a
wide use of Förster theory. It allows to estimate the EET rate by separately measuring
the donor emission spectrum as well as the acceptor absorption spectrum. It should
be noted, however, that Eq. (9.123) is strictly valid only for homogeneously broad-
ened spectra. Moreover, molecular systems where the dipole–dipole coupling is of
the order or even larger than the homogeneous line width cannot be described using
the incoherent Förster approach, which is based on the Pauli master equation. This
situation requires the solution of the density matrix equation, taking into account
the coherent exciton dynamics. Before discussing this in Section 9.6 some variants
of the excitation transfer processes discussed so far will be considered.

9.5.3 Nonequilibrium Quantum Statistical Description of Förster
Transfer

In the following equations, we apply the technique introduced in Section 3.14 to
derive the rate equations for EET. Therefore, we extend our considerations from a
single DA pair to an aggregate with an arbitrary number of molecules. Since we are
aiming at a nonequilibrium quantum statistical description of Förster transfer, we
are interested in transfer rates derived via a perturbation series with respect to the
excitonic coupling Jmn, whereas the coupling to the vibrational coordinates is treated
exactly.

We can directly translate the treatment of Section 3.14 if we neglect the nuclear
coordinate dependence of the excitonic coupling in the single-excitation Hamilto-
nian, H(1)

agg. For the following considerations, it is essential to use the version of this
Hamiltonian given in Eq. (9.59), where intermolecular electrostatic couplings due to
(permanent) molecular charge densities have been neglected.15) This Hamiltonian

15) A more detailed inspection shows that it would be sufficient for the following considerations
to neglect the modulation of this coupling due to its nuclear coordinate dependence.
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has to be split up according to Section 3.14 into a zeroth-order part H0 and a pertur-
bation V̂ . According to Eq. (9.59), the zeroth-order part takes the form

H0 =
∑

m

(
Hme +

∑
n≠m

Hng

)|m⟩⟨m|, (9.126)

and the excitonic coupling defines the perturbation

V̂ =
∑
m,n

Jmn|m⟩⟨n|. (9.127)

We obtain a rate equation such as Eq. (9.112) for the probability Pm that the mth
molecule has been excited. The corresponding transition rate (of second order with
respect to Jmn) can be deduced from the general formulas of Section 3.14.5 and
becomes, of course, identical to Eq. (9.115). The combined DOS EET, written here
for a transition from molecule m to molecule n, however, takes the form

mn = 1
2𝜋ℏ ∫

dt trvib{R̂mÛ+
m(t)Ûn(t)} ≡

1
2𝜋ℏ ∫

dt Cm→n(t). (9.128)

In the second part of this expression we introduced the correlation function Cm→n(t),
replacing the vibrational trace expression of the first part. The Ûm(t) denote the
time-evolution operators16) describing nuclear motions according to the vibra-
tional Hamiltonians Hme +

∑
k≠mHkg entering H0, Eq. (9.126). As demonstrated in

Section 9.3.1, the complete vibrational Hamiltonian can be decomposed into local
vibrational Hamiltonians corresponding either to the ground or to the excited
electronic level. Accordingly, the vibrational equilibrium statistical operator in
Eq. (9.128) takes the following form: R̂m = R̂me

∏
n≠mR̂ng. In a similar manner, the

time-evolution operator is obtained as Ûm(t) = Ûme(t)
∏

n≠mÛng(t). As a result, the
correlation function in Eq. (9.128) reads

Cm→n(t) = trm{R̂meÛ+
me(t)Ûmg(t)}trn{R̂ngÛ+

ng(t)Ûne(t)}

×
∏

k≠m,n
trk{R̂kgÛ+

kg(t)Ûkg(t)}. (9.129)

Since the trace of R̂kg is normalized to unity, all monomer correlation functions in the
k-product are equal to 1 as well, and those for molecules m and n are abbreviated as

Cm e→g(t) = trm{R̂meÛ+
me(t)Ûmg(t)} (9.130)

and

Cn g→e(t) = trn{R̂ngÛ+
ng(t)Ûne(t)}. (9.131)

These correlation functions, when Fourier transformed, can be used to express
the combined DOSs entering the EET rate (Sections 6.2.2 and 6.4). We arrive at
(see Eq. (6.90), the transition frequencies have not been indicated explicitly)

16) To distinguish the notation of the time-evolution operators from that of the PES, we write the
former with an additional hat in this section.
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(em)
m (𝜔) = Cm e→g(−𝜔)∕2𝜋ℏ and (see Eq. (6.19)) 

(abs)
n (𝜔) = Cn g→e(𝜔)∕2𝜋ℏ.

Accordingly, the combined DOS, Eq. (9.128), can be written as

mn =
1

2𝜋ℏ ∫
dt Cm e→g(t)Cn g→e(t)

≡
1

(2𝜋)2ℏ ∫
d𝜔 Cm e→g(−𝜔)Cn g→e(𝜔). (9.132)

Let us discuss the result using simple models for the monomer correlation functions
Cm e→g and Cn g→e, which have been introduced in Section 6.2.6, where we used the
Debye spectral density, Eq. (6.51), and distinguished between the case of slow and
fast nuclear motion (the vibrational time scale Tvib is compared to the time scale of
the energy gap fluctuations Tfluc = ℏ∕

√
kBTSeg). Neglecting for a moment the site

index (and introducing general electronic quantum numbers a and b), the first case
results in

C(slow)
a→b (t) = exp

(
i(𝜔ab − Sab∕2ℏ)t − kBTSabt2∕2ℏ2)

, (9.133)

and the second one (case of fast nuclear motion) in

C(fast)
a→b (t) = exp

(
i𝜔abt − |t|∕𝜏ab

)
. (9.134)

The transition frequency 𝜔ab is specified by the minima of the two PES
(U (0)

a − U (0)
b )∕ℏ, and the Stokes shift Sab of the transition is equal to twice of

the respective reorganization energy. The dephasing time 𝜏ab is determined by a
representative vibrational frequency 𝜔vib = 𝜔D as

ℏ∕𝜏ab = kBTSab∕ℏ𝜔vib. (9.135)

While a computation of the correlation function equation (9.129) is conveniently
carried out in the time domain, an interpretation should be given in terms of the
released and absorbed excitation energy, that is after Fourier transformation into
the frequency domain. Therefore, we give here the Fourier-transformed monomer
correlation functions

C(slow)
e→g (−𝜔) =

√
2𝜋ℏ2

kBTSeg
exp

⎧⎪⎨⎪⎩−
(
ℏ[𝜔 − 𝜔eg] + Seg∕2

)2

2kBTSeg

⎫⎪⎬⎪⎭ , (9.136)

C(slow)
g→e (𝜔) =

√
2𝜋ℏ2

kBTSeg
exp

⎧⎪⎨⎪⎩−
(
ℏ[𝜔 − 𝜔eg] − Seg∕2

)2

2kBTSeg

⎫⎪⎬⎪⎭ , (9.137)

and

C(fast)
e→g (−𝜔) = C(fast)

g→e (𝜔) =
2∕𝜏eg

(𝜔 − 𝜔eg)2 + 1∕𝜏2
eg
. (9.138)

Next, we present for both cases the DOS. The case of slow nuclear motion leads to
(𝜔mn = 𝜔meg − 𝜔neg, Smn = Smeg + Sneg)


(slow)
mn = 1√

2𝜋kBTSmn

exp

{
−
(
ℏ𝜔mn − Smn∕2

)2

2kBTSmn

}
. (9.139)
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Figure 9.14 Combined DOS for DA EET (m = D, n = A). Solid lines: EET ≡ DA, Eq. (9.132);
dashed lines: (em)

D , Eq. (9.119); dash-dotted lines: (abs)
A , Eq. (9.120). DA is drawn versus

energy detuning ℏ(𝜔D − 𝜔A) and 
(em)
D as well as (abs)

A versus ℏ𝜔 − ℏ𝜔0 with
ℏ𝜔D = ℏ𝜔0 + 200 cm−1 and ℏ𝜔A = ℏ𝜔0 − 200 cm−1 (kBT = 200 cm−1). (a) Model of fast
nuclear motion, SD = SA = 50 cm−1, ℏ𝜔(D)

vib = ℏ𝜔
(A)
vib = 500 cm−1); (b) Model of slow nuclear

motion (SD = SA = 200 cm−1).

In the case of fast nuclear motion, we arrive at


(fast)
mn =

Γmn∕𝜋
(ℏ𝜔mn)2 + Γ2

mn
, (9.140)

with

Γmn = kBT

(
Smeg

ℏ𝜔
(m)
vib

+
Sneg

ℏ𝜔
(n)
vib

)
. (9.141)

In Figure 9.14, we plottedEET for both limiting cases together with
(em)
D and

(abs)
A .

Be aware of the fact that the model of a fast nuclear motion results in rate expressions
independent of temperature. Thus, this rate does not fulfill the principle of detailed
balance.

Finally, we contrast Förster and Redfield theories for the case of weak excitonic
coupling. Förster theory assumes that EET proceeds from a vibrationally relaxed
state of the donor-excited state PES. That is, upon vertical excitation of the donor, it
will take a certain time for the thus-prepared nonequilibrium distribution to equili-
brate. This can be compared with Redfield theory, which assumes that the reservoir
is always in equilibrium but according to the electronic ground state. In addition, the
Markov approximation requires that the actual EET be slow compared to the reser-
voir relaxation time scale. Taking, for example, the Debye spectral density, Eq. (6.51)
(or (3.302)), the time scale of the reservoir relaxation (vibrational motion) is given
by 𝜔

−1
D . The deviation from equilibrium upon excitation is characterized by the reor-

ganization energy (skipping again the site index) E
𝜆
= Seg∕2.

In Figure 9.15, we compare the Förster and the Redfield EET rates (the specific
expression is given in Eq. (9.169)) for a heterodimer. In addition, the exact result
according to a HEOM propagation is given. In all cases the relaxation time is fixed
(𝜔−1

D = 100 fs), and the reorganization energy is varied. For small reorganization
energy, the three methods give comparable results since in the limit of weak
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Figure 9.15 Transfer rates for a DA heterodimer (ℏ(𝜔D − 𝜔A) = 100 cm−1) coupled to a
reservoir that is described by a Debye spectral density, Eq. (3.302). Rates are shown in
dependence on the reorganization energy (E

𝜆
, Eq. (3.296)) for 𝜔−1

D = 100 fs. The excitonic
coupling is JDA = 20 cm−1. Closed circles: exact results using the HEOM approach
(cf. Section 3.11), solid line: Förster theory, and open circles: Redfield theory (reprinted with
permission from Ishizaki and Fleming [10], copyright American Institute of Physics (2009)).

excitonic and system–reservoir coupling, perturbation theory and Markov approx-
imation are reasonable. For large reorganization energies, the perturbation theory
with respect to the system–reservoir coupling breaks down, and Redfield theory
predicts a behavior that is qualitatively wrong. In fact, increasing E

𝜆
, one reaches

the slow modulation limit, and for a fixed DA detuning, the rate should decrease
toward zero, cf. Eq. (9.139).

9.5.3.1 Case of Common Vibrational Coordinates
The preceding considerations of EET focused on the case where the donor and the
acceptor molecules are exclusively characterized by their own (intramolecular)
vibrations. Such a description is appropriate if the distance between the molecules
is large. If they are positioned not too far apart from each other, they may share
common vibrational coordinates mainly related to the actual environment. We will
study the effect of such common modes on EET here. A modulation of the excitonic
coupling, which would also be possible in the case of smaller intermolecular
distances, is described in Section 9.5.3.2.

The model has already been introduced in Section 9.3.2 (case of common
reservoirs). The combined DOS of the type introduced in Eq. (9.128) determines
the EET rate. However, the trace formula as well as the time evolution operators
cannot be factorized into monomer contributions. It will be convenient to use the
time-evolution operator Ûm(t) = exp(−imt∕ℏ) with the Hamiltonian

m = ℏ𝜔m + H(m)
vib . (9.142)
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The energy ℏ𝜔m follows as Em − E(m)
𝜆

, with the reorganization energy E(m)
𝜆

=∑
𝜉
ℏ𝜔

𝜉
g2

m(𝜉). The Hamiltonian H(m)
vib =

∑
𝜉

ℏ𝜔
𝜉

4
(P2

𝜉
+ (Q

𝜉
+ 2gm(𝜉))2) describes the

normal-mode vibrational dynamics if molecule m is in its excited state. Then, the
correlation function introduced in Eq. (9.128) reads (𝜔mn = 𝜔m − 𝜔n):

Cm→n(t) = ei𝜔mnttrvib{R̂meiH(m)
vib t∕ℏe−iH(n)

vibt∕ℏ}. (9.143)

Concerning its general structure, the formula coincides with Eq. (6.19), where the
combined DOS corresponds to linear absorption. Thus, we can directly use the
results of Section 6.2.3, where the DOS has been specified to a model of displaced
harmonic PES (in the same manner, we could directly compute the low-temperature
version of nonadiabatic electron transfer in Section 7.4.3). According to Eq. (6.23),
we can write the correlation function, Eq. (9.143), as

Cm→n(t) = ei𝜔mnt−Gmn(0)+Gmn(t). (9.144)

The Gmn(t) are similar to Eq. (6.24). After defining the spectral density

jmn(𝜔) =
∑
𝜉

(gm(𝜉) − gn(𝜉))2
𝛿(𝜔 − 𝜔

𝜉
), (9.145)

they read

Gmn(t) = ∫
d𝜔 e−i𝜔t(1 + n(𝜔))

[
jmn(𝜔) − jmn(−𝜔)

]
. (9.146)

The dimensionless exciton–vibrational coupling constants have been introduced in
Eq. (9.87). The related rate expression follows as

km→n =
|Jmn|2
ℏ2 e−Gmn(0)

∫
dt ei𝜔mnt+Gmn(t). (9.147)

It provides an expression that is directly related to a spectral density. As in
Section 9.5.3, we may consider the limiting case of slow and fast nuclear motion,
with the resulting combined DOS being formally identical to those of Eqs. (9.139)
and (9.140), respectively. However, the Stokes shift as well as the dephasing times
represent global quantities that do not separate into monomer contributions. For
illustration, we only consider the approximation of slow nuclear motion (see also
the derivation of the high-temperature limit of ET in Section 7.4.3). According
to Eq. (7.98), we reproduce 

(slow)
mn , Eq. (9.139), however, with the common

reorganization energy E
𝜆
≡ Smn∕2 = ℏ ∫

∞
0 d𝜔 𝜔jmn(𝜔).

It is interesting to expand the EET rate, Eq. (9.147), in lowest order with respect
to the exciton–vibrational coupling. We calculate the time integral in Eq. (9.147)
with exp Gmn(t) ≈ 1 + Gmn(t) and obtain (note that in principle the prefactor
exp[−Gmn(0)] has to be expanded as well)

km→n =
|Jmn|2
ℏ2 e−Gmn(0)

(
2𝜋𝛿(𝜔mn) + Gmn(𝜔mn)

)
. (9.148)

The rate diverges for 𝜔mn = 0, otherwise it becomes proportional to Gmn(𝜔mn) =
2𝜋[1 + n(𝜔mn)] [jmn(𝜔mn) − jmn(−𝜔mn)], an expression, which we will discuss again
later in Section 9.6.3. In the following section, we demonstrate for a similar case that
the divergence can be removed by the inclusion of intramolecular vibrations.
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9.5.3.2 Case of Vibrational Modulation of the Excitonic Coupling
In what follows we consider the case of EET in systems with an intermolecular
distance less than the Förster radius. Such a situation is characterized not only by
the participation of intermolecular (aggregate normal mode) vibrations but also by
vibrational modulations of the excitonic coupling Jmn. This may result from distance
fluctuations of the coupled molecules, a change in their mutual orientation, or even
from a dependence of the transition density on the intramolecular normal-mode dis-
placement. Such a modulation has already been introduced in Eq. (9.95). To compute
a respective EET rate, we use the aggregate Hamiltonian, Eq. (9.90), but with the
simplifying assumption of a coupling to vibrational coordinates, Eq. (9.93), which
has been reduced to site off-diagonal contributions only (the coupling due to the
gm(𝜉), Eq. (9.87), is neglected). Now, the transition rates read (see Section 3.14.5,
Eq. (3.512))

km→n =
∫

dt ei𝜔mntC̃m→n(t), (9.149)

with the new type of correlation functions

C̃m→n(t) =
1
ℏ2 trvib{R̂vibÛ+

vib(t)Jmn(q)Ûvib(t)Jnm(q)}, (9.150)

which accounts for the normal-mode dependence of the excitonic coupling. Since we
removed the excitation (site) energies ℏ𝜔m and ℏ𝜔n from the time-evolution opera-
tors (leading to the transition frequencies 𝜔mn), time evolution is caused by nondis-
placed normal mode oscillator Hamiltonians (the R̂m have been replaced by R̂vib
describing nondisplaced vibrational equilibrium). Using Eq. (9.95), which assumes
a linear dependence on the normal-mode coordinate, we get

C̃m→n(t) =
|J(0)mn|2
ℏ2 +

∑
𝜉

|𝜔
𝜉
g̃mn(𝜉)|2trvib{R̂vibQ

𝜉
(t)Q

𝜉
}

=
|J(0)mn|2
ℏ2 +

∑
𝜉

|𝜔
𝜉
g̃mn(𝜉)|2 (e−i𝜔

𝜉
t[1 + n(𝜔

𝜉
)] + ei𝜔

𝜉
tn(𝜔

𝜉
)
)
. (9.151)

A similar expression has already been computed in Section 3.7.2 (note that a single
coordinate operator Q

𝜉
does not contribute, and that the quadratic expression

becomes diagonal with respect to the normal-mode index 𝜉). We introduce the
spectral density

j̃kl,mn(𝜔) =
∑
𝜉

g̃kl(𝜉)g̃mn(𝜉)𝛿(𝜔 − 𝜔
𝜉
) (9.152)

and, assuming 𝜔mn ≠ 0, arrive at the following rate expression:

km→n = ∫
dt ei𝜔mnt

∫
d𝜔 𝜔

2 (e−i𝜔t[1 + n(𝜔)] + ei𝜔tn(𝜔)
)

j̃mn,nm(𝜔)

= 2𝜋𝜔2
mn
(
1 + n(𝜔mn)

)
[j̃mn,nm(𝜔mn) − j̃mn,nm(−𝜔mn)]. (9.153)

Since 𝜔mn ≠ 0, there is no contribution proportional to 𝛿(𝜔mn), and EET is charac-
terized by the spectral density due to the vibrational modulation of the excitonic
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coupling. This rate expression would be of interest if the excitation energies of
donor and acceptor are out of resonance (the spectral overlap is small).

