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Preface

Spatial Statistics for Data Science: Theory and Practice with R describes
statistical methods, modeling approaches, and visualization techniques to
analyze spatial data using R. The book starts by providing a comprehensive
overview of the types of spatial data and R packages for spatial data retrieval,
manipulation, and visualization. Then, it provides a detailed explanation of the
theoretical concepts of spatial statistics, along with fully reproducible examples
demonstrating how to simulate, describe, and analyze areal, geostatistical, and
point pattern data in various applications.

The book combines theory and practice using real-world data science examples
such as disease risk mapping, air pollution prediction, species distribution
modeling, crime mapping, and real state analyses. The book covers the following
topics:

• Spatial data including areal, geostatistical, and point patterns
• Coordinate reference systems and geographical data storages
• R packages for retrieval, manipulation, and visualization of spatial data
• Statistical methods to simulate, describe, and analyze spatial data
• Areal data: neighborhood matrices, spatial autocorrelation, Bayesian spatial

models
• Geostatistical data: Gaussian random fields, spatial interpolation, Kriging,

model-based geostatistics
• Point patterns: kernel intensity estimation, clustering, log-Gaussian Cox

processes
• Fitting and interpreting Bayesian spatial models using the integrated nested

Laplace approximation (INLA) and stochastic partial differential equation
(SPDE) approaches

• Model assessment criteria and cross-validation
• Effective communication using interactive visualizations and dashboards

The book utilizes publicly available data and offers clear explanations of the
R code for importing, manipulating, analyzing, and visualizing data, as well
as the interpretation of the results. This ensures contents are easily accessible
and reproducible for students, researchers, and practitioners.

xiii



xiv Preface

Audience
This book serves as a valuable resource to anyone interested in the theoretical
and practical aspects of spatial statistics, with a focus on applying these
methods using R. This includes statisticians, data scientists, epidemiologists,
environmental scientists, geographers, urban planners, climate scientists, and
professionals of government agencies looking to deepen their understanding of
spatial data analysis. The book is also appropriate for students of statistics
and data science, as well as other fields with a strong statistical background.
The book provides readers with a solid foundation in the theory of spatial
statistics, as well as practical skills for working with spatial data using R for
data retrieval, manipulation, and visualization across a range of disciplines.

Prerequisites and recommended reading
Readers are assumed to have a good understanding of statistical concepts
such as probability distributions, descriptive statistics, confidence intervals,
hypothesis testing, and generalized linear models. The book employs the
statistical software R to illustrate methods and examples. It is assumed readers
have some basic understanding of R programming, including how to install
and load packages, manipulate data objects, and create plots. Books that
can assist readers in enhancing their R skills include Grolemund (2014) and
Wickham and Grolemund (2016), which provide friendly introductions to R
and data analysis with hands-on examples. Moraga (2019) describes spatial
and spatio-temporal models in health and environmental applications. It also
shows how to easily turn analyses into visually informative reports, dashboards,
and Shiny web applications for reproducible research and communication.

Why read this book?
Spatial data arise in many fields including environment, health, ecology, agri-
culture, urban planning, economy, and society. The utilization of spatial data
has emerged as a critical component in data science, serving as a powerful tool
for governments, companies, and individuals to improve their decision-making
processes. A significant example is the utilization of spatial data by statistical
offices across the world to improve the assessment and surveillance of the
United Nations’ Sustainable Development Goals (SDGs). Spatial data are
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crucial to understand patterns of health outcomes and risk factors, monitor
and manage natural resources, analyze demographics, design cities, preserve
endangered species, and rapidly detect infectious disease outbreaks.

This book provides a comprehensive reference to spatial statistics for data
science, supported by practical and fully reproducible examples across diverse
fields. The statistical software R is used throughout the book, providing a
wide range of packages and functions for handling spatial data in different
formats, and facilitating analysis and visualization. R is available for download
and use for free, making it an accessible option for researchers, educators,
and practitioners. By employing the cutting-edge methods presented in the
book, readers can gain valuable insights that support informed decision-making
across a wide range of fields including public health, environment, and business.

Structure of the book
This book consists of four parts and an appendix.

Part I. Spatial data

The objective of the first part of the book is to present readers to the different
types of spatial data, storage files of spatial data, and coordinate reference
systems. This part also introduces packages that can be used to create, read,
manipulate, and write spatial data in R. Additionally, it presents packages
that facilitate the creation of maps, and packages that allow us to download
open spatial data.

Part II. Areal data

The second part is devoted to the analysis of areal data. This type of data
arise when a study region is partitioned into a finite number of areas at
which outcomes are aggregated. Examples of areal data include the number of
individuals with a certain disease in municipalities of a country or the average
housing prices in districts of a city. This part covers key concepts such as
spatial neighborhood matrices and spatial autocorrelation. It also shows how
to fit and interpret Bayesian spatial models to analyze areal data. Examples
of disease mapping and housing prices prediction are used to illustrate the
application of these techniques.

Part III. Geostatistical data

The third part of the book is centered on geostatistical data, which refers
to measurements of a spatially continuous phenomenon collected at specific
locations, such as air pollution or temperature levels taken at a set of monitoring
stations. This part provides an introduction to Gaussian fields and R packages
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used for their simulation and analysis. In addition, it presents various spatial
interpolation methods including inverse distance weighted methods, Kriging,
and model-based geostatistics. These methods are illustrated using several
examples such as the prediction of soil metal concentrations and air pollution
levels. This part also covers measures to assess the predictive performance of
the interpolation methods using cross-validation techniques.

Part IV. Spatial point patterns

Spatial point patterns are countable sets of points that arise as realizations of
stochastic spatial point processes within a planar region. Examples of point
patterns include the locations of trees in a forest, addresses of individuals with
a disease in a city, and the locations of cells in a tissue. The fourth part of
the book provides an overview of techniques for analyzing point pattern data,
including methods to assess the randomness of spatial point patterns, intensity
estimation and clustering analysis. It also demonstrates how to formulate and
fit log-Gaussian Cox process models for point pattern data, which are typically
used to model environmentally driven phenomena. Examples in this part
include the analysis of disease data, crime mapping, and species distribution
modeling.

Appendix

Finally, the appendix provides useful resources on the R software and pack-
ages for visualization, as well as the creation of interactive dashboards and
Shiny web applications to effectively communicate results to collaborators and
policymakers.
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Spatial data
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1
Types of spatial data

Spatial data are used across a wide range of fields to support decision-making,
including environment, public health, ecology, agriculture, urban planning,
economy, and society. These data arise from various sources and are available
in multiple formats (Moraga and Baker, 2022). For instance, remote sensing
data such as land use and environmental phenomena can be obtained through
satellites orbiting the Earth and other distance-capturing platforms. Monitor-
ing stations located at specific sites provide detailed information on various
environmental and climatic variables such as temperature, rainfall, and air
pollution. Surveys are employed to gather data on different social, economic,
and health-related topics. Spatial data can also be derived from mobile phone
usage and social media which can provide information on the location and
activities of individuals.

Spatial data can be thought of as resulting from observations of a stochastic
process

{Z(s) : s ∈ D ⊂ R
d},

where D is a set of Rd, d = 2, and Z(s) denotes the attribute we observe at
s. Three types of spatial data are distinguished through the characteristics of
the domain D, namely, areal (or lattice) data, geostatistical data, and point
patterns (Cressie, 1993). Below we describe each of the data types, and give
examples of these data in different settings.

1.1 Areal data
In areal or lattice data, the domain D is a fixed countable collection of (regular
or irregular) areal units at which variables are observed. Areal data usually
arise when the number of events corresponding to some variable of interest
are aggregated in areas. For example, in spatial epidemiology, locations of
individuals with a given disease are often aggregated in administrative areas.
These data can be analyzed to understand geographic patterns and identify
factors of disease risk, taking into account the neighborhood configuration and

3
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other factors known to affect disease risk (Moraga, 2018a). Areal data may
also arise in remote sensing applications where satellites provide information
on a number of variables such as temperature, precipitation, and vegetation
indices at cells of a regular grid that covers the study region.

Examples
Figure 1.1 shows the number of sudden infant deaths in each of the counties
of North Carolina, USA, in 1974 from the sf package (Pebesma, 2022a).

library(sf)
library(mapview)
d <- st_read(system.file("shape/nc.shp", package = "sf"),

quiet = TRUE)
mapview(d, zcol = "SID74")

FIGURE 1.1: Example of areal data. Number of sudden infant deaths in
counties of North Carolina, USA, in 1974.

The map in Figure 1.2 depicts household income in $1000 USD in neighborhoods
in Columbus, Ohio, in 1980 contained in the spData package (Bivand et al.,
2022).
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library(spData)
library(ggplot2)
d <- st_read(system.file("shapes/columbus.shp",

package = "spData"), quiet = TRUE)
ggplot(d) + geom_sf(aes(fill = INC))

11
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FIGURE 1.2: Example of areal data. Household income in $1000 USD in
neighborhoods in Columbus, Ohio, in 1980.

Figure 1.3 shows elevation at raster grid cells covering Luxembourg from terra
(Hijmans, 2022). In this case, areas are all of the same size equal to the cells of
a raster grid.

library(terra)
d <- rast(system.file("ex/elev.tif", package = "terra"))
plot(d)
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FIGURE 1.3: Example of areal data. Elevation at raster grid cells covering
Luxembourg.

1.2 Geostatistical data
In geostatistical data, D is a continuous fixed subset of R

d. The spatial
index s varies continuously in space and therefore Z(s) can be observed
everywhere within D. Usually, we use data {Z(s1), . . . , Z(sn)} observed at
known spatial locations {s1, . . . , sn} to predict the values of the variable
of interest at unsampled locations. For example, we can use air pollution
measurements at a number of monitoring stations to predict air pollution at
other locations taking into account spatial autocorrelation and other factors
that are known to predict the outcome of interest (Cameletti et al., 2013).

Examples
Figure 1.4 shows topsoil lead concentrations (mg per kg of soil) at several loca-
tions sampled in a flood plain of the river Meuse, near Stein, The Netherlands,
obtained from the sp package (Pebesma and Bivand, 2022).

library(sp)
library(sf)
library(mapview)
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data(meuse)
meuse <- st_as_sf(meuse, coords = c("x", "y"), crs = 28992)
mapview(meuse, zcol = "lead", map.types = "CartoDB.Voyager")

FIGURE 1.4: Example of geostatistical data. Topsoil lead concentrations at
locations sampled in a flood plain of the river Meuse, The Netherlands.

The map in Figure 1.5 shows the price per square meter (Euros per square
meter) of a specific set of apartments in Athens, Greece, in 2017 from spData
(Bivand et al., 2022).

library(spData)
mapview(properties, zcol = "prpsqm")

Figure 1.6 shows malaria prevalence at specific locations in Zimbabwe from the
malariaAtlas package (Pfeffer et al., 2020). Prevalence is calculated as the
number of individuals positive for malaria divided by the number of examined
individuals at each of the locations.

library(malariaAtlas)
d <- getPR(country = "Zimbabwe", species = "BOTH")
ggplot2::autoplot(d)
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FIGURE 1.5: Example of geostatistical data. Price per square meter of a set
of apartments in Athens, Greece, in 2017.
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FIGURE 1.6: Example of geostatistical data. Malaria prevalence at specific
locations in Zimbabwe.
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1.3 Point patterns
Finally, in point patterns, the domain D is random. Its index set gives the
locations of random events of the spatial point pattern, and Z(s) may be
equal to 1 ∀s ∈ D, indicating occurrence of the event, or random, giving some
additional information.

Point patterns arise when the variable to be analyzed corresponds to the
location of events. For example, patterns may include the locations of fires in a
forest (González and Moraga, 2022) or the residential addresses of people with
a disease (Moraga and Montes, 2011). Often, we are interested in understanding
the underlying spatial process that originates the point pattern, and assessing
whether the spatial pattern exhibits randomness, clustering, or regularity.

Examples
An example of spatial point pattern is the fires in Castilla-La Mancha, Spain,
between 1998 and 2007 contained in the clmfires data of the spatstat package
(Baddeley et al., 2022). Data clmfires is a marked point pattern containing
information of each fire. Figure 1.7 depicts the location of the fires without
the mark.

library(spatstat)
plot(clmfires, use.marks = FALSE, pch = ".")

This figure also shows the positions of cell nuclei in a histological section of a
tissue from a lymphoma in the kidney of a hamster from spatstat. The nuclei
are classified as either “pyknotic” (corresponding to dying cells) or “dividing”
(corresponding to cells arrested in the act of dividing).

library(spatstat)
plot(hamster)

Figure 1.8 shows the spatial locations of 761 cases of primary biliary cirrhosis
and 30210 controls representing at-risk population in north-eastern England
collected between 1987 and 1994. This information is contained in the pbc
data from the sparr package (Davies and Marshall, 2023).
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FIGURE 1.7: Examples of point patterns. Top: Locations of fires in Castilla-
La Mancha, Spain, between 1998 and 2007. Bottom: Locations and types of
cells in a tissue.

library(sparr)
data(pbc)
plot(unmark(pbc[which(pbc$marks == "case"), ]), main = "cases")
axis(1)
axis(2)
title(xlab = "Easting", ylab = "Northing")
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plot(unmark(pbc[which(pbc$marks == "control"), ]),
pch = 3, main = "controls")

axis(1)
axis(2)
title(xlab = "Easting", ylab = "Northing")

  cases

340 380 420 460

55
0

60
0

65
0

Easting

N
or
th
in
g

  controls

340 380 420 460

55
0

60
0

65
0

Easting

N
or
th
in
g

FIGURE 1.8: Example of point pattern. Locations of cases and controls of
primary biliary cirrhosis in north-eastern England between 1987 and 1994.

1.4 Spatio-temporal data
Spatio-temporal data arise when information is both spatially and temporally
referenced. Thus, we can consider spatial data as temporal aggregations or
temporal snapshots of a spatio-temporal process. Examples of spatio-temporal
data include the number of car accidents in each of the US states in each of the
months of 2020 (areal data), air pollution levels measured at 100 monitoring
stations located in Germany each hour of a given day (geostatistical data),
and the locations of earthquakes occurring in the world in each of the years
from 2000 to 2020 (point pattern). Figure 1.9 shows a spatio-temporal dataset
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representing the population of the counties of Ohio, USA, from 1968 to 1988
obtained from the SpatialEpiApp package (Moraga, 2017).

# devtools::instzall_github("Paula-Moraga/SpatialEpiApp")
library(SpatialEpiApp)
library(sf)
library(ggplot2)
library(viridis)

# map
f <- file.path("SpatialEpiApp/data/Ohio/fe_2007_39_county/",

"fe_2007_39_county.shp")
pathshp <- system.file(f, package = "SpatialEpiApp")
map <- st_read(pathshp, quiet = TRUE)

# data
namecsv <- "SpatialEpiApp/data/Ohio/dataohiocomplete.csv"
d <- read.csv(system.file(namecsv, package = "SpatialEpiApp"))

# data are disaggregated by gender and race
# aggregate to get population in each county and year
d <- aggregate(x = d$n, by = list(county = d$NAME, year = d$year),

FUN = sum)
names(d) <- c("county", "year", "population")

# join map and data
mapst <- dplyr::left_join(map, d, by = c("NAME" = "county"))

# map population by year
# facet_wrap() splits data into subsets and create multiple plots
ggplot(mapst, aes(fill = log(population))) + geom_sf() +

facet_wrap(~ year, ncol = 7) +
scale_fill_viridis("log(population)") +
theme(axis.text.x = element_blank(),

axis.text.y = element_blank(),
axis.ticks = element_blank())
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FIGURE 1.9: Example of spatio-temporal data. Population of the counties
of Ohio, USA, from 1968 to 1988.

1.5 Spatial functional data
Spatial functional data arise when the three types of spatial data (areal,
geostatistical, and point patterns) are combined with random functions. Thus,
a spatial functional process can be defined as

{χs : s ∈ D ⊂ R
d},

where χs is a functional random variable taking values in an infinite dimensional
space observed at s in the spatial domain D. Typically, χs is a real function
from [a, b] ⊂ R to R.

The spatial domain D can be fixed or random and allows us to classify spatial
functional data as functional areal data when the functions correspond to
areas, functional geostatistical data when functions are observed at a fixed
subset of locations, and functional point patterns when functions are observed
at each of the locations of a point process.

Example
The example below shows functional geostatistical data from the geoFouri-
erFDA package (Sassi, 2021) representing the daily temperature averaged
over 30 years at 35 Canadian weather stations, {χsi : i = 1, . . . , 35}. Figure
1.10 shows the locations of the Canadian weather stations, and Figure 1.11
the daily temperature measured in each of the stations. One of the objectives
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when analyzing this data could be the prediction of the daily temperature
function χs0

: [0, 365) → R at one specific unsampled location s0 in Canada.

library(sf)
library(geoFourierFDA)
library(rnaturalearth)

# Map Canada
map <- rnaturalearth::ne_states("Canada", returnclass = "sf")

# Coordinates of stations
d <- data.frame(canada$m_coord)
d$location <- attr(canada$m_coord, "dimnames")[[1]]
d <- st_as_sf(d, coords = c("W.longitude", "N.latitude"))
st_crs(d) <- 4326

# Plot Canada map and location of stations
ggplot(map) + geom_sf() + geom_sf(data = d, size = 6) +

geom_sf_label(data = d, aes(label = location), nudge_y = 2)

# Temperature of each station over time
d <- data.frame(canada$m_data)
d$time <- 1:nrow(d)

# Pivot data d from wide to long
# cols: columns to pivot in longer format
# names_to: name of new column with column names of original data
# values_to: name of new column with values of original data
df <- tidyr::pivot_longer(data = d,
cols = names(d)[-which(names(d) == "time")],
names_to = "variable", values_to = "value")

# Plot temperature of each station over time
ggplot(df, aes(x = time, y = value)) +

geom_line(aes(color = variable))
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FIGURE 1.10: Locations of Canadian weather stations where daily temper-
ature is measured.
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FIGURE 1.11: Example of spatial functional data. Daily temperature aver-
aged over 30 years measured at 35 Canadian weather stations.
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1.6 Mobility data
Besides the three classical types of spatial data (i.e., areal, geostatistical, and
point patterns), we can also consider other spatial data such as flows containing
the number of individuals or other elements moving between locations (Mah-
mood et al., 2022). Here, we see an example of flows data from the epiflows
package (Piatkowski et al., 2018; Moraga et al., 2019). This package allows
us to predict and visualize the spread of infectious diseases based on flows
between geographical locations. The package contains the Brazil_epiflows
data with the number of travelers between Brazilian states and other loca-
tions. We can use this data to create an epiflows object called ef that allows
us to use the prediction and visualization functions. Then, we can visualize
the population flows with vis_epiflows(ef) using a dynamic network, and
map_epiflows(ef) using an interactive map.

library("epiflows")
data("Brazil_epiflows")

loc <- merge(x = YF_locations, y = YF_coordinates,
by.x = "location_code", by.y = "id", sort = FALSE)

ef <- make_epiflows(flows = YF_flows, locations = loc,
coordinates = c("lon", "lat"),
pop_size = "location_population",
duration_stay = "length_of_stay",
num_cases = "num_cases_time_window",
first_date = "first_date_cases",
last_date = "last_date_cases")



2
Spatial data in R

Spatial data can be represented using vector and raster data. Vector data is
used to display points, lines, and polygons, and possibly associated information.
Vector data may represent, for example, locations of monitoring stations, road
networks, or municipalities of a country. Raster data are regular grids with cells
of equal size that are used to store values of spatially continuous phenomena,
such as elevation, temperature, or air pollution values.

The sf (Pebesma, 2022a) and terra (Hijmans, 2022) packages are the main
packages that allow us to manipulate and analyze spatial data in R. In this
chapter, we introduce these packages, spatial data storage files, and coordinate
reference systems. Finally, we give an overview of old spatial packages that
were widely used but are not longer maintained.

2.1 Vector data
The sf package allows us to work with vector data which is used to represent
points, lines, and polygons (Figure 2.1). Vector data can be used, for example,
to represent locations of hospitals or monitoring stations as points, roads or
rivers as lines, and municipalities or districts of a country as polygons. Moreover,
these data can also have associated information such as temperature values
measured at monitoring stations or number of people living in municipalities.

Before the sf package was developed, the sp package (Pebesma and Bivand,
2022), which is no longer maintained, was used to work with vector spatial
data. The terra package presented in the following sections is mainly used to
work with rasters and also has functionality to work with vector data.

2.1.1 Shapefile
Vector data are often represented using a data storage format called shapefile.
Note that a shapefile is not a single file but a collection of related files. A
shapefile has three mandatory files, namely, .shp which contains the geometry
data, .shx which is a positional index of the geometry data that allows to

17
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FIGURE 2.1: Examples of vector data (polygon, line, and points).

seek forward and backward the .shp file, and .dbf which stores the attributes
for each shape. Other files that may form a shapefile include .prj which is
a plain text file describing the projection, .sbn and .sbx which are spatial
indices of the geometry data, and .shp.xml which contains spatial metadata
in XML format. Therefore, when working with a shapefile, it is important to
obtain all files that compose the shapefile and not only the .shp file with the
geometry data.

The st_read() function of the sf package can be used to read a shapefile. Here,
we read the shapefile of the counties of North Carolina, USA, contained in the
sf package. First, we use system.file() passing the name of the directory
("shape/nc.shp") and the name of the package ("sf") to identify the path of
shapefile.

library(sf)
pathshp <- system.file("shape/nc.shp", package = "sf")

We can examine the shape directory and see that it contains the following files
corresponding to the North Carolina shapefile.

shape
nc.shp
nc.shx
nc.dbf
nc.prj
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Then, we read the shapefile with st_read() passing the name to read the
shapefile. We set quiet = TRUE to suppress information on name, driver, size,
and spatial reference.

map <- st_read(pathshp, quiet = TRUE)
class(map)

[1] "sf" "data.frame"

head(map)

Simple feature collection with 6 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -81.74 ymin: 36.07 xmax: -75.77 ymax: 36.59
Geodetic CRS: NAD27

AREA PERIMETER CNTY_ CNTY_ID NAME FIPS
1 0.114 1.442 1825 1825 Ashe 37009
2 0.061 1.231 1827 1827 Alleghany 37005
3 0.143 1.630 1828 1828 Surry 37171
4 0.070 2.968 1831 1831 Currituck 37053
5 0.153 2.206 1832 1832 Northampton 37131
6 0.097 1.670 1833 1833 Hertford 37091

FIPSNO CRESS_ID BIR74 SID74 NWBIR74 BIR79 SID79
1 37009 5 1091 1 10 1364 0
2 37005 3 487 0 10 542 3
3 37171 86 3188 5 208 3616 6
4 37053 27 508 1 123 830 2
5 37131 66 1421 9 1066 1606 3
6 37091 46 1452 7 954 1838 5

NWBIR79 geometry
1 19 MULTIPOLYGON (((-81.47 36.2...
2 12 MULTIPOLYGON (((-81.24 36.3...
3 260 MULTIPOLYGON (((-80.46 36.2...
4 145 MULTIPOLYGON (((-76.01 36.3...
5 1197 MULTIPOLYGON (((-77.22 36.2...
6 1237 MULTIPOLYGON (((-76.75 36.2...

Figure 2.2 shows the first attribute of the map.

plot(map[1]) # plot first attribute
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FIGURE 2.2: Map of the first attribute of the ‘sf‘ object representing the
counties of North Carolina, USA.

2.2 Raster data
Raster data (also referred to as grid data) is a spatial data structure that
divides the region of study into rectangles of the same size called cells or
pixels, and that can store one or more values for each of these cells (Figure
2.3). Raster data is used to represent spatially continuous phenomena, such as
elevation, temperature, or air pollution values.

In R, terra is the main package to work with raster data, which also has
functionality to work with vector data. Before terra was developed, the raster
package (Hijmans, 2023) was used to analyze raster data. terra is very similar
to raster but can do more and is faster. The stars package (Pebesma, 2022b)
can also be used to analyze raster data as well as spatial data cubes which are
arrays with one or more spatial dimensions.

2.2.1 GeoTIFF
Raster data often come in GeoTIFF format which has extension .tif. Here,
we use the terra::rast() function to read the elev.tif file of the terra
package that represents elevation in Luxembourg (Figure 2.3).
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library(terra)
pathraster <- system.file("ex/elev.tif", package = "terra")
r <- terra::rast(pathraster)
r
plot(r)
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FIGURE 2.3: Left: Example of raster data with cells colored according to their
values. Right: Map of raster data representing the elevation of Luxembourg.

Another format commonly used to store raster data is netCDF, which stands
for network Common Data Form. R provides functionality to read, write, and
manipulate netCDF files through packages such as ncdf4 (Pierce, 2023).

2.3 Coordinate Reference Systems
The coordinate reference system (CRS) of spatial data specifies the origin
and the unit of measurement of the spatial coordinates. CRSs are important
for spatial data manipulation, analysis and visualization, and permit to deal
with multiple data by transforming them to a common CRS. Locations on the
Earth can be referenced using unprojected (also called geographic) or projected
CRSs. The unprojected or geographic CRS uses latitude and longitude values
to represent locations on the Earth’s three-dimensional ellipsoid surface. A
projected CRS uses Cartesian coordinates to reference a location on a two-
dimensional representation of the Earth.

2.3.1 Geographic CRS
In a geographic CRS, latitude and longitude values are used to identify locations
on the Earth’s three-dimensional ellipsoid surface. Latitude values measure the
angles north or south of the equator (0 degrees) and range from –90 degrees
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at the south pole to 90 degrees at the north pole. Longitude values measure
the angles west or east of the prime meridian. Longitude values range from
–180 degrees when running west to 180 degrees when running east (Figure 2.4).

North (+)

South (-)

Prime meridian

FIGURE 2.4: Parallels (left) and meridians (right).

Latitude and longitude coordinates may be expressed in degrees, minutes, and
seconds, or in decimal degrees. In decimal form, northern latitudes are positive,
and southern latitudes are negative. Also, eastern longitudes are positive, and
western longitudes are negative. For example, the location of New York City,
USA, can be given by geographic coordinates as follows:

Latitude Longitude
Degrees, Minutes, and
Seconds

40◦ 43′ 50.1960′′ North 73◦ 56′ 6.8712′′ West

Decimal degrees
(North/South and
West/East)

40.730610◦ North 73.935242◦ West

Decimal degrees
(Positive/Negative)

40.730610 –73.935242

Note here that one degree is 60 minutes, 1 minute is 60 seconds, and one degree
is 3600 seconds. Note also that one degree of longitude at the equator and one
degree of latitude anywhere correspond to 111.32 kilometers approximately.
This means that 1 minute is equal to 111.32/60 = 1.85 kilometers approximately.
A degree of longitude is widest at the equator, and this distance shrinks as
moving north or south toward the poles.

2.3.2 Projected CRS
Projected CRSs use Cartesian coordinates to reference a location on a two-
dimensional representation of the Earth. All projections produce distortion of
the Earth’s surface in some fashion, and cannot simultaneously preserve all
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area, direction, shape, and distance properties. For example, Figure 2.5 shows
world maps using two different projections, namely, Mercator and Robinson
projections.

Mercator projection

Robinson projection

FIGURE 2.5: World maps with Mercator (left) and Robinson (right) projec-
tions.

A common projection is the Universal Transverse Mercator (UTM) projection1.
This projection is conformal, meaning that it preserves angles and therefore
shapes across small regions. However, it distorts distances and areas. In the
UTM projection, a location is given by the zone number (60 zones), hemisphere
(north or south), and Easting and Northing coordinates in the zone in meters.
Eastings and Northings are referenced from the central meridian and equator,
respectively, of each zone.

2.3.3 EPSG codes
Most common CRSs can be specified by providing their EPSG (European
Petroleum Survey Group) codes or their Proj4 strings. Common spatial pro-
jections can be found at https://spatialreference.org/ref/. Details of a given
projection can be inspected using the st_crs() function of the sf package.
For example, the EPSG code 4326 refers to the WGS84 longitude/latitude
projection.

st_crs("EPSG:4326")$Name

[1] "WGS 84"

st_crs("EPSG:4326")$proj4string

[1] "+proj=longlat +datum=WGS84 +no_defs"

1https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

https://spatialreference.org
https://en.wikipedia.org
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st_crs("EPSG:4326")$epsg

[1] 4326

2.3.4 Transforming CRS with sf and terra
Functions sf::st_crs() and terra::crs() allow us to get the CRS of spatial
data. These functions also allow us to set a CRS to spatial data by using
st_crs(x) <- value if x is a sf object, and crs(r) <- value if r is a raster.
Notice that setting a CRS does not transform the data, it just changes the
CRS label. We may want to set a CRS to data that does not come with CRS,
and the CRS should be what it is, not what we would like it to be. We use
sf::st_transform() and terra::project() to transform the sf or raster
data, respectively, to a new CRS.

For sf data, we can read and get the CRS, and transform the data to a new
CRS as follows:

library(sf)
pathshp <- system.file("shape/nc.shp", package = "sf")
map <- st_read(pathshp, quiet = TRUE)

# Get CRS
# st_crs(map)
# Transform CRS
map2 <- st_transform(map, crs = "EPSG:4326")
# Get CRS
# st_crs(map2)

We can use terra to read and get the CRS, and transform the data to a new
CRS of a raster as follows:

library(terra)
pathraster <- system.file("ex/elev.tif", package = "terra")
r <- rast(pathraster)

# Get CRS
# crs(r)
# Transform CRS
r2 <- terra::project(r, "EPSG:2169")
# Get CRS
# crs(r2)
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Alternatively, as we may want transformed data that exactly lines up with
other raster data we are using, we can project using an existing raster with
the geometry we wish. For example,

# x is existing raster
# r is raster we project
r2 <- terra::project(r, x)

2.4 Old spatial packages
Before the sf package was developed, the sp package was used to represent and
work with vector spatial data. sp as well as the rgdal (Bivand et al., 2023),
rgeos (Bivand and Rundel, 2022) and maptools (Bivand and Lewin-Koh,
2022) packages are no longer maintained and will retire. Using old packages, the
rgdal::readOGR() function can be used to read a file. Data can be accessed
with sp_object@data, and the sp::spplot() function can be used to plot sp
spatial objects.

library(sf)
library(sp)
library(rgdal)
pathshp <- system.file("shape/nc.shp", package = "sf")
sp_object <- rgdal::readOGR(pathshp, verbose = FALSE)
class(sp_object)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

The st_as_sf() function of sf can be used to transform a sp object to a sf
object (st_as_sf(sp_object)). Also, a sf object can be transformed to a sp
object with as(sf_object, "Spatial").
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The sf package for spatial vector data

3.1 The sf package
The sf package (Pebesma, 2022a) can be used to represent and work with
spatial vector data including points, polygons, and lines, and their associated
information. The sf package uses sf objects that are extensions of data frames
containing a collection of simple features or spatial objects with possibly
associated data.

We can read a sf object with the st_read() function of sf. For example, here
we read the nc shapefile of sf which contains the counties of North Carolina,
USA, as well as their name, number of births, and number of sudden infant
deaths in 1974 and 1979.

library(sf)
pathshp <- system.file("shape/nc.shp", package = "sf")
nc <- st_read(pathshp, quiet = TRUE)
class(nc)

[1] "sf" "data.frame"

The sf object nc is a data.frame containing a collection with 100 simple
features (rows) and 6 attributes (columns) plus a list-column with the geometry
of each feature. A sf object contains the following objects of class sf, sfc and
sfg:

• sf (simple feature): each row of the data.frame is a single simple feature
consisting of attributes and geometry.

• sfc (simple feature geometry list-column): the geometry column of the
data.frame is a list-column of class sfc with the geometry of each simple
feature.

• sfg (simple feature geometry): each of the rows of the sfc list-column
corresponds to the simple feature geometry (sfg) of a single simple feature.

27
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We can see and plot the information of the sf object as follows (Figure 3.1):

print(nc)

Simple feature collection with 100 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -84.32 ymin: 33.88 xmax: -75.46 ymax: 36.59
Geodetic CRS: NAD27
First 10 features:

AREA PERIMETER CNTY_ CNTY_ID NAME FIPS
1 0.114 1.442 1825 1825 Ashe 37009
2 0.061 1.231 1827 1827 Alleghany 37005
3 0.143 1.630 1828 1828 Surry 37171
4 0.070 2.968 1831 1831 Currituck 37053
5 0.153 2.206 1832 1832 Northampton 37131
6 0.097 1.670 1833 1833 Hertford 37091
7 0.062 1.547 1834 1834 Camden 37029
8 0.091 1.284 1835 1835 Gates 37073
9 0.118 1.421 1836 1836 Warren 37185
10 0.124 1.428 1837 1837 Stokes 37169

FIPSNO CRESS_ID BIR74 SID74 NWBIR74 BIR79 SID79
1 37009 5 1091 1 10 1364 0
2 37005 3 487 0 10 542 3
3 37171 86 3188 5 208 3616 6
4 37053 27 508 1 123 830 2
5 37131 66 1421 9 1066 1606 3
6 37091 46 1452 7 954 1838 5
7 37029 15 286 0 115 350 2
8 37073 37 420 0 254 594 2
9 37185 93 968 4 748 1190 2
10 37169 85 1612 1 160 2038 5

NWBIR79 geometry
1 19 MULTIPOLYGON (((-81.47 36.2...
2 12 MULTIPOLYGON (((-81.24 36.3...
3 260 MULTIPOLYGON (((-80.46 36.2...
4 145 MULTIPOLYGON (((-76.01 36.3...
5 1197 MULTIPOLYGON (((-77.22 36.2...
6 1237 MULTIPOLYGON (((-76.75 36.2...
7 139 MULTIPOLYGON (((-76.01 36.3...
8 371 MULTIPOLYGON (((-76.56 36.3...
9 844 MULTIPOLYGON (((-78.31 36.2...
10 176 MULTIPOLYGON (((-80.03 36.2...
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plot(nc)

AREA PERIMETER

CNTY_ CNTY_ID

NAME FIPS

FIPSNO CRESS_ID

BIR74 SID74

FIGURE 3.1: sf object representing the counties of North Carolina, USA,
and associated information.

We can subset feature sets by using the square bracket notation and use the
drop argument to drop geometries.

nc[1, ] # first row
nc[nc$NAME == "Ashe", ] # row with NAME "Ashe"
nc[1, "NWBIR74"] # first row, column with name NWBIR74
nc[1, "NWBIR74", drop = TRUE] # drop geometry

The st_geometry() function can be used to retrieve the simple feature geom-
etry list-column (sfc).

# Geometries printed in abbreviated form
st_geometry(nc)
# View complete geometry by selecting one
st_geometry(nc)[[1]]
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3.2 Creating a sf object
We can use the st_sf() function to create a sf object by providing two
elements, namely, a data.frame with the attributes of each feature, and a
simple feature geometry list-column sfc containing simple feature geometries
sfg. In more detail, we create simple feature geometries sfg and use the
st_sfc() function to create a simple feature geometry list-column sfc with
them. Then, we use st_sf() to put the data.frame with the attributes and
the simple feature geometry list-column sfc together.

Simple feature geometries sfg objects can be, for example, of type POINT (single
point), MULTIPOINT (set of points) or POLYGON (polygon), and can be created
with st_point(), st_multipoint() and st_polygon(), respectively. Here,
we create a sf object containing two single points, a set of points, and a polygon,
with one attribute. First, we create the simple feature geometry objects (sfg)
of type POINT, MULTIPOINT, and POLYGON. Then, we use st_sfc() to create
a simple feature geometry list-column sfc with the sfg objects. Finally, we
use st_sf() to put the data.frame with the attribute and the simple feature
geometry list-column sfc together. Figure 3.2 shows the resulting sf object
plotted with ggplot2.

# Single point (point as a vector)
p1_sfg <- st_point(c(2, 2))
p2_sfg <- st_point(c(2.5, 3))

# Set of points (points as a matrix)
p <- rbind(c(6, 2), c(6.1, 2.6), c(6.8, 2.5),

c(6.2, 1.5), c(6.8, 1.8))
mp_sfg <- st_multipoint(p)

# Polygon. Sequence of points that form a closed,
# non-self intersecting ring.
# The first ring denotes the exterior ring,
# zero or more subsequent rings denote holes in the exterior ring
p1 <- rbind(c(10, 0), c(11, 0), c(13, 2),

c(12, 4), c(11, 4), c(10, 0))
p2 <- rbind(c(11, 1), c(11, 2), c(12, 2), c(11, 1))
pol_sfg <- st_polygon(list(p1, p2))

# Create sf object
p_sfc <- st_sfc(p1_sfg, p2_sfg, mp_sfg, pol_sfg)
df <- data.frame(v1 = c("A", "B", "C", "D"))
p_sf <- st_sf(df, geometry = p_sfc)
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# Plot single points, set of points and polygon
library(ggplot2)
ggplot(p_sf) + geom_sf(aes(col = v1), size = 3) + theme_bw()

 0

 1

 2

 3

 4

 2  4  6  8 10 12

v1
A

B

C

D

FIGURE 3.2: sf object representing two single points, a set of points, and a
polygon, with one attribute.

