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Preface

Tensors enable one to formulate mathematical ideas in the most elegant way. They
are used to express physical phenomena mathematically. The concept of tensor
dates back to the pioneering works of Bernhard Riemann (1826–1866) and Elwin
Bruno Christoffel (1829–1900) on the development of modern differential geom-
etry. And tensor calculus, also known as Ricci calculus, was established by Gregorio
Ricci-Curbastro (1853–1925) andhis studentTullioLevi-Civita (1873–1941). Tensor
calculus has nowadays proven to be a universal language among many scientists and
engineers. It manifests itself as the mathematical underpinning in many branches of
physics and engineering such as electromagnetism and continuum mechanics. The
most important twentieth-century development in science, i.e. Einstein’s general
theory of relativity, could not be developed without the language of tensor calculus.
And no one can work on theoretical as well as computational mechanics without the
concept of tensor.

This book offers a comprehensive treatment of tensor algebra and calculus (in both
Cartesian and curvilinear coordinates) and also provides a comprehensive introduc-
tion to differential geometry of surfaces and curves (only in its local aspect). This
book contains three parts. The first part of this text (Chaps. 1–5) deals with tensor
algebra. Chapter 1 briefly discusses some fundamentals of vector algebra, for the
sake of self-containedness. Although the rules and identities introduced here are
extensively used in later chapters, the readers that are already familiar with algebra
of vectors may preferably skip this chapter. Chapter 2 introduces algebra of second-
order tensors. It will be shown that how these mathematical entities, that aim at
describing linear relation between vectors, are constructed from vectors in a certain
way. Chapter 3 presents an introduction to algebra of higher-order tensors. Similar
discussions will be followed in this chapter. Here, higher-order tensors are defined by
appealing to the notion of linear mapping and their important relationships are char-
acterized. The main focus will be on the fourth-order tensors which are extensively
used, for instance, in general relativity and nonlinear solid mechanics. Chapter 4
offers an introduction to eigenvalues and eigenvectors of second-order tensors due to
their great importance in scientific and engineering problems. Spectral decomposi-
tions and eigenprojections of tensors are also studied. This requires some important
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theorems which have also been introduced. Chapter 5 deals with representation of
tensorial variables in general class of curvilinear coordinates. In the previous chap-
ters, tensorial variables have been expressed with respect to only a Cartesian coordi-
nate frame. But, the goal here is to work with the old art of curvilinear coordinates
which enables one to represent the most general form of tensorial variables and
address their fundamental properties in a general framework. The reader should now
be ready to start by studying tensor calculus.

The second part of this text (Chaps. 6–8) deals with the treatment of tensor
calculus. Chapter 6 studies differentiation of tensor functions and representation
theorems. It contains two sections. In this first section, the fundamental rules of
differentiation for tensor functions are introduced. Their gradients are then repre-
sented by means of a first-order Taylor series expansion. Some analytical derivatives
are finally approximated by means of finite difference method. In the second section,
some recent developments in representation theorems are studied. Chapter 7 deals
with the gradient of tensor fields and its related operators. The main goal here is to
study the actions of gradient, divergence and curl operators on vectors and tensors.
Needless to say that these differential operators are the workhorses of vector and
tensor calculus. Chapter 8 introduces integral theorems and differential forms. This
chapter contains two sections. The first section deals with the well-known integral
theorems of Gauss and Stokes. This finishes our discussion of vector and tensor
calculus started from Chap. 6. The second section aims at introducing what are
known as differential forms which are used, for instance, in electromagnetic field
theory. The main goal here is to introduce the so-called generalized Stokes’ theorem
which unifies the four fundamental theorems of calculus.

The last part of this work (Chap. 9) deals with differential geometry. It only
contains one chapter which offers an introduction to differential geometry of
embedded surfaces and curves in the three-dimensional Euclidean space. Chapter 9
studies the local theory of embedded two-dimensional surfaces as well as one-
dimensional curves in the three-dimensional Euclidean flat space and introduces
their fundamental properties. Different concepts of curvature (i.e. intrinsic curvature
and extrinsic curvature) are thoroughly discussed. Three crucially important differ-
ential operators in this context (i.e. surface covariant differentiation, Lie derivative
and invariant time differentiation) are also introduced. At the end of this chapter,
the well-known application of the surface theory in structural mechanics (i.e. shell
structures) is provided.

The authors deeply believe that the theoretical material cannot be well understood
unless the reader solves a lot of exercises.We fully understand the needs and concerns
of students. Numerous solved problems are thus provided at the end of each chapter
for in-depth learning. Moreover, all identities in this book are verified line by line
for the reader’s convenience. We have taken pain to show the derivations in this
elegant form. And this significantly saves the book space. Finally, for the sake of fast
learning, each figure in this text is accompanied usually by a text which summarizes
the corresponding theoretical arguments.
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This book is intended for advanced mathematically minded students in engi-
neering fields and research engineers. It is also addressed to advanced undergradu-
ates and beginning graduate students of applied mathematics and physics. To read
this text, one needs to have a background in linear algebra and calculus of several
variables. However, a few exercises rely on some basic concepts of solid mechanics.
With regard to this, a first course in continuum mechanics should suffice for the
interested reader.

Shahab Sahraee is grateful to the Department of Mechanical Engineering at
University of Guilan for having provided a pleasant environment during the writing
of this book. His greatest debt goes to Farzam Dadgar-Rad for reviewing all chap-
ters of the manuscript and many fruitful discussions on representation theorems. His
valuable comments on each chapter of the manuscript are really appreciated. Shahab
Sahraee would also like to thank all students who helped him plot the figures with
PGF/TikZ in LaTeX. Finally, his special thanks go to his sisters and brother for their
continuous support, patience and understanding during the development of this book.

Last but not least, we express our thanks to Springer Verlag for accepting to
publish this book.

Rasht, Iran
Hannover, Germany
March 2023

Shahab Sahraee
Peter Wriggers
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Chapter 1
Algebra of Vectors

Tensors are characterized by their orders. Scalars are zeroth-order tensors with only
magnitude and no other characteristics. They are extensively used in physical rela-
tions and usually designated by small and capital lightface Latin or Greek letters;
examples of which include mass, time and temperature. In this text, their magnitudes
are elements of the field of real numbers R.

In contrast, vectors are physical quantities that are completely characterized by
both magnitude and direction. These mathematical objects, that are first-order ten-
sors, obey the parallelogram law of vector addition; examples of which include force,
velocity and momentum. In some books or handwritten documents, they are usually
represented by bar above or below a character or arrow over it in order to denote
boldface setting. In this text, small (and rarely capital) boldface Latin letters are set
to denote these quantities.

Vectors play an essential role in establishing mathematical frameworks in almost
all branches of physics and engineering. For the sake of self-containedness, this
chapter briefly represents some fundamentals of vector algebra. Although the rules,
properties and identities introduced here are extensively used in later chapters, the
readers that are already familiar with algebra of vectors may preferably skip this
chapter and leave it as a reference when it is needed.

To describe mathematical entities, specific font styles need to be adopted. Here,
it has been tried to keep the most standard notation in the literature. Throughout this
textbook, unless otherwise stated, the following notation will be utilized:

✓ Lowercase (Uppercase) italic lightface Latin letters a, b, . . . (A, B, . . .) denote
scalars or scalar-valued functions.

✓ Lowercase and uppercase lightface Greek letters α, β, . . ., Ψ , Ω symbolize
scalars or scalar-valued functions.

✓ Lowercase boldface Latin letters a, b, . . . stand for vectors or vector-valued
functions. The Cartesian components of these objects, identified by indices, are
shown in italic lightface form as ai , b j , . . ..
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2 1 Algebra of Vectors

Hint: Some exceptions should be highlighted here. First, the letters o, x, y and z
are set aside for points in three-dimensional Euclidean space. Then, some spatial
second-order tensors are represented by lowercase boldface Latin letters. Some
examples will be the Finger tensor b, the left stretch tensor v and the surface
covariant curvature tensor bαβ .

✓ Uppercase boldface Latin letters A, B, . . . represent second-order tensors or
(second-order) tensor-valued functions. And their Cartesian components, with
two indices, are written in italic lightface form as Ai j , Bkl , . . ..
Hint: The letters X, Y and Z are reserved for points in three-dimensional

Euclidean space.
✓ Lowercase boldface Greek letters σσσ and εεε with the Cartesian components σi j

and εkl present second-order tensors or (second-order) tensor-valued functions.
✓ Uppercase boldface Latin text symbols A, B, . . . indicate third-order tensors.

And their components with respect to the Cartesian basis vectors are denoted by
Ai jk , Bmno, . . ..

✓ Lowercase (uppercase) blackboard Latin letters a, c, . . . (A, C, . . .) with the
Cartesian components ai jkl , cmnop, . . . (Ai jkl ,Cmnop, . . .) designate fourth-order
tensors.

✓ Uppercase lightface calligraphic Latin letters A , B, . . . exhibit spaces. More-
over, R (C) renders the field of real (complex) numbers and S (C) demonstrates
the set of points constructing a two-dimensional surface (one-dimensional curve)
embedded in the three-dimensional Euclidean space.

Note that the components of a tensor of an arbitrary order in the Cartesian coordi-
nate system were denoted by Latin and Greek lightface letters. In the literature, the
covariant form of components in curvilinear coordinates are also usually represented
in this way. To avoid any confliction and keep the notation as simple as possible,
throughout this text, uppercase and lowercase lightface Latin and Greek letters with
underline beneath and

✔ subindices denote the covariant form of components, e.g., CAB and bαγ .
✔ superindices stand for the contravariant components of a tensor, e.g., ui and τ kl .
✔ mixed subindices and superindices represent the co-contravariant and contra-

covariant components, e.g., b . β
α and Fi

. A.

In this text, almost all subindices and superindices which identify the components of
a general tensor are designated by lowercase lightface Latin and Greek letters. But,
only at the end of Chap. 6 one needs to distinguish between different configurations
in the context of nonlinear continuum mechanics wherein small as well as capital
lightface Latin letters have been used.

Consider the following equations

q = αr = βs = γ t . (1.1)
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The first expression, i.e. q = αr, will be referred to by (1.1)1 and accordingly (1.1)2
refers to q = βs. Now, suppose one is given

curlĥ = −J −1εi jk g jl ĥ l
∣
∣
∣
k
gi

︸ ︷︷ ︸

= −g jl ĥ l
∣
∣
∣
k
g j × gk

= −J −1εi jk ĥ j

∣
∣
∣
k
gi

︸ ︷︷ ︸

= − ĥ j

∣
∣
∣
k
g j × gk

. (1.2)

The expression (1.2)2 then renders curlĥ = −g jl ĥ l
∣
∣
∣
k
g j × gk and (1.2)3 refers to

curlĥ = −J −1εi jk ĥ j

∣
∣
∣
k
gi . At the end, consider

curlu =
(

∗d 1
ωu

)�

or
1
ωcurlu = (curlu)� = ∗d 1

ωu

. (1.3)

Here, (1.3)3 means
1
ωcurlu = ∗d 1

ωu.
There is a large amount of literature on tensor algebra and calculus. The reader

here is referred to, for example, the books by Synge and Schild [1], McConnell
[2], Sokolnikoff [3], Borisenko and Tarapov [4], Akivis and Goldberg [5], Flügge
[6], Danielson [7], Simmonds [8], Heinbockel [9], Dimitrienko [10], Talpaert [11],
Akivis and Goldberg [12], Lebedev and Cloud [13], Spain [14], Ruíz-Tolosa and
Castillo [15], Bowen and Wang [16], Schade and Neemann [17], Schouten [18],
Nayak [19], Itskov [20] and Irgens [21].

1.1 Three-Dimensional Vector Space

Let V 3 be a set of directed line elements in the three-dimensional space. The set
V 3 is called a vector space over the field R if it remains closed with respect to the
following mathematical operations1

• u + v
this is called vector addition or sum of u and v

∈ V 3, for any u , v ∈ V 3 ,

• αu
this is called the scalar multiplication of u by α

or the product of α and u

∈ V 3, for any α ∈ R and u ∈ V 3 ,

such that the following rules hold for any u , v , w ∈ V 3 and α , β ∈ R:

1 Although there is no limitation to consider finite-dimensional vector spaces, almost all vectors (and
also higher-order tensors) in this text belong to the three-dimensional spaces. And it is assumed that
all these objects are real. Note that in the literature, the three-dimensional vector space is sometimes
denoted by R3.
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Fig. 1.1 Scalar multiplication and vector addition

u + v = v + u , ←− commutative property (1.4a)

(u + v) + w = u + (v + w) , ←− associative property (1.4b)

for any u ∈ V 3 there exists − u ∈ V 3 such that

u + (−u) = 0 , ←− here − u is said to be
the additive inverse of u (1.4c)

a unique zero vector with zero magnitude and unspecified

direction exists in the set V 3 such that

u + 0 = u , ←− additive identity , (1.4d)

1u = u , ←− here 1 presents the
multiplicative identity in the field (1.4e)

(αβ) u = α (βu) , ←− associative property for scalar
multiplication of a vector by scalars (1.4f)

(α + β) u = αu + βu , ←− scalar multiplication of a vector
by a field addition is distributive (1.4g)

α (u + v) = αu + αv . ←− distributive property also holds for scalar
multiplication of a vector addition by a scalar (1.4h)

Note that vector subtraction is implied by vector addition and scalar multiplication.
For subsequent developments, the difference between two vectorsu and v is indicated
by

u + (−v) = u − v . ←− see (f) in (1.76) (1.5)

See Fig. 1.1 for a geometrical interpretation of the scalar multiplication and vector
addition.



1.3 Inner Product 5

1.2 Basis Vectors

A basis is basically an independent spanning set. A set is called independent if there
is no redundant element in that set. For an independent set of three vectors in V 3,
this states that no vector can be built as a linear combination of the remaining ones,
that is,

if αu + βv + γ w = 0

for any α , β , γ ∈ R and any G = {u , v , w} ⊂ V 3

then α = β = γ = 0 . (1.6)

The subset G of the vector space V 3, written in the above expression, is said to be
linearly independent when all scalars constructing that linear combination are zero.
Otherwise, its is referred to as linearly dependent if such scalars are not all zero. In
this case the subset may contain the zero vector.

A set spans if any element of the space (say for any u ∈ V 3 in the present context)
can be represented as a linear combination of the elements in that set. It should be
noted that a spanning set may have redundant terms which can be eliminated from
the set but still spanning the space.

The notion of basis vectors can now be understood; either a collection of linearly
independent vectors that spans a vector space or any spanning set for that vector
space without any redundant vector.

Let Gb = {u, v,w} be a basis for the three-dimensional vector space V 3. Then,
any vector r ∈ V 3 can be expressed as

r = α u + β v + γ w , (1.7)

where α , β , γ ∈ R are called the components of r with respect to Gb. These scalars
can uniquely be determined and, therefore, the expression (1.7) renders a unique
representation for the given vector.

The number of elements in a basis of space is termed the dimension of space.
For instance, the dimension of V 3, denoted by dimV 3, is 3. That is why the subset
G in (1.6) contains three different nonzero vectors. The vector space V 3 can have
infinitely many bases but the dimension of each should be the same.

1.3 Inner Product

The vector spaceV 3 basically has a linear structure, i.e. it admits the vector addition
and scalar multiplication. This important feature was used to make the definition
of V 3. There are other important features such as the notions of length and angle
that are set in a concept called inner product (also known as the scalar product or
dot product). Its application in establishing vector (or tensor) algebraic as well as
calculus identities is of crucial importance. The way that is defined and the fact that
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whether a vector space is equipped with the inner product or not greatly affect the
properties of the vector space.

The inner product of two arbitrary vectors u and v; indicated by,

g ip (u, v) = u · v , (1.8)

is a scalar-valued function from V 3 × V 3 to R satisfying the following axioms

g ip (u, v) = g ip (v,u)

or u · v = v · u representing commutative or symmetry property

, (1.9a)

g ip (u + v,w) = g ip (u,w) + g ip (v,w)

or (u + v) · w = u · w + v · w rendering distributive property in the first argument

, (1.9b)

g ip (αu, v) = αg ip (u, v)
or (αu) · v = α (u · v) presenting associative property in the first argument

, (1.9c)

g ip (u,u) > 0 if u �= 0

g ip (u,u) = 0 if u = 0

}

or u · u ≥ 0, for which u · u = 0 ⇐⇒ u = 0, expressing positive-definite property

, (1.9d)

for any α ∈ R and u , v , w ∈ V 3. Note that the second and third rules are often
unified according to

g ip (αu + βv,w) = αg ip (u,w) + βg ip (v,w) , (1.10)

for any α, β ∈ R and u , v , w ∈ V 3. This is referred to as the linearity property in
the first argument. But, the first rule then implies linearity in the second argument.
Hence, the inner product is a symmetric bilinear form on the three-dimensional real
vector space.2

Consider a vector space V 3 equipped with the inner product satisfying the rules
listed above. This is called three-dimensional Euclidean vector space, designated
here by E 3

r .
The inner product is an algebraic operation which determines the length (or

magnitude) of a vector according to

2 The rules (1.9a)–(1.9d) are generally listed as conjugate symmetry, linearity in the first argument
and positive-definiteness, although there is some disagreement on the second rule. Note that, in
general, the inner product is not a symmetric bilinear form, see Sect. 1.4.
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|u| = √
u · u . (1.11)

This is also known as the Euclidean norm (or simply norm) of u.3 Such an algebraic
operation also determines the angle θ (u, v) between two nonzero vectors u and v
with an identical origin via

cos θ = u · v
|u| |v| , for θ (u, v) ∈ [0, π ] . (1.12)

From the above expression, one trivially obtains

u · v = |u| |v| cos θ , (1.13)

which presents the geometrical definition of the inner product introduced in many
texts on linear algebra in advance.

For subsequent developments, some useful definitions are given below:

Unit vector.A vector of unit length is said to be a unit vector. Unit vectors in this text
are designated by boldface Latin letters with widehat. Hence, if ê is a unit vector then
|̂e| = 1. In this regard, any arbitrary nonzero vector u in space can be normalized
according to û = u/ |u|.
Equal vectors. Two vectors u and v are said to be equal when they have the same
direction and magnitude. Technically, for all vectors w,4

u · w = v · w if and only if u = v . (1.14)

Orthogonal vectors. Two nonzero vectors u and v are orthogonal if their inner
product vanishes:

u · v = 0 if and only if cos θ (u, v) = π

2
. (1.15)

And u is said to be perpendicular to v and vice versa.

Orthonormal basis. A basis, say Gb = {̂u, v̂, ŵ} ⊂ E 3
r , is called orthonormal if

û · v̂ = û · ŵ = v̂ · ŵ = 0 and |̂u| = |̂v| = |ŵ| = 1 . (1.16)

This basically represents a set of three mutually orthogonal unit vectors.

3 In some texts, the Euclidean length of a vector u is denoted by ‖u‖.
4 The result (1.14) can easily be verified. Suppose that u · w = v · w holds for all vectors w. Then,
by invoking (−1) v = −v from (1.76) and making use of (1.5) and (1.10), one can arrive at the
relation (u − v) · w = 0. Now, choosing w = u − v presents g ip (u − v,u − v) = 0. Finally, by
means of (1.9d), one can obtain the desired result u = v. The converse is immediate.
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1.3.1 Vector Projection and Rejection

The vector projection of u onto v, denoted by projvu, is a vector having identical
direction with v. Its magnitude, called scalar projection of u on v, is defined by

projvu = u · v̂ = u · v
|v| , (1.17)

where v̂ denotes the unit vector in the direction of v. Thus,

projvu = (

projvu
)

(̂v) =
(
u · v
|v|

)(
v
|v|

)

= u · v
v · v v . (1.18)

The projection of u onto the plane perpendicular to v is called the vector rejection
of u from v and designated here by rejevu. The sum of projvu and rejevu is again
u. And this enables one to obtain

rejevu = u − u · v
v · v v . (1.19)

For a geometrical interpretation, see Fig. 1.2.

Fig. 1.2 Projection (rejection) of a vector u along (from) a unit vector ê



1.4 Complexification 9

1.4 Complexification

In general, a vector space is not only defined over the field of real numbers R but also
over the field of complex numbers C. This new vector space cannot be equipped with
the inner product (1.8) properly and, therefore, this scalar-valued function along with
its properties should consistently be modified. Similarly to E 3

r , one can also define an
three-dimensional Euclidean complex vector space E 3

c in such a way that its complex
vector space C 3, with axioms analogous to those of V 3, is furnished by a consistent
inner product g ip

c . The goal is thus to define this new algebraic operation and identify
its properties.

First, one can introduce a complex number c∗ ∈ C as c∗ = α + iβ where α, β ∈
R and complex vector z∗ ∈ E 3

c by z∗ = u + iv where u, v ∈ E 3
r . Here, i denotes the

imaginary unit satisfying i2 + 1 = 0. As can be seen, E 3
r renders a subspace of E 3

c .
Let z∗

1 = u1 + iv1 and z∗
2 = u2 + iv2 be two arbitrary complex vectors. The vector

addition z∗
1 + z∗

2 and scalar multiplication c∗z∗ for C 3 are accordingly defined by the
rules

z∗
1 + z∗

2 = (u1 + iv1) + (u2 + iv2)

= (u1 + u2) + i (v1 + v2) , (1.20a)

c∗z∗ = (α + iβ) (u + iv)

= (αu − βv) + i (αv + βu) . (1.20b)

Denoting by z∗ (c∗) the complex conjugate of z∗ (c∗) according to z∗ = u − iv
(c∗ = α − iβ), the inner product g ip

c is now defined via the relation5

g ip
c

(

z∗
1, z

∗
2

) = z∗
1 · z∗

2

= (u1 − iv1) · (u2 + iv2)

= u1 · u2 + i (u1 · v2 − v1 · u2) + v1 · v2 . (1.21)

Notice that (1.21)3 will reduce to (1.8) when the imaginary parts of z∗
1 and z

∗
2 become

zero, i.e. v1 = v2 = 0. This scalar-valued function then satisfies the following axioms
for any c∗ , d∗ ∈ C and z∗

1 , z∗
2 , z∗ ∈ E 3

c :

g ip
c

(

z∗
1, z

∗
2

) = g ip
c
(

z∗
2, z

∗
1

)

or z∗1 · z∗2 = z∗2 · z∗1 representing conjugate symmetry

, (1.22a)

5 Note that the property (1.9d) does not hold in general for complex vectors. For instance, consider
a vector z∗ = û + √

3̂v − i (2ŵ) where {̂u, v̂, ŵ} forms an orthonormal basis according to (1.16).
It follows that g ip (z∗, z∗) = 0. Such a nonzero complex vector, which is orthogonal to itself based
on (1.8), is called isotropic vector. That is why the inner product (1.8) along with its properties in
(1.9a) to (1.9d) need to be reformulated. The definition (1.21)1 is basically an inner product with
positive definite property (without symmetry and bilinearity properties). This can easily be verified
for the given example.
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g ip
c

(

c∗z∗
1 + d∗z∗

2, z
∗) = c∗g ip

c

(

z∗
1, z

∗) + d
∗
g ip
c

(

z∗
2, z

∗)

or
(

c∗z∗1 + d∗z∗2
)

· z∗ = c∗ (

z∗1 · z∗) + d
∗ (

z∗2 · z∗) rendering linearity in the first argument

, (1.22b)

g ip
c

(

z∗, z∗) > 0 if z∗ �= 0

g ip
c

(

z∗, z∗) = 0 if z∗ = 0

}

or z∗ · z∗ ≥ 0, for which z∗ · z∗ = 0 ⇐⇒ z∗ = 0, expressing positive-definiteness

. (1.22c)

The inner product g ip
c
(

z∗
1, z

∗
2

)

with the above properties is basically a sesquilinear
form. And it is usually denoted by

〈

z∗
1, z

∗
2

〉

in physics community.

1.5 Three-Dimensional Euclidean Point Space

It is worth mentioning that there is no unified definition for Euclidean space and the
previous definition relied on the notion of vector space wherein concept of point
was excluded. Points contain the concept of what is meant by the notion of precise
location in Euclidean space without any dimensional characteristic.

Intuitively, every ordered pair of distinct points in space can be associated with a
vector that seems to act as a connecting tool. So, if a space of vectors exists then a
space of points must exist consistently. Moreover, representing Euclidean space with
only vectors without such a fundamental object upon which Euclidean geometry is
built may produce a great concern. These motivate to define a space with closely
related properties to E 3

r .
An three-dimensional Euclidean point space, denoted by E 3

p , is a set of points
satisfying the following rules

for every ordered pair of points (y, x) ∈ E 3
p ,

there exists a vector v ∈ E 3
r such that

v = x − y , ←− a vector is defined here by the
difference of two arbitrary points (1.23a)

for any three points x, y, z ∈ E 3
p ,

(x − y) + (y − z) = x − z , ←−
this expresses parallelogram law of vector addition
and clearly shows that points cannot be summed up
(only their differences are allowed to be summed up)

(1.23b)

for any point y ∈ E 3
p and vector u ∈ E 3

r ,

there exists a unique point x ∈ E 3
p such that

x = y + u . ←− this states that the sum of a
point and a vector will be a point (1.23c)

By defining E 3
p , the three-dimensional Euclidean vector space E 3

r is now referred to
as translation space of E 3

p .
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1.6 Vector Representation in Cartesian Coordinates

A coordinate system is a way for identifying the location of a point in space. Indeed,
uniquely defining any point or any other geometric element in space are enabled by
coordinate systems. Denoting by n the space dimension, this is done by assigning
a n-tuple of real numbers, or coordinates, to every point. For the space under con-
sideration, each point is identified by three coordinates, e.g. a point x is shown by
the ordered triplet (x1 , x2 , x3). Each coordinate indicates the distance between the
point and an arbitrary reference point, called origin. The coordinate systems can be
thought of as grid of points with fixed coordinates in a particular system. For three-
dimensional spaces, a coordinate line is defined by keeping any twoof the coordinates
constant and varying the remaining one. And coordinate axes are directed lines (or
curves) intersecting at the origin. A three-dimensional coordinate system for which
the coordinate axes obey the right-hand rule is called a right-handed coordinate sys-
tem and one that satisfies the left-hand rule is referred to as a left-handed coordinate
system.

Cartesian coordinate system. A broadly used Cartesian coordinate system - in
physics and engineering and also many other scientific fields - is one for which all
coordinate lines passing through each point are mutually orthogonal. This simple
structure makes it greatly preferable among many different coordinate systems.

Cartesian coordinate frame.Any arbitrary origin o ∈ E 3
p together with a positively

oriented orthonormal basis {̂e1, ê2, ê3} ⊂ E 3
r defines a Cartesian coordinate frame.6

Such a frame will extensively be used in this text.
By setting a Cartesian coordinate frame, any vector u ∈ E 3

r in space pointing from
o to an specific point can be represented, in view of (1.7), by

u = u1 ê1 + u2 ê2 + u3 ê3 , (1.24)

where ui , i = 1, 2, 3 denote theCartesian (or rectangular) components ofu. They
are uniquely determined by

u1 = u · ê1
︸ ︷︷ ︸

= proĵe1u

, u2 = u · ê2
︸ ︷︷ ︸

= proĵe2u

, u3 = u · ê3
︸ ︷︷ ︸

= proĵe3u

. ←− see (1.17) (1.25)

The expression (1.24) is known as the coordinate representation of a vector. With
the aid of (1.25), it can be rephrased as

u = (u · ê1) ê1
︸ ︷︷ ︸

= proĵe1u

+ (u · ê2) ê2
︸ ︷︷ ︸

= proĵe2u

+ (u · ê3) ê3
︸ ︷︷ ︸

= proĵe3u

. ←− see (1.18) (1.26)

6 For a positively oriented basis, the basis vectors can be either right-handed or left-handed which
is a matter of convention, see (1.63). But, the right-handed bases are commonly acknowledged to
be positively oriented.
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Fig. 1.3 A vector u with its rectangular components u1, u2 and u3 in a right-handed Cartesian
coordinate frame

Figure1.3 schematically shows a Cartesian coordinate frame with right-handed
coordinate axes as well as orthonormal bases wherein u in (1.26) renders the
difference between an arbitrary point x and origin o. For brevity, the Cartesian basis
vectors from now on are denoted by

{̂ei } := {̂e1, ê2, ê3} , (1.27)

collectively. In a similar manner, for instance, {gi } refers to {g1, g2, g3}.
With reference to Fig. 1.3, each basis vector êi is eventually the tangent vector

that is tangent to xi -axis. These tangent vectors are given by7

êi = ∂x
∂xi

, i = 1, 2, 3 . (1.28)

1.7 Indicial Notation and Summation Convention

Appearance of vectors with entirely boldface setting in an expression basically rep-
resents direct (or absolute or symbolic or tensorial) notation. As discussed before,
once a specific coordinate system is chosen for practical reasons, a large number

7 The expression (1.28) is well defined because the difference of two points delivers a vector. From
the consistency point of view, it should be written as êi = ∂x/∂xi . The reason is that they are
basically the general basis vectors of an arbitrary curvilinear coordinate system, see (5.3). Here,
they are reduced to the standard basis of a Cartesian coordinate frame.
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of components will appear which refer a vector to the corresponding basis vectors.
Now, one may ask if there is a notation to completely express the equations in terms
of components. Indeed, such a notation is invented and called indicial (or index or
subscript or suffix) notation but now the question is why one should apply it. At the
first glance, the direct notation is superior since it treats vectors (or tensors) as single
mathematical objects rather than collections of components. And this helps better
understand the geometrical and/or physical meaning of equations. But, this notation
requires much more effort to derive/prove huge number of vector (or tensor) alge-
braic and calculus identities. This becomes even worse when higher-order tensors
come to the problem. The indicial notation as a promising tool, on the other hand,
is capable of simplifying the writing of complicated expressions and performing the
mathematical operations more conveniently. It is often the preferred notation for the
theoretical and computational aspects of physical problems. In this regard, derivation
of formulations in this text is mostly carried out by using this powerful and handy
notation.

Index notation is quite simple and can be understood by some examples. For
instance, the following system of equations

A11x1 + A12x2 + A13x3 = y1
A21x1 + A22x2 + A23x3 = y2
A31x1 + A32x2 + A33x3 = y3

}

, (1.29)

in indicial notation can be written as

3
∑

j=1

Ai j x j = yi . (1.30)

Latin indices take on various integer numbers from 1 to 3 in this book to refer a
specific component in a vector (or tensor) identity. If the range of an index is not
written, e.g. i in the above expression, one should realize that it is implicitly there
and can be any of 1, 2, 3 which totally presents 3 equations.

Another example will be the change of notation for the vector addition from the
direct notation u = v + w to the index notation ui = vi + wi . Since the basis vectors
are not written, this representation is often referred to as the component form of
u = v + w. It is sometimes written as (u)i = (v)i + (w)i .

In summary, for any vector (or tensor) identity such as the vector addition, one
needs to distinguish between the following representations

Tensorial form (or direct form) : u = v + w

Indicial form (or component form) : ui = vi + wi or (u)i = (v)i + (w)i

}

.

(1.31)
The Eq. (1.24) can now be written as
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u =
3

∑

i=1

ui êi , (1.32)

where
ui = u · êi = êi · u = (u)i . ←− see (1.25) (1.33)

If one writes the expression (1.32) without the summation symbol as

u = ui êi
or== (u · êi ) êi or== ( êi · u) êi

or== (u)i êi , (1.34)

the so-called Einstein summation convention (or simply summation convention) has
been adopted. According to Einstein notation, if an index in a single term of an
expression appears twice, the summation over all of the values of that index is
implied. As an example, the relation (1.30) should now be rephrased as Ai j x j = yi .
To apply this convention appropriately, the following rules must be obeyed:

✍ Each index is allowed to repeat once or twice, e.g. ui = vi + a jb j c jwi is not
true (clearly, it is acceptable to write ui = vi + wi

∑3
j=1 a jb j c j ).

✍ Non-repeated indices should appear in each term identically, e.g. an expression
of the form ui = v j + wi has no meaning.

An index that is summed over is called dummy (or summation) index since the
summation is independent of the letter selected for this index, e.g. uivi = u j v j =
ukvk all results in an identical real number. An index that only appears once in a term
(if it is replaced by a new index in a single term, this should be carried out throughout
the entire expression) is referred to as free (or live) index, e.g. ui = vi + wi and
u j = v j + wj both have the same meaning. Note that in each term of an expression,
an index should be either free or dummy.

It is worth noting that real advantage of the Einstein notationmanifests itself when
higher-order tensors and their relationships present in various terms of an expression,
see Chaps. 3 and 6.

The expression (1.16) can be unified according to8

êi · ê j = δi j =
{

1 if i = j

0 if i �= j
, (1.35)

where δi j is called Kronecker delta. The Kronecker delta δi j = δ j i plays a major
role in vector and tensor algebra (or calculus) mainly because of its replacement
property. Basically, the Kronecker delta acts as a substitution operator since, for
instance,

8 For the three independent coordinates (x1, x2, x3), the Kronecker delta δi j can also be indicated
by δi j = ∂xi/∂x j .
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δi j ê j = êi , δi j u j = ui , δi j A jk = Aik , δi jε jkl = εikl , δi jA jklm = Aiklm .

(1.36)
These identities can simply be verified by the direct expansion of the left hand sides.
The above expressions show that if one index of δi j , say j , is repeated in a vector (or
tensor) variable of an expression, the other index i is replaced with j in that variable
and subsequently the Kronecker delta disappears.

The following identities hold true:

δi i = 3

δi iδ j j = 9

}

, δikδk j = δi j ,
δ jkδ jk = 3

δkmδmnδnl = δkl

}

. (1.37)

It is worth mentioning that the summation convention does not have any conflict
with the inner product since this operation is distributive with respect to the vector
addition. Hence, the coordinate representation (1.34)1 can help compute the inner
product of any two vectors u (with ui , i = 1, 2, 3) and v (with v j , j = 1, 2, 3). This
will be carried out by means of (1.35) and (1.36) along with the linearity property
of the inner product according to

u · v = (ui êi ) · (v j ê j
) = ui ( êi ) · (v j ê j

) = ui
(

v j ê j
) · ( êi )

= uiv j
(

ê j
) · ( êi ) = uiv j

(

êi · ê j
) = uiv j

(

δi j
)

= uivi . (1.38)

This result - which shows that the inner product of any two vectors is equal to the
sum of the products of their components - is often used to present the algebraic
definition of the inner product. The relations (1.11) and (1.38)7 now help obtain the
Euclidean length of u, in component form, according to

|u| = √
u · u = √

uiui =
√

u21 + u22 + u23 . (1.39)

Note that 0 is a vector whose components are zero in any coordinate system. Its
scalar product with any arbitrary vector u thus trivially renders

u · 0 = 0 · u = 0 . (1.40)

1.8 Matrix Notation

In introductory texts on linear algebra, vectors are represented by single-column
matrices containing their ordered set of Cartesian components. This notation is very
useful in computer programming required, for instance, in computational mechanics
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since a vector (or tensor) is treated as an array of numbers. In the following, the goal
is thus to represent the matrix of a vector.

The Cartesian basis vectors in matrix notation are written as

[ ê1 ] =
⎡

⎣

1
0
0

⎤

⎦ , [ ê2 ] =
⎡

⎣

0
1
0

⎤

⎦ , [ ê3 ] =
⎡

⎣

0
0
1

⎤

⎦ , (1.41)

or, collectively as,

[ êi ] =
⎡

⎣

δi1
δi2
δi3

⎤

⎦ . (1.42)

Here, the square bracket [•] has been introduced to denote a matrix. This notation
admits summation convention and, therefore, any vector u = ui êi will take the fol-
lowing form

[u ] = u1

⎡

⎣

1
0
0

⎤

⎦ + u2

⎡

⎣

0
1
0

⎤

⎦ + u3

⎡

⎣

0
0
1

⎤

⎦ =
⎡

⎣

u1
u2
u3

⎤

⎦ or [u ] =
⎡

⎣

uiδi1
uiδi2
uiδi3

⎤

⎦ . (1.43)

It is often indicated by
[ u ] = [

u1 u2 u3
]T

, (1.44)

where T denotes the transpose operator. Note that [u ] is not the only form of u in
matrix notation, see (5.70) and (5.71).

The inner product of u and v is in accordance with the matrix multiplication,
that is,

u · v = [u]T [v] = [

u1 u2 u3
]

⎡

⎣

v1
v2
v3

⎤

⎦ = u1v1 + u2v2 + u3v3 . (1.45)

Guided by (1.35), the identity matrix renders

[ I ] = [

δi j
] =

⎡

⎣

δ11 δ12 δ13
δ12 δ22 δ23
δ13 δ23 δ33

⎤

⎦ =
⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ . (1.46)

And an arbitrary matrix [A ] with its transpose [A ]T are represented by

[A ] =
⎡

⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ , [A ]T =
⎡

⎣

A11 A21 A31

A12 A22 A32

A13 A23 A33

⎤

⎦ . (1.47)
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One often needs to save an array of numbers (not necessarily the components of a
vector or tensor with respect to a basis) for convenience. This handy notation, for
instance, helps collect the diagonal elements of the identity matrix as

[

1p
] :=

⎡

⎣

1
1
1

⎤

⎦ . (1.48)

This single-columnmatrix is useful in fast computations within the context of matrix
algebra. Some more examples will be introduced in later chapters.

1.9 Cross Product

The cross (or vector) product of any two vectorsu and v, designated byu × v, is again
a vector. That cross product × : E 3

r × E 3
r → E 3

r satisfies the following properties
for any u , v , w ∈ E 3

r and α , β ∈ R:

u × v = −v × u
representing anti-commutative property

, (1.49a)

(αu + βv) × w = α (u × w) + β (v × w)

or u × (αv + βw) = α (u × v) + β (u × w) rendering linearity
in each argument, i.e. it is bilinear for any ordered pair of vectors

, (1.49b)

u · (u × v) = v · (u × v) = 0

presenting the orthogonality of u (or v) and u × v , i.e.
the cross product of two vectors is perpendicular to each of them

, (1.49c)

(u × v) · (u × v) = (u · u) (v · v) − (u · v)2
indicating the Euclidean length |u × v|2 = (u × v) · (u × v)

. ←− see (1.78a) (1.49d)

The property (1.49c) is visualized in Fig. 1.4 wherein u × v is perpendicular to a
plane containing the parallelogram spanned by u and v. The last property with the
aid of (1.13) delivers

|u × v| = |u| |v| sin θ (u, v) = A , for θ (u, v) ∈ [0, π ] , (1.50)

where A denotes the area of parallelogram spanned by u and v. For the special cases
θ = 0, π , i.e. when these vectors are linearly dependent, one finds that |u × v| = 0.
It is then a simple exercise to verify that



18 1 Algebra of Vectors

Fig. 1.4 Cross product of u and v

u × v = 0 if and only if u = αv . (1.51)

Since u × v carries the information regarding the area defined by u and v, it is often
referred to as the area vector. The correctness of the above properties for vector
product can readily be shown by algebraic relations in Cartesian coordinates. This
requires the introduction of a symbol

εi jk =

⎧

⎪⎨

⎪⎩

+1 , for even permutations of i jk, i.e. 123, 231, 312

−1 , for odd permutations of i jk, i.e. 132, 321, 213

0 , if there is a repeated index, i.e. i = j , i = k , j = k

, (1.52)

called the permutation (or alternating or antisymmetric or Levi–Civita) symbol. Note
that this definition is not unique and there are some alternatives such as

εi jk = 1

2
(i − j) ( j − k) (k − i) , (1.53)

satisfying
εi jk = ε jki = εki j , εik j = εk ji = ε j ik = −εi jk . (1.54)

The permutation symbol is expressible in terms of the Kronecker delta as follows:
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εi jk = δimδ jnδklεmnl

= δi1δ jnδklε1nl
︸ ︷︷ ︸

= δi1δ j2δklε12l + δi1δ j3δkl ε13l = δi1δ j2δk3ε123 + δi1δ j3δk2ε132 = δi1δ j2δk3 − δi1δ j3δk2

+ δi2δ jnδklε2nl
︸ ︷︷ ︸

= δi2δ j1δkl ε21l + δi2δ j3δkl ε23l = δi2δ j1δk3ε213 + δi2δ j3δk1ε231 = −δi2δ j1δk3 + δi2δ j3δk1

+ δi3δ jnδklε3nl
︸ ︷︷ ︸

= δi3δ j1δkl ε31l + δi3δ j2δklε32l = δi3δ j1δk2ε312 + δi3δ j2δk1ε321 = δi3δ j1δk2 − δi3δ j2δk1

= δi1
(

δ j2δk3 − δ j3δk2
) − δ j1 (δi2δk3 − δi3δk2) + δk1

(

δi2δ j3 − δi3δ j2
)

. (1.55)

In (1.55)1, observe that the free indices of a variable in a single term can be replaced
by new indices making use of the Kronecker delta but the old ones should still be
kept for consistency with the other terms. The result (1.55)3 can be written in a more
convenient form as

εi jk = det

⎡

⎣

δi1 δ j1 δk1
δi2 δ j2 δk2
δi3 δ j3 δk3

⎤

⎦ = det

⎡

⎣

δi1 δi2 δi3
δ j1 δ j2 δ j3

δk1 δk2 δk3

⎤

⎦

recall that the determinant of a matrix equals to the determinant of its transpose

= δi1
(

δ j2δk3 − δk2δ j3
)

− δi2
(

δ j1δk3 − δk1δ j3
) + δi3

(

δ j1δk2 − δk1δ j2
)

, (1.56)

where det [•] stands for the determinant of a matrix. The above expression can be
viewed as another definition for the permutation symbol.

The expressions (1.56)1−2 help establish the product εi jkεlmn according to

εi jkεlmn = det

⎡

⎣

⎡

⎣

δi1 δi2 δi3
δ j1 δ j2 δ j3

δk1 δk2 δk3

⎤

⎦

⎡

⎣

δ1l δ1m δ1n
δ2l δ2m δ2n
δ3l δ3m δ3n

⎤

⎦

⎤

⎦ = det

⎡

⎣

δil δim δin
δ jl δ jm δ jn

δkl δkm δkn

⎤

⎦

note that det [•] det [◦] = det [•◦] and, e.g. δi1δ1l + δi2δ2l + δi3δ3l = δioδol = δil

.

(1.57)
Three special cases can then be deduced:

εi jkεlmk = δilδ jm − δimδ jl , (1.58a)

εi jkεl jk = δilδ j j − δi jδ jl = 3δil − δil

= 2δil , (1.58b)

εi jkεi jk = 2δi i
= 6 . (1.58c)

One can finally establish

εi jkδmn = εmjkδin + εimkδ jn + εi jmδkn , (1.59)
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since

2εi jkδmn
from=====
(1.58b)

εmop
[

εi jkεnop
]

from====
(1.57)

εmop
[

δin
(

δ joδkp − δkoδ j p
)

−δio
(

δ jnδkp − δknδ j p
) + δi p

(

δ jnδko − δknδ jo
)]

from====
(1.36)

εmjkδin − εmkjδin − εmikδ jn + εmi jδkn + εmkiδ jn − εmjiδkn

from====
(1.54)

2εmjkδin + 2εimkδ jn + 2εi jmδkn .

The way that the permutation symbol helps characterize the cross product in terms
of the components of vectors is explained in the following.

Basically, the cross product of vectors leads to the cross product of their basis vec-
tors which is enabled by using the property (1.49b). Let

{

ê •
i

}

be an the orthonormal
basis which can be either right-handed or left-handed. Consider, for example, the
cross product ê •

1 × ê •
2 . By use of (1.50), the norm is

∣
∣̂e •

1 × ê •
2

∣
∣ = 1 and the direction

by means of (1.49c) will be either ê •
3 or −̂e •

3 , that is,

ê •
1 × ê •

2 = ±̂e •
3 . (1.60)

This reveal the fact that the presented axioms for the cross product is unable to
uniquely determine the direction of ê •

1 × ê •
2 . To proceed, the vector ê •

1 × ê •
2 is

expressed in terms of its components as

ê •
1 × ê •

2 = α •
m ê •

m

= [(

ê •
1 × ê •

2

) · ê •
m

]

ê •
m

= [(

ê •
1 × ê •

2

) · ê •
3

]

ê •
3 . (1.61)

Thus, by comparing (1.60) and (1.61)3, one finds that

(

ê •
1 × ê •

2

) · ê •
3 = ±1 . (1.62)

This motivates to define orientation for bases. A basis
{

ê •
1 , ê •

2 , ê •
3

}

, not necessarily
orthonormal in general, is said to be positively oriented if

(

ê •
1 × ê •

2

) · ê •
3 > 0 , (1.63)

and it is referred to as negatively oriented if
(

ê •
1 × ê •

2

) · ê •
3 < 0. As commonly

accepted, let’s declare the right-handed bases as positively oriented ones and con-
sider (1.63) as a trivial condition for basis vectors that obey the right-hand screw
rule. A three-dimensional Euclidean vector space equipped with the vector product
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and positively (or negatively) oriented bases is called an oriented three-dimensional
Euclidean vector space. Here, the positive one is denoted by E o3

r .
Hereafter, all Cartesian coordinate frames in this text contain the origin o ∈ E 3

p

and the right-handed orthonormal basis {̂ei } ∈ E o3
r . Now, the cross product ê1 × ê2

in (1.60) becomes ê1 × ê2 = ê3. There are nine possible choices for êi × ê j which
can all be presented in the following unified form

êi × ê j = εi j k̂ek . (1.64)

This demonstrates the major role of permutation tensor in evaluating the cross prod-
uct, see Exercise1.5.

From (1.64), one immediately obtains

εi jk = det
[

êi ê j ê j
] = êi · ( ê j × êk

)

. (1.65)

As a result,

êl = 1

2
εl j k̂e j × êk

since êi · êl = 1
2 2δil = 1

2 εi jkεl jk = 1
2 εl jk êi · ( ê j × êk

) = êi ·
(
1
2 εl jk ê j × êk

)

. (1.66)

For any two Cartesian vectors u = ui êi and v = vi ê j , the cross product u × v as
a bilinear operator, with the aid of (1.64), admits the coordinate representation

w = u × v = (ui êi ) × (

v j ê j
) = uiv j

(

êi × ê j
) = uiv jεi j k̂ek

with wk = ui v j εi jk or wk = εki j ui v j

. (1.67)

By direct expansion, the above result takes the form

w = u × v = (u2v3 − u3v2)
︸ ︷︷ ︸

= w1

ê1 + (u3v1 − u1v3)
︸ ︷︷ ︸

= w2

ê2 + (u1v2 − u2v1)
︸ ︷︷ ︸

= w3

ê3 . (1.68)

This is often represented in a more convenient form as

w = u × v = det

⎡

⎣

ê1 ê2 ê3
u1 u2 u3
v1 v2 v3

⎤

⎦ . (1.69)

It is worthwhile to point out that the cross product is not associative but it satisfies
the so-called Jacobi identity:
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Fig. 1.5 The scalar triple product of u, v and w with the resulting parallelepiped

u × (v × w) + v × (w × u) + w × (u × v) = 0 , ←− the proof is given in
Exercise 1.4 (1.70)

where each term basically presents a triple vector product satisfying

u × (v × w) = (u · w) v − (u · v)w . (1.71)

In general, the triple vector product is not associative due to

(u × v) × w = (u · w) v − (v · w)u . ←− the proof is given in
Exercise 1.3 (1.72)

For any three vectors u, v and w in E o3
r , scalar triple (or mixed or box) product is

defined as
u · (v × w) = v · (w × u) = w · (u × v) = V , (1.73)

where V presents the volume of the parallelepiped constructed by u, v and w as
shown in Fig. 1.5.

Having in mind the bilinearity property of the inner product and cross product,
by use of (1.34)1, (1.35)1, (1.54) and (1.64), the volume V takes the form

u · (v × w) = (ui êi ) · (v j ê j × wk̂ek
) = uiv jwk ( êi ) · ( ê j × êk

)

= uiv jwk ( êi ) · (ε jkl̂el
) = uiv jwkε jklδil

= uiv jwkε jki = εi jkui v jwk . (1.74)
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This can also be written in the handy determinant form

u · (v × w) = det

⎡

⎣

u1 u2 u3
v1 v2 v3
w1 w2 w3

⎤

⎦ . (1.75)

From the above relation, one can deduce the following statement:

If the volume V of the parallelepiped defined by three vectors u, v and
w is nonzero, then these vectors are linearly independent and, therefore,
the triad {u, v,w} forms a basis for E o3

r .

1.10 Exercises

Exercise 1.1

Use the vector space properties (given on Sect. 1.1) to verify that

(a) α0 = 0

(b) 0u = 0

}

,
(c) 00 = 0

(d) 0 = −0

}

,
(e) (−α) u = α (−u)

(f) (−1) u = −u

}

. (1.76)

Solution.

(a) :

α0 from====
(1.4d)

α0 + 0 from====
(1.4c)

α0 + αu + (−αu)

from====
(1.4h)

α (0 + u) + (−αu)
from====
(1.4a)

α (u + 0) + (−αu)

from====
(1.4d)

αu + (−αu)
from====
(1.4c)

0 .

(b) :

0u from====
(1.4d)

0u + 0 from====
(1.4c)

0u + 0u + (−0u)

from====
(1.4g)

(0 + 0)u + (−0u)
from====
(1.4c)

0 .
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(c) :

00 from====
(1.4d)

00 + 0 from====
(1.4c)

00 + 00 + (−00)

from====
(1.4g)

(0 + 0) 0 + (−00)
from====
(1.4c)

0 .

The identities (a)–(c) collectively represent

αu =

⎧

⎪⎨

⎪⎩

0 if α �= 0 , u = 0
0 if α = 0 , u �= 0
0 if α = 0 , u = 0

.

(d) :
0 from====

(1.4c)
0 + (−0)

from====
(1.4a)

(−0) + 0 from====
(1.4d)

(−0) = −0 .

(e) :

(−α) u
from====
(1.4d)

(−α) u + 0 from=======
(a) in (1.76)

(−α) u + α0

from====
(1.4c)

(−α) u + α (u + (−u))
from====
(1.4h)

(−α) u + αu + α (−u)

from====
(1.4g)

(−α + α)u + α (−u)
from=======

(b) in (1.76)
0 + α (−u)

from====
(1.4a)

α (−u) + 0 from====
(1.4d)

α (−u) .

(f) : By substituting α = 1 into the above result and making use of the property
(1.4e), one can arrive at the last identity:

(−1) u = 1 (−u) = −u .

Exercise 1.2

By means of the properties

(u + v) × w = u × w + v × w (or w × (u + v) = w × u + w × v) , (1.77a)

(αu) × w = u × (αw) = α (u × w) , (1.77b)

derive the property (1.49b). Note that these two properties and (1.49b) are basically
equivalent but (1.49b) is often written for brevity.
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Solution. For any three vectors αu, βv and w, one will have

(αu + βv) × w from=====
(1.77a)

(αu) × w + (βv) × w from=====
(1.77b)

α (u × w) + β (v × w) .

Exercise 1.3

Verify the triple vector product (u × v) × w = (u · w) v − (v · w)u, according to
(1.72), and show that the vector (u × v) × w lies in the plane defined by the two
vectors u and v.

Solution. This exercise will be solved by using the permutation symbol and consid-
ering the coordinate representations u = ui êi , v = v j ê j and w = wl̂el (see Fig. 1.3).
Having in mind the bilinearity of the cross product, one can show that

[u × v] × (w) = [

uiv j
(

êi × ê j
)] × (wl̂el)

from====
(1.64)

[

uiv j
(

εi j k̂ek
)] × (wl̂el) = [

uiv jwlεi jk
]

( êk × êl)

from====
(1.64)

(

uiv jwlεi jk
)

(εklm êm)

from====
(1.54)

uiv jwl
(

εi jkεlmk
)

êm

from=====
(1.58a)

uiv jwl
(

δilδ jm − δimδ jl
)

êm

from====
(1.36)

uiv jwi ê j − uiv jw j êi = (uiwi )
(

v j ê j
) − (

v jw j
)

(ui êi )

from==========
(1.34) and (1.38)

(u · w) v − (v · w)u .

The above result will be used to verify the next part. Here, one needs to show that
the vectors (u × v) × w and u × v are orthogonal knowing that the latter itself is
perpendicular to both u and v (see Fig. 1.4):

[(u × v) × w] · (u × v)
from====
(1.72)

[(u · w) v − (v · w)u] · (u × v)

from==========
(1.9b) and (1.9c)

(u · w) [v · (u × v)] − (v · w) [u · (u × v)]

from=====
(1.49c)

(u · w) 0 − (v · w) 0 = 0 .
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Exercise 1.4

First, prove the Jacobi identity (1.70), i.e. a × (b × c) + b × (c × a) + c ×
(a × b) = 0. Then, verify that

(a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c) , (1.78a)

(a × b) × (c × d) = [a · (c × d)]b − [b · (c × d)] a

= [d · (a × b)] c − [c · (a × b)]d , (1.78b)

[(a × b) × (c × d)] · (e × f) = [a · (c × d)] [b · (e × f)]

− [a · (e × f)] [b · (c × d)] , (1.78c)

0 = [b · (c × d)] a − [a · (c × d)]b

+ [d · (a × b)] c − [c · (a × b)]d , (1.78d)

[(a × b) × (b × c)] · (c × a) = [a · (b × c)]2 . (1.78e)

Solution. The proof is similar to what followed in the previous exercise. The verifi-
cation will be carried out step by step for each desired result below.

The Jacobi identity:

a × (b × c)
︸ ︷︷ ︸

= [(a · c) b − (a · b) c] , according to (1.71)

+ b × (c × a)
︸ ︷︷ ︸

= [(b · a) c − (b · c) a]
+ c × (a × b)

︸ ︷︷ ︸

= [(c · b) a − (c · a)b]
= [

����(a · c)b + �����(−a · b) c
] + [����(b · a) c + ����������(−b · c) a]

+ [

��������(c · b) a + �����
(−c · a)b]

= 0 .

The identity (1.78a):

(a × b) · (c × d)
from====
(1.67)

(

aib jεi j k̂ek
) · (cldmεlmn̂en)

︸ ︷︷ ︸

= (

ai b j cl dm
) (

εi jkεlmn
) (

êk · ên
)

from====
(1.35)

(

aib j cldm
) (

εi jkεlmn
)

δkn

from====
(1.36)

(

aib j cldm
) (

εi jkεlmk
)

from=====
(1.58a)

(

aib j cldm
) (

δilδ jm − δimδ jl
)

from====
(1.36)

aicib jd j − aidib j c j

from====
(1.38)

(a · c) (b · d) − (a · d) (b · c) .
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Notice that the property (1.49d) - which represents the magnitude of the cross
product - can be recovered from the above identity by substituting c = a and d = b.

The identity (1.78b):

Recall from (1.72) that (a × b) × u = [a · (u)] b − [b · (u)] a

and let u = c × d .

Then, (a × b) × (c × d) = [a · (c × d)]b − [b · (c × d)] a .

This identity has another representation:

(a × b) × (c × d)
from====
(1.67)

(

aib jεi j k̂ek
) × (cldmεlmn̂en)

from==========
(1.54) and (1.64)

(

aib j cldm
) (−εi jkεlmnεkon̂eo

)

from=====
(1.58a)

(

aib j cldm
)

εi jk (−δlkδmo + δloδmk) êo

from====
(1.36)

− (

aib j ckdm
)

εi j k̂em + (

aib j cldk
)

εi j k̂el
︸ ︷︷ ︸

= − (

ai b j ckεi jk
)

(dm êm ) + (

ai b j dkεi jk
) (

cl êl
)

from====
(1.74)

[a · (b × d)] c − [a · (b × c)]d

from====
(1.73)

[d · (a × b)] c − [c · (a × b)]d .

The identity (1.78c):

{(a × b) × (c × d)} · (e × f)
from======
(1.78b)

{[a · (c × d)]b − [b · (c × d)] a} · (e × f)

= [a · (c × d)] [b · (e × f)] − [a · (e × f)] [b · (c × d)] .

The identity (1.78d):

from (1.4c)======⇒
and (1.5)

{(c × d) × (a × b)} − {(c × d) × (a × b)} = 0

from====⇒
(1.49a)

− {(a × b) × (c × d)} − {(c × d) × (a × b)} = 0

from====⇒
(1.78b)

− {[a · (c × d)]b − [b · (c × d)] a} − {[c · (a × b)]d − [d · (a × b)] c} = 0

⇒ {[b · (c × d)] a − [a · (c × d)]b} + {[d · (a × b)] c − [c · (a × b)]d} = 0 .

The identity (1.78e):
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[(a × b) × (b × c)] · (c × a)
from=====
(1.78b)

[a · (b × c)] [b · (c × a)]

− [a · (c × a)] [b · (b × c)]
from=====
(1.49c)

[a · (b × c)] [b · (c × a)]

from====
(1.73)

[a · (b × c)] [a · (b × c)]

= [a · (b × c)]2 .

Exercise 1.5

The alternating symbol is not only used for computing the cross product but also
helps obtain the determinant of a square matrix [A ] given in (1.47)1. First, show that

det [A ] = εi jk Ai1A j2Ak3

= εi jk A1i A2 j A3k = det
[

AT
]

. (1.79)

Then, use the above result to obtain the alternative form

det [A ] = 1

6
εi jkεlmn Ail A jm Akn

= 1
6 εi jkεlmn Ali Amj Ank = det

[

AT
]

. (1.80)

Finally, verify that

εi jkεqrs

6
εlmn Alq Amr Ans = εlmn Ali Amj Ank . (1.81)

Solution. The determinant of a 3 by 3 square matrix

det [A ] = A11 (A22A33 − A32A23)

− A21 (A12A33 − A32A13) + A31 (A12A23 − A22A13) , (1.82)

is expressible in terms of the permutation symbol (1.52) as follows:

det [A ] = A11
(

ε1 jk A j2Ak3
) + A21

(

ε2 jk A j2Ak3
) + A31

(

ε3 jk A j2Ak3
)

. (1.83)

The above expression by means of the summation convention simply provides the
desired result (1.79)1.
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To show (1.80)1, first recall from (1.58c)2 that εlmnεlmn = 6. This motivates to
multiply both sides of (1.79)1 by εlmn to arrive at

det [A ] εlmn = (

Ai1A j2Ak3
)

εi jkεlmn

from==========
(1.36) and (1.57)

(

Ai1A j2Ak3
)

δil
(

δ jmδkn − δkmδ jn
)

︸ ︷︷ ︸

= Al1Am2An3 − Al1An2Am3

− (

Ai1A j2Ak3
)

δim
(

δ jlδkn − δklδ jn
)

︸ ︷︷ ︸

= Am1Al2An3 − Am1An2Al3

+ (

Ai1A j2Ak3
)

δin
(

δ jlδkm − δklδ jm
)

︸ ︷︷ ︸

= An1Al2Am3 − An1Am2Al3

= Al1
(

ε1 jk Amj Ank
) + Al2

(

ε2 jk Amj Ank
) + Al3

(

ε3 jk Amj Ank
)

= εi jk
(

Ali Amj Ank
)

. (1.84)

This result, by means of det [A ] = det [A ]T and AT
uv = Avu , can also be repre-

sented by
det [A ] εlmn = εi jk

(

Ail A jm Akn
)

. (1.85)

Bymultiplying both sides of (1.85) by εlmn , taking into account the identity (1.58c)2,
one can arrive at the required result (1.80)1.

It should not be difficult now to see that [4]

εi jkεqrs

6
εlmn Alq Amr Ans = 1

6
εlmn Alq Amr Ans

[

δiq
(

δ jr δks − δkr δ js
)

−δir
(

δ jqδks − δkqδ js
) + δis

(

δ jqδkr − δkqδ jr
)]

= 1

6
εlmn

[

Ali
(

Amj Ank − Amk Anj
) ←− note that − εlmn Amk Anj

= −εlnm Ank Amj = +εlmn Ank Amj

−Ami
(

Al j Ank − Alk Anj
) + Ani

(

Al j Amk − Alk Amj
)]

= εlmn Ali Amj Ank .

Exercise 1.6

The goal of this exercise is to provide a deeper insight into indicial notation as well as
matrix notationwhich are extensively used, for instance, in nonlinear solidmechanics
and numerical procedures such as the finite element method.

For each part given below, express the given variable in index notation as well as
matrix notation.
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1. s = a1x1x2 + a2x2x2 + a3x3x2.

Solution.
Index notation: s = ai xi x2 , (1.86a)

Matrix notation: s = [

a1 a2 a3
]

⎡

⎣

x1
x2
x3

⎤

⎦ x2 . (1.86b)

2. s̄ = a1x1x1 + a2x2x2 + a3x3x3 .

Solution.

Index notation: s̄ =
3

∑

i=1

ai x
2
i , (1.87a)

Matrix notation: s̄ = [

x1 x2 x3
]

⎡

⎣

a1 0 0
0 a2 0
0 0 a3

⎤

⎦

⎡

⎣

x1
x2
x3

⎤

⎦ . (1.87b)

Note that the matrix form (1.87b) may also be written by

Matrix notation: s̄ = [

a1 a2 a3
]

⎡

⎣

x21
x22
x23

⎤

⎦ . (1.88)

3. s̃ = ∂2Ψ

∂x21
+ ∂2Ψ

∂x22
+ ∂2Ψ

∂x23
.

Solution.

Index notation: s̃ = ∂2Ψ

∂xi∂xi
, (1.89a)

Matrix notation: s̃ =
[

∂

∂x1

∂

∂x2

∂

∂x3

]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂Ψ

∂x1
∂Ψ

∂x2
∂Ψ

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1.89b)

4. The total differential d f of a function f = f̂ (x1, x2, x3) .
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Solution.

Index notation: d f = ∂ f̂

∂xi
dxi , (1.90a)

Matrix notation: d f =
[

∂ f̂

∂x1

∂ f̂

∂x2

∂ f̂

∂x3

]
⎡

⎣

dx1
dx2
dx3

⎤

⎦ . (1.90b)

5. The differential change in the functions vi = v̂i (x1, x2, x3) , i = 1, 2, 3, and the
sum dvidvi .

Solution.

Index notation: dvi = ∂ v̂i
∂x j

dx j , (1.91a)

Matrix notation:

⎡

⎣

dv1
dv2
dv3

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ v̂1
∂x1

∂ v̂1
∂x2

∂ v̂1
∂x3

∂ v̂2
∂x1

∂ v̂2
∂x2

∂ v̂2
∂x3

∂ v̂3
∂x1

∂ v̂3
∂x2

∂ v̂3
∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣

dx1
dx2
dx3

⎤

⎦ . (1.91b)

And,

Index notation: dvidvi = ∂ v̂i
∂x j

∂ v̂i
∂xk

dx jdxk , (1.92a)

Matrix notation: dvidvi = [

[v]T [v]T [v]T
]

⎡

⎣

A1 O O
O A2 O
O O A3

⎤

⎦

⎡

⎣

[v]
[v]
[v]

⎤

⎦ , (1.92b)

where [O] is a 3 by 3 zero matrix and

[Ai ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ v̂i
∂x1

∂ v̂i
∂x1

∂ v̂i
∂x1

∂ v̂i
∂x2

∂ v̂i
∂x1

∂ v̂i
∂x3

∂ v̂i
∂x2

∂ v̂i
∂x1

∂ v̂i
∂x2

∂ v̂i
∂x2

∂ v̂i
∂x2

∂ v̂i
∂x3

∂ v̂i
∂x3

∂ v̂i
∂x1

∂ v̂i
∂x3

∂ v̂i
∂x2

∂ v̂i
∂x3

∂ v̂i
∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, [v] =
⎡

⎣

dx1
dx2
dx3

⎤

⎦ . (1.93)

6. The first- and second-order total differentials, d Ai j and d2Ai j , of six independent
functions Ai j = Âi j (x1, x2, x3) for which A12 = A21 , A23 = A32 , A13 = A31.
Assume that the functions and the respective higher-order derivatives are contin-
uous.
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Solution.

Index notation: d Ai j = ∂ Âi j

∂xk
dxk , (1.94a)

Matrix notation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d A11

d A22

d A33

d A23

d A13

d A12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ Â11

∂x1

∂ Â11

∂x2

∂ Â11

∂x3
∂ Â22

∂x1

∂ Â22

∂x2

∂ Â22

∂x3
∂ Â33

∂x1

∂ Â33

∂x2

∂ Â33

∂x3
∂ Â23

∂x1

∂ Â23

∂x2

∂ Â23

∂x3
∂ Â13

∂x1

∂ Â13

∂x2

∂ Â13

∂x3
∂ Â12

∂x1

∂ Â12

∂x2

∂ Â12

∂x3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣

dx1
dx2
dx3

⎤

⎦ . (1.94b)

Accordingly,

Index notation: d2Ai j = ∂2 Âi j

∂xl∂xk
dxldxk , (1.95a)

Matrix notation:
[

d2A
] =

[

∂2Â
∂x∂x

]

[ dxdx ] , (1.95b)

where

[

d2A
] = [

d2A11 d2A22 d2A33 d2A23 d2A13 d2A12
]T

, (1.96a)

[

∂2Â
∂x∂x

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2 Â11

∂x1∂x1

∂2 Â11

∂x2∂x2

∂2 Â11

∂x3∂x3

∂2 Â11

∂x2∂x3

∂2 Â11

∂x1∂x3

∂2 Â11

∂x1∂x2
∂2 Â22

∂x1∂x1

∂2 Â22

∂x2∂x2

∂2 Â22

∂x3∂x3

∂2 Â22

∂x2∂x3

∂2 Â22

∂x1∂x3

∂2 Â22

∂x1∂x2
∂2 Â33

∂x1∂x1

∂2 Â33

∂x2∂x2

∂2 Â33

∂x3∂x3

∂2 Â33

∂x2∂x3

∂2 Â33

∂x1∂x3

∂2 Â33

∂x1∂x2
∂2 Â23

∂x1∂x1

∂2 Â23

∂x2∂x2

∂2 Â23

∂x3∂x3

∂2 Â23

∂x2∂x3

∂2 Â23

∂x1∂x3

∂2 Â23

∂x1∂x2
∂2 Â13

∂x1∂x1

∂2 Â13

∂x2∂x2

∂2 Â13

∂x3∂x3

∂2 Â13

∂x2∂x3

∂2 Â13

∂x1∂x3

∂2 Â13

∂x1∂x2
∂2 Â12

∂x1∂x1

∂2 Â12

∂x2∂x2

∂2 Â12

∂x3∂x3

∂2 Â12

∂x2∂x3

∂2 Â12

∂x1∂x3

∂2 Â12

∂x1∂x2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1.96b)

[ dxdx ] = [

(dx1)
2 (dx2)

2 (dx3)
2 2dx2dx3 2dx1dx3 2dx1dx2

]T
. (1.96c)
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The representations (1.94b) and (1.95b) are very suitable for implementations
in computer codes. Observe that how the number of free indices is decreased in
these representations. As can be seen, d2Ai j with two indices that could be set in
a matrix is now collected in an object having only one index. Moreover, observe

that a variable of the form
(

∂2Â/∂x∂x
)

i jkl
= ∂2 Âi j/∂xk∂xl , with four indices in

(1.95a), which possesses the following minor symmetries

∂2 Âi j

∂xk∂xl
= ∂2 Â ji

∂xk∂xl
symmetry in the first two indices
is called minor (left) symmetries

,
∂2 Âi j

∂xk∂xl
= ∂2 Âi j

∂xl∂xk
symmetry in the last two indices

is termed minor (right) symmetries

, (1.97)

is now expressed as a matrix in (1.96b) possessing two indices. See Sect. 3.2.4
for more elaborations.
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Chapter 2
Algebra of Tensors

Vector algebra was briefly discussed in the previous chapter not only to introduce
the concept of vector and represent its important relationships but also as a primary
mathematics for an introduction to tensor algebra. Consistent with vectors, second-
order tensors or simply tensors are geometric objects that aim at describing linear
relation between vectors. Thesemathematical entities are constructed from vectors in
a certain way. They are designated here by capital and some specific small boldface
Latin and Greek letters. Some familiar examples include strain and stress tensors
in continuum mechanics, conductivity tensor in electromagnetic field theory and
curvature tensor in differential geometry.

2.1 Tensor as a Linear Transformation

There is no unified definition of tensor in the literature. In this textbook, the term
tensor should be thought of as a linear transformation (or linear map or linear
mapping or linear function) from the oriented three-dimensional Euclidean vector
space to the same space. Denoting byTso the set of all these linear transformations,1

a linear mapping A ∈ Tso assigns to each vector u ∈ E o3
r generally another vector

v ∈ E o3
r according to

v = Au , (2.1)

and satisfies the linearity requirement

A (u + v) = Au + Av

A (αu) = α (Au)

}
or A (αu + βv) = α (Au) + β (Av) , (2.2)

1 In the literature, the set Tso is often denoted by Lin.
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for all scalars α, β ∈ R. The vectorial variableAu can be termed right mapping since
the tensor A is postmultiplied by the vector u. In fact, A operates on u to generate v.
It is important to note that similarly to vectors, and as can be seen from (2.1), tensors
are independent of any coordinate system. Indeed, they are coordinate free entities.

For α = 1, β = −1 and u = v, the introduced linear transformation gives
A ( 1u + (−1) u ) = 1 (Au) + (−1) (Au). This with the aid of the identity (f) in
(1.76) and the rule (1.4e) yields A ( u + (−u) ) = Au + (−Au). This result along
with the axiom (1.4c) delivers

A0 = 0 . (2.3)

The following definitions are required for the subsequent developments:

Zero tensor. The zero tensor O is defined by

Ou = 0 , for all u ∈ E o
r 3. (2.4)

Unit tensor. The unit (or identity) tensor I is extensively used in tensor algebra and
calculus. It is a special linear transformation with identical input and output, that is,

Iu = u , for all u ∈ E o3
r . (2.5)

Equal tensors. Two tensorsA andB are said to be equal if they identically transform
all vectors u, more precisely,

A = B if and only if Au = Bu . (2.6)

or, equivalently,2

A = B if and only if v · Au = v · Bu . (2.7)

This equality condition plays a major role in verifying many upcoming identities.

By appealing to the operations of addition and multiplication for a vector space,
the sum, A + B, of two tensors A and B as well as the scalar multiplication, αA,
of a tensor A by a scalar number α are defined via the following rules

2 It is not difficult to show that Au = Bu can be deduced from v · Au = v · Bu. By considering the
inner product as a symmetric bilinear form and setting v = Au − Bu, one will have |Au − Bu| = 0.
This result along with (1.9d)2 implies that Au = Bu.
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(A + B)u = Au + Bu , (2.8a)

(αA)u = α (Au) = A (αu) , (2.8b)

for all A , B ∈ Tso, u ∈ E o3
r and α ∈ R.

For convenience, the difference between two tensors A and B is indicated by

A + (−B) = A − B . ←− see (1.5) (2.9)

It is not then difficult to deduce that

(A − B)u = Au − Bu . (2.10)

The rules (2.8a) and (2.8b) states that the set Tso remains closed under addition
and scalar multiplication. This immediately implies that the set Tso of all tensors
constitutes a new vector space over the field of real numbers, if the rules (1.4a) to
(1.4h) can be applied to its elements. In this regard, the goal is to consistently rewrite
the properties of vector space for the problem at hand.

Let’s first see whether the axiom (1.4a) is applicable here or not, i.e. a property
of the form A + B = B + A is valid or not. This can be verified according to

(A + B) u
from====
(2.8a)

Au + Bu

from=========
(1.4a) and (2.1)

Bu + Au

from====
(2.8a)

(B + A)u

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

from==⇒
(2.6)

A + B = B + A .

The second property, i.e. (A + B) + C = A + (B + C) can be verified by following
a similar procedure.

The third property, i.e. A + (−A) = O, can be shown as follows:

0 from====
(2.3)

A0

from====
(1.4c)

A ( u + (−u) )

from================
(f) in (1.76) and (2.8a)-(2.10)

(A + (−A) ) u

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

from==⇒
(2.4)

A + (−A) = O .

The last property considered here regards A + O = A. This can be verified as
follows:
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Au from====
(1.4d)

Au + 0

from====
(2.4)

Au + Ou

from====
(2.8a)

(A + O)u

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

from==⇒
(2.6)

A + O = A .

The remaining properties can be verified in a straightforward manner. The set Tso

should thus be recognized as a newvector space. In summary, the following properties
hold:

A + B = B + A , (2.11a)

(A + B) + C = A + (B + C) , (2.11b)

A + (−A) = O , (2.11c)

A + O = A , (2.11d)

1A = A , (2.11e)

(αβ)A = α (βA) , (2.11f)

(α + β)A = αA + βA , (2.11g)

α (A + B) = αA + αB . (2.11h)

It is then a simple exercise to represent the tensorial analogues of the identities (1.76)
as

(a) αO = O

(b) 0A = O

}
,

(c) 0O = O

(d) O = −O

}
,

(e) (−α)A = α (−A)

(f) (−1)A = −A

}
. (2.12)

2.2 Tensor Product and Representation

The tensor (or direct or dyadic) product of the vectors u ∈ E o3
r and v ∈ E o3

r , is
designated by u ⊗ v (or sometimes uv). The dyad u ⊗ v is a linear transformation
that maps any vector w ∈ E o3

r onto a scalar multiple of u by the rule

(u ⊗ v)w = (v · w) u
using (1.9a), one can also write (u ⊗ v)w = (u ⊗ w) v

, (2.13)

where⊗ designates the tensor product. Note that the above rule eventually represents
a right mapping in alignment with (2.1).

Themapg tp
so (u, v) = u ⊗ v fromE o3

r × E o3
r toTso

(
E o3
r

)
truly represents a tensor

because when it acts on w, a vector (in the direction of u) will be generated and also
it fulfills the linearity condition
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(u ⊗ v) (αw + βw̄)
from====
(2.13)

[v · (αw + βw̄)]u

from=========
(1.9a) to (1.9c)

[α (v · w) + β (v · w̄)]u

from==========
(1.4f) and (1.4g)

α [(v · w)u] + β [(v · w̄)u]

from====
(2.13)

α (u ⊗ v)w + β (u ⊗ v) w̄ . (2.14)

The bilinearity of g tp
so is then implied via the relations

[(αu + βv) ⊗ w] w̄ from====
(2.13)

(w · w̄) (αu + βv)

from==========
(1.4f) and (1.4h)

α ((w · w̄)u) + β ((w · w̄) v)

from====
(2.13)

α (u ⊗ w) w̄ + β (v ⊗ w) w̄

from==========
(2.8a) and (2.8b)

[α (u ⊗ w) + β (v ⊗ w)] w̄ , (2.15a)

[u ⊗ (αv + βw)] w̄
from====
(2.13)

[(αv + βw) · w̄]u
from====
(1.10)

[α (v · w̄) + β (w · w̄)]u

from==========
(1.4f) and (1.4g)

α [(v · w̄)u] + β [(w · w̄)u]

from====
(2.13)

α [(u ⊗ v) w̄] + β [(u ⊗ w) w̄]

from==========
(2.8a) and (2.8b)

[α (u ⊗ v) + β (u ⊗ w)] w̄ , (2.15b)

since, by means of (2.6), one can deduce that

g tp
so (αu + βv,w) = (αu + βv) ⊗ w = α (u ⊗ w) + β (v ⊗ w) , (2.16a)

g tp
so (u, αv + βw) = u ⊗ (αv + βw) = α (u ⊗ v) + β (u ⊗ w) . (2.16b)

For the two Cartesian vectors u = uîei and v = v ĵe j with the standard basis {̂ei },
the collection {̂

ei ⊗ ê j , i, j = 1, 2, 3
} def=== {̂

ei ⊗ ê j
}

, (2.17)
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constitutes a basis forTso
(
E o3
r

)
.3 Hence, the dimension of this new vector space will

be dimTso = (
dimE o3

r

)2 = 32.

It should be noted that an arbitrary tensor inTso
(
E o3
r

)
is not necessarily of the sin-

gle formu ⊗ v but also a linear combination of dyads such asα (u ⊗ v) + β (w ⊗ w̄),
called dyadic. This reveals the fact that a dyadic, in general, may not be expressed
in terms of only one tensor product. Analogous to vectors, a general element of this
space can be expressed in terms of a (given) basis and collection of 3 by 3 scalar
numbers. For instance, a tensorA can be representedwith respect to the basis tensors
(2.17) by

A = A11̂e1 ⊗ ê1 + A12̂e1 ⊗ ê2 + A13̂e1 ⊗ ê3
+ (A21̂e2 ⊗ ê1 + A22̂e2 ⊗ ê2 + A23̂e2 ⊗ ê3)

+ [A31̂e3 ⊗ ê1 + A32̂e3 ⊗ ê2 + A33̂e3 ⊗ ê3] , (2.18)

or by means of the summation convention as

A = A1 ĵe1 ⊗ ê j + (
A2 ĵe2 ⊗ ê j

) + [
A3 ĵe3 ⊗ ê j

] = Ai ĵei ⊗ ê j . (2.19)

Here, A is called a Cartesian (or rectangular) tensor4 constructed from the rect-
angular components Ai j as well as the Cartesian basis

{̂
ei ⊗ ê j

}
. The components

Ai j are obtained via the following expression

Ai j = (A)i j = êi · [Âe j ] , (2.20)

wherein
Âe j = Ak ĵek . (2.21)

One way of showing (2.20)2 will be5

3 The result also holds true for any vector u in a finite-dimensional vector space and another vector
v, in a not necessarily identical space, with any associative basis vectors.
4 Recall that a tensor depicts a mathematical entity that is independent of any coordinate system. It
is frequently seen in the literature that tensors are classified into Cartesian, covariant, contravariant,
mixed contra-covariant and co-contravariant. However, this classification may not be true since it is
precisely the respective components that have been expressed with respect to a specific coordinate
system.
5 Similar procedure can be used to alternatively derive (2.20)2. This can be shown as follows:
êi · [Âe j ] = êi · [(Akl̂ek ⊗ êl ) ê j

] = êi · [Akl̂ek
(
êl · ê j

)] = êi · [Akl̂ek
(
δl j

)] = êi · [Akj êk
]

= Akj [̂ei · êk ] = Akj [δik ] = Ai j = (A)i j .
.
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Ai j
from====
(1.36)

Akj [δik]

from====
(1.35)

Akj [ êi · êk]
from========

(1.9a)-(1.9c)
êi · [Ak ĵek

]
from====
(1.36)

êi · [Akl̂ek
(
δl j

)]
from====
(1.35)

êi · [Akl̂ek
(
êl · ê j

)]
from=============

(2.8a), (2.8b) and (2.13)
êi · [(Akl̂ek ⊗ êl) ê j

]
from====
(2.19)

êi · [Âe j ] .

The expressions (2.19)2 and (2.20)2 now help obtain the (Cartesian) coordinate rep-
resentation of the linear mapping (2.1) as

v = (A)i j (u) j êi with (v)i = (Au)i = (A)i j (u) j , (2.22)

since

v from====
(2.1)

Au from====
(1.34)

A
[
u ĵe j

] from====
(2.2)

u j Âe j ,

helps obtain

vi
from====
(1.33)

êi · v from=========
the above result

êi · [u j Âe j
] from========

(1.9a)-(1.9c)

[̂
ei · Âe j

]
u j

from====
(2.20)

Ai ju j .

From now on, every second-order tensor in this text should be realized as a Carte-
sian tensor, if not otherwise stated. Accordingly, the special unit tensor I can be
represented by

Iu from====
(2.5)

u

from====
(1.34)

( êi · u) êi

from====
(2.13)

( êi ⊗ êi ) u

from====
(1.36)

(
δi ĵei ⊗ ê j

)
u

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

from==⇒
(2.6)

I = êi ⊗ êi = δi ĵei ⊗ ê j . (2.23)

Knowing that generally Ai j �= uiv j , the map g tp
so (u, v) = u ⊗ v now admits the

representation
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u ⊗ v from====
(1.34)

(uîei ) ⊗ (
v ĵe j

)
from===========

(2.16a) and (2.16b)
uiv ĵei ⊗ ê j

= (u)i (v) j êi ⊗ ê j with (u ⊗ v)i j = uiv j = (u)i (v) j . (2.24)

The importance of dyadic product in tensor algebra should now be clear; a powerful
tool that enables one to generate tensors from the given vectors. One can finally
deduce that:

Tensors and their relationships naturally carry the mathematical charac-
teristics of vectors.

2.3 Tensor Operations

2.3.1 Composition

The composition (or dot product) of two tensorsA andB, designated byAB, is again
a tensor satisfying

(AB) u = A (Bu) , for all A,B ∈ Tso and u ∈ E o3
r . (2.25)

This operation is extensively utilized in tensor identities and generally does not
have the commutative property, i.e. AB �= BA. In what follows, the goal is to
characterize how A and B interact in a coordinate system. One thus needs to write
the above expression in indicial notation.Bymeans of (2.22)3, the direct formBunow
becomes (B)k j (u) j and, therefore, the tensorial form A (Bu) takes the coordinate
representation (A)ik (B)k j (u) j . Accordingly, the left hand side of (2.25) renders
((AB) u)i = (AB)i j (u) j . Comparing the results, by considering (2.6), reveals that

(AB)i j = (A)ik (B)k j . (2.26)

The interested reader may want to arrive at (2.26) in an alternatively way:

(AB)i j
from====
(2.20)

êi · [(AB) ê j
]

from====
(2.25)

êi · [A (
B̂e j

)]
from====
(2.21)

êi · [A (
Bk ĵek

)]
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from====
(2.2)

êi · [Bkj (Âek)
]

from=========
(1.9a) to (1.9c)

[̂ei · (Âek)] Bkj

from====
(2.20)

[Aik] Bkj .

Accordingly,
AB = (AB)i j êi ⊗ ê j = (A)ik (B)k j êi ⊗ ê j . (2.27)

In a similar manner, the product of the three tensors A, B and C obeys

ABC = (AB)C = A (BC)

in index notation : (ABC)i j = (A)im (B)mn (C)nj

. ←− and also
(ABCD)i j = (A)im (B)mn (C)no (D)oj

(2.28)

It is easy to see that the dot product of two tensors is a bilinear form (not the
symmetric one owing to AB �= BA), that is,

A (αB + βC) = αAB + βAC , (αA + βC)B = αAB + βCB . (2.29)

The result (2.27) is in alignment with the following rule

(u ⊗ v) (w ⊗ w̄) = (v · w) u ⊗ w̄ , (2.30)

since

AB = (Aik̂ei ⊗ êk)
(
Bl ĵel ⊗ ê j

) = Aik Bl j (̂ek · êl) êi ⊗ ê j
= Aik Bl j (δkl) êi ⊗ ê j = Aik Bk ĵei ⊗ ê j . (2.31)

having in mind that the dot product is a bilinear form. A similar procedure then
reveals that

A (u ⊗ v) = (Au) ⊗ v . (2.32)

By means of Aikδk j = Ai j = δik Ak j and (2.23), one immediately obtains

AI = A , IA = A , (2.33)

and if A = I, it follows that
I I = I . (2.34)

From (2.23), (2.32) and (2.33)2, one will have another useful identity as follows:

AI = A ( êi ⊗ êi ) = A =⇒ (Âei ) ⊗ êi = A . (2.35)
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Note that in general êi ⊗ (Âei ) �= A, see (2.55c).

Hint: In this text, the product AA will be denoted by A2 which motivates to define
the powers (or monomials) of tensors by

Am = AA . . .A
m times

, m = 1, 2, . . . , and A0 = I . (2.36)

For any nonnegative integers m and n, the following useful properties hold

AmAn︸ ︷︷ ︸
= AnAm

= Am+n ,
(
Am

)n︸ ︷︷ ︸
= (

An)m
= Amn , (αA)m = αmAm . (2.37)

A tensor function is a function that maps a tensor into another one. An example of
which, based on the tensor powers, is the following (general) tensor polynomial

H (A) =
m∑
i=0

αiAi . (2.38)

This can be specialized to various tensor functions such as trigonometric or logarithm
functions. Of particular interest is the exponential tensor function

exp (A) =
∞∑
i=0

1

i !A
i , (2.39)

which is widely used in many branches of science and engineering. The main reason
is that this tensor function helps obtain the solution of systems of linear ordinary
differential equations, see Exercise 6.7. See also Simo [1], Simo and Hughes [2] and
de Souza Neto et al. [3] for an application in multiplicative plasticity.

Hint: The operations (2.22) and (2.26) are often called single contraction (or
simple contraction) since the sum of the orders of two tensors in both cases is reduced
by two. For instance, a tensor A and a vector u with total order of three after single
contraction become a tensor v of order one (recall that it is characterized by only
one free index). In this regard, the inner product u · v basically manifests a single
contraction. In accord with the scalar product u · v, that is designated by one dot (·)
between the variables, some authors still prefer to keep this notation in the present
context and write v = A · u (or C = A · B). This notation has not been utilized in
this text for convenience.

The algebraic relations introduced so far are based on the definition of right
mapping. By contrast, a left mapping is one for which a tensor A is premultiplied
by a vector v. For completeness, some fundamental relations for this mapping are
established in the following.
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It is also a linear map

u = vA with ui = v j A ji or (u)i = (v) j (A) j i , ←− see (2.1) and (2.22) (2.40)

that satisfies the linearity condition

(αv + βw)A = α (vA) + β (wA) , ←− see (2.2) (2.41)

and obeys the rules

v (A + B) = vA + vB , ←− see (2.8a) (2.42a)

v (αA) = α (vA) = (αv)A . ←− see (2.8b) (2.42b)

If the dyad u ⊗ v is premultiplied by w, the result will be a vector in the direction of
v according to

w (u ⊗ v) = (w · u) v
note that w (u ⊗ v) = u (w ⊗ v)

, ←− see (2.13) (2.43)

which reveals the fact that the dyad is, in general, not commutative, i.e. u ⊗ v �=
v ⊗ u. Similarly to (2.14), one can arrive at

(αw + βw̄) (u ⊗ v) = α (w · u) v + β (w̄ · u) v

= αw (u ⊗ v) + βw̄ (u ⊗ v) . (2.44)

In accord with (2.21), one can also obtain

ê jA = A jk̂ek . (2.45)

The dot product here follows the requirement

v (AB) = (vA)B . ←− see (2.25) (2.46)

It is worthwhile to point out that the left and right mappings are related through the
following expression

(vA) · u︸ ︷︷ ︸
= (vA) j (u) j = (

vi Ai j
)
u j

= v · (Au)︸ ︷︷ ︸
= (v)i (Au)i = vi

(
Ai j u j

)
. (2.47)
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2.3.2 Transposition

The transpose of a tensor A, denoted by AT, is defined as

ATu = uA , (2.48)

in which(
ATu

)
i
= (uA)i =⇒

(
AT

)
i j

(u) j

see (2.22)

= (u) j (A) j i

see (2.40)

from===⇒
(2.6)

(
AT

)
i j

= (A) j i . (2.49)

Thus,

AT = A jîei ⊗ ê j = Ai ĵe j ⊗ êi . (2.50)

As a result, the following identities hold

Au = uAT

with Ai j u j = u j A
T
j i

, (2.51a)

ATu · v = u · Av = v · ATu
or ATi j u j vi = u j A ji vi = vi A

T
i j u j

, (2.51b)

Au · Bv = BTAu · v
or Ai j u j Bik vk = BTki Ai j u j vk

, (2.51c)

Au · Bv = u · ATBv
or Ai j u j Bik vk = u j A

T
j i Bik vk

. (2.51d)

The linearity of transposition is then implied by

(A + B)T u
from====
(2.48)

u (A + B)

from=====
(2.42a)

uA + uB

from====
(2.48)

ATu + BTu

from====
(2.8a)

(
AT + BT

)
u

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

from==⇒
(2.6)

(A + B)T = AT + BT . (2.52)
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and
(αA)T u

from====
(2.48)

u (αA)

from=====
(2.42b)

α (uA)

from==========
(2.8b) and (2.48)

(
αAT

)
u

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

from==⇒
(2.6)

(αA)T = αAT . (2.53)

The transpose of a dyad is also implied by

(v ⊗ w)T u
from====
(2.48)

u (v ⊗ w)

from====
(2.43)

(u · v)w
from====
(2.13)

(w ⊗ v)u

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

from==⇒
(2.6)

(v ⊗ w)T = w ⊗ v . (2.54)

The following identities trivially hold

IT = I , ←− since δi j = δ j i (2.55a)(
AT

)T = A , ←− this means that the transpose of
a transposed tensor is again that tensor (2.55b)

AT = êi ⊗ Âei , ←− note that
(
AT

)T = (
êi ⊗ Âei

)T yields (2.35) (2.55c)

(AB)T = BTAT , (ABC)T = CTBTAT , (2.55d)(
AT

)k = (
Ak

)T
, for any integer k , (2.55e)[

exp (A)
]T = exp

(
AT

)
. (2.55f)

From (2.32), (2.54) and (2.55d)1, one finally obtains

(u ⊗ v)AT = u ⊗ (Av)

since (u ⊗ v)AT = (A (v ⊗ u))T = ((Av) ⊗ u)T = u ⊗ (Av)

. (2.56)

2.3.3 Decomposition into Symmetric and Skew-Symmetric
Parts

A second-order tensor A is said to be symmetric if

AT = A
in index notation A ji = Ai j

or, equivalently, u · Av = v · Au
in index notation ui Ai j v j = vi Ai j u j

, (2.57)
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and is called skew-symmetric (or simply skew or antisymmetric) when

AT = −A or, equivalently, u · Av = −v · Au . (2.58)

The symmetric (skew) part ofA is denoted by symA (skwA). The tensors symA and
skwA are governed by

symA = A + AT

2
, skwA = A − AT

2
. (2.59)

The following relations hold

sym
(
ATBA

) = AT (symB)A

sym
(
ABAT

) = A (symB)AT

}
,

skw
(
ATBA

) = AT (skwB)A

skw
(
ABAT

) = A (skwB)AT

}
. (2.60)

In this text, for the sake of clarification, S (W ) is used to denote any symmetric
(skew) tensor as well as the symmetric (skew) part of an arbitrary tensor. One then
trivially has

symS = S
since Si j = S ji

, skwW = W
since Wi j = −Wji

, skwS = symW = O

since, e.g. 1
2
(
Si j − S ji

) = 1
2
(
Si j − Si j

) = 0

. (2.61)

Any tensor A can now be decomposed as

A = A + AT

2
+ A − AT

2
= S + W where S = symA , W = skwA . (2.62)

Note that this additive decomposition is unique. The set of all symmetric tensors6

T sym
so = {

A ∈ Tso
(
E o3
r

) |AT = A
}

, (2.63)

is a subspace of all second-order tensors Tso
(
E o3
r

)
and7

T skw
so = {

A ∈ Tso
(
E o3
r

) |AT = −A
}

, (2.64)

indicates the set of all antisymmetric tensors forming another subset of Tso
(
E o3
r

)
.

For any skew tensorW, there exists a unique vectorωωω - called the axial vector of
W - such that

6 In the literature, the set T sym
so is often denoted by Sym.

7 Note that the set T skw
so is sometimes denoted by Skw in the literature.
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Wu = ωωω × u , for all u ∈ E o3
r . (2.65)

Therein, the (Cartesian) axial vector ωωω corresponding toW is given by

ωωω = ωm êm = (−W23) ê1 + (W13) ê2 + (−W12) ê3 . (2.66)

In matrix notation, one will have

[ωωω ] = [−W23 W13 −W12
]T

. (2.67)

And its length, using (1.11), renders

|ωωω| =
√
W 2

12 + W 2
13 + W 2

23 . (2.68)

As can be seen, the area vector ωωω × u is implied by operating W on u. It turns
out that the skew tensor W has only three independent components which are all
off-diagonal terms. Hence, W is a tensor with W11 = W22 = W33 = 0.

The goal is now to verify (2.65) and (2.66). To do so, consider first

Wi j
from====
(2.61)

1

2

(
Wi j − Wji

)
from====
(1.36)

1

2
Wkl

(
δikδ jl − δ jkδil

)
from=====
(1.58a)

1

2
Wkl

(−εi jmεlkm
)

from====
(1.54)

−
(

−1

2
Wklεklm

)
εi jm . (2.69)

Then, by defining

ωωω = −1

2
Wklεklm êm with ωm = −1

2
Wklεklm

by expansion : −2ω1 = Wkl εkl1 = W23ε231 + W32ε321 = W23 − W32 = 2W23 ,

−2ω2 = W13ε132 + W31ε312 = −W13 + W31 = −2W13 and − 2ω3 = W12ε123 + W21ε213 = 2W12

, (2.70)

the expression (2.69)4 takes the form

Wi j = −εi jmωm . (2.71)

Postmultiplying both sides of (2.71) by an arbitrary vector u and subsequently using
(1.54) and (1.67) finally yields

Wi ju j = −εi jmωmu j = ωmu jεmji or (Wu)i = (ωωω × u)i . (2.72)
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2.3.4 Contraction and Trace

The contraction (or double contraction or scalar product) of two second-order ten-
sors produces a scalar number,meaning that the sumof the orders of tensors is reduced
by four. And this enables one to define scalar-valued functions of tensorial variables.
The double contraction between two tensors u ⊗ v andw ⊗ w̄, characterized by two
dots (:), is defined as

(u ⊗ v) : (w ⊗ w̄) = (u · w) (v · w̄) . (2.73)

Recall that the inner product g ip (u, v) = u · v is a symmetric bilinear form which
takes two vectors and delivers a scalar quantity. Its counterpart here, designated by
gc (A,B) = A : B, will be characterized by the identical properties. For any α , β ∈
R and A , B , C ∈ Tso, they are listed in the following

gc (A,B) = gc (B,A)

or A : B = B : A representing commutative or symmetry property

, (2.74a)

gc (αA + βB,C) = αgc (A,C) + βgc (B,C)

or (αA + βB) : C = αA : C + βB : C rendering linearity in the first argument

, (2.74b)

gc (A,A) > 0 if A �= O

gc (A,A) = 0 if A = O

}
or A : A ≥ 0, for which A : A = 0 ⇐⇒ A = O, expressing positive-definite property

. (2.74c)

For any two tensors A and B of the form (2.19)2, the expressions (2.73), (2.74a) and
(2.74b) help obtain

A : B = (
Ai ĵei ⊗ ê j

) : (Bkl̂ek ⊗ êl)

= Ai j Bkl ( êi · êk)
(̂
e j · êl

)
= Ai j Bkl (δik)

(
δ jl

)
= Ai j Bi j . (2.75)

This clearly shows that in indicial notation, the double contraction between two
second-order tensors has no free index. Only two dummy indices turn out that should
be summed over them to obtain the desired result.

The double contraction is also an algebraic operation. Its last property in (2.74c)
then helps define the norm of a second-order tensor A via

|A| = √
A : A . ←− see (1.11) (2.76)
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Another useful consequence of (2.74c) is

if A : B = 0 for all tensors B then A = O , (2.77)

which can easily be verified by setting B = A. The converse relation

O : B = B : O = 0 , (2.78)

also holds true considering O as a tensor with zero components in any coordinate
system. As a result, for all tensors B, A = O if and only if A : B = 0.

Bymeans of (1.38)7, (2.22)2−3, (2.24)5, (2.26), (2.49), (2.61)1−2 and (2.75)4, some
useful properties can be established:

A : B︸ ︷︷ ︸
= (A)i j (B)i j

= AT : BT︸ ︷︷ ︸
=

(
AT

)
lk

(
BT

)
lk

= (A)kl (B)kl = (A)i j (B)i j

, (2.79a)

A : (BC)︸ ︷︷ ︸
= (A)i j (B)ik (C)k j

= (
BTA

) : C︸ ︷︷ ︸
=

(
BTA

)
k j

(C)k j =
(
BT

)
ki

(A)i j (C)k j = (B)ik (A)i j (C)k j

= (
ACT

) : B︸ ︷︷ ︸
=

(
ACT

)
ik

(B)ik = (A)i j

(
CT

)
jk

(B)ik = (A)i j (C)k j (B)ik

, (2.79b)

(u ⊗ v) : B︸ ︷︷ ︸
= (u)i (v) j (B)i j

= u · Bv︸ ︷︷ ︸
= (u)i (Bv)i = (u)i (B)i j (v) j

= v · BTu︸ ︷︷ ︸
= (v) j

(
BTu

)
j

= (v) j
(
BT

)
j i

(u)i = (v) j (B)i j (u)i

, (2.79c)

(Au ⊗ v) : B︸ ︷︷ ︸
= (A)ik (u)k (v) j (B)i j

= Au · Bv︸ ︷︷ ︸
= (Au)i (Bv)i = (A)ik (u)k (B)i j (v) j

= u · (ATB
)
v︸ ︷︷ ︸

= (u)k

(
ATBv

)
k

= (u)k

(
AT

)
ki

(B)i j (v) j = (u)k (A)ik (B)i j (v) j

, (2.79d)

(u ⊗ Av) : B︸ ︷︷ ︸
= (u)i (A) jk (v)k (B)i j

= BTu · Av︸ ︷︷ ︸
=

(
BTu

)
j
(Av) j =

(
BT

)
j i

(u)i (A) jk (v)k = (B)i j (u)i (A) jk (v)k

= u · BAv︸ ︷︷ ︸
= (u)i (BAv)i = (u)i (BA)ik (v)k = (u)i (B)i j (A) jk (v)k

. (2.79e)

S : B︸ ︷︷ ︸
= (S)i j (B)i j

= S : 1
2

(
B + BT

)
since 2 (S)i j (B)i j = (S)i j (B)i j + (S) j i (B) j i = (S)i j (B)i j + (S)i j (B) j i

,

(2.79f)
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W : B︸ ︷︷ ︸
= (W)i j (B)i j

= W : 1
2

(
B − BT

)
since 2 (W)i j (B)i j = (W)i j (B)i j + (W) j i (B) j i = (W)i j (B)i j − (W)i j (B) j i

,

(2.79g)

S : W︸ ︷︷ ︸
= (S)i j (W)i j

= 0
since 2 (S)i j (W)i j = (S)i j (W)i j + (S) j i (W) j i = (S)i j (W)i j − (S)i j (W)i j

.

(2.79h)

The above expressions clearly demonstrate the capability of indicial notation in
establishing vector and tensor identities. The last property shows that symmetric and
antisymmetric tensors are mutually orthogonal. In this regard, the subspaces T sym

so

and T skw
so , according to (2.63) and (2.64), are said to be orthogonal.

Similarly to (2.79h), the following identities hold true

εi jk S jk = 0 , Si jεi jk = 0 , εi jku j uk = 0 , uiu jεi jk = 0

since, e.g., from εi jk = −εik j and S jk = Sk j one will arrive at εi jk S jk = εik j Sk j = −εi jk S jk

. (2.80)

Following discussions analogous to those that led to (1.14), one can deduce that8

A : C = B : C for all tensors C if and only if A = B . ←− see (2.6) (2.81)

The trace of a tensor A is also a scalar and denoted here by trA. It is defined by
means of the double contraction in the following manner

trA = I : A = gc (I,A) . (2.82)

Then, the properties (2.74a) and (2.74b) immediately imply

trA = I : A = A : I , tr (αA + βB) = αtr (A) + βtr (B) . (2.83)

Considering the symmetry of double contraction, the following expressions

A : B from====
(2.33)

AI : B from==========
(2.79b) and (2.83)

I : ATB

from====
(2.33)

IA : B from==========
(2.79b) and (2.83)

I : BAT

⎫⎪⎬
⎪⎭ , (2.84)

8 The proof is not difficult. If A : C = B : C holds for all C, then one can obtain (A − B) : C = 0.
Now, by choosing C = A − B, one can arrive at gc (A − B,A − B) = 0. And this result with the
aid of (2.74c) delivers A = B. The converse is immediate.

The result (2.81) can be shown in an alternative way. Suppose that C is a tensor with only one
nonzero component.DenotingbyC the (i j)th nonzero component ofC, the relation (A − B) : C = 0
now simplifies to

(
Ai j − Bi j

)
C = 0. And this immediately implies that Ai j = Bi j , i, j = 1, 2, 3.
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help establish
tr
(
ATB

) = tr
(
BAT) = tr

(
BTA

) = tr
(
ABT) . (2.85)

Any two second-order tensors A and B also satisfy

tr (AB) = tr (BA) = tr
(
BTAT

) = tr
(
ATBT

)
. (2.86)

Let A, B and C be three arbitrary tensors. Then,

tr (ABC) = tr (BCA) = tr (CAB) . (2.87)

This is known as the cyclic property of the trace operator. Now, let S, T and U be
three symmetric tensors. Then, one can further establish

tr (STU) = tr (TSU) = tr (UTS) = tr (SUT) . (2.88)

By means of the expressions (1.36), (2.23), (2.75)4 and (2.82)1, the trace of the
Cartesian tensorA = Ai ĵei ⊗ ê j in (2.19)2, the dyad u ⊗ v = uiv ĵei ⊗ ê j in (2.24)3,
the product AB = Aik Bk ĵei ⊗ ê j in (2.31)4, the transposed tensor AT = A jîei ⊗ ê j
in (2.50)1 and the skew tensor W in (2.61)2 can be computed according to

trA = δi j Ai j = Aii , (2.89a)

tr (u ⊗ v) = δi j ui v j = uivi , (2.89b)

tr (AB) = δi j Aik Bk j = Aik Bki , (2.89c)

trAT = δi j A ji = Aii = trA , (2.89d)

trW = δi jWi j = Wii = 0 . (2.89e)

As a consequence of (2.89a)2, the trace of the unit tensor I in (2.23), using (1.37)1,
renders

trI = I : I = δi i = 3 . (2.90)

Guided by (2.78), another special case is

trO = I : O = O : I = 0 . (2.91)

2.4 Tensor in Matrix Notation

As discussed in the previous chapter, manipulations of vectors and tensors in com-
puter codes will naturally be treated by means of matrix notation. Here, the compo-
nents of a second-order tensor A are collected in a 3 by 3 matrix. It is not difficult to
show that all the operations and operators defined so far for tensors are consistently
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associated with the same operations and operators applied in matrix algebra. Some
major relations are presented in the following.

In view of the Cartesian basis vectors (1.42), the dyad êi ⊗ ê j in this useful
notation is written as

[
êi ⊗ ê j

] =
⎡
⎣ δi1

δi2
δi3

⎤
⎦[

δ j1 δ j2 δ j3
] =

⎡
⎣ δi1δ j1 δi1δ j2 δi1δ j3

δi2δ j1 δi2δ j2 δi2δ j3

δi3δ j1 δi3δ j2 δi3δ j3

⎤
⎦ . (2.92)

By means of (1.43)2 and (2.92)1−2, the tensor product u ⊗ v takes the form

[u ⊗ v ] =
⎡
⎣ u1
u2
u3

⎤
⎦[

v1 v2 v3
] =

⎡
⎣ u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

⎤
⎦ . (2.93)

Guided by (2.92)2, the tensorA, according to (2.19)2, and its transpose in (2.50)1 will
again render (1.47)1−2 in a consistent manner. Accordingly, the simple contractions
Au and AB, according to (2.22)1 and (2.31)4, simply follow the ordinary definition
of the matrix multiplication, that is,

[Au ] = [A ] [u ] , [AB ] = [A ] [B ] . (2.94)

A scalar of the form v · Au, making use of (1.45)1−2, (1.47)1 and (2.94)1, is then
written as

v · Au = [v]T [A] [u] = [
v1 v2 v3

]⎡⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦
⎡
⎣ u1
u2
u3

⎤
⎦ . (2.95)

The symmetric tensor S as well as the skew tensor W are represented by

[S ] =
⎡
⎣ S11 S12 S13
S12 S22 S23
S13 S23 S33

⎤
⎦ , [W ] =

⎡
⎣ 0 W12 W13

−W12 0 W23

−W13 −W23 0

⎤
⎦ . (2.96)

Hint: For the so-called general basis
{
gi
}
, whose every element can be expressed in

terms of the standard basis {̂ei }, a tensor A in matrix notation admits some different
forms, see Sect. 5.5.2.
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2.5 Determinant, Inverse and Cofactor of a Tensor

2.5.1 Determinant of a Tensor

Recall that the determinant of a matrix [A ] was computed by means of either (1.79)
or (1.80). From computational point of view, the determinant of a second-order tensor
equals the determinant of its matrix form, i.e.

detA = det [A ] . (2.97)

But technically, there is a precise definition carrying the concept of tensor. Let
{u, v,w} be a set of three linearly independent vectors. The determinant of a tensor
A is then defined by

detA = Au · (Av × Aw)

u · (v × w)
. ←− see Exercise 4.2 (2.98)

In light of Fig. 1.5, the determinant of A can geometrically be interpreted as the
volume of the parallelepiped spanned by {Au,Av,Aw} over the volume of the par-
allelepiped constructed from {u, v,w}.

Consistent with matrix algebra, some favorable properties of determinant are
given in the following:

detAT = detA , (2.99a)

det (AB) = (detA) (detB) = det (BA) , (2.99b)

det (αA) = α3 detA . (2.99c)

These properties help establish some identities. First, the expressions (2.33)1 and
(2.99b)1 help obtain the determinant of the identity tensor:

det (AI) = detA ⇒ (detA) (det I) = detA
note that these relations hold for all tensors A

⇒ det I = 1 . (2.100)

Then, by means of (f) in (2.12), (2.58)1, (2.99a) and (2.99c), the determinant of a
skew tensor W renders

detW = detWT = det (−W) = det ((−1)W)

= (−1)3 detW = − detW

}
⇒ detW = 0 . (2.101)

The following identity also holds true

det (u ⊗ v) = 0 . ←− see (2.180) (2.102)
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It can easily be shown that the determinant and trace of a tensor A are related via the
relation

detA = 1

6

[
2trA3 − 3 (trA)

(
trA2

) + (trA)3
]

. (2.103)

This expression can be extracted from the Cayley-Hamilton equation (4.21), see also
(4.15a)–(4.15c) and (4.17c)1−2.

Since u, v and w in the definition (2.98) are linearly independent, they form a
basis and, therefore, u · (v × w) �= 0 is guaranteed. As a result, detA �= 0 if and only
if {Au,Av,Aw} forms a basis. In tensor algebra, whether detA = 0 or detA �= 0 is
crucially important. A tensor A is referred to as singular if detA = 0. By contrast,
a nonsingular tensor is one for which detA �= 0. With regard to this, a tensor A
represents an invertible tensor if
� detA �= 0,
� u · (v × w) �= 0 implies that Au · (Av × Aw) �= 0,
� u × v �= 0 implies that Au × Av �= 0, or
� Au = 0 implies that u = 0.9

See Gurtin et al. [4] for more discussions and proof.

2.5.2 Inverse of a Tensor

Let A be an invertible tensor. Then, for the linear map v = Au, there exists a tensor
A−1 ∈ Tso such that

u = A−1v . (2.104)

Here, A−1 is called the inverse of A. Then, the identities u = A−1v = A−1 (Au) and
v = A

(
A−1v

)
with the aid of (2.5), (2.6) and (2.25), imply the following reciprocal

expression10

AA−1 = I = A−1A . (2.105)

9 Recall from linear algebra that if u �= 0 and Au = 0 then detA = 0.
10 Having in mind the identity matrix (1.46)3, the relations in (2.105) numerically hold true for
all invertible tensors. But from the consistency point of view, it may not hold for some special
tensors. For instance, consider the simple contraction between a covariant tensor A and its inverse
A−1 which is basically a contravariant tensor. The result AA−1 thus manifests the co-contravariant
unit tensor which should be distinguished from the contra-covariant unit tensor A−1A, see Chap.5.
Another discrepancy can be observed in the context of nonlinear solidmechanics for which different
configurations needs to be taken into account for developing its theoretical formulations. Eventually,
vast majority of tensors in the finite deformation problems address one specific configuration. But
there exists some particular tensors, called two-point tensors, that interact between two different
configurations; an example of which will be the deformation gradient F. In can be shown that F−1F
is the unit tensor in the material description while FF−1 presents the spatial unit tensor, see Exercise
6.16. Thus, the reciprocal expression (2.105) reveals the lack of consistency regarding the two-point
tensors within the context of nonlinear continuum mechanics of solids.
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By setting A = I in (2.105)1 and then using (2.33)2, one then obtains

I−1 = I . (2.106)

Consistent with (2.19)2, the Cartesian tensor A−1 can be expressed as

A−1 = A−1
i j êi ⊗ ê j where A−1

i j := (
A−1

)
i j = êi · [A−1 ê j

]
. (2.107)

As a result, the component representation of (2.105) will take the form

Aik A
−1
k j = δi j = A−1

ik Ak j . (2.108)

For any two invertible tensors A and B, the following properties hold

detA−1 = (detA)−1 , ← since AA−1 = I ⇒ det
(
AA−1

)
= det I ⇒ detA detA−1 = 1 (2.109a)

(AB)−1 = B−1A−1 , ← since (AB) (AB)−1 = I = AA−1 = AIA−1 = ABB−1A−1 (2.109b)(
A−1)m = (

Am)−1
, ← where m denotes a nonnegative integer (2.109c)

(αA)−1 = α−1A−1 , ← since (αA)−1 (αA) = I = α−1A−1 (αA) (2.109d)(
A−1)−1 = A , ← since

(
A−1

) (
A−1

)−1 = I = A−1A (2.109e)
(
A−1)T = (

AT)−1
, ← since

(
A−1A

)T = IT ⇒ AT
(
A−1

)T = I = AT
(
AT

)−1 (2.109f)

tr
(
ABA−1) = trB . ← since δi j Aik Bkl A

−1
l j = Aik Bkl A

−1
li = δkl Bkl (2.109g)

For simplicity, the following notation

A−T := (
A−1)T = (

AT)−1
, A−m := (

A−1)m = (
Am

)−1
, (2.110)

will be adopted. By means of I : I = 3 and AA−1 = I, it follows that

I : AA−1 = 3 ⇒ A−T : A = 3. ←− recall from (2.84) that A : B = I : BAT (2.111)

The expression (2.105) only shows that A−1 can uniquely be determined from A
and does not provide any information regarding its computation. With regard to the
coordinate representation (2.107)1, the goal is now to obtain A−1

i j (or equivalently
calculate the inverse of the matrix [A ]). There are various methods in the literature.
An effective way with closed-form solution will be discussed in the following.
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2.5.3 Cofactor of a Tensor

The cofactor of a tensor A, designated by Ac, is defined by

Ac (u × v) = (Au) × (Av) , (2.112)

for all linearly independent vectorsu and v forwhichA = |u × v| �= 0, see Fig. 1.4. It
is a linear transformation that operates on the area vector u × v to produce another
area vector Au × Av. And, it satisfies the following property

(AcBc) (u × v) = (ABu) × (ABv) = (AB)c (u × v)

since Ac (Bc (u × v)
) = Ac ((Bu) × (Bv)) = A (Bu) × A (Bv) = (AB)u × (AB) v, see (2.25)

. (2.113)

Let A be an invertible tensor. Then, the tensor Ac in (2.112) is expressible in terms
of A−1 as follows:

from==⇒
(2.98)

(detA) u · (v × w) = (Au) · (Av × Aw)

from========⇒
(1.9c) and (2.112)

((detA) u) · (v × w) = Au · Ac (v × w)

from========⇒
(2.5) and (2.51c)

((detA) Iu) · (v × w) = (
Ac TAu

) · (v × w)

from===========⇒
(1.9a), (2.7) and (2.8b)

(detA) I = Ac TA or (detA) δi j = (
Ac T

)
ik (A)k j

from========⇒
(2.33) and (2.105)

Ac T = (detA)A−1 . (2.114)

In matrix notation and index notation, one will have

[
A−1

] = 1

detA

[
Ac

]T
,

(
A−1

)
i j = 1

detA
(Ac) j i . (2.115)

To compute A−1, one thus needs to have the coordinate representation of Ac. To do
so, consider first

Ac (u × v)
on the one==========

hand from (1.67)
Ac

(
umvnεmnĵe j

)
from====
(2.2)

εmnjumvn
(
Acê j

)
from====
(2.21)

(
Ac
i jεmnjumvn

)
êi

on the other===========
hand from (2.112)

(Au) × (Av)

from====
(2.22)

(Akmum êk) × (Alnvn̂el)
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from===========
(1.49a) and (1.49b)

(Akm Alnumvn) ( êk × êl)

from====
(1.64)

(Akm Alnεkli umvn) êi ,

which results in (
Ac
i jεmnj − Akm Alnεkli

)
umvn = 0 .

Arbitrariness of u and v then implies that

Ac
ioεmno = Akm Alnεkli . (2.116)

Finally, multiplying both sides of the above expression by εmnj , taking into account
(1.54) and (1.58b)3, yields

(
Ac)

i j = εiklε jmn (A)km (A)ln

2
and, hence, Ac = εiklε jmn Akm Aln

2
êi ⊗ ê j . (2.117)

The interested reader can arrive at this result in an alternative way. Guided by the
expression (2.20)2, one can write

êi · [Ac ê j
] from====

(1.66)
êi ·

[
Ac

(
1

2
ε jmn̂em × ên

)]
from====
(2.2)

êi ·
[
1

2
ε jmnAc ( êm × ên)

]
from=====
(2.112)

êi ·
[
1

2
ε jmn (Âem) × (Âen)

]
from====
(2.21)

êi ·
[
1

2
ε jmn (Akm êk) × (Aln̂el)

]
from===========

(1.49a) and (1.49b)
êi ·

[
1

2
ε jmn Akm Aln ( êk × êl)

]
from=========

(1.9a) to (1.9c)

1

2
ε jmn Akm Aln [̂ei · ( êk × êl)]

from====
(1.65)

1

2
εiklε jmn Akm Aln . (2.118)

It is interesting to point out that the cofactor of the identity tensor is equal to itself.
This can be verified as follows:

(Ic)i j
from=====
(2.117)

1

2
εiklε jmnδkmδln

from====
(1.36)

1

2

[
εiklε jkl

]



60 2 Algebra of Tensors

from=====
(1.58b)

1

2

[
2δi j

]
from====
(2.23)

(I)i j . (2.119)

This result can also be deduced from (2.112) taking into account (2.5) and (2.6).
The tensor A−1, with the aid of (2.107)1, (2.115)2 and (2.117)1, can now be

computed according to

A−1 = (2 detA)−1 εimnε jkl Akm Aln̂ei ⊗ ê j . (2.120)

The matrix form of a cofactor tensor is presented in what follows. First, one needs
to define a matrix [M ] in such a way that any of its components, Mi j , is constructed
from the determinant of a matrix generated by removing the i th row and j th column
of [A ] in (1.47)1. Then, the components of Ac read (Ac)i j = (−1)i+ j (M)i j . The
result thus renders

[
Ac

] =
⎡
⎣ A22A33 − A32A23 A31A23 − A21A33 A21A32 − A31A22

A32A13 − A12A33 A11A33 − A31A13 A31A12 − A11A32

A12A23 − A22A13 A21A13 − A11A23 A11A22 − A21A12

⎤
⎦ . (2.121)

In light of (1.79) or (2.117)1, the above expression admits some alternative repre-
sentations. One form is given by

[
Ac

] =
⎡
⎣ ε1 jk A j2Ak3 ε1k j A j1Ak3 ε1 jk A j1Ak2

ε2 jk A j2Ak3 ε2k j A j1Ak3 ε2 jk A j1Ak2

ε3 jk A j2Ak3 ε3k j A j1Ak3 ε3 jk A j1Ak2

⎤
⎦ . (2.122)

2.6 Positive Definite and Negative Definite Tensors

A second-order tensor A is said to be positive (semi-) definite if it satisfies the
following condition

u · Au
or ui Ai j u j or [u]T [A] [u]

> 0 (≥ 0) , for all u ∈ E o3
r , u �= 0 . (2.123)

Conversely, a negative (semi-) definite tensor A is one for which

u · Au < 0 (≤ 0) , for all u ∈ E o3
r , u �= 0 . (2.124)

The positive definite tensors are of great importance in a wide variety of theory- and
computation-based research. A necessary and sufficient condition for a tensor A to
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be positive definite is that its symmetric part, i.e. symA, be positive definite.11 Hence,
the upcoming discussions are restricted to only symmetric tensors.

There are equivalent conditions for a symmetric tensor to be positive definite. The
most common one is that a symmetric tensor S is positive definite if and only if all
of its eigenvalues are positive, see Chap. 4.

Equivalently, S is positive definite if and only if the determinants corresponding
to all upper-left submatrices of [S] are positive, i.e.

q1 = det [S11] > 0 , (2.125a)

q2 = det

[
S11 S12
S12 S22

]
> 0 , (2.125b)

q3 = det

⎡
⎣ S11 S12 S13
S12 S22 S23
S13 S23 S33

⎤
⎦ > 0 . (2.125c)

The above expressions can also be written as12

q̄1 = u1 [S11] u1 > 0 , (2.126a)

q̄2 = [
u1 u2

] [ S11 S12
S12 S22

] [
u1
u2

]
> 0 , (2.126b)

q̄3 = [
u1 u2 u3

]⎡⎣ S11 S12 S13
S12 S22 S23
S13 S23 S33

⎤
⎦
⎡
⎣ u1
u2
u3

⎤
⎦ > 0 , (2.126c)

for all u1 �= 0, u2 �= 0 and u3 �= 0. Practically, there are necessary (but not sufficient)
conditions for a symmetric tensor S to be positive definite:

11 This stems from the fact that a skew-symmetric tensor W cannot be positive definite since
u · Wu = u · WTu = −u · Wu simply yields u · Wu = 0.
12 The equivalence between (2.125a)–(2.125c) and (2.126a)–(2.126c) will be verified here. To begin
with, recall from (2.123) that u1 �= 0, u2 �= 0 and u3 �= 0.

First, if S11 > 0 then u21S11 > 0. Conversely, u21S11 > 0 implies that S11 > 0. Hence, q1 > 0
holds if and only if q̄1 > 0.

Then, in a similar manner, q1 > 0 and q2 > 0 are the necessary and sufficient conditions for the
quadratic form

q̄2 = [q1]
(
u1 + S12

S11
u2

)2 +
[
q2
q1

]
(u2)2 ,

to be positive definite.

At the end, a similar procedure shows that q1 > 0, q2 > 0 and q3 > 0 hold if and only if

q̄3 = [q1]
(
u1 + S12

S11
u2 + S13

S11
u3

)2 +
[
q2
q1

] (
u2 + S11S23−S13S12

S11
u3

)2 +
[
q3
q2

]
(u3)2 > 0 .
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� Its diagonal components S11, S22 and S33 are positive.
� Its largest component is a diagonal element.
� Sii + Sj j > 2Si j , for i �= j (no sum over i, j).
� det S > 0.
The last condition shows that the positive definite tensors are always invertible.

Of interest here is to examine positive-definiteness of the particular tensors FTF
and FFT that are extensively used in nonlinear solid mechanics, see Exercise6.16.
First, one needs to check their symmetry:

(
FTF

)T = FT
(
FT

)T = FTF(
FFT

)T = (
FT

)T
FT = FFT

}
. (2.127)

Then, by means of (1.11) and (2.51b)1, one will have

u · FTFu = Fu · Fu = |Fu|2 , u · FFTu = FTu · FTu = ∣∣FTu
∣∣2 .

Knowing that |Fu|2 and ∣∣FTu
∣∣2 are always nonnegative, the symmetric tensors FTF

and FFT will be positive semi-definite. And, they are positive definite tensors if
det F = det FT �= 0.

2.7 Orthogonal Tensor

A second-order tensor Q is called orthogonal if13

Qu · Qv = u · v , for all u, v ∈ E o3
r and Q ∈ Tso . (2.128)

The action ofQ in the above condition can be examined geometrically as well as
algebraically. As can be seen, the inner product of two vectors remains unchanged if
both transform by an orthogonal tensor. Since the inner product contains the concepts
of length and angle, the length |Qu| and the angle θ (Qu,Qv) need to be identified
as follows:

Length : |Qu|2 = Qu · Qu = u · u = |u|2 =⇒ |Qu| = |u| , (2.129a)

Angle : cos θ = Qu · Qv
|Qu| |Qv| = u · v

|u| |v| =⇒ θ (Qu,Qv) = θ (u, v) . (2.129b)

One can then deduce that:

13 In this text, an orthogonal tensor is denoted by Q. And a proper orthogonal (or rotation) tensor
is denoted by R.
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Fig. 2.1 Orthogonal transformation

The length of any vector as well as the angle between any two vectors
are preserved during the orthogonal transformation.

The geometrical interpretation of this linear transformation is depicted in Fig. 2.1.
Next, the algebraic description of an orthogonal tensor is presented. The expres-

sion (2.128) holds if and only if

QTQ = I = QQT

in indicial notation : Qki Qk j = δi j = Qik Q jk

, (2.130)

or
QT = Q−1

in indicial notation : Qi j = Q−1
j i

. (2.131)

The proof is not difficult. Let Q be an orthogonal tensor. Then,

Qu · Qv = u · v from========⇒
(2.5) and (2.51d)

u · QTQv = u · Iv from==⇒
(2.7)

QTQ = I

⇒ QQT (QQ−1) = QIQ−1 from============⇒
(2.28), (2.33) and (2.105)

QQT = I .

Conversely,

QTQ = I ⇒ QTQv = Iv ⇒ u · QTQv = u · Iv ⇒ Qu · Qv = u · v .
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The set of all orthogonal tensors forms a group14 called orthogonal group; indicated
by15

O = {
Q ∈ Tso

(
E o3
r

) |QT = Q−1
}

. (2.132)

If detQ = +1 (−1), thenQ is called proper orthogonal or rotation (improper orthog-
onal or reflection). In this regard, the setO+ also forms a group called proper orthog-
onal group16:

O+ = {Q ∈ O | detQ = +1} . (2.133)

For any two orthogonal tensors Q and Q̄, the following identities hold

(
QQ̄

)T = (
QQ̄

)−1
, ← since

(
QQ̄

)T = Q̄TQT = Q̄−1Q−1 (2.134a)

Q : Q = QQ̄ : QQ̄ = 3 , ← since QQ̄ : QQ̄ = QTQ : Q̄Q̄T = I : I (2.134b)

detQ = ±1 , ← since det
(
QTQ

)
= det I ⇒

(
detQT

)
(detQ) = 1 ⇒ (detQ)2 = 1 (2.134c)

Qc = Q , if detQ = 1 . ← since Qc T = (detQ)Q−1 ⇒ Qc =
(
QT

)T (2.134d)

The last property states that the area of parallelogram defined by the two vectors u
and v remains unchanged under the proper orthogonal transformation:

|Qu × Qv| from=====
(2.112)

∣∣Qc (u × v)
∣∣ from======

(2.134d)
|Q (u × v)| from======

(2.129a)
|u × v| . (2.135)

Moreover, the rotation tensor preserves the volume spanned by the three vectors u,
v and w owing to

Qu · (Qv × Qw)
from============

(2.112) and (2.134d)
Qu · Q (v × w)

from=====
(2.128)

u · (v × w) . (2.136)

Observe that orientation of the basis {u, v,w} is also preserved under the action of
rotation tensor. From the previous chapter, recall that u × v obeyed the right-hand
screw rule and {u, v,w} was declared as positively oriented basis. In this regard,
the above result shows that the basis {Qu,Qv,Qw} is also positively oriented and a
Cartesian coordinate frame defined by the origin o and a positively oriented orthonor-
mal basis {Q̂e1, Q̂e2, Q̂e3} is right-handed.

14 A set G is said to be a group if it satisfies the following axioms:

1. Closure: For any A, B ∈ G , AB ∈ G .
2. Associativity: For any A, B,C ∈ G , A(BC) = (AB)C .
3. Identity: There exists 1 ∈ G such that 1A = A1 = A for any A ∈ G .
4. Inverse: For any A ∈ G , there exists A−1 ∈ G such that AA−1 = A−1A = 1.
15 In the literature, the sets O and O+ (given in (2.133)) are often denoted by Orth and Orth+,
respectively.
16 It is worthwhile to mention that the set of all orthogonal tensors Q with detQ = −1 does not
form a group since the product of two reflection tensors is a rotation tensor.
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Let Q be an orthogonal tensor with the matrix form

[Q ] =
⎡
⎣ · · · u1 · · ·

· · · u2 · · ·
· · · u3 · · ·

⎤
⎦ . (2.137)

Then, QQT = I or

⎡
⎣ · · · u1 · · ·

· · · u2 · · ·
· · · u3 · · ·

⎤
⎦
⎡
⎢⎢⎣

...
...

...

u1 u2 u3
...

...
...

⎤
⎥⎥⎦ =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , (2.138)

implies that ui · u j = δi j . One can now conclude that:

The rows (or columns) of an orthogonal matrix form an orthonormal
basis.

2.8 Projection, Spherical and Deviatoric Tensors

A second-order projection tensor P is a linear transformation satisfying

P2 = P . ←− it can easily be shown thatPm = P
wherem denotes an integer number (2.139)

This condition states that when this linear function operates once or twice on an
arbitrary vector, the result will be identical, i.e. P (Pu) = Pu.

Let ê be an arbitrary unit vector. Consistent with Fig. 1.2, any vector u can be
projected onto ê and onto the plane whose normal is that unit vector according to
proj ê u = ( ê · u) ê and reje ê u = u − ( ê · u) ê, respectively. Now, these orthogonal
projections help extract two projection tensors via

proĵeu = ( ê · u) ê = ( ê ⊗ ê)︸ ︷︷ ︸
:= P‖

ê

u = P‖
êu , (2.140a)

rejêeu = Iu − ( ê ⊗ ê) u = (I − ê ⊗ ê)︸ ︷︷ ︸
:= P⊥̂

e

u = P⊥
ê u , (2.140b)

where (2.5), (2.10) and (2.13) have been used. As can be seen, P‖
ê and P⊥

ê represent
symmetric second-order tensors. They satisfy the following properties
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Fig. 2.2 Projection tenors

P‖
ê + P⊥̂

e = I , P‖
êP

‖
ê = P‖

ê , P⊥̂
e P

⊥̂
e = P⊥̂

e , P‖
êP

⊥̂
e = P⊥̂

e P
‖
ê = O . (2.141)

See Fig. 2.2 for a geometrical interpretation.
Any second-order tensor A admits the additive decomposition

A = sphA + devA , ←− see (2.62) (2.142)

into its spherical (or hydrostatic or volumetric) part, sphA, and its deviatoric part,
devA, such that17

tr (devA) = 0 . ←− see (2.82) (2.143)

Suppose that18

sphA = 1

3
(trA) I . (2.144)

Then, devA can uniquely be determined via

devA = A − 1

3
(trA) I , (2.145)

and, therefore, the condition (2.143) is trivially satisfied.
The spherical anddeviatoric tensors constituteorthogonal subspacesofTso

(
E o3
r

)
owing to

17 The condition (2.143) is often used to define a deviatoric tensor.
18 A second-order tensor with identical eigenvalues is called a spherical tensor. Denoting by λ the
common value of all eigenvalues, any spherical tensor will be of the form λI. It is thus a symmetric
tensor with the quadratic form u · (λI)u = λ |u|2 which can be either positive definite or negative
definite, see Beju et al. [5].
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sphA : devB = 0 . ←− since
trA
3

I :
(
B − trB

3
I
)

= trAtrB
3

− 3
trAtrB

32
= 0 (2.146)

At the end, one can further establish

sph (sphA) = sphA , sph (devA) = O , (2.147a)

dev (sphA) = O , dev (devA) = devA , (2.147b)

and

sphA : B = A : sphB , (2.148a)

devA : B = A : devB , (2.148b)

A : B = sphA : sphB + devA : devB . (2.148c)

2.9 Transformation Laws

Recall that a vector space had infinitely many bases and every vector in that space
could uniquely be expressed as a linear combination of the elements of a basis.
Moreover, recall that a tensor was independent of any coordinate system. But its
components depend on an arbitrary chosen coordinate system since they are deter-
mined by use of the corresponding basis vectors. That is why the components of a
vector or tensor are always declared in advance with respect to a chosen basis. To
solve many problems in physics and engineering, it is often desirable to use different
coordinate systems. An example of which includes global and local coordinate sys-
tems in finite element procedures or spatial multibody dynamics. The components
of a vector are known in one coordinate system and it is thus necessary to find its
components in the other coordinate system. This motivates to develop relationships
between bases of a vector space, known as transformation laws for basis vectors. It
is also the goal of this section to establish some appropriate transformation laws that
enables one to transform the components of a vector (or tensor) with respect to one
basis into the components relative to another basis.

Let G o
b = {u1,u2,u3} be a basis for E o3

r and G n
b = {v1, v2, v3} be another basis

for the same space. Note that the ‘new’ basis G n
b has been provided upon a linear

change in the ‘old’ basis G o
b (in alignment with the linear property of vector space).

One can now express each element of the new basis in terms of the elements of the
old basis as

v1 = M11u1 + M21u2 + M31u3
v2 = M12u1 + M22u2 + M32u3
v3 = M13u1 + M23u2 + M33u3

⎫⎪⎬
⎪⎭ , (2.149)

or
vi = Mjiu j , (2.150)
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to introduce the following 3 × 3 invertible matrix

[M ] =
⎡
⎣M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦ =

⎡
⎣u1 · v1 u1 · v2 u1 · v3
u2 · v1 u2 · v2 u2 · v3
u3 · v1 u3 · v2 u3 · v3

⎤
⎦ , (2.151)

known as the change-of-basis matrix from G o
b to G n

b . This transformation matrix
helps rewrite (2.149) in the convenient form

[V ] = [M ]T [U ] , (2.152)

where

[V ] =
⎡
⎣ · · · v1 · · ·

· · · v2 · · ·
· · · v3 · · ·

⎤
⎦ , [U ] =

⎡
⎣ · · · u1 · · ·

· · · u2 · · ·
· · · u3 · · ·

⎤
⎦ . (2.153)

Vector transformation law.Any vectorw ∈ E o3
r with respect to the aforementioned

general bases can be represented by

w = a1u1 + a2u2 + a3u3 = b1v1 + b2v2 + b3v3 . (2.154)

Collecting the components ofw relative to the bases G o
b and G n

b in the single-column
matrices

[w ]o =
⎡
⎣ a1

a2
a3

⎤
⎦ , [w ]n =

⎡
⎣ b1

b2
b3

⎤
⎦ , (2.155)

helps represent (2.154) as

[w ] = [U ]T [w ]o = [V ]T [w ]n = [U ]T [M ] [w ]n . (2.156)

And this implies that the components [w ]o and [w ]n ofwwith respect to the different
bases G o

b and G n
b are related through the transformation matrix [M ] via

[w ]n = [M ]−1 [w ]o . (2.157)

Suppose one is given the two orthonormal bases {̂u1, û2, û3} and {̂v1, v̂2, v̂3}. Then,
the change-of-basismatrix [M ] becomes an orthogonalmatrix (because the columns
or rows of an orthogonal matrix constitute an orthonormal basis).
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Fig. 2.3 Rotations of a right-handed Cartesian coordinate frame about its origin

2.9.1 Change of Cartesian Basis

The goal is now to specialize the general transformation rule (2.152) to the broadly
used Cartesian coordinate system. Let

{̂
e oi

}
be an orthonormal basis of an ‘old’

Cartesian coordinate frame. Further, let
{̂
e ni

}
be another set of mutually orthogonal

unit vectors corresponding to a ‘new’ Cartesian coordinate frame. It is assumed
that both frames share the same origin and the new frame has been provided upon a
rotation of the old one around the origin, see Fig. 2.3. Note that the latter assumption
is made to keep the right-handedness of the standard basis.

Under a proper orthogonal transformation of
{̂
e oi

}
, one will have

ê ni = (̂
e oj · ê ni

)
ê oj = [

cos θ
(̂
e oj , ê

n
i

)]
ê oj = R jîe oj . (2.158)

In an alternative way, one can also have

ê oj
from====
(2.5)

I ê oj
from====
(2.23)

(̂
e ni ⊗ ê ni

)
ê oj

from==========
(2.8a) and (2.13)

(̂
e oj · ê ni

)
ê ni = R jîe ni . (2.159)

The change-of-basis matrix in (2.151) now takes the following form

[R ] =
⎡
⎣ cos θ

(̂
e o1 , ê n1

)
cos θ

(̂
e o1 , ê n2

)
cos θ

(̂
e o1 , ê n3

)
cos θ

(̂
e o2 , ê n1

)
cos θ

(̂
e o2 , ê n2

)
cos θ

(̂
e o2 , ê n3

)
cos θ

(̂
e o3 , ê n1

)
cos θ

(̂
e o3 , ê n2

)
cos θ

(̂
e o3 , ê n3

)
⎤
⎦ . (2.160)

These nine quantities, that construct a non-symmetric matrix, are known as direction
cosines. Notice that the columns (or rows) of this matrix are mutually orthogonal
and each column is of unit length. This implies that [R ] is an orthogonal matrix
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which satisfies [R ]T [R ] = [ I ] = [R ] [R ]T. And the determinant of this matrix is
obviously +1.

The proper orthogonal matrix [R ] translates the old basis
{̂
e oi

}
into the new

basis
{̂
e ni

}
. This is indicated by

[
ê ni

] = [R ]
[
ê oi

]
, i = 1, 2, 3. Consistent with this,

[R ]T rotates
{̂
e ni

}
back to

{̂
e oi

}
, i.e.

[
ê oi

] = [R ]T
[
ê ni

]
, i = 1, 2, 3. The proper

orthogonal matrix (2.160) is basically the matrix representation of

R = ê ni ⊗ ê oi = R jîe oj ⊗ ê oi or R = ê nj ⊗ ê oj = R jîe nj ⊗ ê ni . (2.161)

Observe that the components of the rotation tensor R are identical in either basis.
Guided by Fig. 2.3, one can also introduce the rotation tensors Ro = ê oi ⊗ êi and
Rn = ê ni ⊗ êi satisfying

ê oi = Ro êi , ê ni = Rn êi , i = 1, 2, 3 . (2.162)

They help represent the rotation tensor R = ê ni ⊗ ê oi according to

R from===========
(2.161) and (2.162)

Rn êi ⊗ Ro êi
from==========

(2.32) and (2.55c)
RnRoT . (2.163)

This result basically shows thatR has multiplicatively been decomposed intoRn and
RoT. It is worthwhile to mention thatR is independent of the angles that the old basis
vectors make with the standard ones of the frame of reference.19

19 Here, the introduced rotation tensors are expressed in the two-dimensional space for the sake of
clarity. To have a frame of reference, consider a conventional x1x2-Cartesian coordinate system in
two dimensions possessing the origin o and the standard basis [ êi ] = [

δi1 δi2
]T

, i = 1, 2. Let
ê o1 and ê o2 be the orthonormal basis vectors of an old x o

1 x
o
2 -Cartesian coordinate system that is

obtained by counterclockwise rotating the x1 and x2 axes through an angle α about the origin o.
The old basis

{̂
e o1 , ê o2

}
and the rotation tensorRo that implies this transformation are then given by

ê o1 = cosα ê1 + sin α ê2 , ê o2 = − sin α ê1 + cosα ê2 ,

Ro = cosα ê1 ⊗ ê1 − sin α ê1 ⊗ ê2 + sin α ê2 ⊗ ê1 + cosα ê2 ⊗ ê2 .

One can further rotate the x o
1 and x o

2 axes counterclockwise through an angle θ about the origin
o to produce a new x n

1 x
n
2 -Cartesian coordinate system. The new basis

{̂
e n1 , ê n2

}
then admits the

following two forms

ê n1 = cos (α + θ) ê1 + sin (α + θ) ê2 , ê n2 = − sin (α + θ) ê1 + cos (α + θ) ê2 ,

ê n1 = cos θ ê o1 + sin θ ê o2 , ê n2 = − sin θ ê o1 + cos θ ê o2 .

Accordingly, the rotation tensors Rn (transforming {̂e1, ê2} into
{̂
e n1 , ê n2

}
) and R (transforming{̂

e o1 , ê o2
}
into

{̂
e n1 , ê n2

}
) render

Rn = cos (α + θ) ê1 ⊗ ê1 − sin (α + θ) ê1 ⊗ ê2 + sin (α + θ) ê2 ⊗ ê1 + cos (α + θ) ê2 ⊗ ê2
= cos θ ê o1 ⊗ ê1 − sin θ ê o1 ⊗ ê2 + sin θ ê o2 ⊗ ê1 + cos θ ê o2 ⊗ ê2 ,

R = cos θ ê o1 ⊗ ê o1 − sin θ ê o1 ⊗ ê o2 + sin θ ê o2 ⊗ ê o1 + cos θ ê o2 ⊗ ê o2 .
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Hint: In many applications the reference frame and the old frame coincide, i.e.{̂
e oi

} = {̂ei }. In this case,Ro = I and hence (2.163) becomesR = Rn . In this regard,
the components of a vector with respect to these two frames are known as its global
and local coordinates. Note that an arbitrary basis of the local coordinate system is
often not orthonormal.

2.9.2 Change of Cartesian Components

Let u o
i , i = 1, 2, 3, be the oldCartesian components of an arbitrary vectoru resolved

along
{̂
e oi

}
. Further, let u n

i , i = 1, 2, 3, be the new rectangular components of that
vector with respect to

{̂
e ni

}
in which every element of this new basis obeys (2.158).

The vectorial transformation law then renders

u n
i

from====
(1.33)

u · ê ni from=====
(2.158)

u · (R jîe oj
) from========

(1.9a)-(1.9c)
R jiu · ê oj from====

(1.33)
R jiu

o
j , (2.164)

or

[u ]n from=====
(2.157)

[R ]−1 [ u ]o from=====
(2.131)

[R ]T [u ]o , (2.165)

where
[u ]o = [

u o
1 u o

2 u o
3

]T
, [u ]n = [

u n
1 u n

2 u n
3

]T
. (2.166)

The components of a vector eventually represent that vector in a coordinate system.
And if these components transform according to (2.164)4, then they always construct
the same vector. With regard to this, some authors prefer to introduce a vector as
a set of numbers that obey this transformation rule under a change of coordinates.
For the vectorial transformation law in a general curvilinear coordinate system, see
(5.59)–(5.60) and (5.105a)–(5.105b).

Hint: Note that the vector u with two forms u = uok ê
o
k = unk ê

n
k can itself translate

into another vector urot = Ruwith two forms urot = uorot i ê
o
i = unrot i ê

n
i where uorot i =

Ri juoj and unrot i = Ri junj , see Fig. 2.4.

A simple algebraic manipulation reveals the fact that the components of R remain the same with
respect to either

{̂
e n1 , ê n2

}
or {̂e1, ê2}, that is,

R = cos θ ê n1 ⊗ ê n1 − sin θ ê n1 ⊗ ê n2 + sin θ ê n2 ⊗ ê n1 + cos θ ê n2 ⊗ ê n2
= cos θ ê1 ⊗ ê1 − sin θ ê1 ⊗ ê2 + sin θ ê2 ⊗ ê1 + cos θ ê2 ⊗ ê2 .

It is then a simple exercise to show thatRnRoT = R is independent of α. The interested reader may
now want to verify this result in the three-dimensional space.
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Consider again the old orthonormal basis
{̂
e oi

}
that upon a proper orthogonal

transformation converts into the new basis
{̂
e ni

}
according to (2.158). By requiring

A = Ao
i ĵe

o
i ⊗ ê oj = An

i ĵe
n
i ⊗ ê nj , the goal is to determine the relationship between

Ao
i j and An

i j . Guided by (2.164) and (2.165), the following relation

An
i j

from====
(2.20)

ê ni · Âe nj from (1.9a)-(1.9c),===========
(2.2) and (2.158)

Rki Rl ĵe ok · Âe ol from====
(2.20)

Rki Rl j A
o
kl , (2.167)

represents the desired tensorial transformation law. The result (2.167)3 in matrix
representation renders

[A ]n = [R ]T [A ]o [R ] , (2.168)

where

[A ]o =
⎡
⎣ Ao

11 Ao
12 Ao

13
Ao
21 Ao

22 Ao
23

Ao
31 Ao

32 Ao
33

⎤
⎦ , [A ]n =

⎡
⎣ An

11 An
12 An

13
An
21 An

22 An
23

An
31 An

32 An
33

⎤
⎦ . (2.169)

A tensor may now be thought of as a collection of numbers that transform according
to (2.167)3 under a change of basis. For the tensorial transformation law in a general
curvilinear coordinate system, see (5.59)–(5.60) and (5.106a)–(5.106d).

2.9.3 Isotropic Vectors and Tensors

A tensor is said to be isotropic if its components remain unchanged under all proper
and improper orthogonal transformations (i.e. rotations and reflections). An obvi-
ous example of which includes zeroth-order tensors or scalars. A tensor is called
hemitropic when it is unaffected by all proper orthogonal transformations. The con-
dition of isotropy for vectors and tensors will be discussed in the following.

Isotropic tensors of order one. A first-order tensor u is isotropic if

ui = Q jiu j or [u ] = [Q ]T [u ] . ←− see (2.164) and (2.165) (2.170)

As a result, one canwriteu = ui ê oi = ui ê ni . And this holds truewhen all components
of u are zero, i.e.

u = 0 . ←− see (2.173) (2.171)

Proof The fact that (2.170)1−2 should hold true for all orthogonal tensors allows one
to choose



2.9 Transformation Laws 73

[Q ] =
⎡
⎣ −1 0 0

0 −1 0
0 0 1

⎤
⎦ .

Consequently, u1 = −u1, u2 = −u2 or u1 = 0, u2 = 0. Now, consider

[Q ] =
⎡
⎣ 1 0 0

0 −1 0
0 0 −1

⎤
⎦ .

This finally implies that u3 = −u3 or u3 = 0. Note that apparently the zero vector is
also a hemitropic object. Thus, in this simple case, one could use the rotation tensor
to introduce the condition (2.170). This is frequently seen in the literature.

Isotropic tensors of order two. The isotropy condition for a second-order tensor A
reads

Ai j = Qki Ql j Akl or [A ] = [Q ]T [A ] [Q ] . ←− see (2.167) and (2.168) (2.172)

This helps write A = Ai ĵe oi ⊗ ê oj = Ai ĵe ni ⊗ ê nj . And this holds true if (Tadmor
et al. [6])

A = λI where λ is a constant . ←− see (3.25) (2.173)

In other words, a second-order tensor is isotropic when it is spherical (note that the
second-order zero tensor is trivially an isotropic tensor).

Proof In this case, one may choose

[Q ] =
⎡
⎣ 0 0 −1

−1 0 0
0 1 0

⎤
⎦ .

It then follows that⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ =

⎡
⎣ A22 −A23 A21

−A32 A33 −A31

A12 −A13 A11

⎤
⎦ .

At this stage, consider

[Q ] =
⎡
⎣ 0 0 −1

1 0 0
0 −1 0

⎤
⎦ .

This leads to
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⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ =

⎡
⎣ A22 −A23 −A21

−A32 A33 A31

−A12 A13 A11

⎤
⎦ .

One can now infer that

A11 = A22 = A33 , A12 = A21 = A13 = A31 = A23 = A32 = 0 .

This result can be achieved in an alternativeway. In the following, this will be verified
again for the interested reader (see Hodge [7]).

Let
Ri j = δi j − εi jmωm , (2.174)

be an infinitesimal rotation where ωm denotes the axial vector of a skew tensorWi j

with infinitesimal magnitude. Introducing (2.174) into (2.172)1 gives

ωm
(
εl jm Ail + εkim Akj

) = 0 , (2.175)

where the higher-order term has been neglected. The fact that ωi , i = 1, 2, 3, are
arbitrary then implies that

εl jm Ail + εkim Akj = 0 . (2.176)

Multiplying both sides of this expression by εnjm , taking into account (1.58a) and
(1.58b)3, results in

2Ain + Ani = δni Akk . (2.177)

This can also bewritten as 2Ani + Ain = δni Akk . It is then easy to see that Ain = Ani .
Thus,

Ain = Akk

3
δin . (2.178)

For representation of an isotropic scalar-, vector- or tensor-valued function of a
system of tensorial variables, see Sect. 6.2.

2.10 Exercises

Exercise 2.1

Consider an arbitrary vector u and let ê be any vector of unit length. Use (2.140a),
(2.140b) and the triple vector product (1.71) to show that u can be resolved into
components parallel (i.e. proĵeu) and perpendicular (i.e. rejêeu) to that unit vector
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according to

u = proĵeu + rejêeu = P‖
êu + P⊥

ê u = ( ê · u) ê + ê × (u × ê) . (2.179)

Solution. Guided by Fig. 2.2, one only needs to show that

P⊥
ê u = u − ( ê · u) ê = ( ê · ê) u − ( ê · u) ê = ê × (u × ê) .

Exercise 2.2

Let A be an invertible tensor and let u and v be two arbitrary vectors. Further, let
B be an arbitrary tensor. First, show that for any two scalars α and β, the following
relation holds

det (αI + βu ⊗ v) = α3 + α2βu · v . (2.180)

Then, make use of this result to obtain

det (αA + βu ⊗ v) = α3 detA + α2βu · Acv . (2.181)

Finally, verify that

det (αA + βB) = α3 detA + α2βAc : B + αβ2A : Bc + β3 detB . (2.182)

Solution. By use of (1.36), (1.38)7, (1.52), (1.79)1, (2.23), (2.24)4 and (2.80)4, the
first relation can be verified as follows:

det (αI + βu ⊗ v) = εi jk (αδi1 + βuiv1)
(
αδ j2 + βu j v2

)
(αδk3 + βukv3)

= α3εi jkδi1δ j2δk3 + α2βεi jkδi1δ j2ukv3
+ α2βεi jkδi1δk3u j v2 + αβ2εi jkδi1u jukv2v3︸ ︷︷ ︸

= 0

+ α2βεi jkδ j2δk3uiv1 + αβ2εi jkδ j2uiukv1v3︸ ︷︷ ︸
= 0

+ αβ2εi jkδk3uiu j v1v2︸ ︷︷ ︸
= 0

+β3 εi jkuiu jukv1v2v3︸ ︷︷ ︸
= 0

= α3ε123 + α2β
(
εi23uiv1 + ε1 j3u j v2 + ε12kukv3

)
= α3 + α2β (u1v1 + u2v2 + u3v3) = α3 + α2βu · v .

From (2.5), (2.25), (2.32), (2.33)1, (2.51d), (2.55b), (2.99b)1, (2.105)1, (2.110)1,
(2.114) and (2.181), the second relation can be shown as
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det (αA + βu ⊗ v) = (detA) det
(
αI + βA−1u ⊗ v

)
= (detA)

(
α3 + α2βA−1u · v)

= α3 detA + α2β
(
u · (detA)A−Tv

)
= α3 detA + α2βu · Acv .

The above procedures can be combined to arrive at the third relation. To begin with,
one should realize that

det (αA + βB) = (detA) det
(
αI + βA−1B

)
.

Then,

det
(
αI + βA−1B

) = α3 εi jkδi1δ j2δk3︸ ︷︷ ︸
= ε123 = 1

+ α2β εi jkδi1δ j2A
−1
ko Bo3︸ ︷︷ ︸

= ε12k A
−1
ko Bo3 = A−1

3o Bo3

+ α2β εi jkδi1A
−1
jn Bn2δk3︸ ︷︷ ︸

= ε1 j3A
−1
jn Bn2 = A−1

2n Bn2

+ αβ2
[
εi jk A

−1
jn A

−1
ko

]
[δi1Bn2Bo3]︸ ︷︷ ︸

=
[(

detA−1
)
Ami εmno

] [
δi1Bn2Bo3

] =
(
detA−1

)
Am1B

c
m1

+ α2β εi jk A
−1
im Bm1δ j2δk3︸ ︷︷ ︸

= εi23A
−1
im Bm1 = A−1

1m Bm1

+ αβ2
[
εi jk A

−1
im A−1

ko

] [
δ j2Bm1Bo3

]
︸ ︷︷ ︸

=
[(

detA−1
)
Anj εmno

] [
δ j2Bm1Bo3

] =
(
detA−1

)
An2B

c
n2

+ αβ2
[
εi jk A

−1
im A−1

jn

]
[δk3Bm1Bn2]︸ ︷︷ ︸

=
[(

detA−1
)
Aokεmno

] [
δk3Bm1Bn2

] =
(
detA−1

)
Ao3B

c
o3

+ β3 εi jk A
−1
im Bm1A

−1
jn Bn2A

−1
ko Bo3︸ ︷︷ ︸

=
(
1
6 εi jkεqrs A

−1
iq A−1

jr A−1
ks

) (
εmnoBm1Bn2Bo3

) =
(
detA−1

)
(detB)

= α3 + α2β
(
A−T
m1 Bm1 + A−T

m2 Bm2 + A−T
m3 Bm3

)
+ αβ2 Am1Bc

m1 + Am2Bc
m2 + Am3Bc

m3

detA
+ β3 detB

detA

= α3 + α2βAc
mn Bmn + αβ2AmnBc

mn + β3 detB
detA

.
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Multiplying both sides of the above expression by detA finally yields the desired
result.

Exercise 2.3

Consider a skew tensor Wu with W u
i j = −εi jkuk and Wv with W v

i j = −εi jkvk satis-
fying

Wuw = u × w , Wvw = v × w , for all w ∈ E o3
r . (2.183)

Verify the following identities

WuWv = v ⊗ u − [tr (v ⊗ u)] I , ←− note that tr (v ⊗ u) = v · u (2.184a)

WuAWv = [tr (v ⊗ u)]AT − vA ⊗ u − (trA) [tr (v ⊗ u)] I

+ [tr (v ⊗ Au)] I + (trA) (v ⊗ u) − v ⊗ Au . (2.184b)

Solution. This exercise will be solved by means of index notation. With the aid of
the expressions (1.36), (1.38)7, (1.54), (1.58a), (2.23) and (2.24)4, the first identity
can be shown as follows:

W u
imW

v
mj = +εimkukεmjlvl

= (−εmikεmjl
)
ukvl

= (−δi jδkl + δilδk j
)
ukvl

= −δi j ukvk + u j vi
= (v ⊗ u − (v · u) I)i j .

In a similar fashion, one can establish

W u
im AmnW

v
nj = (εimkuk) Amn

(
εnjlvl

)
= (

εimkεnjl
)
(uk Amnvl)

= δin
(
δmjδkl − δk jδml

)
(uk Amnvl)︸ ︷︷ ︸

= uk A ji vk − u j Ali vl = [tr (v ⊗ u)]
(
AT

)
i j

− (vA ⊗ u)i j

+ δi j (−δmnδkl + δknδml) (uk Amnvl)︸ ︷︷ ︸
= δi j

(−uk Ammvk + uk Amkvm
) = [− (trA) (tr (v ⊗ u)) + tr (v ⊗ Au)] (I)i j

+ δil
(
δmnδk j − δknδmj

)
(uk Amnvl)︸ ︷︷ ︸

= u j Ammvi − uk A jk vi = (trA) (v ⊗ u)i j − (v ⊗ Au)i j

.
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Exercise 2.4

Find the axial vector of the skew-symmetric tensor W = (1/2) (u ⊗ v − v ⊗ u).

Solution. In view of (2.65), the goal is to find a vector ωωω such that

(u ⊗ v − v ⊗ u)w = 2ωωω × w .

From (1.72), (2.10) and (2.13), one can arrive at

(u ⊗ v − v ⊗ u)w = (v · w)u − (u · w) v = − (u × v) × w .

By use of (1.49a), one will finally have

W = skw (u ⊗ v) for which ωωω = 1

2
v × u . (2.185)

Exercise 2.5

LetW be a skew tensor with the associated axial vectorωωω. Regarding (2.112), show
that

Wc = ωωω ⊗ ωωω . (2.186)

Solution. First, recall (2.65), i.e. Wu = ωωω × u. Then, the relation (2.112), with the
aid of (1.4a), (1.4d), (1.49a), (1.49c)1, (1.73)1, (1.78b)1 and (2.13), helps obtain

Wc (u × v) = (Wu) × (Wv)

= (ωωω × u) × (ωωω × v)

= [ωωω · (ωωω × v)]u︸ ︷︷ ︸
= [0]u = 0

− [u · (ωωω × v)]ωωω︸ ︷︷ ︸
= [ωωω · (v × u)]ωωω = − [ωωω · (u × v)]ωωω

= 0 + [ωωω · (u × v)]ωωω

= (ωωω ⊗ ωωω) (u × v) ,

which, by means of (2.6), delivers the desired result.

Exercise 2.6

Suppose one is given a skew tensorWwith the associated axial vectorωωω. First, show
that the determinant of a tensor I + W is
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det (I + W) = 1 + ωωω · ωωω . (2.187)

Then, prove that
Q = (I − W) (I + W)−1 , (2.188)

is an orthogonal tensor.

Solution. The expression (2.187) reveals the fact that I + W is nonsingular and hence
its inverse in (2.188) exists. Consequently, Q is well-defined. Guided by the results
of previous exercises, the first part can be verified as follows:

det (I + W)
from=====
(2.182)

det I︸︷︷︸
= 1, according to (2.100)

+ Ic : W︸ ︷︷ ︸
= I : W, according to (2.119)

+ I : Wc︸ ︷︷ ︸
= I : ωωω ⊗ ωωω, according to (2.186)

+ detW︸ ︷︷ ︸
= 0, according to (2.101)

= 1 + I : W︸ ︷︷ ︸
= 0, according to (2.89e)

+ I : ωωω ⊗ ωωω︸ ︷︷ ︸
= ωiωi , according to (2.89b)

= 1 + ωωω · ωωω .

It is then easy to see that

det (I − W) = 1 + ωωω · ωωω . (2.189)

For the second part, one needs to show that QTQ = I. The key point is that the two
tensors I − W and I + W commute, that is,

(I − W) (I + W) = I − W + W − W2

= I − W2 ,

(I + W) (I − W) = I + W − W − W2

= I − W2

= (I − W) (I + W) .

This result, along with (2.34), (2.55a), (2.55d)1, (2.58)1, (2.105)1−2 and (2.109f),
helps obtain

QTQ = (
IT + WT

)−1 (
IT − WT

)
(I − W) (I + W)−1

= (I − W)−1 (I + W) (I − W) (I + W)−1

= (I − W)−1 (I − W) (I + W) (I + W)−1

= I I

= I .
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Exercise 2.7

The cofactor Ac of a tensor A can be represented by20

Ac = (
A2

)T − (trA)AT + 1

2

[
(trA)2 − (

trA2
)]
I

or
(
Ac)

i j = A2j i − (trA) A ji + 1
2

[
(trA)2 −

(
trA2

)]
δi j

. (2.190)

The above relation shows that (detA)A−1 = Ac T, according to (2.114), can be com-
puted properly even if A is not invertible. And this means that for any tensor A, the
tensorial variable (detA)A−1 exists.

Make use of (2.190) to verify that

(αA + βB)c = α2Ac + β2Bc + αβ
(
ATBT + BTAT

)
− αβ

[
(trB)AT + (trA)BT

]
+ αβ [(trA) (trB) − tr (AB)] I . (2.191)

Solution. By taking into account the linearity of the trace operator and transposition,
one can write

(αA + βB)c = (αA + βB)T (αA + βB)T︸ ︷︷ ︸
= α2ATAT + αβ

(
ATBT + BTAT

)
+ β2BTBT

− [tr (αA + βB)] (αA + βB)T︸ ︷︷ ︸
= α2 (trA)AT + αβ

[
(trB)AT + (trA)BT

]
+ β2 (trB)BT

+ 1

2
(tr (αA + βB))2︸ ︷︷ ︸

= α2 (trA)2 + 2αβ (trA) (trB) + β2 (trB)2

I

− 1

2
tr (αA + βB)2︸ ︷︷ ︸

= α2trA2 + 2αβtr (AB) + β2trB2

I .

which, by simplification, delivers the required result. Some straightforward manip-
ulations now render

(αI + βu ⊗ v)c = α2I − αβWuWv , ←− see (2.184a) (2.192a)

(αA + βu ⊗ v)c = α2Ac − αβWuAWv , ←− see (2.184b) (2.192b)

(αA + βI)c = α2Ac + αβ
[
(trA) I − AT

] + β2I . (2.192c)

Moreover, by (2.114), (2.182) and (2.191),

20 The expression (2.190) is basically a consequence of the Cayley-Hamilton equation, see (4.21).
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(αA + βB)−1 = α2 (detA)A−1 + β2 (detB)B−1

α3 detA + α2βAc : B + αβ2A : Bc + β3 detB

+ αβ [AB + BA − (trB)A − (trA)B]
α3 detA + α2βAc : B + αβ2A : Bc + β3 detB

+ αβ [(trA) (trB) − tr (AB)] I
α3 detA + α2βAc : B + αβ2A : Bc + β3 detB

. (2.193)

Exercise 2.8

Given the linear transformations

Âe1 = cos θ ê1 + sin θ ê2
Âe2 = − sin θ ê1 + cos θ ê2
Âe3 = ê3

⎫⎪⎬
⎪⎭ and

B̂e1 = −̂e1
B̂e2 = ê2
B̂e3 = ê3

⎫⎪⎬
⎪⎭ . (2.194)

First, represent A and B in matrix notation.
Then, verify that the resulting matrices are orthogonal.
Finally, algebraically as well as geometrically show that [A ] presents a rotation

and [B ] describes a reflection.
Solution. Guided by (2.21), the matrices are given by

[A ] =
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ , [B ] =

⎡
⎣ −1 0 0

0 1 0
0 0 1

⎤
⎦ . (2.195)

To verify that a tensor is orthogonal, one must show that its inverse is equal to its
transposes or the simple contraction between the transposed tensor and the tensor
itself delivers the unit tensor, see (2.130) and (2.131). Consistent withmatrix algebra,
these can straightforwardly be shown for the presented matrices.

The matrix [A ] represents a rotation owing to

det [A ] = cos θ cos θ − (− sin θ) sin θ = cos2 θ + sin2 θ = 1 , ←− see (2.133)

and [B ] renders a reflection since det [B ] = (−1) (1) (1) = −1.
See Fig. 2.4 for a geometrical interpretation. Therein, [A ] describes a counter-

clockwise rotation of a vector u = (r cosα) ê1 + (r sin α) ê2 with the matrix form
[u ]T = [

r cosα r sin α 0
]
by an angle θ about the x3-axis. And [B ] describes a

reflection of the that vector across the x2-axis. Note that u need not necessarily be
chosen from the x1-x2 plane.
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Fig. 2.4 A counterclockwise rotation by an angle θ about the x3-axis and a reflection across the
x2-axis in a right-handed Cartesian coordinate frame

Exercise 2.9

This exercise aims at characterizing finite rotation of an arbitrary vector in the ori-
ented three-dimensional Euclidean vector space. This leads to a well-known formula
called the Rodrigues rotation formula (see Murray et al. [8]).

Let u be a vector that is supposed to rotate counterclockwise by an angle θ about
a rotation axis defined by the unit vector ê. This has been displayed schematically in
Fig. 2.5.

Fig. 2.5 Finite rotation of a vector u in E o3
r based on the Rodrigues rotation formula
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First, show that the rotated vector, urot, can be written as

urot (θ,u) = cos θu + (1 − cos θ) (u · ê) ê + sin θ ê × u
this represents the Rodrigues formula

. (2.196)

Then, by rewriting (2.196) in the form urot = Ru, show that the rotation tensor R
can be represented by

R (θ) = cos θI + (1 − cos θ) ê ⊗ ê + sin θW , (2.197)

or
R (θ) = I + sin θW + (1 − cos θ)W2 , (2.198)

where W denotes a skew tensor whose axial vector is ê, i.e.

Wu = ê × u . (2.199)

The efficient form (2.198) is known as the Euler-Rodrigues formula and frequently
utilized in rigid-body dynamics as well as parametrization of shell structures. See
Crisfield [9] and Wriggers [10] for more discussions.

Finally, verify that the composition of rotations obeys

R (θ + α) = R (θ)R (α) . (2.200)

Solution. As can be seen from Fig. 2.5, the unit vector ê is perpendicular to a vector
v whose magnitude is the base radius of the cone. This vector is basically the vector
rejection ofu from ê, i.e. v = u − (u · ê) ê. Ifu rotates by an angle θ about the rotation
axis, then v consistently rotates by the same angle and, therefore, one can write
vrot = urot − (u · ê) ê and subsequently |vrot| = |v|. Observe that the cross product
ê × v with |̂e × v| = |v| lies in the plane spanned by the circular base and trivially
( ê × v) · v = 0. This helps project vrot along v and ê × v according to

vrot = |vrot| cos θ
v
|v| + |vrot| sin θ

ê × v
|̂e × v| = cos θv + sin θ ê × v . (2.201)

It follows that
urot = cos θv + sin θ ê × v + (u · ê) ê
since vrot = urot − (u · ê) ê = cos θv + sin θ ê × v

. (2.202)

By substituting v = u − (u · ê) ê into the above expression, one then obtains the
desired result

urot = cos θu − cos θ (u · ê) ê + sin θ ê × [u − (u · ê) ê] + (u · ê) ê
= cos θu + (1 − cos θ) (u · ê) ê + sin θ ê × u .
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Next, the goal is to extract a second-order tensor from the above expression. By
means of (2.5), (2.13) and (2.65), this can be rewritten in the form urot = Ru for
which the rotation tensor R is one given in (2.197), i.e.

urot = cos θIu + (1 − cos θ) ( ê ⊗ ê)u + sin θWu︸ ︷︷ ︸
= (cos θI + (1 − cos θ) ê ⊗ ê + sin θW)u = Ru

.

The interested reader may nowwant to verify that the introduced second-order tensor
R in (2.197) is orthogonal, i.e. it satisfies (2.130). This can be shown, by means of
(1.51), (2.48), (2.52), (2.53), (2.54), (2.55a), (2.58)1, (2.184a) and (2.199), as follows:

RRT = cos2 θI + cos θ (1 − cos θ) ê ⊗ ê

+ ��������
(− cos θ sin θ)W + (1 − cos θ) cos θ ê ⊗ ê

+ (1 − cos θ)2 ê ⊗ ê − (1 − cos θ) sin θ ê ⊗ êW︸ ︷︷ ︸
= −̂e ⊗ Wê = −̂e ⊗ ( ê × ê) = O

+ ������cos θ sin θW + (1 − cos θ) sin θ Wê ⊗ ê︸ ︷︷ ︸
= O

− sin2 θW2

= cos2 θI + sin2 θ ê ⊗ ê − sin2 θW2︸ ︷︷ ︸
= cos2 θI + ����sin2 θ ê ⊗ ê − sin2 θ

(��ê ⊗ ê − I
)

= (
cos2 θ + sin2 θ

)
I

= I. (2.203)

Moreover, it truly describes a rotation since

detR = det (cos θI + (1 − cos θ) ê ⊗ ê)︸ ︷︷ ︸
= cos3 θ + cos2 θ (1 − cos θ) ê · ê = cos2 θ

+ sin θ (cos θI + (1 − cos θ) ê ⊗ ê)c : W︸ ︷︷ ︸
=

(
cos2 θI − cos θ (1 − cos θ)W2

)
: W = 0

↙ note that I and W2

are symmetric tensors

+ sin2 θ (cos θI + (1 − cos θ) ê ⊗ ê) : Wc︸ ︷︷ ︸
= (cos θI + (1 − cos θ) ê ⊗ ê) : ( ê ⊗ ê) = cos θ ê · ê + (1 − cos θ) ( ê · ê)2 = 1

+ sin3 θ detW︸ ︷︷ ︸
= 0

= cos2 θ + sin2 θ

= +1 , (2.204)

where (2.73), (2.79h), (2.82), (2.89b)2, (2.101), (2.180), (2.182), (2.186), (2.192a)
and (2.199) have been used.
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The desired expression (2.198) basically exhibitsmore applicable formof (2.197).
To derive it, one first needs to establish the identity

W2u from====
(2.25)

W (Wu)

from=====
(2.199)

W ( ê × u)

from=====
(2.199)

ê × ( ê × u)

from====
(1.71)

( ê · u) ê − ( ê · ê) u
with regard=======
to Fig. 2.5

−v , (2.205)

and then rephrase (2.196) as

urot = cos θu + (1 − cos θ) (u − v) + sin θ ê × u

= u + sin θ ê × u − (1 − cos θ) v . (2.206)

Now, making use of (2.5), (2.199) and (2.205)5, the relation (2.206)2 renders

urot = Iu + sin θWu + (1 − cos θ)W2u︸ ︷︷ ︸
=

(
I + sin θW + (1 − cos θ)W2

)
u = Ru

.

The rotation tensor R in the above expression could be obtained in an alternative
way. From (2.184a), one finds that ê ⊗ ê = W2 + I. Introducing this expression into
(2.197) identically delivers the required result.

The composition law (2.200) regarding, e.g., the Euler-Rodrigues formula can be
verified in a straightforward manner by having

W2 = ê ⊗ ê − I ⇒ W3 = ( ê ⊗ ê − I)W = −W

W4 = I − ê ⊗ ê = −W2

}
.

Exercise 2.10

Let exp (A) and exp (B) be two exponential tensor functions according to (2.39).
Show that the following relations hold

exp (A + B) = exp (A) exp (B)︸ ︷︷ ︸
= exp (B) exp (A)

if AB = BA , (2.207a)
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Am
[
exp (B)

] = [
exp (B)

]
Am , for any integer m if AB = BA , (2.207b)

I = exp (A) exp (−A)︸ ︷︷ ︸
= exp (−A) exp (A)

, (2.207c)

I = exp (W)
[
exp (W)

]T︸ ︷︷ ︸
= [

exp (W)
]T exp (W)

where WT = −W , (2.207d)

exp (mA) = [
exp (A)

]m
, for any integer m , (2.207e)

exp (A + B) = exp (A) + exp (B) − I if AB = BA = O , (2.207f)

exp
(
QAQT

) = Q
[
exp (A)

]
QT where QQT = QTQ = I , (2.207g)

exp
(
BAB−1

) = B
[
exp (A)

]
B−1 if detB �= 0 . (2.207h)

Solution. To begin with, consider the following two special exponential functions

exp (O) = I , exp (I) = eI , (2.208)

where e denotes the Euler’s number. The commutative property AB = BA, along
with (2.29) and (2.36), then helps establish

(A + B)2 = (A + B) (A + B) = A2 + 2AB + B2 .

