
T E C H N O L O G Y I N A C T I O N ™

Beginning
IoT Projects

Breadboard-less Electronic Projects
—
Charles Bell

Beginning IoT
Projects

Breadboard-less
Electronic Projects

Charles Bell

Beginning IoT Projects: Breadboard-less Electronic Projects

ISBN-13 (pbk): 978-1-4842-7233-6 ISBN-13 (electronic): 978-1-4842-7234-3
https://doi.org/10.1007/978-1-4842-7234-3

Copyright © 2021 by Charles Bell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978- 1- 4842- 7233- 6. For more detailed information, please visit http://www.apress.com/
source- code.

Printed on acid-free paper

Charles Bell
Warsaw, VA, USA

https://doi.org/10.1007/978-1-4842-7234-3

iii

Table of Contents

Part I: Getting Started with IoT ��1

Chapter 1: Introduction to the Internet of Things ���������������������������������3

What Is the Internet of Things? ���4

The Internet of Things and You ��6

IoT Is More Than Just Connected to the Internet ���8

IoT Services ���10

A Brief Look at IoT Solutions ���12

Sensor Networks ���13

Medical Applications ���14

Automotive IoT Solutions ���19

Fleet Management ���22

IoT and Security ��25

Security Begins at Home ���26

Secure Your Devices ��27

Use Encryption ��28

Security Doesn’t End at the Cloud ���28

Summary���29

About the Author ��xv

About the Technical Reviewer ��xvii

iv

Chapter 2: Introducing the Arduino ��31

What Is an Arduino? ��32

Arduino Hardware ���34

Uno ��34

Leonardo ��36

Due ��37

Micro ���39

Nano ��39

MKR Series Boards ��40

Arduino Clones ��42

Internet Shields ���48

So Which Do I Buy? ��49

Where to Buy ���50

Arduino Tutorial ���53

Learning Resources ���53

The Arduino IDE ���54

Modifying the Arduino IDE ���58

Example Sketch: Blink ���63

Example Sketch: Scan Networks ���66

Summary���70

Chapter 3: Arduino Programming ���71

Getting Started ��72

Working with Sketches in the Arduino IDE ��72

Basic Sketch Layout ��76

Arduino Language Basics ���77

The Basics ���78

Variables and Types ���84

Arithmetic ��86

Table of ConTenTs

v

Flow Control Statements ���88

Basic Data Structures ��92

Pointers ���96

Practical Example ��98

Compiling Your Sketches ���108

Example Sketches ���112

Writing Your First Sketch ���113

Keep It Simple ���114

Debugging and Testing ��115

Getting Help ���122

Summary���125

Chapter 4: Introducing the Raspberry Pi ��127

What Is a Raspberry Pi? ��128

Raspberry Pi Origins ��129

Raspberry Pi Boards ���130

A Tour of the Board ��134

Required Accessories ��136

Recommended Accessories ��137

Where to Buy ���138

Setting Up the Raspberry Pi ��139

Getting Started with Raspberry Pi OS ���148

Getting Help ���150

File and Directory Commands ���151

System Commands ��155

Administrative Commands ��158

Useful Utilities ���162

Summary���163

Table of ConTenTs

vi

Chapter 5: Python Programming for the Raspberry Pi ���������������������165

Getting Started ��166

Python Primer ���168

The Basics ���168

Arithmetic ��173

Flow Control Statements ���175

Functions ���177

Basic Data Structures ��180

Classes and Objects ��184

Example Scripts ��195

Example 1: Using Loops���195

Example 2: Using Complex Data and Files ��198

Example 3: Temperature Conversion ���204

Example 4: Using Classes ��206

Summary���213

Part II: The Qwiic and STEMMA QT Component Systems ���������215

Chapter 6: Introducing Qwiic and STEMMA QT ���������������������������������217

Overview ���218

What Is I2C? ���218

The Qwiic Component System ���220

The STEMMA QT Component System ��228

Components Available ���235

The Qwiic Component System ���235

The STEMMA QT Component System ��244

Where to Buy Qwiic and STEMMA QT Components �������������������������������������249

Table of ConTenTs

vii

Using the Components in Your Projects ��250

Loading Qwiic and STEMMA QT Libraries for the Arduino ���������������������������251

Loading Qwiic and STEMMA QT Libraries for the Raspberry Pi �������������������253

Integrating Additional Components ���255

Assembling the Hardware ���255

Adapting Software Libraries ��257

Summary���258

Chapter 7: Keep Your Distance! ��259

Project Overview ���260

What Will We Learn? ��260

Hardware Required ���261

About the Hardware ���261

Assemble the Qwiic Modules ��264

Connecting to the Arduino ���267

Connecting to the Raspberry Pi ���275

Write the Code ��281

Arduino ��282

Raspberry Pi ��292

Execute the Project ���298

Sketch on the Arduino ���299

Python Code on the Raspberry Pi ��300

Going Further ��302

Mounting the Project in a Case ���302

Alternative Project Ideas ���303

Summary���304

Table of ConTenTs

viii

Chapter 8: How’s the Weather? ��305

Project Overview ���306

What Will We Learn? ��306

Hardware Required ���307

About the Hardware ���308

Assemble the Qwiic Modules ��309

Researching the Hardware ��310

Write the Code ��316

Arduino ��316

Raspberry Pi ��328

Execute the Project ���339

Sketch on the Arduino ���340

Python Code on the Raspberry Pi ��341

Going Further ��342

Summary���343

Chapter 9: Digital Gardener ��345

Project Overview ���345

What Will We Learn? ��346

Hardware Required ���346

About the Hardware ���349

Assemble the Qwiic Modules ��354

Calibrating the Sensors ���357

Write the Code ��359

Arduino ��359

Raspberry Pi ��374

Execute the Project ���379

Sketch on the Arduino ���380

Python Code on the Raspberry Pi ��381

Table of ConTenTs

ix

Going Further ��382

Summary���382

Chapter 10: Balancing Act ��385

Project Overview ���386

What Will We Learn? ��387

Hardware Required ���387

About the Hardware ���389

Assemble the Qwiic Modules ��390

Using an Enclosure ��390

Calibrating the Sensor ���393

Write the Code ��395

Arduino ��396

Raspberry Pi ��415

Execute the Project ���424

Sketch on the Arduino ���425

Python Code on the Raspberry Pi ��426

Going Further ��426

Summary���427

Chapter 11: Digital Compass ��429

Project Overview ���430

What Will We Learn? ��430

What Is a Magnetometer? ���431

Mathematical Problems ���432

Limitations ���437

Hardware Required ���438

About the Hardware ���440

Assemble the Qwiic Modules ��440

Table of ConTenTs

x

Using an Enclosure ��441

Calibrating the Sensor ���444

Write the Code ��445

Arduino ��445

Raspberry Pi ��462

Execute the Project ���474

Sketch on the Arduino ���475

Python Code on the Raspberry Pi ��476

Going Further ��476

Summary���477

Part III: The Grove Component System ������������������������������������479

Chapter 12: Introducing Grove ��481

Overview ���481

The Grove Component System ��482

Components Available ���494

Host Adapters ��495

Modules ���497

Cabling and Connectors���502

Developer Kits ���502

Where to Buy Grove Components ��505

Using the Components in your Projects ��505

Loading Grove Libraries for the Arduino ��506

Loading Grove Libraries for the Raspberry Pi ��507

Summary���509

Chapter 13: Example: Knock-Knock! ��511

Project Overview ���512

What Will We Learn? ��513

Table of ConTenTs

xi

Hardware Required ���513

About the Hardware ���515

Connect the Grove Modules ���520

Write the Code ��521

Arduino ��522

Raspberry Pi ��536

Execute the Project ���549

Sketch on the Arduino ���549

Python Code on the Raspberry Pi ��552

Going Further ��553

Summary���554

Chapter 14: Mood Lighting ���557

Project Overview ���557

What Will We Learn? ��558

Hardware Required ���559

About the Hardware ���561

Connect the Grove Modules ���566

Write the Code ��568

Arduino ��568

Raspberry Pi ��586

Execute the Project ���600

Sketch on the Arduino ���601

Python Code on the Raspberry Pi ��602

Going Further ��603

Summary���603

Table of ConTenTs

xii

Chapter 15: Monitoring Your Environment ���������������������������������������605

Project Overview ���605

What Will We Learn? ��606

Hardware Required ���607

About the Hardware ���608

Connect the Grove Modules ���614

Using an Enclosure ��616

Write the Code ��620

Arduino ��620

Raspberry Pi ��638

Execute the Project ���650

Sketch on the Arduino ���651

Python Code on the Raspberry Pi ��653

Going Further ��654

Summary���654

Chapter 16: Simon Says ���657

Project Overview ���658

What Will We Learn? ��658

Hardware Required ���659

About the Hardware ���661

Connect the Grove Modules ���667

Using an Enclosure ��670

Write the Code ��676

Arduino ��676

Raspberry Pi ��703

Execute the Project ���720

Sketch on the Arduino ���721

Python Code on the Raspberry Pi ��723

Table of ConTenTs

xiii

Going Further ��724

Summary���725

Part IV: Going Further: IoT and the Cloud ��������������������������������727

Chapter 17: Introducing IoT for the Cloud ��729

Overview ���730

What Is the Cloud?���731

What Is Cloud Computing Then? ��731

How Does the Cloud Help IoT? ��732

IoT Cloud Systems ��733

IoT Cloud Services Available ��734

Cloud Services Example: IFTTT ���738

Getting Started ��738

Example Projects ���761

Summary���776

Chapter 18: Using ThingSpeak ���777

Getting Started ��778

Create an Account in ThingSpeak ��779

Create a Channel ���780

How to Add ThingSpeak to Your Projects ��783

Using ThingSpeak with the Arduino ���785

Using ThingSpeak with the Raspberry Pi ��796

Example IoT Projects ���804

Example 1: IoT Weather Station ���805

Example 2: IoT Digital Gardener ��815

Example 3: IoT Environment Monitor ���830

Summary���845

Table of ConTenTs

xiv

 Appendix ���847

 General Hardware List���847

 Consolidated Hardware Lists ��848

 Qwiic Component System ���848

 Grove Component System ���851

Index ���855

Table of ConTenTs

xv

About the Author

Charles Bell conducts research in emerging technologies. He is a member

of the Oracle MySQL development team and is a principal developer for

the MySQL cloud services team. He lives in a small town in rural Virginia

with his loving wife. He received his Doctor of Philosophy in Engineering

from Virginia Commonwealth University in 2005. Dr. Bell is an expert in

the database field and has extensive knowledge and experience in software

development and systems engineering. His research interests include 3D

printers, microcontrollers, three-dimensional printing, database systems,

software engineering, and sensor networks. He spends his limited free

time as a practicing maker focusing on microcontroller projects and

refinement of three-dimensional printers.

xvii

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, NY. His interests, deeply rooted in DIY and

open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time, he likes to build things that improve quality of life. You can find

his project portfolio at http://saiyamanoor.com.

http://saiyamanoor.com

PART I

Getting Started
with IoT
This part begins with an overview of the Internet of Things and then

introduces the hardware platforms we will use in the book to learn how

to build IoT projects. Platforms include the Arduino and Raspberry Pi.

The part also includes tutorials on how to write the software to run on the

platforms using the Arduino language for writing sketches and Python for

programming on the Raspberry Pi.

3© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_1

CHAPTER 1

Introduction to the
Internet of Things
Much has been written about the Internet of Things (IoT). Some sources

are more about promoting IoT as their latest innovation (that costs more

money); other sources seem to suggest IoT is something everyone needs or

be left behind in the dust of antiquity.

Fortunately, books and similar media avoid the sales pitch to expand

on the science and technology for implementing and managing the

data for IoT, while other texts concentrate on the future or the inevitable

evolution of our society as we become more connected to the world

around us each and every day. However, you need not dive into such

tomes or be able to recite rhetoric to get started with the IoT. In fact,

through the efforts of many companies, you can explore the IoT without

intensive training or expensive hardware and software.

However, most publications1 assume the reader knows or wants to

know how to connect discrete components together to build the hardware

from scratch. That means if you’d like to learn more about building

1 Including my own books!

https://doi.org/10.1007/978-1-4842-7234-3_1#DOI

4

Internet of Things (IoT) solutions, but don’t have the time or will to learn

all of the nuances of electronics and discrete components, you’ve been left

with little recourse.2 That is, until now.

In this book, we will explore how to build IoT solutions using a series

of basic projects without the need to learn the difference between a diode

and a resistor. In fact, we will be using two modular platforms that you can

connect to your host board without the need to wire anything together!3

This is accomplished by using a special adapter board/shield for your

device that permits you to connect to modules that include sensors,

displays, switches, and more!

However, before we get into the details of devices, boards, modules,

etc., let’s take a moment and learn what the Internet of Things is and what

sort of solutions are classified as IoT projects.

 What Is the Internet of Things?
So what is this IoT?4 I’ll begin by explaining what it isn’t. The IoT is not a

new device or proprietary software or some new piece of hardware. It is

not a new marketing scheme to sell you more of what you already have

by renaming it and pronouncing it “new.”5 While it is true that the IoT

2 Well, there are IoT kits out there that you can use to build specific, simple
projects, but not much in the way of help for those that want to take on new
projects without spending a lot of time learning enough about electronics to
implement the project.

3 We will discuss advanced uses of the modular components and some simple
wiring connections, but nothing that requires prior knowledge of electronics.

4 https://en.wikipedia.org/wiki/Internet_of_Things
5 For example, everything seems to be cloud this, cloud that when in reality

nothing was changed.

Chapter 1 IntroduCtIon to the Internet of thIngs

https://en.wikipedia.org/wiki/Internet_of_Things

5

employs technology and techniques that already exist, the way they are

employed, coupled with the ability to access the solution from anywhere in

the world, makes the IoT an exciting concept to explore. Now let’s discuss

what the IoT is.

The essence of the IoT is simply interconnected devices that generate

and exchange data from observations, facts, and other data, making it

available to anyone you’d like – only yourself or immediate family – or

share it with the world. While there seem to be some marketing efforts

attempting to make anything connected to the Internet an IoT solution

or device (not unlike the shameless labeling of everything “cloud”), IoT

solutions are designed to make our knowledge of the world around us

timelier and more relevant by making it possible to get data about anything

from anywhere at any time.

As you can imagine, if we were to connect every device around us

to the Internet and make sensory data available for those devices, it is

clear there would be potential for the number of IoT devices to exceed

the human population of the planet6 and for the data generated to

rapidly exceed the capabilities of all but the most sophisticated database

systems. These concepts are commonly known as addressability and

big data, which are two of the most active and debated topics in IoT. But

don’t worry about these terms – I mention them here for completeness

and possibly to pique your interest. You can read more about these issues

at your leisure.

However, the IoT is all about understanding the world around us.

That is, we can leverage the data to make our world and our understanding

of it better.

6 We aren’t so far away from that now. Think about how many iWatches there are
out there – yes, they’re IoT devices too!

Chapter 1 IntroduCtIon to the Internet of thIngs

6

Before we proceed, let’s review some terms that can help us

understand the context and subject better. The following are the major

terms used in this book:

• IoT solution: A complete project that implements the

software and hardware to perform one or more tasks

• IoT device: The hardware (and associated software) that

connects to the Internet sending data to one or more

IoT services

• IoT service: A product or set of services in the cloud

used to process IoT data

• IoT vendor: Those businesses that provide services for

IoT solutions

• IoT data: Data generated from one or more IoT devices

such as observations from one or more sensors

• Knowledge: The conclusions one can draw from the

data once it has been made available in the IoT services

(cloud) for review

Now that we know what the IoT is and some terms we use to describe

it, let’s dive further into what IoT means to us.

 The Internet of Things and You
The best example of a sophisticated IoT device is the human body. It is a

complex marvel of ingenious sensory apparatus that allow us to see, hear,

taste, and even feel through touch anything we encounter or get near.

Even our brains can store visual and auditory events recalling them at will.

IoT solutions mimic many of these sensory capabilities and therefore can

become an extension of our own abilities.

Chapter 1 IntroduCtIon to the Internet of thIngs

7

While that may sound a bit grandiose (and it is), IoT solutions can

record observations in the form of data from one or more sensors. Sensors

are devices that produce either analog or digital values. We can then

use the data collected to draw conclusions about the subject matter. IoT

devices can also retrieve information from one device and forward it to

another, but let’s keep it simple and focus on devices that detect things

about the world around us and what that knowledge could do for us.

For example, an IoT device could be connected to a sensor to detect

when a mailbox is opened. In this case, the knowledge we gain from a

simple switch opening or closing (depending on how it is implemented

and interpreted) may be used to predict when incoming mail has arrived

or when outgoing mail has been picked up. I use the term predict because

the sensor (switch) only tells us the door was opened or closed, not that

anything was placed in or removed from the mailbox itself – that would

require additional sensors.

When working with IoT projects that include sensors, you should

always think about what conclusions you can draw from the data.

Sometimes, like the switch in the mailbox, it can be only a few things,

which is most often the case. By defining what we can perceive (learn)

from the sensor data, we can better understand what our IoT project and

its data can do for us.

A more sophisticated example is using a series of sensors to record

atmospheric data such as temperature, humidity, barometric pressure,

wind speed, ambient light, rainfall, and so forth, to monitor the weather

and perform analysis on the data to predict trends in weather. That is, we

can predict within a reasonable certainty that precipitation is in the area

and to some extent its severity.

Now, add the ability to see this data not only in real time (as it occurs)

but also remotely from anywhere in the world, and the solution becomes

more than a simple weather station. It becomes a way to observe the

weather about one place from anywhere in the world.

Chapter 1 IntroduCtIon to the Internet of thIngs

8

This example may be a bit commonplace since you can tune into any

number of television, web, and radio broadcasts to hear the weather from

anywhere in the world. But consider the implications of building such a

solution in your home. Now you can see data about the weather at your

own home from anywhere!

In the same way, but perhaps on a smaller scale, we can build solutions

to monitor plants to help us understand how often they need water and

other nutrients. Or perhaps we can monitor our pets while we are away

at work. Further, we can record data about wildlife in our area to better

understand our effect on nature.

 IoT Is More Than Just Connected to the Internet
So, if a device is connected to the Internet, does that make it an IoT

solution? That depends on whom you ask. Some will say the answer is yes.

However, others (like me) contend that the answer is no unless there is

some benefit from doing so.

For example, if you could connect your toaster to the Internet, what

would be the benefit of doing so? What knowledge would you gain? It

would be pointless (or at least extremely eccentric) to get a text on your

phone from your toaster stating that your toast is ready given that it only

takes a couple of minutes to complete. In this case, the answer is no.

However, if you have someone – such as a child or perhaps an older adult –

whom you would like to monitor, it may be helpful to be able to check to

see how often and when they use a device like a toaster so that you can

check on them.7 That is, you can use the data to help you make decisions

about their care and safety.

7 Toasters and toaster ovens have appeared in the top five most dangerous
appliances in the home. Scary.

Chapter 1 IntroduCtIon to the Internet of thIngs

9

Allow me to illustrate with another example. I was fortunate to

participate in a design workshop held on the Microsoft campus in the late

1990s. During our tour of the campus, we were introduced to the world’s

first Internet-enabled refrigerator (also called a smart refrigerator).

There were sensors in the shelves to detect the weight of food. It

was suggested that, with a little ingenuity, you could use the sensors to

notify your grocer when your milk supply ran low, which would enable

people to have their grocery shopping not only online but also automatic.

This would have been great if you lived in a location where your grocer

delivers, but not very helpful for those of us who live in rural areas.8 While

it wasn’t touted an IoT device (the term was coined later), many felt the

device illustrated what could be possible if devices were connected to the

Internet.

Thus, being connected to the Internet doesn’t make something IoT.

Rather, IoT solutions must be those things that provide some meaning –

however small that benefit is to someone or some other device or service.

More importantly, IoT solutions allow us to sense the world around us

and learn from those observations. The real tricky part is in how the data

is collected, stored, and presented. We will see all of these in practice

through examples in later chapters.

IoT solutions can also take advantage of companies that provide

services that can help enhance or provide features that you can use in your

IoT solutions. These features are commonly called IoT services and range

from storage and presentation to infrastructure services, such as hosting.

8 However, given the COVID-19 stay-at-home orders in many places, this idea may
have come back into practicality.

Chapter 1 IntroduCtIon to the Internet of thIngs

10

 IoT Services
Sadly, there are companies that tout having IoT products and services that

are nothing more than marketing hype – much like what some companies

have done by prepending “cloud” or appending “for the cloud” to the

name. Fortunately, there are some good products and services being built

especially for IoT. These range from data storage and hosting to specialized

hardware and sophisticated data analysis and visualization.

Indeed, businesses are adding IoT services to their product offerings,

and it isn’t the usual suspects, such as the Internet giants. I have seen IoT

solutions and services being offered by Cisco, AT&T, HP, and countless

start-ups and smaller businesses.

You may be wondering what these services and products are and why

someone would consider using them. That is, what is an IoT service, and

why would you decide to buy it? The biggest concerns in the decision to

buy a service are cost and time to market.

For example, if you want to use IoT in your organization but your

developers do not have the resources or expertise and obtaining them will

require more than the cost of the service, it may be more economical to

purchase the service. However, you should also consider any additional

software or hardware changes (sometimes called retooling) necessary in

the decision. I once encountered a well-meaning and well-documented

contracted service that permitted a product to go to market sooner than

projected at a massive savings. Sadly, while the champions of that contract

won awards for technical achievement, they failed to consider the fact that

the systems had to be retooled to use the new service. More specifically, it

took longer to adopt the new service than it would to write one from scratch.

So instead of saving money, the organization spent nearly twice the original

budget and was late to market. Clearly, you must consider all factors.

Similarly, if your time is short or you have hard deadlines to meet

to make your solution production-ready, it may be quicker to purchase

an IoT service rather than create or adapt your own. This may require

Chapter 1 IntroduCtIon to the Internet of thIngs

11

spending a bit more, but in this case, the motivation is time and not

(necessarily) cost. Of course, project planning is a balance of cost, time,

and features.

So what are some of the IoT services available? The following lists a few

that have emerged in the last few years. It is likely more will be offered as

IoT solutions and services mature:

• Enterprise IoT data hosting and presentation: Services

that allow your users to develop enterprise IoT

solutions from connecting to managing and

customizing data presentation in a friendly form, such

as graphs, charts, and so forth.

• IoT data storage: Services that permit you to store your

IoT data and get simple reports.

• Networking: Services that provide networking and

similar communication protocols or platforms for

IoT. Most specialize in machine-to-machine (M2M)

services.

• IoT hardware platforms: Vendors that permit you to

rapidly develop and prototype IoT devices using a

hardware platform and a host of supported modules

and tools for building devices ranging from a simple

component to a complete device.

For the hobbyist or enthusiast, you may not need such sophistication.

Rather, you may need only a place to store or display your data. In those

cases, there are IoT vendors that provide such products (some free,

from fee-based) using relatively simple-to-configure features. Two such

examples include Microsoft Azure (https://portal.azure.com) and

ThingSpeak for IoT Projects (https://thingspeak.com/). We will see

ThingSpeak in action later on in book.

Chapter 1 IntroduCtIon to the Internet of thIngs

https://portal.azure.com
https://thingspeak.com/

12

Now that you know more about what IoT is, let’s look at a few examples

of IoT solutions to get a better idea of what IoT solutions can do and how

they are employed.

 A Brief Look at IoT Solutions
Recall an IoT solution is simply a set of devices designed to produce,

consume, or present data about some event or series of events or

observations. This can include devices that generate data, such as a sensor,

devices that combine data to deduce something, devices or services

designed to tabulate and store the data, and devices or systems designed to

present the data. Any or all of these may be connected to the Internet.

IoT solutions may include one or all of these qualities, whether it is

combined into a single device such as a web camera; used as a sensor

package and monitoring unit, such as a weather station; or used as a

complex system of dedicated sensors, aggregators, data storage, and

presentation, such as a complete home automation system. Figure 1-1

shows a futuristic picture of all devices – everywhere – connected to the

Internet through databases, data collectors or integrators, display services,

or other devices.

Chapter 1 IntroduCtIon to the Internet of thIngs

13

Let’s take a look at some example IoT solutions. The IoT solutions

described in this section are a mix of solutions that should give you an idea

of the ranges of sizes and complexities of IoT solutions. I also point out

how some of these solutions leverage services from IoT vendors.

 Sensor Networks
Sensor networks are one of the most common forms of IoT solutions.

Simply stated, sensor networks allow you to observe the world around

you and make sense of it. Sensor networks could take the form of a

pond monitoring system that alerts you to water level, water purity

(contamination), or water temperature or detects predators or even turns

on features automatically, such as lighting or fish feeders.

Figure 1-1. The future of IoT – all devices, everywhere9

9 https://pixabay.com/en/network-iot-internet-of-things-782707/

Chapter 1 IntroduCtIon to the Internet of thIngs

https://pixabay.com/en/network-iot-internet-of-things-782707/

14

If you, or someone you know, have spent any time in a medical

facility, it’s likely that a sensor network was employed to monitor body

functions, such as temperature, cardiac and respiratory rates, and even

movement. Modern automobiles also contain sensor networks dedicated

to monitoring the engine, climate, and, even in some cars, road conditions.

For example, the lane warning feature uses sensors (typically a camera,

microprocessor, and software) to detect when you drift too far toward lane

or road demarcations.

Thus, sensor networks employ one or more sensors that take

measurements (observations) about an event or state and communicate

that data to another component or node in the network, which is then

presented, in some form or another, for analysis. Let’s take a look at an

example of an important medical IoT solution.

 Medical Applications
Medical applications – including health monitoring and fitness – are

gaining a lot of attention as consumer products. These solutions cover

a wide range of capabilities, such as the fitness features built into the

Apple Watch to fitness bands that keep track of your workout and even

medical applications that help you control life-threatening conditions. For

example, there are solutions that can help you manage diabetes.

Diabetes is a disease that affects millions of people worldwide (www.

diabetes.org). There are several forms, the most serious being type 1

(www.diabetes.org/diabetes- basics/type- 1/?loc=db- slabnav). Those

afflicted with type 1 diabetes do not produce enough (or any) insulin due

to genetic deficiencies, birth defects, or injuries to the pancreas. Insulin is a

hormone that the body uses to extract a simple sugar called glucose, which

is created from sugars and starches, from blood for use in cells.

Chapter 1 IntroduCtIon to the Internet of thIngs

http://www.diabetes.org
http://www.diabetes.org
http://www.diabetes.org/diabetes-basics/type-1/?loc=db-slabnav

15

Thus, type 1 diabetics must monitor their blood glucose to ensure that

they are using their medications (primarily insulin) properly and balanced

with a healthy lifestyle and diet. If their blood glucose levels become too

low or too high, they can suffer from a host of symptoms. Worse, extremely

low blood glucose levels are very dangerous and can be fatal.

One of the newest versions of a blood glucose tester consists of a small

sensor that is inserted in the body along with a monitor that connects to

the sensor via Bluetooth. You wear the monitor on your body (or keep it

within 20 feet at all times). The solution is marketed by Dexcom (dexcom.

com) and is called a continuous glucose monitor (CGM) that permits the

patient to share their data to others via their phone. Thus, the patient pairs

their CGM with their phone and then shares the data over the Internet to

others. This could be loved ones, those that help with their care, or even

medical professionals. Figure 1-2 shows an example of the Dexcom CGM

app and sensor. The monitor is on the left, and the sensor and transmitter

are on the right. The sensor is the size of a small syringe needle and

remains inserted in the body for up to a week.

Chapter 1 IntroduCtIon to the Internet of thIngs

16

WHAT ABOUT BLOOD GLUCOSE TESTERS (GLUCOMETERS)?

until solutions like the dexcom CgM came about, diabetics had to use a

manual tester. traditional blood glucose testers are single-use events that

require the patient to prick their finger or arm and draw a small amount of

blood onto a test strip. While this device has been used for many years, it is

only recently that manufacturers have started making blood glucose testers

with memory features and even connectivity to other devices, such as laptops

or phones. the ultimate evolution of these devices is a solution like the

dexcom CgM, which is a medical Iot device that improves the quality of life

for diabetics.

Figure 1-2. Dexcom continuous glucose monitor with sensor

Chapter 1 IntroduCtIon to the Internet of thIngs

17

Dexcom also provides a free web-based reporting software called

Clarity that is accessed from a special uploading application called the

Clarity Uploader (see http://dexcom.com/clarity for more details)10 to

allow patients to see the data collected and generate a host of reports they

can use to see their glucose levels over time. Reports include averages,

patterns, daily trends, and more. They can even share their data with their

doctor. Figure 1-3 shows an example of Dexcom Clarity with typical data

loaded.

Figure 1-3. Dexcom Clarity

10 Dexcom also provides a mobile version of Clarity for iOS or Android.

Chapter 1 IntroduCtIon to the Internet of thIngs

http://dexcom.com/clarity

18

A feature called Dexcom Share permits the patient to make their data

available to others via an app on their phone. That is, the patient’s phone

transmits data to the Dexcom cloud servers, which is then sent to anyone

who has Dexcom Share iOS app and has been given permission to see the

data. Figure 1-4 shows an example of the CGM report from the Dexcom

Share iOS app, which allows you to check the blood glucose of a friend

easily and quickly or loved one.

Not only does the app allow the visualization of the data, it can also

relay alerts for low or high blood glucose levels, which has profound

implications for patients who suffer from additional ailments or

Figure 1-4. Dexcom Share app report

Chapter 1 IntroduCtIon to the Internet of thIngs

19

complications from diabetes. For example, if the patient’s blood glucose

level drops while they are alone, incapacitated, or unable to get treatment,

loved ones with the Dexcom Share app can respond by checking on the

patient and potentially avoiding a critical diabetic event.

While this solution is a single sensor connected to the Internet via a

proprietary application, it is an excellent example of a medical IoT device

that can enhance the lives of not only the patient but everyone who cares

for them.

Combined with the programmable alerts, you and your loved ones can

help manage the effects of diabetes. If you have a loved one who suffers

from diabetes, a CGM is worth every penny for peace of mind alone. This is

the true power of IoT materialized in a potentially life-saving solution.

 Automotive IoT Solutions
Another personal IoT solution is the use of Internet-connected automotive

features. One of the oldest products is called OnStar (onstar.com), which

is available on most late-model and new General Motors (GM) vehicles.

While OnStar predates the IoT evolution, it is a satellite-based service that

has several levels and many fee-based options. It incorporates the Internet

to permit communication with vehicle owners. Indeed, the newest GM

vehicles come with a WiFi access point built into the car! Better still, there

are some basic features that are free to GM owners that, in my opinion, are

very valuable.

The free, basic features include regular maintenance reports sent to

you via email and the ability to use an app on your phone to remotely

unlock, lock, and start the car – all the features on your key fob. This is a

really cool feature if you have ever locked your keys in your car! Figure 1-5

shows an example of the remote key fob app on iOS. Of course, there are

even more features available for a fee, including navigation, telephone,

WiFi, and on-call support.

Chapter 1 IntroduCtIon to the Internet of thIngs

20

The OnStar app works by connecting to the OnStar services in the

cloud, requesting the feature (e.g., unlock) that is sent to the vehicle via the

OnStar satellite network. So it is an excellent example of how IoT solutions

use multiple communication protocols.

The feature I like most is the maintenance reports. You will receive

an email with an overview of the maintenance status of your vehicle.

The report includes such things as oil life, tire pressure, engine and

transmission warnings, emissions, airbag, and more. Figure 1-6 shows an

excerpt of a typical email that you receive.

Figure 1-5. OnStar app key fob feature

Chapter 1 IntroduCtIon to the Internet of thIngs

21

Notice the information displayed. This is no mere idiot light! Actual

data is transmitted to OnStar from your vehicle. For example, the odometer

reading and tire pressure data are taken directly from the vehicle’s onboard

data storage. That is, data from the sensors is read and interpreted and

the report generated for you. This feature demonstrates how automatic

compilation of data in an IoT solution can help us keep our vehicles in

good mechanical condition with early warning of needed maintenance.

This serves us best by helping us keep our vehicles in prime condition and

thus in a state of high resell value.

I should note that GM is not the only automotive manufacturer offering

such services. Many others are working on their own solutions, ranging

from an OnStar-like feature set to solutions that focus on entertainment

and connectivity.

Figure 1-6. OnStar maintenance report

Chapter 1 IntroduCtIon to the Internet of thIngs

22

 Fleet Management
Another example of an IoT solution is a fleet management system.11

While developed and deployed well before the coining of the phrase

Internet of Things, fleet management systems allow businesses to

monitor their cars, trucks, ships, and just about any mobile unit, to not

only track their current location but also to use the location data (GPS

coordinates taken over time) to plan more efficient routes, thereby

reducing the cost of shipment.

Fleet management systems are not just for routing. Indeed, fleet

management systems also allow businesses to monitor each unit to

conduct diagnostics. For example, it is possible to know the amount of

fuel in each truck; when its last maintenance was performed or, more

importantly, when the next maintenance is due; and much more. The

combination of vehicle geographic tracking and diagnostics is called

telematics. Figure 1-7 shows a drawing of a fleet management system.

11 https://en.wikipedia.org/wiki/Fleet_management

Chapter 1 IntroduCtIon to the Internet of thIngs

https://en.wikipedia.org/wiki/Fleet_management

23

In Figure 1-7, you see the application of GPSs to track location as

well as satellite communication to transmit additional data, such as

diagnostics, payload states, and more. All these ultimately traverse the

Internet, and the data becomes accessible by the business analysts.

You may think fleet management systems are only for large shipping

companies, but with the proliferation of GPS modules and even the

microcontroller market, anyone can create a fleet management system.

That is, they do not cost millions of dollars to develop.

Figure 1-7. Fleet management example12

12 Éric Chassaing – via CC BY-SA 3.0 (http://creativecommons.org/licenses/
by-sa/3.0/).

Chapter 1 IntroduCtIon to the Internet of thIngs

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

24

For example, if you owned a bicycle delivery company, you

could easily incorporate GPS modules with either cellular or wireless

connectivity on each delivery person to track their location, average travel

time, and more. More specifically, you can use such a solution to minimize

delivery times by allowing packages to be handed off from one delivery

person to another, rather than having them return to the depot each time

they complete a set of deliveries.

CAMERA DRONES AND THE IOT

one possible use of the Iot is making data that drones generate available

over the Internet. some people feel that drones are an invasion of privacy. I

agree in situations where they are misused or established laws are violated.

fortunately, most drone owners obey local laws, regulations, and property

owners’ wishes.13

however, there are many legitimate uses of drones, be they land, air, or sea

based. for example, I can imagine home monitoring solutions where you can

check on your home remotely by viewing data from fixed cameras, as well as

data from mobile drones. I for one would love to see a solution that allowed

me to program a predetermined sentry flight path to monitor my properties

with a flying camera drone.

While some vendors have Wifi-enabled drones, there are not many consumer-

grade options available that stream data in real time over the Internet. however,

it is just a matter of time before we see solutions that include drones. of course,

the current controversy and the movement of the us government to register

and track drones, along with increasing restrictions on their use, may limit the

expansion of drones and Iot solutions that include drone-acquired data.

13 Drones are increasingly under scrutiny, and the rules change often. If you have
a drone and operate in the United States, be sure to check the following website
for the latest rules: https://registermyuas.faa.gov/

Chapter 1 IntroduCtIon to the Internet of thIngs

https://registermyuas.faa.gov/

25

While typically not considered for most home IoT projects, a

discussion of IoT solutions would be incomplete without spotlighting

security.

 IoT and Security
The recent rash of massive data breaches proves that basic security

simply is not good enough. We have seen everything from outright theft

to exploitation of the data stolen from very well-known businesses, like

popular brick-and-mortar retailers, convenience stores, and even some

government agencies!

IoT solutions are not immune to security threats. Indeed, as IoT

solutions become more and more integrated into our lives, so too will our

personal data. Thus, security must be taken extremely seriously and built

into the solution from the start.

This includes solutions that we develop ourselves. More specifically, if

you design a weather station for your own use, you should take reasonable

steps to ensure that the data is protected from both accidental and

deliberate exploitation. You may think weather data is not a high risk, but

consider the case where you include GPS coordinates for your sensors

(a reasonable feature) so that people can see where this weather is being

observed. If someone could see that information and determine the

solution uses an Internet connection, it is possible they could gain physical

access to the Internet device and possibly use it to further penetrate and

exploit your systems. Thus, security is not just about the data; it should

encompass all aspects of the solution – from data to software, to hardware,

and to physical access.

There are four areas where you may want to consider spending extra

care ensuring that your IoT solution is protected with good security. As you

will see, this includes several things you should consider for your existing

Chapter 1 IntroduCtIon to the Internet of thIngs

26

infrastructure, computers, and even safe computing habits. By leveraging

all these areas, you will be building a layered approach to security, often

called a defense-in-depth method.

 Security Begins at Home
Before introducing an IoT solution to your home network, you should

consider taking precautions to ensure that the machines on your home

network are protected. Some of the best practices for securing your home

networking include the following:

• Use passwords. This may seem like a simple thing, but

always make sure that you use passwords on all your

computers and devices. Also, adopt good password

habits, such as requiring longer strings, mixed case,

numbers, and symbols to ensure that the passwords are

not easily guessed.14

• Secure your WiFi. If you have a WiFi network, make

sure that you add a password and use the latest security

protocols, such as WPA2, or, even better, the built-in

secure setup features of some wireless routers.

• Use a firewall. You should also use a firewall to block all

unused ports (TCP or UDP). For example, lock down all

ports except those your solution uses, such as port 80

for HTML.

14 You also need to balance complexity of passwords with your ability to remember
them. If you have to write it down, you’ve just defeated your own security!

Chapter 1 IntroduCtIon to the Internet of thIngs

27

• Restrict physical access. Lock your doors! Even if your

network has a great password and your computers use

espionage quality encrypted biometric access, these

things are meaningless if someone can gain access to

your networking hardware directly. For IoT solutions,

this means any external components should be

installed in tamper-proof enclosures or locked away so

that they cannot be discovered. This also includes any

network wiring.

 Secure Your Devices
As I mentioned, your IoT devices also need to be secured. The following

are some practices to consider:

• Use passwords. Always add passwords to the user

accounts you use on your IoT devices. This includes

making sure that you rename any default passwords.

For example, you may be tempted to consider an IoT

device such as an Arduino, Raspberry Pi, or similar

too small of a device to be a security concern, but if

you consider that the Raspberry runs one of the most

powerful operating systems available (forms of Linux),

a Raspberry Pi could be a very powerful hacking tool if

one were to gain access.

• Keep your software up-to-date. You should try to use

the latest versions of any software that you use. This

includes the operating system as well as any firmware

that you may be running. Newer versions often have

improved security or fewer security vulnerabilities.

Chapter 1 IntroduCtIon to the Internet of thIngs

28

• If your software offers security features, use them. If you

have servers or services running on your devices and

they offer features such as automatic lockout for missed

passwords, turn them on. Not all software has these

features, but if they are available, they can be a great

way to defeat repeated attacks.

 Use Encryption
This is one area that is often overlooked. You can further protect yourself

and your data if you encrypt the data as it is stored and the communication

mechanism as it is transmitted. If you encrypt your data, it cannot be easily

deciphered, even if someone were to gain physical access to the storage

device. Use the same care with your encryption keys and passcodes as you

do your computer passwords.

 Security Doesn’t End at the Cloud
There are many considerations for connecting IoT devices to cloud

services. Indeed, Microsoft has made it very easy to use cloud services with

your IoT solutions. However, there are two important considerations for

security and your IoT data:

• Do you need the cloud? The first thing you should

consider is whether you need to put any of your data in

the cloud. It is often the case that cloud services make

it very easy to store and view your data, but is it really

necessary to do so? For example, you may be eager to

view logistical data for where your dog spends his time

while you are at work, but who else would really care to

view this data? In this case, storing the data in the cloud

to make it available to everyone is not necessary.

Chapter 1 IntroduCtIon to the Internet of thIngs

29

• Do not relax! Many people seem to let their guard

down when working with cloud services. For whatever

reason, they consider the cloud more secure. The fact is

it is not! In fact, you must apply the very same security

best practices when working in the cloud that you do

for your own network, computers, and security policies.

Indeed, if anything, you need to be even more vigilant

because cloud services are not in your control with

respect to protecting against physical access (however

remote and unlikely) nor are you guaranteed your data

isn’t on the same devices as tens, hundreds, or even

thousands of other users’ data.

Now that you have an idea of how you should include security in your

projects, let’s look at how Windows 10 has evolved into a modern platform

that not only supports the usual productivity and gaming tasks but also

helps us build IoT solutions.

 Summary
The Internet of Things is an exciting new world for us all. Those of us

young at heart but old enough to remember The Jetsons TV series recall

seeing a taste of what is possible in the land of make believe. Self-aware

robotic maids with personalities (attitude), talking toasters, flying cars

that spring from briefcases, and robotic everything – television fantasy

of decades ago is now coming true. We have wristwatches that double

as phones and video players. We can unlock our cars from around the

world, find out if our dog has gone outside, and even answer the door

from across the city. All of this is possible and working today with the

advent of the IoT.

Chapter 1 IntroduCtIon to the Internet of thIngs

30

In this chapter, we discovered what the IoT is and saw some examples

of well-known IoT solutions.

In the next chapter, we will learn about the hardware platform that has

become ubiquitous with learning hardware – the Arduino. We will discover

more about the Arduino hardware and how to get started programming

our first Arduino project as a building block for a simple IoT project.

Chapter 1 IntroduCtIon to the Internet of thIngs

31© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_2

CHAPTER 2

Introducing the
Arduino
Since this is a beginner’s book, you are likely just getting started working

with hardware and IoT solutions, and you may not have encountered the

world that is Arduino and microcontrollers. Arduino boards are small

boards with components that support general-purpose input/output

(GPIO) pins with a limited processor (called a microcontroller, not a CPU)

and memory that permits you to write small programs to control the

hardware. In essence, it is a hardware development platform.

There are many such boards and the Arduino is perhaps the

most popular with a community that spans the globe providing a vast

assortment of sample libraries, code, blogs, books, and documentation.

This makes the Arduino one of the most popular choices for hardware

development. Some may say it is even more popular than the Raspberry Pi.

In this chapter, you explore the Arduino platform with the goal

of using the Arduino to build IoT devices. You see a list of the current

Arduino boards along with a short tutorial on the Arduino development

environment and explore sample projects to help get you started working

with the Arduino.

https://doi.org/10.1007/978-1-4842-7234-3_2#DOI

32

 What Is an Arduino?
The Arduino is an open source hardware prototyping platform supported

by an open source software environment. It was first introduced in 2005

and was designed with the goal of making the hardware and software easy

to use and available to the widest audience possible. Thus, you do not have

to be an electronics expert to use the Arduino. Yay!

The original target audience included artists and hobbyists who

needed a microcontroller to make their designs and creations more

interesting. However, given its ease of use and versatility, the Arduino has

quickly become the choice for a wider audience and a wider variety of

projects.

This means you can use the Arduino for all manner of projects from

reacting to environmental conditions to controlling complex robotic

functions. The Arduino has also made learning electronics easier through

practical applications.

Another aspect that has helped the rapid adoption of the Arduino

platform is the growing community of contributors to a wealth of

information made available through the official Arduino website

(http://arduino.cc/en/). When you visit the website, you find an

excellent “getting started” tutorial as well as a list of helpful project ideas

and a full reference guide to the C/C++ language for writing the code to

control the Arduino (called a sketch).

Note Don’t worry. The C++ programming concept (from the view
of the main sketch, it resembles C, but includes many C++ concepts
and features) is very easy to learn and does not require any training
beyond the tutorial in this chapter.

ChapTer 2 InTroDuCIng The arDuIno

http://arduino.cc/en/

33

Arduino also provides an integrated development environment called

the Arduino IDE. The IDE runs on your computer (called the host), where

you can write and compile sketches and then upload them to the Arduino

via USB connections. The IDE is available for Linux, Mac, and Windows. It

is designed around a text editor especially designed for writing code and

a set of limited functions designed to support compilation and loading of

sketches.

Sketches are written in a special format consisting of only two required

methods – one that executes when the Arduino is reset or powered on

and another that executes continuously. Thus, your initialization code

goes in setup(), and your code to control the Arduino goes in loop(). The

language is C-like (without all of the baggage typical in C compilers), and

you may define your own variables and functions. For a complete guide to

writing sketches, see http://arduino.cc/en/Tutorial/Sketch.

You can expand the functionality of sketches and provide for reuse by

writing libraries that encapsulate certain features such as networking, using

memory cards, connecting to databases, doing mathematics, and the like.

The Arduino supports a number of analog and digital pins that you can

use to connect to various devices and components and interact with them.

The mainstream boards have specific pin layouts, or headers, that allow

the use of stackable expansion boards called shields. Shields let you add

additional hardware capabilities such as Ethernet, Bluetooth, and XBee

support to your Arduino. The physical layout of the Arduino and the shield

allow you to stack shields. Thus, you can have an Ethernet shield as well as an

XBee shield, because each uses different I/O pins. You learn the use of the pins

and shields as you explore the application of Arduino to sensor networks.

The next sections examine the various Arduino boards and briefly

describe their capabilities. I list the boards by when they became available,

starting with the most recent models. Many more boards and variants are

available, and a few new ones are likely to be out by the time this book

is printed, but these are the ones that are typically used in beginning

projects.

ChapTer 2 InTroDuCIng The arDuIno

http://arduino.cc/en/Tutorial/Sketch

34

 Arduino Hardware
There are a growing number of Arduino boards. Some are configured for

special applications, while others are designed with different processors

and memory configurations. There are boards that are considered official

Arduino boards because they are branded and endorsed by Arduino.cc.

Since the Arduino is open source, anyone can build and even sell Arduino-

compatible boards (often called an Arduino clone). In this section, you

examine some of the more popular Arduino branded boards.

The basic layout of an Arduino board consists of at least one USB

connection, a power connector, a reset switch, LEDs for power and serial

communication, and a standard spaced set of headers for attaching shields

(boards that can be mounted adding hardware capabilities in a modular

fashion).

The official boards sport a distinctive blue-colored PCB with white

lettering. With the exception of one model, all the official boards can be

mounted in a chassis (they have holes in the PCB for mounting screws).

The exception is an Arduino designed for mounting on a breadboard.

 Uno
The Uno board is the standard Arduino board that most new to the

Arduino will choose. It features an ATmega328P processor; 14 digital I/O

pins, of which 6 can be used as pulse width modulation (PWM)1 output;

and 6 analog input pins. The Uno board has 32KB of flash memory and

2KB of SRAM.

1 https://en.wikipedia.org/wiki/Pulse-width_modulation

ChapTer 2 InTroDuCIng The arDuIno

https://en.wikipedia.org/wiki/Pulse-width_modulation

35

The Uno is available either as a surface-mount device (SMD) or

a standard IC socket. The IC socket version allows you to exchange

processors, should you desire to use an external IC programmer to

build custom solutions. Details and a full datasheet are available at

https://store.arduino.cc/usa/arduino-uno-rev3. It has a standard

USB type B connector and supports all shields. Figure 2-1 shows the

Arduino Uno board.

There is also a version of this board that has a built-in WiFi chip making

it ideal for IoT projects or situations where using a WiFi shield is problematic

(lack of space, conflicts with other shields, etc.). While it is named the same,

it differs from the standard Uno in several ways. Aside from the WiFi chip, it

has a different processor and one less PWM pin. You can read more about

the Uno WiFi board at https://store.arduino.cc/usa/arduino-uno-

wifi-rev2. Figure 2-2 shows the Arduino Uno WiFi board.

Figure 2-1. Arduino Uno Rev3 (courtesy of Arduino.cc)

ChapTer 2 InTroDuCIng The arDuIno

https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/arduino-uno-wifi-rev2
https://store.arduino.cc/usa/arduino-uno-wifi-rev2

36

 Leonardo
The Leonardo board represents another of the standard boards in the

Arduino platform. It is a little different in that, while it supports the standard

header layout, it also has a USB controller that allows the board to appear as

a USB device (e.g., mouse or keyboard) to the host computer. The board uses

a newer ATmega32U4 processor with 20 digital I/O pins, of which 12 can be

used as analog pins and 7 can be used as pulse width modulation (PWM)

output. It has 32KB of flash memory and 2.5KB of SRAM.

The Leonardo has more digital pins than the Uno, but continues to

support most shields. The USB connection uses a smaller USB connector.

The board is also available with and without headers. Figure 2-3 depicts

an official Leonardo board. Details and a full datasheet can be found at

https://store.arduino.cc/usa/leonardo.

Figure 2-2. Arduino Uno WiFi Rev2 (courtesy of Arduino.cc)

ChapTer 2 InTroDuCIng The arDuIno

https://store.arduino.cc/usa/leonardo

37

 Due
The Arduino Due is a larger, faster board based on the Atmel SAM3X8E

ARM Cortex-M3 processor. The processor is a 32-bit processor, and the

board supports a massive 54 digital I/O ports, of which 14 can be used for

PWM output; 12 analog inputs; and 4 UART chips (serial ports), as well

as 2 digital-to-analog (DA) and 2 two-wire interface (TWI) pins. The new

processor offers several advantages:

• 32-bit registers

• DMA controller (allows CPU-independent memory

tasks)

• 512KB flash memory

• 96KB SRAM

• 84MHz clock

Figure 2-3. Arduino Leonardo (courtesy of Arduino.cc)

ChapTer 2 InTroDuCIng The arDuIno

38

The Due has the larger form factor (called the mega footprint) but still

supports the use of standard shields as well as mega format shields. The

new board has one distinct limitation: unlike other boards that can accept

up to 5V on the I/O pins, the Due is limited to 3.3V on the I/O pins. Details

and a full datasheet can be found at https://store.arduino.cc/usa/due.

The Arduino Due is intended to be used for projects that require

more processing power, more memory, and more I/O pins. Despite the

significant capabilities of the new board, it remains open source and

comparable in price to its predecessors. Look to the Due for your projects

that require the maximum hardware performance. Figure 2-4 shows an

Arduino Due board.

Tip notice how much larger the Due is than the uno. If you choose
to incorporate a Due, Mega, or similar board, you may have to set
aside more room to mount the board.

Figure 2-4. Arduino Due (courtesy of Arduino.cc)

ChapTer 2 InTroDuCIng The arDuIno

https://store.arduino.cc/usa/due

39

 Micro
The Arduino Micro is a special form of the Leonardo board and uses

the same processor with 20 digital I/O pins, of which 12 can be used

as analog pins and 7 can be used as PWM output. It has 32KB of flash

memory and 2.5KB of SRAM. Details and a full datasheet can be found at

https://store.arduino.cc/usa/arduino-micro.

The Micro was made for use on breadboards in the same way as the

Mini but in a newer, updated form. But unlike the Mini, the Micro is a full-

featured board complete with a USB connector. And like the Leonardo, it has

built-in USB communication, allowing the board to connect to a computer

as a mouse or keyboard. Figure 2-5 shows the Arduino Micro board.

Although branded as an official Arduino board, the Arduino Micro is

produced in cooperation with Adafruit.

 Nano
The Arduino Nano is an older form of the Arduino Micro. In this case, it

is based on the functionality of the Duemilanove and has the ATmega328

processor (older models use the ATmega168) and 14 digital I/O pins, of

which 6 can be used as PWM output, and 8 analog inputs. The Nano has

32KB of flash memory and uses a 16MHz clock. Details and a full datasheet

can be found at https://store.arduino.cc/usa/arduino-nano.

Figure 2-5. Arduino Micro (courtesy of Arduino.cc)

ChapTer 2 InTroDuCIng The arDuIno

https://store.arduino.cc/usa/arduino-micro
https://store.arduino.cc/usa/arduino-nano

40

Like the Micro, it has all the features needed for programming via a

USB connection. Figure 2-6 shows an Arduino Nano board.

 MKR Series Boards
There is another form of Arduino called the MKR (for “maker”) series. The

MKR series includes a variety of boards based on the (now retired) Zero

board that have various communication capabilities such as WiFi, LoRa,

LoRaWAN, and GSM.

They are based on the Atmel ATSAMW25 SoC (System on Chip) and

designed for IoT projects and devices. They also support cryptographic

authentication. For those working on projects that require a battery port,

the MKR series of boards include a lithium polymer (Li-Po) charging

circuit for charging a Li-Po battery while running on external power.

Details and a full datasheet can be found at https://store.arduino.cc/

usa/arduino-mkr1000.

The boards do not use the same pin layout as the Uno-compatible

shield-based boards (but you can get an adapter). Rather, they are

designed like the Nano and Mini (but a bit larger) to minimize the size

of the board to make it easier to incorporate into your projects. In fact,

they are one of the boards of choice for Internet of Things (IoT) projects

and make an excellent choice for sensor network projects. Since they are

Figure 2-6. Arduino Nano (courtesy of Arduino.cc)

ChapTer 2 InTroDuCIng The arDuIno

https://store.arduino.cc/usa/arduino-mkr1000
https://store.arduino.cc/usa/arduino-mkr1000

41

relatively new and some have specialized communication options, most

new to Arduino would be better served starting with the Arduino boards

that support Uno-compatible shields. Figure 2-7 shows a MKR1000 board.

A companion to the MKR series is the MKR2UNO adapter

(https://store.arduino.cc/usa/mkr2uno-adapter) that allows you to

use the MKR board with any Uno-compatible shield. Figure 2-8 shows

the MKR2UNO adapter.

Figure 2-7. MKR1000 (courtesy of Arduino.cc)

Figure 2-8. MKR2UNO adapter (courtesy of Arduino.cc)

ChapTer 2 InTroDuCIng The arDuIno

https://store.arduino.cc/usa/mkr2uno-adapter

42

Not only does the adapter provide support for shields, it also provides

a standard Uno power connector making it easy to move your project from

an older Uno board to the MKR series board. If you plan to use any shields,

you should consider buying this adapter.

Caution The MKr boards run on 3.3V power and have a maximum
input on the gpIo pins of 3.3V.

Now that we’ve seen a number of the Arduino branded boards, let’s

consider the cloned boards.

 Arduino Clones
A growing number of Arduino boards are available from a large number

of sources. Because the Arduino is open hardware, it is not unusual or

the least bit illicit to find Arduino boards made by vendors from all over

the world.

Although some would insist the only real Arduinos are those branded

as such, the truth of the matter is that as long as the build quality is sound

and the components are of high quality, the choice of using a branded vs. a

copy, hence clone, is one of personal preference. I have sampled Arduino

boards from a number of sources, and with few exceptions they all perform

their intended functions superbly.

Except for the Arduino Mini, the Arduino clone boards have

a greater variety of hardware configurations. Some Arduinos are

designed for use in embedded systems or on breadboards, and some

are designed for prototyping. I examine a few of the more popular clone

boards in the following sections, but you are likely to encounter many

variations in the wild.

ChapTer 2 InTroDuCIng The arDuIno

43

 Arduino Pro Mini

The Arduino Pro Mini is a board from SparkFun. It is based on the

ATmega168 processor (older models use the ATmega168) and has 14

digital I/O pins, of which 6 can be used as PWM output, and 8 analog

inputs. The Pro Mini has 16KB of flash memory and 1KB of SRAM, and

it uses a 16MHz clock. Details and a full datasheet can be found at www.

sparkfun.com/products/11113.

The Arduino Pro Mini is modeled on the Arduino Mini and is also

intended for use on breadboards but does not come with headers. This

makes the Arduino Pro Mini ideal for use in semipermanent installations

where the pins can be soldered to the components or circuitry and space

is a premium. Figure 2-9 shows an Arduino Pro Mini board. It really is

that tiny.

Also, the Pro Mini does not include a USB connector and therefore

must be connected to and programmed with an FTDI cable or similar

breakout board. It comes as either a 3.3V model with an 8MHz clock or a

5V model with a 16MHz clock.

Figure 2-9. Arduino Pro Mini (courtesy of SparkFun)

ChapTer 2 InTroDuCIng The arDuIno

http://www.sparkfun.com/products/11113
http://www.sparkfun.com/products/11113

44

 Fio

The Arduino Fio is another board made by SparkFun. It was designed for

use in wireless projects. It is based on the ATmega32U4 processor with

14 digital I/O pins, of which 6 can be used as PWM output, and 8 analog

pins. Details and a full datasheet can be found at www.sparkfun.com/

products/11520.

The Fio requires a 3.3V power supply, which allows for use with a

lithium polymer (Li-Po) battery, which can be recharged via the USB

connector on the board.

Its wireless pedigree can be seen in the XBee socket on the bottom of

the board. Although the USB connection lets you recharge the battery, you

must use an FTDI cable or breakout adapter to connect to and program the

Fio. Similar to the Pro models, the Fio does not come with headers, allowing

the board to be used in semipermanent installations where connections are

soldered in place. Figure 2-10 shows an Arduino Fio board.

 Seeeduino

The Seeeduino is an Arduino clone made by Seeed Studio (www.

seeedstudio.com). It is based on the ATmega328P processor and has 14

digital I/O pins, of which 6 can be used as PWM output, and 8 analog pins.

It has 32KB of flash memory and 2KB of SRAM. Details and a full datasheet

can be found at www.seeedstudio.com/Seeeduino-V4-2-p-2517.html.

Figure 2-10. Arduino Fio (courtesy of SparkFun)

ChapTer 2 InTroDuCIng The arDuIno

http://www.sparkfun.com/products/11520
http://www.sparkfun.com/products/11520
http://www.seeedstudio.com
http://www.seeedstudio.com
http://www.seeedstudio.com/Seeeduino-V4-2-p-2517.html

45

The board has a footprint similar to the Arduino Uno and supports

all standard headers. It supports a number of enhancements such as I2C

and serial Grove connectors and a mini USB connector, and it uses SMD

components. It is also a striking red color with yellow headers. Figure 2-11

shows a Seeeduino board.

Tip Seeed Studio also makes several versions of this board.
For more details, see www.seeedstudio.com/seeeduino-
boards-c-987.html.

Figure 2-11. Seeeduino (courtesy of Seeed Studio)

ChapTer 2 InTroDuCIng The arDuIno

http://www.seeedstudio.com/seeeduino-boards-c-987.html
http://www.seeedstudio.com/seeeduino-boards-c-987.html

46

 Metro from Adafruit

The Metro from Adafruit is a set of Arduino-compatible boards supporting

a number of formats including several that support Arduino shields. The

version I like as a balance of compatibility and cost is the Metro 328 (www.

adafruit.com/product/2488). Figure 2-12 shows the Metro 328 board

from Adafruit. The board uses the ATmega328P at 16MHz and a host of

minor improvements to make the Metro an excellent alternative to an

Arduino Uno. Check out the product page for more details.

Adafruit makes a number of versions of the Metro board including

smaller form factors and some with advanced features. See www.adafruit.

com/category/834 for more details.

Figure 2-12. Metro 328 (courtesy of Adafruit)

ChapTer 2 InTroDuCIng The arDuIno

http://www.adafruit.com/product/2488
http://www.adafruit.com/product/2488
http://www.adafruit.com/category/834
http://www.adafruit.com/category/834

47

 Espressif Boards

Made popular by their relatively low cost are a series of boards that, while

they are not technically Arduino clones, can be used with the Arduino

toolset. Chief among these are the ESP series of WiFi boards by Espressif

(www.espressif.com/en/products/devkits).

While the modules vary in hardware capabilities and there is sure to be

one to meet almost any need, most are compatible with Arduino and can

be programmed in the same way. However, I urge caution when choosing

these boards as your primary IoT device. I have encountered problems

using them with several libraries, and the hardware can differ enough to

make using them challenging for beginners.

However, some ESP boards may require you to modify your Arduino

IDE by installing additional hardware support and libraries. Fortunately,

Arduino has made this easy to do with their extensive hardware library

manager.

That said, the most popular ESP boards include the ESP8266 and

ESP32 chipsets. These can sometimes be found mounted as breakout

boards, stand-alone, or part of another product. Figure 2-13 shows the

ESP8266 WiFi module. They’re tiny and really cheap and can be used in

conjunction with other boards to provide WiFi capabilities.

Figure 2-13. ESP8266 module (courtesy of Adafruit.com)

ChapTer 2 InTroDuCIng The arDuIno

http://www.espressif.com/en/products/devkits

48

The ESP32 chipset is often mounted on boards that have a more

traditional header layout such as the Adafruit FeatherS2 board (Figure 2-14).

This board is one of the more popular Adafruit boards and can be used for

a variety of projects.

 Internet Shields
Recall the Arduino Uno layout supports add-on boards called shields.

You will be using a shield later in this book, but of particular note are the

shields that provide Internet capabilities for Arduino boards without WiFi.

While Arduino made several versions of shields that support WiFi and

Ethernet, most have been discontinued due to the newer MKR boards

and Uno supporting WiFi. However, you can still find Internet shields

from vendors that still have the Arduino shields in stock, or you can

buy one from SparkFun (they have an ESP8266 variant; www.sparkfun.

com/products/13287) or Adafruit, which offers several varieties (www.

adafruit.com/category/828). Figure 2-15 shows the ESP8266 WiFi shield

from SparkFun. If you plan to use an Arduino that does not have WiFi, you

may want to buy one of these shields for use later in this book when we

discuss connecting your IoT device to the cloud.

Figure 2-14. Adafruit FeatherS2 (courtesy of Adafruit.com)

ChapTer 2 InTroDuCIng The arDuIno

http://www.sparkfun.com/products/13287
http://www.sparkfun.com/products/13287
http://www.adafruit.com/category/828
http://www.adafruit.com/category/828

49

Interestingly, the ESP8266 WiFi shield can be used independently

because the ESP8266 pins are separated (called broken out) along one

side. See www.sparkfun.com/products/13287 for more details.

 So Which Do I Buy?
If you’re wondering which Arduino to buy, the answer depends on what

you want to do. For most of the projects in this book, any Arduino Uno or

similar clone that supports the standard shield headers is fine so long as

you are able to use a shield for WiFi or Ethernet connections. You need not

buy the larger Due or its predecessors, since the added memory and I/O

pins aren’t needed.

Figure 2-15. ESP8266 WiFi shield (courtesy of SparkFun)

ChapTer 2 InTroDuCIng The arDuIno

http://www.sparkfun.com/products/13287

50

I use the Arduino Uno WiFi, Leonardo, or MKR boards for all the

projects in this book. Although you can use an older board without issues,

there are some issues with using the Leonardo board. I point these out as

you encounter them. Most issues have to do with the relocated pins on

the Leonardo board. For example, the SPI header pins (at upper left in

Figure 2-3) have been moved on the Leonardo.

For future projects, there are some things you should consider before

choosing the Arduino. For example, if your project is largely based on

a breadboard or you want to keep the physical size of the project to a

minimum and you aren’t going to use any shields, the Arduino Mini may

be the better choice. Conversely, if you plan to do a lot of programming

to implement complex algorithms for manipulating or analyzing data,

you may want to consider the Due for its added processing power and

memory.

The bottom line is that most of the time your choice will be based

on physical characteristics (size, shield support, etc.) and seldom on

processing power or memory. SparkFun has an excellent buyer’s guide in

which you can see the pros and cons of each choice. See www.sparkfun.

com/pages/arduino_guide for more details.

 Where to Buy
Due to the popularity of the Arduino platform, many vendors sell Arduino

and Arduino clone boards, shields, and accessories. The Arduino.cc

website (https://store.arduino.cc/usa) also has a page devoted to

approved distributors. If none of the resources listed here are available to

you, you may want to check this page for a retailer near you.

ChapTer 2 InTroDuCIng The arDuIno

http://www.sparkfun.com/pages/arduino_guide
http://www.sparkfun.com/pages/arduino_guide
https://store.arduino.cc/usa

51

 Online Retailers

There are a growing number of online retailers where you can buy Arduino

boards and accessories. The following lists a few of the more popular sites:

• SparkFun: From discrete components to the company’s

own branded Arduino clones and shields, SparkFun

has just about anything you could possibly want for the

Arduino platform (www.sparkfun.com/).

• Adafruit: Carries a growing array of components,

gadgets, and more. It has a growing number of products

for the electronics hobbyist, including a full line of

Arduino products. Adafruit also has an outstanding

documentation library and wiki to support all the

products it sells (www.adafruit.com/).

You can also visit the manufacturers of some of the clone boards.

Seeed Studio is the leading clone manufacturer (www.seeedstudio.com/):

• Seeed Studio: www.seeedstudio.com/

ChapTer 2 InTroDuCIng The arDuIno

http://www.sparkfun.com/
http://www.adafruit.com/
http://www.seeedstudio.com/
http://www.seeedstudio.com/

52

 Retail Stores (USA)

There are also brick-and-mortar stores that carry Arduino products.

Although there aren’t as many as there are online retailers and their

inventories are typically limited, if you need a new Arduino board quickly,

you can find them at Micro Center2 and some smaller electronics retailers.

You may find additional retailers in your area. Look for popular hobby

electronics stores:

• Fry’s: An electronics superstore with a huge inventory

of electronics, components, microcontrollers,

computer parts, and more. If you have never had the

chance to visit a Fry’s store, you should be prepared to

spend some time there. Fry’s carries Arduino branded

boards, shields, and accessories as well as products

from Parallax, SparkFun, and many more

(http://frys.com/).

• Micro Center: Micro Center is similar to Fry’s, offering

a huge inventory of products. However, most Micro

Center stores have a smaller inventory of electronic

components than Fry’s (www.microcenter.com/).

Now that you have a better understanding of the hardware details

and the variety of Arduino boards available, let’s dive into how to use and

program the Arduino. The next section provides a tutorial for installing

the Arduino programming environment and programming the Arduino.

Later sections present projects to build your skills for developing sensor

networks.

2 www.microcenter.com/

ChapTer 2 InTroDuCIng The arDuIno

http://frys.com/
http://www.microcenter.com/
http://www.microcenter.com/

53

 Arduino Tutorial
This section is a short tutorial on getting started using an Arduino. It covers

obtaining and installing the IDE and writing a sample sketch. Rather than

duplicate the excellent works that precede this book, I cover the highlights

and refer readers who are less familiar with the Arduino to online resources

and other books that offer a much deeper introduction. Also, the Arduino

IDE has many sample sketches that you can use to explore the Arduino on

your own. Most have corresponding tutorials on the Arduino.cc site.

 Learning Resources
A lot of information is available about the Arduino platform. If you are just

getting started with the Arduino, Apress offers an impressive array of books

covering all manner of topics concerning the Arduino, ranging from getting

started using the microcontroller to learning the details of its design and

implementation. The following is a list of the more popular books. Some

are a little older than you may expect but still quite useful:

• Beginning Arduino by Michael McRoberts

(Apress, 2010)

• Practical Arduino: Cool Projects for Open Source

Hardware (Technology in Action) by Jonathan Oxer and

Hugh Blemings (Apress, 2009)

• Arduino Software Internals: A Complete Guide to How

Your Arduino Language and Hardware Work Together

by Norman Dunbar (Apress, 2020)

• Arduino Internals by Dale Wheat (Apress, 2011)

ChapTer 2 InTroDuCIng The arDuIno

54

There are also some excellent online resources for learning more about

the Arduino, the Arduino libraries, and sample projects. The following are

some of the best:

• Arduino.cc: http://arduino.cc/en/

• Adafruit: http://learn.adafruit.com/

• SparkFun: https://learn.sparkfun.com/

 The Arduino IDE
The Arduino IDE is available for download for the Mac, Linux (32- and

64-bit versions), and Windows platforms. You can download the IDE from

www.arduino.cc/en/software. There are links for each platform as well

as a link to the source code if you need to compile the IDE for a different

platform. The current release is 1.8.13, but newer releases are produced

periodically. So it’s OK if you download a newer version than what is

shown in this section.

Tip Interestingly, there is a web version of the IDe that you can use
without installing it on your computer (https://create.arduino.
cc/editor). This may be helpful if you want to use it on a pC where
you don’t want (or cannot) install the IDe. It is also an example of an
IoT service.

Installing the IDE is straightforward. I omit the actual steps of installing

the IDE for brevity, but if you require a walk-through of installing the IDE,

you can see the Getting Started link on the download page or read more in

Beginning Arduino by Michael McRoberts (Apress, 2010).

Once the IDE launches, you see a simple interface with a text editor

area (a white background by default), a message area beneath the editor

(a black background by default), and a simple button bar at the top. The

ChapTer 2 InTroDuCIng The arDuIno

http://arduino.cc/en/
http://learn.adafruit.com/
https://learn.sparkfun.com/
http://www.arduino.cc/en/software
https://create.arduino.cc/editor
https://create.arduino.cc/editor

55

buttons are (from left to right) Compile, Upload, New, Open, and Save.

There is also a button to the right that opens the serial monitor. You use the

serial monitor to view messages from the Arduino sent (or printed) via the

Serial library. You see this in action in your first project. Figure 2-16 shows

the Arduino IDE.

Notice that in Figure 2-16 you see a sample sketch (called blink) and

the result of a successful compile operation. I loaded this sketch by clicking

File ➤ Examples ➤ Basics ➤ Blink. Notice also at the bottom that it tells

you that you are programming an Arduino Uno board on a specific serial

port.

Figure 2-16. The Arduino IDE

ChapTer 2 InTroDuCIng The arDuIno

56

Due to the differences in processor and supporting architecture, there

are some differences in how the compiler builds the program (and how the

IDE uploads it). Thus, one of the first things you should do when you start the

IDE is choose your board from the Tools ➤ Board menu. Figure 2-17 shows

a sample of selecting the board on the Mac. Here, we see some submenus

that we use to locate the board we want. In this case, we want the Arduino

Uno WiFi Rev2 board, which is listed under the Arduino megaAVR Boards

submenu. This is not uncommon, especially with the Arduino-compatible

boards.

Notice there are only a couple of boards available under the submenu.

Be sure to choose the menus that match your board. If you are using a

clone board, check the manufacturer’s site for the recommended setting

to use. If you choose the wrong board, you typically get an error during

upload, but it may not be obvious that you’ve chosen the wrong board.

Because I have so many different boards, I’ve made it a habit to choose the

board each time I launch the IDE.

The next thing you need to do is choose the serial port to which the

Arduino board is connected. To connect to the board, use the Tools ➤ Port

menu option. Figure 2-18 shows an example on the Mac. If you do not see

Figure 2-17. Choosing the Arduino board

ChapTer 2 InTroDuCIng The arDuIno

57

your board or you connected it after selecting the menu, you can fix it by

simply unplugging the Arduino and plugging it back in and waiting until

the computer recognizes the port.

Tip The list of available ports contains the name of the board
connected. If you do not see the name of the board, you can still
choose the port, and the IDe will attempt to use it.

OK, now that you have your Arduino IDE installed, you can connect

your Arduino and set the board and serial port. These are the first steps

you should accomplish any time you want to work with an Arduino. Doing

these steps first can help avoid problems like incorrect software libraries

and strange compilation errors.

Once you connect your Arduino to your computer, you see the LEDs

on the Arduino illuminate. This is because the Arduino is getting power

from the USB. Thus, you do not need to provide an external power supply

when the Arduino is connected to your computer.

Before we move on to some examples, let’s explore how to modify the

Arduino IDE.

Figure 2-18. Choosing the serial port

ChapTer 2 InTroDuCIng The arDuIno

58

 Modifying the Arduino IDE
The Arduino IDE provides the ability to modify the environment as well as

modify the hardware and software libraries. Most may not need to modify

the environment, but you will likely need to modify the hardware and

software libraries. Let’s look at each.

 Customize the Environment

You can change a number of things with the Arduino (called preferences)

should you need to do so. There are two major categories: 1) settings

such as language, font size, and editor and compiler behavior and 2)

network connections. You should not need to change the network settings.

Figure 2-19 shows the Preferences pane. You can open this under File ➤

Preferences… (Windows) or Arduino ➤ Preferences… (macOS).

Figure 2-19. Arduino IDE Preferences

ChapTer 2 InTroDuCIng The arDuIno

59

Notice the path to the Sketchbook location. This is where the Arduino

IDE will look for your sketches and any software libraries you download.

You should not need to change this, but it is possible on some platforms to

alter this path if you want to store things in a different location.

You may want to change the font size and possibly the language for the

editor and add line numbers, but most of these changes are for advanced

users. Feel free to experiment with them if you are curious.

 Manage the Hardware Libraries

The Arduino IDE comes with several hardware libraries to support a

number of boards. However, as you begin using other boards such as

newer boards from Arduino, those from SparkFun or Adafruit, etc., you

may need to install new hardware libraries. Let’s look at how to do this

using an example.

Suppose you have a MKR board and you want to start using it. If you

search the Tools ➤ Board menu, you may not find it. Fortunately, there is

a way to add new hardware libraries. To do so, use the Tools ➤ Board ➤

Boards Manager… menu as shown in Figure 2-20.

This launches a dialog for the Boards Manager. If you want to add a

new board, just type in the name (or part of the name) in the search box as

shown in Figure 2-21.

Figure 2-20. Launching the Boards Manager

ChapTer 2 InTroDuCIng The arDuIno

60

You can then scroll through the entries until you the find the one that

matches your board and then click the Install button to install it.

Once the install is compete, you will see the new board under the

Board menu.

You may notice there is a version number beside each entry. This is so

that you can install a different version of the library should you encounter

a situation where it is required. For example, I found a case where I needed

to downgrade one of my hardware libraries because a software library was

broken by a newer version. Keep this in mind as you begin to work with

many different boards.

Tip on some platforms, the arduino IDe may detect that you need
to install a new hardware library and will prompt you with a link to
the Boards Manager.

Figure 2-21. Boards Manager (searching for MKR)

ChapTer 2 InTroDuCIng The arDuIno

61

 Manage the Software Libraries

Software libraries are special programs (or additions, classes) designed

to support additional add-on hardware like sensors, shields, and other

modules. As you can imagine, the number of software libraries is quite

large. Fortunately, like the Boards Manager, the Arduino IDE provides the

Library Manager that works in the same way to install software libraries.

To see how to work with the Library Manager, let’s look at an example.

Suppose you have a MKR1000 board that requires an older version of

the WiFi library to work. In fact, it requires a retired library. Retired simply

means it is no longer being maintained (except possibly for critical security

issues), but is still available via the Library Manager.

In order to use WiFi in a sketch with the MKR1000, you need to install

the WiFi101 library. To do so, click the Sketch ➤ Include Library ➤ Manage

Libraries… menu as shown in Figure 2-22.

This launches the Library Manager. You can search for the library

you want by typing in the name (or part of the name) of the library in the

search box as shown in Figure 2-23. In this case, I want to see all of the WiFi

libraries.

Figure 2-22. Launching the Library Manager

ChapTer 2 InTroDuCIng The arDuIno

62

Since we used a rather short (and popular) term to search, there are a

lot of entries. To find the one we need, you can scroll down to the WiFi101

library as shown and then click the Install button to install it.

Like the hardware libraries, you will see a version number beside each

entry. This is so that you can install a different version of the library should

you encounter a situation where it is required.

Once the install is compete, you will be able to use the library in your

sketch (more on this in Chapter 3).

Now that we understand the basics of how to work with the Arduino

IDE, let’s try out a few of the built-in sketches to get started.

Figure 2-23. Library Manager

ChapTer 2 InTroDuCIng The arDuIno

63

 Example Sketch: Blink
The Arduino comes with a variety of example sketches, which we will

explore in greater detail in Chapter 3. The example that is considered a

simple “Hello, World” example3 is the Blink sketch.

You can use almost any Arduino board for this example. It simply

turns on and then off the onboard user LED (named LED_BUILTIN in

the documentation) in an endless loop; hence, it “blinks” the LED. Most

Arduino boards have built-in LEDs that are wired to pin 13. For example,

Figure 2-24 shows the location of the LED on the Uno WiFi Rev2, and

Figure 2-25 shows the location of the LED on the MKR1000.

3 https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Figure 2-24. User LED (Uno WiFi Rev2)

ChapTer 2 InTroDuCIng The arDuIno

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

64

Now that we know where the LED is, let’s load the sketch. Recall we

first plug our board into our PC and then set the board and port. Next, click

File ➤ Examples ➤ 01.Basics and select the Blink sketch. This will open a

new window with the sketch loaded as shown in Listing 2-1 (comments

removed for brevity).

Listing 2-1. Blink Sketch

void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH

is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by

making the voltage LOW

 delay(1000); // wait for a second

}

Figure 2-25. User LED (MKR1000)

ChapTer 2 InTroDuCIng The arDuIno

65

Don’t worry if you have never seen code like this. Take a moment and

read through it, and you will see it is not overly difficult. We see a setup()

method that is responsible for getting things ready and then the loop()

method, which means execute (run) repeatedly as its name suggests.

Inside the loop() method, we see where the LED is turned on, the

program waits, and the LED is turned off.

To run (execute) the example, we first must compile it and then upload

it to our board. Fortunately, the Arduino provides a single button to do

that. Just click the second from the left button (named Upload) as shown in

Figure 2-26.

Once you click that button, you will see a number of things happen

including the compiler compiling the sketch and, after that succeeds, a

message that the sketch is being uploaded to the board. Don’t worry about the

compiler messages at the bottom. We will see more about these in Chapter 3.

During the upload phase, you may see LEDs on the board flash briefly

to indicate the board is receiving data. After the sketch is uploaded, it is

executed, and you should see the user LED start to blink. It will continue to

do so until you disconnect (power off) the board.

Congratulations! You’ve just programmed your first Arduino!

Note once you upload a sketch to an arduino, it will execute the
sketch every time it is powered on until you upload a new sketch. You
can see this by disconnecting your board and then connecting a power
adapter. When you do that, the Blink sketch will execute. Try it yourself!

Figure 2-26. Upload button

ChapTer 2 InTroDuCIng The arDuIno

66

Caution always double-check the power requirements for your
board before applying external power. Most can run on 9V or 5V, but
some require 3.3V (like the MKr series).

Let’s try one more example that is a bit more complicated, but

surprisingly helpful.

 Example Sketch: Scan Networks
The Scan Networks example sketch uses the WiFi to scan for available

networks in the area. It reports the name (SSID) of the network along with

some helpful characteristics. This example requires either an Arduino Uno

WiFi, MKR, or similar WiFi-enabled board. If you have another Arduino

board without WiFi, you can still use it if you add a WiFi shield, but you

may need to make modifications to the sketch to get it to work. More

specifically, you may need to add a software library for the shield replacing

the one in the sketch. We will see an example of this as we explore the

MKR1000 board.

In fact, you may have to use a different example sketch depending on

which board you use. We will see examples of two boards starting with the

Uno WiFi Rev2.

 Using the Uno WiFi Rev2

This board can use the example sketch under the WiFiNINA category.

More specifically, you can click File ➤ Examples ➤ WiFiNINA ➤ Scan

Networks. If you look through the sketch, you will see a lot more code that

is a lot more complex than the previous example. Fortunately, we can use

it without modification.

ChapTer 2 InTroDuCIng The arDuIno

67

Once you’ve connected your board, you can click the Upload button to

start the compilation and upload. It may take a bit longer to compile, but

once it has uploaded, you won’t see much other than some periodic, rapid

flashes on some LEDs. Why? Because unlike the previous example, this

one prints information to the serial monitor. To view the serial monitor,

wait until the upload is complete and then click the button on the far right

of the window as shown in Figure 2-27.

Once you click the button, you will see the serial monitor window

open. If you don’t see any output after a few seconds or you see some

gibberish in the display, don’t despair. This is because the serial monitor

can operate at different speeds (baud rates).

So how do you know what baud rate to choose? It is set in the

setup() method in the sketch. Look for this line of code. The number

in the parentheses is the baud rate. You can change the baud rate using

the drop-down box at the bottom right of the serial monitor as shown in

Figure 2-28:

Serial.begin(9600);

Figure 2-27. Launching the serial monitor

ChapTer 2 InTroDuCIng The arDuIno

68

Notice you can also control the scrolling (stop autoscroll), add the

timestamp, change the newline behavior, and clear the output.

Once you select the baud rate that matches the sketch, you will then

see the correct output. Listing 2-2 shows an example of the output you will

see in the serial monitor (obscured for security).

Listing 2-2. Example Scan Networks Output

Scanning available networks...

** Scan Networks **

number of available networks:5

0) RubberBiscuit1 Signal: -73 dBm Encryption: WPA2

1) ATT-WIFI-EF2A Signal: -76 dBm Encryption: WPA2

2) DIRECT-FB-HP OfficeJet Pro 8730 Signal: -78 dBm

 Encryption: WPA2

3) RubberBiscuit2 Signal: -87 dBm Encryption: WPA2

4) RubberBiscuit3 Signal: -96 dBm Encryption: WPA2

Figure 2-28. Changing the baud rate in the serial monitor

ChapTer 2 InTroDuCIng The arDuIno

69

If you got this to work, congratulations! You’ve just turned your

Arduino into a simple WiFi network scanner. Cool!

 Using the MKR1000

This board uses the example sketch under the WiFi101 category. However,

recall that we must install the WiFi101 software library as shown in the

previous section. If you’re following along with your own MKR1000 board,

do those steps now.

Let’s use a different scan networking example. To load the example,

click File ➤ Examples ➤ WiFi101 ➤ Scan Networks Advanced. On some

platforms, you may find this under the retired submenu (File ➤ Examples

➤ Retired ➤ WiFi101 ➤ Scan Networks Advanced). Once again, if you

look through the sketch, you will see a lot more code that is a lot more

complex than the previous example. Fortunately, we can use it without

modification.

When ready, connect your MKR1000 and upload the sketch. Wait until

the upload is complete and then click the button on the far right of the

window as shown in Figure 2-27. Once you click the button, you will see

the serial monitor window open. Be sure to set the baud rate as needed

(this example also uses 9600). You should start seeing a slightly different

output with a bit more data like that shown in Listing 2-3.

Listing 2-3. Example Scan Networks Advanced Output

Scanning available networks...

** Scan Networks **

number of available networks: 3

1) Signal: -68 dBm Channel: 11 BSSID: FE:32:75:

FE:89:EE

 Encryption: WPA SSID: RubberBiscuit1

2) Signal: -78 dBm Channel: 6 BSSID: 42:FE:34:7E:

98:FB

ChapTer 2 InTroDuCIng The arDuIno

70

 Encryption: WPA SSID: DIRECT-FB-HP OfficeJet Pro

8730

3) Signal: -64 dBm Channel: 3 BSSID: FE:6A:FE:8F:

75:FD

 Encryption: WPA SSID: ATT-WIFI-EF2A

Once again, congratulations on experimenting with your Arduino for

the first time. As you can see, there is still more to learn.

 Summary
This chapter covered a lot of ground. You explored the Arduino platform,

including the many forms available, and saw some example sketches

(programs) to control the Arduino. This is the foundation of working with

the Arduino. To become proficient with the Arduino requires a bit more

than these basics.

In the next chapter, you will discover more about the Arduino platform

including more about programming the Arduino along with more complex

example sketches building up to writing your first sketch from scratch.

ChapTer 2 InTroDuCIng The arDuIno

71© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_3

CHAPTER 3

Arduino Programming
If you’re new to Arduino and programming in general, the source code

for the Arduino is C++-like language1 and the look of the code (the

readability of the sketch) may be a bit overwhelming. It is OK if the thought

of programming in a C++-like language sounds scary. Fortunately, it

really isn’t that difficult, and this chapter will get you there safely without

inundating you with a plethora of computer science terms, practices, or

theories. You really don’t need all of that to succeed with the Arduino.

Rather, you only need to learn the basic syntax and statements for the

Arduino language. Once you learn that, you can learn to use libraries to

expand the capabilities of your sketch and control devices.

In the last chapter, we saw a brief overview of the Arduino IDE

including the location for the major functions you will need to use. In this

chapter, we will take a closer look at the Arduino IDE including a tutorial of

the language you will use to write your sketches as well as a look at how to

begin writing Arduino sketches.

1 You may also see it referenced as a “C-like” language, but C++ is more accurate
since it supports objects. But it should in no way be confused as a general C++
language since it is written specifically for the Arduino platform.

https://doi.org/10.1007/978-1-4842-7234-3_3#DOI

72

 Getting Started
We’ve already seen how to install and use the basic functions of the

Arduino IDE in the last chapter. Most works on the topic usually stop

there and let you fend for yourself to learn the finer points of becoming

productive on the Arduino platform.

That is unfortunate because most new to the platform do not have

the background experience (or education) to pick things up and run with

them. The Arduino was designed to be accessible for anyone no matter

their experience. As such, it is important to take some time to learn some

of the basics of developing Arduino sketches.

This includes learning more about the programming language, the

libraries available, how to write sketches, and, more importantly, how to

make everything work in the end. However, there are a few concepts we

need to review and explore in more detail including how to work with

sketches in the IDE and the basic layout (code design) of an Arduino sketch.

 Working with Sketches in the Arduino IDE
While we saw a brief tour of the Arduino IDE in the last chapter, it is a

good idea to review the basic operations that you will need to use to write

sketches. Let’s start with the basic controls in the Arduino IDE. Figure 3-1

shows the six menu buttons that you will use most often.

These include, from left to right, the following operations, with a

general description of when you would use each. The buttons are mirrors

of menu items, which are also listed with each button:

Figure 3-1. Main menu buttons (Arduino IDE)

Chapter 3 arduino programming

73

• Verify: Compile your sketch to check for errors (does

not upload). Menu: Sketch ➤ Verify/Compile.

• Upload: Compile and upload your sketch to your

Arduino board. Menu: Sketch ➤ Upload.

• New: Open a new, blank sketch (it will contain the

setup() and loop() functions). Menu: File ➤ New.

• Open: Open a sketch from your PC. This will cause a

menu listing all of your sketches in your sketch library

as well as the Examples submenu at the bottom. Menu:

File ➤ Open.

• Save: Save the current sketch to your PC. If this is a new

sketch, you will be permitted to name it. Menu: File ➤

Save or File ➤ Save As (to rename existing sketches).

• Serial monitor: Open the serial monitor to display the

messages or interact with your sketch. Open this after

your sketch has been uploaded. Menu: Tools ➤ Serial

Monitor.

While these are the basic controls you will use most frequently, you

may also encounter the need to add new libraries to your sketch (Sketch ➤

Include Library), which adds the #include statement into your sketch, or,

if you want a new library, search for it and install it on your PC for use by

your sketch.

Of course, if you add a new board, you may need to use the Boards

Manager (Tools ➤ Board [...] ➤ Boards Manager) to download new

hardware libraries as we discussed in Chapter 2.

Savvy readers will note that these menu items are a fraction of those

available in the Arduino IDE. In fact, there is a lot more to the Arduino IDE

that you can explore, and I encourage you to do so. However, for this book,

these are the controls you will need to master.

Chapter 3 arduino programming

74

Tip See www.arduino.cc/en/Guide/Environment for a
complete list of all of the menu items and their operations in the
arduino ide.

There is one more thing we must understand before we jump into

writing sketches and learning the Arduino language: the layout of the

editor window. Figure 3-2 shows the editor window with labels over the

major parts.

Notice there are two major portions (windows). At the top is the

code editor where you type in your sketch. At the bottom is the output

window where messages from compilation are placed. Check this window

whenever you compile your sketch. In fact, you should always click Verify/

Compile and check this window for errors before uploading your sketch to

your board.

Figure 3-2. Arduino IDE editor window

Chapter 3 arduino programming

http://www.arduino.cc/en/Guide/Environment

75

There are also two areas that are helpful. Between the code and output

windows is an area where the Arduino IDE will display status messages.

This is especially helpful to watch when you’re uploading your sketch. For

example, you should wait until you see Done uploading to open the serial

monitor. This will ensure you will see all messages from your Arduino in

the serial monitor (it is possible to start it late and miss messages, but you

can click the reset button on the Arduino to force it to restart).

Notice the output window again. This is displaying the following

statements:

Sketch uses 1512 bytes (3%) of program storage space. Maximum

is 48640 bytes.

Global variables use 22 bytes (0%) of dynamic memory, leaving

6122 bytes for local variables. Maximum is 6144 bytes.

Notice there is a lot of information there. What is important to note is

the size of program storage space your sketch is using, not the actual size

so much as the percentage of available space. Similarly, we want to watch

the percentage of dynamic memory used. When either of these values

reaches 80% or higher, you may encounter instability when your sketch

runs. This is especially true for large, complex sketches that use a lot of

memory. When the Arduino runs out of memory, it will either hang or

reboot.

Fortunately, most sketches will remain well below that threshold,

but if you find your sketches reaching these limits, you must either use a

different Arduino board that has more memory or trim your sketch down

to use less memory. Most often, reworking your sketch will solve the

problem.

OK, now that we understand how to use the IDE, let’s look at the layout

of all sketches.

Chapter 3 arduino programming

76

 Basic Sketch Layout
The basic layout of every sketch includes the setup() and load()

functions. When you create a new sketch from scratch (e.g., using File ➤

New), you will see the following in the code editor. Note that I’ve added

some comments to help make the layout more informational:

// put all library headers (#include) and global variables here

void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

// include any additional functions you want to write here

(optional)

Notice the comments (those lines that start with //) mention where

certain things should go. For instance, at the top is where we list our

#include statements and global variables (more about those later). At the

bottom, we place any custom functions (functions) we want to write. Note

that those can go anywhere, but I like to put them at the end. There is no

requirement or rule there. It’s only a matter of style.

Recall from Chapter 2 there are two built-in functions2 that every

sketch must contain even if there is nothing inside them (no code to

execute). These include setup(), which is run once when the sketch is

launched (started), and loop(), which is run repeatedly until the Arduino

is rest or power is turned off. Let’s examine more about each of these

functions.

2 Some use “method,” while others insist on debating the terms “function” and
“method” as having entirely separate meanings. For the purposes of anyone
learning to write code, they are synonymous.

Chapter 3 arduino programming

77

 setup()

This function is run once. It is where you should place all of the setup code

for your sketch. Here is where you would initialize variables, configure

libraries to work with hardware, and place any code that you want to

execute once.

 loop()

This function is the heart of the sketch. You should place all of the code

that you want to execute repeatedly here. This includes code to interact

with devices, read sensors, save or display data, etc. You should try to

design your code so that it forms a higher-level view of the operations of

your sketch. If your sketch contains complex code, you can break the steps

into separate functions so that the code in loop() function reads like an

overview of the steps you want to execute (its algorithm). We’ll discuss

functions in a later section.

Now that we’ve reviewed the IDE controls and the basic layout of every

sketch, let’s learn more about the language we’re using to write the code

for our sketches.

 Arduino Language Basics
Now let’s learn some of the basic concepts of Arduino C++ programming.

We will cover the building blocks of the language, such as comments,

variables, and basic control structures, and then move on to the more

complex concepts of data structures, libraries, and objects (classes). That

last is a bit advanced, so we’ll cover it at a high level. In fact, we’ll be taking

a high-level look at the language since it would require a tome of massive

proportions to cover every nuance.3

3 Drama aside, there is some truth in there.

Chapter 3 arduino programming

78

While the material may seem to come at you in a rush, this crash

course on Arduino C++ covers only the most fundamental knowledge of

the language and how to use it for the Arduino platform. It is intended to

get you started writing sketches and complete the projects in this book.

Let’s start with the basics.

 The Basics
There are a number of basic concepts about the Arduino C++ programming

language that you need to know in order to get started. In this section, I

describe some of the fundamental concepts used, including basic syntax,

how libraries are used, functions, and how to document your code.

 Comments

One of the most fundamental concepts in any programming language is

the ability to annotate your source code with text that not only allows you

to make notes among the lines of code but also forms a way to document

your source code.4

To add comments to your source code, use two slashes, // (no

space between the slashes). Place them at the start of the line to create a

comment for that line repeating the slashes for each subsequent line. This

creates what is known as a block comment, as shown. Notice that I used a

comment without any text to create whitespace. This helps with readability

and is a common practice for block comments:

//

// Beginning IoT Projects

//

4 If you ever hear someone claim, “My code is self-documenting,” be cautious
when using their code. Sure, plenty of good programmers can write code that is
easy to understand (read), but all fall short of that lofty claim.

Chapter 3 arduino programming

79

// Example Arduino C++ sketch to convert temperature to F or C.

//

// Created by Dr. Charles Bell

//

You can also use the double slash to add a comment at the end of a line

of code. That is, the compiler ignores whatever is written after the double

slash to the end of the line. You see an example of this next. Notice that

I used the comment symbol (double slash) to comment out a section of

code. This can be really handy when testing and debugging, but generally

discouraged for final code. That is, don’t leave any commented-out code

in your deliverable (completed) source code. If it’s commented out, it’s not

needed!

if (size < max_size) {

 size++;

} //else {

// return -1;

//}

Writing good comments and indeed documenting your code well is a

bit of an art form, one that I encourage you to practice regularly. Since it is

an art rather than a science, keep in mind that your comments should be

written to teach others what your code does or is intended to do. As such,

you should use comments to describe any preconditions (or constraints) of

using the code, limitations of use, errors handled, and how the parameters

are used and what data is altered or returned from the code (should it be a

function or class member).

Chapter 3 arduino programming

80

You can also use the older /*…*/ notation for comments. This makes

anything inside the /* and */ a comment and can span multiple lines. I’ve

rewritten the block comment using this style. Some people prefer it over

the //, which only applies to the line where it appears:

/*

 Beginning IoT Projects

 Example Arduino C++ sketch to convert temperature to F or C.

 Created by Dr. Charles Bell

*/

You may also see this appear like the following in one or more

variations. Again, none is necessarily more correct, but the general style is

to use the // marker:

/**

 * Beginning IoT Projects

 *

 * Example Arduino C++ sketch to convert temperature to F or C.

 *

 * Created by Dr. Charles Bell

 **/

 Including Libraries

If you recall from the basic sketch layout, there is an area at the top of

the sketch that indicates something is to be included. These are called

preprocessor directives and often look like the following. They are called

preprocessor directives because they signal the compilation process to

perform some tasks before the code is compiled:

#include "SerialMonitorReader.h"

Chapter 3 arduino programming

81

The directive does what it sounds like: it tells the compiler to include

that file along with your source code. When the compiler encounters this

directive, it “includes” that source file with your source code and compiles

it. In other words, you are adding existing libraries (code) to your sketch

that you can use.

The #include directive is one of the fundamental mechanisms that

support modularity in Arduino C++. That is, you can create a library of

source code that provides some functionality that resides in one or more

separate source code files. Even if you do not create a new library, you

can use modularity to split your source code into separate parts that

form some high-level abstraction. More specifically, you would place like

functionality together making the code easier to maintain or allowing

more than yourself to work on it at the same time. However, you would not

use modularity to separate random sections of code – that would gain you

nothing except confusion as to where the bits of code reside.

The file that the preceding line of code includes is called a header file.

A header file is named .h and contains only the declaration of the code.

You can think of it as a blueprint or pattern for the code. A header file often

contains only the primitives of the code that you will use, hence making

it possible for the compiler to resolve any references to the features in the

header file. A separate companion file called the source file is named .cpp

(you can also use .cc, but most prefer .cpp) and contains the actual code

for the features.

 Curly Braces

Notice that the functions are implemented with a pair of curly braces that

define the body of the function. Curly braces in Arduino C++ are used to

define a block of code or simply to express grouping of code. Curly braces

are used to define the body of functions, structures, classes, and more.

Notice that you use them everywhere, even in the conditional statements

(see the if statements).

Chapter 3 arduino programming

82

Tip Some C++ programmers prefer to place the starting curly
brace on the same line as the line of code to which it belongs.
however, others prefer the open curly brace placed on the next line.
neither preference matters to the compiler; rather, this is an example
of code style. You should choose the style you like best.

 Functions

Notice that I’ve added a new function named convertTemp() that converts

the temperature based on the scale chosen as shown on line 057 and

repeated in the following. This effectively moves that logic out of the

loop() function, thereby simplifying the code. This technique is a key

technique you use when writing sketches. More specifically, in Arduino

C++, sketches are built using functions:

057 // Convert temperature to Celsius or Fahrenheit

058 double convertTemp(char scale, double base_temp) {

059 if ((scale == 'c') || (scale == 'C')) {

060 return ((9.0 / 5.0) * base_temp) + 32.0;

061 }

062 else if ((scale == 'f') || (scale == 'F')) {

063 return (5.0 / 9.0) * (base_temp - 32.0);

064 }

065 return 0.0;

066 }

Chapter 3 arduino programming

83

Notice the use of a comment at the start of the function along with

the use of curly braces to define the body of the function as well as several

blocks of code. We’ll talk more about that in a moment, but draw your

attention to the function declaration on line 058. Notice we have several

parts. The general form of the function declaration is as follows:

<return type> <function_name>([<param_type> <param_name>,]) {

where we declare a return type or type of value returned when the function

ends (you can use void if no value is to be returned), the name of the

function, and zero or more parameters inside parentheses each consisting

of a type and name separated by commas.

For example, suppose we have a function named doSomething(),

which requires two parameters: an integer and a float. The function

returns a float. The following shows how this function is defined:

float doSomething(int goal, float sourceValue)

To call this function, we would supply the values for the parameters

and assign the result to a variable as shown in the following. Notice you

can also use constants for the parameters when calling the function:

float val = 22.44;

float myFloat = doSomthing(12, val);

Tip Function parameters and values passed must match on type
and order when called.

OK, we now have a good grasp of most basics, but what are these types

and variables?

Chapter 3 arduino programming

84

 Variables and Types
No program would be very interesting if you did not use variables to

store values for calculations. They are given a name that you make up.

There are some names you cannot use such as reserved words (names for

statements), and there are some rules to follow including that it cannot

start with a number (must be a letter or underscore), and they are case

sensitive. It should be noted that there are a number of style guides that

introduce additional constraints such as the Google C++ Style Guide

(https://google.github.io/styleguide/cppguide.html), but you don’t

have to follow those if you don’t want to (but it will improve readability).

Variables are declared with a type and once defined with a specific

type cannot be changed. Since Arduino C++ is strongly typed, the compiler

ensures that anywhere you use the variable, it obeys its type. For example,

the operation on the variable must be valid for the type. Thus, every

variable must have a type assigned.

There are a number of simple types that the Arduino C++ language

supports (often called built-in types). They are the basic building blocks

for more complex types. Each type consumes a small segment of memory,

which defines not only how much space you have to store a value but also

the range of values possible.5 Note that the values that can be stored are

based on the board and its microcontroller as defined by the word size or

the number of bits (e.g., 16- or 32-bit).

For example, on an Arduino Uno, an integer consumes 2 bytes (16

bits), and you can store values in the range –32,768 to 32,767. In this case,

the integer variable is signed (the highest bit is used to indicate positive

or negative values). An unsigned integer can store values in the range

0–65,535. Conversely, the Arduino Due uses 4 bytes (32 bits) for an integer.

It has an integer range of –2,147,483,648 to 2,147,483,647 and an unsigned

integer range of 0–4,294,967,295.

5 For a complete list, see www.arduino.cc/reference/en/#data-types.

Chapter 3 arduino programming

https://google.github.io/styleguide/cppguide.html
http://www.arduino.cc/reference/en/#data-types

85

You can declare a variable by specifying its type first and then an

identifier. The following shows a number of variables using a variety of

types:

int num_fish = 0; // number of fish caught

double max_length {0.0}; // length of the longest fish in feet

char fisherman[25]; // name of the fisherman

char rod_used[40]; // name or type of rod used

Notice also that I have demonstrated how to assign a value to the

variable in the declaration. I demonstrate two widely used techniques:

using a simple assignment and using the initialization mechanism

available since C++11 (meaning it is the C++ standard adopted in 2011).

The assignment operator is the equals sign. All assignments must obey

the type rules. That is, I cannot assign a floating-point number (e.g., 17.55)

to an integer value. The C++ initialization mechanism uses curly braces

(called an initializer list) that contain the value you want to assign. The

following shows an example:

int x {14};

Note that you can include the assignment operator with the curly

braces (the compiler will not complain), but that is considered sloppy

and discouraged. For example, the following code will compile, but it is

considered a bad form:

int y = {15};

Table 3-1 shows a list of the built-in types that you commonly use in

your applications.

Chapter 3 arduino programming

86

 Arithmetic
You can perform a number of mathematical operations in Arduino C++,

including the usual primitives but also logical operations and operations

used to compare values. Rather than discuss these in detail, I provide a

quick reference in Table 3-2 that shows the operation and an example of

how to use the operation.

Table 3-1. Commonly Used Types in Arduino C++

Symbol Size in Bits Range

bool/boolean n/a has only two values: false and true

byte 8 0–255

char 8 –128 to 127 by default

unsigned char 8 0–255

double 32/64 –3.4028235e+38 to 3.4028235e+38 (32-bit)

Float 32 –3.4028235e+38 to 3.4028235e+38 (32-bit)

int 16/32 –32,768 to 32,767 (16-bit)

–2,147,483,648 to 2,147,483,647 (32-bit)

unsigned int 16/32 0–65,535 (32-bit)

0–4,294,967,295 (32-bit)

long 32 –2,147,483,648 to 2,147,483,647

unsigned long 32 0–4,294,967,295

short 16 –32,768 to 32,767

size_t n/a Size of any object in bytes

Chapter 3 arduino programming

87

Bitwise operations produce a result on the values performed on each

bit. Logical operators (and, or) produce a value that is either true or false

and are often used with expressions or conditions.

Table 3-2. Arithmetic, Logical, and Comparison Operators in C++

Type Operator Description Example

arithmetic + addition int_var + 1

- Subtraction int_var - 1

* Multiplication int_var * 2

/ Division int_var / 3

% Modulus int_var % 4

Logical & Bitwise and var1&var2

| Bitwise or var1|var2

^ Bitwise exclusive var1^var2

~ Bitwise compliment ~var1

&& Logical and var1&&var2

|| Logical or var1||var2

Comparison == equal expr1==expr2

!= Not equal expr1!=expr2

< Less than expr1<expr2

> Greater than expr1>expr2

<= Less than or equal expr1<=expr2

>= Greater than or

equal

expr1>=expr2

Chapter 3 arduino programming

88

Finally, Arduino C++ has a concept called constants, where a value

is set at compile time. There are two types of constants. One, signified by

using the const keyword, creates a value (think variable) that will never be

changed. The following are examples of constants:

const int fish_catch_limit {7}; // A constant whose value

cannot change

const char slogan[] = "Teach a man to fish." // A constant

expression

Now that you understand variables and types, the operations

permitted on them, and expressions, let’s look at how you can use them in

flow control statements.

 Flow Control Statements
Flow control statements change the execution of the program. They can be

conditionals that define gates using expressions that restrict execution to

only those cases where the expression evaluates true (or negated), special

constructs that allow you to repeat a block of code (loops), and functions

to switch context to perform some special operations. You’ve already seen

how functions work, so let’s look at conditional and loop statements.

 Conditionals

Conditional statements allow you to direct execution of your programs

to sections (blocks) of code based on the evaluation of one or more

expressions. There are two types of conditional statements in Arduino

C++ – the if statement and the switch statement.

The following shows the general structure of the if statement:

if (expr1) {

 // execute only if expr1 is true

} else if ((expr2) || (expr3)) {

Chapter 3 arduino programming

89

 // execute only if expr1 is false *and* either expr2 or expr3

is true

} else {

 // execute if both sets of if conditions evaluate to false

}

Notice in the example that you can have one or more (optional)

else phrases that you execute once the expressions for the conditions

evaluate to false. You can chain if/else statements to encompass multiple

conditions where the code executed depends on the evaluation of several

conditions.

Although you can chain the statements as much as you want, use

some care here because the more else/if sections you have, the harder

it becomes to understand, maintain, and avoid logic errors in your

expressions.

If you have a situation where you want to execute code based on one

of several values for a variable or expression that returns a value (such as a

function or calculation), you can use the switch statement. The following

shows the structure of the switch statement:

switch (eval) {

 case <value1> :

 // do this if eval == value1

 break;

 case <value2> :

 // do this if eval == value2

 break;

 default :

 // do this if eval != any case value

 break; // Not needed, but good form

 }

Chapter 3 arduino programming

90

The case values must match the type of the thing you are evaluating.

That is, case values must be the same type as eval. Notice the break

statement. This is used to halt evaluation of the code once the case value

is found. Otherwise, each successive case value will be compared. Finally,

there is a default section for code that you want to execute should eval fail

to match any of the values.

Tip Code style varies greatly in how to space/separate these
statements. For example, some indent the case statements; some
do not.

 Loops

Loops are used to control the repetitive execution of a block of code. There

are three forms of loops that have slightly different behavior. All loops use

conditional statements to determine whether to repeat execution or not.

That is, they repeat as long as the condition is true. The three types of loops

are while, do, and for. I explain each with an example.

The while loop has its condition at the “top” or start of the block of

code. Thus, while loops only execute the body if and only if the condition

evaluates to true on the first pass. The following illustrates the syntax for a

while loop. This form of loop is best used when you need to execute code

only if some expression(s) evaluate to true, for example, iterating through a

collection of things, where the number of elements is unknown (loop until

you run out of things in the collection):

while (expression) {

 // do something here

 }

Chapter 3 arduino programming

91

The do loop places the condition at the “bottom” of the statement,

which permits the body of the loop to execute at least once. The following

illustrates the do loop. This form of loop is handy for cases where you

want to execute code that, depending on the results of that execution, may

require repetition, for example, repeatedly asking the user for input that

matches one or more known values, repeating the question if the answer

doesn’t match:

do {

 // do something here – always done once

} while (expression);

The for loop is sometimes called a counting loop because of its unique

form. The for loop allows you to define a counting variable, a condition

to evaluate, and an operation on the counting variable. More specifically,

for loops allow you to define stepping code for a precise number of

operations. The following illustrates the structure of the for loop. This

form of loop is best used for a number of iterations for a known number

(either at runtime or as a constant) and commonly used to step through

memory, count things, and so forth:

for (<init> ; <expression> ; <increment>) {

// do something

}

The <init> section or counting variable declaration is executed

once and only once. The <expression> is evaluated on every pass. The

<increment> code is executed every pass except the last. The following is

an example for loop:

for (int i; i < 10; i++) {

 // do something here

}

Now let’s look at some commonly used data structures.

Chapter 3 arduino programming

92

 Basic Data Structures
What you have learned so far about Arduino C++ allows you to create

sketches that do simple to moderately complex operations. However, when

you start needing to operate on data (either from the user or from sensors

and similar sources), you need a way to organize and store data and

operations on the data in memory. The following introduces three data

structures in order of complexity: arrays, structures, and classes.

Arrays allocate a contiguous area of memory for multiple storage of

a specific type. That is, you can store several integers, characters, and so

forth, set aside in memory. Arrays also provide an integer index that you

can use to quickly access a specific element. The following illustrates how

to create an array of integers and iterate through them with a for loop.

Array indexes start at 0:

int num_array[10] {0,1,2,3,4,5,6,7,8,9}; // an array of 10

integers

for (int i = 0; i < 10; i++) {

 // do something here

}

Notice the i++ in the for loop. This is a shorthand for i = i + 1 and is

very common in Arduino C++. You can also define multiple-dimensional

arrays (arrays of arrays). Arrays can be used with any type or data structure.

If you have a number of data items that you want to group together,

you can use a special data structure called, amazingly, a struct. A struct

is formed as follows:

struct <name> {

 // one or more declarations go here

};

Chapter 3 arduino programming

93

You can add whatever declarations you want inside the struct body

(defined by the curly braces). The following shows a crude example. Notice

that you can use the structure in an array:

struct address {

 char first_name[30];

 char last_name[30];

 int street_num;

 char street_name[40];

 char city[40];

 char state[2];

 char zip_code[12];

};

address address_book[100];

Arrays and structures can increase the power of your programs by

allowing you to work with more complex data types. However, there is one

data structure that is even more powerful: the class.

A class is more than a simple data structure. You use classes to

create abstract data types and to model concepts that include data and

operations on data. Like structures, you can name the class and use that

name to allocate (instantiate) a variable of that type. Indeed, structs and

classes are closely related.

You use classes to break your programs down into modules. More

specifically, you place the definition of a class in a header file and the

implementation in a source file. The following shows the header file

(myclass.h) for a simple and yet trivial class to store an integer and

provide operations on the integer:

class MyClass {

 public:

 MyClass();

 int get_num();

Chapter 3 arduino programming

94

 void inc();

 void dec();

 private:

 int num;

};

Notice several things here. First, the class has a name (MyClass) and a

public section where anything in this area is visible (and usable) outside of

the class. In this case, there are three functions. The function with the same

name as the class is called a constructor, which is called whenever you

instantiate a variable of the class (type). The private section is only usable

from functions defined in the class (private or public).

The source code file (myclass.cpp) is where you implement the

methods for the class as follows:

#include "myclass.h"

MyClass::MyClass() {

 num = 0;

}

int MyClass::get_num() {

 return num;

}

void MyClass::inc() {

 ++num;

}

void MyClass::dec() {

 --num;

}

Chapter 3 arduino programming

95

Notice that you define the methods in this file prefixed with the name

of the class and two colons (MyClass::). While missing in this example,

you can also provide a destructor (noted as ~MyClass) that is executed

when the class instantiation is deallocated. Finally, notice at the top is

the #include preprocessor directive to include the header file so that

the compiler knows how to compile this code (using the class header or

declaration). You can then use the class in the sketch, as follows:

#include "myclass.h"

...

void loop() {

 MyClass c = MyClass();

 c.inc();

 c.inc();

 Serial.print("contents of myclass: ");

 Serial.println(c.get_num());

}

Notice how you use the class. This is actually allocating memory for

the class – both data and operations. Thus, you can use classes to operate

on things or provide functionality when you need it saving you time and

making your programs more sophisticated. Classes are used to form

libraries of functionality that can be reused. Indeed, you have entire suites

of libraries built using classes.

As you may have surmised, classes are the building block for object-

oriented programming (OOP), and as you learn more about using classes,

you can build complex libraries of your own.

Chapter 3 arduino programming

96

 Pointers
Pointers are one of the most difficult things for new programmers to

understand. However, the following attempts to explain the basics of using

pointers. There is a lot more that you can do with pointers, but this is the

fundamental concept of simple pointers.

A pointer (also called a pointer variable) stores the memory address

of a variable or data. Thus, a pointer “points to” a section of memory.

You declare by type and the * symbol. All pointers must be typed, and

any operation on what the pointer points to must obey the condition of

that type. When you access the thing the pointer “points to,” you call that

dereferencing and use the * symbol to tell the compiler you want the value

of the thing the pointer is “pointing to.”6 The following shows how you can

declare a pointer and then dereference it. Note that you expect int_ptr to

be assigned a value; otherwise, the code may not compile or exhibit side

effects:

int *int_ptr; // pointer to an integer

int i = *int_ptr; // Store what int_ptr is pointing to

To store an address in a pointer variable, you use the & symbol (also

called the address of operator). The following shows an example:

int *int_ptr = &i; // Store address of i in int_ptr

You can perform arithmetic and comparison on pointers. You can add

or subtract an integer to change the address of the pointer (the actual value

of the pointer variable, not the thing the pointer points to) by multiples of

the size of the type. For example, adding 1 to an integer pointer advances

(increases) the memory value by 4 bytes.

6 I think you get the point.

Chapter 3 arduino programming

97

You can also compare pointers to determine equality and subtract one

pointer from another to find distance (in bytes) between the pointers. This

could be handy for calculating distance for contiguous memory segments.

When performing arithmetic on pointers, you should use parentheses

to avoid nasty mistakes with operator precedence. For example, the

following code is not equivalent. The second line increments the thing

that the pointer points to, but the third line increments the value of the

pointer variable (memory address). Be careful when performing math on

pointers because you could unexpectedly end up dereferencing portions of

memory:

*int_ptr = 10; // set the thing that the pointer points

to = 10

i = *int_ptr + 1; // add one to the thing that the pointer

points to

i = *(int_ptr + 1); // add 4 bytes to the pointer variable

(size of integer) – ERROR? points to

nowhere!

Finally, always use nullptr to initialize a pointer variable when the

address is not known, as follows:

int *int_ptr {nullptr};

Tip there are entire books written about pointers! if you want
a more in-depth look at pointers or want to dive into the details
of how to use pointers, see the book Understanding and Using C
Pointers by richard reese (o’reilly, 2013). the book was written for
C programmers, and although some of the data is outdated, it is an
excellent study on pointers.

Chapter 3 arduino programming

98

Wow! That was a wild ride, wasn’t it? I hope that this short crash

course in Arduino C++ has explained enough about the language that

you now know how it works. This crash course also forms the basis for

understanding the other Arduino sketches in this book.

Now, let’s walk through the temperature conversion example to apply

what we’ve learned.

 Practical Example
The temperature conversion sketch was designed to show you as many

of the basics as possible without overwhelming. As such, it is missing

some of the more advanced features of the language, but we’ve got to

start somewhere. If you’d like to follow along, feel free to do so as we

walk through this sketch, but this project is intended to demonstrate

concepts rather than instruct how to build IoT projects. As such, we won’t

concentrate so much on the details of the logic in the sketch. We will

spotlight a few points in the code in the process.

In this example, we will build a temperature conversion sketch that

uses the Arduino to convert values in Fahrenheit to Celsius and Celsius to

Fahrenheit using the serial monitor to input the data. That is, all you need

is your Arduino and your PC.

The first thing to know is this sketch is built using three files: the main

sketch file named TemperatureConverter.ino and two supporting code

modules named SerialMonitorReader.h and SerialMonitorReader.cpp.

These last two files are used to demonstrate how to use classes to break

your code into smaller parts.