3.3 st_*() functions
Common functions to manipulate sf objects include the following:

• st_read() reads a sf object,
• st_write() writes a sf object,
• st_crs() gets or sets a new coordinate reference system (CRS),
• st_transform() transforms data to a new CRS,
• st_intersection() intersects sf objects,
• st_union() combines several sf objects into one,
• st_simplify() simplifies a sf object,
• st_coordinates() retrieves coordinates of a sf object,
• st_as_sf() converts a foreign object to a sf object.

For example, we can read a sf object as follows:

library(sf)
library(ggplot2)
map <- read_sf(system.file("shape/nc.shp", package = "sf"))

We can inspect the first rows of the sf object map with head().
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head(map)

Simple feature collection with 6 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -81.74 ymin: 36.07 xmax: -75.77 ymax: 36.59
Geodetic CRS: NAD27
# A tibble: 6 x 15

AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO
<dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl>

1 0.114 1.44 1825 1825 Ashe 37009 37009
2 0.061 1.23 1827 1827 Alleghany 37005 37005
3 0.143 1.63 1828 1828 Surry 37171 37171
4 0.07 2.97 1831 1831 Currituck 37053 37053
5 0.153 2.21 1832 1832 Northampt~ 37131 37131
6 0.097 1.67 1833 1833 Hertford 37091 37091
# i 8 more variables: CRESS_ID <int>, BIR74 <dbl>,
# SID74 <dbl>, NWBIR74 <dbl>, BIR79 <dbl>,
# SID79 <dbl>, NWBIR79 <dbl>,
# geometry <MULTIPOLYGON [°]>

We can delete some of the polygons by taking a subset of the rows of map.
We can use st_union() with argument by_feature = FALSE to combine all
geometries together. The boundaries of a map can be simplified with the
st_simplify() function (Figure 3.3).

# Delete polygon
map <- map[-which(map$FIPS %in% c("37125", "37051")), ]
ggplot(map) + geom_sf(aes(fill = SID79))

# Combine geometries
ggplot(st_union(map, by_feature = FALSE) %>% st_sf()) + geom_sf()

# Simplify
ggplot(st_simplify(map, dTolerance = 10000)) + geom_sf()

3.4 Transforming point data to a sf object
The st_as_sf() function allows us to convert a foreign object to a sf object.
For example, we can have a data frame containing the coordinates of a number
of locations and attributes that we wish to turn into a sf object. To do that,
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FIGURE 3.3: sf object obtained by deleting some of its polygons (top),
combining polygons (middle), and simplifying polygons (bottom).

we use the st_as_sf() function passing the object we wish to convert and
specifying in argument coords the name of the columns that contain the
point coordinates. For example, here we use st_as_sf() to turn a data frame
containing coordinates long and lat and two variables place and value to
a sf object. Then, we use st_crs() to set the coordinate reference system
given by the EPSG code 4326 to represent longitude and latitude coordinates.
Figure 3.4 shows the plot of the sf object obtained with mapview.

library(sf)
library(mapview)

d <- data.frame(
place = c("London", "Paris", "Madrid", "Rome"),
long = c(-0.118092, 2.349014, -3.703339, 12.496366),
lat = c(51.509865, 48.864716, 40.416729, 41.902782),
value = c(200, 300, 400, 500))
class(d)

[1] "data.frame"
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dsf <- st_as_sf(d, coords = c("long", "lat"))
st_crs(dsf) <- 4326
class(dsf)

[1] "sf" "data.frame"

mapview(dsf)

FIGURE 3.4: sf object with points.

3.5 Counting the number of points within polygons
We can use the st_intersects() function of sf to count the number of points
within the polygons of a sf object. The returned object is a list with feature
ids intersected in each of the polygons. We can use the lengths() function to
calculate the number of points inside each feature as seen in Figure 3.5.

library(sf)
library(ggplot2)

# Map with divisions (sf object)
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map <- read_sf(system.file("shape/nc.shp", package = "sf"))

# Points over map (simple feature geometry list-column sfc)
points <- st_sample(map, size = 100)

# Map of points within polygons
ggplot() + geom_sf(data = map) + geom_sf(data = points)

# Intersection (first argument map, then points)
inter <- st_intersects(map, points)

# Add point count to each polygon
map$count <- lengths(inter)

# Map of number of points within polygons
ggplot(map) + geom_sf(aes(fill = count))
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FIGURE 3.5: Top: Points within polygons. Bottom: Number of points within
polygons.
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3.6 Identifying polygons containing points
Given a sf object with points and a sf object with polygons, we can also use
the st_intersects() function to obtain the polygon each of the points belongs
to. For example, Figure 3.6 shows a map with the names of the polygons that
contain three points over the map.

library(sf)
library(ggplot2)

# Map with divisions (sf object)
map <- read_sf(system.file("shape/nc.shp", package = "sf"))

# Points over map (sf object)
points <- st_sample(map, size = 3) %>% st_as_sf()

# Intersection (first argument points, then map)
inter <- st_intersects(points, map)

# Adding column areaname with the name of
# the areas containing the points
points$areaname <- map[unlist(inter), "NAME",

drop = TRUE] # drop geometry
points

Simple feature collection with 3 features and 1 field
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -80.18 ymin: 34.72 xmax: -77.91 ymax: 35.57
Geodetic CRS: NAD27

x areaname
1 POINT (-80.18 35.57) Davidson
2 POINT (-79.26 34.72) Robeson
3 POINT (-77.91 35.19) Wayne

# Map
ggplot(map) + geom_sf() + geom_sf(data = points) +
geom_sf_label(data = map[unlist(inter), ],

aes(label = NAME), nudge_y = 0.2)
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FIGURE 3.6: Map showing the name of polygons that contain three points
over the map.

3.7 Joining map and data
Sometimes, a map and its corresponding data are available separately and
we may wish to create a sf object representing the map with the added data
that we can manipulate and plot. We can create a sf map with the data
attributes by joining the map and the data with the left_join() function
of the dplyr (Wickham et al., 2022b) package. Here, we present an example
where we add air pollution data obtained with the wbstats (Piburn, 2020)
package to a sf map obtained with the rnaturalearth package. First, we use
the ne_countries() function of rnaturalearth (South, 2017) to download
the world map with the country polygons of class sf.

library(rnaturalearth)
map <- ne_countries(returnclass = "sf")

Then, we use the wbstats package to download a data frame of air pollution
data from the World Bank. Specifically, we search the pollution indicators
with wb_search(), and use wb_data() to download PM2.5 in year 2016 by
specifying the indicator corresponding to PM2.5, and the start and end dates.

library(wbstats)
indicators <- wb_search(pattern = "pollution")
d <- wb_data(indicator = "EN.ATM.PM25.MC.M3",

start_date = 2016, end_date = 2016)

Then, we use the left_join() function of dplyr to join the map and the
data specifying the argument by the variables we wish to join by. Here, we



38 3 The sf package for spatial vector data

use ISO3 standard code of the countries rather than the country names, since
names can be written differently in the map and the data frame. Figure 3.7
shows the map of the data obtaind with ggplot2.

library(dplyr)
library(ggplot2)
library(viridis)

map1 <- left_join(map, d, by = c("iso_a3" = "iso3c"))
ggplot(map1) + geom_sf(aes(fill = EN.ATM.PM25.MC.M3)) +

scale_fill_viridis() + labs(fill = "PM2.5") + theme_bw()
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FIGURE 3.7: PM2.5 values in each of the world countries in 2016.

Note that when we use left_join(), the class of the result-
ing object is the same as the class of the first argument. Thus,
left_join(sf_object, data.frame_object) creates a sf object, whereas
left_join(data.frame_object, sf_object) is a data.frame:

map1 <- left_join(map, d, by = c("iso_a3" = "iso3c"))
class(map1)

[1] "sf" "data.frame"

d1 <- left_join(d, map, by = c("iso3c" = "iso_a3"))
class(d1)

[1] "tbl_df" "tbl" "data.frame"

Note also that given two data frames x and y, we can join them by using
the left_join(), right_join(), inner_join() or full_join() functions.
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Specifically, left_join(x, y) includes all rows in x so the resulting data
frame includes all observations in the left data frame x, whether or not there
is a match in the right data frame y. right_join(x, y) includes all rows in
y so the resulting data frame includes all observations in y, whether or not
there is a match in x. inner_join(x, y) includes all rows in x and y so the
resulting data frame includes only observations that are in both data frames.
Finally, full_join(x, y) includes all rows in x or y so the resulting data
frame includes all observations from both data frames.
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4
The terra package for raster and vector data

The terra package (Hijmans, 2022) has functions to create, read, manipulate,
and write raster and vector data. Raster data is commonly used to represent
spatially continuous phenomena by dividing the study region into a grid of
equally sized rectangles (referred to as cells or pixels) with the values of the
variable of interest. In terra, multilayer raster data is represented with the
SpatRaster class. The SpatVector class is used to represent vector data such
as points, lines and polygons, and their attributes. In this chapter, we provide
examples on how to read, create, and operate with raster and vector data
using terra.

4.1 Raster data
The rast() function can be used to create and read raster data. The
writeRaster() function allows us to write raster data. For example, here
we use rast() to read raster data representing elevation in Luxembourg from
a file from the terra package, and assign it to an object r of class SpatRaster
(Figure 4.1).

library(terra)
pathraster <- system.file("ex/elev.tif", package = "terra")
r <- rast(pathraster)
plot(r)

We can also use rast() to create a SpatRaster object r by specifying the
number of columns, the number of rows, as well as the minimum and maximum
x and y values.

r <- rast(ncol = 10, nrow = 10,
xmin = -150, xmax = -80, ymin = 20, ymax = 60)

r

41
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FIGURE 4.1: Elevation raster in Luxembourg obtained from terra.

class : SpatRaster
dimensions : 10, 10, 1 (nrow, ncol, nlyr)
resolution : 7, 4 (x, y)
extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84

We can get the size of the raster with several functions.

nrow(r) # number of rows
ncol(r) # number of columns
dim(r) # dimension
ncell(r) # number of cells

We use values() to set and access values of the raster.

values(r) <- 1:ncell(r)

We can also create a multilayer object using c().

r2 <- r * r
s <- c(r, r2)
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Layers can be subsetted with [[ ]].

plot(s[[2]]) # layer 2

Many generic functions can be used to operate with rasters as shown in the
following examples.

plot(min(s))
plot(r + r + 10)
plot(round(r))
plot(r == 1)

4.2 Vector data
The class SpatVector of terra allows us to represent vector data such as points,
lines, and polygons, as well as the attributes that describe these geometries. We
can use vect() to read a shapefile, and writeVector() to write a SpatVector
to a file. Here, we obtain the map with the divisions of Luxembourg that is in
the shapefile file lux.shp of terra.

pathshp <- system.file("ex/lux.shp", package = "terra")
v <- vect(pathshp)

We can also use the vect() function to create a SpatVector. For example,
here we create a SpatVector that contains longitude and latitude coordinates
of point locations, and attributes representing character names and numeric
values for each of the points.

# Longitude and latitude values
long <- c(-0.118092, 2.349014, -3.703339, 12.496366)
lat <- c(51.509865, 48.864716, 40.416729, 41.902782)
longlat <- cbind(long, lat)

# CRS
crspoints <- "+proj=longlat +datum=WGS84"

# Attributes for points
d <- data.frame(
place = c("London", "Paris", "Madrid", "Rome"),
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value = c(200, 300, 400, 500))

# SpatVector object
pts <- vect(longlat, atts = d, crs = crspoints)

pts
plot(pts)

4.3 Cropping, masking, and aggregating raster data
The terra package provides several functions to work with raster data. Here, we
show examples on how to crop, mask, and aggregate raster data by using a raster
file representing temperature data. First, we use the worldclim_country()
function of the geodata package (Hijmans et al., 2023) to download global
temperature data from the WorldClim1 database. Specifically, we download
monthly average temperature in degree Celsius by specifying the country
(country = "Spain"), the variable mean temperature (var = "tavg"), the
resolution (res = 10), and the path where to download the data to as a
temporary file (path = tempdir()). Figure 4.2 shows maps of the monthly
average temperature in Spain.

library(terra)
r <- geodata::worldclim_country(country = "Spain", var = "tavg",

res = 10, path = tempdir())
plot(r)

We can average the temperature raster data over months with the mean()
function (Figure 4.3).

r <- mean(r)
plot(r)

We also download the map of Spain with the rnaturalearth package (South,
2017), and delete the Canary Islands region (Figure 4.4).

# Map
library(ggplot2)

1https://www.worldclim.org/data/index.html

https://www.worldclim.org
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FIGURE 4.2: Monthly average temperature in Spain obtained from geodata.
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FIGURE 4.3: Raster representing the average annual temperature in Spain.
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map <- rnaturalearth::ne_states("Spain", returnclass = "sf")
map <- map[-which(map$region == "Canary Is."), ] # delete region
ggplot(map) + geom_sf()

We obtain the spatial extent of the map with terra:ext(). Then, we can
use crop() to remove the part of the raster that is outside the spatial extent
(Figure 4.4).

# Cropping
sextent <- terra::ext(map)
r <- terra::crop(r, sextent)
plot(r)

We can use the mask() function to convert all values outside the map to NA
(Figure 4.4).

# Masking
r <- terra::mask(r, vect(map))
plot(r)

The aggregate() function of terra can be used to aggregate groups of cells
of a raster in order to create a new raster with a lower resolution (i.e., larger
cells). The argument fact of aggregate() denotes the aggregation factor
expressed as number of cells in each direction (horizontally and vertically), or
two integers denoting the horizontal and vertical aggregation factor. Argument
fun specifies the function used to aggregate values (e.g., mean). Figure 4.4
shows a low resolution raster of average annual temperatures in Spain obtained
using the aggregate() function.

# Aggregating
r <- terra::aggregate(r, fact = 20, fun = "mean", na.rm = TRUE)
plot(r)

4.4 Extracting raster values at points
Given a raster of class SpatRaster, we can extract the raster values at a set of
points with the extract() function of terra. Here, we provide an example of
the use of extract() using a raster representing the elevation of Luxembourg,
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FIGURE 4.4: Map of Spain excluding the Canary Islands region (top-left),
and cropped raster (top-right), masked raster (bottom-left), and low resolution
raster (bottom-right) representing the average annual temperature in the map.

and a vector file with the divisions of Luxembourg from files in the terra
package.

library(terra)
# Raster (SpatRaster)
r <- rast(system.file("ex/elev.tif", package = "terra"))
# Polygons (SpatVector)
v <- vect(system.file("ex/lux.shp", package = "terra"))

We use the terra functions centroids() to obtain the centroids of the division
polygons, and crds() to obtain their coordinates.

points <- crds(centroids(v))

Figure 4.5 shows the elevation raster, the polygons, and the points of the
centroid locations.
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plot(r)
plot(v, add = TRUE)
points(points)
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FIGURE 4.5: Elevation raster, and division and centroids of polygons in
Luxembourg.

Now, we obtain the values of the raster at points using extract() passing as
first argument the SpatVector object with the raster, and as second argument
a data frame with the points.

# data frame with the coordinates
points <- as.data.frame(points)
valuesatpoints <- extract(r, points)
cbind(points, valuesatpoints)

x y ID elevation
1 6.009 50.07 1 444
2 6.127 49.87 2 295
3 5.887 49.80 3 382
4 6.165 49.93 4 404
5 5.915 49.94 5 414
6 6.378 49.79 6 320
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7 6.312 49.55 7 193
8 6.346 49.69 8 228
9 5.964 49.64 9 313
10 6.024 49.52 10 282
11 6.168 49.62 11 328
12 6.114 49.76 12 221

4.5 Extracting and averaging raster values within
polygons

We can also use extract() to obtain the values of raster objects of class
SpatRaster within polygons of class SpatVector. By default, cells extracted
within each polygon are cells that have centers covered by the polygon. We
can set the argument weights = TRUE to get, apart from the cell values, the
percentage of each cell covered by the polygon, and this can be used to compute
area-weighted averages. The argument fun of extract() can be used to specify
a function (e.g., mean) that summarizes the extracted values by polygon.

# Extracted raster cells within each polygon
head(extract(r, v, na.rm = TRUE))

ID elevation
1 1 547
2 1 485
3 1 497
4 1 515
5 1 515
6 1 515

# Extracted raster cells and percentage of area
# covered within each polygon
head(extract(r, v, na.rm = TRUE, weights = TRUE))

ID elevation weight
1 1 NA 0.04545
2 1 NA 0.10909
3 1 529 0.24545
4 1 542 0.46364
5 1 547 0.68182
6 1 535 0.11818
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Thus, the average raster values by polygon are obtained with extract() as
follows.

# Average raster values by polygon
v$avg <- extract(r, v, mean, na.rm = TRUE)$elevation

The area-weighted average raster values by polygon are obtained with
extract() setting weights = TRUE.

# Area-weighted average raster values by polygon (weights = TRUE)
v$weightedavg <- extract(r, v, mean, na.rm = TRUE,

weights = TRUE)$elevation

Figure 4.6 shows maps of the elevation averages and area-weighted averages in
each of the Luxembourg divisions created with the ggplot2 (Wickham et al.,
2022a) and tidyterra (Hernangomez, 2023b) packages.

library(ggplot2)
library(tidyterra)

# Plot average raster values within polygons
ggplot(data = v) + geom_spatvector(aes(fill = avg)) +

scale_fill_terrain_c()

# Plot area-weighted average raster values within polygons
ggplot(data = v) + geom_spatvector(aes(fill = weightedavg)) +

scale_fill_terrain_c()
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FIGURE 4.6: Average and area-weighted average of elevation values in each
of the divisions of Luxembourg.
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Making maps with R

Maps allow us to easily convey spatial information. Here, we show how to
create both static and interactive maps by using several mapping packages
including ggplot2 (Wickham et al., 2022a), leaflet (Cheng et al., 2022a),
mapview (Appelhans et al., 2022), and tmap (Tennekes, 2022). We create
maps of areal data using several functions and parameters of the mapping
packages. We also briefly describe how to plot point and raster data. Then, we
show how to create maps of flows between locations with the flowmapblue
package (Boyandin, 2023).

The areal data we map correspond to sudden infant deaths in the counties of
North Carolina, USA, in 1974 and 1979 which are in the sf package (Pebesma,
2022a). The path of the data can be obtained with system.file() specifying
the directory of the data ("shape/nc.shp") and the package ("sf"). Then,
the data can be read with the st_read() function of sf by specifying the path
of the data. We call this data d, and create variables vble and vble2 that we
wish to map with the values of the sudden infant deaths in 1974 and 1979,
respectively.

library(sf)
nameshp <- system.file("shape/nc.shp", package = "sf")
d <- st_read(nameshp, quiet = TRUE)
d$vble <- d$SID74
d$vble2 <- d$SID79

5.1 ggplot2
The ggplot2 package (Wickham et al., 2022a) allows us to create graphics based
on the grammar of graphics that defines the rules of structuring mathematic
and aesthetic elements to build graphs layer-by-layer.

To create a plot with ggplot2, we call ggplot() specifying arguments data
which is a data frame with the variables to plot, and mapping = aes() which

51



52 5 Making maps with R

are aesthetic mappings between variables in the data and visual properties of
the objects in the graph such as position and color of points or lines.

Then, we use + to add layers of graphical components to the graph. Lay-
ers consist of geometries, stats, scales, coordinates, facets, and themes.
For example, we add objects to the graph with geom_*() functions (e.g,
geom_point() for points, geom_line() for lines). We can also add color scales
(e.g., scale_colour_brewer()), faceting specifications (e.g., facet_wrap()
splits data into subsets to create multiple plots), and coordinate systems (e.g.,
coord_flip()).

We can create maps by using the geom_sf() function and providing a simple
feature (sf) object. Figure 5.1 shows the map of sudden infant deaths in North
Carolina in 1974 (vble) created with ggplot2 with viridis scale from the
viridis package (Garnier, 2021).

library(ggplot2)
library(viridis)
ggplot(d) + geom_sf(aes(fill = vble)) +

scale_fill_viridis() + theme_bw()
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FIGURE 5.1: Map of areal data created with ggplot2.

Plots created with ggplot2 can be saved with the ggsave() function. Alter-
natively, we can specify a device driver (e.g., png, pdf), print the plot, and
then shut down the device with dev.off():

png("plot.png")
ggplot(d) + geom_sf(aes(fill = vble)) +

scale_fill_viridis() + theme_bw()
dev.off()
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Moreover, the plotly package (Sievert et al., 2022b) can be used in combination
with ggplot2 to create an interactive plot. Specifically, we can turn a static
ggplot object to an interactive plotly object by calling the ggplotly()
function of plotly providing the ggplot object (Figure 5.2).

library(plotly)
g <- ggplot(d) + geom_sf(aes(fill = vble))
ggplotly(g)

FIGURE 5.2: Interactive map of areal data created with plotly.

The gganimate package (Pedersen and Robinson, 2022) can also be used
to create animated plots. The syntax of this package is similar to that of
ggplot2 and has additional functions to define how data should change in the
animation.

5.2 leaflet
The leaflet package (Cheng et al., 2022a) makes it easy to create maps using
Leaflet1 which is a very popular open-source JavaScript library for interactive

1https://leafletjs.com/

https://leafletjs.com
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maps. We can create a leaflet map by calling the leaflet() function passing
the spatial object, and adding layers such as polygons and legends using
a number of functions. The sf object that we pass to leaflet() needs to
have a geographic coordinate reference system (CRS) indicating latitude and
longitude (EPSG code 4326). Here, we use the st_transform() function of
sf to transform the data d which has CRS given by EPSG code 4267 to CRS
with EPSG code 4326.

st_crs(d)$epsg

[1] 4267

d <- st_transform(d, 4326)

We create a color palette using the colorNumeric() function of leaflet speci-
fying the color palette "YlOrRd" of the RColorBrewer package (Neuwirth,
2022), and the domain with the possible values that can be mapped (d$vble).

Then, we create the map using leaflet() and addTiles() to add a back-
ground map to put data into context. Then, we use addPolygons() to add
the polygons representing counties specifying the color of the border (color),
interior (fillColor) and opacity (fillOpacity). Finally, we add a legend
with addLegend() (Figure 5.3).

library(leaflet)
pal <- colorNumeric(palette = "YlOrRd", domain = d$vble)
l <- leaflet(d) %>% addTiles() %>%

addPolygons(color = "white", fillColor = ~ pal(vble),
fillOpacity = 0.8) %>%

addLegend(pal = pal, values = ~vble, opacity = 0.8)
l

Note that the default background map added with addTiles() can be changed
by another map with addProviderTiles() specifying another tile layer. Ex-
amples of tile layers can be seen at the leaflet providers’ website2. We can also
use the addMiniMap() function to add an inset map (Figure 5.4).

l %>% addMiniMap()

The saveWidget() function of htmlwidgets (Vaidyanathan et al., 2023)
allows us to save the map created to an HTML file. If we wish to save an image
file, we can first save the leaflet map as an HTML file with saveWidget(),

2http://leaflet-extras.github.io/leaflet-providers/preview/index.html

http://leaflet-extras.github.io
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FIGURE 5.3: Map of areal data created with leaflet.

FIGURE 5.4: Map of areal data with inset map created with leaflet.
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and then capture a static version of the HTML using the webshot() function
of the webshot package (Chang, 2022a). The use of webshot requires the
installation of the external program PhantomJS which can be installed with
webshot::install_phantomjs(). For example, to save the leaflet map l as
.png we can proceed as follows:

# Saves map.html
library(htmlwidgets)
saveWidget(widget = l, file = "map.html")

# Takes a screenshot of the map.html created
# and saves it as map.png
library(webshot)
# webshot::install_phantomjs()
webshot(url = "map.html", file = "map.png")

Note we can use getwd() and setwd() to get and set, respectively, the current
working directory. This allows us to see where the files were saved. More-
over, if in saveWidget() we specify the path where to save map.html as
file = "directory/map.html", the same path needs to be specified in the
argument url of webshot() as url = "directory/map.html". The package
webshot2 (Chang, 2022b) is meant to be a replacement for webshot. The
webshot2 package uses headless Chrome via the chromote package (Chang
and Schloerke, 2022), whereas webshot uses PhantomJS.

5.3 mapview
The mapview package (Appelhans et al., 2022) allows us to very quickly
create similar interactive maps as leaflet. Specifically, we just need to use the
mapview() function passing as arguments the spatial object and the variable
we want to plot (zcol). Figure 5.5 shows the map created with mapview.
This map is interactive and by clicking each of the areas we can see popups
with the data information.

library(mapview)
mapview(d, zcol = "vble")

Maps created with mapview can also be customized to add elements such
as legends and background maps. For example, we can choose another back-
ground map by using the argument map.types, change the color palette with
col.regions, and put a title for the legend with layer.name as follows:
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FIGURE 5.5: Map of areal data created with mapview.

library(RColorBrewer)
pal <- colorRampPalette(brewer.pal(9, "YlOrRd"))
mapview(d, zcol = "vble", map.types = "CartoDB.DarkMatter",

col.regions = pal, layer.name = "SDI")

An inset map can also be added by using the addMiniMap() function of leaflet.

map1 <- mapview(d, zcol = "vble")
leaflet::addMiniMap(map1@map)

We can save maps created with mapview by using the mapshot() function of
mapview as an HTML file or as a PNG, PDF, or JPEG image.
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5.4 Side-by-side plots with mapview
We can create a side-by-side plot of maps obtained with mapview separated
with a slider by using the | operator. To use the | operator, we need to install
the leaflet.extras2 package (Sebastian, 2023). When creating the individual
maps with mapview(), we use a common legend by specifying the same color
palette (col.regions) and breaks (at) so in both maps colors correspond to
the same intervals of values (Figure 5.6).

library(leaflet.extras2)
library(RColorBrewer)
pal <- colorRampPalette(brewer.pal(9, "YlOrRd"))

# common legend
at <- seq(min(c(d$vble, d$vble2)), max(c(d$vble, d$vble2)),

length.out = 8)

m1 <- mapview(d, zcol = "vble", map.types = "CartoDB.Positron",
col.regions = pal, at = at)

m2 <- mapview(d, zcol = "vble2", map.types = "CartoDB.Positron",
col.regions = pal, at = at)

m1 | m2

5.5 Synchronized maps with leafsync
The leafsync package (Appelhans and Russell, 2019) can be used to produce
a lattice-like view of multiple synchronized maps created with mapview or
leaflet. Here, we show how to create maps of sudden infant deaths in 1974
(vble) and 1979 (vble2) with synchronized zoom and pan. First, we use
mapview() to create maps of the variables vble and vble2. Then, we use the
sync() function of leafsync passing the maps created (Figure 5.7).

library(RColorBrewer)
pal <- colorRampPalette(brewer.pal(9, "YlOrRd"))

# common legend
at <- seq(min(c(d$vble, d$vble2)), max(c(d$vble, d$vble2)),
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FIGURE 5.6: Side-by-side maps created with mapview and the | operator
of leaflet.extras2.

length.out = 8)

m1 <- mapview(d, zcol = "vble", map.types = "CartoDB.Positron",
col.regions = pal, at = at)

m2 <- mapview(d, zcol = "vble2", map.types = "CartoDB.Positron",
col.regions = pal, at = at)

m <- leafsync::sync(m1, m2)
m

This synchronized map can be saved by using the save_html() function of
the htmltools package (Cheng et al., 2022b).

htmltools::save_html(m, "m.html")
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FIGURE 5.7: Synchronized maps created with leafsync.

5.6 tmap
The tmap package (Tennekes, 2022) allows us to create static and inter-
active maps composed of multiple shapes and layers, and with different
styles. Maps are created with tm_shape() specifying the sf object. Then,
layers are added with a tm_*() function. For example, tm_polygons()
draws polygons, tm_dots() draws dots, and tm_text() adds text. Functions
tmap_mode("plot") and tmap_mode("view") can be used to set the static
and interactive modes of the maps, respectively. Figure 5.8 shows a static map
created with tmap with the values corresponding to areal data.

library(tmap)
tmap_mode("plot")
tm_shape(d) + tm_polygons("vble")

The function tmap_save() can be used to save maps by specifying the name
of the HTML file (if view mode) or image (if plot mode).
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FIGURE 5.8: Map of areal data created with tmap.

5.7 Maps of point data
In addition to mapping areal data, the ggplot2, leaflet, mapview and tmap
packages can also be used to create maps of point and raster data. Here, we
show how to use these packages to represent the locations and population sizes
of South African cities using points with different colors and sizes. These data
are obtained from the world.cities data from the maps package (Brownrigg,
2022).

library(maps)
d <- world.cities
# Select South Africa
d <- d[which(d$country.etc == "South Africa"), ]
# Transform data to sf object
d <- st_as_sf(d, coords = c("long", "lat"))
# Assign CRS
st_crs(d) <- 4326

We create the variables vble with the population, and size with a transfor-
mation of the population that will be used to plot the points.

d$vble <- d$pop
d$size <- sqrt(d$vble)/100

Figure 5.9 shows a map created with ggplot2 by setting the points color with
col = vble and their size with size = size.
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ggplot(d) + geom_sf(aes(col = vble, size = size)) +
scale_color_viridis()
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FIGURE 5.9: Map of point data created with ggplot2.

A leaflet map can be created using addCircles() specifying the radius and
color of the points (Figure 5.10).

pal <- colorNumeric(palette = "viridis", domain = d$vble)
leaflet(d) %>% addTiles() %>%

addCircles(lng = st_coordinates(d)[, 1],
lat = st_coordinates(d)[, 2],
radius = ~sqrt(vble)*10,
color = ~pal(vble), popup = ~name) %>%

addLegend(pal = pal, values = ~vble, position = "bottomright")

To create a map with mapview, we set the size of the points with cex =
"size".

d$size <- sqrt(d$vble)
mapview(d, zcol = "vble", cex = "size")

Finally, we use tm_dots() to create a map with tmap.
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tmap_mode("view")
tm_shape(d) + tm_dots("vble", scale = sqrt(d$vble)/500,

palette = "viridis")

FIGURE 5.10: Map of point data created with leaflet.

5.8 Maps of raster data
These packages can also be used to plot raster data. Here, we plot the raster
data representing elevation in Luxembourg obtained from the terra package
(Hijmans, 2022).

library(terra)
filename <- system.file("ex/elev.tif", package = "terra")
r <- rast(filename)

To create a map using ggplot2, we transform the data to a data frame and
pass it to geom_raster() (Figure 5.11).
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# Transform data to sf object
d <- st_as_sf(as.data.frame(r, xy = TRUE), coords = c("x", "y"))
# Assign CRS
st_crs(d) <- 4326
# Plot
ggplot(d) + geom_sf() +

geom_raster(data = as.data.frame(r, xy = TRUE),
aes(x = x, y = y, fill = elevation))

49.5°N

49.6°N

49.7°N

49.8°N

49.9°N

50.0°N

50.1°N

50.2°N

5.8°E 6.0°E 6.2°E 6.4°E
x

y

200

300

400

500

elevation

FIGURE 5.11: Map of raster data created with ggplot2.

To use the leaflet and mapview packages, we transform the data from class
terra to RasterLayer with the raster::brick() function. Figure 5.12 shows
the map of raster data created with leaflet.

library(raster)
rb <- raster::brick(r)

pal <- colorNumeric("YlOrRd", values(r),
na.color = "transparent")

leaflet() %>% addTiles() %>%
addRasterImage(rb, colors = pal, opacity = 0.8) %>%
addLegend(pal = pal, values = values(r), title = "elevation")
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FIGURE 5.12: Map of raster data created with leaflet.

We create a map with mapview setting the title with the argument layer as
follows:

mapview(rb, layer = "elevation")

We create a map with tmap by using tm_raster().

tm_shape(r) + tm_raster(title = "elevation", palette = "YlOrRd")

5.9 Mobility flows with flowmapblue
The flowmapblue package (Boyandin, 2023) is a FlowmapBlue3 widget for R
that can be used to easily map mobility data between locations. An example
on the use of flowmapblue showing population flows in Spain derived from

3http://flowmap.blue

http://flowmap.blue
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cellphone location data can be seen at this blog post4. Flow data can also
be depicted with the visualization functions of the epiflows package for the
prediction of the spread of infectious diseases (Piatkowski et al., 2018; Moraga
et al., 2019).

To use flowmapblue, we need to create a token at https://account.mapbox.c
om/. We can create an interactive mobility map by using just a few lines of
code. First, we need to install the package from GitHub as follows:

devtools::install_github("FlowmapBlue/flowmapblue.R")
library(flowmapblue)

Then, we need to create two data frames containing the locations and the flows
between locations. The data frame locations contains the ids, names, and
coordinates of each of the locations. For example:

locations <- data.frame(
id = c(1, 2, 3),
name = c("New York", "London", "Rio de Janeiro"),
lat = c(40.713543, 51.507425, -22.906241),
lon = c(-74.011219, -0.127738, -43.180244)
)

The data frame flows has the number of people moving between origin and
destination locations. For example:

flows <- data.frame(
origin = c(1, 2, 3, 2, 1, 3),
dest = c(2, 1, 1, 3, 3 , 2),
count = c(42, 51, 50, 40, 22, 42)
)

Finally, we call the flowmapblue() function passing the data frames locations
and flows, the mapbox access token and specifying several options such as
clustering or animation. Note that by setting mapboxAccessToken = NULL,
we will obtain a visualization of the flows between locations but without a
background map.

flowmapblue(locations, flows, mapboxAccessToken,
clustering = TRUE, darkMode = TRUE, animation = FALSE)

4https://www.paulamoraga.com/blog/2020/07/11/2020-07-11-mobility/

https://account.mapbox.com
https://www.paulamoraga.com
https://account.mapbox.com
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Figure 5.13 shows a screenshot of an interactive mobility map created with
flowmapblue. This map can be explored by moving the map, zooming in and
out, and clicking the arrows to see the movement associated to each flow. We
can also click the bottom right corner to open the map in full screen mode.

FIGURE 5.13: Map of population flows created with flowmapblue.
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6
R packages to download open spatial data

Spatial data are used in a wide range of disciplines including environment,
health, agriculture, economy, and society (Moraga and Baker, 2022). Several
R packages have been recently developed as clients for various databases that
can be used for easy access of spatial data including administrative boundaries,
climatic, and OpenStreetMap data. Here, we give short reproducible examples
on how to download and visualize spatial data that can be useful in different
settings. More extended examples and details about the capabilities of each
of the packages can be seen at the packages’ websites, and the rspatialdata1

website which provides a collection of tutorials on R packages to download
and visualize spatial data using R.

6.1 Administrative boundaries of countries
We can download administrative boundaries of world countries with the rnat-
uralearth package (South, 2017). Other packages can also be used to obtain
data of specific countries such as the USA with tidycensus (Walker and Her-
man, 2023) and tigris (Walker, 2023), Spain with mapSpain (Hernangomez,
2022), and Brazil with geobr (Pereira and Goncalves, 2022). The giscoR
package (Hernangomez, 2023a) helps to retrieve data from Eurostat - GISCO
(the Geographic Information System of the COmmission)2 which contains
several open data such as countries and coastal lines.

Here, we use rnaturalearth to download the administrative boundaries from
Natural Earth map data3. Note that when installing rnaturalearth, we may
get an error that can be fixed by installing the rnaturalearthhires package
(South, 2023). The ne_countries() function allows us to download the map
of the country specified in argument country, of scale given in scale, and
of class sp or sf given in returnclass. We can retrieve the possible names
that can be specified in argument country by typing ne_countries()$admin.

1https://rspatialdata.github.io/
2https://ec.europa.eu/eurostat/web/gisco
3https://www.naturalearthdata.com/
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The ne_states() function can be used to obtain administrative divisions for
specific countries.

Figure 6.1 shows maps of Germany and its divisions downloaded with rnatu-
ralearth, and plotted side-by-side with the patchwork package (Pedersen,
2022).

# install.packages("devtools")
# devtools::install_github("ropensci/rnaturalearthhires")

library(rnaturalearth)
library(sf)
library(ggplot2)
library(viridis)
library(patchwork)

map1 <- ne_countries(type = "countries", country = "Germany",
scale = "medium", returnclass = "sf")

map2 <- rnaturalearth::ne_states("Germany", returnclass = "sf")
p1 <- ggplot(map1) + geom_sf()
p2 <- ggplot(map2) + geom_sf()
p1 + p2

48°N

50°N

52°N

54°N

 6°E  8°E 10°E 12°E 14°E

48°N

50°N

52°N

54°N

 6°E  8°E 10°E 12°E 14°E

FIGURE 6.1: Maps of Germany and its divisions obtained with rnatu-
ralearth.
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Note that in case of needing maps of administrative boundaries at greater
levels than the ones provided by these packages, we could resort to other
sources such as online data repositories maintained by specific countries.

6.2 Climatic data
The geodata package (Hijmans et al., 2023) allows us to download geographic
data including climate, elevation, land use, soil, crop, species occurrence,
administrative boundaries, and other data. The geodata package is a successor
of the getData() function from the raster package (Hijmans, 2023).

For example, the worldclim_country() function downloads climate data from
WorldClim4 including minimum temperature (tmin), maximum temperature
(tmax), average temperature (tavg), precipitation (prec), and wind speed
(wind). The country_codes() function of geodata can be used to get the
names and codes of the world countries. Here, we provide an example on how
to download minimum temperature in Jamaica using worldclim_country()
specifying country = "Jamaica", var = "tmin" and path = tempdir() as
the path name of the temporary directory to download the data. This function
retrieves the temperature for each month, and we can plot the mean over the
months with mean(d) (Figure 6.2).

library(geodata)
d <- worldclim_country(country = "Jamaica", var = "tmin",

path = tempdir())
terra::plot(mean(d), plg = list(title = "Min. temperature (C)"))

The geodata package can also be used to download other data such as
elevation with elevation_30s(), land cover with landcover(), and soil with
soil_world().

