
A Guide to Unlocking Your Creativity 
with the Processing Language and 
p5.js in Four Simple Steps
 ―
Second Edition
 ―
Mathias Funk
Yu Zhang

Coding Art

DES IGN
TH INK ING

SER I ES



Design Thinking



Design Thinking is a set of strategic and creative processes and principles 

used in the planning and creation of products and solutions to human-

centered design problems.

With design and innovation being two key driving principles, this series 

focuses on, but not limited to, the following areas and topics:

•	 User Interface (UI) and User Experience (UX) Design

•	 Psychology of Design

•	 Human-Computer Interaction (HCI)

•	 Ergonomic Design

•	 Product Development and Management

•	 Virtual and Mixed Reality (VR/XR)

•	 User-Centered Built Environments and Smart Homes

•	 Accessibility, Sustainability and Environmental Design

•	 Learning and Instructional Design

•	 Strategy and best practices

This series publishes books aimed at designers, developers, storytellers 

and problem-solvers in industry to help them understand current 

developments and best practices at the cutting edge of creativity, to invent 

new paradigms and solutions, and challenge Creatives to push boundaries 

to design bigger and better than before.

More information about this series at https://link.springer.com/

bookseries/15933.

https://link.springer.com/bookseries/15933
https://link.springer.com/bookseries/15933


Coding Art
A Guide to Unlocking Your 

Creativity with the Processing 
Language and p5.js in Four 

Simple Steps

Second Edition

Mathias Funk
Yu Zhang



Coding Art: A Guide to Unlocking Your Creativity with the Processing 
Language and p5.js in Four Simple Steps

ISBN-13 (pbk): 978-1-4842-9779-7		  ISBN-13 (electronic): 978-1-4842-9780-3
https://doi.org/10.1007/978-1-4842-9780-3

Copyright © 2024 by Mathias Funk and Yu Zhang

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Miriam Haidara
Development Editor: James Markham
Editorial Assistant: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, 
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media 
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for 
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on the Github repository: https://github.com/Apress/Coding-Art. For more 
detailed information, please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

Mathias Funk
Eindhoven, The Netherlands

Yu Zhang
Eindhoven, The Netherlands

https://doi.org/10.1007/978-1-4842-9780-3


v

About the Authors�������������������������������������������������������������������������������xiii

About the Technical Reviewer�������������������������������������������������������������xv

Acknowledgments�����������������������������������������������������������������������������xvii

Chapter 1: �Introduction�������������������������������������������������������������������������1

1.1. �Coding Art�������������������������������������������������������������������������������������������������������3

1.2. �Motivation�������������������������������������������������������������������������������������������������������4

1.2.1. �How to Talk with a “Machine”����������������������������������������������������������������4

1.2.2. �Practice a Practice���������������������������������������������������������������������������������5

1.2.3. �Do It and Own It��������������������������������������������������������������������������������������6

1.3. �How to Read This Book�����������������������������������������������������������������������������������7

1.3.1. �Calling All Creatives��������������������������������������������������������������������������������7

1.3.2. �Four Steps, One Example, One Zoom������������������������������������������������������8

1.3.3. �Getting Ready���������������������������������������������������������������������������������������11

Chapter 2: �Idea to Visuals��������������������������������������������������������������������13

2.1. �Visual Elements���������������������������������������������������������������������������������������������13

2.1.1. �Shapes��������������������������������������������������������������������������������������������������14

2.1.2. �Shaping Up in Processing���������������������������������������������������������������������18

2.1.3. �Colors, Transparency, and Filters����������������������������������������������������������21

2.1.4. �Working with Form and Texture������������������������������������������������������������25

Table of Contents



vi

2.2. �Canvas Secrets���������������������������������������������������������������������������������������������29

2.2.1. �Scaling Visual Elements�����������������������������������������������������������������������30

2.2.2. �Resetting or Restoring the Canvas�������������������������������������������������������32

2.2.3. �Rotation and Translation�����������������������������������������������������������������������34

2.3. �Animation: From Frames to Motion���������������������������������������������������������������39

2.3.1. �Animation Basics����������������������������������������������������������������������������������39

2.3.2. �Simple Movement���������������������������������������������������������������������������������40

2.3.3. �Rhythm in Motion���������������������������������������������������������������������������������43

2.4. �Interaction as Input for Animation�����������������������������������������������������������������49

2.4.1. �Combining Mouse Presses and Movement������������������������������������������50

2.5. �Summary������������������������������������������������������������������������������������������������������52

Chapter 3: �Composition and Structure������������������������������������������������53

3.1. �Data and Code Structure�������������������������������������������������������������������������������54

3.1.1. �Creating Many Things���������������������������������������������������������������������������54

3.1.2. �Controlling Many Things�����������������������������������������������������������������������64

3.2. �Visual Structure���������������������������������������������������������������������������������������������68

3.2.1. �Composition and Alignment������������������������������������������������������������������68

3.2.2. �Composing with Layers������������������������������������������������������������������������73

3.2.3. �Controlling Layers���������������������������������������������������������������������������������78

3.3. �Summary������������������������������������������������������������������������������������������������������83

Chapter 4: �Refinement and Depth��������������������������������������������������������85

4.1. �Randomness and Noise��������������������������������������������������������������������������������85

4.1.1. �Working with Randomness�������������������������������������������������������������������86

4.1.2. �Controlling Randomness����������������������������������������������������������������������91

4.1.3. �Selecting and Making Choices with Randomness��������������������������������97

4.1.4. �Working with Noise�����������������������������������������������������������������������������102

Table of Contents



vii

4.2. �MemoryDot�������������������������������������������������������������������������������������������������106

4.2.1. �Smoothing������������������������������������������������������������������������������������������106

4.2.2. �Smoothly Working with Many Things�������������������������������������������������113

4.3. �Using Computed Values������������������������������������������������������������������������������116

4.3.1. �Computing Values with Functions������������������������������������������������������116

4.3.2. �The Space Between Two Values: Interpolation�����������������������������������122

4.3.3. �Interpolation with Functions���������������������������������������������������������������124

4.4. �Interactivity�������������������������������������������������������������������������������������������������129

4.4.1. �Mouse Interaction�������������������������������������������������������������������������������130

4.4.2. �Keyboard Interaction��������������������������������������������������������������������������133

4.4.3. �Other Input������������������������������������������������������������������������������������������142

4.5. �Summary����������������������������������������������������������������������������������������������������143

Chapter 5: �Completion and Production����������������������������������������������145

5.1. �Making Things Big for Print�������������������������������������������������������������������������145

5.1.1. �High-Resolution Rendering�����������������������������������������������������������������147

5.1.2. �Migrating to Scalable Version�������������������������������������������������������������149

5.1.3. �Rendering Snapshots of Dynamic Work���������������������������������������������151

5.2. �A Backstage for Control������������������������������������������������������������������������������157

5.2.1. �Tweak Mode in Processing�����������������������������������������������������������������158

5.2.2. �Centralizing Control with Variables�����������������������������������������������������159

5.2.3. �“Backstaging” with the Keyboard������������������������������������������������������161

5.3. �More Stable and Less Risky Code���������������������������������������������������������������165

5.3.1. �The Right Things in the Right Place����������������������������������������������������165

5.3.2. �Avoiding Resource Bloat���������������������������������������������������������������������169

5.3.3. �Code Structure������������������������������������������������������������������������������������169

5.3.4. �Don’t Reinvent the Wheel�������������������������������������������������������������������172

Table of Contents



viii

5.4. �Testing Before Deployment�������������������������������������������������������������������������175

5.4.1. �Depending on Dependencies��������������������������������������������������������������176

5.4.2. �Anticipating Differences���������������������������������������������������������������������176

5.4.3. �Preparing for Unattended Operation���������������������������������������������������178

5.5. �Summary����������������������������������������������������������������������������������������������������179

Chapter 6: �Taking a Larger Project Through All Four Steps���������������181

6.1. �Context, Inspiration, and Starting Point�������������������������������������������������������184

6.2. �Concept and Artwork����������������������������������������������������������������������������������185

6.3. �Step 1: Idea to Visuals���������������������������������������������������������������������������������187

6.4. �Step 2: Composition and Structure�������������������������������������������������������������190

6.4.1. �Composition: The Fog�������������������������������������������������������������������������191

6.4.2. �Composition: Creating the Mountains�������������������������������������������������192

6.4.3. �Structure: Creating the Particles��������������������������������������������������������194

6.5. �Step 3: Refinement and Depth��������������������������������������������������������������������197

6.5.1. �Refinement: Reshaping the Particles�������������������������������������������������198

6.5.2. �Depth: Adding Interaction�������������������������������������������������������������������203

6.6. �Step 4: Completion and Production�������������������������������������������������������������206

6.6.1. �Completion: Installation in Space�������������������������������������������������������206

6.6.2. �Production in Print������������������������������������������������������������������������������207

6.7. �Summary����������������������������������������������������������������������������������������������������210

Chapter 7: �Flow Fields and Particle Storms with p5.js���������������������213

7.1. �Getting Started with p5.js���������������������������������������������������������������������������214

7.1.1. �Structure of p5.js Sketches����������������������������������������������������������������215

7.1.2. �From Processing to p5.js��������������������������������������������������������������������218

7.1.3. �Fine-Tuning the Presentation�������������������������������������������������������������219

7.1.4. �How to Spot Errors?���������������������������������������������������������������������������220

7.1.5. �Making Your Work Publically Accessible��������������������������������������������221

Table of Contents



ix

7.2. �Generative Art on the Web���������������������������������������������������������������������������223

7.2.1. �Flow Fields�����������������������������������������������������������������������������������������223

7.2.2. �From Flow Field to Particle Flow��������������������������������������������������������228

7.2.3. �From Particle Flow to Dotted Particle Traces�������������������������������������236

7.2.4. �Giving Particle Traces Different Colors and Shapes����������������������������242

7.2.5. �Painting Particle Traces As a Whole����������������������������������������������������251

Chapter 8: �Making Sense of Touch and Sensors with p5.js���������������255

8.1. �Preparing for Mobile Browsers, Accidental Interaction,  
and Device Orientation��������������������������������������������������������������������������������255

8.1.1. �Preventing Accidental Interactions�����������������������������������������������������257

8.1.2. �Device Orientation������������������������������������������������������������������������������258

8.1.3. �Grid-Based Example Case������������������������������������������������������������������260

8.2. �Touch and Multi-touch��������������������������������������������������������������������������������264

8.2.1. �Working with Multiple Touches�����������������������������������������������������������265

8.2.2. �Multi-touch Interaction�����������������������������������������������������������������������267

8.3. �Working with Device Sensors���������������������������������������������������������������������273

8.3.1. �Activating Sensors������������������������������������������������������������������������������273

8.3.2. �Working with Device Rotation�������������������������������������������������������������274

8.3.3. �Working with Device Acceleration������������������������������������������������������276

Chapter 9: �Dealing with Problems�����������������������������������������������������281

9.1. �Helping Yourself������������������������������������������������������������������������������������������282

9.1.1. �Error Messages or Nothing Happens��������������������������������������������������282

9.1.2. �Working with Copy–Paste�������������������������������������������������������������������283

9.1.3. �Reference Documentation������������������������������������������������������������������285

9.1.4. �Searching for Symptoms��������������������������������������������������������������������286

Table of Contents



x

9.2. �Getting Help from Others����������������������������������������������������������������������������288

9.2.1. �Finding Help���������������������������������������������������������������������������������������288

9.2.2. �Asking the Right Questions Right�������������������������������������������������������289

9.2.3. �Minimal Working Example������������������������������������������������������������������290

9.3. �Working with Experts����������������������������������������������������������������������������������291

9.3.1. �How Can Experts Help You?����������������������������������������������������������������291

9.3.2. �How to Manage a Project with Experts?��������������������������������������������292

Chapter 10: �Learning Path�����������������������������������������������������������������295

10.1. �Going Deeper��������������������������������������������������������������������������������������������295

10.1.1. �Challenges to Pick����������������������������������������������������������������������������296

10.1.2. �Building Your Own Toolset����������������������������������������������������������������297

10.1.3. �Sharing Your Toolset with Others������������������������������������������������������298

10.2. �Different Technologies������������������������������������������������������������������������������298

10.2.1. �Enhancing Processing and p5.js������������������������������������������������������298

10.2.2. �Assessing Feasibility������������������������������������������������������������������������299

10.2.3. �Moving Away from Processing and p5.js������������������������������������������300

Chapter 11: �Creative Processes���������������������������������������������������������303

11.1. �Two Types of Ideation��������������������������������������������������������������������������������303

11.1.1. �Concept-Based Ideation�������������������������������������������������������������������304

11.1.2. �Material-Based Ideation�������������������������������������������������������������������304

11.2. �Using Abstraction Layers��������������������������������������������������������������������������305

11.2.1. �First Loop: Behavior to Output����������������������������������������������������������306

11.2.2. �Second Loop: Adding Data����������������������������������������������������������������307

11.2.3. �Third Loop: Adding Input and Interaction������������������������������������������308

11.2.4. �Fourth Loop: Adding a Backstage�����������������������������������������������������311

11.2.5. �Creative Processes with Layers�������������������������������������������������������312

Table of Contents



xi

�Conclusion�����������������������������������������������������������������������������������������315

�Epilogue���������������������������������������������������������������������������������������������317

�References�����������������������������������������������������������������������������������������321

Index��������������������������������������������������������������������������������������������������325

Table of Contents



xiii

About the Authors

Mathias Funk is Associate Professor in the 

Future Everyday group in the Department of 

Industrial Design at the Eindhoven University 

of Technology (TU/e). He has a background 

in Computer Science and a PhD in Electrical 

Engineering (from Eindhoven University of 

Technology). His research interests include 

data design methodologies, data-enabled 

design, systems for musical expression, and 

design tools for data and AI. In the past he has researched at ATR (Japan), 

RWTH Aachen, Philips Consumer Lifestyle and Philips Experience 

Design, Intel labs (Santa Clara), National Taiwan University of Science and 

Technology, and National Taiwan University. He is also the co-founder of 

UXsuite, a high-tech spin-off from Eindhoven University of Technology. 

He has years of experience in software architecture and design, building 

design tools, and web technologies. As a teacher, he teaches various 

courses in the Industrial Design curriculum about designing with data and 

visualization approaches, systems design, and technologies for connected 

products and systems. He is regularly invited to hold international 

workshops, and as an active musician for years, he is very interested in the 

intersection of music, art, and design in particular.  



xiv

An artist by training, Yu Zhang finished 

her PhD in 2017 on the theory and artistic 

practice of interactive technologies for public, 

large-scale installations. She approaches 

visual art with mixed reality installations and 

projections, sensor-based interactives, and 

computational arts. She roots her artistic 

intent in the symbolism of Asian traditions and 

transforms the artistic unpacking of drama 

and cultural signifiers into experiences of 

interactivity and connectivity that ultimately bridge artistic expression and 

audience experience. She uses systems design toolkit to realize a complex 

multifaceted experience playing with the spatiotemporal context of the 

audience's interaction with the installations when digital and physical 

converge. Starting from interactivity, she constructs layers of different 

connections between artist, artwork, audience, and the environment to 

express how far such connectivity can impact and reshape the structure 

and relations of objects, space, and time within a dynamic audience 

experience. Apart from her artistic research and practice, Yu’s teaching 

experiences cover over 10 years and a broad space including traditional 

classrooms and design-led project-based learning activities.   

About the Authors



xv

About the Technical Reviewer

Dr. Bin Yu is currently an Assistant Professor 

in Digital Innovation at Nyenrode Business 

University. He worked in Philips Design 

from 2019 to 2022. Bin received his PhD in 

Industrial Design (2018) from TU/e and 

M.S. in Biomedical Engineering (2012) from 

Northeastern University, Shenyang, China. 

Dr. Bin Yu had rich experience, from both 

academia and industry, in digital product 

design, user interface design, healthcare 

design, and data visualization. He has published more than 40 papers in 

top journals and conferences. Besides, his work has been invited to several 

design exhibitions, like Dutch Design Week, Milan Design Week, New York 

Design Week, and Dubai Design Week.  



xvii

Acknowledgments

We started this book in October 2018 and went through the process of 

writing for several months, ending with an intensive summer writing 

retreat at Tenjinyama Art Studio in Sapporo. We are grateful for the 

hospitality and kindness of Mami Odai and her team, and we will always 

remember these weeks on the hill with the wind rushing through the 

dark trees.

From October 2019, we sent out the manuscript to the reviewers, and 

we would like to acknowledge their hard work and sincerely thank them 

for great feedback and suggestions, warm-hearted encouragement, and 

praise: Loe Feijs (Eindhoven University of Technology), Jia Han (Sony 

Shanghai Creative Center), Garyfalia Pitsaki (3quarters.design), Bart 

Hengeveld (Eindhoven University of Technology), Joep Elderman (BMD 

Studio), Ansgar Silies (independent artist), and Rung-Huei Liang (National 

Taiwan University of Science and Technology). Without you, the book 

would not have been as clear and rich. We also thank the great team at 

Apress, Natalie and Jessica, and especially Bin Yu for his excellent technical 

review. We express our gratitude to Tatsuo Sugimoto, our translator for the 

Japanese edition of Coding Art. Finally, we deeply appreciate the support 

from friends and family for this project.



1

CHAPTER 1

Introduction
The art world is interwoven with technology and actually quite innovative 

and playful. From cave paintings to the use of perspective, novel colors, 

and lighting, to printing techniques and direct inclusion of machines and 

code, there are examples of how art broke ground and changed its shape 

forever. Already before the beginning of the twenty-first century, artists 

used code and programmed machines to generate art or even be part of it.

There are so many examples of technology in art. It is also interesting 

to see the path of how it has grown in the past 70 years. Famous examples 

are, for instance, of earlier pioneers in computer art like Georg Nees, 

Michael Noll, Vera Molnár, and Frieder Nake who brought the use of 

pseudo-randomness and algorithm about fractals and recursion in code 

drawing. The more recent generation of artists like Casey Reas, who is 

well known for developing the Processing software, extend artistic ideas 

through the programming language. Some artists like Jared Tarbell 

introduce real data into art creation and connect the complexity with the 

data availability. It is remarkable that for most of their works, computer 

artists open the source code to the public, so we can learn from them.

In this book, we want to make the point that the use of modern 

technology and machines in creative work does not contradict “creative 

expression.” Instead, if used well, technology can help creatives take steps 

in new directions, think of new ideas, and ultimately discover their ideal 

form of expression.

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_1

https://doi.org/10.1007/978-1-4842-9780-3_1


2

Why data and information in art? The use of data can connect artworks 

to the human body, signals from outer space, or contemporary societal 

issues, important events happening all over the world. With data streams, 

creative works can become “alive.” As they represent data in visual or 

auditory forms, they comment on what is happening in the world; they 

provide an alternative frame to news and noteworthy. They can react and 

even create their own data as a response.

Why is interaction interesting for creatives? Interaction in an artwork 

opens a channel for communication with individual viewers or an entire 

audience. Interaction can make a work more immersive and let viewers 

engage in new ways with the artist’s ideas. Some might want to engage 

with art emotionally; some others prefer a more rational approach. The 

creative is in charge of defining and also limiting interactivity – from fully 

open access to careful limitations that preserve the overall aesthetics and 

message of the work. Interaction can help create multifaceted artworks 

that show different views on the world, or even allow for exploration of 

unknown territory.

Using computation and code can help a creative express ideas 

independent of medium and channel – the work is foremost conceptual 

and can be rendered in any form susceptible to the viewer. So, when we 

express an artistic concept in the form of code or machine instructions, we 

can direct the machine to produce its output in a number of ways: print 

a rendered image on a postcard or t-shirt, project an animation onto a 

building, or make an expressive interaction accessible from a single screen 

or for a global audience on the Internet. By disconnecting from physical 

matter, we create ephemeral art that might even change hands and be 

changed by others.

Ultimately, technology transforms what it is applied to. We show you 

how to do this with creativity.

Chapter 1  Introduction



3

1.1. � Coding Art
What is “coding art” all about? The title is intentionally ambiguous, ranging 

in meaning from how to code art to coding as creative expression. Probably 

the message that resonates most with you is somewhere in the middle.

Tips  We are curious what you think during or after reading and 
working with this book. Please let us know on our website.1

In this book, “coding” simply means an action that translates meaning 

from one language into another, for example, from a natural language into 

a computer language. This translation, as any translation, implies a change 

in who can and will interpret what we express in the new language. It also 

implies thinking about how this interpretation might work out toward a 

result. For natural languages, we empathize with other people, how they 

think and act. For machines, we need something called “computational 

thinking” [3, 6, 21].

Learning how to code is quite similar to learning how to speak another 

language. Some people might follow a more theoretical approach and 

learn vocabulary and grammar before attempting to speak and converse. 

Some others start with a conversation and gradually understand the 

structure of the language behind it. Depending on the circumstances, any 

approach might work well.

For teaching how to code in a computer or programming language, 

both approaches have been used in the past. There are very theoretical 

ways to approach coding. They often come with a steep learning curve and 

the full richness of what the language creators intend you to know about it. 

And there are also ways to playfully get used to simple examples that teach 

1 https://codingart-book.com/feedback

Chapter 1  Introduction

https://codingart-book.com/feedback


4

the basics before moving to more complicated examples. In the context of 

creative work, we strongly feel that the second approach, starting with the 

“conversation,” works far better. However, we have seen in practice that 

the playful approach often hits a limitation: how to make the step from toy 

examples to something that is useful and also complex and intricate. This 

is hard and the reason why we write this book.

1.2. � Motivation
Every profession, every vocation, is about doing something difficult with 

high quality, often using specific approaches or techniques. This works for 

engineers, researchers, marketing, and doing business. For creatives, the 

“difficult thing” is the invention of meaning and purpose out of a large set 

of options, constraints, and relations. It is a very human thing to create, 

which means we apply both our intuition and our training and knowledge 

to a challenge. Creatives apply various technologies in a creative process, 

and coding is a part of that. In this book, the use of coding in creative 

work is based on the situation that we try to construct meaning through 

understanding the logic and structure of coding. We use coding as a 

creative tool rather than being hardcore programmers or mere end users.

1.2.1. � How to Talk with a “Machine”
Confronted with the particular but different characteristics of art, design, 

and technology, we have seen creatives struggle with questions about 

“how to start,” “how to continue,” and “how to end” while working with 

code and coding practice. Like writing a book or essay, it is difficult to 

code an idea in an individual context and condition, so that a machine 

can produce something meaningful for us. Unlike writing, the machine 

will respond swiftly to anything we feed it. It will never complain about too 

much work and always accurately reflect what we write in coded language. 

And when we get things wrong, make a mistake, which happens more 

Chapter 1  Introduction



5

often than we are comfortable with, then this is on us. The machine is a 

“stupid” thing, dull and rational. Whatever creativity emerges is ours only. 

This book is essentially about how to let the machine express and amplify 

our human creativity by using precise instructions (“code”) and input (“data”).

For many creatives, the use of code in their projects brings new 

challenges, beyond successfully completing a project. For example, an 

unforeseen challenge is to let the work operate reliably for hours, days, and 

weeks. With traditional “static” material, creative output eventually turns 

into a stable form that rests in itself. Paper, photo, clay, concrete, metal, 

video, or audio documentary are stable. There are established ways to 

keep them safe and maintain their quality. If you want, you can study this 

conservation craft as a university subject even.

Things are different for art or design based on code. Code always 

needs a machine to run on, an environment to perform its function. 

This essentially counteracts technological progress: there is always a 

newer machine, a more modern operating system, a more powerful way 

to program something. Any of these get in and code written for earlier 

machines may stop working. This does not happen that easily to a painting 

or a designed and manufactured object.

1.2.2. � Practice a Practice
When we write about “coding” as a practice, we try to combine the creative 

process with computational thinking. Over the years, our art or design 

students, inevitably, encounter similar problems. They often ask questions 

like “why do we need to learn coding?”, “coding is so difficult to continue 

once you are stuck, what is it worth?”, and “I could understand the 

examples (from the programming software references) well, but I cannot 

do my idea just by using those examples, how to do that?” These questions 

(or often passionate complaints) point at the difficulty of learning coding 

as a new language. It seems that there is a big disconnect of “brainy” 

coding from creative practice. There is a common understanding that 

Chapter 1  Introduction



6

creative expression is fueled by inspiration and directed by intuition. In 

contrast, coding or working with technology seems to be very rational 

and thought through. We think creative coding is an exciting mix of these 

two, alternating between different modes of thinking and doing. Often we 

start with a loose idea of what we want to create, then throw a few shapes 

on our computational canvas. Then figure out a technical issue and go 

back to tweak the colors, position, or movement. Soon, this will turn into 

something intuitively creative and much faster than learning to wield a 

brush and master the skills to paint.

1.2.3. � Do It and Own It
Before we can start, here is yet another big “why” question: even if coding 

is an indispensable part of a creative project, why do artists or designers 

need to do the code themselves? Cooperative skills are basic for any 

contemporary artist and designer, there are cases of successful artists who 

command a multidisciplinary team to work on their ideas. Sadly, this is 

quite rare. More realistically, we see creatives who cannot afford a team of 

qualified experts and who work on smaller budgets and projects. We see 

creatives who don’t want to give up control and who want to keep their 

creative agency. And even if you want to collaborate, without understanding 

coding and technology to some extent, it will be very difficult to work with 

experts productively or get help when you run into problems. The point 

about creative technology is: you want something? Then do it and own it.

We are aware that creatives who are learning or exploring interactive 

art, digital art, and new media art are no longer just following one 

traditional approach. Instead, they need to work with their ideas from a 

broader perspective – in the principles of science, technology, engineering, 

and mathematics (STEM). When we move into the field where art meets 

code, creatives may need a new way of thinking and working which can 

help them see this new field through the lens of an old field where they 

have been active in and professional at.

Chapter 1  Introduction



7

In projects where code is involved, you as the creative need the ability 

to read code, understand code, perhaps even write code, and think in a 

computational structure. This is necessary for effectively communicating 

with technology experts in a common “language.” We think these are 

essential abilities creatives today need to have. Besides, creatives who rely 

mostly on the help of experts often feel uncertain as to how much control 

they have to relinquish to achieve their goal. We actually have a section on 

working with technology experts toward the end of the book.

1.3. � How to Read This Book
This book can be read in different ways, from different perspectives and 

also with different pre-knowledge and backgrounds. It is hard to find a 

common ground, but we hope that, with patience and openness, you will 

soon see our point.

1.3.1. � Calling All Creatives
First of all, this book is dedicated to creatives who might be designers, artists, 

design or art students. We also wrote this book for musicians, architects, 

engineers, and researchers. They all share that creativity makes their 

profession special and their work unique. The creative will benefit mostly by 

taking the main road from beginning to end, visiting all examples and typing 

along. Why not bring this book to your favorite café once a week and slowly 

make your way through the different chapters. If you space it out over several 

weeks, you will see that the breaks will spark new thoughts of how to code art 

and what you could do yourself with the current week’s topic.

We also wrote this book for educators who could take a jump to the last 

three chapters first. There we explain more about the rationale behind the 

concepts we introduce and our methodology. We show how everything fits 

together, also from an educational point of view.

Chapter 1  Introduction



8

Third, this book is written for technical experts, who know it all actually 

and who might be surprised by the simplicity of the code examples. Why 

would they read this book? Because they realize that knowing code as a 

second native language and being able to construct the architecture of 

code is not enough, by far. The embedding of code in a process, driven by 

creativity or business interests, is where the challenges lie. As a technical 

expert, you will find the last three chapters most interesting and can use it 

as a lens to scan the other parts of the book.

1.3.2. � Four Steps, One Example, One Zoom
In the first chapters of this book, we will go through a creative process in four 

steps and explain how coding works in each step. The steps will each unfold 

through several practical examples and conclude with a short summary.

The first step, idea to visuals, gives you a short primer into working 

with Processing and the different visual elements that are readily available 

to you. We quickly proceed to working with the visual canvas before 

diving into animation and interaction. From this point onward, you know 

how to draw moving things on a canvas that might even respond to your 

interactive control. The second step is about composition and structure, 

that is, how we let art emerge from a multitude of different elements on 

the canvas. We will introduce data and code structure that help you in 

working with many visual elements at the same time. Together, we apply 

this in several examples around visual structure. In the third step, we show 

you how to work things out in more detail and how to give depth to your 

creations. You will learn about randomness and noise and how to control 

them artistically. We show you how to create smooth animations and 

transitions between different elements and colors. Interactivity returns 

in this step, and we show you how to combine interactive input with 

composition and refinement. The fourth step is about production, how 

to bring your creation to the stage, how to produce and present it well in 

different media from high-resolution printing to interactive installations.

Chapter 1  Introduction



9

On the next page, we show an example that we created inspired by an 

abstract geometrical painting of Kazimir Malevich (Suprematisme, 1915) 

as inspiration (Figure 1-1). We chose this work because, for us, it visually 

hinted at a very interesting motion of otherwise static blocks that seems 

to be captured in a moment just before toppling over. We started with a 

recreation of the visual composition of ten basic elements in similar primary 

colors on a cream-colored canvas (step 1). In a second step, we connected 

to the impression of inherent motion and work with the blocks: we shifted 

and redrew the same composition recursively, adding more and more layers 

over time (step 2). The third step involved adding three large-scale rotated 

copies of the composition to complete the circular perspective. We also fine-

tuned the timing of adding the different elements and operations over time, 

so the work developed in a few minutes from the first screen and visually 

stabilized in the last screen. Finally, we added a gradual shift of the entire 

canvas that, over several minutes, zoomed out and shifted the center of the 

canvas from the left top to the right bottom (step 3). In the fourth step, we 

“produce” the images that you see: we let the animation play and live select 

tens of frames to be automatically rendered. From these frames, we finally 

select eight frames as they exhibit good composition individually and also 

show the motion of the entire work well (step 4).

This example shows how we borrow from the four large steps described 

in this book, by picking a few pieces from each step that match our concept. 

From a process point of view, steps 1, 3, and 4 were relatively straightforward. 

We took more time for the second step because we went into two different 

directions, one more playful and one more technical, of which the playful 

was the right one at the end after trying both. Only after resolving this, we 

could move faster again. There are chances that you will struggle as well 

while working with this book; don’t forget to take breaks and never let go.

Chapter 1  Introduction



10

Figure 1-1.  Example of generative art taking an abstract geometrical 
painting of Kazimir Malevich (Suprematisme, 1915) as inspiration

Chapter 1  Introduction



11

Throughout these four steps, we will teach you about creative 

computation, and, at some point, you will see also bits of strategies, 

patterns, and more complex concepts appear. Afterward, we will roll up 

all steps in a larger example, MOUNTROTHKO, in Chapter 6. Then, we 

take a turn to p5.js, the Processing version for the web. Here we show 

how to creatively reproduce generative art and take your own turn, while 

introducing important features of p5.js. Chapter 7 also shows how to 

creatively mix and order the four steps to match a project better. In  

Chapter 8, we show you how to work with multi-touch input and 

movement sensors to create an interactive art piece. Finally, in the last 

three chapters of the book, we zoom out and turn toward the practice of 

creative coding, through learning and collaboration. This part shows you 

how you can make progress using this book and how to go beyond, what 

you can do when you feel stuck, and how to get help. It’s all there; you just 

need to go step by step toward it.

1.3.3. � Getting Ready
This book contains a lot of examples, and they are written in code (“source 

code”). Most examples can be used directly, and the resulting visual output 

is shown close to the source code.

CODE EXAMPLES

// How to quickly find code examples in the book?

Look for text in a box like this!

All source code listed in this book is written in the open source 

software Processing. Processing itself is available from https://

processing.org, and we recommend that you install it on your computer 

to get the most out of this book. Processing is a medium for understanding 

Chapter 1  Introduction

http://processing.org
http://processing.org


12

the structure and logic of code. We will explain this shortly. The code 

examples are available online from our Processing library.2 Throughout 

the book we call these examples also Processing sketches, which is a 

common way to refer to code files in the Processing community. Although 

it might be tempting to just download the examples and play with them, 

we recommend typing them yourself (at least some of them). This way, 

you will pick up the programming style much faster and allow your muscle 

memory to support your learning. And if you are lucky, you will make a few 

small mistakes that give you surprising results.

Finally, we will address you, the reader, informally. Think of this book 

as a conversation in your favorite café over coffee, and your laptop is right 

in front of you. Feel free to pause the conversation and dive into a topic 

on your own, or explore the code of the examples, and then resume to the 

next page. Let’s begin.

2 The Processing library can be found here: https://codingart-book.com/
library. You can install it using the Processing library manager.

Chapter 1  Introduction

https://codingart-book.com/library
https://codingart-book.com/library


13

CHAPTER 2

Idea to Visuals
In this first part of the book, we will go through four process steps and 

show for each step how coding becomes a meaningful part of our creative 

process. In step 1, idea to visuals, we take a bottom-up approach and 

start directly with visuals and code. Our entry point to this approach is 

to use code directly from the ideation stage of the creative process. More 

specifically, instead of making mood boards, sketching, writing, searching 

the web, or talking to experts, we suggest that you just start the Processing 

application and give it a spin. First, we look at how we can express our 

ideas using Processing and a few lines of code. Yes, we start really simple.

2.1. � Visual Elements
For many artists, even if visual elements in their work are coded, the 

standards for effectiveness in their work are still based on either cognitive 

or aesthetic goals [12, 18, 20]. When we analyze any drawings, paintings, 

sculptures, or designs, it is similar – we examine and decompose them 

to see how they are put together to create the overall effect of the work. 

Lines, colors, shapes, scale, form, and textures are the general fundamental 

components of aesthetics and cognition for both art and design and for 

coding art as well.

Processing can draw a wide range of forms that result from variation 

and combination of simple shapes. When you take an example from the 

Processing reference, try to change the numbers in the example to explore 

how the shape changes and responds to different numbers.

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_2

https://doi.org/10.1007/978-1-4842-9780-3_2


14

The first two examples show that you can hit play in Processing as 

often as you want and see how your work is evolving over time. Sometimes, 

it is good to look at the results, just after changing a single value. By moving 

fast between the code and the canvas, you will also learn faster and get a 

better understanding of how the code influences the drawing of shapes 

and how you can control precisely what is drawn on the canvas. At the 

same time, by going through two detailed examples, we want to give you a 

feeling for how helpful the Processing reference pages are. These pages are 

available online and as part of your Processing application, and they, given 

an overview of all functions, explain how they work and how exactly you 

can use them. When browsing the reference, you might find interesting 

new features that come in handy for your next project.

We recommend having a browser window open with the Processing 

reference web page, so you can quickly jump into an explanation without 

losing momentum in creating with Processing. First shapes coming up, do 

you have Processing started up and ready?

2.1.1. � Shapes
Every visual element in Processing follows one of two patterns: (1) first 

specifying position, then size, and then shape or (2) specifying the points 

on which the shape is drawn. We will come back to this in a few pages. By 

carefully looking through these examples about simple visual elements, 

you will understand the similarities in the code for ellipse and rectangle 

and also the similarities for line, point, curve, polygon, and triangle.

Let’s start with a simple example based on the “ellipse” shape. 

Open Processing, and type in the following three lines of code to draw a 

simple circle.

Chapter 2  Idea to Visuals



15

FIRST DRAWING: A SIMPLE ELLIPSE WITH A BLACK BORDER

// Draw a simple ellipse

noFill();

stroke(0, 0, 0);

ellipse(56, 46, 55, 55);

// Try copying and pasting the code several times

// with different values to create layered shapes.

In this example, we draw an ellipse with equal width and height, so 

we get a perfect circle. Processing fills shapes white with a black border 

if we don’t provide further instructions. This standard behavior can be 

changed, for instance, by using the noFill function in our example.

There is also a new element in this code: the code comment. Code 

comments allow us to leave thoughts and ideas in the middle of the code 

that help us understand it at a later moment or help communicate the 

main ideas to others. Code comments start with double slashes // and will 

be rendered gray in Processing. This means that Processing knows these 

are just comments and will ignore them when drawing. You will see that 

we often use code comments to explain a function or what is happening 

line by line. This is not just for learning; you can and should leave your 

own comments in your code to better document what you have learned, 

and also what might be difficult to understand, so you don’t get confused 

next time you come back to this piece of code.

Reminder  Correct spelling is really important in programming. So, 
you need to carefully check that it is noFill and not nofill, for 
example.

Chapter 2  Idea to Visuals



16

When going through the code, you notice something interesting: 

the spelling of Processing functions like noFill is quite special; it starts 

with a lowercase character, and then there is an uppercase character 

in the middle. This is a naming convention for several programming 

languages that allows to distinguish different words that are combined 

in a function name. This combination is necessary because Processing 

cannot deal with spaces inside a name, and still we want to be able to read 

and understand the function name. The solution is to combine the words 

and use uppercase characters at the beginning of every word inside the 

combination of words – all except the first one. Processing checks this 

before running any program, and it will “complain” if the spelling is wrong. 

Try spelling a few things wrong in the preceding program, and see how 

Processing reacts. This will be helpful in the future.

Back to our example: The circle is not filled, but we still draw a thin 

line around the circle. The width of the line is set to 1 pixel automatically. 

We can change the color of the line with the stroke function. We use three 

numbers to specify the amounts of red, green, and blue in the color. The 

amounts range from 0 to 255.

? Think about this T ry playing with different values for the 
different color components. Can you create a deep purple color or a 
light beige just by using different color values?

This is also known as the RGB color mode. Here, we just use the RGB 

values of black color (0, 0, 0). If we would increase the three values from 

0 to 120 each, we would see a gray color, and if we turn them all up to 255, 

the resulting color is white.

If we look at the last line of the code example, the first two numbers, 56 

and 46, give us the location of the element. When positioning an element 

on the digital canvas, the first number always refers to the horizontal 

position or x coordinate. The second number refers to the vertical position 

Chapter 2  Idea to Visuals



17

or y coordinate. That’s why they are usually called x and y. We refer to a 

point or position on the canvas as (x, y), in our example (56, 46). Our 

ellipse is drawn as a circle with equal width and height which are both 55.  

Now, try changing the values in ellipse to see different shapes of the 

ellipse and in stroke which will give the ellipse outline a different color. 

Can you stretch the ellipse sideways or turn the outline green?

After the first ellipse example, the next example shows how we can 

change a few numbers and see a very different drawing of the circle.

DRAW A CENTERED AND FILLED ELLIPSE ON A PURPLE BACKGROUND

// set the size of the canvas

size(600, 600);

// first, paint the background purple

background(208, 170, 208);

// set line color and width and fill color

stroke(246, 173, 113);

strokeWeight(10);

fill(113, 70, 132);

// draw the ellipse in center of canvas

ellipse(width/2, height/2, 320, 320);

In this example, we first set the size of the canvas with the size 

function. The first number is the width and the second number the height 

of the digital canvas (Figure 2-1). In this case, both width and height of 

the canvas are 600. We will use the width and height later in the example, 

when drawing the ellipse. Another new thing in this example is the 

background color of the digital canvas, which is defined according to RGB 

(208, 170, 208) color using the background function. In addition to just 

defining stroke color, we also define the width of the stroke (strokeWeight) 

and the RGB color that is used to fill the drawn elements. In this example, 

Chapter 2  Idea to Visuals



18

the position of the ellipse, that is, the x and y coordinates, is located in 

the center of the digital canvas. We achieve this by replacing the first two 

numbers by the width and height of the canvas, each divided by 2. When 

we divide the width by 2, we effectively get the horizontal middle point, so 

300. The same works for the height: we divide it by 2 and get the vertical 

middle point at 300. Now, we can use these two new values to position the 

ellipse and draw it in size 320 by 320 pixels.

Figure 2-1.  Canvas measurements (left) and drawn circle (right). 
The canvas measures 600 pixels in width and height.

In the following part of this section, we will look at the visual elements 

in general and quickly show the code example of using such elements in 

Processing environment.

2.1.2. � Shaping Up in Processing
The line as a visual element is really everywhere in art and design. 

Processing draws lines as a path between two points on the digital canvas.

Chapter 2  Idea to Visuals



19

DRAW A SIMPLE LINE

// draw line from position (21, 22) to position (31, 32)

line(21, 22, 31, 32);

On the Processing canvas, the line also could be imagined as a 

dynamic path in which a tiny dot is moving between two defined 

positions – or simply as the tip of a pencil or brush moving from the first 

point to the second point in a straight line.

A second shape in Processing that is drawn by points is the triangle. 

Here, we specify three different points as pairs of coordinates. Unlike the 

line, the triangle can be filled, so we should also think about using fill 

before. Why before? Because Processing really does things step by step: 

first, prepare how to draw a shape, then draw it, and then the next. So, 

when we want to draw two different shapes, we first draw the first shape, 

change how Processing should draw the next shape, and then draw the 

second shape. And if we don’t change the looks, then Processing will just 

keep the previous settings.

? Think about this  Can you guess what this triangle will look like? 
Try it out in Processing to see if you are right.

DRAW A TRIANGLE

fill(140, 40, 160);

// draw triangle between position (21, 22),

// position (31, 32), and position (41, 22)

triangle(21, 22, 31, 32, 41, 22);

Chapter 2  Idea to Visuals



20

Processing offers more shapes that are just defined by points, for example, 

quad (four points) or even complex polygons that are freely defined by a list of 

multiple points. You can check the Processing reference how to use them.

We have seen the shape ellipse in Processing that was defined not by 

different points, but by giving a position and then the size of the shape. The 

ellipse function allows to draw circles and ellipses. Another shape is the 

rect function that allows to draw squares and rectangles on the canvas.

DRAW A RECTANGLE

fill(140, 180, 20);

// draw rectangle at position (21, 22) with

// size given by width 70 and height 30

rect(21, 22, 70, 30);

We can draw the same rectangle with rounded corners by adding a fifth 

value to the rect function: the corner radius.

DRAW A RECTANGLE WITH ROUNDED CORNERS

// the last argument is the corner radius

rect(21, 22, 70, 30, 10);

In this example, the top-left corner of the rectangle is in position (21, 22),  

because Processing positions visual elements by default with their top-left 

corner. Processing can interpret the position of a shape in different ways. 

There is the CORNER mode that takes the position as the top-left corner, 

and there is the CENTER mode that takes the position as the center of the 

shape. Both can be useful in different situations. Let’s see how it works for 

drawing rectangles.

Chapter 2  Idea to Visuals



21

DRAW TWO ROUNDED RECTANGLES WITH DIFFERENT POSITIONING

// draw rounded rectangle with (21, 22) as center

rectMode(CENTER);

fill(255, 0, 0);

rect(21, 22, 70, 30, 10);

// draw rounded rectangle with (21, 22) as top-left corner

rectMode(CORNER);

fill(0, 0, 255);

rect(21, 22, 70, 30, 10);

The first rectangle is drawn with rectMode(CENTER), which means that 

the position parameters (first and second parameters) are interpreted as 

the center point of the rectangle. As a result, the rectangle is drawn around 

this center point. The second rectangle in the preceding example is drawn 

with the rectMode(CORNER), which changes the location interpretation to 

the upper-left corner. As a result, the rectangle has its upper-left corner at 

the given position (first and second parameter) and then extends right and 

down by width and height, respectively.

Tips  You don’t have to repeat the rectMode function. It applies to 
all rectangles until you call rectMode again with a different setting.

2.1.3. � Colors, Transparency, and Filters
Artists play with color through different art mediums – acrylic, oil color, 

watercolor, ink, colored pencils, or mixed materials. Each of these 

mediums has its own characteristics, and each requires its specific 

techniques for using in art practice.

Chapter 2  Idea to Visuals



22

Whenever we want to use color in Processing functions such as fill, 

stroke, background, and many others, we specify the color by its channels: 

red, green, and blue in the RGB mode and hue, saturation, and brightness 

in the HSB mode. Two different color modes can be used in Processing: RGB 

or HSB. If there is no colorMode specified in the code, then the default of 

RGB with scale of 0–255 is used.

When we use three values to specify the red, green, and blue channels 

of a color, we notice that for grayscale colors from black (0, 0, 0) to white 

(255, 255, 255), the three values are the same. In this case, we can just 

use a single value, and Processing will understand that we want to use the 

same value for all three channels.

SHORTCUT TO DRAW GRAYSCALE COLORS

// lightgray

fill(180, 180, 180);

// same lightgray

fill(180);

With multiple shapes that overlap, we might want to work with 

transparency in our canvas drawing. That is very easy in Processing: 

just add the alpha transparency as the fourth value in any function that 

specifies color, for example, fill or stroke.

FILL COLORS WITH TRANSPARENCY

// solid purple

fill(180, 0, 180);

// 50% transparent purple (255 * 0.5 = 128)

fill(180, 0, 180, 128);

Chapter 2  Idea to Visuals



23

In addition to using colors and transparency, there are also several 

filters which can be applied to achieve special color effects, for example, 

filter(GRAY) (turn colors into grayscale), filter(INVERT) (invert 

the colors), filter(POSTERIZE) (reduce the number of colors), or 

filter(BLUR) (blur the image). By giving different values to these filters, 

they produce striking creative effects.

The following piece of code is based on the line and color functions 

in Processing to draw an image which contains a variety of color and line 

combinations (Figure 2-2). This image is inspired by the Dutch artist Piet 

Mondrian and his 1942 painting New York City I [15]. To achieve the effect 

in the image, arranging the order of lines in the code might be the part that 

needs the most patience. Why? Processing runs the code line by line. The 

first lines in the code will be drawn first, and the following lines will be 

drawn on top of them, thereby creating layers of digital paint. What you see 

on top is drawn last.

Figure 2-2.  Reproduction of a Mondrian painting New York City I

DRAW LINES IN DIFFERENT COLORS AND ORIENTATIONS

// set canvas size, white background

size(1920, 1080);

background(255);

// set 30 pixel line weight

strokeWeight(30);

// set color and draw line

Chapter 2  Idea to Visuals



24

stroke (9, 37, 87);

line (0, 980, width, 980);

stroke (135, 3, 17);

line (0, 10, width, 10);

stroke (9, 37, 87);

line (0, 90, width, 90);

stroke (211, 179, 15);

line (100, 0, 100, height);

stroke (211, 179, 15);

line (0, 650, width, 650);

// many more lines ...

If we look closely in this example (and also the image), we see that 

the same colors are used over and over. Instead of typing the same three 

numbers for the respective colors again and again (and potentially making 

mistakes), we can also define the colors before and just reuse them.

DEFINE COLORS BEFORE DRAWING MAKES CODE BETTER READABLE

// define blue, red and yellow

color blue = color(9, 37, 87);

color red = color(135, 3, 17);

color yellow = color(211, 179, 15);

// set colors and draw line

stroke (blue);

line (0, 980, width, 980);

stroke (red);

line (0, 10, width, 10);

stroke (blue);

line (0, 90, width, 90);

stroke (yellow);

line (100, 0, 100, height);

Chapter 2  Idea to Visuals



25

stroke (yellow);

line (0, 650, width, 650);

// many more lines ...

We define three variables blue, red, and yellow. They will “hold” 

the three different colors, and we can always refer to them when using 

stroke. This is a first example of how we can structure our code to make it 

better readable. We will come back to this later when looking at the overall 

structure of code.

2.1.4. � Working with Form and Texture
When we compare Processing to other powerful graphic software like 

SketchUp, 3DS Max, Cinema 4D, or Unity which focus on modeling 

parametric and organic structures and rendering a surface’s texture in 

a variety of styles, we see that Processing seems very simple, almost too 

simple. The interface has just a few buttons and menus, and there is a 

large empty text area for code. In fact, Processing allows to do similar 

things as the preceding applications; it simply exposes the functionality 

in a different way. Some things are harder to achieve in Processing, but 

there are also things that would be difficult in the applications mentioned 

earlier. If you want to try these features, give the application a try, and then 

import the created forms and textures into Processing. It is sometimes 

easier to achieve the desired result by using the strengths of different 

software packages instead of trying to do everything in one application.

“As one of basic visual elements in Arts, form encloses volume, having 

length, width, and height. A form is a shape in three dimensions, versus 

shape, which is two-dimensional, or flat” [14]. In Processing, if we draw a 

3D object, the object must be drawn on a canvas that is created with the 

P3D parameter at the end (see next example). This means that the canvas 

is prepared to render all elements in 3D. When drawing in a 3D canvas, we 

also need to be more aware that the viewer position, the “camera,” matters.

Chapter 2  Idea to Visuals



26

The 3D objects are interesting starting points for artistic ideas. The 

following example is based on the code of drawing a simple ellipse in 

Processing environment from the beginning of this section. We keep most 

values the same and only change the type of canvas with P3D to show the 

difference between 2D and 3D shape. We also change the shape of the 

ellipse into a 3D form: a sphere (Figure 2-3).

? Think about this  Moving from 2D to 3D is not difficult in 
Processing. We suggest that you look at the two code examples in 
parallel to see the difference in drawing 2D and 3D objects.

Figure 2-3.  3D sphere (left, drawn with sphere) and 2D circle (right, 
draw with ellipse)

Chapter 2  Idea to Visuals



27

DRAW ON A 3D CANVAS WITH DIRECTIONAL LIGHT

// set canvas size and ask for 3D canvas

size(640, 640, P3D);

background(208, 170, 208);

noStroke();

fill(113, 70, 132);

// use a directional light in 3D space:

// first three values give the light position,

// the rest is about the direction of the light

directionalLight(255, 220, 255, 1, 0, -1);

// move camera

translate(width/2, height/2, -30);

// draw sphere with 180 pixel diameter

sphere(180);

Processing offers more shapes and even more lighting and material 

properties. Again, check the Processing reference for inspiration.

One important property of 3D forms is texture. “At its most basic, 

texture is defined as a tactile quality of an object’s surface. It appeals to 

our sense of touch, which can evoke feelings of pleasure, discomfort, 

or familiarity. Artists use this knowledge to elicit emotional responses 

from people who view their work. The reasons for doing so vary greatly, 

but texture is a fundamental element in many pieces of art” [8]. In the 

following, we will go into one simple example of adding a texture to a 

sphere. We first use loadImage to load an image for the texture which 

is then stored in a variable img (variables will be explained shortly). 

Then we create a sphere shape and set the texture image on the shape 

with the setTexture function. In Processing, every function “belongs” 

to something, and in the previous examples, all functions (like fill 

or ellipse) belong to the canvas itself. Since the canvas is the default 

Chapter 2  Idea to Visuals



28

drawing environment in Processing, we don’t need to mention this. Now, 

in this example with globe.setTexture(img), we use a function that 

“belongs” to the shape globe. When we use it, this function will only apply 

to the shape. The dot expresses this relation between the shape globe and 

its function setTexture. We will see more of this later on in the book, for 

example, in Chapter 6, the intermission.

Reminder T he image needs to be imported into the same folder 
where the processing file is. Try to replace this “earth.jpg” image by 
another picture you have on your computer.

DRAW TEXTURED GLOBES IN PROCESSING’S 3D ENVIRONMENT

// set canvas size and ask for 3D canvas

size(640, 640, P3D);

// white background, no outline for shapes

background(255);

noStroke();

// load the texture image of the earth, and note

// this only works if you have an image 'earth.jpg'

// in the same folder as your Processing sketch

// (any image will do, though)

PImage img = loadImage("earth.jpg");

// create a shape and set the image as texture

PShape globe = createShape(SPHERE, 100);

globe.setTexture(img);

// from the left to right, draw the first 3D ellipse

translate(width/5, height/5, -50);

shape(globe);

// from the left to right, draw the second 3D ellipse

Chapter 2  Idea to Visuals



29

translate(width/5, height/5, 0);

shape(globe);

// from the left to right, draw the third 3D ellipse

translate(width/5, height/5, 50);

shape(globe);

In the preceding example, we draw three different spheres with the 

same image as the texture. If we use a texture for a 3D object, this means 

that the image is wrapped around the surface of the object. In this case, 

one image is loaded in Processing, and it is used as a texture for different 

3D shapes. The exact image is left to you to choose. We used an image of a 

world map, so the three spheres look like miniature globes.

