

Cracking the Data Engineering
Interview

Land your dream job with the help of resume-building tips,
over 100 mock questions, and a unique portfolio

Kedeisha Bryan

Taamir Ransome

BIRMINGHAM—MUMBAI

Cracking the Data Engineering Interview
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Arindam Majumder
Book Project Manager: Farheen Fatima
Senior Editor: Nathanya Dias
Technical Editor: Sweety Pagaria
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Vijay Kamble
DevRel Marketing Coordinator: Nivedita Singh

First published: November 2023

Production reference: 1261023

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83763-077-6
www.packtpub.com

http://www.packtpub.com

To my father, Owen Bryan Sr, who has been a rock in my corner in all my endeavors. And always
reminding me of my talents when I can’t see them myself.

– Kedeisha Bryan

Thanks

-Taamir Ransome

Contributors

About the authors
Kedeisha Bryan is a data professional with experience in data analytics, science, and engineering.
She has prior experience combining both Six Sigma and analytics to provide data solutions that have
impacted policy changes and leadership decisions. She is fluent in tools such as SQL, Python, and Tableau.

She is the founder and leader at the Data in Motion Academy, providing personalized skill development,
resources, and training at scale to aspiring data professionals across the globe. Her other works include
another Packt book in the works and an SQL course for LinkedIn Learning.

Taamir Ransome is a Data Scientist and Software Engineer. He has experience in building machine
learning and artificial intelligence solutions for the US Army. He is also the founder of the Vet Dev
Institute, where he currently provides cloud-based data solutions for clients. He holds a master’s degree
in Analytics from Western Governors University.

About the reviewers
Hakeem Lawrence is a highly skilled Power BI analyst with a deep passion for data-driven insights.
He has mastered the art of transforming complex datasets into compelling visual narratives. However,
his expertise extends beyond Power BI; he is also a proficient Python developer, adept at leveraging
its data manipulation and analysis libraries. His analytical prowess and coding finesse have enabled
him to create end-to-end data solutions that empower organizations to make informed decisions. He
is also a technical reviewer for Kedeisha Bryan’s second book, Becoming a Data Analyst.

Sanghamitra Bhattacharjee is a Data Engineering Leader at Meta and was previously Director of
Machine Learning Platforms at NatWest. She has led global transformation initiatives in the Data and
Analytics domain over the last 20 years. Her notable work includes contributions to mobile analytics,
personalization, real-time user reach, and NLP products.

She is extremely passionate about diversity and inclusion at work and is a core member of Grace
Hopper Celebrations, India. She has organized conferences and meet-ups and she has been a speaker
at several international and national conferences, including NASSCOM GCC Conclave, Microstrategy
World, and Agile India. She was also awarded a patent for her work on delivering contextual ads for
search engines.

Abhishek Mittal is a Data Engineering & Analytics professional with over 10 years of experience
in business intelligence and data warehousing space. He delivers exceptional value to his customers
by designing high-quality solutions and leading their successful implementations. His work entails
architecting solutions for complex data problems for various clients across various business domains,
managing technical scope and client expectations, and managing implementations of the solution. He
is a Microsoft Azure, Power BI, Power Platform, and Snowflake-certified professional and works as
a Principal Architect with Nagarro. He is also a Microsoft Certified Trainer and is deeply passionate
about continuous learning and exploring new skills.

Preface� xiii

Part 1: Landing Your First Data Engineering Job

1
The Roles and Responsibilities of a Data Engineer� 3

Roles and responsibilities
of a data engineer� 3
Responsibilities� 4

An overview of the data
engineering tech stack� 4
Summary� 5

2
Must-Have Data Engineering Portfolio Projects� 7

Technical requirements� 7
Must-have skillsets to
showcase in your portfolio� 8
Ability to ingest various data sources� 8
Data storage� 9

Data processing� 11
Cloud technology� 12

Portfolio data engineering project� 12
Scenario� 13

Summary� 25

3
Building Your Data Engineering Brand on LinkedIn� 27

Optimizing your LinkedIn profile� 27
Your profile picture� 28
Your banner� 30
Header� 32

Crafting your About Me section� 33
Initial writing exercise� 33

Developing your brand� 34

Table of Contents

Table of Contentsviii

Posting content� 35
Building your network� 36

Sending cold messages� 37

Summary� 38

4
Preparing for Behavioral Interviews� 39

Identifying six main types of
behavioral questions to expect� 40
Assessing cultural fit
during an interview� 40
Utilizing the STARR method
when answering questions� 41
Example interview question #1� 42

Example interview question #2� 42
Example interview question #3� 43
Example interview question #4� 43
Example interview question #5� 44

Reviewing the most asked interview
questions� 44
Summary� 47

Part 2: Essentials for Data Engineers Part I

5
Essential Python for Data Engineers� 51

Must-know foundational
Python skills� 51
SKILL 1 – understand Python’s
basic syntax and data structures� 52
SKILL 2 – understand how to use
conditional statements, loops, and functions� 52
SKILL 3 – be familiar with standard
built-in functions and modules in Python� 53
SKILL 4 – understand how to work
with file I/O in Python� 54
SKILL 5 – functional programming� 54

Must-know advanced Python skills� 55
SKILL 1 – understand the concepts of OOP
and how to apply them in Python� 55

SKILL 2 – know how to work with
advanced data structures in Python,
such as dictionaries and sets� 56
SKILL 3 – be familiar with Python’s
built-in data manipulation and analysis
libraries, such as NumPy and pandas� 57
SKILL 4 – understand how to work
with regular expressions in Python� 57
SKILL 5 – recursion� 58

Technical interview questions� 59
Python interview questions� 59
Data engineering interview questions� 60
General technical concept questions� 61

Summary� 62

Table of Contents ix

6
Unit Testing� 63

Fundamentals of unit testing� 63
Importance of unit testing� 64
Unit testing frameworks in Python� 64
Process of unit testing� 66

Must-know intermediate
unit testing skills� 67

Parameterized tests� 67
Performance and stress testing� 68
Various scenario testing techniques� 68

Unit testing interview questions� 69
Summary� 70

7
Database Fundamentals� 71

Must-know foundational database
concepts� 71
Relational databases� 72
NoSQL databases� 73
OLTP versus OLAP databases� 74
Normalization� 74

Must-know advanced
database concepts� 75

Constraints� 75
ACID properties� 76
CAP theorem� 76
Triggers� 77

Technical interview questions� 78
Summary� 79

8
Essential SQL for Data Engineers� 81

Must-know foundational SQL concepts�81
Must-know advanced SQL concepts� 83

Technical interview questions� 84
Summary� 85

Table of Contentsx

Part 3: Essentials for Data Engineers Part II

9
Database Design and Optimization� 89

Understanding database
design essentials� 90
Indexing� 96
Data partitioning� 97
Performance metrics� 98

Designing for scalability� 99

Mastering data modeling concepts� 100
Technical interview questions� 101
Summary� 103

10
Data Processing and ETL� 105

Fundamental concepts� 105
The life cycle of an ETL job� 106

Practical application of data
processing and ETL� 106

Designing an ETL pipeline� 106
Implementing an ETL pipeline� 107
Optimizing an ETL pipeline� 108

Preparing for technical interviews� 108
Summary� 110

11
Data Pipeline Design for Data Engineers� 111

Data pipeline foundations� 111
Types of data pipelines� 113
Key components of a data pipeline� 113

Steps to design your data pipeline� 114
Technical interview questions� 115
Summary� 116

12
Data Warehouses and Data Lakes� 117

Exploring data warehouse
essentials for data engineers� 117
Architecture� 117

Schemas� 120

Examining data lake essentials
for data engineers� 122

Table of Contents xi

Data lake architecture� 123
Data governance and security� 124
Data security� 125

Technical interview questions� 125
Summary� 127

Part 4: Essentials for Data Engineers Part III

13
Essential Tools You Should Know� 131

Understanding cloud technologies� 131
Major cloud providers� 132
Core cloud services for data engineering� 132
Identifying ingestion, processing,
and storage tools� 133
Data storage tools� 134

Mastering scheduling tools� 135
Importance of workflow orchestration� 135
Apache Airflow� 135

Summary� 136

14
Continuous Integration/Continuous Development (CI/CD) for
Data Engineers� 137

Understanding essential
automation concepts� 137
Test automation� 138
Deployment automation� 139
Monitoring� 140

Mastering Git and version control� 141
Git architecture and workflow� 141
Branching and merging� 142
Collaboration and code reviews� 142

Understanding data
quality monitoring� 144

Data quality metrics� 144
Setting up alerts and notifications� 145

Pipeline catch-up and recovery� 145
Implementing CD� 146
Deployment pipelines� 146
Infrastructure as code� 147

Technical interview questions� 148
Summary� 150

Table of Contentsxii

15
Data Security and Privacy� 151

Understanding data access control� 152
Access levels and permissions� 152
Authentication versus authorization� 153
RBAC� 153
Implementing ACLs� 154

Mastering anonymization� 155
Masking personal identifiers� 155

Applying encryption methods� 156

Encryption basics� 156
SSL and TLS� 157

Foundations of maintenance
and system updates� 157
Regular updates and version control� 157

Summary� 158

16
Additional Interview Questions� 159

Index� 165

Other Books You May Enjoy� 178

Preface

Within the domain of data, a distinct group of experts known as data engineers are devoted to ensuring
that data is not merely accumulated, but rather refined, dependable, and prepared for analysis. Due
to the emergence of big data technologies and the development of data-driven decision-making, the
significance of this position has increased substantially, rendering data engineering one of the most
desirable careers in the technology sector. However, the trajectory toward becoming a prosperous
data engineer remains obscure for many.

Cracking the Data Engineering Interview serves as a printed mentor. Providing ambitious data engineers
with the necessary information, tactics, and self-assurance to enter this ever-changing industry.
The organization of this book facilitates your progression in comprehending the domain of data
engineering, attaining proficiency in its fundamental principles, and equipping yourself to confront
the intricacies of its interviews.

Part 1 of this book delves into the functions and obligations of a data engineer and offers advice on
establishing a favorable impression before the interview. This includes strategies, such as presenting
portfolio projects and enhancing one’s LinkedIn profile. Parts 2 and 3 are devoted to the technical
fundamentals, guaranteeing that you will possess a comprehensive understanding of the essential
competencies and domains of knowledge, ranging from the intricacies of data warehouses and data
lakes to Python programming. In Part 4, an examination is conducted of the essential tools and
methodologies that are critical in the contemporary data engineering domain. Additionally, a curated
compilation of interview inquiries is provided for review.

Who this book is for
If you are an aspiring Data Engineer looking for a guide on how to land, prepare, and excel in data
engineering interviews, then this book is for you.

You should already understand and should have been exposed to fundamentals of Data Engineering
such as data modeling, cloud warehouses, programming (python & SQL), building data pipelines,
scheduling your workflows (Airflow), and APIs.

Prefacexiv

What this book covers
Chapter 1, The Roles and Responsibilities of a Data Engineer, explores the complex array of responsibilities
that comprise the core of a data engineer’s role. This chapter unifies the daily responsibilities, long-
term projects, and collaborative obligations associated with the title, thereby offering a comprehensive
perspective of the profession.

Chapter 2, Must-Have Data Engineering Portfolio Projects, this chapter helps you dive deep into a
selection of key projects that can showcase your prowess in data engineering, offering potential
employers tangible proof of your capabilities.

Chapter 3, Building Your Data Engineering Brand on LinkedIn, this chapter shows you how to make the
most of LinkedIn to show off your accomplishments, skills, and goals in the field of data engineering.

Chapter 4, Preparing for Behavioral Interviews, Along with technical skills, the most important thing
is that you can fit in with your team and the company’s culture. There are tips in this chapter on how
to do well in behavioral interviews so that you can talk about your strengths and values clearly.

Chapter 5, Essential Python for Data Engineers, Python is still an important tool for data engineers.
This chapter will help you learn about the Python ideas, libraries, and patterns that every data engineer
needs to know.

Chapter 6, Unit Testing, In data engineering, quality assurance is a must. This chapter will teach you the
basics of unit testing to make sure that your data processing scripts and pipelines are reliable and strong.

Chapter 7, Database Fundamentals, At the heart of data engineering lies the database. In this chapter you
will acquaint yourself with the foundational concepts, types, and operations of databases, establishing
a solid base for advanced topics.

Chapter 8, Essential SQL for Data Engineers, SQL is the standard language for working with data. This
chapter will help you learn the ins and outs of SQL queries, optimizations, and best practices so that
getting and changing data is easy.

Chapter 9, Database Design and Optimization, It’s both an art and a science to make databases work
well. This chapter will teach you about advanced design principles and optimization methods to make
sure your databases are quick, scalable, and reliable.

Chapter 10, Data Processing and ETL, Turn raw data into insights that can be used. In this chapter we
will learn about the tools, techniques, and best practices of data processing in this chapter, which is
about the Extract, Transform, Load (ETL) process.

Chapter 11, Data Pipeline Design for Data Engineers, A data-driven organization needs to be able
to easily move data from one place to another. In this chapter you will learn about the architecture,
design, and upkeep of data pipelines to make sure that data moves quickly and reliably.

Preface xv

Chapter 12, Data Warehouses and Data Lakes, Explore the huge world of ways to store data. This
chapter teaches you the differences between data warehouses and data lakes, as well as their uses and
architectures, to be ready for the challenges of modern data.

Chapter 13, Essential Tools You Should Know About, It’s important to have the right tool. In this chapter
you will learn how to use the most important tools in the data engineering ecosystem, from importing
data to managing it and keeping an eye on it.

Chapter 14, Continuous Integration/Continuous Development for Data Engineers, Being flexible is
important in a world where data is always changing. In data engineering and in this chapter, you will
learn how to use CI/CD to make sure that data pipelines and processes are always up-to-date and
running at their best.

Chapter 15, Data Security and Privacy, It’s important to be responsible when you have a lot of data.
This chapter will teach you about the important issues of data security and privacy, and get to know
the best ways to protect your data assets and the tools you can use to do so.

Chapter 16, Additional Interview Questions, Getting ready is half the battle won. This chapter comprises
of carefully chosen set of interview questions that cover a wide range of topics, from technical to
situational. This way, you’ll be ready for any surprise that comes your way.

To get the most out of this book
You will need to have a basic understanding of Microsoft Azure.

Software/hardware covered in the book Operating system requirements

Microsoft Azure Windows, macOS, or Linux

Amazon Web Services Windows, macOS, or Linux

Python Windows, macOS, or Linux

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Cracking-Data-Engineering-Interview-Guide. If there’s an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Cracking-Data-Engineering-Interview-Guide
https://github.com/PacktPublishing/Cracking-Data-Engineering-Interview-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexvi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount
the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

from scrape import *
import pandas as pd
from sqlalchemy import create_engine
import psycopg2

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “You can get your connection string
from your Connect tab and fix it into the format shown previously.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xvii

Share Your Thoughts
Once you’ve read Cracking the Data Engineering Interview, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-837-63077-1

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837630776

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837630776

Part 1:
Landing Your First Data

Engineering Job

In this part, we will focus on the different types of data engineers and how to best present yourself
in your job hunt.

This part has the following chapters:

•	 Chapter 1, The Roles and Responsibilities of a Data Engineer

•	 Chapter 2, Must-Have Data Engineering Portfolio Projects

•	 Chapter 3, Building Your Data Engineering Brand on LinkedIn

•	 Chapter 4, Preparing for Behavioral Interviews

1
The Roles and Responsibilities

of a Data Engineer

Gaining proficiency in data engineering requires you to grasp the subtleties of the field and become
proficient in key technologies. The duties and responsibilities of a data engineer and the technology
stack you should be familiar with are all explained in this chapter, which acts as your guide.

Data engineers are tasked with a broad range of duties because their work forms the foundation of
an organization’s data ecosystem. These duties include ensuring data security and quality as well as
designing scalable data pipelines. The first step to succeeding in your interviews and landing a job
involves being aware of what is expected of you in this role.

In this chapter, we will cover the following topics:

•	 Roles and responsibilities of a data engineer

•	 An overview of the data engineering tech stack

Roles and responsibilities of a data engineer
Data engineers are responsible for the design and maintenance of an organization’s data infrastructure.
In contrast to data scientists and data analysts, who focus on deriving insights from data and
translating them into actionable business strategies, data engineers ensure that data is clean, reliable,
and easily accessible.

The Roles and Responsibilities of a Data Engineer4

Responsibilities

You will wear multiple hats as a data engineer, juggling various tasks crucial to the success of data-
driven initiatives within an organization. Your responsibilities range from the technical complexities
of data architecture to the interpersonal skills necessary for effective collaboration. Next, we explore
the key responsibilities that define the role of a data engineer, giving you an understanding of what
will be expected of you as a data engineer:

•	 Data modeling and architecture: The responsibility of a data engineer is to design data
management systems. This entails designing the structure of databases, determining how data
will be stored, accessed, and integrated across multiple sources, and implementing the design.
Data engineers account for both the current and potential future data needs of an organization,
ensuring scalability and efficiency.

•	 Extract, Transform, Load (ETL): Data extraction from various sources, including structured
databases and unstructured sources such as weblogs. Transforming this data into a usable
form that may include enrichment, cleaning, and aggregations. Loading the transformed data
into a data store.

•	 Data quality and governance: It is essential to ensure the accuracy, consistency, and security
of data. Data engineers conduct quality checks to identify and rectify any data inconsistencies
or errors. In addition, they play a crucial role in maintaining data privacy and compliance with
applicable regulations, ensuring that data is reliable and legally sound.

•	 Collaboration with data scientists, analysts, and other stakeholders: Data engineers
collaborate with data scientists to ensure they have the appropriate datasets and tools to conduct
their analyses. In addition, they work with business analysts, product managers, and other
stakeholders to comprehend their data requirements and deliver accordingly. Understanding
the requirements of these stakeholders is essential to ensuring that the data infrastructure is
both relevant and valuable.

In conclusion, the data engineer’s role is multifaceted and bridges the gap between raw data sources
and actionable business insights. Their work serves as the basis for data-driven decisions, playing a
crucial role in the modern data ecosystem.

An overview of the data engineering tech stack
Mastering the appropriate set of tools and technologies is crucial for career success in the constantly
evolving field of data engineering. At the core are programming languages such as Python, which
is prized for its readability and rich ecosystem of data-centric libraries. Java is widely recognized
for its robustness and scalability, particularly in enterprise environments. Scala, which is frequently
employed alongside Apache Spark, offers functional programming capabilities and excels at real-time
data processing tasks.

Summary 5

SQL databases such as Oracle, MySQL, and Microsoft SQL Server are examples of on-premise storage
solutions for structured data. They provide querying capabilities and are a standard component of
transactional applications. NoSQL databases, such as MongoDB, Cassandra, and Redis, offer the
required scalability and flexibility for unstructured or semi-structured data. In addition, data lakes
such as Amazon Simple Storage Service (Amazon S3) and Azure Data Lake Storage (ADLS) are
popular cloud storage solutions.

Data processing frameworks are also an essential component of the technology stack. Apache Spark
distinguishes itself as a fast, in-memory data processing engine with development APIs, which makes
it ideal for big data tasks. Hadoop is a dependable option for batch processing large datasets and is
frequently combined with other tools such as Hive and Pig. Apache Airflow satisfies this need with its
programmatic scheduling and graphical interface for pipeline monitoring, which is a critical aspect
of workflow orchestration.

In conclusion, a data engineer’s tech stack is a well-curated collection of tools and technologies
designed to address various data engineering aspects. Mastery of these elements not only makes you
more effective in your role but also increases your marketability to potential employers.

Summary
In this chapter, we have discussed the fundamental elements that comprise the role and responsibilities
of a data engineer, as well as the technology stack that supports these functions. From programming
languages such as Python and Java to data storage solutions and processing frameworks, the toolkit
of a data engineer is diverse and integral to their daily tasks. As you prepare for interviews or take the
next steps in your career, a thorough understanding of these elements will not only make you more
effective in your role but will also make you more appealing to potential employers.

As we move on to the next chapter, we will focus on an additional crucial aspect of your data engineering
journey: portfolio projects. Understanding the theory and mastering the tools are essential, but it is
your ability to apply what you’ve learned in real-world situations that will truly set you apart. In the
next chapter, Must-Have Data Engineering Portfolio Projects, we’ll examine the types of projects that
can help you demonstrate your skills, reinforce your understanding, and provide future employers
with concrete evidence of your capabilities.

2
Must-Have Data Engineering

Portfolio Projects

Getting through a data engineering interview requires more than just knowing the fundamentals.
Although having a solid theoretical foundation is important, employers are increasingly seeking
candidates who can start working right away. This entails building a portfolio of completed projects that
show off the depth and breadth of your abilities in practical settings. In this chapter, we will walk you
through the fundamental skill sets that a data engineering portfolio should include and demonstrate,
with an example project, where you build an entire data pipeline for a sports analytics scenario.

With a well-designed portfolio, employees can see that you are not just knowledgeable about different
concepts but also skilled at putting them to use. By the end of this chapter, you’ll have a clear plan for
creating projects that stand out from the competition and impress hiring managers and recruiters.

In this chapter, we’re going to cover the following topics:

•	 Must-have skillsets to showcase in your portfolio

•	 Portfolio data engineering project

Technical requirements
You can find all the code needed for the sports analytics pipeline at https://github.com/
PacktPublishing/Cracking-Data-Engineering-Interview-Guide/tree/
main/Chapter-2.

https://github.com/PacktPublishing/Cracking-Data-Engineering-Interview-Guide/tree/main/Chapter-2
https://github.com/PacktPublishing/Cracking-Data-Engineering-Interview-Guide/tree/main/Chapter-2
https://github.com/PacktPublishing/Cracking-Data-Engineering-Interview-Guide/tree/main/Chapter-2

Must-Have Data Engineering Portfolio Projects8

Must-have skillsets to showcase in your portfolio
In the rapidly evolving field of data engineering, having a wide and comprehensive skill set is not only
advantageous but also essential. As you get ready for your next professional step, you need to make
sure your portfolio showcases your abilities in different areas of data engineering.

This section will act as your resource for key competencies that your data engineering portfolio
must highlight. There are a lot of different skills you can add to a project, but we will focus on some
fundamentals. The following figure shows the different phases of a data pipeline. Each project does
not need to have every single element, but your whole portfolio should cover multiple ones:

Figure 2.1 – Basic phases of the ETL process

These fundamental abilities demonstrated in your portfolio will make you an attractive candidate to
potential employers, regardless of your experience level.

Ability to ingest various data sources

The ability to consistently ingest data from multiple sources is one of the most fundamental tasks in
data engineering applications. Data can originate from various platforms and come in a variety of
formats. These can include flat files, streaming services, databases, and APIs. Your portfolio needs to
show that you can handle this diversity. In this section, we’ll look at how to ingest data from various
sources, talk about potential problems, and walk you through best practices:

•	 Local files: This includes CSV, Excel spreadsheets, and TXT files. These are files that are normally
locally available and are the simplest formats to deal with. However, on the job, you will be most
likely dealing with more complex data sources. Websites such as Kaggle, the Google Dataset
search engine, data.gov, and the UCI Machine Learning Repository are a few of the various
sources for readily available datasets in spreadsheet form.

Must-have skillsets to showcase in your portfolio 9

•	 Web page data: You can use this to build web scrapers that pull data from a web page. For
Python users, BeautifulSoup, Selenium, Requests, and Urllib are a few libraries
you can use to harvest data within HTML. Not all web pages allow for web scraping.

•	 Application programming interfaces (APIs): APIs allow you to extract live data from
applications and websites such as Twitter or https://www.basketball-reference.
com/. Unlike a web scraper, you can query or select the subsets of data that you would like
from an API. These APIs may come with documentation that provides instructions on how to
write the code to utilize the API.

•	 JavaScript Object Notation (JSON) files: When extracting data from an API or dealing with
nested data in a database, you will encounter JSON files. Be sure you have practiced the ability
to handle JSON data.

For any data engineer, ingesting data from multiple sources is an essential skill. Showcasing your
proficiency in managing various data sources will make a great impression on potential employers.
Being aware of best practices will help you stand out from the competition. These include handling
errors, validating data, and being efficient.

Data storage

Once you have ingested data for your project, you should showcase your data storage skills. Whether
you’re dealing with structured data in relational databases or unstructured data in a data lake, your choice
of storage solutions has a significant impact on accessibility, scalability, and performance. Relational
databases such as PostgreSQL and MySQL are frequently chosen for structured data because of their
ACID properties: Atomicity, Consistency, Isolation, and Durability. These databases provide the
required robustness for transactional systems, enabling complex querying capabilities. In contrast,
NoSQL databases such as MongoDB and Cassandra are gaining popularity due to their ability to
scale horizontally and accommodate semi-structured or unstructured data, making them ideal for
managing large volumes of data that do not neatly fit into tabular structures:

•	 Relational SQL databases: You can store your various structured data sources in a local
relational database such as PostgreSQL, MySQL, or SQLite so that it can be queried for later
use. Alternatively, you can use cloud databases by using services such as AWS or Azure. You
can also create a data model using either the star or transactional method.

https://www.basketball-reference.com/
https://www.basketball-reference.com/

Must-Have Data Engineering Portfolio Projects10

The following diagram depicts the star schema:

Figure 2.2 – Example visual of the star schema

•	 NoSQL databases: All your unstructured data sources (Internet of Things (IoT), images,
emails, and so on) should be stored in NoSQL databases such as MongoDB.

•	 Storage architecture: Practice staging your data in separate zones based on transformation levels:

	� Raw and unprocessed

	� Cleaned and transformed

	� Curated views for dashboarding and reporting

Must-have skillsets to showcase in your portfolio 11

Your portfolio will stand out if you can show that you are capable of managing a variety of data sources,
including flat files and APIs. Be sure to highlight certain best practices, including error handling, data
validation, and efficiency.

Data processing

Once data has been ingested and stored, the focus shifts to data processing. This is where we transform
raw data into a usable form for future analysis. At its core, data processing consists of a series of
operations designed to cleanse, transform, and enrich data in preparation for analysis or other business
applications. Traditional Extract, Transform, Load (ETL) procedures are being supplemented or
replaced by Extract, Load, Transform (ELT) procedures, especially when dealing with cloud-based
storage solutions.

In data processing, data quality and integrity are also evaluated. Missing values are handled, outliers
are examined, and data types are cast appropriately to ensure that the data is reliable and ready for
analytics. Stream processing tools such as Kafka and AWS Kinesis are better suited for real-time data
flows, enabling immediate analytics and decision-making.

Here are some aspects of the data processing portion that you want to highlight in your projects:

•	 Programming skills: Write clean and reproducible code. You should be comfortable with
both object-oriented and functional programming. For Python users, the PEP-8 standard is
a great guide.

•	 Converting data types: You should be able to convert your data types as necessary to allow
for optimized memory and easier-to-use formats.

•	 Handling missing values: Apply necessary strategies to handle missing data.

•	 Removing duplicate values: Ensure all duplicate values are removed.

•	 Error handling and debugging: To create reproducibility, implement blocks of code to handle
anticipated errors and bugs.

•	 Joining data: Combine and merge different data sources.

•	 Data validation and quality checks: Implement blocks of code to ensure processed data
matches the source of truth.

Once a data pipeline has been built, you can use a tool such as Apache Airflow to orchestrate and
schedule tasks automatically. This will be particularly useful for projects that use datasets that are
refreshed periodically (daily, weekly, and so on).

Must-Have Data Engineering Portfolio Projects12

Cloud technology

Since cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP) offer flexibility and scalability, they have become essential components of contemporary
data engineering. Large data processing and storing can now be accomplished by enterprises at a
fraction of the cost and effort opposed to bulky hardware and data centers. The goal of this section is
to provide you with an overview of the different cloud-based solutions and how the data engineering
ecosystem benefits from them. Practical experience with cloud technologies not only increases your
adaptability but also helps you stay up to date with new trends and industry best practices.

Among the top cloud service providers is AWS. The following are some important services for
data engineering:

•	 S3: Raw or processed data can be stored using S3, a simple storage service

•	 Glue: An entirely managed ETL solution

•	 Redshift: A solution for data warehousing

•	 Kinesis: Data streaming in real time

GCP provides a range of cloud computing services that are powered by the same internal infrastructure
that Google uses for its consumer goods:

•	 Cloud Storage: AWS S3-like object storage solution

•	 Dataflow: Processing of data in batches and streams

•	 BigQuery: A highly scalable, serverless data warehouse

Azure from Microsoft offers a variety of services designed to meet different needs in data engineering:

•	 Blob Storage: Scalable object storage for unstructured data

•	 Data Factory: A service for data integration and ETL

•	 Azure SQL Data Warehouse: A fully managed data warehouse with performance enhancements

•	 Event Hubs: Ingestion of data in real time

In the modern world, cloud technologies are essential for any data engineer to understand. While the
features offered by each cloud provider are similar, the subtle differences can have a significant impact
on the requirements of your project. Demonstrating your proficiency in navigating and implementing
solutions within AWS, GCP, or Azure demonstrates your adaptability to the dynamic field of data
engineering to prospective employers.

Portfolio data engineering project
In this section, we will look at an example Azure data engineering project on sports analytics that
involves creating a pipeline that ingests, cleans, and visualizes data.

Portfolio data engineering project 13

Scenario

You were recently employed by a company (Connect) that has rendered all data-related services to
its clients for the past 2 months. You have been attached to a team, but today, you have been given
your first job sole project.

A new season of the English Premier League just commenced and your company assigned you to a
data engineering job posted by a client. They provided several website links to acquire the data from.
Your job is to have all this data extracted, transformed, and loaded into cloud storage and a PostgreSQL
database every Saturday and Sunday until the end of the season.

As a data engineer, you should be able to assess the requirements to properly decide which tool to use
for each task that would make the process efficient. For example, using Spark to transform 70 rows of
data can be counterproductive because that tool is meant for data that contains over a million rows.

The following figure visualizes the project’s data pipeline and tools to be used:

Figure 2.3 – Sports analytics data pipeline

Here’s the approach you should take:

1.	 Go to websites and look at the data to be extracted. Determine which tool you’ll use to get
the data.

2.	 Build your web scraping script to get and transform this data.

3.	 Provision a Blob storage container on Azure and upload your extracted data as a Parquet file.

4.	 Provision a PostgreSQL database on Azure and upload your extracted data to it.

5.	 Automate this process and schedule it with GitHub Actions to run every Saturday and Sunday
until the end of the season.

6.	 Connect a Power BI service to your PostgreSQL database and do some Exploratory Data
Analysis (EDA).

Must-Have Data Engineering Portfolio Projects14

Let’s look at the steps for this project.

Step 1: Examine the data sources.

Go to the following sites:

	� League table: https://www.bbc.com/sport/football/premier-league/
table

	� Top scorers: https://www.bbc.com/sport/football/premier-league/
top-scorers

	� Detailed top scorers: https://www.worldfootball.net/goalgetter/
eng-premier-league-2023-2024/

	� Player table: https://www.worldfootball.net/players_list/eng-premier-
league-2023-2024/

	� All time table: https://www.worldfootball.net/alltime_table/
eng-premier-league/pl-only/

	� All-time winner (clubs): https://www.worldfootball.net/winner/
eng-premier-league/

	� Top scorers per season: https://www.worldfootball.net/top_scorer/
eng-premier-league/

	� Goals per season: https://www.worldfootball.net/stats/eng-premier-
league/1/

After inspecting the sites, we can see that they are in table format and they are all static sites as
opposed to dynamic sites. The key difference between both is that static websites have stable
content, where every user sees the same thing on each page, such as a privacy policy, whereas
dynamic websites pull content on the fly, allowing its content to change with the user. If it was
a dynamic site, selenium would be more suitable.

Step 2: Build your web scraping script to ingest and transform your data.

Follow these steps:

1.	 We’ll build our scraper with Python functions in a file called scrape.py. This way, we can
call and run the function from another script just by importing it. But first, let’s look at some
basic code we can use to scrape table content from most static sites using Beautiful Soup with
little to no cleaning:

import requests
from bs4 import BeautifulSoup
import pandas as pd

https://www.bbc.com/sport/football/premier-league/table
https://www.bbc.com/sport/football/premier-league/table
https://www.bbc.com/sport/football/premier-league/top-scorers
https://www.bbc.com/sport/football/premier-league/top-scorers
https://www.worldfootball.net/goalgetter/eng-premier-league-2023-2024/
https://www.worldfootball.net/goalgetter/eng-premier-league-2023-2024/
https://www.worldfootball.net/players_list/eng-premier-league-2023-2024/
https://www.worldfootball.net/players_list/eng-premier-league-2023-2024/
https://www.worldfootball.net/alltime_table/eng-premier-league/pl-only/
https://www.worldfootball.net/alltime_table/eng-premier-league/pl-only/
https://www.worldfootball.net/winner/eng-premier-league/
https://www.worldfootball.net/winner/eng-premier-league/
https://www.worldfootball.net/top_scorer/eng-premier-league/
https://www.worldfootball.net/top_scorer/eng-premier-league/
https://www.worldfootball.net/stats/eng-premier-league/1/
https://www.worldfootball.net/stats/eng-premier-league/1/

Portfolio data engineering project 15

url = 'https://www.bbc.com/sport/football/premier-league/table'
#the page link we want to extract from
headers = []
#a list that stores our header names
page = requests.get(url)
#makes a request to the webpage and returns the html content
soup = BeautifulSoup(page.text, "html.parser")
#we can use this to clean and sort through the html content to
get what we need
table= soup.find("table", class_="ssrcss-14j0ip6-Table
e3bga5w5")
#find the contents in this part of the html content with that
class_name
#we use _class because the class is a keyword in python
for i in table.find_all('th'):
#finds all the html tags th which holds the header details
 title = i.text
#gets the text content and appends it to the headers list
 headers.append(title)
league_table = pd.DataFrame(columns = headers)
#creates a dataframe with the headers
for j in table.find_all('tr')[1:]:
#finds all the content with tr tag in the table
 row_data = j.find_all('td')
 row = [i.text for i in row_data]
 length = len(league_table)
 league_table.loc[length] = row
#gets them by row and saves to the league_table dataframe
print(league_table)

Must-Have Data Engineering Portfolio Projects16

The following screenshot shows one of the tables that will be extracted:

Figure 2.4 – Premier League table of team statistics

2.	 To get the content you need, right-click anywhere on the site and select inspect. This will open
a developer console for you to see the HTML content of the page. It would look something
like the following visual:

Figure 2.5 – What you will see in the page inspection area

Portfolio data engineering project 17

As you can see, the <th> tag is under the tr tag, which is under the thead tag, which holds
all the header names. If you sort further, you’ll see the tbody tag, which holds all the row
content. As you can see, they are all under the table content with the ssrcss-1y596zx-
HeadingRow e3bga5w4' class name.

The output of the preceding code will give us the output shown in the following screenshot:

Figure 2.6 – Screenshot of the initial web scraping results

3.	 Now, we can build our scrape.py file, which contains all the functions we need to extract
the data the client asked for. Create a Python file called scrape.py. This can be found in this
book’s GitHub repository at https://github.com/PacktPublishing/Cracking-
Data-Engineering-Interview-Guide/blob/main/Chapter-2/scrape.py.

https://github.com/PacktPublishing/Cracking-Data-Engineering-Interview-Guide/blob/main/Chapter-2/scrape.py
https://github.com/PacktPublishing/Cracking-Data-Engineering-Interview-Guide/blob/main/Chapter-2/scrape.py

Must-Have Data Engineering Portfolio Projects18

Step 3: Provision a Blob storage container on Azure and upload your extracted data to it
as a Parquet file.

With the DataFrame that each function in the scrape.py returns, we can save it to Blob storage as
a Parquet file as opposed to saving it to our local system.

