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INTRODUCTION
There may be a myriad of reasons why you decided to take a look at this 
book — perhaps simply because of the title or cover. Regardless of your reason, 
I want this study guide to help pilots sharpen their skills to better operate in 
the cockpit amid an ever-growing number of electronic gadgets designed to 
do our work for us. In short, because of the increased use of calculators and 
computers over the past few years, many of us either never learned or have 
forgotten the “tricks of the trade” that help us work math problems. Whether 
it’s simple addition and subtraction or multiplication and division, we have 
become increasingly reliant on electronics to enhance, supplement, or even 
replace some of our piloting skills. Forget about being able to do square roots 
or simple calculus in our heads!

So, what happens? We tend to get sloppy and over-reliant on the airplane 
“black boxes!” Many times we don’t recognize errors quickly enough or even 
at all! The more advanced we become with our technology, the more men-
tally inefficient and lazy we become.

In this book we’ll study the areas where pilots have traditionally needed 
to have sharp mental math skills. These include such subjects as fuel plan-
ning, temperature conversions, reciprocal headings, turn radius, crosswind 
components, time-speed-distance problems, calculating true airspeed, and 
the 60-to-1 rule, plus many others.

My goal in writing this study guide is to encourage and help you to be 
a more professional and precise pilot. As a result, you will be better armed 
to stay ahead of the flight by using the black boxes to assist you in planning 
the flight rather than being in the position of asking, “What’s it doing now?” 
Or, for those of you without fancy computers to use inflight, this study guide 
will teach you many of the mental math tools and shortcuts you will need 
to better fly and navigate. After all, the world of aviation is fast moving and 
multidimensional; we need all the help we can get just to fly from one airport 
to another.



viii

Make a decision here and now to study and practice, practice, practice the 
mental math exercises discussed in this book. Once through—just scanning 
the exercises—won’t do it for most people. Repetition is the key! Repetition 
is the key!

An additional benefit is in the area of career progression. Simply stated, 
this study guide may greatly improve your technical performance during 
each and every airline job interview you receive as you climb the ladder of 
an airline career. Don’t underestimate the significance of this! With tens of 
thousands of qualified pilot applicants waiting for the chance, airlines can 
easily screen for the best of the best. So, include yourself in that category and 
be ready!

If airline interview preparation is your immediate goal, here are some 
suggestions:

1.	 Contact Cage Marshall Consulting at CageConsulting.com for professional 
airline interview preparation.

2.	 Build a personal study library to include: FAR/AIM, ATP and Flight 
Engineer Test Prep and the books Checklist for Success: A Pilot’s Guide to 
the Successful Airline Interview and Airline Pilot Technical Interviews. Find 
everything you need to prepare at ASA’s website, asa2fly.com.

3.	 Plan on 50 to 100 hours of study preparing for your interview. This may 
include technical study, a review of your own career, and administrative 
time preparing your application and reviewing your records. Don’t wait 
to prepare! Start now!

I hope you enjoy my presentation of the material. But, as with Airline Pilot 
Technical Interviews, my success will be measured largely by the depth at 
which you are able to review and grasp the subjects discussed. I am sure you 
will learn something new that will help you fly the line a little better!

Ron McElroy

http://CageConsulting.com
https://asa2fly.com
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CHAPTER 1

Taking the First Step
The root of mental math proficiency lies in the ability to grasp the basic con-
cepts of addition, subtraction, multiplication, and division. The skill level you 
achieve is simply a reflection of how much work, or repetition, that you put 
into it. Starting now in your everyday activities of paying for gas or groceries, 
giving an allowance to your kids, keeping track of sports statistics or scores, or 
determining how much fuel to put in your aircraft try to do the calculations. A 
good starting point is to write the numbers (or formulas) on a piece of paper, 
study how you solve the problem, and then push the paper aside and repeat 
the problem by visualizing what you have just completed. This takes a little 
extra time and discipline, but repetition and effort is as necessary here as it is 
with any other skill.

When you discover that you need to calculate a solution to a math prob-
lem, first define the problem; i.e., what is the answer you need? Second, look 
for the right formula to use. Most of the formulas you will ever need are right 
here in this book. Third, rearrange the formula to solve for the answer that 
you need. And, fourth, plug in the numbers and solve.

The same is true of the problems in this study guide. If you need to first 
complete the problems with pen and paper, do it! Once you’ve completed 
the problem, set the paper aside and repeat the problem in your head until 
you feel comfortable that you can repeat the solution in a timely manner 
without cheating.

Many of the subject areas in this book will have practice questions. The 
answers are in Appendix C. In addition, there is a comprehensive test in 
Appendix B that will include different problems from all study areas. For all 
problems, try to be as accurate as possible. If you feel you need additional 
problems to solve, create some on your own. In fact, it will help increase your 
proficiency in solving problems to create your own problems.

I cannot overemphasize the importance and significance of having 
solid basic math skills. In most careers, having a slightly better-than-average 
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skill will produce a noticeable increase in performance. That same philosophy 
is true in mental math skills for pilots. Therefore, Appendix A is available for 
extra study to review the basic concepts and techniques for solving simple 
and more complicated math problems we encounter while flying.

In Appendix A, the math skills that are reviewed include addition, subtrac-
tion, multiplication, division, squares, and square roots. In addition, there are 
problems to demonstrate simple and complex levels of proficiency, as well as 
practice problems for you to work.

The pilot population as a whole is no different in their math proficiency 
than in any other industry. Individual proficiency varies greatly. The remain-
der of this study guide relies on your ability to demonstrate basic math 
proficiency in order to understand and use the techniques and develop the 
skills necessary to increase your performance in the cockpit. Therefore, I chal-
lenge you to review and assess your own math problem-solving skills, and 
make a commitment to study Appendix A. If you are a new pilot your future 
employment may be at stake! If you are a seasoned veteran, your cockpit effi-
ciency may improve significantly!

As a professional pilot you recognize the need to be at your top level 
of proficiency every time you fly. The preflight activities of flight planning, 
reviewing the weather, and checking the NOTAMs are a legal requirement 
of every flight. However, the pilot skills you demonstrate are a reflection 
of the basic math skills and techniques you develop in a disciplined and 
focused strategy of study. This study guide is designed to help you be a 
more professional pilot!

Study well. Good luck!
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CHAPTER 2 

Airborne Math Problems

Converting Hours and Minutes
I want to highlight the importance of the ability to convert hours and minutes 
as we normally read them from our watch into a more useful decimal value 
for use in math equations. Many pilots do not immediately recognize that one 
hour and fifteen minutes (1:15 or 1 + 15) does not equal 1.15 hours! Many have 
made the mistake of converting 1:15 to a decimal value of 1.15 (one point one 
five). The real answer is 1.25 hours!

So, here’s the gauge. Since there are 60 minutes per hour, every 6 minutes 
is equal to one-tenth (0.1) hour. Thus, every multiple of 6 minutes is equal to 
the same multiple of tenths (0.1). And, if we desire greater accuracy, every 3 
minutes is equal to one-twentieth (0.05) hour, or one-half the increment of 
6 minutes.

You probably will not need more accuracy than a 3 minute interval in 
these conversions. Especially since it is the goal of this study guide to keep 
numbers and equations as simple and predictable as possible to allow rea-
sonable mental math computations in the cockpit. However, just to be sure, 
I have constructed a short table of these intervals with their decimal equiva-
lent for you to study and learn.

Table 2-1. Decimal equivalents of minutes in an hour.

Character Decimal Equivalent

3 minutes 0.05 hour

6 minutes 0.10 hour

9 minutes 0.15 hour

12 minutes 0.20 hour

continued

.
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Character Decimal Equivalent

15 minutes 0.25 hour

18 minutes 0.30 hour

21 minutes 0.35 hour

24 minutes 0.40 hour

27 minutes 0.45 hour

30 minutes 0.50 hour

33 minutes 0.55 hour

36 minutes 0.60 hour

39 minutes 0.65 hour

42 minutes 0.70 hour

45 minutes 0.75 hour

48 minutes 0.80 hour

51 minutes 0.85 hour

54 minutes 0.90 hour

57 minutes 0.95 hour

60 minutes 1.00 hour

Reciprocal Headings
Seems a simple enough problem—yet, in the heat of battle you may freeze if 
you haven’t practiced. Only two approaches are appropriate to get through 
this question: use a formula or visualize the headings on a compass rose.

Let’s set up a practice table and work on using the formula.

Table 2-2. Initial headings versus reciprocal headings.

Initial Heading Reciprocal Heading

090° 270°

011° 191°

222° 042°
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Initial Heading Reciprocal Heading

355° 175°

167° 347°

313° 133°

Or, to look at it another way:

Table 2-3. Formulas for reciprocal headings less than and greater than 180°.

When INIT HDG < 180° INIT HDG + 200° – 20° = RECIP HDG°

When INIT HDG > 180° INIT HDG – 200° + 20° = RECIP HDG°

Did you notice the change of the plus and minus signs between the for-
mulas? We use two formulas because we will have initial headings either 
smaller than 180° or greater than 180° to begin the formula.

For example:

090° + 200° – 20° = 270°

or

222° – 200° + 20° = 042°

Be cautious in using this formula for certain ranges of headings that will 
initially give you an answer that is either greater than 360° or less than zero in 
the first step of adding or subtracting 200. After completing the second step 
of adding or subtracting the 20, your answer will be corrected back into the 
appropriate range of 001° to 360°. Also, don’t forget that the last digit always 
remains the same when computing the reciprocal.

For example:

167° + 200° – 20° = 347°

or

191° – 200° + 20° = 011°

The second approach to figuring reciprocal headings—using the compass 
rose—comes simply with experience in flying on instruments. Study, visual-
ize, and memorize the reciprocal cardinal compass headings. I recommend 
that you practice these reciprocals the next time you go fly. I believe you’ll 
find it very productive and the more you work on it the easier it will become.
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Figure 2-1. Heading indicator.

Hydroplaning
It’s always important to be aware of the potential for hydroplaning on wet 
runways. The popular convention for calculating hydroplaning speeds for 
your aircraft for either landing or takeoff is really quite easy. Aside from the 
hydroplaning formula, the only piece of information you need to have is your 
aircraft main tire pressure. The hydroplaning formula is simply calculated as:

VHP = 9√Tire Pressure

As you see, knowing the square root of the tire pressure is important. Most 
high performance aircraft have a tire pressure in a range from, let’s say, 80 psi 
to around 200 psi. That’s quite a range, but if you approximate the values of 
the square roots at each end of the scale, you discover that the ranges are not 
really that wide. At 80 psi, the square root is about 9. At 200 psi, the square 
root is about 14. So, we now have a range of only 9 to 14. Next, in using the 
hydroplaning formula, you would multiply that value by a factor of 9. Thus, at 
the low end, 9 × 9 = 81 knots; and, at the high end, 9 × 14 = 126 knots.

You could, therefore, easily calculate your own specific aircraft hydroplan-
ing speed that easily and quickly. Here are a few problems to test your skills. 
The answers are in Appendix C.
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Table 2-4. Practice problems for hydroplaning speeds.

Tire Pressure VHP

50 psi ?

120 psi ?

150 psi ?

230 psi ?

Temperature Conversions
There are a few shortcuts to quickly convert Fahrenheit to Celsius and back 
again. It’s important to memorize just a few important points, then use the 
tools to figure a rough estimate of the conversion. Here are the formulas, fol-
lowed by a short table showing a couple of memorable temperature points:

°F = (9/5 × °C) + 32

°C = (°F – 32) × 5/9

Table 2-5. Memorable temperature points in Celsius and Fahrenheit.

Celsius Fahrenheit

0° 32°

15° 59°

30° 86°

40° 104°

Some pilots are at ease using the conversion formulas. Perhaps they use 
them a lot; for me, I need a gimmick. Let me explain three other techniques.

Technique 1
First, if we note from the table above that the freezing temperature of water 
at 0°C equals 32°F, simply add or subtract 5°C for each 9°F or vice versa.

For example, let’s figure what 30°C is in Fahrenheit. Remembering there 
are 5°C for each 9°F, 30°C is the same as (6 × 5°C) and 30°C is really 0° + 30°C. 
Now take the 6 (from 6 × 5°C) and multiply it by 9°F (6 × 9°F = 54) and add that 
result to 32°F. Remember 0°C = 32°F, getting 54°F + 32°F = 86°F.



MEN TAL MATH FOR PILOTS8

To change from °F to °C, subtract 32 from °F and then do the multiplica-
tion. For example, 77°F – 32°F = 45°F, or 9 × 5. Multiplying 5 × 5 gives you 25°C.

It’s relatively easy to use this 5 = 9 or 9 = 5 matching as long as you know 
just a few markers along the way. Try a couple of problems on your own, 
they’re simple enough to catch on quickly.

Technique 2
The second technique to calculate °F is to double the °C, subtract 10%, and 
add 32. Or, to calculate °C, subtract 32 from the °F, add 10% and divide the 
result by 2. This is not very difficult and results in much more accuracy.

°F = ([°C × 2] – 10%) + 32

°C = ([°F – 32] + 10%) ÷ 2

To use the previous example:

°F = 30°C × 2 = 60°C

60°C – 6 = 54°C

54°C + 32 = 86°F

And

°C = 86°F – 32 = 54°F

54°F + 5 = 59°F

59°F ÷ 2 = 29.5°C (or pretty close to 30°C)

Technique 3
The third way of estimating will get you in the ballpark for lower tempera-
tures only. Either double the °C and add 30 to get °F, or subtract 30 from the 
°F and cut that in half to get °C.

°F = (2 × °C) + 30

°C = (°F – 30) ÷ 2

An example:

2 × 10°C = 20 + 30 = 50°F
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And

50°F – 30 = 20 ÷ 2 = 10°C

(Note that if you use this method, for example, to convert 104°F to °C you will get 37°C, not 
the correct 40°C.)

Here are some practice problems for each of the techniques discussed 
(Table 2-6). When given a temperature in either °C or °F, convert to the other 
scale using each of the three techniques and compare the differences. A more 
detailed and complete temperature conversion chart is available for refer-
ence in Appendix D, Table D-7.

Table 2-6. Practice problems for converting Celsius to Fahrenheit and Fahren-
heit to Celsius.

°C Technique 1 Technique 2 Technique 3 °F

12°C ? ? ? Calculate °F

25°C ? ? ? Calculate °F

0°C ? ? ? Calculate °F

Calculate °C ? ? ? 40°F

Calculate °C ? ? ? 81°F

Calculate °C ? ? ? 72°F

Temperature Lapse Rate Deviations
The International Civil Aviation Organization (ICAO) has determined that the 
standard sea level temperature is 15°C, and that the standard temperature 
lapse rate is 2°C (or 3.5°F) per 1,000 feet change in altitude, up to 38,000 feet 
mean sea level (MSL). From this, you can determine deviations from the stan-
dard temperature for performance calculations during climb or cruise. The 
standard day temperature for each altitude is referred to with the term ISA 
(International Standard Atmosphere).

The moist adiabatic lapse rate is 2.5°C (4.5°F). Therefore, to estimate the 
possible cloud bases at an airport with a relatively close temperature/dew-
point spread, subtract the dewpoint from the actual temperature and then 
divide by the moist adiabatic lapse rate.