This result can easily be generalized to the binomial formula

(A + B)k =
k∑

i=0

k!
i ! (k − i)!A

k−iBi ∀ k ≥ 0 if AB = BA . (2.209)

The expression (2.207a): This relation states that if two arbitrary tensors commute,
their exponential tensor functions will consistently commute. Moreover, the single
composition of an exponential tensor function, exp (A), with another exponential
map, exp (B), equals the exponential of the addition of their arguments provided that
AB = BA. This can be proved directly from the definition of the exponential tensor
function. On the one hand, one will have

exp (A + B)
from====
(2.39)

∞∑
k=0

1

k! (A + B)k

from=====
(2.209)

∞∑
k=0

1

k!
k∑

i=0

k!
i ! (k − i)!A

k−iBi

by========
simplification

∞∑
k=0

k∑
i=0

Ak−iBi

i ! (k − i)!
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by changing=============
the order of summation

∞∑
i=0

∞∑
k=i

Ak−iBi

i ! (k − i)!
by==========

setting j = k − i

∞∑
i=0

∞∑
j=0

A jBi

i ! j ! .

And, one the other hand,

exp (A) exp (B)
from====
(2.39)

⎛
⎝ ∞∑

j=0

1

j !A
j

⎞
⎠

( ∞∑
i=0

1

i !B
i

)

from====
(2.29)

∞∑
i=0

∞∑
j=0

A jBi

i ! j ! .

In a similar manner,

exp (B) exp (A)
from====
(2.39)

( ∞∑
i=0

1

i !B
i

)⎛
⎝ ∞∑

j=0

1

j !A
j

⎞
⎠

from====
(2.29)

∞∑
i=0

∞∑
j=0

BiA j

i ! j !
by=============

considering AB = BA

∞∑
i=0

∞∑
j=0

A jBi

i ! j ! .

It is worthwhile to point out that the converse of (2.207a), in general, is not true. A lot
of examples can be found in the context ofmatrix algebra to show that exp (A + B) =
exp (A) exp (B) whereas AB �= BA. For instance, consider a 4 × 4 matrix [A ] with
only nonzero elements A34 = 2π and A43 = −2π . And suppose that [B ] be a 4 × 4
matrix with only nonzero elements B31 = 1, B34 = 2π , B42 = 1 and B43 = −2π .

The expression (2.207b): If AB = BA, then AmBi = BiAm holds for all integers m
and i . As a result, the identity (2.207b) is implied by the definition of the exponential
tensor function.

The expression (2.207c): Since A and −A commute, it follows that

exp (A) exp (−A)
from======

(2.207a)
exp (A + (−A))

from=====
(2.11c)

exp (O)

from=====
(2.208)

I .
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This result immediately implies that

exp (−A) = [
exp (A)

]−1
. (2.210)

The expression (2.207d): Since any skew tensor commutes with its transpose, one
can write

exp (W)
[
exp (W)

]T from=================
(2.39), (2.52), (2.53) and (2.55e)

exp (W) exp
(
WT

)
from===========

(2.58) and (2.207a)
exp (W + (−W))

from===========
(2.11c) and (2.208)

I .

One can now infer that exp (W) should be an orthogonal tensor. By invoking (4.59a)
and (4.63a), one can arrive at

det
[
exp (W)

] = exp (trW) = exp (0) = +1 , (2.211)

which reveals the fact that exp (W) is a rotation tensor.

The expression (2.207e): This identity will be treated by means of mathemati-
cal induction. First note that when m = 0, this expression in the form exp (0A) =[
exp (A)

]0
renders I = I using (b) in (2.12), (2.36) and (2.208)1.

For m = 1, the relation (2.207e) holds true by the definition of the exponential
tensor function along with (2.11e) and (2.36). Now, suppose that it remains valid for
m = k > 0. It follows that

exp [(k + 1)A]
from===========

(2.11e) and (2.11g)
exp [kA + A]

from======
(2.207a)

exp (kA) exp (A)

by=======
assumption

[
exp (A)

]k
exp (A)

from====
(2.37)

[
exp (A)

]k+1
.

If m = k < 0, it is not then difficult to see that

exp [(k − 1)A] = [
exp (A)

]k−1
.

The expression (2.207f): It is evident that (A + B)k = Ak + Bk holds for all positive
integers k when AB = BA = O. This result along with the useful identities A =
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A + O = A + I − I and A0 = I yields

exp (A + B) =
∞∑
k=0

(A + B)k

k!

= I +
∞∑
k=1

Ak

k! +
∞∑
k=1

Bk

k!
= exp (A) + exp (B) − I .

The expression (2.207g):

exp
(
QAQT

) from====
(2.39)

∞∑
k=0

(
QAQT

)k
k!

from==============
(2.33), (2.36) and (2.130)

∞∑
k=0

QAkQT

k!
from====
(2.29)

Q

[ ∞∑
k=0

Ak

k!

]
QT

from====
(2.39)

Q
[
exp (A)

]
QT .

The expression (2.207h):

exp
(
BAB−1) from==========

(2.36) and (2.39)

∞∑
k=0

1

k! BAB
−1BAB−1 · · ·BAB−1

k times

from==============
(2.33), (2.36) and (2.105)

∞∑
k=0

BAkB−1

k!
from==========

(2.29) and (2.39)
B
[
exp (A)

]
B−1 .

Here, some important properties of the exponential tensor functionwere investigated.
See Exercise 4.6 for more elaboration.
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Exercise 2.11

Suppose one is given a tensor A with the following matrix

[A ] =
⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦ .

Obtain the spherical and deviatoric parts of A.

Solution. First, one needs to have trA = 1 + 1 + 1 = 3. Then, by (2.144) and
(2.145), one can obtain

[
sphA

] = trA
3

[ I ] =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ,

and

[ devA ] = [A ] − trA
3

[ I ] =
⎡
⎣ 0 1 1

1 0 1
1 1 0

⎤
⎦ .
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Chapter 3
Algebra of Higher-Order Tensors

Recall from Chap.1 that scalars were zeroth-order tensors with only one component
and vectors or first-order tensors were characterized by three components in three-
dimensional spaces. The order of a tensor was consistently increased in Chap. 2
wherein a tensor of order two, characterized by nine components, was declared
as a linear mapping that takes a vector as an input and generally delivers another
vector as an output. The same idea will be followed in this chapter. Here, higher-
order tensors are defined by appealing to the notion of linear mapping and their
important relationships are characterized. The main focus will be on the fourth-order
tensors which are extensively used, for instance, in continuum mechanics of solids.
See, e.g., Gurtin [1], Chandrasekharaiah and Debnath [2], Negahban [3], Jog [4] and
Irgens [5].

3.1 Tensors of Order Three

A third-order tensor is denoted here by A , B , · · · . It is defined as a linear mapping
of first-order tensors in E o3

r into second-order tensors in Tso
(
E o3
r

)
according to

A = Au , A ∈ Tso
(
E o3
r

)
, ∀A ∈ Tto

(
E o3
r

)
, ∀u ∈ E o3

r , (3.1)

where Tto denotes the set of all third-order tensors. Consistent with (2.1), it renders
a right mapping and satisfies the linearity condition

A (αu + βv) = α (Au) + β (Av) , for all α, β ∈ R , (3.2)

for which the basic operations addition and scalar multiplication are defined as
follows:
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(A + B) u = Au + Bu , (3.3a)

(αA) u = α (Au) = A (αu) . (3.3b)

The third-order zero tensor O is introduced as

Ou = O , for all u ∈ E o3
r . (3.4)

A dyad u ⊗ v representing a second-order tensor is now extended to the triadic
product u ⊗ v ⊗ w satisfying the property

(u ⊗ v) ⊗ w = u ⊗ (v ⊗ w) = u ⊗ v ⊗ w , (3.5)

which linearly transforms an arbitrary vector w̄ onto a scalar multiple of u ⊗ v by
the rule

(u ⊗ v ⊗ w) w̄ = (w · w̄) u ⊗ v
by (1.9a), one can also have (u ⊗ v ⊗ w) w̄ = (u ⊗ v ⊗ w̄)w

. ←− see (2.13) (3.6)

Thus, the linear map g tp
to (u, v,w) = u ⊗ v ⊗ w represents a tensor of order three.

Consistent with (2.16a)–(2.16b), it is not then difficult to notice that g tp
to is trilinear,

i.e.

(αu + βū) ⊗ v ⊗ w = αu ⊗ v ⊗ w + βū ⊗ v ⊗ w , (3.7a)

u ⊗ (αv + βv̄) ⊗ w = αu ⊗ v ⊗ w + βu ⊗ v̄ ⊗ w , (3.7b)

u ⊗ v ⊗ (αw + βw̄) = αu ⊗ v ⊗ w + βu ⊗ v ⊗ w̄ . (3.7c)

It may be beneficial to view a tensor of order three as a linear transformation that
associates with each tensor in Tso

(
E o3
r

)
a vector in E o3

r . Such a transformation is
indicated by

u = A : A , u ∈ E o3
r , ∀A ∈ Tto

(
E o3
r

)
, ∀A ∈ Tso

(
E o3
r

)
, (3.8)

which satisfies

A : (αA + βB) = α (A : A) + β (A : B) , for all α, β ∈ R , (3.9)

and

(A + B) : A = A : A + B : A , (3.10a)

(αA) : A = α (A : A) = A : (αA) . (3.10b)

Now, the double contraction between a triadic product and a dyad obeys
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u ⊗ (v ⊗ w) : (w̄ ⊗ ŵ
) = (v · w̄)

(
w · ŵ)

u . (3.11)

Having in mind (2.74a) and (2.74b), the above operation is a symmetric bilinear
form. Guided by (2.17), the collection

{
êi ⊗ ê j ⊗ êk, i, j, k = 1, 2, 3

} def=== {
êi ⊗ ê j ⊗ êk

}
, (3.12)

constitutes a basis for Tto
(
E o3
r

)
and its dimension is dimTto = (

dimE o3
r

)3 = 33.
Subsequently, any element A of this space can be represented by this basis and a
collection of 27 scalar numbers as

A = Ai j k̂ei ⊗ ê j ⊗ êk . ←− see (2.19) (3.13)

Obviously, (3.12) presents a Cartesian (or rectangular) basis. Thus, A in (3.13)
is called a Cartesian third-order tensor and Ai jk will be the respective Cartesian
components. They are determined via

Ai jk = (
êi ⊗ ê j

) : [Âek
]

, ←− see (2.20) (3.14)

where
Âek = Amnk̂em ⊗ ên , (3.15)

since

Ai jk
from====
(1.36)

Amnk
[
δimδ jn

]

from====
(1.35)

Amnk
[
( êi · êm)

(
ê j · ên

)]

from===============
(2.73), (2.74a) and (2.74b)

(
êi ⊗ ê j

) : [(Amnk̂em ⊗ ên)
]

from==========
(1.35) and (1.36)

(
êi ⊗ ê j

) : [(Amnôem ⊗ ên) ( êo · êk)
]

from=============
(3.3a), (3.3b) and (3.6)

(
êi ⊗ ê j

) : [(Amnôem ⊗ ên ⊗ êo) êk
]

from====
(3.13)

(
êi ⊗ ê j

) : [Âek
]

.

Let u and A are decomposed according to (1.34)1 and (2.19)2, respectively. Fur-
ther, let A be a third-order tensor of the form (3.13). Then, using (1.35), (1.36),
(3.2)-(3.3b), (3.6) and (3.9)-(3.11), the simple contraction (3.1) and the double con-
traction (3.8) can be expressed as
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A = Au = [
Ai j k̂ei ⊗ ê j ⊗ êk

]
[ul̂el ]

= Ai jkulδkl
(
êi ⊗ ê j

)

= Ai jkuk
(
êi ⊗ ê j

)
with Ai j = Ai jkuk , (3.16a)

u = A : A = [
Ai j k̂ei ⊗ ê j ⊗ êk

] : [Alm êl ⊗ êm]

= Ai jk Almδ jlδkm êi
= Ai jk A jk̂ei with ui = Ai jk A jk . (3.16b)

A well-known example of third-order tensor in continuum mechanics is the permu-
tation (or alternating) tensor

E = εi j k̂ei ⊗ ê j ⊗ êk , (3.17)

where theCartesian components εi jk have already been introduced as the permutation
symbol in (1.53). Guided by (3.16a)4 and having defined the axial vectorωωω of a skew
tensor W according to (2.70)1, operating the permutation tensor E on the vector ωωω

yields
Eωωω = −W with εi jmωm = −Wi j . ←− see (2.71) (3.18)

One can also establish

ωωω = −1

2
E : W with ωm = −1

2
εmklWkl = −1

2
Wklεklm . ←− see (2.70) (3.19)

Recall from (2.62)2 that any tensor A can additively be decomposed as A = S + W.
In light of (2.79h), considering εi jk = −εik j and Sjk = Skj into (3.16b)4 leads to the
useful identity

E : S = 0 . (3.20)

This immediately implies that

ωωω = −1

2
E : A . (3.21)

The double contraction of the permutation tensor E and the dyadic product u ⊗ v
results in the cross product of u and v, that is,

E : (u ⊗ v) = u × v , (3.22)
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because

[
E
] : [u ⊗ v] from====

(3.17)

[
εi j k̂ei ⊗ ê j ⊗ êk

] : [u ⊗ v]

from=========
(3.10a)-(3.11)

[
εi jk

(
ê j · u) ( êk · v)] êi

from====
(1.33)

(
εi jku jvk

)
êi

from====
(1.54)

− (
vku jεk ji

)
êi

from====
(1.67)

−v × u

from=====
(1.49a)

u × v .

Isotropic tensors of order three.Under a change of coordinates and consistentwith
the expression (2.167)3, the old and newCartesian components of a third-order tensor
A = Ao

i j k̂e
o
i ⊗ ê o

j ⊗ ê o
k = An

i j k̂e
n
i ⊗ ê n

j ⊗ ê n
k are related by

An
i jk = Rli Rmj RnkAo

lmn . (3.23)

This tensor is said to be isotropic when

Ai jk = Qli Qmj QnkAlmn . (3.24)

This amounts to writing A = Ai j k̂e o
i ⊗ ê o

j ⊗ ê o
k = Ai j k̂e n

i ⊗ ê n
j ⊗ ê n

k . In the fol-
lowing, it will be verified that a generic isotropic third-order tensor is a scalarmultiple
of the permutation tensor E = εi j k̂ei ⊗ ê j ⊗ êk , i.e.

Ai jk = μεi jk where μ is a constant . ←− see (3.73) (3.25)

Proof. Consider an infinitesimal rotation of the form (2.174), i.e. Ri j = δi j − εi jmωm .
Introducing this relation into (3.24) yields

ωp
(
εmjpAimk + εli pAl jk + εnkpAi jn

) = 0 , (3.26)

where the higher-order terms have been neglected. The fact that ωi , i = 1, 2, 3, are
arbitrary then implies that

εmjpAimk + εli pAl jk + εnkpAi jn = 0 . (3.27)

By multiplying both sides of this expression by εqip, εq jp and εqkp and then setting
q = i , q = j , and q = k in the resulting expressions, one can arrive at
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A j ik + 2Ai jk + Ak ji = δi jArrk + δikAr jr , (3.28a)

2Ai jk + A j ik + Aik j = δ j iArrk + δ jkAirr , (3.28b)

Aik j + Ak ji + 2Ai jk = δk jAirr + δkiAr jr . (3.28c)

By multiplying both sides of these relations by δ jk , δik and δi j and then setting i = i ,
j = i , and k = i in the resulting expressions, one will have

Airr = Arir = Arri = 0 . (3.29)

As a result,

2Ai jk + A j ik + Ak ji = 0 , (3.30a)

2Ai jk + A j ik + Aik j = 0 , (3.30b)

2Ai jk + Aik j + Ak ji = 0 . (3.30c)

It is then easy to see that

Aik j = Ak ji = A j ik = −Ai jk . (3.31)

Considering (1.52)3, (1.54)3−5, (3.29)1−3 and (3.31)1−3, one can finally arrive at the
required result.

3.2 Tensors of Order Four

Fourth-order tensors are extensively used in theoretical as well as computational
nonlinear solid mechanics and designated in this textbook by A, a, · · · . Denoting
by Tfo the set of all fourth-order tensors, a tensor of order four may be defined as a
linear mapping of vectors in E o3

r into third-order tensors in Tto
(
E o3
r

)
according to

A = Au , A ∈ Tto
(
E o3
r

)
, ∀A ∈ Tfo

(
E o3
r

)
, ∀u ∈ E o3

r . (3.32)

Another definition is

D = A : C , D ∈ Tso
(
E o3
r

)
, ∀A ∈ Tfo

(
E o3
r

)
, ∀C ∈ Tso

(
E o3
r

)
. (3.33)

Of special interest here is to focus on the above useful definition of fourth-order
tensors. This enables one to develop a formalism based on the relations established
in Chap.2 for second-order tensors.

In alignment with (2.2) and (3.2), the right mapping (3.33) fulfills the linearity
condition
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A : (αA + βB) = α (A : A) + β (A : B) , for all α, β ∈ R . (3.34)

Following discussions analogous to those that led to (2.3), the requirement (3.34)
helps establish

A : O = O . (3.35)

One can introduce the fourth-order zero tensor O via

O : C = O , for all C ∈ Tso
(
E o3
r

)
, (3.36)

and the fourth-order unit tensors I and Ī according to

I : C = C , Ī : C = CT . (3.37)

Two fourth-order tensors A and B are said to be equal if they identically map all
tensors C, that is,

A = B if and only if A : C = B : C , (3.38)

or, equivalently,

A = B if and only if D : A : C = D : B : C . (3.39)

Recall that a vector space remained closed with respect to (vector) addition and
(scalar) multiplication. And these fundamental operations were indicated in (2.8a)
and (2.8b) regarding second-order tensors. Here, they are rewritten as

(A + B) : C = A : C + B : C , (3.40a)

(αA) : C = α (A : C) = A : (αC) . (3.40b)

Having in mind (−1)A = −A from (2.12), the rule (3.40b) with the aid of (3.38)
reveals that

(−1)A = −A . (3.41)

Similarly to vectors and tensors, the difference between two fourth-order tensorsA
and B are indicated by

A + (−B) = A − B . ←− see (2.9) (3.42)

Then, it follows that
(A − B) : C = A : C − B : C . (3.43)
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Consistent with (1.4a) to (1.4h) and also (2.11a) to (2.11h), the following properties
holds for any A , B , C ∈ Tfo

(
E o3
r

)
and α , β ∈ R1:

A + B = B + A , (3.44a)

(A + B) + C = A + (B + C) , (3.44b)

A + (−A) = O , (3.44c)

A + O = A , (3.44d)

1A = A , (3.44e)

(αβ)A = α (βA) , (3.44f)

(α + β)A = αA + βA , (3.44g)

α (A + B) = αA + αB . (3.44h)

The set Tfo
(
E o3
r

)
is now declared as another vector space since not only it remains

closed with respect to the operations (3.40a) and (3.40b) but also its elements satisfy
the properties (3.44a) to (3.44h).

With regard to the right mapping (3.33), one can also define the left mapping

C = D : A , ←− see (2.40) (3.45)

satisfying

(αD + βE) : A = α (D : A) + β (E : A) , ←− see (2.41) (3.46)

and

D : (A + B) = D : A + D : B , ←− see (2.42a) (3.47a)

D : (αA) = α (D : A) = (αD) : A . ←− see (2.42b) (3.47b)

Accordingly, the left and right mappings are related through the following expression

(D : A) : C = D : (A : C) , ←− see (2.47) (3.48)

for any C,D ∈ Tso
(
E o3
r

)
.

1 The proof is not difficult. For instance, the first property can be shown as follows:

(A + B) : C from======
(3.40a)

A : C + B : C
from======
(2.11a)

B : C + A : C
from======
(3.40a)

(B + A) : C

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

from===⇒
(3.38)

A + B = B + A .

And, in a similar manner, one can verify the other properties.
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3.2.1 Construction and Representation of Fourth-Order
Tensors

Guided by (3.5) and consistent with (3.33), fourth-order tensors here are generated
by using second-order tensors. Let a ⊗ b and c ⊗ d be two arbitrary tensors that are
supposed to deliver a fourth-order tensor. The construction can be done in different
ways. Some useful tensor products are listed in the following:

(a ⊗ b) ⊗ (c ⊗ d) = a ⊗ b ⊗ c ⊗ d , (3.49a)

(a ⊗ b) � (c ⊗ d) = a ⊗ d ⊗ b ⊗ c , (3.49b)

(a ⊗ b) � (c ⊗ d) = a ⊗ d ⊗ c ⊗ b , (3.49c)

(a ⊗ b) � (c ⊗ d) = 1

2
(a ⊗ b) � (c ⊗ d) + 1

2
(a ⊗ b) � (c ⊗ d)

= 1

2
(a ⊗ d ⊗ b ⊗ c + a ⊗ d ⊗ c ⊗ b) . (3.49d)

See Itskov [6, 7] and Del Piero [8] for more elaboration on fourth-order tensors. In
alignment with the right mapping (3.33), any of the linear transformations introduced
in (3.49a) to (3.49d), say A = a ⊗ b ⊗ c ⊗ d, maps any second-order tensor C =
u ⊗ v onto a scalar multiple of a ⊗ b via the rule

A = A : C
= (a ⊗ b ⊗ c ⊗ d) : (u ⊗ v)

= (a ⊗ b) [(c ⊗ d) : (u ⊗ v)]

= [(c · u) (d · v)] (a ⊗ b) . (3.50)

A second-order tensor of the form A : C naturally arises, for instance, in the lin-
earization of principle of virtual work within the context of mechanics of deformable
bodies, see de Souza Neto et al. [9]. Similarly to (3.50), the left mapping (3.45) now
obeys

B = C : A
= (u ⊗ v) : (a ⊗ b ⊗ c ⊗ d)

= [(u ⊗ v) : (a ⊗ b)] (c ⊗ d)

= [(u · a) (v · b)] (c ⊗ d) . (3.51)

And obviously A �= B unless A possesses a special property, see (3.111)1. Guided
by these rules, the linearity conditions (3.34) and (3.46) are immediately satisfied
owing to
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(a ⊗ b ⊗ c ⊗ d) : (αu ⊗ v + βw ⊗ w̄)
from====
(3.50)

[(c ⊗ d) : (αu ⊗ v + βw ⊗ w̄)] (a ⊗ b)

from===========
(2.74a) and (2.74b)

[α (c ⊗ d) : (u ⊗ v)

+β (c ⊗ d) : (w ⊗ w̄)] (a ⊗ b)

from===============
(2.11f)–(2.11g) and (2.73)

α [(c · u) (d · v)] (a ⊗ b)

+ β [(c · w) (d · w̄)] (a ⊗ b)

from====
(3.50)

α (a ⊗ b ⊗ c ⊗ d) : (u ⊗ v)

+ β (a ⊗ b ⊗ c ⊗ d) : (w ⊗ w̄) ,

(3.52a)

(αu ⊗ v + βw ⊗ w̄) : (a ⊗ b ⊗ c ⊗ d)
from====
(3.51)

[(αu ⊗ v + βw ⊗ w̄) : (a ⊗ b)] (c ⊗ d)

from=====
(2.74b)

[α (u ⊗ v) : (a ⊗ b)

+β (w ⊗ w̄) : (a ⊗ b)] (c ⊗ d)

from===============
(2.11f)–(2.11g) and (2.73)

α [(u · a) (v · b)] (c ⊗ d)

+ β [(w · a) (w̄ · b)] (c ⊗ d)

from====
(3.51)

α (u ⊗ v) : (a ⊗ b ⊗ c ⊗ d)

+ β (w ⊗ w̄) : (a ⊗ b ⊗ c ⊗ d) .

(3.52b)

Similar procedures then reveal

(αa ⊗ b + βc ⊗ d) ⊗ u ⊗ v = αa ⊗ b ⊗ u ⊗ v + βc ⊗ d ⊗ u ⊗ v , (3.53a)

a ⊗ b ⊗ (αc ⊗ d + βu ⊗ v) = αa ⊗ b ⊗ c ⊗ d + βa ⊗ b ⊗ u ⊗ v . (3.53b)

The rules (3.49a) to (3.49d) help represent the following identities

(A ⊗ B) : C = (B : C)A , C : (A ⊗ B) = (C : A)B , (3.54a)

(A � B) : C = ACB , C : (A � B) = ATCBT , (3.54b)

(A � B) : C = ACTB , C : (A � B) = BCTA , (3.54c)

(A � B) : C = A (symC)B , C : (A � B) = sym
(
ATCBT

)
. (3.54d)

The proof is not difficult. For instance, consider (3.54c)2. To show this result, without
loss of generality, suppose that

A = a ⊗ b , B = c ⊗ d , C = u ⊗ v .



3.2 Tensors of Order Four 103

Then,

C : (A � B) = [u ⊗ v] : [a ⊗ d ⊗ c ⊗ b] = (u · a) (d · v) c ⊗ b

= (u · a) (c ⊗ d) (v ⊗ b) = (c ⊗ d) (v ⊗ u) (a ⊗ b)

= (c ⊗ d) (u ⊗ v)T (a ⊗ b) . ↖ see also (3.94a)–(3.94i)

Some useful identities can be resulted from (3.54a)–(3.54d). For instance, let
C = u ⊗ v. Then, by means of (2.32), (2.48), (2.54) and (2.79c), one can establish

(A ⊗ B) : (u ⊗ v) = (u · Bv)A , (3.55a)

(u ⊗ v) : (A ⊗ B) = (u · Av)B , (3.55b)

(A � B) : (u ⊗ v) = 1

2
Au ⊗ BTv + 1

2
Av ⊗ BTu , (3.55c)

(u ⊗ v) : (A � B) = 1

2
ATu ⊗ Bv + 1

2
Bv ⊗ ATu . (3.55d)

Moreover, by choosing A = B = I, one immediately obtains

(I ⊗ I) : C = (trC) I = C : (I ⊗ I) , (3.56a)

(I � I) : C = C = C : (I � I) , (3.56b)

(I � I) : C = CT = C : (I � I) , (3.56c)

(I � I) : C = symC = C : (I � I) . (3.56d)

Comparing (3.56b)1 and (3.56c)1 with (3.37)1−2, taking into account (3.38), now
reveals that

I � I = I , I � I = Ī . (3.57)

Having in mind these results, the following special fourth-order tensors are intro-
duced for convenience:

Psym = I � I = 1

2
(I � I + I � I)

= 1

2

(
I + Ī

)
, ←− super-symmetric projection tensor

(or symmetrizer operator) (3.58a)

Pskw = 1

2
(I � I − I � I) = 1

2

(
I − Ī

)
, ←− skew-symmetric projection tensor

(or skew-symmetrizer operator) (3.58b)

Psph = 1

3
I ⊗ I , ←− spherical projection tensor

(or spherical operator) (3.58c)

Pdev = I � I − 1

3
I ⊗ I = I − Psph . ←− deviatoric projection tensor

(or deviatoric operator) (3.58d)

As implied by their names, they are designed to deliver the symmetric, skew-
symmetric, spherical and deviatoric parts of an arbitrary second-order tensor:
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Psym : C = 1

2

(
C + CT

) = symC , (3.59a)

Pskw : C = 1

2

(
C − CT) = skwC , (3.59b)

Psph : C = 1

3
(trC) I = sphC , (3.59c)

Pdev : C = C − 1

3
(trC) I = devC . (3.59d)

Regarding symmetric tensors, although these projection tensors remain unchanged
but it may be advantageous to rephrase (3.58d) as

Ps
dev = I � I − 1

3
I ⊗ I = Psym − Psph .←− super-symmetric deviatoric projection tensor

(or super-symmetric deviatoric operator) (3.60)

Hint: The expressions (3.58a) to (3.58d) clearly show that the fourth-order unit
tensor I has additively been decomposed not only to the super-symmetric part Psym

and skew-symmetric portion Pskw, but also to the spherical part Psph and deviatoric
portion Pdev.

The Cartesian collection

{
êi ⊗ ê j ⊗ êk ⊗ êl , i, j, k, l = 1, 2, 3

} def=== {
êi ⊗ ê j ⊗ êk ⊗ êl

}
, (3.61)

is now introduced to denote a basis for Tfo
(
E o3
r

)
with dimTfo = (

dimE o3
r

)4 = 34.
This enables one to express any Cartesian element A of this new vector space as

A = Ai jkl̂ei ⊗ ê j ⊗ êk ⊗ êl , ←− see (3.13) (3.62)

where Ai jkl present the Cartesian components of A. These 81 scalar numbers are
determined by

Ai jkl = (
êi ⊗ ê j

) : [A : ( êk ⊗ êl)] , ←− see (3.14) (3.63)

where
A : ( êk ⊗ êl) = Amnkl̂em ⊗ ên , ←− see (3.15) (3.64)
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owing to

Ai jkl
from====
(1.36)

Amnkl
{
δimδ jn

}

from====
(1.35)

Amnkl
{
( êi · êm)

(
ê j · ên

)}

from===============
(2.73), (2.74a) and (2.74b)

(
êi ⊗ ê j

) : {Amnkl ( êm ⊗ ên)}
from==========

(1.35) and (1.36)

(
êi ⊗ ê j

) : {[Amnop ( êm ⊗ ên)
]
( êo · êk)

(
êp · êl

)}

from===============
(3.40a), (3.40b) and (3.50)

(
êi ⊗ ê j

) : [Amnop
(
êm ⊗ ên ⊗ êo ⊗ êp

)] : ( êk ⊗ êl)

from====
(3.62)

(
êi ⊗ ê j

) : A : ( êk ⊗ êl) .

Guided by (3.64), the following identity also holds true

( êk ⊗ êl) : A = Aklmn̂em ⊗ ên . (3.65)

Let C andA be two tensorial variables of the forms (2.19)2 and (3.62), respectively.
Then,

A = A : C = [
Ai jkl̂ei ⊗ ê j ⊗ êk ⊗ êl

] : [Cmn̂em ⊗ ên]

= Ai jklCmnδkmδln
(
êi ⊗ ê j

)

= Ai jklCkl
(
êi ⊗ ê j

)
with Ai j = Ai jklCkl , (3.66a)

B = C : A = [Cmn̂em ⊗ ên] : [Akli j êk ⊗ êl ⊗ êi ⊗ ê j
]

= CmnAkli jδmkδnl
(
êi ⊗ ê j

)

= CklAkli j
(
êi ⊗ ê j

)
with Bi j = CklAkli j . (3.66b)

Accordingly, the fourth-order unit tensor I in (3.37)1 takes the form

I : C from (2.19),==========
(2.20) and (3.37)

[
êi · C ê j

] (
êi ⊗ ê j

)

from=====
(2.79c)

[(
êi ⊗ ê j

) : C] (
êi ⊗ ê j

)

from====
(3.50)

(
êi ⊗ ê j ⊗ êi ⊗ ê j

) : C

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

from==⇒
(3.38)

I = êi ⊗ ê j ⊗ êi ⊗ ê j︸ ︷︷ ︸
= δikδl j êi ⊗ ê j ⊗ êk ⊗ êl

,

(3.67)
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and, in a similar manner, Ī admits the coordinate representation

Ī : C from (2.20),==========
(2.50) and (3.37)

[
êi · C ê j

] (
ê j ⊗ êi

)

from=====
(2.79c)

[(
êi ⊗ ê j

) : C] (
ê j ⊗ êi

)

from====
(3.50)

(
êi ⊗ ê j ⊗ ê j ⊗ êi

) : C

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

from==⇒
(3.38)

Ī = êi ⊗ ê j ⊗ ê j ⊗ êi︸ ︷︷ ︸
= δil δk j êi ⊗ ê j ⊗ êk ⊗ êl

.

(3.68)
From these results, one can obtain the following identities

C = C : I , ←− since Ckl = Ci j (I)i jkl = Ci j δikδl j (3.69a)

CT = C : Ī , ←− since
(
CT

)

kl
= Ci j

(
Ī
)
i jkl = Ci j δil δk j (3.69b)

In coordinate representation, the four different fourth-order tensors used in (3.54a)-
(3.54d) finally render

A ⊗ B = Ai j Bkl̂ei ⊗ ê j ⊗ êk ⊗ êl , (3.70a)

A � B = Aik Bl j êi ⊗ ê j ⊗ êk ⊗ êl , (3.70b)

A � B = Ail Bk j êi ⊗ ê j ⊗ êk ⊗ êl , (3.70c)

A � B = 1

2
[A � B + A � B]

= 1

2

[
Aik Bl j + Ail Bk j

]
êi ⊗ ê j ⊗ êk ⊗ êl . (3.70d)

Isotropic tensors of order four. Under a change of coordinates, the old and new
Cartesian components of a fourth-order tensor transform as

An
i jkl = Rmi Rnj Rok RplA

o
mnop . (3.71)

This tensor is said to be isotropic if

Ai jkl = Qmi Qnj QokQ plAmnop , (3.72)

holds true for any arbitrary rotation or reflection of a coordinate frame. This con-
dition helps represent A = Ai jkl̂e o

i ⊗ ê o
j ⊗ ê o

k ⊗ ê o
l = Ai jkl̂e n

i ⊗ ê n
j ⊗ ê n

k ⊗ ê n
l . In

the following, it will be shown that this remains true ifAi jkl is a linear combination
of δi jδkl , δikδ jl and δilδ jk . Thus, the most general form of an isotropic tensor of rank
four represents

A = αI ⊗ I + βI � I + γ I � I where α, β, γ are constants . ←− see (2.171) (3.73)
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Proof. By following similar procedures which led to (3.27), one will have

εmirAmjkl + εnjrAinkl + εokrAi jol + εplrAi jkp = 0 . (3.74)

Bymultiplying both sides of this expression by εsir , εs jr , εskr and εslr and then setting
s = i , s = j , s = k and s = l in the resulting expressions, one can arrive at

2Ai jkl + A j ikl + Ak jil + Al jki = δ j iAt tkl + δkiAt j tl + δliAt jkt , (3.75a)

2Ai jkl + A j ikl + Aik jl + Ailk j = δi jAt tkl + δl jAi tkt + δk jAi t tl , (3.75b)

2Ai jkl + Ak jil + Aik jl + Ai jlk = δlkAi j t t + δikAt j tl + δ jkAi t tl , (3.75c)

2Ai jkl + Al jki + Ailk j + Ai jlk = δklAi j t t + δ jlAi tkt + δilAt jkt . (3.75d)

Recall that the only isotropic vector was a zero vector. Guided by (2.178) and (3.33),
one can then infer that an isotropic fourth-order tensor should be constructed from
two identity tensors. Thus, having in mind (3.70a)–(3.70c), it makes sense to assume
that

At ti j = Ai j t t , Ai t t j = Ati j t , Ai t j t = Ati t j . (3.76)

One can further write

At ti j = ᾱδi j , Ai t j t = β̄δi j , Ai t t j = γ̄ δi j . (3.77)

Consequently,

2Ai jkl + A j ikl + Ak jil + Al jki = ᾱδ j iδkl + β̄δkiδ jl + γ̄ δliδ jk , (3.78a)

2Ai jkl + A j ikl + Aik jl + Ailk j = ᾱδi jδkl + β̄δl jδik + γ̄ δk jδil , (3.78b)

2Ai jkl + Ak jil + Aik jl + Ai jlk = ᾱδlkδi j + β̄δikδ jl + γ̄ δ jkδil , (3.78c)

2Ai jkl + Al jki + Ailk j + Ai jlk = ᾱδklδi j + β̄δ jlδik + γ̄ δilδ jk . (3.78d)

By subtracting the sum of one pair of the above expressions from the sum of another
pair, one can deduce that

Ai jkl = A j ilk = Akli j = Alk j i . (3.79)

It is then easy to see that

2Ai jkl + Ai jlk + Ailk j + Aik jl = ᾱδi jδkl + β̄δikδ jl + γ̄ δilδ jk , (3.80a)

2Aikl j + Aik jl + Ailk j + Ai jlk = ᾱδikδ jl + β̄δilδ jk + γ̄ δi jδkl , (3.80b)

2Ail jk + Ailk j + Ai jlk + Aik jl = ᾱδilδ jk + β̄δi jδkl + γ̄ δikδ jl . (3.80c)
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It follows that

2
(
Ai jkl + Aikl j + Ail jk

) + 3
(
Ai jlk + Ailk j + Aik jl

)

= (
ᾱ + β̄ + γ̄

) (
δi jδkl + δikδ jl + δilδ jk

)
. (3.81)

From this relation, one can obtain

6
(
Ai jkl + Aikl j + Ail jk

) + 9
(
Ai jlk + Ailk j + Aik jl

)

= 3
(
ᾱ + β̄ + γ̄

) (
δi jδkl + δikδ jl + δilδ jk

)
,

4
(
Aik jl + Ai jlk + Ailk j

) + 6
(
Aikl j + Ail jk + Ai jkl

)

= 2
(
ᾱ + β̄ + γ̄

) (
δikδ jl + δi jδkl + δilδ jk

)
.

Thus,

Ai jlk + Ailk j + Aik jl = Ai jkl + Aikl j + Ail jk

= 1

5

(
ᾱ + β̄ + γ̄

) (
δi jδkl + δikδ jl + δilδ jk

)
. (3.82)

Finally, by substituting (3.82)2 into (3.80a), one can present

Ai jkl = αδi jδkl + βδikδ jl + γ δilδ jk , (3.83)

where

α = 4ᾱ − β̄ − γ̄

10
, β = 4β̄ − ᾱ − γ̄

10
, γ = 4γ̄ − ᾱ − β̄

10
. (3.84)

3.2.2 Operations with Fourth-Order Tensors

3.2.2.1 Composition

Recall the composition of two second-order tensors introduced in (2.25). The goal is
now to extend this operation along with the corresponding relations for the problem
at hand. The composition (or double contraction) of two fourth-order tensorsA and
B, designated by A : B, is again a fourth-order tensor satisfying

(A : B) : C = A : (B : C) , for all C ∈ Tso
(
E o3
r

)
. (3.85)

A general fourth-order tensor of the formA : B can be seen, for instance, in material
elasticity tensor of compressible hyperelastic materials, see Holzapfel [10]. And, in
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general, it does not have the commutative property, i.e.A : B �= B : A. Making use
of (3.38), (3.66a)5 and (3.85), its indicial form renders

(A : B)i jkl Ckl = Ai jmn (B : C)mn︸ ︷︷ ︸
= BmnklCkl

=⇒ (A : B)i jkl = Ai jmnBmnkl . (3.86)

The interested reader may want to arrive at this result in an alternative way. This
relies on

(A : B)i jkl
from====
(3.63)

êi ⊗ ê j : [(A : B) : êk ⊗ êl]

from====
(3.85)

êi ⊗ ê j : [A : (B : êk ⊗ êl)]

from====
(3.64)

êi ⊗ ê j : [A : (Bmnkl̂em ⊗ ên)]

from==========
(3.34) and (3.64)

êi ⊗ ê j : [AopmnBmnkl̂eo ⊗ êp
]

from===============
(2.73), (2.74a) and (2.74b)

AopmnBmnkl ( êi · êo)
(
ê j · êp

)

from==========
(1.35) and (1.36)

Ai jmnBmnkl .

Similar procedures can be followed to arrive at

A : B : C = (A : B) : C = A : (B : C)

in index notation : (A : B : C)i jkl = Ai jmnBmnopCopkl

. ←− and also (A : B : C : D)i jkl
= Ai jmnBmnopCopqrDqrkl

(3.87)

In coordinate representation, the Cartesian fourth-order tensors A : B and A :
B : C thus render

A : B = Ai jmnBmnkl êi ⊗ ê j ⊗ êk ⊗ êl , (3.88a)

A : B : C = Ai jmnBmnopCopkl êi ⊗ ê j ⊗ êk ⊗ êl . (3.88b)

In analogy with tensors, its is a simple exercise to show that the composition of two
fourth-order tensors is a bilinear form (not the symmetric one sinceA : B �= B : A),
that is,

A : (αB + βC) = αA : B + βA : C , (3.89a)

(αA + βB) : C = αA : C + βB : C . (3.89b)

One can now establish the rule

(a ⊗ b ⊗ c ⊗ d) : (u ⊗ v ⊗ w ⊗ w̄) = (c · u) (d · v) a ⊗ b ⊗ w ⊗ w̄ . (3.90)
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The result (3.88a) can then be obtained in a more convenient form as follows:

A : B = (
Ai jmn̂ei ⊗ ê j ⊗ êm ⊗ ên

) : (Bopkl̂eo ⊗ êp ⊗ êk ⊗ êl
)

︸ ︷︷ ︸
= Ai jmnBopkl ( êm · êo)

(
ên · êp

)
êi ⊗ ê j ⊗ êk ⊗ êl

= Ai jmnBopkl (δmo)
(
δnp

)
êi ⊗ ê j ⊗ êk ⊗ êl

︸ ︷︷ ︸
= Ai jmnBmnkl êi ⊗ ê j ⊗ êk ⊗ êl

. (3.91)

It is then easy to deduce that

(C ⊗ D) : A = C ⊗ (D : A) , A : (C ⊗ D) = (A : C) ⊗ D . (3.92)

With the aid of (2.26), (2.49), (2.55d), (2.59)1, (3.53a), (3.53b) and (3.86), the tensor
products introduced in (3.49a) to (3.49d) now help represent the following identities

(A ⊗ B) : (C ⊗ D) = (B : C)A ⊗ D , ↙ note that 2 (A � B) = A � B + A � B (3.93a)

(A � B) : (C � D) = 1

2
(AC) � (DB) + 1

2

(
ADT

) � (
CTB

)
, (3.93b)

(A � B) : (C ⊗ D) = (A (symC)B) ⊗ D , (3.93c)

(A ⊗ B) : (C � D) = A ⊗ sym
(
CTBDT

)
, (3.93d)

since

((A ⊗ B) : (C ⊗ D))i jkl = (A ⊗ B)i jmn (C ⊗ D)mnkl = (A)i j (B)mn (C)mn (D)kl

= [B : C] (A)i j (D)kl = [B : C] (A ⊗ D)i jkl , (3.94a)

((A � B) : (C � D))i jkl = (A � B)i jmn (C � D)mnkl = (A)im (B)nj (C)mk (D)ln

= (AC)ik (DB)l j = ((AC) � (DB))i jkl , (3.94b)

((A � B) : (C � D))i jkl = (A � B)i jmn (C � D)mnkl = (A)im (B)nj (C)ml (D)kn

= (AC)il (DB)k j = ((AC) � (DB))i jkl , (3.94c)

((A � B) : (C � D))i jkl = (A � B)i jmn (C � D)mnkl = (A)in (B)mj (C)mk (D)ln

= (
ADT

)
il

(
CTB

)
k j

= ((
ADT

)
�

(
CTB

))
i jkl

, (3.94d)

((A � B) : (C � D))i jkl = (A � B)i jmn (C � D)mnkl = (A)in (B)mj (C)ml (D)kn

= (
ADT

)
ik

(
CTB

)
l j = ((

ADT
)
�

(
CTB

))
i jkl , (3.94e)

((A � B) : (C ⊗ D))i jkl = (A � B)i jmn (C ⊗ D)mnkl = (A)im (B)nj (C)mn (D)kl

= (ACB)i j (D)kl = ((ACB) ⊗ D)i jkl , (3.94f)

((A � B) : (C ⊗ D))i jkl = (A � B)i jmn (C ⊗ D)mnkl = (A)in (B)mj (C)mn (D)kl

= (
ACTB

)
i j (D)kl = ((

ACTB
) ⊗ D

)
i jkl , (3.94g)
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((A ⊗ B) : (C � D))i jkl = (A ⊗ B)i jmn (C � D)mnkl = (A)i j (B)mn (C)mk (D)ln

= (A)i j
(
CTBDT)

kl = (
A ⊗ (

CTBDT))
i jkl , (3.94h)

((A ⊗ B) : (C � D))i jkl = (A ⊗ B)i jmn (C � D)mnkl = (A)i j (B)mn (C)ml (D)kn

= (A)i j
(
DBTC

)
kl

= (
A ⊗ (

DBTC
))

i jkl
. (3.94i)

By using the identityAi jmnδmkδln = δimδnjAmnkl = Ai jkl , taking into account (3.67)
and (3.86), one can establish

A : I = I : A = A

or
[
A : ( êi ⊗ ê j

)] ⊗ (
êi ⊗ ê j

) = (
êi ⊗ ê j

) ⊗ [(
êi ⊗ ê j

) : A] = A

, (3.95)

and this immediately yields

I : I = I . ←− see (3.153) (3.96)

The result (3.95) basically states that any element A of the set Tfo
(
E o3
r

)
remains

unchanged under the composition operation with the fourth-order unit tensor I from
the both sides.
Hint: Let’s denoteA : A byA2 and subsequently define the powers (or monomials)
of fourth-order tensors via

Am = A : A : . . . : A
m times

, m = 1, 2, . . . , and A0 = I . (3.97)

For any two nonnegative integers m and n, the following properties are evident

Am : An
︸ ︷︷ ︸
= An : Am

= Am+n ,
(
Am

)n
︸ ︷︷ ︸
= (

An)m

= Amn , (αA)m = αmAm . (3.98)

The quadruple contraction ofA and B is defined as

A
:: B = Ai jklBi jkl . ←− see (2.75) (3.99)

This helps represent the norm of a fourth-order tensor A according to

|A| =
√

A
:: A . ←− see (2.76) (3.100)
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3.2.2.2 Simple Composition with Tensors

The interaction between fourth- and second-order tensors is not always of the form
(3.33) or (3.45). For instance, a general fourth-order tensor of the form AAB will
appear in tensor calculus as a result of differentiating a tensor-valued function of one
tensor variable with respect to its argument.2 The goal here is to define some useful
rules for simple composition of a fourth-order tensor with two second-order tensors.
These rules are based on how a tensor of rank four is constructed from two second-
order tensors. Bearing in mind the tensor products introduced in (3.49a)–(3.49d),
one can establish

A (C ⊗ D)B = (AC) ⊗ (DB) , (3.101a)

A (C � D)B = (A � B) : (C � D)

= (AC) � (DB) , ←− see (3.94b) (3.101b)

A (C � D)B = (A � B) : (C � D)

= (AC) � (DB) , ←− see (3.94c) (3.101c)

A (C � D)B = (A � B) : (C � D)

= (AC) � (DB) . (3.101d)

These relations need to be written with respect to the Cartesian basis (3.61). Their
right hand sides in indicial notation

((AC) ⊗ (DB))i jkl = (AC)i j (DB)kl

= (A)im
[
(C)mj (D)kn

]
(B)nl ,

((AC) � (DB))i jkl = (AC)ik (DB)l j

= (A)im
[
(C)mk (D)ln

]
(B)nj ,

((AC) � (DB))i jkl = (AC)il (DB)k j

= (A)im
[
(C)ml (D)kn

]
(B)nj ,

((AC) � (DB))i jkl = (A)im

[
1

2
(C)mk (D)ln + 1

2
(C)ml (D)kn

]
(B)nj ,

help represent the compact forms

2 As an example, consider a second-order tensor A = B2. The derivative of A with respect to B,
denoted by ∂A/∂B, is a fourth-order tensor presenting

∂A
∂B

= ∂B
∂B

B + B
∂B
∂B

= IIB + BII .

See Chap.6 for more elaborations and applications.
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AKB = AimKmjkn Bnl̂ei ⊗ ê j ⊗ êk ⊗ êl if K = C ⊗ D , (3.102a)

ALB = AimLmnkl Bnj êi ⊗ ê j ⊗ êk ⊗ êl if L = C � D,C � D,C � D .

(3.102b)

Upon use of the double contraction of these fourth-order tensors with an arbitrary
tensor E, one can arrive at the useful rules

AKB : E = A
[
K : (EBT

)]
if K = C ⊗ D , (3.103a)

ALB : E = A [L : E]B if L = C � D,C � D,C � D . (3.103b)

3.2.2.3 Transposition

Consistent with (2.48), the transpose of a fourth-order tensor A, denoted by AT, is
defined as

AT : C = C : A , for all C ∈ Tso . (3.104)

Given the Cartesian basis (3.61), one needs to have

(
AT : C)

i j
= (C : A)i j =⇒ AT

i jklCkl

see (3.66a)

= CklAkli j

see (3.66b)

from==⇒
(3.38)

AT
i jkl = Akli j ,

(3.105)
in order to represent

AT = Akli j êi ⊗ ê j ⊗ êk ⊗ êl = Ai jkl̂ek ⊗ êl ⊗ êi ⊗ ê j . (3.106)

It is worthwhile to point out that the transpose of a second-order tensor, according to
(2.48), is an unique operation. But different transpositions can be defined for fourth-
order tensors and the definition (3.104) renders the most standard form. There are
some specific expressions which cannot be represented in tensorial notation by just
using this normal form. This motivates to introduce another useful transposition
operation as

AT̂ : C = A : CT , for all C ∈ Tso , (3.107)

which delivers

(
AT̂ : C

)

i j
= (

A : CT)
i j =⇒ AT̂

i jklCkl

see (3.66a)

= Ai jklClk︸ ︷︷ ︸
= Ai jlkCkl

from==⇒
(3.38)

AT̂
i jkl = Ai jlk .

(3.108)
As a result,

AT̂ = Ai jlk̂ei ⊗ ê j ⊗ êk ⊗ êl = Ai jkl̂ei ⊗ ê j ⊗ êl ⊗ êk . (3.109)
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Note that, in general, (
AT̂

)T �= (
AT

)T̂
.

Now, the required data is available in order to extend the results (2.51a) to (2.56) to
the problem at hand (see Exercise 3.1):

A : C = C : AT

A : C = AT̂ : CT

}

, ←− see (2.51a) (3.110a)

C : AT : D = D : A : C
C : AT̂ : D = DT : AT : C

C : AT̂ = (C : A)T

⎫
⎪⎪⎬

⎪⎪⎭
, (3.110b)

(A : C) : (B : D) = ((
BT : A) : C) : D

(
AT̂ : C

)
:
(
BT̂ : D

)
= ((

BT : A) : CT) : DT

⎫
⎬

⎭
, (3.110c)

(A : C) : (B : D) = C : ((AT : B) : D)

(
AT̂ : C

)
:
(
BT̂ : D

)
= CT : ((AT : B) : DT

)

⎫
⎬

⎭
, (3.110d)

(A + B)T = AT + BT

(A + B)T̂ = AT̂ + BT̂

}

, ←− see (2.52) (3.110e)

(αA)T = αAT

(αA)T̂ = αAT̂

}

, (3.110f)

(A ⊗ B)T = B ⊗ A , 2 (A � B)T = AT � BT + B � A

for which
(
A � B

)T = AT � BT ,
(
A � B

)T = B � A

(A ⊗ B)T̂ = A ⊗ BT , (A � B)T̂ = A � B

for which
(
A � B

)T̂ = A � B ,
(
A � B

)T̂ = A � B

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (3.110g)

IT = I , ĪT = Ī

IT̂ = Ī , ĪT̂ = I

}

, ←− see (2.55a) (3.110h)

ATT = A , AT T̂ T = Ī : A
AT̂ T̂ = A , AT̂ T T̂ = Ī : AT : Ī

}

, (3.110i)
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AT = (
êi ⊗ ê j

) ⊗ (
A : ( êi ⊗ ê j

))

AT̂ = ((
ê j ⊗ êi

) : AT
) ⊗ (

êi ⊗ ê j
)

AT̂ = A : Ī

⎫
⎪⎪⎬

⎪⎪⎭
, (3.110j)

(A : B)T = BT : AT , (A : B : C)T = CT : BT : AT

(A : B)T̂ = A : BT̂ , (A : B : C)T̂ = A : B : CT̂

}

, (3.110k)

(C ⊗ D) : AT = C ⊗ (A : D)

(C ⊗ D) : AT̂ = C ⊗ (
AT : D)T

}

. ←− see (2.56) (3.110l)

3.2.3 Major and Minor Symmetries of Fourth-Order Tensors

A fourth-order tensor A is said to be major symmetric (or simply symmetric) if

AT = A or, equivalently, C : A : D = D : A : C , (3.111)

which is in accord with (2.57). One then says thatA possesses themajor symmetries;
indicated by,

Akli j = Ai jkl . (3.112)

Unlike second-order tensors, the condition (3.111) is not the only type of symmetry.
For instance, if

AT̂ = A or, equivalently, C : A : D = C : (A : DT
) = (C : A)T : D ,

(3.113)

then A is called minor (right) symmetric and its components will have the minor
(right) symmetries, that is,

Ai jlk = Ai jkl . ←− see (1.97) (3.114)

A fourth-order tensor A possessing both major and minor symmetries according to

Ai jkl = Akli j = Akl j i = Ai jlk = Alki j = Alk j i = A j ilk = A j ikl , (3.115)

is referred to as super-symmetric. The super-symmetric tensors are of great impor-
tance in solid mechanics. A well-known example will be the elastic stiffness tensor
in linear elasticity (see Exercise 3.4). Another example is the super-symmetric pro-
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jection tensor Psym already introduced in (3.58a). Some important material as well
as spatial elasticity tensors for hyperelastic solids have also major and minor sym-
metries, see Exercise 6.16.

It is easy to see that when a super-symmetric tensor operates on an arbitrary
second-order tensor, the result will be a symmetric tensor:

(A : C)T
from======

(3.110a)

(
C : AT

)T

from=====
(3.111)

(C : A)T

from======
(3.110b)

C : AT̂

from=====
(3.113)

C : A
from=====
(3.111)

C : AT

from======
(3.110a)

A : C . (3.116)

The set of all super-symmetric tensors

T ss
fo =

{
A ∈ Tfo

(
E o3
r

) |AT = A , AT̂ = A
}

, (3.117)

constitutes a subspace of all fourth-order tensors Tfo
(
E o3
r

)
.

A fourth-order tensorA is referred to as major skew-symmetric (or simply skew-
symmetric) if

AT = −A or, equivalently, C : A : D = −D : A : C
with major skew-symmetries Akli j = −Ai jkl

, (3.118)

and minor (right) skew-symmetric if

AT̂ = −A or, equivalently, C : A : D = −C : (A : DT
) = − (C : A)T : D

with minor (right) skew-symmetries Ai jlk = −Ai jkl

.

(3.119)
Consistent with tensors, any fourth-order tensorA can uniquely be decomposed into
its symmetric and skew-symmetric parts

A = 1

2

(
A + AT

)

︸ ︷︷ ︸
:= SymA

+ 1

2

(
A − AT

)

︸ ︷︷ ︸
:= SkwA

= SymA + SkwA . (3.120)

In a similar manner,
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A = 1

2

(
A + AT̂

)

︸ ︷︷ ︸
:= symA

+ 1

2

(
A − AT̂

)

︸ ︷︷ ︸
:= skwA

= symA + skwA . (3.121)

3.2.4 Fourth-Order Tensor in Matrix Notation

As discussed in the previous chapters, the theoretical side of a physical problem will
end up with a tensorial expression (called an equilibrium equation) represented in
direct notation. And the derivations of formulations are usually carried out by use of
indicial notation. The computational side of the problem then follows that aims at
analytically solving the problem, if there is a closed-form solution, or providing an
approximate solution by means of numerical procedures. It is exactly at this stage
that the role of matrix notation becomes dominant in which the attempt will be made
to recast (the components of) tensors into (multi- and/or single-column) matrices. In
the following, the focus will only be on second- and fourth-order tensors.

An arbitrary tensor possessing 9 independent components is written here as a
single-column matrix:

[C ]9×1 = [
C11 C22 C33 C23 C13 C12 C32 C31 C21

]T
. (3.122)

Consistentwith this structure, an arbitrary fourth-order tensorwith 81 independent
components will be written as

[A ]9×9 =

⎡

⎢⎢
⎢⎢⎢
⎣

A1111 . . A1123 A1113 A1112 A1132 A1131 A1121

A2211 . . A2223 A2213 A2212 A2232 A2231 A2221

A3311 . . A3323 A3313 A3312 A3332 A3331 A3321
...

...
...

...
...

...
...

...
...

A2111 . . A2123 A2113 A2112 A2132 A2131 A2121

⎤

⎥⎥
⎥⎥⎥
⎦

. (3.123)

The right mapping (3.66a)1 as well as the left mapping (3.66b)1 can then be repre-
sented in the convenient forms

[A ] = [A : C ] = [A ] [C ] , (3.124)

and
[B ] = [C : A ] = [

AT : C ] = [A ]T [C ] . (3.125)

where
[
AT

] = [A ]T has been used. It follows that
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C : D = [C ]T [D ] , D : A : C = [D ]T [A ] [C ] , [A : B ] = [A ] [B ] .

(3.126)

Of particular interest here is to consider symmetric and super-symmetric tensors.
Let S and S̃ be two symmetric tensors. Further, letC and C̃ be two super-symmetric
tensors. A symmetric tensor Swith 6 independent components is given by the single-
column matrix

[S ]6×1 = [
S11 S22 S33 αS23 αS13 αS12

]T
, (3.127)

where α presents a constant which can be either 1 or 2 depending on the operation.
Accordingly, 21 independent components of a super-symmetric tensor C can be
collected in the following symmetric matrix

[C ]6×6 =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

sym. C1313 C1312

C1212

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (3.128)

The explicit form (3.127) (or (3.128)) is referred to as Voigt notation. For conve-
nience, one can collect the subscript indices of S in the following 6 × 2 matrix:

[
Vnot

] =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 1
2 2
3 3
2 3
1 3
1 2

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (3.129)

Now, the right and left mappings, according to (3.66a)1 and (3.66b)1, can be
written as

[C : S ] = [S : C ] = [C ] [ S ]|α=2 . (3.130)

By knowing that

S̃ : S =
[
S̃
]T∣∣∣∣

α=1

[S ]|α=2 , (3.131)

one will have
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S̃ : C : S =
[
S̃
]T∣∣∣∣

α=2

[C ] [S ]|α=2 . ←− note that also S̃ : C : S = S : C : S̃ (3.132)

The fourth-order tensor C̃ : C possesses the minor symmetries but, in general, it
is not super-symmetric due to the lack of major symmetries, i.e. C̃ : C �= C : C̃.
The matrix from of such a tensorial variable with only minor symmetries is simi-
lar to (3.128) but generally may not be symmetric; an example of which with 36
independent components is already given in (1.96b).

Some special symmetric and super-symmetric tensors in Voigt notation are listed
in the following.
The unit tensor I = δi j êi ⊗ ê j :

[ I ] =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

1
1
1
0
0
0

⎤

⎥⎥
⎥⎥⎥⎥
⎦

. (3.133)

The super-symmetric identity tensor Psym = I � I = 1
2

(
δikδl j + δilδk j

)
êi ⊗ ê j ⊗ êk ⊗ êl :

[
Psym

] = 1

2

⎡

⎢⎢⎢
⎢⎢⎢
⎣

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

. (3.134)

The super-symmetric spherical operator Psph = 1
3 I ⊗ I = 1

3 δi j δkl êi ⊗ ê j ⊗ êk ⊗ êl :

[
Psph

] = 1

3

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

. (3.135)

The super-symmetric deviatoric operator Ps
dev = Psym − Psph = I � I − 1

3 I ⊗ I:
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[
Ps

dev

] = 1

6

⎡

⎢⎢⎢⎢⎢
⎢
⎣

4 −2 −2 0 0 0
−2 4 −2 0 0 0
−2 −2 4 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥⎥⎥⎥⎥
⎥
⎦

. (3.136)

3.2.5 Determinant and Inverse of Fourth-Order Tensors

The determinant of a fourth-order tensor A, denoted by detA, is defined as the
determinant of its matrix form, i.e. detA = det [A ], see Steinmann [11]. Guided by
(2.99a) to (2.99c) and consistent with matrix algebra, the following useful properties
hold true:

detAT = det [A ]T = det [A ] = detA , (3.137a)

det (A : B) = det ([A : B ]) = det ([A ] [B ]) = (det [A ]) (det [B ])

= (detA) (detB) = det (B : A) , (3.137b)

det (αA) = det [αA ] = α9 det [A ] = α9 detA . (3.137c)

By means of (3.95)2 and (3.137b)4, one can compute the determinant of the fourth-
order unit tensor I as follows:

det (A : I) = detA ⇒ (detA) (det I) = detA ⇒ det I = 1 . (3.138)

The determinant of the fourth-order unit tensor Ī also shows the same result:

det Ī = 1 . (3.139)

From (3.41), (3.118), (3.137a)3 and (3.137c)3, the determinant of a skew-symmetric
tensor A becomes zero:

detA = detAT = det (−A) = det ((−1)A)

= (−1)9 detA = − detA

}

⇒ detA = 0 . (3.140)

By use of (3.41), (3.58b)2, (3.137b)4, (3.137c)3, (3.139) and (3.154b)3, the determi-
nant of the skew-symmetrizer Pskw also renders analogous result:

det
(
Pskw : Ī) = det (−Pskw) ⇒ detPskw = − detPskw ⇒ detPskw = 0 . (3.141)
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Analogous to tensors, a fourth-order tensorA is said to be invertible if detA �= 0.
With regard to the linearmappingD = A : C, thismeans that there existsA−1 ∈ Tfo,
called the inverse ofA, such that3

C = A−1 : D . (3.142)

Accordingly, the identities

C = A−1 : D = A−1 : (A : C) , D = A : (A−1 : D)
,

with the aid of (3.37)1, (3.38) and (3.85) imply the reciprocal relation4

A : A−1 = I = A−1 : A . (3.143)

As a result,

I−1 = I . (3.144)

The (Cartesian) coordinate representation ofA−1, in alignment with (3.62), renders

A−1 = A−1
i jkl̂ei ⊗ ê j ⊗ êk ⊗ êl where A−1

i jkl = (
êi ⊗ ê j

) : [A−1 : ( êk ⊗ êl)
]

.

(3.145)
This helps present the component from of (3.143) as

Ai jmnA
−1
mnkl = δikδl j = A−1

i jmnAmnkl . (3.146)

Any two invertible fourth-order tensors A and B satisfy the following properties

detA−1 = (detA)−1 , ← since
A : A−1 = I ⇒ det

(
A : A−1

)
= det I ⇒

(detA)
(
detA−1

)
= 1 ⇒ detA−1 = 1/ (detA)

⎫
⎪⎬

⎪⎭
(3.147a)

(A : B)−1 = B−1 : A−1 , ← since
I = (A : B) : (A : B)−1

I = A : A−1 = A : I : A−1 = A : B : B−1 : A−1

}

(3.147b)

(
A−1)m = (

Am)−1
, ← where m denotes a nonnegative integer (3.147c)

(αA)−1 = α−1A−1 , ← since (αA)−1 : (αA) = I = α−1A−1 : (αA) (3.147d)
(
A−1)−1 = A , ← since

(
A−1

)
:
(
A−1

)−1 = I = A−1 : A (3.147e)
(
A−1)T = (

AT)−1
, ← since

(
A−1 : A

)T = IT ⇒ AT :
(
A−1

)T = I = AT :
(
AT

)−1 (3.147f)

For subsequent developments, the following notation will be adopted:

3 Note that precisely detA �= 0 is the necessary and sufficient condition for A−1 to exist.
4 The discussions regarding consistency of (2.105) also remain true here. This means that (3.143)
may generally not be consistent for all invertible fourth-order tensors, although it always hold true
from computational standpoint.
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A−T := (
A−1

)T = (
AT

)−1
, A−m := (

A−1
)m = (

Am
)−1

. (3.148)

Let C be a super-symmetric tensor. The expression (3.143) then translates to

C : C−1 = I � I = C−1 : C , (3.149)

since I � I presents the only fourth-order identity tensor possessing major and minor
symmetries (see Exercise 3.4).

3.2.6 Positive Definite and Negative Definite Fourth-Order
Tensors

A fourth-order tensor A is called positive (semi-) definite when its quadratic form
satisfies

C : A : C
or Ci jAi jklCkl or [C]T [A] [C]

> 0 (≥ 0) , for all C ∈ Tso , C �= O . (3.150)

and referred to as negative (semi-) definite if

C : A : C < 0 (≤ 0) , for all C ∈ Tso , C �= O . (3.151)

Consistent with tensors, positive-definiteness of a fourth-order tensor A will be
guaranteed when its symmetric part, i.e. SymA, is positive definite since basically
C : SkwA : C = C : (SkwA)T : C = −C : SkwA : C delivers

C : SkwA : C = 0 .

3.3 Exercises

Exercise 3.1

Verify (3.110g)2, (3.110g)4, (3.110i)2, (3.110j)1−3, (3.110k)1 and (3.110k)3.

Solution. The expressions (3.110a) to (3.110l) present some important relationships
of the transposition operations introduced in (3.104) and (3.107). It is recommended
that the interested reader proves all these expressions. Here only somemajor ones are
verified. By use of the Cartesian representation of a fourth-order tensor, according
to (3.62), the verification for each desired relation will be shown step by step in the
following.



3.3 Exercises 123

The expression (3.110g)2:

2 (A � B)T
from===========

(3.49d) and (3.106)

((
Aik Bl j + Ail Bk j

)
êi ⊗ ê j ⊗ êk ⊗ êl

)T
︸ ︷︷ ︸

= (
Aik Bl j + Ail Bk j

)
êk ⊗ êl ⊗ êi ⊗ ê j = (

Aki B jl + Akj Bil
)
êi ⊗ ê j ⊗ êk ⊗ êl

from====
(2.49)

(
AT
ik B

T
l j + Bil Ak j

)
êi ⊗ ê j ⊗ êk ⊗ êl

from===========
(3.49b) and (3.49c)

AT � BT + B � A .

The expression (3.110g)4:

2 (A � B)T̂
from===========

(3.49d) and (3.109)

((
Aik Bl j + Ail Bk j

)
êi ⊗ ê j ⊗ êk ⊗ êl

)T̂
︸ ︷︷ ︸

= (
Aik Bl j + Ail Bk j

)
êi ⊗ ê j ⊗ êl ⊗ êk = (

Ail Bk j + Aik Bl j
)
êi ⊗ ê j ⊗ êk ⊗ êl

from===========
(3.49b) and (3.49c)

A � B + A � B

from=====
(3.49d)

2 (A � B) .

The expression (3.110i)2:

AT T̂ T from====
(3.95)

(I : A)T T̂ T

from============
(3.110h) and (3.110k)

(
AT : I)T̂ T

from======
(3.110k)

(
AT : IT̂

)T

from======
(3.110h)

(
AT : Ī)T

from============
(3.110i) and (3.110k)

ĪT : A
from======

(3.110h)
Ī : A .

The expression (3.110j)1:

AT from===========
(3.53b) and (3.106)

êi ⊗ ê j ⊗ (
Akli j êk ⊗ êl

)

from====
(3.64)

(
êi ⊗ ê j

) ⊗ (
A : ( êi ⊗ ê j

))
.
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The expression (3.110j)2:

AT̂ from=====
(3.109)

Akl j i êk ⊗ êl ⊗ êi ⊗ ê j

from===========
(3.53a) and (3.105)

(
AT

j ikl̂ek ⊗ êl
) ⊗ êi ⊗ ê j

from====
(3.65)

((
ê j ⊗ êi

) : AT
) ⊗ êi ⊗ ê j .

The expression (3.110j)3:

AT̂ from=====
(3.109)

Ai jlk̂ei ⊗ ê j ⊗ êk ⊗ êl

from====
(1.36)

Ai jmnδmlδkn̂ei ⊗ ê j ⊗ êk ⊗ êl

from====
(3.68)

Ai jmn Īmnkl̂ei ⊗ ê j ⊗ êk ⊗ êl

from====
(3.91)

A : Ī .

The expression (3.110k)1:

(A : B)T
from==========

(3.91) and (3.106)
Ai jmnBmnkl̂ek ⊗ êl ⊗ êi ⊗ ê j

from=====
(3.105)

BT
klmnA

T
mni j êk ⊗ êl ⊗ êi ⊗ ê j

from====
(3.91)

BT : AT .

The expression (3.110k)3:

(A : B)T̂
from==========

(3.91) and (3.109)
Ai jmnBmnlk̂ei ⊗ ê j ⊗ êk ⊗ êl

from=====
(3.108)

Ai jmnB
T̂
mnkl̂ei ⊗ ê j ⊗ êk ⊗ êl

from====
(3.91)

A : BT̂ .

Exercise 3.2

Show that the projection tensors (3.58a) to (3.58d) satisfy the following properties
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Psym : Psym = Psym , ←− see (2.61) (3.152a)

Pskw : Pskw = Pskw , ←− see (2.61) (3.152b)

Psym : Pskw = O = Pskw : Psym , ←− see (2.79h) (3.152c)

Psph : Psph = Psph , ←− see (2.147a)1 (3.152d)

Pdev : Pdev = Pdev , ←− see (2.147b)2 (3.152e)

Psph : Pdev = O = Pdev : Psph . ←− see(2.147a)2 and (2.147b)1 (3.152f)

It is worthwhile to point out that the results (3.152e) and (3.152f) will be identical if
Pdev is replaced by Ps

dev in (3.60).

Solution. To begin with, one needs to compute the double contraction between the
fourth-order unit tensors. From (3.94b) to (3.94e) alongwith (3.57), one immediately
obtains

I : I = I , I : Ī = Ī : I = Ī , Ī : Ī = I . (3.153)

Note that the above results can also be obtained by following the similar procedures
shown in the previous exercise. For instance,

I : Ī = Ii jmn Īmnkl̂ei ⊗ ê j ⊗ êk ⊗ êl
= δimδnjδmlδkn̂ei ⊗ ê j ⊗ êk ⊗ êl
= δilδk j êi ⊗ ê j ⊗ êk ⊗ êl

= Ī .

Let’s once more time show another result in (3.153) for the interested reader:

(
Ī : Ī) : C from=====

(3.85)
Ī : (Ī : C) from======

(3.110a)
Ī :

(
ĪT̂ : CT

)

from======
(3.110h)

Ī : (I : CT) from=====
(3.37)

Ī : CT

from======
(3.110a)

ĪT̂ : (CT)T from=============
(2.55b) and (3.110h)

I : C

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

from===⇒
(3.38)

Ī : Ī = I .

Making use of the results (3.153), taking into account (3.89a) and (3.89b), the
properties (3.152a) to (3.152c) can be shown in a straightforwardmanner. The results
(3.153) can also help understand that the projection tensorsPsym andPskw commute
with the unit tensor Ī, that is,



126 3 Algebra of Higher-Order Tensors

Psym : Ī = 1

2

(
I + Ī

) : Ī = 1

2

(
Ī + I

) = Psym

= Ī : Psym , (3.154a)

Pskw : Ī = 1

2

(
I − Ī

) : Ī = 1

2

(
Ī − I

) = −Pskw

= Ī : Pskw . (3.154b)

From (2.90)1, (2.90)3, (3.93a) and (3.97), one can verify that the square of the spher-
ical projection tensor is equal to itself:

P2
sph = Psph : Psph = 1

3
(I ⊗ I) : 1

3
(I ⊗ I) = trI

9
I ⊗ I = 1

3
I ⊗ I = Psph .

Bymeans of (3.89a), (3.89b), (3.95)1−2, (3.97), (3.152d) and (3.153)1, one can arrive
at the fifth desired relation:

P2
dev = Pdev : Pdev = I : I︸︷︷︸

= I

− I : Psph︸ ︷︷ ︸
= Psph

−Psph : I
︸ ︷︷ ︸
= Psph

+Psph : Psph︸ ︷︷ ︸
= Psph

= I − Psph = Pdev .

The expression (3.152f)1 regards the composition of the spherical and deviatoric
projection tensors which renders

Psph : Pdev = Psph : I − Psph : Psph = Psph − Psph = O ,

and, in a similar manner, Pdev : Psph = O.

Exercise 3.3

LetA be an arbitrary fourth-order tensor and C be a super-symmetric tensor. Show
that

Psym : A : Psym = 1

4

(
A + AT̂ + AT T̂ T + AT T̂ T T̂

)

or 1
4
(
Ai jkl + Ai jlk + A j ikl + A j ilk

) = (
Psym : A : Psym

)
i jkl

, (3.155a)

Pskw : A : Pskw = 1

4

(
A − AT̂ − AT T̂ T + AT T̂ T T̂

)

or 1
4
(
Ai jkl − Ai jlk − A j ikl + A j ilk

) = (Pskw : A : Pskw)i jkl

, (3.155b)

Psym : C : Psym = C
or C = C : Psym = Psym : C

. (3.155c)
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Make use of (3.155c) to represent any super-symmetric tensor C according to

C = 1

2
Ci jkl

[
(̂ei ⊗ êk) � (

êl ⊗ ê j
) + (

ê j ⊗ êk
) � (̂el ⊗ êi )

]
. (3.156)

Solution. With the aid of (3.58a)3, (3.89a), (3.89b), (3.95)1−2, (3.105), (3.108),
(3.110i)2, (3.110j)3 and (3.110k)3, one can verify the first desired relation as follows:

4Psym : A : Psym = (
I + Ī

) : A : (I + Ī
)

︸ ︷︷ ︸
= (

I + Ī
) : (A : I + A : Ī) = (

I + Ī
) :

(
A + AT̂

)

= I : A︸ ︷︷ ︸
= A

+ I : AT̂
︸ ︷︷ ︸
= AT̂

+ Ī : A︸ ︷︷ ︸
= AT T̂ T

+ Ī : AT̂
︸ ︷︷ ︸

= AT T̂ T T̂

= A
with Ai jkl

+ AT̂

with Ai jlk

+ AT T̂ T

with A j ikl

+ AT T̂ T T̂

with A j ilk

.

By following similar procedures as shownabove, one canverify (3.155b) in a straight-
forward manner.

Having in mind (3.115), the desired relation (3.155c) is basically a consequence
of (3.155a). In this regard, (3.155c) in index notation represents

Ci jkl = 1

4

(
Ci jkl + Ci jlk + C j ikl + C j ilk

)
.

Finally, guided by (3.49d)2 and the above result, the super-symmetric tensor C can
be expressed with respect to the Cartesian basis (3.61) as

C = 1

4

(
Ci jkl + Ci jlk + C j ikl + C j ilk

)
êi ⊗ ê j ⊗ êk ⊗ êl

= 1

4

(
Ci jkl̂ei ⊗ ê j ⊗ êk ⊗ êl + Ci jkl̂ei ⊗ ê j ⊗ êl ⊗ êk

)

︸ ︷︷ ︸
= 1

2Ci jkl
(
êi ⊗ êk

) � (
êl ⊗ ê j

)

+ 1

4

(
Ci jkl̂e j ⊗ êi ⊗ êk ⊗ êl + Ci jkl̂e j ⊗ êi ⊗ êl ⊗ êk

)

︸ ︷︷ ︸
= 1

2Ci jkl
(
ê j ⊗ êk

) � (
êl ⊗ êi

)

.

Exercise 3.4

In the linearized theory of elasticity, the stress tensor σσσ ist for homogeneous isotropic
linear elastic materials reads

σσσ ist = λ [trεεεist] I + 2μεεεist , (3.157)
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where εεεist is a symmetric second-order tensor known as the infinitesimal strain (or
small strain) tensor and the coefficients λ and μ are called the Lamé constants (or
Lamé parameters). These moduli are related to Young’s modulus E and Poisson’s
ratio ν via the relations

λ = Eν

(1 + v) (1 − 2ν)
, μ = E

2 (1 + v)
, (3.158)

and, conversely,

E = μ (3λ + 2μ)

λ + μ
, ν = λ

2 (λ + μ)
. (3.159)

The stress-strain relation (3.157) is known as the generalized Hooke’s law for
isotropic materials within the realm of infinitesimal strain theory. It can also be
demonstrated as σσσ ist = cist : εεεist where cist is a fourth-order tensor referred to as the
elasticity tensor (or elastic stiffness tensor). Readers who need an in-depth treat-
ment of theory of elasticity are referred to some standard texts such as Ciarlet [12],
Slaughter [13] and Sadd [14].

First, represent cist and then obtain its inverse called the compliance elasticity
tensor (or elastic compliance tensor). Apparently, the fourth-order tensor c−1

ist can
operate on σσσ ist to deliver εεεist, i.e. εεεist = c−1

ist : σσσ ist.
Finally, express the resulting expressions σσσ ist = cist : εεεist and εεεist = c−1

ist : σσσ ist in
Voigt notation.

Solution. The elasticity tensor basically presents the sensitivity of the stress field
with respect to the strain measure. And it is usually computed by means of the chain
rule of differentiation, see Exercise 6.16. See also Exercise 6.17 for its numerical
differentiation. Here, there is no need to use differentiation due to the linear structure
of (3.157). By rewriting (3.157) in indicial form, taking into account (1.36), (2.33),
(2.49), (2.59)1, (2.61)1, (2.89a)1, (3.54a)1 and (3.54d)1, the desired elasticity tensor
can be extracted from

(σσσ ist)i j = λ
[
δkl (εεεist)kl

]
δi j + μ (εεεist)i j + μ (εεεist) j i︸ ︷︷ ︸

= λδkl (εεεist)kl δi j + μδikδl j (εεεist)kl + μδk j δil (εεεist)kl

= [
λδi jδkl + μ

(
δikδl j + δilδk j

)]
(εεεist)kl︸ ︷︷ ︸

= [
λ (I ⊗ I)i jkl + 2μ (I � I)i jkl

]
(εεεist)kl

.

Thus,
cist = λI ⊗ I + 2μI � I . ←− see (6.182) (3.160)

To proceed, one needs to express εεεist in terms of σσσ ist. Having in mind the identity
trI = 3, the trace of (3.157) gives

trσσσ ist = 3λ (trεεεist) + 2μtrεεεist =⇒ trεεεist = trσσσ ist

3λ + 2μ
.
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It then follows that

εεεist = 1

2μ
σσσ ist − λ

2μ
[trεεεist] I

= − λtrσσσ ist

2μ (3λ + 2μ)
I + 1

2μ
σσσ ist

from=====
(3.158)

−νtrσσσ ist

E
I + 1 + ν

E
σσσ ist . (3.161)

Following similar procedures which led to (3.160) then provides

c−1
ist = − λ

2μ (3λ + 2μ)
I ⊗ I + 1

2μ
I � I

= − ν

E
I ⊗ I + 1 + ν

E
I � I . (3.162)

Notice that

cist : c−1
ist = (λI ⊗ I + 2μI � I) :

(
− λI ⊗ I
2μ (3λ + 2μ)

+ I � I
2μ

)

= − 3λ2I ⊗ I
2μ (3λ + 2μ)

+ λ (3λ + 2μ) I ⊗ I
2μ (3λ + 2μ)

− 2μλI ⊗ I
2μ (3λ + 2μ)

+ 2μ

2μ
I � I

= I � I . ←− see (3.149)

At the end, using (3.127) and (3.130)2, the linear mapping σσσ ist = cist : εεεist in Voigt
notation renders

⎡

⎢⎢⎢
⎢⎢⎢
⎣

(σσσ ist)11
(σσσ ist)22
(σσσ ist)33
(σσσ ist)23
(σσσ ist)13
(σσσ ist)12

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

2μ + λ λ λ 0 0 0
λ 2μ + λ λ 0 0 0
λ λ 2μ + λ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢
⎣

(εεεist)11
(εεεist)22
(εεεist)33
2 (εεεist)23
2 (εεεist)13
2 (εεεist)12

⎤

⎥⎥⎥
⎥⎥⎥
⎦

. (3.163)

And, in a similar manner, the linear function εεεist = c−1
ist : σσσ ist takes the form

⎡

⎢⎢⎢⎢⎢⎢
⎣

(εεεist)11
(εεεist)22
(εεεist)33
(εεεist)23
(εεεist)13
(εεεist)12

⎤

⎥⎥⎥⎥⎥⎥
⎦

= 1

E

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1+ν

2 0 0
0 0 0 0 1+ν

2 0
0 0 0 0 0 1+ν

2

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

(σσσ ist)11
(σσσ ist)22
(σσσ ist)33
2 (σσσ ist)23
2 (σσσ ist)13
2 (σσσ ist)12

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (3.164)
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Chapter 4
Eigenvalues, Eigenvectors and Spectral
Decompositions of Tensors

Eigenvalues (or characteristic values or principal values) and eigenvectors (or prin-
cipal axes or principal directions) are extensively used in many branches of physics
and engineering; examples of which include quantum mechanics, control theory and
stability analysis. They represent mathematical objects that are associated with a
linear transformation in the realm of linear algebra. Since the components and basis
vectors of a second-order tensor vary from one coordinate system to another, it may
be beneficial to seek and find some certain values and directions corresponding to
that tensor which remain invariant under the coordinate transformations. These spe-
cial properties of a tensor that basically illustrate its invariant nature are known as
the eigenvalues and eigenvectors.

A tensor can be diagonalized when it is non-defective or diagonalizable. A rep-
resentation of a non-defective tensor in terms of its eigenvalues and eigenvectors is
known as the spectral decomposition of that tensor which is extremely important
from computational point of view. The aim of this chapter is thus to characterize the
eigenvalues and eigenvectors of second-order tensors due to their great importance in
scientific and engineering problems. Spectral decomposition of a symmetric tensor
is also studied.

Decent books specifically dedicated to the eigenvalue problem and its applications
are, for instance, due to Wilkinson [1], Parlett [2], Saad [3] and Qi et al. [4].

4.1 Eigenvalue Problem

The scalars λ ∈ C will be the eigenvalues of a tensor A ∈ Tso
(
E o3
r

)
if there exists

corresponding nonzero vectors n ∈ E o3
c such that

An = λn , (4.1)
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where n present the eigenvectors of A. An expression of the form (4.1) is called
the eigenvalue problem. As can be seen, once n undergo this linear transformation,
their directions are preserved (or possibly reversed) while their magnitudes will
be changed by the factors |λ|. Moreover, they are obviously independent of any
coordinate system. It is important to note that although all second-order tensors in
this text have been declared as real, their eigenvalues and eigenvectors may generally
not be real in accord with matrix algebra. For instance, orthogonal as well as skew
tensors exhibit complex eigenvalues and eigenvectors, see Exercise 4.9.

Suppose that a tensor A possesses three distinct (or non-degenerate) eigenval-
ues λi , i = 1, 2, 3. For each eigenvalue there exists a corresponding eigenvector and,
therefore, each of the eigenpairs (λi ,ni ) , i = 1, 2, 3, satisfies the eigenvalue prob-
lem. It is often seen that the eigenvalue problem is represented by the normalized
eigenvectors n̂. Indeed, there are infinitely many eigenvectors associated with an
eigenvalue since any nonzero scalar multiple of an eigenvector is still an eigenvector.
For tensors with distinct eigenvalues, it can be shown that the set of eigenvectors
form a basis called eigenbasis. But the set of eigenvectors, in general, may not con-
stitute an eigenbasis. See, for instance, Exercise 4.5 wherein the eigenvectors of the
so-called defective tensors are unable to produce a basis. By use of the so-called gen-
eralized eigenvectors, however, one can extend the eigenvectors of defective tensors
to have an eigenbasis.

The eigenvalues and eigenvectors of a tensor are computationally the eigenvalues
and eigenvectors of itsmatrix form. It is exactly thismatrix form served as an input for
available computer codes calculating the eigenvalues and eigenvectors. With regard
to the eigenvalue problem, one should realize that

☛ any nonzero vector constructed from a linear combination of eigenvectors that
correspond to the same eigenvalue will again be an eigenvector:

if
then

An = λn , Am = λm,

A (αn + βm) = αAn + βAm = λ (αn + βm) .

☛ any two tensors A and B that are related, making use of an invertible tensor
M, via B = MAM−1 have identical eigenvalues while their eigenvectors will
change by that linear mapping1:

if
then

An = λn,

A
(
M−1M

)
n = λn ⇒ B (Mn) = λ (Mn) .

The eigenvalue problemAn = λn basically renders a right mapping and the corre-
sponding eigenvectors n can accordingly be viewed as the right eigenvectors. With
regard to this, one can also define the left eigenvalue problem

mA = λm , (4.2)

1 Note that in the context of matrix algebra, two matrices [A] and [M] [A] [M]−1 are referred to as
similar matrices.
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in which the nonzero vectorsm denote the left eigenvectors. Throughout the devel-
opments, it will be seen that A and AT have identical eigenvalues. Having this in
mind and taking (2.51a) into account, one can deduce that the right eigenvectors
of a tensor are the left eigenvectors of its transpose and vice versa. In this text, all
eigenvectors should be regarded as right eigenvectors, if not otherwise stated.

From the eigenvalue problem (4.1), one can obtain A2 n = A (λn) = λAn =
λ2 n. Thus,

Ak n = λk n, k = 0, 1, 2, . . . . (4.3)

This result immediately implies that any eigenvalue of a tensor polynomial of A
according toH (A) =∑n

k=0 αkAk should be of the form H (λ) =∑n
k=0 αkλ

k owing
to

H (A) n =
n∑

k=0

αk
(
Akn
) =

n∑

k=0

αk
(
λkn
) =
(

n∑

k=0

αkλ
k

)

n = H (λ)n .

4.2 Characteristic Equation and Principal Scalar
Invariants

By means of the expression (2.5), the eigenvalue problem (4.1) can be rewritten as
(A − λI)n = 0. From linear algebra, it is evident that such a homogeneous equation
has a nontrivial solution, i.e. n �= 0, if

det (A − λI) = 0 , (4.4)

or, equivalently,

det

⎡

⎣
A11 − λ A12 A13

A21 A22 − λ A23

A31 A32 A33 − λ

⎤

⎦ = 0 . (4.5)

The expression (4.4) is referred to as the characteristic determinant of A. It can also
be represented in a more convenient form as follows:

λ3 − I1 (A) λ2 + I2 (A) λ − I3 (A)︸ ︷︷ ︸
:= pA (λ)

= 0 . (4.6)

This is known as the characteristic equation for A and its left hand side pA (λ) is
called the characteristic polynomial of A. Here, the scalars Ik, k = 1, 2, 3, present
the principal scalar invariants of A. They are given by
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I1 (A) = A11 + A22 + A33

= 1

2
εqrnεqrs Ans

from=====
(2.89a)

Ann , (4.7a)

I2 (A) = A11A22 − A21A12 + A11A33 − A31A13 + A22 A33 − A32 A23

= 1

2
εqmnεqrs Amr Ans , (4.7b)

I3 (A) = A11 (A22 A33 − A32 A23) − A21 (A12 A33 − A32 A13)

+ A31 (A12 A23 − A22 A13)

= 1

6
εlmnεqrs Alq Amr Ans

from====
(1.80)

detA . (4.7c)

For a symmetric tensor S, they render

I1 (S) = S11 + S22 + S33 , (4.8a)

I2 (S) = S11S22 + S11S33 + S22S33 − S2
12 − S2

13 − S2
23 , (4.8b)

I3 (S) = S11S22S33 + 2S12S13S23 − S2
23S11 − S2

13S22 − S2
12S33 . (4.8c)

The characteristic equation (4.6) represents a polynomial of order three in accord
with the dimension of the vector space E o3

r . Its roots are basically the principal
values which satisfy the eigenvalue problem. It can analytically be solved by a well-
known method often attributed to Cardano.2 It is worthwhile to point out that the

2 The Cardano’s formula is briefly discussed here. Consider a general cubic equation of the form

λ3 + aλ2 + bλ + c = 0 ,

where the coefficients a, b and c are complex numbers. By use of the substitution λ = −a/3 + λ̃,
this equation will be reduced to

λ̃3 + 3Qλ̃ − 2R = 0 , where 9Q = 3b − a2 , 54R = 9ab − 27c − 2a3 .

It is not then difficult to see that the above useful form can be rewritten according to

(
λ̃ − B
) [

λ̃2 + Bλ̃ +
(

B2 + 3Q
)]

= 0 , where B = 3
√

R +
√

Q3 + R2 + 3
√

R −
√

Q3 + R2 .

The solutions of this equation thus provides the three roots

λ̃1 = S + T , λ̃2 = − S + T

2
+ i

√
3

2
(S − T ) , λ̃3 = − S + T

2
− i

√
3

2
(S − T ) ,

where

S = 3
√

R + √
D , T = 3

√
R − √

D , D = Q3 + R2 .

The roots of the original cubic equation is accordingly represented byλk = −a/3 + λ̃k , k = 1, 2, 3.
Note that in case of real coefficients, i.e. a , b , c ∈ R, the sign of the discriminant D determines
the nature of roots being real or imaginary. For this case, the cubic equation will have
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roots λk, k = 1, 2, 3, fundamentally exhibit complex numbers. These roots can be
represented in some alternative forms. A popular representation, often seen in the
literature based on the trigonometric functions, is given by (Bronshtein et al. [5])

λk =

⎧
⎪⎨

⎪⎩

1
3

[
I1 + 2
√

I 21 − 3I2 cos
θ+2π(k−1)

3

]
if I 21 − 3I2 �= 0

1
3 I1 + 1

3
3

√
27I3 − I 31 exp

(
i 2πk

3

)
if I 21 − 3I2 = 0

, k = 1, 2, 3,

(4.9)
where

θ = arccos
2I 31 − 9I1 I2 + 27I3

2
√(

I 21 − 3I2
)3

, exp

(
i
2πk

3

)
= cos

2πk

3
+ i sin

2πk

3
,

(4.10)
and the imaginary unit i satisfies i2 + 1 = 0.

The cubic equation (4.6) can now be rephrased as

pA (λ) =
r∏

k=1

(λ − λk)
sk = 0 , (4.11)

where r (1 ≤ r ≤ 3) is the number of distinct eigenvalues and sk presents the so-
called algebraic multiplicity of the principal value λk . The so-called geometric mul-
tiplicity tk of an eigenvalue λk , on the other hand, determines the respective number
of linearly independent eigenvectors. Indicating by

N (A) = {n ∈ E o3
r | (A − 0I)n = 0

}
, (4.12)

the null space (or kernel) of A, the geometric multiplicity of λk is basically the
dimension of its so-called eigenspace (or characteristic space) N (A − λkI), that
is, tk = dimN (A − λkI). The span of eigenvectors corresponding to an eigenvalue
λk basically defines the eigenspace associated with that eigenvalue, i.e.

N (A − λkI) = Span {nk1, · · · ,nkl} , k = 1, · · · , r ; l = tk . (4.13)

For sake of convenience, let’s agree to write the eigenvectors of a tensor with distinct
eigenvalues as n11 = n1, n21 = n1 and n31 = n3.

If tk = sk, k = 1, 2, 3, there is no deficiency and the eigenvectors of A form
an eigenbasis, otherwise A is defective (in this case the geometric multiplicity of

✫ three distinct real roots when D < 0 ;
✫ three real roots with repetitions when D = 0 (if Q �= 0 and R �= 0, there is one single and one

double root; and if Q = R = 0, there is simply one triple root) ;
✫ one real root and a pair of complex conjugates when D > 0 .

See, e.g., Birkhoff and Mac Lane [6] for more details.
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an eigenvalue is smaller than its algebraic multiplicity). A set of eigenvalues of a
tensor A in which any eigenvalue is repeated according to its algebraic multiplicity
is referred to as the spectrum of A and denoted here by spec (A). These objects are
illustrated in the following example. ✌

Let D, E and F be three Cartesian tensors whose matrices are

[D ] =
⎡

⎣
−2 −4 2
−2 1 2
4 2 5

⎤

⎦ , [E ] =
⎡

⎣
3 3 3
3 3 3
3 3 3

⎤

⎦ , [F ] =
⎡

⎣
1 0.3 0
0 1 0
0 0 1

⎤

⎦ .

Their characteristic polynomials are given by

pD (λ) = (λ − 3) (λ + 5) (λ − 6) ,

pE (λ) = λ2 (λ − 9) ,

pF (λ)= (λ − 1)3 .

Accordingly, the algebraic multiplicities of the three distinct characteristic values
λ = 3,−5, 6 ofD are s = 1, 1, 1, respectively. If sk of λk is unity, then this principal
value is basically non-multiple. Such an eigenvalue is thus referred to as simple
eigenvalue. In this regard, E (F) is a tensor with one multiple eigenvalue for which
the algebraic multiplicities of λ = 0, 9 (λ = 1) are s = 2, 1 (s = 3), respectively.

The spectrum of each of these tensor should now be clear:

spec (D) = {3,−5, 6} , spec (E) = {0, 0, 9} , spec (F) = {1, 1, 1} .

By elementary row reduction, one can finally arrive at the eigenspaces

N (D − 3I) = Span {−2 ê1 + 3 ê2 + ê3} , t1 = 1 ,

N (D + 5I) = Span {−2 ê1 − ê2 + ê1} , t2 = 1 ,

N (D − 6I) = Span
{

1
16 ê1 + 3

8 ê2 + ê3
}

, t3 = 1 ,

N (E) = Span {−̂e1 + ê2 , −̂e1 + ê3} , t1 = 2 ,

N (E − 9I) = Span {̂e1 + ê2 + ê3} , t2 = 1 ,

N (F − I) = Span {̂e1 , ê3} , t = 2 .

One can now deduce that the eigenvectors of D form an eigenbasis. This also holds
true for E. But, this is not the case for F since there does not exist three linearly
independent eigenvectors associated with the triple root λ = 1. In this case, the root
λ = 1 is referred to as the defective eigenvalue. ✌
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The roots λk, k = 1, 2, 3, help obtain the coefficients Ik, k = 1, 2, 3, in (4.6)
according to

I1 (A) = λ1 (A) + λ2 (A) + λ3 (A) , (4.14a)

I2 (A) = λ1 (A) λ2 (A) + λ2 (A) λ3 (A) + λ1 (A) λ3 (A) , (4.14b)

I3 (A) = λ1 (A) λ2 (A) λ3 (A) . (4.14c)

They are known as theVieta’s formulas (Hazewinkel [7]). Notice that these quantities
remain invariant under anypermutation of (1, 2, 3).As canbe seen from (4.7a)–(4.7c)
and (4.14a)–(4.14c), the principal values of a tensor admit some alternative forms.
The following decent form, often seen in the literature in advance, is yet another
representation of the principal scalar invariants

I1 (A) = Au · (v × w) + u · (Av × w) + u · (v × Aw)

u · (v × w)
, (4.15a)

I2 (A) = Au · (Av × w) + u · (Av × Aw) + Au · (v × Aw)

u · (v × w)
, (4.15b)

I3 (A) = Au · (Av × Aw)

u · (v × w)

from====
(2.98)

detA , ←− the proof is given in
Exercise 4.2 (4.15c)

where the three vectors u, v and w constitute an arbitrary basis.3

A very practical formof the principal invariants is based on the following recursive
formula

Ik (A) = (−1)k+1

k
tr

⎛

⎝Ak +
k−1∑

j=1

(−1) j I j (A)Ak− j

⎞

⎠ , k = 1, 2, 3 . (4.16)

This is known as the Newton’s identity.4 By means of (2.36) and (2.83)2, it then
provides

I1 (A) = trA , (4.17a)

I2 (A) = −1

2

[
trA2 − I1trA

]

= 1

2

[
(trA)2 − trA2

]
, (4.17b)

3 The three vectors u, v andwwere naturally assumed to be linearly independent in order to formally
define the principal invariants of a tensor A. However, note that, for instance, an expression of the
form

u · (v × w) I1 (A) = Au · (v × w) + u · (Av × w) + u · (v × Aw) ,

is always true whether these vectors form a basis or not.
4 Note that the Newton’s identity also remains true for finite-dimensional vector spaces.
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I3 (A) = 1

3

[
trA3 − I1trA2 + I2trA

]

= 1

6

[
2trA3 − 3 (trA)

(
trA2
)+ (trA)3

]
. (4.17c)

With the aid of (2.86)3 and (2.89d)3, one can deduce from (4.17a) to (4.17c) that

Ik
(
AT) = Ik (A) , k = 1, 2, 3 , (4.18)

which reveals the fact that the tensors AT and A have identical eigenvalues.
The second invariant of a tensor, according to (4.17b)2, can also be expressed in

terms of its cofactor:
I2 (A) = trAc , (4.19)

because

[I2 (A)
from===============

(2.26), (2.89a) and (4.17b)

1

2
Amm Ann − 1

2
Anm Amn

from====
(1.36)

1

2
(δkmδln − δknδlm) Akm Aln

from==========
(1.54) and (1.58a)

1

2
εiklεimn Akm Aln

from==========
(1.36) and (2.117)

δi j (Ac)i j

from=====
(2.89a)

trAc .

The interested readers may also want to arrive at the result (4.19) in an alternative
way:

I2 (A)
from==========

(1.73) and (4.15b)

w · (Au × Av) + u · (Av × Aw) + v · (Aw × Au)

u · (v × w)

from===========
(2.51b) and (2.112)

Ac Tw · (u × v) + Ac Tu · (v × w) + Ac Tv · (w × u)

u · (v × w)

from====
(1.73)

u · (v × Ac Tw
)+ Ac Tu · (v × w) + u · (Ac Tv × w

)

u · (v × w)

from=====
(4.15a)

I1
(
Ac T
)

from=====
(4.17a)

trAc T

from=====
(2.89d)

trAc .
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At the end, one can establish

Ac T = I2 (A) I − I1 (A)A + A2 , (4.20)

since

[(I1A)u] · (v × w)
from============

(1.9c) and (2.8b)
Au · (v × w) I1

from============
(2.25) and (4.15a)

A2u · (v × w) + Au · (Av × w) + Au · (v × Aw)

from============
(2.5) and (4.15b)

A2u · (v × w) + Iu · (v × w) I2 − u · (Av × Aw)

from============
(1.9c) and (2.8b)

A2u · (v × w) + (I2I) u · (v × w) − u · (Av × Aw)

from=============
(2.51b) and (2.112)

A2u · (v × w) + (I2I)u · (v × w) − Ac Tu · (v × w)

from================
(1.9b), (2.8a) and (2.10)

[(
A2 + I2I − Ac T)u

] · (v × w) ,

with the aid of (1.9a) and (2.7) will deliver the desired result.

4.3 Cayley-Hamilton Equation

A tensorial analogue of the characteristic equation (4.6) according to

A3 − I1 (A)A2 + I2 (A)A − I3 (A) I︸ ︷︷ ︸
:= pA (A)

= O , (4.21)

is called the Cayley-Hamilton equation. It is basically a theorem stating that any
second-order tensor A satisfies its own characteristic equation. The proof is not
difficult since, on the one hand,

[
Ac T
]
A from====

(4.20)

[
I2I − I1A + A2

]
A from==============

(2.29), (2.33) and (2.36)
I2A − I1A2 + A3 ,

and, on the other hand,

[
Ac T
]
A from=====

(2.114)

[
(detA)A−1

]
A from=====

(2.105)
(detA) I

from=====
(4.15c)

I3I .

The desired result (4.21) thus follows. In the literature, it is often seen that A is
assumed to be symmetric in advance to prove the Cayley-Hamilton equation. The
reason is that the eigenvectors of a symmetric tensor form an eigenbasis. The proof
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shown here is irrespective of the nature of tensors in accordwith theCayley-Hamilton
theorem that generally holds for any tensor A.

The main application of the Cayley-Hamilton equation is to represent the powers
of a tensor A as a combination of A, A2 and A3. As an example, A4 and A5 can be
computed much easier by the following relations

A4 = I1A3 − I2A2 + I3A . (4.22a)

A5 = (I 21 − I2
)
A3 + (I3 − I1 I2)A2 + I1 I3A . (4.22b)

Moreover, A−1 can also be represented in a closed-form expression according to

A−1 = A2 − I1A + I2I
I3

. (4.23)

4.4 Spectral Decomposition

The spectral decomposition (or eigenvalue decomposition or spectral representation)
is of great importance inmatrix aswell as tensor algebra and calculus. Computing any
polynomial or inverse of second-order tensors more readily and mapping a quadratic
function into a simple decoupled quadratic form are just a few applications of this
powerful representation. It is also frequently seen in machine learning, mechanics
of constitutive modeling and vibration analysis. Considering appropriate conditions
upon which a tensor admits this canonical form in terms of its eigenvalues and
eigenvectors seems inevitable.

The goal here is thus to represent a tensor in the spectral form or diagonalize its
matrix form. And the results will be accompanied by the corresponding theorems.

Any two eigenvectors corresponding to distinct eigenvalues of a tensor
are linearly independent.

Theorem A

	

Proof Let (λ1,n1) and (λ2,n2) be two arbitrary eigenpairs of a tensorA and suppose
that λ1 �= λ2. The goal is then to show that n1 and n2 are linearly independent, i.e. the
homogeneous equation an1 + bn2 = 0 has the trivial solution a = b = 0. Here, the
coefficients a and b can generally be complex numbers. Given that 0 = an1 + bn2,
one will have, on the one hand,

0 from====
(2.3)

A0
by=======

assumption
A (an1 + bn2)

from====
(2.2)

aAn1 + bAn2
from====
(4.1)

aλ1n1 + bλ2n2 ,

and, on the other hand,
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0 from========
(a) of (1.76)

λ10
by=======

assumption
λ1 (an1 + bn2)

from==========
(1.4f) and (1.4h)

aλ1n1 + bλ1n2 .

As a result, b (λ1 − λ2)n2 = 0 implies that b = 0 since λ1 �= λ2 by assumption and
n2 �= 0 by definition. Following similar procedure then reveals that a = 0. Hence,
n1 and n2 should be linearly independent. This results in the following theorem. ●

A linear combination of two eigenvectors corresponding to distinct
eigenvalues of a tensor is not an eigenvector associated with any eigen-
value of that tensor.

Theorem B

	

Proof Consider again two arbitrary eigenpairs (λ1,n1) and (λ2,n2) of a tensorA and
suppose that λ1 �= λ2. The goal here is to show that an1 + bn2 is not an eigenvector
of A where a and b are, in general, complex nonzero numbers. The proof is done
by contradiction. Suppose that an1 + bn2 is an eigenvector of A associated with an
eigenvalue λ3. With the aid of (1.4f), (1.4h), (2.2) and (4.1), one will have on the
one hand A (an1 + bn2) = λ3 (an1 + bn2) = aλ3n1 + bλ3n2 and on the other hand
A (an1 + bn2) = aAn1 + bAn2 = aλ1n1 + bλ2n2. Thus,

a (λ1 − λ3) n1 + b (λ2 − λ3) n2 = 0 .

Now, recall that any two eigenvectors corresponding to distinct eigenvalues are lin-
early independent. It is then easy to deduce that λ1 = λ3 = λ2. And this contradicts
the earlier assumption that λ1 and λ2 were distinct eigenvalues. ●

Combining the above theorems leads to:

Eigenvectors corresponding to pairwise distinct eigenvalues of a tensor
are linearly independent.

Theorem C

	

As a consequence, the eigenvectors of a tensorA ∈ Tso
(
E o3
r

)
with distinct eigen-

values always form a basis for E o3
c . In what follows, the goal is to characterize an

important relationship between the left and right eigenvectors associatedwith distinct
eigenvalues. ✚

Left and right eigenvectors corresponding to distinct eigenvalues of a
tensor are orthogonal.

Theorem D

	

Proof Denoting bym and n the left and right eigenvectors, respectively, let (λ1,m1)

and (λ2,n2) be two arbitrary eigenpairs of a tensor A and suppose that λ1 �= λ2. The
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goal is then to show that m1 · n2 = 0. The dot product of m1 and An2 gives, on the
one hand,

m1 · (An2)
from====
(4.1)

m1 · (λ2n2)
from==========

(1.9a) and (1.9c)
λ2m1 · n2 ,

and, on the other hand,

m1 · (An2)
from====
(2.47)

(m1A) · n2 from====
(4.2)

(λ1m1) · n2 from====
(1.9c)

λ1m1 · n2 .

As a result, (λ1 − λ2)m1 · n2 = 0 implies thatm1 · n2 = 0 sinceλ1 �= λ2 by assump-
tion. Note that it is always possible to scale the left and right eigenvectors correspond-
ing to the same eigenvalue in order to provide, for instance, m1 · n1 = 1. The inner
product of the left and right eigenvectors can thus be unified as

mi · n j = ni · m j = δi j , i, j = 1, 2, 3 . : (4.24)

Two sets of basis vectors for which (4.24) holds are called dual bases and accordingly
{mi } is said to be dual to {ni } or vice versa. Let [M ] be a matrix whose rows are
the left eigenvectors and [N ] be a matrix whose columns are the right eigenvectors.
Then, rewriting (4.24)2 in the convenient form

⎡

⎣
· · · m1 · · ·
· · · m2 · · ·
· · · m3 · · ·

⎤

⎦

︸ ︷︷ ︸
= [M]

⎡

⎢
⎢
⎣

...
...

...

n1 n2 n3
...

...
...

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
= [N]

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

︸ ︷︷ ︸
= [I]

, (4.25)

gives the useful result
[M ] = [N ]−1 . ←− see (2.105) (4.26)

Attention is now focused on the spectral representation of a tensor. First, consider
the case of non-multiple eigenvalues. In this case, a tensor A ∈ Tso

(
E o3
r

)
has the

triples (λk , mk , nk) , k = 1, 2, 3, for which the left and right eigenvectors are dual
to each other. Recall from (2.19)2 that a tensor A, with respect to the Cartesian basis{
êi ⊗ ê j

}
, was expressed as A = Ai j êi ⊗ ê j . This is only one form of representing

A. Change of basis from
{
êi ⊗ ê j

}
to
{
mi ⊗ n j

}
and accordingly translating Ai j to

Aλ
i j enable one to construct another form of A, known as its spectral representation.

Here, Aλ
i j , i, j = 1, 2, 3, are basically the spectral components of A. To represent

A = Aλ
i jni ⊗ m j , one needs to have

Aλ
i j

from====
(2.20)

mi · [An j
]
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from====
(4.1)

mi · [λ jn j
]

no sum

from (1.9a),==========
(1.9c) and (4.24)

λ jδi j

no sum

. (4.27)

Finally, the spectral decomposition of a tensor A with distinct eigenvalues takes the
following form

A =
3∑

i=1

λi ni ⊗ mi . (4.28)

This expression with the aid of (4.25) and (4.26) can be rewritten as

[A ] = [N ] [D ] [N ]−1 , (4.29)

where [D ] is a diagonal matrix of the eigenvalues:

[D ] =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ . (4.30)

The expression (4.29) is known as matrix diagonalization in the context of matrix
algebra. In other words, a matrix [A ] can be converted into a diagonal matrix [D ] if
there exists an invertiblematrix [N ] such that [D ] = [N ]−1 [A ] [N ].With regard to
this,A in (4.28) ([A ] in (4.29)) is referred to asdiagonalizable tensor (diagonalizable
matrix). It is worthwhile to point out that not all second-order tensors take the explicit
form (4.28) (or not all square matrices are diagonalizable).

Next, consider non-defective tensors possessing multiple eigenvalues which are
also diagonalizable. Let A be a tensor whose every eigenvalue λk has identical alge-
braic and geometric multiplicities, i.e. sk = tk . There are again three linearly inde-
pendent right eigenvectors constituting a basis. With a slight abuse of notation, A
may be written as

A =
r∑

i=1

r∑

j=1

ti∑

k=1

s j∑

l=1

Aλ
i jklnik ⊗ m jl ,

where nik and m jl are dual bases which satisfy

mik · n jl = nik · m jl

= δi jδkl . (4.31)



144 4 Eigenvalues, Eigenvectors and Spectral Decompositions of Tensors

Accordingly, the spectral components Aλ
i jkl are determined by

Aλ
i jkl

from====
(2.20)

mik · [An jl
]

from====
(4.1)

mik · [λ jn jl
]

no sum

from (1.9a),==========
(1.9c) and (4.31)

λ jδi jδkl

no sum

. (4.32)

At the end, the spectral decomposition in diagonal form of a non-defective tensor A
with possibly multiple eigenvalues is given by

A =
r∑

i=1

ti∑

k=1

λinik ⊗ mik . (4.33)

Observe that if r = 3 (or t1 = t2 = t3 = 1), then (4.33) yields (4.28). It is important
to note that a defective tensor is not diagonalizable but its eigenspaces, with the aid
of generalized eigenvectors, can form an eigenbasis.

As an example, let A be a Cartesian tensor whose matrix is

[A ] =
⎡

⎣
4 −3 −3
3 −2 −3

−1 1 2

⎤

⎦ .

By having the characteristic polynomial

pA (λ) = − (λ − 1)2 (λ − 2) ,

of this tensor, one finds that the algebraicmultiplicities of the two distinct eigenvalues
λ1 = 1 and λ2 = 2 are s1 = 2 and s2 = 1 , respectively. And this renders spec (A) =
{1, 1, 2}. Making use of elementary row reduction, the eigenspaces are given by

N (A − 1I) = Span {̂e1 + ê2 , ê1 + ê3} , t1 = 2 ,

N (A − 2I) = Span {−3 ê1 − 3 ê2 + ê3} , t2 = 1 .

Since every eigenvalue has equal algebraic and geometric multiplicities, this ten-
sor is not defective and thus admits the spectral decomposition. The three linearly
independent vectors

n11 = ê1 + ê2 , n12 = ê1 + ê3 , n21 = −3 ê1 − 3 ê2 + ê3 ,
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now help construct the invertible matrix

[N ] =
⎡

⎣
1 1 −3
1 0 −3
0 1 1

⎤

⎦ .

The dual basis of {n11,n12,n21}, i.e. {m11,m12,m21}, can be obtained by computing
the inverse of this matrix:

[M ] = [N ]−1 =
⎡

⎣
−3 4 3
1 −1 0

−1 1 1

⎤

⎦ .

Hence,

m11 = −3 ê1 + 4 ê2 + 3 ê3 , m12 = ê1 − ê2 , m21 = −̂e1 + ê2 + ê3 .

Note that computing {m11,m12,m21} in this way is very favorable from computa-
tional standpoint. But, the dual basis of a given basis can also be obtained by means
of its metric tensor, see Chap.5.

Finally, by having all required data, the givenmatrix [A ] can spectrally be decom-
posed as

[A ] =

⎡

⎢⎢
⎣

...
...

...

n11 n12 n21
...

...
...

⎤

⎥⎥
⎦

⎡

⎣
λ1 0 0
0 λ1 0
0 0 λ2

⎤

⎦

⎡

⎣
· · · m11 · · ·
· · · m12 · · ·
· · · m21 · · ·

⎤

⎦ ,

which is eventually the matrix form of

A =
r∑

i=1

ti∑

k=1

λinik ⊗ mik = λ1 (n11 ⊗ m11 + n12 ⊗ m12) + λ2n21 ⊗ m21 .

4.5 Eigenprojections of a Tensor

The spectral representation (4.33) is often demonstrated in the handy form

A =
r∑

i=1

λiPi , (4.34)

where the second-order tensors
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Pi =
ti∑

k=1

nik ⊗ mik , i = 1, · · · , r , (4.35)

are called the eigenprojections of A (their matrix forms [Pi ] , i = 1, · · · , r, are
also known as Frobenius covariants of [A ] in the context of matrix algebra). Each
eigenprojection Pi is basically a projection onto the eigenspace associated with the
principal value λi , as implied by its name. It is then a simple exercise to present some
characteristics of eigenprojections:

PiP j = δi jPi , i, j= 1, · · · , r ; no sum , (4.36a)

PiA = APi = λiPi , i= 1, · · · , r ; no sum , (4.36b)
r∑

i=1

Pi = I . (4.36c)

These special properties help compute the following multipurpose tensor functions
much easier:

Tensor powers : Ak =
r∑

i=1

λk
i Pi , k = 0, 1, · · ·

for instance, A2 =∑r
i=1 λ2i Pi

, (4.37a)

Inverse of tensor powers : (Ak
)−1 =

r∑

i=1

(
λk

i

)−1
Pi , k = 0, 1, · · ·

for instance, A−1 =∑r
i=1 λ−1

i Pi

, (4.37b)

Tensor polynomial : H (A) =
r∑

i=1

H (λi )Pi

for instance, exp (A) =∑r
i=1 exp

(
λi
)
Pi

. (4.37c)

The last expression, known as Sylvester’s matrix theorem (or Sylvester’s formula)
in matrix theory, has important implications. For instance, it can help represent the
eigenprojections of a diagonalizable tensor irrespective of the eigenvalue problem.
To show this, consider the following Lagrange basis polynomials

Hi (λ) =
r∏

j=1
j �=i

λ − λ j

λi − λ j
, i = 1, · · · , r > 1 , (4.38)

satisfying
Hi (λk) = δik , i, k = 1, · · · , r > 1 . (4.39)
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The eigenprojections then take the following basis-free form

Pi
from====
(1.36)

r∑

k=1

δikPk
from====
(4.39)

r∑

k=1

Hi (λk)Pk
from==========

(4.37c) and (4.38)

r∏

j=1
j �=i

A − λ j I
λi − λ j

. (4.40)

Note that for the simple case r = 1, the property (4.36c) provides P1 = I.
Regarding diagonalizable tensors, the expression (4.37c) can also be utilized to

deliver the Cayley-Hamilton equation (4.21). To show this, consider a polynomial
function of the form H (λ) = λ3 − I1λ2 + I2λ − I3 which is eventually the charac-
teristic polynomial of a diagonalizable tensor A, see (4.6). Having in mind (4.36c),
one can immediately arrive at H (A) =∑r

i=1 H (λi )Pi = A3 − I1A2 + I2A − I3I.
Finally, the r identities H (λi ) = 0 imply the desired result H (A) = O.

4.6 Spectral Decomposition of Symmetric Tensors

Of special interest in this section is to consider the spectral form of a symmetric
second-order tensor due to its wide application in silence and engineering. There are
many theorems (and indeed numerous problems) regarding eigenvalues and eigen-
vectors of a symmetric tensor. Here only the most suitable ones covering the demand
for diagonalization are studied.

To begin with, consider the following theorem determining the nature of eigen-
values and eigenvectors being real or imaginary:

Eigenvalues and eigenvectors of a real symmetric second-order tensor
S ∈ T s

so

(
E o3
r

)
belong to R and E o3

r , respectively.

Theorem E

	

Proof Let (λi ,ni ) be an arbitrary eigenpair of S satisfying Sni = λini according to
(4.1). The complex conjugate of this eigenvalue problem is Sni = λi ni or simply
Sni = λi ni since S is real and thus not affected. One will have, on the one hand,

ni · (Sni ) = ni · (λini ) ⇒ ni · Sni = λini · ni , i = 1, 2, 3; no sum ,

and, on the other hand,

(Sni ) · ni = (λini
) · ni ⇒ ni · Sni = λini · ni , i = 1, 2, 3; no sum .

As a result
(
λi − λi

)
ni · ni = 0 implies that λi = λi since ni �= 0 by definition and

thus ni · ni > 0 by the positive definite property (1.22c). This reveals the fact that λi

has no imaginary part. Indeed, any c∗ ∈ C is real if and only if c∗ = c∗. The result
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λi = λi along with the assumption that S is real then imply that the eigenspace of
λi , i.e. N (S − λi I), should not contain any complex vector.

The following theorem regards an important relationship between the eigenvectors
associated with distinct eigenvalues:

Eigenvectors of a real symmetric second-order tensor corresponding to
distinct eigenvalues are mutually orthogonal.

Theorem F

	

Proof Let (λ1,n1) and (λ2,n2) be two arbitrary eigenpairs of a symmetric tensor S
and suppose that λ1 �= λ2. Then,

n1 · (Sn2)
from====
(4.1)

n1 · (λ2n2)
from==========

(1.9a) and (1.9c)
λ2n1 · n2 ,

while

n1 · (Sn2)
from==========

(2.51b) and (2.57)
(Sn1) · n2 from====

(4.1)
(λ1n1) · n2 from====

(1.9c)
λ1n1 · n2 .

Thus, (λ1 − λ2)n1 · n2 = 0 implies that n1 · n2 = 0 since λ1 �= λ2 by assumption.

The last theorem considered here states that a symmetric tensor has no deficiency
and hence it can always be diagonalized (the proof can be found, e.g., in Itskov [8]):

Any eigenvalue of a real symmetric second-order tensor has identical
algebraic and geometric multiplicities.

Theorem G

	

By having all required data, one can now rephrase the previous results regarding the
spectral forms of a generic tensor A ∈ Tso for the problem at hand.

First, consider a symmetric tensor Swith distinct eigenvalues. To begin with, one
needs to know that the left and right eigenvectors of a symmetric tensor are iden-
tical since Sn = nS. Hence, (4.24) now takes the form ni · n j = δi j , i, j = 1, 2, 3.
And this reveals the fact the eigenvectors of a symmetric tensor to be used for its
diagonalization should essentially be unit vectors.

Denoting by n̂i , i = 1, 2, 3, the normalized eigenvectors of S, the set {̂ni } :=
{̂n1, n̂2, n̂3} is an orthonormal basis, see (1.16). Let [Q ] be a matrix whose columns
are these normalized eigenvectors. Then, one can deduce from (4.25) and (4.26)
that [Q ]−1 = [Q ]T. Such a matrix should thus be an orthogonal matrix, see (2.130)
and (2.131). With regard to this, an orthogonal matrix must be realized as a matrix
whose columns form an orthonormal basis. The rows of such amatrix also constitutes
another orthonormal basis.
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At the end, any symmetric tensor S with non-multiple eigenvalues admits the
following spectral form

S =
3∑

i=1

λi n̂i ⊗ n̂i . ←− see (4.28) (4.41)

In matrix notation, it renders

[S ] =

⎡

⎢
⎢
⎢
⎣

.

.

.
.
.
.

.

.

.

n̂1 n̂2 n̂3
.
.
.

.

.

.
.
.
.

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
= [Q]

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦

︸ ︷︷ ︸
= [D]

⎡

⎣
· · · n̂1 · · ·
· · · n̂2 · · ·
· · · n̂3 · · ·

⎤

⎦

︸ ︷︷ ︸
= [Q]−1

. ←− see (4.29) and (4.30) (4.42)

These results help introduce a symmetric tensor as an orthogonally diagonalizable
tensor. Conversely, symmetry of the eigenprojections n̂i ⊗ n̂i , i = 1, 2, 3, amounts
to writing ST = S. Consistent with this, a matrix of the form [Q ] [D ] [Q ]−1 with
[Q ]T = [Q ]−1 and [D ]T = [D ] is always symmetric. As a result, one can state
that:

A tensor is symmetric if and only if it can orthogonally be diagonalized.

Next, consider a symmetric tensor S with multiple eigenvalues. In this case, the
expression (4.33) should consistently be modified. Recall from the arguments led
to (4.41) that each eigenvector is of unit length and there is no difference between
the left and right eigenvectors. The key point here is that the eigenvectors corre-
sponding to a repeated eigenvalue may not be orthogonal although they are linearly
independent. A reliable technique such as the Gram-Schmidt process is thus required
for orthonormalising eigenvectors.5 Having recorded all required data, the spectral
decomposition of a symmetric tensor S with repeated eigenvalues is given by

5 In an inner product space, there are infinitely many bases and hence any specific basis should be
chosen with care. To simplify computations, it is often most convenient to work with an orthogonal
basis. Orthogonalization of an arbitrary basis is usually accompanied by normalization. These can
be achieved by use of the Gram-Schmidt process which is basically an algorithm that takes a
linearly independent set of vectors in an inner product space and delivers an orthonormal set. This
process is completed within two steps. Given an arbitrary basis {a,b, c} of E o3

r , Gram-Schmidt
orthogonalization first generates an orthogonal basis {u, v,w} via the relations

u = a , v = b − b · a
a · a a , w = c − c · a

a · a a − c · b
b · bb .

Subsequently,Gram-Schmidt orthonormalization delivers an orthonormal basis {̂u, v̂, ŵ} according
to

û = u
|u| , v̂ = v

|v| , ŵ = w
|w| .

Note that the Gram–Schmidt process can also be used for any finite-dimensional vector space
equipped with an inner product.



150 4 Eigenvalues, Eigenvectors and Spectral Decompositions of Tensors

S =
r∑

i=1

ti∑

k=1

λi n̂ik ⊗ n̂ik . (4.43)

This can also be rephrased as

S =
r∑

i=1

λi P̂i where P̂i =
ti∑

k=1

n̂ik ⊗ n̂ik , i = 1, · · · , r . (4.44)

It is important to note that (4.41) and (4.43) are equivalent if r = 3.
For subsequent developments, two special cases are considered. First, suppose

that a symmetric tensor S has two distinct eigenvalues, namely λ1 with t1 = 2 and
λ2 with t2 = 1. By having the eigenpairs (λ1, n̂11), (λ1, n̂12) and (λ2, n̂21), one can
write

S = λ1P̂1 + λ2P̂2 = λ1 ( n̂11 ⊗ n̂11 + n̂12 ⊗ n̂12) + λ2 n̂21 ⊗ n̂21 .

Notice that n̂21 is perpendicular to a plane spanned by n̂11 and n̂12. For notional
simplicity, the unit vectors n̂11, n̂12 and n̂21 are denoted by n̂1, n̂2 and n̂3, respectively.
Having inmind the identity I = n̂1 ⊗ n̂1 + n̂2 ⊗ n̂2 + n̂3 ⊗ n̂3, the projection tensors
then render P̂2 = n̂3 ⊗ n̂3 := P‖

n̂3 and P̂1 = I − n̂3 ⊗ n̂3 := P⊥̂
n3 , see (2.140a) and

(2.140b). Accordingly,

S = λ2P
‖
n̂3 + λ1P⊥

n̂3 = λ2 n̂3 ⊗ n̂3 + λ1 (I − n̂3 ⊗ n̂3) . (4.45)

Next, consider a symmetric tensor S having only one distinct eigenvalue; namely, λ
with t = 3. It is then easy to show that S becomes the scalar multiplication of the
identity tensor by this eigenvalue:

S = λI . ←− this renders a spherical tensor, see (2.144) (4.46)

In this case, any direction is basically a principal direction and any orthonormal basis
of E o3

r can be regarded as a set of eigenvectors.
At the end, consistent with (4.41), (4.45) and (4.46), the eigenprojections of a

symmetric tensor S help additively decompose any vector w in E o3
r as

w =
r∑

i=1

wi =

⎧
⎪⎨

⎪⎩

( n̂1 ⊗ n̂1 + n̂2 ⊗ n̂2 + n̂3 ⊗ n̂3)w if r = 3

( n̂3 ⊗ n̂3)w + (I − n̂3 ⊗ n̂3)w if r = 2

Iw if r = 1

. (4.47)
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4.7 Exercises

Exercise 4.1

Verify that the quantities in (4.17a) to (4.17c), i.e. I1, I2 and I3, are also the principal
invariants of a second-order tensor A under an orthogonal transformation, that is,

Ii
(
QAQT) = Ii (A)

i = 1, 2, 3

, for all orthogonal tensors Q ∈ Tso , (4.48)

or, equivalently,
tr
(
QAQT

)i = tr
(
Ai
)

i = 1, 2, 3

, for all Q ∈ Tso . (4.49)

Solution. The three relations in (4.49) can be verified as follows:

tr
(
QAQT) from=====

(2.131)
tr
(
QAQ−1)

from======
(2.109g)

tr (A) ,

tr
(
QAQT

)2 from==============
(2.33), (2.36) and (2.130)

tr
(
QA2QT

)

from============
(2.109g) and (2.131)

tr
(
A2
)

,

tr
(
QAQT

)3 from==============
(2.33), (2.36) and (2.130)

tr
(
QA3QT

)

from============
(2.109g) and (2.131)

tr
(
A3
)

.

Exercise 4.2

Show that the principal invariants of a tensor A according to (4.15a), (4.15b) and
(4.15c)1 also admit the representations (4.7a)2, (4.7b)2 and (4.7c)2, respectively.

Solution. Let u = ui êi , v = v j ê j and w = wk̂ek be three vectors which form an
arbitrary basis. Having in mind that the inner product of two vectors is a symmetric
bilinear form and their cross product has linearity in each argument, this exercise is
solved in the following by use of the replacement property of Kronecker delta and
some identities regarding the permutation symbol.
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The expression (4.15a):

Au · (v × w) + u · (Av × w) + u · (v × Aw)

from====
(2.21)

Ami
[
êm · ( ê j × êk

)] [
uiv jwk

]+ Amj [̂ei · ( êm × êk)]
[
uiv jwk

]

+ Amk
[
êi · ( ê j × êm

)] [
uiv jwk

]

from====
(1.65)

(
εmjk Ami + εimk Amj + εi jm Amk

) [
uiv jwk

]

from====
(1.36)

Amn
(
εmjkδin + εimkδ jn + εi jmδkn

) [
uiv jwk

]

from====
(1.59)

δmn Amn
[
εi jkuiv jwk

]

from (1.54) and (1.58b) along===================
with renaming the dummy indices

1

2
εqrnεqrs Ans

[
εi jkuiv jwk

]

from====
(1.74)

1

2
εqrnεqrs Ans [u · (v × w)] .

The expression (4.15b):

Au · (Av × w) + u · (Av × Aw) + Au · (v × Aw)

from====
(2.21)

Ami Anj [̂em · ( ên × êk)]
[
uiv jwk

]+ Amj Ank [̂ei · ( êm × ên)]
[
uiv jwk

]

+ Ami Ank
[
êm · ( ê j × ên

)] [
uiv jwk

]

from====
(1.65)

(
εmnk Ami Anj + εimn Amj Ank + εmjn Ami Ank

) [
uiv jwk

]

from====
(1.54)

1

2

[
εimn
(

Amj Ank − Anj Amk
)− ε jmn (Ami Ank − Ani Amk)

+ εkmn
(

Ami Anj − Ani Amj
)] [

uiv jwk
]

from====
(1.36)

1

2
εqmn Amr Ans

[
δiq
(
δ jrδks − δkrδ js

)− δ jq (δirδks − δkrδis)

+ δkq
(
δirδ js − δ jrδis

)] [
uiv jwk

]

from====
(1.57)

1

2
εqmnεqrs Amr Ans

[
εi jkuiv jwk

]

from====
(1.74)

1

2
εqmnεqrs Amr Ans [u · (v × w)] .



4.7 Exercises 153

The expression (4.15c):

Au · [Av × Aw] = [Âei · (Âe j × Âek
)] [

uiv jwk
]

from====
(2.21)

Ali Amj Ank [̂el · ( êm × ên)]
[
uiv jwk

]

from====
(1.65)

εlmn Ali Amj Ank
[
uiv jwk

]

from====
(1.81)

1

6
εlmnεqrs Alq Amr Ans

[
εi jkuiv jwk

]

from====
(1.74)

1

6
εlmnεqrs Alq Amr Ans [u · (v × w)] .

Exercise 4.3

Suppose one is given a symmetric tensor S of the following form

S = α (I − ê1 ⊗ ê1) + β ( ê1 ⊗ ê2 + ê2 ⊗ ê1) ,

where α, β are real scalars and ê1, ê2 present orthogonal unit vectors.

1. Show that the principal values λi , i = 1, 2, 3, of S are

λ1 = α , λ2 = α + √
Δ

2
, λ3 = α − √

Δ

2
,

where Δ = α2 + 4β2.
Solution. Given the nonzero components S22 = S33 = α, S12 = S21 = β, the
principal invariants (4.7a) to (4.7c) render

I1 = 2α , I2 = α2 − β2 , I3 = −αβ2 ,

Accordingly, the characteristic equation for S takes the form

λ3 − 2αλ2 + (α2 − β2
)
λ + αβ2 = 0 .

Before applying the Cardano’s technique to find the roots of this equation, let’s
intuitively check on whether α or β is a solution or not. Observe that the scalar
α presents a root and this helps write

(λ − α)
(
aλ2 + bλ + c

)

︸ ︷︷ ︸
= aλ3 + (b − αa) λ2 + (c − αb) λ − αc

= 0 .
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Consequently, the unknown coefficients a, b, c become a = 1, b = −α, c =
−β2 by comparison. The problem is now simplified to find the roots of the
quadratic equation λ2 − αλ − β2 = 0. By use of the quadratic formula, one
can finally arrive at the desired results.

2. Show that the corresponding normalized eigenvectors n̂i , i = 1, 2, 3 have the
following matrix form

[̂n1]T = [ 0 0 1
]

,

[̂n2]T =
[−λ3β

−1 1 0
]

√
1 + λ2

3β
−2

, [̂n3]T =
[−λ2β

−1 1 0
]

√
1 + λ2

2β
−2

.

Solution. The Cartesian tensor S is a symmetric tensor with distinct eigenvalues.
Thus, each eigenvalue has the identical algebraic and geometric multiplicities
si = ti = 1, i = 1, 2, 3. And this means that it can spectrally decomposed as
(4.41) or (4.42). First, the goal is to find all eigenvectors n1 = (n1)i êi corre-
sponding to λ1. They are nonzero solutions of

(S − λ1I)n1 = (S − αI)n1 = 0 .

For convenience, by using (1.43)1, (1.47)1 and (2.94)1, this expression can be
written as

[S − αI ] [n1 ] =
⎡

⎣
−α β 0
β 0 0
0 0 0

⎤

⎦

⎡

⎣
(n1)1
(n1)2
(n1)3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

It follows that
(n1)1 = (n1)2 = 0 , (n1)3 = γ ∈ R .

Subsequently, the corresponding eigenspace is

N (S − λ1I) = {n1 ∈ E o3
r |n1 = γ ê3 , for any γ ∈ R

}
,

or

N (S − λ1I) = Span {̂e3} .

As a result, ê3 is a basis forN (S − λ1I) and this delivers n̂1 = ê3.
Next, to find all eigenvectors n2 = (n2)i êi associated with λ2, one needs to solve

(S − λ2I)n2 =
(

S − α + √
Δ

2
I

)

n2 = 0 .
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By means of the elementary row reductions, the above expression in the conve-
nient form

−1

2

⎡

⎣

√
Δ + α −2β 0
−2β

√
Δ − α 0

0 0
√

Δ − α

⎤

⎦

⎡

⎣
(n2)1
(n2)2
(n2)3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ ,

will be reduced to ⎡

⎣
β λ3 0
0 0 0
0 0 λ3

⎤

⎦

⎡

⎣
(n2)1
(n2)2
(n2)3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

Thus, any solution should satisfy

β (n2)1 + λ3 (n2)2 = 0 , (n2)3 = 0 ,

which helps obtain

N (S − λ2I) = {n2 ∈ E o3
r |n2 = γ

(−λ3β
−1ê1 + ê2

)
, for any γ ∈ R

}
,

or

N (S − λ2I) = Span
{−λ3β

−1ê1 + ê2
}

.

Now, one can see that−λ3β
−1̂e1 + ê2 is a basis forN (S − λ2I) and the desired

result will be n̂2 = (−λ3β
−1̂e1 + ê2

)
/

√
1 + λ2

3β
−2.

Finally, all eigenvectors n3 = (n3)i êi corresponding to λ3 are nontrivial solu-
tions of the eigenvalue problem

(S − λ3I)n3 =
(

S − α − √
Δ

2
I

)

n3 = 0 .

By elementary row operations, one can arrive at

⎡

⎣
β λ2 0
0 0 0
0 0 λ2

⎤

⎦

⎡

⎣
(n3)1
(n3)2
(n3)3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

This holds true if [n3]T = [ (n3)1 (n3)2 (n3)3
]
satisfies

β (n3)1 + λ2 (n3)2 = 0 , (n3)3 = 0 ,
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and, accordingly,

N (S − λ3I) = {n3 ∈ E o3
r |n3 = γ

(−λ2β
−1ê1 + ê2

)
, for any γ ∈ R

}
,

or

N (S − λ3I) = Span
{−λ2β

−1ê1 + ê2
}

.

Therefore, −λ2β
−1̂e1 + ê2 is a basis for N (S − λ3I) and this delivers the

desired result n̂3 = (−λ2β
−1̂e1 + ê2

)
/

√
1 + λ2

2β
−2.

It is evident that n̂1 · n̂2 = n̂1 · n̂3 = n̂2 · n̂3 = 0. By use of (1.41) and (1.43)1,
one can finally obtain the matrix form of these eigenvectors.

Exercise 4.4

Let A be an arbitrary tensor and further let S be a symmetric tensor. Then, show that
these tensors commute, that is,

SA = AS , (4.51)

if and only if A leaves all eigenspaces of S invariant.6 This is known as the commu-
tation theorem (see Liu [9]).

Moreover, show that A should be a symmetric tensor when S has distinct eigen-
values.
Solution. Suppose that SA = AS and let (λ,w) be an eigenpair of S satisfying
Sw = λw. Then,

S (Aw)
from====
(2.25)

(SA)w

by=======
assumption

(AS)w

from====
(2.25)

A (Sw)

by=======
assumption

A (λw)

from====
(2.8b)

λ (Aw) .

As can be seen, both w and Aw belong to the characteristic space N (S − λI) of
S. To prove the converse, recall from (4.47) that any vector w in E o3

r can additively

6 LetF be a set of vectors. If Aw belongs toF for any vector w inF , one then says that the linear
mapping A leaves F invariant.
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be decomposed with respect to the eigenspaces of S as w =∑r
i=1 wi . Now, if A

preserves all characteristic spaces of S, then wi , Awi ∈ N (S − λi I) and

S (Awi ) = λi (Awi ) = A (λiwi ) = A (Swi ) .

This result, along with (2.2) and (2.25), helps obtain

(SA)w = S (Aw) =
r∑

i=1

S (Awi ) =
r∑

i=1

A (Swi ) = A (Sw) = (AS)w .

At the end, SA = AS is implied by use of (2.6).
Hint: If S is spherical, i.e. S = λI, the expression (4.51) obviously shows that A

need not necessarily be symmetric. But, this relation implies that A be a symmetric
tensor when S has distinct eigenvalues, i.e. S =∑3

k=1 λk n̂k ⊗ n̂k . This will be shown
in the following.

A tensor A that leaves all characteristic spaces of S invariant should be of the
form A =∑3

i, j=1 Ai j n̂i ⊗ n̂ j . Then,

SA =
3∑

i, j=1

λi Ai j n̂i ⊗ n̂ j , AS =
3∑

i, j=1

Ai jλ j n̂i ⊗ n̂ j .

Now, SA = AS yields

3∑

i, j=1

Ai j
(
λi − λ j

)
n̂i ⊗ n̂ j = O .

This expression implies that Ai j = 0 for i �= j , sinceλi �= λ j when i �= j by assump-
tion. This reveals the fact that A should essentially be a symmetric tensor. These
considerations help introduce the important notion of coaxiality in, for instance,
nonlinear continuum mechanics. This is discussed below.

Two symmetric second-order tensors S1 and S2 are said to be coaxial if their
eigenvectors coincide. It is then a simple exercise to show that the two symmetric
second-order tensors S1 and S2 are coaxial if and only if they commute, that is,

S1 S2 = S2 S1 . (4.52)

Note that if S1 and S2 are coaxial, their simple contraction S1S2 renders another
symmetric tensor. To show this, consider

S1S2 = S2S1 ⇒ S1S2 − (S1S2)T = O

recall that 2skwS = S − ST

⇒ skw (S1S2) = O
recall that S = symS + skwS

.
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Thus,
S1S2 = sym (S1S2) .

Awell-known example of coaxial tensors in nonlinear continuummechanics regards
the right Cauchy-Green strain tensor and the second Piola-Kirchhoff stress tensor
for isotropic hyperelastic solids. For such solids, the left Cauchy-Green strain tensor
and the true stress tensor are also coaxial, see Exercise6.16.

Exercise 4.5

Not all tensors can be diagonalized. For instance, there are special tensors called
defective tensors having fewer eigenvectors than the dimension of space to constitute
a basis. It is thus the goal of this exercise to resolve the eigenvector issue of defective
tensors by use of the so-called generalized eigenvectors or Jordan vectors. They
supplement the eigenvectors of defective tensors to provide a complete set of linearly
independent vectors. As will be seen, the eigenvectors introduced so far can be
realized as the generalized eigenvectors of rank 1.

Recall from (4.29) that the diagonal matrix [D ] of a diagonalizable tensor A is
basically the collection of its components with respect to {ni ⊗ mi }. This diagonal
matrix is a special case of the so-called Jordan normal form or Jordan canonical
form. In alignment with (4.29), the components of a defective tensor A with respect
to a complete basis of its extended eigenvectors deliver the Jordan normal form [ J ]
of that tensor. This is indicated by

[ J ] = [N ]−1 [A ] [N ] , (4.53)

where [N ] is an invertible matrix of linearly independent vectors that nearly diago-
nalizes [A ] and [ J ] is of the following form

[ J ] =
⎡

⎢
⎣

J1
J2

. . .

⎤

⎥
⎦ . (4.54)

In this expression, each Jordan block [ Ji ] renders a square matrix of the form

[ Ji ] =

⎡

⎢⎢⎢⎢
⎣

λi 1

λi
. . .

. . . 1
λi

⎤

⎥⎥⎥⎥
⎦

, (4.55)
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where λi is an eigenvalue that can be equal in different blocks. Its geometric multi-
plicity presents the number of corresponding Jordan blocks. And its algebraic mul-
tiplicity is equal to the sum of the orders of all associated Jordan blocks. In the
three-dimensional space, the Jordan canonical form can be any of the following
matrices

⎡

⎣
λ1 1 0
0 λ1 1
0 0 λ1

⎤

⎦

if pA = (λ − λ1)
3

and t1 = 1

,

⎡

⎣
λ1 0 0
0 λ1 1
0 0 λ1

⎤

⎦

if pA = (λ − λ1)
3

and t1 = 2

,

⎡

⎣
λ1 0 0
0 λ2 1
0 0 λ2

⎤

⎦

if pA = (λ − λ1) (λ − λ2)
2

and t1 = t2 = 1

. (4.56)

Note that the sum of off-diagonal entries (or the number of repeats of 1 on the
superdiagonal) presents the number of generalized eigenvectors to be computed.
Let λi be a defective eigenvalue of A and ni j , j = 1, · · · , ti be its corresponding
eigenvectors. Then, any nonzero vector satisfying

(A − λi I)k+1 ui jk = 0 , j = 1, · · · , ti ; k = 1, 2, · · · , (4.57)

is referred to as a generalized eigenvector. The chain of generalized eigenvectors in
(4.57) is practically computed via

(A − λi I)ui j1 = ni j , (A − λi I)ui j2 = ui j1 , · · ·
note that ni j present the generalized eigenvectors of rank 1
and ui j1

(
ui j2
)
are the generalized eigenvectors of rank 2 (3)

. (4.58)

It is important to point out that not all these non-homogeneous algebraic equations
have a solution. In general, a vector on the right hand side may not be within the
column space of A − λi I and hence inconsistency happens. But, one can always
find the required vectors from these equations to form a basis. This is eventually a
special property of defective tensors that always let attain a basis for the vector space.
The proof that eigenvectors and generalized eigenvectors of a defective matrix are
linearly independent can be found in any decent book on linear algebra. The Jordan
normal form of A can finally be computed by appropriately setting its eigenvectors
as well as generalized eigenvectors in the columns of the matrix [N ].

Let A be a Cartesian tensor whose matrix form is

[A ] =
⎡

⎣
6 −2 −1
3 1 −1
2 −1 2

⎤

⎦ .

First, show that A is defective. Then, obtain the Jordan normal form of A making
use of its eigenvectors as well as generalized eigenvectors. Finally, represent that
tensor with respect to a complete basis consisting of the resulting vectors.
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Solution. The characteristic equation

pA (λ) = λ3 − 9λ2 + 27λ − 27 = (λ − 3)3 = 0 ,

renders one distinct eigenvalue λ1 = 3 with algebraic multiplicity 3, i.e. s1 = 3. To
see whether A is defective or not, one should have the geometric multiplicity of
this multiple eigenvalue. To compute t1, one needs to find nonzero vectors n = ni êi

satisfying the eigenvalue problem (A − 3I)n = 0. By elementary row operation, the
matrix form

[A − 3I ] [n ] =
⎡

⎣
3 −2 −1
3 −2 −1
2 −1 −1

⎤

⎦

⎡

⎣
n1

n2

n3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ ,

is reduced to ⎡

⎣
1 0 −1
0 1 −1
0 0 0

⎤

⎦

⎡

⎣
n1

n2

n3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

It follows that [n ]T = [n1 n2 n3
]
should satisfy n1 = n3 and n2 = n3. Thus, the

eigenvectors corresponding to λ1 = 3 are

[ n ] = n3

⎡

⎣
1
1
1

⎤

⎦ .

Consequently,

N (A − 3I) = Span {̂e1 + ê2 + ê3} delivers t1 = 1 .

This reveals the fact that the deficit of λ1 = 3 is s1 − t1 = 2 and thus A is defec-
tive. Having recorded n11 = ê1 + ê2 + ê3, two vectors u111 = (u111)i êi and u112 =
(u112)i êi , with the aid of (4.58), should be supplemented for providing a complete
basis. It follows that

⎡

⎣
3 −2 −1
3 −2 −1
2 −1 −1

⎤

⎦

⎡

⎣
(u111)1
(u111)2
(u111)3

⎤

⎦ =
⎡

⎣
1
1
1

⎤

⎦ ⇒
(u111)1 = 0

(u111)2 = 0

(u111)3 = −1

⎫
⎪⎬

⎪⎭
.

Thus,
u111 = −̂e3 .
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And this helps obtain

⎡

⎣
3 −2 −1
3 −2 −1
2 −1 −1

⎤

⎦

⎡

⎣
(u112)1
(u112)2
(u112)3

⎤

⎦ =
⎡

⎣
0
0

−1

⎤

⎦ ⇒
(u112)1 = 0

(u112)2 = −1

(u112)3 = 2

⎫
⎪⎬

⎪⎭
.

Hence,
u112 = −̂e2 + 2 ê3 .

Observe that n11 · (u111 × u112) �= 0. Thus, the triad {n11,u111,u112} forms a basis
for E o3

r . This allows one to construct the following nonsingular matrix

[N ] =

⎡

⎢⎢
⎣

...
...

...

n11 u111 u112
...

...
...

⎤

⎥⎥
⎦ =
⎡

⎣
1 0 0
1 0 −1
1 −1 2

⎤

⎦ ,

whose inverse helps provide the dual basis of {n11,u111,u112} as follows:

[N ]−1 =
⎡

⎣
· · · m11 · · ·
· · · v111 · · ·
· · · v112 · · ·

⎤

⎦ =
⎡

⎣
1 0 0
3 −2 −1
1 −1 0

⎤

⎦ .

Thus,
m11 = ê1 , v111 = 3 ê1 − 2 ê2 − ê3 , v112 = ê1 − ê2 .

By having all required data at hand, one can finally arrive at

[ J ] = [N ]−1 [A ] [N ] =
⎡

⎣
3 1 0
0 3 1
0 0 3

⎤

⎦ ,

and

A = 3 (n11 ⊗ m11 + u111 ⊗ v111 + u112 ⊗ v112)+n11 ⊗ v111 + u111 ⊗ v112 .

In this representation, the two extra dyads n11 ⊗ v111 and u111 ⊗ v112 are resulted
from the deficiency of the tensor A. As a result, a defective tensor may be thought
of as a nearly diagonalizable tensor.
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Exercise 4.6

Let A and B be two second-order tensors with exp (A) =∑∞
k=0 (k!)−1 Ak and

exp (B) =∑∞
k=0 (k!)−1 Bk , according to (2.39). Then, verify the following identities

det
[
exp (A)

] = exp (trA) , (4.59a)

det
[
exp (A) exp (B)

] = exp (tr [A + B])
︸ ︷︷ ︸
= det
[
exp (A + B)

]

. (4.59b)

Moreover, prove that

exp (W) = I + sin |ωωω|
|ωωω| W + 1

2

[
sin (|ωωω| /2)

|ωωω| /2
]2

W2 , (4.60)

where WT = −W presents a skew tensor and ωωω denotes its axial vector satisfying
Wu = ωωω × u for any generic vector u.
Solution. Guided by (4.3), if (λi ,ni ) is an eigenpair of A, then (exp (λi ) ,ni ) rep-
resents an eigenpair of exp (A), see also (4.37c). By means of (4.14a) and (4.14c),
one can write

det
[
exp (A)

] =
3∏

i=1

exp (λi ) = exp

(
3∑

i=1

λi

)

= exp (trA) .

In the context ofmatrix algebra, this identity is usually proved taking advantage of the
spectral decomposition. This will be carried out in the following for completeness.
Let [A ] be a non-defective matrix that can be diagonalized according to (4.29), i.e.
[A ] = [N ] [D ] [N ]−1. Then, in light of the property (2.207h), one will have

exp ([A ]) = [N ] exp ([D ])
[
N−1
]

where exp ([A ]) =
∞∑

k=0

[A ]k

k! . (4.61)

It follows that

det
[
exp ([A ])

] = det
[
exp ([D ])

] =
3∏

i=1

exp (λi ) = exp (tr [A ]) .

Now, let [A ] be a defective matrix. Guided by (4.53), this matrix can be writ-
ten as [A ] = [N ] [ J ] [N ]−1. Consequently, the expression (4.61) takes the form
exp ([A ]) = [N ] exp ([ J ])

[
N−1
]
. The structure of the Jordan canonical form [ J ]

is in such a way that its exponential renders an upper triangular matrix with eλi

on the main diagonal. It is evident that the determinant of an upper triangular matrix
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is independent of its off-diagonal elements (simply the product of the diagonal ele-
ments of such a matrix delivers its third invariant). Therefore, the identity (4.59a) is
guaranteed for any non-defective as well as defective matrix. Consistent with (4.56),
exp ([ J ]) can be any of the following matrices in the three-dimensional space

⎡

⎣
eλ1 eλ1 eλ1/2
0 eλ1 eλ1

0 0 eλ1

⎤

⎦

if pA = (λ − λ1)
3

and t1 = 1

,

⎡

⎣
eλ1 0 0
0 eλ1 eλ1

0 0 eλ1

⎤

⎦

if pA = (λ − λ1)
3

and t1 = 2

,

⎡

⎣
eλ1 0 0
0 eλ2 eλ2

0 0 eλ2

⎤

⎦

if pA = (λ − λ1) (λ − λ2)
2

and t1 = t2 = 1

. (4.62)

The interested reader may want to use another technique to verify (4.59a). This has
been demonstrated in Exercise 6.8.

Having in mind the linearity of the trace operator, the result (4.59a) helps verify
(4.59b) as follows:

det
[
exp (A) exp (B)

] = det
[
exp (A)

]
det
[
exp (B)

]

= exp (trA) exp (trB)

= exp (trA + trB)

= exp (tr [A + B])

= det
[
exp (A + B)

]
.

In the following, the identity (4.60) will be proved making use of the Cayley-
Hamilton equation (4.21). Bearing in mind (2.89a)2 and (2.96)2, the principal scalar
invariants

I1 (W)
from=====
(4.17a)

trW = 0 , (4.63a)

I2 (W)
from===========

(4.17b) and (4.63a)
−1

2
trW2 from====

(2.68)
|ωωω|2 , (4.63b)

I3 (W)
from===========

(4.17c) and (4.63a)

1

3
trW3 = 0 , (4.63c)

help present some powers of W as follows:

W3 = − |ωωω|2 W
W4 = − |ωωω|2 W2

}

,
W5 = + |ωωω|4 W
W6 = + |ωωω|4 W2

}

,
W7 = − |ωωω|6 W
W8 = − |ωωω|6 W2

}

. (4.64)
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Thus,

exp (W) =
∞∑

k=0

Wk

k! = I +
[

|ωωω| − |ωωω|3
3! + |ωωω|5

5! − · · ·
]

W
|ωωω|

−
[
−|ωωω|2

2! + |ωωω|4
4! − |ωωω|6

6! + · · ·
]
W2

|ωωω|2

= I + sin |ωωω|
|ωωω| W − cos |ωωω| − 1

|ωωω|2 W2 . ←− note that sin2
θ

2
= 1 − cos θ

2

Exercise 4.7

Let devA be the deviatoric part of a second-order tensor A according to (2.145), i.e.
devA = A − (1/3) (trA) I. Then, show that its invariants are

I1 (devA) = 0 , (4.65a)

I2 (devA) = −1

2
tr (devA)2 , (4.65b)

I3 (devA) = 1

3
tr (devA)3 . (4.65c)

Solution. Knowing that the trace of a tensor is a symmetric bilinear form, one can
write

I1 (devA)
from=====
(4.17a)

tr (devA)

from==========
(2.83) and (2.145)

trA − trA
3

trI

from====
(2.90)

0 ,

I2 (devA)
from=====
(4.17b)

1

2

[
(tr (devA))2 − tr (devA)2

]

from=====
(4.65a)

−1

2
tr (devA)2 ,

I3 (devA)
from=====
(4.17c)

1

3
tr (devA)3 − 1

2
tr (devA) tr (devA)2 + 1

6
(tr (devA))3

from=====
(4.65a)

1

3
tr (devA)3 .

Note that the result (4.65c) can also be obtained from the Cayley-Hamilton equation
(4.21) in the following form
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(devA)3 − ������0
I1 (devA) (devA)2 + I2 (devA) devA − I3 (devA) I = O

or I3 (devA) I = (devA)3 + I2 (devA) devA

,

taking into account trI = 3 and tr (devA) = 0.

Exercise 4.8

Use the expressions (4.65a)–(4.65c) to verify that I2 (devA) and I3 (devA) may be
represented, in terms of I1 (A), I2 (A) and I3 (A), by

I2 (devA) = I2 (A) − 1

3
I 21 (A) , (4.66a)

I3 (devA) = I3 (A) − 1

3
I1 (A) I2 (A) + 2

27
I 31 (A) . (4.66b)

That is exactly why I1 (A) to I3 (A) are called the principal invariants since any
other invariant such as I2 (devA) or I3 (devA) is expressible in terms of them.
Solution. First, with the aid of (2.29), (2.33), (2.34) and (2.36), one needs to have
the useful relations

(devA)2 =
[
A − 1

3
I1 (A) I

] [
A − 1

3
I1 (A) I

]

= A2 − 2

3
I1 (A)A + 1

9
I 21 (A) I , (4.67a)

(devA)3 =
[
A2 − 2

3
I1 (A)A + 1

9
I 21 (A) I

] [
A − 1

3
I1 (A) I

]

︸ ︷︷ ︸
= A3 − 2

3 I1 (A)A2 + 1
9 I21 (A)A − 1

3 I1 (A)A2 + 2
9 I21 (A)A − 1

27 I31 (A) I

= A3 − I1 (A)A2 + 1

3
I 21 (A)A − 1

27
I 31 (A) I . (4.67b)

Then, by linearity of the trace operator, (2.90)3 and (4.17c)1, one can obtain

I2 (devA) = −1

2
I :
[
A2 − 2

3
I1 (A)A + 1

9
I 21 (A) I

]

︸ ︷︷ ︸
= − 1

2

[
trA2 − 2

3 I21 (A) + 1
3 I21 (A)

]

= 1

2

[
I 21 (A) − trA2 − 2

3
I 21 (A)

]

= I2 (A) − 1

3
I 21 (A) ,
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I3 (devA) = 1

3
I :
[
A3 − I1 (A)A2 + 1

3
I 21 (A)A − 1

27
I 31 (A) I

]

︸ ︷︷ ︸
= 1

3 trA
3 − 1

3 I1 (A) trA2 + 1
9 I31 (A) − 1

27 I31 (A)

=
{
1

3
trA3

}
− 1

3
I1 (A) trA2 + 2

27
I 31 (A)

︸ ︷︷ ︸
=
{

I3 (A)�����+ 1
3 I1 (A) trA2 − 1

3 I2 (A) I1 (A)
}

�����− 1
3 I1 (A) trA2 + 2

27 I31 (A)

= I3 (A) − 1

3
I1 (A) I2 (A) + 2

27
I 31 (A) .

Exercise 4.9

Let Q be a real orthogonal tensor and further let W be a real skew tensor. Then,
find the eigenvalues of Q and show that the eigenvalues of W are either 0 or purely
imaginary numbers.
Solution. Each eigenvalue λ and the corresponding eigenvector n ofQ satisfyQn =
λn and since Q = Q by assumption, one will have Qn = λn. Pre-multiplying the
eigenvalue problem Qn = λn by QT yields

QTQn = QT (λn)
from========⇒

(2.8b) and (2.130)
I n = λQT n from=======⇒

(2.5) and (2.48)
nQ = λ−1n ,

and, in a similar fashion,
nQ = λ

−1
n .

On the one hand, n · (Qn) = n · (λn) yields (nQ) · n = λn · n. And, on the other

hand, (nQ) · n =
(
λ

−1
n
)

· n gives (nQ) · n = λ
−1
n · n. Knowing that n �= 0 by

definition, the identity (1.22c) will provide n · n > 0. Thus,

λλ = 1 .

And this implies that

λ1 = ±1 , λ2 = exp (iθ)
︸ ︷︷ ︸

= cos θ + i sin θ

, λ3 = exp (−iθ)
︸ ︷︷ ︸

= cos θ − i sin θ

. (4.68)

Guided by these relations, for instance, the eigenvalues of the rotationmatrix (2.195)1
will be λ = +1, exp (iθ) , exp (−iθ) and the eigenvalues of the reflection matrix
(2.195)2 are simply λ = −1, 1, 1.

For a real skew-symmetric tensorW satisfyingWT = −W, the eigenvalue prob-
lem Wn = λn or WT n = −λn with the aid of (2.48) delivers nW = −λn. The
complex conjugate of the resulting expression nW = −λn is nW = −λn. It is then
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easy to deduce from n · (Wn) = n · (λn) or (nW) · n = λn · n and (nW) · n =(−λn
) · n or (nW) · n = −λn · n that

λ = −λ .

Finally, one can infer that

λ1 = 0 , λ2 = θ i , λ3 = −θ i . (4.69)
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Chapter 5
Representation of Tensorial Variables
in Curvilinear Coordinates

So far tensorial variables have been expressed with respect to a Cartesian coordinate
frame defined by an origin and the standard basis vectors. Sometimes, the symmetry
of a problem demands another set of coordinates. For instance, cylindrical coordi-
nates are usually usedwhen there is symmetry about the cylindrical axis or spherical
coordinates are beneficial when geometry of the problem has symmetry about the
corresponding origin. These commonly used coordinate systems are examples of
what is known as the curvilinear coordinate system. This general class of coordinate
systems is used in many branches of physics and engineering such as general rel-
ativity and structural mechanics. Regarding nonlinear continuum mechanics, there
are lots of pioneering articles on material modeling of solids that are written in
curvilinear coordinates. Moreover, (mathematical) foundations of elasticity as well
as (geometrical) foundations of continuum mechanics are often explained in the
literature by means of this powerful coordinate system, see Marsden and Hughes
[1] and Steinmann [2]. See also Synge and Schild [3], Başar and Weichert [4] and
Hashiguchi [5]. The main goal of this chapter is thus to work with the old art of
curvilinear coordinates in order to represent general forms of tensorial variables and
study their fundamental properties in a general framework. For more discussions,
see Brannon [6] and references therein.

5.1 Basis Vectors

Consider a general curvilinear coordinate system as shown in Fig. 5.1. This can be
realized as local coordinates embedded in a Cartesian frame of reference as global
coordinates. As can be seen, the coordinate lines can be curved. This implies that the
tangent vectors to these curves change their directions continuously from point to
point. For an arbitrary point x in the space, there is a one-to-one map transforming
the curvilinear coordinates

(
�1,�2,�3

)
into the Cartesian coordinates (x1, x2, x3).

This is indicated by
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Fig. 5.1 Curvilinear coordinate system

x1 = x̂1
(
�1,�2,�3

)
, x2 = x̂2

(
�1,�2,�3

)
, x3 = x̂3

(
�1,�2,�3

)

or, simply, x = x̂
(
�i
)

. (5.1)

A point whose components are functions of one or more variables is called a point
function. The general transformation (5.1) is assumed to be invertible which allows
one to write

�1 = �̂1 (x1, x2, x3) , �2 = �̂2 (x1, x2, x3) , �3 = �̂3 (x1, x2, x3)

or, simply, �i = �̂i (x)

. (5.2)

5.1.1 Covariant Basis Vectors

The tangent vectors gi , i = 1, 2, 3, for the curvilinear coordinate system are defined
by

gi = ∂x
∂�i

= lim
h→0

x̂
(
�1 + hδi1,�

2 + hδi2,�
3 + hδi3

)− x̂
(
�1,�2,�3

)

h
. (5.3)

It is important to note that in alignment with the rule (1.23a), for instance, the dif-
ference x̂

(
�1 + h,�2,�3

)− x̂
(
�1,�2,�3

)
represents a vector while x itself is a
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point. The tangent vectors
{gi } := {g1, g2, g3} , (5.4)

basically constitute a basis for E o3
r . They are referred to as general basis or gen-

eral basis vectors in this text. They are eventually general in a way that they can
consistently deliver the basis vectors of commonly used coordinate systems. In the
following, the correspondence between the global and some well-known local coor-
dinates as well as their basis vectors relationships are presented. ✕

To begin with, for convenience, the global coordinates and basis vectors are
denoted by x1 = x, x2 = y, x3 = z and ê1 = êx , ê2 = êy, ê3 = êz , respectively.
First, consider a cylindrical coordinate system for which �1 = r , �2 = θ and
�3 = z. The Cartesian coordinates (x, y, z) of a point can be obtained from its
cylindrical coordinates (r, θ, z) according to

x = r cos θ , y = r sin θ , z = z . (5.5)

Conversely, the local coordinates (r, θ, z) can be expressed in terms of the global
coordinates (x, y, z) in some alternative forms. One simple form is

r =
√
x2 + y2 , θ =

⎧
⎪⎨

⎪⎩

+ cos−1 (x/r) if y ≥ 0 , r �= 0

− cos−1 (x/r) if y < 0 , r �= 0

undefined if r = 0

, z = z . (5.6)

With dx = cos θdr − r sin θdθ , dy = sin θdr + r cos θdθ and dz = dz, the general
basis vectors render

g1 = ∂x
∂r

= êr where êr = cos θ êx + sin θ êy , (5.7a)

g2 = ∂x
∂θ

= r êθ where êθ = − sin θ êx + cos θ êy , (5.7b)

g3 = ∂x
∂z

= êz , (5.7c)

noting that {̂er , êθ , êz} represent an orthonormal basis.
Next, consider a spherical coordinate system forwhich�1 = r ,�2 = θ and�3 =

φ. The Cartesian coordinates (x, y, z) and the spherical coordinates (r, θ, φ) are
related through the following relation

x = r sin θ cosφ , y = r sin θ sin φ , z = r cos θ , (5.8)
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or, conversely,

r =
√
x2 + y2 + z2 , θ = cos−1 z

√
x2 + y2 + z2

, φ = tan−1 y

x
. (5.9)

Now, the line element

dx = (sin θ cosφdr + r cos θ cosφdθ − r sin θ sin φdφ) êx
+ (sin θ sin φdr + r cos θ sin φdθ + r sin θ cosφdφ) êy
+ (cos θdr − r sin θdθ) êz , (5.10)

helps provide

g1 = ∂x
∂r

= êr where êr = sin θ cosφ êx + sin θ sin φ êy + cos θ êz , (5.11a)

g2 = ∂x
∂θ

= r êθ where êθ = cos θ cosφ êx + cos θ sin φ êy − sin θ êz , (5.11b)

g3 = ∂x
∂φ

= r sin θ êφ where êφ = − sin φ êx + cosφ êy , (5.11c)

noting that
{
êr , êθ , êφ

}
renders an orthonormal basis.

Finally, consider a Cartesian coordinate system for which �1 = x , �2 = y and
�3 = z help simply write dx = dx êx + dy êy + dz êz . Accordingly, one will triv-
ially have

g1 = êx , g2 = êy , g3 = êz . ✕ (5.12)

The elements of {gi } are called covariant basis vectors and represented by sub-
scripts. Sometimes they are referred to as irregular basis vectors because they need
not necessarily be normalized or perpendicular to each other. They may even be
non-right-handed (but absolutely g1 · (g2 × g3) �= 0). In this regard, the Cartesian
basis {̂ei } represents a regular basis.

Some useful relations, frequently utilized in this chapter, are introduced in what
follows. ✗

Consider first a slightly different form of δi j , given in (1.35), as

δij =
{
1 if i = j

0 if i �= j
for which

[
δij
] =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . (5.13)
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Analogous to δi j , this symbol has the replacement property. Some examples include

δij ê
j = ê i

δ
j
i ê j = êi

}

,
δij g

j = gi

δ
j
i g j = gi

}

,
δij u

j = u i

δ
j
i u j = u i

}

,
δij A jk = Aik

δ
j
i A jk = Aik

}

. (5.14)

It is known as themixed Kronecker delta. Note that δij has been defined in alignment
with the superscripts (contravariant) and subscripts (covariant) indices of components
or basis vectors.

By definition, the standard (as well as any orthonormal) basis is self-dual which
means that there is no specific distinction between {̂e1, ê2, ê3} and

{
ê 1, ê 2, ê 3

}
. This

is indicated by

ê i = êi , ê i · ê j = δij
by======

definition
δ
j
i = êi · ê j , i, j = 1, 2, 3 . (5.15)

However, for the sake of consistency, it is sometimes beneficial to distinguish between
the standard basis vectors with upper indices and ones with lower indices, see (5.20)
and (5.26). In this regard, the identity tensor I = δi j êi ⊗ ê j , according to (2.23),
admits the following representations

I = δi j êi ⊗ ê j = δij êi ⊗ ê j

︸ ︷︷ ︸
= êi ⊗ ê i

= δ
j
i ê

i ⊗ ê j︸ ︷︷ ︸
= ê i ⊗ êi

= δi j ê i ⊗ ê j , ←− see (5.78) (5.16)

where

δi j = ê i · ê j =
{
1 if i = j

0 if i �= j
. (5.17)

As a result of the self-duality of {̂ei }, the permutation symbol in (1.65) renders

εi jk = êi · ( ê j × êk
) = ê i · ( ê j × ê k

) = εi jk . ✗ (5.18)

Regarding the free and dummy indices in this chapter, the following rules must be
obeyed:

� A free index can be either superscript (contravariant) or subscript (covariant) but
its specific form should be preserved in all terms of an equation. For instance,
an expression of the form u i = vi + wi is not true. The correct form is either
u i = vi + wi or u i = vi + wi .

� If there is a dummy index in one term of an expression, one index should appear
at the upper level while the other should appear at the lower level. For instance,
the last term in ui Ai j B jk − Cki vi + wi Di j E jk = 0 is not consistent. The
appropriate form, for instance, is wi Di j E

j
.k .
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5.1.2 Contravariant Basis Vectors

Guided by Fig. 5.1, each general basis vector itself can be seen as a Cartesian vector.
Therefore, one can write

gi = (gi ) j ê j , i = 1, 2, 3 . ←− see (1.34) (5.19)

This motivates to construct a linear transformation F, relating the local basis {gi } to
the global basis {̂ei }, according to

gi = F êi = F j
i ê j , i = 1, 2, 3 , ←− see (2.21) (5.20)

where Fi
j = (g j

)i
, i, j = 1, 2, 3, are the Cartesian components of F. This linear

mapping may be represented by

F = gi ⊗ ê i or [F ] =
⎡

⎣
F1
1 F1

2 F1
3

F2
1 F2

2 F2
3

F3
1 F3

2 F3
3

⎤

⎦ =

⎡

⎢
⎢
⎣

...
...

...

g1 g2 g3
...

...
...

⎤

⎥
⎥
⎦ . (5.21)

Note that F is always invertible because its columns are linearly independent. Con-
sequently, the inverse of F according to

F−1 = êi ⊗ gi or
[
F−1

] =
⎡

⎣
· · · g1 · · ·
· · · g2 · · ·
· · · g3 · · ·

⎤

⎦ , (5.22)

delivers another set of irregular basis vectors.1 This companion triad of vectors

{
gi
} := {g1, g2, g3} , (5.23)

1 The inverse of a tensor will naturally raise or lower the indices. This holds true for the components
as well as the bases of a tensor. Given two bases {gi } and

{
ĝi
}
, some examples include

A = gi ⊗ ĝi ⇐⇒ A−1 = ĝi ⊗ gi ,

B = gi ⊗ ĝi ⇐⇒ B−1 = ĝi ⊗ gi ,

C = gi ⊗ ĝi ⇐⇒ C−1 = ĝi ⊗ gi

D = gi ⊗ ĝi ⇐⇒ D−1 = ĝi ⊗ gi .

These tensors consistently satisfy the reciprocal expression (2.105). Note that the identity tensor
here is either gi ⊗ gi or gi ⊗ gi , see (5.78).
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is known as the dual basis of {gi }. They are called contravariant basis vectors and
shown by superscripts. Each contravariant basis vector can be resolved along the
standard basis

{
ê i
}
as

gi = (gi) j ê j , i = 1, 2, 3 . ←− see (5.19) (5.24)

Knowing that any dyad has bilinearity property according to (2.15a)4 and (2.15b)5,
substituting gi = (gi) j ê j into F−1 = êi ⊗ gi provides

F−1 = (F−1
)i
j êi ⊗ ê j where

(
F−1
)i
j = (gi) j . (5.25)

Basically, the linear transformation F−T translates
{
ê i
}
to
{
gi
}
:

gi = F−T ê i , i = 1, 2, 3 , (5.26)

since

F−1 from=====
(5.22)

êi ⊗ gi ⇒ F−T from===========
(2.52) and (2.54)

gi ⊗ êi ⇒ F−T̂e j from (2.8a)================
(2.13), (5.14) and (5.15)

g j .

The identities I = êi ⊗ ê i and I = F−1F now help establish an important relation
between the covariant and contravariant bases:

êi ⊗ ê i = F−1F from===========
(5.21) and (5.22)

(
êi ⊗ gi

) (
g j ⊗ ê j

)
from===========

(2.29) and (2.30)

(
gi · g j

) (
êi ⊗ ê j

)
.

It is not then difficult to conclude that

gi · g j = δij , gi · g j = δ
j
i . ←− see (5.15) and (9.33) (5.27)

Geometrically, the condition (5.27) states that each vector of a covariant (contravari-
ant) basis is orthogonal to - a plane defined by - the two vectors of the corresponding
contravariant (covariant) basis with different indices, see Fig. 5.2.

The result (5.27)1 may help find the contravariant counterpart of (5.3)1. Since the
three curvilinear coordinates �1, �2 and �3 are independent, they trivially satisfy
∂�i/∂� j = δij . By means of the chain rule of differentiation, one then arrives at

∂�i

∂x
· ∂x
∂� j

= δij or
∂�i

∂x
· g j = δij ,

or

gi = ∂�i

∂x
, i = 1, 2, 3 . (5.28)
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Fig. 5.2 Covariant basis {gi } with its companion contravariant basis
{
gi
}

The linear transformation F and its inverse transpose in matrix form can finally be
written as

[F ] =

⎡

⎢⎢⎢
⎣

...
...

...
∂x

∂�1

∂x
∂�2

∂x
∂�3

...
...

...

⎤

⎥⎥⎥
⎦

, F−T =

⎡

⎢⎢⎢⎢
⎣

...
...