Let’s examine each file and see how the code works.

Chapter 3 arduino programming

99

 TemperatureConverter.ino

This is the main sketch file and has the same name as the folder in which

the sketch is saved (TemperatureConverter). Here is where our main

logic is built along with the basic structure of the sketch (the setup()

and loop() functions). Listing 3-1 shows the example sketch with line

numbers. Take a few minutes to read through it. Most things should be

clear, but there are some surprises.

Tip notice the \n sequence in the print statements. this issues a
newline character to the serial monitor, which is a special symbol that
starts the next output on a new line.

Listing 3-1. TemperatureConverter Sketch Example

001 //

002 // Beginning IoT Projects

003 //

004 // Example Arduino C++ sketch to convert temperature to F

or C.

005 //

006 // Created by Dr. Charles Bell

007 //

008

009 // Libraries

010 #include "SerialMonitorReader.h"

011

012 // Global variables

013 double temperature {0.0};

014 double converted_temp = 0.0;

015 char scale {'c'};

Chapter 3 arduino programming

100

016 SerialMonitorReader *reader = new SerialMonitorReader();

017

018 // Initialize serial communications

019 void setup() {

020 Serial.begin(9600);

021 while (!Serial);

022 Serial.println("\nWelcome to the temperature conversion

sketch.");

023 delay(500);

024 }

025

026 void loop() {

027 temperature = 0.0;

028 Serial.print("\nPlease choose a starting scale (F)

or (C): ");

029 scale = reader->readChar();

030 Serial.println(scale);

031 // Throw error if scale is not one of the valid

characters

032 if ((scale != 'c') && (scale != 'C') &&

033 (scale != 'f') && (scale != 'F')) {

034 Serial.print("\nERROR: I'm sorry, I don't

understand '");

035 Serial.print(scale);

036 Serial.println("'.");

037 } else {

038 Serial.print("Please enter a temperature: ");

039 temperature = reader->readFloat();

040 Serial.println(temperature);

041 Serial.print(temperature);

042 converted_temp = convertTemp(scale, temperature);

Chapter 3 arduino programming

101

043 if ((scale == 'c') || (scale == 'C')) {

044 Serial.print(" degrees Celsius = ");

045 Serial.print(converted_temp);

046 Serial.println(" Fahrenheit.");

047 }

048 else {

049 Serial.print(" degrees Fahrenheit = ");

050 Serial.print(converted_temp);

051 Serial.println(" Celsius.");

052 }

053 }

054 delay(1000);

055 }

056

057 // Convert temperature to Celsius or Fahrenheit

058 double convertTemp(char scale, double base_temp) {

059 if ((scale == 'c') || (scale == 'C')) {

060 return ((9.0 / 5.0) * base_temp) + 32.0;

061 }

062 else if ((scale == 'f') || (scale == 'F')) {

063 return (5.0 / 9.0) * (base_temp - 32.0);

064 }

065 return 0.0;

066 }

The following shows a sample of what the output would look like when

you run the sketch. Values are entered in the input text box at the top of the

serial monitor, and then you click Send to send the data to the sketch:

Welcome to the temperature conversion sketch.

Please choose a starting scale (F) or (C): f

Please enter a temperature: 67.35

Chapter 3 arduino programming

102

Converting value from Fahrenheit to Celsius.

67.35 degrees Fahrenheit = 19.64 Celsius.

Please choose a starting scale (F) or (C): c

Please enter a temperature: 19.64

Converting value from Celsius to Fahrenheit.

19.64 degrees Celsius = 67.35 Fahrenheit.

Note if you’ve read through the code or tried to run it and
determined something is missing, you’re right! this example uses a
custom class i created.

As you can see at the start of the code, we have a block of comments

followed by the include statement to include the class and a list of global

variables. We say they are “global” because every function in the sketch file

can “see” the variables. Recall, if we had declared the variables inside a set

of curly braces, they would only be visible to the code inside those curly

braces.

Notice on line 016 we have this statement. That’s our first surprise:

SerialMonitorReader *reader = new SerialMonitorReader();

This line of code declares a new pointer variable of type “points to

SerialMonitorReader” and instantiates the object from the base class.

Wow. So we now have a variable named reader that we can use to access

all of the functions in the SerialMonitorReader class. Note that we could

have split this statement into two as follows:

SerialMonitorReader *reader;

...

reader = new SerialMonitorReader(); // placed in setup()

Chapter 3 arduino programming

103

Next, we see what is typically contained in the setup() function –

initialization of the built-in Serial class communications on lines

019–024. We say “built-in” because we don’t have to include the library or

instantiate it as it is already available to the sketch by default. In this case,

we call the begin() function specifying the speed we want to use on line

020. Next, we perform a while loop on line 021 that has no body (it just

continues to do nothing while the condition is true). More specifically, we

are waiting for the Serial object to be ready. We can then use the Serial.

print() and Serial.println() functions to print (display) data to the

serial monitor. The difference is the “ln” in the name implies that version

prints a new line after the text.

Line 023 contains another surprise. The delay() function causes

the sketch to pause or wait for the number of nanoseconds specified.

This is helpful in tuning how fast you want the sketch to run so as not to

overwhelm the serial communication (or the user). It can also be a nifty

way to slow your sketch down to match your sensor sampling rate (how

many times per unit of time you want to take a sample).

Next, we have the seemingly large loop() function on lines 026–054.

This really isn’t that long, and it does represent the basic logic of the

example as follows. I included the line numbers for reference:

 1. Get the scale to convert (028).

 2. Get the value to convert (038).

 3. Convert the value (042).

 4. Display the value (043/048).

 5. Repeat (1)–(4).

Reading from the serial monitor is not as clearly defined as some may

expect. That’s the reason we’re using a class to hide that functionality so

that the sketch isn’t overly complicated (or long). A sketch with thousands

of lines of code can be very difficult to diagnose (and test).

Chapter 3 arduino programming

104

To read a character from the serial monitor, we use the readChar()

function from the SerialMonitorReader class as follows. Here, we see

the function returns a single character from the user and stores it in the

variable named scale, which we will use a bit later:

029 scale = reader->readChar();

The code uses two conditionals. The first checks to see if the user

entered one of the valid characters for the scale with the following

statement:

032 if ((scale != 'c') && (scale != 'C') &&

033 (scale != 'f') && (scale != 'F')) {

Here, we see the use of the not equals (!=) or inequality sign as well as

the logical and (&&). If you think about it, the only characters that cause the

expression to evaluate to false are c, C, f, and F. Anything else evaluates to

true, so we print an error and continue the loop.

Next, we read the temperature from the user using the readFloat()

function from the SerialMonitorReader class and store it in a variable

named temperature:

039 temperature = reader->readFloat();

Next, we make the conversion using a new function written to

accomplish the goal. At the end of the file, we have a function named

convertTemp(), which requires two parameters: a character type that

specifies the scale and a double value that specifies the temperature to

convert. When the function ends, it returns the converted temperature.

The following shows how this function is called. I leave the explanation of

the function as an exercise, but it is not difficult:

042 converted_temp = convertTemp(scale, temperature);

Chapter 3 arduino programming

105

The second conditional comes next and is similar where we check if

the scale entered signals a conversion from Celsius to Fahrenheit as shown

in the following. We use the else clause for the Fahrenheit to Celsius

conversion.

The loop() concludes by pausing for one second. Again, this is an

optional interjection to help the flow of the sketch, but it is a practical

choice more than a requirement.7

Now, let’s look at the supporting files for the sketch.

 SerialMonitorReader.h

This file contains the header or blueprint for the SerialMonitorReader

class. As such, it defines the class and its methods. Both this file and the

accompanying .cpp file are stored in the same folder as the sketch file.

Listing 3-2 shows the contents of the SerialMonitorReader.h file.

There isn’t much to see in the file other than how the functions are

defined. There is one private function that is only used by the other two

public functions for reading a character and reading a float value from the

serial monitor.

Listing 3-2. The SerialMonitorReader Header

//

// Beginning IoT Projects

//

// Example Arduino C++ class header to read from the serial

monitor.

//

// Created by Dr. Charles Bell

//

7 However, delays may be important for communication logic, which sometimes
needs to wait for data (send or receive).

Chapter 3 arduino programming

106

class SerialMonitorReader {

private:

 void clearBuffer();

public:

 char readChar();

 float readFloat();

};

The class isn’t a true object in the sense that it neither mimics a

noun with verbs (something and operations on that something) nor

encapsulates or hides data. Rather, it is simply an exercise in the syntax of

writing classes for sketches.

Recall all header files have as a companion a source code file named

the same with the .cpp extension.

 SerialMonitorReader.cpp

The source code file for the class contains the code for all three methods.

While the explanation of the code may be helpful to some, it is beyond the

scope of demonstrating the basics. However, feel free to take a look to see if

you can follow along.

Listing 3-3 shows the contents of the SerialMonitorReader.cpp

file. The inspiration for this code was taken from the Arduino forums

(forum.arduino.cc). If you’d like to understand how the code works,

take a look at this tutorial series: https://forum.arduino.cc/index.

php?topic=396450.

Listing 3-3. The SerialMonitorReader Source File

//

// Beginning IoT Projects

//

// Example Arduino C++ class to read from the serial monitor.

//

Chapter 3 arduino programming

https://forum.arduino.cc/index.php?topic=396450
https://forum.arduino.cc/index.php?topic=396450

107

// Created by Dr. Charles Bell

//

#import <Arduino.h>

#import "SerialMonitorReader.h"

// Read character from serial monitor

char SerialMonitorReader::readChar() {

 char char_read;

 while (Serial.available() == 0);

 char_read = Serial.read();

 clearBuffer();

 return char_read;

}

// Read a floating point number from serial monitor

float SerialMonitorReader::readFloat() {

 char char_buffer[40];

 char char_read = ' ';

 byte index = 0;

 bool new_data = false;

 while (!new_data) {

 if (Serial.available() > 0) {

 char_read = Serial.read();

 if (char_read == '\n') {

 char_buffer[index] = '\0';

 new_data = true;

 } else {

 char_buffer[index] = char_read;

 index++;

 }

 }

 }

Chapter 3 arduino programming

108

 clearBuffer();

 // Attempt to convert to float

 return atof(char_buffer);

}

// Clear the input buffer

void SerialMonitorReader::clearBuffer() {

 delay(50);

 while (Serial.available() > 0) {

 Serial.read();

 }

}

Let’s discuss one more item that should be included in all basic

knowledge tutorials, but often is overlooked: compiling your sketches.

 Compiling Your Sketches
When you click Verify/Compile or Upload, the Arduino IDE proceeds to

compile your sketch and all of its supporting code modules including any

libraries you have referenced. If you look at the output window during this

time, you will see a lot of messages passing by. Most of these you can safely

ignore, but sometimes you may see either a warning or an error.

Rather than provide a step-by-step solution for all possible warnings

and errors (an impossible feat), we will discuss strategies you can employ

to help resolve them.

 Warnings

A compiler warning is typically something the compiler identifies as either

a violation of Arduino C++ coding or a flag that some logic error may exist.

It is important to understand the compiler is not a style or code analyzer

that can magically detect all possible issues in your code. So, when it does

flag something as a warning, it is usually something important.

Chapter 3 arduino programming

109

While some may say it is fine to ignore warnings, you should not do

so out of hand. Rather, you should investigate the source of the warning

and determine if it is something you can fix or not. There are three sources

for compilation warnings: your code, software libraries, and hardware

libraries. The most common compilation warnings are those from

compiling software libraries and less likely hardware libraries.

When there are warnings in your code, you should fix them. Again,

it could be an indication that there are potential logic or data errors in

your code. So treat these as important especially if you’ve ignored them

and discover later that your sketch fails at a really weird point (always an

indication there is a logic error).

The following is an example of a compiler warning. Here we see the

compiler has found a case where I have an unused variable. Perfectly

harmless, yes? Well, maybe. Suppose I later added code that used that

variable. Would that be a problem? Take a look at the statement again:

/Users/cbell/Documents/Writing/Books/Beginning IoT Projects/

source/Ch03/TemperatureConverter/TemperatureConverter.ino: In

function 'void loop()':

/Users/cbell/Documents/Writing/Books/Beginning IoT Projects/

source/Ch03/TemperatureConverter/TemperatureConverter.ino:27:9:

warning: unused variable 'i' [-Wunused-variable]

 int i = 0.1;

 ^

Do you see the issue? Look at the value being stored in the variable.

It’s a floating-point number, but the data type is integer. What do you think

would happen here? Would the compiler flag this? Sadly, it doesn’t, and

you may never know there is a problem until your calculations using the

variable fail. So pay attention to warnings in your code and fix them.

When warnings are generated from software libraries, it isn’t always

so easy to analyze what is wrong. Sometimes the problem is in how you’re

using the library. Maybe you’re using the wrong data types for parameters

Chapter 3 arduino programming

110

or return values. It could also be the case that the library is out of date or

isn’t fully supported for the Arduino board (hardware). Whatever the case,

it is best to contact the developer of the library to let them know (some

have bug reporting facilities on their website) or conduct an Internet

search for the warning to see if anyone else has found the problem. I’ve

discovered most of these warnings can be explained or fixed. For the most

part, warnings of this nature can be considered less harmful than warnings

in your own code.

Warnings from hardware libraries are a bit more difficult to resolve.

Most times, there isn’t anything you can do about it except notify the

vendor. So, in the general sense, these warnings may be ignored.

 Errors

Compilation errors are things the compiler discovers that prevent it from

building a binary executable of your sketch (it won’t compile). There are

many possible errors that can occur, but they can be generally classified as

either syntactical or logical.

Syntax errors are the most common compilation errors. A typical

syntax error is caused by a missing semicolon. The error message looks like

the following. As you can see, the compiler helpfully identifies the file and

even the line where the error occurred as well as the nature of the error:

In file included from /Users/cbell/Documents/Writing/Books/

Beginning IoT Projects/source/Ch03/TemperatureConverter/

TemperatureConverter.ino:10:0:

SerialMonitorReader.h:11:22: error: expected ';' at end of

member declaration

 void clearBuffer()

 ^

exit status 1

expected ';' at end of member declaration

Chapter 3 arduino programming

111

Most logical errors will be similar in that the compiler is able to identify

what went wrong, but not always. It is likely you will encounter an error

where either the explanation doesn’t make sense or the code identified

isn’t the actual location of the error. Don’t worry. This happens to everyone

eventually.

It is also likely some errors will produce a long list of cascading errors

or a list of seemingly unrelated errors. This happens sometimes when the

compiler either attempts to continue compiling (in the case of warnings)

or it is compiling multiple code modules together. It is sometimes possible

the only error that is “correct” or valid is the first one. Fixing all of them at

the same time can lead down a rabbit hole.

So what do you do? Simply, look at the first error and fix that one.

Ignore the rest. Once you fix it, retry the compilation. Yes, you may still

have other errors to fix, but at least this time you’re negating any cascading

effects the first error may have triggered. Follow this strategy, and your

compilation woes can be mitigated.

If you cannot determine the exact cause of the error, try searching

for the error message or a portion of the error message in the Arduino

forums (forum.arduino.cc). There is a good chance someone else has

encountered the same problem or something similar that will help you. In

other words, don’t be afraid to ask for help.

Finally, if you are working with newer or clone Arduino boards that

require new hardware or software libraries, you may encounter one

of two types of problems. Either the existing libraries have changed or

the hardware library causes one or more aspects of your sketch to fail.

Fortunately, errors generated from the hardware libraries are rare, but

not so with software libraries because I’ve found they can change in

unexpected ways.

Chapter 3 arduino programming

112

When software libraries change, either the function names or their

parameters change. Sometimes a function is removed and replaced with

another, or a return type is changed. When any of these occur, your sketch

will also need to change.8 This can be frustrating, but normally the solution

lies in reading the change notes for the new library.

When using new hardware libraries, errors may not be so easily

fixed. I’ve seen cases where one hardware library doesn’t support

certain features altogether or they’ve been replaced with a different

set of software libraries. For these types of issues, you will notice

them most when trying to compile sketches from previous work on

the new hardware. When this occurs, you should review the vendor’s

documentation on the hardware, and if you don’t find an answer there,

conduct an Internet search for help.

 Example Sketches
There are many example sketches built into the Arduino IDE that you can

explore. Most require some additional hardware or an Internet connection

to work, but they each serve an excellent sample of what is possible. So

long as you stick to the same basic flow of the example, you can use the

examples as a starting point.

The Arduino development community encourages every developer

to provide one or more example sketches with any library they want to

publish and make available in the Arduino IDE. My own libraries include

several examples you can use to learn how to work with the library.

8 This is a big pet peeve for me. I was taught interfaces (class function definitions)
should never change. If you must make a change, you should use polymorphism
by adding a new function with the new parameters (or return type) so that
existing code doesn’t break and can continue to work with a newer version of the
library. Sadly, it seems a few disagree, and they modify their libraries without a
care to how they break things.

Chapter 3 arduino programming

113

Thus, the example sketches should not be overlooked. Not only do they

form a basis or pattern for how to write sketches that use the functionality,

they are also helpful in testing that functionality.

Suppose you want to use a new sensor and discover someone (or the

vendor) has written a software library for it. Rather than blindly plugging it

in and trying to write a sketch from scratch to use it, you should open one

of the example sketches and try it out. If everything works, you know two

vital pieces of information: 1) the hardware works, and 2) the hardware

and software libraries work with your board. I cannot tell you how many

times I’ve encountered folks who claim a new sensor doesn’t work when

the problem lies in how they’re trying to use it. Use the example sketches

as a first stop when exploring things.

The bottom line is start with the examples to learn how to work with a

device or software library and, once you verify everything is working, use those

examples as guides along with the documentation to start writing your sketch.

Next, let’s look at some helpful advice for writing your sketches.

 Writing Your First Sketch
This section presents some much needed advice for those starting out

on the Arduino. The following are some guiding principles and practices

designed to help make your Arduino development easier. Take some time

to read through these and apply them to your work going forward – you

won’t be sorry for taking the time. Some of these areas may seem a bit

repetitive because many use the same techniques. In fact, I purposely

cover some of the techniques from different viewpoints to give you a

greater depth of understanding.

Note What follows is applicable to any development effort, not just
arduino. You will find the principles and practices, in general, apply to
almost any project.

Chapter 3 arduino programming

114

 Keep It Simple9

One of the biggest mistakes beginners make is trying to write their entire

sketch from scratch. When they attempt to execute it, they discover

nothing works. This is a really bad idea and something you should train

yourself to avoid at all costs. Why? If your sketch has more than one

part (connecting to an electronic component, using additional libraries,

complex coding, etc.), it is very likely one or more of these parts are

either not coded correctly (syntax or logic errors), there are unforeseen

incompatibilities, or you’ve assumed something works one way but

doesn’t work the way you expected.

All of this will lead you along the road to the circle of despair10 where

you will encounter one or more compilation errors, logic errors, or strange

behavior. To avoid all of this, you must adopt a stepwise approach to

writing your sketches.

Now, I do not expect you to drop everything and enroll in a computer

science degree program so that you can flout about with terms like

“bottom-up programming,” “top-down design,” “test-first development,”

or any of the myriad of programming disciplines one may encounter in

computer science.11 Rather, I want you to consider building your sketch

one part at a time. It doesn’t matter the order (well, sometimes it might if

there are dependencies among the libraries); just build one part at a time,

debug and test it until it works, and then add the next part. Or, better, make

several sketches where each contains one or two parts. When everything is

working, start by adding one part at a time to ensure everything continues

to work and fix any errors or anomalies as you encounter them.

9 Or more kindly spoken: keep it simple, silly!
10 With apologies to my old dungeon master who said in her world, “All roads lead

to the circle of despair.”
11 https://en.wikipedia.org/wiki/Computer_science

Chapter 3 arduino programming

https://en.wikipedia.org/wiki/Computer_science

115

This will ensure that when an issue occurs, you can always point to the

last thing you changed or added as the source. While that isn’t strictly true

for every issue (there could be cascading errors where the combination of

libraries reveals an error in an early part that worked fine), it will help you

know where to start debugging the problem.

Debugging is a skill you would do well to hone. It is both science

(methodical approach) and, for the best developers, an art.

 Debugging and Testing
Like the last section, debugging and testing is another area where novice

Arduino developers make a critical mistake. They either expect the IDE to

tell them exactly what is wrong with their code, or they expect to find the

answer on the Internet or from the author of the library.12

Tip Compilation errors happen to everyone regardless of
experience!

As you will see, debugging skills are general in nature and can be

applied to almost any sort of development whether for the Arduino or

another platform.

 Debugging

Some explain debugging as simply finding the problem and fixing it.

However, that definition neither does the skill justice nor does it explain

how to go about it. We will discuss some basic techniques in this section to

help you get started debugging your code.

12 I’ve lost count of the number of requests I have received to fix issues that have
nothing to do with the libraries I’ve published.

Chapter 3 arduino programming

116

Note there is no “wrong” way to debug a problem. While
sometimes circuitous with blind alleys, the path to resolution isn’t as
critical as the resolution itself.

Debugging, whether for resolving problems in your sketch, an

electrical circuit, a leaking plumbing, or a weird noise from machinery,

has at its core two critical goals: identification and resolution. We want

to find the problem and fix it – that’s debugging. Of course, debugging a

strange noise in your car requires an entirely different set of tools and tests.

However, the goals are the same.

The techniques you can employ to debug your code are numerous, but

the following basic steps are a good starting point. Experience will likely be

the deciding factor on the best approach for a given set of problems. Rather

than pour out computer science terminologies, let’s explore some of the

key steps in debugging. The following are just one set of steps you can use.

Before you do anything, make a copy of your sketch so that you can return

to its original form. So often, I’ve encountered situations where multiple

changes have altered the sketch behavior to the point where you can no

longer reproduce the problem or you’ve introduced a different problem.

Caution When debugging, make sure you maintain a copy of the
original sketch to ensure you don’t inadvertently introduce changes.

 1. Inspect: First, you should inspect your code to

make sure that there aren’t any mistakes in the

logic and flow such as the incorrect function called

or incorrect data types or maybe logic errors in

your conditional statements. Sometimes you can

find the odd error in logic simply by looking at the

code. For example, if you mistakenly added one

Chapter 3 arduino programming

117

instead of subtracting one in some equation, it can

make a world of difference. Similarly, if you use the

wrong inequality in a conditional, that make a big

difference as well. Look for these and fix as many as

you can find and run your sketch again to see if you

have fixed the problem and haven’t introduced a

new problem.

 2. Isolate: The next step is to remove any parts of the

code that do not contribute to or are not executed

in the area where the issue occurs. For example,

if you have a complex sketch with many parts, try

removing all the parts that are not needed to isolate

the area where the problem occurs. This can be

challenging, and we’ll talk more about this in greater

detail, but the point is to make sure that you remove

any code that is not part of the problem. By doing

this, you ensure that you can focus on the issue.

 3. Reproduce: Once you have isolated the code to

where the problem occurs, you can then set about

trying to reproduce it. If your sketch is large with

many parts and you’ve eliminated all the other parts

except the one that has the issue, you may need to

write additional code to supply missing values. For

example, if the issue relies on another part of the

code for input, you may need to write some code to

supply dummy data (known good values) in order

to reproduce the problem. More specifically, you

may need to write code that initializes variables,

supplies data from a sensor, etc. Once you are able

to reproduce the problem, you can then work on

trying to solve it.

Chapter 3 arduino programming

118

 4. Experiment: This step is where we spend our most

time. Here, we want to try to figure out what went

wrong and why. More specifically, we have the

problem isolated and reproducible so that we can

formulate possible fixes. The goal is to try to come

up with one or more potential solutions for the

problem. We then implement each one and see if

the problem is resolved. This is another area where

the novice can get stuck. Make sure you try one and

only one change at a time, and if it doesn’t fix the

problem, return the code to the way it was in the

previous step. Why? Because introducing multiple

changes at the same time does not guarantee you

are fixing the problem without introducing another!

Experimenting with solutions can require several

iterations to fix. However, recall at this point we are

using the isolated code, not the complete sketch.

Caution Change one thing at a time! if it doesn’t fix the problem,
revert the code to its original form. do not attempt to introduce
multiple changes.

 5. Test: Next, now that we have identified a solution, we

want to attempt to solve the problem in the original

sketch. Here is where we take the results of our

experimentation and start adding back portions of

the original sketch – one part at a time. We then test

each iteration to ensure the problem has been fixed.

While some may want to jump directly to making

the change in the original sketch, it is important

to rebuild your sketch with the proposed solution

Chapter 3 arduino programming

119

to ensure the solution doesn’t break another part

of the code. If it does, go back two steps and try to

figure out why. This is where the novice can become

frustrated with the iterative nature of debugging

complex sketches, but the methodical approach will

help you reach a resolution.

 6. Resolve: Now that we have corrected the problem

and we’re able to ensure the fix works, we can build

it into our original sketch and test it again.

Now that you know what debugging is and how to go about it, let’s talk

about that testing thing that we mentioned.

 Testing

Software testing is an area that has become more art than science. In

fact, software testing and related fields (e.g., quality assurance) are

subdisciplines of software development. Entire careers can be made in

these areas. As you can imagine, there is a lot to learn about software test.

However, for our purposes, testing is simply making sure your sketch is

working correctly.

This may include simply running the sketch and observing its

behavior, or it may require more careful instrumentation of the code.

For your IoT projects, you’re most likely going to simply run the sketch

and ensure that it is reading sensors correctly and displaying the correct

output. In case you’re curious, this is known as black box testing.13 In other

words, you don’t know how things work internally, but you can observe

external behavior.

13 https://en.wikipedia.org/wiki/Black-box_testing

Chapter 3 arduino programming

https://en.wikipedia.org/wiki/Black-box_testing

120

When combined with debugging, testing may also require looking at

certain values that occur in your code at key locations in order to resolve

the problem. For example, we may want to introduce print statements

to display the values of variables. This is known as white box texting14

where you inspect the sketch as it runs internally. The following shows

an example of print statements that are written to the serial monitor to

inspect values. You would insert these in your code for debugging, but

remove them once the problem is resolved:

ret_val = readSensor();

Serial.print("Value read from sensor: ");

Serial.println(ret_val);

How much testing you need to do to ensure that the sketch is working

correctly depends on how your project is going to be used. For example,

if you are building something to demonstrate to someone or maybe to

experiment to find out if something is possible, you are likely to not do

much testing other than to make sure it works – lights light up, sensors are

read, displays show the correct data, etc.

However, if your project is something that’s going to be used by other

people or it is intended to run for a long period of time, then you would

want to test it more thoroughly. For example, you may want to ensure that

your project is going to work under all the conditions that it may encounter

while running.

Testing of this nature is best accomplished by simply running the

sketch and observing how it runs under real-world conditions (or as close

as possible). For example, if you are building a project to measure freezing

temperatures, testing it in your living room is hardly adequate (but maybe

a few hours in your freezer might be closer).

14 https://en.wikipedia.org/wiki/White-box_testing

Chapter 3 arduino programming

https://en.wikipedia.org/wiki/White-box_testing

121

Accordingly, you may not be able to test all conditions; more

specifically, you may not be able to simulate rain, temperature ranges, or

any kind of similar environmental condition. In those cases, you may want

to create additional copies of your sketch where you use additional code to

inject certain data to simulate those conditions.

For example, you can add lines of code that return extreme values

in place of your sensors so that it appears that the sensor is operating in

whatever condition that you require. That way, you can test your sketch

to ensure that any calculations or resulting output is correct for the state.

This is also known as fault injection where we purposely introduce errors

into our code to see how it performs, but in this case, we are introducing

environmental changes in order to simulate conditions without having to

wait until those conditions occur naturally. This technique is great for the

most complex of IoT projects.

Whether you are simply running your sketch or have introduced

simulated data, if it does not do what you expect, you can take what you

have learned and begin debugging the problem.

For example, sometimes a sketch will work perfectly for expected

results, but may suddenly fail for unexpected results. For example, if a

sensor returns a value outside of an expected range, it may cause your

sketch to fail. Similarly, your sketch may run fine for a few hours or days

but suddenly stop. In this case, you’re most likely encountering problems

with the hardware or possibly running out of memory for your variables.

Whatever the case, the testing is used to ensure your sketch is working

by running your sketch as often as you can under as many real-work

conditions as you can simulate to ensure that it works for its intended

purpose and conditions. If it fails, go back and try to figure out why and fix

it and then test the sketch again until it works.

Now you see why software testing is an art. While there are a lot of

methods, practices, and principles one can learn and employ, there is

somewhat of an art to ensuring a project works the way it should.

Chapter 3 arduino programming

122

We briefly discussed debugging and testing, and now we understand

how to go about isolating our code, reducing it to the nearest essentials to

ensure that it’s working. However, there are times when we may not know

what is wrong or you know what is wrong but simply can’t figure out how

to fix it. In those cases, we can turn to the community and ask for help.

Fortunately, there are a number of Arduino supporting communities out

there that you can use to get your answers.

 Getting Help
Despite being careful to build, debug, and test your sketch in a stepwise

fashion, you may still encounter an issue you cannot easily solve. Don’t

worry if this happens (it happens to us all). Rather than blame someone else

like the author of the library you’re using (or the nice folks at arduino.cc),

take some time to fully understand the problem as best as you can.

This is where we employ what we have learned from debugging and

testing. More specifically, there is a process you can follow to help you get

your answers. While the process is very similar to debugging and testing,

the process usually occurs after you’ve attempted to fix the problem.

The goal here is to get help fixing a problem, but you must first be able

to successfully communicate the problem. There are three steps: isolate

and reproduce, research potential solutions, and ask the right question.

If you follow this process, you should be able to solve your problem

quickly. It all begins with pruning your code down to the essential issue.

If this reads a lot like debugging, that isn’t a coincidence. Recall the

second and third steps in debugging are isolate and reproduce.

Chapter 3 arduino programming

123

 Isolate and Reproduce

First, isolate your code to the most essential lines of code to reproduce the

problem. Don’t submit thousands of lines of code on a forum and expect

people to read and debug it for you. They won’t take the time. However, if

you have isolated the problem to a few dozen lines, more people would be

inclined to help.

This is the hardest part, but the most crucial. Why? Because sketches

that include one or more devices or software libraries or complex logic can

fail in most unexpected ways. Even if you’ve read all of the documentation,

there is still the possibility you will encounter something that doesn’t work

as expected.

When this happens, you need to dissect your code. The first effort

should be to remove any nonessential code, that is, code that is not needed

for the device or software library to work. Isolate this code to a new sketch.

If you’ve done it correctly, your resulting sketch should resemble one of the

example sketches (but don’t rely on the example sketches – use your own

code as you could have a logic error or something different in your code).

However, don’t lose sight of the goal – to reproduce the problem so that

we can identify potential solutions.

 Research Potential Solutions

Second, do your research in advance of asking a question. While you

may end up with more questions than answers or sometimes conflicting

answers, you should at least be able to understand what may work vs. what

should not work. For example, if you are encountering a problem with an

Arduino class or library, knowing how others have worked with and fixed

similar issues will either provide you an answer or at least educate you

into what won’t fix the problem. It is important to note this is where you

query the very forums where you want to seek help to ensure you’re not

repeating a question.

Chapter 3 arduino programming

124

This is one area where novice developers fail the most. They simply

don’t do their homework. There is a plethora of information on the

Internet that you can use to your advantage, but your job is to find it.

It is important that you first review as many solutions as you can find

and try them before reaching out for help. You will avoid a lot of annoying

“see <url>” responses that way.

 Ask the Right Question

Third, once you’ve isolated the code to a reproducible snippet and have

done your homework, you can now ask intelligent questions of the

community. Visit forums.arduino.cc or a similar Arduino forum and state

your problem in as few sentences as possible to completely describe the

problem, list what you have tried to do to fix the problem, and paste in as

small a snippet as possible that reproduces the problem.

For example, don’t be this guy: “I wrote this sketch (containing 1200+

lines of code pasted into the channel), and it doesn’t work. The library is

broken, and I need it to pass my XYZ class or I won’t graduate.”

OK. What does a statement like that tell us? Nothing, sadly. The

individual should have isolated the problem to as few lines as possible

preferably in a new sketch, researched the potential solutions, and

reported only those items. Things like why you wrote the sketch, what it

means to your class grade, etc. are not helpful and should be avoided.

When you get a response (don’t expect one to occur immediately or

even within a couple of days), be sure to read the responders’ comments

carefully and take their suggestions as just that. Don’t assume everyone

who responds has the correct answer to your issue. It may be the case that

the responder’s suggestion worked for them, but it may not work for you.

Chapter 3 arduino programming

125

You may also contact the vendor for your board or hardware device or

the developer of the software library if you have a mechanism for doing so,

but the same preceding rules apply. A vendor or developer has a vested

interest in helping you, but only if you first try to help yourself.

Above all, be nice and play well with others.

 Summary
Learning how to program the Arduino is not as difficult as some may

contend. As you have seen, the programming language is not overly

complex. It retains enough “C”-like to be familiar to those who’ve

programmed in C, C++, and similar languages, but not so much as to deter

someone from learning without any such experience.

In fact, the Arduino platform with its programming language, its

built-in libraries, and a growing list of third-party libraries has become

very powerful and accessible for anyone who wants to work with

microcontrollers to control hardware. That, I think, is what makes the

Arduino the perfect choice for artists, students, and hobbyists.

In this chapter, we learned more about the Arduino IDE, its

programming language, and how to write sketches. We explored several

examples along the way and even took a short detour into some tips for

writing good sketches.

In the next chapter, we will discover another development platform

that you may want to use: the Raspberry Pi.

Chapter 3 arduino programming

127© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_4

CHAPTER 4

Introducing the
Raspberry Pi
The Raspberry Pi is one of the latest disruptive devices in recent years that

has changed the way that we think about and design embedded solutions

and the IoT. In fact, the Raspberry Pi has had tremendous success among

hobbyists and enthusiasts. This is partly due to its low cost but also

because it is a full-fledged computer running an open source operating

system that has a wide audience: Linux.

In fact, given the popularity of the Raspberry Pi, it is likely that you will

encounter example projects and resources that are written for or only work

with the Raspberry Pi. Thus, learning more about the Raspberry Pi and

its native environment allows you to leverage the plethora of data for the

Raspberry Pi.

WHAT ABOUT THE PICO?

By now, you may have heard of a new Raspberry Pi board called the Pico. This

is a small microcontroller board designed for IoT and other microcontroller

applications. It runs on MicroPython and is rapidly becoming an excellent

choice for learning microcontrollers and electronics. Look for my upcoming

book Beginning MicroPython (Apress, late 2021) where I cover how to get

started with this exciting new offering from Raspberry Pi.

https://doi.org/10.1007/978-1-4842-7234-3_4#DOI

128

This chapter introduces the Raspberry Pi and explains how to set up

and configure the Raspberry Pi using the Linux operating system. You’ll

also discover a few key concepts of how to work with Linux. Let us begin

with an in-depth look at the Raspberry Pi.

 What Is a Raspberry Pi?
The Raspberry Pi is a small, inexpensive personal computer, also called a

low-cost computing board or simply low-cost computer. Although it lacks

the capacity for memory expansion and can’t accommodate onboard

devices such as CD, DVD, and hard drives, it has everything a simple

personal computer requires. That is, it has USB ports, an Ethernet port,

HDMI, and even an audio connector for sound. There are various models,

and some also include Bluetooth and WiFi!

The Raspberry Pi has a micro-SD drive that you can use to boot

the computer into any of several Linux operating systems (the default

operating system is called Raspberry Pi OS – formerly named Raspbian).

All you need is an HDMI monitor (or DVI with an HDMI-to-DVI adapter),

a USB keyboard and mouse, and a 5V power supply – and you’re off and

running.

The Raspberry Pi Model B boards cost as little as $35. They can be

purchased online from electronics vendors such as SparkFun and Adafruit.

Most vendors have a host of accessories that have been tested and verified

to work with the Raspberry Pi. These include small monitors, miniature

keyboards, and cases for protecting the board.

This section explores the origins of the Raspberry Pi, tours the

hardware connections, and covers the accessories needed to get started

using the Raspberry Pi. Fortunately, you can use the same keyboard,

mouse, and monitor as you would for a typical PC.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

129

 Raspberry Pi Origins
The Raspberry Pi was designed to be a platform to explore topics in

computer science. The designers saw the need to provide inexpensive,

accessible computers that could be programmed to interact with hardware

such as servomotors, display devices, and sensors. They also wanted

to break the mold of having to spend hundreds of dollars on a personal

computer and thus make computers available to a much wider audience.

The designers observed a decline in the experience of students

entering computer science curriculums. Instead of having some

experience in programming or hardware, students are entering their

academic years having little or no experience working with computer

systems, hardware, or programming. Rather, students are well versed

in Internet technologies and applications. One of the contributing

factors cited is the higher cost and greater sophistication of the personal

computer, which means parents are reluctant to let their children

experiment on the family PC.

This poses a challenge to academic institutions, which have to adjust

their curriculums to make computer science palatable to students. They

have had to abandon lower-level hardware and software topics due to

students’ lack of interest or ability. Students no longer wish to study the

fundamentals of computer science such as assembly language, operating

systems, theory of computation, hardware, and concurrent programming.

Rather, they want to learn higher-level languages to develop applications

and web services. Thus, some academic institutions are no longer offering

courses in fundamental computer science.1 This could lead to a loss of

knowledge and skill sets in future generations of computer professionals.

To combat this trend, the designers of the Raspberry Pi felt that,

equipped with the right platform, today’s youth could return to

experimenting with personal computers and electronics as in the days

1 Sadly, my alma mater is a fine example of this decline.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

130

when PCs required a much greater commitment to learning the hardware,

system components, and programming it in order to meet your needs.

For example, the venerable Commodore 64, Amiga, and early Apple and

IBM PC computers had very limited software offerings. Having owned a

number of these machines, I was exposed to the wonder and discovery

of hardware and programming at an early age. Perhaps that is why I find

low-cost computing boards so fascinating – they pack a lot of features into

a tiny board.

WHY IS IT CALLED RASPBERRY PI?

The name was partly derived from design committee contributions and partly

chosen to continue a tradition of naming new computing platforms after fruits

(think about it). The Pi portion comes from Python, because the designers

intended Python to be the language of choice for programming the computer.

however, other programming language choices are available.

The Raspberry Pi is an attempt to provide an inexpensive platform that

encourages experimentation. The following sections further explore the

Raspberry Pi, discussing topics such as the required accessories and where

to buy the boards.

 Raspberry Pi Boards
There are currently several versions of Raspberry Pi boards with two model

classifications: Model A and Model B. The early Model A boards were the

first mass-produced boards with 256MB of RAM, one USB port, and no

Ethernet port. This was followed closely by the first Model B board, which

had 512MB of RAM, two USB ports, and an Ethernet port. Figure 4-1 shows

the version 3 variant of the Model A board designated as Raspberry Pi 3A+.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

131

WHAT DOES THE “+” MEAN?

The “+” symbol in the model designation indicates it is a newer release of the

same version only with some improvements. For example, the 3B+ included a

slightly faster processor and a host of minor refinements. Typically, the boards

are effectively the same, and you may not notice a difference, but if you want

the “latest” or “better” board, you’ll want the one with the “+” designation.

The latest boards include the Raspberry Pi 3 Model B and Raspberry

Pi 4 Model B. The Raspberry Pi 3B and 4B are very similar. In fact, they are

very hard to tell apart without reading the label on the top of the board.

This is because they share the same layout (Model B) with the same

connectors. While the boards appear nearly identical, the Raspberry Pi 4B

has a faster 64-bit quad-core processor, uses USB-C for the power source,

Figure 4-1. Raspberry Pi 3A+ (courtesy of the Raspberry Pi
Foundation)

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

132

and is available with 2, 4, or 8GB of RAM (vs. 1GB for the 3B). There are

a number of smaller changes, but these are by far the most significant

differences. Let’s look at these boards in more detail.

Figure 4-2 shows the version 3 Model B board designated as Raspberry

Pi 3B+. Notice the board is a bit larger and has more connections.

Figure 4-3 shows the latest Model B board designated as the Raspberry

Pi 4B. The figure depicts some of the improvements from the 3B+ model

including more RAM, USB-C power, two HDMI ports, and USB-3 support.

Plus, it is the fastest Raspberry Pi computer to date!

Figure 4-2. Raspberry Pi 3B+ (courtesy of the Raspberry Pi
Foundation)

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

133

You can often find the Raspberry Pi 3A+ at online retailers and auction

sites for a bit less than the Raspberry Pi 3B+ board, which can be found

for less than the Raspberry Pi 4B. The newest Raspberry Pi 4B boards

are still in demand, so you may pay more for those boards, but shop

around to find retailers that offer the board at suggested retail prices of

$35 (2GB), $55 (4GB), and $75 (8GB). If you plan to use the Raspberry Pi

for experimentation and do not need the extra memory to run memory-

intensive applications, you can use the Raspberry Pi 3A+.

There is a new offering that may be of interest to some. It’s called the

Raspberry Pi 400, which is an official Raspberry Pi keyboard with the

equivalent of a Raspberry Pi 4B 4GB board built in. This lists for around

$70 and can be found anywhere Raspberry Pi is sold. Figure 4-4 shows the

Raspberry Pi 400.

Figure 4-3. Raspberry Pi 4B

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

134

Online retailers often offer Raspberry Pi bundles that include

everything you need to get started. For example, you can get a Raspberry

Pi 400 starter kit for about $125 where all you need to add is an HDMI

monitor (https://thepihut.com/collections/raspberry- pi- kits- and-

bundles/products/raspberry- pi- 400- personal- computer- kit).

Tip It is recommended to use the Raspberry Pi 3B+ or the newest
Raspberry Pi 4B for the projects in this book. The examples in the
remaining chapters use the Model B variant – either the Raspberry Pi
3B+ or 4B.

 A Tour of the Board
Not much larger than a deck of playing cards, the Raspberry Pi board

contains a number of ports for connecting devices. This section presents a

tour of the board. If you want to follow along with your board, hold it with

the Raspberry Pi logo faceup. I work around the board clockwise. Figure 4- 5

depicts the board with all the major connectors labeled.

Figure 4-4. Raspberry Pi 400

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

https://thepihut.com/collections/raspberry-pi-kits-and-bundles/products/raspberry-pi-400-personal-computer-kit
https://thepihut.com/collections/raspberry-pi-kits-and-bundles/products/raspberry-pi-400-personal-computer-kit

135

Let’s begin by looking at the bottom edge of the board (looking from

above). In the center of the bottom side, you see two HDMI connectors

(for dual monitors). To the left of the HDMI connector is the USB-C power

connector. The power connector is known to be a bit fragile on some

boards, so take care plugging and unplugging it. Be sure to avoid putting

extra strain on this cable while using your Raspberry Pi. To the right of the

HDMI connector is the camera ribbon cable connector, and next to that is

the audio connector.

On the left side of the board is the LCD ribbon cable connector. You

can use this connector with the Raspberry Pi 7-inch touch LCD and similar

devices. On the underside of the board is the micro-SD card drive. When

installed, the SD card protrudes a few millimeters out of the board. If you

plan to use a case for your Raspberry Pi, be sure the case provides access to

the SD card drive (some do not).

On the top edge of the board is the general-purpose input/output

(GPIO) header (a double row of 20 pins each), which can be used to attach

to sensors and other electronic components and devices. You will work

Figure 4-5. Raspberry Pi 3 Model B (courtesy of raspberrypi.org)

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

136

with this connector later in this chapter. On the right side of the board are

two USB connectors with two USB 2 and two USB 3 ports and the Gigabit

Ethernet connector.

Take a moment to examine the top and bottom faces of the board. As

you can see, components are mounted on both sides. This is a departure

from most printed circuit boards (PCBs) that have components on only

one side. The primary reason the Raspberry Pi has components on both

sides is that it uses multiple layers for trace runs (the connecting wires on

the board). Stacking the trace runs on multiple levels means that you don’t

have to worry about crossing paths. It also permits the board to be much

smaller and enables the use of both surfaces. This is probably the most

compelling reason to consider using a case – to protect the components on

the bottom of the board and thus avoid shorts (accidental connection of

contacts or pins) that can lead to board failure.

Caution Because the board is small, it is tempting to use it in
precarious places, like in a moving vehicle or on a messy desk.
ensure that your Raspberry Pi is in a secure location. The usB power,
hdMI, and sd card slots seem to be the most vulnerable connectors.

 Required Accessories
The Raspberry Pi is sold as a bare system board with no case, power

supply, or peripherals. Depending on how you plan to use the Raspberry

Pi, you need a few commonly available accessories. If you have been

accumulating computer and electronic spares like me, a quick rummage

through your stores may locate most of what you need.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

137

If you want to use the Raspberry Pi in console mode (no graphical

user interface), you need a USB power supply, a keyboard, and an HDMI

monitor. The power supply should have a minimal rating of 2.5A or greater.

If you want to use the Raspberry Pi with a graphical user interface, you also

need a pointing device (such as a mouse).

If you have to purchase these items, stick to the commonly available

brands and models without extra features. For example, avoid the latest

multifunction keyboard and mouse because they may require drivers that are

not available for the various operating system choices for the Raspberry Pi.

You also must have a micro-SD card. I recommend a 16GB or higher

version. Recall that the micro-SD is the only on-board storage medium

available. You need to put the operating system on the card, and any files

you create are stored on the card.

If you want to use sound in your applications, you also need a set of

powered speakers that accept a standard 3.5mm audio jack. Finally, if you

want to connect your Raspberry Pi to the Internet, you need an Ethernet

cable, or if you are using a Raspberry Pi 3B or 4B, you need a WiFi network.

 Recommended Accessories
I highly recommend, at a minimum, adding small 5–10mm rubber or

silicone self-adhesive bumpers to the bottom side of the board over the

mounting holes to keep the board off your desk. On the bottom of the

board are many sharp prongs that can come into contact with conductive

materials, which can lead to shorts or, worse, a blown Raspberry Pi. They

can also damage your desktop, skin, and clothing. Small self-adhesive

bumpers are available at most home improvement and hardware stores.

If you plan to move the board from room to room or you want to

ensure that your Raspberry Pi is well protected against accidental damage,

you should consider purchasing a case to house the board. Many cases are

available, ranging from simple snap-together models to models made from

laser-cut acrylic or even milled aluminum.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

138

Tip If you plan to experiment with the gPIo pins or require access
to the power test pins or the other ports located on the interior of
the board, you may want to consider either using the self-adhesive
bumper option or ordering a case that has an open top to make
access easier. some cases are prone to breakage if opened and
closed frequently.

Aside from a case, you should also consider purchasing (or pulling

from your spares) a powered USB hub. The USB hub power module

should be 2–2.5A or more. Even though the Raspberry Pi 2 and 3 have

four USB ports, a powered hub is required if you plan to use USB

devices that draw a lot of power, such as a USB hard drive or a USB toy

missile launcher.

 Where to Buy
The Raspberry Pi boards are plentiful and can be found on many websites

serving many continents. Chances are there is an online store available

near you. To find out, go to www.raspberrypi.org/products/raspberry-

pi-4- model- b/ and click Buy now and use the drop-down list to look for

a country or city near you. Fortunately, those online retailers who stock it

offer a host of accessories that are known to work with the Raspberry Pi.

The following are some of the more popular online retailers with links to

their Raspberry Pi catalog entry:2

• Adafruit: www.adafruit.com/category/105

• SparkFun: www.sparkfun.com/categories/233

2 You can often find the 2 and 3B listed, but quantities may be limited. Online
auction sites sometimes have excellent deals on the older boards.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

http://www.raspberrypi.org/products/raspberry-pi-4-model-b/
http://www.raspberrypi.org/products/raspberry-pi-4-model-b/
http://www.adafruit.com/category/105
http://www.sparkfun.com/categories/233

139

• The Pi Hut: thepihut.com

• Pi Shop US: pishop.us

Recall you can also find a host of Raspberry Pi offerings from Micro

Center. If you have one of those stores near you or within driving distance,

I highly recommend the trip.

The next section presents a short tutorial on getting started using the

Raspberry Pi. If you have already learned how to use the Raspberry Pi, you

can skip to the following section to begin learning how to use your board.

 Setting Up the Raspberry Pi
The Raspberry Pi is a personal computer with a surprising amount

of power and versatility. You may be tempted to consider it a toy or a

severely limited platform, but that is far from the truth.3 With the addition

of onboard peripherals like USB, Ethernet, and HDMI video (as well as

Bluetooth and WiFi for the Raspberry Pi 3 and later), the Raspberry Pi has

everything you need for a lightweight desktop computer. If you consider

the addition of the GPIO header, the Raspberry Pi becomes more than

a simple desktop computer and fulfills its role as a computing system

designed to promote hardware experimentation.

The following sections present a short tutorial on getting started with

your new Raspberry Pi, from a bare board to a fully operational platform.

A number of excellent works cover this topic in much greater detail. If you

find yourself stuck or wanting to know more about beginning to use the

Raspberry Pi and more about Raspberry Pi OS, read Learn Raspberry Pi

with Linux by Peter Membrey and David Hows (Apress, 2012). If you want

to know more about using the Raspberry Pi in hardware projects, excellent

resources include Practical Raspberry Pi by Brendan Horan (Apress, 2013)

and Computing with the Raspberry Pi by Brian Schell (Apress, 2019).

3 Especially considering the Raspberry Pi 4B 4GB and 8GB versions.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

140

As mentioned in the “Required Accessories” section, you need a micro-

SD card of 16GB or larger, a USB power supply rated at 2.5A or better with

a male micro-USB connector (for the Raspberry Pi 3B) or USB-C connector

(for the Raspberry Pi 4B and variants), a keyboard, a mouse, and an HDMI

monitor. However, before you can boot your Raspberry Pi and bask in its

brilliance, you need to create a boot image for your micro-SD card.

 Choosing a Boot Image (Operating System)

The first thing you need to do is decide which operating system variant you

want to use. There are several excellent choices, including the standard

Raspberry Pi OS. Each is available as a compressed file called an image or

card image. You can find a list of recommended images along with links

to download each on the Raspberry Pi Foundation download page: www.

raspberrypi.org/software/operating- systems/. The following images

are available at the site:

• Raspberry Pi OS: A Debian-based official operating

system and contains a graphical user interface,

development tools, and rudimentary multimedia

features.

• Ubuntu Desktop: Features the Ubuntu desktop and a

scaled-down version of the Ubuntu operating system. If

you are familiar with Ubuntu, you will feel at home with

this version.

• Ubuntu Core: The developer’s edition of core Ubuntu

system. It is the same as Mate with addition of the

developer core utilities.

• Ubuntu Server: The developer’s edition of core Ubuntu

server system.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

http://www.raspberrypi.org/software/operating-systems/
http://www.raspberrypi.org/software/operating-systems/

141

• LibreELEC (Libre Embedded Linux Entertainment

Center): A Linux-based platform for turning your

Raspberry Pi into a media center.

• RetroPie: A Unix-like operating system that allows you

to turn your Raspberry Pi intro a retro arcade

gaming rig.

Tip If you are just starting with the Raspberry Pi and haven’t used
a Linux operating system, you should use the Raspberry Pi os image
as it is the most popular choice and more widely documented in
examples.

There are a few other image choices, including a special variant

of the Raspberry Pi OS image from Adafruit. Adafruit calls their image

“Occidentalis” that includes a number of applications and utilities

preinstalled, including WiFi support and several utilities. Some Raspberry

Pi examples – especially those from Adafruit – require the Occidentalis

image. You can find out more about the image and download it at http://

learn.adafruit.com/adafruit- raspberry- pi- educational- linux-

distro/overview. Before choosing an alternative image, check to see if the

vendor is actively supporting it or is planning future releases. Some images

have been abandoned or are not updated as regularly as Raspberry Pi OS.

Wow! That’s a lot of choices, isn’t it? As you can see, the popularity of

the Raspberry Pi is very wide and diverse. While you may not use these

operating systems, it is good to know what choices are available should you

need to explore them.

Now let’s see how to install the base operating system. As you will see,

it is very easy.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview

142

 Creating the Boot Image

There are several methods to get your Raspberry Pi boot image created,

but for this book, we will use the recommended method via the Raspberry

Pi Imager software from raspberrypi.org. This special software will allow

you to choose the operating system as well as the SD card, which it will

format, and download your choice onto the SD card. Figure 4-6 shows the

Raspberry Pi Imager software.

The Imager software is available for most platforms including macOS,

Windows, and Linux (Ubuntu). Simply visit www.raspberrypi.org/

software/ and download and then install the version for your PC.

Once you’ve installed Imager, open it and click the CHOOSE OS

button. You will be presented with a number of choices as outlined

previously. Select the top entry for Raspberry Pi OS (32-bit) as shown in

Figure 4-7.

Figure 4-6. Raspberry Pi Imager (macOS)

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

http://www.raspberrypi.org/software/
http://www.raspberrypi.org/software/

143

Next, insert your SD card and select it using the CHOOSE SD CARD

button. If you do not see your SD card in the list, try reinserting it and try

again. Once you’ve selected the SD card, you will see a warning that the

card will be erased as shown in Figure 4-8. Click YES to acknowledge the

box and continue.

Figure 4-7. Selecting the OS in Raspberry Pi Imager

Figure 4-8. Choosing the SD Card in Raspberry Pi Imager

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

144

To download and write the image to the SD card, click WRITE in the

main window. The application will start the download, write the image to

the SD card, and then verify it. When this process has finished, you will get

a dialog similar to Figure 4-9 stating it is safe to remove the SD card.

Tip For those that want to explore the other os options for
the Raspberry Pi, visit www.raspberrypi.org/software/
operating- systems/ for additional information. you will also find
three options for installing Raspberry Pi os on the site: a full version,
the version used previously, and a lite version for smaller boards.

 Booting the Board

You are now ready to hook up all of your peripherals. I like to keep things

simple and only connect a monitor, keyboard, and mouse. If you want to

download an operating system other than Raspberry Pi OS, you also need

to connect your Raspberry Pi to your network. If you are planning to use

the WiFi option on the Raspberry Pi 3B or later, you’ll need to set up your

WiFi configuration after you boot up. I’ll show you how to do that in a

moment.

Figure 4-9. Operation complete

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

http://www.raspberrypi.org/software/operating-systems/
http://www.raspberrypi.org/software/operating-systems/

145

When you power on the Raspberry Pi, the system bootstraps and then

starts loading the OS. You may also see a message about resizing the boot

device, and your Raspberry Pi may reboot. This is automatic and nothing

to be concerned about. In fact, it is ensuring the boot volume is expanded

to the maximum size your micro-SD supports.

Once it reboots, you may see a dialog with a list of statements that

communicate the status of each subsystem as it is loaded followed by a

welcome banner. You don’t have to try to read or even understand all the

rows presented,4 but you should pay attention to any errors or warnings.

When the boot sequence is complete, you will see the Raspberry Pi OS

desktop as shown in Figure 4-10.

4 They go by so fast it is unlikely you can read them anyway. Basically, they’re noise
unless there is an error, and those usually appear in the last few lines displayed.

Figure 4-10. Raspberry Pi OS desktop

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

146

Notice there is a dialog open in the center. Once again, these steps will

execute only once on first boot. The steps include the following.

• Welcome: Click Next to start the setup. You can cancel

and run the setup later.

• Set Country: Choose your country, language, and time

zone. Click Next to continue.

• Set/Change Password: Choose the password for the

default user. Click Next to continue.

• Set Up Screen: If your screen shows a black rectangle

around the edge, you can tick the checkbox to have the

video adapter synchronize properly on next boot. Click

Next to continue.

• Select WiFi Network: Choose your WiFi access point to

connect to the Internet. You can click Skip to skip the

step or click Next to continue.

• Update Software: If you have connected to the Internet,

you can optionally download and install updates for

the system. This is highly recommend, and when you

choose this option, you will go through several more

informational dialogs that show you the progress of the

updates. You can click Skip to skip the step. Click Next

to continue when done.

• Setup Complete: The setup is done. Click Next to

continue, and if you selected any options that require a

reboot, the system will reboot now.

Figure 4-11 shows each step starting from the upper left working left

to right.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

147

When the system next boots, you will see the Raspberry Pi OS desktop

with your settings configured. If you set up a WiFi connection, it will

automatically reconnect. Nice.

 Care and Feeding of the SD Card

Imagine this scenario. You’re working away on creating files, downloading

documents, and so on. Your productivity is high, and you’re enjoying

your new low-cost, supercool Raspberry Pi. Now imagine the power cable

accidentally gets kicked out of the wall, and your Raspberry Pi loses power.

No big deal, yes? Well, most of the time.

The SD card is not as robust as your hard drive. You may already know

that it is unwise to power off a Linux system abruptly, because doing

so can cause file corruption. Well, on the Raspberry Pi, it can cause a

Figure 4-11. First boot setup sequence

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

148

complete loss of your disk image. Symptoms range from minor read errors

to inability to boot or load the image on bootstrap. This can happen – and

there have been reports from others that it has happened more than once.

That is not to say all SD cards are bad or that the Raspberry Pi has

issues. The corruption on accidental power-off is a side effect of the type

of media. Some have reported that certain SD cards are more prone to

this than others. The best thing you can do to protect yourself is to use an

SD card that is known to work with Raspberry Pi and be sure to power the

system down with the sudo shutdown -h now command – and never, ever

power off the system in any other manner.

You can also make a backup of your SD card. See http://elinux.org/

RPi_Beginners#Backup_your_SD_card for more details.

Tip If you need any help at all when using your Raspberry Pi,
there are very helpful articles at www.raspberrypi.org/help/,
and the official documentation is at www.raspberrypi.org/
documentation/.

To shut down or reboot Raspberry Pi OS, click the Pi, and then choose

Logout and then Shutdown. If you want to shut down from a terminal

(command line), use the command shutdown -h now to shut down the

system.

 Getting Started with Raspberry Pi OS
OK, now you have a Raspberry Pi booting Linux (Raspberry Pi OS) into the

desktop environment. And although it looks cool, it can be a bit confusing

and intimidating. The best way to learn the GUI is to simply spend some

time clicking your way through the menus. You’ll find the most basic of

features, including productivity tools.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

http://elinux.org/RPi_Beginners#Backup_your_SD_card
http://elinux.org/RPi_Beginners#Backup_your_SD_card
http://www.raspberrypi.org/help/
http://www.raspberrypi.org/documentation/
http://www.raspberrypi.org/documentation/

149

However, working with hardware typically requires knowledge of basic

commands used in a terminal (also called the command line). This section

describes a number of the more basic commands you need to use. This

is by no means meant to be a complete or thorough coverage of all of the

commands. Rather, it gives you the basics that you need to get started.

Thus, this primer is more like a 10-minute guided tour of an

automobile. You cannot possibly learn all of the maintenance

requirements and internal components in 10 minutes. You would need to

have an automotive technician’s training or years of experience before you

could begin to understand everything. What you get in a lightning tour is

more of a bird’s-eye view with enough information to permit you to know

where the basic maintenance items are located, not necessarily how they

work.

I recommend you read through the following sections to familiarize

yourself with the commands that you may need. You can refer back to

these sections should you need to recall the command name. Oftentimes

it is simply a matter of learning a different name for the same commands

(conceptually) that you’re familiar with from Windows. As you will see,

many of these commands are familiar in concept, as they also exist on

Windows albeit with a different name and parameters.

Tip If you want to master the Linux command-line commands,
tools, and utilities, read the book Beginning the Linux Command Line
by sander van Vugt (Apress, 2015).

Let’s begin with how to get help about commands.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

150

 Getting Help
Linux provides help for all commands by default. While it can be a bit

terse, you can always get more information about a command by using the

manual command as shown in Listing 4-1. Here you want more help with

the list directories command (ls).

Listing 4-1. Getting Help from the man (Manual) Command

pi@raspberrypi:~ $ man ls

LS(1) User Commands LS(1)

NAME

 ls - list directory contents

SYNOPSIS

 ls [OPTION]... [FILE]...

DESCRIPTION

 List information about the FILEs (the current directory by

default).

 Sort entries alphabetically if none of -cftuvSUX nor

 --sort is speci fied.

 Mandatory arguments to long options are mandatory for

short options too.

 -a, --all

 do not ignore entries starting with .

 -A, --almost-all

 do not list implied . and ..

...

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

151

 File and Directory Commands
Like any operating system, some of the most basic commands are

those that allow you to manipulate files and directories. These include

operations such as copying, moving, and creating files and directories. I

list a few of the most common commands in the following sections and

provide an example of each. If you want to know more about each, try

using the manual command (man). Just use the name of the command you

want to know more about as the option. For example, to learn more about

ls, enter man ls.

 List Directories and Files

The first command you will likely need is the ability to list files and

directories. In Linux, we use the ls (list files and directories) command.

Without any options, the command lists all of the files and directories in

the current location. There are many options available, but the ones I find

most helpful are show long listing format (-l), sort the output (-s), and

show all files (-a). You can combine these options in a single string, such

as -lsa.

The command uses color and highlighting to help distinguish

directories from files, executable files, and more. The long listing format

also shows you the permissions for the file (the series of rwx values).

The first character in the directory list refers to the file type (d means a

directory and - is a regular file), the next three characters refer to file

owner permissions, the next three are group permissions, and the final

three are for other users’ permissions. Figure 4-12 shows an example of the

ls -lsa command output.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

152

 Change Directory

You can change from one directory to another by using the cd command,

which is quite familiar:

pi@raspberrypi:~ $ cd source

pi@raspberrypi:~/source $

Tip The Linux path separator is a /, which can take some getting
used to.

 Copy

You can copy files with the cp command with the usual expected

parameters of <from_file> <to_file>, as shown next. You can also use

full paths to copy files from one directory to another:

pi@raspberrypi:~/source $ ls

me.txt python

pi@raspberrypi:~/source $ cp me.txt my.txt

pi@raspberrypi:~/source $ ls

me.txt my.txt python

Figure 4-12. Output of list directories (ls) command

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

153

Tip use the * symbol as a wildcard to specify all files (synonymous
with *.* in Windows). For example, to copy all of the files from one
folder to another, use the cp ./old/* ./new command.

 Move

If you want to move files from one folder to another, you can use the mv

command with the usual expected parameters of <from> <to>, as shown

next. You can also use full paths to move files from one directory to

another:

pi@raspberrypi:~/source $ ls

me.txt my.txt python this.txt

pi@raspberrypi:~/source $ mv this.txt that.txt

pi@raspberrypi:~/source $ ls

me.txt my.txt python that.txt

 Create Directories

Creating directories can be accomplished with the mkdir command. If you

do not specify a path, the command executes in the current directory:

pi@raspberrypi:~/source $ ls

me.txt my.txt python that.txt

pi@raspberrypi:~/source $ mkdir test

pi@raspberrypi:~/source $ ls

me.txt my.txt python test that.txt

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

154

 Delete Directories

If you want to delete a directory, use the rmdir command. This command

requires that the directory be empty. You will get an error if the directory

contains any files or other directories:

pi@raspberrypi:~/source $ ls

me.txt my.txt python test that.txt

pi@raspberrypi:~/source $ rmdir test

pi@raspberrypi:~/source $ ls

me.txt my.txt python that.txt

 Create (Empty) Files

Sometimes you may want to create an empty file for use in logging output

or just to create a placeholder for editing later. The touch command allows

you to create an empty file:

pi@raspberrypi:~/source $ ls ./test

pi@raspberrypi:~/source $ touch ./test/new_file.txt

pi@raspberrypi:~/source $ ls ./test

new_file.txt

pi@raspberrypi:~/source $ rmdir test

rmdir: failed to remove ‘test’: Directory not empty

 Delete Files

If you want to delete a file, use the rm command. There are a number of

options for this command, including recursively deleting files in subfolders

(-r) and options for more powerful (thorough) cleaning:

pi@raspberrypi:~/source $ rm ./test/new_file.txt

pi@raspberrypi:~/source $ ls ./test

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

155

Caution you can use the rm command with the force option to
remove directories, but you should use such options with extreme
caution. executing sudo rm * -rf in a directory will permanently
delete all files!

 System Commands
The Linux operating system provides a huge list of system commands to

do all manner of operations on the system. Mastering all of the system

commands can take quite a while. Fortunately, there are only a few that

you may want to learn to use Linux with a minimal of effort.

 Show (Print) Working Directory

The system command I use most frequently is the print working directory

(pwd) command. This shows you the full path to the current working

directory:

pi@raspberrypi:~/new_source $ pwd

/home/pi/new_source

 Command History

The one system command that you may find most interesting and helpful

is the history command. This command lists the commands that you

have entered over time. So, if you find that you need to issue some

command you used a month ago, use the history command to show all of

the commands executed until you find the one you need. This is especially

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

156

helpful if you cannot remember the options and parameters! However, this

list is only for the current user. The following is an excerpt of the history for

my Raspberry Pi 3:

pi@raspberrypi:~/source $ history

 1 sudo apt-get update

 2 sudo apt-get upgrade

 3 sudo shutdown -r now

 4 rpi-update

 5 sudo

 6 sudo rpi-update

 7 sudo apt-get dist-upgrade

 8 sudo shutdown -r now

 9 startx

10 ls /lib/firmware/brcm

...

Tip use the Up and Down keys on the keyboard to call back the
last command issued and scroll forward and backward through the
history one command at a time.

 Archive Files

Occasionally, you may need the ability to archive or unarchive files, which

you can do with a system command (utility). The tape archive (tar)

command shows the longevity of the Linux (and its cousin/predecessor,

Unix) operating system from the days when offline storage included tape

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

157

drives5 (no disk drives existed at the time). The following shows how to

create an archive and extract it. The first tar command creates the archive

and the second extracts it:

pi@raspberrypi:~ $ tar -cvf archive.tar ./source/

./source/

./source/test/

./source/my.txt

./source/that.txt

./source/python/

./source/python/blink_me.py

./source/me.txt

pi@raspberrypi:~ $ mkdir new_source

pi@raspberrypi:~ $ cd new_source

pi@raspberrypi:~/new_source $ tar -xvf ../archive.tar

./source/

./source/test/

./source/my.txt

./source/that.txt

./source/python/

./source/python/blink_me.py

./source/me.txt

pi@raspberrypi:~/new_source $ ls

source

There are a host of options for the tape archive command. The most

basic are the create (-cvf) and extract (-xvf) option strings, as shown in

the preceding code. See the manual for the tape archive command if you

want to perform more complicated operations.

5 Anyone remember punch cards?

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

158

 Administrative Commands
Like the system commands, there is a long list of administrative operations

that you may need to perform. I list those commands that you may need to

perform more advanced operations, starting with the run as administrator

equivalent command.

 Run as Super User

To run a command with elevated privileges, use the sudo command.

Some commands and utilities require sudo. For example, to ping another

computer, install software, change permissions, and so forth, you need

elevated privileges:

pi@raspberrypi:~/new_source $ sudo ping localhost

PING localhost (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64

time=0.083 ms

64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64

time=0.068 ms

64 bytes from localhost (127.0.0.1): icmp_seq=3 ttl=64

time=0.047 ms

^C

--- localhost ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1998ms

rtt min/avg/max/mdev = 0.047/0.066/0.083/0.014 ms

 Change File/Directory Permissions

In Linux, files and directories have permissions, as described in the

previous section. You can see the permissions with the list directories

command. To change the permissions, use the chmod command as shown

in the following code. Here we use a series of numbers to determine the

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

159

bits of the permissions. That is, 7 means rwx, 6 means rw, and so forth. For

a complete list of these numbers and an alternative form of notation, see

the manual for chmod:6

pi@raspberrypi:~/source $ ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:07 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

0 -rw-r--r-- 1 pi pi 0 Mar 13 18:07 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python

pi@raspberrypi:~/source $ chmod 0777 cmd

pi@raspberrypi:~/source $ ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:07 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

0 -rwxrwxrwx 1 pi pi 0 Mar 13 18:07 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python

 Change Owner

Similarly, you can change ownership of a file with the chown command if

someone else created the file (or took ownership). You may not need to

do this if you never create user accounts on your Raspberry Pi, but you

should be aware of how to do this in order to install some software such as

MySQL:

pi@raspberrypi:~/source $ ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:07 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

6 For more information, see the “Numerical permissions” section at https://
en.wikipedia.org/wiki/Chmod

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

https://en.wikipedia.org/wiki/Chmod
https://en.wikipedia.org/wiki/Chmod

160

0 -rwxrwxrwx 1 pi pi 0 Mar 13 18:07 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python

pi@raspberrypi:~/source $ sudo chown chuck cmd

pi@raspberrypi:~/source $ ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:13 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

0 -rw-r--r-- 1 chuck pi 0 Mar 13 18:13 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python

pi@raspberrypi:~/source $ sudo chgrp chuck cmd

pi@raspberrypi:~/source $ ls -lsa

total 12

4 drwxr-xr-x 3 pi pi 4096 Mar 13 18:13 .

4 drwxr-xr-x 21 pi pi 4096 Mar 13 18:02 ..

0 -rw-r--r-- 1 chuck chuck 0 Mar 13 18:13 cmd

4 drwxr-xr-x 2 pi pi 4096 Mar 12 00:37 python

Tip you can change the group with the chgrp command.

 Install/Remove Software

The second most used administrative operation is installing or removing

software. To do this on Raspberry Pi OS (and similar Linux distributions),

you use the apt-get command, which requires elevated privileges.

Linux maintains a list of header files that contain the latest versions

and locations of the source code repositories for all components installed

on your system. Occasionally, you need to update these references, and

you can do so with the following options. Do this before you install any

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

161

software. In fact, most documentation for software requires you to run

this command. You must be connected to the Internet before running the

command, and it could take a few moments to run:

sudo apt-get update

To install software on Linux, you use the install option (conversely,

you can remove software with the remove option). However, you must

know the name of the software you want to install, which can be a

challenge. Fortunately, most software providers tell you the name to

use. Interestingly, this name can be the name of a group of software. For

example, the following command initiates the installation of MySQL 5.5

(the latest version is 8.0), which involves a number of packages:

pi@raspberrypi:~/source $ sudo apt-get install mysql-server

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 libaio1 libdbd-mysql-perl libdbi-perl libhtml-template-perl

libmysqlclient18

 libterm-readkey-perl mysql-client-5.5 mysql-common mysql-

server- 5.5

 mysql-server-core-5.5

Suggested packages:

 libclone-perl libmldbm-perl libnet-daemon-perl libsql-

statement- perl

 libipc-sharedcache-perl mailx tinyca

The following NEW packages will be installed:

 libaio1 libdbd-mysql-perl libdbi-perl libhtml-template-perl

libmysqlclient18

 libterm-readkey-perl mysql-client-5.5 mysql-common mysql-

server

 mysql-server-5.5 mysql-server-core-5.5

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

162

0 upgraded, 11 newly installed, 0 to remove and 0 not upgraded.

Need to get 8,121 kB of archives.

After this operation, 88.8 MB of additional disk space will be

used.

Do you want to continue? [Y/n]

 Shutdown

Finally, you want to shut down your system when you are finished using

it or perhaps reboot it for a variety of operations. For either operation,

you need to run with elevated privileges (sudo) and use the shutdown

command. This command takes several options: use -r for reboot and -h

for halt (shutdown). You can also specify a time to perform the operation,

but I always use the now option to initiate the command immediately.

To reboot the system, use this command:

sudo shutdown -r now

To shut down the system, use this command:

sudo shutdown -h now

 Useful Utilities
There are a number of useful utilities that you need at some point during

your exploration of Linux. Those that I use most often are described in

the following list, which includes editors. There are, of course, many more

examples, but these will get you started for more advanced work:

• Text editor (nano): A simple, easy-to-use text editor.

It has a help menu at the bottom of the screen. Some

operations may seem odd after using Windows text

editors, but it is much easier to use than some other

Linux text editors.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

163

• File search (find): Locates files by name in a directory

or path.

• File/text search (grep): Locates a text string in a set of

files or directory.

• Archive tools (gzip, gunzip): A zip file archive tool (an

alternative to tar).

• Text display tools (less, more): Less shows the last

portion of a file; more shows the file contents of a page

(console page) at a time.

As you can see, working with Raspberry Pi OS and the Raspberry Pi

isn’t complicated and in many ways similar to other PC platforms making

it easy to use. Plus, it’s a real computer.

 Summary
There can be little argument that the Raspberry Pi has contributed greatly

to the world of embedded hardware and the IoT. With its low cost, GPIO

headers, and robust peripheral support, the Raspberry Pi is an excellent

choice for building your IoT solutions. Due to its increasing popularity,

there are tons of information available for those who want to learn how to

work with hardware.

In this chapter, you explored the origins of the Raspberry Pi, including

a tour of the hardware and a short primer on how to use its native

operating system. You learned these things about the Raspberry Pi so

that you can leverage the many examples and libraries that support IoT

projects. Plus, the Raspberry Pi is a fun computer to use.

The next chapter introduces the most popular software development

language for the Raspberry Pi – the Python programming language.

ChAPTeR 4 InTRoduCIng The RAsPBeRRy PI

165© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_5

CHAPTER 5

Python Programming
for the Raspberry Pi
Now that we know a little more about the Raspberry Pi, we can learn

more about one of the programming languages on the Raspberry Pi when

developing your IoT solutions. One of those languages is Python – a very

robust and powerful language that you can use to write very powerful

applications. Mastering is very easy, and some may suggest it doesn’t

require any formal training to use. This is largely true, and thus you should

be able to write IoT applications with only a little bit of knowledge about

Python.

Thus, this chapter presents a crash course on the basics of Python

programming including an explanation about some of the most commonly

used language features. As such, this chapter will provide you with the

skills you need to understand the growing number of IoT project examples

available on the Internet.

The chapter concludes with a walk-through of an example project that

will show you how to work with Python on the Raspberry Pi.

Tip If you already know the basics of Python programming, feel
free to skim through this chapter.

https://doi.org/10.1007/978-1-4842-7234-3_5#DOI

166

 Getting Started
Python is a high-level, interpreted, object-oriented scripting language. One

of the biggest tenets of Python is to have a clear, easy-to-understand syntax

that reads as close to English as possible. That is, you should be able to

read a Python script and understand it even if you haven’t learned Python.

Python also has less punctuation (special symbols) and fewer syntactical

machinations than other languages.

Tip While you can terminate a statement with the semicolon (;), it
is not needed and considered a bad form.

Here are a few of the key features of Python.

An interpreter processes Python at runtime. No compiler is used:

• Python supports object-oriented programming

constructs by way of a class.

• Python is a great language for the beginner-level

programmers and supports the development of a wide

range of applications.

• Python is a scripting language but can be used for a

wide range of applications.

• Python is very popular and used throughout the world

giving it a huge support base.

• Python has few keywords, a simple structure, and a

clearly defined syntax. This allows the student to pick

up the language quickly.

• Python code is more clearly defined and visible

to the eyes.

ChaPter 5 Python ProgrammIng for the rasPberry PI

167

Python was developed by Guido van Rossum from the late 1980s

to the early 1990s at the National Research Institute for Mathematics

and Computer Science in the Netherlands and maintained by a core

development team at the institute. It was derived from and influenced by

many languages including Modula-3, C, C++, and even Unix shell scripting

languages.

A fascinating fact about Python is it was named after the BBC show

Monty Python’s Flying Circus and has nothing to do with the reptile by

the same name.1 Quoting Monty Python in source code documentation

(and even a humorous diversion for error messages) is very common, and

while some professional developers may cringe at the insinuation, it’s

considered by Pythonistas as showing your Python street cred.2

Python is available for download (python.org/downloads) for just

about every platform that you may encounter or use – even Windows!

Fortunately, you don’t need to install anything to use Python on the

Raspberry Pi (it’s already installed). We will be using the Raspberry Pi as

the platform for the examples in this chapter.

Should you require more in-depth knowledge of Python, there are a

number of excellent books on the topic. I list a few of my favorites in the

following. A great resource is the documentation on the Python site –

python.org/doc/:

• Pro Python Second Edition (Apress, 2014) by J. Burton

Browning and Marty Alchin

• Learning Python Fifth Edition (O'Reilly Media, 2013) by

Mark Lutz

1 Monty Python refers to a group of comedians and not a single individual.
However, the comedy is undeniably brilliant (https://en.wikipedia.org/wiki/
Monty_Python).

2 Pythonistas are expert Python developers and advocates for all things Python.

ChaPter 5 Python ProgrammIng for the rasPberry PI

https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python

168

• Automate the Boring Stuff with Python: Practical

Programming for Total Beginners (No Starch Press,

2015) by Al Sweigart

Now, let’s jump into a tutorial on how to program in Python.

 Python Primer
Now let’s learn some of the basic concepts of Python programming. We

will begin with the building blocks of the language such as variables,

modules, and basic statements and then move on to the more complex

concepts of flow control and data structures.

While the material may seem to come at you in a rush (hence the

crash part), this crash course on Python covers only the most fundamental

knowledge of the language and how to use it for writing Python for IoT

projects on the Raspberry Pi. If you find you want to write more complex

applications than the examples in this book, I encourage you to acquire

one or more of the preceding resources to learn more about Python

programming.

The following sections present many of the basic features of Python

programming that you will need to know in order to understand example

projects and are vital to successfully implementing the Python projects in

this book.

 The Basics
Python is a very easy language to learn with very few constructs that are

even mildly difficult to learn. Rather than toss out a sample application,

let’s approach learning the basics of Python in a Python-like way: one step

at a time.

ChaPter 5 Python ProgrammIng for the rasPberry PI

169

The first thing you should learn is that Python does not use a code

block demarcated with symbols like other languages. More specifically,

code that is local to a construct such as a function or conditional or loop is

designated using indentation. Thus, the lines below that are indented (by

spaces or, gag, tabs) so that the starting characters align for the code body

of the construct.

In my experience and travels through geekdom, few programmers

prefer tabs over spaces. Indeed, many coding guidelines prohibit the use

of tabs because they can interfere with certain offline code analysis tools.

Plus, they can really mess up if your editor is set differently than others or if

tabs are used inconsistently

The following shows this concept in action:

if (expr1):

 print("inside expr1")

 print("still inside expr1")

else:

 print("inside else")

 print("still inside else")

print("in outer level")

Here we see a conditional or if statement. Notice the function call

print() – a common way to display output to the console – is indented.

This signals the interpreter that the line belongs to the construct above it.

For example, the two print statements that mention expr1 form the code

block for the if condition (expression evaluates to true). Similarly, the next

two print statements form the code block for the else condition. Finally,

the non-indented line is not part of the conditional and thus is executed

after either the if or else depending on the expression evaluation.

ChaPter 5 Python ProgrammIng for the rasPberry PI

170

As you can see, indentation is a key concept to learn when writing

Python. Even though it is very simple, making mistakes in indentation can

result in code executing that you did not expect or worse errors from the

interpreter.

Note I use “program” and “application” interchangeably with
“script” when discussing Python. While technically Python code is a
script, we often use it in contexts where “program” or “application” is
more appropriate.

There is one special symbol that you will encounter frequently. Notice

the use of the colon (:) in the preceding code. This symbol is used to

terminate a construct and signals the interpreter that the declaration is

complete and the body of the code block follows.

Now let’s look at how we can use variables in our programs (scripts).

 Variables

Python does not have a formal-type specification mechanism like other

languages. However, you can still define variables to store anything you

want. In fact, Python permits you to create and use variables based on

context. However, you can use initialization to “set” the data type for the

variable. The following shows several examples:

Numbers

float_value = 9.75

integer_value = 5

Strings

my_string = "He says, he's already got one."

ChaPter 5 Python ProgrammIng for the rasPberry PI

171

print("Floating number: {0}".format(float_value))

print("Integer number: {0}".format(integer_value))

print(my_string)

For situations where you need to convert types or want to be sure

values are typed a certain way, there are many functions for converting

data. Table 5-1 shows a few of the more commonly used type conversion

functions. I discuss some of the data structures in a later section.

However, you should use these conversion functions with care to avoid

data loss or rounding. For example, converting a float to an integer can

result in truncation.

Table 5-1. Type Conversion in Python

Function Description

int(x [,base]) Converts x to an integer. base is optional

(e.g., 16 for hex).

long(x [,base]) Converts x to a long integer.

float(x) Converts x to a floating point.

str(x) Converts object x to a string.

tuple(t) Converts t to a tuple.

list(l) Converts l to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary.

chr(x) Converts an integer to a character.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

ChaPter 5 Python ProgrammIng for the rasPberry PI

172

 Including Modules

Python applications can be built from reusable libraries that are provided

by the Python environment. They can also be built from custom modules

or libraries that you create yourself or download from a third party. When

we want to use a library (function, class, etc.) that is part of a module, we

use the import keyword and list the name of the module. The following

shows some examples:

import os
import sys
import mysql.client.tools

The first two lines demonstrate how to import a base or common

module provided by Python. In this case, we are using or importing the os

and sys modules (operating system and Python system functions).

Next, we see a special dotted notation in use. The dotted notation is

realized by using folders. In this case, we’re using a module written for

MySQL. Specifically, we’re using the module located in the mysql/client

folder named tools. Indeed, if you were to locate that module, you would

find a file named tools.py. The starting point of the module dotted

notation reference is any path in the PYTHONPATH environment variable.

Tip It is customary (but not required) to list your imports in
alphabetical order with built-in modules first, then third-party
modules, and then your own modules.

 Comments

One of the most fundamental concepts in any programming language is

the ability to annotate your source code with text that not only allows you

to make notes among the lines of code but also forms a way to document

your source code.

ChaPter 5 Python ProgrammIng for the rasPberry PI

173

To add comments to your source code, use the pound sign (#). Place

the sign at the start of the line to create a comment for that line repeating

the # symbol for each subsequent line. This creates what is known as a

block comment as shown. Notice I used a comment without any text to

create whitespace. This helps with readability and is a common practice

for block comments:

#

Beginning IoT Projects

#

Example Python application.

#

Created by Dr. Charles Bell

#

You can also place comments on the same line as the source code. The

compiler will ignore anything from the pound sign to the end of the line.

For example, the following shows a common method for documenting

variables:

zip = 35012 # Zip or postal code

address1= "123 Main St." # Store the street address

 Arithmetic
You can perform a number of mathematical operations in Python

including the usual primitives but also logical operations and operations

used to compare values. Rather than discuss these in detail, I provide a

quick reference in Table 5-2 that shows the operation and an example of

how to use the operation.

ChaPter 5 Python ProgrammIng for the rasPberry PI

174

Table 5-2. Arithmetic, Logical, and Comparison Operators in Python

Type Operator Description Example

arithmetic + addition int_var + 1

- subtraction int_var - 1

* multiplication int_var * 2

/ Division int_var / 3

% modulus int_var % 4

- Unary subtraction -int_var

+ Unary addition +int_var

Logical & bitwise and var1&var2

| bitwise or var1|var2

^ bitwise exclusive var1^var2

~ bitwise compliment ~var1

&& Logical and var1&&var2

|| Logical or var1||var2

Comparison == equal expr1==expr2

!= not equal expr1!=expr2

< Less than expr1<expr2

> greater than expr1>expr2

<= Less than or equal expr1<=expr2

>= greater than or equal expr1>=expr2

Bitwise operations produce a result on the values performed on each

bit. Logical operators (and, or) produce a value that is either true or false

and are often used with expressions or conditions.

ChaPter 5 Python ProgrammIng for the rasPberry PI

175

Now that we understand variables and types and operations permitted

on them and expressions, let’s see how we can use them in flow control

statements.

 Flow Control Statements
Flow control statements change the execution of the program. They can be

conditionals that use expressions that restrict execution to only those cases

where the expression evaluates true (or negated), special constructs that

allow you to repeat a block of code (loops), and functions to switch context

to perform some special operations. We’ve already seen how functions

work, so let’s look at conditional and loop statements.

 Conditionals

Conditional statements allow us to direct execution of our programs

to sections (blocks) of code based on the evaluation of one or more

expressions. There are two types of conditional statements in Python – the

if statement and the switch statement.

We have seen the if statement in action in our example code. Notice

in the example we can have one or more (optional) else phrases that we

execute once the expressions for the if conditions evaluate to false. We

can chain if/else statements to encompass multiple conditions where

the code executed depends on the evaluation of several conditions. The

following shows the general structure of the if statement:

if (expr1):

 # execute only if expr1 is true

elif ((expr2) || (expr3)):

 # execute only if expr1 is false *and* either expr2 or

expr3 is true

else:

 # execute if both sets of if conditions evaluate to false

ChaPter 5 Python ProgrammIng for the rasPberry PI

176

While you can chain the statements as much as you want, use

some care here because the more elif sections you have, the harder

it will become to understand, maintain, and avoid logic errors in your

expressions.

 Loops

Loops are used to control the repetitive execution of a block of code. There

are three forms of loops that have slightly different behavior. All loops use

conditional statements to determine whether to repeat execution or not.

That is, they repeat as long as the condition is true. The three types of loops

are while, do, and for. I explain each with an example.

The while loop has its condition at the “top” or start of the block of

code. Thus, while loops only execute the body if and only if the condition

evaluates to true on the first pass. The following illustrates the syntax for a

while loop. This form of loop is best used when you need to execute code

only if some expression(s) evaluate to true, for example, iterating through a

collection of things, where the number of elements is unknown (loop until

we run out of things in the collection):

while (expression):

 # do something here

The for loop variants are sometimes called counting loops because of

their unique form. The for loop allows you to define a counting variable

and a range or list to iterate over. The following illustrates the structure of

the for loop. This form of loop is best used for performing an operation in

a collection. In this case, Python will automatically place each item in the

collection in the variable for each pass of the loop until no more items are

available:

for variable_name in list:

 # do something here

ChaPter 5 Python ProgrammIng for the rasPberry PI

177

You can also use range loops or counting loops. This uses a special

function called range() that takes up to three parameters, range([start],

stop[, step]), where start is the starting number (an integer), stop is

the last number in the series, and step is the increment. So you can count

by 1, 2, 3, etc. through a range of numbers. The following shows a simple

example:

for i in range(2,9):

 # do something here

There are other uses for range() that you may encounter. See the

documentation at https://docs.python.org/3/library/functions.

html for more information on this function and other built-in functions.

Python also provides a mechanism for controlling the flow of the loop

(e.g., duration or termination) using a few special keywords as follows:

• break: Exit the loop body immediately.

• continue: Skip to next iteration of the loop.

• else: Execute code when the loop ends.

There are some uses for these keywords, particularly break, but it is

not the preferred method of terminating and controlling loops. That is,

professionals believe the conditional expression or error handling code

should behave well enough to not need these options.

 Functions
Python allows you to use modularization in your code. While it supports

object-oriented programming by way of classes (a more advanced feature

that you are unlikely to encounter for most Python GPIO examples), on

a more fundamental level, you can break your code into smaller chunks

using functions.

ChaPter 5 Python ProgrammIng for the rasPberry PI

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

178

A special keyword construct (rare in Python) is used to define a

function. We simply use def followed by a name and a parameter list in

parentheses. The colon is used to terminate the declaration. The following

shows an example:

def print_dictionary(the_dictionary):

 for key, value in the_dictionary.items():

 print("'{0}': {1}".format(key, value))

You may be wondering what this strange code does. Notice the loop

is assigning two values from the result of the items() function. This is a

special function available from the dictionary object. (Yes, dictionaries

are objects! So are tuples and lists and many other data structures.) The

items() function returns the key/value pair, hence the names of the

variables.

The next line prints out the values. The use of formatting strings where

the curly braces define the parameter number starting at 0 is common

for Python 3.x applications. See the Python documentation for more

information about formatting strings.

Here the body of the function is indented. All statements indented

under this function declaration belong to the function and are executed

when the function is called. We can call functions by name providing any

parameters as follows:

print_dictionary(my_dictionary)

This example, when executed, generates the following output as

shown in Listing 5-1. I generated this by writing the function in the Python

interpreter on my Raspberry Pi and executing it. To run the interpreter,

search for Python and select the Python command window. Thus, this

demonstrates how to use the Python interpreter to execute Python code

on the fly (as you type each line and press Enter). Notice I used the

python3 command to launch the Python command window. This tells the

ChaPter 5 Python ProgrammIng for the rasPberry PI

179

computer to use the Python version 3.x installation. This is because the

Raspberry Pi (and many PCs) has multiple versions installed and version

2.x is soon to be obsolete. Thus, it is always best to use the latest version of

Python.

Listing 5-1. Using the Python Interpreter

pi@raspberrypi:~ $ python3

Python 3.7.3 (default, Jul 25 2020, 13:03:44)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>> def print_dictionary(the_dictionary):

... for key, value in the_dictionary.items():

... print("'{0}':{1}".format(key, value))

...

>>> my_dictionary = {

... 'name': "Chuck",

... 'age': 38,

... }

>>> print_dictionary(my_dictionary)

'name':Chuck

'age':38

>>> quit()

Tip functions (methods) provided by objects (classes) can be called
using the syntax object_name.method_name().

Now let’s look at some commonly used data structures including this

strange thing called a dictionary.

ChaPter 5 Python ProgrammIng for the rasPberry PI

180

 Basic Data Structures
What you have learned so far about Python is enough to write the most

basic programs and indeed more than enough to tackle the example

projects in later chapters. However, when you start needing to operate

on data – either from the user or from sensors and similar sources – you

will need a way to organize and store data and operations on the data in

memory. The following introduces data structures in order of complexity:

lists, tuples, etc. I will demonstrate the three you will encounter most in the

following.

 Lists

Lists are a way to organize data in Python. It is a free-form way to build

a collection. That is, the items (or elements) need not be the same data

type. Lists also allow you to do some interesting operations such as adding

things at the end, at the beginning, or at a special index. The following

demonstrates how to create a list:

List

my_list = ["abacab", 575, "rex, the wonder dog", 24, 5, 6]

my_list.append("end")

my_list.insert(0,"begin")

for item in my_list:

 print("{0}".format(item))

Here we see I created the list using square brackets ([]). The items in

the list definition are separated by commas. Note that you can create an

empty list simply by setting a variable equal to []. Since lists, like other

data structures, are objects, there are a number of operations available for

lists such as the following:

• append(x): Add x to the end of the list.

• extend(l): Add all items to the end of the list.

ChaPter 5 Python ProgrammIng for the rasPberry PI

181

• insert(pos,item): Insert an item at a position pos.

• remove(value): Remove the first item that matches

(==) the value.

• pop([i]): Remove the item at position i or end of list.

• index(value): Return the index of the first item that

matches.

• count(value): Count occurrences of value.

• sort(): Sort the list (ascending).

• reverse(): Reverse-sort the list.

Lists are like arrays in other languages and very useful for building

dynamic collections of data.

 Tuples

Tuples, on the other hand, are a more restrictive type of collection. That is,

they are built from a specific set of data and do not allow manipulation like

a list. The following shows an example of a tuple and how to use it:

Tuple

my_tuple = (0,1,2,3,4,5,6,7,8,"nine")

for item in my_tuple:

 print("{0}".format(item))

if 7 in my_tuple:

 print("7 is in the list")

Here we see I created the tuple using parentheses (). The items in

the tuple definition are separated by commas. Note that you can create

an empty tuple simply by setting a variable equal to (). Since tuples,

ChaPter 5 Python ProgrammIng for the rasPberry PI

182

like other data structures, are objects, there are a number of operations

available such as the following including operations for sequences such as

inclusion, location, etc.:

• x in t: Determine if t contains x.

• x not in t: Determine if t does not contain x.

• s + t: Concatenate tuples.

• s[i]: Get element i.

• len(t): Length of t (number of elements).

• min(t): Minimal (smallest value).

• max(t): Maximal (largest value).

If you want even more structure with storing data in memory, you can

use a special construct (object) called a dictionary.

 Dictionaries

A dictionary is a data structure that allows you to store key/value pairs

where the data is assessed via the keys. Dictionaries are a very structured

way of working with data and the most logical form we will want to

use when collecting complex data. Listing 5-2 shows an example of a

dictionary.

Listing 5-2. Dictionary Example

Dictionary

my_dictionary = {

 'first_name': "Chuck",

 'last_name': "Bell",

 'age': 36,

 'my_ip': (192,168,1,225),

 42: “What is the meaning of life?”,

ChaPter 5 Python ProgrammIng for the rasPberry PI

183

}

Access the keys:

print(my_dictionary.keys())

Access the items (key, value) pairs

print(my_dictionary.items())

Access the values

print(my_dictionary.values())

Create a list of dictionaries

my_addresses = [my_dictionary]

There is a lot going on here! We see a basic dictionary declaration that

uses curly braces to create a dictionary. Inside that, we can create as many

key/value pairs we want separated by commas. Keys are defined using

strings (I use single quotes by convention, but double quotes will work) or

integers; values can be any data type we want. For the my_ip attribute, we

are also storing a tuple.

Following the dictionary, we see a number of operations performed

on the dictionary from printing the keys, printing all of the values, and

printing only the values. The following shows the output of executing this

code snippet from the Python interpreter:

[42, 'first_name', 'last_name', 'age', 'my_ip']

[(42, 'what is the meaning of life?'), ('first_name', 'Chuck'),

('last_name', 'Bell'), ('age', 36), ('my_ip', (192, 168, 1,

225))]

['what is the meaning of life?', 'Chuck', 'Bell', 36, (192,

168, 1, 225)]

'42': what is the meaning of life?

'first_name': Chuck

'last_name': Bell

'age': 36

'my_ip': (192, 168, 1, 225)

ChaPter 5 Python ProgrammIng for the rasPberry PI

184

As we have seen in this example, there are a number of operations

(methods) available for dictionaries including the following. Together, this

list of operations makes dictionaries a very powerful programming tool:

• len(d): Number of items in d.

• d[k]: Item of d with key k.

• d[k] = x: Assign key k with value x.

• del d[k]: Delete item with key k.

• k in d: Determine if d has an item with key k.

• d.items(): Return a list of the (key, value) pairs in d.

• d.keys(): Return a list of the keys in d.

• d.values(): Return a list of the values in d.

Best of all, objects can be placed inside other objects. For example,

you can create a list of dictionaries like I did previously, a dictionary that

contains lists and tuples, and any combination you need. Thus, using

lists, tuples, and dictionaries is a powerful way to manage data for your

program.

 Classes and Objects
You may have heard that Python is an object-oriented programming

language. But what does that mean? Simply, Python is a programming

language that provides facilities for describing objects (things) and what

you can do with the object (operations). Objects are an advanced form

of data abstraction where the data is hidden from the caller and only

manipulated by the operations (methods) the object provides.

ChaPter 5 Python ProgrammIng for the rasPberry PI

185

The syntax we use in Python is the class statement, which you can

use to help make your projects modular. By modular, we mean the source

code is arranged to make it easier to develop and maintain. Typically, we

place classes in separate modules (code files), which helps organize the

code better. While it is not required, I recommend using this technique

of placing a class in its own source file. This makes modifying the class or

fixing problems (bugs) easier.

So what are Python classes? Let’s begin by considering the construct

as an organization technique. We can use the class to group data and

methods together. The name of the class immediately follows the keyword

class followed by a colon. You declare other class methods like any other

method except the first argument must be self, which ties the method to

the class instance when executed.

METHOD OR FUNCTION?

I prefer to use terms that have been adopted by the language designers

or community of developers. for example, some use “function,” but others

may use “method.” still others may use subroutine, routine, procedure, etc.

It doesn’t matter which term you use, but you should strive to use terms

consistently. one example, which can be confusing to some, is I use the

term method when discussing object-oriented examples. that is, a class has

methods, not functions. however, you can use function in place of method, and

you’d still be correct (mostly).

Accessing the data is done using one or more methods by using

the class (creating an instance) and using dot notation to reference the

data member or function. Let’s look at an example. Listing 5-3 shows a

complete class that describes (models) the most basic characteristics of

a vehicle used for transportation. I created a file named vehicle.py to

contain this code.

ChaPter 5 Python ProgrammIng for the rasPberry PI

186

Listing 5-3. Vehicle Class

#

Beginning IOT Projects

#

Class Example: A generic vehicle

#

Dr. Charles Bell

#

class Vehicle:

 """Base class for defining vehicles"""

 axles = 0

 doors = 0

 occupants = 0

 def __init__(self, num_axles, num_doors):

 self.axles = num_axles

 self.doors = num_doors

 def get_axles(self):

 return self.axles

 def get_doors(self):

 return self.doors

 def add_occupant(self):

 self.occupants += 1

 def num_occupants(self):

 return self.occupants

ChaPter 5 Python ProgrammIng for the rasPberry PI

187

Notice a couple of things here. First, there is a method with the name

__init__(). This is the constructor and is called when the class instance is

created. You place all your initialization code like setting variables in this

method. We also have methods for returning the number of axles, doors,

and occupants. We have one method in this class to add occupants.

Also notice we address each of the class attributes (data) using

self.<name>. This is how we can ensure we always access the data that is

associated with the instance created.

Let’s see how this class can be used to define a family sedan.

Listing 5-4 shows code that uses this class. We can place this code in a

file named sedan.py.

Listing 5-4. Using the Vehicle Class

#

Beginning IoT Projects

#

Class Example: Using the generic Vehicle class

#

Dr. Charles Bell

#

from vehicle import Vehicle

sedan = Vehicle(2, 4)

sedan.add_occupant()

sedan.add_occupant()

sedan.add_occupant()

print("The car has {0} occupants.".format(sedan.num_

occupants()))

Notice the first line imports the Vehicle class from the vehicle module.

Notice I capitalized the class name but not the file name. This is a very

common naming scheme. Next in the code, we create an instance of the class.

ChaPter 5 Python ProgrammIng for the rasPberry PI

188

Notice I passed in 2, 4 to the class name. This will cause the __init__()

method to be called when the class is instantiated. The variable, sedan,

becomes the class instance variable (object) that we can manipulate, and

I do so by adding three occupants and then printing out the number of

occupants using the method in the Vehicle class.

We can run the code on our Raspberry Pi (or our PC) using the

following command. As we can see, it tells us there are three occupants in

the vehicle when the code is run. Nice:

$ python3 ./sedan.py

The car has 3 occupants.

OBJECT-ORIENTED PROGRAMMING (OOP) TERMINOLOGY

Like any technology or concept, there are a certain number of terms that you

must learn to be able to understand and communicate with others about the

technology. the following briefly describes some of the terms you will need to

know to learn more about object-oriented programming:

• Attribute: a data element in a class.

• Class: a code construct used to define an object in the form of

attributes (data) and methods (functions) that operate on the

data. methods and attributes in Python can be accessed using

dot notation.

• Class instance variable: a variable that is used to store an

instance of an object. they are used like any other variable and,

combined with dot notation, allow us to manipulate objects.

• Instance: an executable form of a class created by assigning a

class to a variable initializing the code as an object.

• Inheritance: the inclusion of attributes and methods from one

class in another.

ChaPter 5 Python ProgrammIng for the rasPberry PI

189

• Instantiation: the creation of an instance of a class.

• Method overloading: the creation of two or more methods with

the same name but with a different set of parameters. this

allows us to create methods that have the same name but may

operate differently depending on the parameters passed.

• Polymorphism: Inheriting attributes and methods from a base

class adding additional methods or overriding (changing)

methods.

there are many more ooP terms, but these are the ones you will encounter

most often.

Now, let’s see how we can use the Vehicle class to demonstrate

inheritance. In this case, we will create a new class named PickupTruck

that uses the Vehicle class but adds specialization to the resulting class.

Listing 5-5 shows the new class. I placed this code in a file named pickup_

truck.py. As you will see, a pickup truck is a type of vehicle.

Listing 5-5. PickupTruck Class

#

Beginning IoT Projects

#

Class Example: Inheriting the Vehicle class to form a

model of a pickup truck with maximum occupants and maximum

payload.

#

Dr. Charles Bell

#

from vehicle import Vehicle

ChaPter 5 Python ProgrammIng for the rasPberry PI

190

class PickupTruck(Vehicle):

 """This is a pickup truck that has:

 axles = 2,

 doors = 2,

 __max occupants = 3

 The maximum payload is set on instantiation.

 """

 occupants = 0

 payload = 0

 max_payload = 0

 def __init__(self, max_weight):

 super().__init__(2,2)

 self.max_payload = max_weight

 self.__max_occupants = 3

 def add_occupant(self):

 if (self.occupants < self.__max_occupants):

 super().add_occupant()

 else:

 print("Sorry, only 3 occupants are permitted in the

truck.")

 def add_payload(self, num_pounds):

 if ((self.payload + num_pounds) < self.max_payload):

 self.payload += num_pounds

 else:

 print("Overloaded!")

 def remove_payload(self, num_pounds):

 if ((self.payload - num_pounds) >= 0):

 self.payload -= num_pounds

ChaPter 5 Python ProgrammIng for the rasPberry PI

191

 else:

 print("Nothing in the truck.")

 def get_payload(self):

 return self.payload

Notice a few things here. First, notice the class statement: class

PickupTruck(Vehicle):. When we want to inherit from another class,

we add the parentheses with the name of the base class. This ensures

Python will use the base class allowing the derived class to use all its

accessible data and memory. If you want to inherit from more than one

class (called multiple inheritance), you can just list the classes with a

comma-separated list.

Next, notice the __max_occupants variable. Using two underscores in

a class for an attribute or a method, through convention, makes the item

private to the class. That is, it should only be accessed from within the

class. No caller of the class (via a class variable/instance) can access the

private items nor can any class derived from the class. It is always a good

practice to hide the attributes (data).

You may be wondering what happened to the occupant methods.

Why aren’t they in the new class? They aren’t there because our new class

inherited all that behavior from the base class. Not only that, but the code

has been modified to limit occupants to exactly three occupants.

I also want to point out the documentation I added to the class. We

use documentation strings (strings that use a set of three double quotes

before and after) to document the class. You can put documentation here

to explain the class and its methods. We’ll see a good use of this a bit later.

Finally, notice the code in the constructor. This demonstrates how

to call the base class method, which I do to set the number of axles and

doors. We could do the same in other methods if we wanted to call the

base class method’s version.

ChaPter 5 Python ProgrammIng for the rasPberry PI

192

Now, let’s write some code to use this class. Listing 5-6 shows the code

we use to test this class. Here, we create a file named pickup.py that creates

an instance of the pickup truck, adds occupants and payload, and then

prints out the contents of the truck.

Listing 5-6. Using the PickupTruck Class

#

Beginning IoT Projects

#

Class Example: Exercising the PickupTruck class.

#

Dr. Charles Bell

#

from pickup_truck import PickupTruck

pickup = PickupTruck(500)

pickup.add_occupant()

pickup.add_occupant()

pickup.add_occupant()

pickup.add_occupant()

pickup.add_payload(100)

pickup.add_payload(300)

print("Number of occupants in truck = {0}.".format(pickup.num_

occupants()))

print("Weight in truck = {0}.".format(pickup.get_payload()))

pickup.add_payload(200)

pickup.remove_payload(400)

pickup.remove_payload(10)

ChaPter 5 Python ProgrammIng for the rasPberry PI

193

Notice I add a couple of calls to the add_occupant() method, which

the new class inherits and overrides. I also add calls so that we can test the

code in the methods that check for excessive occupants and maximum

payload capacity. When we run this code, we will see the results as shown

in the following:

$ python3 ./pickup.py

Sorry, only 3 occupants are permitted in the truck.

Number of occupants in truck = 3.

Weight in truck = 400.

Overloaded!

Nothing in the truck.

Once again, I ran this code on my Raspberry Pi, but you can run all this

code on your PC and will see the same results.

There is one more thing we should learn about classes: built-in

attributes. Recall the __init__() method. Python automatically provides

several built-in attributes each starting with __ that you can use to learn

more about objects. The following lists a few of the operators available for

classes:

• __dict__: Dictionary containing the class namespace

• __doc__: Class documentation string

• __name__: Class name

• __module__: Module name where the class is defined

• __bases__: The base class(es) in order of inheritance

The following shows what each of these attributes returns for the

preceding PickupTruck class. I added this code to the pickup.py file:

print("PickupTruck.__doc__:", PickupTruck.__doc__)

print("PickupTruck.__name__:", PickupTruck.__name__)

ChaPter 5 Python ProgrammIng for the rasPberry PI

194

print("PickupTruck.__module__:", PickupTruck.__module__)

print("PickupTruck.__bases__:", PickupTruck.__bases__)

print("PickupTruck.__dict__:", PickupTruck.__dict__)

When this code is run, we see the following output:

PickupTruck.__doc__: This is a pickup truck that has:

 axles = 2,

 doors = 2,

 max occupants = 3

 The maximum payload is set on instantiation.

PickupTruck.__name__: PickupTruck

PickupTruck.__module__: pickup_truck

PickupTruck.__bases__: (<class 'vehicle.Vehicle'>,)

PickupTruck.__dict__: {'__module__': 'pickup_truck', '__doc__':

'This is a pickup truck that has:\n axles = 2,\n doors

= 2,\n max occupants = 3\n The maximum payload is set

on instantiation.\n ', 'occupants': 0, 'payload': 0, 'max_

payload': 0, ' _PickupTruck__max_occupants': 3, '__init__':

<function PickupTruck.__init__ at 0x1018a1488>, 'add_occupant':

<function PickupTruck.add_occupant at 0x1018a17b8>, 'add_

payload': <function PickupTruck.add_payload at 0x1018a1840>,

'remove_payload': <function PickupTruck.remove_payload at

0x1018a18c8>, 'get_payload': <function PickupTruck.get_payload

at 0x1018a1950>}

You can use the built-in attributes whenever you need more

information about a class. Notice the _PickupTruck__max_occupants entry

in the dictionary. Recall that we made a pseudo-private variable, __max_

occupants. Here, we see how Python refers to the variable by prepending

the class name to the variable. Remember variables that start with two

underscores (not one) should be considered private to the class and only

usable from within the class.

ChaPter 5 Python ProgrammIng for the rasPberry PI

195

Tip see https://docs.python.org/3/tutorial/classes.
html for more information about classes in Python.

Wow! That was a wild ride, wasn’t it? I hope that this short crash course

in Python has explained enough about the sample programs shown so far

that you now know how they work. This crash course also forms the basis

for understanding the other Python examples in this book.

OK, now it’s time to see some of these fundamental elements of Python

in action.

 Example Scripts
Now, let’s work on a couple of example Python scripts that you can use

to experiment with writing Python on the Raspberry Pi. None require

additional hardware, and you can execute them on any PC if you don’t

have a Raspberry Pi setup. We’ll start with a few simple examples, then

move on to the temperature conversion example from Chapter 3, and close

with an example using classes.

I explain the code in detail for each example and show example output

when you execute the code. I encourage you to implement these examples

and figure out the challenge yourself as practice for the projects later in

this book.

 Example 1: Using Loops
This example demonstrates how to write loops in Python using the for

loop. The problem we are trying to solve is converting integers from

decimal to binary, hexadecimal, and octal. Often with IoT projects, we

need to see values in one or more of these formats, and in some cases

the sensors we use (and the associated documentation) use hexadecimal

ChaPter 5 Python ProgrammIng for the rasPberry PI

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

196

rather than decimal. Thus, this example can be helpful in the future not

only for how to use the for loop but also how to convert integers into

different formats.

 Write the Code

The example begins with a tuple of integers to convert. Tuples and lists can

be iterated through (values read in order) using a for loop. Recall a tuple

is read-only, so in this case since it is input, it is fine. However, in other

cases where you may need to change values, you will want to use a list.

Recall the syntactical difference between a tuple and a list is the tuple uses

parentheses and a list uses square brackets.

The for loop demonstrated here is called a “for each” loop. Notice we

used the syntax “for value in values,” which tells Python to iterate over the

tuple named values fetching (storing) each item into the value variable

each iteration through the tuple.

Finally, we use the print() and format() functions to replace two

placeholders {0} and {1} and to print out a different format of the

integer using the methods bin() for binary, oct() for octal, and hex() for

hexadecimal that do the conversion for us.

Listing 5-7 shows the completed code for this example.

Listing 5-7. Converting Integers

#

Beginning IoT Projects

#

Example: Convert integer to binary, hex, and octal

#

Dr. Charles Bell

#

ChaPter 5 Python ProgrammIng for the rasPberry PI

197

Create a tuple of integer values

values = (12, 450, 1, 89, 2017, 90125)

Loop through the values and convert each to binary, hex, and

octal

for value in values:

 print("{0} in binary is {1}".format(value, bin(value)))

 print("{0} in octal is {1}".format(value, oct(value)))

 print("{0} in hexadecimal is {1}".format(value,

hex(value)))

 Execute the Code

You can save this code in a file named conversions.py, then open a

terminal (console window), and run the code with the command python3

./conversions.py. Listing 5-8 shows the output.

Listing 5-8. Conversions Example Output

$ python3 ./conversions.py

12 in binary is 0b1100

12 in octal is 0o14

12 in hexadecimal is 0xc

450 in binary is 0b111000010

450 in octal is 0o702

450 in hexadecimal is 0x1c2

1 in binary is 0b1

1 in octal is 0o1

1 in hexadecimal is 0x1

89 in binary is 0b1011001

89 in octal is 0o131

89 in hexadecimal is 0x59

2017 in binary is 0b11111100001

ChaPter 5 Python ProgrammIng for the rasPberry PI

198

2017 in octal is 0o3741

2017 in hexadecimal is 0x7e1

90125 in binary is 0b10110000000001101

90125 in octal is 0o260015

90125 in hexadecimal is 0x1600d

Notice all the values in the tuple were converted.

 Example 2: Using Complex Data and Files
This example demonstrates how to work with the JavaScript Object

Notation3 (JSON) in Python. In short, JSON is a markup language used to

exchange data. Not only is it human readable, it can be used directly in

your applications to store and retrieve data to and from other applications,

servers, and even MySQL. In fact, JSON looks familiar to programmers

because it resembles other markup schemes. JSON is also very simple in

that it supports only two types of structures: 1) a collection containing

(name, value) pairs and 2) an ordered list (or array). Of course, you can

also mix and match the structures in an object. When we create a JSON

object, we call it a JSON document.

The problem we are trying to solve is writing and reading data to/from

files. In this case, we will use a special JSON encoder and decoder module

named json that allows us to easily convert data in files (or other streams)

to and from JSON. As you will see, accessing JSON data is easy by simply

using the key (sometimes called fields) names to access the data. Thus,

this example can be helpful in the future not only for how to read and write

files but also how to work with JSON documents.

3 www.json.org/json-en.html

ChaPter 5 Python ProgrammIng for the rasPberry PI

http://www.json.org/json-en.html

199

 Write the Code

This example stores and retrieves data in files. The data is basic

information about pets including the name, age, breed, and type. The type

is used to determine broad categories like fish, dog, or cat.

We begin by importing the JSON module (named json), which is

built into Python. Next, we prepare some initial data by building JSON

documents and storing them in a Python list. We use the json.loads()

method to pass in a JSON-formatted string. The result is a JSON document

that we can add to our list. The examples use a very simple form of JSON

documents – a collection of (name, value) pairs. The following shows one

of the JSON-formatted strings used:

{"name":"Violet", "age": 6, "breed":"dachshund", "type":"dog"}

Notice we enclose the string inside curly braces and use a series of key

names and values and a colon separated by commas. If this looks familiar,

it’s because it is the same format as a Python dictionary. This demonstrates

my comment that JSON syntax looks familiar to programmers.

The JSON method, json.loads(), takes the JSON-formatted string,

then parses the string checking for validity, and returns a JSON document.

We then store that document in a variable and add it to the list as shown in

the following:

parsed_json = json.loads('{"name":"Violet", "age": 6,

 "breed":"dachshund", "type":"dog"}')

pets.append(parsed_json)

Once the data is added to the list, we then write the data to a file

named my_data.json. To work with files, we first open the file with the

open() function, which takes a file name (including a path if you want to

put the file in a directory) and an access mode. We use “r” for read and “w”

for write. You can also use “a” for append if you want to open a file and add

ChaPter 5 Python ProgrammIng for the rasPberry PI

200

to the end. Note that the “w” access will overwrite the file when you write

to it. If the open() function succeeds, you get a file object that permits you

to call additional functions to read or write data. The open() will fail if the

file is not present (and you have requested read access) or you do not have

permissions to write to the file.

Once the file is open, we can write the JSON documents to the file

by iterating over the list. Iteration means to start at the first element and

access the elements in the list one at a time in order (the order they appear

in the list). Recall iteration in Python is very easy. We simply say “for each

item in the list” with the for loop as follows:

for pet in pets:

 # do something with the pet data

To write the JSON document to the file, we use the json.dumps()

method, which will produce a JSON-formatted string writing that to the

file using the file variable and the write() method. Thus, we now see how

to build JSON documents from strings and then decode (dump) them to a

string.

Once we’ve written data to the file, we then close the file with the

close() function and then reopen it and read data from the file. In this

case, we use another special implementation of the for loop. We use the

file variable to read all of the lines in the file with the readlines() method

and then iterate over them with the following code:

json_file = open("my_data.json", "r")

for pet in json_file.readlines():

 # do something with the pet string

We use the json.loads() method again to read the JSON-formatted

string as read from the file to convert it to a JSON document, which we add

to another list. We then close the file. Now the data has been read back into

ChaPter 5 Python ProgrammIng for the rasPberry PI

201

our program, and we can use it. Finally, we iterate over the new list and

print out data from the JSON documents using the key names to retrieve

the data we want. Listing 5-9 shows the completed code for this example.