All of the practice problems in Table 2-7 use a straightforward method 
of solving for ISA temperature. Multiply the altitude, in thousands of feet 
MSL, by 2 (2°C temperature lapse rate); then, subtract from 15°C. For the first 
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problem, 5 × 2 = 10; then 15°C minus 10°C equals 5°C, or the estimated stan-
dard temperature at 5,000 feet MSL. The rest of the problems are solved in 
the same manner. Compute the ISA temperature and deviation. To determine 
the standard deviation at those same altitudes, simply find the temperature 
difference between the actual and ISA temperatures.

Actual Temperature − ISA Temperature = Temperature deviation

Table 2-7. Practice problems for ISA temperature and temperature deviation.

Altitude ISA Temp Actual Temp Temp Dev

5,000 MSL ? 20°C ?

8,000 MSL ? 15°C ?

FL210 ? −10°C ?

FL350 ? −60°C ?

For reference, I have included a sampling of ISA temperatures versus alti-
tude from sea level up through FL370 in Appendix D, Table D-8.

What’s the Pressure Altitude?
Sitting in the cockpit, if you set 29.92 inHg in your barometric altimeter, you 
would then be reading the standard day pressure altitude for your location. 
Simple enough, right?

However, a problem may occur when you must figure your pressure alti-
tude based on a particular altimeter setting other than standard and using 
your local airport elevation.

This, again, is quite simple. For every 0.01 inHg altimeter setting, your pres-
sure altitude reading changes 10 feet.

Q	 The ATIS altimeter setting (QNH) is 29.79 inHg and the local airport 
elevation is 460 ft MSL. What is the pressure altitude?

A	 Pressure altitude equals 590 ft. The difference between 29.79 inHg 
and 29.92 inHg is 0.13 in, which converts to a difference of 130 ft 
pressure altitude. Since we need to add the 0.13 inHg to 29.79 inHg 
to equal the standardized 29.92 inHg (QNE), we also add the 130 
ft to the airport elevation of 460 ft to figure the pressure altitude.
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Q	 As you are descending from FL350 for a landing, you forget to reset 
your altimeter to 30.57 inHg for the local airport QNH. What will 
your altimeter read after landing at the airport?

A	 The altimeter will read 650 ft low. The difference between QNE of 
29.92 inHg and QNH of 30.57 inHg is 0.65 inHg which converts to 
a difference of 650 ft pressure altitude. After landing at the air-
port with a setting of 29.92 inHg, you would need to increase the 
barometric setting to 30.57 inHg to read the correct field elevation. 
Since the indicated altitude goes up as the barometric setting is 
increased, this means that at 29.92 inHg, the altimeter was reading 
650 ft low!

Crosswind Components
In position and holding for takeoff, or on short final for an approach, air traffic 
control (ATC) gives you airport winds that seem a little strong and at a funny 
angle. How can you figure the crosswind component in a hurry to ensure you 
operate within the flight manual limitations?

Here’s a quick technique I picked up that does an okay job of figuring a 
rough crosswind component. I’ll demonstrate with the use of a small table 
followed by a detailed explanation. I have provided three ways of using the 
multiplier in the right column.

Please understand, these are rough estimates only and not necessarily 
mathematically exact. Close enough, though, for a quick estimate.

Table 2-8. Approximating crosswind components.

Wind Angle to Runway Calculated Crosswind Component

0° or 180° 0.0 0% None

030° or 150° 0.5 50% Half

045° or 135° 0.7 70% Two-thirds

060° or 120° 0.9 90% Almost all

090° 1.0 100% All
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To use this technique/table to approximate the crosswind component, 
first you have to determine the angular difference between the runway head-
ing and the direction of the winds that ATC is providing you. Second, choose 
one of the closer “angles” from the table above. Third, multiply the total wind 
(including gusts) by the component from one of the right columns. Let’s do a 
couple of quick problems. Just fill in the blanks.

Table 2-9. Practice problems for estimating crosswind.

Wind Angle to 
Runway

Total Wind 
Strength

Crosswind 
Component

030° 20 ?

050° 20 ?

070° 18 ?

As a quick check, using the table above, the answers I would have come 
up with are 10, 14, and 16 knots of crosswind component respectively. (Your 
answers could vary slightly if you rounded off differently than I did.) The key 
element here, for me, is to find a simple “crutch” that’s easy to use in the cock-
pit when you are otherwise very busy.

Can you make the same crosswind calculation if the winds are between 
090° and 180° offset from the runway? Sure. Using the same table, the cross-
wind components for 120°, 135°, and 150° offset match up with 060°, 045°, and 
030°, respectively, on Table 2-8.

When you are determining the wind angle to the runway, compare 
reported magnetic winds to the actual magnetic heading of the runway. 
The only time you are ensured of getting magnetic winds is from the airfield 
tower controller and ATIS. All other reports or forecasts (METARs or TAFs) and 
PIREPs use true winds for reporting. At some airfields, the magnetic varia-
tion can be large enough to make a significant difference in computing wind 
components.

Another great technique for computing crosswind components is to first 
determine the wind angle to the runway. Second, add a value of twenty (20) 
to the wind angle, the total of which is now to be used as a percentage for 
the next step. Third, multiply the total wind value by the percentage from the 
previous step. The result is a value for the crosswind component.
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For example, if there is a wind on runway 25 reported as 280/18, what is 
the crosswind component?

1.	 The wind angle to the runway is 30 degrees.
2.	 Add 20 to the angle 30; e.g., 20 + 30 = 50%
3.	 Multiply the wind value by the percentage; e.g., 18  ×  50% = 9  knots 

crosswind.

Try this technique on the problems in Table 2‑9 to determine if this tech-
nique compares closely to the other techniques described.

Headwind and Tailwind Components
The discussion and techniques used for computing crosswind components 
can be modified and used in a similar manner for computing headwind or 
tailwind components. The simplified math tools to use in multiplying the 
reported wind velocity are presented in Table 2-10. Please understand, these 
are rough estimates only and not necessarily mathematically exact. Close 
enough, though, for a quick estimate and ease of mental math calculations.

Table 2-10. Approximating headwind and tailwind components.

Wind Angle to 
Runway

Calculated Headwind 
or Tailwind Component

0° or 180° 1.0 100% All

030° or 150° 0.9 90% Almost all

045° or 135° 0.7 70% Two-thirds

060° or 120° 0.5 50% Half

090° 0.0 0% None

Notice that the table is “inverted” from the crosswind component table 
illustrated in Table 2‑8. Mathematically, this is due to the relationship of angles 
and the properties of the sine and cosine of right-angle triangles.

Remember the Pythagorean theorem from your academic days? This 
states that in a right triangle (with a 90-degree angle in one corner) when you 
square the length of each side adjacent to the 90-degree angle (side A and 
side B), the sum of those two sides when squared is equal to the length of the 
third side of the triangle (also called the hypotenuse, side C) when squared.

A2 + B2 = C2
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The reason for remembering this relationship is to know that when you 
add each crosswind and headwind component, the sum of these compo-
nents will be greater than the value for the total wind component. That is the 
basis for the Pythagorean theorem. In other words, a 6-knot crosswind plus 
an 8-knot headwind adds up to a larger value (14) than the actual 10-knot 
total wind. However, 62 + 82 = 102, or 36 + 64 = 100, is correct, supporting the 
Pythagorean theorem for right triangles.

B = 8

A = 6

C = 10

Figure 2-2. Right triangle illustrating the Pythagorean theorem.

In review, how would you determine that you have exceeded your 10-knot 
tailwind limitation for takeoff or landing? Using only the tailwind multipliers 
from Table 2-10, I’ve illustrated total wind values from different selected wind 
angles that will result in an approximate 10-knot tailwind component in Table 
2-11. Don’t forget to add the gust value to the total wind value to determine 
the actual tailwind component (which also applies to calculating the head-
wind or crosswind components).

Table 2-11. Using wind multipliers to approximate value.

Wind Angle to 
Runway

Total Wind
Value

Component 
Multiplier

Resultant 
Tailwind Value

180° 10 knots 100% 10 knots

150° 11 knots 90% 10 knots

135° 14 knots 70% 10 knots

120° 20 knots 50% 10 knots

090° Any speed 0% 0 knots
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Crosswinds versus Drift Angle
Have you ever tried to estimate what your drift angle (DA) would be when at 
cruise or on the approach? Here’s a formula to make a quick estimate. Note 
that if the crosswinds become exceedingly large, this formula will not be as 
accurate for drift angles greater than 15 degrees.

Drift Angle =  Crosswind Component × 60 
	 True Airspeed (TAS)

For example, on approach with a 120 knots true airspeed (KTAS), you have 
a 20-knot crosswind component during the approach and landing. What is 
your expected drift angle?

Drift Angle = (20 × 60) ÷ 120 = (1200) ÷ 120 = 10°

For another example, at cruise at 420 KTAS, you have an 84-knot cross-
wind component. What is your expected drift angle?

Drift Angle = (84 × 60) ÷ 420 = 5040 ÷ 420 = 12°

This formula can produce very large numbers during the multiplication. 
So, now that you have a better understanding of the formula, consider the 
next technique as a much easier mental math technique for computing cross-
winds versus drift angle.

A mental math crutch for computing drift angle is to remember that for 
a crosswind component equal to your speed expressed in miles per minute 
(60 KTAS equals 1 nautical mile [NM] per minute), you will have 1 degree of 
drift angle. In addition, if your speed is expressed in Mach number (which is a 
percentage of the speed of sound), for a crosswind component equal to your 
Mach number × 10, you will have 1 degree of drift angle. As an example, if you 
are cruising at Mach 0.80 (approximately 480 KTAS or 8 NM per minute), you 
will have 1 degree of crab for every 8 knots of crosswind component.

Here are a few more practice problems.

Table 2-12. Practice problems for estimating drift angle.

TAS
Crosswind 

Component
Drift

Angle

150 knots 12 knots ?

360 knots 48 knots ?

90 knots 30 knots ?

Mach 0.78 50 knots ?



MEN TAL MATH FOR PILOTS16

Conversion Factors
We often have a need to convert miles per hour to knots, statute miles to nau-
tical miles to kilometers, etc. Here is a short conversion table to remind you of 
those conversion factors to make the transition between the varying units of 
measure. Next is a table defining the units of measurement.

Table 2-13. Conversion factors for units of measure.

Conversion Factors

1 statute mile (SM) = 0.87 nautical mile (NM)

1 nautical mile = 1.5 statute mile

1 statute mile = 1.61 kilometers (km)

1 kilometers = 0.62 statute mile

1 nautical mile = 1.85 kilometers

1 kilometers = 0.54 nautical mile

1 mile per hour (mph) = 0.87 knot (kt)

1 knot = 1.15 mile per hour

1 mile per hour = 1.61 kilometers per hour (km/h)

1 kilometers per hour = 0.62 mile per hour

1 knot = 1.85 kilometers per hour

1 kilometers per hour = 0.54 knot 

1 knot = 0.51 meters per second (m/s)

1 meters per second = 2 knot (kts)

Table 2-14. Measurement in metric and US standard units.

Meters Units Feet

1,609 statute mile (SM) 5,280

1,852 nautical mile (NM) 6,076

1,000 kilometer (km) 3,208

I hope that you also want to keep these conversions as simple and easy to 
remember as I do. Therefore, just approximate! That’s right, simply remember 
a number that is close, e.g., 1 knot is 15 percent more than 1 mph, 1 m/s is 
about 2 knots, 1 SM is a little more than 11/2 km. Now, here’s a couple of prac-
tice problems. And, remember, keep it simple!
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Table 2-15. Practice problems for estimating unit conversions.

Given Find

200 knots ? mph

180 mph ? knots

8 m/s ? knots

9 km ? SM

Visibility to RVR Conversions
Remember that visibility is given in statute miles (SM) and runway visual 
range (RVR) is given in feet. In addition, visibilities-to-RVR conversions do not 
have a linear relationship. My suggestion is that you memorize this short con-
version table.

Table 2-16. Converting visibility to runway visual range.

Visibility RVR

1/4 SM 1,600 ft

1/2 SM 2,400 ft

3/4 SM 4,000 ft

1 SM 5,000 ft

11/4 SM 6,000 ft

Fuel Planning
Fuel planning can be important for three reasons:

•	 Do I have enough fuel to be legal for my flight?
•	 How much fuel do I need to upload for my flight?
•	 Is my fuel burn in flight consistent with my flight planning?

Let’s look at the requirements for fuel planning based on 14 CFR §91.151 
(VFR) and §91.167 (IFR). Assume the VFR (visual flight rules) flight is planned for 
an estimated time en route (ETE) of 2 hours and 20 minutes. Assume the IFR 
(instrument flight rules) flight is planned for an ETE of 3 hours and 15 minutes 
plus 40 minutes to the alternate.
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Table 2-17. Calculating the total fuel required in hours plus minutes.

VFR Rules Fuel Requirement IFR Rules

2 + 20 ETE 3 + 15

Not Required Alternate 0 + 40

0 + 30 
or 0 + 45

Reserve − Day 
or Reserve − Night

0 + 45 
or 0 + 45

2 + 50 (Day)
or 3 + 05 (Night) Total Fuel Required 4 + 40

Once you determine the hours of fuel you need to start the flight, use the 
amount of fuel your aircraft uses in an hour to convert the hours to either 
gallons or pounds of fuel, depending on the measurement needed for your 
flight operations. What’s the conversion formula for pounds to gallons?

For avgas:

Total pounds avgas = (Gallons) × (6.0 lbs per gallon)

Total gallons avgas = (Pounds avgas) ÷ (6.0 lbs per gallon), 

or using a mental math shortcut:

Total gallons avgas = [(Pounds avgas) × (12/3)] ÷ 10

For Jet A:

Total pounds Jet A = (Gallons) × (6.7 lbs per gallon)

Total gallons Jet A = (Pounds Jet A) ÷ (6.7 lbs per gallon), 

or using a mental math shortcut:

Total gallons Jet A = [(Pounds Jet A) × (11/2)] ÷ 10

Using these conversion formulas, fill in the blanks of the following practice 
problems.

Table 2-18. Practice problems for converting fuel to gallons or pounds.

Gallons (gal) Pounds (lbs)

55 gal avgas ?

? 480 lbs avgas

? 1,000 lbs avgas
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Gallons (gal) Pounds (lbs)

500 gal Jet A ?

? 5,000 lbs Jet A

? 8,500 lbs Jet A

Fuel Dumping
Fuel dumping problems tend to be easier to work in your head because there 
are usually only three variables to work with in the formula: the dump rate in 
pounds per minute (PPM), the time in minutes (min), and the fuel dumped in 
pounds (lbs). Two of the three will be given to you, leaving you to determine 
the third variable.

The greater challenge in this problem is working with large numbers, 
probably in the thousands of pounds. But don’t get too anxious, the prob-
lems are normally designed so that the answers work out in round numbers. 
And, better yet, many of the questions I’ve heard of asked during job inter-
views have you solve only for the time variable. Therefore, your practice of 
these problems can be more methodical and consistent.