Parquet is a popular choice for storing and processing large datasets, but it’s not the only option
available. Other file formats, such as Optimized Row Columnar (ORC), Avro, and JSON, also have
their advantages and use cases. Here’s why you might choose Parquet over these other file formats:

•	 Parquet versus ORC: Both Parquet and ORC are columnar storage formats designed for
similar purposes, such as big data analytics. They offer similar benefits in terms of compression,
predicate pushdown, and schema evolution.

The choice between Parquet and ORC often depends on the specific ecosystem you’re working
in. For example, Parquet might be preferred if you’re using tools such as Apache Spark, while
ORC might be better suited for environments such as the Hadoop ecosystem with Hive and Tez.

•	 Parquet versus Avro: Avro is a row-based data serialization format that focuses on data interchange
and is used in various tools and frameworks, including Apache Kafka and Apache Hadoop:

	� Parquet’s columnar storage provides better compression and query performance advantages,
especially for analytical workloads that involve aggregations and filtering

	� Avro’s simplicity and support for schema evolution make it suitable for scenarios where
you need a more lightweight format and don’t require the same level of query performance
optimization that Parquet offers

•	 Parquet versus JSON: JSON is a human-readable data format and is widely used for data
interchange. However, JSON is not as efficient for storage and processing as columnar formats
such as Parquet:

	� Parquet’s columnar storage and advanced compression techniques make it much more space-
efficient and better suited for analytical workloads that involve reading specific columns

	� JSON might be preferred in cases where human readability and ease of use are more important
than storage and processing efficiency

•	 Parquet versus CSV: Parquet files are smaller than CSV files, and they can be read and written
much faster. Parquet files also support nested data structures, which makes them ideal for
storing complex data.

Portfolio data engineering project 19

CSV is a row-based data format that is simple to read and write

1.	 Now, to create our program, which pushes this DataFrame to our created container as a Parquet
file, I named my container testtech and did the following:

I.	 First, I imported the necessary modules and classes:

from scrape import *
#imports our functions from scrape.py so we can call the
functions from here
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from io import BytesIO
from azure.storage.blob import BlobServiceClient, BlobClient,
ContainerClient

II.	 Then, I loaded the environment variables from a .env file:

List of functions to process and upload
functions = [league_table, top_scorers, detail_top, player_
table, all_time_table, all_time_winner_club, top_scorers_
seasons, goals_per_season]

Function to upload data to Azure Blob Storage
def to_blob(func):
 """
 Converts the output of a given function to Parquet format and
 uploads it to Azure Blob Storage.

 Args:
 func (function): The function that retrieves data to be
 processed and uploaded.

 Returns:
 None

 This function takes a provided function, calls it to obtain
 data, and then converts the data into
 an Arrow Table. The Arrow Table is serialized into Parquet
 format and uploaded to an Azure Blob
 Storage container specified in the function. The function's
 name is used as the blob name.

 Example:
 Consider the function "top_scorers". Calling "to_blob(top_

Must-Have Data Engineering Portfolio Projects20

 scorers)" will process the output
 of "top_scorers", convert it to Parquet format, and upload it
 to Azure Blob Storage.
 """

 # Getting the name of the function
 file_name = func.__name__
 # Calling the function to retrieve data
 func = func()

 # Converting DataFrame to Arrow Table
 table = pa.Table.from_pandas(func)

 # Creating a buffer to store Parquet data
 parquet_buffer = BytesIO()
 # Writing the Arrow Table data to the buffer in Parquet format
 pq.write_table(table, parquet_buffer)

 # Retrieving Azure Blob Storage connection string
 connection_string ='your container connection string'
 # Creating a Blob Service Client
 blob_service_client = BlobServiceClient.from_connection_
 string(connection_string)

 # Specifying container name and blob name
 container_name = "testtech"
 blob_name = f"{file_name}.parquet"
 # Creating a Container Client
 container_client = blob_service_client.get_container_
 client(container_name)
 # Creating a Blob Client
 blob_client = container_client.get_blob_client(blob_name)

 # Uploading Parquet data to Azure Blob Storage
 blob_client.upload_blob(parquet_buffer.getvalue(),
 overwrite=True)
 # Printing a success message
 print(f"{blob_name} successfully updated")

Loop through the list of functions and upload data
for items in functions:
 to_blob(items)

Portfolio data engineering project 21

2.	 To get your container connection string, scroll down on the provisioned resource page and
copy your string from under Access key. After the code runs successfully, check your storage
container. You should see something similar to the following:

Figure 2.7 – Storage container with added data

It is advisable to use a cool or cold access tier as it saves more money.

Step 4: Provision a PostgreSQL database server on Azure and upload your extracted data
to it.

Provisioning a PostgreSQL database server on Azure can be done by following these steps:

1.	 Search for Azure database for Postgres flexible server in the search bar
at the top of the Azure portal, then click Create the resource.

2.	 On the Basics tab, choose your Azure subscription if it hasn’t already been indicated for you.
Then, go ahead and choose your resource group or create one if there are none.

3.	 Enter your server name. Your workload should be on development unless you want to make
the project bigger. Type in an admin name of your choice and your password. Confirm this
and press Enter.

Must-Have Data Engineering Portfolio Projects22

4.	 On the Networking page, leave everything else as-is except for Firewall Rules. Here, you can
either allow connection by adding your IP address or add someone else’s to allow access from
all IP addresses, which is not safe. Then, click Review + Create.

To push our football DataFrames directly to a database, we need to implement some code:

I.	 Import the necessary modules and functions:

from scrape import *
import pandas as pd
from sqlalchemy import create_engine
import psycopg2

II.	 List the functions to process and push them to the database:

functions = [league_table, top_scorers, detail_top, player_
table, all_time_table, all_time_winner_club, top_scorers_
seasons, goals_per_season]

III.	 Retrieve the database connection string from environment variables:

conn_string = 'postgres://user:password@hostname:5432/database-
name'
database-name is sometimes "postgres" incase you get into an
error
Creating a database engine
db = create_engine(conn_string)
Establishing a database connection
conn = db.connect()

IV.	 Loop through the list of functions and push data to the database for fun in functions:

Get the name of the current function
 function_name = fun.__name__

Call the function to get the DataFrame
 result_df = fun()

5.	 Push the DataFrame to the database table with the function name as the table name:

result_df.to_sql(function_name, con=conn, if_exists='replace',
index=False)

Print a message indicating data has been pushed for the
current function
 print(f'Pushed data for {function_name}')

Close the database connection
conn.close()

Portfolio data engineering project 23

You can get your connection string from your Connect tab and fix it into the format
shown previously.

We need one more Python script, called main.py, to run push_to_blob.py and push_
to_database.py instead of running them separately:

Import the os module for operating system-related
functionality
import os

Run the 'push_to_blob.py' script using the system shell
os.system('python push_to_blob.py')

Run the 'push_to_database.py' script using the system shell
os.system('python push_to_database.py')

Step 5: Automate this process and schedule it with GitHub Actions to run every Saturday
and Sunday until the end of the season.

Follow these steps:

1.	 Push all your working code to a GitHub repository.

2.	 Go to Settings in your GitHub repository, scroll down to Secrets and Variables, and click Actions.

Now, we will work on our YAML file, which will schedule and automate the extraction,
transformation, and loading of this data.

To use our hidden environment variables inside our code, we need to use the dotenv library.
GitHub serves as the .env file:

from dotenv import load_dotenv
import os

load_dotenv()
for your push_to_database.py
conn_string = os.getenv('CONN_STRING')

#for your push_to_blob.py

connection_string = os.getenv('BLOB_CONN_STRING')
Name of the GitHub Actions workflow
name: update league data

Define when the workflow should run
on:
 schedule:

Must-Have Data Engineering Portfolio Projects24

- cron: '0 0 * * 6,0' # Runs at 00:00 every Saturday and Sunday
 workflow_dispatch:

Define the jobs to be executed within the workflow
jobs:
 build:
 # Specify the runner environment
 runs-on: ubuntu-latest
 steps:

 # Step 1: Checkout the repository content
 - name: checkout repo content
 uses: actions/checkout@v2 # Checkout the repository content to
GitHub runner

 # Step 2: Setup Python
 - name: setup python
 uses: actions/setup-python@v4
 with:
 python-version: '3.9' # Install the specified Python version

 # Step 3: Install Python packages
 - name: install python packages
 run: |
 python -m pip install --upgrade pip
 pip install -r requirements.txt

Step 4: Execute extract script
 - name: execute extract script
 env:
 BLOB_CONN_STRING: ${{ secrets.BLOB_CONN_STRING }}
 # Set environment variable from GitHub secrets
 CONN_STRING: ${{ secrets.CONN_STRING }}
 # Set environment variable from GitHub secrets
 run: python main.py # Run the 'main.py' script

Step 6: Connect a Power BI service to your PostgreSQL database and do some exploratory
data analysis.

This part will be completely up to you. Remember that this part is not necessary to the client as they
already have a data analyst waiting to get the insights.

You can use any dashboarding tool you like, so long as it can connect to a cloud database.

Summary 25

Summary
In this chapter, we covered the fundamentals of data engineering that aspiring engineers can include
in their portfolios. We covered the general phases of building data pipelines, including data ingestion,
processing, cloud technologies, and storage. We concluded with a sports analytics example project to
give you a practical way to put these skills to use. By mastering and showcasing these essential skill
sets via portfolio projects, you will not only stand out during interviews, but you will also establish a
solid foundation for your data engineering career.

Upon moving on to our upcoming chapter, Building Your Data Engineering Brand on LinkedIn, we will
concentrate on converting these technical achievements into an engaging LinkedIn profile. Having a
strong online presence can help you attract recruiters and hiring managers.

3
Building Your Data Engineering

Brand on LinkedIn

According to HubSpot, approximately 85% of jobs today are filled through networking. And one of
the best online platforms for professional networking is LinkedIn. Now, in the remote working era,
platforms such as LinkedIn allow you to connect with valuable people in the data engineering field
such as managers, current data engineers, recruiters, and executives. Building rapport and relationships
with the aforementioned groups allows you to attract opportunities. Companies need to hire diverse
data engineering talent. And when you don’t have any initial connections to the data field, there’s no
better way to build your network and facilitate job offers than by building a brand on social media.

While this chapter will focus on LinkedIn, these tips can be applied to other social networking platforms
such as Twitter/X. For the sake of simplicity, we will only focus on LinkedIn.

We will cover the following main topics:

•	 Optimizing your LinkedIn profile

•	 Crafting your About Me section

•	 Developing your brand

Optimizing your LinkedIn profile
Having a well-developed LinkedIn profile can lead to increased visibility to hiring managers and
recruiters looking for talent. If recruiters and HR professionals use LinkedIn as their major resource for
locating talent, this can increase your visibility. Using LinkedIn to share your skills and ideas with others
in your field will also help you stand out as an industry expert and expand your professional network.

In this section, we will examine the profile header, the banner, the About Me section, and the profile
photo in greater detail. We’ll review strategies for making the most of these sections and adapting
them to your data engineering career goals. You will learn all you need to know to create a stellar

Building Your Data Engineering Brand on LinkedIn28

LinkedIn profile that will help you stand out as a data engineer, get seen by recruiters, and boost your
personal brand.

Your profile header consists of the following main components:

•	 Profile picture

•	 Banner

•	 Headline

•	 Most recent employment and education

The following screenshot displays an example of a well-designed LinkedIn header with a customized
banner, appropriate headshot, and headline. Notice all elements are meant to highlight your talents
and abilities:

Figure 3.1 – Example of a well-presented LinkedIn header

Many overlook this section as many profile headers often look similar. But, making simple edits to
your header can help it stand out whenever potential employers check your profile.

Your profile picture

Your profile photo plays a crucial role in shaping how others perceive you at first glance. According
to a study, LinkedIn profiles with pictures attract more than twice as many views and three times as
many messages versus those without.

Optimizing your LinkedIn profile 29

A data engineer’s profile photo should convey competence and friendliness. Here’s how to make sure
your photo makes a good impression:

•	 Quality: First and foremost, the quality of your image is what matters most. Avoid poor image
quality, such as blurring or pixels.

•	 Professional attire: You want to present yourself in a professional manner. While a suit is not
required, you should dress in a business casual manner at the very least.

•	 Simple background: Keep the background simple so that people’s eyes are drawn to your face. It’s
better to have a plain or neutral backdrop. Distractingly cluttered backdrops should be avoided.

•	 Close-up and well-lit: Your photo should be a close-up of your face, shot from the top of your
shoulders to above your head, and lit appropriately.

•	 Friendly expression: Display a natural, welcoming expression. Being friendly and approachable
is essential. Sometimes, all that’s needed is a friendly grin.

Once you have a photo that you are satisfied with, you can follow these steps to remove your background:

1.	 The first step is to remove the background. If you do not already have a Canva Pro account,
head over to any photo background removal site, such as remove.bg or https://www.
photoroom.com/tools/background-remover. There, you will upload your photo.
You should end up with a photo with just yourself with a checkered background signaling that
the background was removed.

2.	 Afterward, head over to Canva and create a new design of 1,600 x 1,600 pixels (or another if
you’d like).

3.	 Once there, upload your new photo with the background removed. On the left-hand side,
click Elements.

4.	 There, you will search for the term backgrounds.

5.	 Now, to implement a gradient background, search for gradient background.

6.	 Once you have your preferred background, drag it to the canvas and allow it to fill the entire
space. Then, move it to the background by clicking the position at the top. There, you can
arrange the order and place your headshot on the top layer.

http://remove.bg
https://www.photoroom.com/tools/background-remover
https://www.photoroom.com/tools/background-remover

Building Your Data Engineering Brand on LinkedIn30

The following screenshot depicts how to arrange the order of layers in your photo:

Figure 3.2 – The order in which to arrange the layers of your photo

Remember that your LinkedIn photo should do more than just display your physical appearance; it
should also reflect your personality. Before you even speak with a possible employer or connection, an
image that is professional, clear, and friendly can go a long way toward establishing trust and rapport.
It’s a chance to make a good impression. Spending the time and energy to get it perfect will greatly
increase the usefulness of your LinkedIn profile.

Your banner

A banner, often called a backdrop photo, is an enormous image that appears at the very top of your
profile. It’s excellent real estate that can boost your personal brand, yet it’s underutilized most of the
time. It’s possible that a data engineer would choose a picture that has something to do with their
profession. You can add pictures of some certifications you may have such as AWS or Azure. If you’re
good with design, you might make a unique graphic with your details and a catchy slogan or prompt
already on it. Make sure the picture you use is of professional quality. You want your banner to draw
attention to your title and make it stand out.

It can be easy to overlook your profile banner. The worst thing you can have on your profile is an
empty one, as in the following screenshot:

Optimizing your LinkedIn profile 31

Figure 3.3 – An example of a profile with an empty banner

Your banner should be personalized to visualize who you are and your skills. While LinkedIn has
several to choose from, I highly recommend creating your own using a free Canva account.

On the Canva site, click on Create a design. In the drop-down menu, select LinkedIn Background
Photo, as seen in the following screenshot:

Figure 3.4 – Selecting Create a design to initiate the process of creating a custom LinkedIn banner

Once the canvas uploads, you have all the pre-created banner templates to your left. You are free to
customize your banner as you wish. Once you have one that you are satisfied with, upload your new
banner to your LinkedIn profile.

If you take the time to customize your banner, you’ll be able to make better use of the available visual
real estate and give your profile a more personal feel. The key is to make an impression that stands out
and is consistent with your data engineer brand. Remember that the banner is one of your profile’s
many storytelling opportunities.

Building Your Data Engineering Brand on LinkedIn32

Header

The default headline is your work title and employer, but you can change this if you’d like. It doesn’t
have to be limited to your official title. It’s like a condensed version of your elevator pitch for potential
employers. The most effective headlines manage to be both brief and informative. They define your current
position, highlight your abilities, and highlight relevant experience. You can include industry-specific
keywords such as Data Engineering, Big Data, and ETL but don’t only compile a collection of cliches.
Write in a narrative fashion that organically incorporates these terms. One possible headline is Data
engineer using big data tools to uncover actionable business insights. This highlights your contribution,
area of expertise, and role in the organization; we can see example details in the following screenshot:

Figure 3.5 – Example of a well-defined header

One big mistake people make with their headlines is attaching the word aspiring to any data profession
they are applying to. You’ve been doing the projects and creating your own experiences. Avoid aspiring
at all costs.

Here are some examples for aspiring data engineers with no professional engineering experience:

•	 Data Engineer | Proficient in Database Design and Management | SQL | Python | Microsoft Azure

•	 Data Engineer | Skilled in Data Processing and Big Data Technologies | SQL | Python | AWS
| Hadoop | Spark

•	 Data Engineer | Experienced in Data Integration and Analysis | SQL | Python | AWS | Kafka

•	 Data Engineer | Cloud Computing and Distributed Systems

LinkedIn also offers the ability to add a custom link in your header to direct viewers of your profile
to another site:

Figure 3.6 – Custom link in your profile header

Crafting your About Me section 33

With the options in the preceding screenshot we can do the following:

•	 Under the profile header settings, you can add a link to your portfolio to direct prospective
hiring managers and recruiters to your work

•	 Add a link to your portfolio under the Custom Action section of the profile header settings

•	 Under Custom Action in the settings, you can place the URL and a custom name of the link

These are just a few examples of LinkedIn headlines but allow yourself to be creative. In the next
section, we will discuss how to optimize your About Me section.

Crafting your About Me section
Your LinkedIn About Me section should serve as a professional autobiography. You can give
prospective employers a glimpse into who you are as a person as well as a data engineer by detailing
your professional background and accomplishments here.

In the field of data engineering, where many different profiles may appear to have comparable talents
and expertise, this part becomes increasingly important. It’s a chance to highlight your individuality
and demonstrate why you’re not like every other data engineer out there. This is your opportunity to
tell a story about yourself that highlights your technical abilities and accomplishments.

In the next section, we’ll go through some tips for writing an effective About Me section. We’ll talk
about how to present your data engineering credentials in a way that stands out from the crowd and
makes you an attractive candidate for a job.

Initial writing exercise

First, think of three to five things about yourself that you would like any hiring manager to know
about you after an interview. Avoid only mentioning three technical tools. Think about more unique
soft skills, such as the following:

•	 Mentoring and teaching

•	 Leading teams

•	 Problem-solving

•	 Project management

•	 Adaptability

Building Your Data Engineering Brand on LinkedIn34

Once you think about the instances in your professional life where you’ve demonstrated your top
three to five capabilities, be sure to highlight them in your About Me section. The following are some
guidelines for writing an eye-catching About Me section:

•	 Opening statement: Start with a strong opening statement summarizing your identity as a
data engineer. What you do now, your most important abilities, and what you bring to an
organization are examples. For example, you could write something such as A results-oriented
data engineer capable of turning raw data into meaningful insights that fuel company expansion.

•	 Share your experience: Expand on your introductory remarks by discussing your professional
background in further detail. When did you first get curious about data engineering? Just how
did you get to where you are today? Can you describe the fresh ideas you bring to the table?

•	 Highlight key skills and achievements: In this section, you can highlight the talents and
accomplishments that have helped you succeed. Whenever possible, provide numbers to back
up your claims of success. For instance, I built a data processing system that increased data
accuracy by 30 percent, which led to more trustworthy insights about my company.

•	 Put your skills on display: List the software, databases, and programming languages you are
comfortable working with. You can provide context for your knowledge by discussing projects
or jobs in which you employed these abilities.

•	 Aims and desires: Describe your intentions and objectives in the workplace. In what ways do
you hope to advance your career? What motivates you most in a project? Potential employers
can see here whether their goals and yours are congruent.

•	 Personal touch: Adding a little of your personality is always appreciated. You may want to
explain how your fascination with solving mysteries led you to work with data, or how your
insatiable appetite for knowledge has kept you abreast of the rapid changes in data engineering.
This adds a human touch to your profile, which increases its recall value.

•	 Call to action: Encourage people to interact with you, view your portfolio, and contact you
about potential opportunities.

The About Me section should be written in the first person and in a casual tone. A professional
overview should sound different from a promotional pamphlet. The purpose is to help establish a
unique professional brand identity for the reader while also highlighting your professional experience.

Now that you understand how to create your About Me section, we will dive into strategies to further
develop your professional brand with content.

Developing your brand
Your personal brand is more than just a list of your past employment and skill sets. It’s how you want
the world to perceive you, and it’s made up of your individual experiences, values, and objectives. In
the highly competitive field, a well-established personal brand can be the determining factor in landing

Developing your brand 35

a position. LinkedIn is a must-have resource for any professional serious about building their brand.
It gives you many opportunities to network with other professionals and share your unique brand of
professionalism. Branding yourself on LinkedIn goes beyond merely having a well-written profile; it
also entails sharing your expertise, commenting on relevant posts, and carefully adding connections.

In the next section, we’ll explore several methods for enhancing your brand. You will discover the best
practices for maximizing your visibility, from creating content to participating in relevant discussions.

Posting content

In addition to having a well-written profile, being active is essential to building a name for yourself
there. You may show off your knowledge, interact with your network, and keep yourself in the minds
of your contacts (including possible employers) by regularly sharing content. The following are tips
you can use to start posting on LinkedIn:

•	 Posting regularly: You can post about your portfolio projects and topics you are learning about,
or detail your current journey in landing your next data engineering position.

•	 Writing articles: If you’re ready for the challenge, producing in-depth articles on LinkedIn
can significantly increase your exposure and authority. These may be in-depth analyses of
particular data engineering topics, analyses of specific projects, lessons learned, or even tips
for those seeking to build a data engineering profession. Sharing such materials establishes you
as an authority in your field and increases your exposure on social media and search engines.

•	 Showcasing projects: If you have completed an important project, whether for school or a
personal project, by all means, share it with the world. In a blog post or article, you may document
the project’s goals, methodology, technologies, obstacles encountered, and final results. If you
have a GitHub repository, you can also provide a link to that for people interested in learning
more. This shows prospective employers that you can deliver results and gives them insight
into your thought process.

•	 Community engagement: Broadcasting your opinions is only part of sharing content. Interacting
with other people is also essential. Take the time to interact with the people who take the time
to comment on your postings, and vice versa. This kind of back-and-forth raises your profile
and facilitates connections with like-minded experts.

•	 Consistency: Maintaining uniformity is crucial while establishing your credibility in your field.
Aim for once a week, at a minimum, to post something online. Keeping a consistent presence
requires careful planning, which you can do with a content schedule.

Sharing content and projects is not only about showing off your knowledge; it should also benefit your
network, spark conversations, and help you learn more about your area. Each piece of content you
publish or complete contributes to your professional identity. Sharing carefully and frequently will
help you become known as an expert, leader, and team player in data engineering. This will make you
stand out to potential employers and earn you respect from your peers in the workplace.

Building Your Data Engineering Brand on LinkedIn36

Building your network

Personal branding relies heavily on developing a LinkedIn network. It’s not about the quantity of your
connections but the quality of contacts in your field; you also need to build strong relationships with
those contacts so that you can receive help, advice, and new opportunities. Your data engineering
network can consist of people like you: engineers, industry leaders, recruiters, data scientists, analysts,
and so on.

The following are tips you can use to start networking more effectively using LinkedIn:

•	 Connecting with professionals: If you want to network with other professionals in your sector
or whose work you respect, don’t be shy about sending them connection requests. You should
make an effort to customize your requests. Explain who you are and why you want to get in
touch briefly. This demonstrates that you read their profile carefully and care about them.
Provide a friendly and personalized message.

•	 Alumni connections: Maintaining contact with fellow graduates from your institution can be
helpful. Conversation starters can be easier if you and your new contacts have something in
common to talk about. They may have useful information to share about how to go forward
in your chosen field, current trends, or upcoming opportunities.

•	 Participating in groups: Groups on LinkedIn offer a great way to network with other professionals
in the data engineering industry and adjacent industries. Also, joining private data communities
outside of LinkedIn allows you to network with other professionals in your field, share your
expertise, and gain insight from the experiences of others. Getting your name out there among
working professionals is another big benefit.

•	 Engaging with content: Submit more than a simple like when someone posts something you
find interesting. This not only reveals your dedication to the subject matter but it also has the
potential to start a dialogue that could lead to a fruitful new relationship.

•	 Maintaining contact: Expanding your network is an ongoing process. It needs constant care and
attention. Share your thoughts on your connections’ status updates, offer your congratulations
on promotions or other accomplishments, and don’t be afraid to reach out with a helpful
article or a simple “How are you doing?” This is great for keeping in touch with colleagues and
expanding your network.

•	 Strategic expansion: Networking with others in your area is essential, but you should also look
at expanding into data science, machine learning, and business intelligence. This interdisciplinary
group can broaden your perspective on the business world and the careers available to you.

After discussing the importance of creating a stellar profile, publishing useful material, and expanding
your network, we will go on to one of the most proactive LinkedIn strategies: cold messaging. Despite the
impersonal moniker, cold messaging is a potent technique for making connections and finding success.

Developing your brand 37

We’ll go into the science and art of cold messaging in the next part, discussing topics such as target
selection, message creation, and following up. Learning how to send successful cold messages can
greatly speed up your career journey in data engineering, whether you’re looking for advice, an
opportunity, or just to expand your network.

Sending cold messages

Sending cold messages is a delicate art. It can come off as spammy or disrespectful if not handled
properly. However, if done correctly, it can lead to previously inaccessible interactions and opportunities.
Here’s how to get the most out of your cold messages:

•	 Identify the right people: Before you start writing, be sure you’re addressing your message to
the correct people. This may be a senior data engineer whose path you like, a possible employer,
or a colleague whose work you find compelling. Take advantage of LinkedIn’s search and filter
tools to zero in on the people whose professional or personal interests align with your own.

•	 Do your research: Before sending a cold message, do some digging into the recipient’s profile.
Find out what they do and how they got there, what they’ve worked on and posted, and so
on. Having this information at your disposal will allow you to tailor your message and show
your enthusiasm.

•	 Craft your message: When formulating your message, keep it simple and direct. Introduce
yourself and the reason for contacting them pleasantly. Add some personality to your message
by highlighting a specific aspect of the recipient’s profession or career that has inspired you or
interested you. Make it clear what you want to get out of the meeting, whether it’s guidance,
insights, or the chance to talk about opportunities.

•	 Call to action: Don’t leave things hanging at the end; instead, provide a call to action. Inquire
as to whether or not they have time for a quick phone chat, LinkedIn message exchange, or
email discussion. It’s easier to get a yes when you give them concrete choices.

•	 Follow-up: Do not lose hope if you do not receive a response to your follow-up. It’s easy for
people to miss your message if they’re too busy. After a week or so, it’s appropriate to send a
courteous follow-up message. If they continue to ignore you, though, it’s time to move on.

Sending a cold message on LinkedIn might be a great approach to taking charge of your career.
Connecting with others in the data engineering community can help you grow your professional
network, obtain insightful feedback on your work, and open doors to new possibilities if you take
the time to do so. It’s a preventative measure that, if carried out correctly, can work wonders for your
professional standing.

Building Your Data Engineering Brand on LinkedIn38

Summary
In this chapter, we’ve covered the many steps involved in developing your data engineer LinkedIn
profile. We began by discussing how to get the most out of your LinkedIn profile by emphasizing the
value of a catchy headline, a polished banner, a thoughtful profile image, and an interesting About
Me section. Then, we dove into the process of disseminating your expertise via content. We talked
about how posting on a frequent basis, writing in-depth articles, and showcasing projects may not
only show off your knowledge and skills but also keep you at the front of the minds of your contacts.

Next, we discussed the vital topic of constructing your network, stressing the significance of making
contact with the proper professionals, joining the correct communities, actively consuming relevant
information, and keeping your relationships alive through consistent communication. Finally, we talked
about how to properly use cold messages. Finding and researching possible contacts, writing tailored
messages, maintaining your professionalism, and following up effectively were all topics we covered.

Each of these tactics is designed to bolster your LinkedIn profile and help you stand out in the competitive
profession of data engineering. Implementing these methods can help you build a strong online
presence, which in turn will lead to a plethora of options for advancing your data engineering career.

In the next chapter, we will discuss how to prepare for your behavioral interviews.

4
Preparing for

Behavioral Interviews

Employers increasingly use behavioral interviews to evaluate candidates’ suitability for a specific
position. Unlike technical interviews, which consider a candidate’s technical knowledge, behavioral
interviews assess interpersonal, problem-solving, and decision-making abilities.

This chapter will delve deeply into behavioral interviews and examine the six categories of commonly
posed behavioral questions. We will also discuss effectively responding to these queries using the
STARR method, a tried-and-true technique for organizing precise and concise responses.

In addition, we will discuss the significance of measuring cultural compatibility and how to prepare
for this aspect of the interviewing process. Finally, we will provide examples of frequently posed
behavioral interview questions and the most effective responses.

By the conclusion of this chapter, you will have a firm grasp of how to approach behavioral interviews,
what to expect, and how to answer questions that will set you apart from other candidates.

We will cover the following topics in this chapter:

•	 Identifying six main types of behavioral questions to expect

•	 Assessing cultural fit during an interview

•	 Utilizing the STARR method when answering questions

•	 Reviewing the most asked interview questions

Preparing for Behavioral Interviews40

Identifying six main types of behavioral questions
to expect
Behavioral interview questions are designed to elicit information about how a candidate has handled
specific situations to predict how they may perform in similar cases in the future. Employers commonly
ask six main types of behavioral interview questions:

•	 Situational: These questions present hypothetical scenarios and ask the candidate how they
would respond—for example, “How would you handle a difficult customer who is demanding
a refund for a product they damaged themselves?”.

•	 Behavioral: These questions ask the candidate to describe a specific situation they faced in
the past and how they handled it—for example, “Tell me about a time when you had to deal
with a difficult coworker.”

•	 Goal-oriented: These questions ask the candidate to describe a specific goal they set for themselves
and how they achieved it—for example, “Tell me about a time when you set a challenging goal
for yourself and what steps you took to achieve it.”

•	 Teamwork: These questions ask the candidate to describe a situation where they worked
effectively as part of a team—for example, “Tell me about a time when you collaborated with
a team to achieve a common goal.”

•	 Leadership: These questions ask the candidate to describe a situation where they demonstrated
leadership skills—for example, “Tell me about a time when you had to lead a team through a
challenging project.”

•	 Conflict resolution: These questions ask the candidate to describe a situation where they had
to resolve a conflict with another person or group—for example, “Tell me about a time when
you had to mediate a conflict between two team members.”

By understanding the six types of behavioral questions, you can better prepare for your interview and
be ready to provide clear, concise, and relevant answers that showcase your skills and abilities. The
following section will discuss measuring cultural fit during behavioral interviews.

Assessing cultural fit during an interview
As organizations attempt to create diverse and inclusive work cultures that line with their values and
mission, measuring for cultural fit has become an increasingly significant component of the recruiting
process. Cultural fit entails more than just being courteous or getting along with coworkers. Identifying
individuals who align with the company’s values, beliefs, and work style is essential.

Utilizing the STARR method when answering questions 41

Employers frequently examine candidates cultural fit during behavioral interviews by probing their
work habits, communication style, and problem-solving approach. These inquiries may include
the following:

•	 What strategy do you use for teamwork and collaboration?

•	 What drives you to come to work every day?

•	 How do you handle disagreements with coworkers or managers?

•	 Describe your perfect workplace or environment where you would feel most productive.

•	 How do you strike a balance between your professional and personal lives?

•	 Tell me about when you had to adjust to a new working environment.

•	 To prepare for inquiries on cultural fit, learn about the company’s goal, values, and work culture.
Examine the company’s website, social media accounts, and news stories. You may also inquire
with current or previous workers about their job experiences at the organization.

•	 Being honest and sincere in your comments during the interview is critical. There may be better
matches if you feel like you need to fit in with the company’s culture. Nonetheless, if you believe
you are culturally compatible with the organization, emphasize concrete examples from your
previous experiences that indicate your ability to work successfully in a similar atmosphere.

Understanding the significance of cultural fit and preparing for relevant questions will help you succeed
throughout the behavioral interview process. The STARR approach, a tried-and-true methodology for
constructing replies to behavioral interview questions, will be covered in the next section.

Utilizing the STARR method when answering questions
When it comes to behavioral interview preparation, it is essential to have a method for structuring
your responses. This approach will not only help you deliver comprehensive and insightful answers
but will also demonstrate your clarity of thought, ability to self-reflect, and organizational skills. This
section will discuss one such strategy: the STARR method.

The STARR method is a highly effective framework for organizing your responses during behavioral
interviews. It helps in narrating your professional experiences by focusing on specific situations you’ve
encountered, tasks you’ve handled, actions you’ve taken, and the resulting outcomes, all while reflecting
on what you’ve learned from these experiences. The acronym STARR stands for the following:

•	 Situation: Explain the context of your circumstance. This should contain information about
where you worked, whom you worked with, and other pertinent information.

•	 Task: Explain the assignment or difficulty that you were given. What was the goal or objective
you were attempting to accomplish?

Preparing for Behavioral Interviews42

•	 Action: Explain the steps you followed to complete the work or solve the problem. What steps
did you take, and why did you choose those actions?

•	 Result: Explain how your activities turned out. How did your actions affect the circumstance
or task? Have you met your aim or objective?

•	 Reflection: Consider what you gained from your experience. What would you do differently?
What worked well for you, and how can you build on that success in the future?

Using the STARR approach, you may frame your replies to behavioral interview questions in a clear
and succinct manner. This may help you present relevant and exciting examples from your previous
experiences and illustrate your talents and abilities in an easy-to-follow way for the interviewer.

The following subsections show example interview questions with example responses broken down
in the STARR format.

Example interview question #1

Describe when you had to resolve a conflict with a teammate.

STARR method:

Situation: I was collaborating on a team project with a coworker who had divergent ideas about how
we should approach the assignment.

Task: Our assignment was to develop a presentation to share our findings with the rest of the team.

Action: I arranged a meeting with my coworker to discuss our differences and find a solution to which
we could agree. We listened to one another’s viewpoints, identified areas of agreement, and formulated
a plan incorporating our ideas.

Result: The rest of the team responded positively to our final presentation, and we were both pleased
with the work we had accomplished together.

Reflection: I’ve learned that conflict resolution requires active listening, empathy, and a willingness
to compromise.

Example interview question #2

Describe a time when you were required to manage multiple priorities.

STARR method:

Situation: I was working on a project with multiple components, each with its deadline and priority level.

Task: My responsibility was to ensure that all project components were completed on time and to a
high standard.

Utilizing the STARR method when answering questions 43

Action: I created a detailed project plan outlining each component, its deadline, and the necessary
resources for completion. I then prioritized each element based on its significance and urgency and
delegated tasks to the appropriate team members.

Result: Despite the task’s complexity, we completed the project on time and to a high standard.

Reflection: I learned that effective time management and prioritization are essential skills for managing
complex projects and that delegation and collaboration can help ensure that all tasks are completed
on time and to a high standard.

Example interview question #3

Describe when you were required to troubleshoot a technical issue.

STARR method:

Situation: I was tasked with extracting, transforming, and loading data from multiple sources into a
centralized database for a data engineering project.

Task: My assignment was to investigate a technical problem causing the ETL process to fail.

Action: I examined the error logs to determine the cause of the issue and then collaborated with the
database administrator and other team members to develop a solution. We identified an error in the
ETL code as the cause of the failure, and by modifying the code, we resolved the issue.

Result: The ETL process was successful, and the data was successfully loaded into the centralized database.

Reflection: I learned the importance of collaboration and communication when resolving technical
issues and the significance of paying close attention to error logs.

Example interview question #4

Describe a time when you were required to implement a data governance policy.

STARR method:

Situation: I worked for a financial services firm subject to stringent data privacy regulations.

Task: My responsibility was to implement a data governance policy to ensure compliance with
these regulations.