6.3 Precipitation
The chirps package (de Sousa et al., 2022) allows us to obtain daily high-
resolution precipitation, as well as daily maximum and minimum temperatures
from the Climate Hazards Group5. We use the get_chirps() function to
obtain daily precipitation in Bangkok, Thailand, by specifying the longitude

4https://www.worldclim.org/
5https://www.chc.ucsb.edu/

https://www.worldclim.org
https://www.chc.ucsb.edu
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FIGURE 6.2: Minimum temperature in Jamaica obtained with geodata.

and latitude coordinates of Bangkok, the dates, and the server source. Here,
we use the "ClimateSERV" server instead of the default server "CHC", since it
is recommended when few data points are required (Figure 6.3).

library("chirps")
location <- data.frame(long = 100.523186, lat = 13.736717)
d <- get_chirps(location, dates = c("2020-01-01", "2022-12-31"),

server = "ClimateSERV")
ggplot(d, aes(x = date, y = chirps)) + geom_line() +

labs(y = "Precipitation (mm)")

6.4 Elevation
The elevatr package (Hollister, 2022) allows us to get elevation data from
Amazon Web Services (AWS) Terrain Tiles6 and OpenTopography Global
Digital Elevation Models API7. The get_elev_raster() function can be used
to download elevation at the locations specified in argument locations and

6https://registry.opendata.aws/terrain-tiles/
7https://portal.opentopography.org/apidocs/#/Public/getGlobalDem

https://registry.opendata.aws
https://portal.opentopography.org
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FIGURE 6.3: Daily precipitation in Bangkok obtained with chirps.

with a zoom specified in argument z. Argument clip can be set to "tile"
to return full tiles, "bbox" to return data clipped to the bounding box of
the locations, or "locations" to return data clipped to the data specified in
locations. Figure 6.4 shows the elevation of Switzerland downloaded passing
to get_elev_raster() a sf object with the map of the country.

library(rnaturalearth)
library(elevatr)
library(terra)
map <- ne_countries(type = "countries", country = "Switzerland",

scale = "medium", returnclass = "sf")
d <- get_elev_raster(locations = map, z = 9, clip = "locations")
terra::plot(rast(d), plg = list(title = "Elevation (m)"))
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FIGURE 6.4: Elevation in Switzerland obtained with elevatr.

6.5 OpenStreetMap data
OpenStreetMap (OSM)8 is an open world geographic database updated and
maintained by a community of volunteers. We can use the osmdata package
(Padgham et al., 2023) to retrieve OSM data including roads, shops, railway
stations, and much more. The available_features() function can be used
to get the list of recognized features in OSM. This list can be found in the
OSM wiki9.

library(osmdata)
head(available_features())

[1] "4wd_only" "abandoned" "abutters" "access"
[5] "addr" "addr:city"

The available_tags() function lists out the tags associated with each feature.
For example, tags associated with feature "amenity" can be obtained as follows:

8https://www.openstreetmap.org/
9https://wiki.openstreetmap.org/wiki/Map_Features

https://www.openstreetmap.org
https://wiki.openstreetmap.org
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head(available_tags("amenity"))

# A tibble: 6 x 2
Key Value
<chr> <chr>

1 amenity [[ Data item not found. Check your spelling.~
2 amenity animal_boarding
3 amenity animal_breeding
4 amenity animal_shelter
5 amenity animal_training
6 amenity arts_centre

The first step in creating an osmdata query is defining the geographical area
we wish to include in the query. This can be done by defining a bounding
box that defines a geographical area by its bounding latitudes and longitudes.
The bounding box for a given place name can be obtained with the getbb()
function. For example, the bounding box of Barcelona, Spain, can be obtained
as follows.

placebb <- getbb("Barcelona")
placebb

min max
x 2.052 2.228
y 41.317 41.468

To retrieve the required features of a place defined by the bounding box, we
need to create an overpass query with opq(). Then, the add_osm_feature()
function can be used to add the required features to the query. Finally, we use
the osmdata_sf() function to obtain a simple feature object of the resultant
query. For example, we can obtain the hospitals of Barcelona by specifying its
bounding box placebb and using add_osm_feature() with key = "amenity"
and value = "hospital" as follows.

hospitals <- placebb %>% opq() %>%
add_osm_feature(key = "amenity", value = "hospital") %>%
osmdata_sf()

Motorways can be retrieved using key = "highway" and value =
"motorway".

motorways <- placebb %>% opq() %>%
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add_osm_feature(key = "highway", value = "motorway") %>%
osmdata_sf()

Figure 6.5 shows an interactive map with the hospitals and motorways of
Barcelona downloaded with osmdata.

library(leaflet)
leaflet() %>% addTiles() %>%

addPolylines(data = motorways$osm_lines, color = "black") %>%
addPolygons(data = hospitals$osm_polygons,

label = hospitals$osm_polygons$name)

FIGURE 6.5: Map with the hospitals and motorways of Barcelona obtained
with osmdata.

6.6 World Bank data
The World Bank10 provides a great source of global socio-economic data
spanning several decades and dozens of topics, with the potential to shed light

10https://www.worldbank.org/

https://www.worldbank.org
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on numerous global issues. Some of the indicators can be seen at this website11.
The wbstats package (Piburn, 2020) allows us to search and download data
from the World Bank API. The wb_search() function can be used to find
indicators that match a search term. For example, we can find indicators that
contain the words "poverty" or "unemployment" as follows.

library(wbstats)
indicators <- wb_search(pattern = "poverty|unemployment")
# print(indicators)

We can inspect the indicators retrieved with View(indicators). The function
wb_data() allows us to retrieve the chosen data. For example, here we download
Human Development Index which has ID MO.INDEX.HDEV.XQ in 2011.

d <- wb_data(indicator = "MO.INDEX.HDEV.XQ",
start_date = 2011, end_date = 2011)

print(head(d))

# A tibble: 6 x 9
iso2c iso3c country date MO.INDEX.HDEV.XQ unit
<chr> <chr> <chr> <dbl> <dbl> <chr>

1 AO AGO Angola 2011 47.7 <NA>
2 BI BDI Burundi 2011 48.5 <NA>
3 BJ BEN Benin 2011 53.2 <NA>
4 BF BFA Burkina Faso 2011 45.8 <NA>
5 BW BWA Botswana 2011 80.3 <NA>
6 CF CAF Central Afr~ 2011 32.9 <NA>
# i 3 more variables: obs_status <chr>,
# footnote <chr>, last_updated <date>

We can visualize the data by adding the data d to a map of Africa retrieved
with the ne_countries() function of rnaturalearth (Figure 6.6).

library(rnaturalearth)
library(mapview)
map <- ne_countries(continent = "Africa", returnclass = "sf")
map <- dplyr::left_join(map, d, by = c("iso_a3" = "iso3c"))
mapview(map, zcol = "MO.INDEX.HDEV.XQ")

11https://data.worldbank.org/indicator

https://data.worldbank.org
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FIGURE 6.6: Human Development Index obtained with wbstats.

6.7 Species occurrence
The spocc package (Chamberlain, 2021) is an interface to many species occur-
rence data sources including Global Biodiversity Information Facility (GBIF),
USGSs’ Biodiversity Information Serving Our Nation (BISON), iNaturalist,
eBird, Integrated Digitized Biocollections (iDigBio), VertNet, Ocean Biogeo-
graphic Information System (OBIS), and Atlas of Living Australia (ALA).
The package provides functionality to retrieve and combine species occurrence
data.

The occ() function from spocc can be used to retrieve the locations of species.
Here, we download data on brown-throated sloths in Costa Rica recorded
between 2000 and 2019 from the GBIF database. Arguments of this function
include query with the species scientific name (Bradypus variegatus), from
with the name of the database (GBIF), and date with the start and end dates
(2000-01-01 to 2019-12-31). We also specify that we wish to retrieve occurrences
in Costa Rica by setting gbifopts to a named list with country equal to the
2-letter code of Costa Rica (CR). Moreover, we only retrieve occurrence data
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that have coordinates by setting has_coords = TRUE, and specify limit equal
to 1000 to retrieve a maximum of 1000 occurrences.

library('spocc')
df <- occ(query = "Bradypus variegatus", from = "gbif",

date = c("2000-01-01", "2019-12-31"),
gbifopts = list(country = "CR"),
has_coords = TRUE, limit = 1000)

d <- occ2df(df)

Then, we transform the point data to a sf object with st_as_sf(), assign
the coordinate reference system given by the EPSG code 4326 to represent
longitude and latitude coordinates. Figure 6.7 shows the retrieved locations of
sloths in Costa Rica.

library(sf)
d <- st_as_sf(d, coords = c("longitude", "latitude"))
st_crs(d) <- 4326
mapview(d)

FIGURE 6.7: Locations of sloths in Costa Rica obtained with spocc.
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6.8 Population, health, and other spatial data
Other packages that can be used to obtain spatial data for the world or
specific countries include the following: The wopr package (Leasure et al.,
2023) provides access to the WorldPop Open Population Repository12 and
provides estimates of population sizes for specific geographic areas. These
data are collected by the WorldPop Hub (https://hub.worldpop.org/), which
provides open high-resolution geospatial data on population count and density,
demographic and dynamics, with a focus on low- and middle-income countries.

The rdhs package (Watson and Eaton, 2022) gives the users the ability to
access and make analysis on the Demographic and Health Survey (DHS)13 data.
The malariaAtlas package (Pfeffer et al., 2020) can be used to download,
visualize and manipulate global malaria data hosted by the Malaria Atlas
Project14. The openair package (Carslaw et al., 2023) allows us to obtain air
quality data and other atmospheric composition data.

Many other spatial datasets are included in several packages mainly to
demonstrate the packages’ functionality. For example, spatstat (Badde-
ley et al., 2022) contains point pattern data that can be listed with
data(package="spatstat.data"). The spData package (Bivand et al., 2022)
also includes diverse spatial datasets that can be used for teaching spatial data
analysis.

R also has packages that allow us to geocode place names or addresses. For
example, the packages ggmap (Kahle et al., 2022) and opencage (Possenriede
et al., 2021) can be used to convert names to geographic coordinates.

12https://wopr.worldpop.org/
13https://dhsprogram.com/
14https://malariaatlas.org/

https://hub.worldpop.org
https://wopr.worldpop.org
https://dhsprogram.com
https://malariaatlas.org
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7
Spatial neighborhood matrices

Areal or lattice data arise when a study region is partitioned into a finite
number of areas at which outcomes are aggregated. Examples of areal data are
the number of individuals with a certain disease in municipalities of a country,
the number of road accidents in provinces, or the average housing prices in
districts of a city.

The concept of spatial neighborhood is useful for the exploration of areal data
to assess spatial autocorrelation and find out whether close areas have similar
or dissimilar values. Spatial neighbors can be defined in several ways depending
on the variable of interest and the specific setting. The simplest neighborhood
definition assumes that neighbors are areas that share a common border,
perhaps a vertex. We can also expand the idea of neighborhood to include
areas that are close, but not necessarily adjacent, by assuming neighbors are
areas that are within some distance apart.

Given a spatial neighborhood definition, we can construct a spatial neighbor-
hood matrix which will allow us to assess spatial autocorrelation. The elements
of the spatial neighborhood matrix can be viewed as weights that spatially
connect areas. In this matrix, entries corresponding to close areas will have
more weight than entries corresponding to areas that are farther apart.

The spdep package (Bivand, 2022) contains a number of functions to deal with
spatial dependence structures. Some of its functions can be used to construct
spatial neighborhood matrices and perform spatial autocorrelation analyses.
For example, the functions poly2nb() and dnearneigh() can be used to
create neighbor lists based on contiguity and distance criteria, respectively.
Spatial neighborhood matrices can be built from the neighbor lists using the
nb2listw() function.

In this chapter, we demonstrate how to use the spdep package to construct
several types of spatial neighborhood structures and matrices using the map
of the 49 neighborhoods of Columbus, Ohio, USA. We read the map which is
in the columbus shapefile of the spData package and assign it to a variable
called map as follows.

library(spData)
library(sf)

83
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library(spdep)
library(ggplot2)
map <- st_read(system.file("shapes/columbus.shp",

package = "spData"), quiet = TRUE)

7.1 Neighbors based on contiguity
Neighbors based on contiguity are constructed by assuming that neighbors of
a given area are other areas that share a common boundary. Figure 7.1 shows
two types of contiguity neighbors. Neighbors can be of type Queen if a single
shared boundary point meets the contiguity condition, or Rook if more than
one shared point is required to meet the contiguity condition.

Queen Rook

FIGURE 7.1: Neighbors based on contiguity. Area of interest is represented
in black and its neighbors in gray.

The function poly2nb() of the spdep package can be used to construct a
list of neighbors based on areas with contiguous boundaries, that is, areas
sharing one or more boundary point. poly2nb() accepts a list of polygons and
returns a list of class nb with the neighbors of each area. The default type
in poly2nb() is queen = TRUE so neighbors of a given area are other areas
sharing a common point or more than one point. Here, we use poly2nb() to
calculate the neighbors of each of the regions of Columbus based on Queen
contiguity.

library(spdep)
nb <- spdep::poly2nb(map, queen = TRUE)
head(nb)
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[[1]]
[1] 2 3

[[2]]
[1] 1 3 4

[[3]]
[1] 1 2 4 5

[[4]]
[1] 2 3 5 8

[[5]]
[1] 3 4 6 8 9 11 15 16

[[6]]
[1] 5 9

Figure 7.2 shows a map with the neighbors obtained. This plot is obtained by
first plotting the map, and then overlapping the neighborhood structure with
the plot.nb() function passing the neighbor list and the coordinates of the
map.

plot(st_geometry(map), border = "lightgray")
plot.nb(nb, st_geometry(map), add = TRUE)

We can plot the neighbors of a given area by adding a new column in map
representing the neighbors of the area. For example, Figure 7.2 shows the
neighbors of area 20.

id <- 20 # area id
map$neighbors <- "other"
map$neighbors[id] <- "area"
map$neighbors[nb[[id]]] <- "neighbors"
ggplot(map) + geom_sf(aes(fill = neighbors)) + theme_bw() +

scale_fill_manual(values = c("gray30", "gray", "white"))

Given a neighbor list, the cardinality function spdep::card() counts the
number of neighbors of each area. We can also obtain the number of neigh-
bors of each area with lengths(nb). Then, we can use table(1:nrow(map),
card(nb)) to build a table with the areas’ ids in rows, and the number of
neighbors in columns.
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FIGURE 7.2: Left: Map of neighbors based on contiguity. Right: Map of
neighbors of area 20 based on contiguity.

7.2 Neighbors based on k nearest neighbors
We can also consider as neighbors of an area its k nearest neighbors based
on the distance separating them. For example, Figure 7.3 represents the 3
nearest neighbors of an area. The function knearneigh() of spdep allows us
to obtain a matrix with the indices of points belonging to the set of the k
nearest neighbors of each area. The arguments of this function include a matrix
of point coordinates and the number k of nearest neighbors to be returned.
Then, we can use knn2nb() to convert this list into a neighbor list of class nb
with the integer vectors containing the ids of the neighbors. Figure 7.3 shows
a map of the nearest neighbors of map with order k = 3.

# Neighbors based on 3 nearest neighbors
coo <- st_centroid(map)
nb <- knn2nb(knearneigh(coo, k = 3)) # k number nearest neighbors
plot(st_geometry(map), border = "lightgray")
plot.nb(nb, st_geometry(map), add = TRUE)

7.3 Neighbors based on distance
Neigborhood structures can also be defined by considering neighbors areas
that are within a given distance (Figure 7.4). The dnearneigh() function of
spdep builds a list of neighbors based on a distance between specific lower
and upper bounds. The arguments of dnearneigh() include the object with
the point coordinates, and the lower and upper distance bounds (d1 and d2).
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FIGURE 7.3: Left: Neighbors based on 3 nearest neighbors. Area of interest
is represented in black and its neighbors in gray. Right: Map of neighbors
based on 3 nearest neighbors.

For example, Figure 7.4 shows the map of neighbors obtained by considering
neighbors areas separated by a distance less than 0.4.

# Neighbors based on distance
nb <- dnearneigh(x = st_centroid(map), d1 = 0, d2 = 0.4)
plot(st_geometry(map), border = "lightgray")
plot.nb(nb, st_geometry(map), add = TRUE)

FIGURE 7.4: Left: Neighbors based on distance. Area of interest is repre-
sented in black and its neighbors in gray. Circle’s center is the centroid of the
area of interest, and circle’s radius is the distance. Right: Map of neighbors
separated by a distance less than 0.4.

Note that we can also determine an appropriate upper distance to ensure that
each area has at least k neighbors. To determine an appropriate upper distance
bound for a given number of neighbors k preferred, we can proceed as follows.
First, we use the spdep::knearneigh() function to obtain the k nearest
neighbors of each of the areas. We use this function passing a matrix of point
coordinates and the number k of chosen nearest neighbors to obtain a matrix
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with the k nearest neighbors of each area. Then, we use spdep::knn2nb() to
convert this list into a neighbor list of class nb with the ids of the neighbors.
For example, here we determine the upper distance bound to ensure all areas
have at least one neighbor.

coo <- st_centroid(map)
# k is the number nearest neighbors
nb1 <- knn2nb(knearneigh(coo, k = 1))

Then, we use spdep::nbdists() passing the nb list with the neighbors and
the matrix of point coordinates to obtain the distances along the links. Finally,
we can compute summaries to determine the upper distance bound.

dist1 <- nbdists(nb1, coo)
summary(unlist(dist1))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.128 0.254 0.316 0.329 0.404 0.619

In this example, the maximum distance is 0.62 and we can take this value as
an upper bound of the distance to ensure each area has at least one neighbor.

7.4 Neighbors of order k based on contiguity
Figure 7.5 shows first and second order neighbors based on contiguity. The
nblab() function of the spdep package creates higher order neighbor lists,
where higher order neighbors are lags links from each other on the graph
described by the input neighbors list of class nb. The arguments of this
function are a neighbors list of class nb, and the maximum lag considered. The
returned object is a list of lagged neighbors lists each with class nb.

Here, we use nblag() with the maximum lag equal to maxlag = 2 to create a
list containing a list of neighbors of order 1, and a list of neighbors of order 2
(Figure 7.6).

library(spdep)
nb <- poly2nb(map, queen = TRUE)
nblags <- spdep::nblag(neighbours = nb, maxlag = 2)
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Rook. First order Queen. First order

Rook. Second order Queen. Second order

FIGURE 7.5: Rook and Queen neighbors of first (dark gray) and second
(light gray) order.

# Neighbors of first order
plot(st_geometry(map), border = "lightgray")
plot.nb(nblags[[1]], st_geometry(map), add = TRUE)

# Neighbors of second order
plot(st_geometry(map), border = "lightgray")
plot.nb(nblags[[2]], st_geometry(map), add = TRUE)

The function nblag_cumul() of spdep cumulates a list of lagged neighbors as
the output of nblag() and returns a single neighbor list of class nb containing
the neighbors of order 1 until the maximum lag considered. Figure 7.6 shows
the map of neighbors of order 1 until order 2.

# Neighbors of order 1 until order 2
nb <- spdep::poly2nb(map, queen = TRUE)
nblagsc <- spdep::nblag_cumul(nblags)
plot(st_geometry(map), border = "lightgray")
plot.nb(nblagsc, st_geometry(map), add = TRUE)
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FIGURE 7.6: Map of neighbors based on contiguity. Neighbors of first order
(left), second order (middle), and first order until second order (right).

7.5 Neighborhood matrices
A spatial neighborhood matrix W defines a neighborhood structure over the
entire study region, and its elements can be viewed as weights. The (i, j)th
element of W , denoted by wij , spatially connects areas i and j in some fashion.
More weight is associated with areas closer to i than those farther away from
i.

If neighbors are based on contiguity, we can construct a binary spatial matrix
with wij = 1 if regions i and j share a common boundary, and wij = 0
otherwise. Customarily, wii is set to 0 for i = 1, . . . , n. An example of binary
spatial matrix is shown in Figure 7.7. Note that this choice of proximity
measure results in a symmetric spatial matrix.

A B

C D E

A B C D E
A 0 1 1 1 0 3
B 1 0 1 1 1 4
C 1 1 0 1 0 3
D 1 1 1 0 1 4
E 0 1 0 1 0 2

Sum

FIGURE 7.7: Left: Areas of the study region. Right: Spatial weight matrix
calculated by assuming neighboring areas share a common boundary, and sum
of weights for each area.

Other spatial weight definitions could be to use wij = 1 for all i and j within
a specified distance, or to use wij = 1 if j is one of the k nearest neighbors of
i. Weights wij can also be defined as the inverse distance between areas.
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In addition, we may want to adjust for the total number of neighbors in each
area and use a standardized matrix with entries wstd,i,j = wij/

∑n
j=1 wij . Note

that in most situations, this matrix is not symmetric when the areas are
irregularly shaped.

Spatial weights matrix based on a binary neighbor list
The function nb2listw() of the spdep package can be used to construct a
spatial neighborhood matrix containing the spatial weights corresponding to a
neighbors list. The neighbors can be binary or based on inverse distance values.
To compute a spatial weights matrix based on a binary neighbor list, we use
the nb2listw() function with the following arguments:

• nb list with neighbors,
• style indicates the coding scheme chosen. For example, style = B is the

basic binary coding, and W is row standardized (1/number of neighbors),
• zero.policy is used to take into account regions with 0 neighbors. Specif-

ically, zero.policy = TRUE permits the weight list to contain zero-length
weights vectors, and zero.policy = FALSE stops the function with an
error if there are empty neighbor sets.

nb <- poly2nb(map, queen = TRUE)
nbw <- spdep::nb2listw(nb, style = "W")
nbw$weights[1:3]

[[1]]
[1] 0.5 0.5

[[2]]
[1] 0.3333 0.3333 0.3333

[[3]]
[1] 0.25 0.25 0.25 0.25

We can visualize the spatial weight matrix by creating a matrix with the
weights with listw2mat(), and using lattice::levelplot() to create the
plot (Figure 7.8).

m1 <- listw2mat(nbw)
lattice::levelplot(t(m1),
scales = list(y = list(at = c(10, 20, 30, 40),

labels = c(10 20, 30, 40))))
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Spatial weights matrix based on inverse distance values
Given a list of neighbors, we can use nbdists() to compute the distances
along the links. Then, we can construct the list with spatial weights based on
inverse distance values using nb2listw() where the argument glist is equal
to a list of general weights corresponding to neighbors. Figure 7.8 shows the
spatial weight matrix obtained.

coo <- st_centroid(map)
nb <- poly2nb(map, queen = TRUE)
dists <- nbdists(nb, coo)
ids <- lapply(dists, function(x){1/x})

nbw <- nb2listw(nb, glist = ids, style = "B")
nbw$weights[1:3]

[[1]]
[1] 1.670 1.725

[[2]]
[1] 1.670 1.405 2.943

[[3]]
[1] 1.725 1.405 1.783 1.911

m2 <- listw2mat(nbw)
lattice::levelplot(t(m2),
scales = list(y = list(at = c(10, 20, 30, 40),

labels = c(10, 20, 30, 40))))
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FIGURE 7.8: Spatial weights matrix based on a binary neighbor list (top),
and inverse distance values (bottom).
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8
Spatial autocorrelation

Spatial autocorrelation is used to describe the extent to which a variable is
correlated with itself through space. This concept is closely related to Tobler’s
First Law of Geography, which states that “everything is related to everything
else, but near things are more related than distant things” (Tobler, 1970).
Positive spatial autocorrelation occurs when observations with similar values
are closer together (i.e., clustered). Negative spatial autocorrelation occurs
when observations with dissimilar values are closer together (i.e., dispersed).
Figure 8.1 shows three configurations of areas showing different types of spatial
autocorrelation.

Negative spatial
 autocorrelation

No spatial
 autocorrelation

Positive spatial
 autocorrelation

FIGURE 8.1: Examples of configurations of areas showing different types of
spatial autocorrelation.

Spatial autocorrelation can be assessed using indices that summarize the degree
to which similar observations tend to occur near each other over the study
area. Two common indices that are used to assess spatial autocorrelation in
areal data are Moran’s I (Moran, 1950) and Geary’s C (Geary, 1954).

In this chapter, we use the Moran’s I to test the spatial autocorrelation of
housing prices in 506 census tracts in Boston, USA, in 1978 obtained from the
spData package (Bivand et al., 2022). The data has a variable called MEDV
with the median prices of owner-occupied housing in $1000 USD. We create
the variable vble with the values of MEDV that will be used in the analysis.
Figure 8.2 shows the map created with the housing prices using mapview
(Appelhans et al., 2022).

library(spData)
library(sf)

95
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library(mapview)
map <- st_read(system.file("shapes/boston_tracts.shp",

package = "spData"), quiet = TRUE)
map$vble <- map$MEDV
mapview(map, zcol = "vble")

FIGURE 8.2: Median prices of owner-occupied housing in $1000 USD in
census tracts of Boston in 1978.

8.1 Global Moran’s I

The Global Moran’s I (Moran, 1950) takes the form

I =
n

∑
i

∑
j wij(Yi − Ȳ )(Yj − Ȳ )

(
∑

i �=j wij)
∑

i(Yi − Ȳ )2 ,

where n is the number of regions, Yi is the observed value of the variable of
interest in region i, and Ȳ is the mean of all values. wij are spatial weights
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that denote the spatial proximity between regions i and j, with wii = 0 and
i, j = 1, . . . , n. The definition of the spatial weights depends on the variable of
study and the specific setting.

We can test the presence of spatial autocorrelation using the Moran’s I,
which quantifies how similar each region is with its neighbors and averages
all these assessments. Under the null hypothesis of no spatial autocorrelation,
observations Yi are independent identically distributed, and I is asymptotically
normally distributed with mean and variance equal to

E[I] = −1
n − 1

and
V ar[I] = n2(n − 1)S1 − n(n − 1)S2 − 2S2

0
(n + 1)(n − 1)2S2

0
,

where

S0 =
∑
i �=j

wij , S1 = 1
2

∑
i �=j

(wij + wji)2 and S2 =
∑

k

⎛⎝∑
j

wkj +
∑

i

wik

⎞⎠2

.

Moran’s I values usually range from –1 to 1. Moran’s I values significantly
above E[I] = −1/(n − 1) indicate positive spatial autocorrelation or clustering.
This occurs when neighboring regions tend to have similar values. Moran’s
I values significantly below E[I] indicate negative spatial autocorrelation or
dispersion. This happens when regions that are close to one another tend to have
different values. Finally, Moran’s I values around E[I] indicate randomness,
that is, absence of spatial pattern.

When the number of regions is sufficiently large, I has a normal distribution
and we can assess whether any given pattern deviates significantly from a
random pattern by comparing the z-score

z = I − E(I)
V ar(I)1/2

to the standard normal distribution. An alternative approach to judge signifi-
cance is Monte Carlo randomization. This method creates random patterns by
reassigning the observed values among the areas and calculates the Moran’s I
for each of the patterns, providing a randomization distribution for the Moran’s
I. If the observed value of Moran’s I lies in the tails of this distribution, the
assumption of independence among observations is rejected. Thus, we can test
spatial autocorrelation by following these steps:
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1. State the null and alternative hypotheses:
H0 : I = E[I] (no spatial autocorrelation),
H1 : I �= E[I] (spatial autocorrelation).

2. Choose the significance level α we are willing to tolerate, which
represents the maximum value for the probability of incorrectly
rejecting the null hypothesis when it is true (usually α = 0.05).

3. Calculate the test statistic:

z = I − E(I)
V ar(I)1/2 .

4. Find the p-value for the observed data by comparing the z-score to
the standard normal distribution or via Monte Carlo randomization.
The p-value is the probability of obtaining a test statistic as extreme
as or more extreme than the one observed test statistic in the
direction of the alternative hypothesis, assuming the null hypothesis
is true.

5. Make one of these two decisions and state a conclusion:
If p-value < α, we reject the null hypothesis. We conclude data
provide evidence for the alternative hypothesis.
If p-value ≥ α, we fail to reject the null hypothesis. The data do not
provide evidence for the alternative hypothesis.

8.2 The moran.test() function
The function moran.test() of the spdep package can be used to test spatial
autocorrelation using Moran’s I. The arguments of moran.test() are a nu-
meric vector with the data, a list with the spatial weights, and the type of
hypothesis. The argument that denotes the hypothesis is called alternative
and can be set equal to greater (default), less or two.sided to represent
a different alternative hypothesis. In this example, we specify the null and
alternative hypothesis as follows:

H0 : I ≤ E[I] (negative spatial autocorrelation or no spatial autocorrelation),
H1 : I > E[I] (positive spatial autocorrelation).

We use moran.test() to test this hypothesis by setting alternative =
"greater". The list with the spatial weights is calculated by first obtain-
ing the neighbors of each area with the poly2nb() function, and then creating
a list containing the neighbors with the nb2listw() function of spdep.
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# Neighbors
library(spdep)
nb <- poly2nb(map, queen = TRUE) # queen shares point or border
nbw <- nb2listw(nb, style = "W")

# Global Moran's I
gmoran <- moran.test(map$vble, nbw,

alternative = "greater")
gmoran

Moran I test under randomisation

data: map$vble
weights: nbw

Moran I statistic standard deviate = 23, p-value
<2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.6266754 -0.0019802 0.0007249

gmoran[["estimate"]][["Moran I statistic"]] # Moran's I

[1] 0.6267

gmoran[["statistic"]] # z-score

Moran I statistic standard deviate
23.35

gmoran[["p.value"]] # p-value

[1] 6.923e-121

The object returned by moran.test() provides the Moran’s I statistic, the
z-score and the p-value. We observe the p-value obtained is lower than the
significance level 0.05. Then, we reject the null hypothesis and conclude there
is evidence for positive spatial autocorrelation.

The same conclusion is obtained if we use a Monte Carlo approach to assess
significance. This approach creates random patterns by reassigning the values
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among the fixed areas and calculates the Moran’s I for each of these patterns.
Then, it calculates the p-value as the proportion of values as extreme or
more extreme than the statistic observed in the direction of the alternative
hypothesis. Here, we conduct a Monte Carlo randomization approach using the
moran.mc() function setting the number of simulations to nsim = 999. Figure
8.3 shows the histogram of the Moran’s I values for each of the simulated
patterns, as well as the Moran’s I obtained with the real data. We observe
a p-value lower than 0.05 indicating that the data presents positive spatial
autocorrelation.

gmoranMC <- moran.mc(map$vble, nbw, nsim = 999)
gmoranMC

Monte-Carlo simulation of Moran I

data: map$vble
weights: nbw
number of simulations + 1: 1000

statistic = 0.63, observed rank = 1000, p-value
= 0.001
alternative hypothesis: greater

hist(gmoranMC$res)
abline(v = gmoranMC$statistic, col = "red")

8.3 Moran’s I scatterplot
The moran.plot() function can be used to construct a Moran’s I scatterplot
to visualize the spatial autocorrelation in the data. This plot displays the
observations of each area against its spatially lagged values. The spatially lagged
value for a given area is calculated as a weighted average of the neighboring
values for that area. This value can be computed, for example, using the
lag.listw() function of spdep passing the values and the spatial weights
corresponding to the areas. Figure 8.4 shows the Moran’s I scatterplot for
the housing prices data obtained with the moran.plot() function passing the
housing prices and the spatial weights corresponding to the Boston tracts.
We observe a positive linear relationship between the observations and their
spatially lagged values. Using this plot, we can also identify data points that
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FIGURE 8.3: Histogram of the Moran’s I values for each of the simulated
patterns in the Monte Carlo randomization approach. The red line represents
the Moran’s I obtained for the real data.

have a high influence on the linear relationship between the data and the
lagged values.

moran.plot(map$vble, nbw)

8.4 Local Moran’s I

We have seen that the Global Moran’s I provides an index to assess the spatial
autocorrelation for the whole study region. There is often interest in providing a
local measure of similarity between each area’s value and those of nearby areas.
Local Indicators of Spatial Association (LISA) (Anselin, 1995) are designed to
provide an indication of the extent of significant spatial clustering of similar
values around each observation. A desirable property is that the sum of the
LISA’s values across all regions is equal to a multiple of the global indicator of
spatial association. As a result, global statistics may be decomposed into a set
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FIGURE 8.4: Moran’s I scatterplot showing the observations against its
spatially lagged values.

of local statistics and most LISAs are defined as local versions of well-known
global indexes.

One of the most popular LISAs is the local version of Moran’s I. For the ith
region, the local Moran’s I defined as

Ii = n(Yi − Ȳ )∑
j(Yj − Ȳ )2

∑
j

wij(Yj − Ȳ ).

Note that the global Moran’s I is proportional to the sum of the local Moran’s
I obtained for all regions:

I = 1∑
i �=j wij

∑
i

Ii.

Typically, the values of the LISAs are mapped to indicate the location of areas
with comparatively high or low local association with neighboring areas. A high
value for Ii suggests that the area is surrounded by areas with similar values.
Such an area is part of a cluster of high observations, low observations, or
moderate observations. A low value for Ii indicates that the area is surrounded
by areas with dissimilar values. Such an area is an outlier indicating that the



8.5 The localmoran() function 103

observation of area i is different from most or all of the observations of its
neighbors.

To interpret the local Moran’s I for each of the areas, it is necessary to compute
a map of p-values representing the probability of exceeding the observed values
assuming the null hypothesis is true. These p-values, regardless of the presence
or absence of global spatial association, may be obtained by a simulation
process with a conditional randomization approach. In this approach, the
observed value Yi at region i is fixed, and the remaining values are randomly
reassigned over the other regions.

8.5 The localmoran() function
The localmoran() function of the spdep package can be used to compute
the Local Moran’s I for a given dataset. The arguments of localmoran()
include a numeric vector with the values of the variable, a list with the
neighbor weights, and the name of an alternative hypothesis that can be set
equal to greater (default), less or two.sided. The returned object of the
localmoran() function contains the following information:

• Ii: Local Moran’s I statistic for each area,
• E.Ii: Expectation Local Moran’s I statistic,
• Var.Ii: Variance Local Moran’s I statistic,
• Z.Ii: z-score,
• Pr(z > E(Ii)), Pr(z < E(Ii)) or Pr(z != E(Ii)): p-value for an alter-

native hypothesis greater, less or two.sided, respectively.

Here, we use the localmoran() function to compute the Local Moran’s I for
the housing prices data. We set alternative = "greater" which corresponds
to testing H0: no or negative spatial autocorrelation vs. H1: positive spatial
autocorrelation.

lmoran <- localmoran(map$vble, nbw, alternative = "greater")
head(lmoran)

Ii E.Ii Var.Ii Z.Ii
1 -0.3457508 -5.254e-04 3.275e-02 -1.9075
2 0.0175875 -1.627e-05 2.046e-03 0.3892
3 0.0123380 -6.557e-07 4.090e-05 1.9294
4 -0.0001654 -1.059e-07 1.332e-05 -0.0453
5 0.3591629 -1.428e-04 7.899e-03 4.0428
6 0.0545611 -1.626e-04 1.357e-02 0.4697

Pr(z > E(Ii))
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1 9.718e-01
2 3.486e-01
3 2.684e-02
4 5.181e-01
5 2.641e-05
6 3.193e-01

Figure 8.5 depicts maps created with tmap (Tennekes, 2022) showing the
housing prices, the local Moran’s I, z-scores, and p-values. Areas with p-value
less than the significance level 0.05 (or with z-scores higher than qnorm(0.95)
= 1.65) correspond to areas for which we would reject the null hypothesis and
conclude they present positive spatial autocorrelation.

library(tmap)
tmap_mode("plot")

map$lmI <- lmoran[, "Ii"] # local Moran's I
map$lmZ <- lmoran[, "Z.Ii"] # z-scores
# p-values corresponding to alternative greater
map$lmp <- lmoran[, "Pr(z > E(Ii))"]

p1 <- tm_shape(map) +
tm_polygons(col = "vble", title = "vble", style = "quantile") +
tm_layout(legend.outside = TRUE)

p2 <- tm_shape(map) +
tm_polygons(col = "lmI", title = "Local Moran's I",

style = "quantile") +
tm_layout(legend.outside = TRUE)

p3 <- tm_shape(map) +
tm_polygons(col = "lmZ", title = "Z-score",

breaks = c(-Inf, 1.65, Inf)) +
tm_layout(legend.outside = TRUE)

p4 <- tm_shape(map) +
tm_polygons(col = "lmp", title = "p-value",

breaks = c(-Inf, 0.05, Inf)) +
tm_layout(legend.outside = TRUE)

tmap_arrange(p1, p2, p3, p4)

If we used alternative = "two.sided" instead of alternative =
"greater", we would be testing H0: no spatial autocorrelation vs. H1: positive
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vble
5.0 to 15.3
15.3 to 19.7
19.7 to 22.7
22.7 to 28.2
28.2 to 50.0

Local Moran's I

-0.969 to 0.003
0.003 to 0.083
0.083 to 0.341
0.341 to 1.089
1.089 to 8.937

Z-score
Less than 1.65
1.65 or more

p-value
Less than 0.05
0.05 or more

FIGURE 8.5: Boston housing prices, local Moran’s I, z-scores, and p-values.

or negative spatial autocorrelation. In this two-sided test, z-score values lower
than –1.96 indicate negative spatial autocorrelation, and z-score values greater
than 1.96 indicate positive spatial autocorrelation. Figure 8.6 features a map
showing the areas with negative, no, and positive spatial autocorrelation,
obtained by breaking the legend according to these z-score values.

tm_shape(map) + tm_polygons(col = "lmZ",
title = "Local Moran's I", style = "fixed",
breaks = c(-Inf, -1.96, 1.96, Inf),
labels = c("Negative SAC", "No SAC", "Positive SAC"),
palette = c("blue", "white", "red")) +
tm_layout(legend.outside = TRUE)

8.6 Clusters
Local Moran’s I allows us to identify clusters of the following types:

• High-High: areas of high values with neighbors of high values,
• High-Low: areas of high values with neighbors of low values,
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Local Moran's I
Negative SAC
No SAC
Positive SAC

FIGURE 8.6: Boston areas showing negative, no, and positive spatial auto-
correlation according to the local Moran’s I.