In the beginning of this chapter, we have just touched the many 

functions of Processing – both in 2D and 3D. We have seen how we can 

start experimenting with very simple forms and shapes and how we can 

play with visual elements to express our ideas. In the next part, we look 

into the canvas itself which will help us understand the drawing process. 

Also, this makes working with complex animations later on much easier.

2.2. � Canvas Secrets
The Processing canvas is not just the surface on which we draw. The 

digital canvas offers its own features for coding art. It also influences how 

we draw: we can scale, translate, and rotate the canvas before or during 

drawing and thereby influence how the next visual elements are drawn. 

Let’s start with scaling.

Chapter 2  Idea to Visuals



30

2.2.1. � Scaling Visual Elements
In art, scale can be explored to an extreme degree, for instance, Chuck 

Close’s painting Mark is “realism in an unreal scale” [13]. And the use of 

proportion in art can be experimented with and developed as “the art of 

photomontage,” like in Hannah Höch’s 1925 painting Equilibre (Balance). 

The proportion within the human body presents a “purposeful alteration 

of human proportion to make a political statement” [13].

In Processing, a visual element’s scale is always relative to the 

canvas and its coordinate system. Scale values are specified as decimal 

percentages. For example, the function called scale(2.0) doubles the size 

of a shape, an increase to 200%, and scale(0.8) reduces the size to 80%. 

Another interesting possibility of the scale function is that it can take two 

(or even three) parameters.

USING THE SCALE FUNCTION

// scale horizontally and vertically by 130%

scale(1.3);

// scale horizontally by 130% and keep vertical scale

scale(1.3, 1);

This way, we can “stretch” or “squeeze” shapes just using the canvas 

scale function. There is, however, one thing we need to remember: the 

scale function does not actually scale the shapes. Instead, it scales the 

canvas for the following drawing operations. That means, using scale will 

leave the canvas scaled until the scaling is changed again. If we use scale 

multiple times, the results “add up”: scaling first by 2.0 and then by 3.0 is 

the same as scaling once by 6.0. That means, scaling values multiply.

The following example shows the combination effect when several 

scale functions are used together in one piece of code.

Chapter 2  Idea to Visuals



31

USING SCALE SEVERAL TIMES IN ONE PIECE OF CODE

// set canvas size and background color

size(1200, 200);

background(208, 170, 208);

// draw circle and rectangle in original scale

stroke(246, 173, 113);

strokeWeight(5);

fill(113, 70, 132);

ellipse(705, 145, 355, 355);

rect(530, 20, 355, 235, 130);

// draw first scaled rectangle

scale(1.3, 1.4);

fill(113, 70, 132, 150);

rect(530, 20, 355, 175, 230);

// draw second scaled rectangle

scale(0.6);

fill(113, 70, 132, 60);

stroke(246, 173, 113, 80);

rect(530, 20, 355, 175, 230);

Tips  Not just the combined effect matters; changing the order of 
scale functions in the code will produce different results.

Before moving on to other canvas tricks, let’s see what we can 

do to bring the canvas back to its original scaling (before the first 

application scale).

Chapter 2  Idea to Visuals



32

2.2.2. � Resetting or Restoring the Canvas
Why would we want to restore the canvas to its original setting? Imagine 

that you draw 10 or 20 overlapping objects, each with its own scaling. Now, 

you realize that you need a different order of objects and you move them 

around. Suddenly, all the scaling is off because the effects of the different 

scaling operations influence each other (they “add up”; see earlier). What 

to do? We suggest scaling objects individually and always resetting the 

canvas before scaling and drawing the next object. This way, you can easily 

move around parts of your code without annoying side effects.

There are basically two ways in which we can reset the canvas to its 

original setting in terms of scaling, translation, and rotation. The first one 

is a straightforward call to resetMatrix as shown in the following example.

RESET ANY TRANSFORMATION TO THE ORIGINAL CANVAS

// scale canvas once and draw rectangle

scale(0.8);

rect(0, 0, 20, 20);

// reset canvas

resetMatrix();

// next scale, draw rectangle

scale(0.6);

rect(0, 0, 20, 20);

Tips O f course, we can also restore the canvas by reversing 
previous scaling operations: scale(0.8) ... scale(1.25) 
(create restore point). However, this becomes cumbersome quickly.

Chapter 2  Idea to Visuals



33

This can be also described as a full reset, because it brings all settings 

back to the basic canvas settings, often called “defaults.” Sometimes, we 

would like to separately control which canvas settings are rolled back and 

which remain. For this purpose, we can use the two functions pushMatrix 

and popMatrix. They should always come as a pair, with pushMatrix as the 

first. Push and pop work by first creating a restore point (push) and then 

restoring the canvas to exactly this point (pop). We can “stack up” multiple 

restore points, which are then restored in the opposite order in which 

they were “pushed” upon the stack. As an example, the restore points 

point1, point2, and point3 are restored in the order: point3, point2, and 

finally point1.

With these two functions, we can selectively roll back canvas scaling, 

like in the following example.

SELECTIVELY ROLL BACK TRANSFORMATIONS WITH PUSHMATRIX AND 
POPMATRIX

// scale canvas once and draw rectangle

scale(0.8);

rect(0, 0, 20, 20);

// save canvas

pushMatrix();

// vertical stretch

scale(0.6, 1.2);

ellipse(10, 10, 20, 20);

// restore canvas from restore point

popMatrix();

// draw rectangle in same scaling as above

rect(30, 0, 20, 20);

// save canvas

pushMatrix();

// horizontal stretch

Chapter 2  Idea to Visuals



34

scale(1.2, 0.6);

ellipse(40, 10, 20, 20);

// restore canvas

popMatrix();

Reminder  If you write pushMatrix, directly write popMatrix, 
so you don’t forget it later on. For advanced use cases, it is possible 
to nest pushMatrix and popMatrix. Always remember that both 
functions need to be called exactly in the right order (“first push, then 
pop”) and also in the exactly same number of times.

2.2.3. � Rotation and Translation
There are two more canvas operations next to scale that we would like 

to introduce. rotate and translate are the functions used for spinning 

and moving visual elements. Actually, what happens is that the canvas is 

first moved or rotated and then the element is drawn. As a result, we see 

the moved or rotated element. All following elements will be drawn with 

the same canvas movement or rotation, unless we reset the canvas with 

resetMatrix or we use pushMatrix and popMatrix as shown before.

Let’s illustrate this quickly with an example. We draw a black rectangle 

on a white canvas, at first without any transformation (scale, translate, 

or rotate).

Chapter 2  Idea to Visuals



35

STEP 1: DRAW A BLACK RECTANGLE ON A CANVAS WITHOUT 
TRANSFORMATION

// setup canvas

size(200, 200);

background(0);

rectMode(CENTER);

// draw the white canvas

fill(255);

rect(width/2, height/2, 200, 200);

// draw black rectangle on canvas

fill(0);

rect(width/2, height/2, 40, 40);

Now, we rotate the white canvas and draw the black rectangle 

as before.

STEP 2: DRAW A BLACK RECTANGLE ON A ROTATED WHITE CANVAS

// setup canvas

size(200, 200);

background(0);

rectMode(CENTER);

// rotate canvas by 10 degrees

rotate(radians(10));

// draw the white canvas

fill(255);

rect(width/2, height/2, 200, 200);

// draw black rectangle on canvas

fill(0);

rect(width/2, height/2, 40, 40);

Chapter 2  Idea to Visuals



36

We see that both the white canvas and the black rectangle are rotated 

around the top-left corner. Any rotation in Processing will be relative to the 

origin of the canvas, which is by default the top-left corner at point (0, 0). 

If we want to rotate around a different point, we need to first translate the 

canvas to this point. This means we set the (0, 0) point of the canvas to 

this new location and then rotate. The next example shows how this works 

by leaving the white canvas out of the rotation and just rotating the black 

rectangle around its center point (which is also the center of the canvas at 

location (width/2, height/2)).

STEP 3: BLACK RECTANGLE ON ROTATED AND TRANSLATED 
WHITE CANVAS

// setup canvas

size(200, 200);

background(0);

rectMode(CENTER);

// draw the white canvas

fill(255);

rect(width/2, height/2, 200, 200);

// translate to center point

translate(width/2, height/2);

// rotate by 10 degrees

rotate(radians(10));

// draw black rectangle using the new (0, 0)

fill(0);

rect(0, 0, 40, 40);

We can combine different transformations as well, for instance, we 

can insert a scale just after translate to increase the size of the black 

rectangle.

Chapter 2  Idea to Visuals



37

COMBINING DIFFERENT TRANSFORMATIONS

// translate to center point

translate(width/2, height/2);

// scale the black rectangle by 150%

scale(1.5);

// rotate by 10 degrees

rotate(radians(10));

In the next example, we translate the same original circle to four 

different positions and scale down the canvas every time, so we see four 

shifted and smaller circles. The circles are drawn in transparent fill and 

stroke colors, so the effect is clearer.

COMBINING TRANSLATE AND SCALE REPEATEDLY

// setup canvas

size(400, 400);

background(208, 170, 208);

fill(113, 70, 132, 100);

stroke(246, 173, 113, 100);

strokeWeight(5);

// draw the first ellipse

ellipse(150, 150, 150, 150);

// second ellipse shifted to right and scaled down

translate(50, 50);

scale(0.9);

ellipse(150, 150, 150, 150);

// third ellipse shifted and scaled again

translate(50, 50);

scale(0.9);

Chapter 2  Idea to Visuals



38

ellipse(150, 150, 150, 150);

// fourth ellipse shifted and scaled again

translate(50, 50);

scale(0.9);

ellipse(150, 150, 150, 150);

Reminder  Be careful with the order of your transformations. 
rotate before translate has a different effect than the other way 
around. You can reset the effects of canvas transformations with 
resetMatrix or work more fine-grained with pushMatrix and 
popMatrix. That’s it.

What you need to remember from this section is that there are three 

main transformations in Processing: scale, translate, and rotate. 

They can be used together in any order, and you can stack them up, 

which means that their effects sum up. Be careful: if you apply multiple 

transformations, the ordering will have an effect. For example, if you first 

translate, then rotate will look different from first rotate and then 

translate. Why? Because the rotation point is translated in the first 

case, the second case uses the original rotation point and translates after 

rotating.

Once we come to drawing with Processing in 3D space, you will see 

that the transformations also work in 3D – just with more parameters. 

You can shift, rotate, and scale any visual element in all three axes of the 

3D space.

Chapter 2  Idea to Visuals



39

2.3. � Animation: From Frames to Motion
What does “animation” mean when coding your idea? In this book, it 

is nothing more than painting frames so quickly in a sequence that the 

human mind perceives movement although it is literally stop motion. 

Almost all following examples use this technique. One of the first examples 

of using this technique was by the Lumière brothers already in 1895.

2.3.1. � Animation Basics
Before we can dive into animation, we need to introduce a mechanism 

that allows us to paint frames quickly. This is a necessary ingredient for 

animation. Processing is perfectly suited for this, as it even suggests the 

following structure for any Processing sketch. Let’s see one example.

THE GENERAL STRUCTURE OF PROGRAMS IN PROCESSING

// the setup function is run only once

// set up canvas and drawing style here

void setup() {

  size(640, 640);

  background(208, 170, 208);

  stroke(246, 173, 113);

  fill(64, 72, 224);

}

// the draw function is run 30 or even 60 times per second

// and it draws a single frame

void draw() {

  // frame contents

  // ...

}

Chapter 2  Idea to Visuals



40

Tips  When you type the opening bracket “{,” immediately type the 
closing one as well “},” so you don’t forget it later on. Same for “(” 
and “).”

The preceding code is the basic Processing structure that we will 

use in all code examples in the remainder of this book. We need to write 

two functions, setup and draw as a skeleton. What are functions? They 

are blocks of code that have a name and sometimes input values called 

“parameters.” These blocks of code can be used once or many times. In 

Processing, functions surround code with curly brackets. Functions are 

structures to simplify code, and we will make use of this a lot in the coming 

chapters.

Processing can animate already with the two functions, setup and 

draw. This simple structure is enough to work with frame-by-frame 

animation. How does that work? When the Processing program starts, the 

setup function will be run once. This means that Processing will run the 

code between the curly brackets of the setup function. Here, you can place 

code to “set up” the scene and all important setting for the canvas when 

the program starts. The second function, draw, is what makes the frame-

by-frame animation happen: the code inside the draw function is called 

many times per second and runs until the program stops. Usually, the draw 

function starts by erasing the background; otherwise, we would just draw 

over the previous frame.

What else is needed to actually see motion? A moving object or scene! 

The next section shows how we can easily animate a visual element.

2.3.2. � Simple Movement
As a first example of movement in animation, we move a small rectangle 

pixel by pixel to the right side of the canvas until it disappears.

Chapter 2  Idea to Visuals



41

MOVE A SMALL RECTANGLE PIXEL BY PIXEL

void setup() {

  size(400, 400);

}

void draw() {

  // erase the background (= clean canvas)

  background(160);

  // draw rectangle at x-position given by frameCount

  rect(frameCount, 30, 10, 10);

}

Now we have a code structure with setup and draw, which divides 

the code into one piece that is run only once during the setup and 

another piece (the code in draw) that is run repeatedly. What is the other 

difference? We are using frameCount, a variable from Processing that 

simply counts how many frames have been drawn by draw since the start 

of the program. In the first run of draw, frameCount is 1, then 2, then 3, and 

so forth until the program stops. When we use this variable to position the 

rectangle (as the value for the x coordinate), we move the rectangle every 

frame 1 pixel to the right. Because we do this fast enough, our perception is 

tricked, and we see a smoothly moving rectangle.

This is the secret of animation, in short, drawing frame by frame really 

fast and changing the elements we want to animate a little bit between 

the frames to construct an illusion of movement. For decades, traditional 

animations, from Walt Disney’s first works to Studio Ghibli’s breathtaking 

movies, were drawn frame by frame on papers by hundreds of talented 

visual artists. Now we can let Processing do this job on its digital canvas for 

us. Let’s rotate the rectangle while we move it.

Chapter 2  Idea to Visuals



42

MOVE AND ROTATE A SMALL RECTANGLE

void setup() {

  size(400, 400);

  rectMode(CENTER);

}

void draw() {

  background(160);

  // move rectangle by frameCount

  translate(frameCount, 30);

  // rotate rectangle

  rotate(radians(frameCount * (360 / (2 * PI * 10))));

  rect(0, 0, 20, 20);

}

In this second example, we combine the linear movement of the 

rectangle with two canvas operations: translate and rotate. Again, we use 

frameCount as the element of change between the frames, but now we 

use it twice: once for shifting and once for rotation. Let’s first assume that 

we treat the rolling rectangle as a rolling circle. This makes the following 

calculations easier: we multiply frameCount with 360/(2∗π∗10) to achieve 

a rolling motion. This small formula relates the full rotation of 360° to the 

circle’s circumference (calculated by 2∗π∗radius). The radius of the circle 

(10) is half of the circle’s width. In other words, we relate the number of 

degrees (360) to the distance the circle has to travel during a full rotation 

(2∗π∗10). When comparing this explanation to the code above, you will 

notice that Processing cannot handle the π character. So, we just write PI, 

which is predefined in Processing.

This calculation is only one way to arrive at a motion that feels right. 

While it is nice to be able to calculate it, you could get there also by 

trusting your eyes and tweaking the values until it feels right. This is a 

Chapter 2  Idea to Visuals



43

good example of how we can achieve similar results in different ways. You 

should choose the one that you are most comfortable with – Processing 

never minds playing nice stuff for you.

2.3.3. � Rhythm in Motion
Motion can take different forms. It can be linear, it can be periodic, 

random, or entirely different and more complex. The preceding examples 

show linear motion along a horizontal line that leads the rectangle 

eventually out of the canvas. What if we would want the rectangle to stay 

with us? This section shows two examples that keep the visual element 

within the boundaries of the canvas.

The first one is a simple variation of the previous moving rectangle.

ADD A VARIATION WHEN MOVING AND ROTATING A SMALL RECTANGLE

void setup() {

  size(400, 400);

  rectMode(CENTER);

}

void draw() {

  background(160);

  translate(width/2, height/2);

  rotate(radians(frameCount * (360 / (2 * PI * 10))));

  rect(50, 0, 20, 20);

}

The only change is in translating into the center of the canvas and 

drawing the rectangle at a fixed distance of 50 pixels from the rotation 

point. The rectangle stays within the canvas simply because its path is now 

a circle and not a straight line anymore. Too simple? Agreed!

Chapter 2  Idea to Visuals



44

The next example is about using the increasing frameCount to create 

periodic motion. An easy way to do that is to wrap the frameCount with the 

sin function. The sin function is really helpful if we need a bit of a wiggling 

motion anywhere in Processing. If we feed it an increasing value like the 

frameCount, the sin function will turn it into a value that (smoothly) 

moves between -1 and 1.

USING THE SIN FUNCTION

// use the increasing frame counter variable divided by 20

// to 'drive' the sin function

sin(frameCount/20.0)

? Think about this  Why do we use frameCount/20.0 instead of 
frameCount? Try to change the value frameCount/20.0, or the 
height 20 and the width 20 of this rectangle. What happens now?

Due to the nature of the sin function, the direct values of frameCount 

such as 0, 1, 2, 3, ... cause the output of the calculation to be a bit jumpy. 

Therefore, we divide the frameCount by 20.0. This way, the input to sin 

changes in smaller steps and output value becomes smoother – exactly 

what we need for the bouncing rectangle example. Still, it would not really 

work because the output of sin is in the range of -1 to 1, which would only 

be a tiny wiggle on the canvas. We can make this wiggling motion more 

visible by multiplying it with half the width of the canvas and translating 

the whole canvas by the same amount to the right. The full example shows 

how it works together.

Chapter 2  Idea to Visuals



45

HORIZONTAL MOVEMENT WITH THE SIN FUNCTION

// setup as before

void draw() {

  background(160);

  translate(width/2, height/2);

  rect(sin(frameCount/20.0) * width/2, 20, 20, 20);

}

We combine linear and periodic motion in the following example. 

The lower rectangle simply follows the frameCount directly. The upper 

rectangle performs a bouncing motion which results from using the output 

of sin as before, but applying the abs function to it. The abs function 

simply leaves any positive value unchanged (1 stays 1) and turns any 

negative value into its positive counterpart (-1 becomes 1). When we 

apply this to the sin function, it starts bouncing instead of moving in a 

smooth wave.

COMBINING ABS AND SIN FUNCTION

// setup as before

void draw() {

  background(160);

  translate(0, height/2);

  // linear rectangle (lower position)

  rect(frameCount, 20, 20, 20);

  // bouncing rectangle (upper position)

  rect(frameCount, -1 * abs(sin(frameCount/20.0)) * 60, 20, 20);

}

Chapter 2  Idea to Visuals



46

Tips  For the dynamic rectangle, try to change the value 20.0 and 
60 within abs(sin(frameCount/20.0))*60 to see how to apply 
different types of motion to a same object.

You might have noticed a small final detail: we need to multiply the abs 

function with -1 because the vertical position in Processing canvas goes 

from 0 (top) to height (bottom). That is, the larger the vertical position, the 

closer it is to the bottom of the canvas. Effectively, multiplying with -1  

turns the output of abs upside down, which fits the motion better. Try 

removing it and you will see the difference.

As a final example of periodic motion (Figure 2-4), we can create a 

snap-back motion for the lower rectangle of the previous example. Also, 

we change the fill color of both rectangles: when they seem to clash, they 

contrast most and then gradually becoming gray as they move apart from 

each other.

Figure 2-4.  Two color-changing rectangles in motion

Chapter 2  Idea to Visuals



47

ADDING A SNAP-BACK MOTION TO THE PREVIOUS EXAMPLE

// setup as before

void draw() {

  background(160);

  translate(0, height/2);

  // change color by mapping frameCount to grey scale

  fill((frameCount % (20 * PI)) * 4);

  // bouncing rectangle (same as before)

  rect(frameCount, -abs(sin(frameCount/20.0)) * 60, 20, 20);

  // change color by mapping frameCount to grey scale (reversed)

  fill(255 - (frameCount % (20 * PI)) * 4);

  // linear rectangle with snap-back motion

  translate(frameCount-20, 0);

  rotate(radians(60 - frameCount % (20 * PI)));

  rect(20, 20, 20, 20);

}

Again, we use simple formulas to calculate the relationship between 

the different parts of the animation: the synchronized snap-back 

movement of the lower rectangle and the synchronized color fading of 

both rectangles. For both of them, it is important to understand how the 

modulo operator % works: the modulo operator, in many programming 

languages denoted as %, returns the division rest. For example, if we divide 

5 by 4, the division rest is 1; if we divide 4 by 4, it is 0. The following listing 

shows how it works.

Chapter 2  Idea to Visuals



48

THE MODULO OPERATOR

// example of modulo operator %

0 % 4 = 0               4 % 4 = 0                8 % 4 = 0

1 % 4 = 1               5 % 4 = 1                9 % 4 = 1

2 % 4 = 2               6 % 4 = 2                ...

3 % 4 = 3               7 % 4 = 3

With rising numbers before the % operator, the output is a rising 

sequence from 0 up to the value just before the operand (here 4). If you 

would describe this visually, see Figure 2-5, you would see a sawtooth-

like curve, which can be useful as another periodic form to control visual 

elements in Processing. We use it all the time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

Figure 2-5.  The modulo operator visualized. Notice the distinctive 
“sawtooth” curve

Chapter 2  Idea to Visuals



49

2.4. � Interaction as Input for Animation
What we have created so far are static or dynamic visual elements without 

reactions to input. That means, the Processing sketches will run by 

themselves. And once they run, we cannot control the visual outcome. In 

this short section, we will introduce how to use the mouse to control our 

visual elements. The first thing we need to understand is that any number 

that we have typed in Processing sketches so far can be controlled by input 

from an interaction like a mouse movement or mouse click. Check out the 

following example.

USING THE MOUSE TO CONTROL A VISUAL ELEMENT

void setup() {

  size(400, 400);

  rectMode(CENTER);

}

void draw() {

  background(160);

  // the first circle is static

  ellipse(50, 75, 50, 50);

  // the second circle is dynamic

  ellipse(mouseX, mouseY, 50, 50);

}

In this piece of code, we draw two ellipses on the canvas. The first 

ellipse is static; it will not move. For the second ellipse, we have replaced 

the first numbers 50 and 75 by mouseX and mouseY. When you try this in 

Processing, you will see that the second ellipse is now locked to the mouse 

pointer. In other words, the ellipse is drawn at the same position as the 

Chapter 2  Idea to Visuals



50

mouse pointer. The simple replacement of the static numbers by mouseX 

and mouseY changes the behavior of the ellipse: it will be positioned 

wherever mouseX and mouseY direct it.

How does this work? mouseX and mouseY are called variables. We have 

seen variables before. They are pieces of data that can change. How do 

they change in this case? Processing will automatically fill in the current 

mouse position, so we can use the current horizontal mouse position as 

mouseX and the vertical mouse position as mouseY.

? Think about this  Can you use the mouse position to control 
something else, for instance, the rectangle size or the fill color? 
Try it and remember this is just about replacing static numbers with a 
variable like mouseX.

After this quick tryout, we will look into three interaction basics one by 

one, linking with coding visual elements we mentioned earlier, to explain 

the features of bringing together interaction and visual elements.

2.4.1. � Combining Mouse Presses and Movement
In Processing, mousePressed is another helpful variable that has only two 

possible values: true and false. Processing will fill this in automatically 

as soon as there is a new mouse press event registered by the mouse. In 

the next example, the interaction is simply to press the left mouse button 

down, hold it, and move the mouse to the desired position of the canvas 

(often called “dragging the mouse”).

Chapter 2  Idea to Visuals



51

USING THE MOUSEPRESSED FUNCTION

void setup() {

  size(600, 600);

}

void draw() {

  // white background, black line color

  background(255);

  stroke(0);

  // if the mouse is pressed, then ...

  if (mousePressed) {

    // ... draw an interesting line

    line(mouseX, 150, 150, mouseY);

  }

}

Tips  In Processing, any key press can play the same role as a 
mouse button. Try to replace mousePressed with keyPressed in 
this piece of code. Can you figure out from the Processing reference 
how to distinguish different keys?

In this example, we combine the pressing of the left mouse button and 

mouse movement to draw a simple line. What is also new in this example 

is the use of an if statement that checks a condition before drawing the 

line on the canvas. These if statements evaluate a condition that is given 

in the parentheses. In this case, it evaluates whether mousePressed is true. 

If so, the line is actually drawn; otherwise, nothing happens.

We will see later how to use mousePressed in different ways, 

for instance, to switch elements or activate different parts of a 

Processing sketch.

Chapter 2  Idea to Visuals



52

2.5. � Summary
This chapter was about experimenting with Processing to find visual 

elements that we like and find interesting. We have seen that we can easily 

work with one or two visual elements and tweak them gradually. However, 

working with many of them can easily become complex. If we want to 

change one feature of all shapes, we would need to edit many lines of code. 

There should be a way to solve this kind of problem without typing too 

much and letting the machine do most of the work.

In the next step – Composition and Structure – we will explain how to 

do this with structure and style, so you can develop your Processing sketch 

into a more complex artwork. Yes, we will learn about unleashing the 

machine’s power without losing control as a creator.

Chapter 2  Idea to Visuals



53

CHAPTER 3

Composition and  
Structure
In the previous chapter, we started with drawing visual elements and 

experimented with these elements in Processing, line by line. In this 

chapter, we move from the first step toward the second step: Composition 

and Structure. The longer we experiment with visual elements and the 

more we discover about their properties, the more complex become 

the sketches we can create. For example, we can create variants of an 

interesting visual element when quickly trying out different shapes, color 

combinations, and form compositions. In the beginning, this creative 

progress is fast, but then it slows down because our sketches get more and 

more complex. We can experience this as feeling “stuck,” overwhelmed, or 

confused. One way to move on is to add some kind of order or structure, 

so our minds can relax and build up momentum for the next steps. 

Structure is not just helpful to regain an overview and make sense of code. 

Structure is also an aesthetic quality and can help us express our ideas by 

focusing on the bigger picture or the relations between visual elements or 

visual layers.

In this chapter, we show you how to work with visual structure using 

repetition, variation, and randomness and also how to let your ideas grow 

toward a first prototype. Before going into the details of visual structure, 

we will take a look how you can structure code and data and how you can 

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_3

https://doi.org/10.1007/978-1-4842-9780-3_3


54

extend visual control from individual visual elements to many elements 

or things. By deconstructing “many things,” we may have a preparation of 

going into the visual structures in the later sections.

3.1. � Data and Code Structure
When extending the first sketches of an idea, we can start by increasing 

the number of existing visual elements, adding variations, and playing 

with a multitude of elements before reducing to the final set of absolutely 

necessary elements. The creative act of expanding the collection of visual 

elements often generates new ideas and perspectives.

This section is divided into two parts: first creating many things and 

then controlling many things. We will start by extending the range of visual 

elements to “many things.” This is about creating many variations or 

clones of a single visual element and how these clones can be displayed 

and controlled.

Every programming language contains one or more features to work 

with many objects at the same time. This is something that computers do 

really well: apply the same or similar instructions to multiple objects as 

fast as possible – and modern computers can feel almost unlimited this 

respect: they have vast amounts of memory and processing cores. So, for 

the creative, it is merely the challenge to tell the computer exactly what 

needs to be done. It’s best to see it live, so let’s make some particles and 

animate them.

3.1.1. � Creating Many Things
A first example of how to create many things on a Processing canvas is the 

random generation of dots on the defined canvas.

Chapter 3  Composition and Structure 



55

RANDOMLY GENERATE DOTS

void setup() {

  size(400, 400);

  background(35, 27, 107);

  noStroke();

}

void draw() {

  fill(238, 120, 138, 250);

  ellipse(random(0, width), random(0, height), 15, 15);

  filter(BLUR, 1);

}

We would like to draw the exactly same shape, but with slightly 

different features. In the next example, we create two variables x and y for 

the position. In a way, we first set the position variables before we draw the 

ellipse at that position in the draw function.

RANDOMLY GENERATE DOTS WITH TWO VARIABLES X AND Y

void draw() {

  fill(238, 120, 138, 250);

  // create two variables x, y for position

  float x = random(0, width);

  float y = random(0, height);

  ellipse(x, y, 15, 15);

  filter(BLUR, 1);

}

Chapter 3  Composition and Structure 



56

Let’s do a further small exercise based on this example. In the previous 

examples, the dots cover the entire canvas. What if we want to draw the 

dots only inside a circle in the center of the canvas? We can do this by 

adding only a little more code (Figure 3-1).

Figure 3-1.  Draw fading dots around the center of the canvas

HOW TO SPECIFY POSITIONS FOR MANY THINGS  
DRAWN ON THE CANVAS

void draw() {

  fill(238, 120, 138, 250);

  // create two variables x, y for position

  float x = random(0, width);

  float y = random(0, height);

  // check that distance between (x,y) and canvas

  // center is less than 150, only then draw ellipse

  if (dist(x, y, width/2, height/2) < 150) {

    ellipse(x, y, 15, 15);

  }

  filter(BLUR, 1);

}

This example introduced the dist function that basically returns the 

pixel distance between two points. These two points are given by their x and 

y coordinates (in the order: first point x and y, then second point x and y).  

The if condition ensures that we only draw a dot if the dot’s distance to 

Chapter 3  Composition and Structure 



57

the center point is less than 150 pixels (in this example). Not too difficult, 

right? This technique is sometimes called “generate and test,” because 

we generate positions randomly and then test if they match our distance 

criterion. Only with a match the positions are actually used and a shape is 

painted.

What happens in these sketches in terms of “many things”? After the 

simple setup of the canvas, we draw one ellipse per frame at a random 

location. The filter at the end blurs the canvas, so that the ellipses become 

more and more blurred until they disappear. We do not erase visual 

elements to clear the background in this sketch, which results in layered 

drawing and blurring. While we are drawing what appears to be many 

things here, we are basically drawing a single ellipse and only the canvas 

visually remembers it, like an echo in a large room. We lose touch with the 

individual ellipse after it has been drawn.

To be more in control, we need to find a way to remember the ellipse, 

more precisely, its position, in the code structure and to change it. At the 

same time, we need to remember and draw multiple ellipses, so we can 

create new visuals composed of multiple ellipses.

In the next example, we will store 60 ellipses by means of their position 

and draw them in a loop. When we click the mouse, the mouse position 

will be stored as the position for the currently selected ellipse. This way, we 

can draw looping figures on the canvas and try it out first; the details will 

be explained shortly.

DRAW AN INTERACTIVE MOUSE TRACE

PVector[] ellipses = new PVector[60];

void setup() {

  size(400, 400); background(35, 27, 107); noStroke();

  // initialize the array ellipses

  for (int i = 0; i < ellipses.length; i++) {

Chapter 3  Composition and Structure 



58

    ellipses[i] = new PVector();

  }

}

void draw() {

  filter(BLUR, 1);

  // pick one position from the array

  PVector p = ellipses[frameCount % ellipses.length];

  // set mouse position if mouse is pressed

  if (mousePressed) {

    p.set(mouseX, mouseY);

  }

  // draw the position

  fill(238, 120, 138, 250);

  ellipse(p.x, p.y, 15, 15);

}

? Think about this  You remember from before that a PVector 
object packages the x and y coordinates of a position, right? You can 
read and also write the coordinate individually and also use more 
advanced operations. We will come back to this soon.

How does this “storing” work? In Processing and many other 

programming languages, we use an array for storing multiple objects of 

the same type, such as the position that is given here as a PVector object. 

Arrays are defined by using square brackets and a number for the size. In 

the case of the ellipses array, we use 60 for the size (see the first line of the 

preceding code).

Chapter 3  Composition and Structure 



59

Tips T here are also other types of loops, but we are using only the 
for loop in this book. The Processing reference has more information 
if you are interested.

Now we have memory space for storing 60 positions. The next thing 

we need to do is initialize the space with actual positions, that is, instances 

of PVector. This happens in the setup method inside a loop. Loops are 

a new concept that makes a lot of sense when using arrays. Ok, so what 

are loops? Loops allow us to execute the same code (inside the loop) for 

a specific number of times, and we need exactly that for initializing the 

array: creating a PVector object 60 times. This loop is a for loop that uses a 

counter i and a condition (execute loop as long as i is smaller than 60).  

The loop starts with i = 0, and, every time it runs, it increases by 1 

with i++.

Finally, we can use the 60 different positions in the draw method where 

we pick one position to draw an ellipse at this position. Before we draw the 

ellipse, we check whether the mouse is currently pressed (mousePressed). 

If that is the case, we update the position in the array with the current 

mouse position. With this change, we can now draw on the canvas, and the 

positions remember our drawing and repeat it until we press the mouse 

again and set a new position.

Let’s try another example of creating many things. This time, we go 

for “thousands of things” (see Figure 3-2). In this example, we create 4000 

particles. Each particle has a position and size (see the particle variable) 

and a direction of movement (see the direction). We use the Processing 

PVector data type as way to store the position and size in one PVector 

object and the direction in another PVector object.

Chapter 3  Composition and Structure 



60

Figure 3-2.  Draw 4000 particles in a direction of movement

DRAW 4000 PARTICLES IN MOTION

// reserve memory space for 4000 particle positions

PVector[] particle = new PVector[4000];

// reserve memory space for 4000 particle directions

PVector[] direction = new PVector[4000];

void setup() {

   size(600, 600); smooth(); noStroke();

  // loop through all 4000 particles

  for (int i = 0; i < 4000; i++) {

    // initialize particle at center position with a third

Chapter 3  Composition and Structure 



61

    // component for size and color of the particle

    particle[i] = new PVector(0, 0, random(0.5, 4));

    // initialize random particle direction

    direction[i] = new PVector(random(-1, 1), random(-1, 1));

  }

}

void draw() {

  // dark blue background

  background(35, 27, 107);

  // always draw from center of canvas

  translate(width/2, height/2);

  // loop through all particles

  for (int i = 0; i < 4000; i++) {

    // change position

    PVector p = particle[i].add(direction[i]);

    // adjust individual color

    fill(238, 120, 138, p.z * 30);

    // draw particle shape

    ellipse(p.x, p.y, p.z, p.z);

  }

}

In this example, we use a trick to store all the different properties of a 

particle in two different arrays. This can get confusing, because we always 

need to initialize, read, and update both arrays. So, here is a better way: 

Processing allows us to define our own data structure for a particle. In the 

following code, you can see how we changed the previous sketch.

Chapter 3  Composition and Structure 



62

USE A DATA STRUCTURE TO DEFINE PARTICLES

// reserve memory space for 4000 particles

Particle[] particles = new Particle [4000];

void setup() {

  size(600, 600); smooth(); noStroke();

  // loop through all 4000 particles and initialize

  for (int i = 0; i < 4000; i++) {

    particles[i] = new Particle();

  }

}

void draw() {

  // dark blue background

  background(35, 27, 107);

  // always draw from center of canvas

  translate(width/2, height/2);

  // loop through all particles

  for (Particle p : particles) {

    // change position and draw particle

    p.move();

    p.show();

  }

}

// create a new class for our particle

class Particle {

  float x, y, size, directionX, directionY;

  // initialize (called 'constructor')

  public Particle() {

    this.size = random(0.5, 4);

    this.directionX = random(-1, 1);

    this.directionY = random(-1, 1);

  }

Chapter 3  Composition and Structure 



63

  // function to move the particle position in direction

  public void move() {

    // add directionX to x, and directionY to y

    this.x += directionX;

    this.y += directionY;

  }

  // draw the particle on the Processing canvas

  public void show() {

    // set individual particle color

    fill(238, 120, 138, this.size * 30);

    // draw particle shape

    ellipse(this.x, this.y, this.size, this.size);

  }

}

In the first lines, we do not create two arrays anymore. Instead, we 

create a single array of Particle which is then initialized in the setup 

function. The new Particle class is shown at the bottom of the sketch. 

We define five variables (x, y, size, directionX, directionY) and three 

functions inside this class. The first function Particle() is called a 

constructor, and it will automatically be called when Processing creates 

an individual particle. Technically speaking, we are creating an instance 

of this class: the class is the blueprint, and we can construct unlimited 

instances from this blueprint. This is what the constructor does, and it is 

useful for setting up the variables inside the instance. Two more functions, 

move and show, allow us to move and draw a single particle on the screen. A 

bit like a remote control.

After setting up the class, you can see in the draw function how we use 

it: we loop through all particles and call the move and show functions for 

every single particle. The draw function is now nicely short and simple. 

This is an example of how we also use the structure to simplify our code: 

we separate the code into the control part in the draw loop and movement 

and drawing code inside the Particle class.

Chapter 3  Composition and Structure 



64

3.1.2. � Controlling Many Things
The previous example shows how to create many things and a first view on 

how to control them. Thanks to the simplified structure with the Particle 

class, we can now change just the move function to keep particles on the 

canvas and prevent them from moving out of the screen. The following 

code just replaces the move function in the previous example.

CHANGE THE MOVE FUNCTION TO CONTROL MANY THINGS

public void move() {

    // calculate the particle's distance from the center

    if (dist(this.x, this.y, 0, 0) > 250) {

      // create position and new random target position

      PVector position = new PVector(this.x, this.y);

      PVector target = new PVector(random(-250, 250), random

          (-250, 250));

      // calculate direction vector between

      // current and target position

      PVector direction = PVector.sub(target, position);

      // divide direction by 600 to make the steps small

      direction.div(600);

      // set the new direction for the particle

      directionX = direction.x;

      directionY = direction.y;

    }

    // this is as before

    this.x += directionX;

    this.y += directionY;

}

Chapter 3  Composition and Structure 



65

In this example, we limit the movement of particles with an invisible 

circular wall around the center of the canvas. How? Actually there is no 

“wall,” but instead, we check how far away each particle is from the center 

point (0, 0). If the particle’s distance to the center is equal to or larger than 

250 pixels, we immediately calculate a new direction for the particle to 

move to. So, every particle is now limited in its movement because it will 

automatically bounce back when it reaches the maximum distance to 

the center. And because all particles have the same limitation, we see an 

invisible boundary. This is essentially the power of working with “many 

things.”

This previous example shows how we can control the movement of 

many things by defining functions inside the new Particle class that 

allow to control one particle at a time. Since we have now a function to 

just control the movement of the particle, we can also use this to add 

interactivity.

? Think about this T ry changing the shape of the particles 
individually. For instance, whenever the particle bounces against the 
wall, it changes from dot to square and back.

USE MOUSE INTERACTIVITY TO CONTROL MANY THINGS 

// ...

void draw() {

  // dark blue background

  background(35, 27, 107);

  // always draw from center of canvas

  translate(width/2, height/2);

  // loop through all particles

  for (Particle p : particles) {

Chapter 3  Composition and Structure 



66

    // change position depending on the distance

    // of the mouse to the horizontal center

    p.move(abs(width/2 - mouseX));

    // draw particle

    p.show();

  }

}

// ...

// move function with additional parameter 'radius'

// that replaces the number 250 below

public void move(int radius) {

    // calculate the particle's distance from the center

    if (dist(this.x, this.y, 0, 0) > radius) {

      // create position and new random target position

      PVector position = new PVector(this.x, this.y);

      PVector target = new PVector(random(-radius, radius),

          random(-radius, radius));

      // calculate direction vector between

      // current and target position

      PVector direction = PVector.sub(target, position);

      // divide direction by 600 to make the steps small

      direction.div(600);

      // set the new direction for the particle

      directionX = direction.x;

      directionY = direction.y;

    }

    // this is as before

    this.x += directionX;

    this.y += directionY;

}

// ...

Chapter 3  Composition and Structure 



67

In this last example, we just change the previous code in two places: in 

the draw function, we call the move function with an additional parameter. 

This parameter is defined in the move function as radius and controls the 

maximal pixel distance from the center point. So, you need to change two 

things: first replace p.move(); with the corresponding line in the code 

listing above and second the entire move function. With this simple change, 

we can now control the invisible wall with the mouse. Try it out.

As a quick recap of the examples so far, we have worked with “many 

things” from creating to controlling them. We only use a single shape (a 

dot) to draw each particle, and the particle color and size are same for 

every particle. We can change this inside the show function of the Particle 

class. Finally, we control the overall shape of the particle cloud by using the 

mouse and its distance to the center.

Let’s quickly recap: Creating and controlling many things directly one 

by one needs some form of structure. Why? Imagine that you would have 

to create small variables and code snippets for 4000 particles. You would 

need to write a lot of code and keep thousands of things in mind to check 

and improve. If you would make a single mistake and copy it 4000 times, 

that would be a major problem to fix. By using the array as a data structure 

and a for loop to access all the array elements, we can radically simplify 

the code need to control and draw all elements. At first, we use two 

different arrays with Processing’s PVector data type as our data structure. 

Later, we introduce the class concept to combine information about 

a particle and to define functions to control its movement. The class 

Particle keeps different pieces of data of a particle together, so whatever 

we need for drawing a particle is all in one place. We can also modify the 

particle data. For example, we move the elements slightly before we draw it 

and create an animation of flying particles. The class structure also allows 

us to control the behavior of every particle with a simple function move 

and to draw it with show. Now we can achieve independent movement of 

all particles and still let them move according to general rules (think of 

the “invisible wall” here). The functions inside the Particle class have 

Chapter 3  Composition and Structure 



68

access to the memory of the particle. We can even add extra information 

for drawing such as the radius. This extra information is called parameter, 

and it allows to inject data into the behavior when we need it.

In a creative process, we can always start with less structure and then 

create more structure when things get complicated. If you often struggle 

with this, dedicate moments in your process to improve the structure, so 

you can be sure that you will be able to make good progress over time. Now 

that we used a better structure for data and code at the level of individual 

particles, what if we want to work with the entire cloud of particles 

directly? What if we want to create with structure in a more visual way?

3.2. � Visual Structure
Space is an indispensable component in visual art. Spatial positioning and 

layers give ways of controlling how visual elements appear and how their 

spatial interplay guides our perspective and attention. Visual structure 

in this chapter is about how we can compose elements or collections of 

elements visually, so they create relationships between each other. The 

topic of this section is to see the many things as one thing and to creatively 

work with it. Perhaps you have heard of Gestalt theory.1 This is what we are 

using here: we create and manipulate a Gestalt.

3.2.1. � Composition and Alignment
How to start with visual structure? Let’s take the example from the previous 

section, the particle cloud, and compose it spatially. We will simply take 

the particle cloud and repeat it in six facets. In this example, we can 

combine concepts that we have seen before: translating the canvas and 

functions to reduce complexity. Many artists have worked with this kind 

1 https://en.wikipedia.org/wiki/Gestalt_psychology

Chapter 3  Composition and Structure 

https://en.wikipedia.org/wiki/Gestalt_psychology


69

of composition, essentially tiling the original image and thereby filling the 

entire canvas with repetitions that vary more or less from the original.

Replace the draw function in the previous example with the 

new version of the draw function and an additional function 

drawParticleCloud.

DRAW PARTICLE CLOUDS WITH A SEPARATE FUNCTION 
DRAWPARTICLECLOUD

void draw() {

  // dark blue background

  background(35, 27, 107);

  // draw the particle cloud in different locations

  // (coordinates give the center points of the clouds)

  // first row (y coordinate --> 100)

  drawParticleCloud(100, 100);

  drawParticleCloud(300, 100);

  drawParticleCloud(500, 100);

  // second row (y coordinate --> 300)

  drawParticleCloud(100, 300);

  drawParticleCloud(300, 300);

  drawParticleCloud(500, 300);

}

// function to draw the particle cloud

// with location parameters

void drawParticleCloud(int x, int y) {

  // save canvas before translate

  pushMatrix();

  // translate to center of particle cloud

  translate(x, y);

  // loop through all particles

  for (Particle p : particles) {

Chapter 3  Composition and Structure 



70

    // change position and draw particle

    p.move(abs(width/2-mouseX));

    p.show();

  }

  // restore canvas

  popMatrix();

}

? Think about this H ow to change the speed of the particles?  
Hint: You need to look into the Particle class and the move function.

We draw the particle cloud six times in two rows of three clouds. The 

preceding code adds a function drawParticleCloud that draws the particle 

cloud in a specific location. If we look closely, the particles move faster 

now, and the animation seems to be a bit choppy. There are two reasons for 

that: first, we are drawing six clouds at the same time. That’s 24000 instead 

of 4000 particles. This takes the computer more time to draw every frame: 

although drawing a tiny particle is really fast, drawing six times as many will 

add up. Depending on the processing power of our computer, the frame 

rate will go down. Why? For a frame rate of 60 frames per second, your 

computer needs to draw a single frame in about 16 milliseconds. If drawing 

this high number of particles takes longer than 16 milliseconds, then the 

frame cannot be drawn 60 times per second. As a result, the frame rate 

will go down, and we see a slightly stuttery animation. The second reason 

is that we move every particle six times per frame, because we call the 

drawParticleCloud function six times every frame. All in all, not so nice.

How can we fix these problems? We can draw the particle cloud once 

and copy it directly to the other five areas. This is a quick change to the 

previous code that speeds up the animation immediately. The following 

code replaces the draw function as before.

Chapter 3  Composition and Structure 



71

COPYING THE CLOUD DRAWN BY THE DRAWPARTICLECLOUD FUNCTION

void draw() {

  // dark blue background

  background(35, 27, 107);

  // first row

  drawParticleCloud(100, 100);

  copy(0, 0, 200, 200, 200, 0, 200, 200);

  copy(0, 0, 200, 200, 400, 0, 200, 200);

  // second row

  copy(0, 0, 200, 200, 0, 200, 200, 200);

  copy(0, 0, 200, 200, 200, 200, 200, 200);

  copy(0, 0, 200, 200, 400, 200, 200, 200);

}

Now we see clearly that the particle drawing only happens once in 

the code, followed by five calls to the copy function. The copy function in 

Processing works on the canvas directly and copies a rectangular area of 

the canvas into another area of the same canvas. The first four parameters 

are always the same in our example and specify the area that should be 

copied: “from position (0, 0), copy an area that is 200 by 200 pixels big.” 

The remaining four parameters specify the location and size of where the 

copy should be placed: “at position (200, 0), draw the copy in an area of 

size 200 by 200.”

We can also copy the cloud that we draw directly into an image. 

After that, we can draw this image five times on the canvas. The result is 

the same as before, but now we have the cloud as a separate image and 

can change it before drawing it. Let’s see what we can do with a little bit 

of tint.

Chapter 3  Composition and Structure 



72

COPYING AN IMAGE, DRAWING WITH TINT EFFECT

void draw() {

  // dark blue background

  background(35, 27, 107);

  // first row

  drawParticleCloud(100, 100);

  // copy cloud as image

  PImage cloud = get(0, 0, 200, 200);

  tint(255, 255, 200);

  image(cloud, 200, 0, 200, 200);

  tint(255, 255, 160);

  image(cloud, 400, 0, 200, 200);

  // second row

  tint(200, 160, 160);

  image(cloud, 0, 200, 200, 200);

  tint(200, 120, 80);

  image(cloud, 200, 200, 200, 200);

  tint(200, 80, 40);

  image(cloud, 400, 200, 200, 200);

}

The preceding code replaces the draw function. Before each image 

call, we use tint, which takes color values as parameters and changes 

the color tone of the next drawn images. A neutral tint would be using 

RGB values of (255, 255, 255), and you can even use transparency 

(fourth parameter) to draw transparent images. In the preceding code, 

we use RGB values to change the color tone for each image of the cloud. 

In the first row, we change toward a darker shade of blue (gradually lower 

values of the B part), and in the second row, we also reduce the amount 

of green (gradually lower values for the G part) to bring out the red in the 

particles more.

Chapter 3  Composition and Structure 



73

Changing the color tone is one example of what you can do with the 

image of the particle cloud. You can use different filter functions, scale, 

or rotate the image before drawing it onto the canvas. It is important to 

understand that you apply these functions to the entire particle cloud 

which has been rendered as an image. All particles are projected onto a 

single layer (the image), and we can now manipulate this layer, but not 

individual particles anymore. By doing this, we speed up the rendering 

and gain interesting possibilities to manipulate the cloud as an image, 

but we lose the possibility to change individual particles. This is called an 

optimization: we optimize (make better) for speed and for being able to 

use functions like tint or filter. We can do this because we move our 

focus from individual particles to the whole cloud. In the next section, 

we will go one step further and explore how we can combine or compose 

multiple clouds.

3.2.2. � Composing with Layers
Over the centuries, painters have worked with layers to create perspective 

and depth. When painting a landscape, a still life, or even a portrait, one 

technique is to start from the edges of the canvas. Then you draw the 

background to the middle until the close range is in sight. You end with 

the details. Such a process is naturally based on layers. Layers help with 

the composition of objects in space, and they are used both in traditional 

painting and digital drawing tools. For example, using an application like 

Adobe Photoshop or open-source alternatives like GIMP, Krita, DarkTable, 

or Inkscape becomes a lot more powerful with layers: you can try out 

alternatives on separate layers, show or hide layers, and change their 

order. Essentially, by grouping visual elements into layers, we can let new 

relationships between visual elements emerge on the canvas.

In Processing, we distinguish the 2D and 3D drawing modes. We 

mentioned them earlier when talking about the positioning of elements 

and canvas operations. The 2D drawing mode is generally a collage; that 

Chapter 3  Composition and Structure 



74

means the first elements in the code will be drawn first and all following 

elements on top. In other words, when drawing layers on the 2D sketch 

surface, layers are drawn in the order of code statements in the draw 

function.

When drawing in Processing’s 3D mode, this ordering in code is not 

important anymore. Instead, every element we draw is automatically 

positioned in 3D space (with x, y, z coordinates). How the elements are 

rendered depends on our viewing perspective, through the 3D camera. 

The computer will calculate which elements are visible from the camera 

perspective and then render just these elements. This means we can 

use the x, y, z axis, especially z depth of objects in 3D space with the P3D 

renderer without having to think about the order too much. Again, how to 

use the P3D renderer? Include it in the size call, like this: size(600, 600, 

P3D). See the next code example.

To better understand the concept of layers and how rich their 

composition can be, let’s look at the particles again. In the following 

example (Figure 3-3), we reuse the code from the previous sections 

and replace the draw function. Also, we change the canvas into the 3D 

rendering mode. As before, we draw the particle cloud only once and then 

copy it into an image. We draw this image as a texture in a loop, which 

results in a long “tail” of slightly scaled copies that wiggles around slowly.

Chapter 3  Composition and Structure 



75

Figure 3-3.  Composing layers in 3D that appear as a “tail”

COMPOSING LAYERS IN 3D 

void setup() {

  // use the 3D renderer

  size(600, 600, P3D);

  // ...