Action: I collaborated with key stakeholders from across the organization to identify data elements
that required protection and to develop policies and procedures to ensure these data elements’
confidentiality, availability, and integrity. I also designed a training program to inform employees
about the significance of data governance and the steps required to comply with the policy.

Result: The data governance policy was implemented successfully, and the organization could
demonstrate compliance with applicable regulations.

Preparing for Behavioral Interviews44

Reflection: I have learned the significance of stakeholder engagement and education when
implementing data governance policies and the need for continuous monitoring and evaluation to
ensure continued compliance.

Example interview question #5

Describe a time when you had to optimize the efficiency of a data pipeline.

STARR method:

Situation: I was working on a data engineering project that required the daily processing of massive
amounts of data.

Task: My responsibility was to optimize the data pipeline to decrease processing time and improve efficiency.

Action: I examined the existing pipeline architecture and identified improvement opportunities.
Then, I collaborated with the development team to implement pipeline modifications, including code
optimization and parallel processing techniques to increase throughput. I also collaborated with the
infrastructure team to ensure that sufficient resources supported the pipeline’s increased workload.

Result: The data pipeline was successfully optimized, resulting in a 50% reduction in processing time.

Reflection: I learned the significance of understanding the underlying architecture of data pipelines
and the need for collaboration between data engineers and other development team members to
optimize performance.

While adopting the STARR approach, it is critical to concentrate on the most relevant data and keep
your response brief. Avoid using highly technical or jargon-heavy language and emphasize your
unique position.

In the next section, we will explore some of the most frequently encountered questions in data
engineering interviews. We’ll provide sample responses to these questions, structured using the STARR
method so that you can see them in action and gain valuable insights into how you might formulate
your own impactful answers. So, let’s delve deeper and get you ready for your upcoming interviews!

Reviewing the most asked interview questions
Data engineering interviews typically involve technical and behavioral questions to assess a candidate’s
technical knowledge, problem-solving skills, and ability to work effectively in a team.

The best approaches to answering these questions involve being specific about your experiences,
highlighting your role in particular projects or tasks, discussing any challenges you faced and how
you overcame them, and providing metrics that showcase your accomplishments.

Reviewing the most asked interview questions 45

Here are 10 of the most asked questions in a data engineering interview, along with how you might
effectively respond to give better context:

•	 Question 1: What experience do you have with ETL processes and data pipelines?

I have extensive experience with ETL processes and data pipelines. In my previous role, I was
responsible for building a data pipeline that extracted data from various sources, transformed
it, and loaded it into a centralized database. I used tools such as Apache NiFi and Apache
Airflow to build and manage the pipeline. One of the main challenges I faced was dealing with
data inconsistencies across different sources. I developed a series of data validation checks and
implemented data cleansing techniques to overcome this.

•	 Question 2: Can you describe your experience with distributed systems and big data technologies?

I have experience working with distributed systems and big data technologies such as Apache
Hadoop, Apache Spark, and Apache Kafka. In a previous project, I was responsible for building a
distributed data processing system that analyzed large volumes of streaming data. I used Apache
Kafka as a message queue and Apache Spark for real-time processing to accomplish this. One
of the main challenges I faced was optimizing the system’s performance. I implemented several
optimization techniques to overcome this, including data partitioning and parallel processing.

•	 Question 3: How do you ensure data quality and accuracy in your work?

I highly emphasize ensuring data quality and accuracy in my work. I use techniques and tools
such as data validation checks, data profiling, and data cleansing to accomplish this. For example,
in a previous project, I developed a series of automated data validation checks that were run
daily. These checks verified that the data in our database was consistent, accurate, and up to date.

•	 Question 4: Can you describe your experience with cloud-based data engineering platforms?

I have experience working with several cloud-based data engineering platforms, including
Amazon Web Services (AWS) and Google Cloud Platform (GCP). In a previous project, I
used AWS to build a data pipeline that extracted data from multiple sources, transformed it,
and loaded it into a centralized database. I used several AWS services, such as S3, Lambda, and
Glue, to build and manage the pipeline. One of the main advantages of using a cloud-based
platform was the ability to scale the pipeline to accommodate increased data volumes easily.

•	 Question 5: What experience do you have with real-time data processing and streaming technologies?

I have experience working with several real-time data processing and streaming technologies,
such as Apache Kafka and Apache Spark Streaming. In a previous project, I built a distributed
data processing system that analyzed large volumes of streaming data in real time. I used
Apache Kafka as a message queue and Apache Spark Streaming for real-time processing. One
of the main challenges I faced was ensuring that the system could handle the high volume of
incoming data. To overcome this, I implemented several optimization techniques, such as data
partitioning and caching.

Preparing for Behavioral Interviews46

•	 Question 6: Can you describe a time when you had to work with a team to deliver a data
engineering project?

In a previous project, I worked with a team to build a data pipeline that extracted data from
multiple sources, transformed it, and loaded it into a centralized database. I was responsible
for the ETL process and collaborated closely with team members responsible for data modeling
and database design. One of the main challenges we faced was ensuring that the pipeline was
scalable and could accommodate future data growth. We used several optimization techniques,
such as data partitioning and parallel processing, to overcome this.

•	 Question 7: How do you handle missing or corrupt data in a data pipeline?

If missing or corrupt data is detected in a data pipeline, my approach is first to identify the
root cause of the issue. Once the root cause has been identified, I develop a plan to address the
issue. This may involve implementing data validation checks to prevent future occurrences of
the problem, implementing data cleansing techniques to correct the issue, or working with
upstream data providers to address the issue at the source. For example, in a previous project, we
detected missing data in one of the data sources we used for the ETL process. After identifying
the root cause, we worked with the upstream data provider to correct the issue at the source
and implemented additional data validation checks to prevent future occurrences.

•	 Question 8: Can you describe your experience with data warehousing and business intelligence
(BI) tools?

I have experience working with data warehousing and BI tools such as Snowflake and Tableau.
In a previous project, I built a data warehouse that consolidated data from multiple sources
and provided a centralized source of truth for reporting and analysis. I used Snowflake to
develop and manage the data warehouse and Tableau for reporting and visualization. One of
the main challenges I faced was ensuring that the data warehouse could accommodate future
data growth. I used several optimization techniques, such as data partitioning and compression,
to overcome this.

•	 Question 9: How do you ensure data privacy and security in your work?

I highly emphasize ensuring data privacy and security in my work. I use several techniques
and tools to accomplish this, such as data encryption, access control, and audit logging. For
example, in a previous project, I implemented data encryption to protect sensitive data during
transit and at rest. I also implemented access controls to ensure only authorized personnel could
access sensitive data and audit logging to track data access and changes.

Summary 47

•	 Question 10: Can you walk me through your approach to troubleshooting a data engineering issue?

When troubleshooting a data engineering issue, my approach is first to identify the symptoms
of the issue and gather relevant information, such as log files and error messages. Once I have a
clear understanding of the issue, I develop a hypothesis about the root cause of the issue and test
the theory by performing additional analysis or testing. If the idea is confirmed, I will create a
plan to address the issue, which may involve implementing a workaround or a more permanent
solution. For example, in a previous project, we encountered an issue with a data pipeline that
was causing a high volume of errors. After gathering relevant information and developing a
hypothesis, we confirmed that a bug in the ETL code caused the issue. We implemented a
temporary workaround to address the issue and worked on a permanent solution to fix the bug.

Summary
Preparing for behavioral interviews is critical to any job search, especially for data engineering positions.
Candidates can better prepare for success by understanding the types of behavioral questions commonly
asked in data engineering interviews and the skills that are measured during these interviews.

This chapter discussed six main types of behavioral questions, including those that assess cultural fit
and the STARR method for effectively answering behavioral questions. We also reviewed the top 10
most frequently asked questions in a data engineering interview and provided detailed explanations
of how to answer them.

By employing these strategies and best practices, candidates can increase their chances of success in a
data engineering interview and effectively demonstrate their skills and qualifications. As the demand
for data engineering roles grows, being well prepared for these interviews is more crucial than ever.
We hope this chapter has provided candidates with valuable insights and guidance.

In the next chapter, we will delve into specific Python skills that every aspiring data engineer should
have under their belt.

Part 2:
Essentials for

Data Engineers Part I

In this part, we will begin to provide an overview of essential areas of Python, SQL, and databases.

This part has the following chapters:

•	 Chapter 5, Essential Python for Data Engineers

•	 Chapter 6, Unit Testing

•	 Chapter 7, Database Fundamentals

•	 Chapter 8, Essential SQL for Data Engineers

5
Essential Python for

Data Engineers

Finding your way through the data engineering interview process can be challenging, particularly
when it comes to showcasing your technical expertise. Python is frequently the preferred language
for data engineering tasks because of its ease of use, readability, and rich library support. A solid
understanding of Python is essential for anyone working with data Extraction, Transformation, and
Loading (ETL) procedures or developing intricate data pipelines.

This chapter aims to give you the Python knowledge you need to succeed in a data engineering
position. We’ll begin by discussing the fundamental Python skills that each data engineer should be
familiar with. We’ll then get into more complicated subjects that will make you stand out from other
candidates. We’ll finish the chapter with some technical interview questions that assess your knowledge
of Python in the context of data engineering.

In this chapter, we will cover the following topics:

•	 Must-know foundational Python skills

•	 Must-know advanced Python skills

•	 Technical interview questions

Must-know foundational Python skills
In this section, we concentrate on the fundamental Python concepts necessary for data engineering.
This entails being familiar with the syntax of Python as well as basic data structures such as lists, tuples,
and dictionaries. We’ll look at how to use control structures such as conditional statements, loops, and
functions, as well as how to create and use them. The importance of Python’s basic built-in functions
and modules will be emphasized, along with its role in creating effective, modular programming.

.

Essential Python for Data Engineers52

We’ll finish up by discussing file input/output (I/O) operations, which are crucial for processing
data. The overview of these crucial Python foundations in this section will help you get ready for and
ace your data engineering interview. It’s not a Python course, but rather a review of the fundamental
abilities a data engineer needs.

In the upcoming subsections, the foundational skills have been broken down into five sections.

SKILL 1 – understand Python’s basic syntax and data structures

Python is a fantastic choice for novices because its syntax is straightforward and quick to grasp. The
syntax of the language must first be understood, including its basic concepts of variables, operators,
and control structures such as conditional statements and loops. Every data engineer should be familiar
with basic Python concepts such as lists, tuples, and dictionaries.

Statements in Python code are executed by the interpreter line by line. These statements may contain
variables, operators, control structures, and functions. Operators manipulate data values mathematically
or logically, whereas variables store data values. Control structures such as if-else statements and
loops are used to regulate the program’s flow. Similar pieces of code are grouped together into reusable
chunks using functions.

Success in data engineering requires knowledge of Python’s data structures in addition to its syntax.
Lists, tuples, and dictionaries are examples of data structures that store a collection of data values.
Lists and tuples are both ordered collections of values; however, tuples are immutable and lists are
not. A unique key can be used to store and retrieve data from collections of key-value pairs, known
as dictionaries.

An important component of Python syntax is indentation. Python, unlike many other programming
languages, uses indentation rather than curly brackets or other conventions to separate code chunks.
This means that for Python code to run properly, sufficient indentation is necessary. Learning Python’s
syntax and data structures needs lots of practice in building and running programs. Python tutorials
and exercises are offered by a number of online groups and resources such as the Data in Motion
platform and the Data Career Academy (DCA). Building a strong Python foundation can also be
facilitated by reading through the documentation and playing with various syntaxes and data structures.

SKILL 2 – understand how to use conditional statements, loops,
and functions

Conditional statements, such as if-else statements, enable you to run different code blocks based
on specific conditions. For example, you could use an if-else statement to determine whether a
variable is greater than a specific value and then execute different code blocks based on the result.

for and while loops are used to iterate over a set of values or to perform a repetitive task. A for
loop, for example, could be used to iterate over the elements of a list and perform a calculation on
each element.

Must-know foundational Python skills 53

Functions are used to organize similar code into reusable blocks. This facilitates the organization and
modularization of your code. For example, you could create a function to perform a specific data
transformation task and call it from multiple places in your code.

Understanding best practices for writing efficient and readable code and how to use these constructs
is critical. For example, using descriptive variable names and commenting on your code can make it
easier to understand and maintain.

To become acquainted with conditional statements, loops, and functions in Python, it is necessary to
write code and experiment with various syntaxes and techniques. Online resources such as Python
documentation, interactive tutorials, and coding challenges can aid in developing these skills. Reading
through Python code written by experienced programmers can also help you learn best practices and
develop your programming style.

SKILL 3 – be familiar with standard built-in functions and
modules in Python

Python provides several built-in functions and modules that can simplify programming tasks and
help optimize code. As a data engineer, it is essential to be familiar with these built-in functions
and modules, as they can be used to perform everyday data manipulation tasks and improve the
performance of your code.

Some standard built-in functions in Python include the following:

•	 print(): Used to display output to the console

•	 len(): Used to determine the length of a string or list

•	 range(): Used to generate a sequence of numbers

Python also includes several built-in modules that can be used for more advanced programming
tasks, such as data analysis and visualization. Some commonly used modules include the following:

•	 math: Provides functions for mathematical operations, such as trigonometry and logarithms

•	 random: Provides functions for generating random numbers

•	 datetime: Provides functions for working with dates and times

•	 os: Provides functions for interacting with the operating system, such as creating and deleting files

In addition to these built-in functions and modules, Python has a large ecosystem of third-party
libraries and modules that can be used for specific tasks, such as data analysis or machine learning
(ML). These libraries, such as NumPy and pandas, can significantly simplify complex tasks and
improve the efficiency of your code.

Essential Python for Data Engineers54

To become familiar with these built-in functions, modules, and third-party libraries, it is essential to
practice working with them and experimenting with different use cases. Reading through code written
by experienced Python programmers and analyzing how they use built-in functions and modules can
provide valuable insights and best practices for improving your code.

SKILL 4 – understand how to work with file I/O in Python

Data engineers often work with large datasets that are stored in files. Python provides several built-in
functions for file I/O operations essential for working with these datasets.

Two primary modes for file I/O in Python are reading and writing. When reading from a file, the
contents of the file are loaded into memory and made available for manipulation. When writing to a
file, data is written to the file for storage or later retrieval.

To open a file in Python, you use the open() function, which takes two arguments: the file’s name
and the mode in which you want to open it (read or write). For example, to open a file for reading,
you would use the following code:

file = open('filename.txt', 'r')

Once you have opened a file, you can read or write data using a variety of built-in functions. For
example, to read the contents of a file, you can use the read() function, which reads the entire
contents of the file as a string. To read a single line from a file, you can use the readline() function.

To write data to a file, you can use the write() function, which writes a string to the file. You can
use the writelines() function to write multiple lines to a file.

It is important to note that when working with files in Python, you must permanently close the file
when you are finished working with it. This is typically done using the close() function.

To become comfortable working with file I/O in Python, it is important to practice reading and
writing files using different techniques and syntax. Online resources such as Python documentation
and tutorials can help build these skills. Additionally, working on small projects that involve reading
and writing files can help you gain practical experience and improve your understanding of how file
I/O works in Python.

Now that we’ve covered the fundamentals of Python, we’ll go into more complicated topics to close
the knowledge gap between fundamental knowledge and the level of expertise anticipated by a skilled
data engineer.

SKILL 5 – functional programming

A programming paradigm known as functional programming avoids changing state or mutable data
and treats computation as the evaluation of mathematical functions. Functional programming can
be beneficial for data engineering because it makes testing, debugging, and parallelization simpler.

Must-know advanced Python skills 55

Despite not being a purely functional language, Python offers many features that support functional
programming, and being familiar with these features can be very helpful in a data engineering role.

The use of higher-order functions such as map(), filter(), and reduce() is one of the most
fundamental ideas in functional programming in Python. Without having to create explicit loops, you
can use these functions to perform operations on lists and other iterable data structures. For instance,
using map() to apply a function to every element in a list simplifies and improves the readability of
data transformation tasks.

Another feature of Python’s functional programming language is lambda functions, also known as
anonymous functions. The lambda keyword is used to define these short, inline functions, which
are frequently used for quick, straightforward operations inside of higher-order functions. To square
each item in a list, for instance, you could use a lambda function inside a map() call.

Pythonic methods for data transformation or filtering include list comprehensions and generator
expressions. You can accomplish the same goals as loops or higher-order functions using their more
declarative approach to data manipulation, but with more readable syntax. Additionally, pure functions,
which have sole dependence on their input and a lack of any side effects, are encouraged by functional
programming. Pure functions are a good choice for data engineering tasks that demand dependability
and repeatability because they are simpler to test and debug.

Last but not least, Python provides modules such as functools that offer sophisticated functional
programming tools such as decorators for function composition or memorization. These can be
especially helpful for enhancing performance in tasks that require lots of data. You can create Python
code that is more effective, spick-and-span, and easy to maintain by using functional programming
techniques. Not only will knowing these ideas improve your Python programming, but it will also
make you a better data engineer.

Must-know advanced Python skills
In addition to the fundamental Python skills covered in the preceding section, data engineers should
be familiar with several advanced Python concepts and techniques. Examples are object-oriented
programming (OOP), advanced data structures, and well-known libraries and frameworks for data
analysis and visualization.

In the following subsections, we will review the advanced Python skills required for data
engineering interviews.

SKILL 1 – understand the concepts of OOP and how to apply them
in Python

The foundation of the OOP programming paradigm is the concept of objects, which can hold data
and allow for the coding of data manipulation. When developing complex software systems for data
engineering applications, OOP is a powerful technique. Python uses classes to create objects that

Essential Python for Data Engineers56

csn be created and used to do certain tasks. A class is a blueprint that details the characteristics and
capabilities of an item. When you instantiate an object, a new instance of the class is produced with
all of its features.

Inheritance is a crucial concept in OOP because it allows developers to create new classes that inherit
the attributes and functions of preexisting ones. Use the syntax given next to define a subclass in
Python that derives from a superclass:

class SubClass(SuperClass):
    # Class definition goes here

Polymorphism, which allows you to use objects of different types interchangeably, is another important
concept in OOP. Python achieves polymorphism through duck typing, meaning an object’s type is
determined by its behavior rather than its class.

Working with classes and objects and experimenting with different inheritance and polymorphism
scenarios is essential for becoming comfortable with OOP concepts and applying them in Python.
Online resources, such as Python documentation and tutorials, can aid in developing these skills.
Working on small OOP-related projects can also help you gain practical experience and improve your
understanding of how OOP works in Python.

SKILL 2 – know how to work with advanced data structures in
Python, such as dictionaries and sets

While lists and tuples are the most commonly used data structures in Python, several more advanced
data structures can be helpful for certain types of data manipulation tasks. Dictionaries and sets are
examples of these.

A dictionary is an unsorted set of key-value pairs. Each key-value pair is saved in the dictionary as an
item, and the key is used to access the corresponding value. Dictionaries are useful for storing data,
making quick lookups based on a unique key possible. Dictionaries are defined in Python using curly
braces ({}) and colons (:), as shown in the following example:

my_dict = {'key1': 'value1', 'key2': 'value2', 'key3': 'value3'}

A set is an unordered collection of unique elements. Sets help perform set operations, such as union
and intersection. In Python, sets are defined using curly braces ({}) and commas (,), as shown in
the following example:

my_set = {1, 2, 3, 4, 5}

Understanding the various methods and operations available for manipulating dictionaries and sets to
work effectively with these data structures is critical. For example, the update() and pop() methods
can add and remove items from a dictionary. You can use the union() and intersection()
methods to perform operations on sets such as unions and intersections.

Must-know advanced Python skills 57

To become acquainted with dictionaries and sets in Python, practicing using these data structures
in various scenarios and experimenting with different methods and operations is necessary. Online
resources, such as Python documentation and tutorials, can aid in developing these skills. Working on
small projects involving dictionaries and sets can also help you gain practical experience and better
understand how these data structures work in Python.

SKILL 3 – be familiar with Python’s built-in data manipulation and
analysis libraries, such as NumPy and pandas

NumPy and pandas are two widespread Python data manipulation and analysis libraries. NumPy
handles large, multidimensional arrays and matrices, whereas pandas handles data manipulation and
analysis, including tools for reading and writing data to and from various file formats.

NumPy is a must-have Python library for scientific computing. It includes a multidimensional
array object and tools for manipulating these arrays. The ndarray (n-dimensional array) object,
which provides efficient storage and manipulation of large arrays of data, is at the heart of NumPy’s
functionality. NumPy also includes trigonometric and logarithmic functions for working with arrays.

pandas is a data manipulation and analysis library that provides high-performance data manipulation
and analysis tools. It includes data structures such as the Series and DataFrame objects for
efficiently storing and manipulating large datasets. pandas also has tools for reading and writing data
to and from various file formats, including CSV and Excel.

To become acquainted with NumPy and pandas, working with these libraries and experimenting
with various use cases is necessary. Online resources, such as NumPy and pandas documentation and
tutorials, can aid in developing these skills. Working on small projects involving data manipulation
and analysis can also help you gain practical experience and improve your understanding of how
these Python libraries work.

SKILL 4 – understand how to work with regular expressions in
Python

Regular expressions (regexes) are a powerful text-processing tool. The re module in Python
supports regexes by providing functions for searching, matching, and manipulating text data based
on specific patterns.

Regexes describe patterns in text data, such as the presence of specific words or character patterns.
A regex, for example, can be used to search for all instances of a particular word in a large text file.
Regexes can also perform more complex pattern-matching tasks, such as finding email addresses or
phone numbers in a block of text.

Essential Python for Data Engineers58

Regexes in Python are defined using a unique syntax that allows you to describe the pattern you’re
looking for. To find all instances of the word "data" in a string, for example, use the following regex:

import re

text = "This is some data that I want to search for"
pattern = "data"

matches = re.findall(pattern, text)

In this example, the findall() function searches the text variable for all instances of the pattern
regex and returns a list of all matches.

It is critical to practice using different regexes and experiment with different search and match functions
to become comfortable working with regexes in Python. Working on small projects that use regexes
can also help you gain practical experience and better understand how regexes work in Python.

SKILL 5 – recursion

Programming recursion is the process of having a function call itself in order to solve a problem.
Recursion has practical significance for data engineers even though it may initially seem like a topic
more related to computer science theory or algorithmic difficulties. Recursion can be especially helpful
for tasks involving nested or hierarchical data structures, such as JSON objects, XML files, or database
schemas that resemble trees. Additionally, it may be crucial for algorithms that call for backtracking,
divide-and-conquer tactics, or depth-first search.

You might run into situations in data engineering where you need to navigate a nested data structure
in order to extract, transform, or load data. For instance, you might need to flatten a JSON object
into a tabular form for analysis if it contains nested arrays or dictionaries. Such nested structures
can be gracefully handled by recursive functions, which divide the problem into more manageable,
smaller subproblems.

Graph algorithms are one more common application of recursion in data engineering. Recursive
algorithms such as depth-first search can be extremely helpful for tasks such as locating the shortest
path or spotting cycles, regardless of whether you’re working with social network graphs, dependency
graphs in software, or any other type of interconnected data.

Recursion can, however, be resource-intensive if not implemented carefully, particularly in terms of
memory usage. You can change Python’s default recursion depth limit, but doing so has drawbacks.
Understanding the trade-offs and knowing when to use iterative solutions in place of others can,
therefore, be very important.

Recursion is also well suited to parallelization, which is frequently necessary in tasks requiring scale
in data engineering. Recursive functions can occasionally be divided into separate subtasks that can
be carried out in parallel, enhancing performance.

Technical interview questions 59

In conclusion, recursion is a potent tool that can make difficult data engineering problems simpler,
improving the readability and maintainability of your code. In addition to assisting you in technical
interviews, mastering recursion will give you a flexible skill set for addressing a variety of data
engineering challenges.

Now that you are familiar with essential Python concepts, we will next go over sample interview
questions and answers.

Technical interview questions
Technical interviews for data engineering positions often include questions related to Python
programming concepts and techniques and broader technical concepts related to data engineering.
In the following sections, we will see 15 difficult technical interview questions related to Python, data
engineering, and general technical concepts.

Python interview questions

The following is a list of Python interview questions:

•	 Question 1: What is a descriptor in Python?

Answer: A descriptor is a particular Python object that allows you to define how an attribute is
accessed or modified in a class. Descriptors are commonly used to define properties, enabling
you to control how attributes are accessed and modified.

•	 Question 2: How do you handle circular imports in Python?

Answer: Circular imports occur when two or more modules import each other. To handle
circular imports in Python, you can use several techniques, such as importing the module at
the function level, using a separate module for the shared code, or using a lazy import.

•	 Question 3: What are the differences between a shallow copy and a deep copy in Python?

Answer: A shallow copy creates a new object that points to the original object’s memory location.
In contrast, a deep copy constructs a new object with its memory that contains a copy of the
original object’s data. A shallow copy is valid when creating a new object that refers to the same
data as the original object. In contrast, a deep copy is applicable when creating a completely
separate copy of the original data.

•	 Question 4: What is the difference between a list comprehension and a generator expression
in Python?

Answer: A list comprehension is a shorthand syntax for creating a list from an iterable, while
a generator expression is a shorthand syntax for creating a generator from an iterable. List
comprehensions create a list in memory, while generator expressions create a generator object
that generates values on the fly.

Essential Python for Data Engineers60

•	 Question 5: What is the difference between bound and unbound methods in Python?

Answer: A bound method is a method that is bound to an instance of a class, while an unbound
method is a method that is not bound to an instance of a class. Bound methods can access the
instance’s attributes and methods, while unbound methods cannot.

Data engineering interview questions

In this section, we’ll go over typical data engineering interview questions. This section aims to give you
a realistic idea of what to anticipate in interviews and how to communicate your knowledge correctly.
We hope to inspire confidence and improve your readiness for the dynamic field of data engineering
by breaking down complex topics into a question-and-answer style. Let’s look at some real-world
data scenarios and unravel their complexities with some sample questions and answers, as follows:

•	 Question 1: What is lambda architecture, and how does it work?

Answer: A lambda architecture is a data processing architecture that combines batch processing
and stream processing to provide both real-time and historical views of data. A lambda
architecture processes incoming data in parallel using batch processing and stream processing
systems and merges the results to give a complete data view.

•	 Question 2: What are the differences between a data lake and a data warehouse?

Answer: A data lake is a large, centralized repository for storing raw data from multiple sources.
In contrast, a data warehouse is a repository for storing structured and processed data that has
been transformed and cleaned for analysis. Data lakes typically store large volumes of unstructured
or semi-structured data, while data warehouses store structured data optimized for analytics.

•	 Question 3: How do you optimize a database for write-heavy workloads?

Answer: Optimizing a database for write-heavy workloads typically involves sharding, partitioning,
and clustering to distribute the workload across multiple nodes and using indexing, caching,
and batching to improve the efficiency of write operations.

•	 Question 4: What is the difference between a batch processing system and a stream
processing system?

Answer: A batch processing system processes data in discrete batches, while a stream processing
system processes data in real time as it arrives. Batch processing systems are typically used for
analyzing historical data, while stream processing systems are used for processing real-time data.

•	 Question 5: What are the challenges of working with distributed systems, and how can they
be addressed?

Answer: Challenges of working with distributed systems include network latency, data consistency,
and fault tolerance. These challenges can be addressed through data replication, partitioning,
and load-balancing techniques.

Technical interview questions 61

General technical concept questions

We now shift our focus from Python and data engineering specifics to broader technical principles
that can be asked about in interviews. A thorough review of these common technical questions is
provided in this section. Here’s a list of typical interview questions:

•	 Question 1: What is the difference between a mutex and a semaphore?

Answer: A mutex locking mechanism ensures that only one thread can access a shared resource
at a time. At the same time, a semaphore is a signaling mechanism that allows multiple threads
to access a shared resource concurrently up to a specified limit. Mutexes are typically used to
protect critical sections of code, while semaphores control access to shared resources.

•	 Question 2: What is the CAP theorem, and how does it relate to distributed systems?

Answer: According to the CAP theorem, a distributed system cannot concurrently offer the
three guarantees of consistency, availability, and partition tolerance. Consistency in a distributed
system is the idea that all nodes concurrently see the same data, while availability is the idea
that the system keeps working even if some nodes fail. The concept of partition tolerance states
that the system can still function in the event of a network partition. The CAP theorem is often
used to guide distributed systems’ design and implementation.

•	 Question 3: What is the difference between monolithic and microservices architecture?

Answer: A monolithic architecture is a software architecture in which all of the components of
an application are tightly coupled and deployed as a single unit. In contrast, a microservices
architecture is a software architecture in which an application is broken down into a collection of
small, loosely coupled services that can be developed and deployed independently. Microservices
architectures offer greater flexibility and scalability than monolithic architectures but require
more complex infrastructure and deployment processes.

•	 Question 4: What is the difference between Atomicity, Consistency, Isolation, Durability
(ACID) and Basically Available, Soft state, Eventually consistent (BASE) consistency models?

Answer: ACID is a database consistency model that provides strong guarantees around data
consistency and integrity. BASE is a consistency model that sacrifices strong consistency in
favor of availability and partition tolerance. BASE is often used in distributed systems where
strong consistency is difficult to achieve.

•	 Question 5: What are the different types of joins in SQL, and how do they work?

Answer: The various join types in SQL include full outer join, left outer join, right outer join, and
inner join. All rows from the left table and all matching rows from the right table are returned
by a left outer join, all rows from the right table and all matching rows from the left table are
returned by a right outer join, and all rows from both tables are returned by a complete outer
join with null values in the columns where no match was found. On the basis of common
columns, joins are used to aggregate data from many tables.

Essential Python for Data Engineers62

Summary
We covered a lot of the Python knowledge required for aspiring data engineers in this chapter. We
started by building a solid foundation with fundamental Python knowledge by going over syntax,
data structures, and control flow components such as conditional statements, loops, and functions.
We also gave you a brief introduction to Python’s standard built-in modules and functions, which are
useful for a variety of data engineering tasks. We also looked at the idea of functional programming
in Python, emphasizing its advantages for producing effective, orderly, and maintainable code.

We talked about OOP principles and how they can be used in Python to create modular and reusable
code as we progressed into advanced Python skills. In order to effectively handle complex data, advanced
data structures such as dictionaries and sets were also covered. Given their widespread usage in data
engineering tasks, familiarity with Python’s built-in data manipulation and analysis libraries, such
as NumPy and pandas, was stressed. We also discussed how crucial it is to comprehend regexes for
text editing and data cleansing. We concluded by discussing the idea of recursion and outlining its
application in data engineering, particularly when working with nested or hierarchical data structures.

We now go on to the next chapter, Unit Testing. The importance of testing will be discussed in the next
chapter, emphasizing Python unit testing techniques to ensure your data pipelines and applications
are reliable and error-free in addition to being functional. Let’s continue and expand on the solid
Python foundation we’ve established.

6
Unit Testing

Unit testing is a critical part of a data engineering workflow. It allows the data engineer to test individual
units in their code. A unit is any independent piece of code and can be functions, modules, or classes.
They will test each unit in isolation to ensure the intended output is returned and functions properly.

Unit testing allows the data engineer to find and fix potential bugs earlier in the development process
and also protects their code from breaking when changes are done or their code becomes more
complex. It is also more efficient than manual testing.

In this chapter, we will cover fundamental-to-intermediate unit testing concepts in Python you should
know for an interview.

In this chapter, we will cover the following topics:

•	 Fundamentals of unit testing

•	 Must-know intermediate unit testing skills

•	 Unit testing interview questions

Fundamentals of unit testing
In data engineering, unit tests are essential to validate data transformations, computations, and other
data manipulation tasks, ensuring that every function or method in your pipeline works correctly.
These tests enable you to catch and correct errors early in development, saving time and resources
in the long run.

In the upcoming sections, we will explore the fundamentals of unit testing, discussing its principles,
advantages, and how to implement it effectively in your code. We will cover various aspects such as
writing testable code, structuring your tests, and using testing frameworks in Python, such as pytest
and unittest. Whether you are new to the concept or looking to enhance your testing skills, this
section will serve as a comprehensive guide to mastering unit testing in data engineering.

Unit Testing64

Importance of unit testing

Unit testing is a fundamental component of creating reliable, maintainable, and scalable data pipelines.
It is also integrated within continuous integration and development. As a data engineer, you want to be
able to create code that can withstand future changes and potential complexities in production. Unit
tests ensure your functions will work as expected as complex changes or inputs in production occur.

Testing units in isolation also ensures the ability to detect errors and bugs early in the development
process. Unit testing allows you to implement tests that act as a guardrail for different potential and
predicted edge cases.

Unit testing frameworks in Python

In this section, we’ll look at many of the most popular options for putting Python’s code through
its paces. These include but are not limited to pytest, an advanced and feature-rich library with
widespread usage in the industry, and unittest, Python’s in-built testing library.

To maximize your testing efficiency, you should familiarize yourself with the specifics of each of these
frameworks. For instance, to facilitate test automation, unittest provides a stable groundwork for test
structuring via test cases, test suites, and a test runner. On the other hand, pytest provides advanced
testing capabilities including reusable fixtures, parameterized tests, and comprehensive error reports.

We will now look at code examples where we will incorporate both the unittest and
pytest frameworks.

unittest is a built-in testing framework within Python’s standard library that provides tools for
performing, organizing, and running unit tests.

Here is an example of using unittest for a function under the filename math_operation.py:

1.	 Create a function called add that will be tested under the filename math_operation.py:

math_operations.py

def add(a, b):
    return a + b

2.	 Create a separate file called test_math_operations_unit.py that will perform unit
tests on the add function. Each test is defined by different functions that evaluate results from
different scenarios:

test_math_operations.py

import unittest
from math_operations import add

Fundamentals of unit testing 65

class TestMathOperations(unittest.TestCase):

    def test_add_positive_numbers(self):
        self.assertEqual(add(2, 3), 5)

    def test_add_negative_numbers(self):
        self.assertEqual(add(-2, -3), -5)

    def test_add_mixed_numbers(self):
        self.assertEqual(add(-2, 3), 1)
        self.assertEqual(add(2, -3), -1)

if __name__ == '__main__':
    unittest.main()

pytest is a third-party framework that has more robust features such as fixtures and parameterization.
Fixtures allow you to feed data or input to unit tests. Parameterization allows you to run the same
unit test at once with different sets of inputs.

Here is an example of using pytest to perform a unit test on the previous add function:

1.	 Install pytest, as follows:

pip install pytest

2.	 Create a separate file called test_math_operations_pytest.py, which will perform
unit tests on the add function. Each test is defined by different functions that evaluate results
from different scenarios:

test_math_operations.py

from math_operations import add

def test_add_positive_numbers():
    assert add(2, 3) == 5

def test_add_negative_numbers():
    assert add(-2, -3) == -5

def test_add_mixed_numbers():
    assert add(-2, 3) == 1
    assert add(2, -3) == -1

While both frameworks have their merits, the choice between unittest and pytest often comes
down to your project’s requirements and personal preference. When used effectively, both are potent
instruments that can improve the robustness and dependability of your data pipelines.

Unit Testing66

Having examined these examples, we are better suited to write, structure, and execute unit tests in
Python code. As we progress, we will apply these skills to more complex areas of data engineering,
continuing to build upon the solid foundation that unit testing provides.

Process of unit testing

Unit testing, despite its importance, is not a procedure that can be performed without a systematic
approach. It involves multiple steps, including gaining a comprehension of the unit’s intended
functionality, writing and executing tests, and integrating them into your development pipeline. Every
data engineer must comprehend this procedure to ensure the development of efficient, robust, and
trustworthy data pipelines.

In this section, we will examine the unit testing procedure in detail. We will provide a systematic
approach to help you comprehend how to effectively plan, write, execute, and maintain unit tests.