• Low-High: areas of low values with neighbors of high values,
• Low-Low: areas of low values with neighbors of low values.

To detect clusters, we first use the localmoran() function to calculate the
local Moran’s I. The p-values for the alternative hypothesis "two.sided" are
in column 5 of the returned object.

lmoran <- localmoran(map$vble, nbw, alternative = "two.sided")
head(lmoran)

Ii E.Ii Var.Ii Z.Ii
1 -0.3457508 -5.254e-04 3.275e-02 -1.9075
2 0.0175875 -1.627e-05 2.046e-03 0.3892
3 0.0123380 -6.557e-07 4.090e-05 1.9294
4 -0.0001654 -1.059e-07 1.332e-05 -0.0453
5 0.3591629 -1.428e-04 7.899e-03 4.0428
6 0.0545611 -1.626e-04 1.357e-02 0.4697

Pr(z != E(Ii))
1 5.645e-02
2 6.971e-01
3 5.368e-02



8.6 Clusters 107

4 9.639e-01
5 5.282e-05
6 6.386e-01

map$lmp <- lmoran[, 5] # p-values are in column 5

Then, we identify the clusters of each type by using the information provided
by the Moran’s I scatterplot obtained with the moran.plot() function (Figure
8.7).

mp <- moran.plot(as.vector(scale(map$vble)), nbw)
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FIGURE 8.7: Moran’s I scatterplot showing the scaled values against its
spatially lagged values.

head(mp)

x wx is_inf labels dfb.1_
1 -0.514597 0.67056 FALSE 1 0.090885
2 -0.090551 -0.19384 FALSE 2 -0.015162
3 0.018179 0.67735 FALSE 3 0.060002
4 0.007306 -0.02259 FALSE 4 -0.004886
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5 0.268258 1.33623 TRUE 5 0.107458
6 -0.286265 -0.19022 FALSE 6 -0.003359

dfb.x dffit cov.r cook.d hat
1 -4.682e-02 0.102234 0.9900 5.193e-03 0.002501
2 1.374e-03 -0.015224 1.0055 1.161e-04 0.001993
3 1.092e-03 0.060012 0.9987 1.798e-03 0.001977
4 -3.573e-05 -0.004886 1.0059 1.196e-05 0.001976
5 2.885e-02 0.111265 0.9832 6.131e-03 0.002119
6 9.624e-04 -0.003494 1.0061 6.115e-06 0.002139

Specifically, we identify the cluster types by using the quadrants of the scaled
values (mp$x) and their spatially lagged values (mp$wx), and the p-values
obtained with the local Moran’s I for each of the areas (map$lmp). The
classification of the clusters is as follows. Areas with significant local Moran’s
I are classified as high-high if both the value and its corresponding spatially
lagged value are positive, low-low if both the value and its spatially lagged
value are negative, high-low if the the value is positive and the spatially lagged
value negative, and low-high is the value is negative and the spatially lagged
value positive.

We create the variable quadrant denoting the type of cluster for each of the
areas using the quadrant corresponding to its value and its spatially lagged
value, and the p-value. Specifically, areas with quadrant equal to 1, 2, 3, and
4 correspond to clusters of type high-high, low-low, high-low, and low-high,
respectively. Areas with quadrant equal to 5 are non-significant.

map$quadrant <- NA
# high-high
map[(mp$x >= 0 & mp$wx >= 0) & (map$lmp <= 0.05), "quadrant"]<- 1
# low-low
map[(mp$x <= 0 & mp$wx <= 0) & (map$lmp <= 0.05), "quadrant"]<- 2
# high-low
map[(mp$x >= 0 & mp$wx <= 0) & (map$lmp <= 0.05), "quadrant"]<- 3
# low-high
map[(mp$x <= 0 & mp$wx >= 0) & (map$lmp <= 0.05), "quadrant"]<- 4
# non-significant
map[(map$lmp > 0.05), "quadrant"] <- 5

Figure 8.8 shows the map of the clusters obtained with the Boston housing
prices data.

tm_shape(map) + tm_fill(col = "quadrant", title = "",
breaks = c(1, 2, 3, 4, 5, 6),
palette = c("red", "blue", "lightpink", "skyblue2", "white"),
labels = c("High-High", "Low-Low", "High-Low",
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"Low-High", "Non-significant")) +
tm_legend(text.size = 1) + tm_borders(alpha = 0.5) +
tm_layout(frame = FALSE, title = "Clusters") +
tm_layout(legend.outside = TRUE)

Clusters
High-High
Low-Low
High-Low
Low-High
Non-significant

FIGURE 8.8: High-high, low-low, high-low, and low-high clusters detected
in the Boston housing prices data.
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Bayesian spatial models

Bayesian hierarchical models (Banerjee et al., 2004) can be used to analyze areal
data that arise when an outcome variable is aggregated into areas that form a
partition of the study region. Models can be specified to describe the variability
in the response variable as a function of a number of covariates known to
affect the outcome, as well as random effects to model residual variation not
explained by the covariates. This provides a flexible and robust approach that
allows us to assess the effects of explanatory variables, accommodate spatial
autocorrelation, and quantify the uncertainty in the estimates obtained.

A commonly used spatial model is the Besag-York-Mollié (BYM) model (Besag
et al., 1991). Let us assume that Yi are observed outcomes at regions i = 1, . . . , n
that can be modeled using a Normal distribution. The BYM model is specified
as

Yi ∼ Normal(μi, σ2), i = 1, . . . , n,

μi = ziβ + ui + vi.

Here, the fixed effects ziβ are expressed using a vector of intercept and p
covariates corresponding to area i, zi = (1, zi1, . . . , zip), and a coefficient vector
β = (β0, . . . , βp)′.

The model includes a spatial random effect ui that accounts for the spatial
dependence between outcomes indicating that areas that are close to each
other may have similar values, and an unstructured exchangeable component
vi to model uncorrelated noise. The spatial random effect ui can be modeled
with an intrinsic conditional autoregressive model (CAR) that smooths the
data according to a certain neighborhood structure. Specifically,

ui|u−i ∼ N

(
ūδi

,
σ2

u

nδi

)
,

where ūδi
= n−1

δi

∑
j∈δi

uj , with δi and nδi
representing, respectively, the set of

neighbors and the number of neighbors of area i. The unstructured component
vi is modeled as independent and identically distributed normal variables with
zero mean and variance σ2

v , vi ∼ N(0, σ2
v).
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9.1 Bayesian inference with INLA
Bayesian hierarchical models can be fitted using a number of approaches
such as integrated nested Laplace approximation (INLA) (Rue et al., 2009)
and Markov chain Monte Carlo (MCMC) methods (Gelman et al., 2013).
INLA is a computational approach to perform approximate Bayesian inference
in latent Gaussian models. This includes a wide range of models such as
generalized linear mixed models and spatial and spatio-temporal models. INLA
uses a combination of analytical approximations and numerical integration to
obtain approximated posterior distributions of the parameters and is very fast
compared to MCMC methods.

The R-INLA package (Rue et al., 2022) can be used to fit models using INLA.
The INLA website (http://www.r-inla.org) includes documentation, examples,
and other resources about INLA and the R-INLA package, including books
that provide an introduction to Bayesian data analysis using INLA as well as
practical examples in a variety of settings (Wang et al., 2018; Krainski et al.,
2019; Moraga, 2019; Gómez-Rubio, 2020).

To install R-INLA, we use the install.packages() function specifying the
R-INLA repository since the package is not on CRAN.

install.packages("INLA",
repos = "https://inla.r-inla-download.org/R/stable", dep = TRUE)
library(INLA)

Then, to fit a model, we write the linear predictor as a formula object in R,
and call the inla() function passing the formula, the family distribution, the
data, and other options. The object returned by inla() contains the fitted
model. This object can be inspected, and the posterior distributions can be
post-processed using a set of functions provided by R-INLA. R-INLA also
provides functionality to specify priors, as well as to obtain a number of criteria
that allow us to assess and compare Bayesian models such as the deviance
information criterion (DIC) (Spiegelhalter et al., 2002), the Watanabe-Akaike
information criterion (WAIC) (Watanabe, 2010), and the conditional predictive
ordinate (CPO) (Held et al., 2010).

http://www.r-inla.org
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9.2 Spatial modeling of housing prices
Here, we provide an example on how to specify and fit a Bayesian hierarchical
model to estimate housing prices in Boston, Massachusetts, USA, using the
R-INLA package.

9.2.1 Housing prices in Boston, Massachusetts, USA
The Boston housing prices are in the spData package (Bivand et al., 2022),
and can be obtained with the st_read() function of the sf package (Pebesma,
2022a) as follows.

library(sf)
library(spData)
map <- st_read(system.file("shapes/boston_tracts.shp",

package = "spData"), quiet = TRUE)

This dataset contains housing data of 506 Boston census tracts including
median prices of owner-occupied housing in $1000 USD (MEDV), per capita
crime (CRIM), and average number of rooms per dwelling (RM). We create the
variable called vble with the logarithm of the median prices, and map this
variable using mapview (Figure 9.1). The map suggests that the housing
prices are greater in the west, and prices are related to those in neighboring
areas.

library(mapview)
map$vble <- log(map$MEDV)
mapview(map, zcol = "vble")

We will model the logarithm of the median prices using as covariates the
per capita crime (CRIM) and the average number of rooms per dwelling (RM).
Figure 9.2 shows the relationships between pairs of variables visualized using
the ggpairs() function of the GGally package (Schloerke et al., 2021). We
observe a negative relationship between the logarithm of housing price and
crime, and a positive relationship between the logarithm of housing price and
the average number of rooms.

library(GGally)
ggpairs(data = map, columns = c("vble", "CRIM", "RM"))
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FIGURE 9.1: Logarithm of housing prices in Boston per census tract from
the spData package.

9.2.2 Model
Let Yi be the logarithm of housing price of area i, i = 1, . . . , n. We fit a BYM
model that considers Yi as the response variable, and crime and number of
rooms as covariates:

Yi ∼ N(μi, σ2), i = 1, . . . , n,

μi = β0 + β1 × crimei + β2 × roomsi + ui + vi.

Here, β0 is the intercept, and β1 and β2 represent, respectively, the coefficients
of the covariates crime and number of rooms. ui is a spatially structured effect
modeled with a CAR structure, ui|u−i ∼ N(ūδi

,
σ2

u

nδi
). vi is an unstructured

effect modeled as vi ∼ N(0, σ2
v).

9.2.3 Neighborhood matrix
In the model, the spatial random effect ui needs to be specified using a
neighborhood structure. Here, we assume two areas are neighbors if they share
a common boundary, and we create a neighborhood structure using functions



9.2 Spatial modeling of housing prices 115

Corr:
-0.528***

Corr:
0.632***

Corr:
-0.219***

vble CRIM RM
vble

C
R
IM

R
M

1.5 2.0 2.5 3.0 3.5 4.0 0 25 50 75 4 5 6 7 8 9

0.0

0.5

1.0

0

25

50

75

4

5

6

7

8

9

FIGURE 9.2: Relationship betwen the outcome variable logarithm of housing
price (vble), and the covariates per capita crime (CRIM) and number of rooms
(RM).

of the spdep package (Bivand, 2022). First, we use the poly2nb() function to
create a neighbors list based on areas with contiguous boundaries. Each element
of the list nb represents one area and contains the indices of its neighbors. For
example, nb[[1]] contains the neighbors of area 1.

library(spdep)
library(INLA)
nb <- poly2nb(map)
head(nb)

[[1]]
[1] 2 3 6 8 311 313 314 369

[[2]]
[1] 1 3 4 6

[[3]]
[1] 1 2 4 5 369 371 375 376

[[4]]
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[1] 2 3 5 6

[[5]]
[1] 3 4 6 7 375 376 411 413 418

[[6]]
[1] 1 2 4 5 7 8

Then, we use the nb2INLA() function to convert the nb list into a file called
map.adj with the representation of the neighborhood matrix as required by R-
INLA. The map.adj file is saved in the working directory which can be obtained
with getwd(). Then, we read the map.adj file using the inla.read.graph()
function of R-INLA, and store it in the object g which we later use to specify
the spatial model using R-INLA.

nb2INLA("map.adj", nb)
g <- inla.read.graph(filename = "map.adj")

9.2.4 Model formula and inla() call
We specify the model formula by including the response variable, the ~ symbol,
and the fixed and random effects. By default, there is an intercept so we
do not need to include it in the formula. In the formula, random effects are
specified with the f() function. This function includes as first argument an
index vector that specifies the element of the random effect that applies to
each observation, and as second argument the model name. For the spatial
random effect ui, we use model = "besag" with neighborhood matrix given by
g. The option scale.model = TRUE is used to make the precision parameter
of models with different CAR priors comparable (Freni-Sterrantino et al.,
2018). For the unstructured effect vi, we choose model = "iid". The index
vectors of the random effects are given by re_u and re_v created for ui and
vi, respectively. These vectors are equal to 1, . . . , n, where n is the number of
areas.

map$re_u <- 1:nrow(map)
map$re_v <- 1:nrow(map)

formula <- vble ~ CRIM + RM +
f(re_u, model = "besag", graph = g, scale.model = TRUE) +
f(re_v, model = "iid")

Note that in R-INLA, the BYM model can also be specified with model
= "bym" and this comprises both the spatial and unstructured components.
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Alternatively, we can use the BYM2 model (Simpson et al., 2017) which is a
new parametrization of the BYM model that uses a scaled spatial component
u∗ and an unstructured component v∗:

b = 1√
τb

(
√

1 − φv∗ +
√

φu∗).

In this model, the precision parameter τb > 0 controls the marginal variance
contribution of the weighted sum of u∗ and v∗. The mixing parameter 0 ≤ φ ≤ 1
measures the proportion of the marginal variance explained by the spatial
component u∗. Thus, the BYM2 model is equal to an only spatial model when
φ = 1, and an only unstructured spatial noise when φ = 0 (Riebler et al., 2016).
The formula of the model using the BYM2 component is specified as follows.

formula <- vble ~ CRIM + RM + f(re_u, model = "bym2", graph = g)

Then, we fit the model by calling the inla() function specifying the for-
mula, the family, the data, and using the default priors in R-INLA. We also
set control.predictor = list(compute = TRUE) and control.compute =
list(return.marginals.predictor = TRUE) to compute and return the pos-
terior means of the predictors.

res <- inla(formula, family = "gaussian", data = map,
control.predictor = list(compute = TRUE),
control.compute = list(return.marginals.predictor = TRUE))

9.2.5 Results
The resulting object res contains the fit of the model. We can use
summary(res) to obtain a summary of the fitted model. res$summary.fixed
contains a summary of the fixed effects.

res$summary.fixed

mean sd 0.025quant 0.5quant
(Intercept) 1.426736 0.088581 1.25290 1.426759
CRIM -0.007846 0.001293 -0.01038 -0.007846
RM 0.260338 0.014051 0.23278 0.260334

0.975quant mode kld
(Intercept) 1.60044 1.426759 2.148e-10
CRIM -0.00531 -0.007846 2.193e-10
RM 0.28791 0.260334 2.156e-10
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We observe the intercept β̂0 = 1.427 with a 95% credible interval equal to
(1.253, 1.6). We observe the intercept β̂0 = –0.008 with a 95% credible interval
equal to (–0.01, –0.005). This indicates crime is significantly negatively related
to housing price. The coefficient of rooms is β̂2 = 0.26 with a 95% credible
interval equal to (0.233, 0.288) indicating number of rooms is significantly
positively related to housing price. Thus, the results suggest both crime and
number of rooms are important in explaining the spatial pattern of housing
prices.

We can type res$summary.fitted.values to obtain a summary of the pos-
terior distributions of the response μi for each of the areas. Column mean
indicates the posterior mean, and columns 0.025quant and 0.975quant are,
respectively, the lower and upper limits of 95% credible intervals representing
the uncertainty of the estimates obtained.

summary(res$summary.fitted.values)

mean sd 0.025quant
Min. :1.61 Min. :0.00992 Min. :1.59
1st Qu.:2.83 1st Qu.:0.00995 1st Qu.:2.81
Median :3.05 Median :0.00996 Median :3.03
Mean :3.04 Mean :0.00997 Mean :3.01
3rd Qu.:3.22 3rd Qu.:0.00997 3rd Qu.:3.20
Max. :3.91 Max. :0.01121 Max. :3.89

0.5quant 0.975quant mode
Min. :1.61 Min. :1.63 Min. :1.61
1st Qu.:2.83 1st Qu.:2.86 1st Qu.:2.83
Median :3.05 Median :3.08 Median :3.05
Mean :3.04 Mean :3.06 Mean :3.04
3rd Qu.:3.22 3rd Qu.:3.24 3rd Qu.:3.22
Max. :3.91 Max. :3.93 Max. :3.91

We can create variables with the posterior mean (PM) and lower (LL) and upper
(UL) limits of 95% credible intervals.

# Posterior mean and 95% CI
map$PM <- res$summary.fitted.values[, "mean"]
map$LL <- res$summary.fitted.values[, "0.025quant"]
map$UL <- res$summary.fitted.values[, "0.975quant"]

Then, we create maps of these variables with mapview specifying a common
legend for the three maps, and using a popup table with the name, the logarithm
of the housing prices, the covariates, and the posterior mean and 95% credible
intervals. We use the sync() function of leafsync to plot synchronized maps
(Figure 9.3).
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# common legend
at <- seq(min(c(map$PM, map$LL, map$UL)),

max(c(map$PM, map$LL, map$UL)),
length.out = 8)

# popup table
popuptable <- leafpop::popupTable(dplyr::mutate_if(map,

is.numeric, round, digits = 2),
zcol = c("TOWN", "vble", "CRIM", "RM", "PM", "LL", "UL"),
row.numbers = FALSE, feature.id = FALSE)

m1 <- mapview(map, zcol = "PM", map.types = "CartoDB.Positron",
at = at, popup = popuptable)

m2 <- mapview(map, zcol = "LL", map.types = "CartoDB.Positron",
at = at, popup = popuptable)

m3 <- mapview(map, zcol = "UL", map.types = "CartoDB.Positron",
at = at, popup = popuptable)

library(leafsync)
m <- leafsync::sync(m1, m2, m3, ncol = 3)
m

FIGURE 9.3: Posterior mean of the logarithm of the housing prices (left),
together with lower (center) and upper (right) limits of 95% credible intervals.
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We now obtain estimates of housing prices in their original scale by trans-
forming the estimates of the logarithm of housing prices. First, we use
theinla.tmarginal() function to obtain the marginals of the prices as
exp(log(price)). Then, we use inla.zmarginal() to obtain the summaries
of the marginals. Finally, we create variables PMoriginal, LLoriginal and
ULoriginal with the posterior mean and lower and upper limits of 95% credible
intervals of the posterior distribution of housing prices.

# Transformation of the marginal of
# the first area with inla.tmarginal()
# inla.tmarginal(function(x) exp(x),
# res$marginals.fitted.values[[1]])

# Transformation marginals with inla.tmarginal()
marginals <- lapply(res$marginals.fitted.values,
FUN = function(marg){inla.tmarginal(function(x) exp(x), marg)})

# Obtain summaries of the marginals with inla.zmarginal()
marginals_summaries <- lapply(marginals,
FUN = function(marg){inla.zmarginal(marg)})

# Posterior mean and 95% CI
map$PMoriginal <- sapply(marginals_summaries, '[[', "mean")
map$LLoriginal <- sapply(marginals_summaries, '[[', "quant0.025")
map$ULoriginal <- sapply(marginals_summaries, '[[', "quant0.975")

Figure 9.4 shows maps with the estimated prices and lower and upper 95%
credible intervals. The inspection of these maps allows us to understand the
spatial pattern of housing prices in Boston, as well as the uncertainty in the
estimates.

# common legend
at <- seq(min(c(map$PMoriginal, map$LLoriginal, map$ULoriginal)),

max(c(map$PMoriginal, map$LLoriginal, map$ULoriginal)),
length.out = 8)

# popup table
popuptable <- leafpop::popupTable(dplyr::mutate_if(map,

is.numeric, round, digits = 2),
zcol = c("TOWN", "vble", "CRIM", "RM", "PM", "LL", "UL"),
row.numbers = FALSE, feature.id = FALSE)

m1 <- mapview(map, zcol = "PMoriginal",
map.types = "CartoDB.Positron",
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at = at, popup = popuptable)
m2 <- mapview(map, zcol = "LLoriginal",

map.types = "CartoDB.Positron",
at = at, popup = popuptable)

m3 <- mapview(map, zcol = "ULoriginal",
map.types = "CartoDB.Positron",
at = at, popup = popuptable)

m <- leafsync::sync(m1, m2, m3, ncol = 3)
m

FIGURE 9.4: Posterior mean of the housing prices (left), together with lower
(center) and upper (right) limits of 95% credible intervals.
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10
Disease risk modeling

Areal data is common in disease mapping applications where often, for confiden-
tiality reasons, individual incidence or mortality information is only available
as the number of disease cases aggregated in areas. Disease data can be used to
construct atlases that show the geographic distribution of aggregated outcomes
to understand spatial patterns, identify high-risk areas, and reveal inequalities
(Moraga, 2021a). For example, Bayesian spatial models have been used to
understand geographic patterns and risk factors of childhood overweight and
obesity prevalence in Costa Rica (Gómez et al., 2023), and mosquito-borne
diseases in Brazil (Pavani et al., 2023). Spatial methods can also be extended
to analyze areal data that are both spatially and temporally referenced. For
example, Moraga and Kulldorff (2016) proposes a scan statistics method to
detect spatial variations of temporal trends. Moraga and Ozonoff (2013) de-
velop a spatio-temporal model-based imputation approach to produce more
accurate estimates of all-cause and pneumonia and influenza mortality burden
in the USA.

Disease risk can be estimated using Standardized Mortality Ratios (SMR)
computed as the ratios of the observed to the expected number of mortality
cases. Standardized Incidence Ratios (SIR) can be used when cases represent
incidence data. However, these values may be extreme and unreliable in small
populations and/or when dealing with rare diseases. Bayesian hierarchical
models can instead be used to obtain smoothed relative risks by incorporating
risk factors and borrowing information from neighboring areas (Moraga, 2019).

In this chapter, we demonstrate how to specify, fit, and interpret a Bayesian
spatial model to estimate the risk of lung cancer and assess its relationship with
smoking in Pennsylvania, USA, in 2002. Specifically, we show how to calculate
the expected number of counts and SMR values, and how to obtain disease risk
estimates and quantify risk factors using R-INLA (Rue et al., 2022). We also
show how to make interactive maps of disease risk estimates using mapview
(Appelhans et al., 2022). Moraga (2019) provides additional examples on how
to fit both spatial and spatio-temporal models using R-INLA to understand
geographic and temporal patterns of diseases, and assess their relationships
with potential risk factors.

123
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10.1 Spatial disease risk models
Bayesian hierarchical models enable to obtain smoothed disease relative risks by
including covariates and random effects to borrow information from neighboring
areas. Spatial disease risk models are commonly specified using a Poisson
distribution for the observed number of cases (Yi) with mean equal to the
expected number of cases (Ei) times the relative risk (θi) corresponding to
area i, i = 1, . . . , n,

Yi ∼ Poisson(Ei × θi), i = 1, . . . , n,

log(θi) = ziβ + ui + vi.

Here, the logarithm of θi is expressed as a sum of fixed effects to quantify
the effects of the covariates on the disease risk, and random effects that
represent residual variation that is not explained by the available covariates.
The fixed effects ziβ are expressed using a vector of intercept and p covariates
corresponding to area i, zi = (1, zi1, . . . , zip), and a coefficient vector β =
(β0, . . . , βp)′.

Spatial random effects ui that smooth data according to a neighborhood
structure are included to acknowledge that data may be spatially correlated,
and relative risks in neighboring areas may be more similar than relative risks
in areas that are further away (Moraga and Lawson, 2012; Lawson et al.,
2015). Unstructured exchangeable components vi are also included to model
uncorrelated noise.

The relative risk θi quantifies whether an area i has higher (θi > 1) or lower
(θi < 1) risk than the average risk in the standard population (e.g., the whole
population of the study region). For example, θi = 2 indicates the risk of area
i is two times the average risk in the standard population.

10.2 Modeling of lung cancer risk in Pennsylvania
10.2.1 Data and map
Data with the number of lung cancer cases, population, as well as the smoking
proportions in the counties of Pennsylvania, USA, in 2002 can be obtained
from the SpatialEpi package (Kim et al., 2021). We load the SpatialEpi
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package and attach the pennLC data. Reading the pennLC information with
?pennLC, we see pennLC is a list object with several elements.

library(SpatialEpi)
data(pennLC)
class(pennLC)

[1] "list"

names(pennLC)

[1] "geo" "data"
[3] "smoking" "spatial.polygon"

pennLC$data contains the number of lung cancer cases and the population
at county level, stratified in race (white and non-white), gender (female and
male) and age (under 40, 40-59, 60-69, and 70+).

head(pennLC$data)

county cases population race gender age
1 adams 0 1492 o f Under.40
2 adams 0 365 o f 40.59
3 adams 1 68 o f 60.69
4 adams 0 73 o f 70+
5 adams 0 23351 w f Under.40
6 adams 5 12136 w f 40.59

pennLC$smoking contains the proportion of smokers in each county.

head(pennLC$smoking)

county smoking
1 adams 0.234
2 allegheny 0.245
3 armstrong 0.250
4 beaver 0.276
5 bedford 0.228
6 berks 0.249

pennLC$spatial.polygon is a SpatialPolygons object (sp object) with the
map of Pennsylvania counties. We create a map of class sf by converting
the SpatialPolygons object to a sf object with the st_as_sf() function of
sf (Pebesma, 2022a). We also add a column with the county names which
corresponds to the polygons ID slot values of pennLC$spatial.polygon.
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library(sf)
map <- st_as_sf(pennLC$spatial.polygon)
countynames <- sapply(slot(pennLC$spatial.polygon, "polygons"),

function(x){slot(x, "ID")})
map$county <- countynames
head(map)

Simple feature collection with 6 features and 1 field
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: -80.52 ymin: 39.73 xmax: -75.53 ymax: 41.14
Geodetic CRS: +proj=longlat

geometry county
1 POLYGON ((-77.45 39.97, -77... adams
2 POLYGON ((-80.15 40.67, -79... allegheny
3 POLYGON ((-79.21 40.91, -79... armstrong
4 POLYGON ((-80.16 40.85, -80... beaver
5 POLYGON ((-78.38 39.73, -78... bedford
6 POLYGON ((-75.53 40.45, -75... berks

Now, we create a data frame called d with columns containing, for each of
the counties, the county id (county), observed number of cases (Y), expected
number of cases (E), smoking proportion (smoking), and SMR (SMR).

10.2.2 Observed cases
pennLC$data contains the cases in each county stratified by race, gender
and age. We obtain the number of cases in each county, Y, by using the
group_by() function of dplyr (Wickham et al., 2022b) to aggregate the rows
of pennLC$data by county, and add up the observed number of cases.

library(dplyr)
d <- group_by(pennLC$data, county) %>% summarize(Y = sum(cases))
head(d)

# A tibble: 6 x 2
county Y
<fct> <int>

1 adams 55
2 allegheny 1275
3 armstrong 49
4 beaver 172
5 bedford 37
6 berks 308
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10.2.3 Expected cases
The expected number of cases of a given area i represents the total number of
cases that one would expect if the population in area i behaves in the same way
as the standard population behaves (Moraga, 2018a). Typically, the standard
population is considered as the whole population of all areas in the study
region, and it is stratified in a number of groups. In this case, the standard
population is considered as the whole population of Pennsylvania putting all
counties together, and it is stratified in race, gender, and age groups.

The expected number of cases Ei in each county i can be calculated using
indirect standardization as

Ei =
m∑

j=1
r

(s)
j n

(i)
j ,

where

r
(s)
j = number of cases in group j in standard population

population in group j in standard population

is the rate in group j in the standard population (Pennsylvania), and n
(i)
j is

the population in group j of county i. The number of expected counts can
be easily obtained using the expected() function of SpatialEpi passing the
following arguments:

• population: a vector of population counts for each group in each area,
• cases: a vector with the number of cases for each group in each area,
• n.strata: number of groups considered.

In expected(), vectors population and cases have to be sorted by area first
and then, within each area, the counts for all groups need to be listed in the
same order. The vectors need to include all groups so elements for groups with
no cases need to be included as 0. Here, we use order() to sort the data by
county, race, gender, and finally age.

pennLC$data <- pennLC$data[order(pennLC$data$county,
pennLC$data$race, pennLC$data$gender, pennLC$data$age), ]

Then, we obtain the expected counts E in each county using the
expected() function passing the population pennLC$data$population and
cases pennLC$data$cases. The number of groups is set to 16 since for each
county there are 2 races, 2 genders, and 4 age groups (2 × 2 × 4 = 16).

E <- expected(population = pennLC$data$population,
cases = pennLC$data$cases, n.strata = 16)
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Finally, the vector with the expected counts E is included in the data frame d
that contains the counties ids (county) and the observed counts (Y).

d$E <- E
head(d)

# A tibble: 6 x 3
county Y E
<fct> <int> <dbl>

1 adams 55 69.6
2 allegheny 1275 1182.
3 armstrong 49 67.6
4 beaver 172 173.
5 bedford 37 44.2
6 berks 308 301.

10.2.4 Smokers proportions
In the spatial model, we will include the proportion of smokers as a covariate
to be able to quantify the effect of this factor. This variable is given by
pennLC$smoking, and we can add it to the data frame d that contains the rest
of the data as follows:

d <- dplyr::left_join(d, pennLC$smoking, by = "county")

10.2.5 Standardized Mortality Ratios
Let Yi and Ei be the observed and expected number of cases, respectively, in
area i, i = 1, . . . , n. The SMR in area i is defined as the ratio of the observed
to the expected number of cases,

SMRi = Yi

Ei
, i = 1, . . . , n.

If SMRi > 1, this indicates there are more cases observed than expected which
corresponds to a high risk area. Similarly, a SMRi < 1 indicates there are
fewer cases observed than expected. This corresponds to a low risk area. In
our example, SMRs are easily computed as the ratios of the observed to the
expected counts as follows:

d$SMR <- d$Y/d$E

The final data frame d contains the observed and expected disease counts, the
smokers proportions, and the SMR for each of the counties.
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head(d)

# A tibble: 6 x 5
county Y E smoking SMR
<fct> <int> <dbl> <dbl> <dbl>

1 adams 55 69.6 0.234 0.790
2 allegheny 1275 1182. 0.245 1.08
3 armstrong 49 67.6 0.25 0.725
4 beaver 172 173. 0.276 0.997
5 bedford 37 44.2 0.228 0.837
6 berks 308 301. 0.249 1.02

10.2.6 Mapping SMR
To be able to make maps of the variables in d, we join the map and the
data using the left_join() function of dplyr joining by the county id (by
= "county"). Note that we could specify two different column names (by =
c(name1, name2)) in case the column names were different in each of the
objects to be joined.

map <- dplyr::left_join(map, d, by = "county")

We create an interactive choropleth map with the SMR values using the
mapview package specifying the column name to plot in zcol. This map can
be customized in several ways. For example, we can change the color border
of the polygons with color, the opacity of the polygons with alpha.regions,
and the legend title with layer.name. We can also add a color palette with
col.regions and change the default base map with map.types using some of
the options provided at https://leaflet-extras.github.io/leaflet-providers/prev
iew/.

Figure 10.1 shows the map of SMR values created using opacity equal to a
value less than 1 to be able to see the background map, and colors from the
palette "YLOrRd" using the brewer.pal() function of the RColorBrewer
package (Neuwirth, 2022).

library(mapview)
library(RColorBrewer)
pal <- colorRampPalette(brewer.pal(9, "YlOrRd"))
mapview(map, zcol = "SMR", color = "gray", alpha.regions = 0.8,

layer.name = "SMR", col.regions = pal,
map.types = "CartoDB.Positron")

https://leaflet-extras.github.io
https://leaflet-extras.github.io
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FIGURE 10.1: SMRs of the counties of Pennsylvania, USA.

We can also highlight the counties when the mouse hovers over us-
ing leaflet::highlightOptions(), and setting mapviewOptions(fgb =
FALSE). In addition, we can customize the popups with tables showing infor-
mation for each of the counties. This information that can be inspected by
clicking each of the map polygons.

For example, here we use popups to show the values of the observed and
expected counts, SMRs, and smoking proportions. To do that, we use the
popupTable() function from leafpop (Appelhans and Detsch, 2021) which
creates HTML strings to be used as popup tables in mapview (Appelhans
et al., 2022) and leaflet (Cheng et al., 2022a). We create the popup table by
passing the spatial object map with the numeric values rounded to two digits,
the vector zcol indicating the columns to be included in the table, and setting
row.numbers = FALSE and feature.id = FALSE to hide row numbers and
feature ids, respectively.

library(mapview)
library(RColorBrewer)
library(leafpop)
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pal <- colorRampPalette(brewer.pal(9, "YlOrRd"))
mapviewOptions(fgb = FALSE)

popuptable <- leafpop::popupTable(dplyr::mutate_if(map,
is.numeric, round, digits = 2),
zcol = c("county", "Y", "E", "smoking", "SMR"),
row.numbers = FALSE, feature.id = FALSE)

mapview(map, zcol = "SMR", color = "gray", col.regions = pal,
highlight = leaflet::highlightOptions(weight = 4),
popup = popuptable)

The map with the SMR values allows us to understand the spatial pattern
of lung cancer risk across Pennsylvania, and identify areas that have SMR
higher (or lower) than 1 indicating the observed cases are higher (or lower)
than expected from the standard population. As we have seen, SMR values
can be easily calculated as the ratio of observed to expected counts. However,
these values may be extreme and unreliable for reporting in areas with small
populations or rare diseases. To overcome these limitations, we use Bayesian
hierarchical models that enable to incorporate covariates known to affect disease
risk and borrow information from neighboring areas to obtain smoothed relative
risks. Below, we show how to specify, fit, and interpret a spatial model to
estimate the risk of lung cancer.

10.2.7 Model
Let Yi and Ei be the observed and expected number of disease cases, respec-
tively, and let θi be the relative risk for county i = 1, . . . , n. The model is
specified as follows:

Yi|θi ∼ Poisson(Ei × θi), i = 1, . . . , n,

log(θi) = β0 + β1 × smokingi + ui + vi.