The divergence for 𝜔mn = 0 does not appear in the model of Section 9.3.3,
which comprises intramolecular and aggregate normal-mode vibrations. Using
this model (but neglecting the diagonal part of the coupling to the normal-mode
vibrations), the rate can be deduced from a type of correlation function as intro-
duced in Eq. (9.150). However, it has to be multiplied with the combination
Cm e→g(t)Cn g→e(t) of monomer correlation functions already used in Eq. (9.132). We
generalize the latter formula by the inclusion of an additional frequency argument
to arrive at mn(𝜔) = 1∕2𝜋ℏ × ∫ dt exp(i𝜔t)Cm e→g(t)Cn g→e(t) and write the EET
rate as

km→n =
|J(0)mn|2
ℏ2 mn(0)

+2𝜋ℏ
∫

d𝜔 𝜔
2 j̃mn,nm(𝜔)

(
[1 + n(𝜔)]mn(−𝜔) + n(𝜔)mn(𝜔)

)
. (9.154)

It results in a Förster-like expression, Eq. (9.115), but corrected by transitions that
are assisted by a single normal-mode vibrational quantum. According to Eq. (9.153),
it is clear that this rate expression would be of particular value if the DA spectral
overlap given by mn(0) is small, but the aggregate normal-mode vibrations cover
frequency ranges 𝜔 where mn(±𝜔) takes large enough values.

9.6 Transfer Dynamics in the Case of Strong Excitonic
Coupling

In Section 9.4.1, we characterized the case of strong excitonic coupling as one where
it is most appropriate to consider all quantities of interest in the exciton represen-
tation. The corresponding Hamiltonian (referring to the singly excited aggregate
state and the inclusion of aggregate normal-mode vibrations) is introduced in
Section 9.3.4. To characterize the corresponding exciton dynamics, we may com-
pute the populations P

𝛼
of exciton levels, Eq. (9.108), as well as work with the

respective exciton density matrix 𝜌
𝛼𝛽
(t), Eq. (9.109). In the present section, we do

this by carrying out a perturbation theory with respect to the exciton–vibrational
coupling, introduced in Eq. (9.102). Of course, EET rates in the exciton repre-
sentation are included in the corresponding density matrix theory formulated in
the framework of the QME introduced in Section 3. Therefore, it would not be
necessary to develop a separate rate theory. Nevertheless, for completeness and
further reference, we briefly present such a rate equation approach in Section 9.6.1.
The full density matrix theory is formulated afterward.

9.6.1 Rate Equations for Exciton Dynamics

When focusing on a rate theory description of exciton dynamics with rates of the
second order with respect to the exciton–vibrational coupling, Eq. (9.102), we expect
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the following type of equations:
𝜕

𝜕t
P
𝛼
(t) = −

∑
𝛽

(
k
𝛼→𝛽

P
𝛼
(t) − k

𝛽→𝛼
P
𝛽
(t)
)
. (9.155)

The rates have to be calculated from

k
𝛼→𝛽

=
∫

dt eiΩ
𝛼𝛽

tC
𝛼→𝛽

(t). (9.156)

The transition frequencies are defined by the exciton energies as Ω
𝛼𝛽

= (
𝛼
− 

𝛽
)∕ℏ,

and the correlation function reads

C
𝛼→𝛽

(t) = 1
ℏ2 trvib{R̂vibÛ+

vib(t)V̂𝛼𝛽
Ûvib(t)V̂𝛽𝛼

}. (9.157)

The vibrational dynamics are characterized by the Hamiltonian Hvib of unshifted
normal mode vibrations of the aggregate, which results in the equilibrium statistical
operator and the time-evolution operator R̂vib and Ûvib(t), respectively. The coupling
operators V̂

𝛼𝛽
are given by

∑
𝜉
ℏ𝜔

𝜉
g
𝛼𝛽
(𝜉)Q

𝜉
. The computation of Û+

vib(t)V̂𝛼𝛽
Ûvib(t)

simply results in time-dependent normal-mode oscillator operators, and the
correlation function can be determined in analogy to Eq. (9.151):

C
𝛼→𝛽

(t) =
∫

d𝜔 𝜔
2e−i𝜔t (1 + n(𝜔))

(
j
𝛼𝛽,𝛽𝛼

(𝜔) − j
𝛼𝛽,𝛽𝛼

(−𝜔)
)
. (9.158)

This results in the following transition rate:

k
𝛼→𝛽

= 2𝜋Ω2
𝛼𝛽

(
[1 + n(Ω

𝛼𝛽
)]j

𝛼𝛽,𝛽𝛼
(Ω

𝛼𝛽
) + n(Ω

𝛽𝛼
)j
𝛼𝛽,𝛽𝛼

(Ω
𝛽𝛼
)
)
. (9.159)

The spectral density has been defined in the general form

j
𝛼𝛽,𝛾𝛿

(𝜔) =
∑
𝜉

g
𝛼𝛽
(𝜉)g

𝛾𝛿
(𝜉)𝛿(𝜔 − 𝜔

𝜉
). (9.160)

According to Eq. (9.159), transitions between different exciton states are accompa-
nied by the absorption or emission of a single normal mode oscillator quantum. The
spectral density j

𝛼𝛽,𝛽𝛼
taken at the exciton transition frequency regulates the strength

of such transitions.

9.6.2 Density Matrix Equations for Exciton Dynamics

The foregoing section used exciton state populations to characterize EET, which
is only possible if coherences among different levels described by off-diagonal
elements of the exciton density matrix 𝜌

𝛼𝛽
are of no importance. If we consider,

however, an ultrafast optical preparation of a singly excited aggregate state, these
coherences will appear. In analogy to the optical preparation of an excited electronic
state discussed in Section 6.5, an excitonic wave packet is formed.17) Just such a case
we have in mind when introducing the exciton density matrix description of EET
even though the coupling to the radiation field will not be included in what follows.

17) If instantaneous optical excitation is assumed, the resulting superposition state is of the type|A⟩ = ∑
𝛼

C
𝛼
|𝛼⟩. Accordingly, an excitonic wave packet evolves in time as already discussed in

Section 3.2.1. Obviously, the initial value of the exciton density matrix reads
𝜌
𝛼𝛽
(t0) = ⟨𝛼| |A⟩⟨A| |𝛽⟩ ≡ C

𝛼
C∗

𝛽
; that is, in principle, all off-diagonal elements contribute.
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The desired density matrix theory is easily obtained by translating the general
approach of Section 3.8 to Frenkel excitons in molecular aggregates. To this end,
we take Hex from Eq. (9.69) as the system Hamiltonian HS. The reservoir Hamil-
tonian HR is given by the vibrational Hamiltonian Hvib, Eq. (9.98). Finally, the
system–reservoir coupling HS–R is identified as the exciton–vibrational coupling,
Eq. (9.102). To use the general formulas of Section 3.8.2 (where any memory effects
due to the coupling to the reservoir are neglected), we have to rewrite Hex–vib in
the form of Eq. (3.198). In the present case, the summation in Eq. (3.198) is carried
out with respect to the index u = (𝛼, 𝛽) combining the two possible exciton indices.
Therefore, the system part of the interaction Hamiltonian is Ku = |𝛼⟩⟨𝛽|, and the
reservoir part is Φu =

∑
𝜉
ℏ𝜔

𝜉
g
𝛼𝛽
(𝜉)Q

𝜉
. This identification enables us to write down

the reservoir correlation function equation (3.247) as (see also Section 3.8.4)

C
𝛼𝛽,𝛾𝛿

(t) =
∑
𝜉

𝜔
2
𝜉
g
𝛼𝛽
(𝜉)g

𝛾𝛿
(𝜉)

[
[1 + n(𝜔

𝜉
)]e−i𝜔

𝜉
t + n(𝜔

𝜉
)ei𝜔

𝜉
t]
. (9.161)

(The equilibrium correlation function of the dimensionless normal-mode coordi-
nates was calculated in Section 3.7.2.) Let us use the most simple variant of the
density matrix theory introduced in Section 3.8.3 (Bloch approximation), which
neglects all elements of the relaxation matrix that cannot be written in terms of
energy relaxation and dephasing rates. This decouples the equation of motion for
the population- and coherence-type density matrix elements, and we obtain the
following equations of motion:

𝜕

𝜕t
𝜌
𝛼𝛽

= −iΩ
𝛼𝛽
𝜌
𝛼𝛽

−𝛿
𝛼𝛽

∑
𝜅

(
k
𝛼→𝜅

𝜌
𝛼𝛼

− k
𝜅→𝛼

𝜌
𝜅𝜅

)
− (1 − 𝛿

𝛼𝛽
)(𝛾

𝛼
+ 𝛾

𝛽
)𝜌

𝛼𝛽
. (9.162)

Since the basis |𝛼⟩ diagonalizes the single-exciton Hamiltonian Hex, the coherent
part on the right-hand side contains only the transition frequencies between the
exciton eigenstates, Ω

𝛼𝛽
. The transition rates have been already introduced in

Eq. (9.159) (they are identical to 2Γ
𝛼𝛽,𝛽𝛼

(Ω
𝛼𝛽
), a quantity defined in its general form

already in Eq. (3.342)). The corresponding dephasing rates are

𝛾
𝛼
= 1

2
∑
𝛽

k
𝛼→𝛽

. (9.163)

Assuming that the exciton–vibrational coupling matrix factorizes, g
𝛼𝛽
(𝜉) = g

𝛼𝛽
×

g(𝜉), the relaxation rates are given by

k
𝛼→𝛽

= 2𝜋|g
𝛼𝛽
|2Ω2

𝛼𝛽

[
1 + n(Ω

𝛼𝛽
)
] [

j(Ω
𝛼𝛽
) − j(−Ω

𝛼𝛽
)
]
. (9.164)

By construction, the stationary limit of the equations of motion for the
single-exciton reduced density matrix is given by

𝜌
𝛼𝛽
(∞) = 𝛿

𝛼𝛽

e−𝛼
∕kBT∑

𝛼′e−E
𝛼′ ∕kBT

. (9.165)

Since the excitonic coupling has been accounted for in the determination of
the relaxation rates in Eq. (9.164), it is guaranteed that the energy relaxation
rates fulfill the principle of detailed balance with respect to the exciton eigenstates
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k
𝛼→𝛽

∕k
𝛽→𝛼

= exp{−[
𝛼
− 

𝛽
]∕kBT}. Accordingly, the system will relax to the correct

equilibrium distribution (Eq. (9.165)) after initial preparation in a nonequilibrium
state.18)

Finally, it should be mentioned that the assumption of a linear exciton–vibrational
coupling that neglects pure dephasing, for instance, leads to a relaxation matrix
according to which coherences between degenerate eigenstates (Ω

𝛼𝛽
= 0) are not

subject to dephasing processes. Therefore, the equations of motion (9.162) might not
be appropriate for the description of highly symmetric aggregates having degenerate
exciton eigenenergies such as regular molecular rings. In realistic systems, however,
static distributions of monomer transition energies and dipole–dipole interactions
are likely to remove any degeneracy, thus justifying the use of Eq. (9.162).

To illustrate the dynamics in the eigenstate representation, we show in Figure 9.16
the numerical solution of Eq. (9.162) for a regular chain-like aggregate with seven
monomers. For simplicity, we restrict ourselves to situations where a factorization
of the exciton–vibrational coupling matrix is justified (cf. Section 3.7.3). In this case,
the dissipative influence of the aggregate’s vibrational modes can be described by a
single, exciton state independent, spectral density

j(𝜔) =
∑
𝜉

g2(𝜉)𝛿(𝜔 − 𝜔
𝜉
). (9.166)

In the example, we used the model spectral density type j(𝜔) = 𝜃(𝜔) exp{−𝜔∕𝜔c} ∕
2𝜔3

c . Here, 𝜔c is a cutoff frequency (cf. discussion in Section 3.7.3). First, we plotted
in Figure 9.16a the transition amplitudes (oscillator strengths of the respective tran-
sitions) defined in Eq. (9.200) together with the positions of all eigenstates. Being
in H-aggregate configuration, the energetically highest exciton state has by far the
largest transition amplitude. This allows us to assume that an external field can
prepare the system in this particular state. With the highest state being initially
excited with probability of 1, the subsequent dynamics shows a relaxation toward
the equilibrium distribution (9.165). The latter will be different for two different tem-
peratures (Figure 9.16c,d). The relaxation proceeds via emission and absorption of
single vibrational quanta. The relaxation rates relevant for the initial excited state
are shown in Figure 9.16b for the two temperatures.

9.6.3 Site Representation

To study EET in real space, even though delocalized states have been formed, we
may use the theory of the foregoing section but change from the exciton density
matrix to the local site population using Eq. (9.110). It would also be of interest to
directly set up an equation of motion for the density matrix 𝜌mn in site representation.
This would automatically lead to a formulation of the dissipative part in terms of
localized states instead of exciton states. We will find that this approach has some
shortcomings since it neglects contributions of the excitonic coupling to dissipation.

18) Note, however, that Eq. (9.165) neglects the effect of exciton–vibrational coupling on the total
equilibrium density. This is justified in the assumed weak coupling limit.
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Figure 9.16 Dissipative dynamics in a regular chain-like aggregate of seven molecules
with nearest-neighbor coupling of strength J (Jmn∕J = 𝛿m,n+1 + 𝛿m,n−1): (a) position of the
energy levels (gray bars) as well as oscillator strengths (solid bars), (b) transition rates from
the state of highest energy to all states of lower energy (given at the respective energy gap)
for 1∕kBT = J (gray) and 1∕kBT = 10J (solid). The two lower panels show the population
dynamics 𝜌

𝛼𝛼
(t) = P

𝛼
(t) for 1∕kBT = J (c) and 1∕kBT = 10J (d). Initially, the state of highest

energy has been populated. The curves are offset with increasing energy (short dashes:
highest state, long dashes: lowest state). For the spectral density, we have chosen
j(𝜔) = 𝜃(𝜔) exp{−𝜔∕𝜔c}∕2𝜔3

c with a cutoff frequency ℏ𝜔c = 0.5J. The coupling matrix has
been set to gmn = 0.5Jmn.

We do not present the details of the derivation of density matrix equations but refer
the reader to the rather similar discussion in Section 9.6.2.

In what follows, we again assume the validity of the Bloch model and arrive at the
following density matrix equations:

𝜕

𝜕t
𝜌mn = −i𝜔mn𝜌mn − i

ℏ

∑
l
(jml𝜌ln − jln𝜌ml)

−𝛿mn

∑
l
(km→l𝜌mm − kl→m𝜌ll) − (1 − 𝛿mn)(𝛾m + 𝛾n)𝜌mn. (9.167)

The transition rates are introduced in Eq. (9.153) in terms of the related spectral
densities, Eq. (9.152), which, however, appear here directly within the framework of
the QME approach (note the general notation here with gmn(𝜉), Eq. (9.96), instead
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of g̃mn(𝜉)). Obviously, km→n is only different from zero if the coupling to the vibra-
tional modes is off-diagonal in the site index m. This requires that gmn(𝜉) ≠ 0 for
m ≠ n. Since the off-diagonal elements of gmn(𝜉) derive from the modulation of the
excitonic coupling (cf. Eq. (9.95)), this is in accordance with the mentioned trans-
fer character of energy relaxation. The transition rates define the dephasing rates as
(cf. Eq. (3.352))

𝛾m = 1
2
∑

n
km→n. (9.168)

Let us discuss the density matrix equations (9.167). The coherent contribution to
the right-hand side (first line), which derives from the matrix elements of Hex,
Eq. (9.91), indicates that the motion of a single exciton in the aggregate is enforced
by the excitonic coupling. This means that an exciton initially localized at a single
molecule or over a small number of molecules will move through the aggregate
like a wave packet. This motion is reversible and results from a nonperturbative
consideration of the excitonic coupling. The dissipative part on the right-hand side
of Eq. (9.167) (second line) is responsible for irreversibility. In particular, we have
energy relaxation that affects the occupation probabilities, 𝜌mm(t) = Pm(t), and
dephasing of the single-exciton coherences described by 𝜌mn(t). For an aggregate
having identical monomer transition energies, such as the regular chain discussed
in Section 9.2.4, the occupation probabilities at thermal equilibrium should be
equal for all monomers. However, an initial preparation of an exciton at a particular
molecule will result in a coherent motion over the whole aggregate since 𝜔mn = 0
leads to vanishing energy relaxation rates (cf. Eq. (9.153)). This contradiction is due
to the restriction to a linear exciton–vibrational interaction. In particular, the incor-
poration of pure dephasing contributions would result in a proper equilibration.
Nevertheless, the theory in its present form is appropriate for situations where some
irregularity of the monomeric S0 → S1 transitions is present. But this irregularity
leading to a localization of the exciton states is already required to justify the neglect
of the dipole–dipole interaction when calculating the relaxation rates.

In order to illustrate the dynamics according to Eq. (9.167), we consider the linear
chain model of Figure 9.16 but now for the case of different site energies. The energy
relaxation rates in the site representation become

km→n = 2𝜋𝜔2
mn|gmn|2 [1 + n(𝜔mn)

] [
j(𝜔mn) − j(𝜔nm)

]
. (9.169)

In Figure 9.17, we have plotted the population dynamics for two different
system–reservoir coupling strengths. The behavior of Pm(t) reflects the interplay
between coherent exciton transfer due to the coupling between the sites and the
energy relaxation and dephasing due to the exciton–vibrational coupling. Increas-
ing the strength of the latter results in a gradual disappearance of the oscillatory
behavior of the site populations.

In order to examine the manner in which the present density matrix theory
includes hopping-like Förster transfer as a limiting case, we derive the respec-
tive hopping transfer rate km→n. We notice that Förster theory implies a weak
Coulomb interaction, and the transfer dynamics can be categorized as being in the
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Figure 9.17 Dissipative exciton dynamics according to Eq. (9.167) for a linear aggregate of
seven monomers (model of Figure 9.16 but with an energetic offset of J between the
neighboring site energies). The initial state has been chosen as Pm(t = 0) = 𝛿m1, and the
temperature is 1∕kBT = J. For the system–reservoir coupling, we used gmn = 0.1Jmn (a) and
gmn = 0.2Jmn (b). (For visual clarity, the curves have been vertically offset according to the
energetic ordering of the sites where the initially populated site is highest in energy.)

nonadiabatic limit according to the terminology introduced for electron transfer in
Section 7.3. Stressing the similarity to the case of electron transfer, we can adopt
the results of Section 7.9.2, where the nonadiabatic electron-transfer rate has
been derived from density matrix theory (Eq. (7.226)). In the present case, the
nonadiabatic rate for exciton (hopping) transfer is given by

km→n = 2𝜋
ℏ2 |Jmn|2 (𝛾m + 𝛾n)∕𝜋(

𝜔
2
mn + (𝛾m + 𝛾n)2

) . (9.170)

This formula contains a broadening of the transition with frequency 𝜔mn, which
is of a Lorentzian type. It resembles the rate expression introduced in Section 9.5.3
with the related combined DOS, Eq. (9.140), derived for the case of fast nuclear
motion. However, the dephasing rates 𝛾m and 𝛾n are derived in the lowest order of
perturbation theory, while those appearing in Eq. (9.140) include the Stokes shift
and thus completely account for nuclear rearrangement beyond any perturbational
treatment.