When it comes to structuring and running unit tests, there is typically a three-step process is followed,
also known as the three As, elaborated upon here:

•	 Arrange: Here, you set up your environment for the test and load any necessary data, modules,
or other preconditions. Specifically, this can involve creating instances of the classes you need
to test, defining input data, or setting up mock objects.

•	 Act: Here, you call the method or function to test functionality. This is a core part of the process
when the unit is actually tested.

•	 Assert: Here, you verify the result of the previous Act step. This is where your test will let you
know if it passes or fails. If it does fail, it will detail what the failure is and where it occurs in
your code.

Here are the basic steps of unit testing broken down using the unittest framework:

1.	 Import unittest, like so:

import unittest

2.	 Create your class of test cases, as follows:

class MyTestCase(unittest.TestCase):
    def test_something(self):
        # test code

3.	 Fill your class with different test methods. The methods represent specific scenarios that you
will test your function under:

def test_something(self):
    # test code

Must-know intermediate unit testing skills 67

4.	 Add a unittest.main() method so that all tests will run when the unit test is called to run:

if __name__ == '__main__':
    unittest.main()

After these steps are completed, you can run your unit tests in the command line by calling the filename
where your tests are created. This is a basic example of how to run your unit tests, and it can be altered
by implementing more advanced components such as fixtures or parameterized tests.

Now that you understand the process of running a unit test, we will introduce more intermediate
concepts in the next section.

Must-know intermediate unit testing skills
While unit testing fundamentals provide an essential foundation, data engineering frequently necessitates
a more profound comprehension and a broader set of testing skills. Complex, high-volume data
transformations and operations need more sophisticated testing strategies to ensure your pipelines’
robustness, dependability, and effectiveness.

We’ll begin by discussing parameterized testing, a technique enabling you to execute the same test
case with various input values, expanding your test coverage without duplicating code. Then, we
will conduct performance and duress testing to ensure that your code can withstand the demands of
actual data operations.

Parameterized tests

Parameterized tests allow you to run the same unit test but with multiple inputs of different data. This
allows you to test different scenarios in less code rather than writing out multiple tests.

The following is an example of a parameterized test using the same add function we previously used.

Create a separate file called test_math_operations_param.py, which will perform unit
tests on the add function using parameterized testing in pytest. We will input a list containing
different tuples of integers:

test_math_operations.py

import pytest
from math_operations import add

@pytest.mark.parametrize(
    "a, b, expected_sum",
    [
        (2, 3, 5),
        (-2, -3, -5),

Unit Testing68

        (-2, 3, 1),
        (2, -3, -1),
        (0, 0, 0)
    ]
)
def test_add(a, b, expected_sum):
    result = add(a, b)
    assert result == expected_sum

There is only one testing function, test_add, with an assert statement to evaluate the function
using each tuple.

Performance and stress testing

Performance and stress testing are both non-functional testing methods. Performance testing measures
how well your unit performs in normal conditions. It can also identify bottlenecks and areas in your
code that are causing performance issues. This testing will ensure your code can handle expected load
conditions before deployment.

Stress testing measures how well your code will handle unexpected loads and edge-case scenarios. Here,
you can identify potential breaking points in your code and spot potential failures before deployment.

Various scenario testing techniques

While stress testing measures how your code will behave in extreme or unexpected circumstances, it is
also important to test your code under various expected conditions. Examples include the following:

•	 Happy-path testing: Ensures your code functions as expected during all normal conditions
with a valid input.

•	 Boundary-value testing: Ensures your code performs as expected with edge cases of inputs
such as negative numbers, very large numbers, empty strings, or other extreme values.

•	 Error-handling testing: Ensures your code can handle invalid inputs and others that would
result in predictable errors.

We are now well versed in primary intermediate unit testing skills in data engineering, including
parameterized testing, performance and stress testing, and scenario testing. Complex as they may be
these techniques are essential for ensuring the robustness, efficacy, and dependability of your data
pipelines under a variety of conditions.

However, comprehension of these concepts is only half the battle. You must be able to communicate
this understanding effectively in your interview. Moving on to the next section, we will apply the
knowledge acquired thus far. The next section will provide examples of how concepts and techniques

Unit testing interview questions 69

related to unit testing may be evaluated during an interview. We will cover various topics, from the
fundamentals of unit testing to the intermediate skills we’ve just discussed.

Unit testing interview questions
Now that we have provided an overview of unit testing in Python, this section will provide example
questions and answers to help prepare you for your interviews, as follows:

•	 Question 1: Explain the difference between unit testing and integration testing.

Answer: Unit testing is testing individual components or functions in isolation. Integration
testing focuses on testing how a section of code interacts within the whole system. Unit testing
tests for proper functions for an individual component, while integration testing validates how
well different components perform together.

•	 Question 2: How are assertions used in unit testing?

Answer: Assertions are used to validate the expected behavior of a function. They compare the
expected output and the actual output to evaluate for accuracy.

•	 Question 3: What are ways you can improve the performance of your unit tests?

Answer: Minimize dependencies, utilize the setUp() and teardown() methods, optimize
your code, and run tests in parallel.

•	 Question 4: What is continuous testing and why is it important in unit testing?

Answer: Continuous testing runs your unit tests automatically. This will help reduce regression
and identify issues early.

•	 Question 5: What are examples of external dependencies, and what are strategies to handle
them in unit testing?

Answer: Examples of external dependencies are APIs and databases. A strategy to minimize
dependencies in your unit test is mocking. This allows you to use a simulated and predefined
version of the data for your unit tests.

•	 Question 6: What is regression testing?

Answer: Regression testing is the process of testing your code to ensure it still works as expected
over time as code changes, bug fixes, and feature implementations occur.

•	 Question 7: What is the purpose of test fixtures?

Answer: Test fixtures ensure your unit tests have consistent and stable environments and setup
operations. This can mean consistent data, variables, or database connections. This allows for
reliable and repeatable test results.

Unit Testing70

Summary
In this chapter, we explored the skill of unit testing, from its fundamental importance to mastering
its practical application with Python’s unittest and pytest frameworks. We expanded our skills
by exploring intermediate concepts, such as parameterized, performance, and scenario testing, and
concluded with a practical guide to tackling unit testing questions in job interviews.

As we transition into the next chapter, we’ll move from the coding realm to the data world, focusing on
essential knowledge of databases and their operation. This shift will further enrich your data engineering
skills, providing the necessary tools to interact with, manipulate, and manage data effectively in your
future roles. Let’s continue our journey into the heart of data engineering.

7
Database Fundamentals

The database is your workstation, and you are the architect and keeper of the data as a data engineer. So,
it’s essential to thoroughly understand databases, how they work, and all of their subtleties. Beginning
with the fundamental foundational concepts, we will gradually move on to more complicated features of
databases in this chapter before dissecting these principles via the context of a data engineering interview.

This chapter will walk you through various topics, whether you’re a novice just entering this industry
or a seasoned professional trying to brush up on your knowledge. These include database types,
normalization, and indexing fundamentals. In a series of common interview questions and responses,
we will put the lessons gained to use. Your technical communication abilities will be improved in this
segment, which is a crucial component of any data engineering interview. The chapter will conclude
with a brief summary to help you remember the most important ideas.

In this chapter, we will review how data engineers use databases, which you should be familiar with
prior to an interview, including the following:

•	 Must-know foundational database concepts

•	 Must-know advanced database concepts

•	 Technical interview questions

Must-know foundational database concepts
In this section, we will create the groundwork for your understanding of databases, which is a crucial
component for any data engineer. We start with the fundamentals, such as comprehending the many
types of databases, the normalization tenets, and the idea of indexing. These foundational elements
will serve as the starting point for your exploration of the more complex world of data engineering.
This part is the starting point for a more in-depth investigation of database systems, whether you are
a beginner or an experienced professional reviewing the fundamentals. Let’s begin by strengthening
your fundamental database knowledge.

Database Fundamentals72

Relational databases

A relational database utilizes a relational model to store structured data into tables. Tables are collections
of rows and columns. Each row in the table represents a single record of information, while each
column represents attributes or fields. The following screenshot is an example of a simple SQL table
with its rows and columns labeled:

Figure 7.1 – Example of a SQL table highlighting the rows and columns

Relational databases will have tables that have relationships or connections to each other. These tables
will be linked with primary and foreign keys. A primary key is a column that represents the unique
identifier for that specific table. Characteristics of primary keys include the following:

•	 Uniqueness: There can be no duplicate primary keys, and each record will have its own distinct key

•	 Consistency: Primary keys will normally remain stable and not change over time as new data
is added or deleted

•	 Non-nullable: Primary keys cannot be null

A foreign key is a column that refers to a primary key from another table. Tables are linked in SQL
databases by joining primary and foreign keys. One of the main differences between foreign and
primary keys is that foreign keys can contain null values. When a row has a missing foreign key, it
indicates that there is no corresponding value in the other table.

The following are common applications and scenarios where data engineers would utilize a
relational database:

•	 Transactional processing: Where data from banking, inventory, or commerce is processed.

•	 Business intelligence (BI) and business analytics (BA): Where data needs to be analyzed and
aggregated to extract insights to support business decisions.

•	 Customer relationship management (CRM): Where customer data needs to be collected and
stored. This can include contact information, demographics, and order history.

Must-know foundational database concepts 73

Advantages of relational databases include the following:

•	 Atomicity, consistency, isolation, and durability (ACID) compliance: Relational databases
ensure ACID compliance

•	 Security: Built-in measures such as encryption, access control, and user authentication

•	 Data integrity: Using primary and foreign keys, relational databases ensure accurate and
consistent data

•	 Normalization: Minimize data redundancy

Disadvantages of relational databases include the following:

•	 Performance: Slow performance can occur due to complex queries and joins

•	 Inflexibility: Because a schema needs to be established for data storage, limitations are set on
the type of data that can be stored

Now that we’ve reviewed relational databases, we will move on to NoSQL databases in the next section.
NoSQL will be important to understand if your team deals with unstructured data.

NoSQL databases

Unlike relational databases, NoSQL databases do not have a relational data model. NoSQL databases
are designed to handle unstructured and semi-structured data such as media, audio, and emails. They
also don’t have a schema, which provides added flexibility in storing and retrieving data.

The following are common applications and scenarios where data engineers would utilize a NoSQL database:

•	 Real-time data processing: Supports real-time analytics and decision-making for streaming data

•	 Content management systems (CMSs): Where data such as images, documents, or videos
need to be stored

•	 Search applications: Where large volumes of unstructured data need to be indexed

Advantages of NoSQL databases include the following:

•	 Flexibility: NoSQL databases can store data in multiple formats, including unstructured, semi-
structured, and structured, without a predefined and rigid schema. This is mostly useful when
the data requirements are constantly changing.

•	 Performance: NoSQL databases perform much faster while also being able to handle large
amounts of data.

Database Fundamentals74

Disadvantages of NoSQL databases include the following:

•	 Not ACID compliant, which makes them an unsuitable option for storing transaction data

•	 Not suitable for advanced querying

After navigating relational and NoSQL databases, it is time to shift our attention to comprehending
the operational details of database systems. We will examine two main categories of data processing
systems essential to data engineering in the next section.

OLTP versus OLAP databases

Two popular types of database systems are online transaction processing (OLTP) and online
analytical processing (OLAP) systems.

OLTP databases support day-to-day business transactions and processes where high-speed data
entry, updates, and retrieval are a priority. They are designed to handle a high volume of real-time
transactions, optimized for simple queries, and are ACID compliant. Typical tasks include updating
customer records, inventory management, and processing incoming orders.

OLAP databases are designed to support more complex data analysis. They allow an analyst to perform
complex SQL queries and calculations on large volumes of historical data to extract insights where
data analysis, query performance, and response time are a priority. Typical tasks include creating
forecasts, reports, and other BI activities to influence business decisions.

Normalization

Normalization refers to the process of breaking down large amounts of data into tables and establishing
their relationships. This process helps eliminate redundant data through five forms:

1.	 First Normal Form (1NF)—eliminate repeating groups: The most basic form. When this
criterion is met, it means the following conditions of a database are satisfied:

A.	 Each table has a primary key

B.	 All columns contain atomic or indivisible values

1NF eliminates repeating groups in individual tables while also creating separate tables for
each set of related data.

2.	 Second Normal Form (2NF)—eliminate redundant data: The second form of normalization
is that all non-primary or foreign key columns are completely dependent on the primary key
of a table.

Each column or attribute must be associated with the data point of that chosen row.

Must-know advanced database concepts 75

3.	 Third Normal Form (3NF)—eliminate columns not dependent on a key: The third form
ensures that all attributes in a table are independent. 3NF provides guardrails against transitive
dependency where a value in one column determines the value of another column.

4.	 Fourth Normal Form (4NF)—isolate independent multiple relationships: The fourth form
removes multivalued dependencies. Multivalued dependencies occur when one attribute or
column determines the values of multiple columns.

5.	 Fifth Normal Form (5NF)—isolate semantically related multiple relationships: The fifth
form removes join dependencies. Join dependencies occur when a column from one table
determines the values of multiple columns in another table.

Not normalizing a database can cause issues relating to duplicated data, inconsistencies, and accuracy
whenever new data is added or manipulated in the database. We have laid a strong foundation for
comprehending the fundamental concepts of databases as we conclude this section. We have covered
the distinctive features and uses of OLTP and OLAP systems, the landscape of relational databases,
and the adaptable world of NoSQL databases.

It’s time to expand upon these ideas and explore more challenging areas. We will examine the
complexities of databases in the following section.

Must-know advanced database concepts
After going over the basics of databases, it’s time to delve into more complicated subjects that are essential
tools in the toolbox of a data engineer. We’ll summarize various advanced concepts, including triggers,
ACID characteristics, and constraints. To guarantee data integrity, consistency, and responsiveness in a
database system, each aspect is crucial. Understanding them will improve your conceptual knowledge
and your capacity to create and maintain sophisticated database systems.

Remember that this part is not intended to teach you how to do these things from scratch but rather to
provide you with a brief overview and prepare you for the kinds of questions and subjects frequently used
in interviews for data engineering jobs. Let’s clarify things and increase your knowledge of databases.

Constraints

Constraints are rules that are set up to enforce properties in a database. Without constraints, your
data will be more prone to inconsistencies and errors. They also ensure referential integrity so that
you can reference and retrieve data across multiple tables.

Referential integrity also ensures your data remains synchronized during all modifications to a database.
There are several kinds of constraints, such as the following:

•	 NOT NULL: Ensures that a column cannot contain any NULL values.

•	 UNIQUE: Ensures that all values in a column are unique.

Database Fundamentals76

•	 PRIMARY KEY: Sets a column as the unique identifier for a table. This constraint combines
the rules of NOT NULL and UNIQUE, as a primary key cannot be null and must be unique.

•	 FOREIGN KEY: Ensures that the values in a column will be present in another table.

•	 CHECK: Ensures that values in a column meet a user-defined condition.

•	 DEFAULT: Sets a default value for a column if none is specified.

It’s time to look into another critical idea that controls database transactions after knowing the
complexities of SQL constraints, how they guarantee the accuracy and dependability of the data,
and how they impose specific rules on the data to protect its integrity. ACID is the name of this idea.
These characteristics are crucial to any data-driven application’s overall robustness and the successful
execution of database transactions.

ACID properties

Relational databases support ACID compliance for transactional data. This guarantees the data validity
despite mishaps such as power failures or other errors. For a database to be ACID compliant, it must
satisfy the following conditions:

•	 Atomicity: The entire record of data will be added to the database, or that transaction will be
aborted. There would be no partial entries in the case of a transaction failure or mishap.

•	 Consistency: All data from transactions will follow all predefined business rules and constraints.

•	 Isolation: If transactions occur at the same time, they will not conflict with each other, and
each will be executed as normal.

•	 Durability: In the event of any hardware or system failures, all transaction data stored in a
database will not be affected or lost.

ACID properties ensure reliable and consistent data that is protected from any system or hardware
corruption. Cases where these properties would be implemented include banking, any database storing
financial transactions, and customer information.

CAP theorem

In the realm of distributed data systems, the CAP theorem, also known as Brewer’s theorem, is a
fundamental principle. It asserts that a distributed system cannot simultaneously provide more than
two of the three guarantees listed here:

•	 Consistency: Every read returns either the most recent write or an error.

•	 Availability: Every request (read or write) receives a response, but there is no assurance that
it contains the most up-to-date version of the data.

Must-know advanced database concepts 77

•	 Partition tolerance: The system continues to function despite network partitions, which result
in lost or delayed communication between nodes.

Simply put, the CAP theorem asserts that a distributed system cannot possess all three of these
properties simultaneously. You must choose two.

Here are some examples:

•	 Consistency and availability but not partition tolerance: Traditional relational databases,
such as MySQL, Oracle, and Microsoft SQL Server, emphasize consistency and availability. In
single-node configurations, where partition tolerance is not an issue (since there is only one
node), these systems can guarantee that data is consistent across all transactions and is always
accessible for reads and writes. However, network partitions can and do occur in the real world.
When these databases are distributed across multiple nodes, they may encounter difficulties in
managing partitions, which could necessitate manual intervention or cause downtime.

•	 Availability and partition tolerance (AP) but not consistency: Apache Cassandra is a system
that prioritizes availability and partition tolerance. This indicates that even in the event of
network partitions, these systems will continue to be accessible, although they may return stale
or outdated data. Consider a social media platform where a user’s profile picture is updated.
Using an availability and partition system may cause some users to temporarily view an outdated
image while others view a new one. In this situation, temporary inconsistency is acceptable to
maintain the platform’s accessibility.

Understanding the CAP theorem is essential for data engineers, as they must frequently make architectural
decisions regarding which databases or data systems to employ based on specific requirements and
trade-offs of a given application.

The CAP theorem does not prescribe a one-size-fits-all solution. Instead, it provides a framework for
understanding the trade-offs involved in distributed system design, allowing data engineers to make
informed decisions based on the specific needs of their applications.

Triggers

Triggers are sets of code that gets executed when an action occurs. The set of code is normally run
after data is manipulated or modified in the database. There are three types of SQL triggers:

•	 Data Manipulation Language (DML): Executed when data is inserted, updated, or deleted
from a table

•	 Data Definition Language (DDL): Executed when the structure of a table is modified, such
as the removal or addition of a column

•	 Statement: Executed when certain SQL statements are run in a query

Database Fundamentals78

Triggers are used for a variety of tasks, such as enforcing predefined business rules, updating data,
running data quality checks, and automating tasks. They can also be used to execute other stored
procedures. Because triggers can impact the performance of your database, they should be used
sparingly and should not be used for complex actions.

Now that we understand the theoretical foundations of ACID characteristics and how they form the
bedrock of dependable and stable data operations, we can put this knowledge to use in the real world.
During technical interviews, you will be expected to demonstrate your knowledge by applying these
concepts to actual problems. The next step of our trip is answering data engineer interview questions.
This material is designed to test your knowledge of the material we’ve studied so far and to hone your
ability to solve problems.

Technical interview questions
The focus of this chapter’s final portion shifts to how our database knowledge can be used in technical
interviews. Here, we list often-asked interview questions for data engineering positions.

This portion serves two purposes: to assess your comprehension of the fundamental and advanced
database concepts presented in prior sections and to improve your ability to communicate your
solutions. You can understand the underlying ideas and create a systematic approach to problem-
solving because each question is supported with a thorough answer and explanation.

By actively participating in these interview questions, you will strengthen your understanding of
database foundations and gain more confidence in your ability to reply to technical questions during
job interviews:

•	 Question 1: What is a primary key, and why is it important in a relational database?

Answer: A primary key is the unique identifier for each row in a table. It cannot be null or
non-unique, which enforces data integrity as no two rows will be the same. It also helps establish
referential integrity so that relationships can be established between tables.

•	 Question 2: What is database normalization, and why is it important?

Answer: It is the process of minimizing redundancy and dependencies by enforcing five forms.
This helps establish relationships between tables, maintains integrity, and ensures that data is
stored consistently.

•	 Question 3: What is the difference between a relational and a non-relational database?

Answer: A relational database is based on a relational model or schema, where data is organized
into tables consisting of rows and columns. This format is best for storing structured data.
A non-relational database does not use a schema, and data can be stored without a defined
relationship. This format is best for storing semi-structured and unstructured data.

Summary 79

•	 Question 4: What are the ACID properties of a database transaction?

Answer: Atomicity is where a transaction must either be completed in its entirety or not
executed at all. It ensures that partial transactions are not committed. Consistency is when
a transaction will follow all defined business rules and database constraints. Isolation occurs
when transactions are completely independent from one another. Durability ensures all data
is permanent after a transaction is committed, even in the case of system failures.

•	 Question 5: What is a foreign key?

Answer: A foreign key is a column that references the primary key of another table. This
establishes relationships between tables.

Summary
In this chapter, we covered both foundational and advanced database concepts essential for data
engineers. We explored different types of databases, normalization, indexing, NoSQL databases,
OLTP/OLAP systems, and triggers. Additionally, we provided technical interview questions to test
your knowledge and problem-solving skills.

In the next chapter, we will dive into essential SQL for data engineers, focusing on the indispensable
SQL skills required for efficient data manipulation and management within databases. Let’s continue
our journey by mastering essential SQL techniques for data engineering.

8
Essential SQL for

Data Engineers

In the world of data engineering, SQL is the unsung hero that empowers us to store, manipulate,
transform, and migrate data easily. It is the language that enables data engineers to communicate
with databases, extract valuable insights, and shape data to meet their needs. Regardless of the nature
of the organization or the data infrastructure in use, a data engineer will invariably need to use SQL
for creating, querying, updating, and managing databases. As such, proficiency in SQL can often the
difference between a good data engineer and a great one.

Whether you are new to SQL or looking to brush up your skills, this chapter will serve as a comprehensive
guide. By the end of this chapter, you will have a solid understanding of SQL as a data engineer and
be prepared to showcase your knowledge and skills in an interview setting.

In this chapter, we will cover the following topics:

•	 Must-know foundational SQL concepts

•	 Must-know advanced SQL concepts

•	 Technical interview questions

Must-know foundational SQL concepts
In this section, we will delve into the foundational SQL concepts that form the building blocks of data
engineering. Mastering these fundamental concepts is crucial for acing SQL-related interviews and
effectively working with databases.

Essential SQL for Data Engineers82

Let’s explore the critical foundational SQL concepts every data engineer should be comfortable with,
as follows:

•	 SQL syntax: SQL syntax is the set of rules governing how SQL statements should be written.
As a data engineer, understanding SQL syntax is fundamental because you’ll be writing and
reviewing SQL queries regularly. These queries enable you to extract, manipulate, and analyze
data stored in relational databases.

•	 SQL order of operations: The order of operations dictates the sequence in which each of the
following operators is executed in a query:

	� FROM and JOIN

	� WHERE

	� GROUP BY

	� HAVING

	� SELECT

	� DISTINCT

	� ORDER BY

	� LIMIT/OFFSET

•	 Data types: SQL supports a variety of data types, such as INT, VARCHAR, DATE, and so on.
Understanding these types is crucial because they determine the kind of data that can be stored
in a column, impacting storage considerations, query performance, and data integrity. As a
data engineer, you might also need to convert data types or handle mismatches.

•	 SQL operators: SQL operators are used to perform operations on data. They include arithmetic
operators (+, -, *, /), comparison operators (>, <, =, and so on), and logical operators (AND,
OR, and NOT). Knowing these operators helps you construct complex queries to solve intricate
data-related problems.

•	 Data Manipulation Language (DML), Data Definition Language (DDL), and Data Control
Language (DCL) commands: DML commands such as SELECT, INSERT, UPDATE, and
DELETE allow you to manipulate data stored in the database. DDL commands such as CREATE,
ALTER, and DROP enable you to manage database schemas. DCL commands such as GRANT
and REVOKE are used for managing permissions. As a data engineer, you will frequently use
these commands to interact with databases.

•	 Basic queries: Writing queries to select, filter, sort, and join data is an essential skill for any
data engineer. These operations form the basis of data extraction and manipulation.

Must-know advanced SQL concepts 83

•	 Aggregation functions: Functions such as COUNT, SUM, AVG, MAX, MIN, and GROUP BY are
used to perform calculations on multiple rows of data. They are essential for generating reports
and deriving statistical insights, which are critical aspects of a data engineer’s role.

The following section will dive deeper into must-know advanced SQL concepts, exploring advanced
techniques to elevate your SQL proficiency. Get ready to level up your SQL game and unlock new
possibilities in data engineering!

Must-know advanced SQL concepts
This section will explore advanced SQL concepts that will elevate your data engineering skills to the
next level. These concepts will empower you to tackle complex data analysis, perform advanced data
transformations, and optimize your SQL queries.

Let’s delve into must-know advanced SQL concepts, as follows:

•	 Window functions: These do a calculation on a group of rows that are related to the current
row. They are needed for more complex analyses, such as figuring out running totals or moving
averages, which are common tasks in data engineering.

•	 Subqueries: Queries nested within other queries. They provide a powerful way to perform
complex data extraction, transformation, and analysis, often making your code more efficient
and readable.

•	 Common Table Expressions (CTEs): CTEs can simplify complex queries and make your code
more maintainable. They are also essential for recursive queries, which are sometimes necessary
for problems involving hierarchical data.

•	 Stored procedures and triggers: Stored procedures help encapsulate frequently performed
tasks, improving efficiency and maintainability. Triggers can automate certain operations,
improving data integrity. Both are important tools in a data engineer’s toolkit.

•	 Indexes and optimization: Indexes speed up query performance by enabling the database to
locate data more quickly. Understanding how and when to use indexes is key for a data engineer,
as it affects the efficiency and speed of data retrieval.

•	 Views: Views simplify access to data by encapsulating complex queries. They can also enhance
security by restricting access to certain columns. As a data engineer, you’ll create and manage
views to facilitate data access and manipulation.

By mastering these advanced SQL concepts, you will have the tools and knowledge to handle complex
data scenarios, optimize your SQL queries, and derive meaningful insights from your datasets. The
following section will prepare you for technical interview questions on SQL. We will equip you with
example answers and strategies to excel in SQL-related interview discussions. Let’s further enhance
your SQL expertise and be well prepared for the next phase of your data engineering journey.

Essential SQL for Data Engineers84

Technical interview questions
This section will address technical interview questions specifically focused on SQL for data engineers.
These questions will help you demonstrate your SQL proficiency and problem-solving abilities. Let’s
explore a combination of primary and advanced SQL interview questions and the best methods to
approach and answer them, as follows:

•	 Question 1: What is the difference between the WHERE and HAVING clauses?

Answer: The WHERE clause filters data based on conditions applied to individual rows, while the
HAVING clause filters data based on grouped results. Use WHERE for filtering before aggregating
data and HAVING for filtering after aggregating data.

•	 Question 2: How do you eliminate duplicate records from a result set?

Answer: Use the DISTINCT keyword in the SELECT statement to eliminate duplicate records
and retrieve unique values from a column or combination of columns.

•	 Question 3: What are primary keys and foreign keys in SQL?

Answer: A primary key uniquely identifies each record in a table and ensures data integrity. A
foreign key establishes a link between two tables, referencing the primary key of another table
to enforce referential integrity and maintain relationships.

•	 Question 4: How can you sort data in SQL?

Answer: Use the ORDER BY clause in a SELECT statement to sort data based on one or
more columns. The ASC (ascending) keyword sorts data in ascending order, while the DESC
(descending) keyword sorts it in descending order.

•	 Question 5: Explain the difference between UNION and UNION ALL in SQL.

Answer: UNION combines and removes duplicate records from the result set, while UNION
ALL combines all records without eliminating duplicates. UNION ALL is faster than UNION
because it does not involve the duplicate elimination process.

•	 Question 6: Can you explain what a self join is in SQL?

Answer: A self join is a regular join where a table is joined to itself. This is often useful when
the data is related within the same table. To perform a self join, we have to use table aliases to
help SQL distinguish the left from the right table.

•	 Question 7: How do you optimize a slow-performing SQL query?

Answer: Analyze the query execution plan, identify bottlenecks, and consider strategies such
as creating appropriate indexes, rewriting the query, or using query optimization techniques
such as JOIN order optimization or subquery optimization.

Summary 85

•	 Question 8: What are CTEs, and how do you use them?

Answer: CTEs are temporarily named result sets that can be referenced within a query. They
enhance query readability, simplify complex queries, and enable recursive queries. Use the
WITH keyword to define CTEs in SQL.

•	 Question 9: Explain the ACID properties in the context of SQL databases.

Answer: ACID is an acronym that stands for Atomicity, Consistency, Isolation, and Durability.
These are basic properties that make sure database operations are reliable and transactional.
Atomicity makes sure that a transaction is handled as a single unit, whether it is fully done
or not. Consistency makes sure that a transaction moves the database from one valid state to
another. Isolation makes sure that transactions that are happening at the same time don’t mess
with each other. Durability makes sure that once a transaction is committed, its changes are
permanent and can survive system failures.

•	 Question 10: How can you handle NULL values in SQL?

Answer: Use the IS NULL or IS NOT NULL operator to check for NULL values. Additionally,
you can use the COALESCE function to replace NULL values with alternative non-null values.

•	 Question 11: What is the purpose of stored procedures and functions in SQL?

Answer: Stored procedures and functions are reusable pieces of SQL code encapsulating a set
of SQL statements. They promote code modularity, improve performance, enhance security,
and simplify database maintenance.

•	 Question 12: Explain the difference between a clustered and a non-clustered index.

Answer: The physical order of the data in a table is set by a clustered index. This means that a
table can only have one clustered index. The data rows of a table are stored in the leaf nodes
of a clustered index. A non-clustered index, on the other hand, doesn’t change the order of
the data in the table. After sorting the pointers, it keeps a separate object in a table that points
back to the original table rows. There can be more than one non-clustered index for a table.

Prepare for these interview questions by understanding the underlying concepts, practicing SQL
queries, and being able to explain your answers.

Summary
This chapter explored the foundational and advanced principles of SQL that empower data engineers to
store, manipulate, transform, and migrate data confidently. Understanding these concepts has unlocked
the door to seamless data operations, optimized query performance, and insightful data analysis.

SQL is the language that bridges the gap between raw data and valuable insights. With a solid grasp
of SQL, you possess the skills to navigate databases, write powerful queries, and design efficient data
models. Whether preparing for interviews or tackling real-world data engineering challenges, the
knowledge you have gained in this chapter will propel you toward success.

Essential SQL for Data Engineers86

Remember to continue exploring and honing your SQL skills. Stay updated with emerging SQL
technologies, best practices, and optimization techniques to stay at the forefront of the ever-evolving
data engineering landscape. Embrace the power of SQL as a critical tool in your data engineering
arsenal, and let it empower you to unlock the full potential of your data.

In the next chapter, we will dive into the exciting world of data pipeline design for data engineers.
Get ready to explore the intricacies of extracting, transforming, and loading data to create robust and
efficient data pipelines. Let’s continue our quest to become skilled data engineers equipped to tackle
any data challenge that comes our way.

Part 3:
Essentials for

Data Engineers Part II

In this part, we will dive deeper into the inner workings of databases, data pipelines, and data warehouses.

This part has the following chapters:

•	 Chapter 9, Database Design and Optimization

•	 Chapter 10, Data Processing and ETL

•	 Chapter 11, Data Pipeline Design for Data Engineers

•	 Chapter 12, Data Warehouses and Data Lakes

9
Database Design

and Optimization

A career in data engineering requires not only handling data but also an understanding of databases,
the architectural framework that keeps everything together. Consider attempting to construct a
skyscraper without a solid foundation. Eventually, that structure is going to collapse. Any data pipeline
can benefit from this as well. No matter how skilled you are with data manipulation and coding,
your data pipelines can become unreliable, expensive, and inefficient if you don’t have a firm grasp
of database design and optimization.

In-depth knowledge of the fundamentals of database design and data modeling will be covered in this
chapter, empowering you to create databases that are not only reliable but also scalable and effective.
Our aim is to prepare you to become an expert in these vital aspects of data engineering, starting
from the fundamentals of tables and relations and progressing to the complexities of indexing and
normalization. Whether you are a professional looking to brush up on the basics or a novice entering the
field, this chapter tries to give you the conceptual tools necessary to ace any data engineering interview.

The skills you will learn in this chapter are listed as follows:

•	 Gaining an understanding of the basic ideas behind tables, keys, and relationships—the building
blocks of database architecture

•	 Putting normalization and denormalization strategies into practice to enhance database integrity
and performance

•	 Learning how to evaluate the performance of databases using important metrics such as
throughput, latency, and query speed

Database Design and Optimization90

In this chapter, we will cover the following topics:

•	 Understanding database design essentials

•	 Mastering data modeling concepts

•	 Technical interview questions

Understanding database design essentials
In this section, we will delve into the fundamental principles of database design that are essential for
every data engineer. Database design is the process of creating a detailed model of a database. This defines
how the data is stored, organized, and manipulated. A well-designed database will be dependent on how
the data engineer makes decisions regarding correct data types, constraints, schema design, and entity-
relational (ER) modeling. This will ensure the data integrity, performance, and reliability of the database.

We will begin by discussing database normalization and the different types:

•	 Data normalization: A procedure that eliminates data duplication and guarantees data integrity.
Normalization normally occurs in application databases as opposed to data warehouses. We use
normal forms to guide the normalization process. The most common forms include the following:

	� First Normal Form (1NF): Ensures atomicity by organizing data into individual columns,
eliminating repeating groups

	� Second Normal Form (2NF): Adds to 1NF by getting rid of partial dependencies and making
sure that all non-key attributes depend on the whole primary key

	� Third Normal Form (3NF): Further eliminates transitive dependencies by ensuring that
non-key attributes are only dependent on the primary key

•	 Other normalization techniques: In addition to the traditional normalization forms (1NF,
2NF, 3NF), other normalization techniques have emerged to address specific scenarios, such
as the following:

	� Boyce-Codd Normal Form (BCNF): A stricter form of normalization that eliminates all
dependencies on candidate keys

	� Fourth Normal Form (4NF): Focuses on eliminating multi-valued dependencies within a table

	� Fifth Normal Form (5NF): Deals with eliminating join dependencies and decomposition anomalies

It is important to understand how to implement normalization to structure your data efficiently
and avoid data anomalies.

Understanding database design essentials 91

While normalization is crucial for maintaining data integrity, denormalization is a technique
used to optimize database performance in specific situations. By selectively introducing
redundancy, denormalization reduces the number of joins required for complex queries,
resulting in improved query performance. However, it should be used judiciously, considering
the trade-off between performance gains and potential data integrity risks.

•	 Normalization and performance trade-offs: While normalization is crucial for data integrity,
it can impact performance due to increased joins and complexity. Understanding the trade-
offs between normalization and performance is essential in real-world scenarios. Depending
on the specific requirements and use cases, denormalization techniques, such as introducing
redundant data or creating summary tables, can be employed to optimize query performance
while ensuring data integrity.