Here, β0 is the intercept and β1 is the coefficient of the covariate smokers
proportion. ui is a structured spatial effect modeled with an intrinsic condi-
tionally autoregressive model (CAR), ui|u−i ∼ N(ūδi

1
τunδi

). Finally, vi is an
unstructured effect, vi ∼ N(0, 1/τv).
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10.2.8 Neighborhood matrix
The spatial random effect ui needs the specification of the neighborhood matrix.
Here, we assume two areas are neighbors if they share a common boundary. We
can obtain the neighbourhood list using the poly2nb() function of the spdep
package (Bivand, 2022). Then, we use the nb2INLA() and inla.read.graph()
functions to create an object g with the neighborhood matrix in the format
required by R-INLA.

library(spdep)
library(INLA)
nb <- poly2nb(map)
nb2INLA("map.adj", nb)
g <- inla.read.graph(filename = "map.adj")

10.2.9 Model formula and inla() call
The model formula is specified by writing the outcome variable, the ~ symbol,
and the covariates and random effects. An intercept is included in the model
by default. In the formula, random effects are set using the f() function with
arguments equal to indices vectors of the variables, and the model name. The
indices for the random effects are given by indices vectors re_u and re_v
created for the random effects ui and vi, respectively. These vectors are equal
to 1, . . . , n, where n is the number of counties. Here, number of counties n=67
can be obtained with the number of rows in the data (nrow(map)). For the
spatial random effect ui, we use model = "besag" with neighborhood matrix
given by g. For the unstructured effect vi we choose model = "iid".

map$re_u <- 1:nrow(map)
map$re_v <- 1:nrow(map)

formula <- Y ~ smoking +
f(re_u, model = "besag", graph = g, scale.model = TRUE) +
f(re_v, model = "iid")

Then, we fit the model using the inla() function with the default priors in
R-INLA. We specify the formula, family, data, and the expected counts, and
set control.predictor = list(compute = TRUE) and control.compute =
list(return.marginals.predictor = TRUE) to compute and return the pos-
terior means of the predictors.
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res <- inla(formula, family = "poisson", data = map, E = E,
control.predictor = list(compute = TRUE),
control.compute = list(return.marginals.predictor = TRUE))

10.2.10 Results
The inla() function returns an object res with the fit of the model that
can be inspected with using summary(res). Objects res$summary.fixed,
res$summary.random, and res$summary.hyperpar contain, respectively, sum-
maries of the fixed effects, random effects, and the hyperparameters.

res$summary.fixed

mean sd 0.025quant 0.5quant
(Intercept) -0.3235 0.1498 -0.61925 -0.3233
smoking 1.1546 0.6226 -0.07569 1.1560

0.975quant mode kld
(Intercept) -0.02877 -0.3234 3.534e-08
smoking 2.37845 1.1563 3.545e-08

We see the intercept β̂0 = –0.323 with a 95% credible interval equal to (–0.619,
–0.029), and the coefficient of smoking is β̂1 = 1.155 with a 95% credible interval
equal to (–0.076, 2.378) This indicates a non-significant effect of smoking.

res$summary.fitted.values contains the posterior mean and quantiles of
the relative risk of each of the counties, θi, i = 1, . . . , n. We add to map the
disease relative risk estimates which are given by the posterior mean (column
mean of res$summary.fitted.values). We also add to map the 2.5 and 97.5
percentiles of the posterior distribution which are given by columns 0.025quant
and 0.975quant of res$summary.fitted.values. These percentiles represent
the lower and upper limits of 95% credible intervals of the risks representing
the uncertainty of the risks estimated.

res$summary.fitted.values[1:3, ]

mean sd 0.025quant 0.5quant
fitted.Predictor.01 0.8781 0.05808 0.7648 0.8778
fitted.Predictor.02 1.0597 0.02750 1.0072 1.0592
fitted.Predictor.03 0.9646 0.05089 0.8604 0.9657

0.975quant mode
fitted.Predictor.01 0.9936 0.8778
fitted.Predictor.02 1.1150 1.0582
fitted.Predictor.03 1.0622 0.9681
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# relative risk
map$RR <- res$summary.fitted.values[, "mean"]
# lower and upper limits 95% CI
map$LL <- res$summary.fitted.values[, "0.025quant"]
map$UL <- res$summary.fitted.values[, "0.975quant"]

10.2.11 Mapping disease risk
Figure 10.2 shows the estimated relative risks (RRs) in an interactive map
using mapview. In the map, we add popups showing information on the
observed and expected counts, SMRs, smokers proportions, RRs, and limits of
95% credible intervals. We observe counties with greater RR are located in the
west and south-east of Pennsylvania, and counties with lower RR are located
in the center. The 95% credible intervals indicate the uncertainty in the RRs.

library(mapview)
library(RColorBrewer)
library(leafpop)
pal <- colorRampPalette(brewer.pal(9, "YlOrRd"))
mapviewOptions(fgb = FALSE)
mapview(map, zcol = "RR", color = "gray", col.regions = pal,
highlight = leaflet::highlightOptions(weight = 4),
popup = leafpop::popupTable(dplyr::mutate_if(map, is.numeric,

round, digits = 2),
zcol = c("county", "Y", "E", "smoking", "SMR", "RR", "LL", "UL"),
row.numbers = FALSE, feature.id = FALSE))

FIGURE 10.2: Relative risks of the counties of Pennsylvania, USA.
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10.2.12 Comparing SMR and RR maps
We compare the maps of SMRs and RRs using side-by-side synchronized maps
with the same scale created with the leafsync package (Appelhans and Russell,
2019). We see the RR values are shrunk towards 1 compared to the SMR
values (Figure 10.3).

at <- seq(min(map$SMR), max(map$SMR), length.out = 8)
m1 <- mapview(map, zcol = "SMR", color = "gray",

col.regions = pal, at = at)
m2 <- mapview(map, zcol = "RR", color = "gray",

col.regions = pal, at = at)
leafsync::sync(m1, m2)

FIGURE 10.3: SMRs (left) and RRs (right) of the counties of Pennsylvania,
USA.

10.2.13 Exceedance probabilities
In addition to the relative risks, we can also calculate exceedance probabilities
that allow us to assess unusual elevation of disease risk. Exceedance probabilities
are defined as the probabilities of relative risk being greater than a given
threshold value c. For example, we can calculate the probability that the
relative risk of the 51st county (Philadelphia) exceeds c = 1.2 as P (θ51 >
c) = 1 − P (θ51 ≤ c). We can calculate this exceedance probability using the
inla.pmarginal() function passing the marginal distribution of θ51 and the
threshold value c = 1.2 as follows:
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c <- 1.2
marg <- res$marginals.fitted.values[[51]]
1 - inla.pmarginal(q = c, marginal = marg)

[1] 0.05616

We can plot the posterior distribution of θ51 by first calculating a smoothing
of the marginal distribution with inla.smarginal(), and then using ggplot2
(Figure 10.4). P (θ51 > c) is the area under the curve to the right of the
threshold value c.

library(ggplot2)
marginal <- inla.smarginal(res$marginals.fitted.values[[51]])
marginal <- data.frame(marginal)
ggplot(marginal, aes(x = x, y = y)) + geom_line() +

labs(x = expression(theta[51]), y = "Density") +
geom_vline(xintercept = 1.2, col = "black") +
theme_bw(base_size = 20)
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FIGURE 10.4: Posterior distribution of the relative risk of area 51 exceeds
the threshold value 1.2. Vertical line indicates the threshold value.

To calculate the exceedance probabilities for all counties, we can use the
sapply() function as follows:

c <- 1.2
map$exc <- sapply(res$marginals.fitted.values,
FUN = function(marg){1 - inla.pmarginal(q = c, marginal = marg)})

Figure 10.5 shows a map with the exceedance probabilities created with
mapview. The map provides evidence of excess risk within individual areas.
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In areas with probabilities close to 1, it is very likely that the relative risk
exceeds the threshold value c, and areas with probabilities close to 0 correspond
to areas where it is very unlikely that the relative risk exceeds c. Areas with
probabilities around 0.5 have the highest uncertainty, and they correspond to
areas where the relative risk is below or above c with equal probability. In the
map depicting the exceedance probabilities, we observe all probabilities are
close to 0 and it is very unlikely the relative risk exceeds the threshold value c
in any of the counties.

pal <- colorRampPalette(brewer.pal(9, "YlOrRd"))
mapview(map, zcol = "exc", color = "gray", col.regions = pal,

map.types = "CartoDB.Positron")

FIGURE 10.5: Probabilities that the relative risks of counties exceed 1.2.
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11
Areal data issues

Spatial analyses of aggregated data may be subject to the Misaligned Data
Problem (MIDP) which refers to a situation where the spatial data being
analyzed are at a different scale than the one at which they were originally
collected (Banerjee et al., 2004). For example, individual observations or small
areas data may be aggregated to larger areas due to several reasons such as
confidentiality or to match the scale of other data sources. The aggregation of
the data can lead to a loss of spatial information that can hide spatial patterns
or relationships that exist at the finer scale, potentially leading to erroneous
conclusions or misinterpretation of the results.

The Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984) refers to the
issue of how the results of spatial analyses may change if one aggregates the
same underlying data to a different level of spatial aggregation. The MAUP
consists of two interrelated effects, namely, the scale and zoning effects. The
MAUP’s scale effect occurs when the results of an analysis change because
the geographic units used for analysis are aggregated or disaggregated. For
example, if a study examines crime rates across different neighborhoods, the
patterns observed may differ depending on whether the analysis is conducted
at the level of city blocks, census tracts, or larger administrative zones. The
zoning effect of the MAUP arises when the results of an analysis are impacted
by the arbitrary creation of geographic units. For example, when examining
income levels across various districts, the specific boundaries assigned to each
district can influence the results. Thus, different configurations of boundaries
can produce different spatial patterns, leading to variations in the outcomes of
the analysis.

Ecological studies, also known as population-level studies, investigate the
relationships between exposure factors or interventions and health outcomes
at the group or population level (Robinson, 1950). Instead of focusing on
individual-level data, ecological studies analyze aggregated data for groups or
populations, such as cities, regions, or countries. Ecological studies are useful
when individual-level data is not available or difficult to collect. However,
ecological studies face the ecological fallacy, where associations observed at the
group level may not hold true for individuals within those groups. The resulting
bias, known as ecological bias, can be viewed as a special case of the MAUP,
as it encompasses two effects similar to the aggregation and zoning effects in
the MAUP (Gotway and Young, 2002). These effects are the aggregation bias,
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which arises from grouping individuals together, and the specification bias,
resulting from the uneven distribution of confounding variables resulting from
grouping.

Measurements of a spatial phenomenon can be obtained at various spatial
resolutions and from diverse sources. For instance, air pollution measurements
can be gathered from monitoring stations located at specific locations, as well
as through satellite-derived measurements that provide aggregated information
in areas. The integration of these data can lead to more accurate air pollution
predictions at finer spatial resolutions than the ones obtained using just one type
of data. Moraga et al. (2017) proposes a Bayesian melding model to combine
spatially misaligned data that assumes a common spatially continuous Gaussian
random field underlying all observations, and uses the integrated nested Laplace
approximation (INLA) and stochastic partial differential equation (SPDE)
approaches for fast inference. Zhong and Moraga (2023) compare the Bayesian
melding model with a Bayesian downscaler approach that integrates point-
and area-level data by considering a model with spatially varying coefficients
that has point data as response and areal data as covariates. They also use air
pollution data to show how the melding model can be used to disaggregate areal
data and produce spatially continuous predictions, as well as predictions at
certain spatial resolutions that are policy relevant improving decision-making.



Part III

Geostatistical data
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12
Geostatistical data

Geostatistical data provide information of a spatially continuous phenomenon
that has been measured at particular sites. This type of data may represent,
for example, air pollution levels taken at a set of monitoring stations or
disease prevalence survey data at a collection of sites. Let Z(s1), . . . , Z(sn) be
observations of a spatial variable Z at locations s1, . . . , sn. In many situations,
geostatistical data may be assumed to be a partial realization of a random
process

{Z(s) : s ∈ D ⊂ R
2},

where D is a fixed subset of R2 and the spatial index s varies continuously
throughout D. Often, for practical reasons, the process Z(·) can only be
observed at a finite set of locations. Based upon this partial realization, we
may seek to infer the characteristics of the spatial process that gives rise to
the data observed such as the mean and variability of the process. Then, we
can use this information to predict the process at unsampled locations and
construct a spatially continuous surface of the variable of study.

Kriging (Matheron, 1963) and model-based geostatistics (Diggle et al., 1998)
are widely used approaches for spatial interpolation. Both approaches model
the spatial distribution of the data to obtain predictions and their associated
uncertainty at unsampled locations. Simpler spatial interpolation methods,
such as the inverse distance weighted method, obtain predictions based on the
spatial arrangement of the data. In the following chapters, we give an overview
of Gaussian random fields. Then, we show how to employ spatial interpolation
methods to obtain predictions using geostatistical data. We also show how to
evaluate the predictive performance of the methods using a number of error
measures and cross-validation.

12.1 Gaussian random fields
A Gaussian random field (GRF) {Z(s) : s ∈ D ⊂ R

2} is a collection of random
variables where observations occur in a continuous domain, and where every
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finite collection of random variables has a multivariate normal distribution.
A random process Z(·) is said to be strictly stationary if it is invariant to
shifts. That is, if for any set of locations si, i = 1, . . . , n, and any h ∈ R

2 the
distribution of {Z(s1), . . . , Z(sn)} is the same as that of {Z(s1+h), . . . , Z(sn+
h)}. A less restrictive condition is given by the second-order stationarity (or
weakly stationarity). Under this condition, the process has constant mean,

E[Z(s)] = μ, ∀s ∈ D,

and the covariances depend only on the differences between locations,

Cov(Z(s), Z(s + h)) = C(h), ∀s ∈ D, ∀h ∈ R
2.

In addition, if the covariances are functions only of the distances between
locations h = ||h|| and not of the directions, the process is called isotropic.
If not, it is anisotropic. A process is said to be intrinsically stationary if, in
addition to the constant mean assumption, it satisfies

V ar[Z(si) − Z(sj)] = 2γ(si − sj), ∀si, sj .

12.2 Covariance functions of Gaussian random fields
Given a stationary and isotropic Gaussian random process Z(·), the covariance
function between a pair of variables separated by a distance h can be expressed
as

C(h) = σ2Corr(h),

where σ2 denotes the variance of the spatial field, and {Corr(h) : h ∈ R} is a
positive definite correlation function.

The Matérn family represents a very flexible class of correlation functions that
appears naturally in many scientific fields. This family can be specified as

Corr(h) = 1
2ν−1Γ(ν)

(
h

φ

)ν

Kν

(
h

φ

)
,

where h denotes the distance between locations, and Kν(·) is the modified
Bessel function of second kind and order ν > 0. The parameter φ > 0 controls
how fast the correlation decays with distance and is related to the range, the
distance at which the correlation between two points is approximately 0. The
parameter ν determines the smoothness of the process. This parameter is
difficult to estimate in applications, and it is usually fixed to reflect scientific
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knowledge about the smoothness of the process Z(·) (Diggle and Ribeiro Jr.,
2007).

Special classes of the Matérn family include the exponential correlation function
Corr(h) = exp(−h/φ) when ν = 0.5, and the squared exponential or Gaussian
correlation function Corr(h) = exp(−(h/φ)2) when ν → ∞.

12.3 Simulating Gaussian random fields
Here, we show how to generate realizations of several Gaussian random fields
using the geoR package (Ribeiro Jr et al., 2022). Other packages that can be
used to simulate Gaussian random fields include RandomFields (Schlather
et al., 2015) and gstat (Pebesma and Graeler, 2022).

The cov.spatial() function of geoR computes the value of the covariance
function C(h) = σ2Corr(h) between a pair of variables located at points
separated by distance h, where σ2 is the variance parameter and Corr(h)
is a positive definite correlation function. The types of covariance functions
implemented in geoR can be seen by typing ?cov.spatial.

The grf() function of geoR can be used to simulate realizations of a Gaussian
random field by specifying the following arguments:

• n is the number of points in the simulation. Here, we choose 1024 to simulate
in a grid with 32 × 32 cells.

• grid can be set to "reg" to simulate in a regular grid or "irreg" to simulate
in a number of coordinates.

• xlims and ylims specify the limits of the area in the x and y directions,
respectively. Here, we generate the field in a squared region [0, 1] × [0, 1] by
using the default values xlims = c(0, 1) and ylims = c(0, 1).

• cov.model denotes the type of correlation function (e.g., "matern"). Possible
types are detailed in the cov.spatial() function.

• cov.pars specifies the covariance parameters that indicate the variance σ2

and the parameter related to the range φ.
• kappa is the smoothness parameter required by some correlation functions

such as "matern". By default, kappa = 0.5. In particular, kappa represents
ν in the definition of the Matérn function above.

Here, we show the correlation functions and realizations of Gaussian random
fields with Matérn covariance function,

C(h) = σ2

2ν−1Γ(ν)

(
h

φ

)ν

Kν

(
h

φ

)
,
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with σ2 = 1 and φ = 0.01, 0.2 and 1 to show different patterns of spatial
variability. Figure 12.1 shows the covariance functions and realizations corre-
sponding to each of the Gaussian random fields. We observe the correlation
goes to 0 with distance, and it goes faster to 0 with smaller values of φ. The
realizations of Gaussian random fields show less spatial autocorrelation for
smaller values of φ.

covmodel <- "matern"
sigma2 <- 1

# Plot covariance function
curve(cov.spatial(x, cov.pars = c(sigma2, 1),

cov.model = covmodel), lty = 1,
from = 0, to = 1, ylim = c(0, 1), main = "Matérn",
xlab = "distance", ylab = "Covariance(distance)")

curve(cov.spatial(x, cov.pars = c(sigma2, 0.2),
cov.model = covmodel), lty = 2, add = TRUE)

curve(cov.spatial(x, cov.pars = c(sigma2, 0.01),
cov.model = covmodel), lty = 3, add = TRUE)

legend(cex = 1.5, "topright", lty = c(1, 1, 2, 3),
col = c("white", "black", "black", "black"),
lwd = 2, bty = "n", inset = .01,
c(expression(paste(sigmaˆ2, " = 1 ")),

expression(paste(phi, " = 1")),
expression(paste(phi, " = 0.2")),
expression(paste(phi, " = 0.01"))))

# Simulate Gaussian random field in a regular grid 32 X 32
sim1 <- grf(1024, grid = "reg",

cov.model = covmodel, cov.pars = c(sigma2, 1))
sim2 <- grf(1024, grid = "reg",

cov.model = covmodel, cov.pars = c(sigma2, 0.2))
sim3 <- grf(1024, grid = "reg",

cov.model = covmodel, cov.pars = c(sigma2, 0.01))

# Plot Gaussian random field
par(mfrow = c(1, 3), mar = c(2, 2, 2, 0.2))
image(sim1, main = expression(paste(phi, " = 1")), cex.main = 2,

col = gray(seq(1, 0.1, l = 30)), xlab = "", ylab = "")
image(sim2, main = expression(paste(phi, " = 0.2")), cex.main = 2,

col = gray(seq(1, 0.1, l = 30)), xlab = "", ylab = "")
image(sim3, main = expression(paste(phi, " = 0.01")), cex.main=2,

col = gray(seq(1, 0.1, l = 30)), xlab = "", ylab = "")
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FIGURE 12.1: Covariance functions (top) and realizations of Gaussian
random fields (bottom) for several parameter values.
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12.4 Variogram
We can summarize the covariance structure of a spatial Gaussian random field
with its variogram 2γ(·) (or semivariogram γ(·)). The variogram of a Gaussian
random field Z(·) is defined as the function

V ar[Z(si) − Z(sj)] = 2γ(si − sj).

Under the assumption of intrinsic stationarity, the constant-mean assumption
implies

2γ(h) = V ar(Z(s + h) − Z(s)) = E[(Z(s + h) − Z(s))2],

and the semivariogram can be easily estimated with the empirical semivari-
ogram as follows:

2γ̂(h) = 1
|N(h)|

∑
N(h)

(Z(si) − Z(sj))2,

where |N(h)| denotes the number of distinct pairs in N(h) = {(si, sj) : si −
sj = h, i, j = 1, . . . , n}. Note that if the process is isotropic, the semivariogram
is a function of the distance h = ||h||.
The empirical semivariogram, when plotted against the separation distance,
provides crucial insights into the continuity and spatial variability of the
process. Figure 12.2 shows a plot of a typical semivariogram. Often, at shorter
distances, the semivariogram tends to be small, indicating a higher similarity
among observations in close proximity compared to those farther apart. As
the separation distance increases, the semivariogram tends to increase as
well, suggesting a decrease in similarity between observations with increasing
distance.

Beyond a certain separation distance known as the range, the semivariogram
levels off and reaches a nearly constant value referred to as the sill. This indi-
cates that spatial dependence between observations decays with distance within
the range, and beyond that range, observations become spatially uncorrelated,
resulting in a near constant variance.

If there is a discontinuity or vertical jump at the origin of the plot, it signifies
a nugget effect in the process. This effect is often attributed to measurement
error but can also indicate a spatially discontinuous process.

The empirical semivariogram serves as a valuable exploratory tool for evaluating
the presence of spatial correlation in data. Additionally, we can compare the
empirical semivariogram to a Monte Carlo envelope constructed by computing
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FIGURE 12.2: Typical semivariogram.

empirical semivariograms from random permutations of the data while keeping
the locations fixed. If the empirical semivariogram shows an increasing trend
with distance and lies outside the Monte Carlo envelope, it provides evidence
of spatial correlation.

Example
Here, we show how to estimate the variogram function of geostatistical data
using the variog() function of geoR. We use the parana data from geoR
which contains the average rainfall over different years for the period May to
June at 123 monitoring stations in Paraná state, Brazil. We use the st_as_sf()
package to create a sf object with the rainfall data and create a map depicting
the rainfall values with ggplot2 (Figure 12.3).

library(geoR)
library(ggplot2)
library(sf)
d <- st_as_sf(data.frame(x = parana$coords[, 1],

y = parana$coords[, 2],
value = parana$data),

coords = c("x", "y"))

ggplot(d) + geom_sf(aes(color = value), size = 2) +
scale_color_gradient(low = "blue", high = "orange") +
geom_path(data = data.frame(parana$border), aes(east, north)) +
theme_bw()

In variog(), the argument option specifies the type of variogram. Possible
values of option are binned ("bin"), cloud ("cloud"), and kernel smoothed
variogram ("smooth"). The variogram cloud of a set of geostatistical data
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FIGURE 12.3: Rainfall values measured at 143 recording stations in Paraná
state, Brazil.

is a scatterplot of the points (hij , vij) defined as hij = ||si − sj || and vij =
1
2 (Z(si) − Z(sj))2.

When the underlying process has a spatially varying mean μ(s), we compute
vij using the residuals (Z(si) − μ̂(si)) instead of the data Z(si). Argument
trend of variog() denotes the trend fitted using ordinary least squares so
variograms are computed using the residuals. By default, trend = "cte" so
the mean is assumed constant over the region.

Figure 12.4 shows the empirical variogram corresponding to the rainfall data
in Paraná state. It also shows the empirical variogram obtained by averaging
values vij ’s for which |h − hij | < u/2, where u is a chosen bandwidth.

plot(variog(coords = st_coordinates(d), data = d$value,
option = "cloud", max.dist = 400))

plot(variog(parana, max.dist = 400))



12.4 Variogram 151

0
50
00

15
00
0

25
00
0

se
m
iv
ar
ia
nc
e

0
10
00

30
00

50
00

se
m
iv
ar
ia
nc
e

FIGURE 12.4: Empirical variogram values (left) and averaged empirical
variogram values (right) corresponding to the rainfall data in Paraná state,
Brazil.

The covariance parameters can be estimated by fitting a parametric covariance
function to the empirical variogram. We can obtain the estimates by eye
without a formal criterion, or by using ordinary or weighted least squares
methods as we will see in the next chapters.
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13
Spatial interpolation methods

In this chapter, we describe several simple interpolation methods that allow
us to predict values of a spatially continuous variable at locations that are
not sampled. These methods include closest observation, inverse distance
weighting (IDW), and nearest neighbors, and can be easily implemented using
the gstat (Pebesma and Graeler, 2022) and terra (Hijmans, 2022) packages.
We also describe an ensemble approach to compute predictions by combining
the predictions of several methods.

13.1 Spatial prediction of property prices
13.1.1 Data
To illustrate the spatial interpolation methods, we use the properties data
of the spData package (Bivand et al., 2022) which contains the price of
apartments in Athens, Greece, in 2017. properties is a sf object that contains
several columns including price with the apartments’ price in Euros, prpsqm
with the apartments’ price per square meter, and geometry with the coordinates
of the locations. We create a sf object called d with the contents of properties,
and a new variable vble with the variable of interest which in this case is price
per square meter (prpsqm).

library(spData)
library(sf)
library(terra)
library(tmap)
library(viridis)
d <- properties
d$vble <- d$prpsqm

The object depmunic contains the boundaries of the administrative divisions
of Athens. We create a variable map denoting the study region with the union
of these boundaries. This is the region where we will predict the variable of
interest price per square meter.

153
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map <- st_union(depmunic) %>% st_sf()

The tmap_mode() function of tmap can be used to create static
(tmap_mode("plot")) or interactive (tmap_mode("view")) maps. Figure 13.1
shows a static map with the locations and prices of the apartments.

tmap_mode("plot")
tm_shape(map) + tm_polygons(alpha = 0.3) + tm_shape(d) +

tm_dots("vble", palette = "viridis")

13.1.2 Prediction locations
We wish to predict the prices of properties continuously in space in Athens. To
do that, we create a fine raster grid covering Athens and consider the centroids
of the raster cells as the prediction locations. We create the raster grid with the
rast() function of terra by specifying the region to be covered (map), and the
number of rows and columns of the grid (nrows = 100, ncols = 100). The
prediction locations are the centroids of the raster cells and can be obtained
with the xyFromCell() function of terra. Alternatively, we could create the
grid using the st_make_grid() function of sf by specifying the number of
grid cells in the horizontal and vertical directions or the cell size.

library(sf)
library(terra)
# raster grid covering map
grid <- terra::rast(map, nrows = 100, ncols = 100)
# coordinates of all cells
xy <- terra::xyFromCell(grid, 1:ncell(grid))

We create a sf object called coop with the prediction locations with
st_as_sf() passing the coordinates (as.data.frame(xy)), the name of the co-
ordinates (coords = c("x", "y")), and the coordinate reference system which
is the same as the coordinate reference system of map (crs = st_crs(map)).
Then, we use st_filter() to keep the locations within the Athens map. Fig-
ure 13.1 shows the map with the prediction locations created using the qtm()
function of tmap for quick map plots.

coop <- st_as_sf(as.data.frame(xy), coords = c("x", "y"),
crs = st_crs(map))

coop <- st_filter(coop, map)

qtm(coop)
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vble
0 to 2,000
2,000 to 4,000
4,000 to 6,000
6,000 to 8,000
8,000 to 10,000

FIGURE 13.1: Top: Locations and prices per square meter of apartments in
Athens. Bottom: Prediction locations.
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13.1.3 Closest observation
We can obtain predictions at each of the prediction locations as the values of
the closest sampled locations. To do that, we can employ the Voronoi diagram
(also known as Dirichlet or Thiessen diagram). The Voronoi diagram is created
when a region with n points is partitioned into convex polygons such that
each polygon contains exactly one generating point, and every point in a given
polygon is closer to its generating point than to any other.

Given a set of points, we can create a Voronoi diagram with the voronoi()
function of terra specifying the points as an object of class SpatVector of
terra, and map to set the outer boundary of the Voronoi diagram. This returns
a Voronoi diagram for the set of points assuming constant values in each of
the polygons (Figure 13.2).

Then, we can use the functions tm_shape() and tm_fill() of tmap to plot
the values of the variable in each of the polygons indicating the name of the
variable col = "vble", the palette palette = "viridis" and the level of
transparency alpha = 0.6 (if the plot is interactive).

# Voronoi
v <- terra::voronoi(x = terra::vect(d), bnd = map)
plot(v)
points(vect(d), cex = 0.5)

# Prediction
v <- st_as_sf(v)
tm_shape(v) +

tm_fill(col = "vble", palette = "viridis", alpha = 0.6)
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FIGURE 13.2: Left: Voronoi diagram corresponding to the observation
locations. Right: Predictions obtained using the closest observation criterion.
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We can also extract the predicted values at prediction points coop by using
the st_intersection() function of the sf package. Here, instead of creating
a map with the predictions at the locations given by coop, we create a map
with the predictions at a raster grid. To do that, we transfer the sf object
with the predictions at locations coop to the raster grid grid, and create a
plot with the raster values with tmap (Figure 13.3).

resp <- st_intersection(v, coop)
resp$pred <- resp$vble

pred <- terra::rasterize(resp, grid, field = "pred", fun = "mean")
tm_shape(pred) + tm_raster(alpha = 0.6, palette = "viridis")

mean
0 to 2,000
2,000 to 4,000
4,000 to 6,000
6,000 to 8,000
8,000 to 10,000

mean
500 to 1,000
1,000 to 1,500
1,500 to 2,000
2,000 to 2,500
2,500 to 3,000
3,000 to 3,500

mean
0 to 1,000
1,000 to 2,000
2,000 to 3,000
3,000 to 4,000
4,000 to 5,000
5,000 to 6,000

mean
0 to 1,000
1,000 to 2,000
2,000 to 3,000
3,000 to 4,000
4,000 to 5,000
5,000 to 6,000

FIGURE 13.3: Predictions obtained using closest observation (top-left),
IDW (top-right), nearest neighbors (bottom-left), and ensemble approach
(bottom-right).

13.1.4 IDW: Inverse Distance Weighting
In the IDW method, values at unsampled locations are estimated as the
weighted average of values from the rest of locations with weights inversely
proportional to the distance between the unsampled and the sampled locations.
Specifically,



158 13 Spatial interpolation methods

Ẑ(s0) =
∑n

i=1 Z(si) × (1/dβ
i )∑n

i=1(1/dβ
i )

=
n∑

i=1
Z(si) × wi,

where Ẑ(s0) is the predicted value at s0, n the number of sampled locations,
Z(si) is the value at location si, and di the distance between location si

and location s0 where we want to predict. Here, weights are given by wi =
1/dβ

i∑n

i=1
(1/dβ

i
) , where β is the distance power that determines the degree to which

nearer locations are preferred over more distant locations. For example, if
β = 1, wi = 1/di∑n

i=1
(1/di) .

We can apply the IDW method with the gstat() function of gstat and the
following arguments:

• formula: vble ~ 1 to have an intercept only model,
• nmax: number of neighbors is set equal to the total number of locations,
• idp: inverse distance power is set to idp = 1 to have weights with β = 1.

Then, we use the predict() function to obtain the predictions and tmap to
show the results (Figure 13.3).

library(gstat)
res <- gstat(formula = vble ~ 1, locations = d,

nmax = nrow(d), # use all the neighbors locations
set = list(idp = 1)) # beta = 1

resp <- predict(res, coop)
resp$x <- st_coordinates(resp)[,1]
resp$y <- st_coordinates(resp)[,2]
resp$pred <- resp$var1.pred

pred <- terra::rasterize(resp, grid, field = "pred", fun = "mean")
tm_shape(pred) + tm_raster(alpha = 0.6, palette = "viridis")

13.1.5 Nearest neighbors
In the nearest neighbors interpolation method, values at unsampled locations
are estimated as the average of the values of the k closest sampled locations.
Specifically,

Ẑ(s0) =
∑k

i=1 Z(si)
k

,

where Ẑ(s0) is the predicted value at s0, Z(si) is the observed value corre-
sponding to neighbor si, and k is the number of neighbors considered.



13.1 Spatial prediction of property prices 159

We can compute predictions using nearest neighbors interpolation with the
gstat() function of gstat. Here, we consider the number of closest sampled
locations equal to 5 by setting nmax = 5. Unlike the IDW method, in the
nearest neighbors approach locations further away from the location where we
wish to predict are assigned the same weights. Therefore, the inverse distance
power idp is set equal to zero so all the neighbors are equally weighted.

Then, we use the predict() function to get predictions at unsampled locations
given in coop. Figure 13.3 shows the map with the predictions.

library(gstat)
res <- gstat(formula = vble ~ 1, locations = d, nmax = 5,

set = list(idp = 0))

resp <- predict(res, coop)
resp$x <- st_coordinates(resp)[,1]
resp$y <- st_coordinates(resp)[,2]
resp$pred <- resp$var1.pred

pred <- terra::rasterize(resp, grid, field = "pred", fun = "mean")
tm_shape(pred) + tm_raster(alpha = 0.6, palette = "viridis")

13.1.6 Ensemble approach
Predictions can also be obtained using an ensemble approach that combines the
predictions obtained with several spatial interpolation methods. Specifically,
if M is the number of interpolation methods considered, the predicted value
Ẑ(s0) can be obtained as

Ẑ(s0) =
M∑

i=1
Ẑ(i)(s0) × wi,

where Ẑ(i)(s0) and wi are, respectively, the prediction value and the weight
corresponding to method i, with i = 1, . . . , M . The weights can be chosen in
different ways. For example, they can be proportional to some goodness-of-fit
measure of each method and sum to 1.

Here, we use an ensemble approach to predict the price per square meter
of apartments in Athens by combining the predictions of the three previous
approaches (closest observation, IDW, nearest neighbors) using equal weights.

The predictions with the closest observation method are obtained using the
Voronoi diagram as follows:
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# Closest observation (Voronoi)
v <- terra::voronoi(x = terra::vect(d), bnd = map)
v <- st_as_sf(v)
p1 <- st_intersection(v, coop)$vble

The IDW approach can be applied with the gstat() function of gstat speci-
fying nmax as the total number of locations and idp = 1.

# IDW
gs <- gstat(formula = vble ~ 1, locations = d, nmax = nrow(d),

set = list(idp = 1))
p2 <- predict(gs, coop)$var1.pred

The nearest neighbors method is applied with the gstat() function specifying
nmax as the number of neighbors and with equal weights (idp = 0).

# Nearest neighbors
nn <- gstat(formula = vble ~ 1, locations = d, nmax = 5,

set = list(idp = 0))
p3 <- predict(nn, coop)$var1.pred

Finally, the ensemble predictions are obtained by combining the predictions of
these three methods with equal weights.

# Ensemble (equal weights)
weights <- c(1/3, 1/3, 1/3)
p4 <- p1 * weights[1] + p2 * weights[2] + p3 * weights[3]

We create a map with the predictions by creating a raster with the predictions
and using the tmap package (Figure 13.3).

resp <- data.frame(
x = st_coordinates(coop)[, 1],
y = st_coordinates(coop)[, 2],
pred = p4)

resp <- st_as_sf(resp, coords = c("x", "y"), crs = st_crs(map))

pred <- terra::rasterize(resp, grid, field = "pred", fun = "mean")
tm_shape(pred) + tm_raster(alpha = 0.6, palette = "viridis")
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13.1.7 Cross-validation
We can assess the performance of each of the methods presented above using
K-fold cross-validation and the root mean squared error (RMSE). First, we
split the data in K parts. For each part, we use the remaining K − 1 parts
(training data) to fit the model and that part (testing data) to predict. We
compute the RMSE by comparing the testing and predicted data in each of
the K parts:

RMSE =
(

1
ntest

ntest∑
i=1

(ytest
i − ŷtest

i )2

)1/2

,

where ytest
i and ŷtest

i are the observed and predicted values of observation i in
the test set, and ntest is the number of observations in the test set. Finally, we
average the RMSE values obtained in each of the K parts.

Note that if K is equal to the number of observations n, this procedure is called
leave-one-out cross-validation (LOOCV). That means that n separate data
sets are trained on all of the data except one observation, and then prediction
is made for that one observation.

Here, we assess the performance of each of the methods previously employed
to predict the prices of apartments in Athens. We create training and testing
sets by using the dismo:kfold() function of the dismo package (Hijmans
et al., 2022) to randomly assign the observations to K = 5 groups of roughly
equal size. For each group, we fit the model using the training data, and obtain
predictions of the testing data. We calculate the RMSEs of each part and
average the RMSEs to obtain a K-fold cross-validation estimate.

set.seed(123)

# Function to calculate the RMSE
RMSE <- function(observed, predicted) {
sqrt(mean((observed - predicted)ˆ2))
}

# Split data in 5 sets
kf <- dismo::kfold(nrow(d), k = 5) # K-fold partitioning

# Vectors to store the RMSE values obtained with each method
rmse1 <- rep(NA, 5) # Closest observation
rmse2 <- rep(NA, 5) # IDW
rmse3 <- rep(NA, 5) # Nearest neighbors
rmse4 <- rep(NA, 5) # Ensemble
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for(k in 1:5) {
# Split data in test and train
test <- d[kf == k, ]
train <- d[kf != k, ]

# Closest observation
v <- terra::voronoi(x = terra::vect(train), bnd = map)
v <- st_as_sf(v)
p1 <- st_intersection(v, test)$vble
rmse1[k] <- RMSE(test$vble, p1)

# IDW
gs <- gstat(formula = vble ~ 1, locations = train,

nmax = nrow(train), set = list(idp = 1))
p2 <- predict(gs, test)$var1.pred
rmse2[k] <- RMSE(test$vble, p2)

# Nearest neighbors
nn <- gstat(formula = vble ~ 1, locations = train,

nmax = 5, set = list(idp = 0))
p3 <- predict(nn, test)$var1.pred
rmse3[k] <- RMSE(test$vble, p3)

# Ensemble (weights are inverse RMSE so lower RMSE higher weight)
w <- 1/c(rmse1[k], rmse2[k], rmse3[k])
weights <- w/sum(w)
p4 <- p1 * weights[1] + p2 * weights[2] + p3 * weights[3]
rmse4[k] <- RMSE(test$vble, p4)
}

The RMSE values obtained in each of the 5 splits are shown below. We see
the minimum average RMSE corresponds to the ensemble method.

# RMSE obtained for each of the 5 splits
data.frame(closest.obs = rmse1, IDW = rmse2,

nearest.neigh = rmse3, ensemble = rmse4)

closest.obs IDW nearest.neigh ensemble
1 960.0 855.1 819.8 732.7
2 836.8 762.7 700.7 678.1
3 1038.5 962.8 867.1 868.9
4 1003.1 921.6 870.3 843.2
5 803.5 844.2 783.0 717.8
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# Average RMSE over the 5 splits
data.frame(closest.obs = mean(rmse1), IDW = mean(rmse2),

nearest.neigh = mean(rmse3), ensemble = mean(rmse4))

closest.obs IDW nearest.neigh ensemble
1 928.4 869.3 808.2 768.2
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14
Kriging

Kriging (Matheron, 1963) is a spatial interpolation method used to obtain
predictions at unsampled locations based on observed geostatistical data. This
method originated in the field of mining geology and is named after South
African mining engineer Danie G. Krige. Suppose that we have observed data
Z(s1), . . . , Z(sn), and wish to predict the value of Z at an arbitrary location
s0 ∈ D. The Ordinary Kriging estimator of Z(s0) is defined as the linear
unbiased estimator

Ẑ(s0) =
n∑

i=1
λiZ(si)

that minimizes the mean squared prediction error defined as

E[(Ẑ(s0) − Z(s0))2].