...

∂�1

∂x
∂�2

∂x
∂�3

∂x
...

...
...

⎤

⎥⎥⎥⎥
⎦

. (5.29)

The determinant of the linear mapping F = gi ⊗ ê i , in (5.21)1, is denoted by

J := det [F ] = det
[
g1 g2 g3

] = g1 · (g2 × g3) , (5.30)

which, in light of (4.15c), can be computed via

J êi · ( ê j × êk
)

︸ ︷︷ ︸
= Jεi jk , according to (5.18)

= F êi · (F ê j × F ê j
)

︸ ︷︷ ︸
= gi · (g j × gk

)
, according to (5.20)

.

Thus,

Jεi jk = gi · (g j × gk
)

. (5.31)

This scalar variable appears in many relations in this text and referred to as Jacobian.
The general basis {gi } is right-handed if J > 0 and left-handed when J < 0. Note
that the absolute value of Jacobian depicts the volume of a parallelepiped constructed
by the three vectors g1, g2 and g3.

It is then a simple exercise to see that

J −1εi jk = gi · (g j × gk
)

. (5.32)
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In what follows, the goal is to represent the contravariant basis vectors in terms of
the covariant ones and the Jacobian. Knowing that gi is perpendicular to both g j

and gk (when i �= j, k), one may write αεi jkgi = g j × gk where α is an unknown
parameter. In light of (5.27)1, this scalar can be determined by requiring gi · gl = δil .
As a result, α = J . Then,

g j × gk = Jgiεi jk or, using (1.54), g j × gk = Jε jkigi . (5.33)

This result with the aid of (1.58b)3, i.e. εi jkεl jk = 2δli in this context, and the identity
giδli = gl can be rewritten as

gi = εi jk

2J
g j × gk . ←− see (5.49) (5.34)

In a similar manner,

g j × gk = 1

J
giεi jk or, using (1.54), g j × gk = 1

J
ε jkigi . (5.35)

The contravariant basis vectors and the Jacobian now help compute the covariant
ones:

gi = Jεi jk

2
g j × gk . ←− see (5.43) (5.36)

Hint: Note that any general basis {gi } in this text belongs to E o3
r and, therefore, the

Jacobian is always positive.
It is also important to mention that the tangent vectors gi , i = 1, 2, 3, together

with their companion dual vectors gi , i = 1, 2, 3, generally change from point to
point in space and, therefore, they should be regarded as functions of the curvilinear
coordinates

(
�1,�2,�3

)
.

5.2 Metric Coefficients

The subscript indices of the covariant basis vectors gi , i = 1, 2, 3, can be raised. In a
consistent manner, the superscript indices of the contravariant basis vectors gi , i =
1, 2, 3, can be lowered. Raising and lowering the indices of components or basis
vectors in curvilinear coordinates are enabled by the so-called metric coefficients.
They carry geometrical characteristics of basis vectors and help change the type
of a basis. The operations of raising and lowering indices are basically known as
index juggling. There are two metric coefficients; namely, the covariant metric gi j
and the contravariant metric gi j . These two quantities, which tensorially transform
under a change of coordinates, are the Cartesian components of some special tensors
built upon the linear transformation F in (5.20)–(5.21). This is demonstrated in the
following.
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5.2.1 Covariant Metric Coefficients

First, the components of the symmetric tensor

C = FTF
from==============

(2.52), (2.54) and (5.21)

(
ê i ⊗ gi

) (
g j ⊗ ê j

)

from==========
(2.29) and (2.30)

(
gi · g j

)
ê i ⊗ ê j , (5.37)

with respect to
{
ê i
}
deliver the covariant metric gi j . It is basically defined as

gi j = gi · g j with
[
gi j
] = [C ] =

⎡

⎣
g1 · g1 g1 · g2 g1 · g3
g2 · g1 g2 · g2 g2 · g3
g3 · g1 g3 · g2 g3 · g3

⎤

⎦ . (5.38)

The commutative property of the dot product, according to (1.9a), then implies that

gi j = g ji . (5.39)

This is in alignment with the symmetry of C. As can be seen, the diagonal entries
of
[
gi j
]
help measure the lengths of gi , i = 1, 2, 3, while its off-diagonal elements

help determine the angles between these covariant basis vectors, that is,

|gi | = √
gii , cos θ

(
gi , g j

) = gi j√
gii g j j

, i, j = 1, 2, 3 ; no summation . (5.40)

Making use of the relation det
[
gi j
] = det [C ] = det

[
FT
]
det [F ] along with the

Jacobian J = det [F ] and the identity det
[
FT
] = det [F ], one will have

det
[
gi j
] = J 2 . (5.41)

This helps obtain

J 2εi jk = εlmngli gmj gnk

or J2εi jk g
jm = εlmngli gnk

. ←− see (1.85) (5.42)

Having in mind F = gi ⊗ ê i , FT = ê i ⊗ gi , F−1 = ê j ⊗ g j andC = gik̂e i ⊗ ê k , the
identity FT = CF−1 delivers

ê i ⊗ gi = (gik̂e i ⊗ ê k
) (
ê j ⊗ g j

) = gikδ
k
j ê

i ⊗ g j = gi j ê i ⊗ g j .
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And this implies that

gi = gi jg j , i = 1, 2, 3 . (5.43)

The importance of this result in tensor algebra and calculus is that one can favorably
use the covariant metric to lower the superscript index of a contravariant basis vector
(provided that the objects gi j and g j are known). The identity FT = CF−1 in matrix
form

[
FT
] = [ gi j

] [
F−1

]
renders

⎡

⎣
· · · g1 · · ·
· · · g2 · · ·
· · · g3 · · ·

⎤

⎦ =
⎡

⎣
g11 g12 g13
g12 g22 g23
g13 g23 g33

⎤

⎦

⎡

⎣
· · · g1 · · ·
· · · g2 · · ·
· · · g3 · · ·

⎤

⎦ , (5.44)

which is basically the matrix representation of (5.43). Guided by (2.152),
[
gi j
]
in

(5.44) can be thought of as a transformation matrix that translates
{
gi
}
into {gi }.

Hint: If gi j = δi j , then gi · g j = δi j implies that each basis vector has unit length
and should be perpendicular to any other basis vector whose index is different. This
means that {gi } now forms an orthonormal basis. For such a basis, (5.43) asserts that
the covariant and contravariant basis vectors are identical, i.e. gi = gi , i = 1, 2, 3.
Note that all orthonormal bases are self-dual.

5.2.2 Contravariant Metric Coefficients

Next, the inverse of C = FTF = gi j ê i ⊗ ê j according to

C−1 = F−1F−T

from==============
(2.52), (2.54) and (5.22)

(
êi ⊗ gi

) (
g j ⊗ ê j

)

from==========
(2.29) and (2.30)

(
gi · g j

)
êi ⊗ ê j , (5.45)

helps introduce

gi j = gi · g j with
[
gi j
] = [C−1

] =
⎡

⎣
g1 · g1 g1 · g2 g1 · g3
g2 · g1 g2 · g2 g2 · g3
g3 · g1 g3 · g2 g3 · g3

⎤

⎦ . (5.46)

The symmetry of the contravariant metric

gi j = g ji , (5.47)
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emanates from the commutative property of the dot product or the symmetry ofC−1.
Now, the lengths of contravariant basis vectors and the angles between them can be
determined by means of the contravariant metric as implied by its name:

∣∣
∣gi
∣∣
∣ =

√
gii , cos θ

(
gi , g j

)
= gi j
√
gii g j j

, i, j = 1, 2, 3 ; no summation . (5.48)

SubstitutingF−1 = êi ⊗ gi ,C−1 = gik êi ⊗ êk andFT = ê j ⊗ g j intoF−1 = C−1FT

yields

êi ⊗ gi = (gik êi ⊗ êk
) (

ê j ⊗ g j
) = gikδ j

k êi ⊗ g j = gi j êi ⊗ g j .

It is then easy to see that

gi = gi jg j , i = 1, 2, 3 . (5.49)

As expected, the contravariant metric helps raise the subscript index of a covariant
basis vector (provided that gi j and g j are given). Consistent with (5.44), the matrix
form of (5.49) may be viewed as a transformation from {gi } to

{
gi
}
by using

[
gi j
]
,

that is, ⎡

⎣
· · · g1 · · ·
· · · g2 · · ·
· · · g3 · · ·

⎤

⎦ =
⎡

⎣
g11 g12 g13

g12 g22 g23

g13 g23 g33

⎤

⎦

⎡

⎣
· · · g1 · · ·
· · · g2 · · ·
· · · g3 · · ·

⎤

⎦ . (5.50)

The relations CC−1 = I and C−1C = I then help establish the relationship between
the covariant and contravariant metrics:

gikg
k j = δ

j
i

or gik gk j = δij

or
[
gi j
] = [ gi j ]−1

or
[
gi j
]

= [gi j
]−1

. (5.51)

From (2.109a), (5.41) and (5.51)4, one will have

det
[
gi j
] = J −2 . (5.52)

Using (5.42) and (5.52), one can arrive at

J −2εi jk = εlmng
li gmj gnk

or J −2εi jk g jm = εlmng
li gnk

. (5.53)

Now, it should be clear that raising any covariant index of gi j or lowering any con-
travariant index of gi j will produce the mixed Kronecker delta. In this regard, δij may
be referred to as the mixed metric coefficients. As discussed, these quantities may be
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utilized in an expression to take advantage of their replacement property knowing
that they do not change the type of components or basis vectors.

Hint: Given the covariant basis {gi }, there are three procedures for calculating the
contravariant basis

{
gi
}
. They are summarized in the following.

� The first procedure simply includes two steps. First, by constructing the matrix
[F ] = [ g1 g2 g3

]
and then by calculating the transpose of its inverse accord-

ing to [F ]−T = [ g1 g2 g3
]
, one can compute

{
gi
}
. This procedure is very

favorable from the computational point of view and does not require any infor-
mation regarding the metrics.

� The second procedure makes use of the cross products of covariant basis vectors
and their Jacobian. Here, one will have g1 = J −1g2 × g3, g2 = J −1g3 × g1 and
g3 = J −1g1 × g2 where J = g1 · (g2 × g3).

� The third procedure eventually represents the desired vectors in a more rigorous
way taking advantage of the metric coefficients. Here, one needs to first compute
gi j = gi · g j and then obtain its inverse via

[
gi j
] = [ gi j

]−1
. This procedurewill

be completed by calculating gi = gi jg j .

5.3 Tensor Property of Basis Vectors and Metric
Coefficients

Consider an old basis {gi } and a new basis {ḡi } with the corresponding metric coeffi-
cients gi j and ḡi j . Indeed, they stem from a change of coordinates from

(
�1,�2,�3

)

to
(
�̄1, �̄2, �̄3

)
which are connected by the followingmutually inverse relationships

�̄i = �̄i
(
�1,�2,�3) , �i = �i

(
�̄1, �̄2, �̄3) . (5.54)

This helps write

x = ¯̂x (�̄1, �̄2, �̄3
) = x̂

(
�1,�2,�3

)
with

ḡi = ∂x

∂�̄i

gi = ∂x
∂�i

⎫
⎪⎬

⎪⎭
,

ḡi = ∂�̄i

∂x

gi = ∂�i

∂x

⎫
⎪⎪⎬

⎪⎪⎭
.

(5.55)
Moreover, by the chain rule of differentiation, the following identities are immedi-
ately implied:

δij = ∂�̄i

∂�̄ j
= ∂�̄i

∂�k

∂�k

∂�̄ j
, δij = ∂�i

∂� j
= ∂�i

∂�̄k

∂�̄k

∂� j
. (5.56)

As a result,

∂2�̄i

∂� j∂�k
= −∂�̄i

∂�l

∂�̄m

∂� j

∂�̄n

∂�k

∂2�l

∂�̄m∂�̄n
, (5.57a)
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∂2�i

∂�̄ j∂�̄k
= −∂�i

∂�̄l

∂�m

∂�̄ j

∂�n

∂�̄k

∂2�̄l

∂�m∂�n
. (5.57b)

Using (5.55)3−6 along with the chain rule of differentiation, one can establish the
identities

ḡi · g j = ∂�̄i

∂x
· ∂x
∂� j

= ∂�̄i

∂� j
, (5.58a)

gi · ḡ j = ∂�i

∂x
· ∂x

∂�̄ j
= ∂�i

∂�̄ j
. (5.58b)

From (1.9a), (2.5), (2.8a), (2.13), (5.58a)2, (5.58b)2 and invoking (5.78)2−3, one can
arrive at the transformation laws

ḡi = ∂�̄i

∂� j
g j , gi = ∂�i

∂�̄ j
ḡ j

note that ḡi = (I) ḡi =
(
g j ⊗ g j

)
ḡi =

(
ḡi · g j

)
g j and gi = (I) gi =

(
ḡ j ⊗ ḡ j

)
gi =

(
gi · ḡ j

)
ḡ j

, (5.59)

and

ḡi = ∂� j

∂�̄i
g j , gi = ∂�̄ j

∂�i
ḡ j

note that ḡi = (I) ḡi =
(
g j ⊗ g j

)
ḡi =

(
ḡi · g j

)
g j and gi = (I) gi =

(
ḡ j ⊗ ḡ j

)
gi =

(
gi · ḡ j

)
ḡ j

. (5.60)

As a result, the covariant metric coefficients gi j = gi · g j will tensorially transform
according to

ḡi j = ∂�k

∂�̄i
gkl

∂�l

∂�̄ j
. (5.61)

And this means that the object gi j is deserved to be called the covariant metric tensor
(note that the definition of tensor in the literature is not unique). One should now
notice that the mixed Kronecker delta δij is also a tensor because its values in the new
coordinate system are governed by the tensor transformation law. This is indicated
by

δ̄ij = ∂�̄i

∂�̄ j
= ∂�̄i

∂�k

∂�k

∂�̄ j
= ∂�̄i

∂�k
δkl

∂�l

∂�̄ j
. (5.62)

In a similar manner, the contravariant metric coefficients gi j = gi · g j will preserve
the tensor property:

ḡi j = ∂�̄i

∂�k
gkl

∂�̄ j

∂�l
. (5.63)
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In this regard, the variant gi j may also be referred to as the contravariant metric
tensor.

5.4 Contravariant and Covariant Components
of First-Order Tensors

Two general forms of basis vectors were introduced. As a result, an arbitrary vector
u in curvilinear coordinates has two forms:

u = u igi︸︷︷︸
= u1g1 + u2g2 + u3g3

, (5.64a)

u = uigi︸︷︷︸
= u1g

1 + u2g
2 + u3g

3

, (5.64b)

where
(
u 1, u 2, u 3

)
denotes the contravariant components of u and

(
u 1, u 2, u 3

)

presents its covariant components.
The contravariant (covariant) components of a vector basically represent its pro-

jection onto the covariant (contravariant) basis. The first form, written in (5.64a), is
the natural way of representing a vector. The reason for calling ui , i = 1, 2, 3, the
contravariant components is that they increase when the lengths of covariant basis
vectors decrease and vice versa. Consistent with this, ui , i = 1, 2, 3, are called the
covariant components because they increase (decrease) when the lengths of covariant
basis vectors increase (decrease). In differential geometry, it is frequently seen that
ui is called vector and ui is referred to as covector. For the sake of clarification,
a vector with contravariant components is called a contravariant vector in this text
and a vector with covariant components is referred to as a covariant vector.

It is important to note that in representing a vector, its contravariant (covariant)
components should always be written with respect to the covariant (contravariant)
basis vectors. Here, the summation convention over a dummy index is only applied
when one index is a superscript and the other is a subscript, as shown in (5.64a) and
(5.64b).

Having in mind the linearity property (1.10), the dot products of uwith the covari-
ant and contravariant basis vectors, using (5.27)1−2, (5.38)1 and (5.46)1, yield the
following useful relations

u · gi = u jg j · gi
= u j gi j , (5.65a)

u · gi = u jg j · gi = u jδ
j
i

= ui , (5.65b)

u · gi = u jg j · gi
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= u jδij = u i , (5.65c)

u · gi = u jg j · gi
= u j g

i j . (5.65d)

As a result,

ui = gi j u
j , (5.66a)

u i = gi j u j . (5.66b)

These expressions determine the relationships between the covariant and contravari-
ant components of a vector and again show the crucially important role of metric
coefficients in raising and lowering indices, see the similar results in (5.43) and
(5.49).

5.4.1 Dot Product and Cross Product Between Two Vectors

Given two vectors u and v, each of which possibly has two forms according to (5.64a)
and (5.64b). The goal is now to provide their scalar product as well as cross product
having in mind that they are bilinear operators. Making use of (5.27)1−2, (5.38)1 and
(5.46)1, the inner product of u and v admits the following four forms

u · v = ui gi j v
j , (5.67a)

u · v = ui vi , (5.67b)

u · v = ui v
i . (5.67c)

u · v = u i g
i j v j . (5.67d)

Accordingly, the length |u| = √
u · u of u can be computed according to

|u| =
√

ui gi j u j =
√

u i u i =
√

ui gi j u j . (5.68)

With the aid of (5.33)2, (5.35)2, (5.66a) and (5.66b), the cross product of u and v
allows the following representations

u × v = J u i v jεi jkgk = J u i g jm vmεi jkgk

= Jgim um v jεi jkgk = Jgim umg
jn vnεi jkgk , (5.69a)

u × v = 1

J
gim u i g jn v

nεi jkgk = 1

J
gim u i v jε

i jkgk
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= 1

J
u i g jm vmεi jkgk = 1

J
u i v jε

i jkgk . (5.69b)

5.4.2 Matrix Notation

Consistent with (1.34)1, (5.64a) and (5.64b), an arbitrary vector u in this text can
have three various forms in matrix notation. Having in mind (1.44), one needs to
distinguish between the contravariant single-column matrix

[u ]con = [ u 1 u 2 u 3
]T

, (5.70)

and its covariant counterpart; written by,

[u ]cov = [ u 1 u 2 u 3
]T

. (5.71)

As an example, consider the Cartesian vector u = 2 ê1 − 2 ê2 − 4 ê3 as well as
the covariant basis vectors g1 = ê2 + 3 ê3, g2 = −̂e1 + 2 ê2 + 4 ê3 and g3 = ê2 + ê3,
that is,

[u ] =
⎡

⎣
2

−2
−4

⎤

⎦ ,
[
g1
] =

⎡

⎣
0
1
3

⎤

⎦ ,
[
g2
] =

⎡

⎣
−1
2
4

⎤

⎦ ,
[
g3
] =

⎡

⎣
0
1
1

⎤

⎦ .

The goal is to represent the single-columnmatrices [ u ]con and [ u ]cov. One first needs
to provide the inverse transpose ofF = gi ⊗ ê i or [F ] = [g1 g2 g3

]
in (5.21). Using

(2.50)2 and (2.120), it is given by

[
F−T

] =
⎡

⎣
1 −1 1

−0.5 0 1.5
0.5 0 −0.5

⎤

⎦ .

Knowing that
[
F−T

] = [g1 g2 g3 ], one then obtains the contravariant basis vectors:
[
g1
] = [1 −0.5 0.5

]T
,
[
g2
] = [−1 0 0

]T
,
[
g3
] = [1 1.5 −0.5

]T

or g1 = ê1 − 0.5 ê2 + 0.5 ê3 , g2 = −̂e1 , g3 = ê1 + 1.5 ê2 − 0.5 ê3

.

Consequently, by means of the expressions (1.45)1, (5.38) and (5.46), the metric
coefficients gi j = [ gi

]T [
g j
]
and gi j = [ gi ]T [ g j

]
become
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[
gi j
] =

⎡

⎣
10 14 4
14 21 6
4 6 2

⎤

⎦ ,
[
gi j
] =

⎡

⎣
1.5 −1 0
−1 1 −1
0 −1 3.5

⎤

⎦ .

By (1.45)1, (5.65b)3 and (5.65c)3, the required components are

u i = u · gi = [u ]T
[
gi
] ⇒ (

u 1, u 2, u 3
) = (1,−2, 1) ,

u i = u · gi = [u ]T
[
gi
] ⇒ (

u 1, u 2, u 3
) = (−14,−22,−6) .

One can now verify the relations u i = gi j u j and u i = gi j u j given in (5.66a) and
(5.66b), respectively. Guided by (5.64a) and (5.64b), these components help express
the vector u as

u = 2 ê1 − 2 ê2 − 4 ê3
= g1 − 2g2 + g3

= −14g1 − 22g2 − 6g3 .

Finally, this vector in matrix notation admits the following three forms

[u ] =
⎡

⎣
2

−2
−4

⎤

⎦ , [u ]con =
⎡

⎣
1

−2
1

⎤

⎦ , [u ]cov =
⎡

⎣
−14
−22
−6

⎤

⎦ .

5.5 Contravariant, Mixed and Covariant Components
of Second-Order Tensors

Recall from (2.17) that the basis
{
êi ⊗ ê j

}
helped construct aCartesian tensor accord-

ing to (2.19)2, i.e. A = Ai j êi ⊗ ê j . This reveals the fact that a Cartesian tensor has
only one form. Given the covariant basis {gi } along with its companion contravariant
basis

{
gi
}
, one can then construct the following four forms of basis tensors

{
gi ⊗ g j

}
,
{
gi ⊗ g j

}
,
{
gi ⊗ g j

}
,
{
gi ⊗ g j

}
. (5.72)

Guided by (5.64a) and (5.64b), any second-order tensor A ∈ Tso
(
E o3
r

)
can now be

decomposed with respect to these basis tensors as

A = Ai jgi ⊗ g j , (5.73a)

A = Ai
. jgi ⊗ g j , (5.73b)

A = A . j
i g

i ⊗ g j , (5.73c)

A = Ai jgi ⊗ g j . (5.73d)
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Here, Ai j and Ai j are the contravariant and covariant components of A, respec-
tively. Whereas Ai

. j and A . j
i present its mixed contra-covariant and mixed co-

contravariant components, respectively. Note that the ’dot’ used in front of any
index of the mixed components is a placeholder declaring other index as the first
index. Dictated by the first index of the mixed tensor bases in (5.73b) and (5.73c),
i occurs first in both Ai

. j and A . j
i . Similarly to vectors, the first form according to

(5.73a) is the natural way of representing a tensor. For the sake of clarification, a ten-
sor with contravariant (covariant) components is called a contravariant (covariant)
tensor in this text. And a contra-covariant (co-contravariant) tensor is one whose
components are contra-covariant (co-contravariant).

Considering the four various forms of the components as well as bases of a tensor,
by use of (2.73), (2.74a), (2.74b), (2.79c), (5.27)1−2, (5.38)1 and (5.46)1, one can
write

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = gim Amngnj , (5.74a)

gi · Ag j = A : gi ⊗ g j = Am
.ngm ⊗ gn : gi ⊗ g j = gim Am

.nδ
n
j = gim Am

. j , (5.74b)

gi · Ag j = A : gi ⊗ g j = A .n
mg

m ⊗ gn : gi ⊗ g j = δmi A .n
m gnj = A .m

i gmj ,

(5.74c)

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = δmi Amnδ
n
j = Ai j , (5.74d)

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = gim Amnδ j
n = gim Amj ,

(5.74e)

gi · Ag j = A : gi ⊗ g j = Am
.ngm ⊗ gn : gi ⊗ g j = gim Am

.ng
nj , (5.74f)

gi · Ag j = A : gi ⊗ g j = A .n
mg

m ⊗ gn : gi ⊗ g j = δmi A .n
mδ j

n = A . j
i , (5.74g)

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = δmi Amng
nj = Aimg

mj ,

(5.74h)

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = δim Amngnj = Aimgmj ,

(5.74i)

gi · Ag j = A : gi ⊗ g j = Am
.ngm ⊗ gn : gi ⊗ g j = δim Am

.nδ
n
j = Ai

. j , (5.74j)

gi · Ag j = A : gi ⊗ g j = A .n
mg

m ⊗ gn : gi ⊗ g j = gim A .n
m gnj , (5.74k)

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = gim Amnδ
n
j = gim Amj ,

(5.74l)

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = δim Amnδ j
n = Ai j , (5.74m)

gi · Ag j = A : gi ⊗ g j = Am
.ngm ⊗ gn : gi ⊗ g j = δim Am

.ng
nj = Ai

.mg
mj ,

(5.74n)

gi · Ag j = A : gi ⊗ g j = A .n
mg

m ⊗ gn : gi ⊗ g j = gim A .n
mδ j

n = gim A . j
m ,

(5.74o)

gi · Ag j = A : gi ⊗ g j = Amngm ⊗ gn : gi ⊗ g j = gim Amng
nj , (5.74p)

wherein
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Ag j = Amngnjgm , (5.75a)

Ag j = Am
. jgm , (5.75b)

Ag j = A .n
m gnjg

m , (5.75c)

Ag j = Amjgm , (5.75d)

Ag j = Amjgm , (5.75e)

Ag j = Am
.ng

njgm , (5.75f)

Ag j = A . j
mg

m , (5.75g)

Ag j = Amng
njgm . (5.75h)

The expressions (5.74a)–(5.74p) now deliver the following relationships between the
components:

Ai j = gik Ak
. j = A .k

i gk j = gik Akl gl j , (5.76a)

A . j
i = gik Akj = Aikg

k j = gik Ak
. l g

l j , (5.76b)

Ai
. j = gik Akj = Aikgk j = gik A . l

k gl j , (5.76c)

Ai j = gik A . j
k = Ai

.kg
k j = gik Akl g

l j . (5.76d)

Consistent with (5.64a)–(5.64b) and (5.73a)–(5.73d), the tensor product of two vec-
tors according to (2.24)3 now takes the following forms

u ⊗ v = u i v jgi ⊗ g j , (5.77a)

u ⊗ v = u i v jgi ⊗ g j , (5.77b)

u ⊗ v = u i v
jgi ⊗ g j , (5.77c)

u ⊗ v = u i v jgi ⊗ g j . (5.77d)

The identity tensor in curvilinear coordinates, referred to as metric tensor, has the
following representations

I = gi jgi ⊗ g j = gi ⊗ gi = gi ⊗ gi = gi jgi ⊗ g j , ←− see (2.23) and (5.16) (5.78)

owing to

(I)i j
from=====
(5.74m)

gi · Ig j from====
(2.5)

gi · g j from====
(5.46)

gi j , (5.79a)

(I)i. j
from=====
(5.74j)

gi · Ig j
from====
(2.5)

gi · g j
from====
(5.27)

δij , (5.79b)

(I). ji
from=====
(5.74g)

gi · Ig j from====
(2.5)

gi · g j from====
(5.27)

δ
j
i , (5.79c)

(I)i j
from=====
(5.74d)

gi · Ig j
from====
(2.5)

gi · g j
from====
(5.38)

gi j . (5.79d)
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For the sake of clarification, the covariant metric tensor is specifically denoted by

g = gi jgi ⊗ g j . (5.80)

Its inverse basically renders the contravariant metric tensor, that is,

g−1 = gi jgi ⊗ g j . (5.81)

These metric tensors are frequently used in nonlinear continuum mechanics, see
Simo and Pister [7], Simo et al. [8] and Ibrahimbegović [9] among many others.
Then, the mixed contra-covariant metric tensor is denoted by

gmix = gi ⊗ gi . (5.82)

The transpose of gmix represents the mixed co-contravariant metric tensor:

gTmix = gi ⊗ gi . (5.83)

5.5.1 Basic Tensor Relationships

Recall from Chap.2 that the tensor relationships were expressed in terms of the
Cartesian components of tensors. In the following, the introduced relations will
be represented in terms of the generalized components of vectors and tensors (see
Exercise 5.2).

Mapping of a vector by a tensor: ↙ recall from (2.22) that v = Au = Ai j u j êi

v = Au = vigi where vi = Ai j u j = Aimgmj u
j , (5.84a)

v = Au = vigi where vi = Ai
. j u

j = Ai
.mg

mj u j , (5.84b)

v = Au = vigi where vi = Ai j u
j = Aimg

mj u j , (5.84c)

v = Au = vigi where vi = A . j
i u j = A .m

i gmj u
j . (5.84d)

Composition: ↙ recall from (2.25) that (AB) u=A (Bu) and this led to (AB)i j = (A)im (B)mj

AB = Ai
.mg

mn B . j
n gi ⊗ g j = Aimgmn Bnjgi ⊗ g j

= Aim B . j
mgi ⊗ g j = Ai

.m Bmjgi ⊗ g j , (5.85a)

AB = Ai
.mg

mn Bnjgi ⊗ g j = Aimgmn Bn
. jgi ⊗ g j

= Aim Bmjgi ⊗ g j = Ai
.m Bm

. jgi ⊗ g j , (5.85b)

AB = Aimg
mn B . j

n g
i ⊗ g j = A .m

i gmn Bnjgi ⊗ g j

= A .m
i B . j

mg
i ⊗ g j = Aim Bmjgi ⊗ g j , (5.85c)
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AB = Aimg
mn Bnjgi ⊗ g j = A .m

i gmn Bn
. jg

i ⊗ g j

= A .m
i Bmjgi ⊗ g j = Aim Bm

. jg
i ⊗ g j . (5.85d)

Transposed tensor: ↙ recall from (2.48) that ATu = uA

[AT = (
AT
)i j

gi ⊗ g j = (A) j i gi ⊗ g j

for a symmetric tensor S , one then has Si j = S ji

, (5.86a)

AT = (
AT
)i
. j gi ⊗ g j = (A).ij gi ⊗ g j

for a symmetric tensor S , one then has Si
. j = S .i

j

, (5.86b)

AT = (
AT
). j
i gi ⊗ g j = (A)

j
.i g

i ⊗ g j

for a symmetric tensor S , one then has S . j
i = S j

.i

, (5.86c)

AT = (
AT
)
i j g

i ⊗ g j = (A) j i g
i ⊗ g j

for a symmetric tensor S , one then has Si j = S ji

. (5.86d)

Contraction: ↙ recall from (2.75) that A : B = Ai j Bi j

A : B = Ai j gimg jn Bmn = Ai j gim Bm
. j = Ai j g jm B .m

i = Ai j B i j

= Ai
. j gimg

jn Bm
.n = Ai

. j gim Bmj = Ai
. j g

jm B im = Ai
. j B

. j
i

= A . j
i g

img jn B .n
m = A . j

i g
im Bmj = A . j

i g jm B im = A . j
i B i

. j

= Ai j g
img jn Bmn = Ai j g

im B . j
m = Ai j g

jm B i
.m = Ai j B

i j . (5.87)

Trace: ↙ recall from (2.89a) that trA = I : A = Aii

trA = gi j A
i j = Ai

.i = A .i
i = gi j Ai j . (5.88)

Determinant: ↙ recall from (2.98) that u · (v × w) detA = Au · (Av × Aw)

det [A] = J 2

6
εi jkεlmn Ail A jm Akn = J 2 det

⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ , (5.89a)

det [A] = 1

6
εi jkε

lmn Ai
. l A

j
.m Ak

.n = det

⎡

⎣
A1

.1 A1
.2 A1

.3
A2

.1 A2
.2 A2

.3
A3

.1 A3
.2 A3

.3

⎤

⎦ , (5.89b)

det [A] = 1

6
εi jkεlmn A . l

i A .m
j A .n

k = det

⎡

⎣
A .1
1 A .2

1 A .3
1

A .1
2 A .2

2 A .3
2

A .1
3 A .2

3 A .3
3

⎤

⎦ , (5.89c)
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det [A] = J −2

6
εi jkεlmn Ail A jm Akn = J −2 det

⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ . (5.89d)

Cofactor: ↙ recall from (2.112) that Ac (u × v) = (Au) × (Av)

Ac = (Ac)
i j gi ⊗ g j = 1

2J 2
εiklε jmn Akm Alngi ⊗ g j , (5.90a)

Ac = (Ac)
i
. j gi ⊗ g j = 1

2
εiklε jmn A .m

k A .n
l gi ⊗ g j , (5.90b)

Ac = (Ac)
. j
i gi ⊗ g j = 1

2
εiklε

jmn Ak
.m Al

.ng
i ⊗ g j , (5.90c)

Ac = (Ac)i j g
i ⊗ g j = J 2

2
εiklε jmn Akm Alngi ⊗ g j . (5.90d)

Inverse tensor: ↙ recall from (2.105) and (2.120) that AA−1 = A (2 detA)−1 εiklε jmn Amk Anl êi ⊗ ê j = I

A−1 = (A−1
)i j

gi ⊗ g j = 1

2J 2 detA
εimnε jkl Akm Alngi ⊗ g j , (5.91a)

A−1 = (A−1
)i
. j
gi ⊗ g j = 1

2 detA
εimnε jkl A

k
.m Al

.ngi ⊗ g j , (5.91b)

A−1 = (A−1
). j
i gi ⊗ g j = 1

2 detA
εimnε

jkl A .m
k A .n

l g
i ⊗ g j , (5.91c)

A−1 = (A−1
)
i j
gi ⊗ g j = J 2

2 detA
εimnε jkl A

km Alngi ⊗ g j . (5.91d)

It is not then difficult to deduce from I = AA−1 that

gr j = 1

2 detA
εimnε

jkl Ari A .m
k A .n

l = 1

2J 2 detA
εimnε jkl Ar

.i Akm Aln , (5.92a)

δrj = J 2

2 detA
εimnε jkl A

ri Akm Aln = 1

2 detA
εimnε jkl A

r
.i A

k
.m Al

.n , (5.92b)

δ j
r = 1

2 detA
εimnε

jkl A .i
r A .m

k A .n
l = 1

2J 2 detA
εimnε jkl Ari Akm Aln , (5.92c)

gr j = J 2

2 detA
εimnε jkl A

.i
r Akm Aln = 1

2 detA
εimnε jkl Ari A

k
.m Al

.n . (5.92d)

5.5.2 Matrix Notation

In alignment with (2.19)2 and (5.73a)–(5.73d), any tensor A in this text admits five
various forms in matrix notation. Besides collecting the Cartesian components of A
in a matrix according to (1.47)1, one can similarly construct a

� matrix [A ]con consisting of its contravariant components.
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� matrix [A ]con· cov consisting of its contra-covariant components.
� matrix [A ]· concov consisting of its co-contravariant components.
� matrix [A ]cov consisting of its covariant components.

As an example, consider a tensor A with the following covariant matrix

[A ]cov =
⎡

⎣
0 2 1

−3 4 2
−1 0 3

⎤

⎦ ,

relative to the contravariant basis vectors

g1 = 7 ê1 − 3 ê2 − 3 ê3 , g2 = −̂e1 + ê2 , g3 = −̂e1 + ê3

or g1 = [ 7 −3 −3
]T

, g2 = [−1 1 0
]T

, g3 = [−1 0 1
]T

.

The given components and basis vectors help compute the Cartesian components of
A. In matrix notation, they render

[A ] =
⎡

⎣
16 −2 −10

−18 7 8
−1 −3 3

⎤

⎦ .

To construct other matrices expressing the given tensor, one needs to calculate the
covariant basis vectors

g1 = ê1 + ê2 + ê3 , g2 = 3 ê1 + 4 ê2 + 3 ê3 , g3 = 3 ê1 + 3 ê2 + 4 ê3

or g1 = [ 1 1 1
]T

, g2 = [ 3 4 3
]T

, g3 = [ 3 3 4
]T

.

It is then easy to see that

[A ]con =
⎡

⎣
1570 −195 −272
−319 43 52
−155 16 30

⎤

⎦ ,

and

[A ]con· cov =
⎡

⎣
40 94 17
−7 −12 −3
−5 −16 −2

⎤

⎦ , [A ]· concov =
⎡

⎣
−30 5 4
−261 40 38
−97 13 16

⎤

⎦ .

The simple contraction v = Au, according to (5.84a)–(5.84d), in matrix notation
takes the following forms

[ v ]con = [A ]con [u ]cov = [A ]con· cov [u ]
con , (5.93)
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and
[ v ]cov = [A ]cov [u ]

con = [A ]· concov [u ]cov . (5.94)

At the end, matrix forms of the simple contraction AB in, for instance, (5.85a) can
be written as

[AB ]con = [A ]con· cov
[
gi j
]
[B ]· concov = [A ]con

[
gi j
]
[B ]con

= [A ]con [B ]· concov = [A ]con· cov [B ]con . (5.95)

5.6 Contravariant, Mixed and Covariant Components
of Higher-Order Tensors

Recall from (5.64a)–(5.64b) that a first-order tensor, characterized by one index,
had 2 forms. As an extension, a second-order tensor possessing two indices then
represented by 22 forms according to (5.73a)–(5.73d). Now, it should be clear that a
tensor of order three admits 23 forms. And a tensor of order four can generally have
24 representations. But only some of them are important from the application point
of view. This motivates to introduce the widely used forms of higher-order tensors
in the literature.

A third-order tensorA, written with respect to the standard basis in (3.13), is now
expressed as

A = A i jk gi ⊗ g j ⊗ gk , (5.96a)

A = A i . k
. j . gi ⊗ g j ⊗ gk , (5.96b)

A = A i . .
. jk gi ⊗ g j ⊗ gk , (5.96c)

A = A i jk gi ⊗ g j ⊗ gk . (5.96d)

By analogy with the procedure which led to (5.76a)–(5.76d), the introduced curvi-
linear components of A are related by

A i jk = g jm A i . k
. m . = g jmgkn A i . .

.mn = gil g jmgkn Almn , (5.97a)

A i . k
. j . = g jm A imk = gkn A i . .

. jn = gil gkn A l jn , (5.97b)

A i . .
. jk = g jmgkn A imn = gkn A i . n

. j . = gil Al jk , (5.97c)

A i jk = gil g jmgkn A lmn = gil gkn A l . n
. j . = gil A l . .

. jk . (5.97d)

For subsequent developments, the permutation tensor (3.17) is expressedwith respect
to the curvilinear basis vectors by the following forms

E = J−1εi jkgi ⊗ g j ⊗ gk



194 5 Representation of Tensorial Variables in Curvilinear Coordinates

= Jεi jkgi ⊗ g j ⊗ gk . ←− see (5.31) and (5.32) (5.98)

In a similar manner, any fourth-order tensorAwith the Cartesian form (3.62) may
be represented with respect to a basis consisting of the covariant and contravariant
basis vectors. Therefore,2

A = Ai jkl gi ⊗ g j ⊗ gk ⊗ gl , (5.99a)

A = A
i j . l
. . k . gi ⊗ g j ⊗ gk ⊗ gl , (5.99b)

A = A
i j . .

. . kl gi ⊗ g j ⊗ gk ⊗ gl , (5.99c)

A = Ai . . l
. jk . gi ⊗ g j ⊗ gk ⊗ gl , (5.99d)

A = A. . kl
i j . . g

i ⊗ g j ⊗ gk ⊗ gl , (5.99e)

A = A. . . l
i jk . g

i ⊗ g j ⊗ gk ⊗ gl , (5.99f)

A = Ai jkl gi ⊗ g j ⊗ gk ⊗ gl , (5.99g)

A = Ai . . .
. jkl gi ⊗ g j ⊗ gk ⊗ gl . (5.99h)

Guided by (5.76d) and (5.97a), the fully contravariant components Ai jkl can be
expressed in terms of the other curvilinear components as

Ai jkl = gko Ai j . l
. . o . = gkoglp Ai j . .

. . op = g jogkp Ai . . l
. op .

= gimg jn A . . kl
mn . . = gimg jngko A . . . l

mno .

= gimg jngkoglp Amnop = g jngkoglp Ai . . .
. nop . (5.100)

First, letA be a fully contravariant fourth-order tensor according to (5.99a). Further,
let C be a tensor with various forms in (5.73a)–(5.73d). The right mapping (3.66a)4
and subsequently the left mapping (3.66b)4 can now be rewritten as

2 As an application in nonlinear continuummechanics, consider the deformation gradient tensorF =
Fi

. Agi ⊗ GA which has been defined in this text by only one form, see Exercise 6.16. Accordingly,
the right and left Cauchy–Green strain tensors will be C = CABGA ⊗ GB and b = bi jgi ⊗ g j ,
respectively. Some appropriate derivatives of these strain tensors with respect to each other play an
important role in characterizing the stress response of hyperelastic materials. The various forms of a
fourth-order tensor introduced in this chapter are mainly in alignment with these partial derivatives.
It follows that the sensitivity of

� C−1 with respect to C, i.e. ∂C−1/∂C, is of the form (5.99a),
� C−1 with respect to F, i.e. ∂C−1/∂F, is of the form (5.99b),
� b with respect to b, i.e. ∂b/∂b, is of the form (5.99c),
� F with respect to F, i.e. ∂F/∂F, is of the form (5.99d),
� C with respect to C, i.e. ∂C/∂C, is of the form (5.99e),
� C with respect to F, i.e. ∂C/∂F, is of the form (5.99f) and
� b−1 with respect to b, i.e. ∂b−1/∂b, is of the form (5.99g).

Note that a tensor of the form (5.99h) is greatly used in differential geometry, see (7.50) and (9.199).
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A : C = Ai jkl gkmgln C
mn gi ⊗ g j = Ai jkl gkm Cm

. l gi ⊗ g j

= Ai jkl gln C
.n
k gi ⊗ g j = Ai jkl C kl gi ⊗ g j , (5.101a)

C : A = Cmngmkgnl A
kli j gi ⊗ g j = Cm

. l gmk A
kli j gi ⊗ g j

= C .n
k gnl A

kli j gi ⊗ g j = Ckl A
kli j gi ⊗ g j . (5.101b)

Then, letA be a fully contravariant fourth-order tensor with Ai jmn andB be a fully
covariant one with Bopkl . Accordingly, the composition A : B, in light of (3.91)4,
renders

A : B = Ai jmn Amnkl gi ⊗ g j ⊗ gk ⊗ gl . (5.102)

Finally, letD be a contra-covariant tensor andE be a co-contravariant tensor. Further,
letA be a tensor of rank four according to (5.99a)–(5.99h). Then, the scalarD : A : E
with the Cartesian form Di jAi jkl Ekl can now be demonstrated as

D : A : E = Dm
. j gmi A

i jkl glp E
.p
k = Dm

. j gmi A
i j . l
. . k . g

koglp E
.p
o

= Dm
. j gmi A

i j . .

. . kl g
ko E . l

o = Dm
.ngmi g

nj Ai . . l
. jk . g

koglp E
.p
o

= Di
.ng

nj A. . kl
i j . . glp E

.p
k = Di

.ng
nj A. . . l

i jk . g
koglp E

.p
o

= Di
.ng

nj Ai jkl g
ko E . l

o = Dm
.ngmi g

nj Ai . . .
. jkl gko E . l

o . (5.103)

5.7 Tensor Property of Components

To begin with, consider a vector u decomposed according to (5.64a)–(5.64b). Simi-
larly to scalar variables, this object is basically an invariant. And this means that it
remains unchanged under an arbitrary change of coordinates from

(
�1,�2,�3

)
to(

�̄1, �̄2, �̄3
)
, that is,

u = ū i ḡi = ū i ḡi

= uigi = u igi . (5.104)

From (5.59)1−2, (5.60)1−2 and (5.104)1−4, considering the fact that the decomposi-
tion of a tensor with respect to a basis is unique, one can establish the following
transformation laws for the vector components

ū i = ∂�̄i

∂� j
u j , (5.105a)

ū i = ∂� j

∂�̄i
u j . (5.105b)
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The variant u i ( u i ) thus represents a first-order contravariant (covariant) tensor.
Next, consider a tensor A which admits the representations (5.73a)–(5.73d). After
some algebraic manipulations, one can infer that the old and new components of this
invariant object are tensorially related by

Āi j = ∂�̄i

∂�k
Akl ∂�̄ j

∂�l
, (5.106a)

Āi
. j = ∂�̄i

∂�k
Ak

. l

∂�l

∂�̄ j
, (5.106b)

Ā . j
i = ∂�k

∂�̄i
A . l
k

∂�̄ j

∂�l
, (5.106c)

Āi j = ∂�k

∂�̄i
Akl

∂�l

∂�̄ j
. (5.106d)

Here, the object Ai j ( Ai
. j ) represents a second-order contravariant (contra-covariant)

tensor. And the variant A . j
i ( Ai j ) demonstrates a second-order co-contravariant

(covariant) tensor. The procedure to extend the rules (5.106a)–(5.106d) to tensors of
higher ranks should be clear now. This is left as an exercise to be undertaken by the
interested reader.

5.8 Line, Surface and Volume Elements

Consider an arbitrary curvilinear coordinate system embedded in a Cartesian coordi-
nate frame as illustrated in Fig. 5.3. Consider also two infinitesimally close points x
and x + dx corresponding to

(
�1,�2,�3

)
and

(
�1 + d�1,�2 + d�2,�3 + d�3

)
,

respectively. Here, the projection of the position increment vector dx along the tan-
gent vector gi is denoted by dx(i). As can be seen, the linearly independent vec-
tors dx(i), i = 1, 2, 3, form a parallelepiped in space. In the following, the goal
is to represent the differential line element dx, the infinitesimal surface elements
dA(i), i = 1, 2, 3, and the differential volume element dV of the parallelepiped in
terms of the curvilinear coordinate increments and basis vectors. They are essen-
tially needed for the evaluation of line, surface and volume integrals in a curvilinear
coordinate system.

First, with the aid of (5.3)1, (5.14), (5.27)2 and (5.64a), the infinitesimal line
element dx can be expressed as

dx = ∂x
∂�i

d�i = d�igi with d�i = dx · gi

indeed, dx(1) = d�1g1 , dx(2) = d�2g2 , dx(3) = d�3g3

. (5.107)
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Fig. 5.3 Projection of a position increment vector in an arbitrary curvilinear coordinate system

Note that the curvilinear coordinate increments are the contravariant components
of the differential position vector, i.e. (dx)i = d�i . But, it is not possible to have
x = �igi . It is also important to note that the covariant components of dx are well-
defined and obtained by

(dx)i = gi j (dx) j . (5.108)

But,
(dx)i �= d�i or d�i �= gi j d� j ,

since, it can be shown that, dual coordinates do not exist.
The square of the magnitude of dx according to

ds2 = dx · dx from=====
(5.107)

(
d�igi

) · (d� jg j
) from=============

(1.9a)-(1.9c) and (5.38)
gi j d�i d� j ,

(5.109)
is referred to as fundamental differential quadratic form.

Next, the area elements dA(i), i = 1, 2, 3, can be decomposed as

dA(1) = dx(2) × dx(3)
︸ ︷︷ ︸
= Jd�2d�3g1

, dA(2) = dx(3) × dx(1)
︸ ︷︷ ︸
= Jd�3d�1g2

, dA(3) = dx(1) × dx(2)
︸ ︷︷ ︸
= Jd�1d�2g3

, (5.110)
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or, collectively as,

dA(i) = dx( j) × dx(k) = Jd� j d�kgi where i jk = 123, 231, 312 . (5.111)

The length of dA(i) then becomes

d A(i) =
√
gii Jd� j d�k where i jk = 123, 231, 312 (no sum on i) . (5.112)

At the end, the infinitesimal volume element dV takes the following form

dV = dx(i) ·
[
dx( j) × dx(k)

]
= Jd�1d�2d�3 where i jk = 123, 231, 312 . (5.113)

Consider a parallelepiped defined by the three vectors u, v and w. The so-called
volume form is sometimes defined to calculate the volume of that object:

ω (u, v,w) = Jεi jk u
i v j wk . (5.114)

For the sake of completeness, the Cartesian form of the introduced differential ele-
ments are represented in the following:

dx = ∂x
∂xi

dxi = dxi êi with dxi = dx · êi
indeed, dx(1) = dx1̂e1 , dx(2) = dx2 ê2 , dx(3) = dx3̂e3

, (5.115a)

dA(i) = dx( j) × dx(k) = dx j dxk êi where i jk = 123, 231, 312 , (5.115b)

dV = dx(i) ·
[
dx( j) × dx(k)

]
= dx1dx2dx3 where i jk = 123, 231, 312 . (5.115c)

Hint: Anarbitrary surface element dA in three-dimensional space is characterized by
its magnitude d A and its unit normal vector n̂. And it will be referred to as the surface
vector, i.e. dA = n̂ d A. Such an expression is widely used in integral theorems.
But, technically, it should be modified to dA = ± n̂ d A since a surface element can
geometrically admit either the unit normal vector +n̂ or its additive inverse −n̂.
Accordingly, the appropriate sign is chosen by a convention distinguishing between
a closed surface (used in the divergence theorem) and an open surface (utilized in
the Stokes’ theorem). In Chap. 8, it will be shown that how either dA = +n̂ d A or
dA = −n̂ d A is determined for such surfaces.
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5.9 Exercises

Exercise 5.1

The covariant basis vectors of the cylindrical, spherical and Cartesian coordinate
systems are already given in (5.7a)–(5.7c), (5.11a)–(5.11c) and (5.12), respectively.
Obtain the corresponding contravariant basis vectors for these commonly used
coordinate systems.

Solution. Recall that the given covariant basis vectors were expressed in terms of
the three mutually orthogonal unit vectors êx , êy and êz . The procedure to attain
the companion contravariant basis vectors mainly relies on the scalar product (1.8)
which is a symmetric bilinear form according to (1.9a)–(1.9c).

Consider first the cylindrical coordinates (r, θ, z). The covariant metric coeffi-
cients in (5.38)3, i.e.

[
gi j
] = [ gi · g j

]
, then render

[
gi j
] =

⎡

⎣
1 0 0
0 r 2 0
0 0 1

⎤

⎦

with J = √det gi j = r

, ←− cylindrical coordinates (5.116)

Accordingly, the contravariant metric coefficients (5.51)4, i.e.
[
gi j
] = [ gi j

]−1
, take

the form
[
gi j
] =

⎡

⎣
1 0 0
0 1

r 2 0
0 0 1

⎤

⎦ . ←− cylindrical coordinates (5.117)

Now, the contravariant basis vectors gi = gi jg j , according to (5.49), will be

g1 = g1 = êr where êr = cos θ êx + sin θ êy , (5.118a)

g2 = g2
r 2

= êθ

r
where êθ = − sin θ êx + cos θ êy , (5.118b)

g3 = g3 = êz . (5.118c)

Next, the spherical coordinates (r, θ, φ) are considered. In this case, the covariant
metric coefficients become

[
gi j
] =

⎡

⎣
1 0 0
0 r 2 0
0 0 r 2 sin2 θ

⎤

⎦

with J = √det gi j = r2 sin θ

. ←− spherical coordinates (5.119)
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Subsequently, the contravariant metric coefficients

[
gi j
] =

⎡

⎣
1 0 0
0 1

r 2 0
0 0 1

r 2 sin2 θ

⎤

⎦ , ←− spherical coordinates (5.120)

help provide the dual basis vectors

g1 = g1
= êr where êr = sin θ cosφ êx + sin θ sin φ êy + cos θ êz ,

(5.121a)

g2 = g2
r 2

= êθ

r
where êθ = cos θ cosφ êx + cos θ sin φ êy − sin θ êz ,

(5.121b)

g3 = g3
r 2 sin2 θ

= êφ

r sin θ
where êφ = − sin φ êx + cosφ êy . (5.121c)

Finally, the reciprocal basis
{
gi
}
will be represented for the Cartesian coordinates

(x, y, z). The contravariant metric coefficients for such coordinates trivially render[
gi j
] = [ δi j ]. Thus,

g1 = g1 = êx , g2 = g2 = êy , g3 = g3 = êz . (5.122)

Exercise 5.2

Verify (5.84a)2, (5.85b)2, (5.86c), (5.87)4, (5.88)4, (5.89a)1, (5.90b)2 and (5.91b)2.

Solution. It is strongly recommended that the interested reader prove all the relations
presented in (5.84a)–(5.91d). Here, only some important expressions are chosen
for verification. By use of the curvilinear representations of vectors and tensors,
according to (5.64a)–(5.64b) and (5.73a)–(5.73d), the derivation of each desired
relation will be shown step by step in the following.

The expression (5.84a)2: Let u be a covariant vector and A be a contravariant tensor.
Further, let v = Au. Then,

v from===========
(5.64b) and (5.73a)

(
Ai jgi ⊗ g j

) (
ukgk

)
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from================
(2.2), (2.8a), (2.8b) and (2.13)

Ai j u k
(
g j · gk) gi

from====
(5.27)

Ai j u kδ
k
jgi

from====
(5.14)

Ai j u jgi .

Consistent with this result, the vector v, by means of (5.64a), can be decomposed as
v = vigi . Since any arbitrary vector has an unique representation with respect to a
given basis, it follows that vi = Ai j u j .

The expression (5.85b)2: Let A be a tensor that is known in its contravariant compo-
nents. Further, let B be a contra-covariant tensor. Then,

(AB)i. j
from=====
(5.74j)

gi · [(AB) g j
]

from====
(2.25)

gi · [A (Bg j
)]

from=====
(5.75b)

gi · [A ( Bn
. jgn
)]

from====
(2.2)

gi · [ Bn
. j (Agn)

]

from=========
(1.9a) to (1.9c)

gi · [(Agn)
]
Bn

. j

from=====
(5.74i)

Aimgmn Bn
. j .

The expression (5.86c): Suppose one is given a contra-covariant tensor A. Then,

AT from=====
(5.73b)

(
Ai

. jgi ⊗ g j
)T

from=========
(2.52) to (2.54)

Ai
. jg

j ⊗ gi

by interchanging the============
names of the indices

A j
.ig

i ⊗ g j .

Consistent with this result, consider AT = (AT
). j
i gi ⊗ g j according to (5.73c). One

can thus deduce the desired relation
(
AT
). j
i

= (A)
j
.i .

The expression (5.87)4: Let A be a tensor that is known in its contravariant compo-
nents. Further, let B be a tensor that is known in its covariant components. Then,

A : B from===========
(5.73a) and (5.73d)

(
Ai jgi ⊗ g j

) : ( Bklgk ⊗ gl
)

from===============
(2.73), (2.74a) and (2.74b)

Ai j B kl
(
gi · gk) (g j · gl)
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from====
(5.27)

Ai j B klδ
k
i δ

l
j

from====
(5.14)

Ai j B i j .

The expression (5.88)4: Suppose one is given a covariant tensor A. Then,

trA from====
(2.83)

I : A
from=====
(5.73d)

I : ( Ai jgi ⊗ g j
)

from===============
(2.74a), (2.74b) and (2.79c)

(
gi · Ig j

)
Ai j

from=========
(2.5) and (5.46)

gi j Ai j .

The expression (5.89a)1: The goal here is to derive the determinant of a tensor A
assuming thatA is known in its contravariant components. To do so, let u, v andw be
three arbitrary covariant vectors according to (5.64b), i.e. u = ulgl , v = vmgm and
w = wngn . Consistent with this, letAu,Av andAw be three linear transformations of
the form (5.84a), i.e.Au = Ail u lgi ,Av = A jm vmg j andAw = Akn wngk . Having
in mind that the scalar product and cross product are bilinear operators, it follows
that

from===⇒
(2.98)

ul vm wngl · (gm × gn
)
detA = ul vm wngi · (g j × gk

)
Ail A jm Akn

arbitrariness=======⇒
of vectors

gl · (gm × gn
)
detA = gi · (g j × gk

)
Ail A jm Akn

from=========⇒
(5.31) and (5.32)

J −1εlmn detA = Jεi jk Ail A jm Akn

from===⇒
(1.58c)

6 detA = J2εi jkεlmn Ail A jm Akn .

The expression (5.90b)2: Suppose one is given a co-contravariant tensor A. The
goal here is to derive the desired relation using the basic definition (2.112), i.e.
Ac (u × v) = (Au) × (Av).

Let u and v be two covariant vectors and consider two linear transformations of
the form Au = A .m

k umgk and Av = A .n
l vngl . Then,

(Au) × (Av) = ( A .m
k umgk

)× ( A .n
l vngl

)

from=========
(1.49a)-(1.49b)

A .m
k A .n

l um vngk × gl

from====
(5.35)

J −1 A .m
k A .n

l um vnε
klpgp .
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On the other hand, by using (5.69b)4, one can write u × v = J −1 um vnεmnogo.
Consistent with the above result, mapping of this vector by Ac, using (5.84b)2−3,
then gives

Ac (u × v) = J −1 um vnε
mno (Ac)

p
.o gp .

Considering the fact that u and v are arbitrary vectors now implies that

εmno (Ac)
p
.o gp = A .m

k A .n
l εklpgp .

Bymultiplying both side of this equation by gi , taking into account (5.14) and (5.27)2,
one will have

εmno (Ac)
i
.o = A .m

k A .n
l εkli or, using (1.54), εomn (Ac)

i
.o = A .m

k A .n
l εikl .

Multiplying both sides of the above result with ε jmn , using (1.58b)3 and (5.14), finally
yields

2δoj (A
c)

i
.o = εiklε jmn A .m

k A .n
l or 2 (Ac)

i
. j = εiklε jmn A .m

k A .n
l .

The expression (5.91b)2: Suppose one is given a contra-covariant tensor A. Then,

A−1 from=====
(2.114)

1

detA
Ac T

from=====
(5.73b)

1

detA

(
Ac T

)i
. j gi ⊗ g j

from=====
(5.86b)

1

detA
(Ac)

.i
j gi ⊗ g j

from=====
(5.90c)

1

2 detA
εimnε jkl A

k
.m Al

.ngi ⊗ g j .

This result eventually represents the contra-covariant form of the tensor A−1 with(
A−1

)i
. j = (2 detA)−1 εimnε jkl Ak

.m Al
.n .

Exercise 5.3

Consider an orthogonal tensor Q with the following two forms

Q = Qi
. jgi ⊗ g j = Q . j

i g
i ⊗ g j .

1. Demonstrate that the orthogonality condition QQT = I in index notation can be
written as
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Qi
.k Q

.k
j = δij , Q .k

i gkl Q
. l
j = gi j .

Solution. Having in mind (5.73b) and (5.78)2, consider first the contra-covariant
form of the three tensors Q, QT and I:

Q = (Q)m.n gm ⊗ gn , QT = (QT
)k
. l gk ⊗ gl , I = go ⊗ go .

Then, in light of (5.85b)4 and (5.86b)2, the orthogonality condition QQT = I
renders

(Q)m.k
(
QT
)k
. l gm ⊗ gl = go ⊗ go =⇒ (Q)m.k (Q).kl gm ⊗ gl = go ⊗ go .

Post-multiplying both sides of the above result with g j and subsequently multi-
plying the resulting vectors with gi , leads to the desired result:

(Q)m.k (Q).kj gm = g j =⇒ (Q)i.k (Q).kj = δij .

One can follow the same procedure to verify the second desired relation. Here,
one needs to use the following appropriate forms of tensors

Q = (Q).km gm ⊗ gk , QT = (QT
)l
.n gl ⊗ gn , I = gmngm ⊗ gn .

Then, the orthogonality condition QQT = I delivers

(Q).km gkl
(
QT
)l
.n g

m ⊗ gn = gmngm ⊗ gn

or (Q).km gkl (Q). ln gm ⊗ gn = gmngm ⊗ gn

.

At the end, post-multiplying both sides of this equation with g j and then multi-
plying the resulting expression with gi yields

(Q).km gkl (Q). lj g
m = gmjgm =⇒ (Q).ki gkl (Q). lj = gi j .

2. Demonstrate that under the transformation ḡi = Qgi or gi = QTḡi , i = 1, 2, 3,
the components of the identity tensor I remain invariant.

Solution. Given two sets of covariant basis vectors; namely {ḡi } and {gi }. The
corresponding covariant metric coefficients can then be written as ḡi j = ḡi · ḡi
and gi j = gi · g j . Knowing that the covariant metric coefficients represent the
covariant components of the identity tensor according to (5.78)4, the goal is now
to show that

ḡi j = gi j if ḡi = Qgi .
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This amounts to writing

I = ḡi jgi ⊗ g j = gi j ḡi ⊗ ḡ j if ḡi = Qgi .

By means of (2.5), (2.51d)1, (2.130)1 and (5.38)1, one can infer that

ḡi j = ḡi · ḡ j = Qgi · Qg j = gi · QTQg j = gi · Ig j = gi · g j = gi j .

Exercise 5.4

Let the covariant basis vectors g1, g2 and g3 be given by

g1 = ê1 + 3 ê3 , g2 = −̂e1 + 2 ê2 + 0.5 ê3 , g3 = ê2 + 2 ê3 .

In matrix notation, they render

[
g1
] =

⎡

⎣
1
0
3

⎤

⎦ ,
[
g2
] =

⎡

⎣
−1
2
0.5

⎤

⎦ ,
[
g3
] =

⎡

⎣
0
1
2

⎤

⎦ .

First, consider the vectors

u = ê1 + 2 ê2 + ê3 ,

v = 3 ê1 − ê2 + 2 ê3 ,

or, the single-column matrices,

[u ] = [1 2 1
]T

,

[ v ] = [3 −1 2
]T

.

Then, consider the tensors

A = ê1 ⊗ ê1 + 2 ê1 ⊗ ê2 − 0.3 ê1 ⊗ ê3 + 0.7 ê2 ⊗ ê1 − 0.8 ê2 ⊗ ê2 + ê2 ⊗ ê3
+ 1.6 ê3 ⊗ ê1 + 1.5 ê3 ⊗ ê2 + 1.2 ê3 ⊗ ê3 ,

B = 0.6 ê1 ⊗ ê1 + 1.4 ê1 ⊗ ê2 + 2 ê1 ⊗ ê3 + ê2 ⊗ ê1 − 2 ê2 ⊗ ê2 − ê2 ⊗ ê3
− 1.4 ê3 ⊗ ê1 + 0.5 ê3 ⊗ ê2 − 0.9 ê3 ⊗ ê3 ,

or, the matrices,



206 5 Representation of Tensorial Variables in Curvilinear Coordinates

[A ] =
⎡

⎣
1 2 −0.3
0.7 −0.8 1
1.6 1.5 1.2

⎤

⎦ ,

[B ] =
⎡

⎣
0.6 1.4 2
1 −2 −1

−1.4 0.5 −0.9

⎤

⎦ .

Finally, consider the contravariant fourth-order tensor

A � A = 1

2
(A � A + A � A)

= 1

2

(
Aik Al j + Ail Ak j

)
gi ⊗ g j ⊗ gk ⊗ gl .

Note that only contravariant components of A have been utilized to construct this
tensor of rank four.

For in-depth learning vector and tensor algebra in curvilinear coordinates, write
a computer program to compute the

( a ) scalar product u · v by use of (5.67a)–(5.67d),
( b ) length of u by use of (5.68)1−3,
( c ) cross product u × v by use of (5.69a)1−2 and (5.69b)3−4,
( d ) simple contraction Au by use of (5.84a)1−3–(5.84d)1−3,
( e ) composition AB by use of (5.85a)1, (5.85b)2, (5.85c)3 and (5.85d)4,
( f ) transpose of A by use of (5.86a)–(5.86d),
( g ) double contraction A : B by use of (5.87)1, (5.87)5, (5.87)9 and (5.87)13,
( h ) trace of A by use of (5.88)1−4,
( i ) determinant of A by use of (5.89a)–(5.89d),
( j ) cofactor of A by use of (5.90a)–(5.90d),
( k ) inverse of A by use of (5.91a)–(5.91d) and
( l ) right mapping (A � A) : B by use of the rule (3.54d)1, the Cartesian represen-

tation (3.66a)4 and the curvilinear forms (5.101a)1−4.

Hint: Start the procedure by constructing the tensors F and C and subsequently
compute the Jacobian J , the contravariant basis

{
gi
}
, the covariant metric gi j and

the contravariant metric gi j . Then, calculate the components of the given first- and
second-order tensors with respect to the different curvilinear bases. Finally, imple-
ment all desired relations.

Hint: For implementing each operation, it is strongly recommended to first use the
Cartesian components of tensorial variables. This may help better understand the dif-
ferences regarding computations based on the Cartesian and curvilinear components.
Moreover, it helps provide a benchmark for comparing the results.

Solution. Among different programming languages, MATLAB has been chosen in
this text due to its popularity. But, it has been tried to develop the codes in a very basic
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format without using the functions installed with MATLAB. This helps keep their
generality as far as possible. The desired code can freely be accessed through https://
data.uni-hannover.de/dataset/exercises-tensor-analysis by any serious reader.
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Chapter 6
Differentiation of Tensor Functions
and Representation Theorems

6.1 Tensor Functions and Their Derivatives

Vector and tensor analysis or calculus is prerequisite for many applications in science
and engineering. Examples of which include differential geometry, electromagnetic
field theory and continuum mechanics. It is an important branch of mathematics
that studies differentiation and integration of vector and tensor fields which will
extensively be used in this text. This motivates to devote the first part of this chapter
as well as the two upcoming chapters of this book to study the fundamental rules
of vector and tensor calculus and their applications. Particularly, in this section, the
standard rules of differentiation for tensor functions are first introduced. Then, their
gradients are established by means of a first-order Taylor series expansion. At the
end, some analytical derivatives that frequently appear in this text are approximated
by use of finite difference method.

A tensor function presents a function whose arguments can be several tensorial
variables (with possibly different ranks) while its output will be a scalar, vector or
tensor. As an example, one should realize

☛☛ �(A) as a scalar-valued function of one tensor variable A, �(u) as a scalar-
valued function of one vector variable u and �(t) as a scalar-valued function
of one scalar variable t .

☛☛ v (A,u) as a vector-valued function of the tensorial variablesA and u,w (v,u)

as a vector-valued function of the tensorial variables v and u and w (u, t) as a
vector-valued function of the tensorial variables u and t .

☛☛ B (A) as a tensor-valued function of one tensor variable A, B (u) as a tensor-
valued function of one vector variable u and B (t) as a tensor-valued function
of one scalar variable t .

All tensor functions are assumed to be continuous in this textbook. Considering the
vector-valued function u (t) and the tensor-valued functionA (t), this is indicated by
the following relations
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lim
t→t0

[u (t) − u (t0)] = 0 , (6.1a)

lim
t→t0

[A (t) − A (t0)] = O . (6.1b)

The tensor functions u (t) and A (t) are said to be differentiable if the limits

u̇ := lim
h→0

u (t + h) − u (t)

h
, (6.2a)

Ȧ := lim
h→0

A (t + h) − A (t)

h
, (6.2b)

exist and are finite. In these relations, u̇ and Ȧ are referred to as the first derivatives
of u (t) and A (t), respectively. They are also sometimes denoted by

u′ := du
dt

, A′ := dA
dt

. (6.3)

Here, the standard rules of differentiation for scalar functions hold. Their analogues
are represented in the following.

Product of a scalar-valued function with a vector-valued function:

˙
�(t)u (t) = �̇u + �u̇ , (6.4a)

Product of a scalar-valued function with a tensor-valued function:

˙
�(t)A (t) = �̇A + �Ȧ , (6.4b)

Vector addition or subtraction:

˙u (t) ± v (t) = u̇ ± v̇ , (6.4c)

Tensor addition or subtraction:

˙A (t) ± B (t) = Ȧ ± Ḃ , (6.4d)

Scalar product between two vector-valued functions:

˙u (t) · v (t) = u̇ · v + u · v̇ , (6.4e)

Scalar product between two tensor-valued functions:

˙A (t) : B (t) = Ȧ : B + A : Ḃ , (6.4f)

Single contraction of a tensor-valued function and a vector-valued function:

˙A (t)u (t) = Ȧu + Au̇ , (6.4g)

Single contraction between two tensor-valued functions:

˙A (t)B (t) = ȦB + AḂ , (6.4h)

Cross product of two vector-valued functions:

˙u (t) × v (t) = u̇ × v + u × v̇ , (6.4i)
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Tensor product of two vector-valued functions:

˙u (t) ⊗ v (t) = u̇ ⊗ v + u ⊗ v̇ . (6.4j)

Here and elsewhere, a dot over a overline indicates that the quantity under the overline
should be differentiated. These differentiation rules can be proved by using (6.2a)
and (6.2b) along with basic concepts of differential calculus. For instance, (6.4g) can
be verified as follows:

˙A (t)u (t) = lim
h→0

A (t + h)u (t + h) − A (t)u (t)

h

= lim
h→0

A (t + h)u (t + h) + A (t)u (t + h) − A (t) u (t + h) − A (t)u (t)

h

= lim
h→0

[A (t + h) − A (t)] u (t + h)

h
+ lim

h→0

A (t) [u (t + h) − u (t)]

h

= Ȧu + Au̇ .

Throughout this textbook, the standard basis {̂ei } should be regarded as a set of
fixed orthonormal vectors whereas an incremental change in an element of either the
covariant basis {gi } or its dual basis

{

gi
}

is not zero in general. Now, consider the
Cartesian tensor A = Ai j êi ⊗ ê j together with its transpose AT = Ai j ê j ⊗ êi . It is
then easy to see that

Ȧ = Ȧi j êi ⊗ ê j , ȦT = Ȧi j ê j ⊗ êi .

As a result,

ȦT = ȦT . (6.5)

The flowing identities also hold true

İ = O , ←− see (2.23) and (5.78) (6.6a)

ġi j
from==========

(5.38) and (6.4e)
ġi · g j + gi · ġ j , (6.6b)

ġi j
from==========

(5.46) and (6.4e)
ġi · g j + gi · ġ j . (6.6c)

From (2.78)2, (2.83)1, (6.4f) and (6.6a), it follows that

˙trA = I : Ȧ = trȦ . (6.7)

Next, the frequently used chain rules of differentiation obey
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Chain rule for a vector-valued function of one variable:

d

dt
u [�(t)] = du

d�

d�

dt
, (6.8a)

Chain rule for a tensor-valued function of one variable:

d

dt
A [�(t)] = dA

d�

d�

dt
, (6.8b)

Chain rule for a scalar-valued function of three variables:

d

dt
h̄ [�(t) ,u (t) ,A (t)] = ∂ h̄

∂�

d�

dt
+ ∂ h̄

∂u
· du
dt

+ ∂ h̄

∂A
: dA
dt

, (6.8c)

Chain rule for a vector-valued function of three variables:

d

dt
ĥ [�(t) ,u (t) ,A (t)] = ∂ĥ

∂�

d�

dt
+ ∂ĥ

∂u
du
dt

+ ∂ĥ
∂A

: dA
dt

, (6.8d)

Chain rule for a tensor-valued function of three variables:

d

dt
H̃ [�(t) ,u (t) ,A (t)] = ∂H̃

∂�

d�

dt
+ ∂H̃

∂u
du
dt

+ ∂H̃
∂A

: dA
dt

. (6.8e)

The term ∂ h̄/∂� in the expression (6.8c) denotes the partial derivative of h̄ with
respect to �. Therein, ∂ h̄/∂� is a scalar, ∂ h̄/∂u consistently presents a vector to
be (single) contracted with the vector du/dt in order to have a scalar, and ∂ h̄/∂A
turns out to be a tensor (since its double contraction with the tensor dA/dt again
delivers a scalar). It is not then difficult to notice that ∂ĥ/∂� (∂H̃/∂�) is a first-
order (second-order) tensor, ∂ĥ/∂u (∂H̃/∂u) presents a second-order (third-order)
tensor and ∂ĥ/∂A (∂H̃/∂A) renders a third-order (fourth-order) tensor. Now, one
can generally conclude that if a tensor of rank n is a function of a tensor of rank m,
then the partial derivative becomes a tensor of rank m + n. The partial derivatives
in these relations are usually obtained from what are called directional derivatives.
They are introduced in the following.

6.1.1 Gradient of a Scalar-Valued Function

Approximating differentiable nonlinear functions by linear ones at any point of inter-
est within the domain of definition is of great importance in many scientific and
engineering problems. The goal here is thus to approximate a nonlinear scalar-valued
function by a linear function.

Let h̄ : R × E o3
r × Tso −→ R be a nonlinear and sufficiently smooth scalar-

valued function of the three tensorial variables �, u and A. The first-order Taylor
series of h̄ at (�,u,A) is given by

h̄ (� + d�,u + du,A + dA) = h̄ (�,u,A) + dh̄ + o (d�, du, dA) , (6.9)

where the total differential dh̄ is
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dh̄ = ∂ h̄

∂�
d� + ∂ h̄

∂u
· du + ∂ h̄

∂A
: dA , (6.10)

and o (d�, du, dA) presents the Landau order symbol. It contains terms that
approach zero faster than (d� → 0, du → 0, dA → O). In the total differential
form (6.10), the partial derivative ∂ h̄/∂� is also known as the gradient of h̄ with
respect to � which is a scalar. As expected, the derivative of h̄ with respect to u
(A) renders a vector (tensor). Note that the reason why the derivatives in (6.10) can
be taken stems from the fact that the scalar-valued function h̄ was assumed to be
sufficiently smooth a priori. Indeed, they can uniquely be determined from (6.9)–
(6.10), see (6.15)–(6.16). They can also be obtained from the so-called directional
(or Gâteaux) derivatives in an elegant way:

Dφ h̄ (�,u,A) := d

dε
h̄ (� + εφ,u,A)

∣

∣

∣

∣

ε=0

=
[

∂ h̄

∂ (� + εφ)

∂ (� + εφ)

∂ε

]

ε=0

= ∂ h̄

∂�
φ , (6.11a)

Dvh̄ (�,u,A) := d

dε
h̄ (�,u + εv,A)

∣

∣

∣

∣

ε=0

=
[

∂ h̄

∂ (u + εv)
· ∂ (u + εv)

∂ε

]

ε=0

= ∂ h̄

∂u
· v , (6.11b)

DBh̄ (�,u,A) := d

dε
h̄ (�,u,A + εB)

∣

∣

∣

∣

ε=0

=
[

∂ h̄

∂ (A + εB)
: ∂ (A + εB)

∂ε

]

ε=0

= ∂ h̄

∂A
: B . (6.11c)

Note that Dvh̄ (�,u,A) (DBh̄ (�,u,A)) indicates the directional derivative of h̄ at
(�,u,A) in the direction of v (B). It should be noted that the normalized vector v̂ is
often utilized for the definition of directional derivative in (6.11b). As can be seen,
the directional derivative of a scalar-valued function is always a scalar. Basically, it
is a linear operator that satisfies the usual rules of differentiation such as the chain
rule, as shown above. This powerful tool keeps only the second term (or linear term)
of a Taylor series.

Replacing (φ, v,B) by (d�, du, dA) in (6.11a)–(6.11c) helps express the total
differential (6.10) as
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dh̄ = Dd�h̄ (�,u,A) + Dduh̄ (�,u,A) + DdAh̄ (�,u,A)

= d

dε
h̄ (� + εd�,u + εdu,A + εdA)

∣

∣

∣

∣

ε=0

. (6.12)

Neglecting the reminder o (d�, du, dA) helps provide a linear approximation to the
nonlinear function h̄ around (�,u,A) according to

h̄ (� + d�,u + du,A + dA) ≈ h̄ (�,u,A)

+ ∂ h̄

∂�
d� + ∂ h̄

∂u
· du + ∂ h̄

∂A
: dA

︸ ︷︷ ︸

= d
dε

h̄ (� + εd�,u + εdu,A + εdA)

∣

∣

∣

ε=0

. (6.13)

The goal is now to express the derivatives ∂ h̄/∂u and ∂ h̄/∂A with respect to a
basis. Given two Cartesian vectors u = um êm and v = vm êm as well as two Cartesian
tensors A = Amn êm ⊗ ên and B = Bmn êm ⊗ ên . The directional derivatives (6.11b)
and (6.11c) then render

∂ h̄

∂u
· v

= d
dε

h̄ (�, [um + εvm ] êm ,A)

∣

∣

∣

ε=0

= ∂ h̄

∂um
vm ,

∂ h̄

∂A
: B

= d
dε

h̄ (�,u, [Amn + εBmn ] êm ⊗ ên )

∣

∣

∣

ε=0

= ∂ h̄

∂Amn
Bmn ,

which immediately imply that

∂ h̄

∂u
= ∂ h̄

∂ui
êi ,

∂ h̄

∂A
= ∂ h̄

∂Ai j
êi ⊗ ê j .

These results by means of the chain rule yield

∂ h̄

∂ui
êi = ∂ h̄

∂u
= ∂ h̄

∂ui

∂ui
∂u

⇒ êi = ∂ui
∂u

,

∂ h̄

∂Ai j
êi ⊗ ê j = ∂ h̄

∂A
= ∂ h̄

∂Ai j

∂Ai j

∂A
⇒ êi ⊗ ê j = ∂Ai j

∂A
,

which amount to writing du = (dui ) êi and dA = (d Ai j
)

êi ⊗ ê j . In summary, using
the different representations of a first-order tensor in (1.34)1 and (5.64a) and (5.64b)
along with the various forms of a second-order tensor according to (2.19)2 and
(5.73a)–(5.73d), one will have

∂ h̄

∂u
= ∂ h̄

∂ui
êi where êi = ∂ui

∂u
, (6.14a)

∂ h̄

∂u
= ∂ h̄

∂ ui
gi where gi = ∂ u i

∂u
, (6.14b)
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∂ h̄

∂u
= ∂ h̄

∂ ui
gi where gi = ∂ u i

∂u
, (6.14c)

∂ h̄

∂A
= ∂ h̄

∂Ai j
êi ⊗ ê j where êi ⊗ ê j = ∂Ai j

∂A
, (6.14d)

∂ h̄

∂A
= ∂ h̄

∂ Ai j
gi ⊗ g j where gi ⊗ g j = ∂ Ai j

∂A
, (6.14e)

∂ h̄

∂A
= ∂ h̄

∂ A . j
i

gi ⊗ g j where gi ⊗ g j = ∂ A . j
i

∂A
, (6.14f)

∂ h̄

∂A
= ∂ h̄

∂ Ai
. j

gi ⊗ g j where gi ⊗ g j = ∂ Ai
. j

∂A
, (6.14g)

∂ h̄

∂A
= ∂ h̄

∂ Ai j
gi ⊗ g j where gi ⊗ g j = ∂ Ai j

∂A
. (6.14h)

Guided by these relations, one can establish the following rule:

If a subscript (superscript) index appears in the denominator of a par-
tial derivative, it should be regarded as a superscript (subscript) in the
summation convention.

A new rule for index notation

�

Indeed, the partial derivative with respect to a covariant vector results in a con-
travariant vector and vice versa. This also holds true for tensors.

Moreover, for a given basis, these relations show that the partial derivative rel-
ative to a vector or tensor should be taken with respect to only its corresponding
components. And the type of a basis vector must consistently be changed.

The procedure to compute the derivatives of a scalar-valued function will be
illustrated in the following examples. ✒

The first example here regards a scalar-valued function h̄ : E o3
r × Tso −→ R of

the form
h̄ (u,A) = u · u + A : A . (6.15)

To begin with, one needs to identify the three terms on the right hand side of (6.9)
for the problem at hand:

h̄ (u + du,A + dA) = (u + du) · (u + du) + (A + dA) : (A + dA)

= u · u + A : A
︸ ︷︷ ︸

= h̄ (u,A)

+u · du + du · u + A : dA + dA : A
︸ ︷︷ ︸

= 2u · du + 2A : dA = dh̄

+ du · du + dA : dA
︸ ︷︷ ︸

= o (du, dA)

.
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Guided by (6.10), the desired derivatives will be

∂

∂u
[u · u] = 2u

or ∂
(

u j u j
)

/∂ui = 2ui

,
∂

∂A
[A : A] = 2A

or ∂
(

Akl Akl
)

/∂Ai j = 2Ai j

. (6.16)

The ambitious reader may want to use the directional derivatives to arrive at these
results. Using (6.12)2, the derivative of

h̄ (u + εdu,A + εdA) = (u + εdu) · (u + εdu) + (A + εdA) : (A + εdA)

= ε0 (u · u + A : A) + ε1 (u · du + du · u + A : dA + dA : A)

+ ε2 (du · du + dA : dA) ,

with respect to ε at ε = 0 yields the total differential

dh̄ = 2u · du + 2A : dA ,

from which one can deduce the results in (6.16) .

As another example, consider the scalar-valued function

h̄ (u,A) = |u| + |A| + u · Au + Au · Au . (6.17)

By following the similar procedures that led to (6.16), one can obtain

∂ |u|
∂u

= u
|u|

or ∂
(

u j u j
)1/2

/∂ui = ui /
(

u j u j
)1/2

,
∂ |A|
∂A

= A
|A|

or ∂
(

Akl Akl
)1/2

/∂Ai j = Ai j /
(

Akl Akl
)1/2

, (6.18a)

∂

∂u
[u · Au] = Au + ATu

or ∂
(

uk Akl ul
)

/∂ui = Ail ul + uk Aki

,
∂

∂A
[u · Au] = u ⊗ u

or ∂
(

uk Akl ul
)

/∂Ai j = ui u j

, ↙ see Sect. 6.1.4 (6.18b)

∂

∂u
[Au · Au] = 2ATAu

or ∂
(

A jkuk A jl ul
)

/∂ui = 2A ji A jl ul

,
∂

∂A
[Au · Au] = 2Au ⊗ u

or ∂
(

Akmum Aknun
)

/∂Ai j = 2Aimumu j

. (6.18c)

The last example here regards the principal scalar invariants (4.17a)–(4.17c). It
follows that
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I1 (A + εdA) = tr [A + εdA] = I : A + εI : dA , (6.19a)

I2 (A + εdA) = 1

2

[

(I : A + εI : dA)2 − tr (A + εdA)2
]

= ε0

2

[

(I : A)2 − I : A2
]+ ε1

[

(I : A) (I : dA) − AT : dA]

+ ε2

2
[(I : dA) (I : dA) − (I : dAdA)] , (6.19b)

I3 (A + εdA) = det [A + εdA]

= ε0 detA + ε1Ac : [dA] + ε2A : [dA]c + ε3 det [dA] . (6.19c)

Consequently, the derivatives d Ii (A + εdA) /dε, i = 1, 2, 3, at ε = 0 help provide
the useful relations

∂ I1
∂A

= ∂

∂A
[trA] = I

or ∂ I1/∂Ai j = δi j

, (6.20a)

∂ I2
∂A

= ∂

∂A

[

1

2
I 21 − 1

2
trA2

]

= I1I − AT

or ∂ I2/∂Ai j = I1δi j − A ji

, (6.20b)

∂ I3
∂A

= ∂

∂A
[detA] = Ac = (detA)A−T = I3A−T

or ∂ I3/∂Ai j = I3A
−1
j i

. (6.20c)

The relations (6.20a)–(6.20c) are extensively used in, for instance, the constitutive
response of isotropic hyperelastic solids, see Exercise 6.16. As a consequence of
(6.20c), one will have, for any invertible tensor,

∂

∂A
[ln I3] = ∂

∂A
[ln (detA)] = A−T . ✒ (6.21)

Consider now the covariant metric tensor (5.80), i.e. g = gi jgi ⊗ g j , where the
determinant of its components renders det

[

gi j
] = J 2, according to (5.41). Further,

consider the contravariant metric tensor g−1 = gi jgi ⊗ g j , given in (5.81), for which
det
[

gi j
] = J−2, according to (5.52). Then, by using (6.14e), (6.14h) and (6.20c),

taking into account the symmetry of the metric coefficients, one can establish the
useful relations
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∂ J

∂g
= ∂ J

∂gi j
gi ⊗ g j with

∂ J

∂gi j
= J

2
gi j , (6.22)

and
∂ J

∂g−1
= ∂ J

∂gi j
gi ⊗ g j with

∂ J

∂gi j
= − J

2
gi j . (6.23)

6.1.2 Gradient of a Vector-Valued Function

Let ĥ : R × E o3
r × Tso −→ E o3

r be a nonlinear and sufficiently smooth vector-valued
function of the three tensorial variables �, u and A. The first-order Taylor series
expansion of ĥ about (�,u,A) gives

ĥ (� + d�,u + du,A + dA) = ĥ (�,u,A) + dĥ + o (d�, du, dA) , (6.24)

where the total differential dĥ presents

dĥ = ∂ĥ
∂�

d� + ∂ĥ
∂u

du + ∂ĥ
∂A

: dA , (6.25)

and each term of the Landau symbol o (d�, du, dA) characterizes a vector. Here,
the partial derivative of ĥ with respect to �, i.e. ∂ĥ/∂�, is a vector. Whereas ∂ĥ/∂u
(∂ĥ/∂A) renders a second-order (third-order) tensor. These gradients can also be
obtained from the following directional derivatives:

Dφ ĥ (�,u,A) := d

dε
ĥ (� + εφ,u,A)

∣

∣

∣

∣

ε=0

= ∂ĥ
∂�

φ , (6.26a)

Dvĥ (�,u,A) := d

dε
ĥ (�,u + εv,A)

∣

∣

∣

∣

ε=0

= ∂ĥ
∂u

v , (6.26b)

DBĥ (�,u,A) := d

dε
ĥ (�,u,A + εB)

∣

∣

∣

∣

ε=0

= ∂ĥ
∂A

: B . (6.26c)

As expected, the directional derivative of a vector-valued function does not change its
order.Moreover, Dvĥ (�,u,A) (DBĥ (�,u,A)) represents the directional derivative
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of ĥ at (�,u,A) in the direction of v (B). Using (6.26a)–(6.26c), the total differential
(6.25) can be rewritten in the compact form

dĥ = d

dε
ĥ (� + εd�,u + εdu,A + εdA)

∣

∣

∣

∣

ε=0

. (6.27)

The linearized form of (6.24) then renders

ĥ (� + d�,u + du,A + dA) ≈ ĥ (�,u,A)

+ ∂ĥ
∂�

d� + ∂ĥ
∂u

du + ∂ĥ
∂A

: dA
︸ ︷︷ ︸

= d
dε

ĥ (� + εd�, u + εdu,A + εdA)

∣

∣

∣

ε=0

. (6.28)

By following arguments similar to those which led to (6.14a)–(6.14h), one can
express the partial derivatives ∂ĥ/∂u and ∂ĥ/∂A with respect to the standard basis
{̂ei } as well as the general basis {gi } and the dual basis

{

gi
}

as

∂ĥ
∂u

= ∂ ĥi
∂u j

êi ⊗ ê j ←− see (2.19) and (5.73a)-(5.73d)

= ∂ ĥ i

∂ u j
gi ⊗ g j = ∂ ĥ i

∂ u j
gi ⊗ g j

= ∂ ĥ i

∂ u j
gi ⊗ g j = ∂ ĥ i

∂ u j
gi ⊗ g j , (6.29)

∂ĥ
∂A

= ∂ ĥi
∂A jk

êi ⊗ ê j ⊗ êk ←− see (3.13) and (5.96a)-(5.96d)

= ∂ ĥ i

∂ A jk
gi ⊗ g j ⊗ gk = ∂ ĥ i

∂ A j
. k

gi ⊗ g j ⊗ gk

= ∂ ĥ i

∂ A jk
gi ⊗ g j ⊗ gk = ∂ ĥ i

∂ A jk
gi ⊗ g j ⊗ gk . (6.30)

The following example illustrates the procedure to arrive at the partial derivatives of
a vector-valued function. ❒

Consider a vector-valued function ĥ : E o3
r × Tso −→ E o3

r of the following form

ĥ (u,A) = u + Au + A2u . (6.31)

To compute the gradients of these three vectorial variables by use of (6.24), one
needs to construct ĥ at (u + du,A + dA). This is given by
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ĥ (u + du,A + dA) = (u + du) + (A + dA) (u + du)

+ (A2 + AdA + dAA + dAdA
)

(u + du)

= u + Au + A2u
︸ ︷︷ ︸

= ĥ (u,A)

+ du + Adu + dAu + A2du + AdAu + dAAu
︸ ︷︷ ︸

= Idu + Adu + (I ⊗ u) : dA + A2du + (A ⊗ u) : dA + (I ⊗ Au) : dA = dĥ

+ dAdu + AdAdu + dAAdu + dAdAu + dAdAdu
︸ ︷︷ ︸

= o (du, dA)

,

from which the desired derivatives, using (6.25), render

∂u
∂u

= I

or ∂ui /∂u j = δi j

, (6.32a)

∂

∂u
[Au] = A

or ∂
(

Aimum
)

/∂u j = Ai j

,
∂

∂A
[Au] = I ⊗ u

or ∂
(

Aimum
)

/∂A jk = δi j uk

, (6.32b)

∂

∂u

[

A2u
] = A2

or ∂
(

Aim Amnun
)

/∂u j = Aim Amj

,
∂

∂A

[

A2u
] = A ⊗ u + I ⊗ Au

or ∂
(

Aim Amnun
)

/∂A jk = Ai j uk + δi j Aknun

. ❒ (6.32c)

Using (5.64a)–(5.64b) and (5.78), the widely used derivative of a vector with
respect to itself, according to (6.32a), also admits the following representations in
indicial notation,

∂ ui

∂ u j
= gi j ,

∂ ui

∂ u j
= δij ,

∂ ui

∂ u j
= δ

j
i ,

∂ u i

∂ u j
= gi j

recall the components relationships ui = gi j u j , ui = δij u
j , ui = δ

j
i u j and ui = gi j u

j

. (6.33)

The relation (6.33)1 may be viewed as a new definition for the contravariant metric
in (5.46)1. In a similar manner, (6.33)2 may be seen as an alternative to (5.15)2.
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6.1.3 Gradient of a Tensor-Valued Function

Let H̃ : R × E o3
r × Tso −→ Tso be a nonlinear and sufficiently smooth tensor-valued

function of the three tensorial variables �, u and A. The first-order Taylor series
expansion of H̃ around (�,u,A) renders

H̃ (� + d�,u + du,A + dA) = H̃ (�,u,A) + dH̃ + o (d�, du, dA) , (6.34)

where the total differential

dH̃ = ∂H̃
∂�

d� + ∂H̃
∂u

du + ∂H̃
∂A

: dA , (6.35)

as well as the reminder o (d�, du, dA) represent tensors of rank two. Accordingly,
the partial derivative of H̃ with respect to � in (6.35) also characterizes a tensor.
Therein, ∂H̃/∂u and ∂H̃/∂A consistently present a third- and fourth-order tensor,
respectively. One can also determine these gradients in a systematic manner via

DφH̃ (�,u,A) := d

dε
H̃ (� + εφ,u,A)

∣

∣

∣

∣

ε=0

= ∂H̃
∂�

φ , (6.36a)

DvH̃ (�,u,A) := d

dε
H̃ (�,u + εv,A)

∣

∣

∣

∣

ε=0

= ∂H̃
∂u

v , (6.36b)

DBH̃ (�,u,A) := d

dε
H̃ (�,u,A + εB)

∣

∣

∣

∣

ε=0

= ∂H̃
∂A

: B , (6.36c)

or, the useful form,

dH̃ = d

dε
H̃ (� + εd�,u + εdu,A + εdA)

∣

∣

∣

∣

ε=0

. (6.37)

As a result, the linearized form of (6.34) renders

H̃ (� + d�,u + du,A + dA) ≈ H̃ (�,u,A)

+ ∂Ĥ
∂�

d� + ∂Ĥ
∂u

du + ∂Ĥ
∂A

: dA
︸ ︷︷ ︸

= d
dε

Ĥ (� + εd�, u + εdu,A + εdA)

∣

∣

∣

ε=0

. (6.38)
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Guided by the expressions (6.29) and (6.30), the Cartesian as well as curvilinear
forms of ∂H̃/∂u and ∂H̃/∂A can be expressed as

∂H̃
∂u

= ∂ H̃i j

∂uk
êi ⊗ ê j ⊗ êk ←− see (3.13) and (5.96a)-(5.96d)

= ∂ H̃ i j

∂ uk
gi ⊗ g j ⊗ gk =

∂ H̃ i
. j

∂ uk
gi ⊗ g j ⊗ gk

=
∂ H̃ i

. j

∂ uk
gi ⊗ g j ⊗ gk = ∂ H̃ i j

∂ uk
gi ⊗ g j ⊗ gk , (6.39)

∂H̃
∂A

= ∂ H̃i j

∂Akl
êi ⊗ ê j ⊗ êk ⊗ êl ←− see (3.62) and (5.99a)-(5.99h)

= ∂ H̃ i j

∂ Akl
gi ⊗ g j ⊗ gk ⊗ gl = ∂ H̃ i j

∂ Ak
. l

gi ⊗ g j ⊗ gk ⊗ gl = ∂ H̃ i j

∂ Akl
gi ⊗ g j ⊗ gk ⊗ gl

=
∂ H̃ i

. j

∂ Ak
. l

gi ⊗ g j ⊗ gk ⊗ gl = ∂ H̃ i j

∂ Akl
gi ⊗ g j ⊗ gk ⊗ gl = ∂ H̃ i j

∂ Ak
. l

gi ⊗ g j ⊗ gk ⊗ gl

= ∂ H̃ i j

∂ Akl
gi ⊗ g j ⊗ gk ⊗ gl =

∂ H̃ i
. j

∂ Akl
gi ⊗ g j ⊗ gk ⊗ gl . (6.40)

The procedure to compute the partial derivatives of a tensor-valued function is illus-
trated in the following examples. ❡

The first example regards the tensor-valued function

H̃ (A) = A + A2 + A3 . (6.41)

The desired derivatives will be calculated here by using the differential form (6.37).
Thus,

H̃ (A + εdA) = ε0
(

A + A2 + A3
)

+ ε1
(

dA + dAA + AdA + dAA2 + AdAA + A2dA
)

︸ ︷︷ ︸

= ε1
(

I � I + I � A + A � I + I � A2 + A � A + A2 � I
)

: dA, see (3.54b)

+ ε2 (dAdA + dAdAA + dAAdA + AdAdA)

+ ε3 (dAdAdA) ,

helps obtain

∂A
∂A

= I � I
or δikδl j = ∂Ai j /∂Akl

from====
(3.57)

I , (6.42a)
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∂A2

∂A
= I � A + A � I

or δik Al j + Aikδl j = ∂A2i j /∂Akl

, (6.42b)

∂A3

∂A
= I � A2 + A � A + A2 � I

or δik A
2
l j + Aik Al j + A2ikδl j = ∂A3i j /∂Akl

. (6.42c)

The first result here can be used to derive the last one. This will be carried out in the
following for the interested reader:

dA3 from==========
(6.4h) and (6.8e)

(

∂A
∂A

: dA
)

A2 + A
(

∂A
∂A

: dA
)

A + A2

(

∂A
∂A

: dA
)

from=====
(6.42a)

(I � I : dA)A2 + A (I � I : dA)A + A2 (I � I : dA)

from============
(3.40a) and (3.103b)

[

(I � I)A2 + A (I � I)A + A2 (I � I)
] : dA

from===========
(2.33) and (3.101b)

[

I � A2 + A � A + A2 � I
] : dA . (6.43)

The derivation here motivates to establish the following identities. Let A and B be
two sufficiently smooth tensor-valued functions of one tensor variableC. Then, using
the product rule,

∂

∂C
[AB] = (I � B) : ∂A

∂C
+ (A � I) : ∂B

∂C
. (6.44)

This is basically the direct notation of

∂
[

Aim Bmj
]

∂Ckl
= δin Bmj

∂Anm

∂Ckl
+ Aimδnj

∂Bmn

∂Ckl
←− see Sect. 6.1.4

= (I � B)i jnm

(

∂A
∂C

)

nmkl

+ (A � I)i jmn

(

∂B
∂C

)

mnkl

. (6.45)

See also (6.190a)–(6.190d) with the corresponding derivations.
Further, let A (B (C)) be a sufficiently smooth tensor-valued function of the dif-

ferentiable tensor function B (C). Then, using the chain rule,

∂A
∂C

= ∂A
∂B

: ∂B
∂C

or ∂Ai j /∂Ckl = (∂Ai j /∂Bmn
) (

∂Bmn/∂Ckl
)

. (6.46)

Let A, B and C be three arbitrary tensors. Then, by means of (2.33)1−2, (3.54b)1,
(3.103b) and (6.42a)1, one can establish
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B
∂A
∂A

C : D = B (I � I)C : D = B [(I � I) : D]C = B [IDI]C = BDC , (6.47)

which is eventually the absolute notation of

Bim
∂Amn

∂Akl
Cnj Dkl = Bik DklCl j . (6.48)

In a similar manner, the following identities are implied

B
∂A2

∂A
C : D = BDAC + BADC , (6.49a)

B
∂A3

∂A
C : D = BDA2C + BADAC + BA2DC . (6.49b)

As another example, consider the tensor-valued function

H̃ (A) = AT + ATA + AAT . (6.50)

It follows that the derivative of

H̃ (A + εdA) = (A + εdA)T + (A + εdA)T (A + εdA) + (A + εdA) (A + εdA)T

= ε0
(

AT + ATA + AAT
)

+ ε1
(

dAT + dATA + ATdA + dAAT + AdAT)

︸ ︷︷ ︸

= ε1
(

I � I + I � A + AT � I + I � AT + A � I
)

: dA, according to (3.54b)-(3.54c)

+ ε2
(

dATdA + dAdAT) ,

with respect to ε at ε = 0 helps obtain

∂AT

∂A
= I � I

or δ jkδli = ∂A ji /∂Akl = ∂ATi j /∂Akl

from====
(3.57)

Ī , (6.51a)

∂

∂A

[

ATA
] = I � A + AT � I

or δli Ak j + Aki δl j = ∂
(

Ami Amj
)

/∂Akl

, (6.51b)

∂

∂A

[

AAT
] = I � AT + A � I

or δik A jl + Ail δ jk = ∂
(

Aim A jm
)

/∂Akl

. (6.51c)

The interested reader may want to use the first result to arrive at the second one:
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d
(

ATA
) from==========

(6.4h) and (6.8e)

(

∂AT

∂A
: dA

)

A + AT

(

∂A
∂A

: dA
)

from===========
(6.42a) and (6.51a)

(I � I : dA)A + AT (I � I : dA)

from============
(3.40a) and (3.103b)

[

(I � I)A + AT (I � I)
] : dA

from===========
(2.33) and (3.101c)

[

I � A + AT � I
] : dA . (6.52)

Suppose that A in (6.41) satisfies AT = A. Recall that the symmetric tensor was
denoted by S for the sake of concise notation, see (2.62). Accordingly, the gradients
in (6.42a)–(6.42c) translate to

∂S
∂S

= I 	 I
or δikδl j + δil δk j = 2∂Si j /∂Skl

from=====
(3.58a)

1

2

(

I + Ī
)

, (6.53a)

∂S2

∂S
= I 	 S + S 	 I

or δik Sl j + δil Sk j + Sikδl j + Sil δk j = 2∂S2i j /∂Skl

, (6.53b)

∂S3

∂S
= I 	 S2 + S 	 S + S2 	 I

or δik S
2
l j + δil S

2
k j + Sik Sl j + Sil Sk j + S2ikδl j + S2il δk j = 2∂S3i j /∂Skl

. (6.53c)

Note that these partial derivatives render super-symmetric tensors possessing major
and minor symmetries as illustrated in (3.115). Observe that the partial derivative
of a generally unsymmetric tensor with respect to itself, according to (6.42a), is
constructed by means of the tensor product �. But, its super-symmetric form, given
in (6.53a), is generated by use of 	. This is due to the fact that any symmetric tensor
S satisfies 2dS = dS + dST. And this helps infer that

[A � B] : dS = [A � B] : dS + dST

2
from=====
(3.107)

1

2

[

(A � B) + (A � B)
̂T
]

: dS
from======

(3.110g)

1

2
[A � B + A � B] : dS

from=====
(3.70d)

[A 	 B] : dS . (6.54)

With regard to the various representations of a fourth-order tensor in curvilinear
coordinates according to (5.99a)–(5.99h) and by use of (5.78), (6.42a) and (6.53a),
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one will have the useful relations

∂ Ai j

∂ Akl
= gikgl j ,

∂ Si j

∂ Skl
= 1

2

(

gikgl j + gil gk j
)

, (6.55a)

∂ Ai j

∂ Ak
.l

= δik g
l j ,

∂ Si j

∂ Sk
.l

= 1

2

(

δik g
l j + gilδ j

k

)

, (6.55b)

∂ Ai j

∂ Akl
= δikδ

j
l ,

∂ Si j

∂ Skl
= 1

2

(

δikδ
j
l + δil δ

j
k

)

, (6.55c)

∂ Ai
. j

∂ Ak
.l

= δikδ
l
j ,

∂ Si
. j

∂ Sk
.l

= 1

2

(

δikδ
l
j + gil gk j

)

, (6.55d)

∂ Ai j

∂ Akl
= δki δ

l
j ,

∂ Si j

∂ Skl
= 1

2

(

δki δ
l
j + δli δ

k
j

)

, (6.55e)

∂ Ai j

∂ Ak
.l

= gikδ
l
j ,

∂ Si j

∂ Sk
.l

= 1

2

(

gikδ
l
j + δli gk j

)

, (6.55f)

∂ Ai j

∂ Akl
= gikgl j ,

∂ Si j

∂ Skl
= 1

2

(

gikgl j + gil gk j
)

, (6.55g)

∂ Ai
. j

∂ Akl
= δik gl j ,

∂ Si
. j

∂ Skl
= 1

2

(

δik gl j + δil gk j
)

. ❡ (6.55h)

In what follows, the partial derivative of the inverse of a tensor with respect to
itself is characterized.

It is evident that the total differential of the identity tensor vanishes, i.e. dI = O.
An incremental change in AA−1, using the product rule of differentiation according
to (6.4h), thus gives

dAA−1 + AdA−1 = O . (6.56)

Premultiplying the above result by A−1 leads to

dA−1 = −A−1 (dA)A−1 = (−A−1 � A−1
) : dA . (6.57)

Thus,

∂A−1

∂A
= −A−1 � A−1

or − A−1
ik A−1

l j = ∂A−1
i j /∂Akl

. (6.58)

In a similar fashion,
∂A

∂A−1
= −A � A

or − Aik Al j = ∂Ai j /∂A
−1
kl

. (6.59)
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The expressions (3.54b), (6.58) and (6.59) help obtain

∂A−1

∂A
: B = −A−1BA−1, B : ∂A−1

∂A
= −A−TBA−T , (6.60a)

∂A
∂A−1

: B = −ABA, B : ∂A
∂A−1

= −ATBAT . (6.60b)

It is then a simple exercise to verify that

∂A−1

∂A
: A ⊗ A−1 = −A−1 ⊗ A−1 , (6.61a)

A−T ⊗ AT : ∂A−1

∂A
= −A−T ⊗ A−T , (6.61b)

∂A
∂A−1

: A−1 ⊗ A = −A ⊗ A , (6.61c)

AT ⊗ A−T : ∂A
∂A−1

= −AT ⊗ AT . (6.61d)

Moreover,

∂A−2

∂A
= −A−1 � A−2 − A−2 � A−1

or − A−1
ik A−2

l j − A−2
ik A−1

l j = ∂A−2
i j /∂Akl

, (6.62a)

∂A−3

∂A
= −A−1 � A−3 − A−2 � A−2 − A−3 � A−1

or − A−1
ik A−3

l j − A−2
ik A−2

l j − A−3
ik A−1

l j = ∂A−3
i j /∂Akl

, (6.62b)

∂A−T

∂A
= −A−T � A−T

or − A−1
li A−1

jk = ∂A−1
j i /∂Akl = ∂A−T

i j /∂Akl

, (6.62c)

∂

∂A

[

A−TA−1
] = −A−T �

(

A−TA−1
)− (A−TA−1

)

� A−1

or − A−1
mk A

−1
li A−1

mj − A−1
mi A

−1
mk A

−1
l j = ∂

(

A−1
mi A

−1
mj

)

/∂Akl

, (6.62d)

∂

∂A

[

A−1A−T
] = −A−1 �

(

A−1A−T
)− (A−1A−T

)

� A−T

or − A−1
ik A−1

lm A−1
jm − A−1

im A−1
jk A−1

lm = ∂
(

A−1
im A−1

jm

)

/∂Akl

. (6.62e)

Regarding a symmetric tensor S, the following relations hold true
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∂S

∂S−1
= −S 	 S

or − [Sik Sl j + Sil Sk j
]

/2 = ∂Si j /∂S
−1
kl

, (6.63a)

∂S−1

∂S
= −S−1 	 S−1

or −
[

S−1
ik S−1

l j + S−1
il S−1

k j

]

/2 = ∂S−1
i j /∂Skl

, (6.63b)

∂S−2

∂S
= −S−1 	 S−2 − S−2 	 S−1

or −
[

S−1
ik S−2

l j + S−1
il S−2

k j + S−2
ik S−1

l j + S−2
il S−1

k j

]

/2 = ∂S−2
i j /∂Skl

, (6.63c)

∂S−3

∂S
= −S−1 	 S−3 − S−2 	 S−2 − S−3 	 S−1

or −
[

S−1
ik S−3

l j + S−1
il S−3

k j + S−2
ik S−2

l j + S−2
il S−2

k j + S−3
ik S−1

l j + S−3
il S−1

k j

]

/2 = ∂S−3
i j /∂Skl

. (6.63d)

In light of (3.70d)2 and by using (6.40)8 and (6.63a), the partial derivative of the
covariant metric tensor (5.80) with respect to the contravariant metric tensor (5.81)
renders

∂g
∂g−1

= ∂gi j
∂gkl

gi ⊗ g j ⊗ gk ⊗ gl = −g 	 g , (6.64)

with
∂gi j
∂gkl

= −1

2

(

gikgl j + gil gk j
)

. (6.65)

In a similar fashion,

∂g−1

∂g
= ∂gi j

∂gkl
gi ⊗ g j ⊗ gk ⊗ gl = −g−1 	 g−1

with ∂gi j /∂gkl = −
(

gik gl j + gil gk j
)

/2

. (6.66)

6.1.4 Proof of Tensor Calculus Identities by Index Notation

Verifying vector and tensor identities involving differentiation in direct notation
based on various tensor products is a tedious task and often cumbersome. It is thus
preferred to use indicial notation here and elsewhere for convenience. With regard
to this, the derivatives of tensor functions can consistently be computed, under the
standard rules of differentiation, by means of the principal terms
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∂ui
∂u j

= δi j ,
∂Ai j

∂Akl
= δikδl j ,

∂A−1
i j

∂Akl
= −A−1

ik A−1
l j , (6.67)

as well as

∂Si j
∂Skl

= 1

2

(

δikδl j + δilδk j
)

,
∂S−1

i j

∂Skl
= −1

2

(

S−1
ik S−1

l j + S−1
il S−1

k j

)

. (6.68)

To use these relations, for instance, consider the last term in (6.17) whose gradients
were presented in (6.18c). Here, they can readily be derived as follows:

∂
(

A jkuk A jlul
)

∂ui
= A jk

∂uk
∂ui

A jlul + A jkuk A jl
∂ul
∂ui

= A ji A jlul + A jkuk A ji

= 2
(

AT
)

i j (Au) j

= 2
(

ATAu
)

i ,

∂ (Akmum Aknun)

∂Ai j
= ∂Akm

∂Ai j
um Aknun + Akmum

∂Akn

∂Ai j
un

= u j Ainun + Aimumu j

= 2 (Au)i (u) j

= 2 (Au ⊗ u)i j .

Another example is

∂tr (BAC)

∂A
= BTCT ,

∂tr
(

BA2C
)

∂A
= BTCTAT + ATBTCT , (6.69)

because, for instance,

∂ (Bkl AlmCmk)

∂Ai j
= Bklδliδ jmCmk = BkiC jk = (BT

)

ik

(

CT
)

k j
= (BTCT

)

i j
,

whereA,B andC are arbitrary tensors. It isworthwhile to point out that the curvilinear
components of tensorial variables can also be used to verify vector and tensor calculus
identities. But, the Cartesian type of components is often preferred for simplicity.
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6.1.5 Numerical Differentiation

Analytically computing the partial derivatives of tensor functions is a difficult and
tedious task. It often requires a lot of function evaluations which eventually can be
error-prone. Examples of which in nonlinear solid mechanics include the consistent
tangent modulus in multiplicative plasticity at finite strains and the macroscopic
tangent in FE2 method.On the contrary, numerical differentiation can be regarded as a
competitive alternative due to its simplicity and robustness. Thismotivates to develop
some closed-form formulas for approximating the gradients of tensor functions. For
a detailed study of numerical differentiation in computationalmechanics, seeHughes
and Pister [1], Simo and Taylor [2], Miehe [3], Pérez-Foguet et al. [4] and Temizer
and Wriggers [5] among many others.

All derivatives here will be approximated by use of finite differences. Recall that
the forward, backward and central difference approximations of the first derivative
of a scalar function of one scalar variable are

f ′ (x) ≈ f (x + ε) − f (x)

ε
:= f for (x) , (6.70a)

f ′ (x) ≈ f (x) − f (x − ε)

ε
:= f bac (x) , (6.70b)

f ′ (x) ≈ f (x + ε) − f (x − ε)

2ε
:= f cen (x) , (6.70c)

where ε 
 1 denotes the perturbation parameter. One of the important issues in
numerical differentiation is the appropriate choice of perturbation parameter since it
crucially affects the true error

err f • = f ′ (x) − f • (x) where • = for, bac, cen . (6.71)

This total error includes truncation error and round-off error. The former source
of error is a mathematical error that arises from approximating an infinite sum by a
finite one. It has basically been introduced as Landau order symbol in, for instance,
(6.9). But the latter source of error evolves as a result of subtracting two nearly
equal numbers due to the limited ability of digital computers in exactly representing
numbers. The truncation error thus decreases when ε → 0 whereas the round-off
error increases when ε → 0. This reveals the fact that there exists an optimal value
minimizing the sum of these sources of error. In forward and backward difference
approximations, computations have illustrated that the best choice for ε lies in the
interval

[

10−8 , 10−6
]

. While this is slightly larger for the central difference.
Guided by (6.70a)–(6.70c), the second-order forward, backward and central dif-

ference approximations of the second derivative of f (x) will be

f ′′ (x) ≈ f ′ (x + ε) − f ′ (x)
ε

:= f
for

(x)
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≈ f (x + 2ε) − 2 f (x + ε) + f (x)

ε2
:= ̂f for (x) , (6.72a)

f ′′ (x) ≈ f ′ (x) − f ′ (x − ε)

ε
:= f

bac
(x)

≈ f (x) − 2 f (x − ε) + f (x − 2ε)

ε2
:= ̂f bac (x) , (6.72b)

f ′′ (x) ≈ f ′ (x + ε) − f ′ (x − ε)

2ε
:= f

cen
(x)

≈ f (x + 2ε) − 2 f (x) + f (x − 2ε)

4ε2
:= ̂f cen (x) . (6.72c)

And these approximations produce

err f • = f ′′ (x) − f
•
(x) , err

̂f • = f ′′ (x) − ̂f • (x) where • = for, bac, cen .

(6.73)

Let � (C) be a nonlinear and sufficiently smooth scalar-valued function of one
symmetric tensor variable C. The goal is now to develop the tensorial analogues of
the relations (6.70a)–(6.70c) and (6.72a)–(6.72c). The gradients to be approximated
are given by1

S = 2
∂� (C)

∂C
, C = 2

∂S (C)

∂C
= 4

∂2� (C)

∂C∂C
. (6.74)

In alignment with the previous formulas, the variables to be approximated here are
distinguished by the superscripts • = for, bac, cen. For instance, the forward differ-
ence formula for S is denoted by S for. The procedure to arrive at S for is demonstrated
in the following (see Exercise 6.17). ➹

Guided by the approximation statement (6.13), one can write

�
(

C + �C(kl)
) ≈ � (C) + 1

2
S : �C(kl) , kl = 11, 22, 33, 23, 13, 12 , (6.75)

where the perturbations �C(kl) are given by

� C(kl) = ε

2
( êk ⊗ êl + êl ⊗ êk) . (6.76)

1 The tensorial variables �, S and C were chosen on purpose. First, consider the scalar-valued
function � as the free-energy function in the context of nonlinear solid mechanics. It is thus
an amount of energy stored in an elastic material under imposed deformations whose existence
is postulated within the context of hyperelasticity. In this regard, the first derivative of � then
helps provide the second Piola-Kirchhoff stress S which renders a symmetric second-order tensor.
Finally, the super-symmetric fourth-order tensorC = 2∂S/∂C is basically the referential tensor of
elasticities. See Exercise 6.16.



232 6 Differentiation of Tensor Functions and Representation Theorems

The symbol � in these expressions denotes an actual difference. It is basically a
linear operator similar to the total differential symbol d for which the standard rules
of differentiation hold.

Notice that the symmetry of C implies the symmetry of S. As a result, only six
perturbation tests are required to complete the numerical procedure. For this reason,
the subscript indices k and l take on values collected in (3.129). The six perturbations
�C(kl) basically provide the six perturbed tensors C+ε

(kl) as

C+ε
(kl) = C + �C(kl)

= C + ε

2
( êk ⊗ êl + êl ⊗ êk) . (6.77)

Now, by means of (2.20), (2.61)1, (2.74a)–(2.74b), (2.79c) and (6.75)–(6.77), the
independent Cartesian components of S can be obtained via

�
(

C+ε
(kl)

)

− � (C) ≈ 1

2
S : �C(kl) = ε

4
(Skl + Slk) = ε

2
Skl .

Therefore,

Skl ≈ 2

ε

[

�
(

C+ε
(kl)

)

− � (C)
]

:= S for
kl . ➹ (6.78)

To compute the backward and central difference approximations of S, one needs to
construct six perturbed tensors according to

C−ε
(kl) = C − �C(kl) = C − ε

2
( êk ⊗ êl + êl ⊗ êk) . (6.79)

By analogy with the procedure that led to (6.78), one will have

Skl ≈ 2

ε

[

� (C) − �
(

C−ε
(kl)

)]

:= S bac
kl , (6.80a)

Skl ≈ 1

ε

[

�
(

C+ε
(kl)

)

− �
(

C−ε
(kl)

)]

:= S cen
kl . (6.80b)

It is then a simple exercise to arrive at

Ci jkl ≈ 2

ε

[

Si j
(

C+ε
(kl)

)

− Si j (C)
]

:= C
for
i jkl

≈ 4

ε2

[

�
(

C+ε
(kl) + �C(i j)

)

− �
(

C+ε
(kl)

)

−�
(

C+ε
(i j)

)

+ � (C)
]

:= ̂C for
i jkl , (6.81a)

Ci jkl ≈ 2

ε

[

Si j (C) − Si j
(

C−ε
(kl)

)]

:= C
bac
i jkl
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≈ 4

ε2

[

� (C) − �
(

C−ε
(i j)

)

−�
(

C−ε
(kl)

)

+ �
(

C−ε
(kl) − �C(i j)

)]

:= ̂C bac
i jkl , (6.81b)

Ci jkl ≈ 1

ε

[

Si j
(

C+ε
(kl)

)

− Si j
(

C−ε
(kl)

)]

:= C
cen
i jkl

≈ 1

ε2

[

�
(

C+ε
(kl) + �C(i j)

)

− �
(

C+ε
(kl) − �C(i j)

)

−�
(

C−ε
(kl) + �C(i j)

)

+ �
(

C−ε
(kl) − �C(i j)

)]

:= ̂C cen
i jkl . (6.81c)

At the end, the quality of these approximations can be examined by

errS • = |S| − |S •| , errC • = |C| −
∣

∣

∣C
•∣∣
∣ , err

̂C • = |C| − ∣∣̂C •∣
∣

note that |S| = √Si j Si j and |C| =
√

Ci jklCi jkl , see (2.76) and (3.100)

, (6.82)

where • = for, bac, cen.

6.2 Representation Theorems

The representation theorems are widely used in various branches of physics and
engineering. Examples of which include solid mechanics and tissue engineering.
These are examples of applications of theory of algebraic invariants in mechanics of
isotropic and anisotropic continuummediums. The underlying theory aims at finding
what is known as integrity basis for a given set of tensorial variables and group of
orthogonal transformations. An integrity basis is simply a set of polynomials whose
every element is invariant under the given group of transformations. In principle,
one can construct infinitely many algebraic invariants for a finite system of tensors
(with possibly different orders). But, by use of some important relations such as
the Cayley-Hamilton equation and the so-called Rivlin’s identities, one can always
provide a finite number of invariants. Once an integrity basis is generated for a
system of tensorial variables, any tensor function of that system, which itself should
be invariant under the group of transformations, can be expressed in terms of the
elements of that integrity basis. And this basically demonstrates the representation
theorem for such an invariant tensor function.

A debatable issue in this context is redundancy of the basic invariants.With regard
to this, an integrity basis is said to be irreducible if none of its subsets is an integrity
basis by its own. In other words, a generic element of an irreducible basis cannot be
expressed as a linear combination of the remaining ones. It is always desirable to find
the so-called minimal integrity basis which contains the smallest possible number
of members for an invariant representation (note that the elements of such basis
are eventually irreducible). An integrity basis is utilized to represent a polynomial
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function. But for the representation of a general non-polynomial function, one
needs to use the so-called functional basis. A functional basis is called irreducible
when none of its members is expressible as a single-valued function of the remaining
ones. In establishing the functional bases, the main goal is to represent the single-
valued functions. And the procedure to develop such bases relies on geometrical
reasoning. It is known that an integrity basis is always a functional basis but the
converse, in general, is not true. Indeed, an irreducible functional basis usually has
fewer elements than an irreducible integrity basis.

The problem of finding the algebraic invariants has extensively been considered
in the past few decades. It is referenced to the pioneering works of Rivlin [6], Pipkin
and Rivlin [7], Spencer and Rivlin [8–11], Spencer [12, 13], Smith [14], Wang [15,
16], Betten [17, 18], Boehler [19, 20], Liu [21] and Zheng [22] among the others.
The results in this context are usually provided in tables very convenient for use.
From these tables, one will simply be able to represent an invariant scalar-, vector-
or tensor-valued function of a system of tensorial variables in terms of the elements
of the corresponding complete and irreducible functional basis (note that all tables
provided in this section deliver functional bases). However, one needs to be familiar
with at least some basics of representation theorems. This section is thus devoted to
the study of these useful theorems.

6.2.1 Mathematical Preliminaries

To begin with, some definitions and notations are introduced. To this end, consider
Cartesian coordinates for convenience. Let

α : D → R

v : D → E o3
r

S : D → T sym
so

W : D → T skw
so

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, (6.83)

be a scalar-, vector-, symmetric tensor-, and skew-symmetric tensor-valued function,
respectively. These tensor functions are defined on

D = (R)m1 × (E o3
r

)m2 × (T sym
so

)m3 × (T skw
so

)m4

= R × · · · × R
m1 times

× E o3
r × · · · × E o3

r

m2 times

×T sym
so × · · · × T sym

so

m3 times

×T skw
so × · · · × T skw

so

m4 times

, (6.84)

where R denotes the set of real numbers, E o3
r designates the oriented three-

dimensional Euclidean vector space, T sym
so presents the set of all symmetric ten-
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sors and T skw
so stands for the set of all skew-symmetric tensors. In representation

theorems, the tensor functions are classified according to their transformation prop-
erties under the action of the full orthogonal group O or any subgroup G of O ,
see (2.132) and (2.133). For the case where G = O , a function α is said to be an
isotropic scalar-valued function if, for any s ∈ (R)m1 , v ∈ (E o3

r

)m2 , S ∈ (T sym
so
)m3

and W ∈ (T skw
so

)m4 , it satisfies the following condition

α
(

s,Qv,QSQT,QWQT
) = α

(

s, v,S,W
)

, ∀Q ∈ G . (6.85)

Here, the following abbreviations have been used

s = (s1, . . . , sm1

)

v = (v1, . . . , vm2

)

}

,
S = (S1, . . . ,Sm3

)

W = (W1, . . . ,Wm4

)

}

, (6.86)

where

si ∈ R

i = 1, 2, . . . ,m1

, v j ∈ E o3
r

j = 1, 2, . . . ,m2

, Sk ∈ T sym
so

k = 1, 2, . . . ,m3

, Wl ∈ T skw
so

l = 1, 2, . . . ,m4

. (6.87)

The isotropic scalar-valued functions are also called isotropic invariants. As an exam-
ple, the scalar function α (A) = trAk is an isotropic invariant:

α
(

QAQT
) = tr

⎛

⎝QAQT · · ·QAQT

k time

⎞

⎠ = tr
(

QAkQT
) = trAk = α (A) , (6.88)

where (2.33), (2.109g), (2.130)1 and (2.131) have been used. One can now conclude
that the principal scalar invariants of a tensor, according to (4.17a)–(4.17c), are
isotropic:

I1
(

QAQT
) = I1 (A) , I2

(

QAQT
) = I2 (A) , I3

(

QAQT
) = I3 (A) .

(6.89)

The result (6.89)3 can also be verified as follows:

α
(

QAQT
) = det

(

QAQT
) = (detQ)2 (detA) = detA = α (A) , (6.90)

where (2.99a), (2.99b)1 and (2.134c) have been utilized. Note that a scalar-valued
function of the form

α (A1,A2,A3) = tr (A1A2A3) , (6.91)

is also an isotropic invariant.
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Similarly to (6.85), when G = O , the vector-valued function v, the symmetric
tensor-valued function S and the skew-symmetric tensor-valued functionW are said
to be isotropic if

v
(

s,Qv,QSQT,QWQT
) = Qv

(

s, v,S,W
)

S
(

s,Qv,QSQT,QWQT
) = QS

(

s, v,S,W
)

QT

W
(

s,Qv,QSQT,QWQT
) = QW

(

s, v,S,W
)

QT

⎫

⎪

⎬

⎪

⎭

, ∀Q ∈ G . (6.92)

Notice that the scalar arguments of isotropic tensor functions are not affected by
any orthogonal transformation and, therefore, they will be dropped in the subsequent
developments for convenience.

The tensor functions satisfying (6.85) and (6.92) are referred to as hemitropic
(or relative isotropic) if G = O+. Otherwise, they are termed anisotropic. As an
example, the vector-valued function v (v1, v2) = v1 × v2 is hemitropic because

Qu · (Qv1 × Qv2)
on the one==========

hand from (2.98)
(detQ)u · (v1 × v2)

= u · [(detQ) (v1 × v2)]
on the other===========

hand from (2.51d)
u · [QT (Qv1 × Qv2)

]

= u · [QTv (Qv1,Qv2)
]

,

helps, using (1.9a) and (1.14), obtain

QTv (Qv1,Qv2) = (detQ) (v1 × v2) = (detQ) v (v1, v2) ,

or, using (2.5), (2.130) and (2.133),

v (Qv1,Qv2) = Qv (v1, v2) . (6.93)

Another example regards the scalar-valued function

α (S1,S2) = tr (S1LS2) , (6.94)

which is anisotropic for a generic tensor L ∈ Tso.
The set G , possessing the properties of a group, is known as the symmetry group

of the tensor functions (6.85) and (6.92). One can now say that these functions are
G -invariant.

Let
ϒs = {I1

(

v,S,W
)

, . . . , In
(

v,S,W
)}

, (6.95)

be an irreducible set of n scalar-valued functions that are all invariant with respect to
a given group G of orthogonal transformations. Note that irreducibility here means
that these scalar functions cannot be expressed uniquely in terms of each other. This
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motivates to call these functions the basic invariants. Such a set is called an integrity
basis. And this helps represent any G -invariant scalar function of the form (6.85) as

α
(

v,S,W
) = ᾱ ( ϒs) . (6.96)

In a similar manner, let ϒv, ϒS and ϒW be an irreducible set of G -invariant vector,
symmetric tensor and skew-symmetric function, respectively. They are called gener-
ating sets. And any member of a generating set is referred to as a generator element.
The G -invariant tensor functions (6.92) then admit the following representations

v
(

v,S,W
) =

∑

v̆p∈ϒv

α̂p (ϒs) v̆p

S
(

v,S,W
) =

∑

S̆q∈ϒS

α̃q (ϒs) S̆q

W
(

v,S,W
) =

∑

W̆r∈ϒW

α̌r (ϒs) W̆r

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (6.97)

where α̂p, α̃q , α̌r are arbitrary G -invariant scalar functions of the basic invariants
and v̆p, S̆q , W̆r present the generator elements. As can be seen, any G -invariant
tensor function can be expressed as a linear combination of the generator elements
formed from its vectors and (symmetric and antisymmetric) tensor arguments with
the coefficients which are arbitrary scalar functions of the basic invariants. And this
basically demonstrates the representation theorem for such an G -invariant tensor
function. Note that this is enabled by determining the corresponding sets of basic
invariants and generators. And this is eventually the main task within the context of
representation theorems.

Lemma A Let α : O → R be a scalar-valued function. Suppose that α (Q) = 0
for anyQ in the full orthogonal groupO . Then, the gradient of α at I is a symmetric
tensor whose contraction with any antisymmetric tensor W ∈ T skw

so vanishes:

∂α

∂Q

∣

∣

∣

∣

I
: W = 0 . (6.98)

This result also holds true for any vector- or tensor-valued function.

Proof For any skew tensor W = −WT, one obtains (I + εW) (I + εW)T = I −
ε2W2 where ε ∈ R.When0 < ε 
 1, onewill have (I + εW) (I + εW)T ≈ Iwhich
reveals the fact that the new tensor I + εW is orthogonal to within a small error of
o (ε), that is,

I + εW = QW + o (ε) . (6.99)

Then, α at I + εW can be expanded via the first-order Taylor series as



238 6 Differentiation of Tensor Functions and Representation Theorems

α (I + εW) = ����
= 0, by assumption

α (I) + ∂α

∂Q

∣

∣

∣

∣

I
: εW + o (ε) . (6.100)

In a similar manner, α at QW + o (ε) can be written as

α (QW + o (ε)) = �����= 0, by assumption
α (QW ) + ∂α

∂Q

∣

∣

∣

∣

QW

: o (ε) + o (ε) .

(6.101)
With the aid of (2.79h) and (6.99)–(6.101), one finally concludes that ∂α/∂Q at I is
symmetric.

A consequence of (6.98) is

εi jk

(

∂α

∂u j
uk + ∂α

∂v j
vk

)

= 0 , (6.102)

where α (u, v) is an isotropic scalar-valued function. This identity can be verified
by defining the scalar function

β (Q) = α (Qu,Qv) − α (u, v) , (6.103)

which vanishes for any Q ∈ O . Now, suppose that u = Qu and v = Qv. Then,

∂β

∂Qi j
= ∂α

∂um

∂ [Qmnun]

∂Qi j
︸ ︷︷ ︸

= ∂α
∂um

δmi δnj un = ∂α
∂ui

u j

+ ∂α

∂vm

∂ [Qmnvn]

∂Qi j
︸ ︷︷ ︸

= ∂α
∂vm

δmi δnj vn = ∂α
∂vi

v j

=
(

∂α

∂u
⊗ u + ∂α

∂v
⊗ v
)

i j

.

(6.104)
Notice that

∂α

∂u

∣

∣

∣

∣

I
=
(

∂α

∂u
∂u
∂u

)∣

∣

∣

∣

I
=
(

∂α

∂u
Q
)∣

∣

∣

∣

I
= ∂α

∂u

∣

∣

∣

∣

I
. (6.105)

Consequently,
∂β

∂Q

∣

∣

∣

∣

I
= ∂α

∂u
⊗ u + ∂α

∂v
⊗ v . (6.106)

Guided by (6.98), this second-order tensor is symmetric. Having in mind (3.16b)5,
its double contraction with E = εi jk êi ⊗ ê j ⊗ êk in (3.17) thus gives the zero vector.
And this finally provides the desired result (6.102).

Another consequence of (6.98) is

εi jk

(

∂α

∂u j
uk + ∂α

∂A jm
Akm + ∂α

∂Amj
Amk

)

= 0 , (6.107)
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where α (u,A) presents an isotropic scalar-valued function. To verify this relation,
consider the scalar function

β (Q) = α
(

Qu,QAQT
)− α (u,A) , (6.108)

which vanishes for any Q ∈ O . Let u = Qu and A = QAQT. Then,

∂β

∂Qi j
= ∂α

∂um

∂ [Qmnun]

∂Qi j
︸ ︷︷ ︸

= ∂α
∂um

δmi δnj un = ∂α
∂ui

u j

+ ∂α

∂Amn

∂ [Qmr Ars Qns]

∂Qi j
︸ ︷︷ ︸

= ∂α

∂Ain
A js Qns + ∂α

∂Ami
Qmr Ar j

=
(

∂α

∂u
⊗ u + ∂α

∂A
QAT +

(

∂α

∂A

)T

QA

)

i j

. (6.109)

Having in mind (6.105), one should also have

∂α

∂A

∣

∣

∣

∣

I
=
(

∂α

∂A
: ∂A

∂A

)∣

∣

∣

∣

∣

I

=
(

QT ∂α

∂A
Q
)∣

∣

∣

∣

I
= ∂α

∂A

∣

∣

∣

∣

I
,

in order to compute

∂β

∂Q

∣

∣

∣

∣

I
= ∂α

∂u
⊗ u + ∂α

∂A
AT +

(

∂α

∂A

)T

A . (6.110)

The symmetry of this result is implied by (6.98). Guided by (3.16b)5, its double
contraction with E = εi jk êi ⊗ ê j ⊗ êk in (3.17) should thus be vanished. And the
desired result (6.107) follows.

Lemma B (a) Let S ∈ T
sym
so be a symmetric tensor with the following spectral form

S from====
(4.41)

3
∑

i=1

λi n̂i ⊗ n̂i , (λ1 �= λ2 �= λ3 �= λ1) ,

whose three linearly independent eigenvectors form a basis for the three-dimensional
vector space. The set

{

I,S,S2
}

is then linearly independent and

Span
{

I,S,S2
} = Span {̂n1 ⊗ n̂1, n̂2 ⊗ n̂2, n̂3 ⊗ n̂3} . (6.111)

(b) LetS ∈ T
sym
so be a symmetric tensor with two distinct eigenvectors whose spectral

decomposition renders
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S
in light of======

(4.45)
λ1 n̂1 ⊗ n̂1 + λ (I − n̂1 ⊗ n̂1) , (λ1 �= λ2 = λ3 = λ) .

The set {I,S} is then linearly independent and

Span {I,S} = Span {̂n1 ⊗ n̂1, I − n̂1 ⊗ n̂1} . (6.112)

Proof (a) The set of the three tensors I, S and S2 is linearly independent if the only
solution to

aI + bS + cS2 = 0 , (a, b, c ∈ R) , (6.113)

is
a = b = c = 0 . (6.114)

Guided by (4.37a), one can write

I =
3
∑

i=1

n̂i ⊗ n̂i , S =
3
∑

i=1

λi n̂i ⊗ n̂i , S2 =
3
∑

i=1

λ2
i n̂i ⊗ n̂i . (6.115)

Substituting (6.115) into (6.113) yields

3
∑

i=1

(

a + bλi + cλ2
i

)

n̂i ⊗ n̂i = 0 , (6.116)

or, using n̂i · n̂ j = δi j ,
a + bλ1 + cλ2

1 = 0

a + bλ2 + cλ2
2 = 0

a + bλ3 + cλ2
3 = 0

⎫

⎪

⎬

⎪

⎭

. (6.117)

This can be viewed as a homogeneous system of linear algebraic equations for a, b, c,
that is,

⎡

⎣

1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3

⎤

⎦

⎡

⎣

a
b
c

⎤

⎦ =
⎡

⎣

0
0
0

⎤

⎦ , (6.118)

with

det

⎡

⎣

1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3

⎤

⎦ = (λ2 − λ1) (λ3 − λ1) (λ3 − λ2) . ←− this represents the
Vandermonde determinant

(6.119)
Obviously, the determinant of thematrix of coefficients does not vanish in the present
case. And this implies the desired result (6.114).

Next, consider a linear subspace
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H = Span {̂n1 ⊗ n̂1, n̂2 ⊗ n̂2, n̂3 ⊗ n̂3} ,

of the symmetric tensor space T
sym
so whose dimension is 3 (note that the set of

the three tensors n̂i ⊗ n̂i , i = 1, 2, 3, is also linearly independent and necessarily
constitutes a basis for H ). Recall from (6.115)1−3 that the symmetric tensors I,
S and S2 were expressed as linear combinations of n̂i ⊗ n̂i , i = 1, 2, 3. And this
means that they also belong to H . Indeed, the linearly independent set

{

I,S,S2
}

forms another basis for H and, therefore, the desired relation (6.111) is followed.
This completes the proof of (a) and the reminder of the proof is left as an exercise to
be undertaken by the serious reader.

Lemma C Let T (S) be an isotropic tensor-valued function of a symmetric tensor
S. Then, the tensors S and T (S) are coaxial (meaning that their eigenvectors are the
same, see Exercise4.4).

Proof Regarding the algebraic multiplicities of the real eigenvalues of S, three dif-
ferent cases needs to be considered. First, consider the case in which S possess
non-multiple eigenvalues. It thus admits the spectral decomposition

S from====
(4.41)

3
∑

i=1

λi n̂i ⊗ n̂i , (λ1 �= λ2 �= λ3 �= λ1) .

The goal here is to show that any eigenvector n̂ j of S is simultaneously an eigenvector
of T (S). Let Q be an orthogonal (as well as symmetric) tensor of the form

Q =
3
∑

i=1
i �= j

n̂i ⊗ n̂i − n̂ j ⊗ n̂ j

no sum

= I − 2̂n j ⊗ n̂ j , (6.120)

noting that

QQT = (I − 2̂n j ⊗ n̂ j
) (

I − 2̂n j ⊗ n̂ j
)

= I − 2̂n j ⊗ n̂ j − 2̂n j ⊗ n̂ j + 4̂n j ⊗ n̂ j

= I , (6.121)

and

Qn̂ j = (I − 2̂n j ⊗ n̂ j
)

n̂ j = n̂ j − 2
(

n̂ j · n̂ j
)

n̂ j = n̂ j − 2̂n j = −n̂ j . (6.122)

It should be understood that this choice of Q leaves all eigenspaces of S invariant.
Consequently, by means of the commutation theorem introduced in Exercise 4.7, the
tensors S and Q commute:
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SQ = QS or S = QSQT

one can easily verify that SQ = S
(

I − 2̂nj ⊗ n̂j
) = S − 2λjn̂j ⊗ n̂j = (I − 2̂nj ⊗ n̂j

)

S = QS

. (6.123)

This result, along with the assumption that T (S) is isotropic, helps obtain

T (S) = T
(

QSQT) = QT (S)QT or QT (S) = T (S)Q . (6.124)

Postmultiplying both sides of this result by n̂ j then gives

QT (S) n̂ j = T (S)Qn̂ j or Q
(

T (S) n̂ j
) = − (T (S) n̂ j

)

. (6.125)

And this means that the orthogonal transformation Q maps the vector T (S) n̂ j into
its negative. Guided by (6.122)4, this can only happen when the vectors T (S) n̂ j and
n̂ j are parallel. Thus, T (S) n̂ j is a scalar multiple of n̂ j , that is,

T (S) n̂ j = γ n̂ j . (6.126)

It can easily be shown that premultiplying QT (S) = T (S)Q by n̂ j results in
TT (S) n̂ j = γ n̂ j . And this reveals the fact that T (S) is a tensor with identical right
and left eigenvectors. Thus, an isotropic tensor-valued function of a symmetric tensor
represents a symmetric tensor, i.e. T (S) = TT (S), see (6.174a). It then admits the
spectral form

T (S) =
3
∑

i=1

μi (S) n̂i ⊗ n̂i . (6.127)

The proof for the remaining cases λ1 �= λ2 = λ3 = λ and λ1 = λ2 = λ3 = λ is left to
be undertaken by the interested reader. In the following, several important represen-
tation theorems for isotropic scalar-, vector- and symmetric tensor-valued functions
of some tensorial variables are introduced.

6.2.2 Representation Theorem for an Isotropic Scalar-Valued
Function of a Vector

A scalar-valued function α : E o3
r → R is isotropic if there exists a function f :

R → R such that
α (v) = f (v · v) . (6.128)

Conversely, a function of this form is isotropic.

Proof By means of (2.5), (2.51d), (2.130)1 and (6.85), the converse assertion can
simply be checked:
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α (Qv) = f (Qv · Qv) = f
(

v · QTQv
) = f (v · Iv) = f (v · v) = α (v) .

(6.129)

One can now establish (6.128) assuming that α (Qv) = α (v) holds true. This expres-
sion shows that α (v) changes by only changing the magnitude of v. In other words,
α (v) is insensitive with respect to the direction of v. In this regard, consider another
vector u with the same length, that is,

|v| = √
v · v = √

u · u = |u| . (6.130)

It then suffices to show that
α (v) = α (u) . (6.131)

Consider the fact that two vectors of the same magnitude and origin can always
coincide by applying an orthogonal transformation. This allows one towrite u = Qv.
Thus, by the isotropy condition α (v) = α (Qv) and the relation Qv = u, one can
finally arrive at the desired result (6.131). At the end, it should be noted that the
representation (6.128) makes sense because only the magnitude of a vector remains
invariant under an orthogonal transformation.

6.2.3 Representation Theorem for an Isotropic Scalar-Valued
Function of a Symmetric Tensor

A scalar-valued function α : T sym
so → R is isotropic if there exists a function f :

R × R × R → R such that

α (S) = f ( I1 (S) , I2 (S) , I3 (S) ) . (6.132)

Conversely, a function of this form is isotropic.

Proof By means of (6.89), the converse assertion can readily be verified as follows:

α
(

QSQT
) = f

(

I1
(

QSQT
)

, I2
(

QSQT
)

, I3
(

QSQT
) )

= f ( I1 (S) , I2 (S) , I3 (S) )

= α (S) . (6.133)

Assume that α (S) = α
(

QSQT
)

. The goal is now to establish (6.132). Recall from
(4.9) and (4.14a)–(4.14c) that the eigenvalues and the principal invariants of a tensor
could uniquely determine one another. With regard to this, one here needs to show
that α (S) changes when only the principal values of S change. In other words, α (S)

is insensitive with respect to the eigenvectors of S. Without loss of generality, let S be
a symmetric tensor with the three distinct eigenpairs (λ1, n̂1), (λ2, n̂2) and (λ3, n̂3).
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Consider another symmetric tensorTwith the same set of eigenvalues. These tensors
admit the following spectral representations

S =
3
∑

i=1

λi n̂i ⊗ n̂i , T =
3
∑

i=1

λi m̂i ⊗ m̂i . (6.134)

Now, it suffices to verify that
α (S) = α (T) . (6.135)

Let Q be a tensor of the form

Q =
3
∑

i=1

m̂i ⊗ n̂i , (6.136)

which satisfies the orthogonality requirement

QQT =
(

3
∑

i=1

m̂i ⊗ n̂i

)

⎛

⎝

3
∑

j=1

n̂ j ⊗ m̂ j

⎞

⎠

=
3
∑

i, j=1

δi jm̂i ⊗ m̂ j

=
3
∑

i=1

m̂i ⊗ m̂i

= I . (6.137)

Then,

QSQT =
(

3
∑

i=1

m̂i ⊗ n̂i

)

⎛

⎝

3
∑

j=1

λ j n̂ j ⊗ n̂ j

⎞

⎠

(

3
∑

k=1

n̂k ⊗ m̂k

)

=
3
∑

i, j,k=1

λ jδi jδ jkm̂i ⊗ m̂k

=
3
∑

i=1

λim̂i ⊗ m̂i

= T . (6.138)
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The isotropy condition α (S) = α
(

QSQT
)

along with the result QSQT = T finally
implies (6.135). At the end, one should realize that the representation (6.132) makes
sense because obviously the principal invariants of a tensor remain invariant under
an orthogonal transformation.

Hint: The fact that the three sets {I1 (S) , I2 (S) , I3 (S)}, {λ1 (S) , λ2 (S) , λ3 (S)} and
{

tr (S) , tr
(

S2
)

, tr
(

S3
)}

can uniquely determine each other helps further represent
the theorem (6.132) as

α (S) = f̄ ( λ1 (S) , λ2 (S) , λ3 (S) )

= f̂
(

tr (S) , tr
(

S2
)

, tr
(

S3
) )

. (6.139)

Hint: Recall from (4.63a)2 and (4.63c)2 that I1 (W) = I3 (W) = 0. As a result, an
isotropic scalar-valued function of a skew tensor should only be represented in terms
of its second principal scalar invariant:

α (W) = f ( I2 (W) ) . (6.140)

The representation theorems, developed so far for isotropic scalar invariants of
one tensor variable, can be extended to involve more tensorial arguments. The results
have been summarized in Table 6.1. By means of this table, one can readily construct
the functional basis for any given domain of isotropic invariants, see (6.83)–(6.84)
and (6.95). It is important to note that the basic invariants involving more than four
tensorial variables are not present in this list since, it can be shown that, they are
redundant. In the following, some examples are provided for illustration. ❦

Thefirst example regards an isotropic scalar-valued function of a symmetric tensor
S1 = S and a skew tensor W1 = W representing

α (W,S)
from the second, third and===============
ninth rows of Table 6.1

ᾱ
(

trS, tr S2, tr S3, trW2, tr
(

SW2
)

,

tr
(

S2W2
)

, tr
(

SWS2W2
) )

. ←− see Exercise 6.15 (6.141)

Guided by this result, an isotropic scalar-valued function of an arbitrary tensor A
(with 2S = A + AT and 2W = A − AT) admits the representation

α (A) = ᾱ
(

trA, trA2, trA3, tr
(

AAT
)

, tr
(

AAT
)2

,

tr
(

A2AT
)

, tr
[

(

AT
)2
A2ATA − A2

(

AT
)2
AAT

] )

. (6.142)

As another example, consider an isotropic scalar-valued function of the two sym-
metric tensors S1 = S and S2 = T which is expressible in the form

α (S,T)
from the second and==============

seventh rows of Table 6.1
ᾱ
(

trS, tr S2, trS3, trT, trT2, trT3, tr ( ST) ,
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tr
(

ST2
)

, tr
(

S2T
)

, tr
(

S2T2
) )

. ←− see Exercise 6.15 (6.143)

Hint: For the given domain

D = {(S,T) ∈ T sym
so × T sym

so

}

,

notice that a scalar invariant of the form tr (STS) is not present in Table 6.1. It can
explicitly be shown that such an element is redundant. The proof has been given in
Exercise 6.13.

As a further example, consider an isotropic scalar-valued function of a vector
v1 = v and a symmetric tensor S1 = S which allows the representation

α (v,S)
from the first, second and==============
fifth rows of Table 6.1

ᾱ
(

v · v, tr S, tr S2, tr S3, v · Sv, v · S2v ) . (6.144)

The representation (6.143) has been verified in Exercise 6.3. This can be used to
prove (6.144) by considering a domain of tensorial variables according to

D = {(S1 = v ⊗ v,S2 = S) ∈ T sym
so × T sym

so

}

,

Table 6.1 List of isotropic scalar invariants

Variables Invariant elements

v1 v1 · v1
S1 trS1 , trS21 , trS31
W1 trW2

1

v1, v2 v1 · v2
v1, S1 v1 · S1v1, v1 · S21v1
v1, W1 v1 · W2

1v1
S1, S2 tr (S1S2) , tr

(

S1S22
)

, tr
(

S21S2
)

, tr
(

S21S
2
2

)

W1, W2 tr (W1W2)

S1, W1 tr
(

S1W2
1

)

, tr
(

S21W
2
1

)

, tr
(

S1W1S21W
2
1

)

v1, v2, S1 v1 · S1v2, v1 · S21v2
v1, v2, W1 v1 · W1v2, v1 · W2

1v2
v1, S1, S2 v1 · S1S2v1
v1, W1, W2 v1 · W1W2v1, v1 · W2

1W2v1, v1 · W1W2
2v1

v1, S1, W1 v1 · W1S1v1, v1 · W1S21v1, v1 · W1S1W2
1v1

S1, S2, S3 tr (S1S2S3)

W1, W2, W3 tr (W1W2W3)

S1, S2, W1 tr (S1S2W1) , tr
(

S1S22W1
)

, tr
(

S21S2W1
)

, tr
(

S1W1S2W2
1

)

S1, W1, W2 tr (S1W1W2) , tr
(

S1W2
1W2

)

, tr
(

S1W1W2
2

)

v1, v2, S1, S2 v1 · S1S2v2, v1 · S2S1v2
v1, v2, W1, W2 v1 · W1W2v2, v1 · W2W1v2
v1, v2, S1, W1 v1 · S1W1v2, v1 · W1S1v2
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which helps represent

α (v ⊗ v,S)
from the second and==============

seventh rows of Table 6.1
ᾱ
(

tr (v ⊗ v) = v · v, tr S, tr S2, tr S3,

tr [(v ⊗ v) S] = v · Sv, tr [(v ⊗ v) S2
] = v · S2v ) . (6.145)

Note that, for instance, the quantity tr (v ⊗ v)2 = (v · v)2 has not been written in the
above list of arguments to provide an irreducible representation.

The last example here regards an isotropic scalar-valued function of the two vec-
tors v1 = u and v2 = v which admits the following representation

α (u, v)
from the first and=============

fourth rows of Table 6.1
ᾱ (u · u, v · v,u · v ) . ←− see Exercise 6.15 (6.146)

This representation makes sense because only the magnitudes of two vectors and
the angle between them remain invariant under an orthogonal transformation. The
procedure used to establish this representation is explained in Exercise 6.3. Notice
that (6.143) can again be utilized to verify (6.146) by considering a domain of
tensorial variables according to

D = {(S1 = u ⊗ u,S2 = v ⊗ v) ∈ T sym
so × T sym

so

}

,

and then removing the redundant terms in the resulting set of the basic invariants. ❦
The interested reader may want to use Lemma A to verify the representation

(6.146) one more time (see Liu [23]). This is demonstrated in the following.
From (6.102), one will have

∂α

∂u2
u3 − ∂α

∂u3
u2 + ∂α

∂v2
v3 − ∂α

∂v3
v2 = 0 , (6.147a)

∂α

∂u3
u1 − ∂α

∂u1
u3 + ∂α

∂v3
v1 − ∂α

∂v1
v3 = 0 , (6.147b)

∂α

∂u1
u2 − ∂α

∂u2
u1 + ∂α

∂v1
v2 − ∂α

∂v2
v1 = 0 . (6.147c)

From thefirst-order partial differential equation (6.147c), one then obtains the general
solution

α = ᾱ (d1, d2, d3) , (6.148)

where ᾱ presents an arbitrary function of

d1 = u21 + u22 + f1 (u3, v3) , (6.149a)

d2 = v2
1 + v2

2 + f2 (u3, v3) , (6.149b)

d3 = u1v1 + u2v2 + f3 (u3, v3) . (6.149c)
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From (6.147b) and (6.148)–(6.149c), it follows that

(

∂ f1
∂u3

u1 − 2u1u3 + ∂ f1
∂v3

v1

)

∂ᾱ

∂d1
+
(

∂ f2
∂u3

u1 + ∂ f2
∂v3

v1 − 2v1v3

)

∂ᾱ

∂d2

+
(

∂ f3
∂u3

u1 − v1u3 + ∂ f3
∂v3

v1 − u1v3

)

∂ᾱ

∂d3
= 0 . (6.150)

The fact that ∂ᾱ/∂di , i = 1, 2, 3, are arbitrary now implies that

(

∂ f1
∂u3

− 2u3

)

u1 +
(

∂ f1
∂v3

)

v1 = 0 , (6.151a)

(

∂ f2
∂u3

)

u1 +
(

∂ f2
∂v3

− 2v3

)

v1 = 0 , (6.151b)

(

∂ f3
∂u3

− v3

)

u1 +
(

∂ f3
∂v3

− u3

)

v1 = 0 . (6.151c)

Note that u1 and v1 are also arbitrary. And their coefficients in the above relations
can vary independently. It is then easy to see that

f1 = u23 , f2 = v2
3 , f3 = u3v3 . (6.152)

Consequently, d1 = u · u, d2 = v · v and d3 = u · v help establish the desired repre-
sentation α (u, v) = ᾱ ( u · u, v · v,u · v ).

6.2.4 Representation Theorem for an Isotropic Vector-Valued
Function of a Vector

Let a : E o3
r → E o3

r be an isotropic vector-valued function of a vector. Then, it is
necessary and sufficient that it has the following representation

a (v) = f (v · v) v , (6.153)

where f presents an arbitrary isotropic scalar-valued function.

Proof Bymeans of (2.5), (2.8b), (2.51d), (2.130)1, (6.85) and (6.92)1, the sufficiency
can readily be checked:

a (Qv) = f (Qv · Qv)Qv = f
(

v · QTQv
)

Qv

= f (v · Iv)Qv = f (v · v)Qv

= Qa (v) . (6.154)
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One can now verify (6.153) assuming that the isotropy condition a (Qv) = Qa (v)
holds true. Suppose that v = 0. Then, the condition of isotropy implies that a (0) =
Qa (0) for any Q ∈ O . As a result, a (0) = 0 and, consequently, (6.153) is fulfilled.
Next, suppose that v �= 0. Then, the vector function a can additively be decomposed
as

a (v) = β1 (v) v + β2 (v) v⊥ , (6.155)

where β1 and β1 are arbitrary scalar functions and v⊥ denotes some vector orthogonal
to v. At this stage, one can choose an orthogonal tensor of the following form

Q = 2

v · vv ⊗ v − I satisfying Qv = v and Qv⊥ = −v⊥ . (6.156)

Then,

a (Qv)
from=====
(6.155)

β1 (Qv)Qv + β2 (Qv) v⊥

from=====
(6.156)

β1 (v) v + β2 (v) v⊥ , (6.157a)

Qa (v)
from=====
(6.155)

β1 (v)Qv + β2 (v)Qv⊥

from=====
(6.156)

β1 (v) v − β2 (v) v⊥ . (6.157b)

Consequently, the condition of isotropy implies that β2 (v) = 0. Moreover, isotropy
of a (v) implies that β1 (v) should be an isotropic scalar-valued function. Thus, by
(6.128), it can be represented by β1 (v) = f (v · v).

The goal here is to obtain (6.153) in an alternative way for the interested reader.
Note that v is the generator of the isotropic vector-valued functiona (v) in (6.153). Let
α (u, v) be an isotropic scalar-valued function of the two vectors u and v. Suppose
α is linear in u. Thus, using (6.146), it depends on {u · v, v · v}. Notice that the
derivative of the elements of this set with respect to u gives the only generator of
a (v) which is v. This motivates to define a scalar-valued function of the two vectors
u and v according to

β (u, v) = u · â (v) noting that â (v) = ∂β (u, v)
∂u

.

Here, â (v) presents an isotropic vector-valued function of v. Notice that β represents
a linear function of u which is isotropic owing to

β (Qu,Qv) = Qu · â (Qv) = Qu · Qâ (v) = u · QTQâ (v)
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Table 6.2 List of isotropic
vector invariants Variables Generator elements

v1 v1
S1 0

W1 0

v1, S1 S1v1, S21v1
v1, W1 W1v1, W2

1v1
v1, S1, S2 S1S2v1, S2S1v1
v1, W1, W2 W1W2v1, W2W1v1
v1, S1, W1 S1W1v1, W1S1v1

= u · Iâ (v) = u · â (v) = β (u, v) .

Consequently, this isotropic scalar-valued function of {u · v, v · v} should generally
be represented by

β (u, v) = u · â (v) = u · f (v · v) v .

Thus, using (1.14), one can conclude that â (v) = f (v · v) v. See Exercise 6.12 for
more consideration on this procedure.

Hint: The above procedure is restricted to only polynomial representations (i.e. it
delivers integrity bases). Thus, it cannot provide all generators listed in the tables of
this text having in mind that irreducible integrity and functional bases generally do
not have the same elements. It properly worked here since â (v) = f (v · v) v with
its generator element v, listed in Table 6.2 as a functional basis, is also an integrity
basis.

6.2.5 Representation Theorem for an Isotropic Vector-Valued
Function of a Symmetric Tensor

Let a : T sym
so → E o3

r be an isotropic vector-valued function of a symmetric tensor.
Then, it is necessary and sufficient that it has the following representation

a (S) = 0 . (6.158)

Proof The sufficiency can easily be checked:

a
(

QSQT
) = 0

= Q0

= Qa (S) . (6.159)
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One can now establish (6.158) assuming that the isotropy condition a
(

QSQT
) =

Qa (S) holds true. By choosing Q = −I, taking into account (2.5), (2.33)1−2 and
(2.55a), one will have

a
(+ISIT

) = −Ia (S) or a (S) = −a (S) , (6.160)

which reveals the fact that any isotropic vector-valued function of a symmetric tensor
is nothing but the zero vector.

The established representation theorems for isotropic vector invariants of one
tensor variable can be generalized to involve more tensorial arguments. The results
have been tabulated in Table 6.2.

As an example, consider an isotropic vector-valued function of the two tensorial
variables v1 = v and S1 = S which allows the following representation

a (v,S)
from the first, second and==============
fourth rows of Table 6.2

f0 ( ϒs) v + f1 ( ϒs)Sv + f2 ( ϒs)S2v , (6.161)

where f0, f1 and f2 are arbitrary isotropic scalar invariants of the following set

ϒs
from the first, second and==============
fifth rows of Table 6.1

{

v · v, tr S, tr S2, trS3, v · Sv, v · S2v} . (6.162)

The goal here is to obtain (6.161) in an alternative way for the interested reader. As
can be seen from (6.161),

{

v,Sv,S2v
}

is the generating set of the isotropic vector-
valued function a (v,S). Let α (u, v,S) be an isotropic scalar-valued function of the
three tensorial variables u, v and S. Suppose that α is a linear function of u. Thus,
by using Table 6.1, it should depend on

ϒ
•
s = {u · v,u · Sv,u · S2v, v · v, tr S, tr S2, tr S3, v · Sv, v · S2v} .

Note that the derivative of the elements of this set with respect to u provides the
generators of a (v,S). This motivates to define a scalar-valued function of the three
tensorial variables u, v and S according to

β (u, v,S) = u · â (v,S) noting that â (v,S) = ∂β (u, v,S)

∂u
.

Here, â (v,S) is an isotropic vector-valued function of v and S. Notice that β is a
linear function of u which satisfies the isotropy condition

β
(

Qu,Qv,QSQT
) = Qu · â (Qv,QSQT

) = Qu · Qâ (v,S)

= u · QTQâ (v,S) = u · Iâ (v,S)

= u · â (v,S) = β (u, v,S) .
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Consequently, this isotropic function ofϒ
•
s should generally be of the following form

β (u, v,S) = u · â (v,S) = u · f0
(

v · v, tr S, tr S2, trS3, v · Sv, v · S2v) v
+ u · f1

(

v · v, trS, tr S2, trS3, v · Sv, v · S2v)Sv
+ u · f2

(

v · v, tr S, tr S2, trS3, v · Sv, v · S2v)S2v .

Thus, by using (1.14), one can arrive at the representation (6.161).

6.2.6 Representation Theorem for an Isotropic Symmetric
Tensor-Valued Function of a Vector

Let T : E o3
r → T

sym
so be an isotropic tensor-valued function of a vector. Then, it is

necessary and sufficient that it has the following representation

T (v) = f1 (v · v) I + f2 (v · v) v ⊗ v , (6.163)

where f1 and f2 are arbitrary isotropic scalar-valued functions.

Proof The sufficiency can readily be checked:

T (Qv) = f1 (Qv · Qv) I + f2 (Qv · Qv)Qv ⊗ Qv

= f1
(

v · QTQv
)

QIQT + f2
(

v · QTQv
)

Qv ⊗ vQT

= Q [ f1 (v · Iv) I + f2 (v · Iv) v ⊗ v]QT

= Q [ f1 (v · v) I + f2 (v · v) v ⊗ v]QT

= QT (v)QT . (6.164)

One can now establish (6.163) assuming that T (Qv) = QT (v)QT holds true. Sup-
pose one is given a scalar-valued function α (u, v) of the form

α (u, v) = u · T (v) v , (6.165)

which is linear in u and isotropic:

α (Qu,Qv) = Qu · T (Qv)Qv = Qu · QT (v)QTQv

= u · QTQT (v) Iv = u · IT (v) v

= u · T (v) v = α (u, v) . (6.166)

Consequently, using the first and fourth rows of Table 6.1, this isotropic function can
generally be represented by
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α (u, v) = u · λ (v · v) v . (6.167)

From (1.14), (6.165) and (6.167), one can conclude that

T (v) v = λ (v · v) v , (6.168)

which reveals the fact that (λ, v) or (λ, v̂ = v/ |v|) is an eigenpair of the symmetric
tensor T (note that this eigenvalue problem can also be obtained by defining an
isotropic vector-valued function of the form a (v) = T (v) v and then considering
a (v) = λ (v · v) v according to (6.153)).

Suppose T is a tensor with the three distinct eigenvalues λ, μ and ν. Denoting by
{̂v, û, ŵ} the corresponding orthonormal set of eigenvectors, the spectral decompo-
sition of T is given by

T (v)
from====
(4.41)

λ (v · v) v̂ ⊗ v̂ + μ (v · v) û ⊗ û + ν (v · v) ŵ ⊗ ŵ . (6.169)

Let Q be a tensor of the form

Q = v̂ ⊗ v̂ + û ⊗ ŵ + ŵ ⊗ û , (6.170)

which satisfies the orthogonality condition

QQT = (̂v ⊗ v̂ + û ⊗ ŵ + ŵ ⊗ û) (̂v ⊗ v̂ + ŵ ⊗ û + û ⊗ ŵ)

= v̂ ⊗ v̂ + û ⊗ û + ŵ ⊗ ŵ = I , (6.171)

and

Qv̂ = v̂ or Qv = v , (6.172a)

QT (v)QT = λ (v · v) v̂ ⊗ v̂ + ν (v · v) û ⊗ û + μ (v · v) ŵ ⊗ ŵ . (6.172b)

Making use of the relations (6.169), (6.172a)1 and (6.172b), the isotropy requirement
T (Qv) = QT (v)QT then implies that μ (v · v) = ν (v · v). As a result, (6.169) can
be rewritten as

T (v) = λ (v · v) v̂ ⊗ v̂ + μ (v · v) [I − v̂ ⊗ v̂]

= μ (v · v)
︸ ︷︷ ︸

:= f1 (v · v)
I + λ (v · v) − μ (v · v)

v · v
︸ ︷︷ ︸

:= f2 (v · v)

v ⊗ v . (6.173)

And this completes the proof (note that the cases in which T possess repeated eigen-
values are trivial).
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6.2.7 Representation Theorem for an Isotropic Symmetric
Tensor-Valued Function of a Symmetric Tensor

Let T : T sym
so → T

sym
so be an isotropic symmetric tensor-valued function of a sym-

metric tensor. Then, it is necessary and sufficient that it has the following represen-
tation

T (S) = f0I + f1S + f2S2 if λ1 �= λ2 �= λ3 �= λ1 , (6.174a)

T (S) = f̄0I + f̄1S if λ1 �= λ2 = λ3 = λ , (6.174b)

T (S) = f̂0I if λ1 = λ2 = λ3 = λ , (6.174c)

where the coefficients are arbitrary functions of the principal scalar invariants I1 (S),
I2 (S) and I3 (S) given in (4.17a)–(4.17c).

Proof Since the spectrum of a symmetric tensor may contain a real multiple eigen-
value, three different cases need to be considered. First, let S be a tensor with three
distinct eigenvalues; namely, λ1 �= λ2 �= λ3 �= λ1. By means of (2.33), (2.130)1−2,
(6.85), (6.89) and (6.92)2, the sufficiency can readily be verified:

T
(

QSQT
) = f0I + f1QSQT + f2QSQTQSQT

= f0QIQT + f1QSQT + f2QSISQT

= Q
[

f0I + f1S + f2S2
]

QT

= Q [T (S)]QT . (6.175)

The goal is now to verify the representation (6.174a) assuming that the isotropy con-
dition T

(

QSQT
) = QT (S)QT holds true. Guided by Lemma C, S and any isotropic

symmetric tensor-valued function of it, say T (S), have eigenvectors in common.
Thus, by the spectral theorem, they represent

S =
3
∑

i=1

λi (S) n̂i ⊗ n̂i , T (S) =
3
∑

i=1

μi (S) n̂i ⊗ n̂i .

By means of (6.111), one can infer that there exist three scalars f0 (S), f1 (S) and
f2 (S) such that

T (S) = f0 (S) I + f1 (S)S + f2 (S)S2 . (6.176)

Now, one should show that these scalars are isotropic invariants. The isotropy con-
dition T (S) = QTT

(

QSQT
)

Q implies that

[

f0 (S) − f0
(

QSQT)] I + [ f1 (S) − f1
(

QSQT)] S

+ [ f2 (S) − f2
(

QSQT
)]

S2 = O . (6.177)
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Recall from (a) of LemmaB that the set
{

I,S,S2
}

was linearly independent. Thus, the
relation (6.177) implies that fk (S) = fk

(

QSQT
)

, k = 0, 1, 2. Guided by (6.132),
they can be represented in terms of the elements of the set {I1 (S) , I2 (S) , I3 (S)},
see (6.139).

Next, consider the case in which S has exactly two distinct eigenvalues; namely,
λ1 and λ2 = λ3 = λ. Similarly to (6.175), the sufficiency can easily be verified. Let
T
(

QSQT
) = QT (S)QT. The goal is then to verify (6.174b). In this case, the spectral

formula for S represents S = λ1 n̂1 ⊗ n̂1 + λ (I − n̂1 ⊗ n̂1). And the characteristic
spaces of S render Span {̂n1} and Span {m̂ | m̂ · n̂1 = 0}. By Lemma C, these sub-
spaces should be contained in the characteristic spaces of T (S). Consequently,

T (S) = μ1 (S) [ n̂1 ⊗ n̂1] + μ (S) [ I − n̂1 ⊗ n̂1] .

Now, guided by (6.112), one can arrive at the desired result T (S) = f̄0I + f̄1S. It
only remains to verify that f̄0 and f̄1 are isotropic invariants. The isotropy condition
T (S) = QTT

(

QSQT
)

Q implies that

[

f̄0 (S) − f̄0
(

QSQT
)]

I + [ f̄1 (S) − f̄1
(

QSQT
)]

S = O . (6.178)

Having in mind that the set {I,S} is linearly independent, one can then conclude
that f̄k (S) = f̄k

(

QSQT
)

, k = 0, 1. Note that the principal scalar invariants can
deliver different values regardless of having a multiple eigenvalue or not. Thus, the
coefficients should still be functions of {I1 (S) , I2 (S) , I3 (S)}.

Finally, consider the case in which the symmetric tensor S has only one distinct
eigenvalue; namely, λ1 = λ2 = λ3 = λ. In this case, using (4.46), S = λI. And this
means that the whole vector space, E o3

r , is the characteristic space of S. By Lemma
C, E o3

r should also be the characteristic space of T (S). The representation (6.174c)
then follows. And this completes the proof.

The goal here is to obtain (6.174a) in an alternative way for the interested reader.
Note that

{

I,S,S2
}

is the generating set of the isotropic symmetric tensor-valued
function T (S) in (6.174a). Let α (U,S) be an isotropic scalar-valued function of
the two symmetric tensors U and S. Suppose that α is a linear function of U. Thus,
guided by Table 6.1, it only depends on

{

trU, tr (US) , tr
(

US2
)

, trS, tr S2, trS3
}

.
Notice that the derivative of the elements of this set with respect to U gives the
tensor generators of T (S). This motivates to define a scalar-valued function of the
two symmetric tensors U and S via

β (U,S) = U : T̂ (S) noting that T̂ (S) = ∂β (U,S)

∂U
.

Here, T̂ (S) denotes an isotropic symmetric tensor-valued function of S. Accordingly,
the above linear function of U satisfies the isotropy requirement
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β
(

QUQT,QSQT
) = QUQT : T̂ (QSQT

) = QUQT : QT̂ (S)QT

= U : QTQT̂ (S)QTQ = U : IT̂ (S) I

= U : T̂ (S) = β (U,S) .

Consequently, this isotropic function of
{

trU, tr (US) , tr
(

US2
)

, tr S, tr S2, tr S3
}

must generally admit the following form

β (U,S) = U : T̂ (S) = U : h0
(

trS, tr S2, tr S3
)

I

+ U : h1
(

trS, tr S2, tr S3
)

S

+ U : h2
(

trS, tr S2, tr S3
)

S2 .

Thus, by (2.81) and the fact that hk
(

trS, tr S2, tr S3
) = fk ( I1 (S) , I2 (S) , I3 (S) ) ,

k = 0, 1, 2, the representation (6.174a) follows.
In a similar fashion, the interested reader can arrive at the representation (6.174a)

one more time. To show this, let T̂ (S) be an isotropic symmetric tensor-valued
function of S and construct a vector-valued function of v and S via

a ( v,S) = T̂ (S) v noting that T̂ (S) = ∂a ( v,S)

∂v
.

It can readily be shown that this linear function of v is isotropic. Guided by (6.161)–
(6.162), it can thus be represented by

a (v,S) = [h0 ( ϒs) I + h1 ( ϒs) S + h2 (ϒs)S2
]

v where ϒs = {tr S, tr S2, tr S3
}

.

By (2.6), the representation (6.174a) then follows. As discussed, this procedure can-
not establish all functional bases. It worked here because the representation (6.174a)
is not only an integrity basis but also a functional basis.

The relation (6.174a) may be used to represent the most general form of an
isotropic fourth-order tensor with minor andmajor symmetries. This is demonstrated
in the following.

LetT be an isotropic symmetric tensor function of a symmetric tensor S. Further,
suppose T is linear in S. Then, it should be expressible in the form

T (S) = λ (trS) I + 2μS . (6.179)

Recall from (3.33) that a fourth-order tensor was a linear mapping from Tso into
itself. The linear transformation (6.179) can then be rewritten as

T (S) = C : S . (6.180)
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This implies the minor symmetries Ci jkl = C j ikl = Ci jlk owing to T = TT and
S = ST. Thus,C is a linear transformation from T

sym
so into itself. Now, the isotropy

condition T
(

QSQT
) = QT (S)QT helps write

Ti j
(

QSQT
) = Ci jkl

(

QSQT
)

kl
= Ci jkl QkmSmnQln

= QikTkl (S) Q jl = QikCklmn SmnQ jl ,

which implies

QkmQlnCi jkl = QikQ jlCklmn

or QkmQrm Qln QsnCi jkl = Qik Q jl Qrm QsnCklmn or δkr δlsCi jkl = Qik Q jl Qrm QsnCklmn

,

or
Ci jkl = QimQ jnQkoQlpCmnop . (6.181)

Guided by (3.72), one can thus infer thatC is an isotropic fourth-order tensor. Finally,
by comparing (6.179) and (6.180), one can arrive at the following representation
formula

C = λI ⊗ I + 2μI 	 I

or Ci jkl = λδi j δkl + μ
(

δikδl j + δil δk j
)

, ←− see (3.160) (6.182)

for an isotropic fourth-order tensor C which possesses the minor symmetries
Ci jkl = C j ikl = Ci jlk . Notice that in this representation,C also possesses the major
symmetries Ci jkl = Ckli j .