•	 ER modeling: ER diagrams (ERDs) are graphical representations that visualize the entities,
their attributes, and the relationships between them. ERDs utilize symbols such as rectangles
(representing entities), lines (representing relationships), and diamonds (representing relationship
types) to depict the structure of the data model. By using ERDs, data engineers can easily
communicate and visualize complex relationships and dependencies within the database. They
consist of the following:

	� Entities: Represent real-world objects or concepts, each having a unique identifier known
as a primary key

	� Attributes: Characteristics or properties of entities that provide additional information

	� Cardinality or relationships: Describes the number of occurrences or the participation of
entities in a relationship (one-to-one, one-to-many, many-to-many)

The different relationship types in ER modeling include the following and are visualized in
Figure 9.1:

	� One-to-one relationship: A pattern where each record in one table is associated with only
one record in another table

	� One-to-many relationship: A pattern where each record in one table is associated with
multiple records in another table

	� Many-to-many relationship: A pattern where multiple records in one table are associated
with multiple records in another table

The following diagram depicts the different relationships along with their symbols that can
appear on a database’s ERD:

Database Design and Optimization92

Figure 9.1 – Example of different table relationships in a relational database

Mastering ER modeling allows you to accurately capture the relationships between entities, leading
to well-designed databases. The following is a simple example of an ERD for a database of a pizza
restaurant. Please note that on the job, you will most likely be working with hundreds of tables:

Figure 9.2 – Example of an ERD visualizing the different relationships between the tables

Understanding database design essentials 93

Now that you are aware of the fundamentals of a relational database, we will continue on to database
design fundamentals:

•	 Schema design: Schema design involves organizing the structure of the database, including
tables, columns, constraints, and relationships. A well-designed schema ensures efficient data
retrieval and storage optimization and supports future scalability. Key considerations include
the following:

	� Table structures: Determine the layout and organization of data within tables, ensuring
appropriate column definitions and data types

	� Indexing: Enhance query performance by creating indexes on columns frequently used for
searching and filtering

	� Partitioning: Divide large tables into smaller, manageable pieces based on criteria such as
ranges or values, optimizing query performance

Understanding schema design principles empowers you to create databases that are efficient,
flexible, and able to handle increasing data volumes. You will be well equipped to create effective
database structures that meet the needs of your organization.

•	 Data integrity constraints: Data integrity constraints are rules applied to a database to help
ensure the accuracy and consistency of data. They play an important role in maintaining
reliability and integrity. Common constraints include the following:

	� Primary key: A unique identifier for each record in a table, ensuring data integrity and
enabling efficient data retrieval

	� Foreign key: Establishes relationships between tables by referencing the primary key of
another table, maintaining data consistency

	� Check constraint: Defines specific conditions that must be met for data to be inserted or
updated in a column, ensuring data validity

	� Unique constraint: Ensures that values in a column or a combination of columns are unique,
preventing duplicate entries

Understanding and implementing these constraints is essential for maintaining data integrity,
ensuring data quality, and building reliable systems. Through indexing, they can improve query
performance as well.

Database Design and Optimization94

•	 Database design patterns: Database design patterns are reusable solutions to common database
design problems. These patterns focus on how to structure and organize data for manageability
and efficiency. Understanding these patterns can guide you in designing databases that align
with industry best practices. Examples of database design patterns include the following:

	� Star schema: This design pattern is often used in data warehousing and business intelligence
(BI) systems. In a star schema, one or more fact tables reference any number of dimension
tables, which provide context about the facts. Fact tables represent the central table in a star
schema that contains the metrics and measurements of a business process. Their data types
will often be numerical. Dimension tables provide context, background information, and
attributes for the fact tables. These data types can be text. This schema is useful for simplifying
complex database structures and enhancing query performance in online analytical
processing (OLAP) systems. OLAP systems are software platforms designed specifically for
complex data analysis and multidimensional querying. OLAP systems are designed to help
analysts and decision-makers explore data in a more interactive and exploratory manner,
as opposed to online transaction processing (OLTP) systems, which are optimized for
routine, day-to-day operations such as data insertion, updating, and deletion. The following
diagram visualizes a star schema with fact and dimension tables:

Figure 9.3 – Example of how a star schema is designed

Understanding database design essentials 95

	� Snowflake schema: This is a variant of a star schema, where the dimension tables are further
normalized. While this can save storage space, it can also increase the complexity of SQL
queries and decrease overall performance. This is a popular design that can be used to support
high volumes of queries and large amounts of data, as we see in the following diagram:

Figure 9.4 – Example of how a snowflake schema is designed

	� Association table pattern: Also known as a junction table or bridge table pattern, this is
primarily used when modeling many-to-many relationships between entities.

	� Hierarchy pattern: This pattern is used to represent relationships that are one-to-many and
tree-structured—for example, an organizational structure where each employee, except the
CEO, has one manager and can have many direct reports.

	� Partitioning pattern: This pattern is used for large databases to improve performance,
manageability, or availability. Data is divided into smaller, more manageable pieces (partitions)
based on certain rules (such as date ranges or alphabetically by name).

By utilizing database design patterns, you can create efficient and scalable databases while
ensuring data integrity.

Database Design and Optimization96

•	 Database design tools: In the realm of database design, there are several tools available
that can aid in the design and modeling process. Familiarizing yourself with these tools can
significantly enhance your efficiency and productivity. Some commonly used database design
tools include the following:

	� ERD tools: Software such as PowerPoint, Figma, or Canva enables you to create detailed
diagrams, visually representing relationships between entities, attributes, and their cardinality.

	� Database design software: Tools such as MySQL Workbench, Microsoft SQL Server
Management Studio (Microsoft SSMS), or Oracle SQL Developer provide integrated
environments for designing and managing databases. These tools offer graphical interfaces
for designing tables, relationships, and constraints, as well as generating SQL scripts
for implementation.

By leveraging these tools effectively, you can streamline the database design process and collaborate
seamlessly with other stakeholders.

By considering these additional concepts and aspects of database design, including tools, trade-offs,
and documentation, you will develop a well-rounded understanding of the subject. This knowledge
will enable you to design databases that not only meet functional requirements but also exhibit optimal
performance, maintainability, and scalability.

Now that we have covered the fundamentals of database design, we will continue on to indexing
strategies in the next section.

Indexing

An index makes it possible for databases to retrieve data more quickly. The database engine would
have to search through every row in a table in the absence of an index, which would be analogous to
searching through every book in a library to find a particular piece of information. A subset of the
dataset is stored in a data structure created by indexing, which is arranged to make it easier for the
database engine to locate the necessary data. Although it’s important to remember that maintaining
an index can slow down write operations because the index itself needs to be updated, the goal is to
speed up read operations.

Various types of indexes cater to different needs and database structures:

•	 Single-column: The simplest kind of index is a single-column index, which is created on a
single table column.

•	 Multi-column: Often referred to as a composite index, this type of index incorporates two or
more table columns.

•	 Unique index: Makes sure each value in the indexed column is distinct by using a unique
index. Usually, this is used for the main key columns.

Understanding database design essentials 97

•	 Full-text: With a focus on text-based columns, this kind of index is best suited for word searches
inside textual data.

•	 Clustered: Data retrieval is accelerated by clustered indexes, which store data in tables in the
same physical order as the index.

•	 Non-clustered: In this case, the rows’ physical storage order on disk is not consistent with the
logical order of the index.

Here are some indexing best strategies:

•	 Selectivity: An index performs better when the data in a column is more distinctive. Optimal
selectivity is preferred.

•	 Keep it light: Having too many indexes can cause write operations to lag. Select indexes carefully.

•	 Maintenance: To keep performance at its best, periodically rebuild indexes and update statistics.

Consider a data engineer for a major e-commerce platform who is tasked with managing a customer
database. Millions of rows, each representing a transaction, make up the Orders table, which is regularly
queried to produce reports. Getting every order for a particular customer is a common query.

A time-consuming and resource-intensive process, searching through every row in the Orders table,
would be required for each query if there were no index on the customer_id column. The data
engineer could improve both the efficiency of the data pipeline as a whole and the generation of
individual reports by implementing a single-column index on customer_id and significantly
cutting down on query time.

As we’ve seen, indexing is a key tactic for enhancing database performance, particularly for operations
that involve a lot of reading. Good indexing can make the difference between a user-friendly application
that loads quickly and one that takes a long time.

Data partitioning

As database size and complexity increase, so do the difficulties associated with managing them.
Large datasets become more manageable, scalable, and performant as a result of data partitioning as
a solution to these problems. This section will dissect the two primary types of data partitioning—
horizontal and vertical—and provide implementation best practices for each. Understanding data
partitioning is crucial whether you’re working with a monolithic database that requires more efficient
query performance or a distributed system that must scale horizontally. Let’s examine techniques and
considerations that make data partitioning a pillar of robust database design.

Horizontal partitioning, also known as sharding, is the process of dividing a table into smaller tables,
each of which contains a subset of the data. These smaller tables are referred to as shards. Shards may
reside on the same server or multiple servers. The objective is to partition the dataset so that each
shard is more manageable and can be independently accessed or updated. This strategy is especially
effective for enhancing read and write speeds of large, distributed databases.

Database Design and Optimization98

As an alternative to dividing the table into smaller tables horizontally, vertical partitioning divides the
table into smaller tables vertically. Instead of rows, in this instance, each partition has a subset of the
columns. To separate frequently accessed columns from infrequently accessed ones, vertical partitioning
is frequently utilized. This can lead to increased disk I/O efficiency and shortened query times.

Here are some data partitioning best practices:

•	 Even data distribution: Aim for an even distribution of data across all partitions, whether
horizontal or vertical, to prevent any one partition from becoming a bottleneck.

•	 Partitioning key: In horizontal partitioning, it is crucial to select an appropriate partitioning
key. The key should be selected to ensure uniform data distribution.

•	 Regular monitoring: Over time, data growth or reduction can cause partition size imbalances,
necessitating partition rebalancing.

Consider a scenario in which a data engineer is responsible for managing a real-time analytics platform that
processes large volumes of sensor data for industrial machinery. The data is primarily stored in sensor_id
and sensor_value columns. As data inflow rates grow, query performance begins to degrade.

To address this issue, the data engineer may employ horizontal partitioning, distributing data based
on sensor_id. This would restrict each shard to a particular range of sensor IDs, thereby enhancing
the performance of sensor-specific queries.

For columns that are rarely accessed, such as metadata columns, the engineer may use vertical
partitioning to separate these columns into a separate table. This would optimize disk I/O, as the
majority of queries would only need to scan frequently accessed columns.

Understanding the complexities of data partitioning as a data engineer is crucial for scaling database
systems and ensuring optimal performance.

Performance metrics

In any database system, performance is not a luxury but an absolute requirement. Inadequate performance
can result in operational delays, dissatisfied users, and missed opportunities. This section focuses on
vital database performance metrics such as query speed and latency, which serve as the environment’s
pulse. Understanding these metrics is essential for identifying problems, making well-informed
decisions, and optimizing the system for current and future demands. In addition, we will examine
the tools that can assist you in keeping a close eye on these metrics, enabling proactive management
of your database system. Let’s examine the metrics that make or break your database’s performance.

Query speed is a crucial metric that influences the user experience and system efficiency directly. Users
are able to quickly retrieve the information they require, resulting in improved decision-making and
streamlined operations. Frequently, you will need to optimize database schemas, improve indexing,
and fine-tune SQL queries to increase query speed. Keep a close eye on any frequently slow-performing
queries, as they may become system bottlenecks.

Understanding database design essentials 99

Latency is the time it takes to process a request from the time it is made until a response begins to
arrive. Low database latency facilitates faster data retrieval, which is essential for real-time applications
and services. Network latency and disk I/O are two variables that can influence database latency.
Minimizing latency often involves optimizing your infrastructure and potentially distributing data
geographically closer to where it is most often accessed.

Monitoring tools are crucial for keeping track of these metrics. Tools such as Prometheus, Grafana,
and built-in database monitoring systems can provide real-time visibility into query performance,
latency, and other vital statistics. These tools can detect issues before they become critical, enabling
proactive troubleshooting and performance enhancement.

Performance metrics serve as a yardstick for measuring the health and efficacy of a database system.
Without an understanding of these metrics, indexing and partitioning optimizations cannot be
effectively validated.

Designing for scalability

In today’s ever-changing data landscape, the ability to adapt and expand is crucial. Scalability is not
merely a buzzword; it is a fundamental aspect of modern database design that ensures your system
can efficiently manage increasing workloads. This section explores the fundamentals of designing for
scalability, including horizontal and vertical scaling options, robust replication strategies, and effective
load balancing. Regardless of whether your database serves a start-up or a multinational corporation,
a well-planned scalability strategy is essential for meeting current and future demands. Let’s examine
the fundamentals that will allow your database to expand with your business.

Scalability in database systems typically boils down to two primary options: horizontal scaling and
vertical scaling. Vertical scaling is the process of adding more resources to an existing server, such as
CPU, RAM, and storage. Although this is a simple method, it has limitations, particularly in terms
of hardware capabilities and expense. Horizontal scaling, on the other hand, involves adding more
servers to distribute the load. This method is more adaptable and, in theory, infinitely scalable, but it
introduces complications regarding data distribution and consistency.

Replication strategies: Replication is another important factor to consider when designing for
scalability. It involves duplicating your database for high availability (HA) and fault tolerance (FT).
Consider the following replication strategies:

•	 Master-slave replication: In this model, all write operations are directed to the master server,
while any of the slave servers can process read operations

•	 Master-master replication: In this configuration, any server can perform both read and write
operations, making the system more robust but more difficult to manage due to consistency concerns

•	 Sharding with replication: Combining sharding (horizontal partitioning) with replication
can provide both scalability and reliability, but it requires careful planning and management

Database Design and Optimization100

Load balancing is the process of distributing incoming database queries across multiple servers so
that no single server becomes overloaded. This is particularly important for horizontally scalable
architectures. Utilizing algorithms such as round-robin or least connections, load balancers can be
configured to efficiently route queries to the least occupied resources.

Mastering data modeling concepts
In this section, we will explore in detail essential data modeling concepts that every data engineer
must be familiar with. Data modeling is the process of structuring and organizing data to represent
real-world entities, their attributes, and the relationships between them. A solid understanding of
data modeling concepts is crucial for designing efficient and accurate databases.

The following diagram depicts three different data models that can be found in a database:

Figure 9.5 – Three different types of data models

Let’s look at these in more detail:

•	 Conceptual data model: The conceptual data model represents high-level business concepts
and relationships without concerning itself with implementation details. It focuses on capturing
essential entities, their attributes, and the associations between them. The conceptual data model
serves as a communication tool between data engineers, stakeholders, and domain experts to
ensure a shared understanding of the business requirements.

Technical interview questions 101

•	 Logical data model: The logical data model provides a more detailed representation of the
data, refining the conceptual model into a structure that is closer to implementation. It involves
translating the conceptual model into a set of entities, attributes, and relationships. The logical
data model aims to capture the semantics and meaning of the data in a technology-agnostic
manner. Common techniques used in logical data modeling include ERDs and Unified Modeling
Language (UML) diagrams.

•	 Physical data model: The physical data model focuses on the actual implementation of the
database design, considering the specific database management system (DBMS) and its features.
It defines tables, columns, data types, constraints, indexes, and other implementation details.
The physical data model aims to optimize performance, storage efficiency, and data integrity
based on the requirements and constraints of the target DBMS.

By mastering these data modeling concepts, including conceptual, logical, and physical data modeling,
as well as ERDs, normalization, advanced modeling techniques, and data modeling tools, data engineers
can create well-structured, efficient, and scalable databases that align with business requirements.

Now that we have covered database design fundamentals, we will test your understanding with sample
interview questions.

Technical interview questions
Having covered essential concepts in database design and optimization, we will now provide a series
of questions to help you effectively prepare for your interview. We have also provided an example
answer for each question:

•	 Question 1: What is the purpose of data normalization, and what are the different normal forms?

Answer: Data normalization is the process of organizing data in a database to minimize
redundancy and improve data integrity. The different normal forms are as follows:

	� First Normal Form (1NF): Ensures atomicity by eliminating repeating groups and storing
each data value in a separate column

	� Second Normal Form (2NF): Builds upon 1NF by eliminating partial dependencies, ensuring
that non-key attributes are fully dependent on the primary key

	� Third Normal Form (3NF): Further eliminates transitive dependencies, ensuring that
non-key attributes are only dependent on the primary key and not on other non-key attributes

	� Fourth Normal Form (4NF): Focuses on eliminating multi-valued dependencies within a table

	� Fifth Normal Form (5NF): Deals with eliminating join dependencies and
decomposition anomalies

Database Design and Optimization102

Further explanation: Data normalization is crucial for maintaining data integrity and minimizing
redundancy in a database. 1NF ensures that each data value is stored in a separate column,
eliminating repeating groups. 2NF eliminates partial dependencies, ensuring non-key attributes
depend on the entire primary key. 3NF removes transitive dependencies, ensuring that non-key
attributes only depend on the primary key. By applying normalization, we create well-structured
databases that minimize data duplication and maintain data consistency.

•	 Question 2: Explain the difference between a primary key and a foreign key.

Answer: A primary key is an identifier that is unique to each record in a table. It ensures data
integrity and provides a means to identify and retrieve records in a unique manner. In contrast,
a foreign key establishes a connection between two tables by referencing the primary key of
another table. It maintains consistency and enforces referential integrity between related tables.

Further explanation: A primary key is a column or a set of columns that uniquely identifies each
record in a table. It ensures data integrity and provides a way to retrieve records efficiently. A
foreign key, on the other hand, is a column or a set of columns in a table that references the
primary key of another table. It establishes a relationship between the two tables and enforces
referential integrity by ensuring that the foreign key values correspond to existing primary
key values in the referenced table. This maintains data consistency and allows us to create
meaningful associations between related data.

•	 Question 3: How do you optimize database performance?

Answer: Optimizing database performance involves various techniques, including the following:

	� Indexing: Creating indexes on frequently queried columns to improve search and retrieval speed

	� Query optimization: Analyzing and optimizing SQL queries, including proper indexing,
efficient join operations, and query restructuring

	� Denormalization: Introducing controlled redundancy by selectively combining related data
into a single table or duplicating data for performance improvements

	� Partitioning: Dividing large tables into smaller, manageable partitions based on predefined
criteria such as ranges or values to enhance query performance

	� Caching: Implementing caching mechanisms to store frequently accessed data in memory
for faster retrieval

Summary 103

Further explanation: To optimize database performance, we can employ several techniques.
Indexing plays a crucial role by creating indexes on frequently queried columns, allowing for
faster search and retrieval. Query optimization involves analyzing and optimizing SQL queries,
ensuring appropriate indexing, efficient join operations, and query restructuring. Additionally,
denormalization can be used to introduce controlled redundancy by combining related data
or duplicating data to reduce the need for complex joins. Partitioning large tables into smaller
partitions based on specific criteria can also enhance query performance. Lastly, implementing
caching mechanisms, such as in-memory caching, can significantly improve performance by
storing frequently accessed data for faster retrieval.

Remember to tailor your answers to your own experiences and knowledge, using these examples as
a guide to structure your responses effectively.

Summary
In this chapter, we explored vital aspects of database design and optimization. We delved into key
concepts of database design, including normalization, ER modeling, and schema design. We also
discussed advanced topics such as denormalization, data integrity constraints, and performance
optimization techniques.

By mastering these concepts, you have developed a strong foundation in database design, which is
crucial for excelling in data engineering roles. Additionally, you have prepared yourself to confidently
answer interview questions, demonstrating your knowledge and practical experience in designing
efficient and scalable databases.

In the next chapter, we will delve into the exciting world of data processing and transformation.
We will explore techniques, tools, and best practices for extracting, transforming, and loading data
to enable meaningful analysis and insights. Get ready to unlock the power of data transformation
and manipulation!

10
Data Processing and ETL

Navigating the intricacies of data engineering roles requires an in-depth understanding of data
processing and Extract, Transform, and Load (ETL) processes. Not only do these foundational skills
form the foundation upon which data pipelines are constructed but they are also integral components
of the data engineering interview landscape. Therefore, mastering them is a prerequisite for anyone
seeking success in data engineering roles. In this chapter, we will delve into the nitty-gritty details of
implementing ETL processes, examine the various paradigms of data processing, and guide you on
how to prepare for technical data engineering interview questions. This chapter aims to equip you
with the knowledge and skills necessary to ace data engineering interviews by providing real-world
scenarios, technical questions, and best practices.

In this chapter, we will cover the following topics:

•	 Fundamental concepts

•	 Practical application of data processing and ETL

•	 Preparing for technical interviews

Fundamental concepts
Before delving into the complexities of ETL and data processing, it is essential to lay a solid foundation
by understanding the underlying concepts and architectures. This section serves as a guide to the
fundamental concepts that every data engineer should understand. By the end of this section, you
should have a comprehensive understanding of the essential frameworks and terminology for both
practical applications and interview success.

Data Processing and ETL106

The life cycle of an ETL job

The life cycle of an ETL job is a well-orchestrated sequence of steps designed to move data from its source
to a destination, usually a data warehouse, while transforming it into a usable format. The process begins
with extraction, the phase in which data is extracted from multiple source systems. These systems could
be databases, flat files, application programming interfaces, or even web scraping targets. The key is to
extract the data in a manner that minimizes the impact on source systems, which is typically accomplished
using techniques such as incremental loads or scheduled extractions during off-peak times.

Transformation, often considered the core of the ETL process, is the next phase. During this phase,
the raw data is transformed into a format that is suitable for analysis or reporting. Transformations
may include data cleansing, aggregation, enrichment with additional information, and reorganization.
Most data quality checks are performed at this stage, ensuring that the data is accurate, consistent,
and usable.

Then, we finally reach the loading phase. The transformed data is loaded into the target system, which
is typically a data warehouse. The loading procedure must be effective and conform to the requirements
of the target system. Some data warehouses, for instance, favor bulk inserts for performance reasons,
whereas others may support more complex operations. During the loading phase, data indexing and
partitioning occur to optimize the data for quick retrieval and analysis.

Understanding the life cycle of an ETL job is essential, as each phase has its own set of best practices,
obstacles, and tooling alternatives. Mastering these facets will not only equip you to design and
implement ETL pipelines proficiently but also confidently answer related interview questions.

Practical application of data processing and ETL
The next logical step, after mastering the fundamental concepts and architectures, is to apply this
knowledge to real-world scenarios. This section focuses on the practical aspects of ETL and data
processing, guiding you through the entire pipeline creation process—from design to implementation
and optimization. Whether you’re constructing a simple data ingestion task or a complex, multi-
stage ETL pipeline, the hands-on exercises and case studies in this section will equip you with the
knowledge and confidence to overcome any data engineering challenge. By the end of this section,
you will not only be equipped to implement effective ETL solutions but also to excel in interview
questions pertaining to this topic.

Designing an ETL pipeline

Designing an ETL pipeline is the crucial first procedure that sets the stage for the implementation
and optimization phases that follow. The initial step in this procedure is requirements collection.
Understanding the business requirements and technical constraints is essential for defining the ETL
pipeline’s scope and objectives. This requires discussions with stakeholders, such as data analysts,
business leaders, and other engineers, to determine what data must be moved, how often, and what
transformations are required.

Practical application of data processing and ETL 107

Following the clarification of requirements, the next step is schema design. This involves defining the
data’s structure in the target system, which is typically a data warehouse. During this phase, decisions
are made regarding data types, primary and foreign keys, and indexing strategies. Schema design is
not merely a technical task; it requires an in-depth knowledge of the business domain to ensure that
the data model supports the types of queries and analyses that end users will execute.

The third essential factor is data mapping. Here, you specify how source system data maps to the target
schema. Complex data mapping may involve multiple transformations, aggregations, or calculations.
This step typically entails the creation of a detailed mapping document that will serve as the blueprint
for the implementation phase.

Designing an ETL pipeline is a delicate balancing act requiring both technical and business acumen. A
pipeline that is well designed will not only meet the current needs but will also be adaptable enough to
accommodate future needs. It sets the foundation for a robust, scalable, and efficient data movement
process, making it an essential skill for any data engineer.

In this section, we will explore the essential concepts of data processing for data engineers. Data
processing involves the manipulation, cleansing, and transformation of data to derive meaningful
insights and facilitate decision-making.

Implementing an ETL pipeline

Implementing your ETL pipeline is the next crucial step following the completion of the design phase.
The initial activity in this phase is tool selection. The selection of ETL tools and technologies can
significantly affect a pipeline’s efficiency and maintainability. Whether you choose traditional ETL
tools such as Informatica, cloud-based solutions such as AWS Glue, or programming languages such
as Python, your selection should be in line with the project’s requirements, scalability requirements,
and your team’s expertise.

Following the selection of the proper tools, the focus shifts to coding best practices. Implementing an
ETL pipeline requires more than just writing code to move and transform data; it also requires doing so
in a clean, efficient, and maintainable manner. This involves following coding standards, commenting,
and documentation. Modularizing your code to make it reusable and easier to test is also essential.

Error handling is another crucial aspect of ETL implementation, related to testing. During data
extraction, transformation, or loading, robust error-handling mechanisms must be in place to identify
and log any potential errors. This ensures that the pipeline is resistant to failures and that problems
can be quickly identified and resolved.

Implementation is where strategy meets reality. In this phase, your meticulously crafted plans and
designs become operational. Not only is a well-implemented ETL pipeline functional but it is also
robust, scalable, and simple to maintain. This ability is essential for data engineers and is frequently
emphasized in technical interviews.

Data Processing and ETL108

Optimizing an ETL pipeline

Once your ETL pipeline is operational, you should shift your focus to optimization. The first consideration
is performance tuning. Even a properly designed and implemented pipeline may experience performance
bottlenecks. These may result from inefficient queries, sluggish data transformations, or inefficient
loading strategies. Identifying and resolving these bottlenecks typically requires profiling the pipeline,
analyzing logs, and implementing targeted code or configuration improvements.

Next, we concentrate on scalability. Your ETL pipeline must be capable of scaling to accommodate
growing data volumes and changing business requirements. Often, scalability considerations involve
selecting the appropriate hardware, optimizing data partitioning, and possibly transitioning to a
distributed computing environment. The objective is to construct a pipeline that not only meets
current demands but is also adaptable enough to meet future challenges.

Monitoring and logging come last, but not least. A trustworthy ETL pipeline is optimized and trust
is derived from visibility. Implementing extensive monitoring and logging enables you to monitor
the pipeline’s health, receive alerts on failures or performance issues, and gain insights for further
optimization. This ensures the pipeline’s durability and maintainability over time.

The optimization process is ongoing. It requires a keen eye for detail, a comprehensive understanding
of the available data and tools, and a dedication to continuous improvement. Not only will mastering
this aspect of ETL make your pipelines more robust and efficient but it will also give you a substantial
advantage in technical interviews.

Now that we have covered the ETL process, we will apply this knowledge to example interview questions.

Preparing for technical interviews
In this section, we will prepare you for technical interview questions specifically focused on ETL
and data processing. These questions aim to assess your understanding of the concepts and practical
considerations involved in ETL workflows and data processing.

To excel in the technical interview, focus on the following areas:

	� Data transformation techniques: Be prepared to discuss different data transformation techniques,
such as data aggregation, normalization, denormalization, and feature engineering. Provide
examples of how you have applied these techniques in real-world scenarios and the benefits
they brought to data analysis and decision-making processes.

	� ETL best practices: Demonstrate your knowledge of the ETL best practices, including data
quality checks, error handling mechanisms, and data validation techniques. Explain how
you ensure data accuracy, completeness, and consistency during the ETL process. Showcase
your experience in dealing with large datasets and explain how you handle scalability and
performance challenges.

Preparing for technical interviews 109

	� Data pipeline optimization: Discuss strategies for optimizing data-processing pipelines.
Highlight techniques such as parallel processing, caching, and query optimization to improve
performance and reduce latency. Provide examples of how you have optimized data pipelines
to handle large volumes of data efficiently.

	� Data integration challenges: Be prepared to discuss the challenges involved in integrating data
from diverse sources. Address issues such as data format compatibility, schema mapping, data
deduplication, and handling data inconsistencies. Illustrate your problem-solving skills by
providing examples of how you have tackled data integration challenges in your previous projects.

	� Real-time data processing: Demonstrate your understanding of real-time data processing and
its importance in today’s fast-paced environments. Explain the differences between batch
processing and real-time streaming, and discuss the technologies or frameworks you have
worked with, such as Apache Kafka, Apache Flink, or Spark Streaming.

Now, let’s dive into five sample technical interview questions related to ETL and data processing,
along with example answers:

•	 Question 1: How would you handle missing or erroneous data during the ETL process?

Answer: When encountering missing or erroneous data, I would implement data quality checks
to identify and handle these issues. For missing data, I would assess the impact on downstream
analysis and determine the appropriate approach, such as imputation or exclusion. For erroneous
data, I would apply validation rules and data cleansing techniques, including outlier detection,
data type validation, and range checks. By incorporating error handling mechanisms, such
as logging and alerting, I can ensure that data anomalies are detected and resolved promptly.

•	 Question 2: How do you optimize a data-processing pipeline for better performance?

Answer: To optimize a data-processing pipeline, I focus on several aspects. Firstly, I parallelize
tasks and leverage distributed computing frameworks such as Apache Spark to enable efficient
processing across multiple nodes. Secondly, I optimize data access by implementing caching
mechanisms and using appropriate data structures for faster retrieval. Additionally, I employ
query optimization techniques, such as indexing and partitioning, to reduce the data volume
processed. Lastly, I continuously monitor the pipeline’s performance, analyze bottlenecks, and
fine-tune the system based on the observed patterns and workload characteristics.

•	 Question 3: What are some key considerations when integrating data from multiple sources?

Answer: When integrating data from multiple sources, it is crucial to consider data format
compatibility, data schema mapping, and data consistency. I ensure that data formats are aligned
or appropriately transformed to enable seamless integration. Schema mapping involves mapping
attributes from different sources to a unified schema, resolving conflicts, and handling data
transformations if required. Data deduplication techniques, such as record matching and merging,
ensure data consistency and eliminate redundant information. By addressing these considerations,
I establish a cohesive view of the integrated data, ensuring its reliability and usability across
the organization.

Data Processing and ETL110

•	 Question 4: How would you handle the processing of large volumes of data in a data pipeline?

Answer: Processing large volumes of data requires careful planning and optimization. Firstly,
I would leverage distributed processing frameworks such as Apache Hadoop or Apache Spark
to enable parallel processing across multiple nodes, taking advantage of their scalability and
fault tolerance. Additionally, I would implement techniques such as data partitioning, where
data is divided into smaller chunks based on specific criteria, allowing for efficient processing.
I would also employ data compression techniques to reduce storage requirements and optimize
network transfer. By optimizing resource utilization, adopting efficient algorithms, and leveraging
distributed computing capabilities, I ensure that the data pipeline can handle the processing
of large volumes of data effectively.

•	 Question 5: How does real-time data processing differ from batch processing?

Answer: Real-time data processing and batch processing differ in their timing and processing
approach. Batch processing involves processing data in large volumes at specific intervals, often
during off-peak hours. It is well suited to processing historical or accumulated data where
immediate analysis is not required. On the other hand, real-time data processing involves
the ingestion, processing, and analysis of data as it arrives, enabling real-time insights and
immediate actions. Real-time processing is ideal for scenarios in which quick decision-making
or immediate reactions to data events are necessary. Technologies such as Apache Kafka or
Spark Streaming facilitate real-time data processing by enabling the continuous ingestion and
processing of data streams.

Summary
In conclusion, by familiarizing yourself with these technical interview questions and their example
answers, you will be better prepared to showcase your knowledge and expertise in ETL and data
processing. Remember to tailor your responses to your own experiences and projects, providing
concrete examples to demonstrate your practical understanding of these concepts.

Our next chapter will cover data pipeline design. Best of luck in your data engineering journey
and interviews!

11
Data Pipeline Design for

Data Engineers

Understanding databases, Extract, Transform, Load (ETL) procedures, and data warehousing is
only the beginning of negotiating the tricky terrain of data engineering interviews. You also need to
be an expert at designing and managing data pipelines. A well-designed data pipeline is the lifeblood
of any data-driven organization, regardless of whether you are processing real-time data streams or
orchestrating large-scale batch processes. This chapter aims to be your in-depth reference on this
important topic, tailored to give you the information and abilities you need to ace the interview. We’ll
examine the underlying principles of data pipeline architecture, go over how to create a successful
data pipeline, and then put your knowledge to the test with real-world technical interview questions.

In this chapter, we will cover the following topics:

•	 Data pipeline foundations

•	 Steps to design your data pipeline

•	 Technical interview questions

Data pipeline foundations
A data pipeline is a set of processes and technologies designed to transport, transform, and store data
from one or more sources to a destination. The overarching objective is frequently to facilitate the
collection and analysis of data, thereby enabling organizations to derive actionable insights. Consider
a data pipeline to be similar to a conveyor belt in a factory: raw materials (in this case, data) are taken
from the source, undergo various stages of processing, and then arrive at their final destination in a
refined state.

Data Pipeline Design for Data Engineers112

The following diagram depicts the typical stages of a data pipeline:

Figure 11.1 – Example of a typical data pipeline

A typical data pipeline comprises four primary components:

•	 Data sources: These are the origins of your data. Sources of data include databases, data lakes,
APIs, and IoT devices.

•	 Data processing units (DPUs): DPUs are the factory floor where raw data is transformed. They
involve steps such as cleaning, enriching, and aggregating data to make it more comprehensive.

•	 Data sink: A location where processed data is deposited. It could be a data warehouse, another
database, or a visualization dashboard.

•	 Orchestration: This is the conductor of the pipeline, managing the flow of data from source
to sink. It schedules tasks, handles errors, and ensures that data flows without interruption.

Any aspiring data engineer must have a thorough understanding of data pipelines. These pipelines
serve as the foundation of modern data architectures, allowing businesses to make decisions based on
data. They can scale to handle large volumes of data, adapt to a variety of data formats, and guarantee
that data is accurate, consistent, and readily accessible when required.

Now that we have a fundamental understanding of what a data pipeline is, let’s examine the various
types of data pipelines that you may encounter, including batch and stream processing, as well as ETL
and Extract, Load, and Transform (ELT) paradigms.

Data pipeline foundations 113

Types of data pipelines

Each type and flavor of data pipeline has its own benefits and disadvantages. In general, they can be
classified according to the processing method (batch versus stream) and the data flow pattern (ETL
versus ELT). Let’s have a look at this in more detail:

•	 Batch processing: In batch processing, data is gathered over a specific time frame and then
processed in bulk. This method is efficient and cost-effective for non-time-sensitive operations.
Nonetheless, waiting for a batch to be processed can cause some delays—for example, a retailer
gathers sales information throughout the day and runs a nightly batch process to update their
inventory and generate reports.

•	 Stream processing: Stream processing, on the other hand, processes data in real time or near
real time, as it arrives. This is beneficial for applications that require immediate action based
on incoming data. For example, a bank’s fraud detection system analyzes transactions in real
time to immediately flag suspicious activities.

•	 ETL pipelines: In ETL pipelines, data is extracted from the source, converted to the desired
format, and then loaded into the destination database or data warehouse. For example, a
healthcare organization collects patient records from multiple clinics, standardizes the data,
and then loads it into a centralized data warehouse for analytics.

•	 ELT: In ELT, the data is initially extracted and loaded into the destination, followed by
transformation. This strategy is popular in transformation-efficient data warehouses such as
Snowflake and BigQuery. For example, an e-commerce platform streams clickstream data into
a data lake and then transforms and analyzes the data using a cloud-based data warehouse.

Having discussed the different types of data pipelines, it’s crucial to understand the key components
that make them operational. Let’s proceed to dissect these building blocks for a more rounded grasp
of data pipeline architectures.

Key components of a data pipeline

Each component of a data pipeline serves a specific purpose in order for the system as a whole to
function optimally. Understanding these essential components is crucial not only for designing robust
pipelines but also for discussing them in interviews. In this section, we will examine the four pillars
– data sources, DPUs, data sinks, and orchestration:

•	 Data sources: Data sources are the origination points of data within a data pipeline. These can
include structured databases such as SQL databases, semi-structured sources such as JSON files,
and unstructured data such as images or logs. For example, a platform for social media may
collect user interaction data from its mobile app (JSON), server logs (text files), and relational
databases containing user profiles.

Data Pipeline Design for Data Engineers114

•	 DPUs: DPUs serve as the pipeline’s transformation engine. The data is cleansed, enriched,
aggregated, and otherwise prepared for its final destination. Typically, technologies such as
Apache Spark and Hadoop are employed for this purpose. For example, a weather forecasting
system may collect raw data from multiple sensors, eliminate noisy measurements, aggregate
data points, and employ machine learning (ML) algorithms to predict weather conditions.