}

void draw() {

  // dark blue background

  background(35, 27, 107);

  noStroke();

  // first row

  drawParticleCloud(100, 100);

  // get cloud as image

  PImage cloud = get(0, 0, 200, 200);

Chapter 3  Composition and Structure 



76

  // erase background again

  background(25, 17, 87);

  // move to center of canvas

  translate(width/2, height/2, 100 - frameCount/100.);

  // introduce slow rotation, so we can see everything

  rotateX(frameCount/300.);

  // draw 100 textured squares in a loop

  for (int i = 0; i < 100; i++) {

    // gradually scale down size

    scale(0.95, 0.95, 0.95);

    translate(0, 0, -100);

    // rotate on the x axis

    rotateY(radians(sin(frameCount/300.)) * 8);

    // draw square

    beginShape();

    // set cloud as texture

    texture(cloud);

    // almost invisible stroke

    stroke(255, 20);

    vertex(-100, -100, 0, 0, 0);

    vertex(100, -100, 0, 200, 0);

    vertex(100, 100, 0, 200, 200);

    vertex(-100, 100, 0, 0, 200);

    endShape(CLOSE);

  }

}

The “tail” appears because every copy is shifted backward slightly in 

the z axis (note the translate(0, 0, -100) inside the for loop), and we 

scale down every time when we draw a copy, so the “tail” gets thinner and 

thinner. Before drawing every copy, we also apply a slight rotation in the 

y axis (note the rotateY(radians(sin(frameCount/300.))*8)), which 

Chapter 3  Composition and Structure 



77

follows the sine function of the frameCount. This example shows how we 

can simply layer elements such as the particle cloud image in space and 

create visual elements from that (a “tail,” for instance).

We have played with the particle cloud for some time now, but we have 

never really looked inside. The particle cloud is made of layers as well. The 

following example draws a single particle cloud in 3D space (again make 

sure you use the P3D renderer with the size function). To use this code, 

just replace the draw and show functions in the code from before.

DRAWING A SINGLE PARTICLE CLOUD IN 3D SPACE

void draw() {

  // dark blue background, no stroke

  background(35, 27, 107);

  noStroke();

  // move canvas into position

  translate(width/2, height/2, -400);

  rotateY(radians(frameCount));

  // draw a single particle cloud

  for (Particle p : particles) {

    // change position and draw particle

    p.move(250);

    p.show();

  }

}

// change the following in class Particle

public void show() {

  // adjust individual color

  fill(238, 120, 138, this.size * 100);

  // save canvas

  pushMatrix();

  // translate

Chapter 3  Composition and Structure 



78

  translate(0, 0, this.size * 200);

  // draw particle shape

  ellipse(this.x, this.y, this.size, this.size);

  // draw transparent particle 'halo'

  fill(238, 120, 138, this.size * 20);

  ellipse(this.x, this.y, this.size * 20, this.size * 20);

  // restore canvas

  popMatrix();

}

In all the previous examples, we took a frontal view at the particle 

cloud. In the last example, we rotate it and see that can be far more 

interesting: a layered cake with differently colored particles from back to 

front. How did we do that? Each particle moves in its own layer, and we 

pull the layers a bit apart in the z axis (translate (0, 0, this.size * 

200)). So, the specific size of a particle controls how far we move it in the  

z axis. Another change is that we draw each particle with a small 

transparent disc around it (“halo”) that shows the layer orientation 

better than just a particle dot. We also disable the influence of the mouse 

position on the movement by calling move with a constant value of 250. 

We will bring back the mouse in the next section to control the visibility of 

different layers.

3.2.3. � Controlling Layers
In the previous two sections, we have created and composed layers. That 

means we have organized lots of particles in clouds and then worked with 

the clouds directly. We have seen how we can render and draw the clouds 

as images. Also, a particle cloud can be seen as consisting of multiple 

layers inside. What we have not really explored yet is how we can control 

the different layers.

Chapter 3  Composition and Structure 



79

In the following example (Figure 3-4), we will use the previous example 

and make it interactive. We control the visibility of all layers by the mouse 

position. To do this, we change only one small thing in the draw function: 

we wrap the existing p.show() in an if statement. This statement decides 

whether the layer depth (p.size) of the individual particle (scaled to the 

width of the window) is smaller than the horizontal position of the mouse 

(mouseX). Only if this is the case, the code inside the statement is executed. 

So, by moving the mouse, you can adjust how many layers of particles will 

be shown. Try it out!

Figure 3-4.  Control the visibility of the different layers with the 
mouse position

CONTROL THE VISIBILITY OF LAYERS WITH THE MOUSE POSITION

void draw() {

  // dark blue background, no stroke

  background(35, 27, 107);

  noStroke();

  // move canvas into position

  translate(width/2, height/2, -400);

  rotateY(radians(frameCount/1.));

Chapter 3  Composition and Structure 



80

  // draw a single particle cloud

  for (Particle p : particles) {

    // change position and draw particle

    p.move(250);

    // check if particle should be visible:

    // particle layer (scaled size property) is

    // smaller than horizontal mouse position

    if (map(p.size, 0.5, 2, 0, width) < mouseX) {

      p.show();

    }

  }

}

We can now move the mouse to show more or fewer layers of our 

particle cloud. We effectively control each layer’s visibility at particle level. 

That means before drawing each particle, we check whether its layer 

should be visible or not given the current horizontal mouse position. 

How does this work exactly? We use the map function, which takes five 

arguments: the value to be mapped, the start and end of the input range, 

and the start and end of the output range (Figure 3-5). The map function 

will then map the value from the input range to the output range. For 

example, it maps 4 from the input range [0, 5] to 8 in the output range  

[0, 10]. In our example, we map the size of a particle in range [0.5, 2] to the 

entire width of the canvas [0, width] and then check whether this mapped 

value is smaller than the horizontal mouse position.

Chapter 3  Composition and Structure 



81

Figure 3-5.  Explanation of the mapping between the input range 
and the output range. The input range (0.5–2) is given as follows, and 
any value in this range is mapped to the corresponding value in the 
output range (0–width)

With a single additional line of code, we can bring back mouse control 

and turn this sketch into an interactive 3D experience. More importantly, 

we show how we can interactively control layers by tracking the mouse 

pointer and comparing its horizontal position to the mapped particle 

depth (p.size), which then determines whether the particle should be 

visible or not.

For the last part of this chapter, we zoom out from individual particles 

and look again at the whole cloud. In the last example, we show how to 

construct visual relationships between particles on different layers, while 

leaving the layers open for interaction.

The code for this example is again a replacement for the draw function 

and changes the following aspects: first, we change the type of for loop to 

go through the particles. The previous examples all used a for loop that 

directly iterates on the array elements. This example iterates with a counter 

i, which allows us to address the position of the current particle p and pair 

it with another particle q in the array. Particle q is chosen by subtracting 

particle p’s index from the end of the array. So, if particle p is the first 

element, q is the last element. If p is the second element, q is the second 

last element, and so forth.

Chapter 3  Composition and Structure 



82

CONSTRUCTING VISUAL RELATIONSHIPS BETWEEN  
PARTICLES ON LAYERS 

void draw() {

  // dark blue background, no stroke

  background(35, 27, 107); noStroke();

  // move canvas into position

  translate(width/2, height/2, -400);

  rotateY(radians(frameCount/1.));

  // draw a single particle cloud

  for (int i = 0; i < particles.length; i++) {

    Particle p = particles[i];

    // check the particle's z-property for threshold

    // set by mouse horizontal position

    if (mouseX <= map(p.size, 0.6, 2, 0, width)) {

      // change position and draw particles in the wider radius

      p.move(250);

      // draw without borders

      noStroke();

      p.show();

      // get paired particle q

      Particle q = particles[particles.length -1-i];

      // draw a transparent white line between p and q

      stroke(255, 30);

      line(p.x, p.y, p.size * 200, q.x, q.y, q.size * 200);

    } else {

      // set zero radius for particles that are not rendered

      p.move(0);

    }

  }

}

Chapter 3  Composition and Structure 



83

We connect all paired particles with a semi-transparent white line – if 

at least one of the two particles in the pair is visible. The second change 

is that we set the movement radius for all invisible particles (below the 

mouse filter threshold) to 0, which causes them to slowly move to the 

center of the particle cloud. And because they are not visible, we see that 

the white lines converge into a sharp angle. The moment we display more 

or even all layers, the particles on the converged layers start to expand, and 

the cloud opens up like an exotic flower. It’s worth playing with for a while.

3.3. � Summary
In this chapter, we went from drawing individual visual elements to 

drawing many of them. We use the computer’s power to perform similar 

operations fast and to work efficiently with structured data. The important 

lesson here is: as soon as we can structure our creative input in such a 

way that the computer can understand it and execute it fast, we can use its 

power to draw things that would take us ages to do manually.

In creative practice, we intuitively shift, mix, blend, transform, and 

group layers. We can now create complex visual designs by coding element 

by element and layer by layer. We explored different visual dynamics 

within each layer. We compose layers to see how the overall composition 

will represent your idea. We need to do this in iterations of coding, 

running, reflecting, and coding again to deeply consider the dynamic 

connection between different visual layers and perception of these layers.

As a motivation for the next step, we can now move many things 

around and also let them behave in a very controlled way using calculated 

parameters. All nice, but it seems a bit “flat” in the sense that we can, after 

a short while already, understand and predict the motions of all particles. 

What if we had access to some randomness and noise that would create 

Chapter 3  Composition and Structure 



84

variations in the machine’s work, so it would look less mechanical? Also, 

how to influence our creations live and in real time? Can we build our own 

brushes, colors, and canvases so we can intuitively expand our creativity? 

And how can we introduce more interaction to our creative works? We can; 

just follow us to the next step.

Chapter 3  Composition and Structure 



85

CHAPTER 4

Refinement and Depth
In this chapter, we will shape up visual elements and implement visual 

structure together with code structure. Visual elements can evolve 

best when the idea is still under construction, and we can follow new 

inspirations from working with code. We will also dig a bit deeper into 

working with data structures and unleash new powers of Processing. 

To achieve this, we introduce four refinements here: “Randomness and 

Noise,” “MemoryDot,” “Using Computed Values,” and “Interaction.” Using 

these refinements, we can make big steps from the simple visual elements 

of the previous step toward solutions that match our idea even better.

Let’s start with some randomness, and you will soon get an idea of how 

to let the computer do more for you.

4.1. � Randomness and Noise
We have seen randomness in the previous examples in this book. Every 

time we use random in our code, we use randomness. But what is that 

exactly? A number is random if it cannot be predicted from previous 

numbers. Also when we generate random numbers between 1 and 5, for 

example, each of these numbers 1, 2, 3, 4, and 5 has the same chance to be 

generated. If we do this many times and count how many times 1 or 2 or 

3 or 4 or 5 have been generated, the counts should be very similar. This is 

called a uniform distribution, which means that no number has a higher 

chance of being chosen than another number.

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_4

https://doi.org/10.1007/978-1-4842-9780-3_4


86

Tips  We can also use random(n) as a shortcut for 
random(0, n).

When our code calls random(m, n), Processing will generate a 

random number (of type float) between m and n according to a uniform 

distribution. That means every number in-between has the same chance 

to be chosen. If you know computers a bit, you will be surprised that 

something like this is actually possible. Why? Because computers are 

known for doing exactly what they have been instructed to do. They just 

don’t invent stuff like random numbers. In fact, the computer follows a 

complex algorithm to generate “random” numbers. They are not really 

random, but certainly random enough for our purposes here.

4.1.1. � Working with Randomness
Why are we using randomness in coding art? Because it gives us a very 

quick and easy source of unpredictable data. That means we give the 

task of inventing numbers to the computer and also avoid our own bias 

in choosing only numbers that we like. Randomness can add depth to a 

rendering because we can create lots of small, subtle changes in visual 

elements that prevent the entire piece from looking too mathematical. 

By using randomness, we can also challenge our own creation and find 

inspiring new looks for the visual elements that we have created so far. 

Finally, we can use randomness to make choices that are more or less 

unpredicted and indeed “random.”

Let’s start with the first one: random values generated by Processing 

are always of data type float, so floating point numbers such as 3.14, 

5.0005, or -100.9. We might need to convert these into integer numbers. 

Although we could have used the int function of Processing, this is often 

misunderstood (does it “round” or use the next lower or higher integer 

number?). Therefore, we suggest using round as follows.

Chapter 4  Refinement and Depth



87

GENERATING RANDOM NUMBERS

// generate random floating point number

float value = random(10, 100);

// convert to integer number

int position = round(value);

// or: the same as above in one step

int position = round(random(10, 100));

As mentioned earlier, using the random function in Processing 

will generate different numbers every time it is called. Behind this is a 

random number generator – think of a tiny machine that creates random 

numbers whenever turned on. When Processing creates this “machine” 

for a sketch, the generator is initialized in such a way that it will produce 

different random numbers for every run of Processing. Sometimes, we 

want random numbers that are generated in the same order, giving our 

sketch randomness that can be reproduced across different runs. For this 

purpose, we can initialize the random number generator with a value that 

is always the same, here 1234.

GENERATING MANY RANDOM NUMBERS IN A LOOP

randomSeed(1234);

noStroke();

for(int i = 0; i < 50; i += 5) {

    fill(random(0, 255));

    rect(i, 10, 4, 4);

}

Chapter 4  Refinement and Depth



88

In the preceding code, the function randomSeed initializes the 

generator, and if we run the program multiple times, we see always 

the same grayscale pattern although we use the random function. If we 

initialize the random number generate with 1234, it will always generate 

the same random numbers in the same sequence and order. Why would 

we want that? We could, for instance, use different random seeds to 

generate different artworks and save them together with the random seed. 

So, when we select best, we can recreate it with the matching random seed.

? Think about this T ry to change the value in randomSeed or try 
to move random out of the for loop to see what will happen.

Back to the different types of randomness. When we use the Processing 

random function, we create uniformly distributed random values. There 

is also the function randomGaussian which creates random values that 

are distributed differently. Before all values have the same chance to be 

chosen with random, now they follow a bell curve or Gaussian distribution 

with randomGaussian. What is a Gaussian distribution? Let’s quickly draw 

one with transparent dots using randomGaussian.

GENERATING RANDOM NUMBERS (GAUSSIAN DISTRIBUTION)

noStroke();

fill(80, 40);

// draw a lot of randomly positioned dots

for(int i = 0; i < 20000; i++) {

    // move by 50 pixels to the right, scale by factor 10

    float position = 50 + randomGaussian() * 10;

    rect(position, i % 100, 1, 1);

}

Chapter 4  Refinement and Depth



89

? Think about this T ry to use random instead of 
randomGaussian and see the difference between both types of 
randomness. Try changing the value 50 and 10 in float position 
= 50 + randomGaussian()*10 to see what will happen.

What you see is that the dots are very crowded in the center of the 

canvas and get less and less toward both sides of the center line. Now 

you understand why randomGaussian produces a distribution that is 

nonuniform: values around the center line have a much higher chance 

to be generated than other values. randomGaussian does not take any 

parameters and will generate values with a mean of 0. “Mean of” means 

the following: let’s say you add up many, many values generated by 

randomGaussian, which can be positive and negative. And then divide 

this sum by the number of generated values, you would get 0 as a result 

(the mean). So, what does that really mean? All values returned by 

randomGaussian are clustered closely around 0; the more the values 

differ from 0, the less common they become. To practically use this in 

your code, you might need to use the map function on the output of the 

randomGaussian function, so you can spread the values farther away 

from 0. In the following, we change the first code to use the following map 

function.

USING THE MAP FUNCTION ON THE OUTPUT OF THE RANDOMGAUSSIAN 
FUNCTION

noStroke();

fill(80, 40);

// draw a lot of randomly positioned dots

for(int i = 0; i < 20000; i++) {

Chapter 4  Refinement and Depth



90

    // map from range [-5, 5] to range [0, width]

    float position = map(randomGaussian(), -5, 5, 0, width);

    rect(position, i % 100, 1, 1);

}

In summary, we have seen two types of randomness so far, and both 

have their own use cases. random is good for randomly filling a limited 

space or drawing with values that have all the same chance of being 

generated. It is good for replacing a few values in a sketch to try out new 

ways of drawing visual elements. The randomGaussian function is good for 

creating small-scale variations around a value that we have chosen before. 

Let’s try that in a first interactive example to draw with a randomized brush 

on the canvas.

DRAW WITH A RANDOMIZED BRUSH ON THE CANVAS

void setup() {

  size(400, 400);

  background(255);

}

void draw() {

  // move to draw around the mouse position

  translate(mouseX, mouseY);

  // change the color randomly

  stroke(random(0, 200), 10, 50);

  // draw a vertical line from random x-position

  // to another random x-position

  line(randomGaussian(), -10, randomGaussian(), 10);

}

Chapter 4  Refinement and Depth



91

? Think about this I n this piece of code, try replacing 
randomGaussian with random when drawing a line to see what 
the difference is.

The example shows an empty canvas at first, and we can draw with a 

random brush directed by the mouse position. The preceding code uses 

the two different kinds of randomness, random for choosing the color 

and randomGaussian for the positioning of lines (i.e., their end points). 

The color choice is more diverse with random, and the line drawing 

is nicely homogeneous with two close random values generated by 

randomGaussian. Looks like a colorful, quirky fence in the countryside.

4.1.2. � Controlling Randomness
In the previous section, we have used randomness in different forms 

to create variation in positioning, movement, or color. We have used 

randomness in these cases directly, without much filtering and little 

mapping. This section is about controlling the output of random functions, 

how we can make creative use of randomness without letting our work 

look essentially random. Let’s start with another color brush that paints 

colorful blobs with the mouse.

COLOR BRUSH THAT PAINTS COLORFUL BLOBS WITH THE MOUSE

void setup() {

  size(400, 400); background(0); noStroke();

  // change color mode from RGB to HSB

  colorMode(HSB);

}

void draw() {

Chapter 4  Refinement and Depth



92

  // blur previous output

  filter(BLUR, 1);

  // mouse is pressed, draw color blobs

  if (mousePressed) {

    // move drawing position to mouse position

    translate(mouseX, mouseY);

    // draw 5 blobs per frame

    for(int i = 0; i < 5; i++) {

      // choose HSB color with random hue

      fill(random(0, 255), 255, 255);

      // generate random position around mouse position

      �PVector pos = new PVector(random(-20, 

20),random(-20, 20));

      // calculate blob size based distance from mouse position

      �// (we used translate before, mouse position is 

now (0, 0))

      float size = 20 - dist(0, 0, pos.x, pos.y);

      // draw blob

      ellipse(pos.x, pos.y, size, size);

    }

  }

}

Tips I f you define colorMode as HSB in setup or anywhere 
else in your code, the values in fill are corresponding to hue–
saturation–brightness. You can always switch the color mode, which 
might be helpful to adjust colors differently.

This code first sets the canvas size and properties as you might have 

seen many times before, but then we switch the colorMode from RGB to 

HSB. That means when we specify color values in the remainder of the 

code, the three color values that we use with fill, stroke, and other 

Chapter 4  Refinement and Depth



93

drawing functions mean something else: With the HSB color mode, 

the three values do not encode the color channels red, green, and blue 

anymore, but instead specify hue, saturation, and brightness. Note that 

the values are still in the range 0–255. This allows us to create colors 

differently: we can, for instance, take a hue that is yellow, and, by playing 

with saturation and brightness, we can create many different shades of 

this yellow color easily. Once again, if you use fill or stroke with the HSB 

model, you are using it like this: fill(hue, saturation, brightness) 

and stroke(hue, saturation, brightness). Think of a color wheel with 

all the rainbow colors: the hue selects a point on the wheel, like Goethe’s 

color theory and his color wheels.

Saturation determines how strong or weak the color is, and brightness 

specifies how bright it is. In the preceding example, we use colors with 

randomly selected hues and full saturation and brightness to create vibrant 

color blobs on the black background.

In every frame, when the mouse is pressed, we draw five blobs with 

random color hue, position, and size. The position is determined with a 

random point around the mouse pointer. The size depends on the blob’s 

distance to the mouse pointer. The farther it is away from the mouse 

pointer, the smaller it is rendered. We achieve this by simply subtracting 

the distance from 20. We could have mapped this differently using 

Processing’s map function.

Back to controlling randomness. What if we want to limit the selection 

of random colors and tie it to the direction of the blob compared to the 

mouse pointer? Let’s try with this replacement of the previous draw 

function (Figure 4-1).

Chapter 4  Refinement and Depth



94

Figure 4-1.  Tie the color palette for randomly drawn blob to the 
mouse movement

Chapter 4  Refinement and Depth



95

TIE THE RANGE OF COLORS TO THE DIRECTION OF MOUSE MOVEMENT

void draw() {

  // blur previously drawn canvas

  filter(BLUR, 1);

  // mouse is pressed, draw color blobs

  if (mousePressed) {

    // create two points for center and mouse position

    PVector center = new PVector(width/2, height/2);

    PVector mouse = new PVector(mouseX, mouseY);

    // calculate angle between center and mouse in radians

    float angle = PVector.sub(mouse, center).heading();

    // convert from radians to degrees in range [-180, 180]

    angle = degrees(angle);

    // convert from degrees to a hue value in range [0, 255]

    float hue = map(angle, -180, 180, 0, 255);

    // move drawing position to mouse position

    translate(mouseX, mouseY);

    // draw 5 blobs per frame

    for(int i = 0; i < 5; i++) {

      // choose HSB color with random hue

      fill(random(hue - 20, hue + 20) % 255, 255, 255);

      // generate random position around mouse position

      �PVector pos = new PVector(random(-20, 20), 

random(-20, 20));

      �// calculate blob size based distance from mouse // 

position

      float size = 20 - dist(0, 0, pos.x, pos.y);

      // draw blob

      ellipse(pos.x, pos.y, size, size);

    }

  }

}

Chapter 4  Refinement and Depth



96

The result of this code is a variant of the previous sketch that gives 

more control of the colors, following a color wheel around the center 

point of the canvas. To make this happen, we have to first calculate the 

direction of the mouse position relative to the center point of the canvas. 

So, by moving the mouse in a circle around the canvas center, we can go 

through 360 degrees (or rather from -180 to 180). We map the degrees to 

a hue value in the range 0–255, which we can use in the for loop to draw 

the individual blobs in slightly different colors. We constrain the random 

function to hue ±20 and apply the modulo % operator to wrap values larger 

than 255 around. This only works in the HSB color model, because the hue 

is like a color wheel wrapping around, so there is no gap or jump at the end 

of the spectrum: 255 and 0 are directly neighboring hues.

You can use randomness or simply the distance of different points in 

the sketch to further tailor the brush in the example. For example, what if 

we wanted to link the color saturation to the distance of the mouse to the 

center point.

TIE COLOR SATURATION TO THE DISTANCE OF MOUSE POSITION 
TO CENTER

// BEFORE: choose HSB color with random hue

fill(random(hue - 20, hue + 20) % 255, 255, 255);

// AFTER: choose HSB color with random hue

// and distance -based saturation, constrained to range 0 .. 255

float saturation = constrain(255 - center.dist(mouse), 0, 255);

fill(random(hue - 20, hue + 20) % 255, saturation, 255);

? Think about this T hink about why the map function would not 
really help here.

Chapter 4  Refinement and Depth



97

In this example, we subtract the distance of center point and mouse 

position from 255, so the highest saturation values are given in mouse 

locations close to the center point. We also see a new Processing function: 

constrain.

This function allows us to lock the output into a particular range. We 

use this in the example to ensure that saturation will not be less than 0, 

which would naturally happen when the mouse is farther than 255 pixels 

away from the center. So, we use constrain to lock saturation into the 

right range for the color saturation: 0–255. When we press and drag the 

mouse around the center of the canvas, we see that the most vibrant colors 

are generated in the center and the colors blend gradually to white toward 

the edges of the canvas.

Tips T ry to link distance to brightness instead of saturation and use 
a different mapping for saturation, for example, the mouse speed. 
Hint: Use pmouseX and pmouseY for the previous mouse position.

4.1.3. � Selecting and Making Choices 
with Randomness

Finishing the extended section about randomness, we will use 

randomness to make choices and do things at a random selected time. 

What does that mean? For example, imagine you have a carefully designed 

color palette of 20 different colors that match each other well. When 

painting with the randomized brush as in the examples before, you want to 

use this color palette, not completely random colors. This means you want 

to use random colors, but limited to your designed color palette. Let’s try a 

simple example of this idea.

Chapter 4  Refinement and Depth



98

USE RANDOM COLORS WITH A LIMITED COLOR PALETTE

void draw() {

  // color palette as array of type color

  // remember that colors are in HSB mode

  color[] palette = {

    color(160, 255, 255),

    color(220, 200, 200),

    color(120, 200, 200),

    color(120, 0, 220),

    color(220)

  };

  // blur previous output

  filter(BLUR, 1);

  // mouse is pressed, draw color blobs

  if (mousePressed) {

    // move drawing position to mouse position

    translate(mouseX, mouseY);

    // draw 5 blobs per frame

    for(int i = 0; i < 5; i++) {

      // choose color randomly from palette array

      int paletteChoice = int(random(0, palette.length));

      fill(palette[paletteChoice]);

      // generate random position around mouse position

      �PVector pos = new PVector(random(-20, 20), 

random(-20, 20));

      // calc. blob size based distance from mouse

      float size = 20 - pos.dist(new PVector());

      // draw blob

      ellipse(pos.x, pos.y, size, size);

    }

  }

}

Chapter 4  Refinement and Depth



99

This example shows how to first define a color palette with an array 

of colors. We use the Processing color data type for this array. When we 

draw, we select random colors from the predefined palette array. We 

generate a random integer number ranging from 0 till palette.length - 1, 

which is then used to retrieve the random color from the palette array.

We know already how to use random to generate numbers in a given 

range. We just need to convert these numbers to the integer format before 

we can use them to address the different cells of an array. Why? Because 

array positions are always whole numbers. There is no array element 9.75, 

right? In the preceding code, we do these steps in two lines of code and 

then proceed to draw the blobs as before.

? Think about this  Why these numbers? Because array indexing 
works with zero-based numbering. The first element is at position 0, then 
second at position 1, and so on. This means that the last element of 
an array is at position length-1.

We can also use randomness to make choices, for instance, choosing 

between drawing a red or blue rectangle or drawing a rectangle or circle. 

As a simple example of such a choice, consider the following code.

USING RANDOMNESS TO MAKE CHOICES

if(random(0, 100) < 70) {

    // do this in 70% of all cases

} else {

    // do this in the remaining 30% of cases

}

Chapter 4  Refinement and Depth



100

This code uses the random function to generate a random number 

between 0 and 100. If this number is smaller than 70, then we execute 

the first code block. If the number is 70 or higher, we execute the else 

code block. With random, every number has the same chance of being 

generated; therefore, the first block is executed in 70% of all cases and the 

second one in 30% of cases (70% and 30% add up to 100%).

In our next example, we turn the 70 into an interactive value that 

depends on the mouse pointer. The example shows 100 shapes in red 

or blue. For every shape, depending on the mouse position, we make a 

choice between red and blue fill color (horizontal direction) and whether 

the shape is a square or a circle (vertical direction).

USING INTERACTIVE VALUES THAT DEPEND ON THE MOUSE POINTER

PVector[] positions = new PVector[100];

void setup() {

  size(400, 400); noStroke(); rectMode(CENTER);

  // initialize 100 random positions

  for (int i = 0; i < 100; i++) {

    positions[i] = new PVector(random(width), random(height));

  }

}

// empty draw because all drawing is done in mouseMoved

// (this empty draw is still needed otherwise the program 

// stops)

void draw() { }

// we draw when the mouse has moved

void mouseMoved() {

  background(0);

  // loop through all positions

  for (PVector position : positions) {

    // red fill color if random value is

Chapter 4  Refinement and Depth



101

    // smaller than horizontal mouse position

    if (random(0, width) < mouseX) {

      fill(255, 0, 0);

    } else {

      fill(0, 0, 255);

    }

    // draw rectangle if random value is

    // smaller than vertical mouse position

    if (random(0, height) < mouseY) {

      rect(position.x, position.y, 10, 10);

    } else {

      ellipse(position.x, position.y, 10, 10);

    }

  }

}

? Think about this T hink about how you could use randomness. 
Would it be about choosing colors, shaping some visual elements, or 
about deciding which elements to show at a time? Read on to see 
what else we can do with randomness.

When you move the mouse across the canvas and stop from time to 

time, you will see that the distribution (or proportion) of red vs. blue and 

rectangles vs. circles changes. The most extreme distributions can be 

observed when you move the mouse pointer to the corners of the canvas. 

For instance, in the top-left corner, you will see close to 100% blue circles, 

whereas you will get almost 100% red rectangles in the opposite corner.

Chapter 4  Refinement and Depth



102

4.1.4. � Working with Noise
Normal randomness can be quite jumpy with random and with the 

randomGaussian function. What if we want randomness that moves 

smoothly between values, instead of jumping wildly in the given range? We 

can use noise, which produces random values that follow a smooth curve. 

Let’s see a quick comparison between Processing’s random and the noise 

function.

USING THE NOISE FUNCTION

void setup() {

  size(400, 200); background(255); noStroke();

}

void draw() {

  // first the 'random' generated position

  fill(255, 0, 255, 100);

  rect(frameCount, random(0, height), 5, 5);

  // second the 'noise' generated position

  fill(255, 0, 0, 100);

  �ellipse(frameCount, map(noise(frameCount/100.), 0, 1, 0, 

height), 5, 5);

}

This kind of noise is called Perlin noise and allows to create smoother 

transitions than working with random values. To use noise, we have to send 

different parameters than with random. We use values between 0 and 1. 

The noise function produces values between 0 and 1, and using the same 

input value will produce the same noise output value. To get a sequence 

of values, we have to move through the noise slowly, like in the following 

example.

Chapter 4  Refinement and Depth



103

Reminder T ry to find out more about “Perlin noise” online. There 
is a story behind it, and you might find more interesting computer 
graphics material to dive into.

This example (Figure 4-2) renders 40 rectangles (width divided by 10)  

that are colored and sized based on the noise function. With a BLUR 

filter, this results in a fog or fire-like visual effect. The rectangles are 

spaced horizontally by 10 pixels and move down 1 pixel per frame (using 

frameCount). With the modulo operator (%), we ensure that the rectangles 

start again at the top after leaving the canvas at the bottom. We use a 

grayscale fill color that ranges from 0 to 255. Note that we use the noise 

function for the color depending on both i and frameCount. This ensures 

that the noise value changes across the 40 rectangles (horizontal) and also 

over time (vertical). We use very small steps to move through the noise, for 

instance, frameCount/100.. You can try and experiment with the step size 

to speed up the changes.

Chapter 4  Refinement and Depth



104

Figure 4-2.  Forty rectangles that are shaded gray and sized based on 
the noise function. The “fire” effect is mainly caused by the BLUR filter.

USE THE NOISE FUNCTION FOR SMOOTHER TRANSITIONS

void setup() {

  size(400, 400); noStroke(); background(0);

}

void draw() {

  // add blur effect

  filter(BLUR, 1);

  �// draw rectangles over entire canvas width spaced by  

// 10 pixels

Chapter 4  Refinement and Depth



105

  for(int i = 0; i < width; i += 10) {

    // multiply noise output in range [0..1] with 255

    // because 255 is the largest color value

    fill(noise(i/10. + frameCount/100.) * 255);

    // multiply noise output in range [0..1] with 15

    // because we want 15 pixels max size for rectangles

    float size = noise(0.3 + frameCount/1000.) * 15;

    rect(i, frameCount % height, size, size);

  }

}

Tips T ry to use different colors or even a color palette. You can give 
the visual effect some real fire.

The previous examples show that we can use random numbers like 

any other numbers, and there is an endless supply of such data. It does not 

matter whether we generate random numbers to try out variants of visual 

elements or to get new ideas. The basic ideas are always the same: think 

about the range (from ... to ...) and distribution (uniform or Gaussian, etc.) 

before using the values in your code. Play with the outcome, and then 

refine the use of randomness until you are satisfied with the outcome.

This section is all about randomness and noise, which is essentially an 

unlimited data source that we can use as much as we want in our sketches. 

Of course, you have to think carefully how and where to use random 

values, whether to filter and scale it, and where you need to precisely 

determine the data in your sketches. In the next section, we will learn how 

to use historical data.

Chapter 4  Refinement and Depth



106

4.2. � MemoryDot
In the past sections, we have worked mostly with random or computed 

data that is not directly influenced by user interactions. Although many 

examples use the mouse position, we creatively hide the fact that such 

input can be quite jumpy and erratic at times. This section is about 

smoothing data and creating smooth transitions between different 

settings.

Also, we will work with a structure that we can use without fully 

understanding how it works internally. This structure is the MemoryDot 

which is an extension of our trusty helper, the PVector. It implements a 

point and also keeps a memory of previous locations.

Before this chapter, we had to fully grasp how our structures work; 

now we will work with the MemoryDot and trust that it works in all our 

use cases. In other words, we will treat this structure as a black box and 

only use its interfaces to work with its internal (hidden) functions. Sounds 

exciting, right? Let’s go!

4.2.1. � Smoothing
As a starting point for this section, we will draw a single bright blue dot 

around the mouse position. The dot follows the mouse position very 

accurately, with only minimal delay. If you move the mouse out of the 

canvas and enter the canvas at a different edge, the dot will jump onto this 

new position instantly.

Chapter 4  Refinement and Depth



107

DRAW A SINGLE BRIGHT BLUE DOT AROUND THE MOUSE POSITION

void setup() {

  size(400, 400); noStroke(); colorMode(HSB);

  background(0);

}

void draw() {

  filter(BLUR, 1);

  // paint a bright blue dot

  fill(170, 255, 255);

  // at mouse position

  PVector m = new PVector(mouseX, mouseY);

  ellipse(m.x, m.y, 28, 28);

}

What if we want to let the dot follow the mouse position with a 

bit of delay and slightly smoother movements? We can use the class 

MemoryDot as a replacement for PVector m.

USE MEMORYDOT FOR DELAY AND SLIGHTLY SMOOTHER MOVEMENTS

MemoryDot m;

void setup() {

  size(400, 400); noStroke(); colorMode(HSB);

  background(0);

  m = new MemoryDot(30);

}

void draw() {

  filter(BLUR, 1);

  // paint a bright blue dot

  fill(170, 255, 255);

Chapter 4  Refinement and Depth



108

  // update memory dot with current mouse position

  m.update(mouseX, mouseY);

  // draw at position given by memory dot

  ellipse(m.x, m.y, 28, 28);

}

This preceding code will not work directly; we still need to add the 

MemoryDot class into the code folder. How to do that and use another 

code file next to your sketch? Click the small triangle next to the sketch 

name and select “new tab.” Type a new name such as “MemoryDot,” and 

then copy and paste the code into the file in the new tab.

CODE FOR THE MEMORYDOT CLASS

class MemoryDot extends PVector {

  PVector[] internal; float x, y, energy;

  public MemoryDot(int size) {

    internal = new PVector[size]; x = 0; y = 0;

  }

  public void update(float x, float y) {

    update(new PVector(x, y));

  }

  public void update(PVector newValue) {

    float x = 0; float y = 0; this.energy = 0;

    for (int i = internal.length -1; i > 0; i--) {

      if (internal[i] != null) {

        x += internal[i].x/float(internal.length);

        y += internal[i].y/float(internal.length);

      }

      if (internal[i] != null && internal[i-1] != null) {

        �energy += internal[i-1].dist(internal[i])/

float(internal.length);

Chapter 4  Refinement and Depth



109

      }

      internal[i] = internal[i-1];

    }

    internal[0] = newValue;

    if (internal[0] != null) {

      x += internal[0].x/float(internal.length);

      y += internal[0].y/float(internal.length);

    }

    this.x = x; this.y = y;

  }

}

Reminder P erhaps you find that the code for MemoryDot looks 
quite complex and a little hard to understand. Good news: you don’t 
need to fully go through it to be able to use it effectively. It’s a bit like 
the internal Processing functions: we use them all the time, but don’t 
really need to understand how they work internally. (Technical detail: 
The MemoryDot class is built on top of PVector using its internal 
mechanisms. We call it MemoryDot because it implements a point (or 
dot) and also keeps a memory of previous locations.)

If you use MemoryDot in your sketch, you will see that the blue dot 

now moves differently. It does not make rapid jumps anymore, but steadily 

gravitates toward the mouse position.

What does the MemoryDot actually do? Whenever you call the update 

function of a MemoryDot, it stores the updated position in its internal 

memory. The length of this memory (so how many positions can be 

stored) is given by the number 30 in new MemoryDot(30).

Now we have all the tools in place to render multiple dots that are 

gradually bigger and slower moving. Please make sure that you have the 

MemoryDot file present for the coming two examples as well.

Chapter 4  Refinement and Depth



110

In the first example (Figure 4-3), we have simply created two more 

MemoryDot objects in the first line and initialized them with different 

memory lengths: 60 and 90. This means that the m, l, and xl dots will 

remember gradually more past positions and then also react slower to 

changes in the current position. Why? Because the MemoryDot will take 

the average over all positions in memory and then use this average as 

the new current position of the MemoryDot. In other words, the more 

positions we remember, the more “old” positions influence the newly 

incoming positions. It takes more time until this “old” stuff is flushed 

out. That’s why MemoryDot will react slower to position changes with 

larger memory.

Figure 4-3.  Overlapping circles positioned by different MemoryDot 
objects. Lightest circle is moving slowest, while darker circles are 
gradually moving faster toward the mouse position.

Chapter 4  Refinement and Depth



111

USING THE UPDATE FUNCTION OF MEMORYDOT

MemoryDot m, l, xl;

void setup() {

  size(400, 400); noStroke(); colorMode(HSB);

  background(0);

  m = new MemoryDot(30);

  l = new MemoryDot(60);

  xl = new MemoryDot(90);

}

void draw() {

  filter(BLUR, 1);

  // update memory dot with current mouse position

  xl.update(mouseX, mouseY);

  // set color of first blue dot

  fill(170, 120, 255);

  // draw at position given by memory dot

  ellipse(xl.x, xl.y, 84, 84);

  // paint smaller but more saturated blue dot

  l.update(mouseX, mouseY);

  fill(170, 160, 255);

  ellipse(l.x, l.y, 56, 56);

  // paint smaller but more saturated blue dot

  m.update(mouseX, mouseY);

  fill(170, 200, 255);

  ellipse(m.x, m.y, 28, 28);

}

? Think about this T ry to find out about the range of energy and 
adjust the brightness parameter of fill to have a slower transition 
between dark and bright.

Chapter 4  Refinement and Depth



112

There is another feature that we can use in our code: energy. Let’s try 

the second example.

CONTROL THE BRIGHTNESS WITH THE ENERGY PROPERTY OF 
MEMORYDOT

void draw() {

  filter(BLUR, 1);

  // paint first blue dot

  fill(170, 120, 100 + xl.energy * 200);

  // update memory dot with current mouse position

  xl.update(mouseX, mouseY);

  // draw at position given by memory dot

  ellipse(xl.x, xl.y, 84, 84);

  // paint other blue dots

  fill(170, 160, 100 + l.energy * 200);

  l.update(mouseX, mouseY);

  ellipse(l.x, l.y, 56, 56);

  fill(170, 200, 100 + m.energy * 50);

  m.update(mouseX, mouseY);

  ellipse(m.x, m.y, 28, 28);

}

In this code, we have replaced the fixed brightness value of 255 with 

100 + m.energy * 200 which depends on the MemoryDot m’s energy. The 

energy describes how much the past positions differ from each other. That 

means if the past positions are very different from each other, the energy 

is high. If they are mostly very close to each other, the energy is low. This is 

quite visible in the example, because the color turns darker when the dots 

move slower. You can also see the difference between the dots in how long 

their memory is and how that influences the energy for each of them.

Chapter 4  Refinement and Depth



113

We have now used an existing structure that was built as an extension 

of Processing’s PVector class. We did not need to understand how 

MemoryDot works precisely; we can use it in our sketches as a black box. 

Once we know how it behaves, we can use it in many other places (as you 

will see later in this book).

4.2.2. � Smoothly Working with Many Things

Reminder H ow to add MemoryDot next to your sketch? Click the 
small triangle next to the sketch name, and select “new tab.” Type 
“MemoryDot,” and paste the MemoryDot code into the new tab. 
The code is provided earlier, or just use the Processing library for 
this book.

We have seen earlier how we can use multiple MemoryDot objects 

together. This is scalable to many things, but we always need to think about 

what kind of effect we want to achieve. The following example is more 

complex: we will use noise, random, and also MemoryDot to animate a 

field of artificial grass and a purple surprise.

The coming example (Figure 4-4) starts relatively short and will grow 

a bit in the next few pages. Let’s dive in: first of all, we use 10000 positions 

to represent grass blades in 3D space. The grass blades are randomly 

positioned with their x, y coordinates on a plane. The random positions 

are generated in the setup function. The z coordinate of every grass blade 

determines its vertical length. Grass blades are drawn as lines with a fixed 

lower point on the plane and a movable upper point that responds to 

several influences.

Chapter 4  Refinement and Depth



114

Figure 4-4.  Example of using 10000 positions (representing grass 
blades in 3D space) to draw field of artificial grass

DRAW A FIELD OF ARTIFICIAL GRASS

// Note: This example need the MemoryDot class as shown above.

// Before running this code, add the MemoryDot class as an  

// additional tab to Processing.

// 10000 grass blades to render

PVector[] positions = new PVector[10000];

// memorydot for smoothly changing the wind direction

MemoryDot windDirection = new MemoryDot(250);

// wind target will be updated regularly

PVector windTarget = new PVector(random(-20, 20), 

random(-20, 20));

void setup() {

  size(400, 400, P3D);

  colorMode(HSB);

  // initialize random positions for grass blades,

  // x, y are position, z represents grass blade length

  for (int i = 0; i < positions.length; i++) {

    �positions[i] = new PVector(random(-250, 600), random(100, 

600), random(90, 100));

Chapter 4  Refinement and Depth



115

  }

}

void draw() {

  // white background in HSB model

  background(255, 0, 255);

  // translate and rotate for good viewing angle

  translate(0, 0, -300);

  rotateX(radians(-15));

  // every 150 frames, reset the wind target

  if (frameCount % 150 == 0) {

    windTarget = new PVector(random(-5, 5), random(-5, 5));

  }

  // update wind direction with current target

  windDirection.update(windTarget);

  // draw grass at all positions one by one

  for (int i = 0; i < positions.length; i++) {

    PVector p = positions[i];

    // set green stroke color

    stroke(100, 150, 50 + p.z);

    // use noise for wind strength

    float windStrength = noise(frameCount/500.) * 2;

    // draw every grass blade

    �line(p.x, 200, p.y, p.x - windDirection.x * windStrength, 

200 - p.z, p.y - windDirection.y * windStrength);

  }

}

Although this example is not complete yet, you can try it out and see 

the green grass flow in a 3D space. What makes the grass flow? We use 

simulated “wind” that blows over the plane and moves the tips of the grass 

blades in one or another direction over time. This is the point where we 

use a MemoryDot object to smoothly change the direction of the wind. 

We initialize this MemoryDot in the beginning of the code example and 

Chapter 4  Refinement and Depth



116

set a new random wind target position every 150 frames. The wind target 

is randomly generated in a small range, because we want the tips of the 

grass blades to move naturally. The wind target is used to update the 

MemoryDot windDirection. This smoothly moves the wind direction 

toward the target until the next wind target will be set. When drawing 

the grass blade, we modulate the wind direction a little bit with noise, 

which results in different “gusts” of wind in the current wind direction. 

Otherwise, all blades would move, and we would lose the more organic 

look. We will continue this example in the next section.

4.3. � Using Computed Values
This section is meant to give structure to what we have used a lot in 

the past sections and examples: expressions calculating values. Think 

about the expression p.x + windDirection.x * windStrength from 

the previous example. Although the variables are named ok, this is hard 

to understand without knowing about the wind simulation. When these 

expressions become longer and they are used in more than one place in 

the code, it is better to extract them into a function – as we will see in the 

next part.

4.3.1. � Computing Values with Functions
Functions allow to replace expressions that are complex or used in many 

places in the code and give them their own place and parameters, so 

the rest of the code can be simplified. There are other reasons for using 

functions, but this will suffice for now. We have been using functions since 

the beginning of this book. All functionality that Processing provides us 

with, from fill to rect and ellipse to the functions of the PVector class, 

they all are functions defined to be used and reused.

Chapter 4  Refinement and Depth



117

We will now change the previous example without changing how it 

looks or works.

CONTINUED EXAMPLE FOR THE ANIMATED FIELD OF GRASS

// beginning and setup as before

void draw() {

  // white background in HSB model

  background(255, 0, 255);

  // translate and rotate for good viewing angle

  translate(0, 0, -300);

  rotateX(radians(-15));

  // every 150 frames, reset the wind target

  if (frameCount % 150 == 0) {

    windTarget = new PVector(random(-5, 5), random(-5, 5));

  }

  // update wind direction with current target

  windDirection.update(windTarget);

  // draw grass at all positions one by one

  for (int i = 0; i < positions.length; i++) {

    PVector p = positions[i];

    // set green stroke color

    stroke(100, 150, 50 + p.z);

    // get grass blade tip with new function

    PVector ptip = getGrassTip(p, i);

    // draw every grass blade between p and ptip

    line(p.x, 200, p.y, ptip.x, ptip.z, ptip.y);

  }

}

// new function just for getting the tip of a grass blade

PVector getGrassTip(PVector grassBladePosition, int i) {

    // copy position and add wind

Chapter 4  Refinement and Depth



118

    PVector grassBladeTip = grassBladePosition.copy();

    // use noise for wind strength

    float windStrength = noise(frameCount/500.) * 2;

    grassBladeTip.x += windDirection.x * windStrength;

    grassBladeTip.y += windDirection.y * windStrength;

    grassBladeTip.z = 200 - grassBladePosition.z;

    // return the position of the grass blade tip

    return grassBladeTip;

}

What happened in this example? We replaced the complex expressions 

that were used to compute the position of the grass blade tip with a new 

function getGrassTip at the end of the code example. This new function 

receives the original position of a grass blade (grassBladePosition), 

copies it (grassBladeTip), and adds the influence of the wind for this 

position. Then the copy is returned (see the return keyword). Now look up 

and check how this new function is used in the draw function: we call it to 

compute the grass blade tip position ptip for every grass blade position. 

Then the drawing of the line is getting really simple, just a line between 

two points p and ptip.

Now that the code is simplified and better structured, we can add 

more nuance to the movement of the grass blade tips. We use individual 

deviations per grass blade that are calculated with the noise function, 

bx, by. These deviations are quite small and create an organic feel of the 

entire field.

Chapter 4  Refinement and Depth



119

CONTINUED EXAMPLE: LET GRASS BLADES MOVE MORE ORGANICALLY

PVector getGrassTip(PVector grassBladePosition, int i) {

    // copy position and add wind

    PVector grassBladeTip = grassBladePosition.copy();

    // use noise for wind strength

    float windStrength = noise(frameCount/500.) * 2;

    // use noise for individual deviations of grass blades

    float devX = -10 + noise(i/100. + frameCount/100., i/130.) * 20;

    float devY = -10 + noise(i/170. + frameCount/200., i/100.) * 20;

    grassBladeTip.x += windDirection.x * windStrength - devX;

    grassBladeTip.y += windDirection.y * windStrength - devY;

    grassBladeTip.z = 200 - grassBladePosition.z;

    // return the position of the grass blade tip

    return grassBladeTip;

}

That’s a quick change to the getGrassTip function, and the grass 

blades move even more organically. We added two new variables devX 

and devY that introduce individual noise for every grass blade tip. After 

defining and computing them, we subtract them from the previous grass 

blade tip position, and done.

Are you ready for the finishing touches (Figure 4-5)? Let’s look at the 

draw function again and add three more things: a more differentiated color 

per grass blade, a small flower bud for 20% of all grass blades, and finally 

the big bouncing purple ball that adds a bit of surreal feel to the scene. 

We have seen how bouncing works in the first chapter. So, this example 

combines aspects of Coding Art steps 1, 2, and 3 in a single scene.

Chapter 4  Refinement and Depth



120

Figure 4-5.  Snapshots of the full grass field example with the large 
purple ball bouncing through the organically moving grass

FINAL STEP: ANIMATE ARTIFICIAL GRASS AND ADD A PURPLE SURPRISE 

void draw() {

  // same as before...

  // draw grass at all positions one by one

  for (int i = 0; i < positions.length; i++) {

    PVector p = positions[i];

    // set individual stroke color differently

    �stroke(100, 150, 50 + noise(i/100. + frameCount/100., i/10. +  

frameCount/200.) * 150);

    // get grass blade tip with new function

    PVector ptip = getGrassTip(p, i);

    // draw every grass blade

    line(p.x, 200, p.y, ptip.x, ptip.z, ptip.y);

Chapter 4  Refinement and Depth



121

    // every fifth grass blade gets a flower

    if (i % 5 == 0) {

      pushMatrix();

      translate(ptip.x, ptip.z, ptip.y);

      fill(190, 255, 200, 40); noStroke();

      ellipse(0, 0, 2, 2);

      popMatrix();

    }

  }

  // draw the crazy purple bouncing sphere

  fill(200, 255, 255); noStroke();

  �translate(-500 + frameCount % 1000, 100 - 

abs(sin(frameCount/40.) * 80), -500 + frameCount % 1000);

  sphere(60);

}

In this final example, we added and changed three things: The stroke 

is now controlled partly by the noise function, which in turn is depending 

on the frameCount. Second, we added a flower bud decoration for every 

fifth grass blade, which basically uses the ptip position to draw an 

ellipse like a halo around the tip of the grass blade. Finally, we added the 

bouncing sphere below the for loop, which uses several functions that we 

have seen before to diagonally bounce through the grass. Fun times!

The most important point of this section is that we critically look 

at our code and simplify it to be able to move forward with even more 

complexity. The process of extracting code and moving it into a function is 

professionally also called refactoring, and it is a common way to simplify 

the structure of code. We introduce it here explicitly, because we need it in 

the next few sections where we will either refactor or construct functions 

from scratch to compute data for us.

Chapter 4  Refinement and Depth



122

4.3.2. � The Space Between Two 
Values: Interpolation

Imagine someone gives you two colors and asks for an intermediate color 

exactly in the middle or at 30% or 80%. Processing can give you these 

intermediate colors very precisely, using interpolation which is a technical 

concept that usually means computing a value between two given values. 

Luckily, Processing has two functions for exactly that, lerp and lerpColor, 

which are super easy to use. Let’s look at an example that interpolates position 

and color between two moving balls of different colors. Again, we use PVector 

to store the position of the balls and the z coordinate for the color. Can we 

actually store a color in the z coordinate, which is a normally number? This 

little trick works because Processing treats all colors as numbers.

? Think about this  Look at the two functions lerp and 
lerpColor on the Processing reference page to understand 
values inside these functions. It is important to understand how the 
interpolation works: the first two parameters are the start and end 
value of the interpolation range, and the third parameter determines 
where in the space between start (0) and end (1) the resulting value 
is. This is quite related to the map function. Can you think why? See 
the following for an explanation.

USING THE LERP AND LERPCOLOR FUNCTIONS

PVector left = new PVector(50, 0, color(0, 255, 255));

PVector right = new PVector(350, 0, color(0, 255, 255));

void setup() {

  size(400, 200); noStroke(); colorMode(HSB);

}

Chapter 4  Refinement and Depth



123

void draw() {

  background(0);

  // move two balls vertically up and down

  left.y = map(sin(frameCount/100.), -1, 1, 20, height-20);

  right.y = map(cos(frameCount/200.), -1, 1, 20, height-20);

  // draw two balls: first left, then right

  fill((color) left.z);

  ellipse(left.x, left.y, 20, 20);

  fill((color) right.z);

  ellipse(right.x, right.y, 20, 20);

  // calculate current interpolation

  float ip = (frameCount % 500)/500.;

  // interpolate between left and right position

  PVector currentPosition = PVector.lerp(left, right, ip);

  // interpolate between left and right color

  fill(lerpColor((color) left.z, (color) right.z, ip));

  // draw middle ball

  ellipse(currentPosition.x, currentPosition.y, 20, 20);

  // extra effect: reset colors if interpolation is 0

  if (ip == 0) {

    left.z = color(random(0, 160), 255, 255);

    right.z = color(random(120, 255), 255, 255);

  }

}

Reminder  You might think that we don’t need to use lerpColor 
because the position interpolation with lerp also interpolates the z 
coordinate. This does not work because the interpolation of colors is 
more complex than between simple numbers: try searching for color 
spaces online and compare the direct path between colors in a color 
space with the result of using lerpColor. Do you see the difference?