(Fuel Dumped) ÷ (Dump Rate) = (Time)

or

(Dump Rate) × (Time) = (Fuel Dumped)

Here’s a table of problems for you to practice with. The answers can be 
found in Appendix C.

Table 2-19. Practice problems for fuel dumping.

Dump Rate Time Fuel Dumped

1,300 PPM ? 6,500 lbs

2,500 PPM ? 45,000 lbs

3,000 PPM ? 19,000 lbs

2,500 PPM ? 30,000 lbs

2,200 PPM ? 11,000 lbs

1,500 PPM 7 min ?

continued
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Dump Rate Time Fuel Dumped

1,200 PPM 11 min ?

? 5 min 12,500 lbs

? 16 min 48,000 lbs

2,000 PPM ? 20,000 lbs

It will be much simpler if you remember to drop two zeroes from the end 
of each number just to keep the numbers more manageable in size rather 
than outrageously large.

Next, use one of two approaches to divide the fuel dumped by the dump 
rate. Using the first technique on the first problem, you would divide 65 by 13 
(after dropping the last two zeroes), which equals 5 minutes. This method is 
strictly a mathematical approach that some can readily calculate in their head.

The other technique is to use a method of proportions to arrive at the 
proper solution. In the second problem, using the numbers 25 and 450, I would 
first double the dump rate to 50 so that I could more easily recognize that 
450 ÷ 50 = 9; therefore, 450 ÷ 25 (the same as 50 ÷ 2) = 18 (or 9 × 2) minutes.

Let’s look again at the first problem using a variation on this technique. 
Using the numbers 13 and 65, I first double 13 to get 26 (a multiplier of 2). I 
then double 26 to get 52 (now a multiplier of 4). Then I recognize that I have 
a remainder of 13 (a multiplier of 1). Thus, I now have multipliers of 4 plus 1, 
which equals 5. This is the correct answer.

Let’s do this again using the third problem, using the numbers 3 and 19 
(I can drop three zeroes in each number). I know that if I multiply 3 by 6 the 
result is 18 with a remainder of 1. What do I do with this? So far we know the 
answer is 6 minutes plus something. But, to be exact, we can see that the 
remainder of 1 divided by the dump rate of 3 equals 1/3 of a minute. Therefore, 
we now have an exact answer of 6 minutes and 20 seconds.

Magnetic Compass Turns
Using the magnetic compass in the cockpit as the sole reference for turns 
requires a special awareness of the following magnetic compass characteris-
tics which are caused by magnetic dip.
Note: These characteristics are only applicable in the Northern Hemisphere. In the South-
ern Hemisphere the characteristics are observed in the opposite direction.
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If a turn is made to a northerly heading from any direction, the compass 
indication when approaching north lags behind the turn. Therefore, the 
rollout of the turn is made before the desired heading is reached. If a turn 
is made to a southerly heading from any direction, the compass indication 
when approaching southerly headings leads ahead of the turn. Therefore, 
the rollout is made after the desired heading is passed. The amount of lead 
or lag is at a maximum on the north–south headings and depends upon the 
angle of bank used and the latitude of the airplane. The following acronym 
may help remember these characteristics.

UNOS—Undershoot North, Overshoot South

In addition, when on an east or west heading, an increase in airspeed or accel-
eration will cause the compass to indicate a turn toward north. A decrease 
in airspeed or deceleration will cause the compass to indicate a turn toward 
south. Use this acronym to remember these characteristics.

ANDS—Accelerate North, Decelerate South

If we assume that the lead point for rolling out of a turn is normally 1/3 of the 
bank angle, let’s calculate the revised lead point using the magnetic compass 
only for the turn and rollout.

Table 2-20. Calculating the lead point for a turn.

Bank Angle 
(Left/Right)

Start 
Heading

Desired 
Heading Latitude Lead Point

15° R 270° 360° 30° North 325°

15° L 270° 180° 30° North 155°

25° R 090° 010° 40° North 058°

25° L 090° 190° 40° North 222°

Using the UNOS acronym, let’s look at the solution for these problems. The 
first problem normally uses a lead point of 5 degrees (15 ÷ 3) plus the latitude 
of 30 degrees north, for a new revised lead point of 5 plus 30, or 35 degrees. 
With the desired heading of 360 degrees, a 35-degree lead point results in 
rolling out of the turn when the magnetic compass reads 325 degrees. The 
rest of the examples are solved the exact same way. Here are a few practice 
problems; but, there is one problem that may trick you. Just stick with the 
characteristics as explained above.
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Table 2-21. Practice problems for calculating the lead point.

Bank Angle 
(Left/Right)

Start 
Heading

Desired 
Heading Latitude

Lead
Point

15° R 270° 360° 45° North ?

15° L 270° 180° 34° North ?

25° R 360° 090° 40° North ?

25° L 360° 190° 40° North ?

60-to-1 Rule
Remember the 60-to-1 rule from your basic instrument course way back 
when? Well, I don’t know specifically that the majority of pilots ever use this 
rule, but, occasionally an understanding of this concept will help you solve 
problems related to course or DME (distance measuring equipment) inter-
cepts during departure, arrival, or approach procedures. Here we go.

The 60-to-1 rule means that at 60 DME from a VOR (VHF omnidirectional 
range station) every 1 degree of course deviation equals 1 NM (approximately 
6,000 ft). Let me illustrate this in three formats: a formula, a table, and an 
illustration.

Number of radials per mile = 60 ÷ DME

or

Width of 1° (NM) = DME ÷ 60

Table 2-22. Calculating course deviation.

DME from VOR 1 Degree = ? NM

60 1

30 1/2 or .50

20 1/3 or .33

15 1/4 or .25

12 1/5 or .20

10 1/5 or .16
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60 DME

30 DME

15 DME

1 NM

½ NM

¼ NM

1°

Figure 2-3. Visual representation of the 60-to-1 rule.

Pictorially, this 1 degree slice of pie in the sky looks like Figure 2-3. Perhaps 
it will better illustrate the relationships of the DME to the distance per degree.

Q	 On the ILS (instrument landing system) 19R approach plate for 
XYZ airport, there is a 15 DME arc transition from the XYZ 047/15 
(Sparky) to the XYZ 011/15 (Falfa). What is the distance along the 
arc from Sparky to Falfa?

A	 9 NM. 

Step one: Calculate how many radials are crossed.

047° minus 011° = 36 radials

Step two: Calculate the number of radials per nautical mile.

60 ÷ 15 DME = 4 radials per NM

Step three: Combine the answers from above.

36 radials ÷ 4 radials per NM = 9 NM

One suggestion I have for mental math simplification is to try to use DMEs 
that make the formulas work out easily, e.g., if you are given a 16 DME arc, 
use 15 DME instead. (Note: But don’t fly it! Fly the 16 mile arc!) Here’s another 
problem to solve.
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Q	 When flying the same ILS 19R transition using the 15 NM arc, how 
many degrees “lead” would you need to start the turn from the 
arc to the localizer (LOC), using a standard rate turn (SRT) at 200 
knots? (Hint: SRT at 200 knots equals 30 degrees bank and 1 NM 
turn radius.) In addition, work two additional problems using the 
20 NM and 12 NM arc transition to the localizer. (The answers are 
in Appendix C.)

Table 2-23. Practice problems using the 60-to-1 rule.

DME Arc Lead Radials

15 NM ? degrees

20 NM ? degrees

12 NM ? degrees

Bank Angle for Standard Rate Turn
The bank angle for a standard rate turn (SRT) can be estimated by a simple 
formula or by looking at the Turning Performance Chart in Appendix D, Figure 
D-1. SRT is defined as turning at the rate of 3 degrees per second. The formula 
for a standard rate turn bank angle is:

Bank Angle [SRT] = (TAS ÷ 10) × 1.5

However, for IFR operations, normally a maximum of 30 degrees of bank 
is used even if the standard turn rate of 3 degrees per second is not achieved. 
Therefore, for any true airspeed (TAS) greater than 200 knots, the maximum 
bank angle used would be 30 degrees. This limitation is used for computing 
turn radii in the practice problems.

Turn Radius
Turn radius calculations are very simple using one of two techniques. Both 
techniques assume that the required turn radius equals the turn lead point 
distance when the number of degrees to be turned is 90 degrees. The turn 
lead point distance will be progressively less when the turn angle is less than 
90 degrees. Both techniques also assume that the bank angle for an SRT is used.
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The first technique seems to be more accurate at lower speed, i.e., in the 
landing pattern at 200 knots indicated airspeed (KIAS) and below, using a 
bank angle for a standard rate turn. Here’s the formula:

Turn Radius [NM] = TAS ÷ 200

or

Turn Radius [NM] =
 TAS × 1%

                                             2

The next technique seems to be more accurate at higher speed, i.e., at 
cruise flight levels using indicated Mach numbers approximately 0.40 and 
greater, or at 200 KIAS and greater, and using a bank angle of 30 degrees. 
Here’s the high-speed formula:

Turn Radius [NM] = (Mach Number × 10) – 2

Table 2-24. Practice problems for bank angle and turn radius.

KTAS
Standard Rate Turn 

Bank Angle
Turn Radius (SRT/30° 

Bank max)

90 KTAS ? degrees ? NM

120 KTAS ? degrees ? NM

200 KTAS ? degrees ? NM

Mach 0.80 30 degrees (max IFR) ? NM

The first practice problem is solved as follows; the remainder of the 
answers are in Appendix C.

Step one: The SRT bank angle is calculated to be 90 ÷ 10 = 9; then 1.5 × 9 
≈ 14 degrees bank at SRT.

Step two: The turn radius is calculated by taking one percent of 90, 
which equals 0.9; then dividing by 2. The final answer is 0.45 or 
approximately 0.5 NM turn radius.
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Calculating True Airspeed
To calculate your true airspeed mentally, simply add 2% per thousand feet 
above mean sea level to your indicated airspeed (IAS). There will be some 
variation at higher altitudes and with temperature deviations, but this for-
mula is normally adequate for a quick check. Here is the formula and a few 
practice problems.

KTAS = KIAS + (KIAS × [Altitude {in 1000s} × 2%])

Table 2-25. Practice problems for calculating true airspeed (TAS).

KIAS Altitude KTAS

100 KIAS 10,000 ft MSL ?

140 KIAS 5,000 ft MSL ?

200 KIAS 13,000 ft MSL ?

280 KIAS FL350 ?

Time-Speed-Distance Problems
I've noticed that time-speed-distance problems seem to challenge pilots the 
most. I believe that the reason is simply neglect rather than ignorance. Per-
haps I can knock the dust out of the inner chambers with a few new mental 
math techniques.

First, remember that there will be only four variables in the formula, and 
three of them will always be known. The four variables are wind, distance, 
time, and true airspeed.

Second, I’ve found it helpful, after hearing the three numbers, to imme-
diately convert the speed (if given) into miles per minute. Say again? That’s 
right, it seems to be easier to solve most problems when you know how many 
miles per minute you are traveling.

If you don’t have a good grasp of converting knots to miles per minute 
(mpm), study this chart and memorize the relationships, even the half-mile 
per minute numbers. As an additional crutch, remember every 30 knots 
equals 1/2 mile per minute, or 60 knots equals 1 mile per minute. You can then 
quickly figure that, for example, 480 knots equals 8 miles per minute.
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continued

Table 2-26. Converting knots to miles per minute.

Knots Miles per Minute (mpm)

90 1.5

120 2

150 2.5

180 3

210 3.5

240 4

270 4.5

300 5

330 5.5

360 6

390 6.5

420 7

450 7.5

480 8

510 8.5

The basic time speed-distance-formula is this: 

(Ground Speed) × (Time) = (Distance)

The speed variable in the formula refers to ground speed (GS). Therefore, 
you must add or subtract the headwind or tailwind component to the true 
airspeed to get the ground speed in knots; i.e., TAS ± Wind = GS.

Here’s a table of problems containing four variables. Three are given to 
you, leaving the fourth for you to solve. Answers will be shown in Appendix C.

Table 2-27. Practice problems for time-speed-distance questions. 

KTAS Wind Time Distance

240 60 TW ? 200 NM

280 70 HW 10 min ?

150 0 ? 5 NM

? 0 4 min 20 NM
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KTAS Wind Time Distance

420 60 TW ? 400 NM

? 0 2 min 14 NM

? 0 1.5 hour 600 NM

500 0 45 min ?

? 0 40 min 340 NM

Here’s how to use my technique of converting ground speed to miles per 
minute to make the problem solving easier without use of a calculator or pad 
and pencil to work the formula.

As soon as you are given the ground speed, or can figure it out from the 
true airspeed and winds, convert that to miles per minute (mpm). Example: 
350 knots GS equals 360 ÷ 60 = 6 mpm (notice that 350 is close enough to 360 
to use since it is an exact multiple of 60).

You can then more easily multiply this miles per minute figure by the 
number of minutes to get the distance traveled. Or, you can divide the dis-
tance by the miles per minute to figure the number of minutes. For example: 
10 minutes @ 6 mpm = 60 miles. Or, 90 miles @ 6 mpm = 15 minutes.

Notice the last three problems in Table 2-27 can be more easily solved by 
using an approach of proportions. That is, if you realize that 1.5 hours is three 
segments of 0.5 hours, and that 600 NM is three segments of 200 NM, then 
you realize that you travel 200 NM per half-hour or 400 NM per hour. Thus, 
400 knots ground speed. 

Next, realizing 45 minutes is three segments of 15 minutes, and that 500 
knots is a distance of 250 NM each 30 minutes or 125 NM each 15 minutes, 
then, three segments of the 125 NM per 15 minutes equals 375 NM in 45 
minutes. 

Finally, in the last problem, one easy approach to figuring the GS is to rec-
ognize that since you’ve traveled 340 NM in 40 minutes you would also travel 
170 NM in 20 (divide both variables by 2). Then, multiply both of these by a 
factor of 3 which results in traveling 510 NM (170 × 3) in 60 minutes (20 × 3) 
or 1 hour. 
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Some people find it helpful to verbalize their problem solving out loud. 
I agree with this technique, if you believe this will help you to be more 
methodical. Be careful, however, since any blundering of the numbers out 
loud could be quite embarrassing! Having said this, could you repeat solving 
the problems in the table with a little more ease and confidence? If not, keep 
trying until you can. It’s worth the effort! Here’s another word problem to test 
your skill. 

Q	 You are cruising at FL310 at 480 knots ground speed. You have been 
cleared to descend to 13,000 feet MSL, and you know your aircraft 
will average 3,000 feet per minute (fpm) during the descent. How 
far will you travel during the descent? 

A	 48 NM.

Here’s how I would set it up to solve the problem in my head.

Step one: My speed at 480 knots is 8 nautical miles per minute.

Step two: I need to descend 18,000 feet at an average rate of 3,000 fpm 
which gives me 6 minutes to descend.

Step three: To find the distance traveled, I multiply (8 NM/min) × (6 min) 
which equals 48 NM.
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CHAPTER 3

Calculating Enroute Descents
There are several ways to calculate enroute descents. Often, however, pilots 
become confused because of the many techniques available. Once you are 
comfortable with one method for these enroute descent calculations in 
your current aircraft, you will be able to perform the calculations quickly and 
accurately. For now, however, I will assume that you have not yet settled on a 
particular method.

