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Preface 
I have written this textbook to help students who are studying mathematics 
make the transition from the calculus courses to the typical advanced core 
courses found in an undergraduate math program. Specifically, this book 
has been written to prepare students for rigorous mathematical reasoning 
of junior/senior-level courses on advanced calculus, real analysis, and modern 
algebra. Furthermore, in writing this book it is my hope that students taking a 
course from this textbook will begin to appreciate the beauty of the axiomatic 
structure of modern mathematics. 

The topics chosen for this book were chosen for pedagogical reasons and 
have been tried, tested, and adjusted over the last 12 years of teaching a course 
on "methods of proof." In particular, the following topics are presented in 
this text. 

• Chapter 1 provides an introduction to the axiomatic nature of modern 
mathematics, key terminology, and commonly used symbols. 

• Chapter 2 presents an introduction to symbolic logic and is used to help 
the student understand why the methods of proof by contrapositive and 
proof by contradiction are valid methods of proof in Chapter 3. 

• Chapter 3 discusses the method of forward direct proof, proof by contra-
positive, and proof by contradiction. Also included in this chapter are 
specialized proofs for uniqueness and existence theorems, the methods of 
mathematical induction, proof by cases, proofs of biconditional theorems, 
and disproving a conjecture by using a counterexample. 

• Chapter 4 provides a gentle introduction to numbers and number theory. 
Specifically, this chapter includes topics on binary operators, the natural 
numbers, whole numbers, integers, rational numbers, irrational numbers, 
real numbers, properties of numbers, divisibility, prime numbers, and 
recursively defined numbers. 

• Chapter 5 introduces the students to real analysis through the study of 
sequences and convergence, limits of real-valued functions, continuity, and 
differentiability. This chapter also introduces the students to convergence 
proofs of the 6-/V and e-δ forms. 

• Chapter 6 introduces the students to sets and set theory, indexed families 
of sets, countable and uncountable sets, and group theory. 

This book is not meant to cover the foundations of mathematics; there-
fore, topics such as relations, equivalence classes, and functions as relations 
have not been included. Furthermore, this text is not meant to be a book on 
discrete mathematics, and thus topics such as combinatorics and graph the-
ory have not been included. The topics and the ordering of their presentation 
have been chosen for purely pedagogical reasons. 

xi 
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It is also my experience that the order of presentation is appropriate for the 
nurture and development of the student's confidence and mathematical matu-
rity. These topics also provide the student with the necessary mathematical 
tools required to succeed in advanced math courses such as advanced calculus, 
modern algebra, number theory, and real analysis. 

Three special features of this book are (1) a basic discussion of the ax-
iomatic nature of modern mathematics, (2) presentation of algorithms for 
several different types of proofs, and (3) the idea that scratchwork must oc-
cur as part of the proof process. In Chapters 1 and 3, the basic structure of 
modern mathematics is discussed and each of the key components of modern 
mathematics is defined. In particular, the following terms are defined and 
examples of each are presented: definition, axiom, conjecture, proof, theorem, 
corollary, and lemma. 

Throughout the text, algorithms are given providing the students with 
an outline for attacking a particular type of proof. It is my experience that 
proving a mathematical result is a very difficult skill for an undergraduate 
math student to master. For this reason, I have provided the students with 
a clear approach to attack several different types of proof. In particular, 
algorithms are provided for forward direct proofs, proof by contrapositive, 
proof by contradiction, mathematical induction, uniqueness proofs, existence 
proofs, proof by cases, closure proofs, convergence proofs for both sequences 
and limits of functions, element chasing proofs, and group theoretical proofs. 
These algorithms are not intended to present proofs in a cookbook fashion, 
rather, these algorithms are presented as guides for the student to use when 
faced with the problem of proving a theorem. 

Another distinctive feature of this book is the idea of scratchwork. It is 
important to emphasize to the students that proving a mathematical result 
is unlike any problem they have encountered in their previous algebra and 
calculus classes. Furthermore, it is unlikely that the typical sophomore math 
student will be able to quickly and easily prove most of the problems in this 
text. Thus, I emphasize that the process of proving a theorem generally 
involves creative work other than that presented in the proofs included in 
this text. My goal is to convince the students to do their scratchwork and 
creative thinking as a first step in their attempts to prove a theorem; once 
they are satisfied that their scratchwork successfully demonstrates the truth 
of the theorem, they can then proceed to begin writing their proof up in a 
clear and concise fashion. Throughout the text there are several theorems 
whose proof will be preceded by my scratchwork in an attempt to get the 
student thinking about the thought processes that went into developing the 
actual proof. 

Numerous exercises have been included in each chapter of this text. I 
believe that the exercises accompanying this text do indeed cover a wide 
range of topics and levels of difficulty. I believe that the successful completion 



Preface xiü 

of these exercises will help the student gain the confidence necessary to be 
successful in junior/senior-level mathematics courses, which, of course, is the 
goal of this book. 

When teaching from this book I have used it for a one-semester transition 
course by covering Chapters 1-3, and parts of Chapters 4-6; for a two-semester 
sequence I cover Chapters 1-4 in the first semester and Chapters 5 and 6 in 
the second semester. While I have not taught a course from this book on the 
quarter system, I believe that Chapters 1-3, Sections 4.1 and 4.2 of Chapter 
4, and Sections 5.1 and 5.2 of Chapter 5 would make a suitable course to 
be taught in a single quarter; for a two-quarter sequence, Chapters 1-3 and 
Sections 4.1 and 4.2 could be covered in the first quarter with the remainder 
of the book left for the second quarter. However, there are many different 
ways to teach from this book, and I leave that to the discretion and goals of 
the particular instructor. 

I am grateful to a number of friends, colleagues, and students for their 
help and motivation during the writing of this book. I am especially indebted 
to Lloyd Gavin and Dan Brunk, two very inspirational advisors from whom 
I learned so much and the two people who are indirectly responsible for this 
book. A great deal of my motivation for writing this book came from long 
discussions of modern mathematics with two great colleagues, Steve Cherry 
and Dennis Haley. Special thanks go to Susan Patton, VCAAR at Montana 
Tech, for supporting a sabbatical to work on this book. Finally, I wish to 
thank the following individuals who have also contributed in one way or an-
other to this book: Ray Carroll, David Ruppert, Fred Ramsey, Jay Devore, 
Scott Lewis, Erin Esp, Celeste McGregor, Michelle Johnson, Russ Akers, and 
Donielle Biers. 

Finally, it was my intent to write a book that introduces the students 
to the philosophy and structure of modern mathematics as well as prepare 
them for future courses in theoretical mathematics. It is my hope that I have 
accomplished this task. 

R. J. Rossi 

Butte, Montana 
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Chapter 1 

Introduction to Modern 
Mathematics 
The field of mathematics was born out of the human necessity for counting 
items and determining areas and the desire to explain the natural world. The 
word mathematics is derived from the Greek words mathema, which means 
"science, knowledge, or learning," and mathematikos, which means "fond of 
learning." In addition to being responsible for the roots for the term math-
ematics, the ancient Greeks were also the first people to study pure math-
ematics and to record their logical arguments in proofs. Furthermore, the 
ancient Greek mathematicians were the first mathematicians to think ab-
stractly about mathematics; the Babylonians and ancient Egyptians, unlike 
the Greeks, tended to think of mathematics in only practical terms with appli-
cations to trade and other universal problems. Thus, the ancient Greek math-
ematicians are generally credited with providing the foundation for modern 
mathematics. 

The term "modern mathematics" is generally used to refer to the current 
formal axiomatic system of mathematics that is based on rigorous logical 
foundations. Mathworld, a popular Internet Website maintained by Wolfram 
Research, describes the field of mathematics as follows: 

Mathematics is a broad-ranging field of study in which the properties 
and interactions of idealized objects are examined. Whereas math-
ematics began merely as a calculational tool for computation and 
tabulation of quantities, it has blossomed into an extremely rich and 
diverse set of tools, terminologies, and approaches which range from 
the purely abstract to the utilitarian. 

Whereas the roots of mathematics are based on counting and the study 
of geometric shapes, modern mathematics is much more than just the study 
of numbers and shapes. In particular, modern mathematics is the science 
of operations on collections of arbitrary objects. Modern mathematics, or 
axiomatic mathematics, is developed according to the following structure: 

Axioms =Φ definitions ==> conjectures =>· proofs 
= > theorems =*■ generalizations and extensions ==*· · · · 

It is this formal structure, along with the abstract nature of mathematics, that 
sets modern mathematics apart from the earlier developments in mathematics. 

1 



2 Introduction to Modern Mathematics 

1.1 Inductive and Deductive Reasoning 

For the most part, the development of early mathematics was motivated by 
the study of the physical world and natural phenomena by physical scientists. 
In fact, early mathematicians made most of their discoveries from their ob-
servations of physical phenomena and everyday occurences. The process of 
making inferences based on observations is called inductive reasoning. 

Definition 1.1.1: Inductive reasoning is the method of reasoning based on 
making inferences and conclusions from observations. 

Inductive reasoning is often used to extrapolate from a particular set of 
observations to a more general conclusion or future event. An example of 
inductive reasoning is given below. 

Since the sun has come up every day of my life, it follows that the 
sun will come up tomorrow. 

This statement is based completely on making inferences from past experi-
ences to what is to be expected to occur in the future. Much of the primary 
focus of the earliest development of mathematics was based on observed re-
sults, and did not rely on the formal justification of the mathematical conclu-
sions. One reason why the inductive approach was the common theme in the 
early development of mathematics was that it was motivated primarily by the 
study of physical phenomenon (i.e., physics). 

Inductive reasoning is also used in the developing mathematical conjec-
tures; however, inductive reasoning can never be relied on as concrete proof 
of the validity of a conjecture. A classic example of the fallibility of inductive 
reasoning is due to Pierre de Fermat's (1601-1665) conjecture that 22" + 1 is 
prime for all natural numbers n. While it is true that 22" + 1 is prime for 
n = 1,2,3,4, Leonhard Euler (1707-1783) disproved Fermat's conjecture by 
showing that 22 + 1 is not a prime number. While large amounts of empirical 
data are likely to be used as evidence to support an unproven conjecture, data 
based reasoning can never provide absolute proof that a conjecture is true. 

The writings of the ancient Greek mathematician Thales (circa 600 B.C.) 
provide the first documented use of sound logical reasoning in the justification 
of a mathematical result. Thales is credited with being the first person to write 
down a set of postulates, a set of mathematical conclusions, and provide a 
justification of these conclusions with a sequence of sound logical arguments. 
Thales' writings provide the first known to use of deductive reasoning. 

Definition 1.1.2: Deductive reasoning is the method of reasoning where a 
conclusion is reached by logical arguments based on a collection of assump-
tions. 
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Following Thales, Greek mathematicians such as Pythagoras (569-500 
B.C.), Aristotle (384-322 B.C.), and Euclid (325-265 B.C.) used deductive 
reasoning in justifying their mathematical results. In fact, it was Euclid who 
is credited for first proving that there are infinitely many primes and a student 
of Pythagoras who first proved the irrationality of y/2. 

An example of the use of deductive reasoning to prove a mathematical 
result is given in Examples 1.1.1 and 1.1.2, which follow. 

Example 1.1.1: Let i = 0.9. Then, using deductive reasoning, it can be 
shown that the conjecture x = 1 is true. In fact, there are many different 
ways to show deductively that x = 0.9 = 1, including the following deductive 
argument. Let x = 0.9. Then 

Юх = 9.9 (1) 

Юх - x = 9x = 9 

9x = 9 

x = 1 

(2) 

(3) 

(4) 

Example 1.1.2: Conjecture: 
Jl x 

(x) 
dx < 00. 

„ , „. cos(x) 1 ., . , Proof: Since 5— <-τοη Ι,οο) and 
X* X2 

/ f(x)dx\ < [ |/(a;)| di 
\JQ Ja 

it follows that 
r0° cos(x) 

dx 

Thus, it is true that 

/ · " |cos(x) 

-Ji I *2 

Ji x 

dx < Г — 
Л χ2 

< со. 

dx — 1 < oo 

Whereas deductive reasoning is the method mathematicians must use in 
the justification of a mathematical result, inductive reasoning still plays an 
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important role in modern mathematics. As mentioned before, mathemati-
cal conjectures are often based on empirical data and inductive reasoning. 
However, empirical data can serve as proof of a conjecture only if (1) there 
are finitely many cases to consider in the conjecture and (2) all the possible 
cases are considered and the conjecture is shown to be true in each of these 
cases. However, except for these rare conjectures involving only finitely many 
cases, no amount of empirical data is sufficient to prove that a more general 
mathematical conjecture is actually true; mathematical proof comes only from 
logically sound deductive reasoning. Thus, new contributions to mathematics 
are justified using only deductive reasoning. Furthermore, deductive reason-
ing has made it possible for mathematics to become a formalized axiomatic 
system of the 

Axiom-definition-conjecture—theorem-proof-generalization-extension 

form. 

1.2 Components of Modern Mathematics 

The components of the modern axiomatic mathematical system are the ax-
ioms, definitions, conjectures, proofs, theorems, corollaries, lemmas, and coun-
terexamples. The basic components on which the mathematical structure is 
built are the axioms and the definitions. 

Definition 1.2.1: An axiom or postulate is a mathematical statement that 
is taken to be setf-evidently true without proof. 

Definition 1.2.2: A mathematical definition is a statement that gives 
precise meaning to a mathematical concept or word. 

Mathematical axioms are the building blocks on which an axiomatic sys-
tem is built. In fact, the validity of any further implications and mathematical 
conclusions in an axiomatic system will be based on the basic axioms and de-
ductive reasoning. An example of one of the important axioms in axiomatic 
set theory is the "axiom of choice," given below. 

Axiom: Let С be a nonempty set, and if Aa is a nonempty set for 
each Q in C, then it is possible to chose an xa from the set A0 for 
each a € C. 

The axiom of choice is a very important axiom in the foundation on which 
axiomatic set theory is based. The following two axioms were stated and used 
throughout Euclid's Elements, the first book of axiomatic mathematics. 

Axiom: Two things that are equal to the same thing are also equal 
to one another (i.e., "If a — с and b = c, then a = 6"). 
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Axiom: If equals be added to equals, the wholes are equals (i.e., "If 
a — b, then a + c = b+ c"). 

One of the most famous axioms is the parallel-line axiom, which is also 
known as the parallel postulate. 

Parallel-Line Axiom: Given any straight line and a point not on 
it, there exists one and only one straight line that passes through 
that point and never intersects the first line, no matter how far the 
lines are extended. 

The parallel-line axiom is equivalent to the Fifth Postulate of Book I of 
Euclid's Elements and is an important axiom of Euclidean geometry. In fact, 
the foundations of non-Euclidean geometry were developed by mathematicians 
who did not accept the parallel-line axiom. Euclid's fifth postulate is given 
below: 

Euclid's Fifth Postulate: If a straight line falling on two straight 
lines makes the interior angles on the same side less than two right 
angles, the two straight lines, if produced indefinitely, meet on that 
side on which are the angles less than the two right angles. 

Along with the axioms, the other basic building block in an axiomatic 
mathematical system are the definitions. Now, unlike the dictionary defini-
tion of a word, mathematical definitions are designed to have one and only 
one interpretation. Specifically, a mathematical definition is a precise state-
ment that is used to give explicit conditions for the mathematical term be-
ing defined. Furthermore, a mathematical definition is designed to prevent 
two different mathematicians from using the same word to represent different 
mathematical ideas. For example, two mathematicians discussing the conti-
nuity of a function are basing their discussion on the following definition: 

Definition: A real-valued function f(x) is said to be continuous at 
a point XQ in the domain of / if and only if 

lim_ f(x) = lim f(x) — f(xo). 

While there are alternative definitions of the continuity of a function, they 
are all equivalent to this definition of continuity. On the other hand, consider 
what might happen with two people discussing the paint color white. Clearly, 
there can be variations in the actual color of the white paint due to the shade 
of white or the paint company that produced the paint. In fact, it is not 
unusual for a person to buy a can of white paint, paint a room, and then 
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be unsatisfied with the resulting shade of white. Therefore, to ensure the 
consistency of mathematics, it is important that mathematical definitions be 
clear, precise, and uniformly understood within the mathematical community. 

Now, an axiomatic mathematical system begins with explicitly stated 
axioms and definitions, and from these initial ideas new mathematical results 
are added using deductive reasoning. Furthermore, the addition of new math-
ematical results follows from studying and making hypotheses concerning the 
implications of the axioms and definitions. When the truth of a hypothesized 
result is not yet known, the result is called a conjecture. 

Definition 1.2.3: A conjecture is any mathematical statement that has not 
yet been proved or disproved. 

Whereas the truths of many mathematical conjectures remain unknown to-
day, one of the most famous and heavily studied conjectures, Fermat's Last 
Theorem, was more recently proved by Andrew Wiles of Princeton and his 
former student Richard Taylor. Fermat's Last Theorem is stated below. 

Fermat's Last Theorem: The equation xn + yn = zn has solutions 
in positive integers x, y, z and n only when n = 2; but there are no 
solutions for n > 2. 

Fermat's Last Theorem had been studied intensively for over 300 years 
before Wiles and Taylor finally proved this result in 1995. While Wiles' proof 
of Fermat's Last Theorem was an incredible accomplishment, even more im-
portantly, the 300 years of study on this particular problem has led to many 
important and useful mathematical results. An interesting book detailing the 
history of Fermat's Last Theorem and Wiles' work is Fermat's Enigma by 
Simon Singh (1997). 

Three of the most famous unproven mathematical conjectures are listed 
below: 

Goldbach's Conjecture: Every even integer greater than 2 can be 
expressed as the sum of two prime numbers. 

The Odd Perfect Number Conjecture: There do not exist any per-
fect odd numbers. 

The Twin Prime Conjecture: There are an infinite number of twin 
primes. 

Now, once a conjecture has been shown to be true with a mathematical 
proof, the conjecture can now be called a theorem; on the other hand, when 
a conjecture is shown not to be true, it is no longer of much interest in the 
mathematical world and is discarded. 
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Definition I.2.4: A proof'of a mathematical result is a sequence of rigorous 
mathematical arguments that are presented in a clear and concise fashion, and 
which convincingly demonstrates the truth of the given result. 

Definition 1.2.5: A theorem is any mathematical statement that can be 
shown to be true using accepted logical and mathematical arguments. 

Note that inductive reasoning is often used in the development of a con-
jecture; however, the proof of a conjecture or theorem is always based on 
deductive reasoning. In Examples 1.1.1 and 1.1.2, a mathematical conjecture 
was considered and then proved; since the conjectures in these two theorems 
have been proved, these conjectures can now be called theorems. The conjec-
tures in Examples 1.1.1 and 1.1.2 are stated below in the form of theorems 
along with their respective proofs. 

Theorem: Let x = 0.9. Then, x — 1. 

Proof: Let x = 0.9. Then 

Юх = 9.9 (1) 

lOi - x = 9x = 9 

9x = 9 

x= 1 

(2) 

(3) 

(4) 

Theorem: li cos(x) 
dx < CO. 

cos(x) 1 Proof: Since =— < —z on [l,oo) and 
X* X1 

[ f(x)dx < [ \f(x)\dx 
Ja Ja 

it follows that 

I f°° cos(a;) _, I f°° loos(x) . f°° 1 • dx = 1 < 00 
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Thus, it is true that / =— dx\ < oo. 
ΙΛ x I 

It is important to note that a mathematical proof is very different from 
an empirical proof, which is often used in the sciences, or proof beyond a 
reasonable doubt, which is used in our legal system. For example, at one 
time scientists believed beyond a reasonable doubt, on the basis of empirical 
data, that the earth was the center of the universe; however, it is now un-
derstood that the sun is the center of the universe. A mathematical proof 
must represent absolute truth, so that a theorem is absolutely true regard-
less of any and all empirical data. For example, the fact that Euclid proved 
using deductive reasoning that there are infinitely many prime numbers is ir-
refutable (i.e., absolutely true). Furthermore, a mathematical proof provides 
a sequence of rigorous logical arguments where each step of the proof and the 
connection between steps is completely justified using mathematical and/or 
logical arguments. 

Now, the proof of a theorem may be extremely long and complicated, or it 
may be very short and easily understood. A theorem that has a complicated or 
long proof is often referred to as a "deep theorem." A proof that takes a novel 
or unusual approach is often called an "elegant proof." A common feature 
in the Mathematical Association of America (MAA) publication Mathematics 
Magazine is "Proofs without Words," where a mathematical result is proved 
without using any words; a proof without words usually involves only formulas 
and/or graphical representation of the proof and should be self-explanatory. 

Similarly, the proof of a theorem might be described as complicated or 
deep when the proof is long or difficult to follow because of its complexity. 
For example, the apparent simplicity of Fermat's Last Theorem is betrayed 
by the length and complexity of its proof. In fact, the proof of Fermat's 
Last Theorem, due to Wiles and Taylor, is long and very difficult for most 
mathematicians to follow. Examples of some very important mathematical 
theorems are listed below. Note that the theorems in this list contain results 
that are based on only addition and multiplication. 

The Pythagorean Theorem: The sum of the squares of the 
lengths of the legs of a right triangle is equal to the square of the 
length of the hypotenuse. 

Fermat's Last Theorem: xn + yn = zn has no nonzero integer 
solutions for x, y, and z when n > 2. 
The Fundamental Theorem of Arithmetic: Every natural num-
ber greater than 1 either is prime or can be uniquely factored as a 
product of primes. 
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Among these three theorems, the Pythagorean theorem is one of the 
oldest and widely used theorems in mathematics, Fermat's Last Theorem is 
most likely the most famous mathematical theorem, and the Fundamental 
Theorem of Arithmetic shows that the prime numbers are the atoms from 
which the natural numbers are formed. 

Often, great contributions are made to mathematical knowledge in the 
study of a difficult problem as occurred in the pursuit to prove Fermat's Last 
Theorem. Hence, the importance of an individual theorem is based not only 
on its utility but also on its complexity or the difficulty of its proof. Moreover, 
a theorem may be referred to as a "revolutionary" theorem when its impact 
on mathematics is dramatic or far-ranging. Often a revolutionary theorem 
will be important in opening up new directions in mathematical research. An 
example of a revolutionary and very important mathematical theorem is due 
to Kurt Godei (1906-1978), who proved the following theorem in 1931 (Godei 
1931): 

Gödel's Incompleteness Theorem: In any consistent formaliza-
tion of mathematics that is sufficiently strong to axiomatize the nat-
ural numbers — that is, sufficiently strong to define the operations 
that collectively define the natural numbers — one can construct a 
true statement that can be neither proved nor disproved within that 
system itself. 

Prior to Gödel's Incompleteness Theorem, several influential mathemati-
cians believed that all mathematical truths could be logically derived. In fact, 
David Hilbert (1862-1943), Bertrand Russell (1872-1970), and Alfred North 
Whitehead (1861-1947) believed that mathematics could be expressed as an 
axiomatic system that is free of inconsistencies and is also complete. Specif-
ically, Hilbert, Russell, and Whitehead believed that an axiomatic mathe-
matical system could be constructed where true statements are always true 
regardless of method of proof (i.e., a consistent system) and that all mathe-
matical truths could be proved from the basic axioms of the system (i.e., a 
complete system). Gödel's Incompleteness Theorem shows that no mathemat-
ical axiomatic system that axiomatizes the natural numbers can be complete 
and hence, all of the mathematical truths cannot be proved from the basic 
axioms. 
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1.3 Commonly Used Mathematical Notation 

In the communication of mathematics it is often useful to write mathematical 
sentences using symbols rather than words. The reason for this is that it makes 
it easier to read, shortens the communication while conveying all the informa-
tion, and in essence creates a language of mathematics. Effectively communi-
cating mathematical ideas is like writing an essay; it requires well-composed 
sentences, paragraphs, and correct mathematical grammar. Often, a math-
ematical essay is written using a great deal of mathematical shorthand and 
thus, the reading of modern mathematics will require the knowledge of the 
symbolic language of mathematics. Over the years, mathematicians have cre-
ated their own language on the basis of standard mathematical shorthand 
(i.e., symbols used to shorten mathematical communications). A summary of 
the standard mathematical notation that used is in this text follows. 

Throughout this text several different sets of numbers will be studied. In 
particular, the collections of numbers that are discussed in this text are the 
natural numbers, whole numbers, integers, rational numbers, real numbers, 
and irrational numbers. The notation used in this text to represent each of 
these sets of numbers is given below. 

The Natural Numbers: N = {1,2,3,4, . . .} 
The Whole Numbers: W = {0,1,2,3,4, . . .} 
The Integers: Z = {0, ±1, ±2, ±3, ±4 , . . . } 

The Rationale: Q = < q : q = - for p and r φ 0 integers \ 

The Reals: R = {x : - c o < x < oo} 
The Positive Reals: R+ = {x : 0 < x < oo} 
The Negative Reals: R" = {x : -oo < x < 0} 
The Irrationals: 1 = {r : г is a real number but not rational} 

The Complex Numbers: С = {ξ : ξ = a + òz, a, b e R and г = \ / - ϊ } 

Note that notation analogous to R+ and R_ can also be used with the 
sets Z, Q, and Π. For example, Z + is used to represent the positive integers 
and Q~ would be used to denote the negative rational numbers. Also, the 
following standard notation will be used for the intervals of R: 

a. Open Intervals: The open interval containing the points lying 
strictly between two endpoints, say, a and b, is denoted by (a, b). 
This set of numbers can also be represented by a < x < b. Note 
that either a or b, or both a and b may be oo. In particular, 
R = (-00,00), R+ = (0,oo), and R~ = (-oo,0). 
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b. Closed Intervals: The closed interval containing the points lying 
between and including two finite endpoints, say, о and b, is denoted 
by [a, b]. This set of numbers can also be represented by a < x < b. 
Note that a closed interval must have finite endpoints. 

с Half-Open Intervals: The half-open/half-closed intervals contain 
all the points lying strictly between the endpoints a and 6 and either 
a or 6, but not both a and 6. The half-open intervals are denoted by 
(a, b] and [a, 6). These sets of numbers may also be represented by 
a < x < b and a < x < b, respectively. 

Example 1.3.1: Write out, using interval notation, the following sets of 
real numbers: 

a. - 1 < x < 10 
b. 0 < x < со 
с 0 <x < 10 
d. - 3 < x < -1 .5 

Solutions: 
a. (-1,10) 
b. (0,oo) 
c. (0,10] 
d. [ -3 , -1 .5! 

It is very important that mathematical results be presented using precise 
and consistent notation. Even the earliest mathematicians began develop-
ing and using a symbolic language in their presentations of mathematics. 
Moreover, in the twentieth century mathematicians began to standardize the 
symbols and notation used in modern mathematics. Some commonly used 
mathematical shorthand (i.e., symbols and notation) that is universal within 
the field of mathematics is given below: 

a. := is often used for "defined to be." For example, the notation : = 
might be used in defining the set %E that contains the even integers 
as follows: 

Ζβ := {x G Z : x = 2z for some integer г.} 

b. s.t. or Э: is often used for "such that." For example, the statement 
"there exists x > 0 such that f(x) = 0" could be written as "there 
exists x > 0 Э: f{x) = 0. 
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с € is often used for "is an element of" or "is a member of." For 
example, the statement "x is an element of R" could be written as 
"x € R." 

d. x! is used to denote "x factorial," where, for a positive integer x, 
χ! = χ ( χ - 1 ) ( χ - 2 ) · · · 3 · 2 · 1 . For example, 6! = 6-5-4-3-2· 1 = 120. 

e. Σ is mathematical shorthand for summation. For example 

7 

] T npn~l = 3p2 + 4p3 + 5p4 + 6p5 + 7p6 

n=3 

f. Π is mathematical shorthand for product. For example 

10 
Ц x*(l - χ)1 0~ ι = x(l - x)q x x2(l - x)8 ■ ■ ■ x9{l - x) x x10 

t = l 

g. V is the mathematical shorthand for "for all" or "for every" or "for 
each." The symbol V is referred to as the universal quantifier. The 
symbol V was first used by Gerhard Gentzen (1909-1945) in 1934 
according to "Earliest Uses of Some of the Words of Mathematics." 
by Jeff Miller (2006). An example of the usage of V is 

V t € { l , 2 , . . . , 1 0 } , ff(i)>10 

This statement is the mathematical shorthand for "for all г ranging 
from 1 to 10, g(i) > 10." 

h. 3 is the mathematical shorthand for "there exists" or "there is at 
least one." The symbol 3 is referred to as the existential quantifier. 
The symbol 3 was first used by Giuseppe Peano (1858-1932) in 1895 
according to "Earliest Uses of Some of the Words of Mathematics." 
by Jeff Miller (2006). An example of the usage of 3 is 

З г € {1,2, . . . ,10} Э:д(г) > 10 

This statement is the mathematical shorthand for "there exists a 
value of г between 1 and 10 such that g(i) > 10." 

i. The symbol oo is used to represent the concept of the unbounded 
quantity "infinity." Jon Wallis (1616-1703) is credited for first using 
the symbol oo to represent infinity in 1655 according to The Penguin 
Dictionary of Mathematics, third edition (Nelson 2003). For exam-
ple, x £ (0, oo) is the mathematical shorthand for the statement "x 
is an element of the open interval ranging from 0 to infinity. 
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j . The symbol ==> or —» is the mathematical shorthand often used for 
"implies"; for example, 0 < x < у ==> 0 < - < - . 

У x 
к. The symbol <==> or «-» is the mathematical shorthand for often used 

"if and only if"; for example, ab = 0 <==> a = 0 or 6 = 0. 

Example 1.3.2: Write the following sentences using as much mathematical 
notation as possible: 

a. If there exists a real number x such that ex = 10, then x = ln(10). 

b. Let a and b be real numbers. The product of a and b is zero if and only 
if a is zero or b is zero. 

Solutions: 

a. 3 x € 1 Э: ex = 10 ==> x = ln(10). 

b. Let flieR. ab = 0 <=> a = 0 or b = 0. 

Example 1.3.3: Using common English sentences, write out each of the 
statements below. 

a. 3 x £ (0, со) Э: e1 = 3. 

b. Vx e Z, 3 j / e Z Э: x + j / = 0. 
1 

e. V Ì > 0, 3 N e N Э: 

Solutions: 

< f , V n > TV. 

a. There exists a nonnegative real number x such that ex is equal to 3. 

b. For every integer x, there exists an integer у such that x + у — 0. 

c. For every e greater than 0, there exists a natural number N such that 

< ε whenever n is greater than or equal to N. 

In honor of ancient Greek mathematicians, who laid the foundation for 
modern mathematics, Greek letters are commonly used in mathematical ex-
pressions. For example, π is the universal symbol used to express a constant 
that denotes the ratio of the circumference of a circle to the diameter of that 
circle; the uppercase version of π is Π and is used as mathematical shorthand 
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to represent products. The Greek alphabet is listed in Table 1.3.1. 

TABLE 1.3.1 The Greek Alphabet 

Name 

Alpha 

[Via 

G a m m a 

Delia 

Epsilon 

Zela 

E t a 

T I I C I H 

Iota 

Kappa 

Lainlxla 

M i l 

Uppercase Symbol 

A 

В 

Г 

Δ 

E 

Z 

H 

Θ 

I 

к 

л 
м 

Lowercase 

Q 

0 
7 
δ 

e 

С 
V 
θ 

L 

К 

λ 

м 

Name 

Nu 

Xi 

Omi( run 

Pi 

П1к> 

Sicilia 

Tan 

Upsilon 

РЫ 

Clü 

Tsi 

Omega 

Uppercase Symbol 

N 

Ξ 

О 

П 

V 

Σ 

T 

Y 

Ф 

X 

Ф 

Ω 

Lowercase 

V 

ξ 
0 

7Γ 

P 
σ 

T 

V 

Φ 

X 
гр 

Ul 

Example 1.3.4: The Greek letters π, 7, Г, β, ψ and ζ are commonly 
used in mathematics as follows: 

π = ratio of circumference of every circle to its diameter Ä 3.14159 
n 

7 = lim I У -— ln(n) } » 0.577 (Euler-Mascheroni constant) 

»-00 {ti k J 
π(χ) = number of prime numbers < x 

T{k) = Г 
Jo 

x e x dx (gamma function) 

№, k) = й г Т ^ Г ( b e t a unction) 

d Г'(х) 
ψ(χ) = — (1η(Γ(χ)] = ——- (digamma function) 

ах 1(х) 
°° 1 

С(5) = / — (Riemann-Zeta function) 
ί.—, ns 
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EXERCISES 

1.1 Briefly explain how inductive and deductive reasoning differ. 

1.2 Briefly explain how a theorem differs from a 

a. Corollary 
b. Conjecture 
с Axiom 
d. Lemma 
e. Definition 

1.3 Using the local library or the Internet, identify and summarize two well-
known and unproven mathematical conjectures. 

1.4 Briefly explain how an axiom and a definition differ. 

1.5 Using the Internet, find short biographies of the following Greek mathe-
maticians: 

a. Thales 
b. Euclid 
с Pythagoras 

1.6 Using the Internet, find short biographies of the following mathemati-
cians: 

a. Gauss 
b. Godei 
c. Cantor 
d. Hilbert 
e. Riemann 
f. Fermat 
g. Russell 
h. Euler 
i. Fibonacci 

1.7 Using the local library or the Internet, find statements of the following 
mathematical results: 

a. Zorn's lemma 
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b. The parallel postulate 
с The Central Limit Theorem 
d. Fatou's lemma 
e. Heine-Borei theorem 

1.8 Using the local library or the Internet, find three different definitions of 
"continuous function." 

1.9 Write out each of the following sentences using as much mathematical 
notation as possible: 

a. For every epsilon greater than 0, there exists a delta greater than 0 
such that | /(x) — f(y)\ is less than epsilon whenever |x — y\ is less 
than delta. 

b. If n is a natural number and n is an odd number, then there exists 
an integer к such that n = 2k + 1. 

с If n is a natural number and n is an even number, then there exists 
an integer к such that n = 2k. 

nln + 1) 
d. The sum of the first n natural numbers is — - . 
e. If x is strictly between 0 and 1, then xn is less than 1 for all n in the 

natural numbers. 

1.10 Translate each of the following mathematical sentences into English: 

a. 3 a € R B: 0a > 2. 
П 

b. If V n € N, Fn+2 = F n + 1 + Fn, then ^ Fn = Fn+2 - 1. 
i-l 

с V г/> € 1 + , 3 p > О Э: ρψ < 1 and - > 1. 
P 

n 

d. If n € N, then Д г = n!. 
i = l 



Chapter 2 

An Introduction to Symbolic Logic 
Mathematical logic and symbolic logic form the foundation on which all of 
modern mathematics is built. George Boole (1815-1864) is primarily respon-
sible for uniting mathematics and logic. Boole's publication of The Math-
ematical Analysis of Logic, Being an Essay towards a Calculus of Deduc-
tive Reasoning (Boole 1847) is considered by many to be the starting point 
for the axiomatic formalization of mathematics. Prior to Boole's work, de-
ductive reasoning had been utilized by many, if not most, mathematicians. 
The list of the most influential mathematicians who are credited with using 
deductive reasoning and strong mathematical logic includes Aristotle, Isaac 
Newton (1642-1727), Gottfried Leibniz (1646-1716), Leonhard Euler, and 
Karl Friedrich Gauss (1777-1855). Gottlob Frege (1848 1925) extended and 
strengthened Boole's work with his development of the predicate calculus. 
In fact, Frege is generally credited with introducing modern symbolic logic 
to the field of mathematics. A very good discussion of mathematical logic 
can be found in Mathematics of the 19th Century edited by Kolmogorov and 
Yushkevich (2001). 

The foundation of modern mathematics (i.e., axiomatic deductive math-
ematics) is based entirely on deductive reasoning and mathematical logic. 
Therefore, an important prelude to the discussion of theorems, corollaries, 
lemmas, and their proofs is an introduction to mathematical logic. Math-
ematical logic is an area of mathematics/philosophy that studies the truth 
of mathematical statements along with the implications of these statements. 
Furthermore, every mathematical result, including axioms, definitions, the-
orems, and proofs, must be composed of well-defined and logically correct 
statements. Also, the communication of mathematics requires the use of cor-
rect mathematical grammar and sound logical arguments. 

2.1 Statements and Prepositional Functions 

Mathematics is communicated through the use of mathematical statements 
and sentences that are used in the axioms, definitions, theorems, proofs, and 
discussions of mathematical results. The definition of a logical statement is 
given below. 

Definition 2.1.1: A statement or proposition is a declarative sentence that 
is either true or false. 

17 
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Example 2.1.1: Determine which of the following mathematical sentences 
are statements: 

a. Is 2 a solution to x2 - 4 = 0? 
b. x2 - Ax + 4 = 0. 
с x2 — 4x + 4 > 0 for every real number x. 
d. f(x) is a continuous function. 
e. |x| is an everywhere differentiable function. 

Solutions: 

a. No, this sentence is not a statement since this is an interrogative sentence. 
b. No, this sentence is not a statement since the value of x needs to be 

known in order to determine the truth of this sentence. 
с Yes, this sentence is a statement since x2 - Ax + 4 = (x - 2)2, which is 

greater than or equal to 0 for every real number, so this sentence is true 
no matter what the value of x is. 

d. No, this sentence is not a statement since the explicit form of the function 
f(x) must be known in order to determine the truth of this sentence. 

e. Yes, this sentence is a statement since |x| is not differentiable at x = 0, 
and hence this sentence is false. 

Note that a statement is a declarative sentence and not an imperative, 
interrogative, or exclamatory sentence. For example, "v2 is an irrational 
number" is a statement; however, "Is y/2 an irrational number?" is not. 
Furthermore, as seen in Example 2.1.1, some mathematical sentences are not 
logical statements. In particular, when a mathematical sentence involves a 
variable, then the truth of the mathematical sentence will depend on the 
values of the variables. For example, the truth or falsity of the mathematical 
sentence in Example 2.1.1 part (b) depends on the value of x; if x = 2, then 
this sentence is true, and it is false for any other value of x. 

Definition 2.1.2: A declarative sentence P(x) involving a variable x that 
takes on values in a set Δ is said to be a propositional function if and only 
if P(x) has a well-defined truth value for each value of x in Δ. The set Δ is 
called the domain of the propositional function P{x). 

Note that a propositional function is a declarative sentence containing 
a variable whose truth depends on the specific value of the variable. Thus, 
the truth or falsity of a propositional function cannot be determined without 
knowing a specific value of the unknown variable. For example, the declarative 
sentence "x2 —4 = 0" is a propositional function that is true when x = ±2 and 
false otherwise. However, it is possible for a declarative sentence involving a 
variable to be true (or false) for all values of the variable, and hence such 
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a sentence is actually a statement and not a propositional function. For 
example, the sentence "x2 + 4 = 0 has no real solutions" is a declarative 
sentence that is always true and therefore is a statement, not a propositional 
function. Furthermore, note that by assigning a value, say, x = aro, to the 
variable x in a propositional function P(x), P(xo) becomes a statement. 

Example 2.1.2: Determine which of the following sentences are statements 
and which are propositional functions: 

a. x = 2 is a solution to f(x2 — 4) = 0. 
b. ex > 0 for every real number x. 
с /(2) = 7. 
d. f(x) is a differentiable function. 
e. lim f(x) = 0. 

i—·1 

Solutions: 

a. This sentence is a propositional function since the explicit form of the 
function f(x) is not specified. 

b. This sentence is a statement since the value of e1 is greater than 0 for 
every real number x. 

с This sentence is a propositional function since the explicit form of the 
function f(x) is not specified. 

d. This sentence is a propositional function since the explicit form of the 
function f(x) is not specified. 

e. This sentence is a propositional function since the explicit form of the 
function f(x) is not specified. 

A mathematical theorem can be composed of both statements and propo-
sitional functions. For example, the theorem "\/2 is an irrational number." 
is simply a statement. However, the theorem stated below is based on the 
two propositional functions "f(x) is differentiable at x = c" and "f{x) is 
continuous at x = c." 

Theorem: If f(x) is differentiable at x — c, then f(x) is continuous 
at x — c. 

2.2 Combining Statements 

In the previous section, simple statements concerning a single object were 
discussed; however in order to state definitions, theorems, and proofs, more 
complicated statements are usually needed. In particular, it will often be 
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necessary to combine simple logical statements to form a compound statement 
that is based on more than one object and the use of the logical operators 
OR, AND, and NOT. The definitions of these compound statements are given 
below. 

Definition 2.2.1: Let P and Q be statements. The statement "P AND Q" 
is called the conjunction or meet of the statements P and Q and is denoted 
symbolically by P Л Q. 

Definition 2.2.2: The statement "P OR Q" is called the disjunction or join 
of the statements P and Q and is denoted symbolically by P V Q. 

Definition 2.2.3: The statement "NOT P" is called the negation of the 
statement P and is denoted symbolically by ->P. 

Now, given two statements P and Q, a new statement can be created 
using any combination of Л, V, and/or -> to combine the statements P and 
Q. It is important to note that (1) the statement P Л Q is true only when 
both of the statements P and Q are true and (2) the statement P V Q is true 
when either of the statements P and Q is true. That is, since P Л Q requires 
both P and Q to be true in order for P Л Q to be true, while P V Q requires 
only that at least one of the statements P and Q is true in order for P V Q to 
be true, it follows that P Л Q is a more restrictive statement than is P V Q. 
Also, the statement -> P will be true only when the statement P is false. 

Example 2.2.1: Consider the statement 5':="ln(x) is continuous at x = 3 
and 13 is a prime number." The statement S consists of the two statements 
P:="ln(z) is continuous at i = 3" and Q: = " 13 is a prime number." Fur-
thermore, 5 is a true statement because both of the statements P and Q are 
true. 

Example 2.2.2: Consider the statement 5":="(-l)2 > 0 and 3 is a root 
of a;2 — 3x + 3 = 0. The statement S is composed of the two statements 
P ~ " ( - l ) 2 > 0" and Q:="3 is a root of x2 - 3x + 3 = 0." Furthermore, S is 
a true statement since the statement P is true. 

Example 2.2.3: Consider the statement P: = "4 divides 17," then the nega-
tion of P is -iP="4 does not divide 17." In this case, P is a false statement 
meaning that ->P is true. 

Example 2.2.4·' Let P: = "Every odd number is a prime number," Q: = "4 
divides every even number," P:="3 is larger than e," and S: = "3 is smaller 
than 7Г." Express in sentence form and then determine the truth of each of 
the following compound statements: 
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a. PAQ 

b. -^PV^Q 
c. - Я Л -.Q 
d. RAS 

Solutions: 

a. The statement P Л Q can be written as "Every odd number is a prime 
number and 4 divides every even number." This statement is false since 
neither of two these statements is true. 

b. The statement P V ->Q can be written as "Every odd number is a prime 
number or 4 does not divide every even number." This statement is true 
since the statement -*Q is true. 

с The statement ->P A -<Q can be written as "Every odd number is not a 
prime number and 4 does not divide every even number." This statement 
is true since both of these statements are true. 

d. The statement R A S can be written as "3 is larger than e and 3 is smaller 
than тт." This statement is true since both of these statements are true. 

2.3 Truth Tables 

Since a statement must be either true or false, there are two states of nature 
for any statement P that can be summarized in a truth table as shown below: 

Also, since -1P and P always have the opposite truth values, it follows 
that when P is true, -· P is false and vice versa. Thus, the possible states of 
nature for a statement P and its negation (-■ P) can be summarized in the 
following truth table: 

P and - P 

P ^P 

T F 

F T 
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Now, when a compound statement 5 is created from more than one state-
ment, the truth table for S must reflect all possible states of nature for each of 
the statements used to build S. For example, when the statement of interest 
is a compound statement based on the two statements P and Q, then there 
are four possible states of nature, tabulated as follows: 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

If the statement of interest is a compound statement based on the three 
statements P, Q, and Я, then there are eight different states of nature that 
must be accounted for in the truth table. The eight possible states of nature 
for the statements P , Q, and R are given below: 

P 

T 

T 

T 

T 

F 

F 

F 

F 

Q 
T 

T 

F 

F 

T 

T 

F 

F 

R 

T 

F 

T 

F 

T 

F 

T 

F 

In general, when a compound statement is based on n different state-
ments, there will be 2n possible states of nature to account for in the truth 
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table. For example, if a compound statement is built from 10 different state-
ments, then there will be 210 = 1024 states of nature in the truth table. 

The truth tables for the compound statements "P AND Q" and "P OR 
Q" are given below: 

P Л Q P V Q 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

P Л Q 

T 

F 

F 

F 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

P V Q 

T 

T 

T 

F 

Note that the statement "P AND Q" is true only when both of the state-
ments P and Q are true, and the statement "P OR Q" is false only when both 
of the statements P and Q are false. 

When forming complex truth tables it is often useful to build the truth 
table according to the following sequence of steps. First, list the statements 
and their possible states of nature. Next, create intermediate columns that 
lead to the statement of interest. Finally, the last column to be added to the 
table should be the column showing the truth of the statement of interest. 
This approach is illustrated in the following example. 

Example 2.3.1: Let P, Q, and R be statements. Write out the truth table 
for P V (Q А -.Д). 

Solution: The first step in the solution is to list the eight possible states of 
nature for the statements P , Q, and R. Next, a column for the statement 
Q A ->/? will be added to the table, and then its truth will be determined. 
Finally, add a column for the statement of interest P V (Q A -> R) to the 
table, and then determine the truth values for this statement. The resulting 
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truth table for P V (Q Л -> Я) is shown below: 

PV {Q A^R) 

P 

T 

T 

T 

T 

F 

F 

F 

F 

Q 

T 

T 

F 

F 

T 

T 

F 

F 

R 

T 

F 

T 

F 

T 

F 

T 

F 

Q A - . f i 

F 

T 

F 

F 

F 

T 

F 

F 

P V (Q Л --Ä) 

T 

T 

T 

T 

F 

T 

F 

F 

Two special types of statement that are often encountered are (1) state-
ments that are always true and (2) statements that are always false. A state-
ment that is always true is called a tautology, and a statement that is always 
false is called a contradiction. 

Definition 2.3.1: A statement that is true for all of its states of nature is 
called a tautology, and a statement that is false for all of its states of nature 
is called a contradiction. 

Since at least one of the statements P and ->P must be true, the statement 
"P OR -iP" (P V -> P) is an example of a statement that is a tautology. Also, 
since it is impossible for both P and ->P to be true, it follows that "P AND 
-iP" (P Л -i P) is always false and hence, the statement "P AND ->P" is a 
contradiction. 

Now, one approach that can be used to determine whether a compound 
statement is either a tautology, contradiction, or neither is to simply create 
the truth table for the statement. This approach is illustrated in the following 
example. 

Example 2.3.2: Show that 

a. P V -iP is a tautology. 
b. P Л ^ Ρ is a contradiction. 
c. -п(Р Л Q) V (P V Q) is a tautology. 
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Solutions: 
a. The truth table for P V -iP is given below: 

P V -.P 

25 

P 

T 

F 

~>P 

F 

T 

P V --P 

T 

T 

b. The truth table for P Л ->Р is given below: 

Р Л -.P 

P 

T 

F 

- .P 

F 

T 

P Л--Р 

F 

F 

с The solution to part (c) is left as an exercise. 

The following theorem provides a method for creating tautologies and 
contradictions. In particular, this theorem shows that the disjunction of any 
statement with a tautology is also a tautology and that the conjunction of 
any statement with a contradiction is a contradiction. 

Theorem 2.3.1: Let P be a statement, T a tautology, and С a contradiction. 
Then 

(i) P V T is a tautology. 
(ii) P Л С is a contradiction. 

Proof: Let P be a statement, T a tautology, and С a contradiction. 
Proof of part (i): The truth table for P V T is given below: 

P V T 

P 

T 

F 

T 

T 

T 

P V T 

T 

T 
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Proof of part (it): The proof of part (ii) is left as an exercise. 

Now, it turns out that tautologies play an important role in mathematics 
since a mathematical definition is a tautology. Contradictions also play a key 
role in mathematics. In fact, finding a contradiction will be the critical step 
in a very useful method of proof called "proof by contradiction" or "reductio 
ad absurdum." 

In mathematics there is often more than one way to represent a quantity 
or state a mathematical result. For example, one might write —7 < x ~ у < 7 
or equivalently, \x — y\ < 7 to represent all the pairs (x,y) whose difference 
is less than 7. Clearly, these two expressions have the same meaning. Simi-
larly, there may often be more than one way to represent a compound logical 
statement such that each representation has the same meaning. When two 
compound statements, say, X and Y, are based on the same set of statements 
and have the same truth tables, then X and Y have the same logical meaning 
and are said to be logically equivalent. 

Definition 2.3.2: Two statements X and Y are said to be logically equivalent 
when they have identical truth tables. When two statements X and Y are 
logically equivalent, this will be denoted by X <F> Y. 

Example 2.3.3: Let P and Q be statements. Show that the statements 
-1 P V -^Q and ->(P Л Q) have identical truth tables, and hence they are 
logically equivalent. 

Solution: The truth table for both -iP V -> Q and ~·(Ρ Л Q) is given below: 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

-.P V ^Q 

F 

T 

T 

T 

- ( P A Q ) 
F 

T 

T 

T 

Clearly, the truth tables for these two statements are the same and thus 
these two statements are logically equivalent and have the same logical impli-
cations. Now, if two compound statements X and Y are based on the same 
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set of statements and are also logically equivalent, then the statement X may 
be substituted for the statement Y. Substitution often can be used to simplify 
a compound statement or help in determining the truth of a compound state-
ment. The next several theorems provide some useful logical equivalences. 

Theorem 2.3.2: Let P be a statement, then ->(-iP) is logically equivalent 
to P. 

Proof: Let P be a statement. To prove this theorem, it will be 
shown that the truth tables for the statements -> (-1 P) and P are 
exactly the same. 

P 

T 

F 

--P 

F 

T 

- , ( - ,Ρ) 

T 

F 

Since the truth tables for P and -> (-> P) are identical, it follows that 
P and -1 (-1 P) are logically equivalent statements. 

■ 

Theorem 2.3.3: Let P and Q be statements. Then 

(i) P AQ <* Q Л P. 

(ii) P V Q <=> Q V P. 

Proof: Let P and ζ> be statements. 

Proof of part (i): Consider the truth tables for P Л Q and Q Л Р; 

P 

T 

T 

F 

F 

Q 

T 

F 

T 

F 

P Л Q 

T 

F 

F 

F 

Q л Р 

T 

F 

F 

F 
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Since the truth tables for P A Q and Q А Р are identical, it follows 
that P A Q and Q А Р are logically equivalent statements. 

Proof of part (it): The proof of part (ii) is left as an exercise. 

■ 

Theorem 2.3.3 shows that the order in which the statements are combined 
in a conjunction or disjunction does not matter; that is, Л and V are reflexive 
or commutative operations. The next theorem provides a very useful logical 
equivalence for the negations of the disjunction and conjunction statements. 

Theorem 2.3.4 (DeMorgan's Laws): Let P and Q be statements. Then 

(i) -i (P V Q) is logically equivalent to -i P A -> Q. 

(ii) ι ( Ρ Λ < 3 ) is logically equivalent to -> P V ->Q. 

Proof: Let P and Q be statements. 

Proof of (i): The truth table for -i (P V Q) and -i P A -< Q is given 
below: 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

P V Q 

T 

T 

T 

F 

- ( P V Q ) 

F 

F 

F 

T 

-•P л -.д 
F 

F 

F 

T 

Since the last two truth columns are identical, it follows that 
-i (P V Q) is logically equivalent to -> P A ~>Q. 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

• 
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The following theorem shows that V can be distributed over Л and vice 
versa. In fact, the distributive laws for distributing V over Л and Л over V are 
analogous to the arithmetic law for distributing multiplication over addition 
(i.e., a(b + c) = ab + ac). 

Theorem 2.3.5 (The Distributive Laws): Let P , Q, and R be statements. 
Then 

(i) P V (Q Л R) is logically equivalent to (P V Q) Л (P V R). 

(ii) P Л (Q V R) is logically equivalent to (P Л Q) V (P Л R). 

Proof: Let P, Q, and R be statements. 

Proof of part (i): The truth table for the statements P V (Q A R) 
and (P V <5) Л (Р V Д) is given below: 

P 

T 

T 

T 

T 

F 

F 

F 

F 

Q 

T 

T 

F 

F 

T 

T 

F 

F 

R 

T 

F 

T 

F 

T 

F 

T 

F 

P V (Q Л R) 

T 

T 

T 

T 

T 

F 

F 

F 

{PV Q) Л (P\/ R) 

T 

T 

T 

T 

T 

F 

F 

F 

Since the last two truth columns are identical, it follows that 
P V (Q Л R) is logically equivalent to (P V Q) Л (P V R). 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

The previous theorems are often used to simplify or rewrite a particular 
statement in a logically equivalent form that will be easier to work with. In 
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particular, the substitution of logically equivalent statements is often used to 
simplify complex statements, making them easier to comprehend. Example 
2.3.4 illustrates how DeMorgan's laws and the Distributive law can be used. 

Example 2.3.3: Let P, Q, and Я be statements. Find a logically equivalent 
form that simplifies each of the statements below: 

a. (P V Q) Л (P V -.Д) 
b. -.(P V Q) Л Я 

Solutions: Let P , Q, and R be statements: 

a. (P V Q) л (Р V -.Я) 

(P V Q) Л (P V -Я) о Р V (Q Л -Я) 
v v / 

By Theorem 2.3.5 

b. -.(P v ->Q) Л Я 

->(P v -<?) л Я <=> ^ Ρ л -.^Q л Я 
By Theorem 2.3.4 

<=> -.Р Л Q Л Я 
ч v ^ 

By Theorem 2.3.2 

The following theorems show that DeMorgan's laws and the Distributive 
laws can be generalized from dealing with two statements to three statements. 
Note that this type of generalization is often used to extend a property from 
two items to three, then from three items to four, and so on. 

Theorem 2.3.6: Let P , Q, and Я be statements. Then 

(i) - ( P V Q V Я) «* ~>P A 4 ? Л -.Я 

(ii) -.(P Л Q Л Я) <=> -.P V -.Q V -нЯ 

Proof: Let P , Q, and Я be statements. 

Proo / of part (i): Define S = Q V Я. Then 

-•(P V Q V Я) <^ -.(P V 5) « - .p л -.S 
By Theorem 2.3.4(i) 

« - . Р Л -.(Q V P ) <=> - P Л -i<5 Л -.Я 
v v / 

By Theorem 2.3.4(i) 
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Proof of part (it): The proof of part (ii) is left as an exercise. 

Theorem 2.3.7: Let P , Q, R, and S be statements. Then 

(i) P V (Q Л R Л S) <=» (P V Q) Л (P V R) A (P V S) 

(ii) P Л (Q V Л V 5) о (Р Л (?) V (P Л Я) V (P Л 5) 

Proof: The proof of Theorem 2.3.7 is left as an exercise. 

■ 

2.4 Conditional Statements 

Mathematical sentences, especially in the case of theorems and their proofs, 
are often stated in the form "statement/propositional function P implies state-
ment/propositional function Q." Statements of this form are called condi-
tional statements, and conditional implication is another way of combining 
two or more statements to create a compound statement. 

Definition 2.4-1: Let P and Q be statements. Then the declarative sentence 
"P implies Q" is called a conditional statement and is denoted by P —> Q. 

In a conditional statement P —» Q, the statement P , called the an-
tecedent, is said to be a sufficient condition for Q; the statement Q is called 
the consequent and is said to be a necessary condition for P . Other ways of 
stating P — Q include "If P, then Q" "If P is true, then <3 is true," "P 
only if Q," "Q if P," "P is a sufficient condition for Q," "Q is necessary for 
P," "Q assuming P," "Q whenever P" , and "Q given P." The truth table 
for P —> Q is given below: 

P - Q 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

P -* Q 
T 

F 

T 

T 
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Note that "P implies Q" is more often than not stated as "If P is true, 
then Q is true" or simply "If P, then Q." Furthermore, from the truth table 
for P —» Q it can be seen that when the statement P is false, the conditional 
statement is always true; that is, if P is not true, a truth value still needs 
to be assigned for P —> Q in order for P —> Q to be a statement. Thus, it 
seems reasonable to assign the conditional statement P —> Q the truth value 
true since the P is sufficient to conclude Q; however, this does not mean 
that Q follows only from P. For example, consider the conditional statement 
"If today is Thursday, then Math 222 meets." If the true state of nature is 
Wednesday, this does not preclude Math 222 from meeting and thus cannot 
negate this conditional statement. 

The following theorem shows that P —> Q is logically equivalent to the 
disjunction of the statements -> P and Q. 

Theorem 2.4.1: If P and Q are statements, then P —» Q <=> ->P V Q. 

Proof: 

P 

T 

T 

F 
F 

Q 
T 

F 

T 
F 

P - Q 
T 

F 

T 

T 

->P V Q 
T 

F 

T 
T 

Corollary to Theorem 2.4.1: -. (P -> Q) <i=> P Л -~Q. 

Proof: This result follows directly from Theorem 2.4.1 and DeMor-
gan's laws: 

-. (P -> Q) <=> -i(-.P V Q ) « -.-.P Л -n<3 <(=> P Л -<2 

Note that since P —» Q is logically equivalent to ->P V Q which is logically 
equivalent to ->Q —> -<P. Thus, it follows that P —> Q is logically equivalent 
to ->ζ) —> -i P , also. 
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2.4.1 Converse and Contrapositive Statements 

Two special conditional statements that are related to P —> Q are the con-
verse and contrapositive to P —» Q. The definitions of the converse and 
contrapositive statements to P —> Q are given below. 

Definition 2.4-2: Let P and Q be statements. The converse of the statement 
P —» Q is Q —> P, and the contrapositive of the statement P —* Q is 
-nQ - , -,f>. 

Students often confuse the two statements P —♦ Q and Q —> P. In fact, 
it is not uncommon for a student to think that the statements P —» Q and 
Q —» P are logically equivalent. The following truth table shows that these 
two statements are not logically equivalent: 

P 

T 

T 

F 

F 

Q 

T 

F 

T 

F 

P - Q 

T 

F 

T 

T 

Q - , P 

T 

T 

F 

T 

The truth table for the contrapositive and converse statements of P —> Q 
are given below: 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

P - Q 

T 

F 

T 

T 

- Q - , - P 

T 

F 

T 

T 

Q ^ P 

T 

T 

F 

T 

Note that the statements P - , Q and Q —> P are not logically equivalent 
whereas the statements P -» Q and -i Q —> ->P are logically equivalent. 
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Theorem 2.4.2: Let P and Q be statements. Then, P -> Q and -><2 —► -iP 
are logically equivalent. 

Proof: Let P and <5 be statements: 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

P -> Q 

T 

F 

T 

T 

- ,Q -> -nP 

T 

F 

T 

T 

Since the last two truth columns are identical, it follows that P —> Q 
and -i Q —» -tP are logically equivalent. 

Thus, a conditional statement and its contrapositive are logically equiv-
alent; however, the converse of a conditional statement is not logically equiv-
alent to the statement. In other words, P —> Q о ->Q —♦ ~>P, but 
p _> Q ф> Q —» p . Also, in Chapter 3 it will be shown that it is possible 
to prove a theorem of the form "If P , then Q" by proving the contrapositive 
theorem "If not Q, then not P" . 

Example 2.4-1: Write out the converse and contrapositive of 

a. If x > 3, then f(x) < 0. 
b. If f'(x) > 0 on [a,b], then /(x) is increasing on [a, 6]. 
с If ab — 0, then a — 0 or 6 = 0. 
d. If / (x) is concave upward on an interval [a,6], then /"(x) > 0 on the 

interval [a, 6]. 

Solutions: Recall that the converse of the statement P —» Q is Q —» P and 
the contrapositive is -iQ —> ->P. 

a. If x > 3, then f{x) < 0. 
Converse: If / (x) < 0, then x > 3. 
Contrapositive: If / (x) > 0, then x < 3. 
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b. If f'(x) > 0 on [a, b], then f(x) is increasing on [a, 6]. 
Converse: If f(x) is increasing on [a, 6], then f'{x) > 0 on [a,b]. 
Contrapositive: If f(x) is not increasing on [a, 6], then f'(x) У> О on 
[a, 6]. 

c. If ab = 0, then a = 0 or b = 0. 
Converse: If a = 0 or 6 = 0, then αό = 0. 
Contrapositive: If α φ 0 and 6 ^ 0 , then αό ^ 0. 

d. If / (x) is concave upward on an interval [a, 6], then /" (x) > 0 on the 
interval [a, 6]. 

Converse: If f"(x) > 0 on the interval [a,b], then f(x) is concave 
upward on an interval [o, Ò]. 
Contrapositive: If f"(x) ^ 0 on the interval [a, b], then f(x) is not 
concave upward on an interval [a, b\. 

2.4.2 Biconditional Statements 

Another compound statement that is related to the conditional statement 
P —> Q is the conjunction of the statements "If P, then Q" and "If Q, 
then P" or (P —> Q) A (Q ~> P). The compound conditional statement 
( P —> Q) Л (Q —» P) called a biconditional statement and is defined below. 

Definition 2.4-3: Let P and Q be statements. The biconditional statement 
"P if and only if Q" is the statement (P -> Q) Л (ζ> -> P) and is denoted 
by P - Q. 

Note that the statement P «-> Q is true only when both of the statements 
P —> Q and Q —* P are true. That is, P ♦-> Q is true only when both the 
conditional statement P —> Q and its converse are true. Also, P «-> Q is 
logically equivalent to Q <-» P. To see this, consider the following truth table 
for P ^ Q and Q *-> P : 

P 

T 

T 

F 

F 

Q 
T 

F 

T 

F 

P -*Q 
T 

F 

T 

T 

Q -» P 

T 

T 

F 

T 

P ~ Q 
T 

F 

F 

T 

Q ♦-» P 

T 

F 

F 

T 
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Now, recall that definitions are tautologies and, moreover, will often be 
stated as a biconditional statement. For example, consider the definition of 
the continuity of a function / at a point x = с given below. 

Definition: A function / (x) is said to be continuous at the point 
x = с if and only if с is in the domain of f(x) and lim / (x ) = / (c) . 

X—*C 

Since this is a biconditional statement, it follows that f(x) is continuous at 
x = с if с is in the domain of the function / and lim f(x) = /(c) (P —> Q), 

x—*c 

and if с is in the domain of the function / and lim /(x) = / (c) , then /(x) is 
X—*C 

continuous at x = с (Q —> P). 
Biconditional statements are also often used in the statement of a theo-

rem. An example of a biconditional theorem is given below. 
Theorem: Let a and b be real numbers. Then, ab = 0 if and only 
if a = 0 or 0 = 0. 

2.5 Propositional Functions and Quantifiers 

Recall that a statement is any declarative sentence, and a propositional func-
tion or predicate is any declarative sentence involving a variable for which 
the declarative sentence has a well-defined truth value for each specific value 
of the variable. Also, recall that given a specific value for the variable in a 
propositional function, the propositional function evaluated at this value is a 
statement. For example, consider the propositional function "x2 — 4 = 0," 
which is false for x = 3 and true for x = —2. Moreover, "x2 — 4 = 0" is false 
for any values of x other than x = —2 or x = 2. 

Definition 2.5.1: In a propositional function, a variable is any term whose 
value is not explicitly stated, implied, or understood and whose value is needed 
in order to determine the truth or falsity of the proposition. The set of possible 
values of a variable is called the domain of the propositional function and is 
denoted by Δ. 

For example, the sentence "\/2 is an irrational number" is a statement 
since it is a declarative sentence that is true. On the other hand, the sentence 
"/(x) is a rational function" is a propositional function, with variable f(x), 
since the truth of this sentence cannot be determined without knowledge of 
/ (x) . Moreover, most mathematical sentences, results, theorems, and proofs 
will consist of a combination of statements and propositional functions. For 
example, in the following mathematical sentence 5:="x is an integer" the 
term x is a variable making S a propositional function. An explicit value of 
x is needed to determine the truth of this sentence. On the other hand, the 



Propositional Functions and Quantifiers 37 

sentence "If x is a real number, then x2 — 2x + 2 > 0" is true for every real 
number x and hence is a statement and not a propositional function. 