Chapter 4  Refinement and Depth



124

The fundamental point to understand about interpolation is that an 

interpolation operation needs two values (colors, positions, or numbers) 

that mark the start and the end of a range. Next to that, we need an 

interpolation amount that determines the point in the space between the 

values that we are interested in. The interpolation amount ranges from 0 

to 1. An interpolation amount closer to 0 indicates that we are interested 

in a value closer to the first value, and an interpolation amount closer to 1 

maps to a value closer to second value. The interpolation amount 0.5 gives 

us exactly the middle value between the first and the second values. In the 

preceding example, we use lerp to interpolate a position for the middle 

ball between the left and the right balls. We use lerpColor to interpolate a 

color for the middle balls between the left and right ball. The interpolation 

amount is following the frameCount.

You might ask, is interpolation about the average? Yes, but the average 

(or mean) usually refers to the exact middle point, which you can get with 

interpolation amount 0.5. Interpolation can do more: it can give you all 

other possible positions between the two values. The example shows 

this clearly, as we see a smooth animation of the middle ball through all 

positions (and colors) between the left and the right balls.

4.3.3. � Interpolation with Functions
How to use functions in the interpolation example? So far we have moved 

the two outer balls and then calculated the middle ball’s position. Another 

way would be to calculate all positions and then paint them in one go. 

Let’s try this with a small change on how the right ball moves. We use the 

previous example and replace the draw function as follows.

Chapter 4  Refinement and Depth



125

INTERPOLATE BALLS IN POSITION AND COLOR

void draw() {

  background(0);

  // move two balls vertically

  left.y = getBallYPosition(frameCount);

  right.y = getBallYPosition(frameCount - 1000);

  // draw left and right balls

  drawBall(0, 20);

  drawBall(1, 20);

  // calculate current interpolation

  float ip = (frameCount % 500)/500.;

  // reset colors if interpolation is 0

  if (ip == 0) {

    left.z = color(random(0, 160), 255, 255);

    right.z = color(random(120, 255), 255, 255);

  }

  // draw big middle ball

  right.y = getBallYPosition(frameCount - 1000 * ip);

  drawBall(ip, 20);

}

float getBallYPosition(float time) {

  return map(sin(time/200.), -1, 1, 20, height-20);

}

void drawBall(float ip, int size) {

  // interpolate between left and right position

  PVector position = PVector.lerp(left, right, ip);

  // interpolate between left and right color

  fill(lerpColor((color) left.z, (color) right.z, ip));

  // draw ball

  ellipse(position.x, position.y, size, size);

}

Chapter 4  Refinement and Depth



126

In this example, the middle ball moves from left to right as if it already 

knows where the right ball will be. As promised earlier, we can do this 

by introducing a single new function getBallYPosition. This function 

takes time as input and calculates the vertical position (y position) of a 

ball at that time. Because we are using a periodic function like sin, this 

is possible. It would not be possible with user input or a random function. 

With sin, however, we can calculate the value exactly for any given time, 

either in the future or in the past. A second function, drawBall, replaces 

all drawing code for the three balls. We use it to draw the left and right 

balls by interpolating with the minimum interpolation value 0 and the 

maximum interpolation value 1. The middle ball is drawn by interpolating 

dynamically between left and right ball positions and also their colors. 

Looking at the function drawBall itself, it is quite straightforward: 

interpolate position and color, and then draw ball accordingly. By 

restructuring our code like this, we remove a lot of duplicate code.

With the two new functions getBallYPosition and drawBall, it is 

easier to extend the code again with additional (small) balls. Take the next 

example, in which we replace only the draw function. We introduce two 

new variables called steps (set to 50) and stepSize (set to 20) and add a 

for loop that renders extra small balls in a nice smooth curve between the 

left and the right balls. The middle ball will travel on this curve from the 

left to the right ball.

ADD INTERMEDIATE STEPS IN THE INTERPOLATION EXAMPLE

void draw() {

  background(0);

  // set number and size of intermediate steps

  float steps = 50;

  float stepSize = 20;

  // move two balls vertically

Chapter 4  Refinement and Depth



127

  left.y = getBallYPosition(frameCount);

  right.y = getBallYPosition(frameCount - stepSize * steps);

  // draw left and right balls

  drawBall(0, 20);

  drawBall(1, 20);

  // calculate current interpolation

  float ip = (frameCount % 500)/500.;

  // reset colors if interpolation is 0

  if (ip == 0) {

    left.z = color(random(0, 160), 255, 255);

    right.z = color(random(120, 255), 255, 255);

  }

  // go through all intermediate steps

  for (int i = 0; i < steps; i++) {

    right.y = getBallYPosition(frameCount - stepSize * i);

    drawBall(i/steps, 5);

  }

  // draw big middle ball

  �right.y = getBallYPosition(frameCount - stepSize * 

steps * ip);

  drawBall(ip, 20);

}

As the last modification, we link the steps and stepSize variables to 

the mouse position to add interactivity. Now, steps depends on mouseX, 

and stepSize depends on mouseY. In other words, we have replaced the 

fixed values of 50 and 20 by dynamic input coming from your mouse. This 

allows us to play interactively with the number of intermediate balls and 

how many wiggles they follow. This modification is also the reason why we 

initially chose the float type for steps and stepSize.

Chapter 4  Refinement and Depth



128

LET THE INTERMEDIATE STEPS IN THE EXAMPLE REACT TO THE MOUSE

// determine how many steps we want via x mouse position

float steps = (int) map(mouseX, 0, width, 2, 200);

float stepSize = (int) map(mouseY, 0, height, 100, 2);

This big example (Figure 4-6) shows in a few steps how we can first 

simplify the code by introducing computed values and functions. After 

that, we can use these additional structures to enrich the work. In this case, 

we moved from pure interpolation to using functions to compute positions 

and draw all visual elements. Only with this change, we could make the 

steps toward the many intermediate steps that are drawn in a smooth 

curve between the left and right balls.

Figure 4-6.  Examples of color and position interpolation for different 
mouse positions (controlling the number of intermediate steps)

Chapter 4  Refinement and Depth



129

There are a few practical things to note when making such changes: 

first, make sure that you always keep a copy of the code before making 

big changes. Apply the changes one by one, and test after each change 

whether the output is as expected (or better). Try to avoid distractions 

while structuring code; it is a demanding task that needs your full 

attention. When you extract code into a function, carefully check the order 

of parameters in the function – what you fill in, how you use the input 

inside the function, and how you return and use output of the function 

in the rest of the program. We will come back to these hints in the final 

chapters of this book.

4.4. � Interactivity
The final section in this chapter deals with interaction. Now we go beyond 

our previous use of the mouse to make Processing sketches interactive. For 

instance, when we use the mouse, we are mostly interested in the mouse 

position, mouse presses, drags, and clicks. The mouse position provides 

us with numerical values that we can use to control visual elements 

or even many things. Mouse presses and clicks provide us with on/off 

events, a simple transition between the state “mouse is not pressed” to the 

state “mouse is pressed.” These two relatively simple interactions allow 

controlling complex user interfaces, as you can see almost everywhere in 

your computer, but also as touch interactions on mobile devices or even 

vending machines and ATMs. Almost all functions of Processing can be 

controlled with the mouse. In short, a very powerful means of interaction.

Still, you might prefer a different way for interaction with your creative 

work. This section will help understand the fundamental aspects of 

interactive input and how you can make a transition from the mouse to 

other input devices such as keyboards, cameras, microphones, and all 

kinds of simple or complex sensors. Let’s start by looking at the mouse and 

keyboard functions of Processing.

Chapter 4  Refinement and Depth



130

4.4.1. � Mouse Interaction
We have worked with different mouse functions before in the book. You 

have seen the mousePressed variable that can be used easily in draw to 

switch different visuals according to whether the mouse is pressed or not. 

We used different mouse handlers as well. Handlers are special built-in 

functions in Processing that are automatically called when a specific event 

occurs. For example, there are the mouseMoved and mouseDragged handlers. 

The first is called automatically whenever the mouse is moved in any way 

(but not when a mouse button is pressed). The second handler is called 

when the mouse is moved with the button pressed, which is usually called 

“dragging” the mouse. Apart from these functions, we can let Processing 

notify the sketch when the mouse button is pressed down (mousePressed), 

when it is released again (mouseReleased), or when both actions happen 

in quick succession (mouseClicked). The following example shows an 

example of switching visuals depending on the state of the mouse buttons 

(without distinguishing between left and right mouse buttons). Only 

mousePressed exists in a version as a variable or as a handler. All other 

mouse interaction functions are handlers only.

DIFFERENT ASPECTS OF MOUSE INTERACTION

void setup() {

  size(400, 400);

  background(0); noStroke(); colorMode(HSB);

}

void draw() {

  // only blur canvas if the mouse is not pressed

  filter(BLUR, mousePressed ? 0 : 1);

  // translate to mouse position

  translate(mouseX, mouseY);

Chapter 4  Refinement and Depth



131

  // compute the distance that the mouse

  // has moved this frame

  float size = 5 + dist(pmouseX, pmouseY, mouseX, mouseY);

  // generate sparkles

  for (int i = 0; i < 5; i++) {

    // draw colorful sparkles if mouse is pressed

    if (mousePressed) {

      fill(100 + random(-20, 20), 255, 255, 180);

    } else {

      fill(255, 180);

    }

    ellipse(size * random(-1, 1), size * random(-1, 1), 2, 2);

  }

}

We see two different decision points in the code where different visuals 

are created depending on the mouse state. The first one happens already 

at the beginning of the draw function.

mousePressed ? 0 : 1 is a conditional operator, short form of 

writing if .. else. If mousePressed is true (that means a mouse button 

is pressed), the filter function receives the input 0. Else, the filter 

function receives 1. You can use this conditional operator in many ways 

to make a decision between two values, but be aware that it is sometimes 

easy to overlook and harder to understand for beginners than a full if .. 

else control structure.

The second decision point is about the color of the sparkles that are 

generated around the mouse pointer. As long as the mouse button is not 

pressed, the sparkles are white. When the mouse is pressed, the sparkles 

turn greenish. Overall, we see either fading white sparkles or sticky green 

sparkles in this example.

So far, we have ignored the different mouse buttons entirely. This 

changes with the next example. Just replace a few lines of code in the 

previous example and run it.

Chapter 4  Refinement and Depth



132

GENERATE THE COLOR OF THE SPARKLES AROUND THE MOUSE POINTER

PREVIOUS:

    // draw colorful sparkles if mouse is pressed

    if (mousePressed) {

      fill(100 + random(-20, 20), 255, 255, 180);

    } else {

      fill(255, 180);

    }

NEW:

    // draw colorful sparkles if mouse is pressed

    // button left --> red, button right --> blue

    if (mousePressed && mouseButton == LEFT) {

      fill(240 + random(-20, 20), 255, 255, 180);

    } else if (mousePressed && mouseButton == RIGHT) {

      fill(160 + random(-20, 20), 255, 255, 180);

    } else {

      fill(255, 180);

    }

You probably understand most of the example code above, but there 

is one new thing here: the && connection between two different parts of 

the if or else if conditions (mousePressed && mouseButton == LEFT). 

This connection is called a “logical AND” operation, which returns true 

only in the case that both expressions (before and after &&) are true. In 

this example, the fill color will be changed if the mouse is pressed AND 

mouseButton is LEFT which results in a white color. We have added a 

second condition with else if that activates when the mouse is pressed 

AND the mouseButton is RIGHT. This second condition changes the color to 

a greenish-blue color.

Chapter 4  Refinement and Depth



133

? Think about this  Logical operators allow you to express more 
complex conditions. Next to the AND operator that we introduced 
earlier, there is also the “logical OR” operator || which will return 
true if one of the two expressions or both are true. Try it out.

In this variation of the previous “sparkles” example, we distinguish the 

left from the right mouse button by checking the mouseButton variable and 

comparing against LEFT or RIGHT. Now, you will see differently colored 

sparkles depending on which mouse button you press down when drawing 

on the canvas.

? Think about this  What might happen when you press both 
mouse buttons at the same time? A small hint: the order of if 
condition matters here. Try it out.

4.4.2. � Keyboard Interaction
The keyboard is the second main input for interaction. Unlike the mouse 

position, keyboard input is discrete. That means keys will not provide a 

continuous value, but an event and the key character (“key code”). We 

can, for instance, work with arrow keys and a variable to precisely position 

a visual element. In the following example, we use the arrow keys on the 

keyboard to precisely move a white rectangle around a black canvas. Any 

other key will reset the position in the center of the canvas. We first need 

to check whether the key is a special key (CODED), then we can check which 

arrow key is pressed.

Chapter 4  Refinement and Depth



134

USE ARROW KEYS TO CHANGE PRECISELY POSITIONS OF VISUAL 
ELEMENTS 

PVector pos;

void setup() {

  size(400, 400);

  noStroke(); rectMode(CENTER);

  // start position: middle center point of canvas

  pos = new PVector(width/2, height/2);

}

void draw() {

  background(0);

  fill(200, 200, 255);

  rect(pos.x, pos.y, 40, 40);

}

void keyPressed() {

  // check if key is special (not letter or number)

  if (key == CODED) {

    // for special keys, check key code

    if (keyCode == UP) { pos.y--; }

    else if (keyCode == DOWN) { pos.y++; }

    else if (keyCode == LEFT) { pos.x--; }

    else if (keyCode == RIGHT) { pos.x++; }

  } else {

    // all other keys --> reset position

    pos.set(width/2, height/2);

  }

}

Chapter 4  Refinement and Depth



135

? Think about this T ry extending this example by checking the 
SHIFT key to make the rectangle move faster in one direction when 
pressing SHIFT. What else could you influence with the keyboard?

Precise control is a strength of the keyboard; every key press counts. 

As we will see in the next example, we can also work with the content of 

the keys that are pressed. Let’s start by simply printing the pressed key as a 

bold character on the canvas.

This example uses a brief setup and an empty draw function, and most 

of the action happens in the keyPressed function. In the beginning, we 

load a font that we previously created with Processing tools. How did we 

do that? Open the Processing application and then the Tools menu. There 

is an option “Create font...” that allows to pick a font from your computer, 

determine the size, and convert it into a format that Processing can use 

directly. It works better if you specify the right font size already, so the 

rendered text is sharp in the end. Processing creates a new font file that 

should be located in the same folder as the Processing sketch.

PRINT THE PRESSED KEY AS A BOLD CHARACTER ON THE CANVAS

PFont f;

void setup() {

  size(400, 400);

  // load a specific font to print text

  f = loadFont("InterUI-ExtraBold-250.vlw");

  background(0);

}

void draw() {}

void keyPressed() {

  // draw character

Chapter 4  Refinement and Depth



136

  background(0); fill(255);

  // set text rendering options

  textFont(f, 250);

  textSize(250);

  // measure character width

  float charWidth = textWidth(key);

  // draw character centered

  text(key, (width - charWidth) / 2., 300);

}

We render the character whenever a key is pressed (keyPressed) 

directly on a black background using the font that we loaded in setup. 

Apart from setting the font and the textSize to be really large, we measure 

the text width by using textWidth and use this width to center the text 

on screen. Centering is a simple computation in which we take overall 

width of the canvas, subtract the text width from it, and then divide by 

two to get the space left of the character. We draw the character with this 

space between the left border of the canvas and the character as the x 

position. Done.

? Think about this  We explained the centering very quickly. Try to 
visualize the procedure on paper. Draw the canvas as a rectangle, 
the centered letter inside the canvas, and then the margins between 
the left and right border and the letter. If you measure the width 
of canvas, letter, and the margins, you can redo the preceding 
calculation.

Now that we have seen how to obtain characters and draw them 

centered on the canvas, we can take this to the next level by rendering the 

characters in indirect ways. The next example is a variation of the previous 

example. We render the letter by lots of tiny randomly placed dots. In the 

Chapter 4  Refinement and Depth



137

previous chapters, we have used randomness to place visual elements, 

but how can we place them randomly inside the character? We use a trick 

to do this: we draw the typed character on a separate canvas textCanvas 

in black and white whenever a key is pressed. Then we generate lots 

of dots randomly and check whether they are inside the character by 

comparing the random position of the dot to the color at the same position 

on the textCanvas. If the color is black, we have hit the space outside 

the character, and we don’t draw the dot. If the color is white, then we hit 

the character, and we draw the dot on the original canvas. Let’s see how 

this works.

PRINT THE PRESSED KEY AS A CHARACTER WITHIN 
RANDOMIZED DOTTING

PFont f;

PGraphics textCanvas;

void setup() {

  size(400, 400);

  textCanvas = createGraphics(400, 400);

  f = loadFont("InterUI-ExtraBold-250.vlw");

  background(0);

}

void draw() {}

void keyPressed() {

  // draw character on off-screen canvas

  textCanvas.beginDraw();

  textCanvas.textFont(f, 250);

  textCanvas.background(0);

  textCanvas.fill(255);

  textCanvas.textSize(250);

  // measure character width

  float charWidth = textCanvas.textWidth(key);

Chapter 4  Refinement and Depth



138

  // draw character centered

  textCanvas.text(key, (width-charWidth)/2, 300);

  textCanvas.endDraw();

  // draw new character

  background(0); noStroke();

  // go through 2000 iterations of the recursive

  // drawing of dots and thin lines

  for (int i = 0; i < 2000; i++) {

    drawDot(random(0, width), random(0, height), 10);

  }

}

void drawDot(float x, float y, int depth) {

  // stop recursion if depth is 0

  if (depth == 0) {

    return;

  }

  // look up the brightness of current position

  // in the textcanvas (where we drew the letter)

  if (brightness(textCanvas.get((int)x, (int)y)) > 0) {

    // if inside letter, print a dot with some transparency

    // depending on the depth of recursion

    fill(255, map(depth, 0, 10, 80, 180));

    ellipse(x, y, depth/2, depth/2);

  }

  // find next position

  float nextX = x + random(-20, 20);

  float nextY = y + random(-20, 20);

  // go into recursion on next level

  drawDot(nextX, nextY, depth - 1);

}

Chapter 4  Refinement and Depth



139

Drawing the character on the separate canvas works exactly the 

same as for the normal Processing canvas (compare with the code in 

the previous example). When rendering to a separate canvas like this, 

don’t forget to prepare and finalize the canvas with beginDraw() and 

endDraw(), respectively. This separate canvas is then used to look up 

whether a position on the canvas is inside the letter or outside. We do 

this by checking the brightness of the pixel at the precise position (using 

brightness(textCanvas.get((int)x, (int)y))) and comparing it to 0. 

Only if a position is inside a letter (i.e., brightness greater than 0), it will 

be rendered as a bright white dot on the visible Processing canvas. This 

results in a randomized “dotting” of the character. In other words, the 

character appears because there are only dots rendered within the bounds 

of the character. Try it out and note that this sketch needs a brief loading 

time before it is responsive. This is related to loading the font file and 

might depend a bit on your computer speed.

? Think about this  Can you think how to achieve this example 
without recursion and a simple for loop? Not easy, but you are ready 
for this now. Try it out.

What is interesting in this example (Figure 4-7) is that we use a concept 

called recursion to go ten steps deep into a random position and draw dots 

according to whether the position is inside or outside the letter. Recursion 

means that we call the drawDot function from keyPressed, and then inside 

drawDot, we call the function itself again. This creates a loop as you can 

imagine. If we are not careful, this loop never ends, and our sketch will crash 

quickly. We can avoid this and break out of the loop because every time we 

call drawDot, we decrease the last parameter depth. And at the beginning 

of drawDot, we check if depth is 0 and stop in this case. A simple return is 

enough to immediately “snap back” all the layers up to keyPressed.

Chapter 4  Refinement and Depth



140

Figure 4-7.  Print the pressed key as a character within 
randomized dotting

We already play a bit with the transparency of the dots in the previous 

example (the deeper the recursion, the stronger the dot), but we can 

certainly go further. Let’s add more decoration to the “dotted” character 

drawn: small transparent lines that give the character an almost organic 

feel. This is done with two small changes to the previous code.

Chapter 4  Refinement and Depth



141

SHORTCUT TO CHANGE TRANSPARENCY OF THE DOTS FROM THE 
PREVIOUS CODE EXAMPLE

PREVIOUS:

  // look up the brightness of current position

  // in the text canvas (where we drew the letter)

  if (brightness(textCanvas.get((int)x, (int)y)) > 100) {

    // if inside letter, print a solid dot

    fill(255, map(depth, 0, 10, 80, 180));

    ellipse(x, y, depth/2, depth/2);

NEW:

  } else if (depth == 10) {

    // return if not found and this is the first level

    return;

  }

  // find next position

  float nextX = x + random(-20, 20);

  float nextY = y + random(-20, 20);

NEW:

  // set the stroke color

  stroke(180, map(depth, 0, 10, 20, 80));

  // draw line from current to next point

  line(x, y, nextX, nextY);

  // go into recursion on next level

  drawDot(nextX, nextY, depth - 1);

To draw transparent lines from the initially random positions in random 

directions, we just add a few lines before drawDot to set the stroke color 

and draw a line between the current and the next dot position. Even with 

just this change, the sketch will show interesting lines. However, the lines 

now also show up in the black space around the character (not good!). 

Chapter 4  Refinement and Depth



142

That’s why we need to add a second change else if (depth == 10) to 

check whether a random position on the first level (where depth is 10) is 

outside a character and abort the recursion with return.

We have done it again: talk about an essential feature of Processing, 

keyboard input, and then mash it together with things we have seen before 

in book – randomness, drawing many things and functions. Also, we have 

introduced recursion in an easy way which is actually not the easiest 

computational concept. Well done, dear reader!

4.4.3. � Other Input
There are some other forms of input that can be used in Processing which 

include, but are not limited to, audio input from a microphone, full-body 

motion sensing from a Kinect device, hand and finger motion data from 

a Leap Motion device, and muscle contractions and arm movement data 

from a Myo band. And with some extra hardware, like an Arduino, you can 

sense a lot of interesting things: the temperature and brightness in your 

room, the moisture on your floor or in a plant pot, the heartbeat of your 

partner or your pet, the speed of your motorcycle, and many more. By 

using Processing libraries, it is also possible to design different interactions 

which gather input data even from multiple hardware devices.

You can use such input creatively and with similar mappings as what we 

did with the mouse and keyboard. For example, when you track a human 

skeleton with a Kinect camera or fingers of a human hand with a Leap 

Motion device, you will receive position data of fingers, joints, and centers of 

body parts. These positions are given either in 2D or 3D coordinates (x, y or 

x, y, z, respectively). It is not very difficult to collect these positions and map 

them to visual elements on the 2D canvas or in 3D space. A good starting 

point is to link different visual elements to the positions (hands, shoulders, 

hips, head) that you are interested in. This way, you will get a better 

feeling for how the input device measures your movements and where its 

limitations lie. We will also touch on this in the next chapter.

Chapter 4  Refinement and Depth



143

Here, you can make good use of the MemoryDot as well. By linking the 

input from devices or sensors to one or more MemoryDot objects, you can 

control its motion in a richer way than with mouse and keyboard. Play with 

the length of the memory and how you map the output to visual elements 

or influencing visual elements. You will soon understand which data is 

directly useful for your creative process and which data needs more work.

The most common manual input devices used for designing 

interaction in Processing are the ones we introduced in more depth: 

keyboard and mouse. The mouse remains probably the most important 

control for creative work with Processing and to explore interactive, 

dynamic sketches. The keyboard input is helpful for triggering commands 

and switching between more than two states (for that, you have about 100 

keys at your disposal). As we will see soon in the next chapter, mouse and 

keyboard are also very useful for testing and exploring new possibilities 

quickly.

4.5. � Summary
So far, we have created more and more shapes, colors, randomness, and 

depth. It is time for the spotlight, for presenting our work to others. This 

is called the production phase, when we make things ready for printing 

or screening, where we make things stable to run for a longer time, and 

where we prepare the code for the next iterations. Why is the last thing 

so important? Nobody will actually see the code, right? Well, it’s simple: 

when you go for the big stage or the opening event of your exhibition, you 

will need to make small adjustments quickly to match a new context, the 

exhibition space, the audience, or even just the broken projector in the 

venue. Having a clear code structure will help you in this stressful moment, 

when you really need everything to be right and beautiful. See it as a way to 

remove stress and remain calm when it matters.

Chapter 4  Refinement and Depth



144

There is also another reason: when you are in the moment of creation, 

the flow of getting immersed in your work with the machine, you know 

exactly where to find the code to change the color or to move an element 

less fast on the screen. This moment stops eventually, and you work on 

other projects for 2 or 3 weeks. The moment you return to messy code and 

a complex structure, you will feel lost, you will see code that does not seem 

to be yours anymore. Frustration is quite expected, until you go back into 

the moment of creation and refresh your mind.

It does not need to be so hard. Leave comments and traces for yourself, 

so your code and knowledge will snap together immediately. You will 

waste less time and get cracking fast. Clear code and structure is a gift to 

your future self.

Another benefit of clear structure is that you will be able to get help 

easier and faster. Any expert that you might find will be more willing to 

help you when they don’t have to work with a mess and spend an hour 

to understand what you aimed for in the first place. We will come to this 

again in the last part where you will learn how to solve your problems step 

by step and how you get help fast.

Finally, and that is the main rationale in this chapter: creating depth 

and maintaining a structure that makes us comfortable to branch off in 

different, new directions. Only by iterating in this phase, lots and lots of 

times, we will be able to achieve depth in our work, depth that will be 

polished in the next chapter. Read on!

Chapter 4  Refinement and Depth



145

CHAPTER 5

Completion and  
Production
In this last chapter of the first part, we show examples, tricks, and hints to 

help you reach the moment of completion. Creative work often aims at 

being shown, exposed, performed, perceived, reflected, and celebrated. 

All this happens not only at a creative level but also on the creation itself. 

The creative process spins extra fast in these moments, and getting work 

from “80%” to “100%” takes a lot of energy and perseverance (some people 

might refer to the “80/20” law here1). Although we would really like to 

present an easy recipe for success, there is none (that we know of).  

Instead, we will show you things that hopefully make your life easier 

toward completing your work for production. We start by getting your 

creative work to production resolution.

5.1. � Making Things Big for Print
This book is all about digital art and creation. So far, we have shown you 

how to create with code, playing with the almost unlimited possibilities 

of the digital realm. Yet, this is not always where your journey ends or is 

meant to end. Sometimes we have to physicalize our work for production, 

for instance, when preparing for print.

1 The “80/20” principle is also called Pareto principle.

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_5

https://doi.org/10.1007/978-1-4842-9780-3_5


146

When printing, rescaling, or rendering snapshots of your work, this 

section will show you ways of how to make your work big and solve 

potential problems.

If you have ever printed something in high quality, for instance, a 

really nice photo, you will have heard about DPI (“dots per inch”). DPI is a 

measure for how many printed dots fit into an inch, and common values 

are 72, 150, 200, 300, and 600. For high-quality printing and viewing from a 

small distance, high DPI values are preferable.

Given a DPI value from your print shop, how to know the number of 

pixels you need? For this question, we also need to know how big your 

print will be. For example, if you want to print with 600 DPI on a 10cm by 

10cm card, you will need to render a sketch of 2362 by 2362 pixels. This 

is far more than we have been rendering so far in this book. It’s time to 

blow it up!

Before we go into that, let’s use Processing to make these pixel 

calculations for us – it is work for a computer program after all.

CALCULATE PIXELS LENGTH FROM SIZE AND DPI VALUES  
IN PROCESSING 

// 100mm for 10cm

int sizeInMillimeters = 100;

// 600 DPI

int desiredDPI = 600;

// output from Processing

print("Pixel length: ");

println(round(sizeInMillimeters * desiredDPI / 25.4));

With this short program, Processing can calculate the pixel values for 

you; just fill in your specific printing size and DPI.

Chapter 5  Completion and Production 



147

5.1.1. � High-Resolution Rendering
How to render in a very high resolution? Printing needs high resolutions 

and perhaps even specific colors. We will show you here how to make your 

work large and save rendered images, so they can be printed or produced. 

Before you start, make a copy of the current version of your work. You 

will need this “small-scale” version of the sketch later on, for instance, to 

compare or to find the right moment to take a snapshot. In the previous 

examples, we have explained how to calculate the pixel size you would 

need when printing your work at a specific DPI resolution. Let’s say, you 

want to render the following example sketch in the dimension 1000 by 

1000 pixels.

ORIGINAL CANVAS OF 400 BY 400 PIXELS 

size(400, 400);

rect(40, 40, 200, 200);

The first thing that you might want to change is the canvas size.

CHANGE THE CANVAS SIZE TO 1000 BY 1000 PIXELS 

size(1000, 1000);

rect(40, 40, 200, 200);

What happened? The canvas increased to 1000 by 1000 pixels, but the 

white square stayed at the same position and size as before. At this point, 

we have two different approaches that we can take: scaling the canvas or 

using size-dependent values. We don’t recommend changing all values 

manually, because this is a lot of work for a larger sketch and you would 

have to do it all again, once you need a rendering in a different pixel size.

Chapter 5  Completion and Production 



148

Scaling the canvas. The first approach is to leave the number as is and 

to introduce scale before rendering the rectangle.

SCALE THE DRAWING ON THE RESIZED CANVAS 

size(1000, 1000);

scale(1000/400.);

rect(40, 40, 200, 200);

What we did to determine the scale factor is to divide the new pixel 

amount (1000) by the previous pixel amount (400). By using 400. (with the 

extra dot) instead of 400, we can ensure that the division is a floating point 

division. That means the division can result in a more precise number. 

For example, we get 1000/400 = 2 with integer division and 1000/400. = 

2.5 with floating point division. The latter is a better input for scale. You 

might have noticed this extra dot earlier in the book examples. The extra 

dot turns a number into a floating point number, which turns the entire 

division into a floating point division. We get a higher-precision output 

which is a good thing for scaling and rendering. The closer the numbers 

are that we divide (or the larger the number that we divide by), the more 

precision we need. Note that you need to insert scale before drawing 

anything, so at the beginning of the draw function.

Size-dependent values. The second approach is to make all values in 

the sketch depend on the size of the canvas. In our example, this would 

result in the following changes to the original code.

USE SIZE-DEPENDENT VALUES IN CODE 

size(400, 400);

rect(width/10., height/10., width/2., height/2.);

Chapter 5  Completion and Production 



149

After this change, you can modify the canvas size as much as you like, 

and the location and size of the white rectangle will be proportionate.

MODIFY THE CANVAS TO ACHIEVE PROPORTIONATELY SIZED VISUALS 

size(1000, 1000);

rect(width/10., height/10., width/2., height/2.);

Now a word of caution: it is not easy to mix these two approaches in a 

single sketch. Mixing might lead to problems that are hard to identify and 

fix. Therefore, it is best to stick to one approach and make this also very 

clear in a comment at the beginning of the sketch.

If you have tried both approaches, did you notice something? Check 

the border of the white rectangle again. They are thicker in the first 

approach where we scale the sketch. The reason is that scaling influences 

all drawing operations, not just positioning and sizing. It influences in the 

same way border thickness (stroke weight) and other scalable properties 

of visual elements. So, if you use the scaling approach, make sure that 

you check and adjust the stroke weight and other visual properties before 

starting a long rendering job that runs the entire night.

5.1.2. � Migrating to Scalable Version
The preceding approaches are quite straightforward when starting out with 

a new creative work. What do we do if our work is there already in a complex 

sketch, and we need to scale it? You can pick any example from this book 

and follow a simple process depending on which approach you choose.

Scaling approach. Use the Processing “search and replace” function 

and replace “width” and “height” with their values as used in size. Add 

scale at the beginning of setup and draw (and also if you are drawing in a 

different function). Test and save this copy.

Chapter 5  Completion and Production 



150

Size-dependent values. Go through the entire code and replace any 

value that is relevant for scaling (position, size, stroke weight, etc.) with an 

expression depending on width or height. We have done this in the earlier 

example which is copied here again.

USE VALUES IN CODE DEPENDING ON WIDTH OR HEIGHT

size(1000, 1000);

// all values are now depending on width or height

rect(width/10., height/10., width/2., height/2.);

Still not sure how to choose for an approach? Ok, here is a rule of 

thumb: if your code uses few transformations like translate, rotate, and 

scale, then the scaling approach can be the right choice. If you use a lot of 

transformations, changing the values might be a lot of work, but ultimately 

less trouble than figuring out transformation problems. Finally, this 

decision also depends on how well your code is organized and how cleanly 

you have separated transformations with pushMatrix and popMatrix. This 

is also the reason why we suggested making copies of your code before: 

you can always try one approach and move the other approach if that 

seems to work out better. Even better, consider using a version control 

system such as “git” which allows you to track fine-grained changes in 

your code.

Reminder  Search online for “git version control system.” You 
will find a lot of technical information, but there are also very easy 
graphical clients for git available. You might want to visit the sites of 
popular git-hosting companies such as https://github.com or 
https://gitlab.com.

Chapter 5  Completion and Production 

https://github.com
https://gitlab.com


151

When you run your code at a high resolution, please be aware that it 

might take longer to render and that the frame rate will go down, especially 

sketches with a lot of rendering operations or loops with many iterations 

will have this problem. Interaction with a sketch that is running at a very 

low frame rate will be more difficult or even impossible when rendering a 

single large frame takes several seconds to complete. For these problems, 

read on, there are ways to solve them.

5.1.3. � Rendering Snapshots of Dynamic Work
We have seen how we can get our work to the right resolution (pixel size). 

High resolutions might take far longer to render than our “working” 

sketches. That’s ok, because we let the sketches render and then take 

printable snapshots at the right moment.

What does it mean to “take a snapshot” in Processing? It means that 

Processing briefly stops the draw loop and saves the current canvas to 

a file. You can customize the name and type of image file and even ask 

Processing to count up in the file name, so the order of snapshots is 

preserved (image-0001.png, image-0002.png, image-0003.png, etc.). The 

following code shows how this works.

TAKE A SNAPSHOT IN PROCESSING WITH SAVEFRAME

void setup() {

  size(400, 400);

}

void draw() {

  background(0);

  for(int i = 0; i < 20; i++) {

   ellipse(random(0, 400), random(0, 400), 20, 20);

   // save the canvas as a PNG image file, include

Chapter 5  Completion and Production 



152

   // a four-digit enumeration in the file name

   saveFrame("image-####.png");

 }

}

The saveFrame renders the canvas in the state when saveFrame is 

called, so putting it at the end of the draw function is a good choice. Before 

you can save frames, make sure that you have saved the sketch in a local 

folder where you can find it. All saved frames will go to this folder. Now, if 

you run this code, and wait for a while, you will see lots and lots of image 

files appearing in the sketch folder. Processing can save images in several 

formats, basically files ending in “.tif”, “.jpg”, or “.png” (according to the 

Processing reference). In short, “.tif” files are often uncompressed and 

quite big, and “.jpg” files use lossy compression, which means smaller 

files and lower quality (not ideal for printing). Finally, “.png” files use 

compression without reducing quality (our choice in all examples). You 

can find more information about these different formats on the Internet. 

Back to rendering files in Processing: if the file name includes hash marks 

(“#”), they will be replaced by the current value of frameCount when 

calling saveFrame. The result is a series of numbered images that show 

every single rendered frame. We can use this to pick the best frames (this is 

what we did for illustrating this book), or you can make an animated GIF to 

share on social media (if that’s your thing).

Unless we want a whole series of rendered frames, rendering and 

saving all frames is not exactly our goal. With this function, we can render 

any frame that we would like, so why not be more selective? Our next 

example shows how to trigger saving a single frame with a key press.

Chapter 5  Completion and Production 



153

SAVE A SINGLE FRAME IN PROCESSING WITH A KEY PRESS 

void setup() {

  size(400, 400);

}

void draw() {

  background(0);

  for(int i = 0; i < 20; i++) {

   ellipse(random(0, width), random(0, height), 20, 20);

  }

}

void keyPressed() {

  // save the canvas as a PNG image file, include

  // a four-digit enumeration in the file name

  saveFrame("image-####.png");

}

This is almost exactly the same code with the only change that we 

moved the frame saving part to the new keyPressed function. This sketch 

will not save every single frame, but instead wait for a key press (any key 

should work!) and only then save the current frame. This allows us to 

watch the frames go by and hit the keyboard to save the ones we like.

Tips  Frames change too fast? Use frameRate() in setup to adjust 
the frame rate. Try values of 2, 1, 0.5 or even 0.3.

This approach to selecting a frame works for sketches that still render 

in a reasonable time (less than a few seconds per frame). If we go really 

big, then a frame might take tens of seconds or longer to render. Unless 

we don’t mind a really long wait for the right moment, there is another 

approach: selecting the frame by its number.

Chapter 5  Completion and Production 



154

We work in two steps. First, go back to the original (not scaled) copy 

of your sketch. In this original sketch, you need to insert the following 

function at the end.

Reminder R emember that we suggested that you make a copy 
before scaling stuff? Always make copies of your work, especially 
when you plan to make a bigger change.

PRINT OUT THE FRAMECOUNT ON THE PROCESSING CONSOLE

void keyPressed() {

  // print out the current frame number

  println(frameCount);

}

This handler for key presses will simply print out the frameCount on 

the Processing console. We can now run the original sketch and hit a key 

when we see an interesting frame that we would like to render big later on. 

The printed frameCount values are printed on the console and need to be 

copied into a text editor or noted down for the second step. Run the sketch 

as long as you like and collect the frame numbers.

In the second step, we insert a short code snippet in the scaled version 

of our sketch, at the end of the draw function. Let’s say, we have done the 

first step and hit the keyboard for an interesting frame, which printed 

frameCount 108 on the console. Now we can use this number to render 

and save exactly this frame in the scaled version of the sketch.

Chapter 5  Completion and Production 



155

PRINT OUT FRAMECOUNT NUMBER TO RENDER AND SAVE THE EXACT 
FRAME WE WANT

void draw() {

  // draw code from sketch

  // ...

NEW:

  if(frameCount == 108) {

   saveFrame("image-####.png");

   // optional: quit sketch after rendering

   System.exit(0);

  }

}

When we run this code, the sketch will check the current frameCount after 

drawing the frame contents, and if it equals frame number 108, Processing will 

save the canvas to an image file “image-0108.png”. Now we should be ready to 

run this sketch in a long, very long rendering operation – possibly through the 

night – and receive a beautiful, large-scale rendered frame for breakfast. The 

optional extra line System.exit(0) will stop the running sketch after saving 

the frame. Might be helpful if you are rendering overnight, so your computer 

can go to sleep mode and you save the earth (a little bit).

This should be a working recipe for sketches that do not require user 

input. However, we have made avid use of mouse input in this book, so 

you might have created a sketch that uses mouse input to generate its most 

beautiful (or most interesting) frames. How to render these when you are 

sleeping? Let’s go back to what we said earlier in the previous chapter. Any 

kind of interaction and user input is data. Such data can be recorded and 

also simulated if necessary. That means we don’t need real-time input if 

we want to reproduce an interactive sketch. Imagine the following simple 

example.

Chapter 5  Completion and Production 



156

ORIGINAL CODE EXAMPLE OF ELLIPSE FOLLOWING  
THE MOUSE POSITION 

void setup() {

  size(400, 400);

}

void draw() {

  background(0);

  for(int i = 0; i < 20; i++) {

   ellipse(random(0, mouseX), random(0, height), 5, 5);

  }

}

This sketch renders 20 random dots per frame, but only left of the 

mouse position. Clearly, this sketch is highly dependent on the mouse 

input. How to reproduce a frame with a particular mouse position?

The first step is again to obtain the precise position. We add a simple 

function to the sketch to record the current mouse position when we click 

the mouse.

PRINT OUT THE CURRENT MOUSE POSITION WHEN  
CLICKING THE MOUSE 

void mouseClicked() {

  // print out the current mouse position

  println(mouseX, mouseY);

}

Similar to how we record the frameCount by pressing a key on the 

keyboard, we record the x and y position of the mouse when the mouse 

is clicked. We can take this data and extend the sketch with the following 

Chapter 5  Completion and Production 



157

line. For example, our desired horizontal mouse position is recorded as 

180 on the Processing console. The following code will render the sketch 

with that mouse position (unless we move the mouse over the sketch 

window).

RENDER THE SKETCH WITH PREDEFINED MOUSE POSITION

void setup() {

  size(400, 400);

NEW:

  mouseX = 180;

}

void draw() {

  background(0);

  for(int i = 0; i < 20; i++) {

   ellipse(random(0, mouseX), random(0, height), 5, 5);

  }

}

This works for the mouse position, but also other interactive input can 

be scripted or turned into variables that can then be scripted. We will talk 

about similar issues in the next section: “backstaging” a sketch with some 

sort of remote control.

5.2. � A Backstage for Control
It is important that we can easily control different settings of our 

Processing sketches or that we can easily change values in various places 

when testing, presenting, and exhibiting our work in different contexts. 

Here we explain three useful tools for that: (1) using Processing’s Tweak 

mode, (2) centralizing control with variables, and (3) using keyboard as a 

backstage.

Chapter 5  Completion and Production 



158

From the first chapter on, we suggested that you prototype directly in 

code and try out new ideas and then immediately run the code. This helps 

you get into the Processing environment and train your code writing and 

reading skills (also called “code literacy”). It will also make you more fluent 

in generally expressing your ideas through coding. We hope you have 

made some big steps so far!

When it comes to fine-tuning your creative work, this often means 

changing values in various places in the code – not so much working with 

the general structure or reshaping visual elements.

5.2.1. � Tweak Mode in Processing
The creators of Processing have probably found this a problem as well, and 

they introduced the “Tweak” mode in Processing from version 3. Tweak 

mode adds a layer of sliders and color selectors on top of the source code of 

your sketch and allows to change most values while the sketch is running. 

Sounds like magic! To give you a better idea, try the following code.

CODE EXAMPLE FOR TESTING PROCESSING’S TWEAK MODE

void setup() {

  size(400, 400);

  colorMode(HSB);

}

void draw() {

  background(0);

  fill(80, 120, 150);

  stroke(120, 255, 150);

  strokeWeight(12);

  ellipse(50, 200, 50, 50);

}

Chapter 5  Completion and Production 



159

Before you can use the Tweak mode, you need to save this sketch 

on your computer. After that, you can select “Tweak” from the “Sketch” 

menu and run the sketch in Tweak mode. At first sight, everything seems 

normal, but then you will see small sliders on top of your source code. 

Move your mouse over one of these sliders and drag it left or right. Observe 

the changes in your running sketch. For example, try to center the circle 

on the canvas and to change its colors to a bright yellow or orange. With 

Processing’s Tweak mode, this should be done in a matter of seconds.

? Think about this I nteresting question here: is this also coding? 
We think it is, because the Tweak mode lets you program in a highly 
interactive way.

After you stop a sketch running in Tweak mode, Processing will ask 

you whether you would like to keep the changes that you made using the 

sliders and color controls. If you confirm, the new values will be copied 

into your code for later use. Processing’s Tweak mode works on variables, 

too. Let’s see what you can do with variables in the next part.

5.2.2. � Centralizing Control with Variables
When changing small things in your code, you sometimes notice that for 

testing a specific effect or look or behavior, you always need to change 

several values at the same time. For example, to test how a certain color 

would look like on a shape in the context of other visual elements. We 

often have to adjust these other elements as well. Check this example.

Chapter 5  Completion and Production 



160

CODE EXAMPLE FOR TESTING A SPECIFIC EFFECT  
(CONTINUED AS FOLLOWS)

void setup() {

  size(400, 400); noStroke();

}

void draw() {

  colorMode(HSB);

  background(175, 255, 10);

  fill(175, 155, 255);

  rect(200, 20, 100, 100);

  for(int i = 0; i < 20; i++) {

   fill(random(175, 200), 255, 255, 50);

   ellipse(random(0, mouseX), random(0, height), 50, 50);

  }

  fill(175, 255, 155);

  rect(20, 200, 100, 100);

}

Imagine that you look out of the window in your room right now. You 

see trees and wonder whether the earlier example sketch would perhaps 

look better in green. If you would want to make this change quickly, you 

would need to change a color value (because we are HSB mode, it would 

be the hue directly) in four different places. As it happens, you might forget 

one and have to go back after spotting the mistake. This is avoidable with a 

single variable mainColor that drives all color statements.

Chapter 5  Completion and Production 



161

USE A SINGLE VARIABLE MAINCOLOR THAT DRIVES ALL COLOR 
STATEMENTS

void draw() {

  colorMode(HSB);

  // 175 for blue, 100 for green in HSB mode

  int mainColor = 175;

  background(mainColor, 255, 10);

  fill(mainColor, 155, 255);

  rect(200, 20, 100, 100);

  for(int i = 0; i < 20; i++) {

   fill(random(mainColor, mainColor + 25), 255, 255, 50);

   ellipse(random(0, mouseX), random(0, height), 50, 50);

  }

  fill(mainColor, 255, 155);

  rect(20, 200, 100, 100);

}

As we can see in the preceding changed code, we replace the concrete 

value 175 by the variable mainColor in four lines. In three cases, this is a 

simple replacement. In the line where the color is used in the random call, 

we have to add an expression mainColor + 25 to replace 200 as well. Now 

all colors in this sketch follow the mainColor and can be adjusted with a 

single change at the top of the draw function. Try this also in Tweak mode.

5.2.3. � “Backstaging” with the Keyboard
We have seen that we can link values in our code to sliders and control 

using the Tweak mode. This mode is great for exploring and experimenting 

with visual elements. Perhaps, we also need some control during 

showtime, as we want to switch to different scenarios or quickly reset the 

sketch without having to restart the program.

Chapter 5  Completion and Production 



162

Let’s try the first one: how to switch between different visuals just using 

the keyboard?

USE THE KEYBOARD TO SWITCH BETWEEN DIFFERENT VISUALS

void setup() {

  size(400, 400);

  noStroke(); colorMode(HSB);

  rectMode(CENTER);

}

void draw() {

  background(0);

  if(key == '1') {

   fill(50, 155, 255);

   rect(width/2, height/2, 100, 100);

  }

  else if(key == '2') {

   fill(100, 155, 255);

   ellipse(width/2, height/2, 100, 100);

  }

  else if(key == '3') {

   fill(150, 155, 255);

   rect(width/2, height/2, 100, 100);

  }

  else if(key == '4') {

   fill(200, 155, 255);

   ellipse(width/2, height/2, 100, 100);

  } else {

   fill(0, 0, 50);

   ellipse(width/2, height/2, 100, 100);

  }

}

Chapter 5  Completion and Production 



163

This example shows a very simple approach for switching between 

five states: four colorful shapes for keys “1,” “2,” “3,” and “4” and a single 

default shape for any other key pressed. We don’t use a keyboard handler 

such as keyPressed. Instead, we simply compare the key variable to 

different characters on the keyboard. The final else part ensures that 

we show a default shape in case all comparisons fail (because you may 

have pressed the letter “s”) or no key is pressed at the moment. You can 

use any character your keyboard provides, but be especially careful with 

letters of the alphabet (“a,” “b,” “c,” etc.) because they exist in two versions: 

uppercase and lowercase. You would not imagine how many panicking 

students came to us minutes before an important demo just because 

their CAPS LOCK key had been pressed accidentally and they were only 

checking for lowercase letters in their code. Funny, right? Not in their 

situation.

? Think about this T ry changing the size of the rectangle at a key 
press. Using a variable, it is not so difficult; see earlier.

In this example (Figure 5-1), we use the keyboard to switch between 

shapes and colors. This is only a simple example. You can use the keyboard 

to switch between different functions controlling many things or create 

a switchable demo of all examples in this book. As a final example for 

“backstaging,” let’s make a sketch that uses the keyboard to reset.

Figure 5-1.  Example of how we can reset the canvas after drawing 
frame over frame

Chapter 5  Completion and Production 



164

USE THE KEYBOARD TO RESET THE VISUAL OUTPUT

void setup() {

  size(400, 400);

  background(0); noStroke(); rectMode(CENTER);

}

void draw() {

  fill(40 + 20 * noise(0.8 - frameCount/2000.), 155, 

noise(frameCount/100.) * 255, random(10, 200));

  rect(width * noise(0.2 + frameCount/100.), height * noise(0.3 

+ frameCount/200.), 100, 100);

}

void keyPressed(){

  background(0);

}

? Think about this T ry saving a specific frame of this sketch. If you 
save the same frame multiple times, do they look different? Why?

This sketch uses lots of randomness to generate a green-blue rectangle 

painting erratically on a black canvas. We can use the keyboard handler 

keyPressed to redraw the background and thereby clear the canvas.

In this section, we have seen how we can use some sort of backstaging 

techniques to control different aspects of our Processing sketches. We 

can use the Tweak mode in Processing to adjust values directly. We 

use variables as centralized control points to change values all over the 

Processing sketch, and we use the keyboard to switch and change the 

behavior of running sketches. We did not touch upon creating graphical 

Chapter 5  Completion and Production 



165

user interface (GUI) elements for control on top of our sketch, which is 

possible with a Processing GUI library like ControlP5.2 And now, let’s 

make this all better by looking at how to improve stability and reliability of 

our code.

5.3. � More Stable and Less Risky Code
We stay with the real-time aspects of creating and running Processing code 

in this section and give you a few pointers to make your code more stable 

and reliable under difficult production conditions (that differ from your own 

setup). While we will not solve or prescribe how to solve every problem that 

might occur in your journey, we will give you hints what you can do better.

5.3.1. � The Right Things in the Right Place
Have you seen hiccups, delays in rendering, or that Processing slows down 

more and more and eventually crashes? All of these symptoms point to 

things being done at the wrong time (or in the wrong code location). Just 

take the following code.

TEST THE SPEED OF RUNNING A PROCESSING’S SKETCH

void setup() {

  size(1000, 1000);

}

2 The ControlP5 library is directly available from the Processing library manager. It 
is worth looking at its project website and reading the documentation. If you need 
user interface elements in your sketch, this library is probably the easiest way to 
go. Make sure that you use the newest version and keep this in mind when you 
search for help online.

Chapter 5  Completion and Production 



166

void draw() {

  PGraphics texture = createGraphics(1000, 1000);

  texture.beginDraw();

  texture.background(0);

  // draw more things here...

  texture.endDraw();

  tint(255, 20);

  image(texture, 0, 0);

}

Does anything strike your attention here? Although this sketch should 

run at an ok speed in your computer, it runs far slower than it should. 

How do we know? Well, we can just print the frame rate on the Processing 

console to check.

PRINT OUT THE FRAME RATE ON THE PROCESSING CONSOLE

void draw() {

  // all other code as before

NEW:

  println(frameRate);

}

By adding the last line in the draw function, we get a running output 

of the current frame rate. Keep in mind that this sketch should run at 60 

frames per second (fps). It could be easily half that frame rate on your 

computer. Why is that? If you look closer, you will find the first line of the 

draw function interesting. This line creates space in memory for a new 

texture of 1 million pixels (1000 times 1000). That sounds like a lot of 

work. Let’s move this line from draw to setup and see how the frame rate 

changes.