There are three basic methods to calculate enroute descents: the 3-to-1 
rule, the constant descent rate, and the pitch attitude solution. Each method 
has a unique advantage for specific types of operations. As we discuss them, 
I’ll make a recommendation for pairing a method with a type of operation or 
type of aircraft.

The 3-to-1 Rule
The 3-to-1 rule means that you take the altitude (in 1,000s of feet) you need 
to lose and multiply it by 3. This means we plan to fly 3 NM for every 1,000 
feet of altitude lost. That’s the distance required for most turbojet enroute 
descents at idle power. To use this method, an aircraft should maintain a 
constant Mach number and/or constant indicated airspeed to stay on the 
enroute descent profile.

Q	 You are cruising at FL230 and have been cleared to descend, pilot’s 
discretion, to 11,000 feet MSL by 15 DME before the next VOR. How 
far out would you start your enroute descent?

A	 Start the enroute descent at 51 DME prior to the VOR.

Step one: Figure out how much altitude there is to lose. In this case, it’s 
12,000 feet.
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Step two: Multiply the altitude (in 1,000s) to lose by 3, which is (12 × 3) 36 NM.

Step three: Compute the end of descent point, which is 15 DME. Add the 
enroute descent distance, which we just figured to be 36 NM, for a total of 
(15 + 36) 51 DME before the next VOR to begin a normal enroute descent.

If your aircraft uses a different formula to compute enroute descents, such 
as 2 or 2.5 times the altitude (in 1,000s), use the factor for your aircraft rather 
than the 3-to-1 rule. The steps in the solution remain the same.

Also consider the extra distance needed for a slowdown to comply with 
a crossing restriction. In the above example, if the cruise speed at FL230 was 
300 KIAS and the crossing restriction at 11,000 feet MSL included a slowdown 
to 250 KIAS, you would need to include an extra 1 NM per 10 knots to slow 
down, for a total extra distance in this case of 5 NM. The final answer, there-
fore, would now be to start the enroute descent at 56 DME.

An alternate way to calculate enroute descents using the 3-to-1 rule is 
based on dividing the flight level (altitude in hundreds of feet) by 3. This would 
result in a descent gradient of 300 feet per nautical mile. The earlier method 
of multiplying the altitude (in 1,000s) by a 3 results in a descent gradient of 
333 feet per nautical mile. In my experience, the majority of pilots prefer the 
first method discussed of multiplying by 3. However, since enroute descent 
calculations are simply an approximation tool, either method is acceptable. 
If you decide to divide the flight level by 3, change step two from above to 
read “divide the flight levels, or altitude in hundreds of feet, by 3, which is (120 
÷ 3) 40 NM.” The result with this revised method is an increased calculated 
distance for the enroute descent.

Let’s now work a problem using a real world example.
Assume you are on a flight from Kansas City to San Francisco, cruising at 

FL350 and 300 KIAS, and using the Coaldale transition to the Modesto Two 
Arrival. Referring to Figure 3-1, the San Francisco Modesto Two Arrival Chart, 
calculate the start of an enroute descent based upon the following clearance:

“Flyways 777, you are cleared pilot’s discretion to descend to cross Cedes 
intersection at 11,000 feet MSL and 250 knots as published.”

Q	 At what DME should you plan to start your enroute descent 
(no winds)?

A	 You will need to start the descent 45 DME prior to the Modesto 
VOR.
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Step one: You will need to descend 24,000 feet from FL350 to 11,000 feet MSL.

Step two: 24 × 3 = 72 NM to descend 24,000 feet.

Step three: Since Cedes is 32 DME past the MOD VOR, subtract 32, 72 – 32 = 
40 DME prior to the MOD VOR to start the descent.

Step four: Add 5 NM + 40 NM = 45 DME to account for the slowdown from 300 
KIAS during the descent to the crossing restriction of 250 KIAS at Cedes.

Figure 3-1. San Francisco Airport Modesto Two Arrival Chart for reference.
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Constant Descent Rate
This method is typically used by high-speed piston aircraft and turboprop 
airplanes that maintain a constant vertical speed during the descent and rela-
tively constant ground speed during the descent.

Let’s use this method with the first example from the last section using the 
3-to-1 rule. However, we will need to include additional information to solve 
an enroute descent problem using a constant rate descent.

Q	 You are cruising at FL230 and have been cleared to descend, 
pilot’s discretion, to 11,000 feet MSL by 15 DME before the next 
VOR. Your ground speed during the descent will be 240 knots, and 
your planned descent rate is 2,000 fpm. How far out would you 
start your enroute descent?

A	 Start your enroute descent at 39 DME.

Step one: Calculate the altitude to lose. In this case, it’s 12,000 feet.

Step two: Calculate the time required to descend. (12,000 ft ÷ 2,000 fpm) = 6 
minutes.

Step three: Calculate the distance traveled during the time needed to make 
the constant rate descent. 240 knots ground speed is equivalent to 4 NM 
per minute (remember, 60 knots = 1 NM/min). Thus, (4 NM per minute) 
× (6 minutes) = 24 NM.

Step four: Combine the above steps as follows. Add the distance from Step 
three to the descent restriction at 15 DME; i.e., 24 + 15 = 39 DME.

Could you solve a similar problem using a constant descent rate of 1,000 fpm?

The Pitch Attitude Solution
This method is typically used in general aviation—such as single-engine 
piston aircraft—although the method can be quite useful and accurate for 
any type of aircraft. I used this method while instructing primary instrument 
students, yet it seems to have gotten lost in the sophistication of modern 
equipment. The solution requires visualizing the descent on the aircraft pitch 
indicator, as I will illustrate and describe below. We will be “aiming” the nose 
of the aircraft on the attitude indicator much the same as one would aim 
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a rifle at a target. The mathematical basis for the end result solution is the 
60-to-1 rule that was explained in Chapter 2. To ensure proper pitch changes, 
the explanation will assume that the starting pitch attitude at cruise altitude 
is at zero degrees, and that no changes will be made to the aircraft configura-
tion that might affect a pitch change, e.g., extending the flaps. In addition, the 
pilot will need to adjust the power and drag devices as necessary to maintain 
the desired speed for the descent.

Figure 3-2. Attitude indicator.

To start, let’s assume that you are at FL230 at 240 knots ground speed, 
as in the previous example. However, this time you are given a clearance to 
start a descent now and to be level at 11,000 feet MSL in 36 NM. This method 
requires only two pieces of information to work the problem: altitude to lose 
and distance to lose that altitude. Here’s how I would set up the solution for 
the descent using the attitude indicator.

Step one: Note the distance required to descend to the lower altitude. In 
this case, we need to complete the descent in 36 NM from our current 
position. Abeam the 10-degree nose-down pitch indicator line on the 
attitude indicator, label this line with a value of 36.

Step two: Calculate the amount of altitude to lose in thousands of feet. In 
this case, we need to lose 12,000 feet. Then, starting from a 0 degree pitch 
attitude on the attitude indicator, visualize or project how far below the 
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zero line the number 12 would be in relation to the 36 which is now at the 
10-degree nose-low line. Since 12 is one-third of 36, then we need to project 
down one-third of 10 degrees, for a 3.3-degree nose-low attitude. This, in 
fact, is the projected pitch attitude needed to comply with the descent 
restriction in the clearance.

This method is also handy for visual descent points during a nonprecision 
approach and will be discussed more in the next chapter. Here are a couple of 
practice problems to work. The answers are in Appendix C.

Table 3-1. Practice problems for calculating pitch attitude.

Altitude to Lose Distance Available Pitch Attitude

5,000 feet 10 NM ?

23,000 feet 70 NM ?

4,000 feet 20 NM ?

7,000 feet 28 NM ?

Wind Corrections During Descent
I am only going to spend a short time with calculating adjustments to the enroute 
descents due to headwinds or tailwinds. For most situations, this adjustment 
does not significantly alter the computations we have just dealt with.

If you have in your weather forecast a significant headwind or tailwind 
during the descent, it is reasonable to make an adjustment for the amount of 
time that you will be exposed to this wind. You should be able to calculate the 
distance that this wind would shift your enroute descent start point.

Step one: Determine how much average headwind or tailwind component 
you expect during your descent to the crossing restriction on your arrival 
procedure. Note that the forecast winds generated for you during your 
flight planning are provided in degrees true north, not magnetic north. 
Obviously, you will need to convert to magnetic north to be useful in the 
calculation. Just a rough estimate through the descent altitudes at your 
point of descent is adequate. I would not take the time to whip out the 
calculator to average both the direction and strength of the wind. Keep 
it simple!
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Step two: Determine how much time you will use during the descent without 
an adjustment for wind. Even an estimate or approximation of the time is 
sufficient. From the higher cruise flight levels, this may be in a range from 
10 to 15 minutes.

Step three: Use the time-speed-distance techniques discussed in Chapter 2 to 
calculate the distance adjusted for the wind.

Q	 During your enroute descent from FL350 to 11,000 feet MSL, you 
estimate that you will have an average 90-knot tailwind com-
ponent. How could you adjust your top of descent to account for 
these significant winds?

A	 12 NM earlier.

Step one: The problem has already provided you with one part of the solution: 
you have a 90-knot tailwind component during the descent.

Step two: For a descent of 24,000 feet, we will estimate a descent time of 8 
minutes (assuming an average rate of descent of 3,000 fpm).

Step three: The adjusted distance equals the distance traveled in 8 minutes 
at a speed of 90 knots. Or, 8 minutes at 1.5 NM per minute, which equals 
12 NM. In this case, since it is a tailwind, we would start down 12 NM earlier 
than was originally computed.
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CHAPTER 4

Calculating Visual Descent Points
Before getting into the mathematics of calculating our own visual descent 
point for a nonprecision approach, I believe it would be helpful to provide 
some background information from the Aeronautical Information Manual 
(AIM) and the regulations on what the visual descent point (VDP) is intended 
to accomplish. Then, we will discuss three techniques for constructing a 
descent point where no VDP is published on a nonprecision approach. To 
begin with, here’s what the AIM says:

Visual descent points (VDPs) are being incorporated in nonprecision 
approach procedures. The VDP is a defined point on the final approach 
course of a nonprecision straight-in approach procedure from which normal 
descent from the MDA to the runway touchdown point may be commenced, 
provided visual reference required by 14 CFR §91.175(c)(3) is established. The 
VDP will normally be identified by DME on VOR and LOC procedures and by 
along track distance to the next waypoint for RNAV procedures. The VDP is 
identified on the profile view of the approach chart by the symbol: V.

VDPs are intended to provide additional guidance where they are imple-
mented. No special technique is required to fly a procedure with a VDP. The 
pilot should not descend below the minimum descent altitude (MDA) prior to 
reaching the VDP and acquiring the necessary visual reference.

Pilots not equipped to receive the VDP should fly the approach procedure 
as though no VDP had been provided.

Here are a few more points from the United States Standard for Terminal 
Instrument Procedures (TERPs) that might help you understand the usefulness 
of a VDP:

•	 A VDP will be for a normal descent to touchdown, usually a 3-degree 
glidepath;

•	 If a visual approach slope indicator (VASI) is available on the runway, the 
VDP will align with the VASI glidepath;

•	 If a VASI is not available on the runway, the VDP will provide a normal 
glidepath to the runway threshold.
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Please note that the AIM description of VDPs states that procedurally you 
should not descend below the MDA prior to the VDP, etc. However, in 14 CFR 
§121.651(c)(4), there is implied approval to descend prior to the VDP if the 
descent from the MDA “to the runway cannot be made using normal proce-
dures or rates of descent if descent is delayed until reaching that point.”

Every transport category aircraft I can think of should be able to comply 
with the intent of the VDP and not require an early descent even if we have 
the runway in sight. Besides, there may also be limiting obstacles to contend 
with, and a shallow glidepath or “dragged-in” approach can sometimes lead 
to visual illusions during the transition to landing.

Now that we’ve established some guidelines for using a VDP, what can you 
do in lieu of a VDP if there is not one published on the approach plate?

Some airline pilots are now using VDP-style techniques to build their own 
planned descent point (PDP). This is simply a tool that enhances the normal 
transition to landing from the MDA, just like the VDP. Unlike the VDP, which 
has regulatory criteria to maintain from the TERPs handbook, a PDP is more 
like a pilot aid to use in the cockpit to help get the job done right. A PDP will 
never be published or have the regulatory backing of a VDP. However, it can 
really be a smart technique when a VDP is not otherwise available.

Here’s the text version of a nonprecision approach plate that does not 
have a published VDP. Your goal is to calculate your own PDP. By the way, 
these techniques of calculating a PDP work for any type of aircraft, regardless 
of speed flown on the approach.

Q	 The KGEG airport ILS Rwy 3 (see Figure 4-1) glideslope is NOTA-
Med out of service. Thus, you will need to fly the LOC (GS out) with 
a MDA of 2,760 feet (HAT [height above touchdown] of 392 ft). 
There is a colocated DME with the ILS frequency. The FAF (final 
approach fix) is identified by D6.1. The missed approach point is at 
the runway threshold identified by D1.6. In addition, with a ground 
speed of 120 knots, the timing on the approach is 2:15. If we assume 
that the ceiling and visibility is adequate to plan on seeing the 
runway environment from the MDA, what is your calculated PDP 
for the approach?

A	 There are three methods to calculate a PDP, two of which are famil-
iar to most pilots and one which is rarely used. The most familiar 
method involves using DME. The other two methods involve using 
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timing on the approach or visualizing the descent on the attitude 
indicator as discussed in the prior chapter. All methods work well 
for planning purposes. I’ll summarize the differences in the meth-
ods after we solve the problem. Let’s start with the DME method.

Figure 4-1. ILS Rwy 3 for Spokane International Airport (KGEG).
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DME Method
Step one: Divide the HAT by 300. That would give us the distance in nautical 

miles that it would require to descend from the MDA to touchdown at the 
runway threshold with a 3-degree glidepath, or 300 feet per nautical mile. 
In our problem, 392 ÷ 300 = 1.31 NM. However, let’s keep it simple and use 
390 ÷ 300 = 1.3 NM.

Step two: Determine the DME at the runway threshold. In our problem, the 
runway threshold is the same point as the missed approach point at 1.6 DME.
Note: In those cases where the missed approach point (MAP) is not identified by DME, 
yet it visually appears on the chart to be aligned with the runway threshold, and DME 
is used to identify the FAF, you should refer to the timing box for the approach plate 
to note the distance from the named FAF to the MAP. Then, subtract that distance in 
nautical miles from the FAF DME to get the DME at the threshold. This is always a 
good technique to use as a backup for your calculations because the small print on 
the approach plates does not always clearly portray distances on final approach.

Step three: Add the two distances calculated in steps one and two above. This 
will give you an accurate DME for a PDP with a 3-degree glidepath to the 
runway threshold. In our problem, the PDP would be calculated to be at 
2.91 DME, but our estimate of 2.9 DME is close enough for us to use.

Be extra cautious using this method when the DME to be used is from a 
VOR that is crossed earlier on the final approach; i.e., the DME may actually be 
getting larger the closer you get to touchdown. It may be helpful to sketch 
a layout of the runway versus DME source location to help clarify the math.