Example 2.5.1: In each of the propositional functions given below, deter-
mine the variable(s): 

a. 2T — 1 is a prime number. 
b. 2x is even and 2x + 1 is odd. 
с f'(x) < 0 on the interval I. 
d. | — i | = |x|. 

e. If f(x) is difFerentiable at x = xo, then f(x) is continuous at x = xo-

Solutions: 

a. In the propositional function "21 - 1 is a prime number," x is the variable. 
b. In the propositional function "2x is even an 2x + 1 is odd," x is the 

variable. 
с In the propositional function "For the function f(x), f'{x) < 0 on the 

interval I," f(x) and I are variables. 
d. In the propositional function "| — x\ — x," x is the variable. 
e. In the propositional function "If / (x) is difFerentiable at i = xo, then 

/(x) is continuous at x — xn," f{x) and xo are the variables. 

For notational purposes, let P(x) be a propositional function that de-
pends on a variable x. Often a mathematical sentence will involve a state-
ment such as for every x in the set Δ, P{x) is true or there exists an x in the 
set A such that P{x) is true. The operator "for every" is known as the uni-
versal quantifier, and the operator "there exists" is known as the existential 
quantifier. The universal and existential quantifiers can be used with either a 
collection of statements or propositional functions in creating new statements 
or propositional functions. 

Definition 2.5.2: The quantifying clause "for every" is called the universal 
quantifier and is denoted by V. 

Definition 2.5.3: The quantifying clause "there exists" is called the exis-
tential quantifier and is denoted by 3. 

Note that the universal quantifier V can be used to represent each of 
the following equivalent quantifying clauses for every, for each, and for all; 
analogously, the existential quantifier 3 can be used to represent the following 
equivalent quantifying clauses there exists, there is at least one, and there is 
some. 



38 An Introduction to Symbolic Logic 

Example 2.5.2: Consider the declarative sentences 5:="x2 + 4 ψ 0 for all 
real numbers x" and T:="x2 - 4 = 0 for some real number x." Write out 
these sentences using the universal and existential quantifiers. 

Solution: S can be written as V x £ R, x2 + 4 φ 0, and T can be written 
as 3 x e К Э: х2 - 4 = 0. Furthermore, since S and T are declarative 
statements that are true, it follows that they are not propositional functions. 
Thus, the value of x is not important, except for being in R, in determining 
the truth of these declarative sentences. Hence, x is not a free variable in 
either S or T. 

Now, let P(x) be a propositional function that depends on a variable x 
and let Δ = {xi,X2,X3, · · ■ , i n } be the set of possible values of x. Then, the 
propositional function V x € Δ, P{x) is logically equivalent to 

P(xi) A P{x2) Л P(x3) · ■ · Л Р{Хп) 

since both of these propositional functions will be true if and only if every one 
of the propositional functions, P(xi) , P(x2), ■ ■ ■, P{xn) is true. Analogously, 
3 x g Δ, P(x) is logically equivalent to 

P ( I I ) V P ( I 2 ) V P ( I 3 ) - - - V P ( I „ ) 

since both of these propositional functions will be true if and only if at least 
one of the propositional functions P(xi) , P(x2), ■ · ·, P{Xn) is true. 

Example 2.5.3: Write the following statements using the existential and 
universal quantifiers where appropriate: 

a. For every positive real number x, x3 - 2x2 + x > 0. 
b. There exists a real number x such that x2 — 3x — 4. 
с For every positive real number 6, there exists a positive number <5 such 

that \f(x) — / ( a ) | < e whenever \x - a\ < 6. 
d. For every positive real number ε, there exists a natural number N such 

that \an — a\ < e whenever n > N. 

Solutions: 

a. Using the universal quantifier, this mathematical sentence can be written 
as V x > 0, x3 - 2x2 + x > 0. 

b. Using the existential quantifier, this mathematical sentence can be writ-
ten as 3 x e R Э: x2 - 3x = 4. 

с Using the universal and the existential quantifiers, this mathematical 
sentence can be written a s V e > 0 , 3 < $ > 0 Э: \f(x) — f(a)\ < e 
whenever \x — a\ < <5. 



Propositional Functions and Quantifiers 39 

d. Using the universal and the existential quantifiers, this mathematical 
sentence can be written as V e > 0, 3 N € N Э: \an — a\ < e whenever 
n > N. 

Theorem 2.5.1: Let Δ = {χχ,Χ2,... ,xn} and let P(x) be a propositional 
function on Δ. Then 

(0 V I É A , P(x) <=> 3 x e Δ Э: ~>P(x). 

GO 3 x£ A 3: P(x) о V x £ A, ^P(x). 

Proof: Let Δ = { i i , i 2 , . . . , i „ } , and let P(x) be a propositional 
function on Δ. 

Proof of part (i): Since 

V x € Δ, P(x) <=> P{xi ) Л Р(х2) Л P(x3) · · ■ Л Р{хп) 

it follows that 

V x e A, P{x) о - . [ Р ( ц ) Л Я ( 1 2 ) Л Р ( 1 з ) - - - Л Р ( ж „ ) 

Now, by DeMorgan's law for negating Л it follows that 

P(xi) Л P(x2) A P(x3) · · · Л Р(хп) 

« - . Ρ ( ΐ ι ) ν - ι Ρ ( χ 2 ) ν - . Ρ ( ι 3 ) · · · ν - . ί ' ( χ Ι ι ) 

<=> 3 x € Δ, - iP(i) 

Th us, V x e A, P(x) &■ 3 x £ A 3: ->P(x). 

Proof of part (it): The proof of part (ii) is left as an exercise. 

Note that the result of Theorem 2.5.1 is that negating a V statement 
produces a 3 statement and negating an 3 statement produces a V statement; 
the propositional function that is associated with the V or the 3 must be 
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negated, also. For example, the negation of V x > 0, x3 — 2x2 + x > 0 
requires the negation of the propositional function x3 — 2x2 — x > 0, which is 
x3 - 2x2 - x < 0 (i.e., -.(>) is <). Thus, 

■ -. [V x > 0, x3 - 2x2 + x > 0] <Φ 3 x > 0 Э: x3 - 2x2 - x < 0 

Example 2.5.4·' Negate each of the following mathematical sentences: 

a. V n in the natural numbers, n2 — n is an even number. 
b. 3 r € (-co, со) Э: 71 = 3r + 2. 
c. V i e {1 ,2 ,3 , . . . , 10}, 2 - < > 0.0005 

Solutions: 

a. 3 n in the natural numbers Э: n2 — n is an odd number. 
b. V r e (-сю, оо), 71 φ Ζτ + 2. 
c. З г е {1 ,2 ,3 , . . . , 10} Э: 2~г < 0.0005. 
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EXERCISES 

2.1 Determine which of the sentences below are statements, predicates, or 
neither. Justify your answers. 

a. e~x > 0 for every real number x. 
b. / (x) has a relative maximum at x = 0. 
c. Does /(x) have a relative minimum at x — 0? 
d. ln(x) > 0 for every real positive number x. 
e. f(x) is continuous at x = 0. 
f. π is an odd number or 4 is an odd number. 
g. If s/2 is an irrational number, then so is 2\/2. 
h. 3 > 5 if and only if 4 < 5. 
i. If x is an odd number, then so is x + 2. 

2.2 For the prepositional function "f{x) has a relative maximum at x = 0," 
determine 

a. The variable in this propositional function. 
b. Whether the propositional function is true when f(x) = x2. 
с Whether the propositional function is true when f(x) — x3. 

2.3 Given a compound statement S composed from the three statements P, 
Q, and Д, determine 

a. The number of possible states of nature that must be listed in a 
truth table for the compound statement S. 

b. The number of possible states of nature in the truth table with either 
P or Q being true. 

с The list of possible states of nature that must be considered in de-
termining the truth of the compound statement 5 . 

2.4 Construct truth tables for the following statements: 

a. -^PVQ. 
b. ( - I P A Q ) V ( P A Q ) . 

с (PVQ)V(PAQ). 
d. P v Q V n f i . 
e. ( P v Q ) A - R . 
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f. ( P A Q ) - ^ P . 

g.(PVQ)-+R. 

2.5 Which of the following statements are true when P is true and Q is false? 

a. PV^Q. 
b. -i(PAQ). 
с i P v Q ) . 
d. ( P V Q ) A ( - P v - Q ) . 
e. P-^Q. 
f. Q - P . 
g- P ~ Q -
h. - Q -» P . 
i. ^P-*Q. 
j . ( 4 P - - Q ) A ( - Q - P ) . 

2.6 Show that 

a. P v Q <=> Q V P . 
b. ( - P A Q) V (P A Q) <* Q. 
с ( P V < 2 ) V ( - . P V - < > ) A P <=> P. 

d. (P A Q) V (P A -HQ) V (-.P A Q) V ( i f A --Q) is a tautology. 
e. (P A Q) A (P A -iQ) is a contradiction. 
f. ->(P A Q) V (P V Q) is a tautology. 
g. P Л С is a contradiction whenever С is a contradiction. 

2.7 Prove that ->(P A Q) is logically equivalent to -■ P V ^ Q . 

2.8 Prove that 

a. P A (Q V P) is logically equivalent to (P A Q) V (P Л P) . 
b. -i(P AQ AR) is logically equivalent to ^Pv -<QV -.Д. 
c. PA (Q V P V5) is logically equivalent to (PAQ)V (PA P) V {PAS). 

2.9 Let P , Q, and Я be statements: 

a. If P —* Q is false, under what conditions will (P —> Q) —» R be a 
true statement? 

b. If P —» Q is true, under what conditions will (P —♦ Q) —» R be a 
true statement? 
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c. If R is true, under what conditions will (P —> Q) —» R be a true 
statement? 

b. If R is false, under what conditions will (P —> Q) —» R be a true 
statement? 

2.10 Determine the converse, contrapositive, and negation of each of the fol-
lowing statements: 

a. ( P A Q ) - . R. 

b. If n is a natural number, then n(n + l)(n + 2) is an even number. 

с If f(x) is an odd integrable function, then / f(x)dx = 0. 
J — a 

d. If V is the collection of prime numbers, then V contains infinitely 
many elements. 

e. If n2 is divisible by 3, then n is divisible by 3. 
f. If x = \ /5 , then x is an irrational number. 
g. If 3 divides A, 3 divides £?, and 3 divides C, then 3 divides A + B + C. 
h. If a = 0 or b = 0, then a(b + c) = 0 and b(a + c) = 0. 

2.11 Without using a truth table, show that 

a. Р V Q V R <=> - . ( - iP Л --Q Л -. Я). 
b. ( P A Q ) V ( P A - n Q ) <=> P. 
с P V ( Q A P A S A T ) О (PvQ)A(PvP)A(Pv5)A(Pvr). 
d. PA(QVPV5VT) о (ΡΛΟ)ν(ΡΛΑ)ν(ΡΛ5)ν(ΡΛΓ). 

2.12 Using the mathematical symbols for the universal and existential quan-
tifiers, rewrite the following sentences: 

■ i V^ · n ( n + 1 ) a. For every natural number ?г, >^ г = —— . 
!-·-! 

b. There exists a real number x such that x5 — x + 2 = 0. 
с For every real number x, there exists a real number у such that 

e~x - y = 0. 
d. For every t > 0, there exists TV € N such that |Л(п) - A\ < e 

whenever n > N. 

2.13 Negate each of the sentences in Problem 2.12. 

2.14 Let {P„(x)} be a collection of propositional functions. If P»(x) is false, 
what can be concluded about the truth of the propositional function 
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a. Pn(x), V n € N? 
b. 3 n € N Э: P„(x)? 
с 3 n £ N Э: -Pn(x)? 

2.15 Let {Ρη(χ)} be a collection of propositional functions. If Pa(x) is true, 
what can be concluded about the truth of the propositional function 

a. Pn(x), V n € N? 
b. 3 n € N э: P„(x)? 
c. ι [ 3 η ε Ν Э: P„(x)J? 

2.16 Let Δ = {i],X2,. . . ,x n } and suppose that P{x) is a propositional func-
tion on Δ. Prove that 

- . [ З х е Д Э: Р{х)\ <& V x € A , - . P ( x ) 



Chapter 3 

Methods of Proof 
Recall that the axiomatic structure of modern mathematics begins with a 
set of axioms and definitions that are explicitly stated, and then from these 
axioms and definitions, new mathematics is created through deductive rea-
soning. In fact, the first step in the development of new mathematics is to 
study the implications of this original set of axioms and definitions. The ax-
iomatic structure of modern mathematics proceeds according to the following 
sequence: 

Axioms = » definitions = > conjectures = > proofs 
==r· theorems ==> generalization and extension ==> ■ · · 

Furthermore, a new result must be proved rigorously before it is accepted as 
a new contribution to mathematics. The development of new mathematics is 
often based on trial and error and is a creative process. Given a mathematical 
conjecture, its proof or disproof will generally require a great deal of insight, 
imagination, experimentation, and hard work. 

The foundations of this modern approach to mathematics were laid by the 
ancient Greek mathematicians Thales, Pythagoras, and Euclid. However, the 
formalization of mathematical theory really began in the nineteenth century 
with the work of Boole and Frege. By the early twentieth century modern 
mathematics was flourishing with the work of Georg Cantor (1845-1918), 
Hilbert, Russell, Whitehead, G. H. Hardy (1877-1947), and Godei. Today, 
mathematicians continue to develop new areas of mathematics and at the 
same time extend and generalize the existing areas of mathematics. 

3.1 Theorems, Corollaries, and Lemmas 

The starting point of a mathematical system is a set of self-evident truths 
called axioms. The definition of an axiom is given below. 

Definition 3.1.1: An axiom is a mathematical statement that is taken to 
be self-evidently true without proof. 

Thus, an axiom is a mathematical statement that is believed to be so 
clearly true that it need not be proved. In an axiomatic mathematical system 
the initial set of axioms is the starting point from which all mathematics will 
be derived. Thus, it is very important that the axioms on which a mathemat-
ical system is based be true. For example, in set theory the following axioms 
are often used. 

45 
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Axiom 1 (The Axiom of Existence): There exists a set. 

Axiom 2 (The Axiom of Extensionality): Two sets are equal if and only 
if they have exactly the same elements. 

Another example of commonly encountered axioms are the axioms of 
probability, which form the starting point for probability theory: 

Axiom 1: For any event Л of a sample space S, P(A) > 0. 

Axiom 2: P(S) = 1 

Axiom 3: If { Д } ? ^ is collection of disjoint events of <S, then 

( oo \ oo 

\J АЛ =Σ Р(Аг). 
t = l / >=1 

Now, given a set of axioms, mathematical properties are defined and the 
implications of these properties are studied; generally conjectures concerning 
the implications of the axioms and definitions are made and studied. A mathe-
matical conjecture will be composed of logical statements and/or propositional 
functions. Once a conjecture is proved, it is called a theorem. 
Definition 3.1.2: A theorem is any mathematical statement that can be 
shown to be true using accepted logical and mathematical arguments. 

The root of the word theorem is the Greek word theorema, which means 
"something seen." To a mathematician, a theorem is a result that can be seen 
to be true. Note that a mathematical result is only a conjecture until it is 
proved. 

Definition 3.1.3: A proof oi a mathematical result is a sequence of rigorous 
mathematical arguments that are presented in a clear and concise fashion, 
and which convincingly demonstrates the truth of the given result. 

Note that only after a conjecture is proved can it be called a theorem. 
Furthermore, in the eyes of a mathematician, it is never enough to simply 
believe that a mathematical result is true, nor is it enough to be convinced 
that a result is true beyond a reasonable doubt; a mathematician will accept 
only those mathematical results that are shown to be absolutely true using 
sound logical arguments. 

Now, given a new theorem, the process of building new mathematics 
continues by investigating the implications of the new theorem, often by gen-
eralizing or extending the theorem to a more general result. In most cases, a 
theorem will be stated in the conditional form "If H is true, then С is true," 
where H and С are either logical statements or propositional functions. In a 
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theorem stated as "If Я , then С," Я is the hypothesis, and С is the conclu-
sion. However, there are some theorems that will not be stated in the "If Я, 
then C" form, but these theorems can often be rewritten in the conditional 
form. For example, the following theorem, which will be proved in Chapter 
4, is not of the form "If Я , then C." 

Theorem: \/2 is not a rational number. 

However, note that this theorem could also be stated in the Я —» С form by 
rewriting it as 

Theorem: If x = \/2, then x is not a rational number. 

In some cases, a theorem will provide a very general result and cover 
many special subcases. The specialized theorems dealing with the subcases 
of a more general result are called corollaries. 

Definition З.1.4: A corollary is a theorem that can be stated as a special 
case of a more general theorem. 

Note that a corollary is a theorem itself; however, it is really just a special 
case of a particular theorem. Thus, once the more general theorem has been 
proved, the proof of a corollary simply involves showing that it is a special 
case of the previously proved theorem. 

Example 3.1.1: The following theorem and corollary are typically seen in a 
calculus course. 

Theorem A: Let f(x) and g(x) be functions. If lim f(x) = L and 
g{x) is a continuous function, then lim g(f{x)) = g{L). 

x—*a 

Corollary A: If lim f(x) - L, then lim e / ( l ) = eL. 
x—»a x—»a 

Proof: Since g(x) — ex is a continuous function, this corollary fol-
lows directly from Theorem A. 

Example 3.1.2: The following theorem and corollary are typically seen in 
a course on probability theory. 

Theorem B: Let X be a random variable, g(x) a real-valued func-
tion, and с > 0. Then 

с 
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Corollary B: Let X be a random variable and с > 0. Then 

р ( | Д - | > с ) < В Д 
с 

Proof: Let g(x) — \x\\ then this corollary follows directly from 
Theorem B. 

In some cases, while proving a theorem it becomes evident that a special 
result is needed primarily for proving the theorem. A theorem that is used 
primarily in the proof of another theorem is called a lemma. The definition 
of a lemma is given below. 

Definition 3.1.5: A lemma is any provable result that is used primarily as 
a necessary step in the proof of another theorem. 

As was the case with a corollary, a lemma is also a theorem since it is a 
provable result. Moreover, lemmas generally precede a theorem and are used 
mainly to remove certain complications that will be encountered in the proof 
of a theorem. 

Example 3.1.3: The following lemma will be very useful in Chapter 5. 

Lemma (The Triangle Inequality): If x, у € К, then 
l* + v| <\x\ + \y\. 

Now, the general form of a theorem, corollary, or lemma is a conditional 
statement of the form "If H is true, then С is true." Also, the hypothesis 
H is the condition from which the conclusion С will follow. In many cases, 
the hypothesis may be a compound statement made up of sub-hypotheses, 
say # ! , . . . , # „ , that are joined together by AND's or OR's. Similarly, the 
conclusion may also be a compound statement made up sub-conclusions, say 
C i , . . . , Cn, tied together by AND's or oil's. 

Example 3.1.4·' Determine the hypothesis and conclusion for each of the fol-
lowing theorems. If the hypothesis is compound, identify the subhypotheses. 

a. Theorem: If f(x) is differentiable at x = c, then f(x) is continuous at 
x — c. 

b. Theorem: If f'(c) = 0, / ' ( с - ) < 0, and f'(c+) > 0, then f(x) has a 
relative maximum at x — с 
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c. Theorem: If lim / ( г ) = L, lim g(x) — M, and M ф 0, then 
X —*C X—*C 

l im - — - = — . 
x —с g(x) M 

d. Theorem: If a is an even integer, then a2 is an even integer. 

Solutions: 

a. Hypothesis: f(x) is differentiable at x = с 
Conclusion: f(x) is continuous at x = с 

b. Hypotheses: / '(c) = 0 (Я,), / '(«Г) < 0, (Я2), and / ' (c+) > 0 (Я3). 
Conclusion: / (x) has a relative maximum at x — c. 

с Hypotheses: lim f(x) = L (Ну), lim g(x) = M (Я2), and M ф О (Я3). 
x—»с x—*c 

о , . .. / ( * ) L 

Conclusion: hm —-—- = —. 
x-c fl(x) M 

d. Hypothesis: a is an even integer. 
Conclusion: a? is an even integer. 

Finally, it is important to note that not all theorems will be stated in the 
"If Я , then C" form. However, with a little creative thinking most theorems 
can be restated in the "If Я , then C" form. For example, the following two 
theorems, which will be proved in Chapter 4, are not stated in the form "If 
Я , then C." 

Theorem: \/2 is an irrational number. 

Theorem: There are infinitely many prime numbers. 

However, these theorems could be restated in the form "If Я , then C" as 
shown below. 

Theorem: If x — \/2, then x is an irrational number. 

Theorem: If V is the set of prime numbers, then V contains infinitely 
many prime numbers. 

Example 3.1.5: Restate each of the following theorems in the "If Я , then 
C" form: 

a. The limit of the sequence of real numbers an is unique. 

b. The identity element of a group (G, o) is unique. 

с The sum of an irrational number and a rational number is an irrational 
number. 
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Solutions: 

a. If a is the limit of the sequence of real numbers an, then a is unique. 

b. If (G, °) is a group, then the identity element is unique. 

с If x is an irrational number and у is a rational number, then x + у is an 
irrational number. 

3.2 The Contrapositive and Converse of a Theorem 

Recall, from Chapter 2, that the converse and the contrapositive of the condi-
tional statement H —> С are С —> H and -> С —» ->Я, respectively. Further-
more, recall that a statement and its contrapositive are logically equivalent. 
Thus, it follows that a theorem of the form "If H is true, then С is true" is 
logically equivalent to its contrapositive theorem "If С is not true, then H is 
not true." Therefore, proving the theorem H —> С automatically proves the 
theorem -iC —> ->#. Hence, each theorem has a dual theorem to which it 
is logically equivalent, namely, its contrapositive. On the other hand, since a 
conditional statement and its converse are not logically equivalent, the con-
verse of a theorem is seldom true. 

Example 3.2.1: Determine the contrapositive theorem associated with each 
of the following theorems: 

a. Theorem: If f(x) is differentiable at x — c, then f(x) is continuous at 
x = с 

b. Theorem: If a is an odd integer, then a2 is an odd integer. 

с Theorem: If a and b are an odd integers, then a + b is an even integer. 

d. Theorem: If x > 0, then x + - > 2. 
x 

Solutions: 

a. The contrapositive theorem is "If f(x) is not continuous at x = c, then 
/(x) is not differentiable at x = c." 

b. The contrapositive theorem is "If a2 is an even integer, then a is an even 
integer." 

с The contrapositive theorem is "If a + b is an odd integer, then either a 
or 6 is an even integer." 

d. The contrapositive theorem is "If x -\— < 2, then x < 0." 
x 
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Now, when a theorem and its converse are both true, then the theorem 
can be written as a biconditional theorem of the form " # if and only if C" ; a 
biconditional theorem is sometimes referred to as an "if and only if" theorem. 
An example of a biconditional theorem is given below. 

Theorem: Let a and b be real numbers. Then, ab — 0 if and only if 
a = 0 o r b= 0. 

Note that this theorem is composed of the following two theorems: 

Theorem: Let a and 6 be real numbers. If ab = 0, then a = 0 or 6 = 0. 

Theorem: Let a and b be real numbers. If a — 0 or ò = 0, then ab = 0. 

3.3 Methods of Proof and Proving Theorems 

Given a theorem "If H, then C," there are many different approaches that 
could be attempted when trying to prove this theorem. In fact, many theorems 
can be proved using several different approaches. However, the particular 
method used to prove a theorem is not nearly as important as is the fact that 
a valid proof has been found for the theorem. Two of the most commonly 
used approaches for proving theorems are the method of direct proof and the 
method of indirect proof. 

3.3.1 Direct Proof 

When faced with the problem of trying to prove a conjecture or a theorem 
of the form "If H, then C," the first, and often most direct, approach to try 
is the method of direct proof. For most problems, this approach will lead to 
a valid proof of the theorem in question. This is generally the first approach 
that is attempted when trying to prove a conjecture. The method of direct 
proof is described below. 

The Method of Direct Proof: Given a theorem of the form H —> С, а 
direct proof of H —> С begins with the assumption of the hypotheses of the 
theorem. From the hypotheses, a sequence of logical statements is constructed 
that leads to the conclusion of the theorem. When the sequence of logical 
arguments leading from the hypotheses (H) to the conclusion (C) is valid, 
then the theorem will have been proved with a direct proof. A diagram of a 
direct proof usually follows the pattern 

H —* C\ —> Ci —-» C3 ■ ■ ■ С 

where H leads to a conclusion C\, C\ leads to conclusion C2, and so on until 
the desired conclusion С is reached. This method of direct proof is called the 
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forward direct approach. Note that a forward direct proof begins by assuming 
that the hypothesis ( # ) is true and then proceeds forward with a sequence 
of logical arguments that leads to the conclusion (C). An algorithm outlining 
the method of direct proof is outlined below. 

Algorithm for a Direct Proof: The following steps outline the typical 
procedure used in a direct proof of a theorem H —» C: 

1. Identify and list all hypotheses of the theorem. 
2. Identify and list all results that follow directly from, or are related to, 

the hypotheses of the theorem. 
3. Begin tying the hypotheses to the results listed in step 2. Begin working 

toward the conclusion. This is the scratchwork phase of the proof. 

4. Develop a complete set of logical arguments leading from the hypotheses 
of the theorem to the conclusion of the theorem. 

5. Clean up and rewrite the scratchwork into a clear and concise proof of 
the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

6. Read the proof over carefully and make any necessary corrections. 

It is very important to write clear and concise proofs; therefore, steps 5 
and 6 in the algorithm for a direct proof are two of the most important steps 
in writing a good proof. Furthermore, it is extremely important to provide 
complete and clear justification for each of the steps leading to the conclusion. 
Finally, a well-written proof is any proof that can be easily followed and 
comprehended by any person familiar with the mathematical subject matter 
involved in the theorem. 

It also is important to note that a direct proof requires a sequence of 
logical arguments leading from the hypothesis to the conclusion. Thus, in 
carrying out steps 3 and 4 of the preceding algorithm, it will often be useful 
to focus on some aspect of the conclusion in developing a connection between 
the hypothesis and the conclusion. For example, suppose that the theorem 
states that "If n is even, then n2 is even." In this case, in steps 3 and 4 it 
will be useful to consider n2, which can then be written as {n)2, which clearly 
relates the hypothesis to the conclusion. 

Example 3.3.1: Suppose that the following results from calculus have been 
proved. 

Theorem 1: Let / and g be real-valued functions. If lim f(x) — L and 
I—'C 

lim g{x) = M, then lim f(x)g(x) = lim fix)- lim g(x) — L- M. 
X—+C X—>C X—*C X—>C 
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Theorem 2: Let / be a real-valued function. If lim f(x) = L and 1 ^ 0 , 
x—*c 

u ,· ! l 

then hm = —. 
x-+c f(x) L Use these two theorems to prove the following theorem using a direct proof: 

Theorem: Let / and g be real-valued functions. If lim f(x) — L, 

x—*c f(x) L lim g(x) ^ M and M / 0, then lim — T = T7 x-c ; x-c g(x) M 

Scratchwork: Following the algorithm for a forward direct proof: 
1. Hypotheses: f(x) and g(x) are functions with lim f(x) = L, 

x—c 
lim g(x) = M, and M φ 0. 
z—»с 

2. Related Results: The hypotheses of the theorem allow for the 
use of Theorems 1 and 2. Thus, it follows from Theorems 1 and 
2 that 

lim f(x)g(x) = LM and lim ——- = — 
i—с i—с g(x) M 

fix) 1 3,4. Working toward C: Consider ~~ = f(x) 
9{x) 9(x) 

fix) l 
Now, since -~— = f(x)· ——, it follows that 

g{x) g{x) 

lim Щ = um f(x). l 

x—*c g(x) i->c g(x) 

and by Theorems 1 and 2 it follows that 

M M 

5,6. Write a Proof: Write up this scratchwork into a clear and 
concise proof of the theorem. Proofread your proof! 

Proof: Let / and g be real-valued functions with lim f(x) = L, 
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l i raj( i) = M, and M φ 0. Then 

1 lim Щ = lim 
x—>c g(X) i—>c 

/(*)· 
9{x) 

lim /(x)· lim —— = lim /(x)- lim ■ g(x) i-c x^c ff(x) 
4 V ' 

By Theorems 1 and 2 

Thus, lim , . = — whenever lim f(x) — L and lim q(x) — M and x-c g(x) M x-.c v ' i-c'^ ; 

Note that in this proof, the hypotheses of the theorem allowed for the ap-
plication of Theorems 1 and 2 because the hypotheses of Theorems 1 and 2 
are the exact hypotheses of this particular theorem. This was no coincidence; 
rather, it is the natural progression in the modern axiomatic mathematical 
system. Hence, the theorem proven in Example 3.1.1 turns out to be a natural 
extension of Theorems 1 and 2 stated above. 

Example 3.3.2: For the following theorem, let N = {1,2,3,. . .} be the set 
of natural numbers. Define an even number to be any integer that can be 
written as 2/c for some integer k, and define an odd number to be any integer 
that can be written as 2k + 1 for some integer к . Use a direct proof to prove 
the following theorem. 

Theorem: Let n be a natural number. If n is an even number, then 
n2 is also an even number. 

Scratchwork: Following the algorithm for a forward direct proof: 

1. Hypotheses: Let n be a natural number and suppose that n 
is even. 

2. Related Results: Since n is an even number, there exists an 
integer к such that n — 2k. 

3,4. Working toward C: Since n is even, it follows that 

n2 = (2/fc)2 = 4k2 = 2(2λ2) 
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which is of the form 2 times the integer 2k2. Hence, n2 is also 
even. 

5,6. Write a Proof: Write up this scratchwork into a clear and 
concise proof of the theorem. Proofread your proof! 

Proof: Let n be a natural number and suppose that n is an even 
number. 

Then, there exists an integer A; such that n = 2k. Consider n2 

n2 = (n)2 = (2k)2 = 4k2 = 2· 2k2 = 2j 

where j = 2k2, which is an integer. Hence, n2 can be written in 
the form 2j for some integer j , and therefore n2 is an even number 
whenever n is an even number. 

Example 3.3.3: Use a forward direct proof to prove the following theorem: 

Theorem: If x, у € M, then x2 + y2 > \xy\. 

Proof: Let x,y € R. Consider (|x| - |y|)2: 

(|x| - \y\f = (|x|)2 - 2|x|· \y\ + (|y|)2 = x2 + y2 - 2\xy\ 

Furthermore, since (|x| — \y\) > 0, it follows that 

( | χ | - | 3 / | ) 2 = χ 2 + 2 / 2 - 2 | χ 2 / | > 0 

and hence 
x1 + У2 > 2\xy\ > \xy\ 

Therefore, x2 + y2 > \xy\, V x, у € R. 

Note that in the proof of the theorem stated in Example 3.3.3, the proof 
required a creative approach after assuming the hypotheses of the theorem. 
In particular, after the assumption x, у € R, the next step in the proof was to 
consider ( | i | - \y\)2. This step is not obvious to most people trying to prove 
this theorem, and might only be stumbled across by a few people as a result 
of their scratchwork. Often a great deal of ingenuity and insight is required in 
order to successfully prove the desired result. Thus, it is important to attack 
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a tough problem from several different approaches and sometimes with a truly 
creative approach. 

Recall that whenever "If H, then C" is a theorem, then the contrapositive 
to this theorem is also a theorem; that is, every theorem "If H, then C" has 
a dual theorem "If not C, then not H," which is also true. Furthermore, if a 
proof of "If С is not true, then H is not true" is found, then this is equivalent 
to proving "If H is true, then С is true." Thus, a second method of direct 
proof that can be used to prove "If H is true, then С is true" is to prove the 
contrapositive of this theorem: "If not С, then not H." Proving a theorem 
H —» С by proving its contrapositive is called a proof by contrapositive. Note 
that the method of proof by contrapositive is also another method of direct 
proof and is often used when a forward direct proof for a theorem cannot be 
found. 

Now, a proof by contrapositive begins with the assumption that conclu-
sion of the theorem is false, rather than beginning with the hypotheses of the 
theorem. From the negation of the conclusion (i.e., -<C), a direct proof of 
the negation of the hypotheses (-1 H) is desired as follows. A typical proof by 
contrapositive begins with ~>C, which leads to a conclusion C\, which leads 
to a conclusion C2, and so on until it can be concluded that the hypothe-
sis H is false. An algorithm outlining a recipe for the method of proof by 
contrapositive is given below. 

Algorithm for a Proof by Contrapositive: The following steps outline 
the typical procedure used in a proof by contrapositive of a theorem H —» C: 

1. State the contrapositive of the theorem (i.e., -> С —> ^Η). 
2. Identify and list all the results that are related to ->C. 
3. Assume that ~<C is true and begin tying ->C to the results in step 2 and 

work toward the conclusion, which is ->H. This is the scratchwork phase 
of the proof. 

4. Complete the scratchwork for the proof by developing a sequence of log-
ical arguments based on steps 1 and 2 that lead to -> H. 

5. Clean up and rewrite the scratchwork into a clear and concise proof of 
the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

6. Read the proof over carefully and make any necessary corrections. 

Note that as was the case in the method of forward direct proof, it is al-
ways important to write clear and concise proofs. Furthermore, it is extremely 
important to carefully proofread a proof. The following example illustrates 
how the method of proof by contrapositive is used. 
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Example 3.3.4: Prove the following theorem using a direct proof: 

Theorem: Let n be a natural number. If n2 is even, then n is an 
even natural number. 

Scratchwork 1: Let n be a natural number and suppose that n2 is 
an even natural number. Then, 3 an integer к such that n2 = 2k. 

Now, taking the square root of n2 yields n = V2k. However, there 
is not much that can be done with the v2fc with regard to relating 
it to n. Thus, a direct proof appears to be failing, and thus a proof 
by contrapositive should be considered. 

The contrapositive of the original theorem is "Let n be a natural 
number. If n is an odd integer, then n2 is an odd integer." 

Scratchwork 2: Let n be a natural number and suppose that n is 
an odd number. Then, 3 an integer к such that n — 2k +1. Consider 
n2 

n2 = (2k + l ) 2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2j + 1 

where j = 2k2 + 2k, which is an integer. Thus, r? is an odd number 
whenever n is an odd number. 

Proof (by Contrapositive): Let n be a natural number and sup-
pose that n is an odd number. Then, 3 an integer к such that 
n = 2k + 1 · Consider n2 

n2 = (2k + l ) 2 = Ak2 + 4k + 1 = 2j + 1 

where j = 2k7 + 2k, which is an integer. 

Thus, n2 is an odd number whenever n is an odd number, and there-
fore, by proving the contrapositive of the original theorem, it follows 
that n is even whenever n2 is even. 

Note that in the first set of scratchwork an impasse was encountered in 
trying to relate n2 back to n. When a direct proof fails to prove a theorem, 
it is always reasonable to try to prove the theorem with the method of con-
trapositive; in some cases, a direct proof for the theorem of interest will be 
impossible with the mathematical results at hand. Also, when the method of 
proof by contrapositive is being used to prove a theorem, it is a good idea to 
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clearly designate this at the beginning of the proof. Clearly designating that 
an alternative method to the forward direct proof is an important part of a 
proof by contrapositive. 

Example 3.3.5: Prove the following theorem using the method of proof by 
contrapositive. 

Theorem: Let x and у be positive real numbers. If x ф у, then 
Ιη(ζ) ф ln(y). 

Scratchwork 1: First, the contrapositive of this theorem is "Let x 
and у be positive real numbers. If ln(x) = ln(y), then x = y." 

Let x and у be positive real numbers and suppose ln(x) = ln(y). 
Note that x - eln(*> and у = e1"^', and since ln(ar) = ln(y), it 
follows that x = е|п<*> = β,η(ϊ> = у. 

Thus, x = у whenever ln(a;) = ln(j/) and therefore, proof by contra-
positive shows that ln(x) ф ln(j/) whenever x Ф y. 

Proof (by Contrapositive): Let x and у be positive real numbers 
and suppose ln(i) = \n(y). Note that x = e l n ^ and у — e1"'5''. 
Moreover, since ln(x) = ln(j/), it follows that x — e,n^ = eln^ = y. 
Thus, x = у whenever ln(x) = ln(y); therefore, proof by contraposi-
tive shows that ln(x) / ln(y) whenever x Ф y. 

3.3.2 Indirect Proof 

In some cases, neither a forward direct proof nor a proof by contrapositive 
can be found for a particular theorem. After exhausting all the possibilities 
with these two methods of proof, another method of proof that can tried is 
the method of indirect proof or reductio ad absurdum. The method of indirect 
proof is described below. 

The Method of Indirect Proof: An indirect proof of the theorem "If Я is 
true, then С is true" begins by assuming that the hypothesis (Я) is true and 
the conclusion (C) is false. Working from these two statements, a sequence 
of logical conclusions is followed until an contradiction develops. Recall that 
a contradiction is a statement that is always false. 

Now, working from Я and ->C to a contradiction proves the theorem 
Я —> С by showing that Я Л -^С is always false, and since Я Л -> С is 
logically equivalent to ->{H —» C) (by the corollary to Theorem 2.4.1), it 
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follows that the negation of the theorem is also false. Now, if the negation 
of the theorem is always false, then it must be the case that the theorem is 
always true. Thus, the method of proof by contradiction proves H —» С by 
proving that -■(# —» C) can never be true. 

The method of proof by contradiction is often a good approach to try 
when attempts to prove a result with a forward direct proof or a proof by 
contrapositive fail to prove the theorem. Moreover, the method of proof by 
contradiction is often the logical method of proof to use when proving a the-
orem that states that an object does not have a specific property, involves a 
mathematical inequality, or states that an object A having a property P is 
the unique object having this property. For example, a proof by contradiction 
would be a logical choice for proving the following theorem: 

Theorem: v2 is not a rational number. 

Example 3.3.6: Explain why each of the following theorems is a good can-
didate for a proof by contradiction: 

a. The sum of a rational number and an irrational number is not a rational 
number. 

b. The square root of a prime number is an irrational number. 

с V x e (0, oo), x + - > 2. 
x 

d. The set of all prime numbers is an infinite set. 
e. The real solution to the equation я 3 — 1 = 0 is unique. 
f. The set of all real numbers is an uncountable set. 

Solutions: 

a. This theorem states that the sum of an irrational number and a rational 
number does not have the property of being rational. 

b. This theorem states that the square root of a prime number is not a 
rational number. 

с This theorem involves an inequality. 
d. This theorem states that the set of all prime numbers is not a finite set. 
e. This theorem states that there is a unique solution to x3 — 1 = 0. 
f. This theorem states that the set of all real numbers is not a countable 

set. 

Algorithm for an Indirect Proof: The following steps outline the typical 
procedure used in a proof by contradiction of a theorem H —> C: 

1. Identify and list all the hypotheses of the theorem. 
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2. Negate the conclusion of the theorem. 
3. Identify and list all the results that are related to hypotheses and the 

negation of the conclusion. 
3. Begin tying the hypotheses to the results in step 2 and begin working 

toward a contradiction. This is the scratchwork. 
4. Complete the scratchwork proof by developing a logical sequence of ar-

guments based on steps 1 and 2 that lead to a contradiction. 
5. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

6. Read the proof over carefully and make any necessary corrections. 

Note that in a proof by contradiction, any sequence of logical arguments 
that leads to a contradiction of a known fact or contradicts the assumed 
hypotheses of the theorem is enough to prove the desired theorem. Also, 
when using a proof by contradiction it is important to clearly designate this 
at the beginning of the proof. The following example illustrates how a proof 
by contradiction can be used to prove an inequality. 

4 
Example 3.3.7: Prove the following result. For x > 0, x + - > 4. 

x 
Scratchwork for a Proof by Contradiction: 

1. Let x > 0. 
4 

2. The negation of the conclusion is (i.e., ->C) x H— < 4. 
x 

3. At this point, it might be useful to write down some results 
concerning inequalities. For example, results of the form "If 
с > 0 and x < y, then ex < cy" and "If x < y, then c+x < c+y" 
might be helpful in proving this theorem. 

4 
4. The goal is to work from x > 0 and x H— < 4 to a contradiction. 

x 
4 

Consider the inequality x + — < 4. 
x 

4 
x + - < 4 if and only if x2 + 4 < Ax 

x ~> s, ' 
since x > 0 

<=s> x2 + 4 - 4x < 0 «=> x2 - Ax - 4 = {x - 2)2 < 0 

But, V i E R , ( i - 2)2 > 0, and thus (x - 2)2 < 0 contradicts 
the fact that {x - 2)2 > 0. 
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4 
Hence, proof by contradiction shows that x H— > 4 whenever 

x 
x>0. 

5. Now, write up this scratchwork in a well-written proof. 
4 

Proof (by Contradiction): Let x > 0 and assume that x -\— < 4. 
x 

Then 

4 о о 
x + - < 4 <=> or + 4 < Ax <=> ar - 4z + 4 < 0 

z 

Now, x2 - 4x + 4 = ( i - 2)2, and thus (x - 2)2 < 0 contradicts the 
fact that (x - 2)2 > 0, V i e R. 

Example 3.3.8: Prove the following theorem using a proof by contradiction: 

Theorem: For p > 3 there are no triples of prime numbers of the 
form (p ,p+ 2,p + 4). 

Scratchwork: Note that this might be a good candidate for proof 
by contradiction because it states that there are no triples of primes 
of a particular form. 

Let p > 3, and suppose that there exists at least one triple of prime 
numbers of the form (p,p + 2,p + 4). Now, since p,p+ 2 and p + 4 
are all prime numbers greater than 3, it follows that they are all odd 
numbers. 

Consider the following examples of triples of odd numbers: (1,3,5), 
(3,5,7), (5,7,9). It appears that in each triple of odd numbers one of 
the numbers is a multiple of 3 showing that it is unlikely for a triple 
of primes of this form to exist. 

Now, since p is a prime number, p is not a multiple of 3. Since p is 
not a multiple of 3, it follows that 3 к € Z such that (1) p = 3k + 1 
or (2) p = ЗА: + 2: 

Case 1: Suppose that p = ЗА: + 1. Then, p + 2 = (3fc + 1) + 2 = 
ЗА: + 3 = 3(A: + 1 ) , and hence p + 2 is a multiple of 3, contradicting 
the assumption that p + 2 is a prime number. 

Case 2: Now, suppose that p = ЗА: + 2. Then, p + 4 = (ЗА;+ 2)+ 4 = 
ЗА: + 6 = 3(A: + 2), and hence p + 4 is a multiple of 3, contradicting 
the assumption that p + 4 is a prime number. 



62 Methods of Proof 

Thus, in both cases a contradiction is arrived at, and therefore there 
are no triples of prime numbers of the form (p, p + 2,p + 4) for p > 3. 

Proof (by Contradiction): Let p > 3, and suppose that there 
exists at least one triple of prime numbers of the form (p,p+2,p+4) . 

Now, since p is a prime number and p > 3, it follows that p is not a 
multiple of 3. Furthermore, since p is not a multiple of 3, 3 к € Z 
such that (1) p = 3fc + 1 or (2) p = 3k + 2: 

Case 1: Suppose that p = 3k + 1. Then 

p + 2 = {3k + 1) + 2 = 3k + 3 = 3(* + 1) 

and hence p + 2 is a multiple of 3, contradicting the assumption that 
p + 2 is a prime number. Therefore, there do not exist any triples of 
prime numbers of the form (p, p + 2,p + 4) when p = 3k + 1. 

Case 2: Suppose that p = 3k + 2. Then 

p + 4 = (3* + 2) + 4 = 3/c + 6 = 3(Jt + 2) 

and hence p + 4 is a multiple of 3, contradicting the assumption that 
p + 4 is a prime number. Therefore, there do not exist any triples of 
prime numbers of the form (p,p + 2,p + 4) when p = 3/c + 2. 

Hence, in either case a contradiction is arrived at, and therefore there 
are no triples of prime numbers of the form (p, p + 2, p + 4) for p > 3. 

3.4 Specialized Methods of Proof 

Besides the methods of forward direct proof, proof by contrapositive, and 
proof by contradiction there are also several specialized methods of proof. 
Moreover, each of these methods deals with a specialized form of the theorem 
under consideration. In particular, the specialized methods of proof that will 
be discussed in this section are proof by mathematical induction, uniqueness 
proofs, existence proofs, and proof by cases. 
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3.4.1 Mathematical Induction 

Proof by mathematical induction is a special type of direct proof that can often 
be used with theorems of the nature "The statement Vn holds for every natural 
number n"; that is, a good candidate for proof by mathematical induction is 
any theorem that involves a statement indexed by n (i.e., Vn) and holds 
Vn € N. For example, the following two theorems would be good candidates 
to be proved using mathematical induction since both theorems contain results 
that are indexed by n and hold Vn 6 N. 

Theorem: 2 ^ г = -*-——-, Vn e N. 
t = l 

Theorem: (n + 1)! > 2", Vn G N. 

Using an induction proof does have one major advantage over the other 
methods of proof discussed previously; namely, every induction proof involves 
exactly the same two steps, an initial step and an induction step. Of course, 
this does not mean that a proof by induction will be easy. Also, there are 
actually two different methods of mathematical induction, weak and strong 
induction, which will be denoted by I\ and /2, respectively; strong induction 
is also referred to as complete induction. Furthermore, each of these induction 
methods can be used in an attempt to prove a theorem of the form Vn is true 
Vn G N. The two steps required in every induction proof, for both weak (/i) 
and strong (/2) induction, are given below. 

Weak Induction (/1): A theorem of the form "Vn holds Vn G N" 
will be proved if it can be shown that the following two conditions 
are true: 

(i) The Initial Step: V\ is true. 
(ii) The Induction Step: If Vk is true for an arbitrary but fixed 

(ABF) value of к G N, then it follows that Vk+i is also true. 

Strong Induction {h)· A theorem of the form uVn holds Vn G N 
will be proved if it can be shown that the following two conditions 
are true: 

(i) Initial Step: Vi is true. 
(ii) Induction Step: If V\, V2,..., Vk are all true for an arbitrary 

but fixed (ABF) value of к € N, then it follows that Vk+\ is also 
true. 

Note that these two versions of mathematical induction are logically equiv-
alent. Therefore, proving the theorem "Vn, Vn G N" with strong induction 
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is equivalent to proving the theorem "Pn, Vn e N" with weak induction and 
vice versa. Note that the only difference between the two steps outlined in 
I\ and li is that the hypothesis for the induction step in li is stronger than 
the hypothesis in 1\. Thus, strong induction is based on the condition that 
T*\. T3-!·, •■■%f>k a r e a.11 true for some arbitrary but fixed value of к G N, and 
this is a stronger condition that Pk is true for an arbitrary but fixed value 
of к € N, which is used in weak induction. The question of which version 
of induction to use in a proof often becomes clear in the scratchwork of the 
induction step. In fact, when strong induction is required, it will usually be-
come obvious in the induction step of the proof. In general, it is standard 
practice to attempt an induction proof using weak induction first, and then 
trying strong induction only when it is clear that Ρι,Ρι,- ■ -,Pk are needed. 

Now, theorems that are good candidates for a proof by mathematical 
induction are theorems that are indexed by n and also hold V n e N. In other 
words, a theorem of the form Pn holds V n e N can often be proved using 
mathematical induction. For example, the following theorem can be proved 
with mathematical induction: 

Theorem: — \xn] = m " " 1 , V n € N. 
ax 

An algorithm that can be used for a proof by weak induction is outlined 
below. 

An Algorithm for Weak Induction: The following steps outline the typ-
ical procedure used in a proof by weak induction of a theorem Pn, V n e N: 

1. Define the statement Vn. 
2. Show that V\ is true. 
3. Assume that Vk is true for an arbitrary but fixed (ABF) value of к e N, 

and write down exactly what this means. 
4. Write down the statement Pk+i- This is the statement that Pk is sup-

posed to lead to. 
5. Began scratchwork by trying to relate Pk+i to Pk- Determine a set of 

logical arguments showing that Pk —► Pk+i-
6. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

7. Read the proof over carefully and make any necessary corrections. 

As is the case with any proof that is based on a method of proof other 
than the method of forward direct proof, it is important to denote the type of 
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proof being used. Hence, when an induction proof is used to prove a theorem 
it should be clearly noted that this is the method of proof being used. The 
following two examples illustrate how weak induction can be used to prove a 
theorem whose conclusion is indexed by n and holds V n € N. 

Example 3.4-1: Prove the following result using weak induction: 

n ( n + l ) 
ι= 5 " - . V n s 

i = l 

Solution: This result is a good candidate for a proof by weak induction since 
it is of the form Vn, Vn e N. 

Scratch work: 

n ( n + l ) 1. Define V n ~ ^ i 

1 

i. 2. The initial step is to prove that V\ is true. First, consider VJ 

Now, 2_. i ~ 1> a n d since —— = 1, it follows that V\ is 

true. 

3,4,5. The induction step. The goal here is to show that if Vk is true 
for some ABF к € N, then so is Vk+\- The key to carrying out 
the induction step is often to relate the result in 7 \ + ι to the 
result in Vk, and then work forward from this relationship. 

Suppose that Vk is true for some ABF A: € N. This means that 

Λ . k(k+l) 

г = 1 

k + \ 
Consider Vk + i- If ~Pk+i is true, then it follows that 2 ^ * W1'l 

, (Jfc + l)(fc + 2) 
be equal to . 
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k + l 

Now, consider YJ i: 

T,i = t.i+(k + l) = ^ ± Ü +(*+!) 
i-l i = l 

since Vk is true 

_ k2 + к + 2k + 2 _ k2 + 3k + 2 (k+\)(k + 2) 
2 2 ~ 2 

Thus, Pk + \ is true whenever Vk is true and therefore, it follows 
\—* ■ n(n + 1) ., that 2 ^ г = — -, Vn e N. 

6. Write up this set of induction arguments in a formal proof. 

n ( n + l ) 
г = Proof (by Induction): Define Vn '■= У", * = 

First, ] Г г = 1 and - Ц - — - = 1. Therefore, Pi is true. 
i=I 

Now, suppose that Vk is true for some ABF A: € N. This means that 
fc^ AriA: +1) Ί+1 

У _, г = . If Vk+\ is true, then it follows that S~] г will be 

V+W+V. Consider "f i: 

t = l 

fc + l fc . . . . 

i= l i= l 
since P* is true 

= fe2 + * + 2k + 2 - ^2 + ЗА: + 2 _ (Jb+ ! ) ( * + 2 ) 
2 ~ 2 2 

П / 1 \ 

Thus, Vk+i is true whenever P* is true; therefore, ^ P i = — -, 

for all n € N. 
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Example 3.4.2: Prove the following result using weak induction. Let p £ Ш. 
" i _ „Ml 

If p φ 1, then V p ' = — - i : , Vn g N. 

Solution: This is clearly a good candidate for a proof based on mathematical 
induction since it is of the form Vn, Vn € N. 

Scratchwork: Let p € К and suppose that p ψ 1 and define 

с 1 ~ P 
t=0 ^ The Initial Step: For n = 1, it follows that 

i 

ΣΡ'^Ρ^Ρ1 = *+P 
ί=0 

and 
i - p 1 + 1 i - p 2 ( I - P ) ( I + P ) , —; = = ; = 1 + p 

l - p 1 - p l - p 

Therefore, V\ is true. 

The Induction Step: Suppose that Vk is true for some ABF к e N. 
Л l - p ^ 1 

This means that 2_, P* — —: · Consider, V^+i- IfVk+i is true, 

k+l l - p f c + 2 fc+1 

then V^ p1 will be . Consider V^ рг: 
п. 1 — p t—1 

ι=ο ^ г=о 

i=0 i=0 ^ , 
since Vk is true 

l - p l - p 

Thus, Vk+i is true whenever Vk is true, and therefore 

" i i - p f c + 1 

$>- = i^-,vne 
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Proof (by Induction): Let p € К and suppose that p ψ 1. Define 

n 1 _ „n+l 

to l~P 

First, У2 p% = p° + p1 = 1 + p and 
t=0 

Ι - ρ ' + ' 1 - p 2 ( l - p ) ( l + p) 
= = = 1 + p 

1 - p 1 - p 1 - p 
Therefore, V\ is true. 

Suppose that Vk is true for some ABF к € N. This means that 

* I - P * 
A? 1 - p 

Now, consider Vk+i- If "Pfc+i is true, then it follows that 2_, P* w i ^ 

t=0 

fc+1 

! _ р ^ 2 
be . Consider > p ' : 

1 - p z - ' 
y t=o 

i=0 
fc + l 

*+ι ^ ! _pfc+i 
Σ ^ Σ ^ + ^ 1 = 4 ^ +p 
t=0 i=0 

1 - p 

since Vk is true 

- 1 - Ρ ' + 1 + Ρ ^ ' - Ρ ^ 2 ^ l - p f c + 2 

1 — p l - p 

Thus, "Pfc+i is true whenever Vk is true. Thus, whenever p ^ 1, it 
follows that 

Γ ρ ' = -—^—, VneN 

In the development of an axiomatic mathematical system, often a result 
will first be proved for the special case involving only two objects, followed 
by proving that the result can be extended to a more general result dealing 
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with n objects. Often, mathematical induction is used to prove the more 
general result that holds for n objects. The following example illustrates how 
mathematical induction can be used to extend a result concerning two objects 
to a result about an arbitrary natural number of objects. 

Example 3.4-3: Recall, from Chapter 2, DeMorgan's law for negating the 
conjunction of two statements stating that 

^{P /\Q) <==> n P v - Q 

Using mathematical induction, DeMorgan's law for conjunction can be ex-
tended to any collection of n statements, say, P\,..., Pn. Thus, induction can 
be used to prove the following result: 

(n + l \ n + l 

Л pi) = V "P" V n i N 

Proof: The proof of this result is left as an exercise. 

Note that weak induction was used to prove each of the results in Ex-
amples 3.4.1 and 3.4.2. Although strong induction could also have been used 
to prove the results in each of these examples, certain mathematical results 
will require the use of strong rather than weak induction. An algorithm for a 
typical strong induction proof is given below. 

An Algorithm for Strong Induction: The following procedure can be 
used for a strong induction proof of a theorem Vn, V n € N. 

1. Define the statement Vn. 
2. Show that V\ is true. 
3. Assume that V\, V2, ■ ■ ■, Vk are all true for an arbitrary but fixed value 

of к € N. Explain in writing what this means. 
4. Write down the statement Vk+i- This is the statement to which the 

statements V\, V?,..., Vk are supposed to lead. 
5. Begin the scratchwork by trying to relate Vk+i to V\, V2, · · ·, Pk- Deter-

mine a set of logical arguments showing that V\ Л V-ι Л · · · Л Vk —» P/t-n-
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6. Clean up and rewrite the scratchwork in a clear and concise proof of the 
theorem. Make sure each that step of the proof makes sense and is clearly 
justified. 

7. Read the proof over carefully and make any necessary corrections. 

The following example illustrates a result that cannot be easily proved 
with weak induction, but can be easily proved using strong induction. 

Example 3·4·4: Let the sequence of real numbers <z„ be defined by a\ = 0, 
a.2 = 1, and an+2 = 3a n + i — 2an, for n € N. Prove that an+2 — 2 n + t — 1, 
V n e N. 

Solution: This result is a good candidate for a proof based on mathematical 
induction since it is of the form Vn, Vn € N. The scratchwork below shows 
that weak induction fails to prove this result, while strong induction does not 
fail. 

Scratchwork: First try weak induction. 

Let Vn be the prepositional function "a„+2 = 2 n + 1 — 1". 

For n = 1, it follows that <ц +2 = 03 = Заг — 2a\ = 3 — 0 = 3 and 
2l + 1 - 1 = 4 - 1 = 3. Therefore, Vi is true. 

Suppose that Vk is true for some ABF к e N. This means that 
afcf2 = 2 * + 1 - l . 

If Vk+i is true, then a^k+i)+2 = о*+з will be 2f c + 1 + 1 - 1. Now try 
to show that Vk —» Vk+i-

Consider ajfc.t-3. By definition, ак+з = 3α^+2 — 2α*+ι. Now, relate 
to a.k+3 to Vk- Note that Vk gives information on a.k+2 but not on 
aic+i, and hence there is no obvious way to relate аь+з to Vk- At this 
point it appears that weak induction has failed. Now, an alternative 
approach is to try strong induction. 

Since the initial step is the same in weak and strong induction, only 
the induction step must be reconsidered. The scratchwork now con-
tinues with the strong induction hypothesis. 

Suppose that Vi,...,Vk are all true for some ABF A; € N. This 
means that aj+2 = 2j+l - 1 whenever j = 1,2,... , k. 

Consider ак+з- By definition, ак+з = 3α*+2 — 2α*+ι. Now, relate 
а/с+з to V\,...,Vk- Note that Vk gives information on a.k+2 and 
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Vk-i provides information on Ofc + i. Thus, from Vk and Vk~\ it 
follows that afc+2 = 2fc+1 — 1 and ak+i = 2fc - 1. Hence 

a*+3 = Зак+2 - 2afc + i = 3(2* + 1 - 1) - 2(2* - 1) 

= 3· 2k+ì - 3 - 2k+1 + 2 = (3 - 1)2*+1 - 1 

= 2k+2 - 1 

Thus Vi A ■ ■ ■ Л Vk -» Vk+u and therefore a n + 2 = 2 n + 1 - l , V n € N. 

Proof: Let P„ be the prepositional function "an+2 = 2 n + 1 — 1". 

For n = 1, it follows that αι+2 = аз = Заг - 2a\ = 3 — 0 = 3 and 
21 + 1 - 1 = 4 - 1 = 3 . Therefore, Vx is true. 

Suppose that V\,..., Vk are all true for some ABF к € N. This 
means that a,-+2 = 2J + 1 — 1 whenever j = 1,2,..., k. 

If Vk+i is true, then а^+3 will be 2fc+2 - 1. Consider ак+з- Now, by 
definition, a.k+3 = За^+2 — 2ßfc+i, and from P^ and Vk-i it follows 
that afc+2 = 2k+l - 1 and ak+i = 2k - 1. Thus 

afc+3 = 3afc+2 - 2ak+1 = 3(2fc+1 - 1) - 2(2fc - 1) 

= 3· 2fc+1 - 3 - 2k+i + 2 = (3 - 1)2Λ+1 - 1 

= 2*+2 - 1 

Thus, Vk+i is true whenever V\,. ■ ■, Vk are true; therefore, by strong 
induction, it follows that on+2 = 2"+ 1 - 1, Vn € N. 

The previous example illustrated how easy it is to switch from weak to 
strong induction in the scratchwork phase of a proof. Furthermore, strong 
induction will often be needed when recursive definitions are being used in a 
result indexed by n. The following theorem, stated without proof, states that 
the strong and weak forms of induction are logically equivalent; a nice proof 
of Theorem 3.4.1 can be found in Elementary Introduction to Number Theory 
by Calvin Long (1972). 
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Theo rem 3.4.1: The methods of weak and strong mathematical induction 
are logically equivalent methods of proof. 

It is important to note that in a proof by mathematical induction, the 
initial step must lead to the induction step so that V\ leads to V2 and so on. 
If V\ is true but does not lead to V2, then the induction algorithms as stated 
cannot be used to prove the result in question. The following example illus-
trates a scenario where the initial step does not lead directly to the induction 
step and hence leads to the erroneous conclusion that in any set of n numbers, 
all the numbers have the same value. 

Invalid Induction Proof: Let Vn be the statement "If A is any 
set of n numbers, then all the numbers in A have the same exact 
value." 

First, consider a set A containing only one element. Clearly, by 
default every element in this set has the same value. Thus, V\ is 
true. 

Suppose that Vk is true for some ABF к e N. This means that in 
any set of к numbers, all the numbers have exactly the same value. 

If Vk+i is true, then it will follow that in any set of к + 1 elements, 
all the elements have exactly the same value. Consider a set of к + 1 
elements, say, {αι ,α2, . . . , α/t+i}· 

Note that { a i , . . . , a* } and {02, . . . , ak+i} are two sets of к numbers, 
and thus by Vk, it follows that a\ — a.2 = ■ ■ ■ — a* and that 
U2 = аз = ' ' " — ttfc+i· Hence, a\ — ai = · · · = α*+ι and therefore, 
Vk + i is true whenever Vk is true. Therefore, if Л is a set of n 
numbers, then each of the numbers in A has exactly the same value, 
V n e N . 

But clearly, in the set of numbers {1,2} all the numbers do not have the 
same value. Thus, there must be an error in the set of induction steps outlined 
above. In fact, the problem that set of arguments is that while the initial step 
does show that V\ is true, it does not lead to Vi or any other statement Vk-
Since there is no successor to the statement V\s the induction argument fails 
to prove this conjecture. 

Finally, it is not required that the mathematical result being proved need 
be indexed by the entire collection of natural numbers (N) in order to use 
mathematical induction. In other words, if the theorem states that the result 
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Vn holds for only n greater than or equal to some integer m, then mathemati-
cal induction can still be used to prove the theorem by rewriting it as Vn+m-i 
holds for n € N. For example, consider the following theorem: 

Theorem: 2" > n2, whenever n is a natural number greater than or 
equal to 5. 

This theorem can be rewritten as 

Theorem: 2n+i > (n + 4)2, V n € N. 

Example 3.4-5: Rewrite each of the following results in the form Vn, V n € N: 

a. 3n <n\, for all natural numbers n > 7. 

b. nln(n) > n, for all natural numbers n > 3. 

f 1 1 
с / — dx — — г r + C, for all natural numbers n > 2. 

J xn (l-n)x7--1 _ 

Solutions: 

a. 3 n + 6 < (n + 6)!, V n € N. 

b. The solution to part (b) is left as an exercise. 

с The solution to part (c) is left as an exercise. 
3.4.2 Uniqueness Proofs 

A special theorem of the nature "Object A that is an element of the set С is 
the only (i.e., the unique) object having a property P" is called a uniqueness 
theorem. A uniqueness theorem is very important in that it shows that one 
and only one object has the special property P. Two examples of uniqueness 
theorems are given below: 

Theorem: In the field of real numbers, the multiplicative identity, e = 1, 
is unique. 

Theorem: If (6>°) is a group and e € Q is an identity element, then e 
is the unique identity element in Q. 

A uniqueness theorem can be proved with a proof by contradiction, and 
the steps used to prove a uniqueness theorem are outlined below. 

Algorithm for a Uniqueness Proof: A proof by contradiction can be used 
to prove the theorem "Object A in the set С having property P is unique" as 
outlined below. 

1. Show that object A e С has property P. 
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2. Assume that object A is not the only object in the set С having property 
P. 

3. Let object В / A be any other object in the set С that has property P. 
4. Using logical arguments, show that В = Л, contradicting statement 3. 
5. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

6. Read the proof over carefully and make any necessary corrections. 

The following three examples illustrate the use of the method of proof by 
contradiction to prove a uniqueness theorem, using the algorithm presented 
above. 

Example 3.4-6: Prove the following result. If x = 1, then x is the unique 
real-valued solution to the equation x3 — 1 = 0. 

Proof (Uniqueness Proof): First, x = 1 is a real-valued solution 
to x3 — 1 = 0 since l 3 — 1 = 0. Now, suppose that x = 1 is not the 
only real-valued solution to x3 — 1 — 0. In other words, there exists 
more than one real-valued solution to x3 — 1 = 0. Let s Ф 1 be any 
other solution to x3 — 1 = 0. Then, s3 — I — 0 and hence 

0 = s3 - 1 if and only if s3 = 1 if and only if s = 1 

However, this contradicts the fact that s ψ 1, and therefore, x = 1 
is the unique solution to the equation x3 — 1 = 0. 

Example 3.4-7: Prove the following result. The matrix h = 

unique 2 x 2 identity matrix. 

1 0 
0 1 is the 

Proof (Uniqueness Proof): Let A a b 
с d 

be an ABF a 2 x 2 

matrix, and let li — Then, Ah = A and Ι-χΑ = A and 1 0 
0 1 

hence /2 is a 2 x 2 identity matrix 

Now, suppose that there exists more than one 2 x 2 identity matrix, 
and let E Φ li be any other 2 x 2 identity matrix. 

Since E and I2 are identity matrices, it follows that 

AE = E A = A and AI2 = hA = A 
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for any 2 x 2 matrix A. 