The representation theorems established so far for isotropic symmetric tensor
functions of one tensor variable can be extended to involvemore tensorial arguments.
The results have been demonstrated in Table 6.3.

As an example, consider an isotropic symmetric tensor-valued function of the two
tensorial variables v1 = v and S1 = S which admits the following representation

T (v,S)
from the first, second, third===============
and sixth rows of Table 6.3

f0 (ϒs) I + f1 (ϒs) S + f2 ( ϒs) S2 + f3 (ϒs) v ⊗ v

+ f4 (ϒs) (v ⊗ Sv + Sv ⊗ v) + f5 ( ϒs)
(

v ⊗ S2v + S2v ⊗ v
)

,

(6.183)

where fk, k = 0, 1, 2, 3, 4, 5, are arbitrary isotropic scalar invariants of the set
(6.162).

Hint: The generators v ⊗ S2v + S2v ⊗ v and Sv ⊗ Sv are equivalent in the sense
that they can uniquely determine each other, see (6.236).
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Table 6.3 List of isotropic symmetric tensor invariants

Variables Generator elements

0 I

v1 v1 ⊗ v1
S1 S1, S21
W1 W2

1

v1, v2 v1 ⊗ v2 + v2 ⊗ v1
v1, S1 v1 ⊗ S1v1 + S1v1 ⊗ v1, v1 ⊗ S21v1 + S21v1 ⊗ v1
v1, W1 v1 ⊗ W1v1 + W1v1 ⊗ v1, W1v1 ⊗ W1v1, W1v1 ⊗ W2

1v1 + W2
1v1 ⊗ W1v1

S1, S2 S1S2 + S2S1, S21S2 + S2S21, S22S1 + S1S22
W1, W2 W1W2 + W2W1, W1W2

2 − W2W2
1, W2

1W2 − W2W2
1

S1, W1 S1W1 − W1S1, W1S1W1, S21W1 − W1S21, W1S1W2
1 − W2

1S1W1

v1, v2, S1 v1 ⊗ S1v2 + S1v2 ⊗ v1, v2 ⊗ S1v1 + S1v1 ⊗ v2
v1, v2, W1 v1 ⊗ W1v2 + W1v2 ⊗ v1, v2 ⊗ W1v1 + W1v1 ⊗ v2

The goal is now to derive a representation formula for an isotropic third-order
tensor function of a vector variable,A (v), which is symmetric it its first two indices,
i.e. Ai jk = A j ik .

To begin with, let T be an isotropic symmetric tensor function of the two vectors
u and v. Then, by reading off from Tables 6.1 and 6.3,

T (u, v) = h̄0 (u · u, v · v,u · v) I + h̄1 (u · u, v · v,u · v)u ⊗ u

+ h̄2 (u · u, v · v,u · v) v ⊗ v

+ h̄3 (u · u, v · v,u · v) [u ⊗ v + v ⊗ u] , (6.184)

where h̄k, k = 0, 1, 2, 3, are arbitrary isotropic scalar-valued functions. Further,
suppose that T is linear in u. Then,

T (u, v) = (u · v) f (v · v) I + (u · v) g (v · v) v ⊗ v

+ h (v · v) [u ⊗ v + v ⊗ u] , (6.185)

where f , g and h are arbitrary isotropic scalar-valued functions. Now, recall from
(3.1) that a third-order tensor was introduced as a linear transformation from E o3

r
into Tso. This allows one to rewrite the linear mapping (6.185) as

T (u, v) = A (v) u , (6.186)

noting that the symmetry of T naturally implies that Ai jk = A j ik . The isotropy con-
dition T (Qu,Qv) = QT (u, v)QT then results in
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Ti j (Qu,Qv) = Ai jk (Qv) (Qu)k = Ai jk (Qv) Qkmum
= QikTkl (u, v) Q jl = QikAklm (v) umQ jl ,

which implies that

QkmAi jk (Qv) = QikQ jlAklm (v)

or QkmQnmAi jk (Qv) = Qik Q jl QnmAklm (v) or δknAi jk (Qv) = Qik Q jl QnmAklm (v)

,

or
Ai jk (Qv) = Qil Q jmQknAlmn (v) . (6.187)

Consequently, using (3.24), one can deduce thatA is an isotropic third-order tensor.
Comparing (6.185) and (6.186) helps finally express an isotropic third-order tensor
function of a vector, A (v), possessing the symmetry Ai jk = A j ik in the following
form

Ai jk (v) = f (v · v) [(I ⊗ v)i jk
]+ g (v · v) [(v ⊗ v ⊗ v)i jk

]

+ h (v · v) [(v ⊗ I)i jk + (v ⊗ I) j ik
]

. (6.188)

At the end, for completeness, the isotropic generating sets of a skew-symmetric
tensor function are tabulated in Table 6.4. As can be seen, the zero tensor is the only
generator of an antisymmetric tensor function of a vector (or symmetric tensor).

6.3 Exercises

Exercise 6.1

LetQ = Q (t) be a given orthogonal tensor-valued function of a scalar variable such
as time t . Verify that Q̇QT is a skew-symmetric tensor satisfying the property

Q̇QT = − (Q̇QT
)T

. (6.189)

Solution. Recall that any orthogonal tensor satisfies QQT = I. The first derivative
of this relation then gives

from===⇒
(2.130)

˙QQT = İ

from========⇒
(6.4h) and (6.6a)

Q̇QT + QQ̇T = O

from=========⇒
(2.11c) and (2.11d)

Q̇QT = −QQ̇T
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from==⇒
(6.5)

Q̇QT = −QQ̇T

from=========⇒
(2.55b) and (2.55d)

Q̇QT = − (Q̇QT
)T

.

Exercise 6.2

Let A (t) be an invertible tensor. Then, show that

˙detA (t) = detA (t)
[

A−T (t) : Ȧ (t)
] = detA (t) tr

[

A−1 (t) Ȧ (t)
]

.

Finally, verify this relation for the following matrix of the given tensor

[A (t)] =
⎡

⎣

1/2 0 0
t−α 1 0
0 0 2

⎤

⎦ ,

where α denotes a scalar.

Solution. The first derivative of the determinant of an invertible tensor A (t) is

Table 6.4 List of isotropic skew-symmetric tensor invariants

Variables Generator elements

v1 O

S1 O

W1 W1

v1 , v2 v1 ⊗ v2 − v2 ⊗ v1
v1 , S1 v1 ⊗ S1v1 − S1v1 ⊗ v1 , v1 ⊗ S21v1 − S21v1 ⊗ v1 ,

S1v1 ⊗ S21v1 − S21v1 ⊗ S1v1
v1 , W1 v1 ⊗ W1v1 − W1v1 ⊗ v1 , v1 ⊗ W2

1v1 − W2
1v1 ⊗ v1

S1 , S2 S1S2 − S2S1 , S1S22 − S22S1 , S21S2 − S2S21 ,

S1S2S21 − S21S2S1 , S2S1S22 − S22S1S2
W1 , W2 W1W2 − W2W1

S1 , W1 S1W1 + W1S1 , S1W2
1 − W2

1S1
v1 , v2 , S1 v1 ⊗ S1v2 − S1v2 ⊗ v1 , v2 ⊗ S1v1 − S1v1 ⊗ v2
v1 , v2 , W1 v1 ⊗ W1v2 − W1v2 ⊗ v1 , v2 ⊗ W1v1 − W1v1 ⊗ v2
v1 , S1 , S2 S1v1 ⊗ S2v1 − S2v1 ⊗ S1v1 , S1S2v1 ⊗ v1 − v1 ⊗ S1S2v1 ,

S2S1v1 ⊗ v1 − v1 ⊗ S2S1v1
S1 , S2 , S3 S1S2S3 − S3S2S1 , S2S3S1 − S1S3S2 , S3S1S2 − S2S1S3
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˙detA (t)
from====
(6.8c)

d [detA]
dA

: Ȧ
from=====
(6.20c)

(detA)A−T : Ȧ
from==========

(2.55b) and (2.84)
(detA) I : A−1Ȧ

from====
(2.83)

(detA) tr
[

A−1 (t) Ȧ (t)
]

.

The goal is now to check ˙detA = detAtr
(

A−1Ȧ
)

for the given matrix. By use of
(1.47), (1.52), (1.79), (2.114) and (2.121), the determinant and inverse of this matrix
render

det [A] = 1 ,
[

A−1
] =

⎡

⎣

2 0 0
−2t−α 1 0

0 0 1/2

⎤

⎦ .

And its first derivative, using (6.2b), is

[

Ȧ
] =

⎡

⎣

0 0 0
−αt−α−1 0 0

0 0 0

⎤

⎦ .

Obviously, ˙det [A] = 1̇ = 0 and tr
(

[A]−1
[

Ȧ
]) = 0.

Exercise 6.3

Let� be a sufficiently smooth scalar-valued function and u, v be sufficiently smooth
vector-valued functions of one vector variable w. Further, let � be a sufficiently
smooth scalar-valued function and A, B be sufficiently smooth tensor-valued func-
tions of one tensor variable C. Then, verify the important identities

∂

∂w
[�u · v] = (u · v) ∂�

∂w
+ �

[

(

∂u
∂w

)T

v +
(

∂v
∂w

)T

u

]

, (6.190a)

∂

∂w
[�u] = u ⊗ ∂�

∂w
+ �

∂u
∂w

, (6.190b)

∂

∂C
[�A : B] = (A : B)

∂�

∂C
+ �

[

B : ∂A
∂C

+ A : ∂B
∂C

]

, (6.190c)

∂

∂C
[�A] = A ⊗ ∂�

∂C
+ �

∂A
∂C

. (6.190d)



262 6 Differentiation of Tensor Functions and Representation Theorems

Solution. Of special interest here is to work with the components of tensors. The
procedure to be followed relies on indicial notation as a powerful tool for proving
identities in tensor analysis.

By use of the product rule of differentiation along with (1.38)7, (2.24)5, (2.49),
(6.14a)1 and (6.29)1, one can write

∂

∂wi

[

�u jv j
] = u jv j

∂�

∂wi

or (u · v) (∂�/∂w)i

+ �
∂u j

∂wi
v j

or �(∂u/∂w) j i (v) j = �(∂u/∂w)Ti j (v) j

+ �u j
∂v j

∂wi

or �(u) j (∂v/∂w) j i = �(∂v/∂w)Ti j (u) j

,

∂

∂w j
[�ui ] = ui

∂�

∂w j

or (u)i (∂�/∂w) j = (u ⊗ ∂�/∂w)i j

+ �
∂ui
∂w j

or �(∂u/∂w)i j

.

In a similar manner, the product rule in conjunction with (2.75)4, (3.66b)4, (3.70a),
(6.14d)1 and (6.40)1 help establish

∂

∂Ci j
[�Akl Bkl] = Akl Bkl

∂�

∂Ci j

or (A : B) (∂�/∂C)i j

+� Bkl
∂Akl

∂Ci j

or (B)kl (∂A/∂C)kli j = (B : ∂A/∂C)i j

+ � Akl
∂Bkl

∂Ci j

or (A)kl (∂B/∂C)kli j = (A : ∂B/∂C)i j

,

∂

∂Ckl

[

�Ai j
] = Ai j

∂�

∂Ckl

or (A)i j (∂�/∂C)kl = (A ⊗ ∂�/∂C)i jkl

+ �
∂Ai j

∂Ckl

or � (∂A/∂C)i jkl

.

Exercise 6.4

Verify the following identities

∂

∂u

[

u
|u|
]

= 1

|u|
[

I − u
|u| ⊗ u

|u|
]

, (6.191a)

∂

∂A

[

A
|A|
]

= 1

|A|
[

I � I − A
|A| ⊗ A

|A|
]

, (6.191b)

∂

∂u

[

Au
|Au|

]

= 1

|Au|
[

A − Au
|Au| ⊗ ATAu

|Au|
]

, (6.191c)
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∂

∂A

[

Au
|Au|

]

= 1

|Au|
[

I ⊗ u − Au
|Au| ⊗ Au

|Au| ⊗ u
]

. (6.191d)

Solution. Relying on the previously established identities, the desired relations will
be proved in direct notation here.
The expression (6.191a):

∂

∂u

[|u|−1 u
] from======

(6.190b)
u ⊗ ∂ |u|−1

∂u
+ |u|−1 ∂u

∂u

from===========
(6.18a) and (6.32a)

u ⊗
[

− |u|−2 u
|u|
]

+ |u|−1 I

from===========
(2.16a) and (2.16b)

1

|u|
[

I − u
|u| ⊗ u

|u|
]

.

The expression (6.191b):

∂

∂A

[|A|−1 A
] from======

(6.190d)
A ⊗ ∂ |A|−1

∂A
+ |A|−1 ∂A

∂A

from===========
(6.18a) and (6.42a)

A ⊗
[

− |A|−2 A
|A|
]

+ |A|−1 I � I

from===========
(3.53a) and (3.53b)

1

|A|
[

I � I − A
|A| ⊗ A

|A|
]

.

The expression (6.191c):

∂

∂u

[

Au
|Au|

]

from===========
(1.11) and (6.190b)

Au ⊗ ∂ (Au · Au)−1/2

∂u
+ |Au|−1 ∂Au

∂u

from==========
(1.11) and (6.32b)

Au ⊗
[

− 1

2 |Au| |Au| |Au|
∂ (Au · Au)

∂u

]

+ A
|Au|

from===============
(2.16a)-(2.16b) and (6.18c)

1

|Au|
[

A − Au
|Au| ⊗ ATAu

|Au|
]

.

The expression (6.191d):

∂

∂A

[

Au
|Au|

]

from (1.11) and===========
in light of (6.190d)

Au ⊗ ∂ (Au · Au)−1/2

∂A
+ |Au|−1 ∂Au

∂A

from==========
(1.11) and (6.32b)

Au ⊗
[

− 1

2 |Au| |Au| |Au|
∂ (Au · Au)

∂A

]

+ I ⊗ u
|Au|

from==============
(3.7a)-(3.7c) and (6.18c)

1

|Au|
[

I − Au
|Au| ⊗ Au

|Au|
]

⊗ u .
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Exercise 6.5

First, show that the derivatives of the powers of a tensor, An (n = 1, 2, . . .), with
respect to itself can be computed via the following relations

∂An

∂A
=

n−1
∑

k=0

Ak � An−k−1 =
n
∑

m=1

Am−1 � An−m . ←− see (3.49b) and (3.70b) (6.192)

Then, verify that

∂A−n

∂A
= −

n−1
∑

k=0

Ak−n � A−k−1 = −
n
∑

m=1

Am−n−1 � A−m . (6.193)

Finally, use these results to establish the important relations

∂

∂A

[

trAn
] = n

(

An−1
)T

, (6.194a)

∂

∂A

[

trA−n
] = −n

(

A−n−1
)T

. (6.194b)

Solution.Here, different procedures will be used to derive the desired relations. First,
by means of (2.36), (2.37)1, (3.54b)1 and (6.36c), one will have

∂An

∂A
: B = d

dε

[

(A + εB)n
]

∣

∣

∣

∣

ε=0

= d

dε

⎡

⎣(A + εB) (A + εB) · · · (A + εB)

n times

⎤

⎦

∣

∣

∣

∣

∣

∣

ε=0

= d

dε

[

ε0An + ε1
n−1
∑

k=0

AkBAn−k−1 + ε2 · · ·
]∣

∣

∣

∣

∣

ε=0

=
n−1
∑

k=0

AkBAn−k−1 =
n−1
∑

k=0

Ak � An−k−1 : B .

Then, guided by the expressions (6.56) and (6.57), the total differential of the identity
A−nAn = I gives

dA−n = −A−n
(

dAn
)

A−n = − (A−n � A−n
)

︸ ︷︷ ︸

= ∂A−n/∂An

: dAn .

Substituting (6.192)1 into the above result, taking into account (2.37)1 and (3.94b)4,
will lead to the second required relation:
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dA−n =
[

∂A−n

∂A

]

: dA

=
[

∂A−n

∂An
: ∂An

∂A

]

: dA

=
[

− (A−n � A−n
) :
(

n−1
∑

k=0

Ak � An−k−1

)]

: dA

=
[

−
n−1
∑

k=0

Ak−n � A−k−1

]

: dA .

Note that either (6.192)1 or (6.193)1 could be verified by mathematical induction.
This remains to be done by the ambitious reader.

The aim is now to calculate the derivatives of the first invariant of the monomials
of a tensor, trAn (n = 1, 2, . . .), with respect to itself. By means of (2.33), (2.37)1,
(2.55d)1, (2.78), (3.36), (3.54b)2 and (6.192)1, one will have

d
[

I : An
] = ∂ [I : An]

∂A
: dA

= An : ∂I
∂A

: dA
︸ ︷︷ ︸

= An : O : dA = An : O = 0

+I : ∂An

∂A
: dA

= I :
n−1
∑

k=0

Ak � An−k−1 : dA

=
n−1
∑

k=0

(

Ak
)T

I
(

An−k−1)T : dA

=
n−1
∑

k=0

(

An−k−1Ak
)T : dA

= n
(

An−1
)T

︸ ︷︷ ︸

= ∂
[

I : An] /∂A

: dA .

In a similar fashion,

d
[

I : A−n
] = ∂

[

I : A−n
]

∂A
: dA

= I : ∂A−n

∂A
: dA
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= −
n−1
∑

k=0

(

Ak−n
)T

I
(

A−k−1
)T : dA

= −n
(

A−n−1
)T

︸ ︷︷ ︸

= ∂
[

I : A−n] /∂A

: dA .

Exercise 6.6

From (2.190)1 and (6.20c)2, it simply follows that

∂ I3
∂A

= (A2
)T − I1AT + I2I . (6.195)

Obtain this important result by differentiating the Cayley-Hamilton equation (4.21)
with respect to A. This may be viewed as an alternative derivation for the gradient
of the determinant of a tensor, see (6.19c).

Moreover, by using (1.80) obtain the similar result to present another alternative
derivation. See Liu [23] and Holzapfel [44] for the other derivations.

Solution.To beginwith, one needs to take the trace of the Cayley-Hamilton equation.
Considering the linearity of the trace operator along with (2.90)–(2.91) reveals

3I3 = trA3 − I1trA2 + I2trA .

Now, using (2.11g), (6.20a)1−2, (6.20b)1−2 and (6.194a),

3
∂ I3
∂A

= ∂trA3

∂A
︸ ︷︷ ︸

= 3
(

A2
)T

− ∂ I1
∂A
︸︷︷︸

= I

trA2 − I1
∂trA2

∂A
︸ ︷︷ ︸

= 2AT

+ ∂ I2
∂A
︸︷︷︸

= I1I − AT

trA + I2
∂trA
∂A
︸ ︷︷ ︸

= I

= 3
(

A2
)T − 3I1AT + (I2 + I 21 − trA2

)

I

= 3
(

A2
)T − 3I1AT + 3I2I .

The interested reader may want to arrive at this result by considering the gradient of

detA = 1

6
εuvkεlmn Aul Avm Akn ,

as follows:

∂

∂Ai j
[detA] = 1

6
εuvkεlmnδuiδ jl Avm Akn + 1

6
εuvkεlmn Aulδviδ jm Akn
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+ 1

6
εuvkεlmn Aul Avmδkiδ jn

= 1

6
εivkε jmn Avm Akn

= 1
6 εiukε jmn Aum Akn

+ 1

6
εuikεl jn Aul Akn

= 1
6 εiukε jln Aul Akn = 1

6 εiukε jmn Aum Akn

+ 1

6
εuviεlm j Aul Avm

= 1
6 εiuvε jlm Aul Avm = 1

6 εiukε jmn Aum Akn

= 1

2
εiukε jmn Aum Akn

= 1
2 εiul ε jmn Aum Aln = 1

2 εikl ε jmn Akm Aln

= (Ac)i j = A2
j i − I1A ji + I2δi j ,

where the expressions (1.36), (1.53), (2.117)1, (2.190)2, (6.14d)1 and (6.42a)2 along
with the product rule of differentiation have been used.

Exercise 6.7

The goal of this exercise is to show the prominent role of exponential map in the
solution of linear ordinary tensorial differential equations. To this end, consider the
exponential tensor function

exp (tA) =
∞
∑

n=0

tn

n!A
n , ←− see (2.39) (6.196)

where t is a scalar such as time. If t is constant, then the derivative of exp (tA) takes
the following form

d

dA

[

exp (tA)
] =

∞
∑

n=1

tn

n!
dAn

dA
=

∞
∑

n=1

tn

n!
n
∑

m=1

Am−1 � An−m . (6.197)

And if A remains unchanged, then the gradient of exp (tA) becomes

d

dt

[

exp (tA)
] =

∞
∑

n=1

n

n! t
n−1An

=
∞
∑

n=1

tn−1

(n − 1)!A
n
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= A
∞
∑

n=1

tn−1

(n − 1)!A
n−1

= A
∞
∑

k=0

t k

k!A
k

= Aexp (tA) = exp (tA)A
note that A and exp (tA) obviously commute

. (6.198)

In multivariable calculus, the expression (6.198) reminds that the matrix exponential
can successfully be used for solving systems of linear ordinary differential equations.
Now, consider the following initial-value problem

Ẏ (t) = AY (t) subject to Y (0) = Y0 , (6.199)

whose solution is
Y (t) = exp (tA)Y0 . (6.200)

Show that the solution of

Ẏ (t) + AY (t) + Y (t)B = C (t) with the initial condition Y (0) = Y0 ,

(6.201)
can be written as

Y (t) =
∫ t

0
exp

(−t̂A
)

C
(

t − t̂
)

exp
(−t̂ B

)

dt̂

+ exp (−tA)Y0 exp (−tB) . (6.202)

Solution. By use of the rule (3.54b)1 and the identity Aexp (tA) = exp (tA)A, the
key point here is to rewrite (6.201) as

[

exp (tA) � exp (tB)
] : [Ẏ + AY + YB

]

︸ ︷︷ ︸

= exp (tA) Ẏexp (tB) + Aexp (tA)Yexp (tB) + exp (tA)Yexp (tB)B

= [exp (tA) � exp (tB)
] : [C]

︸ ︷︷ ︸

= exp (tA)Cexp (tB)

,

or, in the more convenient form,

d

dt

[

exp (tA)Yexp (tB)
] = exp (tA)Cexp (tB) .

It follows that

exp (tA)Y (t) exp (tB) =
∫ t

0
exp

(

t̂A
)

C
(

t̂
)

exp
(

t̂ B
)

dt̂ + Y0 ,
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with the aid of (2.33), (2.105) and (2.210), delivers the desired result. Note that
(6.200) can be resulted from (6.202) by setting C = O, B = O and A = −Â.

Exercise 6.8

Given the scalar-valued function

f (t) = det
[

exp (tA)
]

. (6.203)

By computing its derivative, deduce that the solution of the resulting differential
equation is the identity det

[

exp (A)
] = exp (trA). This may be viewed as an alter-

native derivation for this important expression verified previously in Exercise 4.6.

Solution. The solution of the linear ordinary differential equation

d det
[

exp (tA)
]

dt
using========

the chain rule

d det
[

exp (tA)
]

dexp (tA)
: dexp (tA)

dt
from===========

(6.20c) and (6.198)
det
[

exp (tA)
] [

exp (tA)
]−T : Aexp (tA)

from================
(2.110) and in view of (2.210)

det
[

exp (tA)
] [

exp (−tA)
]T : Aexp (tA)

from==========
(2.55b) and (2.84)

det
[

exp (tA)
]

I : Aexp (tA) exp (−tA)

from====================
(2.33), (2.82) and in view of (2.207c)

(trA) det
[

exp (tA)
]

,

is
ln
(

det
[

exp (tA)
]) = trAt

note that ln
(

det
[

exp (0A)
]) = ln (det [I]) = ln (1) = 0

.

Exponentiating this result then yields

det
[

exp (tA)
] = exp (trAt) .

Finally, substituting t = 1 into this expression delivers the required result.

Exercise 6.9

Suppose that S is a symmetric second-order tensor with the spectral representations
(4.41), (4.45)3 and (4.46). Then, verify the useful relations
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∂λa

∂S
= n̂a ⊗ n̂a , a = 1, 2, 3, if λ1 �= λ2 �= λ3 �= λ1 , (6.204a)

∂λ1

∂S
= n̂1 ⊗ n̂1 , 2

∂λ

∂S
= I − n̂1 ⊗ n̂1 if λ1 �= λ2 = λ3 = λ , (6.204b)

3
∂λ

∂S
= I if λ1 = λ2 = λ3 = λ . (6.204c)

Solution. To this end, let S be a symmetric tensor that is known in its contravariant
components, i.e. S = Si jgi ⊗ g j . And let n̂a be a unit vector that is known in its
covariant components, i.e. n̂a = n̂ i agi .

For the first case, suppose that S is a tensor with exactly three distinct eigenpairs
(λa, n̂a) , a = 1, 2, 3. To begin with, consider the following eigenvalue problem for
such a tensor (Ibrahimbegović [24])

[

S − λag−1] n̂a = 0 or
[

Si j − λag
i j
]

n̂ j a = 0 , (6.205)

which helps represent

S =
3
∑

a=1

λag−1n̂a ⊗ g−1n̂a or Si j =
3
∑

a=1

λag
ik n̂ k ag

jl n̂ l a , (6.206)

noting that
na · g−1nb = δab or n̂ i ag

i j n̂ j b = δab . (6.207)

The derivation of (6.204a) basically relies on computing the total differential of
(6.205)1, that is,

(dS) n̂a + S (d n̂a) = dλag−1n̂a + λa
(

dg−1) n̂a + λag−1 (d n̂a) .

Postmultiplying this expression by n̂a and subsequently using (6.57)1 then gives

(dS) n̂a · n̂a = dλag−1n̂a · n̂a − λag−1 (dg) g−1n̂a · n̂a (a = 1, 2, 3; no sum) ,

since

S (d n̂a) · n̂a − λag−1 (d n̂a) · n̂a = (d n̂a) · Ŝna − λa (d n̂a) · g−1n̂a

= (d n̂a) · [Ŝna − λag−1n̂a
]

= 0 .

Using (2.79c)1 and (6.207)1, one can further have

n̂a ⊗ n̂a : (dS) + λag−1n̂a · (dg) g−1n̂a = dλa

or dλa = n̂a ⊗ n̂a : (dS) + λag−1n̂a ⊗ g−1n̂a : (dg)

.
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Consequently, by λa = λa (S, g) with dλa = (∂λa/∂S) : dS + (∂λa/∂g) : dg, one
can conclude that

∂λa

∂S
= n̂a ⊗ n̂a,

∂λa

∂g
= λag−1n̂a ⊗ g−1n̂a . (6.208)

Next, consider the case of double coalescence, i.e. λ1 �= λ2 = λ3 = λ. In this case,
by contracting

S = λ1g−1n̂1 ⊗ g−1n̂1 + λ
(

g−1 − g−1n̂1 ⊗ g−1n̂1
)

,

with the symmetric tensors n̂1 ⊗ n̂1 and g, one can arrive at

λ1 = n̂1 ⊗ n̂1 : S, 2λ + λ1 = g : S .

By rewriting (6.211b) in the covariant form (λ1 − λ) n̂1 ⊗ n̂1 = gSg − λg, it should
not be difficult to see that

dλ1 = n̂1 ⊗ n̂1 : dS + (λ1 − λ)−1 (SgS − λS) : dg ,

2dλ = (g − n̂1 ⊗ n̂1) : dS − (λ1 − λ)−1 (SgS − λ1S) : dg .

Thus,

∂λ1

∂S
= n̂1 ⊗ n̂1,

∂λ1

∂g
= (λ1 − λ)−1 (SgS − λS) , (6.209a)

2
∂λ

∂S
= g − n̂1 ⊗ n̂1, 2

∂λ

∂g
= − (λ1 − λ)−1 (SgS − λ1S) . (6.209b)

The interested reader may want to use (6.208), that is,

∂λ1

∂S
= n̂1 ⊗ n̂1,

∂λ1

∂g
= λ1g−1n̂1 ⊗ g−1n̂1 ,

∂λ2

∂S
+ ∂λ3

∂S
= n̂2 ⊗ n̂2 + n̂3 ⊗ n̂3 ,

∂λ2

∂g
+ ∂λ3

∂g
= λ2g−1n̂2 ⊗ g−1n̂2 + λ3g−1n̂3 ⊗ g−1n̂3 .

to alternatively obtain the results (6.209a)–(6.209b). This can be achieved by taking
the limit as λ2 − λ and λ3 − λ go to zero considering the fact that

g − n̂1 ⊗ n̂1 = n̂2 ⊗ n̂2 + n̂3 ⊗ n̂3 ,

SgS − λS = λ1 (λ1 − λ) g−1n̂1 ⊗ g−1n̂1 ,
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SgS − λ1S = λ (λ − λ1)
[

g−1n̂2 ⊗ g−1n̂2 + g−1n̂3 ⊗ g−1n̂3
]

.

Finally, consider the case of triple coalescence, i.e. λ1 = λ2 = λ3 = λ. In this
case, S = λg−1 implies 3λ = S : g or 3λ = Si j gi j . Consequently, by using (6.55c)2
and (6.55f)2,

3
∂λ

∂S
= g , 3

∂λ

∂g
= S . (6.210)

These results can also be obtained from (6.208). In this case, one can write

∂λ1

∂S
+ ∂λ2

∂S
+ ∂λ3

∂S
= n̂1 ⊗ n̂1 + n̂2 ⊗ n̂2 + n̂3 ⊗ n̂3 ,

∂λ1

∂g
+ ∂λ2

∂g
+ ∂λ3

∂g
= g−1 [λ1n̂1 ⊗ n̂1 + λ2n̂2 ⊗ n̂2 + λ3n̂3 ⊗ n̂3] g−1 .

Consequently, in the limit when λ1 → λ, λ2 → λ and λ3 → λ, the desired results in
(6.210) immediately follow.

Exercise 6.10

Let S be a symmetric Cartesian tensor with the spectral formulas (4.41) and (4.45)3.
Then, show that the symmetric tensor n̂i ⊗ n̂i (no summation) can be represented in
closed form according to (see Simo and Taylor [25] and Saleeb et al. [26])

n̂i ⊗ n̂i = S2 − [I1 (S) − λi ] S + I3 (S) λ−1
i I

Di

=
(

S − λ j I
)

(S − λkI)
(

λi − λ j
)

(λi − λk)
←− see (4.40) if λ1 �= λ2 �= λ3 �= λ1 ,

(6.211a)

n̂1 ⊗ n̂1 = S − λI
λ1 − λ

if λ1 �= λ2 = λ3 = λ , (6.211b)

where the scalar Di = 2λ2
i − I1 (S) λi + I3 (S) λ−1

i should be nonzero and (i, j, k)
is (1, 2, 3), (2, 3, 1) or (3, 1, 2). Recall from (4.9) that the eigenvalues could also be
obtained in closed form in terms of the principal scalar invariants. These relations
are important from the computational point of view because they may help avoid the
explicit computation of the eigenvalues and eigenvectors. For further discussions,
see Appendix A of de Souza Neto et al. [27].

Solution. First, let S be a symmetric tensor with exactly three distinct eigenvalues,
i.e. λ1 �= λ2 �= λ3 �= λ1. Then, by means of the product rule of differentiation, the
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sensitivity of
λ3
i − I1λ

2
i + I2λi − I3 = 0 , ←− see (4.6)

with respect to S gives

∂λi

∂S

(

3λ2
i − 2I1λi + I2

) = λ2
i

∂ I1
∂S

− λi
∂ I2
∂S

+ ∂ I3
∂S

,

or, using (6.20a)–(6.20c),

∂λi

∂S

(

3λ2
i − 2I1λi + I2

) = λ2
i I − λi [I1I − S] + I3S−1 .

Introducing I2 = −λ2
i + I1λi + I3λ

−1
i and I3S−1 = S2 − I1S + I2I (from the

Cayley-Hamilton theorem) into the above relation yields

∂λi

∂S
= S2 − [I1 − λi ]S + [λ2

i − I1λi + I2 = I3λ
−1
i

]

I

2λ2
i − I1λi + I3λ

−1
i

.

Consequently, by (6.204a), the desired relation (6.211a)1 follows. Note that this
useful result can also be written in an alternative form. This is demonstrated in the
following.

By using S =∑3
i=1 λi n̂i ⊗ n̂i , I =∑3

i=1 n̂i ⊗ n̂i and n̂i · n̂ j = δi j , one will have

S − λ1I = (λ2 − λ1) n̂2 ⊗ n̂2 + (λ3 − λ1) n̂3 ⊗ n̂3 ,

S − λ2I = (λ1 − λ2) n̂1 ⊗ n̂1 + (λ3 − λ2) n̂3 ⊗ n̂3 ,

and, consequently,

(S − λ1I) (S − λ2I) = (λ3 − λ1) (λ3 − λ2) n̂3 ⊗ n̂3
or n̂3 ⊗ n̂3 = [(S − λ1I) (S − λ2I)

]

/
[

(λ3 − λ1) (λ3 − λ2)
]

.

In a similar manner,

n̂1 ⊗ n̂1 = (S − λ2I) (S − λ3I)
(λ1 − λ2) (λ1 − λ3)

,

n̂2 ⊗ n̂2 = (S − λ1I) (S − λ3I)
(λ2 − λ1) (λ2 − λ3)

.

Next, consider the case of double coalescence, i.e. λ1 �= λ2 = λ3 = λ. In this case,
from S = λ1 n̂1 ⊗ n̂1 + λ (I − n̂1 ⊗ n̂1), one can simply write
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S − λI = (λ1 − λ) n̂1 ⊗ n̂1
or n̂1 ⊗ n̂1 = (S − λI) / (λ1 − λ)

.

Exercise 6.11

Let S be a symmetric second-order tensor. First, show that a symmetric tensor func-
tion of the formT (S) = (I + S)−1 is isotropic. Then, using (6.174a)–(6.174c), derive
the following representation formulas

(I + S)−1 = f0I + f1S + f2S2 if λ1 �= λ2 �= λ3 �= λ1 , (6.212a)

(I + S)−1 = f̄0I + f̄1S if λ1 �= λ2 = λ3 = λ , (6.212b)

(I + S)−1 = f̂0I if λ1 = λ2 = λ3 = λ , (6.212c)

where

f0 = 1 + λ1 + λ2 + λ3 + λ1λ2 + λ2λ3 + λ1λ3

(1 + λ1) (1 + λ2) (1 + λ3)
, (6.213a)

f1 = − 1 + λ1 + λ2 + λ3

(1 + λ1) (1 + λ2) (1 + λ3)
, (6.213b)

f2 = 1

(1 + λ1) (1 + λ2) (1 + λ3)
, (6.213c)

f̄0 = 1 + λ1 + λ

(1 + λ1) (1 + λ)
, (6.213d)

f̄1 = − 1

(1 + λ1) (1 + λ)
, (6.213e)

f̂0 = 1

1 + λ
. (6.213f)

Solution. For the first part, by using QT = Q−1, one can verify that

T
(

QSQT
) = (QIQT + QSQT

)−1

= (Q (I + S)QT
)−1

= Q−T (I + S)−1 Q−1

= QT (S)QT . (6.214)

In the following, three different cases are considered since the principal values may
be repeated.

First, suppose that S is a tensor with non-multiple eigenvalues. Then, with the aid
of (6.115) and (6.174a), the isotropic symmetric tensor function T (S) is expressible
in the form
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T (S) =
3
∑

i=1

(

f0 + f1λi + f2λ
2
i

)

n̂i ⊗ n̂i . (6.215)

On the other hand, by using (4.37b) and having in mind that any symmetric tensor
has identical right and left eigenvectors, one can write

(I + S)−1 =
3
∑

i=1

(1 + λi )
−1 n̂i ⊗ n̂i . (6.216)

It in not then difficult to see that

⎡

⎣

1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3

⎤

⎦

︸ ︷︷ ︸

:= [A]

⎡

⎣

f0
f1
f2

⎤

⎦

︸ ︷︷ ︸

:= [b]

=
⎡

⎣

(1 + λ1)
−1

(1 + λ2)
−1

(1 + λ3)
−1

⎤

⎦

︸ ︷︷ ︸

:= [c]

, ←− notice that [A] renders a
Vandermonde matrix, see (6.119)

or [b] = [A]−1 [c] with

[A]−1 =
⎡

⎢

⎣

λ2λ3
(λ3−λ1)(λ2−λ1)

−λ1λ3
(λ2−λ1)(λ3−λ2)

λ1λ2
(λ3−λ1)(λ3−λ2)−(λ2+λ3)

(λ3−λ1)(λ2−λ1)

(λ1+λ3)

(λ2−λ1)(λ3−λ2)

−(λ1+λ2)

(λ3−λ1)(λ3−λ2)
1

(λ3−λ1)(λ2−λ1)
−1

(λ2−λ1)(λ3−λ2)
1

(λ3−λ1)(λ3−λ2)

⎤

⎥

⎦ ,

helps provide (6.213a)–(6.213c).

Next, let S be a tensor with a simple and multiple eigenvalue. In this case, one
will have

T (S) = f̄0I + f̄1S

= ( f̄0 + f̄1λ1
)

n̂1 ⊗ n̂1 + ( f̄0 + f̄1λ
)

(I − n̂1 ⊗ n̂1) , (6.217a)

(I + S)−1 = (1 + λ1)
−1 n̂1 ⊗ n̂1 + (1 + λ)−1 (I − n̂1 ⊗ n̂1) . (6.217b)

Note that n̂1 ⊗ n̂1 and I − n̂1 ⊗ n̂1 in the above relations are linearly independent.
Consequently,

[

1 λ1

1 λ

] [

f̄0
f̄1

]

=
[ 1

1+λ1
1

1+λ

]

or

[

f̄0
f̄1

]

=
[

λ −λ1

−1 1

]

[

1
(λ−λ1)(1+λ1)

1
(λ−λ1)(1+λ)

]

,

simply gives the desired coefficients (6.213d)–(6.213e).

Finally, consider the case in which all eigenvalues of S are identical. In this case,
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T (S) = f̂0I , (I + S)−1 = (1 + λ)−1 I . (6.218)

And this immediately implies (6.213f).
At the end, the interested reader may want to compute (I + S)−1 via the represen-

tation (6.212a) and the identity (I + S)−1 (I + S) = I. By using theCayley-Hamilton
equation, the result is (Hoger and Carlson [28])

(I + S)−1 = S2 − [1 + I1 (S)]S + [1 + I1 (S) + I2 (S)] I
1 + I1 (S) + I2 (S) + I3 (S)

. (6.219)

Exercise 6.12

Let S, T and U be three symmetric second-order tensors. Suppose one is given the
isotropic integrity basis

ϒ ib
s = {trS, trS2, trS3, trT, trT2, trT3, trU, trU2, trU3,

tr (ST) , tr
(

ST2
)

, tr
(

S2T
)

, tr
(

S2T2
)

,

tr (SU) , tr
(

SU2
)

, tr
(

S2U
)

, tr
(

S2U2
)

,

tr (TU) , tr
(

TU2
)

, tr
(

T2U
)

, tr
(

T2U2
)

,

tr (STU) , tr
(

S2TU
)

, tr
(

T2US
)

, tr
(

U2ST
)

,

tr
(

S2T2U
)

, tr
(

T2U2S
)

, tr
(

U2S2T
)}

, (6.220)

for the agencies S, T and U (Zheng [29]). Then, derive a representation formula for
an isotropic polynomial symmetric tensor function of S and T according to

Sib (S,T) = f0
(

ϒ̂s

)

I + f1
(

ϒ̂s

)

S + f2
(

ϒ̂s

)

S2 + f3
(

ϒ̂s

)

T

+ f4
(

ϒ̂s

)

T2 + f5
(

ϒ̂s

)

[ST + TS] + f6
(

ϒ̂s

)

[

S2T + TS2
]

+ f7
(

ϒ̂s

)

[

T2S + ST2]+ f8
(

ϒ̂s

)

[

S2T2 + T2S2
]

, (6.221)

where fk, k = 0, . . . , 8, are isotropic polynomial invariants of

ϒ̂s = {trS, trS2, trS3, trT, trT2, trT3,

tr (ST) , tr
(

ST2
)

, tr
(

S2T
)

, tr
(

S2T2
)}

. ←− see (6.143)

Comparing (6.220) with one obtained from Table 6.1 shows that an irreducible func-
tional basis contains fewer elements than an integrity basis. In the above expressions,
the elements colored in blue show the extra members.
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Solution. The procedure used here follows from the pioneering work of Pipkin and
Rivlin [7], see also Chap.8 of Boehler [20]. And it should be used to only represent
the polynomial tensor functions. To beginwith, one needs to determine an appropriate
integrity basis.

Let β ( S,T,U) be a scalar-valued function of the three symmetric tensors S, T
and U; defined by,

β (S,T,U) = U : Sib (S,T) noting that Sib (S,T) = ∂β (S,T,U)

∂U
. (6.222)

Here, Sib (S,T) presents an isotropic symmetric tensor-valued function of S and T.
Consequently, this linear function of U fulfills the isotropy condition:

β
(

QSQT,QTQT,QUQT
) = QUQT : Sib (QSQT,QTQT

)

= QUQT : QSib (S,T)QT

= U : QTQSib (S,T)QTQ

= U : ISib (S,T) I

= U : Sib (S,T)

= β (S,T,U) . (6.223)

Thus, by removing the terms involving U2 in (6.220), it should depend on

ϒ̄ ib
s = {U : I,U : S,U : S2,U : T,U : T2,

U : ST,U : S2T,U : T2S,U : S2T2, ϒ̂s

}

note that, e.g., tr (STU) = U : ST = U : (ST + TS) /2

. (6.224)

This helps express (6.222) as

β (S,T,U) = U : Sib (S,T) = U :
{

f0
(

ϒ̂s

)

I + f1
(

ϒ̂s

)

S + f2
(

ϒ̂s

)

S2

+ f3
(

ϒ̂s

)

T + f4
(

ϒ̂s

)

T2 + f5
(

ϒ̂s

)

[ST + TS]

+ f6
(

ϒ̂s

)

[

S2T + TS2
]+ f7

(

ϒ̂s

)

[

T2S + ST2
]

+ f8
(

ϒ̂s

)

[

S2T2 + T2S2
]

}

,

which implies the desired representation (6.221).
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Exercise 6.13

Bymeans of theCayley-Hamilton equation (4.21), obtain the following two variables
tensor identity

ABA + A2B + BA2 = G (A,B) , (6.225)

where

G = (trA) (AB + BA) + (trB)A2

− [trA trB − tr (AB)]A − (trA)2 − trA2

2
B

+
[

tr
(

A2B
)− trA tr (AB) + (trA)2 − trA2

2
trB
]

I , (6.226)

as well as the three fields tensor identity

ABC + ACB + BCA

+ BAC + CAB + CBA = H (A,B,C) , (6.227)

where

H = 1

2
[G (A + C,B) − G (A − C,B)]

= (trC) (AB + BA) + (trA) (BC + CB)

+ (trB) (AC + CA) − [trB trC − tr (BC)]A

− [trA trC − tr (AC)]B − [trA trB − tr (AB)]C

+ [trA trB trC − trA tr (BC) − trB tr (AC)

−trC tr (AB) + tr (ABC) + tr (BAC)] I . (6.228)

Here, A, B and C denote arbitrary second-order tensors. The above expressions are
known as the Rivlin’s identities (Rivlin [6]) which are beneficial for representation of
isotropic tensor-valued functions. See Scheidler [30] for an application to kinematics
of continuum bodies.

Solution. The Rivlin’s identities can be provided in some alternative ways. Here,
they are obtained by using the partial derivatives of the Cayley-Hamilton relation
A3 − I1A2 + I2A − I3I = O with respect to A. From (6.20a)–(6.20c) and (6.195),
it follows that

O = ∂A3

∂A
− A2 ⊗ ∂ I1

∂A
︸ ︷︷ ︸

= A2 ⊗ I

−I1
∂A2

∂A
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+ A ⊗ ∂ I2
∂A

︸ ︷︷ ︸

= A ⊗
(

I1I − AT
)

+I2
∂A
∂A

− I ⊗ ∂ I3
∂A

︸ ︷︷ ︸

= I ⊗
(

I3A
−T
)

= I ⊗
(

ATAT − I1A
T + I2I

)

.

The double contraction of this expression with an arbitrary tensor B, taking into
account (3.36) and (6.47)–(6.49b), will lead to

O = ∂A3

∂A
: B

︸ ︷︷ ︸

= BA2 + ABA + A2B

− (

A2 ⊗ I
) : B

︸ ︷︷ ︸

= A2 (I : B) = (trB)A2

−I1
∂A2

∂A
: B

︸ ︷︷ ︸

= BA + AB

+ [A ⊗ (I1I − AT
)] : B

︸ ︷︷ ︸

= A
[

I1 (trB) − tr (AB)
]

+I2
∂A
∂A

: B
︸ ︷︷ ︸

= B

− [I ⊗ (ATAT − I1AT + I2I
)] : B

︸ ︷︷ ︸

= I
[

tr
(

A2B
)

− I1tr (AB) + I2trB
]

.

This result along with (4.17a) and (4.17b)2 delivers the desired relations (6.225) and
(6.226). Note that the Cayley-Hamilton equation (4.21) can be resulted from the
tensor identity (6.225) by setting B = A.

By repeating the above procedure, i.e. calculating the sensitivity of (6.225) with
respect to A and subsequently contracting the resulting expression with a generic
tensor C, one can arrive at

O = ∂ [ABA]
∂A

: C
︸ ︷︷ ︸

= (CBA + ABC)

+ ∂
[

A2B
]

∂A
: C

︸ ︷︷ ︸

= (CA + AC)B

+ ∂
[

BA2
]

∂A
: C

︸ ︷︷ ︸

= B (CA + AC)

− ∂ [(trA) (AB + BA)]

∂A
: C

︸ ︷︷ ︸

= (trC) (AB + BA) + (trA) (CB + BC)

− ∂
[

(trB)A2
]

∂A
: C

︸ ︷︷ ︸

= (trB) (CA + AC)

− ∂ {[tr (AB) − trA trB]A}
∂A

: C
︸ ︷︷ ︸

=
{

A ⊗ ∂[tr(AB)−trA trB]
∂A

}

: C + [tr (AB) − trA trB] ∂A
∂A : C

= A {tr (BC) − trB trC} + [tr (AB) − trA trB]C

+ ∂
{[

(trA)2 − trA2
]

B
}

2∂A
: C

︸ ︷︷ ︸

=
{

B ⊗ ∂
[

(trA)2−trA2
]

2∂A

}

: C = B
{[

(trA) I − AT
]

: C
}

= [trA trC − tr (AC)]B

−

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂
[

tr
(

A2B
)]

∂A
: C

︸ ︷︷ ︸

=
[

BTAT + ATBT
]

: C = tr (ABC) + tr (BAC)

− ∂ [trA tr (AB)]

∂A
: C

︸ ︷︷ ︸

= trC tr (AB) + trA tr (BC)
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+ ∂
{[

(trA)2 − trA2
]

trB
}

2∂A
: C

︸ ︷︷ ︸

= (trB)
∂
[

(trA)2−trA2
]

2∂A : C = [trA trC − tr (AC)] trB

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

I ,

where the equations (2.55b), (2.55d)1, (2.83)1, (2.84)2, (3.33), (6.20a)2, (6.20b)2,
(6.47)4, (6.49a), (6.69)1−2 and (6.190d) have been used. From this result, one can
simply arrive at the three variables tensor identity (6.227). Note that (6.225) can be
recovered from (6.227) by setting C = A.

For an n-dimensional space, the expressions (6.225) and (6.227) respectively
translate to

O =
n
∑

k=1

k
∑

i=1

(−1)k−i Ik−i (A)An−k
{[

tr
(

Ai−1B
)]

I − BAi−1
}

note that I0 (A) = 1 and A0 = I

, (6.229)

and

O =
n−1
∑

i=1

n
∑

k=i+1

k−i
∑

j=1

(−1)k−i− j Ik−i− j (A)An−k
{

CAi−1BA j−1 + BA j−1CAi−1

− [tr (A j−1B
)]

CAi−1 − [tr (A j−1C
)]

BAi−1

+ [tr (Ai−1B
)

tr
(

A j−1C
)− tr

(

Ai−1BA j−1C
)]

I
}

, (6.230)

which are referred to as the generalized Rivlin’s identities (see Dui and Chen [31]
and also Chap.6 of Itskov [32]).

Hint: The interested reader can derive the Rivlin’s identities in an alternative way
by applying the so-called polarization operator to the Cayley-Hamilton theorem.
That is, by replacing the tensorA in the Cayley-Hamilton relation byA + εB, where
ε ∈ R,B ∈ Tso, and subsequently computing the partial derivative of the resulting
expression with respect to ε at ε = 0, one can identically derive (6.225) (recall from
(6.11a)–(6.11c) that this method was introduced as the directional derivative). See
Lew [33] for more details. Similar result can be achieved by replacing A in the
Cayley-Hamilton equation by A + B and A − B and then subtracting the resulting
expressions.
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Exercise 6.14

This exercise aims at finding some redundant elements in the representation of
isotropic tensor functions by means of the Cayley-Hamilton theorem and/or Rivlin’s
identities.

The problem is well understood by introducing the product of tensor variables
with some respective definitions. To begin with, consider N tensors A1, . . . ,AN ,
none of which is the identity tensor. And letΠΠΠ be a product of these tensors defined
by

ΠΠΠ = Mα1
1 Mα2

2 · · ·Mαn
n , (6.231)

where α’s are positive integers and M1,M2, . . . are a selection from the tensors
A1, . . . ,AN including repetition but no two adjacent tensors are allowed to be the
same in the sequence M1,M2, . . .. The following definitions are introduced:

☛☞ Any of M1,M2, . . . is a product factor of ΠΠΠ and the corresponding exponent
αi , i = 1, 2, . . . , n presents the power of that factor inΠΠΠ .

☛☞ The total degree (or simply degree) ofΠΠΠ is the sum of all α’s.
☛☞ The partial degree of ΠΠΠ in a variable is the sum of the exponents of that

variable (note that the partial degree of the identity tensor is zero).
☛☞ The extension ofΠΠΠ is the number of factors occurring in the product (note that

the extension of the identity tensor is zero).

As an example, the partial degree of A2A1A2
2A

4
3 is 1, 3 and 4 in A1, A2 and A3,

respectively. As another example, the extension of A1A2
2A

3
3 is 3 while the extension

of A2A1A2
2A

2
3 is 4.

A tensor polynomial in A1, . . . ,AN is defined to be a linear combination of
products ofΠΠΠ -type with coefficients which are expressible as polynomials in traces
of A1, . . . ,AN . The extension of a polynomial is introduced as that of its term of
largest extension. And the highest degree in products of such a polynomial is called
its degree. Note that the partial degree of a polynomial is defined in a similar manner.
For instance, consider the tensor polynomial

α (A1A2 + A2A1) + β (A1A2A1 + A2A1A2) + γ
(

A2
1A

2
2 + A2

2A
2
1

)

,

whose extension (degree) is 3 (4) and its partial degree in A1 (A2) renders 2 (2).
If a tensor polynomial is replaced by an exactly equal polynomial of lower exten-

sion, then such a polynomial is said to be contracted. For instance, the contraction
of A1A2A1 to a polynomial of extension 2 has been illustrated in the tensor identity
(6.225).

A tensor polynomial is reducible when it can be replaced by an identically equal
polynomial of lower degree.Awell-knownexample isA3 which, byusing theCayley-
Hamilton equation, is expressible as a polynomial of degree 2. As a result, any tensor
product containing a variable to the nth power is reducible when n ≥ 3. Notice that
the products in Tables 6.3 and 6.4 do not contain any factor to the power of 3 (or
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greater than 3). As another example, consider the Rivlin’s identity (6.225) which
helps one reduce A1A2A1 + A2

1A2 + A2A2
1 to a polynomial of degree 2.

The following notation
ΠΠΠ ≡ O , (6.232)

is used to indicate that the productΠΠΠ is reducible. In a similarmanner, the reducibility
of its trace is denoted by

trΠΠΠ ≡ 0 . (6.233)

Let ΠΠΠ and Π̃ΠΠ be two tensor products formed from any number of tensors with the
same partial degree in each factor. Then, ΠΠΠ (trΠΠΠ ) is said to be equivalent to Π̃ΠΠ

(trΠ̃ΠΠ ) if and only ifΠΠΠ + Π̃ΠΠ (trΠΠΠ + trΠ̃ΠΠ) is reducible. This is denoted by

ΠΠΠ ≡ Π̃ΠΠ , trΠΠΠ ≡ trΠ̃ΠΠ . (6.234)

One is thus allowed to use Π̃ΠΠ instead of ΠΠΠ in the representation theorems and vice
versa.

As an example, consider the two symmetric tensors S and v ⊗ v. Let

ΠΠΠ s = S (v ⊗ v)S = Sv ⊗ Sv , Π̃ΠΠ s = v ⊗ S2v + S2v ⊗ v . (6.235)

Note that the partial degree ofΠΠΠ s (or Π̃ΠΠ s) is 2 and 1 in S and v ⊗ v, respectively. And
the extension of ΠΠΠ s is 3 whereas the extension of Π̃ΠΠ s renders 2. By using (6.225),
one then has

ΠΠΠ s + Π̃ΠΠ s = Sv ⊗ Sv + (v ⊗ S2v + S2v ⊗ v
) = G (S, v ⊗ v) . (6.236)

According to the above considerations,ΠΠΠ s + Π̃ΠΠ s is reducible. Thus,ΠΠΠ s is equivalent
to Π̃ΠΠ s. And this reveals the fact that Π̃ΠΠ s in the sixth row of Table 6.3 can be replaced
byΠΠΠ s.

In what follows, the tensors A1, . . ., A7 are respectively denoted by A, B , . . ., G
for convenience.

The following lemma is frequently used in the subsequent developments.

Lemma D Suppose ΠΠΠ is reducible. Then, the quantity tr
(

ÃΠΠΠ
)

(or tr
(

ΠΠΠÃ
)

) is

reducible for a (nonzero and non-identity) tensor Ã.

As a quick example, the invariant tr
(

A3B
)

should not be considered for the rep-
resentation of an isotropic function. Another example regards

tr [D(ABC + ACB + BCA + BAC + CAB + CBA)] ≡ 0 , (6.237)

which relies on the fact that the left hand side of (6.227) is reducible.
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1. Show that ABA2 + A2BA is reducible.
Let S,T andU be three symmetric tensors. Then, by use of the above result, show
that tr

(

STS2U
)

and tr
(

S2TSU
)

are reducible. Moreover, deduce that Sv ⊗ S2v +
S2v ⊗ Sv should not be considered as a generator for the isotropic symmetric
tensor-valued functions of v and S.

Solution. Consider the three fields tensor identity (6.227). Let C = A2. Then,

ABA2 + A2BA = −2
(

A3B + BA3
)+ H

(

A,B,A2
)

. (6.238)

Substituting for A3 from the Cayley-Hamilton theorem on the right hand side
helps write

ABA2 + A2BA = (trA)ABA + [tr (AB)]A2

+ [tr (A2B
)− trA tr (AB)

]

A

− (detA)B + (detA) (trB) I . (6.239)

Thus, the degree 4 polynomial ABA2 + A2BA has been reduced to a polynomial
of degree 3. With the aid of (6.225), it can also be contracted to a polynomial of
extension 2.
Guided by Lemma D, one can deduce that

tr
[(

ABA2 + A2BA
)

C
] ≡ 0 . (6.240)

Now, suppose that A = S, B = T and C = U are symmetric tensors. Then,

tr
(

STS2U
) = tr

(

S2TSU
)

since δi j (S)il (T)lk

(

S2
)

km
(U)mj = (S)il (T)lk

(

S2
)

km
(U)mi = δnm

(

S2
)

nk
(T)kl (S)li (U)im

.

(6.241)
And this helps deduce that

tr
(

STS2U
) = tr

(

S2TSU
) ≡ 0 . (6.242)

Replacing T by v ⊗ v in the result STS2 + S2TS ≡ 0 immediately implies the
reducibility of Sv ⊗ S2v + S2v ⊗ Sv.

2. Prove the reducibility of the product A2BC2.
By means of this result, show that the trace of the product S2T2U2 is reducible
when all of these tensors are symmetric.

Solution. To express A
(

ABC2
)

as a sum of products of lower degrees, one may
rearrange the tensor identity (6.225) according to

ABC2 = G (C,AB) − CABC − C2AB , (6.243)

and find



284 6 Differentiation of Tensor Functions and Representation Theorems

A2BC2 = AG (C,AB)

− [ACA]BC
︸ ︷︷ ︸

=
[

G (A,C) − A2C − CA2
]

BC

− [

AC2A
]

B
︸ ︷︷ ︸

=
[

G
(

A,C2
)

− A2C2 − C2A2
]

B

= AG (C,AB) − G (A,C)BC − G
(

A,C2)B

+ A2 [CBC]
︸ ︷︷ ︸

= A2
[

G (C,B) − ��C2B − BC2
]

+ C
[

A2B
]

C
︸ ︷︷ ︸

=
[

G
(

C,A2B
)

− ���C2A2B − A2BC2
]

+ ����A2C2B + ����C2A2B

= −2A2BC2 + AG (C,AB) − G (A,C)BC

− G
(

A,C2
)

B + A2G (C,B) + G
(

C,A2B
)

. (6.244)

Considering (6.226), the product 3A2BC2 can thus be expressed as a polynomial
of degree 4. And this immediately implies that

A2BA2 ≡ 0 . (6.245)

As a result, one can conclude that S2v ⊗ S2v should not be considered in the
generating set of an isotropic symmetric tensor invariant of v and S = ST.
From the result A2BC2 ≡ 0 and Lemma D, one can write

tr
(

A2BC2D
) ≡ 0 . (6.246)

Let A = S, B = T2, C = U2 and D = S be symmetric tensors. From (6.237), it
then follows that

tr
(

S2T2U2
)

︸ ︷︷ ︸

= I : S2T2U2 = S2 : T2U2

+ tr
(

S2U2T2
)

︸ ︷︷ ︸

= I : S2U2T2 = S2 : U2T2 = S2 : T2U2

+ tr
(

ST2U2S
)

︸ ︷︷ ︸

= I : ST2U2S = S : T2U2S = S2 : T2U2

+ tr
(

ST2SU2
)

this term is reducible

+ tr
(

SU2ST2
)

this quantity is also reducible

+ tr
(

SU2T2S
)

︸ ︷︷ ︸

= I : SU2T2S = S2 : U2T2 = S2 : T2U2

≡ 0 .

And this implies the desired result

tr
(

S2T2U2
) ≡ 0 . (6.247)

3. Show that tr (ABCDEFG) is reducible, i.e. no product has a total degree greater
than six.

Solution. From (6.246), one will have
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tr
(

A2BC2G
) ≡ 0 or tr

(

A2CE2G
) ≡ 0 . (6.248)

Replacing E in (6.248)2 by E + F leads to

tr
(

A2CEFG + A2CFEG
) ≡ 0 . (6.249)

One then has

tr
(

A2CDEFG + �����
A2CDFEG

)

ifC is replaced byCD in (6.249)

+ tr
(

A2CDEFG + �����A2CFDEG
)

by settingE = DE in (6.249)

− tr
(

�����
A2CDFEG + �����A2CFDEG

)

by choosingE = −D and, subsequently, settingG = EG in (6.249)

≡ 0 ,

or
tr
(

A2CDEFG
) ≡ 0 . (6.250)

It is then easy to see that

tr (ABCDEFG) ≡ −tr (BACDEFG)

≡ +tr (BCADEFG)

≡ −tr (BCDAEFG) . (6.251)

This result states that the trace of the degree 7 productΠΠΠ = ABCDEFG is equiv-
alent to (i) the negative of the trace of an odd permutation of the adjacent factors
in ΠΠΠ and (ii) the trace of any product obtained by an even permutation of the
adjacent factors.
In (6.237), replaceD,A,B,C byG,AB,CD,EF, respectively. Using (2.87)1 and
(6.251)1−3, one then obtains

tr (ABCDEFG) + tr (ABEFCDG)
︸ ︷︷ ︸

≡ tr (ABCDEFG)

+ tr (CDEFABG)
︸ ︷︷ ︸

≡ tr (CDABEFG) ≡ tr (ABCDEFG)

+ tr (CDABEFG)
︸ ︷︷ ︸

≡ tr (ABCDEFG)

+ tr (EFABCDG)
︸ ︷︷ ︸

≡ tr (ABEFCDG) ≡ tr (ABCDEFG)

+ tr (EFCDABG)
︸ ︷︷ ︸

≡ tr (EFABCDG) ≡ tr (ABEFCDG) ≡ tr (ABCDEFG)

≡ 0 ,

or
tr (ABCDEFG) ≡ 0 . (6.252)
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This exercise presented an important application of the Rivlin’s identities in the
representation theorems. It was explicitly shown that how these tensor identities
help recognize some redundant elements. If one is willing to generate the invariant
and generator elements intrinsically, infinitely many of them can be constructed
for a given set of variables. Indeed, these powerful tools impose some restrictions
and, therefore, one is left with a finite set of (scalar or tensor) invariants. However,
in general, there is no guarantee to find an irreducible set of invariants for a given
set of variables, if these identities are only the main concerns. Hence, having in
mind the outcomes of these identities, a rigorous procedure should be developed
to establish the complete and irreducible sets of invariants as tabulated in the
well-known tables. This is briefly discussed in the following exercise.

Exercise 6.15

Verify (6.141), (6.143) and (6.146).

Solution. The procedure used here to establish the desired representations follows
from the pioneering work of Smith [14] which aims at finding a functional basis
for a given system of tensorial variables. The interested reader should also consult
Smith [34] and Wang [35]. In this context, the goal is to determine a set of basic
isotropic invariants according to (6.95) such that, once the orientation and sense of
the coordinate axes are specified, the following equations

Ik
(

v,S,W
) = φk , k = 1, 2, . . . , n , (6.253)

have a unique solution for the components of v1, . . . ,Wm4 where φk denotes the
prescribed value of Ik . Thus, by having the values of the components of v1, . . . ,Wm4

in a suitably chosen reference frame, one will be able to represent any isotropic
invariant α

(

v,S,W
)

as a single-valued function of the basic scalar invariants
I1, . . . In . To this end, consider the Cartesian coordinates for convenience.

To verify (6.141), consider the domain

D = {(S1 = S,W1 = W) ∈ T sym
so × T skw

so

}

.

Let ωωω be the axial vector of W. In matrix notation, they render

[W] =
⎡

⎣

0 Ŵ12 Ŵ13

−Ŵ12 0 Ŵ23

−Ŵ13 −Ŵ23 0

⎤

⎦ , [ωωω] =
⎡

⎣

−Ŵ23

Ŵ13

−Ŵ12

⎤

⎦ .

To begin with, one can orient the 1 axis in such a way that it lies along the direction
of ωωω. Consequently,
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[W] =
⎡

⎣

0 0 0
0 0 W23

0 −W23 0

⎤

⎦ , [ωωω] =
⎡

⎣

−W23

0
0

⎤

⎦ ,
[

W2
] =

⎡

⎣

0 0 0
0 −W 2

23 0
0 0 −W 2

23

⎤

⎦ .

This helps determine, up to a sign, the value of W23 from the equation trW2 =
−2W 2

23. One can choose the sense of the 2 axis in such a way thatW23 is always posi-
tive and, therefore, its sign is fixed. Now, the goal is to determine the six independent
components of the symmetric tensor S. By having the values of W23 and

tr
(

SW2
)

, trS , trS2 , tr
(

S2W2
)

, tr
(

SWS2W2
)

, trS3 , (6.254)

one can obtain the values of

S22 + S33 , S11 , S212 + S213 , S222 + S233 + 2S223 ,
(

S212 − S213
)

S23 − (S22 − S33) S12S13 ,

(S22 − S33)
(

S212 − S213
)+ 4S12S13S23 . (6.255)

To proceed, consider the lower right hand 2 by 2 matrix of S, that is,

[

S22 S23
S23 S33

]

, (6.256)

whose characteristic equation is given by

λ2 − (S22 + S33) λ + 1

2

[

(S22 + S33)
2 − (S222 + S233 + 2S223

)] = 0 . (6.257)

With the known values of S22 + S33 and S222 + S233 + 2S223, one can solve (6.257) to
provide the principal values of (6.256). Suppose that S is a tensor with non-multiple
eigenvalues and S212 + S213 �= 0. The reference frame can now be rotated about the 1
axis until the 2 and 3 axes coincide with the principal directions of thematrix (6.256).
In this frame, S23 = 0 and the values of S22 and S33 are known (having in mind that
S22 �= S33 by assumption). Consequently, using the known values of the quantities
in (6.255), the values of S212, S

2
13 and S12S13 are known. Suppose that S12 �= 0. Then,

one can choose the sense of the 1 axis such that S12 is always positive. Thus, S212
determines S12 and subsequently S13 can be obtained from S12S13. When S12 = 0,
the sense of the 1 axis can be chosen so that S13 > 0. And it is thus determined from
S213.

Consider the case inwhich S212 + S213 = 0 (or S12 = S13 = 0) and the 2 by 2matrix
(6.256) has two distinct eigenvalues. In this case, one can still rotate the reference
frame about the 1 axis until the 2 and 3 axes lie along the principal directions of such
a matrix. In this frame, the off-diagonal element S23 vanishes and the values of the
diagonal elements S22 and S33 are determined from the known values of S22 + S33
and (S22 + S33)

2 − 2S22S33.
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Consider now the case inwhich the 2by2matrix (6.256) has a repeated eigenvalue.
In this case, S23 = 0 and the value of S22 = S33 is immediately determined from
S22 + S33 having in mind that S11 is known. Further, suppose that S212 + S213 �= 0.
Then, the reference frame can be rotated about the 1 axis until S13 = 0. Consequently,
S12 is determined up to a sign. The sense of the 1 axis can accordingly be chosen
such that S12 > 0. Finally, suppose that S212 + S213 = 0. Then, [S] will be a diagonal
matrix with known entries.

It is important to point out that the procedure outlined above should be used when
there exists a single skew tensor and all of the vectors are zero in the given domain
of tensorial variables. One can thus involve more symmetric tensors and continue to
determine their components by considering more appropriate basic scalar invariants.

Next, attention is focused on finding the basic isotropic invariants of the two
symmetric tensors S and T. Note that the procedure employed in the following to
verify (6.143) is only applicable when all of the vectors and skew tensors are zero
in the given list of tensor arguments. Let at least one of these tensors, say S, possess
three simple eigenvalues. Given the values of tr S, trS2 and trS3, one can solve the
characteristic equation

λ3 − (trS) λ2 + (trS)2 − trS2

2
λ − 2trS3 − 3trStrS2 + (trS)3

6
= 0 , (6.258)

to obtain the three distinct principal values λ1 := S11, λ2 := S22 and λ3 := S33 where
S11 > S22 > S33. The reference frame can then be oriented such that the axes lie along
the principal directions of S. In this new frame, the matrix form of S renders

[S] =
⎡

⎣

S11 0 0
0 S22 0
0 0 S33

⎤

⎦ . (6.259)

Now, the goal is to determine the six independent components ofTwith respect to the
orthonormal basis constructed from the eigenvectors of S. Given the values of trT,
tr (ST) and tr

(

S2T
)

, one can obtain the values of the diagonal elements T11, T22 and
T33. Subsequently, with the aid of these values and trT2, tr

(

ST2
)

and tr
(

S2T2
)

, one
can calculate T 2

12, T
2
13 and T

2
23. These values along with trT

3 help compute T12T13T23.
To uniquely determine the values of off-diagonal elements, the following cases need
to be considered:

☞☛ Suppose T is a symmetric tensor whose off-diagonal elements are all nonzero.
In this case, the sense of the 2 and 3 axes can be chosen such that T12 and T13
are positive. Then, the known values of T 2

12 and T
2
13 respectively determine T12

and T13. Consequently, T23 is obtained from T12T13T23.
☞☛ Suppose T is a symmetric tensor with only one zero off-diagonal element, say

T23 = 0. In the present case, one can also choose the sense of the 2 and 3 axes
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so that T12 > 0 and T13 > 0. The positive components T12 and T13 are then
obtained from the known values of T 2

12 and T 2
13, respectively.

☞☛ Suppose T is a symmetric tensor with only one nonzero off-diagonal element,
say T12 �= 0. The positiveness of T12 is then guaranteed by appropriately choos-
ing the sense of the 2 axis. As a result, the value of T12 is determined from the
known value of T 2

12.

The case in which both S and T have repeated eigenvalues is left as an exercise. One
should finally note that the problem can consistently be continued by involving more
symmetric tensors.

Finally, attention is focused on characterizing the basic isotropic invariants of
the two vectors u and v. It is important to note that the procedure established here
to verify (6.146) is only applicable when all of the vectors in the given domain of
tensorial variables are coplanar but there exist two non-collinear vectors among
them. Suppose u and v are these two vectors satisfying

det

[

u · u u · v
u · v v · v

]

�= 0 . ←− this guaranties thatu and v arenon-collinear (6.260)

Then, one can choose the orientation and sense of the 1 and 2 axes so that

[u] =
⎡

⎣

u1
0
0

⎤

⎦ , [v] =
⎡

⎣

v1
v2
0

⎤

⎦ , (6.261)

where u1 > 0 and v2 > 0. The known value of u · u helps determine the value of
u1 and, consequently, u · v yields v1. It is then easy to evaluate v2 from v · v. Thus,
any isotropic scalar-valued function of u and v should be constructed from the three
quantities u · u, v · v and u · v.

The problem can be continued by involvingmore tensorial variables. For instance,
consider an extra skew tensor W having in mind that all components in (6.261) are
known. The goal is thus to determine the three unknown components W12, W13 and
W23. To begin with, consider the known value of u · Wvwhich helps obtain the value
of W12. Then, the known values of u1, v1, v2,W12 and

u · W2u , u · W2v , v · W2v ,

help compute the quantities

W 2
13 , W13W23 , W 2

23 .

Suppose that W13 �= 0. One can now choose the sense of the 3 axis so that W13 > 0
and thus determined. Consequently, W13W23 gives W23. The case in which W13 = 0
butW23 �= 0 can be treated in a similar manner. One is now in a position to generally
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express any isotropic scalar function of u, v and W as a single-valued function of
the 8 isotropic invariants:

α (u, v,W) = ᾱ
(

u · u, v · v,u · v, trW2,

u · Wv,u · W2u,u · W2v, v · W2v
)

. (6.262)

Let

D = {(S1 = u ⊗ u,S2 = v ⊗ v,W1 = W) ∈ T sym
so × T sym

so × T skw
so

}

. (6.263)

Then, by reading off from Table 6.1 and subsequently removing the resulting redun-
dant terms, one can arrive at the representation (6.262) one more time. And this
basically shows the consistency between the elements of the well-established tables
widely used within the context of representation theorems.

Exercise 6.16

The goal of this exercise is to introduce some important strain and stress measures
and characterize their functional relationships within the context of nonlinear solid
mechanics. For a detailed account on these concepts, the reader is referred to the
classical treatises of Truesdell andToupin [36], Eringen [37], Truesdell andNoll [38],
Eringen [39], Truesdell [40], Marsden and Hughes [41], Ogden [42], Chadwick [43]
and more recent expositions of Holzapfel [44], Ibrahimbegović [45] and Steinmann
[46]. For a detailed account on finite element methods solving nonlinear problems
of continua, the interested reader is referred to Oden [47], Zienkiewicz and Taylor
[48], Bathe [49], Crisfield [50], Bonet and Wood [51], Belytschko et al. [52] and
Wriggers [53] among many others.

Solidmechanics constitutes amajor part ofmechanical, civil, aerospace, biomedi-
cal and nuclear engineering that includes theory of elasticity - with linear and nonlin-
ear classifications - as well as inelasticity whichmainly includes plasticity, viscoelas-
ticity and damage. It is a branch of continuum mechanics that aims at describing the
macroscopic behavior of solids under the action of mechanical, thermal, chemical,
electrical, magnetic and tribological loads.

Threemain features, i.e. experiment, theory and computation, are usually required
to solve a real solid mechanics problem. Therein, experimental data demonstrates
the real behavior of material and is served as a basis to show the correctness of the
outputs of other parts, the theoretical side presents the basic mathematical structure
that aims at modeling the physics of the problem and the computational part tries to
provide a proper solution to differential equations that naturally arise in the theoretical
aspect of the problem. The set of equations developed within the theoretical side are
represented in the language of tensor analysis. And this greatly shows the dominant
role of tensor calculus as the mathematical underpinning of solid mechanics.



6.3 Exercises 291

In nonlinear continuum mechanics of solids, one deals with (at least) two con-
figurations. The so-called reference configuration which is usually chosen to be the
initial (or undeformed) configuration without any loading scenario and spatial (or
current or deformed) configuration where the material has undergone some defor-
mation process in response to the applied loads.

Suppose that all tensor quantities here are expressed with respect to the Cartesian
basis vectors. Let C and b be two symmetric positive definite tensors; defined by,

C = FTF , b = FFT , (6.264)

whereF presents an invertible tensor, i.e. det F �= 0, which is generally unsymmetric.
The so-called polar decomposition for F reads

F = RU = vR , (6.265)

where R is a (rigid) rotation tensor and U, v also represent two symmetric positive
definite tensors. Within the context of nonlinear continuum mechanics, the tensors
C, b, F, U and v are called the right Cauchy-Green strain tensor, left Cauchy-Green
strain (or Finger) tensor, deformation gradient, right stretch tensor and left stretch
tensor, respectively. These strain measures are introduced in order to characterize the
finite deformation behavior of solids. See Fig. 6.1 for a geometrical interpretation.

For the sake of consistency, it is widely agreed to use uppercase letters for tensor
quantities acting in the reference configuration. And the lowercase letters are utilized
when the tensor quantities are computed in the current configuration. This convention
also applies to the corresponding indices. For instance, C is a referential tensor with
CAB and b presents a spatial strain measure with bi j . In this regard, F with Fi A is
called a two-point tensor because it interacts between the basic configurations.

The relations (6.264) and (6.265) imply that

C = U2 , b = v2 . (6.266)

And

R = Ri Aêi ⊗̂EA =
3
∑

a=1

n̂a ⊗̂Na , (6.267a)

U = UAB̂EA ⊗̂EB =
3
∑

a=1

λa ̂Na ⊗̂Na , (6.267b)

v = vi j êi ⊗ ê j =
3
∑

a=1

λa n̂a ⊗ n̂a , (6.267c)

help provide
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Fig. 6.1 Reference, two intermediate and current configurations

F = Fi Aêi ⊗̂EA =
3
∑

a=1

λa n̂a ⊗̂Na , (6.268a)

C = CAB̂EA ⊗̂EB =
3
∑

a=1

λ2
a
̂Na ⊗̂Na , (6.268b)

b = bi j êi ⊗ ê j =
3
∑

a=1

λ2
a n̂a ⊗ n̂a , (6.268c)

where λa > 0, a = 1, 2, 3, represent the principal stretches, the set
{

̂Na
}

indicates
the principal referential (ormaterial or Lagrangian) directions, the set {̂na} presents
the principal spatial (or Eulerian) directions and the set

{

̂EA
}

({̂ei }) stands for the
material (spatial) standard basis (note that these Cartesian bases are the same from
the computational point of view, see (1.41)). For consistency, the identity tensors in
the material and spatial descriptions are denoted by

I = δAB̂EA ⊗̂EB , 1 = δi j êi ⊗ ê j . (6.269)
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Within the context of hyperelasticity, which iswidely used in nonlinear solidmechan-
ics, the existence of a scalar-valued function of the deformation gradient is postulated:

� = �F (F) . (6.270)

This is called the stored-energy function (or strain-energy function). It is a special
function which obeys the

☞☞ normalization condition �F (I) = 0 which means that no energy is saved
within the material when there is no loading or when the material is unloaded
to its initial placement in the reference configuration,

☞☞ physical observation that the energy stored in thematerial increaseswith defor-
mation, i.e. �F (F) ≥ 0,

☞☞ growth conditions �F (F) → +∞ when either det F → 0+ or det F → +∞
which physically means the material cannot sustain the loading which causes
its compression to a point (with vanishing volume) or its expansion to the
infinite range, and

☞☞ condition of polyconvexity to ensure the global existence of solutions, see Ball
[54] and Šilhavý [55].

Moreover, the strain-energy function needs to be objective which leads to its some
alternative forms. The principle of material objectivity states that the response of
material should be independent of the observer. As a result, � must remain invariant
under any (proper) orthogonal transformation of the current configuration, i.e.

� (F) = � (QF) . (6.271)

By setting Q = RT and considering the polar decomposition F = RU, the energy
function (6.270) can now be represented in the canonical form

� = �F (F) = �U (U) . (6.272)

Consequently, using U = √
C,

� = �F (F) = �U (U) = �C (C) . (6.273)

By isotropy assumption, i.e. when there is no preferred direction within the material,
the strain-energy function is further restricted to

� (F) = �
(

FQT) . (6.274)

This guarantees that the energy function remains unchanged under any (proper)
orthogonal transformation of the reference configuration. Thus, thematerial response
will be similar in all directions. Note that the objectivity requirement is an axiom
which should always be satisfied but the isotropy condition is only valid for some
specific materials called isotropic materials. As a consequence of isotropy,
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�
(

FTF
) = �

(

QFTFQT
) by setting Q = R==============

and using C = FTF = U2
�
(

RUURT
) = �

(

FFT
)

.

Thus, in the context of isotropic hyperelasticity, the strain-energy function admits
the equivalent forms

�
by=========

hyperelasticity
�F (F)

by=======
objectivity

�U (U)

by======
U = √

C
�C (C)

by======
isotropy

�b (b)

by=====
b = v2

�v (v) . (6.275)

Moreover, by (6.132) and (6.139)1, it also admits the following representations

� = �I (I1, I2, I3) = �λ (λ1, λ2, λ3) , (6.276)

where Ii , i = 1, 2, 3, are the principal scalar invariants of either C or b owing to

I1 (C) = I1 (b) , I2 (C) = I2 (b) , I3 (C) = I3 (b) . ←− see (4.17a)–(4.17c) (6.277)

To this end, consider an isotropic hyperelastic material. The sensitivity of the energy
function with respect to the strain tensors will provide the stress measures. This is
demonstrated in the following. ✆

First, consider the two-point generally unsymmetric tensor

P = ∂�F

∂F
, (6.278)

which is known as the first Piola-Kirchhoff stress tensor.
The so-called Biot stress tensor, which renders a symmetric referential tensor, is

then given by

TB = ∂�U

∂U
. (6.279)

Note that, in general, the Biot stress tensor is not symmetric. Here, TB = TT
B is

implied by the isotropy assumption �C (C) = �I (I1, I2, I3), see (6.291b). Thus,
the above relation should generally be written as symTB = ∂�U/∂U.
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Next, the very popular second Piola-Kirchhoff stress tensor, which also represents
a symmetricmaterial tensor, is defined by

S = 2
∂�C

∂C
. (6.280)

Another important stress measure which can be introduced at this point is the sym-
metric spatial Cauchy (or true) stress tensor. It is introduced through the following
expression

σσσ = 2J−1 ∂�b

∂b
b = 2J−1b

∂�b

∂b
, (6.281)

where
J = detF , (6.282)

presents the volumetric Jacobian. The above specific form for σσσ is only valid for
isotropic hyperelastic materials because, in general, �C (C) �= �b (b).

The last stress measure considered here regards the Kirchhoff stress tensor. It
resides in the current configuration and represents a symmetric tensor. It is often
convenient to work with such a stress variable; defined by,

τττ = Jσσσ . (6.283)

The expressions (6.278)–(6.281) which interrelate the stress and strain measures are
known as the constitutive equations. They basically help determine the state of stress
at any point of interest in the continuum medium.

The alternate stress tensors P, symTB, S and τττ are said to be work conjugate to
the strain rate measures Ḟ, U̇, Ċ and d, respectively, where d = F−TĊF−1/2 is called
the rate of deformation tensor. In this regard, for instance, the quantities P and Ḟ
constitute a work conjugate pair. For more considerations on work conjugate pairs,
see Atluri [56]. ✆

Consider the quantity Pwhich basically represents a nonlinear tensor function of
F. Thus, any change in the strainmeasureF naturally leads to a change in its conjugate
stress tensor P. Notice that the derivative of P with respect to F provides a fourth-
order tensor. Such a tensor represents what is known as elasticity tensor (or tangent
modulus). Each stress measure has its own elasticity tensor. The tangent moduli play
a crucial role in iterative solution techniques such as Newton-Raphson method
which is widely used in computational mechanics. This motivates to introduce the
most important elasticity tensors in the following.

First, consider the mixed fourth-order tensor

A = ∂P
∂F

= ∂2�F

∂F∂F
, (6.284)
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which is knownas thefirst elasticity tensor. It has only themajor symmetriesAi A j B =
A j Bi A for hyperelastic materials. In this case, one deals with only 45 independent
components.

Then, consider the tangent modulus

C = 2
∂S
∂C

= 4
∂2�C

∂C∂C
, (6.285)

which is known as the referential (or material or Lagrangian or second) elasticity
tensor. It possess the minor symmetries CABCD = ABACD = AABDC . For hyper-
elasticity, it additionally has the major symmetries CABCD = ACDAB . One is thus
left with 21 independent components. Guided by (3.115), C eventually renders a
super-symmetric tensor for hyperelastic materials. It is worth mentioning thatC is a
positive semi-definite tensor, i.e. S : C : S ≥ 0 for any symmetric tensor S (Gurtin
et al. [57]).

Finally, the spatial counterpart of the referential tangent modulus is defined
through the so-called Piola transformation

ci jkl = J−1Fi AFj B FkC FlDCABCD

note that Fi A êi = F̂EA and λa n̂a = F̂Na

. (6.286)

This is called the spatial (or Eulerian) elasticity tensor which has also the minor
symmetries. And it is super-symmetric when the material is hyperelastic. Let S1 and
S2 be two symmetric material tensors. Further, let C be a fourth-order tensor of the
form S1 ⊗ S2 or S1 	 S2. Accordingly, by the Piola transformation,

{

if C = S1 ⊗ S2 then Jc = (FS1FT
)⊗ (FS2FT

)

if C = S1 	 S2 then Jc = (FS1FT
)	 (FS2FT

) . ←− see (6.302b)
and (6.302c) (6.287)

For an isotropic hyperelastic material, the spatial elasticity tensor admits the explicit
representation (Miehe [58])

c = J−1bc̃b where c̃ = 4
∂2�b

∂b∂b
. (6.288)

Let s1 and s2 be two symmetric spatial tensors. Further, let c̃ be a fourth-order tensor
of the form s1 ⊗ s2 or s1 	 s2. Accordingly, using (3.101a) and (3.101d)2,

{

if c̃ = s1 ⊗ s2 then Jc = (bs1) ⊗ (s2b)

if c̃ = s1 	 s2 then Jc = (bs1) 	 (s2b)
. ←− see (6.304) (6.289)



6.3 Exercises 297

1. Show that the introduced stress tensors are related by2

P = RTB = FS = τττF−T

note that these relations hold for all materials

. (6.290)

Moreover, by using (6.276), show that they can be represented by

P = γ1F + γ2FC + γ3F−T

=
3
∑

a=1

Pa n̂a ⊗̂Na if λ1 �= λ2 �= λ3 �= λ1 , (6.291a)

TB = γ1U + γ2U3 + γ3U−1

=
3
∑

a=1

TB âNa ⊗̂Na if λ1 �= λ2 �= λ3 �= λ1 , (6.291b)

S = γ1I + γ2C + γ3C−1

=
3
∑

a=1

SâNa ⊗̂Na if λ1 �= λ2 �= λ3 �= λ1 , (6.291c)

τττ = γ1b + γ2b2 + γ31

=
3
∑

a=1

τa n̂a ⊗ n̂a if λ1 �= λ2 �= λ3 �= λ1 , (6.291d)

where

Pa = TB a = ∂�λ

∂λa
, Sa = 1

λa

∂�λ

∂λa
, τa = λa

∂�λ

∂λa
, (6.292)

and

γ1 = 2
∂�I

∂ I1
+ 2I1

∂�I

∂ I2
, γ2 = −2

∂�I

∂ I2
, γ3 = 2I3

∂�I

∂ I3
. (6.293)

Solution.The problem can simply be solved by computing the time rate of change
of the strain-energy function. And the procedure used to derive the desired rela-
tions greatly relies on the product and chain rules of differentiation. First, consider
C and its (canonical) argument F, i.e. C (F) = FTF. On the one hand, the rate of
change of (6.273)3 delivers

2 In the literature, the stress tensors in (6.290) are defined in advance and then the constitutive
relations (6.278)–(6.281) are implied by the second law of thermodynamics. In this regard, loosely
speaking, this exercise can be viewed as an inverse problem.
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�̇ = ∂�C

∂CAB
ĊAB
︸︷︷︸

= ˙Fi AFi B

= ∂�C

∂CAB

(

Ḟi AFi B + Fi A Ḟi B
)

= ∂�C

∂CAB
Ḟi AFi B + ∂�C

∂CBA
︸ ︷︷ ︸

= ∂�C/∂CAB

Fi B Ḟi A = 2
∂�C

∂CAB
Ḟi AFi B . (6.294)

On the other hand, the rate of change of (6.273)1 is �̇ = (∂�F/∂Fi A) Ḟi A. Guided
by (2.81) and knowing that the tensors F, Ḟ can be chosen arbitrarily, one then
has

2∂�C

∂CAB
		Ḟi A Fi B = ∂�F

∂Fi A
		Ḟi A ⇒

{

FiB
2∂�C
∂CBA

= ∂�F
∂Fi A

in index notation

F 2∂�C
∂C = ∂�F

∂F in direct notation
. (6.295)

Having in mind (6.278) and (6.280), one can finally conclude that P = FS. The
ambitious reader may want to arrive at this result in an alternative way:

(P)i A = ∂�F

∂Fi A

= ∂�C

∂CBC

∂CBC

∂Fi A

= ∂�C

∂CBC

∂
(

FjB FjC
)

∂Fi A

= ∂�C

∂CBC

∂FjB

∂Fi A
︸ ︷︷ ︸

= δ j i δAB , by (6.67)

FjC + ∂�C

∂CBC
Fj B

∂FjC

∂Fi A
︸ ︷︷ ︸

= δ j i δAC

= ∂�C

∂CAC
︸ ︷︷ ︸

= ∂�C/∂CCA

FiC + ∂�C

∂CBA
Fi B

= FiB
2∂�C

∂CBA

= (FS)i A . (6.296)

In a similar manner,

(

∂�U

∂U

)

AB

= ∂�C

∂CMN

∂CMN

∂UAB

= ∂�C

∂CMN

∂ (UMCUCN )

∂UAB
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= ∂�C

∂CMN

∂UMC

∂UAB
︸ ︷︷ ︸

= 1
2
(

δMAδBC + δMB δAC
)

, according to (6.68)

UCN

+ ∂�C

∂CMN
UMC

∂UCN

∂UAB
︸ ︷︷ ︸

= 1
2
(

δCAδBN + δCB δAN
)

= 1

2

∂�C

∂CAN
UBN

︸ ︷︷ ︸

= ∂�C
∂CAN

UNB

+1

2

∂�C

∂CBN
UAN

︸ ︷︷ ︸

= UAN
∂�C

∂CNB

+1

2

∂�C

∂CMB
UMA

︸ ︷︷ ︸

= UAM
∂�C

∂CMB

+1

2

∂�C

∂CMA
UMB

︸ ︷︷ ︸

= ∂�C
∂CAM

UMB

= ∂�C

∂CAN
UNB +UAN

∂�C

∂CNB

note thatU = √
C and ∂�C/∂C commute as a result of isotropy, see (6.291c)

=
(

U
2∂�C

∂C

)

AB

.

Consequently,
TB = US = RTRUS = RTFS = RTP . (6.297)

Similarly to (6.296), one will have

∂�F

∂Fi A
= ∂�b

∂b jk

∂b jk

∂Fi A

= ∂�b

∂b jk

∂
(

FjB FkB
)

∂Fi A

= ∂�b

∂b jk

∂FjB

∂Fi A
︸ ︷︷ ︸

= δ j i δAB

FkB + ∂�b

∂b jk
Fj B

∂FkB

∂Fi A
︸ ︷︷ ︸

= δki δAB

= ∂�b

∂bik
FkA + ∂�b

∂b ji
︸︷︷︸

= ∂�b/∂bi j

Fj A

= 2
∂�b

∂bik
FkA .

Postmultiplying the above relation by Fj A gives the desired functional relationship

∂�F

∂Fi A
Fj A = 2

∂�b

∂bik

[

FkAFj A = bkj
]

or
∂�F

∂F
FT = 2

∂�b

∂b
b

or, using (6.278), (6.281), (6.283) and (6.296), τττ = PFT = FSFT

. (6.298)

Consistent with this, one can explicitly express τττ in terms of v as
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τττ = ∂�v

∂v
v = v

∂�v

∂v
, (6.299)

because, using (6.68) along with the product and chain rules,

(

∂�v

∂v

)

i j

= ∂�b

∂bmn

∂bmn

∂vi j

= ∂�b

∂bmn

(vmkvkn)

∂vi j

= ∂�b

∂bmn

∂vmk

∂vi j
︸ ︷︷ ︸

= 1
2
(

δmi δ jk + δmj δik
)

vkn + ∂�b

∂bmn
vmk

∂vkn

∂vi j
︸︷︷︸

= 1
2
(

δki δ jn + δk j δin
)

= 1

2

∂�b

∂bin
v jn

︸ ︷︷ ︸

= ∂�
∂bin

vnj

+1

2

∂�b

∂b jn
vin

︸ ︷︷ ︸

= vin
∂�

∂bnj

+1

2

∂�b

∂bmj
vmi

︸ ︷︷ ︸

= vim
∂�

∂bmj

+1

2

∂�b

∂bmi
vmj

︸ ︷︷ ︸

= ∂�
∂bim

vmj

= ∂�b

∂bin
vnj + vin

∂�b

∂bnj

note that v = √
b commutes with ∂�b/∂b by isotropy, see (6.291d)

= 2

(

∂�b

∂b
v
)

i j

.

Note that the important relationship τττ = FSFT can also be resulted from the rate
form (∂�C/C) : Ċ = (∂�b/b) : ḃ as follows:

∂�C

∂C
: ḞTF + ∂�C

∂C
: FTḞ = ∂�b

∂b
: ḞFT + ∂�b

∂b
: FḞT

=⇒ ∂�C

∂C
FT : ḞT + F

∂�C

∂C
: Ḟ = ∂�b

∂b
F : Ḟ + FT ∂�b

∂b
: ḞT

=⇒ 2F
∂�C

∂C
: Ḟ = 2

∂�b

∂b
F : Ḟ ←− note thatF and Ḟ can be chosen arbitrarily

=⇒ 2F
∂�C

∂C
FT = 2

∂�b

∂b
FFT = 2

∂�b

∂b
b ,

where (2.79a)1, (2.79b)1−2, (2.81) and (6.264)1−2 along with the product rule of
differentiation have been used.

At this stage, consider the isotropy assumption (6.276) to verify the constitu-
tive relations (6.291c)1−2. Then, by (6.20a)2, (6.20b)2, (6.20c)4, (6.204a) and
(6.268b)2 along with the chain rule, one can write
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S = 2
∂�C

∂C
= 2

3
∑

a=1

∂�I

∂ Ia

∂ Ia
∂C

= 2
∂�I

∂ I1

∂ I1
∂C
︸︷︷︸

= I

+2
∂�I

∂ I2

∂ I2
∂C
︸︷︷︸

= I1I − C

+2
∂�I

∂ I3

∂ I3
∂C
︸︷︷︸

= I3C
−1

,

S = 2
∂�C

∂C
= 2

3
∑

a=1

∂�λ

∂λ2
a

∂λ2
a

∂C

= 2
3
∑

a=1

∂�λ

∂λ2
a

̂Na ⊗̂Na =
3
∑

a=1

∂�λ

λa∂λa

̂Na ⊗̂Na .

The remaining desired relations can then be shown in a straightforward man-
ner. This is left to be undertaken by the reader. Moreover, the ambitious reader
may want to solve the problem for the cases in which the principal stretches are
repeated.

2. Verify that the first elasticity tensor is related to the material tensor of elasticity
through the following expression

Ai BkD = δik SBD + CABCDFi AFkC , (6.300)

which immediately implies that

Ai BkD = δik F
−1
Bj τ jl F

−1
Dl + Jci jkl F

−1
Bj F

−1
Dl . (6.301)

Moreover, for an isotropic hyperelastic solid characterized by the stored-energy
function � = �I (I1, I2, I3), show that the most general form for the introduced
elasticity tensors are

A = ∂P
∂F

= ∂2�I (I1, I2, I3)

∂F∂F
=

8
∑

i=1

δiAi +
3
∑

i=1

γîAi

= δ1F ⊗ F + δ2 (FC ⊗ F + F ⊗ FC) + δ3
(

F−T ⊗ F + F ⊗ F−T
)

+ δ4FC ⊗ FC + δ5
(

F−T ⊗ FC + FC ⊗ F−T
)+ δ6F−T ⊗ F−T

+ δ7
(

F−T � F−T + 1 � C−1
)+ δ8 (F � F + b � I)

+ 1 �
(

γ1I + γ2C + γ3C−1
)

, ↖ see (3.70b)-(3.70c) (6.302a)

C = 2
∂S
∂C

= 4
∂2�I (I1, I2, I3)

∂C∂C
=

8
∑

i=1

δiCi

= δ1 I ⊗ I + δ2
(

I ⊗ C + C ⊗ I
)+ δ3

(

I ⊗ C−1 + C−1 ⊗ I
)
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+ δ4 C ⊗ C + δ5

(

C ⊗ C−1 + C−1 ⊗ C
)

+ δ6 C−1 ⊗ C−1

+ δ7 C−1 	 C−1 + δ8 I 	 I , ←− see (3.70d) (6.302b)

Jc = 4b
∂2�I

∂b∂b
b =

8
∑

i=1

δici

= δ1b ⊗ b + δ2
(

b ⊗ b2 + b2 ⊗ b
)+ δ3 (b ⊗ 1 + 1 ⊗ b)

+ δ4b2 ⊗ b2 + δ5
(

b2 ⊗ 1 + 1 ⊗ b2
)+ δ61 ⊗ 1

+ δ71 	 1 + δ8b 	 b , (6.302c)

where

δ1 = 4

(

∂2�I

∂ I1∂ I1
+ 2I1

∂2�I

∂ I1∂ I2
+ ∂�I

∂ I2
+ I 21

∂2�I

∂ I2∂ I2

)

, (6.303a)

δ2 = −4

(

∂2�I

∂ I1∂ I2
+ I1

∂2�I

∂ I2∂ I2

)

, (6.303b)

δ3 = 4

(

I3
∂2�I

∂ I1∂ I3
+ I1 I3

∂2�I

∂ I2∂ I3

)

, δ4 = 4
∂2�I

∂ I2∂ I2
, (6.303c)

δ5 = −4I3
∂2�I

∂ I2∂ I3
, δ6 = 4

(

I3
∂�I

∂ I3
+ I 23

∂2�I

∂ I3∂ I3

)

, (6.303d)

δ7 = −4I3
∂�I

∂ I3
, δ8 = −4

∂�I

∂ I2
, (6.303e)

and γi , i = 1, 2, 3, are already defined in (6.293).

Solution. Recall that the first and second Piola-Kirchhoff stress tensors were
related by P (F) = FS (C (F)) for which (C)CE = (F)mC (F)mE . The derivative
of this relation with respect to the deformation gradient helps provide the desired
result (6.300). Thus, making use of the product and chain rules of differentiation,

(

∂2�F

∂F∂F

)

i BkD

= ∂

∂FkD

(

Fi A
2∂�C

∂CAB

)

= ∂Fi A
∂FkD
︸ ︷︷ ︸

= δikδDA

2∂�C

∂CAB

+ Fi A
∂

∂CCE

(

2∂�C

∂CAB

)

∂ (FmC FmE )

∂FkD
︸ ︷︷ ︸

= δmkδDC FmE + FmC δmkδDE = δDC FkE + δDE FkC
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= δik
2∂�C

∂CDB
+ Fi A

(

2∂2�C

∂CDE∂CAB
FkE + 2∂2�C

∂CCD∂CAB
FkC

)

︸ ︷︷ ︸

= 4∂2�C
∂CAB ∂CCD

FkC

= δik

(

2∂�C

∂C

)

BD

+ Fi A

(

4∂2�C

∂C∂C

)

ABCD

FkC .

Introducing SBD = F−1
Bj τ jl F

−1
Dl and CABCD = F−1

AmF
−1
Bj F

−1
Cn F

−1
Dl Jcmjnl into

(6.300) then readily leads to (6.301).

At this stage, consider the isotropic energy function � = �I (I1, I2, I3) with the
material stress tensor S = γ1I + γ2C + γ3C−1 to represent the second elasticity
tensor (6.302b). The desired result follows in detail from the following step by
step computation

(C)ABCD = 2
∂

∂CCD

{

2

[(

∂�I

∂ I1
+ I1

∂�I

∂ I2

)

δAB − ∂�I

∂ I2
CAB + I3

∂�I

∂ I3
C−1

AB

]}

= 4 δAB
∂

∂CCD

(

∂�I

∂ I1

)

︸ ︷︷ ︸

= δAB

[

∂2�I
∂ I1∂ I1

∂ I1
∂CCD

+ ∂2�I
∂ I1∂ I2

∂ I2
∂CCD

+ ∂2�I
∂ I1∂ I3

∂ I3
∂CCD

]

= ∂2�I
∂ I1∂ I1

δAB δCD + ∂2�I
∂ I1∂ I2

(

I1 δAB δCD − δABCCD

)

+ ∂2�I
∂ I1∂ I3

I3 δABC
−1
CD

+ 4
∂�I

∂ I2
δAB

∂ I1
∂CCD

︸ ︷︷ ︸

= δAB δCD

+ 4I1 δAB
∂

∂CCD

(

∂�I

∂ I2

)

︸ ︷︷ ︸

= ∂2�I
∂ I1∂ I2

δAB δCD + ∂2�I
∂ I2∂ I2

(

I1 δAB δCD − δABCCD

)

+ ∂2�I
∂ I2∂ I3

I3 δABC
−1
CD

− 4 CAB
∂

∂CCD

(

∂�I

∂ I2

)

︸ ︷︷ ︸

= ∂2�I
∂ I1∂ I2

CAB δCD + ∂2�I
∂ I2∂ I2

(

I1 CAB δCD − CABCCD

)

+ ∂2�I
∂ I2∂ I3

I3 CABC
−1
CD

− 4
∂�I

∂ I2

∂CAB

∂CCD
︸ ︷︷ ︸

= 1
2
(

δAC δDB + δADδCB
)

+4
∂�I

∂ I3
C−1

AB

∂ I3
∂CCD

︸ ︷︷ ︸

= I3 C−1
ABC

−1
CD

+ 4I3 C−1
AB

∂

∂CCD

(

∂�I

∂ I3

)

︸ ︷︷ ︸

= ∂2�I
∂ I1∂ I3

C−1
AB δCD + ∂2�I

∂ I2∂ I3

(

I1 C−1
AB δCD − C−1

ABCCD

)

+ ∂2�I
∂ I3∂ I3

I3 C−1
ABC

−1
CD
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+ 4I3
∂�I

∂ I3

∂C−1
AB

∂CCD
︸ ︷︷ ︸

= − 1
2

(

C−1
ACC−1

DB + C−1
ADC−1

CB

)

.

In a similar manner, c̃ in (6.288) takes the form

c̃ = δ11 ⊗ 1 + δ2 (1 ⊗ b + b ⊗ 1) + δ3
(

1 ⊗ b−1 + b−1 ⊗ 1
)

+ δ4b ⊗ b + δ5
(

b ⊗ b−1 + b−1 ⊗ b
)+ δ6b−1 ⊗ b−1

+ δ7b−1 	 b−1 + δ81 	 1 . (6.304)

Pre- and postmultiplying the above relation by b, taking into account (6.289),
leads to the desired result (6.302c)3. At the end, it should not be difficult to
establish (6.302a)4 by using (6.291c)1, (6.300) and (6.302b)4.

3. Let �λ (λ1, λ2, λ3) be a stored-energy function describing isotropic response of a
hyperelastic solid. Then, derive the following spectral formulas for the introduced
elasticity tensors

A =
3
∑

a, b=1

∂Pa
∂λb

n̂a ⊗̂Na ⊗ n̂b ⊗̂Nb

+
3
∑

a, b=1
b �=a

λa Pb − λb Pa
λ2
b − λ2

a

n̂a ⊗̂Nb ⊗ n̂b ⊗̂Na

+
3
∑

a, b=1
b �=a

(

Pa
λa

+ λ2
a

λ−1
b Pb − λ−1

a Pa
λ2
b − λ2

a

)

n̂a ⊗̂Nb ⊗ n̂a ⊗̂Nb , (6.305a)

C =
3
∑

a, b=1

1

λb

∂Sa
∂λb

̂Na ⊗̂Na ⊗̂Nb ⊗̂Nb

+
3
∑

a, b=1
b �=a

Sb − Sa
λ2
b − λ2

a

̂Na ⊗̂Nb ⊗ [̂Na ⊗̂Nb + ⊗̂Nb ⊗̂Na
]

, (6.305b)

Jc =
3
∑

a,b=1

∂τa

∂εb
n̂a ⊗ n̂a ⊗ n̂b ⊗ n̂b −

3
∑

a=1

2τa n̂a ⊗ n̂a ⊗ n̂a ⊗ n̂a

+
3
∑

a, b=1
b �=a

λ2
aτb − λ2

bτa

λ2
b − λ2

a

n̂a ⊗ n̂b ⊗ [̂na ⊗ n̂b + n̂b ⊗ n̂a] , (6.305c)

where εa = log λa and τa = λ2
a Sa = λa Pa = λa∂�λ/∂λa according to (6.292).
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Solution. Attention here is focused on representing the material elasticity tensor
(6.305b) by computing the time rate of change of the strain measure C and its
conjugate stress tensor S. The main assumption is that U (or C) has exactly three
distinct principal values.
To begin with, consider the orthonormal set of principal referential directions, i.e.
{

̂N1,̂N2,̂N3
}

, which can be expressed with respect to the material standard basis
{

̂E1,̂E2,̂E3
}

by the linear transformation ̂Na = Q̂Ea, a = 1, 2, 3. One then has
Q =∑3

b=1
̂Nb ⊗̂Eb which satisfies QTQ = I. The time rate of change of ̂Na is

then given by
˙̂Na = Q̇̂Ea = (Q̇QT) (Q̂Ea

) = ΩΩΩ̂Na

note that
˙

QQT = İ implies Q̇QT = −QQ̇T or ΩΩΩ = −ΩΩΩT

, (6.306)

with

ΩΩΩ =
3
∑

c=1

˙̂Nc ⊗̂Nc =
3
∑

a,b=1

Ωab̂Na ⊗̂Nb

note that Ωab = −Ωba and Ωaa = Ωbb = 0

. (6.307)

Recall from (6.291c)2 that S =∑3
c=1 SĉNc ⊗̂Nc. It then follows that

ΩΩΩS =
3
∑

a, b=1
b �=a

Ωab̂Na ⊗̂Nb

(

3
∑

c=1

SĉNc ⊗̂Nc

)

=
3
∑

a, b=1
b �=a

3
∑

c=1

ΩabScδbĉNa ⊗̂Nc =
3
∑

a, b=1
b �=a

ΩabSb̂Na ⊗̂Nb . (6.308)

In a similar manner,

SΩΩΩT = (ΩΩΩS)T =
3
∑

a, b=1
b �=a

ΩabSb̂Nb ⊗̂Na =
3
∑

a, b=1
b �=a

Ωba SâNa ⊗̂Nb . (6.309)

The relations (6.291c)2, (6.308)3 and (6.309)3 can now be used to evaluate the
rate of change in the second Piola-Kirchhoff stress tensor as follows:

Ṡ =
3
∑

a=1

ṠâNa ⊗̂Na

︸ ︷︷ ︸

=∑3
a,b=1

∂Sa
∂λb

λ̇b ̂Na ⊗̂Na

+
3
∑

a=1

Sa
( ˙̂Na = ΩΩΩ̂Na

)

⊗̂Na

︸ ︷︷ ︸

= ΩΩΩS

+
3
∑

a=1

SâNa ⊗ ΩΩΩ̂Na

︸ ︷︷ ︸

= SΩΩΩT
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=
3
∑

a, b=1

∂Sa
∂λb

λ̇b̂Na ⊗̂Na +
3
∑

a, b=1
b �=a

(ΩabSb + Ωba Sa)
︸ ︷︷ ︸

= Ωab
(

Sb − Sa
)

̂Na ⊗̂Nb . (6.310)

In a similar manner, the rate of C =∑3
a=1 λ2

a
̂Na ⊗̂Na takes the form

Ċ =
3
∑

a, b=1

2λaδabλ̇b
︸ ︷︷ ︸

= ̂Na .Ċ̂Na = Ċaa which represent
the normal components (diagonal elements)

̂Na ⊗̂Na

+
3
∑

a, b=1
b �=a

Ωab
(

λ2
b − λ2

a

)

︸ ︷︷ ︸

= ̂Na .Ċ̂Nb = Ċab which provide
the shear components (off-diagonal elements)

̂Na ⊗̂Nb . (6.311)

To proceed, consider a general super-symmetric fourth-order tensor defined by

C =
3
∑

ā=1

3
∑

b̄=1

3
∑

c=1

3
∑

d=1

Cāb̄cd
̂Nā ⊗̂Nb̄ ⊗̂Nc ⊗̂Nd . (6.312)

Then,

C : 1
2
Ċ =

3
∑

ā, b̄=1

3
∑

c=1

Cāb̄ccλcλ̇ĉNā ⊗̂Nb̄

+ 1

2

3
∑

ā, b̄=1

3
∑

c, d=1
d �=c

Cāb̄cdΩcd
(

λ2
d − λ2

c

)

̂Nā ⊗̂Nb̄ , (6.313)

and, consequently,

̂Na ·
[

C : 1
2
Ċ
]

̂Nb

a, b = 1, 2, 3

=
3
∑

c=1

Cabccλcλ̇c

+
3
∑

c, d=1
c �=d

1

2
CabcdΩcd

(

λ2
d − λ2

c

)

. (6.314)

From (6.310), one can also have
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̂Na .
[

Ṡ
]

̂Nb

a, b = 1, 2, 3

=
3
∑

c=1

∂Sa
∂λc

λ̇cδab + Ωab (Sb − Sa)
no summation

. (6.315)

Inwhat follows, the goal is to determine the spectral components ofCby enforcing
̂Na · [C : (Ċ/2

)− Ṡ
]

̂Nb = 0. To do so, one needs to consider the following cases:
(i) If a = b :

3
∑

c=1

[

Caaccλc − ∂Sa
∂λc

]

λ̇c +
3
∑

c, d=1
c �=d

1

2
CaacdΩcd

(

λ2
d − λ2

c

) = 0 .

Since λ̇c and Ωcd are arbitrary in the above equation, one can obtain

Caacc = 1

λc

∂Sa
∂λc

= 1
λc

∂
∂λc

(

1
λa

∂�λ
∂λa

)

= − 1
λ2aλc

δac + 1
λaλc

∂2�λ
∂λa∂λc

= Cccaa

, Caacd = 0
when c �= d

. (6.316)

(ii) If a �= b :
3
∑

c=1

Cabccλcλ̇c +
3
∑

c, d=1
c �=d

1

2
CabcdΩcd

(

λ2
d − λ2

c

) = Ωab (Sb − Sa) .

Considering the arbitrariness of λ̇c then implies that

Cabcc = 0 . (6.317)

Subsequently, the fact that Ωcd is arbitrary helps conclude that

when c = a , d = b : Cabab = Sb − Sa
λ2
b − λ2

a

, (6.318)

where the minor symmetries of C have been taken into account. Notice that the
components not written in the above relation are identically zero. Consistent with
(3.128), the specified components in matrix notation thus render

[Cabcd ] =

⎡

⎢

⎢

⎢

⎢

⎣

C1111 C1122 C1133 0 0 0
C2222 C2233 0 0 0

C3333 0 0 0
C2323 0 0

sym. C1313 0
C1212

⎤

⎥

⎥

⎥

⎥

⎦

. (6.319)
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The super-symmetric fourth-order tensor (6.312) finally takes the form

C =
3
∑

a, b=1

1

λb

∂Sa
∂λb

̂Na ⊗̂Na ⊗̂Nb ⊗̂Nb

︸ ︷︷ ︸

:= Cmat, note that thismaterial portion evolves due to
variations of the eigenvalues of the stress tensor

+
3
∑

a, b=1
b �=a

Sb − Sa
λ2
b − λ2

a

̂Na ⊗̂Nb ⊗ [̂Na ⊗̂Nb +̂Nb ⊗̂Na
]

︸ ︷︷ ︸

:= Cgeo, note that the evolution of this geometric contribution
is implied by rotations of the eigenvectors of the stress tensor

. (6.320)

This completes the proof. It is then a simple exercise to represent (6.305a) and
(6.305c). At the end, the reader is referred to Betsch and Stein [59] for derivation
of the spectral form of elasticity tensor in multiplicative plasticity at finite defor-
mations. See also Betsch and Steinmann [60] for derivation of the spectral form
of tangent operator in generalized eigenvalue problems.

All strain and stressmeasures as well as tangent moduli introduced in this exercise
were expressed in Cartesian coordinates. Here, for completeness, the curvilinear
representation of such tensorial variables is briefly discussed. In this context,
the ambitious reader is referred to a highly mathematical work by Marsden and
Hughes [41] for a detailed exposition. See also Simo and Marsden [61] and
Sansour [62] among many others.
To begin with, consider the material (spatial) point X = X̂

(

Θ1,Θ2,Θ3
)

(x =
x̂
(

Θ1,Θ2,Θ3
)

). And let {GA} ({gi }) be a set of covariant basis vectors in the
reference (current) configuration. In continuum mechanics, the two-point strain
measure F naturally represents a contra-covariant tensor. It is given by

F = ∂x
∂X

= ∂x
∂Θ i

∂Θ i

∂X
= Fi

. Agi ⊗ GA where Fi
. A = δiA .

Consistent with this, the rigid rotation tensor R and the stretch tensors U and v
can be introduced as contra-covariant tensors:

R = Ri
. Agi ⊗ GA

U = U A
. BGA ⊗ GB

v = vi
. jgi ⊗ g j

⎫

⎪

⎬

⎪

⎭

.

Now, the right Cauchy-Green strain measure C renders a covariant tensor

C = Fi
. Agi j F

j
. BG

A ⊗ GB where gi j = gi · g j ,
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while the Finger tensor b is a contravariant tensor

b = Fi
. AG

AB F j
. Bgi ⊗ g j where GAB = GA · GB .

noting that, for consistency, they are sometimes written by C = FTgF and b =
FG−1FT.
In this context, the free-energy function consistently depends on themetric tensors
in addition to the strain measures. Consider an isotropic material and let

� = �1
[

g,F,G
]

= �2
[

C (g,F) ,G
]

= �3
[

g,b (F,G)
]

.

Then, the popular stress tensors

P = ∂�1

∂F
= ∂�1

∂ Fi
. A

gi ⊗ GA ,

S = 2
∂�2

∂C
= 2

∂�2

∂ CAB
GA ⊗ GB ,

τττ = 2g−1 ∂�3

∂b
b = 2gik

∂�3

∂ bkl
bl jgi ⊗ g j ,

are related by g−1P = FS = τττF−T. Note that the Kirchhoff stress tensor can also
be written as

τττ = 2
∂�3

∂g
= 2

∂�3

∂gi j
gi ⊗ g j ,

which is known as the Doyle-Ericksen formula.
Next, the elasticity tensors are given by

A = ∂2�1

∂F∂F
, C = 4

∂2�2

∂C∂C
, Jc = 4b

∂2�3

∂b∂b
b = 4

∂2�3

∂g∂g
.

At the end, it should not be difficult to establish the relationships

A. B . D
i . k . = gik S

BD + CABCD F j
. A Fl

.Cgi j gkl

= gik
(

F−1
)B

. j τ jl
(

F−1
)D

. l + J cmjnl
(

F−1
)B

. j

(

F−1
)D

. l gimgkn .
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Exercise 6.17

The goal of this exercise is to implement numerical differentiation of tensor-valued
tensor functions of one symmetric tensor variable by using various difference
schemes introduced in Sect. 6.1.5. Suppose one is given

� (C) = λ

2
(ln J )2 − μ ln J + μ

2
(trC − 3) , (6.321)

where the matrix form of this tensor, [C], and the square root of its determinant,
J = √

det [C], render

[C] =
⎡

⎣

1.2 0.54 0.78
0.54 2.1 1.9
0.78 1.9 3.9

⎤

⎦ = [CT] , J = 2.1637 ,

at a given material point of a continuum body. In (6.321), the constants λ = 100 Mpa
andμ = 1 Mpa present the Lamé parameters, see (3.158) and (3.159). In the context
of nonlinear solid mechanics, the isotropic scalar-valued function (6.321) renders a
simple hyperelastic model known as the compressible neo-Hookean material, see
Simo and Pister [63].

First, show that the gradients in (6.74) now take the form

S = 2
∂�

∂C
= λ (ln J )C−1 + μ

(

I − C−1
)

, (6.322a)

C = 2
∂S
∂C

= λ
[

C−1 ⊗ C−1 − (2 ln J )C−1 	 C−1
]+ 2μC−1 	 C−1 . (6.322b)

Then, write a computer program to approximate these analytical derivatives by use
of (6.78) and (6.80a)–(6.81c). At the end of the code, evaluate the total error of each
approximation by means of (6.82).

Solution. With the aid of (6.20a)2, (6.20c)4, (6.63b) and (6.190d), the desired rela-
tions (6.322a)–(6.322b) are verified as follows:

S = 
2λ (ln J )
∂ (ln J )

∂ J 2
︸ ︷︷ ︸

= 1/
(

�2��J2
)

∂ J 2

∂C
︸︷︷︸

= ��J2 C−1

−
2μ
∂ (ln J )

∂ J 2
︸ ︷︷ ︸

= 1/
(

�2��J2
)

∂ J 2

∂C
︸︷︷︸

= ��J2 C−1

+μ
∂trC
∂C
︸ ︷︷ ︸

= I

,

C = λC−1 ⊗ ∂ (2 ln J )

∂C
︸ ︷︷ ︸

= C−1

+2λ (ln J )
∂C−1

∂C
︸ ︷︷ ︸

= −C−1 	 C−1

−2μ
∂C−1

∂C
︸ ︷︷ ︸

= −C−1 	 C−1

.

Thecode is available at https://data.uni-hannover.de/dataset/exercises-tensor-analysis
for free.

https://data.uni-hannover.de/dataset/exercises-tensor-analysis
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Chapter 7
Gradient and Related Operators

In a continuation of vector and tensor calculus, this chapter mainly studies the actions
of gradient, divergence and curl operators on vectors and tensors. Needless to say
that these differential operators are the workhorses of vector and tensor analysis.
Recall that Chap. 6 dealt with the gradients of tensor functions which were non-
constant tensorial variables. Here, any tensorial variable is assumed to be a func-
tion of position (and possibly time). Functions depending on space and time are
ubiquitous in science and engineering. Examples of which include electric field in
electromagnetism and velocity field in continuum mechanics.

Scalar, vector and tensor fields. The term field is used to designate a function
defined over space and time. In general, one needs to distinguish between a

❖ scalar-valued function h̄ : x ∈ E 3
p × t ∈ R → h̄ (x, t) ∈ R, called a scalar field,

❖ vector-valued function ĥ : x ∈ E 3
p × t ∈ R → ĥ (x, t) ∈ E o3

r , called a vector
field and

❖ tensor-valued function H̃ : x ∈ E 3
p × t ∈ R → H̃ (x, t) ∈ Tso

(
E o3
r

)
, called a

tensor field.

A field variable that is independent of time is referred to as a stationary or steady-state
field variable. And, it is said to be homogeneous or uniform if it is only a function of
time. Of special interest in this chapter is to only consider stationary fields.

7.1 Differentiation of Fields

Let h̄ (x), ĥ (x) and H̃ (x) be a nonlinear and sufficiently smooth scalar, vector and
tensor field, respectively. The first-order Taylor series expansions of these three fields
at x are given by
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h̄ (x + dx) = h̄ (x) + dh̄ + ō (dx) , (7.1a)

ĥ (x + dx) = ĥ (x) + dĥ + ô (dx) , (7.1b)

H̃ (x + dx) = H̃ (x) + dH̃ + õ (dx) , (7.1c)

where the total differentials dh̄, dĥ and dH̃ are

dh̄ = ∂ h̄

∂x
· dx , dĥ = ∂ĥ

∂x
dx , dH̃ = ∂H̃

∂x
dx , (7.2)

and the Landau order symbols ō (dx), ô (dx) and õ (dx) will tend to zero faster than
dx → 0. This is indicated by

lim
dx→0

ō (dx)
|dx| = 0 , lim

dx→0

ô (dx)
|dx| = 0 , lim

dx→0

õ (dx)
|dx| = O . (7.3)

In (7.2), the first-order tensor ∂ h̄/∂x denotes the gradient (or derivative) of h̄ at x.
And the second-order (third-order) tensor ∂ĥ/∂x (∂H̃/∂x) presents the gradient of
ĥ (H̃) at x. Note that any of these objects can be determined from its directional
derivative as follows:

Dvh̄ (x) = d

dε
h̄ (x + εv)

∣∣∣∣
ε=0

=
[

∂ h̄

∂ (x + εv)
· ∂ (x + εv)

∂ε

]

ε=0

= ∂ h̄

∂x
· v , (7.4a)

Dvĥ (x) = d

dε
ĥ (x + εv)

∣
∣∣∣
ε=0

=
[

∂ĥ
∂ (x + εv)

∂ (x + εv)
∂ε

]

ε=0

= ∂ĥ
∂x

v , (7.4b)

DvH̃ (x) = d

dε
H̃ (x + εv)

∣∣∣∣
ε=0

=
[

∂H̃
∂ (x + εv)

∂ (x + εv)
∂ε

]

ε=0

= ∂H̃
∂x

v , (7.4c)

where the generic vector v is sometimes introduced as a unit vector in the literature.
The ultimate goal here is to express the gradient of a tensorial field variable with
respect to the standard and curvilinear bases. Regarding a Cartesian tensor field, this
canbedone in a straightforwardmanner.But, the gradient of a curvilinear one requires
further consideration since the general basis vectors are no longer constant and their
partial derivatives with respect to the curvilinear coordinates need to be naturally
taken into account. The problem is thus treated by characterizing the nonzero objects
∂gi/∂� j that appear, for instance, in
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∂

∂� j

[
ĥ
]

= ∂

∂� j

[
ĥ igi

]
= ∂ ĥ i

∂� j
gi + ĥ i ∂gi

∂� j
.

This leads to the introduction of Christoffel symbols described below.

7.1.1 Christoffel Symbols of First and Second Kind

Consider the following family of objects

ΓΓΓ i j := ∂gi
∂� j

, (7.5)

possessing the symmetry in the indices i and j due to

ΓΓΓ i j = ∂gi
∂� j

= ∂2x
∂� j∂�i

= ∂2x
∂�i∂� j

= ∂g j

∂�i
= ΓΓΓ j i . (7.6)

Then, the quantities

Γ k
i j = ∂gi

∂� j
· gk satisfying Γ k

i j = Γ k
ji , (7.7)

are referred to asChristoffel symbols of the second kind or simplyChristoffel symbols.
These 18 independent quantities are strictly properties of the chosen coordinate
system. The Christoffel symbols relate the sensitivity of the tangent vectors with
respect to the curvilinear coordinates to the covariant basis vectors:

∂gi
∂� j

= Γ k
i jgk . (7.8)

They also help connect the partial derivatives of dual vectors to the contravariant
basis vectors:

∂gi

∂� j
= −Γ i

jkg
k . (7.9)

This result eventually relies on

gi · gk = δik ⇒ ∂gi

∂� j
· gk + gi · ∂gk

∂� j
= 0

⇒ ∂gi

∂� j
· gk = −gi · Γ l

k jgl = −Γ i
k j ⇒ ∂gi

∂� j
· gk = −Γ i

jk .
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By use of (5.49), i.e. gm = gmlgl , and (5.51)1, i.e. gkmgml = δlk , the superscript index
of Γ m

i j can be lowered:

Γi jk = Γ m
i j gmk

note that Γ k
i j = Γi jm gmk

. (7.10)

The quantities Γi jk that also possess symmetry in the first two indices are termed
Christoffel symbols of the first kind. These symbols

Γi jk = Γ j ik = ∂gi
∂� j

· gk , (7.11)

basically relate the partial derivatives of tangent vectors to the dual vectors according
to

∂gi
∂� j

= Γi jkgk . (7.12)

The structure of (7.11)2 motivates to represent the partial derivatives of the covariant
metric (5.38)1, i.e. gi j = gi · g j . It follows that

∂gki
∂� j

= Γk ji + Γi jk . (7.13)

By considering the symmetry of the Christoffel symbols, one then obtains

Γi jk = 1

2

(
∂gki
∂� j

+ ∂gkj
∂�i

− ∂gi j
∂�k

)
. (7.14)

The expressions (7.10) and (7.14), along with the identity (5.51)1, help find out that

Γ k
i j = 1

2

(
∂gmi

∂� j
+ ∂gmj

∂�i
− ∂gi j

∂�m

)
gmk . (7.15)

The results (7.14)–(7.15) clearly show that the Christoffel symbols of the first and
second kind only depend on themetric coefficients. In other words, if gi j are known,
then Γi jk and Γ k

i j can consistently be computed.
Now, it is easy to see that the partial derivatives of the contravariant metric coef-

ficients gi j = gi · g j , according to (5.46)1, render

∂gi j

∂�k
= −Γ i

kl g
l j − Γ

j
kl g

il . (7.16)

Recall from (5.30)2 that the Jacobian is J = det
[
g1 g2 g3

]
. The fact that the basis

vectors vary from point to point in curvilinear coordinates implies that the Jacobian
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also varieswith position.One then realizes that J = J
(
�1,�2,�3

)
. By using (5.47),

(5.51)1−2, (6.23)2, (7.7)2 and (7.16), along with the chain rule of differentiation, one
can now establish the identity

Γ i
ki = Γ i

ik = ∂ ln J

∂�k

or ∂ J/∂�k = JΓ i
ki = JΓ i

ik

, (7.17)

owing to

∂ ln J

∂�k
︸ ︷︷ ︸
= 1

J
∂ J

∂�k

= 1

J

∂ J

∂gi j
∂gi j

∂�k
︸ ︷︷ ︸

= 1
J

(
− J

2 gi j
) (

−Γ i
kl g

l j − Γ
j
kl g

il
)

= 1

2
Γ i
klδ

l
i + 1

2
Γ

j
klδ

l
j

︸ ︷︷ ︸
= 1

2Γ i
ki + 1

2Γ
j
k j

= Γ i
ki .

Another useful identity is

∂
(
Jgi
)

∂�i
= 0 , (7.18)

because

∂
(
Jgi
)

∂�i

by using=========
the product rule

∂ J

∂�i
gi + J

∂gi

∂�i

by using=========
(7.9) and (7.17)

JΓ k
ikg

i − JΓ i
ikg

k

by using the symmetry of Christoffel symbols=========================
and switching the names of dummy indices

JΓ k
ki

[
gi − gi

]

by using===================
(1.4c), (1.4d), (1.5) and (a) in (1.76)

0 .

As an example, consider the following nonzero Christoffel symbols for cylindri-
cal coordinates:

Γ 1
22 = −r , Γ 2

12 = Γ 2
21 = 1

r
, (7.19)

where the tangent vectors (5.7a)–(5.7c) alongwith the dual vectors (5.118a)–(5.118c)
have been used.

Another example regards the nonzero Christoffel elements for spherical coordi-
nates. Considering (5.11a)–(5.11c) and (5.121a)–(5.121c), they are given by

Γ 1
22 = −r , Γ 1

33 = −r sin2 θ , (7.20a)

Γ 2
12 = Γ 2

21 = 1

r
, Γ 2

33 = −1

2
sin 2θ , (7.20b)
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Γ 3
13 = Γ 3

31 = 1

r
, Γ 3

23 = Γ 3
32 = cot θ . (7.20c)

Hint: The Christoffel symbols are basis-dependent quantities which carry informa-
tion about the variation of a curvilinear basis in space. Although they are perfectly
characterized by three indices, they should not be considered as the components of
a third-order tensor. The reason is that they do not obey the tensor transformation
laws explained in Sect. 2.9. This will be discussed in the following. ●

Given an old basis {gi } and a new basis {ḡi } with the corresponding Christoffel
symbols Γ k

i j and Γ̄ k
i j . Then,

Γ̄ k
i j �= (

gl · ḡi
) (
gm · ḡ j

) (
ḡk · gn

)
Γ n
lm , (7.21)

where, using (5.58a)2 and (5.58b)2,

gl · ḡi = ∂�l

∂�̄i
, gm · ḡ j = ∂�m

∂�̄ j
, ḡk · gn = ∂�̄k

∂�n
. (7.22)

Indeed, these Christoffel symbols are related by

Γ̄ k
i j = ∂�l

∂�̄i

∂�m

∂�̄ j

∂�̄k

∂�n
Γ n
lm

tensorial contribution

+ ∂2�n

∂�̄i�̄ j

∂�̄k

∂�n

nontensorial part

, (7.23)

since, by means of the product and chain rules of differentiation along with (1.9a)–
(1.9c), (2.158)1, (5.14), (5.27)1 (7.7)1 and (7.22)1−3,

Γ̄ k
i j = ∂

[
ḡi
]

∂�̄ j
· [ḡk]

= ∂
[(
gl · ḡi

)
gl
]

∂�̄ j
· [(gn · ḡk) gn]

= (
gn · ḡk)

[
∂
(
gl · ḡi

)

∂�̄ j
δnl + (

gl · ḡi
) ∂gl

∂�m

∂�m

∂�̄ j
· gn
]

= ∂�̄k

∂�n

[
∂ (gn · ḡi )

∂�̄ j
+ ∂�l

∂�̄i

∂�m

∂�̄ j
Γ n
lm

]

= ∂�̄k

∂�n

[
∂�l

∂�̄i

∂�m

∂�̄ j
Γ n
lm + ∂2�n

∂�̄ j∂�̄i

]
. ●

The gradient of a tensor field is formulated by means of its partial derivatives with
respect to the curvilinear coordinates, see (7.68a)–(7.69b). Representation of the
partial derivatives of a tensorial field variable with respect to a basis is thus required.
These derivatives are expressed in terms of a special derivative of components which
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crucially depends on the Christoffel symbols. This new mathematical object will be
introduced in the following.

7.1.2 First Covariant Differentiation

Let ĥ = ĥ
(
�1,�2,�3

)
be a generic vector field. Then, by using (5.64a)–(5.64b)

and (7.8)–(7.9) together with the product rule of differentiation, the rate of change
in this field variable can be expressed with respect to the curvilinear basis vectors as

∂ĥ
∂� j

= ĥ i
∣∣
∣
j
gi

in the literature, this is sometimes denoted by ∇g j ĥ = ∇ j ĥ =
(
∇ j ĥ

i
)
gi

, (7.24a)

∂ĥ
∂� j

= ĥ i

∣∣∣
j
gi

in the literature, this is sometimes denoted by ∇g j ĥ = ∇ j ĥ =
(
∇ j ĥ i

)
gi

, (7.24b)

where ĥ i
∣∣∣
j
and ĥ i

∣∣∣
j
present the first-order covariant derivative (or differentiation)

of the contravariant and covariant components ĥ i and ĥ i , respectively. These special
components are given by

ĥ i
∣∣
∣
j
= ∂ ĥ i

∂� j
+ Γ i

jm ĥm , (7.25a)

ĥ i

∣∣∣
j
= ∂ ĥ i

∂� j
− Γ m

i j ĥm . (7.25b)

The covariant derivative consistently captures the change in a contravariant (covari-
ant) component along with its companion covariant (contravariant) basis vector. In
comparison with the partial derivative, it is thus a better measure of the rate of change
in a field variable. For more details see, for example, Grinfeld [1].

The coordinate index on the covariant derivative can be raised to define the con-
travariant derivative of either contravariant or covariant components:

ĥ i
∣∣∣
j = ĥ i

∣∣∣
m
gmj , ĥ i

∣∣∣
j = ĥ i

∣∣∣
m
gmj . (7.26)
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By considering (5.73a)–(5.73d) and (7.8)–(7.9) along with the product rule of differ-
entiation, the rate of change in the tensor field H̃ = H̃

(
�1,�2,�3

)
can be decom-

posed as

∂H̃
∂�k

= H̃ i j
∣∣∣
k
gi ⊗ g j where H̃ i j

∣∣∣
k

= ∂ H̃ i j

∂�k
+ Γ i

km H̃ mj + Γ
j
km H̃ im ,

(7.27a)

∂H̃
∂�k

= H̃ i
. j

∣
∣∣
k
gi ⊗ g j where H̃ i

. j

∣
∣∣
k

= ∂ H̃ i
. j

∂�k
+ Γ i

km H̃ m
. j − Γ m

kj H̃
i
.m ,

(7.27b)

∂H̃
∂�k

= H̃ . j
i

∣∣∣
k
gi ⊗ g j where H̃ . j

i

∣∣∣
k

= ∂ H̃ . j
i

∂�k
− Γ m

ki H̃ . j
m + Γ

j
km H̃ .m

i ,

(7.27c)

∂H̃
∂�k

= H̃ i j

∣∣
∣
k
gi ⊗ g j where H̃ i j

∣∣
∣
k

= ∂ H̃ i j

∂�k
− Γ m

ki H̃ mj − Γ m
kj H̃ im .

(7.27d)

Consistent with (7.26), the contravariant derivative of the curvilinear components of
a tensor field can be written as

H̃ i j
∣∣∣
k = H̃ i j

∣∣∣
m
gmk

H̃ i
. j

∣∣∣
k = H̃ i

. j

∣∣∣
m
gmk

⎫
⎪⎬

⎪⎭
,

H̃ . j
i

∣∣∣
k = H̃ . j

i

∣∣∣
m
gmk

H̃ i j

∣∣∣
k = H̃ i j

∣∣∣
m
gmk

⎫
⎪⎬

⎪⎭
. (7.28)

7.1.3 Invariance of Covariant Derivative

The partial derivative operator ∂/∂�i preserves the tensor property when applied
to the invariant field variables such as h̄ or ĥ or H̃. But, this is not the case for
variants. For instance, consider the old and new components of the object ĥ which
are tensorially related by

¯̂hi = ∂�̄i

∂� j
ĥ j , ←− note that ĥ = ¯̂hi ḡi = ĥ i gi = ĥ i

(
gi · ḡ j

)
ḡ j = ĥ i

∂�̄ j

∂�i
ḡ j = ĥ j ∂�̄i

∂� j
ḡi , (7.29a)

¯̂hi = ∂� j

∂�̄i
ĥ j , ←− note that ĥ = ¯̂hi ḡi = ĥ i g

i = ĥ i
(
gi · ḡ j

)
ḡ j = ĥ i

∂�i

∂�̄ j
ḡ j = ĥ j

∂� j

∂�̄i
ḡi , (7.29b)

whereas their partial derivatives nontensorially transform according to

∂
¯̂hi

∂�̄ j
= ∂

∂�̄ j

[
∂�̄i

∂�k
ĥ k

]
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= ∂�̄i

∂�k

∂ ĥ k

∂�l

∂�l

∂�̄ j
+ ∂2�̄i

∂�l∂�k

∂�l

∂�̄ j
ĥ k , (7.30a)

∂
¯̂hi

∂�̄ j
= ∂

∂�̄ j

[
∂�k

∂�̄i
ĥ k

]

= ∂�k

∂�̄i

∂ ĥ k

∂�l

∂�l

∂�̄ j
+ ∂2�k

∂�̄ j∂�̄i
ĥ k . (7.30b)

The covariant derivative now manifests itself as a powerful differential operator
which overcomes this problem:

¯̂hi
∣∣∣
j
= ∂

¯̂hi

∂�̄ j
︸︷︷︸

= ∂�̄i

∂�k
∂ ĥ k

∂�l
∂�l

∂�̄ j + ∂2�̄i

∂�l ∂�k
∂�l

∂�̄ j ĥ k

+ Γ̄ i
jm

¯̂hm

︸ ︷︷ ︸
=
(

∂�̄i

∂�k
∂�l

∂�̄ j
∂�n

∂�̄m Γ k
ln + ∂2�l

∂�̄m �̄ j
∂�̄i

∂�l

)
∂�̄m
∂�r ĥr

= ∂ ĥ k

∂�l

∂�̄i

∂�k

∂�l

∂�̄ j
+ ∂�̄i

∂�k

∂�l

∂�̄ j

∂�n

∂�̄m

∂�̄m

∂�r
Γ k
ln ĥ

r

︸ ︷︷ ︸
= ∂�̄i

∂�k
∂�l

∂�̄ j δnr Γ k
ln ĥr = ∂�̄i

∂�k
∂�l

∂�̄ j Γ k
ln ĥn

+ ∂2�̄i

∂�l∂�k

∂�l

∂�̄ j
ĥ k + ∂2�l

∂�̄m�̄ j

∂�̄i

∂�l

∂�̄m

∂�r
ĥ r

=
(

∂ ĥ k

∂�l
+ Γ k

ln ĥ
n

)

︸ ︷︷ ︸
= ĥ k

∣
∣∣
l

∂�̄i

∂�k

∂�l

∂�̄ j
+
(

∂2�̄i

∂�k∂�l

∂�l

∂�̄ j
+ ∂�̄i

∂�l

∂2�l

∂�̄m�̄ j

∂�̄m

∂�k

)

︸ ︷︷ ︸
= ∂

∂�k

[
∂�̄i

∂�l
∂�l

∂�̄ j

]
= ∂

∂�k

[
∂�̄i

∂�̄ j

]
= ∂

∂�k

[
δij

]
= 0

ĥ k

= ∂�̄i

∂�k

(
ĥ k
∣
∣∣
l

) ∂�l

∂�̄ j
, (7.31a)

¯̂hi

∣∣∣
j
= ∂

¯̂hi

∂�̄ j
︸︷︷︸

= ∂�k

∂�̄i
∂ ĥ k
∂�l

∂�l

∂�̄ j + ∂2�k

∂�̄ j ∂�̄i ĥ k

− Γ̄ m
i j

¯̂hm
︸ ︷︷ ︸

=
(

∂�k

∂�̄i
∂�l

∂�̄ j
∂�̄m
∂�n Γ n

kl + ∂2�l

∂�̄i �̄ j
∂�̄m

∂�l

)
∂�r

∂�̄m ĥr

= ∂�k

∂�̄i

∂ ĥ k

∂�l

∂�l

∂�̄ j
− ∂�k

∂�̄i

∂�l

∂�̄ j

∂�r

∂�̄m

∂�̄m

∂�n
Γ n
kl ĥ r

︸ ︷︷ ︸
= ∂�k

∂�̄i
∂�l

∂�̄ j δrnΓ n
kl ĥr = ∂�k

∂�̄i
∂�l

∂�̄ j Γ n
kl ĥn

+ ∂2�k

∂�̄ j∂�̄i
ĥ k − ∂2�l

∂�̄i�̄ j

∂�r

∂�̄m

∂�̄m

∂�l
ĥ r

=
(

∂ ĥ k

∂�l
− Γ n

kl ĥ n

)

︸ ︷︷ ︸
= ĥ k

∣
∣∣
l

∂�k

∂�̄i

∂�l

∂�̄ j
+

(
∂2�k

∂�̄ j∂�̄i
− ∂2�l

∂�̄ j�̄i

∂�k

∂�̄m

∂�̄m

∂�l

)

︸ ︷︷ ︸
= ∂2�k

∂�̄ j ∂�̄i − ∂2�l

∂�̄ j �̄i δkl = ∂2�k

∂�̄ j ∂�̄i − ∂2�k

∂�̄ j �̄i = 0

ĥ k
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= ∂�k

∂�̄i

(
ĥ k

∣∣∣
l

) ∂�l

∂�̄ j
, (7.31b)

where (5.14), (7.23), (7.25a)–(7.25b) and (7.29a)–(7.30b) have been used. It is not
then difficult to verify that

¯̃H i j
∣∣∣
k

= ∂�̄i

∂�l

∂�̄ j

∂�m

(
H̃ lm

∣∣∣
n

) ∂�n

∂�̄k
, (7.32a)

¯̃H i
. j

∣∣∣
k

= ∂�̄i

∂�l

∂�m

∂�̄ j

(
H̃ l

.m

∣∣∣
n

) ∂�n

∂�̄k
, (7.32b)

¯̃H . j
i

∣∣∣
k

= ∂�l

∂�̄i

∂�̄ j

∂�m

(
H̃ .m

l

∣∣∣
n

) ∂�n

∂�̄k
, (7.32c)

¯̃H i j

∣
∣∣
k

= ∂�l

∂�̄i

∂�m

∂�̄ j

(
H̃ lm

∣
∣∣
n

) ∂�n

∂�̄k
. (7.32d)

One can finally conclude that:

The covariant derivative, as a newdifferential operator, generates tensors
out of tensors. And this is not the case for the partial derivative.

The goal is now to consider the covariant derivative of the metric coefficients and
basis vectors. This is summarized in an important theorem described below.

7.1.4 Ricci’s Theorem

Consider the identity tensor I = gi jgi ⊗ g j = gi jgi ⊗ g j according to (5.78).
Although gi j and gi j vary in space, I apparently remains constant. This means that
its rate of change and accordingly gradient must vanish:

∂I
∂�k

= O ,
∂I
∂x

= O . (7.33)

By virtue of (7.27a) and (7.27d), the left hand side of (7.33)1 can be expressed as
∂I/∂�k = gi j

∣∣
k gi ⊗ g j = gi j

∣∣
k g

i ⊗ g j . Consistent with this, the right hand side of
(7.33)1 renders O = 0 gi ⊗ g j = 0 gi ⊗ g j knowing that the zero tensor is a tensor
with zero components in any coordinate system. One then concludes that

gi j
∣
∣
k = 0 , gi j

∣
∣
k = 0 . ←− see (9.164) and (9.184) (7.34)

As can be seen, the metric coefficients are covariantly constant. Note that theses
results could also be easily obtained via
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gi j
∣∣
k

from=====
(7.27a)

∂gi j

∂�k
+ Γ i

kmg
mj + Γ

j
kmg

im

from====
(7.16)

0 ,

gi j
∣∣
k

from==========
(5.39) and (7.27d)

∂gi j
∂�k

− Γ m
ik gmj − Γ m

jk gim

from==========
(5.39) and (7.10)

∂gi j
∂�k

− Γik j − Γ jki

from====
(7.13)

0 .

In a similar fashion,

δij

∣∣
k

= 0 . (7.35)

In accord with (7.34)–(7.35), the covariant basis vectors gi , i = 1, 2, 3, along with
their companion dual vectors gi , i = 1, 2, 3, remain also covariantly constant. This
can be shown by formally taking the covariant derivative of these basis vectors:

gi | j from=====
(7.25b)

∂gi
∂� j

− Γ m
i j gm

from====
(7.8)

Γ m
i j gm − Γ m

i j gm
from=========

(1.4c) and (1.5)
0 , (7.36a)

gi
∣∣
j

from=====
(7.25a)

∂gi

∂� j
+ Γ i

jmg
m from====

(7.9)
−Γ i

jmg
m + Γ i

jmg
m from=========

(1.4c) and (1.5)
0 . (7.36b)

The identities (7.34)–(7.36b) are known as the metrinilic property. They are also
referred to as Ricci’s theorem. As a result, one can establish the useful identities

g jl

(
ĥ l
∣∣∣
k

)
= ĥ j

∣∣∣
k

, g jl
(
ĥ l

∣∣∣
k

)
= ĥ j

∣∣∣
k

note that g jl
(
ĥ l
∣
∣∣
k

)
= g jl

(
∂ ĥ l

∂�k + Γ l
km ĥm

)
= ∂ ĥ j

∂�k − ĥ l
(
Γ jkl + Γlk j

)+ Γkmj ĥ
m = ∂ ĥ j

∂�k − ĥ lΓ
l
jk = ĥ j

∣
∣∣
k

.

(7.37)
In accord with the rules (6.4a) and (6.4c), the demand for satisfying the product rule
implies that

ĥ
∣∣∣
j
=
[
ĥ igi

]∣∣∣
j
=
[
ĥ i
∣∣∣
j

]
gi + ĥ i

[
gi | j

] = ĥ i
∣∣∣
j
gi , (7.38a)

ĥ
∣∣∣
j
=
[
ĥ igi

]∣∣∣
j
=
[
ĥ i

∣∣∣
j

]
gi + ĥ i

[
gi
∣∣
j

]
= ĥ i

∣∣∣
j
gi . (7.38b)

As a result, the covariant derivative reduces to the ordinary partial derivative for
invariant objects:
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ĥ
∣∣∣
j
= ∂ĥ

∂� j
. ←− see (7.24a)–(7.24b) (7.39)

This result also holds true for tensors of higher orders (see the similar result written
in (7.117) for the scalar variables).

7.1.5 Second Covariant Differentiation

Some numerical methods are based on the second-order approximation of field vari-
ables. This basically requires the second-order derivatives of a vector and tensor field
relative to the coordinates. Representation of these derivatives with respect to a basis
will be demonstrated in the following.

Following similar procedures that led to (7.24a)–(7.25b) reveals

∂2ĥ
∂�k∂�l

= ∂

∂�k

∂ĥ
∂�l

= ĥ i
|lkgi , (7.40a)

∂2ĥ
∂�k∂�l

= ∂

∂�k

∂ĥ
∂�l

= ĥ i |lkgi , (7.40b)

where

ĥ i
|lk = ∂2 ĥ i

∂�k∂�l
+ ∂Γ i

lm

∂�k
ĥm + Γ i

knΓ
n
lm ĥm + Γ i

lm

∂ ĥm

∂�k
+ Γ i

km

∂ ĥm

∂�l
, (7.41a)

ĥ i |lk = ∂2 ĥ i

∂�k∂�l
+ Γ n

kiΓ
m
nl ĥm − ∂Γ m

il

∂�k
ĥm − Γ m

li

∂ ĥm

∂�k
− Γ m

ki

∂ ĥm

∂�l
, (7.41b)

may be called the pseudo second-order covariant derivatives. By means of (7.7)2,
(7.25a)–(7.25b), (7.27b), (7.27d) and (7.41a)–(7.41b), the true second-order covari-
ant derivatives are given by
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ĥ i
∣∣∣
lk

=
(
ĥ i
∣∣∣
l

)∣∣∣
k

= ∂

∂�k

(
ĥ i
∣∣
∣
l

)
+ Γ i

km

(
ĥm
∣∣
∣
l

)
− Γ m

kl

(
ĥ i
∣∣
∣
m

)

= ĥ i
|lk − Γ n

kl

(
∂ ĥ i

∂�n
+ Γ i

nm ĥm

)

, (7.42a)

ĥ i

∣∣∣
lk

=
(
ĥ i

∣∣∣
l

)∣∣∣
k

= ∂

∂�k

(
ĥ i

∣∣∣
l

)
− Γ m

ki

(
ĥm

∣∣∣
l

)
− Γ m

kl

(
ĥ i

∣∣∣
m

)

= ĥ i |lk − Γ n
kl

(
∂ ĥ i

∂�n
− Γ m

ni ĥm

)

. (7.42b)

From (7.7)2, (7.42a)3 and (7.42b)3, one immediately obtains

ĥ i
∣
∣∣
lk

− ĥ i
∣
∣∣
kl

= ĥ i
|lk − ĥ i

|kl , ĥ i

∣
∣∣
lk

− ĥ i

∣
∣∣
kl

= ĥ i |lk − ĥ i |kl . (7.43)

For a tensor field that is known in its contravariant components, one will have

∂2H̃
∂�k∂�l

= ∂

∂�k

∂H̃
∂�l

= H̃ i j
|lkgi ⊗ gi , (7.44)

where

H̃ i j
|lk = ∂2 H̃ i j

∂�k∂�l
+ ∂Γ i

lm

∂�k
H̃ mj + Γ n

lmΓ i
nk H̃

mj + ∂Γ
j
lm

∂�k
H̃ im + Γ n

lmΓ
j
nk H̃

im

+ Γ i
knΓ

j
lm H̃ nm + Γ i

lnΓ
j
km H̃ nm

+ Γ i
lm

∂ H̃ mj

∂�k
+ Γ i

km

∂ H̃ mj

∂�l
+ Γ

j
lm

∂ H̃ im

∂�k
+ Γ

j
km

∂ H̃ im

∂�l
. (7.45)

It is then a simple exercise to show that the second covariant derivative of a con-
travariant tensor takes the following form

H̃ i j
∣∣∣
lk

=
(
H̃ i j

∣∣∣
l

)∣∣∣
k

= ∂

∂�k

(
H̃ i j

∣∣∣
l

)
+ Γ i

km

(
H̃ mj

∣∣∣
l

)
+ Γ

j
km

(
H̃ im

∣∣∣
l

)
− Γ m

kl

(
H̃ i j

∣∣∣
m

)

= H̃ i j
|lk − Γ n

kl

(
∂ H̃ i j

∂�n
+ Γ i

nm H̃ mj + Γ j
nm H̃ im

)

. (7.46)
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Consistent with (7.43)1, one will also have

H̃ i j
∣∣
∣
lk

− H̃ i j
∣∣
∣
kl

= H̃ i j
|lk − H̃ i j

|kl . (7.47)

It should be emphasized that the covariant derivative coincides with the ordinary
partial derivative in the case of Cartesian coordinates. This also holds true for scalar
field variables, see (7.117). Similarly to the partial derivative, the covariant derivative
satisfies the well-known sum and product rules. Moreover, it is important to note that
the covariant derivatives commute for flat spaces. For instance, let ĥ1 and ĥ2 be two
vector fields that are known in their contravariant components. Accordingly, these
rules are indicated by

(
ĥ i
1 + ĥ i

2

)∣∣∣
j
= ĥ i

1

∣
∣∣
j
+ ĥ i

2

∣
∣∣
j

, ←− the sum rule (7.48a)
(
ĥ i
1 ĥ

j
2

)∣∣∣
k

=
(
ĥ i
1

∣∣∣
k

)
ĥ j
2 + ĥ i

1

(
ĥ j
2

∣∣∣
k

)
, ←− the product rule (7.48b)

(
ĥ i
1

)∣∣∣
jk

=
(

ĥ i
1

∣∣∣
j

)∣∣∣∣
k

=
(
ĥ i
1

∣∣∣
k

)∣∣∣
j
=
(
ĥ i
1

)∣∣∣
k j

, ←− the commutative law

(7.48c)

which also hold true for tensors of higher orders. The properties (7.48a)–(7.48b)
can be shown in a straightforward manner. But, the last property requires more con-
sideration. It relies on the vanishing of an important mathematical object described
below.

7.1.6 Riemann-Christoffel Curvature Tensor

By means of (7.41a)–(7.41b) and (7.43)1−2, one can obtain (see Danielson [2] and
Das [3])

ĥ i
∣∣∣
lk

− ĥ i
∣∣∣
kl

= Ri . . .
. jkl ĥ j , (7.49a)

ĥ j

∣∣∣
kl

− ĥ j

∣∣∣
lk

= Ri . . .
. jkl ĥ i , (7.49b)

where

Ri . . .
. jkl = ∂Γ i

jl

∂�k
− ∂Γ i

jk

∂�l
+ Γ i

kmΓ m
l j − Γ i

lmΓ m
kj , (7.50)

satisfying
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Ri . . .
. ikl

from=========
(7.7) and (7.50)

∂Γ i
li

∂�k
− ∂Γ i

ki

∂�l
+ Γ i

kmΓ m
li − Γ i

lmΓ m
ki

from====
(7.17) �

�
�

�∂2 ln J

∂�k∂�l
−

�
�

�
�∂2 ln J

∂�l∂�k
+ Γ i

kmΓ m
li − Γ i

lmΓ m
ki

by renaming===========
the dummy indices

����Γ m
ki Γ

i
lm − ����Γ i

lmΓ m
ki = 0 , (7.51)

present the mixed components of the fourth-order tensor

R = Ri . . .
. jkl gi ⊗ g j ⊗ gk ⊗ gl , (7.52)

known as the Riemann-Christoffel curvature tensor (or simply Riemann-Christoffel
tensor). The first contravariant component can be lowered to provide the fully covari-
ant form

R = Ri jkl gi ⊗ g j ⊗ gk ⊗ gl with Ri jkl = gip R
p. . .
. jkl . (7.53)

From (7.10), (7.13), (7.14) and (7.50), these fully covariant components may be
represented by

Ri jkl = ∂Γ jli

∂�k
− ∂Γ jki

∂�l
+ ΓilpΓ

p
jk − ΓikpΓ

p
jl , (7.54)

or

Ri jkl = 1

2

(
∂2gil

∂�k∂� j
+ ∂2g jk

∂�l∂�i
− ∂2g jl

∂�k∂�i
− ∂2gik

∂�l∂� j

)

+ gpq
(
ΓilpΓ jkq − ΓikpΓ jlq

)
. (7.55)

It is not then difficult to deduce that

Ri jkl = Rkli j and Ri jkl = − Ri jlk , (7.56)

since, for instance,

Rkli j = 1

2

(
∂2gkj

∂�i∂�l
+ ∂2gli

∂� j∂�k
− ∂2gl j

∂�i∂�k
− ∂2gki

∂� j∂�l

)

+ gpq
(
Γk jpΓliq − ΓkipΓl jq

)

= 1

2

(
∂2gkj

∂�l∂�i
+ ∂2gli

∂�k∂� j
− ∂2gl j

∂�k∂�i
− ∂2gki

∂�l∂� j

)

+ gqpΓ jkqΓilp − gpqΓikpΓ jlq

= 1

2

(
∂2g jk

∂�l∂�i
+ ∂2gil

∂�k∂� j
− ∂2g jl

∂�k∂�i
− ∂2gik

∂�l∂� j

)

+ gpq
(
Γ jkqΓilp − ΓikpΓ jlq

) = Ri jkl ,
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where (5.39), (5.47), (7.11)1 and (7.55) have been used (along with switching the
order of the partial derivatives and the names of the dummy indices). The antisym-
metric property (7.56)2 can also be shown in an analogous manner. This is left to be
undertaken by the ambitious reader. The relations (7.56)1−2 then imply that

Ri jkl = − R j ikl . (7.57)

This property also holds true for the mixed components given in (7.50). For instance,

Ri . . .
. jkl = − R. i . .

j . kl , (7.58)

owing to

from========⇒
(7.53) and (7.57)

gip R
p. . .
. jkl = −g jp R

p. . .
. i kl

from========⇒
(5.14) and (5.51)

R
q. . .

. jkl = −gqi g jp R
p. . .
. i kl

by=======⇒
index juggling

R
q. . .

. jkl = − R
. q . .

j . kl

by renaming==========⇒
the free index q to i

Ri . . .
. jkl = − R. i . .

j . kl .

The result (7.58) helps directly obtain (7.49b) from (7.49a).1

The expression (7.49a) measures noncommutativity of the covariant derivative
for an object with one index. Using (7.45) and (7.47), this can be generalized to a
quantity with two indices:

H̃ i j
∣∣
∣
lk

− H̃ i j
∣∣
∣
kl

= Ri . . .
.mkl H̃ mj + R

j . . .

.mkl H̃ im . (7.59)

1 The proof is not difficult. First, by using the relations ĥ i = gir ĥ r and ĥ j = g js ĥ s , taking
into account that the metric coefficients are covariantly constant according to (7.34), the equation
(7.49a) can be written as

gir
[
ĥ r
∣
∣∣
lk

− ĥ r
∣
∣∣
kl

]
= g js Ri . . .

. jkl ĥ s .

Multiplying both sides of this equation with gti and considering the identity gti gir = δrt then leads
to

δrt

[
ĥ r
∣
∣∣
lk

− ĥ r
∣
∣∣
kl

]
= gti g

js Ri . . .
. jkl ĥ s .

Now, by considering the replacement property of the mixed Kronecker delta and making use of
index juggling, one obtains

ĥ t

∣∣
∣
lk

− ĥ t

∣∣
∣
kl

= R. s . .
t . kl ĥ s .

By renaming t → j , s → i and subsequently using R. i . .
j . kl = − Ri . . .

. jkl , one can finally arrive at
the desired result

ĥ j

∣
∣∣
kl

− ĥ j

∣
∣∣
lk

= Ri . . .
. jkl ĥ i .

.
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Notice that the free indices i and j in (7.59) can be lowered since the contravariant
metric coefficients are covariantly constant. Moreover, the dummy index m on the
right hand side of this equation can also be juggled. With the aid of (7.58), one can
thus establish

H̃ i j

∣∣∣
kl

− H̃ i j

∣∣∣
lk

= Rm . . .
. ikl H̃ mj + Rm . . .

. jkl H̃ im . (7.60)

It is then a simple exercise to show that

H̃ i
. j

∣∣∣
lk

− H̃ i
. j

∣∣∣
kl

= Ri . . .
.mkl H̃ m

. j − Rm . . .
. jkl H̃

i
.m , (7.61a)

H̃ . j
i

∣∣∣
kl

− H̃ . j
i

∣∣∣
lk

= Rm . . .
. ikl H̃

. j
m − R

j . . .

.mkl H̃ .m
i . (7.61b)

The Riemann-Christoffel tensor satisfies the so-called first Bianchi identity

Ri . . .
. jkl + Ri . . .

. kl j + Ri . . .
. l jk = 0

Ri jkl + Rikl j + Ril jk = 0

}

, ←− the proof is given in
Exercise 7.5 (7.62)

which renders an algebraic identity. This fourth-order tensor also satisfies the dif-
ferential identity

Ri . . .
. jkl

∣∣
m

+ Ri . . .
. jlm

∣∣
k
+ Ri . . .

. jmk

∣∣
l
= 0

Ri jkl

∣∣
m + Ri jlm

∣∣
k + Ri jmk

∣∣
l = 0

}

, ←− the proof is given in
Exercise 7.5 (7.63)

known as the second Bianchi identity. In this expression, Ri . . .
. jkl

∣∣∣
m
and Ri jkl

∣∣
m

represent the components of partial differentiation of the fourth-order tensor R, i.e.

∂ R

∂�m
= Ri . . .

. jkl

∣∣
m
gi ⊗ g j ⊗ gk ⊗ gl = Ri jkl

∣∣
m gi ⊗ g j ⊗ gk ⊗ gl .

They are given by

Ri . . .
. jkl

∣∣
m

= ∂ Ri . . .
. jkl

∂�m
+ Γ i

mn R
n . . .
. jkl − Γ n

jm Ri . . .
. nkl − Γ n

km Ri . . .
. jnl − Γ n

lm Ri . . .
. jkn ,

(7.64a)

Ri jkl

∣∣
m = ∂ Ri jkl

∂�m
− Γ n

im Rnjkl − Γ n
jm Rinkl − Γ n

km Ri jnl − Γ n
lm Ri jkn . (7.64b)

Recall that the expressions (7.27a)2–(7.27d)2 were eventually a simple extension of
the results (7.25a)–(7.25b). With regard to this, the relations (7.64a)–(7.64b) should
now be considered as another example of extending the action of covariant differen-
tiation on objects with one index to quantities with four indices.
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Based on the above considerations, one can infer that the fourth-order covariant
Riemann-Christoffel tensor with 34 = 81 entries only has 32

(
32 − 1

)
/12 = 6 inde-

pendent components in a three-dimensional space; namely, R2323, R2313, R2312,

R1313, R1312, R1212 (see the Voigt notation (3.128)–(3.129)). In a similar manner,
in a two-dimensional space, this tensor has 24 = 16 components but the number of
distinct entries is 22

(
22 − 1

)
/12 = 1; namely, R1212. It is now easy to conclude that

R vanishes identically in a one-dimensional space. This is equivalent to saying that
the space curves embedded in a three-dimensional Euclidean space are intrinsically
flat. For more details see, for example, Sochi [4].

The Riemann-Christoffel curvature tensor is of fundamental importance in tensor
description of curved surfaces. This is due to the fact that all information regarding
the curvature of space is embedded in this tensor as implied by its name. It mea-
sures the noncommutativity of covariant differentiation. For a flat Euclidean space,
whose main characteristic is straightness, the order of covariant derivatives makes
no distinctions. This implies that the curvature tensor vanishes for flat spaces. It can
easily be shown that this tensor becomes null for the well-known coordinate systems
that are commonly used to coordinate Euclidean spaces; examples of which include
Cartesian, cylindrical and spherical coordinates. In other words, Euclidean spaces
allow constructing a rectangular coordinate grid. Indeed, all three-dimensional curvi-
linear coordinate systems that are related to a Cartesian coordinate frame of the same
dimension demonstrate flat spaces.

However, there are spaces which do not support a Cartesian grid. Such spaces
with nonvanishing Riemann-Christoffel curvature tensor are called Riemannian. A
well-known example in Riemannian geometry regards the surface of sphere which
basically represents a two-dimensional object embedded in a three-dimensional
Euclidean space. See Chap. 9 for an introduction to differential geometry of sur-
faces and curves.

7.2 Gradient of Scalar, Vector and Tensor Fields

In the literature, the gradient is often denoted by

grad (•) := ∂ (•)

∂x
representing grad (•) = ∂ (•)

∂xi
êi = ∂ (•)

∂�i
gi . (7.65)

In a similar manner, the differential vector (or Del operator or Nabla operator)
∇∇∇ of vector calculus is given by2

2 The scalars ∂/∂� j , j = 1, 2, 3, in (7.66) represent the covariant components of the vector ∂/∂x.
If they appear in a term of an equation, they should apply to all variables that are explicitly under the
action of these differential operators except their own companion basis vectors because, in general,
∂gi/∂� j �= 0, see (7.8).

As an example, consider the equation
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∇∇∇ := ∂

∂x
representing ∇∇∇ = ∂

∂xi
êi = ∂

∂�i
gi . (7.66)

Knowing that h̄ can be expressed in terms of either the Cartesian coordinates
(x1, x2, x3) or the curvilinear coordinates

(
�1,�2,�3

)
, one can write

dh̄ = ∂ h̄

∂xi
dxi , (7.67a)

dh̄ = ∂ h̄

∂�i
d�i . (7.67b)

From (5.49), (5.107), (5.115a), (7.2)1 and (7.65)–(7.67b), one can write

gradh̄ = ∂ h̄

∂x
= ∂ h̄

∂xi
êi , ←− see (6.14a) (7.68a)

gradh̄ = ∂ h̄

∂x
= gi j

∂ h̄

∂� j
gi = ∂ h̄

∂�i
gi . ←− see (6.14c) (7.68b)

Consider a scalar field which is basically a point function varying in a three-
dimensional space. The equation h̄ (x) = constant describes a surface called level
surface (or isosurface or equiscalar surface). This surface is constructed by points
of a constant value such as temperature. The gradient gradh̄ basically illustrates a
vector perpendicular to the isosurface (Chavez [5]). The unit vector at an arbitrary
point x in the direction where h̄ has the greatest rate of increase in that point then
renders n̂ = (

gradh̄
)
/
∣∣gradh̄

∣∣. For a geometrical interpretation, see Fig. 7.1.
Consistent with (7.68a)–(7.68b), the gradient of vector and tensor fields is gov-

erned by

gradĥ = ∂ĥ
∂x j

⊗ ê j , gradH̃ = ∂H̃
∂xk

⊗ êk , (7.69a)

gradĥ = ∂ĥ
∂� j

⊗ g j , gradH̃ = ∂H̃
∂�k

⊗ gk . (7.69b)

Consider the fact that the standard basis {̂ei } is fixed in space. The second- and
third-order tensors in (7.69a) can then be expressed as

α
(
ĥ · ∇∇∇

)
+ β

(
ĥ ⊗ ∇∇∇

)
: H̃ = γ ,

where ĥ is a vector field that is known in its contravariant components, H̃ ia a co-contravariant
second-order tensor field and α, β, γ are constants. Then, one may rewrite this equation as

∂ĥ
∂� j

·
(
αI + βH̃

)
g j = γ ,

where the partial derivatives ∂ĥ/∂� j have been represented in (7.24a) and (7.25a).
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Fig. 7.1 Gradient of a scalar field along with its unit vector at an arbitrary point of a level surface

gradĥ = ∂ ĥi
∂x j

êi ⊗ ê j

with
(
gradĥ

)

i j
= ∂ ĥi

∂x j

, gradH̃ = ∂ H̃i j

∂xk
êi ⊗ ê j ⊗ êk

with
(
gradH̃

)

i jk
= ∂ H̃i j

∂xk

. (7.70)

In a similar manner, with the aid of (7.24a)–(7.28), the gradients in (7.69b) can be
decomposed with respect to the curvilinear basis vectors as

gradĥ = ĥ i
∣∣∣
j
gi ⊗ g j = ĥ i

∣∣∣
j
gi ⊗ g j

= ĥ i
∣
∣∣
j
gi ⊗ g j = ĥ i

∣
∣∣
j
gi ⊗ g j , (7.71a)

gradH̃ = H̃ i j
∣∣∣
k
gi ⊗ g j ⊗ gk = H̃ i

. j

∣∣∣
k
gi ⊗ g j ⊗ gk

= H̃ . j
i

∣
∣∣
k
gi ⊗ g j ⊗ gk = H̃ i j

∣
∣∣
k
gi ⊗ g j ⊗ gk

= H̃ i j
∣∣
∣
k
gi ⊗ g j ⊗ gk = H̃ i

. j

∣∣
∣
k
gi ⊗ g j ⊗ gk

= H̃ . j
i

∣∣∣
k
gi ⊗ g j ⊗ gk = H̃ i j

∣∣∣
k
gi ⊗ g j ⊗ gk . (7.71b)

The results (7.71a) and (7.71b) can consistently be extended to tensors of higher
orders. This is left to be undertaken by the ambitious reader.

The gradient of a tensorial field variable may be denoted more explicitly by

gradh̄ := h̄∇∇∇
since, e.g., h̄∇∇∇ = h̄ ∂

∂xi
êi = ∂ h̄

∂xi
êi

, (7.72a)
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gradĥ := ĥ ⊗ ∇∇∇
since, e.g., ĥ ⊗ ∇∇∇ = ĥ ⊗ ∂

∂x j
ê j = ∂ĥ

∂x j
⊗ ê j

, (7.72b)

gradH̃ := H̃ ⊗ ∇∇∇
since, e.g., H̃ ⊗ ∇∇∇ = H̃ ⊗ ∂

∂�k g
k = ∂H̃

∂�k ⊗ gk

. (7.72c)

It is important to note that the gradient of a tensor field of order n delivers a tensor
field of order (n + 1).

As an example, consider the cylindrical coordinates (r, θ, z) with the basis vec-
tors (5.7a)–(5.7c), the metric coefficients (5.116) and the Christoffel symbols (7.19).
Referred to the orthonormal basis {̂er , êθ , êz}, a vector field ĥ admits the following
decomposition

ĥ = ĥ r êr + ĥ θ êθ + ĥ z êz . (7.73)

Then, using (7.71a)1, its gradient takes the following form (see the derivation in
Chap.2 of Lai et al. [6])

gradĥ = ∂ ĥ r

∂r
êr ⊗ êr +

[
∂ ĥ r

r∂θ
− ĥθ

r

]

êr ⊗ êθ + ∂ ĥ r

∂z
êr ⊗ êz ←− see Exercise 7.7

+ ∂ ĥθ

∂r
êθ ⊗ êr +

[
∂ ĥθ

r∂θ
+ ĥ r

r

]

êθ ⊗ êθ + ∂ ĥθ

∂z
êθ ⊗ êz

+ ∂ ĥ z

∂r
êz ⊗ êr + ∂ ĥ z

r∂θ
êz ⊗ êθ + ∂ ĥ z

∂z
êz ⊗ êz . (7.74)

As another example, consider the spherical coordinates (r, θ, φ) with the basis
vectors (5.11a)–(5.11c), the metric coefficients (5.119) and the Christoffel symbols
(7.20a)–(7.20c). Referred to the orthonormal basis

{
êr , êθ , êφ

}
, a vector field ĥ can

be written as
ĥ = ĥ r êr + ĥ θ êθ + ĥφ êφ . (7.75)

Then, using (7.71a)1, its gradient represents

gradĥ = ∂ ĥ r

∂r
êr ⊗ êr +

[
∂ ĥ r

r∂θ
− ĥ θ

r

]

êr ⊗ êθ ←− see Exercise 7.7

+
[

∂ ĥ r

r sin θ∂φ
− ĥφ

r

]

êr ⊗ êφ + ∂ ĥ θ

∂r
êθ ⊗ êr +

[
∂ ĥ θ

r∂θ
+ ĥ r

r

]

êθ ⊗ êθ

+
[

∂ ĥ θ

r sin θ∂φ
− cot θ

ĥφ

r

]

êθ ⊗ êφ + ∂ ĥφ

∂r
êφ ⊗ êr + ∂ ĥφ

r∂θ
êφ ⊗ êθ

+
[

∂ ĥφ

r sin θ∂φ
+ cot θ

ĥ θ

r
+ ĥ r

r

]

êφ ⊗ êφ . (7.76)
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7.3 Divergence of Vector and Tensor Fields

The divergence of a vector field ĥ (x) is a scalar field defined by

divĥ = gradĥ : I = tr
(
gradĥ

)
. (7.77)

By use of (2.89a) and (7.70)2, this scalar field can be expressed in terms of the
Cartesian components as

divĥ = ∂ ĥi
∂xi

. (7.78)

And in terms of the curvilinear components, by using (5.88)1−4 and (7.71a)1−4, it
renders

divĥ = ĥ i
∣∣∣
i
= gi j ĥ i

∣∣∣
j
= gi j ĥ i

∣∣∣
j = ĥ i

∣∣∣
i

. (7.79)

Alternatively to (7.77), the divergence of a vector field may be introduced as

divĥ = ∂ĥ
∂�i

· gi , (7.80)

since

divĥ from====
(7.77)

gradĥ : I

from==========
(5.78) and (7.69b)

(
∂ĥ
∂� j

⊗ g j

)

: (gi ⊗ gi
)

from====
(2.73)

(
∂ĥ
∂� j

· gi
)
(
g j · gi

)

from====
(5.27)

(
∂ĥ
∂� j

· gi
)(

δ
j
i

)

from====
(5.14)

∂ĥ
∂� j

· g j .