In fact, the Spokane ILS Rwy 3 portrays this situation. Notice that the GEG 
VOR is between the FAF and MAP.

Timing Method

Step one: Divide the HAT by 10. This gives us the time in seconds required 
to descend from the MDA to touchdown on the runway at a 600 feet per 
minute rate of descent. In our problem, 392 ÷ 10 = 39.2 seconds, but 39 
seconds is close enough.

Do you understand why we divide by 10 in the first step for the timing 
method? Most pilots concede that the reason is simply because that’s 
what has always worked. True statement. However, there is a fundamental 
and easy reason for using 10. Dividing the HAT by 10 is really dividing the 
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HAT by a descent rate of 10 feet per second, or the equivalent of 600 
feet per minute! Therefore, if you choose to use this method to determine 
your visual descent point, the calculation forces you to make a constant 
600 feet per minute rate of descent during the visual transition to landing 
from the MDA. That descent rate works well enough for most aircraft, but, 
for some higher speed aircraft 600 fpm may bring them in a little shallow 
on the visual glidepath.

Step two: Determine the timing required on the approach from the FAF to the 
MAP as shown in the timing box. It works for any chosen ground speed, 
but for our problem today at 120 knots ground speed, the timing, as stated, 
is 2:15.

Step three: Subtract the calculation in Step one from the timing in Step two. 
This gives us the timing from the FAF to the PDP. We always have the 
clock running from the time we cross the FAF anyway, so this requires no 
additional timing. In our problem, the timing for the PDP is at 2:15 – 0:39 
= 1:36 on the approach.

How would the timing to the visual descent point be different if we 
were flying at 160 knots ground speed? In Step two, we would interpolate 
between 150 and 180 knots on the published timing box to calculate 1:42 
as the timing for the approach at 160 knots from the FAF to the MAP. Then, 
in Step three, we perform the same steps as before by subtracting this new 
timing at 160 knots minus the same time to descend at 600 fpm from Step 
one. Thus, 1:42 – 0:39 = 1:03 is the new timing at 160 knots to the PDP. Note, 
however, that the glidepath at 160 knots is a little shallower than the glide-
path for 120 knots.

So, what’s the difference between these first two methods? The DME 
method uses 300 feet per nautical mile to approximate a 3-degree glidepath 
to calculate a PDP. The timing method uses a constant 600 feet per minute 
rate of descent as the basis for calculating the PDP timing. In essence, the 
two methods may define a different point in space. However, at approxi-
mately 120 knots ground speed, the two different PDPs would be very close 
to each other.

Please bear in mind, also, that the formulas I’ve used here use some num-
bers that have been rounded off for ease of use. This also helps you do the 
work without a calculator.
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Pitch Attitude Solution
This method was discussed in detail in Chapter 3 as an option to calculate 
enroute descents. This time, however, the same techniques for visualizing the 
descent on the attitude indicator in the airplane will be used to ensure an 
adequate rate of descent on final approach, during a nonprecision approach 
procedure, to see the runway environment and be in a safe position on the 
glidepath to make the visual transition to land.

In the problem previously described for the LOC (GS out) Rwy 3 at KGEG, 
the distance from the FAF to the MAP was 4.5 NM. In addition, the HAT at the 
FAF altitude of 3,900 ft MSL would be 1,532 ft AGL (above ground level; 3,900 
ft MSL minus the touchdown zone elevation of 2,368 ft MSL equals 1,532 ft 
AGL). The 4.5 NM and 1,532 ft AGL now become important to us to help deter-
mine a minimum pitch necessary to descend from the FAF for a safe landing.

Step one: Just as in the example from Chapter 3, note the distance required 
to descend to the lower altitude. In this case, we need to descend from the 
FAF altitude to the threshold in 4.5 NM. Therefore, abeam the 10-degree 
nose-down pitch indicator line on the attitude indicator, label this line 
with a value of 4.5 NM.

Step two: Calculate the amount of altitude to lose in thousands of feet. In this 
case, we need to lose 1,532 feet from the FAF altitude of 3,900 ft MSL to the 
threshold. Then, starting from a zero degree pitch attitude on the attitude 
indicator, visualize or project how far below the zero line 1.5 would be in 
relation to the 4.5 which is now at the 10-degree nose-low line. Since 1.5 
is one-third of 4.5, then we need to project down one-third of 10-degree, 
for a 3.3-degree nose-low attitude.

This is the minimum pitch attitude, averaged over the length of the final 
approach course, necessary to land from the nonprecision approach proce-
dure. If, however, you were able to use more than the minimum of 3.3 degrees, 
such as a 4-degree or 5-degree nose-low attitude, during the descent from 
the FAF to the MDA, you should normally have the time to level at the MDA 
long enough to visually acquire the necessary cues to complete a normal 
transition to landing.
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The significant difference between this pitch attitude solution versus the 
DME method or timing method is that the pitch attitude solution is useful 
mainly in determining only the minimum flight path angle (or pitch attitude) 
required to ensure a successful landing. Although it is possible to compute a 
descent point from the MDA using this method, the mental exhaustion that 
would result is not worth the time or effort. The goal of this study guide is to 
avoid those extensive mind-bending computations. Therefore, this method 
may not be operationally practical for airline operations and may only provide 
a practical teaching opportunity on final approach for lower speed general 
aviation aircraft. However, this technique may be useful for some approaches 
using VNAV (vertical navigation) or constant descent angle procedures during 
approved operations.

Visual Glidepath
In this chapter the discussions have been centered on computing visual 
descent points for use in the weather with nonprecision approaches. How-
ever, many times you are in clear weather, or at least under VMC (visual 
meteorological conditions), and cleared the visual straight in approach to a 
runway. Therefore, as a reminder, be sure to also use these same techniques 
to compute visual glidepath checkpoints as you descend on final during a 
visual approach. Because it is often difficult to see the VASI or PAPI (precision 
approach path indicator) much more than 3 miles from the runway, a pre-
determined altitude at a certain distance from the threshold ensures a more 
stabilized approach.

The most common method is the DME method for assisting with the visual 
glidepath. Since you still want to use a 3-degree glidepath on final, you can 
divide the actual altitude above the airport by 300 feet per nautical mile to 
compute the distance you should be from the runway. Or, conversely, you can 
multiply your actual distance from the runway by 300 feet per nautical mile 
to compute the altitude above the runway that you should be at that point. 
Using the actual distance and computed altitude for a 3-degree glidepath 
more readily provides feedback on where the glidepath is located. Or, more 
practically, it indicates if you are above or below the desired glidepath.
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It is common to also use a factor of 333 feet per NM for the descent gradi-
ent. This calculation is acceptable, although it adds a minor level of complexity 
to the mental math.
Note: Remember that a 3-degree glidepath is more accurately defined as a gradient of 
318 feet per NM. Use of either the 300 or 333 feet per NM simply brackets the true value. As 
such, the two methods will compute a glidepath slightly low or slightly high on a 3-degree 
glidepath.

Table 4-1 illustrates the use of both gradients in determining a guide for 
a proper visual approach glidepath. Don’t forget to also use the VASI or PAPI 
guidance once it is visible.

Table 4-1. Examples using 300 and 333 feet per NM to determine visual 
glidepath.

300 ft/NM Distance 333 ft/ NM

1500 ft AGL 5 NM 1666 ft AGL

1350 ft AGL 4.5 NM 1500 ft AGL

1200 ft AGL 4 NM 1333 ft AGL

1050 ft AGL 3.5 NM 1166 ft AGL

900 ft AGL 3 NM 1000 ft AGL

750 ft AGL 2.5 NM 833 ft AGL

600 ft AGL 2 NM 666 ft AGL

450 ft AGL 1.5 NM 500 ft AGL

300 ft AGL 1 NM 333 ft AGL

The method illustrated in the right-hand column is more complicated. 
Three of the checkpoints are highlighted at 4.5, 3, and 1.5 NM, which have 
simpler altitude numbers to remember of 1,500, 1,000, and 500 feet AGL.
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CHAPTER 5

Summary
Did you realize before completing this study guide that there were so many 
math calculations that you needed to be doing in the cockpit? It is mind-
stretching to keep up with all of this during the progress of just one flight. Yet, 
after the realization that all of these maneuvers and events really do occur, a 
conscious effort to practice the various computations will result in an obvious 
increase in your skill and professionalism.

As a reminder, once you have discovered that you need to calculate a math 
solution to any problem, first define the problem; i.e., what is the answer I’m 
looking for? Second, look for the right formula to use. Most of the formulas you 
will ever need are right here in this book. Third, rearrange the formula to solve 
for the answer that you need. And, fourth, plug in the numbers and solve.

Since our goal here is to do these problems without the assistance of pen, 
paper, or calculator, I recommend that you practice the problems over and 
over. First, do the problems on paper. Second, study and memorize the steps 
of the problems and the relationship between the variables of the problem. 
Third, after practice on paper, push the paperwork aside and visualize the 
exact same steps without writing them down. Once you can do this repeat-
edly, you are well on your way to proficiency in cockpit mental math skills.

Don’t be afraid to modify some of the formulas and methods I’ve explained 
here. Especially for the flight maneuvers and profiles that might differ for your 
airplane or company. There are as many techniques and formulas to safely 
and professionally fly airplanes as there are skilled pilots and types of aircraft. 
Use caution, though; be sure that you do truly understand the why of a for-
mula or number that has been taught to you. Without an appropriate level 
of understanding of these mental math skills, the results might be sloppy, 
unprofessional, inefficient, or worse — unsafe.
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Therefore, I’d like to encourage you to stay proficient in these mental math 
skills, honing them with every opportunity. In fact, many times you can “beat” 
the computer, flight management system, or glass cockpit displays by work-
ing the problem in your head faster than the computer (especially if you have 
to type in the data).

We can take pride as professional pilots at any level of aviation that 
we encourage each other to greater levels of proficiency. Keep it up! 
Mentorship is a magnificent way to ensure the credibility and safety 
of our profession. Therefore, pass on the knowledge and skill gained 
through this study guide. In fact, many a veteran pilot would appreciate  
a new “trick” to put in his flight bag, just as a new student pilot is eager to 
learn from the “hangar flying” on weather days when the retired jet-jocks 
come down to the FBO just to see what’s going on!

Good luck to you! Keep those skills sharp! I hope to see you flying the line 
very soon!
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APPENDIX A

Basic Math Exercises

Addition and Subtraction
First, I will show you how one skill leads to another by going over some very 
basic addition problems. As a result, your overall mental math skill level will 
rise significantly with the correct and continuing application of basic addition 
and subtraction skills. As we examine and practice problems remember that 
the same rules or discipline required to add single-digit numbers also apply 
to larger numbers. In other words, don’t allow large numbers to overwhelm 
you. We will apply the same skills we used with small numbers — we just have 
to repeat the steps a couple of more times per problem! Mastery of addition 
skills contributes directly to the mastery of subtraction skills and vice versa.

As we proceed through the demonstration problems and explanations 
that follow I want you to look for the common features, relationships, differ-
ences, and techniques used to solve the various problems. After we develop 
a foundation of basic skills, we will continue to build your skills using those 
relationships and techniques to increase your proficiency. Keep in mind that 
the intent is to master skills instrumental to mental math problem solving. In 
other words, you may not have pen, paper and/or calculator handy to help 
you out, so I will keep my explanations as simple and clear as possible to help 
you solve problems in the cockpit. You can refer to Appendix D to review 
basic math tables for addition and subtraction.

Table A-1. Demonstration addition problems.
3 6 12 48 67

+ 4 + 7 + 24 + 34 + 49

7 13 36 82 116
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Each of these addition problems builds upon the skill of the prior prob-
lems. In the first problem, the addition of 3 + 4 is relatively simple and 
straightforward. The second problem shares the simplicity, but requires a 
two-digit answer; e.g., 6 + 7 = 13. Both require memorizing the basic addition 
table in Appendix D.

Problem three goes to the next level of adding two two-digit numbers. In 
this case, add the numbers from the right column (ones digit), then add the 
numbers from the left column (tens digit). From the right column, 2 + 4 = 6. 
From the left column, 1 + 2 = 3 (or 30 since the 3 is in the tens column). Joining 
the two steps results in 36 as the combined answer (30 + 6).

Problem four again raises the level of skill by building on the first three 
approaches. First, add the ones column. 8 + 4 = 12. Since the answer in the 
ones column can only use a single digit from the ones column in the answer, 
we keep the 2 in the ones column in the answer. From this first step, use the 
additional 10 as a carry-over of 1 to the tens column. Now, we have 4 + 3 + 1 = 8 
in the tens column. Joining the two steps results in 82 as the combined answer 
(80 + 2).

At this point, you should start to see how you go from a basic level to more 
complex levels by using the common features and building block approach 
to solving problems. Let’s continue with one more level of problem solving. 
Then I will offer a useful technique for mental math problem solving.

Problem five adds 67 + 49 = 116. To solve, add the ones column, then the 
tens column plus any carry-over from the ones column. Thus, 7 + 9 = 16, or 6 
in the ones column plus a 1 to carry-over to the next tens column. Then 6 + 4 
+ 1 in the tens column equals 11, or 110, since 11 is in the tens column. Hence, 
6 + 110 = 116.

One useful technique in addition and subtraction problems is to initially 
“round-off” the numbers to make them easier to work with. It is much easier to 
add numbers that don’t have carry-over; that is, numbers that are in even tens. 
For example, in the last problem we added 67 + 49. It is easier to first add the 
closest even tens numbers, followed by correcting for the rounding. Thus, the 
first step would be to add 70 + 50, which equals 120. Then, correct the differ-
ences and adjust the final answer. Hence, the difference from 70 to 67 would 
be –3, and the difference from 50 to 49 would be –1, for a total difference of –4 
from the total. Thus, 120 – 4 = 116. Obviously enough, this is the original cor-
rect answer, but perhaps seeing this relationship allows you to solve it more 
easily in your head.
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Subtraction is numerically the opposite of addition. However, it seems a 
little more difficult to perform. Nonetheless, if you maintain the mindset that 
subtraction is merely working an addition problem in reverse, you are well on 
your way to mastering the discipline.

Table A-2. Demonstration subtraction problems.
7 31 46 53 112

– 3 – 4 – 15 – 19 – 58

4 27 31 34 54

In the first problem, 7 – 3 = 4, is the most basic of subtractions. You must 
master this level first. A subtraction table for review is included in Appendix D.

In the second problem, 31 – 4 = 27, draws upon a slightly higher level of 
subtraction. In a similar fashion to addition problems, first subtract the ones 
column on the right-hand side, then the tens column on the left. In this case, 
since 1 – 4 is less than zero, we can “borrow” a 1 (which is really 10) from the 
tens column, with a remainder of 2 (which is really 20) in the tens column. Add 
the “borrowed” 10 to the 1 in the ones column, and now have 11 – 4. Finally, 
with a 2 remaining in the tens column, joining the steps now leaves 20 + 7 as 
the answer, or 27.

The third problem combines the methods from the prior two. First, sub-
tract the ones column, then subtract the tens column. In this example, there 
is no “borrowing” to consider. Hence, 6 – 5 = 1 in the ones column; 4 – 1 = 3 in 
the tens column (or 30). Joining the two steps equals 30 + 1, or 31.