Listing 5-9. Writing and Reading JSON Objects to/from Files

#

Beginning IoT Projects

#

Example: Storing and retrieving JSON objects in files

#

Dr. Charles Bell

#

import json

Prepare a list of JSON documents for pets by converting JSON

to a dictionary

pets = []

parsed_json = json.loads('{"name":"Violet", "age": 6,

"breed":"dachshund", "type":"dog"}')

pets.append(parsed_json)

parsed_json = json.loads('{"name": "JonJon", "age": 15,

"breed":"poodle", "type":"dog"}')

pets.append(parsed_json)

parsed_json = json.loads('{"name": "Mister", "age": 4,

"breed":"siberian khatru", "type":"cat"}')

pets.append(parsed_json)

parsed_json = json.loads('{"name": "Spot", "age": 7,

"breed":"koi", "type":"fish"}')

pets.append(parsed_json)

parsed_json = json.loads('{"name": "Charlie", "age": 6,

"breed":"dachshund", "type":"dog"}')

pets.append(parsed_json)

ChaPter 5 Python ProgrammIng for the rasPberry PI

202

Now, write these entries to a file. Note: overwrites the file

json_file = open("my_data.json", "w")

for pet in pets:

 json_file.write(json.dumps(pet))

 json_file.write("\n")

json_file.close()

Now, let's read the JSON documents then print the name and

age for all of the dogs in the list

my_pets = []

json_file = open("my_data.json", "r")

for pet in json_file.readlines():

 parsed_json = json.loads(pet)

 my_pets.append(parsed_json)

json_file.close()

print("Name, Age")

for pet in my_pets:

 if pet['type'] == 'dog':

 print("{0}, {1}".format(pet['name'], pet['age']))

Notice the loop for writing data. We added a second write() method

passing in a strange string (it is actually an escaped character). The

\n is a special character called the newline character. This forces the

JSON-formatted strings to be on separate lines in the file and helps with

readability.

Tip for a more in-depth look at how to work with files in Python,
see https://docs.python.org/3/tutorial/inputoutput.
html#reading-and-writing-files.

ChaPter 5 Python ProgrammIng for the rasPberry PI

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

203

So what does the file look like? The following is a dump of the file

using the more utility, which shows the contents of the file. Notice the file

contains the JSON-formatted strings just like we had in our code:

$ more my_data.json

{"age": 6, "breed": "dachshund", "type": "dog", "name":

"Violet"}

{"age": 15, "breed": "poodle", "type": "dog", "name": "JonJon"}

{"age": 4, "breed": "siberian khatru", "type": "cat", "name":

"Mister"}

{"age": 7, "breed": "koi", "type": "fish", "name": "Spot"}

{"age": 6, "breed": "dachshund", "type": "dog", "name": "Charlie"}

Now, let’s see what happens when we run this script.

 Execute the Code

You can save this code in a file named rw_json.py, then open a terminal

(console window), and run the code with the command python3 ./rw_

json.py. The following shows the output:

$ python3 ./rw_json.py

Name, Age

Violet, 6

JonJon, 15

Charlie, 6

While the output may not be very impressive, by completing the

example, you’ve learned a great deal about working with files and

structured data using JSON documents.

ChaPter 5 Python ProgrammIng for the rasPberry PI

204

 Example 3: Temperature Conversion
Recall from Chapter 3 an example where we wrote a sketch to convert

temperature on the Arduino. Let’s see how to do that same operation in

Python. In this example, we will build a temperature conversion script that

converts values in Fahrenheit to Celsius and Celsius to Fahrenheit using

the terminal for input and output.

 Write the Code

This example is very similar to the Arduino example in Chapter 3. In fact, it

is a rewrite using nearly the same logic. What differs most showcases some

of the versatility of Python over the Arduino language.

For example, reading input from the user is much easier with the Python

input() function. Similarly, the print() method is also easier to use and can

operate on one or more variables, thereby allowing to use fewer statements.

Aside from that, the code also includes a check for repeating the

conversion instead of an endless loop. This means we can ask the user if

they want to continue and, if not, to exit the script. The rest of the code is

merely a conversion from the Arduino language syntax to Python. Take

some time and read through the code comparing it to the sketch from

Chapter 3. You should see it is very similar and you may even agree easier

to read. Listing 5-10 shows the completed code for the example.

Listing 5-10. Temperature Conversion

#

Beginning IoT Projects

#

Example Python sketch to convert temperature to F or C.

#

Created by Dr. Charles Bell

#

ChaPter 5 Python ProgrammIng for the rasPberry PI

205

Imports

import time

Convert temperature to Celsius or Fahrenheit

def convert_temp(scale_read, base_temp):

 """convert_temp"""

 if scale_read in {'c', 'C'}:

 return ((9.0 / 5.0) * base_temp) + 32.0

 return (5.0 / 9.0) * (base_temp - 32.0)

converted_temp = 0.0

done = False

while not done:

 temperature = 0.0

 scale = input("\nPlease choose a starting scale (F) or (C): ")

 # Throw error if scale is not one of the valid characters

 if scale not in {'c', 'C', 'f', 'F'}:

 print("\nERROR: I'm sorry, I don't understand

'{0}'.".format(scale))

 else:

 temperature = float(input("Please enter a temperature: "))

 converted_temp = convert_temp(scale, temperature)

 from_scale = ''

 to_scale = ''

 if scale in {'c', 'C'}:

 from_scale = "Celsius"

 to_scale = "Fahrenheit."

 else:

 from_scale = "Fahrenheit."

 to_scale = "Celsius"

ChaPter 5 Python ProgrammIng for the rasPberry PI

206

 print("{0} degrees {1} = {2:4.2f} {3}".format

(temperature, from_scale, converted_temp, to_scale))

 time.sleep(1)

 done = input("\nConvert another value (Y)? ") not in {'y', 'Y'}

Now, let’s see what happens when we run this script.

 Execute the Code

You can save this code in a file named temperature_converter.py, then

open a terminal (console window), and run the code with the command

python3 ./temperature_converter.py. The following shows the output:

$ python3 ./temperature_converter.py

Please choose a starting scale (F) or (C): F

Please enter a temperature: 55.44

55.44 degrees Fahrenheit. = 13.02 Celsius

Convert another value (Y)? n

 Example 4: Using Classes
This example ramps up the complexity considerably by introducing

an object-oriented programming concept: classes. Recall from earlier

that classes are another way to modularize our code. Classes are used

to model data and behavior on that data. Further, classes are typically

placed in their own code module (file) that further modularizes the code.

If you need to modify a class, you may need to only change the code in

the class module.

ChaPter 5 Python ProgrammIng for the rasPberry PI

207

The problem we’re exploring in this example is how to develop

solutions using classes and code modules. We will be creating two files:

one for the class and another for the main code.

 Write the Code

This example is designed to convert Roman numerals to integers. That is,

we will enter a value like VIII, which is eight, and expect to see the integer 8.

To make things more interesting, we will also take the integer we derive

and convert it back to Roman numerals.

Roman numerals are formed as a string using the characters I for 1,

V for 5, X for 10, L for 50, C for 100, D for 500, and M for 1000. Other

numbers are formed by adding the character values together (e.g., 3 = III)

or putting a single, lower character before a higher character to indicate

the representative minus that character (e.g., 4 = IV). The following shows

some examples of how this works:

3 = III

15 = XV

12 = XII

24 = XXIV

96 = LXLVI

107 = CVII

This may sound like a lot of extra work, but consider this: if we can

convert from one format to another, we should be able to convert back

without errors. More specifically, we can use the code for one conversion

to validate the other. If we get a different value when converting it back, we

know we have a problem that needs to be fixed.

ChaPter 5 Python ProgrammIng for the rasPberry PI

208

To solve the problem, we will place the code for converting Roman

numerals into a separate file (code module) and build a class called

RomanNumerals to contain the methods. In this case, the data is a mapping

of integers to Roman numerals:

Private dictionary of roman numerals

__roman_dict = {

 'I': 1,

 'IV': 4,

 'V': 5,

 'IX': 9,

 'X': 10,

 'XL': 40,

 'L': 50,

 'XC': 90,

 'C': 100,

 'CD': 400,

 'D': 500,

 'CM': 900,

 'M': 1000,

}

Notice the two underscores before the name of the dictionary. This is a

special notation that marks the dictionary as a private variable in the class.

This is a Python aspect for information hiding, which is a recommended

technique to use when designing objects; always strive to hide data that is

used inside the class.

Notice also that instead of using the basic characters and their values,

I used several other values too. I did this to help make the conversion

easier (and cheat a bit). In this case, I added the entries that represent the

previous one-value conversions such as 4 (IV), 9 (IX), etc. This makes the

conversion a bit easier (and more accurate).

ChaPter 5 Python ProgrammIng for the rasPberry PI

209

We will also add two methods: convert_to_int(), which takes a

Roman numeral string and converts it to an integer, and convert_to_

roman(), which takes an integer and converts it to a Roman numeral.

Rather than explain every line of code in the methods, I leave it to you to

read the code to see how it works.

Simply, the convert to integer method takes each character and gets its

value from the dictionary summing the values. There is a trick there that

requires special handling for the lower value characters appearing before

higher values (e.g., IX). The convert to Roman method is a bit easier since

we simply divide the value by the highest value in the dictionary until

we reach zero. Listing 5-11 shows the code for the class module, which is

saved in a file named roman_numerals.py.

Listing 5-11. RomanNumerals Class

#

Beginning IoT Projects

#

Example: Roman numerals class

#

Convert integers to roman numerals

Convert roman numerals to integers

#

Dr. Charles Bell

#

class RomanNumerals:

 # Private dictionary of roman numerals

 __roman_dict = {

 'I': 1,

 'IV': 4,

 'V': 5,

 'IX': 9,

ChaPter 5 Python ProgrammIng for the rasPberry PI

210

 'X': 10,

 'XL': 40,

 'L': 50,

 'XC': 90,

 'C': 100,

 'CD': 400,

 'D': 500,

 'CM': 900,

 'M': 1000,

 }

 def convert_to_int(self, roman_num):

 value = 0

 for i in range(len(roman_num)):

 if i > 0 and \

 self.__roman_dict[roman_num[i]] > \

 self.__roman_dict[roman_num[i - 1]]:

 value += self.__roman_dict[roman_num[i]] - 2 \

 * self.__roman_dict[roman_num[i - 1]]

 else:

 value += self.__roman_dict[roman_num[i]]

 return value

 def convert_to_roman(self, int_value):

 # First, get the values of all of entries in the

dictionary

 roman_values = list(self.__roman_dict.values())

 roman_keys = list(self.__roman_dict.keys())

 # Prepare the string

 roman_str = ""

 remainder = int_value

 # Loop through the values in reverse

 for i in range(len(roman_values)-1, -1, -1):

ChaPter 5 Python ProgrammIng for the rasPberry PI

211

 count = int(remainder / roman_values[i])

 if count > 0:

 for j in range(0,count):

 roman_str += roman_keys[i]

 remainder -= count * roman_values[i]

 return roman_str

Now let’s look at the main code. For this, we simply need to import the

new class from the code module as follows. This is a slightly different form

of the import directive. In this case, we’re telling Python to include the

roman_numerals class from the file named RomanNumerals.

from roman_numerals import RomanNumerals

Note If the code module were in a subfolder, say roman, we
would have written the import statement as from roman import
Roman_Numerals where we list the folders using dot notation
instead of slashes.

The rest of the code is straightforward. We first ask the user for a valid

Roman numeral string, then convert it to integer, and use that value to

convert back to a Roman numeral string printing the result. So, you see,

having the class in a separate module has simplified our code making it

shorter and easier to maintain. Listing 5-12 shows the complete main code.

Listing 5-12. Converting Roman Numerals

#

Beginning IoT Projects

#

Example: Convert roman numerals using a class

#

ChaPter 5 Python ProgrammIng for the rasPberry PI

212

Convert integers to roman numerals

Convert roman numerals to integers

#

Dr. Charles Bell

#

from roman_numerals import RomanNumerals

roman_str = input("Enter a valid roman numeral: ")

roman_num = RomanNumerals()

Convert to roman numerals

value = roman_num.convert_to_int(roman_str)

print("Convert to integer: {0} = {1}".format

(roman_str, value))

Convert to integer

new_str = roman_num.convert_to_roman(value)

print("Convert to Roman Numerals: {0} = {1}".format(value,

new_str))

print("bye!")

Now, let’s see what happens when we run this script.

 Execute the Code

You can save this code in a file named roman.py, then open a terminal

(console window), and run the code with the command python3 ./

roman.py. The following shows the output:

$ python3 ./roman.py

Enter a valid roman numeral: MVXIII

Convert to integer: MVXIII = 1008

Convert to Roman Numerals: 1008 = MVIII

bye!

ChaPter 5 Python ProgrammIng for the rasPberry PI

213

Go ahead and try this example a few more times. See what happens

when you enter various Roman numerals. Hint: Try entries that are not

quite valid like XIIIIV and see what happens. Does it work, and if so, can

you figure out why (or why not)?

 Summary
If you are learning how to work with IoT projects and don’t know how

to program with Python, learning Python can be fun given its easy-to-

understand syntax. While there are many examples on the Internet you

can use, very few are documented in such a way as to provide enough

information for someone new to Python to understand or much less get

started or even compile and deploy the sample!

This chapter has provided a crash course in Python that covered

the basics of the things you will encounter when examining most of the

smaller example projects. We discovered the basic syntax and constructs

of a Python application including a few simple examples to illustrate the

concepts.

In the next chapter, we’ll take a closer look at one exciting new

component system designed to make building IoT and similar projects

easier – the Qwiic Component System.

ChaPter 5 Python ProgrammIng for the rasPberry PI

PART II

The Qwiic and
STEMMA QT
Component Systems
This part introduces the Qwiic and STEMMA QT component systems

including a series of chapters containing example projects that detail the

steps needed to implement them with the Arduino and Raspberry Pi.

While the example projects are not complete IoT solutions in that they are

not integrated with the cloud, they are a good starting point to learn how to

program IoT projects for the Arduino and Raspberry Pi.

217© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_6

CHAPTER 6

Introducing Qwiic
and STEMMA QT
Building IoT projects can be quite challenging and even more so for

those without any electronics experience. While almost everyone can,

given time, learn how to work with electronic components by following a

detailed example, few may have the time to devote, or some may simply

not be interested in learning more than is minimally necessary.

For those readers, you can rejoice! There are several component

systems that have been developed to accomplish these goals including the

following:

• Qwiic system from SparkFun (www.sparkfun.com/

qwiic)

• STEMMA/STEMMA QT from Adafruit (www.adafruit.

com/category/1005)

• Grove from Seeed Studio (https://wiki.seeedstudio.

com/Grove/)

All three support a vast array of components and each an excellent

choice. Since they are compatible, we will cover Qwiic and STEMMA QT in

this chapter and Grove in Chapter 12.

https://doi.org/10.1007/978-1-4842-7234-3_6#DOI
http://www.sparkfun.com/qwiic
http://www.sparkfun.com/qwiic
http://www.adafruit.com/category/1005
http://www.adafruit.com/category/1005
https://wiki.seeedstudio.com/Grove/
https://wiki.seeedstudio.com/Grove/

218

 Overview
In this section, we will discover the Qwiic and STEMMA QT component

systems. We will learn about the capabilities and limitations of the systems

as well as examples of the components available. The chapter also includes

details on how to start using the components in projects.

Both systems are designed to make building projects faster using

pluggable modules containing sensors, input, output, and other functions.

They both implement a modularized Inter-Integrated Circuit (I2C)

(sometimes written I2C) communication protocol.

 What Is I2C?
I2C is a fast digital protocol that uses two wires (plus power and ground)

to read data from circuits (or devices). The I2C protocol is perhaps the

most common protocol that you will find on breakout boards1 (a separate

printed circuit board (PCB) with pins mounted).

Most host boards such as the Arduino and Raspberry Pi support the

I2C protocol, and the pins can be found in the GPIO header. In fact, this

is how you would connect I2C devices if you were not using a component

system. For example, Figure 6-1 shows the I2C pins including power and

ground on the Arduino.

1 https://theorycircuit.com/breakout-boards-electronics/

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

https://theorycircuit.com/breakout-boards-electronics/

219

Figure 6-2 shows the I2C pins on the Raspberry Pi GPIO.

Note the Qwiic host adapter reroutes the I2C pins to its own
circuits to support Qwiic and SteMMa Qt modules.

Figure 6-1. I2C hardware interface location (Arduino)

Figure 6-2. I2C hardware interface location (Raspberry Pi)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

220

The protocol is designed to allow the use of multiple devices (slaves)

with a single master (the host board with adapter). Thus, each I2C

breakout board will have its own address or identity that you will use in

the driver to connect to and communicate with the device. Thus, you can

connect a number of devices to the same “chain” of I2C modules. For

example, the Qwiic host adapter can support over 100 modules.

Tip You can read about the details of I2C including how it works at
https://learn.sparkfun.com/tutorials/i2c/all.

Now that we know what I2C is, let’s see how easy the Qwiic Component

System makes use of it.

 The Qwiic Component System
Qwiic was created and released in 2017 by SparkFun (sparkfun.com) to

speed up their prototyping efforts. They found they were spending some

time doing a lot of soldering. To save them time, they created a system

of connectors to modularize connections for the I2C communication

protocol.

The Qwiic Component System eliminates soldering and tedious

connections that most hardware examples require; it does so using a

common connector. This frees you to learn more about how to write the

code behind your project and thereby make more sophisticated projects

with far fewer hardware issues.

The Qwiic system is a set of host adapters (also called hats, shields,

carrier boards, etc.) available for a variety of platforms (Arduino,

Raspberry Pi, etc.) and modules that contain small circuits that include

sensors, input devices, output devices, and more. The modules come

with mounting holes for permanently mounting the module in an

enclosure. A nice touch.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

https://learn.sparkfun.com/tutorials/i2c/all

221

Each host adapter contains one or more Qwiic connectors. These

host adapters simply connect to your host board enabling the use of

Qwiic modules without the need for additional electronics such as

breadboards and discrete components or, in most cases,2 without

soldering. SparkFun has also added Qwiic connectors to many of their

own Arduino and similar platforms eliminating the cost of adding a host

adapter to your project.

Each module is self-contained; all of the supporting electrical

components are on the module mounted on a small PCB (most come in a

pretty red color in fact). All you need to do is connect the modules to your

host adapter using a Qwiic wiring lead, and your hardware is done.

 Capabilities

The capabilities of the Qwiic system are as elegant and simple as the

products themselves and include the following:

• Modularized I2C bus.

• Easy, polarized connectors (no incorrect or reversed

connections3).

• Modules can be daisy chained to form a linear array of

modules.

• No soldering required!

• Over 100 modules can be chained together.

2 A few host adapters may come without headers soldered.
3 Perhaps the greatest bane of anyone working with I2C is inadvertently reversing

the data and clock connections. Qwiic eliminates that guesswork entirely.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

222

 How Does It Work?

Qwiic uses a four-pin cable with JST connectors.4 As mentioned, the cable

is polarized, which means you can only connect the cable to the device

one way, so you always know the connections are correct. You can even

daisy chain modules together to make complex projects. Figure 6-3 shows

a simple example.

The pinout for the cable and the color for each wire are as shown in

Table 6-1. The connector itself is black in color (those purchased from

SparkFun) or white (the STEMMA QT connector is the same pinout – more

on that in the next section).

4 https://en.wikipedia.org/wiki/JST_connector

Figure 6-3. Qwiic daisy chain (courtesy of sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

https://en.wikipedia.org/wiki/JST_connector

223

Figure 6-4 shows a closeup of the female connector (the one you will

plug the cable into) along with a drawing of the connector pins. Note the

pins are listed from bottom to top in the drawing.

Notice the “ears” on either side of the female connector. These are

offset so that you can only plug the cable in one direction. Cool! Figure 6- 5

shows a typical Qwiic cable. This one is 50mm long making it one of

the shorter cables. You can purchase cables in lengths 50, 100, 200, and

500mm (www.sparkfun.com/categories/tags/qwiic- cables).

Table 6-1. Qwiic Connector Pinout

Pin Connection Color

1 ground Black

2 3.3V red

3 Sda (data) Blue

4 SCL (clock) Yellow

Figure 6-4. Qwiic connector and pinout (courtesy of sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/categories/tags/qwiic-cables

224

The Qwiic modules typically have two female connectors that allow

you to form the daisy chain. Just plug a cable into each socket to chain

modules together. The order doesn’t matter because each module will

“answer” at a specific address. The last module in the chain does not need

to be terminated – just don’t plug another cable into the last connector.

Figure 6-6 shows a typical Qwiic module.

Figure 6-5. 50mm Qwiic cable (courtesy of sparkfun.com)

Figure 6-6. Qwiic module (courtesy of sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

225

Notice the two Qwiic connectors as well as additional holes at the

bottom of the board. These additional holes can be used to solder a header

allowing you to make use of any specialized operations. For example,

notice the holes marked SCL, SDA, 3.3V, and GND. Yes, these are the I2C

pins, which means you can use this module in other projects that do not

have a Qwiic host adapter. Most modules have similar breakout pins.

The host adapter has one or more Qwiic connectors that you can use to

form chains of modules. There are a variety of host adapters available for

a growing list of host boards. This includes the Arduino (three varieties),

micro:bit (three varieties), MicroMod (four varieties), Photon, Raspberry

Pi (seven varieties), and Teensy (two varieties) boards. You can discover

the latest offerings by visiting the following links. There’s even a Qwiic hat

for the Raspberry Pi 400 (www.sparkfun.com/products/17512):

• Hats (e.g., Raspberry Pi): www.sparkfun.com/

categories/tags/qwiic- hats

• Shields (e.g., Arduino, Teensy): www.sparkfun.com/

categories/tags/qwiic- shields

• Carrier boards (e.g., micro:bit, MicroMod): www.

sparkfun.com/categories/tags/qwiic- carrier-

boards

The hat that most will want to use is called the Qwiic Pi HAT (www.

sparkfun.com/products/14459) that provides four Qwiic connectors as

well as some most used GPIO pins broken out. It is designed to mount

on the Raspberry Pi GPIO header so that the hat extends beyond the

Raspberry Pi board making it easy to use the board with a case. Figure 6-7

shows a Qwiic hat for the Raspberry Pi.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/17512
http://www.sparkfun.com/categories/tags/qwiic-hats
http://www.sparkfun.com/categories/tags/qwiic-hats
http://www.sparkfun.com/categories/tags/qwiic-shields
http://www.sparkfun.com/categories/tags/qwiic-shields
http://www.sparkfun.com/categories/tags/qwiic-carrier-boards
http://www.sparkfun.com/categories/tags/qwiic-carrier-boards
http://www.sparkfun.com/categories/tags/qwiic-carrier-boards
http://www.sparkfun.com/products/14459
http://www.sparkfun.com/products/14459

226

Notice the most used pins represented as a line of holes below the

GPIO header. This is where you can solder a pin header (or wires directly)

to access those GPIO pins easier. Another cool feature!

Note If your host adapter has multiple Qwiic connectors, do not
form a loop by connecting the last module in the chain to the host
adapter.

Now that we know what the Qwiic system is and how it works, let’s

examine some of the limitations.

 Limitations

Like most systems, there are some limitations. Fortunately, there are few,

and only the largest or most complex projects may need to heed.

Aside from the fact that the interface supports only I2C, there are

few other limitations. Most notable is the system is designed for 3.3V, so

platforms that use 5V will need to drop the voltage to use the modules,

most likely on the host adapter.

Another limitation is the length of the daisy chain. The I2C bus was

designed originally to be used on printed circuit boards rather than over

longer wires. However, SparkFun reports that chains up to about 4 feet

Figure 6-7. Qwiic host adapter (hat) for Raspberry Pi (courtesy of
sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

227

should work. If you need to use a longer cable or daisy chain, you will

need to use the differential I2C breakout board (www.sparkfun.com/

products/14589), which permits you to send the I2C signal over an

Ethernet cable (RJ-45 connector). This means you could potentially use

up to a 100-foot cable to connect a remote module. Figure 6-8 shows the

differential I2C breakout board.

You may also think that if the I2C module you already own or find

elsewhere doesn’t have a Qwiic connector, you cannot use it with the

Qwiic system. That limitation can easily be overcome by using the Qwiic

Adapter (www.sparkfun.com/products/14495), which is a tiny board that

you can add additional Qwiic connectors. Figure 6-9 shows the Qwiic

Adapter.

Figure 6-8. Differential I2C breakout board (courtesy of sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/14589
http://www.sparkfun.com/products/14589
http://www.sparkfun.com/products/14495

228

Now that we know more about Qwiic, let’s look at the STEMMA QT

system.

 The STEMMA QT Component System
To understand the STEMMA QT system, we must start with the

original project from Adafruit from which STEMMA QT originates:

STEMMA. Adafruit created the STEMMA system in 2018 and began adding

connectors to some of their components.

Interestingly, the goals of this project are very similar to Qwiic: to

minimize soldering during prototyping or building projects. As you can

imagine, this makes the STEMMA system very similar to the Qwiic system.

But there are some differences.

Figure 6-9. Qwiic Adapter (courtesy of sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

229

Rather than support a single protocol, Adafruit designed STEMMA

to support I2C, pulse wave modulation (PWM), analog, and digital – just

about all of the major protocols you may use for complex projects. These

connectors are either three- or four-pin JST connectors. Each connector

supports a different segment of these protocols as follows:

• STEMMA four-pin JST: 0.2mm pitch connector

supporting I2C. Connectors are the same size as those

used in the Grove system allowing for integration.

• STEMMA three-pin JST: 2.0mm pitch connector that

supports PWM, analog, and digital.

• STEMMA QT 5 four-pin JST: 0.1mm pitch connector

supporting I2C. Connectors are the same size as

the Qwiic system making all STEMMA QT modules

compatible with Qwiic host adapters.

You may be wondering why the system has three different connectors.

The answer is practicality. Some boards and modules are smaller and may

not have enough space for the larger connectors, making the smaller pitch

connectors better suited for smaller modules and breakout boards.

While the STEMMA system supports more protocols than Qwiic, we

will limit our discussion to the STEMMA QT connectors that support I2C

and are pin compatible with Qwiic. Feel free to explore the other STEMMA

and STEMMA QT offerings from Adafruit by visiting www.adafruit.com/

category/1005 for a complete list.

Tip If you’d like to learn more about SteMMa and the other
connector types, see https://learn.adafruit.com/
introducing- adafruit- stemma- qt.

5 Comically pronounced “cutie.”

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.adafruit.com/category/1005
http://www.adafruit.com/category/1005
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt

230

Like Qwiic, the STEMMA QT system is a collection of modules that

can be connected together with a simple cable to the host board. However,

unlike Qwiic, there are currently only a few STEMMA QT host adapters

available. Notable adapters from Adafruit include those with a color

display for the Raspberry Pi (www.adafruit.com/product/4393 and www.

adafruit.com/product/4484), which have Qwiic connectors on the

bottom. Instead, Adafruit has added STEMMA QT connectors to many of

their boards including the Feather, Circuit Playground, and more.

The STEMMA QT modules are where the Adafruit products shine. You

can get many different modules supporting STEMMA QT from cameras,

sensors, a variety of displays, and even a speaker. Adding the fact that the

STEMMA QT modules are compatible with Qwiic host adapters means

choosing Qwiic and STEMMA QT enables you to choose from a long list of

modules!

 Capabilities

The capabilities of the STEMMA QT system are very similar to the Qwiic

system and equally as elegant including the following:

• Modularized I2C bus.

• Easy, polarized connectors (no incorrect or reversed

connections6).

• Modules can be daisy chained to form a linear array of

modules.

• No soldering required!

• Over 100 modules can be chained together.

6 Perhaps the greatest bane of anyone working with I2C is inadvertently reversing
the data and clock connections. STEMMA QT eliminates that guesswork entirely.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.adafruit.com/product/4393
http://www.adafruit.com/product/4484
http://www.adafruit.com/product/4484

231

The major difference is the STEMMA QT modules can accept 3–5V

DC, whereas the Qwiic operates at 3.3V. Adafruit wanted to keep the 5V

capability in order to power some of their modules that use LEDs, which

operate better at the higher voltage. So one must be careful when mixing

Qwiic and STEMMA QT modules. More on that later in this chapter.

 How Does It Work?

Recall STEMMA QT has the same four-pin cable with JST polarized

connectors as Qwiic and you can even daisy chain modules together

to make complex projects. Figure 6-10 shows a simple example using a

temperature and pressure sensor with Adafruit’s Feather Express board

(www.adafruit.com/product/4382).

The pinout for the cable and the color for each wire are the same as

the Qwiic connector with the notable exception that STEMMA QT can

support 3–5V power. Similarly, STEMMA QT cables are also the same

connectors, so you can use either in your project.

Figure 6-10. STEMMA QT daisy chain (courtesy of adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.adafruit.com/product/4382

232

Like Qwiic, STEMMA QT modules typically have two female

connectors that allow you to form the daisy chain. Since these are made or

sold by Adafruit, they come with a black or blue PCB. Figure 6-11 shows a

typical STEMMA QT module.

Once again, like Qwiic connectors, the boards typically include a

breakout section, so you can use the modules in other projects that do not

have a Qwiic or STEMMA QT host adapter. Most modules have similar

breakout pins. Most also come with mounting holes for permanently

mounting the module in an enclosure. A nice touch.

Recall there are not that many STEMMA QT host adapters available

beyond the ones for the Raspberry Pi. Fortunately, you can use the Qwiic

host adapters instead. Regardless, if you want a display in your project and

you’re using the Raspberry Pi, you cannot go wrong with either Mini PiTFT

host adapter. Figure 6-12 shows the Mini PiTFT – 135×240 Color TFT Add-

on for Raspberry Pi.

Figure 6-11. STEMMA QT module (courtesy of adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

233

Notice unlike the Qwiic host adapters, this one does not have any

additional breakout pins because it is designed to be as compact as

possible and fit within the confines of the Raspberry Pi board footprint.

The programmable buttons are a nice touch. Better still, you can use this

device as a console output or with a custom interface of your design.

Figure 6-13 shows the reverse side of the board with the STEMMA QT

connector at the lower right.

Figure 6-12. Adafruit Mini PiTFT – 135×240 Color TFT Add-on for
Raspberry Pi (courtesy of adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

234

Notice the most used pins are represented as a line of holes below the

GPIO header. This is where you can solder a pin header (or wires directly)

to access those GPIO pins easier. Another cool feature!

Now that we know what the STEMMA QT system is and how it works,

let’s examine some of the limitations.

 Limitations

The limitations of the STEMMA QT are largely the same as the Qwiic

system with respect to its I2C interface. The biggest difference in the

systems is the power level. Given some STEMMA QT modules may require

5V, you may not be able to use 5V STEMMA QT modules with Qwiic host

adapters, but that is a small price to pay and not insurmountable as you

can use a breakout board to adapt your 5V STEMMA QT module either by

wiring it directly to your host board or through an adapter.

Now that we know what the component systems are and a bit about

how they work, let’s look at some of the components available for each

system.

Figure 6-13. Mini PiTFT Color TFT Add-on reverse side (courtesy of
adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

235

 Components Available
There are a lot of components available for both the Qwiic and STEMMA

QT systems. Since they are compatible, you can build projects that use

a mix of both systems. This section highlights some of the categories

of modules available for each system. We won’t see everything that is

available as the offerings for both systems continue to grow. Rather, we will

see the more popular host adapters and modules as well as those we will

use in upcoming chapters.

 The Qwiic Component System
The following offers a pictorial representation of the components available

from SparkFun. We omit showing the various cabling options as they aren’t

nearly as interesting as the host adapters and modules.

But first, let’s look at some examples of development boards from

SparkFun that have the Qwiic host connectors onboard.

 Development Boards

There are a number of host boards (SparkFun calls them development

boards) available that include the Qwiic connectors making them ideal for

an IoT project where you want to minimize the number of components

and perhaps cost. There are several types (product brands) of development

boards available including the RedBoard products.

RedBoard products are Arduino-compatible boards that support the

Arduino Uno shield header and include a number of features making them

an excellent alternative to the standard Arduino boards. Plus, there are

several versions that come with Qwiic connectors including the SparkFun

RedBoard Qwiic (www.sparkfun.com/products/15123) and the RedBoard

Turbo (www.sparkfun.com/products/14812). Figure 6-14 shows the

RedBoard Qwiic. Notice the Qwiic connector located on the right side of

the board. And, yes, they are red.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/15123
http://www.sparkfun.com/products/14812

236

There is another RedBoard variant that may interest those working with

Arduino-based projects who want to mount the board in an enclosure or

make user-defined operations like buttons accessible. The RedBoard Edge

(www.sparkfun.com/products/14525) shown in Figure 6-15 provides the

Qwiic connector, four LEDs, a reset button, a programmable toggle switch,

and a terminal mount for power in a format that can be mounted on a panel.

Figure 6-14. SparkFun RedBoard Qwiic (courtesy of sparkfun.com)

Figure 6-15. RedBoard Edge (courtesy of sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/14525

237

Other development boards from SparkFun that include Qwiic

connectors include the following:

• SparkFun Thing Plus: An Arduino-compatible board

with a powerful SAMD51 microcontroller in a unique,

minimal footprint that is compatible with the Adafruit

Feather layout (www.sparkfun.com/products/14713).

• Qwiic Pro Micro: An Arduino-compatible board in the

same format as the Arduino Micro Pro with a USB-C

connector instead of the smaller, more fragile micro-

USB connector as well as a host of additional features

(www.sparkfun.com/products/15795).

• Qwiic Micro: A super-small board that is about the

same size as a Qwiic module featuring an SAMD21

microcontroller programmable by Arduino or

CircuitPython (www.sparkfun.com/products/15423).

If you are interested in any of these development boards for your

project, be sure to visit the product website to learn more and purchase

them from SparkFun.

Tip See www.sparkfun.com/categories/399 for the complete
list of Qwiic products including a number of development boards.

 Host Adapters

Aside from the impressive list of modules, the variety of host adapters

available from SparkFun is very impressive. Recall there are host adapters

for Raspberry Pi, Arduino, micro:bit, MicroMod, Teensy, Photon, and

more.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/14713
http://www.sparkfun.com/products/15795
http://www.sparkfun.com/products/15423
http://www.sparkfun.com/categories/399

238

Since we are working with Arduino and Raspberry Pi in this book, let’s

look at versions for these platforms.

There are shields for the Arduino Uno shield header as well as one

for the Arduino Nano. The SparkFun Qwiic Shield for Arduino shown in

Figure 6-16 supports four Qwiic connectors as well as breakout pins for

the entire Arduino as well as a prototype area that is a nice touch for those

wanting to add custom circuits.

There is one, small drawback for the beginner wanting to use this

shield. It comes unassembled, which means you will need to solder the

supplied headers onto the shield in order to use it by stacking it on top of

your Arduino. That isn’t too great a problem to overcome since it gives you

an opportunity to learn how to solder, or you can simply find someone

who does and get them to solder the headers for you.

Figure 6-16. SparkFun Qwiic Shield for Arduino (courtesy of
sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

239

Tip See www.sparkfun.com/categories/tags/qwiic-
shields for the complete list of Qwiic shields available for the
arduino and other platforms.

There are a variety of hats for the Raspberry Pi that include some

interesting features. The following lists the hats with other features. All of

these mount to the GPIO header and have Qwiic connectors for expansion.

Some also permit access to the GPIO header:

• GPS-RTK Dead Reckoning pHAT: GPS module (www.

sparkfun.com/products/16475).

• Top pHAT for Raspberry Pi: A TFT display designed to

be placed on top of other hats (www.sparkfun.com/

products/16653).

• Auto pHAT: A hat designed to support robotics projects

(www.sparkfun.com/products/16328).

Tip See www.sparkfun.com/categories/tags/qwiic- hats
for the complete list of Qwiic hats available for the raspberry pi.

We’ve already seen the typical hat used for Qwiic – the SparkFun Qwiic

Pi HAT for Raspberry Pi. That’s the one you’re most like going to use.

However, there is another option. SparkFun also makes a tiny hat (called a

shim) that supports a single Qwiic connector in a compact format. You just

slip it onto the GPIO header, and off you go. It’s small enough to fit inside

almost any Raspberry Pi case. Figure 6-17 shows the SparkFun Qwiic SHIM

for Raspberry Pi.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/categories/tags/qwiic-shields
http://www.sparkfun.com/categories/tags/qwiic-shields
http://www.sparkfun.com/products/16475
http://www.sparkfun.com/products/16475
http://www.sparkfun.com/products/16653
http://www.sparkfun.com/products/16653
http://www.sparkfun.com/products/16328
http://www.sparkfun.com/categories/tags/qwiic-hats

240

 Modules

SparkFun offers a wide variety of modules that contain sensors, input,

output, and display capabilities. So many that it is not possible to list

them all here. Table 6-2 lists the categories of modules available with

a link to each category for further reading. All URLs (links) begin with

www.sparkfun.com/categories/tags/.

Figure 6-17. SparkFun Qwiic SHIM for Raspberry Pi (courtesy of
sparkfun.com)

Table 6-2. Categories of Qwiic Modules

Category Description Category Link

Sensors Modules that allow you to sample the world around us qwiic-gps

Imaging Modules that sense the light spectrum qwiic-imaging

distance Modules that sense distance or proximity qwiic-distance

Movement Modules that sense movement of the device qwiic-movement

environment Modules with sensors designed to measure the

environment

qwiic-

environmental

other additional accessory modules for a variety of

specialized operations such as rFId, capacitive

touch, and more

qwiic-other

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/categories/tags/

241

So what are the modules available in these categories? The following

is a list of subcategories that help in understanding the breadth of options

available:

• Sensors: Typically contain a single sensor that produces

output (readings or values) on the I2C bus. Examples

include temperature, humidity, pressure, distance,

magnetometer, light, and environmental (gases)

sensors.

• Displays: Modules that contain an output device for

displaying data. Examples include OLED and LED

displays.

• Relays: Modules that contain relays that permit you to

switch higher-power devices on or off.

• Motors: Modules that permit you to control small

electric motors.

• Input: Modules that contain one or more buttons,

potentiometers, keypads, or switches.

• ADC/DAC: Modules that provide analog-to-digital

conversion (ADC) or digital-to-analog conversion

(DAC) that permit incorporation of other circuits into

your project.

• Accessory: Various modules that provide handy

operations such as data loggers, cryptographic

operations, and even an MP3 trigger module.

Now, let’s look at the Qwiic modules we will be using in the upcoming

chapters as we explore how to write the code for IoT projects using the

Qwiic system beginning with an output device.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

242

The SparkFun Micro OLED Breakout (Qwiic) (www.sparkfun.com/

products/14532) is a tiny screen we will use to present the data collected

in the example projects. It is a 64×48-pixel monochrome OLED display that

is only about 2cm square (about 7/8 inch). Figure 6-18 shows the module

with the OLED facing side. The Qwiic connectors are located on the

back of the PCB along with the I2C breakout pins. It has a nifty cutout for

securing the Qwiic cables.

The SparkFun Proximity Sensor Breakout – 20cm, VCNL4040 (Qwiic)

module (www.sparkfun.com/products/15177) provides an infrared

distance sensor that you can use to measure distance (technically,

proximity) of objects up to 20cm away. Figure 6-19 shows the module with

the sensor facing side.

Figure 6-18. SparkFun Micro OLED Breakout (Qwiic) (courtesy of
sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/15177

243

The SparkFun Environmental Combo Breakout – CCS811/BME280

(Qwiic) module (www.sparkfun.com/products/14348) supports two

sensors, the CCS811 and BME280, that measure barometric pressure,

humidity, temperature, TVOCs, and equivalent CO2 (or eCO2) levels.

Figure 6-20 shows the module with the sensor facing side.

The SparkFun Triple Axis Magnetometer Breakout – MLX90393 (Qwiic)

module (www.sparkfun.com/products/14571) supports a magnetometer,

which is used to measure magnetic fields and can be used as a compass.

Figure 6-21 shows the module with the sensor facing side.

Figure 6-20. Environmental Combo Breakout (Qwiic) (courtesy of
sparkfun.com)

Figure 6-19. Proximity Sensor Breakout (Qwiic) (courtesy of
sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/14348
http://www.sparkfun.com/products/14571

244

Once again, there are many modules available. These are just a

sampling of the modules available from SparkFun. A compact list of all

Qwiic devices and modules is available at www.sparkfun.com/qwiic.

 Cabling and Connectors

See www.sparkfun.com/categories/tags/qwiic- cables and www.

sparkfun.com/categories/tags/qwiic- connectors for a list of cables

and connectors to support the Qwiic system.

 The STEMMA QT Component System
The following offers a pictorial representation of the components available

from Adafruit. We omit showing the various cabling options as they aren’t

nearly as interesting as the host adapters and modules.

Since we are using both Qwiic and STEMMA QT modules in this book,

we will use the Qwiic host adapters described previously for the projects in

this book. While there aren’t that many host adapters currently available

other than the two for the Raspberry Pi, Adafruit provides a number of

hosts (called controllers) for the STEMMA QT system.

Figure 6-21. Triple Axis Magnetometer Breakout (Qwiic) (courtesy of
sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/qwiic
http://www.sparkfun.com/categories/tags/qwiic-cables
http://www.sparkfun.com/categories/tags/qwiic-connectors
http://www.sparkfun.com/categories/tags/qwiic-connectors

245

 Controllers

Adafruit offers a number of controllers that support several of their popular

microcontroller boards. Most support their Feather and CircuitPython

products, but there are a few that are interesting that you may want to look

into once you’ve completed the sample projects in this book.

The first is the Adafruit QT Py – SAMD21 Dev Board with STEMMA

QT (www.adafruit.com/product/4600), which is a very tiny board that

supports the popular Arduino-compatible SAMD21 microcontroller with

a USB-C connector for programming. Figure 6-22 shows the QT Py –

SAMD21 Dev Board.

The board does not come with the headers soldered on, but Adafruit

does supply them with the board. Better still, the board is very inexpensive.

It can be used in projects where space is a premium and fewer GPIO pins

are needed.

Another interesting controller is the Adafruit Feather STM32F405

Express (www.adafruit.com/product/4382), which runs CircuitPython

natively (on-chip Python development), or you can program it with

MicroPython or through the Arduino IDE (with special hardware libraries).

Best of all, there are a number of accessories available for the Feather

including shields that support sensors and other devices. Figure 6-23

shows the board.

Figure 6-22. QT Py – SAMD21 Dev Board (courtesy of adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.adafruit.com/product/4600
http://www.adafruit.com/product/4382

246

The board does not come with the headers soldered on, but Adafruit

does supply them with the board.

Tip See www.adafruit.com/category/621 for a complete list
of the latest SteMMa Qt controllers available from adafruit.

While we do not use any of these controllers in the examples in this

book, we will use some of the STEMMA QT modules.

 Modules

Adafruit offers a wide variety of modules that contain sensors, input,

output, cameras, speakers, and display capabilities. So many that it is not

possible to list them all here. STEMMA QT modules cover the same range

of categories as the SparkFun Qwiic modules. Please refer to the preceding

Qwiic section for the categories of modules available.

Now, let’s look at the STEMMA QT modules we will be using in the

upcoming chapters as we explore how to write the code for IoT projects

using the STEMMA QT system beginning with an output device.

Figure 6-23. Adafruit Feather STM32F405 Express (courtesy of
adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.adafruit.com/category/621

247

The Monochrome 0.91" 128×32 I2C OLED Display – STEMMA QT /

Qwiic (www.adafruit.com/product/4440) is a tiny OLED screen that is

about 1" in size diagonal, which can be programmed to display text or

graphics. It can be used with the 3.3V Qwiic host adapter. Figure 6-24

shows the module enlarged for better viewing (it is tiny – about the height

of a US quarter dollar coin).

One thing to consider is this is one of the few modules that have only a

single STEMMA QT connector on the back, so you must place this module

at the end of the daisy chain.

The Adafruit PCF8591 Quad 8-bit ADC + 8-bit DAC – STEMMA QT /

Qwiic (www.adafruit.com/product/4648) is an interesting module that

we will use to incorporate analog sensors into our projects. It provides

an analog-to-digital converter that supports up to four inputs. This an

excellent example of how to incorporate non-STEMMA QT (or Qwiic)

components into your projects. Figure 6-25 shows the module.

Figure 6-24. Monochrome 0.91" 128×32 I2C OLED Display (courtesy
of adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.adafruit.com/product/4440
http://www.adafruit.com/product/4648

248

In case you’re curious and cannot wait until Chapter 10 to learn

more, we will pair this with a soil moisture sensor from SparkFun

(www.sparkfun.com/products/13637).

The Adafruit LSM6DS33 6-DoF Accel + Gyro IMU – STEMMA QT /

Qwiic (www.adafruit.com/product/4480) allows you to add motion and

orientation sense to your project. With this module, you can determine

if the board is moving through six degrees of freedom (DoF). Figure 6-26

shows the board.

While not the most accurate or fastest sensor, it is a good value for the

money.

Figure 6-26. LSM6DS33 6-DoF Accel + Gyro IMU (courtesy of
adafruit.com)

Figure 6-25. PCF8591 Quad 8-bit ADC + 8-bit DAC (courtesy of
adafruit.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/13637
http://www.adafruit.com/product/4480

249

Tip See www.adafruit.com/category/620 for a complete list
of the latest SteMMa Qt devices and sensors available from adafruit.

 Cabling and Connectors

See www.adafruit.com/category/619 for a list of cables and connectors to

support the STEMMA QT system.

 Where to Buy Qwiic and STEMMA QT
Components
You can purchase Qwiic components directly from SparkFun (sparkfun.

com). In addition to individual components, you can also find a variety of

kits that combine Qwiic modules, cables, and a host adapter. They offer

kits for developers and robotics and kits specific to the Raspberry Pi. The

following are the links to the kit product pages:

• Developer kits: www.sparkfun.com/categories/tags/

qwiic- development- kits

• Robotics kits: www.sparkfun.com/categories/tags/

qwiic- robotics- kits

• Raspberry Pi kits: www.sparkfun.com/categories/

tags/qwiic- raspberry- pi

One kit you may want to consider getting started is the SparkFun Qwiic

Starter Kit for Raspberry Pi (www.sparkfun.com/products/16841), which

includes a variety of cables, the host adapter, as well as three modules, the

OLED, distance, and environmental modules, that we will use in this book.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.adafruit.com/category/620
http://www.adafruit.com/category/619
http://www.sparkfun.com/categories/tags/qwiic-development-kits
http://www.sparkfun.com/categories/tags/qwiic-development-kits
http://www.sparkfun.com/categories/tags/qwiic-robotics-kits
http://www.sparkfun.com/categories/tags/qwiic-robotics-kits
http://www.sparkfun.com/categories/tags/qwiic-raspberry-pi
http://www.sparkfun.com/categories/tags/qwiic-raspberry-pi
http://www.sparkfun.com/products/16841

250

You can purchase STEMMA QT components directly from Adafruit

(adafruit.com).

Now, let’s discuss how to use these systems in your projects.

 Using the Components in Your Projects
Plugging your choice of Qwiic (or STEMMA QT) host adapter onto your

host board and plugging the modules together with the cables is pretty

easy. Recall the connectors only go one way so you can’t cross-connect

anything.

However, there is one important step you must do before connecting

everything: power off your board. Qwiic and STEMMA QT are not hot

pluggable. You cannot (and more importantly should not) connect and

disconnect modules while your board is powered on. This could lead to

damaging the module(s) or your host board.

Caution do not plug or unplug Qwiic or SteMMa Qt modules while
your board is powered on.

Once the hardware is plugged together, the next step is to start working

on the code to enable your modules and complete your project. To do so,

you are likely required to load one or more software libraries.

The source for these software libraries may vary from one vendor to

another and one module to another. The best place to start is to look at the

documentation for the module. Both SparkFun and Adafruit are excellent

at pointing you to the software and tools you need.

The following summarizes the steps necessary for the Arduino and

Raspberry Pi. The following does not include all of the steps needed for all

of the projects in the book; rather, the section is an overview of what you

can expect to configure your PC to implement the projects. Specific details

for each example are included in each chapter.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

251

 Loading Qwiic and STEMMA QT Libraries
for the Arduino
Recall from Chapter 2 we can install software libraries using the Library

Manager in the Arduino IDE. Simply open the Library Manager and search

for Qwiic or STEMMA.

For example, in the next chapter, we will use the SparkFun Proximity

Sensor Breakout – 20cm, VCNL4040 (Qwiic) module. According to

the hookup guide, all we need to do is search the Library Manager for

“SparkFun VCNL4040” (no quotes). Figure 6-27 shows how that would

appear in the Arduino IDE.

The library is also available for downloading and manual installation

via GitHub (https://github.com/sparkfun/SparkFun_VCNL4040_

Arduino_Library).

Figure 6-27. Searching the Library Manager for Qwiic libraries

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

https://github.com/sparkfun/SparkFun_VCNL4040_Arduino_Library
https://github.com/sparkfun/SparkFun_VCNL4040_Arduino_Library

252

Note each module may require a different library, so be sure to
check the product website for the latest updates.

However, for loading libraries for the STEMMA QT modules, you must

use the manual method. For example, the Adafruit LSM6DS33 6-DoF Accel

+ Gyro IMU – STEMMA QT / Qwiic used in Chapter 11 can be downloaded

from GitHub (https://github.com/adafruit/Adafruit_LSM6DS). Once

you download the library, you will unzip the library and copy the folder to

your Arduino libraries folder. In some cases, you may need to rename the

folder to remove the -master appendix from the name.

The following shows a transcript of downloading and copying the

library for this module on macOS (other platforms are similar). Note

that the example assumes the git application is installed on your system

(https://git- scm.com/downloads). Be sure to copy the entire folder, not

the contents of the folder:

% git clone https://github.com/adafruit/Adafruit_LSM6DS

Cloning into 'Adafruit_LSM6DS'...

remote: Enumerating objects: 128, done.

remote: Counting objects: 100% (128/128), done.

remote: Compressing objects: 100% (86/86), done.

remote: Total 997 (delta 78), reused 70 (delta 41), pack-reused

869

Receiving objects: 100% (997/997), 953.47 KiB | 381.00 KiB/s, done.

Resolving deltas: 100% (649/649), done.

% cp -R Adafruit_LSM6DS ~/Documents/Arduino/libraries.

Tip the arduino libraries folder location can be found on the
arduino Ide preferences dialog.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

https://github.com/adafruit/Adafruit_LSM6DS
https://git-scm.com/downloads

253

Figure 6-28. Examples from manually installed library (Arduino IDE)

Once you copy the library, you can open the Arduino IDE and locate

the example sketches as demonstrated in Figure 6-28. If you do not see the

examples, be sure to check the location of your Arduino libraries folder or

restart your IDE to pick up the latest changes (newly copied library folder).

Of course, you can do all of these steps on your PC using your desktop

interface.

 Loading Qwiic and STEMMA QT Libraries
for the Raspberry Pi
Software libraries on the Raspberry Pi are a little different. Here, we

are using Python libraries, which are installed differently. We would

install them either using the pip command or, in some rare cases, by

downloading the library and copying it to our project folder.

For example, SparkFun has created a Python library that contains all of

the libraries needed for their Qwiic modules. To install it, simply enter the

following command on your Raspberry Pi in a terminal. Once you do that,

you’re all set:

$ pip3 install sparkfun-qwiic

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

254

To learn more about the Qwiic Python library including alternative

installation methods and the director layout, visit www.sparkfun.com/

news/2958.

Sadly, there isn’t a unified library for the Adafruit STEMMA QT

modules. Few STEMMA QT modules have Python libraries available, but

that doesn’t mean we cannot use the modules. It means we have to find

a library that will work. Fortunately, there are alternatives for some that

provide a place to start.

For example, there is a Python library for the Adafruit PCF8591 Quad

8-bit ADC + 8-bit DAC – STEMMA QT / Qwiic module used in Chapter

10. To learn more about the library, you can visit https://github.com/

adafruit/Adafruit_CircuitPython_PCF8591. It can be installed with the

following command:

$ pip3 install adafruit-circuitpython-pcf8591

Notice the name mentions CircuitPython. Don’t let that distract you.

While CircuitPython is an on-chip system created by Adafruit, many of the

libraries can be used on the Raspberry Pi.

Similarly, there is a Python library for the Monochrome 0.91" 128×32

I2C OLED Display – STEMMA QT / Qwiic. It can be installed with the

following command:

$ pip3 install adafruit-circuitpython-ssd1306

Unfortunately, there isn’t a Python library listed for the Adafruit

LSM6DS33 6-DoF Accel + Gyro IMU – STEMMA QT / Qwiic module.

A little creative googling results in locating a Python library for the

LSM6DS33 breakout board. Thus, we can use that library as a starting

point (perhaps without modification). This library can be installed with the

following command:

$ pip3 install adafruit-circuitpython-lsm6ds

We will look at this library in greater detail in Chapter 10.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/news/2958
http://www.sparkfun.com/news/2958
https://github.com/adafruit/Adafruit_CircuitPython_PCF8591
https://github.com/adafruit/Adafruit_CircuitPython_PCF8591

255

 Integrating Additional Components
Now that we’ve seen what the Qwiic and STEMMA QT systems are and

how they work and had a glimpse at the components available, what do

you do if you want to use a specific module or circuit in your project but

there isn’t a module available?

Fortunately, the nice, thoughtful folks at SparkFun have got

you covered here too. So long as what you want to incorporate can

communicate with the I2C protocol, you can use various components

designed to make almost anything usable in a Qwiic chain.

 Assembling the Hardware
As an example, let’s assume you have an I2C module or breakout board

from another vendor or project. In this case, we have an older BMP180

module that we want to use to measure temperature and humidity. In

order to use it with your Qwiic and STEMMA QT modules, you will need to

add the right connectors.

Recall the Qwiic Adapter (www.sparkfun.com/products/14495 from

earlier), which is a tiny board that you can wire to your module. You can

use this module to simply add the Qwiic connectors to the I2C breakout

board. Figure 6-29 shows how you would wire up an I2C breakout board to

the Qwiic Adapter. You simply solder wires from one to the other matching

the pins as shown.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

http://www.sparkfun.com/products/14495

256

Another example of how to use the Qwiic Adapter is to solder right-

angle headers to the adapter and the module as SparkFun suggests.

Figure 6-30 shows an example. Here, we see the Qwiic Adapter used to

enable Qwiic connectors on a BME280 breakout board.

Hardware is only part of the solution. The next step is find and use the

correct software library.

Figure 6-30. Adapting I2C modules (courtesy of sparkfun.com)

Figure 6-29. Qwiic Adapter and BMP180 module (images courtesy
of sparkfun.com)

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

257

 Adapting Software Libraries
Note that while the wiring bits may be a challenge if you’ve never worked

with a breadboard or don’t know how to solder, another potential

challenge is finding a software library that works with the module you want

to use. Adding the Qwiic connectors as shown previously won’t solve that

for you.

In most cases, the original software library may work just fine. It’s best

to try it and see. If it doesn’t work, the most likely issue is either the address

of the module differs or there is another module in your daisy chain with

the same address. If you have the source code for the library, changing

the address is really easy. Plus, some libraries allow you to specify one of

several alternative addresses.

Another possibility is the software library is out of date or doesn’t

work with your chosen host board. In those cases, it is best to check with

the author of the library for assistance. But before you do so, be sure to do

your homework by searching for possible solutions. It is always better to be

knowledgeable of the problem instead of blaming the author when things

don’t work.

These challenges aside, it is not overly complicated to integrate

existing I2C devices into your project using the adapter from SparkFun.

There is another way to integrate analog devices into your project using

the ADC described previously, but we will cover that in greater detail in

Chapter 10.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

258

 Summary
The heart of building IoT projects without a lot of electronics experience

and especially soldering and breadboarding is the Qwiic and STEMMA

QT component systems. With a simple, no-error connector, you can wire

together a very impressive set of modules to create your IoT solution. From

sensors to displays, nothing is impossible to make your project successful.

Now that the hardware challenges have been nearly eliminated, we can

turn our attention back to learning how to write the code for our projects.

As you saw in this chapter, this may require installing software libraries

to support the modules you are using or adapting existing libraries to suit

your needs.

The next chapter begins a series of projects that use Qwiic and

STEMMA QT components to teach you how to work with the systems for

both the Arduino and Raspberry Pi.

Chapter 6 IntroduCIng QwIIC and SteMMa Qt

259© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_7

CHAPTER 7

Keep Your Distance!
Thus far in the book, we’ve discovered how to program the Arduino

platform using the Arduino C++-like language and how to write Python

programs to run on the Raspberry Pi and had a tour of the Qwiic and

STEMMA QT systems. Now it is time to start putting what we’ve learned

to use.

In this chapter and the next four chapters, we will explore a variety of

smaller projects designed to give you experience working with modules and

writing the code to communicate with them. As such, we won’t explore

complete IoT projects because, as you will see in Chapters 17 and 18,

working with the cloud is a different level of skills. It is best to become

proficient in the basics before tackling the cloud element.

To balance this intentional format, each of the example project

chapters includes a section entitled “Going Further,” which gives you hints

on how to make the project better and alter it for other uses and ideas on

how to leverage cloud technologies to make it an IoT project – something

you can do on your own once you finish the cloud chapters.1

Each chapter also includes a list of the hardware you will need to

complete the project for the Arduino and Raspberry Pi. You are encouraged

to use whichever platform you feel most comfortable with including

implementing the code on both platforms and to read through both sections

1 The books I remember and appreciate the best are those that inspired me to
explore beyond the confines of the text by giving me ideas to implement with the
knowledge presented rather than simply walk through a project that is limited in
scope.

https://doi.org/10.1007/978-1-4842-7234-3_7#DOI

260

for complete coverage as discussions about specifics are not repeated in

both sections. After all, the hardware is the same except for the host adapter,

and the code is very similar despite being written in different languages.

Let’s jump into our first project that uses a distance sensor.

 Project Overview
The project for this chapter is designed to demonstrate how to get started

building hardware projects using sensors. The sensor chosen for this

project is the proximity sensor we saw in Chapter 6. We will use the sensor

to detect when something is near and display the value and a message on a

small screen. Think of it as a simple object detector rather than a distance

measuring device. This is because the proximity sensor is limited in range

and best used to detect the presence of something close by rather than a

precise distance calculation.

Interestingly, the proximity sensor can also detect ambient and white

light, but we will not use those measurements in this project. Rather, we save

that to the end for ideas on how to employ the sensor in other projects.

 What Will We Learn?
By implementing this project, we will learn how to connect Qwiic modules

to our host boards and how to form a daisy chain of Qwiic modules. We

will pick up a few tips on working with the hardware along the way. Thus,

the project itself is very simple and is not likely to impress, but it is well

suited for learning all of the nuances of building Qwiic projects.

The programming tasks will reveal how to set up the I2C bus, read a

value from the sensor, and interpret the value to make a decision on the

proximity of objects. We will also learn how to write messages to the OLED

module to help make the project useful on its own, that is, without having

it plugged into our computer running in debug mode.

Let’s see what hardware we will need.

Chapter 7 Keep Your DistanCe!

261

 Hardware Required
The hardware needed for this project is listed in Table 7-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors.

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter.

Table 7-1. Hardware Needed for the Keep Your Distance Project

Component URL Qty Cost

proximity sensor

Breakout – 20cm, VCnL4040

www.sparkfun.com/

products/15177

1 $6.95

Micro oLeD Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

2 $1.50

sparkFun redBoard Qwiic

(arduino uno or compatible)

www.sparkfun.com/

products/15123

1 $19.95

raspberry pi 3B or later www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

Qwiic phat for raspberry pi www.sparkfun.com/

products/15945

1 $5.95

Chapter 7 Keep Your DistanCe!

http://www.sparkfun.com/products/15177
http://www.sparkfun.com/products/15177
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

262

 Sensor

Note that I chose the infrared sensor over the longer-range sensors due

mainly to cost. The other sensors that have greater range are several times

the cost of the infrared sensor.

 A Note About I2C Addresses

Addresses are commonly referred to in hexadecimal values and are

depicted in code with the 0x prefix, for example, 0x48, 0x60, 0x7D, etc.

One of the newest features in the latest Arduino boards is the addition

of a cryptography co-processor chip, which enables a higher degree

of security by providing a place to generate and store sensitive data

such as keys. However, the cryptography chip is connected to the I2C

bus at address 0x60. And, no, you cannot disconnect or turn it off. It’s

permanently part of the Arduino board.2

This is fine so long as no other device on your I2C bus uses address

0x60. Unfortunately, the proximity sensor chosen for this project uses

address 0x60. Thus, you cannot use one of the newer Arduino boards such

as the Uno WiFi Rev2, Zero, and MKR series boards.

See www.arduino.cc/reference/en/libraries/arduinoeccx08/ for a

complete list of Arduino boards that have the cryptography chip installed.

2 For the really adventurous, you could locate the chip and unsolder it from the
board. That’ll show them who’s really driving their I2C bus!

Chapter 7 Keep Your DistanCe!

http://www.arduino.cc/reference/en/libraries/arduinoeccx08/

263

RESOLVING I2C ADDRESS COLLISIONS

if you encounter a situation where you have two or more modules that use the

same i2C address and those modules are not part of the host board (arduino or

raspberry pi), you can overcome the problem by using sparkFun’s Qwiic Mux

Breakout – 8 Channel (tCa9548a) (www.sparkfun.com/products/16784)

board. this board allows you to connect up to eight sensors that use the same

address and communicate with them individually. For example, you may want

to use several of the same module in your project. the Mux is an ingenious

board that works really well. see the hookup guide for more details about how

to use this board in your arduino and raspberry pi (python) projects – they’ve

included documentation for both.

 Arduino Board

The Arduino board used in this project is the SparkFun RedBoard Qwiic,

which has a Qwiic connector onboard. You can use whatever Arduino

board you want, but make sure it does not have a cryptography chip

because it uses the same address as our proximity sensor.

If you choose to use a different Arduino without a Qwiic connector

on the board, you can use the Qwiic Cable – Breadboard Jumper (www.

sparkfun.com/products/14425) that permits you to connect the wires

directly to your Arduino instead of using a shield. We will see this option in

action later in the chapter.

Another option is to use the Qwiic Shield for Arduino (www.sparkfun.

com/products/14352), but that shield only works for the older Arduino

boards that use A4 and A5 for the I2C data and clock lines. The shield will

not work without modification for Arduino boards that use dedicated pins

for I2C.

Chapter 7 Keep Your DistanCe!

http://www.sparkfun.com/products/16784
http://www.sparkfun.com/products/14425
http://www.sparkfun.com/products/14425
http://www.sparkfun.com/products/14352
http://www.sparkfun.com/products/14352

264

Tip to save on shipping, see the appendix for a complete list of all
hardware used in the book.

 Assemble the Qwiic Modules
Now, let’s see how to connect the modules together. We will go through

the connections step by step in this chapter, and later chapters present a

drawing for you to follow.

You should always connect your Qwiic modules together first before

connecting them to your host board and always while the board is

powered off. Never attempt to connect or disconnect Qwiic modules while

the board is powered on.

Caution turn off your host board before connecting Qwiic cabling.

Since most Qwiic modules have connectors on both sides, the order in

which you connect them doesn’t matter or is just possibly for aesthetics or

convenience, that is, placing the OLED module in the position that permits

the best view. Since we’re not installing the project in an enclosure, order

is not important.

Begin by examining the Qwiic cable. If you look closely, you

will see the black connectors have two small “ears” that are offset.

These prevent the cable from being connected incorrectly. Never

force a Qwiic cable to connect to a host module. The connection

should require light pressure to ensure the cable is seated. Similarly,

disconnecting the cables should be done with care. Using excessive

force can damage the Qwiic connector.

Chapter 7 Keep Your DistanCe!

265

Caution Do not force a Qwiic cable connection or disconnection. it
may break the connector!

Take a moment and look at a typical Qwiic cable connector. Figure 7-1

shows the connector from two sides (enlarged for clarity). The side that

shows no pins I like to call the flat or top side.

The best way to connect the Qwiic cable to the Qwiic connector on

the module is to orient the cable so that the flat side is facing up and insert

it into the Qwiic connector as shown in Figure 7-2. Again, don’t force the

connection. If you meet resistance, try turning the cable over. It should seat

easily into the connector.

Notice the connector looks like it isn’t fully inserted, but that is not the

case. If you look at the connector on the cable more closely, you will see

there are several small protrusions or ridges. The connector will only seat

as far as those ridges.

Figure 7-1. Quick cable connector (top and bottom)

Figure 7-2. Qwiic cable connected to module

Chapter 7 Keep Your DistanCe!

266

Now that we know how the cables are connected, let’s connect the

Qwiic modules for this project. Connect one Qwiic cable to the right side

of the SparkFun Proximity Sensor Breakout – 20cm, VCNL4040. With the

cable connected to the right side of the sensor, connect that cable to the

top connector on the back side of the SparkFun Micro OLED Breakout

module as shown in Figure 7-3. I recommend leaving the small plastic

cover on the OLED to protect the screen. Also, there is an “Up” to the

OLED, so you may want to orient it once you get the project running so you

can read it better.

Now we have our Qwiic modules assembled and ready to connect to

our host board. We’ll call it our Qwiic daisy chain.

You may not be too impressed at this point since we’ve only connected

two wires to two modules, but trust me to know the alternative of using

breadboards and breakout boards to solder and wire circuits is much more

difficult and time consuming.

Figure 7-3. Proximity and OLED module connections

Chapter 7 Keep Your DistanCe!

267

 Connecting to the Arduino
How you connect the Qwiic daisy chain to the Arduino depends on which

Arduino you use. If you choose to use an Arduino board with a Qwiic

connector, you can just use a Qwiic cable to connect to the daisy chain

and the other end to your board, and you’re done. If you are using a newer

Arduino that has dedicated I2C pins, you will need to use a special cable.

 Using a Shield

However, if you recall, connecting the Qwiic daisy chain to your board

depends on which Arduino you are using. If you use one of the older

Arduino boards including the Uno (not the WiFi version) and its variants

that connect the I2C data and clock to A4 (SDA) and A5 (SCL), you can use

the SparkFun Qwiic Shield (www.sparkfun.com/products/14352) attached

to your Arduino and use another Qwiic cable to connect to the Qwiic daisy

chain and connect the other end to one of the connectors on the shield.

However, please be advised the shield comes unassembled, so you will

have to solder or find someone to solder the headers onto the shield for

you.

If you choose to use the Qwiic Shield for Arduino, your project should

resemble Figure 7-4.

Chapter 7 Keep Your DistanCe!

http://www.sparkfun.com/products/14352

268

 Using a Special Cable

A better solution and indeed the best solution for Arduino boards with

dedicated I2C pins is to use the Qwiic Cable – Breadboard Jumper (www.

sparkfun.com/products/14425). This cable has a Qwiic connector on one

end and four male breadboard pins on the other as shown in Figure 7-5.

This cable is a great alternative to using a shield, and it is my preferred

mechanism for connecting Qwiic modules to my Arduino boards. The

only downside is you must be careful connecting the pins to the Arduino

to ensure you get the connections correct and the pins can pull loose if you

move the project around (don’t do that).

Figure 7-5. Qwiic Cable – Breadboard Jumper (courtesy of sparkfun.com)

Figure 7-4. Connecting Qwiic daisy chain to Arduino shield

Chapter 7 Keep Your DistanCe!

http://www.sparkfun.com/products/14425
http://www.sparkfun.com/products/14425

269

The connections are very simple. Connect the wires (male pins) to

your Arduino as shown in Table 7-2.

Take special note of the power cable. This needs to be connected to the

3.3V power pin only. If your Arduino board is not marked with such a pin,

check the documentation to ensure the board operates with 3.3V power.

If it does not, do not attempt to use the Qwiic modules with your board.

Choose another board to use until you can find a suitable adapter/shield.

Caution Be sure to connect power to 3.3V, not Vin, 5V, or any other
pin with power. using higher voltage will damage the modules.

Notice the SDA and SCL pins are indicated as either a pin with the same

name located near the USB connector or A4/A5 as part of the analog pin

subheader. The older Arduino boards use A4 and A5, but newer boards have

the I2C pins isolated on their own. On some specialty Arduino boards like

the Leonardo, SDA is on pin 2 and SCL is on pin 3. Table 7-3 summarizes the

location of the I2C pins for the more popular Arduino boards.3

Table 7-2. Connecting the Qwiic Breadboard

Cable to Arduino

Wire Color Description Arduino Pin

Black Ground GnD

red power – 3.3V 3.3V

Blue Data (sDa) sDa or a4

Yellow Clock (sCL) sCL or a5

3 www.arduino.cc/en/reference/wire

Chapter 7 Keep Your DistanCe!

http://www.arduino.cc/en/reference/wire

270

Once you’ve identified the correct pins on your Arduino board, you

can connect the breadboard cable as shown in the preceding tables.

Figure 7-6 shows a closeup of what the connections look like (and where

the connections are located) on the Arduino Uno.

Figure 7-7 shows the project once all connections have been made.

Figure 7-6. Qwiic breadboard cable connections – Arduino

Table 7-3. Location of I2C Pins for Arduino Boards

Arduino I2C Pins Location

uno, ethernet a4 (sDa), a5 (sCL)

Mega 2560 20 (sDa), 21 (sCL)

Leonardo 2 (sDa), 3 (sCL)

Due 20 (sDa), 21 (sCL), sDa1, sCL1

Chapter 7 Keep Your DistanCe!

271

4 Arduino shown is for demonstration purposes. We know this project will not
work on the Uno WiFi Rev2.

Figure 7-7. Connecting to Arduino with breadboard breakout cable4

You may be wondering what to do with the modules all flopping

around.

 Mounting Modules

Recall Qwiic modules have two or more mounting holes that you can

use to mount the modules either to a piece of wood, an enclosure, or

some other medium. However, some of the Qwiic shields and hats have

matching holes, so you can mount the modules on top of the shield or hat.

For example, the Qwiic pHAT for Raspberry Pi has four holes where

you can mount risers as shown in Figure 7-8.

Chapter 7 Keep Your DistanCe!

272

You can then attach the modules to the risers as shown in Figure 7-9

(Arduino shield shown). Not only does this make a tidy package, but it also

saves you some effort should you want to move the project or set it aside

for another day.

Figure 7-8. Mounting Qwiic modules to a shield or hat

Figure 7-9. Mounting modules on Arduino shield

Chapter 7 Keep Your DistanCe!

273

 Detecting I2C Devices on the Arduino

Before we move on to the Raspberry Pi, let’s discuss for a moment how to

detect what I2C devices are connected to your Arduino. You may think,

Yeah, I know. I can see them! But that isn’t always a good measure. Sure,

you can tell the modules are connected, but what if one of them isn’t

working or you are trying to use a library that isn’t working?

Both of these conditions can be diagnosed or partially diagnosed by

running a sketch to detect what the I2C addresses are used or are visible

on the bus. Listing 7-1 shows a short sketch created to scan through all I2C

addresses and report which ones respond. Rather than explain the sketch

in detail, I leave it to the reader as an exercise. You can find the code on the

book website.

Listing 7-1. I2C Scanner Sketch (Arduino)

#include <Wire.h>

void setup()

{

 Serial.begin(9600);

 while (!Serial);

}

void loop()

{

 byte address = 0x00;

 byte error = 0x00;

 int row = 1;

 // Draw header

 Serial.println("\n\nI2C Address Scanner");

 Serial.println("-------------------");

Chapter 7 Keep Your DistanCe!

274

 Serial.println(" 0 1 2 3 4 5 6 7 8 9 a b

c d e f");

 Serial.print("00: ");

 // Look for addresses that respond without errors.

 for (address = 1; address < 127; address++) {

 Wire.beginTransmission(address);

 error = Wire.endTransmission();

 if ((address % 16) == 0) {

 Serial.println();

 Serial.print(row);

 Serial.print("0: ");

 row += 1;

 }

 // If no error, the address may be valid.

 if (error == 0) {

 if (address < 16) {

 Serial.print("0");

 }

 Serial.print(address, HEX);

 Serial.print(" ");

 } else {

 Serial.print("-- ");

 }

 }

 delay(3000);

}

When you run this sketch on an Arduino that has I2C devices

connected, each address found is displayed in a grid (values are in

hexadecimal) as shown in the following. The scan is repeated every three

seconds:

Chapter 7 Keep Your DistanCe!

275

I2C Address Scanner

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- 3D -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: 60 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Here, we see two addresses that were identified: 0x3D (61 decimal) is

the Micro OLED, and 0x60 (96 decimal) is the proximity sensor.

Whenever in doubt that your modules aren’t working, use this sketch

to check to see if they are wired correctly and responding to the begin()

function call.

 Connecting to the Raspberry Pi
Like the Arduino, how you connect the Qwiic daisy chain to the Raspberry

Pi depends on which Qwiic hat or pHAT you use. There are several to

choose from, but my favorite thus far are the Qwiic pHAT for Raspberry Pi

(www.sparkfun.com/products/15945) for most projects and Qwiic SHIM

for Raspberry Pi (www.sparkfun.com/products/15794) for when I want a

quick, temporary connection or I want to use Qwiic with some other hat.

Like the Arduino, we can also use a special cable to connect directly to the

GPIO header.

And, like the Arduino, you must power down your Raspberry Pi before

connecting or disconnecting any Qwiic modules.

Chapter 7 Keep Your DistanCe!

http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15794

276

 Using a Hat

The typical Qwiic hat for Raspberry Pi mounts onto the GPIO header. Just

align the pins and insert the hat onto the header and then attach your

Qwiic daisy chain to one of the Qwiic connectors, and you’re ready to go.

You can also use the mounting holes on the hat to mount your

modules as shown in Figure 7-10.

If you decide to use the shim, the connections will resemble Figure 7- 11.

Figure 7-10. Connecting Qwiic daisy chain to mounts on hat on
Raspberry Pi

Chapter 7 Keep Your DistanCe!

277

The shim is designed to fit on top of the GPIO without soldering. Some

early versions of the shim are known to be finicky and may need to be

oriented at an angle to make a good connection. If you know how to solder,

the shim is cheap enough that you can solder it to your GPIO and remove

all such issues.

 Using a Special Cable

A better solution and indeed the best solution for Arduino boards with

dedicated I2C pins is to use the Qwiic Cable – Female Jumper (4-pin) (www.

sparkfun.com/products/14988). This cable has a Qwiic connector on one

end and four female breadboard pins on the other as shown in Figure 7-12.

Figure 7-11. Connecting Qwiic daisy chain to shim on Raspberry Pi

Chapter 7 Keep Your DistanCe!

http://www.sparkfun.com/products/14988
http://www.sparkfun.com/products/14988

278

This cable is a great alternative to using a hat if your GPIO header

is tucked away inside a case, and it is my preferred mechanism for

connecting Qwiic modules to my faster Raspberry Pi 4B boards that are

mounted inside cases with fans. The only downside is you must be careful

 connecting the pins to the GPIO to ensure you get the connections correct

and the pins can pull loose if you move the project.

The connections are very simple. Connect the wires (female pins)

to your Raspberry Pi as shown in Table 7-4. You can see a complete

breakdown of all the GPIO pins at www.raspberrypi.org/documentation/

usage/gpio/.

Figure 7-12. Qwiic Cable – Female Jumper (4-pin) (courtesy of
sparkfun.com)

Table 7-4. Connecting the Qwiic Female

Jumper Cable to Raspberry Pi

Wire Color Description GPIO Pin

Black Ground 6

red power – 3.3V 1

Blue Data (sDa) 3

Yellow Clock (sCL) 5

Chapter 7 Keep Your DistanCe!

http://www.raspberrypi.org/documentation/usage/gpio/
http://www.raspberrypi.org/documentation/usage/gpio/

279

Figure 7-13 shows the connections in detail. This example shows a

header for a Raspberry Pi 4B board mounted in an Argon ONE case (www.

argon40.com/argon- one- raspberry- pi- 4- case.html).

Notice the pins we use are the very same ones that the Qwiic SHIM

used. Figure 7-14 shows the project once all connections have been made.

Figure 7-13. Qwiic female breakout cable connections – Raspberry Pi

Figure 7-14. Connecting to Raspberry Pi with Qwiic female
breakout cable

Chapter 7 Keep Your DistanCe!

http://www.argon40.com/argon-one-raspberry-pi-4-case.html
http://www.argon40.com/argon-one-raspberry-pi-4-case.html

280

Notice the GPIO header pins and their uses (or names) are printed on

the Argon ONE case itself. This is hidden behind a removable panel and

is very easy to use. Raspberry Pi does not come with the pins on the GPIO

labeled, but you can purchase a GPIO Reference Card like the one from

Adafruit (www.adafruit.com/product/2263) as shown in Figure 7-15. This

card fits over the GPIO and helps you locate the pins you need quickly. It’s

a must-have for those working directly with the GPIO.

 Detecting I2C Devices on the Raspberry Pi

There is a nifty utility available on the Raspberry Pi named i2cdetect that

scans the I2C interface and reports what addresses are found – similar to

the i2cscanner sketch used for the Arduino. To run the utility, simply issue

the command i2cdetect -y 1 where y means do the scan and 1 is the I2C

interface number as follows:

$ i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- 3d -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

Figure 7-15. Raspberry Pi GPIO Reference Card (courtesy of
adafruit.com)

Chapter 7 Keep Your DistanCe!

http://www.adafruit.com/product/2263

281

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: 60 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Here, we see two addresses that were identified: 0x3D (61 decimal) is

the Micro OLED, and 0x60 (96 decimal) is the proximity sensor.

If you get an error when running the utility, you may need to install it

with the following command:

$ sudo apt-get install i2ctools

Now that we have all of our modules connected, let’s see how to write

the code.

 Write the Code
Writing the code for this project may seem a little strange at first, but it

follows the patterns we’ve seen in Chapters 3 and 5 for the Arduino and

Raspberry Pi (Python).

The code for this project first initializes the I2C bus, prepares the OLED

for use, and then enters a loop that reads a value from the proximity sensor

and then displays the value on the OLED. We will also see some logic to

establish a threshold that detects when an object is too close. Recall the

sensor can detect ambient light and white light levels, but we will use only

the proximity reading.

The proximity sensor returns an integer value in the range of 1–65535

(in practice only about 16767), where the higher the number, the closer the

object. It is important to understand that this sensor has a very low degree

of accuracy and is not designed to be used to measure exact distance.

Rather, it can be used to tell if something is there and if it is very close.

Thus, the sensor can be used as a proximity detector such as those found

in assembly lines or sorters where it is important to know when or if some

object passes nearby.

Chapter 7 Keep Your DistanCe!

282

Let’s walk through how to prepare our computers to use the sensor and

write code to read its values. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch you will write to read

values from the sensor and display them on the OLED module. But first,

there are a couple of libraries we must install on our PCs.

 Install Software Libraries

We will need to install the Arduino libraries for the proximity sensor and

the OLED module separately. Fortunately, this is easy to do using the

Library Manager. Simply open the Library Manager from the Arduino IDE

menu (Sketch ➤ Include Library ➤ Manage Libraries…). Then search for

4040 and install the latest version of the library as shown in Figure 7-16.

Figure 7-16. Installing the VCNL4040 library (Arduino IDE)

Chapter 7 Keep Your DistanCe!

283

Similarly, we need to install the library for the OLED. Open the Library

Manager and search for micro OLED and then install the latest version as

shown in Figure 7-17.

Now that we have the software libraries installed, we can begin writing

our sketch.

But first, take a moment to browse through the example sketches for

the proximity sensor under the File ➤ Examples ➤ SparkFun VCNL4040

Proximity Sensor Library menu and those for the OLED under the File ➤

Examples ➤ SparkFun Micro OLED Breakout menu. You will find some

very interesting uses of the modules in those examples all without having

to change any code!

Figure 7-17. Installing the Micro OLED library (Arduino IDE)

Chapter 7 Keep Your DistanCe!

284

Tip Consider using the examples for any new library you install to
learn more about its capabilities and to ensure you know how to write
the code properly, not to mention to ensure the module is working
correctly.

 Write the Sketch

Begin by opening a new file in the Arduino IDE under the File ➤ New

menu. This will open a new file that has the skeleton code for a sketch

(contains an empty setup() and loop() function). Name the new sketch

KeepYourDistance.ino or whatever you’d like to use.

Next, at the top of the file, we need to include a number of libraries. We

need the wire library (what Arduino calls the I2C library), the library for

the proximity sensor, and the library for the OLED module. The following

shows the code for including these libraries:

#include <Wire.h>

#include <SparkFun_VCNL4040_Arduino_Library.h>

#include <SFE_MicroOLED.h>

You may be wondering how to know what library names to use. The

answer is found in the example sketches most authors provide for you or in

their documentation. SparkFun is unique by providing you a hookup guide

that details all this and more for each Qwiic module. When using a module

for the first time, always check these resources to know where to start.

Next, we need some constants. We need two for the OLED module

to set the reset pin and DC jumper (as shown in the example sketches).

The OLED is hardwired to use a reset (RST), so we only need to choose an

Arduino pin to use, and any unused pin will do. In this case, we use pin

9 for PIN_RESET. Since we haven’t modified the OLED by changing any

jumpers, we can use the default of 1 for the DC_JUMPER (you would change

Chapter 7 Keep Your DistanCe!

285

to 0 if you closed the jumper on the back of the board). We also need a

value to use in our check to see if something is too close. Let’s start with a

value of 1000 for the constant TOO_CLOSE as shown in the following:

#define PIN_RESET 9

#define DC_JUMPER 1

#define TOO_CLOSE 1000

Next, we need to initialize two variables: one for each Qwiic module

as shown in the following. We will use these variables to call the functions

provided by each library. Here we pass those constants defined earlier

to the OLED class instance. Yes, we could have provided them directly in

the constructor, but it is considered bad form to pass constants without

defining them first (and it makes it easier to change them in the future):

MicroOLED oled(PIN_RESET, DC_JUMPER);

VCNL4040 proximitySensor;

OK, that’s it for the initialization code. Now, we can write the code for

the setup() function. Here, we need to start the serial monitor library,

initialize/start the I2C library, and set up the OLED. Most of this code

we have seen before, so we will only focus on the bits for the sensor and

OLED.

We add code to check the proximity sensor to ensure it is connected

and working. Note that code such as this is always a good idea to place in

the setup() function. The following shows how to write code to check the

sensor. Here, we call the begin() function for the sensor, and if it returns

false, we print a warning message and go into an endless loop to halt the

sketch:

 if (!proximitySensor.begin()) {

 Serial.println("ERROR: Sensor not found!");

 while (1);

 }

Chapter 7 Keep Your DistanCe!

286

Next is the code for the OLED module, which isn’t quite obvious but

starts with a similar check. The following shows the code we need:

 if (!oled.begin()) {

 Serial.println("ERROR: OLED not found!");

 while(1);

 }

 oled.setFontType(0);

 oled.clear(PAGE); // Clear page memory

 oled.clear(ALL); // Clear internal memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print("Keep Your\nDistance!");

 oled.display();

Notice we begin with a check to ensure the OLED is present, then

set the font type, clear the page memory, and then clear the internal

memory. This ensures the module is ready for new output. Then, we send

a test message by positioning the cursor to the top left and printing a

short message. Nothing is printed (displayed) until we call the display()

function as shown. All of these functions are called by using the oled

object/variable we declared earlier. For example, oled.display() displays

data sent (printed) to the OLED.

We then use a delay() function to pause execution for 3 seconds (3000

microseconds) to ensure all modules are initialized and ready. Listing 7-2

shows the code for the setup() function.

Listing 7-2. KeepYourDistance setup()

void setup()

{

 Serial.begin(9600);

 while (!Serial);

 Serial.println("Keep Your Distance!");

Chapter 7 Keep Your DistanCe!

287

 // Initialize the i2c bus

 delay(100);

 Wire.begin();

 // Ensure the proximity sensor is connected

 // Ensure the proximity sensor is connected

 if (!proximitySensor.begin()) {

 Serial.println("ERROR: Sensor not found!");

 while(1);

 }

 // Setup the OLED and print welcome message

 if (!oled.begin()) {

 Serial.println("ERROR: OLED not found!");

 while(1);

 }

 oled.setFontType(0);

 oled.clear(PAGE); // Clear page memory

 oled.clear(ALL); // Clear internal memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print("Keep Your\nDistance!");

 oled.display();

 delay(3000);

}

Now, let’s look at the code for the loop() function. Here, we

have a bit less code. We simply get a value from the sensor using the

getProximity() function for the proximity sensor object (variable named

proximitySensor), display it in the serial monitor and OLED, and then

determine if the object is too close by printing “TOO CLOSE!” if the sensor

value is greater than our threshold or “Ok” otherwise.

Chapter 7 Keep Your DistanCe!

288

Listing 7-3 shows the complete code for the loop() function. Take a

moment to read through it to ensure you understand how it works. Notice

the delay() at the end of the loop. This is to slow the sketch down so that

there is sufficient time for the sensor to prepare the next value to be read.

Some sensors will need longer delays (they have a slower refresh rate) than

others.

Listing 7-3. KeepYourDistance loop()

void loop()

{

 // Get the proximity sensor value

 unsigned int proximity = proximitySensor.getProximity();

 // Display the value

 Serial.print("Proximity Value = ");

 Serial.println(proximity);

 oled.clear(PAGE); // Clear page memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print("Prx = ");

 oled.print(proximity);

 oled.setCursor(0, 10); // Set cursor position

 // Determine if the object is too close

 if (proximity > TOO_CLOSE) {

 oled.print("TOO CLOSE!");

 } else {

 oled.print("Ok");

 }

 oled.display();

 delay(1000);

}

Chapter 7 Keep Your DistanCe!

289

OK, that’s it! Listing 7-4 shows the completed sketch repeated for

reference. If you’ve been following along writing the code as you read,

you can check your code against the listing. Or, better, download the

sample code from the book website if you don’t want to type all of the code

yourself.

Listing 7-4. KeepYourDistance Sketch (Arduino)

// Include the wire (i2c), OLED, and proximity sensor libraries

#include <Wire.h>

#include <SparkFun_VCNL4040_Arduino_Library.h>

#include <SFE_MicroOLED.h>

// Constants for the OLED

#define PIN_RESET 9

#define DC_JUMPER 1

#define TOO_CLOSE 1000

// Global variables (OLED and sensor)

MicroOLED oled(PIN_RESET, DC_JUMPER);

VCNL4040 proximitySensor;

void setup()

{

 Serial.begin(9600);

 while (!Serial);

 Serial.println("Keep Your Distance!");

 // Initialize the i2c bus

 delay(100);

 Wire.begin();

 // Ensure the proximity sensor is connected

 // Ensure the proximity sensor is connected

Chapter 7 Keep Your DistanCe!

290

 if (!proximitySensor.begin()) {

 Serial.println("ERROR: Sensor not found!");

 while(1);

 }

 // Setup the OLED and print welcome message

 if (!oled.begin()) {

 Serial.println("ERROR: OLED not found!");

 while(1);

 }

 oled.setFontType(0);

 oled.clear(PAGE); // Clear page memory

 oled.clear(ALL); // Clear internal memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print("Keep Your\nDistance!");

 oled.display();

 delay(3000);

}

void loop()

{

 // Get the proximity sensor value

 unsigned int proximity = proximitySensor.getProximity();

 // Display the value

 Serial.print("Proximity Value = ");

 Serial.println(proximity);

 oled.clear(PAGE); // Clear page memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print("Prx = ");

 oled.print(proximity);

 oled.setCursor(0, 10); // Set cursor position

Chapter 7 Keep Your DistanCe!

291

 // Determine if the object is too close

 if (proximity > TOO_CLOSE) {

 oled.print("TOO CLOSE!");

 } else {

 oled.print("Ok");

 }

 oled.display();

 delay(1000);

}

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. It is

important to do this step separately so that you can ensure you don’t have

any issues in the code. Not only will the compilation check the code you’ve

written, but it will also ensure the software libraries you installed are also

free of errors.

To compile the sketch, use the Sketch ➤ Verify/Compile menu or click

the leftmost button in the Arduino IDE editor. You may see dozens of lines

pass by in the output window, but the ones you are looking for (the last to

be displayed) should resemble the following:

Sketch uses 14822 bytes (30%) of program storage space. Maximum

is 48640 bytes.

Global variables use 1011 bytes (16%) of dynamic memory,

leaving 5133 bytes for local variables. Maximum is 6144 bytes.

If you encounter any errors, be sure to fix them and recompile to

ensure the sketch compiles without errors or serious warnings.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Execute the

Project” section if you’re curious to see how the project works (it will be

the same on both platforms).

Chapter 7 Keep Your DistanCe!

292

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

read values from the sensor and display them on the OLED module. But

first, there are a couple of libraries we must install on our Raspberry Pi.

 Install Software Libraries

There are two actions needed to get your Raspberry Pi set up: install the

Python libraries we need and enable I2C on the Raspberry Pi. Both are

one-time events so you will not need to repeat them. More specifically, you

do not need to install any additional software libraries for the next project

to use any of the SparkFun Qwiic modules. If you use third-party Qwiic

modules (such as the STEMMA QT modules), you may need to install

more libraries, but we see those in later chapters if needed.

Let’s begin with the SparkFun Qwiic Python software libraries. This can be

done with the pip command as shown in Listing 7-5. If you haven’t already, go

ahead and boot your Raspberry Pi and open a terminal to enter the command

shown in bold. Listing 7-5 shows an excerpt of the install for brevity.

Listing 7-5. Installing the SparkFun Python Libraries (Raspberry Pi)

% pip3 install sparkfun_qwiic

Collecting sparkfun_qwiic

 Downloading https://files.pythonhosted.org/packages/ef/b3/

c7f170d4e4f429f47ab0f07165a94ff7c01a9650f06129d9fc6017bfa67f/

sparkfun_qwiic-1.0.16-py2.py3-none-any.whl (219kB)

 100% |███████████████| 225kB 1.3MB/s

Collecting sparkfun-qwiic-proximity (from sparkfun_qwiic)

 Downloading https://files.pythonhosted.org/packages/ad/d4/4

01537c1113fcb278bc0b6c03221b0c28567049b7e485dd5817be9367e21/

sparkfun_qwiic_proximity-0.9.0-py2.py3-none-any.whl

Chapter 7 Keep Your DistanCe!

293

...

Successfully installed pynmea2-1.15.0 smbus2-0.4.0 sparkfun-

pi- servo-hat-0.9.0 sparkfun-qwiic-1.0.16 sparkfun-qwiic-

adxl313-0.0.7 sparkfun-qwiic-bme280-0.9.0 sparkfun-qwiic-

ccs811-0.9.4 sparkfun-qwiic-dual-encoder-reader-0.0.2

sparkfun-qwiic-gpio-0.0.2 sparkfun-qwiic-i2c-0.9.11

sparkfun-qwiic-icm20948-0.0.1 sparkfun-qwiic-joystick-0.9.0

sparkfun-qwiic-keypad-0.9.0 sparkfun-qwiic-max3010x-0.0.2

sparkfun-qwiic-micro-oled-0.9.0 sparkfun-qwiic-pca9685-0.9.1

sparkfun-qwiic-proximity-0.9.0 sparkfun-qwiic-relay-0.0.2

sparkfun-qwiic-scmd-0.9.1 sparkfun-qwiic-serlcd-0.0.1 sparkfun-

qwiic- tca9548a-0.9.0 sparkfun-qwiic-titan-gps-0.1.1 sparkfun-

qwiic- twist-0.9.0 sparkfun-qwiic-vl53l1x-1.0.1 sparkfun-top-

phat-button-0.0.2 sparkfun-ublox-gps-1.1.3

You will see a number of libraries being installed. In fact, you will

see all of the SparkFun Python libraries for all Qwiic modules and their

dependencies being installed. You should see a successful message at the

end as shown in the listing.

There is one more thing you need to do. You must enable the I2C

interface in Raspbian. You do this by clicking the main menu and then

selecting Preferences ➤ Raspberry Pi Configuration. On the Interfaces tab,

tick the Enable button to the left of Enable for I2C as shown in Figure 7-18.

Chapter 7 Keep Your DistanCe!

294

Once you’ve set the I2C interface to Enable, click OK and then reboot

your Raspberry Pi to ensure the changes take effect.

If you have additional devices connected to your Raspberry Pi such

as those found in some enclosures and especially the pi-top products5

(www.pi- top.com/), you may already have the I2C interface enabled. Or,

when you do enable it, you may discover there are already I2C devices at

certain addresses. If you find your code not working, try disconnecting any

peripherals attached to the GPIO if possible and try again. This is another

case where the i2cdetect utility can be helpful.

Figure 7-18. Enabling the I2C interface (Raspberry Pi)

5 I discovered my pi-top showed all I2C addresses taken until I disconnected the
pi-top peripherals.

Chapter 7 Keep Your DistanCe!

http://www.pi-top.com/

295

 Write the Code

The code for the Python version of this project is a bit shorter than the

Arduino code. We still do the same steps in the (almost) same order, but in

a Python manner.

Begin by launching the Thonny Python IDE under the Main ➤

Programming submenu. The IDE opens with a new, blank file in the editor.

Name the new file keep_your_distance.py or whatever you’d like to use.

Or you can download the source code for the book and open the file by

that name. Since the code is very similar to the Arduino sketch, we will

only skim through the highlights.

Start at the top of the file. We need to import two libraries: the

SparkFun Qwiic and the time library as shown in the following:

import time

import qwiic

Next, we will create a constant for our threshold to detect when

something is too close:

TOO_CLOSE = 1000

Next, we create two variables that are instances of the proximity and

OLED modules and then call the initialization function (begin()) for each:

prox = qwiic.QwiicProximity()

oled = qwiic.QwiicMicroOled()

prox.begin()

oled.begin()

Next, we clear the OLED and print a welcome message and then wait

for 3 seconds using the time.sleep() function:

oled.clear(oled.PAGE)

oled.clear(oled.ALL)

oled.set_font_type(0)

Chapter 7 Keep Your DistanCe!

296

oled.set_cursor(0,0)

oled.print("Keep Your Distance!")

oled.display()

time.sleep(3)

OK, now we are ready to get into the code proper. Since Python doesn’t

have a concept of the loop() function we saw in the Arduino sketch, we will

simulate it by writing an endless while loop. We can use the CTRL+C keys on

our keyboard to stop execution when we’re done running the code.

Inside the loop, we read a sensor value, print it to the screen (the

terminal) for debugging purposes, and then print it to the OLED module.

We use the value to determine if the object sensed is too close to the sensor.

Finally, we wait for one second before repeating the loop. Listing 7-6 shows

the completed code for the Python program. Take some time to read through

it until you are satisfied you understand it. As you will see, the Python code

(to me at least) reads much easier than the Arduino code.

Listing 7-6. KeepYourDistance Code (Python)

Import libraries

import time

import qwiic

Constants for proximity sensor

TOO_CLOSE = 1000

Create instances of the Qwiic classes (modules)

prox = qwiic.QwiicProximity()

oled = qwiic.QwiicMicroOled()

Start I2C modules for sensor and OLED

prox.begin()

oled.begin()

Chapter 7 Keep Your DistanCe!

297

Clear the screen and print greeting

oled.clear(oled.PAGE)

oled.clear(oled.ALL)

oled.set_font_type(0)

oled.set_cursor(0,0)

oled.print("Keep Your Distance!")

oled.display()

time.sleep(3)

Main loop

while True:

 # Read the sensor value

 proximity = prox.get_proximity()

 # Display the value to the screen and OLED

 print("Proximity = {0}".format(proximity))

 oled.clear(oled.PAGE)

 oled.set_cursor(0,0)

 oled.print("D = ")

 oled.print(proximity)

 oled.set_cursor(0,10)

 # Determine if the object is too close and print message

 if proximity > TOO_CLOSE:

 oled.print("TOO CLOSE!")

 else:

 oled.print("Ok")

 oled.display()

 # Wait for 1 second...

 time.sleep(1)

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

Chapter 7 Keep Your DistanCe!

298

 Execute the Project
Now that we’ve spent many pages exploring the Qwiic modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

message written to the serial monitor (Arduino) or the terminal

(Raspberry Pi). You will also see a welcome message appear on the OLED

followed by a short pause. Then sensor values will appear, and under

that is the Ok or TOO CLOSE! message depending on the value read.

Figure 7-19 shows an example of what you should see on the OLED.

You can affect the sensor readings by placing your hand or another

solid object in the path of the IR sensor on the proximity sensor module.

Be sure to face the module so the silk screen writing is facing up. If the

sensor is facing another direction, it will not respond to your movements.

Executing the code depends on which platform you’re using. Let’s look

at the Arduino first.

Figure 7-19. Executing the KeepYourDistance project

Chapter 7 Keep Your DistanCe!

299

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to

our PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading...

message, you can open the serial monitor. You should see the output begin

momentarily as shown in the following:

Keep Your Distance!

Proximity Value = 6

Proximity Value = 6

Proximity Value = 7

Proximity Value = 12

Proximity Value = 655

Proximity Value = 1539

Proximity Value = 1294

Proximity Value = 2035

Proximity Value = 6

Proximity Value = 6

Proximity Value = 7109

Proximity Value = 8418

Proximity Value = 16162

...

You should also see output on the OLED. Go ahead, and try it out!

Chapter 7 Keep Your DistanCe!

300

 Something Isn’t Working… Now What?

If you don’t see anything in the serial monitor, go back and make sure all

of your Qwiic connections are tight. While it is unlikely you reversed the

cables, if you’re using the breadboard cable, one of the pins may have

come loose. Be sure to power off (unplug the USB cable) before you start

investigating your wiring.

Also, be sure that you have the correct baud rate chosen for the serial

monitor. An incorrect baud rate will cause the serial monitor to display

odd characters or nothing at all.

If those checks fail, you can also follow the troubleshooting tips

discussed in Chapters 2 and 3.

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your Qwiic daisy chain to your

Raspberry Pi via a hat or the Qwiic female breakout cable. Recall the code

will run until you stop it with CTRL+C on the keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./keep_your_distance.py from the same folder where the file

was saved as shown in the following:

$ python3 ./keep_your_distance.py

Proximity = 9

Proximity = 9

Proximity = 23

Proximity = 56

Proximity = 27

Proximity = 7278

Chapter 7 Keep Your DistanCe!

301

Proximity = 7304

Proximity = 7381

Proximity = 11

Proximity = 25

Proximity = 4

Proximity = 6968

Proximity = 7241

Proximity = 8689

Proximity = 10913

Proximity = 14636

Proximity = 15912

Proximity = 16176

Proximity = 16088

...

 Something Isn’t Working… Now What?

If you see a message stating there is an OSError: [Errno 121] Remote

I/O error, this indicates the software library is not communicating or has

lost communication with the I2C module. If you see this error, go back and

make sure all of your Qwiic connections are tight. While it is unlikely you

reversed the cables, if you’re using the breadboard cable, one of the pins

may have come loose. Be sure to shut down your Raspberry Pi before you

start investigating your wiring.

Another possible error is Error: Failed to connect to I2C bus 1.

This indicates the I2C bus is not available. In this case, be sure you have

enabled the I2C interface in the Raspberry Pi Configuration utility.

You can also try running the i2cdetect utility again to ensure the

module is still responding on the expected address.

If those checks fail, you can also follow the troubleshooting tips

discussed in Chapters 4 and 5.

Chapter 7 Keep Your DistanCe!

302

If everything worked as executed, congratulations! You’ve just built

your first Qwiic project all without having to solder or mess with discrete

components. Cool, eh?

 Going Further
This example was designed to get you started with Qwiic modules. There

isn’t an IoT element to the project, but we have to start somewhere. The

skills you learned here can help you expand the project. In this section, we

will learn how we can take the basic elements of this project and expand

them to other, perhaps more useful projects.

 Mounting the Project in a Case
One of the things most will encounter once they get past the initial

learning phase and example projects is the need to mount the project for

use. More specifically, when you build a project and want to use it more

than as a curiosity, you will need some way to mount it. This is where you

will need to get creative.

While the Qwiic and STEMMA QT host adapters and boards have

mount holes so you can mount them on a piece of wood or perhaps

in a general-purpose enclosure (or on a piece of wood mounted in an

enclosure), there are no (current) cases for the Arduino or Raspberry Pi

that have room for mounting the modules. I am certain, with a little effort,

you can come up with something. I like the wood panel idea as it allows

me to mount the modules and other components easily.

Another area where you will need to use some creativity is getting

power to the project. None of the projects in this book require anything

more than the power for the host board, so that’s not that big of an issue,

but locating your project near a power source may be something else to

think about.

Chapter 7 Keep Your DistanCe!

303

Whatever you decide to do, the fun will be in the process of making

something to mount your project. It need not be an aesthetically pleasing

enclosure (but there’s nothing wrong with that). There is a bit of gee whiz

factor seeing your modules bolted to a plank hanging on your wall. Dare I

suggest art?

 Alternative Project Ideas
While it may seem a bit of a stretch, there are some ideas where you could

make this project into an IoT project. Here are just a few suggestions you

can try once we have learned how to take our projects to the cloud. View

these as challenges or homework – things you can do to apply what you’ve

learned rather than read another step-by-step instruction. You’ve got the

skills now. Put them to work!

• Greater range: We can increase the range of the sensor

by combining or replacing the infrared distance

sensor with the Distance Sensor Breakout – 4 Meter,

VL53L1X (Qwiic) from SparkFun (www.sparkfun.com/

products/14722).

• Parking aide: Set up your device in your garage to help

you get your car parked nice and tight to the wall or

other obstacle.

• Six feet, no more!: Create a wearable version of the

project and wear it on your hat or shirt to remind folks

around you to keep a safe distance.

• Cloud data: Collect the data from your project to

display how many times the sensor detected a too-

close threshold or range of values read.

Chapter 7 Keep Your DistanCe!

http://www.sparkfun.com/products/14722
http://www.sparkfun.com/products/14722

304

 Summary
In this chapter, we got some hands-on experience making projects with

Qwiic modules. We used a distance sensor to detect objects and displayed

the calculated range values on a small OLED.

Along the way, we learned many of the fundamental aspects of working

with Qwiic modules from how to plug them together, mounting the shield

and/or hat, direct wiring the Qwiic daisy chain to the host board, and even

programming and executing the code.

We also saw some potential to make this project better by upgrading

the distance sensor as well as some ideas for how to adapt the project for

practical uses.

In the next chapter, we will see another Qwiic project example that we

can use to build a home-based weather station.

Chapter 7 Keep Your DistanCe!

305© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_8

CHAPTER 8

How’s the Weather?
Perhaps one of the ubiquitous projects that you will find on the Internet

is a simple weather station. A basic weather station is a great project

because it shows what is possible for sensing the environment and it’s a

project almost anyone can relate to. After all, the weather is often a topic in

almost every polite social interaction. If you had your own weather station,

particularly one you created yourself, you could contribute a bit more to

the conversation!

In this chapter, we will create a basic weather station. It isn’t a full

weather station because it doesn’t include some of the more frequent

sensors such as wind speed and rainfall totals (but you could add them).

Rather, we’re going to start with the basic observations for temperature,

humidity, and barometric pressure.

Note The details having to do with connecting the Qwiic modules
and alternatives to using shields or hats on your host board have
been omitted in this and the next three project chapters for brevity.
Please refer to Chapter 7 to review any of these details.

Like the last chapter, we will see how to implement this project on the

Arduino and Raspberry Pi. Let’s get started.

https://doi.org/10.1007/978-1-4842-7234-3_8#DOI

306

 Project Overview
The project for this chapter is designed to demonstrate how to get started

building a weather station with a single Qwiic environmental sensor. We

will use the sensor to read the current temperature, relative humidity, and

barometric pressure displaying the data on a small screen. Once again, this

is a very basic weather station and is small enough to be both interesting

and useful.

Interestingly, the environmental sensor can also calculate altitude, but

we will not use such measurement in this project. The primary reason is it

may not be very interesting to present because the values change from one

reading to the next and, more importantly, the measurement is not very

accurate (but can be more so with some adjustments).

 What Will We Learn?
While we won’t see anything new with the hardware other than a different

sensor, by implementing this project, we will reinforce what we learned

from Chapter 7, specifically how to connect Qwiic modules to our host

boards and how to form a daisy chain of Qwiic modules.

The challenges for this project are in the programming tasks, which are

similar to the last project except we will see how to use functions to make

the code easier to maintain. We will also encounter an interesting problem

with the software libraries and see how to solve the problem. The goal is

to see how we can adapt and overcome problems not of our own making –

perhaps more importantly, how to know when it is a problem with a

software library and not our own code.

Let’s see what hardware we will need.

ChaPTer 8 how’s The weaTher?

307

 Hardware Required
The hardware needed for this project is listed in Table 8-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors.

Table 8-1. Hardware Needed for the Weather Station Project

Component URL Qty Cost

Environmental Combo

Breakout – BME280

www.sparkfun.com/

products/15440

1 $14.95

Micro OLED Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

2 $1.50

SparkFun RedBoard Qwiic

(Arduino Uno or

compatible)

www.sparkfun.com/

products/15123

1 $19.95

Raspberry Pi 3B or later www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

Qwiic pHAT for

Raspberry Pi

www.sparkfun.com/

products/15945

1 $5.95

ChaPTer 8 how’s The weaTher?

http://www.sparkfun.com/products/15440
http://www.sparkfun.com/products/15440
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

308

Tip There are a number of Qwiic environmental sensors
available. see www.sparkfun.com/categories/tags/qwiic-
environmental for a complete list.

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter.

 Sensor

The SparkFun BME280 Atmospheric Sensor Breakout is very easy to

use with a minimal amount of setup and code. The sensor can measure

temperature, relative humidity, barometric pressure, and altitude.

The sensor, like most Qwiic modules, is small and can be mounted

in small enclosures. In fact, the sensor can be used either indoors or

outdoors. So you can measure environmental conditions inside your

home, office, dog house, or barn or even on your terrace or patio.

As mentioned, the sensor can also be used as an altimeter. The sensor

can use the current sensor readings including the barometric pressure to

calculate the current altitude. But this requires a bit more information to

get any reasonable accuracy.

The piece of information you need to provide is the current barometric

pressure at sea level for your current position. You can get this by going to

a weather website and searching for your town or city. Look specifically

for the value at sea level. For example, on the east coast, the barometric

pressure at sea level is approximately 1013.25 hectopascal (hPa) units.1

1 https://en.wikipedia.org/wiki/Pascal_(unit)

ChaPTer 8 how’s The weaTher?

http://www.sparkfun.com/categories/tags/qwiic-environmental
http://www.sparkfun.com/categories/tags/qwiic-environmental
https://en.wikipedia.org/wiki/Pascal_(unit)

309

Most libraries for the sensor will provide a means for you to provide this

data.

Unfortunately, you will need to use data that is current and measured

to the nearest hour of when you take samples with the sensor because

stale data can reduce the accuracy considerably. If you want to try it out

yourself, we will see how to make the adjustment (but it is not needed to

read temperature, humidity, and barometric pressure).

 OLED

The OLED module we will use is the same from Chapter 7. If you’d like to

experiment with other output devices, you can, but it is recommended to

use the Micro OLED so that the example code works without modification.

We will learn more about how to adapt our code to changes in modules in

later chapters.

Tip To save on shipping, see the appendix for a complete list of all
hardware used in the book.

 Assemble the Qwiic Modules
Recall from Chapter 7 we can use a single Qwiic cable to connect our

BME280 sensor to the OLED module and then another to attach to the

host adapter on our host board. Figure 8-1 shows an example of how you

should connect your modules to form a Qwiic daisy chain.

ChaPTer 8 how’s The weaTher?

310

Tip refer to Chapter 7 for specifics of how to attach the Qwiic daisy
chain to your host board.

Now that we have all of our modules connected, we can now learn how

to write the code.

However, before we jump into how to write the code for the Arduino

and Raspberry Pi, let’s take a short detour and discuss how you would go

about researching sensors and modules to learn how to use them.

 Researching the Hardware
You may be wondering how you will be able to use any Qwiic (or

STEMMA QT) modules on your own after reading this book. After all, we

will cover only a very few of the possible modules available. So how do

you get started using a new module?

There are several steps I go through whenever I consider or encounter

a new module, sensor, or device I want to use. The following outlines the

steps I typically take to get an idea of how to use the module and start

forming my own code. As you will see, there is no special knowledge

needed other than a well-developed curiosity and a good dose of

perseverance.

Figure 8-1. Weather project Qwiic connections

ChaPTer 8 how’s The weaTher?

311

 Read the Documentation!

Yes, this is quite the cliché. However, you would be surprised how many

people skip this step. The “some assembly required” warning is sadly

interpreted as “when all else fails, read the instructions.” Don’t do that!

Vendors almost always have a documentation section, page, blog,

or article for every module they sell. For example, SparkFun includes a

description of each module along with a list of links to documentation.

Figure 8-2 shows an example of the list of documentation pages for the

BME280 sensor we are using in this chapter. I simply navigated to the page

and then clicked the Documents tab.

Notice in the list of documents there are links for the schematics, files

for electronic computer-aided design (CAD) (eagle files), a hookup guide,

a manufacturer datasheet, the software libraries for Arduino and Python,

and the hardware repository on GitHub (github.com).

Figure 8-2. BME280 module Documents page (courtesy of
sparkfun.com)

ChaPTer 8 how’s The weaTher?

312

The one item you should zero in on and read thoroughly is the hookup

guide.2 Start with the hookup guide and read it from start to end at least

once before you attempt to use the samples in the software libraries. Not

only will you see examples of how to use the module, but you will also

learn key information about the hardware itself.

For example, the hookup guide for the BME280 module contains

information about every aspect of the board (https://learn.sparkfun.

com/tutorials/qwiic-atmospheric-sensor-bme280-hookup-guide). This

includes information about how to connect the module using the breakout

pins and how to set the jumpers on the back and the technical details

about the sensor such as accuracy, I2C address, and more!

Some modules allow you to change the I2C address with a jumper, and

the BME280 module is one of them. You would never know about this by

looking at the board (unless you know what to look for on the tiny screen

print). Specifically, this module can be addressed at 0x77 (the default) or

0x76 by setting the ADR jumpers on the back. Figure 8-3 shows a detailed

view of the jumpers.

2 While a bit too old-school for some, I like to download the .pdf version and either
store it on my iPad for later reading or print it out (if I’m traveling). OK, so I’m
weird like that.

ChaPTer 8 how’s The weaTher?

https://learn.sparkfun.com/tutorials/qwiic-atmospheric-sensor-bme280-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-atmospheric-sensor-bme280-hookup-guide

313

If you look closely, you will see a small joint between the leftmost

pins (bars) on the jumper. To change the address, you would break the

connection and make a new connection from the center pin to the right

pin. Yes, this requires a small bit of soldering to make it work.

Changing the address is a big deal in complex projects because the

more modules you have, the more likely you are to encounter a case where

two modules use the same address. You may also encounter a situation

where you want to use a different software library but that library is written

to use a different address. At least this way, you have a possibility of

resolving these conflicts.

This an excellent example of why you should take the time to read

these documents. You’d never know about this feature without doing so,

unless, of course, you’ve had lots of experience and know how to spot it.

But why take the chance that it works the way you think it may?

Figure 8-3. Setting address jumpers on BME280 (courtesy of
sparkfun.com)

ChaPTer 8 how’s The weaTher?

314

Other vendors, like Adafruit, often include similar well-written

articles to the hookup guide from SparkFun. For example, the article

for their BME280 module can be found at https://learn.adafruit.

com/adafruit-bme280-humidity-barometric-pressure-temperature-

sensor-breakout.

Tip If you encounter a module that doesn’t have documentation,
do not despair. Most vendors sold versions of the sensor prior to
packaging it for Qwiic, so you can look at the non-Qwiic product and
use that documentation. In most cases, the software libraries are the
same.

For those who want to see how the sausage is made,3 you can read the

manufacturer’s datasheet and look at the schematics. For the novice, this

may not add much knowledge, but if you want to learn how the sensor

works and thus how the software library is written to read the data, the

datasheet will provide those answers (but they may not be easy to read).

 Install the Software Libraries

Once you have read all that you can about the module in the

documentation, you should then install the software libraries. Most will

be available for the Arduino through the Library Manager or installed on

Raspberry Pi with the pip3 command.

However, it is also a good idea to click the links for the software

libraries to visit the repository (typically on github.com). You will

encounter additional documentation there along with a place to go if you

get stuck. We’ll see an example of this in a later section.

3 Gah! Another cliché.

ChaPTer 8 how’s The weaTher?

https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout
https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout
https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout

315

The repository will contain the latest version of the code, so if you

need to use the latest features, you can use the repository to download and

install the library. While this chapter and the others like it show you how to

install the libraries, the documentation should be used as a guide as well.

For example, it is possible a new release of the library is introduced that

isn’t part of the Arduino Library Manager or available from Pip. In those

cases, you should follow the documentation for manually installing the

latest library code.

 Explore the Sample Code

We’ve already learned this valuable lesson. Recall we discussed using

the sample sketches and example code vendors include as a way to learn

how to use the module. Not only does this help you understand how the

code you want may be written, but it also helps you test the module in a

controlled, known good mechanism that will remove doubt as to whether

your hardware is working correctly.

By loading the examples, you will be able to run them as tests to

ensure your module and the wiring are correct. Plus, some of the examples

can be fun.

 Write Your Own Code

Once you’ve followed all of these steps, you now know enough to start

writing your own code. In fact, you should have been able to answer most

of what you want to do and what you can do with the module by this point.

You may even find most of what you need in the examples provided by

the vendor. This isn’t always the case as we will see in the next chapter, but

these exploratory skills will be an advantage in those cases as well.