Chapter 5  Completion and Production 



167

SPEED UP A PROCESSING’S SKETCH RATE BY REARRANGING THE CODE

PGraphics texture;

void setup() {

 size(1000, 1000);

 texture = createGraphics(1000, 1000);

}

void draw() {

 texture.beginDraw();

 texture.background(0);

 // draw more things here...

 texture.endDraw();

 tint(255, 20);

 image(texture, 0, 0);

 println(frameRate);

}

This changed sketch runs quite a bit faster as you can see from the 

frame rate. Apparently, just changing the code location of createGraphics 

makes a big difference. It is not all good yet, because the frame rate is still 

less than 60fps, but it is a step. If you would peek in the TaskManager (on 

Windows) or Activity Monitor (on macOS), you would see a huge difference 

in memory consumption between the first and the second version.

How can we generalize this into a rule of thumb? Any Processing 

command starting with “create...” or “load...” should be considered a bit 

more intensive because they are about reserving memory or loading 

resources like images, fonts, or audio files from hard disk. Even in the age 

of very fast hard disks (SSDs), this is quite slow compared to everything 

else happening in Processing. So: Move these calls and anything that you 

do only once to prepare drawing to the setup function. That’s where you 

set the stage initially. Don’t run this kind of code in draw or, worse, in a for 

Chapter 5  Completion and Production 



168

loop in draw. Again, anything that takes more time; try to only do it once 

(not 20, 60, or 1000 times). And double-check by looking at the frame rate 

(and memory consumption)! Once you have made the move, write a short 

comment to your future self, so you don’t accidentally move it around 

again in a few months.

Coming to another related source of potential problems. Did 

you notice that the change from the first to the second version with 

createGraphics in setup implies that we create a global variable for 

texture? What we did is we change the local variable texture in the first 

version to become a global variable texture in the second version.

Wait a minute, what are global and local variables anyway? This is a 

question of variable scope, that is, for which part of the code the variable 

is “visible.” Global variables are globally (= entire program) visible. That 

means they are always available and can be accessed in every single line of 

the program. This sounds good at first, but an accessible variable can also 

be changed at every single line of the code. You can imagine how complex 

this can get if you are not careful. Next to global variables, there are local 

variables. As you can guess, local variables are not globally accessible. They 

have their own scope, a part of the code that they are defined and used in. 

Usually, we don’t need to be too careful with local variables in functions 

or for loops. They are not visible outside their scope and therefore cannot 

cause harm. However, and that is the problem here, what happens if you 

give a local variable the same name as a global variable? The local variable 

claims the spot and takes over. When we want to change the global variable, 

only the local variable receives the change and the global one stays 

unchanged. This kind of problem happens often when we make changes 

to code, when we move variables from local to global and accidentally 

leave the local variable in place. Processing will probably not complain 

about this, but the results will be strange. So, repeating our earlier message 

about very carefully modifying the code structure: do this step by step 

and check afterward that all old artifacts are gone. This is another form of 

restructuring that we have seen earlier in the book. Handle with care.

Chapter 5  Completion and Production 



169

5.3.2. � Avoiding Resource Bloat
Even if you do things by the book (this book!) in terms of loading files at 

the right moment, Processing might still crash and return you a cryptic 

warning about memory. Sometimes content can be too big to fully load 

or to render smoothly. This is especially important for media files such 

as audio, videos, animated GIFs, and large image files. When Processing 

loads these files, it will often decompress them in memory (for faster 

access and rendering support). That means the file size on your hard disk 

might not be the final size in memory. Whenever you see Processing crash 

or abort while loading files, it is good to check their size and to try loading 

smaller files or fewer of them. This way you can spot the problematic file 

and then think of ways to fix it or design around it. For example, image 

files come in various resolutions, file formats, and compression variants. 

Try experimenting with different resolution or image format. Perhaps you 

don’t need full 24 bit color depth because your sketch will draw the image 

with a tint anyway? There is usually a solution (see also the last chapters 

of the book).

5.3.3. � Code Structure
The question “is my code structured well?” is hard to answer in general. 

Instead, we would like you to develop your own capabilities to judge this in 

the context of your creative work. Understandability is often mentioned as 

an important criterion of code quality; however, this is difficult to assess in 

the moment of writing the code or just after. The true test comes after a few 

weeks or months, when you read your code again and the concepts are not 

that present in your mind anymore. At this moment, you will see whether 

your code is understandable to yourself (still easier than to others).

A first hint toward writing good code is to use meaningfully named 

variables and functions in all sketches. Things like 'int a, b, c; float f;' 

 should not happen. Yes, you planned to name everything properly later 

Chapter 5  Completion and Production 



170

on. Got it, but no! This moment later on usually never happens, because 

the more code you write and the more you use these short variables, the 

more you would have to do to fix them.3 Therefore, make choosing good 

names a habit. There are only a few cases where very short variables are 

commonly accepted, for instance, as counters i, j, k in for loops or 

array indexes in complex algorithms. And x, y, z for space coordinates is 

fine, too.

Other ways to look at code quality are about the length of functions 

and their complexity. Researchers have investigated whether long and 

complex functions negatively affect understanding, and – surprise! – they 

do. As a rule of thumb, try to split functions up if they cover more than half 

a screen page, or even ten lines. Still, give them a meaningful name. What 

about complexity? Mostly this refers to control structures like  

if ... else and loops such as for. The more they occur in a single 

function and the more levels they have, the harder it is for human 

readers to fully understand the control flow in the function. Again, the 

recommendation is to split things up into properly named functions that 

do one thing right and not five to six things somehow mixed up. There 

is also another view of how to divide functions: think about the smallest 

meaningful task that a function could perform in your work. That’s a 

good size for a function, and this ensures that you know exactly what this 

function does and how you can build onto it.

When you look the entire Processing sketch, use the same principles 

of splitting up into functions, when moving code to additional tabs in 

Processing. Creating a new tab is very simple, and you can cut/paste the 

code there and continue working. Give the tab a recognizable name,  

for instance, name according to functionality: “input_functions,”  

3 This is called technical debt, which basically means that every time we make an 
easy decision, for example, to not comment or to leave something a little broken 
or unfinished, we incur some sort of debt that we will have to pay back at a later 
point. And everyone knows how debt works: it gets worse and worse.

Chapter 5  Completion and Production 



171

“data_processing,” or “rendering_output.” Alternatively, name them 

according to different components: if you use classes like “Particle” or 

“MemoryDot,” each should get its own tab. Then it will be easier to find 

your code back at a later moment.

Reminder  By the way, whenever you ask for help, use “Auto 
Format” before. Otherwise, it’s just rude to the person you are asking 
for help. Their job is already hard enough: reading someone else’s 
code is not easy (especially without comments).

Code structure is also a visual structure. If you look closely at all code 

examples in this book, you see that we use a visual structure in the code 

examples that is very consistent. We indent lines in functions, if ... else 

structures, for loops, and classes. This allows us to quickly scan the code. 

Reading well-formatted code is much easier for us because our brains can 

make sense of the shapes and structure long before reading the characters. 

The best thing is that this code format comes for free in Processing. Just 

select “Auto Format” from the “Edit” menu or press Ctrl+T (Cmd+T on 

macOS). This is the programming equivalent to zero-calorie comfort 

food, really.

Our last hint might be a bit controversial (if you talk to programmers): 

don’t use classes to combine functions unless there is data that needs 

encapsulation as well. Treat classes (e.g., class Particle) as containers 

for data and data-specific functions. It might be tempting to structure 

your code with classes (especially if you have learned about classes in a 

programming course), but resist this temptation; your creative process 

can move faster and freer without a rigid structure that you planned 

out carefully. If at all, structure will grow with your work as you need it. 

Especially when thinking about class hierarchies (“class cat is part of class 

feline, class feline is part of class animal, class lion is part of class feline, 

etc.” ), stop there. Think of something beautiful and use a Processing tab 

Chapter 5  Completion and Production 



172

instead. Almost anything can be better done with additional Processing 

tabs and properly named functions. Quality code is not about showing how 

smart you are.

5.3.4. � Don’t Reinvent the Wheel
Many times, we might need to crack a problem in Processing that feels 

difficult to us at first. For example, moving a line tangentially along a curve, 

which would require even a trained programmer some time to figure out 

(including reading about geometry and trigonometric functions, trying 

out a first implementation, getting it right in all cases, making it fast and 

reliable, etc.). Save yourself the trouble. Most problems that you might 

experience have occurred to others before, and many of them are even 

covered in the Processing library. Ok, let’s try “moving a line tangentially 

along a curve.” We are pretty sure that this has been done before. If we 

search in the Processing reference for curve and tangent (a straight line 

that touches a curve at a point), then we find several interesting functions: 

curve, curvePoint, and curveTangent. The Processing reference even 

shows us how to use them. We just need to play a bit with the values 

for drawing the curve and then change how the tangent is used. Also, 

the example is looped by using frameCount with modulo (%) operator 

(Figure 5-2).

Chapter 5  Completion and Production 



173

Figure 5-2.  Example of animating a line parallel to a curve point 
in a loop

CREATE A LOOP IN PROCESSING BY USING FRAMECOUNT WITH  
MODULO (%) OPERATOR

void setup() {

 size(400, 400); noFill();

}

void draw() {

 background(0); stroke(255, 0, 0);

 // draw the curve from point 100, 100 to 300, 300

 // the first and last two parameters are control points

Chapter 5  Completion and Production 



174

 // that give the curve some 'curve'

 curve(200, -400, 100, 100, 300, 300, 200, 800);

 float t = (frameCount % 200) / 200.;

 float x = curvePoint(200, 100, 300, 200, t);

 float y = curvePoint(-400, 100, 300, 800, t);

 float tx = curveTangent(200, 100, 300, 200, t) / 5.;

 float ty = curveTangent(-400, 100, 300, 800, t) / 5.;

 // set line color depending on the angle (tx/ty)

 stroke(atan2(tx, ty) * 255, 0, 255);

 // draw our line

 line(x - tx, y - ty, x + tx, y + ty);

}

? Think about this  What is the lesson here? If you meet a 
challenge in Processing that seems overwhelmingly hard or at least 
difficult, and you think you might need some hours to get it sorted 
out, then think again.

Describe the problem in clear terms and search for them, either in the 

Processing reference or in a search engine online. Follow the leads, check 

what people have tried, and change your search terms toward more accurate 

ones. In the preceding example, the challenge might have been to identify 

the key term “tangent” if we were just thinking of “a line moving next to 

a curve.” Still, searching for “curve” will get us to curve in the Processing 

reference, from which curveTangent is linked or can be found close by.

Tips  When you think and describe your problem in new words, and 
then again, your mind will form new connections, which might even 
lead to the solution directly. Even if you cannot find the solution by 
yourself, you will have learned something valuable.

Chapter 5  Completion and Production 



175

What are the benefits of using code from Processing directly or from a 

library? First of all, you save time, you don’t need to “reinvent the wheel.” 

You often get a better function that covers more cases and is more robust 

than what you would implement. And we don’t mean that you could 

not do it. We mean that you are trying to solve a very specific problem 

that might bring you to a very specific implementation of the function, 

which might not work anymore once your specific problem evolves to 

something else (it usually does!). Therefore, it is good to rely on a more 

general implementation of this functionality. Most likely this function has 

been built by someone who knows how to do it, and it has been reviewed 

and tested by others. Having more people involved makes a big difference 

in quality: they all have different problems which the function needs to 

match, so chances are that the function is quite stable and reliable by 

now. Finally, by looking at how others approached the problem with the 

function will teach you something about Processing, about terminology, 

and about the interface that the function represents. Processing functions 

and their structure follow a certain philosophy, and getting to know this 

way of thinking will help you indirectly with future problems.

5.4. � Testing Before Deployment
Producing your work outside of your home and studio setup means 

preparing your work in advance for a somewhat unknown context. Your 

code might be run on a different computer, using a different screen or 

projector. In your planning, please reserve some time for this. Do not 

extend your creative phase till the day of the big event. Stop the creative 

phase in time, to prepare for development. It is a matter of respect for your 

audience and for your own creative work. In this section, we will focus on 

testing and preparation for such a deployment.

Chapter 5  Completion and Production 



176

5.4.1. � Depending on Dependencies
The first thing to be aware of is that Processing is one of your dependencies 

for deployment. What is a dependency really? It is a condition for your 

work to run, to be performed, or to be produced for an audience. Without 

this dependency, it will not work. In the case of Processing sketches, 

Processing itself is a dependency. You need to ensure that the computer 

available in the venue can run Processing, and not just that: it needs to be 

the same (or a later) version of Processing and also running with similar 

hardware (processor speed and memory, graphics card, and sound 

equipment) and software like the operating system. The more similar the 

venue’s system is to your own, the better the transition will work.

If you are using Processing libraries to achieve a part of the 

functionality, these libraries are also dependencies. Without the libraries, 

your code will not work or produce inferior output. Finally, your sketch 

might be broken into multiple tabs and resource files (usually in the “data” 

folder of the sketch folder). Make sure that all these files are transferred to 

the venue’s system by copying the entire sketch folder.

Processing actually supports in this transition by allowing to “export 

[an] application” (available from the “File” menu). This tool will create 

a self-contained bundle of all parts necessary to run your sketch. Self-

contained means that all parts are packaged and no dependencies are lost. 

This is great to “freeze” your project in a state ready for showtime. Try that, 

but keep in mind that this “frozen” state does not allow you to tweak things 

in the venue anymore (but just in case, see next section). For that, always 

keep a source version with you.

5.4.2. � Anticipating Differences
The transition to a production context means anticipating potential 

problems beforehand: Your guest account has expired. The Internet 

connection may be slow or at least slower than expected. Your power 

Chapter 5  Completion and Production 



177

supply may not work. The computer has no VGA video output anymore. 

No HDMI video output (yet). The USB-C connector is broken. Windows 

decides to install new updates. Your battery is dead. The beamer’s RED 

color channel does not show. There are no loudspeakers available. And 

more. This is hard. Only experience (making lots of mistakes) will allow 

you to do this really well. And still problems will happen. Our advice is: 

overthink it, but do not worry. Brainstorm about what might go wrong 

when moving to a different computer or even a different system setup. 

Would a different screen be trouble? Think about not just different 

resolutions but also about aspect ratio (“sorry, we only have a square 

projection area ...”) or lighting conditions (“directly next to the window”).

We can prepare for these challenges, for instance, by using 

“backstaging” (see beginning of this chapter) to prepare for deployment. We 

can make changes for aspect ratio and screen resolution quick to solve by 

introducing scaling and variables (also for adjusting the color to a projection 

surface). We can even add interactive controls to our work, so we can 

quickly intervene if something goes wrong during setup or the performance.

When traveling with a computer and aiming to present work 

somewhere else, there are general hints. Bring sufficiently many USB sticks 

with a backup of your work. Also, bring your own laptop including charger 

and power socket adapters. Don’t forget spare cables and connectors, for 

instance, for connecting and converting USB-C, HDMI and VGA (for visual 

output), or different plugs and cables for audio output including audio 

interfaces and amplifiers.

And yet, all tricks of trade come short to planning and communicating 

ahead. Communicate clearly with the other side what the expectations are 

and be aware that details matter. Ask about the room and the technical 

setup. Visit the space in person, if possible, and check it out for yourself.

Work it out like famous rock stars (well, their production crew), and 

write a rider. This is a document that details your physical setup on a stage 

or other venue, your equipment needs, and what kinds of (human) support 

or expertise you need to have available on site. Again, it will help if you 

Chapter 5  Completion and Production 



178

brainstorm what might go wrong or what crazy mistakes could happen (so 

they don’t, with a bit of luck and good preparation). Finally, think about 

using similar equipment or a similar location as in the exhibition space to 

prepare. Every step that you take and every problem that you solve before 

moving to the exhibition space allow you to spend more time adjusting 

your work to the venue and fine-tuning the experience.

5.4.3. � Preparing for Unattended Operation
When deploying your work in an exhibition setting, it might be installed 

there for some time (days, weeks, or even months). There is a chance 

that you will not be there 24/7 and operate your work. Instead, there are 

people who are volunteering or employed by the venue to maintain an 

installation. Or you are in fact presenting, but you also need to take breaks, 

eat, and stretch your legs. The best you can do is making it extremely easy 

for anybody helping to restart or repair your installation in case something 

goes wrong. In the end, visitors who encounter a broken installation will in 

some way attribute it negatively to you, the creative, not the support people.

What also looks broken is a screen saver that switches on after 1 hour 

and shows “Bob’s computer” in a rotating font or, worse, a slide show of 

your personal photos from last summer. To avoid these kinds of slightly 

embarrassing events, switch off energy saving, a screen saver, Wi-Fi (if 

network access is not needed in your work), and a virus scanner. Move the 

computer (including mouse and keyboard, unless needed) out of the reach 

of visitors and secure it. You can test this before quite easily.

It helps when you prepare your work in such a way that it can be started 

and restarted within minutes and needs very few interactions to activate. 

Also think about how the installation needs to be shut down at the end 

of the day. What can be damaged if someone pulls the plug? Don’t think 

nobody will do that, eventually; there are always cleaners, security people, 

fire inspectors, and the occasional curious visitor (or their 6-year-old 

child). The second point is about writing a clear manual for how to restart 

Chapter 5  Completion and Production 



179

the installation, such as “start computer, wait for ..., double-click the ...,  

wait for ..., check that ... is visible, then move mouse pointer out of the 

screen.” Provide contact details, so people can reach you in case nothing 

works. Hopefully, your phone stays silent and social media explodes (with 

positive reactions).

5.5. � Summary
This chapter was about pushing your work from 80% to 100%. Sometimes, 

actually most of the time, moving from 80% to 100% may take even more 

work than going from 0% to 80%. Often an idea can be implemented and is 

running well on our computer, whereas when moving the work to another 

computer, or other devices (like projector or a mobile device), things can 

easily go wrong. Perhaps you didn’t consider such problems during the 

process of coding the idea. That’s fine and actually a good idea: let your 

creativity run free of constraints that only emerge during production. Once 

your project successfully reaches the production phase, some code might 

need to be rewritten according to the new conditions and contexts. But the 

concept is good and so is most of your existing code. Have confidence!

When we present our work in different contexts, this demands different 

levels of reliability than prototyping. We need to consider our idea, code, 

and production in a bigger picture and not as prototypes anymore. 

Compared to more traditional arts and design, we can expect more, a lot 

more, technical difficulties in creating with computation. Throughout the 

creation process, we need to find a balance between our ideas and the 

underlying technology. On the one hand, we guard and protect our fragile 

ideas and concepts; on the other hand, we cannot make the technology 

too complex and fragile. In this chapter, we explain the production step 

as a way to make your lives easier and to encourage boldness in taking 

creative steps. This step is the transition from nurturing to letting our 

creation blossom and shine.

Chapter 5  Completion and Production 



180

Most examples, tricks, and hints contained in this chapter are the 

experiences and lessons learned from previous projects, workshops, and 

teaching Processing to students of all ages. This chapter covers by far not 

all topics we could think of, nor will the presented approaches be optimal 

in all cases. We believe that in design or art, there are no clear recipes or 

models. You need your own judgment and that comes with familiarity. 

That’s all, but how will these steps work in practice? Read the coming 

chapter about the example MOUNTROTHKO. And what if something will 

not work? Come and visit the last part of this book! Now we continue with 

an example.

Chapter 5  Completion and Production 



181

CHAPTER 6

Taking a Larger 
Project Through All 
Four Steps
This chapter showcases a larger example that applies many aspects of 

the first part of the book. For this chapter, we choose one of Yu’s works, 

MOUNTROTHKO (2018). We want to emphasize that what we write about 

in this book is what we also practice: First, we show the conceptual and 

visual examples. Then, we walk through the four steps of the creative 

process in close relation to this example. You will recognize many aspects 

that we introduced in the previous chapters. We unfold the creative 

process of MOUNTROTHKO from the very beginning, following the steps 

from the first part of this book: idea to visuals, composition and structure, 

refinement and depth, and finally completion and production.

MOUNTROTHKO was presented as a collection of prints (Figure 6-1) 

and an interactive installation (Figure 6-2). The prints featured selected 

frames from three scenarios – “day,” “noon,” and “night.” The interactive 

installation was set up in a 6.5 x 8 x 4m space with a 3 x 2.5m2 projected 

surface and both motion and sound detection devices.

Yu took the lead as the artist in this project, and Mathias acted as the expert 

for the more complex programming structures, the animation, and, finally, an 

optimization step that allowed for real-time interaction. In the following, we 

describe this project and process from our team perspective (“we”).

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_6

https://doi.org/10.1007/978-1-4842-9780-3_6


182

Figure 6-1.  Twelve selected frames from three scenarios of 
MOUNTROTHKO – “day,” “noon,” and “night”

Chapter 6  Taking a Larger Project Through All Four Steps



183

Figure 6-2.  The interactive installation was set up in a 6.5 x 8 x 4m3 
space with a 3 x 2.5m2 projected surface

Chapter 6  Taking a Larger Project Through All Four Steps



184

6.1. � Context, Inspiration, and Starting Point
In 2014, we visited a Rothko exhibition [9] at Gemeentemuseum1 in Den 

Haag. Oliver Wick captured the visual experience of Rothko’s work as “a 

sensation of standing on a threshold or of reaching out into space” [22]. 

Yu described this experience as “towering over me–big-scale paintings 

piled up chaotic but large and pure color blocks with smudged edge lines, 

yet not quite recognizable–couldn’t simply be expressed by words like 

‘pleasant’, ‘entertaining’, or ‘joyful’, or by even more abstract and open 

words like ‘wonderful’ or ‘meaningful’. It was not a carnival of colors that 

cast an enjoyable mood over me. On the contrary, it would quickly pull 

me into a sensation of sentimental poetry.” And further as “the feeling of 

being within the fold of language–positioned or placed by what we know: 

by standing in front of Rothko’s work and staring at them for hours, the 

surrounding environment seemed to blur and to flow, not figuratively like 

a flowing river, more like flowing air with tiny and somber dust particle, 

invisible but somehow tactile, with the subtle sense of touch that every 

single dust particle was hitting the body and bouncing off again. The whole 

experience was becoming alive.” For us, this first impression stays.

When we started MOUNTROTHKO as a project, it had been almost 

3 years since we visited the Rothko exhibition. We felt inspired by Mark 

Rothko’s work, because we were looking for a way of designing an artwork 

with “slow interaction,” allowing for visitors to go deep into their own 

experiences. The concept of “slow interaction” is about slowly zooming 

into the artwork and gradually discovering a subtle feedback loop 

through interaction. By doing so, the designed experience can offer more 

options, perspectives, space, or time for visitors to understand and enjoy 

the artwork. Recalling our experiences of seeing Rothko’s paintings at 

Den Haag, we wondered whether we could recreate Rothko’s powerful 

1 www.gemeentemuseum.nl/nl/tentoonstellingen/mark-rothko

Chapter 6  Taking a Larger Project Through All Four Steps

http://www.gemeentemuseum.nl/nl/tentoonstellingen/mark-rothko


185

concept of “accurate silence” [7] as an interactive, digital experience. For 

us, creating MOUNTROTHKO was to deliver a moment of letting visitors 

discover aesthetics and elegance in static and dynamic visual layers and 

letting them immerse themselves in some form of flow state.

6.2. � Concept and Artwork
MOUNTROTHKO started with Rothko’s “sense of depth in an otherwise 

abstract composition,”2 going beyond the characteristic painting technique 

and style that Mark Rothko explored in the middle of the twentieth 

century. We observed that Rothko shaped simple visual elements into 

different layers. As a result, visitors’ viewing experiences were complex 

because of the composition on the multiple layers where simple visuals 

were drawn and arranged. This principle came back in MOUNTROTHKO 

in the depth of visual elements and the almost undetectable dynamics 

when choosing not to interact and just observe.

Instead of quite literally reproducing the visual forms that Rothko 

used, we turned toward the natural motive of a formation of three 

mountains and set them at depth. On the one hand, “mountain” has 

a characteristic shape and almost visual gravity. On the other hand, 

distant mountains in Chinese traditional painting carry the notion of 

being far, senseless, and silent but also the sense of inexhaustible power 

to supply their surroundings. In MOUNTROTHKO, the mountain range 

was overshadowed by layers of fog that create further depth and, like the 

real weather phenomenon, could shift vertically and in translucency. The 

foreground was determined by particles that appeared and floated through 

the whole canvas in clouds and swirls which were not rendered as dots, but 

as complex composite shapes. Particles were rendered in several layers of 

2 www.tate.org.uk/art/artworks/rothko-black-on-maroon-t01031

Chapter 6  Taking a Larger Project Through All Four Steps

http://www.tate.org.uk/art/artworks/rothko-black-on-maroon-t01031


186

depth, and they responded to wind and gravity dynamically, creating a rich 

foreground of the work. The particles somewhat extended the otherwise 

static artwork through time – even without visitors present.

As soon as visitors entered the installation space, the artwork would 

react to their movement and the ambient noise that was produced in 

the space. The first interactive part of this artwork was about shifting the 

visitor’s viewpoint of the mountain range and also shifting the visitor’s 

viewing time throughout the day. The horizontal position of the visitors 

in the exhibition space was tracked using a Kinect device. The artwork 

changed its visual composition and coloring rendering according to the 

visitor position in three scenarios – “day,” “noon,” and “night.” The main 

idea was to explore the relationship between mountain formations, light, 

and particles from dynamic and static perspectives. Each scenario was 

special in the attention toward coloring, layering, and composition of 

forms. A second aspect of interaction was about the ambient sound in the 

installation space. We used the average loudness of sound or noise in the 

exhibition space to control horizontal movement of particles. With more 

sound volume, the particles floated more dynamically off and away from 

the surface of the digital canvas. The installation itself was silent.

In both forms of interaction, we slowed down the time between visitor 

interaction and artwork response and also deliberately delayed the visual 

dynamics to strengthen the ambient feeling of the entire installation. 

The interaction emphasized the interplay of visitor, dynamic particles, 

and drawing the eye over a distant mountain range. Yet, through “slow 

interaction,” visitors would subtly experience a finality that almost unravels 

in time.

Abstracting a bit from what can be seen and experienced, the entire 

concept of MOUNTROTHKO can also be divided into the static (central 

theme of mountain range), the dynamic (particles), the interactive 

(visitor movement tracking, sound processing, and corresponding visual 

behavior), and the parametric (complex color scheme depending on 

interaction and rendering settings). We will explain these different aspects 

Chapter 6  Taking a Larger Project Through All Four Steps



187

of MOUNTROTHKO in the following, going through the four steps from the 

first part of this book. Each step in the process is represented in the code 

of MOUNTROTHKO, and we pulled apart the code or zoom into specific 

sections to explain the different steps we take. However, we don’t cover the 

entirety of the installation code.

6.3. � Step 1: Idea to Visuals
This step is about starting with nothing but a thought, a feeling, an 

emotion, or a combination of these. It is something subtle and fragile that 

needs to slowly settle into a more concrete form and shape. We could have 

worked with sketches or text, but decided to express the initial ideas and 

concepts with visual elements drawn on the Processing canvas. Ultimately, 

this shifted the direction toward a specific aesthetic that only creative 

coding can create. This way we found the core of the work, a “thing” that 

would stay with us till the end of the process as base expression of the idea 

in code.

In the process of settling an idea, everyone can take different 

approaches. Sketches, pictures, films, quick models, texts, and oral 

language are often used to clarify ideas after their initial inception. You 

could also try to express early ideas verbally to share them with others and 

receive feedback.

As we mentioned in the beginning, the experience of visiting Mark 

Rothko’s exhibition is the inspiration for the MOUNTROTHKO project. 

We started by searching for additional inspiration, related concepts, 

and references to literature. We researched Rothko’s work as a first step 

to better understand this artist and his work. This included his painting 

technique [16], biographical details [4, 5, 10, 17], and interviews and 

interpretations [11] from other art critics and researchers from both 

academic and practical perspectives [1, 2]. Through this process, Rothko’s 

concept of “accurate silence” [7] emerged and was adopted as the original 

Chapter 6  Taking a Larger Project Through All Four Steps



188

idea of this project: an experience of “accurate silence” through a dynamic, 

interactive artwork. More specifically, we wanted to create a dynamic 

frame of “a square that he conceived of as an environment” [19]. As a 

starting point, we defined the scope of MOUNTROTHKO as working with 

blurry, composed layers of visual elements that capture the interplay of 

form and color. Let’s see how this worked out.

We did not begin the process with sketches on paper or graphics 

software. Instead, we sketched the initial ideas directly in code. We started 

with rectangles in different shades of a common base color which were 

randomly placed and varied in width and height. We used a mapping of 

the current horizontal coordinate of the mouse position to get a bit more 

control over the placement of the rectangles and their blending. Finally, 

we applied a BLUR filter to fuse the elements visually into the same 

plane (Figure 6-3). You can find the full example in the Coding Art example 

library.

INTERACTIVE, BLURRED RECTANGLES IN DIFFERENT SHADES OF A 
COMMON BASE COLOR

rect(100, y, 200, 50 + mouseX);

// filled with randomly selected colors in the range

// flowing from yellow to red

fill(random(224, 250), random(150, 166), random(86, 135));

// strong blur filter at the end

filter(BLUR, 20);

This pattern was executed several times, for instance, with a for loop 

or the draw function, to obtain several layers (Figure 6-4). At later stages, 

we introduced transparency in the fill color (as a fourth parameter) 

and only varied the elements vertically (Figure 6-5), but let them span the 

Chapter 6  Taking a Larger Project Through All Four Steps



189

entire width or height. We tried different color themes (yellow-gold- 

rust-carmine-red and Aegean-light blue-plum) and varied the order in 

which elements were painted by Processing. Some combinations were too 

obvious in their composition, but some already showed hints of complex 

color boundaries and interesting gradients. Within a few iterations, the 

visual element of the “mountain fog” was there (Figure 6-6)!

It might be surprising that the dominant visual element, the “mountain 

range,” was not our starting point; it came much later. It emerged as a 

single component of the evolving fog that was singled out and then turned 

into a more iconic shape. We will come to that in the next section, after 

going through a few more iterations.

Figure 6-3.  Draw rectangles in different shades of a common base 
color and contain a blur filter

Figure 6-4.  Use loop function to obtain several layers in visuals

Chapter 6  Taking a Larger Project Through All Four Steps



190

Figure 6-5.  Introduce transparency in the color to vary the elements 
vertically

Figure 6-6.  Create “mountain fog” in the visuals by using both 
transparency and blur effects in motion

6.4. � Step 2: Composition and Structure
We explain in the first part that composition and structure can help 

refine the first achievements in code. Composition, in the sense of visual 

relationships between elements on a canvas, emerges when we code 

several visual elements and arrange them. It is a process of making 

connections between an idea and its expression in form and color. In 

MOUNTROTHKO, our process of coding the idea continued by taking 

over the visual elements from the previous step and combining them in 

different ways.

Chapter 6  Taking a Larger Project Through All Four Steps



191

6.4.1. � Composition: The Fog
The first and only element that we have explored so far is the fog. A 

rectangle was used as the main visual element, and we repeated it to 

create layers of blurry shapes in variations of a common color. In the next 

iterations, we focused on the fog as a visual element descending from 

the upper border of the canvas and suspended over a strong unicolor 

background. By using different levels of blurring for each rectangle, we 

created an even stronger effect of color diffusion and tension between 

clarity and blur. To further explore different combinations, we introduced 

slow animations by means of controlling some parameters with the 

frameCount variable. We have used this earlier in the book to create simple 

animations.

At this point, we noticed that further progress was difficult, because 

the rendering of multiple large blurry shapes in Processing is slow. The 

BLUR filter needs to process every single pixel, and that takes time in 

Processing. However, we were only interested in vertical blurring, and the 

horizontal edges would be hidden anyway (the rectangles stretched to the 

canvas borders). So, we applied a small trick to speed up the rendering and 

allow for faster prototyping: we drew the blurry rectangles on a separate 

image canvas blur that is very narrow (only 5 pixels wide) and then 

stretched it while drawing with image to the full width of the canvas.

SPEED OPTIMIZATION OF THE BLUR FILTER TO ALLOW FOR FASTER 
PROTOTYPING

// controlling variable

float y = 200;

// define the separate image canvas, very narrow

PGraphics blur = createGraphics(5, 1000);

// draw to the image canvas

Chapter 6  Taking a Larger Project Through All Four Steps



192

blur.beginDraw();

blur.smooth();

blur.noStroke();

blur.fill(149, 51, 122, 200);

// use a variable y to animate this blurred shape

blur.rect(0, y, blur.width, y/2.);

// use variable y for blurring

blur.filter(BLUR, map(y, 0, height, 2, 50));

blur.endDraw();

// draw the image canvas stretched to the whole width

image(blur, 0, 0, width, 1000);

This trick creates nice smooth gradients and allows still for 

experimenting and tweaking the variables, without too much impact on 

the rendering speed. Each individual rectangle is filled with a specific 

transparent color, and the amount of blurring depends on the variable y.

After experimenting with this visual composition (Figure 6-7), the link 

to the idea became stronger. Still rooted in Rothko’s concept of “accurate 

silence,” at this step, the visuals connected with the kind of diffused and 

dead-silent artistic conception that we were after. Let’s leave the fog for a 

while and move to the next visual layer: the mountain range.

6.4.2. � Composition: Creating the Mountains
In our concept, we needed a heavy element to counterbalance the lofty 

and blurry fog. So, the first step was to ideate possible shapes and to draw 

them right on the Processing canvas. One of the first ideas was to continue 

with rectangles, but to rotate them in place by 45 degrees. We started with 

one and quickly moved to a composition of three mountains drawn in 

different layers from back to front. The three mountains have the same 

original reference rectangle, and we varied their shape and color slightly 

according to the concept (depth displacement and depth of field).

Chapter 6  Taking a Larger Project Through All Four Steps



193

Three mountains were coded in the order back to front, and we used 

again image canvases for the mountains (image instead of rect), so we 

could still use subtle gradients as coloring if necessary. We drew each 

mountain in rotated rectangular shape in its own transformation (using 

translate, rotate, and scale) (Figure 6-7). You can find this example in 

the Coding Art example library.

DRAW THREE MOUNTAINS FROM BACK TO FRONT

// back-right mountain

pushMatrix();

translate(300, 0);

rotate(radians(45));

scale(2);

image(mountain3, 100, 0, width-400, 3000-400);

popMatrix();

// draw back-left mountain

pushMatrix();

translate(300, 0);

rotate(radians(45));

image(mountain2, 0, 160, 280, 1300);

popMatrix();

Figure 6-7.  Create “mountain fog” as a visual element descending 
from the upper border of the canvas and suspended over a strong 
unicolor background

Chapter 6  Taking a Larger Project Through All Four Steps



194

// draw front mountain

pushMatrix();

translate(width-300, 0);

rotate(radians(45));

image(mountain1, 0, 0, 3000, 3000-400);

popMatrix();

Tips N ote that the placement and sizing of elements in this work 
were often found by experimentation. Sometimes we cannot explain 
how we came across a combination of values that simply works. This 
is part of the reason why ideating in code should be fast and allow for 
frequent iterations: you want to try to do a lot of things and let “happy 
accidents” happen.

You can almost see the amount of experimenting when you look at 

the positioning of the different mountains. The mountain coloring was 

not shown in the code, but we tweaked this in the same way as the fog. 

The result was a multilayered composition that convinced us in terms of 

tension between colors, elements, and narrative. Still, there was a lot of 

work to be done.

6.4.3. � Structure: Creating the Particles
Learning from the Chinese performance technique in artistic expression 

where movement is used to serve as a foil to quietness on the stage,3 we 

were thinking of introducing subtle movement. One of the first things 

that we tried was snow-like particles in the foreground. At first, they were 

randomly placed and flickered with every frame, so we turned toward 

3 www.britannica.com/art/Chinese-performing-arts

Chapter 6  Taking a Larger Project Through All Four Steps

http://www.britannica.com/art/Chinese-performing-arts


195

more structure. We created a range of particle positions as PVector objects 

in code. We used the x and y coordinates of each PVector for the rendering 

location on the canvas and the z coordinate for the particle’s speed in the 

vertical direction.

First of all, we created the data structure for the particle positions as an 

array of type PVector. We could start with an arbitrary number of particles 

and then see how their number of onscreen behavior fits the rest of the 

scene. The positions were randomly initialized in the setup function, as 

shown in the previous examples, and we drew the particles in the draw 

function.

DRAW THE PARTICLES AS A GROUP IN CODE

PVector[] positions = new PVector[140];

void setup() {

    // initialize other parts of sketch

    // ...

    for (int i = 0; i < 140; i++) {

        positions[i] = new PVector(random(100, width-350), 

random(100, 300),

            (i % 2 == 0 ? random(1, 3) : random(-3, -1)));

    }

}

void draw() {

    // draw other parts of sketch (mountains, fog) first

    // ...

    for (int i = 0; i < 140; i++) {

        // add upwards or downwards motion from z coordinate

        positions[i].y += positions[i].z;

        �// reverse direction if particles move vertically out  

// of canvas

        if (positions[i].y > 600 || positions[i].y < 100) {

Chapter 6  Taking a Larger Project Through All Four Steps



196

            positions[i].z *= -1;

        }

        pushMatrix();

        // translate to particle position

        translate(positions[i].x, positions[i].y);

        // draw the particle image

        image(light, 0, 0, 40, 45);

        popMatrix();

    }

}

Just with this additional code, we can draw hundreds of particles 

(well, 140 here) in a specific area on the canvas and let them float around 

in a moderately random fashion (half of the particles float up, the other 

half down). The initial vertical motion direction is decided in the setup 

function with an expression that seems a bit difficult at first: (i % 2 == 

0 ?random(1, 3):random(-3, -1)). Let’s unpack this quickly. This 

expression creates a random value either between 1 and 3 or between -3  

and -1 depending on the condition i % 2 == 0. This condition checks 

whether the modulo of 2 of i equals 0. As we have seen before, the modulo 

operation returns the division rest, and for “modulo 2,” this is either 0 

and 1. This means that with increasing value of i, the modulo of 2 will flip 

between 0 and 1 constantly. This is exactly what we need for letting the 

even particles float down (random(1, 3)) and the odd particles float up (-3, -1).

What is missing from the example is how we drew the shape of the 

individual particle in MOUNTROTHKO. We started with circular shapes 

and finally decided for something that resembles “tiny moons,” each 

a short curve with a BLUR filter. We rendered this shape once into 

an image canvas and drew this canvas for every single particle at the 

respective position.

Chapter 6  Taking a Larger Project Through All Four Steps



197

DRAW THE SHAPE FOR A SINGLE PARTICLE 

PGraphics light = createGraphics(200, 200);

light.beginDraw();

light.smooth();

light.noFill();

light.stroke(255);

light.strokeWeight(8);

light.arc(100, 100, 50, 50, HALF_PI, PI);

light.filter(BLUR, 5);

light.endDraw();

The result is yet another layer of a random structure of simple 

individual shapes that move slowly upward or downward until they 

exit the canvas and their vertical direction is reversed. By now, we have 

programmed several layers of different shapes and forms. Some layers are 

dynamic and move slowly (fog and particles), while other layers are static 

(the mountains).

What is important is that we programmed this in tiny steps that we 

tested in Processing until the overall composition fit our developing 

concept of MOUNTROTHKO.

6.5. � Step 3: Refinement and Depth
When we wrote about refinement and depth in the first part of the book, 

we experienced it as a step of moving results of previous steps toward more 

satisfying expressions of the concept. Perhaps not so much toward what 

is perfect, but toward what we can be proud and confident of showing 

to others. Why not perfect? Because “perfect” is often at the end of a 

path from good to better that drags on for too long (if not forever). In the 

example MOUNTROTHKO, we were already quite happy with the overall 

Chapter 6  Taking a Larger Project Through All Four Steps



198

composition and how different parts and layers of the work fit and play 

together. Still, we found plenty of aspects to refine and give extra depth.

The particles that we introduced at the end of the previous section 

needed a more organic feel and variation to not distract the viewer by their 

slight artificiality. Also, we wanted the work to respond to visitors through 

interaction and interactivity.

6.5.1. � Refinement: Reshaping the Particles
Before, the particles were drawn identically at different positions, moving 

at different speeds. Also their shape was relatively simple, which we 

changed first by drawing each particle as a composition of two arcs. 

This results in a birdlike shape when two arcs are placed directly next 

to each other. You see this shape in Figure 6-8 for the “noon” scenario of 

MOUNTROTHKO.

Figure 6-8.  Bird-like particles from the “noon” scenario of 
MOUNTROTHKO

USE A COMPOSITION OF TWO ARCS TO RESHAPE THE PARTICLES 

light.arc(170, 100, 100, 100, PI+QUARTER_PI, PI+HALF_PI);

light.arc(100, 100, 100, 100, PI+HALF_PI, PI+HALF_

PI+QUARTER_PI);

Chapter 6  Taking a Larger Project Through All Four Steps



199

The next refinement is to pre-render five different versions of the 

particle with different size and transparency. But before we go into this, 

we have to show you how we create the particle positions now (slightly 

simplified).

CREATE THE POSITIONS OF THE PARTICLES

PREVIOUS:

    positions[i] = new PVector(random(100, width-350), random

        (100, 300),

        (i % 2 == 0 ? random(1, 3) : random(-3, -1)));

NOW:

    positions[i] = new PVector(random(100, width-350), random

        (100, 300), random(1, 3));

We took the modulo check out and gave particles a random positive 

z coordinate. Just a small change that makes all particles slowly tumble 

downward. Back to the different versions of a particle: five different 

particle images are drawn on a transparent background (in the setup 

function) before the sketch starts running draw. We use a bit of BLUR in the 

five versions, which is also the reason why we need to pre-render them 

as images: drawing hundreds of particles and blurring them every frame 

would simply be too slow for a decent frame rate. When drawing the scene, 

every particle’s position is checked for the z coordinate, and one of the five 

versions is chosen to be drawn. You can see this selection in the lower part 

of the next code snippet (Figure 6-9).

Chapter 6  Taking a Larger Project Through All Four Steps



200

Figure 6-9.  Groups of particles from the “night” scenario of 
MOUNTROTHKO

FURTHER CONTROL OF THE PARTICLE MOTION

// we use a different kind of for loop because it's shorter

for (PVector pos : positions) {

    // move the particle downwards

    pos.y += abs(pos.z);

    // reset location if the particle leaves the canvas

    if (pos.x > width)

      pos.x = -25;

    if (pos.x < -30)

      pos.x = width + 30;

    if (pos.y > height)

      pos.y = random(-1000, -30);

    // move to particle position

    pushMatrix();

    translate(pos.x, pos.y);

    // rotate based on vertical position

    rotate(radians(map(pos.y, 0, height, 0, 180)));

    // compute scaling depending on z coordinate

    float scaler = pos.z * 25;

    // rotate again (further) depending on scaler

    rotate(radians(map(scaler, 10, 35, 0, 360)));

Chapter 6  Taking a Larger Project Through All Four Steps



201

    // select image to draw depending on z coordinate

    if (abs(pos.z) < 0.1)

        image(light5, 0, 0, 10 + scaler, 15 + scaler);

    else if (abs(pos.z) < 0.15)

        image(light4, 0, 0, 10 + scaler, 15 + scaler);

    else if (abs(pos.z) < 0.2)

        image(light3, 0, 0, 10 + scaler, 15 + scaler);

    else if (abs(pos.z) < 0.3)

        image(light2, 0, 0, 10 + scaler, 15 + scaler);

    else

        image(light1, 0, 0, 10 + scaler, 15 + scaler);

    popMatrix();

}

Tips  We use a new type of for loop here that goes through all 
PVectors in positions without the need for a counter variable i. This 
is slightly shorter and more concise.

In this piece of code, several things happen at the same time: First, 

we check whether a particle has left the visible canvas. In this case, we 

place it back at the opposite side. Then, the particles rotate according to 

their vertical position (see the first rotate call). This creates an effect of 

particles slowly tumbling down. We compute a value scaler that is used to 

rotate each particle and draw it in a different size with a different image (as 

explained earlier). Since all changes are depending on the z coordinate of 

the particle, the resulting composition looks quite natural with some sort 

of “depth of field” effect. In summary, we added different particle images 

that were also rendered in different sizes and orientations depending on 

the particle’s z coordinates (Figure 6-10).

Chapter 6  Taking a Larger Project Through All Four Steps



202

Figure 6-10.  Twenty different compositions of visuals in one scene

Chapter 6  Taking a Larger Project Through All Four Steps



203

6.5.2. � Depth: Adding Interaction
The second step for the refinement was to add interaction to the sketch 

that allowed visitors to influence the dynamics of the artwork.

The first aspect of interaction was about the ambient sound that we 

could record with a connected microphone (most laptops and desktop 

computers support this out of the box). We wanted to use the sound level 

to influence the horizontal movement of the flowing particles: with more 

ambient sound, the particles would be “blown” faster off the canvas, and 

a quiet ambiance would let the particle tumble down undisturbed. In the 

following, we first explain how we record and process the sound and then 

how the sound volume influences the visuals.

We added the Minim library4 that allows us to access the sound input 

of the system.

IMPORT THE MINIM LIBRARY TO USE AUDIO INPUT FOR INTERACTIVITY

// audio library

import ddf.minim.*;

// audio input object

AudioInput in;

// control variable

float controlSnow = 0;

void setup() {

    // other setup code

    // ...

4 The Minim library allows to use sound input and output, audio processing, 
and synthesis. It is available directly from the Processing library manager. The 
examples are recommended as they explain the basic functions well.

Chapter 6  Taking a Larger Project Through All Four Steps



204

    // initialize sound

    Minim minim = new Minim(this);

    in = minim.getLineIn();

}

With this initialization, we could process the sound input in every 

frame (i.e., call the function processSound from draw).

PROCESS SOUND IN EVERY FRAME (CALLED FROM DRAW)

void processSound() {

  // compute the overall volume of the sound

  float sum = 0;

  for (int i = 0; i < in.bufferSize() - 1; i++) {

    sum += abs(in.left.get(i));

  }

  // 1. add new values

  controlSnow += min(sum / 2., 5);

  // 2. constrain control

  controlSnow = min(controlSnow, 500);

  // 3. decrease over time

  controlSnow *= 0.99;

}

Tips I n signal processing, people would not add the absolute 
values, but instead the square (sample2), and then finally take the 
square root ( sum). We don’t need this here, and our approach is a 
bit faster.

Chapter 6  Taking a Larger Project Through All Four Steps



205

The processSound function computes the overall volume of the sound 

input by adding all absolute values of the left channel up. We have to use the 

abs function to avoid the different sound samples canceling each other out 

(e.g., a sample 0.4 and −0.3 would result in 0.1 as the mean, which would 

not give us a good approximation of the volume). From this volume, we 

compute a new value for our control variable controlSnow. This value is 

limited (hard limit of 500 and it gradually decreases by 100% - 99% = 1%) 

every frame.5 We need to use this mechanism to ensure that the particles 

(1) respond quickly to changes in sound volume, (2) do not get unnaturally 

fast with very loud volume, and (3) always return to the baseline movement. 

These three points together set the boundaries for interaction and need to 

be tweaked depending on the installation context and aesthetics.

What is all this for? Good point, let’s go into the visuals. We use the 

controlSnow variable in the dynamic drawing of the particles. Before, the 

particles were flowing straight from top to bottom and rotating on their 

way down. With controlSnow, we influence their horizontal position with 

the ambient sound. The following code shows how we add this to the 

particle drawing.

AMBIENT SOUND CONTROLS PARTICLES’ HORIZONTAL POSITIONS

for (PVector pos : positions) {

    // move the particle downwards

    pos.y += abs(pos.z);

NEW:

    // move the particle with the wind (controlled by sound)

    float wind = constrain(map(controlSnow, 0, 500, -5, 5), 0, 5);

    pos.x += wind * abs(pos.z);

5 We wrote earlier that the installation used the sound volume or average loudness. 
This example shows a different way to use the sound input volume.

Chapter 6  Taking a Larger Project Through All Four Steps



206

When the room is quiet and the microphone does not record any 

sound, the variable controlFlow will have very low values which map to a 

minimal horizontal displacement. If there is sound like talking or noise in 

the room, the value of controlFlow raises. This higher value is mapped to 

a value slightly larger than zero that is added to the x coordinate of every 

particle. This results in the particle moving slightly to the right in every 

frame. From the visitor position, this looks like wind from the left that 

blows the particles to the right. As the sound in the room calms down, the 

value of controlFlow also decreases, and the horizontal displacement 

returns to zero: the scene is still again.

As you can imagine, there were a lot more subtle adjustments we 

applied throughout the project. Too many for you to go through. Let’s 

move to the next and final stage.

6.6. � Step 4: Completion and Production
When we arrived at the completion and production stage, we needed 

to consider how we wanted to exhibit the work. In the end, we went in 

two directions: an interactive installation and high-resolution printed 

artworks. For the first direction, we had to think about the exhibition 

space, setup conditions, and equipment facilities to adjust the code for its 

final presentation. And for the second direction, we needed to produce a 

few stills of the now interactive installation. They needed to be in a very 

high resolution for printing.

6.6.1. � Completion: Installation in Space
We produced MOUNTROTHKO in three scenarios – “day,” “noon,” and 

“night” – for a 6.5 x 8 x 4m3 space with a high ceiling and a white wall to 

project on (Figure 6-2). We used a high-resolution projector, and we placed 

a low bench in front of the projection surface. The bench was arranged 

Chapter 6  Taking a Larger Project Through All Four Steps



207

with a bit of distance from the wall, and we could determine the visitor 

position (sitting on the bench or standing) using a Kinect device placed 

at the visitor’s back. What was the Kinect or the visitor position for? We 

used the rough position to switch between the three different scenarios of 

MOUNTROTHKO (“day,” “noon,” and “night”).

Before moving to the installation space, we prototyped this interaction 

in the simplest possible way: with the mouse position. We simulated the 

visitor position (left, center, and right) by different horizontal areas for 

the mouse. The mouse in the first third of the screen was mapped to the 

first scenario, the second third to the second scenario, and so forth. This 

is what we describe also as “backstaging” in Chapter 5, a technique to 

prototype and make our life easier when dealing with unpredictable or 

complex input.

When we moved the installation to the installation space, we just 

had to calibrate the Kinect such that it would give us reliable position 

information that we could map in similar ways as the mouse position. This 

required a bit of experimenting with the Kinect position and direction. 

When trying this solution ourselves, we noticed that the scenarios would 

flicker and jump in some positions. The reason was that the position 

variable was directly controlled from the Kinect input and would 

sometimes jump very quickly between two values. We solved this problem 

by switching the position variable to a MemoryDot object that was updated 

from the Kinect. Remember that we introduced the MemoryDot in Chapter 4  

as a way to smoothen the movement of particles and other objects on 

the canvas? In this case, we used the MemoryDot to transition smoothly 

between different input values.

6.6.2. � Production in Print
As a second direction, we wanted to produce beautiful high-quality prints 

of MOUNTROTHKO. To have a bit of choice, we rendered 37 high- 

resolution images from the code. As explained earlier, Processing allows 

Chapter 6  Taking a Larger Project Through All Four Steps



208

to save the rendered canvas in different image formats. In the final prints 

of MOUNTROTHKO, we wanted to get the resolution of images up to 

9000 x 9000 pixels. Setting size to this larger canvas dimensions was not 

enough. Based on the redefined canvas, we needed to adjust the locations 

of the three mountains and randomly initialized locations of the particles 

(Figures 6-11, 6-12, and 6-13).