The Kriging weights are derived from the estimated spatial structure of the
sampled data. Specifically, weights are obtained by first fitting a variogram
model to the observed data, which helps us understand how the correlation
between observation values changes with the distance between locations. Once
the Kriging weights are obtained, they are applied to the known data values at
the sampled locations to calculate the predicted values at unsampled locations.
The Kriging weights reflect the spatial correlation of the data, which accounts
for the geographical proximity and similarity of data points. Thus, observed
locations that are correlated and near to the prediction locations are given
more weight than those uncorrelated and farther apart. Weights also take
into account the spatial arrangement of all observations, so clusterings of
observations in oversampled areas are weighted less heavily since they contain
less information than single locations.

Under several assumptions, Kriging predictions are best linear unbiased esti-
mators. There are several types of Kriging differing by underlying assumptions
and analytic goals. For example, Simple Kriging assumes the mean of the
random field, μ(s), is known; Ordinary Kriging assumes a constant unknown
mean, μ(s) = μ; and Universal Kriging can be used for data with an unknown
non-stationary mean structure.

165
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14.1 Kriging predictions of zinc concentrations
The gstat package (Pebesma and Graeler, 2022) has functionality to model,
predict, and simulate geostatistical data. Here, we provide an example on how
to predict zinc concentrations using samples collected near the river Meuse,
The Netherlands. First, we load the data and create maps with the sample and
the prediction locations. Then, we show how to fit a model variogram to the
empirical variogram, and we use this fit to obtain predictions using Kriging.
Finally, we create maps of the predictions and their associated uncertainty.

14.1.1 Data
The meuse data from the sp package contains zinc and other soil-heavy metal
concentrations collected at locations in a flood plain of the river Meuse near
Stein, The Netherlands (Figure 14.1). meuse.grid contains prediction grid
locations for the meuse dataset (Figure 14.2). We convert the meuse and
meuse.grid data frames to sf objects using the st_as_sf() function and
setting the coordinate reference system to EPSG 28992. We create maps using
the mapview package.

library(sp)
library(gstat)
library(sf)
library(mapview)

data(meuse)
data(meuse.grid)

meuse <- st_as_sf(meuse, coords = c("x", "y"), crs = 28992)
mapview(meuse, zcol = "zinc", map.types = "CartoDB.Voyager")

meuse.grid <- st_as_sf(meuse.grid, coords = c("x", "y"),
crs = 28992)

mapview(meuse.grid, map.types = "CartoDB.Voyager")

14.1.2 Variogram cloud
The variogram cloud shows half of all possible squared differences of data
observation pairs against their separation distance h:

1
2(Z(s) − Z(s + h))2
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FIGURE 14.1: Zinc concentrations at locations in a flood plain of the river
Meuse.

FIGURE 14.2: Prediction locations.
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The variogram() function of gstat can be used to calculate the variogram
cloud. In variogram(), we set argument object to z ~ 1 if we wish to obtain
the variogram for data z, or to a formula of a linear model with covariates
if we wish the variogram for the residuals. Figure 14.3 shows the variogram
cloud for the zinc data. This plot can be inspected to assess whether sample
pairs closer to each other are more similar than pairs further apart.

vc <- variogram(log(zinc) ~ 1, meuse, cloud = TRUE)
plot(vc)

14.1.3 Sample variogram
Assuming isotropy, the sample variogram averages the variogram cloud values
over distance intervals:

2γ̂(h) = 1
|N(h)|

∑
N(h)

(Z(si) − Z(sj))2,

where |N(h)| denotes the number of distinct pairs in

N(h) = {(si, sj) : ||si − sj || = h, i, j = 1, . . . , n}.

The variogram() function of gstat calculates the sample variogram from
data or for residuals if a linear model has been specified. We can also specify
the argument width indicating the width of distance intervals into which data
point pairs are grouped to compute the estimates. Figure 14.3 shows the sample
variogram for the zinc data.

v <- variogram(log(zinc) ~ 1, data = meuse)
plot(v)

14.1.4 Fitted variogram
The sample variogram obtained is a function of distance h estimated at discrete
lags (e.g., h(1), h(2), . . . , h(k)). Then, we can fit a variogram model to these
estimated values,

{(h(j), 2γ̂(h(j))) : j = 1, 2, . . . , k}.

The vgm() function of gstat generates a variogram model. This function has
arguments model with the model type (e.g., Sph for spherical and Exp for



14.1 Kriging predictions of zinc concentrations 169

distance

se
m
iv
ar
ia
nc
e

1

2

3

500 1000 1500

distance

se
m
iv
ar
ia
nc
e

0.2

0.4

0.6

500 1000 1500

FIGURE 14.3: Variogram cloud (left) and sample variogram (right).

exponential), nugget, psill (partial sill, which is the sill minus the nugget)
and range. Details on the construction of the variogram models are given
in Section 4.3 of the gstat user’s manual1. A list of available models can be
printed with vgm() and visualized with show.vgms() (Figure 14.4).

vgm()

short long
1 Nug Nug (nugget)
2 Exp Exp (exponential)
3 Sph Sph (spherical)
4 Gau Gau (gaussian)
5 Exc Exclass (Exponential class/stable)
6 Mat Mat (Matern)
7 Ste Mat (Matern, M. Stein's parameterization)
8 Cir Cir (circular)
9 Lin Lin (linear)
10 Bes Bes (bessel)
11 Pen Pen (pentaspherical)
12 Per Per (periodic)
13 Wav Wav (wave)
14 Hol Hol (hole)
15 Log Log (logarithmic)
16 Pow Pow (power)
17 Spl Spl (spline)
18 Leg Leg (Legendre)
19 Err Err (Measurement error)
20 Int Int (Intercept)

1https://www.gstat.org/gstat.pdf

https://www.gstat.org
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show.vgms(par.strip.text = list(cex = 0.75))
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FIGURE 14.4: Available variogram models in gstat.

The fit.variogram() function fits a variogram model to a sample variogram.
Arguments of this function include object with the sample variogram, and
model with the variogram model which is an output of vgm() with arguments
nugget, psill, and range denoting initial values of the iterative fitting al-
gorithm. The fitting method is specified in fit.method and can be ordinary
(unweighted) or weighted least squares using a weighting scheme that gives
most weight to early lags and downweights those lags with a small number of
pairs. Thus, if {2γ(h; λ)} is a model depending on parameters λ, and wj are
weights associated to lag h(j), the method of weighted least squares chooses
the value of λ that minimizes

k∑
j=1

wj [2γ̂(h(j)) − 2γ(h(j); λ)]2 .

By inspecting the sample variogram of the zinc data, we may think that a
good model for the variogram would be spherical with initial values for the
partial sill equal to 0.5, range equal to 900, and nugget equal to 0.1. Figure
14.5 (left) shows the sample variogram v calculated with variogram(), and
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the variogram generated with vgm() using a spherical model, and with partial
sill, range, and nugget equal to our initial guess values. This plot allows us to
assess our initial model.

vinitial <- vgm(psill = 0.5, model = "Sph",
range = 900, nugget = 0.1)

plot(v, vinitial, cutoff = 1000, cex = 1.5)

Then, we fit a variogram providing the sample variogram and choosing a
spherical model (model = "Sph"), and the initial values for the partial sill,
range, and the nugget for the iterative fitting algorithm. Figure 14.5 (right)
shows the sample and the fitted variogram.

fv <- fit.variogram(object = v,
model = vgm(psill = 0.5, model = "Sph",

range = 900, nugget = 0.1))
fv
plot(v, fv, cex = 1.5)

model psill range
1 Nug 0.05066 0
2 Sph 0.59061 897
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FIGURE 14.5: Sample variogram and variogram with initial parameters
(left), and fitted model (right).

14.1.5 Kriging
Kriging uses the fitted variogram values fv to obtain predictions at unsampled
locations. Here, we use the gstat() function of gstat to compute the Kriging
predictions.
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library(ggplot2)
library(viridis)

k <- gstat(formula = log(zinc) ~ 1, data = meuse, model = fv)

Then, we obtain predictions at the unsampled locations given by meuse.grid
with the predict.gstat() function.

kpred <- predict(k, meuse.grid)

The returned object of predict() contains the predictions (var1.pred) and
their variance (var1.var) which allow us to quantify the uncertainty of these
predictions. Figure 14.6 shows maps with the predictions and variance values.
Note that the Kriging predictions are calculated using weights that depend on
the variogram estimates, and they are therefore sensitive to misspecification of
the variogram model.

ggplot() + geom_sf(data = kpred, aes(color = var1.pred)) +
geom_sf(data = meuse) +
scale_color_viridis(name = "log(zinc)") + theme_bw()

ggplot() + geom_sf(data = kpred, aes(color = var1.var)) +
geom_sf(data = meuse) +
scale_color_viridis(name = "variance") + theme_bw()
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FIGURE 14.6: Predictions (left) and variance (right) obtained with Kriging.
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Model-based geostatistics

Model-based geostatistics can be used to analyze spatial data related to an
underlying spatially continuous phenomenon that have been collected at a
finite set of locations. Model-based geostatistics employs statistical models
to capture the spatial correlation structure in the data, enabling rigorous
statistical inference, and facilitating the production of spatial predictions along
with uncertainty measures of the phenomenon of interest (Diggle et al., 1998).

Assuming Gaussian data observed at a set of n locations, {Y1, . . . , Yn}, we can
consider the following model to obtain predictions at unsampled locations:

Yi|S(si) ∼ N(μ + S(si), τ2), i = 1, . . . , n.

Here, μ is a constant mean effect, and S(·) is a zero-mean spatial Gaussian field.
This model can be extended to situations in which the stochastic variation in
the data is not Gaussian, as well as to include covariates and other random
effects to account for other types of variability.

Inference in model-based geostatistics can be performed using the INLA and
the stochastic partial differential equation (SPDE) approaches which provide
a computationally efficient alternative to MCMC methods (Lindgren and Rue,
2015). Briefly, this involves solving a SPDE on a discrete mesh of points
and interpolating to obtain a continuous solution across the spatial domain
(Krainski et al., 2019) which is calculated using INLA (Rue et al., 2009).

Model-based geostatistics using INLA and SPDE has been employed for
spatial prediction in a wide range of applications including air pollution in
Italy (Cameletti et al., 2013), leptospirosis in Brazil (Hagan et al., 2016), and
malaria in Mozambique (Moraga et al., 2021). Model-based geostatistics also
provides a flexible approach to combine multiple data available at different
spatial resolutions to get better predictions than the ones obtained using
just one type of data (Zhong and Moraga, 2023). For example, Moraga et al.
(2017) demonstrate how to integrate air pollution measures obtained at a
collection of monitoring stations, and aggregated at cells of a regular grid
derived from satellites to obtain predictions at a continuous surface and
improve decision-making. Moreover, model-based geostatistics can also account
for preferential sampling that may occur when the spatial phenomenon of
interest and the sampling locations exhibit stochastic dependence (Diggle et al.,

173
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2010). Specifically, spatially misaligned data can be combined by assuming a
common spatial random field underlying all observations. In the integration of
data, preferential sampling can be taken into account by assuming a shared
spatial random process by both the measured observations and the intensity
of the point process that originates the locations, with a parameter controlling
the degree of preferential sampling (Zhong et al., 2023; Ribeiro Amaral et al.,
2023b).

In this chapter, we introduce the SPDE approach, and show how to specify, fit,
and interpret a geostatistical model to predict air pollution in the USA using
INLA and SPDE. Additional examples on how to implement the INLA and
SPDE approaches to fit geostatistical models are provided in Krainski et al.
(2019) and Moraga (2019). Specifically, Moraga (2019) demonstrates how to
fit both spatial and spatio-temporal models to predict malaria prevalence in
The Gambia, precipitation in Brazil, and air pollution in Spain.

15.1 The SPDE approach
The stochastic partial differential equation (SPDE) approach implemented in
the R-INLA package provides a flexible and computationally efficient way
to model geostatistical data and make predictions at unsampled locations
(Lindgren and Rue, 2015). We assume that underlying the observed data, there
is a spatially continuous variable that can be modeled using a Gaussian random
field (GRF) with Matérn covariance function which is defined as

Cov(x(si), x(sj)) = σ2

2ν−1Γ(ν) (κ||si − sj ||)νKν(κ||si − sj ||).

Here, σ2 denotes the marginal variance of the spatial field. Kν(·) refers to the
modified Bessel function of second kind and order ν > 0. The integer value
of ν determines the smoothness of the field and is typically fixed since it is
difficult to estimate in applications. κ > 0 is related to the range ρ, which
represents the distance at which the correlation between two points becomes
approximately 0. Specifically, ρ =

√
8ν/κ, and at this distance the spatial

correlation is close to 0.1 (Cameletti et al., 2013).

As shown in Whittle (1963), a GRF with a Matérn covariance matrix can be
represented as a solution of the following continuous domain SPDE:

(κ2 − Δ)α/2(τx(s)) = W(s).



15.1 The SPDE approach 175

Here, x(s) represents a GRF, and W(s) is a Gaussian spatial white noise
process. The parameter α controls the smoothness exhibited by the GRF, τ
controls its variance, and κ > 0 is a scale parameter. The Laplacian Δ is
defined as

∑d
i=1

∂2

∂x2
i
, where d is the dimension of the spatial domain.

The parameters of the Matérn covariance function and the SPDE are related
as follows. The smoothness parameter ν of the Matérn covariance function is
expressed as ν = α − d

2 , and the marginal variance σ2 is related to the SPDE
through

σ2 = Γ(ν)
Γ(α)(4π)d/2κ2ντ2 .

In the case where d = 2 and ν = 1/2, which corresponds to the exponential
covariance function, the parameter α = ν + d/2 = 1/2 + 1 = 3/2. In the
R-INLA package, the default value is α = 2, although options within the
range 0 ≤ α < 2 are also available.

The Finite Element method can be used to find an approximate solution to
the SPDE. This method involves dividing the spatial domain into a set of
non-intersecting triangles, creating a triangulated mesh with n nodes and n
basis functions. The basis functions, denoted as ψk(·), are piecewise linear
functions on each triangle. They take the value of 1 at vertex k, and 0 at all
other vertices.

Then, the continuously indexed Gaussian field x is represented as a discretely
indexed Gaussian Markov random field (GMRF) by a sum of basis functions
defined on the triangulated mesh

x(s) =
n∑

k=1
ψk(s)xk,

where n is the number of vertices of the triangulation, ψk(·) represents the piece-
wise linear basis functions, and {xk} denote zero-mean Gaussian distributed
weights.

The joint distribution of the weight vector is assigned a Gaussian distribution
represented as x = (x1, . . . , xn) ∼ N(0, Q−1(τ, κ)). This distribution approxi-
mates the solution x(s) of the SPDE at the mesh nodes. The basis functions
transform the approximation x(s) from the mesh nodes to the other spatial
locations of interest.

Projection matrix
The SPDE approach can be implemented with R-INLA by creating a projec-
tion matrix A that projects the GRF from the observations to the vertices of
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the triangulated mesh. The projection matrix A has a number of rows equal to
the number of observations, and a number of columns equal to the number of
vertices of the mesh. Each row i of A corresponds to an observation at location
si, and may have up to three non-zero values in the columns that correspond
to the vertices of the triangle containing the location. If si lies within the
triangle, these values are equal to the barycentric coordinates. In other words,
they are proportional to the areas of each of the three subtriangles formed by
the location si and the triangle’s vertices, and they sum to 1. If si coincides
with a vertex of the triangle, row i has just one non-zero value equal to 1 in
the column that corresponds to that vertex.

For example, the projection matrix below has n rows as the number of obser-
vations, and G columns as the number of vertices of the triangulated mesh.
The first row of the matrix corresponds to an observation located at the vertex
in the third position. The second and last rows correspond to observations
located within triangles.

A =

⎡⎢⎢⎢⎣
A11 A12 A13 . . . A1G

A21 A22 A23 . . . A2G

...
...

...
. . .

...
An1 An2 An3 . . . AnG

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 1 . . . 0

A21 A22 0 . . . A2G

...
...

...
. . .

...
An1 An2 An3 . . . 0

⎤⎥⎥⎥⎦
Figure 15.1 shows a location s within one of the triangles of a triangulated
mesh. The value of the process Z(·) at s is determined through a weighted
average of the process values at the triangle’s vertices (Z1, Z2, Z3). These
weights are calculated by dividing the areas of the subtriangles (T1, T2, T3) by
the area of the larger triangle that contains s (T ):

Z(s) ≈ T1
T

Z1 + T2
T

Z2 + T3
T

Z3.

Thus, the value Z(s) at a location within a mesh triangle can be obtained by
projecting the plane formed by the triangle vertices weights at location s.

15.2 Air pollution prediction
In this section, we show how to fit a geostatistical model to predict fine
particulate matter PM2.5 in the USA using the INLA and SPDE approaches.
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FIGURE 15.1: Triangle of a triangulated mesh.

15.2.1 Observed PM2.5 values in the USA
Annual averages of PM2.5 concentration levels recorded at 1429 monitoring
stations from the United States Environmental Protection Agency1 in 2022 are
in the PM25USA2022.csv file that can be downloaded from this website2. We
use the read.csv() function to read the data which contains the longitude
and latitude values of the monitoring stations, and the recorded PM2.5 values
in micrograms per cubic meter. Then, we use the st_as_sf() function to
transform the data.frame obtained to a sf object with geographic CRS given
by EPSG code 4326.

library(sf)
f <- file.path("https://www.paulamoraga.com/book-spatial/",

"data/PM25USA2022.csv")
d <- read.csv(f)
d <- st_as_sf(d, coords = c("longitude", "latitude"))
st_crs(d) <- "EPSG:4326"

We then obtain the map of the USA with the ne_countries() function of
rnaturalearth. We use st_crop() to remove Alaska and other areas that
are outside the region comprised by longitude values (–130, 60) and latitude
values (18, 72).

library(rnaturalearth)
map <- ne_countries(type = "countries",

country = "United States of America",
scale = "medium", returnclass = "sf")

map <- st_crop(map, xmin = -130, xmax = -60, ymin = 18, ymax = 72)

1https://www.epa.gov/
2https://www.paulamoraga.com/book-spatial/data/PM25USA2022.csv

https://www.epa.gov
https://www.paulamoraga.com
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We then keep the 1366 monitoring stations locations that are within the map
by using the st_filter() function.

d <- st_filter(d, map)
nrow(d)

[1] 1366

Figure 15.2 shows a map with the PM2.5 observed values.

library(ggplot2)
library(viridis)
ggplot() + geom_sf(data = map) +

geom_sf(data = d, aes(col = value)) +
scale_color_viridis()

15.2.2 Prediction data
Here, we construct a matrix coop with the locations where the air pollution
levels will be predicted. First, we create a raster grid with 100 × 100 cells
covering the map using the rast() function of terra. Then, we obtain the
coordinates of the cells with the xyfromCell() function of terra.

library(sf)
library(terra)

# raster grid covering map
grid <- terra::rast(map, nrows = 100, ncols = 100)
# coordinates of all cells
xy <- terra::xyFromCell(grid, 1:ncell(grid))

Then, we use the st_as_sf() function to create a sf object with the coordi-
nates of the prediction locations by specifying the coordinates as a data frame,
the name of the coordinates, and the CRS. We obtain the indices of the point
coordinates that are within the map with st_intersects() setting sparse =
FALSE. We will later use these indices to identify the prediction locations. We
also obtain the point coordinates that are within the map with sf_filter().
Figure 15.2 shows the prediction locations.

# transform points to a sf object
dp <- st_as_sf(as.data.frame(xy), coords = c("x", "y"),

crs = st_crs(map))
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# indices points within the map
indicespointswithin <- which(st_intersects(dp, map,

sparse = FALSE))

# points within the map
dp <- st_filter(dp, map)

# plot
ggplot() + geom_sf(data = map) +

geom_sf(data = dp)
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FIGURE 15.2: Map with the PM2.5 observed values (top) and prediction
locations (bottom).

15.2.3 Covariates
In our model, we use average temperature and precipitation as covari-
ates. Monthly values of these variables globally can be obtained with the
worldclim_global() function of geodata.

library(geodata)
covtemp <- worldclim_global(var = "tavg", res = 10,
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path = tempdir())
covprec <- worldclim_global(var = "prec", res = 10,

path = tempdir())

After downloading the data, we compute the averages over months and extract
the values at the observation and prediction locations with the extract()
function of terra.

# Extract at observed locations
d$covtemp <- extract(mean(covtemp), st_coordinates(d))[, 1]
d$covprec <- extract(mean(covprec), st_coordinates(d))[, 1]
# Extract at prediction locations
dp$covtemp <- extract(mean(covtemp), st_coordinates(dp))[, 1]
dp$covprec <- extract(mean(covprec), st_coordinates(dp))[, 1]

Figure 15.3 shows maps of the temperature and precipitation covariates at the
observation locations created with the ggplot2 and patchwork packages.

library("patchwork")
p1 <- ggplot() + geom_sf(data = map) +

geom_sf(data = d, aes(col = covtemp)) +
scale_color_viridis()

p2 <- ggplot() + geom_sf(data = map) +
geom_sf(data = d, aes(col = covprec)) +
scale_color_viridis()

p1 / p2

15.2.4 Transforming coordinates to UTM
The data we are dealing with have a geographic CRS that references locations
using longitude and latitude values. In order to work with kilometers instead of
degrees, we use st_transform() to transform the CRS of the sf objects with
the data corresponding to the observed (d) and the prediction (dp) locations
from geographic to a projected CRS. Specifically, we use the Mercator projection
that is given by EPSG code 3857 and use kilometers as units. To do that,
we use the projection given by st_crs("EPSG:3857")$proj4string replacing
+units=m by +units=km.

st_crs("EPSG:3857")$proj4string
projMercator<-"+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0
+x_0=0 +y_0=0 +k=1 +units=km +nadgrids=@null +wktext +no_defs"
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FIGURE 15.3: Temperature and precipitation measurements at the observa-
tion locations.

d <- st_transform(d, crs = projMercator)
dp <- st_transform(dp, crs = projMercator)

15.2.5 Coordinates of observed and prediction locations
After transforming the data, we use the st_coordinates() function to cre-
ate matrices with the projected coordinates of the observed and prediction
locations.

# Observed coordinates
coo <- st_coordinates(d)

# Predicted coordinates
coop <- st_coordinates(dp)



182 15 Model-based geostatistics

15.2.6 Model
Now we specify the model that we use to predict PM2.5 values at unsampled
locations. We assume that Yi, the PM2.5 values measured at locations i =
1, . . . , n, can be modeled as

Yi ∼ N(μi, σ2),

μi = β0 + β1 × tempi + β2 × preci + S(xi),

where β0 is the intercept, and β1 and β2 are, respectively, the coefficients of
temperature and precipitation. S(·) is a spatial random effect that is modeled
as a zero-mean Gaussian process with Matérn covariance function.

15.2.7 Mesh construction
To fit the model using the SPDE approach, we first create a triangulated mesh
covering the study region where we approximate the Gaussian random field as a
Gaussian Markov random field. INLA produces good approximations by using a
fine mesh consisting of very small triangles and with a large separation distance
between the locations and the mesh boundary to avoid boundary effects by
which the variance is increased near the boundary. In some applications the
use of such a fine mesh could be computationally intensive, and we usually
work with meshes that still produce good approximations consisting of an inner
region with small triangles where precision is needed, and an outer extension
with larger triangles where accurate approximations are not needed.

Here, we create the mesh with the inla.mesh.2d() function of R-INLA. We
pass as arguments loc = coo with the location coordinates, and max.edge =
c(200, 500) with the maximum allowed triangle edge lengths in the region
and the extension to have smaller triangles within the region than in the
extension. We also specify cutoff = 1 with the minimum allowed distance
between points to avoid building many small triangles in areas where locations
are located close to each other (Figure 15.4). The number of vertices of the
mesh can be obtained with mesh$n, and the mesh can be plotted as follows.

library(INLA)
summary(dist(coo)) # summary of distances between locations

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1107 1966 2242 3311 6318
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mesh <- inla.mesh.2d(loc = coo, max.edge = c(200, 500),
cutoff = 1)

mesh$n

[1] 3711

plot(mesh)
points(coo, col = "red")
axis(1)
axis(2)

Constrained refined Delaunay triangulation

-14000 -12000 -10000 -8000 -6000

20
00

40
00

60
00

FIGURE 15.4: Mesh used in the SPDE approach. Locations of PM2.5
measurements are depicted as red points.

15.2.8 Building the SPDE on the mesh
Then, we use the inla.spde2.matern() function to build the SPDE model.
This function has parameters mesh with the triangulated mesh constructed
and constr = TRUE to impose an integrate-to-zero constraint. Moreover, we
set the smoothness parameter ν equal to 1. In the spatial case d = 2 and
α = ν + d/2 = 2.
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spde <- inla.spde2.matern(mesh = mesh, alpha = 2, constr = TRUE)

15.2.9 Index set
Then, we create an index set for the SPDE model using the
inla.spde.make.index() function, where we provide the effect name
(s) and the number of vertices in the SPDE model (spde$n.spde). This
function generates a list with the vector s ranging from 1 to spde$n.spde.
Additionally, it creates two vectors, s.group and s.repl, containing all
elements set to 1 and lengths equal to the number of mesh vertices.

indexs <- inla.spde.make.index("s", spde$n.spde)
lengths(indexs)

s s.group s.repl
3711 3711 3711

15.2.10 Projection matrix
We use the inla.spde.make.A() function of R-INLA passing the mesh
(mesh) and the coordinates (coo) to easily construct a projection matrix A that
projects the spatially continuous Gaussian random field from the observations
to the mesh nodes.

A <- inla.spde.make.A(mesh = mesh, loc = coo)

We can see the projection matrix A has a number of rows equal to the number
of observations, and a number of columns equal to the number of vertices of
the mesh. We also see the elements of each row of A sum to 1.

# dimension of the projection matrix
dim(A)

[1] 1366 3711

# number of observations
nrow(coo)

[1] 1366
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# number of vertices of the triangulation
mesh$n

[1] 3711

# elements of each row sum to 1
# rowSums(A)

We also create a projection matrix for the prediction locations.

Ap <- inla.spde.make.A(mesh = mesh, loc = coop)

15.2.11 Stack with data for estimation and prediction
We now create a stack with the data for estimation and prediction that organizes
data, effects, and projection matrices. We create stacks for estimation (stk.e)
and prediction (stk.p) using tag to identify the type of data, data with the
list of data vectors, A with the projection matrices, and effects with a list
of fixed and random effects. First, we create a stack named stk.e containing
the data for estimation which is tagged with the string "est". In data, we
specify the response vector with the observed PM2.5 values. The projection
matrix is giving in argument A, which is a list where the second element is the
projection matrix for the random effects (A) and the first element is set to 1 to
indicate that the fixed effects are directly mapped one-to-one to the response.
To define the effects, we pass a list containing the fixed and random effects. The
fixed effects are a data.frame consisting of an intercept (b0) and covariates
temperature (covtemp) and precipitation (covprec). The random effect is
represented by the spatial Gaussian random field s containing a list with the
indices of the SPDE object (indexs). Additionally, we construct another stack
called stk.p for prediction, which is labeled with the tag "pred". The data,
projection matrix and effects are specified for the prediction locations. The
response vector in the argument data of this stack is set to a list with NA
because these are values we want to predict. Finally, we combine stk.e and
stk.p into a single full stack named stk.full.

# stack for estimation stk.e
stk.e <- inla.stack(tag = "est",
data = list(y = d$value), A = list(1, A),
effects = list(data.frame(b0 = rep(1, nrow(A)),
covtemp = d$covtemp, covprec = d$covprec),
s = indexs))
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# stack for prediction stk.p
stk.p <- inla.stack(tag = "pred",
data = list(y = NA), A = list(1, Ap),
effects = list(data.frame(b0 = rep(1, nrow(Ap)),
covtemp = dp$covtemp, covprec = dp$covprec),
s = indexs))

# stk.full has stk.e and stk.p
stk.full <- inla.stack(stk.e, stk.p)

15.2.12 Model formula and inla() call
Then, we specify the formula by including the response variable, the ~ symbol,
and the fixed and random effects. In the formula, we eliminate the intercept
by adding 0 and include it as a covariate term by adding b0. This step ensures
that all covariate terms are properly captured within the projection matrix.

formula <- y ~ 0 + b0 + covtemp + covprec + f(s, model = spde)

Finally, we call inla() by specifying the formula, family, stack with the
data, and options. We set control.predictor = list(compute = TRUE) and
control.compute = list(return.marginals.predictor = TRUE) to com-
pute and return the marginals for the linear predictor.

res <- inla(formula, family = "gaussian",
data = inla.stack.data(stk.full),
control.predictor = list(compute = TRUE,

A = inla.stack.A(stk.full)),
control.compute = list(return.marginals.predictor = TRUE))

15.2.13 Results
A summary of the results can be inspected with summary(res). The object
res$summary.fixed provides the mean and quantiles of the posterior distri-
bution of the intercept and coefficients of the covariates.

res$summary.fixed

mean sd 0.025quant 0.5quant
b0 3.88493 0.281396 3.326782 3.886731
covtemp 0.23917 0.019948 0.200858 0.238858
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covprec 0.00273 0.003066 -0.003416 0.002772
0.975quant mode kld

b0 4.432755 3.886717 1.730e-08
covtemp 0.279225 0.238854 5.777e-08
covprec 0.008634 0.002772 4.847e-08

We observe the coefficient of temperature is β̂1 = 0.239 with a 95% credible
interval equal to (0.201, 0.279). The coefficient of precipitation is β̂2 = 0.003
with a 95% credible interval equal to (–0.003, 0.009). Thus, temperature is
significantly associated with PM2.5, whereas precipitation is not significant.

15.2.14 Mapping predicted PM2.5 values
The res$summary.fitted.values object contains the posterior mean and
quantiles of the fitted values. We can obtain the indices corresponding to the
prediction locations by using the inla.stack.index() function passing the
full stack and tag = "pred". Then, we retrieve the column "mean" with the
posterior mean, and columns "0.025quant" and "0.975quant" with lower
and upper limits of 95% credible intervals denoting the uncertainty of the
predictions.

index <- inla.stack.index(stack = stk.full, tag = "pred")$data
pred_mean <- res$summary.fitted.values[index, "mean"]
pred_ll <- res$summary.fitted.values[index, "0.025quant"]
pred_ul <- res$summary.fitted.values[index, "0.975quant"]

We assign the predicted values to their corresponding cells within the map
that are in the object grid that contains the prediction locations.

grid$mean <- NA
grid$ll <- NA
grid$ul <- NA

grid$mean[indicespointswithin] <- pred_mean
grid$ll[indicespointswithin] <- pred_ll
grid$ul[indicespointswithin] <- pred_ul

summary(grid) # negative values for the lower limit

mean ll ul
Min. : 2 Min. : 0 Min. : 3
1st Qu.: 6 1st Qu.: 4 1st Qu.: 7
Median : 7 Median : 5 Median : 8
Mean : 7 Mean : 5 Mean : 8
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3rd Qu.: 8 3rd Qu.: 6 3rd Qu.:10
Max. :15 Max. :13 Max. :17
NA's :4189 NA's :4189 NA's :4189

Then, we plot the posterior mean and 95% credible intervals of the predicted
PM2.5 values with the levelplot() function of rasterVis package. Figure
15.5 depicts maps with the spatial pattern of the predicted PM2.5 levels as
well as their associated uncertainty.

library(rasterVis)
levelplot(grid, layout = c(1, 3),
names.attr = c("Mean", "2.5 percentile", "97.5 percentile"))

Longitude

La
tit

ud
e

30°N
35°N
40°N
45°N

Mean

2.5 percentile

30°N
35°N
40°N
45°N

120°W 100°W 80°W

97.5 percentile

0

2

4

6

8

10

12

14

16

FIGURE 15.5: Posterior mean and lower and upper limits of uncertainty
intervals of PM2.5.

15.2.15 Exceedance probabilities
We can also obtain probabilities that PM2.5 exceed a specific threshold level
with the inla.pmarginal() function. Specifically, we calculate the probabili-
ties that PM2.5 levels exceed 10 micrograms per cubic meter. That is, P(PM2.5
> 10) = 1 – P(PM2.5 ≤ 10).
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excprob <- sapply(res$marginals.fitted.values[index],
FUN = function(marg){1-inla.pmarginal(q = 10, marginal = marg)})

Then, we add the exceedance probabilities as a layer in grid, and we plot
it with levelplot(). In levelplot(), we set margin = FALSE to hide the
marginal graphics of the column and row summaries of the raster object. Figure
15.6 shows the probabilities that PM2.5 levels exceed 10 micrograms per cubic
meter. We observe high probabilities in the west coast and south part of the
country.

grid$excprob <- NA
grid$excprob[indicespointswithin] <- excprob

levelplot(grid$excprob, margin = FALSE)
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FIGURE 15.6: Probability that PM2.5 levels exceed 10 micrograms per
cubic meter.
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16
Methods assessment

The predictive performance of a spatial interpolation method can be assessed in
several ways. For example, we can compare the observations and the predictions
made at a set of locations using the Mean Absolute Error (MAE), the Root
Mean Squared Error (RMSE), and the 95% Coverage Probability (CP).

Let yi and ŷi be the observed and predicted values, respectively, at locations
xi, i = 1, . . . , m. We can calculate the Mean Absolute Error as

MAE = 1
m

m∑
i=1

|yi − ŷi|,

and the Root Mean Squared Error as

RMSE =
(

1
m

m∑
i=1

(yi − ŷi)2

)1/2

.

The 95% coverage probability is the proportion of times that the observed
values are within their corresponding 95% prediction intervals and can be
calculated as

1
m

m∑
i=1

I
(

yi ∈ PI95%
i

)
,

where I
(
yi ∈ PI95%

i

)
is an indicator function that takes the value 1 if yi is

inside its 95% prediction interval PI95%
i , and 0 otherwise.

If the spatial interpolation method provides prediction distributions, the Con-
tinuous Ranked Probability Score (CRPS) can be used to compare observations
and predictions accounting for the uncertainty (Matheson and Winkler, 1976).
The CRPS for observation y is a score function that compares the Cumula-
tive Distribution Function (CDF) of the prediction distribution (F ) with the
degenerate CDF of the observation (1{u ≥ y}):

CRPS(F, y) =
∫ +∞

−∞
(F (u) − 1{u ≥ y})2

du.
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Figure 16.1 shows a plot representing the CRPS for a given observation. Note
that a good method would yield a predicted distribution close to the observed
value. Therefore, the preferred method would be one where the squared area
between the two CDFs is small.

The CRPS for a set of observations can be calculated by aggregating the CRPS
of the individual observations using an average or weighted average. A perfect
CRPS score is equal to 0. Note that the CRPS reduces to the MAE if the
predicted distribution is just a point estimate and not a distribution.

FIGURE 16.1: Left: Observation and prediction distribution. Right: Contin-
uous Ranked Probability Score (CRPS) represented as the gray area between
the cumulative distribution functions.

16.1 Cross-validation
The performance indices presented above can be computed using a new dataset
or by splitting an existing dataset into a training dataset to fit the model and
a testing dataset for validation. In cross-validation, the data is randomly split
into several disjoint folds. Then, each fold is put aside in turn and used to
evaluate the predictions obtained from a model fitted on the remaining folds.
This procedure is called K-fold cross-validation if the data is split into K folds,
and leave-one-out cross-validation (LOOCV) if each fold consists of only one
observation.

In applications where spatial autocorrelation is present, randomly splitting
the data into training and testing datasets may lead to an overestimation of
the predictive performance since the characteristics of the testing and training
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datasets could be similar. In these situations, better performance measures
may be used by employing spatial cross-validation and probability sampling.

Spatial cross-validation generates training and testing locations that are enough
separated to provide independent datasets. For example, the blockCV package
(Valavi et al., 2023) provides a range of functions to generate spatially and
environmentally separated datasets for spatial K-fold and LOOCV. The package
includes functions to construct spatial and buffer blocks, and to allocate them
to cross-validation folds. It also has functionality to assess the level of spatial
autocorrelation to help select the blocks and the buffer sizes appropriately.

Note also that spatial cross-validation techniques may generate training
datasets where geographic and therefore covariate space is excluded caus-
ing under-representation of environmental conditions similar to those at the
validation locations. Probability sampling can be used in these situations to
obtain a more representative set of locations and avoid extrapolation problems
(Wadoux et al., 2021).
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17
Spatial point patterns

Spatial point patterns are countable sets of points that arise as realizations of
stochastic spatial point processes taking values in a planar region A ⊂ R

2. A
spatial point pattern can be denoted as {x1, x2, . . . , xN(A)}, where N(A) is
the number of points in A. Note that N(A) is a random variable. Therefore,
different realizations of the spatial point process may result in both different
numbers and locations of points (Baddeley et al., 2016). We often refer to the
points in the point pattern as events to distinguish them from arbitrary points
in the plane.

Spatial point patterns arise in many domains. Examples include locations of
individuals with a certain disease in a city (Moraga and Montes, 2011; Ribeiro
Amaral et al., 2023a), species in a region (Moraga, 2021b), and cells in a
tissue (González and Moraga, 2023a). The spatstat package (Baddeley et al.,
2022) can be used to work with spatial point patterns. The package includes a
number of functions that allow us to conduct spatial analysis, such as assessing
the randomness of spatial point patterns, and to formulate and fit models to
point pattern data.