The divergence of a vector field can also be written as

divĥ = 1

J

∂

∂�i

[
J ĥ i

]
. (7.81)

This expression is known as the Voss-Weyl formula. Note that
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1

J

∂

∂�i

[
J ĥ i

]
by using the product============
rule of differentiation

1

J

∂ J

∂�i
ĥ i + ∂ ĥ i

∂�i

by using======
(7.17)

Γ m
mi ĥ

i + ∂ ĥ i

∂�i

by using (7.25a) and==================
renaming the the dummy indices

ĥ i
∣∣∣
i

by using======
(7.79)

divĥ .

The vector field ĥ is called solenoidal (or divergence-free) when divĥ = 0. Using
the same recipes for introducing the divergence of a vector field, the divergence of a
tensor field will be characterized in the following.

The divergence of a tensor field H̃ (x) is a vector field defined by

divH̃ = gradH̃ : I . (7.82)

The third-order tensor gradH̃ and the second-order tensor I are already given in
(7.70)3−4 and (2.23), respectively. Substituting these expressions into (3.16b)4 leads
to the following decomposition of the first-order tensor divH̃ with respect to the
standard basis

divH̃ = ∂ H̃i j

∂x j
êi with

(
divH̃

)

i
= ∂ H̃i j

∂x j
. (7.83)

Guided by the derivation demonstrated in (3.16b) and by use of (5.14), (5.27), (5.78)
and (7.71b), the vector field (7.82) can be expressed with respect to the curvilinear
basis vectors as

divH̃ = H̃ i j
∣∣∣
j
gi = g jk H̃ i

. j

∣∣∣
k
gi

= H̃ . j
i

∣∣
∣
j
gi = g jk H̃ i j

∣∣
∣
k
gi

= g jk H̃ i j
∣∣∣
k
gi = H̃ i

. j

∣∣∣
j
gi

= g jk H̃ . j
i

∣∣
∣
k
gi = H̃ i j

∣∣
∣
j
gi . (7.84)

The divergence of a tensor field satisfies

(
divH̃

)
· w = div

(
H̃Tw

)
for any constant vector w ∈ E o3

r , (7.85)

since
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(
divH̃

)
· w from==========

(1.38) and (7.83)

∂ H̃i j

∂x j
wi

from====
(2.49)

∂ H̃T
j i

∂x j
wi

from====
(2.22)

∂

∂x j

(
H̃Tw

)

j

from====
(7.78)

div
(
H̃Tw

)
.

The expression (7.85) can be regarded as another definition for the divergence of a
tensor field. Another form of this vector field is

divH̃ = ∂H̃
∂�k

gk , (7.86)

owing to

divH̃ from====
(7.82)

(
gradH̃

)
: (I)

from==========
(5.78) and (7.69b)

(
∂H̃
∂�k

⊗ gk
)

: (gi ⊗ gi
)

in view of=======
(3.16b)

(
∂H̃
∂�k

gi
)
(
gk · gi

)

from====
(5.27)

(
∂H̃
∂�k

gi
)
(
δki
)

from====
(5.14)

∂H̃
∂�k

gk .

An extension of (7.81) is

divH̃ =
(
1

J

∂

∂� j

[
J H̃ i j

]
+ Γ i

jk H̃
k j

)
gi . (7.87)

Using theNabla operator of vector calculus, the divergence of a tensorial field variable
may be written by

divĥ := ĥ · ∇∇∇
since, e.g., ĥ · ∇∇∇ = ĥ · ∂

∂x j
ê j = ∂ĥ

∂x j
· ê j

, (7.88a)

divH̃ := H̃∇∇∇
since, e.g., H̃∇∇∇ = H̃ ∂

∂�k g
k = ∂H̃

∂�k g
k

, (7.88b)
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in alignment with (7.72a)–(7.72c). At the end, it is important to note that the diver-
gence of a tensor field of order n yields a tensor field of order (n − 1). And this
differential operator is defined for tensorial field variables of at least order 1.

7.4 Curl of Vector and Tensor Fields

The curl (or rotation) of a vector field ĥ is again a vector field defined by

curlĥ := ∇∇∇ × ĥ = −ĥ × ∇∇∇ . (7.89)

For a Cartesian vector field, this definition leads to

curlĥ from==========
(7.66) and (7.89)

−ĥ × ∂

∂xk
êk

from===============
(1.34), (1.49a) and (1.49b)

−∂ ĥ j

∂xk
ê j × êk

from====
(1.64)

−∂ ĥ j

∂xk

(
ε jki êi

)

from=============
(1.4f), (1.4g) and (1.54)

−εi jk
∂ ĥ j

∂xk
êi , (7.90)

with
(
curlĥ

)

i
= −εi jk

∂ ĥ j

∂xk
. (7.91)

In matrix form,

[
curlĥ

]
=
⎡

⎣
∂ ĥ3/∂x2 − ∂ ĥ2/∂x3
∂ ĥ1/∂x3 − ∂ ĥ3/∂x1
∂ ĥ2/∂x1 − ∂ ĥ1/∂x2

⎤

⎦ . ←− see (2.66) (7.92)

The curl of a vector field can also be governed by

curlĥ = −E : gradĥ . (7.93)

Note that by means of (3.16b)4, (3.17), (7.70)2 and (7.93), one can again arrive at
(7.90)4. The above relation basically shows that the curl of a vector field is twice the
axial vector of (the skew-symmetric portion of) its gradient.
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The curl of a vector field is an object satisfying

(
curlĥ

)
· w = div

(
ĥ × w

)
for any constant vector w ∈ E o3

r , (7.94)

since

(
curlĥ

)
· w from==========

(1.38) and (7.90)
−εi jk

∂ ĥ j

∂xk
wi

from====
(1.67)

−
∂
(
w × ĥ

)

k

∂xk

from=====
(1.49a)

∂
(
ĥ × w

)

k

∂xk
from====
(7.78)

div
(
ĥ × w

)
.

The curvilinear form of (7.89)2 is

curlĥ = − ∂ĥ
∂�i

× gi , (7.95)

because

curlĥ from==========
(7.69b) and (7.93)

−E : ∂ĥ
∂�i

⊗ gi from====
(3.22)

− ∂ĥ
∂�i

× gi .

Guided by (3.16b) and using (5.14), (5.27)1−2, (5.33)1, (5.35)1, (5.38)1, (5.46)1,
(5.98)1−2, (7.71a)1−4 and (7.93), the curl of a vector field admits the following forms

curlĥ = −J −1εi jk g jl ĥ l
∣∣∣
k
gi

︸ ︷︷ ︸
= −g jl ĥ l

∣
∣
∣
k
g j × gk

= −J −1εi jk ĥ j

∣∣∣
k
gi

︸ ︷︷ ︸
= − ĥ j

∣
∣
∣
k
g j × gk

= −J −1εi jk g jl gkm ĥ l
∣∣∣
m
gi

︸ ︷︷ ︸
= −g jl gkm ĥl

∣∣
∣
m
g j × gk

= −J −1εi jk gkm ĥ j

∣∣∣
m
gi

︸ ︷︷ ︸
= −gkm ĥ j

∣∣
∣
m
g j × gk

= −Jεi jk g
km ĥ j

∣∣∣
m
gi

︸ ︷︷ ︸
= −gkm ĥ j

∣
∣∣
m
g j × gk

= −Jεi jk g
jl gkm ĥ l

∣∣∣
m
gi

︸ ︷︷ ︸
= −g jl gkm ĥl

∣
∣∣
m
g j × gk

= −Jεi jk ĥ j
∣∣∣
k
gi

︸ ︷︷ ︸
= − ĥ j

∣
∣∣
k
g j × gk

= −Jεi jk g
jl ĥ l

∣∣∣
k
gi

︸ ︷︷ ︸
= −g jl ĥ l

∣
∣∣
k
g j × gk

. (7.96)
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The vector field ĥ is called irrotational when curlĥ = 0. In what follows, the curl of
a tensor field will be characterized.

The curl of a tensor field H̃ is again a tensor field defined by

curlH̃ := ∇∇∇ × H̃T . (7.97)

This definition relies on the following rule

u × (v ⊗ w) := (u × v) ⊗ w , (7.98)

possessing linearity in each argument.When the curl operator operates on aCartesian
tensor, the resulting tensor can be expressed as

curlH̃ = ∂

∂xl
êl × H̃T = êl × ∂H̃T

∂xl

= ∂ H̃ jk

∂xl
êl × (

êk ⊗ ê j
) = ∂ H̃ jk

∂xl
εlki êi ⊗ ê j

= −εikl
∂ H̃ jk

∂xl
êi ⊗ ê j , (7.99)

with
(
curlH̃

)

i j
= −εikl

∂ H̃ jk

∂xl
. (7.100)

The curl of a tensor field satisfies

(
curlH̃

)
w = curl

(
H̃Tw

)
for any constant vector w ∈ E o3

r , (7.101)

because

(
curlH̃

)

i j
(w) j

from=====
(7.100)

−εikl
∂ H̃ jk

∂xl
w j

from==========
(2.22) and (2.49)

−εikl

∂
(
H̃Tw

)

k

∂xl
from====
(7.91)

(
curl

(
H̃Tw

) )

i
.

Notice that the expressions (7.101) and (7.85) have the same structure.
By means of (7.66)3, the curl of a tensor field, according to (7.97), can be repre-

sented by
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curlH̃ = gk × ∂H̃T

∂�k
. (7.102)

It is then a simple exercise to decompose the curl of a tensor field with respect to the
curvilinear basis tensors as

curlH̃ = J −1εkli H̃ j
.l

∣∣∣
k
gi ⊗ g j

note that ∂H̃T

∂�k = H̃ j
.l

∣∣
∣
k
gl ⊗ g j

= J −1εkli H̃ jl

∣∣∣
k
gi ⊗ g j

note that ∂H̃T

∂�k = H̃ jl

∣∣
∣
k
gl ⊗ g j

= Jεkli H̃ jl
∣∣∣
k
gi ⊗ g j

note that ∂H̃T

∂�k = H̃ jl
∣
∣
∣
k
gl ⊗ g j

= Jεkli H̃ .l
j

∣∣∣
k
gi ⊗ g j

note that ∂H̃T

∂�k = H̃ .l
j

∣
∣
∣
k
gl ⊗ g j

. (7.103a)

It is worthwhile to point out that the curl of a tensor field gives a tensor field with
the same order. And the curl of a scalar field is not defined.

7.5 Laplacian and Hessian of Scalar, Vector and Tensor
Fields

The Laplace operator (or Laplacian), denoted by ∇2 or �, is defined as the dot
product of the differential vector operator∇∇∇ with itself. This second-order differential
scalar operator, which does not change the order of a tensorial field variable, in
Cartesian coordinates renders (Hildebrand [7])

∇2 by======
definition

∇∇∇ · ∇∇∇
from====
(7.66)

∂

∂xi
êi · ∂

∂x j
ê j

from========
(1.9a)–(1.9c)

∂2

∂xi∂x j
êi · ê j

from====
(1.35)

∂2

∂xi∂x j
δi j

from====
(1.36)

∂2

∂xi∂xi
. (7.104)

Accordingly, by operating the Laplace operator upon a Cartesian tensor field, one
will have

∇2h̄ = ∂2h̄

∂xi∂xi
, ∇2ĥ = ∂2ĥ j

∂xi∂xi
ê j , ∇2H̃ = ∂2 H̃ jk

∂xi∂xi
ê j ⊗ êk . (7.105)
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The vector field (7.105)2 and the tensor field (7.105)3 are objects satisfying

(
∇2ĥ

)
· w = ∇2

(
ĥ · w

)
for any constant vector w ∈ E o3

r , (7.106a)

(
∇2H̃

)
· w = ∇2

(
H̃w

)
for any constant vector w ∈ E o3

r . (7.106b)

The conditions (7.106a) and (7.106b) may be used to define the tensor fields ∇2ĥ
and ∇2H̃, respectively.

The Laplace operator in curvilinear coordinates presents

∇2 by using======
(7.66)

∂

∂�i
gi · ∂

∂� j
g j

by using (1.9a)–(1.9c)=============
and the product rule

∂2

∂�i∂� j
gi · g j + ∂

∂� j
gi · ∂g j

∂�i

by using=========
(5.46) and (7.9)

gi j
∂2

∂�i∂� j
− Γ

j
ik g

ik ∂

∂� j

by switching the names of===================
the indices j and k in the last term

gi j
[

∂2

∂�i∂� j
− Γ k

i j

∂

∂�k

]
. (7.107)

The Laplacian of a tensor field is basically the divergence of its gradient. This can
be demonstrated as follows:

∇2 (•) = div
[
grad (•)

]

= div

[
∂ (•)

∂� j
⊗ g j

]
←− see, for instance, (7.69b)1 and (7.86)

= ∂

∂�i

[
∂ (•)

∂� j
⊗ g j

]
gi

= gi j
[

∂2 (•)

∂�i∂� j
− Γ k

i j

∂ (•)

∂�k

]
. (7.108)

To take the Laplacian of a vector or tensor field in curvilinear coordinates, the
corresponding first and second partial derivatives with respect to the coordinates are
required. They are already given in Sects. 7.1.2 and 7.1.5. Of interest here is to only
represent a scalar and vector field:

∇2h̄ = gi j
[

∂2h̄

∂�i∂� j
− Γ k

i j

∂ h̄

∂�k

]
, (7.109a)
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∇2ĥ = gi j
[

∂2 ĥm

∂�i∂� j
+
(

∂Γ m
jl

∂�i
+ Γ m

ik Γ k
jl

)
ĥ l

+2Γ m
jl

∂ ĥ l

∂�i
− Γ k

i j

∂ ĥm

∂�k
− Γ k

i jΓ
m
kl ĥ

l

]

gm ,

= gi j
[

∂2 ĥm

∂�i∂� j
+
(

Γ k
imΓ l

jk − ∂Γ l
m j

∂�i

)

ĥ l

−2Γ l
jm

∂ ĥ l

∂�i
− Γ k

i j

∂ ĥm

∂�k
+ Γ k

i jΓ
l
km ĥ l

]

gm . (7.109b)

Similarly to (7.109b), one can express ∇2H̃ with respect to the curvilinear basis
vectors in a lengthy but straightforward manner. This remains to be done by the
interested reader.

Consider the Laplacian of a scalar field according to (7.109a). By means of (7.16)
and (7.17), it can also be written as

∇2h̄ = 1

J

∂

∂�i

[
Jgi j

∂ h̄

∂� j

]
. ←− see (7.81) (7.110)

The Laplace operator appears in many branches of physics and engineering. Exam-
ples of which include the heat conduction equations of solids, convection-diffusion
problems and equilibriumequations governing the fluid flow in porousmedia. Specif-
ically, the so-called Laplace equation∇2Φ = 0 and, its inhomogeneous form,Pois-
son equation∇2Φ = Ψ are frequently seen in the literature. If a scalar (vector) field
h̄ (ĥ) satisfies the Laplace equation ∇2h̄ = 0 (∇2ĥ = 0), then it is called harmonic.

The Hessian operator (or simply Hessian) is defined as the tensor product of the
Nabla operator ∇∇∇ with itself. This second-order differential tensor operator, which
increases the order of a tensor field by 2, in Cartesian coordinates represents

∇∇∇ ⊗ ∇∇∇ = ∂

∂x
⊗ ∂

∂x
= ∂

∂xk
êk ⊗ ∂

∂xl
êl = ∂2

∂xk∂xl
êk ⊗ êl . (7.111)

Accordingly, the Hessian of Cartesian tensor fields will render

h̄∇∇∇ ⊗ ∇∇∇ = ∂2h̄

∂xk∂xl
êk ⊗ êl , (7.112a)

ĥ ⊗ ∇∇∇ ⊗ ∇∇∇ = ∂2ĥ j

∂xk∂xl
ê j ⊗ êk ⊗ êl , (7.112b)

H̃ ⊗ ∇∇∇ ⊗ ∇∇∇ = ∂2 H̃i j

∂xk∂xl
êi ⊗ ê j ⊗ êk ⊗ êl . (7.112c)
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By comparing (7.105)1−3 with (7.112a)–(7.112c), one can simply write

(
h̄∇∇∇ ⊗ ∇∇∇) : I = ∇2h̄ ,

(
ĥ ⊗ ∇∇∇ ⊗ ∇∇∇

)
: I = ∇2ĥ ,

(
H̃ ⊗ ∇∇∇ ⊗ ∇∇∇

)
: I = ∇2H̃ .

(7.113)

The result (7.113)1 shows that the Laplacian of a scalar field is basically the trace of
its Hessian.

The curvilinear form of (7.111)3 is given by

∇∇∇ ⊗ ∇∇∇ = ∂

∂�k
gk ⊗ ∂

∂�l
gl

= ∂2

∂�k∂�l
gk ⊗ gl + ∂

∂�l
gk ⊗ ∂gl

∂�k

= ∂2

∂�k∂�l
gk ⊗ gl − Γ l

km

∂

∂�l
gk ⊗ gm

= ∂2

∂�k∂�l
gk ⊗ gl − Γ m

kl

∂

∂�m
gk ⊗ gl . (7.114)

Consistent with (7.109a)–(7.109b), one then arrives at

h̄∇∇∇ ⊗ ∇∇∇ = ∂2h̄

∂�k∂�l
gk ⊗ gl − Γ m

kl

∂ h̄

∂�m
gk ⊗ gl , (7.115a)

ĥ ⊗ ∇∇∇ ⊗ ∇∇∇ =
[

∂2 ĥ j

∂�k∂�l
+
(

∂Γ
j
ln

∂�k
+ Γ

j
kmΓ m

ln

)

ĥ n

+Γ
j
ln

∂ ĥ n

∂�k
+ Γ

j
kn

∂ ĥ n

∂�l
− Γ m

kl

∂ ĥ j

∂�m
− Γ m

kl Γ
j
mn ĥ

n

]

g j ⊗ gk ⊗ gl

=
[

∂2 ĥ j

∂�k∂�l
+
(

Γ m
kj Γ

n
lm − ∂Γ n

jl

∂�k

)
ĥ n

−Γ n
l j

∂ ĥ n

∂�k
− Γ n

k j

∂ ĥ n

∂�l
− Γ m

kl

∂ ĥ j

∂�m
+ Γ m

kl Γ
n
mj ĥ n

]

g j ⊗ gk ⊗ gl .

(7.115b)

It should not be difficult now to decompose the Hessian of a tensor field with respect
to the curvilinear basis vectors. This is left to be undertaken by the ambitious reader.

Within a solution technique such as Newton’s method, a tensor field is linearly
approximated. This gives a basic information regarding the behavior of that tensorial
field variable. However, the approximation using second-order derivatives provides
more detailed description of a field variable. With regard to this, an application of
the Hessian operator will be in the second-order approximations
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h̄ (x + dx) ≈ h̄ (x) + ∂ h̄

∂x
· dx + 1

2

∂2h̄

∂x∂x
: dx ⊗ dx

or h̄ (x) + (
h̄∇∇∇) · dx + 1

2
(
h̄∇∇∇ ⊗ ∇∇∇) : (dx ⊗ dx) ≈ h̄ (x + dx)

, (7.116a)

ĥ (x + dx) ≈ ĥ (x) + ∂ĥ
∂x

dx + 1

2

∂2ĥ
∂x∂x

: dx ⊗ dx

or ĥ (x) +
(
ĥ ⊗ ∇∇∇

)
dx + 1

2

(
ĥ ⊗ ∇∇∇ ⊗ ∇∇∇

)
: (dx ⊗ dx) ≈ ĥ (x + dx)

, (7.116b)

H̃ (x + dx) ≈ H̃ (x) + ∂H̃
∂x

dx + 1

2

∂2H̃
∂x∂x

: dx ⊗ dx

or H̃ (x) +
(
H̃ ⊗ ∇∇∇

)
dx + 1

2

(
H̃ ⊗ ∇∇∇ ⊗ ∇∇∇

)
: (dx ⊗ dx) ≈ H̃ (x + dx)

. (7.116c)

7.6 Exercises

Exercise 7.1

Suppose one is given a smooth scalar field h̄ = x1x2x3 − x1. Find a unit vector n̂
perpendicular to the isosurface h̄ = constant passing through (2, 0, 3).

Solution. First, using (7.68a)2, the gradient of h̄ = x1x2x3 − x1 at x = (2, 0, 3) ren-
ders

gradh̄ = ∂ h̄

∂xi
êi = (x2x3 − 1) ê1 + (x1x3) ê2 + (x1x2) ê3 = − ê1 + 6 ê2 .

The fact that the gradient vector is normal to the level surface helps then obtain

n̂ = gradh̄
∣∣gradh̄

∣∣ = − ê1 + 6 ê2√
37

,

where (1.39)3 has been used.

Exercise 7.2

Consider a force F with the magnitude F acting in the direction radially away from

the origin at p =
(
2a, 3a, 2

√
3c
)
on a hyperboloid of one sheet defined by h̄ =

x21/a
2 + x22/a

2 − x23/c
2 = 1. Compute the Cartesian components of F lying in the

tangential plane to the surface at
(
2a, 3a, 2

√
3c
)
.
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Solution. First, the vector F in the desired direction can be expressed as

F = F n̂F =
(2Fa) ê1 + (3Fa) ê2 +

(
2
√
3Fc

)
ê3√

13a2 + 12c2
.

Using (7.68a)2, the gradient of h̄ = x21/a
2 + x22/a

2 − x23/c
2 at the point with the

coordinates
(
2a, 3a, 2

√
3c
)
then renders

∂ h̄

∂x

∣
∣∣∣
(2a,3a,2

√
3c)

= ∂ h̄

∂xi

∣
∣∣∣
(2a,3a,2

√
3c)

êi = 4

a
ê1 + 6

a
ê2 − 4

√
3

c
ê3 ,

Subsequently, the unit normal to the surface becomes,

n̂ =
√
a2c2√

13c2 + 12a2

[
2

a
ê1 + 3

a
ê2 − 2

√
3

c
ê3

]

.

Guided by (2.140b), the force located in the tangent plane is basically the vector
rejection of F from n̂, that is,

Ft = F − Fn = F − ( n̂ · F) n̂ .

At the end, the Cartesian components of Ft are given by

(Ft )1 = 2Fa√
13a2 + 12c2

[
1 − c2

13c2 + 12a2

]
,

(Ft )2 = 3Fa√
13a2 + 12c2

[
1 − c2

13c2 + 12a2

]
,

(Ft )3 = 2
√
3Fc√

13a2 + 12c2

[
1 − a2

13c2 + 12a2

]
.

Exercise 7.3

Suppose one is given a scalar field h̄ (x1, x2, x3) = ex1 cos (3x1 − 2x2 + x3). Then,
calculate the directional derivative of h̄ at a point P corresponding to x = (1, 1, 1)
in the direction of the line with the parametric equations x1 = 1 + 3t , x2 = 2 −
2t , x3 = 3 − t ; t ∈ R, for increasing values of x1.

Solution. First, the unit vector in the desired direction renders

n̂ = 3 ê1 − 2 ê2 − ê3√
14

.
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Then, guided by (7.68a)2, the gradient of h̄ = ex1 cos (3x1 − 2x2 + x3) at P with
(1, 1, 1) becomes

∂ h̄

∂x

∣∣∣
∣
(1,1,1)

= ∂ h̄

∂xi

∣∣∣
∣
(1,1,1)

êi = e [cos (2) − 3 sin (2)] ê1 + 2e sin (2) ê2 − e sin (2) ê3 .

Finally, using (1.38)7 and (7.4a)3,

Dn̂h̄ (x)
∣
∣
(1,1,1) = ∂ h̄

∂x

∣∣
∣∣
(1,1,1)

· n̂ = 3e cos (2) − 12e sin (2)√
14

.

Exercise 7.4

Consider two covariant vector fieldsu = uigi , v = v jg j and a contravariant tensor
field A = Ai jgi ⊗ g j . Let Φ be a scalar field that is constructed from these tenso-
rial field variables according to Φ = u · Av = ui Ai j v j . Show that the covariant
derivative of this scalar field is equal to its partial derivative, i.e.

Φ|k = ∂Φ

∂�k
. (7.117)

Solution. By means of (7.7)2, (7.25b), (7.27a)2 and in light of the product rule
(7.48b), one will have

Φ|k = (
ui A

i j v j
)∣∣

k

= u i

∣∣
k Ai j v j + ui Ai j

∣∣
k v j + u i A

i j v j

∣∣
k

= ∂ ui

∂�k
Ai j v j�������−Γ m

ik um Ai j v j

+ u i
∂ Ai j

∂�k
v j + u iΓ

i
km Amj v j︸ ︷︷ ︸

= umΓ m
ki Ai j v j = �����

umΓ m
ik Ai j v j

+ u iΓ
j
km Aim v j︸ ︷︷ ︸

= uiΓ
m
kj Ai j vm = �����uiΓ

m
jk Ai j vm

+ u i A
i j ∂ v j

∂�k

�������− ui A
i jΓ m

jk vm

= ∂
(
ui Ai j v j

)

∂�k

= ∂Φ

∂�k
.

It should be emphasized that this identity generally holds true irrespective of the
given types of components. The interested reader may thus want to verify this result
for other forms of Φ such as ui Ai j v j or ui gi j A jkgkl v l .
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Exercise 7.5

Verify the Bianchi identities (7.62) and (7.63).

Solution. The algebraic Bianchi identity (7.62)1 can be shown by means of (7.7)2
and (7.50) as follows:

Ri . . .
. jkl + Ri . . .

. kl j + Ri . . .
. l jk = ∂Γ i

jl

∂�k − ∂Γ i
jk

∂�l + Γ i
kmΓ m

l j − Γ i
lmΓ m

kj

+ ∂Γ i
k j

∂�l − ∂Γ i
kl

∂� j + Γ i
lmΓ m

jk − Γ i
jmΓ m

lk

+ ∂Γ i
lk

∂� j − ∂Γ i
l j

∂�k + Γ i
jmΓ m

kl − Γ i
kmΓ m

jl

= 0 .

The fully covariant form (7.62)2 can then be easily obtained from the mixed repre-
sentation (7.62)1 by index juggling.

The differential Bianchi identity requires more consideration. It can be shown in
different ways. The proof here mainly relies on taking the covariant derivative of
(7.49b) three times upon cyclic permutation of the indices k, l and m having in mind
that the covariant derivative satisfies the product rule of differentiation.

To begin with, consider

ĥ j

∣∣∣
klm

− ĥ j

∣∣∣
lkm

= Ri . . .
. jkl

∣∣
m
ĥ i + Ri . . .

. jkl ĥ i

∣∣∣
m

, (7.118a)

ĥ j

∣
∣∣
lmk

− ĥ j

∣
∣∣
mlk

= Ri . . .
. jlm

∣∣
k
ĥ i + Ri . . .

. jlm ĥ i

∣
∣∣
k

, (7.118b)

ĥ j

∣∣∣
mkl

− ĥ j

∣∣∣
kml

= Ri . . .
. jmk

∣
∣
l
ĥ i + Ri . . .

. jmk ĥ i

∣∣∣
l

. (7.118c)

Consider now the fact that ĥ i

∣∣∣
j
is a second-order tensor. Consequently, using (7.60),

the above relations represent

ĥ j

∣∣∣
klm

− ĥ j

∣∣∣
kml

= Ri . . .
. jlm ĥ i

∣∣∣
k

+ Ri . . .
. klm ĥ j

∣
∣∣
i

, (7.119a)

ĥ j

∣∣
∣
lmk

− ĥ j

∣∣
∣
lkm

= Ri . . .
. jmk ĥ i

∣∣
∣
l

+ Ri . . .
. lmk ĥ j

∣∣∣
i

, (7.119b)

ĥ j

∣∣∣
mkl

− ĥ j

∣∣∣
mlk

= Ri . . .
. jkl ĥ i

∣∣∣
m

+ Ri . . .
.mkl ĥ j

∣∣
∣
i

. (7.119c)
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From (7.118a)–(7.119c), it follows that

Ri
(klm) ĥ j

∣∣
∣
i
= Ri

j(kl |m) ĥ i , (7.120)

where

Ri
(klm) := Ri . . .

. klm + Ri . . .
. lmk + Ri . . .

.mkl , (7.121a)

Ri
j(kl |m) := Ri . . .

. jkl

∣∣
m

+ Ri . . .
. jlm

∣∣
k
+ Ri . . .

. jmk

∣∣
l

. (7.121b)

Notice that the algebraic Bianchi identity now takes the form

Ri
(klm) = 0 .

The fact that ĥ i is arbitrary in (7.120) then implies the differential Bianchi identity

Ri
j(kl |m) = 0 .

This identity can also be obtained by use of (7.50) and (7.64a) in a lengthy but
straightforward manner.

The desired relation (7.63)2 finally follows from (7.63)1 by index juggling.

Exercise 7.6

Consider the Cartesian vector field

ĥ = ĥ (x) = (x1x2x3) ê1 + (x1x2) ê2 + (x1) ê3 .

Determine gradĥ, divĥ and curlĥ.
Moreover, consider the (linear) transformation equations

x1 = �1�3 , x2 = �2�3 , x3 = �3 − 1 .

First, compute the curvilinear bases {gi } and
{
gi
}
. Then, express ĥ with respect to

the covariant basis {gi }. Finally, calculate the gradient, divergence and curl of the
resulting contravariant vector field in matrix form.

Solution. The desired tensor, scalar and vector fields are first computed with respect
to the standard basis.

Using (7.70)2,

[
gradĥ

]
=
[

∂ ĥi
∂x j

]

=
⎡

⎣
x2x3 x1x3 x1x2
x2 x1 0
1 0 0

⎤

⎦ .
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From (7.78),

divĥ = ∂ ĥi
∂xi

= ∂ ĥ1
∂x1

+ ∂ ĥ2
∂x2

+ ∂ ĥ3
∂x3

= x2x3 + x1 .

By means of (7.92),

[
curlĥ

]
=
⎡

⎣
∂ ĥ3/∂x2 − ∂ ĥ2/∂x3
∂ ĥ1/∂x3 − ∂ ĥ3/∂x1
∂ ĥ2/∂x1 − ∂ ĥ1/∂x2

⎤

⎦ =
⎡

⎣
0

x1x2 − 1
x2 − x1x3

⎤

⎦ .

In the following, these tensorial field variables are represented with respect to the
curvilinear basis vectors.

To begin with, one needs to have the covariant basis vectors. The tangent vectors
gi = ∂x/∂�i , according to (5.3)1, for the problem at hand become

g1 = �3 ê1 , g2 = �3 ê2 , g3 = �1 ê1 + �2 ê2 + ê3
or �3 ê1 = g1 , �3 ê2 = g2 , �3 ê3 = −�1g1 − �2g2 + �3g3

.

From (5.30)2 and (5.38)3, one then obtains

J = det
[
g1 g2 g3

] = (
�3
)2

,

and

[
gi j
] =

⎡

⎣
g1 · g1 g1 · g2 g1 · g3
g2 · g1 g2 · g2 g2 · g3
g3 · g1 g3 · g2 g3 · g3

⎤

⎦ =
⎡

⎢
⎣

(
�3
)2

0 �1�3

0
(
�3
)2

�2�3

�1�3 �2�3
(
�1
)2 + (

�2
)2 + 1

⎤

⎥
⎦ .

One should also have

∂g1
∂�1

= 0 ,
∂g1
∂�2

= 0 ,
∂g1
∂�3

= ê1 ,

∂g2
∂�1

= 0 ,
∂g2
∂�2

= 0 ,
∂g2
∂�3

= ê2 ,

∂g3
∂�1

= ê1 ,
∂g3
∂�2

= ê2 ,
∂g3
∂�3

= 0 .

It is easy to obtain the inverse of the given transformation equations:

�1 = x1
x3 + 1

, �2 = x2
x3 + 1

, �3 = x3 + 1 .
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Accordingly, the dual vectors gi = ∂�i/∂x in (5.28) take the following form

g1 = 1

�3
ê1 − �1

�3
ê3 , g2 = 1

�3
ê2 − �2

�3
ê3 , g3 = ê3 .

Having obtained the partial derivatives of tangent vectors together with the dual
vectors, the nonzero entries of the Christoffel symbolsΓ k

i j = (
∂gi/∂� j

) · gk in (7.7)1
render

Γ 1
13 = Γ 1

31 = 1

�3
, Γ 1

23 = Γ 1
32 = 1

�3
.

Using the functional relationships between (x1, x2, x3) and
(
�1,�2,�3

)
together

with {̂ei } and {gi }, the given Cartesian vector field can now be expressed as

ĥ =
[
�1�2�3

(
�3 − 1

)− (
�1
)2]

g1 + [
�1�2�3 − �1�2

]
g2 + [

�1�3
]
g3 .

Considering (7.71a)1, the mixed contra-covariant components

[
ĥ i
∣∣∣
j

]
of the tensor

field gradĥ with respect to the co-contravariant basis
{
gi ⊗ g j

}
are given by

ĥ 1
∣∣∣
1

= �2�3
(
�3 − 1

)− �1 ,

ĥ 1
∣∣
∣
2

= �1�3
(
�3 − 1

)
,

ĥ 1
∣∣
∣
3

= −2�1�2 + 3�1�2�3 − (
�1
)2 (

�3
)−1

,

ĥ 2
∣∣
∣
1

= �2�3 − �2 ,

ĥ 2
∣
∣∣
2

= �1�3 ,

ĥ 2
∣
∣∣
3

= 2�1�2 − �1�2
(
�3
)−1

,

ĥ 3
∣
∣∣
1

= �3 ,

ĥ 3
∣∣∣
2

= 0 ,

ĥ 3
∣∣∣
3

= �1 .

Accordingly, divĥ in (7.79)1 takes the form

divĥ = ĥ i
∣
∣∣
i
= ĥ 1

∣
∣∣
1
+ ĥ 2

∣
∣∣
2
+ ĥ 3

∣
∣∣
3

= �2�3
(
�3 − 1

)+ �1�3 .

Note that this result can easily be verified by introducing the given transformation
equations into divĥ = x2x3 + x1.
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Guided by (7.96)1, the contravariant components
(
curlĥ

)i = −J −1εi jk g jl ĥ l
∣∣
∣
k

of curlĥ can finally be collected in the single-column matrix

[
curlĥ

]con =
⎡

⎢
⎣

(
�1�3 − �1 − �2

)
�1

[
2�1�2

(
�3
)2 − �1�2�3 − (

�2
)2

�3 − 1
] (

�3
)−1

(
�1 + �2 − �1�3

)
�3

⎤

⎥
⎦ .

Exercise 7.7

Let h̄ (r, θ, z) be a scalar field and ĥ be a vector field with the decomposition (7.73)
in cylindrical coordinates. Further, let h̄ (r, θ, φ) be a scalar field and ĥ be a vector
field of the form (7.75) in spherical coordinates. Then, write a computer program
to symbolically compute gradĥ, divĥ, curlĥ and ∇2h̄ in each of these widely used
coordinate systems, see Exercise 8.3.

Solution. The interested reader can download the desired code for free from https://
data.uni-hannover.de/dataset/exercises-tensor-analysis.

Exercise 7.8

Applying the Nabla operator of vector calculus to products of smooth scalar fields
φ,ψ , vector fields u, v and tensor fieldsA,Bwill provide numerous identities. Prove
some important ones that are listed in the following

grad (φψ) = (gradφ)ψ + φgradψ , (7.122a)

grad (φu) = u ⊗ gradφ + φgradu , (7.122b)

grad (u · v) = (
gradTu

)
v + (

gradTv
)
u , (7.122c)

div (φu) = φdivu + u · gradφ , (7.122d)

div (φA) = φdivA + Agradφ , (7.122e)

div
(
ATu

) = (divA) · u + A : gradu , (7.122f)

div (u ⊗ v) = (gradu) v + udivv , (7.122g)

div (u × v) = v · curlu − u · curlv , (7.122h)

div (AB) = gradA : B + AdivB , (7.122i)

curl (φu) = gradφ × u + φcurlu , (7.122j)

curl (u × v) = udivv − vdivu + (gradu) v − (gradv)u

= div (u ⊗ v − v ⊗ u) . (7.122k)

https://data.uni-hannover.de/dataset/exercises-tensor-analysis
https://data.uni-hannover.de/dataset/exercises-tensor-analysis
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Moreover, verify that

grad divu = div gradTu , (7.123a)

div curlu = 0 , (7.123b)

curl gradφ = 0 , (7.123c)

curl curlu = grad divu − ∇2u , (7.123d)

∇2gradφ = grad∇2φ , (7.123e)

∇2curlu = curl∇2u , (7.123f)

∇2 (u · v) = (∇2u
) · v + 2 (gradu) : (gradv) + u · (∇2v

)
, (7.123g)

and

curl gradu = O , (7.124a)

curl curlA = [∇2 (trA) − div divA
]
I − ∇2AT

+ grad divAT + gradT divA − grad grad (trA) . (7.124b)

Solution. Here, all desired relations will be verified in indicial notation. Recall that
the result of operating gradient - or any of its related operators - on a tensor field
is another tensor field which is basically independent of any coordinate system.
Thus, the desired identities generally remain valid irrespective of chosen coordinate
system. This motivates to use the Cartesian form of components for convenience.
However, the ambitious reader can use the curvilinear forms of components for any
verification.

The expression (7.122a): By means of (7.68a)2 along with the product rule of differ-
entiation,

(grad (φψ))i = ∂ (φψ)

∂xi

= ∂φ

∂xi
ψ + φ

∂ψ

∂xi
= (gradφ)i ψ + φ (gradψ)i .

The expression (7.122b): By means of (2.24)4, (7.68a)2 and (7.70)2 along with the
product rule of differentiation,

(grad (φu))i j = ∂ (φui )

∂x j

= ui
∂φ

∂x j
+ φ

∂ui
∂x j

= (u ⊗ gradφ)i j + φ (gradu)i j .
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The expression (7.122c): By means of (1.38)7, (2.49), (7.68a)2 and (7.70)2 along
with the product rule of differentiation,

(grad (u · v)) j = ∂ (uivi )

∂x j

= ∂ui
∂x j

vi + ui
∂vi

∂x j

=
(

∂u
∂x

)

i j

(v)i +
(

∂v
∂x

)

i j

(u)i

= (
gradTu

)
j i (v)i + (

gradTv
)
j i (u)i .

The expression (7.122d): By means of (1.38)7, (7.68a)2 and (7.78) along with the
product rule of differentiation,

div (φu) = ∂ (φui )

∂xi

= ∂φ

∂xi
ui + φ

∂ui
∂xi

= (u)i (gradφ)i + φdivu

= u · gradφ + φdivu .

The expression (7.122e): By means of (2.22)3, (7.68a)2 and (7.83)2 along with the
product rule of differentiation,

(div (φA))i = ∂
(
φAi j

)

∂x j

= ∂φ

∂x j
Ai j + φ

∂Ai j

∂x j

= (A)i j (gradφ) j + φ (divA)i

= (Agradφ)i + φ (divA)i .

The expression (7.122f): By means of (1.38)7, (2.22)3, (2.49), (2.75)4, (7.70)2, (7.78)
and (7.83)2 along with the product rule of differentiation,

div
(
ATu

) =
∂
(
AT
i j u j

)

∂xi

= ∂
(
A jiu j

)

∂xi

= ∂A ji

∂xi
u j + A ji

∂u j

∂xi
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= (divA) j (u) j + (A) j i (gradu) j i

= (divA) · u + A : gradu .

The expression (7.122g): By means of (2.22)3, (2.24)4, (7.70)2, (7.78) and (7.83)2
along with the product rule of differentiation,

(div (u ⊗ v))i = ∂
(
uiv j

)

∂x j

= ∂ui
∂x j

v j + ui
∂v j

∂x j

= (gradu)i j (v) j + (u)i divv

= ((gradu) v)i + (udivv)i .

The expression (7.122h): Bymeans of (1.38)7, (1.54), (1.67)5, (7.78) and (7.91) along
with the product rule of differentiation,

div (u × v) = ∂
(
uiv jεi jk

)

∂xk

= ∂ui
∂xk

v jεi jk + ui
∂v j

∂xk
εi jk

= v j

(
−ε j ik

∂ui
∂xk

)
− ui

(
−εi jk

∂v j

∂xk

)

= (v) j (curlu) j − (u)i (curlv)i
= v · curlu − u · curlv .

The expression (7.122i): Bymeans of (2.26), (3.16b)5, (7.70)4 and (7.83)2 along with
the product rule of differentiation,

(div (AB))i = ∂
(
Aik Bkj

)

∂x j

= ∂Aik

∂x j
Bk j + Aik

∂Bkj

∂x j

= (gradA)ik j (B)k j + (A)ik (divB)k

= (gradA : B)i + (AdivB)i .

The expression (7.122j): By means of (1.54), (1.67)5, (7.68a)2 and (7.91) along with
the product rule of differentiation,
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(curl (φu))i = −εi jk
∂
(
φu j

)

∂xk

= −εi jk
∂φ

∂xk
u j − φεi jk

∂u j

∂xk

= (gradφ)k u jεk ji − φεi jk
∂u j

∂xk
= (gradφ × u)i + (φcurlu)i .

The expression (7.122k): Bymeans of (1.36), (1.54), (1.58a), (1.67)5, (2.22)3, (7.70)2,
(7.78) and (7.91) along with the product rule of differentiation,

(curl (u × v))i = −εi jk
∂ (u × v) j

∂xk

= εik j
∂
(
ulvmεlm j

)

∂xk

= (δilδkm − δimδlk)

(
∂ul
∂xk

vm + ul
∂vm

∂xk

)

= (gradu)ik (v)k + (u)i (divv)︸ ︷︷ ︸
= (div (u ⊗ v))i , according to (7.122g)

− (divu) (v)i − (gradv)ik (u)k︸ ︷︷ ︸
= − (div (v ⊗ u))i , according to (7.122g)

.

The expression (7.123a): Using (2.49), (7.68a)2, (7.70)2, (7.78) and (7.83)2,

(grad divu)i = ∂

∂xi

(
∂u j

∂x j

)

= ∂

∂x j

(
∂u j

∂xi

)

= ∂ (gradu) j i

∂x j

=
∂
(
gradTu

)
i j

∂x j

= (
div gradTu

)
i .
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The expression (7.123b): Using (1.54), (7.78), (7.91) and in light of (2.79h),

div curlu = ∂

∂xi
(curlu)i

= ∂

∂xi

(
−εi jk

∂u j

∂xk

)

= −εi jk
∂u j

∂xi∂xk

= ε j ik
∂u j

∂xi∂xk
= 0 .

The expression (7.123c): Using (1.54), (7.68a)2, (7.91) and in light of (2.79h),

(curl gradφ)i = −εi jk
∂ (gradφ) j

∂xk

= −εi jk
∂2φ

∂xk∂x j

= εik j
∂2φ

∂xk∂x j

= 0 .

The expression (7.123d): Using (1.36), (1.54), (1.58a), (7.68a)2, (7.78), (7.91) and
(7.105)2,

(curlcurlu)i = −εi jk
∂ (curlu) j

∂xk

= −εik jεlm j
∂2ul

∂xk∂xm

= − ∂2ui
∂xk∂xk

+ ∂2uk
∂xk∂xi

= − (∇2u
)
i + ∂

∂xi

∂uk
∂xk

= − (∇2u
)
i + (graddivu)i .

The expression (7.123e): Using (7.68a)2 and (7.105)1−2,

(∇2gradφ
)
i = ∂2

∂x j∂x j

(
∂φ

∂xi

)

= ∂

∂xi

(
∂2φ

∂x j∂x j

)
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= ∂

∂xi

(∇2φ
)

= (
grad∇2φ

)
i

.

The expression (7.123f): Using (7.91) and (7.105)2,

(∇2curlu
)
i = ∂2

∂xl∂xl

(
−εi jk

∂u j

∂xk

)

= −εi jk
∂

∂xk

(
∂2u j

∂xl∂xl

)

= −εi jk
∂
(∇2u

)
j

∂xk
= (

curl∇2u
)
i .

The expression (7.123g): Using (1.38)7, (2.75)4, (7.70)2 and (7.105)1−2 along with
the product rule of differentiation,

∇2 (u · v) = ∂

∂x j

[
∂ (uivi )

∂x j

]

= ∂

∂x j

[
∂ui
∂x j

vi + ui
∂vi

∂x j

]

= ∂2ui
∂x j∂x j

vi + ∂ui
∂x j

∂vi

∂x j
+ ∂ui

∂x j

∂vi

∂x j
+ ui

∂2vi

∂x j∂x j

= (∇2u
) · v + 2 (gradu) : (gradv) + u · (∇2v

)
.

The expression (7.124a): Using (1.54), (7.70)2 and (7.100),

(curl gradu)i j = −εikl
∂

∂xl

[
(gradu) jk

]

= −εikl
∂

∂xl

[
∂u j

∂xk

]

= −εikl
∂2u j

∂xl∂xk

= εilk
∂2u j

∂xl∂xk
= (O)i j ,

taking into account εilk = −εikl and ∂2u j/∂xl∂xk = ∂2u j/∂xk∂xl , see the expression
(2.79h).
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The expression (7.124b): With the aid of (1.36), (1.57)2, (2.23), (2.49), (2.89a)2,
(7.68a)2, (7.70)2, (7.83)2, (7.100), (7.105)1 and (7.105)3,

(curl curlA)i j = −εikl
∂

∂xl

[
(curlA) jk

]

= −εikl
∂

∂xl

[
−ε jmn

∂Akm

∂xn

]

= εiklε jmn
∂2Akm

∂xl∂xn︸ ︷︷ ︸
= [

δi j
(
δkmδln − δknδlm

)− δim
(
δk j δln − δknδl j

)+ δin
(
δk j δlm − δkmδl j

)] ∂2 Akm
∂xl ∂xn

= δi j
∂2Akk

∂xl∂xl
− δi j

∂2Akl

∂xl∂xk
− ∂2A ji

∂xl∂xl

+ ∂2Aki

∂x j∂xk
+ ∂2A jl

∂xl∂xi
− ∂2Akk

∂x j∂xi

= δi j︸︷︷︸
= (I)i j

∂2Akk

∂xl∂xl︸ ︷︷ ︸
= ∇2 (trA)

− δi j︸︷︷︸
= (I)i j

∂

∂xk

∂Akl

∂xl︸ ︷︷ ︸
= (divA)k

− ∂2AT
i j

∂xl∂xl︸ ︷︷ ︸
= ∇2

(
AT
)

i j

+ ∂

∂x j

∂AT
ik

∂xk︸ ︷︷ ︸
=
(
divAT

)

i

+ ∂

∂xi

∂A jl

∂xl︸ ︷︷ ︸
= (divA) j

− ∂

∂x j

∂Akk

∂xi︸ ︷︷ ︸
= (grad (trA))i

= (I)i j ∇2 (trA) − (I)i j div divA − ∇2
(
AT
)
i j

+ (
grad divAT

)
i j + (

gradT divA
)
i j − (grad grad (trA))i j .

Exercise 7.9

Consider the so-called inverse square law

u = α
r
r3

with α > 0 . (7.125)

In this expression, r = x − x0 where x0 denotes a fixed point in space and r = |r|.
The domain of u is the three-dimensional space, excluding r = 0. Note that the
inverse square law appears in many branches of physics and engineering. Examples
of which include Newton’s law for gravitation, Coulomb’s law for static electricity
and transport problem of radiation mechanics.

First, prove the identities
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gradr = I, gradr = r
r

, (7.126a)

divr = 3, div

(
r ⊗ r
r2

)
= 2r

r2
, (7.126b)

curlr = 0, curl
(r
r

)
= 0 . (7.126c)

Then, having in mind these identities, show that

divu = 0 , (7.127a)

∇2u = 0 , (7.127b)

curl curlu = 0 . (7.127c)

Solution. Similarly to the previous exercise, all desired relations will be verified in
indicial notation using the Cartesian components of vectors.

The expression (7.126a)1: With the aid of (2.23) and (7.70)2,

(gradr)i j = ∂ri
∂x j

= ∂xi
∂x j

= δi j

= (I)i j .

The expression (7.126a)2: With the aid of (1.36), (6.18)1, (7.68a)2 and (7.126a)1
along with the chain rule of differentiation,

(gradr)i = ∂r

∂xi

= ∂r

∂r j

∂r j
∂xi

= ∂r

∂r j
δ j i

= ∂r

∂ri

= ri
r

=
(r
r

)

i
.
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The expression (7.126b)1: With the aid of (1.37), (7.78) and in light of (7.126a)1,

divr = ∂ri
∂xi

= δi i

= 3 .

The expression (7.126b)2: With the aid of (1.36), (7.83)2, (7.126a)1−2 and (7.126b)1
along with the product rule of differentiation,

(
div
(
r−2r ⊗ r

))
i
= ∂

(
r−2rir j

)

∂x j

= ∂r−2

∂x j
rir j + r−2 ∂ri

∂x j
r j + r−2ri

∂r j
∂x j

= − 2

r3
r j
r
rir j + r−2δi j r j + 3r−2ri

= 2ri
r2

.

The expression (7.126c)1: With the aid of (1.36), (1.52), (7.91) and (7.126a)1,

(curlr)i = −εi jk
∂r j
∂xk

= −εi jkδ jk

= −εi j j

= 0 .

The expression (7.126c)2:With the aid of (1.36), (1.52), (7.91) and (7.126a)1−2 along
with the product rule of differentiation, one will have

(
curl

r
r

)

i
= −εi jk

∂
(
r−1r j

)

∂xk

= −εi jk
∂r−1

∂xk
r j − εi jkr

−1 ∂r j
∂xk

= −εi jk
−1

r2
rk
r
r j − εi jkr

−1δ jk

= 1

r3
εi jkr j rk − 1

r
εi j j

= 0 ,



7.6 Exercises 363

taking into consideration εi jk = −εik j and (r ⊗ r) jk = (r ⊗ r)k j , see (2.79h).

The expression (7.127a): With the aid of (7.78), (7.126a)2 and (7.126b)1 along with
the product rule of differentiation,

divu = ∂ui
∂xi

= α
∂
(
r−3ri

)

∂xi

= α
∂r−3

∂xi
ri + αr−3 ∂ri

∂xi

= α
−3

r4
ri
r
ri + αr−3 (3)

= −3αr2

r5
+ 3αr−3

= 0 .

The expression (7.127b): With the aid of (7.105)2, (7.126a)1−2 and (7.127a) along
with the product rule of differentiation,

(∇2u
)
j = ∂2u j

∂xi∂xi

= ∂

∂xi

[

α
∂
(
r−3r j

)

∂xi

]

= α
∂

∂xi

[−3

r4
ri
r
r j + r−3δ j i

]

= α
∂

∂xi

[−3ri
r3

r j
r2

+ δ j i

r3

]

= −3α

[
ri
r3

∂

∂xi

( r j
r2

)
+ ri

r5
δ j i

]

= −3α

[
ri
r3

(−2ri
r4

r j + δ j i

r2

)
+ r j

r5

]

= −3α

[−2r j
r5

+ r j
r5

+ r j
r5

]

= 0 .

The expression (7.127c): At the end, this desired identity is obtained by substituting
(7.127a) and (7.127b) into (7.123d).
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Chapter 8
Integral Theorems and Differential
Forms

This chapter contains two sections. The first section deals with well-known theorems
involving integrals of tensorial field variables to complete vector and tensor calculus
started from Chap.6. Specifically, the integral theorems of Gauss and Stokes are
studied. They are of central importance inmathematics of physics because they even-
tually appear inmany basic laws of physics such as conservation of linearmomentum
and conservation of electric charge. The beauty of these theorems is that they trans-
form integration of field variables over closed domains into the integration over the
boundaries of such domains.

The remaining part of this chapter aims at introducing what are known as dif-
ferential forms. They are used in many physical theorems such as electromagnetic
field theory. After some algebraic preliminaries, the calculus of these mathematical
creatures will be studied. They are basically considered as a complement to vector
analysis. The ultimate goal here is to introduce the so-called generalized Stokes’ the-
orem. This elegant theorem unifies the four fundamental theorems of calculus (i.e.
gradient theorem for line integrals, Green’s theorem, Stokes’ theorem and divergence
theorem).

8.1 Integral Theorems

8.1.1 Divergence Theorem

Consider a closed surface1 A enclosing a region V with the outward-pointing unit
normal field n̂ as illustrated in Fig. 8.1. The divergence theorem (or Gauss’s theo-
rem) states that the net flux of a vector field u out of a closed surface A oriented with

1 A closed surface is a compact surface without boundary curve. But, it usually has an inner and
outer side. Such a surface to be used in the divergence theorem must be at least piecewise smooth.
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Fig. 8.1 Domain V (with the volume element �V ) and its bounded closed surface A (with the
differential surface element d A and associated unit normal field n̂ )

n̂ outward equals the volume integral of its divergence over the region V enclosed
by that surface. This is indicated by

∫

A

u · n̂ d A =
∫

V

divu dV

or, for instance in Cartesian coordinates,
∫

A ui n̂i d A = ∫V
∂ui
∂xi

dV

. (8.1)

Proof. Let the domain V be split into a finite number N of curvilinear hexahedra, i.e.
V ≈⋃N

e=1 Ve. Further, let a generic hexahedron is denoted by �V and enclosed by
�A. Such an object is constructed by the coordinate surfaces �1, �1 + ��1, �2,
�2 + ��2, �3 and �3 + ��3 as shown in Fig. 8.1. Recall from Hint on Sect. 5.8
that a surface vector dA admits two unit vectors oriented in opposite directions, i.e.
±n̂. With regard to this, a convention needs to be made for determining either dA =
+n̂ d A or dA = −n̂ d A. Regarding the surface vector of a closed surface, a normal
vector pointing outward from the enclosed domain is conventionally granted. As an
example, one will have dA(1) = +n̂(1) d A(1) at

(

�1 + ��1,�2,�3
)

and dA(1) =
−n̂(1) d A(1) at

(

�1,�2,�3
)

for �V in Fig. 8.1.
Now, guided by (5.111)2 and (5.113)2, the infinitesimal area elements n̂ (i) d A(i)

and the differential volume element dV of the very small curvilinear parallelepiped
�V , for even permutations of i , j and k (i.e. i jk = 123, 231, 312), are given by
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n̂ (i) d A(i) =
{

−Jd� j d�kgi at
(

�1,�2,�3
)

+Jd� j d�kgi at
(

�1 + ��1δi1,�
2 + ��2δi2,�

3 + ��3δi3
) , (8.2a)

dV = Jd�i d� j d�k . (8.2b)

For the curvilinear parallelepiped, the surface integral, also known as the flux
integral, on the left hand side of (8.1) then renders (i jk = 123, 231, 312)

∫

�A

u · n̂ d A =
3
∑

i=1

�k+��k
∫

�k

� j +�� j
∫

� j

[

(

u · Jgi
)∣

∣

(�1+��1δi1,�2+��2δi2,�3+��3δi3)

− (

u · Jgi
)∣

∣

(�1,�2,�3)

]

d� j d�k .

It follows that

∫

�A

u · n̂ d A =
3
∑

i=1

�k+��k
∫

�k

� j +�� j
∫

� j

�i +��i
∫

�i

∂
(

u · Jgi
)

∂�i
d�i d� j d�k . (8.3)

Using (7.18), (7.80) and (8.2b), the flux integral (8.3) represents

∫

�A

u · n̂ d A =
3
∑

i=1

�k+��k
∫

�k

� j +�� j
∫

� j

�i +��i
∫

�i

[

∂u
∂�i

·
(

Jgi
)

+ u · ∂
(

Jgi
)

∂�i

]

d�i d� j d�k

=
3
∑

i=1

∫

�V

∂u
∂�i

· gi dV

=
∫

�V

divu dV . (8.4)

At the end, the integral expression (8.1)1 follows by summing over the entire region
(noting that the sum of integrals over an inner surface shared between two volume
elements vanishes).

The Gauss’s theorem helps provide a new definition for the divergence of a ten-
sorial field. Considering smallness of the curvilinear hexahedron, in the limit, the
volume integral in (8.1) can be taken as the product of the integrand divu and the
volume V . By assuming continuity of the integrand, one then has

divu = lim
V →0

1

V

∫

V

gi · ∂u
∂�i

dV = lim
V →0

1

V

∫

A

u · n̂ d A . (8.5)
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When the volume shrinks to zero in the limit, all points on the surface approach a
point. Thus, the result will be independent of the actual shape of the volume element.
Indeed, the definition (8.5) is independent of any coordinate system in alignment
with (7.77). That is why in standard texts on calculus, the divergence theorem is
often proved in a Cartesian frame by taking an incremental volume element of the
rectangular parallelepiped form.

Notice that flux measures outward flow from (the closed surface of) an entire
region whereas divergence measures the net outward flow per unit volume at the
point under consideration. And if there is net flow out of (into) the closed surface,
the flux integral is positive (negative).

As an example, consider a vector r̄ = x − o satisfying grad r̄ = I. Then, the diver-
gence theorem helps establish

∫

A

r̄ ⊗ n̂ d A =
∫

V

grad r̄ dV =
∫

V

I dV , ←− see (8.142f)

or

I = 1

V

∫

A

r̄ ⊗ n̂ d A . (8.6)

The relation (8.1) is a classical result. It may be utilized to transform a surface integral
into a volume integral for a scalar and tensor field, that is,

∫

A

φn̂ d A =
∫

V

gradφ dV

or, for instance in Cartesian coordinates,
∫

A φn̂i d A = ∫V ∂φ
∂xi

dV

, (8.7)

and
∫

A

An̂ d A =
∫

V

divA dV

or, for instance in Cartesian coordinates,
∫

A Ai j n̂ j d A = ∫V
∂ Ai j
∂x j

dV

. (8.8)

To prove (8.8), consider an arbitrary constant vector v (for which gradv = O). Then,

v ·
∫

A

An̂ d A
by=======

assumption

∫

A

v · An̂ d A

from=====
(2.51b)

∫

A

[

ATv
] · n̂ d A
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from====
(8.1)

∫

V

div
[

ATv
]

dV

from===========
(1.9a) and (7.122f)

∫

V

[v · divA + A : O] dV

from====
(2.78)

∫

V

v · divA dV

by=======
assumption

v ·
∫

V

divA dV ,

provides the desired result considering (1.14). From (8.8), one can establish (8.7) as
follows:

∫

A

An̂ d A
by setting=======

A = φI

∫

A

[φI] n̂ d A

on the one hand============
from (2.5) and (2.8b)

∫

A

φn̂ d A

on the other hand==========
from (8.8)

∫

V

div [φI] dV

from======
(7.122e)

∫

V

[

φdivI + Igradφ
]

dV

from===================
(1.4a), (1.4d), (a) in (1.76) and (2.5)

∫

V

gradφ dV ,

where the identity divI = 0 has been used, see (7.33). Following arguments similar
to those which led to (8.5) now reveals

gradφ = lim
V →0

1

V

∫

A

φn̂ d A , (8.9)

and

divA = lim
V →0

1

V

∫

V

∂A
∂�i

gi dV = lim
V →0

1

V

∫

A

An̂ d A . (8.10)

By analogy with the procedure which led to (8.4) and considering (8.5), the curl of
a vector field can also be written as
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curlu = lim
V →0

1

V

∫

V

gi × ∂u
∂�i

dV = lim
V →0

1

V

∫

A

n̂ × u d A . (8.11)

It is then a simple exercise to show that

curlA = lim
V →0

1

V

∫

V

gi × ∂AT

∂�i
dV = lim

V →0

1

V

∫

A

n̂ × AT d A . (8.12)

Inmany branches of physics and engineering such as continuummechanics, physical
laws are often expressed in terms of integrals over the domain of a continuum body
or its boundary.

As discussed, the divergence theorem transforms a surface integral into a vol-
ume integral. Another important integral theorem that transforms a line integral to a
surface integral will be introduced in the following.

8.1.2 Stokes’ Theorem

Consider a closed curve2 C bounding an open surface A with positive orientation3 as
illustrated in Fig. 8.2. Recall that a convention helped determine either dA = +n̂ d A
or dA = −n̂ d A for a closed surface. The appropriate choice for an open surface
depends on assigning a direction of rotation to its boundary curve. The direction of
unit vector perpendicular to an open surface is conventionally associated with the
rotational direction of its bounding curve by the right-hand screw rule rendering a
positively oriented surface. Therefore, one will have dA = +n̂ d A for the positively
oriented surface shown in Fig. 8.2. Suppose that such a surface is parametrized by

x = x̂ s
(

t1, t2
)

, (8.13)

for which the line element dx and the surface vector dA are given by

dx = dt1a1 + dt2a2, dA = +n̂ d A = dt1dt2a1 × a2 , ←− see (9.56)-(9.57) (8.14)

2 A curve C with the parametrization

x = x c (t) , t̄0 ≤ t ≤ t̄1 ,

is said to be closed when x c
(

t̄0
) = x c

(

t̄1
)

.
3 An open surface is a surface possessing a boundary curve. If the unit vector n̂ normal to an open
surface A and the tangent vector at to its bounding closed curve C are oriented in the right-handed
sense, then A is called a positively oriented surface. Such a surface along with its bounding curve
to be used in the Stokes’ theorem must be at least piecewise smooth.



8.1 Integral Theorems 371

Fig. 8.2 Open surface with positive orientation

where

a1 = ∂ x̂ s

∂t1
, a2 = ∂ x̂ s

∂t2
. (8.15)

Given the parametric equations t1 = t1 (t) and t2 = t2 (t), the bounding curve C can
be described by the parametrization

x = x c (t) with the tangent vector at = dx
dt

. (8.16)

For a more detailed study of parametrization of surfaces and curves, see Chap. 9.
The circulation of a vector field u around an oriented closed curve C is defined

by

Γ =
∫

C

u · dx . (8.17)

This relation basically demonstrates the line integral of the tangential component
of u along C. And it measures how much this vector field tends to circulate around
such curve.

Now, the Stokes’ theorem states that the circulation of a vector field u = u
(

t1, t2
)

around a closed curve C is equal to the normal component of its curl over an open
surface A bounded by that curve. For a positively oriented surface shown in Fig. 8.2,
this is indicated by
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∫

C

u · dx =
∫

A

curlu · n̂ d A

or, for instance in Cartesian coordinates,
∫

C ui dxi = ∫A −εi jk
∂u j
∂xk

n̂i d A

. (8.18)

Proof. First, the left hand side of (8.18)1 with the aid of (8.14)1 takes the following
form
∫

C

u · dx =
∫

C

(

u 1dt1 + u 2dt2
)

where u 1 = u · a1 , u 2 = u · a2 . (8.19)

Then, the right hand side of (8.18)1 considering (8.14)2 becomes

∫

A

curlu · n̂ d A =
∫

A

curlu · (a1 × a2) dt1dt2 =
∫

A

(

∂ u 2

∂t1
− ∂ u 1

∂t2

)

dt1dt2 ,

(8.20)
since

curlu · (a1 × a2)
in light of========
(7.95)

−
(

∂u
∂t1

× a1 + ∂u
∂t2

× a2
)

· (a1 × a2)

from============
(1.9b) and (1.78a)

−
(

∂u
∂t1

· a1

)

(

a1 · a2
)

+
(

∂u
∂t1

· a2

)

(

a1 · a1
)

−
(

∂u
∂t2

· a1

)

(

a2 · a2
)

+
(

∂u
∂t2

· a2

)

(

a2 · a1
)

in light of===========
(5.13) and (5.27)

∂u
∂t1

· a2 − ∂u
∂t2

· a1

from=====
(8.15)

∂ (u · a2)
∂t1

− ∂ (u · a1)
∂t2

←− note that
∂a2
∂t1

= ∂2 x̂ s

∂t1∂t2
= ∂2 x̂ s

∂t2∂t1
= ∂a1

∂t2

in light of========
(5.65b)

∂ u2

∂t1
− ∂ u1

∂t2
. (8.21)

By means of Green’s theorem, one can write

∫

C

(

u 1dt1 + u 2dt2
) =

∫

A

(

∂ u 2

∂t1
− ∂ u 1

∂t2

)

dt1dt2 . (8.22)

And this completes the proof of Stokes’ theorem.

The relation (8.18) presents a classical result. It simply helps transform a line
integral into a surface integral for a scalar and tensor field, that is,
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∫

C

φ dx =
∫

A

n̂ × gradφ d A

or, for instance in Cartesian coordinates,
∫

C φ dxi = ∫A εi jk n̂ j
∂φ
∂xk

dA

, (8.23)

and
∫

C

A dx =
∫

A

(curlA)T n̂ d A

or, for instance in Cartesian coordinates,
∫

C Ai j dx j = ∫A ε jlk
∂ Aik
∂xl

n̂ j d A

. (8.24)

To prove (8.24), suppose that v is an arbitrary constant vector. Then,

v ·
∫

A

(curlA)T n̂ d A
by=======

assumption

∫

A

v · (curlA)T n̂ d A

from===========
(2.51b) and (2.55b)

∫

A

n̂ · [(curlA) v] d A

from=====
(7.101)

∫

A

[

curl
(

ATv
)] · n̂ d A

from====
(8.18)

∫

C

(

ATv
) · dx

from=====
(2.51b)

∫

C

v · Adx

by=======
assumption

v ·
∫

C

Adx ,

delivers the desired result taking into account (1.14). The relation (8.23) can be
deduced from (8.24). This can be shown, for instance, in Cartesian coordinates as
follows:

∫

C

Ai j dx j
by setting=======
Ai j = φδi j

∫

C

[

φδi j
]

dx j

on the one hand==========
from (1.36)

∫

C

φ dxi

on the other hand==========
from (8.24)

∫

A

ε jlk
∂ (φδik)

∂xl
n̂ j d A
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by using=========
the product rule

∫

A

ε jlkδik n̂ j
∂φ

∂xl
d A

by using==========
(1.36) and (1.54)

∫

A

εi jl n̂ j
∂φ

∂xl
d A

by changing the name==============
of the dummy index l to k

∫

A

εi jk n̂ j
∂φ

∂xk
d A ,

where the identity ∂I/∂x = O, according to (7.33)2, has been used.

As an example, consider a vector field of the form u = gradφ where φ is said to
be its potential. Then, using (1.40), (7.123c) and (8.18), the circulation of this vector
field vanishes:

∫

C
(gradφ) · dx =

∫

A

(curl gradφ) · n̂ d A =
∫

A

0 · n̂ d A = 0 . (8.25)

Another example regards a tensor field of the form A = gradu satisfying (7.124a).
By means of (2.4) and (8.24), one then infers that

∫

C
(gradu) dx =

∫

A

(curl gradu)T n̂ d A =
∫

A

(O)T n̂ d A =
∫

A

O n̂ d A = 0 .

(8.26)

8.2 Differential Forms

Differential forms (or simply forms) appear in many physical contexts such as elec-
tromagnetic field theory. They are also used to numerically treat boundary value
problems in solid as well as fluid mechanics. In differential geometry, their most
important application is integration on manifolds. Examples of which include the
divergence and Stokes’ theorems.

For thesemathematical creatures, differentiation can bemade in a specificmanner
even without defining a metric. In particular, a great advantage of the differential
forms is that they behave much like vectors. And they can thus be considered as a
complement to vector analysis. A differential form is simply an integrand, i.e. an
object which can be integrated over some oriented region.

Assigning an orientation to curves (one-dimensional manifolds) can be done in a
straightforward manner. One can also orient many surfaces (two-dimensional man-
ifolds) properly as demonstrated in the previous section for integral theorems (note
that theMöbius strip and theKlein bottle ([1]) are twowell-known examples of non-
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orientable surfaces). But, orientation cannot conveniently be specified for objects in
higher dimensions. This means that vector calculus is not an appropriate tool for
carrying out integration on objects in higher dimensions. Instead, differential forms
and their derivatives, called exterior derivatives, are utilized. The reason is that they
are capable of generalizing integral theorems to any arbitrary dimension. They help
express the widely used integral theorems in amore sophisticated and unified format.
It is known as the generalized Stokes’ theorem which holds true for all dimensions.
This great advantage motivates to entirely devote this section to the study of differen-
tial forms and their calculus. For a detailed account on differential forms, see Spivak
[2], Lovelock and Rund [3], do Carmo [4], Bachman [5], Renteln [6], Hubbard and
Hubbard [7], Nguyen-Schäfer and Schmidt [8] and Fortney [9] among many others.

Denoting by n the space dimension, a differential k-form, where the integer k
belongs to the interval 0 ≤ k ≤ n, is a linear transformation that takes k vectors
as inputs and provides a scalar as an output (for reasons that become clear later, a
differential k-form vanishes when k > n). Here, the number k is known as the degree
of form. For the sake of consistency with the dimension of vector spaces introduced
so far, the main focus here will be on objects belonging to the three-dimensional
real vector space E3

r . Note that for subsequent developments, a special vector space,
called the Minkowski spacetime, will be introduced which has one extra dimension,
see Sect. 8.2.4.1.

Denoting by
k
ω a differential k-form, the linear mapping

k
ω : E3

r × · · · × E3
r

︸ ︷︷ ︸

k times

→ R , (8.27)

helps construct the space of differential forms on E3
r . That will be a new vector space

usually denoted by

∧

k E3
r . ←− see (8.30), (8.37), (8.44) and (8.55) for 0 ≤ k ≤ 3 (8.28)

8.2.1 Differential 1-Form

A differential 0-form presents the simplest case of differential forms. Without taking
any vector, it represents a scalar function

0
ω = 0

ω
(

�1,�2,�3
)

, (8.29)

which belongs to the following space

∧

0 E3
r = Span {1} . (8.30)
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And its dimension is 1. A differential 1-form is then constructed by the sum

1
ω (u) = 1

ωi
(

�1,�2,�3) d�i (u) , (8.31)

where u = u j g j is a vector field. It is important to note that d�i (u) represents the
directional derivative of �i in the direction of u. It is known as the elementary
(or simple) 1-form (having in mind that the elementary 0-form is 1). Using (5.27)1,
(5.28) and (7.4a)3, it takes the following form

d�i (u) = ∂�i

∂x
· u = (gi

) · ( u j g j
) = δi

j u j = u i , (8.32)

where the replacement property of the Kronecker delta along with the bilinearity of
the dot product have been used. Trivially,

d�i
(

g j
) = δi

j . (8.33)

One can now rephrase (8.31) in the form

1
ω (u) = 1

ωi u i . (8.34)

It is worthwhile to point out that the direction specified by u is fixed at a given point.
As a result,

d
(

d�i
) = d u i = 0 . (8.35)

A quick example here is
1
ω = sin�2d�1 + cos�1d�2 + sin2 �3d�3 to be evalu-

ated on u = cos�1g1 − sin�2g2 + g3. The result is
1
ω (u) = sin2 �3.

Let
1
ω = 1

ωi d�i and
1
ς = 1

ς i d�i be two 1-forms. Further, let f be a scalar function

of the local curvilinear coordinates. Then, the sum
1
ω + 1

ς and the product f
1
ω obey

1
ω + 1

ς =
(

1
ωi + 1

ς i

)

d�i

in general, this result holds true for any
k
ω and

k
ς

, (8.36a)

f
1
ω =

(

f
1
ωi

)

d�i

in general, this result holds true for any
k
ω

. (8.36b)
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As can be seen, the result of any of these mathematical operations, i.e. addition and
scalar multiplication, is again a differential 1-form. This motivates to construct the
space of differential 1-forms on E3

r . It is a new vector space; given by,

∧

1 E3
r = Span

{

d�1, d�2, d�3
}

. (8.37)

And its dimension is 3.
Hint: A differential 1-form

1
ω = 1

ωi d�i , according to (8.31), may be thought of as
an object w = wi gi by setting up the following correspondence

d�i ←→ gi .

Then,
1
ω1d�1 + 1

ω2d�2 + 1
ω3d�3 ←→ w1g1 + w2g2 + w3g3 .

With regards to this,
1
ωmay be identified as a covariant first-order tensor decomposed

with respect to a (differential 1-form) basis
{

d�i
}

by means of the corresponding

(differential 0-form) components
1
ωi . That is why

1
ω is often introduced as an object

behaving very similar to w.
Recall from the expression (5.66a) that a covector u i is related to its companion

vector u j via ui = gi j u j . This reveals the fact that a covector is basically a linear
combination of a vector. In this context, the differential 1-form (8.34) should thus be
realized as a covector.

8.2.2 Differential 2-Form

A differential 2-form is constructed by the so-called wedge (or exterior) product of
two differential 1-forms. The wedge product of a k-form and a l-form generates a
(k + l)-form. Similarly to the cross product, the wedge product possesses the skew-

symmetric and bilinearity properties. For all 1-forms
1
ω,

1
ς,

1
π ∈∧ 1 E3

r and all
functions α, β ∈∧ 0 E3

r , it satisfies.
4

4 Note that (8.38a) is a special case of the skew-commutative property

k
ς ∧ l

π = (−1)kl l
π ∧ k

ς , for any
k
ς = k

ς i1 ···ik
d�i1 ∧ · · · ∧ d�ik and

l
π = l

π j1 ··· jl d� j1 ∧ · · · ∧ d� jl ,

owing to

k
ς ∧ l

π = k
ς i1···ik

l
π j1··· jl

(

d�i1 ∧ · · · ∧ d�ik
)

∧
(

d� j1 ∧ · · · ∧ d� jl
)

= (−1)l k
ς i1···ik

l
π j1··· jl

(

d�i1 ∧ · · · ∧ d�ik−1
)

∧
(

d� j1 ∧ · · · ∧ d� jl
)

∧ d�ik

= (−1)kl l
π j1··· jl

k
ς i1···ik

(

d� j1 ∧ · · · ∧ d� jl
)

∧
(

d�i1 ∧ · · · ∧ d�ik
)

= (−1)kl l
π ∧ k

ς .
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1
ς ∧ 1

π = − 1
π ∧ 1

ς , (8.38a)
(

α
1
ω + β

1
ς
)

∧ 1
π = α

(

1
ω ∧ 1

π
)

+ β
(

1
ς ∧ 1

π
)

, (8.38b)

1
ω ∧ 1

ω = 0 . ←− this property is an immediate consequence of (8.38a) (8.38c)

Suppose one is given
1
ς = 1

ς i d�i and
1
π = 1

π j d� j . Then, these rules help represent

1
ς ∧ 1

π = 1
ς i

1
π j d�i ∧ d� j

=
n=3
∑

r, s=1
r<s

(

1
ς r

1
π s − 1

ς s
1
π r

)

d�r ∧ d�s , (8.39)

or
1
ς ∧ 1

π =
n=3
∑

r, s=1
r<s

det

[

1
ς r

1
π r

1
ς s

1
π s

]

d�r ∧ d�s . (8.40)

As a quick example, consider a differential 2-form

2
ω = d�1 ∧ d�2 + d�2 ∧ d�3 + d�1 ∧ d�3 ,

which may be rephrased as

2
ω = d�2 ∧ (−d�1 + d�3

)− d�3 ∧ d�1 + d�3 ∧ d�3

= d�2 ∧ (−d�1 + d�3)+ d�3 ∧ (−d�1 + d�3)

= (d�2 + d�3
) ∧ (−d�1 + d�3

)

= d
(

�3 + �2) ∧ d
(

�3 − �1) .

The most general differential 2-form is now given by

2
ω (u, v) = 2

ωi j
(

�1,�2,�3) (d�i ∧ d� j
)

(u, v) , (8.41)

where
(

d�i ∧ d� j
)

(u, v) = det

[

d�i (u) d�i (v)

d� j (u) d� j (v)

]

or
(

d�i ∧ d� j
)

(u, v) = ui v j − u j vi

. (8.42)

Also note that (8.38c) can be resulted from
k
ς ∧ l

π = (−1)kl l
π ∧ k

ς by choosing k = l = 1 and
k
ς = k

π .
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Fig. 8.3 Area and signed area

Hint: In Cartesian coordinates, consider a parallelogram defined by the projection of
u and v, for instance, onto the plane spanned by ê1 and ê2. Then, (dx1 ∧ dx2) (u, v)

evaluates the signed area of that parallelogram (note that the signed area of a region
may be negative in contrast to its geometric area which is always positive). This
provides the geometric meaning of an elementary 2-form (see Fig. 8.3).

From (8.41) and (8.42), it follows that

2
ω (u, v) =

(

2
ωi j − 2

ω j i

)

u i v j

=
n=3
∑

r, s=1
r<s

(

2
ωrs − 2

ωsr

)

(

ur vs − u s vr
)

. (8.43)

As a simple example, consider

1
ς = 3d�1 − d�2 + 2d�3

1
π = d�1 + 2d�2 − d�3

⎫

⎬

⎭

,

to be evaluated on
u = 2g1 + g2 − g3
v = g1 − 3g2 + 2g3

}

.

Then, using (8.43)2, the wedge product
2
ω = 1

ς ∧ 1
π delivers
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2
ω =

n=3
∑

r, s=1
r<s

(

1
ς r

1
π s − 1

ς s
1
π r

)

(

ur vs − u s vr
)

=
(

1
ς1

1
π2 − 1

ς2
1
π1

)

︸ ︷︷ ︸

= (3) (2) − (−1) (1) = 7

(

u 1 v2 − u 2 v1
)

︸ ︷︷ ︸

= (2) (−3) − (1) (1) = −7

+
(

1
ς1

1
π3 − 1

ς3
1
π1

)

︸ ︷︷ ︸

= (3) (−1) − (2) (1) = −5

(

u 1 v3 − u 3 v1
)

︸ ︷︷ ︸

= (2) (2) − (−1) (1) = 5

+
(

1
ς2

1
π3 − 1

ς3
1
π2

)

︸ ︷︷ ︸

= (−1) (−1) − (2) (2) = −3

(

u 2 v3 − u 3 v2)

︸ ︷︷ ︸

= (1) (2) − (−1) (−3) = −1

= −49 − 25 + 3 = −71 .

It is now easy to realize that the space of differential 2-forms on E3
r is of the following

form
∧

2 E3
r = Span

{

d�1 ∧ d�2, d�2 ∧ d�3, d�3 ∧ d�1
}

, (8.44)

whose dimension, similarly to (8.37), is 3.

8.2.3 Differential 3-Form

Three differential 1-forms
1
ς ,

1
π and

1
ξ can be used to construct a differential 3-form,

1
ς ∧ 1

π ∧ 1
ξ , satisfying the associative rule

1
ς ∧ 1

π ∧ 1
ξ =

(

1
ς ∧ 1

π
)

∧ 1
ξ = 1

ς ∧
(

1
π ∧ 1

ξ

)

note that the wedge product is much like the cross product
having in mind that the cross product is not associative

. (8.45)

The skew-symmetric and bilinearity properties of the wedge product then help estab-
lish

1
ς ∧ 1

π ∧ 1
ξ = − 1

ς ∧ 1
ξ ∧ 1

π
︸ ︷︷ ︸

= 1
π ∧ 1

ξ ∧ 1
ς = −1

π ∧ 1
ς ∧ 1

ξ = 1
ξ ∧ 1

ς ∧ 1
π = −1

ξ ∧ 1
π ∧ 1

ς

, (8.46)

and
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(

α
1
ω + β

1
ς
)

∧ 1
π ∧ 1

ξ = α
1
ω ∧ 1

π ∧ 1
ξ + β

1
ς ∧ 1

π ∧ 1
ξ

or
1
ς ∧

(

α
1
ω + β

1
π

)

∧ 1
ξ = α

1
ς ∧ 1

ω ∧ 1
ξ + β

1
ς ∧ 1

π ∧ 1
ξ

or
1
ς ∧ 1

π ∧
(

α
1
ω + β

1
ξ

)

= α
1
ς ∧ 1

π ∧ 1
ω + β

1
ς ∧ 1

π ∧ 1
ξ

. (8.47)

If any two of differential 1-forms are equal, one will have

1
ς ∧ 1

ξ ∧ 1
ξ = 1

ς ∧ 1
π ∧ 1

ς = 1
π ∧ 1

π ∧ 1
ξ = 0 . (8.48)

Let
1
ς = 1

ς i d�i ,
1
π = 1

π j d� j and
1
ξ = 1

ξ kd�k . It is then easy to see that

1
ς ∧ 1

π ∧ 1
ξ = 1

ς i
1
π j

1
ξ kd�i ∧ d� j ∧ d�k

=
[

1
ς1

(

1
π2

1
ξ 3 − 1

π3

1
ξ 2

)

− 1
π1

(

1
ς2

1
ξ 3 − 1

ς3

1
ξ 2

)

+ 1
ξ 1

(

1
ς2

1
π3 − 1

ς3
1
π2

)

]

d�1 ∧ d�2 ∧ d�3

= εi jk 1
ς i

1
π j

1
ξ kd�1 ∧ d�2 ∧ d�3 , (8.49)

or

1
ς ∧ 1

π ∧ 1
ξ = det

⎡

⎢

⎢

⎢

⎣

1
ς1

1
π1

1
ξ 1

1
ς2

1
π2

1
ξ 2

1
ς3

1
π3

1
ξ 3

⎤

⎥

⎥

⎥

⎦

d�1 ∧ d�2 ∧ d�3 . (8.50)

A quick example here is

3
ω = (3d�1 + d�2

) ∧ (d�1 − d�3
) ∧ (d�1 + d�2 + d�3

)

= (−3d�1 ∧ d�3 + d�2 ∧ d�1 − d�2 ∧ d�3
) ∧ (d�1 + d�2 + d�3

)

= −d�2 ∧ d�3 ∧ d�1 − 3d�1 ∧ d�3 ∧ d�2 + d�2 ∧ d�1 ∧ d�3

= −d�1 ∧ d�2 ∧ d�3 + 3d�1 ∧ d�2 ∧ d�3 − d�1 ∧ d�2 ∧ d�3

= d�1 ∧ d�2 ∧ d�3 .

In alignment with (8.31) and (8.41), the most general form of a differential 3-form
is given by

3
ω (u, v, w) = 3

ωi jk
(

�1,�2,�3
) (

d�i ∧ d� j ∧ d�k
)

(u, v, w) , (8.51)

where
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(

d�i ∧ d� j ∧ d�k
)

(u, v, w) = det

⎡

⎣

d�i (u) d�i (v) d�i (w)

d� j (u) d� j (v) d� j (w)

d�k (u) d�k (v) d�k (w)

⎤

⎦

or
(

d�i ∧ d� j ∧ d�k
)

(u, v, w) = ui
(

v j wk − vk w j
)

− vi
(

u j wk − uk w j
)

+ wi
(

u j vk − uk v j
)

.

(8.52)
The most general form of a differential 3-form, according to (8.51), may also be
written in the form

3
ω (u, v, w) = Ξ εi jk 3

ωi jk , (8.53)

where, knowing that εi jk 3
ωi jk = 3

ω123 − 3
ω132 − 3

ω213 + 3
ω231 + 3

ω312 − 3
ω321,

Ξ = det

⎡

⎣

u 1 v1 w1

u 2 v2 w2

u 3 v3 w3

⎤

⎦ . (8.54)

As an example, suppose one is given

1
ς = −d�1 + d�2 + d�3

1
π = 2d�1 − d�2 − d�3

1
ξ = d�1 + d�2 − 2d�3

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

and

u = g1 + g2 − g3
v = 3g1 + g2 + 2g3
w = g1 − g2 − g3

⎫

⎪

⎬

⎪

⎭

.

Then, by means of (8.50) and (8.52), the covector
3
ω = 1

ς ∧ 1
π ∧ 1

ξ renders

3
ω = det

⎡

⎣

−1 2 1
1 −1 1
1 −1 −2

⎤

⎦

︸ ︷︷ ︸

= 3

det

⎡

⎣

1 3 1
1 1 −1

−1 2 −1

⎤

⎦

︸ ︷︷ ︸

= 10

= 30 .

One should now realize that the space of differential 3-forms onE3
r takes the following

form
∧

3 E3
r = Span

{

d�1 ∧ d�2 ∧ d�3
}

, (8.55)

whose dimension, similarly to (8.30), is 1.
Hint: Notice that there will be no (nonzero) differential forms of degree greater than
3 on E3

r . Because one should choose more than 3 distinct integer values ranging from
1 and 3 to construct elementary differential forms.

At the end, a differential k-form is given by

k
ω (u1, . . . , uk) = k

ωi1···ik

(

�1, . . . , �n
) (

d�i1 ∧ · · · ∧ d�ik
)

(u1, . . . , uk) ,

(8.56)
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where
k
ω ∈∧ k En

r for which n denotes the space dimension and En
r presents a real

vector space of dimension n. In the above expression,

(

d�i1 ∧ · · · ∧ d�ik
)

(u1, . . . , uk) = det

⎡

⎢

⎣

d�i1 (u1) · · · d�i1 (uk)
...

...
...

d�ik (u1) · · · d�ik (uk)

⎤

⎥

⎦ . (8.57)

8.2.4 Hodge Star Operator

The Hodge star operator (or Hodge dual or star operator) converts a differential
form into its so-called dual form. This useful operator helps express the differential
operators of vector calculus (such as gradient and divergence) in the language of
exterior calculus, see Sect. 8.2.6.

The star operator ∗ is a linear map from
∧

k En
r to

∧

n−k En
r , that is,

∗ :
∧

k En
r →

∧

n−k En
r . (8.58)

In general, the Hodge star of a k-form
k
ω = k

ωi1···ik d�i1 ∧ · · · ∧ d�ik ∈∧ k En
r is

obtained by

∗ k
ω = k

ωi1···ik ∗ (d�i1 ∧ · · · ∧ d�ik
) ∈

∧

n−k En
r , (8.59)

where the action of the star operator on elementary differential forms is defined as

∗ (d�i1 ∧ · · · ∧ d�ik
) = J gi1 j1 · · · gik jk ε j1··· jk l1···ln−k

(n − k)! d�l1 ∧ · · · ∧ d�ln−k ,

(8.60)

where

J =
√

∣

∣det
[

gi j
]∣

∣ . ←− see (5.41) (8.61)

An elementary differential form, up to a sign, remains unchanged under the action
of double-star operator:

∗ ∗ (d�i1 ∧ · · · ∧ d�ik
) = ∗ (∗ (d�i1 ∧ · · · ∧ d�ik

))

= (−1)k(n−k) s
(

d�i1 ∧ · · · ∧ d�ik
)

, (8.62)
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where s denotes the sign of the determinant of the matrix of the inner product on the
vector space.5 For a three-dimensional Euclidean space, one will have

∗ (1) = J

3!εi jkd�i ∧ d� j ∧ d�k

= Jd�1 ∧ d�2 ∧ d�3 , (8.63a)

∗ (d�i
) = J

2
gilεl jkd� j ∧ d�k , (8.63b)

∗ (d�i ∧ d� j
) = Jgil g jmεlmkd�k , (8.63c)

∗ (d�i ∧ d� j ∧ d�k
) = Jgil g jm gknεlmn = J −1εi jk

or simply J −1 = ∗
(

d�1 ∧ d�2 ∧ d�3
)

. ←− see (5.53) (8.63d)

These relations truly satisfy (8.62)2 as follows:

∗ ∗ (1) = J ∗
(

d�1 ∧ d�2 ∧ d�3
)

= J J −1

= 1 , (8.64a)

∗ ∗
(

d�i
)

= J

2
gilεl jk ∗

(

d� j ∧ d�k
)

= J

2
gilεl jk Jg jr gksεrst d�t

= J 2

2
gli g jr gksεl jkεrst d�t = J 2

2
J −2εirsεrst d�t

= 1

2
εirsεtrsd�t = 1

2
2δi

t d�t

= d�i , (8.64b)

∗ ∗
(

d�i ∧ d� j
)

= Jgil g jmεlmk ∗
(

d�k
)

= Jgil g jmεlmk
J

2
gkr εrst d�s ∧ d�t

= J 2

2
gli gmj gkr εlmkεrst d�s ∧ d�t = J 2

2
J −2εi jr εrst d�s ∧ d�t

= 1

2
εi jr εstr d�s ∧ d�t = 1

2

(

δi
sδ

j
t − δi

t δ
j
s

)

d�s ∧ d�t

= 1

2
d�i ∧ d� j − 1

2
d� j ∧ d�i

= d�i ∧ d� j , (8.64c)

∗ ∗
(

d�1 ∧ d�2 ∧ d�3
)

= J −1 ∗ (1)

= d�1 ∧ d�2 ∧ d�3 , (8.64d)

where (1.54), (1.58a), (1.58b), (5.14), (5.53), (8.38a) and (8.62)1 have been used.
Thus, in three-dimensional Euclidean spaces, one will have

5 Note that the parity of the signature of the inner product on the vector space is always +1 for
Euclidean spaces while it is −1 in, for instance, the four-dimensional Minkowski space with the
Cartesian metric (8.70).
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∗ ∗ k
ω = k

ω ∈
∧

k E3
r . (8.65)

In the following, the goal is to express the Hodge star of elementary differential
forms, according to (8.63a)-(8.63d), in the well-known coordinate systems intro-
duced in this text, see Exercise5.1.

First, consider the Cartesian coordinates
(

�1 = x,�2 = y,�3 = z
)

for which
simply J = 1 and gi j = δi j . In this case,

∗ (1) = dx ∧ dy ∧ dz , (8.66a)

∗ (dx) = dy ∧ dz ,
∗ (dy) = dz ∧ dx

∗ (dz) = dx ∧ dy

}

, (8.66b)

∗ (dx ∧ dy) = dz ,
∗ (dy ∧ dz) = dx

∗ (dz ∧ dx) = dy

}

, (8.66c)

∗ (dx ∧ dy ∧ dz) = 1 . (8.66d)

Then, consider the cylindrical coordinates
(

�1 = r,�2 = θ,�3 = z
)

for which
J = r and the only nonzero elements of the contravariant metric coefficients are
g11 = 1, g22 = r−2 and g33 = 1. After some algebraic manipulations, one can arrive
at

∗ (1) = r dr ∧ dθ ∧ dz , (8.67a)

∗ (dr) = r dθ ∧ dz ,
∗ (dθ) = r−1dz ∧ dr

∗ (dz) = r dr ∧ dθ

}

, (8.67b)

∗ (dr ∧ dθ) = r−1dz ,
∗ (dθ ∧ dz) = r−1dr

∗ (dz ∧ dr) = r dθ

}

, (8.67c)

∗ (dr ∧ dθ ∧ dz) = r−1 . (8.67d)

In the spherical coordinates
(

�1 = r,�2 = θ,�3 = φ
)

for which J = r2 sin θ and
the only nonzero elements of

[

gi j
]

are g11 = 1, g22 = r−2, g33 = r−2 sin−2 θ , one
will finally have

∗ (1) = r2 sin θdr ∧ dθ ∧ dφ , (8.68a)

∗ (dr) = r2 sin θdθ ∧ dφ ,
∗ (dθ) = sin θdφ ∧ dr

∗ (dφ) = sin−1 θdr ∧ dθ

}

, (8.68b)

∗ (dr ∧ dθ) = sin θdφ ,
∗ (dθ ∧ dφ) = r−2 sin−1 θdr

∗ (dφ ∧ dr) = sin−1 θdθ

}

, (8.68c)
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∗ (dr ∧ dθ ∧ dφ) = r−2 sin−1 θ . (8.68d)

8.2.4.1 Hodge Star Operator in Minkowski Spacetime

Space and time are inextricably linked in the greatest 20th century development
in science, i.e. Einstein’s theory of relativity, which represents the world with four
dimensions (recall that space and time are separate entities in theNewtonian picture of
the world). TheMinkowski space (or Minkowski spacetime) is a combination of three
ordinaryEuclidean space dimensions andone timedimension into a four-dimensional
body. It is amathematical setting onwhich the special theory of relativity is properly
formulated. The goal here is to study the application of Hodge star operator in this
(four-dimensional real vector) space. To this end, consider Cartesian coordinates for
consistency.

To begin with, the spacetime coordinates are labeled according to

x0 = ct , x1 = x , x2 = y , x3 = z , (8.69)

where c denotes the speed of light. One can then denote the spacetime coordinates
of a point by xμ = (ct, x, y, z) and its space coordinates by xi = (x, y, z). Note that
in this context, Greek indices assume the values 0, 1, 2, 3 while Latin index letters
range over 1, 2, 3.

The Minkowski covariant metric coefficients is given by

[

gμν

] =

⎡

⎢

⎢

⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥

⎥

⎦

. (8.70)

Accordingly, the spacetime interval between two infinitesimally close points of the
coordinates xμ = (ct, x, y, z) and xμ + dxμ = (c t + c dt, x + dx, y + dy, z + dz)
takes the following form

ds2 = gμνdxμdxν = c2dt2 − dx2 − dy2 − dz2 . (8.71)

Notice that themetric signature (+ − −−) is adopted here, although this convention
is not unique and the opposite signature (− + ++) is also seen in the literature (for
both cases, s in (8.62) takes the value −1). Moreover, the introduced metric is not
positive definite and, therefore, an arbitrary vector inMinkowski spacetimemay have
zero length even if its components are all nonzero.

A differential k-form in this space is a function of (c t, x, y, z) and an elementary
4-form is of the following format

dx I = c dt ∧ dx ∧ dy ∧ dz . (8.72)
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In the following, the goal is to represent the Hodge dual of elementary differential
forms in this four-dimensional space.

First, the four elementary 1-forms under the action of the Hodge star operator
represent (see Exercise 8.4)

∗c dt = dx ∧ dy ∧ dz , (8.73a)

∗dx = c dt ∧ dy ∧ dz , (8.73b)

∗dy = c dt ∧ dz ∧ dx , (8.73c)

∗dz = c dt ∧ dx ∧ dy . (8.73d)

By applying the Hodge star operator to (six independent) elementary 2-forms in the
Minkowski space, one then arrives at

∗ (c dt ∧ dx) = −dy ∧ dz , (8.74a)

∗ (c dt ∧ dy) = −dz ∧ dx , (8.74b)

∗ (c dt ∧ dz) = −dx ∧ dy , (8.74c)

∗ (dx ∧ dy) = −dz ∧ c dt , (8.74d)

∗ (dx ∧ dz) = −c dt ∧ dy , (8.74e)

∗ (dy ∧ dz) = −dx ∧ c dt . (8.74f)

From (8.62) and (8.73a)-(8.73d), one immediately obtains

∗ (dx ∧ dy ∧ dz) = c dt , (8.75a)

∗ (c dt ∧ dy ∧ dz) = dx , (8.75b)

∗ (c dt ∧ dz ∧ dx) = dy , (8.75c)

∗ (c dt ∧ dx ∧ dy) = dz . (8.75d)

Finally, the Hodge dual of the elementary 4-form (8.72) renders

∗ (c dt ∧ dx ∧ dy ∧ dz) = −1 . (8.76)

8.2.5 Exterior Derivatives

So far, algebraic properties of differential forms have been introduced. The goal here
is to study differential calculus of these mathematical entities. This relies on the
powerful concept of exterior derivative described below.

In general, the exterior derivative of a k-form will produce a (k + 1)-form. Let
k
ς ∈∧ k E3

r be a differential k-form and
l
π ∈∧ l E3

r be a differential l-form. Further,
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let f, g ∈∧ 0 E3
r be two functions of the local curvilinear coordinates and α, β ∈ R

be two constants. The exterior derivative, denoted by d, then satisfies the following
properties

d
(

α
k
ς + β

l
π
)

= αd
k
ς + βd

l
π , (8.77a)

d
(

f
k
ς
)

= d f ∧ k
ς + f d

k
ς , (8.77b)

d ( f g) = (d f ) g + f dg . (8.77c)

8.2.5.1 Exterior Derivative of Differential 0-Form

The exterior derivative of a differential 0-form, according to (8.29), is given by

d
0
ω = ∂

0
ω

∂�i
d�i . (8.78)

In this expression, the differential 1-form d
0
ω may be identified as a covariant first-

order tensor decomposed with respect to the (differential 1-form) basis
{

d�i
}

by

means of the corresponding (differential 0-form) components ∂
0
ω/∂�i . Indeed, this

differential 1-form takes a vector u and returns a scalar. This is indicated by

(

d
0
ω
)

(u) = ∂
0
ω

∂�i
d�i (u) = ∂

0
ω

∂�i
u i . (8.79)

As an example, consider
0
ω = �1

(

�1 + �3 + 1
)− �2 whose exterior derivative

should be evaluated on u = g1 + �3g2 − 2g3. The result is

(

d
0
ω
)

(u) = ∂
0
ω

∂�i
u i

=
(

��2�1 + ���3 + 1
)

(1) + �����(−1)
(

�3) + �����(

�1) (−2) = 1 .

8.2.5.2 Exterior Derivative of Differential 1-Form

The exterior derivative of a differential 1-form, according to (8.31), is defined by

d
1
ω = d

1
ωi ∧ d�i = ∂

1
ωi

∂� j
d� j ∧ d�i = − ∂

1
ωi

∂� j
d�i ∧ d� j , (8.80)
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in alignment with (8.35) and (8.77b) taking into account (8.38a) and (8.78). This
differential 2-form may be realized as a covariant second-order tensor whose com-

ponents with respect to the basis
{

d�i ∧ d� j
}

are −∂
1
ωi/∂� j .

As a quick example, suppose one is given

1
ω = 2�1�2d�1 + �1�1d�3 .

Its exterior derivative then renders

d
1
ω = d

(

2�1�2
) ∧ d�1 + d

(

�1�1
) ∧ d�3

= ���������0
2�2d�1 ∧ d�1 + 2�1d�2 ∧ d�1 + 2�1d�1 ∧ d�3

= −2�1
(

d�1 ∧ d�2 − d�1 ∧ d�3
)

.

Using (8.41) , (8.42)2 and (8.43)2, the action of the introduced differential 2-form
(8.80)3 on the vectors u and v represents

(

d
1
ω
)

(u, v) = − ∂
1
ωi

∂� j

(

d�i ∧ d� j
)

(u, v)

= − ∂
1
ωi

∂� j

(

ui v j − u j vi
)

=
n=3
∑

r, s=1
r<s

−
⎛

⎝

∂
1
ωr

∂�s
− ∂

1
ωs

∂�r

⎞

⎠

(

ur vs − u s vr
)

. (8.81)

As an example, consider

1
ω = �1�2�3d�1 + �3d�2 + 2�2d�3 ,

whose exterior derivative is supposed to be calculated on

u = −g1 + g2 + g3 and v = g1 + 2g2 − g3 ,
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at a point P corresponding to
(

�1,�2,�3
) = (0.5,−0.5, 0.5). The result will be

[(

d
1
ω
)

(u, v)
]∣

∣

∣

P
=

n=3
∑

r, s=1
r<s

−
⎡

⎣

⎛

⎝

∂
1
ωr

∂�s
− ∂

1
ωs

∂�r

⎞

⎠

(

ur vs − u s vr
)

⎤

⎦

∣

∣

∣

∣

∣

∣

P

= −
⎡

⎣

⎛

⎝

∂
1
ω1

∂�2
− ∂

1
ω2

∂�1

⎞

⎠

(

u 1 v2 − u 2 v1
)

⎤

⎦

∣

∣

∣

∣

∣

∣

P
︸ ︷︷ ︸

=
(

�1�3 − 0
)∣

∣

∣

P
[(−1) (2) − (1) (1)] = (0.25) [−3] = −0.75

−
⎡

⎣

⎛

⎝

∂
1
ω1

∂�3
− ∂

1
ω3

∂�1

⎞

⎠

(

u 1 v3 − u 3 v1
)

⎤

⎦

∣

∣

∣

∣

∣

∣

P
︸ ︷︷ ︸

=
(

�1�2 − 0
)∣

∣

∣

P
[(−1) (−1) − (1) (1)] = (−0.25) [0] = 0

−
⎡

⎣

⎛

⎝

∂
1
ω2

∂�3
− ∂

1
ω3

∂�2

⎞

⎠

(

u 2 v3 − u 3 v2
)

⎤

⎦

∣

∣

∣

∣

∣

∣

P
︸ ︷︷ ︸

= (1 − 2) [(1) (−1) − (1) (2)] = (−1) [−3] = +3

= 0.75 − 0 − 3 = −2.25 .

The exterior derivative of the differential 1-form (8.78) vanishes:

d
(

d
0
ω
)

= ∂2 0
ω

∂� j∂�i
d� j ∧ d�i = 0

since ∂2
0
ω/
(

∂� j ∂�i
)

= ∂2
0
ω/
(

∂�i ∂� j
)

and d� j ∧ d�i = −d�i ∧ d� j , see (2.79h)

. (8.82)

This is a special case of what is known as Poincaré’s Lemma given in (8.88).

8.2.5.3 Exterior Derivative of Differential 2-Form

Guided by (8.78) and (8.80), the exterior derivative of a differential 2-form, according
to (8.41), is given by

d
2
ω = d

2
ωi j ∧ d�i ∧ d� j

= ∂
2
ωi j

∂�k
d�k ∧ d�i ∧ d� j

= ∂
2
ωi j

∂�k
d�i ∧ d� j ∧ d�k . (8.83)
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Guided by (8.51)-(8.54), this differential 3-form takes the three generic vectors u,v
and w and returns the scalar

(

d
2
ω
)

(u, v, w) = ∂
2
ωi j

∂�k

(

d�i ∧ d� j ∧ d�k
)

(u, v, w) = Ξ εi jk ∂
2
ωi j

∂�k
. (8.84)

As an example, the exterior derivative of

2
ω =

[

−�2 + (�3)3
]

d�1 ∧ d�2 + 2�1 (�2)2 d�2 ∧ d�3 + (�1)2 �2d�3 ∧ d�1 ,

is

d
2
ω =

[

−d�2 + 3
(

�3)2 d�3
]

∧ d�1 ∧ d�2

+
[

2
(

�2
)2

d�1 + 4�1�2d�2
]

∧ d�2 ∧ d�3

+
[

2�1�2d�1 + (�1
)2

d�2
]

∧ d�3 ∧ d�1

=
[

3
(

�3)2 + 2
(

�2)2 + (�1)2
]

d�1 ∧ d�2 ∧ d�3 ,

whose action on the given vectors

u = 2g1 + g2 + 2g3
v = g1 − 2g2 − g3
w = 3g1 − g2 − g3

⎫

⎪

⎬

⎪

⎭

,

at a point P corresponding to
(

�1,�2,�3
) = (0.75, 0.5, 0.25) renders

[(

d
2
ω

)

(u, v, w)

]∣

∣

∣

∣

P
= [3 (0.25)2 + 2 (0.5)2 + (0.75)2

]

︸ ︷︷ ︸

= 1.25

det

[

2 1 3
1 −2 −1
2 −1 −1

]

︸ ︷︷ ︸

= 10

= 12.5 .

In general, the exterior derivative of a k-form
k
ς = k

ς i1···ik
d�i1 ∧ · · · ∧ d�ik is given

by

d
k
ς = d

k
ς i1···ik

(

d�i1 ∧ · · · ∧ d�ik
)

= ∂
k
ς i1···ik

∂�m
d�m ∧ (d�i1 ∧ · · · ∧ d�ik

)

= (−1)k ∂
k
ς i1···ik

∂�m

(

d�i1 ∧ · · · ∧ d�ik
) ∧ d�m . (8.85)
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In a similar manner,

d
l
π = ∂

l
π j1··· jl

∂�m
d�m ∧ (d� j1 ∧ · · · ∧ d� jl

)

= (−1)l ∂
l
π j1··· jl

∂�m

(

d� j1 ∧ · · · ∧ d� jl
) ∧ d�m . (8.86)

It is then a simple exercise to show that

d
(

k
ς ∧ l

π
)

= d
k
ς ∧ l

π + (−1)k k
ς ∧ d

l
π

note that (8.77b) is a special case of this general identity

. (8.87)

One can finally extend the identity (8.82) to

d
(

d
k
ς
)

= ∂2 k
ς i1···ik

∂�n∂�m
d�n ∧ d�m ∧ (d�i1 ∧ · · · ∧ d�ik

) = 0

note that ∂2
k
ς i1···ik /

(

∂�n∂�m ) = ∂2
k
ς i1···ik /

(

∂�m∂�n) whereas d�n ∧ d�m = −d�m ∧ d�n

, (8.88)

called the Poincaré’s Lemma.

8.2.6 Hodge Star Operator in Exterior Calculus

Thegoal here is towrite down thewidely used differential operators of vector calculus
such as gradient and divergence in the language of exterior calculus. A key feature
of the relations developed here is their coordinate free representation.

To beginwith, consider a vector fieldu ∈ E3
r which is associatedwith a differential

1-form
1
ωu ∈∧ 1 E3

r in the following way6:

u = ui gi ←→ 1
ωu = gi j u j d�i

or u = gi j u j gi ←→ 1
ωu = ui d�i

. (8.89)

6 It is important to point out that in differential geometry the basis {gi } belongs to the so-called
tangent spacewhile the basis

{

gi
}

is inhabitant of what is known as the cotangent space, see the next
chapter for more details. With regard to this, the object ui is referred to as a vector and ui = gi j u j

renders its companion covector.
In a similar manner, (grad f )i = gi j

(

∂ f/∂� j
)

should be realized as a vector and consequently
(grad f )i = (∂ f/∂�i

)

demonstrates its companion covector, see (8.99). One should also consider
(curlu)i = −J −1εi jk g jl u l

∣

∣

k as a vector and therefore (curlu)i = −Jεi jk gkm u j
∣

∣

m presents its
dual vector, see (8.107) and (8.109).



8.2 Differential Forms 393

Indeed,
1
ωu = u · dx where dx = ∂x

∂�i
d�i = d�i gi . (8.90)

The expressions in (8.89) is usually demonstrated by using the musical operators
� and �. In this regard, the flat operator � acts on a vector field u to provide its

associated differential 1-form
1
ωu, that is,

1
ωu = (u)� = ui d�i . (8.91)

In a similar manner, the result of acting the sharp operator � on a differential 1-form
1
ωu is

(

1
ωu

)�

= u = u i gi . (8.92)

Consider now two vectors u = ui gi and v = v j g j whose dot product and cross
product are

u · v = u i gi j v j , u × v = (u × v)k gk = J u i v jεi jm gmkgk . (8.93)

In the context of exterior calculus, these algebraic relations are represented by

u · v = ∗
[

1
ωu ∧

(

∗ 1
ωv

)]

, u × v =
[

∗
(

1
ωu ∧ 1

ωv

)]�

, (8.94)

because

1
ωu ∧

(

∗ 1
ωv

)

= u i d�i ∧ ( vm ∗ (d�m
))

= J

2
ui vm gmnεnjkd�i ∧ d� j ∧ d�k , (8.95a)

∗
[

1
ωu ∧

(

∗ 1
ωv

)]

= 1

2
u i vm gmnεnjkε

i jk

= u i vm gmnδi
n

= u i vm gmi

= u i gi j v j , (8.95b)

and



394 8 Integral Theorems and Differential Forms

1
ωu ∧ 1

ωv = ui v j d�i ∧ d� j , (8.96a)

∗
(

1
ωu ∧ 1

ωv

)

= J u i v j g
il g jmεlmkd�k

= J −1 u i v jε
i jm gmkd�k , (8.96b)

[

∗
(

1
ωu ∧ 1

ωv

)]�

= J −1 u i v jε
i jmδk

mgk

= J −1 u i v jε
i jkgk

= J u i v jεi jm gmkgk , (8.96c)

where the expressions (1.58b)3, (5.14), (5.47), (5.53)1−2, (5.66a)–(5.66b), (8.59),
(8.63b)-(8.63d) and (8.91)-(8.93) have been used.

Consider now the scalar triple product of the three vectors u, v and w according
to

(u × v) · w = Jεi jk u i v j wk . (8.97)

It is then a simple exercise to see that

(u × v) · w = ∗
(

1
ωu ∧ 1

ωv ∧ 1
ωw

)

. (8.98)

8.2.6.1 Gradient

Recall from (7.68b)2 that the gradient of a scalar function f is

grad f = gi j ∂ f

∂� j
gi , (8.99)

while its exterior derivative, according to (8.78), renders

d f = ∂ f

∂�i
d�i . (8.100)

Thus, the vector field grad f and its corresponding differential 1-form
1
ωgrad f are

related by
1
ωgrad f = d f = (grad f )� , grad f = (d f )� . (8.101)

Indeed, one can establish the identity

d f = grad f · dx where dx = ∂x
∂�i

d�i = d�i gi . (8.102)
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Fig. 8.4 Gradient of a scalar function in the language of exterior calculus

See Fig. 8.4 for a geometrical interpretation. It is important to note that any scalar
function f of the local coordinates (or tensors) belongs to both R and

∧ 0 E3
r .

8.2.6.2 Divergence

Consider a vector field u = ui gi whose divergence, according to (7.81), is

divu = 1

J

∂

∂�i

[

J u i
]

.

One can then associate this vector field with the differential 1-form
1
ωu = u i d�i .

The goal here is to show that

div u = ∗d ∗ 1
ωu . (8.103)

For a geometrical interpretation of this expression, see Fig. 8.5. It can be verified in
three steps as follows. First,

∗ 1
ωu

from==========
(8.59) and (8.91)

u i ∗ (d�i
)

from=====
(8.63b)

J

2

(

ui g
il
)

εl jkd� j ∧ d�k

from==========
(5.47) and (5.66b)

J

2
ulεl jkd� j ∧ d�k . (8.104)

Then,

d ∗ 1
ωu

from==========
(8.83) and (8.104)

1

2

∂

∂�i

[

J ul
]

εl jkd�i ∧ d� j ∧ d�k . (8.105)
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Fig. 8.5 Divergence of a vector field in the language of exterior calculus

Finally,

∗d ∗ 1
ωu

from===========
(8.63d) and (8.105)

1

2J

∂

∂�i

[

J ul
]

εl jkε
i jk

from=====
(1.58b)

1

2J

∂

∂�i

[

J ul
]

2δi
l

from====
(5.14)

1

J

∂

∂�i

[

J u i
]

. (8.106)

8.2.6.3 Curl

Consider the curl of a vector field u according to

curlu = (curlu)i gi , (8.107)

with its corresponding differential 1-form

1
ωcurlu = (curlu)� = (curlu)i d�i , (8.108)

where, using (7.96)1 and (7.96)9,

(curlu)i = −J −1εi jk g jl u l
∣

∣

k , (curlu)i = −Jεi jk gkm u j
∣

∣

m

note that u j
∣

∣

∣

m
= ∂ u j /∂�m + Γ

j
mr ur , according to (7.25a)

. (8.109)

The object curlu from vector calculus can be expressed in the language of exterior
calculus via the following expression
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Fig. 8.6 Curl of a vector field in the language of exterior calculus

curlu =
(

∗d
1
ωu

)�

or
1
ωcurlu = (curlu)� = ∗d

1
ωu

. (8.110)

This result, shown schematically in Fig. 8.6, can be verified in three steps as follows.
First,

d
1
ωu

from==========
(8.80) and (8.91)

∂ u n

∂�m
d�m ∧ d�n . (8.111)

Then,

∗d
1
ωu

from==========
(8.59) and (8.111)

∂ u n

∂�m
∗ (d�m ∧ d�n

)

from===========
(5.66a) and (8.63c)

∂
(

gnr ur
)

∂�m
Jgmk gnjεk ji d�i

from the product rule===============
of differentiation and (7.13)

[

Γnmr ur + Γrmn ur + gnr
∂ ur

∂�m

]

Jgmk gnjεk ji d�i

from==============
(5.39), (5.51) and (7.10)

0 + JΓ j
rm ur gmkεk ji d�i + J

∂ ur

∂�m
δ j

r gmkεk ji d�i

from=============
(1.54), (5.14) and (7.7)

−Jεi jk gmk

(

∂ u j

∂�m
+ Γ j

mr ur

)

d�i

from==========
(5.47) and (7.25a)

−Jεi jk gkm u j
∣

∣

m d�i , (8.112)

where the identity
Γnmr gmk gnjεk ji = 0 , (8.113)
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has been used owing to

Γnmr gmk gnjεk ji
by renaming===========

the dummy indices
Γmnr gnk gmjεk ji

by renaming===========
the dummy indices

Γmnr gnj gmkε jki

from==========
(1.54) and (7.11)

−Γnmr gnj gmkεk ji .

Finally,

(

∗d
1
ωu

)� from==========
(8.92) and (8.112)

−J
(

gisεs jk gkm
)

u j
∣

∣

m gi

from==========
(5.47) and (5.53)

−J
(

J −2εi tm gt j
)

u j
∣

∣

m gi

by renaming===========
the dummy indices

−J −1εi jk g jl u l
∣

∣

k gi . (8.114)

It is not then difficult to see that

∗d
1
ωu = curlu · dx where dx = ∂x

∂�i
d�i = d�i gi . (8.115)

It is worthwhile to point out that the identities div curlu = 0 and curl grad f = 0,
respectively given in (7.123b) and (7.123c), can also be inferred by using the powerful
tool of exterior calculus, see Figs. 8.7 and 8.8. Indeed, div curlu = 0 corresponds to

dd
1
ωu = 0 because

div curlu from=====
(8.103)

∗d ∗ 1
ωcurlu

from=====
(8.108)

∗d ∗ (curlu)�

Fig. 8.7 Divergence of curl of a vector field in the language of exterior calculus
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Fig. 8.8 Curl of gradient of a scalar field in the language of exterior calculus

from=====
(8.110)

∗d ∗ ∗d
1
ωu

in========
light of (8.62)

∗dd
1
ωu

in========
light of (8.88)

∗0
trivially====== 0 . (8.116)

And, curl grad f = 0 corresponds to dd f = 0 since

curl grad f
from=====
(8.110)

(

∗d
1
ωgrad f

)�

from=====
(8.101)

(∗dd f )�

from====
(8.82)

(∗0)�
trivially====== 0 . (8.117)

8.2.6.4 Laplacian

The Laplacian of a scalar function f , according to (7.109a), is given by

∇2 f = gi j

[

∂2 f

∂�i∂� j
− Γ k

i j

∂ f

∂�k

]

.

As schematically illustrated in Fig. 8.9, the object ∇2 f in the language of exterior
calculus represents

∇2 f = ∗d ∗ d f . (8.118)

This can be verified in three steps as follows. First,
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Fig. 8.9 Laplacian of a scalar field in the language of exterior calculus

∗d f
from==========

(8.59) and (8.78)

∂ f

∂�m
∗ (d�m

)

from=====
(8.63b)

J

2

∂ f

∂�m
gmnεnjkd� j ∧ d�k . (8.119)

Then,

d ∗ d f
from==========

(8.83) and (8.119)

1

2

∂

∂�i

[

J
∂ f

∂�m
gmn

]

εnjkd�i ∧ d� j ∧ d�k . (8.120)

Finally,

∗d ∗ d f
from==========

(8.59) and (8.120)

1

2

∂

∂�i

[

J
∂ f

∂�m
gmn

]

εnjk ∗ (d�i ∧ d� j ∧ d�k
)

from=====
(8.63d)

1

2J

∂

∂�i

[

J
∂ f

∂�m
gmn

]

εnjkε
i jk

from the product rule================
of differentiation and (1.58b)

[

∂ J

J∂�i

∂ f

∂�m
gmn + ∂2 f

∂�i∂�m
gmn + ∂ f

∂�m

∂gmn

∂�i

]

δi
n

from (5.14)==========
and (7.16)-(7.17) ������

Γ k
ki

∂ f

∂�m
gmi + ∂2 f

∂�i∂�m
gmi − Γ m

il

∂ f

∂�m
gli −

�����
Γ i

il

∂ f

∂�m
gml

by renaming===========
the dummy indices

gi j

[

∂2 f

∂�i∂� j
− Γ k

i j

∂ f

∂�k

]

. (8.121)

8.2.7 Differential Forms Integration

The basic idea here is to integrate a differential k-form
k
ω over an oriented domain�k

which is basically a k-dimensional subspace of the n-dimensional space. The goal is
thus to consistently define the differential form integral
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∫

�k

k
ω =

∫

�k

k
ωi1···ik

(

�1, . . . , �n
)

d�i1 ∧ · · · ∧ d�ik .

This can be done by using the parametrization

�1 = �1
(

t1, . . . , t k
)

...
...

�n = �n
(

t1, . . . , t k
)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (8.122)

which helps write
x = x̂

(

�1, . . . , �n
) = x̄

(

t1, . . . , t k
)

, (8.123)

and, accordingly,

a1 = ∂ x̄
∂t1

=
n
∑

s=1

∂�s

∂t1
∂ x̂
∂�s

=
n
∑

s=1

∂�s

∂t1
gs

...
...

ak = ∂ x̄
∂t k

=
n
∑

s=1

∂�s

∂t k

∂ x̂
∂�s

=
n
∑

s=1

∂�s

∂t k
gs

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (8.124)

Hint: It is assumed that (8.122) is an orientation-preserving parametrization. Orien-
tation of the object �k along with its consistent parametrization is an enrich topic
which is well studied within the context of differential geometry of manifolds.

Now, the integral of
k
ω over �k is defined by

∫

�k

k
ω =

∫

dt1 · · ·
∫

dtk k
ωi1···ik

(

�1, . . . , �n
)

d�i1 ∧ · · · ∧ d�ik (a1, . . . , ak) .

(8.125)
Using (8.32)4, (8.57) and (8.124), this takes the form

∫

�k

k
ω =

∫

dt1 · · ·
∫

dtk k
ωi1···ik

(

�1, . . . , �n
)

det

⎡

⎢

⎣

∂�i1

∂t1 · · · ∂�i1

∂t k

...
...

...
∂�ik

∂t1 · · · ∂�ik

∂t k

⎤

⎥

⎦
. (8.126)

In the following, some examples are provided in order to illustrate this expression.

The first example regards a 1-form
1
ω = ydx + xdy + dz to be integrated over a

helix parametrized by
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x = x̄ (t) = cos t êx + sin t êy + t êz , 0 ≤ t ≤ 2π , ←− see Fig. 9.17

and oriented by the tangent vector [ t (x, y, z) ] = [−y x 1
]T
. The tangent vector

to this space curve,

at = dx̄
dt

= − sin t êx + cos t êy + êz ,

helps obtain the integrand

1
ω (at ) = ydx (at ) + xdy (at ) + dz (at )

= sin t (− sin t) + cos t (cos t) + 1

= 2 − 2 sin2 t ,

and, consequently,
∫

�1

1
ω =

2π
∫

0

(

2 − 2 sin2 t
)

dt = 2π .

It is important to note that the above parametrization is orientation-preserving due
to

t · at > 0 .

As another example, consider a 2-form
2
ω = −dx ∧ (2dy + dz) to be integrated

over the parametrized surface

x = x̄
(

t1, t2
) = 2t2 cos t1 êx + 2t2 sin t1 êy

+
[

(

2t2 cos t1
)2 + 2

(

2t2 sin t1
)2
]

êz , 0 ≤ t1 ≤ 2π , 0 ≤ t2 ≤ 1 ,

with the unit normal oriented outwards (see Figs. 8.2 and 9.8). By using the tangent
vectors to this curved surface,

a1 = ∂ x̄
∂t1

= −2t2 sin t1 êx + 2t2 cos t1 êy + 8
(

t2
)2
cos t1 sin t1 êz ,

a2 = ∂ x̄
∂t2

= 2 cos t1 êx + 2 sin t1 êy + 8t2
(

1 + sin2 t1
)

êz ,

one can evaluate the integrand
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2
ω (a1, a2) = −2dx ∧ dy (a1, a2) − dx ∧ dz (a1, a2)

= 8t2 −
[

−32
(

t2
)2
sin t1

]

= 8t2 + 32
(

t2
)2
sin t1 ,

and, accordingly,

∫

�2

2
ω =

2π
∫

0

dt1

⎧

⎨

⎩

1
∫

0

[

8t2 + 32
(

t2
)2
sin t1

]

dt2

⎫

⎬

⎭

= 8π .

Notice that the above parametrization is orientation-preserving owing to

det
[

n̂ a1 a2
]

> 0 where n̂ = a1 × a2
|a1 × a2| .

The last example here regards a 3-form
3
ω = 2z2dx ∧ dy ∧ dz to be integrated

over a three-dimensional region bounded by the solid torus

x = x̄
(

t1, t2, t3
) = (2 + t1 cos t3

)

cos t2 êx

+ (2 + t1 cos t3
)

sin t2 êy

+ t1 sin t3 êz , 0 ≤ t1 ≤ 1 , 0 ≤ t2, t3 ≤ 2π , ←− see Fig. 9.3

with the standard orientation. Introducing the tangent vectors

a1 = ∂ x̄
∂t1

= cos t2 cos t3 êx + sin t2 cos t3 êy + sin t3 êz ,

a2 = ∂ x̄
∂t2

= − (2 + t1 cos t3
)

sin t2 êx + (2 + t1 cos t3
)

cos t2 êy ,

a3 = ∂ x̄
∂t2

= −t1 cos t2 sin t3 êx − t1 sin t2 sin t3 êy + t1 cos t3 êz ,

in the integrand

3
ω (a1, a2, a2) = 2z2dx ∧ dy ∧ dz (a1, a2, a3)

= 2
[

t1 sin t3
]2
det
[

a1 a2 a3
]

= 2
(

t1
)3 (

2 + t1 cos t3
) (

sin t3
)2

,

helps compute
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∫

�3

3
ω =

1
∫

0

dt1

⎛

⎝

2π
∫

0

dt2

⎧

⎨

⎩

2π
∫

0

[

2
(

t1
)3 (

2 + t1 cos t3
) (

sin t3
)2
]

dt3

⎫

⎬

⎭

⎞

⎠

= +2π2 .

Note that the introduced parametrization preserves orientation because

det
[

a1 a2 a3
]

> 0 .

Consider again that solid torus with parametrization of the form

x = x̄
(

t1, t2, t3
) = (2 + t1 cos t2

)

cos t3 êx

+ (2 + t1 cos t2
)

sin t3 êy

+ t1 sin t2 êz , 0 ≤ t1 ≤ 1 , 0 ≤ t2, t3 ≤ 2π ,

for which

a1 = ∂ x̄
∂t1

= cos t2 cos t3 êx + cos t2 sin t3 êy + sin t2 êz ,

a2 = ∂ x̄
∂t2

= −t1 sin t2 cos t3 êx − t1 sin t2 sin t3 êy + t1 cos t2 êz ,

a3 = ∂ x̄
∂t3

= − (2 + t1 cos t2
)

sin t3 êx + (2 + t1 cos t2
)

cos t3 êy .

Now,

3
ω (a1, a2, a2) = 2z2dx ∧ dy ∧ dz (a1, a2, a3)

= 2
[

t1 sin t2
]2
det
[

a1 a2 a3
]

= −2
(

t1
)3 (

2 + t1 cos t2
) (

sin t2
)2

,

and, consequently,

∫

�3

3
ω =

1
∫

0

dt1

⎛

⎝

2π
∫

0

dt2

⎧

⎨

⎩

2π
∫

0

[

−2
(

t1
)3 (

2 + t1 cos t2
) (

sin t2
)2
]

dt3

⎫

⎬

⎭

⎞

⎠

= −2π2 .

Notice that the above parametrization is orientation-reversing, that is,

det
[

a1 a2 a3
]

< 0 .
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This example shows that the parametrization of any object in this context should be
chosen with care. The results +2π2 and −2π2 here are in alignment with the basic
property

∫ b

a
f (x)dx = −

∫ a

b
f (x)dx ,

of the definite integral in one dimension.

8.2.8 Generalized Stokes’ Theorem

The generalized Stokes’ theorem needs to be recognized as one of the most pro-
found theorem in modern mathematics. This powerful theorem manifests itself as
the beauty, elegance and utility of mathematics. It is basically the essence of calculus
which holds true for any dimension of interest. The fundamental theorem of calculus
in one dimension, Green’s theorem in two dimensions and divergence theorem in
three dimensions are just the well-known examples of this sophisticated theorem in
lower dimensions.

The generalized Stokes’ theorem reads

∫

�k

d
k−1
ω =

∫

∂�k

k−1
ω , (8.127)

(the proof can be found, e.g., in Spivak [2]) where ∂�k denotes the boundary of
�k . Note that d and ∂ are opposite to one another. This means that removing the
exterior derivative is the same as taking the boundary and removing the boundary
amounts to taking the exterior derivative. One should also note that d is an operator
which characterizes how an object changes locallywhile ∂ is a global operator which
identifies the exterior of a shape.

In the following, it will be demonstrated that how the well-known integral theo-
rems in a three-dimensional space can be written in the unified format of the gener-
alized Stokes’ theorem.

To begin with, consider a space curve C parametrized by

x = x̂
(

�1 (t) ,�2 (t) ,�3 (t)
) = x c (t) , a ≤ t ≤ b . ←− see (9.278)

Consequently, the tangent vector to this curve takes the form

at = dx c

dt
= d� j

dt
g j .
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The gradient theorem for line integrals is now given by

∫

C

grad f · dx = f (b) − f (a)

this is an extension of the fundamental theorem of calculus to any plane or space curve

, (8.128)

or
∫

C

grad f · dx

i.e. sum of infinitesimal changes on inside

=
∫

∂C

f

i.e. total change on outside

. (8.129)

Let u = ui gi be a vector and
1
ωu = u i gi j d� j be its corresponding covector. Then,

the component of u in the direction of at renders

u · at = ( ui gi
) ·
(

d� j

dt
g j

)

= u i gi j
d� j

dt
.

As a result, one can establish the identity

∫

C

u · dx =
∫

C

u · at dt =
∫

C

u i gi j
d� j

dt
dt =

∫

C

u i gi j d� j

=
∫

C

1
ωu , (8.130)

in alignment with (8.90). Let u = grad f . From (8.101)1 and (8.130)4, it then follows
that

∫

C

grad f · dx =
∫

C

1
ωgrad f =

∫

C

d f . (8.131)

Using (8.129) and (8.131)2, one immediately obtains

∫

C

d f =
∫

∂C

f , (8.132)

or, by setting C = �1 and f = 0
ω,

∫

�1

d
0
ω =

∫

∂�1

0
ω . (8.133)
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Next, suppose one is given a parametrized surface A according to

x = x̂
(

�1
(

t1, t2
)

,�2
(

t1, t2
)

,�3
(

t1, t2
)) = x̂ s

(

t1, t2
)

, ←− see (9.1)

with the following tangent vectors

a1 = ∂ x̂ s

∂t1
= ∂� j

∂t1
g j , a2 = ∂ x̂ s

∂t2
= ∂�k

∂t2
gk ,

and the surface element

n̂ d A = (a1 × a2) dt1dt2 ←− see (9.56) and (9.57)

= (g j × gk
) ∂� j

∂t1
∂�k

∂t2
dt1dt2

= Jε jkl
∂� j

∂t1
∂�k

∂t2
dt1dt2gl . ←− see (5.33)

Let u = u i gi be a vector corresponding to the covector
1
ωu = ui gi j d� j . Then,

introducing a1 and a2 into ∗ 1
ωu yields

∗ 1
ωu (a1, a2) = 1

2
J u iεi jkd� j ∧ d�k (a1, a2)

︸ ︷︷ ︸

= 1
2 J ui εi jk

(

∂� j

∂t1
∂�k

∂t2
− ∂�k

∂t1
∂� j

∂t2

)

= 1
2 J ui εi jk

∂� j

∂t1
∂�k

∂t2
− 1

2 J ui εik j
∂� j

∂t1
∂�k

∂t2

= J u iεi jk
∂� j

∂t1
∂�k

∂t2
,

where (1.54), (8.41)-(8.42) and (8.104)3 have been used. With the aid of (8.125), the
integral of this differential 2-form takes the following form

∫

A

∗ 1
ωu =

∫ ∫

J u iεi jk
∂� j

∂t1
∂�k

∂t2
dt1dt2 .

And this helps establish

∫

A

u · n̂ d A =
∫

A

∗ 1
ωu

knowing that u · n̂ d A =
(

ui gi

)

·
(

Jε jkl
∂� j

∂t1
∂�k

∂t2
dt1dt2gl

)

= J ui εi jk
∂� j

∂t1
∂�k

∂t2
dt1dt2

. (8.134)

Let u = curlv. Making use of (8.65), (8.110)3 and (8.134)1, one then obtains
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∫

A

curlv · n̂ d A =
∫

A

∗ 1
ωcurlv

=
∫

A

∗ ∗ d
1
ωv

=
∫

A

d
1
ωv . (8.135)

By virtue of (8.130)4 and (8.135)3, the Stokes’ theorem (8.18)1 can now be rewritten
as

∫

A

d
1
ωv =

∫

A

curlv · n̂ d A

=
∫

∂ A

v · dx

=
∫

∂ A

1
ωv , (8.136)

or, by setting A = �2 and
1
ωv = 1

ω,

∫

�2

d
1
ω =

∫

∂�2

1
ω . (8.137)

At the end, the goal is to translate the divergence theorem (8.1)1 in the language
of differential forms. Using (5.113)2, (8.63a)2, (8.65), (8.103) and (8.126), one can
arrive at

∫

V

divu dV =
∫

V

∗divu =
∫

V

d ∗ 1
ωu . (8.138)

By means of (8.134)1 and (8.138)2, the divergence theorem
∫

V divu dV = ∫A u ·
n̂ d A can then be rephrased as

∫

V

d ∗ 1
ωu =

∫

∂V

∗ 1
ωu , (8.139)
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or, by setting V = �3 and ∗ 1
ωu = 2

ω,

∫

�3

d
2
ω =

∫

∂�3

2
ω . (8.140)

8.3 Exercises

Exercise 8.1

Show that the integral over a closed surface A of a surface vector dA vanishes, that
is,

∫

A

dA = 0 . (8.141)

Solution. First, this important relationwill be verified for an infinitesimal tetrahedron
as illustrated in Fig. 8.10. Following a simple argument then reveals that this result
also holds true for an arbitrary closed surface. According to Fig. 8.10 and guided by
(5.115b), the surface vector dA = n̂ d A acting along the inclined plane renders

n̂ d A = 1

2
dx• × dx� ,

Fig. 8.10 Infinitesimal tetrahedron with edge lengths dx1, dx2, dx3 and outwardly oriented unit
vectors on its faces in a right-handed Cartesian coordinate frame
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and its value equals the half of the area of the parallelogram constructed by the
infinitesimal vectors dx• and dx�. Having inmind the bilinearity of the cross product,
substituting dx• = −dx3ê3 + dx2ê2 and dx� = −dx3ê3 − dx1ê1 into this relation
provides

n̂ d A = 1

2
dx1dx3
︸ ︷︷ ︸

= d A(2)

ê2 − 1

2
dx2dx3
︸ ︷︷ ︸

= d A(1)

ê1 + 1

2
dx2dx1
︸ ︷︷ ︸

= d A(3)

ê3 ,

where the expressions (1.52) and (1.64) have been used. Finally, considering n̂(1) =
+̂e1, n̂(2) = −̂e2, n̂(3) = −̂e3 in the above relation yields

n̂ d A + d A(1)n̂(1) + d A(2)n̂(2) + d A(3)n̂(3) = 0 .

This result states that the sum of all surface vectors over the entire surface of an
infinitesimal tetrahedron equals the zero vector.

Given a closed surface A. Suppose that the region enclosed by A is split into
infinitesimal tetrahedrons. The fact that the contribution of all inner surfaces that are
shared between infinitesimal volume elements is canceled during integration implies
(8.141).

Notice that by choosing φ = 1 in (8.7), one can simply arrive at the same result.

Exercise 8.2

Letφ, u, v andA respectively be smooth scalar, vector, vector and tenor fields defined
on a closed surface A bounding a domain V . Further, let n̂ be the outward unit normal
field acting along that surface. Verify that

∫

A

φu · n̂ d A =
∫

V

div (φu) dV , (8.142a)

∫

A

v (u · n̂) d A =
∫

V

div (v ⊗ u) dV , (8.142b)

∫

A

φAn̂ d A =
∫

V

div (φA) dV , (8.142c)

∫

A

n̂ × u d A =
∫

V

curlu dV , (8.142d)

∫

A

n̂ · curlu d A = 0 , (8.142e)
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∫

A

u ⊗ n̂ d A =
∫

V

gradu dV , (8.142f)

∫

A

u · An̂ d A =
∫

V

div
(

ATu
)

dV , (8.142g)

∫

A

An̂ ⊗ u d A =
∫

V

[

divA ⊗ u + AgradTu
]

dV , (8.142h)

∫

A

u × An̂ d A =
∫

V

[

E : (gradu) AT + u × divA
]

dV , (8.142i)

where E = εi jk êi ⊗ ê j ⊗ êk in the last relation is the permutation tensor introduced
in (3.17).

Solution. In this exercise, all desired identities will be verified in indicial nota-
tion. Notice that the integral theorems, introduced in (8.1), are entirely coordinate
free. Thus, the Cartesian form of components will be utilized here for convenience.
However, the interested reader can prove any of these expressions by means of the
curvilinear forms of components.
The expression (8.142a): Using (1.38)7, (7.78) and (8.1)2,

∫

A

φu · n̂ d A =
∫

A

φui n̂i d A

=
∫

V

∂ (φui )

∂xi
dV

=
∫

V

div (φu) dV .

The expression (8.142b): Using (1.38)7, (2.24)4, (7.83)2 and (8.8)2,

∫

A

(v (u · n̂))i d A =
∫

A

vi
(

u j n̂ j
)

d A

=
∫

V

∂
(

vi u j
)

∂x j
dV

=
∫

V

∂ (v ⊗ u)i j

∂x j
dV

=
∫

V

(div (v ⊗ u))i dV .



412 8 Integral Theorems and Differential Forms

The expression (8.142c): Using (2.22)3, (7.83)2 and (8.8)2,

∫

A

(φAn̂)i d A =
∫

A

φ Ai j n̂ j d A

=
∫

V

∂
(

φ Ai j
)

∂x j
dV

=
∫

V

(div (φA))i dV .

The expression (8.142d): Using (1.54), (1.67)6, (7.91) and (8.1)2,

∫

A

( n̂ × u)i d A =
∫

A

εi jk n̂ j uk d A

=
∫

V

∂
(

εi jkuk
)

∂x j
dV

=
∫

V

−εik j
∂uk

∂x j
dV

=
∫

V

(curlu)i dV .

The expression (8.142e): Using (1.38)7, (1.54), (7.91) and (8.1)2,

∫

A

n̂ · curlu d A =
∫

A

n̂i (curlu)i d A

=
∫

A

(

−εi jk
∂u j

∂xk

)

n̂i d A

=
∫

V

∂

∂xi

(

−εi jk
∂u j

∂xk

)

dV

=
∫

V

ε j ik
∂2u j

∂xi∂xk
dV

= 0 ,

taking into consideration the fact that ε j ik = −ε jki and that ∂2u j/∂xi∂xk =
∂2u j/∂xk∂xi , see (2.79h).
The expression (8.142f): Using (2.24)4, (7.70)2 and (8.7)2,
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∫

A

(u ⊗ n̂)i j d A =
∫

A

ui n̂ j d A

=
∫

V

∂ui

∂x j
dV

=
∫

V

(gradu)i j dV .

The expression (8.142g): Using (1.38)7, (2.22)3, (2.49), (7.78) and (8.1)2,

∫

A

u · An̂ d A =
∫

A

(u)i (An̂)i d A

=
∫

A

ui Ai j n̂ j d A

=
∫

V

∂
(

ui Ai j
)

∂x j
dV

=
∫

V

∂
(

AT
j i ui

)

∂x j
dV

=
∫

V

∂
(

ATu
)

j

∂x j
dV

=
∫

V

div
(

ATu
)

dV .

The expression (8.142h): Using (2.22)3, (2.24)4, (2.26), (2.49), (7.70)2, (7.83)2 and
(8.8)2 along with the product rule of differentiation,

∫

A

(An̂ ⊗ u)i j d A =
∫

A

(An̂)i (u) j d A

=
∫

A

Aik n̂ku j d A

=
∫

V

∂
(

Aiku j
)

∂xk
dV

=
∫

V

[

∂ Aik

∂xk
u j + Aik

∂u j

∂xk

]

dV
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=
∫

V

[

(divA)i (u) j + (A)ik (gradu) jk

]

dV

=
∫

V

(

divA ⊗ u + AgradTu
)

i j dV .

The expression (8.142i): Using (1.67)6, (2.22)3, (2.26), (2.49), (3.16b), (3.17),
(7.70)2, (7.83)2 and (8.8)2 along with the product rule of differentiation,

∫

A

(u × An̂)i d A =
∫

A

εi jk (u) j (An̂)k d A

=
∫

A

εi jku j Akl n̂l d A

=
∫

V

∂
(

εi jku j Akl
)

∂xl
dV

=
∫

V

[

εi jk
∂u j

∂xl
Akl + εi jku j

∂ Akl

∂xl

]

dV

=
∫

V

[

εi jk (gradu) jl

(

AT)

lk + εi jk (u) j (divA)k

]

dV

=
∫

V

(

E : (gradu) AT + u × divA
)

i dV .

Exercise 8.3

Let A be an open surface bounded by the closed curve C and positively oriented with
the outward unit normal field n̂. Further, let u, v be two smooth vector fields and
A be a smooth tensor field. Then, use the Stokes’ theorem to verify the following
identities

∫

C
(u · v) dx =

∫

A

[

n̂ × (gradTu
)

v + n̂ × (gradTv
)

u
]

d A , (8.143a)

∫

C
(u ⊗ v) dx =

∫

A

[

(gradu) (v × n̂) + ( n̂ · curlv) u
]

d A , (8.143b)

∫

C

u × dx =
∫

A

[

(divu) n̂ − (gradTu
)

n̂
]

d A , (8.143c)
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∫

C
( n̂ × u) · dx =

∫

A

[

(I − n̂ ⊗ n̂ ) : gradu − (u · n̂) (I : grad n̂ )
]

d A . (8.143d)

Next, let A be a closed surface without any boundary curve. Then, use (8.143d) to
verify that

∫

A

κ̄ n̂ d A = 0 , (8.144a)

∫

A

κ̄ (r̄ · n̂) d A = 2A , (8.144b)

∫

A

κ̄ (r̄ × n̂) d A = 0 , (8.144c)

∫

A

κ̄ (r̄ · r̄) n̂ d A =
∫

A

2 [I − n̂ ⊗ n̂ ] r̄ d A , (8.144d)

∫

A

κ̄ (r̄ · n̂) r̄ d A =
∫

A

[3I − n̂ ⊗ n̂ ] r̄ d A , (8.144e)

where
κ̄ = div n̂ , r̄ = x − o . (8.145)

Solution. Here, similarly to the previous exercise, the identities (8.143a)-(8.143d)
are verified in indicial notation using the Cartesian components of tensorial field
variables for simplicity. It will be shown that the results (8.144a)-(8.144e) can be
deduced from (8.143d) by taking u as some appropriate linear functions of n̂ when
the surface is closed.

The expression (8.143a): By means of (1.38)7, (1.67)6, (2.22)3, (2.49), (7.70)2 and
(8.23)2 along with the product rule of differentiation,

∫

C
(u · v) (dx)i =

∫

C

ulvldxi

=
∫

A

εi jk n̂ j
∂ (ulvl)

∂xk
d A

=
∫

A

[

εi jk ( n̂) j (gradu)lk (v)l + εi jk ( n̂) j (u)l (gradv)lk

]

d A

=
∫

A

(

n̂ × [gradTu
]

v + n̂ × [gradTv
]

u
)

i d A .
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The expression (8.143b): Bymeans of (1.54), (1.67)6, (2.22)3, (2.24)4, (7.70)2, (7.91)
and (8.24)2 along with the product rule of differentiation,

∫

C
(u ⊗ v)i j (dx) j =

∫

C

ui v j dx j

=
∫

A

ε jlk
∂ (ui vk)

∂xl
n̂ j d A

=
∫

A

[

∂ui

∂xl

(

εlk j vk n̂ j
)+ n̂ j

(

−ε jkl
∂vk

∂xl

)

ui

]

d A

=
∫

A

{

(gradu)il (v × n̂ )l + [( n̂) j (curlv) j

]

(u)i

}

d A .

The expression (8.143c): Bymeans of (1.36), (1.58a), (1.67)6, (2.22)3, (2.49), (7.70)2,
(7.78) and (8.24)2,

∫

C
(u × dx)i =

∫

C

εim j umdx j

=
∫

A

ε jlk
∂ (εimkum)

∂xl
n̂ j d A

=
∫

A

[

(

δ j iδlm − δ jmδli
) ∂um

∂xl
n̂ j

]

d A

=
∫

A

[

∂um

∂xm
n̂i − ∂u j

∂xi
n̂ j

]

d A

=
∫

A

[

(divu) ( n̂)i − (gradu) j i ( n̂) j

]

d A

=
∫

A

[

(divu) ( n̂)i − (gradTu
)

i j ( n̂) j

]

d A .

The expression (8.143d): By means of (1.38)7, (2.24)4, (2.75)4, (7.77)1, (7.122k)1
and (8.18)1,
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∫

C
( n̂ × u) · dx =

∫

A

curl ( n̂ × u) · n̂ d A

=
∫

A

(curl ( n̂ × u))i ( n̂)i d A

=
∫

A

[

( n̂)i ( n̂)i divu − (u)i ( n̂)i div̂n

+ (grad n̂ )i j (u) j ( n̂)i − (gradu)i j ( n̂) j ( n̂)i

]

d A

=
∫

A

[

(I − n̂ ⊗ n̂ )i j (gradu)i j − (u)k ( n̂)k (I)i j (grad n̂ )i j

]

d A ,

taking into consideration n̂ · n̂ = 1 and, consequently,

grad ( n̂ · n̂ ) = 2̂n (grad n̂ ) = 0 ⇒ n̂ (grad n̂ ) = 0 or
(

gradT n̂
)

n̂ = 0 .

(8.146)

The expressions (8.144a)-(8.144e): Let u be a linear function of n̂ according to
u = n̂ × w. The Stokes’ theorem (8.18) then takes the following form

∫

C
( n̂ × w) · dx =

∫

A

curl ( n̂ × w) · n̂ d A . (8.147)

Consider ( n̂ × w) · dx = w · (dx × n̂ ) according to (1.73)2. Then, using (8.143d),
the above expression can be rewritten as

∫

C

w · (dx × n̂ ) =
∫

A

[

(I − n̂ ⊗ n̂ ) : gradw − (w · n̂) (I : grad n̂ )
]

d A . (8.148)

Now, let w be an arbitrary constant vector c with grad c = O. For a closed surface,
one then arrives at the desired result (8.144a), knowing that I : grad n̂ = div n̂ and
(I − n̂ ⊗ n̂ ) : O = 0.

Finally, the desired identities (8.144b)-(8.144e) are followed from (8.148) in a
straightforward manner by choosing

w = r̄ , w = c × r̄ , w = (r̄ · r̄) c , w = (r̄ ⊗ r̄) c ,

respectively.
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Exercise 8.4

Verify (8.73c), (8.74a), (8.75b) and (8.76).

Solution. First, consider (8.69) and (8.70). Then, in (8.60), consider

J =
√

∣

∣det
[

gμν

]∣

∣ = +1 , ε0123 = +1 ,

and

[

gμν
] = [ gμν

]−1 =

⎡

⎢

⎢

⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥

⎥

⎦

. (8.149)

The desired relations are now verified step by step in the following.

The expression (8.73c):

∗dx2 = g22ε2i jk

(4 − 1)! dxi ∧ dx j ∧ dxk

= −1

6
ε2013dx0 ∧ dx1 ∧ dx3 − 1

6
ε2031dx0 ∧ dx3 ∧ dx1 − 1

6
ε2103dx1 ∧ dx0 ∧ dx3

− 1

6
ε2130dx1 ∧ dx3 ∧ dx0 − 1

6
ε2301dx3 ∧ dx0 ∧ dx1 − 1

6
ε2310dx3 ∧ dx1 ∧ dx0

= −1

6
ε0123dx0 ∧ dx1 ∧ dx3 + 1

6
ε0123dx0 ∧ dx3 ∧ dx1 + 1

6
ε0123dx1 ∧ dx0 ∧ dx3

− 1

6
ε0123dx1 ∧ dx3 ∧ dx0 − 1

6
ε0123dx3 ∧ dx0 ∧ dx1 + 1

6
ε0123dx3 ∧ dx1 ∧ dx0

= dx0 ∧ dx3 ∧ dx1 .

The expression (8.74a):

∗ (dx0 ∧ dx1) = g00g11

(4 − 2)!ε01i j dxi ∧ dx j

= −1

2
ε0123dx2 ∧ dx3 − 1

2
ε0132dx3 ∧ dx2

= −1

2
ε0123dx2 ∧ dx3 + 1

2
ε0132dx2 ∧ dx3

= −1

2
ε0123dx2 ∧ dx3 − 1

2
ε0123dx2 ∧ dx3

= −dx2 ∧ dx3 .

The expression (8.75b):

∗ (dx0 ∧ dx2 ∧ dx3
) = g00g22g33

(4 − 3)! ε023i dxi = ε0231dx1 = ε0123dx1 = dx1 .
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The expression (8.76):

∗ (dx0 ∧ dx1 ∧ dx2 ∧ dx3
) = g00g11g22g33

(4 − 4)! ε0123 = −1 .

At the end, note that

∗ (1) = 1

(4 − 0)!εi jkldxi ∧ dx j ∧ dxk ∧ dxl = dx0 ∧ dx1 ∧ dx2 ∧ dx3 .

Exercise 8.5

Let u be a smooth vector field and f be a smooth scalar field. Then, derive div u,
curlu and grad f , ∇2 f in cylindrical and spherical coordinates using the powerful
tool of exterior calculus.

Solution. To solve this exercise, a vector field along with its corresponding 1-form
needs to be defined consistently for each coordinate system (having in mind that a
scalar field is basically a 0-form). Then, the Hodge star operator ∗ and the exterior
derivative d should appropriately be applied. Note that the results obtained in terms
of differential forms should finally be translated to the language of vector calculus.
The procedure will be shown step by step in the following.

Divergence of a vector field in cylindrical coordinates: By virtue of the relations
(5.7a)-(5.7c), (5.64a), (5.116), (8.46), (8.48), (8.59), (8.67b), (8.67d), (8.83), (8.89)
and (8.103),

u = ur êr + u θ êθ + u z êz

= ur gr + u θ

r
gθ + u zgz , (8.150a)

1
ωu = ur dr + r u θdθ + u zdz , (8.150b)

∗ 1
ωu = r ur dθ ∧ dz + u θdz ∧ dr + r u zdr ∧ dθ , (8.150c)

d ∗ 1
ωu =

[

∂
(

r ur
)

∂r
+ ∂ u θ

∂θ
+ ∂

(

r u z
)

∂z

]

dr ∧ dθ ∧ dz , (8.150d)

∗d ∗ 1
ωu = ∂

(

r ur
)

r∂r
+ ∂ u θ

r∂θ
+ ∂ u z

∂z
= divu . (8.150e)

Curl of a vector field in cylindrical coordinates: Bymeans of the expressions (5.7a)–
(5.7c), (5.117), (8.38a), (8.38c), (8.59), (8.67c), (8.80), (8.92), (8.110) and (8.150b),
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d
1
ωu = ∂ ur

∂θ
dθ ∧ dr + ∂ ur

∂z
dz ∧ dr

+ ∂
(

r u θ
)

∂r
dr ∧ dθ + ∂

(

r u θ
)

∂z
dz ∧ dθ

+ ∂ u z

∂r
dr ∧ dz + ∂ u z

∂θ
dθ ∧ dz , (8.151a)

∗d
1
ωu =

[

∂ u z

r∂θ
− ∂ u θ

∂z

]

dr +
[

r
∂ ur

∂z
− r

∂ u z

∂r

]

dθ

+
[

∂
(

r u θ
)

r∂r
− ∂ ur

r∂θ

]

dz , (8.151b)

(

∗d
1
ωu

)�

=
[

∂ u z

r∂θ
− ∂ u θ

∂z

]

gr +
[

∂ ur

r∂z
− ∂ u z

r∂r

]

gθ +
[

∂
(

r u θ
)

r∂r
− ∂ ur

r∂θ

]

gz

=
[

∂ u z

r∂θ
− ∂ u θ

∂z

]

êr +
[

∂ ur

∂z
− ∂ u z

∂r

]

êθ

+
[

∂
(

r u θ
)

r∂r
− ∂ ur

r∂θ

]

êz = curl u . (8.151c)

Gradient and Laplacian of a scalar field in cylindrical coordinates: By using
the equations (5.7a)-(5.7c), (5.117), (8.46), (8.48), (8.59), (8.67b), (8.67d), (8.83),
(8.92)2, (8.101)3 and (8.118),

d f = ∂ f

∂r
dr + ∂ f

∂θ
dθ + ∂ f

∂z
dz , (8.152a)

(d f )� = ∂ f

∂r
gr + ∂ f

r2∂θ
gθ + ∂ f

∂z
gz

= ∂ f

∂r
êr + ∂ f

r∂θ
êθ + ∂ f

∂z
êz = grad f , (8.152b)

∗d f = r
∂ f

∂r
dθ ∧ dz + ∂ f

r∂θ
dz ∧ dr + r

∂ f

∂z
dr ∧ dθ , (8.152c)

d ∗ d f =
[

∂

∂r

(

r
∂ f

∂r

)

+ ∂

∂θ

(

∂ f

r∂θ

)

+ ∂

∂z

(

r
∂ f

∂z

)]

dr ∧ dθ ∧ dz , (8.152d)

∗d ∗ d f = ∂

r∂r

(

r
∂ f

∂r

)

+ ∂2 f

r2∂θ2
+ ∂2 f

∂z2
= ∇2 f . (8.152e)

Divergence of a vector field in spherical coordinates: Making use of the relations
(5.11a)-(5.11c), (5.64a), (5.119), (8.46), (8.48), (8.59), (8.68b), (8.68d), (8.83), (8.89)
and (8.103),
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u = ur êr + u θ êθ + uφ êφ

= ur gr + u θ

r
gθ + uφ

r sin θ
gφ , (8.153a)

1
ωu = ur dr + r u θdθ + r sin θ uφdφ , (8.153b)

∗ 1
ωu = r2 sin θ ur dθ ∧ dφ + r sin θ u θdφ ∧ dr + r uφdr ∧ dθ , (8.153c)

d ∗ 1
ωu =

[

∂
(

r2 sin θ ur
)

∂r
+ ∂

(

r sin θ u θ
)

∂θ

+∂
(

r uφ
)

∂φ

]

dr ∧ dθ ∧ dφ , (8.153d)

∗d ∗ 1
ωu = ∂

(

r2 ur
)

r2∂r
+ ∂

(

sin θ u θ
)

r sin θ∂θ
+ ∂ uφ

r sin θ∂φ
= div u . (8.153e)

Curl of a vector field in spherical coordinates: With the aid of the expressions
(5.11a)–(5.11c), (5.120), (8.38a), (8.38c), (8.59), (8.68c), (8.80), (8.92), (8.110) and
(8.153b),

d
1
ωu = ∂ ur

∂θ
dθ ∧ dr + ∂ ur

∂φ
dφ ∧ dr

+ ∂
(

r u θ
)

∂r
dr ∧ dθ + ∂

(

r u θ
)

∂φ
dφ ∧ dθ

+ ∂
(

r sin θ uφ
)

∂r
dr ∧ dφ + ∂

(

r sin θ uφ
)

∂θ
dθ ∧ dφ , (8.154a)

∗d
1
ωu =

[

∂
(

r sin θ uφ
)

r2 sin θ∂θ
− ∂ u θ

r sin θ∂φ

]

dr +
[

∂ ur

sin θ∂φ
− ∂

(

r uφ
)

∂r

]

dθ

+ sin θ

[

∂
(

r u θ
)

∂r
− ∂ ur

∂θ

]

dφ , (8.154b)

(

∗d
1
ωu

)�

=
[

∂
(

sin θ uφ
)

r sin θ∂θ
− ∂ u θ

r sin θ∂φ

]

gr +
[

∂ ur

r2 sin θ∂φ
− ∂

(

r uφ
)

r2∂r

]

gθ

+
[

∂
(

r u θ
)

r2 sin θ∂r
− ∂ ur

r2 sin θ∂θ

]

gφ ,

=
[

∂
(

sin θ uφ
)

r sin θ∂θ
− ∂ u θ

r sin θ∂φ

]

êr +
[

∂ ur

r sin θ∂φ
− ∂

(

r uφ
)

r∂r

]

êθ

+
[

∂
(

r u θ
)

r∂r
− ∂ ur

r∂θ

]

êφ = curl u . (8.154c)
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Gradient and Laplacian of a scalar field in spherical coordinates: Using the equa-
tions (5.11a)-(5.11c), (5.120), (8.46), (8.48), (8.59), (8.68b), (8.68d), (8.83), (8.92)2,
(8.101)3 and (8.118),

d f = ∂ f

∂r
dr + ∂ f

∂θ
dθ + ∂ f

∂φ
dφ , (8.155a)

(d f )� = ∂ f

∂r
gr + ∂ f

r2∂θ
gθ + ∂ f

r2 sin2 θ∂φ
gφ

= ∂ f

∂r
êr + ∂ f

r∂θ
êθ + ∂ f

r sin θ∂φ
êφ = grad f , (8.155b)

∗d f = r2 sin θ
∂ f

∂r
dθ ∧ dφ + sin θ

∂ f

∂θ
dφ ∧ dr

+ sin−1 θ
∂ f

∂φ
dr ∧ dθ , (8.155c)

d ∗ d f =
[

∂

∂r

(

r2 sin θ
∂ f

∂r

)

+ ∂

∂θ

(

sin θ
∂ f

∂θ

)

+ ∂

∂φ

(

sin−1 θ
∂ f

∂φ

)]

dr ∧ dθ ∧ dφ , (8.155d)

∗d ∗ d f = ∂

r2∂r

(

r2
∂ f

∂r

)

+ ∂

r2 sin θ∂θ

(

sin θ
∂ f

∂θ

)

+ ∂2 f

r2 sin2 θ∂φ2
= ∇2 f . (8.155e)

Exercise 8.6

The goal of this exercise is to translate the Maxwell’s equations of electromag-
netism from the language of vector calculus to the language of differential forms.
To do so, consider the following four Maxwell’s partial differential equations

divE = 4πρ , ← Gauss’s law (8.156a)

divB = 0 , ← Gauss’s law for magnetism (8.156b)

curlE + 1

c

∂B
∂t

= 0 , ← Faraday’s law of induction (8.156c)

curlB − 1

c

∂E
∂t

= 4π

c
j , ← Ampere’s circuital law (8.156d)

where E denotes the electric field, B presents the magnetic field, j is the current
density, ρ represents the charge density and c stands for the light speed (note the
abuse of notation in this exercise where the vector fields are represented by upper-
case boldface Latin letters). To this end, suppose that the space is coordinated by a
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Cartesian coordinate system for convenience. It is worthwhile to point out that the
smooth vector fields E, B, j and the scalar field ρ are time-dependent quantities. And
this means that their entries are three space coordinates and time. Consequently, the
introduced vector fields can be represented by

E = Ex êx + Ey êy + Ez êz

B = Bx êx + By êy + Bz êz

j = jx êx + jy êy + jz êz

⎫

⎪

⎬

⎪

⎭

. (8.157)

They are associated with

1
ωE = Ex dx + Ey dy + Ez dz
1
ωB = Bx dx + By dy + Bz dz
1
ωj = jx dx + jy dy + jz dz

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (8.158)

First, consider the Faraday 2-form

2
F = 1

ωE ∧ c dt + ∗s
1
ωB , (8.159)

where
∗s

1
ωB = Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy , (8.160)

and the Maxwell 2-form
2
M = 1

ωB ∧ c dt − ∗s
1
ωE , (8.161)

where
∗s

1
ωE = Ex dy ∧ dz + Ey dz ∧ dx + Ez dx ∧ dy . (8.162)

Note that in these relations, ∗s denotes the space Hodge star operator according to
(8.66a)-(8.66d). Then, consider the charge-current 1-form

1
J = ρc dt − 1

c
1
ωj

= ρc dt − jx

c
dx − jy

c
dy − jz

c
dz , (8.163)

and its dual charge-current 3-form which admits the following alternative forms
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3
J = ∗ 1

J

= ρ ∗s (1) − 1

c

(

∗s
1
ωj

)

∧ c dt

= ρdx ∧ dy ∧ dz

− jx

c
c dt ∧ dy ∧ dz − jy

c
c dt ∧ dz ∧ dx − jz

c
c dt ∧ dx ∧ dy , (8.164)

where ∗ is the spacetime Hodge star operator according to (8.73a)-(8.76).

Now, show that the Maxwell’s equations can be rewritten in the language of
exterior calculus as

d
2
F = 0 , (8.165a)

d
2

M = −4π
3
J or ∗ d ∗ 2

F = 4π
1
J . (8.165b)

Moreover, verify that the continuity equation

∂ρ

∂t
+ div j = 0 , (8.166)

is equivalent to

d
3
J = d ∗ 1

J = 0 . (8.167)

Finally, denoting by φ the electric potential and by A the magnetic vector potential,
translate the following Maxwell’s celebrated equations in potential formulation

−4πρ = div gradφ + 1

c2
div

∂A
∂t

, (8.168a)

4π j = curl curlA + grad
∂φ

∂t
+ 1

c2
∂2A
∂t2

, (8.168b)

to the language of differential forms.7

7 Recall from (7.123b) that the curl of a vector field was divergence-free. One can then deduce from
(8.156b) that

B = 1

c
curlA ,

where A is referred to as the magnetic vector potential. This result helps rewrite (8.156c) as
curl

(

E + c−2∂A/∂t
) = 0. Now, recall from (7.123c) that the gradient of a scalar fieldwas curl-free.

Consequently,

E = −gradφ − 1

c2
∂A
∂t

,
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Solution. Here, the spacetime differential operator d is split into the timelike part dt

and spacelike portion ds for the sake of clarity. For instance, the spacetime exterior
derivative of the charge density is written as

dρ = dtρ + dsρ , (8.169)

where

dtρ = ∂ρ

c∂t
cdt , dsρ = ∂ρ

∂x
dx + ∂ρ

∂y
dy + ∂ρ

∂z
dz . (8.170)

Some useful identities need to be established for subsequent developments. For this
reason, consider a generic vector P = Px êx + Py êy + Pz êz with its corresponding

1-form
1
ωP = Px dx + Pydy + Pzdz and

∂P
∂t

= ∂ Px

∂t
êx + ∂ Py

∂t
êy + ∂ Pz

∂t
êz ↔ 1

ω ∂P
∂t

= ∂ Px

∂t
dx + ∂ Py

∂t
dy + ∂ Pz

∂t
dz .

(8.171)
Then,

∂
1
ωP

∂t
= 1

ω ∂P
∂t

. (8.172)

Moreover,

dt
1
ωP = −1

c
1
ω ∂P

∂t
∧ c dt , dt ∗s

1
ωP = 1

c

(

∗s
1
ω ∂P

∂t

)

∧ c dt . (8.173)

To begin with, consider the followingMaxwell’s equations in terms of differential
forms

∗sds ∗s
1
ωE = 4πρ , (8.174a)

∗sds ∗s
1
ωB = 0 , (8.174b)

∗sds
1
ωE + 1

c
1
ω ∂B

∂t
= 0 , (8.174c)

∗sds
1
ωB − 1

c
1
ω ∂E

∂t
= 4π

c
1
ωj , (8.174d)

where (8.91)1, (8.103), (8.110)3 and (8.172) have been utilized. These four relations
can elegantly be presented in two equations by using the Faraday and Maxwell 2-
forms (8.159)-(8.162) along with the charge-current forms (8.163)-(8.164) which

where φ is known as the electric potential. Substituting these results back into (8.156a) and (8.156d)
leads to the elegant expressions (8.168a)-(8.168b) representing the Maxwell’s equations in terms
of potentials.
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are all the inhabitants of the four-dimensional Minkowski spacetime. To show this,
one needs to compute the exterior derivative of the introduced Faraday differential
2-form. This is given by

d
2
F = ∂ Ex

∂y dy ∧ dx ∧ c dt + ∂ Ex
∂z dz ∧ dx ∧ c dt + ∂ Ey

∂x dx ∧ dy ∧ c dt

+ ∂ Ey

∂z dz ∧ dy ∧ c dt + ∂ Ez

∂x dx ∧ dz ∧ c dt + ∂ Ez

∂y dy ∧ dz ∧ c dt

+ ∂ Bx
c∂t c dt ∧ dy ∧ dz + ∂ Bx

∂x dx ∧ dy ∧ dz + ∂ By

c∂t c dt ∧ dz ∧ dx

+ ∂ By

∂y dy ∧ dz ∧ dx + ∂ Bz

c∂t c dt ∧ dx ∧ dy + ∂ Bz

∂z dz ∧ dx ∧ dy

=
(

∂ Ey

∂x − ∂ Ex
∂y + ∂ Bz

c∂t

)

c dt ∧ dx ∧ dy

+
(

∂ Ex
∂z − ∂ Ez

∂x + ∂ By

c∂t

)

c dt ∧ dz ∧ dx

+
(

∂ Ez

∂y − ∂ Ey

∂z + ∂ Bx
c∂t

)

c dt ∧ dy ∧ dz

+
(

∂ Bx
∂x + ∂ By

∂y + ∂ Bz

∂z

)

dx ∧ dy ∧ dz , (8.175)

or

d
2
F = (divB) dx ∧ dy ∧ dz

+
(

curlE + ∂B
c∂t

)

x

c dt ∧ dy ∧ dz +
(

curlE + ∂B
c∂t

)

y

c dt ∧ dz ∧ dx

+
(

curlE + ∂B
c∂t

)

z

c dt ∧ dx ∧ dy , (8.176)

where (7.78), (7.92), (8.46), (8.48) and (8.85)2 have been used. As can be seen, the
homogeneous Maxwell’s equations divB = 0 and c curlE + ∂B/∂t = 0 are equiv-

alent to the single expression d
2
F = 0. Indeed,

divB = 0 , c curlE + ∂B/∂t = 0 ⇐⇒ d
2
F = 0 .

Following similar procedureswhich led to (8.176), one can obtain the exterior deriva-
tive of the Maxwell differential 2-form according to
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d
2

M = − (divE) dx ∧ dy ∧ dz

+
(

curlB − ∂E
c∂t

)

x

c dt ∧ dy ∧ dz +
(

curlB − ∂E
c∂t

)

y

c dt ∧ dz ∧ dx

+
(

curlB − ∂E
c∂t

)

z

c dt ∧ dx ∧ dy . (8.177)

Making use of (8.156a), (8.156d) and (8.164)3, the differential 3-form (8.177) yields
the desired relation

d
2

M = −4π [ ρ dx ∧ dy ∧ dz

− jx

c
c dt ∧ dy ∧ dz − jy

c
c dt ∧ dz ∧ dx − jz

c
c dt ∧ dx ∧ dy ]

= −4π
3
J . (8.178)

Interestingly enough, ∗d ∗ 2
F = 4π

1
J also corresponds to the non-homogeneous

Maxwell’s equations divE = 4πρ and c curlB − ∂E/∂t = 4π j because from

∗ 2
F = Ex dy ∧ dz + Ey dz ∧ dx + Ez dx ∧ dy

− Bx dx ∧ c dt − By dy ∧ c dt − Bz dz ∧ c dt , (8.179)

one can obtain

d ∗ 2
F = ∂ Ex

c∂t c dt ∧ dy ∧ dz + ∂ Ex
∂x dx ∧ dy ∧ dz + ∂ Ey

c∂t c dt ∧ dz ∧ dx

+ ∂ Ey

∂y dy ∧ dz ∧ dx + ∂ Ez

c∂t c dt ∧ dx ∧ dy + ∂ Ez

∂z dz ∧ dx ∧ dy

− ∂ Bx
∂y dy ∧ dx ∧ c dt − ∂ Bx

∂z dz ∧ dx ∧ c dt − ∂ By

∂x dx ∧ dy ∧ c dt

− ∂ By

∂z dz ∧ dy ∧ c dt − ∂ Bz

∂x dx ∧ dz ∧ c dt − ∂ Bz

∂y dy ∧ dz ∧ c dt

=
(

∂ Ex
∂x + ∂ Ey

∂y + ∂ Ez

∂z

)

dx ∧ dy ∧ dz

+
(

∂ Ex
c∂t + ∂ By

∂z − ∂ Bz

∂y

)

c dt ∧ dy ∧ dz

+
(

∂ Ey

c∂t + ∂ Bz

∂x − ∂ Bx
∂z

)

c dt ∧ dz ∧ dx

+
(

∂ Ez

c∂t + ∂ Bx
∂y − ∂ By

∂x

)

c dt ∧ dx ∧ dy , (8.180)

and, subsequently,
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∗d ∗ 2
F = (divE) c dt

−
(

curlB − ∂E
c∂t

)

x

dx −
(

curlB − ∂E
c∂t

)

y

dy −
(

curlB − ∂E
c∂t

)

z

dz

= 4π

[

ρc dt − jx

c
dx − jy

c
dy − jz

c
dz

]

= 4π
1
J , (8.181)

where the expressions (7.78), (7.92), (8.46), (8.48), (8.74a)-(8.75d), (8.85)1, (8.156a),
(8.156d), (8.158)1, (8.159)-(8.160) and (8.163)2 have been used.

Next, the newfangled continuity equation (8.167) is verified. At this stage, one should
realize that continuity equation (8.166) is established by the divergence of (8.156d)
and the partial derivative of (8.156a) with respect to time taking into account that the
divergence of curl of a vector field, according to (7.123b), identically vanishes. With
the aid of (8.103), the relation (8.166) in vector calculus simply finds its equivalent
form in exterior calculus. This is given by

∂ρ

∂t
+ ∗sds ∗s

1
ωj = 0 . (8.182)

This expression has alternative forms. It is usually demonstrated in two more elegant
formats by using the charge-current differential forms, see (8.164)1. That will be a
simple exercise to see that

d
3
J = 1

c

(

∂ρ

∂t
+ ∂ jx

∂x
+ ∂ jy

∂y
+ ∂ jz

∂z

)

c dt ∧ dx ∧ dy ∧ dz

= 1

c

(

∂ρ

∂t
+ divj

)

c dt ∧ dx ∧ dy ∧ dz . (8.183)

One thus infers that ∂ρ/∂t + divj = 0 amounts to writing d
3
J = 0 and vice versa.