9.6.4 Excitation Energy Transfer Among Different Aggregates

As demonstrated in Section 9.5, Förster theory is based on the assumption of the
motion of excitations that are localized on a single monomer of the aggregate.
A generalization of this case appears if two aggregates that are characterized by
strong internal Coulomb interaction are weakly coupled. This is the case where
the excitonic coupling enters nonperturbatively as well as perturbatively into the
description.

For the derivation of the transfer rate, one can closely follow the argument of
Section 9.5.1. However, the initial and the final states of the transitions are not those
of a single monomer but of the whole aggregate. To see how this modifies the rate,
let us first consider the coupling matrix (cf. Eq. (9.29)). We neglect as in Eq. (9.114)
the dependence of the electronic matrix elements on the vibrational coordinates and
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discuss the transition from the exciton levels |D𝛼⟩ of the donor aggregate to the exci-
ton levels |A𝛽⟩ of the acceptor aggregate. If we expand the exciton states according
to Eq. (9.67), we obtain

JD𝛼,A𝛽
= ⟨D𝛼, A0|V (el−el)

DA |A𝛽, D0⟩
=
∑
m,n

c∗D𝛼
(m)⟨Dm, A0|V (el−el)

mn |An, D0⟩cA𝛽
(n)

=
∑
m,n

c∗D𝛼
(m)cA𝛽

(n)JDm,An. (9.171)

The interaggregate coupling is build up by the couplings JDm,An between the
monomers m of the donor aggregate and the monomers n of the acceptor aggregate.
Since both expansion coefficients are proportional to 1∕

√
Nmon, where Nmon denotes

the (assumed) identical number of monomers in both aggregates, a rough estimate
of the coupling matrix elements gives NmonJ (J is a representative mean value of
the various Jmn). Hence, we have to expect a certain enhancement of the EET rate
in relation to the ordinary Förster transfer if the transitions take place between
delocalized states of two separated aggregates. The transition rate can be written as

kD𝛼→A𝛽
= 2𝜋

ℏ

∣ JD𝛼,A𝛽
∣2

×
∑
M,N

f (D𝛼M) |⟨𝜒D𝛼M|𝜒A𝛽N⟩∣2𝛿(D𝛼M − A𝛽N ). (9.172)

Obviously, a similar expression as Eq. (9.123) for the total rate kDA =
∑

𝛼,𝛽
kD𝛼→A𝛽

can be derived, where the emission and absorption spectra now belong to the whole
donor and acceptor aggregates, respectively.

9.6.5 Exciton Transfer in the Case of Strong Exciton–Vibrational
Coupling

As already underlined in Section 9.3, the adiabatic exciton Hamiltonian, Eq. (9.82),
would be an appropriate model to discuss exciton–vibrational coupling as well as
excitonic coupling beyond any perturbation theory, at least in principle. Accordingly,
one has to carry out an expansion of the PES up to the second order with respect to
the deviation from the equilibrium position. Then, the introduction of normal-mode
vibrations leads to excitonic PES as introduced in Eq. (9.104). Nonadiabatic
couplings Θ̂

𝛼𝛽
will appear, which induce transitions between the different PES. One

obtains the lowest order transition rate between different exciton levels as

k
𝛼→𝛽

= 2𝜋
ℏ

∑
M,N

f (
𝛼M) |⟨𝜒

𝛼M|Θ̂𝛼𝛽
|𝜒

𝛽N⟩∣2𝛿(𝛼M − 
𝛽N ), (9.173)

where the excitonic energies include the set of vibrational quantum numbers
M or N. It should be emphasized that this rate expression can be understood as
a rate for an internal conversion process between delocalized excitonic aggregate
states. The given rate expression, Eq. (9.173), however, has only formal significance
since the vibrational states are hardly obtainable for realistic systems.

Alternatively, one could start with H(1)
agg, Eq. (9.105), which resembles the diabatic

picture. Now, the off-diagonal part of the exciton–vibrational coupling, Eq. (9.102),
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becomes responsible for transitions. It may represent a weak perturbation if different
exciton states are localized on different parts of the aggregate (cf. Eq. (9.103)). In this
case, we may follow the general rate theory of Section 3.14.5, Eq. (3.512), and write
the rate as

k
𝛼→𝛽

=
∫

dt eiΩ̃
𝛼𝛽

tC
𝛼→𝛽

(t). (9.174)

The transition frequencies Ω̃
𝛼𝛽

= Ω̃
𝛼
− Ω̃

𝛽
are defined by the shifted exciton ener-

giesℏΩ̃
𝛼
= 

𝛼
−
∑

𝜉
ℏ𝜔

𝜉
g2
𝛼𝛼
(𝜉) introduced in Eq. (9.104), and the correlation functions

take the form

C
𝛼→𝛽

(t) = 1
ℏ2 trvib{R̂

𝛼
Û+

𝛼
(t)V̂

𝛼𝛽
Û

𝛽
(t)V̂

𝛽𝛼
}. (9.175)

R̂
𝛼

characterizes vibrational equilibrium in the excitonic PES referring to state|𝛼⟩, and the time-evolution operators are defined by the vibrational Hamiltoni-
ans Tvib +

∑
𝜉
ℏ𝜔

𝜉
(Q

𝜉
+ 2g

𝛼𝛼
(𝜉))2∕4, which are easily deduced from Eq. (9.105).

Consequently, the coupling operators V̂
𝛼𝛽

(𝛼 ≠ 𝛽) are equal to
∑

𝜉
ℏ𝜔

𝜉
g
𝛼𝛽
(𝜉)Q

𝜉
. This

approach results in rate equations of the type already introduced in Eq. (9.155), of
course, with the rates, Eq. (9.174), replacing those defined in Eq. (9.156).19)

In the following equation, we outline a different approach to the calculation of the
rate.20) In a generalization of the previous considerations, the rate now combines a
displacement of the different PES to each other and a coordinate dependence of the
coupling. In the derivation of C

𝛼→𝛽
, we utilize the displacement operator

D
𝛼
= exp

{
−
∑
𝜉

g
𝛼𝛼
(𝜉)

(
C

𝜉
− C+

𝜉

)}
, (9.176)

which has been originally introduced in Section 2.5.2 and extensively used in Section
6.7.1. Noting, for example, Û+

𝛼
(t) = D+

𝛼
Û+

vib(t)D𝛼
, with Û+

vib(t) = exp(iHvibt∕ℏ) and
Hvib =

∑
𝜉
ℏ𝜔

𝜉
C+

𝜉
C

𝜉
(in a slight modification of Eq. (9.92)), we may write (be aware

of a similar replacement for R̂
𝛼
)

C
𝛼→𝛽

(t) = 1
ℏ2 trvib{D+

𝛼
R̂vibÛ+

vib(t)D𝛼
V̂

𝛼𝛽
D+

𝛽
Ûvib(t)D𝛽

V̂
𝛽𝛼
}

= 1
ℏ2 trvib{R̂vibÛ+

vib(t)D𝛼
V̂

𝛼𝛽
D+

𝛼
D

𝛼
D+

𝛽
Ûvib(t)D𝛽

D+
𝛼

D
𝛼
V̂

𝛽𝛼
D+

𝛼
}. (9.177)

Next, we use Eq. (2.72) and arrive at

D
𝛼
V̂

𝛼𝛽
D+

𝛼
=
∑
𝜉

ℏ𝜔
𝜉
g
𝛼𝛽
(𝜉)

(
Q

𝜉
− 2g

𝛼𝛼
(𝜉)
)
= V̂

𝛼𝛽
− 2E

𝜆
(𝛼𝛽), (9.178)

where we introduce the expression

E
𝜆
(𝛼𝛽) =

∑
𝜉

ℏ𝜔
𝜉
g
𝛼𝛽
(𝜉)g

𝛼𝛼
(𝜉). (9.179)

19) The approach is known in the literature as the modified Redfield theory (cf. Section 3.8.2).
However, this name is misleading since it represents the rate theory governing populations and not
the complete exciton density matrix as it is the case in the original Redfield theory.
20) For more details, see also Renger and Marcus [11].
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This resembles the reorganization energy appearing in Eq. (9.104). Note further that
D

𝛼
V̂

𝛽𝛼
D+

𝛼
is the Hermitian conjugate of Eq. (9.178).

For the following discussion, we rewrite the correlation function as

C
𝛼→𝛽

(t) =
4|E

𝜆
(𝛼𝛽)|2
ℏ2

× trvib{R̂vibÛ+
vib(t)

(
1 − K̂

𝛼𝛽

)
D

𝛼𝛽
Ûvib(t)D+

𝛼𝛽

(
1 − K̂

𝛽𝛼

)
}. (9.180)

Here, we introduce

K̂
𝛼𝛽

= V̂
𝛼𝛽
∕E

𝜆
(𝛼𝛽), K̂

𝛽𝛼
= V̂

𝛽𝛼
∕E∗

𝜆
(𝛼𝛽) (9.181)

and

D
𝛼𝛽

= D
𝛼
D+

𝛽
≡ exp

{∑
𝜉

[g
𝛼𝛼
(𝜉) − g

𝛽𝛽
(𝜉)]

(
C

𝜉
− C+

𝜉

)}
. (9.182)

Moreover, we may formally remove the action of the vibrational time-evolution
operators by setting Û+

vib(t)
(
1 − K̂

𝛼𝛽

)
D

𝛼𝛽
Ûvib(t) =

(
1 − K̂

𝛼𝛽
(t)
)

D
𝛼𝛽
(t), with K̂

𝛼𝛽
(t) =

Û+
vib(t)K̂𝛼𝛽

Ûvib(t) and D
𝛼𝛽
(t) = Û+

vib(t)D𝛼𝛽
Ûvib(t). Both time-dependent quantities are

easily calculated since they depend on C
𝜉

and C+
𝜉

, which have to be replaced by the
time-dependent variants C

𝜉
exp(−i𝜔

𝜉
t) and C+

𝜉
exp(i𝜔

𝜉
t), respectively.

In order to carry out a computational procedure similar to Section 6.7.1, we gen-
eralize the correlation function to the expression

C̃
𝛼→𝛽

(t; x, y) =
4|E

𝜆
(𝛼𝛽)|2
ℏ2

× trvib

{
R̂vib exp

(
−xK̂

𝛼𝛽
(t)
)

D
𝛼𝛽
(t)D+

𝛼𝛽
exp

(
−yK̂

𝛽𝛼

)}
. (9.183)

A first-order expansion with respect to x and y followed by the choice x = y = 1
reproduces the original correlation function. However, the present form allows for
the computation of the trace. There are always normal-mode oscillator operators
in the exponent, which can be rearranged properly as already demonstrated in
Section 6.7.1. Accordingly, the overall vibrational trace T(t) contained in C̃

𝛼→𝛽

factorizes as
∏

𝜉
T

𝜉
(t). Carrying out the calculation of the particular T

𝜉
(t) similar

to Section 6.7.1, one finally arrives at the following expression for the correlation
functions entering the rate equation (9.174):

C
𝛼→𝛽

(t) = eΦ𝛼𝛽
(t)
{[

𝜆
𝛼𝛽

− Λ
𝛼𝛽
(t)
]2 + C(2)

𝛼→𝛽
(t)
}

. (9.184)

This includes

Φ
𝛼𝛽
(t) =

∫
d𝜔 (e−i𝜔t − 1) (1 + n(𝜔))

×
(

j
𝛼𝛼,𝛼𝛼

(𝜔) − 2j
𝛼𝛼,𝛽𝛽

(𝜔) + j
𝛽𝛽,𝛽𝛽

(𝜔) − (𝜔 → −𝜔)
)
, (9.185)

the reorganization energy type expression

𝜆
𝛼𝛽

=
∫

d𝜔 𝜔

(
j
𝛼𝛼,𝛼𝛽

(𝜔) + j
𝛼𝛽,𝛽𝛽

(𝜔)
)
, (9.186)
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and the auxiliary function

Λ
𝛼𝛽
(t) =

∫
d𝜔 𝜔e−i𝜔t (1 + n(𝜔))

×
(

j
𝛼𝛼,𝛼𝛽

(𝜔) − j
𝛼𝛽,𝛽𝛽

(𝜔) − (𝜔 → −𝜔)
)
. (9.187)

The correlation function C(2)
𝛼→𝛽

(t) also appearing in Eq. (9.184) is of second order
in the off-diagonal exciton–vibrational coupling and identical to the quantity
introduced in Eq. (9.158). The spectral densities appearing in all expressions have
been introduced in Eq. (9.160). Since exp[Φ

𝛼𝛽
(t)] mainly determines the rate, it is

obvious that this expression goes beyond any perturbation theory with respect to
the exciton–vibrational coupling. In the limit g

𝛼𝛼
= 0, the rate expression reduces

to what has been derived in Section 9.6.1 (only C(2)
𝛼𝛽
(t) remains nonzero).

9.6.6 Nonperturbative and Non-Markovian Exciton Dynamics

With the development of nonperturbative quantum dynamics methods such as
HEOM (cf. Section 3.11), dissipative EET of Frenkel excitons became one of the
main applications. The numerical effort related to a HEOM propagation of the exci-
ton density matrix is strongly connected to the form of the spectral density and the
temperature. Recall that the essential step in the derivation of the HEOM method
presented in Section 3.11 has been a representation of the reservoir correlation
function in terms of a sum of exponential functions. According to Section 3.7.3,
such an expansion is possible for typical spectral density models. However, each
term of the expansion will increase the dimension of the hierarchy index array and
thus the numerical effort. Therefore, the method is particularly well suited for the
description of the high-temperature limit where the Matsubara summation can be
neglected. Still, spectral densities with a multipeak structure, which could be fit,
for instance, to a sum of Brownian oscillator spectral densities, provide a challenge.
The structured environment of electronic excitations in pigment–protein complexes
such as those of photosynthesis features rather complex spectral densities. As an
example, Figure 9.18b shows the experimentally determined spectral density for the
S0–S1 electronic excitation of bacteriochlorophyll (BChl) a monomer in the FMO
complex, cf. Figure 9.4.

To cope with structured spectral densities, wave function-based methods such
as multilayer MCTDH (cf. Section 3.2.3) provide a feasible alternative. To this end,
one assumes the validity of the exciton–vibrational coupling model introduced
in Section 9.3.1. The Hamiltonian is given by Eq. (9.90); that is, each electronic
transition couples to local vibrational DOFs according to a spectral density such as
the one shown in Figure 9.18b. This requires to discretize the spectral density into
a certain number of modes. Then, the state vector can be expanded into the basis of
single excitation states according to21)

|Ψ(Q, t)⟩ =∑
m
|𝜒m(Q, t)⟩|m⟩. (9.188)

21) Note the analogy to the linear vibronic coupling model introduced for the description of
ultrafast internal conversion in Section 6.6.2. In the present case, there is no dependence of the
Coulomb coupling on the normal-mode coordinates, and the normal modes are monomer specific.
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Figure 9.18 EET in the FMO complex (cf. Figure 9.4). (a) One-exciton eigenenergies and
their decomposition into contributions from the different BChl a monomers (bars – |c

𝛼
(m)|2

in Eq. (9.69)). (b) Experimental spectral density and its discretization into 74 modes (arrows
show transition energies according to panel (a)). (c) Distribution of vibrational (Eq. (9.190))
and vibronic (Eq. (9.191)) energies as well as population dynamics (Eq. (9.189)) after initial
excitation of site m = 1 (sites 4–8 are only marginally populated; the spectral density is
shown for guidance in the left panel) (For more details, see also Schulze et al. [12]).

Given Nmon monomers and Nvib modes per monomer, Q comprises the Nmon × Nvib
normal-mode coordinates the wave packet depends on. The time-dependent
Schrödinger equation with the Hamiltonian in Eq. (9.90) can be solved using the
method outlined in Section 3.2.3.

As an example, we show a simulation of EET in the FMO complex in Figure 9.18.
The complex consists of eight monomers (cf. Figure 9.4). Its one-exciton eigenstates
are characterized in Figure 9.18a according to their decomposition equation (9.67).
Figure 9.18b shows the spectral density together with its discretization. The system
is initially prepared in site m = 1, and the population dynamics

Pm(t) = ⟨𝜒m(Q, t)|𝜒m(Q, t)⟩ (9.189)

reflects the strong coupling between sites m = 1 and 2 by exhibiting a quantum
beat behavior, similar to the generic coupled two-level system in Figure 3.8. Site 3 is
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gradually occupied. Note that in the photosynthetic apparatus of this green sulfur
bacterium, site 3 is connected to the pathway to the reaction center, which reflects
the purpose of the FMO complex to transmit energy from the chlorosome antenna
to the reaction center (cf. Figure 9.4). Due to the high-dimensional vibrational
space (ca. 600 modes) one observes a decay of population toward site 3 without any
recurrence.

One advantage of such propagations is the availability of the full wave packet,
which allows to extract information about the dynamics of the vibrational DOFs.
Figure 9.18c shows the distribution of vibrational and vibronic excitations during
the dynamics for different sites. The vibrational excitation in the electronic ground
state at site m can be defined as the expectation value of the operator

Hvib
m =

∑
𝜉∈m

ℏ𝜔m𝜉

4
(P2

m𝜉
+ Q2

m𝜉
)(1 − |m⟩⟨m|). (9.190)

It gives the vibrational energy irrespective of which site of the aggregate is electroni-
cally excited. The vibronic excitation (that is, the vibrational excitation in the locally
excited electronic state) of a particular site m can be defined as the expectation
value of

Hvibro
m =

∑
𝜉∈m

ℏ𝜔m𝜉

4
(P2

m𝜉
+ Q2

m𝜉
+ 4ℏ𝜔m𝜉

gm(𝜉)Qm𝜉
)|m⟩⟨m|. (9.191)

In Figure 9.18c, the expectation values of theses operators are spectrally resolved
and plotted together with the spectral density. The behavior can be explained using
the simple DA picture shown in Figure 9.12. Assuming an initial vertical excitation
of the wave packet from the ground state, this wave packet will move until the donor
is deexcited. Upon deexcitation, the wave packet is projected back onto the ground
state PES where it is displaced with respect to the equilibrium position. The extent
of displacement depends on the relation between the vibrational frequency and
the inverse of the Coulomb coupling causing the EET (1∕𝜏trans). This is the reason
for the threshold behavior of vibrational excitation seen in Figure 9.18c. The
structured vibronic excitation is a resonance effect. According to Figure 9.18a,b, the
electronic energy difference matches certain regions of the spectral density around
180–200 cm−1. In these regions, one finds vibronic excitations at sites 2 and 3; that
is, the EET is assisted by vibronic excitation. The participation of vibrational DOFs
thus establishes the resonance for efficient EET. Finally, we emphasize that these
results correspond to the limit of zero temperature. Finite temperature effects can
be included in the MCTDH propagation using, for instance, the thermofield method
outlined in Section 3.15.1.