Thus, EI2 = E since /2 is an identity matrix, and similarly, EI2 = /2 
since E is an identity matrix. Hence, E = EI2 = I2, contradicting 
the fact that E φ Ι2 and therefore, /2 is the unique 2 x 2 identity 
matrix. 

Example 3.4-8: For a, b € Ш, define aob = a + b- 1. Prove the following 
theorem. 

Theorem: Let 0,6 e R. Then, the solution x to the equation а о x = b is 
unique. 

Proof (Uniqueness Proof): Let a,b £ R and suppose that the 
solution to а о x = b is not unique. Let sj ф S2 be two real numbers 
that are solutions to the equation а о х — b. 

Then 

a o j [ = 6 if and only if a + S\ — 1 = 6 if and only if si = b — a + 1 

and 

а о S2 = b if and only if a + S2 ~ 1 = b if and only if $2 = 6 — a + 1 

Thus, Si = b — a + 1 = S2, which contradicts Si ф «2, and therefore 
the solution to а о χ = b is unique. 

3.4.3 Existence Proofs 

Another special type of theorem is a theorem of the nature "There exists an 
object A that is an element of the set С that has property P." A theorem of 
this nature is called an existence theorem. The following theorem provides an 
example of a existence theorem. 

Theorem: If (Q, o) is a group and a,b € Q, then there exists у e Q such 
that а о у — b. 

Now, the proof of an existence theorem requires showing that there ex-
ists an object A e С that has the property P. An existence proof may sim-
ply involve creating an object A in the set С having the property P, but in 
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many cases, the proof of an existence theorem will require a great deal of 
creative thinking and mathematical insight. Hence, the method of proof that 
is typically used in proving an existence theorem is called "proof by construc-
tion." The following algorithm outlines the typical approach used in proving 
a uniqueness theorem. 

Algorithm for an Existence Proof: To prove the theorem "There exists 
an object A in the set С that has property P" 

1. Create or construct an element A that has property P. 
2. Show that the element A is in the set C. 
3. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

4. Read the proof over carefully and make any necessary corrections. 

Note that while this algorithm has only main two steps, the proof of an exis-
tence theorem often requires a great deal of scratchwork and creative thinking. 
In most cases, the existence proof does not reveal the amount of work involved 
in creating or finding the object A. While an existence proof might be very 
short once the object A has been created or found, a short proof does not 
necessarily indicate the level of difficulty in developing the proof. In many 
existence proofs, the construction of the element A £ С can be found by fo-
cusing on the property P, and this may simply amount to solving an equation 
related to the property P. Also, it is not unusual that a mathematical trick 
or unusual approach will need to be used in creating the object A in an ex-
istence proof. An example of an existence theorem and its proof are given in 
the following example. 

Example 3.^.9: Prove the following existence theorem: 

Theorem: There exist prime numbers of the form 2P — 1 where p is a prime 
number. 

Scratchwork: First, the set С is the set of prime numbers, and the 
property of interest is that 2P — 1 is a prime number. 

To create a prime of the form 2P — 1, first consider the prime number 
p = 2. Now, 2 is a prime number and 22 - 1 = 3, which is a prime 
number. Thus, p = 2 is in С and has the property P. 

Proof (Existence Proof): Note that 2 is a prime number, and 
22 - 1 = 3 is a prime number. Thus, there do exist prime numbers 
of the form 2P — 1 where p is a prime number. 
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Note that in this theorem, the value of p was found by considering the 
first possible prime number. Since p — 2 is a prime number for which 22 — 1 
is also a prime number, this proved the existence theorem, and the proof is 
very short. 

Example 3.4· 10: Prove the following theorem: 

Theorem: There exist two irrational numbers whose sum is ratio-
nal. 

Scratchwork: In this theorem, С is the set of irrational numbers and 
P is the property that the sum of two irrational numbers is rational. 
Consider well-known irrational numbers. For example, \/2, \ / 3 , π, 
and e. 

The trick here is to focus on the sum being rational. Now, there are 
many ways to form a rational number from two irrational numbers, 
but only one is needed. 

Let x — y/2 and у = — >/2. Then, x and у are both irrational 
numbers, and x + у = \/2 + ( - \ /2) = \/2 - \fi. - 0. Since 0 is a 
rational number, the result is as follows. 

Proof (Existence Proof): Let x = sß. and у = -\f2. Then, x 
and у are both irrational numbers. 

Consider x + у 

x + y= л/2+(—\/2) = ν ^ - ^ = 0 

Thus, since 0 is a rational number, it follows that there exist irra-
tional numbers such that the sum of the two irrational numbers is 
rational. 

Although the two previous existence proofs were very short, it is not 
always the case that the proof of an existence theorem will be short. The 
key to any existence proof is the construction of an element A in the set С 
that has property P; the length of the proof may or may not represent the 
difficulty of the construction of the element A. 

Example 3.4-11: For a,b e Ш, define the binary operator о as follows: 
o o i = a + 6 - 1. Prove the following theorem: 
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Theorem: Let a, b € К. Then, there exists x 6 M such that αοχ = 6. 

Scratchwork: Here the set С is R and the property P is that x £ R 
satisfies the equation ao χ = b or equivalently, a + x — 1 = ò. The 
proof of this theorem requires that a solution to this equation be 
constructed. 

Let a,b £ R and consider the equation aoχ — b. Now, solve this 
equation for x. 

а о x = 6 if and only ifa + x— 1 = 6 if and only ifx = 6 — a + 1 

Double-check this solution by plugging it in for x. 

a o ( 6 - a + l ) = a + 6 - a + l - a = 6 

So, the solution i sx = 6 — a + 1 which is in R. 

Proof (Existence Proof): Let a, 6 € R. Consider the equation 
а о x = b: 

а о x = b if and only ifa + x— 1 = 6 if and only if x = 6 — a + 1 

Thus, x = ò — a + 1 is a real number satisfying а о х = 6: 

Therefore, there exists x € К such that а о χ = 6, V a, b € R. 

3.4.4 Proof by Cases 

In many proofs, the path of the logical arguments will lead to a statement 
involving an either/or statement such as condition S\ or condition 5г. When 
this happens, it is often useful to consider separate proofs for each of the 
cases Si and 5г, provided these cases are mutually exclusive and exhaustive. 
This approach is called a proof by cases. The need for a proof by cases may 
be obvious or may be hidden in the implications of a particular statement. 
Furthermore, a proof by cases may involve more than simply two cases. Ex-
amples of the type of statement that may indicate whether a proof by cases 
is needed are given below: 

a. ... either x > 0 or x < 0. 
b. ... either x is a prime number or x is a composite number. 
с ... either n is odd or n is even. 
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d. ... either x is in the set A, x is in the set B, or x is in the set C. 
e. ... the set V is either empty, finite, or infinite. 

An example of a proof by cases can be found in the proof of Theorem 2.3.4, 
part (i), which states that -> (P V Q) and ->P Л ->Q are logically equivalent. 
In the proof of this theorem, the truth tables for these two statements were 
compared and shown to be identical. Thus, it turns out that proving that 
two statements are logically equivalent by showing that they have identical 
truth tables is actually a proof by cases. In other words, in a proof utilizing 
a truth table, all the different possible states of nature (i.e., different cases) 
for the base statements must be considered. An alternative proof of Theorem 
2.3.4(i) is shown in the following example. 

Example 3.4.12: The proof of Theorem 2.3.4(i) is restated as a proof by 
cases below. 

Theorem 2.3.4(i): If P and Q are statements, then -> (P V Q) is logically 
equivalent to -> P Л -> Q. 

Proof: Let P and Q be statements. Then either (1) P is true and 
Q is true, (2) P is true and Q is false, (3) P is false and Q is true, 
or (4) P is false and Q is false. 

Case 1: Suppose that P is true and Q is true. Then, (P V Q) is 
true and hence ->(P V Q) is false. Furthermore, ->P and ->Q are 
both false, and thus -> P Л -> Q is false. Therefore, when P and Q 
are both true, then ->(P V Q) and -> P Л ->Q are both false. 

Case 2: Suppose that P is true and Q is false. Then, (P V Q) is 
true and hence -> (P V Q) is false. Furthermore, -i P is false and -i Q 
is true, and thus -> P Л -■ Q is false. Therefore, when P is true and 
Q is false, then -i (P V Q) and -> P Л -■ Q are both false. 

Case 3: Suppose that P is false and Q is true. Then, (P V Q) is 
true and hence ->(P V Q) is false. Furthermore, -> P is true and -■ Q 
is false, and thus -> P Л -> Q is false. Therefore, when P is false and 
Q is true, then -i (P V Q) and -> P Л -> Q are both false. 

Case 4: Suppose that P is false and Q is false. Then, (P V Q) is 
false and hence ->(P V <2) is true. Furthermore, both ->P and -iQ 
are true, and thus -> P Л -> Q is true. Therefore, when both P and 
Q are false, then -i(P V Q) and -i P Л -> Q are both true. 

Thus, in each of the four cases -i (P V Q) and -> P Л -> <3 have 
the same truth values. Thus, it follows that ->{P V Q) is logically 
equivalent to ->P Л -^Q. 
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Note that when using a proof by cases to prove a theorem, a separate 
proof of the theorem is required for each of the possible individual cases. Also, 
with regard to the clarity of the proof it is important to denote (1) the possible 
cases and (2) where the proof of each case begins and ends. The following 
example illustrates how this might be done. 

Proof: Hypotheses 

Logical arguments 

Thus, it follows that x > у or x < y. 

Case 1: Suppose that x > y. 

Hence, for x > у it follows that . . . 

Case 2: Suppose that x <y. 

Hence, for x < у it follows that . . . 

Therefore, in either case it follows that . . . 

Note that the beginnings and endings of each of the two cases in the 
example above are clearly delineated. Furthermore, note that the last line of 
the proof states that the result holds for both of the possible cases considered. 
The following two examples illustrate the typical use of the method of proof 
by cases. 

Example 3.^.13: Prove the following theorem: 

Theorem: Let n be a natural number. If n is not a multiple of 3, then n2 is 
not a multiple of 3. 

Scratchwork: Let n be a natural number that is not a multiple 
of 3. Since n is not a multiple of 3 (i.e., n ф 3k), it follows that 
n = ЗА: + 1 or n = ЗА: + 2 for some natural number k. Thus, the two 
cases that must be considered are n = 3/c + 1 and n = 3/c + 2. 
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Case 1: Suppose that n = 3k + 1 for some natural number k. Then 

n2 = (ЗА; + l ) 2 = 9A:2 + 6A: + 1 = 3(3A:2 + 2k) + 1 = 3j + 1 

where j = ЗА;2 + 2A:, which is an integer. Thus, n2 is not a multiple 
of 3. 

Case 2: Suppose that n = 3fc + 2 for some natural number A:. Then 

n2 = (ЗА: + 2)2 = 9A;2 + 12* + 4 = 3(3A;2 + 4k + 1) + 1 = 3j + 1 

where j = ЗА;2 + 2A:, which is an integer. Thus, n2 is not a multiple 
of3. 

Hence, in either case n2 is not a multiple of 3 and therefore, when a 
natural number n is not a multiple of 3, it follows that n2 is not a 
multiple of 3, either. 

Proof: Let n be a natural number that is not a multiple of 3. Now, 
since n is not a multiple of 3, it follows that n = 3k + I or n = ЗА; + 2 
for some natural number k. 

Case 1: Suppose that n = 3k + 1 for some natural number A:. Then 

n2 - (ЗА + l ) 2 = 9A;2 + 6A; + 1 = 3(3fc2 + 2k) + 1 = 3j + 1 

where j — 3k2 + 2k, which is an integer. Thus, n2 is not a multiple 
of3. 

Case 2: Suppose that n = ЗА; + 2 for some natural number A;. Then 

n2 = (ЗА: + 2)2 = 9A;2 + 12fe + 4 = 3(3A·2 + 4A: + 1) + 1 = 3j + 1 

where j = ЗА:2 + 2A:, which is an integer. Thus, n2 is not a multiple 
of3. 

Hence, in either case n2 is not a multiple of 3 and therefore, when a 
natural number n is not a multiple of 3, it follows that n2 is not a 
multiple of 3, either. 

Example 3·4·14·' Prove the following theorem: 

Theorem: Let x and у be real numbers. Then \xy\ — |x|· \y\. 

Proof: Let x and у be real numbers. Then, either x,y > 0 or 
x > 0, у < 0 or x, у < 0 or x < 0, у > 0. 
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Case 1: Suppose that x,y > 0. Then, |x| = x, \y\ = y, and 
\xy\ = xy. Hence, \xy\ = xy = |x|· \y\, and thus \xy\ = |x|· |y|. 

Case 2: Suppose that x > 0 and у < 0. Then, |x| = x, |y| = -y, and 
|xy| = -xy . Hence, \xy\ = - x y = |x|· |y|, and thus |xy| = |x|· \y\. 

Case 3: Suppose that x,y < 0. Then, |x) = - x , \y\ = -y, and 
jxy| = xy. Hence, |xy| = xy — ( -x ) ( -y ) = N ' M » and therefore 
\xy\ = \χ\·\ν\· 
Case 4: Suppose that x < 0 and у > 0. Then, |x| = —x, |y| = y, and 
|xy| = -xy . Hence, |xy| = - x y = |x|· \y\, and thus |xyj = |x|· \y\. 

Therefore, in each of the four cases |xy| = |x|· |y|, and therefore 
|xy| = |x|· |yj, for any two real numbers x,y. 

Note that if the same arguments are used for the proofs of two or more 
cases in a proof, then these cases should be combined into a single case. In 
fact, since the same arguments worked for each of the cases there was no need 
to consider the cases separately. In some proofs the arguments for proving 
one or more cases are very similar, mutatis mutandis (Latin for "with the 
necessary changes"), to the arguments needed to prove another case. In this 
case, a "without loss of generality" (WLOG) statement is usually issued and 
the proof of the theorem is shortened by presenting only the proof of one of 
these similar cases. However, when using a WLOG statement in a proof, it is 
very important to clearly explain why there will be no loss of generality. 

Example 3.4-15: Note that in Example 3.4.14 the proofs for cases 2 and 
3 are nearly identical. In fact, except for the role changes of the variables x 
and y, the proofs are exactly the same. Thus, this is an example of a proof 
that could be shortened using a WLOG statement. The shorter version of the 
proof with a WLOG statement is shown below. 

Proof: Let x and у be real numbers. Then, either x,y > 0 or 
x > 0, у < 0 or x, у < 0 or x < 0, у > 0. 

Case 1: Suppose that x,y > 0. Then, |x| = x, \y\ = y, and 
|xy| = xy. Hence, |xy| = xy = |x|· |y|, and thus |xy| = |x|· \y\. 

Case 2: By symmetry, the proof for x > 0 and у < 0 and for 
x < 0 and у > 0 are similar. Thus, WLOG assume that x > 0 
and у < 0. Tnen, |x| = x, |y| = -y , and jxy| = -xy . Hence, 
|xy| = - x y = |x|- |y|, and thus \xy\ = |x|· \y\. 
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Case 3: Suppose that x,y < 0. Then, \x\ — —x, \y\ = —y, and 
\xy\ — xy. Hence, \xy\ — xy = (-x)(~y) = \x\-\y\, and therefore 
\χν\ = W-Ы-
Thus, in each of the cases \xy\ — \x\- \y\, and therefore \xy\ = \x\- \y\ 
for any two real numbers x and y. 

3.4.5 Proving Biconditional Theorems 

Recall that the converse of a theorem is seldom also true. However, when a 
theorem and its converse are true, then the theorem may be written in the 
biconditional form "Я if and only if C " ; a theorem of the form "Я if and only 
if C" is called a biconditional theorem. For notational purposes the phrase "if 
and only if" is commonly abbreviated by "iff." An example of a biconditional 
theorem is given below. 

Theorem: Let a and b be real numbers. Then, ab = 0 if and only if 
a = 0 or b = 0. 

Note that a biconditional theorem Я <-» С is actually a theorem that is 
comprised of the two theorems, namely, Я —> С and С —> Я. Thus, to prove 
a biconditional theorem, both of the theorems H —> С and С —* H must 
be proved. The following steps outline the typical approach used in proving 
a biconditional theorem. 

Algorithm for a Biconditional Proof: To prove the theorem " # if and 
only if C" perform the following sequence of steps: 

1. Prove H —> C, which is often referred to as the forward proof. 
2. Prove С —> H, which is the converse of the forward theorem. 
3. After proving H —> С and С —> Я , conclude Я <-» С. 
4. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

5. Read the proof over carefully and make any necessary corrections. 

Thus, the proof of a biconditional theorem will actually consist of two 
standalone proofs, one for each of the theorems Я —» С and its converse. Fur-
thermore, each of the theorems Я —» С and С —* Я may be proved with any 
valid method of proof. Also, in the presentation of the proof of a biconditional 
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theorem it is very important to designate where the proofs of H —» С and 
С —♦ H begin and end. Example 3.4.16 illustrates a biconditional theorem 
and its proof. 

Example 3.^.16: Prove the following biconditional theorem: 

Theorem: Let x be a real number. Then, x2 — Ax + 4 = 0 if and only if 
i = 2. 

Proof: Let x be a real number. 

First, assume that x 2 - 4 x + 4 = 0. Then, since x 2 - 4 x + 4 = ( x - 2 ) 2 , 
it follows that if 0 = x2 - 4x + 4 = (x - 2)2, then x - 2. 

Conversely, assume that x = 2. Then, x 2 - 4 x + 4 = 2 2-4(2) + 4 = 0. 

Hence, x2 — 4x + 4 = 0 if and only if x = 2. 

Example 3.4-17: Prove the following biconditional theorem. 

Theorem: Let m, n € N. Then, m + n is odd if and only if exactly one of m 
and n is odd. 

Proof: Let m,n € N. 

First, assume that m + n is odd and it is not the case that exactly 
one of in and n is odd. Then either in and n are both odd or m and 
n are both even. 

Case 1: Suppose that both m and n are odd. Then, there exist 
k, j e Z such that n = 2k + 1 and m— 2j + Ì. Consider m-\- n 

m + n = {2k + 1) + (2j + 1) = 2j + 2/fc + 2 = 2(j + A: + 1) = 2/ 

where / = j + к + 1, which is an integer. Hence, m + n is even, 
contradicting m + n is odd. Therefore, it is not possible for m + n 
to be odd when both m and n are odd. 

Case 2: Suppose that both m and n are even. Then, 3 k,j € Z 
such that n = 2k and m = 2j. Consider m + n 

m + n = 2k+2j - 2(j + k) = 21 

where I = j + k, which is an integer. Hence, m + n is even, contra-
dicting m + n is odd. Therefore, it is not possible for m + n to be 
odd when both m and n are even. 
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Thus, if m + n is odd, then exactly one of m and n must be even. 

Conversely, suppose that exactly one of m and n is even. Without 
loss of generality, suppose that n is odd and m is even. Then, there 
exist k, j € Ъ such that n — 2k + 1 and m = 2j . Consider m + n 

m + n = (2k + 1) + 2j = 2j + 2k + 1 = 2(j + k) + 1 = 2/ + 1 

where I — j + k, which is an integer. 

Therefore, m + π is odd whenever exactly one of m and n is odd. 

3.4.6 Disproving a Conjecture 

Γη the axiomatic development of mathematics, results are hypothesized and 
conjectures are made, and then an attempt is made to prove the conjectured 
results. Once a conjecture is proved it is called a theorem and is added to 
the collection of mathematical results. However, when a conjecture cannot be 
proved, even after substantial effort has been put forth, then it is often reason-
able to begin doubting the truth of the conjecture. In this case, an attempt 
may be made to disprove the conjecture. Now, disproving a mathematical 
conjecture requires only a single example to be found showing that the con-
jecture is false. Thus, if an example can be found where the hypothesis of the 
conjecture is true but the conclusion is false, then conjecture will be disproved. 
An example used to disprove a conjecture is called a counterexample. 

Definition 3.4-1: A counterexample to the conjecture H —> С is a specific 
example where the hypothesis H is true, but the conclusion С is false. 

Note that only a single counterexample is needed to disprove the conjec-
ture H —♦ C; however, finding a counterexample can be extremely difficult 
and often requires a great deal of creativity and insight. Furthermore, while 
a counterexample may disprove the conjecture in general, it is often the case 
that the conjecture will be true for a few, or even many, specific examples. 
Moreover, while examples may be used to support the truth of a conjecture, 
it must be kept in mind that even a massive amount of examples will never 
constitute a proof of the conjecture. For example, consider the following con-
jecture: 

Conjecture: \Jx2 + y2 = x + j / , V x, у e R. 

This conjecture is true for the special cases o f i = y = 0, I = 1,J/ = 0, and 
x = 0,y = 1. However, this conjecture is disproved by the counterexample 
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x = 2, у = 1 since V22 + l2 = \/5 ^ 1 + 2 = 3. Thus, this conjecture is 
not true ¥ I , J / € K, even though it is true for special cases of x = у — 0, 
a; = 1, у = 0, and x — 0,y — 1. 

Now, when a conjecture Я —> С has been disproved it can be regarded 
as a theorem of the form "There exist counterexamples to Я —» С" which is 
an existence theorem that be proved by simply constructing a counterexample 
to Я - С. 

Example 3.4· 18: It is conjectured that n2 + n + 41 is a prime number for 
every natural number n. Prove that this result is true or find a counterexample 
to disprove this result. 

Solution: Consider a few trial cases. Clearly, this result holds for the values 
n = 1,2,3,4,5,6. Furthermore, since this conjecture has the form Vn, Vn € N, 
if it were true it would be a good candidate for a proof by mathematical 
induction. Consider the following attempt to prove the conjecture with weak 
induction. 

Induction Scratchwork: Let Vn be the prepositional function 
"?г2 + П + 4 1 is a prime number." 

For n = l, n2 + n + 41 = 1 + 1 + 41 = 43, which is prime. Thus, V\ 
is true. 

Now, suppose that Vk is true for some ABF к € N. This means that 
к2 + к + 41 is prime. 

If Vk (i is true, then (k + l ) 2 + (k + 1) + 1 will be prime. Consider, 
(k+ l ) 2 + (fc+ 1)+ 1: 

(k + l ) 2 + (jfc + 1) + 1 = к2 + 2k + 1 + к + 1 + 1 

(A:2 + / c+ l ) +(2A:+2) 
> „ ' 

prime since Vk is true 

At this point, it is difficult to see whether Vk+i is true. 

The induction proof has bogged down, and thus it might be time to 
consider an attempt to disprove the conjecture. Now, to disprove 
this conjecture, a value of n must be found so that n2 + n + 41 is 
not a prime number. One approach is to simply begin computing 
тг2 + n + 41 for different values of n. In this case, n2 + n + 41 is true 
for n = 1,2,..., 39 which appears to be strong evidence supporting 
this conjecture. However, for n — 40 the conjecture is false since 
402 + 40 + 41 = 1681 = 412, which is not a prime number. Thus, 
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n = 40 is a counterexample to the conjecture n2 + n + 41 is a prime 
number for all n € N. 

Example 3-4-19: Find a counterexample that disproves each of the following 
mathematical conjectures: 

a. (x + y)2 - x2 + y2, V x, у € R 

b. >ДТу = v ^ + ^ , V i , ä ( E R 

c. sin(x + у) = sin(x) + sin(y), V i , j / ε R 

Solutions: 

1. (1 + l ) 2 = 4 =̂  l 2 + l 2 = 2. Thus, a; = 1, j / = 1 is a counterexample that 
disproves (x + y)2 = x2 + y2, V x, у € R. 

2. \ / l + 1 — yfi Ф \/\ + \/T = 2. Thus, x = 1, у = 1 is a counterexample 
that disproves , /x + у = л/х + ^/y, V x, у e R. 

3. sin(7r/2 + π/2) = 0 ^ sin(7r/2) + sin(ff/2) = 1 + 1 = 2. Thus, the 
values x = π/2 and у = π/2 provide a counterexample that disproving 
sin(x + y) — sin(x) + sin(y), for all x, у 6 R. 

3.5 Some Final Notes on Proving Theorems 

In concluding this chapter, it should be noted that choosing the particular 
method of proof that is best suited for proving a theorem is often a difficult 
task. In fact, the particular method of proof that is used to prove a theo-
rem will often depend on the actual structure of the theorem itself. Some 
theorems are easily proved with a direct proof, some with a indirect proof, 
some with proof by contradiction, and some theorems require induction or 
another specialized method of proof. Furthermore, there will often be more 
than one method that can be used to prove a theorem. So, when faced with 
the problem of proving a theorem, it is important to keep the following facts 
in mind: 

1. No method of proof begins with the assumption that the conclusion (C) 
is true, and no method of proof begins with the assumption that the 
hypothesis (H) is false. Thus, a valid proof must begin with either the 
assumption that H is true (forward direct proof), the assumption that 
H is true and С is false (indirect proof), or the assumption that the 
conclusion (C) is false (proof by contrapositive). 

2. A proof might have to be broken into distinct cases (i.e., x > 0, x < 0, 
or x = 0). 
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3. Mathematical induction is often useful in proving a mathematical result 
of the nature "Vn, V n e N." 

4. There are specialized methods of proof for uniqueness theorems and ex-
istence theorems. 

5. If the theorem is a biconditional theorem H —> C, then both of the 
theorems H —> С and С —> H must be proved. 

6. If a conjecture cannot be proved, it might be false. Disproving a conjec-
ture can be done by finding a single counterexample. 

Example 3.5.1: For each of the theorems in this example, a potential start 
for a proof has been given. Determine which method of proof, if any, is being 
used to prove each of the theorems below. 

a. Theorem: If f(x) is a differentiable function on [a,6,], then f(x) is 
continuous on \a,b]. 

Proof: Let f{x) be a differentiable function on [a, b]. 

b. Theorem: \/5 is an irrational number. 

Proof: Assume that \/5 is a rational number. 

с Theorem: Let A and В be sets. If А С В, then А П В = A. 

Proof: Let A and В be sets, and suppose that А Л В = A. 

d. Theorem: 7" - 2n is divisible by 5, V n e N. 

Proof: For n = 1, 71 - 21 — 5 which is divisible by 5. Thus, this 
result is true for n = 1. 

e. Theorem: Let n be a natural number. If n2 is odd, then n is odd. 

Proof: Let n £ N and suppose that n is even. 

Solutions: 

a. This proof begins with the hypothesis (Я) and thus could be a direct 
proof. 

b. This proof begins with negation of the conclusion (->C) and thus could 
be a proof by contradiction. It could also be a proof by contrapositive. 

c. This is not a proof because it begins by assuming that the conclusion (C) 
is true. 

d. This proof begins by looking at the case where n = 1 and thus could be 
a proof by mathematical induction. 
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e. This proof begins with negation of the conclusion (->C), but not the 
hypothesis (H), and therefore it could be a proof by contrapositive. 

Example 3.5.2: Determine which method of proof is best suited to each of 
the following theorems: 

a. Theorem: If n3 is an even number, then n is an even number. 

b. Theorem: \/Ϊ7 is an irrational number. 

с Theorem: There exists an element e in С such that a o e = e o a = a, 
4a€C. 

d. Theorem: a" — bn is divisible by a - 6, V n 6 N. 

e. Theorem: If (Q,o) is a group and a € Q, then a""1 is unique. 

Solutions: The solutions to Example 3.5.2 are left as exercises. 
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EXERCISES 

3.1 Determine the hypothesis and conclusion for each of the following theo-
rems: 

a. Theorem: If x, у € R, then \xy\ = \x\· \y\. 
b. Theorem: If lim f{x) = F and lim g(x) = G, then 

lim [f(x) + g(x)\a= F + G. 
X —»a 

c. Theorem: If f(x) is differentiable on [a, 6] and f(a) = /(6), then 
there exists V € К b] such that /'(«/0 = 0. 

d. Theorem: If p and p + 2 are prime numbers, then p + 1 is divisible 
by 6. 

oo 

e. Theorem: If lim an ψ 0, then S^ an diverges. 
n = l 

f. Theorem: If lim a„ = 0 and lim 
П—ΌΟ n—»OO 

verges. 
g. Theorem: If (Q, o) is a group, then the identity element in Q under 

о is unique. 

3.2 Determine the contrapositive of each of the theorems in Exercise 3.1. 

3.3 Theorem: Let a, f>, c, d € Z. If a is divisible by d, b is divisible by d, and 
с is divisible by d, then a + b + с is divisible by d. 

a. Determine the hypothesis and conclusion of this theorem. 
b. Determine the converse of this theorem. 
с Determine the contrapositive of this theorem. 
d. Is the converse of this theorem true? 
e. Is the contrapositive of this theorem true? 

3.4 Prove each of the following theorems by the method of forward direct 
proof: 

a. Theorem: Let n, m € N. If n and m are even, then n + m is even. 
b. Theorem: Let n, m e N. If n and m are odd, then n + m is even. 
с Theorem: Let n, m e N. If n and m are odd, then nm is odd. 
d. Theorem: Let n, m g N. If n is odd and m is even, then n + m is 

odd. 

fln+l 
< 1, then 2_. ° n con" 

1 
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3.5 Prove each of the following theorems by the method of contrapositive.· 

a. Theorem: Let n e N. If n2 is odd, then n is odd. 
b. Theorem: Let n € N. If n3 + n2 + n + 2 is odd, then n is odd. 
с Theorem: Let m, n e N. If mn is odd, then m is odd and n is odd. 
d. Theorem: Let a, 6, с € N. If 6 + с is not divisible by a, then neither 

6 nor с is divisible by a. 
e. Theorem: Let « e N. If /г2 — 1 is not divisible by 4, then n is even. 
f. Theorem: Let x £ R. If x2 + 2x < 0, then x < 0. 

3.6 Prove the following theorems by the method of contradiction: 

a. Theorem: If x > 0, then x + loverx > 2. 
x 3 

b. Theorem: If x > 0, then - + - > 2. 
3 x 

c. Theorem: There is no largest natural number. 
d. Theorem: Let n € N. If n2 is odd, then n is odd. 
e. Theorem: Let n e N. If n2 is divisible by 3, then n is divisible by 

3. 
f. Theorem: The equation x3 + x + 1 has no rational roots. 

3.7 A real-valued function /(x) is said to be odd if f(—x) = - / ( x ) , Vx e К; 
a real-valued function /(x) is said to be even if /(—x) = /(x),Vx e K. 
Prove the following theorems: 

a. Theorem: If / (x) and #(x) are real-valued even functions, then 
/ -+ g is an even function. 

b. Theorem: If / (x) and g(x) are real-valued odd functions, then 
f(x) + g(x) is an odd function. 

с Theorem: If f(x) and ^(x) are real-valued odd functions, then 
f(x)g(x) is an even function. 

3.8 Prove the following theorems by using the method of proof by cases: 

a. Theorem: If n is a natural number, then n2 + n + 1 is an odd 
number. 

b. Theorem: Let n € N. If n2 is divisible by 5, then n is divisible by 
5. 

с Theorem: If x € R, then \ax\ = \a\ ■ \x\, У a e №.. 
d. Theorem: If x £ R, then |1 + x| < 1 + |x|. 
e. Theorem: If /(x) = |x|, then /(x) is differentiable for all i ^ O . 



92 Methods of Proof 

f. Theorem: If P is a statement, then ->(-iP) <==> P. 

3.9 For each n G N, let Vn denote the statement "n2 + 5ra + 1 is an even 
integer." 

a. Prove that Vn+i is true whenever Vn is true. 
b. Is Vn true for every n G N? 

3.10 Prove the following results using mathematical induction: 

a. 22"~1 + 3 2 n ~ ' is divisible by 5 for every natural number n. 
n 1 

b. > — — = for every natural number n. 
^ ι(ι + 1) n+ 1 

с Let a, b G R. Then, a" - ò" is divisible by a - 6, V л € N. 
d. ( / i + l ) 3 ~ ( n + l ) is divisible by 3 for every natural number n. 

^ .2 n ( n + l ) ( 2 n + l ) 
e. > г = ior every natural number n. 

f. f l + Л > l + | , V n € N . 

g. 22n~l + 3 2 n _ 1 is divisible by 5 for every natural number n. 

h. 2_. j 3 = ( /.J I f°r eve rY natural number n. 

i. Let Pi be a statement for i G N. Then 

/ n + l \ n+ l 
У P< <=> Д - p , V n e N . 

4 l = l / ! = 1 

j . Let Pi be a statement for г Е N. Then 

f'n + l \ n + l 
Д PA <=> V -.Pi, V n G N . 

" 1 
к. У - = > v/n, V n 

1. 3 2 n ' + 1 is divisible by 4 for every natural number n. 
m. 8n — 1 is divisible by 7 for every natural number n. 
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о. If x e R, then (1 + x)n > 1 + nx for n e N. 
" 1 _ (__p)"+i 

p. If p ф - 1 , then > ( -p) ' = — for every natural number 

n. 
q. ( n + 3 ) ! > 2 n + 3 , V n e N . 
r. If о € N is an odd number, then an+l is odd, V n e N . 
s. 5n - 3 n is divisible by 2 for every natural number n. 
t. 2 2 " - 1 + 4 2 n _ 1 is divisible by 6 for every natural number n. 
u. (2n + 1) + (2n + 3) + (2n + 5) + · · · + (4n - 1) = 3n2, Vn e N. 

3.11 Prove the following results using strong induction: 

a. Let i/o = 1,2/1 = 2 and ?/„-ц = —" for n 6 N. Then, 
2/n + i < 1, V n € N. 

b. Let 2/0 = 1,2/1 = 1 and τ/η+ι = 2/n + 2/n-i for n € N. If n e N, then, 
i/n-n < 2n . 

с Let г/о = l.J/i = 1 and yn+i = j / n + 2/n-i for n e N. Then, y3n is 
even, V n G N . 

3.12 Prove each of the following biconditional theorems: 

a. Let n £ N. Then, n is odd if and only if n2 — 1 is even. 
b. Let n e N. Then, n2 - 1 is divisible by 3 if and only if n is not 

divisible by 3. 
с Let m, n € N. Then, n + n is even if and only if m and n are both 

even or m and n are both odd. 
d. Let n, m € N. Then, mn is odd if and only if ттг and n are both odd. 
e. Let x £R. Then, |;r| = x if and only if x > 0. 

3.13 Prove each of the following existence theorems: 

a. If p is a prime number, then there exist prime numbers of the form 
3p + 16. 

b. There exists a natural number such that 22 ' + 1 is not a prime 
number. 

с There exists a 2 x 3 matrix such that A + E = A for every 2 x 3 
matrix A. 

d. If A = [ I, then there exists a matrix В such that 

AB ·° 1 Oj 
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e. If f(x) — 1 - xcos(x), then there exists a solution to f(x) - 0 on 
the interval [—π,π]. 

x 
f. If f{x) - —z , then there exists a real-valued function F(x) such 

cc *4~ 1 
that F'{x) = f{x), V i e l . 

3.14 Prove each of the following uniqueness theorems: 

a. Let I E R . The solution to the equation 7x - 3 = 0 is unique. 
b. If Л is a nonsingular n x n matrix, then Л - 1 is unique. 
с There exists a unique 2 x 3 matrix such that A + E = A for every 

2 x 3 matrix A. 

d. If f(x) = sin(x)cos(x) and F(0) = 1, then F(x) = - s i n ^ x ) + 1 is 
the unique antiderivative of f{x). 

e. If f(x) = 1—xcos(x), then there exists a unique solution to f(x) = 0 
on the interval [—π,π]. 

3.15 Find a counterexample for each of the following conjectures: 

a. Conjecture: If p is a prime number, then 2P + 1 is a prime number. 
b. Conjecture: Let a, 6, с € N. If b + с is divisible by a, then b and с 

are both divisible by a. 
c. Conjecture: Let a,b,c£ N. If be is divisible by a, then b and с are 

both divisible by a. 
d. Conjecture: There is one and only one real solution to the equation 

x3 - Ax2 + x - 6 = 0. 
e. Conjecture: Let n € N. If n2 is divisible by 4, then n is divisible 

by 4. 
f. Conjecture: six2 — x, V x € R. 
g. Conjecture: If A and Б are n x n matrices, then AB = В А. 

fix) 
h. Conjecture: If lim g(x) = 0, lim —т—- does not exist. 

i—>a I—>a g(x) 

i. Conjecture: If f(x) is continuous at x = XQ, then f(x) is differen-
tiable at x = xo-

oo 

j . Conjecture: If lim an = 0, then } an converges. 
n = l 

k. Conjecture: If a is an irrational number, then a" is an irrational 
number for every natural number n. 
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3.16 Prove each of the following theorems: 

a. Theorem: Let a, b e N. If a is divisible by b and b is divisible by a, 
then a = b. 

b. Theorem: Let n € N. If n is odd, then there exists m € Z such 
that n2 = 8m + 1. 

с Theorem: Let n £ N. If n2 - 1 is not divisible by 8, then n is even. 
d. Theorem: Let n,m £ N. If n and n + m are both divisible by 3, 

then m is divisible by 3. 
e. Theorem: Let x, у € R with у > 0. Then, |x| < у if and only if 

- j / < К j/ . 

f. Theorem: Let x, у € R. If |x + j / | < |x| + |y|, then exactly one of x 
and у is negative. 

3.17 Several theorems and potential first lines in a proof of the theorem are 
given below. In each case determine whether the first line of the proof is 
consistent with a valid method of proof. If so, determine which method 
of proof is being used. If not, explain why. 

a. Theorem: Let x = s/3. Then x is not a rational number. 
Proof: Let x = \/3 and suppose that x is an irrational number. 

b. Theorem: Let x = \/3- Then x is not a rational number. 
Proof: Let x = \/3 and suppose that x is a rational number. 

с Theorem: Let гп, n € N. If mn is odd, then in and n are odd. 
Proof: Let m, n € N. Suppose that either n or m is even. 

d. Theorem: If n e N, then n2 + n + 1 is odd. 
Proof: Let n € N and suppose that n2 + n + 1 is even. 

e. Theorem: Let n, m e N. If n is even and m is odd, then n + m is 
odd. 
Proof: Let n, m e N and suppose that n + m is odd, n is even, and 
m is odd. 

3.18 Write each of the mathematical results in the form uVn, V n € N." 

a. If n e N, then, 2" < n! for n > 3. 

b. If n e N, then, -. [ Д Pi j for n > 2. 

с If n € N, then, n2 > ?i + 1 for n > 2. 
d. If ?i € N, then, n2 < n! for n > 4. 
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n 1 
e. If n £ N, then, —r > - for n > 5. 

пг — on + 4 n 

3.19 Determine which method of proof is best suited for proving each of the 
following theorems and write down the first line for the proof of the 
theorem: 

a. Theorem: If p is a prime number, then ^/p is not a rational number. 
b. Theorem: Let n £ N. If p is a prime number and n2 is divisible by 

p, then n is divisible by p. 
с Theorem: Let n,m € N. Then mn is odd if and only if m and n 

are both odd. 
d. Theorem: Let m,n € N. If n is even and m is odd, then m + n is 

odd. 
e. Theorem: The set of prime numbers is not finite. 
f. Theorem: If Л is a nonsinguluar matrix, then A~l is unique. 

3.20 Determine a corollary of each of the following theorems: 

a. Theorem: Let a, b € N. If a is divisible by 6, then a" is divisible by 
b for every natural number n. 

b. Theorem: If lim f(x) = L, then lim f(x)n = Ln, V n € N. 
x—»a £—»a 

c. Theorem: If a € R, then \ax\ = \a\- \x\, V x e R. 
d. Theorem: Let a, b £ N. If p is a prime number and ab is divisible 

by p, then either a is divisible by p or ò is divisible by p. 
e. Theorem: If p is a prime number, then ^/p is an irrational number. 

3.21 Determine which method of proof is best suited for proving each of the 
following theorems: 

a. Theorem: Let n e N. If n2 is an even number, then n is an even 
number. 

b. Theorem: \/\7 is an irrational number. 
с Theorem: There exists an element e in С such that aoe = eoa = a, 

V a e С 
d. Theorem: a" - 6" is divisible by a - b, V n e N. 
e. Theorem: If (<5,o) is and a e Q, then a~l is unique. 



Chapter 4 
Introduction to Number Theory 
The first evidence of human use of numbers and counting was found in 
Czechoslovakia in 1937 by archaeologist Karl Absolom. The evidence of count-
ing is found in a tibia bone of a wolf, which carbon dating has shown to be 
approximately 30,000 years old, and that has two series of 25 and 30 notches 
carved into it. Moreover, the marks are grouped together in groups of 5s. 
Thus, it appears that numbers and counting began with the Neanderthal peo-
ple. However, modern mathematics is concerned with more than just numbers 
and the counting of numbers. Today's mathematicians study the properties of 
special classes of numbers with specialized operations applied to these classes. 
Study of the mathematical properties of numbers and the operations applied 
to these numbers is known as number theory. 

4.1 Binary Operators 

The most commonly used operations when working with real numbers are 
the basic arithmetic operations of addition, multiplication, subtraction, and 
division. Note that each of the basic arithmetic operations operates on two 
numbers, and from the two initial numbers a third number is created. Op-
erations, or operators, which map two objects in a set to another object, are 
called binary operations. The definition of a binary operator is given below. 

Definition 4.1.1: к binary operator о is a rule defined on a set Ω that assigns 
to the objects a, b € Ω an object с and is denoted by о о b = с. 

René Descartes (1596-1650) in his 1637 publication Geometrie, states 
that "arithmetic consists of only four or five operations, namely addition, 
subtraction, multiplication, division, and the extraction of roots." While 
addition, multiplication, subtraction, and division are the most commonly 
used binary operators when working with real numbers, binary operators other 
than these will be defined and discussed throughout the remainder of this 
book. Several examples of commonly used binary operators are given in the 
example below. 

Example 4.1.1: Each of the following operators is a binary operator. 

a. Addition of two real numbers with aob = a + b. 
b. Multiplication of two real numbers with а о b = о х 6. 
c. Exponentiation of two real numbers with aob = ab. 
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d. The conjunction of two statements with P о Q = P Л Q. 
e. Scalar multiplication of a scaiar with a p vector with 

kov = k-v — (kv\, kv2,..., kvp) 

f. The cross-product of two p-vectors with u о v — их v. 

Note that there nothing in the definition of a binary operator that would 
require that aob = boa. In fact, for many operators it will not be true that 
aob and б о а will have the same value, and it may even be that while aob 
exists, б о а does not. When а о b = b о a for all a and b, then о is called 
an Abelian operator in honor of the outstanding algebraist Niels Henrik Abel 
(1802-1829). 

Definition J^.1.2: A binary operator о is said to be commutative on a set Ω 
and is called an Abelian operator if and only if а о b = b о а, Va, 6 € Ω. 

Examples of Abelian binary operators include ordinary addition and mul-
tiplication of numbers and addition of matrices. Examples of non-Abelian op-
erators include subtraction, division, and exponentiation on the real numbers. 
For example, exponentiation is not an Abelian operator since 3 о 2 = 32 = 9 
but 2 о 3 = 23 = 8. Example 4.1.3 shows that matrix multiplication is not an 
Abelian operator. 

Algorithm for Proving a Binary Operator is Abelian: Let Ω be a set 
and о a binary operator defined on Ω. To show that о is an Abelian operator 
on Ω: 

1. Let a,b be arbitrary but fixed elements in Ω. 
2. Compute a o b and 6 о а. 
3. Show that а о b = 6 о а. 
4. Clean up and rewrite the scratchwork in a clear and concise proof of the 

theorem. Make sure that each step of the proof makes sense and is clearly 
justified. 

5. Read the proof over carefully and make any necessary corrections. 

Example 4.1.2: Let Ω = R and define a o d = (a - 6)2. Prove that о is an 
Abelian binary operator on R. 

Proof: Let a, 6 € R be ABF. Then 

а о 6 = (a — b)2 — (b — a)2 = boa 

Thus, о is an Abelian operator on R. 
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Example 4-1-3: Show that when working with matrices, the binary operator 
multiplication is not an Abelian operator. 

Solution: Suppose that matrix multiplication does commute. A counterex-

ample to this conjecture is given by letting A = I 1 and В = ( 1. 

/ 3 3 \ Then, А о В = AB = 1 1 but В о A does not exist since a 2 x 1 matrix 

cannot be multiplied by a 2 x 2 matrix. Hence, matrix multiplication is not 
an Abelian operator. 

When a binary operator о is Abelian, it can simplify computations with o. 
For example, if a solution is desired for the equations aox = a and x о a = a 
and о is an Abelian operator, then solving either one of these equations is 
sufficient since ο ο ι = ι ο α , 

While a binary operator can be applied to only two elements at one time, 
computations involving more than two elements are not unusual. For example, 
with three elements a, 6, and с it might be necessary to compute а о (6 о с) or 
(а о 6) о с, which for many binary operators do not produce the same result. 
If а о (6 о с) = (а о Ь) о с for all a, 6, с, then the binary operator is said to be 
associative. The associative property for a binary operator is defined below. 

Definition 4-1-3: A binary operator о is said to be an associative operator 
on a set Ω if and only if (а о 6) о с = a о (6 о с), Va, 6, с € Ω. 

Examples of associative binary operators include ordinary addition and 
multiplication of numbers and also addition and multiplication of matri-
ces. Examples of nonassociative operators include subtraction, division, and 
exponentiation on the real numbers. For example, subtraction is not an 
associative operator since (3 о 2) о 4 = (3 — 2) о 4 = 1—4 = - 3 but 
3 о (2 о 4) = 3 о (2 - 4) = 3 - (-2) = 5. 

Algorithm for Proving a Binary Operator is Associative: Let Ω be a 
set and о a binary operator defined on Ω. To show that о is an associative 
operator on Ω: 

1. Let a,b,c be arbitrary but fixed elements in Ω 
2. Compute (a ob) oc and а о (6 о с). 
3. Show that (а о 6) о с = а о (Ь о с). 
4. Clean up and rewrite the scratchwork in a clear and concise proof of the 

theorem. Make sure that each step of the proof makes sense and is clearly 
justified. 

5. Read the proof over carefully and make any necessary corrections. 
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Example 4.1.4: Let Ω = R and define aob = a + b + ab. Prove that о is an 
associative binary operator on M. 

Proof: Let a, b, с € R be ABF. Then 

(aob)oc=(a + b + ab)oc = a + b+ab + c+(a + b + ab)c 

— a + b+c + ab + ac+bc + abc 

and 

flo(i)oc) ~ ao(b + c + be) =a + b + c + bc+ a(b + с + be) 

= a + b + c + ab+ac+bc + abc 

Thus, а о b = b о a for all a, b € R; therefore, о is an associative 
operator on R. 

Throughout this chapter, nine axioms concerning the addition and multi-
plication of real numbers will be assumed. The first seven of the nine axioms 
are given below. 

Axioms for Addition and Multiplication of Real Number s : The fol-
lowing axioms will be assumed concerning the arithmetic operators addition 
and multiplication. If a,b,c€ Ш, then 

A l : a + b = b + a (commutative property of addition) 
A2: a + (b + c) = (a + b) + с (associative property of addition) 
A3 : a + 0 = a 
A4: a + -a = 0 
A5: ab = ba (commutative property of multiplication) 
A6: a(bc) — (ab)c (associative property of multiplication) 
A7: a x 1 = a 

The mathematical area of study known as "number theory" involves the 
study of particular subsets of the real numbers and their behavior with respect 
to the arithmetic binary operators (+,x,—,-r) . In particular, one of the 
properties that is important when studying the behavior of a class of numbers 
under a binary operator о is closure. The definition of a closed set under a 
binary operator о is given below. 
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Definition 4-l-4: A set Ω is said to closed under a binary operator о if and 
only if а о 6 € Ω whenever a and 6 are in Ω. 

For example, the real numbers are closed under addition; that is, given 
any two real numbers a and 6 it follows that a + b is also a real number. In fact, 
the real numbers are closed under multiplication, subtraction, and nonzero 
division, also; however, the real numbers are not closed under exponentiation 
since —2 о 0.5 = y/—2, which is not a real number. Note that closure will 
depend on both the set of interest and the binary operator. Furthermore, if 
a set Ω is closed under the binary operator o, then there is no way to create 
an element that is not in Ω by using o. The last two of the nine axioms 
concerning the addition and multiplication of real numbers are given below. 

A8: N, Z, and R are closed under addition. 
A9: N, Z, and R are closed under multiplication 

Example 4· 1-5: Show that 

a. N is not closed under subtraction. 
b. N is not closed under nonzero division. 
с Z is not closed under nonzero division. 
d. R is not closed under exponentiation. 

Solutions: A counterexample for showing that 

a. N is not closed under subtraction is to let a = 3 and 6 = 5 . Then, 
3 - 5 = - 2 g N. 

b. N is not closed under nonzero division is to let a = 3 and 6 = 5. Then, 
3 = 5 = % i N. 

5 
с Z is not closed under nonzero division is to let a = 3 and 6 = 5 . Then, 

3 4 - 5 = \ ί Ζ. 5 

d. R is not closed under exponentiation is to let a = — 2 and b—-. Then, 

( -2 ) i = у/=:2 t Ш. 

An algorithm for proving a set Ω is closed under a binary operator о is 
given below. 

Algorithm for Proving Closure: Let Ω be a set and о a binary operator 
defined on Ω. To prove that Ω is closed under о 

1. Let a,b be arbitrary but fixed elements in Ω. 
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2. Compute a ob. 
3. Show that а о 6 € Ω. 
4. Clean up and rewrite the scratchwork in a clear and concise proof of the 

theorem. Make sure that each step of the proof makes sense and is clearly 
justified. 

5. Read the proof over carefully and make any necessary corrections. 

Example £.1.6: Let 3Z = {z : z = 3k for some к € Z}. Prove that 3Z is 
closed under addition. 

Proof (Closure Proof): Let a, 6 € 3Z be ABF. Then, a = 3k for 
some к € Z and b = 3j for some j € Z. Consider a + b 

a + b = 3k + 3j = 3(k + j) = 3/ 

where I = к + j , which is an integer. Thus, a + b is a multiple of 3, 
and hence, a + b € 3Z whenever a, 6 6 3Z. Therefore, 3Z is closed 
under addition. 

Example £.1.1: Let Ω = R and for a,b € R define aob = a + b-ab. Prove 
that R is closed under o. 

Proof (Closure Proof: Let α, ό be arbitrary but fixed elements in 
К and consider а о 6: 

aob = a + b-ab=(a+b) + ( —ab) 

Now, a + 6 e R since R is closed under addition (A8). Also, both 
ab and (—ab) are in R since R is closed under multiplication (A9). 
Thus, by A8, (a + b) + (—ab) is in R since it is the sum of two real 
numbers. 

Therefore, а о b € R whenever a, b € R and hence, R is closed under 
o. 

Another important issue to consider when studying the behavior of a set 
Ω under a binary operator о is whether there exists an element e € Ω such 
that a ° e = eoa = afor each element a e Ω. When there is an element e 6 Ω 
such that а о e — e о a for every a € Ω, then the element e is called an identity 
element under o. 

Definition 4-1-5: An element e in Ω is said to be an identity element under 
the binary operator о if and only if for every element α ί η Ω , a o e = eoa = a. 
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Note that for e to be an identity element, e must satisfy the following 
three conditions: 

l . e e f l 
2. a o e = o, У О Е Й 

3. e о a = a, V a e Ω. 

In other words, the identify element e must be in Ω and must also commute 
with every element in Ω. However, in the special case that the binary operator 
о is Abelian, showing that an element e e Ω is an identity element, requires 
only showing that the first two conditions hold. 

Example 4.I.8: Let Ω = R. Since a + 0 = a = 0 + «for every real number a, 
0 is the additive identity for ordinary addition. Also, since α χ 1 = α = 1 χ α 
for every real number, 1 is the ordinary multiplicative identity. 

Note that the identity element must be an element of Ω, and the identity 
element will be entirely dependent on the definition of the operator o. More-
over, proving that an identity element e exists in Ω under о will require an 
existence proof. An algorithm for proving the existence of an identity element 
e € Ω under о is given below. 

Algorithm for Proving the Existence of an Identity: Let Ω be a set 
and о a binary operator defined on Ω. To prove that e is an identity element 
in Ω 

1. Let a £ Ω be arbitrary but fixed. 
2. Compute ao χ and x о a. 
3. From the equations a = ao x and a = xoa, solve for x. 
4. Show that x € Ω and that x does not depend on a. 
5. Conclude that e = x is an identity element in Ω under o. 
6. Clean up and rewrite the scratchwork in a clear and concise proof of the 

theorem. Make sure that each step of the proof makes sense and is clearly 
justified. 

7. Read the proof over carefully and make any necessary corrections. 

Note that in solving the equations a = а о x and a = x о a, solutions 
depending on the value of a cannot be the identity; that is, a solution to these 
equations will be an identity element if and only if the same solution works for 
every a £ Ω. The following example illustrates how the preceding algorithm 
is used to find an identify element. 
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Example 4·1·9: Let Ω = R and for a, b e Ω define а о b — a 4- b ~ ab. Prove 
that there exists an identity element in R under o. 

Proof: Let a be an arbitrary but fixed element in R and consider 
the equations a — а о χ = x о a. Now, а о χ = a + x — ax and 
xoa = x + a — xa. Thus, a o i = i o o and hence, consider solving 
α ο χ = α -t x — ax = a for x. 

a + x — ax = a if and only if x(l — a) = 0 

Thus, since a is arbitrary, it follows that the only solution to this 
equation is x = 0, which is in JR. Therefore, the identity element in 
R under о is e = 0. 

Example 4.1.10: Let Ω = R and for a,b G Ω define а о b = (o + 6)2. Show 
that there does not exist an identity element in Ш under o. 

Solution: Let Ω = Ш and for a, 6 £ Ω be ABF. Clearly, а о b = b о о, so 
consider the equation a = а о х. Now, a = a o i = (a + x)2 has only solutions 
x = — a ± γ/ο. Thus, since the only solutions to the equation a = αοχ depend 
on the value of a, there is no identity element in R under o. 

Note that there is nothing in the definition of the identity element that 
prevents the existence of more than one identity element in Ω under o. How-
ever, the following theorem shows that if a set Ω is closed under the binary 
operator o, then the identity element e e Ω under о is unique. 

Theorem 4.1.1: If Ω is closed under the operation о and e e Ω is an identity 
element under o, then the identity element e is unique. 

Proof (Uniqueness Proof): Let Ω be closed under o, and let 
e e Ω be an identity element. Furthermore, assume that e is not 
unique. 

Now let e' -/- e be any other identity element in Ω. Then, since e is 
an identity element, it follows that e o e ' = e'. Similarly, since e' is 
an identity element it also follows that e o e' = е. 

Thus, e о e' = e' and eoe' = e and hence, e о e' = e = e'. Moreover, 
e = e', which contradicts the assumption that e ф e', and therefore 
e is the unique identity element in Ω. 



Binary Operators 105 

Note that since R is closed under ordinary addition and multiplication 
(Axioms A8 and A9), 0 and 1 are the unique additive and multiplicative 
identity elements in R. However, there is no identity in R for the arithmetic 
operator subtraction since there is no real number satisfying a — e = e — a, 
V a € К. 

Example 4.1.11: Let Ω = Z and aob = a + b -I. Prove that there exists 
an identity element in Z. 

Solution (Construction Proof): Let a e Z be ABF. Note that 
xoa = x + a-l =aox = a + x-lso that о is Abelian. Now, 
consider solving а о e = a for e: 

a = а о e if and only ifa + e - l = a i f and only if e = 1 

Now, since 1 e Z and α ο 1 = α = 1 ο α , V a € Z, it follows that e = 1 
is the identity element for the binary operator o. 

Now, once the identity element e € Ω has been identified, another logical 
question to consider with regard to the binary operator о is "If a ζ Ω is there 
an element a' £ Ω such that а о a' = e and а' о a = e?" If о G Ω and there 
does exist an element α' ε Ω such that а о a' = e = а' о a, then a' is called an 
inverse of the element a. 

Definition 4.I.6: An element a £ Ω is said to have an inverse element 
a"1 £ Ω under the binary operator о if and only if а о a - 1 = a"1 o a = e. 

Note that when a set Ω has an identity element e, then e is the identity 
element for every element in the set. However, every element in Ω will not 
necessarily have an inverse. For example, there are many matrices that do 
not have an inverse. In the best of all mathematical structures, a set will be 
closed under o; it will include an identity element e; it will include the inverse 
for every one of its elements. The following example shows that the set of 
real numbers has all three of these properties under the arithmetic operator 
addition, but not under the operator multiplication. 

Example 4· 1-12: Let Ω — R. By Axioms A8 and A9, Ш is closed under 
addition and multiplication, and it was shown in Example 4.1.8 that 0 and 1 
are the additive and multiplicative identities in R. 
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Now, since a-\—a — 0 for every real number a and —a e R, it follows that 
—a is the additive inverse of a under ordinary addition. Thus, IR contains all 
the additive inverses of its elements. 

Now, if а ф 0, then a x 1/a = 1 and 1/a € R for every nonzero real number 
a, thus 1/a is the multiplicative inverse of a, provided a / 0. However, for 
a = 0 there is no element a~l e R such that а о a - 1 — 1. Thus, R does not 
contain all the multiplicative inverses of its elements. 

In general, showing that there exists an inverse or identity element in a set 
Ω under a binary operator о requires an existence proof. Furthermore, showing 
that all the inverses exist in Ω often requires that an explicit representation of 
the form of the inverse be found. An algorithm for showing that Ω contains 
all the inverses under ° is given below. 

Algorithm for Proving the Existence of all the Inverses: Let Ω be a 
set and о a binary operator defined on Ω. To show that a e Ω has an inverse 
element under о requires an existence proof as outlined below. 

0. Determine e. 
1. Let a G Ω be arbitrary but fixed. 
2. Compute а о χ and xo a. 
3. From the equation e = a o i = i o a solve for x. 
4. Show that x £ Ω. 
5. Conclude that a - 1 = x is the inverse of the element a under o. 
6. Clean up and rewrite the scratchwork in a clear and concise proof of the 

theorem. Make sure that each step of the proof makes sense and is clearly 
justified. 

7. Read the proof over carefully and make any necessary corrections. 

The algorithm above will be used in the following example to show that 
R contains all the additive inverses under the binary operator defined by 
aob = a + b - 1. 

Example 4.1.13: Let Ω = R and define аоб = a + b- 1 for a,ò € R. Given 
that the identity element is e = 1, prove that Ω contains an inverse for every 
one of its elements under the binary operator o. 

Proof: Let a ζ R be arbitrary but fixed. Since о was shown to be 
an Abelian operator in Example 4.1.11 it follows that а о χ = χ о а. 
Consider solving the equation e = а о χ for x: 

e = 1 = ao x if and only if 1 = a + a; — 1 
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Solving for x yields x = 2 — a, which is in R since M is closed under 
ordinary addition. 

Thus, a^1 = 2 - a is in R whenever a 6 R and hence, R contains all 
of its inverses under the operator o. 

The following theorem shows that if Ω is closed under a binary operator о 
and о is an associative operator, then the inverses contained in Ω are unique. 

Theorem 4.1.2: Let о be an associative binary operator. If Ω is closed under 
о and ο " Έ Ω whenever a ε Ω, then a~l is unique. 

Proof: The proof of Theorem 4.1.2 is left as an exercise. 

Recall that the closure of Ω under о also ensured that the identity was 
unique when it existed in Ω. Thus, if the set Ω is closed under an associative 
binary operator o, Theorems 4.1.1 and 4.1.2 show that the inverses and the 
identity element are unique; however, this is not necessarily the case when Ω 
is not closed under o. Furthermore, the following theorem shows that when 
Ω is closed under o, the unique inverse of o _ 1 (i.e., ( a - 1 ) - 1 ) is a. 

Theorem 4.1.3: If Ω is closed under о and a~l € Ω whenever a € Ω, then 

Proof: The proof of Theorem 4.1.3 is left as an exercise. 

4.2 Commonly Used Number Systems 

Several different number systems are commonly encountered in advanced 
math classes, including the natural numbers, whole numbers, integers, ra-
tional numbers, irrational numbers, real numbers, and the complex numbers. 
In this section, the properties of the arithmetic operators (+, x, - , Ч-) on the 
natural, whole, integer, rational, irrational, and real numbers will be studied; 
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the complex numbers are generally studied in courses such as abstract alge-
bra, complex analysis, and advanced engineering mathematics, and therefore 
will not be studied here. 

4.2.1 The Natural Numbers 

The act of counting is a basic day-to-day operation in the lives of most peo-
ple. For example, people are always counting something like the days until 
Christmas, the number of fish they have caught, or the number of people liv-
ing in a town. The natural numbers are the oldest numbers known to humans 
dating back at least 30,000 years. Proof that humans were counting objects 
30,000 years ago was found by archaeologist Karl Absolom in 1937. Absolom 
unearthed a wolf bone in Czechoslovakia that had an obvious set of notches 
carved into it. The bone had 55 notches scratched into it arranged in groups 
of 5, with a second scratchmark after the first 25 scratchmarks. Clearly, this 
wolf bone is evidence that early humans were counting some sort of object. 
Thus, the first set of numbers that a student will encounter in school is the 
set of counting numbers, which are also called the natural numbers. 

Definition 4.2.1: The set of natural numbers or the counting numbers is 
denoted by N and consists of the numbers 1,2,3,4,5, 

Several facts concerning properties of the natural numbers are given be-
low. In particular, most of the following facts concern the ordinary arithmetic 
operators addition, multiplication, subtraction, and division. 

Some Facts about N: 

a. N is closed under addition and multiplication (Axioms A8 and A9). 
b. N is not closed under subtraction since 1 — 4 = —3 and —3 £ N. 
с N is not closed under division since 1 -7- 4 = 0.25 and 0.25 £ N. 
d. Since 0 is the unique additive identity in R (Axiom A3) and 0 £ N, the 

natural numbers do not contain the additive identity. 
e. Since 1 is the unique multiplicative identity in R (Axiom A7) and 1 € N, 

the natural numbers do contain the multiplicative identity. 
f. Since —a is the unique additive inverse of a in R (Axiom A4) and — a & N 

for any element a £ N, none of the elements in the natural numbers have 
additive inverses. 

g. Since \/a is the unique multiplicative inverse of a in R and I/a & N 
except for a = 1, the only natural number having a multiplicative inverse 
is a = 1. 

h. N is made up of the even natural numbers and the odd natural numbers. 



Commonly Used Number Systems 109 

Note that N does not contain the additive identity, nor does it contain any of 
the additive or multiplicative inverses. The following theorem shows that the 

sum of the first n natural numbers is . Also, the corollary to this 
theorem provides a formula for computing the sum of the first n odd natural 
numbers, as well as the sum of the first n even natural numbers. 

Theorem 4.2.1: The sum of the first n natural numbers is 

n ( n + l ) Σ ΙΙίΙΙ "Г 1 t = - i _ _ i , V n e N . 
i = l 

Proof: This theorem was proved in Example 3.4.1 using mathemat-
ical induction. 

Corollary to Theorem 4.2.1: For every natural number n, the sum of the 
first 

a. n odd natural numbers is n2. 
b. n even natural numbers is n(n + 1). 

Proof: First, note that 
n 

(i) The sum of the first n odd numbers is Y j (2г — 1). 
j = l 
n 

(ii) The sum of the first n odd numbers is \_. Si-

ri 

Proof of part (i): Consider j> (2г — 1): 
г̂ --1 

i = l 

i = l i = l t = l 

2 ( Е ч - п = 2 n(n + l) — — n 
α=ι 

By Theorem 4.2.1 

n2 + n — n = n2 
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Therefore, the sum of the first n odd numbers is n2 for all n € N. 

Proof of part (ii): Since the sum of the first 2n natural numbers 
is 

2 n ( 2 n + l ) 2n 

Σ - = n(2n+ 1) 

it follows that 
i = l 

2n 

Therefore 

Σ> = Σ2> +Σ(«-1) 
г=1 i = l !=1 

the evens the odds 

n 2n n 

Σ « = Σ < - Σ ( « - ΐ ) 

2 n ( 2 n + l ) 2 2 —^— -ii - n + n 

= n(n + 1) 

Therefore, the sum of the first n even numbers is n(n + 1 ) for all 
n 6 N. 