An example of spatial point pattern is given by the swedishpines data from
spatstat. This pattern represents the locations of 71 trees in a Swedish forest
plot of 9.6 × 10 meters (Figure 17.1).

library(spatstat)
data(swedishpines)
X <- swedishpines
plot(X)
axis(1)
axis(2)
summary(X)

To get an impression of the spatial point pattern, we can calculate the in-
tensity of events, which indicates the mean number of events per unit area.
The density() function of the spatstat package can be used to compute a
kernel smoothed intensity function from a point pattern. This function has an
argument called kernel that indicates the type of kernel (Gaussian by default),
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and an argument called sigma which refers to the smoothing bandwidth, the
standard deviation of the smoothing kernel.

In the swedishpines data, the coordinates of the point pattern are expressed
in decimeters (0.1 meter). Here, we use density() with sigma = 10 so the
smoothing bandwidth is 10 decimeters or 1 meter. Figure 17.1 shows the
estimated intensity. We observe that the intensity varies across the region, and
the average intensity is equal to 0.0074 trees per square decimeter, that is, 0.74
trees per square meter.

# density() calls density.ppp() if the argument is a ppp object
den <- density(x = X, sigma = 10)
summary(den)
plot(den, main = "Intensity")
contour(den, add = TRUE) # contour plot

Planar point pattern: 71 points
Average intensity 0.007396 points per square unit
(one unit = 0.1 metres)

Coordinates are integers i.e. rounded to the nearest unit

Window: rectangle = [0, 96] x [0, 100] units
Window area = 9600 square units
Unit of length: 0.1 metres

real-valued pixel image
128 x 128 pixel array (ny, nx)
enclosing rectangle: [0, 96] x [0, 100] units
dimensions of each pixel: 0.75 x 0.7812 units
Pixel values

range = [0.001842, 0.01569]
integral = 71.02
mean = 0.007398

17.1 Examples
The spatstat package contains a number of examples of spatial point patterns.
Here, we describe some of the data included in spatstat, and this document1

provides an overview of all the data included in the package.

1https://cran.r-project.org/web/packages/spatstat/vignettes/datasets.pdf

https://cran.r-project.org
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FIGURE 17.1: Locations (top) and intensity (bottom) of 71 trees in a
Swedish forest plot.

Japanese pines

The japanesepines data from spatstat represents locations of 65 saplings
of Japanese pine in a 5.7 × 5.7 square meter sampling region in a natural
stand (Figure 17.2). An interesting question when analyzing this data could
be whether the spacing between saplings is greater than would be expected for
a random pattern (which could indicate competition for resources).
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library(spatstat)
japanesepines

Planar point pattern: 65 points
window: rectangle = [0, 1] x [0, 1] units (one unit =
5.7 metres)

plot(japanesepines)
axis(1)
axis(2)
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FIGURE 17.2: Locations of 65 saplings of Japanese pine in a natural stand.

Trees in a forest

Spatial point patterns can also have an associated value, and these are called
marked point patterns. An example of marked point pattern is given by the
longleaf data from spatstat which contains locations of 584 trees in a forest
of longleaf pine trees in Georgia, USA, along with their diameter at breast
height (dbh), a convenient surrogate measure of size and age (Figure 17.3).
Here, it would be interesting to understand the spatial variation in the density
and age of trees.
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longleaf

Marked planar point pattern: 584 points
marks are numeric, of storage type 'double'
window: rectangle = [0, 200] x [0, 200] metres

plot(longleaf)
axis(1)
axis(2)
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FIGURE 17.3: Locations and diameters of 584 trees in a forest of longleaf
pine trees in Georgia, USA.

Castilla-La Mancha forest fires

The clmfires data contains the locations and information of forest fires in the
Castilla-La Mancha region of Spain between 1998 and 2007. Figure 17.4 shows
the fire locations and four marks with information about each fire, namely,
the cause of fire (cause), the total area burned in hectares (burnt.area), the
date of fire (date), and the number of days elapsed since 1 January 1998
(julian.date). The main question when analyzing this data could be to
understand the spatio-temporal variability of forest fires and potential risk
factors.
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clmfires

Marked planar point pattern: 8488 points
Mark variables: cause, burnt.area, date, julian.date
window: polygonal boundary
enclosing rectangle: [4.1, 391.4] x [18.6, 385.2]
kilometres

plot(clmfires)
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FIGURE 17.4: Locations and information of forest fires in Castilla-La
Mancha, Spain.

Hamster tumor data

The hamster data provides the centers of the nuclei of certain cells in a section
of tissue from a laboratory-induced lymphoma in the kidney of a hamster
(Figure 17.5). The nuclei are classified as either “pyknotic” (corresponding to
dying cells) or “dividing” (corresponding to cells in the act of dividing). The
background void is occupied by unrecorded, interphase cells in relatively large
numbers. Using this data, we could investigate how different types of cells
interact, and what is the relationship between the degree of cells interaction
and cancer stage and survival.

hamster
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Marked planar point pattern: 303 points
Multitype, with levels = dividing, pyknotic
window: rectangle = [0, 1] x [0, 1] units (one unit =
250 microns)

plot(hamster)

  hamster

pyknotic

dividing

FIGURE 17.5: Cells in a tissue from a lymphoma in the kidney of a hamster.

Chorley-Ribble data

The chorley data gives the addresses of 58 larynx cancer cases and 978 lung
cancer cases, recorded in the Chorley and South Ribble Health Authority of
Lancashire, England, between 1974 and 1983. Figure 17.6 shows the locations
of the case addresses, as well as the location of a disused industrial incinerator.
After allowing for spatial variation in the density of the susceptible population,
we could assess the evidence for an increase in the incidence of larynx cancer
near the incinerator. Here, the lung cancer cases could serve as a surrogate for
the spatially varying population density.

chorley

Marked planar point pattern: 1036 points
Multitype, with levels = larynx, lung
window: polygonal boundary
enclosing rectangle: [343.4, 366.4] x [410.4, 431.8]
km
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plot(chorley)
points(chorley.extra$incin, pch = 10, cex = 2, col = "blue")

  chorley

lung

larynx

FIGURE 17.6: Locations of larynx and lung cancer cases, and the location
of a disused industrial incinerator in a region of Lancashire, England.
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The spatstat package

The spatstat package (Baddeley et al., 2022) can be used for statistical
analysis of spatial point patterns. In spatstat, spatial point patterns are
represented with objects of class ppp that contain the event locations with
possibly associated marks, and the observation window where the events occur.
Here, we show how to use spatstat to create ppp objects representing spatial
point patterns, and how to transform ppp objects to sf objects to be able to
work with the data using packages such as sf.

18.1 Creating spatial point patterns
In spatstat, spatial point patterns are represented as objects of class ppp
(planar point pattern). To create a ppp object, we use the ppp() function
passing the vectors x and y with the event coordinates, and the observation
window which is of class owin.

For example, here we create a spatial point pattern of 100 randomly generated
points in the region [0, 1] × [0, 2]. First, we use the owin() function to create
an object of class owin with the observation window [0, 1] × [0, 2] passing the
ranges of the horizontal and vertical axes.

library(spatstat)
win <- owin(xrange = c(0, 1), yrange = c(0, 2))
# plot(win)

Then, we simulate 100 random points in the observation window [0, 1] × [0, 2].

x <- runif(100, 0, 1)
y <- runif(100, 0, 2)

Finally, we create the ppp object with the ppp() function passing the x and y
coordinates of the events, and the owin object with the window.

205



206 18 The spatstat package

X <- ppp(x = x, y = y, window = win)
X

Planar point pattern: 100 points
window: rectangle = [0, 1] x [0, 2] units

Figure 18.1 shows the plot of the ppp object.

plot(X)
axis(1)
axis(2)
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FIGURE 18.1: Point pattern of 100 independent uniform random points
generated in [0, 1] × [0, 2].

We can extract the observation window of the point pattern X with Window().

Window(X)

window: rectangle = [0, 1] x [0, 2] units

An alternative way of simulating a spatial point pattern of independent uniform
random points in a given region is by using the runifpoint() function. The
arguments of runifpoint() include the number n of points and the window
of class owin where the point pattern is simulated. For example, the previous
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pattern could have been generated using X <- runifpoint(n = 100, win =
win).

Marks denoting associated information of events can be set with marks() or
%mark%. For example, Figure 18.2 shows the previous point pattern X where
we add a mark with a numeric value to each of the events.

marks(X) <- 1:npoints(X)
X <- X %mark% 1:npoints(X)
plot(X)
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FIGURE 18.2: Point pattern of 100 independent uniform random points
generated in [0, 1] × [0, 2] with numeric marks.

Note that the definition of an observation window that represents the study
region of the point pattern needs to be carefully specified, as it affects the
visualization and analysis of the data, and possibly the conclusions obtained.
For example, if the previous point pattern was thought to be observed in
the window [0, 5] × [0, 5], the data would appear as a cluster in the bottom
left corner of the window instead of randomly in [0, 1] × [0, 2]. Note that this
situation, depicted in Figure 18.3, would change the interpretation of the data.

win2 <- owin(xrange = c(0, 5), yrange = c(0, 5))
X2 <- ppp(x = x, y = y, window = win2)
plot(X2)
axis(1)
axis(2)
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FIGURE 18.3: Point pattern of 100 independent uniform random points
generated in [0, 1] × [0, 2] plotted in [0, 5] × [0, 5].

The inside.owin() function can be used to test whether a set of points lie
within a particular observation window. For example, we can identify the
points in the point pattern X that are inside the unit square by passing the
points and the observation window as follows:

win <- owin() # unit square observation window
marks(X) <- inside.owin(X, w = win)
plot(X)
axis(1)
axis(2)

18.2 Converting between ppp and sf objects
From ppp to sf

In some situations, we may be interested in transforming an object of class ppp
to an object of class sf to be able to manipulate and visualize the data using
other packages such as sf. Here, we show how to use the st_as_sf() function
from sf to transform the longleaf data from sptatstat which contains the
locations and sizes of long leaf pine trees, from ppp to sf class.
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FIGURE 18.4: Point pattern of 100 independent uniform random points
generated in [0, 1] × [0, 2] with labels that indicate whether points lie inside or
outside the unit square.

First, we create a data frame containing the coordinates and the marks of the
ppp object. Then, we create a sf object by using the st_as_sf() function of
sf passing the data frame and specifying the name of the columns that contain
the event coordinates in argument coords. The window of the point pattern
can also be converted to sf with st_as_sf(Window(X)).

library(sf)
# ppp object
X <- longleaf
# create data frame with coordinates and marks
ddf <- data.frame(x = X$x, y = X$y, m = marks(X))
# create sf object with data frame and name of coordinates
d <- st_as_sf(ddf, coords = c("x", "y"))

From sf to ppp

We can also convert a sf object to a ppp object with as.ppp() by providing
the point coordinates and the observation window. For example, here we obtain
the coordinates of the sf object in matrix form with st_coordinates(), and
consider the observation window as the bounding box of the data which can
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be obtained with st_bbox(). Marks of the points can be set with marks() or
%mark%. Figure 18.5 shows the plot of the ppp object obtained.

X <- as.ppp(st_coordinates(d), st_bbox(d))
marks(X) <- d$m # alternatively we can use X <- X %mark% d$m
plot(X)

In case we wish to use a polygon of class sf as observation window, we can
use as.owin() to transform the sf object to an owin object. Note that the
sf object needs to be in a projected coordinate reference system. Here, we
show an example on how to create a spatial point pattern with the boundary
of Brazil as observation window. First, we obtain the Brazil map with the
rnaturalearth package. Then, we use st_transform() to transform the map
to projection EPSG 29172 (UTM zone 22N). Finally, we use runifpoint()
to generate 100 independent uniform random points within the observation
window (Figure 18.5).

library(rnaturalearth)
map <- ne_countries(type = "countries", country = "Brazil",

scale = "medium", returnclass = "sf")
map <- st_transform(map, crs = "EPSG:29172")
win <- as.owin(map)
X <- runifpoint(100, win = win)
plot(X)
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FIGURE 18.5: Spatial point pattern converted from sf to ppp considering
the observation window as the bounding box of the data (top) and as a polygon
(bottom).
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Spatial point processes and simulation

19.1 Spatial point processes
A stochastic process is a collection of random variables Xi where i belongs to
an indexing set I, and each Xi takes values in a sample space. A spatial point
process {X1, X2, . . . , XN(A)} is a stochastic process taking values in A ⊂ R

2.
A realization of a spatial point process is referred to as spatial point pattern
and consists of a countable set of points {x1, x2, . . . , xN(A)} in the plane. We
write N(A) for the number of events in a planar region A, N(A) = #(xi ∈ A).
Note that N(A) is a random variable, and therefore, different realizations of
the spatial point process may result in both different numbers and locations
of events. We commonly refer to the points in the point pattern as events, to
differentiate them from arbitrary points in the plane.

Let dx and dy denote small regions containing the points x and y, respectively.
The (first-order) intensity function of a spatial point process is defined as

λ(x) = lim
|dx|→0

E[N(dx)]
|dx| .

The second-order intensity function is

λ2(x, y) = lim
|dx|→0,|dy|→0

E[N(dx)N(dy)]
|dx||dy| .

The covariance density is expressed as

γ(x, y) = λ2(x, y) − λ(x)λ(y).

A spatial point process is stationary and isotropic if its statistical properties
do not change under translation and rotation, respectively. More specifically,
for any integer k and regions {Ai : i = 1, . . . , k}, a process is stationary
if the joint distribution of N(A1), . . . , N(Ak) is invariant to translation by
an arbitrary amount x. The process is isotropic if the joint distribution of
N(A1), . . . , N(Ak) is invariant to rotation through an arbitrary angle θ. That
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is, if there are no directional effects. Moreover, the process is orderly if there
can be no co-located observations so lim|A|→0 P (N(A) > 1) = 0.

Given a stationary and isotropic spatial point process, the intensity function
is a constant equal to the expected number of events per unit area:

λ(x) = λ = E[N(A)]
|A| .

Thus, the second-moment intensity reduces to a function of distance:

λ2(x, y) = λ2(||x − y||) = λ2(h),

where h = ||x − y|| is the distance between x and y. Moreover, the covariance
density is expressed as

γ(x, y) = γ(h) = λ2(h) − λ2.

19.2 Poisson processes
Let λ(·) be a non-negative valued function, called intensity function of the
spatial point process. A Poisson process is characterized by the following
properties:

1. The number of events in any region A, N(A), follows a Poisson distribution
with mean

μ(A) =
∫

A

λ(x)dx.

Thus, P (N(A) = n) = exp(−μ(A)) μ(A)n

n! .

2. Given N(A) = n, the locations of the n events in A form an independent
random sample from the distribution on A with probability density function
proportional to the intensity λ(·).
Poisson processes can be classified as homogeneous and inhomogeneous Poisson
processes. In homogeneous Poisson processes, the intensity is constant (λ(x) =
λ, ∀x), whereas in inhomogeneous Poisson processes, the intensity varies in
space. Homogeneous Poisson processes are also referred to as complete spatial
randomness (CSR). In CSR processes, the expected intensity of points is
constant across any region, and there is no interaction between the points.
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19.3 Simulating Poisson point patterns with rpoispp()
Simulating point patterns is useful when we want to test theoretical properties
of the processes and compare them with the data we analyze. Here, we show
how to use the rpoispp() function of the spatstat package to simulate spatial
point patterns from homogeneous and inhomogeneous Poisson processes. The
rpoispp() function accepts an argument lambda that indicates the intensity
of the Poisson process. lambda can be a single positive number, function, or
pixel image. The argument win of rpoispp() is the observation window in
which to simulate the pattern. win can be an object of class owin or an object
acceptable to as.owin().

19.3.1 Homogeneous point process
Here, we generate a spatial point pattern from a homogeneous Poisson process
with intensity λ = 100 in the window A = [0, 1] × [0, 2] which has area |A| = 2.
To do that, we use the rpoispp() function setting lambda = 100 and win to
the observation window owin(xrange = c(0, 1), yrange = c(0, 2)). The
generated point pattern is shown in Figure 19.1.

library(spatstat)
phom <- rpoispp(lambda = 100,

win = owin(xrange = c(0, 1), yrange = c(0, 2)))
phom$n

[1] 205

plot(phom, main = "Homogeneous")

Note that the difference between patterns generated with the rpoispp()
and runifpoint() functions. rpoispp() generates a point pattern using an
homogeneous Poisson process. In a homogeneous Poisson process, the generated
number of points in a window A follows a Poisson distribution with mean∫

A
λ(x)dx = λ × |A| (expected number of points per unit area × area of

the window), and the points are independent randomly distributed over the
window. In our example, the number of points generated is equal to phom$n =
177. This number has been generated from a Poisson distribution with mean∫

A
λ(x)dx = λ × |A| = 100 × 2 = 200. On the other hand, runifpoint()

generates independent random points in the window conditioning on the total
number of points equal to 200.
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  Homogeneous

FIGURE 19.1: Point pattern generated from a homogeneous Poisson process.

punif <- runifpoint(n = 200,
win = owin(xrange = c(0, 1), yrange = c(0, 2)))

punif$n

[1] 200

19.3.2 Inhomogeneous point process
We can also use rpoispp() to generate a spatial point pattern from an
inhomogeneous Poisson process. Here, we consider an intensity function
λ(x, y) = 10+100×x+200×y and an observation window equal to [0, 1]× [0, 2].
We write a function to evaluate the intensity function on a fine grid, and we
visualize it to see how the intensity varies in space (Figure 19.2).

# intensity function
lambda <- function(x){return(10 + 100 * x[1] + 200 * x[2])}

# grid
xseq <- seq(0, 1, length.out = 50)
yseq <- seq(0, 2, length.out = 100)
grid <- expand.grid(xseq, yseq)

# evaluation of the function on a grid
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z <- apply(grid, 1, lambda)

# plot
library(fields)
zmat <- matrix(z, 50, 100)
fields::image.plot(xseq, yseq, zmat, xlab = "x", ylab = "y",

main = "lambda(x, y)", asp = 1)

In point patterns generated from an inhomogeneous Poisson process, the
number of events in any region follows a Poisson distribution with mean equal
to the integral of the intensity over the region. Then, the location of each point
is independently distributed in the region with probability density proportional
to the intensity. In our example, the number of points is generated from
a Poisson distribution with mean

∫
[0,1]×[0,2] λ(x, y)dxdy = 520. Figure 19.2

depicts the generated point pattern. We observe a higher number of points
located in the regions where the intensity is higher.

fnintensity <- function(x, y){return(10 + 100 * x + 200 * y)}
pinhom <- rpoispp(lambda = fnintensity,

win = owin(xrange = c(0, 1), yrange = c(0, 2)))
pinhom$n
plot(pinhom, main = "Inhomogeneous")

[1] 483



218 19 Spatial point processes and simulation

lambda(x, y)

100

200

300

400

500

  Inhomogeneous

FIGURE 19.2: Intensity of an inhomogeneous Poisson process (top) and
point pattern generated from that Poisson process (bottom).
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Complete spatial randomness

Point processes provide models for point patterns, with complete spatial
randomness (CSR) being the simplest theoretical model. CSR assumes that
events have an equal likelihood of occurring anywhere within the study area,
independent of the locations of other events, which is represented by the
homogeneous Poisson process (Diggle, 2014). While most processes deviate
from CSR to some degree, CSR remains important in investigations, as it helps
differentiate between regular and clustered patterns (Figure 20.1). In a random
pattern, the distribution of each point is independent of the distribution of the
others, and points neither inhibit nor promote one another. Regular patterns
have more spacing between points that in a random pattern, possibly due
to mechanisms such as competition preventing close occurrences. Clustered
patterns exhibit greater aggregation of points than in a random pattern, likely
due to processes such as reproduction with limited dispersal or underlying
spatial heterogeneity.

  Regular   Random   Aggregated

FIGURE 20.1: Examples of regular, random, and aggregated point patterns.

20.1 Testing CSR with the quadrat method
Given a point pattern, the first question is often whether there is any evidence
to allow rejection of the null hypothesis of complete spatial randomness (CSR).
A simple method used to test CSR is the χ2 test based on quadrat counts.

The quadrat method partitions the study region into r rows and c columns,
which define m = rc non-overlapping subregions or quadrats of equal area.
This method relies on the fact that, under CSR, the expected number of
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observations within any region of equal size is the same. Let n be the number
of observed points, m the number of quadrats of equal size, and ni the number
of points in quadrat i. The expected number of points in each quadrat is
n∗ = n/m. The test statistic is calculated as

X2 =
m∑

i=1

(observedi − expected)2

expected =
m∑

i=1

(ni − n∗)2

n∗ .

It can be shown that under CSR, the statistic X2 has a χ2
m−1 distribution.

The quadrat method assesses whether CSR is reasonable by comparing the
observed value of the X2 statistic to the χ2

m−1 distribution, where m is the
number of quadrats. Significance can also be assessed by using Monte Carlo,
which involves generating multiple patterns under the null hypothesis, and
calculating the X2 statistic for each of them. The p-value is then determined
by comparing the X2 statistic for the observed point pattern with the X2

values obtained from the simulations.

Note that the quadrat method’s results may depend on the quadrat’s con-
figuration. In addition, the method tests CSR for the whole point pattern
and cannot distinguish different patterns locally. Later, we will see how the
K-function can be used to test CSR at a set of distances overcoming these
limitations.

20.2 Example
In this example, we show how to use the quadrat.test() function of spatstat
(Baddeley et al., 2022) to test CSR for a given point pattern based on quadrat
counts. We use the swedishpines data of spatstat which represents the
positions of 71 trees in a Swedish forest plot.

library(spatstat)
data(swedishpines)
X <- swedishpines
X

Planar point pattern: 71 points
window: rectangle = [0, 96] x [0, 100] units (one unit
= 0.1 metres)

The quadratcount() function of spatstat divides the window containing
the point pattern into nx × ny grid rectangular tiles or quadrats of equal
size, and counts the number of points in each quadrat. If the window is



20.2 Example 221

not a rectangle, quadrats are intersected with the window. The arguments
of the quadratcount() function include X, the point pattern of class ppp,
and nx and ny which denote the numbers of rectangular quadrats in the x
and y directions (or alternatively xbreaks and ybreaks giving the x and y
coordinates, respectively, of the quadrats). Figure 20.2 shows the number of
points in each of the quadrats of a 4 × 3 division of the observation window
created with the quadratcount() function.

Q <- quadratcount(X, nx = 4, ny = 3)
Q

x
y [0,24) [24,48) [48,72) [72,96]

[66.7,100] 7 3 6 5
[33.3,66.7) 5 9 7 7
[0,33.3) 4 3 6 9

plot(X)
axis(1)
axis(2)
plot(Q, add = TRUE, cex = 2)

  X
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FIGURE 20.2: Number of points in each of the quadrats of a 4 × 3 division
of the observation window.
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The function quadrat.test() performs a test of CSR for a given point pattern.
The first argument can be a point pattern of class ppp or the results of applying
quadratcount() to a point pattern. The alternative hypothesis is specified in
argument alternative and can take the following values:

• alternative = "two.sided" tests H0: CSR vs. H1: no CSR (regular or
clustered),

• alternative = "regular" tests H0: CSR or clustered vs. H1: regular,
• alternative = "clustered" tests H0: CSR or regular vs. H1: clustered.

Here, we use quadrat.test() with the default value alternative =
"two.sided" to test H0: CSR vs. H1: no CSR (regular or clustered). By
default, quadrat.test() assesses significance by comparing the observed test
statistic with the chi-squared distribution (method = "Chisq") but can also
perform Monte Carlo based tests with method = "MonteCarlo".

quadrat.test(Q)

Chi-squared test of CSR using quadrat counts

data:
X2 = 7.6, df = 11, p-value = 0.5
alternative hypothesis: two.sided

Quadrats: 4 by 3 grid of tiles

The observed value of the test statistic is

X2 =
m∑

i=1

(observedi − expected)2

expected =
m∑

i=1

(ni − n∗)2

n∗ =

= (7 − n∗)2 + (3 − n∗)2 + · · · + (9 − n∗)2

n∗ = 7.59

where m = 12 is the number of regions of equal size, ni is the number of
points in quadrat i, i = 1, . . . , m, n = 71 is the number of observed events, and
n∗ = n/m = 71/12 = 5.92 is the expected number of points in each quadrat.

ns <- 71/12
ni <- c(7, 3, 6, 5, 5, 9, 7, 7, 4, 3, 6, 9)
(chi2 <- sum((ni - ns)ˆ2/ns))

[1] 7.592
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Under the null hypothesis of CSR, the test statistic has a chi-squared distribu-
tion with m − 1 = 12 − 1 degrees of freedom. That is, X2 ∼ χ2

11. The p-value
is calculated as the probability of obtaining a test statistic as extreme or more
extreme than the one observed in the direction of the alternative hypothesis,
assuming the null hypothesis is true. If the pattern is regular or clustered,
the observed X2 statistic will be near 0 or large. Therefore, the p-value is
calculated as 2 times the minimum of the area to the left of the observed X2

and the area to the right of the observed X2:

2*min(pchisq(chi2, 11), 1-pchisq(chi2, 11))

[1] 0.5013

The p-value obtained is greater than the level of significance 0.05. So we fail
to reject the null hypothesis and conclude there is no evidence against CSR.

20.3 Alternative hypothesis
Here, we present some examples that use quadrat.test() to test hypotheses
with each of the possible values of the argument alternative. Specifically, we
use

• alternative = "two.sided" to test H0: CSR vs. H1: no CSR (regular or
clustered),

• alternative = "regular" to test H0: CSR or clustered vs. H1: regular,
and

• alternative = "clustered" to test H0: CSR or regular vs. H1: clustered.

In each of the examples, the p-value is calculated as the probability of obtaining
a test statistic as extreme or more extreme than the one observed in the
direction of the alternative hypothesis, assuming the null hypothesis is true. If
the calculated p-value is smaller than the significance level α, we would reject
the null hypothesis. Otherwise, we would fail to reject the null hypothesis.

To test H0: CSR or clustered vs. H1: regular, we use alternative =
"regular". If the pattern is regular, the observed X2 statistic will be near
0. Then, the p-value is calculated as the area to the left of the observed X2

(Figure 20.3).

quadrat.test(Q, alternative = "regular")

Chi-squared test of CSR using quadrat counts
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data:
X2 = 7.6, df = 11, p-value = 0.3
alternative hypothesis: regular

Quadrats: 4 by 3 grid of tiles

# p-value is area to the left of chi2
pchisq(chi2, 11)

[1] 0.2506

To test H0: CSR or regular vs. H1: clustered, we use alternative =
"clustered". If the pattern is clustered, the observed X2 statistic will be
large, and the p-value is calculated as the area to the right of the observed X2

(Figure 20.3).

quadrat.test(Q, alternative = "clustered")

Chi-squared test of CSR using quadrat counts

data:
X2 = 7.6, df = 11, p-value = 0.7
alternative hypothesis: clustered

Quadrats: 4 by 3 grid of tiles

# p-value is area to the right of chi2
1-pchisq(chi2, 11)

[1] 0.7494

Finally, we test H0: CSR vs. H1: no CSR (regular or clustered) using the default
value alternative = "two.sided". If the pattern is regular or clustered, the
observed X2 statistic will be near 0 or large. The p-value is calculated as 2
times the minimum of the area to the left of the observed X2 and the area to
the right of the observed X2.

quadrat.test(Q, alternative = "two.sided") # default

Chi-squared test of CSR using quadrat counts
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data:
X2 = 7.6, df = 11, p-value = 0.5
alternative hypothesis: two.sided

Quadrats: 4 by 3 grid of tiles

# p-value is 2 times the minimum of
# area to the left of observed chi-squared and
# area to the right of observed chi-squared
2*min(pchisq(chi2, 11), 1-pchisq(chi2, 11))

[1] 0.5013
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FIGURE 20.3: Area under the χ2
11 density curve corresponding to the p-value

for alternative hypothesis regular (left) and clustered (right).
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Intensity estimation

The intensity function of a spatial point process {X1, X2, . . . , XN(A)} in a
planar window A ⊂ R

2 is defined as

λ(x) = lim
|dx|→0

E[N(dx)]
|dx| ,

where dx is a small region containing the point x. Given a stationary and
isotropic spatial point process, the intensity function is constant equal to the
expected number of events per unit area:

λ(x) = λ = E[N(A)]
|A| .

Thus, for an observed spatial point pattern of n events observed in a region A,
the intensity can be estimated as the observed number of events per unit area:

λ̂ = n

|A|

For non-stationary processes, a common method to estimate the spatially
varying intensity function involves kernel density estimation (Silverman, 1986;
González and Moraga, 2023b). Usually, kernel estimation methods focus on
estimating the probability density function f(·) rather than the intensity
function λ(·). The density function defines the probability of observing an
event at a location x and integrates to one across the area of study. In contrast,
the intensity function provides the number of events expected per unit area at
location x and integrates to the overall mean number of events per unit area.
As a result, the density and intensity functions are proportional:

λ(x) = f(x)
∫

A

λ(u)du,

where
∫

A
λ(u)du is the expected number of events in A. Then, the relative

spatial pattern in densities and intensities are the same.
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Kernel estimators of the density function f(·) and the intensity function λ(·)
at the location x based on the observed events {x1, . . . , xn} take the form

f̂(x) = 1
n

n∑
i=1

1
h2 K

(
x − xi

h

)
and

λ̂(x) =
n∑

i=1

1
h2 K

(
x − xi

h

)
,

where K(·) is a symmetric function such that K(x) ≥ 0 ∀x and
∫

A
K(x)dx = 1

known as kernel, and h is a smoothing parameter known as “bandwidth” (Figure
21.1). Common choices for the kernel include the following functions:

• Gaussian kernel: K(x) = 1√
2π

exp(−x2/2)

• Epanechnikov kernel: K(x) = 3
4 (1 − x2)I(|x| < 1)

• Quartic kernel: K(x) = 15
16 (1 − x2)2I(|x| < 1)

• Uniform kernel: K(x) = 1
2 I(|x| < 1)

Edge effects tend to distort the kernel estimates close to the boundary of the
region, since events near the boundary have fewer local neighbors than events
in the interior. One way to deal with this problem is to modify the kernel
estimate by dividing by the following edge-correction term:

ph(x) =
∫

A

h−2K

(
x − u

h

)
du,

which represents the volume under the scaled kernel centered on x which lies
inside the study region (Gatrell et al., 1996).

FIGURE 21.1: Kernel estimation representation.
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21.1 Intensity
The density() function of spatstat can be used to obtain a kernel estimate
of the intensity of a point pattern. The arguments of density() can be seen
by typing ?density.ppp. These include the type of kernel (kernel) and the
smoothing bandwidth (sigma). By default, density() uses a Gaussian kernel
and a bandwidth determined by a simple rule of thumb that depends only on
the size of the window. Here, we use the density() function to estimate the
intensity of the point pattern of tree locations that is in the japanesepines
data from spatstat (Figure 21.2).

library(spatstat)
X <- japanesepines
plot(X)
axis(1)
axis(2)

The density() function returns an intensity estimate object of class im that
can be plotted (Figure 21.2). The kernel bandwidth used in density() can be
extracted with the sigma attribute of the returned intensity object.

lambdahat <- density(X)
attr(lambdahat, "sigma")

[1] 0.125

Note that although the type kernel weakly influences the estimates, the band-
width can have a big impact. For example, Figure 21.2 shows intensity estimates
of the tree point pattern using different values of bandwidths. We observe
that small values of the bandwidth result in estimated intensities that are too
spiky, whereas large values provide smoother surfaces that may ignore local
characteristics of the intensities.

plot(lambdahat, main = "Default bandwidth")
plot(density(X, sigma = 0.05))
plot(density(X, sigma = 0.1))
plot(density(X, sigma = 1))

In practice, we may conduct exploratory analyses considering a number of
possible bandwidth values to select, somewhat subjectively, an appropriate
bandwidth. Other criteria such as cross-validation as implemented in the
bw.diggle() and bw.ppl() functions of spatstat can be used to select a
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FIGURE 21.2: Top: Trees point pattern. Bottom: Intensity estimates using
several values for the kernel bandwidth.
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smoothing bandwidth for the kernel estimation of the point process intensity.
We can also use adaptative kernel estimators where bandwidths change at each
data point of the spatial point pattern (González and Moraga, 2022, 2023c).

21.2 Intensity ratio
In some situations, we may want to compare two point patterns observed in
the same region, such as the patterns of individuals with a disease, and set
of controls representing at-risk population. We can do that by computing the
intensity ratio of the patterns, which allows us to identify spatial patterns and
hotspots in the relative risk surface obtained.

Here, we show how to estimate the intensity ratio of two point patterns using
the density() function of spatstat, and we visualize the results with the
image.plot() function of fields. Alternatively, we could estimate the intensity
ratio by using the sparr package which provides functions to estimate and
assess the significance of relative risk surfaces.

We consider the data pbc from the sparr package which contains 761 cases of
primary biliary cirrhosis (PBC) along with 3020 controls representing at-risk
population in north-eastern England collected between 1987 and 1994. This
data is represented in Figure 21.3. The pbc data is a ppp object with marks
case and control representing the cases and controls for the PBC data in
north-eastern England. We create the ppp objects cases and controls with
the events corresponding to each type.

library(sparr)
data(pbc)
cases <- unmark(pbc[which(pbc$marks == "case"), ])
plot(cases, main = "cases")
axis(1)
axis(2)
title(xlab = "Easting", ylab = "Northing")
controls <- unmark(pbc[which(pbc$marks == "control"), ])
plot(controls, pch = 3, main = "controls")
axis(1)
axis(2)
title(xlab = "Easting", ylab = "Northing")

library(sparr)
data(pbc)
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cases <- unmark(pbc[which(pbc$marks == "case"), ])
controls <- unmark(pbc[which(pbc$marks == "control"), ])

We assume that the point pattern cases is a realization from a Poisson process
with intensity λ(x), and that the point pattern controls come from a second,
independent Poisson process with intensity λ0(x). Then, we can express λ(x)
as

λ(x) = αλ0(x)ρ(x).

Here, ρ(x) represents the spatial variation in relative risk. α is a factor
that adjusts the intensity estimate of the controls to take account that
there are more controls than cases. This factor can be estimated as α̂ =
(number of cases)/(number of controls). An estimate of the density ratio can
then be obtained as the ratio of the kernel estimates of the intensity of cases
and controls as follows:

ρ̂(x) = λ̂(x)
α̂λ̂0(x)

.

Here, we show how to compute and plot the relative risk for the PBC case-
control data. First, we obtain a common bandwidth to obtain the kernel
estimates of the intensities of cases and controls. We calculate this com-
mon bandwidth as the mean of the default bandwidths obtained when using
density() to estimate the intensity of cases and controls separately.

bwcases <- attr(density(cases), "sigma")
bwcontr <- attr(density(controls), "sigma")
(bw <- (bwcases + bwcontr)/2)

[1] 11.46

Then, we use the selected bandwidth to compute the smoothed intensity
estimates for the cases and controls.

intcases <- density(cases, sigma = bw)
intcontrols <- density(controls, sigma = bw)

We estimate α as the ratio of the number of cases (cases$n = 761) to the
number of controls (controls$n = 3020) to account for the fact that there
are more controls than cases.

(alphahat <- cases$n/controls$n)
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[1] 0.252

Then, using the intensity estimates of the cases and controls patterns, the
relative risk is estimated as

ρ̂(x) = λ̂(x)
α̂λ̂0(x)

.

Figure 21.3 shows the estimated intensity ratio obtained with the
image.plot() function of the fields package. Note that to plot the intensity
estimate object with image.plot(), we first need to transpose the image
values returned by density() since they are stored in transposed form.

library(fields)
x <- intcases$xcol
y <- intcases$yrow
rr <- t(intcases$v)/t(alphahat * intcontrols$v)
image.plot(x, y, rr, asp = 1)

21.3 Intensity on networks
The spatstat package also contains functionality to work with spatial point
patterns on linear networks. An example of this type of point pattern is
given by the chicago data of spatstat. This data contains the locations and
type of crimes reported from 25 April to 8 May 2002 in an area of Chicago,
Illinois, USA. All crimes occurred on or near a street, and the data provide
the coordinates of all streets in the survey area, and their connectivity. Spatial
coordinates are expressed in feet (1 foot corresponds to 0.3048 meters). Figure
21.4 shows the crime locations by type and the streets of the study region.

library(spatstat)
X <- chicago
head(X$data)
X$domain
plot(X)

Hyperframe:
x y seg tp marks

1 639.2 1191 37 1.00000 assault
2 139.7 1135 54 0.36985 assault
3 195.3 1150 53 0.74153 assault
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FIGURE 21.3: Cases of primary biliary cirrhosis and controls representing
at-risk population (top) and intensity ratio (bottom) in north-eastern England
between 1987 and 1994.
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4 693.5 1125 72 0.02486 assault
5 596.4 1005 122 0.32558 assault
6 684.7 1005 124 0.90250 assault

Linear network with 338 vertices and 503 lines
Enclosing window: rectangle = [0.4, 1282] x [153.1,
1276.6] feet

chicago is an object of class lpp (point pattern on a linear network). lpp
objects contain the locations of the points as an ppp object or other object
acceptable to as.ppp(), and a linear network of class linnet.