9.7 Optical Properties of Aggregates

Having considered a variety of EET processes, we now turn to the stationary linear
absorption coefficient of a molecular aggregate as one of the basic spectroscopic
quantities. Of particular interest will be its relation to the energy spectrum of the
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single-exciton Hamiltonian introduced in Section 9.2. Following the discussions
given in Chapter 6 and in particular in Section 6.2.1, we expect an expression
for the absorption coefficient to be similar to Eq. (6.13); that is, there should be
an absorption line for every possible transition from the ground to some excited
exciton–vibrational state. To be more precise, the initial state is defined by the
Hamiltonian H(0)

agg, Eq. (9.37). The final states of the transition are obtained from
the eigenstates of the single-excited state Hamiltonian H(1)

agg, Eq. (9.38). Unlike
the initial states, a general expression for the final states cannot be derived in a
simple way. This is due to the fact that one would have to account for arbitrarily
strong exciton–vibrational and Coulomb coupling at the same time. If there are
many vibrational modes, an exact treatment becomes impossible. Therefore, some
reasonable approximations will be discussed in what follows.

If we neglect any contribution of the exciton–vibrational coupling to the absorp-
tion spectrum, we obtain a sequence of sharp lines positioned at frequencies that
coincide with 

𝛼
∕ℏ. This provides a reference for further discussions. Including

the exciton–vibrational coupling, we expect a broadening of the lines as already
discussed in Section 6.3.2. Let us start with a short derivation of the absorption coef-
ficient 𝛼(𝜔) for an ensemble of aggregates using the general expression equation
(4.46), which defines 𝛼(𝜔) via the dipole–dipole correlation function Cd–d(t),
Eq. (4.42).

In the present case, the dipole operator comprises the contributions �̂�m, Eq. (9.27),
of all molecules in the aggregate according to �̂� =

∑
m�̂�m. This expression is valid for

optical transitions into all excited states as well as for transitions between different
excited states (for instance, one- to two-exciton states). For the present purposes,
however, it is sufficient to restrict the model to transitions into the single exciton state
(corresponding to a S0–S1 transition). Further, we note that when computing 𝛼(𝜔),
the volume density of molecules appearing in Eq. (4.46) has to be replaced by that of
the aggregates nagg. We do not present the total absorption coefficient formula again
but focus on the dipole–dipole correlation function for an ensemble of aggregates
randomly oriented in the sample. Noting the structure of the equilibrium statistical
operator Ŵeq = R̂0|0⟩⟨0|, where R̂0 describes vibrational equilibrium in the aggregate
ground state, we immediately arrive at

Cd–d(t) = trvib
{

R̂0⟨0|U+
agg(t)�̂�Uagg(t)�̂�|0⟩} . (9.192)

Since the aggregate ground state projector |0⟩⟨0| reduces the electronic part of the
trace to the electronic ground state matrix element, there only remains a trace with
respect to all involved vibrational DOFs. Also, be aware of the neglect of the so-called
antiresonant contributions (the second term in the dipole operator commutator does
not appear, and any contribution in the negative frequency range is absent in the
absorption).

The further treatment of the dipole–dipole correlation function depends on the
way we represent the dipole operator �̂�. If we use the notation with the monomer
dipole operators �̂�m and restrict ourselves to the first excited state only, we may write

�̂� =
∑

m
�̂�m ≡

∑
m

dm|m⟩⟨0| + h.c., (9.193)
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where dm is the transition matrix element of the two-level model of Section 9.2.2
already used in Eq. (9.30). The dipole–dipole correlation functions reads

Cd–d(t) =
∑
m,n

trvib{R̂0⟨0|eiH(0)
aggt∕ℏ|0⟩d+

m⟨m|e−iH(1)
aggt∕ℏ|n⟩dn}. (9.194)

Here, dn, for example, denotes the projection of the vectorial matrix element dn on
the polarization direction of the external field. ⟨0| exp(iH(0)

aggt∕ℏ)|0⟩ can be replaced
by exp(i0t∕ℏ), with 0, according to Eq. (9.37). If the Condon approximation is
taken, we may move the transition dipole matrix elements out of the vibrational
trace.

Alternatively, we may use the exciton representation of the dipole operator

�̂� =
∑
𝛼

d
𝛼
|𝛼⟩⟨0| + h.c., (9.195)

where the transition matrix elements are given by

d
𝛼
= ⟨𝛼|∑

m
�̂�m|0⟩ =∑

m
c∗
𝛼
(m)dm. (9.196)

Now, we get the dipole–dipole correlation function in Condon approximation as

Cd–d(t) =
∑
𝛼,𝛽

d∗
𝛼
d
𝛽
trvib{R̂0ei0t∕ℏ⟨𝛼|e−iH(1)

aggt∕ℏ|𝛽⟩}. (9.197)

While the singly excited state time-evolution operator connects different exciton
states |𝛼⟩ and |𝛽⟩, it connects different locally excited states in the site representation
of the dipole–dipole correlation function, Eq. (9.194). Tackling these contributions
represents the central difficulty in calculating the absorption. Here, the ratio of the
excitonic coupling and the coupling to the vibrations decides which representation
is more appropriate for a perturbative treatment.

9.7.1 Case of No Exciton–Vibrational Coupling

In this simple reference case, we use the exciton representation, Eq. (9.197), of the
dipole–dipole correlation function. A neglect of vibrational contributions gives

Cd–d(t) =
∑
𝛼

|d
𝛼
|2e−i

𝛼
t∕ℏ

. (9.198)

This result is obtained because in the present approximation, H(1)
agg becomes diag-

onal with respect to the exciton states. The absorption coefficient takes the form
(the prefactor 1∕3 follows from the orientation averaging, cf. Chapter 6)

𝛼(𝜔) =
4𝜋2

𝜔nagg

3c
∑
𝛼

|d
𝛼
|2𝛿(ℏ𝜔 − 

𝛼
). (9.199)

The strength for transitions from the ground state into the single-exciton state|𝛼⟩ is determined by the respective transition dipole moment, Eq. (9.196), where
the expansion coefficients c

𝛼
(m) give the contribution of the mth molecule to the

single-exciton eigenstate |𝛼⟩. In order to characterize this quantity, we compute the
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oscillator strength. For a collection of molecules with identical transition dipole
moments (same magnitude and same spatial orientation), dm = d, it reads

O
𝛼
=
|d

𝛼
|2|d|2 = |||∑

m
c
𝛼
(m)|||2. (9.200)

As a consequence of the neglect of environmental influences, the external field can
in principle excite exciton states that are delocalized over the whole aggregate.

To illustrate the given formulas, let us first consider a molecular dimer whose
energy levels are introduced in Section 9.2.4. The oscillator strength defined in
Eq. (9.200) for transitions into the symmetric and antisymmetric eigenstates is (for
𝜂 see Eq. 9.75)

O± =
|1 ± 𝜂 exp(±i arg(J))|2

1 + 𝜂
2 . (9.201)

In Figure 9.19, we show the distribution of oscillator strength in the dimer absorp-
tion spectrum for the degenerate case, E1 = E2 = E0 (± = E0 ± |J|), in dependence
on the geometry of the transition dipole moments. The sign of the dipole–dipole cou-
pling can be positive or negative, as indicated for two extreme cases in Figure 9.19.
For dipoles pointing in the same direction giving rise to a collective dipole, this
implies that the energy shift observed in the spectrum with respect to the monomer
is positive for J > 0 and negative for J < 0 and of magnitude |J|. According to
Eq. (9.74), the transition is into the symmetric state, that is |+⟩ for J > 0 or |−⟩ for
J < 0. In molecular aggregates, this energy shift can be observed upon aggregation.
Depending on whether the absorption band shifts to longer or shorter wavelengths,
aggregates are classified as J- or H-aggregates, respectively.

If there is some detuning between the monomer transition energies (E1 ≠ E2),
which can be caused by different local environments for the two otherwise identi-
cal molecules (static disorder), both eigenstates will carry oscillator strength. In the
limit where |E1 − E2| ≫ |J|, the absorption spectrum becomes monomeric, and the
eigenstates are localized at the corresponding molecules.

AbsorptionGeometryCoupling

J < 0

J > 0

|1〉 – |2〉

|1〉 – |2〉

|1〉 + |2〉

|1〉 + |2〉

Figure 9.19 Dependence of the amplitudes for transitions between the ground state and
the two excited eigenstates of a molecular dimer on the mutual arrangement of the
monomeric transition dipole moments (depicted by the arrows). In the degenerate dimer,
the oscillator strength, Eq. (9.201), is solely located in the symmetric state combination of
the local states, which is below/above the monomer energy for J < 0/J > 0.
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Next, let us consider an aggregate consisting of a linear arrangement of Nmon iden-
tical molecules as introduced in Section 9.2.4. If we consider the absorption spec-
trum, we note that the single-exciton state0 = E0 + 2J will have the lowest (highest)
energy for a J-(H-)aggregate. It also has the largest transition amplitude for optical
absorption. The respective oscillator strengths, Eq. (9.200), are given by

O
𝛼
= 1 − (−1)j

2
cot2

(
𝜋

2
j

Nmon + 1

)
. (9.202)

The expression for O
𝛼

shows that nearly all the oscillator strength is contained
in a single exciton state (j = 1, cf. part of Figure 9.16). As an example of a linear
chain-type aggregate, we show the absorption spectrum of 5,5′,6,6′-tetrachloro-1,1′-
diethyl-3,3′-di(4-sulfobutyl)-benzimidazolcarbocyanine (TDBC) in Figure 9.20. It is
a J-aggregate, and the excitonic interaction induces a shift of the absorption band to
longer wavelengths upon aggregation.

9.7.1.1 Static Disorder
An important factor determining the width of absorption lines of artificially pre-
pared or naturally occurring aggregates is static disorder. In this section, we outline
an approach that takes the effect of energetic and structural disorder into account.
The formulation is rather general and can be applied to the much simpler case of
single molecules in solution as well.

As has already been discussed in Section 6.2, a change in the energy-level struc-
ture, for example, from aggregate to aggregate leads to an additional broadening
of the absorption, which is measured on a sample containing a large number of
aggregates. In general, one can characterize such a behavior by a set of parameters
y ≡ {yj}, which enter the Hamiltonian and describe a specific energetic and struc-
tural situation in the aggregate. The parameters y will be additionally labeled by A,

Figure 9.20 Molecular structure
of the dye TDBC (5,5′ ,6,6′-
tetrachloro-1,1′-diethyl-3,3′-di
(4-sulfobutyl)-benzimidazol-
carbocyanine) forming
J-aggregates, together with the
room temperature monomer
absorption (in methanol) and the
J-band (in water) (reprinted with
permission from Moll et al. [13];
copyright (1995) American
Institute of Physics ).
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which counts all aggregates contained in the sample volume V . This indicates that
the set y varies from aggregate to aggregate. Accordingly, every aggregate will have
its own absorption cross section 𝜎 = 𝜎(𝜔; yA). The cross section is delivered by the
absorption coefficient as 𝜎 = 𝛼∕nagg, and we may write

𝛼inh(𝜔) =
1
V
∑
A∈V

𝜎(𝜔; yA). (9.203)

The inhomogeneous broadening can be described as an averaging with respect to dif-
ferent realizations of the aggregate’s structure and energy spectrum. This is called
a configurational average. If there exists a large number of different realizations,
one can change from the summation to the integration with respect to the different
parameters yj

𝛼inh(𝜔) = ∫
dy  (y)𝜎(𝜔; y). (9.204)

The integration extends over the whole set of parameters. The appropriate normal-
ized distribution function  (y) can formally be introduced as

 (y) = 1
V
∑
A∈V

∏
j
𝛿(yj − yAj). (9.205)

For specific applications,  (y) is taken to be a continuous function of the parame-
ters yj.

In what follows, we consider the simple case where disorder can be described by
Gaussian distributions of the various exciton levels around certain mean values 

𝛼
.

In fact, the Gaussian form of the distribution function can be justified from the
central limit theorem of probability theory. We set

 (y) →  (y ≡ {
𝛼
}) = nagg

∏
𝛼


𝛼
(

𝛼
− 

𝛼
), (9.206)

with


𝛼
(E) = 1√

2𝜋Δ2
𝛼

exp
{
− E2

2Δ2
𝛼

}
. (9.207)

Here, Δ
𝛼

is the width of the Gaussian distribution for the state |𝛼⟩. Taking the
cross section according to Eq. (9.199), the inhomogeneously broadened absorption
spectrum is obtained as

𝛼inh(𝜔) = ∫
d  ()𝜎(𝜔; ) =

4𝜋2
𝜔nagg

3c
∑
𝛼

|d
𝛼
|2 

𝛼
(ℏ𝜔 − 

𝛼
). (9.208)

In this simple case, the distribution of microscopic parameters directly determines
the line shape of the inhomogeneously broadened spectrum. In order to connect
the broadening to the actual structure of the monomers or aggregates, atomistic
simulations have to be carried out. Figure 9.21a shows the simulation results for the
distribution of BChl site energies of a monomer of the FMO protein (cf. Figure 9.4),
which fit nicely to Gaussian distributions. Figure 9.21b shows a simulation of the
absorption spectrum including exciton–vibrational coupling which is responsible
for homogeneous broadening. The way to calculate these spectra is briefly explained
in Section 9.7.2.
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Figure 9.21 (a) Distribution of site energy shifts relative to an experimentally determined
transition energy (E0 = 1256 cm−1) for the eight BChl monomers of one subunit of the FMO
protein (cf. Figure 9.4). They were obtained from Monte Carlo sampling of protein
conformations. The distributions are fitted to a Gaussian function (line, Eq. (9.207)). (b)
Linear absorption of the FMO protein at T = 4 K (solid line: theory, dashed line: experiment)
including static disorder as well as exciton–vibrational coupling according to Section
9.7.2.3 (Figure courtesy of T. Renger, for more details see Chaillet et al. [14] ).
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9.7.2 Inclusion of Exciton–Vibrational Coupling

As in the case of EET rate computations presented in the foregoing sections, we
distinguish between weak and strong exciton–vibrational coupling. For the former
case, we use an approach based on the density matrix theory of Section 9.6.2. The
description of a situation where exciton–vibrational coupling is strong and cannot be
accounted for by perturbation theory will be based on the concept of excitonic PES,
Section 9.3.4, and resembles the rate computation of Section 9.6.5 called modified
Redfield theory. However, we start our discussion of exciton–vibrational coupling by
introducing the so-called n-particle expansion in Section 9.7.2.1. It provides a clear
eigenstate picture of the effect of this interaction but is restricted to cases of small
aggregates coupled to a few modes only. These modes are treated explicitly and can
be considered as part of the relevant system.

9.7.2.1 The n-Particle Expansion
In what follows, we outline an approach that can describe the exciton–vibrational
coupling Hamiltonian in Eq. (9.90) in a numerically exact manner. Practical
applications, however, will be restricted to a few monomers and vibrational DOFs.
It is based on the introduction of an exciton–vibrational basis, which is diabatic
with respect to the excitonic coupling. In Section 7.2.3, we introduce a diabatic
electron–vibrational basis to treat electron-transfer dynamics. In the present case of
Eq. (9.90), this basis has to be modified to account for the local vibrational modes
that couple to the single excitation states (again, we use the two-level model for
illustration). Specifically, the ground and the excited states, Eqs. (9.33) and (9.34),
respectively, have to be supplemented by the respective vibrational wave functions
describing the local normal modes in the actual electronic states.

For illustration, we assume that there is only one vibrational mode per monomer
described by the vibrational state |𝜒maM⟩ = |Mam

⟩.22) Hence, in the electronic ground
state of the aggregate, the wave function reads

|0M⟩ = |0⟩|M⟩ =∏
m
|𝜑mg⟩|Mgm

⟩. (9.209)

Here, M comprises the set of quantum numbers {Mg1
,… , MgNmon

}. The single-excited
state is written as (cf. Eq. (2.52))

|mM⟩ = |m⟩|M⟩ = |𝜑me⟩|Mem
⟩∏

n≠m
|𝜑ng⟩|Mgn

⟩, (9.210)

with M = {Mg1
,… , Mem

,… , MgN
}. Notice that here it is assumed that |Mem

⟩ are the
eigenfunctions of the shifted oscillator in the local excited state |𝜑me⟩. The repre-
sentation of the exciton–vibrational Hamiltonian, Eq. (9.90), in this basis can be
performed in analogy to the case of ET (cf. Section 7.2.3). Thereby, one can invoke
again the Condon approximation; that is, the matrix elements of the excitonic

22) The extension to an arbitrary number of modes per monomer is straightforward due to the
product character of the normal-mode oscillator eigenfunction, cf. Eq. (2.46).
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coupling are Jmn⟨M|N⟩. The vibrational overlap integrals follow in analogy to
Eq. (9.114) as

⟨M|N⟩ = ⟨Mem
|Ngm

⟩⟨Mgn
|Nen

⟩ ∏
k≠m,n

𝛿Mgk
,Ngk

. (9.211)

Here, the local Frank–Condon factors enter, which can be calculated according to
Eq. (2.79). Notice that there is no restriction on the vibrational quantum numbers,
and the occupation of the vibrational states will be determined by the detuning of the
electronic states of the monomers as well as the shift of the ground and excited state
PESs with respect to each other (reorganization energy), cf. Figure 9.18. The situa-
tion is sketched in Figure 9.22a for a trimer aggregate. In order to limit the possible
excitation space with respect to the electronic ground state vibrations, one intro-
duces the n-particle expansion. In the one-particle expansion shown in Figure 9.22b,
the vibrational quantum numbers corresponding to the electronic ground state PESs

Figure 9.22 Schematic of the
exact (a), one-particle (b), and
two-particle (c)
representations of the
exciton–vibrational wave
function for a trimer aggregate
with one vibrational mode per
monomer. The vibrational
states that are included are
shown with black lines.
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Figure 9.23 Oscillator strengths for transitions from the electronic and vibrational ground
state of a molecular dimer (E0 = ED = EA, one vibrational mode per monomer) into the
one-exciton–vibrational eigenstates in dependence on the excitonic coupling JDA and for
reorganization energies of E

𝜆
∕ℏ𝜔vib = 0.05 (a) and 1.0 (b). Panels (c) and (d) show the

electronic contributions to the transitions in panels (a) and (b), respectively. The dashed
lines correspond to the energies of the pure electronic model equation (9.73) (for more
details, see also Schröter et al. [15]).

are restricted to zero. In the two-particle expansion, the vibrational quantum num-
bers of one electronic ground state PES are unrestricted, and pairs of all ground state
PESs with the considered excited states are taken into account (one case is given in
Figure 9.22c).