4.2.2 The Whole Numbers 

While people were counting 30,000 years ago, the idea of a number 0 was not 
a natural result of counting. For example, a family of farmers would say that 
they had 1, 2, 3, 4, or n sheep, but if they had no sheep, then they were likely 
to say "We have no sheep" rather than saying they had 0 sheep. The number 0 
was not necessary before the concepts of commerce and credit were in common 
use. In fact, neither the ancient Egyptians, Greeks, nor Romans used the 
number 0. The first people known to have used 0 were the Babylonians, who 
used 0 simply as a numerical placeholder, not a distinct number. The first 
people known to have used 0 as a number were the mathematicians of India, 
and even they did not fully embrace the concept of 0 as a number. For more 
information on the history of the number 0, see ZERO: The Biography of a 
Dangerous Idea by Charles Seife (2000). 
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The set of whole numbers is formed by simply adding the number 0 to the 
set of natural numbers. The definition of the whole numbers is given below. 

Definition 4 · 2.2: The set of whole numbers is denoted by W and 

W = {ω : ω e N or ω = 0} 

Note that W = {0,1, 2,3, 4 , . . . } , and W contains all the natural numbers 
along with the additive identity 0. Thus, the whole numbers will share the 
same properties as the natural numbers along with the additional property of 
containing the additive identity. Several facts concerning the whole numbers 
are listed below. 

Facts about W: 

a. W is closed under addition and multiplication (Axioms A8 and A9). 
b. W is not closed under subtraction since 1 — 4 = —3 and —3 £ W. 
с W is not closed under division since 1-^4 = 0.25 and 0.25 £ W. 
d. Since 0 is the additive identity (Axiom A3) and 0 G W, the whole numbers 

do contain the additive identity. 
e. Since 1 is the multiplicative identity (Axiom A7) and 1 ζ W, the whole 

numbers do contain the multiplicative identity. 
f. Since —a is the additive inverse of a (Axiom A4) and —a € W only for 

the element 0, none of the other elements in the whole numbers have 
additive inverses. 

g. Since I/o. is the multiplicative inverse of a and I/a £ W except for a — 1, 
only a — 1 has a multiplicative inverse. 

h. W is made up of the even whole numbers and the odd whole numbers. 
i. N is contained within W (N С W). 

While the set of whole numbers contains both the additive and multi-
plicative identities, it is not closed under subtraction or division, nor docs it 
contain the additive and multiplicative inverses. Thus, even the early mathe-
maticians needed to consider larger classes of numbers than just the natural 
numbers and whole numbers. 

4.2.3 The Integers 

In the Western civilizations, one reason for the slow development of nega-
tive numbers was that much of Western mathematics was developed by the 
Greeks, whose concept of numbers was geometrically based and generally tied 
to lengths, areas, and volumes. Since, negative lengths, areas, or volumes 
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were ridiculous ideas in the eyes of the Greeks, there was no need for the 
negative numbers. The strong influence of the Greek development and philos-
ophy of mathematics was longlasting with European mathematicians, lasting 
even into the sixteenth, seventeenth, and eighteenth centuries. In fact, many 
sixteenth/seventeenth-century mathematicians called negative numbers "fic-
titious," "absurd," or "false numbers." On the other hand, in the Eastern 
civilizations of India and China, which were far removed from the influence 
of the mathematics of the Greeks, negative numbers were embraced as early 
as the seventh century. 

Now, the set of integers is formed by adding the negative whole numbers 
to the set of whole numbers. The definition of the integers is given below. 

Definition 4·%· 3: The set of integers is denoted by Z and 

Z = {z : z € N, z = 0, or - z e N} 

Note that N= {1,2,3,4, . . .} is contained in W = {0,1,2 ,3 , . . .} , which 
is contained in Z = {0, ± 1 , ±2, ± 3 , . . . } . Furthermore, all the elements in Z 
have additive inverses in Z. Several important facts concerning the properties 
of the integers under the basic arithmetic operations are given below. 

Facts about Z: 

a. Z is closed under addition and multiplication (Axioms A8 and A9). 
b. Z is closed under subtraction since a — 6 = a H—6 and Z is closed under 

addition. 
с Z is not closed under division since 1 -=- 4 = 0.25 and 0.25 £ Z. 
d. Since 0 is the additive identity (Axiom A3) and 0 e Z, the integers do 

contain the additive identity. 
e. Since 1 is the multiplicative identity (Axiom A7) and 1 € Z, the integers 

do contain the multiplicative identity. 
f. Since -a is the additive inverse of a (Axiom A4) and - a £ Z for every 

integer a, all the integers have additive inverses. 
g. Since l/a is the multiplicative inverse of a and 1/a £ Z except for a = ±1 , 

only the integers a = 1 and a — — 1 have multiplicative inverses. 
h. Z is made up of both the even and odd integers. 
i. The natural numbers are contained in the whole numbers that are con-

tained in the integers (N С W С Z). 

Theorem 4.2.2: Let Zß and Zo be the collection of even and odd integers, 
respectively. Then 

(i) ЪЕ is closed under addition. 
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(ii) Zg is closed under multiplication. 
(iii) Zo is closed under multiplication. 

Proof: 

Proof of part (i): Let zuz2€ Z £ be ABF. Then, 3 k, j € Z such 
that zi = 2k and 22 = 2j. Consider 21 + 22 

zi + 22 = 2k + 2j = 2{k + j) = 2/ 

where / = к + j € Z since Z is closed under addition. Thus, z\ + 22 
is even and therefore, z\ + 22 € Zg whenever 21, 22 G Zg. 

Hence, Z# is closed under addition. 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

Proof of part (iii): The proof of part (iii) is left as an exercise. 

Thus, the set of integers has many important structural properties, in-
cluding (1) closure under addition, multiplication, and subtraction; (2) addi-
tive and multiplicative identities; and (3) all additive inverses. However, the 
integers do not contain the multiplicative inverses; hence, a system of numbers 
that contains all the integers and their multiplicative inverses will need to be 
considered next. 

4.2.4 The Rational Numbers 

Since Z is not closed under division, the natural extension of the integers is 
to create a new set of numbers by adding the ratios of the integers to create 
a new set that contains Z. In part, this was done by the ancient Greek 
mathematicians. In fact, to the followers of Pythagoras, the Pythagoreans, 
the only numbers that could make any sense at all were numbers of the form 
a/6, where a and b were counting numbers. Zero was not allowed, because 
it did not exist as a number in the Pythagorean train of thought, and ratios 
of the form 1/1, 2/1 , 3 / 1 , . . . allowed for the counting numbers. The set of 
numbers consisting of the ratios of integers is called the rational numbers and 
is defined below. 

Definition 4· 2.4·' The set of rational numbers is denoted by <Q>. Q is formed 
by taking all possible ratios of the integers (denominator not equal to zero, of 
course) and is often represented by 

Q = < r : r = - where p and q ψ 0 are integers > 
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Note that in the creation of a rational number division by zero is not 
allowed. In fact, it is the definition of division that excludes division by 
0, not a constraint of the rational numbers. Thus, there will be no set of 
numbers discussed in this course for which division by 0 is allowed. Several 
facts concerning the set of rational numbers are given below. 

Facts about <Q>: The list of facts on the rational numbers given below is 
considerably shorter than the previous lists for N, W, and Z, since many of 
the properties concerning the rational numbers will be proved in the following 
theorems of this section. 

a. Since 0 is the additive identity (Axiom A3) and 0 € Q, the rational 
numbers do contain the additive identity. 

b. Since 1 is the multiplicative identity (Axiom A7) and l e Q , the rational 
numbers do contain the multiplicative identity. 

с The natural numbers are contained in the whole numbers that are con-
tained in the integers that are contained in the rational numbers; that 
is 

N С W С Z С Q 

Thus, the rational numbers contain both the additive and multiplicative 
identities, and the following theorem shows that Q is closed under each of the 
four basic arithmetic binary operators. 

Theorem 4.2.3: Q is closed under 

(i) Addition 
(ii) Multiplication 

(iii) Subtraction 
(iv) Nonzero division 

Proof (Closure Proof): Let a,6 e Q. Then, there exist integers 
p г 

p, 9, r, s such that a = - and b = - with q ф 0 and s ф 0. 
q s 

Proof of part (i): Consider a + b. 

p r ps + rq 
a + b= - + - = 

q s qs 
Now, ps, rq and qs are integers since Z is closed under multiplication, 
ps + rq is an integer since Z is closed under addition, and qs ф 0 
since q ф 0 and s Ф 0. 

Thus, a+b is the ratio of two integers, with the denominator nonzero, 
and hence is a rational number. 
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Therefore, Q is closed under addition. 

Proof of part (it): Consider a x 6: 

p r pr 
axb=-x- = — 

q s qs 
Now, pr and qs are integers since Z is closed under multiplication, 
and QS ^ 0 since q φ 0 and s Φ 0. 

Thus, a x b is the ratio of two integers, with the denominator non-
esro, and hence is a rational number. 

Therefore, Q is closed under multiplication. 

Proof of part (iti): The proof of part (iii) is left as an exercise. 

Proof of part (iv): The proof of part (iv) is left as an exercise. 

The following theorem shows that Q contains all the additive inverses of 
its elements. 

Theorem 4.2.4: If a € Q, then the additive inverse of a is in Q. 

Proof (Existence Proof): Let a e Q be ABF. Then, - 1 e Q since 

- 1 = — and therefore, -1(a) = - o G Q since Q is closed under 
multiplication. 

Now, —a + a = 0 and thus, —a is the additive inverse of a. Therefore, 
if a € Q, then its additive inverse —a is also in Q. 

Finally, the theorem stated below shows that Q contains the multiplica-
tive inverse of each of its elements with the exception of 0. 

Theorem 4.2.5: If a € Q and а ф 0, then the multiplicative inverse of a is 
in 

Proof (Existence Proof): Let a € Q with а ф 0 be ABF. Then, 

1 e Q since 1 = - and therefore, - € <Q> since Q is closed under 
1 a 

division. 
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Now, a■ - = 1 and thus, - is the multiplicative inverse of a. There-
a a 

fore the multiplicative inverse of a is in Q for every nonzero a € Q. 

Another interesting property of the rational numbers is that the same 
rational number can be written in several equivalent ways. Thus, every ratio-
nal number has multiple representations. For example, consider the rational 
number 1/2: 

1 2 13 _ 191 _ 
2 ~ 4 ~ 26 ~ 382 ~ 

A rational number may be expressed as the ratio of two integers in many 
ways and also in a decimal representation. Furthermore, a rational number 
will have either a terminating decimal representation or an infinite repeating 
decimal representation. For example, 1/4 = 0.25 has a terminating decimal 
expansion and 2/3 = 0.666... has an infinite repeating decimal expansion. 
The mathematical shorthand for an infinitely repeating decimal expansion 
is to place a bar over the repeating pattern in the decimal expansion. For 
example, 0.666 . . . can be written as 0.6 and 3.4712712712 . . . can be written 
as 3.4712. The following example shows that 0.9 — 1, contrary to popular 
belief. 

Example 4.2.1: Prove that 0.9= 1. 

Proof: Let x = 0.9. Then 

x = 0.9 
lOi = 9.9 

Subtracting x from 10x yields 

Юх = 9.9 
- x = 0.9 

9x = 9. 

Thus, 9x = 9 and hence x = 1. 

Therefore, 0.9 = 1. 
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Now, given a rational number in decimal form a rational representation of 
the decimal form can always be found. The key to finding the rational form of 
a number is to find multiples of the decimal form that when subtracted result 
in a whole number. The following example illustrates the process of finding a 
rational representation for a rational number from its decimal representation. 

Example 4-2.2: Let x = 12.3034. Find a rational form for x: 

x = 12.3034 

100a: =-- 1230.34 

10000x= 123,034.34 

10000a: = 123,034.34 
- lOOx = 1230.34 

9900*= 121,804 

Now 

_, 121,804 
1 hus, x = ————. 

9900 

The following theorem shows that between every two distinct rational 
numbers there is another rational number. 

Theorem 4.2.6: Between every two rational numbers there is at least one 
other rational number. 

Proof (Existence Proof): Let a, 6 £ Q with a < b. Now 

a + a a + b 6 + 6 a = ——— < ——- < —— = 6 2 2 2 

Furthermore, —-— is a rational number since the rational numbers 
are closed under addition and division. 

Therefore, between every two rational numbers there is at least one 
rational number. 

Another way of stating the result of the previous theorem is "The set 
of rational numbers is everywhere dense." However, the previous theorem 
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does not state that there are only rational numbers between any two rational 
numbers, and Theorem 4.2.7 shows that there are infinitely many rational 
numbers between every two rational numbers. 

Theorem 4.2.7: Between every two rational numbers there are infinitely 
many other rational numbers. 

Proof (Existence Proof): Let a,b e Q with a < b. Now, for 
fceN 

_ (k + l)a _ ka + a ka + b kb + b_ 
~ k+ 1 ~ k+l к + 1 fc+1 ~ 

Furthermore, is a rational number since the rational numbers 
K + l 

are closed under addition and division, V A; € N. 

Therefore, between every two rational numbers there are infinitely 
many rational numbers. 

Now, <Q> is closed under addition, multiplication, subtraction, and division 
and contains the additive and multiplicative identities, a natural question to 
consider next is "Are the rational numbers the final set of numbers that a 
mathematician needs to consider?" To see that an even larger collection of 
numbers is needed in mathematics consider the following problem: "Let а о ft 
be the binary operator that provides the solutions to ax2 — b — 0. Is Q closed 
under o?" Consider lo2, this provides the solutions to the equation x2—2 = 0, 
which are ±y/2. Now, is \/2 a rational number? The following theorem shows 
that \/2 is not a rational number, and therefore Q is not closed under the 
binary operator o. 

Theorem 4.2.8: \/2 is not a rational number. 

Proof (by Contradiction): Assume that y/2 is rational. Then, 
3 p, q e Z such that \Ì2 = - . 

Я 
Without loss of generality (WLOG), assume that p and q have no 
common factors. 

Now consider (\/2)2. First, (N/2)2 = 2 and 

' - ( V S ) ' - ( f ) 1 -
2 2 

El 
n2 
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Cross-multiplying yields 2q2 — p2. Thus, by Example 3.3.4 it follows 
that p2 is even and therefore, so is p. Thus, 3 к e Z such that p = 2k. 

Now, substituting p — 2k into 2q2 = p2 yields 2q2 = 4k2, and from 
2q2 = Ak2 it follows that q2 = 2k2. Hence, q2 and q are even. 
Furthermore, this means that both p and q are even. Thus, p and q 
have common factor 2 which contradicts the assumption that p and 
q have no common factors. 

Therefore, v2 cannot be a rational number. 

The fact that \]2 is not rational is often attributed to Hippasus of the 
Pythagoreans and was one of the first mathematical theorems to be deduc-
tively proved. In reward for this discovery, the Pythagoreans supposedly took 
Hippasus out to sea and threw him overboard, leading to his death. The idea 
that some numbers could not be expressed in the form integer over integer 
seems to have been unacceptable to the Pythagoreans, regardless of the proof. 
For more information on Hippasus, the Pythagoreans, and \/2, see ZERO: The 
Biography of a Dangerous Idea (Seife 2000). 

Examples of some other numbers that are not rational include \ / 3 , \ /5, 
\/бТ , e, π, and e + π. Thus, the set of rational numbers is not an adequate 
set of numbers for solving simple second-degree equations, and thus, a larger 
more complete set of numbers will be required for solving equations. 

4.2.5 The Real Numbers 

Now, the rational numbers form a system of numbers that is closed under 
the four basic arithmetic operations containing both the additive identity and 
the multiplicative identity and contains both the additive and multiplicative 
inverses. However, the result in Theorem 4.2.8 shows that there exist numbers 
that are not rational numbers. Thus, the set of numbers that form the basis 
for solving equations is made up of the rational numbers and another set of 
numbers that are not rational, such as \/2, which are called the irrational 
numbers. The set of numbers consisting of both the rational numbers and the 
irrational numbers is called the set of real numbers. The set of real numbers 
consists of the collection of all of the rational numbers and the collection of 
the limits of all convergent sequences of rational numbers. The definitions of 
the real numbers and the irrational numbers are given below. 

Definition 1^.2.5: The set of real numbers consists of all numbers between 
—oo and co (i.e., — oo < x < oo) and is denoted by R or by the interval 
( - 0 0 , 0 0 ) . 
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Definition ^.2.6: Any real number that is not a rational number is called 
an irrational number. The set of irrational numbers will be denoted by I. 

Note that any real number that is not a rational number is by defini-
tion a real number; therefore, the real numbers consist of only the rational 
numbers and the irrational numbers. Also, recall that a rational number has 
either a finite decimal representation or an infinite repeating decimal repre-
sentation. On the other hand, every irrational number has a nonrepeating 
infinite decimal representation, and therefore, the exact decimal value of any 
irrational number can never be known. The following theorem shows that a 
basic arithmetic mixture of a rational and an irrational number will produce 
an irrational number. 

Theorem 4.2.9: Let a e Q and 6 e I. Then 

(i) a + bel. 
(ii) a- b g I, provided that а ф 0. 

(iii) a-bel. 
(iv) 6 - a e П. 

(v) 7 € II, provided that а ф 0. 
6 

(vi) - € И, provided that а ф 0. 

Proof: Let a e Q and 6 e I be ABF. 

Proof of part (i) (by Contradiction): Suppose that a + b is a 
rational number. 

Since a and a + b are rational numbers, and Q is closed under sub-
traction, it follows that 6 = a + 6 — a ζ Q. Thus, b is a rational 
number, which contradicts the hypothesis that 6 is irrational. 

Therefore, a + b must be an irrational number. 

Proof of parts (ii)-(vi): The proofs of parts (ii)-(vi) are left as 
exercises. 

The following list contains several facts concerning the properties of the 
real numbers under the four basic arithmetic operations: addition, multipli-
cation, subtraction, and division. 
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Facts about R: 

a. R is closed under addition and multiplication (Axioms A8 and A9). 
b. R is closed under subtraction. 
с IR is closed under nonzero division. 
d. Since 0 is the additive identity (Axiom A3) and 0 £ R, the real numbers 

do contain the additive identity. 
e. Since 1 is the multiplicative identity (Axiom A7) and 1 e R, the real 

numbers do contain the multiplicative identity. 
f. Since -a is the additive inverse of a (Axiom A4) and — a £ R for every 

real number o, all the real numbers have additive inverses. 
g. Since I/a is the multiplicative inverse of a and 1/a e R except for a = 0, 

all nonzero real numbers have multiplicative inverses. 
h. N is contained in W, which is contained in Z, which is contained in Q, 

which is contained in R, and R also contains I; that is 

N c W c Z c O c R and И С R 

The following theorem provides two essential tools that are often used in 
solving a system of mathematical equations. In particular, the cancellation 
properties for the arithmetic operators addition and multiplication are proved 
in Theorem 4.2.10. 

Theorem 4.2.10: Let a,b,c£ R. 

(i) If a + с = b + c, then a = b. 
(ii) If ac = be and с ф 0, then a — b. 

Proof: Let a, b, с € R be ABF. 

Proof of part (i): Suppose that a + c — b+c. Then, — с £ R since 
R contains the additive inverses of its elements. Now, adding —с to 
a + с yields 

(a + c) + -c = a+ (c+ -c) 
By A2 

Similarly, adding — с to b + с yields 

(b + c) + - c = b+ (c+ -c) 
By"A2 
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Thus, 
a = (a + c) + -c = (b + c) + -c = b 

„ ' 
Since a + с = 6 + с 

Therefore, a = b whenever a + с = 6 + с. 
Proof of part (it): The proof of part (ii) is left as an exercise. 

In Chapter 5, the distance between real numbers is of primary importance 
in the study of sequences of real numbers, limits of real-valued functions, con-
tinuity of real-valued functions, and the derivatives of real-valued functions. 
The standard measure of the distance between two real numbers is the abso-
lute value of the difference of the two numbers. The absolute value of a real 
number is defined below. 

Definition If.%.1: The absolute value of a real number a, denoted by \a\, is 
defined as follows: 

Ì a when a > 0 

—a when a < 0 
For example, | - 3.12| = 3.12, |6.76| = 6.76. Note that the absolute 

value of a real number is always nonnegative and hence a < |a|, V a E R . 
Furthermore, \a\ < b if and only if — b < a < b and \a\ > b if and only if 
a > b or a < —b; similar results hold for the strict inequalities < and >. 
For example, |x| < 4 if and only if — 4 < x < 4 and \x\ > 4 if and only 
if x > 4 or x < —4. Moreover, the distance between two real numbers x 
and у is jx — y\, and thus, the distance between x — —3.12 and у = 6.76 is 
i - 3.12 - 6.76| = | - 9.881 = 9.88. 

The following theorems provide important results concerning the absolute 
value of two real numbers. The theorem stated below shows that the absolute 
value of a product can also be computed as the product of the individual 
absolute values. 
Theorem 4.2.11: If x, у € 1, then \xy\ = | ι | · |y|. 

Proof (by cases): Let x,y € Ш be ABF. Then, either (1) x > 0 
and у > 0, (2) x < 0 and у < 0, (3) x > 0 and у < 0, or (4) x < 0 
and у > 0. 

Case 1: Suppose that x > 0 and у > 0. Then, xy > 0, \xy\ = 
ХУ> \x\ — χ, a n d Ы ~ V- Hence 

\xy\ = xy = \x\- \y\ 
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Case 2: Suppose that x < 0 and у < 0. Then, it follows that 
xy > 0, \xy\ — xy, \x\ = —x, and \y\ = —j/. Hence 

| x y | = xy= (-x)(-y) = | x | . | y | 

Cases 3 and 4: By symmetry, the same proofs can be used for the 
cases x > 0 and у < 0 and a; < 0 and j / > 0. Thus, WLOG suppose 
that x > 0 and ?/ < 0. Then, xy < 0, \xy\ = —xy, \x\ — x, and 
\y\ = -y. Hence 

\xy\ = -a;y = x(-2/) = \x\-\y\ 

Thus, in each of the four cases it follows that \xy\ = | ι | · |?/| and 
hence, \xy\ = |.τ|· |y|, V x, у £ К. 

The following corollary of theorem 4.2.11 shows that |—x| = |x|, Vx e 

Corollary to Theorem 4.2.11: If x € R, then | - x\ = \x\. 

Proof: The corollary to Theorem 4.2.11 follows directly from that 
theorem with x = x and у = — 1. 

The distance between two real numbers will be play an important role in 
the Chapter 5 discussion of sequences or real numbers, limits of real-valued 
functions, continuity, and differentiation. The following theorem and its corol-
lary provide two important results for absolute values that will often be uti-
lized in Chapter 5. In particular, of the following two results, it is the corollary 
to Theorem 4.2.12 that will be the more frequently used result. 

Theorem 4.2.12 (The Triangle Inequality): If x,y e R, then 

\x + y\< \x\ + \y\ 

Proof (by cases): Let x, у € R. Then, either (1) both x and у 
are greater than or equal to 0, (2) both x and у are less than 0, and 

file:///x/-/y/
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(3) one of the values, x and y, is greater than or equal to 0 and the 
other is less than or equal to 0. 

Case 1: Let x, у > 0. Then, \x\ = x, \y\ = yt and \x + y\ = x + y. 

Thus, \x + y\ = x + у = |x| + \y\ and hence, j.r + y\ < \x\ + \y\ for 
x , y > 0 . 

Case 2: Let x, у < 0. Then, |x| = —x, |t/| = — y, and 

|x +j/l = -(x + y) = -x-y 

Thus, |x + y\ = - x — у = —x H—У = |x| + \y\ and it follows that 
\x + y\< |x| + li/l for x,y < o. 
Case 3: By symmetry of argument, WLOG let x < 0 and у > 0. In 
this case, there are two subcases to consider, namely, x + у > 0 and 
x + у < 0. 

Subcase 1: Let x < 0 and j / > 0 and assume that x+y > 0. 
In this case, |x| = —x, \y\ = j / , and |x + y\ = x + y. Thus 

|x + 7^|=x + y < -x + y-\x\+\y\ 

since x < 0 < —x 

and hence, for x < 0, у > 0, and x + у > 0 it follows that 
|x + y| < |x| + | j / | . 

Subcase 2: Let x < 0 and у > 0 and assume that x+i/ < 0. 
In this case, |x| = —i, \y\ = y, and |x + y\ = —(x + j/) = 
—x — ?/. Thus 

\x + y\ = -x-y < ~x + y = \x\ + \y\ 
since —y < 0 < у 

and hence, for x < 0, j / > 0, and x + j / < 0 it follows that 
\x + y\< \x\ + \y\-

Hence, in each case it follows that |x + y\ < \x\ + \y] and therefore, 
\x + V\<\x\ + \y\, Vx,2/GR. 

Corollary to Theorem 4.2.12 (The Triangle Inequality): If x, y, z e K, 
then 

к - г / 1 < \χ-·ζ| + | 2 - j / | 
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Proof: Let x, y, z € R be ABF. Then 

\x-y\ = \x + (-z + z) -y\ = \x - z + z - y\ 
0 

<\x-z\ + \z-y\ 
> v ' 

By the triangle inequality 

The following three results also provide useful bounds on the distance 
between two real numbers. 

Theorem 4.2.13: If x, у e R, then \x-y\> \x\ - \y\. 

Proof: Let x,y 6 R. Consider |x|: 

\x\ = \x+0] = \x+ {-y + y)\ = \x-y + y\ 

Applying Theorem 4.2.11, it follows that \x - у + y\ < \x - y\ + \y\. 

Now, |x| < |x - j/l + \y\ and subtracting \y\ from both sides of this 
equation yields 

\x\ -\y\ < \x-y\ 

and therefore, \x - y\ > \x\ - \y\, V x,y € R. 

Corollary to Theorem 4.2.13: I f x . y e R, then \x\-\y\ < \x-y\ < \x\ + \y\-

Proof: This result follows directly from Theorems 4.2.12 and 4.2.13. 

Theorem 4.2.14: If x,y e R, then ||x| - \y\\ < \x-y\. 

Proof: The proof of Theorem 4.2.14 is left as an exercise. 

file:///x/-/y/
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Finally, the real numbers are closed under the arithmetic operations of ad-
dition, multiplication, subtraction, and division; R contains both the additive 
and multiplicative identities, and К contains the additive and multiplicative 
inverses. However, the real numbers are not the final set of numbers that a 
mathematician requires for solving algebraic equations. Recall that the set 
of real numbers is not closed under the binary operator defined by а о 6 that 
provides the solutions to the equation ax2 — 6 = 0. For example, 1 о —2 has no 
real solutions since the solutions to x2 + 2 = 0 are ±\/—2; the square root of a 
negative number is a complex number, not a real number. However, complex 
numbers and their properties will not be considered any further in this text. 

4.3 Elementary Number Theory 

The study of numbers and their properties is an area of mathematics called 
number theory, which is one of the oldest areas of mathematical research dat-
ing as far back as circa 300 B.C. with Books VII-IX of Euclid's Elements In 
fact, many of the most famous mathematicians of all time have worked in 
the area of number theory. One of the most famous mathematicians, Carl 
Friedrich Gauss (1777-1855), said "mathematics is the queen of the sciences, 
but number theory is the queen of mathematics." Moreover, there are many 
classic problems in number theory, including Fermat's Last Theorem, which 
was more recently proved by Andrew Wiles and Richard Taylor. Some of 
the topics that are studied in number theory are odd and even numbers, di-
visibility, prime numbers, factorization of numbers, polynomial congruences, 
number theoretic functions, modulo arithmetic, and continued fractions. Fur-
thermore, many of the topics in number theory deal with only the natural 
numbers and the integers since these are the oldest and most easily under-
stood numbers. The real beauty of number theory is that the definitions and 
mathematical results are often very simple, utilizing only the basic arithmetic 
operations of addition, subtraction, multiplication, and subtraction. However, 
many of the results in number theory have proofs that are extremely long and 
complex, such as Wiles and Taylor's proof of Fermat's Last Theorem. 

4.3.1 Odd and Even Numbers 

The first type of specialized numbers that will be studied are the "odd" and 
"even" numbers. As early as 300 B.C., the Greek mathematician Euclid noted 
that natural numbers were composed of both the even and odd numbers. 
Moreover, the concept of odd and even numbers is easily understood and in 
fact, is one of the first number theoretic topics that is taught to grade-school 
students. Thus, a good reason to begin the discussion of number theory 
with odd and even numbers is that they are not a new to students studying 
mathematics. The definitions of even and odd integers are given below. 
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Definition 4-3.1: An integer n is said to be an even integer if and only if n 
can be written as n — 2k for some integer k. 

Definition 4-3.2: An integer n is said to be an odd integer if and only if n 
can be written as n — 2k + 1 for some integer k. 

Note that an alternative definition of an odd number is sometimes stated 
with "n = 2A; — 1 for some integer k" in place of "n = 2/c +1 for some integer к." 
These definitions are equivalent since 2A: — 1 = 2/c+l— 2 = 2(fc — l)-f l — 2/c'+l 
and k' is an integer. Furthermore, proving that an integer z is even requires 
only showing that z — 2k for some к £ Z (i.e., an existence proof). Similarly, 
proving that an integer z is odd requires showing that z = 2k + 1 for к S Z. 

Example 4-3-1: The number 3 is odd because 3=2(1)+1, and the number 
—6 is even because —6 = 2(—3). However, the real number 3.45 is neither 
even nor odd since it is not an integer. 

Note that integers are made up of even integers and odd integers. Let the 
set of even integers be denoted by ЪЕ = {0,±2, ±4 , . . .} and the set of odd 
integers by Zo = {±1,±3, ± 5 , . . . } . Several elementary theorems concerning 
odd and even numbers are given below. 

Theorem 4.3.1: Let Zg be the set of even integers. Then 

(i) ЪЕ is closed under addition. 
(ii) ЪЕ is closed under multiplication. 

Proof (Closure Proof): 

Proof of part (i): Let a,b € ЪЕ be ABF. Then, there exist integers 
к and j such that a = 2k and b = 2j. 

Consider a + b 

a + b = 2k + 2j = 2(k + j) = 21 

where I — к + j and / € Z since Z is closed under addition. Hence, 
a + 6 is even, and therefore ЪЕ is closed under addition. 

Proof of part (ii): The proof of (ii) is left as an exercise. 

Note that Zo is not closed under addition since 3 + 5 = 8, which is even; 
however, the following theorem shows that Zo is closed under multiplication. 
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Theorem 4.3.2: If m and n are odd integers, then nm is odd. 

Proof: Let m and n be ABF odd integers. Then, n = Ik + 1 for 
some integer к and m = 2j + 1 for some integer j . 

Consider nm 

nm = (2/c + l)(2j + 1) = Akj + 2k + 1j + 1 

= 2(2Jfcj + lfc + .;) + l = 2 i + l 

where / = 2kj + к + j , which is an integer since Z is closed under 
multiplication and addition. 

Thus, nm = 21 + 1 and hence, n is an odd number. Therefore nm is 
odd whenever m and n are odd. 

Theorem 4.3.3: If n is an odd integer, then so is n2. 

Proof: Let n be an odd integer. Then, by Definition 4.2.2, 3 к £ Z 
such that n = 2k + 1. Now consider n2. 

n2 = (2fc + l ) 2 = 4fc2 + 4fc + 1 = 2(2k2 + 2k) + 1 

= 2Jfc' + 1, where k' = 2/c2 + 2k 

Furthermore, 2/c2 + 2/c € Z since Z is closed under multiplication and 
addition, and thus n2 is odd. 

Therefore, n2 is odd whenever n is odd. 

Note that Theorem 4.3.3 could have been stated as a corollary of Theorem 
4.3.2 since n2 = n· n. Specifically, since n2 is the product of two odd numbers 
(i.e., n and n), it follows from Theorem 4.3.3 that n2 is also odd. Moreover, 
the following theorem shows that whenever n2 is an odd number, then so is 
n. 

Theorem 4.3.4: Let 7i be an integer. If n2 is odd, then so is n. 
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Proof (by Contrapositive) : Note that the contrapositive of this 
theorem is "If n is even, then so is n2," and since the contrapositive 
of this theorem was proved in Example 3.3.2, this theorem follows 
by the method of contrapositive. 

Note that Theorems 4.3.4 and 4.3.5 could now be stated as the following 
biconditional theorem: 

Theorem: Let n be an integer. Then n is odd if and only if n2 is 
odd. 

An analogous biconditional theorem for even integers is also stated below: 

Theorem: Let n be an integer. Then n is even if and only if n2 is 
even. 

The next three theorems state results concerning sums of integers. In 
particular, the first theorem states that the sum of two consecutive integers 
is odd, the second concerns the sum of the first n odd natural numbers, and 
the last theorem concerns the sum of the first n even natural numbers. 

Theorem 4.3.5: The sum of two consecutive integers is an odd integer. 

Proof: Let n and n + 1 be ABF consecutive integers. Without loss 
of generality, assume that n is even. 

Then, 3 к e Z such that n = 2k and n + 1 = 2/c + 1. Now 

n + (n + 1) = 2/c + (2k + 1) = 4k + 1 = 2k' + 1 

where k' — 4k. Furthermore, k' € Z since Z is closed under multi-
plication, and hence n + (n + 1) is odd. 

Therefore, the sum of two consecutive integers is an odd integer. 

Theorem 4.3.6: *T (2j - 1) = n2, V n € N. 
j = l 

Proof: (by Induction): Let Vn := ^ (2j - 1) = n2 
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1 

For n = 1, ] T (2j - 1) = 2(1) - 1 = 1 = l2. Thus, Vx is true. 

Now, assume that Vk is true for some arbitrary but fixed (ABF) 
к 

natural number k. This means that \^ (2j — 1) = к · Now, if T-'fc+1 

is true, then 
k + l 

£ ( 2 j - l ) = ( f c + l ) 2 

j - l 

fc+l 
Consider ] T ( 2 j - 1). 

fc+l к 
£ ( 2 j - l ) = £ ( 2 j ' - l ) + 2 ( / ; + l ) - l = /с2 +2АГ+1 
i=i i=i By Pfc 

= ( * + l ) 2 

Thus, Vk+\ is true when Vk is true, and therefore, Vn is true V n E N. 
n 

Hence, £ 2 (2j - 1) = n2, V n € N. 
> = i 

For example, the sum of the first 10 odd natural numbers is 
10 

Σ (2i - 1) = (1 + 3 + 5 + · ■ · + 19 = 102 = 100 
(=1 

and the sum of the first 1231 odd numbers is 12312 = 1,515,361. 

n 

Theorem 4.3.7: ^ 2j = n(n + 1), V n ζ N. 
}=■.! 

Proof: Let n S N and consider \ \ 2j. Using the result of Example 

3.4.1, the sum of the first 2?i natural numbers is 
2n 2n(2n+ 1) 2 3 = — ~ = 2n2 + n 



Elementary Number Theory 131 

Now, since Theorem 4.3.6 states that the sum of the first n odd 
natural numbers is n2, it follows that 

2n n n 

2n2 + n = Σ j = £ ( 2 j - 1) + Σ 2j 

n 

= n 2 + £ 2 j 
> = 1 

Thus 
n 

^ 2j = 2n2 + n - n2 = n2 + n = n(n + 1) 
J = l 

Thus, from Theorem 4.3.7 it follows that the sum of the first 25 even 
numbers 

2 + 4 + 6 + - · · + 50 = 50(51) = 2550 

and the sum of the first 100 even numbers is 100(101) = 10,100. 

Finally, note that every even number is a multiple of 2. In the next 
section, multiples of numbers other than 2 will be considered. 

4.3.2 Divisibility 

Since the even numbers are simply integers that are multiples of 2, it is also 
true that the even integers consist of all those integers that are evenly divisible 
by 2. A natural extension from studying the multiples of 2 is to study multiples 
of other integers. For example, one might consider the multiples of 3 or 7 and 
their properties. Furthermore, the ideas of multiplicity and divisibility play a 
key role in the study of composite and prime numbers, which will be discussed 
in Section 4.3.3. The definition of the divisibility of an integer b by an integer 
a is given below. 

Definition 4-3.3: An integer a is said to divide an integer 6, denoted by a\b, 
if and only if b = ak for some integer k. When a divides b, a is called a divisor 
of b and b is said to be a multiple of a. 

For example, 5|315 since 315 = 5(63) and 3 /f542 since there is no integer 
к such that 542 = ЗА:. Thus, 5 is a divisor of 315 and 315 is a multiple of 
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5, however, 3 is not a divisor of 542 and 542 is not a multiple of 3. Also, a 
divides b can also be stated as ò is divisible by a. 

Example 4-3.2: Show that each of the following numbers is divisible by 7: 

a. 441 
b. 1057 
с -784 

Solutions: 

a. 441 is divisible by 7 since 441 = 7· 63 
b. 1057 is divisible by 7 since 1057 = 7-151 
с -784 is divisible by 7 since -784 = 7· (-112) 

Now, when a\b, this simply means that 6 is a multiple of a and thus, to 
prove that a\b simply requires showing that b is a multiple of a (i.e., ò = ak for 
some к € Z). On the other hand, when a J(b it follows that a is not a divisor 
of b and that b is not a multiple of a. A more precise meaning for a /fò will 
follow from Theorem 4.3.8, the Division Algorithm, which is given without 
proof; a proof of the Division Algorithm can be found in Modern Algebra by 
Jimmie and Linda Gilbert (1996). 

Theorem 4.3.8 (The Division Algorithm): If a, b € Z and а ф 0, then 
there exist unique integers q and r such that 6 = qa + r where 0 < г < a. 

Thus, if a does not divide b (i.e., a )(b), then it follows from the Division 
Algorithm that b = qa + r for some integers q and r where 0 < r < a. For 
example, if 3 J(b, then b is of either form 3k + 1 or 3k + 2. Similarly, if 7 J(b, 
then b has one of the following forms: 7k + 1, 7k + 2, 7k + 3, 7k + 4, 7k + 5, or 
7*: + 6 . 

Now, several theorems concerning divisibility results will be stated and 
proved. Note that Theorem 4.3.9 is analogous to the theorem proved in Chap-
ter 3 showing that if n is even, then so is /г2. 

Theorem 4.3.9: Let a,beZ. If a\b, then a\b2. 

Proof: Let a,b e Z and suppose that a\b. 

Then, b = ak for some integer k. Now, consider b2 

b2 = {ak)2 = a2k2 = a{ak2) = ak' 

where k' = ak2 € Z since Z is closed under multiplication. Hence, 
b2 is a multiple of a, and therefore, a\b2 whenever a\b. 

m 
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The following theorem shows that when a divides both 6 and c, then it 
is also true that a\(b + c). 

Theorem 4.3.10: Let a, 6, с € Z. If a\b and a\c, then a\(b + c). 

Proof: Let a,b, с 6 Z and suppose a\b and a\c. 

Then, b — ak for some integer к and с = aj for some integer j . 
Consider b + c: 

b + с — ak + aj — a(k + j) = ak', where k' = k + j . 

Furthermore, к + j 6 Z since Z is closed under addition, and hence 
b + с is a multiple of a. 

Therefore, if a\b and a\c, then a\(b+ c). 

A further generalization of Theorem 4.3.10 is given below. In particular, 
Theorem 4.3.11 extends Theorem 4.3.10 to more general linear combinations. 

Theorem 4.3.11: Let a,b,c€ Z. If a\b and a|c, then a\(bx + cy), V x, у € Z. 

Proof: The proof of theorem 4.3.11 is left as an exercise. 

An important corollary to Theorem 4.3.11 is the special case where x — 1 
and у — —1; that is, if a\b and a\c, then a\(b — c). This result is stated in the 
following corollary. 

Corollary to Theorem 4.3.11: Let a,b,с e Z. If a\b and a\c, then a\(b — c). 

Proof: The corollary to Theorem 4.3.11 follows directly from The-
orem 4.3.11 with x = 1 and у = —1. 
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Note that had Theorem 4.3.11 preceded Theorem 4.3.10, the latter could 
have been stated as a corollary to Theorem 4.3.11 since it is the special case 
of Theorem 4.3.11 with x = 1 and у = 1. The following example shows that 
when a\(b + c), it is not necessarily the case that a\b and a\c. 

Example 4-3.3: Consider the following conjecture: 

Conjecture: Let a, 6, and с be integers. If a\(b+ c), then a\b and 
a\c. 

Solution: A counterexample to this conjecture is 6|(13 + 5) since 18 = 6 x 3 , 
but 6 / 1 3 and 6 /5. Thus, this conjecture is false. 

Example 4-3.4·' Prove or disprove the following conjecture: 

Conjecture: Let a, b, and с be integers. If a\bc, then a\b or a\c. 

Solution: A counterexample to this conjecture is 6|(9 x 4) since 9 x 4 = 
36 = 6 x 6, but 6 J(9 and 6 /4. Thus, this conjecture is false. 

Thus, the previous two examples show that knowledge of the fact that 
a divides b + с does not necessarily imply that a\b and a\c. However, the 
following theorem shows that when a divides both b and ò + с, then it follows 
that a must, divide c, also. For example, clearly 3|39 and 3|27 and therefore, 
since 39 = 27 + 12, it follows that 3|12. 

Theorem 4.3.12: Let a, 6, с € Z. If a\b and a\(b + c), then a\c. 

Proof: Let a,b,cE.Z and suppose a\b and a|(6+ c). 

Then, there exist integers k,j such that b — ak and b+ с = aj. 

Now, since b + с = aj, it follows that с = aj — b. Thus 

с = aj — b = aj — ak = a(j — k) — al 

where / = j — к £ Z since Z is closed under subtraction. Thus, с is 
a multiple of a and therefore a\c whenever a\b and a\(b + c). 

Theorem 4.3.13: Let a,b e Z. If a\b, then a\bn, V n € N. 

Proof: The proof of Theorem 4.3.13 is left as an exercise. 
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Recall that Theorem 4.3.9 states that "If a\b, then o|62." This theorem 
is a direct result of Theorem 4.3.13 and thus could be stated as a corollary to 
Theorem 4.3.13, also. 

Corollary to Theorem 4.3.13: Let a,b<=Z. If a|6, then a\b2, V к £ N. 

Proof: This result follows directly from Theorem 4.3.13 with к — 2. 

Now, suppose that a\b; then it is also true that a\b2. However, it is not 
necessarily true that if a\b2, then a will also divide b. A counterexample to 
a\b2 implying a\b is given in the following example. 

Example 4-3.5: Disprove the following conjecture: 

Conjecture: Let a, b £ Z. If a\b2, then a\b. 

Solution: A counterexample to this conjecture is 4|62 since 62 = 36 = 9 x 4, 
but 4 /6. Thus, this conjecture is false. 

The previous example shows that it is not always true that when a divides 
b2 it also follows that a will divide 6. In other words, there is at least one a such 
that when a divides 62, it is not true that a will divide 6 as the counterexample 
illustrates. However, it was shown in Chapter 3 that when 2|i>2, it does follow 
that 2\b. The following theorem shows that when 3|i>2, it follows that 3)6, also. 

Theorem 4.3.14: Let b £ Z. If 3|f>2, then 3|ò. 

Proof (by Contrapositive): Note that the contrapositive of this 
theorem is "If 3 /b, then 3 /Ò2." 

Let b £ Z and suppose that 3 J[b. Then, according to the Division 
Algorithm 

f 3fc+ 1 
b= i or 

l ЗА: + 2 
for some к £ Z. 

Case 1: Suppose that b = 3k + 1. Then 

b2 = {3k + l ) 2 = 9/c2 + 6A + 1 = 3{3k2 + 2k) + l = 3k'+l 
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where k! — 3k2 + 2k. Furthermore, 3k2 + 2k € Z since Z is closed 
under multiplication and addition. Thus, b2 is of the form 3A:+1 and 
hence, by the Division Algorithm it follows that b2 is not divisible 
by3 . 

Case 2: Suppose that b = 3k + 2. Then 

b2 = {3k + 2)2 = 9*2 + 12* + 4 = 3(3k2 + Ak + 1) + 1 = 3*' + 1 

where k' = 3k2 + 4k + 1. Furthermore, 3k2 + 2k + l e Z since Z 
is closed under multiplication and addition. Thus, b2 is of the form 
3k + 1 and hence, by the Division Algorithm it follows that b2 is not 
divisible by 3. 

Thus, in both cases it follows that when 3 /\b, then 3 / 6 , either. 
Therefore, when 3|62, it follows that 3|£>. 

Now, there is a quick way to test whether an integer is divisible by 3, 
based on the sum of the digits making up the integer. In particular, when the 
sum of digits making up an integer is divisible by 3, then so is the integer. 
Note that a positive integer a (i.e., a natural number) may be expressed in 
base-10 form as 

n 
a = ^ ctlO* 

fc=0 

For example, the integer a = 1217 can be written as 

1257 = 1· 103 + 2· 102 + 5· 101 + 7-10° 

Similarly, a negative integer о can be written as 

n 
-(-a) = -£cfc10fc, 

n 
where —a = ^ J CfclOfc is a positive integer. The base-10 representation of 

fc=0 
an integer is especially useful in proving theorems such as Theorem 4.3.15 on 
divisibility tests for the numbers 3 and 9. In particular, Theorem 4.3.15 states 
that a natural number a is divisible by 3(9) if and only if the sum of the digits 
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making up the base-10 representation of a is divisible by 3(9). For example, 3 
divides 177 since 3|(l + 7 + 7) and 9 divides 12,609 since 9|(1 + 2 + 6 + 0 + 0). 

Theorem 4.3.15: Let a e N have base-10 representation V , с*Л0*, and let 
fc=0 

n 

S= Σ Ck- T h e n 

fc=0 

(i) 3|a if and only if 3|5. 
(ii) 9\a if and only if9|S. 

Before proceeding with the proof of Theorem 4.3.15, the following two lemmas 
must be proved since the proof of Theorem 4.3.15 is based on the results of 
these lemmas. 

Lemma 4.3.1: З^О""1 - 1, for n € N. 

Proof (by Induction): Let Vn := 3|10n _ 1 - 1. 

For n — 1, it follows that 10° - 1 = 0, which is divisible by 3. Thus 
V\ is true. Also, for n = 2, 101 - 1 = 9, which is divisible by 3, and 
thus 7>2 is true. 
Assume that Vk is true for some ABF к e N; that is, 3|10*~' - 1 
or 10*_1 - 1 - 3j for some j € Z. Now, if Vk+i is true, then 3 will 
divide 10* - 1. 
Consider 10* - 1 

10* - 1 = 10* - 1 + 10*"1 - 10*_1 
4 v ' 

о 

= (io*-io*-1) + ( io*-1- i) 

= Ι Ο ^ α θ - ^ + ^ Ο * - ' - ! ) 

= 9 1 0 * ~ 1 + ( 1 0 * ~ 1 - 1 ) 

= 3(3· IO*-1) + 3j = 3m 

B y 7 \ 

where m = 3· 10*- 1 + j , which is in Z since Z is closed under multi-
plication and addition. Thus, 10* - 1 is a multiple of 3, and hence 
3 |10*- 1. 
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Thus, Vk+\ is true whenever Vk is true, and therefore 3j 10" — 1 
V n e N. 

Lemma 4.3.2: ЭЦО"'1 - 1, for n e N. 

Proof: The proof of Lemma 4.2.2 is similar to the proof of Lemma 
4.2.1 with 9 substituted in place of 3. 

The proof of theorem 4.3.15 is now presented. 

Proof of Theorem 4-3.15 (Biconditional Proof): Let a e N 
n n 

have base-10 representation У с*Л0 , and let 5 = У. ск-
k=0 k=0 

Proof of part (i): To prove part (i) of this theorem, it must be 
shown that 3|a —> 3(5 and 3\S —> 3|a. 

First, suppose that 3\a and consider a. 

n n 

a = ] £ CfclO* = J2 с * ( 1 0 * + ( - 1 + !)) 
k=0 /c=0 * }J ' 

n n n 
= 5 3 cfc(10* - 1) + 5 3 cfc = J ] cfc(10fc - 1) + S 

fc=0 fc=0 fc=0 

Now, by Lemma 4.3.1 it follows that 3|cfc(10fc-l) for к = 0 ,1 ,2 , . . . ,n 
n n 

and thus 3| 5 3 cfc(10fc - 1). Furthermore, since 3| 5 3 ck(Wk - 1) 
k-0 fc=0 

and 3|a, it follows from Theorem 4.3.12 that 3|5. 

Conversely, suppose that 3|S. Consider a: 
n n 

a - 51 c*10* = Σ c*(10* - !) + 5 
fc=0 fc=0 
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By Lemma 4.3.1 it follows that 3^ (10* - 1) for к = 0,1,2, . . . , n 
n n 

and thus, 3| ] T ck(Wk - 1). Now, 3|5and 3| ] T c^lO* - 1). Thus, 

n 

since a = Y2 ck(№k ™ 1) + 5, it follows from Theorem 4.3.10 that 
/t=o 

3|a. Therefore, 3|a if and only if 3|5. 

Proof of part (it): The proof of part (ii) is left as an exercise. 

Example 4-3-6: Determine whether 3 and 9 divide each of the following 
numbers: 

a. 2137 
b. 99,089 
с 314,299,806 
d. 20,314,299,807 

Solutions: 

a. Neither 3 nor 9 divides 2137 since neither 3 nor 9 divides S = 13. 
b. Neither 3 nor 9 divides 99,089 since neither 3 nor 9 divides S = 35. 
с 3 divides 314,299,806 since 3 divides S = 42. However, 9 does not divide 

314,299,806 since 9 /42. 
d. Both 3 and 9 divide 20,314,299,807 since both 3 and 9 divide S = 2 + 0 + 

3 + 1 + 4 + 2 + 9 + 9 + 8 + 0 + 7 = 45 = 3-15 = 9· 5. 

4.3.3 Prime Numbers 

As the study of numbers and the divisibility properties of numbers progressed, 
it soon became apparent that some natural numbers had the special property 
of being indivisible by any of their predecessors other than 1. For example, 11 
is not divisible by any of its predecessors 2 ,3 ,4 , . . . , 10. These special numbers 
are called prime numbers and have fascinated mathematicians since at least 
the publication of Euclid's Elements, which was published around 300 B.C. 
The definition of a prime number is given below. 

Definition 4·3·4: A natural number p > 2 is said to be a prime number if 
and only if the only divisors of p are 1 and p. A natural number с > 2 that is 
not a prime number is called a composite number. 
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Let V be the collection of all prime numbers. Then V is a subset of the 
natural numbers, and in fact, the natural numbers consist of three types of 
numbers: the number 1, the prime numbers, and the composite numbers. The 
first 20 primes arc: 

2,3, 5,7,11,13,17,19,23,29,31,37,41,43,47,53, 59,61,67,71 

A table containing all of the prime numbers less than 10,000 is given in Ele-
mentary Introduction to Number Theory (Long 1972), and as of March 2006, 
the largest known prime number was 230·402 '457—1. The base-10 representation 
of this prime number requires 9,152,052 digits to be written out completely. 

Now, if a natural number is not a prime number, then it is either the 
number 1 or it is a composite number. Note that since a composite number 
is not a prime number, it must be divisible by at least one of its predecessors. 
Furthermore, it also follows that a composite number must be divisible by at 
least one of its prime predecessors. For example, 15 is a composite number 
and is divisible by the prime numbers 3 and 5. 

Definition 4-3.5: A prime number p is said to be a prime factor of a com-
posite number с if and only if p|c. 

For example, 3 is a prime factor of 12,345,081 (3 divides the sum of the 
digits of this number). Note that a prime number only has 2 factors, 1 and 
p, while a composite number may have many prime factors. For example, the 
composite number 420 = 22 x 3 x 5 x 7, so 420 has the 4 prime factors 2, 3, 5, 
and 7. Greek mathematicians were fascinated by the prime numbers, and the 
Greek mathematician Euclid stated, with proofs, several important theorems 
concerning the prime numbers in his book Elements. In particular, the next 
two theorems were first stated in Euclid's Elements. 

Theorem 4.3.16 (Euclid's First Theorem): Let a, 6 e N. If p is a prime 
number and p\ab, then p\a or p\b. 

The following theorem, the Fundamental Theorem of Arithmetic, which 
is also a corollary of Euclid's First Theorem, shows that there is one and only 
one prime factorization of a composite number. 

Theorem 4.3.17 (The Fundamental Theorem of Arithmetic): Every 
natural number n > 2 is either a prime number or the product of prime 
numbers, and the product is unique up to the order in which the prime factors 
appear. 

The unique representation of a composite number с as the product of 
primes is known as the prime factorization of с For example, the unique 
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prime factorization of 180 is 22- 32· 5. However, the Fundamental Theorem of 
Arithmetic does not provide any direct help in determining whether or not 
a number is a prime or a composite number. For example, the Fundamental 
Theorem of Arithmetic does not answer the Question "Is xt — 1,578,301 a 
prime number or a composite number?" In general, it is difficult to determine 
whether a very large number is a prime number or a composite number. How-
ever, the following theorem does provide some help in determining whether 
a number is a prime number by restricting the set of possible prime factors 
of the number. In particular, the following theorem shows that if a natural 
number n is composite, then it must have a prime factor that is less than or 
equal to φι. 

Theorem 4.3.18: If с is a composite number, then с has at least one prime 
factor that is less than or equal to \fc. 

Proof (by Contradiction): Let с be a composite number, and 
suppose that с has no prime factors less than or equal to \fc. 

Now, since с is a composite number it follows that с is the product 
of at least two prime numbers. Let p be the smallest prime number 
greater than y/c. Now, the smallest product of two prime numbers 
greater than >Jc is p2, but p2 > c. Thus, no prime greater than or 
equal to p can be a prime factor of c. Thus, с has no prime factors 
less than or equal to ^/c, nor does с have any prime factors greater 
than \fc. Hence, с is a prime number, contradicting the fact that с 
is a composite number. 

Therefore, с must have at least one prime factor less than or equal 
to s/c. 

Example 4-3.7: Use Theorem 4.3.18 to determine whether each of the fol-
lowing numbers is a prime or a composite number: 

a. 1217 
b. 9983 

Solutions: 

a. First, \/l217 = 34.885. Now, if 1217 is not divisible by any prime less 
than 34, then 1217 is a prime number. Thus, 1217 will be a prime number 
if and only if it is not divisible by the prime numbers 

2,3,5,7,11,13,17,19,23,29,31 
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1217 = 2 x 6 0 8 + 1 1217 = 3 x 4 0 5 + 2 1217 = 5 x 2 4 3 + 2 
1217 = 7 x 1 7 3 + 6 1 2 1 7 = 1 1 x 1 1 0 + 7 1 2 1 7 = 1 3 x 9 3 + 8 
1217 = 1 7 x 7 1 + 1 0 1 2 1 7 = 1 9 x 6 4 + 1 1217 = 2 3 x 5 2 + 21 
1217 = 2 9 x 4 1 + 28 1217 = 3 1 x 3 9 + 8 

Thus, since 1217 is not divisible by any of the prime numbers less than 
\/1217, it follows that 1217 is a prime number. 

b. The solution to part (b) is left as an exercise. 

An algorithm, based on the result of Theorem 4.3.18, was proposed by 
Eratosthenes (276-194 B.C.) for finding all the prime numbers less than a 
particular natural number n. This algorithm is called the "Sieve of Eratos-
thenes" after its founder. Eratosthenes' algorithm for finding prime numbers 
is given below. 

Sieve of Era tos thenes : Begin with a sequential list of integers from 2 to 
the largest number n to be studied. 

1. Cross out all multiples of 2 (every second number in the list). 
2. Determine the smallest remaining number in the list, which is 3. Now, 

cross out all multiples of 3 (every third number in the list). 
3. Determine the smallest remaining number in the list, which is 5. Now, 

cross out all multiples of 5 (every fifth number in the list). 
4. Repeat the process outlined in steps 2 and 3 until all multiples of the 

smallest integer less than or equal to >Jn are crossed out. 
5. The numbers remaining in the list from 2 to n are the prime numbers 

less than or equal to n. 

Example 4· 3.8: Use the Sieve of Eratosthenes to determine the prime num-
bers less than 116. 

Solution: First list the numbers less than 116: 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 39 31 32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 
97 98 99 100 101102 103 104 105 106107 108 109 110 111112 113 114 115 

Now, after crossing out the multiples of all the prime numbers less than \ΖΪΪ6 
(i.e., 2, 3, 5, and 7), the following prime numbers remain: 
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2 3 5 7 11 13 17 19 
23 29 31 37 

41 43 47 53 
59 61 67 71 73 

79 83 89 
97 101 103 107 109 113 

In general, the problem of checking for the primality of a large num-
ber such as 1,578,301 is a computationally difficult problem, since it involves 
testing for divisibility by the prime numbers less than >/l, 578,301. In this 
example, divisibility by all the 214 prime numbers less than v/1,578, 301 must 
be considered. If any one of these 214 prime numbers divides 1,578,301, then 
it is a composite number. On the other hand, if none of these 214 prime num-
bers divides 1,578,301, then it is a prime number. It turns out that 1,578,301 
is not a prime number because 1,578,301 = 653· 2417 

Other interesting questions concerning the prime numbers are "What 
is the largest prime number?" and "How many prime numbers are there?" 
Euclid's Second Theorem in Book VII of Elements answers both of these ques-
tions. In particular, Euclid shows that there are an infinite number of primes 
using a simple yet elegant mathematical proof. Thus, since there are infinitely 
many prime numbers, there is no largest prime number. 

Theorem 4.3.19 (Euclid's Second Theorem:) There are infinitely many 
prime numbers. 

Proof (by Contradiction): Let V be the collection of all prime 
numbers, and suppose that V does not contain an infinite number of 
elements. Then, V contains a finite number of elements. WLOG let 
the elements of V be pi,P2,P3, ■ ■ -,pn-

Now, let N = pi хрг *Рз ■ · -xpn + 1· Then, there are two possibilities 
for N, namely, N is either a prime number or a composite number. 

Case 1: Suppose that N is a prime number. Then, since TV is prime 
and N greater than any of the primes in V, V does not contain all 
the prime numbers. However, this contradicts the assumption that 
V does contain all the prime numbers. Thus, in this case V must be 
infinite. 

Case 2: Suppose that N is a composite number. Since N is com-
posite, it follows that N must have at least one prime factor in V. 
Now, clearly 

N = Pi X P2 X P3 · · · X Pn + 1 
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is not divisible by any of the primes in V, since N — qpt + 1 for every 
Pi £V. 

Therefore, there must be some other prime number, say, pn+i & V 
that is a factor of N. However, V contains all the prime numbers, 
but Pn+i 0 V. This is a contradiction. Hence, in this case, V must 
be infinite, also. 

Therefore in either case, V is infinite and hence, there are infinitely 
many prime numbers. 

Many mathematicians, including Fermat and Marin Mersenne (1588-
1648), have proposed algorithms for the creation of prime numbers. Fermat 
conjectured that 22" + 1 is prime for every whole number n; primes of the 
form p — 22 ' + 1 are called Fermat primes. In particular 

22 + 1 = 4 + 1 = 5 which is prime 
22 ' + 1 = 16 + 1 = 17 which is prime 

22 ' + 1 = 256 + 1 = 257 which is prime 
22* + 1 = 65,536 + 1 = 65,537 which is prime 

Unfortunately for Fermat, in 1731 Leonhard Euler showed that for n = 5, 
22 ' + 1 = 4,294,967,297 is divisible by 641, and hence 22* + 1 is not a prime 
number. Mersenne conjectured that there are infinitely many primes of the 
form 2P — 1, where p is a prime number; prime numbers of this form, such as 
22 — 1 = 3 and 23 — 1 = 7, are called Mersenne primes. Mersenne's conjecture 
has never been proved or disproved; however, whenever a new prime number 
is found, it invariably turns out to be a Mersenne prime. 

Another classic problem concerning prime numbers is one that deals with 
the frequency of the prime numbers. Let π(η) be the function that counts the 
number of prime numbers less than or equal to a natural number n. Then 

π(η) = the number of primes less than or equal to n 

For example, π(200) = 46, тг(ЗОО) = 62, and тг(400) = 78. Table 4.3.1 
illustrates the frequency of the prime numbers for n = 102, 103, 104, 105, 106 

and 1012. 
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Table 4.3.1 frequencies of the Prime Numbers 

N 

102 

103 

104 

105 

106 

10'2 

No. of Primes 

25 

168 

1,229 

9,592 

78,498 

37,607,912,018 

Percentage of Primes 

25% 

16.8% 

12.3% 

9.6% 

7.8% 

3.8% 

Examining Table 4.3.1, it appears that the frequency of the prime num-
bers is decreasing as n gets larger. Gauss was one of the first mathematicians 
to note that π(η)/η appeared to approach the value 1/ Inn as n grew larger; 
however, he did not provide a proof of this result. Jacques Hadamard (1865-
1963) and Charles de la Vallee Poussin (1866-1962) independently discovered 
proofs of the following theorem in 1896. This theorem is known as the Prime 
Number Theorem and is provided without proof. For more information on the 
Prime Number Theorem, see The Mathematical Universe by William Dunham 
(1997) or Prime Obsession: Bernhard Riemann and the Greatest Unsolved 
Problem in Mathematics by John Derbyshire (2003). 

Theorem 4.3.20 (The Prime Number Theorem): If π(η) is the number 
of prime numbers less than or equal to n, then 

π(η) / 1 _ hm / = 1. 
n—oo n / I n n 

Finally, a classic and still unproven conjecture concerns pairs of prime 
numbers of the form p and p+ 2. Pairs of primes of this nature are called twin 
primes. For example, the first five pairs of twin primes are (3,5), (5,7), (11,13), 
(17,19), and (29,31). It has been conjectured that there are infinitely many 
pairs of twin primes; however, this conjecture, which many mathematicians 
believe is true, has never been proved. The final theorem of this section 
provides an interesting result concerning the natural number lying between 
twin prime numbers. 
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Theorem 4.3.21: If p > 5 and (p,p + 2) are twin primes, then 6|(p-f 1). 

Proof: The proof of Theorem 4.3.21 is left as an exercise. 

■ 

4.3.4 Recursively Defined Numbers 

This last section of the chapter deals with a special way of generating a se-
quence of numbers. In particular, this section deals with sequences of recur-
sively defined numbers. Many interesting sequences of numbers arise from 
a recursive formulation. In fact, real-world applications where a recursively 
defined sequence of numbers are used include the iterative solution of an non-
linear equation, birth-death models, and mortgage payments. The definitions 
of a sequence and a recursive sequence are given below. 

Definition 4-3.6: A sequence of real numbers is a function whose domain is 
N. 

Definition 4-3.7: A sequence of numbers is said to be a recursive sequence 
or recursively defined sequence when each clement of the sequence is based on 
the previous elements in the sequence. 

For example, the sequence defined by ai = 2 and an = α ^ , — 1, for 
n e N, is a recursive sequence since the value of an is based on the preceding 

n 
terms of the sequence. On the other hand, an = for n € N is not a 

n + 1 
recursive sequence since no knowledge of preceding terms of the sequence are 
used in the definition of a„. 

Example 4-3.9: Let an be defined by a\ = 2 and απ +ι = ^/2 + ^/α^, for 
n € N. The first five terms in this sequence are a\ — 2, аг = 1.8478, 
а3 = 1.8328, a4 = 1.8313, and a5 = 1.8312. 

Two very famous recursively defined sequences of numbers are the Fi-
bonacci and Lucas numbers. A surprisingly common set of recursively de-
fined numbers was introduced in the thirteenth century by Leonardo of Pisa. 
Leonardo of Pisa (1170-1250), also known as Fibonacci, was a one of the 
most important mathematicians of the Middle Ages, and one of Fibonacci's 
main accomplishments was the introduction of the Indo-Arabic numeration 
system and Indo-Arabic computational methods to the European community. 
Fibonacci is most famous for the following problems that he posed and solved 
around 1202 A.D. in his book Liber Abaci. 
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Suppose that there are two newborn rabbits, a male and a female. 
Determine the number of rabbits produced in a year given that 

1. Each rabbit takes one month to become mature. 
2. Each pair produces a mixed pair of rabbits (i.e., a male and a 

female) every month, from the second month on. 
3. No rabbits die during the course of the year. 