Figure 6-11.  MOUNTROTHKO in the scenario “day”

Chapter 6  Taking a Larger Project Through All Four Steps



209

Figure 6-12.  MOUNTROTHKO in the scenario “noon”

Figure 6-13.  MOUNTROTHKO in the scenario “night”

Chapter 6  Taking a Larger Project Through All Four Steps



210

Next, we needed to find the right frames to render. Also this is 

described in more detail in Chapter 5. The last and the most important 

point was to fix the many variable parameters of the sketch as high- 

resolution images cannot be rendered in dynamics. We fixed the scenarios, 

colors, and the mouse position to static values. After all these preparations, 

we let the program run its course and render large images that were 

ready for printing. Actually, we did not need to post-process the rendered 

images. All colors and dimensions were perfect. We reached completion 

for this project!

6.7. � Summary
In the past 6 years, we have been working together and going through 

different projects including MOUNTROTHKO. We notice that when using 

code as an expressive tool for art creation, in all the projects we have been 

doing, there is “something” in common. When we started this book, we 

define that this “something” in common is the series of steps we have 

taken in our projects and written in this book.

In this chapter, we use the project MOUNTROTHKO to illustrate the 

four creative coding steps which we explain in detail in the first part of this 

book. By using such an approach, we want to emphasize that these coding 

steps are derived from practice and stay relevant to practice.

We admit that the steps from the real practice are not as neatly, 

logically, and methodically arranged as what you read in this book. Most 

of the time, everything did not happen as a clear sequence of steps. For 

example, in MOUNTROTHKO, we have gone back and forth, repeatedly, 

between the first two steps many times. It took time to find the elements 

and movements which match the meaning we want to deliver through 

this artwork. In the third step, how to code the “slow” and “elegant” 

movement – like the snow falling in the wind – took us longer than 

Chapter 6  Taking a Larger Project Through All Four Steps



211

expected to get exactly right. In the fourth step, trying to render the high- 

resolution static images from the interactive code became quite difficult 

because of the many color parameters.

The creative process as it happened in real practice is always much 

more chaotic and complex than the process described in this book. 

This is also part of the reason why we don’t release the full code of 

MOUNTROTHKO. There are too many versions and variations of it, each 

a little messier than the other. The other reason has to do with artistic 

freedom and intellectual property, but that’s a topic for another time.

Back to the process: especially when we are immersed in creation, 

we may involuntarily fall into a specific “rabbit hole” of something that 

appears to be urgent and important. This might happen to you as well. Not 

all creative flow is clearly rational, and you might even choose to forget 

for some time about all that process and focus on creative inspiration 

and the feeling of “flow.” The steps described in this book are for us the 

core essence, the patterns that appear over the last years in practice (and 

teaching with Processing). And we hope this essence can help you not lose 

your direction and focus when coding your own creative work.

Chapter 6  Taking a Larger Project Through All Four Steps



213

CHAPTER 7

Flow Fields and 
Particle Storms 
with p5.js
After taking you through the four steps and the larger example 

MOUNTROTHKO, it is now time to look at Processing’s younger sibling 

that plays the web: p5.js. In this and the next chapter, we will work on a set 

of new examples using p5.js and explore how we can create generative art 

and make use of more complex touch and sensor input for interactivity.

When we created MOUNTROTHKO in the previous chapter, we 

followed the four steps introduced in Chapters 2–5 quite closely. In this 

chapter, however, we take a different, more loose approach to the four 

steps: we start with inspiration around “many things,” add randomness, 

and only then move to the first step and add visual elements. This all has 

to do with the nature of the examples that we develop in this chapter. At 

the same time, we want to show you how you can combine the steps in 

different ways and break the rules a little. Why not, right?

In this chapter, we will first introduce you to p5.js; essentially, how 

to get started and what the small differences between Processing and 

p5.js are. Keep in mind that we don’t need to introduce a whole new 

platform because p5.js is very, very similar to Processing. Also, this is 

about broadening your perspective on what it means to bring your work to 

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_7

https://doi.org/10.1007/978-1-4842-9780-3_7


214

different screens aligned with a diverse audience. Even installations in a 

location like a gallery, museum, or art center can benefit from shifting your 

work to the (mobile) web, because it can be presented using tablets that 

are mounted flat on the wall, instead of screens connected to computers 

connected to peripherals connected to a power socket. A tablet can 

present your work in different ways than a computer because it allows for 

(multi-)touch input and a very high resolution. Tablets are available in 

many venues already; often they are also used for Augmented Reality (AR) 

applications. Another way to present your work is to ask local and remote 

visitors to open it on their personal smart phones or tablets. Exhibitions 

often provide QR codes that can be scanned with a smart phone camera, 

and the work opens in the mobile browser instantly.

7.1. � Getting Started with p5.js
Ok, so what is p5.js? Like Processing, p5.js is free and open source, which 

means anyone can use it. P5.js translates Processing functions to the 

web. That means you are no longer “limited” to a canvas window on 

your computer; you can make your creations accessible to anyone on the 

Internet. This could be people using a web browser on their computer, or 

on their tablet or phone. With p5.js, you can think of your web browser 

page as your canvas. It's like having a digital sketchbook right on the web! 

Not only can you draw on this canvas using p5.js, but you can also add 

other elements like text, buttons, videos, webcam images, and sounds. So, 

your creativity is not limited to just drawing, but you can create interactive 

and dynamic web experiences using p5.js.

In this section, we first explain the general structure of mobile 

Processing content, then dive into making the switch between Processing 

and p5.js, and finally explain more about how to host your p5.js sketches 

Chapter 7  Flow Fields and Particle Storms with p5.js



215

online. All example code is available in the Coding Art example library on 

GitHub,1 and you can browse them directly on the examples page.2

7.1.1. � Structure of p5.js Sketches
When you run a sketch in Processing, Processing will provide your 

sketch with a runtime environment that gives your sketch access to all 

functionality of Processing and its libraries, the file system (e.g., the “data” 

folder), and also computer resources like a screen and peripherals like 

mouse and keyboard. When running a sketch with p5.js, all this is provided 

in some way by the web browser on your computer, and when you make 

it publically accessible, it runs on the web browser of the visitor (or a 

tablet hanging on the wall of a gallery). That means your sketch needs to 

be modified such that it can run in a variety of web browsers (different 

people have different devices, right?). Also, these browsers have their own 

language and formats that need to be matched. No worries, though, we will 

get to that.

The first step of bringing your work to the web is by embedding it in a 

web page. A web page is written in the Hyper Text Markup Language, in 

short, HTML, a language that is based on tags like “<html>”, “<div>”, and 

“<a href="https://codingart-book.com">”. Using HTML allows to create 

the structure that all web pages need to be shown on a browser. So, HTML 

tags make up the structure and content of webpages, and inside this HTML 

structure, we can have special <script> tags for JavaScript code, which 

we will use in the following. Remember that we explained that Processing 

works with the Java language behind the scenes? P5.js, the web version 

of Processing, works with JavaScript in the background. As the name 

suggests, the two languages Java and JavaScript are quite similar. So, let’s 

get started with a simple web page.

1 https://github.com/codingart-book/examples
2 https://codingart-book.github.io/examples/

Chapter 7  Flow Fields and Particle Storms with p5.js

https://github.com/codingart-book/examples
https://codingart-book.github.io/examples/


216

A TEMPLATE FOR RENDERING P5.JS CODE IN A WEB BROWSER

<html>

 <head>

  <script src="https://cdn.jsdelivr.net/npm/p5@1.7.0/lib/p5.js">

  </script>

  <script type="text/javascript">

    // this is a comment in Javascript

    //

    // insert p5.js code below

    //

    function setup() {

      // setup code

    }

    function draw() {

      // draw loop

    }

  </script>

 </head>

 <body></body>

</html>

The preceding code will be our template for the next examples. This 

code is the bare minimum that you need to render p5.js code in a web 

browser. You enter this code in a text editor (not in Processing!). You can 

use either the built-in text editor on your computer, or you can download a 

more powerful editor like Sublime Text, Atom, or Visual Studio Code. The 

benefit of using a code editor is that it will highlight and color the HTML 

and JavaScript code to give you a better overview of the structure. Some 

editors can also format or error-check the code for you. If you would like a 

quick taste of p5.js before diving into files and editors, check out the editor 

on the p5.js page (https://editor.p5js.org), which we also touch on 

later in this chapter.

Chapter 7  Flow Fields and Particle Storms with p5.js

https://editor.p5js.org


217

After entering the preceding code, save the file as “index.html” in a 

folder on your computer. Open this folder and double-click the file that 

you have just saved. On most computers, this should open a web browser 

and show a blank (still!) page. If nothing opens after double-clicking, try 

right-clicking the file to choose a browser. Modern web browsers such as 

Firefox, Chrome, Safari, Edge, and Opera should all support p5.js.

Let’s try drawing something in p5.js. Use the previous template, and 

enter the following code in the middle (you can replace “function setup ...” 

with the code). Then save and refresh the browser.

DRAW A CIRCLE THAT FOLLOWS THE MOUSE POSITION (P5.JS)

// function definition

// (replace 'void' by 'function')

function setup() {

  // different function name (used to be 'size')

  createCanvas(640, 480);

}

function draw() {

  // slightly different variable name

  if (mouseIsPressed) {

    fill(0);

  } else {

    fill(255);

  }

  ellipse(mouseX, mouseY, 80, 80);

}

Once you move your mouse in the top left of your browser window, 

ellipses should be drawn. Again, don’t forget to save the file in the editor 

after a change and then refresh the browser. For comparison, the same 

sketch for Processing is presented as follows.

Chapter 7  Flow Fields and Particle Storms with p5.js



218

DRAW A CIRCLE THAT FOLLOWS THE MOUSE POSITION (PROCESSING)

void setup() {

  size(640, 480);

}

void draw() {

  if (mousePressed) {

    fill(0);

  } else {

    fill(255);

  }

  ellipse(mouseX, mouseY, 80, 80);

}

Pretty similar, right? Let’s move to the next part to see where the 

differences lie and how to move code from Processing to p5.js.

7.1.2. � From Processing to p5.js
The basic question is how do you need to change the Processing code, so 

it can be run on the web with p5.js? We will touch upon four aspects in the 

following and refer to the browser environment by “Javascript” code. There 

is more complete information in the p5.js migration tutorial.3

Functions. Functions in Processing start with a data type (of what they 

return), or void. In JavaScript, we need to use the “function” keyword for 

that (see earlier).

Variables. Processing variables are declared using their data types 

such as int position, float rotationDegree, and boolean useSound. 

In JavaScript, variables are declared with the keyword “var” (or “let” in the 

newest versions); no data type is necessary.

3 https://github.com/processing/p5.js/wiki/Processing-transition

Chapter 7  Flow Fields and Particle Storms with p5.js

https://github.com/processing/p5.js/wiki/Processing-transition


219

Mouse control. While we are using the mouse to control many 

sketches in Processing, the mobile environment often supports touch 

screens instead of a mouse. P5.js provides additional variables and 

functions to handle touch input and even multi-touch. In addition to 

mouseX and mouseY, you can use touchX and touchY as well as handlers for 

touch events.

Different function and variable names. In dealing with the browser 

environment, the p5.js developers had to implement some functions and 

global variables with different names. For example, the size function 

in Processing was renamed to “createCanvas” that works similarly. 

Another example is Processing’s mousePressed variable that is called 

“mouseIsPressed” in p5.js.

Again, it is probably a good idea to refer to the information in the p5.js 

migration tutorial.4

7.1.3. � Fine-Tuning the Presentation
When you open such a sketch in your browser, you will notice that it might 

not cover the entire browser width and height. P5.js provides two variables 

“displayWidth” and “displayHeight” to scale the web canvas to the full size 

of the browser window.

SCALE THE WEB CANVAS TO THE ENTIRE BROWSER WINDOW

function setup() {

  // use variables to fill the entire browser canvas

  createCanvas(displayWidth, displayHeight);

}

4 https://github.com/processing/p5.js/wiki/Processing-transition

Chapter 7  Flow Fields and Particle Storms with p5.js

https://github.com/processing/p5.js/wiki/Processing-transition


220

There are further tweaks that you can apply to how the sketch is presented 

on desktop and mobile browsers. First, you should set the title of the sketch 

page to something recognizable as it will be displayed on tabs or in the header 

bar of the browser. The second change is about tuning the page display to 

the device. Mobile devices allow for switching off parts of the user interface 

elements or provide different scaling options than desktop browsers. The 

following example shows a good default setting for mobile experiences.

ADDING SETTINGS FOR MOBILE EXPERIENCES

<html>

 <head>

NEW:

  <title>TITLE OF YOUR SKETCH</title>

  �<meta name="viewport" content="minimal-ui, width=device-width, 

initial-scale=1, maximum-scale=1, user-scalable=no">

  // same as before ...

Finally, don’t forget that mobile devices can be rotated. P5.js gives you 

a specific handler for this purpose,5 which can be used to trigger a new 

layout or visual reset depending on your creative content.

7.1.4. � How to Spot Errors?
In Processing, errors are reported in red text in the console, the black area 

underneath the code. You have probably seen this once or twice (or a lot 

if you have been experimenting with code). A web browser, in which you 

5 In p5.js, you can react on orientation changes, that is, when the user rotates 
their phone or tablet from landscape to portrait or back. This handler is 
called “deviceOrientation”; see https://p5js.org/reference/#/p5/
deviceOrientation.

Chapter 7  Flow Fields and Particle Storms with p5.js

https://p5js.org/reference/%23/p5/deviceOrientation
https://p5js.org/reference/%23/p5/deviceOrientation


221

would run your sketch with p5.js, does not show its “black area” by default. 

Still, it is there, just called “web developer” or “web console” (on Firefox), 

“developer tools” (on Chrome), or “developer console” (on Safari). Use a 

search engine to find out how to activate them for your operating system, 

browser, and browser version. This is usually quite easy if you know where 

to click.

This hidden view shows what is going on behind the scenes of a web 

page. You open this view on any website and analyze it, change it, or even 

experiment with its inner workings. For our purposes, we need to switch 

to the “console” view and check for errors (red) and warnings (yellow). If 

we print out information from our sketch via print or console.log on a 

website, this information will show up in the console usually as an “info” 

(white/blue) message.

Although JavaScript, the language we are using for programming 

with p5.js, is quite permissive in what it allows, it is good practice to 

structure code carefully, end lines with a semicolon, and write comments. 

Do yourself the favor and don’t create code which embarrasses you in 

4 months. Remember: if you can open the developer view, anyone can 

do that, also on your web page with your sketch. Your future self will 

thank you.

7.1.5. � Making Your Work Publically Accessible
To deploy something online, you need a computer that is always running 

and connected; this is called a server. You don’t need to run this computer 

yourself (although you could do that from your home). Often there are free 

resources that give you a tiny slice of a server, which is sufficient for our 

purpose here. Note that you don’t need to do this when programming for 

yourself. You only need a web server when you want your creation to be 

available for others anywhere and at any time. Let’s check a few options.

Chapter 7  Flow Fields and Particle Storms with p5.js



222

The easiest way to put your p5.js sketch online is to use the p5.js 

website and its editor at https://editor.p5js.org. On this website, you 

can experiment with your p5.js code on the left side of the page and run it 

immediately to show results on the right side of the page. The p5.js editor 

can format your code and also provide console output at the bottom–

almost like Processing. If you make an account on this website, you can 

store your sketches (including extra files) and create links that you can 

share with others. You can either share the sketch in editing mode, so 

others can follow your code and do their own explorations, or you can 

share the sketch as fullscreen output that will not show the code anymore.

Another option to share your p5.js sketches online is using a web 

hosting provider. Such a provider gives you a folder on a web server and 

a URL to link to files in this folder. There are free options (just search 

online for “free web hosting”), but if you are serious about your work and 

you want a good URL, it is often worth it to pay a small fee for a personal 

domain and some web hosting space. In any case, publishing on a web 

server is like accessing folder on a different computer and copying a few 

files to this folder. Depending on which provider you use, they might give 

a web-based upload tool or a guide to use specific software to upload 

your files to the web server. Once your files have arrived in the folder 

on the server, the server will literally “serve” them to any browser that 

requests them.

Given the minimal example for p5.js that we have used so far, you 

only need to upload a single file “index.html” to the web server. In case of 

larger projects with resource files and perhaps other libraries, you would 

need to make them available via the web server as well. As an example, we 

want to publish the minimal example on the web server behind “https://

codingart-book.com” and upload the file “index.html” to the public folder 

“chapter7/firstexample.” Then our sketch will be available at “https://

codingart-book.com/chapter7/firstexample.” We don’t need to add 

“index.html” behind “firstexample” because “index.html” is the default 

file that the web server will serve when accessing a folder. If the file would 

Chapter 7  Flow Fields and Particle Storms with p5.js

https://editor.p5js.org
https://codingart-book.com
https://codingart-book.com
https://codingart-book.com/chapter7/firstexample
https://codingart-book.com/chapter7/firstexample


223

have a different name, such as “experiment2.html,” we would need to add 

it to the URL. This all reads perhaps difficult (all these files and folders); 

wait until you try it out. It’s a piece of cake.

7.2. � Generative Art on the Web
In the last years we have seen an explosion of digital art and generative 

art specifically on the Internet. There are probably too many different 

ingredients to name here, from new marketplaces for digital art, generate 

art collectors, social networks, and growing communities around 

generative art, but also the increasing use of creative coding tools such 

as Processing and p5.js. In this section we will take inspiration from the 

Fidenza series by Tyler Hobbs. As the artist himself describes it in a blog 

post,6 this series of generative artworks is based on the fundamental 

principle of a flow field and is his “most versatile generative algorithm to 

date. Although it is not overly complex, the core structures of the algorithm 

are highly flexible, allowing for enough variety to produce continuously 

surprising results.”

7.2.1. � Flow Fields
Great, so what is a flow field actually? Tyler gives more details on how to 

construct flow fields and what you can try out in another blog post.7 Flow 

fields are an interesting way to create interesting visual effects. They are 

based on a grid that covers the entire image or canvas. Each point on this 

grid holds an angle, which determines the direction of flow. The angles in 

neighboring points on the grid are similar; that means the flow field, when 

visualized, appears smooth. So where is this angle coming from? And how 

6 See https://tylerxhobbs.com/fidenza.
7 See https://tylerxhobbs.com/essays/2020/flow-fields.

Chapter 7  Flow Fields and Particle Storms with p5.js

https://tylerxhobbs.com/fidenza
https://tylerxhobbs.com/essays/2020/flow-fields


224

is it possible to make the grid smooth? The answer is an old acquaintance 

from Chapter 4: noise. As you might remember, we have introduced the 

noise function as a “less jumpy” alternative to random and randomGaussian. 

The noise function, in the two-dimensional variant, is a field of smoothly 

changing values between 0 and 1. Field sounds already close, right? The 

only thing we need to do now is map this field to the grid and map the value 

between 0 and 1 to an angle. But let’s go step-by-step. To store this grid, we 

use a 2D array of elements. Each item in the array represents a point on the 

grid and holds either the angle value or a vector pointing in the direction of 

the angle. To start, you need to choose the resolution of your grid, which is 

the spacing between elements. Higher resolution allows for more detailed 

and smoother curves, but keep in mind that higher resolutions might 

render slower on your computer and also on the browser of visitors of your 

web page. You can experiment with resolution and grid size, going from 

0.5% to 2% of the image width. And it's best to use an integer length for 

spacing to avoid any precision errors. Let’s try this out quickly.

A FLOW FIELD TEMPLATE, PART 1

<html>

  <head>

    �<meta name="viewport" content="minimal-ui, width=device- 

width, initial-scale=1, maximum-scale=1, user-scalable=no">

    �<script src="https://cdn.jsdelivr.net/npm/p5@1.7.0/

lib/p5.js">

  </head>

  <body>

    <script type="text/javascript">

          // define variables

          let gridSize, cols, rows;

          let noiseResolution;

          let flowField = [];

Chapter 7  Flow Fields and Particle Storms with p5.js



225

          function setup() {

              createCanvas(800, 800);

              background(255);

              ellipseMode(CENTER);

              // define the grid size

              gridSize = 16;

              // calculate the number of columns and rows

              cols = floor(width/gridSize);

              rows = floor(height/gridSize);

              // define noise resolution

              noiseResolution = 100;

              �// create 2D array of vectors based on 

Perlin noise

              for (let y = 0; y < rows; y++) {

                  flowField[y] = [];

                  for (let x = 0; x < cols; x++) {

                      let angle = noise(x/noiseResolution,

                                   �y/noiseResolution) * 

TWO_PI * 4;

                      let v = p5.Vector.fromAngle(angle);

                      flowField[y][x] = v;

                  }

              }

          }

          function draw() {

              // TODO this is coming next

            }

    </script>

  </body>

</html>

Chapter 7  Flow Fields and Particle Storms with p5.js



226

Note that this sketch alone will not draw anything yet – the draw() 

function contents are missing still. What is happening here so far? The 

beginning of the code listing sets up the web page with an HTML structure 

that also links the p5.js library from an external server.

? Think about this W e introduce this HTML structure at the 
beginning, and you can use it in the rest of Chapter 7 without 
changes. Although we will build up the examples throughout the 
chapter, it is always a good idea to make a copy once an example 
is working, so you can go back and compare notes if something 
breaks later.

The main action happens in the <script> tag, where we first define 

five variables: gridSize, cols, and rows are used to calculate the flow field 

grid and positions in the grid. The gridSize determines the size of grid 

cells in pixels, and rows and columns of the grid are computed based on 

gridSize and the width and height of the sketch. The noiseResolution 

variable defines how far we “zoom” into the noise function: low values for 

this variable result in a more turbulent and varied flow field; higher values 

zoom further into the generated noise and result in a smoother flow field. 

Finally, we have a variable flowField that stores all grid values in the 

flow field. This variable is filled in the last part of the setup() function: 

we iterate through all positions in the grid in two nested for loops and 

assign values to the two-dimensional grid cells. The values are computed 

in two steps: first by calling the noise function with the grid position (and 

noiseResolution) for an angle and then creating a p5.js vector object from 

this angle. After all this, we have a grid of vectors set up for our next step: 

drawing the first flow field.

Chapter 7  Flow Fields and Particle Storms with p5.js



227

A FLOW FIELD TEMPLATE, PART 2

      function draw() {

          // draw the grid and vector lines

          for (let y = 0; y < rows; y++) {

              for (let x = 0; x < cols;x++) {

                  push();

                  // shift canvas to current grid position

                  translate(x*gridSize, y*gridSize);

                  // draw cell

                  fill(250, 220, 200);

                  noStroke();

                  rect(1, 1, gridSize - 2, gridSize - 2);

                  // move to center of cell

                  translate(gridSize/2, gridSize/2);

                  stroke(80, 10, 0);

                  strokeWeight(1);

                  // draw line in direction of flow field cell

                  let v = flowField[y][x];

                  �line(0, 0, v.x * gridSize/2, v.y * 

gridSize/2);

                  pop();

              }

          }

      }

If you complete the draw() function with the code in the previous 

listing, save the file and refresh your browser, you will see the flow field 

visualized on the screen. You can see an example of the flow field in the 

background of Figure 7-1. Since the flow field is based on randomness, 

your version of the flow field will most likely look slightly different. By 

Chapter 7  Flow Fields and Particle Storms with p5.js



228

playing around with the noise resolution and grid size, you can experiment 

and create unique flow fields that add a sense of movement and dynamism 

to the visuals that we will create later.

? Think about this  Can you think of other ways to render the flow 
field? As you know, the flow field stores a vector with particular angle 
or direction in each cell of the grid. What could you influence with this 
angle? And how? As a hint, to get the direction of a vector, you can 
use the heading() function.

Each angle stored in the grid represents a direction, and as you 

create your flow field, these angles will influence the path and motion 

of the elements within your image or canvas. Keep in mind that higher 

resolutions allow for more intricate designs, but too high can impact 

performance. In this context, check the p5.js reference for the noiseDetail 

function, which allows you to further tweak the variation and structure of 

noise on the flow field.

7.2.2. � From Flow Field to Particle Flow
Now that we have a flow field to work with, and some idea how to vary the 

generated noise to fit our next iteration, the next step is to draw a particle 

flow on top of this flow field. We have seen particles before in this book: 

Chapter 3 introduced how to work with “many things” and how to create 

and control lots of similar visual objects in a structured way; let’s revisit 

this in p5.js. We will now create a particle class that helps us draw a single 

particle that moves through the flow field. Once we have accomplished 

that, we can easily scale up the number of particles.

The first thing we should do is simplify the code is to take the drawing 

of the basic grid out of the draw() function and put it into a separate 

function. How does that work? We create a new function drawGrid(), 

Chapter 7  Flow Fields and Particle Storms with p5.js



229

which you can place right after the draw()function, and move the two 

nested for loops from draw() into this new function.

MOVING THE DRAWING OF THE GRID INTO ITS OWN FUNCTION

function drawGrid() {

    // draw lines following vectors on the grid

    for (let y = 0; y < rows; y++) {

        for (let x = 0; x < cols;x++) {

            let v = flowField[y][x];

            push();

            // Transform to grid-space

            translate(x*gridSize, y*gridSize);

            // draw cell

            fill(240);

            noStroke()

            rect(1, 1, gridSize - 2, gridSize - 2)

            // move to center of cell

            translate(gridSize/2, gridSize/2);

            // draw direction

            stroke(0, 120);

            strokeWeight(1);

            line(0, 0, v.x * gridSize/2, v.y * gridSize/2);

            pop();

        }

    }

}

}

We can now call this function to draw the grid wherever needed, and 

we can also switch it off, so the traces are more visible. Since the grid is 

now just the backdrop for the more interesting particle streams, we can 

Chapter 7  Flow Fields and Particle Storms with p5.js



230

just draw the grid once at the beginning and then let the particles be drawn 

over. So, we have put the call to drawGrid() at the end of the setup() 

function. Also, we turn off the color for grid, so anything we will draw on 

top will be more enhanced. That was not so hard, what’s next?

A FLOW FIELD WITH A SINGLE PARTICLE

// add a data structure to hold all particles

let particles = [];

function setup() {

    // as before...

    // create a single particle at the end

    particles.push(new Particle());

    // call the function to draw the grid

    drawGrid();

}

function draw() {

    // update and display each particle

    for (let i = 0; i < particles.length; i++) {

        particles[i].update(flowField);

        particles[i].display();

    }

}

class Particle {

    // create the particle

    constructor(x, y) {

        �this.pos =createVector(x ? x : random(width),y ? y 

:random(height));

        this.vel = createVector(0, 0);

        this.acc = createVector(0, 0);

    }

Chapter 7  Flow Fields and Particle Storms with p5.js



231

    // update position of the particle

    update(flowField) {

        // determine grid index from position

        �let x = constrain(floor(this.pos.x / gridSize), 0, 

rows-1);

        �let y = constrain(floor(this.pos.y / gridSize), 0, 

cols-1);

        // get vector from flow field and apply as force

        this.acc.add(flowField[x][y]);

        // change direction of particle

        this.vel.add(this.acc);

        this.vel.normalize();

        this.vel.mult(2);

        this.pos.add(this.vel);

        // clear acceleration for next cycle

        this.acc.mult(0);

    }

    // show the particle

    display() {

        fill(50, 50);

        stroke(50, 50);

        strokeWeight(1);

        ellipse(this.pos.x, this.pos.y, 5, 5);

    }

}

This piece of code adds different lines all over the previous example, 

so let’s go through the changes one by one. We add a new variable 

particles, in which we will store all particles in the following. In the 

setup() function, we add a line at the end to add a single particle to 

the particles data structure. In the draw() function, we add a for loop 

that runs through all particles, updates them with the flowField, and 

displays them. Finally, we add the new Particle class that contains three 

Chapter 7  Flow Fields and Particle Storms with p5.js



232

functions: the constructor is responsible for creating a new particle and 

initializing its position (pos), velocity (vel), and acceleration (acc). The 

update() function computes the next location for the particle by means 

of computing the particle’s position in the flow field grid, then taking the 

direction stored in the grid cell, updating the velocity with the direction. 

Then we normalize the velocity, that is, we cut the velocity vector to 

length 1 and multiply it by 2 as our step size. We need to do this because 

otherwise the velocity would just grow and grow, and the particle would 

move faster and faster – and not leave a nice trace. Finally we update the 

particle position and reset the acceleration for the next time. The third 

function, display(), does exactly what we think: it displays the particle on 

the canvas as a tiny black circle.

What happens when you save and refresh the browser? A single 

tiny particle will make its way through the flow field. Perhaps, you have 

to refresh the browser a couple of times to spot it, but it’s there – every 

single time. This was perhaps not too impressive, but we are set now for 

scaling up.

A FLOW FIELD WITH MANY PARTICLES

function setup() {

    // as before...

    for (let i = 0; i < 1000; i++) {

        particles.push(new Particle());

    }

}

class Particle {

    ...

Chapter 7  Flow Fields and Particle Storms with p5.js



233

    // show the particle

    display() {

        fill(0, 50);

        stroke(0, 50);

        strokeWeight(1);

        ellipse(this.pos.x, this.pos.y, 1, 1);

    }

}

Just replace the single line at the end of setup() with the for loop 

above and tweak the display() function to show more fine-grained 

traces – and things are suddenly moving very fast.

Figure 7-1.  Randomly distributed particles flow on top of flow field 
displayed as a grid of vectors

Chapter 7  Flow Fields and Particle Storms with p5.js



234

You can further increase the number of particles, but also try out 

different variations of creating the flow field with the noise() and 

noiseDetail() functions, the noiseResolution and the gridSize. When 

you look closely, you will see that the original particle position, where they 

start from, are randomly distributed over the canvas. Let’s try a variant 

where each grid cell starts a particle.

A FLOW FIELD WITH MANY PARTICLES ALIGNED WITH FLOW FIELD GRID

function setup() {

    // as before...

    // create 2D array of vectors based on Perlin noise

    for (let y = 0; y < rows; y++) {

         flowField[y] = [];

         for (let x = 0; x < cols; x++) {

              let angle = noise(x/noiseResolution,

                           y/noiseResolution) * TWO_PI * 4;

              let v = p5.Vector.fromAngle(angle);

              flowField[y][x] = v;

              �// add a new particle in the center of the 

grid cell

              �particles.push(new Particle(x * gridSize + 

gridSize/2, �y * gridSize + gridSize/2));

        }

    }

    // remove the FOR loop here

    // rest as before...

}

Chapter 7  Flow Fields and Particle Storms with p5.js



235

Remove the for loop that adds all particles and instead add a line in 

the initialization of the flow field that creates particle in the center of each 

cell. The particle flow should now seem more regular and structured. 

You can shake things up again by introducing further randomness in the 

update() function of the Particle class.

PARTICLE UPDATE WITH RANDOMNESS

// get vector from flow field and apply as force

this.acc.add(flowField[x][y]);

// NEW: add random rotation to acceleration vector

this.acc.rotate(radians(random(-45, 45)));

By adding a little bit of randomness in the direction of the acceleration 

vector, the path of particles is less linear and smooth. What about some 

color? Let’s give it a try before we move on.

PARTICLE DISPLAY WITH COLOR

// show the particle

display() {

    colorMode(HSB);

    angleMode(DEGREES)

    let angle0To360 = (this.vel.heading() + 360) % 360;

    fill(map(angle0To360, 0, 360, 0, 255), 200, 200, 50)

    stroke(map(angle0To360, 0, 360, 0, 255), 200, 200, 50)

    strokeWeight(1)

    ellipse(this.pos.x, this.pos.y, 1, 1);

}

Chapter 7  Flow Fields and Particle Storms with p5.js



236

What’s happening here? In the first two lines, we have set the color 

mode of the p5.js sketch to HSB and the angle mode to DEGREES. The first 

switches from RGB colors to HSB colors which make it easy to control the 

hue of a color with the first parameter for any fill() or stroke() function. 

The second ensures that the heading() function returns a number that 

represents the degrees of the vector angle (and not radians). After that, we 

extract the direction of the velocity vector and make sure it is in the range 

of 0 to 360 degrees. We do that by adding first 360 to the angle in case the 

angle was negative. Then we use the modulo (%) operation to wrap any 

values larger than 360 around–which gives us a perfect angle between 0 

and 360. Finally, we can map this angle to a hue value between 0 and 255, 

which is used to fill the particle and set the stroke of the particle border. 

Voila, a very colorful flow field!

7.2.3. � From Particle Flow to Dotted 
Particle Traces

By now, you have some experience with flow fields. You have 

probably experimented a bit with all the different parameters such as 

noiseResolution and gridSize, and you have seen how you can take 

advantage of the grid in terms of positioning of particles and giving them a 

sparkling color. Let’s move another step closer to the inspiration from the 

Fidenza series. The next step is to work with the shape of the particle traces 

in more detail. In this section, we will replace the long particle trace lines 

by varied dots and draw them in such a way that they leave space around 

them and don’t overlap.

We need to make some changes to the existing example code, so let’s 

go step by step. First, we change the Particle class; we add a variable path 

to store the dots on the particle trace and also create a function to check 

whether a position on the canvas is too close to one or more of the dots on 

the particle trace. Then, we change the display() function to draw nice 

black dots at regular intervals.

Chapter 7  Flow Fields and Particle Storms with p5.js



237

A PATH IN THE FLOW FIELD TRACED BY DOTS

// create the particle

constructor(position) {

      this.pos = position;

      this.vel = createVector(0, 0);

      this.acc = createVector(0, 0);

      this.radius = random(2, 5);

      this.path = []

}

// update position of the particle

update(flowField) {

      // determine grid index from position

      �let x = constrain(floor(this.pos.x / gridSize), 0, 

rows-1);

      �let y = constrain(floor(this.pos.y / gridSize), 0, 

cols-1);

      // get vector from flow field and apply as force

      this.acc.add(flowField[x][y]);

      this.acc.mult(8)

      // change direction of particle

      this.vel.add(this.acc);

      this.vel.normalize();

      this.vel.mult(this.radius * 2.4);

      this.pos.add(this.vel);

      // clear acceleration for next cycle

      this.acc.mult(0);

}

display() {

      fill(0);

      noStroke();

      �ellipse(this.pos.x, this.pos.y, this.radius * 2, this.

radius * 2);

Chapter 7  Flow Fields and Particle Storms with p5.js



238

      // store position for next round distance checking

      this.path.push(this.pos.copy());

}

// check whether a point v is too close to any point on 

this path

tooClose(v) {

      return this.path.some((d) => d.dist(v) < this.radius * 3);

}

The constructor function has changed now: the position of the 

particle is given as an argument and just assigned to the pos variable. We 

have added a new variable radius to control the size of the dots for a single 

particle; if all dots have the same size along the path of a particle trace, the 

traces can be distinguished easier, and the visual appearance is more flow- 

like. The update function only has a small change: the velocity (vel) is now 

multiplied by a value that depends on the radius. We use this to pack dots 

on a particle trace tighter. If we would use the same distance for all sizes 

of dots, the traces with the smaller dots would appear more spacious and 

loose. The display function just draws a black circle in the size given by 

radius at the position given by pos. In addition, it store the center position 

of the circle in the path variable, which basically grows to be a long list 

of circle center points for each particle. We need to create a copy of the 

pos vector, because we are constantly modifying the pos vector in the 

update function, whereas the path should contain an “archive” of previous 

positions. The final change to the Particle class is where the action is: 

the tooClose() function. It is really short, just a single line, but it does a 

lot. The function takes a vector v as input and goes through all the stored 

positions on this particle’s path. For each of these positions, it checks 

whether the distance to v is smaller than triple the radius of this particle. 

If there is any point on the path where the distance is smaller, this function 

returns true. Otherwise, false. We can use this in the following to check 

Chapter 7  Flow Fields and Particle Storms with p5.js



239

both when creating a new particle starting point and when drawing the 

next dot on an existing path. If the check returns true, we cannot start the 

path or draw the next dot. If the check is false, we can proceed.

? Think about this W e have used the some function here to do 
this check. This is a function that all JavaScript arrays implement, 
which is quite advanced. Can you think of a way to do the same with 
a for loop? As a hint, follow the text description to first create the 
loop through all elements of path, then implement a distance check 
with dist.

Are we done yet? Almost. What is missing still is an addition to the draw 

function that will update, check, and display the different particles.

A PATH IN THE FLOW FIELD TRACED BY DOTS

function draw() {

    // update and display each particle

    for (let i = 0; i < particles.length; i++) {

        // continue with next particle if this one is done

        if(particles[i].finished) {

            continue;

        }

        particles[i].update(flowField);

        if(particles.some(p => p != particles[i]

                       && p.tooClose(particles[i].pos))) {

            particles[i].finished = true;

            �// try to find a new position not too close to 

other paths

Chapter 7  Flow Fields and Particle Storms with p5.js



240

            for(let i = 0; i < 10; i++) {

                let position = createVector(

                                    �random(width), 

random(height));

                if(!particles.some(p => p.tooClose(position))) {

                    let p = new Particle(position);

                    particles.push(p);

                    break;

                }

            }

        } else {

            particles[i].display();

        }

    }

}

In this new draw() function, we go through all particles and first 

check whether the particle trace is finished. If the particle is finished, we 

continue the loop with the next particle. The continue keyword basically 

jumps to the end of the for loop and starts the next loop without going 

through the rest of the instructions. The finished variable in each particle 

will be set once we cannot continue on a path because the next dot on this 

path would be too close another path. Then we update the particle with 

the flowField as before. Then comes the most important new part: for the 

new position on this particle, we check whether it is too close to any dot on 

the path of any other particle. So, we go through all particles and first use 

a check to ignore the current particle. Then we call the tooClose function 

with the planned new position of the current particle. If the tooClose 

function returns true, it means that the new planned position is too close 

to an existing dot and cannot be used. This means the particle is finished. 

We set the finished variable to true, and then try to find a random starting 

position for a new particle to continue. To do so, we generate a random 

Chapter 7  Flow Fields and Particle Storms with p5.js



241

new position; check whether it’s not too close to any other dot on the 

canvas. If this is successful, we create a new particle with this position, 

store it to the particles array, and stop the for loop with break. If the 

search for a new position is not successful, which might be the case the 

more the canvas is filled already with dots, then we just abort the search 

after ten tries and move to the next particle.

Wow, that’s really a lot. But let’s zoom out a bit. What we have done 

here is create a two-level data structure for particles and their dots. On 

the first level, we store the particles in an array particles. On the second 

level, we store the dots that line the particle’s path in a variable path that 

is associated to the particle. Whenever we want to draw a new dot or even 

start a new particle trace, we need to search these two levels for existing 

dots that might be too close to the new dot or starting position. Only if we 

find a position that has enough clearance, we can proceed.

Before we move on, let’s look at the results. If you save the file with all 

the changes and refresh your browser, you will see several particle paths 

lined with dots of different sizes. The paths develop over time and stay 

clear of each other with a certain distance. Again, try playing a bit with the 

grid and the noise in the flow field. You should definitely try to increase the 

number of starting particles from 10 to 30 or more. You can also play with 

the radius variable for the particle.

Chapter 7  Flow Fields and Particle Storms with p5.js



242

Figure 7-2.  Particle paths traced by dots on top of flow field 

7.2.4. � Giving Particle Traces Different Colors 
and Shapes

Based on the previous example, we can now start experimenting with 

colors and shapes. The easiest way to give our dotted flow field a dash of 

color is to add a color variable to the Particle class and initialize it with a 

random color.

A PATH IN THE FLOW FIELD TRACED BY COLORFUL DOTS

constructor() {

    // as before...

    this.color = [random(0, 255), 50, random(120, 255)];

}

Chapter 7  Flow Fields and Particle Storms with p5.js



243

display() {

    // add a consistent fill color to the dot

    fill(this.color);

    // as before...

}

We change the constructor and display functions in the Particle 

class in two lines, first adding and initializing the variable color, then 

using it to fill the dots of this particle. The result gives us a blend of pink 

to purple to blue traces of dots, something we have seen before in the 

earlier chapters of this book. It’s time for a more interesting way to create a 

color palette. What if we could preselect a range of interesting colors, and 

give them each a weight? That means we could say that color A should be 

picked twice as often as color B, and just a little bit more often than color 

C. Sounds interesting, right?

We need two ingredients: a color palette that is set up as pairs of colors 

and weight values, and a function that randomly picks a color according 

to this palette. Why are the weights called like that? The idea behind 

this way to pick colors is that we want to be able to give different colors 

different priority or weight in the palette. Some colors can now be more 

dominant than others; some colors should appear seldom on the canvas, 

for instance, because they are just in the palette to give accents to a part of 

the canvas, but not to set the general tone. Let’s looks at the first part.

A PALETTE OF WEIGHTED COLORS

// selected colors as RGB values

let color1 = [255, 64, 85],

    color2 = [26, 40, 89],

    color3 = [26, 78, 91],

    color4 = [44, 91, 99],

    color5 = [123, 54, 54];

Chapter 7  Flow Fields and Particle Storms with p5.js



244

// color palette with pairs of colors and weights

let colorPalette = [ color1, 0.2,

                     color2, 0.1,

                     color3, 0.3,

                     color4, 0.1,

                     color5, 0.3 ];

This color palette contains five colors, and there two colors that have 

the highest weight (0.3), color3 and color5, color1 is on third place with 

weight 0.2 and the remaining two colors, color2 and color4, have the 

lowest weight (0.1). Note that the weights add up to 1; this is important for 

the algorithm to work. And here it is.

PICKING RANDOM COLORS FROM A WEIGHTED PALETTE

function weightedValue(array) {

    let randomNumber = random(0, 1), weightSum = 0, value;

    for(let i = 0; i < array.length; i += 2) {

          value = array[i], weightSum += array[i+1];

          if(randomNumber < weightSum) break;

    }

    return value;

}

// you can use this in the constructor() like this:

this.color = weightedValue(colorPalette);

The weightedValue function is pretty compact, and what it does is the 

following: it generates a random number randomNumber between 0 and 1. 

Then it hops through the color palette, color-weight pair by pair, and adds 

up the weights. As soon as the added weights in weightSum are greater than 

the random number, that’s the color to return. And that’s what it does. This 

Chapter 7  Flow Fields and Particle Storms with p5.js



245

simple way of going through the palette weights is also why the weights 

across all pairs need to add up to 1. Otherwise, all colors with weights 

exceeding the sum 1 at the end of the palette would be ignored. How can 

you use this in your work? Easy, instead of assigning a color by means of 

random RGB or HSB values, you can call the weightedValue function with 

the color palette that you want it to use. Right, that means you can make as 

many color palettes for different elements or parts of your work as you like. 

The function works with all of them.

Figure 7-3.  Particle paths traced by dots on top of flow field with 
random colors picked from a weighted color palette 

Before we move to entirely different shapes, let’s play with a bit of 

randomness in the dots of each particle.

Chapter 7  Flow Fields and Particle Storms with p5.js



246

DRAW PARTICLE TRACES IN FELT PEN STYLE

// replace in the update(flowField) function

// old: this.vel.mult(this.radius * 2.4);

this.vel.mult(2);

// add at the start of display() function

this.radius = random(2, 5);

These two changes in the Particle class result in a felt pen look of the 

particle traces. The first line changes how fast the position of the next dots 

advances per step (step size), and the second line changes the radius of 

the particle dot randomly every time a new dot is drawn. Try it out and 

play with radius, colors, and step size. And now it’s time to try a different 

shape than a circle to draw particles traces. Enter some rectangles!

DRAW PARTICLE TRACES WITH RECTANGLES

display() {

    push();

    fill(this.color);

    noStroke();

    �// translate and rotate to match rectangle with 

direction of path

    translate(this.pos.x, this.pos.y);

    rotate(this.vel.heading());

    rect(0, 0, -this.vel.mag() - 2, this.radius);

    pop();

    // store position for next round distance checking

    this.path.push(this.pos.copy());

}

Chapter 7  Flow Fields and Particle Storms with p5.js



247

We have to add a few lines to the display() function, so our rectangles 

render nicely step by step and in the right alignment with the direction of 

the path. We need to push() and pop() the canvas at the begin and end, 

because we will use translate() and rotate() to align the rectangle with 

the current direction (given by velocity) of the particle. Also, we are just 

reusing the radius and need to change its size a little to make thicker bars. 

We leave that to you to try out.

Figure 7-4.  Particle paths traced by rectangles on top of flow field; 
uniform colors on the left, multi-colored stripes on the right 

When looking back at the Fidenza series, our inspiration from the 

beginning of this chapter, we can see already some similarities compared 

to what we have drawn now. What is still left to try are multi-colored 

stripes snaking over the canvas. Let’s do that.

Basically, multi-colored particle traces are quite easy to accomplish: 

we just change the color variable once in a while, and we get particles 

traces composed of differently colored rectangles. This, however, looks 

quite arbitrary and random even though we might use the weighted color 

palette. What if we want stripes that have a base color for most their length, 

but rapidly changing colors at their start and end?

Chapter 7  Flow Fields and Particle Storms with p5.js



248

We don’t need a lot of changes actually, just a sense of where in the 

particle drawing stage we are at any moment. In other words, whenever 

we draw a new rectangle for a particle trace, we want to know if we are 

drawing this in the first or last 10%–15% of the particle trace. Instead of 

trying to predict the future (which also p5.js cannot help us with), we can 

play a trick: whenever we create a new particle, we compute a maximum 

length (maxLength) for it. Then we can use the current number of elements 

in the path variable and compare that to maxLength. By using map() we can 

even get the percentage and use this in an if condition to decide whether 

we are drawing a start or end section of a particle trace. If that is the case, 

we randomly select a new color from our weighted palette; if not, we set 

the base color.

DRAW PARTICLE TRACES WITH MULTI-COLORED RECTANGLES STRIPES

constructor(position) {

    // as before...

    this.maxLength = weightedValue([20, 0.5, 60, 0.5])

}

display() {

    // adjust colors at the start and end of the path...

    �let pathCoverage = map(this.path.length, 0, this.

maxLength, 0, 1);

    if(pathCoverage <= 0.1 || pathCoverage > 0.8) {

        this.color = weightedValue(colorPalette);

    }

    // ...otherwise set a center color

    else {

        this.color = [12, 35, 98];

    }

Chapter 7  Flow Fields and Particle Storms with p5.js



249

    // stop particle trace after a defined number of steps

    if(this.path.length > this.maxLength) {

        this.finished = true

    }

    push();

    translate(this.pos.x, this.pos.y);

    fill(this.color);

    // rest as before...

}

The last thing we need to do is end the drawing of a particle trace when 

the number of elements in path is larger than maxLength. That’s a second 

if condition. And we are done.

? Think about this W e have set the base color same for all particle 
traces. How could you vary this, so different traces have different 
colors? Could you use a different color palette for these base colors? 
A hint here: create a new variable in the Particle class to store the 
base color.

Based on the last example, you can revisit earlier chapters of this 

book where talked about layering and using transparency to create more 

complex pieces. In the following example, we have done three things: first 

we have introduced more randomness in how the rectangles are drawn 

and how many rectangles we draw at each step. In the previous examples, 

we have drawn a single rectangle, but why not reduce the opacity of the 

fill color and draw multiple rectangles at each step? Why not add a bit of 

randomness to the rotation, so the traces appear more handdrawn? The 

second aspect is to draw large ellipses with a very transparent white fill at 

random positions over the entire canvas. This creates a subtle white fading 

Chapter 7  Flow Fields and Particle Storms with p5.js



250

that seems to come from the center of the canvas. Random positioning 

of the circles is fine for that, because the ellipses will most overlap in the 

center of the canvas and thereby create a nice smooth central fading effect. 

And the third thing is that we reset the particles data structure and add 

new particles once in a while. These new particles will be drawn fresh 

over the canvas without checking the paths of previous particles. This way 

we can create a more layered effect between earlier and later groups of 

particles. Altogether, this results in a more complex rendering. This is also a 

good moment to introduce some interactivity into the mix. We have added 

a mousePressed() function that does the particle resetting for us, so we can 

watch the canvas develop live and trigger a new group of particles when the 

previous particles have faded enough into the white “mist.”

As you can see, earlier parts of the book stay relevant, there is so much 

potential in combining all kinds of different elements and techniques. 

Over time, you will develop a repertoire of intuitive techniques to apply, to 

give a concept a new direction or create inspiring variations of an idea.

Figure 7-5.  Particle paths traced by multi-colored stripes on top of a 
flow field, with transparent white filter effect

Chapter 7  Flow Fields and Particle Storms with p5.js



251

7.2.5. � Painting Particle Traces As a Whole
We have so far painted all particle traces step by step as the entire canvas 

develops. This is actually quite fun to do and to watch how the canvas 

develops and how the traces snake along the flow field, the odds stops and 

the smoothing aligning of traces, until they stop and a new trace begins 

somewhere else on the canvas. In the last example we have seen what is 

possible if we know or predict the overall length or shape of a trace: we can 

draw different parts of it in different colors, patterns, or shapes. We can 

apply layering and add complexity to the piece. That said, it is sometimes 

also good to make a moderate leap toward a different direction. This is 

what we want to show you in the last part of this chapter.

In this example, we don’t use individual elements like circles or 

rectangles to draw segments of a trace. Instead of drawing traces step by 

step, we use the positions stored in the path variable in one go and draw a 

curve through all points of the trace. And then we do it again and again, 40 

times per particle traces with varying colors for the curve stroke.

DRAW PARTICLE TRACES AS A WHOLE

display() {

  // restrict the length of lines to 100 segments

  if(this.path.length > 100) {

    this.finished = true;

  }

  push();

  strokeWeight(1);

  noFill();

  translate(0, -10);

  for(let o = 0; o < 20; o++) {

    stroke(255, 0, 255 - o * 2);

    translate(0, 1);

Chapter 7  Flow Fields and Particle Storms with p5.js



252

    beginShape();

    for(let i = 0; i < this.path.length; i++) {

      curveVertex(this.path[i].x, this.path[i].y);

    }

    endShape();

  }

  pop();

  // as before...

}

The code shows a new version of the display() function, which starts 

with a simple check whether the path is already longer than 100 positions. 

If so, we mark the particle trace as finished. In the following, we first set 

up the stroke and fill, and then draw a curve through all positions in 

path, one by one. Before each drawing of the curve, we translate the 

canvas by one pixel down and also adjust the stroke color toward a darker 

shade of purple. We do this process 20 times, see the for loop, and we use 

a combination of beginShape(), curveVertex(), and endShape() for that. 

The first line, with beginShape(), tells p5.js to start a new shape and wait 

for shape elements to be added. Then we add all positions to the shape 

with curveVertex(). This function will not only add a position, but also 

ensure that p5.js draws a smooth curve through this position (not a straight 

line, which would probably look quite jarring). Finally, we need to close 

the shape with endShape(). All this results in a canvas full of purple curls 

that look a little bit 3D, like the walls of a chaotic maze. You can vary all 

parameters we have seen so far to play with looks of this, from influencing 

the noise in the underlying flow field to the drawing parameters, colors, 

and randomness.

For example, we could change two lines and turn the canvas into a lofty 

version of one of the earlier examples. Instead of setting a homogeneous 

purple stroke with minimal variation, we could use the particle trace color 

Chapter 7  Flow Fields and Particle Storms with p5.js



253

that we have assigned when creating the particle. Next to that, we can 

change the transposition between individual draws of the curve through 

all positions of the particle trace. Let’s go with translate(3, 2).

DRAW PARTICLE TRACES WITH TRANSPOSITION

display() {

  // as before...

  for(let o = 0; o < 20; o++) {

    stroke(this.color);

    translate(3, 2);

    beginShape();

    for(let i = 0; i < this.path.length; i++) {

      curveVertex(this.path[i].x, this.path[i].y);

    }

    endShape();

  }

  pop();

  // as before...

}

It’s a comparatively tiny change to a large piece of code. And yet, the 

differences are striking. We bring back the color palette from before, create 

texture in the now quite wavy traces, and still maintain the feeling of flow. 

From here, you probably have some ideas how to continue or which things 

you want to try next. Don’t let us stop you. We will see each other back in 

the next chapter where we talk about new forms of interactivity that p5.js 

makes possible.