Since this is a beginner’s book, we will learn how to form our own code

by following the example projects. It may take you some practice, but you

ChaPTer 8 how’s The weaTher?

316

should be able to start writing code for you own projects after you finish

this book. Of course, the examples from the software libraries are a great

place to start!

Now, let’s see how to write the code for this project.

 Write the Code
The code for this project reveals the start of a pattern of how the code

to work with IoT projects is typically structured. There are other ways

to construct the code (mainly to do with order of operations and

modularization), but the basics are still the same.

We begin by initializing the I2C bus and preparing the OLED for use

and then executing a loop that reads values from the sensor and then

displays the values on the OLED. More specifically, we will read the current

temperature, relative humidity, and barometric pressure. We will present

the temperature in degrees Celsius, the relative humidity as a percentage,

and the barometric pressure in hectopascal (hPa) units.

Let’s walk through how to prepare our computers to use the sensor and

write code to read its values. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch you will write to read

values from the sensor and display them on the OLED module. But first,

there are a couple of libraries we must install on our PCs.

 Install Software Libraries

We will need to install the Arduino libraries for the BME280 sensor and the

OLED module separately. Fortunately, this is easy to do using the Library

ChaPTer 8 how’s The weaTher?

317

Manager. Simply open the Library Manager from the Arduino IDE menu

(Sketch ➤ Include Library ➤ Library Manager…). Then search for BME280

and install the latest version of the SparkFun Qwiic BME280 library as

shown in Figure 8-4.

When you complete the search, you may be surprised to see a long list

of libraries for the BME280 sensor. This is a good indication the sensor is

popular and likely a good choice for your project. It also means there is

more than one choice for libraries you can use. While it is always best to

use the library provided by the vendor of the module, sometimes it may be

possible or even necessary to use a different library.

For example, if you discover anomalous readings and have verified

your wiring is correct, using a different library to test your module will

help you determine if you have defective hardware or there is a defect in

the vendor’s supplied library or more likely you’re not using the library

correctly. Viewing examples from other libraries will help you determine

which is the likely cause of the anomalous readings.

Figure 8-4. Installing the SparkFun BME280 library (Arduino IDE)

ChaPTer 8 how’s The weaTher?

318

Similarly, we need to install the library for the OLED. If you haven’t

already loaded the library when you completed the project in Chapter 7,

open the Library Manager and search for micro OLED and then install the

latest version as shown in Figure 8-5.

Now that we have the software libraries installed, we can begin writing

our sketch.

 Write the Sketch

Begin by opening a new file in the Arduino IDE under the File ➤ New

menu. This will open a new file that has the skeleton code for a sketch

(contains an empty setup() and loop() method). Name the new sketch

Weather.ino or whatever you’d like to use.

Next, at the top of the file, we need to include a number of libraries. We

need the wire library (what Arduino calls the I2C library), the library for

the BME280 sensor, and the library for the OLED module. The following

shows the code for including these libraries:

Figure 8-5. Installing the Micro OLED library (Arduino IDE)

ChaPTer 8 how’s The weaTher?

319

#include <Wire.h>

#include <SFE_MicroOLED.h>

#include "SparkFunBME280.h"

Next, we need some constants. We need two for the OLED module

to set the reset pin and DC jumper (as shown in the example sketches).

The OLED is hardwired to use a reset (RST), so we only need to choose an

Arduino pin to use, and any unused pin will do. In this case, we use pin

9 for PIN_RESET. Since we haven’t modified the OLED by changing any

jumpers, we can use the default of 1 for the DC_JUMPER (you would change

to 0 if you closed the jumper on the back of the board). We also include a

constant for the barometric pressure at sea level for our location as shown

in the following:

#define PIN_RESET 9

#define DC_JUMPER 1

#define SEALEVEL_REFERENCE (101325.00)

The value for the barometric pressure at sea level is not strictly needed

for this project. It is only needed if you want to read the altitude value

from the sensor because the sensor needs the value for your location to

calculate the altitude. It is included in the sketch to show you how to do it

and as an example of where to place similar operations for future projects.

Next, we need to initialize two variables: one for each Qwiic module

as shown in the following. We will use these variables to call the methods

provided by each library. Here we pass those constants defined earlier to

the OLED class instance:

MicroOLED oled(PIN_RESET, DC_JUMPER);

BME280 bme280;

The next thing we’re going to do is a bit different than the last project.

We will use functions (or methods if you prefer) to set up the BME280

and OLED modules and display information to the serial monitor and

ChaPTer 8 how’s The weaTher?

320

OLED. This is an exercise to demonstrate how you can move parts of your

code to functions to make your code easier to read.

First is a function to set up the BME280 as shown in Listing 8-1. We

will return a Boolean, which we can use to determine if the sensor is set up

properly. We name the function setupBME280().

Listing 8-1. setupBME280 (Arduino)

bool setupBME280()

{

 bme280.settings.commInterface = I2C_MODE;

 bme280.settings.I2CAddress = 0x77;

 return bme280.begin();

}

Here, we set up the settings for the software library including the

communication interface. This is needed because this module can

communicate with I2C as well as SPI. In this case, we want the I2C mode.

We also assign the address. Recall the default is 0x77, but we could change

it to 0x76 by altering the jumpers on the back of the board. Finally, we call

the begin() function and return the result. This way, we can check the

result of our function, which is the same result as the library function. Nice.

Next, we create a function to set up the OLED module moving the

initialization code we saw in Chapter 7 to the function as shown in

Listing 8-2. We name the function setupOLED().

Listing 8-2. setupOLED (Arduino)

bool setupOLED()

{

 if (!oled.begin()) {

 return false;

 }

ChaPTer 8 how’s The weaTher?

321

 oled.setFontType(0);

 oled.clear(PAGE); // Clear page memory

 oled.clear(ALL); // Clear internal memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print("What's theweather?");

 oled.display();

 return true;

}

Notice this code is written a bit differently where we call the begin()

function at the top of the function returning false if the initialization fails

or true after we’ve cleared the screen and displayed the welcome message.

Next, we create a function to display the values read to the serial

monitor. We name the function printDiagnostics() because this function

is useful only while the project is running and the serial monitor is open

and connected. Listing 8-3 shows the new function to print the values to

the serial monitor.

Listing 8-3. Print Diagnostics (Arduino)

void printDiagnostics(float temp, float humid, float pres)

{

 Serial.print("BME280 values: ");

 Serial.print(temp, 2);

 Serial.print("C, ");

 Serial.print(humid, 2);

 Serial.print("%rh, ");

 Serial.print(pres / 100.00, 2);

 Serial.println(" hPa");

}

ChaPTer 8 how’s The weaTher?

322

Notice we do not return anything (return type is void), but we have a

comma-separated list of parameters for the temperature, humidity, and

pressure of type float. This means to use this function, we will need to

pass (include) these values in a parameterized list.

Next is a similar function to print the values read to the OLED module.

We name this function showDataOLED(), and it also takes the same

parameters as shown in Listing 8-4. Thus, we will need to also include the

values as parameters to call the function.

Listing 8-4. Show Data on the OLED (Arduino)

void showDataOLED(float temp, float humid, float pres)

{

 oled.clear(PAGE); // Clear page memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print(temp);

 oled.print(" C");

 oled.setCursor(0, 15); // Set cursor position

 oled.print(humid);

 oled.print(" %rh");

 oled.setCursor(0, 30); // Set cursor position

 oled.print(long(pres / 100.00));

 oled.print(" hPa");

 oled.display();

}

OK, all of the initialization, setup, and helper functions are defined.

Now we can see how this affects our setup() function. Listing 8-5 shows

the completed setup() function.

ChaPTer 8 how’s The weaTher?

323

Listing 8-5. Setup Function (Arduino)

void setup()

{

 Serial.begin(115200);

 Serial.println("How's the weather?");

 Serial.println("------------------");

 Wire.begin();

 if (!setupBME280()) {

 Serial.println("The sensor did not respond. Please check

wiring.");

 while(1); //Freeze

 }

 if (!setupOLED()) {

 Serial.println("ERROR: OLED not found!");

 while(1);

 }

 bme280.setReferencePressure(SEALEVEL_REFERENCE);

 delay(3000);

}

Notice we simply include calls to the functions we wrote to break out

the setup routines for the sensor and OLED. We also see the call to set the

reference pressure as noted previously.

Finally, we can write the code for the loop() function. In this case,

we need to simply read the values, then call the printDiagnostics() and

showDataOLED() functions, and then wait a couple of seconds as shown in

Listing 8-6.

ChaPTer 8 how’s The weaTher?

324

Listing 8-6. Loop Function (Arduino)

void loop()

{

 // Read the sensor

 float temperature = bme280.readTempC();

 float humidity = bme280.readFloatHumidity();

 float pressure = bme280.readFloatPressure();

 // Display data to serial monitor

 printDiagnostics(temperature, humidity, pressure);

 // Display data to OLED

 showDataOLED(temperature, humidity, pressure);

 delay(2000);

}

Now, let’s see all of this code in context. Listing 8-7 shows the

completed sketch with all functions included.

Listing 8-7. Weather Sketch (Arduino)

// Include the wire (i2c), OLED, and environment sensor

libraries

#include <Wire.h>

#include <SFE_MicroOLED.h>

#include "SparkFunBME280.h"

// Constants for the OLED

#define PIN_RESET 9

#define DC_JUMPER 1

#define SEALEVEL_REFERENCE (101325.00)

// Global variables (OLED and sensor)

MicroOLED oled(PIN_RESET, DC_JUMPER);

BME280 bme280;

ChaPTer 8 how’s The weaTher?

325

// Initialize the BME280 sensor

bool setupBME280()

{

 bme280.settings.commInterface = I2C_MODE;

 bme280.settings.I2CAddress = 0x77;

 return bme280.begin();

}

// Setup the OLED and print welcome message

bool setupOLED()

{

 if (!oled.begin()) {

 return false;

 }

 oled.setFontType(0);

 oled.clear(PAGE); // Clear page memory

 oled.clear(ALL); // Clear internal memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print("What's theweather?");

 oled.display();

 return true;

}

// Print values to the serial monitor

void printDiagnostics(float temp, float humid, float pres)

{

 Serial.print("BME280 values: ");

 Serial.print(temp, 2);

 Serial.print("C, ");

 Serial.print(humid, 2);

 Serial.print("%rh, ");

ChaPTer 8 how’s The weaTher?

326

 Serial.print(pres / 100.00, 2);

 Serial.println(" hPa");

}

// Display values on OLED screen

void showDataOLED(float temp, float humid, float pres)

{

 oled.clear(PAGE); // Clear page memory

 oled.setCursor(0, 0); // Set cursor position

 oled.print(temp);

 oled.print(" C");

 oled.setCursor(0, 15); // Set cursor position

 oled.print(humid);

 oled.print(" %rh");

 oled.setCursor(0, 30); // Set cursor position

 oled.print(long(pres / 100.00));

 oled.print(" hPa");

 oled.display();

}

void setup()

{

 Serial.begin(115200);

 Serial.println("How's the weather?");

 Serial.println("------------------");

 Wire.begin();

 if (!setupBME280()) {

 Serial.println("The sensor did not respond. Please check

wiring.");

 while(1); //Freeze

 }

ChaPTer 8 how’s The weaTher?

327

 if (!setupOLED()) {

 Serial.println("ERROR: OLED not found!");

 while(1);

 }

 bme280.setReferencePressure(SEALEVEL_REFERENCE);

 delay(3000);

}

void loop()

{

 // Read the sensor

 float temperature = bme280.readTempC();

 float humidity = bme280.readFloatHumidity();

 float pressure = bme280.readFloatPressure();

 // Display data to serial monitor

 printDiagnostics(temperature, humidity, pressure);

 // Display data to OLED

 showDataOLED(temperature, humidity, pressure);

 delay(2000);

}

As you can see, the code is a bit easier to read, but it is a bit longer. That

is often the trade-off for making your code easier to read and maintain.

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. It is

important to do this step separately so that you can ensure you don’t have

any issues in the code. Not only will the compilation check the code you’ve

written, but it will also ensure the software libraries you installed are also

free of errors.

ChaPTer 8 how’s The weaTher?

328

To compile the sketch, use the Sketch ➤ Verify/Compile menu or click

the leftmost button in the Arduino IDE editor. You may see dozens of lines

pass by in the output window, but the ones you are looking for (the last to

be displayed) should resemble the following:

Sketch uses 17784 bytes (55%) of program storage space. Maximum

is 32256 bytes.

Global variables use 1128 bytes (55%) of dynamic memory,

leaving 920 bytes for local variables. Maximum is 2048 bytes.

If you encounter any errors, be sure to fix them and recompile to

ensure the sketch compiles without errors or serious warnings.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Execute the

Project” section if you’re curious to see how the project works (it will be

the same on both platforms).

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

read values from the sensor and display them on the OLED module. But

first, there are a couple of libraries we must install on our Raspberry Pi.

 Locating Alternative Software Libraries

This is where things get interesting. In testing the code for this book, I

made a startling discovery. The values returned by the SparkFun Qwiic

BME280 library for barometric pressure were incorrect. While it is true the

sensor can produce values that vary a bit, the values returned by the library

were too far off to be minor variations. You may wonder how I knew the

values were off. Simply put, I knew what values to expect, and I had the

Arduino sketch results to compare. So what do you do in this case?

ChaPTer 8 how’s The weaTher?

329

There are several possibilities. Everyone approaches a problem

differently, but I like to first attempt to validate the issue. In this case, the

output of the Arduino sketch helps, but it wasn’t enough because it was

executing on a different platform in a different programming language.

Fortunately, as I mentioned, the BME280 is a popular sensor, and

there are other libraries available. My backup plan includes using libraries

from vendors I trust such as SparkFun and Adafruit. If one is giving me

problems, I look to the other to validate my observations. If neither has

a compatible library, I then look for others, but in this case Adafruit had

exactly what I needed.

Adafruit’s BME280 library is written for their version of Python called

CircuitPython4 that competes with MicroPython,5 but in this case, the

code for the library works perfectly with Python 3 on the Raspberry Pi. You

can find the Adafruit BME280 library at https://github.com/adafruit/

Adafruit_CircuitPython_BME280.

Once I installed the Adafruit library and altered the code to work with

the different library, I was able to produce values in the expected ranges.

This led me to conclude there is a defect in the SparkFun BME280 library.

Whenever you discover something like this and, most importantly,

you can reproduce the problem, you should contact the vendor to let them

know there may be a problem. In fact, you can visit the GitHub site for the

library and open an issue like I did. Be sure to communicate the problem

as succinctly and as accurately as you can and, if possible, present example

output and the reason(s) why you think it is a defect. You may not get

an immediate response, but at least you will be on the record as having

reported the issue.

4 https://learn.adafruit.com/welcome-to-circuitpython
5 https://micropython.org/

ChaPTer 8 how’s The weaTher?

https://github.com/adafruit/Adafruit_CircuitPython_BME280
https://github.com/adafruit/Adafruit_CircuitPython_BME280
https://learn.adafruit.com/welcome-to-circuitpython
https://micropython.org/

330

WHAT IF YOU KNOW WHAT’S WRONG AND HOW TO FIX IT?

There may be a case where you find a defect and you know how to fix it. In

this case, you can send the potential fix to the vendor by describing it in the

issue. Be sure to show your work and example test runs. No one is going to

accept a change if it isn’t justified and proven to fix the problem. This is the

best way to provide the fix to the vendor if you are not confident in using

Github and coding. however, if you are an experienced developer, creating a

branch of the repository and a pull request is the fastest way to get your fix

into the production code.

So the lesson to learn here is if you encounter problems with a

software library, be sure to check other vendors’ libraries for a compatible

substitute. What you should look for is if the vendor has a similar module

with the same interface (Qwiic, STEMMA QT) and the same sensor. Be

sure to try out their examples to verify the library will work with your

module. In this case, the Adafruit library solved the problem. Let’s see how

to install it.

 Install Software Libraries

Since we are using a different library than what is included in the SparkFun

Qwiic Python pip package, we must install additional libraries, in this case

the Adafruit BME280 library and its supporting libraries.

Fortunately, we can do all of this with a single command as follows.

Note that it could install a number of libraries that are needed to support

the library:

$ pip3 install adafruit_circuitpython_bme280

Looking in indexes: https://pypi.org/simple, https://www.

piwheels.org/simple

Collecting adafruit_circuitpython_bme280

ChaPTer 8 how’s The weaTher?

331

 Using cached https://www.piwheels.org/simple/adafruit-

circuitpython-bme280/adafruit_circuitpython_bme280-2.5.1-py3-

none-any.whl

Collecting Adafruit-Blinka (from adafruit_circuitpython_bme280)

 Downloading https://www.piwheels.org/simple/adafruit-blinka/

Adafruit_Blinka-5.10.0-py3-none-any.whl (140kB)

 100% |███████████████| 143kB 511kB/s

Collecting adafruit-circuitpython-busdevice (from adafruit_

circuitpython_bme280)

 Downloading https://www.piwheels.org/simple/adafruit-

circuitpython-busdevice/adafruit_circuitpython_busdevice-5.0.3-

py3-none-any.whl

Collecting Adafruit-PlatformDetect>=2.18.1 (from Adafruit-

Blinka->adafruit_circuitpython_bme280)

...

Installing collected packages: Adafruit-PlatformDetect,

Adafruit-PureIO, Adafruit-Blinka, adafruit-circuitpython-

busdevice, adafruit-circuitpython-bme280

Successfully installed Adafruit-Blinka-5.10.0 Adafruit-

PlatformDetect-2.25.0 Adafruit-PureIO-1.1.8 adafruit-

circuitpython-bme280-2.5.1 adafruit-circuitpython-

busdevice-5.0.3

Tip If you haven’t installed the sparkFun Qwiic Python libraries, you
must install them to run this project (pip3 install sparkfun_
qwiic).

Now we’re ready to write the code.

ChaPTer 8 how’s The weaTher?

332

Note If you did not implement the project in Chapter 7, please refer
to the “raspberry Pi” section in Chapter 7 to enable the I2C interface
on your raspberry Pi.

 Write the Code

The code for the Python version of this project is a bit shorter than the

Arduino code. We still do the same steps in the (almost) same order, but

in Python. We will also implement the code as functions like we did with

the Arduino sketch, but we won’t need as many functions. Also, we will

see how to write the code in a Python-friendly manner using a “main”

function that we will call when execution begins.

Begin by launching the Thonny Python IDE under the Main ➤

Programming submenu. The IDE opens with a new, blank file in the editor.

Name the new file weather.py or whatever you’d like to use. Or you can

download the source code for the book and open the file by that name.

Since the code is very similar to the Arduino sketch, we will only skim

through the highlights.

Start at the top of the file. We need to import several libraries. We need

the supporting libraries for the Adafruit BME280 library (as taken from

the example code) and the system, time, and SparkFun Qwiic libraries as

shown in the following:

import sys

import time

import board

import busio

import adafruit_bme280

import qwiic

ChaPTer 8 how’s The weaTher?

333

We will also create two constants to store a formatting string we will

use repeatedly in the code to save us some typing and remove risk of

typing errors. The first ensures Python will print a floating-point number

with only two decimals, and the second will print a floating-point number

with no decimals. These are used by the Python format() function as you

will see:

TWO_DECIMALS = "{0:.2f}"

NO_DECIMALS = "{0:.0f}"

Next, we will create some global variables: one for the BME280 sensor

and another for the OLED module as shown in the following. We also

need to initialize the BME280 I2C interface when we create an instance to

the object. This is different than how the SparkFun library works, so there

won’t be a setup function for the BME280:

i2c = busio.I2C(board.SCL, board.SDA)

bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)

oled = qwiic.QwiicMicroOled()

Like we did with the Arduino sketch, we will use functions to set up

the OLED module and display information to the terminal and OLED. This

is an exercise to demonstrate how you can move parts of your code to

functions to make your code easier to read.

First, we create a function to set up the OLED module moving the

initialization code we saw in Chapter 7 to the function as shown in Listing 8-8.

We name the function setup_oled().

Listing 8-8. setup_oled (Python)

def setup_oled():

 if oled.begin() is False:

 return False

ChaPTer 8 how’s The weaTher?

334

 # Clear the screen and print greeting

 oled.clear(oled.PAGE)

 oled.clear(oled.ALL)

 oled.set_font_type(0)

 oled.set_cursor(0, 0)

 oled.print("How's theWeather?")

 oled.display()

 time.sleep(3)

 return True

Notice this code is written a bit differently where we call the begin()

function at the top of the function returning false if the initialization fails

or true after we’ve cleared the screen and displayed the welcome message.

Next, we create a function to display the values read to the terminal.

We name the function print_diagnostics() because this function is

useful only while the project is running and the terminal is open and

connected. The following shows the new function to print the values to the

terminal (command window):

def print_diagnostics(temp, humid, press):

 str_format = "BME280 values: {0:.2f} C, {1:.2f} %rh,

{2:.2f} hPa"

 print(str_format.format(temp, humid, press))

Notice we do not return anything (return type is void), but we have a

comma-separated list of parameters for the temperature, humidity, and

pressure of type float. This means to use this function, we will need to

pass (include) these values in a parameterized list.

Next is a similar function to print the values read to the OLED module.

We name this function show_data_oled(), and it also takes the same

parameters as shown in Listing 8-9. Thus, we will need to also include the

values as parameters to call the function.

ChaPTer 8 how’s The weaTher?

335

Listing 8-9. Show Data on the OLED (Python)

def show_data_oled(temp, humid, press):

 oled.clear(oled.PAGE) # Clear page memory

 oled.set_cursor(0, 0) # Set cursor position

 oled.print(TWO_DECIMALS.format(temp))

 oled.print(" C")

 oled.set_cursor(0, 15) # Set cursor position

 oled.print(TWO_DECIMALS.format(humid))

 oled.print(" %rh")

 oled.set_cursor(0, 30) # Set cursor position

 oled.print(NO_DECIMALS.format(press))

 oled.print(" hPa")

 oled.display()

Finally, we create a main() function that contains the code we want to

execute to start (run) the project. We will see why we do this in a moment.

The code is as you’d expect; we read the sensor at the top, print the

diagnostics, show the data on the OLED, and repeat. The only new thing is

once again a placeholder for setting the barometric pressure at sea level for

reading the altitude. Listing 8-10 shows the main() function.

Listing 8-10. Main Function (Python)

def main():

 print("\nHow's the Weather?")

 print("------------------")

 if not setup_oled():

 print("ERROR: The OLED module is not found. Please

check your connections!")

 sys.exit(1)

 # Compensate for reference pressure

 bme280.sea_level_pressure = 1013.25

ChaPTer 8 how’s The weaTher?

336

 while True:

 # Read the sensor data

 temperature = bme280.temperature

 humidity = bme280.humidity

 pressure = bme280.pressure

 # Display diagnostics

 print_diagnostics(temperature, humidity, pressure)

 # Show data on OLED

 show_data_oled(temperature, humidity, pressure)

 time.sleep(3)

OK, so how do we use this main() function? When a Python script is

read, the code is executed as it is read from top to bottom. Functions are

declared, but they are not called until they are explicitly called. When

you use a main() function in this manner, you can place special code at

the bottom of the script (typically) that, if the script is executed, calls the

main() function as shown in the following:

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

Here, we see the special condition (if statement) that checks to see

if the reserved variable __name__ is equal to __main__, which indicates

the script is being executed. If true, we use a try block to call the main

function. The try block is set up to capture a keyboard interrupt signal

from the operating system. This means we can stop the program gracefully

by pressing CTRL+C, and the code will exit. Cool, eh? This is a very

common construct in Python scripts.

Now, let’s see the code all together. Listing 8-11 shows the completed

script for this project.

ChaPTer 8 how’s The weaTher?

337

Listing 8-11. Weather Script (Python)

Import libraries

import sys

import time

import board

import busio

import adafruit_bme280

import qwiic

Constants

TWO_DECIMALS = "{0:.2f}"

NO_DECIMALS = "{0:.0f}"

Create instances of the Qwiic classes (modules)

i2c = busio.I2C(board.SCL, board.SDA)

bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)

oled = qwiic.QwiicMicroOled()

def setup_oled():

 """setup_oled"""

 if oled.begin() is False:

 return False

 # Clear the screen and print greeting

 oled.clear(oled.PAGE)

 oled.clear(oled.ALL)

 oled.set_font_type(0)

 oled.set_cursor(0, 0)

 oled.print("How's theWeather?")

 oled.display()

 time.sleep(3)

 return True

ChaPTer 8 how’s The weaTher?

338

Print values to the terminal

def print_diagnostics(temp, humid, press):

 """print_diagnostics"""

 str_format = "BME280 values: {0:.2f} C, {1:.2f} %rh,

{2:.2f} hPa"

 print(str_format.format(temp, humid, press))

Display values on OLED screen

def show_data_oled(temp, humid, press):

 """show_data_oled"""

 oled.clear(oled.PAGE) # Clear page memory

 oled.set_cursor(0, 0) # Set cursor position

 oled.print(TWO_DECIMALS.format(temp))

 oled.print(" C")

 oled.set_cursor(0, 15) # Set cursor position

 oled.print(TWO_DECIMALS.format(humid))

 oled.print(" %rh")

 oled.set_cursor(0, 30) # Set cursor position

 oled.print(NO_DECIMALS.format(press))

 oled.print(" hPa")

 oled.display()

def main():

 """main"""

 print("\nHow's the Weather?")

 print("------------------")

 if not setup_oled():

 print("ERROR: The OLED module is not found. Please

check your connections!")

 sys.exit(1)

 # Compensate for reference pressure

 bme280.sea_level_pressure = 1013.25

ChaPTer 8 how’s The weaTher?

339

 while True:

 # Read the sensor data

 temperature = bme280.temperature

 humidity = bme280.humidity

 pressure = bme280.pressure

 # Display diagnostics

 print_diagnostics(temperature, humidity, pressure)

 # Show data on OLED

 show_data_oled(temperature, humidity, pressure)

 time.sleep(3)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

 Execute the Project
Now that we’ve spent many pages exploring the Qwiic modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

message written to the serial monitor (Arduino) or the terminal (Raspberry

Pi). You will also see a welcome message appear on the OLED followed

by a short pause. Then sensor values will appear. Figure 8-6 shows an

example of what you should see on the OLED.

ChaPTer 8 how’s The weaTher?

340

You can affect the sensor readings by placing your hand or another

solid object in the path of the IR sensor on the proximity sensor module.

Be sure to face the module so the silk screen writing is facing up. If the

sensor is facing another direction, it will not respond to your movements.

Executing the code depends on which platform you’re using. Let’s look

at the Arduino first.

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading…

message, you can open the serial monitor. You should see the output begin

momentarily as shown in the following:

Figure 8-6. Executing the weather project

ChaPTer 8 how’s The weaTher?

341

How's the weather?

BME280 values: 20.13C, 35.25%rh, 1020.18 hPa

BME280 values: 20.10C, 35.22%rh, 1020.19 hPa

BME280 values: 20.08C, 35.21%rh, 1020.11 hPa

BME280 values: 20.08C, 35.23%rh, 1020.15 hPa

BME280 values: 20.04C, 35.19%rh, 1020.14 hPa

BME280 values: 20.00C, 35.33%rh, 1020.14 hPa

BME280 values: 19.99C, 35.27%rh, 1020.17 hPa

BME280 values: 19.60C, 35.75%rh, 1020.08 hPa

BME280 values: 19.58C, 35.85%rh, 1020.08 hPa

BME280 values: 19.56C, 35.96%rh, 1020.06 hPa

...

You should also see output on the OLED. Go ahead, and try it out!

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your Qwiic daisy chain to your

Raspberry Pi via a hat or the Qwiic female breakout cable. Recall the code

will run until you stop it with CTRL+C on the keyboard.

ChaPTer 8 how’s The weaTher?

342

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./weather.py from the same folder where the file was saved as

shown in the following:

$ python3 ./weather.py

How's the Weather?

BME280 values: 17.99 C, 39.84 %rh, 1020.21 hPa

BME280 values: 18.00 C, 39.81 %rh, 1020.15 hPa

BME280 values: 18.01 C, 39.91 %rh, 1020.15 hPa

BME280 values: 18.01 C, 39.66 %rh, 1020.16 hPa

BME280 values: 18.03 C, 39.83 %rh, 1020.12 hPa

BME280 values: 18.04 C, 39.91 %rh, 1020.13 hPa

BME280 values: 18.04 C, 39.76 %rh, 1020.15 hPa

bye!

If everything worked as executed, congratulations! You’ve just built

your second Qwiic project.

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

 Going Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

ChaPTer 8 how’s The weaTher?

343

• MyWeather portal: Build an enclosure and place the

project outside and record your measurements in the

cloud.

• Test your HVAC: Build several of these projects and

place them throughout your house, workshop, etc. to

see how well your HVAC system keeps you comfortable.

If you see large variances in temperature, for example,

it could mean the HVAC isn’t configured (called

balanced) correctly.

• More weather: Add rainfall and wind speed sensors to

the project.

• How high?: Add the altitude reading by using the

correct barometric pressure at sea level for your

location.

 Summary
In this chapter, we got more hands-on experience making projects with

Qwiic modules. We used an environmental sensor to read temperature,

relative humidity, and barometric pressure and displayed the values on a

small OLED.

Along the way, we learned more about how to work with Qwiic

modules including how to research the module to discover its capabilities

through the documentation and example sketches and code. We also

learned how to mitigate problems with software libraries by researching

and using alternative software libraries.

ChaPTer 8 how’s The weaTher?

344

We also saw some potential to make this project better as well as some

ideas for how to adapt the project for practical uses.

In the next chapter, we will see another Qwiic project that

demonstrates how to use multiple sensors that have the same address. We

will use the Qwiic Mux Breakout – 8 Channel (TCA9548A) to read a series

of Qwiic soil moisture sensors and an ADC module (ADS1015) to read a

series of analog soil moisture sensors.

ChaPTer 8 how’s The weaTher?

345© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_9

CHAPTER 9

Digital Gardener
One of the most common projects for the home is a simple plant

monitoring station. Such projects can have all manner of components, but

the most basic is determining if your plants need to be watered. Yes, that

means all of those folks who have terrible luck with plants can add a tool to

help them earn their green thumbs!

In this chapter, we will create a basic plant monitoring station. It isn’t

a full plant monitoring station because it doesn’t include mechanisms to

automatically water plants and record temperature, humidity, etc. (but

you could add them). Rather, we’re going to read the moisture level of the

soil to determine if our plants need water. That alone is a great start to a

professional-grade monitoring system.

Like the last chapter, we will see how to implement this project on the

Arduino and Raspberry Pi but with an interesting twist. Let’s get started.

 Project Overview
The project for this chapter is designed to demonstrate how to get started

building a plant monitoring station with a set of soil moisture sensors. We

will use the sensors to read the moisture as an analog value and use that

to determine if the plant (soil) needs more water. In fact, we can use the

values to determine a status of dry, OK, or wet to categorize the condition

of the soil. As you will see, the soil moisture sensor is one of many that

require a bit of calibration to work correctly. And, naturally, we will need

plants to monitor. Small potted plants make an excellent medium to start.

https://doi.org/10.1007/978-1-4842-7234-3_9#DOI

346

 What Will We Learn?
By implementing this project, we will explore more Qwiic modules

including how to use multiples of the same sensor in a single project.

Recall sensors have predefined addresses, and while some modules allow

you to change the address, most will not. Thus, we will need to read from

several sensors using the same address.

The challenges for this project are in the programming tasks, which are

similar to the last project except we will increase the level of sophistication

by using classes to make the code easier to maintain.

We will also encounter an interesting problem with the software

libraries and see how to solve the problem. More specifically, the sensor

we will use doesn’t have a Python-equivalent software library, so we will

have to use different hardware for our Python version of the project.

Let’s see what hardware we will need.

 Hardware Required
This chapter is unique in that the hardware needed for the Arduino version

differs from the Python version. As mentioned, this is due to the lack of

a Python library for the Qwiic Soil Moisture Sensor. Thus, there are two

shopping lists. The only difference is the soil moisture sensor and an

I2C Mux for the Arduino and an analog-to-digital (ADC) module for the

Python version.

The hardware needed for the Arduino version of this project is listed

in Table 9-1. URLs for each component are included for ease of ordering

including duplicate entries for alternative vendors.

Chapter 9 Digital garDener

347

Table 9-1. Hardware Needed for the Digital Gardener Project

(Arduino)

Component URL Qty Cost

Qwiic Soil Moisture

Sensor

www.sparkfun.com/

products/17731

1* $8.50

20×4 SerLCD – RGB

Backlight (Qwiic)

www.sparkfun.com/

products/16398

1 $24.95

Qwiic Mux Breakout – 8

Channel

www.sparkfun.com/

products/16784

1 $11.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/17259

3** $1.50

Qwiic cable kit (optional) www.sparkfun.com/

products/15081

1** $7.95

SparkFun RedBoard Qwiic

(Arduino Uno or

compatible)

www.sparkfun.com/

products/15123

1 $19.95

www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

www.sparkfun.com/

products/15945

1 $5.95

Tip You should consider using the longer Qwiic cables for the soil
moisture sensors so that you can place them in your potted plants
and have length to place the host board nearby.

Chapter 9 Digital garDener

http://www.sparkfun.com/products/17731
http://www.sparkfun.com/products/17731
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/16784
http://www.sparkfun.com/products/16784
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/15081
http://www.sparkfun.com/products/15081
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

348

The hardware needed for the Python version of this project is listed

in Table 9-2. URLs for each component are included for ease of ordering

including duplicate entries for alternative vendors.

Table 9-2. Hardware Needed for the Digital Gardener Project

(Python)

Component URL Qty Cost

Soil Moisture Sensor

(with Screw Terminals)

www.sparkfun.com/

products/13637

1* $6.95

20×4 SerLCD – RGB

Backlight (Qwiic)

www.sparkfun.com/

products/16398

1 $24.95

Qwiic 12 Bit ADC – 4

Channel

www.sparkfun.com/

products/15334

1 $10.50

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/17259

3** $1.50

Jumper Wires Premium 12"

M/M

www.sparkfun.com/

products/9387

1 $4.50

(Arduino Uno or compatible) www.sparkfun.com/

products/15123

1 $19.95

Raspberry Pi 3B or later www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

Qwiic pHAT for Raspberry Pi www.sparkfun.com/

products/15945

1 $5.95

*Use as many sensors as you want, but you will need at least one.
**You will need a minimum of two (2) cables plus one for each soil moisture sensor.

Chapter 9 Digital garDener

http://www.sparkfun.com/products/13637
http://www.sparkfun.com/products/13637
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/15334
http://www.sparkfun.com/products/15334
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/9387
http://www.sparkfun.com/products/9387
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

349

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter. Once again, some of the

hardware is used in only one version. If you implement the Python version,

be sure to get a set of male-to-male jumper wires so you connect the

analog soil moisture sensors to the ADC module.

 Qwiic Soil Moisture Sensor

The Qwiic Soil Moisture Sensor is an excellent example of how an analog

sensor (a sensor that generates an analog value measured typically in

volts) can be packaged into a Qwiic module whose value can be read as a

digital value over I2C. In that respect, it makes working with analog signals

very easy.

Unfortunately, there isn’t a Python version of the library to read this

sensor. It is oddly missing from the SparkFun pantheon of Qwiic Python

libraries. While we could write one ourselves, we are going to solve this

problem by using alternative hardware for the Python version. Figure 9-1

shows the Qwiic Soil Moisture Sensor.

One interesting aspect of soil moisture sensors is the coating on the

arms. Most soil moisture sensors have a coating that can deteriorate over

time. In fact, it is highly recommended that these sensors be powered

Figure 9-1. Qwiic Soil Moisture Sensor (courtesy of sparkfun.com)

Chapter 9 Digital garDener

https://www.sparkfun.com

350

on only when you need to read a value. Fortunately, the SparkFun soil

moisture sensors (Qwiic and non-Qwiic) have a gold coating that permits

the sensor to have a much longer life. That said, prolonged use of these

sensors may require a maintenance cycle where you replace the sensors

periodically.

Tip See https://learn.sparkfun.com/tutorials/soil-
moisture-sensor-hookup-guide for more information about
how to manage soil moisture sensors.

 Qwiic I2C Mux

The SparkFun Qwiic Mux Breakout – 8 Channel (TCA9548A) is a very

versatile module that everyone should have in their toolbox. It solves the

address collision problem when using multiples of the same sensor. In fact,

you can use up to eight of the same sensor and reference each at the same

address. Better still, you can adjust the address on the I2C Mux module to

use up to eight I2C Mux boards on the same project. With eight sensors per

board, that means you can host up to 64 of the same sensor!1 Figure 9-2

shows the I2C Mux module.

1 Theoretically, of course. I’ve not tried this myself, and I suspect there may be a soft
limit to the number of sensors you can host in regard to the memory available on
the host board or perhaps a limit in the cumulative length of Qwiic cables.

Chapter 9 Digital garDener

https://learn.sparkfun.com/tutorials/soil-moisture-sensor-hookup-guide
https://learn.sparkfun.com/tutorials/soil-moisture-sensor-hookup-guide

351

Figure 9-2. Qwiic Mux Breakout (courtesy of sparkfun.com)

The code for this module may seem a bit strange. It involves making

an array of instances of the library class for your sensor and using the

Qwiic I2C Mux library to pass the data through the Mux back to your own

code. That may seem a little confusing, but once you see it in action, it will

become clear.

Like most modules from SparkFun, you can change several features of

the board including the I2C address. See the hookup guide for more details

about the module including how to change the I2C address (https://

learn.sparkfun.com/tutorials/qwiic-mux-hookup-guide).

 Soil Moisture Sensor (with Screw Terminals)

The Soil Moisture Sensor (with Screw Terminals) is one of the normal

forms of this sensor that you will encounter. Several vendors make these

sensors in a variety of forms. Some have through-hole headers (soldered or

not), others have a four- or three-pin connector, but the easiest to use is the

screw terminal version from SparkFun. Figure 9-3 shows the Soil Moisture

Sensor (with Screw Terminals).

Chapter 9 Digital garDener

https://learn.sparkfun.com/tutorials/qwiic-mux-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-mux-hookup-guide

352

It is important to note that this is an analog sensor, so you cannot

connect it directly to your Qwiic cabling. In fact, you will need an analog-

to-digital converter (ADC) to translate the voltage read from the sensor to a

number (integer) that you can use in your code.

Fortunately, we can use the ADC from SparkFun to connect this sensor.

 Qwiic 12 Bit ADC

The Qwiic 12 Bit ADC from SparkFun allows you to connect up to four

analog sensors (analog components) via a screw terminal header. Typically,

analog sensors use three wires: ground, power, and signal. In fact, the

preceding soil moisture sensor has three screw terminals marked as such.

The ADC module has a screw terminal header with six screw terminals.

From the left, we see ground, power (VCC), and A0–A3, which represent

the four analog signals. To hook the sensors to the board, you can connect

all four of the ground wires to the GND terminal, all power wires to the

VCC terminal, then the signal wires to A0–A4. We will see an example of

how to do this in a later section. Figure 9-4 shows the ADC module.

Figure 9-3. Soil Moisture Sensor (with Screw Terminals) (courtesy of
sparkfun.com)

Chapter 9 Digital garDener

353

Note While the 12 Bit aDC module can host only four sensors, you
can use the preceding Mux to host up to eight of the aDC modules
giving you 32 sensors on a single project. that’s a lot of plants to
water!

Like most modules from SparkFun, you can change several features of

the board including the I2C address. See the hookup guide for more details

about the module including how to change the I2C address (https://

learn.sparkfun.com/tutorials/qwiic-12-bit-adc-hookup-guide). For

this chapter, you can use the module without modification.

 LCD

The LCD module is our output module of choice. It is a character-driven

LCD with four lines of 20 characters each. Its physical size is several times

that of the Micro OLED, but it is easy to read and easier to mount on a

panel.

Figure 9-4. Qwiic 12 Bit ADC (courtesy of sparkfun.com)

Chapter 9 Digital garDener

https://learn.sparkfun.com/tutorials/qwiic-12-bit-adc-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-12-bit-adc-hookup-guide

354

It is also has a backlight that you can adjust the contrast and color

(hence the RGB moniker). The text is shown in black over whatever

backlight color you choose. Figure 9-5 shows the LCD panel.

Note that the LCD has only a single Qwiic connector, so you will need

to connect this module at the end of a daisy chain.

But this module is more than a Qwiic plug-and-play device. It has a

header that you can use to connect this module to non-Qwiic host boards.

For more information about the module including how to use the header

pins, see https://learn.sparkfun.com/tutorials/avr-based-serial-

enabled-lcds-hookup-guide.

 Assemble the Qwiic Modules
Since we have two versions of the hardware, we will look at each hardware

configuration. Note that how you wire the sensors may need to be adjusted

depending on where your plants are located. More specifically, you need to

insert the soil moisture sensors in soil for them to work correctly! So make

sure you have enough cable to set up your project.

Figure 9-5. 20×4 SerLCD – RGB Backlight (courtesy of sparkfun.com)

Chapter 9 Digital garDener

https://learn.sparkfun.com/tutorials/avr-based-serial-enabled-lcds-hookup-guide
https://learn.sparkfun.com/tutorials/avr-based-serial-enabled-lcds-hookup-guide

355

That said, you can assemble the project hardware without inserting

the sensors in soil, but you can expect to get odd values that won’t permit

your code to determine the correct moisture boundaries for dry or wet soil.

That’s OK so long as you’re developing the code, but you will need soil to

calibrate the sensors. More on that in a moment.

Figure 9-6 shows an example of how you should connect your modules

for the Arduino version using a Mux and the Qwiic soil moisture sensors.

In this example, we use only two Qwiic soil moisture modules connected

to the 0 and 1 ports on the Qwiic I2C Mux. You should use the longer Qwiic

cables to connect the sensors to the Mux.

Figure 9-7 shows an example of how you should connect your modules

for the Python version using a single ADC and the soil moisture sensors

with screw terminals.

Figure 9-6. Digital gardener project connections (Arduino)

Chapter 9 Digital garDener

356

Here we see that we have connected two soil moisture sensors to the

ADC module by attaching the ground (GND) and power (VCC) wires

from the soil moisture sensors to the GND and VCC terminals on the

ADC. There is plenty of room in the screw terminal header for solid wires

like the recommended male jumper wires. The signal wires from each

of the soil moisture sensors are attached to A0 and A1 as shown. Be sure

to use a small flat (bladed) screwdriver to tighten the terminals. Do not

overtighten them!2 Just tighten them enough so that they won’t come

loose.

2 Overtightening screw terminals can break the plastic terminal housing and cause
damage to the PCB.

Figure 9-7. Digital gardener project connections (Python)

Chapter 9 Digital garDener

357

POSITIONING THE PROJECT

this project requires the use of potted plants to insert the soil moisture

sensors. as mentioned, you can write and test the code without placing the

sensors in the soil, but you will need to do so for calibration and execution of

the project.

now is a good time to consider where you will set up your project to run.

Choose a place where you can position your test subjects (plants) that can be

reached by the wiring you’ve chosen and so you can place your host board

nearby. You can move the project away from your computer once you have the

code running, but you will still need a power source and all necessary cables

to power your device (arduino or raspberry pi). Careful consideration ahead

of time can help avoid damaging your project wiring and make for a better

experience.

Before we jump into the code, let’s discuss calibration. While we have

not discussed the code, it is important to know how to calibrate the sensors.

 Calibrating the Sensors
The soil moisture sensor is the first of several sensors used in this book that

require calibration. In this case, it is to find the thresholds for determining

if the soil is dry, OK, or wet. Soil moisture sensors can vary in readings

from one vendor to another, and to some degree the same model can vary

from one instance to another (but with less variance).

The soil moisture sensor works by measuring the resistance between

the probes returning a voltage value. In the case of the Qwiic version,

the onboard ADC returns a value in the range 0–1024 where the higher

value represents more moisture. Conversely, the screw terminal version

connects to our ADC module and returns a value from 0 to 32572.

That’s quite a difference! Thus, you must tailor your code to match the

Chapter 9 Digital garDener

358

characteristics of the sensors used. Furthermore, you must test the sensors

either in the same environment or as close as you can get to determine

their effective values – more specifically, what values represent soil that is

dry, OK, or wet. To do that, we must perform a short calibration test.

To calibrate a soil moisture sensor, you will need to prepare two soil

samples: one that represents soil you consider too dry for the plants you

plan to monitor and another that is too wet. Dry soil may require some

preparation either by removing the moisture manually by heating it

(carefully) in an oven or by searching your planting area for a particularly

dry area. If you cannot find any dry soil, try mixing some sand with the

driest soil you have. For best results, you should choose samples of the

same soil you use for your plants. A small 4''-tall container such as a

small planter should be sufficient. Once you have the samples prepared,

you can place the soil moisture sensor in one of the samples and run the

completed project and note the values.

For example, when preparing this chapter, I used two soil moisture

sensors: one in a container with dry soil and another with overly wet

soil. I ran the project and noted the values for each sensor. I then used an

average from the dry soil to determine the low value and an average from

the wet soil to determine the high value. The Qwiic soil moisture sensors

produced values of 400 for dry conditions and 800 for wet. Conversely, the

screw terminal soil moisture sensors attached to the ADC produced values

of 4000 for dry and 12000 for wet. Be sure to execute this test to determine

the values for your soil.

Caution You must calibrate the sensors as described to determine
the proper values to use in the code. Failing to do so may result in
erroneous determination of the soil condition.

Now that we know more about the hardware for this chapter, let’s write

the code!

Chapter 9 Digital garDener

359

 Write the Code
The code for this project follows what should be a familiar pattern. We start

by declaring some variables, initializing the I2C bus, and preparing our

modules for use. Then we execute a loop that reads values from the sensor

and then displays the values on the LCD. More specifically, we will read

the current soil moisture and determine if the soil is dry, OK, or wet based

on the value returned from the sensor.

However, this time we’re going to use a class to contain the code for

working with the sensor. As you will see, the class for the Arduino version

is a bit lower level than you’re used to seeing, which will reveal some

of the secrets about how a library can be written (the ones we’ve been

downloading and installing). The Python version also has a class, but in

this case the code is more simplified because we are using the library for

the ADC module to read values from one of the analog pins.

Let’s walk through how to prepare our computers to use the sensor and

write code to read its values. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch you will write to read

values from the sensor and display them on the LCD module. But first,

there are a couple of libraries we must install on our PCs.

 Install Software Libraries

We will need to install the Arduino libraries for the I2C Mux and the

LCD module separately. Fortunately, this is easy to do using the Library

Manager. Simply open the Library Manager from the Arduino IDE menu

(Sketch ➤ Include Library ➤ Library Manager…). Then search for mux and

install the latest version of the SparkFun Qwiic I2C Mux library as shown in

Figure 9-8.

Chapter 9 Digital garDener

360

Similarly, we need to install the library for the LCD. Open the Library

Manager and search for serlcd and then install the latest version as shown

in Figure 9-9.

Figure 9-8. Installing the SparkFun Qwiic I2C Mux library (Arduino
IDE)

Figure 9-9. Installing the SerLCD library (Arduino IDE)

Chapter 9 Digital garDener

361

You may be wondering which library we need to install to use the

Qwiic Soil Moisture Sensor. Unfortunately, there isn’t a library for this

sensor. This is likely because the board was a collaboration between

SparkFun and Zio Smart-Prototyping. However, there are examples on

the Zio Smart-Prototyping page that we can use as a template for writing

our own class to read data from the sensor. See https://github.com/

sparkfun/Zio-Qwiic-Soil-Moisture-Sensor/tree/master/Firmware/

Qwiic%20Soil%20Moisture%20Sensor%20Examples for more details.

Now that we have the software libraries installed, we can begin writing

our sketch. Since this is not our first Arduino sketch, we will discuss

the code at a high level and skip the line-by-line details focusing on the

mechanics of how the code works. You can study the code at your leisure

to ensure you understand the sketch in more detail.

 Write the Sketch

Recall we are going to use a class to read the sensor, which will be in the

form of a separate file. Rather than write the main sketch file first and then

add the class, we will write the class header first and then the main sketch

and finally complete the class code. This is typically how programmers

develop code with class modules (but not always). By creating the header

for the class first, we can understand how to use the class making writing

the main sketch easier.

The class will be named QwiicSoilMoisture and stored in two files:

a header file named QwiicSoilMoisture.h and a source file named

QwiicSoilMoisture.cpp. Effectively, we are moving the functions we

would normally include in the main sketch to a class to make it easier to

write, maintain, and understand.

However, since the Arduino IDE manages sketches, we will need to

create the bare sketch file and folder first and then manually add the files

to the project. There is no way (currently) to create and add new files to a

sketch (but you can add existing files by clicking Sketch ➤ Add File…).

Chapter 9 Digital garDener

https://github.com/sparkfun/Zio-Qwiic-Soil-Moisture-Sensor/tree/master/Firmware/Qwiic Soil Moisture Sensor Examples
https://github.com/sparkfun/Zio-Qwiic-Soil-Moisture-Sensor/tree/master/Firmware/Qwiic Soil Moisture Sensor Examples
https://github.com/sparkfun/Zio-Qwiic-Soil-Moisture-Sensor/tree/master/Firmware/Qwiic Soil Moisture Sensor Examples

362

Open a new sketch and name it gardener.ino or whatever you’d like to

use. Save the file and then close the project in the Arduino IDE.

To create the class files, navigate with your File Explorer (Finder) to

the folder where you stored your main sketch (gardener.ino). Then,

use your File Explorer or a text file editor to create two new files named

QwiicSoilMoisture.h and QwiicSoilMoisture.cpp. Or you can use a

terminal to navigate to the folder and issue these commands to create the

empty files:

gardener % touch QwiicSoilMoisture.h

gardener % touch QwiicSoilMoisture.cpp

Now you can open the project in the Arduino IDE and see all three files

in the project as shown in Figure 9-10.

Now, let’s see the code for each file starting with the header file.

Figure 9-10. Starting a bare sketch with class header and code files
(Arduino IDE)

Chapter 9 Digital garDener

363

Class Header File

Click the tab named QwiicSoilMoisture.h to open the blank file. Here, we

will add the header or blueprint for the class. Recall the header file simply

defines the class. We will use the QwiicSoilMoisture.cpp file to add the

code for the functions in the class. Let’s discuss those first.

The module provides a user-triggered LED we can use to indicate we

are reading from the sensor. We will need a function to turn the LED on

and off. We will name the function simply led() and pass a Boolean to

indicate whether the LED should be turned on or off.

We also need a function to retrieve a value from the sensor. We will

name this function getValue() and have it return the value read from the

sensor.

Aside from those functions, we will also create a constructor so we

can pass in an instance of the TwoWire class from the wire library. This

is typical of how some Arduino class libraries written for I2C (Qwiic)

modules are written (but there are others). Finally, we will need a function

named begin() to initialize the sensor.

At this point, you may be wondering how such functions can be written

and how we can control the module. After reading the example from the

Zio Smart-Prototyping GitHub page, we learned there are three basic

commands we can issue. These are represented as values that we write to

the module to control it and are as follows:

#define COMMAND_LED_OFF 0x00

#define COMMAND_LED_ON 0x01

#define COMMAND_GET_VALUE 0x05

The first two simply tell the module to turn the LED on or off. The third

tells the module to read a value from the sensor. Thus, reading the value

requires first a command to tell the module to read and then another

command to read the value. This will become clearer when we see the

code, but for now we will include these definitions in the header file.

Chapter 9 Digital garDener

364

Let’s look at the completed code for the header file. Listing 9-1 shows

the file.

Listing 9-1. Qwiic Soil Moisture Sensor Header File

#import <Wire.h>

#define COMMAND_LED_OFF 0x00

#define COMMAND_LED_ON 0x01

#define COMMAND_GET_VALUE 0x05

class QwiicSoilMoisture {

public:

 QwiicSoilMoisture(TwoWire &i2c, bool diag=false) {

 wire = &i2c;

 diagnostics = diag;

 }

 bool begin();

 unsigned int getValue();

private:

 TwoWire *wire;

 int qwiicAddress = 0x28; // Default Address

 bool diagnostics;

 void led(bool on=true);

};

The code should be easy to read, but there are a couple of things you

can discover. First, notice how we store a variable for the I2C class that

we get from the constructor as well as a Boolean we can use to turn on

diagnostics, which are nothing more than Serial.print() statements

in the class code. This is another common technique you can employ to

control verbosity in your code. It also helps if there is a problem to turn on

the diagnostics so you can see what is going on inside.

Chapter 9 Digital garDener

365

Finally, there is one very special and vitally important variable: the

address of the module. We need this to pass to functions we call from the

wire library so that we can communicate with the module over the I2C bus.

OK, let’s return to the main sketch to see how we can use this class.

Main Sketch

Now click the gardener.ino tab to return to the main sketch. Let’s begin

with the preamble or top of the file. Recall here is where we include

libraries we need, declare variables and constants, etc. Listing 9-2 shows

the code for the main sketch preamble. As you can see, we include the

wire, SerLCD, Mux, and our new class header.

Listing 9-2. Main Sketch Preamble

#include <Wire.h>

#include <SerLCD.h>

#include <SparkFun_I2C_Mux_Arduino_Library.h>

#include "QwiicSoilMoisture.h"

// Constants

#define NUMBER_OF_SENSORS 2 // Set number of sensors here

#define DRY_THRESHOLD 250 // Low threshold for dry soil

#define WET_THRESHOLD 400 // High threshold for wet soil

// Global Variables

QWIICMUX myMux; // Mux

SerLCD lcd; // Serial LCD

// Create pointer to an array of pointers to the sensor class

QwiicSoilMoisture **soilMoistureSensors;

Notice we also define the lower and upper thresholds for the dry and

wet conditions. Anything between those values is considered OK. Refer

to the “Calibrating the Sensors” section to see how we obtain these values

through a calibration test.

Chapter 9 Digital garDener

366

Finally, notice we create an array of the new class. The declaration

may seem a little strange, so let’s examine it in more detail as

repeated in the following. Notice we have declared a variable named

soilMoistureSensors of type QwiicSoilMoisture. The double * means we

are creating a pointer to a pointer or simply an array of QwiicSoilMoisture

class instances. Why? Because the library for the I2C Mux requires an

instance of the class for each module attached to the I2C Mux. Since we are

using two, we will create an array of two instances of our new class:

QwiicSoilMoisture **soilMoistureSensors;

Next, we will code the setup() function, which includes the sort of

initialization code we’ve seen in other projects. Specifically, we will set up

the LCD, create the array of soil moisture sensors, initialize the I2C Mux,

and then call the begin() function for each of the soil moisture instances.

Note that we can control how many sensors are created by changing the

value of the NUMBER_OF_SENSORS constant. Listing 9-3 shows the complete

code for the setup() function. Read through it to ensure you understand

all of the code included.

Listing 9-3. Main Sketch setup()

void setup()

{

 Serial.begin(9600);

 Serial.println("Digital Gardener!");

 Wire.begin();

 // Now, setup the LCD

 lcd.begin(Wire);

 lcd.clear(); // Clear the display

 lcd.setBacklight(255, 255, 255); // Set backlight to bright white

Chapter 9 Digital garDener

367

 lcd.setContrast(5); // Set contrast. 0<- for

higher contrast

 // 01234567890123456789 - Max characters we can

display

 lcd.print("Digital Gardener!");

 // Create set of pointers for instantiated soil moisture

classes

 soilMoistureSensors = new QwiicSoilMoisture *[NUMBER_OF_

SENSORS];

 // Instantiate the instances of the class

 for (int x = 0; x < NUMBER_OF_SENSORS; x++)

 soilMoistureSensors[x] = new QwiicSoilMoisture(Wire);

 if (myMux.begin() == false) {

 Serial.println("ERROR: Mux not detected. Freezing...");

 while (1);

 }

 // Initialize all the sensors

 bool initSuccess = true;

 for (byte x = 0; x < NUMBER_OF_SENSORS; x++) {

 myMux.setPort(x);

 if (!soilMoistureSensors[x]->begin()) {

 Serial.print("Sensor ");

 Serial.print(x);

 Serial.println(" did not initialize! Check wiring?");

 initSuccess = false;

 }

 }

Chapter 9 Digital garDener

368

 if (initSuccess == false) {

 Serial.print("Freezing...");

 while (1);

 }

 Serial.println("Mux ready...");

 delay(3000);

}

Finally, we have the loop() function. At the highest level, we want to

loop through all of the sensors attached to the I2C Mux, read their values,

and display them on the LCD (as well as in the serial monitor). We will also

use the value read to determine if the soil is dry, OK, or wet.

To read values through the I2C Mux, we simply use the setPort()

function to “turn on” whichever port we want and then use the array of

sensor class instances to read the values. In this case, we use the port

number to correspond with the index of the array. In other words, the

sensor on port 0 on the Mux is index [0] in the array. Nice! The I2C Mux

clearly makes using multiple sensors at the same address really easy.

Listing 9-4 shows the completed code for the loop() function. Go

ahead and read through the code to ensure you understand how it works.

There should not be any surprises or new techniques.

Listing 9-4. Main Sketch loop()

void loop()

{

 unsigned int moisture[NUMBER_OF_SENSORS];

 lcd.clear();

 for (byte x = 0; x < NUMBER_OF_SENSORS; x++) {

 // Connect to the specific port on the mux

Chapter 9 Digital garDener

369

 if (x > 4) {

 myMux.setPort(x-4);

 } else {

 myMux.setPort(x);

 }

 // Get the sensor value from the port specified.

 moisture[x] = soilMoistureSensors[x]->getValue();

 Serial.print("Sensor #");

 Serial.print(x);

 Serial.print(" value = ");

 Serial.print(moisture[x]);

 Serial.print(" ");

 // Display on the LCD, page if necessary

 lcd.setCursor(0, x);

 lcd.print("#");

 lcd.print(x+1);

 lcd.print(": ");

 lcd.print(moisture[x]);

 lcd.print(" = ");

 // Determine if soil is dry, wet, or Ok

 if (moisture[x] <= DRY_THRESHOLD) {

 lcd.print("TOO DRY");

 Serial.println("TOO DRY");

 } else if (moisture[x] >= WET_THRESHOLD) {

 lcd.print("TOO WET!");

 Serial.println("TOO WET!");

 } else {

 lcd.print("Ok");

 Serial.println("Ok");

 }

Chapter 9 Digital garDener

370

 // Scroll if there are more than (4) sensors connected.

 if (NUMBER_OF_SENSORS > 4) {

 delay(3000);

 lcd.clear();

 }

 }

 delay(5000);

}

Did you notice the code at the end of the function? This solves the

problem of how to display the status of more than four sensors on an LCD

that only has four lines. This is a primitive form of paging. Cool, eh?

Now we can write the final portion of our project – the code for the

class.

Class Code File

Click the tab named QwiicSoilMoisture.cpp to open the blank file. Here,

we will add the code for the class. There are only three functions to write.

The begin() function does a quick check of the module by calling the

beginTransmission() function passing in the address of the module. We

then call the endTransmission() function, and if it returns anything other

than 0, we return false to indicate the initialization failed. We also turn the

LED on briefly to show a successful initialization.

The getValue() function writes the read command to the module

using a series of function calls including the beginTransmission()

function to start the protocol, then the write() function to write the get

value command, and the endTransmission() function to complete the

protocol. We then use the requestFrom() function to request 2 bytes from

the module and read them inside a loop that loops while the available()

function returns true. This way, we are sure to read all of the bytes

requested. Finally, we read the status value from the module using the

read() function.

Chapter 9 Digital garDener

371

The led() function uses a similar mechanism of function calls

including the beginTransmission() function to start the protocol,

then the write() function to write the led on or off command, and the

endTransmission() function to complete the protocol.

Listing 9-5 shows the completed code for the class (documentation

omitted for brevity). Since this is a much lower level than the code we’re

used to seeing, be sure to study it to understand how it works. While the

protocol (how we talk to the module) is very simple, the functions we use

are uncommon since we normally have libraries written for us.

Listing 9-5. Qwiic Soil Moisture Sensor Code File

#include <Arduino.h>

#include "QwiicSoilMoisture.h"

bool QwiicSoilMoisture::begin() {

 wire->beginTransmission(qwiicAddress);

 // Check here for an ACK from the slave.

 // If no ACK, return false.

 if (wire->endTransmission() != 0) {

 return false;

 }

 led(true);

 delay(1000);

 led(false);

 return true;

}

unsigned int QwiicSoilMoisture::getValue() {

 unsigned int status {0};

 unsigned int value {0};

Chapter 9 Digital garDener

372

 led(true); // turn LED on

 wire->beginTransmission(qwiicAddress); // start transmission

 wire->write(COMMAND_GET_VALUE); // status command

 wire->endTransmission(); // stop transmitting

 wire->requestFrom(qwiicAddress, 2); // request 2 bytes

from device

 // Loop until the byte is available and tell ADC to prepare

to read

 while (wire->available()) {

 uint8_t value_low = wire->read(); // lower values

 uint8_t value_high = wire->read(); // upper values

 // Reassemble the bytes

 value=value_high;

 value<<=8;

 value|=value_low;

 if (diagnostics) {

 Serial.print("ADC = ");

 Serial.print(value);

 Serial.print(" ");

 }

 }

 status = wire->read(); // read the status value

 if (diagnostics) {

 Serial.print("Status = ");

 Serial.print(status);

 Serial.print(" ");

 }

 delay(500);

 led(false); // turn off LED

 return value;

}

Chapter 9 Digital garDener

373

void QwiicSoilMoisture::led(bool on) {

 wire->beginTransmission(qwiicAddress);

 if (on) {

 wire->write(COMMAND_LED_ON);

 } else {

 wire->write(COMMAND_LED_OFF);

 }

 wire->endTransmission();

}

As you can see, the code is a bit more complicated, but by moving it

to a class we can move the complexity out of the main sketch making that

much easier to read. While this class is a very primitive example of what a

class would look like to interact with an I2C module, it is a good glimpse

into what those libraries contain as well as their complexity. That should

make you aware of the necessity of such libraries so that we can write more

powerful code without having to learn a great deal more than we would

normally want to know.

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. If

you encounter any errors, be sure to fix them and recompile to ensure the

sketch compiles without errors or serious warnings.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Sketch on the

Arduino” section if you’re curious to see how the project works. While the

code will execute the same on both platforms, the values differ due to the

differences in how the sensors are read (the range of values differs).

Chapter 9 Digital garDener

374

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

read values from the sensor and display them on the LCD module. But

first, there are a couple of libraries we must install on our Raspberry Pi.

 Install Software Libraries

We need only two more software libraries to install to use the Python code

in this chapter. While we are using an ADC from SparkFun, we will use

the ADC code from Adafruit instead. We need the Adafruit CircuitPython

ads1x15 and the SparkFun SerLCD libraries as shown in the following.

Once you’ve run those commands, you can work on the code:

pip3 install adafruit-circuitpython-ads1x15

pip3 install sparkfun-qwiic-serlcd

Tip if you haven’t installed the SparkFun Qwiic python libraries, you
must install them to run this project (pip3 install sparkfun_
qwiic).

Now we’re ready to write the code.

 Write the Code

The code for the Python version of this project is a bit shorter than the

Arduino code. We will create a class for the soil moisture sensor, but it

won’t be as complicated since we will be using the Adafruit ads1x15 library

instead of communicating directly with the sensor (recall the soil sensors

in this example are analog, now Qwiic enabled). Thus, we will encapsulate

all of the code that interacts with the ADC (and the sensor) in this class

making it hide more of the complexity. As you will see, it is shorter and less

complex than the Arduino example. Let’s get started!

Chapter 9 Digital garDener

375

Once again, we will not dive into every line of code. We will explore the

code at a higher level and discuss the more complex or important parts in

detail. You can read through the code and learn more about how it works

at your leisure.

Like the Arduino example, we will use a class to contain the code

to read the sensor. However, unlike the Arduino IDE, you can use any

editor to create the class and main script. We will name the main script

gardener.py and the class file soil_moisture.py. Let’s start with the class.

Soil Moisture Class

Open the Thonny Python IDE under the Main ➤ Programming

submenu. Create a new file soil_moisture.py. We will name the class

SoilMoisture, and we will need a few functions. In fact, we need only the

constructor and a function named read_sensor() to read the value.

The constructor accepts a single value that specifies the number of

sensors to read. Since the ADC contains only four analog pins, we will

ignore values greater than four.

The read_sensor() function is more complicated because we have

to determine which analog pin to read. We will use a utility class from the

Adafruit pantheon called AnalogIn that will have us read analog values

from the ADC in the form of a tuple. More specifically, it creates a tuple that

contains the value from the analog pin as well as the voltage read from the

ADC for that pin, which could be helpful for diagnosing problems with the

sensor.

However, to read the value on that pin, we must pass a specific

constant. So we must use a longer if elsif sequence to initialize the

AnalogIn class correctly. Once we have the class initialized correctly, we

can return the values.

Listing 9-6 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read through the code so that

you understand all of the parts of the code. As you will see, it is not nearly

Chapter 9 Digital garDener

376

as complicated as the Arduino class, thanks to the helpful class library and

utility class from Adafruit.

Listing 9-6. Soil Moisture Class (Python)

Import libraries

import board

import busio

import adafruit_ads1x15.ads1015 as ADS

from adafruit_ads1x15.analog_in import AnalogIn

class SoilMoisture:

 """Soil Moisture Class"""

 number_of_sensors = 0

 i2c = busio.I2C(board.SCL, board.SDA)

 soil_moisture_sensor = ADS.ADS1015(i2c)

 def __init__(self, num_sensors):

 self.number_of_sensors = num_sensors

 if num_sensors > 4:

 self.number_of_sensors = 4

 def read_sensor(self, sensor_number):

 """Read Sensor"""

 channel = None

 if sensor_number == 0:

 channel = AnalogIn(self.soil_moisture_sensor, ADS.P0)

 elif sensor_number == 1:

 channel = AnalogIn(self.soil_moisture_sensor, ADS.P1)

 elif sensor_number == 2:

 channel = AnalogIn(self.soil_moisture_sensor, ADS.P2)

 elif sensor_number == 3:

 channel = AnalogIn(self.soil_moisture_sensor, ADS.P3)

Chapter 9 Digital garDener

377

 if not channel:

 return (None, None)

 return (channel.value, channel.voltage)

Now we can write our main script.

Main Script (Python)

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file gardener.py. There is nothing new in this code as it

follows the same flow as the Arduino example but simplified. Specifically,

we need only one instance of our new class since that class can read up to

four soil moisture sensors on the ADC.

Once the initialization is complete, we will read through the number of

sensors as specified in the constant NUMBER_OF_SENSORS. We also employ

the main function concept we saw in the last chapter. Listing 9-7 shows the

complete code for the main script for this project. You can read through it

to see how all of the code works.

Listing 9-7. Main Script (Python)

Import libraries

import time

import sys

import qwiic_serlcd

from soil_moisture import SoilMoisture

Constants

NUMBER_OF_SENSORS = 4 # Set number of sensors here

DRY_THRESHOLD = 4000 # Low threshold for dry soil

WET_THRESHOLD = 12000 # High threshold for wet soil

Chapter 9 Digital garDener

378

def main():

 """Main function to run the digital gardener example."""

 lcd = qwiic_serlcd.QwiicSerlcd()

 soil_moisture_sensor = SoilMoisture(NUMBER_OF_SENSORS)

 # Use the serial LCD

 print("\nDigital Gardener!")

 if not lcd.connected:

 print("The Qwiic SerLCD device isn't connected to "

 "the system. Please check your connection",

 file=sys.stderr)

 sys.exit(1)

 lcd.setBacklight(255, 255, 255) # Set backlight to bright

white

 lcd.setContrast(5) # set contrast

 lcd.clearScreen() # clear the screen

 lcd.print("Digital Gardener!")

 lcd.setCursor(0, 1)

 lcd.print("Getting ready")

 for i in range(0, 5):

 lcd.print(".")

 time.sleep(2) # wait sec for system messages to complete

 while True:

 lcd.clearScreen()

 for i in range(0, NUMBER_OF_SENSORS):

 value, voltage = soil_moisture_sensor.read_sensor(i)

 if value > WET_THRESHOLD:

 condition = "Too WET!"

 elif value < DRY_THRESHOLD:

 condition = "Too DRY!"

Chapter 9 Digital garDener

379

 else:

 condition = "Ok"

 msg = "#{0}: {1:5} {2}".format(i, value, condition)

 print(msg)

 lcd.setCursor(0, i)

 lcd.print(msg)

 time.sleep(0.5)

 time.sleep(5)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!")

 sys.exit(0)

Notice the values for the thresholds for dry and wet soil differ from

the Arduino version. Recall this is because we’re using an ADC to read a

different form of the soil moisture sensor.

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

 Execute the Project
Now that we’ve spent many pages exploring the Qwiic modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

message written to the serial monitor (Arduino) or the terminal (Raspberry

Pi). You will also see a welcome message appear on the LCD followed

by a short pause. Then sensor values will appear one on each line of the

Chapter 9 Digital garDener

380

screen. Figure 9-11 shows an example of what you should see on the

LCD. In this case, we are seeing the screen running with four soil moisture

sensors on the Raspberry Pi. Notice two of them are OK, but two have been

overwatered (too wet).

Executing the code depends on which platform you’re using. Let’s look

at the Arduino first.

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading…

message, you can open the serial monitor. You should see the output begin

momentarily that is the same as that on the LCD. Go ahead, and try it out!

You should see values similar to the following:

Figure 9-11. Executing the digital gardener project

Chapter 9 Digital garDener

381

Digital Gardener!

#0: 957 Too WET!

#1: 522 Ok

...

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your Qwiic daisy chain to your

Raspberry Pi via a hat or the Qwiic female breakout cable. Recall the code

will run until you stop it with CTRL+C on the keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./gardener.py from the same folder where the file was saved

as shown in the following. You should get results similar to the following

depending on the number of sensors you’re using:

$ python3 ./gardener.py

Digital Gardener!

#0: 3010 Too DRY!

#1: 4224 Ok

#2: 4336 Ok

#3: 17104 Too WET!

...

If everything worked as executed, congratulations! You’ve just built

your third Qwiic project.

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

Chapter 9 Digital garDener

382

 Going Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

• MyGarden portal: You can display the values of the

sensor readings on a web page to allow you to check on

your plants from anywhere in the world.

• Go outdoors: Build several of these projects installing

them in weather-proof enclosures and place them

throughout your garden to monitor your plants. Or,

if you’re a produce gardener, you can build a system

to help you grow better vegetables than your rival

gardener down the block.

• Alternative hardware: Implement the hardware used in

the Python version in Arduino.

• Sensor power management: Add a relay to turn the

power on and off to the soil moisture sensors to extend

their life.

 Summary
In this chapter, we got more hands-on experience making projects with

Qwiic modules and overcoming obstacles, which plague most when

learning to build IoT projects. We used a set of soil moisture sensors to

check the moisture levels and displayed the values on a small LCD.

Chapter 9 Digital garDener

383

Along the way, we learned more about how to work with Qwiic

modules including how to write our own classes for managing the sensors.

We also learned how to use alternative software libraries in our project.

Finally, we saw some potential to make this project better as well as some

ideas for how to adapt the project for practical uses.

In the next chapter, we will see another project that demonstrates how

to use a STEMMA QT accelerometer to build a digital spirit level.

Chapter 9 Digital garDener

385© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_10

CHAPTER 10

Balancing Act
Now that we’ve learned how to use Qwiic modules, we can go a bit further

by learning how to write our code using more common constructs in

the language. For example, we may need to make a class to keep certain

functions or pieces of data, pass variables among functions, and so on. We

will see more of these in this chapter as we continue to learn to make more

sophisticated projects.

In this chapter, we will learn how to use a multiple degrees of freedom

(DoF1) module to build a spirit level, sometimes called a bubble level or

digital level. We will also see how we can seamlessly combine Qwiic and

STEMMA QT modules.

Of course, we will see how to implement this project on the Arduino

and Raspberry Pi. Let’s get started.

1 https://en.wikipedia.org/wiki/Degrees_of_freedom

https://doi.org/10.1007/978-1-4842-7234-3_10#DOI
https://en.wikipedia.org/wiki/Degrees_of_freedom

386

WHAT IS A SPIRIT OR BUBBLE LEVEL?

A bubble level, sometimes called a spirit level, uses a tube or cylinder with

colored liquid partially filled so that an air bubble is in the container. For

tube shapes, rings are painted on the outside to allow the use of the bubble

to move between the lines to indicate a level or plumb position. Tubes are

commonly used in construction levels for a single axis in the vertical or

horizontal position.

The version we will mimic in this chapter uses a concave glass cylinder with

rings painted on the top so that the bubble can be centered to indicate level.

The advantage of this form is that you can level a surface in both X and Y

directions.

So, if you want to make a post level, a spirit level with tubes (carpenter level)

can help you by checking for level in a vertical position on two adjoining sides

(in this case, the Z axis). However, if you want to make your desk level, a level

with a concave cylinder can help you level the desk in both X and Y horizontal

axes simultaneously.

 Project Overview
The project for this chapter is designed to demonstrate how to build a

spirit level with an accelerometer sensor. We will use the sensor to read the

values of the X and Y coordinates to determine if the sensor is level. We will

use the data to display a set of circles on our trusty Micro OLED to help you

determine if the sensor is level. And, like the last chapter, there is a bit of

calibration needed to ensure the sensor is ready for use.

For those with access to a 3D printer, we will also see a simple

enclosure you can print to install the modules to protect the modules

and make them easier to handle. In fact, any enclosure will make the

calibration sequence easier.

CHApTer 10 BAlAnCing ACT

387

Interestingly, the module we will use also has a gyroscope sensor,

which would allow you to build all manner of motion sensing projects, but

we will stick with a project most can relate easy. After all, almost everyone

has wanted to make something more level – a table, picture frame, your 3D

printer, etc.

 What Will We Learn?
While we won’t see anything new with the hardware other than a different

sensor, by implementing this project, we will reinforce what we learned

from the previous chapters, specifically how to connect Qwiic and

STEMMA QT modules to our host boards.

The challenges for this project are in the programming tasks, which are

a step-up in complexity from the last project. Not only will we use a class

to make the code easier to maintain, but we will also learn how to work

with structures and mapping two coordinate systems (and the math that

entails2).

Let’s see what hardware we will need.

 Hardware Required
The hardware needed for this project is listed in Table 10-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors.

2 Don’t worry. It’s basic arithmetic here.

CHApTer 10 BAlAnCing ACT

388

Tip There are quite a few Qwiic accelerometers from SparkFun
and STeMMA QT accelerometers from Adafruit. Most can easily be
adapted to use in this project, so feel free to substitute a different
module should you need to substitute (or just want to experiment).

Table 10-1. Hardware Needed for the Balancing Act Project

Component URL Qty Cost

Adafruit LSM6DS33 6-DoF

Accel + Gyro IMU – STEMMA

QT / Qwiic

www.adafruit.com/

product/4480

1 $5.95

Micro OLED Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/17259

2 $1.50

Qwiic cable kit (optional) www.sparkfun.com/

products/15081

1** $7.95

SparkFun RedBoard Qwiic

(Arduino Uno or

compatible)

www.sparkfun.com/

products/15123

1 $19.95

Raspberry Pi 3B or later www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

Qwiic pHAT for

Raspberry Pi

www.sparkfun.com/

products/15945

1 $5.95

CHApTer 10 BAlAnCing ACT

http://www.adafruit.com/product/4480
http://www.adafruit.com/product/4480
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/15081
http://www.sparkfun.com/products/15081
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

389

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter.

 Sensor

The Adafruit LSM6DS33 6-DoF Accel + Gyro IMU – STEMMA QT /

Qwiic is a low-cost module that permits you to detect motion and

orientation. It permits six degrees of freedom (notated as 6-DoF) or six

different parameters that can be monitored. As mentioned, it has both

an accelerometer and a gyroscope chip. The accelerometer measures

direction or orientation in three axes with respect to the earth (through

gravity). The gyroscope can tell us how fast the change is happening and

can detect if the module is rotated.

Perhaps the best part of this module is its low cost, so it makes

purchasing the module for a permanent project a bit more economical.

That is, if you decide to build the project in a permanent enclosure, you

won’t be spending a lot of money to build it.

 OLED

The OLED module we will use is the same from the previous chapters.

If you’d like to experiment with other output devices, you can, but it is

recommended to use the Micro OLED so that the example code works

without modification. That said, the code for the Arduino example is

written so that it can be used with different OLED sizes. We’ll see those

details when we examine the code.

CHApTer 10 BAlAnCing ACT

390

 Assemble the Qwiic Modules
Recall from Chapter 7 we can use a single Qwiic cable to connect our

LSM6DS33 sensor to the OLED module and then another to attach to the

host adapter on our host board. Figure 10-1 shows an example of how you

should connect your modules to form a Qwiic daisy chain.

 Using an Enclosure
Projects like the one we’re about to create can be very cumbersome

because we will need to move the module in a number of orientations

during the calibration routine. You can achieve this more easily by using

a long Qwiic cable (or join two Qwiic cables using the Qwiic breakout

module), but even then it leaves the OLED flapping around.

So what can we do? If our host adapter provides mounts for mounting

Qwiic modules, we could use those, but since we have a STEMMA QT

module in the project, that won’t work because they have a different layout

(the holes are smaller and closer together). Of course, we could use a piece

of wood to mount the modules, but there is a more elegant solution.

Figure 10-1. Balancing act project Qwiic/STEMMA connections

CHApTer 10 BAlAnCing ACT

391

If you have your own or access to a 3D printer, you can print an

enclosure. The source code for this chapter includes the 3D printing files

you need to create a simple enclosure to house the accelerometer and

OLED screen. Figure 10-2 shows the two parts of the enclosure with the

bottom on the left.

Notice we have a cutout in the bottom for the Qwiic cable as well as

two sets of holes: one for mounting the STEMMA QT module and the other

to attach the cover. The top also has holes for the OLED module as well as

a cutout for the display.

You will need a few pieces of hardware to assemble the enclosure.

Fortunately, SparkFun has most of what we need. The following lists the

hardware needed. You may be able to find these at electronics or hobby stores:

• (2) ¾" standoffs or equivalent (www.sparkfun.com/

products/11796)

• (4) #40 screws or equivalent (www.sparkfun.com/

products/10453)

Figure 10-2. 3D enclosure design for the spirit level project

CHApTer 10 BAlAnCing ACT

http://www.sparkfun.com/products/11796
http://www.sparkfun.com/products/11796
http://www.sparkfun.com/products/10453
http://www.sparkfun.com/products/10453

392

• (2) 2.5×10mm bolts or equivalent

• (2) 2.5mm nuts or equivalent

To print the files, you should use supports so that the recessed areas do

not collapse. These are used to hide the heads of the bolts and screws.

To assemble the enclosure, begin by mounting the STEMMA QT

module to the bottom as shown in Figure 10-3. Use two 2.5×10mm bolts

and two 2.5mm nuts to secure the module to the base.

Next, attach a short Qwiic cable to the OLED and mount it on the top

using a ¾" (19mm) spacer from SparkFun as shown in Figure 10-4. Use

two #40 screws to attach the OLED to the spacer as shown.

Figure 10-3. Mounting the STEMMA QT board to the enclosure base

Figure 10-4. Mounting the Micro OLED board to the enclosure top cover

CHApTer 10 BAlAnCing ACT

393

Finally, attach the Qwiic cable from the Micro OLED to the STEMMA

QT on one side and another longer cable on the side with the cutout. Then,

carefully press the bottom onto the top (or vice versa) and attach with two

#40 screws. Figure 10-5 shows a completed example of the enclosure.

If you have experience creating 3D models for printing, feel free to

experiment with creating your own enclosure – perhaps one that also

includes a battery and a small form factor host board.

Tip refer to sections in Chapter 8 that discuss researching
modules if you’d like to use a different accelerometer for the project.
You will need to learn what library to use and how it differs from how
the lSM6DS33 reads data (the range of values, sensitivity, etc.).

 Calibrating the Sensor
The accelerometer must be calibrated to ensure we achieve three goals: 1)

the values of X and Y at rest in a known level position will be recorded and

used as a bias to ensure we detect proper orientation and to compensate

for enclosure mounting (board not level in the enclosure), 2) we need to

Figure 10-5. 3D printed enclosure for the spirit level project

CHApTer 10 BAlAnCing ACT

394

know the maximum values of the X and Y axes, and 3) we need to know the

minimum values of the X and Y axes. The minimum and maximum values

will ensure we calculate the location of the pointer in the OLED. That is, we

draw the pointer so that it shows level when positioned in the center.

To achieve this calibration, we will perform five steps as follows.

 1. Obtain the values of X and Y when placed in a level

position.

 2. Get the maximum value of X by placing the sensor

in a vertical position.

 3. Get the minimum value of X by placing the server in

the vertical position rotated 180 degrees.

 4. Get the maximum value of Y by placing the sensor

in a vertical position.

 5. Get the minimum value of Y by placing the server in

the vertical position rotated 180 degrees.

Caution You must calibrate the sensor as described to determine
the correct values for X and Y at rest and the min/max values for
each. Failing to do so may result in the spirit level not centering when
the sensor is level.

Figure 10-6 shows a series of positions of a cube (to represent our

preceding 3D printed enclosure) for each step.

CHApTer 10 BAlAnCing ACT

395

Now that we know more about the hardware for this chapter, let’s write

the code!

 Write the Code
The code for this project follows the pattern of code layout we’ve learned.

There are other ways to construct the code (mainly to do with order of

operations and modularization), but the basics are still the same.

We begin by initializing the I2C bus and preparing the sensor and

OLED for use and then executing a loop that reads values from the sensor

and then displays the values on the OLED. More specifically, we will read

the X and Y axis values from the accelerometer.

However, the scale or range of values for the accelerometer may vary,

so we will need to determine those ranges. We also need to calculate the

at-rest values in order to factor out any orientation or environmental

effects. We perform both of these steps in a calibration routine that we will

execute at the start of execution.

Let’s walk through how to prepare our computers to use the sensor and

write code to read its values. We’ll start with the Arduino.

Figure 10-6. Calibration positions

CHApTer 10 BAlAnCing ACT

396

 Arduino
This section presents a walk-through of the sketch you will write to read

values from the sensor and display a bubble level on the OLED module.

But first, there are a couple of libraries we must install on our PCs.

 Install Software Libraries

We will need to install the Arduino libraries for the Adafruit accelerometer

and Micro OLED module separately. Fortunately, this is easy to do using

the Library Manager. Simply open the Library Manager from the Arduino

IDE menu (Sketch ➤ Include Library ➤ Library Manager…). Then search

for LSM6DS and install the latest version of the Adafruit LSM6DS library as

shown in Figure 10-7.

Similarly, we need to install the library for the OLED. Open the Library

Manager and search for micro OLED and then install the latest version as

shown in Figure 10-8.

Figure 10-7. Installing the Adafruit LSM6DS library (Arduino IDE)

CHApTer 10 BAlAnCing ACT

397

Now that we have the software libraries installed, we can begin writing

our sketch. Since this is not our first Arduino sketch, we will discuss

the code at a high level and skip the line-by-line details focusing on the

mechanics of how the code works. You can study the code at your leisure

to ensure you understand the sketch in more detail.

 Write the Sketch

Recall we are going to use a class to emulate the bubble level, which will

be in the form of a separate file. Rather than write the main sketch file first

and then add the class, we will write the class header first and then the

main sketch and finally complete the class code like we did in Chapter 9.

The class will be named BubbleLevel and stored in two files: a header

file named BubbleLevel.h and a source file named BubbleLevel.cpp.

Effectively, we are moving the functions we would normally include in the

main sketch to a class to make it easier to write, maintain, and understand.

Figure 10-8. Installing the Micro OLED library (Arduino IDE)

CHApTer 10 BAlAnCing ACT

398

However, since the Arduino IDE manages sketches, we will need to

create the bare sketch file and folder first and then manually add the

files to the project. There is no way (currently) to create and add new

files to a sketch (but you can add existing files by clicking Sketch ➤ Add

File…).

Open a new sketch and name it spirit_level.ino or whatever you’d

like to use. Save the file and then close the project in the Arduino IDE.

To create the class files, navigate with your File Explorer (Finder) to

the folder where you stored your main sketch (spirit_level.ino). Then,

use your File Explorer or a text file editor to create two new files named

BubbleLevel.h and BubbleLevel.cpp. Or you can use a terminal to

navigate to the folder and issue these commands to create the empty files:

spirit_level % touch BubbleLevel.h

spirit_level % touch BubbleLevel.cpp

You can then open the project in the Arduino IDE and see all three files

in the project. Let’s see the code for each file starting with the header file.

Class Header File

Click the tab named BubbleLevel.h to open the blank file. Here, we will

add the header or blueprint for the class. Recall the header file simply

defines the class. We will use the BubbleLevel.cpp file to add the code for

the functions in the class. Let’s discuss those first.

This class is a bit different than the class from the last chapter. Instead

of just managing the sensor, we will be using a class to manage the bubble

level. That is, we’ll be putting all of the code that interacts with the Micro

OLED to create the bubble level in this class. Reading the sensor will be

done from the main sketch instead.

CHApTer 10 BAlAnCing ACT

399

Thus, we will need a number of data that is used inside the class and

a few functions for use outside the class. Recall we can have a private and

public section in the class. We place the data and functions used inside the

class in the private section and those used outside the class in the public

section. Let’s start with the public section.

If you think about how we used the Micro OLED in the past, we need

a setup or initialize function as well as a function for drawing the bubble

level and positioning the pointer (the bubble) on the screen.

For drawing the bubble level and the pointer, we will need to know

the minimum and maximum values for both the X and Y axes so that we

can calculate a scale to use when positioning the pointer. For example, if

the Y values can range from –8 to 8 and our screen is 38 pixels wide (with

a center position of 17), we calculate a ratio of the pixels in the horizontal

direction of the screen to the range of Y values or 38/16 = 2.376. So, if the Y

value is –3.45, the horizontal position of the center of the pointer is (2.376 *

–3.45) + 17 = 8.08 or simply pixel 8. We’ll see how this works later when we

write the code for the class.

Additionally, we want to be able to change the sensitivity of the

bubble level making it more or less sensitive to movement. You would

want it more sensitive if you are trying to level something that can be

positioned with small increments or less sensitive if you’re interested in

getting something “close enough.” We will collect this information in the

constructor.

We will also create a function to allow the caller to print a message on

the screen. This will be used during the calibration sequence to give the

user instructions for positioning the sensor.

The functions we will create include the following:

• Constructor: We need a constructor for the class to

accept the sensitivity and size of the center ring.

• begin(): Allow the caller to initialize the class and the

Micro OLED.

CHApTer 10 BAlAnCing ACT

400

• setScale(): Allow the caller to set the scale for the X and

Y axes providing the minimum and maximum values

for each.

• printMessage(): Allow the caller to write a message

(text) onto the screen. This is used in the calibration

sequence.

• drawBubble(): Draw the bubble level and position the

pointer at the indicated X and Y coordinates.

One of the reasons for creating a class to mimic the bubble level is

so that we can use any screen we want. More specifically, the preceding

functions can still be used without changes for a different size screen.

Thus, we would not have to change our main sketch to change the screen.

Cool, eh?

To make that possible, we will need to store a number of data items in

the private section of our class including a variable for the instance of the

Micro OLED class, center position for X and Y, the sensitivity value, and the

scale.

Finally, we will need some constants including the same ones we used

for the Micro OLED, but we will also create a constant for X and Y of 0 and 1,

respectively, to make indexing a bit easier. This is another common

technique. Placing the constants in the header file means we can use them

in the main sketch as well as the code file for the class.

Let’s look at the completed code for the header file. Listing 10-1 shows

the file.

Listing 10-1. Bubble Level Header File

#include <SFE_MicroOLED.h>

// Defines for OLED

#define PIN_RESET 9

#define DC_JUMPER 1

CHApTer 10 BAlAnCing ACT

401

#define X 0

#define Y 1

class BubbleLevel {

public:

 BubbleLevel(float sens_ratio = 1.0, int center_ring = 6);

 bool begin();

 void setScale(float min_x, float min_y, float max_x,

float max_y);

 void printMessage(const char *message);

 void drawBubble(int raw_x, int raw_y);

private:

 MicroOLED *oled; // OLED

 int center_x = 0;

 int center_y = 0;

 int inner_ring_size = 0;

 int oled_scale[2] = {0.0, 0.0};

 float sensitivity = 1.0;

};

The code should be easy to read, and there are no surprises other than

the details described previously. Let’s return to the main sketch to see how

we can use this class.

Main Sketch

Now click the spirit_level.ino tab to return to the main sketch. Let’s

begin with the preamble or top of the file. Recall here is where we include

libraries we need, declare variables and constants, etc. We will also create

functions to execute the calibration sequence, which is a bit more complex

than what we are used to seeing, so we will walk through those functions

separately.

CHApTer 10 BAlAnCing ACT

402

We will look at the preamble first and then the setup() and loop()

functions. Listing 10-2 shows the preamble code for the main sketch. As

you can see, we include the wire, Serial LCD, Mux, and our new class

headers.

Listing 10-2. Main Sketch Preamble

#include <Adafruit_LSM6DS33.h>

#include "BubbleLevel.h"

// Structure to save calibration data

typedef struct {

 float bias[2] = {999.0, 999.0};

 float min_values[2] = {0.0, 0.0};

 float max_values[2] = {0.0, 0.0};

 bool calibrated = false;

} calData_ptr;

// Calibration operations enumeration

enum CAL_TESTS {

 AVERAGES, // Get stable values at rest

 MIN_X, // Get minimum values for X axis

 MAX_X, // Get maximum values for X axis

 MIN_Y, // Get minimum values for Y axis

 MAX_Y // Get maximum values for Y axis

};

// Global variables

Adafruit_LSM6DS33 lsm6ds33; // accelerometer

BubbleLevel bubbleLevel(1.25);

calData_ptr calData; // calibration data

CHApTer 10 BAlAnCing ACT

403

Notice we define a structure to contain the calibration data and an

enumeration set to establish a series of calibration tests. We use the

structure to capture the calibration data including the bias from the first

step in the calibration sequence and the minimum and maximum values

of the X and Y axes from the remaining four steps in the sequence.

Finally, we create variables for the accelerometer, our bubble level

class, and the structure. We create a variable for the structure so we can

pass it to our functions for updating the data in the structure.

Next, we will code the setup() function, which includes the sort of

initialization code we’ve seen in other projects. Specifically, we will set up

the accelerometer and the bubble level. Listing 10-3 shows the complete

code for the setup() function. Read through it to ensure you understand

all of the code included. Notice we also have some of the optional tuning

methods for the accelerometer (from the Adafruit examples) in case you

want to tune the sensitivity of the sensor.

Listing 10-3. Main Sketch setup()

void setup() {

 Serial.begin(115200);

 while (!Serial);

 Serial.println("\nSpirit level");

 if (!lsm6ds33.begin_I2C()) {

 Serial.println("ERROR: LSM6DS33 module not found");

 while (1);

 }

 Serial.println("LSM6DS33 ready!");

 // Optionally change sensitivity settings of the module

 // lsm6ds33.setAccelRange(LSM6DS_ACCEL_RANGE_2_G);

 // lsm6ds33.setGyroRange(LSM6DS_GYRO_RANGE_250_DPS);

 // lsm6ds33.setAccelDataRate(LSM6DS_RATE_12_5_HZ);

 // lsm6ds33.setGyroDataRate(LSM6DS_RATE_12_5_HZ);

CHApTer 10 BAlAnCing ACT

404

 if (!bubbleLevel.begin()) {

 Serial.println("ERROR: OLED not found!");

 while(1);

 }

 Serial.println("Readings:");

}

Next, we have the loop() function. We simply read the axis values from

the sensor and then call the drawBubble() function for our new class. We

will also check to see if the sensor is calibrated. While we could have put

this in the setup() function, placing it in the loop() function permits us to

modify the code to run the calibration whenever needed. See the “Going

Further” section for hints on how to do this.

Once the calibration is done, we call the setScale() function of our

new class to set the scale for the pointer. So where are these calibration

functions? We haven’t written them yet! Read on.

Listing 10-4 shows the completed code for the loop() function. Go

ahead and read through the code to ensure you understand how it works.

There should not be any surprises or new techniques.

Listing 10-4. Main Sketch loop()

void loop() {

 sensors_event_t accel;

 // We need variables for the gyroscope and temperature

 // readings, but we do not use them.

 sensors_event_t gyro;

 sensors_event_t temp;

 float x = 0.0;

 float y = 0.0;

 // Check to ensure sensor is calibrated.

 if (!calData.calibrated) {

CHApTer 10 BAlAnCing ACT

405

 calibrate(&calData);

 bubbleLevel.setScale(calData.min_values[X],

calData.max_values[X],

 calData.min_values[X], calData.max_

values[Y]);

 }

 // Read the accelerometer data

 lsm6ds33.getEvent(&accel, &gyro, &temp);

 // Adjust with bias from calibration

 x = accel.acceleration.x - calData.bias[X];

 y = accel.acceleration.y - calData.bias[Y];

 Serial.print("X=");

 Serial.print(x);

 Serial.print("\tY=");

 Serial.println(y);

 bubbleLevel.drawBubble(x, y);

 delay(100);

}

Now, let’s look at the calibration functions. We will use two functions:

one to manage the calibration process named calibrate() and another to

execute the calibration tests named runCalibrationTests(). Since much

of the code is similar, writing a function to run all of the tests is a better

option. While it does increase the complexity of the code, it avoids a lot of

repetitive code.3

3 Eliminating repetitive code is always a good idea as it removes risk of missing
changes should you have to modify the code. That is, fixing five of the six
occurrences will lead to some strange behavior and some hairpulling to get it
sorted and fixed.

CHApTer 10 BAlAnCing ACT

406

Let’s look at the calibration tests function first (runCalibration

Tests()). Recall there are five calibration steps we need to execute. This

function is written to execute the specific code needed for each of the five

calibration steps.

The calibration data is passed by reference as a parameter named

calData. Any data we collect from the test is saved in the appropriate field

of that structure. We also use a parameter named operation to determine

which test to run and another named iterations for the number of times

to run the test. Recall we want to run the same test many times to ensure

we have a good average to use.

As you can imagine, the function that calls this function will pass the

calibration data and specify a test to run as well as the number of times

to run the test. Aside from that, there isn’t anything complicated in the

code. Listing 10-5 shows the completed function. Take some time and

read through the code until you understand how it works. Notice there

are two parts: one to execute the test and another to collect the data. Each

is written using a switch statement that routes execution based on the

operation specified.

Listing 10-5. Main Sketch Calibration Tests Function

void runCalibrationTests(calData_ptr* calData, CAL_TESTS

operation, int iterations) {

 sensors_event_t accel;

 sensors_event_t gyro;

 sensors_event_t temp;

 float min_value = 32767.00;

 float max_value = -32767.00;

 float sum_values[2] = {0.0, 0.0};

 float x = 0.0;

 float y = 0.0;

CHApTer 10 BAlAnCing ACT

407

 // Loop reading sensor values recording data for specific test

 for (int i = 0; i < iterations; i++) {

 lsm6ds33.getEvent(&accel, &gyro, &temp);

 x = accel.acceleration.x;

 y = accel.acceleration.y;

 switch (operation) {

 case AVERAGES:

 sum_values[0] += x;

 sum_values[1] += y;

 break;

 case MIN_X:

 min_value = min(x, min_value);

 break;

 case MAX_X:

 max_value = max(x, max_value);

 break;

 case MIN_Y:

 min_value = min(y, min_value);

 break;

 case MAX_Y:

 max_value = max(y, max_value);

 break;

 }

 Serial.print(".");

 if ((i % 100) == 99) {

 Serial.println();

 }

 delay(10);

 }

 // Complete calculations

 switch (operation) {

 case AVERAGES:

CHApTer 10 BAlAnCing ACT

408

 calData->bias[X] = sum_values[X] / (float)iterations;

 calData->bias[Y] = sum_values[Y] / (float)iterations;

 break;

 case MIN_X:

 calData->min_values[X] = min_value;

 break;

 case MAX_X:

 calData->max_values[X] = max_value;

 break;

 case MIN_Y:

 calData->min_values[Y] = min_value;

 break;

 case MAX_Y:

 calData->max_values[Y] = max_value;

 break;

 }

 Serial.println("done.");

}

Finally, we look at the last function to execute the calibration tests

(calibrate()). Like the last function, we pass the calibration data by

reference so that we can store the changes in the structure for use in the

main portion of the code.

There is also nothing else complicated about this function. As you will

see, it serves as a driver for the preceding calibration tests function. In fact,

the bulk of the code is about printing diagnostic messages to the serial

monitor and writing short instructions to the Micro OLED.

Listing 10-6 shows the completed code for the calibration function.

Take some time and read through it to ensure you understand how it

works.

CHApTer 10 BAlAnCing ACT

409

Listing 10-6. Main Sketch Calibration Function

void calibrate(calData_ptr* calData) {

 bubbleLevel.printMessage("Begin\nCalibrate\nsequence");

 Serial.println("\nStarting Calibration");

 delay(2000);

 // Calibrate at rest

 Serial.println("\nStep 1: Place on level surface. Do not tilt.");

 bubbleLevel.printMessage("Step 1:\nPlace on\nlevel\nsurface.\

nDo not\ntilt.");

 delay(2000);

 runCalibrationTests(calData, AVERAGES, 500);

 Serial.println("\nStep 2: Turn X axis vertical.");

 bubbleLevel.printMessage("Step 2:\nVertical X");

 delay(2000);

 runCalibrationTests(calData, MIN_X, 250);

 Serial.println("\nStep 3: Turn X axis 180 degrees vertical.");

 bubbleLevel.printMessage("Step 3:\nVertical XFlip 180");

 delay(2000);

 runCalibrationTests(calData, MAX_X, 250);

 Serial.println("\nStep 4: Turn Y axis vertical.");

 bubbleLevel.printMessage("Step 4:\nVertical Y");

 delay(2000);

 runCalibrationTests(calData, MIN_Y, 250);

 Serial.println("\nStep 5: Turn Y axis 180 degrees vertical.");

 bubbleLevel.printMessage("Step 5:\nVertical YFlip 180");

 delay(2000);

 runCalibrationTests(calData, MAX_Y, 250);

 calData->calibrated = true;

CHApTer 10 BAlAnCing ACT

410

 Serial.print("Bias X: ");

 Serial.print(calData->bias[X]);

 Serial.print(" Y: ");

 Serial.println(calData->bias[Y]);

 Serial.print("Range X: (");

 Serial.print(calData->min_values[X]);

 Serial.print(",");

 Serial.print(calData->max_values[X]);

 Serial.println(")");

 Serial.print("Range Y: (");

 Serial.print(calData->min_values[Y]);

 Serial.print(",");

 Serial.print(calData->max_values[Y]);

 Serial.println(")");

 Serial.println("\nCalibration complete.");

 delay(2000);

}

Now we can write the final portion of our project – the code for the class.

Class Code File

Click the tab named BubbleLevel.cpp to open the blank file. Here,

we will add the code for the class. There are four functions and the

constructor to write.

The constructor captures the sensitivity setting and the size of the

center ring. We also create a variable with an instance of the Micro OLED

class for use inside the class.

The begin() function initializes the Micro OLED and collects data to

find the center position.

CHApTer 10 BAlAnCing ACT

411

The setScale() function accepts the minimum and maximum values

for the X and Y axes and uses them to calculate a mapping of the scale or

range of X and Y values to the size of the screen. This is a nifty trick, so take

some time to read through how the math works (it’s a ratio).

The printMessage() function writes a string (message) to the Micro

OLED and is a helper for the calibration sequence.

The drawBubble() function takes an X and Y value from the caller

(sensor) and plots the pointer on the screen. It uses the ratio and mapping

we described earlier to locate the pointer. However, there is a bit of a trick

here too. Our Micro OLED is oriented where Y is forward to back and X is

left to right, which is not the same orientation as our sensor. So we must

gently alter the code to reverse the axes as shown in the following. Take

some time to read through the code to see how it works. Aside from that, it

simply draws the circles and the pointer at the calculated location:

// Plot the location on the OLED

// Note: we change the axis to orient the OLED correctly.

x = center_x - int(raw_y * oled_scale[X]);

y = center_y - int(raw_x * oled_scale[Y]);

Finally, the function writes the circles and pointer to the

Micro OLED. Listing 10-7 shows the completed code for the class

(documentation omitted for brevity). Since this is a much lower level than

the code we’re used to seeing, be sure to study it to understand how it

works. While the protocol (how we talk to the module) is very simple, the

functions we use are uncommon since we normally have libraries written

for us.

CHApTer 10 BAlAnCing ACT

412

Listing 10-7. Bubble Level Code File

#include "BubbleLevel.h"

BubbleLevel::BubbleLevel(float sens_ratio, int center_ring) {

 oled = new MicroOLED(PIN_RESET, DC_JUMPER);

 sensitivity = sens_ratio;

 inner_ring_size = center_ring;

}

bool BubbleLevel::begin() {

 if (!oled->begin()) {

 return false;

 }

 oled->begin();

 oled->clear(ALL);

 oled->clear(PAGE);

 center_y = oled->getLCDHeight() / 2;

 center_x = oled->getLCDWidth() / 2;

 oled->setFontType(0);

 oled->setCursor(0, 0);

 oled->print("Spirit");

 oled->setCursor(0, 10);

 oled->print("Level");

 oled->display();

 delay(2000);

 return true;

}

CHApTer 10 BAlAnCing ACT

413

void BubbleLevel::setScale(float min_x, float min_y, float

max_x, float max_y) {

 oled_scale[X] = float(center_x) / max(abs(min_x), max_x) *

sensitivity;

 oled_scale[Y] = float(center_y) / max(abs(min_y), max_y) *

sensitivity;

 Serial.print("\nScales - X: ");

 Serial.print(oled_scale[X]);

 Serial.print(" Y: ");

 Serial.println(oled_scale[Y]);

 Serial.print("Center OLED - X: ");

 Serial.print(center_x);

 Serial.print(" Y: ");

 Serial.println(center_y);

 Serial.println();

}

void BubbleLevel::printMessage(const char *message) {

 oled->clear(PAGE);

 oled->setFontType(0);

 oled->setCursor(0, 0);

 oled->print(message);

 oled->display();

}

void BubbleLevel::drawBubble(int raw_x, int raw_y) {

 int x; // Calculated X position

 int y; // Calculated Y position

 // Plot the location on the OLED

 // Note: we change the axis to orient the OLED correctly.

 x = center_x - int(raw_y * oled_scale[X]);

 y = center_y - int(raw_x * oled_scale[Y]);

CHApTer 10 BAlAnCing ACT

414

 oled->clear(PAGE);

 oled->pixel(x-1, y-1);

 oled->pixel(x+1, y-1);

 oled->pixel(x-1, y+1);

 oled->pixel(x+1, y+1);

 oled->pixel(x, y);

 oled->pixel(x+2, y);

 oled->pixel(x-2, y);

 oled->pixel(x, y+2);

 oled->pixel(x, y-2);

 // Outer guide ring

 oled->circle(center_x, center_y, center_y - 1);

 // Inner guide ring

 oled->circle(center_x, center_y, 6);

 oled->display();

}

As you can see, this class is another example of how to move code out

of your main sketch and into helper modules. There is another possible

class we could make for this project. We could move the calibration code to

its own class. If you’re curious, try it out yourself as an exercise.

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. If

you encounter any errors, be sure to fix them and recompile to ensure the

sketch compiles without errors or serious warnings.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Sketch on the

Arduino” section if you’re curious to see how the project works. The code

will run the same on both platforms.

CHApTer 10 BAlAnCing ACT

415

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

read values from the sensor and display them on the Micro OLED module.

But first, we need to install a Python library on our Raspberry Pi.

 Install a Software Library

We need only one more software library to use the Python code in this

chapter. We need the accelerometer library from Adafruit as shown in the

following:

$ pip3 install adafruit-circuitpython-lsm6ds

Tip if you haven’t installed the SparkFun Qwiic python libraries, you
must install them to run this project (pip3 install sparkfun_
qwiic).

Now we’re ready to write the code.

 Write the Code

The code for the Python version of this project is a bit shorter than the

Arduino code. We will create a class for the bubble level, which is coding

using similar techniques as the Arduino version. However, in the main

script, instead of using a structure, we will use a Python dictionary for the

calibration data. Let’s get started!

Once again, we will not dive into every line of code. We will explore the

code at a higher level and discuss the more complex or important parts in

detail. You can read through the code and learn more about how it works

at your leisure.

CHApTer 10 BAlAnCing ACT

416

Like the Arduino example, we will use a class to contain the code for

the bubble level. However, unlike the Arduino IDE, you can use any editor

to create the class and main script. We will name the main script spirit_

level.py and the class module bubble_level.py. Let’s start with the class.

Bubble Level Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file bubble_level.py. We will name the class BubbleLevel,

and we will need a few functions. In fact, we need the same functions as

we used in the Arduino version as listed below for completion. While they

perform the same operations as the Arduino version, the names of the

functions differ. For a complete description of each of these functions, see

the “Arduino” section.

The functions we will create include the following:

• Constructor: We need a constructor for the class to

accept the sensitivity and size of the center ring.

• begin(): Allow the caller to initialize the class and the

Micro OLED.

• set_scale(): Allow the caller to set the scale for the X and

Y axes providing the minimum and maximum values

for each.

• print_message(): Permit the caller to write a message

(text) onto the screen. This is used in the calibration

sequence.

• draw_bubble(): Draw the bubble level and position the

pointer at the indicated X and Y coordinates.

CHApTer 10 BAlAnCing ACT

417

Listing 10-8 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read through the code so that

you understand all of the parts of the code. As you will see, it mimics the

Arduino.

Listing 10-8. Bubble Level Class (Python)

import time

import qwiic

Constants

X = 0

Y = 1

class BubbleLevel:

 oled = qwiic.QwiicMicroOled()

 center_x = 0

 center_y = 0

 inner_ring_size = 0

 oled_scale = [0.0, 0.0]

 sensitivity = 1.0

 def __init__(self, sens_ratio=1.0, center_ring=6):

 self.sensitivity = sens_ratio

 self.inner_ring_size = center_ring

 def begin(self):

 if self.oled.begin() is False:

 return False

 # Clear the screen and print greeting

 self.oled.clear(self.oled.PAGE)

 self.oled.clear(self.oled.ALL)

CHApTer 10 BAlAnCing ACT

418

 # Learn size and find the center of the display

 # Note: we must invert the height and width to match

orientation

 # of the OLED so that the mount holes align.

 self.center_y = self.oled.get_lcd_height() / 2

 self.center_x = self.oled.get_lcd_width() / 2

 self.oled.set_font_type(0)

 self.oled.set_cursor(0, 0)

 self.oled.print("Spirit")

 self.oled.set_cursor(0, 10)

 self.oled.print("Level")

 self.oled.display()

 time.sleep(2)

 return True

 def set_scale(self, min_values, max_values):

 # Calculate OLED scale factors

 self.oled_scale[X] = float(self.center_x) / \

max(abs(min_values[X]), max_values[X]) * self.sensitivity

 self.oled_scale[Y] = float(self.center_y) / \

max(abs(min_values[Y]), max_values[Y]) * self.sensitivity

 print("\nScales - X: {0} Y: {1}".format(

self.oled_scale[X], self.oled_scale[Y]))

 print("Center OLED - X: {0} Y: {1}\n".format(

self.center_x, self.center_y))

 def print_message(self, message):

 self.oled.clear(self.oled.PAGE)

 self.oled.set_font_type(0)

 self.oled.set_cursor(0, 0)

 self.oled.print(message)

 self.oled.display()

CHApTer 10 BAlAnCing ACT

419

 def draw_bubble(self, raw_x, raw_y):

 # Plot the location on the OLED

 # Note: we change the axis to orient the OLED

correctly.

 x_coordinate = self.center_x - int(raw_y * self.oled_

scale[X])

 y_coordinate = self.center_y - int(raw_x * self.oled_

scale[Y])

 self.oled.clear(self.oled.PAGE)

 self.oled.pixel(x_coordinate - 1, y_coordinate - 1)

 self.oled.pixel(x_coordinate + 1, y_coordinate - 1)

 self.oled.pixel(x_coordinate - 1, y_coordinate + 1)

 self.oled.pixel(x_coordinate + 1, y_coordinate + 1)

 self.oled.pixel(x_coordinate, y_coordinate)

 self.oled.pixel(x_coordinate + 2, y_coordinate)

 self.oled.pixel(x_coordinate - 2, y_coordinate)

 self.oled.pixel(x_coordinate, y_coordinate + 2)

 self.oled.pixel(x_coordinate, y_coordinate - 2)

 # Outer guide ring

 self.oled.circle(self.center_x, self.center_y, self.

center_y - 1)

 # Inner guide ring

 self.oled.circle(self.center_x, self.center_y, self.

inner_ring_size)

 self.oled.display()

Now we can write our main script.

CHApTer 10 BAlAnCing ACT

420

Main Script (Python)

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file spirit_level.py. There is nothing new in this code as it

follows the same flow as the Arduino example but much simplified. Listing 10-9

shows the complete code for the main script for this project. You can read

through it to see how all of the code works.

Listing 10-9. Main Script (Python)

Import libraries

import time

import board

import busio

import pprint

import sys

from adafruit_lsm6ds.lsm6ds33 import LSM6DS33

from bubble_level import BubbleLevel, X, Y

Calibration operations enumeration

CAL_TESTS = ("AVERAGES", "MIN_X", "MAX_X", "MIN_Y", "MAX_Y")

Global variables

i2c = busio.I2C(board.SCL, board.SDA)

lsm6ds33 = LSM6DS33(i2c)

bubble_level = BubbleLevel(1.25)

Dictionary to save calibration data

calibration_data = {

 'bias': [999.0, 999.0],

 'min_values': [0.0, 0.0],

 'max_values': [0.0, 0.0],

 'calibrated': False

}

CHApTer 10 BAlAnCing ACT

421

def run_calibration_tests(cal_data, operation, iterations):

 min_value = 32767.00

 max_value = -32767.00

 sum_values = [0.0, 0.0]

 # Loop reading sensor values recording data for specific

test

 for i in range(0, iterations):

 x_coordinate = lsm6ds33.acceleration[0]

 y_coordinate = lsm6ds33.acceleration[1]

 if operation == "AVERAGES":

 sum_values[0] += x_coordinate

 sum_values[1] += y_coordinate

 elif operation == "MIN_X":

 min_value = min(x_coordinate, min_value)

 elif operation == "MAX_X":

 max_value = max(x_coordinate, max_value)

 elif operation == "MIN_Y":

 min_value = min(y_coordinate, min_value)

 elif operation == "MAX_Y":

 max_value = max(y_coordinate, max_value)

 print(".", end="")

 if (i % 100) == 99:

 print("")

 time.sleep(0.010)

 # Complete calculations

 if operation == "AVERAGES":

 cal_data["bias"][X] = sum_values[X] / float(iterations)

 cal_data["bias"][Y] = sum_values[Y] / float(iterations)

 elif operation == "MIN_X":

 cal_data["min_values"][X] = min_value

CHApTer 10 BAlAnCing ACT

422

 elif operation == "MAX_X":

 cal_data["max_values"][X] = max_value

 elif operation == "MIN_Y":

 cal_data["min_values"][Y] = min_value

 elif operation == "MAX_Y":

 cal_data["max_values"][Y] = max_value

 print("done.")

def calibrate(cal_data):

 bubble_level.print_message("Begin Calibrate sequence")

 print("\nStarting Calibration")

 time.sleep(2)

 # Calibrate at rest

 print("\nStep 1: Place on level surface. Do not tilt.")

 bubble_level.print_message("Step 1: Place on level

surface."

" Do not tilt.")

 time.sleep(2)

 run_calibration_tests(cal_data, "AVERAGES", 500)

 print("\nStep 2: Turn X axis vertical.")

 bubble_level.print_message("Step 2: Vertical X")

 time.sleep(2)

 run_calibration_tests(cal_data, "MIN_X", 250)

 print("\nStep 3: Turn X axis 180 degrees vertical.")

 bubble_level.print_message("Step 3: Vertical XFlip 180")

 time.sleep(2)

 run_calibration_tests(cal_data, "MAX_X", 250)

 print("\nStep 4: Turn Y axis vertical.")

 bubble_level.print_message("Step 4: Vertical Y")

 time.sleep(2)

 run_calibration_tests(cal_data, "MIN_Y", 250)

CHApTer 10 BAlAnCing ACT

423

 print("\nStep 5: Turn Y axis 180 degrees vertical.")

 bubble_level.print_message("Step 5: Vertical YFlip 180")

 time.sleep(2)

 run_calibration_tests(cal_data, "MAX_Y", 250)

 cal_data["calibrated"] = True

 print("\nCalibration Data:\n")

 pprint.pprint(cal_data, indent=4)

 print("\nCalibration complete.")

 time.sleep(2)

def main():

 print("\nSpirit Level")

 if not bubble_level.begin():

 print("ERROR: The OLED module is not found. "

 "Please check your connections!")

 sys.exit(1)

 # Calibrate the sensor.

 calibrate(calibration_data)

 # Calculate OLED scale factors

 bubble_level.set_scale(calibration_data["min_values"],

calibration_data["max_values"])

 print("Readings:")

 while True:

 # Read sensor and adjust with bias from calibration

 x_coordinate = lsm6ds33.acceleration[0] - calibration_

data["bias"][X]

 y_coordinate = lsm6ds33.acceleration[1] - calibration_

data["bias"][Y]

CHApTer 10 BAlAnCing ACT

424

 # Display the raw data for diagnostics

 print("X={0}\tY={1}".format(x_coordinate, y_coordinate))

 # Show the bubble level

 bubble_level.draw_bubble(x_coordinate, y_coordinate)

 time.sleep(0.5)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as exErr:

 print("\nbye!\n")

sys.exit(0)

Notice we have the same functions as we defined in the Arduino

version for calibrating the sensor. In fact, while the code is organized

differently – we use a main() function and we use a dictionary instead of a

structure – the Python code is a port of the Arduino code.