Now, in month 1, pair 1 is born so there is one pair of rabbits. In month 2, 
pair 1 becomes mature so there is still only one pair of rabbits; in month 3, 
pair 1 produces a second pair of rabbits (pair 2), which is still immature, so 
at the end month 3 there are 2 pairs of rabbits. In month 4, pair 1 produces 
a pair of rabbits (pair 3) and pair 2 matures, so at the end of month 4 there 
are three pairs of rabbits. The process continues in this way. Let Fn be the 
number of pairs of rabbits after n months. Then, the solution to this problem 
is based on the recursive relationship Fn = Fn-i + Fn_2; thus, the number 
of rabbits after n months is the sum of the number of rabbits after n — 1 and 
n —2 months. This sequence of numbers is called the Fibonacci sequence. The 
first 21 values of Fn are tabulated in Table 4.3.2. 

Table 4.3.2 The First 21 Fibonacci Numbers 

n 

1 

2 

3 

4 

5 

6 

7 

Fn 

1 

1 

2 

3 

5 

8 

13 

n 

8 

9 

10 

11 

12 

13 

14 

Fn 

21 

34 

55 

89 

144 

233 

377 

n 

15 

16 

17 

18 

19 

20 

21 

Fn 

610 

987 

1,597 

2,584 

4,181 

6,565 

10,946 

The Fibonacci pattern is often seen in sunflower and daisy florets; the 
scale patterns of pinecones pineapples, and artichokes; and even with mating 
habits of bees and rabbits. Thomas Koshy (2001) gives many applications 
of the Fibonacci pattern in his book Fibonacci and Lucas Numbers with Ap-
plications. Moreover, since their introduction, Fibonacci numbers and their 
related properties have been studied extensively by number theorists, and 
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hence there are a tremendous number of mathematical results concerning the 
Fibonacci numbers. The definition of the Fibonacci sequence is given below. 

Definition 4-3.8: The Fibonacci sequence of numbers is generated by the 
recursive formula F\ = 1, F2 = 1, and Fn +2 = Fn+i + Fn for n € N. 

Note that every Fibonacci number is simply the sum of the two preced-
ing Fibonacci numbers. Also, occasionally there will be a need for the Oth 
Fibonacci number, FQ, and when needed, Fo = 0 can be used. The following 
theorems provide some of the most basic results on Fibonacci numbers. For 
example, in Table 4.3.2 the first 21 Fibonacci numbers were listed. Note that 
F21 = 10,946 and thus, the Fibonacci numbers grow large very rapidly. The 
following theorem puts an upper bound on the value of F n , namely, Fn < 2". 

Theorem 4.3.22: If Fn is the nth Fibonacci number, then Fn < 2n , V n € N. 

Proof: This theorem can be proved with strong induction. Let 
Vn := F n < 2". 

For n = 1, Fi = 1 and clearly 1 < 21 = 2. Therefore, V\ is true. 

Now, assume that V\,..., Vk are all true for some ABF к € N. This 
means that Fi < 21 whenever i = l,2,...,k. Now, if Vk+i is true, 
then it will be the case that Fk+ι is less than 2fc+1. 

Consider Fic + i'. 

Fk+i = Fk + Fk-i <2f c + 2 ^ ' < 2 * + 2fc 

By Vk and Vk-

= 2-2* = 2*+1 

Thus, Vk -* Vk+i and therefore, F n < 2n, V n € 

The next theorem provides several interesting results concerning the sums 
of Fibonacci numbers. In particular, Theorem 4.3.23 provides results for the 
sums of the first n Fibonacci numbers, the first n Fibonacci numbers with 
odd indices, the first n Fibonacci numbers with even indices, and the first n 
squared Fibonacci numbers. 
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Theorem 4.3.23: Let F n be the nth Fibonacci number. Then, for n £ N 
n 

(i) 5 2 pi = Fnr2 - 1. 
1 = 1 

n 

(Ü) Y2 F2Ì-1 = F2n-
t = l 

n 

(Hi) ^ F 2 l - F 2 n + 1 - 1 . 
t = l 

n 

(iv) 5 2 FT
2 - F„F n + 1 . 

i = l 

Proof: Each part of this theorem will be proven using mathematical 
induction. 

n 

Proof of part (i): Let Pn := 5 2 F ' = F-n-t-2 ~ 1· 

1 

For n = 1, 5 2 Я: = F i = ! a n d F»+2 - 1 = ^ 3 " 1 = 2 - 1 = 1. 
г = 1 

Therefore, V\ is true. 
Now, suppose that Vk is true for some ABF к e N. This means that 

к 
У^ F, = Ffc+2 - 1. Now, if 7\-+i is true, then it will be true that 
z = l 

fc+i 
5 2 Fi = Ffc+1 f2 - 1 = Ffc+3 - 1 
i = l 

fc + 1 

Consider 5 2 Fi-
i = l 

fc + l fc 

Σ F-= Σ F*+ Ffc+i = Ffc+2 ~г +Ft+i 

Thus, Pfc + i is true whenever Vk is true, and therefore 

52 F ' = F«+2-i,vn 
1 = 1 
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Proof of part (it): The proof of part (ii) is left as an exercise. 

Proof of part (Hi): The proof of part (iii) is left as an exercise. 
n 

Proof of part (iv): Let Vn := ^ F 2 = Fn- F n + i . 

1 

For n = 1, Σ *? = Fi = l 2 = ! a n d F,- F2 = 1· 1 = 1. Therefore, 
t = l 

V\ is true. 

Now, suppose that Vk is true for some ABF A: € N. This means that 
к fc+i 

5 2 F 2 = Ffc- Ft H . Now, if Pfc+i is true, then £ F 2 = Ffc+i· Ffc+2. 
i = l i - l 

fc+i 
Consider 5 2 F 2 : 

2 = 1 

= Ffc+i [Ft + Fk+i] = Fk+v Fk+2 

Thus, Vk + i is true whenever Vk is true. Therefore, for n € 

^ F, - F„· F n + i 
i = l 

Theorem 4.3.23 was first proved by Edouard Lucas (1842-1891). Lucas is 
also credited with naming the Fibonacci sequence and for proving many other 
results concerning the Fibonacci numbers. Lucas also introduced a recursive 
sequence of numbers that is closely related to the Fibonacci numbers, namely, 
the Lucas sequence of numbers. The definition of the Lucas sequence is given 
below. 

Definition 4-3.9: The Lucas sequence of numbers is generated by the recur-
sive formula L\ = 1, /-2 = 3, and Ln+2 = Ln+X + Ln, V n € N. 
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The first 21 Lucas numbers are listed in Table 4.3.3. 

151 

n 

1 

2 

3 

4 

5 

6 

7 

Table 4.3.3 The First 21 Lucas Numbers 

Ln 

1 

3 

л 
7 

11 

18 

29 

n 

8 

9 

10 

11 

12 

13 

14 

Ln 

47 

76 

123 

199 

322 

521 

843 

n 

15 

16 

17 

18 

19 

20 

21 

Ln 

1,364 

2,207 

3,571 

5,778 

9,349 

15,127 

24,476 

Like the Fibonacci numbers, the Lucas numbers grow large very quickly. 
In fact, examining Tables 4.3.2 and 4.3.3, it becomes clear that for n > 1, 
Ln > 2Fn. Theorem 4.3.24 shows that L„ > 2Fn, for n > 1 and also, that 
the Lucas and Fibonacci numbers are closely related. 

Theorem 4.3.24: Let F„ be the nth Fibonacci number and Ln the nth Lucas 
number. Then, for n G N 

(') Ln+i = Fn+2 + Fn. 

(ii) Ln+2 + Ln = 5 F n H . 

(iii) L,l+i > 2 F n + 1 . 

Proof: Each part of this theorem will be proved with mathematical 
induction. 

Proof of part (i): Let "P„ :— F n + 2 + Fn = Ln+\. 

For n = 1, L-i+i = 1/2 = 3, Fi+2 = F3 = 2 and F\ = 1. Therefore, 
L2 = 3 = 2 + 1 = F3 + F\, and hence V\ is true. 

Now, suppose that V\,..., Vk are all true for some ABF к £ N. This 
means that Lj + i = FJ+2 + F,, for j = 1,2,.. .,k. Now, if Vk+\ is 
true, then Lk+2 = Ffc+3 + Ff c + l . 
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Consider L j t + m = Lk^2-

Lk^2 = Lk-\\ + Lk - {Fk+2 + Ffc) + (Ffc+i + Fk-ì) 
ч v / v v ' 

By Vk By Vk-\ 

= {Fk+2 + Fk+l) + {Fk + Fk-i) 

= Fk+2 + Fjt + i 

Thus, "Pfc+i is true whenever 7 Ί , . . . , Vk are true and therefore, 
Ln + i = F n + 2 + F n , V n € N . 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

Proof of part (iii): Let Vn :— Ln+\ > 2F„+i· 
For n = 1, L2 = 3 and F2 = 1 and since L2 = 3 > 2· F] = 2, 7Ί is 
true. 
Now, suppose that V2,...,Vk are all true for some ABF к € N. This 
means that Lj + \ > 2F; + i, for j = 1,2,.. .,fc. Now, if 7 \ + 1 is true, 
then Lk+2 > 2· Ffc+2· 
Consider Lk\-2'· 

Lk+2 — Lk+i + Lk > 2Fk+i + 2Fk 
, v , 

ByVkaadVk-i 

= 2 [Ffc+i + Ft] = 2· Ft+2 

Thus, Vk + i is true whenever V\,... ,Vk are true, and therefore 
Ln+i > 2- Fn+i whenever n € N. 

■ 

The following theorem provides results concerning the sums of Lucas 
numbers, analogous to the sums of the Fibonacci numbers given in Theorem 
4.3.23. 

Theorem 4.3.25: Let Ln be the nth Lucas number. Then, for n € N 
n 

(i) 5Z L, = L n + 2 ~ 3. 
1 = 1 
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n 

(ii) ] T L2l-i =L2n - 2 . 

n 

(iii) Y^ L2i = L2n+i ^ 1. 

n 

(iv) £ L? = LnLn+l - 2. 

Proof: The proof of each part of theorem 4.3.25 is left as an exercise. 

Finally, a more general sequence of recursive numbers that is related to 
both the Fibonacci and Lucas numbers is the generalized Fibonacci sequence 
of numbers. The generalized version of the Fibonacci numbers is denoted by 
Gn and is generated by simply altering the starting values of G\ and G2, while 
still utilizing the recursive relationship Gn+2 — Gn + Gn+i for n € N. The 
formal definition of a generalized Fibonacci sequence is given below. 

Definition 4-3-10: Let a,b € R. The generalized Fibonacci sequence of 
numbers is generated by the recursive relationship Gì = a, G2 = 6, and 
G n + 2 = G n + 1 + G„ for n £ N. 

Note that the Fibonacci sequence can be generated as a generalized Fi-
bonacci sequence by letting a = ό = 1, and the Lucas sequence is the gener-
alized Fibonacci sequence generated by taking a = 1 and 6 = 3. 

Example 4·3.10: Generate the first 10 terms for a generalized Fibonacci 
sequences with the following starting values: 

a. a = — 1 and 6 = 4 
b. a = 1 and b = 2 

Solutions: The first 10 terms of the generalized Fibonacci sequence with the 
starting values given above are as follows: 

a. a = - 1 and 6 = 4 are -1,4,3,7,10,17,27,44,71,115. 
b. a = 1 and 6 = 2 are 1,2,3,5,8,13,21,34,55,89. 

Note that in Example 4.3.10, for starting values a = 1 and b = 2, it turns 
out that G, = F i + i , for г € N. The following example reveals an interesting 
pattern in the generation of the values of a generalized Fibonacci sequence. 
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Example 4-3.11: Determine the nth term (Gn) in a generalized Fibonacci 
sequence with G\ = a and Gì = b. 

Solution: Table 4.3.4 lists the first 15 terms in a generalized Fibonacci se-
quence. 

Table 4.3.4 The First 15 Generalized Fibonacci Numbers 

n 

1 

2 

3 

4 

5 

Gn 

a 

b 

a+b 

a+26 

20+36 

n 

6 

7 

8 

9 

10 

Gn 

За+Ф 

50+86 

8a+i36 

130+216 

210+346 

n 

11 

12 

13 

14 

15 

Gn 

340+556 

550+896 

890+1446 

1440+2336 

2330+377^ 

Note that the coefficients of the a and b terms in Gn in Table 4.3.4 are 
Fibonacci numbers. In fact, on close inspection of Table 4.3.4, it appears that 
the relationship between Gn+2 and the Fibonacci sequence of numbers might 
be G„+2 = aFn + 6Fn + i ; this conjecture is proved in the following theorem. 

Theorem 4.3.26: Let Fn be the nth Fibonacci number and Gn the nth 
generalized Fibonacci number with starting values G\ = a and G2 = b. Then, 
G„+a = aF„ + òF n + i , V n e N . 

Proof (by Induction): Let Vn '■= aFn + bFn+\ = Gn+2-

For n - 1, G3 = Gi + G2 = a + 6 = aFi + bF2 since Fi = F2 = 1; 
therefore V\ is true. 

Now, suppose that V\,..., Vk are all true for some ABF к eN. This 
means that Gj+2 = a.F} + 6F,+1 for j — 1,2,..., k. Now, if Vk+i is 
true, then Gfc+3 = aFk+i + bFk+2-

Consider Gk+3-

Gk+3 = Gk+2 + Gk+i = (aFk + bFk+i) + (aFk-i + bFk) 
w / v v ' 

By Vk By Vic-i 

= a(Fk + Ffc-i) + b(Fk+l + Fk) = aFk+l + 6Ffc+2 
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Thus, Vk+i is true whenever V\, ■ ■ ■, Vk are all true, and therefore 
G n + 2 = a F n + 6 F „ + i , V n e N . 

Theorem 4.3.27: Let F„ be the nth Fibonacci number and Gn the nth 
generalized Fibonacci number. If d = 1 and G2 = 2, then Gn — F n + i , 
V n e N. 

Proof: The proof of Theorem 4.3.27 is left as an exercise. 

As with the Fibonacci and Lucas sequences, there are many results 
that have been proven concerning generalized Fibonacci sequences, see Koshy 
(2001). The following theorem provides three results concerning the sums of 
the terms in a generalized Fibonacci sequence that are analogous to those 
given in Theorems 4.3.23 and 4.3.25 on Fibonacci and Lucas numbers. 

Theorem 4.3.28: If G„ is the nth Generalized Fibonacci number when G\ = 
a and Gì — 6, then 

n 

(i) Σ G· = G"+2 - Λ v n e N 
i=l 

n 

(ii) Σ С 2 ' - ! = <?2n + a - 6, V n e N 
i = l 

n 

(iii) £ G2i = σ 2 η + ι - a, V n e N. 

Proof: The proof of Theorem 4.3.28 is left as an exercise. 

Finally, note that one could have started with the definition of the gen-
eralized Fibonacci sequence; then the results for the Fibonacci and Lucas 
sequences given in Theorems 4.3.23 and 4.3.25 would simply be corollaries of 
Theorem 4.3.28. 
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EXERCISES 

4.1 Let о be defined on [0, oo) by а о b = \a - b\. 

a. Show that о is an Abelian operator on [0, oo). 
b. Show that [0,oo) is closed under o. 
с Show that there exists an identity element in [0, oo) under o. 

4.2 Let о be defined on R+ by а о b = abba. 
a. Prove that о is an Abelian operator on R+'. 
b. Prove that R"1 is closed under o. 
с Prove that there exists an identity element in R+ under o. 
d. Find 2 - 1 . 
e. Prove that R+ contains all the inverse elements under o. 

4.3 Let Ω = R and for a, b € R define aob = ab-a-b+2. 

a. Show that R is closed under o. 
b. Determine whether there is an identity element in R under o. 
с Determine whether there is an inverse element in R under о for each 

a ζ R. 
d. Solve the equation 3 о x — 13 for x. 

4.4 Let Ω = {ω : ω = Ък + 1 for some к β Z}. 

a. Prove that Ω is closed under multiplication. 
b. Show that Ω is not closed under addition, subtraction, or division. 

4.5 Let Q be the set of rational numbers. Prove that Q is closed under 
subtraction. 

4.6 Let Q3 := {r £ <Q> : r = - for some p E z i . Show that <Q>3 is closed un-
der addition, subtraction, multiplication, and nonzero division. 

4.7 Let Ъв be the collection of even integers, and let о be the binary operator 
defined on Z E by а о b = ab + 2. 

a. Prove that Z E is closed under o. 
b. Is о an Abelian operator on Zg? 
с Is о an associative operator on Ze? 
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4.8 Let Zo be the collection of odd integers, and let о be the binary operator 
defined on Zo by а о b = ab + 2. 

a. Show that Zo is closed under o. 
b. Is о an Abelian operator on Zo? 
с Is о an associative operator on Zo? 

4.9 Prove that К is closed under subtraction. 

4.10 Prove each of the following theorems: 

a. Theorem: If z € Z, then zn € Z for every natural number n. 
b. Theorem: If z € Z, then rz + s € Z for all r, s e Z. 

4.11 For each of the following sets, determine whether the set is closed under 
the prescribed binary operator. If the set is closed, provide a formal 
closure proof. If the set is not closed under the binary operator, provide 
a counterexample to show that it is not closed. 

a. Let Ω = {ω : ω = 4k + 1 for some к € Z}, and let о be defined by 
aob = ab. 

b. Let Ω = {ω : ω = 4к + 1 for some к e Z}, and let о be defined by 
ao b — a + b. 

с Let 5Z = {z : z = 5k for some к e Z}, and let о be defined by 
а о b = a — b. 

d. Let 5Z = {z : z = 5k for some к € Z}, and let о be defined by 
aob = 2a + 3b. 

e. Let Ω = {z : z = 2k or z = ЗА: for some к € Z}, and let о be defined 
by а о b = a + 6. 

f. Let Ω = {г : z = 2k and 2 = 3k for some /с 6 Z}, and let о be 
defined by aob = ab 

4.12 Let Ω be a set and о a binary operator defined on Ω. Prove each of the 
following theorems: 

a. Theorem: If Ω is closed under о, о is an associative binary operator 
o, and a~l g Ω whenever a e Ω, then o _ 1 is unique. 

b. Theorem: If Ω is closed under о, о is an associative binary operator 
o, and a"1 € Ω whenever a € Ω, then (а о 6)_ 1 = b~l о a~l for all 
α , ό ε Ω . 

c. Theorem: If Ω is closed under о and a - 1 € Ω whenever a £ Ω, then 
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4.13 Determine the rational forms of 

a. 12.6783 
b. 0.9876 
с 10.3Ϊ5 
d. 213.81651 

4.14 Let Q be the set of rational numbers: 

a. Prove that Q is closed under subtraction. 
b. Prove that Q is closed under division. 

4.15 Prove that 

a. s/З is an irrational number. 
b. y/E is an irrational number. 
c. ^/р is an irrational number for every prime number p. 

"Ü 1 
4.16 Prove that V^ - is not equal to an integer for any n € N. 

*—' к 

4.17 Let an = (l + - j , V n € N. 

a. Prove that an £ Q, V n € N. 
b. Let a = lim an. Is a € <Q>? 

n—*oo 

4.18 Find pairs of irrational numbers showing that the irrationals are not 
closed under addition, subtraction, multiplication, and division. 

4.19 Let a / 0 be a real number, and let the reciprocal of a be the value x 
such that a x x — 1. Prove that if a e К and а ф 0, then there exists a 
unique real number x such that ax = 1. 

4.20 For real numbers x,y, z, prove that 
a· | И - M | < | z -y | 
b. \x + y + z\ <lx| + |v| + |2| 
с | i | = raax(~i,i). 
d. jx + y\ — \x\ + \y\ if and only if ab > 0. 

x _ \x\ 
У \У\' 

e. 
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f. >/x* = \x\. 

4.21 Prove that if a 6 Q, b e I, and а ф 0, then at - a £ Q. 

4.22 Prove that 

a. If a 6 Q and feel, then a - b & Q. 
b. If а ф 0 6 Q and 6 € I, then об 0 Q. 

c. If α φ 0 e Q and 6 e I, then - $. Q. 
b 

d. If а ф 0 € Q and ò 6 I, then - g Q. 
a 

4.23 Prove that if a, b, с € R, с ф 0, and ас = be, then a — b. 

4.24 Prove each of the following theorems: 

a. Theorem: Let n € N. If p is a prime number and p\n2, then p\n. 
b. Theorem: If p is a prime number, then there exists к e Z such that 

p = 4/c + 1 or p = 4/c + 3. 
с Theorem: If n € N, then 3|(n + 1) or 3|(;i + 3) or 3|(n + 5). 
d. Theorem: If 2" — 1 is prime, then n is a prime number. 
e. Theorem: Let m, n € N, and let p be a prime number. If p\mn, 

then p\m or p\n. 
f. Theorem: If Pi,P2,Ps and p^ are odd prime numbers, then 

P1P2 + P;?P4 is not a prime number. 

4.25 Let a,b,c € Z. Prove that 

a. If a\b, then a\bn, V n € N. 
b. If a|6 and a|c, then a\(b2 + bc + c2). 
с If a\b and 6|a, then \a\ = |6|. 
d. If a2\b, then a|6. 
e. If a\b and o|c, then V x, у € Z, a|(6x + qy). 

4.26 Prove that 9[(10"_1 - 1) for n e N. 

n n 
4.27 Suppose a e N and a - ^ ck- 10fc. Prove that if 5 = ]T] cfc, then 9(a if 

fc=0 fc=0 
and only if 9\S. 
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4.28 Let a 6 N and suppose that 6, € N, V г e N. Prove that if a\bi V г € N, 
n + l 

then a divides YJ к for every n e N. 
t = l 

n 

4.29 Let a e N and suppose that a = Υ^ α, 10'. Prove 

a. 4|a if and only if 4|(10oi + oo). 
b. 8|a if and only if 8|(100a2 + 10ai + a0). 

a l l | a i f andon ly if 111 ( ^ ( - 1 ) 4 1. 

4.30 Let F n be the nth Fibonacci number. Prove that 

a. 5^F2i+i = F2n, VneN. 
i= l 
n 

b. 5 1 F2i = F2 n + 1 - l . v n e 
1 = 1 

с 1 < ^kr1 < 2, V n e N. F n 

d. 5|F5n, V n e N . 

e' Fn - (i) ' v n e N" 
n + l 

f· Σ (-1)<"lfi+i = (-ΐΓ^η+ι, V n € N. 
t = l 

4.31 Let Ln be the nth Lucas number. Prove that 

a. L n + 2 + Ln = 5Fn + 1 , V n e N . 
П 

b. 53 Lt = L„+2 - 3, V n e N. 
i = l 

c. 53 Z,2i_i = L 2 n -2 , VneN. 
i = l 

n 

d. 5 3 Isi = l 2 n + i - l , V n e N . 
t = l 

n 

e. 5 3 ^? = ^ηΐη+ι - 2, V n e N. 
t = l 
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4.32 Let Fn and Gn be the nth terms in the Fibonacci Sequence and the Gener-
alized Fibonacci Sequence generated by G\ = 1 and G2 = 2, respectively. 
Prove that Gn = Fn+1, V n E N . 

4.33 Let Gn be the nth term in a generalized Fibonacci sequence generated 
by Gi = a and G2 = b. Prove that 

n 

a. ^ Γ Gi = G „ + 2 - b , V n e N . 
i = l 

n 

b. JT G2t_i = G2„ = a - 6, V n € N. 
i = l 

n 

c. ^ G2l = G 2 n + i - a, V n e N. 
i = l 



Chapter 5 
The Foundations of Calculus 
The area of mathematics known as calculus of a single variable is one of the 
best known areas of modern mathematics. The credit for developing calculus 
is generally given to Sir Isaac Newton (1643-1727) and Wilhelm Gottfried 
Leibniz (1646-1716), although many other mathematicians actually played 
an important role in the development of calculus. For an outstanding history 
of the development of calculus, see The Calculus Gallery: Masterpieces from 
Newton to Lebesgue by William Dunham (2005). 

Now, calculus deals with the study of the real-valued functions and their 
properties. In particular, the two main properties of a function that are inves-
tigated in the typical first course on calculus are (1) how the function behaves 
near the point x — XQ (i.e., limits) and (2) what the graph of the function 
looks like (i.e., continuity and derivatives). In both cases, the properties of 
interest are based on the limiting behavior of the function. Since the foun-
dation of calculus is built on the idea of limits, throughout this chapter the 
key idea being studied is the limiting behavior of a real-valued function on R. 
In particular, limits of real-valued sequences, limits of real-valued functions, 
continuity, and the derivative of a real-valued function will be discussed in 
Chapter 5. 

5.1 Functions 

Since the focus of calculus is the study of real-valued functions and their 
behavior, it is important to understand what a function actually is. In lay 
terms a real-valued function / on R is a well-defined rule that maps each point 
x e R to a point у € R according to the rule / . The definition of a real-valued 
function is given below. 

Definition 5.1.1: A function / defined on a subset V of R is called a real-
valued function if and only if / is a rule that assigns to each x in V one and 
only one real number y. The set V is called the domain of the function / . 

For example, the function f(x) — x2 takes a value in R and maps it to 
the square of x. Note that in this example, there is no ambiguity concerning 
what happens to each value of x once it is inserted into the function / ; when 
there is ambiguity concerning what happens to a value of x when inserted 
into / , then / is most likely not a function. 

162 
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Example 5.1.1: Let f(x) = x2, g(x) = sin(x), and h(x) — \x\. Then f,g 
and h are all functions. However 

( x2 if x > 0 

|x| if x < 1 

is not a function since k(x) assigns two values to each value of x € [0,1). 

Definition 5.1.2: Two functions / and g are said to be equal if and only if 
they have the same domain V and f(x) = g(x), V I E P . 

Note that when two functions are equal they must have the same domain. 
Also, note that there are many functions that appear to be equal, yet according 
to Definition 5.1.2 are not equal. For example, let / (x) = (x — l) / (x 2 — 1) 
and g(x) = l / (x + 1 ) . Clearly, when i / l , then 

x — 1 x — 1 1 
x 2 - l ( x - l ) ( x + l ) x + 1 

However, the domain of / is Vj — {x e R : x ^ ± l } , while the domain of 
g is Vg — {x £ Ж : x ф ~ 1}. Thus, Vj ф Vg and therefore the functions / 
and g are not equal. 

Now, there are many different types of functions, some of which are ex-
tremely complicated in nature; however, the elementary functions are the 
polynomial, rational, power, exponential, logarithmic, and trigonometric func-
tions. The definitions of the polynomial, rational, and exponential functions 
are given below. 

Definition 5.1.3: A real-valued function / , defined on R, is called 

a. A polynomial if and only if it is of the form 
n 

f(x) — a„xn + ü n - i x " - 1 + . . . + <цх + a0 = ^ J а4х1, 
i=0 

where n € N and αο,αι , . . . ,α„ e К. 
р(х) 

b. A rational function if and only if it is of the form /(x) = -7—r, where 
q(x) 

p(x) and q{x) are polynomials. 

с An exponential function if and only if it is of the form /(x) = ax, where 
a<ER+. 

Note that the domain of a polynomial function or an exponential function 
is R; however, the domain of a rational function may not be all of R. In 
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p(x) 
particular, for a rational function of the form r(x) — ——-, all points in R for 

q(x) 
which q(x) — 0 must be excluded from the domain of r ( i ) ; thus, the domain 
of a rational function r(x) is V — ( i f l : q(x) ψ 0}. 

Example 5.1.2: Examples of each of type of function defined in Definition 
5.1.3 are given below: 

a. p(x) = 3x2 — x+ 11 and q{x) = x7 — 3x5 + 4x2 — 13a; + 1 are polynomials. 
3x2 — x + 11 x — 1 

b. r(x) = — and s(x) — —^ are rational func-w x7 - 3x5 + Ax2 - 13x + 1 x2 + 1 
tions. 

с t(x) — 21 and u(x) = ex are exponential functions. 

Functions, like numbers, are often combined using the standard arith-
metic operators (i.e., + , —, x, -r) to create new functions. For instance, if / 
and g are functions, then so are f + g,f — g,f-g, and f/g on the appropriate 
domains. Another important way of creating a new function from two func-
tions / and g is to form the composition of the two functions. The definition 
of the composition of two functions is given below. 

Definition 5.1.4·' Let / and g be real-valued functions on R. The composi-
tion of the functions / and g is defined to be the function f og[x) = f (g(x)). 

Thus, given two real-valued functions / and g defined on R, the com-
position of / and g is the function c(x) formed by applying the function / 
to the value of g(x). It is important to note that fog and g о f are nearly 
always different functions. The domain of the function fog, namely, Vjog, 
is the set of all values in Vg that produce values of g(x) 6 "D/, while the 
domain of the function g о / , specifically, Vgof, is the set of all values in Vg 
that produce values of f(x) e Vg. For example, if f(x) = ^/x and g(x) — x2, 
then the domain of / о g is Vjog = Ш, however, the domain of g о f is [0, oo). 
Furthermore, fog(x) = |x|, while gox(x) = x, which are clearly not the same 
functions. 

x - 1 Example 5.1.3: Let f(x) = ^/x and g(x) = . Determine 
x + 1 

a. Vj and Vg. 
b. / о д and its domain. 
e g o / and its domain. 

x — 1 Solutions: Let f(x) = sfx and #(x) = . 
x + 1 

a. Vf = [0,oo) and Vg = {x e R : x φ - 1 } . 
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b. f о g(x) = J-—-, and V/og is equal to all those points in Vg that 
V »t- 1~ A 

produce values of g(x) > 0. Thus, £>/o9 = {x £ M : x < - 1 o n > 1}. 
fx — 1 

b. f о g{x) — —y=—-, and Vgaf is equal to all those points in [0,oo) that 
v x + 1 

produce values of f(x) ψ - 1 . Thus, Z>/og = {x € R : x > 0} = [0, oo). 

5.2 Sequences of Real Numbers 

In this section a special type of function, functions known as real-valued se-
quences, will be studied. The definition of a real-valued sequence is given 
below. 

Definition 5.2.1: A real-valued sequence is a real-valued function a whose 
domain is a set of the form {n € Ъ : n > m}. For n € Va, α(η) will be 
denoted by an and is called an element of the sequence a. 

Thus, a real-valued sequence is simply a list of real numbers generated 
by a function whose domain is a subset of the integers. In Chapter 4, two 
sequences of natural numbers were introduced and studied, namely, the Fi-
bonacci and Lucas sequences. The Fibonacci and Lucas sequences represent 
commonly occurring sequences of real numbers. Now, a sequence a actually 
generates a sequence of real numbers of the form am, am+\, am +2, · · ·, which is 
often written as {an}'^Lm or simply an. Most sequences start with m = 0 or 
m — 1; however for simplicity, all of the sequences in this text will be assumed 
to have the common domain N (i.e., start at m = 1). Thus, a sequence a„ 
consists of the elements ai, аг, аз, α^,... 

Example 5.2.1: Let the sequence an be defined by an = 2n . Then, the first 
5 terms of this sequence are 

ai = 21 = 2, a2 = 22 = 4, a3 = 23 = 8, a4 = 24 = 16, a5 = 25 = 32 

( -1)" 
Example 5.2.2: Let the sequence a„ be defined by on = . Determine 

n 
the first 10 terms in this sequence. 
Solution: The first 10 terms of this sequence are 

1 - 1 1 - 1 
ay = - 1 , a2 = -, a3 = — , α4 = - , a5 = — , 

1 - 1 1 - 1 1 
a e = g , a7 = — , a8 = - , a9 = — , a10 = -
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5.2.1 Convergent Sequences and Limit Theorems 

The most interesting mathematical question concerning a sequence an is "How 
does the sequence an behave as the index n grows large?" In mathematical 
terminology this question becomes "Does the sequence an converge to a limit, 
or does it diverge?" The e-N definition for the convergence of a sequence of 
real numbers is given below. 

Definition 5.2.2: A sequence of real numbers an is said to converge to a 
limit a if and only if for every e > 0, there exists N € N such that \an — a\ < e, 
whenever n > N. When the sequence o,n converges to a limit Q, this will be 
denoted by either lim an = a or <z„ —> a; if a sequence does not converge, 

n—»oo 
it is said to diverge. 

Note that the convergence of a sequence an is based entirely on the tail 
behavior (i.e., large values of n) of the sequence. In fact, first m terms in a 
sequence play absolutely no role in whether the sequence converges, no matter 
how large m. Also, it is important to note that the value of N required to 
satisfy the condition "|απ— a\ < e whenever n > N" depends on the particular 
value of e. In fact, the smaller the value of €, the larger the value of N will be. 
For example, the value of N required for e = 0.01 will be less than or equal 
to the value of N required for e = 0.001. 

Now, a sequence an can diverge only when it either increases without 
bound, decreases without bound, or oscillates in a nonconvergent fashion. For 
example, an = 2" increases without bound and therefore cannot converge. An 
oscillating sequence an that does not converge is given below: 

1 when n is a multiple of 3 

- otherwise 

The first 10 terms of an are 1, - , 1, - , - , 1, - , - , 1, —. This sequence cannot 
converge since no matter how large n is, every third term in the sequence 
continues to jump up to the value 1, while the remaining terms are decreasing 
to 0. Thus, this sequence diverges since there is no way to force \an — 0| or 
\an — 1| to be arbitrarily small from some point n on. A plot illustrating the 
behavior of the first 100 terms in this sequence is given in Figure 5.2.1. 
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a, 

1.0 -i 

0 . 5 -

0.0 "1 T T 1 1 1 1 1 1 1 Г" 

25 50 75 100 

Figure 5.2.1 The values of an for n =1,2,. . ., 100. 

Example 5.2.3: Consider the following two sequences: 

1 
a„ = n + 3 

bn = ( - l ) n · 
n 

n + 3 

Plots of the first 100 terms in each of these two sequences are given 
5.2.2 and 5.2.3. 

a, 
0.3-) 

0.2 

0.1 

Figure 5.2.2 A plot of the first 100 terms of the sequence a„. 
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1 -. 

0.5-

- I — i — i — i — [ — i — i — i — i — ( — i — 1 — i — i — [ — i — i — г — i — I 71 

25 50 75 100 

-0.5 

- 1 J 

Fig. 5.2.3 A plot of the first 100 terms of the sequence bn. 

From the plots in Figures 5.2.2 and 5.2.3 
a. Which of these two sequences appear to converge? 
b. What are the apparent limits for the convergent sequences? 

Solutions: 

a. Clearly, an appears to be converging, but bn does not appear to be con-
verging to a limit. 

b. an appears to be converging to a limit of a — 0. 

Note that the key steps in proving that a sequence an converges to a limit 
a are (1) let e > 0 be arbitrary but fixed and (2) determine the value of N € N 
such that \an - a\ < e, V n > N. Note that the most difficult step in proving 
convergence is finding or constructing the value of N that works for a fixed 
value of i. Most convergence proofs begin with the consideration of \an — a\ 
and then require algebraic manipulation so that \an — a\ can be related to the 
hypotheses of the theorem. A convergence proof of this type is called an e-N 
proof, and an algorithm for proving an —> a with an e-N proof follows. 

The e-N Algorithm for Proving a Sequence Converges: Let a„ be а 
sequence of real numbers. Then, to prove that an —» a, perform the following 
steps: 
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1. Let 6 > 0 be ABF. 
2. Consider \an — a\ and relate \an — a\ to the hypotheses of the theorem. 
3. Determine how \an — a\ can be made arbitrarily small. Specifically, begin 

work on determination of the value of N so that \an — a\ < e whenever 
n>N. 

4. From step 3, determine the value of ./V e N so that \an — a\ < e whenever 
n > TV. 

5. Conclude \an — a\ < e whenever n > N and therefore an —» a. 

The following example illustrates a typical proof of the convergence for a 
sequence of real numbers an to a limit a. Again, the key to this proof, and all 
convergence proofs, is to determine a value of N so that \an — a\ < € whenever 
n> N. 

Example 5.2.4: Let an = n - 1 
n+ 1 

. Prove that lim an = 1. 

Scratchwork: Let e > 0 be ABF and consider \an — a\: 

n - 1 
n+ 1 

n — 1 n + 1 
n+ 1 7i+ li 

- 2 

Now, the key is to find a value of /V e N such that 

n + 1 

-2 
!ra+ 1 

ever n > N. To find the value οί Ν, solve the inequality 

for n. 
—2 | 2 2 < e iff r < e iff 1 < 7i n + 1 n + 1 с 

< e when-

- 2 
n + II 

< £ 

Thus, whenever n > 1, then \an — a\ < e. Therefore, take TV to 
e 

2 
be the smallest natural number greater than n > 1. 

Proof: Let e > 0 be ABF. Consider \an - 1|: 

\an - 1| = 
n - 1 
n + 1 n + 1 

Now, the value of N e N such that |an - 1| < e, V n > N is found 

by solving the inequality 
n + 1 

< e for п. Note that 
71+ 1 

< e if 

and only if n > 1. Hence, let N be the smallest natural number 
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greater than 1. Then, 
£ 

n~ 1 
n+ 1 

- 1 
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< e whenever n > N and 

therefore n- 1 
71+ 1 1. 

Example 5.2.5: The elementary sequences listed in Table 5.2.1 are well 
known and commonly used convergent sequences. 

Table 5.2.1 Elementary Sequences 

Sequence 

(1 + * ) " 

1 
n'' 

ßn 

1 

Si 

Domain 

N 

N 

N 

N 

N 

Limit 

e? 

0 

0 

1 

1 

Restrictions 

7<ΞΚ 

p>0 

101 <i 

None 

<5>0 

Example 5.2.6: Using Table 5.2.1, determine the limits of the following 
sequences: 

-НУ-
ь. ьп = ( i + 

2тг 

с. с„ = 2 - . 

d. dn = 0.99". 

Solutions: From table 5.2.1 it follows that 

a. For an = ( 1 I , lim an = e~ 
П ) π—»oo 

b. For bn = [ 1 + — ) , lim bn 
\ 2 n / 71—OO 

e5. 
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с For cn = 2" , lim c„ = 1. 
n—oo 

d. For dn = 0.99", lira dn = 0. 
n—oo 

One of the most frequently used mathematical tools in an e-N proof of 
convergence is the triangle inequality (Theorem 4.2.12). The particular version 
of the triangle inequality that will be used in most convergence proofs is given 
in the corollary to Theorem 4.2.12, which is stated below. 

Corollary to Theorem 4.2.12 (The Triangle Inequality): If x, y,z6R, 
then \x - y\ <\x - z\ + \z - y\. 

The key to using the triangle inequality is to determine the appropriate 
form of 0 = z — z which is then added to x — y: 

\x - y\ = \x - у + 0| = \x - у + z - z\ = \x - z + z - y\ < \x - z\ + \z - y\ 
« w ' 
By Theorem 4.2.12 

The proof of the following theorem illustrates a simple application of the 
triangle inequality. The following theorem states that the limit of a sequence 
is unique. 

Theorem 5.2.1: Let an be a sequence of real numbers. If lim an = a, then 
n—oo 

the limit a is unique. 
Proof: (Uniqueness Proof): Let an be a sequence of real num-
bers with lim an = a, and suppose that the limit a is not unique. 
Furthermore, suppose that lim an = ό and b φ a. Thus, an —> a, 

n—»oo 
an —» 6, and а фЬ. 
Let € > 0 be ABF. Since an —» a, there exists Ni € N such that 
\an — a\<-, whenever n > N\. Similarly, since an —» 6, there 

exists N2 € N such that \an - b\ < - whenever n > N2-

Consider ja — 6|: 

\a - b\ = \a — b + 0| = \a - an + an -b\ 
0 

< | a - o „ | + \an - b\ 
> v ' 

By the triangle inequality 
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Let n > N = nmx(Ni,N2). Then, it follows that both \an — a\ < -

and \an - b\ < - , V n > TV. Hence, for n > TV, it also follows that 

e e \a - b\ — \a - an + αη - b\ < \a - an\ + \an - b\ < - + 

Now, since \a — b\ < e for every e > 0, it follows that a — b, which 
contradicts афЬ. Therefore, if an —> a, then the limit a is unique. 

It is important to note that most e-N convergence proofs are somewhat 
similar in nature and that the key steps for showing that an —* a are (1) let 
e > 0 be ABF and (2) determine the value of TV £ N such that \an - a\ < e 
for all n > N. 

Example 5.2.7: Prove the following result. If lim an = a, then 
lim can + I — ca + I for all c, / € IR. 

n—>oo 
Solution: The scratchwork for solving this problem is given below. 

Step 1: Let e > 0 be ABF and let с and / be real numbers. Suppose 
an --> a. 

Step 2: The hypothesis is a„ —» a. This means that 3 n e N such that 
\an — a\ < e whenever n > N. 

Step 3: Consider \can + I — (ca + /) | . First, if с = 0, then can — 0 
for all n € N and thus, \can + I - (ca + l)\ = \l - l\ — 0. In this case, 
can + I = I — ca + I for each n and therefore, can + I —» ca + I. Now, if 
с ф 0, then 

\ca„ + I — (ca + l)\ = \can - ca\ = |c|· |a„ — a\ 

Step 4: Using steps 2 and 3, the goal is to make |co„ + I — (ca + /)| 
arbitrarily small. Note that this can be done by making \an — a\ small, 
since с is a constant. Thus, for n > N 

\can + I — (ca + /) | = \can — ca\ = \c\· \an — a| < \c\-e 

Now, when |a„ - a\ < —, it follows that 

И 
\can + I - (ca+ l)\ = \can - ca\ = \c\· \a„ - a\ < Id· — = e 

lcl 

file:///c/-e
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Thus, the value of TV that will make \an — a\ < — whenever n > TV is 

also the value of TV such that \can + I - (ca + /)| < e whenever n > N. 

Therefore, let TV € N be the value such that \an — a\ < — whenever 
H 

n > N. 
Now, this scratchwork is rewritten below in the form of a formal proof. 

Proof: Let с and I be real numbers and suppose that an —> a. Let 
e > 0 be ABF. Now, с = 0 or с ф 0. 

Case 1: Suppose that с = 0; then ca + l ■= I, can = 0 and can + 1 = 1 
V n € N. Therefore, when с = 0, it follows that \can + l~(ca+l)\ — 0, 
V n € N. Thus, for TV = 1, it follows that \can +1 - (ca + l)\ - 0 < с 
whenever n > 1. Therefore, ca„ + I —» со + / when с = 0. 

Case 2: Suppose that с ф 0. Then, since a„ —» a, 3 n € N such that 
\an — a\ < €* = j— whenever n > TV. Consider \can + Z — (ca + l)\: 

jcan + / - (ca + l)\ = |ca„ - ca\ = \c\- \an - a\ 

Now, since с is a constant and an —> a, it follows that \can — ca| can 
be made arbitrarily small by making \an — a\ small. Furthermore, 
since \an - a\ < e* = — whenever n > TV, it follows that for n > TV 

|can + / - (ca + Z)| = |can - ca\ = |c|- |an - a\ 

< | с | - е ^ | с | . ± = е 

Thus, can + / —» ca + / when с ф 0. 

Therefore, in either case lim can + / = ca + / for all c, / € R when-
n—»oo 

ever lim α„ = α. 

The following two theorems provide important results concerning the 
convergence of a sequence created from the sum of two convergent sequences. 
In particular, these two theorems provide rules for determining the limits of 
sequences of the form an + bn and ran + sbn (i.e., linear combinations of an 
and òn) for convergent sequences an and bn. 
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Theorem 5.2.2: Let a.n and bn be sequences of real numbers. If lim α„ = a 
u—»oo 

and lim bn = b, then 
n—«oo 

(i) lim {can + l) = ca + l for all c . l e R . 
n—«oo 

(ti) lim (αη + bn) — a + b. 
n—»oc 

(iii) lim (ran + sbn) = ra+ sb for all r, s e K. 
n—»oo 
Proof: Let an and 6„ be sequences of real numbers with lim an ~ a 

n—»oo 
and lim 6„ = 6. Let e > 0 be arbitrary but fixed. 

n—»oo 
Proof of part (i): Part (i) was proved in Example 5.2.7. 
Proof of part (it): Since an —> a, there exists Νχ € N such that 
\an — a\ < - whenever n > Ny. Similarly, since bn —» b there exists 

N2 € N such that |6„ - 6| < - whenever n > N2-

Consider \an + bn - (a + b)\: 

\an + bn - (a + 6)| = \an - a + bn - b\ < \a„ - a\ + \bn ~ b\ 

By the triangle inequality 

Let TV = max(JVb JV2). For n > TV it follows that 

\an + bn - (a + 6)| < |o„ - a| + \bn - 6| < - + - = e 

Therefore, an + bn —> a + b. 

Proof of part (iii): The proof of part(iii) is left as an exercise. 

Corollary to Theorem 5.2.2: Let an and bn be sequences of real numbers. 
If lim an = a and lim bn = 6, then, lim an — 6n = a — 6. 

n—»00 n—»oo n—»00 

Proof: The corollary to Theorem 5.2.2 follows directly from Theo-
rem 5.2.2 (iii) with г = 1 and s = - 1 . 
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n2 

Example 5.2.8: Let the sequences on and 6„ be denned by a„ = —̂  
ηλ + 2n + 2 

( -1 ) " 
and 6n = 1 + . Then, lim an = 1 and lim 6„ = 1. Use these limits 

П n—>oo n—«oo 
to determine 

a. lini [3on + 2]. 
n—* oo 

b. lim ία„ + fr„]. 
n—·οο 

с lim [3α„ — 46n]. 
n—» oo 

Solutions: Since limn^ooa,, = 1 and Wmn^^bn = 1, it follows that 

a. By theorem 5.2.2 (i), 3an + 2 -» 3(1) + 2 = 5. 

b. By theorem 5.2.2 (ii), an + bn -* 1 + 1 = 2. 
с By theorem 5.2.2 (Hi), 3an - 46n —♦ 3 - 4 = - 1 . 

The following two lemmas provide important results concerning bounds 
on a convergent sequence, and these two lemmas will be used in proving the 
theorems concerning the product and ratio of two convergent sequences. In 
particular, Lemma 5.2.1 shows that every convergent sequence is bounded, 
and Lemma 5.2.2 shows that a convergent sequence whose limit is nonzero is 
also bounded from below from some point on. 

Lemma 5.2.1: Let an be a sequence of real numbers. If lim αη = a, then 
n—too 

there exists a real number M such that \an\ < M, V n € N. 
Proof: Let an be a sequence of real numbers with an —» a. Since 
an —> a, there exists TVi such that for € = 1, \an — a\ < 1 whenever 
n> N]. Now, consider \an\. 

\an\ = |a„ —a + a\ < \a„ - a\ + \a\ < 1 + \a\ 
v ' 

By the triangle inequality 

whenever n > Nl. Thus, for n > 7Vb \an\ is bounded by 1 + \a\. 

When n < Ni, \an\ is bounded by L = max{|ai|, |θ2|, . . . , |oyv,-i|}. 
Thus, let M = max{L, 1 + \a\}. Then, for all n € N, it follows that 
M is an upper bound for an. 

Therefore, an is bounded. 
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Lemma 5.2.2: Let bn be a sequence of real numbers. If lim bn — b and 
n—»oo 

b φ 0, then there exists N € N such that |6„| > у , V n > N. 

Proof: Let 6„ be a sequence of real numbers with 6„ —> b and ò ф 0. 
Now, since 6 ^ 0 , there exists N e N such that |ò„ - 6| < γ , 
whenever n> N. Consider |6„|: 

\bn\ = |6„ + 6 - bj = |6 - (b - bn)\ > \b\ - \bn - b\ 
v ^ ' 

By Theorem 4.2.13 

Now, for n > N it follows that 

| b n | > H - | 6 n - b | > H - ^ = ^ > o 

and therefore, |6n| > — whenever n > N. 

Now, Lemmas 5.2.1 and 5.2.2 will be used in proving the following the-
orem on the product and ratio of convergent sequences. In particular, this 
theorem states that if an —> a and bn —> b, then it follows that onòn —> ab 

, an a 
and — —» - , also. 

bn о 

Theorem 5.2.3: Let an and bn be sequences of real numbers. If lim an = a 
n—»oo 

and lim 6n = 6, then 
n—>oo 

(i) lim (an- bn) = a- b. 
n—oo 

(ii) lim 7^ = - , provided that 6 ^ 0 . 
n—>oo bn 0 

Proof: Let an and 6n be sequences of real numbers with lim an = a 
n—>oo 

and lim 6„ = 6. Let e > 0 be ABF. 
π—*οο 

Proof of part (i): Now since an —> a, there exists 

(1) A bound M such that \an\ < M, V n £ N. 

(2) Λ/Ί € N such that \an - a\ < — rr-r whenever n > 7Vb 
2(1 + \b\) 
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Also, since bn —> 6, there exists N2 € N such that |6n - 6| < —— 
whenever n > N2. 

Consider \an-bn — a-b\: 

\anbn - a-b\ = \an-bn -anb + a„-b-ab\ 
0 

= \an(bn -b) + b(an - a)\ < \an(bn - b)\ + \b(a„ - a)\ 

By the triangle inequality 

<M-\bn-b\ + \b\ ■ \an - a\ 

Let TV = ma.x(Ni,N2). Then, for n > N, it follows that 

\an- bn -a-b\ < M · \b„ - b\ + \b\ ■ \an - a\ 

<M-~ + \b\ € 

IM ' ' 2(1 +|bj) 

e fòle e e 
= - H — < - + - = e 

2 2(1 +16|) 2 2 

Therefore, α„- bn —» ab whenever an —> a and 6„ —* b. 

Proof of part (ii): Let e > 0 be arbitrary but fixed and assume 
that 6 ^ 0 . 

Now, since 6„ -» 6 ^ 0 , there exists 

(1) Ni 6 N such that jòn| > Li whenever n> N1. 

\b\2 

(2) iV2 e N such that I6„ - ò| < e · ... . л, whenever n > N2. 
v ' 4(|a| + 1) 

|6| 
Also, since o„ —> a, there exists N3 e N such that |a„ - a| < e ■ — 
whenever n > N3. 



178 The Foundations of Calculus 

Now consider der 

an 

bn ' 
a | 

a 
~ 1 

anb — abn 

bbn = 
anb — ab + ab -

bbn 

^, \b\ ■ |o„ - a\ + \a\ ■ \bn - b\ 

- abn 

\bbn\ 

l a " ~ a l < l a l · l ^ n - ' ' I 
|6n| |66„| 

Let N = max{N1,N2, N3). Then for n > N it follows that 

an a |a„ - a| . _ jaj · |6„ - ò| 
\b\ 

+ 2· W3 

Since |ь„1>Ц1 
T 

- ^ -
|a|-|6i2e e e 

< г + г = e 4|6Ρ·( |α | + 1) 2 2 

Therefore, ·— —> - whenever αη —» a and òn —> b φ 0. 
0„ ö 

η + 4 1 
Example 5.2.9: Let α„ = and όη = 2 . Determine 

2η + 1 η 

a. lim αη 
η —* οο 

b. lim 6η· 
η —» οο 

с lim από„. 
π —* οο 

d. lim ~ . 
"— οο b„ 

Solutions: Since lim αη = - and lim òn = 2, it follows that 
n—*oo 2 n—too 

a. lim an = - . 
n - · oo 2 
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b. lim bn = 2. 

с lim anbn = - · 2 = 1. 
η —» οο ζ 

, ,. απ 5 1 d. hm — = j - - -. η - ο ο 6„ 2 4 

The following corollary considers two special cases of Theorem 5.2.3. In 
particular, this corollary shows that when an —> a, it follows that a2 converges 

to a2 and — converges to - , provided that а ф 0. 
α„ α 

Corollary to Theorem 5.2.3: Let an be a sequence of real numbers with 
lim an — a. Then 

n—too 

(i) lim a2
n = a2. 

П—ΌΟ 

(ii) lim — = - , provided that а ф 0. n—oo an a 
Proof: Let an be a sequence of real numbers with lim an — a. 

n — oo 

Proof of (i): Part (i) follows directly from Theorem 5.2.3 part (i) 
since o2 = a„- (in-
Proof of (ii): Part (ii) follows directly from Theorem 5.2.3 part 
(ii) with an = 1 and bn = an. 

The following theorem provides a more general result than part (i) of the 
corollary to Theorem 5.2.3. In particular, the following theorem shows that 
if an -» a, then a™ ~> am, V m G N. 

Theorem 5.2.4: Let an be a sequence of real numbers. If an —> a, then 

Proof: The proof of Theorem 5.2.4 is left as an exercise. 

While the previous theorem states that a™ —> am for all natural numbers 
m, this result can be further generalized to hold for all positive real numbers 
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m (i.e., m e M+) for a nonnegative sequence an. The proof for m € R+ will 
not be considered here; however, the following theorem shows that for m = — 
that y/à~^ —» у/а whenever an > 0 and an —* a. 

Theorem 5.2.5: Let an be a sequence of nonnegative real numbers with 
lim an = a. Then, -JCL^ —> Ja. 

n—>oo 

Proof: Let an be a sequence of uonnegative real numbers with 
lim an = a, and let e > 0 be ABF. Now, either a = 0 or a > 0. 

n—»oo 

Case 1: Suppose that a — 0. Since an —> a, there exists TV € N 
such that \an — 0| < e2. Consider \^/ä^ — 0|: 

I >/àn — 0J = | y/ö^l = s/à~n~ 

Now, for n > TV 

|\/Sn" — °! = V ^ < L 
Since \an\ < e 2 

Therefore, s/ä~„~ —> 0. 

Case 2: Suppose that a > 0. Then 

( 1) 3 /V] e N such that |a„ — a| < e ( J- + </a 1 whenever n > N. 

(2) 3 /V2 e N such that \an\ > ^ whenever n>N. 

Now consider | yö^ — y/a\. 

, — r — r \sfä^ + asß\ \an - a\ 
I v ^+V^ l Iv/ö^+Va! 

Let n> N = max{Ni,N2). Then for n > /V 

i У — / - , |a„ - a | 
lv/än - Val = 7-7= 7=T < Ъп~+М |yf+va| 

> v ' 
By condition 2 

( y l + v ^ = 
[vf+v/S] 

> v ' 
By condition 1 
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Hence, y/a^ —* y/a when a > 0. 

Therefore, in either case ^/a^ —» \fa whenever an is a nonnegative 
sequence and an —> a. 

Corollary to Theorem 5.2.5: Let an be a sequence of nonnegative real 
numbers. If lim a« = a, then a™/2 -» am / 2 , V m € N. 

Proof: The proof of the corollary to Theorem 5.2.5 follows directly 
from Theorems 5.2.4 and 5.2.5 since a™/2 = </a™. 

n + 1 
Example 5.2.10: Let on = - . Determine 

4n - 3 
n + 1 a. lim 

η-,οο 4n — 3 

b. hm 
n—oo \ 4 n — 3 

, n + 1 c. urn 
n—oo у 4 n — 3 

Solutions: 

a. Consider 
4 n - 3 

n + 1 n(l + l /n) _ (1+ £) 
4 n - 3 n ( 4 - 3 / n ) ( 4 - £ ) 

1 3 Now, lim (1 + - ) = 1 and lim (4 ) - 4. Hence 
n—.oo n n—>oo n 

n + 1 1 hm - -
n - oo 4n - 3 4 

by Theorem 5.2.3. 

b. By Theorem 5.2.4, lim 
n+l\3 / 1 \ 3 1 

n - . o o \ 4 n — 3 / V 4 У 64 
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с By theorem 5.2.5, lim \j = \ - = - . 
J n - oo V 4?i - 3 V 4 2 

The next theorem is often useful in determining the convergence or di-
vergence of a sequence. However, using this theorem often requires some 
mathematical ingenuity. In particular, the following theorem provides a use-
ful result for determining the limit of a sequence by comparing it to two other 
sequences that have the same limit. The following theorem is known as the 
squeeze theorem. 

Theorem 5.2.6 (The Squeeze Theorem): Let an,bn and cn be sequences 
with an < bn < c„, V n 6 N. If lim α„ = о and lim c„ = a, then 

n —*oo n—«oo 
lim bn — a. 

n—*oo 
Proof: Let an, bn and cn be sequences with an < bn < cn, V n £ N. 
Suppose that an —> a and c„ —» a, and let e > 0 be ABF. 
Since on —> a, then 3 N\ £ N such that \an — a\ < e whenever 
n > N\. This means that whenever n > N\ 

a — e < an < a + e 

Similarly, since c„ —♦ a, 3 N2 £ N such that \cn — Q| < e whenever 
n > N2, which means that whenever n > N2 

a - e < cn < a + f 

Now, let N = ma.x(Nu N2). Then, for n > N it follows that 

Q - 6 < an < bn < cn < а + e 

Thus, |6n — a\ < e whenever n> N and therefore 6„ —» Q. 

SÌnÌ7iì Example 5.2.11: Show that lirn — — = 0. 
n—»00 П 

Solution: Since - 1 < sin(n) < 1, it follows that - - < S1" < - , V n e N. 
n n n 

T , , . 1 , sin(n) 1 
Ihus, let an = — , bn = ——-, and cn = - . 

n n n 



Sequences of Real Numbers 183 

Now, lim α„ = lim cn = 0. Thus, by the squeeze theorem it follows that 
n—*oo n—»oo 
sin(n) lim v ; = 0. 

n—oo n 

Since the convergence of a sequence does not depend on its first N terms, 
it is not necessary that an < bn < cn, V n e N, in order for the squeeze 
theorem to work. A less restrictive hypothesis that can be used in the squeeze 
theorem in place of an < bn < c„, V n € N is "there exists N € N such that 
a„ < bn < cn whenever n > N." The more general version of the squeeze 
theorem is stated below. 

Theorem 5.2.7 (The Generalized Squeeze Theorem): Let an, 6n, and 
С be sequences and suppose that there exists N £ N such that an < bn < cn 
whenever n > N. If lim an = a and lim cn = Q, then lim bn — a. 

n—»oo n~»oo n—»oo 

Proof: Let an, bn and c„ be sequences. Suppose there exists N £ N 
such that an < 6„ < c„ whenever n > N. Assume lim an — a 

ri—.oo 
and lim cn = a. Let с > 0 be ABF. Now, 3 iV] e N such that 

n—*oo 

a„ < i„ < c„ whenever n > Ni and since a„ —» a, 3 N2 € N such 
that \an — Q| < e whenever n > N2. Then, for n > N\ it follows that 

Q - f < a n < Q + € 

Also, since cn —> Q, 3 N3 ζ N such that \cn - a\ < e whenever 
n > N3. Then, for n > N2 it follows that 

a — e < cn < Q + € 

Now, let N = max(iVi, N2, N3). Then, for n > N it follows that 

a - € < a„ < bn < cn < a + € 

Thus, |6n — a\ < e whenever n > /V, and therefore 6n —> a. 

■ 

Example 5.2.12: Prove the following result. If a > 0, then lim a 'n = 1. 
n—>oo 

Solution: The second version of the squeeze theorem, Theorem 5.2.7, will be 
used to prove this result. 

Proof: Let a > 0 be ABF. Then, either a > 1 or a < 1. 
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Case 1: Suppose that a > 1. Then, 3 TV € N such that a < TV and 
thus 1 < <zl/n < nl/n for n > TV. Also, lim 1 = lim u 1 / n = 1. 

n—*oc n—*oo 

Therefore, by Theorem 5.2.7, lim α1 / η = 1 whenever a > 1. 
n—»oo 

Case 2: Suppose that 0 < a < 1. Then, - > 1 and thus, by case 1 

/ l \ 1 / n 

it follows that lim { - I = 1. Now, by the corollary to Theorem 
n—·οο \(1 J 

5.2.3 part (ii) 

lim α1 / η = lim — ^ - = 1-—ΤΓ = \ = 1 

Thus, lim α1 / η = 1 whenever 0 < а < 1. 
η—·οο 

Therefore, lim α1 / η = 1, V a > 0. 

5.2.2 Monotone Sequences 

Often the most difficult question concerning a sequence of real numbers is the 
question of whether the sequence converges or diverges. Once it is determined 
that a sequence does converge, finding the value of its limit is often fairly easy. 
In fact, the limit of a convergent sequence an can be approximated by simply 
looking at the value of a„ for a "very large" value of n; note that the actual 
size of n will depend on the rate of convergence of the sequence. 

In this section, the two special types of sequences that will be studied 
are the nondecreasing and nonincreasing sequences. A sequence that is either 
nondecreasing and nonincreasing is called a monotone sequence. In Theorem 
5.2.16 it will be shown that a monotone sequence converges if and only if it 
is bounded. 

Definition 5.2.3: A sequence of real numbers o„ is called 

(i) A nondecreasing sequence when αη +ι > an, Vn e N, and a strictly 
increasing sequence when an+1 > an, V n e N. 

(ii) A nonincreasing sequence when a n f i < an, Vu e N, and a strictly de-
creasing sequence when αη + χ < an, V n e N. 

(iii) A monotone sequence or a monotonie sequence if it is either nondecreas-
ing, strictly increasing, nonincreasing, or strictly decreasing. 
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When an is a monotonie sequence, then a„ ] is used to denote that an is a 
nondecreasing sequence and an [ is used to denote that an is a nonincreasing 
sequence. Note that for a nondecreasing sequence an, it follows that 

a\ < a2 < аз < · ■ ■ 

and analogously, for a nonincreasing sequence a„ 

Oi > Ü2 > (13 > ■ ■ ■ 

For example, the sequence an = — is a strictly decreasing sequence and 

1 1 
ai = 1 > a2 = - > a3 = - > . . . 

Examples of three different monotone sequences arc shown in Example 5.2.13. 

Example 5.2.13: For each of the following sequences write out the first five 
terms and determine whether the sequence is nondecreasing, strictly increas-
ing, nonincreasing, or strictly decreasing: 

n 
a. a„ n+ 1 

1 b. bn = 1 + 
n 

С Cn = | \ 

Solutions: 
n 1 2 3 4 5 A a. For an = - , а\ = -<а2 = -<аз = ~<аА~-<аь = - and an n+ Ì 2 3 4 5 6 

is a nondecreasing sequence (i.e., an | ) . In fact, an is strictly increasing. 

b. For bn = 1 + - , b\ — 2 > i>2 = г > ί>3 = - > b4 = - > b5 = - ; therefore, 
n 2 3 4 5 

bn i, and in fact bn is strictly decreasing. 
/ n n l , l , i , i i ^ , 

c. Forcn= ^ - J , c , = - >b2= - > ύ 3 = - > 6 4 = - >b5= - . Thus, 

cn is strictly decreasing. 
Now, two very important questions concerning a sequence an are (1) "Is 

an a monotone sequence?" and (2) "If a„ is a monotone sequence, is an T or 
an | ? " The answer to both of these questions can often be found by comparing 
the values of an and ап+1 for an arbitrary value of n e N. The following 
three theorems provide useful tests for determining whether a sequence of 
real numbers is monotone. The monotonicity test in Theorem 5.2.8 works 
only for nonnegative sequences and is based on the ratio of successive terms 
in the sequence. 
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Theorem 5.2.8: Let an be a sequence of positive real numbers. Then 

(i) o„ t if and only if ***- > 1, Vn e N. 

(ii) an I if and only if 2s±i. < l, Vn € N. 

Proof: Let a„ be a sequence of positive real numbers. 

Proof of part (i): First, suppose that > 1, Vn e N. Then 
fln 

On+i > o.n, Vn e N; therefore, an T when —— > 1, Vn G N. 
an 

Conversely, suppose that an | . Then, an+i > an, Vn G N, which 

means t h a t ^ ü > 1, Vn € N. Therefore, ^ - > 1, Vn e N when 

o„ T· 

Proof of part (ii): First, suppose that ^ 1 < 1 , V n € N . Then 
On 

on+i < in , Vn € N; therefore, an [ when -^— < 1, Vn G N. 
On 

Conversely, suppose that a„ | . Then, αη+ι < an , Vn € N, which 
means t h a t ^ - < 1, Vn G N. Therefore, ^ - < 1, Vn G N when 

an a„ 
a n T· 

Again, Theorem 5.2.8 applies only to nonnegative sequences. Further-
more, if the ratio n is strictly greater than 1 (less than 1), the sequence 

an 
will be strictly increasing (strictly decreasing). The second test for mono-
tonicity is based on the difference of successive terms of the sequence and 
does not require the sequence to be a nonnegative sequence. 