In Figure 9.23, properties of the one-exciton–vibrational eigenstates of a molecu-
lar homodimer are shown in dependence on the excitonic coupling. Figure 9.23a,b
gives the oscillator strength for transitions from the electron–vibrational ground
state of the aggregate to these eigenstates for two different exciton–vibrational cou-
pling strengths as expressed by the reorganization energy, that is E

𝜆
∕ℏ𝜔vib = 0.05



9.7 Optical Properties of Aggregates 487

(a) and E
𝜆
∕ℏ𝜔vib = 1.0 (b). For JDA = 0, one has the monomer Franck–Condon

progression. Increasing JDA shifts the eigenstates, and for certain parameter values
avoided level crossings are observed. Note that the level structure is symmetric
with respect to JDA = 0, but the oscillator strengths are not. In order to analyze
their behavior, Figure 9.23c,d shows the corresponding electronic character of the
transitions, which is defined as the expectation value of the projection operator∑

m=D,A|mM⟩⟨Mm| for M = {0, 0}. In the case of the small reorganization energy
(Figure 9.23a,c), the results resemble those of the pure electronic dimer (energy lev-
els given as dashed lines); that is, for JDA < 0, all oscillator strength is concentrated
in the lowest state, and for JDA > 0, it follows the state with dominant electronic
character. In the case of the large reorganization energy (Figure 9.23b,d), the mixing
between electronic and vibrational states leads to a redistribution of oscillator
strength over a number of transitions. Still, the H- and J-like shifts of the spectra are
discernible.

Finally, we note that the present model can be supplemented by a coupling to
a reservoir as discussed in Section 9.3.3. This would give the possibility to include
the effect of dephasing that causes line broadening. In Sections 9.7.2.2 and 9.7.2.3,
however, we introduce line broadening using a correlation function approach that
does not require knowledge about exciton–vibrational eigenstates.

9.7.2.2 Weak Exciton–Vibrational Coupling
If the exciton–vibrational coupling is sufficiently weak, we may compute the absorp-
tion coefficient following the procedure of Section 6.3.2. There, the coupling of a
monomer to a thermal environment was taken into account perturbatively. This situ-
ation is similar to the case of weak exciton–vibrational coupling, as already discussed
in Section 9.6. To calculate the absorption coefficient, we start with Eq. (6.68), where
the dipole–dipole correlation function Cd–d(t) is determined by a density operator
propagation. If we translate the notation of Section 9.6 to the present case, we obtain
Eq. (6.69) in the following form:

Cd–d(t) =
∑
𝛼

(
d∗
𝛼
⟨𝛼|�̂�(t)|0⟩ + d

𝛼
⟨0|�̂�(t)|𝛼⟩) . (9.212)

Instead of a single excited state as in Eq. (6.69), we have here the set of exciton levels
(the trace with respect to the vibrational states does not appear since those DOFs
form the dissipative environment). The density operator �̂�(t) follows from the prop-
agation of the initial state �̂�(0) = [�̂�, |0⟩⟨0|]−. Taking into account the density matrix
equations introduced in Section 9.6.2 (but generalized here to the off-diagonal type
of functions 𝜌

𝛼0) and the dephasing rates, Eq. (9.163), we obtain the absorption
spectrum in analogy to Eq. (6.72) as

𝛼(𝜔) =
4𝜋𝜔nagg

3ℏc
∑
𝛼

|d
𝛼
|2 𝛾

𝛼

(𝜔 − 𝜔
𝛼0)2 + 𝛾

2
𝛼

.

(9.213)

This formula is apparently a generalization of Eq. (9.199) with the transitions into the
exciton states at frequencies 𝜔

𝛼0, broadened by the dephasing rates 𝛾
𝛼
. This broad-

ening is determined by the spectral density entering Eq. (9.164). The different values
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of J(𝜔
𝛼𝛽
) at different transition frequencies lead to different values of the dephasing

rates (cf. also Figure 3.6) and thus spectral widths.

9.7.2.3 Strong Exciton–Vibrational Coupling
The concept of excitonic PES introduced in Section 9.3.4 allows to calculate the
absorption spectrum beyond the simple approximation introduced in Section 9.7.2.2.
In order to illustrate the use of excitonic PES and their residual coupling to each
other condensed in the Hamiltonian H(1)

agg, Eq. (9.105), we start by introducing the
assumption that the vibrationally induced coupling among different PESs is suffi-
ciently small and can be neglected. Then, H(1)

agg becomes diagonal with respect to the
exciton states, and the dipole–dipole correlation function, Eq. (9.197), simplifies to

Cd–d(t) =
∑
𝛼

|d
𝛼
|2trvib{R̂0ei0t∕ℏei[Tvib+U

𝛼
(q)]t∕ℏ}. (9.214)

Here, 0 =
∑

mHmg, with Hmg being a harmonic oscillator Hamiltonian (e.g.
Eq. (9.83)). Since the excitonic PESs are given by displaced parabolas, we can apply
the formula derived in Section 6.2.3 for every exciton level and get

Cd–d(t) =
∑
𝛼

|d
𝛼
|2e−iΩ̃

𝛼
t−G

𝛼
(0)+G

𝛼
(t)
. (9.215)

We used exciton frequencies Ω̃
𝛼

that have already been introduced in relation to
the rate expression, Eq. (9.174), and that include the reorganization energy E(𝛼)

𝜆
=∑

𝜉
ℏ𝜔

𝜉
g2
𝛼𝛼
(𝜉)≡ ℏ ∫ d𝜔 𝜔j

𝛼𝛼,𝛼𝛼
(𝜔) referring to a particular excitonic PES. The spectral

density depending fourfold on the exciton quantum numbers has been defined in
Eq. (9.160). The line shape function takes the form

G
𝛼
(t) =

∫
d𝜔 e−i𝜔t[1 + n(𝜔)][j

𝛼𝛼,𝛼𝛼
(𝜔) − j

𝛼𝛼,𝛼𝛼
(−𝜔)]. (9.216)

The neglect of the interexciton state coupling produces an absorption coefficient
where every excitonic PES contributes independently. In a next step, one can
account for the vibrationally induced interexciton level coupling. The following cal-
culations are again based on Eq. (9.197) for the dipole–dipole correlation function;
however, as demonstrated below, it is sufficient to use the separation equation (9.90)
for H(1)

agg. The exciton–vibrational coupling, Eq. (9.102), does not separate into a
diagonal and off-diagonal part and acts as the total perturbation. As a result, we
separate the time-evolution operator referring to the singly excited aggregate state as
(cf. Sections 3.2.2, 6.2.2, and 6.2.5)

e−iH(1)
aggt∕ℏ = U (0)

1 (t)S1(t, 0), (9.217)

with

U (0)
1 (t) = e−i(Hex+Hvib)t∕ℏ, (9.218)

and with

S1(t, 0) = T̂ exp
⎛⎜⎜⎝− i

ℏ

t

∫
0

dt1 U (0)+
1 (t1)Hex–vibU (0)

1 (t1)
⎞⎟⎟⎠ . (9.219)
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The exciton Hamiltonian Hex has been defined in Eq. (9.69), and Hvib is given in
Eq. (9.92) but with

∑
𝛼
|𝛼⟩⟨𝛼| replacing

∑
m|m⟩⟨m|. The dipole–dipole correlation

function reads

Cd–d(t) =
∑
𝛼,𝛽

d∗
𝛼
d
𝛽
e−i

𝛼
t∕ℏtrvib{R̂0⟨𝛼|S1(t, 0)|𝛽⟩}. (9.220)

The vibrational trace expression cannot be calculated exactly but is perfectly suited
for the cumulant approximation introduced in Section 6.2.5. Let us focus on that
part where 𝛼 = 𝛽 and take the ansatz (cf. Eq. (4.80)):

trvib{R̂0⟨𝛼|S1(t, 0)|𝛼⟩} = eΓ𝛼
(t)
. (9.221)

Expanding S1, Eq. (9.219), up to the second order in Hex–vib, we notice that the
first-order contribution does not contribute (trvib{R̂0Q

𝜉
} vanishes identically).

Then, the second-order term can be identified with the second-order term of Γ(2)
𝛼
(t)

of Γ
𝛼
(t):

Γ(2)
𝛼

= − 1
ℏ2

t

∫
0

dt1

t1

∫
0

dt2

× trvib{R̂0⟨𝛼|U (0)+
1 (t1)Hex–vibU (0)

1 (t1)U
(0)+
1 (t2)Hex–vibU (0)

1 (t2)|𝛼⟩}. (9.222)

The exciton part of this expression results in terms that oscillate with excitonic
transition frequencies Ω

𝛼𝛽
= (

𝛼
− 

𝛽
)∕ℏ. The vibrational trace leads to the correla-

tion function trvib{R̂0Q
𝜉
(t1 − t2)Q𝜉

} already used previously (cf. Section 9.6). After
carrying out the double time integration, we arrive at

Γ(2)
𝛼
(t) =

∑
𝛽

𝛾
𝛼𝛽
(t), (9.223)

with

𝛾
𝛼𝛽
(t) =

∫
d𝜔 𝜔

2

(Ω
𝛼𝛽

− 𝜔)2

(
ei(Ω

𝛼𝛽
−𝜔)t − 1 − i(Ω

𝛼𝛽
− 𝜔)t

)
× [1 + n(𝜔)][j

𝛼𝛽,𝛽𝛼
(𝜔) − j

𝛼𝛽,𝛽𝛼
(−𝜔)]. (9.224)

The expression has been written using the spectral density, Eq. (9.160). We extract
the term 𝛽 = 𝛼 from the summation and get

Γ(2)
𝛼𝛼
(t) = iE(𝛼)

𝜆
t∕ℏ − G

𝛼
(0) + G

𝛼
(t) −

∑
𝛽≠𝛼

𝛾
𝛼𝛽
(t), (9.225)

where E(𝛼)
𝜆

is as introduced in Section 9.6.5 and G
𝛼

in Eq. (9.216). Finally, arrive at
the dipole–dipole correlation function:

Cd–d(t) =
∑
𝛼

|d
𝛼
|2e−iΩ̃

𝛼
t−G

𝛼
(0)+G

𝛼
(t)−

∑
𝛽≠𝛼

𝛾
𝛼𝛽
(t)
. (9.226)

This expression generalizes Eq. (9.215) to the inclusion of off-diagonal parts of the
exciton vibrational coupling. The results of an exemplary simulation are shown in
Figure 9.21.
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9.8 Excitation Energy Transfer Including
Charge-transfer States

9.8.1 Excitation Energy Transfer Via Two-electron Exchange

In the preceding part of this chapter, we have not taken into account the charge
transfer that accompanies EET. This type of EET, caused by the Coulomb interaction,
occurs not only for short distances but also for distances of some 10 nm. For short dis-
tances, electronic wave function overlap becomes possible, and electron-exchange
contributions may be of importance. If they contribute in a significant way, the
EET is called a Dexter transfer (in extension of the Förster transfer, discussed in
Section 9.5). Due to the close proximity of the donor and the acceptor molecules,
the excitonic coupling has to include the electron-exchange contributions as
introduced in Eq. (9.9). To highlight such contributions, we restrict Eq. (9.9) to the
electronic ground and the first excited states and to the contribution caused by a
single-electron exchange between the donor and acceptor⟨𝜙(AS)

Dg,Ae|V (el–el)
DA |𝜙(AS)

Ag,De⟩
=
∫

drDdrA
1√
2

(
𝜑
∗
Dg(r

′
D, rD)𝜑∗

Ae(r
′
A, rA) − 𝜑

∗
Dg(r

′
D, rA)𝜑∗

Ae(r
′
A, rD)

)
× V (el–el)

DA
1√
2

(
𝜑Ag(r′A, rA)𝜑De(r′D, rD) − 𝜑Ag(r′A, rD)𝜑De(r′D, rA)

)
. (9.227)

Here, the total set of electron coordinates has been separated into coordinates
for a single electron at the donor and acceptor, that is rD and rA that are sub-
ject to exchange, and the remaining coordinates r′D and r′A. The corresponding
exchange corrections to the excitonic coupling are based on expressions such as
𝜑
∗
Dg(r

′
D, rD)𝜑∗

Ae(r
′
A, rA) 𝜑Ag(r′A, rD)𝜑De(r′D, rA). The dependence of 𝜑Ag(r′A, rD) on rD

and the dependence of 𝜑De(r′D, rA) on rA indicate the need for a sufficiently strong
spatial overlap of the wave functions in order to have some noticeable contributions.

The exchange contributions discussed so far only introduce corrections to the exci-
tonic coupling. A new transfer mechanism, however, is obtained if one views EET
as a two-electron-transfer (2ET) process (see Figure 9.2). The detailed scheme of
2ET-assisted EET as given in Figure 9.24 indicates that new intermediate states are
involved. Moreover, the transfer may proceed as a sequential as well as a concerted
two-electron transition. The new states are the so-called charge-transfer states (ionic
states; Figure 9.24). The state |D+A−⟩ = |𝜑+

D𝜑
−
A⟩ occurs when the excited electron

moves from the donor LUMO to the acceptor LUMO. The |D−A+⟩ = |𝜑−
D𝜑

+
A⟩ state

involves ET from the acceptor HOMO to the donor HOMO.23) The latter process

23) Related energies of the two charge-transfer states can be estimated as follows. Considering
ED+A− the energy to remove an electron from the donor can be roughly estimated by the ionization
potential WD > 0. Electron affinity of the acceptor AA > 0 is a measure for the energy release when
capturing a single excess electron. So far, we may write ED+A− ≈ EDA + WD − AA. Moreover, the
formation of a charge-transfer state generates Coulomb interaction energy in the most simple case
given as e2∕XDA (the donor acceptor distance is denoted by XDA). This energy has to be added to
ED+A− for electron–hole pair formation: ED+A− ≈ EDA + WD − AA + e2∕xDA. In the same manner, we
get ED−A+ ≈ EDA + WA − AD + e2∕XDA.
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Figure 9.24 HOMO–LUMO scheme of EET based on a two-electron exchange via
charge-transfer (ionic) states. The upper middle panel shows the intermediate state where
the LUMO electron of the donor has been transferred to the acceptor LUMO to leave a
molecular cation D+ and to form a molecular anion A−. Subsequent ET from the acceptor
HOMO to the donor HOMO results in the final state (EET pathway “a”). This
two-electron-exchange process competes with the process displayed by the lower middle
panel where HOMO–HOMO ET precedes the LUMO–LUMO transition (EET pathway “b”;
also note the labeling of the four states involved by 1–4).

can be understood alternatively as a hole transfer from the donor to the acceptor.
Consequently, EET may proceed according to|D∗A⟩ → |D+A−⟩ → |DA∗⟩, (9.228)

where DA hole transfer follows DA ET. This first pathway of EET is labeled by “a”
in Figure 9.24. The second pathway labeled by “b” in Figure 9.24 reads|D∗A⟩ → |D−A+⟩ → |DA∗⟩. (9.229)

Here, DA hole transfer precedes DA ET.
Having identified these two basic processes for DA EET, we focus on some of the

details next. An important question concerns the issue of whether one has a sequen-
tial process with a real population of the intermediate charge-transfer states or a
concerted process where the charge-transfer states only act as virtual intermediate
states. We also have to clarify how to account for the two different pathways of 2ET. It
is already clear at this point that the 2ET-assisted EET would be of increasing impor-
tance for the overall transition if the energetic positions of the intermediate states
get closer to that of the initial and final states. We also underline that 2ET-assisted
EET competes with the direct process if singlet–singlet transfer is concerned, but
2ET-assisted transfer is the only possibility in the case of triplet–triplet transfer
(cf. Figure 9.2).

The transition |D∗A⟩ → |D+A−⟩ reminds on the process of photoinduced DA ET
discussed earlier in Section 7.1, and the transition |D+A−⟩ → |DA∗⟩ is reminiscent
to photoinduced DA hole transfer. As a consequence, it is reasonable to model
2ET-assisted EET using the same description as in Section 7.2. Therefore, we intro-
duce PESs that refer to the different states, namely UD∗A and UD+A− in the case of ET
(see Figure 9.25). The PESs are defined with respect to a common set of vibrational
coordinates (cf. also Section 9.3.2). For the hole transfer, we have the PESs UD+A−

and UDA∗ . To specify the second EET pathway, the PES UD+A− is replaced by UD−A+ .
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Figure 9.25 PES of the DA complex
undergoing 2ET-assisted EET. The present
symmetric scheme assumes the need of
additional excitation energy when forming
the two possible charge-transfer states.
Largest nuclear reorganization has been
assumed when moving between the
neutral states. Less nuclear rearrangement
is necessary for changing between the
ionic states.

The related transfer couplings are denoted as V(D+A−
, D∗A) and V(DA∗

, D+A−)
as well as V(D−A+

, D∗A) and V(DA∗
, D−A+). Also, similar to ET discussed in

Chapter 7, we can distinguish between the strong and the weak coupling cases
(adiabatic and nonadiabatic ET, respectively). As already indicated, we consider the
latter case and expect standard nonadiabatic ET rates for the different electron and
hole transfer processes. Concentrating on pathway “a” of Figure 9.24, we need to
obtain the rates kD∗A→D+A− and kD+A−→DA∗ . EET, however, should also be possible
as a direct one-step process with a rate kD∗A→DA∗ that includes the charge-transfer
states as virtual intermediate states. Obviously, this would be a fourth-order rate
with respect to the transfer coupling. A detailed analysis based on the fourth-order
rate theory of Section 3.14.6 will be given in what follows.