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

 Execute the Project
Now that we’ve spent many pages exploring the Qwiic modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

message written to the serial monitor (Arduino) or the terminal (Raspberry

Pi). You will also see a welcome message appear on the Micro OLED

followed by a short pause. Then the calibration process will begin.

CHApTer 10 BAlAnCing ACT

425

Once the calibration is complete, you will see the bubble level displayed.

Figure 10-9 shows an example of what you should see on the OLED. Notice

the pointer is dead center of the inner ring. That puppy is level!

Executing the code depends on which platform you’re using. Let’s look

at the Arduino first.

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading...

message, you can open the serial monitor. You should see the output begin

momentarily that is the same as that on the OLED. Go ahead and try it out!

Figure 10-9. Executing the digital level project

CHApTer 10 BAlAnCing ACT

426

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your Qwiic daisy chain to your

Raspberry Pi via a hat or the Qwiic female breakout cable. Recall the code

will run until you stop it with CTRL+C on the keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./spirit_level.py from the same folder where the file was

saved as shown in the following. If everything worked as executed,

congratulations! You’ve just built your fourth Qwiic project.

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

 Going Further
While we didn’t discuss them in this chapter, here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

• New class for the sensor: Build a class to manage the

sensor moving all of the code for reading the sensor to

the new class.

• New class for calibration: Build a class to encapsulate

the calibration functions. It could be a simple code

module rather than a class.

CHApTer 10 BAlAnCing ACT

427

• Build a better enclosure: Build an enclosure to contain

your Arduino board and a battery supply to make the

project portable. Use the 3D printer files from the book

source code and expand the OpenSCAD code.

• Calibrate button: Add a button to trigger the calibration

routine by either setting the calibration flag to false or

running the calibration when the button is triggered.

This could be helpful if you must move the sensor or

want to use a specific plane for a base.

• Orientation: Add the ability to orient the sensor and

enclosure in a different starting position. For example,

instead of the horizontal, allow for a vertical orientation

(or switch between them).

• Robot level: Use the project in this chapter to add the

ability to sense when your robot is on level ground.

While it may be a stretch, you could build a robot to

move around your home checking for level floors

recording the findings and displaying the results on a

web page.

 Summary
In this chapter, we got more hands-on experience making projects with

Qwiic and STEMMA QT modules. We used an accelerometer sensor to

detect movement in the X and Y axes. We then wrote a class library to

represent a bubble level where the center position is the level position for

the X and Y axes. We used a set of circles to help in using the project to find

level positions for objects.

CHApTer 10 BAlAnCing ACT

428

Along the way, we learned more about how to write class libraries to

represent abstract constructs as well as how they can be used to model

objects. Rather than write a class to manage the sensor, we wrote a class to

mimic a bubble level represented on a Micro OLED module. This shows

you how you can use classes not only to represent hardware (sensors) but

also concepts (bubble level).

In the next chapter, we will learn how to use a magnetometer to create

a digital compass. As you will see, the code for the project is more complex

due to the need to use an alternative code library, trigonometric formulas,

and more calibration.

CHApTer 10 BAlAnCing ACT

429© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_11

CHAPTER 11

Digital Compass
To reinforce our experience with STEMMA QT and Qwiic modules, let’s

take a look at another project that has a bit more sophistication than the

typical examples you find on the Internet.

In this chapter, we will see our last Qwiic and STEMMA QT project. We

will learn how to use a magnetometer module to build a digital compass.

In some respects, this project is similar to the project in the last chapter,

but this one requires more mathematical formulas and thus is a bit more

complex.

Part of the complexity results from the fact that the base code we need

to use is not included in the vendor documentation. Specifically, there is

no single example for this magnetometer we will use that shows how to use

it as a compass. So we must develop that part on our own with some help

from similar examples.

Of course, we will see how to implement this project on the Arduino

and Raspberry Pi. Let’s get started.

Caution This project is a rudimentary digital compass that is not
guaranteed to be accurate under all conditions as outlined in the
“Limitations” section.

https://doi.org/10.1007/978-1-4842-7234-3_11#DOI

430

 Project Overview
The project for this chapter is designed to demonstrate how to build a

digital compass with a magnetometer sensor. We will use the sensor to

read magnetic North and use that to calculate a heading (the direction

we’re facing). And, like the last chapter, there is a bit of calibration needed

to ensure the sensor is ready for use.

For those with access to a 3D printer, we will also see a simple

enclosure you can print to install the modules to protect the modules

and make them easier to handle. In fact, any enclosure will make the

calibration sequence easier.

 What Will We Learn?
While we won’t see anything new with the hardware other than a different

sensor, by implementing this project, we will reinforce what we learned

from the previous chapters.

Part of the complexity of this chapter is in learning how to calibrate

and calculate a heading from a magnetometer to build a compass,

which results in challenging programming because we will need to use

trigonometry to calculate our heading.1

Let’s look at what magnetometers are. Then we will discover

calculations for determining the heading.

1 See, you do need to pay attention in class!

ChapTer 11 DigiTaL Compass

431

 What Is a Magnetometer?
A magnetometer measures magnetic fields and is capable of measuring the

direction, strength, or relative change of a magnetic field. It can be used

to measure the location of the magnetic field or as a compass to detect

the earth’s magnetic North pole. Most magnetometers are combined with

accelerometers and other sensors to increase functionality.

However, a magnetometer is affected by two sources of interference

known as hard and soft iron. Hard iron are objects that generate magnetic

fields such as a speaker. Soft iron are distortions in the magnetic fields that

deflect or alter existing magnetic fields. Sources include certain metals

such as iron or nickel. Hard iron distortions affect the sensor more than

soft iron, but both can be eliminated through calibration.

While there are a lot of different magnetometer modules available,

not all are created equal. Some detect magnetic fields better (with more

precision and sensitivity) than others. Further, some work better in the

presence of metal than others. For example, if you have a lot of metal in

the area, some magnetometers may not work correctly (or may need more

calibration).

When choosing a magnetometer, be sure to choose one that meets

your expectations for detecting magnetic North and can operate within

your environment.

The magnetometers available for hobbyists and enthusiasts are not the

same level of accuracy or sophistication as magnetometers used in aircraft,

ships, etc. So, while we can build a nice compass, you should not use it

in situations where one’s life may be at risk such as navigation at sea, in

space, or in your grandparents’ basement or garage.

ChapTer 11 DigiTaL Compass

432

 Mathematical Problems
This project has several mathematical problems we need to solve. We

must calculate a heading from the data read from the magnetometer and

calculate where to place the pointer on the OLED to represent our heading.

Let’s begin with calculating a heading. We will use the magnetometer

to read the X and Y values and convert those to a heading that we can plot

on our display and show on the display in degrees.

 Calculating a Heading

The magnetometer sensor will give us a set of values when read, but the two

we will use are the X and Y values. These values change as the orientation

of the sensor changes. That is, as you turn the sensor, the values reflect

the orientation of the sensor to the reference point (magnetic North). We

can use these values to determine our heading using trigonometry – the

arctangent function. The basic formula is shown in the following:

heading = (atan2(y, x) * 180)/ PI;

However, this does not take into consideration our calibration values

(more on that later). So we must subtract our calibration values (called

bias) as follows. We will use an array to store the bias for X and Y:

heading = (atan2(y - bias[Y], x - bias[X]) * 180)/ PI;

There’s one more thing to consider. The values for X and Y can result in

a negative value for half the range. So we must add 360 to any heading that

results in a negative value as follows:

heading = (atan2(y - bias[Y], x - bias[X]) * 180) / PI;

if (heading < 0) {

 heading += 360;

}

ChapTer 11 DigiTaL Compass

433

While this is the most basic calculation, it does not fully compensate

for variations in the earth magnetic fields (called the declination angle).

This value varies depending on your location. However, we can find

the declination angle for our location by visiting www.compassnetic-

declination.com/.

We must add this value to our equation. However, this value is in

radians, so we must break out our preceding calculation to work with

radians and then convert to degrees last. Let’s look at the new calculations.

Here, we use the declination angle for the Northeastern United States:

heading = atan2(y - bias[Y], x - bias[X]) + 0.174533;

// Fix signs when negative values are calculated

if (heading < 0) {

 heading += 2*PI;

}

// If the declination angle forces a wrap past 2 * PI,

// adjust by subtracting 2 * PI

if (heading > 2*PI) {

 heading -= 2*PI;

}

// Convert radians to degrees

heading = heading * 180 / PI;

OK, now we have a more accurate calculation for finding our heading.

There is just one major limitation to consider.

 Intentional Error

Since we are mounting the magnetometer sensor rotated 90 degrees from

the orientation of the enclosure (90 degrees difference from the Micro

OLED), we will need to compensate so our pointer is pointing correctly.

Otherwise, it will be 90 degrees off. Figure 11-1 shows the magnetometer.

Notice the label in the upper-right corner.

ChapTer 11 DigiTaL Compass

http://www.compassnetic-declination.com/
http://www.compassnetic-declination.com/

434

This is how you can tell the magnetometer is oriented on the board.

Ideally, for North, we want the X coordinate pointing toward the polar

North position, but we rotated the board 90 degrees to the left. Thus, to

compensate, we will need to add 90 degrees to our heading calculation.

We have therefore introduced an intentional error. If you mount your

board differently, be sure to alter the parts of the code where we make

these adjustments. Hint: Look in the calibration animation, draw pointer,

and heading functions.

 Compass Calculations

We’ve examined the math for the heading calculation, but there is more

math involved in the compass display, specifically the math for plotting the

heading as a point on a circle and drawing a pointer to it.

We must translate a heading to a point on a circle. The display uses a

line as the pointer, so we will be calculating two points: one for the point

on the outer circle that is visible to the user and another that represents the

starting point for the line. We’ll call the outer circle compass radius and the

inner circle mask radius. We call it a mask since we do not want to draw

the line or pointer from the center since we will be displaying the heading

in the center of the OLED. Figure 11-2 shows an example of what the circle

with a pointer looks like when the heading is 45 degrees.

Figure 11-1. Qwiic MLX90393 (courtesy of SparkFun)

ChapTer 11 DigiTaL Compass

435

So how do we do that? Well, we must use a little of that math we

learned in school but thought we’d never use again: trigonometry!

Figure 11-3 shows a triangle placed over the pointer from the last image.

To plot a point using X and Y coordinates, we would use the angle ϴ

and use the following functions.

For X, we derive the following formula:

cos(ϴ) = X / r
r * cos(ϴ) = X
X = r * cos(ϴ)

Figure 11-2. Example pointer for compass display

Figure 11-3. Calculating the pointer location for compass display

ChapTer 11 DigiTaL Compass

436

For Y, we derive the following formula:

sin(ϴ) = Y / r
r * sin(ϴ) = Y
Y = r * sin(ϴ)

OK, that’s great, but we don’t know the value of ϴ, do we? Wait. We do!

While we have a heading in degrees, we can convert that back to an angle

with the formula

ϴ = PI * (heading - 90) / 180

Replacing ϴ in the preceding formulas, we get

X = r * cos(PI * (heading - 90) / 180)

Y = r * sin(PI * (heading - 90) / 180)

Now, recall r is either the radius of the outer circle or the inner circle.

Since we want both, we need to plot two points: one for the location of the

line on the outer circle and one for the inner circle. With that in mind, we

need to run the set of formulas twice as follows. Why subtract 90? Because

we added it to the heading since our board is mounted 90 degrees offset

from the enclosure. See, that “error” appears everywhere:

X1 = compassRadius * cos(PI * (heading - 90) / 180)

Y1 = compassRadius * sin(PI * (heading - 90) / 180)

X2 = MASK_RADIUS * cos(PI * (heading - 90) / 180)

Y2 = MASK_RADIUS * sin(PI * (heading - 90) / 180)

OK, we’ve got the line segment, so we draw that line, yes. Not so fast!

Recall we must center the circles in the OLED, so we will need to add the

center X and Y positions as follows:

oled->line(oledCenter[X] X1, oledCenter[Y] + Y1,

 oledCenter[X] + X2, oledCenter[Y] + Y2);

ChapTer 11 DigiTaL Compass

437

And that’s it! We’ve taken the heading, converted it to an angle,

and then plotted the pointer on the screen – all with the trickery of

trigonometry!

Regarding the calibration animation, we will use four circles of

decreasing size as an action sequence to tell the user to rotate the sensor.

We will use the same preceding formulas to calculate the position of these

circles on the outer circle. The circles will be spaced apart to form an

action icon that travels around in a circle. You can explore the code that

draws those circles as an exercise.

Note The python library for the micro oLeD does not include a
circle fill function. so the python version will use circles without fill.

 Limitations
Calculations for the heading have one major limitation to consider. The

magnetometer calculates values in three dimensions, not two. Thus,

there is a Z axis to consider. When the magnetometer is moved in three

dimensions, the values for X and Y will be affected by the orientation in the

Z axis.

This project is written to only consider values in the X and Y directions;

thus, the magnetometer must be kept horizontal to get accurate readings.

Any change in the Z axis while moving the magnetometer will affect the

heading calculation.

An orientation limitation isn’t so farfetched as you may think.

Compasses used in the past were mounted on a gimbal designed to keep

the compass face with the horizon no matter the orientation of the thing to

which it was mounted (ship, plane, etc.).

ChapTer 11 DigiTaL Compass

438

If you are wondering if it is possible to use the Z axis values to ensure

a correct heading is calculated, thereby removing this limitation, it is, but

the solution adds complexity beyond the scope of this work. If you want to

learn more about calibrating a magnetometer in three dimensions, see the

following references:

• Iron distortion: https://appelsiini.net/2018/

calibrate- magnetometer

• Calibration concepts: https://teslabs.com/articles/

magnetometer- calibration

• Simple calibration: https://github.com/kriswiner/

MPU6050/wiki/Simple- and- Effective- Magnetometer-

Calibration

• Calibration video: https://robotacademy.net.au/

lesson/using- magnetometers

There is one other limitation we should mention. The compiled code

is too large for the older, smaller Arduino boards. You will need to use a

board with more memory to run the sketch.

Let’s see what hardware we will need.

 Hardware Required
The hardware needed for this project is listed in Table 11-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors.

ChapTer 11 DigiTaL Compass

https://appelsiini.net/2018/calibrate-magnetometer
https://appelsiini.net/2018/calibrate-magnetometer
https://teslabs.com/articles/magnetometer-calibration
https://teslabs.com/articles/magnetometer-calibration
https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://robotacademy.net.au/lesson/using-magnetometers
https://robotacademy.net.au/lesson/using-magnetometers

439

Tip While there is only one Qwiic magnetometer from sparkFun,
there are many i2C magnetometers from sparkFun and adafruit
(including an mLX90393 version). most can easily be adapted to use
in this project, so feel free to substitute a different module (if you just
want to experiment).

Table 11-1. Hardware Needed for the Digital Compass Project

Component URL Qty Cost

SparkFun Triple Axis

Magnetometer Breakout –

MLX90393

www.sparkfun.com/

products/14571

1 $15.95

Micro OLED Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/17259

2 $1.50

Qwiic cable kit (optional) www.sparkfun.com/

products/15081

1** $7.95

SparkFun RedBoard Qwiic

(Arduino Uno or compatible)

www.sparkfun.com/

products/15123

1 $19.95

Raspberry Pi 3B or later www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

Qwiic pHAT for Raspberry Pi www.sparkfun.com/

products/15945

1 $5.95

ChapTer 11 DigiTaL Compass

http://www.sparkfun.com/products/14571
http://www.sparkfun.com/products/14571
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/17259
http://www.sparkfun.com/products/15081
http://www.sparkfun.com/products/15081
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/products/15123
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

440

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter.

 Sensor

The SparkFun Triple Axis Magnetometer Breakout – MLX90393 is a triple-

axis magnetic sensor that can detect small magnetic fields as well as larger

fields such as a magnetic source nearby. It can be used as a compass, for

magnetic sensing for switches or similar nearness measurement, or as a

position sensor such as an end stop for mechanical movements.

Perhaps the best part of this module is its low cost, so it makes

purchasing the module for a permanent project a bit more economical.

That is, if you decide to build the project in a permanent enclosure, you

won’t be spending a lot of money to build it.

 OLED

The OLED module we will use is the same from the previous chapters.

If you’d like to experiment with other output devices, you can, but it is

recommended to use the Micro OLED so that the example code works

without modification. That said, the code for the Arduino example is

written so that it can be used with different OLED sizes. We’ll see those

details when we examine the code.

 Assemble the Qwiic Modules
Recall from Chapter 7 we can use a single Qwiic cable to connect our

MLX90393 sensor to the OLED module and then another to attach to the

host adapter on our host board. Figure 11-4 shows an example of how you

should connect your modules to form a Qwiic daisy chain.

ChapTer 11 DigiTaL Compass

441

 Using an Enclosure
Like the last project, the digital compass components we’re using can be

very cumbersome because we will need to move the module in a number

of orientations during the calibration routine. We can fix this with an

enclosure.

If you have your own or access to a 3D printer, you can print an

enclosure. The source code for this chapter includes the 3D printing files

you need to create a simple enclosure to house the magnetometer and

OLED screen. Figure 11-5 shows the two parts of the enclosure with the

bottom on the left.

Figure 11-4. Digital compass connections

Figure 11-5. 3D enclosure design for the digital compass project

ChapTer 11 DigiTaL Compass

442

Notice we have a cutout in the bottom for the Qwiic cable as well as

two sets of holes: one for mounting the Qwiic module and the other to

attach the cover. The top also has holes for the OLED module as well as a

cutout for the display. See Chapter 10 for a list of the hardware needed.

To print the files, you should use supports so that the recessed areas do

not collapse. These are used to hide the heads of the bolts and screws.

To assemble the enclosure, begin by mounting the magnetometer

module to the bottom as shown in Figure 11-6. Notice the sensor is

mounted 90 degrees to the left. This is the intentional error mentioned

earlier.

Next, attach a short Qwiic cable to the OLED and mount it on the top

using a ¾" (19mm) spacer from SparkFun as shown in Figure 11-7.

Figure 11-6. Mounting the Qwiic board to the enclosure base

ChapTer 11 DigiTaL Compass

443

Finally, attach the Qwiic cable from the Micro OLED to the

magnetometer on one side and another longer cable on the side with the

cutout. Then, carefully press the bottom onto the top (or vice versa) and

attach with two #40 screws. Figure 11-8 shows a completed example of the

enclosure.

If you have experience creating 3D models for printing, feel free to

experiment with creating your own enclosure – perhaps one that also

includes a battery and a small form factor host board.

Figure 11-7. Mounting the Micro OLED board to the enclosure
top cover

Figure 11-8. 3D printed enclosure for the digital compass project

ChapTer 11 DigiTaL Compass

444

 Calibrating the Sensor
The magnetometer must be calibrated to ensure we identify as much of

the hard iron interference as possible. If you don’t calibrate the sensor, the

heading calculation will fail to determine the correct heading.

In fact, if your environment has a lot of metal in the area or you place

a magnetic field–generating device nearby (your mobile phone), the

calibration may not capture all of the anomalies, and it could make your

heading calculations off by several degrees.

The calibration we run simply reads the sensor from as many different

positions as possible in the horizontal plane (on a level surface). The

hard iron (and some of the soft iron) distortions will appear as outliers or

extreme values in the readings. We will capture those and calculate our

bias to try and compensate.

Fortunately, the calibration sequence is easy. All we need to do is keep

the sensor level and rotate it slowly several times to collect the minimum

and maximum for the X and Y values. Then, we calculate an average of the

range of values for each as the bias. The formula is shown in the following.

Recall we use these values in our heading calculation:

bias[X] = (maxValues[X] + minValues[X])/2; // get average

x bias

bias[Y] = (maxValues[Y] + minValues[Y])/2; // get average

y bias

To execute the calibration, we simply ask the user to rotate the sensor

a number of times. As you will see, the code for the project uses three

rotations, but you may want to experiment with more rotations if your

heading is a little off.

ChapTer 11 DigiTaL Compass

445

How would you know? Use your mobile phone compass application to

check it. Keep in mind the sensor we’re using is not going to be accurate,

but it should be within about 5–10 degrees. If you find it off by more, try

more calibration spins and spin the sensor more slowly to capture as many

hard iron distortions as possible.

Now that we know more about the hardware for this chapter, let’s write

the code!

 Write the Code
The code for this project follows the pattern of code layout we’ve learned.

There are other ways to construct the code (mainly to do with order of

operations and modularization), but the basics are still the same.

We begin by initializing the I2C bus and preparing the sensor and the

compass face for use and then executing a loop that reads values from the

sensor and then displays the values on the OLED. More specifically, we

will read the X and Y axis values from the magnetometer.

Let’s walk through how to prepare our computers to use the sensor and

write code to read its values. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch you will write to read

values from the sensor and display a compass on the OLED module. But

first, there are a couple of libraries we must install on our PCs.

Like we’ve done in previous chapters, we are not going to use the

library that SparkFun lists for use with their MLX90393 module. Rather,

we will use Adafruit’s MLX90393 library. It has shown to be a more reliable

library and has several examples for use. The SparkFun recommended

library was created by a third party. It is old and provides only the bare

minimum for working with the sensor. In this case, the Adafruit library is

the better choice.

ChapTer 11 DigiTaL Compass

446

 Install Software Libraries

We will need to install the Arduino libraries for the magnetometer and

Micro OLED module separately. Fortunately, this is easy to do using the

Library Manager. Simply open the Library Manager from the Arduino IDE

menu (Sketch ➤ Include Library ➤ Library Manager…). Then search for

90393 and install the latest version of the Adafruit MLX90393 library as

shown in Figure 11-9.

Similarly, we need to install the library for the OLED. Open the Library

Manager and search for micro OLED and then install the latest version as

shown in Figure 11-10.

Figure 11-9. Installing the Adafruit MLX90393 library (Arduino IDE)

ChapTer 11 DigiTaL Compass

447

Now that we have the software libraries installed, we can begin writing

our sketch. Since this is not our first Arduino sketch, we will discuss

the code at a high level and skip the line-by-line details focusing on the

mechanics of how the code works. You can study the code at your leisure

to ensure you understand the sketch in more detail.

 Write the Sketch

Recall we are going to use a class to emulate the digital compass. Like we

did in previous chapters, we will create a new project, add the class header

and code file, write the class header and then the main sketch, and finally

complete the class code.

The class will be named CompassFace and stored in two files: a header

file named CompassFace.h and a source file named CompassFace.cpp.

Effectively, we are moving the functions we would normally include in the

main sketch to a class to make it easier to write, maintain, and understand.

Figure 11-10. Installing the Micro OLED library (Arduino IDE)

ChapTer 11 DigiTaL Compass

448

However, since the Arduino IDE manages sketches, we will need to

create the bare sketch file and folder first and then manually add the files

to the project. There is no way (currently) to create and add new files to a

sketch (but you can add existing files by clicking Sketch ➤ Add File…).

Open a new sketch and name it compass.ino or whatever you’d like to

use. Save the file and then close the project in the Arduino IDE.

To create the class files, navigate with your File Explorer (Finder)

to the folder where you stored your main sketch (compass.ino). Then,

use your File Explorer or a text file editor to create two new files named

CompassFace.h and CompassFace.cpp. Or you can use a terminal to

navigate to the folder and issue these commands to create the empty files:

compass % touch CompassFace.h

compass % touch CompassFace.cpp

You can then open the project in the Arduino IDE and see all three files

in the project. Let’s see the code for each file starting with the header file.

Class Header File

Click the tab named CompassFace.h to open the blank file. Here, we will

add the header or blueprint for the class. Recall the header file simply

defines the class. We will use the CompassFace.cpp file to add the code for

the functions in the class. Let’s discuss those first.

This class is the same as the class from the last chapter. We will be

using it to manage the digital compass. That is, we’ll be putting all of the

code that interacts with the Micro OLED to display the compass on the

Micro OLED in this class. Reading the sensor will be done from the main

sketch instead.

ChapTer 11 DigiTaL Compass

449

Thus, we will need a number of data that is used inside the class and a

few functions for use outside the class. The functions we will create include

the following. All are public unless indicated:

• Constructor: We need a constructor for the class to

accept the sensitivity and size of the center ring.

• begin(): Allow the caller to initialize the class and the

Micro OLED.

• startCalibrationAnimation(): Allow the caller to start

the calibration animation. Recall we want to display

a series of circles that spin around to tell the user

to rotate the sensor. The animation continues until

stopped.

• stopCalibrationAnimation(): Stop the animation for the

calibration sequence.

• isCalibrated(): Returns true if the calibration has been

run (animation has been run and then stopped).

• drawCompass(): Draw the compass and position the

pointer at the indicated heading.

• drawPointer(): A private function to draw the pointer at

a given heading.

• drawCompassFace(): Draw the compass circle and

direction values.

We also need to store some data for use in the calculations as well as

a few constants to make things easier. We leave the explanation for your

own exploration. Let’s look at the completed code for the header file.

Listing 11-1 shows the file.

ChapTer 11 DigiTaL Compass

450

Listing 11-1. Compass Face Header File

#include <SFE_MicroOLED.h>

#define DC_JUMPER 1

#define PIN_RESET 9

#define MASK_RADIUS 12

#define X 0

#define Y 1

#define Z 2

class CompassFace {

public:

 CompassFace(int adjustment=0);

 void begin();

 void startCalibrateAnimation();

 void calibrateAnimation(int pass, int heading);

 void stopCalibrateAnimation() { calibrated = true; }

 bool isCalibrated() { return calibrated; }

 void drawCompass(int heading);

 private:

 MicroOLED *oled;

 int oledCenter[2] = {0,0};

 int compassRadius;

 int north[2] = {0, 0};

 int east[2] = {0, 0};

 int south[2] = {0, 0};

 int west[2] = {0, 0};

 int fontWidth;

 int fontHeight;

 bool calibrated = false;

ChapTer 11 DigiTaL Compass

451

 int orientation = 0;

 void drawPointer(int heading);

 void drawCompassFace();

};

The code should be easy to read, and there are no surprises other than

the details described previously. Let’s return to the main sketch to see how

we can use this class.

Main Sketch

Now click the compass.ino tab to return to the main sketch. Let’s begin

with the preamble or top of the file. Recall here is where we include

libraries we need, declare variables and constants, etc. We will also create

functions to execute the calibration sequence, which is a bit more complex

than what we are used to seeing, as well as a function to calculate the

heading. We will walk through those functions separately.

In the preamble, we include the wire, MLX90393, and our new class

header. There are a few variables we will need including variables for the

MLX90393 and compass face class instances, values read from the sensor,

and bias for storing the calibration data and a few constants to make things

easier to read and adjust if needed. For example, we have a constant that

defines the offset (intentional error) should we mount our sensor board

in a different orientation than the OLED. Listing 11-2 shows the preamble

code for the main sketch.

Listing 11-2. Main Sketch Preamble

#include <Wire.h>

#include <Adafruit_MLX90393.h>

#include "CompassFace.h"

ChapTer 11 DigiTaL Compass

452

// Pointer variables for class instances magnetometer and

// OLED compass display class.

Adafruit_MLX90393 mlx;

CompassFace *compass;

// Constants

#define CALIBRATION_SPINS 3 // Number of times to run

calibration

#define ORIENTATION 90 // Orientation difference for

mount location

// Global variables

float readValues[3] = {0.0, 0.0, 0.0}; // Values read from

sensor

int heading = 0.0; // Current

float bias[2] = {0.0, 0.0}; // Bias values from

calibration

Next, we will code the setup() function, which includes the sort of

initialization code we’ve seen in other projects. Specifically, we will set

up the magnetometer and the compass face class. Listing 11-3 shows the

complete code for the setup() function. Read through it to ensure you

understand all of the code included.

Listing 11-3. Main Sketch setup()

void setup()

{

 delay(100); // Give display time to power on

 Serial.begin(9600);

 while (!Serial);

 Wire.begin(); //Set up I2C bus

ChapTer 11 DigiTaL Compass

453

 if (!mlx.begin_I2C()) {

 Serial.println("No sensor found ... check your wiring?");

 while (1) { delay(100); }

 }

 mlx.setGain(MLX90393_GAIN_1X);

 Serial.println("Compass ready...");

 compass = new CompassFace(ORIENTATION);

 compass->begin();

}

Next, we have the loop() function. We simply read the values from

the sensor and then call the drawCompass() function for our new class. We

will also check to see if the sensor is calibrated. While we could have put

this in the setup() function, placing it in the loop() function permits us to

modify the code to run the calibration whenever needed. See the “Going

Further” section for hints on how to do this.

Listing 11-4 shows the completed code for the loop() function. Go

ahead and read through the code to ensure you understand how it works.

There should not be any surprises or new techniques. In fact, most of the

code is diagnostic statements.

Listing 11-4. Main Sketch loop()

void loop()

{

 float heading = 0.0;

 if (!compass->isCalibrated()) {

 calibrate(&bias[X], &bias[Y]);

 }

 mlx.readData(&readValues[X], &readValues[Y], &readValues[Z]);

 Serial.print("Bias: [");

ChapTer 11 DigiTaL Compass

454

 Serial.print(bias[X]);

 Serial.print(",");

 Serial.print(bias[Y]);

 Serial.print("]) Values: (");

 Serial.print(readValues[X]);

 Serial.print(",");

 Serial.print(readValues[Y]);

 Serial.print(") Heading (");

 heading = getHeading(readValues[X], readValues[Y], bias);

 Serial.print(heading);

 Serial.println(")");

 compass->drawCompass(heading);

 delay(250);

}

Now, let’s look at the helper functions. We will use two functions: one

to manage the calibration process named calibrate() and another to

calculate the heading named getHeading().

Let’s look at the calibrate() function. Here, we simply initiate the

calibration animation and execute a loop that reads the sensor capturing

the minimal (smallest) value and maximum (largest) value for the X

and Y coordinates. After we have executed the loop as specified in the

CALIBRATION_SPINS constant, we will calculate the bias. Listing 11-5 shows

the completed code for the function.

Listing 11-5. Main Sketch Calibration Function

void calibrate(float *xBias, float *yBias) {

 float readValues[3] = {0.0, 0.0, 0.0};

 float maxValues[2] = {-32767.0, -32767.0};

 float minValues[2] = {32767.0, 32767.0};

ChapTer 11 DigiTaL Compass

455

 Serial.print("Calibrating..");

 compass->startCalibrateAnimation();

 for (int pass=CALIBRATION_SPINS; pass > 0; pass--) {

 for (int heading = 360; heading > 0; heading-= 10) {

 // Get latest values

 mlx.readData(&readValues[X], &readValues[Y],

&readValues[Z]);

 // Get maximum values

 maxValues[X] = max(readValues[X], maxValues[X]);

 maxValues[Y] = max(readValues[Y], maxValues[Y]);

 // Get minimum values

 minValues[X] = min(readValues[X], minValues[X]);

 minValues[Y] = min(readValues[Y], minValues[Y]);

 // Update animation

 compass->calibrateAnimation(pass, heading);

 Serial.print("Calibration: (");

 Serial.print(readValues[X]);

 Serial.print(",");

 Serial.print(readValues[Y]);

 Serial.println(")");

 }

 }

 compass->stopCalibrateAnimation();

 // Now, save the bias

 bias[X] = (maxValues[X] + minValues[X])/2; // get average

x bias

 bias[Y] = (maxValues[Y] + minValues[Y])/2; // get average

y bias

 Serial.println("done.");

 Serial.print("Bias (X, Y): (");

 Serial.print(bias[X]);

ChapTer 11 DigiTaL Compass

456

 Serial.print(",");

 Serial.print(bias[Y]);

 Serial.println(")");

}

Once again, most of the code is diagnostic statements. Notice at the

end we capture the calibration data, which is the difference between the

minimum and maximum values for the X and Y coordinates.

Finally, we look at the getHeading() function. Since we have already

discussed the math in this function, we leave the analysis of the code for an

exercise. Listing 11-6 shows the completed code for the function.

Listing 11-6. Main Sketch Heading Function

float getHeading(float x, float y, float bias[2]) {

 float heading = atan2(y - bias[Y], x - bias[X]);

 // Compensate for declination angle. Be sure to look up your

 // declination angle and replace the value below with the

 // value for your geographic location.

 float declinationAngle = 0.174533;

 heading += declinationAngle;

 // Add the orientation shift if mounting the MLX90393 in the

enclosure

 // discussed in the book. Recall, we are rotating the sensor

90 degrees

 // to the left, so we must add 90 degrees to compensate.

However, we are

 // working with radians here, so we convert degrees to

radians for our

 // calculations.

 float sensorOrientation = (ORIENTATION * PI/180);

 heading += sensorOrientation;

ChapTer 11 DigiTaL Compass

457

 // If heading is negative, adjust for positive heading values

 if (heading < 0) {

 heading += 2*PI;

 }

 // If declination and orientation causes heading to overflow,

adjust value

 if (heading > 2*PI) {

 heading -= 2*PI;

 }

 // Convert radians to degrees

 heading = heading * 180 / PI;

 return heading;

}

Now we can write the final portion of our project – the code for the class.

Class Code File

Click the tab named CompassFace.cpp to open the blank file. Here, we will

add the code for the class. Since we have already discussed the math for

the calibration animation as well as the function for drawing the compass,

we leave examination of the code as an exercise. Listing 11-7 shows the

completed code for the class (documentation omitted for brevity). Since

this is a much lower level than the code we’re used to seeing, be sure to

study it to understand how it works. While the protocol (how we talk to

the module) is very simple, the functions we use are uncommon since we

normally have libraries written for us.

ChapTer 11 DigiTaL Compass

458

Listing 11-7. Compass Face Code File

#include "CompassFace.h"

CompassFace::CompassFace(int adjustment) {

 // Create an instance of the MicroOLED

 oled = new MicroOLED(PIN_RESET, DC_JUMPER);

 // Setup some variables for placing things on the screen

 fontWidth = oled->getFontWidth();

 fontHeight = oled->getFontHeight();

 oledCenter[X] = oled->getLCDWidth() / 2;

 oledCenter[Y] = oled->getLCDHeight() / 2;

 compassRadius = min(oledCenter[X], oledCenter[Y]) - 1;

 north[X] = oledCenter[X] - fontWidth / 2;

 north[Y] = oledCenter[Y] - compassRadius + 2;

 east[X] = oledCenter[X] + compassRadius - fontWidth - 1;

 east[Y] = oledCenter[Y] - fontHeight / 2;

 south[X] = north[X];

 south[Y] = oledCenter[Y] + compassRadius - fontHeight - 1;

 west[X] = oledCenter[X] - compassRadius + fontWidth - 2;

 west[Y] = east[Y];

 // Save the orientation for calculating points on the compass

face

 orientation = adjustment;

}

void CompassFace::begin() {

 // Setup the OLED and initialize

 oled->begin(); // Start the display

 oled->clear(PAGE); // Clear the display's internal memory

 oled->clear(ALL); // Clear the library's display buffer

ChapTer 11 DigiTaL Compass

459

 oled->display(); // Display what's in the buffer

 oled->setFontType(0); // Set the font type

}

void CompassFace::startCalibrateAnimation() {

 oled->clear(PAGE);

 oled->setCursor(0, 0);

 oled->print("Starting");

 oled->setCursor(0, 10);

 oled->print("Calibrate");

 oled->setCursor(0, 20);

 oled->print("Sequence");

 oled->display();

 delay(1500);

}

void CompassFace::calibrateAnimation(int pass, int heading) {

 int offset[2] = {fontWidth * 3.5, fontWidth / 2};

 int dot[2] = {0, 0};

 oled->clear(PAGE);

 int animationRadius = compassRadius - 2;

 dot[X] = animationRadius * cos(PI * ((float)heading -

orientation) / 180);

 dot[Y] = animationRadius * sin(PI * ((float)heading -

orientation) / 180);

 oled->circleFill(oledCenter[X] + dot[X],

 oledCenter[Y] + dot[Y], 4);

 dot[X] = animationRadius *

 cos(PI * ((float)heading - (orientation - 20)) / 180);

 dot[Y] = animationRadius *

 sin(PI * ((float)heading - (orientation - 20)) / 180);

ChapTer 11 DigiTaL Compass

460

 oled->circleFill(oledCenter[X] + dot[X],

 oledCenter[Y] + dot[Y], 3);

 dot[X] = animationRadius *

 cos(PI * ((float)heading - (orientation - 40)) / 180);

 dot[Y] = animationRadius *

 sin(PI * ((float)heading - (orientation - 40)) / 180);

 oled->circleFill(oledCenter[X] + dot[X],

 oledCenter[Y] + dot[Y], 2);

 dot[X] = animationRadius *

 cos(PI * ((float)heading - (orientation - 55)) / 180);

 dot[Y] = animationRadius *

 sin(PI * ((float)heading - (orientation - 55)) / 180);

 oled->circleFill(oledCenter[X] + dot[X], oledCenter[Y] +

dot[Y], 1);

 oled->setCursor(oledCenter[X] - offset[X], oledCenter[Y] -

offset[Y]);

 oled->print("Rotate");

 oled->setCursor(0, 0);

 oled->print(pass);

 oled->display();

}

void CompassFace::drawCompass(int heading) {

 // Draw the COMPASS:

 oled->setFontType(0);

 oled->clear(PAGE); // Clear page memory

 drawCompassFace();

 drawPointer(heading);

 oled->display();

}

ChapTer 11 DigiTaL Compass

461

void CompassFace::drawPointer(int heading)

{

 // Calculate the pointer start, end positions

 int pointer[4] = {

 compassRadius * cos(PI * ((float)heading - orientation) / 180),

 compassRadius * sin(PI * ((float)heading - orientation) / 180),

 MASK_RADIUS * cos(PI * ((float)heading - orientation) / 180),

 MASK_RADIUS * sin(PI * ((float)heading - orientation) / 180)

 };

 // Draw the pointer

 oled->line(

 oledCenter[X] + pointer[X], oledCenter[Y] + pointer[Y],

 oledCenter[X] + pointer[X+2], oledCenter[Y] + pointer[Y+2]

);

 // Display the heading in the center of the screen

 oled->setCursor(oledCenter[X] - (fontWidth + (fontWidth/2)),

east[Y]);

 if (heading < 10) {

 oled->print("00");

 } else if (heading < 100) {

 oled->print('0');

 }

 oled->print(heading);

}

void CompassFace::drawCompassFace()

{

 // Draw the compass outer border

 oled->circle(oledCenter[X], oledCenter[Y], compassRadius);

ChapTer 11 DigiTaL Compass

462

 // Draw the compass directions

 oled->setFontType(0);

 oled->setCursor(north[X], north[Y]);

 oled->print('N');

 oled->setCursor(east[X], east[Y]);

 oled->print('E');

 oled->setCursor(south[X], south[Y]);

 oled->print('S');

 oled->setCursor(west[X], west[Y]);

 oled->print('W');

}

As you can see, this class is another example of how to move code out

of your main sketch and into helper modules. There is another possible

class we could make for this project. We could move the calibration code to

its own class. If you’re curious, try it out yourself as an exercise.

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. If

you encounter any errors, be sure to fix them and recompile to ensure the

sketch compiles without errors or serious warnings.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Sketch on the

Arduino” section if you’re curious to see how the project works. The code

will run the same on both platforms.

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

read values from the sensor and display them on the Micro OLED module.

But first, we need to install a Python library on our Raspberry Pi.

ChapTer 11 DigiTaL Compass

463

 Install a Software Library

We need only one more software library to use the Python code in this

chapter. We need the magnetometer library from Adafruit as shown in the

following:

$ pip3 install adafruit-circuitpython-mlx90393

Tip if you haven’t installed the sparkFun Qwiic python libraries, you
must install them to run this project (pip3 install sparkfun_
qwiic).

Now we’re ready to write the code.

 Write the Code

The code for the Python version of this project is about the same length and

complexity as the Arduino code. Like the Arduino example, we will use a

class to contain the code for the compass face. However, unlike the Arduino

IDE, you can use any editor to create the class and main script. We will

name the main script compass.py and the class module compass_face.py.

Let’s start with the class.

Compass Face Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file compass_face.py. We will name the class CompassFace,

and we will need a few functions. In fact, we need the same functions as we

used in the Arduino version as listed in the following for completion. While

they perform the same operations as the Arduino version, the names of the

functions differ. For a complete description of each of these functions, see

the “Arduino” section.

ChapTer 11 DigiTaL Compass

464

The functions we will create include the following:

• Constructor: We need a constructor for the class to

accept the sensitivity and size of the center ring.

• begin(): Allow the caller to initialize the class and the

Micro OLED.

• start_calibration_animation(): Allow the caller to start

the calibration animation. Recall we want to display

a series of circles that spin around to tell the user

to rotate the sensor. The animation continues until

stopped.

• stop_calibration_animation(): Stop the animation for

the calibration sequence.

• is_calibrated(): Returns true if the calibration has been

run (animation has been run and then stopped).

• draw_compass(): Draw the compass and position the

pointer at the indicated heading.

• draw_pointer(): A private function to draw the pointer

at a given heading.

• draw_compass_ face(): Draw the compass circle and

direction values.

Listing 11-8 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read through the code so that

you understand all of the parts of the code. As you will see, it mimics the

Arduino.

ChapTer 11 DigiTaL Compass

465

Listing 11-8. Compass Face Class (Python)

import math

import time

import qwiic

MASK_RADIUS = 12

X = 0

Y = 1

Z = 2

class CompassFace:

 oled = None

 oled_center = [0, 0]

 compass_radius = 6

 north = [0, 0]

 east = [0, 0]

 south = [0, 0]

 west = [0, 0]

 font_width = 0

 font_height = 0

 calibrated = False

 def __init__(self, adjustment=0):

 self.oled = qwiic.QwiicMicroOled()

 self.oled.begin()

 self.font_width = self.oled.get_font_width()

 self.font_height = self.oled.get_font_height()

 self.oled_center[X] = self.oled.get_lcd_width() / 2

 self.oled_center[Y] = self.oled.get_lcd_height() / 2

 self.compass_radius = min(self.oled_center[X],

 self.oled_center[Y]) - 1

 self.north[X] = self.oled_center[X] - self.font_width / 2

ChapTer 11 DigiTaL Compass

466

 self.north[Y] = self.oled_center[Y] - self.compass_

radius + 2

 self.east[X] = self.oled_center[X] +

 self.compass_radius - self.font_width - 1

 self.east[Y] = self.oled_center[Y] - self.font_height / 2

 self.south[X] = self.north[X]

 self.south[Y] = self.oled_center[Y] +

 self.compass_radius - self.font_height - 1

 self.west[X] = self.oled_center[X] –

 self.compass_radius + self.font_width - 2

 self.west[Y] = self.east[Y]

 self.orientation = adjustment

 def begin(self):

 self.oled.clear(self.oled.PAGE) # Clear the display's

internal memory

 self.oled.clear(self.oled.ALL) # Clear the library's

display buffer

 self.oled.display() # Display what's in the

buffer

 self.oled.set_font_type(0) # Set the font type

 def start_calibrate_animation(self):

 self.oled.clear(self.oled.PAGE)

 self.oled.set_cursor(0, 0)

 self.oled.print("Starting")

 self.oled.set_cursor(0, 10)

 self.oled.print("Calibrate")

 self.oled.set_cursor(0, 20)

 self.oled.print("Sequence")

 self.oled.display()

 time.sleep(1.5)

ChapTer 11 DigiTaL Compass

467

 def calibrate_animation(self, pass_number, heading):

 offset = [self.font_width * 3.5, self.font_width / 2]

 dot = [0, 0]

 self.oled.clear(self.oled.PAGE)

 animation_radius = self.compass_radius - 2

 dot[X] = animation_radius *

 math.cos(math.pi * (heading - self.orientation) / 180)

 dot[Y] = animation_radius *

 math.sin(math.pi * (heading - self.orientation) / 180)

 self.oled.circle(

 self.oled_center[X] + dot[X],

 self.oled_center[Y] + dot[Y],

 4

)

 dot[X] = animation_radius *

 math.cos(math.pi * (heading -

(self.orientation - 20)) / 180)

 dot[Y] = animation_radius *

 math.sin(math.pi * (heading -

(self.orientation - 20)) / 180)

 self.oled.circle(

 self.oled_center[X] + dot[X],

 self.oled_center[Y] + dot[Y],

 3

)

 dot[X] = animation_radius *

 math.cos(math.pi * (heading -

(self.orientation - 40)) / 180)

 dot[Y] = animation_radius *

 math.sin(math.pi * (heading -

(self.orientation - 40)) / 180)

ChapTer 11 DigiTaL Compass

468

 self.oled.circle(

 self.oled_center[X] + dot[X],

 self.oled_center[Y] + dot[Y],

 2

)

 dot[X] = animation_radius *

 math.cos(math.pi * (heading - (self.orientation -

55)) / 180)

 dot[Y] = animation_radius *

 math.sin(math.pi * (heading - (self.orientation -

55)) / 180)

 self.oled.circle(

 self.oled_center[X] + dot[X],

 self.oled_center[Y] + dot[Y],

 1

)

 self.oled.set_cursor(self.oled_center[X] - offset[X],

 self.oled_center[Y] - offset[Y])

 self.oled.print("Rotate")

 self.oled.set_cursor(0, 0)

 self.oled.print(pass_number)

 self.oled.display()

 def stop_calibrate_animation(self):

 self.calibrated = True

 def draw_compass(self, heading):

 # Draw the COMPASS:

 self.oled.set_font_type(0)

 self.oled.clear(self.oled.PAGE) # Clear page

memory

ChapTer 11 DigiTaL Compass

469

 self.draw_compass_face()

 self.draw_pointer(heading)

 self.oled.display()

 def draw_pointer(self, heading):

 # Calculate the pointer start, end positions

 pointer = [

 self.compass_radius *

 math.cos(math.pi * (heading - self.orientation)

/ 180),

 self.compass_radius *

 math.sin(math.pi * (heading - self.orientation)

/ 180),

 MASK_RADIUS *

 math.cos(math.pi * (heading - self.orientation)

/ 180),

 MASK_RADIUS *

 math.sin(math.pi * (heading - self.orientation)

/ 180)

]

 # Draw the pointer

 self.oled.line(self.oled_center[X] + pointer[X],

 self.oled_center[Y] + pointer[Y],

 self.oled_center[X] + pointer[X+2],

 self.oled_center[Y] + pointer[Y+2]

)

 # Display the heading in the center of the screen

 self.oled.set_cursor(self.oled_center[X] -

 (self.font_width + (self.font_width/2)), self.

east[Y])

ChapTer 11 DigiTaL Compass

470

 if heading < 10:

 self.oled.print("00")

 elif heading < 100:

 self.oled.print('0')

 self.oled.print("{0:.0f}".format(heading))

 def draw_compass_face(self):

 # Draw the compass outer border

 self.oled.circle(self.oled_center[X], self.oled_

center[Y], self.compass_radius)

 # Draw the compass directions

 self.oled.set_font_type(0)

 self.oled.set_cursor(self.north[X], self.north[Y])

 self.oled.print('N')

 self.oled.set_cursor(self.east[X], self.east[Y])

 self.oled.print('E')

 self.oled.set_cursor(self.south[X], self.south[Y])

 self.oled.print('S')

 self.oled.set_cursor(self.west[X], self.west[Y])

 self.oled.print('W')

 def is_calibrated(self):

 return self.calibrated

Now we can write our main script.

Main Script (Python)

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file compass.py. There is nothing new in this code as it

follows the same flow as the Arduino example but much simplified.

Listing 11-9 shows the complete code for the main script for this project.

You can read through it to see how all of the code works.

ChapTer 11 DigiTaL Compass

471

Listing 11-9. Main Script (Python)

import math

import time

import sys

import board

import busio

import adafruit_mlx90393

from compass_face import CompassFace, X, Y, Z

CALIBRATION_SPINS = 3 # Number of calibration spins

ORIENTATION = 90 # Orientation difference for mount

location

i2c = busio.I2C(board.SCL, board.SDA)

mlx = adafruit_mlx90393.MLX90393(i2c, gain=adafruit_mlx90393.

GAIN_1X)

compass_face = CompassFace(ORIENTATION)

read_values = [0.0, 0.0, 0.0]

bias = [0.0, 0.0]

def calibrate():

 maxValues = [-32767.0, -32767.0]

 minValues = [32767.0, 32767.0]

 print("Calibrating..")

 compass_face.start_calibrate_animation()

 for pass_num in range(CALIBRATION_SPINS, 0, -1):

 for heading in range(360, 0, -10):

 # Get latest values

 read_values[X], read_values[Y], read_values[Z] =

mlx.magnetic

 # Get maximum values

 maxValues[X] = max(read_values[X], maxValues[X])

ChapTer 11 DigiTaL Compass

472

 maxValues[Y] = max(read_values[Y], maxValues[Y])

 # Get minimum values

 minValues[X] = min(read_values[X], minValues[X])

 minValues[Y] = min(read_values[Y], minValues[Y])

 # Update animation

 compass_face.calibrate_animation(pass_num, heading)

 print("Calibration: ({0},{1})".format(read_

values[X], read_values[Y]))

 compass_face.stop_calibrate_animation()

 # Now, save the bias

 bias[X] = (maxValues[X] + minValues[X])/2 # get average x

bias

 bias[Y] = (maxValues[Y] + minValues[Y])/2 # get average y

bias

 print("done.")

 print("Bias (X, Y): ({0},{1})".format(bias[X], bias[Y]))

 return bias

def get_heading(x, y, bias_values):

 heading = math.atan2(y - bias_values[Y], x - bias_values[X])

 declinationAngle = 0.174533

 heading += declinationAngle

 sensor_orientation = (ORIENTATION * math.pi/180)

 heading += sensor_orientation

 # If heading is negative, adjust for positive heading values

 if heading < 0:

 heading += 2*math.pi

ChapTer 11 DigiTaL Compass

473

 # If declination and orientation causes heading to

overflow, adjust value

 if heading > 2*math.pi:

 heading -= 2*math.pi

 # Convert radians to degrees

 heading = heading * 180 / math.pi

 return heading

def main():

 print("\nDigital Compass")

 compass_face.begin()

 while True:

 # Calibrate the sensor if not already calibrated

 if not compass_face.is_calibrated():

 calibrate()

 print("Readings:")

 # Read sensor and adjust with bias from calibration

 read_values[X], read_values[Y], read_values[Z] = mlx.

magnetic

 # Check for errors

 if mlx.last_status > adafruit_mlx90393.STATUS_OK:

 mlx.display_status()

 heading = get_heading(read_values[X], read_values[Y],

bias)

 # Show diagnostics

 print("Values: ({0:5.2f},{1:5.2f}) Heading ({2:.0f})"

 "".format(read_values[X], read_values[Y],

heading))

 compass_face.draw_compass(heading)

 time.sleep(0.25)

ChapTer 11 DigiTaL Compass

474

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as exErr:

 print("\nbye!\n")

sys.exit(0)

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

 Execute the Project
Now that we’ve spent many pages exploring the Qwiic modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

message written to the serial monitor (Arduino) or the terminal (Raspberry

Pi). You will also see a welcome message appear on the Micro OLED

followed by a short pause. Then the calibration process will begin.

Once the calibration is complete, you will see the digital compass

displayed. Figure 11-11 shows an example of what you should see on

the OLED. Notice how the pointer is drawn along with the heading in

the center. Here we see our heading is 296 degrees, and the pointer is

indicating a west-northwest (WNW) heading.

ChapTer 11 DigiTaL Compass

475

Executing the code depends on which platform you’re using. Let’s look

at the Arduino first.

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading...

message, you can open the serial monitor. You should see the output begin

momentarily that is the same as that on the OLED. Go ahead and try it out!

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

Figure 11-11. Executing the digital compass project

ChapTer 11 DigiTaL Compass

476

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your Qwiic daisy chain to your

Raspberry Pi via a hat or the Qwiic female breakout cable. Recall the code

will run until you stop it with CTRL+C on the keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./compass.py from the same folder where the file was saved as

shown in the following. If everything worked as executed, congratulations!

You’ve just built your fifth Qwiic project.

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

 Going Further
This project isn’t one you’re likely to use for an IoT project by itself; rather,

you will likely want to incorporate it as part of a larger project. And while

we didn’t discuss them in this chapter, here are just a few suggestions you

can try once we have learned how to take our projects to the cloud. Put

your skills to work!

• New class for the sensor: Build a class to manage the

sensor moving all of the code for reading the sensor to

the new class.

• Build a better enclosure: Build an enclosure to contain

your Arduino board and a battery supply to make the

project portable. Use the 3D printer files from the book

source code and expand the OpenSCAD code.

ChapTer 11 DigiTaL Compass

477

• Build a gimbal: Build a gimbal to keep the compass

level to compensate for changes in the Z axis.

• Calibrate button: Add a button to trigger the calibration

routine by either setting the calibration flag to false or

running the calibration when the button is triggered.

This could be helpful if you must move the sensor or

want to use a specific plane for a base.

• Robot compass: Use the project in this chapter to add

the ability to determine the direction of movement for

a robot.

• General direction: Some robotics projects use compass

directions (16, 32, or greater point compass) rather than

precise headings (in degrees). You could convert this

project to make such a compass by replacing the code

in the compass face class with a class that presents the

compass directions based on the heading. For more

information about compass directions, see https://

en.wikipedia.org/wiki/Points_of_the_compass.

 Summary
In this chapter, we got more hands-on experience making projects with

Qwiic and STEMMA QT modules. We used a magnetometer sensor to

detect magnetic fields to determine the direction (heading). We used some

basic trigonometry to calculate the location and covert radians to degrees

for the heading.

We then wrote a class library to represent the compass face to draw

a compass and display the heading in the center, the compass directions

around a circle, and a pointer to represent a graphic presentation of the

heading.

ChapTer 11 DigiTaL Compass

https://en.wikipedia.org/wiki/Points_of_the_compass
https://en.wikipedia.org/wiki/Points_of_the_compass

478

Along the way, we learned more about how to write class libraries to

represent abstract constructs as well as how they can be used to model

objects. Rather than write a class to manage the sensor, we wrote a class to

represent a compass represented on a Micro OLED module.

This concludes our journey to learn how to build IoT projects using

Qwiic and STEMMA QT modules. While we did not complete the IoT

portions, we learned quite a bit about the hardware and had some fun

along the way. We will circle back to some of these projects after we take a

tour of another component system named Grove from Seeed Studio.

ChapTer 11 DigiTaL Compass

PART III

The Grove
Component System
This part introduces the Grove component system including a series

of chapters containing example projects that detail the steps needed to

implement the system with the Arduino and Raspberry Pi. While the

example projects are not complete IoT solutions in that they are not

integrated with the cloud, they are a good starting point to learn how to

program IoT projects for the Arduino and Raspberry Pi.

481© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_12

CHAPTER 12

Introducing Grove
Thus far in the book, we have learned how to use two versatile component

systems to build electronic projects quickly and easily without soldering

or complicated connections. We saw many examples and five projects that

demonstrated how to use the Qwiic and STEMMA QT systems.

Both systems provide a vast array of modules, and given they are

compatible (can be interchanged with the same cables), these systems are

very powerful and an excellent base to build IoT projects. However, these

systems restrict you to a single protocol, and while the list of modules

supported is long, there are other protocols and other ways to connect

components.

Recall from Chapter 6 we were introduced to three component systems

and Chapters 6–11 covered the Qwiic and STEMMA QT component

systems. In this chapter and the next three chapters, we will explore the

third component system named Grove from Seeed Studio (https://wiki.

seeedstudio.com/Grove/).

 Overview
In this section, we will discover the Grove component system. We will learn

about the capabilities and limitations of the system as well as examples

of the components available. The chapter also includes details on how to

start using the components in projects.

https://doi.org/10.1007/978-1-4842-7234-3_12#DOI
https://wiki.seeedstudio.com/Grove/
https://wiki.seeedstudio.com/Grove/

482

Grove is designed to make building projects faster using pluggable

modules containing sensors, input, output, and other functions. Unlike

the Qwiic and STEMMA QT component systems, the Grove component

system supports a variety of protocols1 that operate over the same set of

wires!

Grove supports the analog, digital, and universal asynchronous

receiver-transmitter (UART2) protocols. Furthermore, Grove supports all of

these protocols using the same wiring and connectors, so there’s no need

to remember what cables go with what protocols. Cool!

Now that we know what protocols Grove supports and how the cables

are wired, let’s see how easy the Grove component system makes using the

modules.

 The Grove Component System
Grove was created and released in 2010 by Seeed Studio (seeedstudio.

com). They wanted to create an open source, modular component system

to simplify rapid prototyping. But they didn’t stop there. They continued

to refine and develop more modules to include an impressive array of

modules that contain small circuits that include sensors, input devices,

output devices, and more. They also produce host adapters for many

platforms.

Note Seeed Studio also uses the term breakout board for host
adapters.

1 You can call them “interfaces” or “connections” if it helps keep them sorted.
2 A form of serial communication (https://en.wikipedia.org/wiki/
Universal_asynchronous_receiver-transmitter).

Chapter 12 IntroduCIng grove

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

483

Each host adapter supports many Grove connectors that match the

capabilities of the host board. If the host board supports all of the protocols

that Grove supports, the host adapter will have several connectors for each

of the protocols.

These host adapters simply connect to your host board enabling the

use of Grove modules without the need for additional electronics such as

breadboards and discrete components and without soldering.

Unlike the Qwiic and STEMMA QT, the Grove cabling system is

not designed for daisy chaining. Rather, Grove modules are connected

to the host adapter directly. The “Y” cables are a rare deviation from

this configuration. That’s why most host adapters have so many Grove

connectors. We will see some examples of host adapters in a later section.

Each Grove module is self-contained; all of the supporting electrical

components are on the module mounted on a small PCB (most come in a

pretty blue color in fact) of various sizes. All you need to do is connect the

modules to your host adapter using a Grove cable, and your hardware is

done.

 Capabilities

The capabilities of the Grove system include the following:

• Modularized cabling supporting four protocols (I2C,

digital, analog, and UART)

• Easy, polarized connectors (no incorrect or reversed

connections3)

• No soldering required!

3 Perhaps the greatest bane of anyone working with I2C is inadvertently reversing
the data and clock connections. Grove eliminates that guesswork entirely.

Chapter 12 IntroduCIng grove

484

 How Does It Work?

Grove wiring is very similar to the Qwiic and STEMMA QT wires – you

can only connect the cable to the device one way, so you always know the

connections are correct. Grove uses a four-wire cable of various lengths

with a larger keyed connector. Like Qwiic and STEMMA QT, you can’t

misconnect a Grove cable. Nice. Figure 12-1 shows a typical Grove cable

and connectors.

Figure 12-2 shows the Qwiic connector on the left and the Grove

connector on the right. Notice the size difference. Clearly, this is one

difference between the systems. Another is the size of the modules, which

we will discover in a later section. And, yes, there is a cable you can buy that

has a Grove connector on one side and a Qwiic connector on the other.

Figure 12-1. Grove connectors (courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

485

We will discuss how the cables are used for each of the protocols in

more detail.

I2C

Recall from Chapter 6 I2C is a fast digital protocol that uses two wires (plus

power and ground) to read data from circuits (or devices). It is the protocol

of choice (the only protocol) used in Qwiic and STEMMA QT. The Grove

system also supports it making it possible to use the modules together. I2C

over the Grove cabling system uses all four wires as shown in Table 12-1.

Figure 12-2. Comparing Qwiic and Grove connectors (courtesy of
sparkfun.com)

Table 12-1. Grove Cable (I2C)

Pin Color Description

1 Yellow SCL

2 White Sda

3 red vCC (power)

4 Black gnd (ground)

Chapter 12 IntroduCIng grove

486

If this looks familiar, it is because it is the same layout as the Qwiic and

STEMMA QT cables albeit with different colored wires.

Digital

The digital protocol is used for modules that produce a digital value,

typically a positive integer in the range 0–1024 or larger. Digital wiring uses

three wires: ground (GND), power (VCC of 3.3V or 5V), and signal. The

digital protocol for Grove allows for up to two signal lines (named D0 and

D1) using two of the four wires as shown in Table 12-2. Some modules may

be labeled in such a way to indicate three signal lines (D0/D1 and D1/D2),

but the interface supports only two signal lines. Signal lines can be used for

input or output.

Analog

The analog protocol supports communicating with modules using voltage.

Like the digital protocol, the analog protocol supports up to two analog

lines as well as the ground (GND) and power (VCC). The first analog line

is named A0 and the second A1. Similar to the digital protocol, some

modules may label the analog lines A0/A1 and A1/A2. Table 12-3 shows

the layout of the analog protocol over the Grove cabling.

Table 12-2. Grove Cable (Digital)

Pin Color Description

1 Yellow d0 – primary signal line

2 White d1 – secondary signal line

3 red vCC (power)

4 Black gnd (ground)

Chapter 12 IntroduCIng grove

487

UART

The UART protocol is a special serial protocol that uses two lines for

transmit (TX) and receive (RX). Pins 1 and 2 are used for these lines,

and the other two are the common ground and power lines as shown in

Table 12-4.

Having all of the cables wired the same means you don’t need to have

any special cables for each of the four protocols, but there are some cases

where we may need a slightly different cable. We will discuss the available

Grove cables in a later section.

Table 12-3. Grove Cable (Analog)

Pin Color Description

1 Yellow a0 – primary analog line

2 White a1 – secondary analog line

3 red vCC (power)

4 Black gnd (ground)

Table 12-4. Grove Cable (UART)

Pin Color Description

1 Yellow rX – serial receive

2 White tX – serial transmit

3 red vCC (power)

4 Black gnd (ground)

Chapter 12 IntroduCIng grove

488

Grove modules come in a variety of sizes, and most have only a single

Grove connector but may host a number of other connectors depending

on the features supported. Grove modules are designed to support a single

function using a dedicated circuit.

Like the connectors, Grove modules are a bit larger than Qwiic and

STEMMA QT modules. While Grove modules are not uniform in size, they

do conform to one of several formats as shown in Table 12-5. Most of the

formats support a Grove connector in either a vertical (cable plugs in at a

right angle to the board) or horizontal orientation.

Table 12-5. Grove Module Sizes (courtesy of seeedstudio.com)

Format Size Example

1×1 20×20mm

1×2 20×40mm

1×3 20×60mm

(continued)

Chapter 12 IntroduCIng grove

489

Format Size Example

2×2 40×40mm

2×3 40×60mm

Table 12-5. (continued)

The host adapter has multiple Grove connectors that you can use

to connect modules (depending on the protocol as there are dedicated

connectors for each protocol). There are a variety of host adapters

available for a growing list of host boards. This includes several for the

Arduino, NodeMCU, Raspberry Pi, and many more. You can discover

the latest offerings by visiting https://wiki.seeedstudio.com/Grove_

System/#how- to- connect- grove- to- your- board.

The host adapter most will want to use for the Raspberry Pi is named

simply GrovePi+ (www.seeedstudio.com/GrovePi.html) that provides 15

Grove connectors (3 I2C, 7 digital, 3 analog, and 2 UART connectors – one

for the Raspberry Pi and one for Grove) as well as some most used GPIO

pins broken out. It is designed to mount on the Raspberry Pi GPIO header

so that the hat extends beyond the Raspberry Pi board making it possible

to use them in addition to the Grove connectors. Figure 12-3 shows a

GrovePi+ for the Raspberry Pi.

Chapter 12 IntroduCIng grove

https://wiki.seeedstudio.com/Grove_System/#how-to-connect-grove-to-your-board
https://wiki.seeedstudio.com/Grove_System/#how-to-connect-grove-to-your-board
http://www.seeedstudio.com/GrovePi.html

490

Notice the most commonly used GPIO pins are exposed in the upper-

left corner. This allows you to use the header for additional connections.

Another cool feature!

There are six host adapters for the Arduino. The one most will use for

the Uno platform is the Grove Base Shield V2.0 (www.seeedstudio.com/

Base- Shield- V2.html) that provides 16 Grove connectors (4 I2C, 7 digital,

4 analog, and 1 UART connector). Figure 12-4 shows a Grove Base Shield

V2.0 for the Arduino.

Figure 12-3. GrovePi+ host adapter for Raspberry Pi (courtesy of
seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/Base-Shield-V2.html
http://www.seeedstudio.com/Base-Shield-V2.html

491

Now that we know what the Grove system is and how it works, let’s

examine some of the limitations.

Caution there is a small switch in the lower-right corner of the
board. this allows you to switch the voltage from 3.3v to 5v. use
this switch to match the voltage output on your arduino board. For
example, if your board outputs 3.3v, you must set the switch to 3.3v.

 Limitations

Like most systems, there are some limitations. Fortunately, there are few,

and only the largest or most complex projects may need to heed. The

limitation you may encounter for larger projects is the maximum number

Figure 12-4. Grove Base Shield V2.0 host adapter for Arduino
(courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

492

of modules that can be supported is limited to the number of connections

available on the host adapter, which is often limited by the host device or

by the size of the host adapter.

For example, if you want to use the Raspberry Pi Zero, the GrovePi

Zero host adapter has only a single Grove I2C connector and thus can use

only one I2C module. Similarly, most Grove host adapters have limited

numbers of digital and analog connectors. However, there are some things

you can do to mitigate some of these limitations. Seeed Studio offers a

number of modules that can help out (called interfaces).

Tip You can discover the latest interface boards available for a
variety of uses at www.seeedstudio.com/interfaces- c- 946.
html.

For example, if you want to use more I2C connections than what are

available on the host adapter, you can use the Grove 8 Channel I2C Hub

(www.seeedstudio.com/Grove- 8- Channel- I2C- Hub- TCA9548A- p- 4398.

html) to extend the number of I2C connections. With this module, you can

use one I2C connector on your host adapter and connect up to eight I2C

modules to the hub. Figure 12-5 shows the Grove 8 Channel I2C Hub.

Figure 12-5. Grove 8 Channel I2C Hub (courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/interfaces-c-946.html
http://www.seeedstudio.com/interfaces-c-946.html
http://www.seeedstudio.com/Grove-8-Channel-I2C-Hub-TCA9548A-p-4398.html
http://www.seeedstudio.com/Grove-8-Channel-I2C-Hub-TCA9548A-p-4398.html

493

To increase the number of connections for analog sensors, you can take

a different route and use an analog-to-digital (ADC) module. The Grove 4

Channel 16-bit ADC (ADS1115) module (www.seeedstudio.com/Grove-

ADS1115- 16- bit- ADC- p- 4599.html) allows you to connect up to four analog

sensors connected via the onboard screw terminals. Figure 12- 6 shows the

Grove 4 Channel 16-bit ADC (ADS1115) module.

Another limitation is the length of the Grove cables. Currently, the

longest Grove cable from Seeed Studio is 50cm. If you need to use a longer

cable, you can use two Grove Screw Terminal modules and a set of twisted

pair wires (such as an Ethernet cable) to create your own longer cable.

Figure 12-7 shows the Grove Screw Terminal module.

Figure 12-6. Grove 4 Channel 16-bit ADC (ADS1115) module
(courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/Grove-ADS1115-16-bit-ADC-p-4599.html
http://www.seeedstudio.com/Grove-ADS1115-16-bit-ADC-p-4599.html

494

Tip See www.seeedstudio.com/cables- c- 949.html for the
list of grove cables from Seed Studio.

Now that we know more about Grove, let’s see what components (host

adapters and modules) are available.

 Components Available
There are a lot of components available for the Grove system. This section

highlights some of the categories of modules available. We won’t see

everything that is available because the catalog is quite large. Since the

product has been around for some time, there are several versions of some

of the modules. Rather than attempt to view all of the latest modules, we

will see the more popular host adapters and modules as well as those we

will use in upcoming chapters. Figure 12-8 shows a snapshot of the top-

level index from the Seeed Studio Grove online store. As you can see, there

are a lot of categories!

Figure 12-7. Screw Terminal module (courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/cables-c-949.html

495

Note While you may encounter older versions of some grove
components, the older versions are still usable and can sometimes be
found used for a discount.

 Host Adapters
Aside from the impressive list of modules, the list of host adapters available

from Seeed Studio is very impressive. Since we are working with Arduino

and Raspberry Pi in this book, let’s look at versions for these platforms.

There are six Grove shields available for the Arduino including the

Nano, Uno, and Mega. The Grove Base Shield V2.0 shown in Figure 12-9 is

the best one to use for the projects in this book assuming you will be using

an Arduino with the Uno shield headers. Recall we saw this host adapter in

an earlier section.

Figure 12-8. Seeed Studio Grove online store index

Chapter 12 IntroduCIng grove

496

Notice the number of Grove connectors on this board. There are

enough for most projects including all of the projects in this book. Notice

also the shield has a set of headers that allow you to access the Arduino

GPIO for more advanced projects.

Tip See www.seeedstudio.com/breakouts- c- 933.
html?cat=939 for the complete list of grove shields available for
the arduino and other platforms.

There are also two hats available for the Raspberry Pi: one for the

Raspberry Pi Zero discussed earlier and the GrovePi+. The GrovePi+ is the

host adapter (hat) we will use in this chapter and is also the same one we

saw earlier. Figure 12-10 shows the GrovePi+ host adapter.

Figure 12-9. Grove Base Shield V2.0 for Arduino (courtesy of
seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/breakouts-c-933.html?cat=939
http://www.seeedstudio.com/breakouts-c-933.html?cat=939

497

This host adapter is one that has an older version named the GrovePi.

If you find the GrovePi, you can use that instead of the GrovePi+ for the

projects in this book.

 Modules
Seeed Studio offers a wide variety of modules that contain sensors, input,

output, and display capabilities similar to those available for Qwiic.

However, the categories and number of modules available are several

times that of the other systems. So many that it is not possible to list them

all here. Table 12-6 list the categories of modules available with a link to

each category for further reading. You will find most have subcategories

that you can explore to find more about the modules in the category. All

URLs (links) begin with www.seeedstudio.com/category/.

Figure 12-10. GrovePi+ for Raspberry Pi (courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/category/

498

So what are the modules available in these categories? We will use the

same list of subcategories we used for the other component systems. You

will find the Seed Studio website organized a bit different, but all of these

subcategories are present:

• Sensors: Typically contain a single sensor that produces

output (readings or values) on the I2C bus. Examples

include temperature, humidity, pressure, distance,

magnetometer, light, and environmental (gases)

sensors.

• Displays: Modules that contain an output device for

displaying data. Examples include OLED and LED

displays.

Table 12-6. Categories of Grove Modules

Category Description Category Link

Sensors Modules that allow you to sample the

world around us

Sensor-for-

Grove-c-24.html

Leds Modules that contain various forms of

Leds

leds-c-891.html

Input Modules that contain devices that permit

input of data or input actions like buttons

Input-c-21.html

Wireless Modules that support wireless

technologies

wireless-c-899.html

displays Modules with output devices displays-c-929.html

actuators Modules with devices that produce

movement, drive motors, or produce sound

actuators-c-940.

html

accessories grove accessories such as cables,

headers, and more

accessories-c-945.

html

Chapter 12 IntroduCIng grove

499

• Relays: Modules that contain relays that permit you to

switch higher-power devices on or off.

• Motors: Modules that permit you to control small

electric motors.

• Input: Modules that contain one or more buttons,

potentiometers, keypads, or switches.

• ADC/DAC: Modules that provide analog-to-digital

conversion (ADC) or digital-to-analog conversion

(DAC) that permit incorporation of other circuits into

your project.

• Accessories: Various modules that provide handy

operations such as data loggers, cryptographic

operations, and more.

Now, let’s look at a sample of the Grove modules we will be using in the

upcoming chapters as we explore how to write the code for IoT projects

using the Grove system beginning with an output device.

We will make use of several Grove LED modules. These modules

contain one LED of a particular color. Figure 12-11 shows a Grove

LED module. You can discover all of the Grove LED modules at www.

seeedstudio.com/single- color- leds- c- 914.html.

Figure 12-11. Grove Red LED module (courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/single-color-leds-c-914.html
http://www.seeedstudio.com/single-color-leds-c-914.html

500

We will also use an LCD screen in some of the projects. The Grove

OLED Display 0.96″ (www.seeedstudio.com/Grove- OLED- Display- 0- 96-

SSD1315- p- 4294.html) is a nifty, small OLED similar to the one we used in

the Qwiic projects. Figure 12-12 shows the OLED display.

The Grove Sound Sensor module (www.seeedstudio.com/Grove-

Sound-Sensor- Based- on- LM386- amplifier- Arduino- Compatible.html)

provides the ability to detect sound or noise as an analog value similar to a

microphone. Figure 12-13 shows the module with the sensor facing side.

We will also use input devices such as the Grove Dual Button module

that has two buttons mounted (www.seeedstudio.com/Grove- Dual-

Button- p- 4529.html). The module comes with a variety of colored caps

Figure 12-12. Grove OLED Display 0.96″ (SSD1315) (courtesy of
seeedstudio.com)

Figure 12-13. Grove Sound Sensor (courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/Grove-OLED-Display-0-96-SSD1315-p-4294.html
http://www.seeedstudio.com/Grove-OLED-Display-0-96-SSD1315-p-4294.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html

501

permitting you to match the color of the cap to your project features.

Figure 12-14 shows the module with caps on the buttons. You can also use

them without the caps. Note that the Grove connector is located on the

bottom of the board.

The Grove AHT20 I2C Temperature and Humidity Sensor module can

measure both temperature and humidity (www.seeedstudio.com/Grove-

AHT20- I2C- Industrial- grade- temperature- and- humidity-sensor-

p- 4497.html). Figure 12-15 shows the module with the sensor facing side.

Figure 12-14. Grove Dual Button module (courtesy of seeedstudio.com)

Figure 12-15. Grove AHT20 I2C Temperature and Humidity Sensor
(courtesy of seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/Grove-AHT20-I2C-Industrial-grade-temperature-and-humidity-sensor-p-4497.html
http://www.seeedstudio.com/Grove-AHT20-I2C-Industrial-grade-temperature-and-humidity-sensor-p-4497.html
http://www.seeedstudio.com/Grove-AHT20-I2C-Industrial-grade-temperature-and-humidity-sensor-p-4497.html

502

Notice this module has additional pins for advanced users. In this case,

we see the I2C pins broken out on the right side of the module. Modules

with these features typically come without headers mounted.

Once again, there are many modules available. These are just a

sampling of the modules available from Seed Studio. See a compact list of

all Grove devices and modules at www.seeedstudio.com/category/Grove-

c- 1003.html.

 Cabling and Connectors
The Grove system includes cables of various lengths including 5, 20, 30,

40, and 50cm. Most modules produced by Seeed Studio include a 20cm

cable or longer. The 5cm cables are great for projects that include modules

mounted in close proximity or inside an enclosure.

There are also special cables available for a variety of uses such as a

branch or “Y” cable that lets you connect two modules to a single source,

a Grove-to-servo cable for using servos connected directly to a host,

and even cables for connecting directly to your host board with a Grove

connector on one side and the other side broken out with individual male

or female pins.

See www.seeedstudio.com/cables- c- 949.html for a list of cables and

connectors to support the Grove system.

 Developer Kits
Since the Grove system has been around a lot longer, Seeed Studio has had

time to develop a number of developer kits that include a host adapter and

a set of modules. There are over 50 kits available designed for a particular

purpose (theme), starter kits, and even kits for IoT development. Let’s

look at two starter kits that you may find interesting and that are great for

beginners.

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/category/Grove-c-1003.html
http://www.seeedstudio.com/category/Grove-c-1003.html
http://www.seeedstudio.com/cables-c-949.html

503

If you use an Arduino, the Grove Beginner Kit for Arduino comes as

a single PCB that has 10 sensors and supports 12 different projects (www.

seeedstudio.com/Grove- Beginner- Kit- for- Arduino- p- 4549.html). In

the center is an Arduino Uno–compatible board, and all of the modules

are connected through the PCB. You can either run the projects without

breaking off the modules or, when you’ve run all of the projects, break

them off so you can use them in other projects. Figure 12-16 shows the

Grove Beginner Kit for Arduino. It comes in a sturdy reusable case and

standoffs to make using the large board easier.

Figure 12-16. Grove Beginner Kit for Arduino (courtesy of
seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/Grove-Beginner-Kit-for-Arduino-p-4549.html
http://www.seeedstudio.com/Grove-Beginner-Kit-for-Arduino-p-4549.html

504

Another great kit for those learning the Raspberry Pi is the GrovePi+

Starter Kit for Raspberry Pi (www.seeedstudio.com/GrovePi- Starter-

Kit- for- Raspberry- Pi- p- 2240.html). This kit comes with the GrovePi+

host adapter and ten modules including sensors, LED, button, LCD,

and more. It is an excellent choice as a starting point in collecting Grove

modules. Figure 12-17 shows the Raspberry Pi starter kit.

Tip See www.seeedstudio.com/category/Kits- for-
Grove- c- 28.html for all of the grove kits available from Seeed
Studio.

Figure 12-17. GrovePi+ Starter Kit for Raspberry Pi (courtesy of
seeedstudio.com)

Chapter 12 IntroduCIng grove

http://www.seeedstudio.com/GrovePi-Starter-Kit-for-Raspberry-Pi-p-2240.html
http://www.seeedstudio.com/GrovePi-Starter-Kit-for-Raspberry-Pi-p-2240.html
http://www.seeedstudio.com/category/Kits-for-Grove-c-28.html
http://www.seeedstudio.com/category/Kits-for-Grove-c-28.html

505

 Where to Buy Grove Components
You can purchase Grove components directly from Seeed Studio

(seeedstudio.com), who are based in China. They often ship products

quickly, but shipping may take longer than expected. Fortunately, you can

often find Grove modules on popular online retail sites such as amazon.

com and online auction sites. In fact, I have seen select starter kits in

brick- and-mortar stores that sell electronic components. If you live in the

United States, check out the online retail stores first or buy in bulk to save

on shipping from Seeed Studio.

Now, let’s discuss how to use these systems in your projects.

 Using the Components in your Projects
Plugging your choice of Grove host adapter onto your host board and

plugging the modules together with the cables is pretty easy. Recall the

connectors only go one way so you can’t cross-connect anything.

However, like the Qwiic and STEMMA QT modules, Grove modules are

not designed to be hot pluggable. You should not connect and disconnect

modules while your board is powered on. This could lead to damaging the

module(s) or your host board.

Caution do not plug or unplug grove modules while your board is
powered on.

Once the hardware is plugged together, the next step is to start working

on the code to enable your modules and complete your project. To do so,

you are likely required to load one or more software libraries.

Chapter 12 IntroduCIng grove

506

Like the vast array of modules, the software libraries required for

the Grove modules vary and depend on the module itself. Fortunately,

Seeed Studio is very good about providing samples for use of each of their

hundreds of modules.

The following summarizes the steps necessary for the Arduino and

Raspberry Pi. The following does not include all of the steps needed for all

of the projects in the book; rather, the section is an overview of what you

can expect to configure your PC to implement the projects. Specific details

for each example are included in each chapter.

Fortunately, most Grove modules have examples on how to use them

that include, at a minimum, sample code for the Arduino. For example,

there is a Wiki page for the OLED Display 0.96'' module that shows you

how to get started using it (https://wiki.seeedstudio.com/Grove-OLED_

Display_0.96inch/).

 Loading Grove Libraries for the Arduino
Recall from Chapter 2 we can install software libraries using the Library

Manager in the Arduino IDE. Simply open the Library Manager and search

for Grove or the name of the module.

For example, in a later chapter, we will use the OLED Display 0.96”

module. According to the hookup guide, all we need to do is search the

Library Manager for “Grove OLED” (no quotes). Figure 12-18 shows how

that would appear in the Arduino IDE.

Chapter 12 IntroduCIng grove

https://wiki.seeedstudio.com/Grove-OLED_Display_0.96inch/
https://wiki.seeedstudio.com/Grove-OLED_Display_0.96inch/

507

Seeed Studio sometimes uses third-party libraries of which you can

also download the source code from GitHub. For example, the OLED

library can be found at https://github.com/olikraus/u8g2, which

happens to be a more generic library than the one in the Arduino Library

Manager. It is best to try and use the libraries from the Library Manager

first and seek the source when you need to modify the code or just want to

see how it works.

If you do decide to download and use the library from GitHub (or

elsewhere), follow the instructions in Chapter 6 to make it available in your

Arduino IDE.

 Loading Grove Libraries for the Raspberry Pi
Software libraries on the Raspberry Pi are a little different. Recall Python

libraries are installed differently. We would install them either using the

pip command or, in some rare cases, by downloading the library and

copying it to our project folder.

Figure 12-18. Searching the Library Manager for Grove libraries

Chapter 12 IntroduCIng grove

https://github.com/olikraus/u8g2

508

For example, Seeed Studio has created a Python library that contains

all of the libraries needed for their popular Grove modules. To install it, we

must download it (clone it) from GitHub and then install it as shown in the

following. Once you do that, you’re all set:

$ git clone https://github.com/Seeed-Studio/grove.py

cd grove.py

$ Python3

sudo pip3 install .

That’s all you need to do! You can find a complete list of the modules

supported in the Grove.py repository at https://seeed- studio.github.

io/grove.py/.

Tip Seeed Studio has kindly provided a getting started page for the
raspberry pi. to learn more about how to set up your environment to
work with grove modules in python, see the Wiki page for the grovepi
hat for raspberry pi at https://wiki.seeedstudio.com/
Grove_Base_Hat_for_Raspberry_Pi/#installation.

If you encounter a Grove module where there isn’t a Python library, do

not despair. Again, most Grove modules have a Wiki page that will show

you how to get started. But if there isn’t a specific Python library, you most

likely can find a similar one from the Internet that you can use. All it takes

is a bit of exploring, and you can find Python libraries for what you need.

Chapter 12 IntroduCIng grove

https://seeed-studio.github.io/grove.py/
https://seeed-studio.github.io/grove.py/
https://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_Pi/#installation
https://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_Pi/#installation

509

 Summary
Like the Qwiic and STEMMA QT component systems, Grove provides

a simple, no-error connector that you can use to connect a variety of

components together using several protocols – all from the same board.

Now that the hardware challenges have been nearly eliminated, we can

turn our attention back to learning how to write the code for our projects.

As you saw in this chapter, this may require installing software libraries

to support the modules you are using or adapting existing libraries to suit

your needs.

The next chapter begins a series of projects that use Grove components

to teach you how to work with the system for both the Arduino and

Raspberry Pi. As you will see, except for the hardware itself, the pattern of

building the projects is the same as the previous project chapters.

Chapter 12 IntroduCIng grove

511© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_13

CHAPTER 13

Example:
Knock-Knock!
Thus far in the book, we’ve discovered how to write code for Arduino and

Python (on the Raspberry Pi) for projects that use the Qwiic and STEMMA

QT modules. We have also discovered a third component system named

Grove. While the Grove system is also a rapid prototyping system, it supports

more than a single protocol (interface), which makes wiring a bit more

complicated only so far as you must know which protocols your modules

require and select the correct connector on the host adapter.

In this chapter, we will keep the project simple with respect to the

hardware so that we can get some practice working with Grove modules. In

fact, we will use two LEDs, a button, and a sound sensor module to build a

secret knock detector. We will only focus on the knock detection, but you

will see where in the code you could add an actuator such as a solenoid-

powered lock or similar security device to restrict access to something.

Like the previous project chapters, we will see how to implement this

project on the Arduino and Raspberry Pi but with an interesting twist. Let’s

get started.

https://doi.org/10.1007/978-1-4842-7234-3_13#DOI

512

 Project Overview
The project for this chapter is designed to demonstrate how to use analog

and digital Grove modules. We will use them to build a secret knock

detector that permits you to record a secret knock and requires users enter

the correct knock that matches. We won’t be recording sound levels with

the sound sensor (but we could); rather, we will keep it interesting and use

the frequency or timing of the knocks. After all, the best secret knocks are

melodic in nature.

To enter the secret knock, the user presses a button, and we check the

knock against the recorded secret knock. If the timing of the knocks plus/

minus a percentage to allow some variance (such as knocking a bit faster

or slower but the same cadence) matches, the knock is accepted and we

illuminate a green LED, or if the knock is rejected, we illuminate a red

LED. We will also allow a long press on the button to enter a recording

mode so that you can store a new secret knock where will illuminate both

LEDs.

Once again, we won’t complete the project with a locking mechanism

because they are rather expensive, but the knock detection and recording

are by far the more complex components of any secret knock application.

Fortunately, incorporating a locking mechanism is no more difficult than

determining the triggering of the lock.

For example, some mechanical locks can be activated by using a servo,

which can be activated using the Grove Servo module (https://www.

seeedstudio.com/Grove-Servo.html). You would write your code to move

the servo so that it turns the lock into a closed or open position.

Or you could use a solenoid lock that requires a 12V signal to trigger,

which can be accomplished using a relay and the analogWrite() method

in Arduino to trigger the relay, which causes the lock to engage or

disengage.

Chapter 13 example: KnoCK-KnoCK!

https://www.seeedstudio.com/Grove-Servo.html
https://www.seeedstudio.com/Grove-Servo.html

513

Tip See https://create.arduino.cc/projecthub/
projects/tags/lock for several examples of locks you can use
in arduino sketches. See https://makezine.com/projects/
remote-camera-doorbell-and-smart-lock-with-
raspberry-pi/ for an intriguing example of a raspberry pi locking
mechanism.

 What Will We Learn?
By implementing this project, we will learn how to connect Grove modules

to our host boards and how to connect Grove modules to the various

protocol connectors on the host adapter. We will also pick up a few tips on

working with the hardware along the way. Thus, the project itself is very

simple and is not likely to impress, but it is well suited for learning all of the

nuances of building Grove projects that use analog and digital modules.

The programming tasks will reveal how to read values from the sound

sensor to detect a knock sequence and how to interpret the value to make

a decision on the validity of the knock sequence. We will also learn how to

use LED modules to communicate the project operations.

Let’s see what hardware we will need.

 Hardware Required
The hardware needed for this project is listed in Table 13-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors.

Chapter 13 example: KnoCK-KnoCK!

https://create.arduino.cc/projecthub/projects/tags/lock
https://create.arduino.cc/projecthub/projects/tags/lock
https://makezine.com/projects/remote-camera-doorbell-and-smart-lock-with-raspberry-pi/
https://makezine.com/projects/remote-camera-doorbell-and-smart-lock-with-raspberry-pi/
https://makezine.com/projects/remote-camera-doorbell-and-smart-lock-with-raspberry-pi/

514

Table 13-1. Hardware Needed for the Secret Knock Project

Component URL Qty Cost

Grove Sound

Sensor

www.seeedstudio.com/Grove-Sound-

Sensor-Based-on-LM386-amplifier-

Arduino-Compatible.html

1 $4.90

Grove Red LED www.seeedstudio.com/Grove-Red-

LED.html

1 $1.90

Grove Green LED www.sparkfun.com/products/14532 1 $1.90

Grove Button www.seeedstudio.com/

buttons-c-928/Grove-Button.html

1 $1.90

Grove cables(any

length can be used)

Included with each preceding module 5

Arduino MKR

1010 WiFi

www.sparkfun.com/products/15251 1 $35.95

Raspberry Pi 3B

or later

www.sparkfun.com/categories/233 1 $35.00+

www.adafruit.com/category/176

Grove Base

Shield V2.0 for

Arduino

www.seeedstudio.com/Base-

Shield-V2.html

1 $4.45

GrovePi+ www.sparkfun.com/products/15945 1 $5.95

Chapter 13 example: KnoCK-KnoCK!

http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Red-LED.html
http://www.seeedstudio.com/Grove-Red-LED.html
http://www.sparkfun.com/products/14532
http://www.seeedstudio.com/buttons-c-928/Grove-Button.html
http://www.seeedstudio.com/buttons-c-928/Grove-Button.html
http://www.sparkfun.com/products/15251
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.sparkfun.com/products/15945

515

Note If you use the mKr series arduino, you will need to purchase
the mKr2Uno adapter (https://store.arduino.cc/usa/
mkr2uno-adapter) in order to use the Grove shield. You will
also need to purchase a set of stacking headers (https://www.
sparkfun.com/products/10007 or https://www.adafruit.
com/product/85) for the arduino to allow for the Grove shield to sit
high enough to clear the mKr series components.

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter. Once again, some of the

hardware is used in only one version.

 Sound Sensor

The Grove Sound Sensor is an analog module that incorporates a

microphone and a small amplifier. It can be used to detect sound in the

area and even the intensity of the sound. We will use both features in this

project. Figure 13-1 shows the Grove secret knock sensor.

Figure 13-1. Grove Sound Sensor (courtesy of seeedstudio.com)

Chapter 13 example: KnoCK-KnoCK!

https://store.arduino.cc/usa/mkr2uno-adapter
https://store.arduino.cc/usa/mkr2uno-adapter
https://www.sparkfun.com/products/10007
https://www.sparkfun.com/products/10007
https://www.adafruit.com/product/85
https://www.adafruit.com/product/85

516

 Grove LED

The two LED modules we will use are single LEDs mounted on a board

with a small circuit to ensure they are powered correctly. If you’ve

built your own electronic circuits with LEDs in the past, you will recall

each LED requires a specific resistor that matches the LED’s power

requirements. These modules eliminate those concerns and also use a

digital interface, which makes it easy to turn them on and off. Figure 13-2

shows the Grove Red LED (all single LED modules look similar but

include a different color LED).

One interesting facet of the Grove single LED modules is that they

sometimes ship without the LED installed, so you may need to plug it into

the socket. Fortunately, they come with a small card that explains how to

do so (the LEDs must be oriented correctly). In short, the longest leg on

the LED is positive, so it should be inserted so that the long leg goes in the

socket next to the + symbol on the board.

The boards also have a small potentiometer on them that allows more

advanced uses such as changing the color of the LED and tuning the board

to match the new LED’s power requirements. Cool!

Figure 13-2. Grove Red LED module (courtesy of seeedstudio.com)

Chapter 13 example: KnoCK-KnoCK!

517

 Grove Button

There are several button modules with the Grove connector mounted

either vertically or horizontally and some that have more than one button.

For this project, we need only a single-button module. Figure 13-3 shows

the Grove Button module.

 Grove Base Shield V2.0 for the Arduino

The base shield is the host adapter we will use for our Arduino version of

the project. It is a full-sized Uno-compatible shield that has all of the Grove

connectors you will need for this and other projects. Figure 13-4 shows the

Grove Base Shield V2.0 for Arduino.

Figure 13-3. Grove Button module (courtesy of seeedstudio.com)

Chapter 13 example: KnoCK-KnoCK!

518

 GrovePi+ for the Raspberry Pi

The GrovePi+ (or the older GrovePi) is the host adapter we will use for our

Python version of the project. It is a full-sized Raspberry Pi hat that has all

of the Grove connectors you will need for this and other projects.

Note You may encounter older Grove host adapters, namely, the
Grove Base hat. this board is not compatible with the latest software
libraries and should not be used.

Interestingly, this board is manufactured by Dexter Industries (www.

dexterindustries.com), and the software we will install to use it is

provided by them. The documentation for the GrovePi on the Seeed Studio

wiki refers to the Dexter Industries instructions. Thus, we will be using the

Dexter Industries instructions (https://www.dexterindustries.com/

grovepi/) to configure our board a bit later in the chapter.

Figure 13-4. Grove Base Shield V2.0 for Arduino (courtesy of
seeedstudio.com)

Chapter 13 example: KnoCK-KnoCK!

http://www.dexterindustries.com
http://www.dexterindustries.com
https://www.dexterindustries.com/grovepi/
https://www.dexterindustries.com/grovepi/

519

Figure 13-5 shows the GrovePi+.

You may notice that the GPIO header on the bottom of the GrovePi

has 26 pins and is smaller than the GPIO header on the Raspberry Pi. This

is by design, and it will still work with the newer Raspberry Pi boards.

To connect the GrovePi to your Raspberry Pi, insert the GrovePi female

header into the leftmost portion of the Raspberry Pi GPIO header as shown

in Figure 13-6.

Figure 13-5. GrovePi+ for the Raspberry Pi (courtesy of
seeedstudio.com)

Figure 13-6. Connecting the GrovePi to the Raspberry Pi GPIO

Chapter 13 example: KnoCK-KnoCK!

520

Notice the arrows that indicate the portion of the Raspberry Pi GPIO

you will need to use to connect the GrovePi. Be sure to double-check your

connections before powering on your Raspberry Pi.

 Connect the Grove Modules
Recall from Chapter 12 we can use a single Grove cable to connect each

Grove module separately to a specific connector on the host adapter

on our host board. The host adapter for the Raspberry Pi has a different

layout but has the same connectors we will use. Table 13-2 includes the

details of each connection on the host adapter to help you make the right

connections. Simply use the table to connect a Grove cable from the

module to the Grove connector on the host adapter as marked in the table.

Figure 13-7 shows an example of how you should connect your

modules for this project. Notice the figure shows the Arduino host adapter.

Table 13-2. Grove Connections

Module Protocol Grove Connector on the Host Adapter

Button Digital D6

red leD Digital D5

Green leD Digital D4

Sound Sensor analog a2

Chapter 13 example: KnoCK-KnoCK!

521

Now that we know more about the hardware for this chapter, let’s write

the code!

 Write the Code
The code for this project follows what should be a familiar pattern by now

if you’ve worked the previous project chapters. Specifically, we will create a

class to contain the code for the sound sensor, and our main sketch/script

will contain the code that makes it all work (the user interface).

Figure 13-7. Secret knock project Grove connections

Chapter 13 example: KnoCK-KnoCK!

522

We will be using analog and digital modules rather than I2C modules,

so there won’t be a need to install any software libraries, but there are

some differences in how you write your code for using the modules

between Arduino and Python. We’ll cover those specifics in each language-

specific section.

Let’s walk through how to prepare our computers to use the sensor and

write code to read its values. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch you will write to read

values from the sound sensor and detect the secret knock. We will skip

the software installation section we used in previous chapters because

the modules do not require any special libraries. As you will see, we will

use the built-in methods from the Arduino platform to interact with the

modules.

Since this is not our first Arduino sketch, we will discuss the code at a

high level and skip the line-by-line details focusing on the mechanics of

how the code works. You can study the code at your leisure to ensure you

understand the sketch in more detail.

 Write the Sketch

Recall we are going to use a class to read the sound sensor, which will

be in the form of a separate file. Rather than write the main sketch file

first and then add the class, we will write the class header first and then

the main sketch and finally complete the class code. This is typically

how programmers develop code with class modules (but not always). By

creating the header for the class first, we can understand how to use the

class making writing the main sketch easier.

Chapter 13 example: KnoCK-KnoCK!

523

The class will be named KnockSensor and stored in two files: a header

file named KnockSensor.h and a source file named KnockSensor.cpp.

Recall we must first create a blank sketch and then add the empty files.

Open a new sketch and name it secret_knock.ino or whatever you’d like

to use. Save the file, then close the project in the Arduino IDE, and then

create the class files. For example, use a terminal to navigate to the folder

and issue these commands to create the empty files:

secret_knock % touch KnockSensor.h

secret_knock % touch KnockSensor.cpp

Now, let’s see the code for each file starting with the header file.

Class Header File

Click the tab named KnockSensor.h to open the blank file. Here, we will

add the header or blueprint for the class. Recall the header file simply

defines the class. We will use the KnockSensor.cpp file to add the code for

the functions in the class. Let’s discuss those first.

We will write a new class that encapsulates the behavior of our knock

sensor. Specifically, we will need to read a secret knock from the user and

validate the knock against a stored sequence, which is stored in memory,

and we will need a way to store (record) a new secret knock.

Aside from those functions, we will also create a constructor so we can

pass in some tuning parameters. We want to allow the caller to change

the analog pin for the sound sensor and a percent value we can use to

compare the knock read to the stored secret knock. Let’s see how we can

write the header file for the class.

Chapter 13 example: KnoCK-KnoCK!

524

Let’s begin with one constant that we can use to define the maximum

number of knocks and a delay value we can use to ensure we read different

knocks, more specifically a length of time we wait before reading the next

knock. We use constants like this so that we can tune the code by changing

the value in only one place:

#define MAX_KNOCKS 10

#define KNOCK_DELAY 200

Next, we will define the class to include the three methods plus the

constructor as follows. We make them public since we will be calling them

from our main sketch:

class KnockSensor {

public:

 KnockSensor(int analogPin=A2, float sensitivity=0.25) {

 soundSensor = analogPin;

 rejectPercent = sensitivity;

 }

 bool readSecret();

 void recordSecret();

 boolean validateSecret();

...

}

Notice the constructor. Here, we define two parameters: one for

the analog pin that we want to use to connect the sound sensor and a

sensitivity parameter we can use to make the secret knock comparison

more (lower value) or less (higher value) sensitive. We set the default to

A2 since that is the connector shown in the connection diagram. Since the

code for the constructor is only two lines, we define them in the header

file, but constructors with more than a couple of lines of code should be

implemented in the code file.

Chapter 13 example: KnoCK-KnoCK!

525

Next, we will need a few variables for use in reading and comparing the

knock sequences. These include variables we will use to configure, tune,

and store data. All of these will be placed in the private section.

The configuration section contains two variables: one for the

sensitivity and another to store the pin to use for the sound sensor. Recall

we accept both of these via the constructor:

// Configuration variables

float rejectPercent = 0.25; // Percent timing difference

int soundSensor = A2; // Sound Sensor

The tuning section contains two more variables for setting the sound

threshold, which is the lowest value read from the sound sensor to

establish a knock, and the maximum delay to wait for a knock. The timeout

variable is how we detect the end of the knock sequence. You may need

to experiment to determine the threshold you want to use for the sound

detection. Higher means you will have to knock louder/harder:

// Tuning variables

int soundThreshold = 300; // Minimum value to detect a knock

int knockTimeout = 2000; // Wait timeout for knock

detection

The storage section contains variables to store the knock sequence

read and the known secret knock sequence. We’ll initialize the sequence to

a classic (perhaps overused) tune:

// Secret Knock Storage: "Shave and a haircut - two bits"

int secretKnock[MAX_KNOCKS] = {100,53,20,21,44,87,54,0,0,0};

int numSecretKnocks = 7;

int valuesRead[MAX_KNOCKS]; // Values read from sound sensor

Let’s look at the completed code for the header file. Listing 13-1 shows

the file.

Chapter 13 example: KnoCK-KnoCK!

526

Listing 13-1. Grove Secret Knock Header File

#include <Arduino.h>

#define MAX_KNOCKS 10

#define KNOCK_DELAY 200

class KnockSensor {

public:

 KnockSensor(int analogPin=A2, float sensitivity=0.25) {

 soundSensor = analogPin;

 rejectPercent = sensitivity;

 }

 bool readSecret();

 void recordSecret();

 boolean validateSecret();

private:

 // Configuration variables

 float rejectPercent = 0.25; // Percent timing difference

 int soundSensor = A2; // Sound Sensor

 // Tuning variables

 int soundThreshold = 300; // Minimum value to detect a

knock

 int knockTimeout = 2000; // Wait timeout for knock

detection

 // Secret Knock Storage: "Shave and a haircut - two bits"

 int secretKnock[MAX_KNOCKS] = {100,53,20,21,44,87,54,0,0,0};

 int numSecretKnocks = 7;

 int valuesRead[MAX_KNOCKS]; // Values read from sound sensor

};

OK, let’s return to the main sketch to see how we can use this class.

Chapter 13 example: KnoCK-KnoCK!

527

Main Sketch

Now click the secret_knock.ino tab to return to the main sketch. Let’s

begin with the preamble or top of the file. Recall here is where we include

libraries we need, declare variables and constants, etc. Listing 13-2 shows

the code for the main sketch preamble. As you can see, we only need to

include our new class header.

Listing 13-2. Main Sketch Preamble

#include "KnockSensor.h"

// Global Variables

KnockSensor *knockSensor;

// Constants

#define TRIGGER_PROGRAM_SECONDS 4.0

#define BUTTON_PIN 6

#define RED_LED 5

#define GREEN_LED 4

#define PROGRAM_PRESS 2

#define KNOCK_PRESS 1

#define NO_PRESS 0

Notice we define a global variable for our knock sensor class. We

also define a number of constants for the LEDs and button and several

constants we will use to determine if the button is pressed, if it was held

for at least 4 seconds (using the TRIGGER_PROGRAM_SECONDS constant), or if

it isn’t pressed. As you’ve guessed, we will write a function to return these

values.

Next, we will code the setup() function, which includes the sort of

initialization code we’ve seen in other projects. Specifically, we will set up

the LEDs using the pinMode() Arduino function as output pins and the

button as an input pin. We also set up the serial monitor so we can use

Chapter 13 example: KnoCK-KnoCK!

528

diagnostic statements. Finally, we initialize our new knock sensor class.

Listing 13-3 shows the complete code for the setup() function. Read

through it to ensure you understand all of the code included.

Listing 13-3. Main Sketch setup()

void setup() {

 pinMode(BUTTON_PIN, INPUT);

 pinMode(RED_LED, OUTPUT);

 pinMode(GREEN_LED, OUTPUT);

 Serial.begin(115200);

 while(!Serial);

 knockSensor = new KnockSensor(A2, 0.33);

 Serial.println("Welcome to the Secret Knock program.");

}

Finally, we have the loop() function. At the highest level, we want to

loop until the button is pressed. If it is a normal press (momentary), we use

the knock sensor class to read the knock sequence from the user. If it is a

long press, we record a new secret knock. That’s it!

Listing 13-4 shows the completed code for the loop() function. Go

ahead and read through the code to ensure you understand how it works.

There should not be any surprises or new techniques.

Listing 13-4. Main Sketch loop()

void loop() {

 int buttonStatus = readButtonStatus();

 // If this is a program trigger, turn on both LEDs

 if (buttonStatus == PROGRAM_PRESS) {

 digitalWrite(RED_LED, HIGH);

 digitalWrite(GREEN_LED, HIGH);

 Serial.println("Program Mode. Enter new secret knock.");

 delay(100);

Chapter 13 example: KnoCK-KnoCK!

529

 if (knockSensor->readSecret()) {

 knockSensor->recordSecret();

 }

 digitalWrite(RED_LED, LOW);

 digitalWrite(GREEN_LED, LOW);

 } else if (buttonStatus == KNOCK_PRESS) {

 Serial.println("What's the secret knock?");

 knockSensor->readSecret();

 // If knock accepted, turn on green LED, or red LED if

failure

 if (knockSensor->validateSecret()) {

 Serial.println("Secret knock accepted.");

 digitalWrite(GREEN_LED, HIGH);

 delay(3000);

 digitalWrite(GREEN_LED, LOW);

 } else {

 Serial.println("ERROR: Secret knock rejected. Go away!");

 digitalWrite(RED_LED, HIGH);

 delay(3000);

 digitalWrite(RED_LED, LOW);

 }

 }

 delay(100);

}

Notice how we use the LEDs to signal the user for a successful knock

sequence detection, a rejection, or storing a new knock sensor. Cool, eh?

Now, let’s look at the function we will use to read the button. We move

this code to a new function not because it is complicated, but because

it makes the code easier to read. Listing 13-5 shows the code for the

readButtonStatus() function. There isn’t any complicated code here, but

Chapter 13 example: KnoCK-KnoCK!

530

be sure to read through it to see how we return one of three values: button

not pressed, button pressed, and program press (long press). The only

tricky part is measuring the time expired for the long press.

Listing 13-5. Main Sketch readButtonStatus()

int readButtonStatus() {

 int ticsPressed = 0;

 if (digitalRead(BUTTON_PIN) == HIGH) {

 while (digitalRead(BUTTON_PIN)) {

 ticsPressed++;

 delay(100);

 }

 if ((ticsPressed/10.0) >= TRIGGER_PROGRAM_SECONDS) {

 return PROGRAM_PRESS;

 }

 return KNOCK_PRESS;

 }

 return NO_PRESS;

}

Now we can write the final portion of our project – the code for the

class.

Class Code File

Click the tab named KnockSensor.cpp to open the blank file. Here, we

will add the code for the class. There are only three functions to write.

Diagnostic messages are printed to the serial monitor in each of the

functions. You may want to add more messages if you encounter problems.

The readSecret() function implements a loop to read values from the

sound sensor. It loops until an error occurs or time expires on the knock

timeout (knockTimeout). It ignores any sounds (knocks) with a value less

Chapter 13 example: KnoCK-KnoCK!

531

than the minimum knock threshold (soundThreshold). Finally, it returns a

boolean value where true means a successful read and false indicates an

error occurred.

The recordSecret() function writes the last read knock sequence

to the internal variables in the class. To use this method, you must call

readSecret() first. We will use a special function named map() to change

the values read ranging from 0 to the largest value read to a range of 0–100.

In other words, we will “normalize” the values to a scale of 0:100. This will

allow us to store a secret knock and compare it to a knock sequence that

may vary slightly in timing (faster, slower) but still have the same cadence

(relative timing between knocks). We will use the map() function again in

the validateSecret() function when we do the compare.

The validateSecret() function implements an algorithm to compare

the last entered knock sequence (so you must call readSecret() first) to

the stored secret knock. The function returns a boolean value where true

means a successful comparison and false indicates the knock sequence

doesn’t match the stored secret. We do a simple check first to ensure the

number of knocks entered matches the number of knocks in the stored

secret knock. If it doesn’t, we reject and stop the compare (return false).

However, the code isn’t as simple as that because we also incorporate

a variable to check the sensitivity (rejectPercent) that helps to match the

knock timings within a percentage threshold. For example, if the sensitivity

is set to 25%, a knock timing is considered a match if the value is +/– 25% of

the stored secret. So, if the secret timing for a given knock is 50, acceptable

values with a 25% sensitivity range from 37.5 to 62.5. Recall these values

are the millisecond measurement since the last knock.

Listing 13-6 shows the completed code for the class (documentation

omitted for brevity). Since this is complicated code than we’re used to

seeing, be sure to study it to understand how it works. Spend some time

in the validation function so you can understand how we are doing the

compare. Notice how the map function is used for normalization of the

timing differences.

Chapter 13 example: KnoCK-KnoCK!

532

Listing 13-6. Grove Secret Knock Code File

#include "KnockSensor.h"

bool KnockSensor::readSecret() {

 int startTime = millis();

 int now = millis();

 int value = 0;

 int num = 0;

 // Clear the read values array

 for (int i = 0; i < MAX_KNOCKS; i++) {

 valuesRead[i] = 0;

 }

 // Wait for knocks that exceed threshold

 do {

 value = analogRead(soundSensor);

 if (value >= soundThreshold) {

 now = millis();

 valuesRead[num] = now - startTime;

 startTime = now;

 num++;

 delay(KNOCK_DELAY);

 Serial.println("Knock heard.");

 }

 now = millis();

 } while (((now - startTime) < knockTimeout) && (num < MAX_

KNOCKS));

 // Check for errors

 if (num == 0) {

 Serial.println("ERROR: no knocks detected.");

 return false;

 }

Chapter 13 example: KnoCK-KnoCK!

533

 if (num >= MAX_KNOCKS) {

 Serial.println("ERROR: maximum number of knocks exceeded.");

 return false;

 }

 return true;

}

void KnockSensor::recordSecret() {

 int maxKnockInterval = 0;

 // Normalize the knock timings

 numSecretKnocks = 0;

 for (int i = 0; i < MAX_KNOCKS; i++) {

 // Collect normalization data while we're looping.

 if (valuesRead[i] > maxKnockInterval) {

 maxKnockInterval = valuesRead[i];

 }

 secretKnock[i] = map(valuesRead[i], 0, maxKnockInterval,

0, 100);

 // Save number of secret knocks

 if (secretKnock[i] > 0) {

 numSecretKnocks++;

 }

 }

 Serial.println("Secret knock saved.");

}

boolean KnockSensor::validateSecret() {

 boolean knockMatches = true;

 int num = 0;

 int knockInterval = 0; // We use this later to normalize

the times.

 float timeDiff = 0.0;

Chapter 13 example: KnoCK-KnoCK!

534

 // Do the simple check first - do the number of knocks match?

 // Loop through the number of knocks counting the knocks in

the secret

 // and in the values read.

 for (int i = 0; i < MAX_KNOCKS; i++) {

 if (valuesRead[i] > 0) {

 num++;

 }

 // Capture max knock interval from values read for

normalization

 if (valuesRead[i] > knockInterval) {

 knockInterval = valuesRead[i];

 }

 }

 if (num != numSecretKnocks) {

 return false;

 }

 // Diagnostic Messages:

 Serial.print("Diagnostics - Reject% = ");

 Serial.println(rejectPercent);

 Serial.println("Secret\tRead\tDiff");

 Serial.println("----\t----\t----");

 for (int i = 0; i < MAX_KNOCKS; i++) {

 timeDiff = 0.0;

 // Normalize the values to remove timing issues.

 valuesRead[i] = map(valuesRead[i], 0, knockInterval, 0, 100);

 // Check for differences and compensate with error percentage.

 if (valuesRead[i] != secretKnock[i]) {

 if (secretKnock[i] > valuesRead[i]) {

 timeDiff = 1.0 - (float(valuesRead[i]) /

float(secretKnock[i]));

Chapter 13 example: KnoCK-KnoCK!

535

 } else {

 timeDiff = 1.0 - (float(secretKnock[i]) /

float(valuesRead[i]));

 }

 if (timeDiff > rejectPercent) { // Value too far out of

range

 knockMatches = false;

 }

 }

 Serial.print(secretKnock[i]);

 Serial.print("\t");

 Serial.print(valuesRead[i]);

 Serial.print("\t");

 Serial.println(timeDiff);

 }

 return knockMatches;

}

As you can see, while the code to read from the sound sensor is simple,

the code becomes more complicated when we attempt to compare a

knock sequence read to the secret stored. That’s why we use the sensitivity

setting. When testing the project for the first time, you may want to set the

sensitivity higher to 40% or 50% until you’re confident you can reproduce

the default knock sequence (you get a green light).

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. If

you encounter any errors, be sure to fix them and recompile to ensure the

sketch compiles without errors or serious warnings.

Chapter 13 example: KnoCK-KnoCK!

536

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Sketch on the

Arduino” section if you’re curious to see how the project works. While the

code will execute the same on both platforms, the values differ due to the

differences in how the sensors are read (the range of values differs).

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

create a Python version of our secret knock project. As you will see, it is a

bit different in places because of the GrovePi libraries. But first, we must

configure and install software for the GrovePi or GrovePi+ host adapter

on our Raspberry Pi. Fortunately, there is a single command we can use

to download the software we need and install it. You only need to run this

command once.

Note If you are using a raspberry pi 4B or 400, you must also
make a minor change to your operating system to enable the Grovepi
and Grovepi+.

Let’s start with configuring the GrovePi host adapter.

 Install Software Libraries

The GrovePi and GrovePi+ boards require a number of Python libraries to

work. Fortunately, you can install them all at once with a single command

as follows. Note that you must be connected to the Internet to use this

command:

$ curl -kL dexterindustries.com/update_grovepi | bash

Chapter 13 example: KnoCK-KnoCK!

537

This command will download everything you need and install the

Python libraries. It takes a while to run, and it is recommended that you

restart your Raspberry Pi after the process completes. Listing 13-7 shows

an excerpt of the command executing.

Listing 13-7. Installing the GrovePi and GrovePi+ Software

$ curl -kL dexterindustries.com/update_grovepi | bash

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 251 100 251 0 0 143 0 0:00:01 0:00:01 --:--:-- 143

 0 0 0 0 0 0 0 0 --:--:-- 0:00:02 --:--:-- 0

100 11903 100 11903 0 0 3325 0 0:00:03 0:00:03 --:--:-- 16812

 _____ _

 | __ \ | |

 | | | | _____ _| |_ ___ _ __

 | | | |/ _ \ \/ / __/ _ \ '__|

 | |__| | __/> <| || __/ |

 |_____/ ___/_/______|_| _

 |_ _| | | | | (_)

 | | _ __ __| |_ _ ___| |_ _ __ _ ___ ___

 | | | '_ \ / _\ | | | / __| __| '__| |/ _ \/ __|

 | || | | | (_| | |_| __ \ |_| | | | __/__ \

 |_____|_| |_|__,_|__,_|___/__|_| |_|___||___/

 _____ _____ _
 / ____| | __ (_)
	__ _ __ _____ _____		__)				
		_	'__/ _ \ \ / / _ \ ___/				
	__				(_) \ V / __/		
 _____|_| ___/ _/ ___|_| |_|

Welcome to GrovePi Installer.
...

Chapter 13 example: KnoCK-KnoCK!

538

The software installs all of the libraries available as well as

documentation. To see the documentation, use your browser and open

file:///home/pi/Dexter/GrovePi/docs/index.html.

That’s it. We’re done and ready to use our GrovePi. That is, unless

you’re using a Raspberry Pi 4B or 400.

 Configure the Raspberry Pi 4 or 400

If you are using a Raspberry Pi 3B or older board, you do not need to make

the following changes. This applies only to the Raspberry Pi 4B and 400.