Chapter 7  Flow Fields and Particle Storms with p5.js



254

Figure 7-6.  Particle paths traced by transposed curves on top of a 
flow field

Chapter 7  Flow Fields and Particle Storms with p5.js



255

CHAPTER 8

Making Sense of 
Touch and Sensors 
with p5.js
Moving from Processing to p5.js enables not only a wider reach by being 

able to put your sketches on the web and make them accessible to a 

potentially huge audience. It also means that your sketches can run on 

mobile devices such as tablets and phones. This is more than being able 

to carry your creative work around; tablets and phones have built-in 

sensors and interaction capabilities that you would not easily find on a 

desktop computer. In this chapter, we will focus on multi-touch input 

and accessing sensors that provide us with data about acceleration and 

rotation. And, of course, we will use this in a creative way.

8.1. � Preparing for Mobile Browsers, 
Accidental Interaction, and  
Device Orientation

Before we head into the first real example, we need to take care of some 

setting up. First of all, we need to talk about where the web pages of the 

examples in this chapter will be hosted. We have prepared a page where 

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_8

https://doi.org/10.1007/978-1-4842-9780-3_8


256

you can browse the examples easily,1 but as soon as you would like to make 

changes and try new things, you need a way to make your p5.js sketches 

available online.

As a quick recap of the last chapter, we have seen that p5.js sketches 

are embedded in web pages and these web pages are loaded by a web 

browser – either on your own computer or on the device of a visitor that 

enters the URL of the web page. While editing and opening the pages on 

your computer was fine (and nicely fast) for the previous chapter, this will 

often not work in this chapter. Why? Let’s say you are editing an HTML file 

on your computer, then how will your phone or tablet be able to access 

this file? Unless you configure your network in a specific way, that’s not 

possible. Even if you would, for instance, use a touch screen like an iPad 

to access the web page on your computer, you would run into problems 

in the final part of this chapter when we use device sensors. This has to 

do with browser security settings; sensor access is only granted for web 

pages that are delivered over a secure connection. Secure connections 

are indicated by a small lock in the address bar and a URL that starts with 

“https://”. Ok, what’s the way out?

The easiest way to work with the examples in this chapter is to use the 

online p5.js editor (https://editor.p5js.org) with an account. This way, 

you can share and access the links to the examples on your touch- 

enabled mobile device. You can, of course, also use the p5.js editor on 

a tablet directly. The connection to the editor is secure and that means 

all examples can work. The other option is to use a different web hosting 

service, but make sure that you get a secure connection (check with your 

hosting provider how to obtain an SSL-encrypted connection), which 

means that you can access the examples with a URL that starts with 

“https://”.

1 https://codingart-book.github.io/examples/

Chapter 8  Making Sense of Touch and Sensors with p5.js

https://editor.p5js.org
https://codingart-book.github.io/examples/


257

8.1.1. � Preventing Accidental Interactions
Similar to the start of Chapter 7, we have provided a simple template of an 

HTML page for your p5.js mobile experiments. The main difference to the 

previous template is that we now configure the HTML and styling setup 

in such a way that you can interact with your p5.js sketch freely. Without 

these tweaks, you would trigger accidental gestures like pinch-zoom and 

text selection which disrupt the experience.

BASIC TEMPLATE FOR TOUCH AND SENSOR INTERACTION ON  
MOBILE BROWSERS

<!DOCTYPE html>

<html>

<head>

  <meta charset="utf-8">

  �<meta name="viewport" content="width=device-width,  

initial-scale=1, user-scalable=0">

  <title>CodingArt Chapter 8.1: Basic template</title>

  �<script src="https://cdn.jsdelivr.net/npm/p5@1.7.0/lib/

p5.js"></script>

  <style>

    body {

      margin: 0;

      padding: 0;

      -webkit-touch-callout: none; /* Safari */

      -webkit-user-select: none; /* Chrome */

      -moz-user-select: none; /* Firefox */

      -ms-user-select: none; /* Internet Explorer/Edge */

      user-select: none;

      touch-action: none;

    }

Chapter 8  Making Sense of Touch and Sensors with p5.js



258

  </style>

</head>

<body>

  <script type="text/javascript">

    function setup() {

      createCanvas(windowWidth, windowHeight);

      frameRate(20);

      // ...

    }

    function draw() {

      // ...

    }

  </script>

</body>

</html>

What exactly is happening in the template above? The major changes 

are in the <head> element, first a stricter zoom control for the viewport and 

then a <style> section that removes any margin and padding, and that 

switches off touch and selection actions for all browsers. In the p5.js script 

section, we have set the canvas size to windowWidth by windowHeight, 

which ensures that the entire mobile browser window is filled. What’s 

next? Taking care of device orientation.

8.1.2. � Device Orientation
Mobile devices such as tablets and phones, and anything in-between, are 

used in a certain orientation, either landscape (often for tablets) or portrait 

(often the default for phones). Although some devices are used in one of 

these orientations predominantly, users switch quite often, depending on 

the app they are using or the content they are consuming or producing. 

Chapter 8  Making Sense of Touch and Sensors with p5.js



259

Think of the last time you took a photo with your mobile phone, did you 

use a portrait or landscape format, and why?

When you create a piece that can be viewed on a mobile device, 

it might be good to think about how visitors might land on your web 

page and what first impression they will get. Also, it’s good to make your 

creation responsive to orientation changes, that is, when the visitor turns 

their device from portrait to landscape format or vice versa. The following 

code shows how to react to orientation changes and how to resize the 

canvas. It also shows how you can request the current orientation of your 

device with deviceOrientation. This can be useful, for instance, if you 

would like to show visitors a message suggesting to rotate their device.

HANDLING CHANGES IN DEVICE ORIENTATION

function setup() {

  createCanvas(windowWidth, windowHeight);

  frameRate(20);

  // ...

  // find out about the device orientation

  print(deviceOrientation);

}

function windowResized() {

  resizeCanvas(windowWidth, windowHeight);

  // don’t forget to recompute variables that depend on 

the window

}

Note that changing the canvas is one thing; if you compute variables 

based on the width and height of your sketch, like in all examples in the 

previous chapter, then you need to compute these variables again after a 

Chapter 8  Making Sense of Touch and Sensors with p5.js



260

device orientation change. In the case of the examples in Chapter 7, this 

would mean calculating rows and cols for the flow field again. And we will 

do the same in this chapter.

8.1.3. � Grid-Based Example Case
In this chapter, we will mostly use an animated grid as an example for 

multi-touch and sensor interactions. The grid is deliberately simple 

and does not rely on the flow field of Chapter 7. Instead, it consists of 

animations in a cell that are repeated throughout the canvas. We keep it 

simple, so we can extend it as we go through the chapter and add touch 

and sensor-based interactions. Note that the examples in this chapter need 

to be online and accessible from a mobile device such as a smart phone or 

tablet. You can use the p5.js editor for that: https://editor.p5js.org.

ANIMATED GRID, PART 1

let gridSize, cols, rows;

let color1 = [25, 40, 90],

    color2 = [25, 40, 60],

    color3 = [355, 65, 85],

    color4 = [25, 70, 92],

    color5 = [25, 80, 90],

    color6 = [45, 90, 100];

function setup() {

    createCanvas(windowWidth, windowHeight);

    noStroke();

    ellipseMode(CENTER);

    rectMode(CENTER);

    framerate(15);

Chapter 8  Making Sense of Touch and Sensors with p5.js

https://editor.p5js.org


261

    // define the grid size

    gridSize = 80;

    // calculate the number of columns and rows

    cols = ceil(width/gridSize);

    rows = ceil(height/gridSize);

}

function windowResized() {

    resizeCanvas(windowWidth, windowHeight);

    // recalculate the number of columns and rows

    // depending on new device orientation

    cols = ceil(width/gridSize);

    rows = ceil(height/gridSize);

}

We start with a few variables like gridSize, cols, and rows and a 

definition of six colors that we will use in the sketch. In the setup() 

function, we first create the canvas and then set drawing parameters such 

as ellipseMode, rectMode, and the frame rate. After setting the gridSize, 

we calculate the number of columns (cols) and rows. You find the same 

calculation in the windowResized() function that is called whenever the 

device orientation changes (e.g., because the visitor has rotated their 

device). Now we are ready to draw.

ANIMATED GRID, PART 2

function draw() {

  background(255);

  blendMode(HARD_LIGHT);

  // draw multiple layers

  for (let y = 0; y < rows; y++) {

    for (let x = 0; x < cols; x++) {

Chapter 8  Making Sense of Touch and Sensors with p5.js



262

      push();

      // move to grid cell

      translate(x*gridSize, y*gridSize);

      // move to center of cell first

      translate(gridSize/2, gridSize/2);

      // l1

      �fill(color1.concat([100 + 155 * sin(-HALF_PI + 

frameCount/20.)]));

      triangle(-20, -20, 35, 10, 0, 10);

      // l2

      �fill(color2.concat([150 + 55 * abs(-sin(HALF_PI + 

frameCount/7.))]));

      rect(0, 0, 75, 75);

      // l3

      �fill(color3.concat([100 + 100 * sin(HALF_PI + 

frameCount/5.)]));

      ellipse(20, 20,

              60 + 20 * sin(HALF_PI + frameCount/50.),

              60 + 20 * sin(HALF_PI + frameCount/50.));

      // l4

      �fill(color4.concat([100 + 155 * sin(PI + 

frameCount/10.)]));

      ellipse(-20, -20, 50, 50);

      // l5

      �fill(color5.concat([100 + 155 * sin(-HALF_PI + 

frameCount/9.)]));

      triangle(-20, -20, 35, 35, 0, 30);

      // l6

      fill(color6.concat([100 + 55 * abs(sin(frameCount/3.))]));

      rotate(radians(45));

Chapter 8  Making Sense of Touch and Sensors with p5.js



263

      rect(0, 0, 40, 40);

      pop();

    }

  }

}

Drawing a grid is something we have done several times in this book 

already. We use two nested for loops, the outer one for the rows and the 

inner one for the columns – same as you read the lines in this book: from 

left to right, then next row. Inside the loops, we draw the cells. This is very 

straightforward: we translate the canvas to the right grid cell and then 

to the center of this cell, then draw layer by layer, first a triangle, then 

a rectangle, then a circle, and so on. The fill color for the different 

elements depends on the frameCount, so it changes from frame to frame. 

We use different divisors for the frameCount, so we don’t see too much 

repetition in how the entire canvas is animated. We have seen this kind of 

periodic changes before in earlier chapters. What is a bit strange is how 

we add the transparency to a color. Let’s get that straight: colors in p5.js 

are represented as arrays of numbers, often three numbers for the three 

color channels of the RGB or HSB color models. For example, color6 = 

[45, 90, 100]. The fourth number indicates the transparency (the alpha 

channel). But how can we add this fourth number to an existing array of 

three numbers? Well, we wrap the fourth number in its own array and 

then “glue” both arrays together. The technical way to phrase this is we 

“concatenate” the two arrays, and that’s also how the JavaScript function 

is called: concat. So, let’s say we have a color color6 and a transparency 

value of 64. We first turn it into an array [64] and then concatenate it to 

the color: color6.concat([64]). That’s it. You can see this pattern in the 

preceding example and also in the following examples in this chapter.

Chapter 8  Making Sense of Touch and Sensors with p5.js



264

The other thing that might feel new is the call to blendMode(HARD_

LIGHT) which influences how colors mix when we draw layered shapes. 

The blendMode() function takes different parameters, which are all 

defined by p5.js. This particular one, HARD_LIGHT, is a combination of two 

other blend modes, SCREEN and MULTIPLY, for different levels of gray in the 

color: colors are mixed normally for low gray levels; otherwise the inverse 

of the colors is mixed. As usual, try it out to see the difference between 

blend modes and fine-tune your canvas. And then follow us to the next 

section on touch interaction.

8.2. � Touch and Multi-touch
In the previous chapters, we have used interaction to influence how 

visuals are selected, positioned, and drawn. So, we have changed the 

perspective of the viewer and how elements are composed and how layers 

are constructed. To do that we have used mostly mouse and keyboard, 

but now it’s time to go for touch. Touch screens have a longer history than 

the first smart phones, but the introduction of tablets and smart phones 

with screen-based touch input has brought this form of interaction to 

the mainstream. New vocabulary has entered our conversations, such as 

swiping (right or left), “doom scrolling,” and the more technical pinch and 

zoom – along with the respective gestures. Touch has allowed us to get 

more done with small screens and made them more fun and interactive. 

And then people invented multi-touch.

Touch and multi-touch are a more direct form of interaction than 

what is possible with mouse and keyboard. By touching the screen, we 

can almost touch the information that is displayed on the screen and then 

move it around, zoom in or out, and perform complex interactions with 

it. We can draw directly on a screen-based canvas, or rearrange apps on a 

home screen. Multi-touch interaction depart from the notion of a pointer 

toward gestures that use two, three, four, or even all five fingers.

Chapter 8  Making Sense of Touch and Sensors with p5.js



265

With p5.js we can capture touch interaction on a canvas, and use this 

in our creative process. P5.js focuses on major multi-touch interaction 

that is present in a broad range of touch-screen devices. However, not all 

possibilities of working with touch input in a mobile browser are exposed 

through p5.js. For example, the Safari browser on iOS (for iPhones and 

iPads) allows to get information about touch force and the area on the 

screen that the touch covers. More information on using touch in the 

browser can be found on the Mozilla Developer Network2.

8.2.1. � Working with Multiple Touches
For simple sketches that only need a single touch for interaction, you 

can still use touch handlers such as touchStarted(), touchMoved(), and 

touchEnded(). These are the touch equivalent of mouse handlers such as 

mousePressed(), mouseDragged(), and mouseReleased(). In fact, you can 

just make use of the mousePressed() handler in many cases, and touch 

events will be automatically translated. All this convenience stops when 

you want to use multi-touch: multiple touches are not using handlers 

anymore; instead there is a data structure touches that contains all touch- 

related information. This is essentially an array for all fingers on the screen, 

with each an x, y position and an identifier. Quick demo?

MULTI-TOUCH DEMO

let colors = [

    [25, 40, 90],

    [25, 140, 160],

    [255, 65, 85],

    [25, 170, 92],

    [25, 80, 190]

2 See https://developer.mozilla.org/en-US/docs/Web/API/Touch.

Chapter 8  Making Sense of Touch and Sensors with p5.js

https://developer.mozilla.org/en-US/docs/Web/API/Touch


266

];

function setup() {

    createCanvas(windowWidth, windowHeight);

    strokeWeight(3);

    fill(220);

    ellipseMode(CENTER);

}

function draw() {

    background(255)

    for(let i = 0; i < touches.length; i++) {

        let t = touches[i];

        stroke(colors[((t.id % 5) + 5) % 5]);

        ellipse(t.x, t.y, width/4, width/4);

    }

}

You can copy this code into a fresh copy of the basic template at the 

beginning of this chapter and open it in the browser (e.g., Safari on iOS and 

Chrome on Android) of a device with a touch screen. Place one finger on 

the screen, then the next, and so forth. Each fingertip touching the canvas 

should now be marked by a gray circle with a colorful outline. The outline 

color depends on the id of the touch, which changes when you lift a finger 

up and tap it down again. How does it work?

Letting the colors and setup() aside, the interesting stuff is in the 

draw() function. Here, we access the touches array and loop through 

all its entries. The number of entries depends on how many touches are 

registered on the screen. It could be none or up to five fingers (or any other 

body part that registers as a touch on your device). For each recognized 

touch, we first store it into a variable t and then look at the id to determine 

one of five colors. You have seen us use the modulo operation in previous 

chapters, and it’s a great little trick to get a number in a fixed range. But in 

JavaScript, the modulo operation works in a slightly different way: it can 

Chapter 8  Making Sense of Touch and Sensors with p5.js



267

produce negative number which are not useful when accessing an element 

in an array, like colors in this example. Therefore, we need to first use 

modulo, then add 5, then use the modulo again. Finally, we can draw a 

small circle with a border in the selected color and light gray background 

around the position of the touch.

8.2.2. � Multi-touch Interaction
Multi-touch interaction is more than just counting through touches. Let’s 

see what we can do else. In this example, we return back to the grid that we 

have developed in the previous section. The idea now is that we want to be 

able to influence the transparency and some form of displacement on the 

first five layers with touch input. For this, we can just process the positions 

of each touch and tie it to the transparency and displacement per layer. 

So, the y coordinate of the first touch (touch[0]) is mapped in the range 

of 0 .. height to a 0 .. 255 transparency value for the first layer. The x 

coordinate of the first touch is mapped in the range of 0 .. width to a -20 

.. 20 displacement value, again of the first layer. Then, we do the same 

for the second touch and the second layer. And so forth. Before we start 

processing a touch, the first, second, third, fourth, or fifth, we first check if 

there are enough touches registered. We can use the length of the touches 

array for that. And that’s our algorithm.

Chapter 8  Making Sense of Touch and Sensors with p5.js



268

Figure 8-1.  Three screen variants showing interaction with 
transparency and displacement through multi-touch

MULTI-TOUCH GRID INTERACTION, PART 1

// calculate the transparency and displacement based on touches

// map touch coordinates to height and width

let l1_transparency = 100 + 55 * abs(sin(frameCount/17.));

let l1_displacement = 0;

if(touches.length > 0) {

  l1_transparency = map(touches[0].y, 0, height, 0, 255);

  l1_displacement = map(touches[0].x, 0, width, -20, 20);

}

let l2_transparency = 150 + 55 * abs(-sin(HALF_PI + 

frameCount/53.));

let l2_displacement = 0;

if(touches.length > 1) {

  l2_transparency = map(touches[1].y, 0, height, 0, 255);

  l2_displacement = map(touches[1].x, 0, width, -20, 20);

}

Chapter 8  Making Sense of Touch and Sensors with p5.js



269

let l3_transparency = 100 + 100 * sin(HALF_PI + frameCount/10.);

let l3_displacement = 0;

if(touches.length > 2) {

  l3_transparency = map(touches[2].y, 0, height, 0, 255);

  l3_displacement = map(touches[2].x, 0, width, -20, 20);

}

let l4_transparency = 100 + 155 * sin(PI + frameCount/20.);

let l4_displacement = 0;

if(touches.length > 3) {

  l4_transparency = map(touches[3].y, 0, height, 0, 255);

  l4_displacement = map(touches[3].x, 0, width, -20, 20);

}

let l5_transparency = 100 + 155 * sin(-HALF_PI + 

frameCount/19.);

let l5_displacement = 0;

if(touches.length > 4) {

  l5_transparency = map(touches[4].y, 0, height, 0, 255);

  l5_displacement = map(touches[4].x, 0, width, -20, 20);

}

Compared that, the rest of the draw() function is quite mundane: 

Again, we move cell by cell through the grid, translate the canvas into 

the right position, and then draw layer by layer. We use the displacement 

value for each layer to translate the cell a little bit out of the way, and 

the transparency value for the layer to adjust the transparency of the 

fill color. This repeats for five layers, and the sixth layer is always drawn 

the same.

Chapter 8  Making Sense of Touch and Sensors with p5.js



270

MULTI-TOUCH GRID INTERACTION, PART 2

// draw multiple layers

for (let y = 0; y < rows; y++) {

    for (let x = 0; x < cols; x++) {

        push();

        // move to grid cell

        translate(x*gridSize, y*gridSize);

        // move to center of cell

        translate(gridSize/2, gridSize/2);

        // l1

        push();

        translate(l1_displacement);

        fill(color1.concat([l1_transparency]));

        triangle(-20, -20, 35, 10, 0, 10);

        pop();

        // l2

        push();

        translate(0, l2_displacement);

        fill(color2.concat([l2_transparency]));

        rect(0, 0, 75, 75);

        pop();

        // l3

        push();

        translate(l3_displacement);

        fill(color3.concat([l3_transparency]));

        ellipse(20, 20,

                60 + 20 * sin(HALF_PI + frameCount/50.),

                60 + 20 * sin(HALF_PI + frameCount/50.));

        pop();

Chapter 8  Making Sense of Touch and Sensors with p5.js



271

        // l4

        push();

        translate(l4_displacement, 0);

        fill(color4.concat([l4_transparency]));

        ellipse(-20, -20, 50, 50);

        pop();

        // l5

        push();

        translate(0, l5_displacement);

        fill(color5.concat([l5_transparency]));

        triangle(-20, -20, 35, 35, 0, 30);

        pop();

        // l6

        push();

        fill(color6);

        rotate(radians(45));

        rect(0, 0, 40, 40);

        pop();

        pop();

    }

}

Once you save this in your editor, make the sketch available online, 

and open it in a mobile browser; you should be able to use all fingers of 

your hand to interact with the layers and change their color composition. 

You can start with a single finger and then add more fingers to see more 

radical changes to the grid. Especially on small screens, this can feel a bit 

like a game of Twister where you need to figure out how to move a finger 

up when others need to move down.

Chapter 8  Making Sense of Touch and Sensors with p5.js



272

In this example, we have taken the idea of controlling, of backstaging 

your creative work with interaction to the foreground, and perhaps to the 

next level. Multi-touch is a rich form of input that allows us to control up to 

ten parameters of your sketch at the same time. That means five fingers have 

each a horizontal and vertical position which we can use as input. As we have 

mentioned before, the maximum number of touches that can be registered 

is five. Also it’s good to note that in this example, we use the direct position of 

each touch, not combinations or complex touch features like pinch, zoom, 

or swipe. Next to the touch control, we keep the animation of parameters 

that we don’t control. For example, when we place only two fingers on the 

canvas, we control four parameters (x and y positions of two fingers mapped 

to the first two layers in transparency and displacement), the remaining six 

parameters are partly animated using frameCount. This ensures that we have 

always fresh combinations to look at, and it keeps the experience interesting.

What else could we do based on this example? We have kept all cells 

same for now, and also all cells show the same type of objects and colors. 

Instead of working with this repetitive grid, we could also use a mosaic of 

different cell types and color combinations. We could let content move 

from one cell to another, potentially using a flow field for that. And all 

these things could happen on different, partially transparent layers that we 

interact with using multi-touch. In the next section, we will look at another 

type of interactive input to complement touch: device movement.

Figure 8-2.  Interact with device rotation and acceleration to control 
transparency, colors, positions, and forms of displacement

Chapter 8  Making Sense of Touch and Sensors with p5.js



273

8.3. � Working with Device Sensors
We have talked about device orientation before in this chapter. Tablets 

and phones respond to how they are held; they can change their screen 

orientation and sometimes activate the screen lock and log in screen, or 

create subtle visual effects such as a parallax effect on the home screen or 

triggering animations in applications. This means device have specialized 

sensors built-in that register device movement. In this section, we will 

make use of these capabilities.

8.3.1. � Activating Sensors
Devices collecting sensor data while being used can mean amazing 

opportunities for creatives. At the same time, such data collection can be 

so fine-grained and unobtrusive that we need to be aware of the privacy 

impact when using this technology. At the time of writing, the only 

restrictions on the use of sensor data in browsers were implemented on 

iOS and iPadOS (both by Apple Inc.). The restrictions mean that web page 

need to specifically request permission to collect sensor data, whereas on 

other browsers and platforms the data readily flows. On Apple platforms 

we need to request the user’s permission, and luckily this is quite easy.

ACTIVATING DEVICE SENSORS

function touchEnded() {

  DeviceOrientationEvent.requestPermission()

    .then(response => {

      if (response == 'granted') {

        // now acceleration and rotation sensing should work

      }

    })

    .catch(console.error)

}

Chapter 8  Making Sense of Touch and Sensors with p5.js



274

We can do this by adding the touchEnded() function, which triggers 

on the users’ first tap on the canvas. Inside this function, we request 

permission for device orientation events and await the response. We don’t 

need to do anything else; either the user grants permission and p5.js picks 

up rotation and acceleration data, or the user does not grant permission 

and all data will be 0. Note that the user’s decision to grant or not grant 

permission is saved by the browser for some time, so the user will not see 

repeated requests. That also means that if the permission is not granted, 

the user would need to clear the website cache in their browser to see the 

permission dialog pop up again. This is all we need to do to set up the 

device permissions; let’s use them in our next example.

8.3.2. � Working with Device Rotation
The first example is to use device rotation. Rotation is measured using a 

gyroscope sensor, and it works in three axes: rotation on the x axis happens 

when your phone is lying flat on a table in front of you and you pick it up 

to look straight at the screen; if you turn your hand holding the phone 

around your wrist, that’s a rotation in the y axis; and if you rotate the phone 

from portrait to landscape format when taking a photo, that’s rotation in 

the z axis. We can pick up on the current rotation angle for all three axes 

with p5.js.

How can we integrate device rotation into our previous example, 

the multi-touch grid? One way could be to introduce gradual cell 

scaling depending on the rotation around the x and y axes. Let’s see how 

this works.

Chapter 8  Making Sense of Touch and Sensors with p5.js



275

SCALING CELLS IN THE MULTI-TOUCH GRID DEPENDING ON  
DEVICE ROTATION

// insert into setup()...

angleMode(DEGREES);

// insert into draw()...

// insert before next for loops

let rotationXScale = map(abs(rotationX), 0, 90, 1, 2);

let rotationYScale = map(abs(rotationY), 0, 90, 1, 2);

// insert into nested for loops, after translating canvas

// depending on y rotation adjust scaling along x axis

if(rotationY > 0) {

  scale(map(x, 0, cols, 1, rotationYScale));

} else {

  scale(map(x, 0, cols, rotationYScale, 1));

}

// depending on x rotation adjust scaling along y axis

if(rotationX > 0) {

  scale(map(y, 0, rows, 1, rotationXScale));

} else {

  scale(map(y, 0, rows, rotationXScale, 1));

}

Based on the multi-touch grid example from before, we just have to 

add new code in three places in the setup() and draw() functions. The 

first is configuration option for the entire sketch that uses angleMode() 

to ensure that rotation values are always given in degrees. The second 

consists of two lines that you insert before the nested for loops that we use 

to draw the grid cells. What happens here? We create two new variables 

rotationXScale and rotationYScale that contain mapped values of the 

rotation around x and y axis (rotationX and rotationY, respectively). We 

Chapter 8  Making Sense of Touch and Sensors with p5.js



276

take the absolute value of the raw rotation value from p5.js (note that abs 

turns all values into positive numbers) and map this value to a scaling factor 

between 1 and 2, depending on the rotation angle. Small rotation angles, 

close to 0, result in a scaling factor of close to 1 (= almost no scaling) and 

larger rotation angles, toward 90 degrees, are mapped to values closer to 2 

(= scaling to double size). This scaling value is calculated both for rotation 

around the x and the y axis. The third and final addition happens inside the 

nested for loops: we insert instructions to scale the entire cell according to 

the rotation angles and depending on the position of the grid on the x and 

y axis. That means the scaling will be larger toward the edges of the canvas. 

It’s probably easier to see it than to describe the effect in words; you know 

what to do now.

In this example we only use rotation around two axes, and only for a 

moderately expressive effect. Based on what you have seen so far, you can 

probably think of many other things to try out using rotation, changing 

colors, triggering changes in how the canvas is drawn, letting elements 

respond to simulated gravity (and slide off the screen when the device is 

tilted), and many more.

8.3.3. � Working with Device Acceleration
As a final example in this chapter, we want to show you another type of 

device orientation: acceleration. When you move your mobile device 

around, from one hand to another or from a desk to your bag, the device 

is accelerated many times along three axes x, y, and z. If you place your 

device on a flat table and move it sideway or away from you, there is 

acceleration in the x and y direction, respectively. That means when you 

move your device sideways, it first accelerates until reaching moving 

speed, and then the acceleration is stable until you begin to slow down. 

This last part is also acceleration, just in the opposite direction, and we 

call this negative acceleration. So, acceleration is not movement, but 

Chapter 8  Making Sense of Touch and Sensors with p5.js



277

refers to speeding up (positive acceleration) or slowing down (negative 

acceleration) in a particular direction. You have probably a distant 

memory of physics class in school, that’s right.

A mobile device has a sensor for acceleration, similar to rotation, and 

p5.js gives you access to this sensor data in a similar way. Let’s dive into 

the code.

ACCELERATION FOR INTERACTION

let x, y, z;

function setup() {

    createCanvas(windowWidth, windowHeight);

    ellipseMode(CENTER);

    rectMode(CENTER);

    noStroke();

    x = width/2, y = height/2, z = 100;

}

function draw() {

  background(0);

  // compute change in acceleration

  x += (accelerationX - pAccelerationX) * 2;

  y += (accelerationY - pAccelerationY) * 2;

  z += (accelerationZ - pAccelerationZ) * 2;

  // adjust fill color to acceleration

  fill(255 - (x - 100), z, 255 - (y - 100));

  // draw circle at position influenced by acceleration

  ellipse(x, y, z, z);

}

function touchEnded() {

  x = width/2, y = height/2, z = 100;

  DeviceOrientationEvent.requestPermission()

Chapter 8  Making Sense of Touch and Sensors with p5.js



278

    .then(response => {

        if (response == 'granted') {

          // now acceleration and rotation sensing should work

        }

    })

    .catch(console.error)

}	

This short example code is all you need to copy into the basic template, 

and it shows a colorful disc at the center of a black canvas. The moment 

your device measures acceleration in any direction, the disc will represent 

this through position and size changes. Note that, on an iOS device such 

as an iPhone or iPad, we first might need to request permission to access 

sensors; see the touchEnded() function. So, don’t forget to tap the screen 

once before starting. The code is quite simple in the setup() function, 

where canvas size, drawing parameters, and three variables x, y, and z  

are initialized. We will use these three variables to record changes in 

acceleration and draw the disc at the center of the canvas. The draw() 

function is where all the fun happens: after erasing the canvas, we add the 

difference between the current (e.g., accelerationX) and the previous 

(pAccelerationX) acceleration measurement, multiplied by 2 for greater 

effect, to the variable x. And same for y and z. We have seen a similar thing 

for dealing with mouse positions in the earlier chapters: mouseX for the 

current position and pMouseX for the previous position. For acceleration, 

the difference between current and previous acceleration value is positive 

when the device speeds up and negative when it slows down – in any 

direction. Once we have this data, we can safely use in adjusting the fill 

color (x for the red channel, z for the green, and y for the blue channel), 

and for drawing the circle in the center of the screen. Well, it might not be 

the center if you shake your device hard enough. You can tap the screen to 

reset the disc back in the center in case it drifts off the screen.

Chapter 8  Making Sense of Touch and Sensors with p5.js



279

Coming to the end of this chapter, we have seen how easy it is to work 

with touch and sensor input for p5.js. With touch, we can handle one or 

multiple touch points almost in the same way and create interactions that 

deal with complex combinations of creative visuals and (interaction) data. 

It’s the same for device orientation data; rotation and acceleration are 

readily accessible with p5.js. If you count, just by combining multi-touch 

with rotation and acceleration sensor data, we can influence 10 + 3 + 3 = 16  

different parameters of our interactive sketches. This is sufficient for 

controlling complex creative works, and it becomes challenging for visitors 

to get a grip on the parameters they are controlling at the same time. So, 

let’s close with a word of caution: as a creative, always be mindful of your 

audience. As we have said in an earlier chapter – good code is not about 

showing how smart you are – the same holds for interaction: it is easy to 

overwhelm people with interaction possibilities, but hard to engage them 

well. Focus on the latter.

Chapter 8  Making Sense of Touch and Sensors with p5.js



281

CHAPTER 9

Dealing with 
Problems
If you are new to coding art, you see a promising, even exciting area with 

lots of wonderful things to explore. At the same time, you get the feeling 

that there is a lot of complexity and difficulty underneath all that wonder. 

Certainly not the most inviting view.

In the previous chapters, we have introduced you to Processing and 

p5.js, and we have shown you plenty of examples that illustrate important 

concepts and serve as starting points for your own journey into creative 

coding. And still, you might wonder: how could I even do this myself? 

How could I start from a blank Processing or p5.js sketch and achieve 

in code what I dreamt about last night (or during the morning shower). 

Good point.

This book follows a process from ideation to prototyping and finally 

production. While the last point comes late, we always stress that ideation 

and prototyping (making) are key and they happen in iterations. You 

have an idea, you express it in some form (code, comments, or even just 

text), and then you run it and go back to ideation. This process is what 

you should spend most of your time in. While we sketched this process as 

explicitly low threshold, you might get stuck here and there. This chapter is 

about getting “unstuck” – wherever you are in your process.

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_9

https://doi.org/10.1007/978-1-4842-9780-3_9


282

9.1. � Helping Yourself
The fastest way to get help is often helping yourself. It might not feel that 

way, but think about this: most of the information about what went wrong 

and that you need to eventually solve the problem is already in your head 

or on your computer. In 90% of cases, all you need is a pointer in a specific 

direction or a pointer to look at the problem in a different way. That’s it.

9.1.1. � Error Messages or Nothing Happens
Let’s look at different problems and how to solve them step by step. The 

first type of problem is directly visible in Processing: error messages. In 

the same category are problems like Processing not running your sketch 

anymore or crashing suddenly. All of these problems occur suddenly, 

and they result from a recent change to the code. You might have typed 

a Processing keyword wrong (you get an error message) or forgot a 

semicolon (you get an error message). The same is true for p5.js: after 

reloading the browser, the canvas stays blank. You might have copied 

and pasted some code from the Internet that simply does not match your 

previous code. And many other changes. Recognize the pattern?

The common pattern is that before the change, the sketch was working, 

but afterward, it does not work anymore. The first step that you can take 

is to go back to the last version that worked fine. Do it. Immediately feels 

better, right?

With this small win in mind, carefully retrace the steps that you 

took forward. Which lines of code were changed? Did you make a typo 

somewhere? Did you insert code that has missing dependencies to 

variables or functions? It is important to work slowly from change to 

change and check in-between if the code still runs fine. Over time, you will 

get a feeling for risky changes and deficiencies of copied and pasted code.

Chapter 9  Dealing with Problems



283

9.1.2. � Working with Copy–Paste
We use code that is written by others on a daily basis. Everything included 

Processing from the core; the libraries and the examples are open for 

you to get inspiration from. There is a lot more to find on the Internet, 

sometimes solving a very specific problem that only few people encounter, 

or sometimes providing something fundamental for a larger audience. In 

any case, using and reusing code from others is part of coding practice. 

This also means that we need to educate ourselves about when we are 

allowed to use such code from others and under which conditions. In 

almost all cases, it is a basic to give attribution to the creators of code 

that we use. That means we name them, thank them, and provide links 

for others to follow. This works both ways: as much as you save time and 

speed up your process, many creators of code love to hear about where 

their work is used, and they might even provide feedback or help you fix a 

problem. Again, avoid plagiarism and taking credit for the work of others at 

all costs!

Now to the more practical issues: When you copy code from a 

website or other resources and paste it into your own code, you don’t 

just introduce new code to your sketch. Attached to this new code are 

concepts, ideas, and approaches to achieve a particular solution. It is good 

to remember the context around the textual code that you copied. Why? 

Because this will influence how well the new code plays with the existing 

code in your sketch.

For example, you have a variable counter in your existing Processing 

sketch that counts how many times the mouse was clicked, and the new 

code from a website coincidentally also has a variable counter to count 

every time that 100 items have been rendered. The mixed changes to 

counter from both old and new code might result in quite strange behavior 

of your sketch. Finding this problem can be hard, because counter looks 

like a familiar object (because you wrote it yourself).

Chapter 9  Dealing with Problems



284

? Think about this W e should say that counter is a bad variable 
name to start with: what is counted? How is it counted? What if you 
need to count another thing? counter2, seriously?

A safer way to work with copy and paste is to create a new function in 

your Processing sketch and to paste the new code into this function. Then, 

you try calling this function at an appropriate location in your own code 

and see if there are unforeseen problems. Next, you go through the new 

code and check for anything that might have an unwanted side effect.

Reminder L ooking at all this effort, we suggest being hesitant to 
copy and paste too much, especially when you don’t fully understand 
the copied code. Also, be aware that working with larger pieces of 
code is always more difficult and slower than working with shorter 
code. So, pasting large pieces of code into your own program might 
be slower than first trying to understand the new code and only 
integrating a select piece.

A few examples of side effects are accessing and changing global 

variables; using canvas translation, rotation, and scaling; or changing 

styles like colors and strokes. For the first example, you need to really 

understand what is happening, the second can be mitigated by using 

pushMatrix and popMatrix around the new code, and the third can be 

helped by using pushStyle and popStyle around the new code. Once you 

make sure that there are no unwanted side effects, you can start trusting 

the new code and work with it in your next steps.

Chapter 9  Dealing with Problems



285

9.1.3. � Reference Documentation
In situations where your code runs, but does not deliver the expected 

results, it is a good idea to check the reference documentation of 

Processing or p5.js (and any library that you might have used). The 

reference documentation of both Processing and p5.js is available on the 

web and locally as part of your Processing installation (from the menu 

“Help”) or a download for p5.js. It provides one or more examples of how 

to use a function, explanations of what the different parameters mean and 

what the expected output is, and often a more general explanation of the 

function.

Processing and p5.js give you a platform that is built to support 

learning and getting to results fast. At the same time, the developers 

aim for a versatile toolkit of functions that can be used in many different 

contexts. An example is the fill function which sets the fill color for all the 

following statements that draw shapes or text. You can use this function 

with one (grayscale), two (grayscale with transparency), three (color), 

or four (color with transparency) parameters. The parameters result in 

different output also depending on the color mode (for instance, RGB or 

HSB). You see that this is a seemingly simple function that is very powerful 

in how it can be used. And it is not the only one. Compare the drawing of 

lines with line to curve. If you understand how you use line, would you 

have guessed how you would have to use curve?

The reference documentation is for exactly these purposes. It explains 

and unfolds the usage of core functionality. Even though we have used 

Processing and p5.js for years, we went back to the reference pages 

countless times for this book. No shame in that.

Chapter 9  Dealing with Problems



286

9.1.4. � Searching for Symptoms
When you have ruled out simple problems or you are stuck with something 

that just seems an impenetrable mess, it is time to turn to a search engine 

and feed it with search terms. This is how you can really speed up your 

discovery: Choose your search terms carefully. Think about how others 

would describe the symptoms of the problem that you have and include 

any error message that Processing gave you. It is important to note that 

you first need to search for symptoms and not the speculated root cause 

of your problem. Why? The symptoms are a fact, something that you 

have observed. The root cause is often a speculation and interpretation 

of the symptoms with a heavy dose of the same bias that brought you to 

the problem. If you get an error code or, in case of Processing (and Java), 

an explicit exception like NullPointerException, then include this in 

your search.

Once the search engine returns results, after filtering out the most 

obvious advertisement and scamming, you can do two things: check 

if there is a quick fix, or read more to better understand your problem. 

In many cases, there are quick fixes available that only take a few extra 

lines or configuration options to solve a nasty problem. Although quick 

fixes might be very convenient, don’t spend too much time digging for a 

quick fix. Set yourself a time limit, and then continue the search to better 

understand your problem. Have other people found similar issues? If you 

seem to be the only one on the Internet having this problem, are your 

search terms correct? Could it be another, but related problem? Or have 

you seen this problem before? Quite often, we see patterns of problems 

appear more often.

For example, the aforementioned NullPointerException occurs 

frequently in Processing. It is a signal that Processing encountered an 

access to properties of an uninitialized object (“null pointer”). The 

following code shows this problem.

Chapter 9  Dealing with Problems



287

CODE THAT TRIGGERS A NULLPOINTEREXCEPTION

PVector position;

void setup() {

    size(400, 400);

}

void draw() {

    rect(position.x, position.y, 40, 40);

}

If you run the preceding code, you will immediately get a 

NullPointerException as an error message in Processing, highlighting 

the line rect(position.x, position.y, 40, 40). Processing throws 

this error (at you) because PVector position is never assigned a real 

PVector object. The moment that Processing accesses the properties x 

and y of an unassigned object, it will fail and tell you that through an error 

message. What else would you expect a machine to do? You can easily help 

Processing here and assign a value to the variable position before using it. 

So, you can fix the trouble by changing the first line. See the following.

SOLVE THE PROBLEM BY CHANGING ONE LINE OF CODE

PVector position = new PVector(100, 100);

If you work with p5.js, you might get different errors: unknown 

variables, values that are undefined, or missing libraries or files because 

they are requested over the Internet. Most of the time, you will notice 

these errors simply because the canvas on the page stays blank. Open 

the developer console in the browser and investigate what might be the 

problem. Check the network tab first if you suspect a missing file, then the 

Chapter 9  Dealing with Problems



288

console where the errors show up. Sometimes an error only shows up for a 

specific type of browser or device. Then you need to get your hands on that 

to investigate.

In the end, you will spend a significant amount of time on trying to 

find out things that went wrong. But don’t ever think that this time is 

lost or wasted. Apart from solving your immediate blockage to creative 

momentum, you will learn valuable tricks or recognize patterns that 

help you avoid similar problems in the future. Solving problems is more 

learning than anything else.

9.2. � Getting Help from Others
We have talked about helping yourself before, which is a fast, but passive 

way to interact with online resources. It consists of searching, browsing 

results, reading, following links and cues, and reading more. There are 

other ways to get help online: through communication with others, 

experts or not.

9.2.1. � Finding Help
For most programming languages, platforms, and systems, there are 

specialized online forums where anybody can join and ask for help. The 

more specific the forum is, the better chances are for finding people who 

are capable of helping (not necessarily experts), who are interested in 

problems like yours, and who are willing to help, dedicating their free 

time to you. Think about this: if you would post your problem on a general 

social networking site like Twitter or Facebook, would you really expect 

high-quality help? Only if you are connected directly to people that we 

described earlier (capable, interested, and willing). Most people on Twitter 

or Facebook would probably just like your post to “support” you, but 

... well.

Chapter 9  Dealing with Problems



289

There are smaller subcommunities in social networks, but they are not 

always freely accessible and you cannot search for previous answers easily. 

Your chances grow when directly looking at the right forum or specialized 

discussion board. Two of these communities are stackoverflow.com1 

and openprocessing.org. (By the way, you are lucky if you are part of an 

educational institution, like a university. Your chances of getting help are 

very high if Processing, p5.js, or programming is part of the curriculum.)

9.2.2. � Asking the Right Questions Right
Now that you have found the right people (or the closest you could 

get), let’s see how this could go wrong. Keeping seriously bad manners 

aside (you know what we mean: rude, tone-deaf, demanding, ignorant 

behavior), the number one mistake you can make on a forum is to barge 

in without having searched the historical forum posts for answers to 

your question. If you do that, you waste yours and others’ time and 

definitely their goodwill. So, search before you ask, and mention that in 

your question, so people don’t interpret your question as a duplicate of a 

previously answered question.

With this obstacle out of the way, the next challenge is to phrase 

your problem as a question worth answering. What is the clear sign that 

something went wrong, and how should the ideal outcome look like? What 

have you tried before? With which results? What is the environment that 

you tried (Processing or p5.js version, computer type, operating system, 

memory, peripherals)? What is the output that you have observed? Did 

you log any data (e.g., with println)? Try not to write a very long problem 

description, but include everything that could be useful to helpers. Be 

aware that they don’t know what you know. Things that are obvious to you 

might need several follow-up questions for them to understand.

1 https://stackoverflow.com/

Chapter 9  Dealing with Problems

https://stackoverflow.com/


290

9.2.3. � Minimal Working Example
The easiest way for others to help you is to provide them with a minimal 

working example. This is an extract of your own code that is as small as 

possible and still can show the problem clearly. This is easier said than 

done. Copy your code into a new folder, and cut away all code that is or 

seems unrelated to the problem. Remove all unrelated dependencies, 

libraries, and resource. Continue until you have a few lines of code that can 

always demonstrate the problem when you or someone else runs them. At 

this point, you probably see the value of comments. Comments will also 

help others understand what you tried to do and which approaches did not 

work. It is best if you add instructions to the example, how to start it and 

how to reproduce the problem if interaction is necessary for that.

Probably you see the solution already; if not, the minimal working 

example can then be posted online together with your question. Hopefully, 

others will engage with the example code and help you by providing a 

solution approach. Be prepared for unfortunate case that it cannot be done 

(and you have to go back to the drawing board).

In any case, once you post your problem on a forum, try to be present, 

to respond timely to follow-up questions, and show your gratitude. When 

the problem is solved, say so. Many sites like StackOverflow have a button 

for marking an answer as correct. Sometimes you can “upvote” answers 

or comments. All these keep people engaged and create positive feedback 

loops around helping each other online. Maybe you can offer help, too?

Experience shows that, in many cases, problems are solved by writing 

them down in a way that others can understand them and help. Through 

expressing your problem and packaging a minimal working example, you 

understand what actually cause the problem and can solve it yourself. This 

approach is sometimes called “rubber duck debugging”: the act of solving 

your problem by verbally explaining it to a rubber duck (or another animal 

or a friend). Yes, we seriously suggest you talk to an object. Try that!

Chapter 9  Dealing with Problems



291

9.3. � Working with Experts
A different way of working is by involving experts in your creative process. 

These can be people that you find in your local community but also 

online. Unlike the often anonymous or pseudonymous helpers on online 

discussion boards, these are people that you trust and whose opinion 

you take seriously even if they contradict you or point you at your own 

mistakes. We give this topic a separate section to emphasize the distinction 

between the former helpers who are sporadically and infrequently pulled 

in – and true collaborators.

9.3.1. � How Can Experts Help You?
When engaging experts in a project, you need to have a clear idea about 

what skills or knowledge you need or which parts of your project you 

cannot do yourself. The latter part is an important consideration because 

for anything that you delegate in some way, you need to have a clear 

picture of its eventual outcome.

Experts that are involved in your project should be able to provide 

honest thoughts, ideas, and criticism – even beyond their area of expertise. 

The advice from experts often involves changing more than just a single 

part of the system, and you should expect and welcome such advice even 

though it might be tough to follow through.

You can take the divide-and-conquer approach and define areas in 

the project that can be tackled by an expert, ideally without interfering too 

much with the rest of the project. You can also work closer with the expert 

and engage in a more fluent process and conversation. It is worthwhile 

trying out different ways to collaborate. Go with what feels best. Be 

positive.

Chapter 9  Dealing with Problems



292

9.3.2. � How to Manage a Project with Experts?
Whoever you work with, agree with them beforehand how and how 

frequently you will interact, what your expectations are in terms of time 

investment, and what the project milestones are (if the project is that 

well defined). Think about how you will communicate and which kinds 

of responses others can expect from you. Finally, agree on compensation 

and attribution beforehand. Write it down and confirm it in emails. Think 

about why others would like to collaborate on the project with you. There 

needs to be something that you can offer, for instance, sharing the credits, 

a learning experience, your skills in another project, money, or even a 

party or dinner when everything is done. We have seen others struggle 

with their creative collaborations in the past, simply because they never 

thought about creating a rewarding process for their experts and helpers. 

In the end, they were doomed to an extreme fluctuation in experts and 

running out of options who to ask in the local community.

Experts tend to “know it better” and might not argue for labor- 

intensive solutions. In particular, technical experts might be more 

comfortable suggesting “smart” or automated solutions to a problem when 

the real solution is just more work (involving continuous quality control 

by the creative). For technical experts, working with creatives means to 

accept iterations and pushing for quality that is beyond the “natural” 

qualities of the expert domain. For example, the final stage of a project 

with a (technical) algorithm underneath needs several improvements in 

how the output is generated. These improvements have nothing really to 

do with improving the algorithm. But they still require plenty of changes to 

the algorithm.

? Think about this T his has to do with potentially different value 
systems: Which things do you value? How would an expert value 
things differently?

Chapter 9  Dealing with Problems



293

This situation can be difficult for an expert without the creative 

realizing this. The possible result is that both sides are not satisfied 

with the outcome: the creative, because their quality standards have 

not been met and the project feels unfinished, and the expert, because 

their intensive work in the end does not lead to better results and is not 

appreciated. When the final stage of the project becomes very intensive in 

terms of labor, time, and precision, it is good to realize that this is a normal 

thing to be expected. It requires good communication and constant 

exchange of thoughts to resolve this potential conflict. The creative as 

the project owner needs to lead this effort, balancing between pushing 

forward and keeping everyone on board.

Working with experts means sharing responsibilities for the success 

of the project and also sharing the attribution. Think of movie credits; 

they name sometimes hundreds of people for a variety of roles and 

obligations. Take this approach, and give attribution to all people involved 

even though it is “your” project. A project is often only the starting point 

to a series of collaborations, which makes sense as you know each other 

better over time and can work more effectively. We found that the best 

collaborations take months or years to build, and then work is basically 

reading each other’s minds. It happens surprisingly often, and when it 

does, it feels great.

Chapter 9  Dealing with Problems



295

CHAPTER 10

Learning Path
When you have finished reading this book (the end is not that far away 

now), what’s next for you? Hopefully, you have tried plenty of the examples 

and even went on and modified them on your own. Perhaps, you felt like 

going down a rabbit hole and exploring a creative coding topic like curves 

(points on curves, Bezier curves, etc.), intricacies of randomness and 

noise, or 3D shaders (think of tiny “texture programs”). When we started 

this book, we wanted to create a reading-and-making experience that 

sporadically branches off in completely odd directions, driven by your 

curiosity. Done that? Good!

In this chapter, we take a structured approach to what you could 

do next: from exploring Processing and p5.js functions and libraries to 

connected technologies to realizing projects and also helping others. 

Let’s go.

10.1. � Going Deeper
When working more and more with Processing and p5.js, you will find that 

you can structure your own ways of using Processing in a project which 

will benefit yourself and others.

Both Processing and p5.js are rich platforms that offer a lot of 

opportunities for diving deep into subtopics. We mentioned some earlier 

(curves, randomness, noise, and 3D rendering), but there is more from 

static graphics (like our book cover) to generative art and very hip movie 

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_10

https://doi.org/10.1007/978-1-4842-9780-3_10


296

overlays; many things are possible. There are sites like OpenProcessing.org1 

but also blogs and videos2 online explaining new tricks and pushing the 

aesthetics of what can be done with creative coding. Then there are social 

network communities around generative art, creative coding, teaching 

coding, and many more. There you can learn how to visualize data and 

create games and collaborative applications. We have used Processing 

successfully for teaching how to design musical instruments and multi-

modal experiences in the past, and p5.js is super useful for making small 

interactive, expressive prototypes that run on almost any mobile device.

10.1.1. � Challenges to Pick
In all this, it helps to have a concrete project that guides learning. A project 

grounds the steps forward and prevents you from getting lost in details at 

every turn of the road. The second important ingredient for a sustainable 

learning experience is to not aim too high. Pick your learning challenges 

such that the learning curve is not too steep and you can get into a positive 

flow. If you feel struggling constantly without any moment of success, 

disengage and make new plans.

When you start a project, be aware that it might be tempting to 

combine learning with a more serious output. Such a two-in-one nature 

can be valuable and motivational. However, be honest to yourself and 

others about your motivations to embark on the project journey. If it is 

a serious project with clear deliverables and deadlines, ensure that the 

priorities on delivering are clear; learning plays a smaller role here. For 

projects that are motivated by learning, manage expectations that others 

might have on the output. The desired outcomes of such projects are an 

enhanced skill set, new insights, and broader knowledge, not a very refined 

end result (although that might happen eventually as well).

1 https://openprocessing.org
2 https://processing.org/tutorials/

Chapter 10  Learning Path

https://openprocessing.org/
https://processing.org/tutorials/


297

10.1.2. � Building Your Own Toolset
When working more and more with Processing or p5.js, you will find that 

you use some tricks or patterns several times, and they reappear from 

project to project. Instead of copying them, you could consider turning 

them into functions that are reusable in different situations. What is 

the learning point here? You go through a process of spotting a pattern, 

identifying its scope (where it applies and where not), isolating the pattern, 

and packaging it into a function that allows you to apply the pattern in 

various situations. Once you come across a situation where the pattern 

generally fits but does not apply 100%, you can introduce parameters to 

make the pattern more flexible.