In problem four, use a combination of the prior three methods. In the first 
step of subtracting the ones column, 3 – 9, you will need to “borrow” a 1 from 
the tens column (which is really 10). Now you have 13 – 9 = 4 in the ones 
column. In the tens column, you are left with a 4 (since you had borrowed 1) – 
1 = 3, or 30. Combining the steps leaves 30 + 4, or 34.

The last problem simply uses larger numbers. 112 – 58 = 54. First, in the 
ones column, 2 – 8 becomes 12 – 8 (after “borrowing” from the tens column), 
which equals 4. Second, in the tens column, 0 (remember we borrowed a 1) 
– 5 becomes 10 – 5 (after borrowing a 1 (or 100) from the hundreds column) 
which equals 5. Hence, the combined answer is 54.

You can also use the rounding technique I described before with addition 
problems. That is, it is much simpler to subtract numbers that do not involve 
borrowing or carry-over between columns. In this last problem of 112 – 58, 
round off the numbers to 110 – 60 which equals 50. Then adjust the answer 
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by remembering that you started off with 2 more than 110, so now you would 
have 2 more in the answer, or 52. Plus, you would correct for 2 less being sub-
tracted which results in 2 more in the adjusted answer, which is now a total 
of 54.

This technique is no substitute for having to do the math eventually, but it 
is easier to start off in simpler or rounded numbers. There are many plausible 
techniques for quickly adding and subtracting numbers; but, since the goal 
here is to solve the problems mentally and without the use of pen, paper, 
calculator, or abacus, I suggest we concentrate on simple and straightforward 
techniques. Here are a few practice problems. The answers are in Appendix C.

Table A-3. Practice addition and subtraction problems.

14 + 13 = 9 + 26 = 27 + 27 = 39 + 64 =

58 + 79 = 8 + 35 = 27 + 32 = 175 + 180 =

121 + 200 = 180 + 75 = 23 – 12 = 37 – 28 =

66 – 33 = 113 – 32 = 144 – 76 = 59 – 43 =

61 – 43 = 61 – 53 = 317 – 24 = 347 – 180 =

Multiplication and Division
Let’s start with a basic table of multiplication, shown in Appendix D. With 
practice, you should be able to recite this multiplication table from memory 
and without hesitation. If you haven’t already memorized much of this, get 
started now. This is an important part of solving mental math problems. Espe-
cially with the larger numbers, repetition is the key to proficiency.

Table A-4. Demonstration multiplication problems.
5 9 8 15 15

× 7 × 6 × 7 × 8 × 80

35 54 56 120 1,200

The first three demonstration problems are straight from the multiplica-
tion table in Appendix D, Table D-3. As I mentioned before, you should be 
able to recite that multiplication table by memory. I have found, however, 
that even rote memory does not solve the problem when we are distracted 
or busy in the cockpit. Aside from practice, practice, and more practice, I will 
suggest a technique for simplifying multiplication mental math.
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First, study the relationships of the multiplier columns in the Appendix D 
Table D-3, Multiplication Tables. If you examine one column at a time (let’s 
use the ×  3 column), do you see a relationship between the answers as you 
proceed down from 1 × 3 through 1 × 12? This critical relationship is that each 
successive answer differs by a value of 3 from the previous or next answer. 
Thus, if you are able to remember that 10 × 3 = 30, you might deduce that 
9 × 3 = 3 less than the prior equation; thus, 9 × 3 = 30 – 3, or 27. You can 
directly apply this relationship throughout the multiplication table. Using the 
same × 3 column, you could similarly deduce that 12 × 3 has the same answer 
as 10 × 3 = 30, plus 2 × 3 = 6, i.e., 36. Now try the same technique using the 
× 7 column with some problems you construct.

The fourth problem, 15 × 8 = 120, also requires a two-step process to arrive 
at the answer. First, separate the 15 into two separate columns consisting of a 
5 and a 10. Second, multiply each column separately; e.g., 5 × 8 = 40, then 10 
× 8 = 80, for a total of 120. Thus, the answer is the addition of the two separate 
multiplication problems, or 40 + 80 = 120.

The fifth problem, 15 × 80 = 1,200, is an extension of the previous prob-
lem. The difference is a factor of 10, or, rather than 8 from the prior problem it 
is now 10 × 8 or 80. Thus, the answer is also larger by a factor of 10. Therefore, 
rather than 120, the answer to 15 × 80 is now 120 × 10 or 1,200. Proficiency 
multiplication of large numbers comes in handy for calculating enroute 
descents, fuel dumping, and time-speed-distance problems.

Division is numerically the opposite of multiplication, just as subtraction 
is numerically the opposite of addition. In Appendix D, Tables D-4 and D-6 
will be very helpful in recognizing mathematical intervals and relationships 
between numbers in a division problem. In both tables, I have included both 
the fractional and decimal equivalent. As I have already emphasized, profi-
ciency and an understanding of the fundamental patterns in division can only 
be successfully achieved through repetition.

From Appendix D, Table D-4, study the column with the heading “÷ 6.” As 
you proceed from the top to the bottom of the column, do you notice the 
interval or difference between each successive answer? Each interval is a dif-
ference of 0.16 or 0.17 (depending on how the third decimal place was rounded 
off). Thus, if you can remember that 9 ÷ 6 = 1.50, then you can readily deduce 
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that 8 ÷ 6 = 1.50 – 0.17, or 1.33. Or, that 10 ÷ 6 = 1.50 + 0.17, or 1.67. This pattern 
of relationship exists throughout the division table in Appendix D; that is, you 
can apply the same method or pattern to other division operations.

Table A-5. Demonstration division problems.

6  ÷ 2 = 3 9 ÷ 5 = 1.8 10 ÷ 3 = 3.3 40 ÷ 60 = 0.67

60 ÷ 22  = 3 318 ÷ 10 = 1.8 1,000 ÷ 3 = 333.34 50 ÷ 300 = 1.5

With these division problems, take particular notice of the relationship 
between the pairs of problems. In the first problem, 6 ÷ 2 = 3, the answer 
is the same as for the equivalent problem that is 10 times larger in both the 
numerator and denominator; i.e., 60 ÷ 20 = 3. Observing this simple relation-
ship is critical to maintaining a simplified approach to mental math. Do you 
notice the same type of relationship in the second pair, 9 ÷ 5 versus 18 ÷ 10 
= 1.8? The 9 and the 5 are both multiplied by 2, which results in the 18 ÷ 10. 
Both have the same answer of 1.8. The same approach could be used for 36 
÷ 20 or 81 ÷ 45, which were each multiplied (numerator and denominator) by 
4 and 9 respectively. The answer remains the same: 1.8. Do you understand 
that when both the numerator and denominator are both multiplied by the 
same number that it’s the same as multiplying by “1”? In other words, 9 ÷ 5 is 
the same as (2 × 9) ÷ (2 × 5) = (1 × 9) ÷ (1 × 5) = 1.8, etc.

The last four demonstration problems are intended to show that large 
numbers can also have simple solutions. 10 ÷ 3 is a common problem to 
solve. From the Division Table in Appendix D, Table D-4, the answer is 3.33. 
Knowing this relationship leads to a myriad of other problems that can be 
readily solved. If the problem was 100 ÷ 3 or 1,000 ÷ 3, or 10,000 ÷ 3, the 
answer is just as easily solved simply by moving the decimal point to the right 
for each additional zero in the numerator. The answers become 33.3, 333.3, 
and 3,333.3, respectively. Likewise, if the problem is now 10 ÷ 6, how could 
we use our prior example to help solve this one? Hint: We are dividing by a 
number that is twice as large as the example; therefore, the answer should be 
half as large.

Finally, the last two demonstration problems are meant to help you seek a 
relationship between the numerator and denominator. 40 ÷ 60 can be quickly 
reduced to 4 ÷ 6, or 0.67 from the Division Table in Appendix D. The last prob-
lem, 450 ÷ 300, shows me clearly that the first number is half again as big as 
the second number; thus, the answer is 11/2 or 1.5.
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Table A-6. Practice multiplication and division problems.

12 × 3 = 15 × 9 = 13 × 6 = 

28 × 3 = 15 × 7 = 13 × 12 = 

27 ÷ 9 = 48 ÷ 30 = 14,000 ÷ 5 =

81 ÷ 9 = 960 ÷ 30 = 18 ÷ 7 = 

Squares and Square Roots
As you have been diligently progressing through this study of addition, sub-
traction, multiplication, and division your skill level has increased to the point 
where you should be more comfortable looking at number problems and 
recognizing a relationship or technique to provide the answer. Now, how-
ever, for the purposes of mental math for pilots, I must recommend only one 
method for calculating or estimating squares or square roots: rote memoriza-
tion of Appendix D, Table D-5. I believe this is a reasonable approach due to 
the limited application and/or range of values normally encountered when 
computing hydroplaning speeds, lift equations, etc.

Table A-7. Demonstration square and square root problems.

22 = 4 152 = 1.8 112 = 121

√2  = 1.41 √225 = 15 √120 ≈ 11

These demonstration problems reflect formulas you may encounter while 
planning a flight. During training for your pilot ratings, you studied math 
equations relating to aerodynamics and performance. Many of those equa-
tions required use of squares and square roots in order to solve. Although 
a squared value or square root appears to make the equation much more 
complex, the application of problem solving is merely the next step beyond 
multiplication and division. For that reason, it is critical that you master those 
skills to have a better grasp of solving for squares and square roots.

The first equation, 22 = 4, might be a part of the lift equation, L = (1/2ρV2) n 
CL S, where V = 2 (or going twice as fast as you started). The result is that flying 
2 times as fast produces 4 times the lift due to the V2 term (assuming no other 
values in the equation change). [L = lift, ρ = air density, V = velocity, n = load 
factor (or Gs), CL = coefficient of lift, and S = wing surface area]
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Secondly, the equation √2 = 1.41 might be useful in determining the 
increased stall speed V when you are flying with 2 Gs (n = 2). Solving for the new 
stall speed results in an increase of 141% or 1.41 times the original stall speed.

The rest of the demonstration problems relate to the subject of determin-
ing hydroplaning speeds. A commonly accepted formula for determining 
your hydroplaning speed is VHP = 9 √P, where P is the value for the tire pres-
sure (in psi) for your aircraft. My intent is to demonstrate that for tire pressures 
of between 121 psi to 225 psi, the range of hydroplaning speeds would vary 
from 9 × √121, to 9 × √225; or, to solve the equation, a range of 99 to 135 knots.

If you are aware of the squares of 11 through 16 and the approximate range 
of square root values of numbers between 100 through 250, you can prob-
ably solve any hydroplaning problem. Another hint: a difference of 30 psi tire 
pressure will only make a difference of about 1 in the √P term, which is then 
multiplied by a factor of 9 in the equation. In other words, with an increase of 
30 psi, you will increase VHP by approximately 9 knots, and an increase of 60 
psi will increase VHP by approximately 18 knots, and so on. For review, study 
Appendix D, Table D-5, Square Roots and Squares Table.

Table A-8. Practice squares and square root problems.

72 = 92 = 132 = 

√7  = √9 = √150 ≈

There is a review test covering practical applications of addition, sub-
traction, multiplication, division, squares, and square roots in Appendix B. 
Answers for the Appendix A practice problems and the Appendix B test are 
in Appendix C. As you study these methods and problems, remember that 
the purpose of this study guide is to gain enough proficiency to complete the 
problems without outside aids such as calculator or pen and paper. How-
ever, while you are gaining proficiency, you may initially want to work the 
problems with a calculator or handwritten notes. Next, study the work and 
process you have just written down. Then repeat the problem without taking 
a look at your notes; rather, try to visualize the work you have just completed 
and formulate the answer mentally.

Interpolation
A short review of ways to interpolate between numbers in a table is neces-
sary to complete the goal of simplifying the mental math process. Since the 
goal of interpolation is to calculate an exact number that lies between other 



MEN TAL MATH FOR PILOTS APPE N D IX A:  BA SIC MATH E XERCISES 57

known values (e.g., in a row or a column in a chart or table), then the exercise 
for us is to simplify the process into a couple of straightforward steps that 
can work for all problems. The demonstration problem will ask for a solution 
that requires interpolation between charted values in a column and charted 
values in a row.

Let’s look at an excerpt from a fictitious table from a flight manual.

Table A-9. Aircraft service ceiling

Gross Weight ISA ISA + 10 ISA + 20

28,000 lbs 26,200 ft MSL 25,200 ft MSL 24,200 ft MSL

24,000 lbs 28,500 ft MSL 27,400 ft MSL 26,300 ft MSL

20,000 lbs 30,900 ft MSL 30,500 ft MSL 29,900 ft MSL

For this example, the aircraft currently weighs 25,000 pounds and the out-
side air temperature is ISA + 15 degrees. What is the aircraft service ceiling?

Step one: Identify the corners that limit the answer. In other words, the final 
answer will be between these values. In this case, the corners would be:

Table A-10. Identify corners that limit the answer.

25,200 ? 24,200

27,400 26,300

Step two: Estimate or calculate how far “into” the gross weight and temperature 
parameters at the answer will be found. In other words, the gross weight 
of 25,000 pounds is 25% of the way between the bottom and the top 
line answers, and the temperature is halfway between the two columns. 
For more complex numbers that are not easily calculated, just round the 
percentage to a convenient number for you to use.

Step three: Calculate the answers by using one parameter at a time. Let’s do 
the temperature of ISA + 15 first. Since this is exactly halfway between 
the two columns, our new available answers are now exactly between the 
25200 and 24200 and exactly between the 27400 and 26300. That gives us 
answers of 24,700 on the top line and 26,850 on the bottom line.

Next, using the gross weight of 25,000 pounds, let’s calculate the inter-
polated answer that is 25% from the bottom (26850) up to the top (24700). 
The total difference between these answers is 2,150 feet. How about 
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rounding this to 2,200 feet — that will make it easier to work with and not 
affect the answer much at all. One fourth (25%) of 2,200 feet is 550 feet. 
Thus, subtract 550 feet from the bottom answer in this example (26850), 
and discover that the service ceiling is now approximately 26,300.
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APPENDIX B

Mental Math Test

1.	 List the reciprocal headings for 042°, 077°, 168°, 243°, 265°, 331°.

2.	 Calculate the speeds that an aircraft will start hydroplaning based on 
tire pressures of 40, 60, 100, and 210 psi.

3.	 The temperature/dewpoint at an airport is 66°/60°F. Calculate the 
equivalent centigrade temperatures and estimate the base of the 
forecast cloud layer.

4.	 At South Lake Tahoe airport, with an airport elevation of 6,262 ft MSL, 
the altimeter setting is 29.73 inHg (QNH). What is the pressure altitude?

5.	 At FL220, the outside air temperature indicates –30°F. What is the 
temperature deviation from ISA?

6.	 You are descending from FL280 for landing and forgot to reset your 
altimeter to 30.11 inHg (QNH). What will your altimeter read after 
landing at the airport?

7.	 For landing on runway 34, the tower reported winds are 030/20. What is 
the crosswind component and estimated drift angle with an approach 
true airspeed of 120 knots?