The software libraries provided by Dexter Industries do not work well with

the newer Raspberry Pi boards. The problem is in the timing or speed of the

processor. Fortunately, we can slow our Raspberry Pi down just a bit to make it

work. It’s not an ideal solution, and hopefully it will be fixed in a future release.

The default speed for the Raspberry Pi 4B and 400 is 700Mhz, but we

need to lower that to 600Mhz. To change the speed of the ARM processor,

run the following command from a terminal. This will allow you to edit the

configuration file read at boot time and adjust the speed to a lower value.

You may encounter this process if you want to overclock your Raspberry Pi

where we set the value > 700Mhz1:

$ sudo nano /boot/config.txt

Scroll down through the file until you find the arm_freq value and

uncomment it (remove the # sign) and change the value as follows:

arm_freq=600

1 https://www.raspberrypi.org/documentation/configuration/config-txt/
overclocking.md

Chapter 13 example: KnoCK-KnoCK!

https://www.raspberrypi.org/documentation/configuration/config-txt/overclocking.md
https://www.raspberrypi.org/documentation/configuration/config-txt/overclocking.md

539

When you’re ready to save the file, press CTRL+X and Y to save the file.

Then, reboot your computer for the changes to take effect. Now you are

ready to start using the GrovePi and GrovePi+ host adapters.

 GrovePi/GrovePi+ Troubleshooting Tips

The GrovePi host adapter works well under most conditions. If you

encounter problems installing the software or using the board, there are

several things you can try.

First, use the following command to see if the board is detected by

the Raspberry Pi. If you do not see the output as shown – specifically, the

I2C address 0x04 is present (shown in bold) – you may need to power off

the Raspberry Pi to ensure the GrovePi is plugged into the GPIO header

correctly:

$ sudo i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- 04 -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Chapter 13 example: KnoCK-KnoCK!

540

If the GrovePi is detected on the I2C bus, but you cannot get any of the

sample code to work, you can update the firmware. This has been known

to fix such problems. Should you want to update the firmware of your

GrovePi board, you can do so by using the following command. You should

not need to do this more than once:

$ cd ~/Dexter/GrovePi/Firmware

$./firmware_update.sh

Updating the GrovePi firmware

=============================

 http://www.dexterindustries.com/grovepi

 Run this program:

 sudo ./firmware_update.sh

=============================

Do you want to update the firmware? [y,n]y

Make sure that GrovePi is connected to Raspberry Pi

Firmware found

Press any key to start firmware update

. . .

avrdude done. Thank you.

Finally, if the board stops working or your projects hang, you can try

resetting the board with the following command. Or try rebooting your

Raspberry Pi:

$ avrdude -c gpio -p m328p

Now we’re ready to write the code.

Chapter 13 example: KnoCK-KnoCK!

541

 Write the Code

The code for the Python version of this project is very similar to the

Arduino version except for the usual differences such as not needing

a header file and the naming scheme being different. Recall we use

underscores and mostly lowercase names in Python and lowercase first

word and initial capitals for internal words in Arduino, for example, knock_

timeout for Python and knockTimeout for Arduino.

Once again, we will not dive into every line of code. We will explore the

code at a higher level and discuss the more complex or important parts in

detail. You can read through the code and learn more about how it works

at your leisure.

Like the Arduino example, we will use a class to contain the code to

read the sensor. However, unlike the Arduino IDE, you can use any editor

to create the class and main script. We will name the main script secret_

knock.py and the class file knock_sensor.py. Let’s start with the class.

Secret Knock Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file knock_sensor.py. We will name the class KnockSensor,

and we will need the same three functions we used in the Arduino version.

The constructor accepts two values that specify the pin number of the

sound sensor and the sensitivity of the sensor. The remaining functions

operate in the same manner as the Arduino version with some major

differences.

Recall in the Arduino version, we used the function millis() to read

the milliseconds expired, but that method does not exist in Python. In fact,

we must change the code to use the datetime library to keep track of time.

The changes are clear when you read through the code. We must also use

a decimal value for milliseconds for the time.sleep() methods since they

accept values in seconds.

Chapter 13 example: KnoCK-KnoCK!

542

The other major difference is the use of the map() function. Once

again, there is no function in Python to map one range of values to another.

So we must write our own. The following shows the replacement function

named map_range():

def map_range(value, istart, istop, ostart, ostop):

 if value == istart:

 return value

 return int(ostart + (ostop - ostart) * ((value - istart) /

(istop - istart)))

The rest of the differences are due to the difference in writing in Python

vs. Arduino C++ code. Listing 13-8 shows the complete code for the class

with documentation removed for brevity. Take a few moments to read

through the code so that you understand all of the parts of the code.

Listing 13-8. Secret Knock Class (Python)

import time

from grovepi import pinMode, analogRead

MAX_KNOCKS = 10

KNOCK_DELAY = 0.200

def map_range(value, istart, istop, ostart, ostop):

 if value == istart:

 return value

 return int(ostart + (ostop - ostart) * ((value - istart) /

(istop - istart)))

class KnockSensor:

 """Knock Sensor Class"""

 # Configuration variables

 reject_percent = 0.25

 sound_sensor = 2 # Sound Sensor

Chapter 13 example: KnoCK-KnoCK!

543

 # Tuning variables

 sound_threshold = 500 # Minimum value to detect a

knock

 knock_timeout = 2.0 # Wait timeout for knock

detection

 # Secret Knock Storage: "Shave and a haircut - two bits"

 secret_knock = [100, 53, 20, 21, 44, 87, 54, 0, 0, 0]

 num_secret_knocks = 7

 values_read = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # Values from

sound sensor

 def __init__(self, analogPin=2, sensitivity=0.25):

 self.sound_sensor = analogPin

 self.reject_percent = sensitivity

 pinMode(self.sound_sensor, "INPUT")

 def read_secret(self):

 start_time = time.time()

 now = time.time()

 value = 0

 num = 0

 # Clear the read values array

 for i in range(0, MAX_KNOCKS):

 self.values_read[i] = 0

 # Listen for knocks that exceed threshold

 while (((now - start_time) < self.knock_timeout) and

 (num < MAX_KNOCKS)):

 value = analogRead(self.sound_sensor)

 if value >= self.sound_threshold:

 now = time.time()

Chapter 13 example: KnoCK-KnoCK!

544

 self.values_read[num] = now - start_time

 start_time = now

 num = num + 1

 time.sleep(KNOCK_DELAY)

 print("Knock heard.")

 now = time.time()

 # Check for errors

 if num == 0:

 print("ERROR: no knocks detected.")

 return False

 if num >= MAX_KNOCKS:

 print("ERROR: maximum number of knocks exceeded.")

 return False

 return True

 def record_secret(self):

 max_knock_interval = 0

 # Normalize the knock timings

 self.num_secret_knocks = 0

 for i in range(0, MAX_KNOCKS):

 # Collect normalization data while we're looping.

 if self.values_read[i] > max_knock_interval:

 max_knock_interval = self.values_read[i]

 self.secret_knock[i] = map_range(self.values_

read[i], 0,

 max_knock_

interval, 0, 100)

 # Save number of secret knocks

 if self.secret_knock[i] > 0:

 self.num_secret_knocks = self.num_secret_

knocks + 1

 print("Secret knock saved.\n")

Chapter 13 example: KnoCK-KnoCK!

545

 def validate_secret(self):

 # Check to see the number of knocks match

 num = 0

 knock_interval = 0 # We use this later to normalize

the times.

 for i in range(0, MAX_KNOCKS):

 if self.values_read[i] > 0:

 num = num + 1

 # Capture max knock interval from values read for

normalization

 if self.values_read[i] > knock_interval:

 knock_interval = self.values_read[i]

 if num != self.num_secret_knocks:

 return False

 time_difference = 0

 for i in range(0, MAX_KNOCKS): # Normalize the times

 # Normalize the values to remove timing issues.

 self.values_read[i] = map_range(self.values_

read[i], 0, knock_interval, 0, 100)

 # Check for differences and compensate with error

percentage.

 if self.values_read[i] != self.secret_knock[i]:

 if self.secret_knock[i] >= self.values_read[i]:

 time_difference = 1.0 –

 (self.values_read[i] / self.secret_

knock[i])

 else:

 time_difference = 1.0 –

 (self.secret_knock[i] / self.values_

read[i])

Chapter 13 example: KnoCK-KnoCK!

546

 if time_difference > self.reject_percent:

 return False

 return True

Now we can write our main script.

Main Script (Python)

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file secret_knock.py. There is nothing new in this code as

it follows the same flow as the Arduino example. Listing 13-9 shows the

complete code for the main script for this project. You can read through it

to see how all of the code works.

Listing 13-9. Main Script (Python)

Import libraries

import sys

import time

from grovepi import pinMode, digitalRead, digitalWrite

from knock_sensor import KnockSensor

Global variables

sensor = KnockSensor(sensitivity=0.30)

Constants

TRIGGER_PROGRAM_SECONDS = 4.0

BUTTON_PIN = 6

RED_LED = 5

GREEN_LED = 4

PROGRAM_PRESS = 2

KNOCK_PRESS = 1

NO_PRESS = 0

HIGH = 1

LOW = 0

Chapter 13 example: KnoCK-KnoCK!

547

def read_button_status():

 tics_pressed = 0

 button_pressed = digitalRead(BUTTON_PIN)

 if button_pressed:

 while button_pressed:

 tics_pressed = tics_pressed + 1

 time.sleep(0.100)

 if (tics_pressed/10.0) >= TRIGGER_PROGRAM_SECONDS:

 return PROGRAM_PRESS

 button_pressed = digitalRead(BUTTON_PIN)

 return KNOCK_PRESS

 return NO_PRESS

def main():

 print("\nWelcome to the Secret Knock program.")

 pinMode(RED_LED, "OUTPUT")

 pinMode(GREEN_LED, "OUTPUT")

 pinMode(BUTTON_PIN, "INPUT")

 while True:

 button_status = read_button_status()

 # If this is a program trigger, turn on both LEDs

 if button_status == PROGRAM_PRESS:

 digitalWrite(RED_LED, HIGH)

 digitalWrite(GREEN_LED, HIGH)

 print("Program Mode. Enter new secret knock.")

 time.sleep(0.100)

 if sensor.read_secret():

 sensor.record_secret()

 digitalWrite(RED_LED, LOW)

 digitalWrite(GREEN_LED, LOW)

Chapter 13 example: KnoCK-KnoCK!

548

 elif button_status == KNOCK_PRESS:

 print("What's the secret knock?")

 sensor.read_secret()

 # If knock accepted, turn on green LED, or red LED

if failure

 if sensor.validate_secret():

 print("Secret knock accepted.")

 digitalWrite(GREEN_LED, HIGH)

 time.sleep(3)

 digitalWrite(GREEN_LED, LOW)

 else:

 print("ERROR: Secret knock rejected. Go away!")

 digitalWrite(RED_LED, HIGH)

 time.sleep(3)

 digitalWrite(RED_LED, LOW)

 time.sleep(0.100)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

Chapter 13 example: KnoCK-KnoCK!

549

 Execute the Project
Now that we’ve spent many pages exploring the Grove modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

message written to the serial monitor (Arduino) or the terminal (Raspberry

Pi). You will also see the LEDs illuminate as follows:

• The red LED is turned on if a knock doesn’t match the

stored secret knock.

• The green LED is turned on when a knock matches the

stored secret knock.

• The green and red LEDs are turned on when we store a

new secret knock.

Also, recall the button behavior is as follows:

• A single press is used to initiate a knock sequence to

match.

• A long press (of 4 seconds or more) initiates a recording

mode where we can record a new knock sequence.

Executing the code depends on which platform you’re using. Let’s look

at the Arduino first.

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

Chapter 13 example: KnoCK-KnoCK!

550

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading...

message, you can open the serial monitor. You should see the diagnostic

output begin momentarily. Go ahead, and try it out! You should see values

similar to Listing 13-10. Notice the several attempts to reproduce the secret

knock and one successful attempt.

Listing 13-10. Sample Execution Transcript (Arduino)

Welcome to the Secret Knock program.

What's the secret knock?

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Diagnostics - Reject% = 0.33

Secret Read Diff

---- ---- ----

100 100 0.00

53 29 0.45

20 15 0.25

21 14 0.33

44 24 0.45

87 48 0.45

Chapter 13 example: KnoCK-KnoCK!

551

54 26 0.52

0 0 0.00

0 0 0.00

0 0 0.00

ERROR: Secret knock rejected. Go away!

What's the secret knock?

ERROR: no knocks detected.

ERROR: Secret knock rejected. Go away!

What's the secret knock?

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Diagnostics - Reject% = 0.33

Secret Read Diff

---- ---- ----

100 100 0.00

53 43 0.19

20 20 0.00

21 22 0.05

44 40 0.09

87 64 0.26

54 45 0.17

0 0 0.00

0 0 0.00

0 0 0.00

Secret knock accepted.

Chapter 13 example: KnoCK-KnoCK!

552

Notice also the diagnostic statements printed to show the knock

sequence read vs. the stored secret knock and the percent difference in

timing. You can use this when you are practicing the default secret knock.

It’s not as easy as it may appear and takes some practice to get it right (or

you can increase the sensitivity).

If something isn’t working, check your connections or refer to Chapter 7

for troubleshooting tips.

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your Grove modules to your Raspberry

Pi via a hat or the Grove female breakout cable. Recall the code will run

until you stop it with CTRL+C on the keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./secret_knock.py from the same folder where the file was

saved as shown in Listing 13-11. You will see output similar to the Arduino

version but without the diagnostic statements.

Listing 13-11. Sample Execution Transcript (Python)

$ python3 ./secret_knock.py

Welcome to the Secret Knock program.

What's the secret knock?

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Knock heard.

Chapter 13 example: KnoCK-KnoCK!

553

Knock heard.

Secret knock accepted.

Program Mode. Enter new secret knock.

Knock heard.

Knock heard.

Knock heard.

Secret knock saved.

What's the secret knock?

Knock heard.

Knock heard.

Knock heard.

Knock heard.

ERROR: Secret knock rejected. Go away!

What's the secret knock?

Knock heard.

Knock heard.

Knock heard.

Secret knock accepted.

Notice the transcript also includes a sequence where we change

the secret knock and test it. Try it yourself! If everything worked as

executed, congratulations! You’ve just built your first Grove project! If

something isn’t working, check your connections or refer to Chapter 7 for

troubleshooting tips.

 Going Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

Chapter 13 example: KnoCK-KnoCK!

554

• Add a lock: You can add a locking mechanism as

described earlier to create a smart lock for a box, door,

window, etc. When doing so, it is a good idea to remove

the secret knock programming feature or, better,

add a second button inside the box that triggers the

programming mode.

• Add a logger: It would be easy to add a short bit of code

to write the date and time a secret knock is accepted.

This is easy to do in Python but requires adding a

storage mechanism for the Arduino such as an SD card

reader or a logging module.

• IoT smart lock: Store the access log that you can view

on the Internet.

• Remote programming: Add the ability to send a new

secret knock sequence over the Internet (or local

network). This is a more advanced enhancement that

will require using networking programming to make

it work. Fortunately, there are many examples you

can follow including a client/server protocol, message

queue, and more.

 Summary
In this chapter, we got hands-on experience making projects with Grove

modules. We used a sound sensor to detect a series of knocks to simulate

a secret knock locking mechanism. We used two LEDs to provide feedback

to the user as well as diagnostic statements written to the serial monitor.

Chapter 13 example: KnoCK-KnoCK!

555

Along the way, we learned more about how to work with Grove

modules including how to write our own class for managing the sensor. We

also learned how to install the Python software for the Raspberry Pi as well

as how to update the firmware for the GrovePi host adapter. Finally, we saw

some potential to make this project better as well as some ideas for how to

adapt the project for practical uses.

In the next chapter, we will see another project that demonstrates how

to use a light sensor, a temperature sensor, and a red-green-blue LED to

create a mood light. Groovy, eh?

Chapter 13 example: KnoCK-KnoCK!

557© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_14

CHAPTER 14

Mood Lighting
At one time, mood lighting was (perhaps still is) an artistic mechanism

to add some ambiance to a room. We see mood lighting in cars, TVs,

and more. Mood lighting in that form is typically a series of LEDs placed

behind an object or in dark corners to provide a relaxing glow.

There are also various forms of jewelry that use a thermochromic

mechanism that changes color depending on the temperature of the skin

or finger. The most popular form is a mood ring.1

In this chapter, we will see how to create a mood lamp that works like a

mood ring to read the temperature of your finger and display the color that

represents your mood. We’ll see more analog and digital modules as well

as our first I2C Grove modules.

Like the last chapter, we will see how to implement this project on the

Arduino and Raspberry Pi but with an interesting twist. Let’s get started.

 Project Overview
The project for this chapter is designed to demonstrate how to use analog,

digital, and I2C devices on the same Grove host adapter to build a mood

lamp. It works like a mood ring by using surface (skin) temperature of

your finger to calculate a mood. The RGB will change depending on the

temperature read, and your mood will be displayed on the LCD.

1 https://en.wikipedia.org/wiki/Mood_ring

https://doi.org/10.1007/978-1-4842-7234-3_14#DOI
https://en.wikipedia.org/wiki/Mood_ring

558

We will use a light sensor as a way to wake up the mood detector and

a temperature sensor to read the surface temperature of your skin. Thus,

you will need to use two fingers: one to cover the temperature sensor and

another to cover the light sensor.

When the light sensor reading reaches the threshold, the code will read

the temperature and display the mood. When not reading and presenting

your mood, the RGB will default to a pleasant shade of light blue. In

essence, we’re building a mood detector.

 What Will We Learn?
By implementing this project, we will get more practice in using analog

and digital Grove modules and how to connect Grove modules to the

various protocol connectors on the host adapter. We will also pick up a

few tips on working with the I2C protocol on the Grove platform as well

as discovering how to use other I2C devices along the way. Rather than a

typical educational project, this project is fun to use as well as suited for

learning all of the nuances of building Grove projects that use a mixture of

analog, digital, and I2C modules.

WHAT PROTOCOL DOES MY GROVE MODULE USE?

You may be thinking, Since all Grove modules use the same cables and the
connectors are all the same, how can I tell which protocol is required for a
given module?

You can visit the Wiki page for the module, and it will be clearly described

there. For example, visit wiki.seeedstudio.com and click the Grove menu

to the left to read about all of the Grove modules.

Chapter 14 Mood LiGhtinG

559

You can also determine the protocol by looking at the connectors on the

module. the first two pins are always labeled GND, VCC. it is the last two pins

that determine the protocol. analog and digital modules use NC, SIG, some

digital modules use DIN, CIN (sometimes only DI, CI), i2C modules use

SDA, SCL, and Uart modules use RX, TX. So the modules you need to pay

attention to when connecting are the analog and digital because the printed

connector labels may not indicate which protocol they use. always check the

documentation for the module before use.

The programming tasks will reveal how to read values from the

temperature and light sensors to detect the initiation of a mood reading

and how to interpret the value to make a decision on the color to display.

Let’s see what hardware we will need.

 Hardware Required
The hardware needed for this project is listed in Table 14-1. URLs for

each component are included for ease of ordering including duplicate

entries for alternative vendors. We will use the Grove Light Sensor, Grove

Chainable RGB LED, Grove LCD RGB Backlight, Grove Qwiic Hub, and a

Qwiic TMP102 temperature sensor. Yes, we will be combining Grove and

Qwiic in the same project!

Chapter 14 Mood LiGhtinG

560

Table 14-1. Hardware Needed for the Mood Detector Project

Component URL Qty Cost

Grove Light Sensor wiki.seeedstudio.com/Grove-

Light_Sensor

1 $2.90

Grove Chainable RGB

LED

www.seeedstudio.com/Grove-

Chainable-RGB-Led-V2-0.html

1 $5.99

Grove LCD RGB

Backlight

www.seeedstudio.com/Grove-

LCD-RGB-Backlight.html

1 $11.90

Grove Qwiic Hub www.seeedstudio.com/Grove-

Qwiic-Hub-p-4531.html

1 $1.90

SparkFun Qwiic

TMP102

www.sparkfun.com/

products/16304

1 $6.50

Grove cables(any length

can be used)

included with each preceding module 4

Qwiic cable included with the Qwiic hub 1

Arduino MKR 1010

WiFi

www.sparkfun.com/

products/15251

1 $35.95

Raspberry Pi 3B or

later

www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

Grove Base Shield

V2.0 for Arduino

www.seeedstudio.com/Base-

Shield-V2.html

1 $4.45

GrovePi+ www.sparkfun.com/

products/15945

1 $5.95

Chapter 14 Mood LiGhtinG

http://wiki.seeedstudio.com/Grove-Light_Sensor
http://wiki.seeedstudio.com/Grove-Light_Sensor
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html
http://www.sparkfun.com/products/16304
http://www.sparkfun.com/products/16304
http://www.sparkfun.com/products/15251
http://www.sparkfun.com/products/15251
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

561

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter. If you implement the

Python version, be sure to note the changes in the libraries used.

 Grove Light Sensor

If you want to detect the amount of light in a room (or inside a container),

you can use a light sensor that will return a value that you can use to

determine brightness. Or you can use it like a switch to turn on or off

external lighting much like your backlit laptop keyboard.

The Grove Light Sensor is an analog module that, when read, produces

a value in a range of 0–255 or higher depending on the ADC used on your

host board. It uses a photodiode to detect the intensity of light. Note that

there are many different Grove light sensors, so if you cannot find this

exact module, some of the older or newer versions will work as well.

Figure 14-1 shows the Grove Light Sensor.

Figure 14-1. Grove Light Sensor (courtesy of seeedstudio.com)

Chapter 14 Mood LiGhtinG

562

Note if you do not have a Grove Light Sensor, you can substitute a
button or touch sensor to achieve the same goal.

 Grove Chainable RGB LED

The lamp used in this project is a bright red, green, blue (RGB) LED that

can be used to produce a vast array of colors by specifying a value of 0–255

for each color. The higher the value, the brighter (intensity) that color is

shown. By mixing the intensity, we can see a wide range of colors.

For example, values of (255, 0, 0) are for red or (127, 0, 127) for purple.

To see what this might look like, an RGB chooser (www.w3schools.com/

colors/colors_rgb.asp) can help you visualize the color. Navigate there

now and try it out yourself.

The Grove Chainable RGB LED module allows you to produce just

about any color you want. Figure 14-2 shows the Grove Chainable RGB LED.

So what does the chainable in the name mean? It means if you want

to use more than one RGB LED, you can “chain” the modules together. In

fact, on the bottom of the module, you will see two Grove connectors: one

marked “IN” and another “OUT.” Figure 14-3 shows what the connectors

look like. Notice the labels for each.

Figure 14-2. Grove Chainable RGB LED (courtesy of seeedstudio.
com)

Chapter 14 Mood LiGhtinG

http://www.w3schools.com/colors/colors_rgb.asp
http://www.w3schools.com/colors/colors_rgb.asp

563

To chain multiple modules together, simply connect the first Grove

cable from your host adapter to the “IN” connector, then another Grove

cable to the “OUT,” and then the “IN” to the next module and so on. You

can connect up to 1024 RGBs together.

Before we move on to the next module, let’s discuss the colors we will

use for this project. We will use a variety of colors that map to temperature

ranges. Table 14-2 shows the moods as well as the temperature and color

for each.

Figure 14-3. Grove Chainable RGB LED connectors on the bottom
(courtesy of seeedstudio.com)

Table 14-2. Available Moods

Mood Temperature Range (F) Color

off/resting < 72 Light blue

troubled 72–73 orange

alert 74–77 purple

Calm 78–81 Green

happy 82–85 Yellow

romantic 86–89 red

nervous 90–93 Violet

Stressed > 94 White

Chapter 14 Mood LiGhtinG

564

You may need to adjust these values if you’d like to tune the readings a

bit. There is no magic to selecting the temperature ranges (yes, mood rings

are largely hokum), so feel free to adjust them to, er, suit your mood.

 Grove LCD RGB Backlight

If you’ve used monochrome LCD displays in the past, you may appreciate

the interesting option on the Grove LCD RGB Backlight. While the text

color remains dark gray, you can change the background using an RGB

color similar to the Chainable RGB LED. Figure 14-4 shows the Grove LCD

RGB Backlight.

While this module does not offer the option, some Grove I2C modules

support address changes like the Qwiic/STEMMA QT modules by

opening or closing jumpers on the bottom of the board. For example,

you can change the address from 0x76 to 0x77 via a jumper on the Grove

barometric pressure (BMP280) module (https://wiki.seeedstudio.com/

Grove-Barometer_Sensor-BMP280/).

Figure 14-4. Grove LCD RGB Backlight (courtesy of seeedstudio.com)

Chapter 14 Mood LiGhtinG

https://wiki.seeedstudio.com/Grove-Barometer_Sensor-BMP280/
https://wiki.seeedstudio.com/Grove-Barometer_Sensor-BMP280/

565

 Grove Qwiic Hub

The Grove Qwiic Hub allows you to do just that – use Qwiic modules with

a Grove host adapter. All we need to do is use this module to provide two

Qwiic connectors, plug in our Qwiic module(s), and start programming.

Figure 14-5 shows the Grove Qwiic Hub.

The hub can also be used with a Qwiic host adapter to allow the

use of Grove modules. Cool! This is one module you will want to add to

your stores if you plan to continue to experiment with Grove and Qwiic/

STEMMA QT modules. And, best of all, it comes with a Qwiic cable so

you don’t need to buy one if you have not already invested in the Qwiic

Component System.

 Qwiic TMP102

Our choice for a temperature sensor is a Qwiic TMP102 sensor from

SparkFun. The TMP102 can read temperatures to a resolution of 0.0625°C

and is accurate up to 0.5°C.

Figure 14-5. Grove Qwiic Hub (courtesy of seeedstudio.com)

Chapter 14 Mood LiGhtinG

566

Tip See Chapter 13 for more details on the Grove host adapters.

 Connect the Grove Modules
Recall from Chapter 12 we can use a single Grove cable to connect each

Grove module separately to a specific connector on the host adapter

on our host board. The host adapter for the Raspberry Pi has a different

layout but has the same connectors we will use. Table 14-3 includes the

details of each connection on the host adapter to help you make the right

connections. Simply use the table to connect a Grove cable from the

module to the Grove connector on the host adapter as marked in the table.

Table 14-3. Grove Connections

Module Protocol Grove Connector on the Host Adapter

Light Sensor analog a0

rGB Led digital d7

LCd rGB Backlight i2C i2C1

Qwiic hub + tMp102 i2C i2C2

Figure 14-6. Sparkfun Qwiic Temperature Sensor
(courtesy of sparkfun.com)

Chapter 14 Mood LiGhtinG

567

Figure 14-7 shows an example of how you should connect your

modules for this project. Notice the figure shows the Arduino host adapter.

Now that we know more about the hardware for this chapter, let’s write

the code!

Figure 14-7. Mood detector project Grove connections

Chapter 14 Mood LiGhtinG

568

 Write the Code
The code for this project involves following the usual pattern. For this

project, that means using analog and digital modules as well as two I2C

devices. The light sensor is an analog sensor, the chainable RGB LED is a

digital module, and the TMP102 and LCD are both I2C devices.

As you will see, the code isn’t overly complicated for the Arduino

version, but we will have some more work to do for the Python version.

This is because some of the Grove modules used are not directly supported

by the GrovePi library and even some that are supported use libraries

that are not built using classes. Rather, they are implemented as a set of

modules using normal functions, which makes reading and working with

them a bit more challenging. Never fear, though. The code we will see is

fully functional albeit not “standard” Python.

Like the previous projects, we will use classes to wrap our functionality.

In the past, this has been focused on a single sensor or module. This

time, we’ll focus on making the mood lamp concept its own class. This

will require combining the code for all four of the modules (light and

temperature sensors, LCD, and RGB LED) into the class. It is an excellent

example of the power of classes (software libraries) to contain not only

small but also more complex objects. This also makes our main code much

smaller.

Let’s walk through how to prepare our computers to use the

components and write the code. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch and classes you will

write to read values from the light and temperature sensors and display the

mood value on the LCD module and change the RGB to a specific color.

But first, there are a couple of libraries we must install on our PCs.

Chapter 14 Mood LiGhtinG

569

 Install Software Libraries

We will need to install the Arduino libraries for the RGB LED, LCD, and

TMP102 modules separately. Open the Library Manager from the Arduino

IDE menu (Sketch ➤ Include Library ➤ Library Manager…). Then search

for chainable and install the latest version of the Grove Chainable RGB

LED library as shown in Figure 14-8.

Similarly, we need to install the library for the Grove LCD RGB

Backlight. Open the Library Manager and search for LCD RGB Backlight

and then install the latest version as shown in Figure 14-9.

Figure 14-8. Installing the Grove Chainable RGB LED library
(Arduino IDE)

Chapter 14 Mood LiGhtinG

570

Similarly, we need to install the library for the TMP102 sensor. Open

the Library Manager and search for TMP102 and then install the latest

version as shown in Figure 14-10.

Figure 14-10. Installing the SparkFun TMP102 library (Arduino IDE)

Figure 14-9. Installing the Grove LCD RGB Backlight library
(Arduino IDE)

Chapter 14 Mood LiGhtinG

571

Now that we have the software libraries installed, we can begin writing

our sketch. Since this is not our first Arduino sketch, we will discuss

the code at a high level and skip the line-by-line details focusing on the

mechanics of how the code works. You can study the code at your leisure

to ensure you understand the sketch in more detail.

 Write the Sketch

Recall we are going to use a class to encapsulate the mood lamp. In fact,

we will create two classes: one to define the moods so we can change the

temperature ranges and colors without affecting the rest of the code and

the mood lamp itself.

We will write the class headers first and then the main sketch

and finally complete the code for the classes. This is typically how

programmers develop code with class modules (but not always). By

creating the headers first, we can understand how to use the classes

making writing the main sketch easier. The mood lamp class will be named

MoodLamp, and the moods class will be named Moods.

Recall there is no way (currently) to create and add new files to a sketch

(but you can add existing files by clicking Sketch ➤ Add File…). So we will

once again create the main sketch and add the code header and source

files manually.

Open a new sketch and name it mood_detector.ino or whatever you’d

like to use. Save the file and then close the project in the Arduino IDE.

To create the class files, navigate with your File Explorer (Finder) to

the folder where you stored your main sketch (mood_detector.ino). Then,

use your File Explorer or a text file editor to create four new files named

Moods.h, Moods.cpp, MoodLamp.cpp, and MoodLamp.h. Or you can use a

terminal to navigate to the folder and issue these commands to create the

empty files:

mood_detector % touch Moods.h

mood_detector % touch Moods.cpp

Chapter 14 Mood LiGhtinG

572

mood_detector % touch MoodLamp.h

mood_detector % touch MoodLamp.cpp

Now, let’s see the code for each file starting with the header files.

Class Header File: Moods

Click the tab named Moods.h to open the blank file. Here, we will add the

header or blueprint for the class. The module provides a mechanism to

store and retrieve the mood values for the temperature ranges and color

values.

Thus, we will need a way to get the default color (the color used when

a mood is not being read or displayed) and the color values for a given

temperature. To make things easier, we will store the color values and

mood name (string) in a structure. Thus, we need only two functions:

getDefaultMood() and getMood().

Aside from those functions, we will also create a constructor so we can

define the default color and store it for later retrieval.

Since the header code is not difficult to read, let’s look at the completed

code for the header file. Listing 14-1 shows the file.

Listing 14-1. Moods Header File

#include <Arduino.h>

// Mood definitions by temperature

#define MOOD_TROUBLED 72

#define MOOD_ALERT 74

#define MOOD_CALM 78

#define MOOD_HAPPY 82

#define MOOD_ROMANTIC 86

#define MOOD_NERVOUS 90

#define MOOD_STRESSED 94

Chapter 14 Mood LiGhtinG

573

typedef struct{

 int red;

 int green;

 int blue;

 String mood;

} MoodValue;

class Moods {

public:

 Moods() { defaultMood = {102, 178, 255, "Resting"}; }

 MoodValue getMood(int temperature);

 MoodValue getDefaultMood() { return defaultMood; }

private:

 MoodValue defaultMood;

};

Now, let’s look at the header file for the mood lamp.

Class Header File: MoodLamp

Click the tab named MoodLamp.h to open the blank file. Here, we will add

the header or blueprint for the class. Recall this class will manage all four

(we don’t count the Qwiic Hub as it is a passive device) of our modules. So

there is a lot of code devoted to set up each of the modules.

We will also need to use the Moods header file and define a number

of constants such as which port the analog light sensor is using, the lowest

value to read from the light sensor to indicate a read event, the minimum

temperature to permit a mood determination, and the number of LEDs

we’re using.

Aside from that, we will also need a number of methods including a

begin() method for initialization, detectMood() to read the temperature

and determine if it is a successful read, and clearMood() to reset the RGB

LED to return it to the default color.

Chapter 14 Mood LiGhtinG

574

We will also define a couple of private variables and methods such as

variables for the other hardware libraries (and the moods library) and the

previous mood (for a fading effect) and a method to read the temperature

(readTemperature()), reset() to reset the LCD, off() to turn off the

RGB LED and LCD, and a method set the mood (setMood()). What these

functions do will become clearer once you see the code for them.

Since the header code is not difficult to read, let’s look at the completed

code for the header file. Listing 14-2 shows the file.

Listing 14-2. MoodLamp Header File

#include <Arduino.h>

#include <rgb_lcd.h>

#include <SparkFunTMP102.h>

#include <ChainableLED.h>

#include "Moods.h"

// Default value read from light sensor to initiate a mood

detection.

#define LIGHT_TRIGGER_LEVEL 300

#define LIGHT_SENSOR A0

#define NUM_LEDS 1

#define MINIMUM_TEMPERATURE 72 // Degrees Fahrenheit

class MoodLamp {

public:

 void begin();

 bool detectMood();

 void clearMood();

private:

 Moods *moods;

 rgb_lcd lcd; // Grove LCD

 TMP102 temperatureSensor; // Qwiic TMP102

Chapter 14 Mood LiGhtinG

575

 ChainableLED *rgbLed; // Grove RGB LED

 MoodValue prevMood;

 void reset();

 void off();

 int readTemperature();

 void setMood(MoodValue moodValue, boolean show_message=true);

};

OK, let’s return to the main sketch.

Main Sketch

Now click the mood_detector.ino tab to return to the main sketch. Since

we are placing all of the hardware work in the mood lamp class, all we

need to do here is instantiate a new class instance (stored in a variable

named moodLamp), set up the serial class, initialize the mood lamp, and

print the greeting. All of these are done in the setup() function.

The loop() function simply calls the detectMood() method, and

if it returns true, we wait for a certain amount of time as defined in

the constant MOOD_TIMEOUT and then clear the mood lamp with the

clearMood() function. That’s it!

Now you can see why building a robust class module that encapsulates

all of the hardware makes it easy to write our main code. Listing 14-3

shows the code for the main sketch. Take a few moments and read through

the code.

Listing 14-3. Main Sketch

#include <Wire.h>

#include "MoodLamp.h"

// Constants

#define MOOD_TIMEOUT 10

Chapter 14 Mood LiGhtinG

576

// Global variables

MoodLamp *moodLamp;

void setup() {

 Serial.begin(115200);

 while(!Serial);

 // Setup mood lamp

 moodLamp = new MoodLamp();

 Serial.println("Welcome to the mood detector!");

 moodLamp->begin();

 Serial.println("Mood detector is ready.");

 Serial.println("Place fingers over the light and temperature

sensor.");

 Serial.println("Reading takes about 15 seconds.");

}

void loop() {

 // If the mood detector was initiated, clear the value after

a timeout

 if (moodLamp->detectMood()) {

 delay(MOOD_TIMEOUT * 1000);

 moodLamp->clearMood();

 }

 delay(2000);

}

Now we can write the final portion of our project – the code for the

classes.

Class Code File: Moods

Click the tab named Moods.cpp to open the blank file. Here, we will add the

code for the class. There is only one function to write: getMood(). Note that

we defined the getDefaultMood() and constructor in the class header file.

Chapter 14 Mood LiGhtinG

577

The getMood() function takes as a parameter the temperature value (as

an integer) and then uses the constants defined in the header file to set up

a series of if statements that return a mood represented by the MoodValue

structure based on the temperature. The code is not overly complicated,

and you can read it for yourself. Listing 14-4 shows the completed code for

the class (documentation omitted for brevity).

Once again, this code was moved to its own class for ease of

maintenance and modification. Otherwise, we would have complicated

the mood lamp code and made it harder to change the temperature ranges

and colors.

Listing 14-4. Moods Code File

#include "Moods.h"

MoodValue Moods::getMood(int temperature) {

 if (temperature == 0) {

 return {0, 0, 0, ""};

 } else if (temperature < MOOD_TROUBLED) {

 return {defaultMood.red, defaultMood.green, defaultMood.

blue, ""};

 } else if ((temperature >= MOOD_TROUBLED) && (temperature <

MOOD_ALERT)) {

 return {255, 128, 0, "Troubled"};

 } else if ((temperature >= MOOD_ALERT) &&

(temperature < MOOD_CALM)) {

 return {153, 0, 153, "Alert"};

 } else if ((temperature >= MOOD_CALM) &&

(temperature < MOOD_HAPPY)) {

 return {0, 102, 0, "Calm"};

 } else if ((temperature >= MOOD_HAPPY) &&

(temperature < MOOD_ROMANTIC)) {

Chapter 14 Mood LiGhtinG

578

 return {255, 255, 0, "Happy"};

 } else if ((temperature >= MOOD_ROMANTIC) &&

(temperature < MOOD_NERVOUS)) {

 return {204, 0, 0, "Romantic"};

 } else if ((temperature >= MOOD_NERVOUS) &&

(temperature <= MOOD_STRESSED)) {

 return {255, 0, 255, "Nervous"};

 }

 return {255, 255, 255, "Stressed!"};

}

Now let’s look at the code file for the mood lamp class. As you will

see, this class contains a lot of code, but most is rather easy to read and

understand.

Class Code File: MoodLamp

Click the tab named MoodLamp.cpp to open the blank file. Here, we will add

the code for the class. Since there are a lot of functions in the class, we will

first list the functions and then highlight one of the more complex ones in

a detailed walk-through. You can discover how the other functions work as

an exercise, but the code is similar to what we’ve seen in previous projects.

The functions defined in this class include the following. Included with

each are details of what the function is used for and how it works:

• void begin(): Set up the hardware in the module.

Initializes the pin for the light sensor, initializes the

temperature sensor, defines the LCD size and initializes

it, instantiates the moods class variable, and clears the

mood (sets the default mood color).

• bool detectMood(): This is the main function used

to initiate the mood detection. It first reads the light

sensor and, if it is covered, reads the temperature.

Chapter 14 Mood LiGhtinG

579

If the temperature is above the minimum value, it uses

the Moods class to get the color and text for the mood.

It then sets the RGB LED to the mood color and

displays the mood text on the LCD.

• void clearMood(): Returns the RGB LED to the default

color and clears the LCD text. This uses the Moods class

to get the default color values and the reset to display

the normal message (instructions) on the LCD.

• void reset(): Displays the main screen on the LCD,

which is the instructions for use (however terse).

• void off(): Turns off the LCD and RGB LED.

• int readTemperature(): Reads the temperature from

the TMP102. We also use the TMP102 library to turn the

sensor on before reading and off after to save power.

Most advanced sensors have similar capabilities, and

since we could be waiting a long time between mood

detections, it makes the sensor last longer.

• void setMood(MoodValue moodValue, boolean

show_message): Used to set the current mood using

the values read from the Moods class and the previous

mood to fade the RGB LED from one color to another.

The show_message parameter is used to toggle

displaying of the mood name on the LCD. False means

don’t display the text.

This last function, setMood(), is the most complex code-wise because

it uses an algorithm to fade the RGB LED. Why fade? Fading the RGB LED

makes the color changes more interesting and slower. Rather than blinking

from one color to another, it eases the color changes slowly. It’s a neat

effect when you see it in operation.

Chapter 14 Mood LiGhtinG

580

However, the fade is not as simple as using a for loop because we not

only must change from a low value to a higher value but also from a high

value to a lower value. Thus, we must calculate an increment to use inside

a while loop that loops until all three values (red, green, and blue) become

equal. That is essentially the most difficult part of this function, and that

code is shown in Listing 14-5.

Listing 14-5. Excerpt from setMood() – Fade Effect

int red;

int green;

int blue;

int red_increment = 0;

int green_increment = 0;

int blue_increment = 0;

...

// Prepare starting position and increment values for R,G,B

red = prevMood.red;

green = prevMood.green;

blue = prevMood.blue;

if (red < moodValue.red) red_increment = 1;

if (red > moodValue.red) red_increment = -1;

if (green < moodValue.green) green_increment = 1;

if (green > moodValue.green) green_increment = -1;

if (blue < moodValue.blue) blue_increment = 1;

if (blue > moodValue.blue) blue_increment = -1;

// If the colors are the same, just reset the display

if ((red == moodValue.red) && (green == moodValue.green) &&

(blue == moodValue.blue)) {

 rgbLed->setColorRGB(0, red, green, blue);

 delay(10);

}

Chapter 14 Mood LiGhtinG

581

// Implement a smooth transition to the next values

while ((red != moodValue.red) || (green != moodValue.green) ||

(blue != moodValue.blue)) {

 // Check for increment stops

 if (red == moodValue.red) red_increment = 0;

 if (green == moodValue.green) green_increment = 0;

 if (blue == moodValue.blue) blue_increment = 0;

 red = red + red_increment;

 green = green + green_increment;

 blue = blue + blue_increment;

 rgbLed->setColorRGB(0, red, green, blue);

 delay(10);

}

Notice how we determine the increment. You may think an if/else

clause would work where if the previous value was lower, we increment

by +1; else, use –1. But that won’t work if they are equal. Thus, we set the

increment for each color to 0 first and then use separate if statements to

set the increment for each color.

Notice also we set the color of the RGB LED with each pass through the

loop. This is the fade effect where the color changes slowly.

Finally, notice what we do if the color is the same as the previous. In

this case, we simply set the color on the RGB LED again since it is possible

it is turned off.

Listing 14-6 shows the completed code for the class (documentation

omitted for brevity). Take some time to read through the code to see how

each function works. Take a bit longer in the begin() function to see how

we use each of the hardware modules.

Chapter 14 Mood LiGhtinG

582

Listing 14-6. MoodLamp Code File

#include "MoodLamp.h"

void MoodLamp::begin() {

 // Setup light sensor

 pinMode(LIGHT_SENSOR, INPUT);

 // Setup the temperature sensor

 Wire.begin(); //Join I2C Bus

 // The TMP102 uses the default settings with the address 0x48

 if(!temperatureSensor.begin())

 {

 Serial.println("ERROR: Cannot connect to TMP102.");

 Serial.println("Is the board connected? Is the device ID

correct?");

 while(1);

 }

 // Setup the LCD

 // Setup number of columns and rows:

 lcd.begin(16, 2);

 // Set background color?

 lcd.setRGB(127, 127, 127);

 // Setup RGB LED

 rgbLed = new ChainableLED(7, 8, NUM_LEDS);

 // Set the led default color

 moods = new Moods(); // Set default mood

 prevMood = {0, 0, 0, ""};

 clearMood();

 delay(1000);

}

Chapter 14 Mood LiGhtinG

583

bool MoodLamp::detectMood() {

 int lightValue = analogRead(LIGHT_SENSOR);

 if (lightValue <= LIGHT_TRIGGER_LEVEL) {

 delay(15);

 int temperature = readTemperature();

 // Do not proceed if temperature is too low

 if (temperature < MINIMUM_TEMPERATURE) {

 Serial.println("ERROR: temperature too low.");

 return false;

 }

 Serial.print("Temperature read: ");

 Serial.println(temperature);

 MoodValue moodValue = moods->getMood(temperature);

 Serial.print("Mood = ");

 Serial.println(moodValue.mood);

 setMood(moodValue);

 prevMood = moodValue;

 return true;

 }

 return false;

}

void MoodLamp::reset() {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Mood Detector");

 lcd.setCursor(0, 1); // column 1, row 2

 lcd.print("Cover sensors");

}

void MoodLamp::clearMood() {

 reset();

Chapter 14 Mood LiGhtinG

584

 // Return to default colors

 MoodValue moodValue = moods->getDefaultMood();

 setMood(moodValue, false);

 prevMood = moodValue;

}

void MoodLamp::off() {

 lcd.clear();

 rgbLed->setColorRGB(0, 0, 0, 0);

 setMood({0, 0, 0, ""}, false);

}

int MoodLamp::readTemperature() {

 int temperature;

 // Turn sensor on to start temperature measurement.

 temperatureSensor.wakeup();

 delay(100);

 // read temperature data

 temperature = (int)temperatureSensor.readTempF();

 // Place sensor in sleep mode to save power.

 temperatureSensor.sleep();

 return temperature;

}

void MoodLamp::setMood(MoodValue moodValue, boolean show_

message) {

 int red;

 int green;

 int blue;

 int red_increment = 0;

 int green_increment = 0;

 int blue_increment = 0;f

Chapter 14 Mood LiGhtinG

585

 // Display mood on LCD

 if (show_message) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("You are feeling");

 lcd.setCursor(0, 1);

 lcd.print(moodValue.mood);

 }

 // Prepare starting position and increment values for R,G,B

 red = prevMood.red;

 green = prevMood.green;

 blue = prevMood.blue;

 if (red < moodValue.red) red_increment = 1;

 if (red > moodValue.red) red_increment = -1;

 if (green < moodValue.green) green_increment = 1;

 if (green > moodValue.green) green_increment = -1;

 if (blue < moodValue.blue) blue_increment = 1;

 if (blue > moodValue.blue) blue_increment = -1;

 // If the colors are the same, just reset the display

 if ((red == moodValue.red) && (green == moodValue.green)

 && (blue == moodValue.blue)) {

 rgbLed->setColorRGB(0, red, green, blue);

 delay(10);

 }

 // Implement a smooth transition to the next values

 while ((red != moodValue.red) || (green != moodValue.green)

 || (blue != moodValue.blue)) {

 // Check for incement stops

 if (red == moodValue.red) red_increment = 0;

 if (green == moodValue.green) green_increment = 0;

Chapter 14 Mood LiGhtinG

586

 if (blue == moodValue.blue) blue_increment = 0;

 red = red + red_increment;

 green = green + green_increment;

 blue = blue + blue_increment;

 rgbLed->setColorRGB(0, red, green, blue);

 delay(10);

 }

}

As you can see, the code is long, but except for a few places not

difficult. This example shows you how you can encapsulate more than

one module in a single class. In fact, what we are modeling here is the

mood lamp itself, not the individual components. Thus, we hide all of the

complex operations with the hardware from the user. Neat!

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. If

you encounter any errors, be sure to fix them and recompile to ensure the

sketch compiles without errors or serious warnings.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Sketch on the

Arduino” section if you’re curious to see how the project works. While the

code will execute the same on both platforms, the values differ due to the

differences in how the sensors are read (the range of values differs).

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

create a mood lamp and moods class and use them in the main script. But

first, there are a couple of libraries we must install on our Raspberry Pi.

Chapter 14 Mood LiGhtinG

587

Note if you have not installed the Grovepi libraries, please see
Chapter 12 for complete details and install them before you begin. if
you encounter problems, see the “Grovepi/Grovepi+ troubleshooting
tips” section in Chapter 12.

 Install a Software Library

Aside from the GrovePi libraries, we need only one more software library.

Specifically, we need a library for the TMP102. SparkFun does not have a

Python library on their own, but there is a third-party library we can use.

Unfortunately, we must download it and use it manually because it does

not have an installer.

You can download it from https://github.com/n8many/TMP102py

using the code download button or clone it directly to your project folder

with the following command:

$ git clone https://github.com/n8many/TMP102py.git

What that means is you should download and unzip the file from

GitHub into a folder that contains the Python files for this project. For

example, if you create a folder named mood_detector, the TMP102 folder

should reside in mood_detector/TMP102py.

Once you have that library downloaded (or cloned) and in your project

folder, we’re ready to write the code.

 Write the Code

The code for the Python version of this project is a bit different than the

Arduino code. We will still create the same classes (MoodLamp, Moods), but

the libraries for the LCD and RGB LED are different and not so easy to use.

Chapter 14 Mood LiGhtinG

https://github.com/n8many/TMP102py

588

The reason is the Python code for those modules is written using

code modules that contain no classes – only functions. Furthermore, the

initialization code is done for us via importing the library making it much

harder to set up.

While the code works and we can make it do all the things the Arduino

version does, the code for these modules is not written to current Python

standards and to a Python eye will seem primitive and a bit hinky.2 Sadly,

unless you use the newer Grove modules, you may find more situations

where you will have to use functions instead of classes. That’s too bad

because there are a lot of Grove modules available!

Once again, we will not dive into every line of code, but we will see

some of the more complex code and those areas that differ significantly

from the Arduino version. You can read through the code and learn more

about how it works at your leisure.

Let’s start with writing the classes starting with the Moods class.

Moods Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file moods.py. We will use the same functions as the Arduino

version. The only difference is the MoodValue structure in the Arduino

version is replaced with a tuple. Recall a Python tuple is immutable (you

cannot change its internal values) and you access the parts of the tuple

with an index in the same way you do an array.

While that may seem like a big change, if you recall from reading the

Arduino code, we don’t change the values returned from this class. We

simply use them. To make things easier, we define constants to represent

the parts of the tuple as follows. This makes it easy to use the tuple. For

example, myMood[GREEN] references the green value for the RGB values.

2 A highly technical term that means “this fish smells bad.”

Chapter 14 Mood LiGhtinG

589

Index for mood value tuple

RED = 0

GREEN = 1

BLUE = 2

MOOD = 3

Other than that, the rest of the code is similar to the Arduino version

just rewritten in Python.

Listing 14-7 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read through the code so that

you understand all of the parts of the code. As you will see, it is not nearly

as complicated as the Arduino class, thanks to the helpful class library and

utility class from Adafruit.

Listing 14-7. Moods Class (Python)

Mood definitions by temperature

MOOD_TROUBLED = 72

MOOD_ALERT = 74

MOOD_CALM = 78

MOOD_HAPPY = 82

MOOD_ROMANTIC = 86

MOOD_NERVOUS = 90

MOOD_STRESSED = 94

Index for mood value tuple

RED = 0

GREEN = 1

BLUE = 2

MOOD = 3

class Moods:

 """Moods Class"""

 default_mood = (102, 178, 255, "Resting")

Chapter 14 Mood LiGhtinG

590

 def get_default_mood(self):

 """Get Default Mood"""

 return self.default_mood

 def get_mood(self, temperature):

 """Get Mood"""

 if temperature == 0:

 return (0, 0, 0, "")

 if temperature < MOOD_TROUBLED:

 return (self.default_mood[RED], self.default_

mood[GREEN],

 self.default_mood[BLUE], "")

 if MOOD_TROUBLED == temperature <= MOOD_ALERT:

 return (255, 128, 0, "Troubled")

 if MOOD_ALERT >= temperature < MOOD_CALM:

 return (153, 0, 153, "Alert")

 if MOOD_CALM >= temperature < MOOD_HAPPY:

 return (0, 102, 0, "Calm")

 if MOOD_HAPPY >= temperature < MOOD_ROMANTIC:

 return (255, 255, 0, "Happy")

 if MOOD_ROMANTIC >= temperature < MOOD_NERVOUS:

 return (204, 0, 0, "Romantic")

 if MOOD_NERVOUS >= temperature <= MOOD_STRESSED:

 return (255, 0, 255, "Nervous")

 return (255, 255, 255, "Stressed!")

Now, let’s look at the MoodLamp class file.

MoodLamp Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file moodlamp.py. We will use the same functions as we did in

the Arduino version renamed to a more Python-friendly naming scheme.

Chapter 14 Mood LiGhtinG

591

What differ are the functions for interacting with the RGB LED,

TMP102, and LCD. For these, we must import the grovepi module and

several functions as follows:

from grovepi import (pinMode, analogRead, chainableRgbLed_init,

 storeColor, chainableRgbLed_pattern)

Here we see we will use (in addition to the pinMode and analogRead

for the light sensor) the chainableRgbLed_init() function to initialize the

RGB LED and the strangely named chainableRgbLed_pattern() function

to set the color for the RGB LED.

The TMP102 sensor uses a different Python library, and we import it as

follows:

from TMP102py.tmp102 import TMP102

Fortunately, the function names used are very similar to the Arduino

version of the SparkFun library. For example, to read the temperature, we

use readTemperature() – the same name as the Arduino version.

The LCD on the other hand uses a different library provided in the

GrovePi libraries, but it is written using different functions. Rather than use

the existing GrovePi library, we can create our own class that encapsulates

the library and make the functions work in a similar manner as we saw in

the Arduino version.

Specifically, we would expect to see clear(), print(), set_cursor(),

and set_rgb() functions, but the GrovePi library doesn’t use them.

Listing 14-8 shows a new class named GroveLcdRgb that imports the

GrovePi library named grove_rgb_lcd wrapping those functions into the

ones we expect.

Chapter 14 Mood LiGhtinG

592

Listing 14-8. GroveLcdRgb Class (Python)

from grove_rgb_lcd import *

class GroveLcdRgb:

 def clear(self):

 textCommand(0x01) # clear display

 setRGB(0, 0, 0)

 setText("")

 def print(self, message):

 for symbol in message:

 bus.write_byte_data(DISPLAY_TEXT_ADDR, 0x40,

ord(symbol))

 def set_cursor(self, col, row):

 if row == 0:

 dest_col = col | 0x80

 else:

 dest_col = col | 0xc0

 bus.write_byte_data(DISPLAY_TEXT_ADDR, 0x80, dest_col)

 def set_rgb(self, red, green, blue):

 setRGB(red, green, blue)

We can save this file as grove_lcd_rgb.py so as not to confuse it with the

GrovePi library. When we want to use it in our MoodLamp class, we import

it as follows. The functions this class provides are also (and thankfully)

similar to the library we used in the Arduino version:

Note the import statement in this class is considered bad form. You
should not use global imports. rather, a better form would be from
grove_rgb_lcd import (textCommand, setRGB, setText,
bus, DISPLAY_TEXT_ADDR). try it yourself and see that it works.

Chapter 14 Mood LiGhtinG

593

from grove_lcd_rgb import GroveLcdRgb

Finally, we import the class and index constants from the Moods class

as follows:

from moods import Moods, RED, GREEN, BLUE, MOOD

Those are the major differences in the Python code. Everything else is

similar to the Arduino version. Listing 14-9 shows the complete code for

the class with documentation removed for brevity. Take a few moments to

read through the code so that you understand all of the parts of the code.

As you will see, it is not nearly as complicated as the Arduino class, thanks

to the helpful class library and utility class from Adafruit.

Listing 14-9. MoodLamp Class (Python)

import time

from grovepi import (pinMode, analogRead, chainableRgbLed_init,

 storeColor, chainableRgbLed_pattern)

from TMP102py.tmp102 import TMP102

from grove_lcd_rgb import GroveLcdRgb

from moods import Moods, RED, GREEN, BLUE, MOOD

Default value read from light sensor to initiate a mood

detection.

LIGHT_TRIGGER_LEVEL = 300

LIGHT_SENSOR = 0

RGB_LED = 7

NUM_LEDS = 1

MINIMUM_TEMPERATURE = 72 # Degrees Fahrenheit

class MoodLamp:

 """Mood Lamp Class"""

 moods = Moods()

Chapter 14 Mood LiGhtinG

594

 lcd = GroveLcdRgb() # Grove LCD

 temperature_sensor = TMP102() # Qwiic TMP102

 prev_mood = ()

 def begin(self):

 """Begin"""

 # Setup light sensor

 pinMode(LIGHT_SENSOR, "INPUT")

 # Setup the temperature sensor

 self.temperature_sensor.setUnits('F')

 # Set background color

 self.lcd.clear()

 self.lcd.set_rgb(127, 127, 127)

 # Setup the RGB LED

 chainableRgbLed_init(RGB_LED, NUM_LEDS)

 # Set the led to default color starting from off

 self.prev_mood = (0, 0, 0, "")

 self.clear_mood()

 time.sleep(1)

 def detect_mood(self):

 """Detect Mood"""

 if analogRead(LIGHT_SENSOR) <= LIGHT_TRIGGER_LEVEL:

 time.sleep(0.015)

 temperature = self.read_temperature()

 # Do not proceed if temperature is too low

 if temperature < MINIMUM_TEMPERATURE:

 print("ERROR: temperature too low.")

 return False

Chapter 14 Mood LiGhtinG

595

 print("Temperature read: {}".format(temperature))

 mood_value = self.moods.get_mood(temperature)

 print("Mood = {}".format(mood_value[MOOD]))

 self.set_mood(mood_value)

 self.prev_mood = mood_value

 return True

 return False

 def reset(self):

 self.lcd.clear()

 self.lcd.set_rgb(127, 127, 127)

 self.lcd.set_cursor(0, 0)

 self.lcd.print("Mood Detector")

 self.lcd.set_cursor(0, 1) # column 1, row 2

 self.lcd.print("Cover sensors")

 def clear_mood(self):

 """Clear Mood"""

 self.reset()

 # Return to default colors

 mood_value = self.moods.get_default_mood()

 self.set_mood(mood_value, False)

 self.prev_mood = mood_value

 def off(self):

 self.lcd.clear()

 self.lcd.set_rgb(0, 0, 0)

 self.set_mood((0, 0, 0, ""), False)

 def read_temperature(self):

 """Read Temperature"""

 temperature = 0

Chapter 14 Mood LiGhtinG

596

 # Turn sensor on to start temperature measurement.

 self.temperature_sensor.wakeup()

 time.sleep(0.500)

 # read temperature data

 temperature = int(self.temperature_sensor.

readTemperature())

 # Place sensor in sleep mode to save power.

 self.temperature_sensor.sleep()

 return temperature

 def set_mood(self, mood_value, show_message=True):

 """Set Mood"""

 red = 0

 green = 0

 blue = 0

 red_increment = 0

 green_increment = 0

 blue_increment = 0

 # Display mood on LCD

 if show_message:

 self.lcd.clear()

 self.lcd.set_rgb(127, 127, 127)

 self.lcd.set_cursor(0, 0)

 self.lcd.print("You are feeling")

 self.lcd.set_cursor(0, 1)

 self.lcd.print(mood_value[MOOD])

 # Prepare starting position and increment values for

R,G,B

 red = self.prev_mood[RED]

 green = self.prev_mood[GREEN]

 blue = self.prev_mood[BLUE]

Chapter 14 Mood LiGhtinG

597

 if red < mood_value[RED]:

 red_increment = 1

 if red > mood_value[RED]:

 red_increment = -1

 if green < mood_value[GREEN]:

 green_increment = 1

 if green > mood_value[GREEN]:

 green_increment = -1

 if blue < mood_value[BLUE]:

 blue_increment = 1

 if blue > mood_value[BLUE]:

 blue_increment = -1

 # If the colors are the same, just reset the display

 if (red == mood_value[RED]) and (green == mood_

value[GREEN])

 and (blue == mood_value[BLUE]):

 storeColor(red, green, blue)

 chainableRgbLed_pattern(RGB_LED, 0, 0)

 time.sleep(0.010)

 return

 # Implement a smooth transition to the next values

 while ((red != mood_value[RED]) or (green != mood_

value[GREEN]) or

 (blue != mood_value[BLUE])):

 # Check for incement stops

 if red == mood_value[RED]:

 red_increment = 0

 if green == mood_value[GREEN]:

 green_increment = 0

 if blue == mood_value[BLUE]:

 blue_increment = 0

Chapter 14 Mood LiGhtinG

598

 red = red + red_increment

 green = green + green_increment

 blue = blue + blue_increment

 storeColor(red, green, blue)

 chainableRgbLed_pattern(RGB_LED, 0, 0)

 time.sleep(0.001)

Now we can write our main script.

Main Script (Python)

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file mood_detector.py. There is nothing new in this code as

it follows the same flow as the Arduino example. Specifically, we need only

one instance of our new mood lamp class, and we call the detect_mood()

to detect a new mood and display it on the RGB LED and LCD and then

clear_mood() to return the RGB LED to the default color.

Once again, making a class to handle all of the hardware makes the

main script far less complicated. Listing 14-10 shows the complete code for

the main script for this project. You can read through it to see how all of the

code works.

Listing 14-10. Main Script (Python)

Import libraries

import sys

import time

from mood_lamp import MoodLamp

Constants

MOOD_TIMEOUT = 10

Global variables

mood_lamp = MoodLamp()

Chapter 14 Mood LiGhtinG

599

#

main()

#

Main script to respond to the user when she covers the

temperature and light sensors with her fingers.

#

def main():

 """Main"""

 print("Welcome to the mood detector!")

 mood_lamp.begin()

 print("Mood detector is ready.")

 print("Place fingers over the light and temperature

sensor.")

 print("Reading takes about 15 seconds.")

 while True:

 if mood_lamp.detect_mood():

 time.sleep(MOOD_TIMEOUT)

 mood_lamp.clear_mood()

 time.sleep(2)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 mood_lamp.off()

 print("\nbye!\n")

sys.exit(0)

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

Chapter 14 Mood LiGhtinG

600

 Execute the Project
Now that we’ve spent many pages exploring the Grove modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

messages written to the serial monitor (Arduino) or the terminal

(Raspberry Pi). You will also see a welcome message appear on the

LCD. When you place a finger on each of the light and temperature

sensors, you will see the mood detection results, and the RGB LED will

change colors and stay that color for a period of time. Figure 14-11 shows

an example of the default screen on the LCD. Notice the instructions are

rather terse as there isn’t much room to print characters.

Figure 14-12 shows an example of what you should see on the LCD

when a mood detection/presentation is in progress.

Executing the code depends on which platform you’re using. Let’s look

at the Arduino first.

Figure 14-11. Executing the mood detector project

Figure 14-12. Detecting a mood with the mood detector project

Chapter 14 Mood LiGhtinG

601

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading…

message, you can open the serial monitor. You should see the output begin

momentarily that is the same as that on the LCD. Go ahead, and try it out!

You should see values similar to the following:

Welcome to the mood detector!

Mood detector is ready.

Place fingers over the light and temperature sensor.

Reading takes about 15 seconds.

Temperature read: 81

Mood = Calm

Temperature read: 87

Mood = Happy

...

If something isn’t working, check your connections or refer to

Chapter 13 for troubleshooting tips.

Chapter 14 Mood LiGhtinG

602

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your modules and powering on the

Raspberry Pi. Recall the code will run until you stop it with CTRL+C on the

keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./mood_detector.py from the same folder where the file was

saved as shown in the following. You should get results similar to the

following:

$ python3 ./mood_detector.py

Welcome to the mood detector!

Mood detector is ready.

Place fingers over the light and temperature sensor.

Reading takes about 15 seconds.

Temperature read: 83

Mood = Happy

Temperature read: 86

Mood = Romantic

...

If everything worked as executed, congratulations! You’ve just built

your second Grove project. If something isn’t working, check your

connections or refer to Chapter 13 for troubleshooting tips.

Chapter 14 Mood LiGhtinG

603

 Going Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

• Mood portal: You can display the values of the last

moods detected on a web page to allow you to see a

progression of your mood from anywhere in the world.

If you also add the date and time, you can see how your

typical day or week goes.

• Alternative hardware: Implement the hardware used in

the Python version in Arduino.

• Sensor power management: Add a relay to turn the

power on and off to the light and temperature sensors

to extend their life.

• Bigger, better: One of the ways you can enhance this

project is to find a small white paper bag or opaque

glass cylinder or dome to place over the RGB LED. Not

only will this help diffuse the light, but it will also make

it seem to glow. You can also add more RGB LEDs to

make a larger, brighter lamp.

 Summary
In this chapter, we got more hands-on experience making projects with

Grove analog and digital modules as well as several I2C devices and even

a Qwiic module thrown in for good measure. We used these modules to

create a mood lamp that detects your mood when you place fingers on the

light and temperature sensors.

Chapter 14 Mood LiGhtinG

604

Along the way, we learned more about how to work with Grove

modules including how to write our own classes for managing multiple

modules and sensors. We also saw how to use alternative software libraries

in our Python project. Finally, we saw some potential to make this project

better as well as some ideas for how to adapt the project for practical uses.

In the next chapter, we will see another project that demonstrates how

to use more Grove modules to create a weather application to measure

air temperature, humidity, and air quality – just the thing for the pollen

season.

Chapter 14 Mood LiGhtinG

605© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_15

CHAPTER 15

Monitoring Your
Environment
One of the most common examples of IoT projects is a weather project.

Given the current health crisis, let’s look a little closer at our indoor

environment. There are several products you can buy to monitor

indoor air quality, and for those with severe allergies and similar health

conditions (some can be life threatening), an indoor air monitor may be a

requirement to treat their condition.

In this chapter, we will see how to create a simple indoor environment

monitor that detects air quality (the presence of harmful gases), dust

concentration, barometric pressure, and temperature displaying the data

on a small OLED. We’ll see more analog and digital modules as well as the

use of multiple I2C Grove modules.

Like the last chapter, we will see how to implement this project on the

Arduino and Raspberry Pi but with an interesting challenge for the Python

version. Let’s get started.

 Project Overview
The project for this chapter is designed to demonstrate how to use analog,

digital, and multiple I2C devices on the same Grove host adapter to build

an indoor environment monitor. It uses several sensors to sample the air for

gases and dust as well as sampling the temperature and barometric pressure.

https://doi.org/10.1007/978-1-4842-7234-3_15#DOI

606

Caution The project for this chapter should not be used for treating
life-threatening health disorders. It is meant to be a demonstration
of what is possible and should not be relied upon for critical health
choices.

We will use a simple loop to sample the sensors every minute. For most

uses, that is actually too frequent as indoor air quality may not change

quickly. If you choose to install this project for long-term use, you may

want to experiment with longer sampling times especially if you plan to log

the data.

Note The Arduino version of this project is limited to Arduino AVR
boards such as the Uno because one of the software libraries uses
AVR-specific code. The code for this project may not work for other
Arduino boards.

 What Will We Learn?
By implementing this project, we will get more practice in using analog

and digital Grove modules and how to connect Grove modules to the

various protocol connectors on the host adapter. We will also see how

to use multiple I2C sensors in the same project. Rather than a typical

educational project, this project is fun to use as well as suited for learning

all of the nuances of building Grove projects that use a mixture of analog,

digital, and I2C modules.

The programming tasks will reveal how to read values from the sensors

using a variety of methods and libraries to display the data on a small

OLED.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

607

 Hardware Required
The hardware needed for this project is listed in Table 15-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors. We will use the Grove OLED 0.96 and Buzzer along

with Grove I2C High Accuracy Temperature, Temperature and Barometer,

Air Quality, and Dust sensors. While this project doesn’t include any Qwiic

components, three of these sensors use I2C.

Table 15-1. Hardware Needed for the Environment Monitor Project

Component URL Qty Cost

Grove OLED 0.96 v1.3 seeedstudio.com/Grove-

OLED-Display-0-96.html

1 $16.40

Grove Buzzer seeedstudio.com/Grove-

Buzzer.html

1 $2.10

Grove I2C High

Accuracy Temperature

Sensor (MCP9808)

seeedstudio.com/Grove-I2C-

High-Accuracy-Temperature-

Sensor-MCP9808.html

1 $5.20

Grove Temperature

and Barometer Sensor

(BMP280)

seeedstudio.com/Grove-

Barometer-Sensor-BMP280.

html

1 $9.80

Grove Air Quality

Sensor

www.seeedstudio.com/Grove-

Air-Quality-Sensor-v1-3-

Arduino-Compatible.html

1 $10.90

Grove Dust Sensor www.seeedstudio.com/Grove-

Dust-Sensor-PPD42NS.html

1 $12.70

(continued)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html

608

Note At print, the grove Dust Sensor is on back order from Seeed
Studio due to high demand during the pandemic. You may be able to
find it from another vendor or an online auction site.

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter. If you implement the

Python version, be sure to note the changes in the libraries used.

Table 15-1. (continued)

Component URL Qty Cost

grove cables(any length

can be used)

Included with each preceding

module

6

Arduino MKR 1010

WiFi

www.sparkfun.com/

products/15251

1 $35.95

Raspberry Pi 3B or

later

www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/

category/176

Grove Base Shield

V2.0 for Arduino

www.seeedstudio.com/Base-

Shield-V2.html

1 $4.45

GrovePi+ www.sparkfun.com/

products/15945

1 $5.95

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

http://www.sparkfun.com/products/15251
http://www.sparkfun.com/products/15251
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.adafruit.com/category/176
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

609

 Grove OLED 0.96

Since we have more data than can fit on two short lines, we must change

our display of choice to use a small OLED module. The Grove OLED 0.96

is a monochrome 128×64 dot matrix display with high brightness and

contrast ratio and low power consumption. You can address all of the

pixels (dots) on the screen too. Note that there are several versions of this

module. We will be using the version that uses the SSD1308 chip. If you

use a different version, you may need to use a different software library.

Figure 15-1 shows the Grove Light Sensor.

 Grove Buzzer

A new option for this project is the use of sound so that we can play a tone

as a warning “beep.”1 We will keep it simple and use the Grove Buzzer

module, which is a simple Piezo buzzer that is normally used to make

beep sounds by turning it on and off with a digital connection. Figure 15-2

shows the Grove Buzzer module.

1 As you will hear, it is reminiscent of a typical, annoying smoke alarm low battery
signal.

Figure 15-1. Grove Light Sensor (courtesy of seeedstudio.com)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

610

 Grove I2C High Accuracy Temperature Sensor
(MCP9808)

The Grove I2C High Accuracy Temperature Sensor (or simply MCP9808)

is a high-accuracy digital module based on the MCP9808 microchip. It

features high accuracy measuring temperatures ranging from –40 to 125

degrees Celsius. While there are other temperature sensors available for

use, this module is not only reliable and accurate, but it also uses I2C for

easy integration into our environment monitor. Figure 15-3 shows the

Grove I2C High Accuracy Temperature Sensor (MCP9808).

Figure 15-2. Grove Buzzer (courtesy of seeedstudio.com)

Figure 15-3. Grove I2C High Accuracy Temperature Sensor (courtesy
of seeedstudio.com)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

611

If you recall from our Qwiic modules, most permit you to alter the I2C

address and other features using jumpers. This module is similar, and you

can change the I2C address by soldering the jumpers on the back of the

module. Figure 15-4 shows what the jumpers look like. Notice the labels

for each.

You can change the I2C address by soldering across the jumpers as

shown in Table 15-2.

Figure 15-4. Grove I2C jumpers – temperature sensor (courtesy of
seeedstudio.com)

Table 15-2. I2C Address Map for the Grove I2C High Accuracy

Temperature Sensor

A0 A1 A2 Address

0 0 0 0x18

0 0 1 0x19

0 1 0 0x1A

0 1 1 0x1B

1 0 0 0x1C

1 0 1 0x1D

1 1 0 0x1e

1 1 1 0x1F

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

612

You may need to change the address if you add another I2C module

with the same address or if you want to use multiple Grove I2C High

Accuracy Temperature Sensor modules.

 Grove Temperature and Barometer Sensor (BMP280)

Since we are capturing temperature, we may also want to measure the

barometric pressure. The Grove Temperature and Barometer Sensor (or

simply BMP280) is an excellent choice for that data. While it can also

measure temperature and can be used to determine altitude, we will use

it solely for the barometric pressure. If you’d like to see how to do that,

visit https://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.

html for more information. Figure 15-5 shows the Grove Temperature and

Barometer Sensor.

Like the High Accuracy Temperature Sensor, you can also change the

I2C address for this module using the jumpers on the back as shown in

Figure 15-6.

Figure 15-5. Grove Temperature and Barometer Sensor (courtesy of
seeedstudio.com)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

https://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html
https://www.seeedstudio.com/Grove-Barometer-Sensor-BMP280.html

613

Here, our choices are a bit narrower. We can use the jumpers to change

the address from 0x76 (default) to 0x77.

 Grove Air Quality Sensor

The Grove Air Quality Sensor is an analog sensor designed for indoor air

quality testing and measures certain gases including carbon monoxide,

alcohol, acetone, thinner, formaldehyde, and similar slightly toxic gases.

While it does not differentiate among the gases, it provides a general value

that you can use to determine thresholds for “safe” air quality. In fact, we

will write the code to determine ranges for good, fair, and poor air quality.

Figure 15-7 shows the Grove Air Quality Sensor.

Figure 15-6. Grove I2C jumpers – barometric pressure sensor
(courtesy of seeedstudio.com)

Figure 15-7. Grove Air Quality Sensor (courtesy of seeedstudio.com)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

614

 Grove Dust Sensor

We will also be measuring the dust or particles in the air. The Grove Dust

Sensor is a digital module and an excellent choice because it provides a

percentage of particles found in the air. We can therefore write our code

to test for a threshold of particulates in the air to determine dusty or even

smoky conditions. Figure 15-8 shows the Grove Dust Sensor.

Tip See Chapter 12 for more details on the grove host adapters.

 Connect the Grove Modules
Recall from Chapter 12 we can use a single Grove cable to connect each

Grove module separately to a specific connector on the host adapter

on our host board. The host adapter for the Raspberry Pi has a different

layout but has the same connectors we will use. Table 15-3 includes the

details of each connection on the host adapter to help you make the

Figure 15-8. Grove Dust Sensor (courtesy of seeedstudio.com)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

615

right connections. Simply use the table to connect a Grove cable from

the module to the Grove connector on the host adapter as marked in the

table.

Figure 15-9 shows an example of how you should connect your modules

for this project. Notice the figure shows the Arduino host adapter, but the

connections are labeled the same for the GrovePi on the Raspberry Pi.

Table 15-3. Grove Connections

Module Protocol Grove Connector on the Host
Adapter

oLeD 0.96 I2C I2C1

Buzzer Digital D6

high Accuracy Temperature I2C I2C2

Barometer I2C I2C3

Air Quality Analog A0

Dust Digital D7

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

616

 Using an Enclosure
Since we have so many components and a bunch of cables connecting

them all together, using the project can take a little bit of space. With all

of those modules dangling by their cables tethered only to the Grove host

adapter, you run the risk of accidentally unplugging a module, or, worse,

the electronics on the module may come into contact with conductive

material. You can mitigate this somewhat by using double-sided tape to

tape them to your desk, but a better solution is to create a mounting plate.

We could create a full enclosure, but as you will see, leaving the modules

exposed gives the project a genuine cool factor.

Figure 15-9. Environment monitor project Grove connections

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

617

If you have your own or access to a 3D printer, you can print a

mounting plate. The source code for this chapter includes the 3D printing

files you need to create a simple enclosure to mount the modules arranged

in a manner that enables experimentation. Figure 15-10 shows the

mounting plate.

If you’re thinking this resembles a simple plank of wood (which would

work equally as well), there are feet on the bottom of the plate and places

for the nuts on the bottom as well. In fact, you will need to print this plate

upside down.

There is also a set of spacers you will need to print as shown in

Figure 15-11.

Figure 15-10. 3D mounting plate design for the environment
monitor project

Figure 15-11. 3D spacer design for the environment monitor project

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

618

Notice from left to right there are 11 short M2 spacers for the MCP9808,

BMP280, air quality, and buzzer modules. There are three long M2 spacers

for the OLED module. Finally, there is one M4 spacer for the dust sensor.

To mount the modules, you will need the following hardware:

• (14) M2 nuts

• (1) M4 nut

• (11) M2×8mm bolts

• (3) M2×19mm bolts

• (1) M4×5mm bolt

To assemble the enclosure, begin by mounting the dust sensor on the

upper left, the buzzer on the center bottom, the OLED on the lower left, and

the air quality, BMP280, and MCP9808 modules on the left (any order is fine).

Figure 15-12 shows the completed project with the cables routed to the top.

Figure 15-12. Mounting the modules to the 3D printed plate

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

619

Note The oLeD will display text rotated 180 degrees from the
Arduino version. If you prefer the orientation used in the Arduino
version, you may want to open the 3D printer file and rotate the oLeD
mount accordingly. or simply turn the unit around on your desk!

Before you celebrate by plugging all of your modules into your host

adapter, take a few moments to carefully label each of the cables using a

piece of masking or painter’s tape. Write the connector label on the tape as

shown in Figure 15-13. You don’t have to worry about the I2C connections

because they can be plugged into any of the I2C connectors.

If you have experience creating 3D models for printing, feel free to

experiment with creating your own enclosure – perhaps one that also

includes a battery and a small form factor host board. If you decide to

Figure 15-13. Label your cables for easier connections to the host
adapter

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

620

build a complete enclosure, make sure to place holes or a grid opening

over the sensors for airflow. The dust and air quality sensors are the

modules that need openings most.

Now that we know more about the hardware for this chapter, let’s write

the code!

 Write the Code
The code for this project involves following the usual pattern. For this

project, that means using analog and digital modules as well as multiple

I2C devices. The air quality sensor is an analog sensor, the buzzer and dust

sensors are digital modules, and the MCP9808, BMP280, and OLED are I2C

devices.

As you will see, the code isn’t overly complicated for the Arduino

version, but we will have some more work to do for the Python version.

This is because some of the Grove modules used are not directly supported

by the GrovePi library and one requires doing things a little unorthodox.

Never fear, though. The code we will see is fully functional albeit not

“standard” Python.

Like the previous projects, we will use a class to wrap our functionality.

In this case, we will put reading of all of the sensors in the new class and

control the OLED and buzzer from the main sketch.

Let’s walk through how to prepare our computers to use the

components and write the code. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch and class you will write

to read values from the sensors and display the values on the OLED. But

first, there are a couple of libraries we must install on our PCs.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

621

 Install Software Libraries

We will need to install the Arduino libraries for the OLED, MCP9808,

BMP280, and air quality modules separately. As you will see, some of these

libraries are not from Seeed Studio directly, but they will work with our

project.

Open the Library Manager from the Arduino IDE menu (Sketch ➤

Include Library ➤ Library Manager…). Then search for U8G2 and install

the latest version of the U8G2 library as shown in Figure 15-14. This library

works with a host of different graphics chips including the one for our

Grove 0.96 OLED.

Similarly, we need to install the library for the Grove High Accuracy

Temperature Sensor (MCP9808). The library for this module is not part

of the Arduino Library Manager. Rather, we must download the library

from GitHub (https://github.com/Seeed-Studio/Grove_Temperature_

sensor_MCP9808) and install it manually. This is an excellent opportunity

Figure 15-14. Installing the U8G2 OLED library (Arduino IDE)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

https://github.com/Seeed-Studio/Grove_Temperature_sensor_MCP9808
https://github.com/Seeed-Studio/Grove_Temperature_sensor_MCP9808

622

to learn a different method to install a library. Rather than download it,

unzip, and then copy the module to the Arduino libraries folder, we will

use the Arduino IDE to install it from the .zip file. First, download the .zip

file from GitHub by clicking the Code button and then Download ZIP as

shown in Figure 15-15.

Once the file has downloaded, go back to your Arduino IDE and click

Sketch ➤ Add .ZIP Library… as shown in Figure 15-16. This will install the

library from the zipped file. Cool, eh?

Figure 15-15. Downloading the Grove MCP9808 library
(GitHub)

Figure 15-16. Installing a library from a .zip file

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

623

We also need to install the library for the BMP280 sensor. Open the

Library Manager and search for Seeed BMP280 and then install the latest

version as shown in Figure 15-17.

Finally, we need to install the library for the air quality sensor. Open

the Library Manager and search for AirQuality and then install the latest

version as shown in Figure 15-18.

Figure 15-17. Installing the BMP280 library (Arduino IDE)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

624

Now that we have the software libraries installed, we can begin writing

our sketch. Since this is not our first Arduino sketch, we will discuss

the code at a high level and skip the line-by-line details focusing on the

mechanics of how the code works. You can study the code at your leisure

to ensure you understand the sketch in more detail.

 Write the Sketch

Recall we are going to use a class to encapsulate the sensors. We will

write the class header first and then the main sketch and finally complete

the code for the class. This is typically how programmers develop code

with class modules (but not always). By creating the header first, we can

understand how to use the class making writing the main sketch easier.

The sensor class will be named AirMonitor.

Recall there is no way (currently) to create and add new files to a sketch

(but you can add existing files by clicking Sketch ➤ Add File…). So we will

once again create the main sketch and add the code header and source

files manually.

Figure 15-18. Installing the air quality library (Arduino IDE)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

625

Open a new sketch and name it environment.ino or whatever you’d

like to use. Save the file and then close the project in the Arduino IDE.

To create the class files, navigate with your File Explorer (Finder) to

the folder where you stored your main sketch (environment.ino). Then,

use your File Explorer or a text file editor to create two new files named

AirMonitor.h and AirMonitor.cpp. Or you can use a terminal to navigate

to the folder and issue these commands to create the empty files:

environment % touch AirMonitor.h

environment % touch AirMonitor.cpp

Now, let’s see the code for each file starting with the header file.

Class Header File

Click the tab named AirMonitor.h to open the blank file. Here, we will add

the header or blueprint for the class. The module provides a mechanism to

retrieve values from the sensors.

Aside from the sensor setup, which we will accomplish in the

constructor, we will adopt a common set of functions that most libraries

that manage multiple sensors use. We will use a function to read the data

from all of the sensors and separate get functions to retrieve the values

from each sensor (or data type).

For example, we first call readData() and then getTemperature(),

getPressure(), getDust(), and getAirQuality(). An interesting side

effect is if you don’t call the read function, subsequent calls to the get

functions return the same values. Thus, the read plus get functions may

help in situations where some processing must be done after the read but

before the get calls. This allows you to know precisely when the data was

sampled, but delay consuming the data. Another possible solution is to

provide a single function that reads the data from all sensors and returns

the data in a structure. But we will keep it simple and use the read and get

functions.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

626

The readData() function returns a Boolean where true means the read

was successful. The get functions all return a float for the data item except

the getAirQuality(), which returns an enum. Recall the Grove Air Quality

Sensor gives us a general value to examine rather than a specific value.

According to the Seeed Studio documentation, we can set thresholds for

three values of poor, fair, and good air quality. We also need to include two

error conditions: one where the air quality detected is above the maximum

threshold and another for a read error, which results in a value that is below

the minimum threshold. The following shows the enum values we will use:

enum air_quality { ERROR_POOR, POOR, FAIR, GOOD, NO_READ };

Aside from those functions, we will create some private variables for

storing the data. However, for the dust sensor, we need to do something

a bit different. Recall the dust sensor has a read time of 30 seconds. So,

while we can call the readData() function whenever we want, we must

keep track of when the last successful read of the dust sensor has occurred.

For example, if we call readData() every 10 seconds, only the first and

third calls will refresh the dust sensor because it can only be read every 30

seconds. Thus, the dust value may be stale if the readData() function is

called more frequently than every 30 seconds. This is a good example of

how sensor refresh or minimal read times can affect your sampling rate.

CHOOSING A SAMPLE RATE

one of the things that you must consider when writing IoT solutions is how

often you need to read data called the sample rate (or sampling rate). There

are several factors you must consider, all of which should help you determine

how often you should read data.

First, you must consider how often you can get data from the sensors. Some

sensors may require as much as several minutes to refresh values. Most of

those either let you read stale data (the last value read) or emit an error if you

read the data too frequently.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

627

Aside from the sensors, you also need to consider how often the data changes

or how often you need to check/retrieve the data. The application will play a

big factor in determining an optimum rate. For example, if you are sampling a

sensor for data that doesn’t change often, there is no point in reading it more

frequently.

Another factor to consider concerns storing the data. If you are planning to

store the data, reading the data every second could generate more data than

your storage mechanism can handle.

Finally, the criticality of the data may also be a factor. More specifically, if the

data is used to make critical decisions for industrial, mechanical, or health

decisions, the sample rate may need to be high (fast). For example, it would be

far too late to detect oncoming vehicles every 30 seconds.

When choosing a sample rate, you must consider all of these elements: refresh

rates of your sensors, how often the data will change, how much data you

want to store, and the criticality of the data.

Since the header code is not difficult to read, let’s look at the completed

code for the header file. Listing 15-1 shows the file.

Listing 15-1. AirMonitor Header File

#include <Arduino.h>

#include "Seeed_BMP280.h"

#include "Seeed_MCP9808.h"

// Constants

#define DUST_PIN 8

#define DUST_SAMPLE_RATE 30000

class AirMonitor {

public:

 enum air_quality { ERROR_POOR, POOR, FAIR, GOOD, NO_READ };

 AirMonitor();

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

628

 bool readData();

 float getTemperature() { return temperature; }

 float getPressure() { return pressure; }

 float getDust() { return dustConcentration; }

 air_quality getAirQuality() { return airQuality; }

private:

 // Environment variables

 float temperature {0.0};

 float pressure {0.0};

 air_quality airQuality {GOOD};

 float dustConcentration {0.0};

 bool initOk {true};

 // Variables for dust sensor

 unsigned long starttime;

 BMP280 *bmp280;

 MCP9808 *tempSensor;

};

OK, let’s return to the main sketch to see how we can use this class.

Main Sketch

Now click the environment.ino tab to return to the main sketch. Since

we are placing all of the sensor work in the AirMonitor class, all we need

to do here is instantiate a new class instance (stored in a variable named

airQuality), set up the serial class, initialize the OLED and buzzer, and

then print the greeting. All of these are done in the setup() function.

The loop() function simply calls the readData() method, and if

it returns true, we get the data and display it on the OLED. The only

extra work we need to do is determine what the air monitor is returning

and print the correct value and examine the data to ensure it is below

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

629

established levels (to determine air quality). If the air quality is low, we

display a message and play an alarm sequence on the buzzer.

We will also use a helper function to sound a tone on the buzzer. This

isn’t absolutely necessary, but it does help reduce the amount of code, and

this concept will help you understand the way we use the buzzer in the

next chapter.

While the main sketch has more code than some of the other example

projects, it is still fairly simple to write. The added code are the calls to

display data on the OLED. Listing 15-2 shows the code for the main sketch.

Take a few moments and read through the code. Notice the sampling rate

defined in the SAMPLING_RATE constant. This is set to 60 seconds, but

could be set to a lower rate by increasing the value. Since this project is an

air quality monitor, a sample rate of once every 5–10 minutes may be fine,

but 60 seconds is an acceptable rate for an experimental project.

Listing 15-2. Main Sketch

#include <Arduino.h>

#include <U8x8lib.h>

#include <Wire.h>

#include "AirMonitor.h"

// Constants

#define SAMPLING_RATE 60000 // 60 seconds

#define BUZZER_PIN 6

#define WARNING_BEEPS 5

// Constants for environmental quality

#define MAX_TEMP 30.0

#define MAX_DUST 40.0

// Global variables

U8X8_SSD1306_128X64_NONAME_HW_I2C *oled;

AirMonitor *airQuality;

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

630

void beep(int duration=150) {

 digitalWrite(BUZZER_PIN, HIGH);

 delay(duration);

 digitalWrite(BUZZER_PIN, LOW);

}

void setup() {

 // Setup buzzer

 pinMode(BUZZER_PIN, OUTPUT);

 Serial.begin(115200);

 while (!Serial);

 // Setup OLED

 oled = new U8X8_SSD1306_128X64_NONAME_HW_I2C(U8X8_PIN_NONE);

 oled->begin();

 oled->setFont(u8x8_font_chroma48medium8_r);

 Serial.println("Welcome to the Environment Monitor!");

 Serial.print("Starting....");

 oled->drawString(0, 1, "Environment");

 oled->drawString(0, 2, "Monitor");

 oled->drawString(0, 4, "Starting...");

 airQuality = new AirMonitor();

 delay(3000);

 Serial.println("done.");

 oled->drawString(11, 4, "done.");

 beep();

 delay(3000);

 oled->clear();

}

void loop(void) {

 if (airQuality->readData()) {

 // Retrieve the data

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

631

 float tempC = airQuality->getTemperature();

 float pressure = airQuality->getPressure();

 float dust = airQuality->getDust();

 AirMonitor::air_quality air = airQuality->getAirQuality();

 oled->drawString(0, 0, "ENVIRONMENT DATA");

 oled->drawString(0, 3, "Temp: ");

 oled->drawString(5, 3, String(tempC, 2).c_str());

 oled->drawString(11, 3, "C ");

 oled->drawString(0, 4, "Pres: ");

 oled->drawString(5, 4, String(pressure, 1).c_str());

 oled->drawString(14, 4, "Pa");

 oled->drawString(0, 5, "Dust: ");

 if (dust == 0.0) {

 oled->drawString(5, 5, "-- ");

 } else {

 oled->drawString(5, 5, String(dust, 2).c_str());

 oled->drawString(10, 5, "% ");

 }

 oled->drawString(0, 6, "AirQ: ");

 switch (air) {

 case AirMonitor::air_quality::ERROR_POOR:

 case AirMonitor::air_quality::POOR:

 oled->drawString(5, 6, "POOR");

 break;

 case AirMonitor::air_quality::FAIR:

 oled->drawString(5, 6, "FAIR");

 break;

 case AirMonitor::air_quality::GOOD:

 oled->drawString(5, 6, "GOOD");

 break;

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

632

 default:

 oled->drawString(5, 6, "-- ");

 }

 // Check for environmental quality

 if ((dust > MAX_DUST) or (tempC > MAX_TEMP) or

 (air == AirMonitor::air_quality::POOR) or

 (air == AirMonitor::air_quality::ERROR_POOR)) {

 for (int x = 0; x < WARNING_BEEPS; x++) {

 oled->drawString(3, 7, "ENV NOT OK");

 beep(250);

 delay(250);

 oled->drawString(3, 7, " ");

 delay(250);

 }

 }

 } else {

 oled->clear();

 oled->drawString(0, 2, "ERROR! CANNOT");

 oled->drawString(0, 3, "READ DATA");

 }

 delay(SAMPLING_RATE);

}

Now we can write the final portion of our project – the code for the

class.

Class Code File

Click the tab named AirMonitor.cpp to open the blank file. Here, we will

add the code for the class. There are only two public functions to write: the

constructor and readData(). Note that we defined the get functions in the

class header file.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

633

The code for both of the public functions is not difficult, and we

leave the explanation of that code as an exercise. Likewise, using the

software libraries to read the temperature and barometric pressure is not

complicated.

The code for the dust sensor is a bit more complex because we cannot

read the data faster than every 30 seconds. As you will see, the code to do

this simply records a start time and a duration calculation. If 30 seconds or

more has expired since the last read, we can read the sensor. Even so, the

code isn’t overly complicated.

However, the code for the air quality sensor requires some explanation.

The air quality sensor software library uses an interrupt mechanism that

is only available for the AVR-based Arduino boards. This is because it is a

part of the hardware library itself and thus is hardware specific.

Fortunately, we do not need to learn about interrupts and AVR coding

because Seeed Studio has provided the function we need. In short, this

function is fired (called) at a specific time based on an internal hardware

timer. When called, the function is designed to wait a certain period

of time (approximately 2 seconds) before reading the value. Thus, this

exposes a refresh cycle of this sensor of every 2 seconds. That isn’t a

problem for this project, but a project where you are using the sensor for

industrial or health applications may need to consider this refresh rate.

The following shows the interrupt function:

// Interrupt timer for air quality sensor taken from

// https://wiki.seeedstudio.com/Grove-Air_Quality_Sensor_v1.3/

ISR(TIMER2_OVF_vect)

{

 // Set 2 seconds as a detected duty

 if(airqualitysensor.counter == 122)

 {

 airqualitysensor.last_vol=airqualitysensor.first_vol;

 airqualitysensor.first_vol=analogRead(A0);

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

634

 airqualitysensor.counter=0;

 airqualitysensor.timer_index=1;

 PORTB=PORTB^0x20;

 }

 else

 {

 airqualitysensor.counter++;

 }

}

Aside from the interrupt function we need to add, we also have to treat

the air quality sensor differently. Specifically, we cannot create a private

variable in the class like we did for the other sensors. Rather, we must

declare it as a global variable. This, along with the interrupt, makes the

code to communicate with the air quality sensor a bit odd when you read

the code.

Listing 15-3 shows the completed code for the class (documentation

omitted for brevity). Take some time to read through the code to see the

features we’ve discussed.

Listing 15-3. AirMonitor Code File

#include "AirMonitor.h"

#include "AirQuality.h"

// Global variables

AirQuality airqualitysensor;

int current_quality =-1;

AirMonitor::AirMonitor() {

 // Setup BMP280 sensor

 bmp280 = new BMP280();

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

635

 if(!bmp280->init()){

 Serial.println("ERROR: Cannot read BMP280!");

 initOk = false;

 }

 // Setup MCP9808 sensor

 tempSensor = new MCP9808();

 if(tempSensor->init()) {

 Serial.println("ERROR: Cannot read MCP9808!");

 initOk = false;

 }

 // Setup air quality sensor

 airqualitysensor.init(A0);

}

bool AirMonitor::readData() {

 // Variables for dust sensor

 unsigned long duration;

 unsigned long sampleTime = DUST_SAMPLE_RATE;

 unsigned long lowPulse = 0;

 float ratio = 0;

 float particleConcentration {0.0};

 // Check to see if initialization is Ok.

 // Don't read data if initialization fails.

 if (!initOk) return false;

 // Read barometer

 Serial.print("Pressure: ");

 Serial.print(pressure = bmp280->getPressure());

 Serial.println("Pa");

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

636

 // Read temperature

 tempSensor->get_temp(&temperature);

 Serial.print("Temperature: ");

 Serial.println(temperature);

 duration = pulseIn(DUST_PIN, LOW);

 lowPulse = lowPulse + duration;

 if ((millis()-starttime) > sampleTime) {

 ratio = lowPulse/(sampleTime*10.0);

 particleConcentration = 1.1 * pow(ratio, 3) - 3.8 *

pow(ratio, 2) +

 520 * ratio + 0.62; // using spec sheet curve

 Serial.print(lowPulse);

 Serial.print(",");

 Serial.print(ratio);

 Serial.print(",");

 Serial.println(particleConcentration);

 // Guard against spurious values

 if (particleConcentration < 100.0) {

 dustConcentration = particleConcentration;

 }

 lowPulse = 0;

 starttime = millis();

 } else {

 particleConcentration = 0.0;

 }

 Serial.print("Dust %: ");

 Serial.println(particleConcentration);

 // Read air quality sensor

 current_quality=airqualitysensor.slope();

 if (current_quality >= 0) {

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

637

 if (current_quality == 0) {

 airQuality = ERROR_POOR;

 Serial.println("High pollution! ERROR");

 } else if (current_quality == 1) {

 airQuality = POOR;

 Serial.println("High pollution!");

 } else if (current_quality == 2) {

 airQuality = FAIR;

 Serial.println("Low pollution!");

 } else if (current_quality >= 3) {

 airQuality = GOOD;

 Serial.println("Fresh air");

 }

 } else {

 airQuality = NO_READ;

 }

 return true;

}

// Interrupt timer for air quality sensor taken from

// https://wiki.seeedstudio.com/Grove-Air_Quality_Sensor_v1.3/

ISR(TIMER2_OVF_vect)

{

 // Set 2 seconds as a detected duty

 if(airqualitysensor.counter == 122)

 {

 airqualitysensor.last_vol=airqualitysensor.first_vol;

 airqualitysensor.first_vol=analogRead(A0);

 airqualitysensor.counter=0;

 airqualitysensor.timer_index=1;

 PORTB=PORTB^0x20;

 }

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

638

 else

 {

 airqualitysensor.counter++;

 }

}

As you can see, the code is long, but except for a few places not difficult

to read or learn how it works.

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. If

you encounter any errors, be sure to fix them and recompile to ensure the

sketch compiles without errors or serious warnings.

Remember you can only compile this code with AVR-based Arduino

boards. These include the Uno, Leonardo, Mega, etc. You can see a

complete list by clicking the Tools ➤ Board ➤ Arduino AVR Boards menu

item. If your chosen board is not in the list, you may not be able to compile

the code for that board.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Sketch on the

Arduino” section if you’re curious to see how the project works. While the

code will execute the same on both platforms, the values differ due to the

differences in how the sensors are read (the range of values differs).

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

create an AirMonitor class and use it in the main script. On a higher level,

the Python code follows the same design as the Arduino code, but the

libraries differ greatly. Let’s begin with installing the libraries we will need

on our Raspberry Pi.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

639

Note If you have not installed the grovepi libraries, please see
Chapter 13 for complete details and install them before you begin. If
you encounter problems, see the “grovepi/grovepi+ Troubleshooting
Tips” section in Chapter 13.

 Install Software Libraries

Aside from the GrovePi libraries, we need two more software libraries.

Specifically, we need a library for the BMP280 and MCP9808. There are

no such libraries from Seeed Studio for these sensors, but fortunately

Pimoroni (shop.pimoroni.com) has a nice BMP280 library, and Adafruit

(www.adafruit.com) has a nice MCP9808 library we can use. You can

install both with the following commands:

$ pip3 install bmp280

$ pip3 install adafruit-circuitpython-mcp9808

Once you have those libraries installed, we’re ready to write the code.

 Write the Code

The code for the Python version of this project is a bit different than the

Arduino code. We will still create the same class (AirMonitor), but the

code to read the temperature, barometer, and air quality sensors differs.

Once again, we will not dive into every line of code, but we will see

some of the more complex code and those areas that differ significantly

from the Arduino version. You can read through the code and learn more

about how it works at your leisure.

Let’s start with writing the AirMonitor class.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

http://www.adafruit.com

640

AirMonitor Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file AirMonitor.py. We will use a similar read_data()

function as the Arduino version, but we will return the data using a single

get function. In addition, we will be using different libraries to read from

the sensors. Let’s look at the ways the code differs from the Arduino

version.

Firstly, we do not have an enum in Python, but we do have an enum

class that we can use to create our own enum for the air quality sensor

values. The following shows the new class. To use the class values, we use a

dotted notation like AirQualityEnum.POOR, but otherwise it represents the

analogous values in the Arduino version:

class AirQualityEnum(enum.Enum):

 """Air Quality Enum"""

 POOR = 0

 FAIR = 1

 GOOD = 2

 ERROR = 3

Next, we use a dictionary in the class to store the sensor data and

return it with the get_data() function. The following shows the new

dictionary. Once returned to the main sketch, we simply use the key to

retrieve the sensor data. For example, data["temperature"] fetches the

temperature value:

data = {

 "temperature": 0.0,

 "pressure": 0.0,

 "dust_concentration": 0.0,

 "air_quality": AirQualityEnum.GOOD,

}

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

641

With regard to the sensors, we simply substitute a different software

library for the temperature and barometric pressure sensors. For the air

quality sensor, we use a library that is part of the GrovePi suite, which is

much easier to use than the Arduino version’s AVR interrupt.

Finally, the dust collector sensor is read via another GrovePi library,

but we will use a private (in Python, that’s a function that starts with an

underscore) function to limit reads of the dust sensor data to no sooner

than 30 seconds. The following shows the code for the new _read_dust()

function. Notice how the code returns an unknown value if the sensor is

read for the first time (e.g., at startup) and how it returns the old value until

the timeout (30 seconds) has expired:

def _read_dust(self):

 """_read_dust()"""

 # If this is the first reading...

 if not self.start_time:

 self.start_time = time.time()

 # return 0.0 or "unknown"

 return 0.0

 if (time.time() - self.start_time) < DUST_SAMPLE_RATE:

 # return last value stored

 return self.data["dust_concentration"]

 # Threshold reached, reset timer

 self.start_time = time.time()

 # Sefault update period is 30000 ms

 grovepi.dust_sensor_en(pin=DUST_PIN)

 new_val = grovepi.dust_sensor_read(pin=DUST_PIN)

 print("> LPO time = {:3d} | LPO% = {:5.2f} | "

 "pcs/0.01cf = {:6.1f}".format(*new_val))

 grovepi.dust_sensor_dis(pin=DUST_PIN)

 if new_val[2] > 100.00:

 return 0.0

 return new_val[2]

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

642

Listing 15-4 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read through the code so that

you understand all of the parts of the code. As you will see, it is not nearly

as complicated as the Arduino class, thanks to the helpful libraries from

Pimoroni, Adafruit, and GrovePi.

Listing 15-4. AirMonitor Class (Python)

import enum

import time

import board

import smbus

import adafruit_mcp9808

from bmp280 import BMP280

import grovepi

Constants

DUST_PIN = 8

DUST_SAMPLE_RATE = 30 # 30 seconds

AIR_SENSOR_PIN = 0

class AirQualityEnum(enum.Enum):

 """Air Quality Enum"""

 POOR = 0

 FAIR = 1

 GOOD = 2

 ERROR = 3

class AirMonitor:

 data = {

 "temperature": 0.0,

 "pressure": 0.0,

 "dust_concentration": 0.0,

 "air_quality": AirQualityEnum.GOOD,

 }

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

643

 mcp9808 = None

 bmp280 = None

 start_time = None

 def __init__(self):

 # Setup MCP9808 sensor

 i2c = board.I2C() # uses board.SCL and board.SDA

 self.mcp9808 = adafruit_mcp9808.MCP9808(i2c)

 # Setup the BMP280

 bus = smbus.SMBus(1)

 self.bmp280 = BMP280(i2c_dev=bus, i2c_addr=0x77)

 # Setup air quality

 grovepi.pinMode(AIR_SENSOR_PIN, "INPUT")

 def read_data(self):

 """read_data"""

 print("\n>> Reading Data <<")

 # Read temperature

 try:

 print("> Reading temperature = ", end="")

 self.data["temperature"] = self.mcp9808.temperature

 print(self.data["temperature"])

 except Exception as err:

 print("ERROR: Cannot read temperature: {}".

format(err))

 return False

 # Read pressure

 try:

 print("> Reading pressure = ", end="")

 self.data["pressure"] = self.bmp280.get_pressure()

 print(self.data["pressure"])

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

644

 except Exception as err:

 print("ERROR: Cannot read pressure: {}".format(err))

 return False

 # Read dust

 try:

 print("> Reading dust concentration")

 self.data["dust_concentration"] = self._read_dust()

 print("> Dust concentration =

{}".format(self.data["dust_concentration"]))

 except Exception as err:

 print("ERROR: Cannot read dust concentration: {}".

format(err))

 return False

 # Read air quality

 try:

 print("> Reading air quality = ", end="")

 sensor_value = grovepi.analogRead(AIR_SENSOR_PIN)

 if sensor_value > 700:

 self.data["AirQualityEnum"] = AirQualityEnum.

POOR

 elif sensor_value > 300:

 self.data["AirQualityEnum"] = AirQualityEnum.

FAIR

 else:

 self.data["AirQualityEnum"] = AirQualityEnum.

GOOD

 print(self.data["AirQualityEnum"])

 except IOError as err:

 print("ERROR: cannot read air quality: {0}".

format(err))

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

645

 self.data["AirQualityEnum"] = AirQualityEnum.ERROR

 return False

 return True

 def get_data(self):

 """get_data"""

 return self.data

 def _read_dust(self):

 """_read_dust()"""

 # If this is the first reading...

 if not self.start_time:

 self.start_time = time.time()

 # return 0.0 or "unknown"

 return 0.0

 if (time.time() - self.start_time) < DUST_SAMPLE_RATE:

 # return last value stored

 return self.data["dust_concentration"]

 # Threshold reached, reset timer

 self.start_time = time.time()

 # Sefault update period is 30000 ms

 grovepi.dust_sensor_en(pin=DUST_PIN)

 new_val = grovepi.dust_sensor_read(pin=DUST_PIN)

 print("> LPO time = {:3d} | LPO% = {:5.2f} | "

 "pcs/0.01cf = {:6.1f}".format(*new_val))

 grovepi.dust_sensor_dis(pin=DUST_PIN)

 if new_val[2] > 100.00:

 return 0.0

 return new_val[2]

Now we can write our main script.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

646

Main Script (Python)

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file environment.py. There is nothing new in this code as it

follows the same flow as the Arduino example. Specifically, we will control

the OLED and buzzer, and the flow of the code is a similar loop that reads

and displays the data.

However, we will be using a different software library for the OLED. We

will use another of the GrovePi libraries, which has different functions than

the Arduino version. For example, rather than write a string to the OLED

memory (for display) at a given row and column (X and Y), the GrovePi

uses two functions: one to position the cursor (start of string) and another

to write the string. To make the code read more like the Arduino version,

we will use a helper function as follows:

def oled_write(column, row, message):

 """oled_write"""

 oled.setTextXY(column, row)

 oled.putString(message)

And since the setup for the OLED GrovePi library differs, we will use

another helper function to isolate those lines of code as follows:

def setup_oled():

 """setup_oled"""

 oled.init() # initialize SEEED OLED display

 oled.clearDisplay() # clear the screen

 oled.setNormalDisplay() # set display to normal mode

 oled.setPageMode() # set addressing mode to Page Mode

 oled_write(0, 1, "Environment")

 oled_write(0, 2, "Monitor")

 oled_write(0, 4, "Starting...")

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

647

The beep() helper function remains from the Arduino version. Listing 15-5

shows the complete code for the main script for this project. You can read

through it to see how all of the code works.

Listing 15-5. Main Script (Python)

import sys

import time

from grovepi import pinMode, digitalWrite

import grove_128_64_oled as oled

from air_monitor import AirMonitor, AirQualityEnum

Constants

SAMPLING_RATE = 5 # 60 seconds

BUZZER_PIN = 6

WARNING_BEEPS = 5

HIGH = 1

LOW = 0

Constants for environmental quality

MAX_TEMP = 30.0

MAX_DUST = 40.0

def beep(duration=0.150):

 """beep"""

 digitalWrite(BUZZER_PIN, HIGH)

 time.sleep(duration)

 digitalWrite(BUZZER_PIN, LOW)

def oled_write(column, row, message):

 """oled_write"""

 oled.setTextXY(column, row)

 oled.putString(message)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

648

def setup_oled():

 """setup_oled"""

 oled.init() # initialize SEEED OLED display

 oled.clearDisplay() # clear the screen

 oled.setNormalDisplay() # set display to normal mode

 oled.setPageMode() # set addressing mode to Page Mode

 oled_write(0, 1, "Environment")

 oled_write(0, 2, "Monitor")

 oled_write(0, 4, "Starting...")

def main():

 """Main"""

 print("Welcome to the Environment Monitor!")

 # Setup the buzzer

 pinMode(BUZZER_PIN, "OUTPUT")

 # Setup the OLED

 setup_oled()

 # Start the AirMonitor

 air_quality = AirMonitor()

 time.sleep(3)

 oled_write(11, 4, "done")

 beep()

 oled.clearDisplay()

 while True:

 if air_quality.read_data():

 # Retrieve the data

 env_data = air_quality.get_data()

 oled_write(0, 0, "ENVIRONMENT DATA")

 oled_write(0, 2, "Temp: ")

 oled_write(5, 2, "{:3.2f}C".format(env_

data["temperature"]))

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

649

 oled_write(0, 3, "Pres: ")

 oled_write(5, 3, "{:05.2f}hPa".format(env_

data["pressure"]))

 oled_write(0, 4, "Dust: ")

 if env_data["dust_concentration"] == 0.0:

 oled_write(5, 4, "-- ")

 else:

 oled_write(5, 4,

 "{:06.2f}%".format(env_data["dust_

concentration"]))

 oled_write(0, 5, "airQ: ")

 if env_data["air_quality"] in

 {AirQualityEnum.ERROR, AirQualityEnum.POOR}:

 oled_write(5, 5, "POOR")

 elif env_data["air_quality"] == AirQualityEnum.FAIR:

 oled_write(5, 5, "FAIR")

 elif env_data["air_quality"] == AirQualityEnum.GOOD:

 oled_write(5, 5, "GOOD")

 else:

 oled_write(5, 5, "-- ")

 # Check for environmental quality

 if ((env_data["dust_concentration"] > MAX_DUST) or

 (env_data["temperature"] > MAX_TEMP) or

 (env_data["air_quality"] == AirQualityEnum.

POOR) or

 (env_data["air_quality"] == AirQualityEnum.

ERROR)):

 #pylint: disable=unused-variable

 for i in range(0, WARNING_BEEPS):

 oled_write(3, 7, "ENV NOT OK")

 beep(0.250)

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

650

 time.sleep(0.250)

 oled_write(3, 7, " ")

 time.sleep(0.250)

 else:

 oled.clearDisplay()

 oled_write(0, 2, "ERROR! CANNOT")

 oled_write(0, 3, "READ DATA")

 time.sleep(SAMPLING_RATE)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

OK, that’s it! We’ve written the code, and we’re now ready to execute

the project!

 Execute the Project
Now that we’ve spent many pages exploring the Grove modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

messages written to the serial monitor (Arduino) or the terminal

(Raspberry Pi). You will also see a welcome message appear on the

OLED. The code will start displaying data, but you won’t see any values

for the dust sensor until 30 seconds has passed. Figure 15-19 shows an

example of the project running (Python version). Recall the Arduino

version has the OLED display rotated 180 degrees.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

651

Executing the code shows similar output in the serial monitor

(Arduino) and terminal (Python). The differences are mainly in how

the data is shown. In the Arduino version, some of the software libraries

contain print statements that add to the output, and in the Python version,

we print the dictionary with the data. Let’s look at the Arduino first.

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Figure 15-19. Executing the environment monitor project

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

652

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading...

message, you can open the serial monitor. You should see the output begin

momentarily that is the same as that on the OLED. Go ahead, and try it out!

You should see values similar to the following:

Welcome to the Environment Monitor!

Starting....sys_starting...

The init voltage is ...

94

Sensor ready.

Test begin...

done.

Pressure: 101931.00Pa

Temperature: 21.12

0,0.00,0.62

Dust %: 0.62

sensor_value:83 Air fresh

Fresh air

Pressure: 101934.00Pa

Temperature: 21.12

Dust %: 0.00

sensor_value:77 Air fresh

...

If something isn’t working, check your connections or refer to Chapter 13

for troubleshooting tips.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

653

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your modules and powering on the

Raspberry Pi. Recall the code will run until you stop it with CTRL+C on the

keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./environment.py from the same folder where the file was saved

as shown in the following. You should get results similar to the following:

$ python3 ./environment.py

Welcome to the Environment Monitor!

>> Reading Data <<

> Reading temperature = 23.75

> Reading pressure = 1021.2385746409756

> Reading dust concentration

> Dust concentration = 0.0

> Reading air quality = AIR_QUALITY.GOOD

>> Reading Data <<

> Reading temperature = 23.75

> Reading pressure = 1021.2504208636452

> Reading dust concentration

> Dust concentration = 0.0

> Reading air quality = AIR_QUALITY.GOOD

...

If everything worked as executed, congratulations! You’ve just

built your third Grove project. If something isn’t working, check your

connections or refer to Chapter 13 for troubleshooting tips.

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

654

 Going Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

• Environment portal: You can display the values of the

last sensor(s) read on a web page to allow you to see the

condition of your environment from anywhere in the

world. If you also add the date and time, you can see

how your environment changes over time.

• Additional sensors: Implement additional sensors to

read more data such as specific gases such as CO2 and

O2 and a light sensor to detect day and night cycles.

You could also include a vibration sensor if you live in

areas prone to seismic tremors. Interestingly, you can

use vibration sensors to detect when someone walks

into the room.

• Sampling rate: Adjust the sampling rate to match your

environmental needs. For example, if you live in a very

clean apartment or house with good climate control,

your sampling rate may be lower than if you live in a

dusty area prone to temperature changes such as an RV

or typical rustic cabin.

 Summary
In this chapter, we got more hands-on experience making projects with

Grove analog and digital modules as well as multiple I2C devices. We

used these modules to create an environment monitor that displays

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

655

the temperature, barometric pressure, air quality, and dust (particle)

concentration in the air – in other words, an indoor air monitoring

solution.

Along the way, we learned more about how to work with Grove

modules including how to write our own class for managing multiple

sensors. We also saw how to use alternative software libraries in both the

Arduino and Python versions of our project. Finally, we saw some potential

to make this project better as well as some ideas for how to adapt the

project for practical uses.

In the next chapter, we will see another project that demonstrates

how to use more Grove modules to create a classic electronic game called

Simon Says. It’s time to have some fun!

ChApTeR 15 MonIToRIng YoUR enVIRonMenT

657© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_16

CHAPTER 16

Simon Says
If you like early, vintage electronic games, you most likely have played

a game named Simon.1 It is a round tabletop game that has four large

colored buttons on top. One or more players can play with the objective

to repeat a sequence from memory. The game presents the player with

a sequence of colored lights in a random pattern. The player’s goal is to

press the buttons for each color in the sequence before time runs out. If

the player repeats the sequence correctly, the game adds another light to

the sequence. The game starts with a single light, so early levels are pretty

easy, but as the sequence gets longer, it becomes harder to play. Throw in

several players, and you’ve got a cool, Internet-free game party!

In this chapter, we will see how to create a version of the Simon game

using Grove modules including analog, digital, and I2C protocols. We will

also see how to incorporate a set of Qwiic modules to make things more

interesting.

Note Unlike previous projects, this project requires some soldering
to assemble the Qwiic components. Fortunately, the soldering isn’t
difficult, so it would be a good time to learn, or you can find a friend
to assemble the components for you.

1 https://en.wikipedia.org/wiki/Simon_(game)

https://doi.org/10.1007/978-1-4842-7234-3_16#DOI
https://en.wikipedia.org/wiki/Simon_(game)

658

Like the last chapter, we will see how to implement this project on the

Arduino and Raspberry Pi but with an interesting twist. Let’s get started.