The density.lpp() function of spatstat allows us to obtain an estimate of
the density of the events on the linear network by applying kernel smoothing.
For example, Figure 21.4 shows the intensity of all types of crimes obtained
using density.lpp() with a bandwidth of 10.

# unmarked point pattern
uX <- unmark(chicago)
# intensity estimate
lambdahat <- density.lpp(uX, sigma = 10)
# plot
plot(lambdahat, main = "Intensity")
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(bottom) in an area of Chicago.
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The K-function

The K-function for a spatial point pattern {x1, . . . , xn} observed in a planar
window A ⊂ R

2, is an exploratory tool that can be used to assess the de-
pendence between locations at several distances. The K-function is defined
as

K(s) = λ−1E[number of further events within distance s of an arbitrary event],

where λ is the intensity function of the spatial point process.

For clustered spatial point patterns, each event is likely to be surrounded
by further events. Therefore, for small values of the distance s, K(s) will be
relatively large. For regular point patterns, each event is likely to be surrounded
by empty space. This implies that for small values of s, K(s) will be relatively
small.

To determine whether the values of a K-function are relatively large or small,
we can compare the K-function for the observed spatial point pattern with
the K-function for a homogeneous Poisson process (CSR) that is given by
K(s) = πs2 as shown below. Thus, for a distance s, K(s) > πs2 indicates
clustering, and K(s) < πs2 suggests inhibition.

Let C be the region denoting the circle of center xc and radius s, and |C| = πs2

the area of the circle. Under complete spatial randomness (CSR), the intensity
λ is constant equal to the observed number of events per unit area, and

E[number of further events within distance s of an arbitrary event] =

= number of points in C

|C| × |C| = λ × πs2.

Then, under CSR,

λK(s) = E[number of further events within distance s of an arbitrary event] =

= λ × πs2,

which implies K(s) = πs2.

237
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22.1 Estimating the K-function
Given a spatial point pattern {x1, . . . , xn} in a planar window A, we can
construct an estimate of K(s) as follows. First, we define

E(s) = E[number of further events within distance s of an arbitrary event] =

= λK(s).

An estimate of E(s) can be computed as

Ẽ(s) = 1
n

n∑
i=1

∑
j �=i

I(dij ≤ s),

where dij is the distance between the events xi and xj , and I(·) is the indicator
function (Figure 22.1).

The estimate Ẽ(s) is negatively biased because we do not observe events
outside A. This implies the observed counts for events xi close to the boundary
of A may be artificially low. To address this issue, we can introduce weights wij

equal to the reciprocal of the proportion of the circle with center xi and radius
dij which is contained in A (Figure 22.1). Then, an edge-corrected estimate
for E(s) is given by

Ê(s) = 1
n

n∑
i=1

∑
j �=i

wijI(dij ≤ s).

The intensity of a spatial point process denotes the expected number of events
per unit area. In a homogeneous process, the intensity is constant and can
be estimated as λ̂ = n/|A|. Then, since K(s) = E(s)/λ, the estimate of the
K-function can be calculated as

K̂(s) = Ê(s)
λ̂

= |A|
n2

n∑
i=1

∑
j �=i

wijI(dij ≤ s).

22.2 The Kest() function
Given a spatial point pattern, the K-function can be estimated using the Kest()
function of spatstat passing the spatial point pattern X as a ppp object or an
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FIGURE 22.1: Left: Point pattern in the unit square region. The black point
represents an arbitrary event. The circle encloses the events considered to
estimate the K-function at the distance given by the radius of the circle. Right:
Gray area represents the inverse of the weight used in the estimation of the
K-function using the xi and xj events.

object acceptable to as.ppp(). The Kest() function computes the K-function
using three different edge-correction methods, namely, border, isotropic and
translate, as well as the theoretical K-function for the homogeneous Poisson
process.

Here, we use Kest() to estimate the K-function of a simulated spatial point
pattern from a homogeneous Poisson process with intensity λ = 100 in the
region [0, 1] × [0, 1]. Figure 22.2 shows the simulated point pattern with the
rpoispp() function.

library(spatstat)
X <- rpoispp(lambda = 100)
plot(X)
axis(1)
axis(2)

Figure 22.3 depicts the K-function calculated for this point pattern using
different edge-correction methods together with the theoretical K-function for
the homogeneous Poisson process.

K <- Kest(X)
plot(K)

The L-function is a commonly used function that transforms the K-function
corresponding to a homogeneous Poisson process (K(s) = πs2) to a straight
line L(s) = s making visual interpretation easier. The L-function is defined as



240 22 The K-function

  X

-0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 22.2: Simulated point pattern from a homogeneous Poisson process.

L(s) =
√

K(s)
π

.

The Lest() function can be used to estimate the L-function of a spatial point
pattern. Figure 22.3 shows the L-functions for the simulated point pattern
using different edge-correction methods, and the theoretical L-function for the
homogeneous Poisson process.

L <- Lest(X)
plot(L)

22.3 Testing complete spatial randomness
We can use the K-function to test complete spatial randomness (CSR) at a
set of distances. Specifically, we can compare the K-function estimate from
the data, K̂(s), with the theoretical value of the K-function under CSR,
(K(s) = πs2). Typically, the estimated K-function does not lie exactly over
the line πs2 representing the theoretical K-function under CSR. Therefore, to
better assess CSR, we obtain a confidence region by simulating spatial point



22.3 Testing complete spatial randomness 241

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

K

r

K
(r
)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
10

0.
20

L

r

L
(r
)

L̂iso(r)
L̂t rans(r)
L̂bord(r)
Lpois(r)

FIGURE 22.3: K-function (top) and L-function (bottom) corresponding to
a simulated point pattern from a homogeneous Poisson process.
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patterns under CSR. Then, we add the confidence region to the plot of the
estimated K-function of the observed point pattern. This plot allows us to
assess CSR by comparing the K-function corresponding to the observed data to
the envelope for each of the distances. In more detail, we follow this approach:

• Generate a number of spatial point patterns (e.g., M = 99, M = 999) of the
same size as the observed pattern over the study region using a homogeneous
Poisson process (CSR).

• For each spatial point pattern, estimate the K-function: K̂1(·), . . . , K̂M (·).
• For each distance s, compute the 95% quantile interval of K̂1(s), . . . , K̂M (s).
• Reject the null hypothesis of CSR if the observed K-function at a given

distance is outside the interval.

This approach can be conducted by using the envelope() function of spatstat
which performs simulations and computes envelopes of a summary statistic
based on the simulations. Specifically, envelope() generates nsim simulated
point patterns each being a realization of a homogeneous Poisson point process
(CSR) with the same intensity as the observed point pattern X. Figure 22.4
shows the envelope obtained for 99 simulations under CSR. The confidence
region obtained can be inspected to identify distances for which there is an
indication of clustering or inhibition.

E <- envelope(X, Kest, nsim = 99)
plot(E)
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FIGURE 22.4: K-function of a simulated point pattern from a homogeneous
Poisson process, together with an envelope corresponding to the K-functions
of 99 simulated point patterns under CSR.
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Point process modeling

23.1 Log-Gaussian Cox processes
Log-Gaussian Cox processes (LGCPs) are typically used to model phenomena
that are environmentally driven (Diggle et al., 2013). A LGCP is a Poisson
process with a varying intensity, which is itself a stochastic process of the form

Λ(s) = exp(Z(s)),

where Z = {Z(s) : s ∈ R
2} is a Gaussian process. Then, conditional on Λ(·),

the point process is an inhomogeneous Poisson process with intensity Λ(·). This
implies that the number of events in any region A is Poisson distributed with
mean

∫
A

Λ(s)ds, and the locations of events are an independent random sample
from the distribution on A with probability density proportional to Λ(·). A
LGCP model can also include spatial explanatory variables providing a flexible
approach for describing and predicting a wide range of spatial phenomena.

In this chapter, we assume that we have observed a spatial point pattern of
event locations {xi : i = 1, . . . , n} that has been generated as a realization
of a LGCP, and we show how to fit a LGCP model to the data using the
INLA and SPDE approaches. Chapter 15 introduced the SPDE approach and
described its implementation in the context of model-based geostatistics using
an example of air pollution prediction. Here, we describe how to use SPDE to
fit a LGCP model to a point pattern of plant species to estimate the intensity
of the process.

23.2 Fitting a LGCP
Grid approach
A common method for inference in LGCP models is to approximate the
latent Gaussian field by means of a gridding approach (Illian et al., 2012).
In this approach, the study region is first discretized into a regular grid of
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n1 × n2 = N cells, {sij}, i = 1, . . . , n1, j = 1, . . . , n2. In the LGCP, the
mean number of events in cell sij is given by the integral of the intensity
over the cell, Λij =

∫
sij

exp(η(s))ds, and this integral can be approximated by
Λij ≈ |sij |exp(ηij), where |sij | is the area of the cell sij . Then, conditional on
the latent field ηij , the observed number of locations in grid cell sij , yij , are
independent and Poisson distributed as follows,

yij |ηij ∼ Poisson(|sij |exp(ηij)).

Then, the LGCP model can be expressed within the generalized linear mixed
model framework. For example, the log-intensity of the Poisson process can be
modeled using covariates and random effects as follows:

ηij = c(sij)β + fs(sij) + fu(sij).

Here, β = (β0, β1, . . . , βp)′ is the coefficient vector of c(sij) =
(1, c1(sij), . . . , cp(sij)), the vector of the intercept and covariates values at
sij . fs() is a spatially structured random effect reflecting unexplained vari-
ability specified as a second-order two-dimensional conditional autoregressive
model on a regular lattice. fu() is an unstructured random effect reflecting
independent variability in the cells. Moraga (2021b) provides an example on
how to implement the grid approach to fit a LGCP with INLA using a species
distribution modeling study in Costa Rica.

Going off the grid
While the previous approach is a common method for inference in LGCP
models, the results obtained depend on the construction of a fine regular grid
that cannot be locally refined. An alternative computationally efficient method
to perform computational inference on LGCP is presented in Simpson et al.
(2016). This method, rather than defining a Gaussian random field over a fine
regular grid, proposes a finite-dimensional continuously specified random field
of the form

Z(s) =
n∑

i=1
ziφi(s),

where z = (z1, . . . , zn)′ is a multivariate Gaussian random vector and
{φi(s)}n

i=1 is a set of linearly independent deterministic basis functions. Unlike
the lattice approach, this method models observations considering its exact
location instead of binning them into cells. Thus, the implementation of this
method does not need the specification of a regular grid but a triangulated
mesh to approximate the Gaussian random field using the SPDE approach.
Below, we give an example of species distribution modeling where we fit a
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LGCP using this method and INLA and SPDE for fast approximate inference.
This approach is also explained in Krainski et al. (2019).

23.3 Species distribution modeling
Species distribution models allow us to understand spatial patterns, and assess
the influence of factors on species occurrence. These models are crucial for
the development of appropriate strategies that help protect species and the
environments where they live. Here, we show how to formulate and fit a LGCP
model for Solanum plant species in Bolivia using a continuously Gaussian
random field with INLA and SPDE. The model allows us to estimate the
intensity of the process that generates the locations.

23.3.1 Observed Solanum plant species in Bolivia
In this example, we estimate the intensity of Solanum plant species in Bolivia
from January 2015 to December 2022 which are obtained from the Global
Biodiversity Information Facility (GBIF) database with the spocc package. We
retrieve the data using the occ() function specifying the plant species scientific
name, data source, dates, and country code. We also specify has_coords =
TRUE to just return occurrences that have coordinates, and limit = 1000 to
specify the limit of the number of records.

library("sf")
library("spocc")

df <- occ(query = "solanum", from = "gbif",
date = c("2015-01-01", "2022-12-31"),
gbifopts = list(country = "BO"),
has_coords = TRUE, limit = 1000)

d <- occ2df(df)

We use the st_as_sf() function to create a sf object called d that contains
the nrow(d) = 241 locations retrieved. We set the coordinate reference system
(CRS) to EPSG code 4326 since the coordinates of the locations are given by
longitude and latitude values.

d <- st_as_sf(d[, 2:3], coords = c("longitude", "latitude"))
st_crs(d) <- "EPSG:4326"
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In order to work with kilometers instead of degrees, we project the data to
UTM 19S corresponding to the EPSG code 5356 with kilometers as units. To do
that, we obtain st_crs("EPSG:5356")$proj4string and change +units=m
by +units=km.

st_crs("EPSG:5356")$proj4string
projUTM <- "+proj=utm +zone=19 +south +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=km +no_defs"
d <- st_transform(d, crs = projUTM)

We also obtain the map of Bolivia with the rnaturalearth package, and we
project it to UTM 19S with kilometers as units.

library(rnaturalearth)
map <- ne_countries(type = "countries", country = "Bolivia",

scale = "medium", returnclass = "sf")
map <- st_transform(map, crs = projUTM)

Figure 23.1 shows a map with the retrieved locations of Solanum plant species
in Bolivia.

library("ggplot2")
ggplot() + geom_sf(data = map) +

geom_sf(data = d) + coord_sf(datum = projUTM)

Finally, we create data frame coo with the event locations.

coo <- st_coordinates(d)

23.3.2 Prediction data
Now, we construct a matrix with the locations coop where we want to predict
the point process intensity. To do that, we first create a raster covering the
map with the rast() function of terra. Then, we retrieve the coordinates of
the cells with the xyFromCell() function of terra.

library(sf)
library(terra)

# raster grid covering map
grid <- terra::rast(map, nrows = 100, ncols = 100)
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# coordinates of all cells
xy <- terra::xyFromCell(grid, 1:ncell(grid))

We create a sf object called dp with the prediction locations with st_as_sf(),
and use st_filter() to keep the prediction locations that lie within the
map. We also retrieve the indices of the points within the map by using
st_intersects() setting sparse = FALSE.

# transform points to a sf object
dp <- st_as_sf(as.data.frame(xy), coords = c("x", "y"),

crs = st_crs(map))

# indices points within the map
indicespointswithin <- which(st_intersects(dp, map,

sparse = FALSE))

# points within the map
dp <- st_filter(dp, map)

Figure 23.1 depicts the prediction locations in the study region.

ggplot() + geom_sf(data = map) +
geom_sf(data = dp) + coord_sf(datum = projUTM)

We create the matrix coop with the prediction locations.

coop <- st_coordinates(dp)
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FIGURE 23.1: Left: Locations of Solanum plant species in Bolivia from Jan-
uary 2015 to December 2022 obtained from GBIF. Right: Prediction locations
in Bolivia.
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23.3.3 Model
We use a LGCP to model the point pattern of plant species. Thus, we assume
that the process that originates plant species locations is a Poisson process
with a varying intensity expressed as

log(Λ(s)) = β0 + Z(s),

where β0 is the intercept, and Z(·) is a zero-mean Gaussian spatial process
with Matérn covariance function.

23.3.4 Mesh construction
To fit the model using INLA and SPDE, we first construct a mesh. In the anal-
ysis of point patterns, we do not usually employ the locations as mesh vertices.
We construct a mesh that covers the study region using the inla.mesh.2d()
function setting loc.domain equal to a matrix with the point locations of the
boundary of the region. Other arguments are as follows. max.edge denotes the
maximum allowed triangle edge lengths in the inner region and the extension.
offset specifies the size of the inner and outer extensions around the data
locations. cutoff is the minimum allowed distance between points that we
use to avoid building many small triangles around clustered locations. Figure
23.2 shows the mesh created.

library(INLA)
summary(dist(coo)) # summary of distances between event locations

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 66.1 197.2 240.7 384.3 1171.0

loc.d <- cbind(st_coordinates(map)[, 1], st_coordinates(map)[, 2])
mesh <- inla.mesh.2d(loc.domain = loc.d, max.edge = c(50, 100),

offset = c(50, 100), cutoff = 1)

plot(mesh)
points(coo, col = "red")
axis(1)
axis(2)

We also create variables nv with the number of mesh vertices, and the variable
n with the number of events of the point pattern. Later, we will use these
variables to construct the data stacks.
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(nv <- mesh$n)

[1] 1975

(n <- nrow(coo))

[1] 241

We use the inla.spde2.matern() function to build the SPDE model on the
mesh.

spde <- inla.spde2.matern(mesh = mesh, alpha = 2, constr = TRUE)

23.3.5 Observed and expected number of events
Here, we create the vectors with the observed and expected number of events.
First, we create the dual mesh that consists of a set of polygons around each
vertex of the original mesh (Figure 23.2). We can create the dual mesh using
the book.mesh.dual() function that is provided in Krainski et al. (2019) and
is also written at the end of this chapter.

dmesh <- book.mesh.dual(mesh)
plot(dmesh)
axis(1)
axis(2)

To fit the LGCP, the mesh vertices are considered as integration points. The
expected values corresponding to the mesh vertices are proportional to the
areas around the mesh vertices, that is, the areas of the polygons of the
dual mesh. We calculate a vector of weights called w with the areas of the
intersection between each polygon of the dual mesh and the study region using
the following code.

# Domain polygon is converted into a SpatialPolygons
domain.polys <- Polygons(list(Polygon(loc.d)), '0')
domainSP <- SpatialPolygons(list(domain.polys))

# Because the mesh is larger than the study area, we need to
# compute the intersection between each polygon
# in the dual mesh and the study area
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Constrained refined Delaunay triangulation
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FIGURE 23.2: Mesh (top) and dual mesh (bottom) used in the SPDE
approach. Event locations are depicted as red points.
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library(rgeos)

w <- sapply(1:length(dmesh), function(i) {
if (gIntersects(dmesh[i, ], domainSP))

return(gArea(gIntersection(dmesh[i, ], domainSP)))
else return(0)

})

Note that the sum of the weights w is equal to the area of the study region
Bolivia.

sum(w) # sum weights

[1] 1093862

st_area(map) # area of the study region

1093862 [km^2]

Figure 23.3 shows the mesh together with the integration points with positive
weight in black and with zero weight in red. We observe all points with zero
weight are outside the study region.

plot(mesh)
points(mesh$loc[which(w > 0), 1:2], col = "black", pch = 20)
points(mesh$loc[which(w == 0), 1:2], col = "red", pch = 20)

Then, we create vectors of the augmented datasets with the observed and the
expected values. The observed values will be specified in the model formula
as response. The expected values will be specified in the model formula as
the component E of the mean for the Poisson likelihood defined as Eiexp(ηi),
where ηi is the linear predictor.

Vector y.pp contains the response variable. The first nv elements are 0s
corresponding to the mesh vertices. The last n elements are 1s corresponding
to the observed events.

Vector e.pp contains the expected values. The first nv elements are the weights
w representing the intersection between the areas around each of the mesh
vertices and the study region. The following n elements are 0s corresponding
to the point events.
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Constrained refined Delaunay triangulation

FIGURE 23.3: Mesh together with the points with positive weight in black
and with zero weight in red.

y.pp <- rep(0:1, c(nv, n))
e.pp <- c(w, rep(0, n))

head(cbind(y.pp, e.pp))

y.pp e.pp
[1,] 0 0
[2,] 0 0
[3,] 0 0
[4,] 0 0
[5,] 0 0
[6,] 0 0

tail(cbind(y.pp, e.pp))

y.pp e.pp
[2211,] 1 0
[2212,] 1 0
[2213,] 1 0
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[2214,] 1 0
[2215,] 1 0
[2216,] 1 0

23.3.6 Projection matrix
We construct the projection matrix A.pp to project the Gaussian random field
from the observations to the triangulation vertices. This matrix is constructed
using the projection matrix for the mesh vertices that is a diagonal matrix
(A.int), and the projection matrix for the event locations (A.y).

# Projection matrix for the integration points (mesh vertices)
A.int <- Diagonal(nv, rep(1, nv))
# Projection matrix for observed points (event locations)
A.y <- inla.spde.make.A(mesh = mesh, loc = coo)
# Projection matrix for mesh vertices and event locations
A.pp <- rbind(A.int, A.y)

We also create the projection matrix Ap.pp for the prediction locations.

Ap.pp <- inla.spde.make.A(mesh = mesh, loc = coop)

23.3.7 Stack with data for estimation and prediction
Now we use the inla.stack() function to construct stacks for estimation
and prediction that organize the data, effects, and projection matrices. In the
arguments of inla.stack(), data is a list with the observed (y) and expected
(e) values. Argument A contains the projection matrices, and argument effects
is a list with the fixed and random effects. Then, the estimation and prediction
stacks are combined in a full stack.

# stack for estimation
stk.e.pp <- inla.stack(tag = "est.pp",
data = list(y = y.pp, e = e.pp),
A = list(1, A.pp),
effects = list(list(b0 = rep(1, nv + n)), list(s = 1:nv)))

# stack for prediction stk.p
stk.p.pp <- inla.stack(tag = "pred.pp",
data = list(y = rep(NA, nrow(coop)), e = rep(0, nrow(coop))),
A = list(1, Ap.pp),
effects = list(data.frame(b0 = rep(1, nrow(coop))),

list(s = 1:nv)))
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# stk.full has stk.e and stk.p
stk.full.pp <- inla.stack(stk.e.pp, stk.p.pp)

23.3.8 Model formula and inla() call
The formula is specified by including the response in the left-hand side and
the random effects in the right-hand side.

formula <- y ~ 0 + b0 + f(s, model = spde)

We fit the model by calling inla(). In the function, we specify link = 1 to
compute the fitted values that are given in res$summary.fitted.values and
res$marginals.fitted.values with the same link function as the family
specified in the model.

res <- inla(formula, family = 'poisson',
data = inla.stack.data(stk.full.pp),
control.predictor = list(compute = TRUE, link = 1,

A = inla.stack.A(stk.full.pp)),
E = inla.stack.data(stk.full.pp)$e)

23.3.9 Results
A summary of the results can be inspected by typing summary(res). The
data frame res$summary.fitted.values contains the fitted values. The in-
dices of the rows corresponding to the predictions can be obtained with
inla.stack.index() specifying the tag "pred.pp" of the prediction stack.

index <- inla.stack.index(stk.full.pp, tag = "pred.pp")$data
pred_mean <- res$summary.fitted.values[index, "mean"]
pred_ll <- res$summary.fitted.values[index, "0.025quant"]
pred_ul <- res$summary.fitted.values[index, "0.975quant"]

Then, we add layers to the grid raster with the posterior mean, and 2.5 and
97.5 percentiles values in the cells that are within the map.

grid$mean <- NA
grid$ll <- NA
grid$ul <- NA
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grid$mean[indicespointswithin] <- pred_mean
grid$ll[indicespointswithin] <- pred_ll
grid$ul[indicespointswithin] <- pred_ul

Finally, we create maps of the posterior mean and the lower and upper limits
of 95% credible intervals of the intensity of the point process of species in
Bolivia (Figure 23.4). To do that, we use the levelplot() function of the
rasterVis package specifying names.attr with the name of each panel and
layout with the number of columns and rows.

library(rasterVis)
levelplot(raster::brick(grid), layout = c(3, 1),
names.attr = c("Mean", "2.5 percentile", "97.5 percentile"))
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FIGURE 23.4: Maps with the posterior mean of the intensity of the point
process of species in Bolivia (left), and lower (center) and upper (right) limits
of 95% credible intervals.

Overall, we observe a low intensity of species, with higher intensity in the
central west part of Bolivia. Note that we have modeled species occurrence
data retrieved from GBIF by assuming the observed spatial point pattern is
a realization of the underlying process that generates the species locations.
In real applications, it is important to understand how data was collected,
and assess potential data biases such as overrepresentation of certain areas
that can invalidate the results. Moreover, it is important to incorporate expert
knowledge, to create models that include relevant covariates and random effects
to account for various types of variability, enabling a more comprehensive
understanding of the variable under investigation.
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23.3.10 Function to create the dual mesh
The following code corresponds to the book.mesh.dual() function to create
the dual mesh.

book.mesh.dual <- function(mesh) {
if (mesh$manifold=='R2') {

ce <- t(sapply(1:nrow(mesh$graph$tv), function(i)
colMeans(mesh$loc[mesh$graph$tv[i, ], 1:2])))

library(parallel)
pls <- mclapply(1:mesh$n, function(i) {

p <- unique(Reduce('rbind', lapply(1:3, function(k) {
j <- which(mesh$graph$tv[,k]==i)
if (length(j)>0)
return(rbind(ce[j, , drop=FALSE],
cbind(mesh$loc[mesh$graph$tv[j, k], 1] +
mesh$loc[mesh$graph$tv[j, c(2:3,1)[k]], 1],
mesh$loc[mesh$graph$tv[j, k], 2] +
mesh$loc[mesh$graph$tv[j, c(2:3,1)[k]], 2])/2))
else return(ce[j, , drop=FALSE])
})))
j1 <- which(mesh$segm$bnd$idx[,1]==i)
j2 <- which(mesh$segm$bnd$idx[,2]==i)
if ((length(j1)>0) | (length(j2)>0)) {
p <- unique(rbind(mesh$loc[i, 1:2], p,
mesh$loc[mesh$segm$bnd$idx[j1, 1], 1:2]/2 +
mesh$loc[mesh$segm$bnd$idx[j1, 2], 1:2]/2,
mesh$loc[mesh$segm$bnd$idx[j2, 1], 1:2]/2 +
mesh$loc[mesh$segm$bnd$idx[j2, 2], 1:2]/2))
yy <- p[,2]-mean(p[,2])/2-mesh$loc[i, 2]/2
xx <- p[,1]-mean(p[,1])/2-mesh$loc[i, 1]/2
}
else {
yy <- p[,2]-mesh$loc[i, 2]
xx <- p[,1]-mesh$loc[i, 1]
}
Polygon(p[order(atan2(yy,xx)), ])

})
return(SpatialPolygons(lapply(1:mesh$n, function(i)

Polygons(list(pls[[i]]), i))))
}
else stop("It only works for R2!")

}



A
The R software

A.1 R and RStudio
R1 is a free and open-source software environment for statistical computing and
graphics that provides many excellent packages for importing and manipulating
data, statistical analysis, and visualization. R can be downloaded and installed
from CRAN (Comprehensive R Archive Network)2. R can be run using the
integrated development environment (IDE) called RStudio which can be freely
downloaded from https://posit.co/download/rstudio-desktop/. RStudio
includes a console, a syntax-highlighting editor for writing and editing R code,
and a variety of tools for data visualization, debugging, and management of
files and R projects.

The RStudio IDE has typically four panes (Figure A.1). In the code editor pane
(top-left), we create and view the R script files. In the console pane (bottom-
left), we see the execution and the output of the R code. To interact with R,
we can type commands in the console or write code in script files in the code
editor and copy-paste commands to the console. The Environment/History
pane (top-right) contains tabs with datasets, variables, and other R objects, as
well as the history of the previous R commands executed. This pane may also
contain Git options for version control. Finally, the Files/Plots/Packages/Help
pane (bottom-right) allows us to see the files in our working directory, the
graphs generated, as well as packages and help pages.

A.2 Installation of R packages
R provides functionality to read and write data; create R objects such as vectors,
matrices, data frames and lists; conduct statistical analyses and plotting. We
can also install additional R packages for data retrieval, manipulation, analysis,
visualization, and reporting. To install an R package from CRAN, we use the

1https://www.r-project.org
2https://cran.rstudio.com
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FIGURE A.1: Screenshot of RStudio.

install.packages() function passing the name of the package. Then, to use
the package, we load it with library(). For example, we can install and load
the sf package (Pebesma, 2022a) to work with spatial vector data as follows:

install.packages("sf")
library(sf)

A.3 Packages for data visualization
A.3.1 ggplot2
The ggplot2 package (Wickham et al., 2022a) uses a grammar of graphics
which defines the rules of structuring mathematic and aesthetic elements to
build graphs layer-by-layer. To create a plot with ggplot2, we call ggplot()
specifying the data frame with the variables to plot (data), and the aesthetic
mappings between variables in the data and visual properties of the objects
in the graph, such as the position and color of points or lines (mapping =
aes()). Then, we use the + symbol to add layers of graphical components to
the graph. Layers consist of geoms, stats, scales, coords, facets, and themes.
For example, we add objects to the graph with geom_*() functions (e.g.,
geom_point() for points, geom_line() for lines). We can also add color scales
(e.g., scale_colour_brewer(), faceting specifications (e.g., facet_wrap()),
and coordinate systems (e.g., coord_flip()). To save a plot, we use ggsave().
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Here, we use the st_read() function of sf to read the shapefile that contains
the number of sudden infant deaths in North Carolina, USA, in 1974, and
create a map using ggplot2 (Figure A.2).

library(ggplot2)
library(sf)
library(viridis)

d <- st_read(system.file("shape/nc.shp", package = "sf"),
quiet = TRUE)

ggplot(d) + geom_sf(aes(fill = SID74)) +
scale_fill_viridis() + theme_bw()
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FIGURE A.2: Map of number of sudden infant deaths in North Carolina,
USA, in 1974 created with ggplot2.

A.3.2 HTML widgets
HTML widgets3 are interactive web visualizations built with JavaScript. Here,
we provide examples of HTML widgets that allow us to create interactive maps,
time series plots and tables. Other examples of HTML widgets can be seen at
this website4. The leaflet package (Cheng et al., 2022a) allows us to create
interactive maps supporting panning and zooming. We can include basemaps
using map tiles to put data into context. A set of available basemaps can
be seen here5. Figure A.3 shows a map created with leaflet of the locations
and Richter magnitude of seismic events occurred near Fiji in 1964 that are
contained in the quakes data.

3http://www.htmlwidgets.org/
4https://www.htmlwidgets.org/showcase_leaflet.html
5http://leaflet-extras.github.io/leaflet-providers/preview/index.html

http://www.htmlwidgets.org
https://www.htmlwidgets.org
http://leaflet-extras.github.io
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library(leaflet)
library(sf)

d <- quakes[1:20, ]
pal <- colorNumeric(palette = "YlOrRd", domain = d$mag)
leaflet(d) %>% addTiles() %>%

addCircleMarkers(color = ~ pal(mag)) %>%
leaflet::addLegend(pal = pal, values = ~ mag)

FIGURE A.3: Map of the locations and Richter magnitude of seismic events
occurred near Fiji in 1964 created with leaflet.

The dygraphs package (Vanderkam et al., 2018) provides functionality to
create interactive plots of time series data. Figure A.4 shows a time series
plot created with dygraphs with the mean annual temperature in degrees
Fahrenheit in New Haven, Connecticut, USA, over the years contained in the
nhtemp data.

library(dygraphs)
dygraph(nhtemp, main = "New Haven Temperatures") %>%

dyRangeSelector(dateWindow = c("1920-01-01", "1960-01-01"))

The DT package (Xie et al., 2022a) allows us to display matrices and data
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FIGURE A.4: Time series plot of the mean annual temperature in degrees
Fahrenheit in New Haven, Connecticut, USA, created with dygraphs.

frames as tables supporting filtering, pagination and sorting. For example,
Figure A.5 depicts a table created with DT showing the names, and the sepal
and petal lengths and widths in centimeters of 150 flowers contained in the
iris dataset.

library(DT)
datatable(iris, options = list(pageLength = 5))

A.4 Reproducible reports and dashboards
A.4.1 R Markdown
The package rmarkdown (Allaire et al., 2022) allows us to easily turn our
analyses into fully reproducible documents that can be shared with others in
a variety of formats including HTML and PDF. An R Markdown document
is a text file with extension .Rmd that intermingles text and R code, and
can include narrative text, tables, and visualizations. When the R Markdown
document is compiled, the R code is executed and a report with the output
of the R code is created. Resources to learn R Markdown include Xie et al.
(2022b), Xie et al. (2018), and chapter 11 of Moraga (2019) which provides a
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FIGURE A.5: Table created with DT showing the information of the iris
dataset.

reproducible example of how to create an R Markdown document that includes
an exploratory data analysis with tables and visualizations.

A new R Markdown document (.Rmd) can be created by clicking
File > New File > R Markdown in RStudio. From the .Rmd file, a re-
port can be generated using the Knit button in RStudio or executing
rmarkdown::render("name.Rmd", "output_document"), where name.Rmd is
the name of the .Rmd file, and "output_document" the type of output (e.g.,
"html_document", "pdf_document"). Note that LaTeX is needed to gener-
ate PDF documents. The LaTeX distribution TinyTeX can be installed with
the tinytex package (Xie, 2022) with tinytex::install_tinytex() (Xie
et al., 2022b). Alternatively, LaTeX can be installed using the resources in the
https://www.latex-project.org/get/ website.

An R Markdown document includes three basic components, namely, a YAML
header, Markdown text, and R code chunks. At the beginning of the document,
we write a YAML header surrounded by --- that indicates several options
such as title, author, date, and type of output file.

---
title: "Report"
author: "Paula Moraga"
date: 1 July 2023

https://www.latex-project.org
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output: html_document
---

The text is written in Markdown syntax. For example, we can use asterisks for
italic text (*text*) and double asterisks for bold text (**text**) . We can
also include equations in LaTeX.

The R code is written within R code chunks which start with three backticks
```{r} and end with three backticks ```. R code chunks can be specified using
several options like echo=FALSE to hide code and warning=FALSE to supress
warnings.

```{r, warning = FALSE}
# R code to be executed
```

We can include images using knitr::include_graphics("path/img.png")
and tables created with knitr::kable(). We can also include HTML widgets6

such as objects created with leaflet, DT, and dygraphs.

A.4.2 Quarto
Quarto (Allaire, 2022) is a multi-language, next-generation version of R Mark-
down, that includes many new features and capabilities. A Quarto document
has extension .qmd and can be rendered as formats like PDF and Word using the
Render button of RStudio or typing quarto::quarto_render("name.qmd")
in the console. Quarto is able to render most existing .Rmd files without modi-
fication. Quarto documents are formed of a YAML header, Markdown text,
and R code chunks. The R code chunks options are identified by #| at the
beginning of the lines. For example,

```{r, warning=FALSE}
#| label: load-packages
#| include: false

plot(1:10, 1:10)
```

A.4.3 Flexdashboard
The flexdashboard package (Sievert et al., 2022a) allows us to create dash-
boards in HTML format that contain several related data visualizations. Ex-

6https://www.htmlwidgets.org/

https://www.htmlwidgets.org
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amples of dashboards created with flexdashboard can be seen at the RStudio
website7. Chapter 12 of Moraga (2019) explains how to build a flexdashboard
with several components showing air pollution levels in each of the world’s
countries (Figure A.6).

FIGURE A.6: Screenshot of a flexdashboard to visualize air pollution data
globally.

To create a flexdashboard, we need to write an R Markdown file with ex-
tension .Rmd. The YAML header of the flexdashboard document needs to
have the option output: flexdashboard::flex_dashboard. Dashboard com-
ponents are shown according to a layout that specifies the columns and rows.
Columns are included with --------------, and rows for each column with
###. Layouts can also be specified row-wise rather than column-wise by adding
orientation: rows in the YAML. Layout examples including tabs, multiple
pages, and sidebars can be seen at the R Markdown website8.

The R code to create the dashboard’s visualizations is written within R code
chunks. Dashboards can contain a wide variety of components including images,
tables, equations, and HTML widgets. They can also contain value boxes9 to
display single values with titles and icons, and gauges10 that display values
on a meter within a specified range. Moreover, it is also possible to include
navigation bars with links to social media, source code, or other links related
to the dashboard.

7https://pkgs.rstudio.com/flexdashboard/articles/examples.html
8https://pkgs.rstudio.com/flexdashboard/articles/layouts.html
9https://bookdown.org/yihui/rmarkdown/dashboard-components.html#value-boxes

10https://bookdown.org/yihui/rmarkdown/dashboard-components.html#gauges

https://pkgs.rstudio.com
https://pkgs.rstudio.com
https://bookdown.org
https://bookdown.org
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A.4.4 Shiny
Shiny (Chang et al., 2022) is a web application framework for R that enables
to build interactive web applications. Examples of Shiny apps can be seen at
https://shiny.posit.co/r/gallery/. The SpatialEpiApp package (Moraga,
2018b) contains a Shiny app for disease risk estimation, cluster detection,
and interactive visualization. Chapters 13-15 of Moraga (2019) provide an
introduction to Shiny as well as examples to build a Shiny app to upload and
visualize spatial and spatio-temporal data.

A Shiny app can be built by creating a directory that contains an R file with
three components. Namely, a ui user interface object which controls layout
and appearance of the app, a server() function with instructions to build
objects displayed in the ui, and a call to shinyApp() that creates the Shiny
app from the ui/server() pair.

# define user interface object
ui <- fluidPage( )
# define server() function
server <- function(input, output){ }
# call to shinyApp() which returns the Shiny app
shinyApp(ui = ui, server = server)

In the ui object, we can include input objects that allow us to interact with
the app by modifying their values (e.g., texts, dates, files), and output objects
we want to show in the app (e.g., texts, tables, plots). The server() function
contains the R code to build the outputs. If this code uses an input value, the
output will be rebuilt whenever the value changes creating reactivity. The app
directory can also contain data or other R scripts needed by the app. We can
also write two separate files ui.R and server.R for an easier management of
code in large apps.

There are two options to share a Shiny app. We can share the R scripts with
other users so they can launch the app from R with the runApp() function
specifying the path of the directory of the app. Another sharing option that
does not require the users to have R is to host the app as a web page at its own
URL so the app can be navigated through the internet with a web browser.

https://shiny.posit.co
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