8.	 As your aircraft crosses directly over the LAX VOR at FL180, what DME 
will you indicate?

9.	 For a daytime VFR flight, how many gallons of avgas are required for 
a flight time of 3 + 20? Your C-182 fuel burn is approximately 10 gph 
at 8,000 ft MSL cruise altitude.
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10.	 For a nighttime IFR flight, how many gallons of Jet A is required for a 
flight time of 4 + 10? The time to the alternate is 0 + 25. Fuel flow in 
the Learjet is 900 pounds per hour (PPH) at FL330.

11.	 After takeoff in your B-727, you have an engine failure and must return 
for landing. You now have 45,000 pounds of fuel on board, but can 
only have 17,500 pounds of fuel to not exceed maximum landing 
weight. At a fuel dump rate of 2,500 PPM, how long will it take you 
to dump fuel for landing?

12.	 How much total fuel will you dump in 13 minutes at a rate of 1,100 PPM?

13.	 Using your magnetic compass only for heading reference, starting at 
110 KIAS, 5,000 ft MSL, heading 030 degrees, and latitude 35 degrees 
north, determine the SRT bank angle and lead point for a right turn 
to heading 190 degrees.

14.	 On the VOR 23L approach plate for ABC airport, there is a 20 DME arc 
transition from the ABC 355/20 (yellow) to the ABC 052/20 (green). 
What is the distance along the arc from yellow to green?

15.	 When flying the same VOR 23L transition, how many degrees “lead” 
would you need to start the turn from the arc to the final approach 
course of 232 degrees, using a standard rate turn at 180 knots?

16.	 With a 225 KTAS and 45 knot tailwind, how far will you travel in 12 
minutes?

17.	 If you travel 300 NM in 90 minutes, what is your ground speed?

18.	 You are cruising at FL220 and 280 KIAS and have been cleared to 
descend, pilot’s discretion, to 8,000 ft MSL by 8 DME past the next 
VOR. How far out would you start your descent?

19.	 You are cleared to start an immediate descent from FL190 to 12,000 
ft MSL. You have 35 DME remaining to complete the descent. What is 
your estimated pitch attitude for the descent?
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20.	 You have been cleared the visual approach for landing at Bakersfield 
(airport elevation of 507 ft MSL). For a normal glidepath, what should 
your altitude be at 6 NM from the threshold of the runway?

21.	 The KMRT airport ILS Rwy 4 glideslope is NOTAMed out of service. 
Thus, you will need to fly the LOC (GS out) with a MDA of 1,760 feet 
(427 feet). There is a colocated DME with the ILS frequency. The FAF 
is identified by D5.9. The missed approach point is at the runway 
threshold identified by D1.4. In addition, with a ground speed of 150 
knots, the timing on the approach is 1:48. If we assume that the ceiling 
and visibility is adequate to plan on seeing the runway environment 
from the MDA, what is your calculated PDP for the approach?
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APPENDIX C

Answer Key

Chapter 2 — Airborne Math Problems

Table 2-4. Practice problems for hydroplaning speeds.

Tire Pressure VHP

50 psi 63 knots

120 psi 99 knots

150 psi 110 knots

230 psi 135 knots

Table 2-6. Practice problems for converting Celsius to Fahrenheit and 
Fahrenheit to Celsius.

°C Technique 1 Technique 2 Technique 3 °F

12°C 54°F 54°F 54°F Calculate °F

25°C 77°F 77°F 80°F Calculate °F

0°C 32°F 32°F 30°F Calculate °F

Calculate °C 5°C 4°C 5°C 40°F

Calculate °C 27°C 27°C 26°C 81°F

Calculate °C 22°C 22°C 21°C 72°F
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Table 2-7. Practice problems for ISA temperature and temperature deviation. 

Altitude ISA Temp Actual Temp Temp Dev

5,000 MSL 5°C 20°C +15°C

8,000 MSL –1°C 15°C +16°C

FL210 –27°C –10°C +17°C

FL350 –55°C –60°C –5°C

Table 2-9. Practice problems for estimating crosswind.

Wind Angle to 
Runway

Total Wind 
Strength

Crosswind 
Component

030 20 10 knots

050 20 14 knots

070 18 16 knots

Table 2-12. Practice problems for estimating drift angle.

TAS Crosswind 
Component Drift Angle

150 12 knots = 5°

360 48 knots = 8°

90 30 knots = 20°

Mach 0.78 50 knots = 7°

Table 2-15. Practice problems for estimating unit conversions.

Given Find

200 knots 230 mph

180 mph 156 knots

8 m/s 16 knots

9 km 6 SM
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Table 2-18. Practice problems for converting fuel to gallons or pounds.

Gallons (gal) Pounds (lbs)

55 gal avgas 330 lbs avgas

80 gal avgas 480 lbs avgas

167 gal avgas 1,000 lbs avgas

500 gal Jet A 3,350 lbs avgas

750 gal Jet A 5,000 lbs Jet A

1275 gal Jet A 8,500 lbs Jet A

Table 2-19. Practice problems for fuel dumping.

Dump Rate Time Fuel Dumped

1,300 PPM 5 min 6,500 lbs

2,500 PPM 18 min 45,000 lbs

3,000 PPM 6 min 20 sec 19,000 lbs

2,500 PPM 12 min 30,000 lbs

2,200 PPM 5 min 11,000 lbs

1,500 PPM 7 min 10,500 lbs

1,200 PPM 11 min 13,200 lbs

2,500 PPM 5 min 12,500 lbs

3,000 PPM 16 min 48,000 lbs

2,000 PPM 10 min 20,000 lbs

Table 2-21. 21. Practice problems for calculating lead point.

Bank Angle 
(Left/Right)

Start 
Heading

Desired 
Heading Latitude Lead Point

15° R 270° 360° 45° North 310°

15° L 270° 180° 34° North 151°

25° R 360° 090° 40° North 082°

25° L 360° 190° 40° North 223°
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Table 2-23. Practice problems using the 60-to-1 rule.

DME Arc Lead Radials

15 NM 4 degrees

20 NM 3 degrees

12 NM 5 degrees

Table 2-24. Practice problems for bank angle and turn radius.

KTAS
Standard Rate Turn 

Bank Angle
Turn Radius (SRT/30° 

Bank max)

90 KTAS 13.5 degrees .5 NM

120 KTAS 18 degrees .6 NM

200 KTAS 30 degrees 1 NM

Mach 0.80 30 degrees (max IFR) 6 NM

Table 2-25. Practice problems for calculating true airspeed (TAS).

KIAS Altitude KTAS

100 KIAS 10,000 ft MSL 120 KTAS

140 KIAS 5,000 ft MSL 154 KTAS

200 KIAS 13,000 ft MSL 252 KTAS

280 KIAS FL350 476 KTAS

Table 2-27. Practice problems for time-speed-distance questions. 

KTAS Wind Time Distance

240 60 TW 40 min 200 NM

280 70 HW 10 min 35 NM

150 0 2 min 5 NM

300 0 4 min 20 NM

420 60 TW 50 min 400 NM
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KTAS Wind Time Distance

420 0 2 min 14 NM

400 0 1.5 hour 600 NM

500 0 45 min 375 NM

510 0 40 min 340 NM

Chapter 3 — Calculating Enroute Descents

Table 3-1. Practice problems for calculating pitch attitude.

Altitude to Lose Distance Available Pitch Attitude

5,000 feet 10 NM 5.0° down

23,000 feet 70 NM 3.3° down

4,000 feet 20 NM 2.0° down

7,000 feet 28 NM 2.5° down

Appendix A— Basic Math Exercises 

Table A-3. Practice addition and subtraction problems.

14 + 13 = 27 9 + 26 = 35 27 + 27 = 54 39 + 64 = 103

58 + 79 = 137 8 + 35 = 43 27 + 32 = 59 175 + 180 = 355

121 + 200 = 321 180 + 75 = 255 23 − 12 = 11 37 − 28 = 9

66 − 33 = 33 113 − 32 = 81 144 − 76 = 68 59 − 43 = 16

61 − 43 = 18 61 − 53 = 8 317 − 24 = 293 347 − 180 = 167

Table A-6. Practice multiplication and division problems.

12 × 3 = 36 15 × 9 = 135 13 × 6 = 78

28 × 3 = 84 15 × 7 = 105 13 × 12 = 156

27 ÷ 9 = 3 48 ÷ 30 = 1.6 14,000 ÷ 5 = 2800

81 ÷ 9 = 9 960 ÷ 30 = 32 18 ÷ 7 = 2.6
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Table A-8. Practice square and square root problems.

72 = 49 92 = 81 132 = 169

√ 7 = 2.6 √ 9 = 3 √ 150 = 12

Appendix B— Mental Math Test
1.	 222°, 257°, 348°, 063°, 085°, 151°.

2.	 Approximately 57 knots, 70 knots, 90 knots, and 130 knots.

3.	 Temperature/dewpoint is 19°/16°C. The forecast cloud base is estimated 
at 1,333 ft AGL using 6°F ÷ 4.5°F/1,000 ft = 1,333 ft AGL; or, 1,200 ft AGL 
using 3°C ÷ 2.5°C/1,000 ft = 1,200 ft AGL.

4.	 6,262 ft MSL elevation plus 190-foot altimeter correction equals 6,452 ft 
pressure altitude.

5.	 FL220 ISA equals –29°C (–20°F). Therefore, temperature deviation equals 
–10°F or –5°C.

6.	 The altimeter will read 190 feet low at the airport. (30.11 – 29.92 = 0.19 inHg, 
which is equivalent to 190 feet altitude).

7.	 14 knots of crosswind with a drift angle of 7 degrees.

8.	 3 DME.

9.	 38.3 gallons avgas. Don’t forget the 0 + 30 reserve requirement.

10.	 720 gallons Jet A. Don’t forget the 0 + 45 reserve requirement.

11.	 11 minutes.

12.	 14,300 pounds.

13.	 At 110 KIAS, 5,000 ft MSL, TAS = 121 kt. SRT bank angle = 18°. When turning 
to south, plan on overshoot minus lead, or, 190° + 35° (latitude) – 6° (1/3 of 
18°) = 219° lead point on magnetic compass.

14.	 57 degrees of arc ÷ 3°/NM = 19 NM.

15.	 Just under 3 degrees lead radial required for turn to final course.
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16.	 54 NM.

17.	 200 knots.

18.	 37 DME prior to the VOR.

19.	 2-degree nose-down pitch.

20.	 Either 1,800 ft AGL (6 NM ÷ 300 ft/NM) + 507 ft MSL (field elevation) = 
2,307 ft MSL at 6 NM from runway; or, 2,000 ft AGL (6 NM ÷ 333 ft/NM) 
+ 507 ft MSL (field elevation) = 2,507 ft MSL at 6 NM from runway.

21.	 PDP = 2.8 DME or 1:05 timing from the FAF.





71

APPENDIX D

Reference Tables and Charts

Table D-1. Addition Tables

+ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 12

4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 13 14

6 7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15 16

8 9 10 11 12 13 14 15 16 17

9 10 11 12 13 14 15 16 17 18

Example: 8 + 7 = 15
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Table D-2. Subtraction Tables

– 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9

1 0 – 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8

2 1 0 – 1 – 2 – 3 – 4 – 5 – 6 – 7

3 2 1 0 – 1 – 2 – 3 – 4 – 5 – 6

4 3 2 1 0 – 1 – 2 – 3 – 4 – 5

5 4 3 2 1 0 – 1 – 2 – 3 – 4

6 5 4 3 2 1 0 – 1 – 2 – 3

7 6 5 4 3 2 1 0 – 1 – 2

8 7 6 5 4 3 2 1 0 – 1

9 8 7 6 5 4 3 2 1 0

Example: 6 – 3 = 3

Table D-3. Multiplication Tables

× 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 11 × 12

1 2 3 4 5 6 7 8 9 10 11 12

2 4 6 8 10 12 14 16 18 20 22 24

3 6 9 12 15 18 21 24 27 30 33 36

4 8 12 16 20 24 28 32 36 40 44 48

5 10 15 20 25 30 35 40 45 50 55 60

6 12 18 24 30 36 42 48 54 60 66 72

7 14 21 28 35 42 49 56 63 70 77 84

8 16 24 32 40 48 56 64 72 80 88 96

9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120

11 22 33 44 55 66 77 88 99 110 121 132

12 24 36 48 60 72 84 96 108 120 132 144

Example: 4 × 9 = 36
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Table D-4. Division Tables

÷ 2 ÷ 3 ÷ 4 ÷ 5 ÷ 6 ÷ 7 ÷ 8 ÷ 9 ÷ 10 ÷ 11 ÷ 12

1
1⁄ 2 1⁄ 3 1⁄4 1⁄ 5 1⁄ 6 1⁄ 7 1⁄ 8 1⁄ 9 1⁄10 1⁄ 11 1⁄12

0.5 0.33 0.25 0.2 0.16 0.14 0.12 0.11 0.1 0.09 0.08

2
2 ⁄ 3 1⁄ 2 2 ⁄ 5 1⁄ 3 2 ⁄ 7 1⁄4 2 ⁄ 9 1⁄ 5 2 ⁄ 11 1⁄ 6

0.67 0.5 0.4 0.33 0.28 0.25 0.22 0.2 0.18 0.16

3
3⁄2 3⁄4 3⁄5 1⁄ 2 3⁄7 3⁄8 1⁄ 3 3⁄10 3⁄11 1⁄4

1.5 0.75 0.6 0.5 0.43 0.38 0.33 0.3 0.27 0.25

4
4 ⁄2 4 ⁄3 4 ⁄5 2 ⁄ 3 4 ⁄ 7 1⁄ 2 4 ⁄ 9 4 ⁄10 4 ⁄11 1⁄ 3

2 1.33 0.8 0.67 0.57 0.5 0.44 0.4 0.36 0.33

5
5 ⁄2 5 ⁄3 5 ⁄4 5 ⁄6 5 ⁄ 7 5 ⁄ 8 5 ⁄ 9 1⁄ 2 5 ⁄11 5 ⁄12

2.5 1.67 1.25 0.83 0.71 0.63 0.55 0.5 0.45 0.41

6
6 ⁄2 6 ⁄3 3 ⁄2 6 ⁄5 6 ⁄ 7 3⁄4 2 ⁄ 3 3⁄5 6 ⁄11 1⁄ 2

3 2 1.5 1.2 0.86 0.75 0.67 0.6 0.55 0.5

7
7⁄2 7⁄3 7⁄4 7⁄ 5 7⁄ 6 7⁄ 8 7⁄9 7⁄10 7⁄11 7⁄12

3.5 2.33 1.75 1.4 1.17 0.88 0.78 0.7 0.64 0.58

8
8⁄2 8⁄3 8⁄4 8⁄5 4⁄3 8⁄ 7 8⁄9 8⁄10 8⁄11 2 ⁄ 3

4 2.67 2 1.6 1.33 1.14 0.89 0.8 0.73 0.67

9
9⁄2 3 ⁄1 9⁄4 9⁄5 3⁄2 9⁄ 7 9⁄8 9⁄10 9⁄11 3⁄4

4.5 3 2.25 1.8 1.5 1.28 1.12 0.9 0.82 0.75

10
10 ⁄ 2 10⁄ 3 5⁄2 2 ⁄ 1 5 ⁄3 10⁄ 7 5⁄4 10⁄9 10⁄11 5 ⁄6

5 3.33 2.5 2 1.67 1.42 1.25 1.11 0.91 0.83

11
11⁄ 2 11⁄ 3 11⁄4 11⁄ 5 11⁄ 6 11⁄ 7 11⁄8 11⁄ 9 11⁄ 10 11⁄12

5.5 3.67 2.75 2.2 1.83 1.57 1.38 1.22 1.1 0.92

12
6 ⁄1 4 ⁄1 3⁄1 12 ⁄5 2 ⁄1 12 ⁄ 7 3⁄2 4 ⁄3 6 ⁄5 12⁄11

6 2.4 2 1.71 1.5 1.33 1.2 1.094 3

Example: 9 ÷ 6 = 3/2 or 1.5
Note: Answers are included both as a fraction, expressed in the 
lower common denominator, and as a decimal, expressed to the 
closest two decimal places.
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Table D-5. Square Roots and Squares Table