Theorem 5.2.9: Let an be a sequence of real numbers. Then 

(i) an | if and only if an + \ — an > 0, Vn € N. 
(ii) an I if and only if αη+ι - an < 0, Vn € N. 

Proof: The proof of Theorem 5.2.9 is left as an exercise. 

Note that if the differences are strictly greater than 0, the sequence is 
strictly increasing, whereas if the differences are strictly less than 0, the se-
quence is strictly decreasing. The last test for monotonicity is based on the 
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derivative of the general term in a sequence. Recall that a sequence an is 
actually shorthand for the function a(n) — a„ defined on N. Theorem 5.2.10 
shows that when a sequence an = a(n) is differentiable on [l,oo) and the 
derivative of a(n) is positive on [1, oo) (negative on [1, oo)), then the sequence 
an is increasing (decreasing). 

Theorem 5.2.10: Let a(n) — an be a sequence of real numbers. If the 
function a(n) is differentiable on [l,oo), then 

(i) an is a nondecreasing sequence if and only if —— [a(n)l > 0, V n € N. 
an 

(ii) o„ is a nonincreasing sequence if and only if — [a(n)} < 0, V n € N. 
an 

Proof: The proof of Theorem 5.2.10 is left as an exercise. 

Theorem 5.2.10 also implies that if the derivative is strictly greater than 
0, then the sequence is strictly increasing; similarly, when the derivative is 
strictly less than 0, then the sequence will be strictly decreasing. The following 
two examples illustrate the use of the monotonicity tests of Theorems 5.2.8, 
5.2.9, and 5.2.10. 

Example 5.2.14: Show that each of the following sequences is a monotone 
sequence: 

n - 1 
a. on = -

n + 1 
2" b. bn = —j-n! 

c. с„ = ne~n 

Solutions: 
n - 1 

a. Let an = . Let n e N be ABF, and consider the difference a„+\ —an. n + 1 

_ ( n + l ) - l n - 1 _ n ( n + l ) - ( n - l ) ( n + 2) 
α " + ι - α " - ( η + 1 ) + 1 ~n+l - ( n + 2 ) ( n + l ) 

n2 + n - n2 - n + 2 2 
( n + 2 ) ( n + l ) (n + 2 ) ( n + l ) > 0 



188 The Foundations of Calculus 

2» + l 

bn + i (n-M)! 2 
( n + 1 ) 

Thus, αη+ι - a n > 0, V n £ N. Hence, by Theorem 5.2.9 part (iii), an f-
2 n - I 

Also, since > 0 for every n € N, it follows that an = — — 
(n + 2)(и+ 1) n + 1 

is strictly increasing. 

b. Let bn — —r- Let n € N be ABF and consider the ratio ——. 

< 1, Vn e N 

Thus, -Ш- < 1, V n e N and therefore by Theorem 5.2.9 part (ii), bn | . 
bn 

2« 
Since 61 = 62 it follows that 6n = —7 is not strictly decreasing. However, 

n! 
for n > 2, it is true that -^— < 1, and therefore bn is strict.lv decreasing 

bn 
for n > 2. 

с Let cn = c(n) = ne~". Since c(n) is differentiable on R, consider the 
derivative of c(n): 

4- \пеГп] = e~n - ne~n = e"n[l - n] < 0, V n e N 
an l ' 

Thus, —- \c(n)) < 0, V n € N and therefore by Theorem 5.2.10 part (ii), 
an 

Cn [■ 

Determining whether cn is strictly decreasing will involve a bit of analysis. 
Clearly, for n > 1, e_"[l — n\ < 0. Thus, the only terms where cn could 
be constant are c\ and C2· But 

C2 2e^2 _, 
— = p = 2 e ' < 1 
C\ e ' 

Thus, c\ > C2, and therefore cn is strictly decreasing. 

Example 5.2.15: For each of the following sequences, determine whether 
the sequence is monotonie. If it is monotonie, determine whether it is a 
nonincreasing or a nondecreasing sequence. 

a. an = . 
n 

b· *« = £■ 

http://strict.lv
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c. cn = e 
Solutions: 

(-1)" 
a. Let an = . Let n 6 N be ABF. Since an can take on negative 

n 
values, only the difference and derivative tests can be applied to this 
sequence. Consider the difference αη +ι — an: 

( -1 ) " + 1 ( -1)" ( - l ) n + 1 n - ( - l ) n ( n + l ) 
an<-i — an — —- — ——— 

Ti+1 n n(n + 1) 

S h > 0 if^isodd 

„(„"■(Γι1) < 0 if n is even 
Thus, since the sign of a„ + i — an depends on the value of n, it follows 
that an is not a monotone sequence. Note that the first five terms of on 

, 1 1 1 1 . . . . 
are — 1, —,— — ,—, —-, which clearly shows that an is not monotonie. 

b. The solution to part (b) is left as an exercise. 
с The solution to part (c) is left as an exercise. 

Now, knowing which of the three tests for monotonicity to use on a partic-
ular sequence can be difficult. However, given the three approaches outlined 
in Theorems 5.2.8-5.2.10, if one of the approaches does not work, simply try 
another one. For example, if the sequence is differentiable, Theorem 5.2.10 
applies and might be a good first approach to try; likewise, when the sequence 
is nonnegative, then Theorem 5.2.9 applies and it might be a good approach. 
Also, nonnegative sequences involving powers or factorial terms are often best 
tested for monotonicity with the ratio test, and sequences involving linear or 
rational functions are often best tested for monotonicity with the difference 
test. 

The following theorem provides several results concerning the monotonic-
ity of a sequence. In fact, Theorem 5.2.11 shows that the monotonicity of a 
sequence is preserved under the addition of a constant, multiplication by a 
constant, and the addition and multiplication of sequences having the same 
monotonicity. 

Theorem 5.2.11: Let an and bn be a monotonie sequences of real numbers. 
Then 

(i) c+ an is also a monotonie sequence, V с e R. 
(ii) can is also a monotonie sequence, V e i l . 

(iii) If an ] and bn f, then (an + ò„) f. 
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(iv) If an Ϊ and bn [, then (an + bn) J.. 
(v) If an and 6n are nonnegative nondecreasing sequences, then anbn \. 

(vi) If an and bn are nonnegative nonincreasing sequences, then anbn I-

Proof: Let an and ό„ be monotonie sequences of real numbers. 

Proof of part (i): Let с € R be ABF. Now, since an is a monotonie 
sequence, either an f or an l-

Case 1: Suppose that a„ T· Then, an+\ > an, V n € N, and hence 
c + α„+ι > c + an, Vn G N. Therefore, c + a„ T whenever an ]. 
Case 2: Suppose that on 1. Then, апц < αη, V n £ N and hence, 
c + a n f i < c + an, Vn € N. Therefore, с + an I whenever a„ j . 

Proof of part (it): The proof of part (ii) is left as an exercise. 

Proof of part (Hi): Let an and 6„ be nondecreasing sequences. 
Then 

an + i > o,n, V n e N 

bn+i >bn, V n e N 

Let /г € N be ABF and consider an + bn: 

a-n + bn < an+i + b„ < an+i + 6n+i 
v v ' v v ' 

Thus, an + b„ < αη +ι + 6η + ι, V n i N ; therefore, an + bn f whenever 
an and 6n are nondecreasing sequences. 

Proof of part (iv): The proof of part (iv) is left as an exercise. 

Proof of part (v): Let an and bn be nonnegative nondecreasing 
sequences. Then 

fln+i > a.n, V n e N 

bn+i >*>„, V n e N 

Let n € N be ABF and consider a„bn. 

o-nbn < an+ib„ < a n + j 6 n + i 4 v ' > v ' 
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Thus, anbn < αη+ι6η +ι , V n € N, and therefore anbn 1 whenever 
an and bn are nonnegative nondecrnasing sequences. 

Proof of part (vi): The proof of part (vi) is left as an exercise. 

Recall that every convergent sequence is bounded and thus, when a se-
quence an converges, there exists a real number M such that |a„| < M, 
V n £ N. Moreover, this means that — M < an < M, V n € N. Thus, a con-
vergent sequence an is bounded above by M and below by —M. The following 
definition introduces several different types bounds for a set. or real numbers 
or a sequence of real numbers. 

Definition 5.2.4'· Let X be a nonempty subset of Ж. 

a. A real number M satisfying x < M for all x € X is called an upper bound 
of X. When there exists an upper bound for the set X, the set X is said 
to be bounded from above. 

b. A real number m satisfying x > m for all x € X is called a lower bound 
of X. When there exists a lower bound for the set X, the set X is said 
to be bounded from below. 

с An upper bound M is said to be a least upper bound or supremum if for 
any other upper bound M*, M < M*. 

d. A lower bound m is said to be a greatest lower bound or infinum if for 
any other lower bound m*, m > m*. 

The least upper bound is abbreviated by l.u.b.; the supremum by sup; 
the greatest lower bound, by g.l.b.; and the infinum, by inf. For example, if 
m is the infinum of a set X, this will be denoted by inf X = m; similarly, the 
supremum, least upper bound, and greatest lower bound of X will be denoted 
by sup X, l.u.b. X, and g.l.bX, respectively. 

Example 5.2.16: Let X = < xn : xn — >. Determine the l.u.b (in-

finum) and g.l.b. (supremum) of X. 

Solutions: 
/ 1 2 3 4 Ì Note that X — { ^, ^, ^, ^ , . . . } so that xn > - , for all n € N. Thus, m — 1/2 

is a lower bound for X. Clearly, since x\ = - € X, there does not exist a 
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lower bound greater than m. Therefore, m is the g.l.b., or infinum, of X; that 
is, inf X = 1/2. 
For the upper bound, note that xn < 1, V n e N. Thus, M — 1 is an upper 
bound for X. To see that M = 1 is the l.u.b., or supremum, of X, suppose 
that there exists an upper bound M* such that M* < 1, say, M*. Then, 
M* = 1 - e for some value of e > 0. Consider xn. Since M* is an upper 
bound for i „ , it follows that xn < 1 - e, V n e N. 

Let TV be the smallest integer greater than 1. Then, since x„ | and 
€ 

f 

contradicting M* being an upper bound for x„. Therefore, M = 1 is the l.u.b. 
for X. (i.e., sup X = 1). 

Note that since +oo and —oo are not real numbers, the definition of a 
bound precludes ± oo from being an upper or lower bound for a set X. When 
a set does not have an upper or lower bound, it is said to be unbounded. Also, 
when a real number A/ is an upper bound for X, then so is every real number 
greater than M. Thus, there is no unique upper bound for a set X. Similarly, 
if m is a lower bound for X, then so is every real number less than m and 
hence, there is not a unique lower bound for a set X. Now, while upper and 
lower bounds are not unique, the following theorem shows that the supremum 
and infinum of a set are indeed unique. 

Theorem 5.2.12: Let X be a subset of R. If 
(i) s = sup X, then s is unique. 

(ii) г = inf X, then г is unique. 
Proof (Uniqueness Proof): 
Proof or part (i): Let X be a subset of K, and suppose that 
the supremum of X is not unique. Let s\ and S2 be two different 
supremums of X. Then, s\ and «2 a r e both upper bounds, and hence 

(1) «i £ «2 since Si is a supremum and S2 is an upper bound. 

(2) 52 < Si since «2 is a supremum and s\ is an upper bound. 

Thus, s\ < S'2 and s\ > s2, which means that S\ = S2, contradicting 
si Ф «2- Therefore, the supremum of X is unique. 

Proof or part (it): The proof of part (ii) is left as an exercise. 
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The following theorem shows that if a monotonie sequence of real numbers 
is bounded, then it also converges. Furthermore, the proof of this theorem 
reveals that the limit of a bounded monotonie sequence is the supremum of 
the sequence for nondecreasing sequences and the infinum for nonincreasing 
sequences. 

Theorem 5.2.13: Let an be a monotonie sequence of real numbers. 

(i) If an is a nondecreasing sequence, then an converges if and only if it is 
bounded. 

(ii) If an is a nonincreasing sequence, then an converges if and only if it is 
bounded. 

Proof (Biconditional Proof): Let an be a monotonie sequence 
of real numbers. 

Proof of part (i): Suppose that an f and that o„ converges. Since 
an converges, it follows from Lemma 5.2.1 that an is also bounded. 
Therefore, every convergent nondecreasing sequence is bounded. 

Conversely, suppose that an is bounded, and let e > 0 be ABF. 
Define Л = { а п : п £ М } . Since an is a bounded sequence, it follows 
that the set A is also bounded. Thus, there exists s £ R such that 
s — sup A 

Now, since s is the supremum of .4, it follows that s—e is not an upper 
bound for A and s+ e is an upper bound for an. Furthermore, since 
an t, there exists TV £ N such that s—e<an whenever n> N. Thus, 
whenever n > TV, it follows that s — e < a„ < s + e. Equivalently, 
\an — s\ < e whenever n > TV, and hence s = lim an. Thus, every 

n—»oo 
bounded nondecreasing sequence is a convergent sequence. 
Therefore, a monotonie nondecreasing sequence converges if and only 
if it is bounded. 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

As a result of Theorem 5.2.13, a monotonie sequence an can be tested for 
convergence by simply determining whether the sequence is bounded. Also, 
once it is shown that a monotonie sequence an is bounded, it follows from the 
proof of Theorem 5.2.13 that lim an = sup {an : n £ Щ for nondecreasing 

n—*oo 
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sequences and lim an — inf {an : ?г € N} for nonincreasing sequences. An 
n—oo 

algorithm that can be used to show that a monotone sequence converges is 
given below. 

Algorithm for Showing a Monotone Sequence Converges: Let an be 
a sequence. To prove that an is a convergent monotonie sequence 

1. Show that on is monotone and determine whether an t or a„ | . 

2. Show that an is bounded. 
3. Find sup {an : ri £ N} = s for nondecreasing sequences; for nonincreasing 

sequences find inf {a„ : n £ Щ = i. 
4. Conclude lim an = s for nondecreasing sequences and lim an = г for 

П—'OO П—»OO 

nonincreasing sequences. 
5. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

6. Read the proof over carefully and make any necessary corrections. 

Example 5.2.17: Let a\ = 1 and for n > 2, let an = л/2 + ^/α„_ι. Show 
that an is monotone and bounded by 2. 

Solution: First, show that an is monotone. This recursively defined sequence 
can be shown to be a nondecreasing sequence with mathematical induction. 

Let ai = 1 and for n > 2 let an = J2 + , /αη_ι. Define Vn := an+i > an. 

For n = 1, it follows that 

a-2 ^ 2 + VT= \ / 3 > 1 = αι 

Therefore, V\ is true. 
Suppose that Vk is true for some ABF к £ N. This means that d/t+i > a*. 

Now, ifVk + i is true, then α^+2 > fl/tn· Consider a*.+2: 

v v , 

ByPfc 

Thus, Pfc + i is true whenever Vk is true, and therefore an is a nondecreasing 
sequence. 
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Now, a proof by contradiction will be used to show that an < 2 for all 
n e N. Suppose that 3 TV e N such that aN > 2. Since a„ T, WLOG let TV 
be the smallest value of n such that a/v > 2 and α/ν-ι < 2. Then 

2 < an = sJ2 + y/ätT-

which means that 

2 < yj2 + ,/5л/Т7 <=> 4 < 2 + ν
/αΛ/_1 <ί=> 2 < ^α/ν- ι 

which means that ayv-i > 4, which contradicts α/ν-ι < 2. 

Therefore, an < 2 for all n € N. 

Finally, since a„ is nondecreasing and is bounded, it follows that an converges. 
Furthermore, the limit of o„ requires only the determination of the supremum 
of {a„ : n e N}. Since sup {a„ : n € N} = 2 it follows that lim a„ — 2. 

e" 1 
Example 5.2.18: Let an = —. Show that an converges to - . 

1 + 2en 2 
en 

Solution: Let a„ = . Since an is a differentiable function in n on 
1 + 2en 

R, the derivative test can be used to determine whether an is a monotonie 
d . 

sequence. Consider — {an\: 

d , , d 
dn dn 1 + 2e" ( l + 2 e " ) 2 

e" Clearly, r > 0, V n e N and therefore, a„ ]. Furthermore 
(1 + 2en)2 

e" e" 1 1 
ö n = 1 + 2e" = e"(e-" + 2) " е~п + 2 - 2' " G 

Thus, a„ T and an is bounded, and hence, by Theorem 5.2.13 it follows that 
a„ converges. 

Finally, note that V n £ N: 

en 1 1 
1 + 2e" e~n + 2 ~ 2 + i 

Since - > c " n , V n e N , it follows that 

1 en 1 _ < < _ 
2 + ^ _ 1 + 2en - 2 
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Now, since lim r = - , by the squeeze theorem it follows that a„ —» - . 
n—·οο 2 4- — 2 ^ 

n 
5.2.3 Cauchy Sequences 

Note that the convergence of a monotonie sequence can be determined with-
out knowing the limit; that is, Theorem 5.2.13 shows that every bounded 
monotonie sequence converges. However, for many monotonie sequences the 
limit, either sup{a„ : n € N} or inf {an : n € N}, may be very difficult to 
determine. Now, for nonmonotonic sequences, using the definition of conver-
gence to prove that the sequence converges requires knowledge of the limit 
of the sequence. When a sequence an converges to a known limit a, then 
this means that for every e > 0, there exists N £ N such that \a„ — a\ < с 
whenever n > N and thus, from some point on, all terms in the tail end of 
the sequence become approximately equal to the limit a; moreover, this also 
means that from some point on, all terms in the sequence must be nearly 
equal. Sequences for which a„ and am are nearly equal from some point on 
are called Cauchy sequences. The definition of a Cauchy sequence is given be-
low; Cauchy sequences are named after the French mathematician Augustin 
Cauchy (1789-1857). 

Definition 5.2.5: A real-valued sequence a„ is said to be a Cauchy sequence 
if and only if for every e > 0, there exists N € N such that \an — am\ < с 
whenever n,m> N. 

Note that the definition of a Cauchy sequence depends only on the terms 
of the sequence in question and does not require knowledge of the limit of 
the sequence. In Theorem 5.2.14 it will be shown that all Cauchy sequences 
of real numbers converge; therefore, showing that a sequence of real numbers 
is a Cauchy sequence also proves that it is a convergent sequence. First, an 
algorithm for proving that a sequence an is a Cauchy sequence is given below. 

Algorithm for Showing a Sequence is a Cauchy Sequence: Let a„ be 
a sequence of real numbers. To show that an is a Cauchy sequence 

1. Let £ > 0 be ABF. 
2. Let m, n € N and consider \an — am\. 
3. Determine how to make \an — am\ arbitrarily small. In other words, 

determine the value of TV € N so that |a„ - am\ < e whenever n, m > N. 
4. Conclude on is a Cauchy sequence. 
5. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

6. Read the proof over carefully and make any necessary corrections. 
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Example 5.2.19: Let an = 2 H—. Show that a„ is a Cauchy sequence. 
n 

Solution: 
1. Let e > 0 be ABF. 
2. Let m, n € N. Without loss of generality (WLOG), assume m > n. 

Consider \a„ — om| . 

1 / 1 
2+ - - ( 2 + — n \ m 

1 _ 1 
n m 

m — n 
mn 

< m+n 
mn 

Now, since m > n, it follows that 

2 + 
n \ mj 

m + n 2m 2 
mn mn n 

3. Let N be the smallest natural number greater than - . Then, for n > N 
e 

2 + 2+ — ) < - <e 

4. Therefore, a„ = 2 H— is a Cauchy sequence. 
n 

Note that a proof showing that a sequence is a Cauchy sequence is very 
similar to a convergence proof; both proofs hinge on finding a value of N € N 
for every e > 0. In a convergence proof the value of N must be found so that 
\an — a| < e whenever n > N, while in proving a„ is a Cauchy sequence the 
value of ./V must be found so that \a„ — am\ < e whenever n > N. 

Example 5.2.20: Let on = e"n. Show that an is a Cauchy sequence. 

Solution: Let e > 0 be ABF and let m, n £ N. WLOG, assume m > n and 
consider \e~n — e~m\. 

| e ~ " ( l - e — m-\-n )l 
Now, since m > n, it follows that —m + n < 0 and 0 < e m+n < 1. Since 
0 < e~ m + " < 1, it follows that 0 < 1 - e _ m + n < 1. Thus 

| e - » - e - m | = |e-"( l - e - m + B ) | < | e - " | = e"n 

Let Λ̂  be the smallest natural number greater than — ln(e). Then, for n > N, 
it follows that 

| e - „ _ e - m | < e - n < f 
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Therefore, a„ = e'n is a Cauchy sequence. 

The following theorem shows that every convergent sequence is a Cauchy 
sequence. 

Theorem 5.2.14: Let an be a sequence of real numbers. If an —* a, then an 

is a Cauchy sequence. 

Proof: Let e > 0 be ABF. Since an —» a, there exists N e N such 
that |an - a\ < - whenever n> N. 

Consider \an - am\: 

\an - am\ - \an - a + a - am\ < \a„ -a\ + \am - a\ 

Thus, for n,m> N, it follows that 

\an - am\ < \an ~a\ + \am ~ a\ < c/2 + e/2 = e 

Since n> N Since m > N 

Therefore an is a Cauchy sequence whenever a„ is a convergent se-
quence. 

Theorem 5.2.15, which is stated below without proof, is the converse of 
Theorem 5.2.14; a proof of Theorem 5.2.15 is given in Elementary Analysis: 
The Theory of Calculus by Kenneth Ross (2003). In particular, Theorem 
5.2.15 shows that if a sequence of real numbers is a Cauchy sequence, then 
it is also a convergent sequence. Thus, when a sequence is shown to be a 
Cauchy sequence, then that sequence has also been shown to be convergent. 
However, the actual limit of the sequence cannot be found by simply showing 
that a sequence is a Cauchy sequence. Thus, once the sequence is shown to 
be convergent, further analysis of the sequence will be required in order to 
determine its limit. 

Theorem 5.2.15: Let a„ be a sequence of real numbers. If an is a Cauchy 
sequence, then a„ converges. 

Proof: The proof of this theorem is a construction proof and requires 
knowledge of subsequences, which have not been discussed in this 
text. 
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Now, Theorems 5.2.14 and 5.2.15 can be combined into the following bi-
conditional theorem, which states that a real-valued sequence an converges if 
and only if it is a Cauchy sequence. Hence, convergent sequences of real num-
bers are Cauchy sequences, and Cauchy sequences of real numbers converge. 

Theorem 5.2.16: A sequence of real numbers an is a Cauchy sequence if and 
only if it converges. 

Example 5.2.21: Prove the following result. If an is a Cauchy sequence of 
real numbers, then an is bounded. 

Proof: Suppose that an is a Cauchy sequence of real numbers. Then, 
by Theorem 5.2.18, an is a convergent sequence, and hence an is 
bounded. 

Now, every convergent sequence of real numbers is a Cauchy sequence, 
Cauchy sequences are bounded, and Cauchy sequences of real numbers are 
convergent sequences. Another important property that is related to Cauchy 
sequences is defined below. 

Definition 5.2.6: A set X is said to be complete if and only if each of the 
Cauchy sequences in X converges to an element of X. 

An example of a complete set is R. Specifically, since every Cauchy 
sequence of real numbers is a convergent sequence and converges to a real 
limit, it follows that R is complete. The following example shows that Q is 
not complete. 

Example 5.2.22: Prove that Q is not complete. 

Solution: Q can be shown to be incomplete using a proof by contradiction. 

Proof (by Contradiction): Suppose that Q is complete. Consider 
the sequence a„ = (l + ^) . Since Q is closed under addition and 
multiplication, it follows that an is a rational number for every value 
of n € N. 

Now, since (l + ^) is a convergent sequence (see Table 5.2.1), it 
follows that on is a Cauchy sequence. However, lim on = e £ Q, 

n—»oo 

which contradicts the assumption that Q is complete. 

Therefore, Q is not complete. 
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5.3 Limits of Functions 

In the previous section, the limiting behavior of a special type of real-valued 
function, a sequence, was studied for large values of n. In this section, the 
behavior of real-valued functions will be studied, particularly, the limiting 
behavior of a function at a point xo € R· Now, in a first course on calculus, 
one of the first topics that is studied is the limiting behavior of function / at 
a point xo· Also, in the traditional calculus course, the derivative of a real-
valued function is introduced following a discussion of the limit of a function. 
Furthermore, the definition of the derivative of a function / at a point xo is 
based on a special type of limiting behavior. Finally, following a discussion 
of the derivative and differentiation, the concept of the definite integral is 
introduced, which is also based on a special type of limiting behavior. Thus, 
limits play an important role in the foundations of calculus. 

Let / be a real-valued function with domain V. Now, the limit of / at 
a point xo will be based on how / behaves near the point xo. In particular, 
if / is nearly constant for x values near the point xo, then / will have a 
limit at the point xo, even if xo ^ T>. It turns out that whether in fact 
Xo € V is irrelevant with regard to the limiting behavior of / near xo. For 
this reason, the definition of the limit of a real-valued function will be based 
on the behavior of the function in the neighborhood of xo only. The definition 
of a neighborhood and a deleted neighborhood are given below. 

Definition 5.3.1: Let Xo € R, and let e > 0. Theopen interval (xo— ί,χο + e) 
is called a neighborhood of xo with radius £ and will be denoted by jVe(xo). 

Definition 5.3.2: Let x0 € К and e > 0. The set {x € R : 0 < |x - x0| < e} 
is called a deleted neighborhood of xo of radius £. 

For example, the interval (0.5,1.5) is a neighborhood of xo of radius 
e = 0.5, and the set {x <E R : 0 < |x - 1| < 0.5} = (0.5,1)U (1,1.5) is a deleted 
neighborhood of Xo of radius e = 0.5. 

Example 5.3.1: Determine 

a. A neighborhood of xo = 10 of radius t — 0.1. 
b. A deleted neighborhood of Xo = 10 of radius e = 0.05. 
c. A deleted neighborhood of xo = 10 of radius e = 0.01. 

Solutions: 

a. (9.9,10.1) is a neighborhood of x0 = 10 of radius e - 0.1. 
b. The set { x e R : 0 < | x - 1 0 | < 0.05} = (9.95,10)U(10,10.05) is a deleted 

neighborhood of XQ of radius e — 0.05. 
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с. The set {x € К : 0 < \x - x0\ < 0.01} = (x0 - 0.1, x0) U (x0, xo + 0.01) is 
a deleted neighborhood of xn of radius e = 0.01. 

Note that the point xn is in every one of its neighborhoods; however, the 
point XQ is not in any of its deleted neighborhoods. Since the point xo may not 
be in the domain of the function / , the definition of the limit of a real-valued 
function / at a point xo is based on a deleted neighborhood of xo, rather than 
a neighborhood of xn- The e-δ definition of the limit of a real-valued function 
/ is given below. 

Definition 5.3.3: A real-valued function / , defined on a domain V that 
contains a deleted neighborhood of XQ, is said to have limit L as x approaches 
xo if and only if for every e > 0, there exists a <5 > 0 such that \f{x) — L\ < e 
whenever \x — xn| < S. When the limit of a function / exists at the point xo, 
this will be denoted by lim /(x) = L. 

X —> T , | 

Note that this definition is analogous the definition for the limit of a 
sequence of real numbers as n —» oo. Note the similarity of the following two 
definitions: 

a. Limit of a Sequence: A real-valued sequence a„ has limit a if and only 
i f V e > 0 , 3 N € N such that \an - a\ < e whenever n > N. 

b. Limit of a Function: A real-valued function / has limit L if and only 
i f V t > 0 , 3 (5 > 0 such that \f(x) — L\ < e whenever \x — x$\ < S. 

Thus, when working with the limit of a real-valued function / , the state-
ments N € N and n > N that are used in the limit of a sequence are simply 
replaced by δ > 0 and \x — XQ\ < S- For this reason, many of the theorems 
concerning the limit of a real-valued function will have proofs similar to the 
proofs of the analogous results for the real-valued sequences. 

Now, it is important to note that a function / might have a limit as x 
approaches xn, even though the function is not defined at the point χη· F°r 

x - 1 . 1 
example, consider the function fix) = Then f(x) has the limit -

xz — 1 2 
as x approaches 1, however x = 1 is not in the domain of / . The plot of 

x - 1 f(x) = —г is given in Figure 5.3.1 shows that / (x) does approach a limit 
xz — 1 

as x approaches 1. 
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Figure 5.3.1 A plot of ί{χ)=~^~\. 

In order to show that a real-valued function has a limit L as x approaches 
xo, or equivalently lim / (x) = L, it must shown that for an arbitrary value 

I —»XO 

of £ > 0, there is a δ such that | /(x) — L\ < e whenever |x — xo| < S. A proof 
of this nature is called an e-δ proof. Moreover, proving lim /(x) = L with 

I — · I ( | 

an £-<S proof is analogous to proving that a sequence converges using an f-N 
proof. An algorithm for proving lim /(x) = L with an e-δ proof is given 

X —* Xo 

below. 

An Algorithm for an e-δ Limit Proof: Let / be a real-valued function. 
To prove that lim / (x) = L 

X —> Г ц 

1. Let £ > 0 be ABF. 
2. Consider | /(x) - L\. 
3. Determine how to make | /(x) — L\ arbitrarily small for the value of x in 

a deleted neighborhood of xo-
4. From steps 2 and 3, determine the value of δ so that | /(x) — L\ < e 

whenever |x — xo| < δ. 
5. Conclude lim /(x) == L. 

x - » a » 
6. Clean up and rewrite the scratchwork into a clear and concise proof of 

the theorem. Make sure that each step of the proof makes sense and is 
clearly justified. 

7. Read the proof over carefully and make any necessary corrections. 
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Note that the value of δ is dependent on the value of e and <5 is simply 
the radius of a deleted neighborhood of XQ for which \f(x) - L\ < e. Also, 
if a smaller value of e was chosen, then a smaller value of S will generally be 
required. Thus, in order to require that f(x) is closer to its limiting value 
L at the point XQ, X must be closer to xo· An e-6 proof is illustrated in the 
following example. 

Example 5.3.2: Prove that lim x2 + Ax = 12. 

Solution (Scratchwork): 

Step 1: Let e > 0 be arbitrary but fixed. 
Step 2: Consider \f(x) - L\: 

\f(x) -L\ = \x2 + Ax~ 12| = | ( i + 6){x - 2)| = \x + 6|· \x - 2| 

Step 3: A value of S must be found so that whenever \x — 2| < δ it will follow 
that |x2 + Ax - 12| < с Now 

\x2 + Ax- 12J = k + 6 | - | x - 2 | 

Thus, if an upper bound can be placed on \x + 6| when x is near 2, then 
it will be possible to relate \x2 + Ax — 12| to \x — 2|. Consider x values in 
neighborhood of 2 of radius 1 (i.e., x values such that \x — 2| < 1). Then, for 
\x - 21 < 1 it follows that 

\x + 6| = \x - 2 + 8| < \x - 2| + 8 < 9 

Thus, |x + 6| < 9 whenever \x - 2| < 1, and therefore 

|x2 + 4x - 12| = |x + 6|· \x - 2| < 9- |x - 2| 

Step 4: Now, let (5 = min f i , - 1. Then whenever \x — 2| < <5, 

|x2 + 4x - 12| = |x + 6|· \x - 2| < 9· |x - 2| < 9· δ < 9· ^ = t 

Therefore, lim x2 + Ax = 12. 
r — 2 

This scratchwork is written up in a formal ΐ-δ proof below. 

Proof: Let e > 0 be arbitrary but fixed. Consider | /(x) — L\: 
| / (x) -L\ = \x2 + Ax- 12| = |x + 6|· \x - 2| 
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Now, for |x - 2| < 1, it follows that 

| i + 6| = | x - 2 + 8| < |x - 2j -+- 8 < 9 

Thus, |x + 6| < 9 whenever |x — 2| < 1, and therefore 

|x2 + 4x - 12| = |x 4 6|· |x - 2| < 9· |x - 2| 

Let δ - min (1, e/9). Then, whenever |x - 2| < <5, it follows that 

|x2 + 4x - 12| = |x + 6|· | i - 2| < 9- | i - 2| < 9· ί < 9-1 = e 

Therefore, lim x2 + 4x = 12. 
1 — 2 

■ 

Note that in the proof above, |x + 6| needed to be bounded. A bound was 
found by considering a neighborhood of 2 of radius 1. The choice of the radius 
of the neighborhood in this proof was not special, and in fact, any radius could 
have been used in place of the value of 1. For example, if a radius of 2 were used 
in place of 1, the bound would have become jx + 6j < 10; similarly, if a radius 
of 0.25 were used in lieu of 1, the bound would have become |x + 6| < 8.25. 
It was important to bound |x + 6|, but the actual value of the bound, which 
depends on the radius of the neighborhood, was not important. 

Example 5.3.3: Prove that lim x2 = x2, for all xo € R. 

Solution: 
Proof: Let e > 0, and let xo € К be arbitrary but fixed. Consider 

|x2 - XQ| = |x - χο|· |χ + xo| 
For jx - xo| < 1, it follows that 

|x + xo| = |x - xo + 2xo| < |x - xo| + 2|x0| < 1 + 2jx0| 

Thus, whenever |x — xo| < 1, it follows that 

|x2 - XQ| = \x - x0|- |x + xo| < (1 + 2|xo|)· |x - xo| 

Let δ — min I 1, ——- 1. Then, whenever |x — xo| < δ, it follows 
\ 1 + 2|x0|y 

that 
|x2 - xl\ < (1 + 2|x0|)- |x - xo| < (1 + 2|x0|)· δ 

(l + 2|xol)- / =e 
1 + 2|xo| 
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Therefore, lim x2 = ig. 

Recall that the actual value of δ will depend on both the size of e and the 
value of xo· Specifically, for a fixed value of xo, the smaller e is chosen to be, 
the smaller δ will need to be. Also, for a fixed value of e, the δ value for two 
different values of aro may differ. For instance, in the previous example the 

value of δ for a fixed value of e was δ = min I 1, ■—- I. Thus, for x0 = 1, 
V 1 + 2(лг0| у 

δ = min fi) r ) and for xQ = 2, δ = min i l , - J . Clearly, the value of δ will 
depend on the values of both e and XQ. 

The following lemma shows that when / has a nonzero limit at the point 
xo, then f(x) can be bounded from below. This lemma will be needed in the 
proof of Theorem 5.3.1. 

Lemma 5.3.1: Let / be a real-valued function defined on a domain V con-
taining a deleted neighborhood of XQ. If lim f(x) = L and L φ 0, then 

I—> X» 

there exists a δ > 0 such that \f(x)\ > — whenever |x — XQ\ < δ. 

Proof: Let / be a real-valued function with lim f(x) = L and sup-

pose L φ 0. Then there exists δ > 0 Э: \f(x) - L\ < — whenever 
\x - XQ\ < δ. 

Consider | / (x) | : 

\f(x)\ = \f(x)-L+L\ = \L-(L-f(x))\ 

>\L\-\L-f{x)\ = \L\-\f(x)-L\ 

Thus, whenever \x — xo| < δ, it follows that 

1/(3.)! > | L | - 1 / ( 1 ) - L | > | L | - i | l = EI 

The following theorem provides powerful results for determining the limit 
of the sum, product, and ratio of two real-valued functions. Even more im-
portantly, the rules proved in Theorem 5.3.1 are often the key components in 
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the proofs of several theorems presented later in this section and Section 5.4, 
also. Note that each result in Theorem 5.3.1 is analogous to a result proved 
in Chapter 4 for the sum, product, or ratio of two convergent sequences. 

Theorem 5.3.1: Let / and g be functions defined on domains Vj and Vg con-
taining deleted neighborhoods of io· If Htn f(x) = L[ and lim g{x) = L2, 

1 —» i n x —* Xo 

then 

(i 

(iii 

(iv 

(v 

lim 
X —► Xi) 

lim 
X —> Г ц 

k-f(x) + l = k-Lx + / for all k,l e 

f(x) + g(x)] = L 1 + I 2 . 

lim f(x)-g(x)\ = LVL2. 
x —· xn L J 

—- \ — — provided that L\ Φ 0. [x)\ L, lim 
X —> X» 

lim 
X —>X() 

/00. 
r/(*) 
5(z)J 

= — provided that L2 φ 0. 
L2 

Proof: Let £ > 0 be ABF, and let / and g be functions defined 
on the domains T>j and Vg containing deleted neighborhoods of xn. 
Suppose that, lim f(x) = L\ and lim g(x) = L2, then 

x —' Xo x — Ί » 

Proof of part (i): The proof of part (i) is left as an exercise. 

Proof of part (it): Since lini f(x) = L\ and lim g(x) = L2, 
I —* If ) X -■» X(( 

there exists <5i > 0 and <52 > 0 such that 

| /(x) — Li | < - whenever \x - XQ| < δ\ 

\g{x) — L2\ < - whenever \x - x0 | < <b 

Consider | / ( i ) + g(x) - (Li + L2)\: 

| / ( i ) + <?(x) - ( I , + L2)| = \f(x) - L: + 5(x) - L2| 

< | / ( a : ) - L i | + Ы г ) - L a | 
V 

By the triangle inequality 

Let S = тт(<5ь<52). Then, whenever \x — x0| < δ, it follows that 
| /(x) + 3(x) - (Li + L2)| = | /(x) - Li\ + \g(x) -L2\<-+-^e 
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Therefore, lim f(x) + g(x) = L\ + L2. 

Proof of part (tit): Since lim f(x) = L\ and lim g(x) = L2, 
x —> xn x —> I , , 

there exists δι > 0 and $2 > 0 such that 

\f(x) - Li\ < ■- whenever |x - x0 | < <5i 
J(|L2| + lj 

|#(x) - L2| < » / l r 1 , . . whenever |x - x0| < fa o{\L\\ + 1) 

Also, there exist <53 and δ4 such that 

| /(x) — Li| < W- whenever |x - xn| < <5з 

|y(x) - L2\ < J- whenever |x - xo| < ί^ 

Consider |/(x)<7(x) — L1L2I· First, note that 

f(x)^(f(x)-Ll) + Ll 

and 
5(1) = (9(x) - L2) + L2 

Thus 

/(1)5(1) = [(/(x) - U ) + Li) · [(5(1) - L2) + Li\ 

= L 1 ( f l ( x ) -L 2 ) + L 2 ( / ( x ) - L I ) 

+ ( / ( i ) - L i ) - ( p ( i ) - L 2 ) + I i i 2 

Hence 

l / i i J f f d J - ^ L a ^ l L ^ f l i x J - L a ) 

+ L2(/(x) - Li) + (/(1) - LO· (9(1) - £2 ) | 

< | Ι . | - | 3 ( ι ) - ΐ 2 | + | ΐ 2 | · | / ( ι ) - ί . ι Ι 

+ \f(x)-Lli\g(x)-L2\ 
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by the triangle inequality. Now, let <5 = m'm(Si,62,63,64). Then, 
whenever |x — io | < 6, it follows that 

\f(x)g(x) - LiLal < \Ly\- \g(x) - L2\ + |I2|- \f(x) - Lx\ 

+ \f(x)~Ll\-\g(x)-L2\ 

K lLli ' 3(|Li| + 1) + | L a | ' 3(|L2| + D + V I ' V 5 

e € e 
< - + - + - = £ 

3 3 3 

Therefore, lim 
at—» I » 

f(x)-g(x) L\- L2. 

Proof of part (iv): Suppose that lim f(x) = L\ and L< Φ 0. 
X —» I ( | 

Since L» ^ 0, there exists 61 > 0 such that 

\f(x)-Ll\<e \U? 

whenever \x — XQ\ < SI, and by Lemma 5.3.1 there exists 62 such 

that | / ( i)I > —— whenever \x — XQ\ < <52. 

Let 6 = min(ii, <52). Then, whenever \x — XQ\ < S, it follows that 

/(*) L, иаь\-тх)-11]<щ^Г^~е 

Therefore, lim 
x—>xo 

0. 
f(x)i 

Proof of part (v): Since 

— whenever lim }(x) = L\ and Z,( ф 
Lì X —X» 

^ = fix)- -+-

and Z-2 7̂  0, this result follows directly from the application of parts 
(iii) and (iv) of this theorem. 

file:///Ly/
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Note that Theorem 5.3.1 applies only when both limits exist. However, it 
is possible for the sum of two real-valued functions to have a limit at XQ when 
neither of the individual functions has a limit at io· For example, let f(x) = — 

= 0 , yet neither and q(x) = — . Then, lim fix) + g(x x i — oL 

lim — nor lim — exists. In this example, clearly the statement 
i —0 X x — 0 X 

= lim X - . 0 

"1 
— -X 

Г 
- — X 

lim г — 0 

"1 
— -X 

1" 
- — X 

ι · l .· = lim —l· um x — 0 X x->0 

1 
— X 

would make no sense at all, since neither of the limits on the righthand side 
exists. 

The following corollary to Theorem 5.3.1 shows that limits are linear func-
tions. Thus, when the limits exist, then lim 

I —> Xu L 
af(x) + bg(x) = aL\ + bL,2 

and lim 
X —► X ( ) 

/ (x) -g(x) L\ — L2, also. 

Corollary to Theorem 5.3.1: Let / and g be functions defined on do-
mains T>j and T>g containing deleted neighborhoods of XQ- If a, Ò £ R, 
lim / ( 1 ) = Li, and lim д(х) = L2, then 

г —» X() x —♦ x o 

(i) lim 
X —· X(] 

0/(1) + bg(x)\ = aLi + bL2-

(ii) lim f(x)-g(x) — L\ —Li. 

Proof: Let / and g be functions defined on a domain V containing 
a deleted neighborhood of zn and suppose that lim f(x) — L\ and 

X —» X() 

lim g(x) = Li. 
x —> 10 

Proof of part (i): Part (i) follows directly from parts (i) and (ii) 
of Theorem 5.3.1. 

Proof of part (ii): Part (ii) follows directly from part (i) with 
a = 1 and 6 = — 1. 

The next theorem will be used to prove that the limit of a polynomial 
p{x) at the point xo is simply p(xo). In particular, the following theorem 
shows that lim xn = ZQ, for all natural numbers n. 
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Theorem 5.3.2: If x0 e К. then lim xn = ι ϊ , V »г e N. 
X — Xn 

Proof: The proof of Theorem 5.3.2 is left as an exercise. 

Now, Theorem 5.3.3 shows that if p(x) is a polynomial, the limit as x 
approaches XQ of p(x) can be found by simply evaluating the p(x) at the value 
XQ. The corollary to Theorem 5.3.3 will show that a similar result holds for 
rational functions. 

Theorem 5.3.3: If p(x) is a polynomial, then lim p(x) = p(xo), V i e R. 
I — ' I d 

Proof: The proof of Theorem 5.3.3 is left as an exercise. 

Corollary to Theorem 5.3.3: Let p(x) and q(x) be polynomials of degree 
p(x) p(xo) n and m, respectively. If ο(χη) Φ 0, then lim -т— = ——-. 

χ - r » q(x) q(x0) 

Proof: This result follows directly from Theorems 5.3.3 and 5.3.1 
part (v). 

Example 5.3.4: Let f(x) — x2 — 2x — 1 and g(x) — x + 1. Determine 

a. lim (f(x) + g(x)). 
X —» À 

b. l i ^ f{x)-g(x). 

с l,m '(*> x-3 g(x) 

Solutions: Note that / and g are polynomials, and therefore by Theorem 
5.3.3, it follows that 

lim f(x) = XQ - 2x0 - 1 and lim g(x) = x0 + 1 
x —* x<j x —. ro 
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a. lim fix) = —1 and lim glx) = 3. Therefore 
x - 2 J V ' i - . 2 V ' 

lim [/(x) + g(x)] = lim /(x) + lim g(x) = - 1 + 3 = 2 
> v ' 

By Theorem 5.3.1 part (i) 

b. lim / (x) = —2 and lim g(x) = 2. Therefore 
i —· 1 x —· ! 

lim f(x)-g(x) = lim /(x) · lim g(x) = -2(2) = - 4 
i —> 1 x —» 1 x —«I 

By Theorem 5.3.1 part (iii) 

c. lim fix) = 2 and lim g(x) = 4. Therefore 
i —> 3 x — 3 

г Я*) Н т ^ з Л х ) 2 
lim ——■ = — = - = 0.5 

χ - З g(x) l im x _3 g(X) 4 
4 v ' 

By corollary to Theorem 5.3.3 

The squeeze theorem for real-valued functions is an important theorem 
that is often used when the function of interest is hard to work with. In par-
ticular, when the function of interest, say, h(x), is trapped between the two 
functions /(x) and g(x) that have known and equal limits, then the squeeze 
theorem shows that lim f(x) = lim h(x) = lim g(x)- The squeeze the-

X —* X() X —* X{1 X —► X() 

orem is given below. 

Theorem 5.3.4 (The Squeeze Theorem): Let f,g, and h be functions 
defined on domains containing a deleted neighborhood of Xo where f(x) < 
/i(x) < g(x). If lim f(x) = lim g(x) = L, then lim h(x) = L. 

X —► X(j X —* X( | X —* X(j 

Proof: Let / , g, and h be functions defined on common domains 
containing a deleted neighborhood of xo where /(x) < h(x) < g(x). 
Suppose that lim f(x) = lim g(x) — L, and let e > 0. 

X —> XO X —· Xo 

Then, since lim f(x) = L, there exists <5j such that 
x —* Xo 

L — e < f(x) < L + e whenever |x — xo| < δι 
v v/ ' 

\J{x)-L\«. 

and since lim g(x) = L, there exists δ^ such that 
X —> Xo 

L — e < g(x) < L + e whenever |x — x0| < <5г 
4 v ' 

\g(x)-L\<t 
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Furthermore, since there exists a deleted neighborhood of xo where 
/ ( x ) < h(x) < g(x), it follows tha t there exists 63 > 0 such tha t 
/ ( x ) < /i(x) < g(x) whenever |x — xo| < 63. 

Let δ = min (<5ь^2,<5з)· Then, whenever \x — Xo| < ^, it follows tha t 

L- e < f(x) < h(x) < g(x) < L + ( 

Hence, L~e < h(x) < L + c, or equivalently \h{x) — L\ < ί, whenever 
|x — xo| < <5- Therefore, lim /ι(χ) = L. 

X — » X o 

si nix) 
The squeeze theorem is now used to prove tha t lim = 1. 

i — O x 

sin(x) 
Example 5.3.5: Prove tha t lim — — = 1. 

* - 0 x 

sinfxi 
Solution: First, a plot of the functions — - — and cos(x), on a neighborhood 

x 
of radius 1 of the point xo = 0, is given in Figure 5.3.2; the dashed line is 
sin(x) . 

and the solid line is cos(x). 
x 

У 

0.75 

0.5 

0.25 

| 1 1 1 1 1 1 1 1 1 1 X 

-0.5 0 0.5 

Figure 5.3.2 A plot of cos(z) and 
sin(x) 



Limits of Functions 213 

sin( x ) 
Note tha t cos(x) < < 1 in this neighborhood, and lim cos(x) = 1. 

x x—>o 
sin(x) 

Thus, by the squeeze theorem it follows tha t lim — — = 1. 
x — 0 x 

Example 5.3.6: Let f(x) = xl~x on the domain V = [0, oo). Prove that 
lim xl~x = 0. 

x — 0 

Solution: First, the functions xl~x, \fx-, and x, on the interval [0,0.5], are 
plotted in Figure 5.3.3. The solid line represents x; the dashed line, y/x; and 
the dotted line, xl~x. 

0.75 

0.60 

0.45 

0 .25-

Figure 5.3.3 Л plot of the functions x, \/x, and x 1-х 

Note tha t x < xl~~x < x5 on [0, .5] and lim x = lim y/x — 0. Thus, by 
x —·0 x —·0 

the squeeze theorem it follows tha t lim x ~x = 0. 

The following two theorems provide results for the limit of powers of 
/ when lim f{x) — L. Theorem 5.3.5 states tha t if lim f(x) = L, then 

x —· xo x - · x« 
lim }{x)n — Ln, and Theorem 5.3.6 shows tha t when L > 0, it follows tha t 

x ~-* xo 
lim 

X — Ί ϋ 

lim s/Jix) = v T . 

T h e o r e m 5.3.5: Let / be a function defined on the domain V containing 
a deleted neighborhood of £n. If lim f(x) = L, then lim f(x)n — Ln, 

T —· Xo I —· X() 

v , n e N. 
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Proof: The proof of Theorem 5.3.5 is left as an exercise. 

Theorem 5.3.6: Let / be a function defined on the domain V containing a 
deleted neighborhood of xo. If lim f(x) = L > 0, then lim \ff{x) = vL. 

x —. xo x ~* xo 

Proof: The proof of Theorem 5.3.6 is left as an exercise. 

Example 5.3.7: Suppose that lim f(x) — 3 and lim g(x) = 2. Deter-
T — X» X —· III 

mine 
a. lim γ/3/(χ) + 8g(x). 

X —'Io 

b. lim v / / ( i )g( i ) + 10. 

c. lim }{x)2\fg(x)-
X — X,| 

Solutions: Suppose that lim f(x) = 3 and lim g(x) = 2. 
X —» X() X —* X[| 

a. By the corollary to Theorem 5.3.1, it follows that 

lim [3/(x) + Sg(x)\ = 3 lim /(x) + 8 Urn g{x) = 3· 3 + 8· 2 = 25 
X —» X|) X —* X{) X —► X o 

and by Theorem 5.3.6, it follows that 

lim \/3f(x) + Sg(x) = . / lim 3/(x) + 83(1) = 5. 
x —* xo у x —» xo 

b. By Theorem 5.3.1 parts (ii) and (iii), it follows that 

lim f{x)g(x) + 10 = 2(3) + 10 = 16 
X —» Xo 

and by Theorem 5.3.6, it follows that 

lim s/f(x)g(x) + 10 = ^2(3) + 10 = 4 
X —· Xo 

с By Theorem 5.3.5, it follows that 

lim f(x)2 = 32 = 9 and lim \/g(x) = \Ì2 
X —>Xo 
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Thus, by Theorem 5.3.1 part (iii), it follows that 

lim /(х)2,/д(х) = 32</2 = 9\/2 

The following theorem shows that if lim }(x) = L and xn is of any 
I —· X(| 

sequence of real numbers converging to xo, then lim f{xn) — L, also. 
n—»oo 

Theorem 5.3.7: Let / be a function with domain V containing a deleted 
neighborhood of XQ. If lim f(x) — L and xn is a sequence of real numbers 

X —* Xo 

contained in Ό with xn —> xo, then lim f(xn) = L. 
n—»oo 

Proof: Let / be a function with domain V containing a deleted 
neighborhood of xn and lim f(x) — L. Let e > 0 be ABF, and let 

X — Xu 

xn be an arbitrary sequence converging to XQ which is contained in 
V. 
Since lim f(x) = L, there exists δ such that \f(x) — L\ < e when-

X — Xu 

ever \x — xo\ < S. Now, since xn —» XQ, there exists N € N such 
that |x - xo| < <5 whenever n > N. 
Now, xn € V for each n € N; thus, | / (xn ) — L\ < e whenever 
n > N. Therefore, lim f(x„) — L for any sequence xn —> Xo that 

X —«X(l 

is contained in T>. 

It is important to note that Theorem 5.3.7 does not say when xn is a se-
quence of real numbers converging to the point χυ and lim f(xn) = £, then 

n—»oo 
it follows that lim f(x) — L. Thus, it may be possible that a sequence xn 

X — K l 

converges to Xo and that lim / ( x n ) = L; however, lim f(x) φ L. For ex-
n—>oo x —· xo 1 IXnl |x| ample, while x„ = — —♦ 0 and lim —— = 1, lim — does not exist. The-

П n — oo Xn x — Ο χ 
orem 5.3.7 simply states that when lim / (x) = L, then lim / (x„) = L for 

X —♦ X() П—»CXD 

every sequence of real numbers converging to Xo-

5.4 Continuity 

When a real-valued function f(x) has the property that lim /(x) = /(xo), 
X —* Xo 

then the function / is said to be continuous at the point Xn· In this section 
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the continuity of real-valued functions will be studied. A definition of the 
continuity of a function / at a point x = xo is given below. 

Definition 5.4.I: A function / is said to be continuous at a point xo if and 
only if 

(i) lim f(x) exists· 
X — Hi 

(ii) xo € V. 

(iii) lim / (x) = /(xo). 
I —* Xo 

Definition 5.4.2: A function / is said to be discontinuous at the point xo 
if and only if xo € V and / is not continuous at Xo-

Recall that the limit of a real-valued function / , as x approaches x0> does 
not depend on the value of /(xo). In particular, it might be the case that /(xo) 
does not even exist (i.e., Xo ^ T>). In fact, there are five possibilities for the 
relationship between lim /(x) and /(xo)·' 

X — I „ 

(1) lim /(x) exists and equals /(xo)· 
x —>iu 

(2) lim f(x) exists and does not equal /(xo)· 
X — I ( | 

(3) lim f(x) exists but /(xo) is undefined. 
X —» T o 

(4) lim / (x) does not exist and /(xo) does exist. 

(5) Neither lim fix) nor /(xo) exists. 
X — Xtt 

Note that only in case (1), where lim f(x) exists and equals f(xo), 
X — X() 

is the function / continuous at x = xo. In each of the other cases, / is 
not continuous at x = xo- The following example shows that the function 

|x| 
/ (x) = — is not continuous at x = 0. 

X 
Example 5.4-1: Let / (x) = —. The plot of/(x) on a deleted neighborhood 

x 
of 0 is given in Figure 5.4.1. 
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Figure 5.4.1 A plot of f(x)-

Now 

A*) I1! 

- 1 x < 0 

undefined a; = 0 

1 x > 0 
and clearly from Figure 5.4.1 it can be seen that / is continuous everywhere 
except at x = 0. 

An equivalent definition of continuity based on the e-<5 definition of the 
limit of f(x) is given below. 

Definition 5.4-3: A function / is said to be continuous at a point xo if and 
only if xo € V and for every e > 0, 3 δ > 0 such that \J(x) — f(xo)\ < e 
whenever |x — XQ\ < δ. 

Note that in Definition 5.4.3, the value of δ depends on two values, 
namely, the value of e and the particular value of xo· In general, the value of 
δ for a fixed value of 6 must change as x moves from one point to another. 
The dependence of δ on a particular value of x is illustrated in the following 
example. 

Example 5.4-2: If f(x) = x2, then lim f(x) — 0 and lim /(x) = 4. Let 
x —► 0 x —* 1 

= x2 

e = 1 and determine the value of δ 

a. So that |x2 — 02| < 1 whenever \x — 0| < δ. 
b. So that |x2 - 22| < 1 whenever \x - 2| < δ. 
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Solution: 
a. Note that when \x2 - 0| = x2 < 1, it follows that }ar| < \ / ί = 1. Now, let 

ii = 1. Then, \x7 - 0| < 1 whenever |x - 0| < 1. 

b. Note that | x 2 - 4 2 | = \x - 4 | · \x+ 4|. Now, for | x - 4 | < 1, it follows that 

| x - 4 | < l = > - 3 < x < 5 = > l < x + 4 < 9 

Therefore, when 6 < 1, it follows that \x + 4| < 9 and therefore 

|x2 _ 42| = |x - 4|- |x + 4| < 9 · \x - 4| 

Thus, let «5 = min(l , 1/9) = 1/9. Then, whenever |x - 2| < S, it follows 
that \x2 - 4 | < 1. 

Note that the values of J in parts (a) and (b) are different because the par-
ticular value of δ for e — 1 depends on the particular value of XQ under 
consideration in the limit. 

An algorithm for proving that / is continuous at the point x = x0 with 
an e-S proof is given below. 

An Algorithm for an ί-δ Continuity Proof: Let f(x) be a real-valued 
function. To prove that / is continuous at the point xo 

1. Let, £ > 0 be ABF. 
2. Consider | /(x) - f(x0)\-
3. Determine how to make | /(x) — f{xo)\ arbitrarily small for x near xo. 
4. From steps 2 and 3, determine the value of δ so that \f(x) — f(xo)\ < с 

whenever |x — Xol < <S· 
5. Conclude lim /(x) = / (χυ) and therefore, / is continuous at x = xo· 

I —» Xo 

6. Clean up and rewrite the scratchwork in a clear and concise proof of the 
theorem. Make sure that each step of the proof makes sense and is clearly 
justified. 

7. Read the proof over carefully and make any necessary corrections. 

Note that the algorithm given above is simply the e-<5 algorithm for show-
ing that the limit of the function / at x = xo is L = /(xo)· The (-6 algorithm 
is used to show that / (x) = x2 is continuous at every point xo in Example 
5.4.3. 

Example 5.4-3: Let / (x) = x2 for x € R. Prove that / is continuous at 
x = XQ, V x0 € R. 
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Solution: 

Proof: Let с > 0 and x0 € R be ABF. Consider |x2 - x%\. 

\x2 - XQ\ = \x — xo\-\x+ xo\ 

Now, whenever |x — xo| < 1, it follows that \x + x0 | < 2|xo| + 1· 
Therefore 

\x2 - XQ! = Iх - χο|· Iх + xo| < |x - xo|· (2[x0| + 1) 

Now, let δ = min I —— , 1 1. Then, whenever |x — xo| < δ, it 
V2|x0| + 1 / 

follows that 

|x2 - xl\ = |x - x0|- |x + xo| < \x - x0|- (2{x0| + 1) 

< <5(2|x0| + 1) < 2 | χ ο | + 1 ( 21^1 + 1) = e 

Therefore, by Definition 5.4.3, f(x) — x2 is continuous at x = XQ-

In the previous example, since the same proof works for every value of 
xo £ R> it follows that f(x) — x2 is continuous over the entire real line. When 
a function / is continuous at every point in an interval, then the function is 
said to be continuous on the interval. 

Definition 5.4-4: A function / is said to be continuous over an interval I 
if and only if / is continuous at each point ι ξ / . 

Note that the form of the interval / in Definition 5.4.4 is not specified. 
This means that a function / can be continuous on an open interval, a closed 
interval, or a half-open interval. For example, f(x) = — is continuous over 

x 
the interval (0, oo) but is not continuous on the interval (0,oo). 

Example 5·4·4: Let / (x) = x2 + 4x — 1. Show that / is continuous on K. 

Solution: Let x0 € К be ABF. By Theorem 5.3.3 it follows that 

lim 
X —* X() 

x2 + 4x - 1 Xo - 4 X 0 - 1 = f{xo) 
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Now, since i 0 e l was arbitrary, it follows that lim f(x) = f{xo) for all 
X —» X() 

XQ e R and therefore, f(x) = x2 + Ax - 1 is continuous on R. 

The following two theorems are direct results of Theorem 5.3.3 and its 
corollary and show that the polynomials and rational functions are continuous 
functions on R. 

Theorem 5.4.1: If p(x) is a polynomial in x, then p(x) is continuous for all 

Proof: Theorem 5.4.1 follows directly from Theorem 5.3.3. 

Theorem 5.4.2: Let p(x) and q{x) be polynomials, and let xo e R. If 
p{x) 

q(xo) Ф 0, then ——- is continuous at x = XQ. 
q(x) 

Proof: Theorem 5.4.2 follows directly from the corollary to Theorem 
5.3.3 

The next theorem shows that when a function / is continuous, then so 
are the functions af{x) + b and |/(x)|- In proving Theorem 5.4.3, the proof of 
the continuity of af(x) + b is based on the limit results of Section 5.3, while 
the continuity of | / (x) | is proved using an e-δ approach. 

Theorem 5.4.3: Let / be a real-valued function, and let x0 e V. If / is 
continuous at x = XQ, then 

(i) a- f(x) + b is continuous function at x = xo, Va, l>£R. 
(ii) | / (x) | is continuous at x — xo-

Proof: Let / be a real-valued function that is continuous at x — xo-

Proof of part (i): Let a, b e К be ABF and define g(x) := a- / (x) + 
6. Then Vg = Vf and g(xo) = a- / (xu ) + ò. Now 

lim g(x) — lim (a- f(x) + 6) = a · lim f(x) + b 
1 ~ · Ι ( Ι I —♦ 1(1 X—C 

= a-f(c) + ò = .9(x0) 
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Hence, lim g{x) = g(xa)\ therefore, g(x) ~ a- f(x) + b is continuous 
I —· Xo 

at x = XQ, V a, b e Ш. 

Proof of part (it): Let e > 0 be ABF. Since lim f(x) = f(xo) 
I—>Xo 

there exists aδ > Osuch that | /(x) — /(xo)| < £ whenever |x —io| < J. 

Consider | | / ( ζ ) | - | / ( ΐ ο ) | | : 

| | / ( * ) Ы / ( * о ) | < l/(x) - / ( xo ) l 
1 ч ■ * ' 

By Theorem 4.2.14 

Thus, whenever \x — xo| < δ, it follows that 

\f{x)\-\f{xo)\\<\f(x)-f(xo)\<e 

Therefore, |/(ж)| is continuous at x = XQ. 

The following theorem shows that when two functions / and g are con-
tinuous at x = xo, then so are the sum, product, and ratio of / and g. 
Furthermore, the proof of each part of this theorem follows directly from the 
limit theorems of Section 5.3. 

Theorem 5.4.4: Let / and g be real-valued functions with common domain 
V. If / and g are continuous at the point x = XQ € V, then 

(i) f + g is continuous at i = xo-
(ii) af + bg is continuous at x = Xo, V a, b С К. 

(iii) /■ g is continuous at x = xn. 

(iv) - is continuous at x = xo, provided that g(xo) Ф 0. 
9 
Proof: Let / and g be real-valued functions with common domain 
V, and suppose that / and g are continuous at the point x = xo e V. 

Proof of part (i): Let s(x) - f(x) + g(x). Then, Vs = V and 
s(x0) = /(xo) + э(хо)> and since / and g are continuous at x = xo, 
it follows that Urn f(x) - /(xo) and lim g(x) = g(xo)-
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Consider lim s(x): 
' xa 

lim s(x) = lim \f(x) + g(x)] = lim f(x) + lim g(x) 
t —» x0 X —* l o X —» X« I —♦ To 

> v. ' 

by Theorem 5.3.l(i) 

= /(xo) + ff(zo) = s(x0) 

Therefore, s(x) = / (x) + t/(x) is continuous at x = xo whenever / 
and g are continuous at x = xo. 

Proof of part (it): The proof of part (ii) is left as an exercise. 

Proof of part (iii): The proof of part (iii) is left as an exercise. 

Proof of part (iv): The proof of part (iv) is left as an exercise. 

The continuity of the functions / (x) 2 , \/f{x), and / ( x ) n follow directly 
from previous results. In particular, Theorem 5.4.4 can be used to show 
that / (x ) 2 is continuous, Theorem 5.3.6 can be used to show that v / ( x ) ' s 

continuous, and Theorem 5.3.5 can be used to show that f(x)" is continuous 
whenever the function / is continuous. 

Theorem 5.4.5: Let / be a real-valued function with domain V. If / is 
continuous at x = xo, then 

(i) / (x ) 2 is continuous at x = XQ. 
(ii) \/f(x) is continuous at x = xo, provided that /(xo) > 0. 

(iii) / ( x ) n is continuous at x = Xo, V n € N. 

Proof: Let / be a real-valued function with domain Ό, and suppose 
that / is continuous at x = xo-

Proof of part(i): Part (i) follows directly from Theorem 5.4.4 part 
(iii) with g(x) = f(x). 

Proof of part(ii): Part (ii) follows directly from Theorem 5.3.6. 

Proof of part(i): Part (iii) follows directly from Theorem 5.3.5. 
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The previous three theorems show that the continuity of one or more 
functions is a powerful property that is maintained even when the functions 
arc combined using the basic arithmetic operations. For example, when f(x) 
and g(x) are continuous at the point x = x0, then so are each of the following 
functions: 

kf(x) + l, |/(i)|, f(x) + g(x), f(x)g(x), f f , /(x)2, y/ffò 
9(x) 

Furthermore, the next theorem shows that the composition of two continuous 
functions can also be a continuous function. 