 Project Overview
The project for this chapter is designed to demonstrate how to use analog,

digital, and I2C devices on the same Grove host adapter to build a Simon

game. It works very much like the original game but with an LCD for

displaying messages. We will use a Grove buzzer for sound and a set of

Qwiic LED buttons.

While this seems like a simple project build, the number of modules in

use and integrating all of the code for those modules make this project the

most ambitious in the book. If you haven’t read through and worked on the

other projects, you may want to work on the earlier chapters first and save

this one until you’ve mastered a few of the others.

For those with access to a 3D printer, we will also see a simple

mounting plate you can print to install the modules to protect the modules

and make them easier to use in playing the game.

 What Will We Learn?
By implementing this project, we will get more practice in using analog

and digital Grove modules and how to connect Grove modules to the

various protocol connectors on the host adapter. We will also integrate

multiple I2C modules including integrating both Grove and Qwiic I2C

components.

The programming tasks will reveal how to read button press events,

turn LEDs on and off, play sound (tones) on a small speaker, and display

messages to the players on an LCD. As you will see, the sound component

adds an interesting challenge for both the Arduino and Python versions.

Let’s see what hardware we will need.

Chapter 16 Simon SayS

659

 Hardware Required
The hardware needed for this project is listed in Table 16-1. URLs for each

component are included for ease of ordering including duplicate entries

for alternative vendors. We will use the Grove Dual Button, Grove Buzzer,

Grove LCD RGB Backlight, Grove Qwiic Hub, and a set of Qwiic LED

buttons.

Table 16-1. Hardware Needed for the Simon Project

Component URL Qty Cost

Grove Dual Button www.seeedstudio.com/Grove-

Dual-Button-p-4529.html

1 $2.20

Grove Buzzer www.seeedstudio.com/Grove-

Buzzer.html

1 $1.90

Grove LCD RGB

Backlight

www.seeedstudio.com/Grove-

LCD-RGB-Backlight.html

1 $11.90

Grove Qwiic Hub www.seeedstudio.com/Grove-

Qwiic-Hub-p-4531.html

1 $1.90

SparkFun Qwiic

LED Button

Breakout

www.sparkfun.com/

products/15931

4 $3.10

LED Tactile

Button – White

www.sparkfun.com/

products/10439

1 $2.10

LED Tactile

Button – Green

www.sparkfun.com/

products/10440

1 $2.10

LED Tactile

Button – Red

www.sparkfun.com/

products/10442

1 $2.10

(continued)

Chapter 16 Simon SayS

http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html
http://www.sparkfun.com/products/15931
http://www.sparkfun.com/products/15931
http://www.sparkfun.com/products/10439
http://www.sparkfun.com/products/10439
http://www.sparkfun.com/products/10440
http://www.sparkfun.com/products/10440
http://www.sparkfun.com/products/10442
http://www.sparkfun.com/products/10442

660

Table 16-1. (continued)

Component URL Qty Cost

LED Tactile

Button – Blue

www.sparkfun.com/

products/10443

1 $2.10

Grove cables

(any length can be used

but longer may be best)

included with each preceding Grove

module

3

Grove female

breakout

(Python version

only)

www.seeedstudio.com/Grove-4-

pin-Female-Jumper-to-Grove-

4-pin-Conversion-Cable-5-

PCs-per-PAck.html

1 $3.90

Qwiic cable www.sparkfun.com/

products/14426

4 $0.95

Arduino MKR 1010

WiFi

www.sparkfun.com/

products/15251

1 $35.95

Raspberry Pi 3B

or later

www.sparkfun.com/

categories/233

1 $35.00+

www.adafruit.com/category/176

Grove Base Shield

V2.0 for Arduino

www.seeedstudio.com/Base-

Shield-V2.html

1 $4.45

GrovePi+ www.sparkfun.com/

products/15945

1 $5.95

Chapter 16 Simon SayS

http://www.sparkfun.com/products/10443
http://www.sparkfun.com/products/10443
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.sparkfun.com/products/14426
http://www.sparkfun.com/products/14426
http://www.sparkfun.com/products/15251
http://www.sparkfun.com/products/15251
http://www.sparkfun.com/categories/233
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.sparkfun.com/products/15945
http://www.sparkfun.com/products/15945

661

 About the Hardware
Let’s discuss these components briefly. We will discover how to work with

the hardware in more detail later in the chapter. If you implement the

Python version, be sure to note the changes in the libraries used as well as

different connections used for the buzzer module. We saw the LCD RGB

Backlight and Grove Qwiic Hub modules in Chapter 14, so we won’t cover

those here. See Chapter 14 for explanations of those components.

 Grove Dual Button

Thus far in the book, we’ve only worked with one type of button. In this

chapter, we will work with two types. The first is the Grove Dual Button.

This is a digital module that has two momentary buttons. While there are

two buttons on the module, we need only a single Grove cable to connect

to the host adapter.

This is because digital modules use only three wires: ground, 5V, and

one for signal. Since we have four cables available, we can use the extra

wire for the second button.

The button module comes with a set of colored button caps that you

can use to help color-code your button choices, which is a nice option.

Figure 16-1 shows the Grove Dual Button.

Figure 16-1. Grove Dual Button (courtesy of seeedstudio.com)

Chapter 16 Simon SayS

662

 Grove Buzzer

We will be adding a sound feature for this project so that we can play tones

(notes) just like the old electronic games. We will keep it simple and use

the same Grove Buzzer module from Chapter 15.

However, there is one issue with using this module with Python on the

Raspberry Pi. The GrovePi/GrovePi+ does not permit you to communicate

directly with the module over a digital protocol. This is because all

communication to the Grove modules is processed through a chip on the

GrovePi/GrovePi+, which does not support this option.

Fortunately, we can use an analog protocol for the Python version and

use pulse wave modulation (PWM) to control it.2 PWM simply uses a loop

to modulate how much power is sent to the component. PWM is often

used to dim LEDs like we did in Chapter 14, but with a buzzer it permits

you to change the tone of the sound produced.

We can use a Grove female breakout cable to connect to the Raspberry

Pi GPIO directly using the GPIO pass-through pins on top of the GrovePi.

We will see how to make these connections in the next section.

 Qwiic LED Buttons

The Simon game uses four large colored buttons. Underneath the case, this

is simply four momentary buttons and four (or eight) small lights (newer

versions use white LEDs) that shine through the opaque button cover.

Since we don’t have anything like that in the Grove, Qwiic, or

STEMMA QT component systems, we will use the best option available –

the Qwiic LED Button Breakout. Unfortunately, as of this writing,

SparkFun doesn’t sell assembled LED modules in four colors. So we will

have to purchase four breakout boards (boards without the LED button

soldered) and four different LED buttons (white, red, green, and blue).

2 https://en.wikipedia.org/wiki/Pulse-width_modulation

Chapter 16 Simon SayS

https://en.wikipedia.org/wiki/Pulse-width_modulation

663

Once again, this will require some soldering, but the soldering isn’t

difficult. If you don’t know how to solder, you can use this opportunity to

learn or find a friend and have them teach you how to solder.

Assembly requires placing the LED button onto the breakout board

and soldering six connections: four for the button and two for the LED

that is built into the button. We will see connections that need to be made

and learn how to orient the LED button correctly, but first let’s see the

components. Figure 16-2 shows the Qwiic LED Button Breakout.

The LED buttons are discrete components that have an LED built into

the top of the button. So there are two components in a single package.

You can turn the LED on or off without pressing the button or, through

code, turn on the button when it is pressed, which is what we will do in this

project. Figure 16-3 shows the four LED buttons we will use for this project.

Figure 16-2. Qwiic LED Button Breakout (courtesy of sparkfun.com)

Figure 16-3. Qwiic LED buttons (courtesy of sparkfun.com)

Chapter 16 Simon SayS

664

If you look closely at the breakout board and buttons, you will see six

holes (and six pins) where two of the holes/pins are located on the side of

the button. If you look closer, you will see these “ears” are marked with a

+ sign on one and either a – or nothing on the other. These are the pins for

the LED. The other four are for the button. While placement of the button

doesn’t matter for the connections, the pins for the LED must be oriented

correctly.

That is, the + pin must be inserted into the + hole on the breakout

board for the LED. Figure 16-4 shows where the pins are located on the

breakout board. Once you identify the positive pin on the LED button, you

can then solder all six pins. Remember to double- and triple-check your

connections so you don’t have to unsolder and resolder the button.

Caution Some of the LeD buttons may come with a mark made by
a marker. Don’t assume this is the positive leg of the LeD.3 always
double-check by examining the button ears with a magnifier.

Figure 16-4. Qwiic LED and button pins

3 Yep. That particular snake bit me, and I had to unassemble and resolder!
Unsoldering is much harder than soldering. Do yourself a big favor and check it
twice before you solder!

Chapter 16 Simon SayS

665

There is one other thing you must do to use these modules in our

project. Since we will be using six I2C modules (LCD RGB Backlight, four

buttons, and the Grove Qwiic Hub), we need to disable some of the I2C

resistors on at least one module. This may not be necessary for the Arduino

version, but is required for the Python version. This is because there are

too many resistors on the I2C bus and that can result in erratic or dropped

(failed) I2C communication.

To disable the resistors on the assembled Qwiic LED button modules,

break the connections on the front of the board labeled I2C as shown in

Figure 16-5. You can use a sharp knife to carefully break the two small

connections.

We also need to change the I2C addresses of at least three of the

buttons. Why? Because they are all set to use address 0x6F. Fortunately,

like most Qwiic modules, we can change the I2C address by soldering

across the pads on the back as shown in Figure 16-6.

Figure 16-5. I2C resistors on the Qwiic LED Button Breakout
(courtesy of sparkfun.com)

Chapter 16 Simon SayS

666

Since we have four I2C jumpers, we can address up to 16 buttons. We

simply apply solder across the pads as shown in Table 16-2 where C means

the pad is soldered (closed) and O means the pad is not soldered (open).

Table 16-2. Qwiic LED Button I2C Addresses

Binary Hex A0 A1 A2 A3

1111 0x60 S S S S

1110 0x61 o S S S

1101 0x62 S o S S

1100 0x63 o o S S

1011 0x64 S S o S

1010 0x65 o S o S

1001 0x66 S o o S

1000 0x67 o o o S

Figure 16-6. I2C address jumpers (pads) on the Qwiic LED Button
Breakout (courtesy of sparkfun.com)

(continued)

Chapter 16 Simon SayS

667

For this project, we’re going to keep it simple and leave one button

with all jumpers open (0x6G), one with a jumper on A0 (0x6E), one with

a jumper on A1 (0x6D), and the last with a jumper on A2 (0x6B). If you’d

rather use other addresses, you can. Just make sure to change the code

accordingly.

Once you have assembled four Qwiic LED buttons and set the I2C

addresses, we can assemble our project.

 Connect the Grove Modules
Recall from Chapter 12 we can use a single Grove cable to connect each

Grove module separately to a specific connector on the host adapter

on our host board. The host adapter for the Raspberry Pi has a different

layout but has the same connectors we will use. Table 16-3 includes the

details of each connection on the host adapter to help you make the right

connections. Simply use the table to connect a Grove cable from the

module to the Grove connector on the host adapter as marked in the table.

Table 16-2. (continued)

Binary Hex A0 A1 A2 A3

0111 0x68 S S S o

0110 0x69 o S S o

0101 0x6A S o S o

0100 0x6B o o S o

0011 0x6C S S o o

0010 0x6D o S o o

0001 0x6E S o o o

0000 0x6F o o o o

Chapter 16 Simon SayS

668

As mentioned, the connections for the Python version of the project

are the same except for the buzzer module. Recall we will connect this

module using a female Grove breakout cable. Table 16-4 shows the

connections we need to make. The pins shown are the physical pin

numbers, and the Raspberry Pi GPIO values are shown in parentheses.

Let’s look at a closeup of these connections. Figure 16-7 shows a

closeup of the connections for the buzzer on the Raspberry Pi. Notice the

white cable is not used, so you can simply secure it so that it doesn’t come

into contact with anything.

Table 16-4. Grove Buzzer Connections (Python)

Wire Color Connection GPIO Pin#

Black Ground 4 (GnD)

red 5V 6 (5V)

White no connection n/a

orange/brown Signal 16 (Gpio23)

Table 16-3. Grove Connections (Arduino)

Module Protocol Grove Connector on the Host
Adapter

Buzzer Digital D6

Dual Button Digital D7

LCD rGB Backlight i2C i2C1

Qwiic hub + Qwiic LeD

buttons

i2C i2C2 (and a Qwiic daisy chain)

Chapter 16 Simon SayS

669

Now, let’s look at all of the connections we need to make for each of

the project versions. As you will see, there are significant differences for the

buzzer module.

 Connections for Arduino

Figure 16-8 shows an example of how you should connect your modules

for this project for the Arduino version.

Figure 16-7. Closeup of buzzer connections for the Raspberry Pi

Figure 16-8. Simon Says project Grove connections (Arduino only)

Chapter 16 Simon SayS

670

Wow, that’s a lot of cables! Now you can see why this project is the

most complex of the projects in this book. Once you make all of these

connections, you may find it a challenge to keep everything together as

they tend to slide around and the cables aren’t very flexible. You may find

it necessary to use a piece of wood to screw the modules to in order to play

the game. We will see a 3D printed option in a later section.

 Connections for Raspberry Pi

The connections for the Raspberry Pi (Python) version differ in two ways.

First, the buzzer is connected to an analog pin to the GPIO, and it uses

the GrovePi/GrovePi+ host adapter that has the Grove connections in a

different location. Recall these are the same connections as the Arduino

host adapter but put together on a map look quite different. Figure 16-9

shows the connections for the Python version.

 Using an Enclosure
Since we have so many components and a bunch of cables connecting

them all together, using them to play a game like Simon can become a

lesson in patience (either that or you can use some double-sided tape to

Figure 16-9. Simon Says project Grove connections (Python only)

Chapter 16 Simon SayS

671

tape them to your desk). We can fix this with a mounting plate like we did

in Chapter 15. We could create a full enclosure, but as you will see leaving

the modules exposed gives the project a genuine cool factor.

If you have your own or access to a 3D printer, you can print a

mounting plate. The source code for this chapter includes the 3D printing

files you need to create a simple enclosure to mount the modules

arranged in a manner that enables game play. Figure 16-10 shows the

mounting plate.

While this looks like nothing more than a coaster, there are feet on the

bottom of the plate and places for M2 and M3 nuts. In fact, you will need to

print this plate upside down.

There is also a set of spacers you will need to print as shown in

Figure 16-11.

Figure 16-10. 3D mounting plate design for the Simon Says project

Chapter 16 Simon SayS

672

Notice from left to right there are eight short M3 spacers for the LED

buttons, three medium-length M2 spacers for the dual button module, two

short M2 spacers for the buzzer module, and four long M2 spacers for the LCD

RGB Backlight. The Grove Qwiic Hub mounts to the plate without spacers.

To mount the modules, you will need the following hardware:

• (9) M2 nuts

• (10) M3 nuts

• (8) M3×7mm bolts

• (2) M3×5mm bolts

• (2) M2×10mm bolts

• (3) M2×12mm bolts

• (4) M2×19mm bolts

To assemble the enclosure, begin by mounting all modules except the

LCD RGB Backlight as shown in Figure 16-12. You should also make all of

the cable connections as well since we will route all wiring under the LCD

Figure 16-11. 3D spacer design for the Simon Says project

Chapter 16 Simon SayS

673

RGB Backlight. Notice we used different-length Qwiic cables to keep the

wiring away from the buttons.

Next, mount the LCD RGB Backlight routing all wiring under the LCD

as shown in Figure 16-13.

Tip you may want to use the longest Grove cables you can find to
ensure your plate can be placed far enough away from the host board
to allow players to gather around it to play.

Figure 16-12. Mounting the modules to the 3D printed plate (part 1)

Chapter 16 Simon SayS

674

Finally, attach the Qwiic cables to your host board. Figure 16-14 shows

a completed example of the mounting plate.

Figure 16-13. Mounting the modules to the 3D printed plate (part 2)

Chapter 16 Simon SayS

675

If you have experience creating 3D models for printing, feel free to

experiment with creating your own enclosure – perhaps one that also

includes a battery and a small form factor host board.

Now that we know more about the hardware for this chapter, let’s write

the code!

Figure 16-14. Mounting the modules to the 3D printed plate (part 3)

Chapter 16 Simon SayS

676

 Write the Code
The code for this project is once again written using the usual pattern. For

this project, that means using analog and digital modules as well as a host

of I2C devices. The dual button and buzzer are digital (the buzzer is an

analog module for the Python version). The LCD, Grove Qwiic Hub, and

four Qwiic LED buttons are all I2C devices.

As you will see, the code isn’t overly complicated for the Arduino

version, but we will have some more work to do for the Python version.

This is because the buzzer module is not directly supported by the GrovePi

library. Never fear, though. The code we will see is fully functional in

the Python version by switching the buzzer from a digital to an analog

connection, which shows how versatile components that can work with

PWM can be controlled via an analog connection.

Like the previous projects, we will use classes to wrap our functionality.

Like we did in Chapter 14, we’ll focus on making the Simon game its own

class and general control of the game system in the main code. That is, we

will use the dual button and LCD in the main code and everything else in

the Simon code module (class).

We will also create a class for the buzzer since this is likely to be a

core component for future projects. That’s one of the greatest benefits of

object-oriented design – we can reuse the code in other projects without

modification. Plus, it makes it easier if you need to substitute radically

different code like we need to do for the Python version.

Let’s walk through how to prepare our computers to use the

components and write the code. We’ll start with the Arduino.

 Arduino
This section presents a walk-through of the sketch and classes you will write to

read values from the buttons, control the LEDs on the Qwiic LED buttons, and

play sounds on the buzzer. We will also display short messages on the LCD

module. But first, there are a couple of libraries we must install on our PCs.

Chapter 16 Simon SayS

677

 Install Software Libraries

We will need to install the Arduino libraries for the LCD and Qwiic LED

modules. We do not need any libraries for the digital modules as they are

supported directly by the Arduino platform. And we installed the code

library we need for the LCD in Chapter 14, so if you haven’t done that

already, you will want to see how to do that in Chapter 14. That leaves the

Qwiic LED button library.

To install the Qwiic LED software library, open the Library Manager

from the Arduino IDE menu (Sketch ➤ Include Library ➤ Library

Manager…). Then search for qwiic button and install the latest version of

the Qwiic LED library as shown in Figure 16-15.

Figure 16-15. Installing the Qwiic button Library (Arduino IDE)

Now that we have the software libraries installed, we can begin writing

our sketch. Since this is not our first Arduino sketch, we will discuss

the code at a high level and skip the line-by-line details focusing on the

mechanics of how the code works. You can study the code at your leisure

to ensure you understand the sketch in more detail.

Chapter 16 Simon SayS

678

 Write the Sketch

Recall we are going to use a class to encapsulate the Simon game and

another for the buzzer. Thus, we will create two classes: one to define the

Simon game that we can control from the main code and another for the

buzzer that we will control from the Simon game class.

We will write the class headers first and then the main sketch and

finally complete the code for the classes. The Simon game class will be

named Simon, and the buzzer class will be named Buzzer. Yes, not very

imaginative, but sometimes simplicity is best.

Recall there is no way (currently) to create and add new files to a sketch

(but you can add existing files by clicking Sketch ➤ Add File…). So we will

once again create the main sketch and add the code header and source

files manually.

Open a new sketch and name it simon_says.ino or whatever you’d like

to use. Save the file and then close the project in the Arduino IDE.

To create the class files, navigate with your File Explorer (Finder)

to the folder where you stored your main sketch (simon_says.ino).

Then, use your File Explorer or a text file editor to create four new files

named Buzzer.h, Buzzer.cpp, Simon.h, and Simon.cpp. Or you can use a

terminal to navigate to the folder and issue these commands to create the

empty files:

simon_says % touch Buzzer.h

simon_says % touch Buzzer.cpp

simon_says % touch Simon.h

simon_says % touch Simon.cpp

Now, let’s see the code for each file starting with the header files.

Chapter 16 Simon SayS

679

Class Header File: Buzzer

Click the tab named Buzzer.h to open the blank file. Here, we will add the

header or blueprint for the class. The module provides a mechanism to

play tones. Specifically, we will create functions for each of the sounds that

the Simon game uses. In this case, we need the following tones (or tone

sequences):

• playThemeSong(): An introductory song played when

the game starts.

• playReadySetGo(): A tone to indicate the player can

begin entering the sequence of buttons.

• playSuccess(): A tone to indicate the sequence entered

matches the challenge sequence.

• playFailure(): A set of tones to indicate the sequence is

not correct and the player’s turn ends.

• playColor(): Play a unique tone for each of the four LED

buttons.

Aside from those functions, we will also create a constructor so we can

set up the class and two private functions: one for playing a set of tones

(song) and another to get the frequency for the tone.

We will also use a scale of notes and their frequencies stored in private

variables. In this way, we can record the notes in variables for each of the

preceding tones/sounds and then use the frequency function to retrieve

the frequency of the note. The frequency defines how long the buzzer will

sound. By varying the frequency, we can get different notes.

Chapter 16 Simon SayS

680

Tip For more information about how to use a buzzer (piezo
speaker) to play notes, see www.arduino.cc/en/Tutorial/
BuiltInExamples/toneMelody or https://learn.
digilentinc.com/Documents/392 for more details on how pWm
can help.

We can also define how long to hold (play) each tone, which will help

us determine a cadence or primitive rhythm. We will call these “beats”

where each beat is a quarter note (so we’ll be using 4/4 time). Thus, a 1

is one quarter, 2 is half, etc. We also use a tempo to determine the speed,

which we will set globally, but you could easily modify the code to allow

different tones to be played at different speeds. This way, we can make the

song faster or slower depending on our aesthetic requirements.

Let’s look at the completed code for the header file. Listing 16-1 shows

the file.

Listing 16-1. Buzzer Header File

#include <Arduino.h>

#define DEFAULT_TEMPO 113

#define NOTES_IN_SCALE 8

#define BUZZER_PIN 6

typedef struct {

 // The speed to play the notes

 int tempo = DEFAULT_TEMPO;

 // Number of notes in song

 int numNotes;

 // Notes is an array of text characters corresponding to

the notes

 // in your song. A space represents a rest (no tone)

Chapter 16 Simon SayS

http://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody
http://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody
https://learn.digilentinc.com/Documents/392
https://learn.digilentinc.com/Documents/392

681

 String *notes;

 // Beats is an array of values for each note and rest.

 // A "1" represents a quarter-note, 2 a half-note, etc.

 int *beats;

} SongStruct;

class Buzzer {

public:

 Buzzer();

 void playThemeSong() {playSong(&theme); }

 void playSuccess() { playSong(&success); }

 void playFailure() { playSong(&failure); }

 void playColor(int color) { playSong(&colors[color]); }

 void playReadySetGo() { playSong(&go); }

private:

 SongStruct failure;

 SongStruct success;

 SongStruct theme;

 SongStruct go;

 SongStruct colors[4];

 // The following arrays hold the note characters and their

 // corresponding frequencies. The last "C" note is uppercase

 // to separate it from the first lowercase "c". If you want to

 // add more notes, you'll need to use unique characters.

 char noteNames[NOTES_IN_SCALE] = { 'c', 'd', 'e', 'f', 'g',

'a', 'b', 'C' };

 int frequencies[NOTES_IN_SCALE] = {262, 294, 330, 349, 392,

440, 494, 523};

 void playSong(SongStruct *song);

 int frequency(char note);

};

Chapter 16 Simon SayS

682

Notice the public functions are simply calls to the private play()

function with the song specified. The songs (sequences of tones) are stored

as structures that contain variables and an array to contain the tones

(song). These are generated dynamically in the constructor. Notice also

the notes scale and frequency arrays. This is where we define the notes we

will play. You can change these as you see fit to make the class usable for

playing more complex songs.

Now, let’s look at the header file for the Simon game.

Class Header File: Simon

Click the tab named Simon.h to open the blank file. Recall this module

controls the four Qwiic LED buttons and the buzzer.

The public functions are not difficult. We will use functions

for the setup routine where we can change the number of players

(setupMode()), start the game (startGame()), show the number of players

(showPlayers()), and play the game (play()).

Aside from that, we will also need a number of private functions that

are a bit more complicated. We need functions to control the LCD, play a

challenge sequence, read a sequence of buttons from the player, generate

the challenge sequence using the randint() function to generate a

random integer from 0 to 3 to correspond to the button array index, and

even determine a winner for the multiplayer mode. The following lists the

private functions and their uses:

• numAlive(): Determine the number of players still

active (alive).

• resetScreen(): Reset the LCD and display a new

message.

• showWinner(): Show the winner on the LCD.

• readButton(): Determine if a button is pressed.

Chapter 16 Simon SayS

683

• generateSequence(): Generate a challenge sequence.

• playSequence(): Play a challenge sequence by turning

on the corresponding LED and playing the tone for the

button.

• readSequence(): Read a sequence from the player.

Finally, we will need a number of variables to store information

including an instance of the LCD class and the Qwiic buttons (stored as an

array). The constructor will also need to be added to set up the hardware.

Since the header code is not difficult to read, let’s look at the completed

code for the header file. Listing 16-2 shows the file.

Listing 16-2. Simon Header File

#include <Arduino.h>

#include <SparkFun_Qwiic_Button.h>

#include <rgb_lcd.h>

#include "Buzzer.h"

#define MIN_BEATS 2 // Starting number of beats

#define MAX_PLAYERS 4 // Max number of players

#define MAX_TIMEOUT 5000 // Seconds to wait to abort read

#define KEY_INTERVAL 500 // Interval between button playback

typedef struct {

 int highScore {0};

 bool isAlive {true};

} PlayerStruct;

class Simon {

public:

 Simon();

 void startGame(int players);

Chapter 16 Simon SayS

684

 void play();

 void setupMode();

 void showPlayers(int players);

private:

 int numPlayers = 1;

 PlayerStruct **playerScores {NULL};

 Buzzer *buzzer = new Buzzer(); // Buzzer

 rgb_lcd lcd; // Grove LCD

 QwiicButton buttons[4];

 int numAlive();

 void resetScreen(const char *message);

 void showWinner();

 bool readButton(int button);

 int *generateSequence(int numNotes);

 void playSequence(int *challengeSequence, int numNotes);

 bool readSequence(int *challengeSequence, int numNotes);

};

OK, let’s return to the main sketch to see how we can use the classes.

Main Sketch

Now click the simon_says.ino tab to return to the main sketch. Since we

are placing most of the hardware work in the Simon game class, all we

need to do here is set up the Grove Dual Button and write code to interact

with the Simon game class.

We set up the dual button in the setup() function, which requires

initializing each button separately. This is because, while we’re using

only one Grove connector, the module uses the extra wire for the second

button. Specifically, when we connect the module to the D7 connector,

Chapter 16 Simon SayS

685

which is wired to the digital 7 pin, we can access the second button via

the digital 8 pin. The only other thing we do in this function is create an

instance of the Simon game class.

The loop() function is responsible for controlling the mode button to

set the number of players and the start button to start the game. We will

make the code allow use of the mode button so long as a game is not in

process.

Note the mode button is closest to the Grove connector. if your
orient the module with the Grove connector on the left, the mode
button is the left button, and start is the right button.

Recording the number of players is done using a variable where we

allow up to four players. So pressing the mode button continually will cycle

through the options (e.g., 1, 2, 3, 4, 1, 2, 3, 4…). We will use this value when

the player presses the start button.

When the start button is pressed, we use the Simon class to start a new

game with the startGame() method passing in the number of players

selected. Then we call the play() function turning control over to the

Simon class. Once the game ends, we place the Simon instance back to the

setup mode with the setupMode() function. A few short delays are added

to make the game flow better.4

By placing all of the game control in its own class, we’ve simplified the

main code. Listing 16-3 shows the code for the main sketch. Take a few

moments and read through the code.

4 Purists may say the use of delays or sleep is a poor replacement for excellent
code, but they are handy for controlling flow and execution speed. Plus, there are
(good) side effect benefits in some languages such as Python related to threading.

Chapter 16 Simon SayS

686

Listing 16-3. Main Sketch

#include "Simon.h"

// Constants

#define START_BUTTON 7

#define MODE_BUTTON 8

// Global variables

Simon *simon;

bool gameStarted = false;

int numPlayers = 1;

void setup()

{

 pinMode(START_BUTTON, INPUT);

 pinMode(MODE_BUTTON, INPUT);

 Serial.begin(115200);

 while (!Serial);

 // Initialize the game

 Serial.println("Welcome to the Simon Says game!");

 simon = new Simon();

}

void loop()

{

 bool startButton = false;

 bool modeButton = false;

 if (!gameStarted) {

 startButton = digitalRead(START_BUTTON) == LOW;

 modeButton = digitalRead(MODE_BUTTON) == LOW;

Chapter 16 Simon SayS

687

 if (startButton) {

 Serial.println("Start button pressed.");

 simon->startGame(numPlayers);

 delay(1000);

 simon->play();

 delay(1000);

 simon->setupMode();

 } else if (modeButton) {

 numPlayers = numPlayers + 1;

 if (numPlayers > MAX_PLAYERS) numPlayers = 1;

 Serial.print("Mode button pressed - ");

 Serial.print(numPlayers);

 Serial.println(" players.");

 simon->showPlayers(numPlayers);

 delay(2000);

 simon->setupMode();

 delay(50);

 }

 }

}

Now we can write the final portion of our project – the code for the

classes.

Class Code File: Buzzer

Click the tab named Buzzer.cpp to open the blank file. Here, we will add

the code for the class. Aside from the constructor, there are two functions

we need to write: the frequency() and playSong() functions. Let’s talk

about each of these.

Chapter 16 Simon SayS

688

As mentioned previously, the constructor is where we set up all of

the sequences of tones (songs) for each of the sounds we will play for the

Simon game. We use a statically allocated structure for each sound to store

the number of notes, the notes (as a string), and the beats as an integer

array as shown in the following. We do this for each of the four tones:

 // Success tones

 success.numNotes = 3;

 success.notes = new String("CCC");

 success.beats = new int[success.numNotes] {1,1,1};

For the button tones, we use an array, which makes things a bit easier

since we can loop over the array and set the properties since all will be the

same number of tones and beats. However, we will need to set up each of

the notes separately as shown in the following:

 // Tones for the colors

 for (int i = 0; i < 4; i++) {

 colors[i].numNotes = 1;

 colors[i].beats = new int[1] {1};

 }

 colors[0].notes = new String("a");

 colors[1].notes = new String("g");

 colors[2].notes = new String("C");

 colors[3].notes = new String("f");

The frequency() function takes as a parameter the note we want to

play and then uses the constants defined in the header file to locate the

frequency for that note. We use a loop here in the Arduino version, but we

will see a slightly more efficient way to access the frequency in the Python

version. The reason this is inefficient is because it has to look at each note

until it finds a match. Yes, there are only eight notes and processing time is

insignificant, but for the sake of better coding, we should always strive to

find more efficient methods.

Chapter 16 Simon SayS

689

The playSong() function takes as a parameter a pointer named song

to the SongStruct we used to save the song (number of notes, notes, and

beats). We use a loop to loop through each of the notes using the number

of notes to limit the for loop. For each note, we calculate the duration by

multiplying the number of beats by the tempo. If there is a space in the

sequence, we use that as a quarter note rest (we don’t play anything).

Otherwise, we get the frequency for the note from the frequency() function

and pass that and the duration to the Arduino tone() function to play the

note. Cool! Listing 16-4 shows the code for the playSong() function.

Listing 16-4. The playSong() Function (Buzzer.cpp)

void Buzzer::playSong(SongStruct *song) {

 int i, duration;

 for (i = 0; i < song->numNotes; i++) {

 duration = song->beats[i] * song->tempo; // length of note/

rest in ms

 if (song->notes->charAt(i) == ' ') { // is this a rest?

 delay(duration); // then pause for

a moment

 } else { // otherwise,

play the note

 tone(BUZZER_PIN, frequency(song->notes->charAt(i)),

duration);

 delay(duration); // wait for tone

to finish

 }

 delay(song->tempo/10); // brief pause

between notes

 }

}

Chapter 16 Simon SayS

690

Recall Python doesn’t have a tone() function, so we will need to

substitute a different mechanism for playing notes for the Python version

of the project.

Listing 16-5 shows the complete Buzzer code for completeness.

Listing 16-5. Buzzer Code File

#include "Buzzer.h"

Buzzer::Buzzer() {

 // Failure tones

 failure.numNotes = 5;

 failure.notes = new String("g g c");

 failure.beats = new int[failure.numNotes] {4,1,4,1,12};

 // Success tones

 success.numNotes = 3;

 success.notes = new String("CCC");

 success.beats = new int[success.numNotes] {1,1,1};

 // Theme song

 theme.numNotes = 18;

 theme.notes = new String("cdfda ag cdfdg gf ");

 theme.beats =

 new int[theme.numNotes] {1,1,1,1,1,1,4,4,2,1,1,1,1,1,1,

4,4,2};

 // Start signal

 go.numNotes = 3;

 go.notes = new String("aaa");

 go.beats = new int[failure.numNotes] {1,1,1};

 // Tones for the colors

 for (int i = 0; i < 4; i++) {

 colors[i].numNotes = 1;

 colors[i].beats = new int[1] {1};

 }

Chapter 16 Simon SayS

691

 colors[0].notes = new String("a");

 colors[1].notes = new String("g");

 colors[2].notes = new String("C");

 colors[3].notes = new String("f");

}

int Buzzer::frequency(char note) {

 int i;

 // Search through the letters in the array, and return the

frequency for that note.

 for (i = 0; i < NOTES_IN_SCALE; i++) {

 if (noteNames[i] == note) {

 return(frequencies[i]);

 }

 }

 return(0);

}

void Buzzer::playSong(SongStruct *song) {

 int i, duration;

 for (i = 0; i < song->numNotes; i++) {

 duration = song->beats[i] * song->tempo; // length of

note/rest in ms

 if (song->notes->charAt(i) == ' ') { // is this a

rest?

 delay(duration); // then pause for

a moment

 } else { // otherwise,

play the note

 tone(BUZZER_PIN, frequency(song->notes->charAt(i)),

duration);

Chapter 16 Simon SayS

692

 delay(duration); // wait for tone to finish

 }

 delay(song->tempo/10); // brief pause between notes

 }

}

Now let’s look at the code file for the Simon class. As you will see, this

class contains a lot of code, but most is rather easy to read and understand.

Class Code File: Simon

Click the tab named Simon.cpp to open the blank file. Here, we will add

the code for the class. Since there are a lot of functions in the class, we

will first discuss each function in overview and then highlight some of the

more complex ones in more detail, but none are overly difficult. You can

discover how the other functions work as an exercise. We will begin with

the public functions.

The constructor, Simon(), is where we set up the hardware for the

class, which includes the Qwiic LED buttons, LCD, and the Buzzer class.

The only tricky part is how to deal with the button addresses. We stored the

Qwiic LED buttons in an array so we can instantiate a separate instance

of the Qwiic LED button class for each passing in the correct address

and then easily loop through them to turn off the LEDs as shown in the

following:

 // Setup the buttons

 buttons[0].begin(0x6f);

 buttons[1].begin(0x6E);

 buttons[2].begin(0x6D);

 buttons[3].begin(0x6B);

Chapter 16 Simon SayS

693

 // Turn off all buttons

 for (int button = 0; button < 4; button++) {

 buttons[button].LEDoff();

 }

We also initialize the random number generator using a read from an

analog pin as the seed. This will simulate using a different seed each time

because reading an uninitialized pin will generate an unpredictable value.

We can place the game in setup mode with the setupMode() function,

which simply resets the LCD to indicate we are in the setup mode.

The startGame() function takes an integer for the number of players

and simply zeros out the player scores, plays the theme song, and sets the

LCD for start of game play.

The play() function is a bit more complicated. Here is where the

game play is coded. At the highest level, the function loops generating a

challenge sequence, playing it to the user, and then reading the player’s

response. If the challenge is met, the loop continues with an extra button

added and a new random sequence generated.5

When there are more than one player, the loop cycles through each

player in turn. If a player misses the sequence, that player is removed from

the cycle (considered no longer playing or “alive”). Play continues until

there are no more players alive, and a winner is determined, and the game

ends. When the game ends, the code pauses and then resets the game class

for the next game.

Next, let’s look at the private functions. Recall private functions are

used internally to the class and not visible to the caller.

The numAlive() function loops through the player scores to determine

how many players are still playing. It is used in the play() function to

determine when the game ends.

5 I’ve seen many examples of the Simon game for Arduino and other platforms that
use the same sequence adding a new button each time. To me, that’s nowhere
near as challenging as having a new sequence each turn.

Chapter 16 Simon SayS

694

The resetScreen() takes as a parameter a message to be displayed on

the LCD. The function clears the display and then adds the message. It is

used to control the LCD during game play.

The showWinner() function loops through the player scores to

determine which player has the highest score. Since the play() function is

designed to keep going until all players have failed to complete a sequence,

it is possible for two or more players to have the same score. This is an

intentional omission that you are encouraged to solve as an exercise. Hint:

You can simply declare a tie.

The readButton() function takes a parameter for the button number

(index) to determine if the button was pressed. If it was pressed, the code

also turns on the LED so the player can get instant feedback. It simply

returns true if the button was pressed or false if not.

The code for this function is shown in the following and demonstrates

how to deal with latency or sampling challenges (also called debouncing)

to ensure you don’t get multiple press events over a short time. That is, it is

possible the contacts inside the button make momentary contact several

times before becoming a steady contact. We can use code to help with

that situation. Study the following code to see how it was solved (there are

many such methods):

bool Simon::readButton(int button) {

 if (buttons[button].isPressed() == true) {

 buttons[button].LEDon();

 // Wait for user to stop pressing

 while (buttons[button].isPressed() == true)

 delay(10);

 buzzer->playColor(button);

 buttons[button].LEDoff();

 Serial.print("Button ");

 Serial.print(button);

Chapter 16 Simon SayS

695

 Serial.println(" pressed.");

 return true;

 }

 return false;

}

The generateSequence() function takes as a parameter the number of

buttons and returns an integer array allocated from memory that includes

a set of random integers in range 0–3 to represent the buttons in the

sequence. To create a random integer in that range, we call randint(4),

which returns the correct range.

The playSequence() function uses two parameters: one for the button

(challenge) sequence and another for the number of notes. It simply loops

through the array turning on the LED and playing the tone for each button

using a delay between each. This is used by the play() function to present

the challenge sequence to the player.

The readSequence() function also uses two parameters: one for the

button (challenge) sequence and another for the number of notes. It

simply loops through the array reading the button presses from the player.

If the correct button is pressed, the next button is read and so on. If all

buttons were pressed in the correct order (the sequence pressed equals

the challenge sequence), the function returns true, or false is returned on

the first incorrect button press in the sequence. This is used by the play()

function to read the player’s response.

OK, that’s a lot of functions! Let’s now look at the complete code for

the class. Take a few moments to read through it (there’s a lot of code) to

ensure you understand how it all works. Listing 16-6 shows the completed

code for the class (documentation omitted for brevity).

Chapter 16 Simon SayS

696

Listing 16-6. Simon Code File

#include "Simon.h"

Simon::Simon() {

 Wire.begin();

 // Setup the LCD

 lcd.begin(16, 2);

 // Set background color?

 lcd.setRGB(127, 127, 127);

 randomSeed(analogRead(0));

 // Setup the buttons

 buttons[0].begin(0x6f);

 buttons[1].begin(0x6E);

 buttons[2].begin(0x6D);

 buttons[3].begin(0x6B);

 // Turn off all buttons

 for (int button = 0; button < 4; button++) {

 buttons[button].LEDoff();

 }

 // Put game in setup mode

 setupMode();

}

void Simon::startGame(int players) {

 numPlayers = players;

 playerScores = new PlayerStruct*[numPlayers];

 for (int player = 0; player < numPlayers; player++) {

 playerScores[player] = new PlayerStruct;

 playerScores[player]->isAlive = true;

 playerScores[player]->highScore = 0;

 }

Chapter 16 Simon SayS

697

 Serial.print("Playing theme...");

 buzzer->playThemeSong();

 Serial.println("done.");

 resetScreen("Press START");

}

void Simon::play() {

 bool gameOver = false;

 int numNotes = 1;

 String message("Player ");

 // Main game loop

 while (!gameOver) {

 // For each player, generate a new sequence and test skills

 for (int player = 0; player < numPlayers; player++) {

 if (playerScores[player]->isAlive) {

 numNotes = playerScores[player]->highScore + 1;

 Serial.print("Challenge sequence size ");

 Serial.println(numNotes);

 resetScreen((String(message) += (player + 1)).c_str());

 int *challengeSequence = generateSequence(numNotes);

 playSequence(challengeSequence, numNotes);

 delay(250);

 buzzer->playReadySetGo();

 Serial.println("Go!");

 delay(250);

 if (readSequence(challengeSequence, numNotes)) {

 buzzer->playSuccess();

 Serial.println("Success!");

 delay(500);

 playerScores[player]->highScore = numNotes;

 } else {

Chapter 16 Simon SayS

698

 Serial.println("Fail");

 playerScores[player]->isAlive = false;

 }

 delete challengeSequence;

 }

 }

 // Check to see if any players remain alive

 // and show winner if multiple players

 int playersRemaining = numAlive();

 if (playersRemaining == 0) {

 resetScreen("GAME OVER");

 if (numPlayers > 1) showWinner();

 gameOver = true;

 Serial.println("Game over...");

 delay(2000);

 }

 }

 // Delete the player memory

 for (int player = 0; player < numPlayers; player++) {

 delete playerScores[player];

 }

 delete playerScores;

}

void Simon::setupMode() {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Simon Says!");

 lcd.setCursor(0, 1); // column 1, row 2

 lcd.print("Setup Mode");

}

Chapter 16 Simon SayS

699

void Simon::showPlayers(int players) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Simon Says!");

 lcd.setCursor(0, 1); // column 1, row 2

 if (players == 1) {

 lcd.print("single player");

 } else {

 lcd.print(players);

 lcd.print(" players");

 }

}

void Simon::showWinner() {

 int winner = -1;

 int score = 0;

 for (int player = 0; player < numPlayers; player++) {

 if (playerScores[player]->highScore > score) {

 winner = player;

 score = playerScores[player]->highScore;

 }

 }

 lcd.setCursor(0, 0);

 lcd.print("Player ");

 lcd.print(winner + 1);

 lcd.print("WON!");

 lcd.setCursor(0, 1); // column 1, row 2

 lcd.print("Score = ");

 lcd.print(score);

}

Chapter 16 Simon SayS

700

int Simon::numAlive() {

 int count = 0;

 if (playerScores != NULL) {

 for (int player = 0; player < numPlayers; player++) {

 if (playerScores[player]->isAlive) count++;

 }

 }

 return count;

}

void Simon::resetScreen(const char *message) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Simon Says! (");

 lcd.print(numPlayers);

 lcd.print(")");

 lcd.setCursor(0, 1); // column 1, row 2

 lcd.print(message);

}

bool Simon::readButton(int button) {

 if (buttons[button].isPressed() == true) {

 buttons[button].LEDon();

 // Wait for user to stop pressing

 while (buttons[button].isPressed() == true)

 delay(10);

 buzzer->playColor(button);

 buttons[button].LEDoff();

 Serial.print("Button ");

 Serial.print(button);

 Serial.println(" pressed.");

 return true;

Chapter 16 Simon SayS

701

 }

 return false;

}

bool Simon::readSequence(int *challengeSequence, int numNotes) {

 int buttonRead = -1;

 int index = 0;

 unsigned long startTime = millis();

 // Loop reading buttons and compare to stored sequence

 while (index < numNotes) {

 if (readButton(0)) {

 buttonRead = 0;

 } else if (readButton(1)) {

 buttonRead = 1;

 } else if (readButton(2)) {

 buttonRead = 2;

 } else if (readButton(3)) {

 buttonRead = 3;

 }

 // if a button is pressed, check the sequence

 if (buttonRead >= 0) {

 if (challengeSequence[index] != buttonRead) {

 buzzer->playFailure();

 resetScreen("FAIL SEQUENCE");

 delay(5000);

 return false;

 } else {

 Serial.println("MATCH!");

 startTime = millis();

Chapter 16 Simon SayS

702

 index++;

 buttonRead = -1;

 }

 }

 if (millis() > (startTime + MAX_TIMEOUT)) {

 buzzer->playFailure();

 resetScreen("FAIL TIMEOUT");

 delay(5000);

 return false;

 }

 delay(50);

 }

 return true;

}

void Simon::playSequence(int *challengeSequence, int numNotes) {

 for (int note = 0; note < numNotes; note++) {

 int buttonIndex = challengeSequence[note];

 buttons[buttonIndex].LEDon();

 buzzer->playColor(buttonIndex);

 delay(KEY_INTERVAL);

 buttons[buttonIndex].LEDoff();

 delay(KEY_INTERVAL);

 }

}

int *Simon::generateSequence(int numNotes) {

 if (numNotes == 0) return NULL;

 // Create a new sequence adding a new note

 int *challengeSequence = new int[numNotes];

Chapter 16 Simon SayS

703

 for (int note = 0; note < numNotes; note++) {

 challengeSequence[note] = (int)random(4);

 }

 return challengeSequence;

}

As you can see, the code is long, but except for a few places not

difficult. It is a lot of code, but demonstrates how to work with multiple

hardware components including mixing Grove and Qwiic in the same

project.

 Compile the Sketch

The last step is to compile the sketch before uploading it to your board. If

you encounter any errors, be sure to fix them and recompile to ensure the

sketch compiles without errors or serious warnings.

Once everything compiles, we’re ready to start testing. But first, let’s

look at the code for the Raspberry Pi. You can skip to the “Sketch on the

Arduino” section if you’re curious to see how the project works. While the

code will execute the same on both platforms, the values differ due to the

differences in how the sensors are read (the range of values differs).

 Raspberry Pi
This section presents a walk-through of the Python code you will write to

create the Simon game. But first, there are a couple of libraries we must

install on our Raspberry Pi.

Note if you have not installed the Grovepi libraries, please see
Chapter 13 for complete details and install them before you begin. if
you encounter problems, see the “Grovepi/Grovepi+ troubleshooting
tips” section in Chapter 13.

Chapter 16 Simon SayS

704

 Install a Software Library

Aside from the GrovePi libraries, we need only one more software library.

Specifically, we need a library for the Qwiic LED Button Breakout.

Fortunately, SparkFun has provided an excellent library we can use, and

you can install it as shown in the following:

$ pip3 install sparkfun-qwiic-button

We also need the custom library we created in Chapter 14 to work with

the LCD RGB Backlight. Simply copy that library named grove_lcd_rgb.

py to your Simon game folder.

Once you have that library installed and the grove LCD library from

Chapter 14 copied, we’re ready to write the code.

 Write the Code

The code for the Python version of this project is a bit different than the

Arduino code. We will still create the same classes (Simon, Buzzer), but the

code for controlling the buzzer is very different.

The reason is there is no Python code for the Grove buzzer and there

is no tone() function in the Python platform or even the GrovePi libraries.

We are on our own to create a substitute. The solution works, but it is very

different, so we will take a detailed walk-through for that part of the code.

Other than that, the other differences are minor and most due to

differences in the language. We will see each of the nuances to ensure

you understand how the Python code works in the same manner as the

Arduino code.

While we will not dive into every line of code, we will see some of the

more complex code and those areas discussed that differ significantly from

the Arduino version. You can read through the code and learn more about

how it works at your leisure.

Let’s start with writing the classes starting with the Buzzer class.

Chapter 16 Simon SayS

705

Buzzer Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file buzzer.py. We will use the same functions as the Arduino

version except for how the play_song() function works. However, before

we look at that, let’s discuss how we are going to substitute a Python data

mechanism for the C++ structure.

Rather than use a tuple, we will use one of the more powerful Python

data storage called a dictionary. A dictionary allows us to create a structure

where we can store one or more key/value pairs where we can store all of

the parts of the song: the number of notes, notes, and beats. We will also

see how to store the tempo for each song.6 Interestingly, the tempo for the

Python version needed to be adjusted to make the same sounds. This is

largely due to how we implement the PWM for the notes.

The following shows the layout of the dictionary we will use for each

song. Here, we use the keys tempo, num_notes, notes, and beats, which

will be used in the code to reference the value for each:

Success tones dictionary

self.success = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 3,

 'notes': "CCC",

 'beats': [1, 1, 1]

}

While that may seem like a minor change, it is quite different in how

the data is accessed in the rest of the code.

6 See the challenge in the “Arduino” section regarding storing the tempo with each
song.

Chapter 16 Simon SayS

706

Now, let’s look at the play_song() function. This is where things get

interesting. Recall we must use an analog connection here since we are

going to use a PWM to produce a sound on the buzzer. Thus, we must

initialize the buzzer pin using an analog connection. However, the GrovePi

does not permit direct connections to analog pins. Rather, we must choose

a different analog pin and use the GPIO functions directly. The following

shows the code differences for initializing the GPIO pin:

import RPi.GPIO as GPIO

...

BUZZER_PIN = 23

...

class Buzzer:

...

 def __init__(self):

 ...

 # Setup the buzzer

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 GPIO.setup(BUZZER_PIN, GPIO.OUT)

Here we see that we import a different library: the base Raspberry

Pi GPIO library, which should already be on your Raspberry Pi. We then

define the button as pin 23 (the drawings in the “Connect the Grove

Modules” section show where this pin is physically located), then use the

GPIO library to set up the GPIO using the Broadcom (BCM) numbering

scheme,7 and set up the pin as an output pin.

Next, we will create our own tone() function so that the play_song()

function remains largely intact semantically from the Arduino version. The

following shows the new tone() function:

7 See https://pinout.xyz/# for more details about pin layouts.

Chapter 16 Simon SayS

https://pinout.xyz/

707

def tone(frequency, duration):

 half_wave = 1 / (frequency * 2)

 waves = int(duration * frequency)

 for i in range(waves):

 GPIO.output(BUZZER_PIN, True)

 time.sleep(half_wave)

 GPIO.output(BUZZER_PIN, False)

 time.sleep(half_wave)

Notice here we do some math first where we get the half wave of the

frequency. We are getting one half of the sine wave so that we can turn the

buzzer for half the wave and off for half the wave, which is the frequency

times the duration and, hence, a pulse. Again, there are other ways to

generate a PWM, but this works well for the buzzer.

Other than that significant change, the rest of the code is similar to the

Arduino version just rewritten in Python.

Listing 16-7 shows the complete code for the class with documentation

removed for brevity. Take a few moments to read through the code so that

you understand all of the parts of the code. As you will see, it is not nearly

as complicated as the Arduino class, thanks to the helpful class library and

utility class from Adafruit.

Listing 16-7. Buzzer Class (Python)

import time

import RPi.GPIO as GPIO

CONSTANTS

DEFAULT_TEMPO = 0.095

BUZZER_PIN = 23

NOTES_IN_SCALE = 8

HIGH = 1

LOW = 0

Chapter 16 Simon SayS

708

def tone(frequency, duration):

 half_wave = 1 / (frequency * 2)

 waves = int(duration * frequency)

 for i in range(waves):

 GPIO.output(BUZZER_PIN, True)

 time.sleep(half_wave)

 GPIO.output(BUZZER_PIN, False)

 time.sleep(half_wave)

class Buzzer:

 note_names = ['c', 'd', 'e', 'f', 'g', 'a', 'b', 'C']

 frequencies = [262, 294, 330, 349, 392, 440, 494, 523]

 failure = {}

 success = {}

 theme_song = {}

 ready_set_go = {}

 colors = [{}, {}, {}, {}]

 def __init__(self):

 """Constructor"""

 # Failure tones dictionary

 self.failure = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 5,

 'notes': "g g c",

 'beats': [4, 1, 4, 1, 10]

 }

 # Success tones dictionary

 self.success = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 3,

 'notes': "CCC",

Chapter 16 Simon SayS

709

 'beats': [1, 1, 1]

 }

 # Theme song dictionary

 self.theme_song = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 18,

 'notes': "cdfda ag cdfdg gf ",

 'beats': [1, 1, 1, 1, 1, 1, 4, 4, 2,

 1, 1, 1, 1, 1, 1, 4, 4, 2]

 }

 # Start signal dictionary

 self.ready_set_go = {

 'tempo': DEFAULT_TEMPO,

 'num_notes': 3,

 'notes': "aaa",

 'beats': [1, 1, 1]

 }

 # Tones for the colors

 for i in range(0, 4):

 self.colors[i]['tempo'] = DEFAULT_TEMPO

 self.colors[i]['num_notes'] = 1

 self.colors[i]['beats'] = [1]

 self.colors[0]['notes'] = "a"

 self.colors[1]['notes'] = "g"

 self.colors[2]['notes'] = "C"

 self.colors[3]['notes'] = "f"

 # Setup the buzzer

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 GPIO.setup(BUZZER_PIN, GPIO.OUT)

Chapter 16 Simon SayS

710

 def play_theme_song(self):

 self.play_song(self.theme_song)

 def play_start(self):

 self.play_song(self.ready_set_go)

 def play_success(self):

 self.play_song(self.success)

 def play_failure(self):

 self.play_song(self.failure)

 def play_color(self, color):

 self.play_song(self.colors[color])

 def play_ready_set_go(self):

 self.play_song(self.ready_set_go)

 def frequency(self, note):

 # Search through the letters in the array, and

 # return the frequency for that note.

 for i in range(0, NOTES_IN_SCALE):

 if self.note_names[i] == note:

 return self.frequencies[i]

 return 0

 def play_song(self, song):

 for i in range(0, song['num_notes']):

 duration = song['beats'][i] * song['tempo']

 if song['notes'][i] == ' ':

 time.sleep(duration)

 else:

 freq = self.frequency(song['notes'][i])

 tone(freq, duration)

Chapter 16 Simon SayS

711

 time.sleep(duration)

 time.sleep(song['tempo']/10)

Now, let’s look at the Simon class file.

Simon Class

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file Simon.py. We will use the same functions as we did in the

Arduino version renamed to a more Python-friendly naming scheme.

What differs from the Arduino is the use of the LCD class from Chapter 14.

Fortunately, the functions are similar to the library we used in the Arduino

version. Recall we import the new class with the following code:

from grove_lcd_rgb import GroveLcdRgb

Another major difference is in the play() function. Here, the timing

of the events is a bit different. That is, the sleeps in the code had to be

adjusted so that game play followed the same flow from the Arduino

version.

There are also necessitated delay changes in the read_button()

function to control how fast the button presses are read. Recall we need

to debounce the button press, and in this the Python version of the Qwiic

LED button library differs.

On a very minor point, we moved the generate_sequence() function

out of the class because it contains no references to the internal variables

of functions of the class. This is a Python style thing. You can leave the

function in the class, but if you run a tool like pylint to check Python style

and best practices, it will complain.

Those are the major differences in the Python code. Everything else is

similar to the Arduino version. Listing 16-8 shows the complete code for

the class with documentation removed for brevity. Take a few moments to

Chapter 16 Simon SayS

712

read through the code so that you understand all of the parts of the code.

As you will see, it is not nearly as complicated as the Arduino class, thanks

to the helpful class library and utility class from Adafruit.

Listing 16-8. Simon Class (Python)

import random

import time

import smbus

import qwiic_button

from grovepi import analogRead

from buzzer import Buzzer

from grove_lcd_rgb import GroveLcdRgb

Constants

MIN_BEATS = 2 # Starting number of beats

MAX_PLAYERS = 4 # Max number of players

MAX_TIMEOUT = 5.0 # Seconds to wait to abort read

KEY_INTERVAL = 0.500 # Interval between button playback

LED_BRIGHTNESS = 200 # Button LED brightness

def generate_sequence(num_notes):

 if num_notes == 0:

 return []

 challenge_sequence = []

 i = 0

 while i < num_notes:

 challenge_sequence.append(random.randint(0, 3))

 i = i + 1

 return challenge_sequence

class Simon:

 bus = smbus.SMBus(1)

 num_players = 1

Chapter 16 Simon SayS

713

 player_scores = []

 buzzer = Buzzer() # Buzzer

 lcd = GroveLcdRgb() # Grove LCD

 buttons = [qwiic_button.QwiicButton(0x6f),

 qwiic_button.QwiicButton(0x6E),

 qwiic_button.QwiicButton(0x6D),

 qwiic_button.QwiicButton(0x6B)]

 def __init__(self):

 # Setup the LCD

 self.lcd.clear()

 # Set background color?

 self.lcd.set_rgb(127, 127, 127)

 random.seed(analogRead(0))

 # Setup the buttons

 # Turn off all buttons

 for button in range(0, 4):

 self.buttons[button].begin()

 self.buttons[button].LEDoff()

 self.buttons[button].setDebounceTime(500)

 # Put game in setup mode

 self.setup_mode()

 def start_game(self, players):

 self.num_players = players

 for player in range(0, players):

 player_score = {

 'number': player,

 'is_alive': True,

 'high_score': 0

 }

Chapter 16 Simon SayS

714

 self.player_scores.append(player_score)

 print("Playing theme...")

 self.buzzer.play_theme_song()

 print("done.")

 self.reset_screen("Press START")

 def play(self):

 game_over = False

 num_notes = 1

 while not game_over:

 for player in range(0, self.num_players):

 if self.player_scores[player]['is_alive']:

 num_notes = self.player_scores[player]

['high_score'] + 1

 self.reset_screen("Player {0}".

format(player + 1))

 challenge_sequence = generate_sequence(num_

notes)

 self.play_sequence(challenge_sequence, num_

notes)

 time.sleep(0.250)

 self.buzzer.play_ready_set_go()

 print("Go!")

 time.sleep(0.250)

 if self.read_sequence(challenge_sequence,

num_notes):

 self.buzzer.play_success()

 print("Success!")

 time.sleep(0.500)

 self.player_scores[player]['high_

score'] = num_notes

Chapter 16 Simon SayS

715

 else:

 print("Fail")

 self.player_scores[player]['is_alive']

= False

 players_remaining = self.num_alive()

 if players_remaining == 0:

 self.reset_screen("GAME OVER")

 if self.num_players > 1:

 self.show_winner()

 game_over = True

 print("Game over...")

 time.sleep(2)

 self.player_scores = []

 def setup_mode(self):

 self.lcd.clear()

 self.lcd.set_cursor(0, 0)

 self.lcd.print("Simon Says!")

 self.lcd.set_cursor(0, 1) # column 1, row 2

 self.lcd.print("Setup Mode")

 def show_players(self, num_players):

 self.lcd.clear()

 self.lcd.set_cursor(0, 0)

 self.lcd.print("Simon Says!")

 self.lcd.set_cursor(0, 1) # column 1, row 2

 if num_players == 1:

 self.lcd.print("single player")

 else:

 self.lcd.print(chr(num_players + 0x30))

 self.lcd.print(" players")

Chapter 16 Simon SayS

716

 def show_winner(self):

 winner = -1

 score = 0

 for player in range(0, self.num_players):

 if self.player_scores[player]['high_score'] >

score:

 winner = player

 score = self.player_scores[player]['high_

score']

 self.lcd.set_cursor(0, 0)

 self.lcd.print("Player ")

 self.lcd.print(winner + 1)

 self.lcd.print("WON!")

 self.lcd.set_cursor(0, 1) # column 1, row 2

 self.lcd.print("Score = ")

 self.lcd.print(score)

 def num_alive(self):

 count = 0

 for player in range(0, self.num_players):

 if self.player_scores[player]['is_alive']:

 count = count + 1

 return count

 def reset_screen(self, message):

 self.lcd.clear()

 self.lcd.set_cursor(0, 0)

 self.lcd.print("Simon Says! (")

 self.lcd.print("{0}".format(self.num_players))

 self.lcd.print(")")

 self.lcd.set_cursor(0, 1) # column 1, row 2

 self.lcd.print(message)

Chapter 16 Simon SayS

717

 def read_button(self, button):

 if self.buttons[button].isButtonPressed():

 self.buttons[button].LEDon(LED_BRIGHTNESS)

 time.sleep(0.10)

 self.buzzer.play_color(button)

 self.buttons[button].LEDoff()

 print("Button {0} pressed.".format(button))

 return True

 return False

 def read_sequence(self, challenge_sequence, num_notes):

 button_read = -1

 index = 0

 start_time = time.time()

 while index < num_notes:

 if self.read_button(0):

 button_read = 0

 elif self.read_button(1):

 button_read = 1

 elif self.read_button(2):

 button_read = 2

 elif self.read_button(3):

 button_read = 3

 # if a button is pressed, check the sequence

 if button_read >= 0:

 if challenge_sequence[index] != button_read:

 self.buzzer.play_failure()

 self.reset_screen("FAIL SEQUENCE")

 time.sleep(5)

 return False

 print("MATCH!")

Chapter 16 Simon SayS

718

 start_time = time.time()

 index = index + 1

 button_read = -1

 if (time.time() - start_time) > MAX_TIMEOUT:

 print("ERROR: Timeout!")

 self.buzzer.play_failure()

 self.reset_screen("FAIL TIMEOUT")

 time.sleep(5)

 return False

 time.sleep(0.050)

 return True

 def play_sequence(self, challenge_sequence, num_notes):

 for beat in range(0, num_notes):

 button_index = challenge_sequence[beat]

 self.buttons[button_index].LEDon(LED_BRIGHTNESS)

 self.buzzer.play_color(button_index)

 time.sleep(KEY_INTERVAL)

 self.buttons[button_index].LEDoff()

 time.sleep(KEY_INTERVAL)

Now we can write our main script.

Main Script (Python)

Open the Thonny Python IDE under the Main ➤ Programming submenu.

Create a new file simon_says.py. There is nothing new in this code as

it follows the same flow as the Arduino example. Listing 16-9 shows the

complete code for the main script for this project. You can read through it

to see how all of the code works.

Chapter 16 Simon SayS

719

Listing 16-9. Main Script (Python)

import sys

import time

from grovepi import pinMode, digitalRead

from simon import Simon, MAX_PLAYERS

Constants

START_BUTTON = 7

MODE_BUTTON = 8

LOW = 0

def main():

 """Main"""

 print("Welcome to the Simon Says game!")

 simon = Simon()

 game_started = False

 start_button = False

 mode_button = False

 num_players = 1

 pinMode(START_BUTTON, "INPUT")

 pinMode(MODE_BUTTON, "INPUT")

 while True:

 if not game_started:

 # Show number of players

 start_button = digitalRead(START_BUTTON) == LOW

 mode_button = digitalRead(MODE_BUTTON) == LOW

 if start_button:

 print("Start button pressed.")

 simon.start_game(num_players)

 time.sleep(1)

 simon.play()

Chapter 16 Simon SayS

720

 time.sleep(1)

 simon.setup_mode()

 elif mode_button:

 num_players = num_players + 1

 if num_players > MAX_PLAYERS:

 num_players = 1

 print("Mode button pressed - {0} players."

 "".format(num_players))

 time.sleep(0.050)

 simon.show_players(num_players)

 time.sleep(2)

 simon.setup_mode()

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

OK, that’s it! We’ve written the code. Unlike the Arduino, we do not

need to compile the Python code. So we’re now ready to execute the

project!

 Execute the Project
Now that we’ve spent many pages exploring the Grove modules and

writing the code to interact with them, it is time to test the project by

executing (running) it.

When the project runs (executes), you will see some diagnostic

messages written to the serial monitor (Arduino) or the terminal

(Raspberry Pi). You will also see a welcome message appear on the LCD.

Chapter 16 Simon SayS

721

You can then press the mode button to set the number of players and,

when you’re ready, press the start button to start the game. Figure 16-16

shows examples of the LCD when in setup mode, X, and Y.

Executing the code depends on which platform you’re using, but the

output in the serial monitor and the terminal is the same. Let’s look at the

Arduino first.

 Sketch on the Arduino
Executing the sketch on the Arduino requires connecting our board to our

PC and then uploading the sketch to the Arduino. Recall the sketch will

run so long as the USB cable is connected to our PC (and the Arduino).

 Execute the Sketch

To execute the sketch, be sure your Arduino is connected and you’ve

selected the correct board under the Tools ➤ Board menu. You also need

to ensure you have the correct port selected under the Tools ➤ Port menu.

Figure 16-16. Executing the Simon Says project

Chapter 16 Simon SayS

722

Once those items are set, you can click the Upload button or choose

Sketch ➤ Upload from the menu. The Arduino IDE will compile the sketch

and then upload it to your Arduino. Once you see the Done uploading...

message, you can open the serial monitor. You should see the output begin

momentarily that is the same as that on the LCD. Go ahead, and try it out!

You should see values similar to the following:

Welcome to the Simon Says game!

Mode button pressed - 2 players.

Mode button pressed - 3 players.

Mode button pressed - 4 players.

Mode button pressed - 1 players.

Start button pressed.

Playing theme...

done.

Go!

Button 0 pressed.

MATCH!

Success!

Go!

Button 1 pressed.

MATCH!

Button 2 pressed.

MATCH!

Success!

Go!

Button 3 pressed.

MATCH!

Button 0 pressed.

MATCH!

Button 3 pressed.

MATCH!

Chapter 16 Simon SayS

723

Success!

Go!

ERROR: Timeout!

Fail

Game over...

...

If something isn’t working, check your connections or refer to Chapter 13

for troubleshooting tips.

 Python Code on the Raspberry Pi
Executing the sketch on the Raspberry Pi requires running the Python

code in a terminal after connecting your modules and powering on the

Raspberry Pi. Recall the code will run until you stop it with CTRL+C on the

keyboard.

 Execute the Python Code

To run the Python code on the Raspberry Pi, you can issue the command

python3 ./simon_says.py from the same folder where the file was saved

as shown in the following. You should get results similar to the following:

$ python3 ./simon_says.py

Welcome to the Simon Says game!

Mode button pressed - 2 players.

Mode button pressed - 3 players.

Mode button pressed - 4 players.

Mode button pressed - 1 players.

Start button pressed.

Playing theme...

...

Chapter 16 Simon SayS

724

If everything worked as executed, congratulations! You’ve just

built your fourth Grove project. If something isn’t working, check your

connections or refer to Chapter 13 for troubleshooting tips.

 Going Further
While we didn’t discuss them in this chapter, there are some ideas where

you could make this project into an IoT project. Here are just a few

suggestions you can try once we have learned how to take our projects to

the cloud. Put your skills to work!

• Simon Says portal: You can display the high scores

of your games to see how each player is fairing over

time. Or, if you’re playing it yourself, you can track your

progress in becoming a Simon Says gaming guru.

• Complete the enclosure: Use the sample base plate and

create a cover for the game.

• Increase the difficulty: One of the ways you can enhance

game play is to make the timeout time for a player

to enter a sequence shorter as game play continues.

For example, for the first n sequences, use the default

timeout; for the next n sequences, reduce the timeout

by a portion; and so on until the timeout gets to a

minimum timeout. If you do the same thing for the

delay used in playing the challenge sequence, it will

ensure the game will become much more difficult and

possibly more fun to play.

Chapter 16 Simon SayS

725

 Summary
In this chapter, we completed a set of example projects to explore building

IoT projects with Grove modules. Along the way, we learned how to work

with Grove modules including how to write our own classes for managing

multiple modules and sensors (buttons are sensors after all).

Combined with the Qwiic projects, we took a long look at our

component systems without the Internet component intentionally so that

we can make the projects easier to implement so that we can learn how

to select and connect the hardware as well as how to write the code to

interact with it.

Along the way, we were presented with a list of optional

enhancements, many of which encouraged you to expand your

understanding of the hardware and software (code). We also saw some

seeds to begin thinking about how to make the projects interact with the

Internet. Not all of the projects were necessarily well suited for use over the

Internet, but with some imagination, we can make it work.

Now that we’ve mastered how to build projects with Qwiic, STEMMA

QT, and Grove modules, we can focus on the Internet portion. As you will

see, it isn’t as simple as adding a few methods – we will have to think about

how to store and present the data.

In the next section, we will conclude our exploration of IoT projects by

completing the missing piece – the Internet part! Yes, you’ve been waiting

for that for 16 chapters, and it’s finally here.

Chapter 16 Simon SayS

PART IV

Going Further: IoT
and the Cloud
This part introduces an overview of cloud systems for the IoT. It features a

tutorial on ThingSpeak that demonstrates how to store and share data from

the example projects for the Arduino and Raspberry Pi.

729© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_17

CHAPTER 17

Introducing IoT for
the Cloud
Now that you’ve seen a number of projects, ranging from very basic to

advanced in difficulty, it is time to discuss how to make your IoT data

viewable by others via the cloud. More specifically, you will get a small

glimpse at what is possible with the more popular cloud computing

services and solutions.

I say a glimpse because it is not possible to cover all cloud services and

solutions available for IoT in a single chapter. Once again, this is a case

where learning a little bit about something and seeing it in practice will

help you get started. Like the other chapters where you’ve had a lightning

tour, this chapter presents a few of the newer concepts and features of

cloud solutions at a high level.

In this chapter, we will get an overview of what the cloud is and how it

is used for IoT solutions. The chapter also presents a short overview of the

popular cloud systems for IoT as well as a short example using one of the

free options to give you a sense of what is possible and how some of our

projects can be modified to use the Internet.

https://doi.org/10.1007/978-1-4842-7234-3_17#DOI

730

THE CLOUD: ISN’T THAT JUST MARKETING HYPE?

Don’t believe all the hype or sales talk about any product that includes “cloud”

in its name. Cloud computing services and resources should be accessible via

the Internet from anywhere, available to you via subscription (with fee or for

free), and permit you to consume or produce and share the data involved. Also,

consider the fact that you must have access to the cloud to get to your data.

Thus, you have no alternative if the service is unreachable (or down).

Since the technologies presented are quite unique in implementation

(but rather straightforward in concept), I keep the project hardware and

programming to a minimal effort. In fact, you will reuse the weather

project that you used in Chapter 8 and the secret knock example from

Chapter 13. However, rather than saving the data in MySQL, you will send

it to Microsoft Azure. You will also see how to present the data via a website

connected to the data in Microsoft Azure.

 Overview
Unless you live in a very isolated location, you have likely been bombarded

with talk about the cloud and IoT. Perhaps you’ve seen advertisements in

magazines and on television or read about it in other books or attended

a seminar or conference. Unless you’ve spent time learning what cloud

means, you are probably wondering what all the fuss is about.

ChApTer 17 InTroDuCIng IoT for The ClouD

731

 What Is the Cloud?
Simply stated,1 the cloud is a name tagged to services available via the

Internet. These can be servers you can access (running as a virtual

machine on a larger server), systems that provide access to a specific

software or environment, or resources such as disks or IP addresses that

you can attach to other resources. The technologies behind the cloud

include grid computing (distributed processing), virtualization, and

networking. The correct scientific term is cloud computing. Although

a deep dive into cloud computing is beyond the scope of this book, it is

enough to understand that you can use cloud computing services to store

your sensor data.

 What Is Cloud Computing Then?
The term cloud computing is sadly overused and has become a marketing

term for some. True cloud computing solutions are services that are

provided to subscribers (customers) via a combination of virtualization,

grid computing (distributed processing and storage), and facilities to

support virtualized hardware and software, such as IP addresses that are

tied to the subscription rather than a physical device. Thus, you can use

and discard resources on the fly to meet your needs.

These resources, services, and features are priced by usage patterns

(called subscription plans or tiers), in which you can pay for as little or as

much as you need. For example, if you need more processing power, you

can move up to a subscription level that offers more CPU cores, more

memory, and so forth. Thus, you only pay for what you need, which means

that organizations can potentially save a great deal on infrastructure.

1 Experienced cloud researchers will tell you there is a lot more to learn about the
cloud.

ChApTer 17 InTroDuCIng IoT for The ClouD

732

A classic example of this benefit is a case where an organization

experiences a brief and intense level of work that requires additional

resources to keep their products and services viable. Using the cloud,

organizations can temporarily increase their infrastructure capability and,

once the peak has passed, scale things back to normal. Clearly, this is a lot

better than having to rent or purchase a ton of hardware for that one event.

Sadly, there are some vendors that offer cloud solutions (typically

worded as cloud enabled or simply cloud) that fall far short of being a

complete solution. In most cases, they are nothing more than yesterday’s

Internet-based storage and visualization. Fortunately, Microsoft Azure is

the real deal: a full cloud computing solution with an impressive array of

features to support almost any cloud solution you can dream up.

Tip If you would like to know more about cloud computing and its
many facets, see https://en.wikipedia.org/wiki/Cloud_
computing.

 How Does the Cloud Help IoT?
OK, so now that we know what cloud systems are, how do they help us

with our IoT projects? There are a variety of ways, but most common are

mechanisms for storing and presenting your data rather than storing it

locally or even remotely on another system such as a dedicated database

server. That is, you can send the data you collect from your sensors to the

cloud for storage and even use additional cloud services to view the data

using charts, graphs, or just plain text. The sky is the limit with respect to

how you can present your data.

But storing data isn’t the only feature you can leverage in the cloud.

There are other services that you can use to link to yet other services

to form a solution. For example, most paid IoT cloud systems provide

ChApTer 17 InTroDuCIng IoT for The ClouD

https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing

733

features that can “talk” to each other allowing you to link them together to

quickly build a solution. The features are often called components rather

than services, but both terms apply.

For example, in Microsoft Azure, you can store your data with one of

several components and then link it to others that allow you to modify the

data via queries, to others to route the data to other places (even to another

cloud service vendor), and ultimately to one of several components for

displaying the data. Yes, it really is a set of building blocks like that.

Now that we’ve had a general overview of cloud systems, let’s look at

those that support IoT projects directly.

 IoT Cloud Systems
There are a number of IoT cloud vendors that offer all manner of products,

capacities, and features to match just about anything you can conjure

for an IoT project. With so many vendors offering IoT solutions, it can be

difficult to choose one. The following is a short list of the more popular IoT

offerings from the top vendors in the cloud industry:

• Oracle IoT: www.oracle.com/internet- of- things/

• Microsoft Azure IoT Hub: https://azure.microsoft.

com/en- us/product- categories/iot/

• Google IoT Core: https://cloud.google.com/iot-

core

• IBM IoT: www.ibm.com/internet- of- things

• Arduino IoT Cloud: www.arduino.cc/en/IoT/HomePage

• Adafruit IO: https://io.adafruit.com/

• If This Then That (IFTTT): https://ifttt.com/

• MathWorks ThingSpeak: https://thingspeak.com/

ChApTer 17 InTroDuCIng IoT for The ClouD

http://www.oracle.com/internet-of-things/
https://azure.microsoft.com/en-us/product-categories/iot/
https://azure.microsoft.com/en-us/product-categories/iot/
https://cloud.google.com/iot-core
https://cloud.google.com/iot-core
http://www.ibm.com/internet-of-things
http://www.arduino.cc/en/IoT/HomePage
https://io.adafruit.com/
https://ifttt.com/
https://thingspeak.com/

734

Most of the vendors offer commercial products, but a few like Google,

Azure, Arduino, IFTTT, and ThingSpeak offer limited free accounts. A few

are free like Adafruit IO and Arduino IoT Cloud, but may limit you to a

particular platform or a smaller set of features. As you may surmise, some

of the offerings are complex solutions with steep learning curve, but the

IFTTT and ThingSpeak offerings are simple and easy to use. Since we want

a solution that supports Arduino and Raspberry Pi (and other platforms),

we will use IFTTT in this chapter as an example of what is possible when

working with the cloud. We will then use ThingSpeak in the next chapter to

round out our introduction to IoT cloud systems.

Tip If you want or need to use one of the other vendors, be sure to
read all of the tutorials thoroughly before jumping into your code.

Let’s look at some of the types of services available in cloud systems

that support IoT projects.

 IoT Cloud Services Available
IoT projects offer an amazing opportunity to expand our knowledge of the

world around us and to observe events from all over the world no matter

where we are located. To meet these needs, IoT cloud services are an array

of services that you can leverage in your applications.

There are services for collecting data, managing your devices,

performing analytics, and even application and processing extensions

for you to exploit. For example, some vendors include complete user

management where you can provide user accounts for people to log in and

use your cloud solution and see your data.

The following lists a number of the types of services available. Some

vendors may not offer all of the services, and a service common among

the vendors may work very differently from one vendor to another.

ChApTer 17 InTroDuCIng IoT for The ClouD

735

However, this should give you an idea of what services are available and a

general idea of the feature set:

• Device management: Allows you to set up, manage, and

track devices in your IoT network.

• Data storage: Permits storage of your IoT data either

on a temporary (typically free for a number of days) or

permanent (paid) storage.

• Data analytics: Allows you to perform analysis on your

data to find trends, outliers, or any form of analytical

query.

• Data query and filters: You can perform queries or filter

your IoT data after it has been sent to the cloud service

for detailed presentations or transformations.

• Big data: Permits you to store vast amounts of data

and perform operations on the data (think data

warehousing).

• Visualization tools: Various dashboards and graphics

you can use to help present your data in meaningful

ways (spreadsheet, pie charts, etc.).

• High availability: Provides features that allow you to

operate even if portions of your cloud servers (or the

vendors) fail or go offline due to network issues.

• Third-party integration: Allows you to connect your IoT

services to other IoT servers from other vendors, for

example, connecting your Adafruit IO data to IFTTT for

triggering an SMS message.

• Security (data, user): Provides support for managing

user accounts, security access, and more for your

applications.

ChApTer 17 InTroDuCIng IoT for The ClouD

736

• Encryption: Allows you to encrypt your data either

in the cloud or when transmitting the data from one

service to another.

• Deployment: Similar to device management, but on

a grander scale where you build IoT devices using

common profiles, operating systems, configurations, etc.

• Scalability: The ability to scale from a small number of

devices and services to many devices. This is often only

available in the larger, paid vendor services.

• APIs (Rest, programming): Allows you to write code

to communicate directly with the services instead of

issuing web requests. Often part of the larger, paid

vendor services.

For our beginning IoT projects, we will be focusing on a subset of these

services, which can be grouped into several categories. Let’s look at a few

of the most common services you may want to start using right away.

 Data Storage

These services allow you to store your data in the cloud rather than on

your local device. Some data such as alerts or notices do not need to

be stored, and you should consider if you would need the data in the

future or it will be project dependent. For example, if you want to create a

weather alert project, you may not care what the temperature was a week

or even a month ago. However, if you want to do some amateur weather

forecasting, you will want to store data for some time (perhaps years). You

may consider storing the data locally, which may be possible for some

platforms such as the Raspberry Pi, but the Arduino and similar boards

have very limited storage capabilities.

ChApTer 17 InTroDuCIng IoT for The ClouD

737

Thus, if you need to store your data for some period and storing it

locally is not an option, you should consider this when selecting a cloud

vendor. Look for how data will be stored, the mechanisms needed to send

the data to the service, and how to get the data out of the service.

 Data Transformation (Queries)

These services allow you to perform queries on the data as it flows to or

through the cloud services. You may want to show only a subset of the data

to your users, or you may want to filter the data so that data from certain

devices, dates, etc. are shown for one of several views.

The case where you’d want to consider includes IoT projects that

collect data from multiple sensors and multiple devices where the data is

stored for a period of time. For example, if you have devices geographically

distributed over a wide area, you may only want to see data from a subset

of those devices. Similarly, if you have data from several time periods,

hours, days, and weeks, you may only want to see data from a specific time.

 Visualization Tools

These services along with routing and messaging are the most commonly

used for beginning IoT projects. These are simply services that allow you to

see your data on the Internet. It may be nothing more than a simple list of

the data, or it may be an elaborate data dashboard complete with controls

that users can use to manipulate the display. Fortunately, most cloud

vendors provide a robust set of tools (some more than one) that you can

use to present your data to yourself or your users.

 Routing and Messaging

These services are the heart or the bones of the IoT cloud. They encompass

the glue to bind different services together. More specifically, they provide

mechanisms for you to connect your devices to services and those services

ChApTer 17 InTroDuCIng IoT for The ClouD

738

to other services such as queries, filters, and visualization tools permitting

you to build an IoT solution using several cloud services. We’ll see an

example of such a service in the next section.

Now that we’ve had an overview of the IoT cloud services and the most

common services we will encounter, let’s jump into a simple example

using If This Then That (IFTTT).

 Cloud Services Example: IFTTT
 Getting Started
Now that you’ve seen a variety of project implementations and coding

examples, you’re ready to add that extra bit to connect them to the cloud.

As you will see, the code we will use to connect to IFTTT isn’t difficult,

but the concepts of using the service are quite different than what you may

have seen in the past. This is the primary reason we wait until this chapter

to connect our sample projects to the Internet.

But first, let’s talk about basic networking capabilities.

 Networking: Connecting Your Board to the Internet

The connecting of your board to the Internet is the missing piece in

our pursuit of successful IoT projects. How you connect to the Internet

depends on the platform. Connecting with an Arduino is very different

than connecting with a Raspberry Pi. Even so, there are different ways

you can connect each of these boards such as different WiFi options for

Arduino, choosing Ethernet for either board, etc. We will concentrate on

using WiFi connections.

Let’s start with the Arduino.

ChApTer 17 InTroDuCIng IoT for The ClouD

739

Arduino

Depending on which Arduino board you are using, it may already support

WiFi. For example, the Uno WiFi Rev2 and some of the MKR boards come

with WiFi capabilities. Other boards can take advantage of a WiFi or

Ethernet shield. However, be advised that vendors of Arduino products are

moving away from these options as the newest boards have onboard WiFi

support. Fortunately, the older shields will still work. All we need to know

is how to get started.

All of the WiFi shields and boards that support WiFi have examples

you can use to learn how to use the WiFi capabilities. As you will see, none

are difficult to set up, but may appear strange at first. For example, you can

find how to connect your Arduino Uno WiFi using the File ➤ Examples

➤ WiFiNINA ➤ Tools ➤ ConnectWithWPA sketch. You will find a lot of

different examples for that board and others like the WiFi 101 shield. If you

have an older WiFi shield, you may need to look under File ➤ Examples ➤

RETIRED ➤ WiFi to find them. As you will see, they are very similar in how

you set up. The only difference is which WiFi library to use.

For those Arduino boards that support the Uno shield pinout, you have

several options for a WiFi shield. You could find an older (retired) Arduino

WiFi or WiFi 101 shield like the one shown in Figure 17-1 or look into the

options from Adafruit and SparkFun.

ChApTer 17 InTroDuCIng IoT for The ClouD

740

Let’s open an example sketch to see how to get started. We’ll use

our Arduino Uno WiFi Rev 2. Open the Arduino IDE and open a new

project and name it wifi_example.ino. Or, if you prefer, you can open the

ConnectWithWPA example sketch and rename it.

The first thing we will do is set up our include files. For most WiFi uses,

we will need the SPI and WiFi libraries (not all WiFi libraries require the

SPI library, but there is no penalty if you include it).

The WiFi library you will use depends on the WiFi shield or WiFi

capability of your Arduino board. For older WiFi shields, you include

the WiFi.h library; for older WiFi 101 shields and boards, you include

WiFi101.h; and for newer Arduino Uno WiFi Rev2 and similar boards, you

include WiFiNINA.h. The following shows the complete list of includes

we will need for this example. Notice we include all of the libraries, but

comment out the ones we don’t need. Recall we will be using an Arduino

Uno WiFi Rev2:

Figure 17-1. Arduino WiFi 101 shield (courtesy of Arduino.cc)

ChApTer 17 InTroDuCIng IoT for The ClouD

741

#include <SPI.h>

#include <WiFiNINA.h> // Arduino Uno, MKR-boards, etc.

//#include <WiFi101.h> // Arduino WiFi 101 shield

//#include <WiFi.h> // (retired) Arduino WiFi shields

Next, we need to declare variables for our SSID and password

(assuming you’re using WPA or similar authentication). Newer Arduino

examples use a separate file to store the SSID and password. The file is

typically named arduino_secrets.h. You can add the file by creating it

and saving it in the sketch folder (remember you may have to close and

reopen the project to see the new file). You can declare these variables in

your main sketch if you’d like, but we will keep with the newer style. The

following shows the contents of our arduino_secrets.h file:

#define SECRET_SSID "myssid"

#define SECRET_PASS "mypassword

To use the file in the main sketch, simply include it as follows:

// Secrets are stored in a separate file

#include "arduino_secrets.h"

Next, we will need a single constant and some variables. For this

example, we will use a delay to wait for the WiFi to connect. Some

examples use a polling loop, but a delay works just as well. The following

shows the constant and variables we need. The last variable stores the

result from checking the status of the connection:

// Constants

#define WIFI_WAIT 5000 // 5 seconds

// Global variables

char ssid[] = SECRET_SSID; // Your network SSID (name)

char pass[] = SECRET_PASS; // Your network password

int status = WL_IDLE_STATUS; // The WiFi radio's status

ChApTer 17 InTroDuCIng IoT for The ClouD

742

To make things a bit easier and to keep our setup() function

cleaner, we will use a new function to set up the WiFi, and we’ll name it

setupWiFi().

The first things we need to do are some error checking. We need to

check to make sure the WiFi module exists, and it is always a good idea

to check its firmware version (for those that permit firmware updates). If

there is no WiFi module, we will return false, and the connection is not

attempted. Once the connection is made, we will return true.

If you detect the firmware needs to be upgraded, we can still continue,

but you may want to update the firmware at some point. Fortunately,

the Arduino IDE has an example sketch to do that. Simply open File ➤

Examples ➤ WiFiNINA ➤ Tools ➤ FirmwareUpdater and follow the

instructions.

Next, we use a loop to attempt our connection. As you likely know,

sometimes it can take some time to connect to WiFi. So a loop will help

us retry the connection until we get a connection by simply calling the

begin() function for the WiFi library passing in the SSID and password.

We then use a delay to wait for the connection to stabilize and then check

the status at the top of the loop.

Once the connection is made via a success code from the begin()

function, we then get our local IP address with the localIP() function of

the WiFi library. That’s it! Listing 17-1 shows the completed function.

Listing 17-1. Basic Setup WiFi Function (Arduino)

bool setupWiFi() {

 int status = WL_IDLE_STATUS;

 // First, check for the WiFi module:

 if (WiFi.status() == WL_NO_MODULE) {

 Serial.println("ERROR: No WiFi detected.");

 return false;

 }

ChApTer 17 InTroDuCIng IoT for The ClouD

743

 // Next, check firmware for latest version

 String firmware_vers = WiFi.firmwareVersion();

 if (firmware_vers < WIFI_FIRMWARE_LATEST_VERSION) {

 Serial.println("WARNING: You should upgrade the firmware");

 }

 // Attempt to connect to Wifi network:

 while (status != WL_CONNECTED) {

 Serial.print("Connecting to WiFi...");

 status = WiFi.begin(ssid, pass);

 // Wait for connection: set according to your environment

 delay(WIFI_WAIT);

 }

 Serial.println("connected.");

 // print your WiFi shield's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 return true;

}

If you look at the WiFi examples, you will find examples of other

operations you can do such as finding the radio status of the connection,

printing the MAC address, and so on. If you need those features, check the

WiFi example sketches for how to write those functions.

Using the setupWiFi() function is easy. We simply check to see if it

returns true, and if it does, we proceed. If not, we print an error and stop.

Listing 17-2 shows the complete sketch for this example.

ChApTer 17 InTroDuCIng IoT for The ClouD

744

Listing 17-2. WiFi_Example Sketch

#include <SPI.h>

#include <WiFiNINA.h> // Arduino Uno, MKR-boards, etc.

//#include <WiFi101.h> // Arduino WiFi 101 shield

//#include <WiFi.h> // (retired) Arduino WiFi shields

// Secrets are stored in a separate file

#include "arduino_secrets.h"

// Constants

#define WIFI_WAIT 5000 // 5 seconds

// Global variables

char ssid[] = SECRET_SSID; // Your network SSID (name)

char pass[] = SECRET_PASS; // Your network password

int status = WL_IDLE_STATUS; // The WiFi radio's status

void setup() {

 Serial.begin(9600);

 while(!Serial);

 // Setup the WiFi

 if (!setupWiFi()) {

 Serial.println("ERROR: Cannot setup wifi. Halting.");

 while (true);

 }

 Serial.println("Congrats! Your Arduino is connected to the

Internet.");

}

void loop() {

}

bool setupWiFi() {

 int status = WL_IDLE_STATUS;

ChApTer 17 InTroDuCIng IoT for The ClouD

745

 // Attempt to connect to Wifi network:

 while (status != WL_CONNECTED) {

 Serial.print("Connecting to WiFi...");

 status = WiFi.begin(ssid, pass);

 // Wait for connection: set according to your environment

 delay(WIFI_WAIT);

 }

 Serial.println("connected.");

 // print your WiFi shield's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 return true;

}

When you execute this sketch, you should see the connection succeed

and your local IP address displayed as shown in the following:

Connecting to WiFi...connected.

IP Address: 192.168.NNN.NNN

Congrats! Your Arduino is connected to the Internet.

Raspberry Pi

Fortunately, unless you are using an old Raspberry Pi board, our Raspberry

Pi has everything we need to connect to the Internet. And, if you are using

the Raspberry Pi to write your code, you’ve already connected it to the

Internet via WiFi or an Ethernet connection.

In the event that you have not connected your Raspberry Pi to the

Internet, you can revisit Chapter 4 to learn how to do that or see the

“Desktop” section in the Raspberry Pi documentation (www.raspberrypi.

org/documentation/configuration/wireless/) for a tutorial on how to

set up your WiFi.

ChApTer 17 InTroDuCIng IoT for The ClouD

http://www.raspberrypi.org/documentation/configuration/wireless/
http://www.raspberrypi.org/documentation/configuration/wireless/

746

OK, now that we’ve got an idea of how to connect our boards to the

Internet, let’s learn how to use IFTTT in the most basic of operations:

triggering a test SMS message.

 Basic Operation

The If This Then That (IFTTT) cloud service is a routing service that allows

you to initiate an action based on some event. In IFTTT, we create applets

that contain an event condition or trigger, which can be one of hundreds

of services such as a simple event notice (we use Webhooks) “this,” and

then connect that to an action with another service “that.” Hence, if “this”

happens, we execute (initiate) “that”. Cool, eh?

Tip for a complete tutorial on what IfTTT is and what you can do
with it, see https://ifttt.com/explore/welcome_to_ifttt.

IFTTT is one of the easiest cloud services to get started with as it has a

very simple, guided setup that makes creating your first applet very easy.

While IFTTT has a free account option, you will be limited to only three

applets and fewer choices for more advanced development, but for getting

started, this is all you need.

Let’s see a complete walk-through for setting up an applet for our first

example – detecting when someone successfully enters a secret knock.

We’ll just do the IFTTT portion here and see how to modify our secret

knock project later.

We will be using two services. The first will allow us to send a request to

trigger the event, and the second is an SMS message to our phone. The first

service is called Webhooks and requires us to create an account to use it.

The Webhooks account is also free. The second service we will use is called

ClickSend, and we need a different account for that. The ClickSend service

is not free, but they provide all new accounts with a $6.00 initial credit.

ChApTer 17 InTroDuCIng IoT for The ClouD

https://ifttt.com/explore/welcome_to_ifttt

747

At about $0.05 per SMS message, we won’t need to add any funds and can

treat ClickSend as “free” for now. Thus, we will need three accounts: one

for IFTTT, another for Webhooks, and a third for ClickSend.

 Using IFTTT

In this section, we will see a walk-through all of the steps to create our first

applet and create the new accounts along the way. For future applets, you

can follow the same process but do not need to create the accounts (if you

are using the same services; new services may require additional accounts).

Briefly, we will create our IFTTT account and then create our first

applet. When we set up the trigger (the “if this”), we will create an account

with Webhooks, configure a condition for the trigger, and then set up the

service to execute when the trigger fires. At this point, we will need to

create an account for ClickSend. Let’s get started.

First, we will navigate to www.ifttt.com and create an account in

IFTTT. We click Get started and then click sign up as shown in Figure 17-2.

Notice the image shows several options for logging in including using an

Apple, Google, or Facebook account. I like to keep my accounts separate,

so if you want to do the same or don’t have an account in one of the other

services, click the sign up link at the bottom shown by the arrow.

Figure 17-2. Create a new IFTTT account

ChApTer 17 InTroDuCIng IoT for The ClouD

http://www.ifttt.com

748

On the next screen, fill in your email address and password and then

click the Sign up button as shown in Figure 17-3.

Once you have a new IFTTT account, you will return to your main

screen. To create your first applet, click the Create button as shown in

Figure 17-4.

The next screen will start the setup for the applet. Figure 17-5 shows

the applet setup screen. Notice the graphics show the “if this” and “then

that” sections known as the trigger and service. Click the Add button as

shown in Figure 17-5 to add the trigger. Notice the “if this” is black, while

the “then that” section is gray. We must set up the trigger before we can set

up the service.

Figure 17-3. Sign up for an IFTTT account

Figure 17-4. IFTTT home page

ChApTer 17 InTroDuCIng IoT for The ClouD

749

Recall we want to use Webhooks. We can search for Webhooks by

typing Webhooks into the text box (capitalization doesn’t matter) and then

select Webhooks by clicking the Webhooks icon as shown in Figure 17-6.

Next, we need to choose a trigger. This involves selecting a trigger and

naming it. During this process, we will need to create a new account for

Webhooks. To proceed, click the Webhooks box as shown in Figure 17-7.

Figure 17-5. Add a trigger for IFTTT

Figure 17-6. Choose the Webhooks service

ChApTer 17 InTroDuCIng IoT for The ClouD

750

When you click Webhooks, it will take you to a new screen where you

can connect the Webhooks service to your account. Click Connect as

shown in Figure 17-8.

Figure 17-7. Choose Webhooks for your trigger

Figure 17-8. Connect to Webhooks

ChApTer 17 InTroDuCIng IoT for The ClouD

751

Next, create your Webhooks account using your email address and

a password. Once you create the account, you will be redirected back to

IFTTT where you can name your trigger. For our example, we will use

secret_knock_accepted as shown in Figure 17-9. When ready, click the

Create trigger button.

When you click the Create trigger button, you will be returned to the

main applet creation screen as shown in Figure 17-10. Now, we're ready

for the “then that” segment. Click the Add button to choose a service to

initiate when the trigger fires.

Figure 17-9. Name the trigger

Figure 17-10. Add a service for the applet

ChApTer 17 InTroDuCIng IoT for The ClouD

752

Recall the service we want to use is named ClickSend. You can find it

quickly by typing in SMS and then choose the ClickSend service as shown in

Figure 17-11. This (or any search) may return more than one entry. If you

have an Android phone, you may want to explore the Android SMS option.

Next, choose an action (there is only the one) as shown in Figure 17-12.

Figure 17-11. Choose the ClickSend service

Figure 17-12. Choose an action for the ClickSend service

ChApTer 17 InTroDuCIng IoT for The ClouD

753

Next, click Connect as shown in Figure 17-13.

This will request you to create an account on ClickSend. Go ahead and

do that now. When complete, you will be asked to verify your account with

a code emailed to your account. Once that code is entered, you will be sent

to your ClickSend home page as shown in Figure 17-14.

Figure 17-13. Connect to ClickSend

ChApTer 17 InTroDuCIng IoT for The ClouD

754

You can log out and go back to the IFTTT page, then click Connect

again, log in to ClickSend, and then click Allow if the popup appears as

shown in Figure 17-15.

Figure 17-15. Allow access (IFTTT)

Figure 17-14. ClickSend home page

ChApTer 17 InTroDuCIng IoT for The ClouD

755

At this point, we can complete the Send SMS action as shown in

Figure 17-16. Here, we add our mobile number in the To box, our name

or number in the From box, and our message formatted with the date and

time the event occurred in the Message box.

Figure 17-16. Send SMS action

ChApTer 17 InTroDuCIng IoT for The ClouD

756

You can use Add ingredient to choose the data you want to add. For this

example, we choose the OccurredAt ingredient in the message to capture

the date and time when the trigger was fired. When done, click Create

action to continue.

You will return to the applet creation page where you can click

Continue to complete the applet as shown in Figure 17-17.

Next, you can review your settings and then click Finish to complete

the applet as shown in Figure 17-18.

Figure 17-17. Complete the applet

ChApTer 17 InTroDuCIng IoT for The ClouD

757

This will return you to your IFTTT home page. You should now see

your applet as shown in Figure 17-19. Notice you only get three free

applets, and the page reminds you of this at the top.

Figure 17-18. Review and finish applet creation

ChApTer 17 InTroDuCIng IoT for The ClouD

758

You may think we’re done, but we’re not. We will need some special

credentials created on Webhooks that you will need to trigger the event.

Click your applet and then click Documentation as shown in Figure 17-20.

Figure 17-19. IFTTT home page with the new applet

Figure 17-20. Getting Webhooks credentials

ChApTer 17 InTroDuCIng IoT for The ClouD

759

This will display your credentials for Webhooks. Figure 17-21 shows an

example of the credentials page.

There are several things of interest on this page that has been redacted.

At the top is the key you will need to place in your code to access the

webhook. In fact, you will use the key to send an HTTP request to the

Webhooks service, and the key is uniquely associated with your trigger.

Next is a URL you can use to test your webhook. Simply click {event}

and replace it with your trigger name. This will complete the URL for you.

For example, you will see something like the following appear on the page.

You can copy that URL and paste it into your browser, which will trigger the

event:

https://maker.ifttt.com/trigger/secret_knock_detected/with/key/

XXXXXXX

Figure 17-21. Webhooks credentials page

ChApTer 17 InTroDuCIng IoT for The ClouD

760

When you do that, you will see a simple message appear like the following:

Congratulations! You've fired the secret_knock_detected event

You can also copy the curl command and paste it into a terminal to fire

the event. When you execute the curl command, you will see confirmation

your trigger fired as shown in the following:

$ curl -X POST https://maker.ifttt.com/trigger/secret_knock_

accepted/with/key/XXXXXXXX

Congratulations! You've fired the secret_knock_accepted event

At this point, if you tried both the URL and the curl command, there

will be two messages on your phone. However, you may not see any right

away. This is because ClickSend will evaluate your first couple of messages.

Once they are approved, you will start receiving SMS messages. If there is

a problem, you will get an email with instructions on how to proceed. You

may also experience a delay with the first few messages, but after that it

should work as expected. Once they are sent, you should see a message on

your phone like Figure 17-22.

Figure 17-22. SMS from our secret_knock_accepted test

ChApTer 17 InTroDuCIng IoT for The ClouD

761

Now, if you sign into the ClickSend website (www.clicksend.com), you

will see the cost of the SMS messages deducted from your initial allowance.

If you plan to run your project for a long time, you may want to add more

money to the account so you don’t miss any messages.

Now that we know how to create an applet in IFTTT and use Webhooks

to link to ClickSend to send an SMS when triggered, we can incorporate

that into our IoT projects.

 Example Projects
Let’s see how to apply what we learned to two of our example projects to

complete the IoT portion for each. Recall we are going to use the secret

knock example from Chapter 13 and the weather project from Chapter 8.

But first, let’s see what software we need for our platforms.

For the Arduino, you need to add one new software library named

ArduinoHttpClient. To install the ArduinoHttpClient software library,

open the Library Manager from the Arduino IDE menu (Sketch ➤

Include Library ➤ Library Manager…). Then search for arduinohttp and

install the latest version of the ArduinoHttpClient library as shown in

Figure 17- 23.

ChApTer 17 InTroDuCIng IoT for The ClouD

http://www.clicksend.com

762

For the Raspberry Pi and Python, we need the Python requests library.

You can install that with the following command:

$ pip3 install requests

Now that our platforms are prepared, let’s see the code to connect our

project to IFTTT.

 Example 1: Secret Knock Alert

In this example, we will use the secret knock project from Chapter 13.

Recall this project uses Grove modules. Refer to Table 13-1 for the

components you will need and Figure 13-7 for how to assemble the project

components. Once that’s done, we can modify the code. If you haven’t

written the code for this project, you should review the code explanations

in Chapter 13 prior to attempting this example. But first, let’s set up IFTTT.

Figure 17-23. Installing the ArduinoHttpClient library (Arduino)

ChApTer 17 InTroDuCIng IoT for The ClouD

763

IFTTT Setup

Since we’ve already set up the applet in IFTTT for the secret knock

example, we need only add the code to the project to trigger the event

in the applet. To do so, we need to issue an HTTP POST2 method via a

command. As you see, this is very easy in Python, but a bit more work for

the Arduino. Let’s start with the Arduino version.

Arduino

The best way to start is to copy the Arduino project folder from Chapter 13

and rename it to secret_knock_iot. To do so, simply copy the secret_

knock folder and rename it. You then must open the new folder and

rename the secret_knock.ino file to secret_knock_iot.ino. Once that is

done, open the new project in the Arduino IDE. You should see the exact

same code as we had in Chapter 13. At this point, you may want to set up

the hardware as described in Chapter 13.

There are a number of things we must do to add the code. First, we

must add the WiFi connection code. Then we can add code to send the

POST method command. Refer to the “Networking: Connecting Your

Board to the Internet” section to learn how to do that. It is recommended

that you add that code first and then test it before adding the rest of the

code. Once you’ve confirmed the WiFi can connect, you can proceed.

Since the modifications to the Arduino code are nontrivial, we will

create a new class to wrap our functionality, make the code easier to use

from the main sketch, and allow us to reuse the class in other projects.

Recall we must create the files with the project closed. We will name

the class Webhook so we need to create two files – Webhook.h and Webhook.

cpp as shown in the following:

Secret_knock_iot % touch Webhook.h

Secret_knock_iot % touch Webhook.cpp

2 www.w3schools.com/tags/ref_httpmethods.asp

ChApTer 17 InTroDuCIng IoT for The ClouD

http://www.w3schools.com/tags/ref_httpmethods.asp

764

Now, reopen the project and click the Webhook.h tab. Here, we will

add the class header, which has only one function named sendTrigger(),

which will accept three values as strings. IFTTT allows you to specify

three key values to pass to your trigger using the keys value1, value2, and

value3. You cannot change these names, unfortunately. We will include

them since we will need them in other projects.

Aside from that, we will need to include the new library and make a

couple of strings: one for the URL for IFTTT (server_name) and another

containing the key for our webhook. Note we don’t need the entire string,

just the portion starting with the first slash. The following shows those

strings. Note that the key string is named resource_str and redacted and

your string will be much longer. The only other variable is the port, which

is port 80 (same as http):

const char *server_name {"maker.ifttt.com"};

const char *resource_str {"/trigger/secret_knock_accepted/with/

key/XXX"};

int port {80};

Listing 17-3 shows the completed header file.

Listing 17-3. Webhook Header File (Arduino)

#include <Arduino.h>

#include <WiFi.h>

#include <ArduinoHttpClient.h>

class Webhook {

public:

 Webhook();

 void sendTrigger(const char *value1="", const char

*value2="", const char *value3="");

ChApTer 17 InTroDuCIng IoT for The ClouD

765

private:

 const char *server_name {"maker.ifttt.com"};

 const char *resource_str {"/trigger/secret_knock_accepted/

with/key/XXX"};

 int port = 80;

 WiFiClient wifi;

 HttpClient *client;

};

Now, let’s complete the constructor and the sendTrigger() function.

The constructor simply creates an instance of the Arduino HttpClient

class. Click the Webhook.cpp tab and create the function as shown in

Listing 17-4.

Listing 17-4. Webhook Code File (Arduino)

#include "Webhook.h"

Webhook::Webhook() {

 client = new HttpClient(wifi, server_name, port);

}

void Webhook::sendTrigger(const char *value1, const char

*value2, const char *value3) {

 Serial.println("Sending webhook trigger to IFTTT.");

 // IFTTT Maker Webhook is limited to (3) key/value pairs

 String postData = "value1=" + String(value1) + "&value2=" +

 String(value2) + "&value3=" +

String(value3);

 String contentType = "application/x-www-form-urlencoded";

 client->post(resource_str, contentType, postData);

ChApTer 17 InTroDuCIng IoT for The ClouD

766

 // read the status code and body of the response

 int statusCode = client->responseStatusCode();

 String response = client->responseBody();

 Serial.print("Status code: ");

 Serial.println(statusCode);

 Serial.print("Response: ");

 Serial.println(response);

}

OK, there’s a lot going on in there. Notice the first thing we do aside

from diagnostic messages is create a string that contains the three values for

the three variables (called ingredients in IFTTT). We then use another string

for the content type of the message we will send. We then pass those strings

along with our resource string to the client->post() function. Next, we

wait for a response from the server and display that in the serial monitor.

To use this in our project, we add a new #include for the Webhook

header, then locate the place in the code where the secret knock is

accepted, and create a new instance of the Webhook class and call the

sendTrigger() as shown in Listing 17-5. The new lines of code are shown

in bold.

Listing 17-5. Adding Webhook to the Main Sketch (Arduino –

secret_knock_iot)

...

 // If knock accepted, turn on green LED, or red LED if

failure

 if (knockSensor->validateSecret()) {

 Serial.println("Secret knock accepted.");

 digitalWrite(GREEN_LED, HIGH);

 delay(3000);

 digitalWrite(GREEN_LED, LOW);

ChApTer 17 InTroDuCIng IoT for The ClouD

767

 Serial.println("Sending trigger to Webhook.");

 Webhook *webhook = new Webhook();

 webhook->sendTrigger();

 delete webhook;

 }

...

OK, that’s it. Now the project is ready to run. Go ahead and try it out.

You should get a new SMS when the secret knock is accepted. If you do

not, go back and make sure you have the correct key in the resource string.

An excerpt of the output you can expect in the serial monitor is shown

in the following:

Connecting to WiFi...connected.

IP Address: 192.168.NN.NN

...

Sending webhook trigger to IFTTT.

Status code: 200

Response: Congratulations! You've fired the secret_knock_

accepted event

...

Python

The Python version is considerably easier. Once the requests library is

installed, you need only copy the Python files (secret_knock.py, knock_

sensor.py) and rename the main script to secret_knock_iot.py.

Next, add the import statement for the requests class. We will also use

a string to store our resource key. Unlike the Arduino version, we can use

the complete key as listed in the Webhooks configuration page. Finally in

the secret knock accepted code segment, use the requests class and call the

post() function passing in the resource string. We can print the result from

the function call to see its status as shown in Listing 17-6.

ChApTer 17 InTroDuCIng IoT for The ClouD

768

Listing 17-6. Adding Webhook Code to Main Script (Python –

secret_knock.py)

Import libraries

import sys

import time

import requests

...

RESOURCE_STR = ("https://maker.ifttt.com/trigger/secret_knock_

accepted/with"

 "/key/XXXXXXXXX")

...

from grovepi import pinMode, digitalRead, digitalWrite

from knock_sensor import KnockSensor

...

 # If knock accepted, turn on green LED, or red LED

if failure

 if sensor.validate_secret():

 print("Secret knock accepted.")

 digitalWrite(GREEN_LED, HIGH)

 time.sleep(3)

 digitalWrite(GREEN_LED, LOW)

 print("Sending trigger to Webhook.")

 retval = requests.post(RESOURCE_STR)

 print(retval.text)

...

That’s it! Go ahead and try it out. You should see an SMS momentarily

after the secret knock is accepted. An excerpt of the output you will see

in the terminal is shown in the following. Notice the response from the

server:

ChApTer 17 InTroDuCIng IoT for The ClouD

769

Sending webhook trigger to IFTTT.

Congratulations! You've fired the secret_knock_accepted event

Now, let’s look at a second example.

 Example 2: Weather Alert

In this example, we will use the weather project from Chapter 8. Recall

we use a Qwiic environmental sensor to read the temperature, humidity,

and barometric pressure. Refer to Table 8-1 for the components you will

need and Figure 8-1 for how to assemble the project components. Once

that’s done, we can modify the code. If you haven’t written the code for

this project, you should review the code explanations in Chapter 8 prior to

attempting this example.

But first, let’s set up IFTTT.

IFTTT Setup

The setup we need for this example is very similar to the secret knock

example. In fact, you can follow the same steps we used to set up the secret

knock applet. The only difference is we will format the message differently

so that we can send the environment data.

Simply visit your home page on IFTTT and then create a new applet.

Name it hows_the_weather as shown in Figure 17-24.

Figure 17-24. Set up the hows_the_weather applet

ChApTer 17 InTroDuCIng IoT for The ClouD

770

When you set up the ClickSend service, use the following for the

message as shown in Figure 17-25.

Notice we used the {{value1}} notation to capture the value1

ingredient as well as the value2 and value3. We will send the temperature,

humidity, and barometric pressure using these built-in labels. You can also

click Add ingredient to automatically format the data item.

Now that we have the IFTTT applet created, we can write the code.

Let’s start with the Arduino version.

Figure 17-25. Set up the hows_the_weather ClickSend service

ChApTer 17 InTroDuCIng IoT for The ClouD

771

Arduino

The best way to start is to copy the Arduino project folder from Chapter 8

and rename it to weather_iot. To do so, simply copy the weather folder

and rename it. You then must open the new folder and rename the

weather.ino file to weather_iot.ino. At this point, you may want to set up

the hardware as described in Chapter 8.

We will be making the same set of changes that we did with the last

example. Specifically, we will add the same WiFi code we used in the last

example, and we will use the new Webhook class we created in the last

example to send the POST message to invoke the trigger.

Since we are reusing the Webhook class from the last example, all you

need to do is copy the Webhook.h and Webhook.cpp files from the secret_

knock_iot folder to the weather_iot folder and open the project in the

Arduino IDE. You should see the exact same code as we had in Chapter 8.

Rather than step through every line of code we need to change given

the WiFi code is the same as the last example, let’s focus only on the

changes you need to fire the hows_the_weather event. The first thing you

need to do is change the resource_str in the Webhook.h file to use the

new event name (hows_the_weather) as shown in the following. Your key

should be the same as the last example:

const char *resource_str {"/trigger/hows_the_weather/with/

key/<KEYHERE>"};

In the main sketch, we create a new instance of the Webhook class

and then call the sendTrigger() function passing in the temperature,

humidity, and barometric pressure values. Listing 17-7 shows the code

you will need to use in the loop() function in the main sketch (new code

shown in bold).

ChApTer 17 InTroDuCIng IoT for The ClouD

772

Listing 17-7. Adding the Webhook to the Main Sketch (Arduino –

weather_iot)

void loop()

{

 // Read the sensor

 float temperature = bme280.readTempC();

 float humidity = bme280.readFloatHumidity();

 float pressure = bme280.readFloatPressure();

 // Display data to serial monitor

 printDiagnostics(temperature, humidity, pressure);

 // Display data to OLED

 showDataOLED(temperature, humidity, pressure);

 // Send the data to our webhook trigger if data has changed

 if ((old_temperature != temperature) or (old_humidity !=

humidity) or

 (old_pressure != pressure)) {

 // Save the data

 old_temperature = temperature;

 old_humidity = humidity;

 old_pressure = pressure;

 Serial.println("Sending a weather update.");

 Webhook *webhook = new Webhook();

 String temp_str = String(temperature);

 temp_str += " C";

 String humid_str = String(humidity);

 humid_str += " %rh";

 String press_str = String(pressure);

 press_str += " hPa";

ChApTer 17 InTroDuCIng IoT for The ClouD

773

 webhook->sendTrigger(temp_str.c_str(), humid_str.c_str(),

 press_str.c_str());

 delete webhook;

 }

 delay(30000);

}

Notice there is some more work going on there. We need to convert

those floating-point numbers for the data to strings, so we use the String

class and add the units too. This will make creating the message in the

ClickSend easier to format.

OK, that’s it. Now the project is ready to run. Go ahead and try it out.

You should get a new SMS when the weather data is presented on the

micro OLED similar to Figure 17-26. If you do not, go back and make sure

you have the correct key in the resource string.

Python

The Python version is easier but requires a bit more work to format the

data values, and we’ll modify the code to only trigger the event if one of the

data items changes. This will greatly reduce the number of SMS messages

sent and shows a nice alternative to lengthening your sample rate. Once

the requests library is installed, you need only copy the Python files

(weather.py, knock_sensor.py) and rename the main script to weather_

iot.py.

Figure 17-26. Example SMS from weather_iot

ChApTer 17 InTroDuCIng IoT for The ClouD

774

Next, add the import statement for the requests class. We will also use

a string to store our resource key. Unlike the Arduino version, we can use

the complete key as listed in the Webhooks configuration page. Finally in

the secret knock accepted code segment, use the requests class and call the

post() function passing in the resource string. We can print the result from

the function call to see its status as shown in Listing 17-8.

Listing 17-8. Adding Webhook Code to Main Script (Python –

weather.py)

Import libraries

import sys

import time

import requests

...

RESOURCE_STR = ("https://maker.ifttt.com/trigger/hows_the_

weather/with" "/key/XXXXXXXXX")

...

 # Compensate for reference pressure

 bme280.sea_level_pressure = 1013.25

 while True:

 # Read the sensor data

 temperature = bme280.temperature

 humidity = bme280.humidity

 pressure = bme280.pressure

 # Display diagnostics

 print_diagnostics(temperature, humidity, pressure)

 # Show data on OLED

 show_data_oled(temperature, humidity, pressure)

 # Send data to the Webhook if it has changed

ChApTer 17 InTroDuCIng IoT for The ClouD

775

 if old_data['temp'] != temperature or

 old_data['humid'] != humidity or old_data['press']

!= pressure:

 # Save the data

 old_data['temp'] = temperature

 old_data['humid'] = humidity

 old_data['press'] = pressure

 # Trigger the update

 print("Sending a weather update.")

 data = {

 "value1": "{:.2f} C".format(temperature),

 "value2": "{:.2f} %rh".format(humidity),

 "value3": "{:.2f} hPa".format(pressure)

 }

 retval = requests.post(RESOURCE_STR, data)

 print(retval.text)

 time.sleep(30)...