•	 Data sinks: Data sinks are the storage or display locations for processed data. This could be
a data warehouse (such as Snowflake), a NoSQL database (such as MongoDB), or a real-time
dashboard. For example, an IoT company that monitors industrial machines could send
processed sensor data to a real-time dashboard for operational teams and store it in a data
warehouse for long-term analytics.

•	 Orchestration: The control tower of a data pipeline, orchestration is responsible for managing
the flow of data from source to sink. It schedules tasks, manages errors, and guarantees data
integrity. For example, orchestration may be used by an online streaming service to ensure
that user viewing history, which is stored in a database, is routinely processed to update
recommendation algorithms without causing system outages or data inconsistencies.

Now that we have a good grasp of the key components that make up a data pipeline, it’s time to explore
the step-by-step process of designing one. This will further your understanding and help you answer
design questions in interviews effectively.

Steps to design your data pipeline
Similar to building a structure, designing a data pipeline requires careful planning, a solid foundation,
and the proper tools and materials. In the realm of data engineering, the blueprint represents your
design process. This section will guide you through the essential steps involved in designing a reliable
and efficient data pipeline, from gathering requirements to monitoring and maintenance:

1.	 Requirement gathering: The initial step in designing a data pipeline is to comprehend what
you are building and why. Collect business and data requirements to comprehend the project’s
scope, objectives, and limitations. For example, to increase sales, an online retailer wants to
analyze customer behavior. The data requirements may specify the use of real-time analytics,
while the business requirements may include the monitoring of customer interactions.

2.	 Identify data sources: Once you have determined what you require, determine where to obtain
it. This involves identifying the data source types and ensuring that you can access and extract
data from them. For example, researchers may need to collect data from hospital records,
government databases, and wearable health devices for a public health study.

3.	 Data processing and transformation: After identifying the data sources, determine how the
data will be cleansed, transformed, and enriched. Based on your needs, choose the appropriate
DPUs and technologies. For example, a financial institution may need to collect transaction
data from multiple banks, cleanse it by removing duplicates, and then convert it to a format
that's suitable for risk analysis.

Technical interview questions 115

4.	 Data storage: The next step is to determine the storage location for the processed data. This
could be a data lake, a data warehouse, or another storage solution, depending on your needs.
For example, a media organization may store processed viewer metrics in a data warehouse for
historical analysis while employing a NoSQL database for real-time analytics.

5.	 Data orchestration: Orchestration involves controlling the flow of data through your pipeline.
Choose an orchestration tool capable of handling the complexity of your pipeline and ensuring
that data flows smoothly from source to sink. For example, Apache Airflow may be utilized by
an e-commerce platform to schedule daily batch jobs that update product recommendations
based on user behavior.

6.	 Monitoring and maintenance: Plan how you will monitor the pipeline and handle failures or
inconsistencies as a final step. Define key performance indicators (KPIs) and establish mechanisms
for alerting and logging. For example, a transportation company may monitor the latency and
throughput of its real-time GPS tracking pipeline and configure alerts for any data loss or delays.

Armed with a structured approach to designing data pipelines, you’ll be better prepared to tackle technical
interview questions. Let’s proceed to dissect some questions to help you fully prepare for your interviews.

Technical interview questions
In this section, we will prepare you for technical interview questions specifically focused on data
pipeline design. These questions aim to assess your understanding of the concepts and practical
considerations involved in designing efficient and reliable data pipelines:

•	 Question 1: What is the difference between ETL and ELT?

Answer: ETL involves the extraction of data from source systems, its transformation into a
usable format, and its loading into a target database or data warehouse. In contrast, ELT involves
extracting data and loading it into the target system before transformation. ELT is typically
more effective when the target system is robust enough to handle transformations quickly, such
as modern cloud-based data warehouses such as Snowflake or BigQuery.

•	 Question 2: How would you ensure data quality in your pipeline?

Answer: Data quality can be maintained by incorporating validation checks at various pipeline
stages. For instance, sanity checks and business rule validations can be applied immediately
after data extraction and transformation, respectively. In addition, automated testing and
monitoring can be configured to flag any data anomalies or inconsistencies.

•	 Question 3: How would you handle data loss in a stream processing pipeline?

Answer: Using a dependable message broker that supports data replication, such as Kafka, can
minimize data loss. Checkpointing mechanisms can be implemented to periodically save the
stream’s state. In the event of data loss, the system can revert to its last known good state and
reprocess the lost information.

Data Pipeline Design for Data Engineers116

•	 Question 4: How do you deal with schema changes in source systems?

Answer: Incorporating flexibility in the pipeline to adapt to the new schema, utilizing a schema
registry, or versioning the data can be deployed to manage schema changes. Notifications or
alerts can be configured to inform of such changes, enabling proactive pipeline adjustment.

•	 Question 5: How do you ensure fault tolerance (FT) in a data pipeline?

Answer: Several techniques, including data replication, checkpointing, and automatic retries,
can be utilized to achieve FT. Using distributed systems with inherent FT, such as Hadoop and
Spark, can also be beneficial. Monitoring and alerting can be set up to detect failures quickly
and initiate recovery procedures.

Summary
In this chapter, we explored the intricacies of data pipeline design for data engineers. We covered
the foundational concepts of data pipelines and the step-by-step process of designing pipelines and
prepared you for technical interview questions related to data pipeline design.

By understanding the fundamentals, following best practices, and showcasing your expertise in data
pipeline design, you will be well prepared to architect, implement, and maintain efficient and reliable
data pipelines. These pipelines serve as the backbone for data processing and analysis, enabling
organizations to leverage the power of their data.

In the next chapter, we will delve into the exciting field of data orchestration and workflow management.
We will explore tools, techniques, and best practices for orchestrating complex data workflows and
automating data engineering processes. Get ready to streamline your data operations and enhance
productivity as we continue our journey into the world of data engineering!

12
Data Warehouses and

Data Lakes

In today’s data-driven society, organizations are constantly seeking methods to manage, process, and
extract insights from vast quantities of data. Traditional databases and processing systems often fall
short in terms of scalability, flexibility, and performance as data volume, velocity, and variety increase.
Various systems and architectures are utilized by businesses for different purposes, ranging from
transactional data in databases to big data in cloud storage. You’ll probably come across two main
categories of data storage architectures: data lakes and warehouses.

We will delve into these two fundamental components in this chapter. You will discover the underlying
ideas that distinguish them, the subtleties of their architecture, and the data flows that occur both
inside and between these systems.

In this chapter, we will cover the following topics:

•	 Exploring data warehouse essentials for data engineers

•	 Examining data lake essentials for data engineers

•	 Technical interview questions

Exploring data warehouse essentials for data engineers
Data warehouses are the backbone of modern data analytics. They are a combination of intricate
architecture, careful data modeling, and effective processes that ensure data is not only stored but
is also accessible, consistent, and meaningful. Let’s look at these essentials in the next subsections.

Architecture

It’s similar to knowing the blueprints of a complicated building to comprehend the architecture
of a data warehouse. We’ll break down the different layers that comprise a typical data warehouse
architecture in this section.

Data Warehouses and Data Lakes118

The source layer is where data originates in a data warehouse and is in its original, unmodified state.
A variety of data types, including flat files, external APIs, and databases, can be included in this layer.
Making sure this layer is both easily and securely accessible for data ingestion is the first task facing
you as a data engineer. After being extracted, the data moves to the staging area, a short-term storage
space meant to hold it while it goes through the crucial Extract, Transform, Load (ETL) procedure.
In this case, you may encounter issues such as inconsistent data originating from different sources.

The center of the data warehouse architecture is undoubtedly the ETL layer. Here, data is standardized,
cleaned, formatted, enriched, and aggregated. For instance, you may have to standardize comparable
measurements, such as pounds and kilograms, into a single unit or impute missing values. The data
is moved into the data storage layer after transformation. This layer is where you’ll use data modeling
techniques because it’s optimized for efficient querying. Data is frequently arranged using well-known
schemas such as star or snowflake schemas to enhance query performance.

Lastly, end users can interact with the warehouse data through the data presentation layer. This layer
could have summarized reports, compiled tables, and dashboards. During this last stage, as a data
engineer, you frequently work with data analysts to make sure that the data presented is clear and
easy to understand in addition to meeting business requirements.

Here are the different stages of the ETL process in more detail:

•	 The ETL process: The ETL process is a key part of data warehousing, and it’s crucial to understand
this when working with data at scale. Here’s an explanation of each step:

	� Extract: The first step in the ETL process involves extracting data from various sources. The
data may come from relational databases, flat files, web APIs, and numerous other places.
The main challenge in this step is dealing with the different formats, schemas, and quality of
data. This requires developing connections to these various systems, understanding their data
models, and extracting the needed data in a way that minimally impacts the performance
of the source systems.

	� Transform: In the transformation step, the raw data extracted from the source systems is
cleaned and transformed into a format that’s suitable for analytical purposes. This often
involves a variety of transformations, such as the following:

	� Cleaning: Cleaning is the process of dealing with null or missing values, getting rid of
duplicates, or fixing values that are out of range

	� Standardizing: Data conversion to a common measurement system, text value standardization
(for example, mapping true/false and yes/no to a common Boolean representation),
and date and time format standardization are examples of standardizing

	� Enrichment: This could involve adding extra data, such as calculating new measures or
adding geo-coordinates for addresses

Exploring data warehouse essentials for data engineers 119

	� Reformatting: This could include reorganizing the data into different formats, such as
splitting or merging columns or altering the data types

	� Aggregation: This phase could involve computations such as averaging total sales by area

The aim is to ensure the quality and consistency of data, making it easier to work with in the
data warehouse.

•	 Load: The load step involves writing the transformed data to the target database, which is often
a data warehouse. This step needs to be carefully managed to ensure data integrity and minimize
the impact on the system, which needs to remain available to users during the loading process.

There are generally two types of loading strategies:

	� Full load: As the name suggests, the entire dataset is loaded in one batch. This is typically
done when a new ETL process is established.

	� Incremental load: Here, only data that has changed since the last load is updated. This is a
more common and efficient approach, especially when dealing with large volumes of data.

In some systems, the loading process also involves building indexes and creating partitioning
schemes to improve query performance.

The ETL process is at the heart of data engineering, and understanding it is critical for managing
and maintaining robust data pipelines. It’s through this process that raw data is converted into
meaningful information that can be used for business analysis and decision-making.

•	 Data modeling: The process of creating a visual representation of how data will be stored in a
database is known as data modeling. It is a conceptual representation of the associations between
various data objects, the rules governing these associations, and the data objects themselves.
Data modeling facilitates the visual representation of data and ensures that it complies with
legal requirements, business rules, and governmental directives.

Data elements are defined and organized using data models, along with their relationships to
one another and to the characteristics of real-world entities. This can be done for a number
of purposes, such as database data organization, software structure creation, or even network
architecture creation. There are several types of data models:

	� Conceptual data model: In data modeling, this is the highest level of abstraction. Without
going into technical details, it provides a broad overview of interactions between various
entities in the business domain. Before delving into the technical specifics, a data engineer
may develop a conceptual model to convey to stakeholders the general structure of the data
and make sure everyone is in agreement.

Data Warehouses and Data Lakes120

	� Logical data model: Through the addition of structure and limitations, such as data types
and table relationships, this model expands upon the conceptual model. It is not dependent
on any one technology, even though it has more detail than the conceptual model. The
maintenance of data integrity and relationships during a data warehouse migration from
one platform to another, such as from on-premises to the cloud, depends heavily on the
logical data model, which acts as an intermediary step.

	� Physical data model: All of the implementation details unique to each database are included
in the physical data model. It outlines the methods for storing, indexing, and retrieving data
while optimizing performance. In order to optimize query performance, you may need to
decide whether to use columnar storage or how to partition tables.

When establishing or optimizing a data warehouse, having a thorough understanding of the subtle
differences between these various models can help you make better decisions. Your decision will
affect how well data can be queried, how simple it is to understand, and how easily it can be modified
to meet changing requirements, regardless of whether you are building new models from scratch or
altering ones that already exist.

As we proceed, let's concentrate on the nuances of schemas, which are an additional essential component
that support data modeling in the creation of an effective data warehouse.

Schemas

Within a data warehouse, schemas serve as the structural design frameworks that impact how data is
arranged, saved, and accessed. They are just as important in determining a data warehouse’s usefulness
and effectiveness as architectural plans are in determining a building’s appearance and functionality.
Now, let’s explore the primary schema types that are frequently used in data warehousing.

Two main types of schemas that you will encounter in data engineering are star and snowflake schemas.
Let’s look at these in more detail:

•	 Star schema: With a central fact table that is directly connected to multiple dimension tables,
this is the most basic type of dimensional model. Because a star schema offers a simple
method of data organization and permits the joining of fewer tables, it is typically simple to
comprehend and effective for querying. For instance, a star schema’s simplicity and performance
can often come in handy if you’re tasked with developing a quick reporting solution for a
small-to-medium-sized business.

Exploring data warehouse essentials for data engineers 121

The following diagram displays the general architecture of a star schema:

Figure 12.1 – Example of a star schema

Now let’s understand the architecture seen in the preceding diagram in the following bullets:

	� Fact tables: Fact tables hold the data to be analyzed, and they summarize an enterprise’s
business activities or transactions. These are quantifiable data or metrics that can be analyzed.
For example, in a retail business, a fact table might include fields such as items sold, the total
amount of sales, the number of items sold, and so on.

	� Dimension tables: Dimension tables contain the textual context of measurements captured in
fact tables. They contain details used to query, filter, or classify facts. For example, a dimension
table for customers may contain fields such as Customer Name, Address, Email, and so on.

•	 Snowflake schema: A snowflake design divides dimension tables into more normalized tables
by normalizing them, in contrast to a star schema. Although this reduces data redundancy,
query performance suffers as a result of the additional joins required to obtain the same data.
If you are working with a complex database where normalization and data integrity are more
important than query speed, you may choose to use a snowflake schema.

Data Warehouses and Data Lakes122

The following diagram provides an example of a snowflake schema:

Figure 12.2 – Example of a snowflake schema

Schemas have an impact on data modeling, ETL procedures, and the storage layer itself. Finding the
right schema frequently requires striking a balance between query performance optimization and
data redundancy reduction. Your decision will be influenced by a number of variables, including the
particular business requirements, the type of data, and the anticipated workload from queries.

Understanding the distinctions and ramifications of these schema types gives you access to an additional
level of knowledge that is crucial for data warehousing. With this knowledge, you can make well-
informed decisions that will ultimately affect how well data is stored and retrieved, which will affect
how well your organization’s business intelligence (BI) initiatives succeed.

Examining data lake essentials for data engineers
Large volumes of unprocessed data can now be cost-effectively and flexibly stored with data lakes.
We’ll examine the layers and architecture of data lakes in this section, explaining their differences
from data warehouses and situations in which using one is preferable. We’ll explore the key areas of a
data lake, discussing their special features and the kinds of situations in which a data engineer could
interact with them.

Examining data lake essentials for data engineers 123

Data lake architecture

A data lake’s architecture encompasses more than just the zones that make up the lake. It is a
combination of different parts that make data intake, storage, processing, and consumption easier.
Gaining an understanding of the architecture will enable you to create and run a data lake efficiently
as a data engineer. Let’s examine the essential components of a data lake architecture in more detail:

•	 Data lake zones: Data lake zones are a way of organizing data within a data lake. Each zone
serves a specific purpose and follows specific rules about which data it can contain and how
that data can be used. Here’s a detailed description of the different zones often found in a
typical data lake:

	� Raw zone (or landing zone): This is the initial area where data lands when it first arrives
in the data lake from various data sources. The data in this zone is in its raw, unprocessed
form and maintains its original structure. The raw zone serves as an immutable, historical
record of all data ingested into the data lake. This is particularly useful for audit purposes
and troubleshooting data ingestion issues.

	� Clean zone: In the clean zone, data is cleansed, validated, and transformed to a common
format, making it more consumable. Typical actions in this zone include data type conversions,
null value handling, validation against business rules, deduplication, and standardization
of values. This zone ensures that the data is clean and prepared for further transformations
or analysis.

	� Curated zone (or business zone): This zone contains data that has been further transformed
and enriched, often to conform to the organization’s standard data model or schema. The
transformations in this zone are usually more business-specific and can involve combining
data from multiple sources, aggregating or disaggregating data, applying business rules,
and so on. Data in the curated zone is typically used for business reporting and business
analytics (BA).

	� Sandbox zone (or exploration zone): This zone is intended for data exploration and data
science activities. Here, data scientists and analysts can experiment with the data, build and
test new models, or explore new business questions. This zone provides a space where users
can work with the data without impacting other zones.

	� Secure/restricted zone: This zone contains sensitive or regulated data that is subject to
stricter access controls and governance rules. It’s often encrypted, and access is granted on a
need-to-know basis. This zone ensures that sensitive data is protected and used responsibly.

These zones provide a structured way to manage data within a data lake. They ensure that there
are areas to store raw data, clean and process it, perform more business-specific transformations,
and even experiment with new ideas, all while maintaining the security of sensitive data. By
understanding and implementing these zones, data engineers can create a more organized and
manageable data lake.

Data Warehouses and Data Lakes124

•	 Data lake processing: Data lake processing is a crucial step that prepares the raw, ingested data
into a form that can be used for data analysis, reporting, and machine learning (ML). Data
lake processing usually involves a few key steps:

	� Data cleansing: The process of finding and fixing errors in data.

	� Data transformation: The process of changing data from one format or structure to another
is known as data transformation. This might mean combining data, changing the types of
data, standardizing or normalizing values, and so on. Data transformation prepares the data
for specific uses, such as analysis or ML.

	� Data enrichment: Enhancing, honing, or otherwise improving raw data is the goal of data
enrichment. This could entail combining data from several sources, extracting new data
attributes, or adding more information from outside sources. Data enrichment makes data
more analytically useful by providing additional context.

	� Data cataloging: Making a searchable inventory of data assets in the data lake is the process
of data cataloging. Documenting the metadata for data assets, such as the type, source, quality,
and any transformations made to the data, is part of this. Users can locate and comprehend
data in the data lake with the aid of data cataloging.

Data governance and security

A vital component of data management is security and governance, especially for large-scale data
systems such as data lakes and warehouses. They are designed to guarantee that information is kept
up to date, used responsibly, and shielded from intrusions and breaches.

Data governance refers to the overall management of the availability, usability, integrity, and security
of data employed in an enterprise. It’s a collection of practices and guidelines aimed at ensuring high
data quality, consistency, and reliability in the organization. The main components of data governance
include the following:

•	 Data quality: Ensuring the completeness, accuracy, and consistency of data throughout its
entire life cycle.

•	 Data lineage: The process of tracking data from its source to its destination and analyzing
changes it undergoes over time. This is especially crucial for regulatory compliance, auditing,
and troubleshooting.

•	 Metadata management: The process of managing your data’s metadata, which can include
details about the origin, transformations, quality, and other aspects of your data.

•	 Data access and privacy policies: These include providing information about who is authorized
to access which data and how, in compliance with privacy laws and regulations, they can use it.

Technical interview questions 125

Data security

As part of data security, protective digital privacy measures are put in place to prevent unauthorized
access to computers, websites, and databases. This is necessary for maintaining data integrity, avoiding
data breaches, and abiding by privacy laws and regulations. Some crucial components of data security
in a data lake are listed as follows:

•	 Access control: This involves managing who has access to which data. This could include
implementing role-based access control (RBAC) or attribute-based access control (ABAC).

•	 Encryption: This involves encoding data to protect it from unauthorized access. Data can
be encrypted at rest (when it’s stored) and in transit (when it’s being moved from one place
to another).

•	 Data masking and anonymization: This involves concealing private or sensitive information
within your dataset to protect individuals’ privacy.

•	 Security monitoring and auditing: This involves tracking and monitoring data usage and
access patterns to detect any potential security threats or breaches.

Data engineers need to understand data governance and security to design and manage data systems
that are reliable, consistent, and secure. These practices help ensure that data is a trusted and protected
asset in the organization.

Mastering these essential concepts will prepare you to discuss data lake principles in technical
interviews. You will gain the necessary knowledge to design scalable data storage architectures,
implement data processing frameworks, and ensure proper data governance and security within the
data lake environment.

Technical interview questions
Now that we have explored essential concepts of data warehouses and data lakes, it’s time to put your
knowledge to the test with technical interview questions. This section will cover a range of interview
questions that assess your understanding of data warehouse and data lake principles. As we dive into
these questions, prepare to showcase your expertise and problem-solving skills:

•	 Question 1: What is the primary purpose of a data warehouse?

Answer: The primary purpose of a data warehouse is to store, organize, and consolidate large
volumes of structured and historical data to support BI and data analytics.

•	 Question 2: How does a data lake differ from a data warehouse?

Answer: Unlike a data warehouse, a data lake stores data in its raw format without the need
for predefined schemas. It accommodates various data types and allows more flexible data
exploration and analysis.

Data Warehouses and Data Lakes126

•	 Question 3: What is the role of ETL processes in a data warehouse?

Answer: ETL processes extract data from various sources, transform it into a consistent format,
and load it into the data warehouse for further analysis and reporting.

•	 Question 4: How would you handle data integration challenges when populating a data warehouse?

Answer: Data integration challenges can be addressed through data mapping, data cleansing,
data transformation, and ensuring data quality through validation and error handling.

•	 Question 5: What are the benefits of dimensional modeling in data warehousing?

Answer: Dimensional modeling simplifies complex data structures, improves query performance,
and enables efficient data analysis by organizing data into fact and dimension tables.

•	 Question 6: How can you optimize query performance in a data warehouse?

Answer: Query performance can be optimized by creating appropriate indexes, implementing
partitioning strategies, optimizing data loading processes, and tuning the database configuration.

•	 Question 7: What are the advantages of using a distributed filesystem for data lake storage?

Answer: Distributed filesystems offer scalability, fault tolerance (FT), and the ability to handle
large volumes of data across a cluster of machines, making them ideal for storing and processing
data in data lake environments.

•	 Question 8: How can data governance be ensured in a data lake?

Answer: Data governance in a data lake can be confirmed by implementing access controls,
data classification, metadata management, data lineage tracking, and adhering to regulatory
compliance requirements.

•	 Question 9: What are the differences between batch processing and real-time streaming in
data lakes?

Answer: Batch processing involves processing data in large volumes at scheduled intervals, while
real-time streaming processes data in near real time as it arrives. Batch processing is suitable for
analyzing historical data, while real-time streaming enables immediate insights and responses.

•	 Question 10: How can you handle schema evolution in a data lake?

Answer: Schema evolution in a data lake can be managed through schema-on-read, which is
applied during data access, enabling flexibility and accommodating changes in data structure
over time.

•	 Question 11: What is the role of metadata in a data lake?

Answer: Metadata provides essential information about data stored in a data lake, including
data lineage, data quality metrics, data schemas, and data usage patterns. It facilitates data
discovery and enhances data governance and data management processes.

Summary 127

•	 Question 12: How would you ensure data security in a data lake environment?

Answer: Data security in a data lake can be confirmed through access controls, encryption
techniques, user authentication and authorization mechanisms, and adherence to privacy
regulations and data protection policies.

•	 Question 13: What are the benefits of using columnar storage in a data lake?

Answer: Columnar storage in a data lake offers several benefits, including improved query
performance due to column-level compression and encoding, efficient data compression, and
the ability to access specific columns without reading unnecessary data. It also enables faster
data processing and analysis for analytics workloads.

•	 Question 14: How would you handle data quality issues in a data lake?

Answer: Data quality issues in a data lake can be addressed through data profiling, validation,
and cleansing techniques. Implementing data quality checks, monitoring data quality metrics,
and establishing data governance practices are essential for maintaining data quality.

•	 Question 15: Can you explain the concept of data lineage in a data lake?

Answer: Data lineage in a data lake refers to the ability to track the origin, transformations,
and movement of data throughout its life cycle within the data lake. It helps understand data
dependencies, ensure data accuracy, and comply with data governance requirements.

By familiarizing yourself with these technical interview questions and their answers, you will be well
prepared to showcase your expertise in data warehousing and data lakes. Remember to focus on the
correct answers and demonstrate your problem-solving skills, critical thinking, and ability to apply
these concepts to real-world scenarios.

The next chapter will explore the exciting realm of continuous integration/continuous development
(CI/CD) for data engineering. Get ready to explore principles and practices that enable efficient and
reliable software development in the data engineering context. Let’s continue our journey toward
mastering the essential skills of a data engineer.

Summary
This chapter covered data warehouses and data lakes, essential tools for data engineers. We studied
these systems’ architecture, operation, and best practices. We started with data warehouses and how
they use data marts and schemas to analyze structured transactional data. We examined their layered
architecture and the ETL process, which underpins data warehouse operations.

Data lake architecture—from data ingestion and storage to data processing and cataloging—was our
next topic. We explained data lake zones and their importance to organization and functionality. The
difference between a well-managed data lake and a data swamp and the importance of data governance
and security was stressed.

Data Warehouses and Data Lakes128

The next chapter will explore data engineering’s exciting CI/CD world. Prepare to learn about data
engineering software development principles and practices that ensure efficiency and reliability. Let’s
keep learning data engineering skills.

Part 4:
Essentials for

Data Engineers Part III

In this part, we will provide an overview of additional topics with extra interview questions to further
prepare you for your interview.

This part has the following chapters:

•	 Chapter 13, Essential Tools You Should Know About

•	 Chapter 14, Continuous Integration/Continuous Development for Data Engineers

•	 Chapter 15, Data Security and Privacy

•	 Chapter 16, Additional Interview Questions

13
Essential Tools

You Should Know

As data engineers, we rely on a myriad of software tools to process, store, and manage data effectively.
In this chapter, we will explore the essential tools every data engineer should know. These tools will
empower you to harness the power of the cloud, handle data ingestion and processing, perform
distributed computations, and schedule tasks with efficiency and precision. By the end of this chapter,
you’ll have a strong understanding of the key tools in data engineering, along with the knowledge of
where and how to apply them effectively in your data pipeline.

In this chapter, we will cover the following topics:

•	 Understanding cloud technologies

•	 Mastering scheduling tools

Understanding cloud technologies
Cloud technologies provide the fundamental framework for a wide range of data engineering tasks
in today’s data-driven world. Cloud platforms provide the scalability, reliability, and flexibility that
modern enterprises require, from data collection to processing and analytics. This section gives a
brief introduction to cloud computing, outlines the main products and services offered by top cloud
providers such as AWS, Azure, and Google Cloud, and goes into detail about key cloud services that
are critical to data engineering. Additionally, you’ll discover how to assess cloud solutions according to
the most important factors for your data engineering projects, including cost-effectiveness, scalability,
and dependability. Understanding the fundamentals of cloud computing will help you make informed
decisions in real-world data engineering scenarios and prepare you for the inevitable cloud-related
interview questions.

Get ready to assemble your toolbox, tailored for success in your data engineering endeavors.

Essential Tools You Should Know132

Major cloud providers

Three companies routinely rule the vast ecosystem of cloud technologies: Google Cloud Platform
(GCP), Microsoft Azure, and Amazon Web Services (AWS). All of these service providers provide
an extensive range of services designed to meet various data engineering requirements:

•	 Amazon Web Services: With a wide range of services, ranging from basic computing and storage
options such as EC2 and S3 to more specialized offerings for big data, analytics, and machine
learning, AWS has long been a pioneer in the cloud space. Because of its extensive global
infrastructure and mature platform, AWS is the preferred option for organizations seeking
scalability and reliability.

•	 Microsoft Azure: Another major player in the cloud space, Microsoft Azure makes use of its
integrations with Windows and other Microsoft enterprise software. Azure offers many different
types of cloud services, such as networking, analytics, computing, and storage. It is a formidable
competitor due to its ability to integrate with current Microsoft-based enterprise environments,
particularly for businesses that have a strong foundation in the Microsoft ecosystem.

•	 Google Cloud Platform: GCP excels in open source technologies, machine learning, and data
analytics. GCP is well known for its high-performance computing, data storage, and data
analytics services. It is built on the same infrastructure that enables Google to deliver billions
of search results in milliseconds, serve six billion hours of YouTube video each month, and
provide storage for one billion Google Drive users.

The choice you make will often rely on the particular requirements, financial constraints, and strategic
objectives of your project or organization. Each of these major cloud providers has advantages and
disadvantages of its own.

After examining the main cloud providers, let’s take a closer look at the essential services that these
companies provide for data engineering projects.

Core cloud services for data engineering

Whichever major cloud provider you select, three essential service categories—compute resources,
storage solutions, and networking—become especially important when it comes to data engineering.
Having a firm grasp of these core services will help you when designing cloud-based data solutions:

•	 Compute resources: The foundation of any data engineering pipeline is compute resources. AWS’s
EC2, Azure’s virtual machines, and GCP’s Compute Engine are just a few of the compute services
that cloud providers offer. These services can be scaled up or down based on your processing
requirements. Your data ingestion engines, transformation jobs, and analytics algorithms
depend on these resources to function. They are available in a variety of configurations, suited
for different types of computing requirements, ranging from memory-optimized processes to
CPU-intensive tasks.

Understanding cloud technologies 133

•	 Storage solutions: These are yet another crucial element. Having dependable and scalable
storage is essential, regardless of whether you’re storing finalized analytics reports, intermediate
datasets, or raw data. Highly reliable and readily available storage solutions that can be adjusted
for various accessibility and retention needs can be found with services such as AWS S3, Azure
Blob Storage, or Google Cloud Storage. Furthermore, certain providers provide analytics
workload-optimized big data storage solutions, such as AWS Redshift or Google BigQuery.

•	 Networking: Cloud platforms with networking capabilities make it easier to move data quickly
and securely between different parts of your architecture. Customizable network configurations
are made possible by services such as AWS VPC, Azure Virtual Network, and Google VPC. These
configurations enable secure, isolated data flows as well as smooth integration with on-premises
or other cloud-based resources. Having efficient networking guarantees that your data is not
only safe to process but also easily accessible, which results in an optimized data pipeline.

Having a comprehensive understanding of these fundamental cloud services will put you in a better
position to create reliable data engineering solutions. Let’s now turn our attention to the tools that
are essential for efficient data processing, storage, and ingestion, as well as how to choose the best
ones for your projects.

Identifying ingestion, processing, and storage tools

Choosing the appropriate tools for data ingestion, processing, and storage is a logical next step in
developing a strong data engineering pipeline, after laying the foundation with cloud technologies.
These instruments are the gears in the machine that guarantee the smooth movement, handling, and
preservation of data. The purpose of this section is to familiarize you with common tools for each of
these essential tasks. Gaining an understanding of the features, advantages, and disadvantages of these
tools will enable you to design scalable and effective data pipelines, making you an excellent prospect
in any data engineering interview and a priceless asset in practical situations:

•	 Apache Kafka: For real-time data ingestion, Kafka has established itself as the industry standard,
especially in situations requiring the management of enormous data streams. Designed by
LinkedIn and subsequently made available to the public, Kafka provides fault tolerance,
high throughput, and real-time analytics and monitoring. Because of its publish-subscribe
architecture, data pipelines can be separated, offering more scalability and flexibility. Kafka is
very extensible and can be integrated with a wide range of data sources and sinks thanks to its
rich ecosystem, which consists of numerous connectors and APIs.

•	 Apache Flume: Another popular tool for data ingestion is Flume, which is specially designed for
ingesting data into Hadoop environments. Large volumes of log data or streams of event data
from multiple sources can be gathered, aggregated, and moved using Flume to a centralized data
store such as HDFS. It has a strong, fault-tolerant architecture that can manage large amounts
of data. Even though Flume isn’t as flexible as Kafka, it’s easy to set up and works especially
well for certain use cases, such as aggregating log or event data.

Essential Tools You Should Know134

Both Kafka and Flume have advantages of their own, and which one you choose will mostly depend
on your needs when it comes to data intake, such as the kinds of data sources you work with, the
amount of data, or the requirement for real-time processing.

Now that we’ve discussed the fundamental data ingestion tools, let’s examine the technologies needed
to efficiently process the ingested data.

Data storage tools

Data must be stored effectively and dependably in order to remain safe and accessible after it has
been ingested and processed. Depending on the type, volume, and future uses of the data, storage
requirements can vary greatly. Next, we’ll go over a few of the common storage options that you’ll
probably run into in the data engineering field:

•	 HSFS: Many big data projects are built around the open source HDFS storage system. Built to
function in concert with the Hadoop ecosystem, HDFS offers scalable, fault-tolerant storage
that is capable of handling petabytes of data. It allows you to distribute your data across several
machines and performs well in a distributed environment. When combined with other Hadoop
ecosystem tools such as MapReduce for data processing, HDFS is especially useful for projects
that need high-throughput access to datasets.

•	 Amazon S3: Amazon Simple Storage Service, is a flexible cloud storage option with excellent
scalability, availability, and durability. Large multimedia files and small configuration files can
both be stored on it, and it can also be used as a data lake for big data analytics. S3 is frequently
used to store important business data because of its strong security features, which include data
encryption and access control methods.

•	 Google Cloud Storage: Like Amazon S3, Google Cloud Storage provides an extremely scalable,
fully managed, and adaptable object storage solution. It works well for storing data for disaster
recovery and archiving purposes, delivering big data objects to users over HTTP or HTTPS,
and serving both structured and unstructured data.

•	 Microsoft Azure Data Storage: Azure, from Microsoft, provides a variety of storage services
to meet various storage needs, such as Blob Storage, Azure Files, and Azure Queues. While
Azure Files is designed for file sharing and Azure Queues is useful for storing and retrieving
messages, Azure Blob Storage is especially helpful for storing unstructured data. Azure is a
desirable option for businesses that have already invested in Microsoft technologies because
of its ability to integrate with Microsoft’s software stack.

The choice between these storage options will rely on a number of factors, including data type, access
patterns, and enterprise-specific requirements. Each of these options has a unique set of features.

Now that we have a solid understanding of data storage options in place, let’s turn our focus to scheduling
tools, which aid in the coordination and automation of the whole data pipeline.

Mastering scheduling tools 135

Mastering scheduling tools
Coordinating these elements into a smooth, automated workflow is crucial after you’ve set up your data
engineering environment with the right ingestion, processing, and storage tools. Scheduling tools are
useful in this situation. These tools control how jobs and workflows are carried out, making sure that
things get done in the right order, at the right time, and in the right circumstances. This section will
walk you through the features, use cases, and comparative analysis of some of the most widely used
scheduling tools, including Luigi, Cron Jobs, and Apache Airflow. Equipped with this understanding,
you will be capable of efficiently designing and overseeing intricate data pipelines—a capability that
is not only essential for job interviews but also highly valuable in practical settings.

Importance of workflow orchestration

Beyond just carrying out tasks at predetermined times, scheduling serves other purposes as well. It
entails intricate workflow orchestration in which jobs are interdependent and must be successfully
completed before starting another. For example, before data transformation can start, a data intake
task needs to be finished successfully. Data transformation must then be finished before data analysis
can start. The pipeline’s seamless operation and the preservation of data integrity are guaranteed by
this sequencing. Additionally, failure recovery, logging, monitoring, and notifications are features
that modern schedulers provide and are essential for preserving stable and dependable data pipelines.

Apache Airflow

Across a wide range of industries, Apache Airflow has become the de facto standard for orchestrating
complex data pipelines. A highly valued feature in data engineering, Airflow was first created by Airbnb
and subsequently contributed to the open source community. It offers a high degree of customization
and flexibility.

Now that we’ve explored the nuances of scheduling tools, let’s review what we’ve discovered and talk
about how you can use this knowledge to succeed in your data engineering career and ace interviews.