Theorem 5.4.6: Let / and g be real-valued functions with domains T>f and 
Vg. If / is continuous at x = g(xo) and g is continuous at x = xo, then the 
function / о g(x) = f (g(x)) is continuous at x = x0. 

Proof: Let / and g be real-valued functions with domains Of and 
T>g, and suppose that / is continuous at x = g(xrj) and g is continuous 
at x = x0. Let e > 0 be ABF. 

Since / is continuous at x = g(xo) and g is continuous at x = xo, 
3 δχ > 0 such that for у € £>/, \f(y) — f{{g{xo))\ < e whenever 
\y - g(x0)\ <Si. 

Also, since g is a continuous function, 3 62 > 0 such that for x € 
^V \θ(χ) ~ s(xo)l < <5i whenever |x - XQ| < ^2-

Thus, for x0 € Vfcg it follows that | /(x) — / ((<7(xn)) | < t whenever 
\g{x) — g{xo)\ < <5i which occurs whenever \x — XQ\ < 82- Hence, 
l/(z) - /((ff(^o)) 1 < e whenever |x - x0| < <52-

Therefore, the function / о g(x) = / (g(x)) is continuous at x = XQ. 

While the continuity is preserved under the ordinary arithmetic opera-
tions, the following example illustrates that the composition of two continuous 
functions may or may not preserve continuity. 

Example 5.4-5: Let / (x) = \fx and #(x) = -^. 

a. Determine the domain of / о д. 
b. Determine the domain of g о / . 
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с Determine whether / о g is continuous at x = —2. 

d. Determine whether g о f is continuous at x = —2. 

Solutions: Let f(x) = </x and g(x) — -^jj. Then, the domains of / and g 
areVf = [0,oo) and Vg = ( -oo , -1 ) U ( - l ,oo) . 

a. The domain of / о g is Vjog = (—oo, —1) U [0, oo) 

b. The domain of g о f is [0, oo). 

c. / о g is continuous at x = — 2 since (1) g is continuous at x = —2, (2) 
g(—2) = 2 e Ό/, and (3) / is continuous at x = 2. 

d. g о f is not continuous at x = — 2 since / is not continuous at x = — 2 
since —2 £ V]. 

Example 5.4-6: Let / (x) = v/x — 2 and g{x) = \/x + 1. 

a. Determine the domain of f о g. 

b. Determine the domain of g о / . 

c. Determine whether f о g is continuous at x = — 1. 

d. Determine whether go f is continuous at x = —1. 

Solutions: The solutions to Example 5.4.6 are left as exercises. 

The next theorem, Theorem 5.4.7, will show that the maximum and the 
minimum of two continuous functions are also both continuous functions. For 
example, if / (x) and g(x) are continuous at x = xo, then max(/(x), g(x)) and 
min(/(x), g(x)) are also continuous at x = XQ- Before stating and proving 
Theorem 5.4.7, the following lemma, which will be used in the proof of the 
Theorem 5.4.7, will be proved. 

Lemma 5.4.1: Let / and g be real-valued functions with domains T>/ and 
Vg. If x is in both Vj and T>g, then 

(i) max ( / (x) , 9(χή = i [/(*) + 5(χ)] + i | / ( x ) - g(x)\ 

(ii) min ( / (x) , g(x)j = - max ( - f(x), -g(x)j 

Proof: Let / and g be real-valued functions with domains P / and 
Vg. Let x be an arbitrary point in both Vj and Vg. 

Proof of part (i): Let M(x) = max (f(x), g(x)j. Now, either 
f(x) > g{x) or g(x) < f(x). 
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Case 1: Suppose that f{x) > g{x), and consider M{x). Since 
/(x) > 9ÌX) it follows that M{x) = max (f{x), g(x)j = f(x) and 
| / ( i ) - 3 ( i ) | = / ( i ) - f l ( i ) . Thus 

^(/(z)+ <?(*)) + £l/(*)-ff(z)l 

= \(f(x) + 9(x)) + \ f(x) - g(x) 

= /(x) 

Therefore, when f(x) > g(x), it follows that 

M(x) = max ( / ( i ) , 9 (x)) - i ( / ( x ) + 9(1)) + - | / ( x ) - g(x)\ 

Case 2: Suppose that f(x) < g{x), and consider M(x). Since 
/ (x) < p(x) it follows that, M(x) - max (f{x), g(x)J = g{x) and 
\f(x)-9{x)\=9{x)-!{*)■ Thus 

i ( / ( x ) + g(x)) + i | / ( x ) - g ( x ) | 

= i ( / ( x ) + <7(x)) + ^ (<? (x ) - / (x ) ) 

= g(x) 

Therefore, when f(x) < g(x), it follows that 

M{x) = max( / (x ) , g{x)) = i ( / ( x ) + <?(x)) + ^ | / (x ) -ff(x)| 

Hence, for all x in X>/ and Vg, it follows that 

M(x) = max ( / (1) , 3(1)) = ì ( /(x) + 9(1)) + jj | /(x) - fl(x)| 

Ргоо/ 0 / port i'üj.· The proof of part (ii) is left as an exercise. 
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Theorem 5.4.7 shows that max(/(x),g(i)) and min(/(x),g(x)) are con-
tinuous functions whenever / and g are continuous functions. 

Theorem 5.4.7: Let / and g be functions that are continuous at the point 
x = xo- Then 

(i) max \f(x), g{x)\ is continuous a t i = XQ. 

(ii) min f(x), g(x) is continuous at x = XQ-

Proof: Let / and g be functions that are continuous at the point 
X — XQ. 

Proof of part (i): First, note that by Lemma 5.4.7 

max f{x),g(x) f(x) + g(x)\ + i | / ( i ) - f l (x ) 

Since / and g are continuous at x — xo, by Theorem 5.4.4 parts (i) 
and (ii), it follows that f + g and / — g are continuous at x = xo· 

Also, since f + g and / — g are continuous at x — xo, by Theorem 
5.4.4 part (ii), it follows that | ( / + g) is continuous at x = in, and 
by Theorem 5.4.3 part (ii) and Theorem 5.4.4 part (ii), it follows 
that 5I/ — g| is continuous at x = Xo-

Hence, by Theorem 5.4.4(i), it follows that 

max f(x),g(x) = - f{x) + s(x)] + ~\f{x) - g{x)\ 

is continuous at x — xo-

Therefore, max (f(x), g{x)J = Ц / ( х ) + g{x)j + | | / ( x ) - g(x)\ is 
continuous at x = xo whenever / and g are continuous at x = xo. 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

Examples of the maximum and minimum of two continuous functions 
are given in Example 5.4.7. Note that the continuity of the maximum and 
minimum functions is clearly illustrated in Figures 5.4.2 and 5.4.3. 
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Example 5.4-7: Let f(x) — sin(x) and g(x) = cos(x). Since cos(a;) and 
sin(x) are continuous on R, it follows that max(cos(a:),sin(x)) is continu-
ous on R as is min(cos(a;),sin(x)). The plots of max(cos(x),sin(x)) and 
min (cos(x),sin(a:)) are given in Figures 5.4.2 and 5.4.3; Figure 5.4.2 displays 
max(cos(x),sin(x)), and Figure 5.4.3 displays min(cos(x),sin(x)). 

Figure 5.4.2 Plot of max(sin(jr),cos(x)). 

Figure 5.4.3 Plot of min(sin(i), cos(i)). 

When a function / is continuous on a closed interval \a, b], it can be shown 
that for any value у lying between / (a) and f(b), there is a point с € [a, b] such 
that /(с) = у. This result is known as the the Intermediate Value Theorem 
and is one of the most important results concerning continuity. This theorem 
is often used to show that there exists, or there does not exist, a solution to 
an equation of the form f{x) = 0 on a closed interval [a, b]. The Intermediate 
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Value Theorem is presented below without proof; for a proof of this theorem, 
see Elementary Analysis: The Theory of Calculus by K. A. Ross (2003). 

Theorem 5.4.8 (The Intermediate Value Theorem): Let f(x) be a 
real-valued function which is continuous on the closed interval [a, ò]. If у is 
any number between /(a) and /(6), then there exists at least one number 
с e [a, 6] such that /(с) = у. 

The Intermediate Value Theorem can be used to determine whether there 
exists a solution to the equation f(x) = у when f(x) is a continuous function 
on a closed interval [a, 6]. Specifically, given a function / that is continuous on 
{a, 6] and an equation f(x) — y, there will always exist a solution to f(x) — у 
when у lies between f(a) and f(b). Furthermore, if there exist points xi and 
X2 in [a,b] such that у lies between f(xi) and /(2:2), then there is also a 
solution to the equation f(x) — у that is in [a, b]. However, when у does not 
lie between / (a) and /(6), the Intermediate Value Theorem does not imply 
that there is no solution to f(x) = у in the interval \a,b]. For example, if 
f(x) = sin(x) and the equation being solved is f(x) = 0.5 on [0, π], then 
since sin(0) = sin(7r) = 0, checking the endpoints does not reveal that there 
is actually a solution to this equation, namely, x = — in the interval [Ο,π]. 

6 

Example 5.4-8: Determine whether there is a solution to each of the follow-
ing equations: 

a. Let f(x) = x2 — 2x on the interval [1,3]. Is it clear that there is a solution 
to the equation f(x) = 2 in [1,3]? 

b. Let g(x) = e~x on the interval [0,3]. Is it clear that there is a solution 
to the equation g(x) = 0.5 in [0,3]? 

с Let c(x) = cos(x) on the interval Is it clear that there is a L4 ' 2-1 
solution to the equation c(x) = 0.85 in [0,7r]?. 

Solutions: 

a. Since /(1) = - 1 and /(3) = 3, it follows from the Intermediate Value 
Theorem that there does exist с e [1,3] such that /(c) = 2. 

b. Since g(0) = 1 and g(3) = e~3 ~ 0.0498, it follows from the Intermediate 
Value Theorem that there does exist с e [0,3] such that g{c) = 0.5. 

с Since с ( - J = — < 0.71 and с [^Λ = 0, it is not clear from the In-
termediate Value Theorem whether there exists a value in the interval 

- , - such that c(x) = 0.85. 
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Corollary to Theorem 5.4.8: Let / be a real-valued function which is 
continuous on the closed interval [a, b]. If f(a)-f(b) < 0, then there exists at 
least one number с € [a, 6] such that /(c) — 0. 

Proof: This corollary follows directly from the Intermediate Value 
Theorem since /(a)· /(6) < 0 only when /(a) > 0 and f(b) < 0 or 
vice versa. 

5.5 Derivatives 

Another important application of limits is found in the derivative of a function. 
Recall from calculus that the derivative of a function at a point x = xo is the 
slope of the line tangent to the graph of the function / at the point (xo, /(xo))· 
Furthermore, the derivative of a real-valued function contains information on 
where the function is increasing, decreasing, or constant, as well as many other 
important properties related to the behavior of the function. A definition of 
the derivative of a function at a point XQ is given below. 

Definition 5.5.1: Let / be a function with domain Ό containing an interval 
/ . The derivative of a function / at the point XQ £ / is said to exist if and 
only if 

.. fix) - /(*o) l im 
x -» m X — Xo 

exists, and in this case the derivative of / at the point x = XQ will be denoted 
by f'(xo). 
Definition 5.5.2: A function / is said to be differentiable at a point xo if and 
only if the derivative of / exists at the point Xo; / is said to be differentiable 
on an interval / if and only if the derivative of / exists at every point in / . 

The derivative of a function / at a point xo is also sometimes denoted 

by -j-[fi.x)\x^x^ Ac Ι/(χ)1ι=ι„1
 o r f(xo)· The derivative of a real-valued 

function / , at the point xo, measures the rate of change of the function / in a 
neighborhood of xo- In fact, the derivative of / , at x = Xo, is often called the 
instantaneous rate of change of / at the point (xo,/(xo))- Two alternative, 
and equivalent, definitions of the derivative are given below. 

Definition 5.5.3: Let / be a function with domain V containing a neigh-
borhood of xo- The derivative of a function / at the point xo £ V is said to 
exist if and only if 

/(xo + h) - /(x0) hm ; 
/1- .0 h 
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exists. The derivative of / at the point x = XQ will be denoted by }'{xo)· 

Definition 5.5.4: Let / be a function with domain V containing a neigh-
borhood of XQ. The derivative of a function / at the point XQ S V is said to 
exist if and only if for every e > 0, there exists S > 0 such that 

, Д х ) - / Ы _ / ( 1 о ) 
X — XQ 

< e 

whenever \x-x0\ < δ. The derivative of / at the point x = XQ will be denoted 
by f'(xo). 

Note that among the three definitions of the derivative of / , only Defini-
tion 5.5.4 requires that f'(xo) be known. Thus, in order to prove that / has a 
derivative at x = XQ using Definition 5.5.4, the actual value of the derivative 
must be known. On the other hand, Definitions 5.5.1 and 5.5.3 can be used 
to determine the derivative of a function / at a point XQ without knowing the 
derivative, f'{xo). For this reason, Definitions 5.5.1 and 5.5.3 can be used to 
derive the general form of the derivative of a function / , while Definition 5.5.4 
cannot. The following four examples illustrate how Definitions 5.5.1 and 5.5.3 
can be used to determine the generic form of the derivative of a function / . 

Example 5.5.1: Let f(x) = x2 + 2x. Determine the derivative of f(x) at 
the point x = XQ using 

a. Definition 5.5.1. 

b. Definition 5.5.3. 

Solutions: 

a. Consider hm — : 
x — xo X — XQ 

f{x) - f(x0) ,. х2 + 2х-х1~ 2х0 hm = hm 
X —* X и X — XQ x — xii X — XQ 

1;™ {x - xo){x + xo) + 2{x ~ x0) , _ , _ - , 
11m — hm x + x0 + 2 

x -* Zo X — XQ x —· X(i 

Therefore, f'(xo) = 2XQ + 2. 
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b. Consider lim 
л—о 

f(x0 + h) - f(x0) 

f(x0 +h) - f{x0) ,. (xo + h)2 + 2(x0 + h) - xl - 2x0 lim = lim - —-
h — 0 h h-*0 h 

xl + 2x0/t + h2 + 2x0 + 2/t - Xp - 2x0 

2x0h + h2 + 2h 

= lim 
л — о h 

er = lim 
/ l — O 

lim f 2x0 + h + 2) = 2 x 0 + 2 

Therefore, f'(xo) = 2xo + 2. 

Example 5.5.2: Let f(x) = >Jx. Determine the derivative o f / ( x ) at the 
point x = xo using 

a. Definition 5.5.1. 

b. Definition 5.5.3. 

Solutions: 

n -A 1· / ( χ ο + h)- / ( xo ) 
a. Consider 11m ; — ■: 

ft — o h 
.. }{x0 + h) - / ( x 0 ) .. \ /zo + h - Jx^ 
Inn - = lim — — 

h^O h h — 0 h 

nm 
/ 1 - . 0 

y/xp + h - ,/xp" y/χρ + h + y/xp 

/1 \ Д о + Л + y/xö 

= lim 
xo + h — XQ 

/1 — 0 s/x0 + h' + y/xò" 

= lim 
Ί - Ό y/xp + /1 + y/χο" 2,/Ёр" 

Therefore, f'(xo) 
2у/хр~ 

b. The solution to part (b) is left as an exercise. 
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Example 5.5.3: Let f(x) = —=. Determine the derivative of / (x) at the 
point x = xo· 

Solution: Using Definition 5.5.3, note that 

lim 
h-0 

f{xo + h) - / (x0) = (τ,,+л)' ^ 
/l h-0 h 

xl - (xp + h)2 

h-0 /lX^(x0 + /l)2 um 

in - in - 2x0/i ~ /i2 ,. — 2xo - /i 
hm ——г =— = am h-0 i§(xo + Ί) : h—0 XQ(XO + / i ) 2 

- 2 x 0 

Therefore, / '(xo) = — -.3· 

Example 5.5.4·' Let / (x) = sin(x). Determine the derivative of / (x) at the 
point x = XQ-

Solution: Using Definition 5.5.3, note that 

г /(·το + fe) - /(До) _ .. sin(x0 + h) - sin(xo) 
h — 0 /l Л — 0 /l 

= l im 
h — 0 

sin(xo) cos(/i) 4- sin(/i) COS(XQ) - sin(xo) 

lim 
h — 0 

. . λ cos(h) - 1 , s sinlh) 
sin(xo)· + COS(XQ)· — - — 

Now, in Example 5.3.4 it was shown that lim ——- = 1. 
h — 0 h 
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Consider lim 
h — О 

cos(h) — 1 
h : 

cos(/i) - 1 
hm i-r = lim 

л — о /i — 0 

cos(/i) - 1 cos(h) + 1 
cos(h) + 1-

l i m
 со&2(У - 1 

л - о /i(cos(/i) + 1) 

= 1 i m - 5 ΐ " 2 ( ^ ) 
h - 0 /l(cOs(/l) + 1) 

= lim 
/i — 0 

— sin(/i) sin(/i) 
cos(/i) + il 

», . ,· sin(/i) , , ,. sin(/i) . ,, 
Now, since lim ■—;— = 1 and lim — = 0, it follows tha t 

h —о h h —о cos(n) + 1 

cos(/i) - 1 — sin(/i) sin(/i) 
lim ; — hm г hm т———-

h — 0 /l h - 0 /l h— 0 COs(/l) + 1 
- 1 - 0 = 0 

Thus 

l im 
h — 0 

sin(xo + /i) — sin(xo) 

lim 
/i — 0 

. cos(/i) - 1 . N sin(/i) 
sin(xo)· r Ь cos(xo)· —r—^ 

. cos(/i) - 1 . ч ,. sin(/i) 
= sin(xo) lim — h cos(xo) hm — - — 

h — о h Ч — о /i 

Therefore, 
dx 

sin(x) 

= sin(xo)· 0 + cos(xo)· 1 = cos(xo) 

= COS(XQ)· 

Theorem 5.5.1 shows tha t when a function is differentiable at x = Xo, then 
tha t function is also continuous at x = xo- Furthermore, the contrapositive 
of the theorem shows tha t when a function is not continuous at x = Xo, it is 
not differentiable at x = XQ, either. 
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Theorem 5.5.1: Let / be a real-valued function. If / is differentiable at 
x = XQ, then / is continuous at x = xo-

Proof: Let / be a real-valued function that is differentiable at x0. 
Since / is differentiable at xo, it follows that 

/ ( * ) - /(xo) /'(ar0) = um 
X —>Xlt 

Consider limx-.a,, [/(x) - f(xo)}· 
x - xo 

lim [/(i) - /(x0)l = Hm 
r —» xo x —' *o 

"X — XO 

LX — XQ 
[/(*)-/(*())] 

lim I(x - io)] lim 
С — К ) " X—XQ 

/ ( χ ) - / ( χ 0 ) 
X — XQ 

By Theorem 5.3.1(iii) 

= 0 - / ' ( x o ) = 0 
Hence, lim [f(x) - f(x0)\ = 0. Thus, lim /{x) 

I —· I(| I —> III 

fore, / is continuous at x = XQ. 

/(xo). There-

Note that the converse of Theorem 5.5.1 is not true. Specifically, there 
exist functions that are continuous at a point Xo, yet the function is not 
differentiable at xo- An example of a function that is continuous on К that is 
not differentiable everywhere on R is given in the following example. 

Example 5-5.5: Let /(x) = |x|. The plot of f(x) = |xj is given in Figure 
5.5.1. 

Figure 5.5.1 A plot of f(x)=\x\. 
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By Theorem 5.4.3(ii), f(x) = |x| is continuous on R, and hence / is 

continuous at x = 0. Consider lim for xn = 0: 
л - о h 

lim /(o + / t ) - / ( o ) = l i m l o^ i - io i = l i m Щ 
/i — 0 /l /ί->0 /ι Л - . 0 /l 

This limit does not exist since lim —- = — 1 and lim — = 1. 
л- .о- h Л-.0+ h 

Therefore, f(x) = |x| is not differentiable at x0 = 0. 

The next theorem provides useful results for determining the derivatives 
fix) of the following functions m/(x) + b, fix) + g(x),f(x)· gix), and -—■ at a 
9(x) 

point x — Xo whenever the functions / and g are differentiable at XQ. 

Theorem 5.5.2: Let / and g be real-valued functions. If / and g are differ-
entiable at the point x = x0, then 

(О ^Ы(х) + Ь]х=Хо=тГ(х0). 

(") ^ [ / W + f l ( i ) ] I = I O = / ' ( x o ) + s'(xo). 

(HO ^ [/(*) - fftoU,,, = ГЫ - fl'(xo). 

(iv) — [/(x)<?(x)UIn = / ' (xoM*o) + / Ы о ' Ы -dx 
/M 

lx —io 

f'ix0)gixo) - /(xo)g'(xo) . 
2 ' provided p(xo) ^ 0. 

1,1 

Proof: Let / and 5 be real-valued functions, and suppose that / 

and g are differentiable at the point x = Xo· 

Proof of part (i): From Definition 5.5.3, it follows that the deriva-

tive of mf(x) + 6 at x = xo is 

.. mf(x0 + h) + b- mf(x0) - b = urn ; 
/i->o h 

f(x0 + h,)-f(xo) , , , . = m- hm = mf (xo) 
h - . 0 h 

Therefore, — [m/(x) + b]x=Xo = mf'(x0). 
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Proof of part (ii): From Definition 5 5 . 3 , it follows tha t the deriva-

tive of f{x) + g(x) a t x — XQ is 

/(aro + h) + 5 (x 0 + /i) - /(aro) - 0(*o) 
a m 

h — 0 

[ i m f(x° + h) - f(xo) + l i m gfoo + b) -g(3rp) 
h — 0 /l h — 0 /l 
-. v ' 

By Theorem 5.3.1 (i) 

= f'(x0) + g'(x0) 
Therefore 

£ !/(*) + ^)Ux„ - / ' Ы + g'(xo) 
whenever / and g are differentiable a t x = Xo-

Proof of part (iii): The proof of par t (iii) is left as an exercise. 

Proof of part (iv): From Definition 5.5.3, it follows tha t the deriva-
f с \ i \ t · ,· fixo + h)g{xo + h) - f(xo)g(x0) tive of f(x)g(x) a t x - x 0 is lim — — — —— --■ -, 

h—>0 h 
Now 
/ ( x 0 + h)g(xQ + h) - f{x0)g{xo) 

= /(aro + h)g(x0) + f{x0 + h)g{x0) - /(ar0 + h)g(x0) - f{x0)g{x0) 

Thus£i / (x) 5 (x)]_ X ( i 

lim 
h — 0 

/(ar0 + h)g(x0 + h) - /(ar0 4- h)g(x0) 
h 

+ 
/(aro + h)g{x0) - /(ar0)g(xo) 

= l i m 
h — 0 

/(ar0 + h) g{x0 + h) - g{x0) + g(xo) /(ar0+ h) - / ( x 0 ) 
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Now, since / and g are differentiable at x = x0, from Theorem 

5.5.2 it follows that / and g are continuous at x — xo, and thus 

lim f(x0 + h) = / ( io ) and lim g(x0 + h) = 5(10). Hence, 

/ 1 — 0 /г 

= lim /(χο + Λ, lim ^ ^ 1 + 9 Ν lim /(*° + *> ' / ( * °2 

by Theorem 5.3.1 parts (i) and (iii). Thus 

li™ / ( χ ο + h)9{xQ + h)- f{x0)g(x0) 
hm 7 = f(xo)g {xo) + g(xo)f (χο) 

n — 0 IX 

Therefore 

£ l№gW\x=x„ = ГЫд(х0) + /(*o)s'(*o) 

whenever / and g are differentiable at x = XQ. 

Proof of part (v): Suppose that g(xo) ф 0. From Definition 5.5.3, 
f(x) it follows that the derivative of ——- at x = xo is 
9(x) 

= lim 9(χο+^)___ _ si1») 
Я*.)+ь) _ Я»«) 

и /(хр + /t)ff(xp) - /(X0),9(XQ + h) 
h — o g(x0 + h)g{xo)h 

,. /(xo + /t)g(xp) -/(xp)g(xo) + f(x0)g(x0) -f{x0)g{x0 + h) 
n^o g(x0 + h)g(xo)h 

lim 
Л — 0 

/(xo + /1) - / (x 0) , , .5(^0+ Ί) - f l (xo) 
/(Xo1 

ö(xo + /ι)/ι g(xo + h)g(x0)h 

Now, since / and g are differentiable at x = xo, it follows that / and 

g are also continuous at x = Xo. Thus, lim g(xo + h) = g(xo), and 
h —* О 
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since α(χα) Φ 0, it follows that lim , , , - . . 

Theorem 5.3.1 parts (i) and (iii) it follows that 

The Foundations of Calculus 

1 1 . Hence, by 

1 /(*■>+*) Usui 
hm — — -—- = hm — — · hm 

/i-»o n л — о g(xo + h.) л —о 

f(x0 + h) - f(x0) 

—:—г lira · , . 
g(xo) h-~o g(x0 + h) л —о 

1 ,. 9(xo + h) - g(xo) 
— ■ l im —— 

Thus, 
dx 

/(*) 
9{x) Τ = Χς> 

H*o+h) _ / ( i o ) 
ц т 9(x"+h) э(д") 

/i — o h 

· / (^θ) + -7 Г - - 7 ~ Т - 5 ( χθ) 
5(zn) fl(so) 9(xo) 

g{x0)f'{xo) - f(x0)g'(x0) 
9Ы)2 

Therefore 

/(f) 
dx [g(x) 

f'(x0)g(xo) - /(хр)д'(хо) 
<?Ы2 

whenever / and g are differentiable at x — XQ and g{xo) Ф 0. 

Example 5.5.6: Let f(x) = x2 and <?(x) = sinx. Determine 
d 

a. dx . /(a:) + 9{x) 

f(x)g(x 

J X=Xo 
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Solutions: 

a. Using Theorem 5.5.3(ii), 

d_ 
dx f(x) + 9{x) — 2XQ + cos XQ 

x-Xo 

b. Using Theorem 5.5.3(iii) 

d 
dx f(x)g(x) = 2XQ sin XQ + x0 cos XQ 

c. Using Theorem 5.5.3(iv), 

Г/(х) d_ 
dx 9(x) 

2XQ SVn XQ — XQ COS XQ 

sinxo 
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EXERCISES 

5.1 For each of the following sequences, find the smallest value of N such 
that \an - a] < 0.1, V n> N: 

a. an — and a = 1 
n + 5 
3 n + l l , 3 

b· an = — — and a = -

2n + 6 2 

c. an — — and a = 0. 

( -1 )" 
d. a„ = 1 =— and a = 1. 

/I*1 

5.2 Repeat Exercise 5.1 for \an — a\ < 0.01. 

5.3 Find a value of M that bounds each of the sequences in Exercise 5.1. 

5.4 Suppose that lim xn = 2, lim yn — 3, and yn > 0, V n € N. Determine 
П—.00 П—ЮО 

a. lim (ar„ + 2/„). 
n—*oo 

. . . ^n + 22yn 
b. hm ■ . 

n - ° ° Vn - 1 
с lim x2

n + by2
n. 

n—*oo 

d. lim уУбуп - 3xn. 

5.5 Prove each of the following theorems: 

a. Theorem: If an and bn are sequences of real numbers with 
lim an = a and lim 6„ = b, then 

lim (r · an + s · bn) — r ■ a + 5 · b, V r, 5 e К 
n—»oo 

b. Theorem: If an and bn are sequences of real numbers with 
lim an — a and lim bn = 6, then lim (an + ό„)2 = (a + è)2. 

n—>oo n—»oo n—cx> 
с Theorem: If a„ and 6n are sequences of real numbers with 

lim an- a and lim bn — b, then lim (ai + b2
n) — a2 + b2. 

n—.oo n—.oo n—>oo v ' 
d. Theorem: If an and 6n are sequences of real numbers with 

lim an = a and lim an + bn = c, then lim 6n = с - a. 
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e. Theorem: If an and 6„ are sequences of real numbers with 
lim an = a, a / 0, and lim — = с, then lim bn = ca. 

π—*oo n—»oo an n—»oo 

5.6 Let an be a bounded sequence and suppose that bn is a sequence of real 
numbers such that lim bn = 0. Prove that lim (anbn) — 0. 

5.7 Determine the following limits: 

a. lim ( 1 + 
2 4 3 n 

\ /n2 +l + y/n- \/n2 - 1 
b. urn 

n — oo n + 1 

I7n4+ 1 2 n 3 - 3 n + 1000 
c. l im 5 

«-co 12n4 - 11 

5.8 Prove each of the following theorems using an (-N proof: 

a. Theorem: If an is a sequence with lim an = a, then 
П — ' O O 

lim \an\ = \a\. 
n—»oo 

b. Theorem: If an is a sequence with lim an '= a, then lim an — a . 
n—»oo n—»oo 

c. Theorem: If an is a sequence of nonnegative real numbers with 
lim an — a, then lim sfa^ = y/a. 

n—»oo n—»oo 
d. Theorem: If an is a convergent sequence with lim a„ = a, then 

n—»oo 
1 n 

- У а „ -» a. 
i = l 

e. Theorem: If an is a convergent sequence with lim an = o, then 
n—»oo 

3 yVfc G N such that |a„ - a| < - whenever n > TV/ь, V к € N. 
к 

f. Theorem: If an is a convergent sequence with lim on = a, then 
n—»oo 

!

CLn -i- am — а < £ whenever n,m> N. 

5.9 Prove that if an is a sequence of nonnegative real numbers with an —> a, 
then a£ - a k , V j t e N. 
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5.10 Use the squeeze theorem to determine the limit for each of the following 
sequences: 

sin(n2) 
a. aT, 

b. ò„ = 

с. cn - 1 + 

n 
1 — cos(n) 

n+ 1 
1 

n + 1 
/ n — 

d. cn = 
П — 1 N 

5.11 Prove that each of the following sequences is a monotone sequence: 

a. an = \ /n2 + n — n 

b. dn= (l + 
1 ^ 2 

n + 2 
n 

с. с, " ^/^7T 
d. όι = \/2, 6 2 = > / 2 + A bn+i = N / 2 T 5 ^ 

1 
e· en = г 

en + 1 
5.12 Prove that each of the sequences in Exercise 5.11 converges to a limit. 

5.13 Let an be a sequence of real numbers. Assuming that an is differentiable 
with respect to n, prove that 

a. an is a nondecreasing sequence if and only if — [an\ > 0, V n € N. 
an 

b. <zn is a nonincreasing sequence if and only if — \an] < 0, V n ζ N. 
an 

5.14 Let a„ —> a'' ' , V г € N. Use mathematical induction to prove each of 
the following theorems: 

fc + l fc+l 

a. Theorem: lim ] Г 4 ° = Σ «( t ) . V /с e N. 
~" t = l i = l 

fc+l fc+l 

b. Theorem: lim Д aj,1' = Д a(l), V /с e N. 
« = 1 г = 1 
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5.15 Let α„ be a Cauchy sequence of real numbers. Prove that 

a. an is bounded. 
b. There exists a real number a such that lim an = a. 

с If an and bn are Cauchy sequences, then an + bn is a Cauchy sequence. 
d. If an and bn are Cauchy sequences, then anbn is a Cauchy sequence. 

5.16 Let an and bn be monotonie sequences of real numbers. Prove that 

a. can is a monotone sequence V e i l . 
b. an I and 6n j , then (a„ + i>„) J.. 
с If an and bn are nonnegative nonincreasing sequences, then anbn [. 

5.17 Let an - y/4n2 + 8n - 2n. Then 

a. Show that an ]. 
b. Show that an is bounded by 4. 

с Determine lim \JAn2 + 8n — In. 

( 1Y 
5.18 Let an = I 1 -|— I . Prove that an is a nondecreasing sequence that is 

bounded above by 3. 

( iY + 1 

5.19 Let i„ = H — j . Prove that bn is a nonincreasing sequence that is 

bounded below by 2. 
5.20 Let an be a nonincreasing sequence of positive real numbers and define 

a.\ + a.2 + аз + · ■ ■ + an 
In = - : 

n 
a. Show that a\ > ^γη > an, V n e N. 
b. Show that 7n+i can be written as 7„ + i = — —. 

n + 1 
с Show that yn is a nonincreasing sequence. 
d. Let a\ = 4 and show that yn —> 7 for some value of 0 < 7 < 4. 

5.21 Prove that if X is a subset of R and г = inf X, then г is unique. 

5.22 Prove that if an is a nonincreasing sequence of real numbers, then an 
converges if and only if it is bounded from below. 
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5.23 Determine the following limits: 

x2 + x 
a. l im —? -

x—2 x2 - 1 
x2 + x 

b. lim - 5 — -
x2 + 4x + 3 

с hm — 
z - - 3 X + 3 

5.24 Prove each of the following theorems using an e-δ proof: 

a. Theorem: If / (x) is a real-valued function with 
lim f(x) = L, then lim kf(x) + 1 = kL + l, V A:, / € R. 
x—»a i—»a 

b. Theorem: If / (x) is a real-valued function with lim f(x) — L, then 
lim |/(a:)| = \L\. 
x—*a 

c. Theorem: If f(x) is a real-valued function with lim f(x) = L, then 

lim / (x ) 2 = L2. 
x—*a 

d. Theorem: If / (x) is a nonnegative real-valued function with 
lim f(x) = L, then lim \^f(x) = VT. 
x—*a x—»a 

5.25 Prove each of the following theorems: 
a. Theorem: If a € R, then lim xn = an, V n € N. 

x—>a 
b. Theorem: If lim /(x) = L, then lim f{x)n = L " , V n e N . 

x—»a x—»a 
c. Theorem: If p(x) is a polynomial, then lim p(x) = p(a), V a € N. 

x—>a 

5.26 For г € N, let /j(x) be functions defined on a common domain V. Given 
that lim /j(x) = L, for all г € N, prove that 

X—*C 

n + 1 n + 1 

a. lim J2 Ш) = ^ £ i , V n e N . 
1 _ * С | = 1 i = l 

m + 1 n + 1 

b. lim Y[ fi(x) = Д L i . V n e N . 
X—»C 

5.27 Let / and t/ be real-valued functions with common domain P . Assuming 
/ and g to be continuous at x = χυ, prove that 

a. af + bg is continuous at x = Xn, Va, 6 e R. 
b. fg is continuous at x = xu. 
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/ 
с. — is continuous at x = XQ, provided that g(xo) Ф 0. 

5.28 Prove each of the continuity results in Exercise 5.21 with an e-δ proof. 

5.29 Let / and g be real-valued functions with domains Vj and VQ, respec-
tively. Prove that 

a. If x € "Dj and x 6 T>g, then 

min (f(x), g(x)) = - max (-/(a:), ~g{x)) 

b. If / and g are continuous at x = xo, then min(/(x), <7(x)) is contin-
uous at x = XQ. 

5.30 Let / be a function with domain (—00,00), having the property that 
f(x + h) = f{x) ■ f(h) for all x, h € R and /(0) ф 0. Then 

a. Show that/(0) = 1. 

b. Determine / ' (x) = lim f{* + h) " / ( x ) 

Л - . 0 /l 

с Show that f(x) = eAl where λ = / ' (0) . 

5.31 Prove that if /(x) is bounded (i.e., | / (x) | < M for some constant M) and 
g(x) approaches 0 as x approaches c, then lim f(x) ■ g(x) = 0. 

5.32 Prove that lim | x ■ sin - 1 = 0. 
x —>0 \ X J 

5.33 Let fi(x) be continuous function on a domain P , V i e N. Prove that 
n + l 

a. У , / i ( x ) ' s a continuous function on X>, V n € N. 
t = l 

n + l 

b. TT fi(x) is a continuous function on P , V n ξ N. 

с max(/i(x)) is a continuous function on T>. 
d. min(/i(x)) is a continuous function on V. 

5.34 Let fix) = mx + b. Prove that for any e > 0, δ = ;—- is a positive 
1 + \m\ 

number such that | /(x) - / (c) | < e whenever |x — c| < <5, proving that 
f(x) is continuous at x = c. 
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5.35 Let / and g be continuous at x — XQ- Prove that 
о 

a. ma.x(f(x),g(x)) is continuous at x = x0. 
b. max ( | /(я) | , \g(x)\) is continuous at x = xo-
с max (min (f{x)2, g{x)) , f(x) + g{x)) is continuous at x = xo· 

5.36 Determine where each of the following functions is continuous in M—also, 
for each isolated point where a function is not denned, determine whether 
the function can be defined there so as to make it continuous: 

a-/(x) = jdw 
2 x - 4 

c · h { x ) = r̂ N 
5.37 Let / (x) be continuous at x — XQ and g(x) continuous on an interval 

containing /(xo)· Prove that g о f is continuous at x = xn. 

5.38 Let / be a continuous function with domain [0,1]. Prove that if for all 
x € [0,1], 0 < f(x) < 1, then 3 ψ e [0, lj such that /(ф) = ф. 

5.39 Use the Intermediate Value Theorem to show that the following equations 
have at least one real solution in the specified interval: 

a. x2 - 5 = 0 on [2,3] 
b. x3 + x + 1 = 0on [-1,0] 
с x3 - 3x2 + 1 = 0 on [0, lj 
d. cosx = x on [0, f ] 
e. x3 cos(x) + 1 = x2 on [-π, π] 

5.40 Prove that if f(x) is a continuous function on К with /(c) > 0, then there 
exists δ > 0 such that f(x) > 0 whenever |x — c| < δ. 

5.41 Use an e-δ proof to show that к ■ f(x) + lg(x) is continuous at x = с 
whenever f(x) and g(x) are continuous at x = с 

5.42 Use Definition 5.5.3 to find the derivative of each of the following func-
tions: 

a. f(x) — x2 + 4x 

b. g(x) = -2 
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d. p(x) = xn for n e N 
e. s(x) = sin(x) 

5.43 Use Definition 5.5.1 to find the derivative of each of the functions given 
in Exercise 5.4.2. 

5.44 Show that the function 

( x2 + X+ 1 if x > 1 

I 4a; - 1 if x < 1 

is continuous at x = 1 but not differentiable at x — 1. 

5.45 Let / be a real-valued function defined on R, and suppose that for all 
x, у € R with a: ^ у that j / ( i ) — /(y) | < (x — J/)2· Prove that there exists 
a real number с such that / ' ( i ) = 0, Va; e R. 

5.46 Let f(x) be differentiable on the interval [a,b]. Prove that 

a. If f(x) is a monotone nondecreasing, then f'(x) > 0, V x £ [a, 6). 
b. If / ( i ) is a monotone nonincreasing function, then f'{x) < 0 for all 

x € [a,b]. 



Chapter 6 

The Foundations of Algebra 
The logical foundations of most areas of modern mathematics, including math-
ematics encompassing algebra and calculus, are based on the field of math-
ematics known as set theory. Unlike the development of any other area of 
mathematics, the development of set theory was not based on the need to 
solve some physical or earthly problem. Moreover, set theory is a relatively 
new addition to modern mathematics and has changed the direction of mathe-
matics. Georg Cantor (1845-1918) is credited with first introducing the ideas 
of sets and set theory in late nineteenth century, but not without some con-
troversy. Cantor is also credited with recognizing that infinite sets can have 
different sizes. In particular, Cantor proved that the set of rational numbers 
contains fewer elements that the set of real numbers; for more information on 
Georg Cantor and the development of set theory, see GEORG CANTOR: His 
Mathematics and Philosophy of the Infinite by J. W. Dauben (1979). Other 
mathematicians with key contributions to the development of set theory in-
clude Bernhard Bolzano (1741-1848), Richard Dedekind (1831-1916), Ernst 
Zermelo (1871-1953), Bertrand Russell, George Boole, and Kurt Godei. 

6.1 Introduction to Sets 

The study of modern mathematics requires that a student be well prepared 
in the area of set theory. For example, the theory of calculus as well as the 
theory of algebra have modern foundations built on set theory, and even the 
field of statistics is built on a foundation starting with set theory. The first 
use of the term set was due to Bolzano, and the definition of a set and element 
of a set are given below. 

Definition 6.1.1: A well-defined collection of objects is called a set. The 
collection of all objects of interest is called the universal set or the universe 
and is denoted by Ω. An object in a set is called an element. 

Definition 6.1.2: A set is said to be a well-defined set if and only if there is 
a method of determining whether a particular clement is in the set. 

The importance of using only well-defined sets was first illustrated by 
Bertrand Russell in 1901 with the following example. Let R be the set of all 
sets that are not members of themselves (i.e., R = {A : A g A}). Russell's 
set R leads to the following paradox, known as "Russell's paradox": 

Is Re R? If Re R, then R <£ R. However, if R <£ R, then R e R. 

248 
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Clearly, a paradox of this nature is undesirable and hence only well-
defined sets will be considered in this section. An example of a well-defined 
set is 

A = {odd natural numbers less than 20} 

and an example of a set that is not well defined is 

В = {some odd natural numbers} 

Clearly an element is in A if and only if it is one of the numbers 1, 3, 5, 
7, 9, 11, 13, 15, 17, or 19, and hence Л is a well-defined set. On the other 
hand, there is no way of knowing from the definition of the set В whether a 
particular odd natural number is in B. Hence В is not a well-defined set. 

Example 6.1.1: The set of prime numbers less than 80 is a well-defined set 
with 

P8 0 = {2, 3,5, 7,11,13,17,19,23,29,31,33,41,43,47,53,59,61,67, 71,73,79} 

The elements of P 8 0 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 33, 41, 43, 47, 
53, 59, 61, 67, 71, 73, and 79. 

Note that there is nothing in the definition of a set that requires that the 
elements of a set be numbers. Now, when x is an element of a set A, this will 
denoted by x € A, and when x is not an element of the set A this will be 
denoted by x <£ A. Also, there are several different ways to represent a set, 
including roster notation, set-builder notation, and interval notation. A set 
is listed using roster notation by listing the elements of the set, separated by 
commas, and enclosed in curly set braces; the use of the set bracket notation 
{ } is due to Cantor in an article published in Mathematische Annalen (Cantor 
1895). Roster notation is frequently used with small sets; for example, the set 
consisting of the prime numbers less than 80 was listed in roster notation in 
Example 6.1.1. 

Definition 6.1.3: A set A is said to be a finite set if and only if the number 
of elements in A is a natural number. A set that is not finite is called an 
infinite set. 

For example, A = {—3,-1,2,4,11,112} is a finite set and Z, the set of 
integers, is an infinite set. Finite sets can often be listed using roster notation, 
while infinite sets can sometimes be listed using roster notation by listing 
enough elements to show the pattern of elements in the set and then indicating 
that same pattern continues on indefinitely. For example, N= {1,2,3,...}. The 
first few elements illustrate the pattern, and the ellipsis (i.e., the three dots 
...) indicate that the same pattern continues on indefinitely. 
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Example 6.1.2: Determine whether each of the following sets is finite or 
infinite: 

a. S := the set of real-valued solutions to the equation i 4 - 5a;2 + 4 = 0. 
b. Zo := is the set of odd integers. 
с V — is the set of prime numbers. 

Solutions: 

a. S is finite since S = {—2, —1,1,2}. 
b. Zo is infinite since Zo = {0, ±1 , ±2, ±3, . . .} 
c. V is infinite by Theorem 4.3.16. 

With infinite sets, and in some cases finite sets, it is often impossible 
to list the set using roster notation. When this is the case, a set is usually 
written using mathematical notation for describing a set and its elements 
known as set-builder notation. A set is represented using set-builder notation 
by using mathematical notation to describe the set by listing the properties 
that its elements must satisfy. Thus, set-builder notation is a simply way 
of using mathematical notation to represent the set of elements having a 
particular property called the defining property. For example, the set of the 
prime numbers less than 100 can be expressed as using set-builder notation 
as Pioo = {p '■ P is a prime number and p < 100}, and the set of rational 
numbers can be written using set-builder notation as 

Q = ir : r = - where a, b € Z and b ψ 0 \ 

Example 6.1.3: Let T be the set of Fibonacci numbers. Express T using 
set-builder notation. 

Solution: The set of Fibonacci numbers can be expressed as 

T = {Fn : Fi = F2 = 1, and Fn+2 = Fn + 1 + Fn for n € Щ 

Finally, recall that an interval is an infinite collection of real numbers 
forming a continuum. The ends of an interval can be open or closed. That is, 
the end of an interval is open when the end does not include its cndpoint and 
closed when the end of the interval does contain the end point. For example, 
the set {x € IR : 0 < x < 10} is the open interval (0,10), and the set 
( i f R : 0 < x < 10} is the closed interval [0,10]. Recall further that an 
interval can be half-open/half-closed such as the interval [0,10). 



Introduction to Sets 251 

Example 6.1-4·' Several examples of sets and the different methods used to 
represent them are given below: 

a. A = {dog, cat, cow, pig, horse, chicken, fish} is a set listed using roster 
notation. 

b. В = {0, ± 1 , ±2, ±3 , ±4, . . .} is the set, of integers listed using roster no-
tation. 

с / = [0, oo) is the set of nonnegative real numbers listed using interval 
notation. 

d. С = {/ : / is a real-valued continuous function} is the set of real-valued 
continuous functions, listed using set-builder notation. 

e. £ = { i e R : x2+l < 0} is the set of values of the function f(x) = x2+l, 
where f(x) < 0, listed using set-builder notation. 

Note that set E in Example 6.1.4 contains no elements since x2 + 1 > 0 
for all x € К. Thus, the set E is empty and hence is called an empty set. 
Empty sets are commonly encountered in set theory, and the mathematical 
definition of an empty set is given below. 

Definition 6.1.4·' The set containing no elements is called the empty set and 
is denoted by 0. 

Note that the empty set may also be represented by {} . It is important 
to note that the set {0} is not the same as 0, since {0} does contain one 
element, namely, the empty set; however 0 has no elements. In other words, 
0 € {0} and thus, the set {0} is not empty. 

Now, the two basic reference sets in set theory are Ω, the universe, and 
0, the empty set. However, most set theory is based on subcollections of 
elements in Ω. Subcollections of Ω are called subsets, and several important 
definitions that are used to relate subsets are given below. 

Definition 6.1.5: A subcollection of elements of a universe Ω is called a 
subset of Ω. When a set Л is a subset of Ω, this will be denoted by А С Ω. 

Definition 6.1.6: Let A and В be subsets of Ω. The set A is said to be a 
subset of the set В if and only if every element of A is also an element of B. 
When A is a subset of B, this will be denoted by А с В. 

Definition 6.1.7: A set A is said to be a proper subset of a set В if and only 
if A is a subset that is strictly contained in B. When A is the subset of В 
that contains all the elements of B, then A is called an improper subset of B. 

The subset relationship between two sets is analogous to the ordering of 
real numbers. In particular, А С В is the set version of a < b for numbers. 
In many presentations on set theory the special notation А С В is used to 
denote that Л is a proper subset of B, while А С В is used to denote that 
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A may be an improper subset of B. However, since this distinction will not 
affect any of the results presented in this chapter, no distinction will be made 
between proper and improper subsets. Thus, the notation А С В is meant to 
imply that A might be either a proper or improper subset of B. 

Example 6.1.5: Let the sets A,B, and С be defined as follows: 

A - {z G Z : z = Ik for some к € Z} 

В = {z € Z : z = ЗА; for some к £ Z} 

С = {z € Z : z = 6/c for some к € Σ} 

Then, C c / 1 and С С B. In fact, С is a proper subset of both A and B, 
while ß does contain many even numbers В <f_ A. 

Note that the empty set is a proper subset of any nonempty set. Also, 
any proper subset of a set В must necessarily exclude at least one member of 
B. For example, if the set A is a proper subset of a set B, then V x £ A, it 
follows that x € B; however, there must be elements in В that are not in A. 
For example, the set of even integers Zg is a proper subset of the integers since 
every element of Zg is in Z but not every integer is in Zß. Similarly, the odd 
integers Ъо is a proper subset of Z. However, the set formed by combining 
the even and odd integers is an improper subset of Z since it contains every 
possible integer and hence, is exactly Z. 

Now, suppose that A and В are subsets of Ω, A is a subset of B, and В 
is a subset of A, also. In this case, since every element of A is also an element 
of В and vice versa, it follows that A and В must have exactly the same 
elements. When two sets have exactly the same elements, these sets are said 
to be equal sets. The mathematical definition of equal sets is given below. 

Definition 6.1.8: Let A and В be subsets of Ω. The sets A and В arc said 
to be equal sets if and only if А С В and В С А. 

The definition of equal sets given above is equivalent to saying that two 
sets are equal if and only if they have exactly the same elements. For example, 
the set of even integers and the set of integer multiples of 2 are clearly equal. 
In Section 6.1.3 an algorithm for proving that two sets are equal is given. 

Example 6.1.6: Let A = [0,10], В = {1,2,3,4,5,6,7,8,9,10}, and let the 
set С = {x € R : x1 + 1 < 10}. Determine which of the sets A, B, and С are 
subsets of each other. 

Solution: The solution to Example 6.1.6 is left as a exercise. 
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The next theorem shows that the empty set is a subset of every subset of 
Ω. Furthermore, the empty set is a proper subset of every nonempty subset 
of Ω. 

Theorem 6.1.1: Let A be a subset of Ω. Then, 0 С А. 

Proof: Let A be a subset of Ω. Note that 0 is a subset of A if and 
only if every element in 0 is also in A. Since there are no elements 
in 0, this is true by default. 

6.1.1 Set Algebra 

The algebra used in set theory is somewhat analogous to simple arithmetic. 
In particular, new sets are often of created by combining the elements of the 
sets, which is analogous to addition of numbers, or by taking the elements that 
are in one set but. not another, which is analogous to subtraction of numbers; 
there is even a method for creating a new set analogous to multiplication (i.e., 
the Cartesian product of sets), which will not be discussed in this text. Other 
set algebraic ways of creating new sets include forming a set by taking the 
elements common to two sets or the elements that are in the universal set but 
are not in the original set. In particular, the basic set operations that are 
used to create new sets are union, intersection, and complementation. The 
definitions of the sets resulting from the application of these operators are 
given below. 

Definition 6.1.9: Let A and В be subsets of Ω. The union of the sets A 
and В is defined to be {x £ Ω : x £ A or x £ B} and is denoted by Al) B. 
Definition 6.1.10: Let A and В be subsets of Ω. The intersection of the 
sets A and В is defined to be {x £ Ω : x £ A and x € B} and is denoted by 
AnB. 
Definition 6.1.11: Let Л be a subset of Ω. The complement of the set A is 
defined to be {x £ Ω : x £ A) and is denoted by Ac. 

Note that U and П are binary operators whose arguments are sets; comple-
mentation is a unary operator whose argument is a single set. The symbols U 
and П were introduced by Giuseppe Peano (1858 1932) in 1888. In fact, most 
of the set notation currently used in set theory is due to Cantor, Peano, and 
Ernst Schröder (1841-1902) and was introduced between 1880 and 1920. The 
three set operations union, intersection, and complementation are often used 
in forming new sets. For example, given two sets A and B, several examples 
of new sets that can be created using these set operations arc listed below: 

AnBc, {АГ\В)и{АпВс), (ACUBC)D{A\JB), (AuB)c, {АПВ)С 
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Example 6.1.7: Let Ω = R, A = (0,10), В = {x : \x - l\ < 5}, and С = Q. 
Determine 

a. Л и й 
b. Л П В 
c. Лс 

d. Cc 

Solutions: Let Ω = R, Л = (0,10), 5 = {i : | i - 1| < 5}, and С = Q. 

a. First, note that В is the interval (-4,6) . Now, by definition, Ali B 
contains all the points that are in either A or В or both A and B. Thus 

A U В = (0,10) U (-4,6) = (-4,10) 

b. By definition, AC\ В contains only those points that are in both A and 
B. Thus 

Л П В = (0 ,10)П(-4,6) = (0,6) 

c. By definition, Ac contains all the points that are in Ω that are not in the 
set A. Thus 

Ac = (0,10)c = (-co, 0] U [10, oo) 

d. By definition, Cc contains all of the points that are in Ω that are not in 
the set С. Thus, Cc = Qc, which is the set of irrational numbers (I). 

The following properties of sets will be taken as axioms (i.e, as self-
evidently true propositions). If Л, В, and С are subsets of Ω, then 

Set Axiom 1: Au В = Bl) A (commutative property of unions) 
Set Axiom 2: AC\ В = В C\ A (commutative property of intersections) 
Set Axiom 3: (ALiB)uC = Au(BuC) (associative property of unions) 
Set Axiom 4: (А П В) П С = А П (В П C) (associative property of 
intersections) 

Note that, these four axioms are analogous to the commutative and associative 
axioms for addition and multiplication given in Chapter 4. 

Definition 6.1.12: Let A and В be subsets of Ω. The sets A and В are said 
to be disjoint if and only if А П В — 0. 

An example of two disjoint sets is A = {1,3,5} and В = {2,4,6,8}. Two 
sets that are always disjoint are A and Ac. Note that when two sets A and В 
are disjoint, then they have no elements in common and there is no nonempty 
subset of A that is a subset of B, and vice versa. Other commonly encountered 
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disjoint sets include the set of odd integers and the set of even integers and the 
set of nonnegative real numbers [0, oo) and the negative real numbers (—oo,0). 
A final example of a common use of disjoint sets is the deleted neighborhood 
discussed in Chapter 5. In particular, a deleted neighborhood of .τη of radius 
e is {x 6 R : 0 < |x — xn| < f}> which can be written as the disjoint union 
(x0 - e,xo) U (χο,χο + 0 · 

Example 6.1.8: Let Ω = Z, A = {x e Z : 3|x}, В - {x € Z : 2\x}, and 
С = TLo- Determine 

a. AuB 
с. АПВ 
с. В ПС 

Solutions: 

a. A U В - {х e Z : х is divisible by 3 or is even} = {0, ±2, ±3, ± 4 , . . . } . 
b. А П В = {x e Z : 3|x and 2\x} = {x e Z : x = 6fc for A: e Z}. 
с ß П С = {x e Z : x is even and x is odd} = 0. Hence, В and С are 

disjoint sets. 

6.1.2 Element Chasing Proofs 

A common method of proof that is used in set theory is the method of the 
element chasing proof. An element chasing proof is often used to show that 
two sets are equal or to show that one set is a subset of the other. An algorithm 
for showing that a set A is a subset of a set В using an element chasing proof 
is given below. 

Algorithm for Showing A is a Subset of B: Let A and В be subsets of 
Ω. To prove that Л is a subset of В 

1. Let x € A be arbitrary but fixed. 
2. Using a sequence of logical arguments, show that x € B. This is known 

as "chasing x from the set A to the set B." 
3. Conclude that AC B. 

Note that showing that А С В simply amounts to taking an arbitrary 
element x in A and then "chasing" it to the set В with a sequence of logical ar-
guments. The following two theorems will be proved with an element chasing 
proof. The first theorem shows that set containment is a transitive relation, 
and the second theorem provides a result concerning the relation between the 
complements of A and В when А С В. 
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Theorem 6.1.2: Let A,B, and С be subsets of Ω. If А с В and В С С, 
then Ас С (i.e., Ac В СС). 

Proof: Let Л, В, and С be subsets of Ω, and suppose that А С В 
and В С С. Now, to show that А с С, it must be shown that every 
element in A is also in C. 

Let x € A be ABF. Now, since А С В, it follows that x £ B. 
Furthermore, since В С С, it follows that i f C , also. Thus, when 
x G A it follows that x € C, and therefore А С С. 

Theorem 6.1.3: Let А, В С Ω. If Л С В, then Вс С Лс. 

Proof: Let Л, В С Ω and suppose that А С В. 

Let х € 5 е . Then, х £ В, which means that z £ Л since Л С В. 
Hence, x € Лс and therefore, B c С Лс whenever А С В. 

Now, Definition 6.1.8 states that, the sets Л and В are equal sets if and 
only if Л С В and 5 c A. Proving that two sets are equal requires proofs 
of both А с В and В С Л. A proof of equality is often called a dual-
containment proof. An algorithm for proving that two sets are equal with an 
element chasing proof is given below. 

Algorithm for Showing that Two Sets Are Equal: Let A and В be 
subsets of Ω. To prove that the sets A and В are equal 

1. Prove that Л с В; that is, let x € A be arbitrary but fixed, and show 
that x € B. 

2. Prove that В С A. To do this, let x € B be arbitrary but fixed, and 
show that x £ A. 

3. Steps 1 and 2 prove that Л С В and В С Л (i.e., dual-containment), and 
therefore it follows that A — B. 

It is very important to remember that a proof of set equality is a two-step 
proof (i.e., dual containment) that first requires a proof of Л С В followed by 
a proof of В С A. The following theorem, which shows that (Лс)с = Л, will 
be used to illustrate an element chasing proof of set equality. 
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Theorem 6.1.4: Let A be a subset of Ω. Then, (Ac)c = A. 

Proof: Let Л be a subset of Ω. To show that (Ac)c = A, it must be 
shown that (Ac)c С A and also that А С (Лс)с. 

First, let x e (Ac)c be ABF. Since x € {Ac)c, it follows from the 
definition of complementation that x £ Ac. Now, since x g Лс, it 
follows that x € A, and hence (Ac)c С А. 

Conversely, let a; e Л be ABF. Then clearly x g Ac, which means 
that x e (Лс)с, and hence Л С (Лс)с. 

Thus, (Лс)с С Л and Л С (Лс)с, and therefore (Лс)с = Л. 

Note that the result (Лс)с = Л is analogous to the result for the double 
negation of a statement given in Chapter 2 (i.e., ~,(~,P) = P) and is also anal-
ogous to the double negative of a number (i.e., -(—a) = a). The remaining 
theorems presented in this section provide useful relationships and tools for 
working with the union, intersection, and complements of sets. 

Theorem 6.1.5: Let Л, В be subsets of Ω. If Л С В, then A\J В = В. 

Proof: Let Л, В С Ω with Л С В. То show that Л U В = В, it 
must be shown that Л U В С ß and В с AuB, also. 

First, let x e Л U ß be ABF. Since x € Л U В, it follows from the 
definition of union that a; € Л or z e В. 

Case 1: If я S Л, then i f ß since А с В, and hence Л и В с В . 

Case 2: If x £ Л, then a; must be in В and again Л U В с J9. 

Therefore, in either case, Au В С В. 

Conversely, let x € В be ABF. Then, clearly x € Л or x e Л, which 
means that z € Л U B. Hence, В С AU B. 

Thus, AuB С В and В с Л и В , and therefore AuB = В whenever 
AcB. 

■ 

The following results follow directly from Theorem 6.1.5. In particular, 
the corollary to Theorem 6.1.5 shows that the union of any set Л with the 
universal set is the universal set, and the union of Л with the empty set is A. 
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Corollary to Theorem 6.1.5: Let Л be a subset of Ω. Then 

(i) Л и П = Ω. 
(ii) 0 и Л = Л. 

Proof: Both parts of this corollary follows directly from Theorem 
6.1.5 since А С Ω and 0 С А. 

Theorem 6.1.6: Let А, В be subsets of Ω. If Л С В, then Л П В - А. 

Proof: Let Л, В be subsets of Ω with Л С В. 

First, let х e А П В be ABF. Since х € Л П ß , it follows that x e Л 
and x e В, and hence x e Л. Thus, Л П ß С Л. 

Conversely, let x € Л be ABF. Then, x € В since Л С 5 , and hence 
x € Л П В. Therefore, Л с Л П В. 

Thus, A n ß C ß and В С АГ)В, and therefore АПВ = В whenever 
АС В. 

Corollary to Theorem 6.1.6: Let A be a subset of Ω. Then 

(i) Л П П = А 
(ii) <DnA = <è. 

Proof: Both parts of this corollary follows directly from Theorem 
6.1.6 since Л С Ω and 0 С Л. 

Definition 6.1.13: Two sets Л and В are said to form a partition of Ω if 
and only if Л П В = 0 and Л U Л = Ω. 

The following theorem shows that the sets A and Ac form a partition of 
the universe. In particular, part (i) of this theorem shows that Ω is the union 
of the sets Л and Ac, and part (ii) shows that A and Ac are always disjoint 
sets. 
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Theorem 6.1.7: Let Л be a subset of Ω. Then 

(i) ACUA = Ω 
(ii) АСГ\А = 0 

Proof: Let Л be a subset of Ω. 

Proof of part (i): Clearly, ACL)A С Ω since Л and Ac are subsets 
of Ω. Now, all that remains to be shown is that Ω С Ac U A. Let 
x e Ω. Then, x e Л or x 0 Л. Thus, a; e Л U Лс, and hence 
Ω с ЛсиЛ. 
Therefore, by dual containment Ac U A = Ω. 

Proof of part (ii): Let x e Ac П A. Then, x e Лс and x e Л, 
which is impossible. Hence, there are no values of x G Ω such that 
x e Ac П Л, and therefore Лс П Л = 0. 

Several basic relationships between the sets A, B, A U S, and An В are 
given in Theorem 6.1.8. In particular, Theorem 6.1.8 shows that the union of 
two sets is a set that is at least as large as either set and that the intersection 
of two sets is no larger than either of the two sets. 

Theorem 6.1.8: Let А, В be subsets of Ω. Then 

(i) АП В с A. 
(ii) AnB с В. 

(iii) Л с AU В. 
(iv) Z i e Л и В . 
(v) АПВ с AUB. 

Proof: Let Л, В be subsets of Ω. 

Proof of part (i): Let x e А П В be ABF. Since x e А П B, it 
follows that x e A and x £ B. Thus, x € Л, and hence Л П J5 С Л. 

Proof of parts (ii)-(v): The proofs of parts (ii)-(v) are left as 
exercises. 
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Note that 0 satisfies the necessary condition for an identity under the 
binary operator U, which is 0U A = A U0 = Л for every subset A of Ω. Thus, 
part (ii) of the corollary to Theorem 6.1.6 shows that 0 is the identity element 
for the binary operator U. Furthermore, since Л С Л U В for any set B, it 
follows that there is no nonempty subset В such that Л U В = 0; hence, there 
are no inverses for the nonempty sets under the binary operator U. Similarly, 
Ω satisfies the necessary condition for an identity under the binary operator 
П, which is Ω Π A = А Л Ω = Л for every subset of Л of Ω. Thus, part (ii) 
of the corollary to Theorem 6.1.6 shows that Ω is the identity element for 
the operator П. However, since А Л В С A for every set B, it follows that 
there is no subset В of Ω such that Л Л В — Ω when Л is a proper subset of 
Ω; hence, there are no inverses for any of the proper subsets of Ω under the 
binary operator Л. 

Example 6.1.9: Under what conditions will it be true that Л Л В — A U Bl 

Solution: First, by Theorem 6.1.8 part (v), АПВ С AuB. Thus, a necessary 
condition for Л Л В = Л U В is that Л U В с Л Л В. Now, since the union of 
two sets is at least as large as either set and the intersection is no larger than 
either individual set, the only way that Л U В С Л Л В is for Л = В. Thus, 
Л Л В = A U В only when Л = В. 

The next theorem is known as DeMorgan's laws for sets and provides 
two very important results concerning the complementation of the union and 
intersection of two sets. Note that DeMorgan's laws for sets is analogous to 
DeMorgan's laws for statements, which was presented in Chapter 2. 

Theorem 6.1.9 (DeMorgan's Laws): Let А, В be subsets of Ω. Then 

(i) (AUB)C = AcnBc. 
(ii) (АПВ)С = ACUBC. 

Proof: Let Л, В be subsets of Ω. 

Proof of part (i): First, let x € (AUB)C. Then, since x € (AuB)c, 
it follows that x £ (Л U B). 

Thus, x 0 A and x £ B, which means that x 6 Ac and x £ Bc, and 
hence x € Ac Л Bc. Therefore, (Л U B)c С Лс Л Вс. 

Conversely, let x e АСГ\ВС. Then, since i e Лс Г\ВС, it follows that 
x 0 A and x <£ B. 