As already indicated in Figure 9.24, we label the involved states |m⟩ with
m = 1,… , 4 (|D∗A⟩ = |1⟩, |D+A−⟩ = |2⟩, |D−A+⟩ = |3⟩, and |DA∗⟩ = |4⟩). Next, we
specify the Hamiltonian describing 2ET-assisted EET by carrying out an expansion
with respect to the states of interest. Moreover, we separate the Hamiltonian into a
zeroth-order part and a perturbation

H = H0 + V̂ . (9.230)

The zeroth-order part is written as

H0 =
∑

m
Hm|m⟩⟨m|, (9.231)

where the vibrational Hamiltonians Hm cover the kinetic energy operator of the
vibrational coordinates and the corresponding PES Um. The coupling part of H takes
the form

V̂ =
∑
m,n

Vmn|m⟩⟨n|. (9.232)

V14 (V41) can be identified with the excitonic coupling equation (9.29), resulting in
a second-order transition rate. Concerning the inclusion of V14 and the computa-
tion of the Förster-type rate k(F)

1→4, we refer to Section 9.5. Here, we focus on the
contribution of the remaining Vmn, which are V12, V13, V24, and V34, as well as the
complex-conjugated expressions. Further, we invoke the Condon approximation;
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that is, we assume that the transfer couplings Vmn are independent of the vibrational
coordinates.

According to Eq. (7.88), the second-order rates of the sequential transitions can be
written as km→n = 2𝜋ℏ|Vmn|2∕ℏ ×m→n(ℏ𝜀mn), with ℏ𝜀mn being the driving force of
the transition entering the combined DOS m→n. The rate of direct transfer k1→4
requires some additional effort. We expect the following form:

k1→4 = k(F)
1→4 + k(2ET)

1→4 , (9.233)

where k(F)
1→4 denotes the standard Förster-type EET, Eq. (9.115) (if necessary

corrected by exchange contributions), and k(2ET)
1→4 is the rate of 2ET-assisted EET.

An explicit expression for this rate is derived in Section 9.10.3 for a Lindblad-type
dissipation model.

In line with this reasoning, we expect to obtain rate equations for the state popu-
lations Pm, which take the form (cf. Eq. (7.128) describing bridge-mediated ET):

d
dt

P1 = −
(

k1→4 + k1→2 + k1→3
)

P1 + k4→1P4 + k2→1P2 + k3→1P3, (9.234)

d
dt

P2 = −
(

k2→1 + k2→4
)

P2 + k1→2P1 + k4→2P4, (9.235)

d
dt

P3 = −
(

k3→1 + k3→4
)

P3 + k1→3P1 + k4→3P4, (9.236)

and
d
dt

P4 = −
(

k4→1 + k4→2 + k4→3
)

P4 + k1→4P1 + k2→4P2 + k3→4P3. (9.237)

Before focusing on the respective higher order rate theory, we shortly comment on
a particular regime of EET (be aware of the similarity to bridge-mediated ET as dis-
cussed in Section 7.6.1). If the formation of the two intermediate states (labeled by 2
and 3) is less probable, that is if the transition rates to these states are much smaller
than those out of these states (k1→2, k1→3, k4→2, k4→3 ≪ k2→1, k3→1, k2→4, k3→4), the
populations P2 and P3 would remain small in the course of the EET. At the same
time, the solution of the rate equations for P2 and P3 is dominated by the rates of
probability outflow from the states 2 and 3. Accordingly, a solution of these rate
equations becomes possible by neglecting the time derivatives 𝜕P2∕𝜕t and 𝜕P3∕𝜕t,
and EET can be characterized by a single rate whose forward part reads

K(fw)
EET = k1→4 +

k1→2k2→4

k2→1 + k2→4
+

k1→3k3→4

k3→1 + k3→4
. (9.238)

An effective rate of the sequential transfer (second and third terms on the right-hand
side) is added to the rate of direct transfer. Therefore, both mechanisms can be com-
pared, which is not possible in such an easy way in a more general case.

9.8.2 Charge-transfer Excitons and Charge Separation

In Section 9.8.1, the charge-separated (CS) (ionic) states have been considered as
intermediate states in 2ET-assisted EET, which was described as an incoherent
rate process. However, charge-transfer states are of importance beyond 2ET-assisted
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EET. For instance, in typical bulk heterojunction organic solar cells, excitons are
generated in polymer assemblies (such as polythiophene) interfacing a region
with electron acceptor molecules (for instance, fullerene). Excitons in the polymer
part can be of intramolecular (that is, electron and hole are on the same polymer)
and intermolecular types (here, electron and hole are on different polymers). The
latter excitation where electron and hole reside on different monomers, not too far
apart, can give rise to, possibly delocalized, charge-transfer excitons (cf. Section 9.1).
In principle, the Coulomb interactions between Frenkel and charge-transfer
excitations may lead to states of mixed character. At the interface to the acceptor
molecules, charge separation takes place; that is, the Frenkel/charge-transfer
exciton state dissociates. This is prerequisite for generating free charges that can
propagate to the electrodes.

In order to describe the local and nonlocal single excitation states of an aggregate,
the ansatz, Eq. (9.5), has to include ionic states as well.24) Thus, the basis in Eq. (9.34)
can be extended according to

|menh⟩ = 𝛿mn|m⟩ + (1 − 𝛿mn)|𝜑−
m⟩|𝜑+

n ⟩ ∏
m,n≠k

|𝜑kg⟩. (9.239)

The second term describes electron and hole on sites m and n, respectively, with the
monomers being in the corresponding ionic states 𝜑

−
m and 𝜑

+
n . All other monomers

are in their electronic ground states. Using this basis, the exciton Hamiltonian
equation (9.91) has to be supplemented by a charge-transfer part

HCT =
∑
m≠n

∑
k≠l

[
𝛿mk𝛿nlEmenh

+ Vmenh ,kelh

] |menh⟩⟨kelh| (9.240)

and a coupling between Frenkel and charge-transfer excitons

Vex–CT =
∑
m,n

∑
k,l

(1 − 𝛿mk)
[
𝛿mn(1 − 𝛿kl) + 𝛿kl(1 − 𝛿mn)

]
× Vmenh ,kelh

|menh⟩⟨kelh|. (9.241)

Here, Emenh
is the energy of the charge-transfer state, and Vmenh ,kelh

is the coupling
between electron–hole pairs. It can be written in analogy to Eq. (9.19) if the transition
densities include charge-transfer excitations. These electronic Hamiltonians can be
supplemented by the contributions from electron–vibrational interaction using the
various strategies outlined in Section 9.3.

In Figure 9.26, results of a multilayer MCTDH simulation (cf. Section 9.6.6) are
shown for a model of the charge separation at a polythiophene–fullerene hetero-
junction. The model consists of stacked polythiophene polymers and fullerene
molecules, which are comprised into a single effective acceptor site (Figure 9.26a).
Exciton–vibrational coupling is accounted for using the model of Section 9.3.1.
Among the nonlocal charge-transfer excitation states, those where the electron is
fixed at the acceptor site are considered as CS states. If the separation exceeds eight
units, the charge is taken as a free carrier. Figure 9.26b,c shows the time-dependent

24) In a more rigorous formulation, one should include exchange effects due to wave function
overlap as well; that is, one should start with the ansatz equation (9.6).
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Figure 9.26 Exciton dynamics and dissociation in a model of a polythiophene–fullerene
heterojunction (a); the fullerenes are combined in one effective acceptor. There are 13
Frenkel exciton (XT) and 13 charge separated (CS) states. In the latter, the electron is fixed
at the acceptor. (b) and (c) The population dynamics of XT and CS states starting from a
localized Frenkel exciton at the interface or else from a delocalized bright exciton in the
donor domain. (d) Population of the interfacial charge-transfer state (CS1) and (e) free
carrier population (integrated over CSn for n = 8,… , 13) for both the initial conditions
(Figure courtesy of I. Burghardt, for more details, see Polkehn et al. [16]).
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population of Frenkel- and CS states for an initial excitation of the local XT state at
the interface and the high energy bright exciton state of the polythiophene donor
domain, respectively. Charge-transfer exciton states are not taken into account.
The results in Figure 9.26b–e point to the strong influence of the initial state on the
initial dynamics of charge separation.

9.9 Exciton–Exciton Annihilation

The Förster transfer considered in Section 9.5 concentrates on the description of
a single excitation in the aggregate. This is appropriate whenever the light inten-
sity used to excite the aggregate is low enough to justify the restriction on a singly
excited state. However, upon increasing the light intensity, one may study states
where different molecules of the aggregate are excited simultaneously. This opens
a new relaxation channel, that is exciton–exciton annihilation, as will be discussed
in what follows.

Exciton–exciton annihilation is usually characterized as a two-step process
(cf. Figure 9.27). First, two excitations being in the S1-state of the molecules have
to move close to each other so that their excitation energy can be used to create a
higher excited Sn-state (n > 1) at one molecule (Figure 9.27a,b). This step leaves
behind the other molecule in the S0 ground state and is usually called exciton fusion.

(a)

(d)

E
ne

rg
y

Nuclear coordinate

(b)

(c)

Sn

Sn

S1

S0

S0

Sn

S1 S1

S0
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Figure 9.27 Scheme of exciton–exciton annihilation in a molecular trimer with nearest
neighbor exciton coupling. (a) EET results in a state with two excitations at the neighboring
molecules. (b) Exciton fusion leaves one molecule in a higher excited state (Sn), whereas the
other one returns to the ground state. (c, d) Nonadiabatic internal conversion dynamics
causes an Sn → S1 transition. Thus, one electronic excitation state has been transformed
into vibrational excitation. The gray-shaded area in panel (d) indicates that there may be
more electronic states in between Sn and S1.
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In a second step, an ultrafast internal conversion process returns the molecule,
from the higher excited Sn-state back to the S1-state. The whole process can
be represented by the following scheme:

M1(S1) + M2(S1)
fusion
−−−−−→M1(Sn) + M2(S0)

IC
−−−→M1(S1) + M2(S0) (9.242)

Exciton–exciton annihilation is often described by the phenomenological rate
equation

dn(r, t)
dt

= −𝛾dn(r, t) − 𝛾an(r, t)2
, (9.243)

with the exciton density n(r, t) at the spatial position r, the intrinsic decay rate of a
single exciton 𝛾d (for instance, due to photon emission), and the annihilation rate 𝛾a.
Such a macroscopic description is valid for larger aggregates (and organic semicon-
ductors) characterized by exciton diffusion. An example is given in Figure 9.28.

A consequent microscopic description has to consider the detailed dynamics of
exciton–exciton annihilation as shown in Figure 9.27. That is, the theoretical for-
mulation needs to use a three-level model for every molecule of the aggregate and
has to account for, at least, two-exciton states. The process of internal conversion has
to be considered too.

If the excitations that undergo the annihilation process are not completely
localized, the description has to be done using delocalized single- and two-exciton
states. In the opposite case, it will be sufficient to calculate the annihilation rate for
the transition from localized states. Both cases will be considered in Section 9.9.2.
In Section 9.9.1, we briefly comment on a model for two-exciton states if a double
excitation of the individual molecules into an Sn-state has been incorporated.
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Figure 9.28 Time dependence of exciton density (fraction of excited molecules in a
pump–probe experiment) in perylene bisimide aggregates at different temperatures. The
experimental data (dots) are fit to Eq. (9.243) employing one-dimensional (a) and
three-dimensional (b) diffusion models. From the agreement between theory and
experiment, it could be concluded that exciton dynamics changes from one- to
three-dimensional diffusion with decreasing temperature (Figure courtesy of S. Wolter, for
more details see Wolter et al. [17]).
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9.9.1 Three-level Description of the Molecules in the Aggregate

Instead of the two-level model used so far for the description of the individual
monomers of the aggregate, we additionally incorporate a third state |𝜑mf ⟩ that
corresponds to a higher Sn-level (cf. Figure 9.27). The related energy is denoted by
𝜖mf , with the energetic position determined by the relation 𝜖mf − 𝜖me ≈ 𝜖me − 𝜖mg.
This accounts for the fact that the process of exciton fusion in Figure 9.27b requires
a resonance between the participating transitions. Moreover, it is assumed that
there exists a nonvanishing transition dipole matrix element d̃m = ⟨𝜑mf |�̂�|𝜑me⟩
that connects the S1 state with the higher excited state (the matrix elements for the
direct transition S0 → Sn, ⟨𝜑mf |�̂�|𝜑mg⟩, are set equal to zero).

As a result, a new class of Coulomb coupling matrix elements arises in addition to
those introduced in Section 9.2.2. To keep the model simple, we assume that electro-
static couplings among molecules due to a nonvanishing molecular charge density,
Eq. (9.20), do not contribute. Having only the coupling matrix elements Jmn(eg, eg)
in the two-level model, Eq. (9.21), tells us that the new types Jmn(fe, fe) and Jmn(fg, ee)
(as well as the complex-conjugated expressions) must also be considered. The first
one describes EET between the S1 and the Sn states (molecule m undergoes the tran-
sition S1 → Sn, while the reverse process takes place in molecule n). The second type
of matrix element characterizes the excitation of molecule m and the deexcitation of
molecule n, both being initially in the S1 state (see also Figure 9.27). Therefore, the
general Hamiltonian, Eq. (9.14), valid for a multilevel description of each molecule
in the aggregate, becomes

Hagg =
∑

m

∑
a=g,e,f

Hma|𝜑ma⟩⟨𝜑ma|
+
∑
m,n

(
Jmn(eg, eg)|𝜑me𝜑ng⟩⟨𝜑ne𝜑mg| + Jmn(fe, fe)|𝜑mf 𝜑ne⟩⟨𝜑nf 𝜑me|

+ Jmn(fg, ee)|𝜑mf 𝜑ng⟩⟨𝜑ne𝜑me| + h.c.
)
. (9.244)

The off-diagonal part of the monomer Hamiltonian, Eq. (9.15), responsible for nona-
diabatic transitions is treated separately. We introduce

Hna =
∑

m
Θm(ef )|𝜑me⟩⟨𝜑mf | + h.c., (9.245)

which describes nonadiabatic coupling between the Sn and the S1 states
(cf. Eqs. (2.97) and (6.111)).25) A similar expression had already been used in
Section 6.6 to describe the internal conversion process.

In a next step, we introduce the two-exciton state by extending the derivations
given in Section 9.2.4. Instead of Eq. (9.71), the two-exciton state is now written as
(the quantum numbers �̃� refer exclusively to the two-exciton states)|�̃�⟩ =∑

m,n
c
�̃�
(m, n)|me, ne⟩ +∑

m
c
�̃�
(m)|mf ⟩. (9.246)

This state covers two S1 excitations at molecules m and n (cf. Eq. (9.35) and note the
additional label “e”) as well as higher excitation at the mth molecule. The latter state

25) Note that, in practice, Sn ≠ S2; that is, there will be a certain number of excited states in
between S1 and Sn as indicated by the shaded area in Figure 9.27d.
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is similar to that introduced in Eq. (9.34) but with 𝜑me replaced by 𝜑mf (note the label
“f ” here). The extensions introduced in this section will be used to discuss different
types of exciton–exciton annihilation rates in Section 9.9.2.

9.9.2 The Rate of Exciton–Exciton Annihilation

Let us start with the consideration of exciton–exciton annihilation in the limit of
delocalized exciton states. In this case, one can directly utilize the results obtained
for internal conversion in Section 6.6, but now the reactant state is given by the
two-exciton state |�̃�⟩, and the product state by the single-exciton state |𝛽⟩. The rate
follows as

k
�̃�→𝛽

= 2𝜋
ℏ

|Θ(�̃�, 𝛽)∣2(�̃�, 𝛽; (
�̃�
− 

𝛽
)∕ℏ), (9.247)

where the DOS can be defined in analogy to Eq. (6.113) or (6.115) but based on the
PES of the single- and two-exciton states. The coupling matrix elements Θ(�̃�, 𝛽) are
given by the exciton representation of the nonadiabatic coupling, Eq. (9.245):

Θ(�̃�, 𝛽) = ⟨�̃�|Hna|𝛽⟩ =∑
m
Θm(fe)c∗�̃�(mf )c

𝛽
(me). (9.248)

Let us assume that all molecules in the aggregate are identical and characterized
by the same nonadiabatic coupling Θm(fe). Furthermore, we replace the DOS in
Eq. (9.247) by a quantity referring to the local internal conversion processes. Then,
we obtain

k
�̃�→𝛽

= |||∑
m

c∗
�̃�
(mf )c

𝛽
(me)|||2 k(IC)

f→e. (9.249)

Here, k(IC)
f→e is the rate of internal conversion, which, according to our assumption, is

identical for all molecules of the aggregate. The exciton–exciton annihilation, there-
fore, can be described by this local internal conversion rate, weighted, however, by
the square of an overlap expression. This expression incorporates the overlap of the
probability amplitudes c∗

�̃�
(mf ) and c

𝛽
(me) for having a double and single excitation,

respectively, at site m. In this description, the first step of exciton–exciton annihi-
lation, namely, exciton fusion, is masked by the two-exciton state, in particular by
the nonvanishing expansion coefficient c

�̃�
(mf ) measuring the probability to have a

double excitation at a single molecule.
If the annihilation process proceeds via localized states as indicated in Scheme

(9.242) and Figure 9.27, one has to start with the doubly excited state |me, ne⟩. It is
transferred to the intermediate state |mf ⟩ of a higher excited single molecule, and
the product state is simply given by the single excited state |me⟩ at molecule m. This
scheme recalls bridge-mediated ET reactions as discussed in Section 7.5. There, the
transfer from the initial donor state through the intermediate bridge states into the
final acceptor state could take place as a direct transition (superexchange transfer)
or as a stepwise process going from the donor to the bridge and then to the acceptor
(sequential transfer). The latter appears if vibrational relaxation in the intermediate
state (the bridge states) interrupts the direct transfer from the donor to the acceptor.
One can expect similar conditions in the case of exciton–exciton annihilation.
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Let us consider, for instance, the two-step annihilation process. It is characterized
by the rate kme,ne→mf describing the creation of the higher excited state at molecule m
and the rate kmf→me characterizing the internal conversion at molecule m. The first
rate is computed with the Coulomb matrix element Jmn(fg, ee) as the perturbation,
and the second rate is simply the rate of internal conversion k(IC)

f→e. Both should enter
rate equations for the various state populations with the solution characterizing the
two-step annihilation process. But similar to the introduction of the superexchange
process in Section 7.5, one may also describe the annihilation as a process without
intermediate state relaxation.