As an example, let’s say you have worked with motion and movement 

in the last seven projects. Throughout these projects, you designed with a 

specific way of motion easing (how visuals accelerate and slow down). You 

can refine this pattern in the subsequent projects toward a small library 

of moving things around with very specific qualities. This collection of 

functions can become your personal library, and it will allow you to work 

on the next projects much faster, because the movement part is taken 

care of.

We have done this once or twice in the book. For example, this is how 

we developed the MemoryDot class. You can take this principle further by 

bundling different functions and patterns into your own library. This will 

allow you to express creative ideas much faster and in more sophisticated 

ways than coding them from scratch. When you have compiled such a 

library bundle of functions, you can make this library available to all your 

Processing sketches by creating a Processing library. How? Find it out by 

starting a search with “Processing library how-to.”3 For p5.js, read on.

3 https://github.com/processing/processing/wiki/Library-Basics

Chapter 10  Learning Path

https://github.com/processing/processing/wiki/Library-Basics


298

10.1.3. � Sharing Your Toolset with Others
After using your own library a few times, perhaps you feel confident about 

its quality and want to share it with others who have helped you before 

or that you helped online. One way to share code openly online is using 

a website like GitHub, GitLab, or BitBucket. These sites allow for sharing 

code and have the proper online tools for doing this in a very structured 

way. While doing so, you will learn about version control systems (git and 

mercurial) and about writing documentation that helps others make good 

use of your code. There is a lot more to read and learn about these topics, 

and that’s also why we only touch on it here briefly. It’s your learning path, 

should you be interested in this direction.

10.2. � Different Technologies
Once you reach the limits of how you can express your ideas with 

Processing or p5.js, it might be good to look at other technologies.

Still, we believe that starting a project with Processing or p5.js has 

huge benefits in terms of quick creative “sketching” of computational 

ideas. In most cases, you can start like this and then change the underlying 

technology if that fits your output better.

10.2.1. � Enhancing Processing and p5.js
Processing and p5.js are not only versatile frameworks internally (with all 

included functionality). With these platforms, you can reach into a vast 

ecosystem of functions implemented in languages like Java, Groovy, Scala, 

Kotlin, and Clojure (for Processing) and JavaScript for p5.js. Since over 25 

years, talented people have built applications, frameworks, connectors, 

libraries, and examples in these languages that are in principle all available 

to you. A good starting point are the official and contributed Processing 

Chapter 10  Learning Path



299

libraries that are linked on the Processing site and also available through the 

Processing library manager (in the menu “Sketch” ➤ “Install library...” ➤ “Add 

library...”). With just these Processing-specific libraries, you will have access 

to different modalities than standard peripheral input and visual output, to 

various ways to incorporate networking and connectivity in your work, or to 

advanced physical models for visualization and behavior simulation.

The same is possible for p5.js; here it is even easier to extend p5.js by 

loading one or more libraries after loading p5.js in your web page.4 Check 

out the core and community libraries that are available for p5.js – both on 

https://p5js.org and other places on the web.

Coming back to our previous fictional example of a series of seven 

movement-related projects, you could use libraries to connect the 

movement on the screen to different input devices or to sound output. In 

the first two projects, you work with the mouse movement, but using the 

Kinect library, you use human skeleton tracking to drive the movement 

on screen with your arms and shoulders. Now, you can literally “push” the 

objects on the screen and connect aspects of human body control to visual 

display of movement. You can use your body as a mouse, if you will.

A good starting point here is the Processing libraries site to pick a few 

things that you install via the library manager, or libraries linked from the 

p5.js libraries page. Then dive into the libraries’ examples that are available 

from the Processing examples browser or online on the library website. 

Most libraries come with at least a few clear examples that demonstrate 

what you can do with the library and directly show you in code how.

10.2.2. � Assessing Feasibility
Another aspect of your learning path in Processing and p5.js is about your 

growing ability to judge or assess what might or might not be feasible given 

the current available technology and skill set. This is conventionally the 

4 https://p5js.org/libraries/

Chapter 10  Learning Path

https://p5js.org
https://p5js.org/libraries/


300

domain of experts that you possibly collaborate with: you describe what 

you want to do, and experts assess whether this is possible and under 

which conditions. Only then the team would move forward with the 

project. Creative sketching with tools like Processing and p5.js essentially 

challenges this clear division of roles and aims at empowering you, the 

creative, to self-assess concepts and project it into the future based on 

tools and technology.

How does one acquire this skill? It would be too simple to answer 

“experience, years of experience.” Assessing the feasibility of an approach 

can be understood as the walk down a mental path from idea and concept 

to a working prototype. It means (mentally) visualizing step by step how 

every stage of a work builds on a previous stage and that there is no magic 

involved in any part of the path. If things get blurry or involve some sort of 

technical magic, stop. Think back about what you have read in this book 

so far. Wouldn’t you be able to judge that working with a particle cloud or 

with texture is generally feasible? Of course you would (if not, check out 

Part 1 again). Would it be possible to render the title of this book using a 

particle cloud? Let’s think: particle cloud (done, check), text rendering 

(works, check), and the combination of text position lookup and particle 

movement? Seems tricky, but not impossible.

10.2.3. � Moving Away from Processing and p5.js
In specific cases, Processing might not be a good choice to further 

prototype and develop a final work. Processing is based on the Java 

language and its runtime engine. This layer allows to run Processing 

sketches without any modification on different platforms and operating 

systems. However, this takes a toll: speed. The Java runtime engine is 

an intermediate layer between the Processing sketch and the operating 

system and the hardware. That means things can be a little slower, 

Chapter 10  Learning Path



301

especially things that involve hundreds or thousands of computing steps – 

like rendering in 3D or rendering “many things.” Similar for p5.js; it is 

implemented in JavaScript which is running in the browser. Although 

web browsers are generally very fast today, you might miss the last bit of 

performance – or you might want to run your creation on a resource- 

constrained device like an older phone or tablet, or a Raspberry Pi.

There are other technologies that don’t have this bottleneck, 

but might be harder to work with in the beginning. One example is 

openFrameworks,5 which is a platform similar to Processing (functions 

are even named similarly), however based on a different programming 

language: C++. On the one hand, this requires different ways to code and 

develop creative work and, on the other hand, allows for higher execution 

speed. If you are after speed on the web, you could think of implementing 

your sketches directly on the browser canvas or using a faster version of 

p5.js like q5.js6.

Other examples are PureData7, Max8, or TouchDesigner9 which are 

visual, flow-based programming languages, each with their own runtime 

environment. They were designed to help develop creative work that is 

based on signals, sound, and video streams. These languages follow the 

idea of providing building blocks that are highly optimized for speed and 

allow the user to connect them in very flexible ways. The connections 

just tell the framework how the data should flow; the rest is done by the 

internal building blocks, which results in a very different creative flow than 

with Processing and p5.js.

5 https://openframeworks.cc/
6 https://github.com/LingDong-/q5xjs
7 https://puredata.info/
8 https://cycling74.com/
9 https://derivative.ca/showcase

Chapter 10  Learning Path

https://openframeworks.cc/
https://github.com/LingDong-/q5xjs
https://puredata.info/
https://cycling74.com/
https://derivative.ca/showcase


302

It is a very worthwhile direction to explore the computational world 

around and beyond Processing. You will see that different technologies 

place different emphasis on core principles. Some are focused on learning 

and sketching, some are focused on working with data or audio signals, 

and some emphasize connections with other technologies. The more you 

experience, the better you will be able to make a choice when the next 

project comes along or inspirastion strikes, which brings us back to the 

creative process of coding art.

Chapter 10  Learning Path



303

CHAPTER 11

Creative Processes
In this chapter, we look at creative processes that involve computing 

and data as material. We intentionally put this chapter in the last part of 

this book, also as a reflective perspective on what we wrote earlier. We 

emphasized making over thinking in the first two parts; now it’s finally 

time to explore the framing of this book. We start with the ideation and 

look at two different approaches before proceeding with abstraction layers 

and ways to shift technical perspectives within our work.

11.1. � Two Types of Ideation
In the following, we will intentionally polarize a bit and try to distinguish 

two different approaches to ideation. We know that this distinction is a 

bit extreme and does not happen exactly as described in real life. Instead, 

most creatives use a mix of both approaches, perhaps in iteration, to come 

to meaningful results.

Nevertheless, let’s have a look. What we see when creative work 

involves technology are basically two different approaches to ideation: 

concept based and material based. The former asks: given the concept 

in mind, how can I creatively use the material at hand? The latter asks: 

given my creative exploration of the material at hand, which concept 

could meaningfully build on it? We will describe in the following how this 

unfolds when working with Processing or p5.js.

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3_11

https://doi.org/10.1007/978-1-4842-9780-3_11


304

11.1.1. � Concept-Based Ideation
In this approach, the creative work starts conceptually, probably long 

before a creative coding tool is touched. The core challenge is that there is 

an abstract idea in your mind and you need a starting point for Processing 

or p5.js to ideate through coding. This means often that you know how the 

idea could possibly unfold and how this would look, sound, or feel.

A common strategy is searching for examples, for other people’s work 

that seeds the coding process. You might find examples online directly, 

or through interaction with others, and start changing the example code 

toward your idea. A visual search starts with a description of the visual 

idea. Find the right words that concretely describe your idea visually. 

There are online resources you can start with, for example, Google Images, 

OpenProcessing.org, or even the Processing or p5.js reference pages. 

These sources will deliver different kinds of results: a generic image search 

engine will likely produce very diverse results that are often not produced 

with Processing, so they come without source code. OpenProcessing.org 

and similar sites, as well as the Processing reference pages, contain the 

source code. As we have pointed out before, working with other creatives’ 

code can be challenging. It requires understanding how their code works, 

but most of the time, you can start with small changes and develop 

your understanding of the code by seeing how it reacts to your changes. 

However, if you start from reference pages or educational examples, you 

can expect that the material is produced to be easy to understand and take 

further.

11.1.2. � Material-Based Ideation
Another approach is to start from the material, in this case, coding with 

Processing or p5.js. Unlike physical materials like paper, glass, wood, 

and clay that are used in traditional fine arts and design, computation 

Chapter 11  Creative Processes



305

and programming of computational machines (computers) represent a 

new type of creative material. Material-based ideation is about exploring 

what this material can do, how it responds to our interactions, and how it 

pushes back when we poke it. The questions that we ask could be: “What 

can this technology do for us?” “How does it do this?” And “where are the 

limitations and how to cross boundaries with the material?”

There might be more technical questions, but it is worthwhile to stay 

focused on the high-level challenges. Only after several experiments with 

the material, the creative starts to gradually shift toward a more concrete 

theme or concept of their work. Given the technological material, what 

is a meaningful concept that connects to it at which level? How can the 

concept then build on the technology through several iterations? How 

might the concept demand something different or more from the material 

than previously (thought) possible?

These two strategies have different focus points. While the 

concept-based approach views technological material as a means to 

communicate a concept, the second material-based approach looks 

at a material differently and treats the concept as a way to frame and 

elevate the material that is at the core of the creative work. As we write 

in the beginning of this section, the division is not that explicit in real 

life. Creative work is by definition flexible in choosing and switching 

approaches and methods. Follow your heart.

11.2. � Using Abstraction Layers
When we show you examples of code, these examples are always 

condensed, so they (mostly) fit within a page and compress a few learning 

points that are unfolded in the text. There is another way to look at the 

examples: by identifying and differentiating layers or components in every 

example.

Chapter 11  Creative Processes



306

We will do this here as we talk about their integration in creative 

processes in several steps that are linked to different iterations. The 

iterations mean that we will create a connection between layers and iterate 

several times before moving on. We start with the simple behavior–output 

combination that we showed at the beginning of Part 1. The code is made 

for Processing, but it is really easy code, so you should be able to produce 

the same results in p5.js.

11.2.1. � First Loop: Behavior to Output
The first loop is about understanding that a sketch has behavior and 

from that generates an output on the screen, even though there is no 

interaction yet. We describe this loop mainly in the first part of this book, 

where we aim to translate ideas into visual elements and transform their 

presentation into the output. Let’s look at an example.

DRAW A WHITE CIRCLE THAT ROTATES AROUND THE CENTER OF  
THE CANVAS (PROCESSING)

void setup() {

 size(400, 400);

}

void draw() {

 background(0);

 translate(width/2, height/2);

 rotate(radians(frameCount));

 ellipse(20, 20, 20, 20);

}

This example shows a white circle that rotates around the center of 

the canvas. The code is quite simple and consists purely of drawing or 

positioning commands. For every frame we erase the background, position 

Chapter 11  Creative Processes



307

with canvas with translate and rotate, and finally draw the circle with 

ellipse. The positioning is at a fixed point in the center of the canvas, and 

the rotation depends on the frameCount. We have seen this pattern before 

in the book.

This is a simple behavior that generates simple output. We might want 

to iterate on the looks of the visual elements, for example, the color or the 

rotation distance from the center. Such an iteration results in different 

programmed behavior and output, but we do not move beyond the main 

ingredients, behavior and output. To do that, we need data.

11.2.2. � Second Loop: Adding Data
A bit further in the book, still in the first part, we introduce how data and 

data structures help in creating more complex behavior and output, for 

instance, when they involve many things or changes that progress over 

several frames. Before, we have used the draw loop as the only way to draw, 

and one iteration of this loop does not connect to the previous or next 

iteration – it stands for itself.

Data changes this as we can store data as a memory of what happens 

in an iteration and proceed to use this memory in the next iteration. Let’s 

try this with the preceding example.

INTRODUCE THE POSITION VARIABLE IN THE PREVIOUS EXAMPLE 
(PROCESSING)

PVector position = new PVector();

void setup() {

 size(400, 400);

}

void draw() {

 // data

 position.x = width/2 + cos(radians(frameCount)) * 20;

Chapter 11  Creative Processes



308

 position.y = height/2 + sin(radians(frameCount)) * 20;

 // drawing output based on data

 background(0);

 ellipse(position.x, position.y, 20, 20);

}

Comparing this to the previous sketch, we see the same behavior 

and output here: a white circle moving around the center of the canvas. 

The code looks different though. In this example, we introduce data (the 

position variable), and in the draw function, we first change the data and 

then draw it. Essentially, we have separated the data and the drawing. We 

can now change the data independent of the drawing part, for instance, by 

adding interaction that influences the data.

11.2.3. � Third Loop: Adding Input and Interaction
When we add input, we create also behavior that deals with unpredictable, 

but not unexpected data. What does that mean? Interaction input cannot 

be predicted really, whether a user moves the mouse 20 or 34 pixels to the 

right within 2.3 or rather 5.4 seconds. That does not mean that we cannot 

deal with this input data. We just have to make our data structures and 

sketch behavior more robust to deal with user input. In that moment, we 

have created a better sketch that will likely show richer output than the first 

two versions, simply because it works with more diverse input data. In the 

next example, we just change the data part.

LET CIRCLE ROTATE AROUND THE MOUSE POINTER (PROCESSING)

// data

position.x = mouseX + cos(radians(frameCount)) * 20;

position.y = mouseY + sin(radians(frameCount)) * 20;

Chapter 11  Creative Processes



309

First, we set the positioning around the mouse pointer, by using the 

mouseX and mouseY variables to control the position of the rotation center. 

We see now that the rotating circle can change its position based on the 

rotation center controlled by the mouse. One step further, we introduce 

two new variables that control the rotation speed and distance.

ADD VARIABLES TO CONTROL ROTATION SPEED AND DISTANCE 
(PROCESSING)

// data

float speed = 10;

float distance = 20;

position.x = mouseX + cos(radians(frameCount) * speed) * 

distance;

position.y = mouseY + sin(radians(frameCount) * speed) * 

distance;

Note that nothing changes in the behavior yet, but we prepare for 

making both speed and distance change according to the speed of the 

mouse. We compute the distance of the current mouse position to the 

previous mouse position (pmouseX and pmouseY) with the dist function. 

This distance is now used in the speed and distance variables.

USE THE DISTANCE BETWEEN CURRENT AND PREVIOUS MOUSE  
POSITION (PROCESSING)

// data

float energy = dist(mouseX, mouseY, pmouseX, pmouseY);

float speed = map(energy, 0, 30, 4, 0.5);

float distance = map(energy, 0, 400, 30, 100);

position.x = mouseX + cos(radians(frameCount) * speed) * distance;

position.y = mouseY + sin(radians(frameCount) * speed) * distance;

Chapter 11  Creative Processes



310

Unfortunately, the effect is not very clear. As we move the mouse fast, 

something seems to happen, but when we slow down to see closely, the 

effect disappears. The “energy” of the mouse is gone too fast to actually 

see the effect well. What we need is an extra piece of data that somehow 

conserves the energy and that releases the energy slowly so we can observe 

the effect. Let’s make energy a global variable, and let it store the energy 

and slowly decrease down to zero.

STORE DISTANCE IN AN “ENERGY” VARIABLE (PROCESSING)

PVector position = new PVector();

float energy = 0;

void setup() {

 size(400, 400);

 stroke(200);

}

void draw() {

 // data

 // add distance to energy

 energy = energy + dist(mouseX, mouseY, pmouseX, pmouseY);

 // reduce energy every frame by 2% (100%-98%)

 energy = energy * 0.98;

 float speed = map(energy, 0, 30, 4, 0.5);

 float distance = map(energy, 0, 400, 30, 100);

 position.x = mouseX + cos(radians(frameCount) * speed) * 

distance;

 position.y = mouseY + sin(radians(frameCount) * speed) * 

distance;

 // drawing output based on data

 background(0);

 ellipse(position.x, position.y, 20, 20);

Chapter 11  Creative Processes



311

 // add two lines

 line(position.x, position.y, 0, height/2);

 line(position.x, position.y, width, height/2);

}

We store now the energy of the mouse movement and still reduce it 

by multiplying the value of energy with 0.98. These two lines ensure that 

the energy from the mouse movement is stored and that the storage slowly 

releases. Now the effect should be clearer. To visualize the movement 

better, we also add two lines at the end of draw that connect to the left and 

right sides of the canvas.

Still, we might not be fully happy with the distances and speed. We can 

add “backstaging” to fix that.

11.2.4. � Fourth Loop: Adding a Backstage
When we add a backstage, we implement a counterbalance to the user 

or visitor interaction input. This counterbalance allows the creative to 

steer the behavior on top of the input data and allow for second-order 

aesthetics that play, reshape, or negate the input data. Backstaging is not 

only a means to fix, debug, or maintain an experience, it’s also a creative 

technique in its own right.

To add backstaging to the current example, we just need to run it in 

Tweak mode, which allows us to adjust any value in the sketch. Why is it 

again called “backstaging”? Because the Tweak mode works independent 

from the primary interaction with the mouse and acts directly on the 

code. While it might feel also as interaction, there is an important 

difference here: normal interaction does not change how the code works 

fundamentally; it does not have lasting changes. The Tweak mode and 

other backstaging aim to have a lasting effect on the experience and the 

behavior of the sketch.

Chapter 11  Creative Processes



312

11.2.5. � Creative Processes with Layers
Throughout this section, we have looked at an evolving example through 

the lens of abstraction layers and loops between them. We start with a 

loop between the layers of behavior and output and then add data. By 

separating these layers to some extent in the code, we are able to make 

changes to one layer without changing the others. This leads to a more 

structured way of working with code. Ideally, we make a change and then 

run the code again to see the change reflected in the output. If we change 

the data and leave the behavior the same, what will happen to the output? 

If we change the data through interaction and leave the behavior the 

same, what will happen to the output and can we still influence it with 

backstaging?

The draw function is the central point of many Processing and p5.js 

sketches. This is where the animation action happens. It is tempting to 

combine all drawing behavior tightly with data and interaction. We have 

done this in almost all examples in the book to ensure that the code is 

concise and fits the book format. As your skills and sketches develop, you 

might appreciate a different way of organizing code in draw. Instead of 

tightly interweaving input, data, behavior, and output, try to separate them 

in draw and in other functions.

ORGANIZE CODE IN DRAW

void draw() {

 // input (interaction, network, etc.)

 // data

 // behavior

 // output

}

Chapter 11  Creative Processes



313

At first, you write code to deal with the input, for example, reading 

the mouse position or acquiring sensor data. The next step is to modify 

data structures according to the input. This data drives the behavior of the 

sketch, which then results in output.

And with that, the last chapter of this book closes. If you have arrived at 

this point, you have followed us through the very first steps of working with 

Processing and simple shapes, to more and more complex concepts and 

visual examples. Then we showed you a larger example, MOUNTROTHKO, 

and turned our sights to p5.js a version of Processing for the web. There, 

we have seen how to work very practically with inspiration from the web 

and how to embed new forms of interaction such as multi-touch and 

device orientation sensors. In the last few chapters, we started to zoom 

out from coding and give you a perspective of how you can help yourself 

and become more confident as a creative coder, how you can influence 

your learning path, and finally, how you can work in more structured ways, 

giving your code an “architecture.” We hope you have enjoyed the journey 

until now and beyond. As curious people and creative coders, we love 

feedback. So, get in touch via https://codingart-book.com if you like.

Chapter 11  Creative Processes

https://codingart-book.com


315

�Conclusion

This book has come to an end. We have written elaborately about how to 

approach “coding art” in several steps that move along a creative process. 

We wrote this book quite differently from conventional programming 

books and also quite differently from publications on art and on creative 

processes. In this book, we combine these two perspectives (code and 

the creative process), because we believe in their cohesion and mutual 

enrichment.

Over the years, we have seen countless young creatives struggle with 

the formalism of code that is introduced “just because.” The rigid structure 

of a computing curriculum that follows the logic of the machine and not 

the human and creative needs is not helpful to our deeper understanding 

of what technology can be. At the same time, we have seen people struggle 

with their creative processes once technology is involved; they lack starting 

points, confidence in building achievements, and access to richer concepts 

than the absolute basics. This is why this book starts and ends with creative 

processes and tempers the role of code by curiosity and creative pull. Why 

would you need to know about functions, recursion, and classes if not 

clearly motivated by what they add to your creative practice?

In the introduction, we direct the book’s message to three main 

audiences: creatives, educators, and technologists. We hope that you 

found yourself, even if you don’t see yourself as part of these groups. We 

did write this book for you!

Thank you for staying with us until the end. We wish you lots of 

exciting moments and beautiful experiences creating and pushing your 

limits with code.

Goodbye for now!

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3

https://doi.org/10.1007/978-1-4842-9780-3


317© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3

�Epilogue

Before we had the fully formed plan of writing a book for creatives, 

educators, and technologists, we wanted to write about coding in art and 

design since early 2017. For me, the intention of writing this book became 

stronger since I finished my PhD and expression through code became 

more and more important in my work. Reflecting on my own learning 

experiences in the years prior, I realized that to produce and ensure the 

stability of both the code and the production for an interactive installation 

are far more important than just having an idea in mind. In addition, there 

are so many other key points when going deeper into practice: working 

with experts, asking for help, producing the same installation with its 

technology in different exhibition spaces, and knowing what to stick to in 

the process and when to change course.

Writing about all these realizations, turning them into clear lessons 

and steps, was not easy and also motivated by my own experience of 

starting to teach interaction design in a traditional design faculty. I found 

that due to the lack of process and training in coding and technology, my 

students struggled with imagining what interaction could be and how 

experience could be designed. Many students gave up after just taking 

a few steps. For them, learning to use code to create is very different 

compared to other types of creative tools. They needed a bit of a change 

of mind, a better approach, and different inspiration. When writing this 

book, we started with the creative process and creatives’ needs, instead of 

following technology. And it works.

—Yu

https://doi.org/10.1007/978-1-4842-9780-3


318

Now that you have reached the end of the book, let me explain a few 

thoughts that brought me to writing this book with Yu. When I started to 

teach Processing in a course called “Creative Programming” and also later 

in several workshops, I was amazed by how fast students and workshop 

participants could achieve interesting, funny, ridiculous, or beautiful 

results with Processing. This platform helped them type along, try out 

variations of what I showed them, and find their own creative path. Still, I 

felt limited by how “programming” with Processing was taught. In many 

cases, there are very approachable starting points online like “draw a 

green rectangle!” or “do this and – wow – look what happened!”, but soon 

after, the topics would resemble a long list of functions or traditional 

programming topics. Creative coding and creative processes in general 

deserve different attention, even though we are talking about code.

One of the best experiences I had teaching Processing was the most ad 

hoc one in March 2016. I opened Processing and started typing and talking 

out loud. My laptop screen was mirrored on the wall. The participants of 

this short workshop watched me type on the screen, making the occasional 

mistake or typo, which I explained and corrected. They just typed along 

bringing in their own variations of what I showed on my screen. Over the 

next two hours, we touched on most shapes and some animation options. 

No slides, bullets, and formulas were necessary for getting everyone up 

to speed. After this workshop, the participants would form teams and 

continue to work out quite complex sketches and prototypes.

A second thought about teaching in a design faculty: I’m sometimes 

puzzled by how little courses prepare for the actual difficulties of working 

with code and the complexity that develops after the first few steps. 

Looking at example code and purposeless tweaking of existing examples 

from the web seems easy and straightforward, but what if one has a 

concept in mind and needs to code it? What if there is nothing online 

resembling your goal in any way? What if you are stuck after tweaking for 

hours? When encountering these and other problems, I could help given 

EPILOGUE



319

my background and experience. More often than not, the steps toward 

getting “unstuck” were simple and almost followed a recipe. But nobody 

thought about teaching this.

For quite some time, I wondered how to bring this experience into 

a more shareable format and, at the same time, extend the topics while 

keeping closely in touch with creative processes. This book is the solution, 

and we structured the book not along programming topics, but instead 

developed it by following our own processes and experiences. In this 

sense, we move fast through the basics explaining relationships and 

examples, but we leave out a lot of information that you, the reader, can 

find neatly organized in the Processing reference.

We want to inspire creative flow and wrote the book like that – a flow 

from the initial inspiration and ideas toward more and more developed 

structures and complexity that inevitably enters the picture when 

inspiration strikes and materializes designs and artworks.

Working with Yu on this book was a special experience, shifting 

perspectives many times, working out ideas and examples in detail, and 

rewriting most of the book. I hope you will have as much fun as we had  

(a lot!) when discussing and writing this book for you.

—Mathias

EPILOGUE



321© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3

�References

	 1.	 Star Arts. Mark Rothko complete documentaire. 

www.youtube.com/watch?v=e135VhG4IgA, 2016. 

Accessed: 2018-12-14.

	 2.	 ARTtube. Mark Rothko. www.youtube.com/

watch?v=Cosm67tJ5VY, 2014. Accessed: 2018-12-14.

	 3.	 Stefania Bocconi, Augusto Chioccariello, Giuliana 

Dettori, Anusca Ferrari, Katja Engelhardt, P 

Kampylis, and Y Punie. Developing computational 

thinking in compulsory education. European 

Commission, JRC Science for Policy Report, 2016.

	 4.	 James EB Breslin. Mark Rothko: a biography. 

University of Chicago Press, 2012.

	 5.	 Annie Cohen-Solal. Mark Rothko: Toward the Light 

in the Chapel. Yale University Press, 2015.

	 6.	 Jan Cuny, Larry Snyder, and Jeannette M Wing. 

Demystifying computational thinking for non-

computer scientists. Unpublished manuscript 

in progress, referenced in www.cs.cmu.

edu/˜CompThink/resources/TheLinkWing.

pdf, 2010.

	 7.	 Linda DeBerry. Silence is so accurate: Thinking 

about Mark Rothko. https://crystalbridges.org/

blog/silence-accurate-thinking-mark-rothko/, 

2014. Accessed: 2018-10-14.

https://doi.org/10.1007/978-1-4842-9780-3
http://www.youtube.com/watch?v=e135VhG4IgA
https://www.youtube.com/watch?v=Cosm67tJ5VY
https://www.youtube.com/watch?v=Cosm67tJ5VY
https://www.cs.cmu.edu/&#x02DC;CompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/&#x02DC;CompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/&#x02DC;CompThink/resources/TheLinkWing.pdf
https://crystalbridges.org/blog/silence-accurate-thinking-mark-rothko/
https://crystalbridges.org/blog/silence-accurate-thinking-mark-rothko/


322

	 8.	 Shelley Esaak. What is the definition of texture in 

art? www.thoughtco.com/definition-of-texture-

in-art-182468, 2018. Accessed: 2019-02-01.

	 9.	 Gemeentemuseum. Mark Rothko. www.

gemeentemuseum.nl/en/exhibitions/mark-rot

hko?gclid=CJ6zxNys6MICFUsJwwod5KIAtw, 2014. 

Accessed: 2018-10-14.

	 10.	 Grace Glueck. A newish biography of Mark Rothko. 

https://lareviewofbooks.org/article/a-

newish-biography-of-mark-rothko/!, 2015. 

Accessed: 2018-12-14.

	 11.	 Alexxa Gotthardt. Mark Rothko on how to be an 

artist. www.artsy.net/article/artsy-editorial-

mark-rothko-artist, 2018. Accessed: 2018-12-14.

	 12.	 Milton D Heifetz. The aesthetic principle. Art 

Journal, 25(4):372–375, 1966.

	 13.	 Lucy Lamp. Design in art: Scale and proportion. 

www.sophia.org/tutorials/design-in-art-

scale-and-proportion, 2013. Accessed: 2019-01-30.

	 14.	 Lisa Marder. What does the term ‘form’ mean in 

relation to art? www.thoughtco.com/definition-

of-form-in-art-182437, 2018. Accessed: 

2019-02-01.

	 15.	 Piet Mondrian. New York City. www.wikiart.org/

en/piet-mondrian/new-york-city-i-1942, 1942. 

Accessed: 2019-01-30.

REFERENCES

https://www.thoughtco.com/definition-of-texture-in-art-182468
https://www.thoughtco.com/definition-of-texture-in-art-182468
http://www.gemeentemuseum.nl/en/exhibitions/mark-rothko?gclid=CJ6zxNys6MICFUsJwwod5KIAtw
http://www.gemeentemuseum.nl/en/exhibitions/mark-rothko?gclid=CJ6zxNys6MICFUsJwwod5KIAtw
http://www.gemeentemuseum.nl/en/exhibitions/mark-rothko?gclid=CJ6zxNys6MICFUsJwwod5KIAtw
https://lareviewofbooks.org/article/a-newish-biography-of-mark-rothko/!
https://lareviewofbooks.org/article/a-newish-biography-of-mark-rothko/!
https://www.artsy.net/article/artsy-editorial-mark-rothko-artist
https://www.artsy.net/article/artsy-editorial-mark-rothko-artist
https://www.sophia.org/tutorials/design-in-art-scale-and-proportion
https://www.sophia.org/tutorials/design-in-art-scale-and-proportion
https://www.thoughtco.com/definition-of-form-in-art-182437
https://www.thoughtco.com/definition-of-form-in-art-182437
https://www.wikiart.org/en/piet-mondrian/new-york-city-i-1942
https://www.wikiart.org/en/piet-mondrian/new-york-city-i-1942


323

	 16.	 The Museum of Modern Art. The painting 

techniques of Mark Rothko. www.khanacademy.org/

humanities/art-1010/abstract-exp-nyschool/

abstract-expressionism/v/moma-painting-

technique-rothko, 1998. Accessed: 2018-12-14.

	 17.	 Mark Rothko. The artist’s reality: Philosophies of art. 

Yale University Press, 2006.

	 18.	 Dustin Stokes. Aesthetics and cognitive science. 

Philosophy Compass, 4(5):715–733, 2009.

	 19.	 Tate.org.uk. Restoring Rothko. www.khanacademy.

org/humanities/art-1010/abstract-exp-

nyschool/abstract-expressionism/v/restoring-

rothko, 1998. Accessed: 2018-12-14.

	 20.	 Charles Albert Tijus. Cognitive processes in artistic 

creation: Toward the realization of a creative 

machine. Leonardo, pages 167–172, 1988.

	 21.	 Michael Gr Voskoglou and Sheryl Buckley. Problem 

solving and computational thinking in a learning 

environment. arXiv preprint arXiv:1212.0750, 2012.

	 22.	 Oliver Wick. Mark Rothko. A consummated 

experience between picture and onlooker. 

Fondation Beyeler (Hrsg.): Mark Rothko,  

Kat.-Ausst. Fondation Beyeler Riehen Feb–April, 

pages 23–34, 2001.

REFERENCES

https://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/moma-painting-technique-rothko
https://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/moma-painting-technique-rothko
https://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/moma-painting-technique-rothko
https://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/moma-painting-technique-rothko
http://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/restoring-rothko
http://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/restoring-rothko
http://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/restoring-rothko
http://www.khanacademy.org/humanities/art-1010/abstract-exp-nyschool/abstract-expressionism/v/restoring-rothko


325

Index

A
abs function, 45, 46, 205
Abstract geometrical  

painting, 9, 10
Activating sensors, 273–274
Animation

basics
draw function, 40
functions, 40
general structure, 39
processing, 40
setup function, 40

ellipses, 49
mouse movement/click, 49
mousePressed function, 50, 51
movement

calculations, 42
frameCount, 41, 42
move/rotate, 41, 42
small rectangle, 40, 41

rhythm motion
abs function, 45, 46
add variation, rectangle, 43
frameCount, 44
horizontal movement, 45
modulo operator, 47, 48
sin function, 44, 45

snap-back, 46, 47
two color-changing, 46

variables, 50
Augmented Reality (AR), 214

B
Backstage

keyboard, 161, 163, 164
Tweak mode, 158, 159
variables, 159–161

beginShape(), 252
Behavior–output  

combination, 306
Black rectangle, 34–38
BLUR filter, 103, 104, 188, 

189, 191–192
“Bob’s computer”, 178

C
Canvas secrets

resetting/restoring
defaults, 33
popMatrix, 33
pushMatrix, 33
resetMatrix, 32
selectively roll back, 33, 34

© Mathias Funk and Yu Zhang 2024 
M. Funk and Y. Zhang, Coding Art, Design Thinking,  
https://doi.org/10.1007/978-1-4842-9780-3

https://doi.org/10.1007/978-1-4842-9780-3


326

rotation/translation, 34–38
scaling visual elements

scale function, 30, 31
values, 30

Centering, 136
Code structure, 8, 41, 53, 54, 

143, 169–172
Coding art, 215

computation/code, 2
cooperative skills, 6
creatives, 6–8
data and information, 2
definition, 3
interaction, 2
learning, 3
machine, 4, 5
practice, 5, 6
source code, 11
teaching, 3

Color components, 16
Color palette, 94, 97–99, 243–245, 

247, 249
Computational thinking, 3, 5
Computed values

color and position 
interpolation, 128

functions
animated artificial  

grass, 120, 121
example, 117, 118
getGrassTip, 118, 119

interpolation, 122–124
functions, 124–129

Computer resources, 215
Computing curriculum, 315
Concept-based ideation

online resources, 304
p5.js reference, 304

constructor function, 63, 232, 
238, 243

continue keyword, 240
Controlling many things

draw function, 67
mouse interactivity, 65
move function, 64, 67
Particle class, 64

ControlP5, 165
controlSnow, 205
Cooperative skills, 6
copy function, 71
Cream-colored canvas, 9
createGraphics, 167, 168
Creating many things

dist function, 56
draw fading dots, 56
draw function, 55, 63
draw method, 59
draw 4000 particles,  

motion, 60
generate and test, 57
if condition, 56
interactive mouse trace, 57
loops, 59
multiple ellipses, 57
PVector, 58, 59
random generation of 

dots, 54, 55

Canvas secrets (cont.)

INDEX



327

Creative processes, 303, 306
abstraction layers

adding backstage, 311
adding data, 307, 308
behavior, output, 306, 307
draw function, 312, 313
input/interaction, 308–311

composition/structure, 8
ideation

concept-based, 304
material-based, 304, 305

idea to visuals, 8
production, 8
randomness/noise, 8

Creative Programming, 318
Creative sketching, 300
curveVertex(), 252

D
Data and code structure

controlling many things, 64–68
create many things, 54–63
particle definition, 62

Data changes, 307
Data structure, 61–63, 67, 195, 231, 

241, 313
Deployment, testing before

anticipating differences, 
176, 177

dependencies, 176
unattended operation, 178

Developer console, 221, 287
Developer tools, 221

Device acceleration
acceleration, 276
mobile device, 277

deviceOrientation, 220, 259
Device orientation, 276

animated grid, 260
deviceOrientation, 259
drawing parameters, 261
width and height, 259

Device rotation, 272, 274–276
Digital canvas, 16–18, 29, 41, 186
display() function, 232, 233, 236, 

238, 247, 252
dist function, 56, 309
Dots per inch (DPI), 146, 147
Dotted particle traces, 236–241
Dragging the mouse, 50, 130
drawBall function, 126
drawDot function, 139, 141
draw() function, 72, 166, 188, 

226–228, 231, 240
drawGrid() function, 228, 230
drawParticleCloud, 69–71

E
Editor, 154, 216, 217, 222, 256
“80/20” principle, 145
ellipse function, 20
endShape(), 252
Energy variable, 310–311
Ephemeral art, 2
Equilibre (Balance), 30
etBallYPosition function, 126

INDEX



328

Experts
advice, 291
compensation/attribution, 292
divide-and-conquer 

approach, 291
intensive work, 293
needs, 292
quality standards, 293
rewarding process, 292
sharing responsibilities, 293
technical, 292

F
Fidenza series, 223, 236, 247
filter function, 73, 131
Flow fields

definition, 223
generative algorithm, 223
grid and positions, 226
noise function, 224
particle flow, 228–236
setup() function, 226
template, 224

for loop, 59, 67, 81, 96, 126, 188, 226, 
229, 231, 241, 252, 263, 276

Free resources, 221
Free web hosting, 222
Functions, 40, 116–121, 218

G
Generate and test technique, 57
Generative art, 10, 11, 213, 223, 

295, 296

Gestalt theory, 68
getGrassTip function, 118, 119
Getting help

finding, 288, 289
minimal working, 290
right questions, 289

Grid drawing, 263
gridSize parameter, 236
gridSize variable, 226

H
heading() function, 228, 236
Helping yourself, 282

copy-paste, 283, 284
documentation, 285
error messages, 282
symptoms, 286–288

Hue-saturation-brightness (HSB) 
model, 22, 92

Hyper Text Markup Language 
(HTML), 215, 216, 226, 
256, 257

I, J
Ideation

approaches, 303
material-based, 305–306
prototyping, 281

if condition, 56, 132, 248, 249
Interactivity

input, 142
keyboard, 133, 135–137

INDEX



329

bold character, 135, 136
change transparency, 

shortcut, 141
precise control, 135
processing canvas, 139
randomized dotting, key 

pressed, 137, 138
random positions, 141
textCanvas, 137
visual elements, 134

mouse interactions, 130–132

K
keyPressed function, 51, 135, 139, 

153, 164, 169

L
Lerp and lerpcolor 

functions, 122–123
“logical AND” operation, 132
Loops, 59, 151, 170, 290, 312

M
map() function, 80, 248
maxLength, 248, 249
MemoryDot, 106, 108, 297

smoothing
code, 108, 109
energy property, 112, 113
mouse position, 107
movements, 107, 108

overlapping circles, 110
update function, 111

smoothly working
example, 113–115
windDirection, 116

Mobile devices, 129, 179, 220, 256, 
258–260, 276, 296

Mobile, moving to
fine-tuning, 219, 220
mobile use, 221
p5.js, 218, 219
processing content, 215, 

217, 218
spot errors, 220, 221

Modern web browsers, 217
Modulo operator, 47, 48, 103
Mondrian painting, 23
Mountrothko, 213

artwork, 186
collection of prints, 181, 182
completion, installation space, 

206, 207
composition

fog, 191, 192
mountains, 192–194

concept, 185
context, 184
depth, adding interaction

controlFlow, 206
draw, 204
horizontal positions, 205
minim library, 203

flow, 211
interactive installation, 181, 183

INDEX



330

production print, 207, 210
refinement and depth, 197
refinement, reshaping  

particles
arcs, 198
create positions, 199
groups, 200
motion, 200, 201
visuals, 202

starting point, 184
structure, creating 

particles, 194–197
visuals, 187–189

Mouse control, 81, 219
mousePressed() function,  

50, 51, 130, 131,  
219, 250

move function, 64, 67, 70
Multiple ellipses, 57
Multiple touches

browser, 266
data structure, 265
displacement, 267
draw() function, 269
interaction, 265
colors and setup(), 266

Multi-touch and device  
orientation sensors, 
272, 313

Multi-touch grid, 268–271, 275
Multi-touch interaction, 264, 

265, 267

N
Noise

function, 102
smoother transition, 104, 105

noiseDetail() function, 228, 234
noise() function, 121, 234
noiseResolution, 226, 234, 236
NullPointerException function, 

286, 287

O
OpenProcessing.org, 289, 296, 304
Optimization, 73, 191–192

P, Q
palette array, 99
Parameters, 21, 30, 40, 68, 102, 191, 

211, 252, 272, 285
Pareto principle, 145
Particle class, 228, 231, 235, 236, 

238, 242, 243, 246
Particle() function, 63
Particle path

multi-colored stripes, 250
transposed curves, 254

particles array, 241
Particle trace color, 252
Particle traces

base colors, 249
felt pen look, 246
multi-colored, 247, 248

Mountrothko (cont.)

INDEX



331

painting, 251–253
with rectangles, 246

P3D renderer, 74, 77
Perlin noise, 102, 103
p5.js

color mode, 236
description, 214
elements, 214
migration tutorial, 218
sketch online, 222
sketch structure, 215–217
variables, 219

popMatrix, 33–34, 150, 284
pos vector, 238
print/console.log, 221
Printing

high-resolution rendering, 147
change canvas, 147
modify canvas, 149
original canvas, 147, 148
resized canvas, 148
size-dependent values, 148

scalable version, 149, 150
snapshots, 151

framecount, processing 
console, 154

framecount, render/save, 155
mouse click, 156
mouse position, 156, 157
saveframe, 151–153

Processing, 215, 222, 283, 298, 302
challenges, 296
definition, 295
and p5.js, 281, 285

tool set
building, 297
sharing, 298

Processing community, 12
Processing library, 12, 113, 142, 

165, 203, 297, 299
processSound function, 204, 205
push() and pop(), 247
pushMatrix, 33–34, 150, 284
PVector, 58, 59, 67, 106, 113, 122, 

195, 287

R
random function, 87, 88, 100, 126
randomGaussian function, 88–91, 

102, 224
Randomness, 86, 235, 245, 249

controlling, 91–93, 95–97
gaussian distribution, 88–90
loop, 88
round, 86, 87
selecting/making, 97–101

randomNumber function, 244
Random positioning, 250
randomSeed function, 88
rectMode function, 21, 261
resetMatrix, 32, 34
RGB color mode, 16

S
saveFrame, 151–152
Scale(2.0), 30

INDEX



332

Scale function, 30, 31
Scaling approach, 149, 150
Science, technology, engineering, 

and mathematics (STEM)
principles of, 6

<script> tags, 226
Selectively roll back canvas 

scaling, 33–34
setTexture function, 27, 28
setup() function, 195, 199, 226, 

230, 231
sin function, 44, 45
size function, 17, 77, 219
Size-dependent values,  

147, 148, 150
Snap-back motion, 46, 47
Stable/risky code

animating, 173
avoid resource bloat, 169
code structure, 169, 170
problems, 175
things in right place, 165–168

Stroke() function, 16, 236

T
Technologies

assessing feasibility, 299
enhancing Processing, 298, 299
moving away, Processing, 

300, 301
textCanvas, 137
“The art of photomontage”, 30
3D rendering mode, 74

3D space, 38, 74, 77, 78, 113, 
115, 142

tooClose() function, 238, 240
Touch and sensors

devices, 258
HTML file, 256, 257
margin and padding, 258
multi-touch, 264
p5.js sketches, 256
screen-based touch, 264
tablets and phones, 255
URL, 256
web pages, 256

touchEnded() function,  
265, 274, 278

translate() and rotate(), 247
Treat classes, 171
Tweak mode, 311
2D and 3D drawing modes, 73
2D array of elements, 224

U
Uniform distribution, 85, 86
update() function, 109, 232, 

235, 238

V
Variables, 50, 159–161, 218
Visual elements

cognitive/aesthetic goals, 13
color effects, 23
colors, 22

INDEX



333

define colors, 24
draw lines, 23, 24
form, 25–29
HSB model, 22
Mondrian painting, 23
patterns, 14
processing, 13, 14

ellipse, 20
rectangle, 20, 21
simple line, 19
triangle, 19

processing functions, 22
shapes

canvas measurement, 18
circle, 16, 18
code comments, 15
digital canvas, 17
ellipse, 14, 15, 17
horizontal/vertical 

position, 16
naming convention, 16
processing functions, 16
RGB color mode, 16

texture, 25–29
definition, 27
globes, 28

loadImage, 27
setTexture function, 27

3D canvas, 27
3D sphere/2D circle, 26, 242, 

245, 247
transparency, 22

Visual structure, 53, 68
combine/compose multiple 

clouds, 73
composing with layers, 73–78
composition/alignment, 68–73
controlling layers, 78–83

loop, 81
mapping, 81
mouse position, 79, 80
particles, 82

3D, 75, 77, 78
tint effect, 72

W, X, Y, Z
Web-based upload tool, 222
Web console, 221
Web developer, 221
weightedValue function, 244, 245
weightSum function, 244

INDEX


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	1.1. Coding Art
	1.2. Motivation
	1.2.1. How to Talk with a “Machine”
	1.2.2. Practice a Practice
	1.2.3. Do It and Own It

	1.3. How to Read This Book
	1.3.1. Calling All Creatives
	1.3.2. Four Steps, One Example, One Zoom
	1.3.3. Getting Ready


	Chapter 2: Idea to Visuals
	2.1. Visual Elements
	2.1.1. Shapes
	2.1.2. Shaping Up in Processing
	2.1.3. Colors, Transparency, and Filters
	2.1.4. Working with Form and Texture

	2.2. Canvas Secrets
	2.2.1. Scaling Visual Elements
	2.2.2. Resetting or Restoring the Canvas
	2.2.3. Rotation and Translation

	2.3. Animation: From Frames to Motion
	2.3.1. Animation Basics
	2.3.2. Simple Movement
	2.3.3. Rhythm in Motion

	2.4. Interaction as Input for Animation
	2.4.1. Combining Mouse Presses and Movement

	2.5. Summary

	Chapter 3: Composition and Structure
	3.1. Data and Code Structure
	3.1.1. Creating Many Things
	3.1.2. Controlling Many Things

	3.2. Visual Structure
	3.2.1. Composition and Alignment
	3.2.2. Composing with Layers
	3.2.3. Controlling Layers

	3.3. Summary

	Chapter 4: Refinement and Depth
	4.1. Randomness and Noise
	4.1.1. Working with Randomness
	4.1.2. Controlling Randomness
	4.1.3. Selecting and Making Choices with Randomness
	4.1.4. Working with Noise

	4.2. MemoryDot
	4.2.1. Smoothing
	4.2.2. Smoothly Working with Many Things

	4.3. Using Computed Values
	4.3.1. Computing Values with Functions
	4.3.2. The Space Between Two Values: Interpolation
	4.3.3. Interpolation with Functions

	4.4. Interactivity
	4.4.1. Mouse Interaction
	4.4.2. Keyboard Interaction
	4.4.3. Other Input

	4.5. Summary

	Chapter 5: Completion and Production
	5.1. Making Things Big for Print
	5.1.1. High-Resolution Rendering
	5.1.2. Migrating to Scalable Version
	5.1.3. Rendering Snapshots of Dynamic Work

	5.2. A Backstage for Control
	5.2.1. Tweak Mode in Processing
	5.2.2. Centralizing Control with Variables
	5.2.3. “Backstaging” with the Keyboard

	5.3. More Stable and Less Risky Code
	5.3.1. The Right Things in the Right Place
	5.3.2. Avoiding Resource Bloat
	5.3.3. Code Structure
	5.3.4. Don’t Reinvent the Wheel

	5.4. Testing Before Deployment
	5.4.1. Depending on Dependencies
	5.4.2. Anticipating Differences
	5.4.3. Preparing for Unattended Operation

	5.5. Summary

	Chapter 6: Taking a Larger Project Through All Four Steps
	6.1. Context, Inspiration, and Starting Point
	6.2. Concept and Artwork
	6.3. Step 1: Idea to Visuals
	6.4. Step 2: Composition and Structure
	6.4.1. Composition: The Fog
	6.4.2. Composition: Creating the Mountains
	6.4.3. Structure: Creating the Particles

	6.5. Step 3: Refinement and Depth
	6.5.1. Refinement: Reshaping the Particles
	6.5.2. Depth: Adding Interaction

	6.6. Step 4: Completion and Production
	6.6.1. Completion: Installation in Space
	6.6.2. Production in Print

	6.7. Summary

	Chapter 7: Flow Fields and Particle Storms with p5.js
	7.1. Getting Started with p5.js
	7.1.1. Structure of p5.js Sketches
	7.1.2. From Processing to p5.js
	7.1.3. Fine-Tuning the Presentation
	7.1.4. How to Spot Errors?
	7.1.5. Making Your Work Publically Accessible

	7.2. Generative Art on the Web
	7.2.1. Flow Fields
	7.2.2. From Flow Field to Particle Flow
	7.2.3. From Particle Flow to Dotted Particle Traces
	7.2.4. Giving Particle Traces Different Colors and Shapes
	7.2.5. Painting Particle Traces As a Whole


	Chapter 8: Making Sense of Touch and Sensors with p5.js
	8.1. Preparing for Mobile Browsers, Accidental Interaction, and  Device Orientation
	8.1.1. Preventing Accidental Interactions
	8.1.2. Device Orientation
	8.1.3. Grid-Based Example Case

	8.2. Touch and Multi-touch
	8.2.1. Working with Multiple Touches
	8.2.2. Multi-touch Interaction

	8.3. Working with Device Sensors
	8.3.1. Activating Sensors
	8.3.2. Working with Device Rotation
	8.3.3. Working with Device Acceleration


	Chapter 9: Dealing with Problems
	9.1. Helping Yourself
	9.1.1. Error Messages or Nothing Happens
	9.1.2. Working with Copy–Paste
	9.1.3. Reference Documentation
	9.1.4. Searching for Symptoms

	9.2. Getting Help from Others
	9.2.1. Finding Help
	9.2.2. Asking the Right Questions Right
	9.2.3. Minimal Working Example

	9.3. Working with Experts
	9.3.1. How Can Experts Help You?
	9.3.2. How to Manage a Project with Experts?


	Chapter 10: Learning Path
	10.1. Going Deeper
	10.1.1. Challenges to Pick
	10.1.2. Building Your Own Toolset
	10.1.3. Sharing Your Toolset with Others

	10.2. Different Technologies
	10.2.1. Enhancing Processing and p5.js
	10.2.2. Assessing Feasibility
	10.2.3. Moving Away from Processing and p5.js


	Chapter 11: Creative Processes
	11.1. Two Types of Ideation
	11.1.1. Concept-Based Ideation
	11.1.2. Material-Based Ideation

	11.2. Using Abstraction Layers
	11.2.1. First Loop: Behavior to Output
	11.2.2. Second Loop: Adding Data
	11.2.3. Third Loop: Adding Input and Interaction
	11.2.4. Fourth Loop: Adding a Backstage
	11.2.5. Creative Processes with Layers


	Conclusion
	Epilogue
	References
	Index