Guided by (8.88)2 and using (8.165b)1, one will have

d
3
J = −1

4π
dd

2
M = 0 . (8.184)

The continuity equation (8.166) is thus a consequence of this result. By (8.59), (8.76)
and (8.183),

∂ρ

∂t
+ divj = −c ∗ d

3
J . (8.185)

It is then easy to deduce that the vanishing of exterior derivative of Hodge dual of
the charge-current 1-form is equivalent to the continuity equation. Notice that
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∂ρ

∂t
+ divj = −c ∗ d ∗ 1

J . (8.186)

Finally, the Maxwell’s celebrated equations in terms of potentials are rewritten in
the language of exterior calculus.

Making use of (8.65), (8.88), (8.110)3 and (8.174b), one will have

∗s
1
ωB = 1

c
ds

1
ωA ,

or
1
ωB = 1

c
∗s ds

1
ωA = 1

c
1
ωcurlA , (8.187)

where
1
ωA may be called the magnetic 1-form potential which corresponds to the

magnetic vector potential A. By means of (8.65), (8.101)1, (8.88), (8.174c) and
(8.187)1 (along with interchanging derivatives and having in mind that ∗, d are linear
operators), one can get

∗sds
1
ωE + 1

c
1
ω ∂B

∂t
= 0 ⇒ ds

1
ωE + 1

c2
ds

1
ω ∂A

∂t
= 0 ,

or
1
ωE = −dsφ − 1

c2
1
ω ∂A

∂t
= − 1

ωgradφ − 1

c2
1
ω ∂A

∂t
, (8.188)

where the scalar field φ is known as the electric potential. That will be a simple
exercise now to substitute (8.187)2 and (8.188)2 back into (8.174a) and (8.174d) in
order to provide the potential formulation of Maxwell’s equations in the language of
exterior calculus:

−4πρ = ∗sds ∗s
1
ωgradφ + 1

c2
∗s ds ∗s

1
ω ∂A

∂t
, (8.189a)

4π
1
ωj = 1

ωcurl curlA + 1
ωgrad ∂φ

∂t
+ 1

c2
1
ω ∂2A

∂t2
. (8.189b)

One can alternatively use (8.165a) and (8.165b)1 to arrive at the above results. This
will be shown in the following.

The relation d
2
F = 0, considering the converse to the Poincaré’s Lemma, implies

that
2
F = d

1
K .

And any additive decomposition of the new spacetime 1-form
1
K into the space and

time portions can be written as
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1
K = −φc dt + 1

c
1
ωA . (8.190)

Guided by (8.169) and using (8.65), (8.77b), (8.82), (8.101)1, (8.110)3, and (8.173)1,
the exterior derivative of (8.190) gives

d
1
K = − (dtφ ∧ cdt + dsφ ∧ cdt) + 1

c

[

dt
1
ωA + ds

1
ωA

]

= −
(

1
ωgradφ ∧ cdt

)

+ 1

c

[

−1

c
1
ω ∂A

∂t
∧ cdt + ∗s

1
ωcurlA

]

=
(

− 1
ωgradφ − 1

c2
1
ω ∂A

∂t

)

∧ cdt + ∗s

(

1

c
1
ωcurlA

)

. (8.191)

Comparing (8.191) with (8.159), i.e.
2
F = 1

ωE ∧ c dt + ∗s
1
ωB, leads to the desired

results (8.187)2 and (8.188)2. These differential forms help express the Maxwell

2-form (8.161), i.e.
2

M = 1
ωB ∧ c dt − ∗s

1
ωE, as

2
M = 1

c
1
ωcurlA ∧ c dt + ∗s

1
ωgradφ + 1

c2
∗s

1
ω ∂A

∂t
. (8.192)

It is not then difficult to represent the spacetime exterior derivative of this differential
2-form according to

d
2

M = 1

c
ds

1
ωcurlA ∧ c dt

︸ ︷︷ ︸

= 1
c ∗s

1
ωcurl curlA ∧ c dt

+ dt ∗s
1
ωgradφ

︸ ︷︷ ︸

= 1
c ∗s

1
ω
grad ∂φ

∂t
∧ c dt

+ ds ∗s
1
ωgradφ

︸ ︷︷ ︸

= ∗sdiv (gradφ)

+ 1

c2
dt ∗s

1
ω ∂A

∂t
︸ ︷︷ ︸

= 1
c3

∗s
1
ω

∂2A
∂t2

∧ c dt

+ 1

c2
ds ∗s

1
ω ∂A

∂t
︸ ︷︷ ︸

= 1
c2

∗s div
(

∂A
∂t

)

= 1

c

[

∗s

(

1
ωcurl curlA + 1

ωgrad ∂φ

∂t
+ 1

c2
1
ω ∂2A

∂t2

)]

∧ c dt

+
[

∗sds ∗s
1
ωgradφ + 1

c2
∗s ds ∗s

1
ω ∂A

∂t

]

∗s (1) . (8.193)

On the other hand, from (8.164)2 and (8.165b)1, it follows that

d
2

M = 1

c

[

∗s

(

4π
1
ωj

)]

∧ c dt + [−4πρ] ∗s (1) . (8.194)

By comparing (8.193) with (8.194), one can finally arrive at the desired equations
(8.189a) and (8.189b).
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Chapter 9
Differential Geometry of Surfaces
and Curves

This chapter provides an introduction to differential geometry of embedded surfaces
and curves in the three-dimensional Euclidean space. The geometry of
manifolds1 of dimension two or curved surfaces is extensively used in many
branches of physics and engineering. Examples of which include general relativ-
ity and structural mechanics. The geometry of manifolds of dimension one or space
curves also plays an important role in many scientific applications such as beams or
coordinated drone swarms. The goal of this chapter is therefore to study embedded
two-dimensional surfaces aswell as one-dimensional curves in the three-dimensional
Euclidean flat space and introduce their fundamental properties. A topic of great
importance in this context regards curvature which has a very long history. Many
different objects are used in the literature to characterize curvature, each of which
has its own application. This motivates to introduce second-order surface mixed
curvature tensor along with its principal values (representing mean curvature and
Gaussian curvature), fourth-order surface Riemann-Christoffel curvature tensor,
second-orderRicci curvature tensor andRicci scalar.Normal curvature andgeodesic
curvature of a curve embedded in a surface are also addressed. It is also the goal of
this chapter to describe some crucially important derivative operators such as surface
covariant differentiation, Lie derivative and invariant time differentiation and study
their basic properties.2

1 There is no unique definition for a manifold. Its widely accepted definition is provided within the
realm of topology which is outside the scope of this text. Here and elsewhere in this text, this useful
term means a subspace of the three-dimensional Euclidean space which can be parametrized with
sufficiently smooth functions defined over a region of such a subspace.
2 Tangent space of a manifold varies from point to point due to curvature. Consequently, the vectors
(tensors) of a vector (tensor) field in two infinitesimally nearby points cannot simply be added
and/or subtracted. Thus, the rate of change in an object with respect to a coordinate line, vector
field or time-like variable should be treated with care. In this regard, some special techniques need
to be established. A well-known example regards the surface covariant differentiation.
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Recall that the fourth-order Riemann-Christoffel curvature tensor acted as a deci-
sive criterion for flatness of space. The Euclidean space represents a flat space with
this fourth-order tensor being vanished all over the space. Indeed, the Euclidean space
is one for which all well-known postulates of Euclidean geometry - expressing rela-
tionships between primitive quantities such as points and lines - perfectly applies.
Straightness is its key characteristic and it is usually coordinated with the popu-
lar Cartesian coordinate system. For such a popular coordinate system, the matrix
form of metric coefficients becomes diagonal with all diagonal elements being +1.
Accordingly, all of its Christoffel elements vanish. When the space is Euclidean and
referred to a Cartesian coordinate frame, any general basis that may be resulted from
embedding a curvilinear coordinate system can be expressed as a linear combination
of the standard Cartesian basis. Thus, the metric coefficients and subsequently the
Christoffel elements can consistently be computed. This procedure was followed so
far.

Over two thousandyears geometers and/ormathematiciansworkedwithEuclidean
geometry and tried to prove his fifth axiom, i.e. the so-called parallel postulate, from
the other four. Unfortunately, the attempts to directly prove this debatable postulate
from the others were not successful. And this motivated some mathematicians to
use the proof by contradiction. In 19th century, these attempts led to the founda-
tion of what is called the non-Euclidean (or Gauss-Bolyai-Lobachevsky) geometry.
A geometry that the most important 20th century development in science, i.e. Ein-
stein’s general theory of relativity, relies on. It may be classified into hyperbolic
geometry and elliptic geometry. These geometries are called non-Euclidean because
they at least violate Euclid’s fifth postulate. For instance, there are infinitely many
lines parallel to a given line or the sum of the angles of a triangle is less than 180◦
for the saddle shape surfaces. Interestingly, there are no lines parallel to a given line
or the sum of the angles of a triangle is greater than 180◦ for a sphere.3

The study of geometric objects on a differentiable (or differential) manifold (i.e.
a space which allows one to locally apply the tools of calculus) relies on two basic
quantities; namely, connection and metric. The former connects different tangent
spaces of a manifold as implied by its name. One can thus compare the vectors
sitting at two infinitesimally nearby points which helps define covariant derivative
and parallel transport.4 But the latter, which acts as the central tool in measuring
lengths and areas, defines the dot product on a manifold. One may now classify
the differential manifolds into (i) connected manifold (i.e. space equipped with a
connection) and (ii) metric manifold (i.e. space equipped with both connection and
metric).

Torsion, curvature and non-metricity are three crucially important tensorial field
variables - of order 3,4 and 3, respectively, - in describing differential geometry of

3 In spherical geometry, lines are defined as great circles (i.e. the largest circles on the surface of a
sphere). And parallel lines are lines that do not meet.
4 The idea of parallel transport geometrically means keeping a vector as constant as possible when
it is moving around on a curved space. Technically, the parallel transport of a vector along a curve
represents a condition which states that the covariant derivative of such a vector must vanish.
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manifolds. The torsion (curvature) tensor is defined in terms of the connection (con-
nection and its partial derivatives) while the non-metricity tensor is introduced as the
covariant differentiation of the metric. The torsion (curvature) of space measures the
closure gap that evolves when two vectors are parallel transported along each other
(a vector is parallel transported along an infinitesimal closed loop) while the non-
metricity measures the change in the length of and the angle between parallel trans-
ported vectors. Based on these notions, onemay define (i) flat (non-flat)manifold (i.e.
space with zero (nonzero) curvature), (ii) symmetric (non-symmetric) manifold (i.e.
space with vanishing (non-vanishing) torsion) and (iii) metrically (non-metrically)
connected manifold (i.e. metric space with zero (nonzero) non-metricity).

The basic idea regarding differential geometry of a two-dimensional manifold
dates back to the pioneering work of Gauss. In particular, he established the use of
curvilinear coordinates for describing embedded surfaces. Moreover, he proposed
that a curved surface can be studied either as a three-dimensional object or analyzed
as a two-dimensional one (two completely different perspectives). This classifies the
properties of surfaces or curves - in relation to a larger space embracing them - into
extrinsic and intrinsic objects. Extrinsic quantities are those that depend on external
embedding space; examples of which include the second-order curvature tensor and
the surface normal vectors. Whereas intrinsic quantities are those which can be
attained by measuring distances along the surface; examples of which include the
metric coefficients and the Gaussian curvature.5 The Gaussian curvature is basically
a mathematical entity connecting extrinsic and intrinsic points of view.

A two-dimensional manifold is called extrinsically flat if the second-order curva-
ture tensor vanishes identically for such a space. And it is referred to as intrinsically
flat if the fourth-order Riemann-Christoffel curvature tensor (or equivalently the
Gaussian curvature in this context) vanishes all over that space. For instance, a plane
sheet is extrinsically and intrinsically flat while the surface of a cylinder is extrinsi-
cally curved but intrinsically flat. Moreover, the surface of a sphere is an example
of extrinsically and intrinsically curved space. The reason for the surface of a cylin-
der to be intrinsically flat is that it can simply be constructed from a thin sheet of
paper without any distortion implied by compression, stretching or shearing (only
bending type deformations are required). Actually, these two surfaces are said to be
isometric.6

Of interest here is to consider the two-dimensional surfaces embedded in the
three-dimensional Euclidean space. From now on, this enveloping three-dimensional
Euclidean space is referred to as the ambient space. Any surface in this text is

5 To better understand the concept of intrinsic properties, consider the surface as a planet with enti-
ties living therein. Now, suppose that these entities have no knowledge of the external embedding
space and the planet is all they know. In other words, these inhabitants only have a two-dimensional
perception. Then, any quantity that can be measured or detected by these two-dimensional inhabi-
tants - such as lengths of planar curves passing through a point or vectors lying in the local tangent
planes - is referred to as intrinsic object.
6 An isometry (or isometric mapping) is a mapping that preserves lengths of curves. This important
mapping also preserves the angles and the surface areas. Intrinsic property is sometimes introduced
as a property that is preserved under isometric transformations.
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assumed to be a sufficiently smooth and regular two-dimensional subspace of the
three-dimensional ambient space, if not otherwise stated. It is also assumed that
there exist tangent and normal spaces at each point of the surface.7 Moreover, any
two-dimensional space in this chapter should be regarded as a Riemannian manifold
which represents a non-flat, symmetric and metrically connected manifold. Finally,
suppose that the standard properties of the real vector spaces introduced in Chaps. 1
and 3 hold true here (note that such properties will not be referenced in the upcoming
developments for convenience).

For a detailed exposition on the rich area of differential geometry, the reader is
referred to Weatherburn [1], Stoker [2], Kreyszig [3], Spivak [4], Gray et al. [5],
O’Neill [6], Pressley [7], do Carmo [8] and Banchoff and Lovett [9] among many
others.

9.1 Representation of Tensorial Variables on Surfaces

9.1.1 Surfaces in Three-Dimensional Euclidean Space

A two-dimensional surface S in the ambient space may be defined by the point
function

x = x̂ s (t1, t2
)

note that �i = �i (tα
)
which helps write x = x̂

(
�i

)
= x̂ s

(
tα

)
, see (5.1)

, (9.1)

where x̂ s
(
t1, t2

) : U ⊂ R2 → E 3
p presents an arbitrary point on the surface and the

real numbers tα, α = 1, 2, are called the surface (or Gaussian) coordinates. The
points on a curve x̂ s

(
t1, t2 = constant

)
is called a t1-curve (or t1-line). Similarly,

the points on a curve x̂ s
(
t1 = constant, t2

)
is called a t2-curve (or t2-line). The two

families of t1-curves and t2-curves constitute the coordinate (or parametric) curves
of a surface. Note that all Greek indices in this chapter range over {1, 2} and the
summation convention will also be implied when they are repeated. It is assumed
that the function in (9.1) is sufficiently differentiable in order to have a sufficiently
smooth surface.

Now, suppose that the ambient space is referred to Cartesian coordinates. Then,
the functional relation (9.1), that parametrically describes the surface, represents

x1 = x̂ s
1

(
t1, t2

)
, x2 = x̂ s

2

(
t1, t2

)
, x3 = x̂ s

3

(
t1, t2

)
. (9.2)

In the following, some well-known surfaces will be introduced having in mind that
the surface parametrization is not unique. ✹

7 Note that the two-dimensional tangent space (or simply tangent plane) is spanned by the surface
covariant basis. Whereas the one-dimensional normal space is defined by a unit vector normal to
the surface which itself is constructed from the covariant basis vectors.



9.1 Representation of Tensorial Variables on Surfaces 437

Fig. 9.1 Ellipsoid

Fig. 9.2 Sphere

The first example presents an ellipsoid (Fig. 9.1). This surface of revolution is
described by

x1 = R sin t1 cos t2 , x2 = R sin t1 sin t2 , x3 = R̂ cos t1

these coordinates satisfy the implicit relation (x1/R)2 + (
x2/R

)2 + (
x3/R̂

)2 = 1

, (9.3)

where the positive real numbers R, R, R̂ denote the semiaxes and 0 ≤ t1 ≤ π , 0 ≤
t2 < 2π .

A very practical example of elliptic geometry is sphere (Fig. 9.2). It can be
provided by substituting R = R = R̂ into (9.3), that is,
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Fig. 9.3 Torus

x1 = R sin t1 cos t2 , x2 = R sin t1 sin t2 , x3 = R cos t1

these coordinates satisfy the implicit relation (x1/R)2 + (x2/R)2 + (x3/R)2 = 1

. (9.4)

Another example regards a torus (Fig. 9.3) which is also a surface of revolution
generated by rotating a circle around a coplanar axis (note that such an axis is assumed
to lie outside of that circle). It is defined by the following equation

x1 =
(
R̂ + r̂ cos t2

)
cos t1 , x2 =

(
R̂ + r̂ cos t2

)
sin t1 , x3 = r̂ sin t2

these coordinates satisfy the implicit relation
(√

(x1)
2 + (x2)

2 − R̂

)2
+ (x3)

2 = (
r̂
)2

,

(9.5)

where r̂ > 0 is the radius of generating circle (minor radius), R̂ > 0 presents the
distance between its center and the axis of revolution (major radius) and 0 ≤ t1 <

2π , 0 ≤ t2 < 2π .
As a further example, consider an elliptic paraboloid (Fig. 9.4). It is parametri-

cally defined by

x1 = Rt1 cos t2 , x2 = Rt1 sin t2 , x3 = R̂
(
t1
)2

these coordinates satisfy the implicit relation (x1/R)2 + (
x2/R

)2 = x3/R̂

, (9.6)

where R > 0, R > 0, R̂ �= 0 are real numbers, 0 ≤ t1 < ∞ and 0 ≤ t2 < 2π .
A well-known example of hyperbolic geometry is one-sheeted hyperboloid

(Fig. 9.5). It is defined by
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Fig. 9.4 Elliptic paraboloid

Fig. 9.5 Hyperboloid of one sheet

x1 = R cosh t1 cos t2 , x2 = R cosh t1 sin t2 , x3 = R̂ sinh t1

these coordinates satisfy the implicit relation (x1/R)2 + (
x2/R

)2 − (
x3/R̂

)2 = 1

, (9.7)

where R, R, R̂ are positive real numbers, −∞ < t1 < ∞ and 0 ≤ t2 < 2π .
Another example in hyperbolic geometry regards a two-sheeted hyperboloid

(Fig. 9.6) defined by

x1 = R sinh t1 cos t2 , x2 = R sinh t1 sin t2 , x3 = ±R̂ cosh t1

these coordinates satisfy the implicit relation − (x1/R)2 − (
x2/R

)2 + (
x3/R̂

)2 = 1

, (9.8)

where R, R, R̂ are positive real numbers, 0 ≤ t1 < ∞ and 0 ≤ t2 < 2π .
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Fig. 9.6 Hyperboloid of two sheets

Fig. 9.7 Hyperbolic paraboloid

The last example here presents a hyperbolic paraboloid (Fig. 9.7) described by

x1 = Rt1 , x2 = Rt2 , x3 = R̂
[(
t1
)2 − (

t2
)2]

these coordinates satisfy the implicit relation (x1/R)2 − (
x2/R

)2 = x3/R̂

, (9.9)

where R, R, R̂ are positive real numbers, −∞ < t1 < ∞ and −∞ < t2 < ∞. ✹

9.1.2 Surface Basis Vectors and Metric Coefficients

The surface covariant basis vectors, at an arbitrary point on the surface, are defined
by
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Fig. 9.8 Ambient basis at an arbitrary point of a surface encompassed by three-dimensional
Euclidean space

aα = ∂x
∂tα

= lim
h→0

x̂ s
(
t1 + hδ1α, t2 + hδ2α

) − x̂ s
(
t1, t2

)

h
, ←− see Exercise 9.1 (9.10)

where δβ
α denotes the two-dimensional Kronecker delta. These two linearly inde-

pendent vectors are tangential to the coordinate lines corresponding to the Gaussian
coordinates and, therefore, define a plane called tangential plane. These tangent vec-
tors can be completed to provide a basis in the three-dimensional ambient space by
means of the surface normal vector

n̂ = ± a1 × a2
|a1 × a2| = a3 , (9.11)

satisfying
n̂ · aα = 0 , n̂ · n̂ = 1 . (9.12)

The appropriate sign in (9.11) must be chosen according to the previous discussions
on orientation of surfaces given in Chap. 8. See Fig. 9.8 for a geometrical interpre-
tation. Now, any arbitrary tensorial variable in the ambient space can be expressed
with respect to the covariant basis

{ai } := {a1, a2, a3} where a3 = n̂ . (9.13)

It is assumed that the surface covariant basis vectors a1 and a2 are linearly
independent,8 that is,

8 This means that the Jacobian matrix

[ J ] =
⎡

⎢
⎣

∂x1
∂t1

∂x1
∂t2

∂x2
∂t1

∂x2
∂t2

∂x3
∂t1

∂x3
∂t2

⎤

⎥
⎦ ,
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a1 × a2 �= 0 . (9.14)

This implies that the tangent vectors should not vanish and have various directions.
Indeed, this condition is set to guarantee the existence of tangential planes and accord-
ingly have well-defined normal vectors. With regard to this, a point at which this
condition holds true is said to be a regular point; otherwise it is referred to as a
singular point. And a surface S whose all normal vectors are well-defined is said to
be a regular surface. Note that all surfaces in this text are assumed to be sufficiently
smooth and regular.

Let {
ai
} := {

a1, a2, a3
}

, (9.15)

be the unique dual basis of {ai }. The procedure to calculate this ambient contravariant
basis will be demonstrated in the following. ❇

To begin with, one can write the ambient covariant metric coefficients (5.38)3 for
the problem at hand as

[
gi j

] =
[ [

aαβ

]
2×2 [0]2×1

[0]T1×2 1

]
, (9.16)

where aαβ denote the surface covariant metric coefficients; given by,

aαβ = aα · aβ = aβ · aα = aβα , (9.17)

with
[
aαβ

] =
[
a1 · a1 a1 · a2
a1 · a2 a2 · a2

]
. (9.18)

Recall that for a regular surface the condition (9.14) holds true. Having in mind the
positive-definite property of the dot product, one can infer that

a11 = a1 · a1 > 0 and a22 = a2 · a2 > 0 . (9.19)

Using (1.11), (1.78a) and (9.17)1, one can also deduce that

has rank 2. In other words,
J 21 + J 22 + J 23 �= 0 ,

where

J1 = det

[
∂x2
∂t1

∂x3
∂t1

∂x2
∂t2

∂x3
∂t2

]

, J2 = det

[
∂x3
∂t1

∂x1
∂t1

∂x3
∂t2

∂x1
∂t2

]

, J3 = det

[
∂x1
∂t1

∂x2
∂t1

∂x1
∂t2

∂x2
∂t2

]

.
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|a1 × a2|2 = (a1 × a2) · (a1 × a2)

= (a1 · a1) (a2 · a2) − (a1 · a2) (a2 · a1)
= a11a22 − (a12)

2 > 0 . (9.20)

As a result, the symmetric matrix
[
aαβ

]
is positive definite since the determinants

corresponding to its two upper-left submatrices are positive, see (2.125a)–(2.125b).
Such a surface metric is then referred to as the Riemannian metric.

Recall from (5.51)4 that
[
gi j

] = [
gi j

]−1
. First, the inverse of

[
gi j

]
in (9.16)

renders

[
gi j

]−1 =
⎡

⎣

[
aαβ

]−1
2×2 [0]2×1

[0]T1×2 1

⎤

⎦ . (9.21)

Then, similarly to (9.16), the ambient contravariant metric coefficients (5.46)3 can
here be written as

[
gi j

] =
⎡

⎣

[
aαβ

]
2×2

[
q
]
2×1

[
q
]T
1×2 r

⎤

⎦ , (9.22)

where
r = a3 · a3 ,

[
q
] = [

a1 · a3 a2 · a3 ]T , (9.23)

and aαβ present the surface contravariant metric coefficients; given by,

aαβ = aα · aβ = aβ · aα = aβα , (9.24)

whose matrix form renders

[
aαβ

] =
[
a1 · a1 a1 · a2
a1 · a2 a2 · a2

]
. (9.25)

Now, comparing (9.21) and (9.22) immediately gives

aαγ a
γβ = δβ

α

or aαγ aγβ = δα
β

or
[
aαβ

] = [
aαβ

]−1

or
[
aαβ

]
= [

aαβ

]−1

. (9.26)

One can also deduce that a3 is a vector of unit length in a direction perpendicular to
a plane spanned by a1 and a2, that is,

a3 · a3 = 1 , a3 · aα = 0 . (9.27)
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Having obtained the required data, one can use (5.49) to finally arrive at the surface
contravariant basis vectors

aα = aαβaβ , (9.28)

and, having in mind a3 = n̂ together with n̂ · aα = 0,

a3 = a3 = n̂ satisfying n̂ · aα = 0 and n̂ · aα = 0 . ❇ (9.29)

The above results imply that the surface contravariant basis vectors a1 and a2 should
also lie in the tangential plane defined by their corresponding dual vectors (see Fig.
9.10). The expression (9.11) thus admits the alternative representation

n̂ = ± a1 × a2
∣∣a1 × a2

∣∣ . (9.30)

From now on, all surfaces in this text are assumed to be positively oriented in such
a way that

a1 × a2 = |a1 × a2| n̂ , a1 × a2 = ∣∣a1 × a2
∣∣ n̂ . (9.31)

From (9.26)1 and (9.28), taking into account the replacement property of the Kro-
necker delta, one can obtain

aα = aαβaβ . (9.32)

It is then easy to see that

aα · aβ = δα
β , aα · aβ = δβ

α . (9.33)

Regarding the established bases (9.13), (9.15) with (9.29)2, the identity tensor in
(5.78) now admits the following forms

I = Z + n̂ ⊗ n̂ = C + n̂ ⊗ n̂ = Z̃ + n̂ ⊗ n̂ = C̃ + n̂ ⊗ n̂ , (9.34)

where

Z = aα ⊗ aα , (9.35a)

C = Z
T
Z = aαβaα ⊗ aβ , (9.35b)

Z̃ = aα ⊗ aα , (9.35c)

C̃ = Z̃TZ̃ = aαβaα ⊗ aβ . (9.35d)

The surface permutation symbol is defined by

εαβ = β − α and, for consistency, εαβ = β − α . (9.36)
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It is then easy to see that

εαγ εγβ = −δβ
α , εαγ εγβ = −δα

β , εαβεγ δ = δα
γ δ

β

δ − δα
δ δβ

γ . (9.37)

From (9.37)3, it follows that
εαβεαβ = 2 . (9.38)

One can finally establish

det
[
aαβ

]
εαβ = aαγ εγ δaδβ , det

[
aαβ

]
εαβ = aαγ εγ δa

δβ . (9.39)

9.1.3 Tensor Property of Surface Metric Coefficients

Consider a change of surface coordinates from
(
t1, t2

)
to

(
t̄ 1, t̄ 2

)
. These old and

new surface coordinates are linked by the following mutually inverse relations

t̄ α = t̄ α
(
t1, t2

)
, tα = tα

(
t̄ 1, t̄ 2

)
. ←− see (5.54) (9.40)

As a result, the surface version of (5.55) can be written as

x = ¯̂x s
(
t̄ 1, t̄ 2

) = x̂ s
(
t1, t2

)
with

āα = ∂x
∂ t̄ α

aα = ∂x
∂tα

⎫
⎪⎬

⎪⎭
,

āα = ∂ t̄ α

∂x

aα = ∂tα

∂x

⎫
⎪⎪⎬

⎪⎪⎭
. (9.41)

Now, the ambient relations (5.58a)–(5.60) translate to

āα · aβ = ∂ t̄ α

∂x
· ∂x
∂tβ

= ∂ t̄ α

∂tβ
, (9.42a)

aα · āβ = ∂tα

∂x
· ∂x
∂ t̄ β

= ∂tα

∂ t̄ β
, (9.42b)

āα = ∂ t̄ α

∂tβ
aβ , aα = ∂tα

∂ t̄ β
āβ , (9.42c)

āα = ∂tβ

∂ t̄ α
aβ , aα = ∂ t̄ β

∂tα
āβ . (9.42d)

Consequently, the variant aαβ = aα · aβ may be called the surface covariant metric
tensor because it obeys the following tensor transformation law



446 9 Differential Geometry of Surfaces and Curves

āαβ = ∂tθ

∂ t̄ α
aθρ

∂tρ

∂ t̄ β
. ←− see (5.61) (9.43)

With regard to this, the object δα
β = aα · aβ is also a tensor owing to

δ̄α
β = ∂ t̄ α

∂tθ
δθ
ρ

∂tρ

∂ t̄ β
. ←− see (5.62) (9.44)

In a similar manner, the object aαβ - which may be called the surface contravariant
metric tensor - transforms according to

ā αβ = ∂ t̄ α

∂tθ
aθρ ∂ t̄ β

∂tρ
. ←− see (5.63) (9.45)

9.1.4 Shift Tensors and Related Identities

A shift tensor is amathematical entity relating surface and ambient objects. Its impor-
tant role in making the connection between the surface and ambient basis vectors,
metric coefficients and tensorial variables will be demonstrated in the following.

The two surface covariant basis vectors may be expressed with respect to the three
ambient covariant basis vectors as

aα = Iaα = (
gi ⊗ gi

)
aα = Z

i
α gi , (9.46)

where

Z
i
α = gi · aα = ∂�i

∂x
· ∂x
∂tα

= ∂�i

∂tα
. (9.47)

Accordingly, one can rewrite (9.35a) as

Z = aα ⊗ aα = Z
i
α gi ⊗ aα . (9.48)

Notice that the surface tangent vectors remain unchanged under the action of the
symmetric contra-covariant tensor Z, i.e. aα = Zaα . This singular tensor with the
following matrix form

[
Z
] =

[
Z

i
α

]
=

⎡

⎣
g1 · a1 g1 · a2
g2 · a1 g2 · a2
g3 · a1 g3 · a2

⎤

⎦ , (9.49)
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relative to the dyads gi ⊗ aα , is referred to as the shift tensor. It may be viewed as an

object describing the tangent space. Notice that Z
i
α can precisely be written as Z

i
. α

to declare that the first index in the shift tensor is an ambient index. The placeholder
has been dropped here for notational simplicity.

Using (9.48)2, the symmetric covariant tensorC, defined in (9.35b), can be rewrit-
ten as

C = Z
T
Z =

(
Z

i
α a

α ⊗ gi
) (

Z
j
β g j ⊗ aβ

)
= Z

i
αgi j Z

j
βa

α ⊗ aβ . (9.50)

Comparing (9.35b)2 and (9.50)3 now leads to the following relationship between the
surface and ambient covariant metric coefficients

aαβ = Z
i
αgi j Z

j
β . ←− see (9.64) (9.51)

In matrix notation,

[
aαβ

] = [
C
] = [

Z
]T [

g
] [

Z
] =

[
a11 a12
a12 a22

]
. (9.52)

Note that in practice, the ambient space is usually referred to Cartesian coordinates
with the metric coefficients being the Kronecker delta and all Christoffel elements
being zero. In this case, the result (9.51) takes the form

aαβ = ZiαZiβ . (9.53)

Making use of (9.53), the determinant of the symmetric matrix
[
aαβ

]
can be repre-

sented by

a := det
[
aαβ

] = a11a22 − (a12)
2

= Zi1 Zi1 Z j2 Z j2 − Zi1 Zi2 Z j1 Z j2 . (9.54)

This result helps establish

|a1 × a2| = √
a , ←− note that a>0 according to (9.20) (9.55)

since, having in mind the bilinearity of the dot product and cross product,

|a1 × a2|2 from==========
(1.11) and (9.46)

(
Zi1 êi × Z j2 ê j

) · (Zk1 êk × Zl2 êl
)

from====
(1.64)

(
Zi1 Z j2 εi jm êm

) · (Zk1 Zl2 εkln̂en
)

from====
(1.35)

Zi1 Z j2 Zk1 Zl2 εi jmδmnεkln
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from==========
(1.36) and (1.58a)

Zi1 Zi1 Z j2 Z j2 − Zi1 Zi2 Z j1 Z j2

from====
(9.54)

a .

The interested reader may want to verify the result (9.55) in an alternative way:

|a1 × a2|2 from====
(1.50)

|a1|2 |a2|2 sin2 θ (a1, a2)

from====
(1.11)

(a1 · a1) (a2 · a2)
[
1 − cos2 θ (a1, a2)

]

from==========
(1.12) and (9.17)

a11a22

[
1 − (a1 · a2)2

|a1|2 |a2|2
]

from==========
(1.11) and (9.17)

a11a22 − (a12)
2

from====
(9.54)

a .

The result (9.55) helps compute the area element d A via the following expression
(see Fig. 9.9)

d A = √
a dt1dt2 , (9.56)

noting that dA = (
a1dt1

) × (
a2dt2

)
. From (9.31)1, (9.36)1 and (9.55), it follows that

a1 × a2 = √
a n̂ and, generally, aα × aβ = √

aεαβ n̂ . (9.57)

One can also establish
n̂ × aα = √

aεαβaβ , (9.58)

because

εθρ
√
aεθρ n̂ × aα

on the one==========
hand from (9.38)

(
2
√
a
)
n̂ × aα

on the other==========
hand from (9.57)

εθρ
(
aθ × aρ

) × aα

from====
(1.72)

εθρ (aθ · aα) aρ − εθρ
(
aρ · aα

)
aθ

from==========
(9.17) and (9.32)

(
aαθ ε

θρaρβ − aβθε
θρaρα

)
aβ

from==========
(9.39) and (9.54)

a
(
εαβ − εβα

)
aβ

from====
(9.36)

(
2
√
a
)√

aεαβaβ .
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Fig. 9.9 Surface area element

Similarly to (9.46), the two surface contravariant basis vectors are now expressed
with respect to the three ambient contravariant basis vectors as

aα = Iaα = (
gi ⊗ gi

)
aα = Z̃α

i g
i , (9.59)

where

Z̃α
i = gi · aα = ∂x

∂�i
· ∂tα

∂x
= ∂tα

∂�i
. (9.60)

Consequently, the co-contravariant tensor Z̃ in (9.35c) can be rewritten as

Z̃ = aα ⊗ aα = Z̃α
i g

i ⊗ aα . (9.61)

In this case, the surface contravariant basis vectors remain preserved under the action
of this linear transformation, i.e. aα = Z̃aα . Its matrix form

[
Z̃
] = [

Z̃α
i

] =
⎡

⎣
g1 · a1 g1 · a2
g2 · a1 g2 · a2
g3 · a1 g3 · a2

⎤

⎦ , (9.62)
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relative to the dyads gi ⊗ aα , also acts as a shift tensor. Note that, similarly to Z
i
α ,

the placeholder has been dropped here for notational simplicity (indeed, Z̃α
i should

be considered as Z̃ . α
i ). Now, substituting (9.61)2 into (9.35d)1 yields

C̃ = Z̃TZ̃ = (
Z̃α
i aα ⊗ gi

) (
Z̃β

j g
j ⊗ aβ

)
= Z̃α

i g
i j Z̃β

j aα ⊗ aβ . (9.63)

The uniqueness of the components of a tensor with respect to a given basis finally
implies that

aαβ = Z̃α
i g

i j Z̃β

j . ←− see (9.117) (9.64)

In matrix representation,

[
aαβ

] = [
C̃
] = [

Z̃
]T [

g
]−1 [

Z̃
] = 1

a

[
a22 −a12

−a12 a11

]
. (9.65)

In the case that the ambient space is coordinated with Cartesian coordinates, the
result (9.64) reduces to

aαβ = Z̃α
i Z̃

β

i . (9.66)

From (9.26)1, (9.54)1 and (9.66), one will have

1

a
= det

[
aαβ

] = a11a22 − (
a12

)2

= Z̃1
i Z̃

1
i Z̃

2
j Z̃

2
j − Z̃1

i Z̃
2
i Z̃

1
j Z̃

2
j . (9.67)

Following similar procedures that led to (9.55) then reveals

∣∣a1 × a2
∣∣ = 1√

a
. (9.68)

From (9.31)2, (9.36)2 and (9.68), one immediately obtains

a1 × a2 = 1√
a
n̂ and, generally, aα × aβ = εαβ

√
a
n̂ . (9.69)

One can also write

n̂ × aα = εαβ

√
a
aβ , (9.70)
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owing to

aαθ n̂ × aθ
on the one hand=========
from (9.28)

n̂ × aα

on the other hand=============
from (9.28) and (9.58)

√
aaαθεθρa

ρβaβ

from==========
(9.39) and (9.67)

εαβ

√
a
aβ .

Let the ambient object
n̂ = n̂ i gi = n̂ i g i , (9.71)

be the outward unit normal field acting along a positively oriented surface S. The
vector n̂ i and its corresponding covector n̂ i then render

n̂ i = εi jk

√
a Z̃α

j εαβ Z̃
β

k

2J
, (9.72a)

n̂ i = εi jk
J Z

j
α εαβ Z

k
β

2
√
a

. (9.72b)

Having in mind the bilinearity of the cross product, the relation (9.72b) follows from

n̂ from====
(9.11)

a1 × a2
|a1 × a2|

from==========
(9.46) and (9.55)

Z
j
1 g j × Z

k
2 gk√

a

from====
(5.33)

J Z
j
1 Z

k
2√

a
ε jkigi

from the skew-symmetric===================
property of the permutation symbol

J Z
j
α εαβ Z

k
β

2
√
a

εi jkgi ,

noting that

Z
j
α εαβ Z

k
βεi jk = Z

j
1 Z

k
2 ε jki − Z

j
2 Z

k
1 ε jki

= Z
j
1 Z

k
2 ε jki − Z

k
2 Z

j
1 εk ji

= Z
j
1 Z

k
2 ε jki + Z

k
2 Z

j
1 ε jki

= 2Z
j
1 Z

k
2 ε jki .

And the result (9.72a) can be shown in an analogous manner.
The following identity holds true
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Z
i
α Z̃

β

i = δβ
α , (9.73)

since

from============⇒
(9.33), (9.46) and (9.59)

Z
i
α gi · Z̃β

j g
j = δβ

α

using the bilinearity of===========⇒
dot product and (5.27)

Z
i
αδ

j
i Z̃

β

j = δβ
α

from===⇒
(5.14)

Z
i
α Z̃

β

i = δβ
α .

The following identity also holds true

Z
i
α Z̃

α
j + n̂ i n̂ j = δij , (9.74)

since

by using========⇒
(9.34) and (9.35a)

aα ⊗ aα + n̂ ⊗ n̂ = I

by using the bilinearity of tensor product====================⇒
along with (9.46) and (9.59)

Z
i
α Z̃

α
j gi ⊗ g j + n̂ ⊗ n̂ = I

by using the bilinearity of tensor product====================⇒
along with (5.78) and (9.71)

Z
i
α Z̃

α
j gi ⊗ g j + n̂ i n̂ j gi ⊗ g j = gi ⊗ gi

by premultiplying both sides with gk==================⇒
along with (2.43), (5.14) and (5.27)

Z
k
α Z̃

α
j g

j + n̂ k n̂ j g j = gk

by multiplying both sides with gl=================⇒
along with (5.14) and (5.27)

Z
k
α Z̃

α
l + n̂ k n̂ l = δkl

by renaming k → i==========⇒
and also l → j

Z
i
α Z̃

α
j + n̂ i n̂ j = δij .

This identity, for instance, may be used to show that any vector lying in the tangent
plane (called surface vector) satisfies

ĥ · n̂ = ĥαZ
i
α n̂ i︸ ︷︷ ︸

= ĥ j
(
Z̃α
j Z

i
α

)
n̂ i

= ĥ j
(
δij − n̂ i n̂ j

)
n̂ i

︸ ︷︷ ︸
= ĥ i n̂ i − ĥ j n̂ j

= 0 . ←− see (9.84) and (9.85a) (9.75)

9.1.5 Tensor Property of Shift Tensors

The object Z
i
α transforms tensorially as implied by its name. To show this, consider

the old and new surface coordinates
(
t1, t2

)
and

(
t̄ 1, t̄ 2

)
, respectively. Consider also
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the old and new ambient coordinates
(
�1,�2,�3

)
and

(
�̄1, �̄2, �̄3

)
, respectively.

Then, these systems of coordinates are related through

�̄i
(
t̄ α

) = �̄i
{
� j

[
tβ

(
t̄ α

)]}
. (9.76)

Consequently, the shift tensor Z
i
α , according to (9.47)3, obeys

Z̄
i

α = ∂�̄i

∂ t̄ α
= ∂�̄i

∂� j

∂� j

∂tβ
∂tβ

∂ t̄ α
= ∂�̄i

∂� j
Z

j
β

∂tβ

∂ t̄ α
. (9.77)

Consistent with this, the variant Z̃α
i in (9.60)3 also preserves the tensor property

(indeed, it is deserved to be called a tensor). Making use of

t̄ α
(
�̄i

) = t̄ α
{
tβ

[
� j

(
�̄i

)]}
, (9.78)

this is indicated by

¯̃Zα

i = ∂ t̄ α

∂�̄i
= ∂ t̄ α

∂tβ
∂tβ

∂� j

∂� j

∂�̄i
= ∂ t̄ α

∂tβ
Z̃β

j

∂� j

∂�̄i
. (9.79)

9.1.6 Surface Vectors and Tensors

Let u be a vector with the following representations

u = uαaα = uαaα . (9.80)

Such a vector, that lies in the tangential plane, is called the surface vector. It also
admits the ambient forms (5.64a)–(5.64b). The contravariant and covariant compo-
nents of a surface vector are related by

uα = aαβ uβ , uα = aαβ uβ . ←− see (5.66a) (9.81)

In a similar manner, a surface tensor A can intrinsically be expressed as

A = Aαβaα ⊗ aβ = Aα
. βaα ⊗ aβ = A . β

α aα ⊗ aβ = Aαβaα ⊗ aβ . (9.82)

And it extrinsically admits the decompositions (5.73a)–(5.73d). By index juggling,
one will have

Aαβ = aαγ Aγ

. β = A . γ
α aγβ = aαγ Aγ δaδβ , ←− see (5.76a) (9.83a)

A . β
α = aαγ Aγβ = Aαγ a

γβ = aαγ Aγ

. δa
δβ , (9.83b)
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Aα
. β = aαγ Aγβ = Aαδaδβ = aαγ A . δ

γ aδβ , (9.83c)

Aαβ = aαγ A . β
γ = Aα

. γ a
γβ = aαγ Aγ δa

δβ . (9.83d)

All surface vector and tensor variables in this text satisfy

u · n̂ = n̂ · u = 0 , An̂ = n̂A = 0 . (9.84)

Let u = uigi = uαaα or u = u igi = uαaα be a surface vector. Then, its ambient

and surface componentswill be related through the shift tensors Z
i
α and Z̃

α
i as follows:

ui = Z
i
α uα , uα = Z̃α

i u i , (9.85a)

ui = Z̃α
i uα , uα = Z

i
α u i . (9.85b)

As can be seen, the object Z
i
α helps shift the contravariant (covariant) components

of u from surface (ambient) to ambient (surface). And the object Z̃α
i helps shift

the contravariant (covariant) components of u from ambient (surface) to surface
(ambient). It is not then difficult to see that

Ai j = Z
i
α Aαβ Z

j
β , Aαβ = Z̃α

i Ai j Z̃β

j , (9.86a)

Ai
. j = Z

i
α Aα

. β Z̃
β

j , Aα
. β = Z̃α

i Ai
. j Z

j
β , (9.86b)

A . j
i = Z̃α

i A . β
α Z

j
β , A . β

α = Z
i
α A . j

i Z̃
β

j , (9.86c)

Ai j = Z̃α
i Aαβ Z̃

β

j , Aαβ = Z
i
α Ai j Z

j
β . (9.86d)

Tensor property of components of surface vectors and tensors. Recall from the
relations in (5.104) that a vector was an invariant while its components, according
to (5.105a)–(5.105b), did not remain invariant under a change of coordinates. In this
regard, the variant ui ( u i ) was called a contravariant (covariant) tensor because it
obeyed the transformation rule (5.105a) ((5.105b)).

Now, let u be a surface vector and consider a change of surface coordinates from(
t1, t2

)
to

(
t̄ 1, t̄ 2

)
. The invariance of this object is then written by

u = ūα āα = ūα āα

= uαaα = uαaα , (9.87)

while the tensor property of its components is characterized by the following rules

ūα = ∂ t̄ α

∂tβ
uα , ←− see (9.42c) (9.88a)

ūα = ∂tβ

∂ t̄ α
uβ . (9.88b)
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Accordingly, the variant uα ( uα) represents a first-order contravariant (covariant)
surface tensor. In a similar manner,

Āαβ = ∂ t̄ α

∂tγ
Aγ δ ∂ t̄ β

∂t δ
, (9.89a)

Āα
. β = ∂ t̄ α

∂tγ
Aγ

. δ

∂t δ

∂ t̄ β
, (9.89b)

Ā . β
α = ∂tγ

∂ t̄ α
A . δ

γ

∂ t̄ β

∂t δ
, (9.89c)

Āαβ = ∂tγ

∂ t̄ α
Aγ δ

∂t δ

∂ t̄ β
. (9.89d)

Note that any vector (or tensor) in this chapter is a surface vector (or surface tensor),
if not otherwise stated. And surface tensorial field variables naturally vary from point
to point within the surface (note that they are undefined outside the surface). Thus,
such tensor fields can only be differentiated along the surface.

Recall from Chap.7 that the gradient of an ambient tensor field was established
on the basis of the partial derivative of that tensor field with respect to the curvilinear
coordinates. And the partial derivative of a tensorial field variable was expressed in
terms of the covariant derivative of its components. Recall also that the covariant
derivative crucially relied on the Christoffel symbols. The same procedure can be
used here. But some important properties established for the ambient space do not
properly work here due to curvature. In what follows, the goal is thus to characterize
the Christoffel symbols and covariant derivative on the surface.

9.2 Gauss and Weingarten Formulas

9.2.1 Surface Christoffel Symbols of Second Kind

Similarly to (7.5), consider the following family of objects

���αβ := ∂aα

∂tβ
, (9.90)

with the symmetry in the indices α and β, that is,

���αβ = ∂aα

∂tβ
= ∂2x

∂tβ∂tα
= ∂2x

∂tα∂tβ
= ∂aβ

∂tα
= ���βα . (9.91)

Then,

�
γ

αβ = ∂aα

∂tβ
· aγ satisfying �

γ

αβ = �
γ

βα , (9.92)
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are referred to as surface Christoffel symbols of the second kind or simply surface
Christoffel symbols (see the pioneeringworkofChristoffel [10]). They are also known
as the connection coefficients. For the two-dimensional space under consideration,
they exhibit an array of 6 independent quantities.

Recall from Hint on Sect. 7.1.1 that the ambient Christoffel symbols were not the
components of a third-order tensor. The object �γ

αβ is also not a tensor as implied by
its name. To show its nontensorial transformation, consider an old basis {a1, a2, n̂}
and a new basis {ā1, ā2, n̂} with the corresponding Christoffel symbols �

γ

αβ and �̄
γ

αβ .
They are associated with the old and new surface coordinates

(
t1, t2

)
and

(
t̄ 1, t̄ 2

)

which are related through the relations given in (9.40). Following similar procedures
that led to (7.23) then reveals

�̄
γ

αβ = ∂t δ

∂ t̄ α

∂tθ

∂ t̄ β

∂ t̄ γ

∂tρ
�

ρ
δθ

tensorial part

+ ∂2tρ

∂ t̄ α∂ t̄ β

∂ t̄ γ

∂tρ

nontensorial portion

. (9.93)

9.2.2 Surface Second-Order Curvature Tensor

In contrast to (7.8), it is impossible to have ∂aα/∂tβ = �
γ

αβaγ for curved surfaces.
The reason is that the sensitivity of the surface tangent vectors with respect to the
Gaussian coordinates are not restricted to lie in the tangent plane. In general, they
may have components in the normal direction.

With regard to this, the surface version of (7.8), known as the Gauss formulas,
reads

∂aα

∂tβ
= �

γ

αβaγ + bαβ n̂ , (9.94)

where bαβ is known as the surface covariant curvature tensor. Using (9.12)1−2,
(9.90), (9.91)5 and (9.94), one will have

bαβ = ∂aα

∂tβ
· n̂ = ∂aβ

∂tα
· n̂ = bβα . (9.95)

The reason for introducing the variant bαβ as a tensor is that, under a change of
surface coordinates from

(
t1, t2

)
to

(
t̄ 1, t̄ 2

)
, it tensorially transforms according to

b̄αβ = ∂

∂ t̄ β
[āα] · n̂

= ∂

∂ t̄ β

[
∂tθ

∂ t̄ α
aθ

]
· n̂

= ∂2tθ

∂ t̄ β∂ t̄ α
aθ · n̂ + ∂tθ

∂ t̄ α

∂aθ

∂ t̄ β
· n̂
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= ∂tθ

∂ t̄ α

∂aθ

∂tρ
∂tρ

∂ t̄ β
· n̂

= ∂tθ

∂ t̄ α
bθρ

∂tρ

∂ t̄ β
. ←− see (9.43) (9.96)

The surface covariant curvature tensor can also be written in the following equivalent
versions

bαβ = ∂2x
∂tα∂tβ

· n̂

= − ∂x
∂tα

· ∂n̂
∂tβ

= −1

2

[
∂x
∂tα

· ∂n̂
∂tβ

+ ∂x
∂tβ

· ∂n̂
∂tα

]
. (9.97)

This covariant symmetric second-order tensor in matrix representation renders

[
bαβ

] =
[

b11 b12

b12 b22

]
. (9.98)

As can be seen from the Gauss relations (9.94), the nontensorial object �
γ

αβ and
tensorial variable bαβ help express the partial derivatives ∂aα/∂tβ with respect to
the ambient basis {a1, a2, n̂}. See Fig. 9.10 for a geometrical interpretation. Notice
that the surface covariant curvature tensor has an extrinsic nature. A more detailed
discussion of curvature is given in Sect. 9.7.

Other useful relations regard the partial derivatives of the unit normal vector to
the surface with respect to the Gaussian coordinates. They are referred to as the
Weingarten formulas9:

∂n̂
∂tα

= − b . β
α aβ = − bαβaβ , (9.99)

where
b . β

α = bαγ a
γβ = aβγ bγα = bβ

. α , (9.100)

or

b . β
α = − ∂n̂

∂tα
· aβ , (9.101)

9 The proof is not difficult. First, by means of the relations n̂ · n̂ = 1 and n̂ · aβ = 0, one will

have n̂ · ∂n̂/∂tα = 0 which implies that ∂n̂/∂tα = T . β
α aβ where T . β

α are unknown components
to be determined. Then, by using the Gauss formulas, the partial derivatives of n̂ · aγ = 0 lead

to ∂n̂/∂tα · aγ = − bαγ or T . β
α aβγ = − bαγ . Finally, using the identity aβγ aγ θ = δθ

β , one will

finally arrive at T . θ
α = − bαγ aγ θ = − b . θ

α or T . β
α = − b . β

α .
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Fig. 9.10 Projection of the partial derivative ∂aα/∂tβ onto the ambient basis {a1, a2, n̂}

is called the surface mixed curvature tensor. The way that the unit normal vector
to the surface tilts as one moves infinitesimally from one point to another is thus
captured by this crucially important tensor. In matrix form, it renders

[
b . β

α

] =
[

b . 1
1 b . 2

1
b . 1
2 b . 2

2

]
=

[
b11a11 + b12a12 b11a12 + b12a22

b12a11 + b22a12 b12a12 + b22a22

]
. (9.102)

9.2.3 Mean and Gaussian Curvatures

The principal scalar invariants of the matrix (9.102)1 are of crucial importance in
differential geometry of surfaces. The half of its trace is called the mean curvature:

H = 1

2
tr
[
b . β

α

] = 1

2
b . α

α = 1

2

(
b . 1
1 + b . 2

2

)
. (9.103)

And its determinant is referred to as the Gaussian curvature:

K = det
[
b . β

α

] = b . 1
1 b . 2

2 − b . 2
1 b . 1

2 . (9.104)

The mean curvature H of a regular surface S at a generic point P is basically a
measure of the rate of change of the area of a bounded domain of S in a neighborhood
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of P . With regard to this, a surface is said to be minimal if its mean curvature
vanishes everywhere. For the characterization of such a surface of minimum area,
see Exercise9.11. Awell-known example of aminimal surface regards catenoid (see
Figs. 9.37 and 9.42).

It is important to note that the Gaussian curvature can solely be captured by
measuring distances on the surfaces. And this reveals the fact this fundamental object
has basically an intrinsic nature, see (9.483).

From (1.78a), (9.69)1, (9.101) and (9.104)2, the Gaussian curvature can be repre-
sented by

K = 1√
a

(
∂n̂
∂t1

× ∂n̂
∂t2

)
· n̂ . (9.105)

9.2.4 Surface Christoffel Symbols of First Kind
and Levi-Civita Connection

Of interest here is to focus on the discussions regarding the Christoffel symbols. The
objects in (9.92) may also be represented by

�α
βγ = −∂aα

∂tγ
· aβ , (9.106)

since

from aα · aρ = δα
ρ one obtains

∂aα

∂tβ
· aρ + aα ·

[
�

γ

ρβ aγ + bρβ n̂
]

= 0 ,

and, therefore,

∂aα

∂tβ
· aρ + �

γ

ρβδα
γ = 0 gives �α

ρβ = −∂aα

∂tβ
· aρ or �α

βγ = −∂aα

∂tγ
· aβ .

With the aid of (9.12)1 and (9.94), the partial derivatives of the surface covariant
metric coefficients aαβ = aα · aβ render

∂aαβ

∂tγ
= � ρ

γα aρβ + �
ρ
γβ aρα . (9.107)

It is now easy to arrive at

∂aαβ

∂tγ
= −�α

γρ a
ρβ − �β

γρ a
ρα , (9.108)
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and
∂aα

∂tβ
= −�α

βγ a
γ + bα

. β n̂ where bα
. β = aαθ bθβ = b .α

β . (9.109)

Making use of (9.28), i.e. aθ = aθρ aρ , and (9.26)1, i.e. aγ θaθρ = δρ
γ , the superscript

index of �θ
αβ in (9.92) can be lowered:

�αβγ = ∂aα

∂tβ
· aγ . (9.110)

The quantities �αβγ that also possess symmetry in the first two indices are called
surface Christoffel symbols of the first kind. These 6 independent quantities

�αβγ = �θ
αβ aθγ , (9.111)

help establish
∂aα

∂tβ
= �αβγ aγ + bαβ n̂ . (9.112)

By means of (9.107) and (9.111), the surface version of (7.14) becomes

�αβγ = 1

2

(
∂aγα

∂tβ
+ ∂aγβ

∂tα
− ∂aαβ

∂tγ

)
. (9.113)

With the aid of (9.26)1, (9.111) and (9.113), the surface counterpart of (7.15) will
take the following form

�
γ

αβ = 1

2

(
∂aρα

∂tβ
+ ∂aρβ

∂tα
− ∂aαβ

∂tρ

)
aργ . (9.114)

This is known as the Levi-Civita (or Riemann or Christoffel) connection (see, e.g.,
Levi-Civita [11]). Note that (9.92) presents the extrinsic definition of the Christoffel
symbols while (9.114) renders their intrinsic definition. This is similar to the covari-
ant metric coefficients which can be calculated extrinsically using the covariant basis
vectors and intrinsically by measuring distances on the surfaces.

The surface analogue of �i
ki = ∂ ln J/∂�k , given in (7.17), renders

�α
γα = ∂ ln

√
a

∂tγ
, (9.115)
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because

∂ ln
√
a

∂tγ
= 1

2a

∂a

∂tγ
= 1

2a

∂a

∂aαβ

∂aαβ

∂tγ
= 1

2a

(−a aαβ

) (−�α
γρ a

ρβ − �β
γρ a

ρα
)

= 1

2
�α

γρδ
ρ
α + 1

2
�β

γρδ
ρ
β = 1

2
�ρ

γρ + 1

2
�ρ

γρ = �α
γα .

The ambient useful identity ∂
(
Jgi

)
/∂�i = 0, according to (7.18), does not hold

true for curved surfaces due to curvature. Indeed,

∂
(√

aaα
)

∂tα
= √

a bα
. α n̂ , (9.116)

since

∂
(√

a aα
)

∂tα
by using=========

the product rule

∂
√
a

∂tα
aα + √

a
∂aα

∂tα

by using================
(9.109) and in light of (9.115)

√
a �γ

αγ a
α + √

a
[−�α

αγ a
γ + bα

. α n̂
]

by considering the symmetry of Christoffel symbols============================
and switching the names of dummy indices

√
a �α

αγ

[
aγ − aγ

] + √
a bα

. α n̂

by using================
the properties of vector space

√
a bα

. α n̂ .

The surface and ambient Christoffel symbols are related through the following equa-
tion

�
γ

αβ = Z
i
αZ

j
β Z̃

γ

k Γ k
i j + Z̃γ

i

∂Z
i
α

∂tβ
, ←− see (9.218) (9.117)

since

�
γ

αβ

by using==============
(9.46), (9.59) and (9.92)

∂

∂tβ

[
Z

i
α gi

]
· (Z̃γ

k gk
)

by using the product============
rule of differentiation

[
∂Z

i
α

∂tβ
gi + Z

i
α

∂gi
∂tβ

]

· (Z̃γ

k gk
)

by using the chain============
rule of differentiation

∂Z
i
α

∂tβ
Z̃γ

k

(
gi · gk) + Z

i
α Z̃

γ

k

∂� j

∂tβ
∂gi
∂� j

· gk

by using=================
(5.14), (5.27), (7.7) and (9.47)

∂Z
i
α

∂tβ
Z̃γ

i + Z
i
α Z̃

γ

k Z
j
β Γ k

i j .
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Recall from the ambient space that the major role of the Christoffel symbols was to
facilitate the covariant differentiation. This also holds true for curved surfaces. In
what follows, the goal is thus to study the surface covariant derivative.

9.3 Surface Covariant Derivative

9.3.1 Surface First Covariant Differentiation

The goal here is to geometrically describe the surface covariant derivative of a vec-
tor and covector. The results will then be extended to tensors of higher ranks (note
that this useful differential operator provides tensors out of tensors in accord with
the ambient space). The procedure greatly relies on what is known as the paral-
lel transport explained throughout the development. So far, it has intuitively been
assumed that the partial derivative of a surface vector satisfies the product rule. In
the following, it will be verified that both partial and covariant differential operators
satisfy this fundamental rule of differentiation.

The surface covariant derivative of a vector field is illustrated in Fig. 9.11.
Let S be a surface embracing a parametrized curve tα (t) with a t = (dtα/dt) aα ,

according to (9.240)3. Further, let ĥ = ĥαaα be a smooth vector field defined in the
tangent planes of that surface. Now, consider a point P corresponding to t . Consider

Fig. 9.11 Surface covariant derivative
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Fig. 9.12 Parallel transport

also a nearby point Q corresponding to t + Δt . The derivative of ĥ in the direction
a t is defined by

dĥ
dt

:= lim
Δt→0

ĥ‖
Q→P − ĥP

Δt
or

d ĥα

dt
:= lim

Δt→0

ĥα ‖
Q→P − ĥα

P

Δt
, (9.118)

where ĥ‖
Q→P represents the so-called parallel transport of ĥ from Q to P . The key

point in this definition is that the difference ĥ‖
Q→P − ĥP is well-defined. Note that

ĥQ − ĥP does not make any sense because the vectors lie in different tangent planes.
This problem can be resolved by adopting a proper transportation. For instance, one
can move a vector around by keeping its length and direction as constant as possible.
This is known as the parallel transport of that vector. It basically allows one to connect
the different tangent spaces in a curved space. For a geometrical interpretation, see
Fig. 9.12.

The parallel transport of ĥαaα from Q to P only affects the basis vectors, as
implied by its name. Thus, in coordinate representation, the definition (9.118)1 ren-
ders

dĥ
dt

= lim
Δt→0

ĥα
Q (aα)

‖
Q→P − ĥα

P (aα)P

Δt
, (9.119)

where ĥα
Q := ĥα (t + Δt) can be related to ĥα

P := ĥα (t) via the following first-
order Taylor series expansion

ĥα
Q = ĥα

P + d ĥα

dt

∣∣∣∣
∣
P

Δt . ←− see (6.24)–(6.25) (9.120)
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To proceed, one needs to realize that (aα)
‖
Q→P is an ambient vector sitting at P . It

can thus be decomposed with respect to the ambient basis {a1, a2, n̂}|P as

(aα)
‖
Q→P = ξ

β

α P

(
aβ

)
P + ςα P ( n̂)P . (9.121)

For small enough Δt , the coefficients ξ
β

α P and ςα P are nearly δβ
α and (0)α , respec-

tively. Consequently, using (9.119)-(9.121), one can arrive at

dĥ
dt

= d ĥα

dt
aα +

(
lim

Δt→0

ξα
θ − δα

θ

Δt

)
ĥ θaα + ĥα

(
lim

Δt→0

ςα

Δt

)
n̂ , (9.122)

where the subscript P has been dropped for convenience. Suppose that t is one of
the coordinate curves. The above relation then takes the form

∂ĥ
∂tβ

= ∂ ĥα

∂tβ
aα +

(
lim

Δtβ→0

ξα
θ − δα

θ

Δtβ

)
ĥ θaα + ĥα

(
lim

Δtβ→0

ςα

Δtβ

)
n̂ . (9.123)

Let

�α
βθ := lim

Δtβ→0

ξα
θ − δα

θ

Δtβ
, bαβ := lim

Δtβ→0

ςα

Δtβ
. ←− for the characterization of

�α
βθ , see (9.144)–(9.151) (9.124)

Then,
∂ĥ
∂tβ

=
(

∂ ĥα

∂tβ
+ �α

βθ ĥ
θ

)

aα + ĥα bαβ n̂ . (9.125)

One can also have

dĥ
dt

=
(
d ĥα

dt
+ �α

βθ

dtβ

dt
ĥ θ

)

aα + ĥα bαβ

dtβ

dt
n̂ . (9.126)

The orthogonal projection of ∂ĥ/∂tβ onto the tangent plane defines the surface
covariant derivative of ĥ. Here, it is denoted by

ĥ
∣∣∣
aβ

= ĥ
∣∣∣
β

= ĥα
∣∣∣
β
aα

in the literature, this is sometimes denoted by ∇aβ ĥ = ∇β ĥ =
(
∇β ĥα

)
aα

, (9.127)

where

ĥα
∣∣∣
β

= ∂ ĥα

∂tβ
+ �α

βθ ĥ
θ . (9.128)
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As can be seen, the covariant derivative operator relies on the connection coefficients.
It is sometimes called connection because it basically helps connect the different
tangent spaces. In general, there are many possible ways to define these coefficients
(note that the most commonly used connection coefficients in general relativity are
governed by the Levi-Civita connection). Indeed, each space can possibly have its
own definition.And thismeans that the result of covariant derivative (and accordingly
parallel transport) may vary from space to space.

The surface covariant differentiation is eventually the only rate of change that the
two-dimensional inhabitants of the surface can measure. It should thus be regarded
as an intrinsic operation. Indeed, the surface covariant derivative of a surface vector
field is the partial derivative of such an invariant object with the normal component
subtracted.

One can readily show that the surface covariant derivative coincides with the
ordinary partial derivative for smooth scalar functions of the Gaussian coordinates:

h̄
∣∣
β

= ∂ h̄

∂tβ
. (9.129)

This is eventually the directional derivative of h̄ in the direction of aβ :

Daβ
h̄ = ∂ h̄

∂x
· aβ = ∂ h̄

∂tα
∂tα

∂x
· aβ

= ∂ h̄

∂tα
aα · aβ = ∂ h̄

∂tα
δα
β

= ∂ h̄

∂tβ
. ←− see (7.4a) (9.130)

Following similar procedures which led to (9.125), one can obtain

∂aα

∂tβ
= aα|β + bαβ n̂ where aα|β = �

γ

αβaγ . (9.131)

These relations basically represent the Gauss formulas demonstrated in (9.94). This
helps verify that the partial derivative of ĥ = ĥαaα satisfies the product rule in the
sense that

∂ĥ
∂tβ

=
∂
(
ĥαaα

)

∂tβ
= ∂ ĥα

∂tβ
aα + ĥα ∂aα

∂tβ
= ĥα

∣
∣∣
β
aα + ĥα bαβ n̂ . (9.132)

The relation (9.109)1 can now be rephrased as

∂aα

∂tβ
= aα|β + bα

. β n̂ where aα|β = −�α
βγ a

γ . (9.133)
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As can be seen from (9.131)2 and (9.133)2, the ambient metrinilic property gi | j = 0
and gi

∣∣
j = 0, according to (7.36a)–(7.36b), does not hold true for curved surfaces.

Let ĥ = ĥαaα , u = uβaβ be two smooth vector fields. Similar procedureswhich
led to (9.125) can then be followed to show that the partial derivative of ĥ · u satisfies
the product rule, that is,

∂
(
ĥ · u

)

∂tβ
= ∂ĥ

∂tβ
· u + ĥ · ∂u

∂tβ
. ←− the proof is given in Exercise 9.12 (9.134)

Indeed,
∂
(
ĥ · u

)

∂tβ
= ĥα

∣∣
∣
β

(
aαγ u γ

) +
(
ĥαaαγ

)
u γ

∣∣
β

, (9.135)

which is in alignment with

∂
(
ĥ · u

)

∂tβ
=

∂
(
ĥαaαγ u γ

)

∂tβ
↙ note that

∂aαγ

∂tβ
= �

ρ
βα

aργ + �
ρ
βγ

aρα

= ∂ ĥα

∂tβ
aαγ u γ + ĥα ∂aαγ

∂tβ
u γ + ĥαaαγ

∂ u γ

∂tβ
.

Consider the fact that ĥ · u is a scalar quantity whose partial derivative and covariant
differentiation coincide. Thus, one can establish the useful product rule

(
ĥ · u

)∣∣∣
β

=
(
ĥ
∣∣∣
β

)
· u + ĥ · (u|β

)
, (9.136)

which is known as the metric compatibility property. This helps characterize some
important properties addressed throughout the development.

Let α , β ∈ R be two arbitrary constants and h̄ ∈ R be a smooth scalar function
of the surface coordinates. Further, let u , v , w ∈ E o3

r be three smooth vector fields.
It should not be difficult now to verify that the surface covariant derivative satisfies
the following properties (Steinmann [12])

(αu + βv)|w = α (u|w) + β (v|w) , ← linearity property in the field (9.137a)

u|(αv+βw) = α (u|v) + β (u|w) , ← linearity property
in the direction vector (9.137b)

(
h̄u

)∣∣
v = (

Dvh̄
)
u + h̄ (u|v) , ← Leibniz rule of differentiation (9.137c)

u|(h̄v) = h̄ (u|v) . (9.137d)
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Fig. 9.13 Parallel transport of vector field

Let ĥ = ĥαaα be a smooth vector field. And consider its components (basis vectors)
as scalar functions (vectors). Using (9.130)5, (9.131)2 and (9.137c), one can then
verify that the surface covariant derivative of ĥwith respect to aβ satisfies the product
rule in the sense that

ĥ
∣∣∣
aβ

=
(
ĥαaα

)∣∣∣
aβ

=
(
Daβ

ĥα
)
aα + ĥα

(
aα|aβ

)
= ĥα

∣∣∣
β
aα . (9.138)

Let ĥ = ĥαaα , u = uβaβ be two smooth vector fields. Making use of (9.137b)
and (9.138)3, the surface covariant derivative of ĥ along u can then be established
according to

ĥ
∣
∣∣
u

= ĥ
∣
∣∣
( uβaβ)

= ĥ
∣
∣∣
aβ

uβ = ĥα
∣
∣∣
β
uβaα . (9.139)

The condition for the parallel transport of ĥ = ĥαaα along u = uβaβ reads

ĥ
∣∣∣
u

= 0 or ĥα
∣∣∣
β

= 0 or
∂ ĥα

∂tβ
= −�α

βθ ĥ
θ . (9.140)

Accordingly, the change in a vector from a point t to an infinitesimally close point
t + dt when it is parallel transported along a curve tβ (t) represents (see Fig. 9.13)

d ĥα = ∂ ĥα

∂tβ
dtβ = −�α

βθ ĥ
θdtβ = −�α

βθ ĥ
θ dt

β

dt
dt . (9.141)

Consider a vector ĥ which has been parallel transported along aβ (this basically
defines a vector field along the corresponding coordinate curve). Using (9.130)5,
(9.136) and (9.140), one can write
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(
ĥ · ĥ

)∣∣∣
β

=
(
ĥ
∣∣∣
β

)
· ĥ + ĥ ·

(
ĥ
∣∣∣
β

)
= 0 or

∂
(
ĥ · ĥ

)

∂tβ
= 0 . (9.142)

This result states that:

The length of a vector remains constant during its parallel transport
along a curve.

Now, consider the two vectors ĥ and u (with the same origin) which have been
parallel transported along aβ (to form two vector fields along the corresponding
coordinate line). From (9.130)5, (9.136) and (9.140), it follows that

(
ĥ · u

)∣∣∣
β

=
(
ĥ
∣∣∣
β

)
· u + ĥ · (u|β

) = 0 or
∂
(
ĥ · u

)

∂tβ
= 0 . (9.143)

One then concludes that:

The angle between two vectors remains constant when they are parallel
transported along a curve.

Notice that the results (9.142) and (9.143) are two important consequences
of the metric compatibility property. Moreover, one can again use this prop-
erty to characterize the coefficients �α

βθ in (9.124). This is demonstrated in the
following. ✭

Let ĥ = aα and u = aρ . The metric compatibility property then renders

(
aα · aρ

)∣∣
β

= (
aα|β

) · aρ + aα ·
(
aρ

∣∣
β

)
, (9.144)

or, using (9.17)1, (9.130)5 and (9.131)2,

∂aαρ

∂tβ
= �

γ

αβaγ · aρ + aα · �
γ

ρβaγ = �
γ

αβaγρ + �
γ

ρβaαγ . (9.145)

Here, the coefficients �
γ

αβ are generally regarded as 8 unknowns. Considering the
symmetry of the metric tensor components, notice that one only has 6 independent
equations. A natural treatment is discussed below.

Let �γ

αβ be additively decomposed according to

�
γ

αβ

8 unknowns

= 1

2

(
�

γ

αβ + �
γ

βα

)

6 unknowns

+ 1

2

(
�

γ

αβ − �
γ

βα

)

2 unknowns

, (9.146)
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where (twice) its skew-symmetric part is referred to as the torsion tensor (see the
pioneering work of Cartan [13]):

T γ

αβ = �
γ

αβ − �
γ

βα . (9.147)

The problem can be resolved by assuming that the torsion tensor vanishes:

T γ

αβ = 0 . (9.148)

This is a popular (but debatable) assumption frequently used, for instance, in gen-
eral relativity. One is thus left with a system of 6 linear equations in six variables(
�1
11, �

1
22, �

1
12, �

2
11, �

2
22, �

2
12

)
.

The result (9.145)2, by renaming the free indices α → ρ, ρ → β and β → α, can
be written as

− ∂aρβ

∂tα
= − �

γ
ραaγβ − �

γ

βαaργ . (9.149)

In a similar manner,
∂aβα

∂tρ
= �

γ

βρaγα + �
γ
αρaβγ . (9.150)

From (9.145)2, (9.149) and (9.150), one can finally arrive at

2�γ

ρβaαγ = ∂aαρ

∂tβ
+ ∂aβα

∂tρ
− ∂aρβ

∂tα

or �θ
αβ

aρθ = 1
2

(
∂aρα

∂tβ
+ ∂aβρ

∂tα − ∂aαβ
∂tρ

)
or �

γ
αβ

= 1
2

(
∂aρα

∂tβ
+ ∂aρβ

∂tα − ∂aαβ
∂tρ

)
aργ

, (9.151)

which is the Levi-Civita connection given in (9.114). ✭
Let u and ĥ be two smooth vector fields. Space is said to be torsion-free if no gap

appears when these vectors are parallel transported along each other. If the so-called
commutator of u and ĥ vanishes,10 this condition is written by

10 The torsion tensor T α
βγ , introduced in (9.147), is basically defined by its operation on two smooth

vector fields as follows:

t
(
u, ĥ

)
= ĥ

∣
∣∣
u

− u|ĥ −
[
u, ĥ

]

= ĥα
∣∣
∣
β
uβaα − uα

∣
∣
β
ĥβaα −

(

u θ ∂ ĥα

∂tθ
− ĥ θ ∂ uα

∂tθ

)

aα

=
(

�
�

��∂ ĥα

∂tβ
uβ + �α

βγ ĥγ uβ − ����
∂ uα

∂tβ
ĥβ − �α

βγ uγ ĥβ −
�

�
��∂ ĥα

∂tβ
uβ + ����

∂ uα

∂tβ
ĥβ

)

aα

=
(
�α

βγ ĥγ uβ − �α
βγ uγ ĥβ

)
aα

=
(
�α

βγ − �α
γβ

)
ĥγ uβaα
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ĥ
∣∣∣
u

= u|ĥ . ←− see the expression (9.619)
and also Fig. 9.34 (9.152)

One can then conclude that the connection coefficients have symmetry in their lower
two indices. To show this, suppose that ĥ = aα , u = aβ . Then,

aα|β − aβ

∣∣
α

=
(
�

γ

αβ − �
γ

βα

)
aγ = 0 implies that �

γ

αβ = �
γ

βα . (9.153)

The goal is now to derive the surface covariant derivative of a covector. This will be
demonstrated in the following. ✈

Let h̄ = uα ĥα be a smooth scalar function whose covariant derivative is

(
uα ĥα

)∣∣
∣
β

=
∂
(
uα ĥα

)

∂tβ
= ∂ uα

∂tβ
ĥα + uα ∂ ĥα

∂tβ
. (9.154)

The demand for satisfying the product rule then helps represent

(
uα ĥα

)∣∣∣
β

=
(
uα

∣∣
β

)
ĥα + uα

(
ĥα

∣∣∣
β

)

= ∂ uα

∂tβ
ĥα + ĥα�α

βθ u
θ + ĥα

∣∣∣
β
uα

= ∂ uα

∂tβ
ĥα + ĥ θ�

θ
βα uα + ĥα

∣∣∣
β
uα . (9.155)

From (9.154) and (9.155), it follows that

ĥα

∣∣
∣
β
uα = ∂ ĥα

∂tβ
uα − ĥ θ�

θ
βα uα .

Considering the fact that uα is entirely arbitrary finally helps establish

ĥα

∣∣∣
β

= ∂ ĥα

∂tβ
− �θ

αβ ĥ θ . ✈ (9.156)

Consequently, in accord with (9.132), one will have

= T α
βγ uβ ĥγ aα .

Here,
[
u, ĥ

]
denotes the commutator (or Lie bracket) of u and ĥ. This sophisticated tool eventually

presents the Lie derivative of ĥ with respect to u, see (9.550) and (9.617). Guided by (9.563), note
that the commutator of the basis vectors vanishes.
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∂ĥ
∂tβ

=
∂
(
ĥαaα

)

∂tβ
= ∂ ĥα

∂tβ
aα + ĥα

∂aα

∂tβ
= ĥα

∣∣∣
β
aα + ĥα bα

. β n̂ . (9.157)

The relations (9.140)2 and (9.141) now translate to

ĥα

∣∣∣
β

= 0 or
∂ ĥα

∂tβ
= �θ

αβ ĥ θ , (9.158)

and

d ĥα = ∂ ĥα

∂tβ
dtβ = �θ

αβ ĥ θdt
β = �θ

αβ ĥ θ

dtβ

dt
dt . (9.159)

In summary, some fundamental properties of the surface covariant derivative are
highlighted here. This mathematical object

➮ coincides with the ordinary partial derivative for scalar functions varying on the
surface,

➮ satisfies the sum and product rules, and
➮ violates the commutative law when the surface under consideration possesses a

nonvanishing Riemann-Christoffel curvature tensor (see (9.201a)-(9.201b)).

Analogously to the ambient expression (7.26), the coordinate index on the surface
covariant derivative can be raised to define the surface contravariant derivative as
follows:

ĥα
∣∣∣
β = ĥα

∣∣∣
θ
aθβ , ĥα

∣∣∣
β = ĥα

∣∣∣
θ
aθβ . (9.160)

Let H̃ = H̃
(
t1, t2

)
be a smooth surface tensor fieldwhich can be decomposed accord-

ing to (9.82)1−4. In the following, the aim is to characterize the surface covariant
derivative of such a tensor field. ➨

Recall from (9.132) and (9.138) that both partial and covariant derivatives of
an object satisfied the product rule. Moreover, recall that the surface covariant dif-
ferentiation of an invariant was equal to its partial derivative with all contributions
possessing extrinsic objects subtracted. Now, using (9.131)1−2 and (9.133)1−2, the
rate of change in H̃ can be decomposed as

∂H̃
∂tγ

= H̃ αβ
∣∣∣
γ
aα ⊗ aβ + H̃ αβ bβγ aα ⊗ n̂ + H̃ αβ bαγ n̂ ⊗ aβ , (9.161a)

∂H̃
∂tγ

= H̃ α
. β

∣∣
∣
γ
aα ⊗ aβ + H̃ α

. β bβ
. γ aα ⊗ n̂ + H̃ α

. β bαγ n̂ ⊗ aβ , (9.161b)

∂H̃
∂tγ

= H̃ . β
α

∣∣
∣
γ
aα ⊗ aβ + H̃ . β

α bβγ aα ⊗ n̂ + H̃ . β
α bα

. γ n̂ ⊗ aβ , (9.161c)
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∂H̃
∂tγ

= H̃ αβ

∣∣∣
γ
aα ⊗ aβ + H̃ αβ bβ

. γ a
α ⊗ n̂ + H̃ αβ bα

. γ n̂ ⊗ aβ , (9.161d)

where

H̃ αβ
∣∣
∣
γ

= ∂ H̃ αβ

∂tγ
+ �α

γ θ H̃ θβ + �
β

γ θ H̃ αθ , (9.162a)

H̃ α
. β

∣∣∣
γ

= ∂ H̃ α
. β

∂tγ
+ �α

γ θ H̃ θ
. β − �θ

γβ H̃ α
. θ , (9.162b)

H̃ . β
α

∣∣∣
γ

= ∂ H̃ . β
α

∂tγ
− �θ

γα H̃ . β

θ + �
β

γ θ H̃ . θ
α , (9.162c)

H̃ αβ

∣
∣∣
γ

= ∂ H̃ αβ

∂tγ
− �θ

γα H̃ θβ − �θ
γβ H̃ αθ . (9.162d)

In alignment with (7.28), the surface contravariant derivative of these components
are given by

H̃ αβ
∣∣∣
γ = H̃ αβ

∣∣∣
θ
aθγ

H̃ α
. β

∣∣∣
γ = H̃ α

. β

∣∣∣
θ
aθγ

⎫
⎪⎬

⎪⎭
,

H̃ . β
α

∣∣∣
γ = H̃ . β

α

∣∣∣
θ
aθγ

H̃ αβ

∣∣∣
γ = H̃ αβ

∣∣∣
θ
aθγ

⎫
⎪⎬

⎪⎭
. ➨ (9.163)

From (9.145)2 and (9.162d), one can immediately conclude that the surface covari-
ant differentiation of the covariant metric coefficients vanishes. And this exhibits a
metrically connected space. Indeed, for such a geometry,

aαβ
∣∣
γ

= 0 , δα
β

∣∣
γ

= 0 , aαβ

∣∣
γ

= 0 . (9.164)

In alignment with the ambient relations (7.34) and (7.35), the metrinilic property
of covariant differentiation applies to all surface metrics. But, the covariant and
contravariant basis vectors do not remain covariantly constant, i.e. aα|β �= 0 and
aα|β �= 0. It is then easy to see that

aβρ

(
ĥρ

∣∣∣
γ

)
= ĥβ

∣∣∣
γ

, aβρ

(
ĥρ

∣∣∣
γ

)
= ĥβ

∣∣∣
γ

. ←− see (7.37) (9.165)

Suppose one is given a−1/2εαβaα ⊗ aβ and a+1/2εαβaα ⊗ aβ . The interested reader
may then want to verify the following metrinilic property of the covariant derivative

(
εαβ

√
a

)∣∣∣∣
γ

= 0 ,
(√

aεαβ

)∣∣
γ

= 0 . ←− see (9.670) (9.166)
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To characterize the surface Riemann-Christoffel curvature tensor, one needs to have
the second-order covariant derivatives of a surface vector. This motivates to represent
the second-order partial and covariant derivatives of a surface vector in the following.

9.3.2 Surface Second Covariant Differentiation

Bymeans of the relations (9.99)1−2, (9.128), (9.131)1−2, (9.132)3, (9.133)1−2, (9.156)
and (9.157)3 along with the product rule of differentiation, the surface version of
(7.40a)–(7.40b) can be expressed as

∂2ĥ
∂tγ ∂t δ

=
[
ĥα

|δγ − ĥ θ bθδ b
. α
γ

]
aα +

[
ĥα

∣∣∣
δ
bαγ + ∂

∂tγ

(
ĥα bαδ

)]
n̂ ,

(9.167a)

∂2ĥ
∂tγ ∂t δ

=
[
ĥα|δγ − ĥ θ b

θ
. δ bγα

]
aα +

[
ĥα

∣∣∣
δ
bα

. γ + ∂

∂tγ

(
ĥα bα

. δ

)]
n̂ ,

(9.167b)

where

ĥα
|δγ = ∂2 ĥα

∂tγ ∂t δ
+ ∂�α

δθ

∂tγ
ĥ θ + �α

γρ�
ρ
δθ ĥ

θ + �α
δθ

∂ ĥ θ

∂tγ
+ �α

γ θ

∂ ĥ θ

∂t δ
, (9.168a)

ĥα|δγ = ∂2 ĥα

∂tγ ∂t δ
+ �ρ

γα�θ
ρδ ĥ θ − ∂�θ

αδ

∂tγ
ĥ θ − �θ

αδ

∂ ĥ θ

∂tγ
− �θ

γα

∂ ĥ θ

∂t δ
. (9.168b)

The true surface second-order covariant derivatives are then given by

ĥα
∣∣∣
δγ

=
(
ĥα

∣∣∣
δ

)∣∣∣
γ

= ∂

∂tγ

(
ĥα

∣∣∣
δ

)
+ �α

γ θ

(
ĥ θ

∣∣∣
δ

)
− �θ

γ δ

(
ĥα

∣∣∣
θ

)

= ĥα
|δγ − �

ρ
γ δ

(
∂ ĥα

∂tρ
+ �α

ρθ ĥ
θ

)

, (9.169a)

ĥα

∣
∣∣
δγ

=
(
ĥα

∣
∣∣
δ

)∣∣∣
γ

= ∂

∂tγ

(
ĥα

∣∣∣
δ

)
− �θ

γα

(
ĥ θ

∣∣∣
δ

)
− �θ

γ δ

(
ĥα

∣∣∣
θ

)

= ĥα|δγ − �
ρ
γ δ

(
∂ ĥα

∂tρ
− �θ

αρ ĥ θ

)

. (9.169b)
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It follows that

ĥα
∣∣∣
δγ

− ĥα
∣∣∣
γ δ

= ĥα
|δγ − ĥα

|γ δ , ĥα

∣∣∣
δγ

− ĥα

∣∣∣
γ δ

= ĥα|δγ − ĥα|γ δ .

(9.170)
The above relations can be extended to surface tensors of higher orders in a lengthy
but straightforward manner. This remains to be done by the ambitious reader.

9.3.3 Invariance of Surface Covariant Differentiation

Let
(
t1, t2

)
and

(
t̄ 1, t̄ 2

)
be an old and a new surface coordinates, respectively, which

are related according to the relationships (9.40). Consider now the surface vector

ĥ = ¯̂hα āα = ĥαaα = ¯̂hα āα = ĥαaα whose components and basis vectors tensori-
ally transform according to

¯̂hα = ∂ t̄ α

∂tβ
ĥβ , āα = ∂tγ

∂ t̄ α
aγ , (9.171a)

¯̂hα = ∂tβ

∂ t̄ α
ĥβ , āα = ∂ t̄ α

∂tγ
aγ . ←− see (7.29b) (9.171b)

The surface partial derivative ∂/∂tα preserves the tensor property when its operands
are invariant field variables. But, this operator does not provide tensors when applied
to variants. For instance,

∂
¯̂hα

∂ t̄ β
= ∂

∂ t̄ β

[
∂ t̄ α

∂tγ
ĥ γ

]
= ∂ t̄ α

∂tγ
∂ ĥ γ

∂t δ
∂t δ

∂ t̄ β
+ ∂2 t̄ α

∂t δ∂tγ
∂t δ

∂ t̄ β
ĥ γ , (9.172a)

∂
¯̂hα

∂ t̄ β
= ∂

∂ t̄ β

[
∂tγ

∂ t̄ α
ĥ γ

]
= ∂tγ

∂ t̄ α

∂ ĥ γ

∂t δ
∂t δ

∂ t̄ β
+ ∂2tγ

∂ t̄ β∂ t̄ α
ĥ γ . ←− see (7.30b) (9.172b)

Note that in these transformations, the deficiency stems from the development of the
last nontensorial terms. This problem is resolved by using the technique of surface
covariant derivative:

¯̂hα
∣∣∣
β

= ∂ t̄ α

∂tγ

(
ĥ γ

∣∣∣
δ

) ∂t δ

∂ t̄ β
, (9.173a)

¯̂hα

∣∣∣
β

= ∂tγ

∂ t̄ α

(
ĥ γ

∣∣∣
δ

) ∂t δ

∂ t̄ β
. ←− see (7.31b) (9.173b)
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In a similar manner,

¯̃H αβ
∣∣∣
γ

= ∂ t̄ α

∂t δ
∂ t̄ β

∂tθ

(
H̃ δθ

∣∣∣
ρ

)
∂tρ

∂ t̄ γ
, (9.174a)

¯̃H α
. β

∣∣∣
γ

= ∂ t̄ α

∂t δ
∂tθ

∂ t̄ β

(
¯̃H δ

. θ

∣∣∣
ρ

)
∂tρ

∂ t̄ γ
, (9.174b)

H̃ . β
α

∣∣∣
γ

= ∂t δ

∂ t̄ α

∂ t̄ β

∂tθ

(
H̃ . θ

δ

∣∣∣
ρ

)
∂tρ

∂ t̄ γ
, (9.174c)

¯̃H αβ

∣
∣∣
γ

= ∂t δ

∂ t̄ α

∂tθ

∂ t̄ β

(
H̃ δθ

∣
∣∣
ρ

)
∂tρ

∂ t̄ γ
. ←− see (7.32d) (9.174d)

9.3.4 Surface Covariant Differentiation of Invariant Objects
with Surface and Ambient Indices

In the literature, the surface covariant derivative of invariant tensor fields is sometimes
introduced in a slightly differentway, seeNaghdi [14] andGrinfeld [15]. This strategy
will be followed in the next section for the study of calculus of moving surfaces.
Recall from (9.129) that the surface covariant derivative coincides with the surface
partial differentiation when applied to an invariant object of order 0. The goal here
is to extend this result to invariant tensor fields of higher ranks. For instance,

ĥ
∣∣∣
β

:= ∂ĥ
∂tβ

, ←− see (7.39) (9.175)

where ĥ = ĥαaα = ĥαaα denotes an invariant surface object of order 1. Referred
to the surface covariant and contravariant basis vectors, the partial derivative ∂ĥ/∂tβ

has been represented in (9.132)3 and (9.157)3, respectively. Consistent with (7.38a)–
(7.38b), of interest here is to demand that the surface covariant derivative satisfies
the sum and product rules in the sense that

ĥ
∣
∣∣
β

=
(
ĥαaα

)∣∣∣
β

=
(

ĥα
∣
∣∣
β

)
aα + ĥα

(
aα|β

)
, (9.176a)

ĥ
∣∣∣
β

=
(
ĥαaα

)∣∣∣
β

=
(

ĥα

∣∣∣
β

)
aα + ĥα

(
aα|β

)
. (9.176b)

This immediately implies that

aα|β = bαβ n̂ , (9.177a)

aα|β = bα
. β n̂ . (9.177b)
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The demand for keeping the above structure for any arbitrary ambient object will
lead to some useful properties. This will be characterized in the following.

To begin with, let ĥ = ĥ igi be a smooth first-order tensor field of the ambient
coordinates

(
�1,�2,�3

)
which themselves are functions of the Gaussian coordi-

nates
(
t1, t2

)
. The demand for

ĥ
∣∣
∣
α

= ∂ĥ
∂tα

by using the chain and=================
product rules of differentiation

∂ ĥ i

∂tα
gi + ĥ i ∂gi

∂� j

∂� j

∂tα

from============
(7.7), (7.8) and (9.47)

∂ ĥ i

∂tα
gi + ĥ iΓ m

ji Z
j
αgm

by renaming===========
the dummy indices

(
∂ ĥ i

∂tα
+ Z

j
α Γ i

jm ĥm

)

gi , (9.178)

along with insisting on satisfying the sum and product rules

ĥ
∣∣∣
α

=
(
ĥ i

∣∣∣
α

)
gi + ĥ i

(
gi |α

)
, (9.179)

then helps establish

ĥ i
∣∣∣
α

= ∂ ĥ i

∂tα
+ Z

j
α Γ i

jm ĥm =
(

∂ ĥ i

∂� j
+ Γ i

jm ĥm

)

Z
j
α = ĥ i

∣∣∣
j
Z

j
α , (9.180)

and
gi |α = 0 . (9.181)

In a similar manner, for an arbitrary ambient first-order tensor field ĥ = ĥ igi , one
will have

ĥ i

∣∣∣
α

= ∂ ĥ i

∂tα
− Z

j
α Γ m

ji ĥm =
(

∂ ĥ i

∂� j
− Γ m

i j ĥm

)

Z
j
α = ĥ i

∣∣∣
j
Z

j
α , (9.182)

and
gi
∣∣
α

= 0 . (9.183)

The expressions (9.180)1−2 and (9.182)1−2 show that how the ambient vectors and
covectors should covariantly bedifferentiated along a surfacewhile the results (9.181)
and (9.183) demonstrate that the surface covariant derivative ismetrinilicwith respect
to the ambient basis vectors, see Grinfeld [15] for more details. Notice that the
properties gi |α = 0 and gi

∣∣
α

= 0 can also be obtained by formally applying the
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surface covariant derivative to these ambient basis vectors, that is,

gi |α from=====
(9.182)

gi | j Z j
α

from=====
(7.36a)

0 , gi
∣∣
α

from=====
(9.180)

gi
∣∣
j Z

j
α

from=====
(7.36b)

0 .

Consequently, the surface covariant derivative should also be metrinilic with respect
to the ambient metric coefficients:

gi j
∣
∣
α

= 0 , δij

∣
∣
α

= 0 , gi j
∣
∣
α

= 0 . ←− see (7.34)–(7.35) (9.184)

Let the ambient object n̂ be the unit normal vector to the surface. With the aid of
(9.99)1−2 and (9.175), one then writes

n̂|α = ∂n̂
∂tα

= − b . β
α aβ = − bαβaβ . (9.185)

Consider now the decomposition n̂ = n̂ igi . Making use of (9.46)3, the surface

covariant derivative in (9.185)2 can be rephrased as n̂|α = − b . β
α Z

i
βgi . Themetrinilic

property of the surface covariant differentiationwith respect to the ambient basis vec-
tors then implies that

n̂ i
∣∣
α

= − b . β
α Z

i
β . (9.186)

In a similar manner,

n̂ i

∣∣
α

= − bαβ Z̃
β

i . (9.187)

Next, let H̃ = H̃ i jgi ⊗ g j = H̃ i
. jgi ⊗ g j = H̃ . j

i g
i ⊗ g j = H̃ i jgi ⊗ g j be a

smooth tensor field of
(
�1

(
t1, t2

)
,�2

(
t1, t2

)
,�3

(
t1, t2

))
. It is then easy to see that

H̃ i j
∣∣
∣
α

= H̃ i j
∣∣
∣
k
Z

k
α , ←− see (7.27a) (9.188a)

H̃ i
. j

∣∣∣
α

= H̃ i
. j

∣∣∣
k
Z

k
α , (9.188b)

H̃ . j
i

∣∣∣
α

= H̃ . j
i

∣∣∣
k
Z

k
α , (9.188c)

H̃ i j

∣
∣∣
α

= H̃ i j

∣
∣∣
k
Z

k
α . (9.188d)

Regarding the ambient covariant metric coefficients, the relation (9.188d) with the
aid of the results (7.27d)2 and (9.184)3 delivers

∂gi j
∂tα

= Z
k
αΓ m

ki gmj + Z
k
αΓ m

kj gim . (9.189)
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Consider now two smooth ambient vector fields ĥ1 = ĥ i
1gi and ĥ2 = ĥ j

2g j whose
scalar product represents ĥ1 · ĥ2 = ĥ i

1gi j ĥ
j
2. Then, by using (9.129) and (9.189)

along with the product rule of differentiation,

(
ĥ1 · ĥ2

)∣∣∣
α

= ∂

∂tα

(
ĥ1 · ĥ2

)
= ∂ ĥ i

1

∂tα
gi j ĥ

j
2 + ĥ i

1
∂gi j
∂tα

ĥ j
2 + ĥ i

1gi j
∂ ĥ j

2

∂tα

= ∂ ĥ i
1

∂tα
gi j ĥ

j
2 + ĥ i

1Z
k
αΓ m

ki gmj ĥ
j
2

+ ĥ i
1Z

k
αΓ m

kj gim ĥ j
2 + ĥ i

1gi j
∂ ĥ j

2

∂tα
. (9.190)

It should not be difficult now to verify that

(
ĥ1 · ĥ2

)∣∣∣
α

=
(
ĥ1

∣
∣∣
α

)
· ĥ2 + ĥ1 ·

(
ĥ2

∣
∣∣
α

)
. ←− see (9.136) (9.191)

At the end, the surface covariant derivative of the shift tensors Z
i
α = gi · aα and

Z̃α
i = gi · aα , respectively given in (9.47)1 and (9.60)1, will be characterized for

completeness. Having in mind (9.177a)-(9.177b), the metrinilic property of the sur-
face covariant derivative relative to the ambient basis vectors then helps represent

Z
i
α

∣∣∣
β

= gi · aα|β = bαβgi · n̂ = bαβ n̂ i , (9.192)

or bαβ = Z
i
α

∣∣∣
β
n̂ i considering the identity n̂ i n̂ i = 1, and

Z̃α
i

∣
∣
β

= gi · aα|β = bα
. βgi · n̂ = bα

. β n̂ i , (9.193)

or bα
. β = Z̃α

i

∣∣
β
n̂ i considering the identity n̂ i n̂ i = 1.

9.4 Surface Riemann-Christoffel Curvature Tensor

The aim here is to geometrically describe the surface Riemann-Christoffel curva-
ture using the powerful tool of parallel transport. It will be shown that how such
an important object in differential geometry helps establish noncommutativity of
the covariant derivative when applied to tensors. The fundamental properties of the
surface Riemann-Christoffel curvature tensor will also be addressed.

Let tα (λ) and tα (μ) be two parametrized curves embedded in a surface S as
illustrated in Fig. 9.14.
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Fig. 9.14 Surface Riemann-Christoffel curvature

Consider an infinitesimal closed loop PQSR. Let ĥα be a smooth surface vector
sitting at point P . According to (9.240)3, the tangent vector to tα (λ) (tα (μ)) at
P is a λ = uαaα (aμ = vαaα) where uα = dtα/dλ ( vα = dtα/dμ). The goal is
to compare the vectors ĥα ‖

Q→S and ĥα ‖
R→S which help characterize the Riemann-

Christoffel curvature tensor. Here, ĥα ‖
Q→S ( ĥα ‖

R→S) denotes the parallel transport of

ĥα from P to Q (R) and subsequently from Q (R) to S. Note that one can alternatively
compare the original vector ĥα with one obtained by its parallel transport around the
whole loop. Although the final result is the same, the computations described below
are easier.

Guided by (9.141)3, the change in ĥα when it is parallel transported from P to
Q is

Δ ĥ θ = −
(

�θ
στ ĥ

τ dt
σ

dλ

)

P

Δλ or ĥ θ ‖
P→Q = ĥ θ − �θ

στ ĥ
τ uσΔλ . (9.194)

In a similar manner,
vβ ‖
P→Q = vβ − �

β

φϕ vϕ uφΔλ . (9.195)

The connection coefficients �α
βθ Q := �α

βθ

(
t1Q, t2Q

)
can be expressed in terms of �α

βθ

and their partial derivatives via the following first-order Taylor series expansion

�α
βθ Q = �α

βθ P +
(

∂�α
βθ

∂tγ
dtγ

dλ

)∣∣∣∣
P

Δλ

= �α
βθ + ∂�α

βθ

∂tγ
u γ Δλ . ←− see (6.24)–(6.25) (9.196)
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Now, the change in ĥα as it is parallel transported from Q to S renders

ĥα ‖
Q→S = ĥα ‖

P→Q − �α
βθ Q ĥ θ ‖

P→Q vβ ‖
P→QΔμ

= ĥα − �α
βθ ĥ θ uβΔλ

−
(

�α
βθ + ∂�α

βθ

∂tγ
uγ Δλ

)
(
ĥ θ − �θ

στ ĥ τ uσ Δλ
)

︸ ︷︷ ︸

= �α
βθ

ĥθ − �α
βθ

�θ
στ ĥτ uσ Δλ + ∂�α

βθ

∂tγ
uγ ĥθ Δλ

(
vβ − �

β
φϕ vϕ uφΔλ

)
Δμ

= ĥα − �α
βθ ĥ θ uβΔλ − �α

βθ ĥ θ vβΔμ

+
(

− ∂�α
βθ

∂tγ
ĥ θ vβ uγ + �α

βθ�
θ
στ ĥ τ vβ uσ + �α

βθ�
β
φϕ ĥ θ vϕ uφ

)

ΔλΔμ ,

where the higher-order terms have not been written here (since, in the limit when
Δλ and Δμ go to zero, they vanish). In a similar manner,

ĥα ‖
R→S = ĥα − �α

βθ ĥ
θ vβΔμ − �α

βθ ĥ
θ uβΔλ

+
(

−∂�α
βθ

∂tγ
ĥ θ vγ uβ + �α

βθ�
θ
στ ĥ

τ vσ uβ + �α
βθ�

β

φϕ ĥ θ vφ uϕ

)
ΔμΔλ .

The difference ĥα ‖
Q→S − ĥα ‖

R→S per unit (coordinate) area is a measure of curvature
(note that curvature is a local concept defined at each point of manifold). Let

δ ĥα = lim
Δλ,Δμ→0

ĥα ‖
Q→S − ĥα ‖

R→S

ΔλΔμ
. (9.197)

This deviation of ĥα is then given by

δ ĥα = Rα . . .
. βγ δ ĥβ vγ u δ , (9.198)

where Rα . . .
. βγ δ is known as the surface Riemann-Christoffel curvature tensor (see

Carroll [16] and Dalarsson and Dalarsson [17]):

Rα . . .
. βγ δ = ∂�α

βδ

∂tγ
− ∂�α

βγ

∂t δ
+ �α

γ θ�
θ
δβ − �α

δθ�
θ
γβ

note that although �α
βδ

is not a tensor, this object truly represents a tensor

. (9.199)

The fourth-order tensor R in (9.198) may be thought of as an operator which takes
the objects u and v, characterizing the orientation of an infinitesimal parallelogram,
and acts on a vector ĥ to measure how much this vector changes when it is parallel
transported around such a parallelogram. Notice that all elements used to define the
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Riemann-Christoffel curvature were intrinsic objects. And this means that the object
Rα . . .

. βγ δ has an intrinsic nature. See the pioneering work of Riemann [18].

Let ĥα be a generic covector. Following similar procedures which led to (9.198)
then reveals

δ ĥβ = − Rα . . .
. βγ δ ĥα vγ u δ . (9.200)

Hint:The procedure outlined above relied on the assumption that the Lie derivative of
the tangent vectors with respect to each other vanishes. Otherwise, the parallelogram
may not be closed properly. See Fig. 9.32 for a geometrical interpretation.

In what follows, the object Rα . . .
. βγ δ is alternatively derived using the second

covariant differentiationof a vector or covector and its basic properties are introduced.

Noncommutativity of the surface covariant derivative is governed by

ĥα
∣
∣∣
δγ

− ĥα
∣
∣∣
γ δ

= Rα . . .
. βγ δ ĥβ , (9.201a)

ĥβ

∣∣∣
γ δ

− ĥβ

∣∣∣
δγ

= Rα . . .
. βγ δ ĥα , (9.201b)

where

Rα . . .
. βγ δ = ∂�α

βδ

∂tγ
− ∂�α

βγ

∂t δ
+ �α

γ θ�
θ
δβ − �α

δθ�
θ
γβ satisfying Rα . . .

. αγ δ = 0 ,

(9.202)
present the mixed components of the fourth-order Riemann-Christoffel curvature
tensor

R = Rα . . .
. βγ δ aα ⊗ aβ ⊗ aγ ⊗ aδ . (9.203)

The fully covariant form of this tensor renders

R = Rαβγ δ aα ⊗ aβ ⊗ aγ ⊗ aδ , (9.204)

where the components may be written as

Rαβγ δ = aαρ R
ρ . . .
. βγ δ = ∂�βδα

∂tγ
− ∂�βγα

∂t δ
+ �αδρ�

ρ
βγ − �αγρ�

ρ
βδ , (9.205)

or

Rαβγ δ = 1

2

(
∂2aαδ

∂tγ ∂tβ
+ ∂2aβγ

∂t δ∂tα
− ∂2aβδ

∂tγ ∂tα
− ∂2aαγ

∂t δ∂tβ

)

+ aθρ
(
�αδθ�βγρ − �αγ θ�βδρ

)
. (9.206)
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These covariant components possess the following major symmetries and minor
antisymmetries

Rαβγ δ = Rγ δαβ , Rαβγ δ = − Rαβδγ , (9.207)

which imply that
Rαβγ δ = − Rβαγ δ . (9.208)

These properties also hold true for the mixed components (9.199); for instance,

Rα . . .
. βγ δ = − R . α . .

β . γ δ , (9.209)

can be used to derive (9.201b) from (9.201a), see the footnote on Sect. 7.1.6.
An extension of (9.201a) is given by

H̃ αβ
∣∣∣
δγ

− H̃ αβ
∣∣∣
γ δ

= Rα . . .
. θγ δ H̃ θβ + R

β . . .

. θγ δ H̃ αθ . (9.210)

In a similar manner, (9.201b) can be extended to

H̃ αβ

∣∣∣
γ δ

− H̃ αβ

∣∣∣
δγ

= Rθ . . .
. αγ δ H̃ θβ + Rθ . . .

. βγ δ H̃ αθ . (9.211)

In terms of the mixed components, the relations (9.210) and (9.211) render

H̃ α
.β

∣∣∣
δγ

− H̃ α
.β

∣∣∣
γ δ

= Rα . . .
. θγ δ H̃ θ

.β − Rθ . . .
. βγ δ H̃ α

.θ , (9.212a)

H̃ .β
α

∣∣∣
γ δ

− H̃ .β
α

∣∣∣
δγ

= Rθ . . .
. αγ δ H̃ .β

θ − R
β . . .

. θγ δ H̃ .θ
α . (9.212b)

TheRiemann-Christoffel curvature tensor satisfies theBianchi identities (seeBianchi
[19])

Rα . . .
. βγ δ + Rα . . .

. γ δβ + Rα . . .
. δβγ = 0

Rαβγ δ + Rαγ δβ + Rαδβγ = 0

}

, (9.213)

and
Rα . . .

. βγ δ

∣∣
θ
+ Rα . . .

. βδθ

∣∣
γ

+ Rα . . .
. βθγ

∣∣
δ
= 0

Rαβγ δ

∣∣
θ
+ Rαβδθ

∣∣
γ

+ Rαβθγ

∣∣
δ
= 0

}

, (9.214)

where

Rα . . .
. βγ δ

∣∣
θ

= ∂ Rα . . .
. βγ δ

∂tθ
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+ �α
θρ R

ρ . . .
. βγ δ − �

ρ
βθ R

α . . .
. ργ δ − �

ρ
γ θ R

α . . .
. βρδ − �

ρ
δθ R

α . . .
. βγρ ,

(9.215a)

Rαβγ δ

∣
∣
θ

= ∂ Rαβγ δ

∂tθ

− �
ρ
αθ Rρβγ δ − �

ρ
βθ Rαργ δ − �

ρ
γ θ Rαβρδ − �

ρ
δθ Rαβγρ . (9.215b)

Notice that the relations demonstrated in (9.201a)-(9.215b) have the same structure
as the ambient equations (7.49a)–(7.64b). They are adopted here for convenience.

The major symmetric and minor antisymmetric properties (9.207)-(9.208) leave
only four nonzero components with one degree of freedom:

R1212 = R2121 = − R1221 = − R2112 . (9.216)

Using (9.36)1, these relations can be unified according to

Rαβγ δ = R1212εαβεγ δ . (9.217)

The surface and ambient Riemann-Christoffel curvature tensors are related through
the following expression

Rα . . .
. βγ δ = Z̃α

i Z
j
β Z

k
γ Z

l
δ R

i . . .
. jkl + bα

. γ bβδ − bα
. δ bβγ , ←− see (9.51) and (9.479b)

(9.218)
since

Rα . . .
. βγ δ ĥβ by using============

(9.85a) and (9.201a)

[(
Z̃α
i ĥ i

)∣∣∣
δ

]∣∣∣
γ

−
[(

Z̃α
i ĥ i

)∣∣∣
γ

]∣∣∣∣
δ

by using (9.180) and (9.193)================
along with the product rule

[
bα

. δ n̂ i ĥ
i + ĥ i

∣∣∣
l
Z

l
δ Z̃

α
i

]∣∣∣
γ

note that n̂ i ĥ
i = 0, see (9.75)

−
[
ĥ i

∣∣∣
k
Z

k
γ Z̃

α
i

]∣∣∣
δ

by using (9.180),(9.192) and (9.193)====================
along with the product rule

[
ĥ i

∣∣∣
lk

− ĥ i
∣∣∣
kl

]
Z

k
γ Z

l
δ Z̃

α
i

+
[
ĥ i

∣∣∣
l
bδγ n̂ l − ĥ i

∣∣∣
k
bγ δ n̂

k
]
Z̃α
i

︸ ︷︷ ︸
= 0, by renaming the dummy indices and using (9.95)

+
[
ĥ i

∣∣∣
l
Z

l
δ b

α
. γ − ĥ i

∣∣∣
k
Z

k
γ bα

. δ

]
n̂ i

︸ ︷︷ ︸
=

[
n̂ i

∣
∣
k Z

k
γ bα

. δ
− n̂ i

∣
∣
l Z

l
δ bα

. γ

]
ĥ i , since from ĥ i n̂ i = 0 one obtains ĥ i

∣∣
∣
l
n̂ i + n̂ i

∣
∣
l ĥ i = 0

by using===========
(7.49a) and (9.182)

Ri . . .
. jkl ĥ j Z

k
γ Z

l
δ Z̃

α
i +

[
n̂ i

∣∣
γ
bα

. δ − n̂ i

∣∣
δ
bα

. γ

]
ĥ i

by using======
(9.187)

Ri . . .
. jkl ĥ j Z

k
γ Z

l
δ Z̃

α
i + [

bα
. γ bδβ − bα

. δ bγβ

]
Z̃β

i ĥ i
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by using==========
(9.85a) and (9.95)

[
Z̃α
i Z

j
β Z

k
γ Z

l
δ R

i . . .
. jkl + bα

. γ bβδ − bα
. δ bβγ

]
ĥβ ,

noting that ĥβ is an arbitrary object. By index juggling, one can further establish

Rαβγ δ = Z
i
αZ

j
β Z

k
γ Z

l
δ Ri jkl + bαγ bβδ − bαδ bβγ . (9.219)

A two-dimensional surface with vanishing Riemann-Christoffel tensor represents an
intrinsically flat space. For instance, cylinders are intrinsically flat although they are
curved when viewed externally from the enveloping space. And this means that their
second-order curvature tensor is nonzero. Another example regards planes which are
intrinsically and extrinsically flat (their second-order curvature tensor also vanishes
identically). If the Riemann-Christoffel tensor is not zero, then the surface under con-
sideration is intrinsically as well as extrinsically curved. Somewell-known examples
of such a curved space include spheres, one-sheeted hyperboloids and two-sheeted
hyperboloids.

The Riemann-Christoffel tensor characterizes curvature of space from an intrinsic
point of view. This is because the metric coefficients can be obtained by measuring
distances on the surfaces which means that the metric tensor can also be regarded
as an intrinsic object bypassing the position vector and surface basis vectors. As a
result, the Christoffel symbols and subsequently Riemann-Christoffel tensor turn out
to be intrinsic objects. This reveals the intrinsic nature of the Riemann-Christoffel
curvature which relies on a priori given metric tensor.

In what follows, the goal is to represent two important differential operators for
surface scalar and vector fields. This relies on a slightmodification in the conventional
definition of differential operators introduced in Chap. 7.

To begin with, consider the gradient operator

grad (•) := ∂ (•)

∂x
= ∂ (•)

∂tα
aα . ←− see (7.65) (9.220)

In a similar manner, the Nabla operator of vector calculus in this context takes the
following form

∇∇∇ := ∂

∂x
= ∂

∂tα
aα . ←− see (7.66) (9.221)

Surface gradient. Let h̄
(
t1, t2

)
and ĥ

(
t1, t2

)
be a given surface scalar and vector

field, respectively. The surface gradient of a surface field variable, grads (•), is then
defined as its ordinary gradient with all normal components to the surface subtracted:

gradsh̄ = gradh̄ − [̂n ⊗ n̂] gradh̄ where gradh̄ = ∂ h̄

∂x
= ∂ h̄

∂tα
aα , (9.222a)
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gradsĥ = gradĥ − [̂n ⊗ n̂] gradĥ where gradĥ = ∂ĥ
∂x

= ∂ĥ
∂tβ

⊗ aβ . (9.222b)

Note that ∂ h̄/∂tα = h̄
∣∣
α
and ∂ĥ/∂tβ is given in (9.132) and (9.157). Now, it is easy

to express the surface gradients with respect to the surface bases as

gradsh̄ = h̄
∣∣
α
aα = h̄

∣∣α aα where h̄
∣∣α = aαβ h̄

∣∣
β

, (9.223a)

gradsĥ = ĥα
∣∣
∣
β
aα ⊗ aβ = ĥα

∣∣
∣
β
aα ⊗ aβ

= ĥα
∣∣∣
β

aα ⊗ aβ = ĥα

∣∣∣
β

aα ⊗ aβ . (9.223b)

Surface divergence. The surface divergence of a surface vector field ĥ
(
t1, t1

)
is a

scalar field defined by

divsĥ = gradsĥ : I = tr
(
gradsĥ

)
, ←− see (7.77) (9.224)

where trA = A : I = I : A, according to (2.83), and the identity tensor I is given in
(9.34). This scalar field variable can be expressed in terms of the components as

divsĥ = ĥα
∣∣∣
α

= aαβ ĥα

∣∣∣
β

= aαβ ĥα
∣∣∣
β = ĥα

∣∣∣
α

. (9.225)

The Voss-Weyl formula (7.81) holds true here, that is,

divsĥ = 1√
a

∂

∂tα

[√
a ĥα

]
, (9.226)

owing to

1√
a

∂

∂tα

[√
a ĥα

]
by using the product============
rule of differentiation

1√
a

∂
√
a

∂tα
ĥα + ∂ ĥα

∂tα

by using======
(9.115)

�γ
αγ ĥα + ∂ ĥα

∂tα

by using======
(9.92)

�γ
γα ĥα + ∂ ĥα

∂tα

by using======
(9.128)

ĥα
∣∣
∣
α

by using======
(9.225)

divsĥ .
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9.5 Fundamental Forms of Surfaces

The so-called fundamental forms of a surface can be classified into three types. In
the literature, much attention is devoted to the first and second fundamental forms
since the last one can be expressed in terms of them. The first fundamental form is an
intrinsic object while the second one demonstrates an extrinsic feature of a surface.
They provide the most important pieces of data associated with any curved surface.
The both fundamental forms are utilized to not only measure the length of a curve
embedded in a surface and the area of a patch of that surface but also help determine
some important surface characteristics such as the Gaussian curvature.

9.5.1 First Fundamental Form

The first fundamental form (or first groundform) characterizes the metric properties
of a surface that depend on the length of a curve and the angle between two curves.
Indeed, it contains the intrinsic data regarding measurements on the surface and
represents a quadratic expression of the form

Ir = ds2 = dr · dr = ∂r
∂tα

· ∂r
∂tβ

dtαdtβ = aα · aβdt
αdtβ = aαβdt

αdtβ

= Er
(
dt1

)2 + 2Frdt
1dt2 + Gr

(
dt2

)2
, (9.227)

where the coefficients

Er = a11 , Gr = a22 , Fr = a12 = a21 , (9.228)

present smooth functions of the Gaussian coordinates. Note that the expressions
written in (9.227) for the arc length element of a surface generalize the classical
equation for the arc length element in the two-dimensional flat Euclidean space, that
is,

ds2 = dx2 + dy2
(
considering t1 = x , t2 = y and Er = Gr = 1 , Fr = 0

)
.

(9.229)
Moreover, the partial derivatives of the position vector r were written up to order 1.
Indeed,

r
(
t1 + dt1, t2 + dt2

) ≈ r
(
t1, t2

) + ∂r
∂tα

dtα

or dr ≈ aαdtα

. (9.230)

The first fundamental form in matrix representation renders

Ir = [ dt ]T [ Ir ] [ dt ] where [ dt ] =
[
dt1

dt2

]
, [ Ir ] =

[
Er Fr
Fr Gr

]
. (9.231)
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Consequently, the surface covariant metric coefficients (9.17) take the form

[
aαβ

] =
[
Er Fr
Fr Gr

]
with a = det

[
aαβ

] = ErGr − F2
r . (9.232)

Then, the surface contravariant metric coefficients (9.26)4 become

[
aαβ

] = 1

ErGr − F2
r

[
Gr −Fr
−Fr Er

]
with

1

a
= det

[
aαβ

] = 1

ErGr − F2
r

.

(9.233)

The surface Christoffel symbols (9.114) can be computed in terms of the coeffi-
cients of the first groundform and their partial derivatives. To show this, consider the
expressions n̂ · aα = 0, aαβ = aα · aβ , ∂aα/∂tβ = �

γ

αβaγ + bαβ n̂ and establish

1

2

∂a11
∂t1

=
(

∂a1
∂t1

)
· a1 = (

�1
11a1 + �2

11a2 + b11n̂
) · a1

= �1
11 a11 + �2

11 a12 , (9.234a)

1

2

∂a11
∂t2

=
(

∂a1
∂t2

)
· a1 = (

�1
12a1 + �2

12a2 + b12n̂
) · a1

= �1
12 a11 + �2

12 a12 , (9.234b)

1

2

∂a22
∂t1

=
(

∂a2
∂t1

)
· a2 = (

�1
12a1 + �2

12a2 + b12n̂
) · a2

= �1
12 a12 + �2

12 a22 , (9.234c)

1

2

∂a22
∂t2

=
(

∂a2
∂t2

)
· a2 = (

�1
22a1 + �2

22a2 + b22n̂
) · a2

= �1
22 a12 + �2

22 a22 , (9.234d)

∂a12
∂t1

− 1

2

∂a11
∂t2

=
(

∂a1
∂t1

)
· a2 = (

�1
11a1 + �2

11a2 + b11n̂
) · a2

= �1
11 a12 + �2

11 a22 , (9.234e)
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∂a12
∂t2

− 1

2

∂a22
∂t1

=
(

∂a2
∂t2

)
· a1 = (

�1
22a1 + �2

22a2 + b22n̂
) · a1

= �1
22 a11 + �2

22 a12 . (9.234f)

It is then easy to see that

[
�1
11

�2
11

]
= 1

2
(
ErGr − F2

r

)
[

Gr −Fr
−Fr Er

] [
∂Er/∂t1

2∂Fr/∂t1 − ∂Er/∂t2

]
, (9.235a)

[
�1
12

�2
12

]
=

[
�1
21

�2
21

]
= 1

2
(
ErGr − F2

r

)
[

Gr −Fr
−Fr Er

] [
∂Er/∂t2

∂Gr/∂t1

]
, (9.235b)

[
�1
22

�2
22

]
= 1

2
(
ErGr − F2

r

)
[

Gr −Fr
−Fr Er

] [
2∂Fr/∂t2 − ∂Gr/∂t1

∂Gr/∂t2

]
. (9.235c)

Accordingly, one finds that

�1
11 + �2

12 = ∂

∂t1

(
log

√
ErGr − F2

r

)
, (9.236a)

�1
12 + �2

22 = ∂

∂t2

(
log

√
ErGr − F2

r

)
. (9.236b)

Using (9.19)1−2, (9.20)3 and (9.228)1−3, one will have

Er > 0 , Gr > 0 , ErGr − F2
r > 0 . (9.237)

And this implies that the first fundamental form of a surface is always positive. This
is verified by reformulating (9.227)6 according to

Ir = E−1
r

(
Erdt

1 + Frdt
2)2 + E−1

r

(
ErGr − F2

r

) (
dt2

)2
> 0 . (9.238)

Suppose that the parametric equations t → (
t1 (t) , t2 (t)

)
describe a smooth

curve γγγ as

x = x̂ s
(
t1 (t) , t2 (t)

) = x c (t) , (9.239)

for which

a t = dx c

dt
= ∂ x̂ s

∂tα
dtα

dt
= dtα

dt
aα , (9.240)
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Fig. 9.15 Surface curves γγγ , γ̄γγ with corresponding tangent vectors at , āt and surface patch Ω

and

a t · a t = dtα

dt
aαβ

dtβ

dt
. (9.241)

See Fig. 9.15 for a geometrical interpretation. The length of this curve from a point
P at x = x c (0) to another point Q at x = x c (t) is computed via

L =
∫ x c(t)

x c(0)

√
dx · dx =

∫ t

0

√
a t · a t d t̂ =

∫ t

0

√
dtα

dt̂
aαβ

dtβ

dt̂
dt̂

=
∫ t

0

√

Er

(
dt1

dt̂

)2

+ 2Fr
dt1

dt̂

dt2

dt̂
+ Gr

(
dt2

dt̂

)2

dt̂ . (9.242)

Suppose one is given the two parametric surface curves γγγ : t → x̂ s
(
t1 (t) , t2 (t)

)

and γ̄γγ : t → x̂ s
(
t̄ 1 (t) , t̄ 2 (t)

)
that intersect at the point P as shown in Fig. 9.15.

The tangent vectors at this point will be

at = dx̂ s
(
t1 (t) , t2 (t)

)

dt
= dtα

dt
aα , āt = dx̂ s

(
t̄ 1 (t) , t̄ 2 (t)

)

dt
= dt̄ β

dt
aβ .

(9.243)
Using (1.11)–(1.12), (9.17)1, (9.228)1−4, (9.243)2 and (9.243)4, the angle between
these surface curves then renders

θ = arccos

(
at · āt
|at | |āt |

)
, (9.244)

where

at · āt = Er
dt1

dt

dt̄ 1

dt
+ Fr

(
dt1

dt

dt̄ 2

dt
+ dt2

dt

dt̄ 1

dt

)
+ Gr

dt2

dt

dt̄ 2

dt
, (9.245a)
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|at | =
√

Er

(
dt1

dt

)2

+ 2Fr
dt1

dt

dt2

dt
+ Gr

(
dt2

dt

)2

, (9.245b)

|āt | =
√

Er

(
dt̄ 1

dt

)2

+ 2Fr
dt̄ 1

dt

dt̄ 2

dt
+ Gr

(
dt̄ 2

dt

)2

. (9.245c)

If at is orthogonal to āt , then (9.245a) takes the form

Er dt
1dt̄ 1 + Fr

(
dt1dt̄ 2 + dt2dt̄ 1

) + Gr dt
2dt̄ 2 = 0

or Er + Fr

(
dt2

dt1
+ dt̄ 2

dt̄ 1

)
+ Gr

(
dt2

dt1
dt̄ 2

dt̄ 1

)
= 0

. (9.246)

Guided by (9.54)2, (9.55) and (9.228)1−3, the area A of a surface patch over a region
Ω is given by

A =
∫

Ω

d A =
∫

Ω

√
a dt1dt2 =

∫

Ω

√
a11a22 − (a12)

2 dt1dt2

=
∫

Ω

√
ErGr − (Fr)

2 dt1dt2 . (9.247)

Note that (9.242)4, (9.244)-(9.245c) and (9.247)4 clearly show the key role of the
first fundamental form in determining the geometrical characteristics of a surface.
This reveals the fact that the coefficients Er, Fr and Gr with intrinsic nature should
be obtained, in principle, from some measurements carried out on the surface. This
is described below.

Consider a generic point
(
t10 , t

2
0

)
. The goal is to calculate the coefficients Er, Fr

andGr at this point. Note that one is supposed to solve the problem by onlymeasuring
the lengths of curve segments.

To begin with, consider the parametric curve
(
t10 + t, t20

)
passing through

(
t10 , t

2
0

)

at t = 0. Notice that this curve basically represents the coordinate line associated
with t1. Using (9.242)4, the length of such curve, LEr (t), becomes

LEr (t) =
∫ t

0

√
Er

(
t̂
)
dt̂ which provides Er =

(
dLEr

dt

∣
∣∣∣
t=0

)2

. (9.248)

Denoting by LGr (t) the length of the parametric curve
(
t10 , t

2
0 + t

)
from

(
t10 , t

2
0

)
, one

then similarly arrives at

LGr (t) =
∫ t

0

√
Gr

(
t̂
)
dt̂ and, immediately, Gr =

(
dLGr

dt

∣∣∣∣
t=0

)2

. (9.249)

Consider this time the parametric curve
(
t10 + t, t20 + t

)
passing through

(
t10 , t

2
0

)
at

t = 0. By means of (9.242)4, (9.248)2 and (9.249)2, the length of this curve, LFr (t),
finally helps obtain
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Fr =
(

dLFr√
2dt

∣∣∣
∣
t=0

)2

−
(

dLEr√
2dt

∣∣∣
∣
t=0

)2

−
(

dLGr√
2dt

∣∣∣
∣
t=0

)2

. (9.250)

9.5.2 Second Fundamental Form

The second fundamental form (or second groundform) measures how a surface devi-
ates from its tangent plane in a neighborhoodof a given point. The secondgroundform
contains the extrinsic data regarding the curvature of a surface since it keeps track
of the twisting of the unit normal field to that surface.

The second fundamental form is defined in some alternative forms within second-
order terms. One well-known definition is

IIr = −dr · d n̂ = − ∂r
∂tα

· ∂n̂
∂tβ

dtαdtβ = −aα · (− bβγ aγ
)
dtαdtβ = bβαdt

αdtβ

= er
(
dt1

)2 + 2frdt
1dt2 + gr

(
dt2

)2
, ←− see (9.260) and (9.262) (9.251)

where

er = b11 = ∂2r
∂t1∂t1

· n̂ = − ∂r
∂t1

· ∂n̂
∂t1

, (9.252a)

gr = b22 = ∂2r
∂t2∂t2

· n̂ = − ∂r
∂t2

· ∂n̂
∂t2

, (9.252b)

fr = b12 = b21 = ∂2r
∂t1∂t2

· n̂ = −1

2

[
∂r
∂t1

· ∂n̂
∂t2

+ ∂r
∂t2

· ∂n̂
∂t1

]
. (9.252c)

Note that IIr is a symmetric bilinear form similarly to Ir but it is not, in general, pos-
itive. Moreover, the differential position vector dr and the normal vector increment
d n̂ have linearly been expanded, see (9.230).

The second fundamental form in matrix representation renders

IIr = [ dt ]T [ IIr ] [ dt ] where [ dt ] =
[
dt1

dt2

]
, [ IIr ] =

[
er fr
fr gr

]
.

(9.253)
Subsequently, the matrix form of the surface covariant curvature tensor bαβ renders

[
bαβ

] =
[
er fr
fr gr

]
, (9.254)

with
b = det

[
bαβ

] = b11 b22 − b2
12 = ergr − f2r . (9.255)
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Using (2.94)2, (9.100)1, (9.233)1 and (9.254), the surface mixed curvature tensor
b . β

α then admits the following matrix form

[
b . β

α

] = [
bαγ

] [
aγβ

] = 1

ErGr − F2
r

[
erGr − frFr −erFr + frEr

frGr − grFr −frFr + grEr

]
.

(9.256)
The mean curvature (9.103)1 can now be written as

H = 1

2
tr
[
b . β

α

] = erGr − 2frFr + grEr

2
(
ErGr − F2

r

) . (9.257)

And the Gaussian curvature (9.104)1 takes the following form

K = det
[
b . β

α

] = det
[
bαγ

]
det

[
aγβ

] = b

a
= ergr − f2r

ErGr − F2
r

. (9.258)

Hint: It is important to note that changing the orientation of surface according to
n̂ = −n̂will lead to IIr = −dr · d n̂ = +dr · d n̂ = −IIr and thus bαβ = − bαβ . As
a result, the mean curvature will be affected while the Gaussian curvature remains
unaffected:

H = −H , K = +K . (9.259)

And the sensitivity (insensitivity) of H (K) with respect to the choice of n̂ basically
means that the mean (Gaussian) curvature has an extrinsic (intrinsic) attribute.

The second groundform may also be defined as

IIr = 2dr · n̂ , ←− see (9.292) (9.260)

where here the quadratic approximation of the position vector at
(
t1 + dt1, t2 + dt2

)

according to

r
(
t1 + dt1, t2 + dt2

) = r
(
t1, t2

) + ∂r
∂tα

dtα + 1

2

∂2r
∂tβ∂tα

dtαdtβ + R

or dr = aαdtα + 1
2

∂aα
∂tβ

dtαdtβ + R where R = o

((
dt1

)2
, dt1dt2,

(
dt2

)2)

, (9.261)

helps obtain the identical result

IIr = 2dr · n̂ = 2aα · n̂dtα +
[
�

γ

αβaγ + bαβ n̂
]

· n̂dtαdtβ = bαβdt
αdtβ ,

noting that n̂ · aα = 0 and n̂ · n̂ = 1, according to (9.12).
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To provide another definition for the second groundform, consider the following
one-parameter family of regular surfaces

R
(
t1, t2, h

) = r
(
t1, t2

) − hn̂
(
t1, t2

)
with h ∈ (−ε, ε) , (9.262)

whose first fundamental form is given by

IR = ER
(
dt1

)2 + 2FRdt
1dt2 + GR

(
dt2

)2
, (9.263)

where

ER = ∂R
∂t1

· ∂R
∂t1

, FR = ∂R
∂t1

· ∂R
∂t2

, GR = ∂R
∂t2

· ∂R
∂t2

. (9.264)

Then, the second groundform of r
(
t1, t2

)
is obtained from the first groundform of

R
(
t1, t2, h

)
via the following expression

IIr = 1

2

∂IR
∂h

∣∣
∣∣
h=0

, (9.265)

since

er = 1

2

∂ER

∂h

∣∣
∣
∣
h=0

= 1

2

∂

∂h

[
∂r
∂t1

· ∂r
∂t1

− 2h
∂r
∂t1

· ∂n̂
∂t1

+ h2
∂n̂
∂t1

· ∂n̂
∂t1

]∣∣
∣
∣
h=0

= − ∂r
∂t1

· ∂n̂
∂t1

,

gr = 1

2

∂GR

∂h

∣∣
∣
∣
h=0

= 1

2

∂

∂h

[
∂r
∂t2

· ∂r
∂t2

− 2h
∂r
∂t2

· ∂n̂
∂t2

+ h2
∂n̂
∂t2

· ∂n̂
∂t2

]∣∣
∣
∣
h=0

= − ∂r
∂t2

· ∂n̂
∂t2

,

fr = 1

2

∂FR
∂h

∣∣
∣
∣
h=0

= 1

2

∂

∂h

[
∂r
∂t1

· ∂r
∂t2

− h
∂r
∂t1

· ∂n̂
∂t2

− h
∂n̂
∂t1

· ∂r
∂t2

+ h2
∂n̂
∂t1

· ∂n̂
∂t2

]∣∣
∣
∣
h=0

= −1

2

[
∂r
∂t1

· ∂n̂
∂t2

+ ∂r
∂t2

· ∂n̂
∂t1

]
.

Consider two infinitesimally close points P and Q which are respectively located
at x = x̂ s

(
t1, t2

)
and x = x̂ s

(
t1 + dt1, t2 + dt2

)
as shown in Fig. 9.16. This figure

basically illustrates how a surface curves in the embedding ambient space. It is
precisely the second groundform that helps determine the distance from Q to the
tangent plane at P . Namely,

d = ∣∣dx · n̂ (
t1, t2

)∣∣ = |dr · n̂| = 1

2
|IIr| . (9.266)
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Fig. 9.16 Local structure of surface

The position of Q with respect to the tangent plane at P basically depends on the
way that the surface is embedded in the surrounding ambient space. In general, four
different types of point can be identified with respect to that embedding. This is
described in the following.

9.5.2.1 Asymptotic Direction

An asymptotic direction of a regular surface S at a point P is a direction for which the
so-called normal curvature, according to (9.270), becomes zero. And an asymptotic
curve is one whose tangent line at each point over its whole domain of definition
coincides with the asymptotic direction of the surface in which it embeds (note that
an asymptotic curve can simply be a straight line).

Guided by (9.270)1, κn = 0 implies that IIr = 0. Denoting this direction by λ =
dt2/dt1, one then has

grλ
2 + 2frλ + er = 0 . (9.267)

Assuming gr �= 0, the roots of this quadratic equation render

λ = −fr ± √
f2r − grer
gr

. (9.268)

Then, a point where

➬ f2r − grer < 0, is called elliptic point. There is no (real) root and, therefore, there
will be no asymptotic direction. At elliptic points, the surface is dome shaped
and (locally) lies on one side of its tangential plane. As an example, any point
on the surface of a sphere is an elliptic point.

➬ f2r − grer = 0, is referred to as parabolic point. There is one repeated root and,
therefore, there will be one asymptotic direction given by λ = −g−1

r fr. For
instance, any point on the surface of a cylinder is a parabolic point and the
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only one vertical line passing through that point represents the corresponding
asymptotic line.

➬ f2r − grer > 0, is said to be hyperbolic (or saddle) point. In this case, there are
two roots. Accordingly, there will be two asymptotic directions determined by

λ = g−1
r

(
−fr ± √

f2r − grer
)
.At hyperbolic points, the surface is saddle shaped.

A well-known example regards the one-sheeted hyperboloid which entirely con-
sists of such points.

A point where gr = fr = er = 0, is termed flat (or planar) point. It is clear that the
surface covariant curvature tensor identically vanishes for this special case. As a
simple example, any point on a flat surface (or plane) is a flat point. And any curve
immersed in a plane, called plane curve, is an asymptotic curve.

Next, suppose that gr = 0 and er �= 0. One then needs to find the roots of the
quadratic equation erλ̄2 + 2frλ̄ = 0 where λ̄ = dt1/dt2.

At the end, consider the case for which gr = er = 0 and fr �= 0. Then, fr dt1dt2 =
0 implies that the coordinate curves t1 = c and t2 = d will be the two asymptotic
curves. Here, c and d denote real constants.

9.5.3 Third Fundamental Form

The third fundamental form (or third groundform) of a surface identifies the prin-
cipal linear part of growth of the angle between unit normal vector fields at two
infinitesimally close points. This is indicated by

IIIr = d n̂ · d n̂
= ∂n̂

∂tα
· ∂n̂
∂tβ

dtαdtβ

= b . γ
α aγ θ b

. θ
β dtαdtβ

= bαγ a
γ θ bθβdt

αdtβ . (9.269)

The third groundform of a surface contains no new information since it can be
expressed in terms of the first and second fundamental forms of that surface. This is
described below. ➥

9.5.4 Relation Between First, Second and Third
Fundamental Forms

The first and second groundforms are related through the so-called normal curvature.
This object, denoted here by κn, is defined as the ratio of the second fundamental
form to the first one:
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κn = IIr
Ir

= bαβdtαdtβ

aγ δdtγ dt δ

= er
(
dt1

)2 + 2frdt1dt2 + gr
(
dt2

)2

Er
(
dt1

)2 + 2Frdt1dt2 + Gr
(
dt2

)2 . ←− see (9.348) (9.270)

To obtain the relationship between the fundamental forms, one first needs to rewrite
the Cayley-Hamilton equation (4.21) for two-dimensional spaces. In this case, it
reads

A2 − I1 (A)A + I2 (A) I = O where I1 (A) = tr [A ] , I2 (A) = det [A ] .

(9.271)
Having in mind (9.103)1 and (9.104)1, this equation for the surface mixed curvature
tensor will take the following form

b . θ
α b . ρ

θ − 2H b . ρ
α + Kδρ

α = 0 , (9.272)

in indicial notation. Multiplying both sides of (9.272) with aρβ , taking into account
the relation b . ρ

θ aρβ = bθβ and the replacement property of the Kronecker delta,
then yields

b . θ
α bθβ − 2H bαβ + Kaαβ = 0 , (9.273)

or
bαγ a

γ θ bθβ − 2H bαβ + Kaαβ = 0 . (9.274)

It is now easy to arrive at the desired result

IIIr − 2H IIr + K Ir = 0 . ➥ (9.275)

In the following, some useful identities are formulated for the subsequent develop-
ments.

Contracting the free indices in (9.272) gives

b . θ
α b . α

θ − 2H b . α
α + 2K = 0 or tr

[
b . β

α

]2 = (
2H

)2 − 2K . (9.276)

And this can be extended to

b . θ
α b . ρ

θ b . α
ρ − 2H b . θ

α b . α
θ + K b . α

α = 0 or tr
[
b . β

α

]3 = (
2H

)3 − 6KH .

(9.277)
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9.6 Embedded Curves in Three-Dimensional Euclidean
Space and Ruled Surfaces

Recall that curves or one-dimensional manifolds were intrinsically flat for which
the Riemann-Christoffel curvature tensor identically vanished. Their Euclidean
attribute thus admits a Cartesian coordinate frame. Embedded surfaces in the three-
dimensional Euclidean space were partially analyzed and curves embedded in sur-
faces (or surface curves) were briefly studied within the developments achieved so
far. In this section, mathematical description of curves immersed in the ambient
Euclidean space (or space curves) are first represented. Then, their local properties
such as curvature and torsion are introduced. This part provides important material
required for the further study of curved surfaces. This section will finally end up
with what are known as ruled surfaces which are generated from the space curves.
The so-called developable surface, which represents a special ruled surface, and its
three different types (namely; generalized cylinder, generalized cone and tangent
developable) are also studied.

9.6.1 Mathematical Description of Space Curves

Consider a space curve11 as a set of connected points in the surrounding external
space such that any of its arbitrary connected subset can be pulled into a straight line
segment without any distortion. It then makes sense to naturally define such subsets
via smooth functions. In this text, a parametrized curve is defined as a smooth
mapping from an open interval of the real line R into E 3

p (i.e. the three-dimensional
Euclidean point space). This is indicated by γγγ (t) : I → E 3

p where the function γγγ

is defined on the interval I = (a, b) ⊂ R and the real variable t ∈ I is called the
parameter of γγγ . Smooth mapping basically means that the point function

x = x c (t)

one could also introduce the vector function r = x − o = x c (t) − o = r c (t)

, (9.278)

has derivatives of all orders at all points over its domain of definition. The set x c (I )
represents a subset of E 3

p which is known as the trace of x c. It is important to note
that distinct parametrizations do not necessarily lead to different traces.12

11 A plane curve is a curve lying in a single plane. In contrast, a space curve is one that may be
defined over any region of its embedding three-dimensional space.
12 As an example, consider the distinct parametrized curves

ααα (t) = (a cos t, b sin t) , βββ (t) = (a cos 3t, b sin 3t) where t ∈ (0 − ε, 2π + ε) , ε > 0 .

Notice that their tangent vectors will not be the same:
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Fig. 9.17 Helix

Suppose one is given a parametrized curve x c (t) : I → E 3
p where I ⊂ R and t ∈ I.

Such a curve is said to be regular if dx c (t) /dt �= 0 for all parameters t ∈ I. For a
regular curve, there exists a well-defined straight line, called the tangent line, at every
interior point within the domain of definition. A space curve in general may contain
the so-called singular point satisfying dx c (t) /dt = 0 at any point corresponding to
t . Of interest in this text is to only consider the regular curves which are essential for
subsequent developments.

In alignment with (9.2)1−3, let the ambient space be coordinated with a Cartesian
coordinate frame for simplicity. Then,

x1 = x c
1 (t) , x2 = x c

2 (t) , x3 = x c
3 (t)

or r = r c (t) = r c1 (t) ê1 + r c2 (t) ê2 + r c3 (t) ê3

. (9.279)

As an example, consider an elliptic conical helix as shown in Fig. 9.17. It is defined
by

x1 = Rt cos t , x2 = Rt sin t , x3 = R̂t

these coordinates satisfy the implicit relation (x1/R)2 + (
x2/R

)2 = (
x3/R̂

)2

, (9.280)

dβββ

dt
= 3

dααα

dt
.

But, they have the same trace which is nothing but the ellipse x2/a2 + y2/b2 = 1 .
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where R, R, R̂ are positive real numbers and −∞ < t < ∞. This curve is basically
a subset of a surface called elliptic cone.

In practice, one often deals with an elliptic cylindrical helix. It is defined by

x1 = R cos t , x2 = R sin t , x3 = R̂t

these coordinates satisfy the implicit relation (x1/R)2 + (
x2/R

)2 = 1

, (9.281)

where R, R, R̂ are positive real numbers and −∞ < t < ∞. This curve lies on a
surface called elliptic cylinder as illustrated in Fig. 9.17. Note that both elliptic
conical and cylindrical helices shown in this figure are right-handed curves.

Analogously to (9.10)1−2, the tangent vector (or velocity vector) to the space curve
(9.278) is defined as

at = dx
dt

= lim
h→0

x c (t + h) − x c (t)

h
. ←− see Exercise 9.9 (9.282)

A straight line passing through the generic point x c (t0) is called the tangent line if
it has the same direction as the tangent vector at (t0). The covariant metric tensor
defined in (9.17)1 now takes the form

att = at · at with the trivial matrix representation [ att ] = [
at · at

]
. (9.283)

Curve (or surface) parametrization is not unique. The curve parameter t can be any
arbitrary defined quantity such as time or the so-called arc length. Let’s for clarity dis-
tinguish between curve parametrization by the arc length parameter s (s-parametrized
curve) and any other quantity t (t-parametrized curve). The curve parametrization
by the arc length is known as natural parametrization and accordingly s may be
referred to as the natural parameter. The natural parametrization of curves is very
popular although it is sometimes difficult to come up with such useful parametriza-
tion. It basically helps develop the upcoming mathematical formulation in a more
convenient and efficient way. The key point is that the tangent vector to a space curve
parametrized by the natural parameter has unit length.13 This is described below.

13 Consider a t-parametrized space curve x = x c (t) which by means of t = t (s) can naturally
be parametrized according to x = x c (t) = x̂ c (s). Then, the tangent vector â c

1 = dx/ds is of unit
length owing to

â c
1 · â c

1 = dx
ds

· dx
ds

= ds2

ds2
= 1 .

It is interesting to point out that the condition
∣
∣̂a c

1

∣
∣ = 1 is often introduced in advance as the definition

of the arc length, that is,

ds2 = dx · dx ⇒ s (t) =
∫ x c(t)

x c(t1)

√
dx · dx .

.
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Using (9.242)2, (9.279)1−3 and (9.282)1, the length of a curve segment between
two points corresponding to t1 and t renders

s (t) =
∫ t

t1

√
at

(
t̂
) · at

(
t̂
)
dt̂

=
∫ t

t1

√√√√
(
dx c

1

(
t̂
)

dt

)2

+
(
dx c

2

(
t̂
)

dt

)2

+
(
dx c

3

(
t̂
)

dt

)2

dt̂ . (9.284)

Consequently,
ds

dt
= |at (t)| or

dt

ds
= 1

|at (s)| , (9.285)

noting that the space curve under consideration does not contain any singular point
over its whole domain of definition. It is then easy to represent

t (s) =
∫ s

s1

1
∣
∣at

(
ŝ
)∣∣ dŝ where s1 = s (t1) . (9.286)

This result reveals the fact that any regular space curve, in principal, admits the
natural parametrization

x = x c (t (s)) = x̂ c (s) , (9.287)

with

â c
1 = dx̂ c

ds
= dx c

dt

dt

ds
= at

|at | , ←− see (9.814a) (9.288)

whose length apparently equals 1. With regard to this, natural parametrization may
be viewed as traversing the space curve with the unit speed which may be called
unit-speed parametrization.

9.6.2 Curvature and Torsion of Space Curves

The goal here is to study the local properties of space curves using the arc length
approach. Such properties aim at describing the behavior of a space curve in a neigh-
borhood of a generic point. To this end, let x̂ c (s) : I → E 3

p be a regular space curve
parametrized by the natural parameter s ∈ I. The condition

∣
∣̂a c

1

∣
∣ = ∣

∣dx̂ c/ds
∣
∣ = 1

immediately implies that

â c
1 · d â

c
1

ds
= 0 . (9.289)
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And this reveals the fact that the rate of change of the tangent vector â c
1 with respect

to the arc length parameter s is perpendicular to itself. The new established vector
d â c

1 /ds = d2x̂ c/ds2 is called the acceleration vector. This object plays a major role
in differential geometry of curves. Its magnitude

κc =
∣∣∣∣
d â c

1

ds

∣∣∣∣ =
∣∣∣∣
d2x̂ c

ds2

∣∣∣∣ , ←− see (9.808) (9.290)

is called the curvature of x̂ c at a generic point corresponding to s = s0. And its unit
vector

â c
2 =

∣∣∣∣
d â c

1

ds

∣∣∣∣

−1 d â c
1

ds
= 1

κc

d â c
1

ds
=

∣∣∣∣
d2x̂ c

ds2

∣∣∣∣

−1
d2x̂ c

ds2
, ←− see (9.814b) (9.291)

is referred to as the principal normal vector at s0. The unit vectors â c
1 and â c

2 at a
point define a plane called osculating plane at that point (see Fig. 9.18).

The fact that â c
2 cannot be detected by the inhabitants living on the curve implies

that κc should be an extrinsic entity. With regard to this, a curve is similar to the
surface of a cylinder which is intrinsically flat but extrinsically curved. Note that,
by considering (1.9d), (1.11), and (9.290)1, the curvature of a space curve renders a
nonnegative scalar. At points where curvature vanishes, the principal normal vector is
undefined. Technically, a singular point of order 0 refers to the point at which â c

1 = 0
(this issue was treated by assuming regularity). And one deals with a singular point
of order 1 when d â c

1 /ds = 0. Notice that d â c
1 /ds = d2 x c/ds2 = 0 results in the

straight line x̂ c (s) = ĉ cs + d̂ c where ĉ c, with unit length, and d̂ c denote constant
vectors.

Of interest here is to consider the regular space curves which do not contain any
singular point of order 1 over their whole domain of definition. As a result, the
curvature of any space curve in this text is positive.

Recall from (9.251)4 and (9.260) that 2dr · n̂ = bαβdtαdtβ . The curve analogue
of this relation is given by

2dr · â c
2 = κcds2

note that dr = dr
ds ds + 1

2
d2r
ds2

ds2 + o
(
ds2

)
= â c1 ds + 1

2 κc â c2 ds
2 + o

(
ds2

)

. (9.292)

And this means that κc in curve theory plays the role of bαβ in (local) theorem of
surfaces.

It is important to point out that the curvature of a space curve remains invariant
under a change of orientation.14 This geometric object - with a long history which

14 To show this, consider a space curve γγγ (s) : I → E 3
p parametrized by the natural parameter s ∈ I.

Suppose that this curve does not contain any singular point of order 0 or 1 in I. Let γγγ (s) = γγγ (s)
where s = −s. Then,
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Fig. 9.18 Tangent vector, principal normal vector, osculating plane and osculating circle of a
smooth curve with natural parametrization

dates back to the ancient times - measures how fast a curve deviates from the tangent
line in a neighborhood of a generic point. In other words, the curvature of a space
curve is a measure of its failure to be a straight line. This is equivalent to saying
that the non-linearity of a curve at a point is captured by its curvature at that point.
Physically, such a quantity illustrates the bending of a straight line segment at a
certain plane. Its reciprocal according to

ρc = 1

κc
, (9.293)

is referred to as the radius of curvature of x̂ c at a point corresponding to s = s0. This
positive scalar at a point on the curve equals the radius of a circle that best fits the
curve at that point. Such a circle is called osculating circle (or kissing circle), see
Fig. 9.18. This geometric object has exactly the same curvature (and tangent line) as
the curve at a given point and lies in the concave (or inner) side of the curve. As a
simple example, consider a circle which is basically its own osculating circle. Then,
the radius of curvature will be its radius. Notice that applying more bending provides
bigger curvature and accordingly the (radius of) osculating circle becomes smaller.

dγγγ

ds
= −d γγγ

d s
,

d2γγγ

ds2
= +d2γγγ

d s2
.

This reveals the fact that by changing the positive sense of γγγ (s), the tangent vector dγγγ /ds will
be affected whereas the acceleration vector d2γγγ /ds2 and accordingly its length, κc = ∣∣d2γγγ /ds2

∣∣,
remain unaffected.
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The identities â c
1 · â c

1 = 1, â c
2 · â c

2 = 1 and â c
2 · â c

1 = 0 with the aid of (9.291)2
help obtain

â c
2 · d â

c
2

ds
= 0 and

d â c
2

ds
· â c

1 + â c
2 · d â

c
1

ds︸ ︷︷ ︸
= κc â c2 · â c2 = κc â c1 · â c1

= 0 , (9.294)

or (
d â c

2

ds
+ κc â c

1

)
· â c

1 = 0 . (9.295)

It is not then difficult to see that
(
d â c

2

ds
+ κc â c

1

)
· â c

2 = 0 . (9.296)

Thus, the new established vector d â c
2 /ds + κc â c

1 is orthogonal to both â c
1 and â c

2 .
Denoting by τ c and â c

3 its length and unit vector, respectively, one can write

d â c
2

ds
+ κc â c

1 = τ c â c
3 or

d â c
2

ds
= τ c â c

3 − κc â c
1 , (9.297)

where τ c is called the torsion of x̂ c at a point corresponding to s = s0 and â c
3 is

referred to as the binormal vector at s0. The object is chosen such that the following
triad of vectors {

â c
i

} := {
â c
1 , â

c
2 , â

c
3

}
, (9.298)

forms a right-handed basis for the embedding ambient space, that is,

â c
3 = â c

1 × â c
2

note that â c1 = â c2 × â c3 and â c2 = â c3 × â c1

, (9.299)

or (
â c
1 × â c

2

) · â c
3 = 1 . (9.300)

Accordingly, one finds that

a c
3 =

∣∣
∣∣
d2x̂ c

ds2

∣∣
∣∣

−1
dx̂ c

ds
× d2x̂ c

ds2
. ←− see (9.814c) (9.301)

Hint: In the literature, the orthonormal basis
{
â c
1 , â

c
2 , â

c
3

}
is usually denoted by

{T,N,B} or {t,n,b}.
Following the above considerations, the introduced tangent vector â c

1 and the
principal normal vector â c

2 have already been completed by means of the binormal
vector â c

3 to provide an orthonormal basis for the three-dimensional real vector space.
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This basis, referred to as the Frenet trihedron (or moving trihedron), varies as it
moves along the curve and formswhat is called theFrenet frame. Such a frame can be
served as local coordinate axes of the curve under consideration which helps describe
its local properties such as curvature and torsion. See Fig. 9.19 for a geometrical
interpretation.

Three mutually perpendicular planes can be constructed by means of the Frenet
frame: (i) the plane spanned by â c

1 and â
c
2 is called the osculating plane, (ii) the plane

defined by â c
1 and â c

3 is known as the rectifying plane and (iii) the so-called normal
plane is one generated by â c

2 and â c
3 (see Fig. 9.19). They are known as the Frenet

planes.
The torsion of a curve measures how sharply that curve deviates from the oscu-

lating plane in a neighborhood of a generic point. In other words, the torsion of a
curve indicates a measure of its failure to be contained in a plane. This is equivalent
to saying that the non-planarity of a curve at a generic point is captured by its torsion
at that point. Recall that a space curve is intrinsically flat. This physically means that
a curve in space can be constructed from a straight line by twisting and bending of
that line.

The rate of change of the binormal vector â c
3 is related to the principal normal

vector â c
2 through the following relationship

d â c
3

ds
= −τ c â c

2 , (9.302)

because

d â c
3

ds
from=====
(9.299)

d

ds

[
â c
1 × â c

2

]

from====
(6.4i)

[
d â c

1

ds

]
× â c

2 + â c
1 ×

[
d â c

2

ds

]

from===========
(9.291) and (9.297)

[
κc â c

2

] × â c
2 + â c

1 × [
τ c â c

3 − κc â c
1

]

from===============
(1.49a), (1.51) and (9.299)

−τ c â c
2 .

Consequently,

τ c = −â c
2 · d â

c
3

ds
. (9.303)

One can further represent

τ c =
∣∣
∣∣
d2x̂ c

ds2

∣∣
∣∣

−2
dx̂ c

ds
·
(
d2x̂ c

ds2
× d3x̂ c

ds3

)
, ←− see (9.809) (9.304)
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since

τ c from (6.4i),===========
(9.299) and (9.303)

−â c
2 ·

(
d â c

1

ds
× â c

2

)
− â c

2 ·
(
â c
1 × d â c

2

ds

)

from==========
(1.73) and (9.291)

−d â c
1

ds
· (â c

2 × â c
2

) − â c
2 ·

(
â c
1 × d

ds

[
d â c

1

κcds

])

from (1.40), (1.51),===========
(6.4a) and (9.291)

1

(κc)2
dκc

ds
â c
2 · (â c

1 × [
κcâ c

2

]) − 1

κc
â c
2 ·

(
â c
1 × d 2̂a c

1

ds2

)

from==========
(1.49a) and (1.73)

1

κc

dκc

ds
â c
1 · (â c

2 × â c
2

) + 1

κc
â c
1 ·

(
â c
2 × d 2̂a c

1

ds2

)

from (1.40), (1.51),===============
(9.288), (9.290) and (9.291)

∣∣∣∣
d2x̂ c

ds2

∣∣∣∣

−2
dx̂ c

ds
·
(
d2x̂ c

ds2
× d3x̂ c

ds3

)
.

The torsion of any plane curve (with possibly nonvanishing curvature) is identically
zero. Unlike the curvature, the torsion of a space curve at a point can be negative. The
sign of this entity is significant because it affects the local shape of a space curve.
Indeed, one needs to distinguish between a right-handed curve with positive torsion
and left-handed curve possessing negative torsion, see Fig. 9.19. It is worthwhile
to point out that the torsion of a space curve remains invariant under a change of
orientation. This is described below.

Consider a s-parametrized space curve γγγ (s) : I → E 3
p without any singular point of

order 0 or 1 in I. Let γγγ (s) = γγγ (s) where s = −s. The goal is now to verify that
τ c (s) = τ c (s) where τ c (s) and τ c (s) respectively present the torsion of γγγ (s) and

γγγ (s). Denoting by
{
â
c
i

}
and

{
â c
i

}
the natural triad of γγγ (s) and γγγ (s), respectively,

one will have

â
c
1 = −â c

1 , â
c
2 = +â c

2 and â
c
3 = −â c

3 ,
d â

c
3

d s
= +d â c

3

d s
.

As a result,

τ c = −d â
c
3

d s
· â c

2 = −d â c
3

ds
· â c

2 = τ c .

As can be seen, by changing the positive sense of a space curve, its binormal vector
will be affected whereas its torsion remains unaffected.
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Fig. 9.19 Space curves with their local properties

9.6.3 Frenet Formulas for Space Curves

The so-calledFrenet (orFrenet-Serret) formulas represent a linear systemof ordinary
differential equations governing the moving trihedron along a space curve (see the
pioneering works of Frenet [20] and Serret [21]). They establish the rate of change of
the tangent, principal normal and binormal vectors in terms of each other using the
curvature and torsion. The Frenet formulas are the curve analogue of the formulas
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established by Gauss and Weingarten for curved surfaces. They are already derived
in (9.291)2, (9.297)2 and (9.302). For convenience, they are listed in the following:

d â c
1

ds
= κc â c

2 , ←− see (9.820a) and (9.873a) (9.305a)

d â c
2

ds
= −κc â c

1 + τ c â c
3 , (9.305b)

d â c
3

ds
= −τ c â c

2 . (9.305c)

The matrix form of the Frenet formulas then renders

⎡

⎢⎢
⎣

...
...

...
d â c

1
ds

d â c
2

ds
d â c

3
ds

...
...

...

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

...
...

...

â c
1 â c

2 â c
3

...
...

...

⎤

⎥⎥
⎦

⎡

⎣
0 −κc 0
κc 0 −τ c

0 τ c 0

⎤

⎦ . (9.306)

In these expressions, the functions κc = κc (s) and τ c = τ c (s) are called natural (or
intrinsic) equations. Once they are known, the three unit vectors of the Frenet frame
are known at each point (at least in principle). Technically, according to the so-called
fundamental theorem of space curves, there exists a regular s-parametrized curve
x̂ c (s) : I → E 3

p for the given sufficiently smooth functions κc (s) > 0 and τ c (s).

And any other curve, x̂
c
, with identical conditions will differ from x̂ c (s) by a rigid

body motion according to x̂
c − o = R

(
x̂ c − o

) + c. Here,R is a proper orthogonal
tensor and c presents a real vector (they are independent of the arc length parameter).
This relation basically states that any point of x̂ c (s) has been displaced in an identical
manner. The proof of the theorem can be found in any decent book on differential
geometry (see, for example, do Carmo [8]).

The Frenet formulas can be represented in an elegant way by introducing the
useful vector

dc = τ c â c
1 + κc â c

3 , ←− see (9.875) (9.307)

called Darboux vector (see the early pioneering work of Darboux [22]). One can
now write

d â c
i

ds
= dc × â c

i , i = 1, 2, 3 . (9.308)

The Frenet formulas may also be written as

d â c
i

ds
= Wc

s â
c
i , i = 1, 2, 3 , (9.309)

where the skew-symmetric tensor Wc
s presents

Wc
s = τ c

(
â c
3 ⊗ â c

2 − â c
2 ⊗ â c

3

) + κc
(
â c
2 ⊗ â c

1 − â c
1 ⊗ â c

2

)
. (9.310)
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9.6.4 Ruled Surfaces

The goal here is to introduce an important class of surfaces called ruled surfaces.
Let S be a surface parametrized by

x
(
t1, t2

) = ααα
(
t1
) + t2w

(
t1
)

, a < t1 < b , −∞ < t2 < ∞ , (9.311)

where ααα
(
t1
)
denotes a point function whose trace presents a curve in space and

w
(
t1
)
is a vector function specifying a direction. This represents a ruled surface.

It is basically swept out by a continuous (translational and/or rotational) motion
of a straight line in space. This straight line, denoted by Lt2 , is known as a ruling
(or generator) of S (see Fig. 9.20). And it has a representation of the form t2 →
ααα
(
t1∗
) + t2w

(
t1∗
)
. The ruling Lt2 moves along the object ααα

(
t1
)
which is referred to

as the directrix (or base curve) of S. Note that in this context, one no longer insists
on regularity of S. Thus, a ruled surface is not necessarily a regular surface. It is
assumed that the tangent vector to the curve of reference, ααα

(
t1
)
, is never zero and

w
(
t1
) �= 0. For convenience, it is assumed that w

(
t1
)
is of unit length, i.e.

w · w = 1 which immediately implies that w · w′ = 0 where •′ := d•
dt1

. (9.312)

Another assumption, generally made for developing the theory, is that

w′ (t1
) �= 0 . (9.313)

Fig. 9.20 Ruled surface
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Fig. 9.21 Two families of rulings on one-sheeted hyperboloid

Accordingly, the ruled surface is said to be noncylindrical. This relies on the fact that
w′ = 0 or w = constant = w0 leads to the special case x

(
t1, t2

) = ααα
(
t1
) + t2w0

which is nothing but the parametric equation of a (generalized) cylinder, see (9.323).
Two well-known examples of ruled surfaces are cylinders and cones. It is inter-

esting to note that the hyperboloid of one sheet is also a ruled surface. Indeed, it is a
doubly ruled surface because the two parametric equations

x1 = R cos t1 ∓ Rt2 sin t1 , x2 = R sin t1 ± Rt2 cos t1 , x3 = R̂t2

note that ααα
(
t1
)

=
(
R cos t1, R sin t1, 0

)
and w

(
t1
)

= ∓R sin t1 ê1 ± Rt2 cos t1 ê2 + R̂ ê3

,

(9.314)
satisfy the following nonparametric equation of the single-sheeted hyperboloid

( x1
R

)2 +
(
x2
R

)2

−
(
x3
R̂

)2

= 1 . ←− see (9.7) (9.315)

These two ruled surfaces are illustrated in Fig. 9.21.

Let x̂ c (s) be a unit-speed curve with positive curvature. Further, let â c
1 , â

c
2 and

â c
3 be its unit tangent vector, unit principal normal vector and unit binormal vector,
respectively. Three different ruled surfaces can then be associated with that curve.
Accordingly, one can have
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❋ the tangent surface (or tangent developable) of x̂ c (s); described by,

x̂ s
(
s, t2

) = x̂ c (s) + t2 â c
1 (s) , (9.316)

❋ the principal normal surface of x̂ c (s); parametrized by,

x̂ s
(
s, t2

) = x̂ c (s) + t2 â c
2 (s) , (9.317)

❋ and the binormal surface of x̂ c (s); defined by,

x̂ s (s, t2
) = x̂ c (s) + t2 â c

3 (s) . (9.318)

Consider a general ruled surface of the form (9.311). For this surface, the ambient
basis (9.13) can be written as

a1 = ααα′ + t2w′ , a2 = w , n̂ = ααα′ × w + t2w′ × w
∣∣ααα′ × w + t2w′ × w

∣∣ . (9.319)

Now, by using (1.49c), (1.73)1, (9.252b)2, (9.252c)2 and (9.319)1−3,

gr = ∂a2
∂t2

· n̂ = 0 · n̂
= 0 , (9.320a)

fr = ∂a1
∂t2

· n̂ = w′ · ααα′ × w + t2w′ × w
∣∣ααα′ × w + t2w′ × w

∣∣

= ααα′ · (w × w′)
∣∣ααα′ × w + t2w′ × w

∣∣ . (9.320b)

Consequently, the Gaussian curvature (9.258)4 becomes

K = −
[
ααα′ · (w × w′)]2

(
ErGr − F2

r

) ∣∣ααα′ × w + t2w′ × w
∣∣2

. (9.321)

Thus, the ruled surface is a surface with everywhere nonpositive Gaussian curvature.

9.6.4.1 Developable Surfaces

Let S be a (not necessarily noncylindrical) ruled surface of the form (9.311). This is
called a developable surface (or simply developable) if, at regular points, its Gaussian
curvature vanishes. The tangent planes are the same at all points on a ruling of a
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developable surface. This special surface is called developable because it can be
developed into a plane without any stretching, folding or tearing.

Guided by (9.321), the ruled surface is developable if and only if

ααα′ · (w × w′) = 0 . (9.322)

This condition helps identify three different developable surfaceswhich are described
in the following.

1. Consider the trivial case w × w′ = 0. This implies that w′ is a scalar multiple
of w, i.e. w′ (t1

) = λ
(
t1
)
w

(
t1
)
. From the relations (9.312)1−2, it then follows

that λ
(
t1
) = 0 which results in w

(
t1
) = w0. Consequently, one can arrive at the

following parametric equation of generalized cylinder (Fig. 9.22)

x
(
t1, t2

) = ααα
(
t1
) + t2w0 . (9.323)

2. Consider the case in which w × w′ �= 0. The expression (9.322) then implies
that the triplet of vectorsααα′,w andw′ are linearly dependent. Thus, one can write
ααα′ (t1

) = λ
(
t1
)
w

(
t1
) + μ

(
t1
)
w′ (t1

)
whereλ andμ are some smooth functions.

At this stage, the curve ααα
(
t1
)
is reparametrized as

α̃αα
(
t1
) = ααα

(
t1
) − μ

(
t1
)
w

(
t1
)

with α̃αα
′ (t1

) = [
λ
(
t1
) − μ′ (t1

)]
w

(
t1
)

.

Two different cases can now be considered which are listed in the following.

a. Suppose that α̃αα′ (t1
) = 0. One then has α̃αα

(
t1
) = α̃αα0 which immediately yields

ααα
(
t1
) = α̃αα0 + μ

(
t1
)
w

(
t1
)
. Consequently, one can arrive at the following

parametric equation of generalized cone (Fig. 9.22)

x
(
t̃ 1, t̃ 2

) = α̃αα0 + t̃ 2w
(
t̃ 1
)

where t̃ 1 = t1 , t̃ 2 = t2 + μ
(
t1
)

. (9.324)

b. Suppose that α̃αα′ (t1
) �= 0. One then finally arrives at the following parametric

equation of tangent developable (Fig. 9.23)

x
(
t̃ 1, t̃ 2

) = α̃αα
(
t̃ 1
) + t̃ 2α̃αα′ (t̃ 1

)
where t̃ 2 = t2 + μ

(
t1
)

λ
(
t1
) − μ′ (t1

) . (9.325)

Guided by these considerations, a developable surface is basically a union of some
pieces of generalized cylinders, generalized cones and tangent developables.

Suppose one is given a regular space curve ααα
(
t1
)
with nowhere-vanishing curva-

ture κc = ∣∣ααα′∣∣−3 ∣∣ααα′ × ααα′′∣∣, according to (9.808). Then,

(i) the corresponding generalized cylinder x
(
t1, t2

) = ααα
(
t1
) + t2w0 is regular

wherever a1 × a2 = ααα′ × w0 �= 0.
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Fig. 9.22 Generalized cylinder and generalized cone

Fig. 9.23 Tangent developable

(ii) the corresponding generalized cone x
(
t1, t2

) = p + t2ααα
(
t1
)
is regular wher-

ever a1 × a2 = t2ααα′ × ααα �= 0. Such a surface is thus regular if there is no ruling
tangent to the base curve. Notice that it can never be regular at its vertex p (at
which t2 = 0).

(iii) the corresponding tangent developable surface x
(
t1, t2

) = ααα
(
t1
) + t2ααα′ (t1

)
is

regular wherever a1 × a2 = t2ααα′′ × ααα′ �= 0. Guided by κc �= 0, such a surface
is regular at all points except those lying on the base curve (at which t2 = 0).
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9.6.4.2 Line of Striction and Distribution Parameter

Let S be a noncylindrical ruled surface of the form x̌
(
t1, ť 2

) = ααα
(
t1
) + ť 2w

(
t1
)
,

according to (9.311). The goal here is to reparameterize S as

x
(
t1, t2

) = βββ
(
t1
) + t2w

(
t1
)

, (9.326)

where the parametrized curve βββ
(
t1
)
is such that

βββ ′ (t1
) · w′ (t1

) = 0 . (9.327)

This parametrized curve, βββ
(
t1
)
, is known as the line of striction of S. And its points

are referred to as the central points of S. Let u
(
t1
)
be a smooth function measuring

the distance from a point on the directrix ααα
(
t1
)
to a central point on the striction

curve βββ
(
t1
)
. One then writes

βββ
(
t1
) = ααα

(
t1
) + u

(
t1
)
w

(
t1
)

with βββ′ (t1
)

= ααα′ (t1
)

+ u′ (t1
)
w

(
t1
)

+ u
(
t1
)
w′ (t1

)

. (9.328)

Bearing in mind that w · w′ = 0, the expression βββ ′ · w′ = 0 now helps determine
u
(
t1
)
as follows:

u
(
t1
) = −ααα′ (t1

) · w′ (t1
)

w′ (t1
) · w′ (t1

) . (9.329)

As a result,

x̌
(
t1, ť 2

) = ααα
(
t1
) + ť 2w

(
t1
) = βββ

(
t1
) +

[

ť 2 + ααα′ (t1
) · w′ (t1

)

w′ (t1
) · w′ (t1

) := t2
]

w
(
t1
)

= βββ
(
t1
) + t2w

(
t1
)

:= x
(
t1, t2

)
.

Notice that the striction curve of S becomes its directrix whenααα′ (t1
)
is perpendicular

to w′ (t1
)
.

Let S be a noncylindrical ruled surface of the form (9.326). The distribution
parameter of S is then defined by

p
(
t1
) = w′ (t1

) · [βββ ′ (t1
) × w

(
t1
)]

w′ (t1
) · w′ (t1

) . (9.330)

The Gaussian curvature of S can now be expressed in terms of p
(
t1
)
. The goal is

thus to simplify the Gaussian curvature (9.321) for the problem at hand. To do so,
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consider βββ ′ · w′ = 0 and w · w′ = 0. This implies that βββ ′ × w is a scalar multiple of
w′. Consequently, guided by (9.330), one will have βββ ′ × w = pw′. As a result,

∣∣βββ ′ × w + t2w′ × w
∣∣2 = ∣∣pw′ + t2w′ × w

∣∣2

= p2
∣∣w′∣∣2 + (

t2
)2 ∣∣w′ × w

∣∣2

=
[
p2 + (

t2
)2] ∣∣w′∣∣2 .

Consider now the covariant basis vectors

a1 = βββ ′ + t2w′

a2 = w

}

with
[
aαβ

] =
[

βββ ′ · βββ ′ + (
t2
)2
w′ · w′ βββ ′ · w

βββ ′ · w 1

]
,

and

ErGr − F2r = det
[
aαβ

] = |a1 × a2|2 =
∣
∣
∣βββ ′ × w + t2w′ × w

∣
∣
∣
2 =

[
p2 +

(
t2
)2] ∣

∣w′∣∣2 .