9.10 Supplement

9.10.1 Second Quantization Notation of the Aggregate Hamiltonian

Frequently, second quantization is used to express the aggregate Hamiltonian
in terms of exciton creation and annihilation operators. In what follows, the
introduction of these operators will be sketched for the aggregate Hamiltonian,
Eq. (9.14), describing a two-level model. Further, we assume that the charge
densities of molecules m and n are locally neutral, that is the Coulomb interaction
is reduced to the excitonic coupling, Eq. (9.29) (for notational convenience, we use
Jmm = 0). Then, neglecting off-diagonal parts of the monomer Hamiltonian (we set
Hm(aa) = Hma), we arrive at

Hagg =
∑

m

∑
a=g,e

Hma|𝜑ma⟩⟨𝜑ma| +∑
m,n

Jmn|𝜑me𝜑ng⟩⟨𝜑ne𝜑mg|. (9.250)

As a further simplification, we fix the nuclear coordinates at their values correspond-
ing to the aggregate ground state (R → R0, nuclear kinetic energy equal to zero). If
we replace the PES Uma in Eq. (9.15) by the corresponding energies

Ema = Uma(R0), (9.251)

we obtain the electronic part of the aggregate Hamiltonian as

H(el)
agg =

∑
m

∑
a=g,e

Ema|𝜑ma⟩⟨𝜑ma| +∑
mn

Jmn|𝜑me𝜑ng⟩⟨𝜑ne𝜑mg|. (9.252)

Next, we introduce creation and annihilation operators as follows:

B+
m = |𝜑me⟩⟨𝜑mg|, Bm = |𝜑mg⟩⟨𝜑me|. (9.253)

This results in

H(el)
agg = E0 +

∑
m

EmB+
mBm +

∑
m,n

JmnB+
mBn. (9.254)

The first term on the right-hand side denotes the electronic aggregate ground state
energy

E0 =
∑

m
Emg. (9.255)
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The excitation energy of molecule m

Em = Eme − Emg (9.256)

is the site energy. The operators are of the Pauli type, obeying the commutation rela-
tions [

B+
m, Bn

]
+ = 𝛿mn + (1 − 𝛿mn)2B+

mBn (9.257)

and [
B+

m, B+
n
]
+ = (1 − 𝛿mn)2B+

mB+
n . (9.258)

The relation [B+
m, Bm]+ = |𝜑mg⟩⟨𝜑mg| + |𝜑me⟩⟨𝜑me| can be interpreted as the com-

pleteness relation for the electronic state space of the mth molecule; that is, it can be
set equal to unity. This relation has been used to derive Eq. (9.254) from Eq. (9.252).
For m = n, the excitations behave like Fermions, and two of them cannot occupy the
same molecular state.

9.10.2 Photon-mediated Long-range Excitation Energy Transfer

In the framework of the Förster theory presented in Section 9.5, EET has been char-
acterized by the overlap of the donor emission spectrum and the acceptor absorption
spectrum. This way of formulating the rate suggests an interpretation of the trans-
fer as a process where a photon is emitted by the donor and afterward absorbed
by the acceptor. However, the use of the donor–acceptor Coulomb interaction VDA,
Eq. (9.113), to compute the rate indicates that the Förster transfer cannot be simply
viewed as a photon-mediated EET process. The present section is devoted to clarify
this issue. To this end, a theory of EET is formulated that is based on the general
electromagnetic interaction between the donor and the acceptor. It will include the
Förster theory in the limit of small DA distances. The value of this approach is not a
revision of the Förster theory, but it will provide a more basic classification including
some corrections valid for large DA distances.

In order to prepare for the following discussion, we briefly review some basics
of matter radiation interaction (see also the discussion in Chapter 4 and especially
Section 4.4). First, we recall that within the Coulomb gauge, the vector potential A
represents a transversal field that couples to the molecular system via the so-called
minimal coupling Hamiltonian, Eq. (4.8), where the momenta of the charged parti-
cles are replaced by pj − A(rj)qj∕c.

After quantization of the transversal vector potential according to Eq. (4.127),
the full electromagnetic interaction among electrons and nuclei is mediated by
the short-ranged instantaneous Coulomb interaction and the long-range retarded
exchange of transversal photons. This already indicates that the Förster theory
represents the short-range contribution of the complete interaction, which includes
long-range transversal photon exchange too.

When formulating a comprehensive theory of DA EET, it is advisable to move
from the minimal coupling Hamiltonian to the so-called multipolar Hamiltonian by
applying a canonical transformation (Power–Zienau transformation). Carrying out
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the latter requires a rather cumbersome procedure that includes the representation
of all molecules by charges as well as polarization and magnetization densities. The
transformation becomes much easier if one can restrict the description of the donor
and acceptor to their transition dipole moments dD and dA, respectively. It amounts
to carrying out a unitary transformation as Eq. (4.10), with the classical vector
potential being replaced by the quantum mechanical expression. Both molecules
are assumed to be locally neutral, and higher multipoles are of minor importance.
Then, the complete electromagnetic interaction is reduced to an interaction between
transition dipoles and can be accounted for by the dipolar coupling Hamiltonian:

Hint =
∑

m=D,A

∑
𝜆,k

(
g
𝜆k(Xm)â𝜆k + h.c.

) (
dm|𝜑me⟩⟨𝜑mg| + h.c.

)
. (9.259)

The coupling constant entering this expression takes the form (compare Eq. (4.129))

g
𝜆k(x) = i

√
2𝜋ℏ𝜔k

L3 eikxn
𝜆k. (9.260)

Hint describes photon emission and absorption by the donor (positioned at XD) and
the acceptor (positioned at XA). It takes place via an exclusive coupling to the tran-
sition dipole moments dD of the donor and dA of the acceptor. The Hamiltonian for
the photon field is given by Eq. (4.128), where the zero-point energy contribution is
of no interest here and can be neglected. The introduction of the model is completed
by fixing the Hamiltonian of the DA complex. We focus on the dimer limit of the
aggregate Hamiltonian equation (9.36) by taking the ground state contribution,
Eq. (9.37), and the parts referring to the singly and doubly excited states, Eqs. (9.38)
and (9.39), respectively, but neglecting any intermolecular Coulomb coupling. This
yields

Hagg = 0|0⟩⟨0| + ∑
m=D,A

m|m⟩⟨m| +DA|DA⟩⟨DA|. (9.261)

The introduced states |0⟩, |m⟩, and |DA⟩ are the dimer variants of those defined
in Eqs. (9.33), (9.34), and (9.35), respectively. The new Hamiltonians exclusively
account for intramolecular vibrational dynamics and read: 0 = HDg + HAg,
D = HDe + HAg, A = HDg + HAe, and DA = HDe + HAe (recall that the Hma
denote monomer vibrational Hamiltonians). Note that we have included the
simultaneous excitation of the donor as well as the acceptor; the relevance of this
will become clear below.

Equation (9.259) represents the complete electromagnetic coupling between the
donor and the acceptor, provided their involved internal charge distributions can
be approximated by transition dipole moments (between the ground and the first
excited states). Therefore, any rate calculation based on this coupling expression
should comprise the Förster rate. However, there appear some differences with
respect to the Golden Rule formulation of the Förster rate given in Section 9.5.2.
First, when including the quantized radiation field into the rate calculations, the
Hilbert space has to be extended by photon contributions. And second, the rate
represents a fourth-order transition rate including intermediate states. Figure 9.29
illustrates the two-step character of the process: donor deexcitation does not directly
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Figure 9.29 Photon-mediated
EET in a DA complex. Both
molecules are represented by an
electronic two-level system with
related vibrational manifolds and
are coupled to the continuum of
photon states (P). Two
intermediate states contribute to
the transition. Upper pathway:
donor deexcitation initiates
photon emission into the
continuum of single photon
states (P∗), followed by photon
absorption due to the acceptor.
Lower pathway: photon emission
and acceptor excitation appears
before donor deexcitation.

D* AP D A*P

D* A*P*

D AP*

lead to an acceptor excitation, but first sets free a photon. Only in a second step, the
photon is absorbed by the acceptor, moving the latter into its excited state (upper
transition pathway in Figure 9.29). The related transition rate will be of second order
with respect to the donor–photon coupling and also of second order with respect to
the acceptor–photon coupling; that is, the overall rate is of fourth order with respect
to the dipolar coupling, Eq. (9.259). When calculating the rate, we will also meet
the counterintuitive two-step transition (lower transition pathway in Figure 9.29)
where photon emission and acceptor excitation take place before donor deexcitation
(formally such an additional process appears since the molecule–photon coupling,
Eq. (9.259), comprises simultaneous photon creation and annihilation). It is just this
process that requires the inclusion of the doubly excited state |DA⟩ (the relevance
of this is related to the time-energy uncertainty of quantum mechanics as discussed
below).

9.10.2.1 Preparatory Considerations for the Rate Computation
As explained in Section 9.10.2 and displayed in Figure 9.29, the rate of
photon-mediated EET will be of fourth order with respect to the photon–molecule
interaction equation (9.259). Therefore, we will utilize the general rate theory
introduced in Section 3.14. Within this approach, Eq. (3.522) gives the fourth-order
rate corrected by a product of two second-order rates. As discussed there, the latter
correct the fourth-order rates with respect to a sequential transition from the initial
to the intermediate state and, afterward, from the intermediate to the final state.
In the case of a simple three-level system, this factorized contribution completely
compensates particular fourth-order contributions, which have been characterized
by the so-called Liouville space pathways (LSPs) of types II and III (see Figure 3.14).
In what follows we will make use of the fact that, reproducing the Förster rate of
EET in a particular limit, we can concentrate on the LSP of type I. It gives the direct
(coherent) transition with a virtual intermediate state population only; all other
contributions cancel with the product of second-order rates.
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According to Eqs. (3.522)–(3.524), the rate of photon-mediated EET takes the form
(dropping the LSP pathway index I)

k(pm)
D→A = 2Re

∞

∫
0

dt3 dt2 dt1 CAD(t3, t2, t1). (9.262)

To calculate the correlation function, we identify the statistical operator of state
1 in Eq. (3.522), with ŴD describing the excited donor and the absence of any
photon (photon vacuum |vac⟩). Consequently, it takes the form ŴD = R̂D|D⟩⟨D| ×|vac⟩⟨vac|, where R̂D = R̂DeR̂Ag characterizes the vibrational equilibrium in the
excited donor and the unexcited acceptor. Second, the state 3 in Eq. (3.523) cor-
responds to the final state of the transition with the unexcited donor, the excited
acceptor, and, again, the photon vacuum. Noting all these specifications, we obtain

CAD(t3, t2, t1) =
1
ℏ4 trvib{⟨A|⟨— vac U(t3 + t2)HintU(t1)HintŴD

× U+(t1 + t2)HintU+(t3)Hint|vac⟩|A⟩}. (9.263)

The original trace, which also covers electronic and photonic contributions, has
already been reduced to a trace with respect to the vibrational DOFs, whereas
electronic and photonic contributions are specified by the matrix element⟨A|⟨vac|… |vac⟩|A⟩. The time-evolution operators are defined by the sum of the
zeroth-order Hamiltonians Hphot, Eq. (4.128) and Hagg, Eq. (9.261); they factorize
into a photon part and into monomer contributions. The included electron–photon
matrix element separates into two matrix elements, which will be calculated first.
We have

⟨A|⟨vac|U(t3 + t2)HintU(t1)Hint|vac⟩|D⟩
= UA(t3 + t2) × ⟨A|⟨vac|Uphot(t3 + t2)HintUagg(t1)Uphot(t1)Hint|vac⟩|D⟩. (9.264)

Remember that UA is defined by A, Uphot by Hphot, and Uagg by the complete DA
complex Hamiltonian, Eq. (9.261). The general expression of the latter has to be
taken here since the transition from the excited donor state to the excited acceptor
state (from the right to the left part of the matrix element) may proceed in two ways:
via the unexcited DA pair as well as via the state of a simultaneous DA excitation
(cf. Figure 9.29). Therefore, we may replace Uagg(t1) by U0(t1)|0⟩⟨0| + UDA(t1)|DA⟩⟨DA|.

When calculating the photon state matrix element of Eq. (9.264), one meets the
photon correlation function (the hat remains on the tensorial character of this func-
tion; note also XAD = XA − XD):

Ĉphot(XAD, t) = ⟨vac|∑
𝜆,k

(
g
𝜆k(XA)a𝜆k + h.c.

)
Uphot(t)

×
∑
𝜅,q

(
g
𝜅q(XD)a𝜅q + h.c.

) |vac⟩
= 2𝜋ℏ

V
∑
𝜆,k

n
𝜆k ⊗ n

𝜆k 𝜔k ei(kx−𝜔kt)
. (9.265)
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The second part of this formula follows immediately since an average has to be taken
with respect to the photon vacuum only (⊗ is the tensorial product). Apparently,
Eq. (9.264) turns into the form⟨A|⟨— vac U(t3 + t2)HintU(t1)Hint|vac⟩|D⟩

=UA(t3 + t2) ×
(

U0(t1) + UDA(t3 + t2)
)
[dAĈphot(XAD, t1)d

∗
D]. (9.266)

The combination of the transition dipole matrix elements with the photon correla-
tion function indicates that the Condon-approximation has been incorporated. The
notation [dAĈd∗

D] implies a scalar multiplication of dA, with n
𝜆k appearing left in the

second part of Eq. (9.265), and of d∗
D, with n

𝜆k appearing on the right. In the same
way, we may compute the second electron–photon matrix element in Eq. (9.263) to
arrive at (note the negative time argument in the photon correlation function, which
is caused by the appearance of U+

phot)⟨D|⟨vac|U+(t1 + t2)HintU+(t3)Hint|vac⟩|A⟩
= U+

D (t1 + t2) ×
(

U+
0 (t3) + U+

DA(t3)
)
[dDĈphot(XDA,−t3)d

∗
A]. (9.267)

Introducing both electron–photon matrix elements into the correlation function,
Eq. (9.263), one ends up with four new correlation functions. The expression
trvib{R̂DU+

D (t1 + t2)U+
0 (t3)UA(t3 + t2)U0(t1)} corresponds to the EET process with

the unexcited DA pair as the intermediate state (upper pathway in Figure 9.29).
Being aware of the separate vibrational coordinates for the donor and the acceptor,
this three-time correlation function factorizes into CDe→g(t1 + t2)CAg→e(t3 + t2)
(see Eqs. (9.130) and (9.131), respectively). In contrast, the correlation function
trvib{R̂DU+

D (t1 + t2)U+
AD(t3)UA(t3 + t2)UDA(t1)} results from the presence of the dou-

bly excited pair as an intermediate state (lower pathway in Figure 9.29). It reduces
to CDe→g(t2 + t3)CAg→e(t1 + t2). The interference of both transition paths leads to two
mixed terms. So, we finally arrive at

CAD(t1, t2, t3) =
|dDdA|2

ℏ4

(
CDe→g(t1 + t2)CAg→e(t3 + t2)

+ CDe→g(t1 + t2 + t3)CAg→e(t2)

+ CDe→g(t2)CAg→e(t1 + t2 + t3)

+ CDe→g(t2 + t3)CAg→e(t1 + t2)
)

× [nAĈphot(XAD, t1)nD][nDĈphot(XDA,−t3)nA], (9.268)

where the mixed contributions are at the second and third positions of the right-hand
side. Recall the notation dm = dmnm, where dm represents the absolute value of the
transition dipole moment, and nm is the corresponding unit vector.

9.10.2.2 Photon Correlation Functions
Before proceeding with the rate computation, we have to further analyze the photon
correlation function, Eq. (9.265), with the focus on its Fourier-transformed version
(with respect to its time argument). To carry out the 𝜆k-summation, we first note
that

∑
𝜆
n

𝜆k ⊗ n
𝜆k = 1 − k ⊗ k∕|k|2. This equation represents a rearrangement of
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the expansion of an arbitrary vector field with respect to the basis of two transversal
vectors (for a given partial wave with wave vector k) as well as the longitudinal vec-
tor k∕|k|. Secondly, k-vectors inside the k-summation are replaced by the action of
the nabla operator. We get

Ĉphot(x, t) =
[
−∇2 + ∇⊗ ∇

]
𝜁phot(x, t). (9.269)

The newly introduced function 𝜁phot only depends on x = |x| and is given as (note
k = |k|, the change to a k-integration, and the introduction of spherical coordinates):

𝜁phot(x, t) = ℏc
4𝜋2 ∫

d3k|k| ei(kx−𝜔kt) = ℏc
𝜋

∞

∫
0

dk sin(kx)
x

e−ickt
. (9.270)

The Fourier transform simply follows as (𝜃(𝜔) is the unit step function)

𝜁phot(x, 𝜔) = 𝜃(𝜔)2ℏ
sin(𝜔x∕c)

x
. (9.271)

Calculating the photon-mediated EET rate, we also need the retarded correlation
function

Ĉ(ret)
phot(x, t) = 𝜃(t)Ĉphot(x, t). (9.272)

A Fourier transformation leads to (be aware that Ĉphot(x, t) = Ĉ∗
phot(x,−t))

Ĉ(ret)
phot(x, 𝜔) = −

∫

d𝜔
2𝜋i

Ĉphot(x, 𝜔)
𝜔 − 𝜔 + i𝜀

. (9.273)

In order to derive a concrete expression for Ĉ(ret)
phot(x, 𝜔), one may directly compute

the Fourier transform of 𝜁 (ret)
phot(x, t) = 𝜃(t)𝜁phot(x, t) at positive and negative frequency

arguments, ending up with expressions that include the integral cosine and sine
functions. To arrive at the rate of photon-mediated EET, we only need the combina-
tion of the retarded photon correlation function at positive and negative frequencies
(see Section 9.10.2.3). This combination can be calculated by adding both parts and
also directly without a separate determination at positive and negative frequencies.
In any case, one arrives at the following simple form (note the introduction of
K = 𝜔∕c):

1
ℏ

(
𝜁
(ret)
phot(x, 𝜔) + 𝜁

(ret)
phot(x,−𝜔)

)
= (𝜃(𝜔) − 𝜃(−𝜔)) sin(Kx)

x
− i cos(Kx)

x
. (9.274)

The application of the nabla operators according to Eq. (9.269) results in an
expression for a particular combination of retarded photon correlation functions.

9.10.2.3 The Rate of Photon-mediated Excitation Energy Transfer
Having the explicit structure of the photon correlation function at hand, we may
use Eq. (9.268) to compute the rate k(pm)

D→A according to Eq. (9.262). It is advisable to
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introduce Fourier-transformed molecular correlation functions CDe→g and CAg→e as
well as Fourier-transformed retarded photon correlation function Ĉ(ret):

k(pm)
D→A =

|dDdA|2
ℏ4 ∫

d𝜔d𝜔
(2𝜋)2 CDe→g(−𝜔)

{ −i
𝜔 − 𝜔 − i𝜀

×
(
[nDĈ(ret)∗

phot (XDA, 𝜔)nA] + [nDĈ(ret)∗
phot (XDA,−𝜔)nA]

)
×
(
[nAĈ(ret)

phot(XAD, 𝜔)nD] + [nAĈ(ret)
phot(XAD,−𝜔)nD]

)
+ c.c.