Notice we create a dictionary for the values read with keys value1,

value2, and value3. Similar to how we formatted the values for the

Arduino version, we will convert the floating-point values to strings and

add the units to the strings.

Notice also how we used three old_* variables to store the last values

read from the sensor. We can check these values on the next read, and if

any one of them has changed, we send the trigger. Otherwise, we skip the

trigger. This will help reduce the number of SMS messages to send an SMS

only when the data changes. This illustrates how you can create a trigger

that can respond to the data rather than the program flow (in this case,

when the sensor is read).

That’s it! Go ahead and try it out. You should see an SMS momentarily

after the weather data is updated.

ChApTer 17 InTroDuCIng IoT for The ClouD

776

Once you have both examples working, you have just created your first

complete IoT projects! Now your Arduino and Python projects can send

you an SMS. How cool is that?

 Summary
When you take a typical electronics project such as a weather station,

electronic game, home automation, etc. and connect it to the Internet,

you’ve just upped the capabilities of that small project considerably.

We saw two simple examples of this by connecting two of our example

projects to the Internet. Each used a simple IoT cloud service to allow us to

get information from sensors or an event. Clearly, that same if-this-then-

that concept can be applied to some of the other example projects.

For example, you could set up your Simon Says game to send a text to

a group of people announcing a winner. Or you could modify the compass

project to echo a compass reading to your phone. You are only limited by

your imagination!

In this chapter, we learned more about cloud systems and how they

can be used in IoT projects. Now that you’ve seen how easy it is to get

started and how little code is needed in your projects, you can begin to

modify your own projects. But we’ve just scratched the surface here. There

is so much more that can be done with another simple, free cloud solution.

In the next chapter, we will expand our tour of cloud systems for IoT by

looking at one of the most popular free options: ThingSpeak – a popular,

easy-to-use, cloud-based IoT data-hosting service from MathWorks. You

will learn how to send your data to the cloud and display it using nice,

easy-to-use graphics using the previous example projects on both the

Arduino and the Raspberry Pi.

ChApTer 17 InTroDuCIng IoT for The ClouD

777© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3_18

CHAPTER 18

Using ThingSpeak
Now that we’ve built a good foundation of experience working with Qwiic,

STEMMA QT, and Grove modules including how to write code to use the

sensors, respond to inputs (e.g., buttons), and display data as well as how

to use IFTTT to create a simple event-driven IoT solution, it’s time to take

our IoT skills to a new level.

Thus far, we haven’t discussed how to use the data generated from our

IoT projects mainly because we haven’t covered how to store data locally

on our host boards. While doing so is fairly easy for the Raspberry Pi, doing

so for the Arduino is harder and more involved since we’d need to add

either an onboard chip (EEPROM) or secure digital (SD) card. Due to the

limited size of these options, you will encounter issues you need to resolve

such as how much data you want to store and for how long.

While those are things that can be solved, the bigger question is,

What are you going to do with the data? Would you want to see how the

data changes over time, how one sensor data compares to another, how

often a value changes, or more basic statistics like min, max, and average

values? All of these things require processing power that your host board is

unlikely to have (Raspberry Pi excluded).

Furthermore, you may want to see the data presented in one or more

graphs that you can use for a pictorial representation. The best way to do

this is to take advantage of IoT cloud services. Not only can you store the

data easily, but you can also perform analysis on the data and present it in

one of several graphics.

https://doi.org/10.1007/978-1-4842-7234-3_18#DOI

778

In fact, you can store your data in the cloud using a popular, easy-

to- use, cloud-based IoT data-hosting service from MathWorks called

ThingSpeak (www.thingspeak.com). We will see how to take several of the

example projects from this book and connect them to ThingSpeak to see

how we can gain more insights about the data. We will see examples for

both the Arduino and the Raspberry Pi.

But first, let’s take a brief tour of ThingSpeak and how to get started

using it in our projects.

 Getting Started
ThingSpeak offers a free account for noncommercial projects that generate

fewer than 3 million messages (or data elements) per year or around

8,000 messages per day. Free accounts are also limited to four channels

(a channel is equivalent to a project and can save up to eight data items).

If you need to store or process more data than that, you can purchase a

commercial license in one of four categories, each with specific products,

features, and limitations: Standard, Academic, Student, and Home. See

https://thingspeak.com/prices and click each of the license options to

learn more about the features and pricing.

ThingSpeak works by receiving messages from devices that contain the

data you want to save or plot. There are libraries available that you can use

for certain platforms or programming languages such as Arduino or Python.

However, you can also use a machine-to-machine (M2M) connectivity

protocol (called MQTT1) or representational state transfer (REST2) API

designed as a request-response model that communicates over HTTP to

send data to or read data from ThingSpeak. Yes, you can even read your

data from other devices.

1 http://mqtt.org/
2 https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 18 Using thingspeak

http://www.thingspeak.com
https://thingspeak.com/prices
http://mqtt.org/
https://en.wikipedia.org/wiki/Representational_state_transfer

779

Tip see www.mathworks.com/help/thingspeak/channels-
and-charts- api.html for more details about the thingspeak
MQtt and rest api.

When you want to read or write from/to a ThingSpeak channel,

you can either publish MQTT messages, send requests via HTTP to the

REST API, or use one of the platform-specific libraries that encapsulate

these mechanisms for you. A channel can have up to eight data fields

represented as a string or numeric data. You can also process the numeric

data using several sophisticated procedures such as summing, average,

rounding, and more.

We won’t get too far into the details of these protocols. Rather, we will

see how to use ThingSpeak as a quick start guide. MathWorks provides

a complete set of tutorials, documentation, and examples. So, if you

need more information about how ThingSpeak works, check out the

documentation at www.mathworks.com/help/thingspeak/.

The first thing we need to do is create an account.

 Create an Account in ThingSpeak
To use ThingSpeak, you must first sign up for an account. Fortunately,

they provide the option for a free account. In fact, you get a free account

to start with and add (purchase) a license later. To create a free account,

visit https://thingspeak.com/, click Get Started For Free, and then click

Create one! as shown in Figure 18-1.

Chapter 18 Using thingspeak

http://www.mathworks.com/help/thingspeak/channels-and-charts-api.html
http://www.mathworks.com/help/thingspeak/channels-and-charts-api.html
http://www.mathworks.com/help/thingspeak/
https://thingspeak.com/

780

On the next page, fill in your email address, location (general

geographic), and first and last names and then click Continue. You will

then be sent a validation email. Open that and follow instructions to verify

your email and complete your free account by choosing a password. You

may be asked to complete a short questionnaire. Be sure to log in before

continuing.

Next, let’s create our first channel.

 Create a Channel
Once you log in to ThingSpeak, you can create a channel to hold your data.

Recall each channel can have up to eight data items (fields). From your

login home page, click New Channel as shown in Figure 18-2.

Figure 18-1. Create a new ThingSpeak/MathWorks account

Figure 18-2. Creating a channel in ThingSpeak

Chapter 18 Using thingspeak

781

You will be presented with a really long form that has a lot of fields that

you can fill out. Figure 18-3 shows an example of the form.

At a minimum, you need only name the channel, enter a description

(not strictly required but recommended), and then select (tick) one or

more fields naming each.

Figure 18-3. New Channel form

Chapter 18 Using thingspeak

782

So what are all those channel settings? The following gives a brief

overview of each. As you work with ThingSpeak, you may want to start

using some of these fields:

• Percentage complete: A calculated field based on the

completion of the name, description, location, URL,

video, and tags in your channel.

• Channel Name: Unique name for the channel.

• Description: Description of the channel.

• Field#: Tick each box to enable the field.

• Metadata: Additional data for the channel in JSON,

XML, or CSV format.

• Tags: A comma-separated list of keywords for searching.

• Link to External Site: If you have a website about your

project, you can provide the URL here to publish on the

channel.

• Show Channel Location: Tick this box to include the

following fields:

• Latitude: Latitude of the sensor(s) for the project or

source of the data

• Longitude: Longitude of the sensor(s) for the

project or source of the data

• Elevation: Elevation in meters for use with projects

affected by elevation

• Video URL: If you have a video associated with your

project, you can provide the URL here to be published

on the channel.

• Link to GitHub: If your project is hosted in GitHub, you

can provide the URL to be published on the channel.

Chapter 18 Using thingspeak

783

Wow, that’s a lot of stuff for free! As you will see, this isn’t a simple toy

or severely limited product. You can accomplish quite a lot with these

settings. Notice there are places to put links to video, website, and GitHub.

This is because channels can be either private (only your login or API key

as we will see can access) or public. Making a channel public allows you

to share the data with anyone, and thus those URL fields may be handy to

document your project. Cool.

Now, let’s create a practice channel that we will use in the next section

to see how to write data (sometimes called upload) to ThingSpeak. Use the

following parameters for the fields on the New Channel form.

• Name: practice_channel

• Description: Testing ThingSpeak connection from

Arduino and Python

• Field 1: RandInt

Enter the values as shown and then click Save Channel to complete the

process. Now we are ready to test writing some data.

 How to Add ThingSpeak to Your Projects
Once you create your channel, it is time to write some data. There are

two pieces of information you will need for most projects: the API key

for the channel and for some libraries the channel number (the integer

value shown on the channel page). There are libraries available for many

platforms, and on some platforms, there may be several ways (libraries or

techniques) to write data to a ThingSpeak channel.

You can find the API key on the channel page by clicking the API Keys

tab. When you create a new channel, you will have one write and one read

API key. You can add more keys if you need them so that you can use one

key per device, location, customer, etc. Figure 18-4 shows the API Keys tab

for the channel created previously.

Chapter 18 Using thingspeak

784

Notice I masked out the keys. If you make your channel public, do not

share the write key with anyone you don’t want to allow to write to your

channel. You can create new keys by clicking the Generate New Write API

Key or Add New Read API Key button. You can delete read keys by clicking

the Delete API Key button.

We use the key in our code to allow the device to connect to and write

data to the channel. So we typically copy this string from the channel

page and paste it into our code as a string. Recall we may use a library that

encapsulates the HTTP or MQTT mechanism or, in the case of the Raspberry

Pi Python library, we use a Python library and the HTTP protocol. We will

see both in the upcoming sample projects for Arduino and Raspberry Pi.

Now that you understand the basics of writing data to ThingSpeak, let’s

take a look at how to do it in more detail for the Arduino. This is followed

by an example for the Raspberry Pi.

Figure 18-4. API keys for the practice channel

Chapter 18 Using thingspeak

785

 Using ThingSpeak with the Arduino
This project is a very simple sketch to learn how to connect and write data

to a ThingSpeak channel. For the data, we will be generating a random

integer and send that to the channel. While this won’t necessarily give you

anything meaningful, we keep things simple so we can see the mechanics

of how to interact with ThingSpeak.

The hardware we will use is a WiFi-enabled Arduino board. You

don’t need any components beyond the host board itself. If you have

not read through Chapter 17 and implemented the examples to connect

your Arduino to your WiFi, you should review that chapter before

continuing. We will see the code needed for a WiFi connection but without

explanation.

Now, let’s see how we set up the software and the sketch for the

project.

 Configuring the Arduino IDE

To write data to the ThingSpeak channel, we need to install the ThingSpeak

software library. In the Arduino IDE, choose Sketch ➤ Include Library ➤

Manage Libraries…. Enter ThingSpeak in the search box and then click the

Install button as shown in Figure 18-5. Once again, click Install to install

the library.

Chapter 18 Using thingspeak

786

 Write the Sketch

Now that you have the necessary library installed, open a new Arduino

project and name it arduino_thingspeak.ino. Recall we need to add the

WiFi data to our sketch. We will also store our API key and other critical

data in a separate header (secrets.h) file, which will be part of the sketch

and saved in the same folder. To add a header file, click the small down

arrow button to the right of the sketch and select New Tab as shown in

Figure 18-6. In the prompt, enter secrets.h and press Enter. This will open

a new tab. Click that tab to open the file.

Figure 18-5. Installing the ThingSpeak library

Chapter 18 Using thingspeak

787

We will place the WiFi and our ThingSpeak channel data in this file.

Use the #define directive to create new strings that we will use in the main

sketch. The following shows the lines and data you need for the file. Type

these in and save the file:

#define SECRET_SSID "YOUR_SSID" // SSID

#define SECRET_PASS "SSID_PASS" // WiFi Password

#define SECRET_CH_ID 0000000000 // Channel number

#define SECRET_WRITE_APIKEY "ABCDEFGHIJKLMNOP" // Write API Key

These include the SSID and password for your WiFi as well as the write

API key from your ThingSpeak channel and the channel Id. You can find

the channel Id on the channel page in ThingSpeak as shown in Figure 18-7.

Figure 18-6. Add a new tab

Figure 18-7. Finding the channel Id (ThingSpeak)

Chapter 18 Using thingspeak

788

We can also place the setupWiFi() function we learned in Chapter 17

in this file. This allows us to move all of the related statements for setting

up and using the WiFi to the secrets.h file, which we can later copy to other

projects making it really easy to add not only WiFi but also our ThingSpeak

credentials to any project. Listing 18-1 shows the complete code for the

secrets.h file. Since we’ve seen most of the code already, you can read

through the code and move on to the next part.

Listing 18-1. Secrets Header File for WiFi and ThingSpeak

(Arduino)

#include <WiFi.h>

#define SECRET_SSID "SSID_GOES_HERE" // SSID

#define SECRET_PASS "SSID_PASS_HERE" // WiFi Password

#define SECRET_CH_ID 000000000000000 // Channel number

#define SECRET_WRITE_APIKEY "API_WRITE_KEY_HERE" // Write

API Key

#define WIFI_WAIT 5000 // 5 seconds

char ssid[] = SECRET_SSID; // your network SSID (name)

char pass[] = SECRET_PASS; // your network password

WiFiClient client;

bool setupWiFi() {

 int status = WL_IDLE_STATUS;

 // Attempt to connect to Wifi network:

 while (status != WL_CONNECTED) {

 Serial.print("Connecting to WiFi...");

 status = WiFi.begin(ssid, pass);

 // Wait for connection: set according to your environment

 delay(WIFI_WAIT);

 }

Chapter 18 Using thingspeak

789

 Serial.println("connected.");

 // print your WiFi's IP address:

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 return true;

}

Now, return to the main sketch tab. Begin the sketch with the following

includes. You need the ThingSpeak.h and the secrets.h file we just

created:

#include "ThingSpeak.h"

#include <WiFiNINA.h>

#include "secrets.h"

Next, we add a variable to store the pin number for the sensor. Notice

we use those #defines we stored in the secrets.h file:

unsigned long myChannelNumber = SECRET_CH_ID;

const char * myWriteAPIKey = SECRET_WRITE_APIKEY;

Next you define your ThingSpeak API key and feed ID:

char ThingSpeakKey[] = "<YOUR_KEY_HERE>";

#define FEED_NUMBER <YOUR_FEED_HERE>

Now we are ready to write the setup() function. Since we aren’t using

any sensors or modules, we only need to set up the WiFi and connect

like we did in Chapter 17. We also need to instantiate the ThingSpeak

class and initialize the random library by calling randomSeed() (shown in

bold). Listing 18-2 shows a sample setup() function you can use. We will

be using the setupWiFi() function seen in Chapter 17 and defined in the

secrets.h file.

Chapter 18 Using thingspeak

790

Listing 18-2. Setup Function for ThingSpeak Example (Arduino)

void setup() {

 Serial.begin(115200);

 while(!Serial);

 Serial.println("Welcome to the ThingSpeak Arduino

demonstration!");

 // Setup the WiFi

 if (!setupWiFi()) {

 Serial.println("ERROR: Cannot setup wifi. Halting.");

 while (true);

 }

 // Initialize ThingSpeak

 ThingSpeak.begin(client);

 // Set the random seed

 randomSeed(analogRead(0));

}

Finally, the loop() function contains the code to generate a random

integer and send the data to our ThingSpeak channel. To do so, we first

call the setField() function for the ThingSpeak library to set each field

we want to update (field numbers start at 1). There is no correlation with

the field names; rather, we reference the field by number in the order

they were defined. So you must remember the order in which the fields

were listed when you created your channel. For example, if you used

temperature, humidity, and pressure (from top to bottom), temperature

would be field 1, humidity field 2, and pressure field 3.

We then use the writeFields() function to send the data to

ThingSpeak. We can check the result of that call to ensure the code

returned is 200, which means success (Ok). Listing 18-3 shows the loop()

function.

Chapter 18 Using thingspeak

791

Listing 18-3. Loop Function for ThingSpeak Example (Arduino)

void loop() {

 // Generate a random number from 1 to 30

 int randNumber = random(30) + 1;

 Serial.print("Random number generated: ");

 Serial.println(randNumber);

 // Write the data to ThingSpeak

 // Set the fields with the values

 ThingSpeak.setField(1, randNumber);

 // Write to the ThingSpeak channel

 int res = ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 if (res == 200) {

 Serial.println("Channel update successful.");

 } else {

 Serial.print("Problem updating channel. HTTP error code ");

 Serial.println(res);

 }

 delay(30000);

}

Notice we display the actual result if it does not return a code of 200.

Notice also we add a sleep (delay()) at the end to sleep for 30 seconds.

We do this because the ThingSpeak free account is limited to update once

every 15 seconds.

Now that you understand the flow and contents of the sketch, you

can complete the missing pieces and start testing. Listing 18-4 shows the

complete sketch for this project.

Chapter 18 Using thingspeak

792

Listing 18-4. Arduino-Based ThingSpeak Channel Write Example

#include "ThingSpeak.h"

#include "secrets.h"

// Global Variables

unsigned long myChannelNumber = SECRET_CH_ID;

const char * myWriteAPIKey = SECRET_WRITE_APIKEY;

void setup() {

 Serial.begin(115200);

 while(!Serial);

 Serial.println("Welcome to the ThingSpeak Arduino

demonstration!");

 // Setup the WiFi

 if (!setupWiFi()) {

 Serial.println("ERROR: Cannot setup wifi. Halting.");

 while (true);

 }

 // Initialize ThingSpeak

 ThingSpeak.begin(client);

 // Set the random seed

 randomSeed(analogRead(0));

}

void loop() {

 // Generate a random number from 1 to 30

 int randNumber = random(30) + 1;

 Serial.print("Random number generated: ");

 Serial.println(randNumber);

Chapter 18 Using thingspeak

793

 // Write the data to ThingSpeak

 // Set the fields with the values

 ThingSpeak.setField(1, randNumber);

 // Write to the ThingSpeak channel

 int res = ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 if (res == 200) {

 Serial.println("Channel update successful.");

 } else {

 Serial.print("Problem updating channel. HTTP error code ");

 Serial.println(res);

 }

 delay(30000);

}

Note Be sure to substitute your api key and channel number in the
secrets.h file. Failure to do so will result in compilation errors.

Take some time to make sure you have all the code entered correctly

and that the sketch compiles without errors. Once you reach this stage, you

can upload the sketch and try it out.

 Testing the Sketch

To test the sketch, be sure the code compiles and you have your hardware

set up correctly. Once you have a sketch that compiles, upload it to your

Arduino MKR1000 and launch a serial monitor. The following shows an

example of the output you should see:

Welcome to the ThingSpeak Arduino demonstration!

Random number generated: 1

Channel update successful.

Chapter 18 Using thingspeak

794

Random number generated: 3

Channel update successful.

Random number generated: 17

Channel update successful.

Random number generated: 13

Channel update successful.

Random number generated: 15

Channel update successful.

...

Did you see similar output? If you did not, check the return code as

displayed in the serial monitor. You should be seeing a return code of

200 (meaning success). If the return code is a single digit (1, 2, 3, etc.),

you are likely encountering issues connecting to ThingSpeak. If this

occurs, connect your laptop to the same network cable, and try to access

ThingSpeak.

If the connection is very slow, you could encounter a situation in

which you get an error code other than 200 on every other attempt or every

N attempts. If this is the case, you can increase the timeout in the loop()

function to delay processing further. This may help for some very slow

connections, but it is not a cure for a bad or intermittent connection.

Let the sketch run for about 3 minutes before you visit ThingSpeak.

Once the sketch has run for some time, navigate to ThingSpeak, log in,

and click your channel page and then click the Private View tab. We use

the private view because channels are private by default. You should see

results similar to those shown in Figure 18-8.

Chapter 18 Using thingspeak

795

Notice there isn’t much to learn here other than it’s an interesting view

of our data over time, which is a good default view for most data.

We used the private view because that is how the channel is configured

by default. If you want to make the view public, you can by clicking the

Sharing tab and then selecting either sharing with everyone or sharing to

a specific set of people by email address. Keep in mind making the view

public to everyone means anyone who browses the ThingSpeak website.

Thus, you likely only want to share it with certain people. When you use

the Select User option, you type in each email address one at a time and

click Add User. Your intended recipients will receive an email with an

invitation to create a ThingSpeak account. Once they log in, they can click

Channels ➤ Channels shared with me to see your shared view.

Now, let’s look at the Python version of the example. But first, if you

have implemented the Arduino example in this section, you will need to

reset the data in the channel because we’re going to use the same channel.

This isn’t strictly necessary, but helpful if you want to ensure your Python

version is working correctly.

Figure 18-8. Example channel data (Arduino)

Chapter 18 Using thingspeak

796

To clear the data in the channel, open the channel home page and

then click Channel Settings and scroll down to the bottom to locate the

Clear Channel button. Click the button and then reply to the confirmation.

Figure 18-9 shows the clear data section of the channel settings page.

 Using ThingSpeak with the Raspberry Pi
Once again, the code for this project is easy to learn. We will learn how to

connect and write data to a ThingSpeak channel. For the data, we will be

generating a random integer and send that to the channel.

The hardware we will use is simply a Raspberry Pi 4B or similar board.

No additional hardware is needed, but you will need to connect your

Raspberry Pi to your network either via WiFi or Ethernet.

 Configuring the Raspberry Pi

To write data to the ThingSpeak channel, we need to ensure we have the

request Python library installed. You should already have this installed, but

it doesn’t hurt to run the install again. The following shows the command

you should run on the Raspberry Pi:

% pip3 install request

That’s it! Now, let’s write the code. As you will see, it uses a different

mechanism for uploading data to ThingSpeak. This is because we do not

have a class to encapsulate the functionality, but we will write one!

Figure 18-9. Clear data for the ThingSpeak channel

Chapter 18 Using thingspeak

797

 Write the Code

We will be using a POST message with the Python request library for this

version of the example ThingSpeak demonstration. This requires a few

more lines of code than the Arduino version, so we will create a class for it

that we can reuse.

You could write a similar class for the Arduino (and I encourage

you to do so as an exercise), but it won’t save you much since we have a

ThingSpeak library we’re already using on the Arduino.

The class file we will create is named thingspeak.py and will contain

a class named ThingSpeak. For most of the examples where you will use

the class, we need only a constructor and a function to write (upload) data

to ThingSpeak. To make it a bit more tolerant of networking issues, we will

also build a retry loop into the upload procedure.

Note if you want to read data from thingspeak, you can add that
function to this class extending its use to other projects.

Let’s begin with the imports and constants. We need to import the

http.client, time, and urllib libraries as shown in the following. We will

use only one constant: a value for the maximum number of retries. The

idea is upload will retry up to MAX_RETRIES times before aborting. This will

help when the Raspberry Pi is connected to a slow or intermittent network:

import http.client

import time

import urllib

MAX_RETRIES = 10

...

Chapter 18 Using thingspeak

798

For the constructor, we will accept the API key and user-customized

maximum retries with a default of MAX_RETRIES. Since this code is run

once and we need to build a proper POST message with a header and

given the header doesn’t change, we will create that in the constructor too.

For the upload() function, we will require a Python dictionary that

includes each of the keys and their values. We have to add the API key,

but we can do that easily. In the function, we will create a loop that

contains a try...except block for calling the network functions we will

use. Specifically, we open a connection to the ThingSpeak server, issue

the POST request, and then wait for a status code. One important step is

using the urllib class to parse the Python dictionary we pass in with the

keys and values. We need to do this to reformat it for the request.post()

function. We then test the code to ensure the upload worked.

If we encounter a problem with any of the network functions, we sleep

for 5 seconds and then try the commands again. We will do this up to MAX_

RETRIES or until the operation succeeds.

Listing 18-5 shows the complete code for this class. Take some time to

read through it so that you familiarize yourself with how it works.

Listing 18-5. The ThingSpeak Class (Python)

Import libraries

import http.client

import time

import urllib

MAX_RETRIES = 10

class ThingSpeak:

 def __init__(self, key, num_retries=MAX_RETRIES):

 self.api_key = key

 # Create the header

 self.headers = {

Chapter 18 Using thingspeak

799

 "Content-type": "application/x-www-form- urlencoded",

 'Accept': "text/plain"

 }

 self.max_retries = num_retries

 def upload(self, param_dict):

 param_dict.update({'key': self.api_key})

 # Setup the data to send in a JSON (dictionary)

 params = urllib.parse.urlencode(param_dict)

 retry = 0

 while retry <= self.max_retries:

 try:

 # Create a connection over HTTP

 conn = http.client.HTTPConnection("api.

thingspeak.com:80")

 data = None

 # Execute the post (or update) request to

upload the data

 conn.request("POST", "/update", params, self.

headers)

 # Check response from server (200 is success)

 response = conn.getresponse()

 # Display response (should be 200)

 if response.status != 200:

 print("Response: {0} {1}".format(response.

status, response.reason))

 # Read the data for diagnostics

 data = response.read()

 print("Channel update successful.")

 conn.close()

 retry = self.max_retries + 1 # stop the loop

Chapter 18 Using thingspeak

800

 except Exception as err:

 print("WARNING: ThingSpeak connection failed: {0}, "

 "data: {1}".format(err, data))

 if retry <= self.max_retries:

 print("Retrying in 5 seconds. [{}]".

format(retry+1))

 time.sleep(5)

 retry = retry + 1

 else:

 retry = self.max_retries + 1

 print("WARNING: Cannot send data. Exceeded

retries.")

Next is the code for the main script. We will use the new class to

upload the random number we generate. We will name the main script

thingspeak_python.py. If you are following along, open a new file now

with that name. Be sure to place it in the same folder as the thingspeak.py

module.

Listing 18-6 shows the complete code for the script for this project. It

follows a now familiar pattern where we create a main() function and call

it from a try...except block to catch a CTRL+C key sequence. The code is

very simple. All you need to do is put your API key in the constant and run it.

Listing 18-6. Complete Code for the thingspeak_python.py Script

Import libraries

import random

import sys

import time

from thingspeak import ThingSpeak

API KEY

THINGSPEAK_APIKEY = 'YOUR_WRITE_API_KEY_HERE'

Chapter 18 Using thingspeak

801

def main():

 """main"""

 print("Welcome to the ThingSpeak Raspberry Pi

demonstration!")

 print("Press CTRL+C to stop.")

 thing_speak = ThingSpeak(THINGSPEAK_APIKEY)

 while True:

 # Generate a random integer

 rand_int = random.randint(1, 20)

 print("Random number generated: {}".format(rand_int))

 thing_speak.upload({'field1': rand_int})

 # Sleep for 30 seconds

 time.sleep(30)

if __name__ == '__main__':

 try:

 main()

 except (KeyboardInterrupt, SystemExit) as err:

 print("\nbye!\n")

sys.exit(0)

Notice the dictionary we used to pass the data to the upload()

function. Here, we used field1 as the key for the channel field. As it turns

out, we must use field1, field2, etc. for the field key names regardless of

how we may name them in the channel. While this may be a little strange,

you should get in the habit of listing the fields in the dictionary in the order

they appear in the channel setup.

Note Be sure to substitute your api key in the location marked.
Failure to do so will result in runtime errors.

Now that you have all the code entered, let’s test the script and see if it

works.

Chapter 18 Using thingspeak

802

 Testing the Script

To run the script, enter the following command. Let the script run for

several iterations before using Ctrl+C to break the main loop. Listing 18-7

shows an example of the output you should see. You may see retry attempts

if your network drops or you lose connectivity.

Listing 18-7. Sample Output for the Example (Python)

$ python3 ./thingspeak_python.py

Welcome to the ThingSpeak Raspberry Pi demonstration!

Press CTRL+C to stop.

Random number generated: 1

Channel update successful.

Random number generated: 3

Channel update successful.

Random number generated: 17

WARNING: ThingSpeak connection failed: [Errno -3] Temporary

failure in name resolution, data: None

Retrying in 5 seconds. [1]

WARNING: ThingSpeak connection failed: [Errno -3] Temporary

failure in name resolution, data: None

Retrying in 5 seconds. [2]

WARNING: ThingSpeak connection failed: [Errno -3] Temporary

failure in name resolution, data: None

Retrying in 5 seconds. [3]

Channel update successful.

Random number generated: 13

Channel update successful.

Random number generated: 15

Channel update successful.

Random number generated: 9

Channel update successful.

Chapter 18 Using thingspeak

803

Random number generated: 19

Channel update successful.

bye!

If the connection is very slow, you could encounter a situation in

which you get an error code other than 200 every other attempt or every

N attempts. If this is the case, you can increase the timeout in the loop()

function to delay processing further. This may help for some very slow

connections, but it is not a cure for a bad or intermittent connection.

Let the sketch run for about 3 minutes before you visit ThingSpeak.

Once the sketch has run for some time, navigate to ThingSpeak, log in,

and click your channel page and then click the Private View tab. We use

the private view because channels are private by default. You should see

results similar to those shown in Figure 18-10.

Figure 18-10. Example channel data (Python)

Chapter 18 Using thingspeak

804

If you do not see similar data, go back and check the return codes as

discussed in the last project. You should see return codes of 200 (success).

Check and correct any errors in network connectivity or syntax or logic

errors in your script until it runs successfully for several iterations (all

samples stored return code 200).

If you see similar data, congratulations! You now know how to generate

data and save it to the cloud using two different platforms.

Now, let’s turn our attention to several of our previous example

projects retooling them to upload their data to ThingSpeak.

Note thingspeak free accounts are limited to four channels. if you
plan to implement all of the example projects in this chapter, you may
need to delete one or more channels or upgrade your account to a
paid subscription. to delete a channel, navigate to your home page,
then click the Channel Settings tab, scroll down to the bottom, and
click Delete Channel.

 Example IoT Projects
This section includes three of the projects from previous chapters that

we will update to send data to ThingSpeak for visualization. The projects

include the “How’s the weather?” project from Chapter 8, the “digital

gardener” project from Chapter 9, and the “monitoring your environment”

project from Chapter 15. If you have not implemented these projects, you

may want to do so before attempting the following examples.

Each example presents details at a high level, and much of the details

for the original project are omitted for brevity. Rather, we will see details on

the channel to create and how to prepare and modify the source files and

then a demonstration of executing the project.

Chapter 18 Using thingspeak

805

The hardware for each should be the same you used in the previous

projects. The only difference is you will need to substitute an Arduino with

WiFi capabilities and your Raspberry Pi 4B or similar for the Arduino and

Python versions.

 Example 1: IoT Weather Station
Let’s take the project from Chapter 8 and make it a true IoT project. We will

add the WiFi code and ThingSpeak code we saw in the previous section

to send our data to the cloud. Let’s begin with creating a new ThingSpeak

channel.

The hardware for this project is the same as used in Chapter 8. Refer

to the “Hardware Required” section to assemble the components needed.

Read through both the Arduino and Python versions for any differences or

things you need to consider.

 Create the ThingSpeak Channel

The data for this project include three items: temperature in Celsius,

relative humidity, and barometric pressure. We will create a channel that

has three fields named for each of these data items.

Log in to your ThingSpeak account and click New Channel. We will

name the channel Weather IoT. Use the information shown in Figure 18- 11

to complete the form and then click Save Channel at the bottom of the form.

Or you can press Enter, which will save the channel for you. Note that you

will need to tick the checkbox for fields 2 and 3 to get them to accept input.

Chapter 18 Using thingspeak

806

Recall we need to remember the order of the fields. Here, we have

defined Temperature, Humidity, and Pressure where they will be referenced

as field 1, field 2, and field 3 in our Arduino sketch and field1, field2, and

field3, respectively, in our Python code.

Now that we have the channel created, go to the API Keys tab and

record the API key. You will need this information in the next step.

Figure 18- 12 shows which key you will need.

Now we are ready to modify our code.

Figure 18-11. Weather IoT channel settings

Figure 18-12. Weather IoT channel API key

Chapter 18 Using thingspeak

807

 Prepare the Project Files

For this project, you should create a new project folder and copy the code

files from Chapter 8 renaming them as follows. For the Arduino version,

rename the project folder weather_iot and the Arduino sketch weather_

iot. For the Python version, rename the project script to weather_iot.py.

We also need to copy our helper code files for ThingSpeak (and WiFi

for the Arduino) as follows. For the Arduino version, copy the secrets.h

file from the thingspeak_arduino project to your new project folder

(weather_iot). For the Python version, copy the thingspeak.py file to

the same folder as your weather_iot.py script. When you are done, you

should have a folder structure like the following (includes the previous

examples) with the “new” files shown in bold. Note that Ch18 is the main

folder. You can name it whatever you want:

Ch18

 |

 +--- thingspeak_arduino

 | +--- thingspeak_arduino.ino

 | +--- secrets.h

 +--- weather_iot.py

 +--- weather_iot

 | +--- weather_iot.ino

 | +--- secrets.h

 +--- thingspeak.py

 +--- thingspeak_python.py

With that administrative work done, we can add the preliminary code.

Chapter 18 Using thingspeak

808

 Update the Project Code

In this section, we will modify the project code to add the WiFi (Arduino)

and ThingSpeak code to turn our offline project into an IoT project. Let’s

start with the Arduino version and then visit the Python version.

Arduino

Recall we need only import the secrets.h file and add a few variables. We

also need to call the setupWiFi() function. Listing 18-8 shows an excerpt

of the code with the new lines added. The rest of the code from Chapter 8

remains the same. We will update the loop() function in the next section.

Listing 18-8. Updates to the Weather IoT Main Sketch (Arduino)

#include <Wire.h>

#include <SFE_MicroOLED.h>

#include "SparkFunBME280.h"

#include "ThingSpeak.h"

#include "secrets.h"

...

unsigned long myChannelNumber = SECRET_CH_ID;

const char * myWriteAPIKey = SECRET_WRITE_APIKEY;

...

void setup()

{

 Serial.begin(115200);

 Serial.println("How's the weather?");

 Serial.println("------------------");

 Wire.begin();

Chapter 18 Using thingspeak

809

 if (!setupBME280()) {

 Serial.println("The sensor did not respond. Please check

wiring.");

 while(1); //Freeze

 }

 if (!setupOLED()) {

 Serial.println("ERROR: OLED not found!");

 while(1);

 }

 bme280.setReferencePressure(SEALEVEL_REFERENCE);

 delay(3000);

 // Setup the WiFi

 if (!setupWiFi()) {

 Serial.println("ERROR: Cannot setup wifi. Halting.");

 while (true);

 }

 // Initialize ThingSpeak

 ThingSpeak.begin(client);

}

Don’t forget to initialize the ThingSpeak library at the end of the code

with a call to the begin() function. The client variable is defined in the

secrets.h file (in case you’re wondering where it came from).

Next, we need to set up the fields and then call the writeFields()

function from the ThingSpeak Arduino library. Easy, eh? Listing 18-9

shows the completed loop() function with the new code highlighted.

Chapter 18 Using thingspeak

810

Listing 18-9. Updates to the Weather IoT Loop Function (Arduino)

...

void loop()

{

 // Read the sensor

 float temperature = bme280.readTempC();

 float humidity = bme280.readFloatHumidity();

 float pressure = bme280.readFloatPressure();

 // Display data to serial monitor

 printDiagnostics(temperature, humidity, pressure);

 // Display data to OLED

 showDataOLED(temperature, humidity, pressure);

 // Write the data to ThingSpeak

 // Set the fields with the values

 ThingSpeak.setField(1, temperature);

 ThingSpeak.setField(2, humidity);

 ThingSpeak.setField(3, pressure);

 // Write to the ThingSpeak channel

 int res = ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 if (res == 200) {

 Serial.println("Channel update successful.");

 } else {

 Serial.print("Problem updating channel. HTTP error code ");

 Serial.println(res);

 }

 delay(30000);

}

Chapter 18 Using thingspeak

811

Notice the delay() at the bottom of the loop. Recall we need to slow

our data writes down to allow for the ThingSpeak free account time

restrictions. We choose 30 seconds as the delay.

Raspberry Pi

Recall we need only add the import statement and API key. Listing 18-10

shows an excerpt of the code with the new lines added. The rest of the code

from Chapter 8 remains the same. We will update the main() function to

add the ThingSpeak code in the next section.

Listing 18-10. Updates to the Weather IoT Main Script (Python)

Import libraries

import sys

import time

import board

import busio

import adafruit_bme280

import qwiic

from thingspeak import ThingSpeak

API KEY

THINGSPEAK_APIKEY = 'YOUR_WRITE_API_KEY_HERE'

...

Next, we need to declare an instance of our ThingSpeak class from the

thingspeak.py library module and then, after reading the data, form a

Python dictionary and pass that to our thing_speak.upload() function

call. Listing 18-11 shows the function with changes in bold. Notice we

sleep for 30 seconds at the end like we did in the Arduino version. The rest

of the code for this version remains the same as we had in Chapter 8.

Chapter 18 Using thingspeak

812

Listing 18-11. Updates to the Weather IoT Main Function (Python)

...

def main():

 """main"""

 print("\nHow's the Weather?")

 print("------------------")

 if not setup_oled():

 print("ERROR: The OLED module is not found. "

 "Please check your connections!")

 sys.exit(1)

 # Compensate for reference pressure

 bme280.sea_level_pressure = 1013.25

 thing_speak = ThingSpeak(THINGSPEAK_APIKEY)

 while True:

 # Read the sensor data

 temperature = bme280.temperature

 humidity = bme280.humidity

 pressure = bme280.pressure

 # Display diagnostics

 print_diagnostics(temperature, humidity, pressure)

 # Show data on OLED

 show_data_oled(temperature, humidity, pressure)

 # Send data to ThingSpeak channel

 data = {

 'field1': temperature,

 'field2': humidity,

 'field3': pressure

 }

 thing_speak.upload(data)

Chapter 18 Using thingspeak

813

 # Sleep for 30 seconds before next reading

 time.sleep(30)

...

That’s it. We’re ready to execute the project. We will need to let it run

for a few minutes so we can get some data. If you’re running the project

in a controlled environment where the values do not change, you may not

notice much variation. As an exercise, consider altering the environment

to stimulate changes in the data. Don’t use flame or touch the electronics

in any way while they are running.

 Execute and Visualize the Data

At this point, you can set up the hardware and run the project. Let it run

for about 20 minutes and then visit your ThingSpeak channel page. You

should see your data in the channel private view similar to Figure 18-13.

Figure 18-13. Example results (Weather IoT example)

Chapter 18 Using thingspeak

814

While the line graphs are nice in that they show you data changed over

time, they are more than pretty displays. In fact, you can hover your mouse

over any data point and see the raw data as shown in Figure 18-14. Nice!

Once again, you may not see a lot of variances in the data if you

run it in a controlled environment. For better results in a controlled

environment, you should consider changing the sample rate from 30

seconds to every 4–6 hours. This should help show how the data changes

over the course of a day.

You could even combine this code with the IFTTT example from

Chapter 17 and have it send you a text each time the data changes. Go

ahead and experiment!

Note if you choose to run both versions of the project, you may
want to delete the data in the channel before starting the second
version. recall we can delete the channel data by clicking Channel
Settings for the channel on your home page and clicking Clear
Channel at the bottom.

Now, let’s look at the next example project.

Figure 18-14. Chart data details (ThingSpeak)

Chapter 18 Using thingspeak

815

 Example 2: IoT Digital Gardener
Let’s take the project from Chapter 9 and make it a true IoT project. We will

add the WiFi code and ThingSpeak code we saw in the previous section

to send our data to the cloud. Let’s begin with creating a new ThingSpeak

channel.

The hardware for this project is the same as used in Chapter 9. Refer

to the “Hardware Required” section to assemble the components needed.

Read through both the Arduino and Python versions for any differences or

things you need to consider.

 Create the ThingSpeak Channel

The data for this project is a bit different than others. Recall we can have

one or more soil sensors and we generate a moisture evaluation for

each. For this example, we will capture the raw data rather than the label

(category). Thus, we will need one channel with one field for each sensor.

We’ll keep it simple and use only two sensors, but we will write the code to

allow for more. We will create a channel that has two fields named for each

of the sensors. We’ll use the name of the plant(s) they monitor for clarity.

Log in to your ThingSpeak account and click New Channel. We will

name the channel IoT Gardener. Use the information shown in Figure 18- 15

to complete the form and then click Save Channel at the bottom of the form.

Or you can press Enter, which will save the channel for you. Note that you

will need to tick the checkbox for fields 2 and 3 to get them to accept input.

Figure 18-15. IoT Gardener channel settings

Chapter 18 Using thingspeak

816

Recall we need to remember the order of the fields. Here, we have

defined Tomato and FreddyFern where they will be referenced as field 1

and field 2 in our Arduino sketch and field1 and field2, respectively, in

our Python code.

Now that we have the channel created, go to the API Keys tab and

record the API key. You will need this information in the next step. Now we

are ready to modify our code.

 Prepare the Project Files

For this project, you should create a new project folder and copy the

code files from Chapter 9 renaming them as follows. For the Arduino

version, rename the project folder gardener_iot3 and the Arduino sketch

gardener_iot. For the Python version, rename the project script to

gardener_iot.py.

We also need to copy our helper code files for ThingSpeak (and WiFi

for the Arduino) as follows. For the Arduino version, copy the secrets.h

file from the thingspeak_arduino project to your new project folder

(gardener_iot). For the Python version, copy the thingspeak.py file to

the same folder as your gardener_iot.py script. When you are done, you

should have a folder structure like the following (includes the previous

examples) with the “new” files shown in bold. Note that Ch18 is the main

folder. You can name it whatever you want:

Ch18

 |

 +--- gardener_iot

 | +--- QwiicSoilMoisture.h

 | +--- gardener_iot.ino

 | +--- QwiicSoilMoisture.cpp

3 Yes, the channel is named IoT Gardener, yet the files are named gardener_iot*.
That is intentional.

Chapter 18 Using thingspeak

817

 | +--- secrets.h

 +--- gardener_iot.py

 +--- soil_moisture.py

 ...

With that administrative work done, we can add the preliminary code.

 Update the Project Code

In this section, we will modify the project code to add the WiFi (Arduino)

and ThingSpeak code to turn our offline project into an IoT project. Let’s

start with the Arduino version and then visit the Python version.

Arduino

Recall we need only import the secrets.h file and add a few variables. We

also need to call the setupWiFi() function. Listing 18-12 shows an excerpt

of the code with the new lines added. The rest of the code from Chapter 9

remains the same. We will update the loop() function in the next section.

Listing 18-12. Updates to the IoT Gardener Main Sketch (Arduino)

#include <Wire.h>

#include <SerLCD.h>

#include <SparkFun_I2C_Mux_Arduino_Library.h>

#include "QwiicSoilMoisture.h"

#include "ThingSpeak.h"

#include "secrets.h"

// Constants

#define NUMBER_OF_SENSORS 2 // Set number of sensors here

#define DRY_THRESHOLD 250 // Low threshold for dry soil

#define WET_THRESHOLD 400 // High threshold for wet soil

Chapter 18 Using thingspeak

818

// Global Variables

QWIICMUX myMux; // Mux

SerLCD lcd; // Serial LCD

// Create pointer to an array of pointers to the sensor class

QwiicSoilMoisture **soilMoistureSensors;

unsigned long myChannelNumber = SECRET_CH_ID;

const char * myWriteAPIKey = SECRET_WRITE_APIKEY;

void setup()

{

 Serial.begin(9600);

 Serial.println("Digital Gardener!");

 Wire.begin();

 // Now, setup the LCD

 lcd.begin(Wire);

 lcd.clear(); // Clear the display

 lcd.setBacklight(255, 255, 255); // Set backlight to bright

white

 lcd.setContrast(5); // Set contrast. 0<- for

higher contrast

 // 01234567890123456789 - Max characters we can display

 lcd.print("Digital Gardener!");

 // Create set of pointers for instantiated soil moisture

classes

 soilMoistureSensors = new QwiicSoilMoisture *[NUMBER_OF_

SENSORS];

 // Instantiate the instances of the class

Chapter 18 Using thingspeak

819

 for (int x = 0; x < NUMBER_OF_SENSORS; x++)

 soilMoistureSensors[x] = new QwiicSoilMoisture(Wire);

 if (myMux.begin() == false) {

 Serial.println("ERROR: Mux not detected. Freezing...");

 while (1);

 }

 // Initialize all the sensors

 bool initSuccess = true;

 for (byte x = 0; x < NUMBER_OF_SENSORS; x++) {

 myMux.setPort(x);

 if (!soilMoistureSensors[x]->begin()) {

 Serial.print("Sensor ");

 Serial.print(x);

 Serial.println(" did not initialize! Check wiring?");

 initSuccess = false;

 }

 }

 if (initSuccess == false) {

 Serial.print("Freezing...");

 while (1);

 }

 Serial.println("Mux ready...");

 // Setup the WiFi

 if (!setupWiFi()) {

 Serial.println("ERROR: Cannot setup wifi. Halting.");

 while (true);

 }

Chapter 18 Using thingspeak

820

 // Initialize ThingSpeak

 ThingSpeak.begin(client);

 delay(3000);

}

Don’t forget to initialize the ThingSpeak library at the end of the code

with a call to the begin() function. The client variable is defined in the

secrets.h file (in case you’re wondering where it came from).

Next, we need to set up the fields and then call the writeFields()

function from the ThingSpeak Arduino library. Listing 18-13 shows the

completed loop() function with the new code highlighted.

Listing 18-13. Updates to the IoT Gardener Loop Function (Arduino)

...

void loop()

{

 // Read the sensor

 float temperature = bme280.readTempC();

 float humidity = bme280.readFloatHumidity();

 float pressure = bme280.readFloatPressure();

 // Display data to serial monitor

 printDiagnostics(temperature, humidity, pressure);

 // Display data to OLED

 showDataOLED(temperature, humidity, pressure);

 // Write the data to ThingSpeak

 // Set the fields with the values

 ThingSpeak.setField(1, temperature);

 ThingSpeak.setField(2, humidity);

 ThingSpeak.setField(3, pressure);

Chapter 18 Using thingspeak

821

 // Write to the ThingSpeak channel

 int res = ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 if (res == 200) {

 Serial.println("Channel update successful.");

 } else {

 Serial.print("Problem updating channel. HTTP error code ");

 Serial.println(res);

 }

 delay(30000);

}

Notice the delay() at the bottom of the loop. Recall we need to slow

our data writes down to allow for the ThingSpeak free account time

restrictions. We choose 30 seconds as the delay.

Raspberry Pi

Recall we need only add the import statement and API key. Listing 18-14

shows an excerpt of the code with the new lines added. The rest of the code

from Chapter 9 remains the same. We will update the main() function to

add the ThingSpeak code in the next section.

Listing 18-14. Updates to the IoT Gardener Main Script (Python)

Import libraries

import time

import sys

import qwiic_serlcd

from soil_moisture import SoilMoisture

from thingspeak import ThingSpeak

Chapter 18 Using thingspeak

822

API KEY

THINGSPEAK_APIKEY = 'YOUR_WRITE_API_KEY_HERE'

...

Next, we need to declare an instance of our ThingSpeak class from the

thingspeak.py library module and then, after reading the data, form a

Python dictionary and pass that to our thing_speak.upload() function

call. Listing 18-15 shows the function with changes in bold. Notice we

sleep for 30 seconds at the end like we did in the Arduino version. The rest

of the code for this version remains the same as we had in Chapter 9.

Listing 18-15. Updates to the IoT Gardener Main Function (Python)

...

def main():

 """Main function to run the digital gardener example."""

 lcd = qwiic_serlcd.QwiicSerlcd()

 soil_moisture_sensor = SoilMoisture(NUMBER_OF_SENSORS)

 # Use the serial LCD

 print("\nDigital Gardener!")

 if not lcd.connected:

 print("The Qwiic SerLCD device isn't connected to "

 "the system. Please check your connection",

 file=sys.stderr)

 sys.exit(1)

 lcd.setBacklight(255, 255, 255) # set backlight to bright

white

 lcd.setContrast(5) # set contrast

 lcd.clearScreen() # clear the screen

 lcd.print("Digital Gardener!")

 lcd.setCursor(0, 1)

 lcd.print("Getting ready")

Chapter 18 Using thingspeak

823

 for i in range(0, 5):

 lcd.print(".")

 time.sleep(2) # wait sec for system messages to

complete

 thing_speak = ThingSpeak(THINGSPEAK_APIKEY)

 while True:

 lcd.clearScreen()

 data = {}

 for i in range(0, NUMBER_OF_SENSORS):

 value, voltage = soil_moisture_sensor.read_

sensor(i)

 if value > WET_THRESHOLD:

 condition = "Too WET!"

 elif value < DRY_THRESHOLD:

 condition = "Too DRY!"

 else:

 condition = "Ok"

 msg = "#{0}: {1:5} {2}".format(i, value, condition)

 data.update({'field{0:1}'.format(i): value})

 print(msg)

 lcd.setCursor(0, i)

 lcd.print(msg)

 time.sleep(0.5)

 # Send data to ThingSpeak channel

 thing_speak.upload(data)

 # Sleep for 30 seconds

 time.sleep(30)

...

Chapter 18 Using thingspeak

824

Notice we build a dictionary for the data inside the loop that loops over

the set of sensors. Only once all sensors are read do we upload the data to

ThingSpeak. Take some time to review this code until you’re comfortable

how it works.

That’s it. We’re ready to execute the project. We will need to let it run

for a few minutes so we can get some data. If you’re running the project

in a controlled environment where the values do not change, you may not

notice much variation. As an exercise, consider altering the environment

to stimulate changes in the data. Don’t use flame or touch the electronics

in any way while they are running.

 Execute and Visualize the Data

At this point, you can set up the hardware and run the project. Let it run

for about 20 minutes and then visit your ThingSpeak channel page. You

should see your data in the channel private view like Figure 18-16.

Once again, you may not see a lot of variances in the data if you

run it in a controlled environment. For better results in a controlled

environment, you should consider changing the sample rate from 30

seconds to every 4–6 hours. This should help show how the data changes

over the course of a day.

Figure 18-16. Example results (IoT Gardener example)

Chapter 18 Using thingspeak

825

There is more you can do here inside ThingSpeak to enhance your

visuals. The easiest customization is simply changing the chart setup. If

you click the little pencil icon on one of your charts, you will open the

settings dialog for the chart. Here, you can change a number of labels such

as the chart title and axis, change the color, and more.

Let’s give it a go. Figure 18-17 shows the dialog for the tomato plant

data. Notice I changed the title only for demonstration purposes. Once

you have the data entered, click Save to make the changes. The chart will

refresh with the new options.

Let’s see what this looks like. I also changed the title for the fern data.

Figure 18-18 shows the results.

Figure 18-17. Modifying a chart in ThingSpeak

Chapter 18 Using thingspeak

826

You can experiment with the other options. The average, median, and

sum allow you to change the view to those parameters giving you a lot of

control over how the data is presented.

You could also make use of the MatLab connections and widgets

to build a sophisticated view and perform analysis on the data. While I

encourage you to give that a go, it is a bit out of scope for this book.

The good news is there are a few widgets we can use to make our

data more informative. You can add a gauge that shows an analog face,

a numerical display that can show the data in only numeric form, or an

indicator light that you can set to illuminate under certain conditions. I

encourage you to experiment with these and see what you can create.

Let’s look at an example. We are going to add two gauges to our private

view. We will add a gauge configured with a “red zone” for the dry value

range. What this will display is the last value read for the field, and this

permits us to see if the soil is dry at a glance. The default line graphs show

us how the values changed over time, but the more important question we

will likely ask is if the soil is dry.

Start by clicking the Add Widgets button on the private view as shown

in Figure 18-19.

Figure 18-18. Example results with titles (IoT Gardener example)

Chapter 18 Using thingspeak

827

Next, select the gauge widget from the list as shown in Figure 18-20 and

click Next.

Next, you will see a dialog where you can configure the gauge.

Figure 18-21 shows the settings used to create a dry soil gauge. Notice I set

the title, selected the field (tomato plant is field1), and set min and max for

the data range, the interval to 2000, and the dry range from 0 to 4000. Once

you have the data entered, click Save. It may take a few moments for the

graph to refresh.

Figure 18-20. Select graph widget (ThingSpeak)

Figure 18-19. Adding a widget (ThingSpeak)

Chapter 18 Using thingspeak

828

If you’re following along, go ahead and create a second gauge for the

fern (field2). When you’re done, and ThingSpeak refreshes the view, you

should see four widgets like those in Figure 18-22.

Figure 18-21. Creating the dry soil gauge (ThingSpeak)

Chapter 18 Using thingspeak

829

Notice we can now see the data changes over time as well as the

current soil moisture status for each plant. Cool!

Also notice the difference in the chart and gauge for the fern. Here, the

line graph doesn’t tell the whole story, but looking at the gauge tells us that

soil is dry and needs watering. Go ahead and try this same concept with

the indicator widget.

Note if you choose to run both versions of the project, you may
want to delete the data in the channel before starting the second
version. recall we can delete the channel data by clicking Channel
Settings for the channel on your home page and clicking Clear
Channel at the bottom.

Now, let’s look at the next example project.

Figure 18-22. Example results with gauges (IoT Gardener example)

Chapter 18 Using thingspeak

830

 Example 3: IoT Environment Monitor
Let’s take the project from Chapter 15 and make it a true IoT project.

We will add the WiFi code and ThingSpeak code we saw in the previous

section to send our data to the cloud. Let’s begin with creating a new

ThingSpeak channel.

The hardware for this project is the same as used in Chapter 15. Refer

to the “Hardware Required” section to assemble the components needed.

Read through both the Arduino and Python versions for any differences or

things you need to consider.

More specifically, this project requires a specific set of Arduino boards

for the Arduino version. The programming technique used for one of the

sensors requires using the AVR-based boards, which include the original

Uno and others. Once we add the WiFi class, the sketch will become too

large to run on the Uno and similar boards. Thus, we will need to use an

Arduino Mega or Mega 2560 to build this project on the Arduino platform.

 Create the ThingSpeak Channel

The data for this project is like both previous examples. We have numerical

data as well as categorized data. Like the last project, we will capture the

raw data rather than the label (category). The data generated includes the

temperature, barometric pressure, dust concentration, and air quality. So

we will need one channel with one field for each sensor or four fields in all.

Log in to your ThingSpeak account and click New Channel. We will

name the channel IoT Environment Monitor. Use the information shown

in Figure 18-23 to complete the form and then click Save Channel at the

bottom of the form. Or you can press Enter, which will save the channel for

you. Note that you will need to tick the checkbox for fields 2–4 to get them

to accept input.

Chapter 18 Using thingspeak

831

Recall we need to remember the order of the fields. Here, we have

defined Temperature, Pressure, Dust Concentration, and Air Quality where

they will be referenced as field 1, field 2, field 3, and field 4 in our Arduino

sketch and field1, field2, field3, and field4, respectively, in our

Python code.

Now that we have the channel created, go to the API Keys tab and

record the API key. You will need this information in the next step. Now we

are ready to modify our code.

 Prepare the Project Files

For this project, you should create a new project folder and copy the code

files from Chapter 15 renaming them as follows. For the Arduino version,

rename the project folder environment_iot4 and the Arduino sketch

environment_iot. For the Python version, rename the project script to

environment_iot.py.

4 Once again, the channel is named IoT Environment Monitor, yet the files are
named environment_iot*.

Figure 18-23. IoT Environment Monitor channel settings

Chapter 18 Using thingspeak

832

We also need to copy our helper code files for ThingSpeak (and WiFi

for the Arduino) as follows. For the Arduino version, copy the secrets.h

file from the thingspeak_arduino project to your new project folder

(environment_iot). For the Python version, copy the thingspeak.py file

to the same folder as your environment_iot.py script. When you are done,

you should have a folder structure like the following (includes the previous

examples) with the “new” files shown in bold. Note that Ch18 is the main

folder. You can name it whatever you want:

Ch18

 |

 +--- air_monitor.py

 +--- environment_iot.py

 +--- environment_iot

 | +--- AirMonitor.h

 | +--- AirMonitor.cpp

 | +--- environment_iot.ino

 | +--- secrets.h

 ...

With that administrative work done, we can add the preliminary code.

Caution attempting to run the project on an Uno or Leonardo board
may result in unstable execution or compilation errors. this version
of the project requires an arduino aVr board with more memory than
the Uno. it is suggested you use the arduino Mega or Mega 2560.

 Update the Project Code

In this section, we will modify the project code to add the WiFi (Arduino)

and ThingSpeak code to turn our offline project into an IoT project. Let’s

start with the Arduino version and then visit the Python version.

Chapter 18 Using thingspeak

833

Arduino

Recall we need only import the secrets.h file and add a few variables. We

also need to call the setupWiFi() function. Listing 18-16 shows an excerpt

of the code with the new lines added. The rest of the code from Chapter 15

remains the same. We will update the loop() function in the next section.

Listing 18-16. Updates to the IoT Environment Monitor Main

Sketch (Arduino)

#include <Arduino.h>

#include <U8x8lib.h>

#include <Wire.h>

#include "AirMonitor.h"

#include "ThingSpeak.h"

#include "secrets.h"

...

unsigned long myChannelNumber = SECRET_CH_ID;

const char * myWriteAPIKey = SECRET_WRITE_APIKEY;

...

void setup() {

 // Setup buzzer

 pinMode(BUZZER_PIN, OUTPUT);

 Serial.begin(115200);

 while (!Serial);

 // Setup OLED

 oled = new U8X8_SSD1306_128X64_NONAME_HW_I2C(U8X8_PIN_NONE);

 oled->begin();

 oled->setFont(u8x8_font_chroma48medium8_r);

Chapter 18 Using thingspeak

834

 Serial.println("Welcome to the Environment Monitor!");

 Serial.print("Starting....");

 oled->drawString(0, 1, "Environment");

 oled->drawString(0, 2, "Monitor");

 oled->drawString(0, 4, "Starting...");

 airQuality = new AirMonitor();

 delay(3000);

 Serial.println("done.");

 oled->drawString(11, 4, "done.");

 // Setup the WiFi

 if (!setupWiFi()) {

 Serial.println("ERROR: Cannot setup wifi. Halting.");

 while (true);

 }

 // Initialize ThingSpeak

 ThingSpeak.begin(client);

 beep();

 delay(3000);

 oled->clear();

}

Don’t forget to initialize the ThingSpeak library at the end of the code

with a call to the begin() function. The client variable is defined in the

secrets.h file (in case you’re wondering where it came from).

Next, we need to set up the fields and then call the writeFields()

function from the ThingSpeak Arduino library. Listing 18-17 shows the

completed loop() function with the new code highlighted.

Chapter 18 Using thingspeak

835

Listing 18-17. Updates to the IoT Environment Monitor Loop

Function (Arduino)

...

void loop(void) {

 if (airQuality->readData()) {

 // Retrieve the data

 float tempC = airQuality->getTemperature();

 float pressure = airQuality->getPressure();

 float dust = airQuality->getDust();

 AirMonitor::air_quality air = airQuality->getAirQuality();

 oled->drawString(0, 0, "ENVIRONMENT DATA");

 oled->drawString(0, 3, "Temp: ");

 oled->drawString(5, 3, String(tempC, 2).c_str());

 oled->drawString(11, 3, "C ");

 oled->drawString(0, 4, "Pres: ");

 oled->drawString(5, 4, String(pressure, 1).c_str());

 oled->drawString(14, 4, "Pa");

 oled->drawString(0, 5, "Dust: ");

 if (dust == 0.0) {

 oled->drawString(5, 5, "-- ");

 } else {

 oled->drawString(5, 5, String(dust, 2).c_str());

 oled->drawString(10, 5, "% ");

 }

 oled->drawString(0, 6, "AirQ: ");

 switch (air) {

 case AirMonitor::air_quality::ERROR_POOR:

 case AirMonitor::air_quality::POOR:

 oled->drawString(5, 6, "POOR");

 break;

Chapter 18 Using thingspeak

836

 case AirMonitor::air_quality::FAIR:

 oled->drawString(5, 6, "FAIR");

 break;

 case AirMonitor::air_quality::GOOD:

 oled->drawString(5, 6, "GOOD");

 break;

 default:

 oled->drawString(5, 6, "-- ");

 }

 // Write the data to ThingSpeak

 // Set the fields with the values

 ThingSpeak.setField(1, tempC);

 ThingSpeak.setField(2, pressure);

 ThingSpeak.setField(3, dust);

 ThingSpeak.setField(4, air);

 // Write to the ThingSpeak channel

 int res = ThingSpeak.writeFields(myChannelNumber,

myWriteAPIKey);

 if (res == 200) {

 Serial.println("Channel update successful.");

 } else {

 Serial.print("Problem updating channel. HTTP error code ");

 Serial.println(res);

 }

 // Check for environmental quality

 if ((dust > MAX_DUST) or (tempC > MAX_TEMP) or

 (air == AirMonitor::air_quality::POOR) or

 (air == AirMonitor::air_quality::ERROR_POOR)) {

 for (int x = 0; x < WARNING_BEEPS; x++) {

Chapter 18 Using thingspeak

837

 oled->drawString(3, 7, "ENV NOT OK");

 beep(250);

 delay(250);

 oled->drawString(3, 7, " ");

 delay(250);

 }

 }

 } else {

 oled->clear();

 oled->drawString(0, 2, "ERROR! CANNOT");

 oled->drawString(0, 3, "READ DATA");

 }

 delay(SAMPLING_RATE);

}

Since the sampling rate was set at 60 seconds, we do not need to

modify the delay at the end of the loop for this project.

Raspberry Pi

Recall we need only add the import statement and API key. Listing 18-18

shows an excerpt of the code with the new lines added. The rest of the code

from Chapter 15 remains the same. We will update the main() function to

add the ThingSpeak code in the next section.

Listing 18-18. Updates to the IoT Environment Monitor Main Script

(Python)

Import libraries

import sys

import time

from grovepi import pinMode, digitalWrite

import grove_128_64_oled as oled

from air_monitor import AirMonitor, AirQualityEnum

Chapter 18 Using thingspeak

838

from thingspeak import ThingSpeak

API KEY

THINGSPEAK_APIKEY = 'YOUR_WRITE_API_KEY_HERE'

...

Next, we need to declare an instance of our ThingSpeak class from the

thingspeak.py library module and then, after reading the data, use the

existing Python dictionary we created in the class (env_data) and pass

that to our thing_speak.upload() function call. Listing 18-19 shows the

function with changes in bold. The rest of the code for this version remains

the same as we had in Chapter 15.

Listing 18-19. Updates to the IoT Environment Monitor Main

Function (Python)

...

def main():

 """Main"""

 print("Welcome to the Environment Monitor!")

 # Setup the buzzer

 pinMode(BUZZER_PIN, "OUTPUT")

 # Setup the OLED

 setup_oled()

 # Start the AirMonitor

 air_quality = AirMonitor()

 time.sleep(3)

 oled_write(11, 4, "done")

 beep()

 oled.clearDisplay()

 thing_speak = ThingSpeak(THINGSPEAK_APIKEY)

 while True:

 if air_quality.read_data():

Chapter 18 Using thingspeak

839

 # Retrieve the data

 env_data = air_quality.get_data()

 oled_write(0, 0, "ENVIRONMENT DATA")

 oled_write(0, 2, "Temp: ")

 oled_write(5, 2, "{:3.2f}C".format(env_

data["temperature"]))

 oled_write(0, 3, "Pres: ")

 oled_write(5, 3, "{:05.2f}hPa".format(env_

data["pressure"]))

 oled_write(0, 4, "Dust: ")

 if env_data["dust_concentration"] == 0.0:

 oled_write(5, 4, "-- ")

 else:

 oled_write(5, 4,

 "{:06.2f}%".format(env_data["dust_

concentration"]))

 oled_write(0, 5, "airQ: ")

 if env_data["air_quality"] in {AirQualityEnum.ERROR,

 AirQualityEnum.POOR}:

 oled_write(5, 5, "POOR")

 elif env_data["air_quality"] == AirQualityEnum.FAIR:

 oled_write(5, 5, "FAIR")

 elif env_data["air_quality"] == AirQualityEnum.GOOD:

 oled_write(5, 5, "GOOD")

 else:

 oled_write(5, 5, "-- ")

 # Check for environmental quality

 if ((env_data["dust_concentration"] > MAX_DUST) or

 (env_data["temperature"] > MAX_TEMP) or

Chapter 18 Using thingspeak

840

 (env_data["air_quality"] == AirQualityEnum.

POOR) or

 (env_data["air_quality"] == AirQualityEnum.

ERROR)):

 for i in range(0, WARNING_BEEPS):

 oled_write(3, 7, "ENV NOT OK")

 beep(0.250)

 time.sleep(0.250)

 oled_write(3, 7, " ")

 time.sleep(0.250)

 # Send data to ThingSpeak channel

 data = {

 'field1': env_data['temperature'],

 'field2': env_data['pressure'],

 'field3': env_data['dust_concentration'],

 'field4': env_data['air_quality']

 }

 thing_speak.upload(data)

 else:

 oled.clearDisplay()

 oled_write(0, 2, "ERROR! CANNOT")

 oled_write(0, 3, "READ DATA")

 time.sleep(SAMPLING_RATE)...

That’s it. We’re ready to execute the project. We will need to let it run

for a few minutes so we can get some data. If you’re running the project

in a controlled environment where the values do not change, you may not

notice much variation. As an exercise, consider altering the environment

to stimulate changes in the data. Don’t use flame or touch the electronics

in any way while they are running.

Chapter 18 Using thingspeak

841

 Execute and Visualize the Data

At this point, you can set up the hardware and run the project. Let it run

for about 20 minutes and then visit your ThingSpeak channel page. You

should see your data in the channel private view similar to Figure 18-24.

Once again, you may not see a lot of variances in the data if you

run it in a controlled environment. For better results in a controlled

environment, you should consider changing the sample rate from 30

seconds to every 4–6 hours. This should help show how the data changes

over the course of a day.

However, notice the air quality line graph. That’s not telling us

anything, is it? What if we created an indicator widget for that data that

changes color when the air quality gets poor?

Figure 18-24. Example results (IoT Environment Monitor
example)

Chapter 18 Using thingspeak

842

Let’s do that. Go ahead and click Add Widgets and then select the

indicator and fill in the settings as shown in Figure 18-25 and then click

Create. Notice I set the indicator to turn on only if the air quality (field 4)

reaches 3 or greater.

When air quality is good, the indicator is dim as shown in Figure 18-26.

Figure 18-26. Indicator off (IoT Environment Monitor example)

Figure 18-25. Creating an indicator (IoT Environment Monitor
example)

Chapter 18 Using thingspeak

843

Should the data reach a value of 3 to indicate poor air quality, the

indicator will turn on as shown in Figure 18-27. This shows us how we can

use the data to show thresholds reached. It can be used for high thresholds

or low thresholds in which case you may want to choose a less alarming

color such as green or so on.

Now, we can take this a step further and create an array of indicators

for the air quality. For example, we can create one for good air quality,

another for poor, and another for bad. Figure 18-28 shows an example of

the indicators. Note that you can drag and drop the widgets on the view to

rearrange them. Nice! Note: The indicator colors are green for good, yellow

for poor, and red for bad quality.

Figure 18-27. Indicator on (IoT Environment Monitor example)

Chapter 18 Using thingspeak

844

Now I can see at a glance what the air quality is at the moment of last

data read. Very nice!

Note if you choose to run both versions of the project, you may
want to delete the data in the channel before starting the second
version. recall we can delete the channel data by clicking Channel
Settings for the channel on your home page and clicking Clear
Channel at the bottom.

Figure 18-28. Air quality indicators (IoT Environment Monitor
example)

Chapter 18 Using thingspeak

845

 Summary
If you have implemented all of the projects in this book, congratulations!

You are now ready to tackle your own IoT projects. If you’re still working on

the examples, keep at it until you’ve learned everything you need to know

to build your own IoT projects.

Our journey in learning how to build IoT projects for the Arduino and

Python has concluded with a dive into how to use ThingSpeak to satisfy

the needs of your IoT project for storing and displaying your data. In this

chapter, we learned how to get started with ThingSpeak from creating our

account to creating channels to storing our data and even some insights

into how to modify the visualizations. Together with the knowledge you

gained in this chapter and the previous chapters, you now have the skills to

complete your own IoT projects.

In fact, you can now put down this book in triumph and start thinking

of some really cool ways you can implement what you have learned.

Perhaps you want to monitor events and data in your house, workshop,

or garage. Or perhaps you want to design a more complex project that

monitors sound, movement, and ambient temperature changes (like a

home security system). Or maybe you want to revisit the example project

chapters and implement the suggestions at the end of each chapter. All

that and more is possible with what you have learned in this book. Good

luck, and happy IoT projects!

Chapter 18 Using thingspeak

847© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3

 Appendix
This appendix presents a list of the hardware required to complete the

projects presented in the book. It presents the common hardware needed

for all projects and then a section for each component system. While these

lists are included in each chapter and discussed in greater detail, listing

them here helps to see all of the hardware used in the book as a set and

helps when planning to purchase the components you do not already own.

 General Hardware List
The following are the hardware you should obtain in order to complete

the projects in this book. Table A-1 lists the hardware common to all

component systems.

Table A-1. General Hardware Needed

Component URL Qty Cost

Arduino MKR 1010 WiFi www.sparkfun.com/products/15251 1 $35.95

Raspberry Pi 3B or later www.sparkfun.com/categories/233 1 $35.00+

www.adafruit.com/category/176

SparkFun RedBoard Qwiic

(Arduino Uno or

compatible)

www.sparkfun.com/products/15123 1 $19.95

(continued)

https://doi.org/10.1007/978-1-4842-7234-3#DOI
http://www.sparkfun.com/products/15251
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/176
http://www.sparkfun.com/products/15123

848

You will also need the host-to-computer cables associated with

the specific Arduino board you choose. Similarly, you will also need a

keyboard, mouse, power supply, and monitor for your Raspberry Pi

(see Chapter 4 for more details).

Note If you plan to implement only one of the component system
example projects, you do not need both host adapter boards
listed – just choose the one for your chosen platform.

 Consolidated Hardware Lists
This section presents a table that lists the hardware needed to complete

the projects in this book broken down by component system.

 Qwiic Component System
The components needed for the Qwiic and STEMMA QT examples in this

book are listed in Table A-2 organized by chapter for quick reference.

Component URL Qty Cost

Qwiic pHAT for

Raspberry Pi

www.sparkfun.com/products/15945 1 $5.95

Grove Base Shield V2.0

for Arduino

www.seeedstudio.com/Base-

Shield-V2.html

1 $4.45

GrovePi+ www.sparkfun.com/products/15945 1 $5.95

Table A-1. (continued)

 APPendIx

http://www.sparkfun.com/products/15945
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.seeedstudio.com/Base-Shield-V2.html
http://www.sparkfun.com/products/15945

849

Table A-2. Qwiic and STEMMA QT Components Needed

Chapter Component URL Qty Cost

7 Proximity Sensor Breakout –

20cm, VCnL4040

www.sparkfun.com/

products/15177

1 $6.95

Micro OLed Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

2 $1.50

8 environmental Combo

Breakout – BMe280

www.sparkfun.com/

products/15440

1 $14.95

Micro OLed Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

2 $1.50

9 (Arduino) Qwiic Soil Moisture Sensor www.sparkfun.com/

products/17731

1* $8.50

20×4 SerLCd – RGB

Backlight (Qwiic)

www.sparkfun.com/

products/16398

1 $24.95

Qwiic Mux Breakout –

8 Channel

www.sparkfun.com/

products/16398

1 $11.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

3** $1.50

(continued)

 APPendIx

http://www.sparkfun.com/products/15177
http://www.sparkfun.com/products/15177
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/15440
http://www.sparkfun.com/products/15440
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/17731
http://www.sparkfun.com/products/17731
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427

850

Table A-2. (continued)

Chapter Component URL Qty Cost

9 (Python) Soil Moisture Sensor (with

Screw Terminals)

www.sparkfun.com/

products/13637

1* $6.95

20×4 SerLCd – RGB Backlight

(Qwiic)

www.sparkfun.com/

products/16398

1 $24.95

Qwiic 12 Bit AdC – 4 Channel www.sparkfun.com/

products/15334

1 $10.50

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

3** $1.50

Jumper Wires Premium

12" M/M

www.sparkfun.com/

products/9387

1 $4.50

10 Adafruit LSM6dS33 6-doF

Accel + Gyro IMU – STeMMA

QT / Qwiic

www.adafruit.com/

product/4480

1 $5.95

Micro OLed Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

2 $1.50

11 SparkFun Triple Axis

Magnetometer Breakout –

MLx90393

www.sparkfun.com/

products/14571

1 $15.95

Micro OLed Breakout www.sparkfun.com/

products/14532

1 $16.95

Qwiic cable

(any length can be used)

www.sparkfun.com/

products/14427

2 $1.50

(continued)

 APPendIx

http://www.sparkfun.com/products/13637
http://www.sparkfun.com/products/13637
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/16398
http://www.sparkfun.com/products/15334
http://www.sparkfun.com/products/15334
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/9387
http://www.sparkfun.com/products/9387
http://www.adafruit.com/product/4480
http://www.adafruit.com/product/4480
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14571
http://www.sparkfun.com/products/14571
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14427
http://www.sparkfun.com/products/14427

851

 Grove Component System
The components needed for the Grove examples in this book are listed

in Table A-3 organized by chapter for quick reference. Note that

Chapters 14 and 16 require Qwiic components as shown in Table A-2.

Table A-2. (continued)

Chapter Component URL Qty Cost

14 SparkFun Qwiic TMP102 www.sparkfun.com/

products/16304

1 $6.50

16 SparkFun Qwiic Led Button

Breakout

www.sparkfun.com/

products/15931

4 $3.10

Led Tactile Button – White www.sparkfun.com/

products/10439

1 $2.10

Led Tactile Button – Green www.sparkfun.com/

products/10440

1 $2.10

Led Tactile Button – Red www.sparkfun.com/

products/10442

1 $2.10

Led Tactile Button – Blue www.sparkfun.com/

products/10443

1 $2.10

Qwiic cable www.sparkfun.com/

products/14426

4 $0.95

 APPendIx

http://www.sparkfun.com/products/16304
http://www.sparkfun.com/products/16304
http://www.sparkfun.com/products/15931
http://www.sparkfun.com/products/15931
http://www.sparkfun.com/products/10439
http://www.sparkfun.com/products/10439
http://www.sparkfun.com/products/10440
http://www.sparkfun.com/products/10440
http://www.sparkfun.com/products/10442
http://www.sparkfun.com/products/10442
http://www.sparkfun.com/products/10443
http://www.sparkfun.com/products/10443
http://www.sparkfun.com/products/14426
http://www.sparkfun.com/products/14426

852

Table A-3. Grove Components Needed

Chapter Component URL Qty Cost

13 Grove Sound Sensor www.seeedstudio.com/Grove-

Sound-Sensor- Based- on-

LM386- amplifier- Arduino-

Compatible.html

1 $4.90

Grove Red Led www.seeedstudio.com/Grove-

Red-LED.html

1 $1.90

Grove Green Led www.sparkfun.com/

products/14532

1 $1.90

Grove Button www.seeedstudio.com/buttons-

c- 928/Grove- Button.html

1 $1.90

Grove cables

(any length can be

used)

Included with each preceding

module

5

14 Grove Light Sensor wiki.seeedstudio.com/Grove-

Light_Sensor

1 $2.90

Grove Chainable

RGB Led

www.seeedstudio.com/Grove-

Chainable-RGB- Led- V2- 0.html

1 $5.99

Grove LCd RGB

Backlight

www.seeedstudio.com/Grove-

LCD-RGB- Backlight.html

1 $11.90

Grove Qwiic Hub www.seeedstudio.com/Grove-

Qwiic-Hub- p- 4531.html

1 $1.90

Grove cables

(any length can be

used)

Included with each preceding

module

4

Qwiic cable Included with the Qwiic Hub 1

(continued)

 APPendIx

http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Sound-Sensor-Based-on-LM386-amplifier-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Red-LED.html
http://www.seeedstudio.com/Grove-Red-LED.html
http://www.sparkfun.com/products/14532
http://www.sparkfun.com/products/14532
http://www.seeedstudio.com/buttons-c-928/Grove-Button.html
http://www.seeedstudio.com/buttons-c-928/Grove-Button.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-Chainable-RGB-Led-V2-0.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html

853

Table A-3. (continued)

Chapter Component URL Qty Cost

15 Grove OLed 0.96 v1.3 seeedstudio.com/Grove-OLED-

Display-0-96.html

1 $16.40

Grove Buzzer seeedstudio.com/Grove-

Buzzer.html

1 $2.10

Grove I2C High

Accuracy Temperature

Sensor (MCP9808)

seeedstudio.com/Grove-I2C-

High-Accuracy-Temperature-

Sensor-MCP9808.html

1 $5.20

Grove Temperature

and Barometer

Sensor (BMP280)

seeedstudio.com/Grove-

Barometer- Sensor-BMP280.html

1 $9.80

Grove Air Quality

Sensor

www.seeedstudio.com/Grove-

Air-Quality- Sensor- v1- 3-

Arduino- Compatible.html

1 $10.90

Grove dust Sensor www.seeedstudio.com/Grove-

Dust-Sensor- PPD42NS.html

1 $12.70

Grove cables

(any length can be

used)

Included with each preceding

module

6

(continued)

 APPendIx

http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-Compatible.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html
http://www.seeedstudio.com/Grove-Dust-Sensor-PPD42NS.html

854

Table A-3. (continued)

Chapter Component URL Qty Cost

16 Grove dual Button www.seeedstudio.com/Grove-

Dual-Button- p- 4529.html

1 $2.20

Grove Buzzer www.seeedstudio.com/Grove-

Buzzer.html

1 $1.90

Grove LCd RGB

Backlight

www.seeedstudio.com/Grove-

LCD-RGB- Backlight.html

1 $11.90

Grove Qwiic Hub www.seeedstudio.com/Grove-

Qwiic-Hub- p- 4531.html

1 $1.90

Grove cables

(any length can be

used but longer may

be best)

Included with each preceding Grove

module

3

Grove Female

Breakout

(Python version only)

www.seeedstudio.com/Grove-

4-pin- Female- Jumper- to-

Grove- 4- pin- Conversion-

Cable-5- PCs- per- PAck.html

1 $3.90

 APPendIx

http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Dual-Button-p-4529.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-Buzzer.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-LCD-RGB-Backlight.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html
http://www.seeedstudio.com/Grove-Qwiic-Hub-p-4531.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html

855© Charles Bell 2021
C. Bell, Beginning IoT Projects, https://doi.org/10.1007/978-1-4842-7234-3

Index

A
Arduino

balancing act project, 396–414
digital gardener project, 347,

348, 359–373
weather station, 316–328

Arduino boards, 31
analog and digital pins, 33
boards/accessories, 51
buying process, 49, 50
capabilities, 33
distance sensor, 267–281
electronics stores, 52
environment monitor, 621–639
Grove system, 506, 507
hardware, 34–52
IDE (see Integrated development

environment (IDE))
learning resources, 53, 54
meaning, 32
retail stores, 52
Simon game, 669, 670
Simon Says project, 677–704
sketch, 32
sketches, 33
ThingSpeak project, 785–796

Arduino libraries, mood detector
project, 569–587

B
Balancing act project

Arduino libraries
bubble level code file, 412, 413
bubble level header file, 400
calibration tests function,

406–410
class code file, 410–414
class header file, 398–401
compiling process, 414
drawBubble() function, 411
loop() function, 404
micro OLED library, 397
preamble, 402
printMessage() function, 411
setScale() function, 411
setup() function, 403, 404
sketches, 398–415, 425
software, 396, 397

components, 426
digital level project, 425
enclosure

calibration routine, 390
electronics/hobby stores, 391
micro OLED board, 392
mounting base, 392
spirit level project, 390, 391
3D models, 393

https://doi.org/10.1007/978-1-4842-7234-3#DOI

856

executing code, 425
gyroscope sensor, 387
hardware

calibration positions,
395–397

enclosure, 391–394
OLED module, 389
Qwiic daisy chain, 390
requirement, 387, 388
sensor, 389

learning process, 387
project overview, 386
Python code, 426
Raspberry Pi, 415–424
source code, 395

Blink sketch, 63–66
Bubble level, 385, 386

C
Clone boards

definition, 42
Espressif, 47, 48
Fio, 44
Metro from Adafruit, 46
Pro Mini model, 43
Seeeduino, 44, 45

Cloud computing services
ArduinoHttpClient library,

761, 762
definition, 731
IFTTT (see If This Then That

(IFTTT))

IoT projects
data storage, 736
features, 732
offerings system, 733, 734
routing/messaging, 737
services, 734–736
transformation

(queries), 737
visualization tools, 737

overview, 729
secret knock project

Arduino project, 763, 764
IFTTT setup, 762, 763
main sketch, 766
Python version, 767–769
sendTrigger()

function, 765
serial monitor, 767
Webhook header

file, 764, 765
subscription plans/tiers, 731
weather project, 769

Arduino project, 771–773
IFTTT setup, 769, 770
Python version, 773–776
sendTrigger() function, 771

Computer-aided design
(CAD), 311

D
defense-in-depth method, 26
Degrees of freedom (DoF)

module, 385

Balancing act project (cont.)

INDEX

857

Digital compass
Arduino

Adafruit MLX90393
library, 446

compiling process, 462
Micro OLED library, 447
sketch file and folder,

448–463
software libraries, 446, 447

enclosure design
intentional error, 442
Micro OLED board, 443
models, 443
Qwiic board mount, 442
3D printer, 441, 442

hardware
enclosure design, 441–443
magnetic sensor, 440
OLED module, 440
Qwiic cable modules, 440
requirements, 438, 439
sensor calibration, 444, 445

learning process, 430
limitations, 437, 438
magnetometer, 431
mathematical problems, 432

arctangent function, 432
compass calculation,

434–437
declination angle, 433
heading (trigonometry),

432, 433
intentional error, 434, 435
pointer location, 435

project execution
Arduino, 475
OLED modules, 474
Python code, 476
Raspberry Pi, 476
sketches, 475

project overview, 430
Raspberry Pi

compass face class (Python),
465–472

main script (Python),
471–475

software library, 463
source code, 463

sketch file and folder
calibrate() function, 454, 456
class header file, 448–451
code file, 457–462
compiling process, 462
getHeading() function,

456, 457
header file, 447
loop() function, 453
preamble, 451, 452
setup() function, 452

working process, 476
Digital gardener project

Arduino libraries
compiling process, 373
sketches, 361–373
software installation,

359–361
assembly project, 355–358
code execution

INDEX

858

Arduino, 380
modules, 379, 380
Python code, 381
sketches, 380

hardware
12 Bit ADC module, 352, 353
components, 349
I2C Mux module, 350, 351
LCD module, 353, 354
Qwiic soil moisture sensor,

349, 350
requirements, 346–348
soil moisture sensor, 351

learning process, 346
plant monitoring station, 345
project overview, 345
Raspberry Pi, 374–379
sketches

class code file, 370–373
class header/code files, 362
compiling process, 373
files, 361
gardener.ino tab, 365
header file, 362–364
loop() function, 368, 370
setup() function, 366, 368

soil moisture sensor, 357, 358
source code, 359
working process, 382

Distance sensor, 260
advantages, 303
Arduino

micro OLED library, 283

sketches, 284–291
software libraries, 282–284
VCNL4040 library, 282

Arduino board, 267–281
cable breadboard

breakout cable, 271
cable connections, 270
cable pins, 268
connections, 269
I2C Pins, 270
SDA and SCL pins, 269

hardware
Arduino board, 263
components, 261
I2C addresses, 262
requirements, 261
sensors, 262

I2C scanner devices, 273–275
learning process, 260
mounting

modules, 271, 272
mounting project, 302
project execution

Arduino, 299
diagnostic message, 298
Python code, 300–302
Raspberry Pi, 300
serial monitor, 300
sketches, 299

project overview, 260
proximity sensor, 281
Qwiic hat/pHAT, 275
Qwiic modules, 264–266
Raspberry Pi, 292

Digital gardener project (cont.)

INDEX

859

breakout cable
connections, 279

cable connection, 277–280
female breakout cable, 279
GPIO reference card, 280
hat modules, 276, 277
I2C interface, 294
I2C interface and reports, 280
software libraries, 292–294
source code, 295–297
SparkFun Python

libraries, 292
time.sleep() function, 295

shield connection, 267
sketches

Arduino code, 289, 291
begin() function, 285
compiling process, 291
libraries, 284
loop() function, 288
OLED module, 284
setup() function, 286, 287

Due, 38, 39

E
Environment monitor project

enclosure
components, 616
host adapter, 619
modules, 618
printed plate, 618
spacer design, 617
3D mounting plate design, 617

executing code
Arduino, 651, 652
project running display,

650, 651
Raspberry Pi (Python code),

653
Grove connections, 615–617
hardware

air quality sensor, 613
Buzzer module, 609
dust sensor, 614
I2C High Accuracy

Temperature Sensor
(MCP9808), 610–612

OLED 0.96, 609
requirements, 607, 608
temperature and barometer

sensor (BMP280), 612, 613
indoor environment monitor, 605
learning project, 606
MCP9808 library, 622
OLED library, 621
project overview, 605
Raspberry Pi, 638

AirMonitor.py, 640–645
beep() helper function, 647
get_data() function, 640
helper function, 646
main script (Python),

647–651
software libraries, 639

sketches
class code file, 633–639
compiling process, 638

INDEX

860

header/blueprint file,
625–628

main sketch class, 629–633
sensor class, 624

software libraries, 621–624
source code, 620
working process, 654

Espressif boards, 47, 48

F
Fleet management

system, 22–25

G
General-purpose input/output

(GPIO) pins, 31
Grove components, 851–854
Grove component system

Arduino IDE, 506, 507
base shield V2.0, 517
button modules, 517
cabling/connectors, 502
capabilities, 483
component, 494
connections, 520, 521
developer kits, 502–504
environment monitor

air quality sensor, 613
buzzer module, 609
connections, 615–617
dust sensor, 614

I2C High Accuracy
Temperature Sensor (or
simply MCP9808), 610–612

OLED 0.96, 609
temperature and barometer

sensor (BMP280), 612, 613
GPIO header, 519
host adapters, 495–497
LED modules, 516
modules, 520, 521

categories, 497, 498
dual button module, 501
OLED display, 500
red LED module, 499
sound sensor, 500
subcategories, 498
temperature and humidity

sensor, 501
online store index, 494, 495
overview, 481, 482
plugging option, 505, 506
purchase option, 505
Raspberry Pi, 507, 508, 518–520
Simon Says project, 661–670
seed studio, 482, 483
sound sensor, 515
working process

ADC (ADS1115) module, 493
analog protocol, 486
cable and connectors, 484
digital protocol, 486
hub connection, 492
I2C cable, 485, 486
limitations, 491–494

Environment monitor project (cont.)

INDEX

861

screw terminal module, 494
UART protocol, 487

H
Hardware list, 847

component systems, 847, 848
grove, 851–854
Qwiic and STEMMA QT, 848–851

I
I2C addresses, distance sensor,

273–275
If This Then That (IFTTT), 738

account creation, 747
applet service, 751
ClickSend service

access process, 754
action creation, 752
applet creation, 756, 757
connection, 753
home page, 754
SMS action, 755

connection, 750
home page, 748, 758
networking capabilities

Arduino board, 739–745
localIP() function, 742
Raspberry Pi, 745
setup() function, 742
setupWiFi() function, 743
WiFi connections, 738

operation, 746

secret_knock_accepted test, 760
secret knock project, 763
selection process, 749
sign up button, 748
trigger, 749, 751
weather project, 769
Webhooks credentials page, 758
Webhooks service, 749

Integrated development
environment (IDE)

Arduino, 251
blink sketch, 63–66
boards manager, 59
compatible boards, 56
differences, 56
hardware libraries, 59, 60
library manager, 61
meaning, 33
modification, 58
preferences, 58
scan networks

meaning, 66
MKR1000, 69, 70
serial monitor, 67
Uno WiFi Rev2, 66–69

serial port, 56, 57
sketches, 72–75
software libraries, 61, 62
text editor, 54, 55

Inter-Integrated Circuit (I2C)
breakout board, 227
communication protocol, 220
digital protocol, 218–220
hardware interface, 219

INDEX

862

Internet of Things (IoT)
automotive features, 19–21
cloud computing services, 732
device/proprietary software, 4
digital gardener, 815–829
diode/resistor, 4
drones, 24
environment monitor, 830–844
fleet management system,

22–25
hobbyist/enthusiast, 11
ingenious sensory apparatus, 6
interconnected devices, 5
Internet, 8, 9
mailbox, 7
medical applications, 14–19
networks, 13, 14
offerings system, 733, 734
products/services, 10–12
publications, 3
record atmospheric data, 7
retooling, 10
review, 6
security model

cloud services, 28, 29
defense-in-depth

method, 26
devices, 27
encryption, 28
home network, 26

sensors, 7
smart refrigerator, 9
solutions, 12, 13
weather station, 805–814

J
JavaScript Object Notation

(JSON), 198

K
Knock-Knock project

Arduino platform, 522–536
Grove

base shield V2.0, 517
button modules, 517
LED modules, 516
modules, 520, 521
Raspberry Pi+, 518–520
sound sensor, 515

hardware, 513–515
learning process, 513
mechanical locks, 512
project execution

Arduino, 549–552
LEDs process, 549
Python code, 552, 553
Raspberry Pi, 552, 553
transcript, 550

Raspberry Pi, 536
configuration, 538, 539
GrovePi and GrovePi+

software, 537
GrovePi/GrovePi+

Troubleshooting, 539, 540
main script (Python),

546–548
map() function, 542
Python version, 541

INDEX

863

secret knock class, 541–546
software libraries, 536–538

secret (see Secret knock project)
secret knock, 512
sketches, 522

class code file, 530–535
class header file, 523–526
compiling process, 535
KnockSensor.h, 523
loop() function, 528
preamble, 527
readButtonStatus()

function, 530
recordSecret() function, 531
setup() function, 528

source code, 521
working process, 553

L
Leonardo board, 36, 37, 39
Linux operating system, 127

administrative operations, 158
change ownership, 159
files/directories permissions,

158
installing/removing

software, 160–162
run command, 158
shutdown command, 162

booting system, 148
files/directories

change directory, 152
copy files, 152

creation, 153
delete, 154
empty file, 154
manual command, 151
move files, 153

help command, 150
ls command, 152
system commands, 155

archive/unarchive files, 156
history command, 155
print working directory, 155

terminal/command line, 149
utilities, 162, 163

Lithium polymer (Li-Po), 40
Low-cost computing board, 128

M
Magnetometer, 241, 243, 428, 431
MathWorks, see ThingSpeak project
Micro board, 39
Microcontrollers, 31, 52
MKR (maker) series boards, 40–42
Mood detector project

Arduino libraries, 569–587
executing project

Arduino, 601
default screen, 600
detection/presentation, 600
Raspberry Pi (Python), 602

Grove connections, 566, 567
hardware

LCD RGB displays, 564
light sensor, 561

INDEX

864

Qwiic Hub, 565
RGB LED, 562–564
requirements, 559, 560
TMP102 sensor, 565, 566

learning process, 558
modules, 558, 559
overview, 557
Raspberry Pi

main script (Python), 598, 599
MoodLamp class, 590–598
moods class, 588–590
Python code, 586
software libraries, 587
source code, 587

sketches
class code file, 578–586
code file, 576–578
compiling process, 586
getDefaultMood() and

getMood() functions, 572
getMood() function, 577
header file, 572–575
main sketch, 575, 576
setMood() function, 580
source code, 571

software libraries, 569–571
source code, 568
working process, 603

N
Nano, 39, 40
Noncommercial projects, 778

O
Object-oriented programming

(OOP), 188, 189, 206
online retailers, 51, 52, 134
OnStar app, 19–21

P
Pico, 127
Pointers, 96–98
Printed circuit board (PCB), 136,

218, 226
Programming language, 71, 163, 165

address of operator, 96
arithmetic/logical/comparison

operators, 87–89
built-in types, 84
comments, 78–80
compilation process, 80
constants, 88
control structures, 77
convertTemp() function, 82, 83
curly braces, 81
data structures, 92–95
delay() function, 103
flow control statements, 88

conditionals, 88–90
do loop, 91
for loop, 91
loops, 90, 91
while loop, 90

header file, 81
header (SerialMonitorReader.h),

105, 106

Mood detector project (cont.)

INDEX

865

layout, 76, 77
learning, 72
pointers, 96–98
preprocessor directives, 80
readChar() function, 104
SerialMonitorReader.cpp,

106–108
setup() function, 103
sketch (see Sketches)
temperature conversion sketch,

98–105
variables/types, 84–86

Pulse wave modulation (PWM),
229, 662

Pulse width modulation (PWM), 34
Python programming

approach learning, 168
arithmetic, logical, and

comparison operators,
174–176

bitwise operations, 174
classes, 206

code execution, 212
converting roman numerals,

211, 212
roman numeral class,

207–210
classes/objects, 184

add_occupant() method, 193
built-in attributes, 193
data/methods, 185
output process, 194
PickupTruck class, 189–193
sedan.py file, 187, 188

syntax, 185
vehicle.py file, 185, 186

comments, 173
concept, 168, 169
data/files

code execution, 203
JSON code, 198
readlines() method, 200
stores/retrieves data,

199–203
write() method, 200

data structures, 180
dictionaries, 182–184
lists, 180, 181
tuples, 181, 182

documentation, 167
features, 166
flow control statements, 175

conditionals, 175
for loop, 176
loops, 176, 177
while loop, 176

functions, 177–179
in-depth knowledge, 167
interpreter, 179
interpreter processes, 166
items() function, 178
modules, 172
scripts, 195

conversions, 197
converting integers, 196, 197
loops, 195

syntactical machinations, 166
temperature conversion, 204

INDEX

866

code execution, 206
source code, 204, 205

type conversion, 171
variables, 170, 171

Q
Qwiic and STEMMA QT systems

adapter, 225, 226, 228
Arduino, 251–253
balancing act project, 390
breakout board, 227
cable, 224
cable connector, 265
capabilities, 221
components, 235

cables and connectors, 244
categories, 240
connectors, 237
development boards, 235
environmental combo

breakout, 243
host adapters, 237–240
modules, 240–244
RedBoard variant, 236
triple axis magnetometer

breakout, 244
component systems, 218
connections, 222
connector and pinout, 223
connectors, 225
daisy chain, 222
distance sensor, 264–266

grove (See Grove component
system)

hardware, 255, 256
host adapter, 220, 221
I2C digital protocol, 218–220
integrating components, 255
kit product pages, 249
library manager, 251
limitations, 226–228
modules, 224
pinout, 222
plugging/host boards, 250
proximity and OLED module

connections, 266
Raspberry Pi, 253, 254
software library, 257
SparkFun, 220
STEMMA QT (see STEMMA QT

system)

R
Raspberry Pi

accessories
buying process, 138
recommendation, 137
requirement, 136

balancing act project
bubble level class, 417–420
main script (Python), 420–424
Python code, 426
software libraries, 415
source code, 415

board, 134–136

Python programming (cont.)

INDEX

867

boot image
desktop, 145
image/card image, 140, 141
imager software (macOS), 142
operation, 144
OS (32-bit), 142, 143
scenario, 147, 148
SD card, 142, 143
setup sequence, 147
system bootstraps, 145–148

design committee
contributions, 130

designers, 129
digital gardener

main script (Python), 377–379
software libraries, 374
soil moisture class, 375, 376
source code, 374

distance sensor, 275–281
Grove system, 507, 508
hardware, 129
HDMI connectors, 135
low-cost computing board, 128
lower-level hardware and

software, 129
micro-SD drive, 128
model classifications

3A+ model, 130, 131
4B, 133
3B+, 132
keyboard, 133

onboard peripherals, 139
operational platform, 139
Pico, 127

Python (see Python
programming)

Python code, 381
Qwiic and STEMMA QT

systems, 253, 254
weather station, 328–339

S
Screw Terminals, 351, 352, 355–357
Shields, 33, 35, 36, 38, 41, 42, 48, 49
Simon game, 657, 658, 662, 676
Simon Says project

button library, 677
enclosure

modules, 672
mounting plate, 670–676
printed plate, 673–675
spacer design, 672

grove system
Arduino version, 669, 670
Buzzer module, 662
connections, 668
dual button, 661–670
I2C addresses, 666
LED buttons, 662–667
Raspberry Pi (Python), 670

hardware requirement, 659, 660
learning process, 658
project execution

Arduino, 721–723
LCD code, 720
Raspberry Pi (Python),

723, 724

INDEX

868

project overview, 658
Raspberry Pi

Buzzer class, 707–713
generate_sequence()

function, 711
main script, 719–721
play_song() function, 706
Python code, 703, 704
read_button() function, 711
Simon class, 712–719
software libraries, 704
tone() function, 706

sketches
buzzer header file, 680–683
code file, 696–707
compiling process, 703
debouncing code, 694
frequency() and playSong()

functions, 687–692
generateSequence()

function, 695
header file, 683–685
loop() function, 685
main sketch, 686–689
numAlive() function, 693
play() function, 693
playSequence() function, 695
readButton() function, 694
readSequence()

function, 695
setupMode()/startGame()

function, 693
showWinner() function, 694

source code, 678
startGame()/setupMode()

methods, 685
Sketches

button operations, 72
debugging, 115–120
development community, 112
editor window, 74
help option, 122
isolate/reproduce, 123
layout, 76, 77
menu buttons, 72
portions (windows), 74
principles/practices design, 113
reproducible snippet, 124
research potential solution, 123
scratch, 114
software libraries, 677
software testing, 119–122
source code, 676
statements, 75
verify/compile/upload

process, 108
cascading errors, 111
compiler warning, 108–110
errors, 110–112
logical errors, 111
syntax errors, 110

working process, 724
Software testing, 119–122
SparkFun, see Qwiic and STEMMA

QT systems
SparkFun modules, proximity

sensor breakout, 242

Simon Says project (cont.)

INDEX

869

SparkFun system, 236
Spirit level, 385, 386
STEMMA QT system

Adafruit feather, 246
Adafruit Mini PiTFT, 232, 233
cables and connectors, 249
capabilities, 230
connectors, 229
controllers, 244
daisy chain, 231
Dev board, 245
digital compass, 429
limitations, 234
meaning, 228
modules, 230, 232, 246–249
Monochrome, 247
protocols, 229
reverse side, 233

Surface-mount device
(SMD), 35

T
ThingSpeak project, 778

account creation, 779, 780
API keys, 783, 784
Arduino board

channel Id, 787
clear data, 796
configuration, 785, 786
loop() function, 790
secrets header file, 788
setup() function, 789
setupWiFi() function, 788

sketches, 786–793
tab file, 786
testing process, 793–796
writeFields() function, 790

channel creation, 780–783
digital gardener

account creation, 815, 816
chart modification, 825
code, 817–821
dry soil gauge

creation, 828
gauges, 829
graph widget, 827
loop() function, 817
project files, 816, 817
Raspberry Pi, 821–824
visualization, 824–829
widget, 827
writeFields()/loop()

function, 820
environment monitor

air quality indicators, 844
Arduino, 833–837
channel settings, 830, 831
execution/visualization,

841–844
indicator creation, 842
loop() function, 835
main() function, 837
project folder, 831, 832
Raspberry Pi, 837–840
setupWiFi() function, 833

features, 778
MQTT messages, 779

INDEX

870

Raspberry Pi, 796–804
configuration, 796
Python request library,

797–801
request.post() function, 798
testing script, 802–804
thingspeak_python.py, 800
upload() function, 798

weather station
chart data details, 814
creation, 805, 806
execution/visualization,

813, 814
loop()/setupWiFi()

function, 808
main() function, 811
project code, 808
project folder, 807
Raspberry Pi, 811–814
secrets.h file, 808–811
writeFields() function, 809

U, V
UART protocol

base shield V2.0, 491
host adapter, 489–491
modules, 488
transmit (TX)/receive (RX),

487–490
Uno board, 34–36

W, X, Y, Z
Weather station, 305

Arduino libraries, 316–328
environmental sensor, 306
executing project, 339

OLED, 339
Python code, 341, 342
sketches, 340

hardware
code vendors, 315
documentation pages,

311–314
OLED module, 309
requirement, 307
research modules, 310
sensor, 308, 309
software libraries, 314, 315
source code, 315

hectopascal (hPa) units, 316
learning process, 306
project overview, 306
Qwiic cable modules, 309, 310
Raspberry Pi, 328–339

main() function, 335, 336
OLED module, 334
Python version, 332
script code, 337–339
setup_oled() function, 333
software

libraries, 328–332
source code, 330

ThingSpeak project (cont.)

INDEX

871

SparkFun library, 333
SparkFun Qwiic libraries, 332

sketches
BME280 setup, 320
compiling process, 327
loop() function, 323
OLED modules, 319
printDiagnostics()

function, 321

setup() function, 322
showDataOLED()

function, 322
skeleton code, 318
source code, 324, 326, 327

software
libraries, 316–318

working process, 342, 343
WiFi shields, 49, 50

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Part I: Getting Started with IoT
	Chapter 1: Introduction to the Internet of Things
	What Is the Internet of Things?
	The Internet of Things and You
	IoT Is More Than Just Connected to the Internet
	IoT Services

	A Brief Look at IoT Solutions
	Sensor Networks
	Medical Applications
	Automotive IoT Solutions
	Fleet Management

	IoT and Security
	Security Begins at Home
	Secure Your Devices
	Use Encryption
	Security Doesn’t End at the Cloud

	Summary

	Chapter 2: Introducing the Arduino
	What Is an Arduino?
	Arduino Hardware
	Uno
	Leonardo
	Due
	Micro
	Nano
	MKR Series Boards
	Arduino Clones
	Arduino Pro Mini
	Fio
	Seeeduino
	Metro from Adafruit
	Espressif Boards

	Internet Shields
	So Which Do I Buy?
	Where to Buy
	Online Retailers
	Retail Stores (USA)

	Arduino Tutorial
	Learning Resources
	The Arduino IDE
	Modifying the Arduino IDE
	Customize the Environment
	Manage the Hardware Libraries
	Manage the Software Libraries

	Example Sketch: Blink
	Example Sketch: Scan Networks
	Using the Uno WiFi Rev2
	Using the MKR1000

	Summary

	Chapter 3: Arduino Programming
	Getting Started
	Working with Sketches in the Arduino IDE
	Basic Sketch Layout
	setup()
	loop()

	Arduino Language Basics
	The Basics
	Comments
	Including Libraries
	Curly Braces
	Functions

	Variables and Types
	Arithmetic
	Flow Control Statements
	Conditionals
	Loops

	Basic Data Structures
	Pointers
	Practical Example
	TemperatureConverter.ino
	SerialMonitorReader.h
	SerialMonitorReader.cpp

	Compiling Your Sketches
	Warnings
	Errors

	Example Sketches
	Writing Your First Sketch
	Keep It Simple�
	Debugging and Testing
	Debugging
	Testing

	Getting Help
	Isolate and Reproduce
	Research Potential Solutions
	Ask the Right Question

	Summary

	Chapter 4: Introducing the Raspberry Pi
	What Is a Raspberry Pi?
	Raspberry Pi Origins

	Raspberry Pi Boards
	A Tour of the Board
	Required Accessories
	Recommended Accessories
	Where to Buy
	Setting Up the Raspberry Pi
	Choosing a Boot Image (Operating System)
	Creating the Boot Image
	Booting the Board
	Care and Feeding of the SD Card

	Getting Started with Raspberry Pi OS
	Getting Help
	File and Directory Commands
	List Directories and Files
	Change Directory
	Copy
	Move
	Create Directories
	Delete Directories
	Create (Empty) Files
	Delete Files

	System Commands
	Show (Print) Working Directory
	Command History
	Archive Files

	Administrative Commands
	Run as Super User
	Change File/Directory Permissions
	Change Owner
	Install/Remove Software
	Shutdown

	Useful Utilities

	Summary

	Chapter 5: Python Programming for the Raspberry Pi
	Getting Started
	Python Primer
	The Basics
	Variables
	Including Modules
	Comments

	Arithmetic
	Flow Control Statements
	Conditionals
	Loops

	Functions
	Basic Data Structures
	Lists
	Tuples
	Dictionaries

	Classes and Objects

	Example Scripts
	Example 1: Using Loops
	Write the Code
	Execute the Code

	Example 2: Using Complex Data and Files
	Write the Code
	Execute the Code

	Example 3: Temperature Conversion
	Write the Code
	Execute the Code

	Example 4: Using Classes
	Write the Code
	Execute the Code

	Summary

	Part II: The Qwiic and STEMMA QT Component Systems
	Chapter 6: Introducing Qwiic and STEMMA QT
	Overview
	What Is I2C?
	The Qwiic Component System
	Capabilities
	How Does It Work?
	Limitations

	The STEMMA QT Component System
	Capabilities
	How Does It Work?
	Limitations

	Components Available
	The Qwiic Component System
	Development Boards
	Host Adapters
	Modules
	Cabling and Connectors

	The STEMMA QT Component System
	Controllers
	Modules
	Cabling and Connectors

	Where to Buy Qwiic and STEMMA QT Components

	Using the Components in Your Projects
	Loading Qwiic and STEMMA QT Libraries for the Arduino
	Loading Qwiic and STEMMA QT Libraries for the Raspberry Pi

	Integrating Additional Components
	Assembling the Hardware
	Adapting Software Libraries

	Summary

	Chapter 7: Keep Your Distance!
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Sensor
	A Note About I2C Addresses
	Arduino Board

	Assemble the Qwiic Modules
	Connecting to the Arduino
	Using a Shield
	Using a Special Cable
	Mounting Modules
	Detecting I2C Devices on the Arduino

	Connecting to the Raspberry Pi
	Using a Hat
	Using a Special Cable
	Detecting I2C Devices on the Raspberry Pi

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Compile the Sketch

	Raspberry Pi
	Install Software Libraries
	Write the Code

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch
	Something Isn’t Working… Now What?

	Python Code on the Raspberry Pi
	Execute the Python Code
	Something Isn’t Working… Now What?

	Going Further
	Mounting the Project in a Case
	Alternative Project Ideas

	Summary

	Chapter 8: How’s the Weather?
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Sensor
	OLED

	Assemble the Qwiic Modules
	Researching the Hardware
	Read the Documentation!
	Install the Software Libraries
	Explore the Sample Code
	Write Your Own Code

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Compile the Sketch

	Raspberry Pi
	Locating Alternative Software Libraries
	Install Software Libraries
	Write the Code

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Chapter 9: Digital Gardener
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Qwiic Soil Moisture Sensor
	Qwiic I2C Mux
	Soil Moisture Sensor (with Screw Terminals)
	Qwiic 12 Bit ADC
	LCD

	Assemble the Qwiic Modules
	Calibrating the Sensors

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Class Header File
	Main Sketch
	Class Code File

	Compile the Sketch

	Raspberry Pi
	Install Software Libraries
	Write the Code
	Soil Moisture Class
	Main Script (Python)

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Chapter 10: Balancing Act
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Sensor
	OLED

	Assemble the Qwiic Modules
	Using an Enclosure
	Calibrating the Sensor

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Class Header File
	Main Sketch
	Class Code File

	Compile the Sketch

	Raspberry Pi
	Install a Software Library
	Write the Code
	Bubble Level Class
	Main Script (Python)

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Chapter 11: Digital Compass
	Project Overview
	What Will We Learn?
	What Is a Magnetometer?
	Mathematical Problems
	Calculating a Heading
	Intentional Error
	Compass Calculations

	Limitations

	Hardware Required
	About the Hardware
	Sensor
	OLED

	Assemble the Qwiic Modules
	Using an Enclosure
	Calibrating the Sensor

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Class Header File
	Main Sketch
	Class Code File

	Compile the Sketch

	Raspberry Pi
	Install a Software Library
	Write the Code
	Compass Face Class
	Main Script (Python)

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Part III: The Grove Component System
	Chapter 12: Introducing Grove
	Overview
	The Grove Component System
	Capabilities
	How Does It Work?
	I2C
	Digital
	Analog
	UART

	Limitations

	Components Available
	Host Adapters
	Modules
	Cabling and Connectors
	Developer Kits
	Where to Buy Grove Components

	Using the Components in your Projects
	Loading Grove Libraries for the Arduino
	Loading Grove Libraries for the Raspberry Pi

	Summary

	Chapter 13: Example: Knock-Knock!
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Sound Sensor
	Grove LED
	Grove Button
	Grove Base Shield V2.0 for the Arduino
	GrovePi+ for the Raspberry Pi

	Connect the Grove Modules

	Write the Code
	Arduino
	Write the Sketch
	Class Header File
	Main Sketch
	Class Code File

	Compile the Sketch

	Raspberry Pi
	Install Software Libraries
	Configure the Raspberry Pi 4 or 400
	GrovePi/GrovePi+ Troubleshooting Tips
	Write the Code
	Secret Knock Class
	Main Script (Python)

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Chapter 14: Mood Lighting
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Grove Light Sensor
	Grove Chainable RGB LED
	Grove LCD RGB Backlight
	Grove Qwiic Hub
	Qwiic TMP102

	Connect the Grove Modules

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Class Header File: Moods
	Class Header File: MoodLamp
	Main Sketch
	Class Code File: Moods
	Class Code File: MoodLamp

	Compile the Sketch

	Raspberry Pi
	Install a Software Library
	Write the Code
	Moods Class
	MoodLamp Class
	Main Script (Python)

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Chapter 15: Monitoring Your Environment
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Grove OLED 0.96
	Grove Buzzer
	Grove I2C High Accuracy Temperature Sensor (MCP9808)
	Grove Temperature and Barometer Sensor (BMP280)
	Grove Air Quality Sensor
	Grove Dust Sensor

	Connect the Grove Modules
	Using an Enclosure

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Class Header File
	Main Sketch
	Class Code File

	Compile the Sketch

	Raspberry Pi
	Install Software Libraries
	Write the Code
	AirMonitor Class
	Main Script (Python)

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Chapter 16: Simon Says
	Project Overview
	What Will We Learn?

	Hardware Required
	About the Hardware
	Grove Dual Button
	Grove Buzzer
	Qwiic LED Buttons

	Connect the Grove Modules
	Connections for Arduino
	Connections for Raspberry Pi

	Using an Enclosure

	Write the Code
	Arduino
	Install Software Libraries
	Write the Sketch
	Class Header File: Buzzer
	Class Header File: Simon
	Main Sketch
	Class Code File: Buzzer
	Class Code File: Simon

	Compile the Sketch

	Raspberry Pi
	Install a Software Library
	Write the Code
	Buzzer Class
	Simon Class
	Main Script (Python)

	Execute the Project
	Sketch on the Arduino
	Execute the Sketch

	Python Code on the Raspberry Pi
	Execute the Python Code

	Going Further
	Summary

	Part IV: Going Further: IoT and the Cloud
	Chapter 17: Introducing IoT for the Cloud
	Overview
	What Is the Cloud?
	What Is Cloud Computing Then?
	How Does the Cloud Help IoT?

	IoT Cloud Systems
	IoT Cloud Services Available
	Data Storage
	Data Transformation (Queries)
	Visualization Tools
	Routing and Messaging

	Cloud Services Example: IFTTT
	Getting Started
	Networking: Connecting Your Board to the Internet
	Arduino
	Raspberry Pi

	Basic Operation
	Using IFTTT

	Example Projects
	Example 1: Secret Knock Alert
	IFTTT Setup
	Arduino
	Python

	Example 2: Weather Alert
	IFTTT Setup
	Arduino
	Python

	Summary

	Chapter 18: Using ThingSpeak
	Getting Started
	Create an Account in ThingSpeak
	Create a Channel

	How to Add ThingSpeak to Your Projects
	Using ThingSpeak with the Arduino
	Configuring the Arduino IDE
	Write the Sketch
	Testing the Sketch

	Using ThingSpeak with the Raspberry Pi
	Configuring the Raspberry Pi
	Write the Code
	Testing the Script

	Example IoT Projects
	Example 1: IoT Weather Station
	Create the ThingSpeak Channel
	Prepare the Project Files
	Update the Project Code
	Arduino
	Raspberry Pi

	Execute and Visualize the Data

	Example 2: IoT Digital Gardener
	Create the ThingSpeak Channel
	Prepare the Project Files
	Update the Project Code
	Arduino
	Raspberry Pi

	Execute and Visualize the Data

	Example 3: IoT Environment Monitor
	Create the ThingSpeak Channel
	Prepare the Project Files
	Update the Project Code
	Arduino
	Raspberry Pi

	Execute and Visualize the Data

	Summary

	Appendix
	General Hardware List
	Consolidated Hardware Lists
	Qwiic Component System
	Grove Component System

	Index