Number Squared Number Square Root

1 1 1

4 2 1.41

9 3 1.73

16 4 2

25 5 2.24

36 6 2.45

49 7 2.65

64 8 2.83

81 9 3

100 10 3.16

121 11 3.32

144 12 3.46

169 13 3.61

196 14 3.74

225 15 3.87

256 16 4

Example: √14 = 3.74
72 = 49
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Table D-6. Table of Fractions and Decimal Equivalents

Fraction Decimal

1/12 0.083

1/11 0.091

1/10 0.1

1/9 0.111

1/8 0.125

1/7 0.143

1/6 0.167

1/5 0.2

1/4 0.25

1/3 0.333

1/2 0.5

Example: 0.167 = 1/6



MEN TAL MATH FOR PILOTS76

Figure D-1. Turning Performance Chart
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Table D-7. Temperature Conversion Chart

C° F° C° F° C° F° C° F°
– 60.0 – 76 – 104.0 – 30.0 – 22 – 7.6 0 32 89.6 30.0 86 186.8
– 59.4 – 75 – 103.0 – 29.4 – 21 – 5.8 0.6 33 91.4 30.6 87 186.6
– 58.9 – 74 – 101.2  – 28.9 – 20 – 4.0 1.1 34 93.2 31.1 88 190.4
– 58.3 – 73 – 99.4 – 28.3 – 19 – 2.2 1.7 35 95.0 31.7 89 192.2
– 57.8 – 72 – 97.6 – 27.8 – 18 0.4 2.2 36 96.8 32.2 90 194.0
– 57.2 – 71 – 95.8 – 27.2 – 17 1.4 2.8 37 98.6 32.8 91 195.8
– 56.7 – 70 – 94.0 – 26.7 – 16 3.2 3.3 38 100.4 33.3 92 197.6
– 56.1 – 69 – 92.2 – 26.1 – 15 5.0 3.9 39 102.2 33.9 93 199.4
– 55.6 – 68 – 90.4 – 25.5 – 14 6.8 4.4 40 104.3 34.4 94 201.2
– 55.0 – 67 – 88.6 – 25.0 – 13 8.6 5.0 41 105.8 35.0 95 203.0
– 54.4 – 66 – 86.8 – 24.4 – 12 10.4 5.6 42 107.6 35.6 96 204.8
– 53.9 – 65 – 85.0 – 23.9 – 11 12.2 6.1 43 109.4 36.1 97 206.6
– 53.3 – 64 – 83.2 – 23.3 – 10 14.0 6.7 44 111.2 36.7 98 208.4
– 52.8 – 63 – 81.4 – 22.8 – 9 15.8 7.2 45 113.0 37.2 99 210.2
– 52.2 – 62 – 79.6 – 22.2 – 8 17.6 7.8 46 114.8 37.8 100 212.0
– 52.2 – 61 – 77.8 – 21.7 – 7 19.4 8.3 47 116.6 38.3 101 213.8
– 51.6 – 60 – 76.0 – 21.1 – 6 21.2 8.9 48 118.4 38.9 102 215.6
– 51.1 – 59 – 74.2 – 20.8 – 5 23.0 9.4 49 120.2 39.4 103 217.4
– 50.6 – 58 – 72.4 – 20.0 – 4 24.8 10.0 50 122.0 40.1 104 219.2
– 49.4 – 57 – 70.6 – 19.4 – 3 26.6 10.6 51 123.8 40.6 105 221.0
– 48.9 – 56 – 68.8 – 18.9 – 2 28.4 11.1 52 125.6 41.1 106 222.8
– 48.3 – 55 – 67.0 – 18.3 – 1 30.2 11.7 53 127.4 41.6 107 224.6
– 47.8 – 54 – 65.2 – 17.8 0 32.0 12.2 54 129.2 42.2 108 226.4
– 47.2 – 53 – 63.4 – 17.2 1 33.8 12.8 55 131.0 42.7 109 228.2
– 46.7 – 52 – 61.6 – 16.7 2 35.6 13.3 56 132.8 43.3 110 230.0
– 46.1 – 51 – 59.8 – 16.1 3 37.4 13.9 57 134.6 43.8 111 231.8
– 45.6 – 50 – 58.0 – 15.6 4 39.2 14.4 58 136.4 44.4 112 233.6
– 45.0 – 49 – 56.2 – 15.0 5 41.0 15.0 59 138.2 45.0 113 235.4
– 44.4 – 48 – 54.4 – 14.1 6 42.8 15.6 60 140.0 45.5 114 237.2
– 43.9 – 47 – 52.6 – 13.9 7 44.6 16.1 61 141.8 46.1 115 239.0
– 43.3 – 46 – 50.8 – 13.3 8 46.4 16.7 62 143.6 46.6 116 240.8
– 42.8 – 45 – 49.0 – 12.8 9 48.2 17.2 63 145.4 47.2 117 242.6
– 42.2 – 44 – 47.2 – 12.2 10 50.0 17.8 64 147.2 47.7 118 244.4
– 41.7 – 43 – 45.4 – 11.7 11 51.8 18.3 65 149.0 48.3 119 246.2
– 41.1 – 42 – 43.6 – 11.1 12 53.6 18.9 66 150.8 48.8 120 248.0
– 40.6 – 41 – 41.8 – 10.8 13 55.4 19.4 67 152.6 49.4 121 249.8
– 40.0 – 40 – 40.0 – 10.0 14 57.2 20.0 68 154.4 50.0 122 253.4
– 39.4 – 39 – 38.2 – 9.4 15 59.0 20.6 69 156.2 50.5 123 253.2
– 38.9 – 38 – 36.4 – 8.9 16 60.8 21.1 70 158.0 51.1 124 255.2
– 38.3 – 37 – 34.6 – 8.3 17 62.6 21.7 71 159.8 51.6 125 257.0
– 37.8 – 36 – 32.8 – 7.8 18 64.4 22.2 72 161.6 52.2 126 258.8
– 37.2 – 35 – 31.0 – 7.2 19 66.2 22.8 73 163.4 52.7 127 260.8
– 36.7 – 34 – 29.2 – 6.7 20 68.0 23.3 74 165.2 53.3 128 262.4
– 36.1 – 33 – 27.4 – 6.1 21 69.8 23.9 75 167.0 53.8 129 264.2
– 35.6 – 32 – 25.6 – 5.6 22 71.6 24.4 76 168.8 54.4 130 266.0
– 35.0 – 31 – 23.8 – 5.0 23 73.4 25.0 77 170.6 54.9 131 267.8
– 34.4 – 30 – 22.0 – 4.4 24 75.2 25.6 78 172.4 55.5 132 269.6
– 33.9 – 29 – 20.2 – 3.9 25 77.0 26.1 79 174.2 56.1 133 271.4
– 33.3 – 28 – 18.4 – 3.3 26 78.8 26.7 80 176.0 56.6 134 273.2
– 32.8 – 27 – 16.6 – 2.8 27 80.6 27.2 81 177.8 57.2 135 275.0
– 32.2 – 26 – 14.8 – 2.2 28 82.4 27.8 82 179.6 57.7 136 276.8
– 31.7 – 25 – 13.4 – 1.7 29 84.2 28.3 83 181.4 58.3 137 278.6
– 31.1 – 24 – 11.2 – 1.1 30 86.0 28.9 84 183.2 58.8 138 280.4
– 30.6 – 23 – 9.2 – 0.6 31 87.8 29.4 85 185.0 59.4 139 282.2

60.0 140 284.0

Examples: 50°F = 10.0°C, 40°C = 104.3°F
Note: This table allows for conversion from Fahrenheit to Celsius and from Celsius to Fahr-
enheit. Choose the number you need to convert in the center column (under the arrow), 
and then to convert from F° to C° look left to the C° column. To convert C° to F° look right 
to the F° column. 
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Table D-8. Standard Temperature versus Altitude

Altitude Standard (ISA)Temp

Sea Level + 15°C

3,000 feet + 15°C

5,000 feet + 15°C

7,000 feet + 15°C

9,000 feet – 3°C

11,000 feet – 7°C

13,000 feet – 11°C

15,000 feet – 15°C

17,000 feet – 19°C

19,000 feet – 23°C

21,000 feet – 27°C

23,000 feet – 31°C

25,000 feet – 35°C

27,000 feet – 38°C

29,000 feet – 42°C

31,000 feet – 46°C

33,000 feet – 50°C

35,000 feet – 54°C

37,000 feet and higher – 57°C
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APPENDIX E

List of Mental Math Formulas

Reciprocal Headings
When Init Hdg <180°, Init Hdg +200° – 20° = Recip Hdg°

When Init Hdg >180°, Init Hdg –200° + 20° = Recip Hdg°

Hydroplaning
VHP = 9√Tire Pressure

Temperature Conversions
°F = ([9/5] × °C) + 32

°C = (°F – 32) × (5/9)

Temperature Lapse Rate
ISA Temp Lapse Rate = 2°C (or 3.5°F) per 1,000 ft

Moist Temp Lapse Rate = 2.5°C (or 4.5°F) per 1,000 ft

Pressure Altitude
PA = Indicated Altitude ± Altimeter Setting Correction

Altimeter Setting Correction = (QNH – 29.92) × 1,000 ft

Drift Angle
Drift Angle = (Crosswind Component) × 60 ÷ TAS
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Avgas
Total pounds avgas = (Gallons) × (6.0 lbs per gallon)

Total gallons avgas = (Pounds avgas) ÷ (6.0 lbs per gallon),

or

Total gallons avgas = [(Pounds avgas) × (12/3)] ÷ 10

Jet A
Total pounds Jet A = (Gallons) × (6.7 lbs per gallon)

Total gallons Jet A = (Pounds Jet A) ÷ (6.7 lbs per gallon),

or

Total gallons Jet A = [(Pounds Jet A) × (11/2)] ÷ 10

Fuel Dumping
Fuel Dumped ÷ Dump Rate = Time

Dump Rate × Time = Fuel Dumped

60-to-1 Rule
Number of Radials per mile = 60 ÷ DME

Width of 1 degree (NM) = DME ÷ 60

Turn Radius
Turn Radius (NM) = True Airspeed (TAS)÷ 200

Turn Radius (NM) = TAS × 1%
	 2

Turn Radius (NM) = (Mach Number × 10) – 2

SRT Bank Angle
Bank Angle (SRT) = (TAS ÷ 10) × 1.5

True Airspeed
KTAS = KIAS + (KIAS × [ Altitude {in 1,000s} × 2% ])

Time-Speed-Distance
Ground Speed × Time = Distance
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Enroute Descents
Top of Descent (TOD) =
(Altitude [in 1,000s] to lose × 3) + (Slowdown Distance) 
+ (Crossing restriction DME)

or

TOD = (Altitude [in 1,000s] to lose ÷ 3) × 10 + (Slowdown Distance) 
+ (Crossing restriction DME)

Visual Descent Points
DME = (HAT ÷ 300) + (DME @ Runway Threshold)

Time = (Timing for Approach) – (HAT ÷ 10)
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APPENDIX F

Glossary of Acronyms and Terms

adiabatic  occurring without the loss or gain of heat 

AGL  above ground level

AIM  Aeronautical Information Manual

ANDS  acronym to remember turning characteristics with reference 
to the magnetic compass—Accelerate North, Decelerate South

ATC  Air Traffic Control

ATIS  Automatic Terminal Information Service

C  Centigrade/Celsius

CL   coefficient of lift

DME  distance measuring equipment

ETE  estimated time enroute

F  Fahrenheit

FAF  final approach fix

FAR  Federal Aviation Regulations

FBO  fixed base operator

FL  flight level

FPM  feet per minute

G  force of gravity

gal  gallons

GS  ground speed

GS  glideslope

HAT  height above touchdown
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Hg  mercury

HW  headwind

hydroplaning  A condition resulting from the action of a tire squeezing 
water from between the tire tread and the surface upon which the tire 
is rolling. This squeezing action generates water pressure that can lift 
portions of the tire off the surface and reduce the amount of friction the 
tire can develop. The loss can be partial or complete. There are three 
types of hydroplaning: dynamic, reverted rubber, and viscous.

IAS  indicated airspeed

ICAO  International Civil Aviation Organization

IFR  instrument flight rules

ILS  instrument landing system

in  inches

ISA  international standard atmosphere. The value of temperature, pressure, 
and density at sea level in the standard atmosphere: temperature = 59°F 
(15°C), pressure = 29.92 inHg, density = 0.0023769 slugs/ft3.

knots  nautical miles per hour

KIAS  knots indicated airspeed

km  kilometer

km/h  kilometers per hour

KTAS  knots true airspeed

L  left

L  lift

lb  pounds

LOC  localizer

M  Mach number

MAP  missed approach point

MDA  minimum descent altitude

METAR  aviation routine weather report

min  minute

mph  miles per hour
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mpm  miles per minute

m/s  meters per second

MSL  mean sea level

NM  nautical mile

NOTAM  Notices to Air Missions

PAPI  precision approach path indicator

PDP  planned descent point

PIREP  pilot reports

PPM  pounds per minute

psi  pounds per square inch

QNE  barometric pressure used for the standard altimeter setting (29.92 inHg)

QNH  local altimeter setting (above MSL)

R  right

radial  A line of radio bearing radiating outward from a very-high-frequency 
omnirange (VOR) navigation facility. There are 360 radials radiating out 
from each VOR, and each radial is named for the number of degrees 
clockwise from magnetic north that the radial leaves the facility.

reciprocal  opposite

ρ (rho)  air density

RVR  runway visual range

S  wing surface area

SM  statute mile

SRT  standard rate turn

TAF  terminal aerodrome forecast

TAS  true airspeed

TERPs  United States Standard for Terminal Instrument Procedures

TOD  top of descent

TW  tailwind

UNOS  acronym to remember turning characteristics with reference to 
the magnetic compass—Undershoot North, Overshoot South
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V  velocity

VASI  visual approach slope indicator

VDP  visual descent point

VFR  visual flight rules

VHF  very high frequency

VHP  hydroplaning speed

VMC  visual meteorological conditions

VOR  VHF omnidirectional range
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