These results help finally obtain

K = − p2
[
p2 + (

t2
)2]2

. (9.331)

It should not be difficult now to verify that

H =
(
βββ ′′ + t2w′′) · [(βββ ′ + t2w′) × w

] − 2p
∣
∣w′∣∣2 (βββ ′ · w)

2
[
p2 + (

t2
)2]3/2 |w′|3

. (9.332)

Letβββ (s) be a unit-speed curve, i.e.
∣∣βββ ′∣∣ = 1, with the positive curvature κc (s). Then,

it can be shown that the mean curvature of the principal normal surface

x̂ s
(
s, t2

) = βββ (s) + t2

κc (s)
βββ ′′ (s) , (9.333)

takes the form

H = t2
[
τ c ′ + t2

(
κc ′τ c − τ c ′κc

)]

2
[
p2 + (

t2
)2]3/2 (

τ c 2 + κc 2
)3/2

, ←− the proof is given in Exercise 9.19 (9.334)

where

p = τ c

τ c 2 + κc 2
. (9.335)
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9.7 Curvature

Curvature represents one of the most richest topics in differential geometry which is
fundamental in theory of manifolds. It quantifies the amount by which a manifold
deviates from being straight. In general, there are two types of curvatures; namely,
intrinsic curvature and extrinsic curvature. Intrinsic curvature is a property charac-
terizing a manifold internally as detected by an inhabitant living on that manifold.
Whereas extrinsic curvature characterizes a manifold externally as viewed by an out-
sider. A well-known example of intrinsic curvature regards the Gaussian curvature
whereas the mean curvature has an extrinsic attribute. Various notions of curvature
have been introduced so far. The main goal here is to study some other concepts of
this geometric object with a long history. See Casey [23] for further discussions.

9.7.1 Curvature of Surface Curve

The curvature of a curve embedded in a regular surface can be studied from extrinsic
and intrinsic points of view.And it ismainly addressed by the so-called normal curva-
ture and geodesic curvature. The normal curvature has an extrinsic attribute whereas
the geodesic curvature is an intrinsic object. The reason is that the normal curvature
depends on the way in which the surface is embedded in the surrounding ambient
space whereas the geodesic curvature is a measure of curving of a curve relative to
the surface in which it is embedded. These important quantities are mathematically
described in the following.

9.7.1.1 Normal and Geodesic Curvatures

To this end, consider a s-parametrized curve without any singularity that is defined
by

x = x̂ s
(
t1 (s) , t2 (s)

) = x̂ c (s) . ←− see (9.239) and (9.287) (9.336)

One then has

â c
1 = dx̂ c

ds
= ∂ x̂ s

∂tα
dtα

ds
= dtα

ds
aα . (9.337)

Note that the tangent vector â c
1 to the curve x̂ c at a point lies in the tangent plane of

the surface in which it is embedded. Differentiation of (9.337) with respect to the
arc length parameter s further yields

d â c
1

ds
= d2x̂ c

ds2
= d2tα

ds2
aα + dtα

ds

∂aα

∂tβ
dtβ

ds
. (9.338)
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By means of the expressions (9.94) and (9.305a), the relation (9.338)2 can be
rephrased as

κc â c
2 =

(
d2tγ

ds2
+ dtα

ds
�

γ

αβ

dtβ

ds

)
aγ + dtα

ds
bαβ

dtβ

ds
n̂

with d2tγ + �
γ
αβ

dtαdtβ = (
â c2 · aγ

)
κcds2 and bαβdt

αdtβ = (
â c2 · n̂) κcds2

. (9.339)

Note that the vector on the left hand side of (9.339)1 is basically the rate of change
of the tangent vector. It is referred to as the curvature vector:

kc = κc â c
2 . ←− note that kc = d2 x̂ c/ds2 (9.340)

This vector can be decomposed into the tangential component

kg =
(
d2tγ

ds2
+ dtα

ds
�

γ

αβ

dtβ

ds

)
aγ , (9.341)

called the geodesic curvature vector, and the normal component

kn = dtα

ds
bαβ

dtβ

ds
n̂ , (9.342)

termed the normal curvature vector. Up to a sign, the geodesic curvature, κg, is
defined to be the length of the geodesic curvature vector:

κg = ± ∣∣kg
∣∣ . (9.343)

In a similar manner, the so-called normal curvature, κn, is defined as

κn = ± ∣∣kn
∣∣ . (9.344)

Now, one can trivially write

kc = kg + kn with kg · kn = 0 and (κc)
2 = (κn)

2 + (κg)
2

. (9.345)

Let φ be the angle between â c
2 and n̂ at a given point as illustrated in Fig. 9.25. One

then has
κg = κc sin φ , κn = κc cosφ

or κc = κg sin φ + κn cosφ

, (9.346)

and
cosφ = â c

2 · n̂ , sin φ = â c
3 · n̂ . (9.347)
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It is easy to express the normal curvature in terms of the first and second fundamental
forms of the surface:

κn from===========
(9.342) and (9.344)

bαβdtαdtβ

dsds
from=====
(9.251)

IIr
ds2

from=====
(9.227)

IIr
Ir

, (9.348)

which has already been given in (9.270). Considering the fact that n̂ and â c
1 are

orthogonal unit vectors leads to

κn = −d n̂
ds

· â c
1 . (9.349)

The interested reader may use (9.349) to arrive at (9.348)3. Having in mind that the
inner product is a symmetric bilinear form and using the chain rule of differentiation,
this can be shown as follows:

κn = −
(
d n̂
ds

)
· [ â c

1

] from=====
(9.288)

−
(
d n̂
dt

dt

ds

)
·
[
a t

|a t |
]

from=====
(9.285)

− 1

|a t |2
(

∂n̂
∂tα

dtα

dt

)
· [a t ]

from==========
(9.99) and (9.240)

− 1

|a t |2
(− bαγ aγ

) · [aβ

] dtα

dt

dtβ

dt

from==========
(1.11) and (9.33)

bαγ δ
γ

β dt
αdtβ

(a t · a t ) dtdt

from==========
(5.14) and (9.241)

bαβdtαdtβ

aγ δdtγ dt δ

from===========
(9.227) and (9.251)

IIr
Ir

.

One can also establish

κn = − n̂|̂a c
1
· â c

1 , ←− see (9.454) (9.350)

since

− n̂|( dtβ

ds aβ

) · â c
1 = − n̂|β dtβ

ds
· â c

1 = − ∂n̂
∂tβ

dtβ

ds
· â c

1

= bβα

dtβ

ds
aα · dt

γ

ds
aγ = bαβ

dtβ

ds
δα
γ

dtγ

ds

= bαβ

dtα

ds

dtβ

ds
.



518 9 Differential Geometry of Surfaces and Curves

Consider a curve C with nowhere vanishing unit tangent vector â c
1 and curvature

κc which lies on the intersection of two regular surfaces S1 and S2. Let n̂1 ( n̂2) be
the unit normal field to S1 (S2). Further, let κn

1 (κn
2 ) be the normal curvature of S1

(S2) in the direction of â c
1 and α be the angel between the unit normal fields, i.e.

n̂1 · n̂2 = cosα. Then, the curvature of C and the normal curvatures of S1 and S2 are
related through the following equation

κc 2 sin2 α = κn 2
1 − 2κn

1κ
n
2 cosα + κn 2

2 , (9.351)

because

∣∣κn
1 n̂2 − κn

2 n̂1
∣∣2 on the one hand================

from (9.346) and (9.347)

∣∣κc ( n̂1 · â c
2

)
n̂2 − κc ( n̂2 · â c

2

)
n̂1

∣∣2

from=====
(1.72)

∣∣κc ( n̂1 × n̂2 ) × â c
2

∣∣2

from (1.11)========
and (1.78a)

κc 2
{
[( n̂1 × n̂2 ) · ( n̂1 × n̂2 )]

[
â c
2 · â c

2

] − [
( n̂1 × n̂2 ) · â c

2

]2}

from â c2 · â c2 = 1,===================
â c1 ⊥ â c2 and ( n̂1 × n̂2) ‖ â c1

κc 2 {( n̂1 × n̂2 ) · ( n̂1 × n̂2 )}

from======
(1.78a)

κc 2 {( n̂1 · n̂1) ( n̂2 · n̂2) − ( n̂1 · n̂2)2
}

by========
assumption

κc 2 {1 − cos2 α
}

on the other===========
hand from (1.11)

κn 2
1 ( n̂2 · n̂2)2 − 2κn

1κn
2 ( n̂1 · n̂2) + κn 2

2 ( n̂1 · n̂1)2

by========
assumption

κn 2
1 − 2κn

1κn
2 cosα + κn 2

2 .

9.7.1.2 Normal Curvature of Coordinate Curves

Consider the fact that dt1 �= 0 and dt2 = 0 on the t1-curve. As a result, the normal
curvature in the direction of the t1-curve takes the form

κn
t1 = b11

a11
= er

Er
. (9.352)

In a similar manner,

κn
t2 = b22

a22
= gr

Gr
. (9.353)
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Fig. 9.24 Normal section

9.7.1.3 Meusnier Theorem

Let â c
1 be a unit vector in the tangent plane of a regular surface S at a given point P .

Further, let n̂ be the unit normal to S at P . Then, the plane spanned by â c
1 and n̂ is

said to be the normal section of S at P in the direction of â c
1 . And the curve cut out

by this plane is called the normal section curve (or simply normal section) of S at P
along â c

1 , see Fig. 9.24.
Let λ̂ = dt2/dt1 be the direction of the tangent line to the normal section curve

at a point P . Then, κn only depends on λ̂ via the following relation

κn = er + 2frλ̂ + grλ̂2

Er + 2Frλ̂ + Grλ̂2
. ←− see (9.270) (9.354)

This leads to the following theorem (see the pioneering work of Meusnier [24]):

All surface curves passing through a point on a surface and possessing
the identical tangent line will have the same normal curvature at that
point.

Theorem A (Meusnier)

�

The Meusnier theorem basically states that the quantity κn = κc cosφ (Fig. 9.25)
is an invariant object. This can be written as

κn = (
â c
1 ⊗ â c

1

) : b = â c
1 · b̂a c

1

notice that κn = dtα
ds aα ·

[(
bγ δa

γ ⊗ aδ
)(

dtβ
ds aβ

)]
= dtα

ds bαβ
dtβ
ds

. (9.355)

As can be seen from Fig. 9.24, the geodesic curvature identically vanishes for a
normal section curve at a given point P in the direction of â c

1 . This helps realize that
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κc = |κn| and in general â c
2 = ±n̂ for such a curve. Regarding the normal section

curve of a surfaceS, onewill have â c
2 = +n̂ ( â c

2 = −n̂ )when n̂ points in the direction
of concavity (convexity) of S.

In the following, the goal is to provide a formula for computing the geodesic
curvature. This helps introduce a new orthonormal basis for the surface curve under
consideration. ❍

With the aid of (9.339)1 and (9.341), considering the identities â c
1 · â c

2 = 0 and
â c
1 · n̂ = 0, one can deduce that kg · â c

1 = 0. From (9.342) and (9.345)2, one can also
deduce that kg · n̂ = 0. Thus, kg is perpendicular to both â c

1 and n̂. This implies that
kg should be collinear with the unit vector n̂ × â c

1 , i.e. k
g is a scalar multiple of

n̂ × â c
1 . The geodesic curvature is then exactly this proportionality factor:

kg = κg n̂ × â c
1 . (9.356)

This decomposition finally helps obtain the desired result

κg = (
n̂ × â c

1

) · kg . ❍ (9.357)

In addition to the (orthonormal) curve-based Frenet frame
{
â c
1 , â

c
2 , â

c
3

}
and the

(generally non-orthonormal) surface-based frame {a1, a2, n̂}, one can now establish
another (orthonormal) frame; namely

{
â c
1 , n̂ × â c

1 , n̂
}
. SeeFig. 9.25 for a geometrical

interpretation.
Note that the Frenet frame is a very useful tool for studying the geometry of space

curves. In the case that a curve is embedded in a surface, its principal normal and
binormal vectors are generally neither tangent nor perpendicular to that surface. And
this means that the Frenet trihedron

{
â c
1 , â

c
2 , â

c
3

}
will not be suitable for describing

Fig. 9.25 Normal and geodesic curvature vectors
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the geometry of surface curves. This is the reason for introducing the new trihedron{
â c
1 , n̂ × â c

1 , n̂
}
. Recall that the derivative of Frenet trihedron with respect to the

arc length parameter relied on the (ordinary) curvature and torsion at a given point.
But, the sensitivity of the new established moving trihedron relative to the arc length
parameter relies on the normal curvature, geodesic curvature and another geometric
object called geodesic torsion. Some alternative forms of this important quantity
has been given in (9.468)-(9.473). And the resulting system of ordinary differential
equations has been represented in (9.873a)-(9.873c).

9.7.1.4 Some Forms of Geodesic Curvature

The relation (9.357) can also be written as

κg = (
n̂ × â c

1

) · kc where â c
1 = dx̂ c

ds
and kc = d â c

1

ds
= d2x̂ c

ds2
. (9.358)

Having in mind the identity (v × w) · u = (w × u) · v, this takes the useful form

κg =
(
dx̂ c

ds
× d2x̂ c

ds2

)
· n̂ . (9.359)

The curvature κc and the normal curvature κn have extrinsic attribute while the
geodesic curvature κg is an intrinsic object owing to

κg = √
a

[

+�2
11

(
dt1

ds

)3

− �1
22

(
dt2

ds

)3

+ (
2�2

12 − �1
11

) (dt1

ds

)2
dt2

ds
− (

2�1
12 − �2

22

) dt1

ds

(
dt2

ds

)2

+dt1

ds

d2t2

ds2
− d2t1

ds2
dt2

ds

]
. ←− the proof is given in Exercise 9.14 (9.360)

This relation can be represented in a more elegant way as

κg = √
a det

⎡

⎣
dt1

ds
d2t1

ds2 + �1
11

[
dt1

ds

]2 + 2�1
12

dt1

ds
dt2

ds + �1
22

[
dt2

ds

]2

dt2

ds
d2t2

ds2 + �2
11

[
dt1

ds

]2 + 2�2
12

dt1

ds
dt2

ds + �2
22

[
dt2

ds

]2

⎤

⎦ . (9.361)

Another representation is

κg = 1√
a

[
∂

∂t1
(
a2 · â c

1

) − ∂

∂t2
(
a1 · â c

1

)]
. ←− the proof is given in Exercise 9.14 (9.362)
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Consider a surface curve described by ϕ
(
t1, t2

) = constant. Its geodesic curvature
is then given by

κg = ± 1√
a

[
∂

∂t1
a12∂ϕ/∂t2 − a22∂ϕ/∂t1

Ω̃
←− this is known as the Bonnet formula

for the geodesic curvature, see (9.472)

+ ∂

∂t2
a12∂ϕ/∂t1 − a11∂ϕ/∂t2

Ω̃

]
, ←− the proof is given in Exercise 9.14

(9.363)

where

Ω̃ :=
√

a11

(
∂ϕ

∂t2

)2

− 2a12
∂ϕ

∂t1
∂ϕ

∂t2
+ a22

(
∂ϕ

∂t1

)2

. (9.364)

Let C be a naturally represented regular curve, x = (x (s) , y (s) , z (s)), embedded
in an implicit surface S of the form

f (x, y, z) = 0 , (9.365)

with

x′ = x ′ êx + y′ êy + z′ êz where •′ = d•
ds

, (9.366a)

x′′ = x ′′ êx + y′′ êy + z′′ êz where •′′ = d2•
ds2

, (9.366b)

n̂ = grad f

|grad f | = fx êx + f ŷey + fẑez√
f 2x + f 2y + f 2z

where f• = ∂ f

∂• . (9.366c)

Here,
{
êx , êy, êz

}
denotes the standard basis. Guided by (9.359), the geodesic cur-

vature of C then renders

κg =
(
y′z′′ − z′y′′) fx + (

z′x ′′ − x ′z′′) fy + (
x ′y′′ − y′x ′′) fz

√
f 2x + f 2y + f 2z

. (9.367)

9.7.1.5 Geodesic Curvature of Coordinate Curves

On a t1-curve, one will have dt1 �= 0 and dt2 = 0. Consequently, â c
1 = (

dt1/ds
)
a1.

And this implies that
dt1

ds
= 1√

Er
. (9.368)

Denoting by κ
g
t1 the geodesic curvature of t

1-curve, one may use the the expression
(9.360) to arrive at
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κ
g
t1 = 1

2E3/2
r

√
ErGr − F2

r

[
−Fr

∂Er

∂t1
+ 2Er

∂Fr
∂t1

− Er
∂Er

∂t2

]
. (9.369)

In a similar manner, consider a t2-curve for which dt1 = 0 and dt2 �= 0. As a result,

dt2

ds
= 1√

Gr
. (9.370)

The geodesic curvature of t1 = constant, denoted by κ
g
t2 , then takes the form

κ
g
t2 = −1

2G3/2
r

√
ErGr − F2

r

[
2Gr

∂Fr
∂t2

− Gr
∂Gr

∂t1
− Fr

∂Gr

∂t2

]
. (9.371)

LetSbe a regular surface described by anorthogonal parametrizationx = x̂ s
(
t1, t2

)
.

This means that the coordinate curves of that surface intersect orthogonally. It can be
shown that such a parametrization does exist at all points of a regular surface. And
this holds true if and only if thematrix

[
aαβ

]
is diagonal, i.e. a12 = a1 · a2 = Fr = 0.

In this case, the geodesic curvatures (9.369) and (9.371) reduce to

κ̂
g
t1 = −1

2Er
√
Gr

∂Er

∂t2
= −1√

Gr

∂

∂t2

(
log

√
Er

)
, (9.372a)

κ̂
g
t2 = 1

2Gr
√
Er

∂Gr

∂t1
= 1√

Er

∂

∂t1

(
log

√
Gr

)
. (9.372b)

In the following, the aim is to characterize the geodesic curvature of a curve for the
case in which the coordinate curves of its two-dimensional embedding space are
orthogonal.

Let S be a regular surface with an orthogonal parametrization embedding a regular
curve C. Further, let the everywhere nonzero unit tangent vector to that curve, â c

1 ,
makes an angle θ

(
t1 (s) , t2 (s)

)
with a1. One then has

â c
1 = dt1

ds
a1 + dt2

ds
a2 = cos θ

a1
|a1| + sin θ

a2
|a2|

note that |a1| = √
Er , |a2| = √

Gr and a1 · â c1 = √
Er cos θ , a2 · â c1 = √

Gr sin θ

. (9.373)

Consequently,

dθ

ds
= dt1

ds

∂θ

∂t1
+ dt2

ds

∂θ

∂t2
= cos θ√

Er

∂θ

∂t1
+ sin θ√

Gr

∂θ

∂t2
. (9.374)
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These considerations help establish the well-known relation

κg = κ̂
g
t1 cos θ + κ̂

g
t2 sin θ + dθ

ds
, ←− this is known as the Liouville formula (9.375)

because

κg by using===========
(9.362) and (9.373)

1√
ErGr

[
∂

∂t1

(√
Gr sin θ

)
− ∂

∂t2

(√
Er cos θ

)]

by using=========
the product rule

sin θ

2Gr
√
Er

∂Gr

∂t1
+ cos θ√

Er

∂θ

∂t1
− cos θ

2Er
√
Gr

∂Er

∂t2
+ sin θ√

Gr

∂θ

∂t2

by using=================
(9.372a), (9.372b) and (9.374)

κ̂
g
t2 sin θ + dθ

ds
+ κ̂

g
t1 cos θ .

9.7.2 Geodesics

A curve with identically vanishing geodesic curvature at all points over its whole
domain of definition is called a geodesic. As a result, every normal section curve is
a geodesic. The great circle (or the largest circle) on the surface of a sphere is also a
geodesic curve.

9.7.2.1 Geodesic Equations by Geodesic Curvature Vector

To provide differential equations governing a geodesic curve, consider a regular
surface curve defined by (9.336), i.e. x = x̂ s

(
t1 (s) , t2 (s)

) = x̂ c (s). Recall from
(9.337)3 that its velocity vector, â c

1 = dx/ds, at a given point completely lies in
the tangent plane of its two-dimensional embedding space. But, guided by (9.340)-
(9.342), its acceleration vector, kc = d2x/ds2, has both tangential and normal parts.
Such a curve is called a geodesic if its acceleration vector is completely in the normal
direction, i.e. kg = 0 (technically, this is referred to as a pregeodesic and a geodesic
curve is one whose parameter is a constant times arc length). This results in the
following second-order nonlinear ordinary differential equations

d2tγ

ds2
+ dtα

ds
�

γ

αβ

dtβ

ds
= 0 , (9.376)

called the geodesic equations. The geodesic equations can also be derived by using
the powerful tool of covariant differentiation. This is described in the following. ❚
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9.7.2.2 Geodesic Equations Using Covariant Derivative

Let C be a naturally represented regular surface curve with everywhere nonzero unit
tangent vector â c

1 . This curve is called a geodesic if

â c
1

∣∣
â c
1

= 0 , (9.377)

because

0
by using===========

(9.337) and (9.377)

(
dtα

ds
aα

)∣∣∣
∣(

dtβ

ds aβ

)

by using======
(9.137b)

(
dtα

ds
aα

)∣∣∣
∣
aβ

dtβ

ds

by using======
(9.137c)

(
Daβ

dtα

ds

)
dtβ

ds
aα + dtα

ds

dtβ

ds

(
aα|aβ

)

by using===========
(9.130) and (9.131)

(
∂

∂tβ
dtα

ds

)
dtβ

ds
aα + dtα

ds

dtβ

ds
�

γ

αβaγ

by applying the chain rule==================
and renaming the dummy indices

(
d2tγ

ds2
+ dtα

ds
�

γ

αβ

dtβ

ds

)
aγ ,

noting that the surface basis vectors a1 and a2 are linearly independent. A curve
constructed by parallel transporting a unit vector along itself on a curved surface is
thus considered a geodesic. ❚

9.7.2.3 Geodesic Equations by Calculus of Variations

Finding the shortest distance between two points is a simple problem within the
context of calculus of variations (see Washizu [25], Oden and Reddy [26] and Jost
and Li-Jost [27]). In what follows, the goal is to obtain the geodesic equations using
variational principles for completeness.

Let C be a regular surface curve parametrized by tα (t) where t ia any general
parameter (not necessarily the arc length). Further, let P and Q be two points on that
curve corresponding to t = a and t = b, respectively. Consider now a curve C̃ in a
neighborhood of C joining P and Q. It is given by

t̃ α (t, h) = tα (t) + hηα (t) such that ηα (a) = ηα (b) = 0 , (9.378)

where ηα denotes an arbitrary differentiable function and h ∈ (−ε, ε) where ε > 0
is sufficiently small. This defines a set of varied curves and hηα presents the (first)
variation of tα which is usually denoted by δtα . Indeed, it is known as an admissible
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variation because it satisfies the end conditions δtα (a) = δtα (b) = 0.15 Note that,
trivially,

δtα = h lim
h→0

t̃ α − tα

h
. (9.379)

The goal is now to minimize

s =
∫ b

a
�

(
tα, ṫα

)
dt , (9.380)

subject to the conditions

tα (a) = tαa , tα (b) = tαb , (9.381)

where

15 Thenewdifferential operator δ is a linear operatorwhich obeys the standard rules of differentiation
such as the product and quotient rules. There is an analogy between the variational operator δ of
variational calculus and the differential operator d of differential calculus. To demonstrate this,
consider a function F of an independent variable x and two dependent variables y(x) and ẏ(x) :=
dy(x)/dx , i.e.

F = F̂ (x, y, ẏ) whose total differential is dF = ∂ F̂

∂x
dx + ∂ F̂

∂y
dy + ∂ F̂

∂ ẏ
d ẏ .

As can be seen, d operates on both dependent and independent variables. But, δ only acts on the
dependent variables y and ẏ because the independent variable x remains constant when y is varied
to y + δy. Thus,

δF = ∂ F̂

∂y
δy + ∂ F̂

∂ ẏ
δ ẏ .

It is important to note that δ and d/dx commute:

δ

(
dy

dx

)
= d

dx
(δy) .

Moreover, one can interchange δ with
∫
as follows:

δ

∫ b

a
F dx =

∫ b

a
δF dx .

Hence,

δ

∫ b

a
F dx =

∫ b

a

[
∂ F̂

∂y
δy + ∂ F̂

∂ ẏ
δ ẏ

]

dx =
∫ b

a

[
∂ F̂

∂y
δy + ∂ F̂

∂ ẏ

d

dx
(δy)

]

dx

=
∫ b

a

[
∂ F̂

∂y
− d

dx

∂ F̂

∂ ẏ

]

δy dx +
[

∂ F̂

∂ ẏ
δy

]b

a

.

Note that the boundary term vanishes if δy is an admissible function.
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�
(
tα, ṫα

) =
√
ṫαaαβ ṫβ = ṡ , •̇ := d•

dt
, ←− see (9.242) and (9.285) (9.382)

and tαa , tαb are given constants. Notice that the relation (9.380) is an integral of a
function of functions. This is called a functional which here represents the length of
tα from a to b. Accordingly, the length of t̃ α is given by

s̃ (h) =
∫ b

a
�

(
tα + hηα, ṫα + hη̇α

)
dt . (9.383)

By Taylor expansion,

s̃ (h) =
∫ b

a
�

(
tα, ṫα

)
dt + h

∫ b

a

(
∂�

∂tα
ηα + ∂�

∂ ṫα
η̇α

)
dt + o (h) . (9.384)

By carrying out the integration by parts,

s̃ (h) = s + h
∫ b

a

(
∂�

∂tα
− d

dt

∂�

∂ ṫα

)
ηα dt +

[
∂�

∂ ṫα
(hηα)

]b

a︸ ︷︷ ︸
= 0, according to (9.378)

+o (h) . (9.385)

Consequently, the first variation of s takes the form

δs = h lim
h→0

s̃ − s

h
=

∫ b

a

(
∂�

∂tα
− d

dt

∂�

∂ ṫα

)
δtα dt . (9.386)

The necessary condition for s to have an extremum is that δs = 0. By the useful
fundamental lemma of variational calculus,16 one can arrive at the following set of
equations,

∂�

∂tρ
− d

dt

∂�

∂ ṫρ
= 0 , (9.387)

16 Consider the integral statement

∫ b

a
G (x, y, ẏ) δy dx = 0 ,

where δy (x) = hη (x). Here, the arbitrary differentiable function η (x) satisfies η (a) = η (b) = 0
and h ∈ (−ε, ε) where the positive number ε is infinitesimal. The Euler equation of this integral
expression is G = 0. This result relies on simple arguments discussed below.

Consider the fact that η is an arbitrary function. This allows one to choose η = G. Then,

∫ b

a
G2 dx = 0 .

Notice that the integral of a positive function is always positive. And this implies the required result
G = 0. This is known as the fundamental lemma of calculus of variations.
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called Euler equations. To proceed, one needs to have

∂�

∂tρ
= 1

2�

∂aαβ

∂tρ
ṫα ṫβ , (9.388a)

∂�

∂ ṫρ
= aαβ

2�

[
∂ ṫα

∂ ṫρ
ṫβ + ṫα

∂ ṫβ

∂ ṫρ

]
= aρβ ṫβ + aαρ ṫα

2�
= aρβ ṫβ

�
, (9.388b)

and, consequently,

d

dt

∂�

∂ ṫρ
= − 1

�2

d�

dt
aρβ ṫ

β + 1

�

[
∂aρβ

∂tα
ṫα ṫβ + aρβ ẗ

β

]
. (9.389)

It follows that

∂�

∂tρ
− d

dt

∂�

∂ ṫρ
= − 1

2�

[
∂aρβ

∂tα
+ ∂aρβ

∂tα
− ∂aαβ

∂tρ

]
ṫα ṫβ

recall from (9.113) that
∂aρβ
∂tα − ∂aαβ

∂tρ = 2�αβρ − ∂aρα

∂tβ

+ 1

�2

d�

dt
aρβ ṫ

β − 1

�
aρβ ẗ

β

= − 1

2�

[
∂aρβ

∂tα
+ 2�αβρ − ∂aρα

∂tβ

]
ṫα ṫβ

︸ ︷︷ ︸
= − 1

�
�αβρ ṫ

α ṫβ , owing to
∂aρβ
∂tα ṫα ṫβ = ∂aρα

∂tβ
ṫβ ṫα

+ 1

�2

d�

dt
aρβ ṫ

β − 1

�
aρβ ẗ

β .

Thus, one can arrive at

aρβ ẗ
β + �αβρ ṫ

α ṫβ = 1

�

d�

dt
aρβ ṫ

β

or aγρaρβ ẗ
β + �αβρa

ργ ṫα ṫβ = 1
�

d�
dt a

γρaρβ ṫ
β

,

or, using (9.26)2 and (9.111),

d2tγ

dt2
+ dtα

dt
�

γ

αβ

dtβ

dt
= 1

�

d�

dt

dtγ

dt
. (9.390)

At the end, suppose that t = s. Then, � = 1 and consequently d�/dt = 0. The
geodesic equations (9.376) can thus be achieved. And this means that finding the
straightest possible path on a curved space is eventually a variational problem.

As a simple example, consider a plane defined by

x̂ s (t1, t2
) = p + t1u + t2v , (9.391)

where p presents a fixed point on this flat surface and u, v are constant vectors.
The tangent vectors are simply a1 = u, a2 = v and consequently all Christoffel
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symbols identically vanish. The general solution of the geodesic equations thus ren-
ders t1 = a0 + a s, t2 = b0 + b s (where a0, b0 (a, b) basically specify the initial
position (velocity) of tα (s)). Finally, one ends up with the geodesic curve

x̂ c (s) = (p + a0u + b0v) + s (au + bv) , (9.392)

which is nothing but the equation of a straight line. As a result, one can always say
that the shortest path between two points on a flat surface is a geodesic. But, this does
not hold true for a curved surface. As an example, consider two not diametrically
opposed points on a great circle of a sphere which provides two curves on that circle.
It is well-known that both these curves are geodesics (even the longer one). In this
regard, a geodesic may best be described as the straightest possible path between
two points on a curved space.

9.7.2.4 Geodesic Equations for Implicit Surfaces

Let S be an implicit surface of the form (9.365), i.e. f (x, y, z) = 0. Further, let C be
a regular curve described by x = (x (s) , y (s) , z (s)) on that surface whose geodesic
curvature is given in (9.367). In this case, there are three differential equations. By
setting κg = 0, the first equation renders

(
y′z′′ − z′y′′) fx + (

z′x ′′ − x ′z′′) fy + (
x ′y′′ − y′x ′′) fz = 0 . (9.393)

Consider the fact that the tangent vector x′ and the curvature vector x′′ of a geodesic
curve, according to (9.366a)-(9.366b), should be perpendicular to each other. The
second equation thus takes the form

x ′x ′′ + y′y′′ + z′z′′ = 0 . (9.394)

The third equation is d2 f/ds2 = 0, i.e.

fxx x
′x ′+ fyy y

′y′ + fzz z
′z′ + 2 fxy x

′y′ + 2 fxz x
′z′ + 2 fyz y

′z′

+ fx x
′′ + fy y

′′ + fz z
′′ = 0 where f•◦ = ∂2 f

∂ • ∂◦ . (9.395)

One can solve the above coupled system of three equations in
(
x ′′, y′′, z′′). Let

Ω̄1 = fxx x
′x ′ + fyy y

′y′ + fzz z
′z′ + 2 fxy x

′y′ + 2 fxz x
′z′ + 2 fyz y

′z′ , (9.396a)

Ω̄2 = (
x ′ fy − y′ fx

)2 + (
x ′ fz − z′ fx

)2 + (
z′ fy − y′ fz

)2 �= 0 . (9.396b)

Then,

x ′′ = Ω̄1

Ω̄2

[(
x ′ fy − y′ fx

)
y′ + (

x ′ fz − z′ fx
)
z′] , (9.397a)
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y′′ = Ω̄1

Ω̄2

[(
y′ fx − x ′ fy

)
x ′ + (

y′ fz − z′ fy
)
z′] , (9.397b)

z′′ = Ω̄1

Ω̄2

[(
z′ fx − x ′ fz

)
x ′ + (

z′ fy − y′ fz
)
y′] . (9.397c)

It is usually difficult to explicitly solve the geodesic equations. However, there are
some cases where the problem can be simplified to only computing integrals. This
is described in the following.

9.7.2.5 Geodesics on Clairaut Surfaces

Let S be a regular surface and consider an orthogonal parametrization x : U ⊂ R2 →
E 3
p on that surface for which

Fr = 0 ,
∂Er

∂t2
= 0 ,

∂Gr

∂t2
= 0 . (9.398)

This is called t1−Clairaut parametrization. In a similar fashion, a t2−Clairaut patch
is a patch x : U ⊂ R2 → E 3

p on S whose metric coefficients satisfy

Fr = 0 ,
∂Er

∂t1
= 0 ,

∂Gr

∂t1
= 0 . (9.399)

Attention is now focused on this case for which the Christoffel symbols �α
βγ , given

in (9.235a)-(9.235c), render

[
�1
11

�2
11

]
= 1

2Gr

[
0

−∂Er/∂t2

]
,

[
�1
12

�2
12

]
= 1

2Er

[
∂Er/∂t2

0

]
, (9.400a)

[
�1
22

�2
22

]
= 1

2Gr

[
0

∂Gr/∂t2

]
. (9.400b)

Consequently, the geodesic equations are reduced to

d2t1

ds2
+ 1

Er

∂Er

∂t2
dt1

ds

dt2

ds
= 0 , (9.401a)

d2t2

ds2
− 1

2Gr

∂Er

∂t2
dt1

ds

dt1

ds
+ 1

2Gr

∂Gr

∂t2
dt2

ds

dt2

ds
= 0 . (9.401b)

Let x : U ⊂ R2 → E 3
p be a t2-Clairaut patch on a surface S. Introducing (9.399)3 into

(9.372b)1 then yields κ
g
t2 = 0. And κ

g
t1 in (9.372a)1 vanishes if and only if ∂Er/∂t2

vanishes. This leads to the following lemma (Gray et al. [5]).
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All t2-curves of a t2-Clairaut patch on a surface S are geodesics and a
t1-curve on that patch is a geodesic if and only if ∂Er/∂t2 vanishes along
that curve.

Lemma A

�

In what follows, the aim is to introduce an important theorem due to Clairaut. ➫

Theorem B. Let x : U ⊂ R2 → E 3
p be a t2-Clairaut patch embedding a unit-speed

curve C described by the parametrization x
(
t1 (s) , t2 (s)

) = x̂ c (s). Suppose that C
is a geodesic on that patch and let θ be the angle between dx̂ c/ds and ∂x/∂t1. Then,

√
Er cos θ := csla , ←− this is known as theClairaut relation (9.402)

is constant along C. This constant, csla, is known as the slant of C. Notice that C
cannot leave the domain where Er ≥ c2sla. Moreover, csla along with Er determines
the angle θ .

Proof. By (9.399)2 and (9.401a), one will have

d

ds

(
Er

dt1

ds

)
=

(
0 + ∂Er

∂t2
dt2

ds

)
dt1

ds
+ Er

d2t1

ds2
= 0 .

As a result, there exists a constant csla such that

Er
dt1

ds
= csla . (9.403)

Finally,

cos θ =
∣∣∣∣
∂x
∂t1

∣∣∣∣

−1 dx̂ c

ds
· ∂x
∂t1

︸ ︷︷ ︸
= 1√

a1·a1

(
dt1
ds a1 + dt2

ds a2

)
· a1

= Er√
Er

dt1

ds
︸ ︷︷ ︸
= √

Er dt
1

ds

or
√
Er cos θ = csla . ➫

The constant csla helps characterize the derivative of the Gaussian coordinates with
respect to the arc length parameter. This is described below. ➛

Lemma B. Let x : U ⊂ R2 → E 3
p be a t2-Clairaut patch embedding a unit-speed

curve C parametrically defined by x
(
t1 (s) , t2 (s)

) = x̂ c (s). Suppose that C is a
geodesic on that patch. Then,

dt1

ds
= csla

Er
,

dt2

ds
= ±

√
Er − c2sla
ErGr

. (9.404)

Conversely, if these relations hold, then C is a geodesic for either dt2/ds = 0 or
dt2/ds �= 0.
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Proof. The relation (9.404)1 is trivially obtained from (9.403). To verify (9.404)2,
consider dx̂ c/ds = aαdtα/ds with

∣∣dx̂ c/ds
∣∣ = 1 and Fr = 0. Then,

dtα

ds
aα · dt

β

ds
aβ = 1 gives Er

dt1

ds

dt1

ds
+ Gr

dt2

ds

dt2

ds
= 1 ,

or
c2sla
Er

+ Gr
dt2

ds

dt2

ds
= 1 or

(
dt2

ds

)2

= Er − c2sla
ErGr

.

To prove the converse, suppose that the relation (9.404)1 holds. Then, the geodesic
equation (9.401a) is satisfied because

from
d

ds

(
dt1

ds
− csla

Er

)
= 0 one obtains

d2t1

ds2
+ csla

E2
r

∂Er

∂t2
dt2

ds
= 0

or d2 t1

ds2
+ 1

Er
∂Er
∂t2

dt1
ds

dt2
ds = 0

.

It only remains to show that (9.404)1−2 imply (9.401b). Consider

Er
dt1

ds

dt1

ds
+ Gr

dt2

ds

dt2

ds
= 1 whose deriv-

ative, that is,
d

ds

[

Er

(
dt1

ds

)2

+ Gr

(
dt2

ds

)2
]

= 0 ,

yields

∂Er

∂t2
dt2

ds

(
dt1

ds

)2

+ 2Er
dt1

ds

d2t1

ds2
+ ∂Gr

∂t2

(
dt2

ds

)3

+ 2Gr
dt2

ds

d2t2

ds2
= 0

or dt2
ds

[
∂Er
∂t2

(
dt1
ds

)2
− 2 ∂Er

∂t2

(
dt1
ds

)2
+ ∂Gr

∂t2

(
dt2
ds

)2
+ 2Gr

d2 t2

ds2

]

= 0

.

If dt2/ds �= 0, the relation (9.401b) is then satisfied. And if dt2/ds = 0, the equation
(9.404)2 implies that Er is a constant. As a result, (9.401b) is again satisfied. And
this completes the proof. ➛

The slant of a geodesic curve embedded in a t2-Clairaut patch also helps characterize
dt1/dt2 when that curve is defined by t1 = t1

(
t2
)
. This is described in the following.

Proposition. Let x : U ⊂ R2 → E 3
p be a t2-Clairaut patch embedding a curve C of

the form
ααα
(
t2
) = x

(
t1

(
t2
)
, t2

)
. (9.405)

This curve is then a geodesic if and only if
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dt1

dt2
= ±csla

√
Gr

Er
(
Er − c2sla

) . (9.406)

Proof. In principle, there exists a unit-speed geodesic curve, βββ, which can reparam-
eterize ααα. This is given by

βββ(s) = ααα
(
t2(s)

) = x
(
t1

(
t2(s)

)
, t2(s)

)
.

Then, using (9.404)1−2 along with the chain rule of differentiation,

dt1

ds
= dt1

dt2
dt2

ds
gives

dt1

dt2
=

csla
Er

±
√

Er−c2sla
ErGr

= ±csla

√
Gr

Er
(
Er − c2sla

) .

Conversely, suppose that the relation (9.406) holds. One can then define

dt1

ds
= ±csla

√
Gr

Er
(
Er − c2sla

)
dt2

ds
and Er

dt1

ds

dt1

ds
+ Gr

dt2

ds

dt2

ds
= 1 ,

which simply imply (9.404)1−2. Thus, βββ is a unit-speed geodesic curve. And this
completes the proof.

9.7.2.6 Geodesics on Surfaces of Revolution

Consider a surface of revolution parametrically described by

x1 = f
(
t2
)
cos t1 , x2 = f

(
t2
)
sin t1 , x3 = g

(
t2
)

these coordinates satisfy the implicit relation
(
x1/ f

(
t2
))2 +

(
x2/ f

(
t2
))2 = x3/g

(
t2
)

, (9.407)

where 0 ≤ t1 < 2π and a < t2 < b. This is illustrated in Fig. 9.26. A t1-curve
on this regular surface S is known as a parallel (note that all parallels on S are
circles). And a t2-curve on S is called a meridian. The rotation of the parametric
curve t2 → (

f
(
t2
)
, g

(
t2
))

in the x1x3-plane about the x3-axis basically generates
S. The function f

(
t2
)
can be viewed as the radius of a parallel. Thus, it makes sense

to assume that such a function is positive. And this makes sure that the meridians do
not intersect their axis of rotation.

The parametric equations (9.407) represent a t2-Clairaut parametrization because

a1 = − f
(
t2
)
sin t1 ê1 + f

(
t2
)
cos t1 ê2 , (9.408a)

a2 = d f

dt2
cos t1 ê1 + d f

dt2
sin t1 ê2 + dg

dt2
ê3 , (9.408b)
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Fig. 9.26 Surface of revolution

and, hence,

Er = a1 · a1 = [
f
(
t2
)]2 ⇒ ∂Er

∂t1
= 0 , (9.409a)

Fr = a1 · a2 = 0 , (9.409b)

Gr = a2 · a2 =
[
d f

(
t2
)

dt2

]2

+
[
dg

(
t2
)

dt2

]2

⇒ ∂Gr

∂t1
= 0 . (9.409c)

Thus, according to Lemma A on Sect. 9.7.2.5, any meridian on S is a geodesic and a
parallel on that surface is a geodesic if and only if d f/dt2 = 0. Guided by (9.406),
the following integral

t1 = ±
∫

csla

f
√

f 2 − c2sla

√[
d f

dt2

]2
+

[
dg

dt2

]2
dt2 + constant , (9.410)

should be computed to find the other geodesics.
The above considerations help infer that the prime meridian and equator of a

sphere are geodesics. They are eventually the great circles on that surface. And by
spherical symmetry, any great circle on sphere is also a geodesic.

In what follows, the goal is to find the geodesics on regular surfaces generalizing
the surfaces of revolution. ✯
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9.7.2.7 Geodesics on Liouville Surfaces

Consider a regular parametrized surface x = x̂ s
(
t1, t2

)
with the following coeffi-

cients of the first fundamental form

Er = Gr = U
(
t1
) + V

(
t2
)

, Fr = 0 , ←− see (9.797) (9.411)

where U and V are smooth functions of only one variable. Such a surface with the
quadratic length of the line element

ds2 = (U + V )
(
dt1dt1 + dt2dt2

)

or 1
U+V = dt1

ds
dt1
ds + dt2

ds
dt2
ds

, (9.412)

is called the Liouville surface. Notice that the orthogonal parametrization (9.411)
delivers the Clairaut parametrization (9.398) ((9.399)) when V (U ) vanishes.

For the Liouville surface, the mean curvature (9.257)2 and the Gaussian curvature
(9.497a)2 become (see Exercise 9.8)

H = Δx · n̂
2 (U + V )

where Δx = ∂2x
∂tα∂tα

= ∂aα

∂tα
, (9.413a)

K = −Δ log (U + V )

2 (U + V )
where Δ log (U + V ) =∂2 log (U + V )

∂tα∂tα
.

(9.413b)

And the geodesic equations (9.376) are reduced to

d2t1

ds2
+ dU/dt1

2 (U + V )

dt1

ds

dt1

ds
+ dV/dt2

U + V

dt1

ds

dt2

ds
− dU/dt1

2 (U + V )

dt2

ds

dt2

ds
= 0 ,

(9.414a)

d2t2

ds2
− dV/dt2

2 (U + V )

dt1

ds

dt1

ds
+ dU/dt1

U + V

dt1

ds

dt2

ds
+ dV/dt2

2 (U + V )

dt2

ds

dt2

ds
= 0 .

(9.414b)

Multiplying (9.414a) with −2Vdt1/ds and (9.414b) with +2Udt2/ds and then
adding the resulting equations will lead to

d

ds

[
U (U + V )

dt2

ds

dt2

ds
− V (U + V )

dt1

ds

dt1

ds

]
= 0 . (9.415)

Consequently,

U
dt2

ds

dt2

ds
− V

dt1

ds

dt1

ds
= c̄1

U + V
, (9.416)
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where c̄1 is a constant. From (9.412) and (9.416), it follows that

1

V + c̄1

dt2

ds

dt2

ds
= 1

U − c̄1

dt1

ds

dt1

ds
. (9.417)

It is then easy to see that

∫
dt2√
V + c̄1

= ±
∫

dt1√
U − c̄1

+ c̄2 . (9.418)

where c̄2 presents another constant. The constants c̄1 and c̄2 are determined from the
initial conditions. ✯

At the end, consider an orthogonal parametrization for a regular surface S, i.e. at
each point on that surface Fr = 0 holds. Using (9.235a)-(9.235c) and (9.376), the
geodesic equations then render

d2t1

ds2
+ 1

2Er

∂Er

∂t1
dt1

ds

dt1

ds
+ 1

Er

∂Er

∂t2
dt1

ds

dt2

ds
− 1

2Er

∂Gr

∂t1
dt2

ds

dt2

ds
= 0 , (9.419a)

d2t2

ds2
− 1

2Gr

∂Er

∂t2
dt1

ds

dt1

ds
+ 1

Gr

∂Gr

∂t1
dt1

ds

dt2

ds
+ 1

2Gr

∂Gr

∂t2
dt2

ds

dt2

ds
= 0 . (9.419b)

These two second-order differential equations can be rephrased as a system of four
first-order differential equations. To do so, let

y1 = t1 , y2 = dt1

ds
, y3 = t2 , y4 = dt2

ds
, (9.420)

and, consequently,

y′
1 = y2 , y′

2 = d2t1

ds2
, y′

3 = y4 , y′
4 = d2t2

ds2
. (9.421)

One then arrives at

y′
1 = y2 , (9.422a)

y′
2 = − 1

2Er

∂Er

∂t1
y22 − 1

Er

∂Er

∂t2
y2y4 + 1

2Er

∂Gr

∂t1
y24 , (9.422b)

y′
3 = y4 , (9.422c)

y′
4 = 1

2Gr

∂Er

∂t2
y22 − 1

Gr

∂Gr

∂t1
y2y4 − 1

2Gr

∂Gr

∂t2
y24 . (9.422d)



9.7 Curvature 537

Fig. 9.27 Geodesics on torus and one-sheeted hyperboloid

This system of nonlinear equations can be solved numerically to deliver the geodesic
curves. The results for a torus and hyperboloid of one sheet are plotted in Fig. 9.27
(see Exercise 9.15).

9.7.3 Principal Curvatures

The principal curvatures of a surface at a given point are themaximum andminimum
values of the normal curvatures of embedded curves passing through that point.
They are a measure of the local shape of the surface under consideration in the
neighborhood of a point. The goal here is thus to obtain the extremum of the normal
curvature and find the corresponding principal directions. At the end, a well-known
relation, called Euler formula, will be introduced.

A question that naturally arises is in which directions the normal curvature attains
its largest and smallest possible values. And this basically requires solving an eigen-
value problem. To begin with, one needs to rewrite (9.270)2 as

(
bαβ − κnaαβ

)
dtαdtβ = 0 . (9.423)

Knowing that the necessary condition for κn to be extremal is ∂κn/∂tγ = 0, one can
then arrive at

(
bαγ − κnaαγ

)
dtα = 0 or, by index juggling,

(
b . β

α − κnδβ
α

)
dtα = 0 . (9.424)

This shows that the greatest and least possible values of the normal curvature are the
eigenvalues of the surface mixed curvature tensor. Recall from (9.103)1 and (9.104)1
that the mean and Gaussian curvatures were the principal scalar invariants of this
symmetric second-order tensor. Denoting by κ1 and κ2 the maximum and minimum
values of κn, respectively, one can easily write

H = 1

2
(κ1 + κ2) , ←− this is two-dimensional version of (4.14a) (9.425a)

K = κ1κ2 , ←− this is two-dimensional version of (4.14c) (9.425b)
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and, accordingly,

κ1 = H +
√
H

2 − K , (9.426a)

κ2 = H −
√
H

2 − K . (9.426b)

Hint: It is worthwhile to point out that by changing the positive sense of surface

according to n̂ = −n̂, one can deduce that IIr = −IIr and consequently b
. β

α =
− b . β

α . This leads to κ1 = −κ1 and κ2 = −κ2. As a result, H = −H and K = +K in
accordance with (9.259).

In the following, it will be shown that the eigenvalues of the surface mixed cur-
vature tensor can only be real numbers. ✦

Using (9.232)1 and (9.254), the equation (9.424)1 can be written in the convenient
form [

er − κnEr fr − κnFr
fr − κnFr gr − κnGr

] [
dt1

dt2

]
=

[
0
0

]
. (9.427)

This renders a homogeneous system of linear equations whose nontrivial solution is
implied if and only if

det

[
er − κnEr fr − κnFr
fr − κnFr gr − κnGr

]
= 0 . (9.428)

Expanding this relation yields

(
ErGr − F2

r

)
κn 2 − (grEr − 2frFr + erGr) κn + (

ergr − f2r
) = 0 . (9.429)

Knowing that
(
ErGr − F2

r

)
> 0 (and also Er,Gr > 0) for a regular surface, the dis-

criminant of the above quadratic equation in κn according to

Δr = 4E−2
r

(
ErGr − F2

r

)
(frEr − erFr)

2

+ [
grEr − erGr − 2E−1

r Fr (frEr − erFr)
]2 ≥ 0 , (9.430)

reveals the fact that the characteristic values of the mixed curvature tensor belong to
the set R of all real numbers. ✦

ApointwhereΔr = 0, is called umbilic. This special point on the surface is locally
spherical. And this means that the amount of bending is identical in all directions. A
well-known example in this context regards sphere whose every point is umbilic. At
umbilical points, there are double roots, i.e. κ1 = κ2. From (9.430), it then follows
that

frEr = erFr , grEr = erGr . (9.431)
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These equations hold true if and only if there exists a proportionality constant κ̄ such
that

fr = κ̄ Fr , er = κ̄ Er , gr = κ̄ Gr . (9.432)

And these expressions immediately imply the extra condition

grFr = frGr . (9.433)

A point where Δr > 0, is then referred to as non-umbilic. At non-umbilical points,
there are two distinct roots. Accordingly, there exists two principal directions which,
will be shown that they, are orthogonal. But at umbilical points, every direction is a
principal direction.

Let λ̂ = dt2/dt1. Further, let λ̂1 (λ̂2) be the principal direction associated with the
principal curvature κ1 (κ2). Using (9.427), these principal directions are then given
by

λ̂1 = −er − κ1Er

fr − κ1Fr
, λ̂2 = −er − κ2Er

fr − κ2Fr
, (9.434)

or

λ̂1 = − fr − κ1Fr
gr − κ1Gr

, λ̂2 = − fr − κ2Fr
gr − κ2Gr

. (9.435)

The goal here is to show that any direction at umbilical points represent a principal
direction. It will also be verified that the principal directions at non-umbilical points
are orthogonal. ❀

The extreme values of κn in (9.354) are obtained by computing dκn/dλ̂ = 0. This
leads to

[
Er + 2Frλ̂ + Grλ̂

2
] (

fr + grλ̂
)

−
[
er + 2frλ̂ + grλ̂

2
] (

Fr + Grλ̂
)

= 0

or
[(

Er + Fr λ̂
)

+ λ̂
(
Fr + Gr λ̂

)] (
fr + gr λ̂

)
−

[(
er + fr λ̂

)
+ λ̂

(
fr + gr λ̂

)] (
Fr + Gr λ̂

)
= 0

or
(
Er + Fr λ̂

) (
fr + gr λ̂

)
=

(
er + fr λ̂

) (
Fr + Gr λ̂

)

.

Thus,

κn = er + 2frλ̂ + grλ̂2

Er + 2Frλ̂ + Grλ̂2
= fr + grλ̂

Fr + Grλ̂
= er + frλ̂

Er + Frλ̂
. (9.436)

Notice that one can simply use (9.436)2−3 to arrive at (9.427). These relations can
also help provide the quadratic equation

(grFr − frGr) λ̂2 + (grEr − erGr) λ̂ + (frEr − erFr) = 0 , (9.437)

whose discriminant is identical to (9.430). This can also be represented by
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det

⎡

⎣
λ̂2 −λ̂ 1
Er Fr Gr

er fr gr

⎤

⎦ = 0 . (9.438)

Consider an umbilical point at which the expressions (9.431)1−2 and (9.433) hold
true. One can then deduce that any possible direction is a principal direction.

Consider now a non-umbilical point at which κ1 �= κ2 and λ̂1 �= λ̂2. The sum and
product of the roots of (9.437) then render

λ̂1 + λ̂2 = −grEr − erGr

grFr − frGr
, λ̂1λ̂2 = frEr − erFr

grFr − frGr
. (9.439)

They finally satisfy

Er + Fr
(
λ̂1 + λ̂2

)
+ Gr

(
λ̂1λ̂2

)
= 0 . (9.440)

And, guided by (9.246)2, this proves the orthogonality of the principal directions at
non-umbilical points. ❀

9.7.3.1 Classification of Points on Surface

Recall that the coefficients of the second fundamental form helped realize that a
point on the surface can be either elliptic, parabolic, hyperbolic or flat. These points
can also be recognized by means of the principal curvatures. With regard to this, a
surface is said to have

❆ an elliptic point if the principal curvatures are of the same sign. At such points,
the Gaussian curvature is positive.

❆ a parabolic point if one of the principal curvatures vanishes. At such points,
the Gaussian curvature identically becomes zero.

❆ a hyperbolic (or saddle) point if the principal curvatures are of different signs.
At such points, the Gaussian curvature is negative.

❆ a flat (or planar) point if both of the principal curvatures become zero. At such
points, the Gaussian curvature trivially vanishes.

The principal curvatures are important quantities which help characterize the
geometry of a surface near a generic point. This is described below. ★

9.7.3.2 Local Shape of Surface

Let S be a regular surface. To characterize the local shape of S, consider a point P
corresponding to (0, 0) and a sufficiently close point Q corresponding to

(
t1, t2

)
.

Then, second-order (Taylor series) expansion of x̂ s at (0, 0) represents
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Fig. 9.28 Surface local shape

x̂ s
(
0 + t1, 0 + t2

) ≈ x̂ s (0, 0) +
(

∂ x̂ s

∂tα

)∣∣∣
∣
(0,0)

tα +
(

∂2x̂ s

∂tβ∂tα

)∣∣∣
∣
(0,0)

tαtβ

2
.

(9.441)
Guided by (9.10)1 and (9.94), one can further write

x̂ s
(
t1, t2

) − x̂ s (0, 0) ≈ aαt
α +

(
�

γ

αβaγ + bαβ n̂
) tαtβ

2
, (9.442)

where all functions on the right hand side are taken at P . Suppose that P is a non-
umbilical point at which the principal curvatures κ1, κ2 are distinct and the principal
directions ê1, ê2 are orthogonal to each other (note that these are eventually the
eigenpairs of the symmetric tensor b . β

α ). This allows one to consider a Cartesian
coordinate frame represented by the origin x̂ s (0, 0) = o and the basis {̂e1, ê2, n̂}
where n̂ denotes the unit normal field to the surface. This has schematically been
illustrated in Fig. 9.28. In this frame, the position vector of Q relative to the origin
P can be written as

x̂ s (t1, t2
) − o = x1̂e1 + x2̂e2 − x3n̂ . (9.443)

The goal is now to find a functional relationship between the Cartesian components
x1, x2 and x3 through the principal curvatures. Note that

− x3 = [
x̂ s

(
t1, t2

) − o
] · n̂ ≈ bαβ

tαtβ

2
. (9.444)
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Let
η̂1

1 = a1 · ê1
η̂2

1 = a2 · ê1

}

,
η̂1

2 = a1 · ê2
η̂2

2 = a2 · ê2

}

, (9.445)

and

[M ] =
[

η̂1
1 η̂1

2
η̂2

1 η̂2
2

]
. (9.446)

The principal directions ê1 and ê2 can then be expressed in terms of the surface basis
vectors a1 and a2 as

ê1 = η̂1
1a1 + η̂2

1a2 , ê2 = η̂1
2a1 + η̂2

2a2

note that, e.g., ê1 = I ê1 =
(
a1 ⊗ a1 + a2 ⊗ a2 + n̂ ⊗ n̂

)
ê1

or êα = η̂β
αaβ . (9.447)

This helps rewrite êα · êβ = δαβ as

δαβ = η̂σ
αaστ η̂

τ
β = [

η̂1
α η̂2

α

] [ a11 a12
a12 a22

] [
η̂1

β

η̂2
β

]
. (9.448)

The eigenvalue problem (9.424)1 can now be written as

bστ η̂τ
β = κβaστ η̂

τ
β (β = 1, 2; no sum) , (9.449)

or
η̂σ

α bστ η̂τ
β = κβη̂σ

αaστ η̂
τ
β = κβδαβ (β = 1, 2; no sum) , (9.450)

or [
κ1 0
0 κ2

]
= [M ]T

[
b11 b12

b12 b22

]
[M ] . (9.451)

From (9.442), (9.443) and (9.447)1−2, one can now arrive at

[
t1

t2

]
≈ [M ]

[
x1
x2

]
, (9.452)

where the higher-order terms involving the Christoffel symbols have been neglected.
Substituting (9.452) into (9.444)2 leads to

−x3 ≈ 1

2

[
t1 t2

]
[
b11 b12
b12 b22

] [
t1

t2

]
≈ 1

2

[
x1 x2

]
[M ]T

[
b11 b12
b12 b22

]
[M ]

[
x1
x2

]
,

which, by using (9.451), finally yields

x3 ≈ −κ1x21 + κ2x22
2

. (9.453)
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One can thus infer that the local shape of a regular surface S in a neighborhood
of a given point P has a quadratic approximation characterized by the principal
curvatures at that point. ★

Guided by (9.350), one can write

κ1 = − n̂|̂e1 · ê1 , κ2 = − n̂|̂e2 · ê2 , (9.454)

since, for instance,

κ1 = − n̂|(η̂σ
1aσ ) · ê1 = − n̂|σ η̂σ

1 · ê1
= − ∂n̂

∂tσ
η̂σ

1 · ê1 = bστ η̂
σ
1a

τ · η̂
γ

1aγ

= bστ η̂
σ
1δ

τ
γ η̂

γ

1 = bστ η̂
σ
1η̂

τ
1 .

In the following, the goal is to express the second fundamental form in the principal
directions. This leads to a well-known relation due to Euler [28].

9.7.3.3 Euler Formula

Theorem C (Euler). Let C be a naturally represented regular surface curve whose
nowhere vanishing unit tangent vector at a given point P is denoted by â c

1 . Suppose
that P is a non-umbilical point at which the principal curvatures κ1, κ2 are distinct
and the principal directions ê1, ê2 are orthogonal to each other. Further, suppose that
θ is the oriented angle from ê1 to â c

1 (Fig. 9.28). Then, the normal curvature κn along
the direction of â c

1 takes the form

κn = κ1 cos
2 θ + κ2 sin

2 θ . ←− see (9.872) (9.455)

Proof. Referred to the surface covariant basis vectors a1, a2 and the principal direc-
tions ê1, ê2, the tensorial object â c

1 can be expressed as

â c
1 = dtα

ds
aα , â c

1 = cos θ ê1 + sin θ ê2 . (9.456)

Recall from (9.447)1−2 that ê1 = η̂
β

1aβ and ê2 = η̂
β

2aβ . It then follows that

dtα

ds
= â c

1 · aα = η̂α
1 cos θ + η̂α

2 sin θ . (9.457)
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Finally,

κn from=====
(9.348)

bαβ

dtα

ds

dtβ

ds
from=====
(9.457)

η̂α
1 bαβ η̂

β

1 cos
2 θ + η̂α

2 bαβ η̂
β

1 sin θ cos θ

+ η̂α
1 bαβ η̂

β

2 cos θ sin θ + η̂α
2 bαβ η̂

β

2 sin
2 θ

from=====
(9.450)

κ1 cos
2 θ + 0 + 0 + κ2 sin

2 θ .

The theorem also holds true at an umbilical point where the principal directions are
the same, κ1 = κ2 = κ , and every direction, ê = η̂αaα , is a principal direction. In
this case, κn = κ

(
cos2 θ + sin2 θ

) = κ considering the fact that

κn = η̂α bαβη̂β = κη̂αaαβ η̂β = κ ê · ê = κ .

And this completes the proof.

Consider a non-umbilical point and suppose that the mean curvature 2H = κ1 + κ2
vanishes at that point. One then has κ1 = −κ2. From (9.455), the condition κn = 0
then leads to cos2 θ = sin2 θ which results in θ1 = π/4 , θ2 = 3π/4. Thus, the direc-
tions specified by û = cos θ1 ê1 + sin θ1 ê2 and v̂ = cos θ2 ê1 + sin θ2 ê2 are orthog-
onal (since û · v̂ = 0). This leads to the following lemma.

There are two orthogonal asymptotic directions at a non-umbilical
point with vanishing mean curvature.

Lemma C

�

Consider now a pair of orthogonal directions specified by the unit vectors
û = cos θ ê1 + sin θ ê2 and v̂ = cos (θ + π/2) ê1 + sin (θ + π/2) ê2. Denoting by
κn
û (κn

v̂ ) the normal curvature in the direction of û ( v̂ ), one will have

κn
û = κ1 cos

2 θ + κ2 sin
2 θ , κn

v̂ = κ1 sin
2 θ + κ2 cos

2 θ .

The quantity
κn
û + κn

v̂ = κ1 + κ2 ,

is thus independent of θ which is nothing but (twice) the mean curvature. This leads
to the following lemma.

The sum of normal curvatures for every pair of orthogonal directions at
a given point is constant.

Lemma D

�



9.7 Curvature 545

9.7.4 Lines of Curvature and Geodesic Torsion

A regular curve C on a regular surface S is said to be a line of curvature if its tangent
line at each point is directed along a principal direction of S at that point. The line
of curvature basically satisfies the quadratic equation (9.437), i.e.

aαγ εγ δ bδβdt
αdtβ = 0

or
(
a11 b21 − a12 b11

)
dt1dt1 + (

a11 b22 − a22 b11
)
dt1dt2 + (

a21 b22 − a22 b12
)
dt2dt2 = 0

. (9.458)

In what follows, the goal is to consider the necessary and sufficient conditions for
the coordinate curves to be the lines of curvature. ✥

Theorem D. At a non-umbilical point on a regular surface, the parametric curves
are the lines of curvature if and only if a12 = b12 = 0.

Proof. Let t1-curve (for which dt1 �= 0 and dt2 = 0) be a line of curvature. The
relation (9.458)2 then implies that

a11 b12 = a12 b11 or a22a11 b12 = a22a12 b11 . (9.459)

In a similar manner, on a t2-curve,

a12 b22 = a22 b12 or a11a12 b22 = a11a22 b12 . (9.460)

Consequently,

a12
(
a22 b11 − a11 b22

) = 0 or, using (9.352)–(9.353), a12 (κ1 − κ2) = 0 . (9.461)

One can thus infer that a12 = 0 (because κ1 − κ2 = 0 is not feasible by assumption).
A similar procedure can be followed to deduce that b12 = 0.

Conversely, suppose that a12 = b12 = 0. The relation (9.458)2 then reduces to

(
a11 b22 − a22 b11

)
dt1dt2 = 0 or (κ2 − κ1) dt

1dt2 = 0 . (9.462)

Consider the fact that κ1 �= κ2 at a non-umbilical point. One then infers that either
dt1 �= 0, dt2 = 0 or dt1 = 0, dt2 �= 0. In the former (latter) case, one can get a
family of t1-curves (t2-curves). Thus, there are two families of curves which meet
orthogonally on the surface and satisfy the condition (9.458)2. ✥

Let the coordinate curves on a regular surface be the lines of curvature at a non-
umbilical point. The principal curvatures κ1 and κ2 then satisfy

∂κ1

∂t2
= ∂a11

∂t2
κ2 − κ1

2a11
, ←− the proof is given in Exercise 9.16 (9.463a)
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∂κ2

∂t1
= ∂a22

∂t1
κ1 − κ2

2a22
. (9.463b)

In the following, the aim is to introduce an important relation characterizing the lines
of curvature. ✪

Theorem E (Rodrigues). A regular curve C on a regular surface S is a line of
curvature if and only if

d n̂ + κpdx = 0 , ←− this is known as the Rodrigues
f ormula, see Exercise 9.17 (9.464)

for some scalar κp. Here, κp presents a principal curvature. As a result, the vectors
d n̂ and dx will be parallel in every principal direction (see Rodrigues [29]).

Proof. Let C be a line of curvature on a regular surface S. Then, using (9.424)2, one
will have b . β

α dtα = κpdtβ . With the aid of (9.10)1, (9.99)1 and the chain rule of
differentiation, one can obtain

∂n̂
∂tα

dtα = − b . β
α dtαaβ or d n̂ = −κp

∂x
∂tβ

dtβ or d n̂ = −κpdx .

Conversely, if d n̂ = −κpdx holds at every point of a regular surface curve, one can
simply use the Weingarten formulas to arrive at the eigenvalue problem (9.424)2.
Thus, the tangent vector to that curve at a point is an eigenvector of b . β

α at that
point. ✪

Suppose one is given a line of curvature on a surface. This sometimes helps find
the line of curvature on another surface. This is described below. ✵

Theorem F (Joachimstahl). Consider a curve Cwith the parametrization x = x c (t)
which lies on the intersection of two regular surfaces S1 and S2. Let n̂1 (̂n2) be the
unit normal field to S1 (S2) and at = x′ be the tangent vector to Cwhere •′ = d • /dt .
Now, suppose that n̂1 · n̂2 = constant along C. Then, C is a line of curvature on S1 if
and only if it is a line of curvature on S2 (see Joachimstahl [30]).

Proof. To begin with, consider n̂1 · n̂2 = constant which gives

n̂ ′
1 · n̂2 + n̂1 · n̂ ′

2 = 0 . (9.465)

Guided by (9.464), if C is a line of curvature on S1 then

n̂ ′
1 = −κp at , (9.466)

where κp denotes a principal curvature of S1. Note that at · n̂1 = 0 and at · n̂2 = 0.
From (9.466), it then follows that n̂ ′

1 · n̂2 = 0. This result along with (9.465) helps
obtain n̂ ′

2 · n̂1 = 0. Now, consider the fact that n̂2 · n̂2 = 1 which immediately yields
n̂ ′
2 · n̂2 = 0. As can be seen, n̂ ′

2 and at are orthogonal to both n̂1 and n̂2. Thus, there
exists a scalar κq such that
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n̂ ′
2 = −κq at . (9.467)

And this means that C is also a line of curvature on S2. The converse can be proved
in a similar manner. ✵

As a consequence of the Joachimstahl theorem, themeridians and parallels of a
surface of revolution S1 (Fig. 9.26) are lines of curvature.

To show this, consider a plane S2 passing through the axis of rotation of S1. There
is (at least) one meridian C which lies on the intersection of S1 and S2. Notice that
along this curve, one will have n̂1 · n̂2 = 0. Now, consider the fact that all points of
a plane are planar at which the principal curvatures identically vanish and the unit
normal fields are all the same. This means that all curves embedded in a plane are
lines of curvature. Guided by the Joachimstahl theorem, one can thus infer that C
should also be a line of curvature on S1. Similar arguments can finally be used to
show that any parallel of a surface of revolution is a line of curvature.

A line of curvature can be characterized by means of an important attribute of a
surface curve called the geodesic torsion. It is a measure of the tendency of a regular
surface to twist about a curve embedded in that surface. Consider a regular surface
S enveloping a curve C. The geodesic torsion, τ g, of C at a given point P is basically
the torsion of a geodesic curve passing through P in the tangential direction of C at
P (note that there is only one geodesic curve passing through an arbitrary point in a
specific direction on a regular surface).

To characterize the geodesic torsion, consider a surface curve C and let â c
2 = −n̂

at a given point P . Accordingly, the torsion function in (9.305b) renders

τ g = −d n̂
ds

· â c
3

note that â c3 = â c1 × â c2 where â c1 = dx/ds

= d n̂
ds

·
(
dx
ds

× n̂
)

note that u · (v × w) = w · (u × v)

= n̂ ·
(
d n̂
ds

× dx
ds

)
. (9.468)

One can further establish

τ g by using (9.468) along===============
with applying the chain rule

n̂ ·
(

∂ n̂
∂tα

× ∂x
∂tβ

)
dtα

ds

dtβ

ds

by using==========
(9.10) and (9.99)

n̂ · (− b . γ
α aγ × aβ

) dtα

ds

dtβ

ds
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by using======
(9.57)

n̂ · (− b . γ
α

√
aεγβ n̂

) dtα

ds

dtβ

ds

by using======
(9.12)

−√
a
dtα

ds
b . γ

α εγβ

dtβ

ds
. (9.469)

It should not be difficult now to see that

τ g = [frEr − erFr]
(
dt1

)2 + [
grEr − erGr

]
dt1dt2 + [

grFr − frGr
] (
dt2

)2

√
ErGr − F2

r

[
Er

(
dt1

)2 + 2Frdt1dt2 + Gr
(
dt2

)2] .

(9.470)
From (9.228)1−3, (9.252a)1, (9.252b)1, (9.252c)1, (9.458)2 and (9.470), one can con-
clude that a curve C is a line of curvature on a regular surface S if and only if its
geodesic torsion vanishes everywhere.

In addition to the above representations, the geodesic torsion admits some other
forms. For instance,

τ g = −κc

κg
â c
2 · d n̂

ds
, (9.471)

because

(
â c
2

) · d n̂
ds

from=====
(9.299)

(
â c
3 × â c

1

) · d n̂
ds

from====
(1.73)

â c
3 ·

(
â c
1 × d n̂

ds

)
←− note that both â c1 = dx

ds
and

d n̂
ds

lie

in the tangent plane

from===========
(1.49a) and (9.468)

−τ g â c
3 · n̂

from=====
(9.347)

−τ g sin φ

from=====
(9.346)

−τ g κg

κc
.

Another form is

τ g = τ c + dφ

ds
, ←− this is known as the Bonnet formula

for the geodesic torsion, see (9.363) (9.472)

since

− (sin φ)
dφ

ds
by using (9.347) along=================

with applying the product rule

d â c
2

ds
· n̂ + â c

2 · d n̂
ds

by using======
(9.305b)

(
τ c â c

3 − κc â c
1

) · n̂ + â c
2 · d n̂

ds
←− note that

{
â c1 , n̂ × â c1 , n̂

}
is

an orthonormal basis

by using===============
(9.346), (9.347) and (9.471)

(sin φ) τ c − (sin φ) τ g .
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Moreover,

τ g = κ2 − κ1

2
sin 2θ , ←− the proof is given in Exercise 9.20 (9.473)

where θ denotes the angle between the principal direction ê1 and the unit tangent
vector â c

1 (Fig. 9.28).

At the end, the different curves introduced so far are listed. A parametrized curve,
x = x̂ c (s),

✸ is called a straight line if its curvature κc vanishes everywhere.
✸ is called a plane curve if its torsion τ c vanishes everywhere.
✸ embedded in a surface S is called an asymptotic curve if its normal curvature

κn vanishes everywhere.
✸ embedded in a surface S is called a geodesic curve if its geodesic curvature κg

vanishes everywhere.
✸ embedded in a surface S is called a line of curvature if its geodesic torsion τ g

vanishes everywhere.

9.7.5 Gaussian Curvature

The Gaussian curvature (or total curvature) was partially studied within the devel-
opments achieved so far. Recall that it was first introduced as the determinant of the
surface mixed curvature tensor. Then, it was expressed in terms of the coefficients
of the first and second fundamental forms. Finally, it turned out to be the product
of the principal curvatures. This geometric object is an important characteristic of a
surface. It represents an extension of the curvature of (one-dimensional) curves to
(two-dimensional) surfaces. The main goal here is to show that the Gaussian cur-
vature is an intrinsic quantity connecting the intrinsic and extrinsic perspectives.
This is basically the essence of one of the greatest achievements of Gauss; called
remarkable theorem (Theorema Egregium).

Recall that by prescribing the functions κc (s) > 0 and τ c (s), there exists a regular
s-parametrized space curve which is unique (up to a rigid body motion). This is the
result of the fundamental theorem of space curves which guarantees existence and
uniqueness of solutions of the Frenet formulas. The extension of this theorem to the
case of curved surfaces requires more consideration. This is described below.

9.7.5.1 Integrability Conditions

Technically, by prescribing the coefficients of the first fundamental form (i.e.
Er,Gr,Fr satisfyingEr > 0,Gr > 0,ErGr − F2

r > 0), and second fundamental form
(i.e. er, gr, fr), one cannot determine a regular surface unless the following conditions
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∂2aα

∂t δ∂tβ
= ∂2aα

∂tβ∂t δ
, (9.474)

called integrability conditions, are satisfied. They are also known as the compati-
bility equations of theory of surfaces. Suppose one is given the functions Er,Gr,Fr
(Er > 0,Gr > 0,ErGr − F2

r > 0) and er, gr, fr. The equations of surface accord-
ing to (9.94) and (9.99) then render 15 coupled partial differential equations while
there are only 9 unknowns, i.e. the ambient basis {a1, a2, n̂} (note that a vector
in the three-dimensional ambient space has apparently three components and also
∂a1/∂t2 = ∂a2/∂t1). In principle, 6 equations - being the integrability conditions -
naturally need to be integrated in order to determine the trihedron {a1, a2, n̂} (apart
from a rigid body motion). In practice, the equations (9.474) will reduce to

∂2a1
∂t1∂t2

= ∂2a1
∂t2∂t1

,
∂2a2

∂t1∂t2
= ∂2a2

∂t2∂t1
. (9.475)

These integrability conditions do not allow one to choose the coefficients of the first
and second fundamental forms arbitrary. Indeed, they represent a way of restricting
such coefficients to avoid compatibility issues. The considerations above are sum-
marized in a theorem called fundamental theorem of surfaces. It guaranties existence
and uniqueness of solutions of the Gauss andWeingarten formulas assuming that the
compatibility equations are satisfied (for a proof of this important theorem see, for
example, do Carmo [8]).

In the following, it will be shown that the conditions of integrability lead to two
independent equations which are of fundamental importance in differential geometry
of surfaces.

9.7.5.2 Gauss Theorema Egregium and Mainardi-Codazzi Equations

Using (9.92)2, (9.94), (9.99)1 and (9.132)1, the left hand side of (9.474) takes the
following form

∂2aα

∂t δ∂tβ
= ∂�

γ

αβ

∂t δ
aγ + �

γ

αβ

[
�

ρ
γ δaρ + bγ δn̂

]
+ ∂ bαβ

∂t δ
n̂ + bαβ

[− b . ρ
δ aρ

]

=
[

∂�
ρ
αβ

∂t δ
+ �

ρ
δγ �

γ

βα − bαβ b . ρ
δ

]

aρ +
[
∂ bαβ

∂t δ
+ �

γ

αβ bγ δ

]
n̂ . (9.476)

In a similar manner, the right hand side of (9.474) renders

∂2aα

∂tβ∂t δ
=

[
∂�

ρ
αδ

∂tβ
+ �

ρ
βγ �

γ

δα − bαδ b
. ρ
β

]
aρ +

[
∂ bαδ

∂tβ
+ �

γ

αδ bγβ

]
n̂ . (9.477)
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Knowing that aρ · n̂ = 0, one then arrives at

∂ bαδ

∂tβ
− ∂ bαβ

∂t δ
= �

γ

αβ bγ δ − �
γ

αδ bγβ , (9.478a)

∂�
ρ
αδ

∂tβ
− ∂�

ρ
αβ

∂t δ
+ �

ρ
βγ �

γ

δα − �
ρ
δγ �

γ

βα = bαδ b
. ρ
β − bαβ b . ρ

δ . (9.478b)

By using (9.92)2, (9.95)3, (9.162d) and (9.199), these results can be rephrased as

bαδ

∣∣
β

= bαβ

∣∣
δ

, (9.479a)

R
ρ . . .
. αβδ = bαδ b

. ρ
β − bαβ b . ρ

δ . (9.479b)

The expressions in (9.478a) or (9.479a) are calledMainardi-Codazzi equations (see
Mainardi [31] and Codazzi [32]). They show that the object bαβ

∣∣
δ
is symmetric

with respect to its last two indices. And since bαβ is symmetric, one can deduce that
bαβ

∣∣
δ
is totally symmetric with respect to all of its indices. As a result, in practice,

the Mainardi-Codazzi formulas can be written as

b11

∣∣
2 = b12

∣∣
1 , b22

∣∣
1 = b12

∣∣
2 . (9.480)

The notable expressions in (9.478b) or (9.479b) are called the Gauss equations of
the surface. By index juggling, it can be written as

Rαβγ δ = bαγ bβδ − bαδ bβγ . (9.481)

Recall that R1212 was the only independent component of the surface covariant
Riemann-Christoffel curvature tensor. Using (9.217) and (9.481), one then has

R1212 = b11 b22 − b12 b21 or Rαβγ δ = (
b11 b22 − b2

12

)
εαβεγ δ . (9.482)

From (9.255)2, (9.258)3 and (9.482)1−2, one can finally arrive at

K = R1212

a
or Rαβγ δ = (

aK
)
εαβεγ δ . (9.483)

This celebrated result shows that the Gaussian curvature is an intrinsic object since
the Riemann-Christoffel tensor can be obtained by means of the coefficients of the
first fundamental formand their partial derivatives, see (9.199) and (9.235a)-(9.235c).
In other words, although the objects b11, b22 and b12 are defined extrinsically, the
combination b11 b22 − b2

12 is an intrinsic measure of curvature. That is why the
Gaussian curvature can be viewed as an object connecting the intrinsic and extrinsic
points of view. This is the essence of what is known as the Theorema Egregium
(translated as the remarkable theorem) proposed by Gauss [33].

The remarkable theorem (9.483) has some alternative forms. The most common
formulas for the Gaussian curvature are demonstrated in the following. ■
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9.7.5.3 Some Alternative Forms of Gaussian Curvature

From (9.54)2 and (9.483)1, one will have R1212 = K
(
a11a22 − a212

)
having in mind

that a12 = a21. Then,

Rαβγ δ = K
(
aαγ aβδ − aαδaβγ

)
. (9.484)

Accordingly, consider two vectors u = uαaα , v = vβaβ and let

R� (u, v,u, v) = Rαβγ δ u
α vβ u γ vδ . (9.485)

Then, one can find that this quantity is nothing but the Gaussian curvature times the
area squared of the parallelogram defined by those vectors:

R� (u, v,u, v) = K det

[
u · u u · v
u · v v · v

]

since K
(
uαaαγ uγ vβaβδ vδ − uαaαδ vδ uγ aγβ vβ

)
= K

(
aαγ aβδ − aαδaβγ

)
uα vβ uγ vδ

. (9.486)

One can also establish

a1|12 − a1|21 = K (a1 × a2) × a1 , (9.487)

because

(
a1|1

)∣∣
2 − (

a1|2
)∣∣
1

from (9.131)=========
and (9.137c)

(
�1
11a1 + �2

11a2
)∣∣∣

2︸ ︷︷ ︸

= ∂�111
∂t2

a1 + �1
11�

1
12a1 + �1

11�
2
12a2 + ∂�211

∂t2
a2 + �2

11�
1
22a1 + �2

11�
2
22a2

−
(
�1
12a1 + �2

12a2
)∣∣
∣
1︸ ︷︷ ︸

= ∂�112
∂t1

a1 + �1
12�

1
11a1 + �1

12�
2
11a2 + ∂�212

∂t1
a2 + �2

12�
1
12a1 + �2

12�
2
12a2

from (9.228),============
(9.493) and (9.494)

−
[

∂�1
12

∂t1
− ∂�1

11
∂t2

+ �1
12�

2
12 − �1

22�
2
11

]

a1

︸ ︷︷ ︸
= K Fr a1 = K (a1 · a2) a1

+
[

∂�2
11

∂t2
− ∂�2

12
∂t1

+ �1
11�

2
12 + �2

11�
2
22 − �1

12�
2
11 − �2

12�
2
12

]

a2

︸ ︷︷ ︸
= KEr a2 = K (a1 · a1) a2

from=====
(1.72)

K (a1 × a2) × a1 .
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By means of (9.38) and (9.483)2, it follows that Rαβγ δε
αβ = 2

(
aK

)
εγ δ . One then

immediately finds out that

K = 1

4a
Rαβγ δε

αβεγ δ . (9.488)

Moreover, having inmind the identity (9.39)1, the relation (9.483)2 by index juggling
renders R

αβ

. . γ δ = Kεαβεγ δ . Multiplying both sides of this result with δ
γ
α leads to

R
αβ

. . αδ = Kεαβεαδ , taking into account the replacement property of the Kronecker
delta. Contracting now β with δ and using (9.38) yields

K = 1

2
R

αβ

. . αβ , (9.489)

or

K = 1

2

(
bα

. α bβ

. β − bα
. β bβ

. α

)
, (9.490)

which can also be represented by

K = 1

2

(
δα
γ δ

β

δ − δα
δ δβ

γ

)
bγ

. α bδ
. β , (9.491)

or

K = 1

2
εαβεγ δ b

γ
. α bδ

. β . (9.492)

Recall that the Riemann-Christoffel tensor was expressed in terms of the Christoffel
symbols which themselves were functions of the coefficients of the first fundamental
form. This helps provide some elegant equivalents of the Gaussian curvature. For
instance, such an important characteristic of the surface can be expressed as

K = F−1
r

[
∂�1

12

∂t1
− ∂�1

11

∂t2
+ �1

12�
2
12 − �1

22�
2
11

]
, ←− the proof is given in Exercise 9.21

(9.493)
or

K = E−1
r

[
∂�2

11

∂t2
− ∂�2

12

∂t1
+ �1

11�
2
12 + �2

11�
2
22 − �1

12�
2
11 − �2

12�
2
12

]
, (9.494)

or

K = G−1
r

[
∂�1

22

∂t1
− ∂�1

12

∂t2
+ �1

11�
1
22 + �1

12�
2
22 − �1

22�
2
12 − �1

12�
1
12

]
, (9.495)
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or

K = F−1
r

[
∂�2

12

∂t2
− ∂�2

22

∂t1
+ �1

12�
2
12 − �1

22�
2
11

]
. (9.496)

Furthermore, one can represent the intrinsic formulas

K = 1√
a

{
− ∂

∂t1

[√
a

a11
�2
12

]
+ ∂

∂t2

[√
a

a11
�2
11

]}
←− this is known as the

Bieberbach formula (see [34])

= 1

2
√
ErGr − F2

r

{

− ∂

∂t1

[
Er∂Gr/∂t1 − Fr∂Er/∂t2

Er
√
ErGr − F2

r

]

↖ the proof is given in
Exercise 9.22

+ ∂

∂t2

[
2Er∂Fr/∂t1 − Er∂Er/∂t2 − Fr∂Er/∂t1

Er
√
ErGr − F2

r

]}

, (9.497a)

K = 1√
a

{
∂

∂t1

[√
a

a22
�1
22

]
− ∂

∂t2

[√
a

a22
�1
12

]}
←− this is also known as the

Bieberbach formula

= 1

2
√
ErGr − F2

r

{
∂

∂t1

[
2Gr∂Fr/∂t2 − Gr∂Gr/∂t1 − Fr∂Gr/∂t2

Gr
√
ErGr − F2

r

]

− ∂

∂t2

[
Gr∂Er/∂t2 − Fr∂Gr/∂t1

Gr
√
ErGr − F2

r

]}

, ↖ the proof is given in
Exercise 9.22 (9.497b)

and

K = K
� − K

∗
(
ErGr − F2

r

)2 , ←− this is known as the Brioschi formula (see [35]) (9.498)

where

K
� = det

⎡

⎣
∂2Fr

∂t1∂t2 − ∂2Er
2∂t2∂t2 − ∂2Gr

2∂t1∂t1
∂Er
2∂t1

∂Fr
∂t1 − ∂Er

2∂t2
∂Fr
∂t2 − ∂Gr

2∂t1 Er Fr
∂Gr
2∂t2 Fr Gr

⎤

⎦ , (9.499a)

K
∗ = det

⎡

⎣
0 ∂Er

2∂t2
∂Gr
2∂t1

∂Er
2∂t2 Er Fr
∂Gr
2∂t1 Fr Gr

⎤

⎦ . (9.499b)

See Hartmann [36] and Goldman [37] for further formulas on curvatures of curves
and surfaces. ■

Lemma E (Hilbert). Consider a non-umbilical point P on a regular surface S.
Suppose that the principal curvature κ1 (κ2) has a local maximum (minimum) at P
and κ1 > κ2. Then, the Gaussian curvature of S at P is nonpositive.

Proof. Recall that the principal directions at non-umbilical points were orthogonal.
Thus, there exists an orthogonal parametrization x = x̂ s

(
t1, t2

)
in a neighborhood
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of the non-umbilical point P such that

Ir = Er
(
dt1

)2 + Gr
(
dt2

)2
, IIr = er

(
dt1

)2 + gr
(
dt2

)2
. (9.500)

Guided by the Theorem D on Sect. 9.7.4, the coordinate curves of this orthogonal
patch are the lines of curvature. The relations (9.463a)–(9.463b) thus hold:

∂Er

∂t2
= − 2Er

κ1 − κ2

∂κ1

∂t2
,

∂Gr

∂t1
= 2Gr

κ1 − κ2

∂κ2

∂t1
.

The fact that P is a critical point of κ1 implies that ∂Er/∂t2 vanishes. In a similar
manner, one can conclude that ∂Gr/∂t1 = 0 at that point. Bearing this in mind, the
Bieberbach formula (9.497a)2 takes the form

K = − 1

2
√
ErGr

[
∂

∂t1

(
1√
ErGr

∂Gr

∂t1

)
+ ∂

∂t2

(
1√
ErGr

∂Er

∂t2

)]

= − 1

2ErGr

[
∂

∂t1
∂Gr

∂t1
+ ∂

∂t2
∂Er

∂t2

]

= − 1

ErGr

[
Gr

κ1 − κ2

∂2κ2

∂t1∂t1
− Er

κ1 − κ2

∂2κ1

∂t2∂t2

]
.

Recall from (9.19) that Er > 0 and Gr > 0. Whereas κ1 − κ2 > 0, ∂2κ2/∂t1∂t1 ≥ 0
and ∂2κ1/∂t2∂t2 ≤ 0 by assumption. Thus, K ≤ 0 at P (seeHilbert andCohn-Vossen
[38]).

It is important to note that the following condition

∂2n̂
∂t δ∂tβ

= ∂2n̂
∂tβ∂t δ

, (9.501)

was not written in (9.474) since it does not encode any new information. This is
described in the following. ✜

The left hand side of (9.501) can be decomposed with respect to the dual basis{
a1, a2, n̂

}
as

∂2n̂
∂t δ∂tβ

by using======
(9.99)

∂

∂t δ
[− bβαaα

]

by using======
(9.157)

−∂ bβα

∂t δ
aα − bβα

∂aα

∂t δ

by using======
(9.109)

−∂ bβα

∂t δ
aα + bβα�α

δγ a
γ − bβα bα

. δ n̂
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by renaming===========
the dummy indices

−∂ bβα

∂t δ
aα + bβγ �

γ

δα a
α − bβα bα

. δ n̂

by using (9.92),==========
(9.95) and (9.100)

[
−∂ bαβ

∂t δ
+ �

γ

αδ bγβ

]
aα − bβαa

αγ bγ δ n̂ . (9.502)

In a similar fashion, the right hand side of (9.501) can be expressed with respect to
the ambient contravariant basis

{
a1, a2, n̂

}
via the following relation

∂2n̂
∂tβ∂t δ

=
[
−∂ bαδ

∂tβ
+ �

γ

αβ bγ δ

]
aα − bδαa

αγ bγβ n̂

note that bδαa
αγ bγβ = bβγ a

γα bαδ = bβαa
αγ bγ δ

. (9.503)

The results (9.502) and (9.503) then clearly deliver the Mainardi-Codazzi equations
introduced in (9.478a). This may be viewed as an alternative derivation of these
important relations. ✜

Hint: Notice that (9.501) basically renders the commutative property of the partial
derivative for the unit normal vector to the surface. Recall that the surface unit normal
field was an ambient object for which covariant differentiation reduced to partial
differentiation, see (9.185)1. As a result, the surface covariant derivative should also
commute for this object with extrinsic attribute, that is,

n̂|βδ = n̂|δβ , (9.504)

where

n̂|βδ

from=====
(9.179)

[(
n̂ i

∣
∣
β

)
gi + n̂ i

(
gi |β

)]∣∣
∣
δ

from===========
(9.180) and (9.181)

[
n̂ i

∣∣
j Z

j
βgi

]∣∣∣
δ

from===========
(9.47) and (9.188b)

n̂ i
∣∣
jk Z

j
β Z

k
δ gi + n̂ i

∣∣
j

[
g j · aβ

]∣∣
δ
gi

from============
(9.177a) and (9.183)

n̂ i
∣
∣
jk
Z

j
β Z

k
δ gi + n̂ i

∣
∣
j

[
g j · bβδn̂

]
gi

from=====
(5.65c)

(
n̂ i

∣∣
jk Z

j
β Z

k
δ + n̂ i

∣∣
j n̂

j bβδ

)
gi , (9.505)

having in mind that any ambient vector n̂ i in the Euclidean space satisfies the
property n̂ i

∣∣
jk = n̂ i

∣∣
k j . Consequently, the Mainardi-Codazzi relations in (9.479a)

can be achieved once again since

n̂|βδ

from=====
(9.185)

[− bβαaα
]∣∣

δ

from======
(9.176b)

[− bβα

∣
∣
δ

]
aα − bβα

[
aα|δ

]
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from===========
(9.95) and (9.177b)

[− bαβ

∣∣
δ

]
aα − bβα

[
bα

. δ n̂
]

from=====
(9.100)

[− bαβ

∣∣
δ

]
aα − bβαa

αγ bγ δ n̂ , (9.506)

and, in a similar fashion,

n̂|δβ =
[
− bαδ

∣
∣
β

]
aα − bδαa

αγ bγβ n̂

note that bδαa
αγ bγβ = bβγ a

γα bαδ = bβαa
αγ bγ δ

. (9.507)

Hint: The ambitious reader may want to obtain the Gauss and Mainardi-Codazzi
equations of the surface in an alternative way. This relies on noncommutativity of
the surface covariant differentiation for the surface covariant basis vectors. It follows
that

Rα . . .
. βγ δ aα

from======
(9.201b)

aβ

∣∣
γ δ

− aβ

∣∣
δγ

from======
(9.177a)

[
bβγ n̂

]∣∣
δ
− [

bβδ n̂
]∣∣

γ

from (9.185) and==========
the product rule

bβγ

∣
∣
δ
n̂ + bβγ

[− bδθaθ
] − bβδ

∣
∣
γ
n̂ − bβδ

[− bγ θaθ
]

from====
(9.28)

[
bβδ bγ θ − bβγ bδθ

]
aθαaα +

[
bβγ

∣∣
δ
− bβδ

∣∣
γ

]
n̂ .

Considering the fact that the three vectors a1, a2 and n̂ are linearly independent, one
can deduce that

bβγ

∣∣
δ
= bβδ

∣∣
γ

and Rα . . .
. βγ δ = aαθ

[
bθγ bβδ − bθδ bβγ

]
,

or Rαβγ δ = bαγ bβδ − bαδ bβγ , see (9.481).

9.7.6 Ricci Curvature Tensor and Scalar

The Ricci curvature tensor (or simply the Ricci tensor) and Ricci scalar (or cur-
vature scalar or curvature invariant) are of crucial importance in general relativity.
The Ricci tensor represents gravity in the general theory of relativity. It measures
how the volume of a region changes when such a volume is parallel transported
along geodesics in a curved space. The Ricci scalar is the trace of the Ricci tensor.
When this quantity is positive (negative), the volume shrinks (expands). It basically
describes how the volume of a small ball in curved space differs from that of stan-
dard ball in Euclidean space. These two objects construct the so-called Einstein
tensor appearing in Einstein’s gravitational field equations and basically belong to



558 9 Differential Geometry of Surfaces and Curves

the intrinsic geometry of a manifold. See Günther and Müller [39] and Pais [40] for
further considerations.

9.7.6.1 Ricci Curvature Tensor

The first-kind Ricci tensor is a covariant second-order tensor obtained by contract-
ing the single contravariant index of the mixed Riemann-Christoffel curvature tensor
with its second covariant index:

Rβδ = Rα . . .
. βαδ

from==========
(9.92) and (9.199)

∂�α
βδ

∂tα
− ∂�α

βα

∂t δ
+ �θ

βδ�
α
θα − �θ

βα�α
θδ . (9.508)

The first-kind Ricci tensor may also be written as

Rβδ
by using===========

(9.115) and (9.508)

∂�α
βδ

∂tα
− ∂

[
∂ ln

√
a
]

∂t δ∂tβ
+ �θ

βδ

∂ ln
√
a

∂tθ
− �θ

βα�α
θδ

by renaming===========
the dummy indices

1√
a

(√
a

∂�α
βδ

∂tα
+ �α

βδ

∂
√
a

∂tα

)
− ∂2

[
ln

√
a
]

∂t δ∂tβ
− �α

βθ�
θ
αδ

by using=========
the product rule

1√
a

(
∂

∂tα
[√

a �α
βδ

]) −
(

∂2
[
ln

√
a
]

∂t δ∂tβ
+ �α

βθ�
θ
αδ

)

. (9.509)

It renders a symmetric tensor because

R δβ = 1√
a

(
∂

∂tα
[√

a �α
δβ

]) −
(

∂2
[
ln

√
a
]

∂tβ∂t δ
+ �α

δθ�
θ
αβ

)

= 1√
a

(
∂

∂tα
[√

a �α
βδ

]
)

−
(

∂2
[
ln

√
a
]

∂t δ∂tβ
+ �θ

δα�α
θβ

)

= 1√
a

(
∂

∂tα
[√

a �α
βδ

]) −
(

∂2
[
ln

√
a
]

∂t δ∂tβ
+ �θ

αδ�
α
βθ

)

= Rβδ . (9.510)

Using (9.26)1, (9.205)1 and (9.508)1 along with the replacement property of the
Kronecker delta, one can obtain

Rβδ = R1 . . .
. β1δ + R2 . . .

. β2δ = a1α Rαβ1δ + a2α Rαβ2δ

= a11 R1β1δ + a12 R2β1δ + a21 R1β2δ + a22 R2β2δ . (9.511)

From (9.65)3, (9.207)2, (9.208), (9.216)1, (9.483)1 and (9.511)3, it follows that



9.7 Curvature 559

R11 = a22 R2121 = a22 R1212 = a11
a

R1212 = a11K

and, in a similar manner, R12 = a12K = a21K = R21 , R22 = a22K

.

Consequently,

Rβδ = K aβδ , (9.512)

represents the proportionality between the fully covariant form of the Ricci curvature
tensor and the surface covariant metric coefficients where the proportionality factor
is nothing but the Gaussian curvature. It is worth mentioning that this result is only
valid for the two-dimensional space under consideration.

From (9.273) and (9.512), one immediately obtains

Rβδ = 2H bβδ − b . θ
β bθδ . (9.513)

The second-kind Ricci tensor is introduced as

Rβ

. δ = aβρ Rρδ = R δρa
ρβ = R . β

δ . (9.514)

Using (9.509) and (9.512), it admits the following forms

Rβ

. δ = aβρ

{
1√
a

(
∂

∂tα
[√

a �α
ρδ

]) −
(

∂2
[
ln

√
a
]

∂t δ∂tρ
+ �α

ρθ�
θ
αδ

)}

, (9.515a)

Rβ

. δ = K δ
β

δ . (9.515b)

9.7.6.2 Ricci Scalar

The Ricci scalar is constructed by contracting the indices of the second-kind Ricci
tensor:

R = Rβ

. β = aβρ Rρβ = Rβρa
ρβ = R . β

β . (9.516)

By means of (9.515a), it takes the form

R = Rβ

. β = aβρ

{
1√
a

(
∂

∂tα
[√

a �α
ρβ

]) −
(

∂2
[
ln

√
a
]

∂tβ∂tρ
+ �α

ρθ�
θ
αβ

)}

. (9.517)

From (9.512) and (9.516)2, taking into account the identity aβρaρβ = 2, one simply
obtains

R = 2K . (9.518)
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Substituting (9.518) into (9.483)2 and (9.484) then yields

Rαβγ δ = aR

2
εαβεγ δ = R

2

(
aαγ aβδ − aαδaβγ

)
. (9.519)

This may also be represented by

Rαβγ δ = aαγ Rβδ − aαδ Rβγ . (9.520)

The covariant derivative of the Ricci scalar renders

by using====⇒
(9.2.14)

aγαaδβ
(
Rαβγ δ

∣∣
ρ

+ Rαβδρ

∣∣
γ

+ Rαβργ

∣∣
δ

)
= 0

in light of (9.83c) and==============⇒
by using (9.164) and (9.208)

aδβ R
γ . . .

. βγ δ

∣
∣∣
ρ

− aγα Rδ . . .
. αδρ

∣∣
γ

− aδβ R
γ . . .

. βγρ

∣
∣∣
δ
= 0

by using====⇒
(9.508)

aδβ Rβδ

∣∣
ρ

− aγα Rαρ

∣∣
γ

− aδβ Rβρ

∣∣
δ
= 0

by using (9.83c),=========⇒
(9.164) and (9.516)

R|ρ − Rγ
. ρ

∣∣
γ

− R δ
. ρ

∣∣
δ
= 0 .

This helps establish the so-called contracted Bianchi identities (see Voss [41])

Rβ

. δ

∣∣∣
β

= R|δ
2

= ∂R

2∂t δ
. (9.521)

It is noteworthy that this result is not confined to two-dimensional spaces and gen-
erally remains valid for spaces with higher dimensions. For the two-dimensional
space under consideration, it can also be easily obtained from the relations (9.164)2,
(9.515b) and (9.518).

From (9.521)1, taking into consideration that the mixed Kronecker delta is covari-
antly constant and possess the replacement property, one can write

(
Rβ

. δ − R

2
δ

β

δ

)∣∣
∣∣
β

= 0 . (9.522)

This helps establish
divsG = 0 , ←− see (7.84) and (9.225) (9.523)

where the symmetric second-order tensor G with

G β

. δ = Rβ

. δ − R

2
δ

β

δ or G βδ = Rβδ − R

2
aβδ , (9.524)

is called the Einstein tensor. It renders a traceless tensor, i.e.
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G β

. β = Rβ

. β − R

2
δ

β

β = R − R

2
(1 + 1) = 0 , (9.525)

and basically describes the curvature of spacetime in general relativity, see Hawking
and Ellis [42] and Misner et al. [43].

9.7.6.3 Geometric Meaning of Ricci Tensor

The geodesics in a curved space can converge or spread apart specifically because of
the curvature of that space. The volume of a ball surrounded by the geodesics thus
changes as it moves along these curves. The Ricci tensor is an object by which that
change in volume can be captured. Since the Ricci curvature tensor is constructed
from the fourth-order Riemann-Christoffel tensor, the procedure to be followed here
is similar to what that led to (9.199). This procedure relies on some basic assumptions
discussed below (Robinson et al. [44]).

Consider a set of (dust) particles clumped together in some region of a space.
And consider a set of parallel geodesic curves passing through these particles. It is
assumed that the relative positions of the particles are initially fixed and therefore
the relative velocity between any two of them is zero. In other words, the velocity
vectors of the particles are all parallel at the beginning. But, the relative acceleration
between any two points may not be zero. The problem can well be formulated by
considering the motion of two infinitesimally close particles which follow their own
geodesics in a very short period of time. In the following, it will be shown that how
(in the limit) the change in area of a circle,17 defined by the distance between these
two points, is related to curvature of space.

Let C1 with the parametrization tα (t) be a geodesic curve of a surface S. Con-
sider a point P at t , interpreted here as time, and an infinitesimally nearby point
R corresponding to t + Δt . The tangent vector at P , interpreted here as veloc-
ity, is denoted by vP (note that tα (R) = tα (t) + Δt vα

P ). Consider another vec-
tor sitting at P , uP , which helps identify a point Q on another geodesic curve C2

with tα (Q) = tα (t) + Δt uα
P . It is important to point out that ΔtvP , ΔtuP are

infinitesimal vectors although vP , uP can be quite finite. The velocity vector vP
describes flow along C1 while the separation vector uP describes motion from C1 to
C2. One can nowparallel transport vP a distanceΔtvP (ΔtuP ) to have v

‖
P→R (v

‖
P→Q).

Parallel transporting uP along C1 from P to R helps identify another point S with
tα (S) = tα (R) + Δt uα ‖

P→R . Notice that t
α (S) = tα (Q) + Δt vα ‖

P→Q . One can thus
have an infinitesimal closed loop PQSR as shown in Fig. 9.29. Guided by the equa-
tions (9.197)-(9.198), the change in velocity vector after its parallel transport from
R to S, i.e. v‖

R→S , and from Q to S, i.e. v‖
Q→S , is

Δ vα = (Δt)2 Rα . . .
. βγ δ vβ vγ u δ . (9.526)

17 A circle (sphere) is also known as 1-sphere (2-sphere) and the region enclosed by that circle
(sphere) is called 2-ball (3-ball).
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Fig. 9.29 Parallel transport of a vector along two paths defined by that vector and a generic one

This is eventually the relative velocity of the particles sitting at P and Q after the
time increment Δt . The acceleration vector aα is then given by

aα = lim
Δt→0

Δ vα

Δt
. (9.527)

It follows that

lim
Δt→0

aα

Δt
= Rα . . .

. βγ δ vβ vγ u δ . (9.528)

This relation represents geodesic deviationwhich states that the two particlesmoving
along their geodesics will accelerate with respect to each other.

At this stage, consider a circle of radius R0 where R0 = tα (Q) − tα (P). After
the time increment Δt , the new radius becomes rα (Δt) where rα (0) = R0 (see Fig.
9.30). Suppose that the starting points start the journey along their geodesics with
zero velocity and nonzero acceleration, i.e.

ṙα (0) = 0 , r̈α (0) = aα where •̇ = d•
dΔt

. (9.529)

One then immediately obtains

rα (Δt) = R0 + 1

2
aα (Δt)2 . (9.530)

It follows that

lim
Δt→0

r̈α (Δt)

rα (Δt)
= lim

Δt→0

(
Δt

R0

aα

Δt

)
= lim

Δt→0

(
Δt

R0
Rα . . .

. βγ δ vβ vγ u δ

)
(α = 1, 2; no sum) .

Recall that the vector uP was arbitrary. Thus, one can choose uP = aαP . This
immediately implies that R0 = Δt . Consequently, the above relation becomes
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Fig. 9.30 Area change
along geodesics on sphere

lim
Δt→0

r̈α (Δt)

rα (Δt)
= Rα . . .

. βγ α vβ vγ (α = 1, 2; no sum) . (9.531)

Consider an ellipsoid of radii rα (Δt) in a space of dimension 2. Its volume, V2 (Δt),
is then given by

V2 = πr1r2 and, consequently,
V̇2 = π ṙ1r2 + πr1ṙ2 ,

V̈2 = π r̈1r2 + 2π ṙ1ṙ2 + πr1r̈2

}

. (9.532)

Thus,
V̈2

V2
= r̈1

r1
+ 2

ṙ1

r1
ṙ2

r2
+ r̈2

r2
. (9.533)

In the limit, one can arrive at

lim
Δt→0

V̈2

V2
= lim

Δt→0

2∑

α=1

r̈α

rα
= −

2∑

α=1

Rα . . .
. βαγ vβ vγ ,

or, finally,

lim
Δt→0

V̈2

V2
= − Rβγ vβ vγ . (9.534)

That is why the Ricci tensor describes the change in a volume as it travels along
geodesics in a curved space (see Exercise 9.23 for the geometric meaning of Ricci
scalar).

Hint: The procedure outlined above can simply be extended to an n-dimensional
space. In this case, consider an ellipsoid of radii r j (Δt) in a space of dimension n
whose volume, Vn (Δt), is given by
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Vn = π
n
2

�
(
n
2 + 1

)
n∏

j=1

r j

note that n = 2 ⇒ � (2) = 1 and n = 3 ⇒ �
(
5
2

)
= 3

4
√

π

, (9.535)

where � presents the gamma function. The first derivative of Vn takes the form

V̇n = π
n
2

�
(
n
2 + 1

)
n∑

i=1

ṙ i

r i

n∏

j=1

r j , (9.536)

and its second derivative renders

V̈n = π
n
2

�
(
n
2 + 1

)
n∑

i=1

(
r̈ i

r i
+

i−1∑

k=1

ṙ i ṙ k

r ir k

)
n∏

j=1

r j . (9.537)

It is then easy to see that

lim
Δt→0

V̈n

Vn
= − Ri j v

i v j

note that vi Ri j v
j =

[(
vi gi

)
⊗

(
v j g j

)]
:
[
Rklg

k ⊗ gl
]

is an invariant object

. (9.538)

9.8 Lie Derivatives

The Lie derivative plays an important role in differential geometry of manifolds.
It is also widely used in many branches of physics and engineering. Examples of
which include general relativity, nonlinear solid mechanics and control theory. The
technique of Lie derivative is an extension of the directional derivative which also
remains invariant under a transformation from one coordinate system to another.
It provides tensors out of tensors. Indeed, the Lie derivative of a tensor field is a
tensor with the same order. Such a technique computes the change in a tensorial field
variable as it moves along the flow of a vector field. In particular, the Lie derivative
of a vector field in the direction of flow of a vector field measures how much the
resulting flow curves fail to close. It basically indicates whether the coordinate curves
of a coordinate system can be constructed from some families of curves or not. This
motivates to completely devote this section to the study of Lie derivatives. The
section begins with the geometrical description of the Lie derivative of a vector field.
The result will then be generalized to tensors of higher ranks. The Lie derivative
of the differential forms is also studied. At the end, this new differential operator is
represented in a more sophisticated and abstract form by introducing what is known
as commutator. This will help address more aspects of the problem. For a more
detailed account on Lie derivatives, see, e.g., Helgason [45] and Fecko [46]. See also
the older classic work of Cartan [47].
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9.8.1 Lie Derivative of Vector Fields

Recall that the covariant derivative relied on the concept of parallel transport. The
different tangent planes in this technique were related through the Christoffel sym-
bols which themselves were determined from the metric coefficients. The covariant
differentiation thus essentially relies on defining the metric coefficients. In contrary,
there is no need to define themetric coefficients to compute the Lie derivative of a ten-
sor field. It basically requires a simpler structure which relies on primary geometric
objects associated with given vector fields. This is demonstrated in the following.

Any smooth vector field determines a family of curves called flow lines (or field
linesor streamlinesor integral curvesor trajectories). It canbe shown that such curves
do exist and are unique. The flow lines of a vector field constitute a congruence.
This means that there is only one curve passing through a point on a manifold. The
vectors of a vector field are always tangent to the corresponding integral curves.
Indeed, a vector field represents the velocity field of a particle moving along the
resulting integral curves. Let u = u 1a1 + u 2a2 be a given vector field. Further,
let x = x̂ s

(
t1 (λ) , t2 (λ)

)
be a parametrized surface curve whose tangent vector is

written by a λ = (
dt1/dλ

)
a1 + (

dt2/dλ
)
a2. Then, the integral curves tα (λ) of the

vector field u are obtained by solving the following system of ordinary differential
equations

dt1

dλ
= u 1

(
t1, t2

)
,

dt2

dλ
= u 2

(
t1, t2

)
. (9.539)

See Fig. 9.31 for a geometrical interpretation. The goal is now to examine that
whether the flow lines of two given smooth vector fields on the tangent spaces of a
two-dimensional manifold can properly form coordinate curves or not. This will be
determined by the technique of Lie derivative described below.

The Lie derivative of a vector field is illustrated in Fig. 9.32. Let u = uαaα

be a smooth vector field whose integral curves are denoted by tθ (λ). Further, let
ĥ = ĥαaα be another smooth vector field with corresponding integral curves tθ (μ).
Consider a point P whose coordinates are denoted by

(
t1P , t2P

)
. The tangent vectors

passing through this point are denoted by uα
P := uα

(
t1P , t2P

)
and ĥα

P := ĥα
(
t1P , t2P

)
.

Suppose that a particle at P moves along the direction of flow of u to Q whose
coordinates are given by

tθQ = tθP + u θ
PΔλ . (9.540)

In this expression, the vector u θ
PΔλ = tθQ − tθP , relating the original position of that

particle at P to its current position at Q, is called the displacement vector. The
tangent vector ĥα

Q := ĥα
(
t1Q, t2Q

)
passing through Q can be expressed in terms of

ĥα
P and its partial derivatives via the following first-order Taylor series expansion

ĥα
Q = ĥα

P + ∂ ĥα

∂tθ

∣∣∣∣
∣
P

(
u θ
PΔλ

)
. ←− see (6.24)–(6.25) (9.541)
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Fig. 9.31 Flow lines

Fig. 9.32 Lie derivative

At this stage, one can recognize another point T with

tθT = tθP + u θ
PΔλ + ĥ θ

QΔμ . (9.542)

Suppose a particle at P is displaced in the direction of flow of ĥ to R whose coordi-
nates are given by

tθR = tθP + ĥ θ
PΔμ . (9.543)

Denoting by uα
R := uα

(
t1R, t2R

)
the tangent vector passing through R, one can write
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uα
R = uα

P + ∂ uα

∂tθ

∣∣
∣∣
P

(
ĥ θ
PΔμ

)
. (9.544)

Then, one can identify a point S with

tθS = tθP + ĥ θ
PΔμ + u θ

RΔλ . (9.545)

Notice that the tail of ΔμĥP has been displaced from P to Q while its tip has
moved from R to S. Indeed, the given vector field u defines such a special way of
transforming the other vector field ĥ. The resulting vector, denoted here by ĥP→Q ,
basically represents the so-called push-forward of ĥ from P to Q. One then has

ĥα
P→Q = tαS − tαQ

Δμ
= ĥα

PΔμ + uα
RΔλ − uα

PΔλ

Δμ
. (9.546)

or, using (9.544),18

ĥα
P→Q = ĥα

P + ∂ uα

∂tθ

∣∣∣∣
P

(
ĥ θ
PΔλ

)
. (9.547)

It is worth mentioning that the subtraction ĥQ − ĥP cannot simply be decomposed

as
(
ĥα
Q − ĥα

P

)
aα due to the different bases of vectors. Indeed, the above procedure

was followed to provide a consistent subtraction for differentiation. Notice that ĥQ

and ĥP→Q are now in the same tangent plane and, therefore, they can be expressed
with respect to the basis vectors at Q. The vector difference of these two vectors is
then given by

ĥQ − ĥP→Q =
(
ĥα
Q − ĥα

P→Q

)
aα . (9.548)

18 The result (9.547) can be obtained in an alternative way using an infinitesimal coordinate
transformation. This is demonstrated for the interested reader in the following.

Denoting by ĥα
(
t1, t2

)
and ¯̂h α

(
t̄ 1, t̄ 2

)
the old and new components of ĥ, respectively, the

vector transformation law reads

¯̂h α
(
t̄ 1, t̄ 2

)
= ∂ t̄ α

∂tθ
ĥ θ

(
t1, t2

)
,

where t̄ α = tα + uα
(
t1, t2

)
Δλ. It follows that

∂ t̄ α

∂tθ
ĥ θ = ∂

(
tα + uαΔλ

)

∂tθ
ĥ θ = δα

θ ĥ θ + ∂ uα

∂tθ
Δλ ĥ θ = ĥα + ∂ uα

∂tθ
ĥ θΔλ .

Thus,
¯̂h α

(
t̄ 1, t̄ 2

)
= ĥα

(
t1, t2

)
+ ∂ uα

(
t1, t2

)

∂tθ
ĥ θ

(
t1, t2

)
Δλ .

In comparison with (9.547), one should realize that ¯̂h α
(
t̄ 1, t̄ 2

)
presents ĥα

P→Q

(
t1Q , t2Q

)
and

ĥα
(
t1, t2

)
is simply ĥα

(
t1P , t2P

)
.
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This helps define the Lie derivative of ĥ with respect to u as

Luĥ := lim
Δλ→0

ĥQ − ĥP→Q

Δλ
or Lu ĥ

α := lim
Δλ→0

ĥα
Q − ĥα

P→Q

Δλ
. (9.549)

Using (9.541), (9.547) and (9.549), the Lie derivative of a vector at an arbitrary point
can finally be represented according to

Luĥ =
(

u θ ∂ ĥα

∂tθ
− ĥ θ ∂ uα

∂tθ

)

aα or Lu ĥ
α = u θ ∂ ĥα

∂tθ
− ĥ θ ∂ uα

∂tθ
. (9.550)

With the aid of (9.92)2 and (9.128), this expression can be rephrased as

Lu ĥ
α = u θ

(
ĥα

∣∣∣
θ

)
− ĥ θ

(
uα

∣∣
θ

)
. (9.551)

As can be seen from (9.550) and (9.551), the partial derivative can simply be replaced
by the covariant differentiation in the technique of Lie derivative. And this holds true
for tensors of other ranks.

In the following, some important properties of the technique of Lie derivative are
introduced. ✾

Let α and β be two arbitrary constants. Further, let u, v and w be three smooth
vector fields. Then,

Lu (αv + βw) = αLuv + βLuw

L(αu+βv)w = αLuw + βLvw

}

. (9.552)

As can be seen, the Lie derivative is eventually a bilinear map.
The Lie derivative of a smooth vector field with respect to itself trivially vanishes:

Luu = 0 . (9.553)

The Lie derivative of a smooth vector field is skew-symmetric, that is,

Luĥ = −Lĥu . (9.554)

Any three smooth vector fields u, v and w satisfy the so-called Jacobi identity

LvLw uα + LwLu v
α + LuLv w

α = 0 , (9.555)
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since, by definition,

LvLw uα = Lv
[
Lw uα

] = vθ ∂

∂tθ
[
Lw uα

] − [
Lw u θ

] ∂ vα

∂tθ

= vθ ∂

∂tθ

[
wρ ∂ uα

∂tρ
− uρ ∂ wα

∂tρ

]
−

[
wρ ∂ u θ

∂tρ
− uρ ∂ wθ

∂tρ

]
∂ vα

∂tθ

= vθ ∂ wρ

∂tθ
∂ uα

∂tρ + vθ wρ ∂2 uα

∂tθ ∂tρ − vθ ∂ uρ

∂tθ
∂ wα

∂tρ

− vθ uρ ∂2 wα

∂tθ ∂tρ − wρ ∂ u θ

∂tρ
∂ vα

∂tθ + uρ ∂ wθ

∂tρ
∂ vα

∂tθ , (9.556)

and, in a similar manner,

LwLu v
α = wρ ∂

∂tρ

[
u θ ∂ vα

∂tθ
− vθ ∂ uα

∂tθ

]
−

[
u θ ∂ vρ

∂tθ
− vθ ∂ uρ

∂tθ

]
∂ wα

∂tρ

= wρ ∂ u θ

∂tρ
∂ vα

∂tθ + wρ u θ ∂2 vα

∂tρ∂tθ − wρ ∂ vθ

∂tρ
∂ uα

∂tθ

− wρ vθ ∂2 uα

∂tρ∂tθ − u θ ∂ vρ

∂tθ
∂ wα

∂tρ + vθ ∂ uρ

∂tθ
∂ wα

∂tρ , (9.557a)

LuLv w
α = u θ ∂

∂tθ

[
vρ ∂ wα

∂tρ
− wρ ∂ vα

∂tρ

]
−

[
vρ ∂ wθ

∂tρ
− wρ ∂ vθ

∂tρ

]
∂ uα

∂tθ

= u θ ∂ vρ

∂tθ
∂ wα

∂tρ + u θ vρ ∂2 wα

∂tθ ∂tρ − u θ ∂ wρ

∂tθ
∂ vα

∂tρ

− u θ wρ ∂2 vα

∂tθ ∂tρ − vρ ∂ wθ

∂tρ
∂ uα

∂tθ + wρ ∂ vθ

∂tρ
∂ uα

∂tθ , (9.557b)

having in mind that the partial differentiation has the commutative property and the
dummy indices can be renamed.

Similarly to the covariant derivative, the Lie derivative does not have the commu-
tative property in general. Its noncommutativity is expressed as

LuLv ĥ
α − LvLu ĥ

α = LLuv ĥ
α , (9.558)



570 9 Differential Geometry of Surfaces and Curves

where

LLuv ĥ
α = [

Lu v
θ
] ∂ ĥα

∂tθ
− ĥ θ ∂

∂tθ
[
Lu v

α
]

= uρ ∂ vθ

∂tρ
∂ ĥα

∂tθ
− vρ ∂ u θ

∂tρ
∂ ĥα

∂tθ
− ĥ θ ∂ uρ

∂tθ
∂ vα

∂tρ

− ĥ θ uρ ∂2 vα

∂tθ ∂tρ
+ ĥ θ ∂ vρ

∂tθ
∂ uα

∂tρ
+ ĥ θ vρ ∂2 uα

∂tθ ∂tρ
. (9.559)

Recall from (9.172a) that the object ∂ ĥα/∂tβ was not a tensorial variable. By the
definition (9.549), its Lie derivative represents

Lu
∂ ĥα

∂tβ
= ∂ u θ

∂tβ
∂ ĥα

∂tθ
+ u θ ∂2 ĥα

∂tβ∂tθ

− ∂ ĥ θ

∂tβ
∂ uα

∂tθ
− ĥ θ ∂2 uα

∂tβ∂tθ
. ↖ the proof is given

in Exercise 9.24 (9.560)

This is exactly the partial differentiation of the Lie derivative of ĥα . And this helps
establish the commutative property

Lu

(
∂ ĥα

∂tβ

)

=
∂
(
Lu ĥα

)

∂tβ
. (9.561)

It is important to note thatLu ĥα is a vector but its partial differentiation, in general,
is not a vector. ✾

Recall from (9.140)1 that the parallel transport of ĥ along u was represented by

ĥ
∣∣∣
u

= 0. In a similar manner, a smooth vector field ĥα has been Lie transported (or

Lie dragged) with respect to u if

Lu ĥ
α = 0 . (9.562)

Consider a coordinate system whose coordinate curves are eventually the flow lines
of its basis vectors. Suppose that u = a1 and ĥ = a2. One can then immediately
deduce that

La1a2 = 0 . (9.563)

This means that the tangent vectors of a coordinate system are always Lie transported
along the coordinate curves. In other words, the coordinate lines of a coordinate
system remain always closed.19 This represents a major characteristic of a coordinate

19 Suppose that the integral curves in Fig. 9.32 were the coordinate curves of a coordinate system.
In this case, there will be no discrepancy between the points and, therefore, the points S and T
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system. But Luĥ does not vanish in general for arbitrary smooth vector fields. This
means that the points S and T in Fig. 9.32 should not be identical in general. As a
result, a gap may appear. When such a gap exists, the resulting integral curves will
not be closed. That is why the Lie derivative of a vector field in the direction of
flow of another vector field measures the failure of the resulting integral curves to
be properly closed.

As a simple example, let ĥ = aα . Its Lie derivative with respect to u then takes
the following form

Luaα = −∂ uβ

∂tα
aβ . (9.564)

The Lie derivative of the smooth scalar function h̄
(
t1, t2

)
with respect to the vector

field u is defined to be its directional derivative:

Luh̄ = Duh̄ = ∂ h̄

∂x
· u = ∂ h̄

∂tθ
u θ = ∂ h̄

∂tθ
dtθ

dλ
= dh̄

dλ
, (9.565)

where (6.11b)3, (9.33)1, (9.80)1, (9.220)2 and (9.539) along with the chain rule of
differentiation have been used. Now, the Lie transport of the scalar function h̄ is
indicated by

Luh̄ = 0 . (9.566)

Let h̄1 and h̄2 be two smooth scalar functions. Then, one can readily verify that the
Lie derivative of their product satisfies

Lu
(
h̄1h̄2

) = (
Luh̄1

)
h̄2 + h̄1

(
Luh̄2

)
. ←− see (9.585) (9.567)

Moreover, considering ĥα as a scalar and aα as a vector, the Lie derivative of the
object ĥ = ĥαaα satisfies the product rule in the sense that

Luĥ =
(
Lu ĥ

α
)
aα + ĥα (Luaα)

from=====
(9.565)

(

u θ ∂ ĥα

∂tθ

)

aα + ĥα (Luaα)

from=====
(9.564)

u θ ∂ ĥα

∂tθ
aα + ĥα

(
−∂ uβ

∂tα
aβ

)

by renaming===========
the dummy indices

(

u θ ∂ ĥα

∂tθ
− ĥ θ ∂ uα

∂tθ

)

aα . ←− see (9.138) (9.568)

should be identical. This means that a particle can freely move a distanceΔλ from P to Q followed
by a distanceΔμ to the point S. Now, it can move a distanceΔλ from S to R followed by a distance
Δμ to arrive at its original position. Since there does not exist any gap between the points, the four
points P , Q, S and R define a parallelogram.
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Hint: It is worthwhile to mention that the result (9.550) can also be obtained by
means of the so-called pull-back operation. In this case, one needs to transport the
smooth vector ĥ from Q to P . Denoting by ĥQ→P the pull-back of ĥ from Q to P ,
the Lie derivative (9.549)1 now translates to

Luĥ := lim
Δλ→0

ĥQ→P − ĥP

Δλ
or Lu ĥ

α := lim
Δλ→0

ĥα
Q→P − ĥα

P

Δλ
. (9.569)

In the following, the goal is to compute the Lie derivative of a covector. ❤

9.8.2 Lie Derivative of Covector Fields

By constructing the scalar function h̄ = ĥα vα , one can use (9.565)3 along with
product rule of differentiation to represent

Luh̄ =
∂
(
ĥα vα

)

∂tθ
u θ = u θ ∂ ĥα

∂tθ vα + u θ ∂ vα

∂tθ
ĥα . (9.570)

Having in mind (9.550)2, the demand for satisfying the product rule then implies that

Luh̄ =
(
Lu ĥ

α
)
vα + ĥα

(
Lu vα

)

= u θ ∂ ĥα

∂tθ vα − ĥ θ ∂ uα

∂tθ
vα + ĥα

(
Lu vα

)
. (9.571)

Comparing (9.570)2 and (9.571)2 now reveals

(
Lu vα

)
ĥα = u θ ∂ vα

∂tθ
ĥα + vθ

∂ u θ

∂tα
ĥα .

The fact that ĥα is entirely arbitrary finally leads to the desired result

Lu ĥα = u θ ∂ ĥα

∂tθ
+ ĥ θ

∂ u θ

∂tα

note that Luĥ =
(
uθ ∂ ĥα

∂tθ
+ ĥθ

∂ uθ

∂tα

)
aα

, (9.572)

which can be rephrased, using (9.156), as

Lu ĥα = u θ
(
ĥα

∣
∣∣
θ

)
+ ĥ θ

(
u θ

∣∣
α

)
. ←− see (9.551) ❤ (9.573)
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Let ĥ = aα . Then, the Lie derivative of a surface contravariant basis vector with
respect to an arbitrary smooth vector field u takes the form

Luaα = ∂ uα

∂tβ
aβ . ←− see (9.564) (9.574)

Consistent with (9.568), one will have

Luĥ =
(
Lu ĥα

)
aα + ĥα (Luaα)

from=====
(9.565)

(

u θ ∂ ĥα

∂tθ

)

aα + ĥα (Luaα)

from=====
(9.574)

u θ ∂ ĥα

∂tθ
aα + ĥα

(
∂ uα

∂tβ
aβ

)

by renaming===========
the dummy indices

(

u θ ∂ ĥα

∂tθ
+ ĥ θ

∂ u θ

∂tα

)

aα . (9.575)

9.8.3 Space Symmetry and Killing Vector

Let u be a given smooth vector field which produces the integral curves tθ (λ) as
shown in Fig. 9.33. Consider a point P at tθ and an infinitesimally nearby point
Q corresponding to tθ + dtθ . Now, suppose that P flows along u to P̄ with the

Fig. 9.33 Space symmetry
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coordinates tθ + u θΔλ. Similarly, suppose that Q flows along this vector field to
Q̄ with the coordinates

(
tθ + u θΔλ

) + d
(
tθ + u θΔλ

)
. The (square of) distance

between P and Q is then given by

ds2 = aαβ

(
tθ
)
dtαdtβ . (9.576)

In a similar manner, the distance between P̄ and Q̄ takes the form

ds̄2 = aαβ

(
tθ + u θΔλ

)
d
(
tα + uαΔλ

)
d
(
tβ + uβΔλ

)
. (9.577)

Space is said to be symmetric under the action of a smooth vector field if any network
of distances remains unchanged when points move along the flow lines of that vector
field. This is indicated by

�����aαβdt
αdtβ

by using===========
(9.576) and (9.577)

aαβ

(
tθ + u θΔλ

)
d
(
tα + uαΔλ

)
d
(
tβ + uβΔλ

)

by using the first-order=============
Taylor series expansion

[
aαβ + ∂aαβ

∂tθ
u θΔλ

] [
dtα

+∂ uα

∂tρ
dtρΔλ

] [
dtβ + ∂ uβ

∂tφ
dtφΔλ

]

by neglecting=============
the higher-order terms

aαβdt
αdtβ +

[
u θ ∂aαβ

∂tθ
dtαdtβ

+aαβ

∂ uβ

∂tφ
dtαdtφ + aαβ

∂ uα

∂tρ
dtρdtβ

]
Δλ

by renaming===========
the dummy indices �����aαβdt

αdtβ +
[
u θ ∂aαβ

∂tθ

+aαθ

∂ u θ

∂tβ
+ aθβ

∂ u θ

∂tα

]
dtαdtβΔλ .

The fact that Δλ is arbitrary along with dtα �= 0 then implies that

u θ ∂aαβ

∂tθ
+ aαθ

∂ u θ

∂tβ
+ aθβ

∂ u θ

∂tα
= 0 or, by (9.586b), Luaαβ = 0 . (9.578)

This important result states that when the Lie derivative of a metric with respect to
a smooth vector field vanishes, the geometry described by that metric is symmetric
along the integral curves of such a vector field. And the special vector which defines
such a symmetry is referred to as the killing vector. In the literature, it is often denoted
by k.

Suppose that the killing vector is a basis vector, say k = a1. The symmetry con-
dition (9.578) then takes the following form
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La1aαβ = ∂aαβ

∂t1
= 0 . (9.579)

And this helps conclude thatwhen the covariantmetric coefficients are independent of
a coordinate variable, the corresponding basis vector then represents a killing vector
field. But, one should note that if the covariant metric coefficients do depend on one
of the coordinates, the space can still be symmetric under infinitesimal translations
along the corresponding coordinate lines.

9.8.4 Lie Derivative of Higher-Order Tensor Fields

Themain goal here is to compute the Lie derivative of a second-order tensor field. The
results will then be extended to provide the Lie derivative of the surface fourth-order
Riemann-Christoffel curvature tensor. The Lie derivative of the Christoffel symbols
will also be addressed. And this helps establish some important properties.

To compute the Lie derivative of the tensor H̃ αβ , one may construct the scalar
function h̄ = vα H̃ αβ wβ . Using (9.565)3 along with the product rule of differenti-
ation, the Lie derivative of this scalar function becomes

Luh̄ =
∂
(
vα H̃ αβ wβ

)

∂tθ
u θ

= u θ ∂ vα

∂tθ H̃ αβ wβ + u θ ∂ H̃ αβ

∂tθ
vα wβ + u θ ∂ wβ

∂tθ vα H̃ αβ . (9.580)

Having in mind (9.550)2 and (9.572)1, the demand for satisfying the product rule
then helps represent

Luh̄ = (
Lu vα

)
H̃ αβ wβ +

(
Lu H̃ αβ

)
vα wβ + (

Lu wβ

)
vα H̃ αβ

= u θ ∂ vα

∂tθ H̃ αβ wβ + vθ

∂ u θ

∂tα
H̃ αβ wβ +

(
Lu H̃ αβ

)
vα wβ

+ u θ ∂ wβ

∂tθ vα H̃ αβ + wθ

∂ u θ

∂tβ
vα H̃ αβ . (9.581)

From (9.580)2 and (9.581)2, it follows that

(
Lu H̃ αβ

)
vα wβ = u θ ∂ H̃ αβ

∂tθ
vα wβ − H̃ αθ ∂ uβ

∂tθ
vα wβ − H̃ θβ ∂ uα

∂tθ
vα wβ .



576 9 Differential Geometry of Surfaces and Curves

Considering the fact that vα and wβ are arbitrary chosen, one can finally obtain

Lu H̃ αβ = u θ ∂ H̃ αβ

∂tθ
− H̃ αθ ∂ uβ

∂tθ
− H̃ θβ ∂ uα

∂tθ
. (9.582)

Note that this result could also be attained by constructing vα = H̃ αβ wβ . This is
left as an exercise to be undertaken by the ambitious reader.

By following similar procedures which led to (9.582), one can arrive at

Lu H̃ α
.β = u θ

∂ H̃ α
.β

∂tθ
+ H̃ α

.θ

∂ u θ

∂tβ
− H̃ θ

.β

∂ uα

∂tθ
, (9.583a)

Lu H̃ .β
α = u θ ∂ H̃ .β

α

∂tθ
− H̃ .θ

α

∂ uβ

∂tθ
+ H̃ .β

θ

∂ u θ

∂tα
, (9.583b)

Lu H̃ αβ = u θ ∂ H̃ αβ

∂tθ
+ H̃ αθ

∂ u θ

∂tβ
+ H̃ θβ

∂ u θ

∂tα
. (9.583c)

It is now easy to see that

Lu H̃ αβ = u θ
(
H̃ αβ

∣∣∣
θ

)
− H̃ αθ

(
uβ

∣∣
θ

) − H̃ θβ
(
uα

∣∣
θ

)
, (9.584a)

Lu H̃ α
.β = u θ

(
H̃ α

.β

∣∣∣
θ

)
+ H̃ α

.θ

(
u θ

∣∣
β

)
− H̃ θ

.β

(
uα

∣∣
θ

)
, (9.584b)

Lu H̃ .β
α = u θ

(
H̃ .β

α

∣∣∣
θ

)
− H̃ .θ

α

(
uβ

∣∣
θ

) + H̃ .β

θ

(
u θ

∣∣
α

)
. (9.584c)

Lu H̃ αβ = u θ
(
H̃ αβ

∣∣
∣
θ

)
+ H̃ αθ

(
u θ

∣∣
β

)
+ H̃ θβ

(
u θ

∣∣
α

)
. (9.584d)

Suppose that the tensor product v ⊗ w is known in its contravariant components.
Then, using (9.582),

Lu
(
vα wβ

) = u θ ∂ vα

∂tθ
wβ + u θ vα ∂ wβ

∂tθ
− vα wθ ∂ uβ

∂tθ
− vθ wβ ∂ uα

∂tθ

=
(
u θ ∂ vα

∂tθ
− vθ ∂ uα

∂tθ

)
wβ + vα

(
u θ ∂ wβ

∂tθ
− wθ ∂ uβ

∂tθ

)

= (
Lu v

α
)
wβ + vα

(
Lu w

β
)

.

Thus,

Lu (v ⊗ w) = (Luv) ⊗ w + v ⊗ (Luw) . ←− see (9.594) (9.585)

Using (9.17)3, (9.24)3, (9.160)1, (9.164)1, (9.164)3, (9.165)1, (9.582), (9.583c),
(9.584a) and (9.584d), the Lie derivative of the surface metric coefficients will rep-
resent
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Lua
αβ = u θ ∂aαβ

∂tθ
− aαθ ∂ uβ

∂tθ
− aθβ ∂ uα

∂tθ

= −aαθ
(
uβ

∣
∣
θ

) − aθβ
(
uα

∣
∣
θ

)

= − uα
∣∣β − uβ

∣∣α , (9.586a)

Luaαβ = u θ ∂aαβ

∂tθ
+ aαθ

∂ u θ

∂tβ
+ aθβ

∂ u θ

∂tα

= aαθ

(
u θ

∣∣
β

)
+ aθβ

(
u θ

∣∣
α

)

= uα

∣∣
β

+ uβ

∣∣
α

. (9.586b)

It is not then difficult to see that

Luδ
α
β = 0 . (9.587)

In accord with (9.557b), the second-order Lie derivative of a tensor is given by

LuLv H̃
αβ = u θ ∂

∂tθ

[
Lv H̃

αβ
]

−
[
Lv H̃

αθ
] ∂ uβ

∂tθ
−

[
Lv H̃

θβ
] ∂ uα

∂tθ

= u θ ∂ vρ

∂tθ
∂ H̃ αβ

∂tρ
+ u θ vρ ∂2 H̃ αβ

∂tθ ∂tρ
− u θ ∂ H̃ αρ

∂tθ
∂ vβ

∂tρ

− u θ H̃ αρ ∂2 vβ

∂tθ ∂tρ
− u θ ∂ H̃ ρβ

∂tθ
∂ vα

∂tρ
− u θ H̃ ρβ ∂2 vα

∂tθ ∂tρ

− vρ ∂ H̃ αθ

∂tρ
∂ uβ

∂tθ
+ H̃ αρ ∂ vθ

∂tρ
∂ uβ

∂tθ
+ H̃ ρθ ∂ vα

∂tρ
∂ uβ

∂tθ

− vρ ∂ H̃ θβ

∂tρ
∂ uα

∂tθ
+ H̃ θρ ∂ vβ

∂tρ
∂ uα

∂tθ
+ H̃ ρβ ∂ vθ

∂tρ
∂ uα

∂tθ
. (9.588)

The identity (9.558) can now be extended to

LuLv H̃
αβ − LvLu H̃ αβ = LLuv H̃

αβ , (9.589)

where

LLuv H̃
αβ = [

Lu v
θ
] ∂ H̃ αβ

∂tθ
− H̃ αθ ∂

∂tθ
[
Lu v

β
] − H̃ θβ ∂

∂tθ
[
Lu v

α
]

= uρ ∂ vθ

∂tρ
∂ H̃ αβ

∂tθ
− vρ ∂ u θ

∂tρ
∂ H̃ αβ

∂tθ
− H̃ αθ ∂ uρ

∂tθ
∂ vβ

∂tρ

− H̃ αθ uρ ∂2 vβ

∂tθ ∂tρ
+ H̃ αθ ∂ vρ

∂tθ
∂ uβ

∂tρ
+ H̃ αθ vρ ∂2 uβ

∂tθ ∂tρ
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− H̃ θβ ∂ uρ

∂tθ
∂ vα

∂tρ
− H̃ θβ uρ ∂2 vα

∂tθ ∂tρ
+ H̃ θβ ∂ vρ

∂tθ
∂ uα

∂tρ

+ H̃ θβ vρ ∂2 uα

∂tθ ∂tρ
. (9.590)

An extension of (9.561) is

Lu

(
∂ H̃ αβ

∂tθ

)

=
∂
(
Lu H̃ αβ

)

∂tθ
. (9.591)

The Lie derivative of a fourth-order tensor can be computed by extending the results
(9.582)–(9.583c). For instance, the Lie derivative of the Riemann-Christoffel curva-
ture tensor (9.199) is given by

Lu R
α . . .
. βγ δ = u θ

∂ Rα . . .
. βγ δ

∂tθ
+ Rα . . .

. θγ δ

∂ u θ

∂tβ
+ Rα . . .

. βθδ

∂ u θ

∂tγ

+ Rα . . .
. βγ θ

∂ u θ

∂t δ
− Rθ . . .

. βγ δ

∂ uα

∂tθ
, (9.592)

or, using (9.128) and (9.215a),

Lu R
α . . .
. βγ δ = u θ

(
Rα . . .

. βγ δ

∣∣
θ

)
+ Rα . . .

. θγ δ

(
u θ

∣∣
β

)
+ Rα . . .

. βθδ

(
u θ

∣∣
γ

)

+ Rα . . .
. βγ θ

(
u θ

∣∣
δ

) − Rθ . . .
. βγ δ

(
uα

∣∣
θ

)
. (9.593)

It is then a simple exercise to verify that

Lu (A ⊗ B) = (LuA) ⊗ B + A ⊗ (LuB) . ←− see (9.567) (9.594)

Although the Lie derivative of a tensor field absolutely delivers a tensor field, the Lie
derivative of some special quantities which are nontensorial objects may still act as
tensors. A well-known example will be the surface Christoffel symbols whose Lie
derivative is given by

Lu�
α
βγ = ∂2 uα

∂tβ∂tγ
+ u θ

∂�α
βγ

∂tθ
+ �α

βθ

∂ u θ

∂tγ
+ �α

θγ

∂ u θ

∂tβ

− �θ
βγ

∂ uα

∂tθ
. ↖ the proof is given in Exercise 9.24 (9.595)

Using (9.168a), (9.169a) and (9.199), this expression can be rewritten as

Lu�
α
βγ = uα

∣∣
βγ

− u θ Rα . . .
. βγ θ . (9.596)
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Some identities can now be established. For instance,

Lu

(
ĥα

∣∣∣
β

)
−

(
Lu ĥ

α
)∣∣∣

β
︸ ︷︷ ︸

:= LHS

= ĥ θLu�
α
βθ︸ ︷︷ ︸

:= RHS

, (9.597)

since

LHS
by using the product rule=================

along with (9.551) and (9.584b)
u θ

(
ĥα

∣∣∣
βθ

)
+ ������ĥα

∣∣∣
θ

(
u θ

∣∣
β

)
− ������

ĥ θ
∣∣∣
β

(
uα

∣∣
θ

)

− ������u θ
∣∣
β

(
ĥα

∣∣∣
θ

)
− u θ

(
ĥα

∣∣∣
θβ

)
+ ������

ĥ θ
∣∣∣
β

(
uα

∣∣
θ

) + ĥ θ
(
uα

∣∣
θβ

)

from=====
(9.596)

u θ

(
ĥα

∣∣∣
βθ

− ĥα
∣∣∣
θβ

)
+ ĥ θ

(
Lu�

α
θβ + uρ Rα . . .

. θβρ

)

from============
(9.201a) and (9.207)

− ĥρ u θ Rα . . .
. ρβθ + ĥ θLu�

α
θβ + ĥ θ uρ Rα . . .

. θβρ

by renaming===========
the dummy indices ��������������

− ĥ θ uρ Rα . . .
. θβρ + ĥ θLu�

α
θβ + ��������������ĥ θ uρ Rα . . .

. θβρ

from====
(9.92)

RHS .

Moreover,
(
Lu�

α
βδ

)∣∣
γ

− (
Lu�

α
βγ

)∣∣
δ︸ ︷︷ ︸

:= LHS

= Lu R
α . . .
. βγ δ︸ ︷︷ ︸

:= RHS

, (9.598)

because

LHS
by using the product rule===============

along with (9.596)

(
uα

∣∣
β

)∣∣∣
δγ

−
(
uα

∣∣
β

)∣∣∣
γ δ

−
[
u θ

∣∣
γ
Rα . . .

. βδθ − u θ
∣∣
δ
Rα . . .

. βγ θ

]
− u θ

[
Rα . . .

. βδθ

∣∣
γ

− Rα . . .
. βγ θ

∣∣
δ

]

from============
(9.207) and (9.212a)

u θ
∣∣
β
Rα . . .

. θγ δ − uα
∣∣
θ
Rθ . . .

. βγ δ

−
[
u θ

∣∣
γ
Rα . . .

. βδθ − u θ
∣∣
δ
Rα . . .

. βγ θ

]
− u θ

[
Rα . . .

. βδθ

∣∣
γ

+ Rα . . .
. βθγ

∣∣
δ

]

from===========
(9.207) and (9.214)

u θ
∣∣
β
Rα . . .

. θγ δ − uα
∣∣
θ
Rθ . . .

. βγ δ

+ u θ
∣∣
γ
Rα . . .

. βθδ + u θ
∣∣
δ
Rα . . .

. βγ θ + Rα . . .
. βγ δ

∣∣
θ
u θ

from=====
(9.593)

RHS .
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9.8.5 Lie Derivative of Differential Forms

Algebra and calculus of differential forms have briefly been studied in the previous
chapter. As discussed, they have important applications in mathematics as well as
mathematical physics and can be viewed as a complement to vector (or tensor)
analysis. The goal here is to compute the Lie derivative of such useful mathematical
creatures.

Recall that the simplest case of differential forms was a differential 0-form which
represented a scalar function. For the two-dimensional differentiable manifold
under consideration, it represents a function of the Gaussian coordinates.

Denoting by
0
ω = 0

ω
(
t1, t2

)
a differential 0-form, its total differential is readily

given by

d
0
ω = ∂

0
ω

∂tα
dtα . ←− see (8.78) (9.599)

The object ∂
0
ω/∂tα is basically a covector. In accord with (9.572), its Lie derivative

is defined by

Lu
∂
0
ω

∂tα
= u θ ∂2 0

ω

∂tθ ∂tα
+ ∂

0
ω

∂tθ
∂ u θ

∂tα
, (9.600)

or

Lu

(
d

0
ω
)

=
⎛

⎝ u θ ∂2 0
ω

∂tθ ∂tα
+ ∂

0
ω

∂tθ
∂ u θ

∂tα

⎞

⎠ dtα . (9.601)

Consistent with (9.574), the Lie derivative of the basis {dtα} takes the following form

Lu (dtα) = ∂ uα

∂tβ
dtβ = d uα . (9.602)

It is worth mentioning that the Lie derivativeLu commutes with the exterior deriva-
tive d for the smooth scalar function under consideration:

Lu

(
d

0
ω
)

= d
(
Lu

0
ω
)

, (9.603)

because

d
(
Lu

0
ω
)

by using======
(9.565)

d

⎛

⎝ u θ ∂
0
ω

∂tθ

⎞

⎠
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by using=========
the product rule

∂
0
ω

∂tθ
d u θ + u θd

⎛

⎝ ∂
0
ω

∂tθ

⎞

⎠

by using========
the chain rule

⎛

⎝ ∂
0
ω

∂tθ
∂ u θ

∂tα
+ u θ ∂2 0

ω

∂tα∂tθ

⎞

⎠ dtα

by using (9.601) having in mind that the=======================
partial derivative has commutative property

Lu

(
d

0
ω
)

.

Let
1
ω = 1

ωαdtα be a differential 1-form. Its exterior derivative is then given by

d
1
ω = d

1
ωα ∧ dtα = ∂

1
ωα

∂tβ
dtβ ∧ dtα = ∂

1
ωβ

∂tα
dtα ∧ dtβ . ←− see (8.80) (9.604)

Consistent with (9.583c), its Lie derivative is introduced as

Lu
∂

1
ωβ

∂tα
= u θ ∂2 1

ωβ

∂tθ ∂tα
+ ∂

1
ωθ

∂tα
∂ u θ

∂tβ
+ ∂

1
ωβ

∂tθ
∂ u θ

∂tα
, (9.605)

or

Lu

(
d

1
ω
)

=
⎛

⎝ u θ ∂2 1
ωβ

∂tθ ∂tα
+ ∂

1
ωθ

∂tα
∂ u θ

∂tβ
+ ∂

1
ωβ

∂tθ
∂ u θ

∂tα

⎞

⎠ dtα ∧ dtβ . (9.606)

In accord with (9.603), one can establish

Lu

(
d

1
ω
)

= d
(
Lu

1
ω
)

, (9.607)

since

d
(
Lu

1
ω
)

in light======
of (9.601)

d

⎛

⎝

⎛

⎝ u θ ∂
1
ωα

∂tθ
+ 1

ωθ

∂ u θ

∂tα

⎞

⎠ dtα

⎞

⎠

from=====
(9.604)

∂

∂tβ

⎛

⎝ u θ ∂
1
ωα

∂tθ
+ 1

ωθ

∂ u θ

∂tα

⎞

⎠ dtβ ∧ dtα

by using===============
the product and chain rules

⎛

⎝∂ u θ

∂tβ
∂

1
ωα

∂tθ
+ u θ ∂2 1

ωα

∂tβ∂tθ
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+∂
1
ωθ

∂tβ
∂ u θ

∂tα
+ 1

ωθ

∂2 u θ

∂tβ∂tα

⎞

⎠ dtβ ∧ dtα

in light======
of (2.79h)

⎛

⎝∂ u θ

∂tβ
∂

1
ωα

∂tθ
+ u θ ∂2 1

ωα

∂tβ∂tθ
+ ∂

1
ωθ

∂tβ
∂ u θ

∂tα

⎞

⎠ dtβ ∧ dtα

by renaming===========
the dummy indices

⎛

⎝∂ u θ

∂tα
∂

1
ωβ

∂tθ
+ u θ ∂2 1

ωβ

∂tα∂tθ
+ ∂

1
ωθ

∂tα
∂ u θ

∂tβ

⎞

⎠ dtα ∧ dtβ

by using (9.606) having in mind that the=======================
partial derivative has commutative property

Lu

(
d

1
ω
)

. (9.608)

Let
1
ω = 1

ωαdtα be a differential 1-form and ĥ = ĥαaα be a vector field. The Lie
derivative of their multiplication satisfies the product rule

Lu

(
1
ωĥ

)
=

(
Lu

1
ω
)
ĥ + 1

ω
(
Luĥ

)
, (9.609)

since

Lu

(
1
ωĥ

)
in light============

of (9.568) and (9.575)

(
Lu

1
ωα

)
dtαĥ + 1

ωα (Ludt
α) ĥ

+ 1
ω
(
Lu ĥ

α
)
aα + 1

ω ĥα (Luaα)

from===============
(9.564), (9.565) and (9.602)

⎛

⎝ u θ ∂
1
ωα

∂tθ

⎞

⎠ dtαĥ + 1
ωα

(
∂ uα

∂tβ
dtβ

)
ĥ

+ 1
ω

(

u θ ∂ ĥα

∂tθ

)

aα + 1
ω ĥα

(
−∂ uβ

∂tα
aβ

)

by renaming===========
the dummy indices

⎛

⎝

⎛

⎝ u θ ∂
1
ωα

∂tθ
+ 1

ωθ

∂ u θ

∂tα

⎞

⎠ dtα

⎞

⎠ ĥ

+ 1
ω

((

u θ ∂ ĥα

∂tθ
− ĥ θ ∂ uα

∂tθ

)

aα

)

from (9.550) and==========
in light of (9.601)

(
Lu

1
ω
)
ĥ + 1

ω
(
Luĥ

)
.

It is not then difficult to see that

Lu

(
1
ωH̃

)
=

(
Lu

1
ω
)
H̃ + 1

ω
(
LuH̃

)
. (9.610)
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The above results can consistently be extended to any space of higher dimension. In

this regard, let
k
ς be a differential k-form in an n-dimensional space having in mind

that 0 ≤ k ≤ n. The Lie derivative of
k
ς with respect o u is then defined by

Lu
k
ς =

(
Lu

k
ς i1i2···ik−1ik

)
d�i1 ∧ d�i2 ∧ · · · ∧ d�ik−1 ∧ d�ik , (9.611)

where

Lu
k
ς i1i2···ik−1ik = um ∂

k
ς i1i2···ik−1ik

∂�m
+ k

ςmi2···ik−1ik

∂ um

∂�i1

+ k
ς i1m···ik−1ik

∂ um

∂�i2
+ · · · + k

ς i1i2···ik−1m
∂ um

∂�ik
. (9.612)

Let
k
ς and

k
π be two differential k-forms in a space of dimension n. Further, let u, v

be two smooth vector fields and α, β be two constants. Then, one can readily verify
the following properties

Lu

(
α

k
ς + β

k
π
)

= αLu
k
ς + βLu

k
π , (9.613a)

Lu

(
k
ς ∧ k

π
)

=
(
Lu

k
ς
)

∧ k
π + k

ς ∧
(
Lu

k
π
)

, (9.613b)

Lu

(
d

k
ς
)

= d
(
Lu

k
ς
)

, (9.613c)

LuLv
k
ς − LvLu

k
ς = LLuv

k
ς . (9.613d)

9.8.6 Commutator

TheLie derivative of a vector field ĥwith respect to a vector fieldu is often introduced
by the so-called commutator (or Lie bracket) of these vectors:

[
u, ĥ

]
:= u

(
ĥ
)

− ĥ (u) . (9.614)

The key point to characterize the terms u
(
ĥ
)
(read as u acting on ĥ) and ĥ (u) is

that the vectors in differential geometry are basically derivative operators. In this
context, the covariant basis vectors are defined by

aα := ∂

∂tα
, (9.615)

and, accordingly,
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u := uα ∂

∂tα
, ĥ := ĥα ∂

∂tα
. (9.616)

The commutator of these two vectors then takes the form

[
u, ĥ

]
= u θ ∂

∂tθ

(
ĥα ∂

∂tα

)
− ĥ θ ∂

∂tθ

(
uα ∂

∂tα

)

= u θ ∂ ĥα

∂tθ
∂

∂tα
+ u θ ĥα ∂2

∂tθ ∂tα︸ ︷︷ ︸
= uθ ĥα ∂2

∂tα∂tθ

− ĥ θ ∂ uα

∂tθ
∂

∂tα
− ĥ θ uα ∂2

∂tθ ∂tα︸ ︷︷ ︸
= uθ ĥα ∂2

∂tα∂tθ

=
(

u θ ∂ ĥα

∂tθ
− ĥ θ ∂ uα

∂tθ

)
∂

∂tα
, (9.617)

or
[
u, ĥ

]α = u θ ∂ ĥα

∂tθ
− ĥ θ ∂ uα

∂tθ
. (9.618)

With the aid of (9.92)2, (9.128), (9.139)3 and (9.618), one can establish

[
u, ĥ

]
= ĥ

∣∣
∣
u

− u|ĥ . (9.619)

This result has schematically been illustrated in Fig. 9.34 (see also Fig. 9.32). The
interested reader should consult Hehl and Obukhov [48] for more details.

As an example, the bilinearity property (9.552) in this context reads

[u, αv + βw] = α [u, v] + β [u,w]

[αu + βv,w] = α [u,w] + β [v,w]

}

. (9.620)

As another example, consider the skew-symmetry property (9.554) which can now
be spelled out as

[
u, ĥ

]
= −

[
ĥ,u

]
and this immediately implies that [u,u] = 0 . (9.621)

The last example here regards the Jacobi identity (9.555) which now takes the fol-
lowing form

[v, [w,u]] + [w, [u, v]] + [u, [v,w]] = 0 . (9.622)
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Fig. 9.34 Commutator

9.9 Calculus of Moving Surfaces

So far the calculus of stationary curved surfaces has been studied wherein the sur-
face covariant derivative was the central differential operator which helped achieve
invariance (recall that the surface partial derivative was not an invariant operator
since, in general, it did not preserve the tensor property of its operands). However,
there are many applications in science and engineering, such as shape optimiza-
tion and mechanics of biological membranes, where the two-dimensional manifolds
basically represent deformable bodies which are moving in the ambient space. An
extension of tensor analysis to these dynamically deforming surfaces is thus required.
Indeed, the new discipline which characterizes the motion of surfaces is known as
the calculus of moving surfaces. The surface coordinates and an additional time (or,
in general, time-like) variable constitute the arguments of moving surface quantities.
As expected, the main issue in this new language is that the partial time derivative
does not provide tensors out of tensors and, therefore, a new derivative operator
needs to be established. For the sake of consistency, the ultimate desire is to establish
a differential operator possessing all properties of the surface covariant derivative.
Such an operator, called invariant time derivative, can be defined properly based
on a geometric approach without making any reference to coordinate systems. And
this guarantees its invariance. This section is thus devoted entirely to the analysis of
moving surfaces.
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The calculus of moving surfaces was originated by Hadamard [49] and then
extended over the years by several authors such as Thomas [50], Grinfeld [51],
Grinfeld [52] and Svintradze [53].

9.9.1 Mathematical Description of Moving Surfaces

A two-dimensional surface moving in the ambient space can be seen as a family of
surfaces. It may be described by the sufficiently smooth point function

x = x̂
(
�1,�2,�3

) = x̂ms
(
t, t1, t2

)
for which �i = �i

(
t, t1, t2

)
, (9.623)

where�i , i = 1, 2, 3, denote the ambient coordinates, tα, α = 1, 2, are the surface
coordinates and t presents time (or time-like) variable.

The ambient velocity of a particle is then defined by

v = ∂x
∂t

= lim
h→0

x̂ms
(
t + h, t1, t2

) − x̂ms
(
t, t1, t2

)

h
, (9.624)

and, in alignment with (9.10), the surface natural basis vectors are given by

aα = ∂x
∂tα

= lim
h→0

x̂ms
(
t, t1 + hδ1α, t2 + hδ2α

) − x̂ms
(
t, t1, t2

)

h
. (9.625)

Consequently, an infinitesimal change in the position vector takes the form

dx = vdt + aαdt
α . (9.626)

One can also write

v
by using======
(9.624)

∂x
∂t

by using (9.623) along===============
with applying the chain rule

∂x
∂�i

∂�i

∂t
from====
(5.3)

∂�i

∂t
gi . (9.627)

Considering the decompositions (5.64a) and (9.627)3, the ambient contravariant
(or natural) components of the velocity vector render

vi = ∂�i

∂t
. (9.628)

It is worthwhile to point out that the velocity is not a surface vector. The ambient
object v = v jg j should thus be expressed with respect to the ambient natural basis
{ai } as
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v = vαaα + ĉ n̂ with vα = Z̃α
j v

j , ĉ = v j n̂ j , (9.629)

where vα, α = 1, 2, denote the surface contravariant (or natural) components of
velocity, Z̃α

j is the shift tensor defined in (9.60) and ĉ represents the normal component
of velocity. This quantity measures the instantaneous velocity of the interface in the
normal direction and plays an important role in the calculus of moving surfaces (see
Fig. 9.35 for a geometrical interpretation).

In the following, it will be shown that the operator ∂/∂t does not preserve the tensor
property even for invariants. It will also be shown that the variant vi does not obey
the tensor transformation law while the normal component ĉ does obey (meaning
that it is an invariant quantity).

To beginwith, let h̄ = h̄
(
t, t1, t2

)
be a smooth scalar fieldwhich remains invariant

under a change of surface coordinates, i.e.

¯̄h (
t, t̄ 1, t̄ 2

) = h̄
(
t, t1, t2

)
. (9.630)

In this context, it makes sense to consider time-dependent changes of surface coor-
dinates:

t̄ α = t̄ α
(
t, t1, t2

)
, t α = tα

(
t, t̄ 1, t̄ 2

)
. ←− see (9.40) (9.631)

Consequently,

¯̄h (
t, t̄ 1, t̄ 2

) = h̄
(
t, t1

(
t, t̄ 1, t̄ 2

)
, t2

(
t, t̄ 1, t̄ 2

))
. (9.632)

Non-invariance of the partial time derivative of the given scalar field is then charac-
terized by the following relation

∂ ¯̄h
∂t

= ∂ h̄

∂t
tensorial part

+ ∂ h̄

∂tα
∂tα

∂t
nontensorial contribution

. (9.633)

One can now conclude that ∂ h̄/∂t only remains invariant under a time-independent
change of surface coordinates for which ∂tα/∂t = 0.

Next, let vi be the natural components of v in an old ambient coordinate system.
Further, let v̄ i be its contravariant components in a new ambient coordinate system.
They are given by

v̄ i = ∂�̄i

∂t
where �̄i

(
t, t̄ 1, t̄ 2

) = �̄i
(
�1 (Υ ) ,�2 (Υ ) ,�3 (Υ )

)
, (9.634)
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in which
� j (Υ ) = � j

(
t, t1

(
t, t̄ 1, t̄ 2

)
, t2

(
t, t̄ 1, t̄ 2

))
. (9.635)

The fact that ∂/∂t is not an invariant operator implies that the object vi cannot be a
tensor. Indeed, it transforms nontensorially according to

v̄ i = ∂�̄i

∂t
= ∂�̄i

∂� j

∂� j

∂t
+ ∂�̄i

∂� j

∂� j

∂tα
∂tα

∂t
= ∂�̄i

∂� j
v j + ∂�̄i

∂� j

∂� j

∂tα
∂tα

∂t

note that the tensor property is not preserved due to the development of ∂�̄i

∂� j
∂� j
∂tα

∂tα
∂t

. (9.636)

It is not then difficult to see that

v̄α = ∂ t̄ α

∂tβ
vβ

tensorial portion

+ ∂ t̄ α

∂tβ
∂tβ

∂t
nontensorial part

. (9.637)

Finally, let n̂ = ¯̂ni ḡ
i = n̂ igi be the ambient unit normal field to the surface whose

old and new components are tensorially related by

¯̂ni
from======

(5.105b)

∂�k

∂�̄i
n̂ k . (9.638)

By means of (5.56)4, (9.12)1, (9.47)1, (9.47)3, (9.636)3 and (9.638) along with the
replacement property of the Kronecker delta (and renaming the dummy index k to
i), one will have

v̄ i ¯̂ni = ∂�k

∂�̄i

∂�̄i

∂� j
v j n̂ k

︸ ︷︷ ︸
= δkj v

j n̂k = vk n̂k

+ ∂�k

∂�̄i

∂�̄i

∂� j
n̂ k

∂� j

∂tα
∂tα

∂t︸ ︷︷ ︸
= δkj n̂k Z

j
α

∂tα
∂t = n̂ j

(
g j · aα

)
∂tα
∂t = ( n̂ · aα) ∂tα

∂t = 0

= vi n̂ i . (9.639)

This result states that:

The normal component of the ambient velocity, ĉ = v · n̂ = vi n̂ i , will
remain invariant under a time-dependent change of surface coordi-
nates.
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9.9.2 Geometric Approach to Invariant Time Derivative

Consider a dynamically deforming surface S. Let St be the position of that surface
at time t and St+h be its position at nearby moment of time t + h as illustrated in
Fig. 9.35. Consider a point P on St with x (P) = x̂ms

(
t, t1, t2

)
. Further, consider

a point S on St+h with the same surface coordinates as the point P , i.e. x (S) =
x̂ms

(
t + h, t1, t2

)
. The relation (9.624)2 can then be written as

x (S) − x (P) ≈ hv . (9.640)

Now, with reference to Fig. 9.35, the goal is to identify two points, namely Q and
R, which are crucially important in formulating the invariant time differentiation.
When h is small enough, the projection of the ambient object hv onto the surface
natural basis vectors aα intersects St at the point Q whose coordinates are given by

x (Q) ≈ x (P) + h vαaα where vα = v · aα . (9.641)

This result helps realize that Q corresponds to
(
t, t1 + h v1, t2 + h v2

)
. Notice that

the angles PQS and PRS are approximately π/2 for sufficiently small amounts of
time (or time-like) increment. Consequently,

x (S) − x (R) ≈ x (Q) − x (P) , (9.642)

Fig. 9.35 Invariant time derivative
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or, using (9.641),
x (R) ≈ x (S) − h vαaα . (9.643)

The point R, where the unit normal vector n̂ to St at P intersects St+h , thus corre-
sponds to

(
t + h, t1 − h v1, t2 − h v2

)
. The points P and R are eventually utilized

to define the invariant time derivative. This relies on the following consideration.

Hint: The invariant instantaneous velocity of interface in the normal direction has
precise geometric definition. According to Fig. 9.35, when h is small enough, the
projection of the ambient object hv along the unit normal vector n̂ to St at P intersects
St+h at R with

x (R) ≈ x (P) + hĉ n̂ where ĉ = v · n̂ . (9.644)

And this basically stems from

ĉ = lim
h→0

[x (R) − x (P)] · n̂
h

. (9.645)

The invariant time derivative operator, denoted here by ∇̇, can now be defined prop-
erly. This will be demonstrated in the following. ☎

Let h̄ be a smooth scalar field of the time (or time-like) variable t and the Gaussian
coordinates tα, α = 1, 2. The invariant time differentiation of this scalar-valued
function is then defined by

∇̇h̄ = lim
h→0

h̄
(
t + h, t1 − h v1, t2 − h v2

) − h̄
(
t, t1, t2

)

h

note that h̄
(
t + h, t1 − h v1, t2 − h v2

)
= h̄ (R) and h̄

(
t, t1, t2

)
= h̄ (P) , see Fig. 9.35

. (9.646)

It is important to point out that this definition also holds true for any smooth tensor
field of arbitrary order. Moreover, this definition relies on a geometric approach in a
consistent manner to guarantee its invariance, see (9.654).

Introducing the following first-order Taylor series expansion

h̄
(
t + h, t1 − h v1, t2 − h v2

) = h̄
(
t, t1, t2

) + ∂ h̄

∂t
h − ∂ h̄

∂t1
h v1

− ∂ h̄

∂t2
h v2 + o

(
h, h v1, h v2

)
, (9.647)

into (9.646) will lead to

∇̇ h̄ = ∂ h̄

∂t
− ∂ h̄

∂tα
vα . (9.648)
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Using (9.129), this finally represents

∇̇h̄ = ∂ h̄

∂t
− h̄

∣∣
α
vα . ☎ (9.649)

As can be seen, this new time derivative operator is constructed based on a linear
combination of the partial and covariant derivatives. Of interest here is to keep this
structure for any other invariant field variable such as ĥ and H̃. The fact that these
well-established derivative operators satisfy the sum and product rules naturally
implies that

∇̇ (
h̄1 + h̄2

) = ∇̇ h̄1 + ∇̇h̄2

∇̇ (
h̄1h̄2

) = (∇̇ h̄1
)
h̄2 + h̄1

(∇̇ h̄2
)

}

. (9.650)

It also satisfies the product rule regarding the single contraction between any two
vector fields:20

20 The proof is not difficult. Let ĥ1 = ĥ i
1gi and ĥ2 = ĥ j

2g j be two smooth ambient vector fields

whose dot product renders ĥ1 · ĥ2 = ĥ i
1gi j ĥ

j
2. Recall from (9.136) or (9.191) that the surface

covariant derivative satisfies the product rule when it applies to the scalar product between two
vectors. To verify (9.651), one thus only needs to show that

∂

∂t

(
ĥ1 · ĥ2

)

︸ ︷︷ ︸
:= LHS

= ∂ĥ1
∂t

· ĥ2 + ĥ1 · ∂ĥ2
∂t︸ ︷︷ ︸

:= RHS

.

Guided by (9.681), one will have ∂ĥ1/∂t =
(
∂ ĥ i

1/∂t + vkΓ i
km ĥm

1

)
gi . Consequently, RHS takes

the form

∂ĥ1
∂t

· ĥ2 + ĥ1 · ∂ĥ2
∂t

= ∂ ĥ i
1

∂t
gi j ĥ

j
2 + vkΓ i

km ĥm
1 gi j ĥ

j
2 + ĥ i

1gi j
∂ ĥ j

2

∂t
+ ĥ i

1gi j v
kΓ

j
km ĥm

2

= ∂ ĥ i
1

∂t
gi j ĥ

j
2 + ĥ i

1 v
kΓ m

ki gmj ĥ
j
2 + ĥ i

1gi j
∂ ĥ j

2

∂t
+ ĥ i

1 v
kΓ m

kj gim ĥ j
2 .

Now, by using (9.184)3, (9.685)3 and (9.686d), one can arrive at the important result

∂gi j
∂t

= vkΓ m
ki gmj + vkΓ m

kj gim ,

which helps represent LHS as

∂

∂t

(
ĥ1 · ĥ2

)
= ∂

∂t

(
ĥ i
1gi j ĥ

j
2

)

= ∂ ĥ i
1

∂t
gi j ĥ

j
2 + ĥ i

1
∂gi j
∂t

ĥ j
2 + ĥ i

1gi j
∂ ĥ j

2

∂t

= ∂ ĥ i
1

∂t
gi j ĥ

j
2 + ĥ i

1 v
kΓ m

ki gmj ĥ
j
2 + ĥ i

1 v
kΓ m

kj gim ĥ j
2 + ĥ i

1gi j
∂ ĥ j

2

∂t
.

And this completes the proof.
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∇̇
(
ĥ1 · ĥ2

)
=

(
∇̇ĥ1

)
· ĥ2 + ĥ1 ·

(
∇̇ĥ2

)
. (9.651)

Moreover, for any two tensor fields,

∇̇
(
H̃1 : H̃2

)
=

(
∇̇H̃1

)
: H̃2 + H̃1 :

(
∇̇H̃2

)
. (9.652)

The invariant time derivative of the position vector x − o with the point function
x = x̂

(
�1,�2,�3

) = x̂ms
(
t, t1, t2

)
renders

∇̇x = ĉ n̂ , (9.653)

because

∇̇x
by using======
(9.646)

lim
h→0

1

h

[
x
(
t + h, t1 − h v1, t2 − h v2

) − x
(
t, t1, t2

)]

by using the first-order=============
Taylor series expansion

lim
h→0

1

h

[
∂x
∂t

(h) + ∂x
∂tα

(−h vα
) + o

(
h, h vα

)]

by using the fact that o================
approaches zero faster than h

∂x
∂t

− vα ∂x
∂tα

by using===========
(9.624) and (9.625)

v − vαaα ←− note that, according to (9.629), v − vαaα = ĉ n̂

by using==========
(5.64a) and (9.46)

(
vi − vαZ

i
α

)
gi

by using======
(5.14)

(
δij v

j − vαZ
i
α

)
gi

by using======
(9.74)

(
n̂ i n̂ j v

j + Z
i
α Z̃

α
j v

j − vαZ
i
α

)
gi

by using======
(9.85a)

(
v j n̂ j

)
n̂ igi

by using===========
(5.64a) and (9.629)

ĉ n̂ .

Hint: Recall from (9.633) that ∂/∂t did not preserve the tensor property even for
an invariant of the form (9.632). But, invariance is achieved by the new established
derivative operator ∇̇. This can be verified as follows:

∇̇ ¯̄h by using======
(9.648)

(
∂ ¯̄h
∂t

)

− ∂ ¯̄h
∂ t̄ α

[
v̄α

]

by using (9.632),===========
(9.633) and (9.637)

(
∂ h̄

∂t
+ ∂ h̄

∂tα
∂tα

∂t

)
− ∂ h̄

∂tγ
∂tγ

∂ t̄ α

[
∂ t̄ α

∂tβ

{
vβ + ∂tβ

∂t

}]
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by renaming the dummy=================
indices and using the chain rule

∂ h̄

∂t
+

�
�

��∂ h̄

∂tβ
∂tβ

∂t
− ∂ h̄

∂tα
vα −

�
�

�
��

∂ h̄

∂tβ
∂tβ

∂t
by using======
(9.648)

∇̇h̄ . (9.654)

9.9.3 Invariant Time Derivative of Objects with Surface
Indices

In accord with the partial and covariant derivatives, this new derivative operator is
supposed to satisfy the product rule when it applies to an invariant combination of
the surface components and basis vectors. This leads to its metrinilic property with
respect to the surface metric coefficients (although this does not hold true for the
surface basis vectors). The main goal here is thus to represent the invariant time
derivative of the surface vector and tensor fields.