}
CAg→e(𝜔). (9.275)

In contrast to Eqs. (9.115) and (9.132) describing ordinary Förster-type EET, here
the retarded photon correlation functions are responsible for mediating the EET
(be aware of the two-fold frequency integration). The combination of the part
proportional to Ĉ(ret)∗(XDA, 𝜔) with that proportional to Ĉ(ret)(XAD, 𝜔) corresponds
to the intuitive photon-mediated transfer process shown as the upper pathway
in Figure 9.29. The total rate follows via the inclusion of the lower pathway of
Figure 9.29 and a mixture of both.

The expression simplifies considerably if we note that the photon correlation func-
tion changes only slightly across the frequency range, where CDe→g(𝜔) and CAg→e(𝜔)
deviate from zero. Characterizing this range by a mean frequency 𝜔0, we obtain
(XDA = |XDA|)

k(pm)
D→A = 2𝜋

ℏ

|dDdA|2|(xDA, 𝜔0)|2DA. (9.276)

The combined DOS DA ≡ EET has been defined in Eq. (9.132), and the newly
defined function  (photon transition amplitude) is determined by the retarded
correlation functions. According to Eq. (9.269), the latter can be expressed by 𝜁

(ret)
phot

introduced in Section 9.10.2.2. It follows that

(xDA, 𝜔0) =
1
ℏ

(
−[nDnA]∇2 + [nD∇][nA∇]

)
×
(
𝜁
(ret)
phot(XDA, 𝜔0) + 𝜁

(ret)
phot(XDA,−𝜔0)

)
= K3

0

[
𝜅DA

(K0XDA)2 −
i𝜅DA

K0XDA
+

i𝜅DA

(K0XDA)3

]
eiK0XDA . (9.277)

To obtain the second equality, we used Eq. (9.274) and carried out the various
derivatives. Also, notice the introduction of K0 = 𝜔0∕c, which determines the
inverse wavelength of the exchanged photon. The orientation factor 𝜅DA has already
been introduced in Eq. (9.31). The other factor reads

𝜅DA = [nDnA] − [nDeDA][nAeDA]. (9.278)

If K0XDA ≪ 1, that is if the DA distance is much smaller than the photon wave-
length, the rate k(pm)

D→A, Eq. (9.276), reduces to the Förster-type expression, Eq. (9.123)
(it depends on 1∕X6

DA). In the present context, one may state that Förster-type EET
is dominated by a virtual photon exchange. In the opposite case, K0XDA ≫ 1, the
rate accounts for real photon emission by the donor and photon absorption by
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the acceptor (here, it decreases with the inverse square of the DA distance; see
also the discussion below). If one ignores the counterintuitive photon-mediated
process (lower pathway in Figure 9.29), the transition amplitude also includes sine
and cosine functions. In particular, one cannot reproduce the Förster-type rate
for short DA distances. This has to be expected since the energy-time uncertainty
works most effectively at short distances, that is at short “photon flight times”
(strong contribution by the counterintuitive process). Interestingly, the elaborated
combination of the two transition pathways reproduces the simple picture of a
Coulomb interaction between the donor and the acceptor.

9.10.2.4 Some Estimates
To estimate the rate of photon-mediated EET, we use Eq. (9.276), together with the
expression for the spectral overlap based on fast nuclear motion (cf. Section 9.5.3
and Figure 9.14). The rate, Eq. (9.276), is written as

k(pm)
D→A = 2𝜋

ℏ

|dDdA|2
(

𝜅
2
DA

X6
DA

+
K2

0𝜅DA(𝜅DA − 2𝜅DA)
X4

DA
+

K4
0𝜅

2
DA

X2
DA

)
DA. (9.279)

Figure 9.30 shows the rate versus the DA distance XDA. The acceptor molecule has
been chosen to be identical to the donor, so we set ℏ𝜔D = ℏ𝜔A = ℏ𝜔0 (the transition
dipole moments are perpendicular to the line connecting the donor and the acceptor,
that is 𝜅DA = 𝜅DA = 1). For distances less than 20 nm, the photon-mediated transfer
agrees completely with the Förster rate, and any dependence on the choice of ℏ𝜔0
vanishes. The extreme smallness of the Förster rate for the largest distance of 500 nm
is compensated for, when using the general rate due to photon-mediated transfer.
Its distance dependence is dominated by the 1∕X2

DA term and increases according to
the fourth power of 𝜔0. Such a behavior indicates that the EET appears mainly as a
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Figure 9.30 Transfer rates of photon-mediated EET versus DA distance and for different
DA excitation energies (transition dipole moments are perpendicular to the line connecting
the donor and the acceptor and amount to 5D, DA according to Eq. (9.140), ΓDA = 40 meV).
Solid lines: rate of photon-mediated EET, ℏ𝜔0 = ℏ𝜔D = ℏ𝜔A = 10, 5, and 2 eV (from above
to below); dashed line: Förster rate; dotted line: photon-mediated transfer for the case
𝜅 = 0 and 𝜅 = 2∕3 (ℏ𝜔0 = 2 eV).
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photon emission by the donor and a subsequent photon absorption by the acceptor
(this view of a real photon exchange just confirms that the rate becomes proportional
to 𝜔

4
0∕X2

DA).
The presented theory of photon-mediated EET seems rather appealing. However,

the very low transfer rates for intermolecular distances beyond 200 nm, where
distinct deviations from the Förster theory are observable in Figure 9.30, preclude
its application to standard molecular systems. For the largest molecular excitation
energy used (10 eV), however, the transfer time (inverse rate) stays in the millisec-
ond region for such a large DA separation. Of course, the choice of 10 eV is not
very realistic for S0–S1 transitions in typical organic dyes (but values of about 4.5 eV
are of importance for exciton formation and EET in DNA strands). On the other
hand, for a DA geometry where the orientation factor 𝜅, Eq. (9.278), equals zero,
the Förster rate vanishes, and the photon-mediated transfer rate is determined
exclusively by the long-range term ∼ 1∕X2

DA (case where [nDnA] = 3[nDn][nAn] and
nD ∥ nA, resulting in 𝜅 = 0 and 𝜅 = 2∕3). The transfer time stays in the millisecond
region for distances less than 10 nm, and thus EET may occur.

9.10.3 Fourth-order Rate of Two-electron-transfer-assisted EET

General rate equations for state populations have been introduced in Section 3.14
with the special feature that the transition rates are of arbitrary order with respect
to the interstate couplings. According to Eq. (3.522), the fourth-order rate, which is
of interest here, takes the form

k(2ET)
m→n =

∞

∫
0

dt3 dt2 dt1

{(
Cm→n(t3, t2, t1) + c.c.

)
−
∑

k

(
Cm→k(t1) + c.c.

) (
Ck→n(t3) + c.c.

)}
. (9.280)

A possible factorization of the three-time correlation function into two single-time
correlation functions is compensated by the last term on the right-hand side,
which just includes products of two of such single-time correlation functions.
The three-time correlation function separates into three parts corresponding to
three different so-called Liouville space pathways (LSP, see Section 3.14.6)

Cm→n(t3, t2, t1) = C(I)
m→n(t3, t2, t1) + C(II)

m→n(t3, t2, t1) + C(III)
m→n(t3, t2, t1). (9.281)

These different LSP contributions have already been given in Eqs. (3.524)–(3.526).
The LSP I contribution is responsible for a direct transition across the intermediate
states (often called superexchange transfer). Sequential transitions including inter-
mediate state relaxation are covered by the LSP II and III contribution.

To get concrete rate expressions, one has to rely on certain approximations with
respect to the type and the dynamics of the vibrational coordinates. The simplest
approximation, which will be used in what follows for the rate computation, is based
on the replacement of all vibrational coordinates by a thermal environment, which
only causes dephasing among different electronic states (be aware of the similarity
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to the case of fast nuclear motion introduced in Section 6.2.4 and already used
in Section 9.5.3 to characterize Förster-type EET). In such a case, the vibrational
Hamiltonians Hm are replaced by electronic energies ℏ𝜀m, and the effect of the
vibrational coordinates is accounted for by a particular form of dissipation entering
the equation of motion of the density operator �̂� reduced to the electronic DOF.
This type of dissipation (Lindblad type) has been already discussed in Chapter 3,
Eq. (3.363) and reads here

−�̂�(t) = −1
2
∑

m
𝛾m
(
[Π̂m, �̂�(t)]+ − 2Π̂m�̂�(t)Π̂m

)
. (9.282)

The dissipative superoperator  includes the projection operators Π̂m = |m⟩⟨m| and
introduces dephasing of the off-diagonal elements of the density matrix 𝜌mn with
dephasing rates 𝛾m but does not affect the diagonal matrix elements. The resulting
time evolution of the density matrix reads

𝜌mn(t) = ⟨m| (t − t0)�̂�(t0)|n⟩
=
(
𝛿mn + (1 − 𝛿mn)e−i[�̃�m−�̃�

∗
n](t−t0)

)
�̂�mn(t0). (9.283)

The time-evolution superoperator is denoted by  , �̂�mn(t0) is the initial value of the
density matrix, and we introduced �̃�m = 𝜀m − i𝛾m∕2.

Since we changed from electron–vibrational dynamics to electron motion only,
while including dissipation due to the presence of an environment, we cannot
directly use Eqs. (3.524)–(3.526) specifying the different LSP correlation func-
tions. Instead, we need to change to new correlation functions, which include a
dissipative time propagation described by the time-evolution superoperator  (t),
introduced in Eq. (9.283). Therefore, we have to go back to Eq. (3.521) in order to
derive the “dissipative” variant of the LSP correlation functions. Here, the initial
density operator ŴD∗A = Ŵ1 is specified as |1⟩⟨1| (note the absence of a vibrational
equilibrium statistical operator). Accordingly, the three-time correlation functions
read

C(I)
1→4(t3, t2, t1) =

1
ℏ4 trvib

{⟨4| (t3)
{
 (t2)

(
V̂ (t1)

[
V̂ |1⟩⟨1|]) V̂

}
V̂ |4⟩} ,

(9.284)

C(II)
1→4(t3, t2, t1) =

1
ℏ4 trvib

{⟨4| (t3)
{

V̂ (t2)
(
 (t1)

[
V̂ |1⟩⟨1|] V̂

)}
V̂ |4⟩} ,

(9.285)

and

C(III)
1→4(t3, t2, t1) =

1
ℏ4 trvib

{⟨4|V̂ (t3)
{
 (t2)

(
 (t1)

[
V̂ |1⟩⟨1|] V̂

)
V̂
} |4⟩} .

(9.286)

The time propagation of V̂ |1⟩⟨1| has to be performed according to Eq. (9.283). When
considering the action of  (t), it must be restricted to the operator expression in
the bracket to the right of  (t). For example, the notation  (t1)

[
V̂ |1⟩⟨1|] V̂ means

that first  (t1)
[
V̂ |1⟩⟨1|] has to be calculated and afterward V̂ is multiplied from

the right. A detailed computation gives the following expression for the correlation
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function, which corresponds to LSP I (cf. also Eq. (3.530); the back transfer correla-
tion function simply followed by an interchange of “1” and “4”)

C(I)
1→4(t3, t2, t1) =

1
ℏ4 V42V21V12V24ei[�̃�∗1−�̃�2]t1+i[�̃�∗1−�̃�4]t2+i[�̃�∗2−�̃�4]t3

+ 1
ℏ4 V42V21V13V34ei[�̃�∗1−�̃�2]t1+i[�̃�∗1−�̃�4]t2+i[�̃�∗3−�̃�4]t3

+ 1
ℏ4 V43V31V12V24ei[�̃�∗1−�̃�3]t1+i[�̃�∗1−�̃�4]t2+i[�̃�∗2−�̃�4]t3

+ 1
ℏ4 V43V31V13V34ei[�̃�∗1−�̃�3]t1+i[�̃�∗1−�̃�4]t2+i[�̃�∗3−�̃�4]t3 . (9.287)

A closer inspection shows that the first term on the right-hand side refers to the
EET along pathway “a” of Figure 9.24 (only the charge-transfer state 2 is involved).
EET pathway “b” is represented by the last term on the right-hand side. The sec-
ond and the third terms involve an interference of EET reaction paths “a” and “b.”
According to the general structure of the LSP I correlation function, the two men-
tioned contributions are analogous to the superexchange mechanism in ET theory.
The intermediate charge-transfer state 2 or 3 is only populated virtually. The 2ET
necessary here to achieve the EET appears as a uniform process. In the same way,
one may compute the LSP II and III correlation functions. They are partly compen-
sated by the product of two single-time correlation functions, which according to the
present model take the simple form Cm→n(t) = |Vmn∕ℏ|2 exp(−i[𝜀m − 𝜀

∗
n]t).

The final fourth-order rate expression follows after carrying out the triple time
integral in Eq. (9.280). We separate the rate into one part corresponding to the LSP I
and a second part with contributions from the LSP II and III. The first part is denoted
by k(sx)

1→4. The second contribution to the total rate follows from those parts of the
LSP II and III correlation functions, which have not been compensated for by the
product of second-order correlation functions. In the present description the sepa-
rate contributions of the pathways “a” and “b” to C(II)

1→4 as well as C(II)
1→4 are completely

compensated for. Only the EET “a”–“b” interference terms contribute. The related
rate is denoted as k(if)

1→4 and enters the total rate according to

k(2ET)
1→4 = k(sx)

1→4 + k(if)
1→4. (9.288)

We introduce transition frequencies 𝜀mn = 𝜀m − 𝜀n and the level broadening 𝛾mn =
(𝛾m + 𝛾n)∕2 and obtain the superexchange part as

k(sx)
1→4 =

2
ℏ4 Im

{
1

𝜀14 + i𝛾14

[ |V12V24|2
[𝜀12 + i𝛾12][𝜀24 + i𝛾24]

+
V42V21V13V34

[𝜀12 + i𝛾12][𝜀34 + i𝛾34]
+

V43V31V12V24

[𝜀13 + i𝛾13][[𝜀24 + i𝛾24]

+
|V13V34|2

[𝜀13 + i𝛾13][𝜀34 + i𝛾34]

]}
. (9.289)

The first term on the right-hand side corresponds to an EET process that is exclu-
sively based on the reaction pathway “a.” Pathway “b” contributes to the fourth term
on the right-hand side, and an interference of both is contained in the second and the
third terms. If the initial- and final state energies are nearly identical, but those of the
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charge-transfer states are well separated (|𝜀14| ≪ |𝜀12|, |𝜀13|), the rate, Eq. (9.289), is
reduced to (note also 𝜀21 ≈ 𝜀24 and 𝜀31 ≈ 𝜀34)

k(sx)
1→4 = 1

ℏ4

|||||V12V24

𝜀21
+

V13V34

𝜀31

|||||
2 2𝛾14

𝜀
2
14 + 𝛾

2
14

. (9.290)

The EET is mediated by an effective coupling known from ET theory (see Chapter 7,
Eq. (7.113)). Here, however, it covers contributions from two EET pathways. The
rate, which includes the EET pathway interference contributions stemming from
C(II) and C(III), takes the form

k(if)
1→4 =

2
ℏ4 Im

{ V42V21V13V34

[𝜀12 + i𝛾12][𝜀32 + i𝛾32][𝜀34 + i𝛾34]

+
V43V31V12V24

[𝜀13 + i𝛾13][𝜀23 + i𝛾23][𝜀24 + i𝛾24]

+
V42V21V13V34

[𝜀12 + i𝛾12][𝜀32 + i𝛾32][𝜀42 + i𝛾42]

+
V43V31V12V24

[𝜀13 + i𝛾13][𝜀23 + i𝛾23][𝜀43 + i𝛾43]

}
. (9.291)

The first and the second terms on the right-hand side follow from C(II), while the
third and the fourth terms are due to C(III). The corresponding second-order rates are

km→n = 1
ℏ2 |Vmn|2 2𝛾mn

𝜀
2
mn + 𝛾

2
mn

. (9.292)

Figure 9.31 illustrates the derived rate expressions for a model where the donor
is identical to the acceptor (homodimer, 𝜀1 = 𝜀4, note also 𝜀2 = 𝜀3) and where all
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Figure 9.31 2ET-assisted EET in a DA complex (identical molecules; use of the electronic
state dephasing model; all charge-transfer couplings as well as dephasing rates are
10 meV). Shown are different rates versus the energy of the charge-transfer states
(ℏ𝜀2 = ℏ𝜀3, ℏ𝜀1 = ℏ𝜀4 = 2 eV). Full line: k(tot)

1→4, dashed line: rate k(sx)
1→4, dotted line: k(sx)

1→4 in the
approximate form of Eq. (9.290), dashed-dotted line: k(if)1→4, and thin full line: all types of
second-order rates km→n.
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transfer couplings and dephasing rates coincide. While the approximate rate for
k(sx)

1→4, Eq. (9.290), diverges at 𝜀1 = 𝜀2, all other rates stay finite. Near resonance,
the total fourth-order rate is formed roughly in equal parts by k(sx)

1→4 and k(if)
1→4.

Second-order rates are somewhat smaller. However, the large values of the rate
indicate that in this energy range, the assumption of nonadiabatic transfer would
no longer be valid.

Changing to a charge-transfer state energy that is up to 1 eV higher than ℏ𝜀1,
the rate k(if)

1→4 is of minor importance, and the approximate form of k(sx)
1→4 coincides

with the exact one as well as the total fourth-order rate. In this energy range where
𝜀2 ≫ 𝜀1, EET becomes single exponential with the overall forward rate K(fw)

EET intro-
duced in Eq. (9.238), and K(fw)

EET is dominated by the fourth-order rate. Therefore,
2ET-assisted EET proceeds in this parameter range as a concerted transition. To com-
pare quantitatively ordinary EET with this 2ET-assisted version (note Eq. (9.233)
for the total rate), we recall the variant of the Förster-type rate, Eq. (9.115), fixed
by the combined DOS, Eq. (9.140). This results in a rate expression similar to that
given in Eq. (9.292). However, the transfer coupling has to be replaced by the exci-
tonic coupling Jmn. If we assume identical dephasing rates, the comparison can be
reduced to one of the coupling matrix elements. Since Figure 9.8 shows values in
the 100 meV range at the closest intermolecular distance, the assumption of a larger
transfer coupling than the 10 meV used in Figure 9.31 indicates that 2ET-assisted
EET may become comparable to Förster-type EET.

Finally, we recall the fact that the used model of interelectronic state dephasing
overestimates the rates (which also do not satisfy the detailed balance condition).
More realistic calculations are, however, outside the scope of the present discussion.
Nevertheless, the given description of 2ET-assisted EET offers a broader view on pos-
sible transfer mechanisms and illustrates the application of fourth-order rate theory.
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