At its core, Airflow’s architecture consists of several components:

•	 The scheduler: In charge of arranging the execution of tasks according to their dependencies

•	 Worker nodes: These carry out your job’s tasks and notify the scheduler of its progress

•	 Metastore database: Tasks, their statuses, and other metadata are tracked in the metastore database

•	 Web server: Offers a graphical user interface for tracking workflow, resuming abandoned tasks,
and initiating spontaneous runs

Essential Tools You Should Know136

Key features of Airflow include the following:

•	 Directed Acyclic Graphs (DAGs): Airflow workflows are defined as code that takes the shape
of DAGs, which enable pipeline construction that is dynamic

•	 Extensibility: It is very flexible due to the large number of plugins and integrations that are
available, including hooks to well-known data sources and sinks

•	 Logging and monitoring: Airflow has strong logging features, and its web-based interface
offers choices for monitoring jobs in real time

Since Apache Airflow is widely used in industry and is often asked about in interviews, learning about
it is essential to master modern data engineering practices.

Being flexible and extensible, Apache Airflow is one of the most widely used scheduling tools in
modern data engineering. Airflow, developed by Airbnb and later made available to the public, lets
you specify intricate processes using code, usually in the form of Python. Numerous features are
available, including logging, error handling, dynamic pipeline creation, and an advanced monitoring
user interface. Because of its extensive plugin and integration ecosystem and community-driven
development, Airflow is highly customizable to meet a wide range of data engineering requirements.

One of the earliest and most basic scheduling tools is cron, which is especially well liked on Unix-based
systems. Despite not having all the bells and whistles of more contemporary solutions, its lightweight
design and simplicity make it appropriate for simple tasks. Cron Jobs are typically used to schedule
repetitive tasks such as basic reporting functions, data backups, and simple data transformations. It
is important to remember, though, that Cron is not intended to manage task dependencies or offer
features such as logging and monitoring right out of the box.

The choice will mostly depend on the complexity of your data pipelines, your familiarity with
programming languages, and particular workflow requirements.

Summary
Well done on learning about the key resources that each and every data engineer should be aware of!
Cloud applications, data ingestion, processing, storage tools, distributed computation frameworks,
and task scheduling solutions were all covered in this chapter. You’ve given yourself a strong toolkit
to tackle a variety of data engineering challenges by becoming acquainted with these tools.

Recall that becoming an expert with these tools is only the start of your career as a data engineer. Your
ability to adjust to the constantly changing data landscape will depend on your continued exploration
of and adherence to emerging technologies and tools. Take advantage of these tools’ opportunities to
advance your data engineering abilities.

In the next chapter, we will explore the world of continuous integration/continuous development (CI/CD).

14
Continuous Integration/

Continuous Development
(CI/CD) for Data Engineers

It takes more than just mastering a set of techniques to succeed in the field of data engineering. You
must keep up with the rapidly changing environment’s new tools, technologies, and methodologies.
The fundamental principles of continuous integration and continuous development (CI/CD), which
are crucial for any data engineer, are the focus of this chapter.

Understanding CI/CD processes will give you a versatile skill set that will not only increase your
effectiveness in your current position but also have a big impact on the performance and dependability
of the systems you create. In this chapter, you’ll learn how to use Git for version control, gain insight
into fundamental automation concepts, and develop your skills in building robust deployment pipelines.
You’ll comprehend by the end of this chapter why these abilities are essential for upholding a high
level of quality, dependability, and effectiveness in the constantly developing field of data engineering.

In this chapter, we’re going to cover the following topics:

•	 Essential automatic concepts

•	 Git and version control

•	 Data quality monitoring

•	 Implementing continuous deployment

Understanding essential automation concepts
One of the pillars of effective, dependable, and scalable data engineering practices is automation.
Manual interventions not only increase the chance of error in today’s quick development cycles, but
are also becoming increasingly impractical given the size and complexity of today’s data systems.

Continuous Integration/Continuous Development (CI/CD) for Data Engineers138

The purpose of this section is to acquaint you with the fundamental automation ideas that form the
cornerstone of a well-executed CI/CD pipeline.

We’ll examine the three main types of automation—test automation, deployment automation, and
monitoring—to give you a comprehensive understanding of how these components interact to speed
up processes and guarantee system dependability. To create systems that are not only functional but
also reliable and simple to maintain, you must master these automation techniques, whether you’re
creating a real-time analytics engine or setting up data pipelines for machine learning.

Test automation

Tests are written before the necessary code in the test-driven development (TDD) method of software
development. Before implementing the actual code, data engineers may need to write tests to verify
data schemas, transformation logic, or even data quality. This procedure is essential for finding
errors at their root, facilitating the development of a stable code base, and minimizing the amount of
debugging required in the future. Consider being in charge of a data pipeline that integrates data from
various sources into a single data warehouse. By using TDD, you can make sure that data is properly
formatted, transformed, and loaded while also spotting any errors early on in the development cycle.

Different test types have different purposes in the field of data engineering:

•	 Unit tests: These tests concentrate on particular functions for data transformation in your
application. To check whether a function accurately converts temperature values from Fahrenheit
to Celsius, for instance, you might create a unit test.

•	 Integration tests: These tests verify how different parts of your system interact with one
another. Think about how you might have constructed two distinct data ingestion pipelines,
one for customer data and one for transaction data. These pipelines could be properly fed into
a combined customer-transaction database through an integration test.

•	 End-to-end tests: These tests examine how a whole procedure or workflow flows, typically by
simulating real-world situations. To ensure that your real-time analytics engine is successfully
ingesting data streams, carrying out the necessary transformations, and updating dashboards
without any glitches, for example, you could run an end-to-end test.

In a data engineering context, a variety of frameworks and tools can make automated testing easier.
Writing unit and integration tests is made very flexible and simple by Python libraries such as pytest.
Tools such as Great Expectations and Data Build Tool (dbt) can be used for data pipeline testing to
verify whether your data is properly ingested and transformed. In order to validate the entire data
processing workflow, end-to-end testing solutions such as Selenium can automate user-like interactions
with your analytics dashboard.

By embracing test automation, you give yourself a potent tool for ensuring the accuracy of the code
and the dependability of the system. Knowing you’re not adding new flaws to the current system gives
you the assurance to make changes and improvements. Automated testing will be your steadfast ally

Understanding essential automation concepts 139

in upholding a high standard of quality, whether you’re modifying a challenging Extract, Transform,
Load (ETL) job or scaling your data pipelines.

You now have a thorough understanding of test automation and its crucial function in data engineering.
Let’s move on to the following crucial automation component: deployment automation. In order
to make sure that your data pipelines and systems are consistently dependable and easily scalable,
this will go into detail about how to automate the process of moving your code from development
environments to production environments.

Deployment automation

For many reasons, automating the deployment process is crucial. The risk of human error such as
incorrect configurations or skipped steps, which can cause instability in your systems, is reduced first
and foremost. Second, automated deployments typically occur more quickly and with greater reliability
than manual ones, enabling shorter release cycles. Finally, automation makes sure that your process is
repeatable and scalable, which is important for systems that frequently need to grow or change. This
is especially true in the field of data engineering, where pipelines and data processes must be both
dependable and adaptable in order to meet changing business needs and data source requirements.

There are numerous tools available to help with deployment automation, each with unique advantages
and applications. Jenkins is a well-liked option due to its flexibility and robust ecosystem of plugins.
Other choices, such as GitLab CI/CD and CircleCI, are renowned for their simple version control
system integration. Kubernetes provides robust container orchestration for those interested in cloud-
native solutions, and tools such as Spinnaker can help manage intricate deployment pipelines.

Several tactics can be used to control how your application is made available to end users:

•	 Blue-green deployment: This strategy uses a blue environment for the current version and a
green environment for the new version. Traffic is switched from blue to green after the green
environment has been thoroughly tested, ensuring no downtime and simple rollback in the
event of problems.

•	 Rolling deployment: In this method, the old version is gradually replaced in order to keep at
least a portion of the system operational throughout the update.

Imagine you are an ETL data engineer in charge of a pipeline that integrates raw data into a data
warehouse. To include new data sources, the pipeline needs to be updated frequently. You could set
up a CI/CD pipeline using tools for deployment automation that automatically tests new code for
data extraction and transformation before deploying it into the production environment once all tests
are passed. By using a blue-green deployment strategy, you can easily roll back to an earlier version if
you find any data inconsistencies or problems, maintaining data integrity and system dependability.

In any contemporary data engineering environment, automated deployment is not just a nice-to-have
feature but rather a necessity. It reduces errors, frees up your time, and lets you concentrate on system
improvement rather than deployment firefighting.

Continuous Integration/Continuous Development (CI/CD) for Data Engineers140

After exploring the workings and significance of deployment automation, let’s turn our attention to
the third and final pillar of automation in data engineering: monitoring. This section will go over
how monitoring keeps your automated systems operating as they should while also offering useful
information for future improvements.

Monitoring

Monitoring is a crucial part of the CI/CD pipeline that is frequently disregarded but is essential
for preserving the functionality, performance, and dependability of your systems. Even the most
advanced automated systems can malfunction in the absence of sufficient monitoring, resulting in
data loss, downtime, or worse. Monitoring offers in-the-moment insights into a range of metrics and
performance indicators, enabling you to take proactive measures to address problems before they
become serious ones.

There are, primarily, three types of monitoring in the field of data engineering:

•	 Application monitoring: Monitoring your applications’ performance and availability includes
keeping track of their data pipelines, APIs, and other services as well as their performance.
Typically, metrics such as throughput, error rates, and response time are tracked.

•	 Infrastructure monitoring: Monitoring the health of the underlying systems that support
your data pipelines and applications is what is meant by infrastructure monitoring. This may
include network latency, disk I/O, CPU usage, and memory usage.

•	 Log monitoring: This involves gathering, analyzing, and visualizing log files produced by your
infrastructure and applications. Specific errors or trends that may not be picked up by other
monitoring techniques can be found with the aid of log monitoring.

You have access to a number of tools to implement efficient monitoring. Grafana is frequently used
to visualize those metrics in real-time dashboards, while Prometheus is a potent open source tool for
gathering metrics and configuring alerts. They work together to offer a reliable monitoring option that
can be customized to meet the specific requirements of your data engineering projects.

Best practices include creating dashboards that effectively communicate the health and performance
of your systems, configuring alerts that are useful and alert-fatigue-free, and routinely reviewing your
monitoring setup to adjust to changing needs or difficulties.

Now that you have a firm understanding of the role that monitoring plays in automation, let’s move
on to the next crucial competency in your data engineering toolkit: mastering Git and version control,
the foundation of coordinated and collaborative code management.

Mastering Git and version control 141

Mastering Git and version control
Code is a dynamic entity that is constantly being improved by numerous contributors and deployed
across a variety of environments in the world of software and data engineering. The choreography that
keeps this complex dance of code development coordinated and manageable is Git and version control.
This section aims to provide you with the necessary information and best practices for effectively using
Git and version control systems. You’ll discover how to keep track of changes, cooperate with team
members, control code branches, and keep a record of the development of your project.

Understanding Git and version control is essential for ensuring code quality, promoting collaboration,
and avoiding conflicts, whether you’re working on a small team or contributing to a significant data
engineering project. Let’s get started with the fundamental ideas and methods that will enable you to
master this crucial facet of contemporary data engineering.

Git architecture and workflow

Multiple contributors can work on the same project at once thanks to the distributed version control
system known as Git. Each developer in Git has a local repository that contains an exact replica of
the project’s history. Local commits are followed by pushes to a central repository, which is typically
housed on a platform such as GitHub or GitLab. As merging and conflict resolution are fundamental
components of the Git workflow, this enables collaboration without causing constant overwriting of
one another’s work.

Let’s examine a few of the fundamental Git commands you’ll frequently use:

•	 Clone: You can copy an existing repository to your local machine using the [Repository_
url] git clone command.

•	 Commit: When you commit, your changes are saved to the local repository. Git add [file_
names] is used to stage changes prior to committing, and git commit -m Commit
message is used to commit the staged changes.

•	 Push: This sends your committed changes to your remote repository. GitHub push
origin [branch_name].

•	 Pull: This updates your local repository by downloading updates from a remote repository
to your computer. [Branch_name] git pull origin.

After laying a solid foundation in the fundamentals of Git, let’s move on to the next subject: exploring
branches, merges, and best practices for efficiently managing challenging data engineering projects.

Continuous Integration/Continuous Development (CI/CD) for Data Engineers142

Branching and merging

Branching strategies are essential in data engineering projects because they enable multiple team
members to work on distinct project components simultaneously without interfering with one another.
Effective branching keeps the master branch stable, making it simpler to track changes, revert to earlier
versions, and isolate features or bug fixes for specialized testing and deployment.

There are two common branching models that you might see:

•	 Git-flow: In this model, in addition to the main branch, there are separate branches for features,
releases, and hotfixes. This gives projects with set release cycles a structured workflow they
can use.

•	 GitHub-flow: Changes are made in feature branches and then immediately merged into the
main branch, which is then deployed according to the GitHub-flow process. It is more adaptable
and works with CD projects.

Taking the modifications from one branch and applying them to another is known as merging in
Git. Usually, the git merge command is employed for this task. Conflicts arise when the identical
lines in identical files are altered in both of the branches you are attempting to merge. These conflicts
will be noted by Git, and they must be manually resolved before the merge operation is finished.
This entails staging the resolved files before committing them and then editing the conflicting files
to decide which changes to keep.

Let’s look at an instance where you’re tasked with adding a new data validation feature to an already
existing ETL pipeline as a data engineer. If your team uses the Git workflow, you will branch off the
develop branch and work on your changes in a new branch called feature. When your feature
branch is finished, you will start a pull request to merge it back into the develop branch. Eventually,
this will be merged into the main branch as part of a planned release.

Consider a different scenario in which you and another engineer are tasked with improving various
components of an algorithm for processing data. You both make adjustments to different branches.
Git flags a conflict when merging these branches because both of you changed the same method. To
fix this, you would manually select which changes to keep in the conflicting file, possibly integrating
both sets of optimizations, before successfully completing the merge.

The foundation of collaborative data engineering is an understanding of branching and merging. These
procedures enable agile development, reliable versioning, and efficient teamwork—all of which are
essential to the accomplishment of any project involving data engineering.

Collaboration and code reviews

Git collaboration involves more than just pushing your changes; it also involves staying in sync with
other people. You can keep your local repository updated with the most recent changes from your
team by using the git pull and git fetch commands. git fetch gives you an additional

Mastering Git and version control 143

level of control by allowing you to review the changes before merging, in contrast to git pull,
which will fetch the changes and immediately merge them into your current branch.

Data engineering is no different from other software development life cycles with regard to the
importance of code reviews. Code reviews make sure that the code follows best practices and is both
functional and compliant. They act as a platform for knowledge exchange and have the ability to
identify potential problems before they are incorporated into the production code.

Data pipelines require version control just like code does. Each change should be recorded, regardless
of whether it involves adding a new feature, fixing a bug, or improving performance. By providing an
audit trail and making it simpler to roll back to earlier states, versioning your data pipelines ensures
that you can quickly correct any mistakes or unintended effects.

Bonus tools to make working with Git easier

While Git’s command-line interface is powerful, several tools can make your life easier:

•	 Lazygit: This is a Git terminal-based UI that makes common operations such as staging,
committing, branching, and merging simpler. For those who prefer visual interactions, it offers
a simple interface.

•	 GitKraken: This is a well-known cross-platform Git GUI that shows branches, commits,
and merges in visual form. In order to facilitate collaboration, it also integrates with GitHub,
GitLab, and Bitbucket.

•	 SourceTree: This is another user friendly Git GUI that clearly displays the history, branches,
and commits of your repository. It is compatible with both Windows and macOS.

•	 GitExtensions: This is a Git GUI for Windows that provides tools for managing repositories,
context menus for Windows Explorer, and simple branching and merging.

•	 Fork: This is a Windows and macOS Git client with a stylish user interface for managing Git
repositories. It makes merging, branching, and resolving conflicts simpler.

•	 Tower: This is a powerful GUI for managing repositories that is offered by a Git client for
macOS and Windows. It has capabilities such as integration with well-known Git platforms
and the visualization of code history.

•	 GitUp: This is a macOS-only tool that provides a special way to view and work with Git
repositories. It offers a graphic graph of the history of your repository.

•	 Magit: Magit is a robust Git interface that seamlessly integrates into the text editor, allowing
you to access Git functionality without ever leaving Emacs, if you prefer working inside of it.

•	 Git-fuzzy: This is a device that makes it simple to quickly find and switch between branches
using fuzzy search. When you have a large number of units it is advantageous.

Continuous Integration/Continuous Development (CI/CD) for Data Engineers144

•	 GitAlias: Although it is not a GUI tool, GitAlias enables you to make unique Git aliases to
streamline and condense frequently used commands. Your workflow could be significantly
accelerated by this.

Git workflows must frequently be adapted in data engineering to manage data artifacts, configuration
files, and even data models. It is essential that all components of your data pipeline are versioned and
tracked, not just the code. This may necessitate utilizing Git Large File Storage (LFS) for large data
files or establishing a separate repository for configuration management. Integrating Git into your
data engineering workflow so that both code and data artifacts are versioned, making it easier to roll
back changes, audit, and collaborate, is crucial.

Imagine you are a member of a distributed team in charge of a sizable data pipeline. A global teammate
of yours has made some improvements and pushed them to the remote repository. Before merging
these changes into your local branch for additional testing, you can use git fetch to verify them.

Using another scenario, let’s say you’ve significantly altered the way a key ETL process in your data
pipeline runs. You open a pull request rather than just merging this into the main branch. Your
coworkers review the code and make suggestions for enhancements, and when everyone on the team
agrees, the changes are merged and versioned. Use GitKraken to visually track changes across branches
for complicated tasks, or Lazygit to condense common Git commands for quicker processing.

The importance of effective teamwork and thorough code reviews cannot be understated in the field of
data engineering, where multiple people frequently collaborate on intricate, interdependent systems.
This collaboration can be smooth and effective by properly using Git and supporting tools.

Now that we’ve reviewed the fundamentals of Git, we will focus our attention on data quality monitoring.

Understanding data quality monitoring
Equally important as the efficiency of your pipelines in data engineering is the quality of your data.
Inaccurate analyses, flawed business decisions, and a loss of faith in data systems can result from
poor data quality. Monitoring data quality is not just a one-time activity but a continuous process
that needs to be integrated into your data pipelines. It ensures that the data ingested from various
sources conforms to your organization’s quality standards, thereby ensuring that the insights derived
are trustworthy and actionable.

Data quality metrics

In data engineering, the quality of your data is just as essential as the efficacy of your pipelines. Poor
data quality can result in erroneous analyses, faulty business decisions, and a loss of confidence in
data systems.

Pipeline catch-up and recovery 145

Setting up alerts and notifications

Not only does automation extend to monitoring, but also to alerting. The next step after configuring
data quality checks is to configure alerts and notifications. This can be done through various channels,
such as email, Slack, or even automated scripts that trigger remedial actions. The objective is to notify
the appropriate parties as soon as a data quality issue is identified, allowing for prompt remediation.

Imagine an online retailer that relies on real-time analytics to make inventory decisions. A minor data
error could result in overstocking or understocking, both of which are costly errors. By implementing
real-time data quality monitoring, the company is able to detect data discrepancies as they occur,
enabling immediate corrective action. This case study illustrates the importance of data quality
monitoring to operational effectiveness and decision-making.

Now that we have tackled how to monitor data quality, we will proceed to understand pipeline catch-up
and recovery techniques.

Pipeline catch-up and recovery
In the world of data engineering, failure is not a question of if but when. Data pipeline failures are
inevitable, regardless of whether they are caused by server outages, network problems, or code bugs.
The ability to recover from these failures is what differentiates a well-designed pipeline from a fragile
one. Understanding the types of failures that can occur and their potential impact on your pipeline
is the first step in designing a resilient system.

Through a combination of redundancy, fault tolerance, and quick recovery mechanisms, data pipelines
achieve resilience. Redundancy is the presence of backup systems in the event of a system failure. Fault
tolerance is the process of designing a pipeline to continue operating, albeit at a reduced capacity, even
if some components fail. Quick recovery mechanisms, on the other hand, ensure that the system can
resume full operation as quickly as possible following a failure.

When a data pipeline fails, there is typically a backlog of data that must be processed once the system
is operational again. Here, catch-up strategies become relevant. Parallel processing, batch processing,
and data prioritization can assist your pipeline in catching up quickly. During the catch-up phase,
you may prioritize real-time analytics data over historical data, for instance. The choice of strategy
will depend on the pipeline’s particular requirements and constraints.

When a failure is detected, recovery mechanisms are the predetermined procedures and automated
scripts that are activated. These may range from simple restarts to complex workflows with multiple
steps, such as data validation, rollback, and notifications. Implementing effective recovery mechanisms
is essential for minimizing downtime and ensuring data integrity.

Continuous Integration/Continuous Development (CI/CD) for Data Engineers146

Having delved into the resilience of data pipelines, let’s turn our attention to the final piece of the
puzzle: implementing CD. The next section will guide you through the best practices for automating
your data pipeline deployments, ensuring that your code changes are safely and efficiently transitioned
into production.

Implementing CD
The capacity to release changes quickly and reliably is not just a luxury in the rapidly changing
field of data engineering, but rather a necessity. The technique that fills this need and serves as the
cornerstone of contemporary DevOps practices is CD. The practical aspects of CD will be covered in
this section, with a special emphasis on crucial elements such as deployment pipelines and the use
of infrastructure as code.

The goal of CD is to completely automate the transfer of code changes from development to production,
minimizing the need for manual intervention and lowering the possibility of human error. Data
engineers can more effectively handle tasks ranging from minor updates to significant features by
utilizing CD, and they can also make sure that code quality is maintained throughout all environments.
You will learn more about deploying dependable and strong data pipelines, managing infrastructure,
and achieving a high level of automation in your data engineering workflows as you progress through
this section. The following screenshot depicts the overall steps of CI/CD:

Figure 14.1 – CI/CD life cycle

Let’s examine the procedures and tactics for integrating CD into your data engineering practices.

Deployment pipelines

Deployment pipelines allow code to move from a developer’s local machine to a production environment
in a controlled, transparent, and automated manner. They act as the automated manifestation of your

Implementing CD 147

deployment process. In the field of data engineering, these pipelines are essential because they control
the deployment of ETL jobs, data transformations, and database changes, among other things.

There are several stages in a typical deployment pipeline, frequently including the following:

•	 Code commit: When new code is pushed to the repository, a code commit begins

•	 Build: This runs fundamental tests on the code and packages the application

•	 Automated testing: This executes a number of automated tests to ensure that the code is error-
free and satisfies all specifications

•	 Staging: Code deployment to a staging environment allows for additional testing and validation

•	 Deployment: The code is deployed to production if all earlier steps are successful

Deployment pipeline creation and management are made easier by a variety of tools. Some of the
well-known ones are Azure Pipelines, Jenkins, and GitLab CI/CD. These tools frequently offer a wealth
of customization options to suit your particular deployment requirements and seamlessly integrate
with existing code repositories.

Imagine you are a data engineer in charge of a data pipeline that compiles information from various
sources into a single data warehouse. You’ve included a module for real-time data ingestion as part
of a new feature. The deployment pipeline starts working the moment your code is committed. Initial
unit tests are run after your code has been built. After those are passed, it advances to more in-depth
automated tests to ensure that the real-time ingestion won’t break any features already in use. Your
changes are automatically deployed to the production data pipeline after being successfully validated
in the staging environment and without the need for any manual intervention. Your new feature will
be reliable, thoroughly tested, and integrated into the current system without any issues, thanks to
the entire process.

Any data engineer who wants to succeed in a contemporary, agile, and automated environment must
master the design and application of deployment pipelines. With pipelines, you can make sure that
every code change is reversible in case problems arise and that it reaches the production environment
in a stable and reliable manner.

Following our exploration of deployment pipelines, let’s move on to infrastructure as code (IaC),
another tenet of CD that gives your deployment environments programmability and version control.

Infrastructure as code

Instead of using interactive configuration tools or manual procedures, IaC refers to the practice of
managing and provisioning computing infrastructure through machine-readable definition files.
IaC can be used to set up and manage databases, data pipelines, and even sophisticated distributed
systems such as Hadoop or Spark clusters in the context of data engineering. The benefit of IaC is that
it extends the version control and automated deployment advantages that developers have enjoyed
with application code to infrastructure.

Continuous Integration/Continuous Development (CI/CD) for Data Engineers148

To support IaC, several tools have been developed, each with advantages and disadvantages:

•	 Terraform: Known for its approach that is independent of the cloud, Terraform enables you
to specify and provision infrastructure using a declarative configuration language. It is very
extensible and works with a variety of providers.

•	 Ansible: Unlike Terraform, Ansible is agentless, which means your target machine does not
need to run a daemon for it to function. Its playbook language, YAML, is used, and it excels at
configuration management tasks.

IaC adopts a programmatic approach to infrastructure management, ensuring that resources are
provisioned and managed in a predictable, standardized way. In data engineering, where the infrastructure
is frequently as intricate and crucial as the data pipelines it supports, this becomes incredibly valuable.

Technical interview questions
You might be curious as to how important concepts and techniques such as automation, Git, and
CD translate into the interviewing process after delving deeply into these topics. By emphasizing
the types of technical questions you might be asked during a data engineering interview, this section
aims to close that gap.

These questions aren’t just theoretical; they’re also meant to gauge your problem-solving skills and
practical knowledge. Simple queries about SQL and data modeling will be covered, as well as more
complicated scenarios involving distributed data systems and real-time data pipelines. The objective
is to give you the tools you need to successfully respond to the countless questions that might be
directed at you.

Now, let’s look at the types of questions you might encounter and the best strategies for answering them:

Automation concepts:

•	 Question 1: What is the role of automation in CI/CD?

Answer: Automation is at the core of CI/CD, which automates tasks such as building, testing,
and deploying code changes. It ensures efficiency and consistency and reduces human error.

•	 Question 2: How does automation contribute to faster development cycles in CI/CD?

Answer: Automation accelerates processes such as code testing and deployment, enabling rapid
iteration and quicker feedback loops, and speeding up development cycles.

Git and version control:

•	 Question 1: Why is version control crucial to a CI/CD workflow?

Answer: Version control tracks changes, enabling collaboration and providing a history of
modifications. This history aids in debugging, code reviews, and maintaining code quality.

Technical interview questions 149

•	 Question 2: How does branching in Git facilitate CI/CD pipeline collaboration?

Answer: Branching allows multiple developers to work on different features concurrently. Each
branch can undergo testing before merging, ensuring stability in the main code base.

CD concepts:

•	 Question 1: What is the fundamental goal of CD?

Answer: The primary aim of CD is to deliver code changes to production automatically and
frequently, ensuring that new features and fixes are rapidly available to users.

•	 Question 2: How does a deployment pipeline contribute to reliable software releases?

Answer: A deployment pipeline automates the testing, approval, and deployment stages. It
ensures that code changes undergo consistent and thorough testing before reaching production.

Infrastructure as code:

•	 Question 1: What is the concept of IaC in CD?

Answer: IaC involves scripting the provisioning of infrastructure using code. It ensures consistent
and reproducible infrastructure setups, reducing manual configuration errors.

•	 Question 2: How can tools such as Terraform contribute to successful CD?

Answer: Tools such as Terraform allow you to define infrastructure configurations as code,
enabling easy replication of environments and ensuring that infrastructure changes are versioned.

Monitoring and rollbacks:

•	 Question 1: Why is monitoring essential to a CD environment?

Answer: Monitoring tracks the performance and health of deployed applications. Automated
alerts allow teams to detect issues promptly, enabling timely responses and maintenance.

•	 Question 2: How do rollbacks enhance the reliability of CD?

Answer: Rollbacks provide a safety net in case of deployment failures. They enable quickly
reverting to a previous version, minimizing downtime and maintaining system stability.

Deployment tools and efficiency:

•	 Question 1: How can deployment tools such as Jenkins contribute to a CI/CD workflow?

Answer: Jenkins automates building, testing, and deploying code changes. It integrates with
version control systems and streamlines the entire CI/CD process.

•	 Question 2: What is the role of Lazygit in a Git-based workflow?

Answer: Lazygit provides a user friendly, terminal-based interface for Git interactions, making
tasks such as branching, committing, and merging more efficient.

Continuous Integration/Continuous Development (CI/CD) for Data Engineers150

CD benefits:

•	 Question 1: How does CD improve collaboration among development and operations teams?

Answer: CD fosters collaboration by automating processes and providing a shared understanding
of code changes, ensuring that both teams work harmoniously.

•	 Question 2: What impact does CD have on software quality assurance?

Answer: CD emphasizes automated testing, which improves code quality by catching bugs early.
This results in higher-quality releases and reduced post-deployment issues.

Challenges and best practices:

•	 Question 1: What challenges are associated with CD, and how can they be mitigated?

Answer: Challenges can include handling complex deployment scenarios and ensuring consistent
environments. Mitigation involves thorough testing, proper version control, and well-defined
deployment scripts.

These sample interview questions cover a variety of topics, including deployment tools, automation,
version control, and best practices. Knowing about these ideas will give you the confidence to talk
about CI and CD in interviews.

Summary
This chapter covered three fundamental data engineering topics: Git and version control, data quality
monitoring, and pipeline catch-up and recovery techniques. We began by covering the fundamentals of
Git, focusing on its role in team collaboration and code management. The importance of continuously
monitoring data quality was then discussed, along with key metrics and automated tools. Finally, we
addressed the inevitability of pipeline failures and provided strategies for resilience and speedy recovery.

Now that you have a solid grasp of continuous improvement techniques, it’s time to move on to a
subject that is essential in today’s data-driven world: data security and privacy. We’ll cover how to
safeguard data assets, adhere to rules, and foster trust in the chapter that follows, all while making
sure that data is available and usable for appropriate purposes.

15
Data Security and Privacy

Scale, efficiency, design, and (possibly most importantly) security and privacy all play important roles
in navigating the world of data engineering. These components govern how safely and responsibly
data is handled, not just as additional layers on top of the existing data landscape. Knowing how to
secure and privatize this information is essential, whether you’re working with confidential customer
information, top-secret corporate documents, or even just operational data.

Security is a primary concern that must be integrated starting with the design phase and continuing
through deployment and maintenance in the world of data engineering. Just as data privacy used to
be a nice-to-have, it is now a must-have, thanks to regulations such as the General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA).

We want you to leave this chapter with a firm grasp of the fundamental ideas and procedures underlying
data security and privacy. In addition to being necessary for daily tasks, these abilities are frequently
assessed during data engineering interviews. This chapter aims to prepare you to be an expert in
ensuring security and compliance by teaching you the fundamentals of data access control and delving
deeply into the mechanics of anonymization and encryption. We’ll also discuss the fundamentals of
keeping systems up to date to prevent vulnerabilities.

These are the skills you will learn in this chapter:

•	 Grasping the importance and techniques of who has access to which data

•	 Respecting user privacy and regulatory compliance by learning how to de-identify data so that
individuals can no longer be easily identified

In this chapter, we’re going to cover the following main topics:

•	 Understanding data access control

•	 Mastering anonymization

•	 Applying encryption methods

•	 Foundations of maintenance and system updates

Data Security and Privacy152

Understanding data access control
Data is frequently referred to as the new oil in the contemporary digital ecosystem because it is a crucial
resource that powers businesses and influences decision-making. Data, however, is much simpler to
access, copy, and spread—sometimes even unintentionally—than oil. The significant security risk
posed by this accessibility calls for a strong framework to regulate who can access which data and in
which circumstances.

That essential framework is called data access control. It establishes the limits within your data
architecture, deciding how and with whom certain pieces of information may be interacted. Without
strict access controls, there is an exponentially greater chance that sensitive information will end up
in the wrong hands. Along with financial losses, this could have serious legal repercussions, especially
in light of the present-day strict laws governing data protection.

We will delve deeply into the details of data access control in the following subsections. We’ll start
by comprehending the basic categories of access levels and permissions that specify the range of
interactions a user can have with data, such as read, write, and execute. Next, we’ll look at the crucial
difference between authentication and authorization, two words that are frequently used interchangeably
but have different meanings when it comes to access control. Then, we’ll discuss role-based access
control (RBAC), a potent method for structuring and controlling user access according to roles
within an organization. Lastly, we’ll look at access control lists (ACLs), a more detailed technique
for establishing precise data access policies.

Not only is it a best practice, but it’s also essential to understand data access control. Having a thorough
understanding of these principles will not only make you a more capable data engineer but also a
custodian of data safety, regardless of whether you’re managing large data lakes, putting Extract,
Transform, Load (ETL) pipelines into place, or even just querying a database. So, let’s get started.

Access levels and permissions

The foundation for defining user interactions with data in the context of data security are three
core access levels: read, write, and execute. A user with read permission can view the data but not
change it. For analytical roles that require data inspection but not alteration, this is frequently crucial.
Write permission takes things a step further by enabling users to edit the data, whether that means
adding new records, updating old ones, or deleting data. Execute permission, which enables users to
run particular programs that might change data or the state of the system, is used in the context of
executable files and scripts.

Depending on the requirements of the organization and the sensitivity of the data, the scope of these
permissions can range from being very general to being very specific. Giving a specific role within
the company read access to a whole database may be a part of general access. If the data is sensitive,
this broad level of access may be risky but is simpler to manage. Granular access, on the other hand,
regulates permissions at a much finer level—possibly down to particular tables, rows, or even particular
attributes within a database. Granular permissions give you a tighter hold on data access, but as the

Understanding data access control 153

number of users and data objects increases, they can be difficult to manage. Considering the particular
data being handled, its sensitivity, and the particular needs of the roles needing access will help you
decide between granular and general access.

Building a secure data environment begins with understanding these basic concepts of access levels
and permissions. Let’s now look at the crucial differences between authentication and authorization,
the two fundamental building blocks that support these access controls.

Authentication versus authorization

Although authentication and authorization are frequently used synonymously, they have different
functions in the context of data security. Verifying a user, system, or application’s identity is the
process of authentication. It provides a response to the query, “Are you who you say you are?” On
the other hand, authorization takes place following authentication and decides which resources the
authenticated user has access to. It provides an answer to the query, “What are you allowed to do?”

For authentication, a variety of techniques are available, each with a different level of security. The
simplest form of authentication is password-based, which uses a username and password to confirm
identity. Although easy to use, this technique may be susceptible to phishing attacks or brute-force
attacks. Token-based authentication uses a token that is frequently created by the server and then
supplied by the user for subsequent interactions, providing a stateless and frequently more secure
approach. Multi-factor authentication (MFA) adds an extra layer of security by requiring two or
more verification methods, such as a password, a mobile device, or even biometric information such
as a user’s fingerprints.

Let’s think about a possible scenario for a data engineer. Imagine being in charge of a data lake that
includes both sensitive financial data and general company records. For the purposes of their work,
employees from various departments require access to certain parts of this data lake. In this case, you
would first authenticate users to make sure they are in fact authorized employees, possibly using a
combination of password-based and MFA methods. Once they had been verified, their authorization
levels would have determined whether they could only read general records (possibly for data analysis)
or write to private financial sections (for roles such as financial analysts or upper management).

Setting up a reliable access control system requires an understanding of the subtle differences between
authentication and authorization. Your organization’s data can be protected with a layered security
protocol when combined with specific access levels and permissions. Let’s continue by looking at RBAC,
a methodical method for managing this complicated landscape of authorizations and permissions.

RBAC

RBAC provides a structured method for controlling user access to various resources within an
organization. The fundamental idea behind RBAC is fairly simple: users are assigned roles to segregate
permission levels. In large or complex environments, this framework makes it simpler to manage,
scale, and audit access permissions.