9.9.3.1 Partial Time Differentiation of Surface Basis Vectors
and Metric Coefficients

The time rate of change of a surface covariant basis vector is given by

∂aα

∂t
by using (9.46) along=================

with applying the product rule

∂Z
i
α

∂t
gi + Z

i
α

∂gi
∂t

by using (9.47) along===============
with applying the chain rule

(
∂

∂t

∂�i

∂tα
= ∂

∂tα
∂�i

∂t

)
gi + Z

i
α

(
∂gi
∂� j

)(
∂� j

∂t

)

by using==========
(7.8) and (9.628)

(
∂ vi

∂tα

)
gi + Z

i
α

(
Γ k
i jgk

) (
v j

)

by renaming===========
the dummy indices

(
∂ vi

∂tα
+ Z

j
α Γ i

jm vm
)
gi

by using======
(9.178)

v|α . (9.655)

Using (9.176a), (9.177a), (9.179), (9.185)2 and (9.629)1, the result (9.655)5 can
further be written as

∂aα

∂t
= (

�̇θ
α

)
aθ + (

vθ bθα + ĉ |α
)
n̂ , (9.656)

where
�̇θ

α := vθ
∣∣
α

− ĉ bθ
. α = vθ

∣∣
α

− ĉ b . θ
α . (9.657)
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The relation (9.656) helps calculate ∂aαβ/∂t = ∂
(
aα · aβ

)
/∂t by means of the prod-

uct rule of differentiation. This basically requires dotting its both sides with aβ .
Having in mind n̂ · aβ = 0, one can write

∂aα

∂t
· aβ = (

�̇θ
α

)
aθβ

note that aα · ∂aβ
∂t =

(
�̇θ

β

)
aθα

. (9.658)

By means of (9.657)-(9.658), taking into account aθβ

∣∣
α

= 0 , vβ = vθaθβ and
bαβ = b . θ

α aθβ = b . θ
β aθα , one can obtain the desired result

∂aαβ

∂t
= vα

∣
∣
β

+ vβ

∣
∣
α

− 2 ĉ bαβ . (9.659)

Attention nowwill be on computing the time rate of change of the surface contravari-
ant metric coefficients. The partial time derivative of aαθaθβ = δα

β , by applying the
product rule of differentiation, gives the useful identity

∂aαβ

∂t
= −aαθ ∂aθρ

∂t
aρβ where

∂aθρ

∂t
= vθ

∣∣
ρ

+ vρ

∣∣
θ
− 2 ĉ bθρ . (9.660)

It is then easy to see that

∂aαβ

∂t
= 2̂c bαβ − vα

∣∣β − vβ
∣∣α . (9.661)

The time rate of change of a surface contravariant basis vector is now formulated.
This requires calculating ∂aα/∂t = ∂

(
aαβaβ

)
/∂t upon use of the product rule of

differentiation.Byvirtue of (9.656) and (9.661) alongwith index juggling, the desired
result takes the form

∂aα

∂t
= (−�̇α

θ

)
aθ + (

bα
. θ v

θ + ĉ |α) n̂ . (9.662)

In the following, the goal is to show that the time derivative operator ∇̇ is metrinilic
with respect to the surface objects εαβ/

√
a and

√
aεαβ .

To begin with, the sensitivity of the determinant of the covariant metric coeffi-
cients with respect to time is computed. By means of the chain rule, the partial time
derivative of the determinant of aαβ becomes ∂a/∂t = (

∂a/∂aαβ

) (
∂aαβ/∂t

)
. In light

of (6.20c) and (9.26) along with aβα = aαβ , one can infer that ∂a/∂aαβ = a aαβ . It
is then easy to see that



9.9 Calculus of Moving Surfaces 595

∂a

∂t
= 2a

(
vγ

∣∣
γ

− ĉ bγ
. γ

)
= 2a

(
�̇γ

γ

)
. (9.663)

Consequently, one can trivially write

∂

∂t

[
εαβ

√
a

]
= − εαβ

√
a

(
�̇γ

γ

)
,

∂

∂t

[√
aεαβ

] = √
aεαβ

(
�̇γ

γ

)
. (9.664)

Recall from (9.57)2 that aα × aβ = √
aεαβ n̂ or

√
aεαβ = (

aα × aβ

) · n̂ having in
mind the identity n̂ · n̂ = 1. The fact that aα × aβ points in the normal direction and
∂n̂/∂t , guided by (9.689)2, lies in the tangent plane helps one to write

∂

∂t

[√
aεαβ

] =
(

∂aα

∂t
× aβ

)
· n̂ +

(
aα × ∂aβ

∂t

)
· n̂ . (9.665)

From (9.57)2, (9.58) and (9.656), one then obtains

∂aα

∂t
× aβ = (

�̇θ
α

)√
aεθβ n̂ + (

bαθ v
θ + ĉ |α

)√
aεβρaρ , (9.666)

and, consequently,

(
∂aα

∂t
× aβ

)
· n̂ = (

�̇θ
α

)√
aεθβ

in a similar manner,
(
aα × ∂aβ

∂t

)
· n̂ =

(
�̇θ

β

)√
aεαθ

. (9.667)

With the aid of (9.667)1−2, the expression (9.665) takes the form

∂

∂t

[√
aεαβ

] = √
a �̇θ

αεθβ + √
a �̇θ

βεαθ . (9.668)

Comparing (9.664)2 and (9.668) now reveals

εαβ�̇γ
γ − �̇θ

αεθβ − �̇θ
βεαθ = 0 . (9.669)

Guided by (9.166)2 and (9.676d), this result basically verifies that ∇̇ is metrinilic
with respect to

√
aεαβ . Following similar procedures then lead to the metrinilic

property of ∇̇ relative to the surface object εαβ/
√
a. Thus,

∇̇
(

εαβ

√
a

)
= 0 , ∇̇ (√

aεαβ

) = 0 . (9.670)
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9.9.3.2 Invariant Time Differentiation of Surface Vector and Tensor
Fields

The established relations regarding the partial time derivative of the surface basis vec-
tors and metric coefficients are now utilized to represent the invariant time derivative
of the surface vector and tensor fields as well as the basis vectors.

To begin with, consider an invariant surface object ĥ = ĥαaα for which

∇̇ĥ
by using======
(9.649)

∂ĥ
∂t

−
(
ĥ
∣∣∣
θ

)
vθ

by applying=========
the product rule

∂ ĥα

∂t
aα + ĥα ∂aα

∂t
−

(
ĥα

∣∣∣
θ
aα

)
vθ − ĥα (aα|θ ) vθ

by using======
(9.177a)

(
∂ ĥα

∂t
− ĥα

∣∣∣
θ
vθ

)

aα + ĥα ∂aα

∂t
− ĥα bαθ v

θ n̂

by using======
(9.656)

(
∂ ĥα

∂t
− ĥα

∣∣
∣
θ
vθ

)

aα +
(
�̇θ

α ĥα
)
aθ

+
(
vθ bθα ĥα + ĉ |α ĥα − ĥα bαθ v

θ
)
n̂

by using (9.95) along with================
renaming the dummy indices

(
∂ ĥα

∂t
+ �̇α

θ ĥ θ − ĥα
∣∣
∣
θ
vθ

)

aα

+ ĉ |α ĥαn̂ . (9.671)

The demand for satisfying the sum and product rules

∇̇ĥ =
(
∇̇ ĥα

)
aα + ĥα

(∇̇aα

)
, ←− see (9.176a) (9.672)

then helps establish

∇̇ ĥα = ∂ ĥα

∂t
+ �̇α

θ ĥ θ − ĥα
∣∣∣
θ
vθ , ←− see (9.128) (9.673a)

∇̇aα = ĉ |α n̂ . ←− see (9.177a) (9.673b)

Next, consider an invariant of the form ĥ = ĥαaα for which

∇̇ĥ = ∂ĥ
∂t

−
(
ĥ
∣∣∣
θ

)
vθ

= ∂ ĥα

∂t
aα + ĥα

∂aα

∂t
−

(
ĥα

∣
∣∣
θ
aα

)
vθ − ĥα (aα|θ ) vθ
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=
(

∂ ĥα

∂t
− ĥα

∣
∣∣
θ
vθ

)

aα + ĥα

∂aα

∂t
− ĥα bα

. θ v
θ n̂

=
(

∂ ĥα

∂t
− ĥα

∣∣∣
θ
vθ

)

aα +
(
−�̇α

θ ĥα

)
aθ

+
(
ĥα bα

. θ v
θ + ĉ |α ĥα − ĥα bα

. θ v
θ
)
n̂

=
(

∂ ĥα

∂t
− �̇θ

α ĥ θ − ĥα

∣∣∣
θ
vθ

)

aα + ĉ |α ĥαn̂ , (9.674)

implies that

∇̇ ĥα = ∂ ĥα

∂t
− �̇θ

α ĥ θ − ĥα

∣∣∣
θ
vθ , ←− see (9.156) (9.675a)

∇̇aα = ĉ |α n̂ . ←− see (9.177b) (9.675b)

Finally, let H̃ be a surface tensor field with the decompositions (9.82)1−4. Then,

∇̇ H̃ αβ = ∂ H̃ αβ

∂t
+ �̇α

θ H̃ θβ + �̇
β

θ H̃ αθ − H̃ αβ
∣∣∣
θ
vθ , ←− see (9.162a) (9.676a)

∇̇ H̃ α
. β = ∂ H̃ α

. β

∂t
+ �̇α

θ H̃ θ
. β − �̇θ

β H̃ α
. θ − H̃ α

. β

∣∣∣
θ
vθ , (9.676b)

∇̇ H̃ . β
α = ∂ H̃ . β

α

∂t
− �̇θ

α H̃ . β

θ + �̇
β

θ H̃ . θ
α − H̃ . β

α

∣∣∣
θ
vθ , (9.676c)

∇̇ H̃ αβ = ∂ H̃ αβ

∂t
− �̇θ

α H̃ θβ − �̇θ
β H̃ αθ − H̃ αβ

∣∣∣
θ
vθ . (9.676d)

Hint: The result (9.673b) can alternatively be obtained by formally applying ∇̇ to aα

via (9.675a). With the aid of (9.95)3, (9.177a) and (9.656), this is verified as follows:

∇̇aα = ∂aα

∂t︸ ︷︷ ︸
=

(
�̇θ

α

)
aθ +

(
vθ bθα + ĉ |α

)
n̂

−�̇θ
αaθ − aα|θ vθ

︸ ︷︷ ︸
= bαθ vθ n̂

=
(

��̇�
θ
α − ��̇�

θ
α

)
aθ + (����bαθ v

θ + ĉ |α − ����bαθ v
θ
)
n̂

= ĉ |α n̂ .

In a similar manner,
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∇̇aα = ∂aα

∂t︸ ︷︷ ︸
= (−�̇α

θ

)
aθ +

(
bα

. θ
vθ + ĉ |α

)
n̂

+�̇α
θ a

θ − aα|θ vθ

︸ ︷︷ ︸
= bα

. θ
vθ n̂

=
(

−��̇�
α
θ + ��̇�

α
θ

)
aθ +

(����bα
. θ v

θ + ĉ |α − ����bα
. θ v

θ
)
n̂

= ĉ |α n̂ .

Hint: In is worthwhile to point out that the invariant time derivative and surface
covariant derivative do not commute. For instance, for any smooth scalar field,

∇̇ (
h̄
∣∣
α

) − (∇̇ h̄
)∣∣

α
= ĉ b . θ

α

(
h̄
∣∣
θ

)
, (9.677)

because,

∇̇ (
h̄
∣∣
α

) = ∂

∂t

(
h̄
∣∣
α

) − (
vθ

∣∣
α

− ĉ bθ
. α

) (
h̄
∣∣
θ

) − (
h̄
∣∣
α

)∣∣
θ
vθ

= ∂2h̄

∂t∂tα
− vθ

∣∣
α
h̄
∣∣
θ
+ ĉ b . θ

α

(
h̄
∣∣
θ

) − h̄
∣∣
αθ

vθ , (9.678)

and,

(∇̇ h̄
)∣∣

α
=

(
∂ h̄

∂t
− h̄

∣∣
θ
vθ

)∣∣∣∣
α

= ∂2h̄

∂tα∂t︸ ︷︷ ︸
= ∂2 h̄

∂t∂tα

− h̄
∣∣
θα︸ ︷︷ ︸

= ∂2 h̄
∂tα∂tθ

− �
ρ
θα

∂ h̄
∂tρ = h̄

∣
∣
αθ

vθ − h̄
∣∣
θ
vθ

∣∣
α

, (9.679)

where (9.92)2, (9.100)3, (9.129), (9.156), (9.649), (9.657)1 and (9.675a) along with
the product rule of differentiation have been used.

9.9.3.3 Metrinilic Property of Invariant Time Differentiation
with Respect to Surface Metric Coefficients

The results (9.673b) and (9.675b) clearly show that the invariant time derivative is
not metrinilic with respect to the surface basis vectors. But, ∇̇aα and ∇̇aα point in
the normal direction satisfying n̂ · aβ = 0 and n̂ · aβ = 0. Guided by (9.651), the
following metrinilic property is thus implied:

∇̇aαβ = 0 , ∇̇δα
β = 0 , ∇̇aαβ = 0 . ←− see (9.164) (9.680)



9.9 Calculus of Moving Surfaces 599

Hint:Note that the important results (9.680) can also be attained from the expressions
(9.676a)-(9.676d). For instance,

∇̇aαβ = ∂aαβ

∂t︸ ︷︷ ︸
= 2̂c bαβ − vα

∣∣β − vβ
∣
∣∣
α

+ �̇α
θ a

θβ

︸ ︷︷ ︸
= (

vα
∣
∣
θ

− ĉ bα
. θ

)
aθβ

+ �̇
β

θ a
αθ

︸ ︷︷ ︸
=

(
vβ

∣
∣
∣
θ

− ĉ bβ
. θ

)
aαθ

− aαβ
∣∣
θ︸ ︷︷ ︸

= 0

vθ

= ����2̂c bαβ − �
��vα
∣∣β − ������vβ

∣∣α + �
��vα
∣∣β − ���ĉ bαβ + ������vβ

∣∣α − ���ĉ bαβ

= 0 ,

where (9.24)3, (9.83d)1−2, (9.100)3, (9.160)1, (9.164)1, (9.657), (9.661) and (9.676a)
have been used.

9.9.4 Invariant Time Differentiation of Objects with Ambient
Indices

As understood from previous considerations, the established time derivative operator
properly satisfied the sum and product rules. The desire here is to keep these basic
propertieswhen it applies to an invariant combination of the ambient components and
basis vectors. The main outcome is its metrinilic property with respect to the ambient
basis vectors and, consequently, the ambient metric coefficients. This subsection also
aims at characterizing the invariant time derivative of the unit normal vector to the
surface as well as the shift tensors possessing both ambient and surface indices.

To begin with, suppose one is given an invariant of the form ĥ = ĥ igi . Then,

∇̇ĥ
by using======
(9.649)

∂ĥ
∂t

−
(
ĥ
∣∣∣
α

)
vα

by using (9.181) along=================
with applying the product rule

∂ ĥ i

∂t
gi + ĥ i ∂gi

∂t
−

(
ĥ i

∣∣∣
α
gi
)
vα

by applying the chain============
rule of differentiation

∂ ĥ i

∂t
gi + ĥ i

(
∂gi
∂� j

)(
∂� j

∂t

)
− ĥ i

∣∣∣
α
vαgi

by using=============
(7.7), (7.8) and (9.628)

∂ ĥ i

∂t
gi + ĥ i

(
Γ k

jigk
) (

v j
) − ĥ i

∣∣∣
α
vαgi

by renaming===========
the dummy indices

(
∂ ĥ i

∂t
+ v jΓ i

jm ĥm − ĥ i
∣∣∣
α
vα

)

gi , (9.681)

along with the desire to satisfy the sum and product rules

∇̇ĥ =
(
∇̇ ĥ i

)
gi + ĥ i

(∇̇gi
)

, ←− see (9.672) (9.682)
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helps establish

∇̇ ĥ i = ∂ ĥ i

∂t
+ v jΓ i

jm ĥm − ĥ i
∣
∣∣
α
vα , ←− see (9.180) (9.683a)

∇̇gi = 0 . ←− see (9.181) (9.683b)

Next, for a generic ambient object ĥ = ĥ igi , one can similarly arrive at

∇̇ ĥ i = ∂ ĥ i

∂t
− v jΓ m

ji ĥm − ĥ i

∣∣∣
α
vα , ←− see (9.182) (9.684a)

∇̇gi = 0 . ←− see (9.183) (9.684b)

Consistent with (7.36a), (7.36b), (9.181) and (9.183), the results (9.683b) and
(9.684b) express the metrinilic property of the invariant time derivative with respect
to the ambient basis vectors. Consequently, using (9.651), the metrinilic property
of the invariant time derivative with respect to the ambient metric coefficients is
implied:

∇̇gi j = 0 , ∇̇δij = 0 , ∇̇gi j = 0 . ←− see (9.184) (9.685)

Finally, let H̃ = H̃ i jgi ⊗ g j = H̃ i
. jgi ⊗ g j = H̃ . j

i g
i ⊗ g j = H̃ i jgi ⊗ g j be an

ambient second-order tensor field. It is then a simple exercise to show that

∇̇ H̃ i j = ∂ H̃ i j

∂t
+ vkΓ i

km H̃ mj + vkΓ j
km H̃ im − H̃ i j

∣∣∣
α
vα , ←− see (9.188a)

(9.686a)

∇̇ H̃ i
. j = ∂ H̃ i

. j

∂t
+ vkΓ i

km H̃ m
. j − vkΓ m

kj H̃
i
.m − H̃ i

. j

∣∣∣
α
vα , (9.686b)

∇̇ H̃ . j
i = ∂ H̃ . j

i

∂t
− vkΓ m

ki H̃ . j
m + vkΓ j

km H̃ .m
i − H̃ . j

i

∣
∣∣
α
vα , (9.686c)

∇̇ H̃ i j = ∂ H̃ i j

∂t
− vkΓ m

ki H̃ mj − vkΓ m
kj H̃ im − H̃ i j

∣∣∣
α
vα . (9.686d)

Hint: The interested reader may want to obtain the properties ∇̇gi = 0 and ∇̇gi = 0
by formally applying the derivative operator ∇̇ to the ambient basis vectors gi and
gi as follows:
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∇̇gi = ∂gi
∂t

− v jΓ m
ji gm − ���	0

gi |α vα

=
(

∂gi
∂� j

)(
∂� j

∂t

)
− v jΓ m

ji gm = (
Γ m
i j gm

) (
v j

) − v jΓ m
i j gm

= 0 ,

∇̇gi = ∂gi

∂t
+ v jΓ i

jmg
m − �

��

0

gi
∣∣
α

vα

=
(

∂gi

∂� j

)(
∂� j

∂t

)
+ v jΓ i

jmg
m = (−Γ i

jmg
m
) (

v j
) + v jΓ i

jmg
m

= 0 .

Hint: The interested reader may also want to obtain the metrinilic property (9.685)
from the relations (9.686a)-(9.686d). For instance, by using (7.16), (9.184)1, (9.628)
and (9.686a) along with applying the chain rule of differentiation (and renaming
l → m),

∇̇gi j = ∂gi j

∂t︸ ︷︷ ︸
= ∂gi j

∂�k vk

+ vkΓ i
kmg

mj + vkΓ j
kmg

im − gi j
∣∣
α︸ ︷︷ ︸

= 0

vα

= −����
Γ i
kl g

l j vk − ����Γ
j
kl g

il vk + �����vkΓ i
kmg

mj + �����vkΓ j
kmg

im

= 0 .

Attention is now focused on representing the invariant time differentiation of the
ambient unit normal vector to the surface, that is ∇̇ n̂ = ∇̇ n̂ igi . Having in mind n̂ ·
n̂ = 1, the result ∇̇aα = ĉ |α n̂, according to (9.673b), can nowbe rephrased as ĉ |α =
∇̇aα · n̂. Note that n̂ · n̂ = 1 immediately gives ∇̇ n̂ · n̂ = 0. And this helps infer that
∇̇ n̂ = wαaα where the object wα needs to be determined. On the other hand aα ·
n̂ = 0 helps establish ∇̇aα · n̂ = −aα · ∇̇ n̂ = −aα · wβaβ = − wα . In other words,
wα = − ĉ |α . Thus,

∇̇ n̂ = − ĉ |α aα . (9.687)

By index juggling and using aα = Z
i
αgi , according to (9.46)3, the result (9.687) can

further be written as

∇̇ n̂ = − ĉ |α aα with ∇̇ n̂ i = − ĉ |α Z
i
α . (9.688)
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From (9.185)2, (9.649) and (9.688)1, it follows that21

∂n̂
∂t

= ∇̇n̂ + n̂|α vα = − (
ĉ |β + vα b . β

α

)
aβ . (9.689)

Attention here is focused on formulating the invariant time differentiation of the

shift tensors Z
i
α = gi · aα and Z̃α

i = gi · aα given in (9.47)1 and (9.60)1, respectively.
Using (9.673b), (9.675b), (9.683b) and (9.684b) alongwith applying the product rule
of differentiation, one will have

∇̇Z
i
α = gi · ∇̇aα = gi · ĉ |α n̂ = ĉ |α n̂ i

or ĉ |α =
(
∇̇Z

i
α

)
n̂ i considering the identity n̂ i n̂ i = 1

, (9.690)

and
∇̇ Z̃α

i = gi · ∇̇aα = gi · ĉ |α n̂ = ĉ |α n̂ i

or ĉ |α =
(
∇̇ Z̃α

i

)
n̂ i considering the identity n̂ i n̂

i = 1

. (9.691)

9.9.5 Invariant Time Differentiation of Surface Mixed
Curvature Tensor and Its Principal Invariants

At the end of this section, the modern derivative operator ∇̇ will be applied to a
crucially important quantity in the calculus of curved surfaces which is the extrinsic
object b . β

α . The resulting expression then helps establish the invariant time derivative
of the mean and Gaussian curvatures.

First, the invariant time derivative of the surface mixed curvature tensor is given
by

∇̇ b . β
α = ĉ |α |β + ĉ b . θ

α b . β

θ , (9.692)

21 The result (9.689) can be derived in an alternativeway. This is demonstrated in the following. First,
by using the expressions n̂ · n̂ = 1 and n̂ · aβ = 0, one can write n̂ · ∂n̂/∂t = 0 which reveals the
fact that ∂n̂/∂t = wαaα where wα are two unknown quantities to be determined. Then, making
use of the equation (9.656), the partial time derivative of the relation n̂ · aβ = 0 helps conclude
that ∂n̂/∂t · aβ = − (

vθ bθβ + ĉ |β
)
or wαaαβ = − (

vθ bθβ + ĉ |β
)
. Finally, using the identity

aαβaβρ = δ
ρ
α , one will arrive at wρ = − (

vθ b . ρ
θ + ĉ |ρ) or wβ = −

(
ĉ |β + vα b . β

α

)
.
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because

∇̇ b . β
α

by using=============
(9.101) and (9.185)

∇̇ (− n̂|α · aβ
)

by applying===========
the product rule

−∇̇ ( n̂|α) · aβ − n̂|α · (∇̇aβ
)

in light of========
(9.677)

− (∇̇ n̂
)∣∣

α
· aβ − ĉ b . θ

α ( n̂|θ ) · aβ − n̂|α · (∇̇aβ
)

by using=============
(9.675b) and (9.687)

− (− ĉ |θ aθ
)∣∣

α
· aβ − ĉ b . θ

α ( n̂|θ ) · aβ − n̂|α · ( ĉ |β n̂
)

by considering (9.12)==================
and noting that n̂|α · n̂ = 0

(
ĉ |θ aθ

)∣∣
α

· aβ − ĉ b . θ
α ( n̂|θ ) · aβ

by using (9.185) and================
applying the product rule

ĉ |θα aθ · aβ + ĉ |θ aθ
∣
∣
α

· aβ + ĉ b . θ
α b . ρ

θ aρ · aβ

by using (9.24),=============
(9.33) and (9.177b)

ĉ |θα a
θβ + ĉ |θ bθ

. α n̂ · aβ + ĉ b . θ
α b . ρ

θ δβ
ρ

by using (9.29) and the replacement========================
property of the mixed Kronecker delta

ĉ |θα a
θβ + ĉ b . θ

α b . β
θ

by using (9.92),=============
(9.129) and (9.156)

ĉ |αθ a
θβ + ĉ b . θ

α b . β
θ ←− note that ĉ |αθ = ∂2 ĉ

∂tθ ∂tα
− �

ρ
αθ

∂ ĉ

∂tρ

by using=======
(9.160)

ĉ |α |β + ĉ b . θ
α b . β

θ . ←− note that ĉ |α
∣
∣β = ĉ |β

∣∣
∣
α

From (9.692), it simply follows that

∇̇ b . α
α = ĉ |α |α + ĉ b . θ

α b . α
θ . ←− note that b . θ

α b . α
θ = b . θ

α b . β
θ

δα
β = tr

[
b . β
α

]2 (9.693)

Recall from (9.103)2 that H = b . α
α /2. Then, using (9.276)2 and (9.693), the invariant

time derivative of the mean curvature takes the following form

∇̇H = 1

2
ĉ |α |α + ĉ

(
2H

2 − K
)

. (9.694)

Finally, the invariant time derivative of the Gaussian curvature is given by

∇̇K = 2 ĉ |α |α H − ĉ |α |β b . α
β + 2̂cKH , (9.695)

since

∇̇K
by using===========

(9.100) and (9.490)

1

2
∇̇

(
b . α

α b . β

β − b . β
α b . α

β

)

by applying the product rule==================
and renaming the dummy indices

(∇̇ b . α
α

)
b . β

β − 1

2

(∇̇ b . β
α

)
b . α

β − 1

2
b . β

α

(∇̇ b . α
β

)
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by using===========
(9.692) and (9.693)

(
ĉ |α |α + ĉ b . θ

α b . α
θ

)
b . β

β

− 1

2

(
ĉ |α |β b . α

β + ĉ |β
∣∣α b . β

α

) − 1

2

(
ĉ b . θ

α b . β

θ b . α
β + ĉ b . θ

β b . α
θ b . β

α

)

by renaming===========
the dummy indices

ĉ |α |α b . β

β + ĉ b . θ
α b . α

θ b . β

β − ĉ |α |β b . α
β − ĉ b . θ

α b . ρ
θ b . α

ρ

in light of=======
(2.89a)

ĉ |α |α tr [ b . β
α

] − ĉ |α |β b . α
β + ĉ

(
tr
[
b . β

α

]2
tr
[
b . β

α

] − tr
[
b . β

α

]3)

by using (9.103),===========
(9.276) and (9.277)

2 ĉ |α |α H − ĉ |α |β b . α
β + 2̂cKH .

9.10 Application to Shell Structures

Differential geometry of two-dimensional regular surfaces was studied in the pre-
vious sections. The aim here is to introduce an application of the surface theory in
a basic structural element called shell. This initially curved element is subjected
to some (mechanical, thermal, electrical, etc.) loads that cause stretching, shear-
ing and/or bending deformations. Missiles and nanotubes in modern technology,
leaves of trees andwings of insects in nature and red blood cells and arteries in human
bodies are only a few examples of shells. For these three-dimensional creatures, the
thickness is considerably small when compared with the other two dimensions. This
particular geometric feature enables one to separate the thickness variable from the
two in-plane ones. The geometry as well as deformation of a shell can thus be
described by means of proper functions of two in-plane variables corresponding to
the midsurface (i.e. the surface which bisects the shell thickness). The mechanical
behavior of a shell under a given loading is studied through the theory of elastic-
ity. This results in a boundary/initial value problem to be solved in order to finally
have an equilibrium state. To achieve this ultimate goal, one only needs to find
some unknown two-variable functions. Using the theory of elasticity in the context
of structural mechanics, there is generally no closed-form solution for such func-
tions and a shell problem should thus be treated numerically. Among all numerical
procedures, finite element methods have gained much attention by the researchers.
Numerous works have been published on finite element analysis of shells. For an
overview see, e.g., Bathe et al. [54], Zienkiewicz et al. [55], Hughes and Tezduyar
[56], Simo et al. [57], Ibrahimbegović et al. [58], Gruttmann et al. [59], Wriggers et
al. [60], Betsch et al. [61], Bischoff and Ramm [62], Miehe [63], Hauptmann et al.
[64], Cirak et al. [65] and Pimenta et al. [66].

9.10.1 Shell Geometry

The three-dimensional geometry of the shell is described by the vector function
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Fig. 9.36 Infinitesimal shell element

r∗ (t1, t2, t3
) = r

(
t1, t2

) + t3a3
(
t1, t2

)
with − h

2
≤ t3 ≤ +h

2
, (9.696)

where r
(
t1, t2

)
denotes the position vector of a generic point on the midsurfaceM,

h presents the shell thickness and

a3 = a1 × a2
|a1 × a2| = n̂ where aα = ∂r

∂tα
,

represents the normal vector to the midsurface (see Fig. 9.36 for a geometrical inter-
pretation). The sensitivity of r∗ with respect to t i , i = 1, 2, 3, will give the ambient
covariant basis vectors

gα = ∂
(
r + t3n̂

)

∂tα
= aα − t3 b . β

α aβ , (9.697)

and

g3 = ∂
(
r + t3n̂

)

∂t3
= n̂ . ←− note that g3 = g3 = a3 = a3 = n̂ with |̂n| = 1 (9.698)

The relation (9.697)2 is sometimes rephrased as

gα = Zaα , (9.699)

where the symmetric second-order mixed contra-covariant tensor



606 9 Differential Geometry of Surfaces and Curves

Z = (
δα
β − t3 bα

. β

)
aα ⊗ aβ , (9.700)

is referred to as the shell shifter (see Bischoff et al. [67]). Making use of (5.89b)2,
(9.103)3 and (9.104)2, its determinant is given by

Z = det
[
δα
β − t3 bα

. β

] = 1 − 2t3H + (
t3
)2
K . (9.701)

Recall from (5.30)3 that J = g1 · (g2 × g3) > 0 and consider a = det
[
aαβ

]
> 0

according to (9.54)1. In this context, they are related through the following equation

J = √
a Z , (9.702)

because

J
from==========

(5.30) and (9.697)

[(
1 − t3b . 1

1

)
a1 − t3b . 2

1 a2
] · [(1 − t3b . 2

2

)
a2 × n̂ − t3b . 1

2 a1 × n̂
]

from===========
(1.149a) and (9.58)

√
a
[(
1 − t3b . 1

1

)
a1 − t3b . 2

1 a2
] · [(1 − t3b . 2

2

)
a1 + t3b . 1

2 a2
]

from====
(9.33)

√
a
[(
1 − t3b . 1

1

) (
1 − t3b . 2

2

) − (
t3
)2
b . 2
1 b . 1

2

]

from=====
(9.100)

√
a
[(
1 − t3b1. 1

) (
1 − t3b2. 2

) − (
t3
)2
b2. 1b

1
. 2

]

from=====
(9.701)

√
a Z .

Consider an infinitesimal parallelepiped as illustrated in Fig. 9.36. The surface
element ΔA(i) (ΔA<i>) which is eventually a subset of the surface t i = constant
(t i + Δt i = constant) is called the negative face (positive face). For instance, ΔA(1)

is characterized by

n̂ (1) = g3 × g2
|g3 × g2| = −Jg1

∣∣−Jg1
∣∣ = − g1

√
g11

. (9.703)

Guided by (5.112) and consistent with (8.2a)1, the above relation helps obtain

ΔA(1) =
√
g11 JΔt2Δt3

ΔA(1) = n̂ (1)ΔA(1) = − (
Jg1

)
Δt2Δt3

}

. (9.704)

In a similar manner,

ΔA<1> = + (
Jg1

)∣∣
t1+Δt1,t2

Δt2Δt3 . (9.705)
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The unit normal vector in (9.703)3 can also be written as

n̂ (1) = − J√
g22

g1 , (9.706)

because

from===⇒
(5.33)

g2 × g3 = Jg1

from===⇒
(5.46)

g1 · [g2 × g3
] = Jg11

from===⇒
(5.43)

g1 · [(g21g1 + g22g2 + g23g3
) × g3

] = Jg11

from============⇒
(1.51), (1.73) and (9.698)

g1 · [g22g2 × g3
] = Jg11

from===⇒
(1.73)

g3 · [g1 × g2
] = J

g11

g22

from===⇒
(5.35)

g3 · g3
J

= J
g11

g22
from===⇒
(9.698)

g11 = J −2g22 .

9.10.2 External and Internal Forces and Moments

A shell can eventually be considered as a surface endowed with the mechanical
properties. Any element of that deformable mechanical surface thus reacts to the
applied surface as well as edge forces and moments. The results, to be predicted by
a structural or mechanical engineer, will be the stretching, shearing and/or bending
deformations.

In what follows, the goal is to characterize the external and internal forces and
moments exerted on an infinitesimal element of a mechanical surface. Let

fext = f α
extaα + f next̂n and mext = mα

ext̂n × aα , (9.707)

be the external force andmoment exerted on unit area of the shell midsurface, respec-
tively. It has been assumed that the moment mext is tangent to the midsurface. The
external force and couple exerted on M, bounded by the curves tα = constant and
tα + Δtα = constant, are then given by

f totext =
∫ t1+Δt1

t1

∫ t2+Δt2

t2
fextd A =

∫ t1+Δt1

t1

∫ t2+Δt2

t2
fext

√
a dt1dt2

mtot
ext =

∫ t1+Δt1

t1

∫ t2+Δt2

t2
mextd A =

∫ t1+Δt1

t1

∫ t2+Δt2

t2
mext

√
a dt1dt2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (9.708)
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Letσσσ = σ i jgi ⊗ g j be theCauchy stress tensor. By the stress theorem of Cauchy,
consider the Cauchy traction vector t = σσσ n̂. Then, the resultant force on A(1) can
be written as

∫

A(1)
t(1)d A(1) =

∫ t2+Δt2

t2

∫ h/2

−h/2
σσσ
[
n̂ (1)d A(1)

]

= −
∫ t2+Δt2

t2

[∫ h/2

−h/2
Jσσσg1dt3

]
dt2

= −
∫ t2+Δt2

t2

√
a

[∫ h/2

−h/2
Zσσσg1dt3

]
dt2

= −
∫ t2+Δt2

t2

√
a f1dt2 .

In general,

∫

A(α)

t(α)d A(α) = −
∫ tβ+Δtβ

tβ

√
a f αdtβ , α �= β = 1, 2 , (9.709)

where the stress resultant f α is given by

f α =
∫ h/2

−h/2
Z σσσ gαdt3 . (9.710)

Now, the resultant moment on A(1) renders

∫

A(1)

[
r∗] × [

t(1)d A(1)
] =

∫ t2+Δt2

t2

∫ h/2

−h/2

[
r + t3n̂

] × [
σσσ
(
n̂ (1)d A(1)

)]

=
∫ t2+Δt2

t2

∫ h/2

−h/2

[
r + t3n̂

] × [−√
a Z σσσg1dt3dt2

]

= −
∫ t2+Δt2

t2

√
a r ×

[∫ h/2

−h/2
Z σσσg1dt3

]
dt2

−
∫ t2+Δt2

t2

√
a n̂ ×

[∫ h/2

−h/2
Z σσσg1t3dt3

]
dt2

= −
∫ t2+Δt2

t2

√
a
(
r × f1 + m1

)
dt2 .
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In general,

∫

A(α)

r∗ × t(α)d A(α) = −
∫ tβ+Δtβ

tβ

√
a (r × f α + mα) dtβ, α �= β = 1, 2 ,

(9.711)
where

mα = n̂ ×
∫ h/2

−h/2
Z σσσ gαt3dt3 . (9.712)

9.10.3 Equilibrium Equations

For a continuum body in equilibrium, the vector sum of all external and internal
force variables acting on that body should vanish. And this should hold true not only
on the entire body but also on any imaginary isolated element of that object. For the
deformable surface element shown in Fig. 9.36, the force equilibrium condition is
spelled out as

−
∫ t2+Δt2

t2

(√
a f 1

)∣∣
t1,t2

dt2 −
∫ t1+Δt1

t1

(√
a f 2

)∣∣
t1,t2

dt1

+
∫ t2+Δt2

t2

(√
a f 1

)∣∣
t1+Δt1,t2 dt

2 +
∫ t1+Δt1

t1

(√
a f 2

)∣∣
t1,t2+Δt2 dt

1

+
∫ t1+Δt1

t1

∫ t2+Δt2

t2

√
a fext dt1dt2 = 0 .

By using the first-order Taylor series expansion, one can arrive at

∫ t2+Δt2

t2

∂

∂t1
(√

a f 1
)
Δt1dt2 +

∫ t1+Δt1

t1

∂

∂t2
(√

a f 2
)
Δt2dt1

+
∫ t1+Δt1

t1

∫ t2+Δt2

t2

√
a fext dt1dt2 = 0 ,

which can be written in the useful form

∫ t1+Δt1

t1

∫ t2+Δt2

t2

[
∂

∂t1
(√

a f 1
) + ∂

∂t2
(√

a f 2
) + √

a fext

]
dt1dt2 = 0 . (9.713)
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In a similar manner, the moment equilibrium condition is given by

∫ t1+Δt1

t1

∫ t2+Δt2

t2

{
∂

∂t1
[√

a
(
r × f1 + m1)] + ∂

∂t2
[√

a
(
r × f2 + m2)]

+√
a [r × fext + mext]

}
dt1dt2 = 0 . (9.714)

Consider the fact that these integral expressions should hold for all shell elements.
One can thus arrive at the local forms

∂

∂tα
(√

a f α
) + √

a fext = 0 , (9.715)

and
∂

∂tα
[√

a (r × f α + mα)
] + √

a [r × fext + mext] = 0 , (9.716)

called the equilibrium equations. Making use of (9.92)2 and (9.115), one can further
obtain

∂f α

∂tα
+ �

β

βαf
α + fext = 0 , (9.717)

and
∂mα

∂tα
+ �

β

βαm
α + aα × f α + mext = 0 . (9.718)

Let
f α = H αβaβ + hαn̂ , m α = M αβ n̂ × aβ . (9.719)

One then has
(
H αβ

∣
∣
α

− hα b . β
α + f β

ext

)
aβ +

(
hα

∣
∣
α

+ H αβ bαβ + f next
)
n̂ = 0 ,

and
(
M αβ

∣∣
α

− hβ + mβ
ext

)
n̂ × aβ + √

a
(
H αβ − bα

. γ M γβ
)
εαβ n̂ = 0 ,

where n̂ × aβ = √
aεβγ aγ , according to (9.58). Finally, consider the fact that the

triplet of vectors a1 , a2 , n̂ and also a1 , a2 , n̂ are linearly independent. The equi-
librium equations, in index notation, then render
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H αβ
∣∣
α

− hα b . β
α + f β

ext = 0

H αβ bαβ + hα
∣∣
α

+ f next = 0

}

, (9.720)

and

M αβ
∣∣
α

− hβ + mβ
ext = 0

(
H αβ − bα

. γ M γβ
)
εαβ = 0

}

. (9.721)

Considering the identity εαβ = −εβα , according to (9.36)1, the expression (9.721)2
may be written as

H αβ + bβ
. γ M γα = H βα + bα

. γ M γβ , α, β = 1, 2, α �= β . (9.722)

To model (small or finite) deformations of a solid shell, a proper stress measure
should be characterized for its material ingredients. For the purely mechanical prob-
lems, such a quantity is only a function of the strain tensor when the material under
consideration is elastic, isotropic and homogeneous. See Exercises3.4 and 6.16
for more discussions. In the following, the strain and stress measures as well as the
displacement field will be characterized for a sophisticated shell model.

9.10.4 Basic Shell Mathematical Model

The goal here is to introduce the strain and stress measures of an elastic, isotropic
and homogeneous shell in the small strain regime based on a model called basic
shell mathematical model (see Lee and Bathe [68] and Chapelle and Bathe [69]).

In alignment with (9.696), the displacement field of a generic particle in this shell
model is given by

u∗ (t1, t2, t3
) = u

(
t1, t2

) + t3θθθ
(
t1, t2

)
, (9.723)

where u presents the translational displacement of a material point on the mid-
surfaceM and θθθ denotes the infinitesimal rotation of a material line perpendicular
to that mechanical surface. Notice that u is an ambient vector while θθθ is a surface
vector. Referred to the dual basis

{
a1, a2, n̂

}
, they are decomposed as

u = uαaα + un n̂ , θθθ = θ αaα . (9.724)

Here, θ 1 ( θ 2) presents the rotation about a2 (a1) and the rotation about n̂ is assumed
to be zero. This is a well-known assumption due to Reissner-Mindlin (see Reissner
[70], Mindlin [71] and Hencky [72]). The infinitesimal strain tensor for the given



612 9 Differential Geometry of Surfaces and Curves

displacement field (9.723) renders

εεε = 1

2

[(
∂u∗

∂x∗

)
+

(
∂u∗

∂x∗

)T
]

where
∂u∗

∂x∗ = ∂u∗

∂t k
⊗ gk . (9.725)

Referred to the ambient contravariant basis
{
gi
}
, the covariant components of this

symmetric tensor render

ε i j = 1

2
gi ·

[
∂u∗

∂t k
⊗ gk + gk ⊗ ∂u∗

∂t k

]
g j = 1

2

[
gi · ∂u∗

∂t j
+ ∂u∗

∂t i
· g j

]
. (9.726)

It is then easy to see that

εαβ = 1

2

(
uα

∣∣
β

+ uβ

∣∣
α

)
− bαβ un

+ t3
[
1

2

(
θ α

∣∣
β

+ θ β

∣∣
α

− b .γ
α u γ

∣∣
β

− b .γ

β u γ

∣∣
α

)
+ b .γ

α bγβ un

]

− (
t3
)2

[
1

2

(
b .γ

α θ γ

∣∣
β

+ b .γ

β θ γ

∣∣
α

)]
, (9.727a)

εα3 = 1

2

(
θ α + ∂ un

∂tα
+ b .γ

α u γ

)
, (9.727b)

ε33 = 0 . (9.727c)

As can be seen, the inplane strains
(
ε11, ε22, ε12

)
are quadratic through the shell

thickness while the transverse shear strains
(
ε13, ε23

)
are constant. Note that

there will be no elongation through the shell thickness owing to the vanishing of
the transverse normal ε33. Indeed, inextensibility of fibers normal to the shell
midsurface is a well-known assumption usually made in shell theorems. With regard
to this, the model under consideration may be called an inextensible shell model.
See Sansour [73] and also Sansour [74] for some extensible shell models at finite
deformations.

At the end, bymeans of theplane stress assumption, the contravariant components
of the stress tensor for a linear elastic shell are given by

σ αβ = E

2 (1 + ν)

[
gαγ gβδ + gαδgβγ + 2ν

1 − ν
gαβgγ δ

]
εγ δ , (9.728a)

σ α3 = E

1 + ν

[
gαβ

]
εβ3 , (9.728b)

σ 33 = 0 , (9.728c)

where E denotes Young’s modulus and ν presents Poisson’s ratio.
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9.11 Exercises

Exercise 9.1

Compute

( a ) the covariant basis vectors a1, a2, according to (9.10)1,
( b ) the covariant metric coefficients aαβ , according to (9.18),
( c ) the area element d A, according to (9.56),
( d ) the unit normal field n̂, according to (9.31)1,
( e ) the covariant curvature tensor bαβ , according to (9.95)1,
( f ) the mixed curvature tensor b . β

α , according to (9.100)1,
( g ) the mean curvature H, according to (9.103)1,
( h ) the Gaussian curvature K, according to (9.104)1, and
( i ) the Christoffel symbols �α

βγ , given in (9.235a)-(9.235c),

for an elliptic cylinder defined by

x1 = R cos t1 , x2 = R sin t1 , x3 = t2

these coordinates satisfy the implicit relation (x1/R)2 + (
x2/R

)2 = 1

, (9.729)

where R, R are positive real numbers, 0 ≤ t1 < 2π and −∞ < t2 < ∞ (see Fig.
9.17).

Solution. The covariant basis vectors:

a1 = −R sin t1 ê1 + R cos t1 ê2 , (9.730a)

a2 = ê3 . (9.730b)

The covariant metric coefficients in matrix form:

[
aαβ

] =
[
R2 sin2 t1 + R

2
cos2 t1 0

0 1

]
. (9.731)

The area element:

d A =
√
R2 sin2 t1 + R

2
cos2 t1 dt1dt2 . (9.732)

The unit normal field:

n̂ = R cos t1 ê1 + R sin t1 ê2√
R2 sin2 t1 + R

2
cos2 t1

. (9.733)

The covariant curvature tensor in matrix form:
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[
bαβ

] = RR
√
R2 sin2 t1 + R

2
cos2 t1

[ −1 0
0 0

]
. (9.734)

The mixed curvature tensor in matrix form:

[
b . β

α

] = RR
(
R2 sin2 t1 + R

2
cos2

)3/2

[ −1 0
0 0

]
. (9.735)

The mean curvature:

H = − RR

2
(
R2 sin2 t1 + R

2
cos2 t1

)3/2 . (9.736)

The Gaussian curvature:
K = 0 . (9.737)

The only nonzero Christoffel symbols entry:

�1
11 =

(
R2 − R

2
)
sin t1 cos t1

R2 sin2 t1 + R
2
cos2 t1

. (9.738)

Exercise 9.2

Compute the desired quantities listed in Exercise 9.1 for the sphere (9.4), that is,

x1 = R sin t1 cos t2 , x2 = R sin t1 sin t2 , x3 = R cos t1 .

Solution. The covariant basis vectors:

a1 = R cos t1 cos t2 ê1 + R cos t1 sin t2 ê2 − R sin t1 ê3 , (9.739a)

a2 = −R sin t1 sin t2 ê1 + R sin t1 cos t2 ê2 . (9.739b)

The covariant metric coefficients in matrix form:

[
aαβ

] =
[
R2 0

0
(
R sin t1

)2

]
. (9.740)

The area element:
d A = R2 sin t1 dt1dt2 . (9.741)
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The unit normal field:

n̂ = sin t1 cos t2 ê1 + sin t1 sin t2 ê2 + cos t1 ê3 . (9.742)

The covariant curvature tensor in matrix form:

[
bαβ

] = −R

[
1 0
0 sin2 t1

]
. (9.743)

The mixed curvature tensor in matrix form:

[
b . β

α

] = − 1

R

[
1 0
0 1

]
. (9.744)

The mean curvature:

H = − 1

R
. (9.745)

The Gaussian curvature:

K = 1

R2
. ←− note that the sphere is an object with

constant positive Gaussian curvature (9.746)

The nonzero Christoffel symbols entries:

�1
22 = − sin t1 cos t1 , �2

12 = cot t1 . (9.747)

Exercise 9.3

Compute the desired quantities listed in Exercise 9.1 for the torus (9.5), that is,

x1 =
(
R̂ + r̂ cos t2

)
cos t1 , x2 =

(
R̂ + r̂ cos t2

)
sin t1 , x3 = r̂ sin t2 .

Solution. The covariant basis vectors:

a1 = −
(
R̂ + r̂ cos t2

)
sin t1 ê1 +

(
R̂ + r̂ cos t2

)
cos t1 ê2 , (9.748a)

a2 = −r̂ sin t2 cos t1 ê1 − r̂ sin t2 sin t1 ê2 + r̂ cos t2 ê3 . (9.748b)

The covariant metric coefficients in matrix form:

[
aαβ

] =
⎡

⎣

(
R̂ + r̂ cos t2

)2
0

0
(
r̂
)2

⎤

⎦ . (9.749)
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The area element:
d A = r̂

(
R̂ + r̂ cos t2

)
dt1dt2 . (9.750)

The unit normal field:

n̂ = cos t1 cos t2 ê1 + sin t1 cos t2 ê2 + sin t2 ê3 . (9.751)

The covariant curvature tensor in matrix form:

[
bαβ

] =
[

−
(
R̂ + r̂ cos t2

)
cos t2 0

0 −r̂

]

. (9.752)

The mixed curvature tensor in matrix form:

[
b . β

α

] =
[

− cos t2

R̂+r̂ cos t2
0

0 − 1
r̂

]

. (9.753)

The mean curvature:

H = −R̂ − 2r̂ cos t2

2r̂
(
R̂ + r̂ cos t2

) . (9.754)

The Gaussian curvature:

K = cos t2

r̂
(
R̂ + r̂ cos t2

) . ←− note that

⎧
⎪⎨

⎪⎩

K > 0 on the outside
K = 0 at the top and bottom circles
K < 0 on the inside

(9.755)

The nonzero Christoffel symbols entries:

�1
12 = − r̂

R̂ + r̂ cos t2
sin t2 , �2

11 = R̂ + r̂ cos t2

r̂
sin t2 . (9.756)

Exercise 9.4

Compute the desired quantities listed in Exercise 9.1 for a hyperboloid of revolution
(or circular hyperboloid) defined by

x1 = R cosh t1 cos t2 , x2 = R cosh t1 sin t2 , x3 = R̂ sinh t1

note that the one-sheeted hyperboloid (9.7) is called the circular hyperboloid if R = R

. (9.757)

Solution. The covariant basis vectors:
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a1 = R sinh t1 cos t2 ê1 + R sinh t1 sin t2 ê2 + R̂ cosh t1 ê3 , (9.758a)

a2 = −R cosh t1 sin t2 ê1 + R cosh t1 cos t2 ê2 . (9.758b)

The covariant metric coefficients in matrix form:

[
aαβ

] =
[
a� 0
0 R 2 cosh2 t1

]
where a� = R2 sinh2 t1 + R̂ 2 cosh2 t1 . (9.759)

The area element:
d A = R cosh t1

√
a�dt1dt2 . (9.760)

The unit normal field:

n̂ = −R̂ cosh t1 cos t2 ê1 − R̂ cosh t1 sin t2 ê2 + R sinh t1 ê3√
a�

. (9.761)

The covariant curvature tensor in matrix form:

[
bαβ

] = RR̂√
a�

[ −1 0
0 cosh2 t1

]
. (9.762)

The mixed curvature tensor in matrix form:

[
b . β

α

] = RR̂√
a�

[ −1
(a�)2

0

0 1
R2

]
. (9.763)

The mean curvature:

H = R2 R̂ sinh2 t1 + R̂ 3 cosh2 t1 − R2 R̂

2R (a�)3/2
. (9.764)

The Gaussian curvature:

K = −
(
R̂

a�

)2

. (9.765)

The nonzero Christoffel symbols entries:

�1
11 =

(
R2 + R̂ 2

)
tanh t1

R2 tanh2 t1 + R̂ 2
, �2

12 = tanh t1 , �1
22 = −R2 tanh t1

R2 tanh2 t1 + R̂ 2
. (9.766)

Exercise 9.5

Compute the desired quantities listed in Exercise 9.1 for the hyperbolic paraboloid
(9.9), that is,
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x1 = Rt1 , x2 = Rt2 , x3 = R̂
[(
t1
)2 − (

t2
)2]

.

Solution. The covariant basis vectors:

a1 = R ê1 + 2R̂t1 ê3 , (9.767a)

a2 = R ê2 − 2R̂t2 ê3 . (9.767b)

The covariant metric coefficients in matrix form:

[
aαβ

] =
[

R2 + (
2R̂t1

)2 −4R̂ 2t1t2

−4R̂ 2t1t2 R
2 + (

2R̂t2
)2

]

. (9.768)

The area element:

d A = √
ahpdt1dt2 where ahp = (

2RR̂t1
)2 + (

2RR̂t2
)2 + (

RR
)2

. (9.769)

The unit normal field:

n̂ = −2RR̂t1 ê1 + 2RR̂t2 ê2 + RR ê3√
ahp

. (9.770)

The covariant curvature tensor in matrix form:

[
bαβ

] = 2RRR̂√
ahp

[
1 0
0 −1

]
. (9.771)

The mixed curvature tensor in matrix form:

[
b . β

α

] = 2RRR̂
(
ahp

)3/2

[
R

2 + (
2R̂t2

)2
4R̂ 2t1t2

−4R̂ 2t1t2 −R2 − (
2R̂t1

)2

]

. (9.772)

The mean curvature:

H = RRR̂
(
ahp

)3/2
{(

R
2 − R2

)
− 4R̂ 2

[(
t1
)2 − (

t2
)2]}

. (9.773)

The Gaussian curvature:

K = −
(
2RRR̂

ahp

)2

. (9.774)

The nonzero Christoffel symbols in matrix form:

[
�1
11

�2
11

]
= 1

ahp

[ (
2RR̂

)2
t1

− (
2RR̂

)2
t2

]

,

[
�1
22

�2
22

]
= −

[
�1
11

�2
11

]
. (9.775)
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Exercise 9.6

Compute the desired quantities listed in Exercise 9.1 for a catenoid (Fig. 9.37)
parametrically described by

x1 = c cos t1 cosh
t2

c
, x2 = c sin t1 cosh

t2

c
, x3 = t2

these coordinates satisfy the implicit relation
√
x21 + x22 = c cosh

x3
c

, (9.776)

where c > 0 is a constant, 0 ≤ t1 < 2π and −∞ < t2 < ∞.

Solution. The covariant basis vectors:

a1 = −c sin t1 cosh
t2

c
ê1 + c cos t1 cosh

t2

c
ê2 , (9.777a)

a2 = cos t1 sinh
t2

c
ê1 + sin t1 sinh

t2

c
ê2 + ê3 . (9.777b)

The covariant metric coefficients in matrix form:

[
aαβ

] =
[
c2 cosh2 t2

c 0
0 cosh2 t2

c

]

. (9.778)

The area element:

d A = c cosh2
t2

c
dt1dt2 . (9.779)

The unit normal field:

Fig. 9.37 Catenoid
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n̂ = sech
t2

c

[
cos t1 ê1 + sin t1 ê2 − sinh

t2

c
ê3

]
. (9.780)

The covariant curvature tensor in matrix form:

[
bαβ

] =
[ −c 0

0 1
c

]
. (9.781)

The mixed curvature tensor in matrix form:

[
b . β

α

] = 1

c cosh2 t2
c

[ −1 0
0 1

]
. (9.782)

The mean curvature:
H = 0 . (9.783)

The Gaussian curvature:

K = −1

c2 cosh4 t2
c

. (9.784)

The nonzero Christoffel symbols entries:

�2
11 = −c tanh

t2

c
, �1

12 = 1

c
tanh

t2

c
, �2

22 = 1

c
tanh

t2

c
. (9.785)

Exercise 9.7

Compute the desired quantities listed in Exercise 9.1 for a surface defined by the
explicit form

x1 = t1 , x2 = t2 , x3 = f
(
t1, t2

)
, (9.786)

noting that the height function f is a smooth function. This is known as theMonge
form and the surface definedby this form is called theMongepatch (see the pioneering
work of Monge [75]).

Solution. The covariant basis vectors:

a1 = ê1 + ft1 ê3 where ft1 := ∂ f

∂t1
, (9.787a)

a2 = ê2 + ft2 ê3 where ft2 := ∂ f

∂t2
. (9.787b)

The covariant metric coefficients in matrix form:
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[
aαβ

] =
[
1 + f 2t1 ft1 ft2
ft1 ft2 1 + f 2t2

]
. (9.788)

The area element:
d A =

√
1 + f 2t1 + f 2t2 dt

1dt2 . (9.789)

The unit normal field:

n̂ = − ft1 ê1 − ft2 ê2 + ê3√
1 + f 2t1 + f 2t2

. (9.790)

The covariant curvature tensor in matrix form:

[
bαβ

] = 1
√
1 + f 2t1 + f 2t2

[
ft1t1 ft1t2
ft1t2 ft2t2

]
, (9.791)

where

ft1t1 := ∂2 f

∂t1∂t1
, ft1t2 := ∂2 f

∂t1∂t2
, ft2t2 := ∂2 f

∂t2∂t2
. (9.792)

The mixed curvature tensor entries:

b . 1
1 =

(
1 + f 2t2

)
ft1t1 − ft1 ft2 ft1t2

(
1 + f 2t1 + f 2t2

)3/2 , (9.793a)

b . 2
1 =

(
1 + f 2t1

)
ft1t2 − ft1 ft2 ft1t1

(
1 + f 2t1 + f 2t2

)3/2 , (9.793b)

b . 1
2 =

(
1 + f 2t2

)
ft1t2 − ft1 ft2 ft2t2

(
1 + f 2t1 + f 2t2

)3/2 . (9.793c)

b . 2
2 =

(
1 + f 2t1

)
ft2t2 − ft1 ft2 ft1t2

(
1 + f 2t1 + f 2t2

)3/2 . (9.793d)

The mean curvature:

H =
(
1 + f 2t2

)
ft1t1 − 2 ft1 ft2 ft1t2 + (

1 + f 2t1
)
ft2t2

2
(
1 + f 2t1 + f 2t2

)3/2 . (9.794)

The Gaussian curvature:

K = ft1t1 ft2t2 − f 2t1t2(
1 + f 2t1 + f 2t2

)2 . (9.795)

The nonzero Christoffel symbols in matrix form:
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[
�1
11

�2
11

]
= ft1t1

1 + f 2t1 + f 2t2

[
ft1
ft2

]
,

[
�1
12

�2
12

]
= ft1t2

1 + f 2t1 + f 2t2

[
ft1
ft2

]
, (9.796a)

[
�1
22

�2
22

]
= ft2t2

1 + f 2t1 + f 2t2

[
ft1
ft2

]
. (9.796b)

Exercise 9.8

Let x : U ⊂ R2 → E 3
p be a parametrization of a regular surface S with

Er = Gr = λ2 , Fr = 0 . (9.797)

This orthogonal parametrization is called the isothermal (or isothermic) parametriza-
tion. And λ2 is known as the scaling function of the isothermal patch x. Show that
the mean and Gaussian curvatures of this patch can be written as

H = Δx · n̂
2λ2

where Δx = ∂2x
∂tα∂tα

= ∂aα

∂tα
, (9.798a)

K = −Δ log λ2

2λ2
where Δ log λ2 =∂2 log λ2

∂tα∂tα
. (9.798b)

Solution. The mean curvature (9.257)2 for the problem at hand renders

H = er + gr
2λ2

.

Using (9.252a)2 and (9.252b)2, one will have er + gr = Δx · n̂. Substituting this
result into the above relation yields the desired result (9.798a)1. This equation can
also be written as

Δx = 2λ2H n̂ , (9.799)

which relies on the fact that Δx is a scalar multiple of n̂. To show this, consider the
equation (9.797), i.e. a1 · a1 = a2 · a2 = λ2 and a1 · a2 = 0, which implies that

a1 · ∂a1
∂t1

= a2 · ∂a1
∂t2

= −a1 · ∂a2
∂t2

,

Consequently,

a1 · ∂aα

∂tα
= 0 and, in a similar manner, a2 · ∂aα

∂tα
= 0 .
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And this means that ∂aα/∂tα is parallel to n̂. Thus, (9.798a)1 and (9.799) imply each
other.

For the isothermic surface S, the required result (9.798b)1 can be obtained from
the Bieberbach formula (9.497a)2 as follows:

K = − 1

2λ2

[
∂

∂t1

(
1

λ2

∂Gr

∂t1

)
+ ∂

∂t2

(
1

λ2

∂Er

∂t2

)]

= − 1

2λ2

[
∂

∂t1

(
1

λ2

∂λ2

∂t1

)
+ ∂

∂t2

(
1

λ2

∂λ2

∂t2

)]

= − 1

2λ2

[
∂

∂t1

(
∂

∂t1
log λ2

)
+ ∂

∂t2

(
∂

∂t2
log λ2

)]

= − 1

2λ2

[
Δ log λ2

]
.

Exercise 9.9

Compute

(i) the tangent vector at , according to (9.282)1, along with the covariant metric
att , according to (9.283)1,

(ii) the arc length s, (from 0 to t) via (9.284)1 in order to have the arc length
parametrization,

(iii) the unit tangent vector â c
1 , according to (9.288)1,

(iv) the curvature κc, according to (9.290)1, along with the principal normal vector
â c
2 , according to (9.291)2,

(v) the binormal vector â c
3 , according to (9.299),

(vi) the torsion τ c, according to (9.303), and
(vii) the Darboux vector dc, given in (9.307),

for a circular cylindrical helix defined by

x1 = R cos t , x2 = R sin t , x3 = R̂t

note that the elliptic cylindrical helix (9.281) is called the circular cylindrical helix if R = R

. (9.800)

Solution. The tangent vector and the covariant metric tensor:

at = −R sin t ê1 + R cos t ê2 + R̂ ê3 , (9.801a)

att = R2 + R̂ 2 . (9.801b)

The natural parametrization:
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from s (t) =
√
R2 + R̂ 2 t one obtains

x1 = R cos
s

√
R2 + R̂ 2

x2 = R sin
s

√
R2 + R̂ 2

x3 = R̂s
√
R2 + R̂ 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (9.802)

The unit tangent vector:

â c
1 = −R

√
R2 + R̂ 2

(

sin
s

√
R2 + R̂ 2

ê1 − cos
s

√
R2 + R̂ 2

ê2 − R̂

R
ê3

)

one then has
d â c1
ds = −R

R2+R̂ 2

(
cos s√

R2+R̂ 2
ê1 + sin s√

R2+R̂ 2
ê2

)

. (9.803)

The curvature and the principal normal vector:

κc = R

R2 + R̂ 2
, (9.804a)

â c
2 = − cos

s
√
R2 + R̂ 2

ê1 − sin
s

√
R2 + R̂ 2

ê2 . (9.804b)

The binormal vector:

â c
3 = R̂

√
R2 + R̂ 2

(

sin
s

√
R2 + R̂ 2

ê1 − cos
s

√
R2 + R̂ 2

ê2 + R

R̂
ê3

)

and, consequently,
d â c3
ds = R̂

R2+R̂ 2

(
cos s√

R2+R̂ 2
ê1 + sin s√

R2+R̂ 2
ê2

)

. (9.805)

The torsion:

τ c = R̂

R2 + R̂ 2
. (9.806)

The Darboux vector:

dc = 1
√
R2 + R̂ 2

ê3 . (9.807)
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Exercise 9.10

Let x c (t) : I → E 3
p be a regular space curve with nowhere-vanishing curvature. It

is parametrized by the general parameter t ∈ I ⊂ R (not necessarily the arc length).
Show that the curvature of x c (t) is governed by

κc =
∣
∣∣∣
dx c

dt

∣
∣∣∣

−3 ∣∣∣∣
dx c

dt
× d2x c

dt2

∣
∣∣∣ , (9.808)

and then express the corresponding moving trihedron
{
â c
1 , â

c
2 , â

c
3

}
in terms of t .

Moreover, show that its torsion can be represented by

τ c =
∣∣
∣∣
dx c

dt
× d2x c

dt2

∣∣
∣∣

−2
dx c

dt
·
(
d2x c

dt2
× d3x c

dt3

)
, (9.809)

and then reformulate the Frenet formulas (9.305a)-(9.305c) in terms of the time-like
variable t . Finally, use these results to calculate the curvature and torsion of a twisted
cubic (Fig. 9.38) defined by

x1 = t , x2 = t2 , x3 = t3

these coordinates satisfy the implicit relations x21 − x2 = x22 − x1x3 = x1x2 − x3 = 0

. (9.810)

Solution. The given curve, in principle, can be parametrized by the arc length as
written in (9.287)1−2. By means of the chain rule of differentiation,

dx c

dt
= dx̂ c

ds

ds

dt
where

ds

dt
=

∣
∣∣∣
dx c

dt

∣
∣∣∣

note that d x̂ c
ds = dx c

dt
dt
ds where dt

ds =
∣
∣
∣ dx

c
dt

∣
∣
∣
−1

. (9.811)

Consequently,

(
ds

dt

)2

= dx c

dt
· dx

c

dt
=⇒ 2

ds

dt

d2s

dt2
= 2

dx c

dt
· d

2x c

dt2
,

or
d2s

dt2
=

∣∣∣∣
dx c

dt

∣∣∣∣

−1 dx c

dt
· d

2x c

dt2
. (9.812)

In a similar manner,
d2t

ds2
= −

∣∣∣∣
dx c

dt

∣∣∣∣

−4 dx c

dt
· d

2x c

dt2
. (9.813)
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One then finds that

κc by using=============
(9.290) and (9.811)

∣
∣
∣
∣
d

ds

(
dx c

dt

dt

ds

)∣∣
∣
∣

by using=================
the product and chain rules

∣∣
∣
∣
∣

(
dt

ds

)2 d2x c

dt2
+ d2t

ds2
dx c

dt

∣∣
∣
∣
∣

by using=============
(9.811) and (9.813)

∣
∣
∣
∣
dx c

dt

∣
∣
∣
∣

−4 ∣∣
∣
∣

(
dx c

dt
· dx

c

dt

)
d2x c

dt2
−

(
dx c

dt
· d

2x c

dt2

)
dx c

dt

∣
∣
∣
∣

by using===========
(1.9a) and (1.72)

∣
∣∣
∣
dx c

dt

∣
∣∣
∣

−4 ∣∣∣
∣

(
dx c

dt
× d2x c

dt2

)
× dx c

dt

∣
∣∣
∣

by using=======
(1.50)

∣
∣
∣
∣
dx c

dt

∣
∣
∣
∣

−4 ∣∣
∣
∣
dx c

dt
× d2x c

dt2

∣
∣
∣
∣

∣
∣
∣
∣
dx c

dt

∣
∣
∣
∣ . ↖ note that

(
dx c

dt
× d2x c

dt2

)

· dx
c

dt
= 0

It should not be difficult now to see that

â c
1 =

∣∣∣∣
dx c

dt

∣∣∣∣

−1 dx c

dt
, (9.814a)

â c
2 =

∣∣∣∣

(
dx c

dt
× d2x c

dt2

)
× dx c

dt

∣∣∣∣

−1 (
dx c

dt
× d2x c

dt2

)
× dx c

dt
, (9.814b)

â c
3 =

∣∣∣∣
dx c

dt
× d2x c

dt2

∣∣∣∣

−1
dx c

dt
× d2x c

dt2
. ✧ (9.814c)

Next, the desired relation (9.809) is derived. Using (9.290)2, (9.304) and (9.808),
one can arrive at

τ c =
∣∣
∣∣
dx c

dt

∣∣
∣∣

6 ∣∣
∣∣
dx c

dt
× d2x c

dt2

∣∣
∣∣

−2
dx̂ c

ds
·
(
d2x̂ c

ds2
× d3x̂ c

ds3

)
. (9.815)

Thus, the above scalar triple product needs to expressed in terms of the time-like
variable t . To do so, consider

d2x c

dt2
= d2s

dt2
dx̂ c

ds
+

(
ds

dt

)2 d2x̂ c

ds2
, ←− note that

dx c

dt
= ds

dt

dx̂ c

ds
(9.816a)

d3x c

dt3
= d3s

dt3
dx̂ c

ds
+ 3

ds

dt

d2s

dt2
d2x̂ c

ds2
+

(
ds

dt

)3 d3x̂ c

ds3
. (9.816b)

One then obtains
dx c

dt
× d2x c

dt2
=

(
ds

dt

)3 dx̂ c

ds
× d2x̂ c

ds2
, (9.817)
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and
d3x c

dt3
·
(
dx c

dt
× d2x c

dt2

)
=

(
ds

dt

)6 d3x̂ c

ds3
·
(
dx̂ c

ds
× d2x̂ c

ds2

)

note that w · (u × v) = u · (v × w) , according to (1.73)

, (9.818)

or
dx̂ c

ds
·
(
d2x̂ c

ds2
× d3x̂ c

ds3

)
=

∣∣
∣∣
dx c

dt

∣∣
∣∣

−6 dx c

dt
·
(
d2x c

dt2
× d3x c

dt3

)
. (9.819)

Introducing (9.819) into (9.815) then gives the desired result (9.809).
Recall that the triad â c

1 (s), â c
2 (s) and â c

3 (s) were connected to their derivatives
by using the curvature κc (s) and the torsion τ c (s). The results were called the Frenet
formulas as demonstrated in (9.305a)-(9.305c). Here, these formulas are reformu-
lated as

d â c
1

dt
=

∣∣∣∣
dx c

dt

∣∣∣∣ κ
c â c

2 , (9.820a)

d â c
2

dt
= −

∣∣∣
∣
dx c

dt

∣∣∣
∣ κ

c â c
1 +

∣∣∣
∣
dx c

dt

∣∣∣
∣ τ

c â c
3 , (9.820b)

d â c
3

dt
= −

∣
∣∣∣
dx c

dt

∣
∣∣∣ τ

c â c
2 , (9.820c)

where the argument t of these functions has been omitted for convenience. The
relation (9.820a) can readily be verified by setting â c

1 (s) = â c
1 (t (s)) and then using

the chain rule of differentiation. The remaining results can be proved in a similar
manner. ✧ ✧

Finally, the curvature and torsion of the twisted cubic t → (
t, t2, t3

)
will be rep-

resented. For this curve,

dx c

dt
= ê1 + 2t ê2 + 3t2 ê3

d2x c

dt2
= 2 ê2 + 6t ê3

d3x c

dt3
= 6 ê3

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

∣∣∣∣
dx c

dt

∣∣∣∣ = (
1 + 4t2 + 9t4

)1/2

dx c

dt
× d2x c

dt2
= 6t2 ê1 − 6t ê2 + 2 ê3

∣∣
∣∣
dx c

dt
× d2x c

dt2

∣∣
∣∣ = (

4 + 36t2 + 36t4
)1/2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Hence,

κc =
(
4 + 36t2 + 36t4

)1/2
(
1 + 4t2 + 9t4

)3/2 , τ c = 3

1 + 9t2 + 9t4
.

These functions are plotted in Fig. 9.38. ✧ ✧ ✧
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Fig. 9.38 Twisted cubic with its curvature and torsion

Exercise 9.11

Use the variational principles, followed in (9.378)-(9.390), to show that a regular
surface is ofminimumarea if at every point in its domain themean curvature vanishes.

Solution. A minimal surface is a surface whose area is minimum among a family of
surfaces sharing the same boundary. The mean curvature of such a special surface
vanishes everywhere. To show this, consider a regular surface x : U ⊂ R2 → E 3

p and

choose a bounded region D̃ ⊂ U . Consider now a family of surfaces according to

x̃
(
t1, t2, h

) = x
(
t1, t2

) + hη
(
t1, t2

)
n̂
(
t1, t2

)
, (9.821)

where η presents an arbitrary differentiable function and h ∈ (−ε, ε) (noting that
ε > 0 is sufficiently small). The map x̃ : D̃ × (−ε, ε) → E 3

p is known as the normal

variation of x
(
D̃
)
. To characterize its area, one needs to have the basis vectors

ã1 = (
1 − hη b . 1

1

)
a1 + h

∂η

∂t1
n̂ − hη b . 2

1 a2 , (9.822)

and

ã2 = (
1 − hη b . 2

2

)
a2 + h

∂η

∂t2
n̂ − hη b . 1

2 a1 , (9.823)

which deliver the metric coefficients

ã11 = a11 − 2hη b11 + o (h)

ã12 = a12 − 2hη b12 + o (h)

ã22 = a22 − 2hη b22 + o (h)

⎫
⎪⎬

⎪⎭
. (9.824)
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It follows that

ã11ã22 − (ã12)
2 = [

a11a22 − (a12)
2
] [
1 − 4hηH

] + o (h) ,

where

H = b11a22 − 2 b12a12 + b22a11
2
(
a11a22 − a212

) .

As a result,

Ã (h) =
∫

D̃

√
ã11ã22 − (ã12)

2dt1dt2

=
∫

D̃

[(
1 − 2hηH

)√
a11a22 − (a12)

2 + o (h)

]
dt1dt2 , (9.825)

whose derivative at h = 0 renders

d Ã

dh

∣
∣∣∣∣
h=0

=
∫

D̃

(−2ηH
)√

a11a22 − (a12)
2 dt1dt2 .

Thus,

δA = d Ã

dh

∣∣∣∣∣
h=0

h = h
∫

D̃

(−2ηH
)√

a11a22 − (a12)
2 dt1dt2 . (9.826)

The necessary condition for Ã (h) to attain a minimum is that δA = 0. Having in
mind that η is an arbitrary function, by the fundamental lemma of the variational
calculus, one will have

H
√
a11a22 − (a12)

2 = 0 . (9.827)

Recall from (9.20)3 that a11a22 − (a12)
2 > 0. And this implies the required result

H = 0. That is why a surface with identically vanishing the mean curvature has least
area.

Hint: A minimal surface is a special surface whose Gaussian curvature turns out
to be either negative or zero, see the expressions (9.425a) and (9.425b).
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Exercise 9.12

Verify (9.134).

Solution. The procedure used here to arrive at the desired result relies on the basic
definition (9.118)1, see Fig. 9.11. For the problem at hand, it renders

d
(
ĥ · u

)

dt
= lim

Δt→0

ĥ‖
Q→P · u‖

Q→P − ĥP · uP

Δt
. (9.828)

Let these smooth vector fields be decomposed as ĥ = ĥαaα and u = u γ aγ . Then,

d
(
ĥ · u

)

dt
= lim

Δt→0

ĥα
Q u γ

Q (aα)
‖
Q→P · (aγ

)‖
Q→P − ĥα

P u γ

P (aα)P · (aγ

)
P

Δt
. (9.829)

Taking this limit requires characterizing the tensor objects at Q and the parallel
transported basis vectors sitting at P . Note that one only needs to expand these
quantities up to the first-order. This is described in the following.

To begin with, recall from (9.121) that (aα)
‖
Q→P = ξ θ

α P (aθ )P + ςα P ( n̂)P . By
using (9.12)1−2, one then has

(aα)
‖
Q→P · (aγ

)‖
Q→P = ξ θ

α ξρ
γ aθρ + ςαςγ , (9.830)

where the subscript P has been dropped for notational simplicity. For small enough
Δt , one can write

ξ θ
α = δθ

α + ξ̄ θ
αΔt , ςα = (0)α + ς̄αΔt . (9.831)

As a result,

(aα)
‖
Q→P · (aγ

)‖
Q→P

= aαγ + (
aαρ ξ̄

ρ
γ + ξ̄ θ

αaθγ

)
Δt . (9.832)

Consider now ĥα
Q = ĥα +

(
d ĥα/dt

)
Δt , according to (9.120). Consequently,

ĥα
Q u γ

Q = ĥα u γ +
(
d ĥα

dt
u γ + ĥα d u γ

dt

)

Δt . (9.833)
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Introducing (9.832) and (9.833) into (9.829) leads to

d
(
ĥ · u

)

dt
= d ĥα

dt
aαγ u γ + ĥαaαγ

d u γ

dt

+ ĥα u γ aαρ lim
Δt→0

ξρ
γ − δρ

γ

Δt
+ ĥα u γ aθγ lim

Δt→0

ξ θ
α − δθ

α

Δt
. (9.834)

At the end, suppose that t is one of the coordinate curves. By (9.12)1−2, (9.124)1,
(9.128) and (9.132)3 along with renaming the dummy indices, this expression can
be rephrased as

∂
(
ĥ · u

)

∂tβ
= ∂ ĥα

∂tβ
aαγ u γ + ĥα u γ aθγ �θ

βα + ĥαaαγ

∂ u γ

∂tβ
+ ĥα u γ aαρ�

ρ
βγ

=
(

∂ ĥα

∂tβ
+ �α

βθ ĥ
θ

)

aαγ u γ + ĥαaαγ

(
∂ u γ

∂tβ
+ �

γ

βρ uρ

)

︸ ︷︷ ︸
= ĥα

∣∣
∣
β
aαγ uγ +

(
∂ uα

∂tβ
+ �α

βθ
uθ

)
aαγ ĥγ = ĥα

∣∣
∣
β
aαγ uγ + uα

∣
∣
β
aαγ ĥγ

= ∂ĥ
∂tβ

· u + ĥ · ∂u
∂tβ

.

Exercise 9.13

Consider the unit sphere

(
t1, t2

) → (
sin t1 cos t2, sin t1 sin t2, cos t1

)
,

embedded in the three-dimensional Euclidean space whose nonzero Christoffel sym-
bols, according to (9.747), are

�1
22 = − sin t1 cos t1 , �2

12 = �2
21 = cot t1 .

Consider now two curves of latitude defined by (see Fig. 9.39)

{
C1 : t → (

t1 = π
2 , t2 = t

)

C2 : t → (
t1 = π

4 , t2 = t
) , 0 ≤ t ≤ π

2
,

on this planet. Let P be a point corresponding to
(
t1 = π/2, t2 = 0

)
on C1 and

further let Q be a point corresponding to
(
t1 = π/4, t2 = 0

)
on C2. First, compute

the covariant derivative of a surface vector field
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ĥ = cos t2a1 + sin t2a2 ,

along the given curves. Then, parallel transport an initial vector ĥ0 = αa1 + βa2
sitting at P (Q) along C1 (C2). Here, α and β are given constants.

Solution. Using (9.243)2, the tangent vector to C1 simply renders

at = dt1

dt
a1 + dt2

dt
a2 = a2 ,

which also holds true for C2. Then, guided by (9.127)2 and (9.128), the covariant
derivative of ĥ along C1 is given by

ĥ
∣∣∣
a2

= ĥ 1
∣∣∣
2
a1 + ĥ 2

∣∣∣
2
a2

=
(

∂ ĥ 1

∂t2
+ �1

21 ĥ
1 + �1

22 ĥ
2

)

a1 +
(

∂ ĥ 2

∂t2
+ �2

21 ĥ
1 + �2

22 ĥ
2

)

a2

= (− sin t2 + 0 − sin t1 cos t1 sin t2
)
a1 + (

cos t2 + cot t1 cos t2 + 0
)
a2

= − sin t2a1 + cos t2a2 .

In a similar manner, the object ĥ
∣∣∣
a2
along C2 delivers

ĥ
∣
∣∣
a2

= −3

2
sin t2a1 + 2 cos t2a2 .

The parallel transport of a given vector along a curve results in a vector field whose
components are the solution of a linear system of (generally coupled) first-order
ordinary differential equations. For the first curve in this example, the condition
(9.140)3 now takes the form

∂ ĥ 1

∂t2
= 0 ,

∂ ĥ 2

∂t2
= 0 whose solution is ĥ 1 = A , ĥ 2 = B .

Considering the initial conditions ĥ 1
(
t2 = 0

) = α and ĥ 2
(
t2 = 0

) = β, one can

infer that the parallel transport of ĥ0 = αa1 + βa2 along C1 is nothing but itself. This
is because the given curve represents a geodesic on the sphere.

To parallel transport ĥ0 = αa1 + βa2 along C2, one needs to solve

∂ ĥ 1

∂t2
= 1

2
ĥ 2 ,

∂ ĥ 2

∂t2
= − ĥ 1 or, since t2 = t,

d ĥ 1

dt
= 1

2
ĥ 2 ,

d ĥ 2

dt
= − ĥ 1 .
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The goal is now to decouple these differential equations. This can be done by differ-
entiating these equations with respect to the time-like variable:

d2 ĥ 1

dt2
= 1

2

d ĥ 2

dt
,

d2 ĥ 2

dt2
= −d ĥ 1

dt
.

And this helps obtain

d2 ĥ 1

dt2
+ 1

2
ĥ 1 = 0 ,

d2 ĥ 2

dt2
+ 1

2
ĥ 2 = 0 .

For solving the first differential equation, consider ĥ 1 = exp (st). The characteristic
equation then becomes s2 + 1/2 = 0whose roots are s1 = i

√
2/2 and s2 = −i

√
2/2

where i denotes the imaginary unit. By superposition, one can arrive at

ĥ 1 = Ā exp

(√
2i

2
t

)

+ B̄ exp

(

−
√
2i

2
t

)

,

or, using the Euler formulas exp (± i t) = cos t ± i sin t ,

ĥ 1 = A cos

(√
2

2
t

)

+ B sin

(√
2

2
t

)

.

In a similar manner,

ĥ 2 = C cos

(√
2

2
t

)

+ D sin

(√
2

2
t

)

.

It only remains to determine these four constants. First, given that ĥ 1 (0) = α and
ĥ 2 (0) = β,

ĥ 1 = α cos

(√
2

2
t

)

+ B sin

(√
2

2
t

)

, ĥ 2 = β cos

(√
2

2
t

)

+ D sin

(√
2

2
t

)

.

Then, consider

d ĥ 1

dt
= 1

2
ĥ 2 or

(
β − √

2B
)
cos

(√
2

2
t

)

+
(
D + √

2α
)
sin

(√
2

2
t

)

= 0 .
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Notice that this result should hold for any t in [0, π/2]. As a result, one can finally
arrive at

ĥ =
[

α cos

(√
2

2
t

)

+
√
2

2
β sin

(√
2

2
t

)]

a1

+
[

β cos

(√
2

2
t

)

− √
2α sin

(√
2

2
t

)]

a2 .

Notice that C2 is not the straightest possible path on the planet (i.e. the acceleration
vector has the tangential component). The initial vector ĥ0 = αa1 + βa2 thus changes
from point to point when it is parallel transported along C2.

Figure 9.39 illustrates the results when α = 1 and β = 0. In this case, note that ĥ
is a vector of unit length:

ĥ · ĥ = cos2
(√

2

2
t

)

a11
(π

4
, t
)

+ 0 + 2 sin2
(√

2

2
t

)

a22
(π

4
, t
)

= cos2
(√

2

2
t

)

(1) + 2 sin2
(√

2

2
t

)(
sin2

π

4

)

= 1 .

Fig. 9.39 Parallel transport along two (geodesic and non-geodesic) curves on unit sphere
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Exercise 9.14

Verify (9.360)-(9.363).

Solution. Consider a s-parametrized curve according to (9.336) whose first and
second derivatives are given in (9.337) and (9.338). From these relations, one can
obtain

dx̂ c

ds
× d2x̂ c

ds2
= (a1 × a2)

(
dt1

ds

d2t2

ds2
− d2t1

ds2
dt2

ds

)

+
(
a1 × ∂a1

∂t1

)(
dt1

ds

)3

+
(
a2 × ∂a2

∂t2

)(
dt2

ds

)3

+
(
a1 × ∂a2

∂t2
+ 2a2 × ∂a1

∂t2

)
dt1

ds

(
dt2

ds

)2

+
(
2a1 × ∂a1

∂t2
+ a2 × ∂a1

∂t1

)(
dt1

ds

)2
dt2

ds
. (9.835)

Using (1.11), (1.78a), (9.17)1, (9.20)3, (9.29)3, (9.31)1, (9.54)2, (9.94), (9.359) and
(9.835), one will have

κg =
(
dx̂ c

ds
× d2x̂ c

ds2

)
· a1 × a2√

a
←−

note that a1 × a2 = |a1 × a2| n̂
where |a1 × a2| =

√
a11a22 − (a12)

2 = √
a

= 1√
a

(a1 × a2) · (a1 × a2)
(
dt1

ds

d2t2

ds2
− d2t1

ds2
dt2

ds

)

︸ ︷︷ ︸
= a√

a

(
dt1
ds

d2 t2

ds2
− d2 t1

ds2
dt2
ds

)
= √

a

(
dt1
ds

d2 t2

ds2
− d2 t1

ds2
dt2
ds

)

+ 1√
a

[(
a1 × ∂a1

∂t1

)
· (a1 × a2)

](
dt1

ds

)3

︸ ︷︷ ︸

= 1√
a

[
(a1 · a1)

(
∂a1
∂t1

· a2
)

− (a1 · a2)
(

∂a1
∂t1

· a1
)](

dt1
ds

)3

= 1√
a

[
a11

(
�1
11a12 + �2

11a22
)

− a12
(
�1
11a11 + �2

11a12
)](

dt1
ds

)3
=

[√
a �2

11

](
dt1
ds

)3

+ 1√
a

[(
a2 × ∂a2

∂t2

)
· (a1 × a2)

](
dt2

ds

)3

︸ ︷︷ ︸

= 1√
a

[
(a2 · a1)

(
∂a2
∂t2

· a2
)

− (a2 · a2)
(

∂a2
∂t2

· a1
)](

dt2
ds

)3

= 1√
a

[
a12

(
�1
22a12 + �2

22a22
)

− a22
(
�1
22a11 + �2

22a12
)](

dt2
ds

)3
=

[
−√

a �1
22

](
dt2
ds

)3
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+ 1√
a

[(
a1 × ∂a2

∂t2

)
· (a1 × a2)

]
dt1

ds

(
dt2

ds

)2

︸ ︷︷ ︸

= 1√
a

[
(a1 · a1)

(
∂a2
∂t2

· a2
)

− (a1 · a2)
(

∂a2
∂t2

· a1
)]

dt1
ds

(
dt2
ds

)2

= 1√
a

[
a11

(
�1
22a12 + �2

22a22
)

− a12
(
�1
22a11 + �2

22a12
)]

dt1
ds

(
dt2
ds

)2
=

[√
a �2

22

]
dt1
ds

(
dt2
ds

)2

+ 2√
a

[(
a2 × ∂a1

∂t2

)
· (a1 × a2)

]
dt1

ds

(
dt2

ds

)2

︸ ︷︷ ︸

= 2√
a

[
(a2 · a1)

(
∂a1
∂t2

· a2
)

− (a2 · a2)
(

∂a1
∂t2

· a1
)]

dt1
ds

(
dt2
ds

)2

= 2√
a

[
a12

(
�1
12a12 + �2

12a22
)

− a22
(
�1
12a11 + �2

12a12
)]

dt1
ds

(
dt2
ds

)2
=

[
−2

√
a �1

12

]
dt1
ds

(
dt2
ds

)2

+ 2√
a

[(
a1 × ∂a1

∂t2

)
· (a1 × a2)

](
dt1

ds

)2
dt2

ds
︸ ︷︷ ︸

= 2√
a

[
(a1 · a1)

(
∂a1
∂t2

· a2
)

− (a1 · a2)
(

∂a1
∂t2

· a1
)](

dt1
ds

)2
dt2
ds

= 2√
a

[
a11

(
�1
12a12 + �2

12a22
)

− a12
(
�1
12a11 + �2

12a12
)](

dt1
ds

)2
dt2
ds =

[
2
√
a �2

12

](
dt1
ds

)2
dt2
ds

+ 1√
a

[(
a2 × ∂a1

∂t1

)
· (a1 × a2)

](
dt1

ds

)2
dt2

ds
︸ ︷︷ ︸

= 1√
a

[
(a2 · a1)

(
∂a1
∂t1

· a2
)

− (a2 · a2)
(

∂a1
∂t1

· a1
)](

dt1
ds

)2
dt2
ds

= 1√
a

[
a12

(
�1
11a12 + �2

11a22
)

− a22
(
�1
11a11 + �2

11a12
)](

dt1
ds

)2
dt2
ds =

[
−√

a �1
11

](
dt1
ds

)2
dt2
ds

.

which, by simplification, delivers the desired result (9.360). The elegant expression
(9.361) then immediately follows.

The required result (9.362) can be shown in a similar fashion as follows:

√
aκg = (a1 × a2) ·

(
â c
1 × d â c

1

ds

)

= (a1 × a2) ·
(
â c
1 × ∂ â c

1

∂t1

)
dt1

ds
︸ ︷︷ ︸

=
(
dt1
ds a1 · â c1

)(
a2 · ∂ â c1

∂t1

)
−

(
dt1
ds a1 · ∂ â c1

∂t1

)
(
a2 · â c1

)

= (
â c1 · â c1

)
(
a2 · ∂ â c1

∂t1

)

���������
−

(
dt2
ds a2 · â c1

)(
a2 · ∂ â c1

∂t1

)
− (0)

(
a2 · â c1

)

���������
+

(
dt2
ds a2 · ∂ â c1

∂t1

)
(
a2 · â c1

)

+ (a1 × a2) ·
(
â c
1 × ∂ â c

1

∂t2

)
dt2

ds
︸ ︷︷ ︸

= (
a1 · â c1

)
(
dt2
ds a2 · ∂ â c1

∂t2

)
−

(
a1 · ∂ â c1

∂t2

)(
dt2
ds a2 · â c1

)

= (
a1 · â c1

)
(0)

���������
− (

a1 · â c1
)
(
dt1
ds a1 · ∂ â c1

∂t2

)
−

(
a1 · ∂ â c1

∂t2

)
(
â c1 · â c1

)���������+
(
a1 · ∂ â c1

∂t2

)(
dt1
ds a1 · â c1

)
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= (1)

(
a2 · ∂ â c

1

∂t1
− a1 · ∂ â c

1

∂t2

)

= ∂

∂t1
(
a2 · â c

1

)

����������
−∂a2

∂t1
· â c

1 − ∂

∂t2
(
a1 · â c

1

)

����������
+∂a1

∂t2
· â c

1 .

To represent the geodesic curvature of ϕ
(
t1, t2

) = constant, according to (9.363),
consider

∂ϕ

∂t1
dt1

ds
= − ∂ϕ

∂t2
dt2

ds
and let

dt1

ds
= λ

∂ϕ

∂t2
,

dt2

ds
= −λ

∂ϕ

∂t1
.

The first fundamental form ds2 = a11
(
dt1

)2 + 2a12dt1dt2 + a22
(
dt2

)2
then yields

λ = ± 1

Ω̃
where Ω̃ :=

√

a11

(
∂ϕ

∂t2

)2

− 2a12
∂ϕ

∂t1
∂ϕ

∂t2
+ a22

(
∂ϕ

∂t1

)2

.

Consequently, the tangent vector to the curve under consideration takes the form

â c
1 = ± 1

Ω̃

∂ϕ

∂t2
a1 ∓ 1

Ω̃

∂ϕ

∂t1
a2 .

This helps obtain

a2 · â c
1 = ± 1

Ω̃

∂ϕ

∂t2
a12 ∓ 1

Ω̃

∂ϕ

∂t1
a22 , a1 · â c

1 = ± 1

Ω̃

∂ϕ

∂t2
a11 ∓ 1

Ω̃

∂ϕ

∂t1
a12 .

Introducing these expressions into (9.362) finally gives the desired result (9.363).

Exercise 9.15

Consider a regular surface S described by

x1 = Rt2 cos t1 , x2 = Rt2 sin t1 , x3 = R log t2 , (9.836)

where 0 ≤ t1 < 2π , 0 < t2 < ∞ and R, R are positive real numbers. This is known
as the funnel surface (Fig. 9.40). First, compute the desired quantities listed in
Exercise 9.1 for this surface of revolution. Then, write a computer program to
compute its geodesics.
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Fig. 9.40 Geodesics on funnel surface

Solution. The covariant basis vectors:

a1 = −Rt2 sin t1 ê1 + Rt2 cos t1 ê2 , (9.837a)

a2 = R cos t1 ê1 + R sin t1 ê2 + R

t2
ê3 . (9.837b)

The covariant metric coefficients in matrix form:

[
aαβ

] =
⎡

⎣

(
Rt2

)2
0

0 R2 +
(

R
t2

)2

⎤

⎦ . (9.838)

The area element:

d A = R
√(

Rt2
)2 + R

2
dt1dt2 . (9.839)

The unit normal field:

n̂ = R cos t1 ê1 + R sin t1 ê2 − Rt2 ê3√(
Rt2

)2 + R
2

. (9.840)

The covariant curvature tensor in matrix form:

[
bαβ

] = R R
√(

Rt2
)2 + R

2

[ −t2 0
0 1

t2

]
. (9.841)
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The mixed curvature tensor in matrix form:

[
b . β

α

] = R R
√(

Rt2
)2 + R

2

[ − 1
R2t2 0
0 t2

(Rt2)
2+R

2

]

. (9.842)

The mean curvature:

H = − R
3

2Rt2
[(
Rt2

)2 + R
2
]3/2 . (9.843)

The Gaussian curvature:

K = − R
2

[(
Rt2

)2 + R
2
]2 . (9.844)

The nonzero Christoffel symbols entries:

�2
11 = − R2

(
t2
)3

(
Rt2

)2 + R
2 , �1

12 = 1

t2
, �2

22 = − R
2

R2
(
t2
)3 + R

2
t2

. (9.845)

Notice that Fr = a12 = 0 at each point of the funnel surface. And this means that
the parametric equations (9.836) represent an orthogonal parametrization (note that
(9.836) is eventually a t2-Clairaut parametrization). One thus needs to solve the
differential equations (9.422a)-(9.422d) to determine the geodesic curves on such
a surface. The desired code can be downloaded for free from the website address
https://data.uni-hannover.de/dataset/exercises-tensor-analysis.

Exercise 9.16

Verify (9.463a)-(9.463b).

Solution. Recall from Theorem D on Sect. 9.7.4 that when the coordinate curves are
the lines of curvature at a non-umbilical point on a regular surface, thematrices

[
aαβ

]

and
[
bαβ

]
have zero off-diagonal entries. Making use of the equations (9.162d),

(9.235a)-(9.235c) and (9.480)1, one then has

∂ b11

∂t2
= �1

12 b11 − �2
11 b22 =

(
b11

2a11
+ b22

2a22

)
∂a11
∂t2

, (9.846)

or
∂er
∂t2

= �1
12er − �2

11gr =
(

er
2Er

+ gr
2Gr

)
∂Er

∂t2
. (9.847)

https://data.uni-hannover.de/dataset/exercises-tensor-analysis
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In a similar manner,

∂ b22

∂t1
= �2

12 b22 − �1
22 b11 =

(
b22

2a22
+ b11

2a11

)
∂a22
∂t1

, (9.848)

or
∂gr
∂t1

= �2
12gr − �1

22er =
(

gr
2Gr

+ er
2Er

)
∂Gr

∂t1
. (9.849)

These relations help obtain

∂

∂t2
b11

a11
= ∂a11

2a11∂t2

(
b22

a22
− b11

a11

)
,

∂

∂t1
b22

a22
= ∂a22

2a22∂t1

(
b11

a11
− b22

a22

)

or ∂

∂t2
er
Er

= ∂Er
2Er∂t2

(
gr
Gr

− er
Er

)
, ∂

∂t1
gr
Gr

= ∂Gr
2Gr∂t1

(
er
Er

− gr
Gr

)

,

or, using (9.352)-(9.353),

∂κ1

∂t2
= ∂a11

2a11∂t2
(κ2 − κ1) ,

∂κ2

∂t1
= ∂a22

2a22∂t1
(κ1 − κ2)

or
∂κ1
∂t2

= ∂Er
2Er∂t2

(κ2 − κ1) ,
∂κ2
∂t1

= ∂Gr
2Gr∂t1

(κ1 − κ2)

.

Exercise 9.17

A saddle-like surface can be resulted from theMonge patch (9.786) via the following
parametrization

x1 = t1 , x2 = t2 , x3 = (
t1
)3 − 3t1

(
t2
)2

. (9.850)

This is called monkey saddle (because the shape of this surface has room for two
legs and also a tail, see Fig. 9.41). First, find the principal curvatures and directions
of this surface at a given point P corresponding to (0, 1). Then, verify the Rodrigues
formula (9.464) in the resulting directions.

Solution. The covariant basis vectors are

a1 = ê1 +
[
3
(
t1
)2 − 3

(
t2
)2]

ê3 , a1 (P) = ê1 − 3 ê3 , (9.851a)

a2 = ê2 + [−6t1t2
]
ê3 , a2 (P) = ê2 . (9.851b)
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Fig. 9.41 Monkey saddle

The covariant metric coefficients in matrix form,

[
aαβ

] =
⎡

⎣ 1 + 9
[(
t1
)2 − (

t2
)2]2 −18t1t2

[(
t1
)2 − (

t2
)2]

−18t1t2
[(
t1
)2 − (

t2
)2]

1 + 36
(
t1t2

)2

⎤

⎦ , (9.852)

at the given point gives
[
aαβ (P)

] =
[
10 0
0 1

]
.

The unit normal field,

n̂ =
3
[
− (

t1
)2 + (

t2
)2]

ê1 + 6
[
t1t2

]
ê2 + ê3

√

Ω̃ := 1 + 9
[(
t1
)2 + (

t2
)2]2

, (9.853)

at P yields

n̂ (P) = 3
√
10 ê1 + √

10 ê3
10

.

The covariant curvature tensor in matrix form renders

[
bαβ

] = 6√
Ω̃

[
t1 −t2

−t2 −t1

]
,

[
bαβ (P)

] = −3
√
10

5

[
0 1
1 0

]
. (9.854)
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At the given point, the mixed curvature tensor b . β
α = bαβaαβ with the following

matrix form

[
b . β

α (P)
] = −3

√
10

5

[
0 1
1
10 0

]
has two distinct

eigenvalues; namely,

κ1 = +3

5

κ2 = −3

5

⎫
⎪⎬

⎪⎭
.

And this means that P is a non-umbilical point. From (9.434)1−2, it then follows that

λ̂1 = − 0 − 3
510

− 3
√
10
5 − 0

= −√
10 , λ̂2 = − 0 + 3

510

− 3
√
10
5 − 0

= +√
10

Accordingly, dt21 = −√
10dt11 and dt22 = √

10dt12 . Now, the vectors dx1 = dtα1 aα

and dx2 = dtα2 aα render

dx1 =
(
ê1 − √

10 ê2 − 3 ê3
)
dt11 , dx2 =

(
ê1 + √

10 ê2 − 3 ê3
)
dt12 .

And the partial derivatives

∂n̂
∂t1

= − b . β

1 aβ = 3
√
10

5
ê2 ,

∂n̂
∂t2

= − b . β

2 aβ = 3
√
10

50
ê1 − 9

√
10

50
ê3 ,

help compute

d n̂1 = −3 ê1 + 3
√
10 ê2 + 9 ê3
5

dt11 , d n̂2 = 3 ê1 + 3
√
10 ê2 − 9 ê3
5

dt12 .

Observe that d n̂1 + κ1dx1 = 0 and d n̂2 + κ2dx2 = 0. The Rodrigues formula is
thus verified in each principal direction.

Exercise 9.18

Let S be a regular surface parametrized by x = x
(
t1, t2

)
and consider a surface S‖

defined by
x‖ (t1, t2

) = x
(
t1, t2

) + h n̂
(
t1, t2

)
. (9.855)

This surface represents a parallel surface to S at (constant) distance h (Fig. 9.42).
First, show that the mean curvature of S‖ can be written as
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Fig. 9.42 Catenoid and its
parallel surfaces

H
‖ = �

(
H − hK

)

1 − 2hH + h2K
where � = sgn [(1 − hκ1) (1 − hκ2)]

recall that κ1, κ2 were the eigenvalues of b . β
α

, (9.856)

and subsequently obtain the following formula

K
‖ = K

1 − 2hH + h2K
, (9.857)

for its Gaussian curvature. Then, verify that the principal curvatures of such a surface
are expressible as

κ
‖
1 = �κ1

1 − hκ1
, κ

‖
2 = �κ2

1 − hκ2
. (9.858)

Finally, prove that
dI‖r
dh

∣∣∣∣
∣
h=0

= −2IIr , (9.859)

where I‖r ( IIr) denotes the first (second) fundamental form of S‖ (S).

Solution. The covariant basis vectors of S‖ are given by

a‖
α = aα − h b . γ

α aγ , (9.860)

or

a‖
1 = (

1 − h b . 1
1

)
a1 − h b . 2

1 a2 , a‖
2 = −h b . 1

2 a1 + (
1 − h b . 2

2

)
a2 . (9.861)
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In matrix form, they render

⎡

⎢⎢
⎣

...
...

a‖
1 a‖

2
...

...

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

...
...

a1 a2
...

...

⎤

⎥⎥
⎦
[
M

]
where [M ] = [

δβ
α − h b . β

α

]T
. (9.862)

Using (9.103)3, (9.104)2, (9.425a) and (9.425b), the determinant of [M ] takes the
form

det [M ] = 1 − 2hH + h2K = (1 − hκ1) (1 − hκ2) . (9.863)

This helps establish

a‖
1 × a‖

2 = (det [M ]) a1 × a2 and, consequently, n̂ ‖ = � n̂ , (9.864)

where n̂ ‖ denotes the unit normal to the parallel surface and� is the sign of det [M ].
As a result, ∂n̂ ‖/∂tα = �∂n̂/∂tα . The Weingarten equations (9.99)1 for S‖ can now
be written as

∂n̂ ‖

∂tα
= (− b . β ‖

α

)
a‖

β or
(
� b . β

α

)
aβ = (

b . β ‖
α

)
a‖

β , (9.865)

or

�

⎡

⎢⎢
⎣

...
...

a1 a2
...

...

⎤

⎥⎥
⎦
[
b . β

α

]T =

⎡

⎢⎢
⎣

...
...

a‖
1 a‖

2
...

...

⎤

⎥⎥
⎦
[
b . β ‖

α

]T
. (9.866)

It is then easy to see that

[
b . β ‖

α

] = �
[
b . β

α

] [
δβ
α − h b . β

α

]−1

. (9.867)

The (half of) trace of this matrix and its determinant are the required results (9.856)
and (9.857), respectively. ✩

The results (9.858)1 and (9.858)2 can be obtained from (9.426a) and (9.426b) in
a straightforward manner. Considering

(
κγ , êγ

)
as an eigenpair of

[
b . β

α

]
and using

the matrix expression (9.867), one can also arrive at the same results, i.e.

[
b . β ‖

α

] [
êγ

] = �κγ

1 − hκγ

[
êγ

]
(γ = 1, 2; no sum) . ✩ ✩ (9.868)
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Finally,

dI‖r
dh

∣∣∣∣∣
h=0

by using (9.227) and==============
applying the product rule

[
da‖

α

dh
· a‖

β + a‖
α · da

‖
β

dh

]

h=0

dtαdtβ

by using======
(9.860)

[
− b . γ

α aγ · aβ − aα · b . γ

β aγ

]
dtαdtβ

by using======
(9.17)

−
[
b . γ

α aγβ + b . γ

β aγα

]
dtαdtβ

by using==========
(9.26) and (9.100)

− [
bαβ + bβα

]
dtαdtβ

by using======
(9.95)

−2 bαβdt
αdtβ

by using======
(9.251)

−2IIr . ✩ ✩ ✩

Exercise 9.19

Let βββ (s) be a naturally represented regular curve with the Frenet trihedron

â c
1 = βββ ′ , â c

2 = 1

κc
βββ ′′ , â c

3 = 1

κc
βββ ′ × βββ ′′ , ←− see (9.288)

and the Frenet formulas

(
â c
1

)′ = βββ ′′ ,
(
â c
2

)′ = τ c

κc
βββ ′ × βββ ′′ − κc βββ ′ ,

(
â c
3

)′ = −τ c

κc
βββ ′′ . ←− see (9.305a)

Further, let S be the principal normal surface of βββ (s) parametrically described
by x̂ s

(
s, t2

) = βββ (s) + t2 â c
2 (s). Then, show that the mean curvature of S can be

computed according to (9.334)-(9.335) and subsequently obtain the equations deter-
mining its principal curvatures and directions.

At the end, show that βββ (s) is a geodesic on its binormal surface parametrically
described by x̂ s

(
s, t2

) = βββ (s) + t2 â c
3 (s).

Solution. To this end, the argument s of the functions is dropped for simplifying the
notation. To begin with, consider the fact that

(
βββ ′ × βββ ′′) · βββ ′ = (

βββ ′ × βββ ′′) · βββ ′′ = 0
and βββ ′ · βββ ′′ = 0. The distribution parameter (9.330) then takes the form

p =
(

τ c

κcβββ
′ × βββ ′′ − κc βββ ′) · [βββ ′ × 1

κcβββ
′′]

τ c 2

κc 2 |βββ ′ × βββ ′′|2 + κc 2 |βββ ′|2 =
τ c

κc 2

∣∣βββ ′ × βββ ′′∣∣2

τ c 2

κc 2 |βββ ′′|2 + κc 2

= τ c

τ c 2 + κc 2
.
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The desired result (9.334) follows from (9.332). Thus, to compute

H =
[
βββ ′′ + t2

(
τ c â c

3 − κc â c
1

)′] · {[βββ ′ + t2
(

τ c

κcβββ
′ × βββ ′′ − κc βββ ′)] × 1

κcβββ
′′}

2
[
p2 + (

t2
)2]3/2 (

τ c 2 + κc 2
)3/2

,

one needs to have

u := βββ ′′ + t2
(
τ c â c

3 − κc â c
1

)′

=
(
1 − t2τ c 2

κc
− t2κc

)
βββ ′′ + t2τ c ′

κc
βββ ′ × βββ ′′ − t2κc ′ βββ ′ ,

and

v :=
[
βββ ′ + t2

(
τ c

κc
βββ ′ × βββ ′′ − κc βββ ′

)]
× 1

κc
βββ ′′

=
(

1

κc
− t2

)
βββ ′ × βββ ′′ − t2τ c

κc 2

(
βββ ′′ · βββ ′′)βββ ′

=
(

1

κc
− t2

)
βββ ′ × βββ ′′ − t2τ cβββ ′ .

Consequently,
u · v = t2τ c ′ (1 − t2κc

) + (
t2
)2

κc ′τ c .

Substituting this result into the above expression for the mean curvature leads to the
required result.

Next, for the given surface x̂ s
(
s, t2

) = βββ (s) + t 2̂a c
2 (s), consider

a1 = (
1 − t2κc)βββ ′ + t2τ c

κc
βββ ′ × βββ ′′

a2 = 1

κc
βββ ′′

⎫
⎪⎪⎬

⎪⎪⎭
with

Er = (
1 − t2κc)2 + (

t2τ c)2

Gr = 1

Fr = 0

⎫
⎪⎬

⎪⎭
,

and

n̂ =
(
1
κc − t2

)
βββ ′ × βββ ′′ − t2τ cβββ ′

√(
1 − t2κc

)2 + (
t2τ c

)2
.

It is then easy to see that
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er = t2
[
τ c ′ + t2

(
κc ′τ c − τ c ′κc

)]

√(
1 − t2κc

)2 + (
t2τ c

)2
,

gr = 0 ,

fr = τ c

√(
1 − t2κc

)2 + (
t2τ c

)2
.

Guided by (9.437), the principal directions are obtained via the following relation

+τ c
[(
1 − t2κc

)2 + (
t2τ c

)2]
dsds

−t2
[
τ c ′ + t2

(
κc ′τ c − τ c ′κc

)]
dsdt2

−τ cdt2dt2 = 0 .

The equation
(
ErGr − F2

r

)
κn 2 − (grEr − 2frFr + erGr) κn + (

ergr − f2r
) = 0,

according to (9.429), for the problem at hand renders

[(
1 − t2κc)2 + (

t2τ c)2
]2

κn 2 − t2
[
τ c ′ + t2

(
κc ′τ c − τ c ′κc

)]

[(
1 − t2κc

)2 + (
t2τ c

)2]−1/2 κn − τ c 2 = 0 ,

whose solution delivers the principal curvatures.

Finally, consider the binormal surface x
(
s, t2

) = βββ (s) + (
t2/κc

)
βββ ′ (s) × βββ ′′ (s)

of βββ (s) with

a1 = βββ ′ − t2τ c

κc
βββ ′′

a2 = 1

κc
βββ ′ × βββ ′′

⎫
⎪⎪⎬

⎪⎪⎭
and, consequently, n̂ = −

1
κcβββ

′′ + t2τ cβββ ′
√
1 + (

t2τ c
)2

.

The geodesic curvature (9.359) then becomes

κg = (
βββ ′ × βββ ′′) · n̂

= − 1

κc

(
βββ ′ × βββ ′′) · βββ ′′
√
1 + (

t2τ c
)2

− t2τ c

(
βββ ′ × βββ ′′) · βββ ′
√
1 + (

t2τ c
)2

= 0 .

This result apparently states that the base curve of a binormal surface is always a
geodesic on that surface.
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Exercise 9.20

First, verify (9.473).
Consider the Darboux trihedron â c

1 , n̂ × â c
1 and n̂ which was used to describe

the geometry of a curve with respect to a surface embedding that curve (Fig. 9.25).
Then, derive the derivative of such a triplet of vectors with respect to the arc length
parameter.

Finally, find a useful Darboux vector along with the corresponding skew tensor
and subsequently express the established system of ordinary differential equations
in terms of these tensorial variables.

Solution. To begin with, consider a s-parametrized curve C embedded in a regular
surface S according to (9.336), i.e. x = x̂ s

(
t1 (s) , t2 (s)

) = x̂ c (s). Let bαβ be the
symmetric covariant curvature tensor of S and further let â c

1 be the unit tangent vector
toC. Referred to the surface covariant basis vectors a1, a2 and the principal directions
ê1, ê2, this vector can then be expressed as

â c
1 = dtα

ds
aα , â c

1 = cos θ ê1 + sin θ ê2 ,

where θ denotes the inclination of â c
1 to ê1 (Fig. 9.28). The derivative of the unit

normal field to the surface with respect to the arc length parameter now renders

d n̂
ds

= −κ1 cos θ ê1 − κ2 sin θ ê2 , (9.869)

because

d n̂
ds

by using the chain rule=============
of differentiation

dtα

ds

∂n̂
∂tα

by using======
(9.99)

−dtα

ds
bαβaβ

by using======
(9.457)

− cos θ η̂α
1 bαβaβ − sin θ η̂α

2 bαβaβ

by using======
(9.449)

− cos θ κ1η̂
α
1aαβaβ − sin θ κ2η̂

α
2aαβaβ

by using======
(9.32)

− cos θ κ1η̂
α
1aα − sin θ κ2η̂

α
2aα

by using======
(9.447)

−κ1 cos θ ê1 − κ2 sin θ ê2 .

Considering the fact that {̂e1, ê2, n̂} is a right-handed orthonormal basis, the geodesic
torsion (9.468)3 takes the form
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τ g = n̂ · [(−κ1 cos θ ê1 − κ2 sin θ ê2) × (cos θ ê1 + sin θ ê2)]

= n̂ · [−κ1 cos θ sin θ n̂ + κ2 sin θ cos θ n̂]

= (κ2 − κ1) sin θ cos θ = κ2 − κ1

2
sin 2θ . �

Next, consider the trihedron
{
â c
1 , n̂ × â c

1 , n̂
}
which also presents a right-handed

orthonormal basis. One can write

n̂ × â c
1 = − sin θ ê1 + cos θ ê2 , (9.870)

which helps represent

τ g = −d n̂
ds

· ( n̂ × â c
1

)
. (9.871)

Having in mind the Euler formula (9.455), i.e. κn = κ1 cos2 θ + κ2 sin2 θ , one can
also have

κn = −d n̂
ds

· â c
1 . (9.872)

It is then easy to see that d n̂/ds is a linear combination of â c
1 and n̂ × â c

1 , i.e.

d n̂
ds

= −κn â c
1 − τ g n̂ × â c

1 .

Attention is now being focused on expressing d â c
1 /ds in terms of n̂ × â c

1 and n̂. This
is given by

d â c
1

ds
in light of=======
(1.26)

[
d â c

1

ds
· ( n̂ × â c

1

)]
n̂ × â c

1 +
[
d â c

1

ds
· n̂

]
n̂

note that
d â c1
ds · â c1 = 0 since â c1 · â c1 = 1

by using======
(9.358)

κg n̂ × â c
1 +

[
−â c

1 · d n̂
ds

]
n̂ ←−

note that â c1 · n̂ = 0 gives
d

ds

[
â c1 · n̂ ] = 0

and, therefore,
d â c1
ds

· n̂ = −â c1 · d n̂
ds

by using======
(9.872)

κg n̂ × â c
1 + κn n̂ .

In a similar fashion,

d
(
n̂ × â c

1

)

ds
=

[
d
(
n̂ × â c

1

)

ds
· â c

1

]

â c
1 +

[
d
(
n̂ × â c

1

)

ds
· n̂

]

n̂

=
[
− (

n̂ × â c
1

) · d â
c
1

ds

]
â c
1 +

[
− (

n̂ × â c
1

) · d n̂
ds

]
n̂

= −κg â c
1 + τ g n̂ .
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The above results are listed in the following:

d â c
1

ds
= κg n̂ × â c

1 + κn n̂ , ←− see (9.305a) (9.873a)

d
(
n̂ × â c

1

)

ds
= −κg â c

1 + τ g n̂ , (9.873b)

d n̂
ds

= −κn â c
1 − τ g n̂ × â c

1 . (9.873c)

These equations are eventually the analogues of the Frenet formulas for the moving
trihedron â c

1 , â
c
2 and â c

3 . In matrix notation, they render

⎡

⎢⎢
⎣

...
...

...
d â c

1
ds

d( n̂×â c
1 )

ds
d n̂
ds

...
...

...

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

...
...

...

â c
1 n̂ × â c

1 n̂
...

...
...

⎤

⎥⎥
⎦

⎡

⎣
0 −κg −κn

κg 0 −τ g

κn τ g 0

⎤

⎦ . �� (9.874)

Finally, let the Darboux trihedron â c
1 , n̂ × â c

1 and n̂ be denoted by û1, û2 and û3,
respectively. Then, by introducing the Darboux vector

dc = τ g û1 − κn û2 + κg û3 , ←− see (9.307) (9.875)

the formulas (9.873a)-(9.873c) can be represented in a more elegant way as follows:

d ûi
ds

= dc × ûi , i = 1, 2, 3 . (9.876)

They may also be written as

d ûi
ds

= Wc
s ûi , i = 1, 2, 3 , (9.877)

where the skew-symmetric tensor Wc
s is given by

Wc
s = τ g ( û3 ⊗ û2 − û2 ⊗ û3) − κn ( û1 ⊗ û3 − û3 ⊗ û1)

+ κg ( û2 ⊗ û1 − û1 ⊗ û2) . ��� (9.878)

Exercise 9.21

Verify (9.493) to (9.496).

Solution. Attention here is focused on verifying (9.493) and (9.494). The proof
simply follows from (9.475)1. By using the Gauss formulas (9.94) along with the
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product rule (9.132)2, one can write

∂2a1
∂t2∂t1

= ∂

∂t2
(
�1
11a1 + �2

11a2 + ern̂
)

= ∂�1
11

∂t2
a1 + �1

11

(
�1
12a1 + �2

12a2 + frn̂
) + ∂�2

11

∂t2
a2

+ �2
11

(
�1
22a1 + �2

22a2 + grn̂
) + ∂er

∂t2
n̂ + er

(− b . 1
2 a1 − b . 2

2 a2
)

=
[
∂�1

11

∂t2
+ �1

11�
1
12 + �1

22�
2
11 − er (frGr − grFr)

ErGr − F2
r

]

︸ ︷︷ ︸
:= A1

a1

+
[
�1
11�

2
12 + ∂�2

11

∂t2
+ �2

11�
2
22 − er (−frFr + grEr)

ErGr − F2
r

]

︸ ︷︷ ︸
:= A2

a2

+
[
�1
11fr + �2

11gr + ∂er
∂t2

]

︸ ︷︷ ︸
:= A3

n̂ .

In a similar manner,

∂2a1
∂t1∂t2

=
[
∂�1

12

∂t1
+ �1

11�
1
12 + �1

12�
2
12 − fr (erGr − frFr)

ErGr − F2
r

]

︸ ︷︷ ︸
:= B1

a1

+
[
�1
12�

2
11 + ∂�2

12

∂t1
+ �2

12�
2
12 − fr (−erFr + frEr)

ErGr − F2
r

]

︸ ︷︷ ︸
:= B2

a2

+
[
�1
12er + �2

12fr + ∂fr
∂t1

]

︸ ︷︷ ︸
:= B3

n̂ .

Thus,

∂2a1
∂t1∂t2

− ∂2a1
∂t2∂t1

= 0 =⇒ (
B1 − A1

)
a1 + (

B2 − A2
)
a2 + (

B3 − A3
)
n̂ = 0 .

The fact that a1, a2 and n̂ are three linearly independent vectors implies that B1 = A1,
B2 = A2 and B3 = A3. Now, by using the identities
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fr (erGr − frFr)

ErGr − F2
r

− er (frGr − grFr)

ErGr − F2
r

= Fr
(
ergr − f2r

)

ErGr − F2
r

= FrK ,

er (−frFr + grEr)

ErGr − F2
r

− fr (−erFr + frEr)

ErGr − F2
r

= Er
(
ergr − f2r

)

ErGr − F2
r

= ErK ,

one can arrive at the desired results (9.493) and (9.494). At the end, it should not be
difficult to derive the relations (9.495) and (9.496). This remains to be undertaken
by the ambitious reader.

Exercise 9.22

Verify (9.497a)1 and (9.497b)1.

Solution.Consider a regular surface S embedded in the three-dimensional Euclidean
space with the unit normal field n̂ = (a1 × a2) / |a1 × a2| according to (9.31)1. Let

û := a1
|a1| = a1√

a11
. (9.879)

This helps construct an orthonormal basis {̂u, v̂, n̂} in the sense that

v̂ = n̂ × û = n̂ × a1√
a11

from====
(9.58)

√
a√
a11

a2 , û = v̂ × n̂ , n̂ = û × v̂ . (9.880)

One then immediately obtains

∂n̂
∂tα

· û = −n̂ · ∂û
∂tα

∂n̂
∂tα

· v̂ = −n̂ · ∂ v̂
∂tα

∂û
∂tα

· û = ∂ v̂
∂tα

· v̂ = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, I = û ⊗ û + v̂ ⊗ v̂ + n̂ ⊗ n̂ . (9.881)

From (1.78a), (2.5), (2.13), (2.43), (9.29)3, (9.33)1, (9.94), (9.105) and (9.879) to
(9.881), one can finally arrive at

√
aK =

(
∂n̂
∂t1

× ∂n̂
∂t2

)
· ( û × v̂ )

=
(

∂n̂
∂t1

· û
)(

∂n̂
∂t2

· v̂
)

−
(

∂n̂
∂t1

· v̂
)(

∂n̂
∂t2

· û
)

︸ ︷︷ ︸
=

(
n̂ · ∂û

∂t1

) (
n̂ · ∂ v̂

∂t2

)
−

(
n̂ · ∂ v̂

∂t1

) (
n̂ · ∂û

∂t2

)
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= ∂û
∂t1

· ( û ⊗ û + v̂ ⊗ v̂ + n̂ ⊗ n̂ )
∂ v̂
∂t2︸ ︷︷ ︸

= ∂û
∂t1

· ∂ v̂
∂t2

− ∂ v̂
∂t1

· ( û ⊗ û + v̂ ⊗ v̂ + n̂ ⊗ n̂ )
∂û
∂t2︸ ︷︷ ︸

= ∂ v̂
∂t1

· ∂û
∂t2

= ∂

∂t2

{
v̂ · ∂û

∂t1

}

︸ ︷︷ ︸

= ∂

∂t2

{ √
a√

a11
a2 ·

[
∂

∂t1

(
1√
a11

)
a1 + �111a1+�211a2+ b11 n̂√

a11

]}

− ∂

∂t1

{
v̂ · ∂û

∂t2

}

︸ ︷︷ ︸

= ∂

∂t1

{ √
a√

a11
a2 ·

[
∂

∂t2

(
1√
a11

)
a1 + �112a1+�212a2+ b12 n̂√

a11

]}

= ∂

∂t2

{√
a

a11
�2
11

}
− ∂

∂t1

{√
a

a11
�2
12

}
.

To verify (9.497b)1, consider

û := a2
|a2| = a2√

a22
and

v̂ = n̂ × û = −
√
a√
a22

a1

û = v̂ × n̂

n̂ = û × v̂

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (9.882)

In this case, the identities in (9.881) also hold true. Thus,

√
aK = ∂

∂t2

{
v̂ · ∂û

∂t1

}

︸ ︷︷ ︸

= ∂

∂t2

{

−
√
a√

a22
a1 ·

[
∂

∂t1

(
1√
a22

)
a2 + �121a1+�221a2+ b21n̂√

a22

]}

− ∂

∂t1

{
v̂ · ∂û

∂t2

}

︸ ︷︷ ︸

= ∂

∂t1

{

−
√
a√

a22
a1 ·

[
∂

∂t2

(
1√
a22

)
a2 + �122a1+�222a2+ b22 n̂√

a22

]}

= ∂

∂t1

{√
a

a22
�1
22

}
− ∂

∂t2

{√
a

a22
�1
12

}
.
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Exercise 9.23

Let S f be a 2-ball of radius r in flat space. Further, let Sc be a spherical cap corre-
sponding to S f which sits at the top of a 3-ball S of radius R0 as illustrated in Fig.
9.43. The area of S f (Sc) is denoted by A f (Ac). Notice that when the radius (cur-
vature) of S deceases (increases), the area of that upside-down bowl-shaped surface
will increase.

Show that, up to the second-order, the deviation of Ac from its expected value A f

is governed by
Ac

A f
= 1 − R

24
r2 + · · · , (9.883)

where R presents the Ricci scalar of the sphere S; given by,

R = 2

R2
0

. (9.884)

From (9.883), one can now conclude that:

The Ricci scalar measures how much the area of a small ball deviates
from its standard value in flat space.

Solution. To begin with, consider a sphere of radius R0 with the Gaussian curvature
K = 1/R2

0 , according to (9.746). Consequently, the Ricci scalar (9.518) becomes
R = 2/R2

0 . The area of S f is simply A f = πr2 while the area of Sc renders (see Fig.
9.43)

Fig. 9.43 Deviation of the area of a small ball in curved space from that of standard ball in flat
space
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Ac =
∫ φ

0
2πρ dl =

∫ φ

0
2πR2

0 sin θ dθ = 2πR2
0 (1 − cosφ) .

Using φ = r/R0, one then has

Ac = 2πR2
0

(
1 − cos

r

R0

)
. (9.885)

Consider the following Taylor series expansion

Ac = 2πR2
0

[
1 −

(
1 − 1

2!
r2

R2
0

+ 1

4!
r4

R4
0

+ · · ·
)]

= 2πR2
0

[
r2

2R2
0

− r4

24R4
0

+ · · ·
]

,

which helps obtain the desired result

Ac

A f
≈ 1 − R

24
r2 .

The fact that a sphere is an object with the positive Gaussian curvature (or curvature
invariant) implies that Ac < A f for a given radius r .

Exercise 9.24

Verify (9.560), i.e.

Lu
∂ ĥα

∂tβ
= ∂ u θ

∂tβ
∂ ĥα

∂tθ
+ u θ ∂2 ĥα

∂tβ∂tθ
− ∂ ĥ θ

∂tβ
∂ uα

∂tθ
− ĥ θ ∂2 uα

∂tβ∂tθ
.

Further, prove the important relation (9.595), i.e.

Lu�
γ

αβ = ∂2 u γ

∂tα∂tβ
+ u θ

∂�
γ

αβ

∂tθ
+ �

γ

αθ

∂ u θ

∂tβ
+ �

γ

θβ

∂ u θ

∂tα
− �θ

αβ

∂ u γ

∂tθ
.

Solution. These results may be attained by using an infinitesimal coordinate trans-
formation as discussed in the footnote on Sect. 9.8.1. This procedure will be used in
the following.

To begin with, let u = uαaα be a smooth vector field whose integral curves
are denoted by tθ (λ). Further, let ĥ = ĥαaα be another smooth vector field with the
correspondingflow lines tθ (μ), see Fig. 9.32.Now, consider two infinitesimally close
points

(
t1, t2

)
and

(
t̄ 1 = t1 + u 1Δλ, t̄ 2 = t2 + u 2Δλ

)
. Then, guided by (9.549)2,
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Lu
∂ ĥα

∂tβ
:= lim

Δλ→0

1

Δλ

⎡

⎣∂ ĥα
(
t̄ 1, t̄ 2

)

∂tβ
− ∂

¯̂h α
(
t̄ 1, t̄ 2

)

∂ t̄ β

⎤

⎦ , (9.886)

where
∂ ĥα

(
t̄ 1, t̄ 2

)

∂tβ
= ∂ ĥα

∂tβ
+ ∂2 ĥα

∂tγ ∂tβ
u γ Δλ + o (Δλ)

note that the Landau order symbol o (Δλ) satisfies lim
Δλ→0

o (Δλ) /Δλ = 0

, (9.887)

and ∂
¯̂h α/∂ t̄ β at

(
t̄ 1, t̄ 2

)
, according to (9.172a)2, needs to be characterized for the

problem at hand. To do so, one should have

∂ t̄ α

∂tγ
= ∂

(
tα + uαΔλ

)

∂tγ
= δα

γ + ∂ uα

∂tγ
Δλ , (9.888)

and

∂t δ

∂ t̄ β
= ∂

(
t̄ δ − u δΔλ

)

∂ t̄ β
= δδ

β − ∂ u δ

∂tθ

(
δθ
β − ∂ u θ

∂ t̄ β
Δλ

)
Δλ

= δδ
β − ∂ u δ

∂tβ
Δλ + o (Δλ) . (9.889)

Consequently,

∂
¯̂h α

(
t̄ 1, t̄ 2

)

∂ t̄ β
= ∂ t̄ α

∂tγ
∂ ĥ γ

∂t δ
∂t δ

∂ t̄ β
︸ ︷︷ ︸

=
[
δα
γ + ∂ uα

∂tγ
Δλ

]
∂ ĥγ

∂tδ

[
δδ
β

− ∂ uδ

∂tβ
Δλ + o (Δλ)

]

+ ∂2 t̄ α

∂t δ∂tγ
∂t δ

∂ t̄ β
ĥ γ

︸ ︷︷ ︸
= ∂

∂tδ

[
δα
γ + ∂ uα

∂tγ
Δλ

] [
δδ
β

− ∂ uδ

∂tβ
Δλ + o (Δλ)

]
ĥγ

= ∂ ĥα

∂tβ
+

[
∂ uα

∂tγ
∂ ĥ γ

∂tβ
− ∂ ĥα

∂t δ
∂ u δ

∂tβ

]

Δλ

+ ∂2 uα

∂tβ∂tγ
ĥ γ Δλ + o (Δλ) . (9.890)

With the aid of (9.886), (9.887) and (9.890), one can now provide the Lie derivative
of the partial differentiation of a vector.
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Next, consider the object �γ

αβ whose Lie derivative is defined by

Lu�
γ

αβ := lim
Δλ→0

�
γ

αβ

(
t̄ 1, t̄ 2

) − �̄
γ

αβ

(
t̄ 1, t̄ 2

)

Δλ
, (9.891)

where

�
γ

αβ

(
t̄ 1, t̄ 2

) = �
γ

αβ + ∂�
γ

αβ

∂tθ
u θΔλ + o (Δλ) , (9.892)

and �̄
γ

αβ

(
t̄ 1, t̄ 2

)
, according to (9.93), now takes the form

�̄
γ

αβ

(
t̄ 1, t̄ 2

) = ∂t δ

∂ t̄ α

∂tθ

∂ t̄ β

∂ t̄ γ

∂tρ
�

ρ
δθ

︸ ︷︷ ︸
=

[
δδ
α − ∂ uδ

∂tα Δλ + o (Δλ)

] [
δθ
β

− ∂ uθ

∂tβ
Δλ + o (Δλ)

] [
δ
γ
ρ + ∂ uγ

∂tρ Δλ
]
�

ρ
δθ

+ ∂2tρ

∂ t̄ α∂ t̄ β

∂ t̄ γ

∂tρ︸ ︷︷ ︸
= ∂

∂ t̄ α

[
δ
ρ
β

− ∂ uρ

∂tβ
Δλ + o (Δλ)

] [
δ
γ
ρ + ∂ uγ

∂tρ Δλ
]

= �
γ

αβ +
[
∂ u γ

∂tρ
�

ρ
αβ − ∂ u θ

∂tβ
�

γ

αθ − ∂ u δ

∂tα
�

γ

δβ

]
Δλ

− ∂2 u γ

∂tα∂tβ
Δλ + o (Δλ) . (9.893)

It is then easy to arrive at the desired expression for theLie derivative of the connection
coefficients.
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A
Actual difference, 232
Addition, 1, 4, 5, 9, 13, 15, 36, 37, 93, 99,

377
Additive decomposition, 48, 66, 429
Admissible, 525, 526
Ampère’s circuital law, 422
Angle, 5, 7, 247, 435, 468, 486, 489
Anisotropic, 233, 236
Anti-commutative, 17
Antisymmetric, 48, 237, 330
Arc length, 499–501, 507, 525
Associative, 3, 4, 6, 21, 22, 380
Asymptotic

curve, 494, 495, 549
direction, 494

B
Backward, 230, 232
2-ball, 561, 654
3-ball, 561, 654
Base curve, 508, 512, 647
Basic invariants, 233, 237, 245, 247
Basis, 5, 40, 95, 104, 131, 132

Cartesian, 2, 12, 40, 95, 142
change of, 142
contravariant, 175, 177, 179, 317
covariant, 172, 177, 178, 211, 317
-dependent, 320
dual, 211, 219
-free, 147
functional, 234, 245, 250, 256, 276, 286
general, 12, 54, 171, 174, 316, 434
global, 174

integrity, 233, 234, 237, 250, 256, 276,
277

irregular, 172, 174
local, 174
minimal integrity, 233
new, 67, 70
old, 67, 70
orthogonal, 149
orthonormal, 7, 9, 20, 21, 65, 68
positively oriented, 11
rectangular, 95
regular, 172
standard, 12, 39, 54, 169, 211
surface contravariant, 444
surface covariant, 441

Bending, 435, 502, 504, 538, 604, 607
Bianchi identities, 349, 482
Bilinear, 6, 21, 36, 43, 50, 109, 164, 184,

199, 202, 491, 568
Bilinearity, 9, 22, 25, 39, 175, 376, 377, 380,

410, 447, 451, 584
Binormal vector, 503, 505, 509

C
Calculus

of moving surfaces, 475, 585–587
tensor, 112
of variations, 525, 527
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determinant, 133
equation, 133, 134, 139, 153, 160, 288,
633

polynomial(s), 133, 136, 144, 147
space(s), 135, 156, 157, 255
values, 131, 136, 538

Charge
-current 1-form, 423, 428
-current 3-form, 423
-current differential forms, 428
density, 422, 425

Christoffel symbols, 318, 455
of the first kind, 318
of the second kind, 317

Circle, 438
generating, 438
great, 524, 529, 534
kissing, 502
osculating, 502

Circulation, 371, 374
Clairaut, 531

parametrization, 530, 533, 535, 639
patch, 530–532

Closed, 435, 479, 481
curve, 370, 371, 414
surface, 198, 365, 366, 368, 370, 409,
410, 417

Closure, 64, 435
Coaxial, 157, 158, 241
Cofactor, 59, 80, 138, 206
Collinear, 520
Commutation theorem, 156
Commutative, 3, 6, 42, 86, 109, 178, 180,

556, 569, 570
Commutator, 469, 470, 564, 583, 584
Commute(s), 79, 88, 156, 157, 328, 526, 556,

580, 598
Compatibility equations, 550
Complex, 134

conjugate, 9
eigenvalues, 132
number, 9
vector, 9
vector space, 9

Components, 5, 15, 40, 51, 60, 67, 68, 70,
93, 131, 158, 191

ambient, 454, 599
ambient contravariant, 586
Cartesian, 1, 11, 95–97, 104, 106, 174
co-contravariant, 192
contra-covariant, 192
contravariant, 183, 187, 191, 270, 327
covariant, 183, 187, 192, 270

curvilinear, 193, 194, 229
fully contravariant, 194
fully covariant, 329
mixed, 329, 481
mixed co-contravariant, 187
mixed contra-covariant, 187
natural, 586, 587
normal, 484
rectangular, 11
spectral, 142, 144, 307
surface, 454, 593
surface contravariant, 587

Composition, 42, 83, 85, 86, 108, 109, 111,
112, 126, 189, 195, 206

Compressible neo-Hookean material, 310
Compression, 435
Computer program, 206, 310, 353, 637
Cone

elliptic, 499
generalized, 497, 511, 512

Configuration
current, 291, 293, 295, 308
deformed, 291
initial, 291
reference, 291, 293, 308
spatial, 291
undeformed, 291

Congruence, 565
Connection, 434, 446

Christoffel, 460
coefficients, 456, 465, 470, 657
Levi-Civita, 460
Riemann, 460

Conservation of electric charge, 365
Constitutive, 295

equations, 295
modeling, 140
relations, 297, 300
response, 217

Continuity equation, 424, 428
Continuum mechanics, 2, 56, 93, 96, 157,

169, 209, 290, 291, 315
Contracted, 281, 283

Bianchi identities, 560
Contraction

double, 50, 52, 94–96, 108, 113, 125,
206, 212, 238, 239, 279

quadruple, 111
simple, 44, 54, 56, 81, 95, 157, 206
single, 44, 591

Control theory, 131
Convection-diffusion, 344
Convention, 11, 198, 291, 366, 370, 386
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Einstein summation, 14
summation, 14–16, 28, 40, 183, 215, 436

Coordinate(s), 11, 14, 169, 326, 343
axes, 11
Cartesian, 169, 171, 286, 308, 328, 333,
342, 344, 379, 386

a change of, 71, 97, 106, 177, 181
curves, 464, 495, 523, 545, 555, 565, 570,
639

curvilinear, 2, 169, 175, 177, 225, 316–
318, 333, 343, 435

cylindrical, 169, 171, 199, 319, 335, 353,
385, 419

free, 36, 392, 411
global, 71, 169, 171
line, 11
local, 71, 169, 171, 395
representation, 21, 41, 106, 109, 121, 463
spherical, 169, 171, 199, 319, 335, 353,
385, 419

Coplanar, 289, 438
Coulomb’s law for static electricity, 360
Covariantly constant, 324, 325, 330, 331,

472
Covector, 183, 382, 392, 406, 407, 481, 572,

580
Creatures, 365, 374, 580, 604
Curl, 315, 339–342, 350
Current

configuration, 291, 293, 295, 308
density, 422

Curved surfaces, 433, 456, 461, 462, 466,
497, 506, 549, 585, 602

Cyclic, 53, 349
Cylinder, 435, 494, 501

elliptic, 499, 613
generalized, 497, 511

D
Damage, 290
Deformation gradient, 291, 293, 302
Degree, 281–285

partial, 281, 282
total, 281, 284

Derivative
contravariant, 321, 322
covariant, 321, 323–325, 328, 330, 348,
349

directional, 213, 218, 280, 316, 347, 376,
465, 564, 571

partial, 215, 225, 428, 585
Determinant, 23, 28, 55, 56, 120, 206, 260,

384, 458, 549, 594

Diagonalizable, 131, 143, 144, 146, 158
Differential

0-form, 375, 377, 388, 580
1-form, 376, 377, 388, 393, 395, 581, 582
2-form, 377, 378, 389, 390, 407, 430
3-form, 380–382, 391, 427
calculus, 211, 387, 526
forms, 365, 374, 375, 382, 385, 387, 422,
425

total, 30, 212, 213, 216, 218, 221, 226,
264, 270, 580

Dimension, 5, 40, 95, 134, 241, 375–377
Direction(s), 292

cosines, 69
principal Eulerian, 292
principal Lagrangian, 292
principal material, 292
principal referential, 292
principal spatial, 292

Directrix, 508, 513
Distribution parameter, 513, 645
Distributive, 4, 15
Divergence, 315, 336–339, 350, 367, 368,

383
-free, 337
theorem, 198, 365, 368, 370, 405, 408

Dual, 142, 143, 145, 175, 177, 197, 200, 211,
317, 392, 442, 444, 555

Dyad, 45, 47, 54, 94, 175
Dyadic, 40

E
Eigenbasis, 132, 135, 136, 139, 144
Eigenpairs, 132, 140, 141, 148, 150, 243,

270, 541
Eigenprojections, 146, 149, 150
Eigenspace(s), 135, 136, 144, 146, 148, 154,

156, 157, 241
Eigenvalue(s), 61, 66, 131, 537, 538

complex, 132
decomposition, 140
distinct, 132, 135, 140, 141
identical, 132, 133, 138
multiple, 143, 144, 149
non-degenerate, 132
non-multiple, 142, 149, 241, 287
real, 241
repeated, 149, 253
simple, 136, 288

Eigenvectors, 131, 132, 141, 148
generalized, 144, 158, 159
left, 133, 142
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linearly independent, 135, 136
normalized, 132, 154
orthonormal set of, 253
right, 132, 133
span of, 135

Einstein’s
general theory of relativity, 434
gravitational field equations, 557

Elastic, 127, 611, 612
compliance tensor, 128
material, 231
stiffness tensor, 128

Elasticity tensor, 108, 128, 295, 308
compliance, 128
Eulerian, 296
first, 296, 301
Lagrangian, 296
material, 296, 305
referential, 296
second, 296, 303
spatial, 296

Electromagnetism, 315, 422
Element, 5, 11, 40, 54, 67

arc length, 486
area, 448, 613
diagonal, 62
generator, 237, 250
initially curved, 604
isolated, 609
line, 172, 196, 370, 535
off-diagonal, 288
redundant, 5
structural, 604
surface, 198, 407, 606, 609
volume, 196, 198, 366, 368

Elementary, 136, 144, 376, 379, 382
Ellipsoid, 437, 563
Elliptic, 494

geometry, 434, 437
paraboloid, 438
point, 494, 540

Embedded
curves, 537
surfaces, 433, 435

Engineering, 290
aerospace, 290
biomedical, 290
civil, 290
mechanical, 290
nuclear, 290
tissue, 233

Entities, 1, 35, 36, 386, 387, 435
Equator, 534

Equilibrium, 117, 604, 609
equations, 344, 610

Equilibrium condition
force, 609
moment, 610

Equivalent, 282, 285
Error, 230, 237, 310

round-off, 230
true, 230
truncation, 230

Euler equations, 528
Extension, 281–283
Exterior

calculus, 383, 392, 393, 396, 398, 419,
424, 429

derivative, 387, 388, 390, 419, 425, 426,
428, 430

Extremum, 527, 537
Extrinsic, 435, 457, 471, 486, 501, 515, 521,

549, 551, 556

F
Faraday 2-form, 423
Faraday’s law of induction, 422
Field(s), 1, 9, 37

displacement, 611, 612
electric, 422
lines, 565
magnetic, 422
outward unit normal, 410, 414, 451
scalar, 315, 328, 333, 336, 347, 353, 419,
423, 485, 587, 590

tensor, 209, 368, 372, 374
vector, 209, 365, 369, 371

Finite, 210
deformations, 308, 612
differences, 230
element, 29, 67, 290, 604
rotation, 82
strains, 230

First
Bianchi identity, 331
-kind Ricci tensor, 558
-order covariant derivative, 321
-order Taylor series, 209
-order tensors, 1, 93

Flat, 486
intrinsically, 332, 435, 484, 497, 501, 504
manifold, 435
point, 495, 540
space(s), 328, 332, 434, 484, 654

Flow lines, 565, 570, 574, 655
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Flux integral, 367, 368
Folding, 511
Formula(s)

Bieberbach, 554, 555, 623
binomial, 86
Bonnet, 522, 548
Brioschi, 554
Cardano’s, 134
closed-form, 230
Doyle-Ericksen, 309
Euler, 537, 633, 649
Euler-Rodrigues, 83, 85
Frenet, 506, 507
Frenet-Serret, 506
Gauss, 456, 457, 465, 550, 650
intrinsic, 554
Liouville, 524
Mainardi-Codazzi, 551
recursive, 137
representation, 257, 258
Rodrigues, 546, 640, 642
Rodrigues rotation, 82
spectral, 255, 272, 304
Sylvester’s, 146
Vieta’s, 137
Voss-Weyl, 336, 485
Weingarten, 457, 546, 550

Forward, 230, 231
Frame, 11, 287

Cartesian coordinate, 11, 12, 64, 169, 434
Frenet, 504, 520
new, 69, 288
old, 71
reference, 286, 287
of reference, 70

Frobenius covariants, 146
Function, 30

exponential tensor, 44, 86, 87, 89, 267
gamma, 564
linear, 35, 65, 129, 212, 249, 251, 255,
277, 417

non-polynomial, 234
point, 170, 333, 436, 497, 508, 586, 592
polynomial, 234
scaling, 622
single-valued, 234, 286, 290
stored-energy, 293, 301, 304
strain-energy, 293, 294, 297

Functional, 527
Fundamental, 433, 459, 462

differential quadratic form, 197
lemma of variational calculus, 527
theorem of calculus, 365

theorem of space curves, 507, 549
theorem of surfaces, 550

Fundamental form(s), 486, 496
first, 486, 488, 490, 493, 495, 517, 549,
550

second, 491, 495, 517, 540, 543, 549, 550
third, 495

G
Gauss equations of the surface, 551
Gaussian

coordinates, 436, 441, 456
curvature, 433, 458, 492, 549

Gauss’s
law, 422
law for magnetism, 422
theorem, 365, 367

Generalized, 189
cone, 497
cylinder, 497
eigenvectors, 158, 159
Hooke’s law, 128
Rivlin’s identities, 280
Stokes’ theorem, 365, 375, 405

General relativity, 433, 465, 469, 557, 561,
564

Geodesic, 524, 525, 529, 531, 532, 534
curvature, 433, 515, 519, 520, 522, 524,
529, 549

curvature vector, 516
curve, 524, 529, 532, 547, 549, 561
equations, 524, 525, 528–530, 536
torsion, 521, 547–549, 648

Geometrical reasoning, 234
Geometry, 433, 472

differential, 209, 433, 434, 478
elliptic, 434
Euclidean, 434
Gauss-Bolyai-Lobachevsky, 434
hyperbolic, 434
intrinsic, 558
non-Euclidean, 434
Riemannian, 332
spherical, 434

G-invariant, 237
Gradient, 315, 332–335, 350, 383, 394, 424,

455, 484
theorem for line integrals, 365, 406

Gram-Schmidt, 149
orthogonalization, 149
orthonormalization, 149

Green’s theorem, 365, 372, 405
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Groundform
first, 486, 487, 493
second, 491–493
third, 495

Growth conditions, 293

H
Heat conduction, 344
Helix, 401

circular cylindrical, 623
elliptic conical, 498
elliptic cylindrical, 499

Hemitropic, 236
Hessian, 344, 345
Hodge, 385

dual, 383, 387, 428
star operator, 383, 386

Homogeneous, 127, 315, 611
Hydrostatic, 66
Hyperbolic, 540

geometry, 434, 438, 439
paraboloid, 440, 617
point, 495, 540

Hyperboloid
circular, 616
of one sheet, 346, 509, 537
one-sheeted, 438, 495
of revolution, 616
single-sheeted, 509
two-sheeted, 439

Hyperelastic, 296, 310
materials, 108, 194, 295
solids, 116, 158

Hyperelasticity, 231, 293, 294, 296

I
Imaginary unit, 9
Index, 13

dummy, 14, 173, 183, 331, 588
free, 14, 44, 50, 173
juggling, 177, 330, 349, 350, 453, 484,
551, 553, 594, 601

live, 14
notation, 58, 610
subscript, 180
summation, 14
superscript, 179, 318, 460

Inextensibility, 612
Inextensible shell model, 612
Infinitesimal, 435

coordinate transformation, 567, 655
rotation, 74, 97, 611

strain tensor, 128, 611
strain theory, 128

Inplane strains, 612
Integrability conditions, 550
Integral, 367

curves, 565, 570, 571, 573, 574, 655
line, 370
surface, 367
theorems, 198, 365, 374, 375, 405, 411
volume, 366

Intrinsic, 435, 459, 465, 484, 486, 490, 515,
549, 551

Invariant, 131, 195
curvature, 557
object, 196, 465, 475, 519
time differentiation, 433, 589, 590, 601,
602

Inverse, 57, 79, 128, 145, 161, 174, 176, 179,
181, 189, 206, 445

additive, 198
square law, 360

Invertible, 56–58, 62, 80, 121, 132, 145, 158,
174, 217, 260, 291

Irreducible, 233, 234, 236, 237, 247, 286
Irrotational, 341
Isometric, 435
Isosurface, 333
Isotropic, 72, 97, 106, 107, 158, 296, 304,

309, 310, 611
hyperelasticity, 294
invariants, 235, 245, 254, 255, 286, 288–
290

materials, 128, 293
relative, 236
scalar-valued function, 235, 245–250,
255, 289

tensor functions, 236, 281
tensors of order four, 106
tensors of order one, 72
tensors of order three, 97
tensor-valued function, 241, 242
tensors of order two, 73
vector-valued function, 249, 251, 253

J
Jacobian, 176–178, 181, 206, 318

matrix, 441
volumetric, 295

Jacobi identity, 568, 584
Joachimstahl theorem, 546, 547
Jordan

block, 158
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canonical form, 158, 159, 162
normal form, 158, 159
vectors, 158

K
Kernel, 135
Klein bottle, 374
Kronecker delta, 14, 18, 19, 151

mixed, 173, 180, 182, 330, 560

L
Lagrange basis polynomials, 146
Lamé, 128, 310
Laplace equation, 344
Laplacian, 342–345, 399
Left, 15

-handed, 11, 20, 176
mapping, 44, 100, 101, 117
stretch tensor, 2, 291

Leibniz rule of differentiation, 467
Length, 5–7, 15, 49, 62, 69, 149, 179, 243,

435, 443, 463, 486
Lie

bracket, 470, 583
derivative, 433, 470, 481, 564, 565, 568,
580, 657

dragged, 570
transported, 570

Line, 347
of curvature, 545–549
element, 172
integral, 370–372
straight, 494, 499, 502, 504, 508, 529,
549

of striction, 513
tangent, 499, 502, 519, 545

Linear, 249, 252, 256, 258
algebra, 7, 15, 56, 131
algebraic equations, 240
approximation, 214
change, 67
combination, 5, 40, 67, 377, 434
elastic, 127, 612
elasticity, 115
equations, 469
function, 65, 129
map, 35, 45, 56, 94, 383
mapping, 35, 41, 93, 121, 129, 375
momentum, 365
operator, 232
ordinary differential equations, 44, 268

ordinary tensorial differential equations,
267

property, 67
relation, 35
structure, 5
subspace, 240
systemof ordinary differential equations,
506

term, 213
transformation, 35, 36, 38, 58, 94, 131,
375, 449

Linearity, 6, 15, 35, 45, 46, 80, 93, 98, 151,
183, 266, 341

Linearly independent, 5, 55, 137, 174, 241,
441

Loads, 290, 291, 604
chemical, 290
electrical, 290
magnetic, 290
mechanical, 290
thermal, 290
tribological, 290

M
Mainardi-Codazzi equations, 551, 556, 557
Major, 14, 21, 36, 54, 462, 501

characteristic, 570
radius, 438
skew-symmetric, 116
symmetric, 115, 483
symmetries, 115, 119, 256, 257, 296, 482

Manifold, 433, 436, 480, 515, 558, 565
connected, 434
differentiable, 434
differential, 434
flat, 435
metric, 434
metrically connected, 435
non-flat, 435
non-metrically connected, 435
non-symmetric, 435
Riemannian, 436
symmetric, 435

Mass, 1
Mathematical induction, 88, 265
Matrix, 16, 90, 384

algebra, 17, 54, 55, 81, 120, 132
change-of-basis, 68, 69
defective, 159, 162
determinant of a, 19, 55, 60
diagonal, 143, 158
diagonalizable, 143
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diagonalization, 143
exponential, 268
form, 55, 60, 65, 120, 140, 339
identity, 16, 17, 56
invertible, 68, 145
Jacobian, 441
multiplication, 16, 54
non-defective, 162
nonsingular, 161
non-symmetric, 69
notation, 16, 29, 49, 53, 54, 58, 81, 117,
185, 191, 447

orthogonal, 65, 68, 69, 148
proper orthogonal, 70
reflection, 166
representation, 70, 72, 179
rotation, 166
single-column, 17, 117, 118, 185
square, 28
symmetric, 118, 443
transformation, 68, 179
upper triangular, 162

Maxwell 2-form, 423, 430
Maxwell’s equations, 422, 424–427, 429
Mean curvature, 433, 458, 459, 492, 514,

515, 535, 544
Meridian, 533, 534, 547
Metric coefficients, 177, 184, 318, 324, 330,

335, 434, 435
contravariant, 182, 199, 200, 318, 331,
385, 443

covariant, 182, 199, 204, 386, 442
mixed, 180

Metric compatibility property, 466, 468
Metric tensor, 188

co-contravariant, 189
contra-covariant, 189
contravariant, 183, 189, 228
covariant, 182, 189, 228

Metrinilic, 325, 593–595, 598–601
Meusnier, 519
Midsurface, 604, 605, 607, 611, 612
Minkowski spacetime, 375, 386, 426
Minor

antisymmetric, 483
radius, 438
skew-symmetric, 116
symmetric, 115
symmetries, 115, 119, 256, 257, 296, 307

Möbius strip, 374
Monge patch, 620
Monkey saddle, 640
Monomials, 44, 111, 265

Multibody dynamics, 67
Multiplicative plasticity, 230, 308
Multiplicity

algebraic, 135, 136, 159, 160
geometric, 135, 159, 160

Musical, 393
Mutually, 7, 11, 52, 69, 148, 181, 199, 445,

504

N
Natural parameter, 499, 501
Necessary and sufficient, 60, 61, 121, 248,

250, 252, 254, 545
Negative, 242

definite, 60, 66
semi-definite, 60

Newton’s
identity, 137
law for gravitation, 360
method, 345

Newton-Raphson method, 295
Non

-Euclidean, 434
-collinear, 289
-defective, 131, 143, 144, 162, 163
-flat, 435
-homogeneous, 427
-metricity, 434, 435
-orientable, 375
-repeated, 14
-symmetric, 435
-umbilic, 539
-umbilical, 539–541, 543–545

Noncommutativity, 330, 332, 478, 481, 557,
569

Noncylindrical, 509, 510, 513
Nonlinear solid mechanics, 29, 56, 98, 230,

231, 290, 293, 564
Nonnegative, 44, 62, 111, 501
Nonsingular, 79
Norm, 7, 20, 50, 111
Normal, 436, 442, 456

curvature, 433, 494, 495, 515–519
curvature vector, 516
section, 519
section curve, 519, 520, 524
variation, 628

Normalization condition, 293
Notation, 12

absolute, 12
direct, 12
index, 13, 77, 127, 203, 215
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indicial, 13, 42, 112, 220
matrix, 49, 53
subscript, 13
suffix, 13
symbolic, 12
tensorial, 12, 113
Voigt, 118, 119, 128, 129, 332

Numerical differentiation, 230, 310

O
Objective, 293
Operator(s), 53

bilinear, 21
Del, 332
derivative, 433, 583, 591
deviatoric, 103, 119
double-star, 383
flat, 393
Hessian, 344
Hodge star, 383, 386, 387, 419, 423, 424
Laplace, 342
linear, 232
Nabla, 332, 338, 353, 484
polarization, 280
sharp, 393
skew-symmetrizer, 103
spherical, 103, 119
star, 383
substitution, 14
super-symmetric deviatoric, 104
symmetrizer, 103

Orientation, 20, 64, 286, 374, 375, 403, 404,
441, 480, 492, 501, 505

-preserving, 401–403
-reversing, 404

Origin, 7, 11, 21, 64, 69, 169, 243, 346, 468,
541

Orthogonal, 52, 62, 81, 141, 523
directions, 544
group, 64, 235, 237
improper, 64, 72
parametrization, 523, 530, 535, 536, 554,
622, 639

projection(s), 65, 464
proper, 64, 69, 72, 507
subspaces, 66
transformation, 63, 64, 151, 236, 243,
293

P
Parabolic point, 494, 540
Parallel, 533, 534, 547

postulate, 434
surface, 642, 644
transport, 434, 462, 463, 467, 468, 478,
479, 632, 634

Parallelepiped, 22, 23, 55, 176
curvilinear, 366, 367
rectangular, 368

Parallelogram, 17, 64, 379, 410, 480, 481,
552, 571

Parametric, 436, 488–490
Parametrization, 499

arc length, 623
Clairaut, 530, 533
curve, 499
isothermal, 622
isothermic, 622
natural, 499, 500
orthogonal, 523, 622
surface, 436, 499
unit-speed, 500

Partial
derivative, 212, 215
differentiation, 331, 556, 656
time derivative, 585, 587, 594, 596, 602

Perturbation parameter, 230
Piola transformation, 296
Plane(s), 17, 25, 65, 83, 150, 175

curve, 495, 497, 505, 549
Frenet, 504
inclined, 409
normal, 504
osculating, 501, 504
rectifying, 504
sheet, 435
stress, 612
tangent, 456, 493
tangential, 441, 444, 453, 494

Poincaré’s Lemma, 390, 392, 429
Point, 440, 442

elliptic, 494, 540
flat, 495, 540
function, 170, 436, 497
hyperbolic, 495, 540
parabolic, 494
planar, 495, 540
regular, 442
saddle, 495, 540
singular, 442, 498, 500
space, 10, 497

Poisson equation, 344
Poisson’s ratio, 128, 612
Polar decomposition, 291, 293
Polyconvexity, 293
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Polynomial representations, 250
Position, 315, 319

current, 565
increment vector, 196
initial, 529
original, 565
vector, 197, 486, 492

Positive
definite, 60–62, 66, 291, 386, 443
-definiteness, 6, 62, 122
semi-definite, 60, 62, 296

Positively oriented, 11, 20, 64, 370, 371, 414,
444, 451

Potential, 374
electric, 424, 425, 429
magnetic 1-form, 429
magnetic vector, 424, 429

Powers, 44, 111, 140, 163, 264
Principal, 228

axes, 131
curvatures, 540, 541, 543, 545, 549, 640,
647

directions, 131, 287, 288, 537, 539, 541–
544, 647, 648

normal surface, 510, 514, 645
normal vector, 501, 503, 504, 509
scalar invariants, 133, 137, 163, 216, 254,
255, 272, 294, 458

stretches, 292, 301
values, 131, 134, 137, 153, 243, 274, 287,
288, 305, 433

Principle of material objectivity, 293
Product, 344, 367, 376, 471

box, 22
cross, 17, 20, 21, 27, 83, 96, 184, 202,
206, 377, 393, 410, 447, 451

direct, 38
dot, 5, 42, 43, 45, 178, 180, 342, 376,
393, 434, 442, 447, 591

dyadic, 38, 42, 96
factor, 281
inner, 5–7, 10, 36, 44, 62, 142, 149, 184,
384, 517

mixed, 22
rule, 223, 226, 321, 322, 413, 414, 462,
465–467, 470, 471, 571, 572, 575

scalar, 5, 15, 44, 50, 184, 199, 202, 206,
478, 591

scalar triple, 22, 394, 626
tensor, 38, 40, 188, 281
triadic, 94
triple vector, 22, 25, 74
vector, 17, 18, 20

wedge, 377, 379, 380
Pull-back, 572
Push-forward, 567

Q
Quadratic approximation, 492, 543
Quantum mechanics, 131

R
Radius, 83, 502, 533
Reciprocal, 56, 121, 174, 200, 502
Redundant, 245–247, 281, 286, 290
Reflection, 64
Regular point, 442
Reissner-Mindlin, 611
Remarkable theorem, 549, 551
Replacement property, 14, 151, 173, 330,

376
Resultant

force, 608
moment, 608
stress, 608

Ricci
curvature tensor, 433, 557, 559, 561
scalar, 433, 557, 559, 563, 654

Ricci’s theorem, 324, 325
Riemannian, 332

geometry, 332
manifold, 436
metric, 443

Right, 112
-handed, 11, 12, 20, 21, 64, 176, 370, 499,
503, 505, 648, 649

mapping, 36, 38, 44, 93, 98, 100, 101,
117, 132, 194, 206

stretch tensor, 291
Rigid body motion, 507, 549, 550
Rivlin’s identities, 233, 278, 280, 281, 286
Rotation, 62, 64, 69, 81, 339, 370, 533, 611

axis, 82
axis of, 533, 547
counterclockwise, 81
finite, 82
infinitesimal, 74, 97, 611
matrix, 166
Rodrigues, 82
tensor, 64, 70, 73, 88, 291, 308

Ruled surfaces, 497, 508, 509
Ruling, 508, 510, 512
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S
Scalar, 36

curvature, 557
field, 485, 587
multiplication, 4, 5, 9, 36, 37, 93, 150,
377

projection, 8
Ricci, 557

Second, 6
Bianchi identity, 331
-kind Ricci tensor, 559
law of thermodynamics, 297
-order covariant derivatives, 326, 473
-order tensor, 41

Self-dual, 173, 179
Sesquilinear form, 10
Set(s), 5, 35, 48, 64, 93, 116, 132, 561

complete, 158
finite, 286
generating, 237, 251, 255, 259, 284
irreducible, 236
linearly independent, 149
orthonormal, 149
spanning, 5

Shearing, 435, 604, 607
Shell, 604, 605, 607, 610–612

shifter, 606
Signature, 384, 386
Signed area, 379
Similar matrices, 132
Singular, 56

point, 442, 498, 500, 501, 505
Skew, 48

-commutative property, 377
-symmetric, 48, 103, 116, 339, 377, 380,
568

Slant, 531, 532
Small strain

regime, 611
tensor, 128

Solenoidal, 337
Space(s), 5, 40

ambient, 435, 436, 447, 455, 493, 515,
585

characteristic, 135, 156, 157
complex vector, 9
cotangent, 392
curves, 433, 497, 500, 501, 507, 520
flat, 328, 332
inner product, 149
metrically connected, 472
null, 135
point, 10, 497

tangent, 436, 447
translation, 10
vector, 10, 20, 23, 67, 82, 99, 104

Spacetime, 386, 429, 561
Special theory of relativity, 386
Spectral, 254

components, 142
decomposition, 131, 140, 143, 144, 149,
162, 241, 253

form, 140, 147, 149, 239, 242, 308
representation, 140, 142, 145

Spectrum, 136
Speed of light, 386
Sphere, 332, 434, 435, 437, 494, 524, 534,

614, 631, 654
1-sphere, 561
2-sphere, 561
Stability analysis, 131
Stationary, 315, 585
Steady-state, 315
Stokes’ theorem, 198, 365, 370–372, 408,

414, 417
Straightest possible path, 528, 529, 634
Strain measures, 291, 295, 309
Streamlines, 565
Stress tensor, 295, 305

Biot, 294
Cauchy, 295, 608
first Piola-Kirchhoff, 294
Kirchhoff, 295, 309
material, 303
second Piola-Kirchhoff, 158, 295, 305
true, 158, 295

Stretching, 435, 511, 604, 607
Structural mechanics, 433, 604
Sufficiently smooth, 212, 315, 433, 436
Super-symmetric, 115, 116, 119, 225, 296
Surface, 196, 332

binormal, 510, 645, 647
Christoffel symbols, 456, 487, 578
Christoffel symbols of the first kind, 460
Christoffel symbols of the second kind,
456

closed, 198
contravariant derivative, 471, 472
contravariant metric coefficients, 443,
487, 594

contravariant metric tensor, 446
coordinates, 436, 445, 452, 454, 466,
585, 588

covariant basis vectors, 440, 446, 543,
557, 648
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covariant curvature tensor, 456, 457, 491,
495

covariant differentiation, 433, 465, 471,
472, 477, 557

covariant metric coefficients, 442, 459,
487, 559

covariant metric tensor, 445
curves, 489, 497, 519, 521
developable, 497, 510, 511
divergence, 485
equiscalar, 333
funnel, 637
gradient, 484
implicit, 522, 529
integral, 367, 368, 370, 372
isothermic, 623
level, 333, 346
Liouville, 535
minimal, 459, 628, 629
mixed curvature tensor, 433, 458, 492,
496, 537, 538, 549, 602

normal vector, 441
open, 198, 370, 371
parallel, 642
permutation symbol, 444
principal normal, 510, 514
regular, 442, 494, 508, 515, 519, 523,
530, 536, 549

of revolution, 437, 438, 533, 547, 637
Riemann-Christoffel curvature tensor,
433, 473, 478, 480

tangent, 510
Sylvester’s matrix theorem, 146
Symbol(s), 18, 173, 232, 318

alternating, 18, 28
ambient Christoffel, 456, 461
antisymmetric, 18
Christoffel, 317–321, 335, 352, 455, 459
Landau, 218
Landau order, 213, 230, 316
Levi–Civita, 18
permutation, 18, 19, 25, 96, 151, 173
summation, 14
surface Christoffel, 456, 487, 578
surface permutation, 444
total differential, 232

Symmetric, 47, 103, 115, 139, 149, 237, 435
Symmetry group, 236

T
Tangent, 12, 512

developable, 497, 510–512

line, 494, 502
modulus, 295
plane, 436, 452, 456, 464, 491, 493
space, 392, 433, 436, 447
surface, 510
vector, 479, 499, 501

Tearing, 511
Temperature, 1
Tensor identity

three fields, 278, 283
three variables, 280
two variables, 278

Tensor(s), 5
algebra and calculus, 3, 36, 140
alternating, 96
antisymmetric, 237
basis, 186
Cartesian, 40, 41
coaxial, 158
co-contravariant, 187
co-contravariant unit, 56
cofactor, 60
cofactor of a, 58
conductivity, 35
contra-covariant, 187
contra-covariant unit, 56
contravariant, 56, 187
covariant, 56, 187
covariant curvature, 613
curl of a, 341
curvature, 332, 435
defective, 144, 158
determinant of a, 55, 78, 202
deviatoric, 66
deviatoric projection, 103
diagonalizable, 143
eigenpairs of a, 140
eigenvalues of a, 141
eigenvectors of a, 141
Einstein, 557, 560
equal, 36
field, 315, 316, 320, 322, 327, 455, 471,
476

Finger, 2, 291, 309
first-kind Ricci, 558
first-order, 1, 316
fourth-order, 2, 101, 108
fourth-order unit, 99, 104, 105
fourth-order zero, 99
function, 44, 209, 223, 233, 237, 256
Hessian of a, 345
of higher orders, 326, 328
identity, 36, 55
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inverse of a, 174, 226
invertible, 56
Laplacian of a, 343
left Cauchy-Green strain, 158, 291
Lie derivative of a, 577
metric, 145
mixed curvature, 613
non-defective, 143
non-metricity, 435
nonsingular, 56
of order four, 98
of order three, 94
of order two, 93
orthogonal, 62, 63, 88
permutation, 96
perturbed, 232
polynomial, 44
positive semi-definite, 296
powers, 44
principal invariants of a, 151
product, 38, 40, 188, 281
projection, 104, 124
proper orthogonal, 62
property, 182, 322, 453, 454, 474, 585,
587, 592

rate of deformation, 295
rectangular, 40
referential, 291, 294
Ricci, 557
Ricci curvature, 433, 557
Riemann-Christoffel, 329, 331, 332
Riemann-Christoffel curvature, 329, 332
right Cauchy-Green strain, 158, 291
rotation, 62, 64, 70, 73, 88, 291, 308
second-kind Ricci, 559
second-order, 2, 35, 41, 47, 50, 53, 55
shift, 446, 447, 450, 453, 587
singular, 446
skew, 48, 53, 54
skew-symmetric, 61, 78
skew-symmetric projection, 103
spatial unit, 56
spectral decomposition of a, 143
spectral representation of a, 142
spherical, 66
spherical projection, 103, 126
stress, 127, 612
super-symmetric, 115, 116, 118, 122,
127, 296

super-symmetric deviatoric projection,
104

super-symmetric identity, 119
super-symmetric projection, 103, 116

surface, 453–455, 471, 593, 597
surface covariant curvature, 456
surface mixed curvature, 433, 492, 496,
537, 549

surface Riemann-Christoffel curvature,
433

symmetric, 54, 61, 66, 227
third-order, 2, 93, 95
third-order zero, 94
torsion, 435, 469
trace of a, 52, 56, 164
traceless, 560
transformation law(s), 182, 320, 445, 587
transposed, 53, 81
two-point, 291
unit, 36, 41
zero, 36, 73, 259, 324
zeroth-order, 1

Theorema Egregium, 549, 551
Theory, 290

of algebraic invariants, 233
control, 564
electromagnetic field, 35, 365
of elasticity, 127, 128, 290, 604
infinitesimal strain, 128
of manifolds, 515
of surfaces, 550

Time, 259, 315, 386, 429, 499, 562, 585, 586,
589, 590, 594

-dependent, 587, 588
-independent, 587
-like, 433, 585, 586, 590, 625, 626, 633
rate of change, 297, 305, 593, 594

Torsion-free, 469
Torus, 403, 404, 438, 537, 615
Trace, 206, 266, 497, 644
Traceless, 560
Trajectories, 565
Transformation law(s), 67, 182, 195

tensorial, 72
vectorial, 71

Transport problem of radiation mechanics,
360

Transpose, 16, 46, 47, 54, 88, 113, 189, 206,
211

Transposition, 46, 80, 113
Transverse

normal, 612
shear strains, 612

Trihedron, 550, 649
Darboux, 648, 650
Frenet, 504, 521
moving, 504, 506, 521
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Trilinear, 94
Twisted cubic, 627

U
Umbilic, 538
Umbilical, 538–540
Uniform, 315
Upper-left submatrices, 61, 443

V
Vandermonde, 240, 275
Variational principles, 525, 628
Vector(s), 5

acceleration, 501, 502, 524, 562, 634
addition, 1, 4, 5, 9, 13, 15
area, 18, 49, 58
axial, 48, 78
binormal, 503, 505, 509
Cauchy traction, 608
complex, 9
contravariant, 183, 350
covariant, 183, 200, 215, 348
curvature, 516
Darboux, 507, 623, 648, 650
differential, 332
displacement, 565
equal, 7
field, 315, 321, 333, 335, 433, 462
isotropic, 9
killing, 574
length of a, 6

magnitude of a, 6
position, 484, 486, 492
principal normal, 501, 503, 509
rejection, 8
space, 3, 5, 6, 9, 35–37, 40, 104, 134, 149,
375, 377, 384, 503

subtraction, 4
surface, 198, 452–455, 465, 473, 479,
485, 593

tangent, 479, 499, 501
and tensor algebra, 14, 206
and tensor analysis, 209, 315
and tensor calculus, 14, 209, 229, 315
and tensor field, 326
and tensor identities, 228
transformation law(s), 68, 567
unit, 7, 8, 65, 74, 82, 316, 346, 347, 370,
436, 501, 519, 525

velocity, 499, 524, 561, 586
Velocity, 315

ambient, 586, 588
Viscoelasticity, 290
Volume form, 198

W
Work conjugate, 295

pair, 295

Y
Young’s modulus, 128, 612
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