Data Security and Privacy154

The definition and identification of roles within the organization is the first step in the implementation
of RBAC. These roles ought to be compatible with the users duties and job functions. Data analyst,
database administrator, and financial officer roles, for instance, each have a unique set of privileges
suited to their requirements. The authorized interactions (read, write, and execute) that the roles can
have with particular resources are referred to in this context as privileges. RBAC’s flexibility allows
roles to be easily updated, expanded, or contracted as organizational needs change.

Let’s go over an instance in which a data engineer might find themselves. Imagine you are in charge
of a multi-tenant database that provides access to various business units (BUs) such as marketing,
sales, and finance. Due to the sensitivity of the data and the need for departmental privacy, only
certain tables in this database should be accessible to each department. You can create roles such
as Marketing_User, Sales_User, and Finance_User and assign each one the proper
permissions using RBAC. Then, you assign the appropriate role to each user in those departments,
ensuring that they have secure and useful access to the database.

Understanding how to maintain a harmonious balance between operational functionality and data
security is made possible by RBAC. Let’s explore ACLs, another layer that enables even finer-grained
definitions of data access policies, with this basic knowledge in hand.

Implementing ACLs

When it comes to specifying access policies for resources, ACLs provide an additional level of granularity.
An ACL is essentially a table listing individual entities and their particular permissions with respect to
a given resource. ACLs offer a way to set permissions at the user or entity level, enabling more precise
control than RBAC, which bases permissions on roles.

ACLs typically come in two flavors: mandatory and discretionary. Discretionary ACLs (DACLs),
which let the owner of the resource specify which users have what kind of access, are frequently
used for resources such as files or databases. On the other hand, users cannot alter mandatory ACLs
(MACLs), which are typically enforced by organizational policy or compliance requirements. DACLs
are more adaptable, but as the number of users and permissions rises, they risk becoming complex.
Although MACLs are more rigid, they are frequently necessary to maintain compliance with laws
such as GDPR or the Health Insurance Portability and Accountability Act (HIPAA).

Consider the scenario where you are a data engineer in charge of a project involving a highly sensitive
dataset that includes both client and employee data. Different stakeholders, such as customer relations,
legal, and HR teams, require various levels of access to this dataset. You can use ACLs to specify that
the customer relations team can read and write to the client table while the legal team can only read
the contracts table. The HR team can read and write to the employee table. ACLs are a good option in
this situation because this level of detail is hard to manage through RBAC alone.

Having examined the specifics of ACLs, you are now well equipped with a variety of methods for
successfully controlling data access. Let’s now turn our attention to methods for anonymizing data,
a crucial component of data privacy.

Mastering anonymization 155

Mastering anonymization
The privacy and security of data cannot be overstated in a world that is becoming more and more
data-driven. Controlling who has access to data is a crucial component of data security, as we’ve already
discussed. There are circumstances, though, in which sharing the data itself may be necessary for
analytics, testing, or outside services. In these circumstances, merely restricting access is insufficient;
the data must be transformed in a way that preserves its analytical value while protecting the identity
of the individuals it represents. Techniques for anonymization are useful in this situation.

Sensitive information is shielded from being linked to particular people by anonymization, which
acts as a strong barrier. Understanding data anonymization techniques has become essential for any
data engineer in light of growing data privacy concerns and strict data protection laws such as GDPR
and CCPA.

The following subsections will discuss different data anonymization strategies that can increase the
efficiency and security of data sharing. We will explore, among other techniques, generalization,
perturbation, and k-anonymity principles. We’ll also look at useful strategies for hiding personal
information that, if revealed, could seriously jeopardize someone’s privacy.

You will learn invaluable skills as you proceed through the upcoming sections that are essential not
only for protecting data but also for guaranteeing that your company stays in compliance with changing
data privacy laws. Let’s start by talking about the various data anonymization methods you can use.

Masking personal identifiers

The masking of personal identifiers takes a more specific approach to data privacy than anonymization
techniques, which take a more general approach. Personal identifiers are specific pieces of data that
can be used to identify a particular person, such as license plate numbers, email addresses, and social
security numbers. When using raw data for analytics, testing, or development while protecting sensitive
information, masking these identifiers is essential.

There are numerous techniques and equipment created for this. One straightforward method is to
substitute a generic symbol, such as an asterisk (*) or X, for each character in a string. A social security
number such as 123-45-6789, for instance, could be disguised as *--6789. Format-preserving
encryption is one of the more sophisticated techniques, where the content of the data is scrambled
but the format of the data is preserved. This is especially helpful if the data needs to pass validation
checks or be used in systems that demand a specific format.

Tools for masking personal identifiers include programs such as Data Masker and Delphix, and even
built-in capabilities in databases such as SQL Server and Oracle. To help organizations comply with
data protection laws, these tools can be set up to automatically detect and mask personal data.

Your strategy for data privacy and security will be strengthened by the ability to mask personal
identifiers, which effectively complements more general data anonymization techniques. Next, we
will examine data encryption as a way to add yet another layer of security.

Data Security and Privacy156

Applying encryption methods
We’ve covered access control mechanisms and data anonymization techniques in our exploration of
data security and privacy, both of which offer substantial layers of defense. What happens, though, if
the data must be transmitted or stored securely but still be in its original, recognizable form for some
operations? This is where encryption techniques are useful.

A data engineer’s security toolkit’s Swiss Army knife is encryption. Encryption techniques can guarantee
that your data stays private and intact whether you’re storing it at rest, sending it over a network,
or offering a secure method for user authentication. The different types of encryption techniques,
such as symmetric and asymmetric encryption, as well as more specialized protocols such as Secure
Sockets Layer (SSL) and Transport Layer Security (TLS), will be the focus of the next subsections.

Understanding how to manage and implement encryption is essential for both data security and
regulatory compliance. As you read through the subsections, you will develop a solid understanding
of the most important data encryption techniques and how to use them in a variety of situations that
a data engineer might run into.

Starting off this section, let’s examine the fundamentals of data encryption techniques and their
various applications.

Encryption basics

There are two main categories to consider when encrypting data: symmetric encryption and
asymmetric encryption.

The same key is used in symmetric encryption for both encryption and decryption. As a result, it
is quick and effective, making it ideal for encrypting large amounts of data. However, managing and
distributing the encryption key securely is difficult because if an unauthorized person obtains it, they
can quickly decrypt the data.

On the other hand, asymmetric encryption employs a pair of keys, one for encryption and another for
decryption. The private key, which is required for decryption, is kept secret, while the public key, which is
used for encryption, can be shared publicly. Although more computationally intensive, this method is more
secure and is therefore better suited for secure communications or identity verification than for large datasets.

In both symmetric and asymmetric encryption, key management is crucial. Key management issues
can make the entire encryption process vulnerable. This frequently entails secure key rotation, key
storage, and occasionally even key destruction procedures.

Let’s take an instance that a data engineer might run into: Imagine that you oversee a system that
deals with private user data such as financial transactions. Due to its effectiveness with large datasets,
symmetric encryption is a good choice for securely storing this data. However, you might use
asymmetric encryption to increase security when transmitting payment information between the
client and server during a transaction.

Foundations of maintenance and system updates 157

A critical first step in securing your data is comprehending the fundamentals of encryption and key
management. Next, we’ll examine two more specialized protocols, SSL and TLS, which are frequently
used for secure data transmission.

SSL and TLS

Secure network communications are made possible by the cryptographic protocols SSL and TLS.
Although TLS is the successor to SSL, the term SSL is frequently used informally to refer to both. To
maintain data confidentiality and integrity during transmission, these protocols combine symmetric
and asymmetric encryption methods.

Installing a server certificate, which acts as a public key for creating encrypted communications, is
typically required to implement SSL/TLS. The decryption process makes use of the server’s private key,
which is kept secret. Data transferred between the server and clients is encrypted once the certificate
is in place, making it extremely secure against data tampering or eavesdropping.

Consider yourself a data engineer tasked with creating an ingestion pipeline for data from various
external APIs. To maintain both data integrity and confidentiality, it is crucial to make sure that this
data is transmitted securely. In this case, you would make sure that all communications between your
server and the external APIs are encrypted using SSL/TLS. As a result, your server’s data packets that
are transferred to the APIs are encrypted, protecting them from unauthorized access or modification
while in transit.

After discussing the significance and use of SSL and TLS, let’s move on to the fundamental components
of system updates and maintenance—a crucial but frequently disregarded area in the landscape of
data security and privacy.

Foundations of maintenance and system updates
We’ve covered how to protect access to your data up to this point, as well as how to protect it while it’s
in transit and at rest. Even after these safeguards are in place, a data engineer must continue to work
to ensure data security and privacy. Your data security infrastructure requires ongoing maintenance
and regular system updates to adapt to new threats and compliance requirements, just as with a
well-tuned engine.

Regular updates and version control

Regular system updates include minor fixes, significant upgrades, and new feature additions, and they
go hand in hand with software patching. It’s essential to have a clear schedule in place before putting
these updates into action. Updates are first implemented in a development or testing environment
before being rolled out in the production system, and this staged approach frequently works well.
Here, version control systems (VCSs) can be extremely helpful because they let engineers keep track
of changes, roll back to earlier versions if necessary, and work together more efficiently.

Data Security and Privacy158

When operating on outdated systems, you miss out on enhanced features and optimizations. You’re
also more exposed to security risks. Outdated software might not adhere to current data protection
laws, which could compromise data integrity and lead to costly fines and reputational harm.

Consider yourself a data engineer in charge of a big data platform that hasn’t received an upgrade
in a few years. The vendor has already made several new releases, each with enhanced features and
security. You observe performance problems and an increase in failed security audits as you put off
updating. Such a situation exposes your entire data ecosystem to risk, turning it into a ticking time
bomb of security flaws and operational inefficiencies.

In conclusion, consistent updates and strong version control are crucial because they form the foundation
of a strong and secure data infrastructure. The crucial procedures of monitoring, logging, and auditing
will be covered in the next chapter to provide ongoing oversight and assurance for your data systems.

Summary
We covered key topics in data security and privacy in this chapter, including encryption techniques
and access control mechanisms such as authentication and authorization. We also emphasized how
important routine maintenance and system updates are for protecting data. Examples from the real
world were given to help the data engineer understand these concepts.

As we proceed to the last chapter, we’ll put your knowledge of these subjects to the test with a new set
of interview questions, preparing you for both real-world problems and interviews.

16
Additional Interview Questions

Welcome to Additional Technical Interview Questions, an essential chapter on your path to becoming
a successful data engineer. While the fundamentals, such as SQL queries, data modeling, and pipeline
orchestration, were covered in earlier chapters, this chapter aims to introduce you to the more subtle,
and frequently more difficult, aspects of data engineering interviews.

Many candidates perform admirably on the fundamental questions but struggle on the more difficult
ones, which are frequently the ones they will encounter while working. To close those knowledge and
readiness gaps, this chapter has been written. You can increase your confidence and show potential
employers that you have the skills and knowledge necessary to handle real-world data engineering
challenges by practicing these difficult questions and mastering the underlying concepts.

Now, let’s take a look at these additional questions:

•	 Question 1: What is a data lake, and how does it differ from a data warehouse?

Answer: A data lake is a storage repository that can hold vast amounts of raw data in its
native format. Unlike a data warehouse, it allows flexible processing and analysis without
predefined schemas.

•	 Question 2: Discuss the advantages and challenges of using cloud-based data storage solutions.

Answer: Cloud-based storage provides scalability, accessibility, and cost-effectiveness. Nowadays,
companies use multiple vendors to optimize their cloud performance and improve cloud flexibility.

•	 Question 3: Describe the concept of change data capture (CDC) in data engineering.

Answer: CDC captures and tracks changes made to a database, enabling real-time synchronization
between source and target systems.

•	 Question 4: What is data preprocessing, and why is it important in data analysis?

Answer: Data preprocessing involves cleaning, transforming, and organizing raw data before
analysis. It improves data quality and prepares data for accurate insights.

Additional Interview Questions160

•	 Question 5: Discuss the advantages and limitations of batch processing and stream processing.

Answer: Batch processing is suitable for high-volume data with delayed insights, while stream
processing allows real-time analysis with lower latency but can be more complex to manage.

•	 Question 6 What is the role of data engineering in enabling data-driven decision-making
for organizations?

Answer: Data engineering transforms raw data into usable information, facilitating accurate insights
for decision-makers. It ensures that data is accessible, reliable, and timely for informed choices.

•	 Question 7: What is data versioning, and why is it essential in data engineering?

Answer: Data versioning involves managing different iterations of datasets. It’s crucial for
maintaining historical records, tracking changes, and ensuring reproducibility.

•	 Question 8: Describe the concept of data masking and its importance in data security.

Answer: Data masking involves replacing sensitive data with fictional data while retaining the
original format. It’s crucial for protecting sensitive information during testing and development.

•	 Question 9: What is data governance, and why is it important?

Answer: Data governance involves establishing policies, roles, and responsibilities for data
management. It’s essential for ensuring data quality, compliance, and accountability.

•	 Question 10: Explain the concept of data anonymization and its relevance in data privacy.

Answer: Data anonymization involves removing personally identifiable information from
datasets to protect individual privacy while maintaining data utility for analysis.

•	 Question 11: How do you optimize a SQL query for performance?

Answer: Query optimization involves using indexes, rewriting queries, and avoiding unnecessary
joins to improve query execution speed.

•	 Question 12: Explain the concept of data lineage and its significance in auditing.

Answer: Data lineage traces data movement through processes, ensuring transparency and
accountability. It’s vital for regulatory compliance and identifying data anomalies.

•	 Question 13: How do you handle schema changes in a database without causing disruption?

Answer: Techniques such as blue-green deployment or feature flags can help manage schema
changes without affecting users.

•	 Question 14: Describe the concept of change data capture (CDC) in data engineering.

Answer: CDC captures, and tracks changes made to a database, enabling real-time synchronization
between source and target systems.

﻿ 161

•	 Question 15: What is data preprocessing, and why is it important in data analysis?

Answer: Data preprocessing involves cleaning, transforming, and organizing raw data before
analysis. It improves data quality and prepares data for accurate insights.

•	 Question 16: Discuss the challenges and benefits of working with unstructured data.

Answer: Unstructured data needs a predefined structure. Challenges include parsing and
analyzing such data, while benefits include extracting insights from diverse sources.

•	 Question 17: How does data serialization work, and what are its use cases?

Answer: Data serialization converts data structures into a suitable format for storage or
transmission. It’s used to store objects in databases or transmit data over a network.

•	 Question 18: How do you ensure data security in a distributed system?

Answer: Data security in distributed systems involves authentication, encryption, access control,
and auditing mechanisms to prevent unauthorized access.

•	 Question 19: Explain the concept of data encryption and its importance in data protection.

Answer: Data encryption involves transforming data into a secure format to prevent unauthorized
access. It’s crucial for protecting sensitive information.

•	 Question 20: Describe the role of data engineers in ensuring data privacy.

Answer: Data engineers play a vital role in implementing privacy measures such as data masking,
access controls, and anonymization to protect user information.

•	 Question 21: What are the challenges of working with real-time data processing?

Answer: Challenges include low latency requirements, managing data streams, ensuring data
accuracy, and handling potential bottlenecks in processing.

•	 Question 22: How do you perform version control for data pipelines?

Answer: Version control for data pipelines involves using tools such as Git to manage changes
to pipeline code, configurations, and dependencies.

•	 Question 23: Explain the importance of monitoring and alerting in data engineering.

Answer: Monitoring tools track the performance of data pipelines and systems. Alerting
mechanisms notify data engineers of anomalies or issues that require attention.

•	 Question 24: What are the benefits of using containerization in data engineering?

Answer: Containerization, such as with Docker, provides isolation, portability, and consistency
in deploying data engineering applications across different environments.

Additional Interview Questions162

•	 Question 25: How do you optimize data processing workflows for performance?

Answer: Optimization involves using parallel processing, caching, and efficient algorithms to
enhance data processing speed.

•	 Question 26: Discuss the advantages and limitations of batch processing and stream processing.

Answer: Batch processing is suitable for high-volume data with delayed insights, while stream
processing allows real-time analysis with lower latency but can be more complex to manage.

•	 Question 27: How do you optimize data processing workflows for performance?

Answer: Optimization involves using parallel processing, caching, and efficient algorithms to
enhance data processing speed.

•	 Question 28: What is data versioning, and why is it essential in data engineering?

Answer: Data versioning involves managing different iterations of datasets. It’s crucial for
maintaining historical records, tracking changes, and ensuring reproducibility.

•	 Question 29: What is data lineage, and why is it essential for regulatory compliance?

Answer: Data lineage traces data flow and transformations, aiding auditing and regulatory
compliance by showing how data is used and transformed.

•	 Question 30: Discuss the advantages of using NoSQL databases in specific data engineering scenarios.

Answer: NoSQL databases provide flexibility, scalability, and better handling of unstructured
data. They suit scenarios where schema flexibility and high write throughput are essential.

•	 Question 31: Describe the concept and advantages of data normalization.

Answer: Data normalization eliminates data redundancy and anomalies by organizing data into
separate tables. This reduces data duplication and enhances data consistency.

•	 Question 32: How do you ensure data security in data pipelines?

Answer: Data security in data pipelines involves encryption, access controls, and monitoring
mechanisms to protect data during transit and processing.

•	 Question 33: Explain the concept of Extract, Transform, Load (ETL) and its role in
data engineering.

Answer: ETL involves extracting data from source systems, transforming it into a suitable
format, and loading it into a target system for analysis and reporting.

•	 Question 34: Describe the challenges of data migration between different storage systems.

Answer: Challenges include data format conversion, data integrity preservation, and minimizing
downtime during migration.

﻿ 163

•	 Question 35: Explain the role of data modeling in data engineering.

Answer: Data modeling involves creating representations of data structures, relationships, and
constraints. It aids in database design and understanding data flow.

•	 Question 36: Describe the concept of data masking and its importance in data security.

Answer: Data masking involves replacing sensitive data with fictional data while retaining the
original format. It’s crucial for protecting sensitive information during testing and development.

These interview questions cover a broad spectrum of data engineering topics and concepts, ensuring
you’re well prepared to engage in technical discussions during interviews. Understanding these
principles and their practical applications will showcase your expertise in the field and enhance your
confidence when addressing interview queries.

Index

A
About Me section

crafting 33
initial writing exercise 33, 34
writing guidelines 34

access control lists (ACLs) 152
implementing 154

ACID properties 76
atomicity 76
consistency 76
durability 76
isolation 76

additional technical interview questions 159
advanced database concepts 75

ACID properties 76
CAP theorem 76, 77
constraints 75, 76
triggers 77

advanced Python skills 55
data manipulation and analysis libraries 57
data structures 56
object-oriented programming (OOP) 55
recursion 58
regular expressions (regexes) 57, 58

advanced SQL concepts 83
common table expressions (CTEs) 83
indexes and optimization 83
stored procedures and triggers 83
subqueries 83
views 83
Window functions 83

Amazon S3 5, 134
Amazon Web Services (AWS) 12, 132
anonymization

mastering 155
personal identifiers, masking 155

Ansible 148
Apache Airflow 135

components 135
features 136
metastore database 135
scheduler 135
web server 135
worker nodes 135

Apache Flume 133
Apache Kafka 133
ASC (ascending) keyword 84
association table pattern 95
asymmetric encryption 156

key management 156

Index166

attribute-based access control (ABAC) 125
automation

concepts 137, 138
deployment automation 139
monitoring 140
test automation 138

Avro 18
Azure Data Lake Storage (ADLS) 5

B
BASE model 61
batch processing 113
behavioral interview 40

behavioral questions 40
conflict resolution questions 40
cultural fit, assessing 40
goal-oriented questions 40
leadership questions 40
most asked interview questions,

reviewing 44-47
situational questions 40
STARR method, utilizing for answering 41
teamwork questions 40

Boyce-Codd Normal Form (BCNF) 90
branching strategies 142
brand development 34

cold messages, sending 37
content posting 35
network building 36

built-in modules, Python
datetime 53
math 53
os 53
random 53

C
CAP theorem 76

availability 76
consistency 76
examples 77
partition tolerance 77

cloud providers
Amazon Web Services (AWS) 132
Google Cloud Platform (GCP) 132
Microsoft Azure 132

cloud technologies 131
cloud providers 132
core cloud services, for data

engineering 132, 133
data storage tools 134
ingestion, processing, and storage

tools, identifying 133, 134
conceptual data model 119
constraints 75

CHECK 76
DEFAULT 76
FOREIGN KEY 76
NOT NULL 75
PRIMARY KEY 76
UNIQUE 75

continuous deployment
implementing 146
infrastructure as code 147, 148
pipelines 146, 147

core cloud services, for data engineering
compute resources 132
networking 133
storage solutions 133

CSV 18
cultural fit

assessing, during behavioral interview 40

Index 167

D
data access control 152

access levels and permissions 152
ACLs, implementing 154
authentication, versus authorization 153
RBAC 153, 154

database design essentials 90
data partitioning 97, 98
indexing 96, 97
performance metrics 98, 99
scalability 99

database design fundamentals
database design patterns 94
database design tools 96
data integrity constraints 93
schema design 93
technical interview questions 101-103

database design patterns 94
association table pattern 95
hierarchy pattern 95
partitioning pattern 95
snowflake schema 95
star schema 94

database design tools
database design software 96
ERD tools 96

database management system (DBMS) 101
database normalization

data normalization 90
ER modeling 91
performance trade-offs 91
techniques 90

databases 71
advanced database concepts 75
foundational elements 71
fundamental database 71
normalization 74, 75

NoSQL databases 73
OLAP databases 74
OLTP databases 74
relational database 72
technical interview questions 78, 79

Data Career Academy (DCA) 52
data engineering portfolio, essential skillsets

cloud services 12
cloud technology 12
data ingestion ability 8
data processing 11
data storage 9, 11

data engineers 3
responsibilities 4
role, defining 4
tech stack 4

data governance 124
data access and privacy policies 124
data lineage 124
data quality 124
metadata management 124

data ingestion
best practices 8, 9

data integrity constraints 93
check constraint 93
foreign key 93
primary key 93
unique constraint 93

data lake architecture 123
data lake processing 124
data lake zones 123
data security 125
technical interview questions 125-127

data lake processing 124
data cataloging 124
data cleansing 124
data enrichment 124
data transformation 124

Index168

data lake zones 123
business zone 123
clean zone 123
curated zone 123
exploration zone 123
landing zone 123
raw zone 123
sandbox zone 123
secure/restricted zone 123

data mapping 107
data modeling 119

conceptual data model 100, 119
logical data model 101, 120
mastering 100
physical data model 101, 120

data normalization 90
data partitioning 97

best practices 98
horizontal partitioning 97
vertical partitioning 98

data pipeline 111, 112
batch processing 113
components 113, 114
data processing units (DPUs) 112-114
data sink 112-114
data sources 112, 113
designing 114, 115
ELT pipelines 113
ETL pipelines 113
orchestration 112, 114
stages 112
stream processing 113
technical interview questions 115, 116
types 113

data processing
practical application 106

data quality monitoring 144
alerts and notifications, setting up 145
metrics 144

data security, data lake architecture 125
access control 125
data masking and anonymization 125
encryption 125
security monitoring and auditing 125

data storage tools
Amazon S3 134
Google Cloud Storage 134
HSFS 134
Microsoft Azure Data Storage 134

data warehouses 117
architecture 117, 118
data modeling 119, 120
ETL process 118
schemas 120-122
technical interview questions 125-127

deployment automation 139
DESC (descending) keyword 84
dictionary 56
Directed Acyclic Graphs (DAGs) 136
Discretionary ACLs (DACLs) 154

E
ELT pipelines 113
ELT procedures 11
encryption methods

applying 156
asymmetric encryption 156
Secure Sockets Layer (SSL) 157
symmetric encryption 156
Transport Layer Security (TLS) 157

entity-relational (ER) modeling 90

Index 169

ER diagrams (ERDs) 91
attributes 91
cardinality or relationships 91
entities 91

ER modeling 91, 92
many-to-many relationship 91
one-to-many relationship 91
one-to-one relationship 91

ETL job
life cycle 106
technical interviews, preparing for 108-110

ETL pipeline 113
designing 106
implementing 107
optimizing 108

ETL procedures 11
ETL process, data warehouses

extract 118
load 119
transform 118

extraction, transformation, or
loading (ETL) 51

Extract, Transform, and Load (ETL) 105
practical application 106

F
fault tolerance (FT) 99
foreign key 72
Fork 143
foundational Python skills 51, 52

basic syntax and data structures 52
conditional statements 52
file I/O operations 54
functional programming 54
functions 53
loops 52
standard built-in functions and modules 53

foundational SQL concepts 82
aggregation functions 83
basic queries 82
data types 82
DCL commands 82
DDL commands 82
DML commands 82
SQL operators 82
SQL order of operations 82
SQL syntax 82

G
Git

architecture and workflow 141
collaboration and code reviews 142
mastering 141
merging 142
tools, for easy usage 143, 144

GitAlias 144
GitExtensions 143
Git-flow 142
Git-fuzzy 143
GitHub-flow 142
GitKraken 143
Git Large File Storage (LFS) 144
git merge command 142
GitUp 143
Google Cloud Platform (GCP) 12, 132
Google Cloud Storage 134
graph algorithms 58

H
HDFS storage system 134
Health Insurance Portability and

Accountability Act (HIPAA) 154

Index170

hierarchy pattern 95
high availability (HA) 99
horizontal data partitioning 97

I
indexes

clustered 97
full-text 97
multi-column 96
non-clustered 97
single-column 96
unique index 96

indexing 96, 97
strategies 97

infrastructure as code (IaC) 147
input/output (I/O) operations 52
intermediate unit testing skills 67

parameterized tests 67, 68
performance and stress testing 68
scenario testing techniques 68

J
JSON 18

K
key performance indicators (KPIs) 115

L
latency 99
Lazygit 143
LinkedIn profile

banner 30, 31
header 32, 33

optimizing 27
profile picture 28, 29

load balancing 100
logical data model 101, 120

M
machine learning (ML) 53
Magit 143
mandatory ACLs (MACLs) 154
merging strategies 142
Microsoft Azure 132
Microsoft Azure Data Storage 134
Microsoft SSMS 96
multi-factor authentication (MFA) 153
MySQL Workbench 96

N
networking, with LinkedIn

Alumni connections 36
contact maintaining 36
engaging, with content 36
participating, in groups 36
professionals, connecting with 36
strategic expansion 36

normalization 74
Boyce-Codd Normal Form (BCNF) 90
Fifth Normal Form (5NF) 75, 90
First Normal Form (1NF) 74, 90
Fourth Normal Form (4NF) 75, 90
Second Normal Form (2NF) 74, 90
Third Normal Form (3NF) 75, 90

NoSQL databases 10, 73
advantages 73
common applications and scenarios 73
disadvantages 74

NumPy 57

Index 171

O
object-oriented programming (OOP) 55
OLAP systems 74, 94
OLTP systems 74, 94
Optimized Row Columnar (ORC) 18

P
Pandas 57
parameterized tests 67, 68
Parquet

versus Avro 18
versus CSV 18
versus JSON 18
versus ORC 18

partitioning pattern 95
performance and stress testing 68
performance metrics 98

latency 99
query speed 98

personal identifiers 155
masking 155

physical data model 101, 120
pipeline

catch-up and recovery 145
portfolio data engineering project 12

data processing portion 11
essential skillsets 8
scenario 13-24

primary key
characteristics 72
disadvantages 72

privileges 154

Q
query speed 98

R
recursion 58

programming 58
regular expressions (regexes) 57
relational databases 72

advantages 73
common applications and scenarios 72
disadvantages 73
foreign key 72
primary key 72

relational SQL databases 9
replication strategies 99

master-master replication 99
master-slave replication 99
sharding, with replication 99

role-based access control
(RBAC) 125, 152-154

S
scalability 99

designing for 99
scenario testing techniques, unit testing

boundary-value testing 68
error-handling testing 68
happy-path testing 68

scheduling tools
Apache Airflow 135, 136
mastering 135
workflow orchestration, significance 135

schema design 93, 107
indexing 93
partitioning 93
table structures 93

schemas 120
snowflake schema 121, 122
star schema 120

Index172

set 56
sharding 97
snowflake schema 95, 121

example 122
SourceTree 143
SQL concepts

technical interview questions 84, 85
SQL triggers

Data Definition Language (DDL) 77
Data Manipulation Language (DML) 77
statement 77

standard built-in functions, Python
len() 53
print() 53
range() 53

STARR method 41
action 42
example responses 42-44
reflection 42
result 42
situation 41
task 41
using, for answering behavioral

interview questions 41, 42
star schema 94, 120

architecture 121
dimension tables 121
fact tables 121

storage architecture 10
stream processing 113
symmetric encryption 156

key management 156
system updates and maintenance 157

regular system updates 157
version control 158

T
technical interview questions 59

data engineering interview questions 60
general technical concept questions 61
Python interview questions 59, 60

Terraform 148
test automation 138
Tower 143
triggers 77, 78

SQL triggers 77

U
Unified Modeling Language

(UML) diagrams 101
unit testing 63

act 66
arrange 66
assert 66
fundamentals 63
intermediate unit testing skills 67
interview questions 69
process 66, 67
significance 64
unit testing frameworks 64, 65

V
version control

mastering 141
version control systems (VCSs) 157
vertical data partitioning 98

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Data Wrangling with SQL

Raghav Kandarpa, Shivangi Saxena

ISBN: 978-1-83763-002-8

•	 Build time series models using data wrangling

•	 Discover data wrangling best practices as well as tips and tricks

•	 Find out how to use subqueries, window functions, CTEs, and aggregate functions

•	 Handle missing data, data types, date formats, and redundant data

•	 Build clean and efficient data models using data wrangling techniques

•	 Remove outliers and calculate standard deviation to gauge the skewness of data

https://packt.link/9781837630028

175Other Books You May Enjoy

SQL Query Design Patterns and Best Practices

Steve Hughes, Dennis Neer, Dr. Ram Babu Singh, Shabbir H. Mala, Leslie Andrews, Chi Zhang

ISBN: 978-1-83763-328-9

•	 Build efficient queries by reducing the data being returned

•	 Manipulate your data and format it for easier consumption

•	 Form common table expressions and window functions to solve complex business issues

•	 Understand the impact of SQL security on your results

•	 Understand and use query plans to optimize your queries

•	 Understand the impact of indexes on your query performance and design

•	 Work with data lake data and JSON in SQL queries

•	 Organize your queries using Jupyter notebooks

https://packt.link/9781837633289

176

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Cracking the Data Engineering Interview, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

.

http://authors.packtpub.com
https://packt.link/r/1-837-63077-1

177

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837630776

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837630776

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Landing Your First Data Engineering Job
	1
	Chapter 1: The Roles and Responsibilities of a Data Engineer
	Roles and responsibilities of a data engineer
	Responsibilities

	An overview of the data engineering tech stack
	Summary

	2
	Chapter 2: Must-Have Data Engineering Portfolio Projects
	Technical requirements
	Must-have skillsets to showcase in your portfolio
	Ability to ingest various data sources
	Data storage
	Data processing
	Cloud technology

	Portfolio data engineering project
	Scenario

	Summary

	3
	Chapter 3: Building Your Data Engineering Brand on LinkedIn
	Optimizing your LinkedIn profile
	Your profile picture
	Your banner
	Header

	Crafting your About Me section
	Initial writing exercise

	Developing your brand
	Posting content
	Building your network
	Sending cold messages

	Summary

	4
	Chapter 4: Preparing for
Behavioral Interviews
	Identifying six main types of behavioral questions
to expect
	Assessing cultural fit during an interview
	Utilizing the STARR method when answering questions
	Example interview question #1
	Example interview question #2
	Example interview question #3
	Example interview question #4
	Example interview question #5

	Reviewing the most asked interview questions
	Summary

	Part 2:
Essentials for
Data Engineers Part I
	5
	Chapter 5: Essential Python for
Data Engineers
	Must-know foundational Python skills
	SKILL 1 – understand Python’s basic syntax and data structures
	SKILL 2 – understand how to use conditional statements, loops, and functions
	SKILL 3 – be familiar with standard built-in functions and modules in Python
	SKILL 4 – understand how to work with file I/O in Python
	SKILL 5 – functional programming

	Must-know advanced Python skills
	SKILL 1 – understand the concepts of OOP and how to apply them in Python
	SKILL 2 – know how to work with advanced data structures in Python, such as dictionaries and sets
	SKILL 3 – be familiar with Python’s built-in data manipulation and analysis libraries, such as NumPy and pandas
	SKILL 4 – understand how to work with regular expressions in Python
	SKILL 5 – recursion

	Technical interview questions
	Python interview questions
	Data engineering interview questions
	General technical concept questions

	Summary

	Chapter 6: Unit Testing
	Fundamentals of unit testing
	Importance of unit testing
	Unit testing frameworks in Python
	Process of unit testing

	Must-know intermediate unit testing skills
	Parameterized tests
	Performance and stress testing
	Various scenario testing techniques

	Unit testing interview questions
	Summary

	Chapter 7: Database Fundamentals
	Must-know foundational database concepts
	Relational databases
	NoSQL databases
	OLTP versus OLAP databases
	Normalization

	Must-know advanced database concepts
	Constraints
	ACID properties
	CAP theorem
	Triggers

	Technical interview questions
	Summary

	Chapter 8: Essential SQL for
Data Engineers
	Must-know foundational SQL concepts
	Must-know advanced SQL concepts
	Technical interview questions
	Summary

	Part 3:
Essentials for
Data Engineers Part II
	Chapter 9: Database Design
and Optimization
	Understanding database design essentials
	Indexing
	Data partitioning
	Performance metrics
	Designing for scalability

	Mastering data modeling concepts
	Technical interview questions
	Summary

	Chapter 10: Data Processing and ETL
	Fundamental concepts
	The life cycle of an ETL job

	Practical application of data processing and ETL
	Designing an ETL pipeline
	Implementing an ETL pipeline
	Optimizing an ETL pipeline

	Preparing for technical interviews
	Summary

	Chapter 11: Data Pipeline Design for
Data Engineers
	Data pipeline foundations
	Types of data pipelines
	Key components of a data pipeline

	Steps to design your data pipeline
	Technical interview questions
	Summary

	Chapter 12: Data Warehouses and
Data Lakes
	Exploring data warehouse essentials for data engineers
	Architecture
	Schemas

	Examining data lake essentials for data engineers
	Data lake architecture
	Data governance and security
	Data security

	Technical interview questions
	Summary

	Part 4:
Essentials for
Data Engineers Part III
	Chapter 13: Essential Tools
You Should Know
	Understanding cloud technologies
	Major cloud providers
	Core cloud services for data engineering
	Identifying ingestion, processing, and storage tools
	Data storage tools

	Mastering scheduling tools
	Importance of workflow orchestration
	Apache Airflow

	Summary

	Chapter 14: Continuous Integration/Continuous Development
(CI/CD) for Data Engineers
	Understanding essential automation concepts
	Test automation
	Deployment automation
	Monitoring

	Mastering Git and version control
	Git architecture and workflow
	Branching and merging
	Collaboration and code reviews

	Understanding data quality monitoring
	Data quality metrics
	Setting up alerts and notifications

	Pipeline catch-up and recovery
	Implementing CD
	Deployment pipelines
	Infrastructure as code

	Technical interview questions
	Summary

	Chapter 15: Data Security and Privacy
	Understanding data access control
	Access levels and permissions
	Authentication versus authorization
	RBAC
	Implementing ACLs

	Mastering anonymization
	Masking personal identifiers

	Applying encryption methods
	Encryption basics
	SSL and TLS

	Foundations of maintenance and system updates
	Regular updates and version control

	Summary

	Chapter 16: Additional Interview Questions
	Index
	Other Books You May Enjoy