Thus, a; is not in Л and x is not in 5 which means x is not in Л or 
ß . Hence, x <£ ( Л и 5 ) . Therefore, it follows that x € ( Л и Я ) с , and 
hence Ac П Вс С {A\jB)c. 
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Therefore, (A U B)c С Ас П Bc and Л с П В с с ( Л и В)с, and hence 
(AuB)c = ACC\BC. 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

Theorem 6.1.10 shows that the union and intersection operators can be 
distributed over each other. The distributive laws for distributing union over 
intersection and vice versa are analogous to the distributive properties for the 
conjunction and disjunction operators of Chapter 2, and also for the ordi-
nary arithmetic operators of multiplication and addition. For example, the 
distributive law for distributing multiplication over addition with numbers is 

ax(b + c) = axb + axc 

The analogous result for distributing intersection over union for sets is 

А П (B U С) = {А П B) U (А П C) 

which is given in the following theorem. 

Theorem 6.1.10 (The Distributive Properties): Let A,B, С be subsets 
of Ω. Then 

(i) А и (В П С) = (A U В) П (А и С). 
(ii) А П (B U С) = (А П В) U (А П С). 

Proof: Let A, B,C be subsets of Ω. 

Proof of part (i): First, let x e Аи(ВПС). Since x e AiJ(BnC), 
it follows that x£Aorx€B(lC. Thus, either x € A or x & A. 

Case 1: Suppose that i e A Then, x e A U В and x € AuC, and 
hence 

z e (АиВ)П(АиС) 

Therefore, A U (В П С) С (A U В) П (Л U C) whenever x & A. 

Case 2: Suppose that x $. A, then a £ В Г\С. Thus, x £ В and 
i f C, and it follows that x £ AU В and x € Л U C, also. Thus 

1 £ ( Л и В ) П ( Л и С ) 

Therefore, A U ( 5 U С) С ( Л U В) П (Л U С) whenever l e ß f i C . 
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Thus, in either case A U (В Л С) С (A U В) Л (Л U С). 

Conversely, let x £ (Л U 5) П {A U C). Since x £ (Л U В) П (A U С), 
it follows that x £ (Au B) and £ e (Л U С). Now, я € Л or x £ Л. 

Case 1: Suppose that x £ A. Then, x e Л и (В Л С), and it follows 
that (Л и В) П (Л U С) С Л U (В Л С) whenever х £ А. 

Case 2: Suppose that x £ Л. Since x £ Л, х € (Л U В), and 
х € (Л U С), it follows that x £ В and x € С. Thus, х € В Л С, and 
hence х € Аи(ВПС). Therefore, ( Л и В ) Л ( Л U С) С Л и ( В л С ) 
whenever х ^ Л. 

Thus, in either case (Л U В) Л (Л U С) С Л U (В П С), and therefore 
Л U (В П С) - (Л U В) П (Л U С). 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

An interesting result that follows from the distributive law is that a set Л 
can always be partitioned using any other subset В of Ω. In fact, the following 
corollary to Theorem 6.1.10 shows that the sets An В and А Л Bc form a 
partition of the set Л, for any В С Ω. 

Corollary to Theorem 6.1.10: Let Л be a subset of Ω. If В is any subset 
of Ω, then A = (А Л В) U (Л Л Вс). 

Proof: Let Л be a subset of Ω, and let В bc an ABF subset of Ω. 
Then 

A = ΑηΏ. 
By corollary to Theorem 6.1.6(i) 

An(BOBc) 
By theorem 6.1.7(i) 

- (AnB)U(AnBc) 
By Theorem 6.1.10(ii) 

Example 6.1.10: Let Л = [0,1), В = (-1,1), and С = (-2,1]. Determine 

а. ЛС,ВС, and Cc 
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b. АПВПС 
c. ALiBuC 
d. (АГ)В)и{АсПСс) 
e. (АПВ)иСиВс 

f. АСПВСПСС 

Solutions: Let A = [0,1) Я = (-1,1) , and С = (-2,1] . 

a. The complements of Л, ß , and C arc 

Лс = (-oo,0)U[l ,oo) 

Вг = ( - o o , - l ] U [ l , o o ) 

Сс = ( -оо , -2 ]и(1 ,оо) 

b. Л П В П С = (0 ,1 )П( -1 ,1 )П( -2 ,1 ) = (0,1) 
c. Л и В и С = (-2,1] 
d. ( Л П В ) и ( Л с П С с ) 

= Α θ , 1 ) Π ( - 1 , 1 ) ί υ A - o o , - 2 ] U ( l , o o ) ) 

= [ 0 , l ) U ( - o o , - 2 ] u ( l , o o ) 

= ( -оо , -2 ] U [0,1) U (1,оо) 

e. (АГ)В)иСиВс 

= f [ 0 , l ) n ( - l , l ) J U ( - o o , - l l U [ l , o o ) = ( -оо , -1]и[0 ,оо) 
> ^ ' 

|o,i) 

f. АСГ\ВСГ\СС 

= i ( - o o , 0 ) U [ l , o o ) j n n - o o , - l ] u [ l , o o ) j n i ( - o o , - 2 ] U ( l , o o ) 

= ( -оо , -2 ]и (1 ,оо ) . 
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Example 6.1.11: Let A, B, and С be subsets of Ω. Use set algebra to 
simplify the following expressions: 

a. {АпВ)и(АГ\Вс). 
b. (AuB)n(AuBc). 
c. (АсПВс)и(АсПСс). 
d. {АП В) U {AD Bc) U {Ac П Bc) U {Ac П В). 

Solutions: Let A, B, and С be subsets of Ω. Note that 

а. {АПв)и{АПВс) 

An{B\jBc) 

By Theorem 6.1.10(ii) 

АПП = A 
By Theorem 6.1.7(i) 

b. {АиВ)П{АиВс) 

Аи{ВПВс) 
4 ■* ' 

By Theorem 6.1.10(H) 

Л П 0 = 0 
By Theorem 6.1.6(H) 

с. {АсПВс)и{АсПСс) 

АсП{ВсиСс) = АСП{ВПС)С 

>■ v ' s v / 

By Theorem 6.1.10(H) By Theorem 6.1.9(H) 

= \A\J{BnC) 

By Theorem 6.1.9(H) 

d. {АПВ)и{АП Bc) U {Ac П Bc) U {Ac n B) = Ω. The details of part (d) 
are left as an exercise. 
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6.1.3 Unions and Intersections of Finite Collections of Sets 

Recall that DeMorgan's laws for sets state that 

(A U B)c = Ac П Bc and (А П В)с = Л с и В с 

However, DeMorgan's laws do not state anything about the complements of 
the union of three (or more) sets (A U В и С)с nor the intersection of three 
or more sets. For example, what is (А П В Л С)с? Similarly, the distributive 
laws state only that 

А П {B U С) = (А П B) U (А П C) 

and 
A U {В П С) = (Л U J3) П {A U С) 

but state nothing about distributing a set A over the union or intersection 
of more than two sets. The purpose of this section is to extend the results 
of previous section to more general results that apply to a finite collection of 
sets. In particular, DeMorgan's laws and the Distributive laws are two of the 
key results of the previous section that will be generalized in this section. The 
following example shows that DeMorgan's law for unions is easily generalized 
from two sets to three sets. 

Example 6.1.12: Let A,B,C С Ω. Prove that (AuBUC)c = АСГ)ВСПСС. 

Solution: Let А, В, С С Ω, and let D = A U B. Then 

( A u f l u C ) c = ( D u C ) c = DCDCC = ( Л и о ) с П С с 

By Theorem 6.1.9(i) 

= {Ac П Bc) ПСС =АСПВСПСС 
4 v ' 

By Theorem 6.1.9(i) 

Before further generalizations are made, the following definitions of the 
union and intersections of a finite number of sets are needed. 

Definition 6.1.14·' Let A\, / Ь , . · ·, An be subsets of Ω. The finite union of 
n 

these n sets is denoted by M At and is defined to be 
i = l 

π 

I ) Ai = <x € Ω : x e Ai for some г € {1 ,2 ,3 , . . . ,η} > 
ι = 1 
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Definition 6.1.15: Let A\, Л2,. ■., A„ be subsets of Ω. The finite intersec-
n 

tion of the sets A\, Л2, . . . , An is denoted by M Л, and is defined to be 
« - 1 

n 

f i Л, = < x € Ω : x e Л; for every i e { l , 2 , 3 , . . . , n } | 
i = l 

Note that an element x will be in the finite union of the sets A\,..., An 
if and only if x is in at least one of the sets. Thus, it follows that x will 
be in U"_i Ai if and only if 3 г 6 {1,2,. . . ,n} such that x € Лг. Similarly, 
an element x will be in the finite intersection of the sets A\,..., An if and 
only if x is in every single one of the sets. Thus, for the intersection of 
a finite number of sets, it follows that x will be in П"=1 Аг if and only if 
x e Ai, V i e {1 ,2 , . . . , π} . 

Also, note that the mathematical expressions for finite unions and finite 
intersections use mathematical shorthand that is analogous to summation 
notation. For example, 

u* 
i = l 

is used to represent a finite union A\ U Л2 · · · U Лп, while YJ a; is used to 

represent the finite sum a\ + ■ · ■ + a„. 

Example 6.1.13: Let Л{ = [0,1/n] and Bt - [1 - 1/n, 1 + 1/n]. Determine 
10 10 

a. 
1=1 

10 

b. \jBt 
1^:1 

10 

1^:1 

10 

С 

1 = 1 

10 

d. П B, 
> = 1 

Solutions: 
10 

a. \J Аг = Ai U Л2 U ■ · · U Аю = [0,1] 
1 = 1 
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10 
b. \J Bi = Si U B2 U · · · U Bio = [0,2]. 

1 = 1 

10 
c. р) Аг = Л, П Л 2 П - - - П Л 1 0 = [0,0.1]. 

ι = 1 

IO 

d. f] Bi = Bi n ß 2 n - - - n ß 1 0 = [0.9,1.1]. 
! = 1 

More general versions of DeMorgan's laws for unions and intersections are 
given in Theorem 6.1.11. Also, for pedagogical reasons part (i) of Theorem 
6.1.11 is proved using mathematical induction and part (ii) is proved using 
an element chasing proof. However, it is important to note that both parts of 
this theorem can easily be proved with either method. 

Theorem 6.1.11 (Generalized DeMorgan's Laws) Let Аг с Ω, V г e N. 
Then 

(n + l \ c ri + l 
U АЛ = П АЬ V n € N 
l - l / г = 1 

( n + 1 \ c n + 1 
Q АЛ = \J A4, V n e N 

Proof: Let Л] , Л 2 , . . . , Л« с Ω, V n € N. 

Proof of part (i) (by Induction): Let 

/n+1 \ c n+1 

Vn:=[\jAt) = П ^ ? 
\ i = l / 1=:1 

For n = l , 
[AlUA2)c= A\f\Ac

2 

By Theorem 6.1.9(i) 

and therefore V\ is true. 

Now, suppose that Vk is true for some ABF к € N. This means that 

(k+\ \ c *+l 

(y A) - n * 
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and if "Pfc + i is true, then 

fk^2 \ "- k + 2 

v i - 1 / i=M 
IMI = ги 

/k + 2 у 
Now, consider ( M A{ J : 

/k + 2 \ c 

, i = l 

fc + l 

L»=i 

U Л*+2 j = ί \J Л, j П Л£+2 

By Theorem 6.1.9(i) 

η Λ? ) ПЛ£+2 = f i Л< 
('fc+l \ fc + 2 

4 = 1 / J = 1 

ByPfc 

Therefore, Pjt+i is true whenever Ρ^ is true, and hence 

/n + l \ c n + I 

и л0 = п л - v n e N 
\ i = l / t = l 

Proof of part (ii) (Element Chasing Proof): Let n € N 

(n+l \ c /n + l \ c 

P) Л, I . Then, x e I P | Л, 1 
/n + l \ /n+l \ 

means that x ^ ( М Л , ) . Now, since x 0 I ( 1 Л, j , it follows 

that there exists i* € {\,...,n}, such that x ^ Л*·, and hence 
n + 1 

i € /If.. However, since x € Л£., it follows that i c I ) Л?, and 

hence 

(n+l \ c n+l 

n+l n+l 

Conversely, suppose that x e ( J Л;. Then, since x e M Л,с, it 
»=•1 t = l 

follows that x € Л£. for some г* € {1 , . . .,n}; and since x € Л?. for 
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n + l 
some i" € { l , . . . , n } , it follows that x £ Л, · . Hence x $. Γ) At. 

n + l / n + l \ c 

Now, since x £ Г) Л^, it follows that x 6 I M Л; j and thus 
t = l \ i = l 

n + l / n + l \ c 

i= l \ > - l / 

n i l / n + l \ c 

Therefore, by dual containment M A\ — I ( | Л^ I . 
i - l \ . = 1 / 

Note that the versions of DeMorgan's laws given in Theorem 6.1.9 and 
Example 6.1.12 are simply corollaries of Theorem 6.1.11. Moreover, the gen-
eralized version of DeMorgan's laws states that the complement of the union 
(intersection) of any finite number of sets is simply the intersection (union) of 
their complements. For example, the generalized version of DeMorgan's laws 
can be used to show that 

( Л и В U С U D U Е)с = Лс П Вг П Сс Л Dr П Ес 

and 
(Л Л Л2 Л · · · Л Л1 0 0)с = А\ U А\ U Сс ■ ■ ■ U Ас

ю0 

The distributive properties for distributing union over intersection and 
intersection over union will now be generalized. In particular, Theorem 6.1.12 
states that union distributes over the intersection of a finite number of sets 
and that intersection distributes over the union of a finite number of sets. 

Theorem 6.1.12 (Generalized Distributive Properties) Let Л, с Ω 
V г € N, and let В e Ω. Then 

(n+l \ n+l 

f | АЛ = f | ( В и Л , ) , V n e N 
f'n + l \ n + l 

(ii) 5 Л ( J At = | J (BHAi), V n € 
i = l 

Proof: Let В С Ω, and let Ai, Л 2 , . . . , Л„ С Ω, V п e 



270 The Foundations of Algebra 

Proof of part (i) (by Induction): Let 

( n-i 1 \ n + 1 

P АЛ - f| (BUA,) 
For n — 1, it follows that 

Ви(А1Г)А2)= (В U Ai) Г) (В U A2) 

By Theorem 6.1.10(i) 

Thus, Vi is true. 

Now, suppose that Vk is true for some ABF к € N. This means that 

/ M i \ fc + i 

ßu fl Л , - р|(оил,) 
1=1 

and if 7-Y-+1 is true, then 

(fc+2 \ fc+2 

f| Л* = f\(BuAi) ^•+2 
Now, consider 5 U I P Л* 

v i= l 

f*+2 
5 U p | At = В U 

ч! = 1 

рл, 
1=^1 

Г)Ак+2 

flu 
Аг + 1 

рл, 
L i = l 

л(яидк+2) 

By Theorem 6.1.10(i) 

fc+i 
Р(5иЛг) 
J = 1 

n ( ß u / i H 1 ) 

by P* 

fc + 2 

р(БиЛ,) 
i - 1 



Introduction to Sets 271 

Therefore, Vk + \ is true whenever Vk is true, and hence 

(n+l \ n + l 

p | Л, = pi (Вил,-). VneN 
t=l / ι^Λ 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

■ 

Example 6.1.14·' Using the generalized versions of DeMorgan's laws and the 
distributive property, determine equivalent forms for the following sets: 

a. Л П ( 5 U CU D U E ) 
b. AU{BDCr\Dr\E) 
с [An{BöCuD[jE)]c 

Solutions: 

a. А П (B U С U D U E) = (A П В) U (A П C) U (A П D) U (Л П E) 
b. Л U (ß П С П D П E) - (A U ß ) П {A U С) П (A U D) П (Л U E) 
c. [ Л П ( В и С и о и £ ) Г 

= \(A П ß ) U (Л П С) U (Л П D) U (Л П £ ) ] с 

= (Л П ß ) c П (Л П С)с П (Л П D)c П (Л П £ ) с 

= (Лс U ß c ) П (Лс U Сс) П (Лс U Dc) П (Лс U Ес) 

In many set problems, the set of interest, say, Л, is relatively complicated 
and can be hard to work with. A convenient way of working with the set Л 
is to break it into nonoverlapping subsets in a fashion such that the union of 
these nonoverlapping subsets is the set A. This is known as partitioning the 
set A. The general version of the definition of a partition of Ω is given below 
followed by Theorem 6.1.13, which shows how a set A can be partitioned using 
any partition of Ω. 

Definition 6.1.16: A collection of sets B\, B2, ■ ■ ■, Bn is said to form a 
partition of Ω if and only if 

(i) Bt П Bj■ = 0 when г ф j . 
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(ii) {JBZ = Ω. 
i = l 

The collection of sets {B\,..., Bn} is also called a partition of Ω, and 
the following theorem shows how to use a partition of Ω to partition any set 
subset A of Ω. 

Theorem 6.1.13: Let А С Ω. If Bl,B2, ■ ■ ·, Bn is a partition of Ω, then 
П 

A=\J(AnBi). 
1 = 1 

Proof: Let А С Ω, and suppose that Z?i, #2, ■ · ·, £?n form a partition 
n 

of Ω. Then, ( J ßi = Ω, and by Theorem 6.1.12(ii) it follows that 
t = l 

A = ΑηΩ = Ar\[\jBi U (АПВг 
W = l 1 = 1 

By Theorem 6.1.12(H) 

Note that a partition of a set A is simply a division of A into nonoverlap-
ping sets such that the union of these nonoverlapping sets is A. For example, 
if A is the set of all prime numbers less than 40, then one way of determining 
the elements in A would be to first find the prime numbers between 1 and 
10, then find the primes between 11 and 20, followed by finding the primes 
between 21 and 30, then find the primes between 31 and 40, and finally create 
A by listing all the prime numbers found at each step of this process. In this 
case, A has been partitioned by the sets Bi = { 1 , . . . , 10}, B? = {11, . . . ,20}, 
B3 = {21,. . . ,30},and Д | = {31, . . . ,40}. 

Example 6.1.15: Let A to be the collection of natural numbers that are 
perfect squares and are less than or equal to 100, and let Bi be the natural 
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numbers in the interval [10(г - 1) + 1, Юг], for i S {1,2,. . . ,10}. Then 

10 

A=\J(AnBi) = (AnBl)U{AnB2)U---U{An Bl0) 
i - \ 

= {1,4,9} U {16} U {25} U {36} U {49} U0U {64} 

U0U{81}U{}U{1OO} 

= {1,4,9,16,25,36,64,81,100} 

Finally, it should be noted that each of the generalizations given in this 
section can easily be extended to results dealing with an infinite collection of 
sets, say, {Ai : i € N}. For example, the generalized version of DeMorgan's 
laws in Theorem 6.1.11 states that 

/ n + l \ c n + l 

\i=ì / ί=1 

and 

(n + l \ c n + l 
f] AA = U A\, VneN, 

which can be extended even further by considering the complements of the 
union and intersections of the sets {Ai : i € N}. An even more general version 
of DeMorgan's laws dealing with an infinite collection of sets is 

I M =ГИ 
\ i = l / t ^ l 

and 

( те \ с те 

i = l / i = l 
Similarly, the distributive properties can be extended to the infinite versions 
as follows: 

( OO \ 0 0 

f l АЛ = f)(BUAi) 
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and 

( oo \ oo 

However, it also must be noted that the infinite versions of both DeMorgan's 
laws and the distributive properties can no longer be proved using mathemat-
ical induction; an element chasing proof can be used to prove each of these 
results. 

6.1.4 Countable and Uncountable Sets 

In this final section on set theory, a closer look at the infinite sets will be 
taken. Now, it usually comes as a surprise to most students that it is possible 
for one infinite set to be larger than another. For example, it will be shown 
in this section that the set of rational numbers is smaller than the set of 
real numbers. In fact, it was Georg Cantor who first proved that the set 
of real numbers is considerably larger than the set of rational numbers. In 
particular, the two types of infinite sets that will be studied in this section are 
the countably infinite sets and the uncountably infinite sets. The definitions 
of countably infinite and uncountably infinite sets are given below. 

Definition 6.1.17: An infinite set is said to be countably infinite or denumer-
able if and only if there is a one-to-one correspondence between the elements 
of the set and the natural numbers, and a set is said to be a countable set if 
it is a finite set or a countably infinite set. 

Definition 6.1.18: Any infinite set that is not countable is said to be un-
countably infinite and is called an uncountable set. 

Note that a set may be empty, finite, countably infinite, or uncount-
ably infinite. For example, the set {l,e, n, 11} is finite and the set of whole 
numbers is countably infinite, while the interval (0,1) is uncountably infinite. 
Moreover, it can be deduced from the definitions above that a countably infi-
nite set is considerably smaller than an uncountably infinite set; however, two 
countably infinite sets are always the same size, and likewise two uncountably 
infinite sets will also be the same size. 

Now, to show that an infinite set is countable simply amounts to showing 
that there is a one-to-one correspondence between the elements of the set and 
the natural numbers. One method of showing that there is a one-to-one cor-
respondence between a set A and the natural numbers is to create a function 
f(n) that (1) maps each natural number to one and only one member of the 
set A and (2) covers the entire set A. For example, the set of even natural 
numbers, say, NE, is countable since f(n) = 2n is a function that maps the 
natural numbers to Ng and completely covers Ng. 



Introduction to Sets 275 

Recall that if an infinite set is not countable, then it is an uncountable 
set. Thus, showing that a set is uncountable requires showing that the set is 
not countable. 

Example 6.1.16: Create a function f(n) that shows that each of the follow-
ing sets is a countably infinite set: 

a. W = {0,1,2,. . .} 
b. No = {n € N : n is odd} 
с S - {w2 : w e W} 

d. Z 

Solutions: 

a. Let f(n) = n — 1. Then / is a one-to-one map from N to W that com-
pletely covers W. 

b. Let f(n) = 2n — 1. Then / is a one-to-one map from N to No that 
completely covers No· 

с Let f(n) — (n - l)2 . Then / is a one-to-one map from N to S that 
completely covers S. 

d. Let /(1) = 0, and let f{n) = f{n - 1) + {-l)n~l(n - 1) for n > 2. Then 
/ is a one-to-one map from N to Z that completely covers Z. 

The following theorem, given without proof, shows that all the subsets 
of a countably infinite set are countable; a proof of Theorem 6.1.14 can be 
found in Real Analysis by H. L. Royden (1968). 

Theorem 6.1.14: Let А С В. If В is a countably infinite set, then A is at 
most a countable set. 

Thus, by Theorem 6.1.14 and the result of Example 6.1.16(d), it follows 
that every subset of the integers is a countable set. Moreover, since the set of 
integers is countable, Theorem 6.1.14 shows that the set of prime numbers is 
a countably infinite set, as are the sets of even and odd integers, and likewise, 
so are the sets of negative and nonnegative integers. 

Galileo (1564-1642) assumed that each infinite set had the same number 
of elements; however, in 1874 Cantor proved that this was not the case. In 
fact, Cantor proved that the set of real numbers is an uncountable set, and 
hence, larger than the set of rational numbers. The key to proving that the set 
of real numbers is uncountable is the following corollary to Theorem 6.1.14. 

Corollary to Theorem 6.1.14: Let А с B. If Л is an uncountable set, 
then В is also an uncountable set. 
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Proof: This corollary follows directly from Theorem 6.1.14 since it 
is the contrapositive theorem associated with Theorem 6.1.14. 

Thus, from the corollary to Theorem 6.1.14 it can be deduced that if any 
subset of R is uncountable, then it follows that К will also be uncountable. 
Theorem 6.1.15 shows that the interval [0,1] is uncountable, and hence, by 
the Theorem 6.1.14 corollary, it follows that IR is also an uncountable set. 

Theorem 6.1.15: The interval [0,1] is an uncountable set. 
Proof (by Contradiction): Suppose that [0,1] is a countably 
infinite set. Now, since [0, l] is a countable set, it follows that 
[0,1] = {а\,а,2,аз,...}. Furthermore, for every i € N, ai has a 
decimal representation, say, a< = 0.aiii*i2Cki3 · ■ ■· Suppose that the 
complete list of elements of [0,1] is given below. 

a-i - 0.απ»ΐ2»ΐ3· 
U2 = 0.a2lC?22<>23· 
a3 = O.Q31Q32Q33· 
a4 = 0.Q4ia42Q43· 
a5 = 0.a5iQ52Ct53 · 

Now, consider the number ò 
6, as follows. For г e N, let 

O.Ò1Ò263 · · ·, which is formed by taking 

3 if ац = 5 

I 5 if α,, φ 5 
Then, b φ ai for any г € N since bn Ф ann, V n € N. Thus, b is 
clearly a number in [0,1], but 6 is not a member of the complete list 
of elements of [0, l] given above. This contradicts the supposition 
that the list above is a complete listing of the elements in [0,1]. 

Hence, [0,1] is an uncountable set. 

The proof used above to show that [0,1] is an uncountable set is known 
as Cantor's diagonalization proof (Cantor 1891). Now, since [0,1] С R, it 
follows by the corollary to Theorem 6.1.14 that R is an uncountable set. 
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Corollary to Theorem 6.1.15: The set of real numbers is an uncountable 
set. 

Proof: Since [0,1] С R, it follows by the corollary to Theorem 6.1.14 
that Ш is an uncountable set. 

To this point in this section, it has been shown that Z is countable and R 
is uncountable; however, the question of the countability of the set of rational 
numbers or even the irrational numbers has not yet been addressed. It turns 
out that the set of rational numbers is countable, but the set of irrational 
numbers is uncountable. The following three theorems build the foundation 
for the proof that the set of rational numbers is countable. 

Theorem 6.1.16: Let A and В be countably infinite sets. Then A U В is a 
countably infinite set. 

Proof: Let A = {01,02, a3 , . . .} and let В = {6[, Ò2, 63, · · ·}. Now, 
let / (n) be defined by 

( a..+\ if n e N is odd 

biL if n e N is even 

Then, f(n) is a one-to-one mapping of the natural numbers that 
completely covers ALiB, and therefore, AuB is a countably infinite 
set. 

n-H 
Theorem 6.1.17: If Ai, A2, ■ ■ ■, An + \ are countable sets, then \^J Ax is a 

countable set, V n 6 N. 
1 = 1 

Proof (by Induction): Let Vn := "If Ai, A2,..., An+i are count-
n + l 

able sets, then I ) Ai is a countable set." 

For n — l,V\ is true by Theorem 6.1.16 

Now, suppose that Vk is true for some ABF к e N. This means that 
/t+i 

when Ль Лг, - · . , Ak+i are countable sets, then I ) Л* is a countable 
1 = 1 



278 The Foundations of Algebra 

Ar+2 

set, also. If Pfc+i iS t r u e > then it will be the case that [ J Л, is a 

countable set whenever A\, A<i,..., /Ц+1 , Ak+2 are countable sets. 
fc + 2 

Consider I I A{ 
1 = 1 

fc+2 /fc + 1 \ 
(J Ai = MJ Л U ΛΜ2 = ß U Лк+2 
t = l \ ι = 1 / 

fc+1 
where В = M Л^. Since Ak+2 is a countable set by hypothesis and 

1 = 1 

fc+2 
В is countable set by Vk, it follows tha t M Ai — В U Л^+2 is the 

1 = 1 
union of two countable sets. 

fc+2 n+1 
Hence, M Ai is countable by Theorem 6.1.16, and therefore M Ai 

; = i i = i 

is a countable set whenever A\, A2,. ■ .,An+\ are countable sets, 
V n e N . 

Now, Theorems 6.1.16 and 6.1.17 can be even further generalized to the 
following theorem showing tha t the infinite union of a collection of countable 
sets {Ai : г € N} is also a countable set. This result is given below without 
proof and will be used as the basis for proving tha t the set of rational numbers 
is countable; a proof of Theorem 6.1.18 can be found in Real Analysis by H. 
L. Roy den (1968). 

T h e o r e m 6.1.18: Let {At : г € N} be a collection of countable sets. Then 
00 

M Ai is a countable set. 
1=1 

The basis for proving tha t Q is a countable set is Theorem 6.1.18 with 
the sets Л, defined to be 

Ai = ir :r - ±- , z ez\ 
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for г € N. For example, the sets A\ and A2 are given below: 

A\ = [r:r = ±j, 2 i Z J -{0,-1,1,-2,2,...} 

* = { , : , -± i . , e l } - { 0 . - i . i . -y , . . . | 
Since the set of rational numbers consists of all possible ratios of integers, 

00 

except 0 as the denominator, it follows that <Q> = I ) Ait and hence the count-

ability of the rational numbers follows. 

Theorem 6.1.19: The set of rational numbers is a countably infinite set. 

Proof: For г <Ξ N, let Аг = ir : г = ± - , г e z | . Then, V г б N, Ai 
is countable. Furthermore, 

Q = U At 

and thus, by Theorem 6.1.18, it follows that Q is also countable. 

Therefore, the set of rational numbers is a countably infinite set. 

Now, since the set of rational numbers is a countable set, it follows from 
Theorem 6.1.14 that every subset of the rational numbers is also a countable 

set. In particular, the set < — : n € N > is a countable set as is < -p- : n € N >, 

where Fn and Ln are the nth Fibonacci and Lucas numbers, respectively. 
Furthermore, since R is an uncountable set and Q is a countable set, it can 
easily be deduced that I is also an uncountable set. 

Theorem 6.1.20: The set of irrational numbers is uncountable. 

Proof (by Contradiction): Suppose that I is a countable set. 
Then, R = Q U I is a countable set by Theorem 6.1.16. However, 
this contradicts the fact that R is not a countable set, and therefore 
the set of irrational numbers is an uncountable set. 
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Finally, an interesting conjecture that has perplexed mathematicians 
since it was first posed and studied by Cantor is the Continuum Hypothe-
sis. A simple version of the Continuum Hypothesis is given below. 

The Continuum Hypothesis: There is no set whose size is strictly 
between that of the integers and that of the real numbers. 

The Continuum Hypothesis was the first of 23 important unsolved prob-
lems posed by David Hilbert in an address to the Second International 
Congress of Mathematicians held in Paris in 1900. The Continuum Hypothe-
sis has been studied by many mathematicians, and these studies led to many 
important results in the areas of mathematics whose foundation is based on 
set theory; a list of Hubert's 23 famous problems and their impact on math-
ematics can be found in Hilbertby Constance Reid (1996). 

6.2 An Introduction to Group Theory 

Group theory forms the foundation on which modern algebra is built and plays 
an important role in the theory associated with solving polynomial equations. 
The early roots of modern algebra and group theory came from attempts at 
solving algebraic equations and also the study of number theory and geome-
try. Today, group theory can also be shown to have ties to many other areas 
of mathematics, including topology, differential equations, combinatorics, and 
design of experiments. Group theory has even been shown to have applica-
tions in chemistry and physics with the study of crystals and symmetries of 
molecules and quantum theory, respectively. 

Early mathematicians laying the foundation for group theory include Eu-
ler, with his study of modular arithmetic, and Gauss, who proved that every 
polynomial has a root of the form a + bi which is known as the Fundamen-
tal Theorem of Algebra, as well as Joseph-Louis Lagrange (1736-1813), Niels 
Abel, Évariste Galois (1811-1832), Arthur Cayley (1821-1895), Felix Klein 
(1849-1925), and Augustin Cauchy, among others. The next generation of 
mathematicians to make important contributions to group theory includes 
the mathematicians Sophus Lie (1842-1899), William Burnside (1852-1927), 
Emmy Noether (1882-1935), and Ludwig Sylow (1832-1918). 

6.2.1 Groups 

Group theory deals with the study of a mathematical structure called a group, 
which consists of a set of elements and a binary operator. Provided that 
certain properties are satisfied, the set of elements and the binary operator 
are said to form a group. Galois, Cauchy, and Cayley all came up with 
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definitions of a group concept; however, the modern version for the definition 
of a group is due to Walther von Dyck (1856-1934) and is given below. 

Definition 6.2.1: Let Q be a set and о a binary operator. The pair (Q, o) 
is called a group if 

(i) Q is closed under the operation o. 
(ii) (а о Ь) о с = а о (6 о с), V α, 6, с e Q. 

(iii) 3 an element e e Q such that aoe = eoa~a, V a £ б -
(iv) V a € Q, 3 x e Q such that a o i = i o o = e. 

Thus, a group is simply a set Q and a binary operator о for which these 
four properties are satisfied. Furthermore, the group structure is an algebraic 
structure that forms the basis for solving everyday equations. Also, it is very 
important to note that the definition of the group structure states that (1) 
the identity e is constant with respect to each element in Q and (2) it is not 
guaranteed that а о b = boa. The algorithm for showing that the pair (Q, o) 
forms a group consists of four key steps and is given below. 

Algorithm for Showing that (Q, o) is a Group: Let Q be a set and о а 
binary operator. To prove that (6, °) forms a group 

1. Prove that Q is closed under o. 
2. Prove that о is an associative operator on Q. 
3. Prove that there exists an identity element in Q such that а о e = e о а 

for every a € Q. 
4. Prove that for each a £ G, there exists an inverse element, a'1 e Q. 
5. Conclude that the pair {Q, o) is a group. 

The use of this algorithm is illustrated in the following two examples. 

Example 6.2.1: Let Q = Z and aob = a + b (ordinary addition). Prove that 
(Z, +) is a group. 

Solution: Let Q = Z and а о b = a + b. 

1. Closure: Z is closed under ordinary addition (Axiom A8 of Chapter 4). 
2. Associativity: Let a,b,c € Z. Then, (a + b) + с = a + (b + c) since 

ordinary addition is associative (Axiom A2 of Chapter 4). 
3. Identity: 0 € Z and 0 is the ordinary addition identity element. 
4. Inverses: For every integer a, - a € Z and -a is the ordinary additive 

inverse element. Thus, a~l = -a with respect to ordinary addition. 
5. Group: Thus, Z with ordinary addition forms a group. 
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Example 6.2.2: Show that the pair (Z, x) is not a group. 

Solution: Let Q = Z and о = x. 

1. Closure: Z is closed under ordinary multiplication (Axiom A9 of Chap-
ter 4). 

2. Associativity: Let a,b,c £ Z. Then, (a x b) x с — a x (6 x c) since 
ordinary multiplication is associative (Axiom A6 of Chapter 4). 

3. Identity: 1 € Z and 1 is the ordinary multiplication identity element. 
4. Inverses: For every integer а ф i l , l/a £ Z, and thus Z does not 

contain all the ordinary multiplicative inverse elements. 
5. Group: Thus, Z with ordinary multiplication does not form a group. 

Whether the pair (Q, o) in fact forms a group will depend on both the set and 
the binary operator. Examples 6.2.1 and 6.2.2 illustrate how the same set 
may form a group with one operator but not another. An example where an 
operator with one set forms a group, but, the same operator with a different 
set does not form a group is given in Example 6.2.3. 

Example 6.2.3: Show that (R+, x) forms a group but (R, x) does not. 

Solution: The solution to Example 6.2.3 is left as an exercise. 

Example 6.2-4·' Let Q = R+ and let aob — ab (exponentiation). Does (Q,o) 
form a group? 

Solution: Let Q = R+, and let а о 6 = a*. 

1. Closure: R+ is closed under exponentiation by positive powers. 
2. Associativity: Let a, 6, с e R+ be ABF. Then 

a o ( ò o c ) = ao(6c) = atl' 

but 
(a о b) о с = (a6) o c = (ab)c = abc ф a6' 

Since о is not associative on R+, (R+, o) does not form a group. 

Example 6.2.5: Let Q = R, and let а о b = a + 6 - 2. Does (Q,o) form a 
group? 

Solution: Let Q — R, and let а о b = a + b - 2. 

1. Closure: R is closed under addition and subtraction, and hence R is 
closed under o. 
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2. Associativity: Let a, 6, с € R be ABF. Then 

a o ( 6 o c ) = a o ( 6 + c - 2 ) = a + i > + c - 2 - 2 = a + 6 + c - 4 

and 

(aob)oc=(a + b-2)oc=a + b-2 + c-2 = a + b+c-4 

Thus, а о (6 о с) = (а о 6) о с, V a, ò, с 6 R, and therefore o is associative 
on M. 

3. Identity: To determine whether R has an identity under o, let a 6 R be 
ABF and consider the equations а о e = a and e о α = a. First, note that 

aoe = a + e — 2 = e + a — 2 — eoa 

Now, solving a о e = a for e yields e = 2. Since 2 e R, it follows that R 
does contain an identity element under the operator o. 

4. Inverses: To determine whether a £ R has an inverse under o, let a € R 
be ABF and consider the equations aox — e and ю а = е . Note that 

Thus, solving а о χ = 2 for x yields x = 4 — a. Since 4 — a € R, it follows 
that a - 1 = 4 — a e R and R does contain the inverse elements under the 
operator o. 

5. Group: Thus, (R,o) does form a group. 

The following theorem shows that the identity element and the inverses in a 
group are unique. Note that the proofs are similar to the proofs that identities 
and inverses are unique given in Chapter 3. 

Theorem 6.2.1: Let (6,°) be a group. Then 

(i) The identity element e is unique. 
(ii) V o G ö . a " 1 is unique. 

Proof (Uniqueness Proof): Let (Q,o) be a group. 

Proof of part (i): Let e be an identity element in Q and suppose 
that e is not the unique identity element. Let ег be any other identity 
element in Q (i.e., e ф г-ì). Then 

c o e 2 = ег 
ч/ ' 

Since e is an identity 
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and 
e о е<2 = e 
4 v ' Since e-2 is an identity 

Hence, e = e о ег = e2, contradicting e ф е2-

Therefore, the identity element is unique. 

Proof of part (ii): Let a € G be ABF and suppose that a~l is an 
inverse of a and a" l is not unique. Let 02 be any other inverse of a 
that is in Q (i.e., a - 1 / a2). Then 

a о a - 1 = e = a - 1 o a 
* v ' 
a~l is an inverse of a 

and 
a o a 2 = e = a-2 о а 
·> v ' 

<22 is an inverse of a 

Now 

a~ ' = a~ ' о e = a~ ' о (a о θ2 ) = (a~ x о a) ° 02 = e о 02 = 02 
e Since о is associative 

Thus, a"1 = a-i contradicting a - 1 7̂  a2, and therefore я - 1 is the 
unique inverses of a. 

The identity element and the inverse elements are not only unique but 
are also the only elements in Q that are guaranteed to commute with all the 
other elements of Q. When every element in a group commutes with every 
other element of the group, the group is called an Abelian group; that is, when 
(G, °) is a group and о is an Abelian operator, then (G, o) is said to be an 
Abelian group. 

Definition 6.2.2: A group (<y,°)is said to be an Abelian group if and only 
if а о b — b о a, V a, b £ G-

As noted above, the group structure does not guarantee that aob = 60a. 
However, in an Abelian group а о b = b о о, V a, b e G- An example of an 
Abelian group is (Z, +), and an example of a non-Abelian group is given in 
the following example. 



An Introduction to Group Theory 285 

Example 6.2.6: Let Q the collection of 2 x 2 invertible matrices and о = x 
(the matrix multiplication operator). Then, (G, x) is a group but not an 
Abelian group. To see that (G. x) is not an Abelian group, let 

2 0 
0 1 

r 2 
0 

4 
3 

and В 

fBA 

1 2 
0 3 

2 2 
0 3 

A = 

Then 

Thus, (G, o) is not an Abelian group 

Now, it is well known that if a, 6, с € №. and a + b = a + c, then b = c, and 
similarly, when αό = ас, then it follows that b = с whenever а ^ 0. Note that 
these results are easily verified using subtraction and division, even though the 
original equations were based on addition and multiplication. The following 
theorem shows that in the group structure it is also true that when aob — aoc, 
then it also follows that b = c; however, the proof of this result must be based 
on arguments that use only the operator o. In particular, Theorem 6.2.2 shows 
that there are left and right cancellation laws for a group. 

Theorem 6.2.2 (Cancellation Laws): Let (G,°) be a group. If a, b, с € G 
and 

(i) aob = aoc, then 6 = с (left cancellation). 
(ii) è о а = со а, then b = с (right cancellation). 

Proof: Let (G,°) be a group, and let o,6, с 6 G be ABF. 

Proof of part (i): Suppose that aob = aoc~d. Then 

a~l о d = a~l о (а о 6) = (о - 1 о о) о 6 = b 

Since о is associative 

and 
a ^οά = α ' о ( а о с ) = (а 1 о а) о с = с 

v v ' 

Since о is associative 

Thus, 6 = а^1 о d = с, and hence, b = с. 

Proof of part (it): The proof of part (ii) is similar to the proof of 
part (i) and is left as an exercise. 
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Example 6.2.7: Let 3Z = {x : x = 3z for some integer z}, and let aob — a+b 
(ordinary addition). Show that (3Z, + ) forms a group. 

Solution: Let 3Z = {x : x — 3z for some integer z £ Z}, and let aob = a + b. 

Let a,b e 3Z. Then, a = 3z\ and 6 = З22 for some integers z\ and ζ-χ. Now, 
a + 6 = Zz\ + З22 = 3(^i + Z2) € 3Z. Thus, 3Z is closed under addition. 
Ordinary addition is associative on Z, and hence о is associative on 3Z. 

0 e 3Z and 0 is the additive identity. 

Finally, let a € 3Z. Then, a = З2 for some integer z and —a = 3(—z) € 3Z. 
Thus, the additive inverses are in 3Z, V a € 3Z, and hence, (3Z, +) is a group. 

Note that for a group (G, o), the fact that Q is closed under the operation 
о means that ao 6 is always in Q and hence, since all the inverses are also in 
Q it follows that (а о ò)_ 1 is in Q, also. In Theorem 6.2.3 (а о b)~l is shown 
to be equal to b~1 о a~l and ( a - 1 ) - 1 is shown to be equal to a. 

Theorem 6.2.3: Let (£,°) be a group, and let a,b eQ. Then 

(i) {aob)'1 = b-loa~l. 

(ii) ( « - > ) - ' = a. 

Proof: Let (G,°) be a group, and let a,b € G be ABF. 

Proof of part (i): Note that since inverses arc unique, by showing 
that 6 ' Ό α " 1 is an inverse o foob , part (i) follows. Now 

(aob) о (ò - 1 oa" 1 ) = e o ( è o è " ' ) o ( i " l = a o e o a ~ i = aoa~l = e 

(6~ ' о α"~ ' ) о (а о b) = b~~ ' о ( a - l o a ) o 6 = 6 _ 1 o e o 6 = 6 _ 1 o 6 = e 

Thus, 6_ 1 о a - 1 is an inverse of а о 6, and therefore, since inverses 
are unique, it follows that (aob)~~x = b~l о a - 1 . 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

Note that unless a group is Abelian, it will not be the case that 

( a o è ) ' 1 = a - ' o i r 1 , V a,b£G 
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However, if (Q, o) is an Abelian group, then it does follow that 

(a ob)~l =a~i ob"1, У a,beg 

For instance, in the groups (R, +) and (E + , x), which are Abelian, it does 
follow that 

(aoby1 ^a'^b-1 

In particular, (a + b)~l = - α ^ — b for (R, +) and (a x b)~' = 1/а х I/o for 
( R + , x ) . 

Corollary to Theorem 6.2.3: If (6,°) is an Abelian group and a,b e Q, 
then (<zo 6)~' = a"1 ob~l. 

Proof: Since (Q, o) is an Abelian group, the Theorem 6.2.3 corollary 
follows directly from Theorem 6.2.3. 

Example 6.2.8: Let Q be the collection of 2 x 2 invertible matrices. Then, 
(AB)'1 = B~lA~1. Furthermore, since matrix multiplication is not an 
Abelian operator, it is generally the not the case that 

(АВУ B~lA~l = A~lB l o - l 

For example, let 

Then 

However 

A = 1 - 1 
0 1 В 1 2 

1 3 

AB 0 - 1 
1 3 and [АВУ1 = -1 О 

1 1 
О 1 

ß - ' = 3 - 2 
- 1 - 1 

anc 
A~lD~l = 2 - 1 Φ(ΑΒΥ 3 1 

- 1 0 

The next two theorems are generalizations of Theorem 6.2.3. In partic-
ular, Theorem 6.2.4 shows how to compute ( a o d o c ) " 1 , and Theorem 6.2.5 
shows how to compute (a,\ о a.2 о аз о · · · о ап)~х for any value of n € N. 
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Theorem 6.2.4: Let (G, o) be a group and let a,b,c£ G- Then, 

(а о б о с ) - 1 = с " ' о Г ' о а * ' 

Proof: The proof of Theorem 6.2.4 is left as an exercise. 

Theorem 6.2.5: Let (<7, o) be a group, and let at € Q for all г € N. Then, 

(a\ oü2 оаз о ·· · ο α η ) _ 1 = а~' оа~\^ о · · · оа^"1 oaj"1, V n € N 

Proof: Mathematical induction can be used to prove Theorem 6.2.5. 
The details of the proof are left as an exercise. 

Much of the early work leading to the formalization of the area of group 
theory dealt with the problems associated with solving algebraic equations. 
Furthermore, the utility of any algebraic structure is based on the ability 
to solve equations within the structure. The following theorem shows that 
the group structure is an algebraic structure that allows for the solvability of 
equations such as а о я = 6 and x о а = 6. 

Theorem 6.2.6: Let (G, °) be a group. If a, 6 € G, then there exists an 
element x € G such that 

(i) x о а = b. 
(ii) αοχ = b. 

Proof (Existence Proof): Let (6,o) be a group, and let a,b € Q 
be ABF. 

Proof of part (i): Since a, b e G, it follows that a~l € G, and thus 
so is boa~l. Furthermore 

( 6 ο α " ' ) ο α = 6 о (аГ ' о а ) = 6ое = 6 

Thus, ι = 6 ο α _ 1 € G is a solution to the equation x о a = b. 
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Proof of part (it): The proof of part (ii) is left as an exercise. 

Note that the solutions to the equations a oar = b and xoa = b had to be 
constructed in the scratchwork leading up to the proof of Theorem 6.2.6. Sim-
ilar constructions can be created to solve many equations encountered when 
working with a group structure. For example, the solution to the equation 
xoaoboc — d would be x = do[aoboc)~x = doc~1ob~loa~l, and the solution 
to the equation а о ю 6 о с = d would be x — a~1odo(boc)~1 — a~lodoc~xab~x. 
Also, the properties of a group that depend only on the binary operator o, and 
not the individual elements of the group, are called the algebraic properties of 
the group. The results in Theorems 6.2.3-6.2.6 are all algebraic properties of 
a group. 

Example 6.2.9: Recall that (R + , x) is a group. 

a. Let a,b £ M+. Solve а о x = b for x. 
b. Solve 2 о x — 0.4 for x. 
с Solve (x о 5) о χ = 20 for x. 

Solutions: 

a. The solution to о о х = 6 is found by solving the equation ax = 6, which 
yields x = - . 

a 
b. The solution to 2 о χ = 0.4 is found by solving the equation 2x — 0.4, 

which yields x = 0.2. 
с The solution to (χο5)οχ = 20 is found by solving the equation 5x2 = 20, 

which yields x = 2. 

Now, recall that the definition of a group requires that for every element 
a e G, the identity element e and the inverse element a"1 must both commute 
with a. Thus, to show that (G,°) forms a group, it must be shown that for 
every a e Q that a o e — e o a = a and а о a - 1 = a - 1 o a = e. However, the 
next theorem states that (£,o) is a group if Q is closed under and associative 
operator о and for every a E G there is a left identity and a left inverse. 

Theorem 6.2.7: Let G be a set and о a binary operation. Then, (G, o) forms 
a group provided that the following conditions are satisfied: 

(i) G is closed under o. 
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(ii) о is associative on Q. 
(iii) 3 e £ Q such that eoa — a, V a &Q (left identity). 
(iv) V a £ (y, 3 x £ £ such that x о a = e (left inverse). 

Note that if Q is a set, о is a binary operator, and assuming that conditions 
(i)-(iv) hold, then, since Q is closed under о and о is associative on Q, it is 
necessary only to show that the following two conditions are true in order to 
prove that (G, o) is a group. 

1. For every element a £ G-, о, о e = a. 
2. For every element a £ G, αοχ — e 

Before proving conditions 1 and 2, it will first be shown, in Lemma 6.2.1, that 
left cancellation holds on G with о provided that conditions (i)-(iv) are true. 
This lemma will then be used in the proof of Theorem 6.2.7. 

Lemma 6.2.1: Let a,b,c £ G- If conditions (i)-(iv) of Theorem 6.2.7 are 
satisfied and а о b = а о с, then b = с (left cancellation). 

Proof: Let a,b,c&G be ABF. Suppose that conditions (i)—(iv) are 
true and that а о b = а о с. 

Since a £ G, by condition (iv), it follows that there exists an element 
x £ G such that x о a — e. Moreover, since а о Ь = а о с, it follows 
that x о (а о 6) = x о (a о с). Now, since о is associative, it follows 
that 

xo(aob) = (xoa)ob = eob = b 

and 
x o ( a o c ) = ( ю а ) о с = е о с = с 

Thus, b = с and left cancellation holds on (5 whenever conditions 
(i)-(iv) are true. 

The proof of Theorem 6.2.7 is given below. 

Proof: Let G be a set, о a binary operator, and suppose that con-
ditions (i)—(iv) hold. 

Condition 1: Let a £ G be ABF. To prove condition 1, it must be 
shown that aoe = eoa ~ a, V a € G- Since a £ G by condition (iv) 
there exists i £ G such that е = ю о . 
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Consider e: 

с = eoe = (χοα)ο e 
Since e is a left identity Since e ~ x о а 

= xo (a oe) 
v v > 

Since о is associative 

Also, since e = i о a, it follows that e = i o a = i o ( a o c ) and hence, 
ι ο α = xo(aoe). Now, applying Lemma 6.2.7 (i.e., left cancellation), 
it follows that a = a o e , \f a ζ Q. Hence, e is an identity element in 
Q. 
Condition 2: Let a € Q be ABF. Then, 3 x € G such that ю а = е. 
Consider i o e . 

i o e = e o i =(χοα)οχ= χο{αοχ) 

By condition 1 e в у associativity 

Thus, i o e = x о (а о x) and by left cancellation it follows that 
e = ao x. Hence x is an inverse of a, and therefore (<?,o) is a group. 

A similar result holds for a set Q that is closed under an associative binary 
operator о and with the properties for the left identity and the left inverses 
replaced by a right identity and right inverses. 

Theorem 6.2.8: Let Q be a set and о a binary operation. Then, (С/, о) forms 
a group provided that the following conditions are satisfied: 

(i) Q is closed under o. 
(ii) о is associative on Q. 

(iii) 3 e € Q such that а о е = а, V a € Q (right identity). 
(iv) V a € G, 3 x € G such that а о x - e (right inverse). 

Proof: The proof of Theorem 6.2.8 is left as an exercise. 
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The result of Theorems 6.2.7 and 6.2.8 provide shortcuts in verification 
that the pair (G,°) is a group. Thus, to show that (G,°) is a group, it is 
necessary only to show that 

1. Q is closed under o. 
2. о is associative on Q. 

3. 3 e e Q such that а о e = a (or e о а), V a G Q. 

4. V a e S, 3 i € ö such that о о χ — e (or x о а = e). 

Another important characteristic of a group is its order. The definition 
of the order of a group (G, °) is given below. 

Definition 6.2.3: The order oi a group (G,°) is the number of elements in 
the set G- If G is infinite then (G, °) is said to have infinite order. The order 
of a group S is denoted by Hi-

Note that the order of a group is simply the number of elements in the 
group. For example, if E = {e} and о defined by e о e = e, then (E, о) is a 
group with order |£| = 1. A group of the form {£, o) is called a trivial group. 
Two examples of trivial groups are ({0},+) and ({1}, x). Examples of groups 
having infinite order are (K,+) and (R+, x). 

Moreover, when two groups have the same order, it is possible, but not 
guaranteed, that the two groups are structurally identical. Specifically, when 
two groups are structurally similar, it follows that except for the names of 
the elements, the algebraic properties of the two groups are identical. For 
example, every trivial group has the same algebraic structure; however, (Z, +) 
and (K, +) are not structurally the same even though the order of both of 
these groups is infinite. Two groups that are structurally similar are said to 
be isomorphic; isomorphic groups are discussed in most introductory texts on 
modern algebra and group theory (e.g., see Classic Algebra by P. M. Cohn 
(2000)). 

Now, it can be shown that there are groups of order n for any natural 
number n. An example of a group of order n is (Zn, ®), where ф is modular 
arithmetic and Z„ := {0,1,2, . . . ,n - 1}. Modular arithmetic base n, also 
called clock arithmetic base n, is a system of arithmetic that can be used on 
the natural numbers by defining a®b = r, where г is the Division Algorithm 
remainder from the unique representation a + b = qn + r. For example, 
5 ф 3 = 2 in modular base 6 because 5 + 3 = 8 = 1 - 6 + 2, and 11 © 8 = 1 in 
modular base 6 because 11 + 8 = 19 = 3 - 6 + 1 . 

Theorem 6.2.9: If n is a natural number, then (Ζ„,φ) forms a group of 
order n. 
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Proof: Let a, b € Zn be ABF and consider а Ф b. By definition, 
a@b — r where a+b = qn-\-r and 0 < r < n. Thus, since 0 < r < n, 
it follows that a + b € Zn and therefore, Zn is closed under φ. 

Now, φ is associative; however, the details showing that φ is an 
associative operator are left as an exercise. 

Since 0 e Zn and since О Ф a = a and а ф 0 = a, it follows that 0 is 
an identity element in Z„. 

Suppose that a € Zn; then so is n — a since 0 < n — a < n. Further-
more, a Φ (n — a) = 0 since a + (n — a) = n, which has remainder 0. 
Therefore, a - 1 = n — a G Zn whenever a is. 

Thus, (Ζ η ,φ) forms a group. Furthermore, since Zn consists of n 
elements, it follows that it is a group of order n. 

Example 6.2.10: Let (G, o)= (Zg,©). Determine 

a. 3 © 8 . 
b. 5 Ф 8 Ф 6 . 
c. 3 - 1 . 
d. x such that х ф 2 ф 8 ф б = 1. 

Solutions: 

a. 3 ® 8 = 2since 3 + 8 = 1 1 = 1-9 + 2. 
b. 5 Ф 8 Ф 6 = 1 since 5 + 8 + 6 = 19 = 2· 9 + 1 . 
с 3 _ 1 = 6 since 3 + 6 = 9 = 1-9 + 0 and 0 is the identity element in Zg. 
d. x = 3 since 3 + 2 + 8 + 6 = 19 = 2· 9 + 1 , and hence З ф 2 ф 8 ф б = 1 . 

Theorem 6.2.10: (Ζη,Φ) is an Abelian group. 

Proof: The proof of Theorem 6.2.10 is left as an exercise. 

Example 6.2.11: Let £={1,2,3,4,5} and о = ®, where a®b=r where r 
is the Division Algorithm remainder in the equation ab = qn-\- r. 

a. Show that {Q, <g>) forms a group. 
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b. Determine 4 
с Solve 2 ® 5 = 3. 

Solutions: The solutions to Example 6.2.11 are left as exercises. 

Note that (Zn,<g>) cannot be a group because there will be no inverse 
for 0. However, a theorem analogous to Theorem 6.2.10 stating that the pair 
({1,2 ,3 , . . . ,n - 1},®) forms a group is possible. 

6.2.2 Subgroups 

Recall that Z с R and (R,+) and (Z, +) are both groups. An important 
question concerning a group (Q, o) is "When does a subset fi of Q, with the 
operator o, form a group?" When (Q, o) is a group and a subset fi of Q forms 
a group with o, then (fi, о) is called a subgroup of (Q, o). 

Definition 6.2.4: Let {G,°) be a group, and let fi be a subset of Q. The 
pair (fi, о) is said to be a subgroup of (5, °) if and only if (fi, о) is a group. 

For example, (Z, +) and (Q, +) are subgroups of (R, +) and (<Q>+, x) is a 
subgroup of (R4, x). However, (H+, x) is not a subgroup of (R f , x) since I is 
not, closed under multiplication. 

Example 6.2.12: Let {G,°) = (Z,+), and let к С- N. Define fcZ as follows: 

кЪ = {кг : г e Z} 

Then, кЪ is simply the set consisting of the integer multiples of k. For example 

2Z = {2z : z€l} = {0, ±2, ±4, . . .} 

and 
3Z = {3z : z e Z} = {0, ±3, ±6 , . ..} 

Show that (fcZ, +) is a subgroup of (Z, +) , V к 6 N. 

Solution: Let к e N be ABF. Clearly, it follows that кЪ is a subset of Z. 
Now, to show that (/rZ, +) is a subgroup of (Z,+) , it must be shown that 
(fcZ, +) is also a group. 

Let a, b € /cZ. Then, there exist integers г and j such that a = ki and b — kj. 
Consider a + b 

a + b= ki+ kj = k(i + j) = kl 

where I = i + j 6 Z, and hence a + b G kZ whenever a,b € кЪ. Therefore, кЪ 
is closed under ordinary addition. Note that the associative property holds 
on k!L since ordinary addition is associative on Z. 
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0 is the additive identity and 0 e кЪ since 0 = к- 0. Thus, кЪ does contain 
an identity element. Let a € кЪ be ABF. Then, a = kz for some integer z. 
Now, —a = fc( — z), and therefore —о is in кЪ whenever a is. Since —a is the 
additive inverse of a, it follows that кЪ contains all the additive inverses. 

Therefore, (kZ, + ) is a group, V A: € N. 

Note that the even integers with ordinary addition (i.e., (2Z, +)) forms a 
group, as does (3Z,+), the multiples of 3 with addition. Furthermore, since 
2ΖΠ3Ζ = 6Z, it follows that (6Z, +) is a subgroup of both (2Z, +) and (3Z, +). 

Example 6.2.13: Show that 2ΖΠ3Ζ = 62. 

Solution: The solution to Example 6.2.13 is left as an exercise. 

Theorem 6.2.11: Let (£,°) be a group. If (Ηι,ο) and (H2,o) are subgroups 
of (S, o), then (Hi ПНг.о) is also a subgroup of (Q, o). 

Proof: Let (<?,o) be a group, and suppose that (Wi,o) and (H2,°) 
arc subgroups of (Q, o). 

Let a,b € 7ίι Π H2. Then, it follows that a, b € Hi and a, 6 6 Иг-
Now, since (Ηι,ο) and (Нг,о) are groups, aob GH\ and aob € H2 
since both sets are closed with respect to the operator o. Thus, 
а о b e H\ П H2. Therefore, Ч\ П H2 is closed under o. 

Note that о is associative on Q, and therefore о is associative on 
H, ПН 2. 

Now, since (Ηι,ο) and (Ή2,0) are groups, it follows that e e Hi 
and e e H2. Thus, e 6 Hi ПН2, and therefore Ηι ,ΠΗ2 contains the 
identity element. 

Finally, let a e Н1ПН2 be ABF. Since (Hi, о) and (H2,o) are groups, 
it follows that a~l € Hi and (Г1 € H2. Hence, a - 1 g Hi ПН2 , and 
therefore Hi Π Ή2 contains a - 1 whenever a € Hi ПН2. 

Thus, (Hi, ПН2, o) forms a subgroup of (Q, o). 

Theorem 6.2.11 shows that when (Q, o) is a group, so is the intersection of 
any two subgroups of (G,°)- For instance, in Examples 6.2.12 and 6.2.13 it was 
shown that (2Z, +) and (3Z, +) are subgroups of (Z, +) and that 6Z = 2ΖΠ3Ζ; 
therefore, from these facts it follows that (6Z, +) is also a subgroup of (Z, +). 
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On the other hand, the union of two subgroups of (G,°) is not necessarily a 
subgroup of (Q, o). A counterexample showing that the union of two subgroups 
of (S,°) is not always a subgroup is given in Example 6.2.14. 

Example 6.2.14: Note that (2Z,+) and (3Z,-f ) are subgroups of (Z,+) and 

2Z U 3Z = {x : x = 1z or x — 3z, where z g Z} 

Now, while 2 e 2Z and 3 £ 3Z, 2 + 3 = 5 g 2Z U 3Z since there is no integer 
z such that 2z = 5 or 3z — 5. Hence, 2ZU3Z is not closed under o, and thus 
(2Z U 3Z, +) is not a subgroup of (Z, +). 

For the ordinary multiplication operator an expression such asaxaxaxa 
will often written in shorthand as a4. Analogously, with a group (G, °) and 
an element a € G, an expression such as aoaoaoa will commonly be written 
as o4, also. The integral powers for an element о of a group are defined below. 

Definition 6.2.5: Let {G,°) be a group and a 6 G- The integral powers of 
the element a are defined as follows: 

(i) a? = e 
(ii) a1 = a 

(iii) an = an-1 о a, n e N 
(iv) a~n = (a - 1 )" , n£N 
Note that this definition does not explicitly state that 

an = а о ao ■ ■ ■ о а 
^ ' 

n times 
for n € N. However, since a2 = a о a, it follows that a3 = a2 о a = a о а о а, 
and generalizing from here on, it is clear that 

an = α ο α ο · · · ο α 
>· v ' 

n times 

and 
- n - 1 - 1 - 1 a —a oa о ■ ■ ■ о а v ,, ' 

n times 
Furthermore, from Definition 6.2.5 it can be deduced that an о am — an+m 

and (a n ) m = anm for n, m € N. 
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Theorem 6.2.12: Let ((/, o) be a group. If a € Q, then 

(i) an о am = an ' m for n, m € N. 
(ii) ( a n ) m = anm for n ,m € N. 

Proof: Let ((/, o) be a group, and let a g ö be ABF. 

Proof of part (i): Let n e N be ABF, and let 

T> . „ n ~ ~ro „ n - f m 
F m .= а о a = a 

For 77i = 1, a" o a1 = a"+1 by definition. Thus, V\ is true. 

Now, suppose that Vk is true for some ABF к e N. This means 
that on о ak = an+fc. Furthermore, if Vk+u is true it follows that 
αηοα*+ι = a

n + k + i . 

Consider a " o o t + 1 

а" о ak+l = an о (a
fc о a1) = a" о a

fc о a 

= a" ,fc oa ■ 
By Definition 6.2.5(iii) 

Thus, T>k -> Pfc+i, and therefore it follows that а" о ат = a n + m 

V m £ N. 

Since n € N was ABF, it follows that an о am = a n + m , V n, m e N. 

Proof of part (ii): The proof of part (ii) is left as an exercise. 

Now, for 7i € N it follows from Definition 6.2.5 that a" = a n _ 1 о a, and 
since ri — 1 + (n — 1), it also follows from Theorem 6.2.12 that a" = a o a n ~ ' . 
Furthermore, it can also be deduced from Definition 6.2.5 and Theorem 6.2.12 
that an о om = am о a", V n,m € N. Also, although not proved here, it is 
possible to generalize Theorem 6.2.11 to similar results for the integral powers 
of negative numbers and also for a mixture of positive and negative integral 
powers. However, it is important to note that it cannot be deduced from 
either Definition 6.2.5 or Theorem 6.2.12, that (а о ft)" = α η ο ό η , unless (£, o) 
is an Abelian group. 
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Example 6.2.15: The integral powers of the elements of (Ζ6,φ) are shown 
in Table 6.2.1. 

Table 6.2.1 The Integral Powers for (Z6, φ) 

a 

0 

1 

2 

3 

4 

5 

n=0 

0°=0 

1°=0 

2°=0 

3°=0 

4°=0 

5°=0 

n = l 

0 ^ 0 

l ' = l 

2 '=2 

3 ^ 3 

4 '=4 

5X=5 

n=2 

02=0 

12=2 

22=4 

32=0 

42=2 

52=4 

n=3 

03=0 

l 3 - 3 

23^0 

3 3 - 3 

43=0 

53=3 

n=4 

0 4 - 0 

14=4 

2 4 -2 

34=0 

44=4 

54=2 

n=5 

05=0 

15=5 

25=4 

35=3 

45=2 

55 = 1 

n=6 

06=0 

16=0 

26=0 

36=0 

46=0 

56=0 

Note that in Example 6.2.15, it turns out that am = e for some value 
of m less than or equal to 6 for each of the elements in Ъ%. In particular, 
l«s = 23 = 32 = 43 = 56 = e = 0. If (<?, o) is a group and a 6 Q and am = e 
for some natural number m, then element a is said to have order m. 

Definition 6.2.6: Let (Q, o) be a group and a G Q. The order of an element 
a is defined to be the smallest natural number m such that am = e\ if om ф e 
for every natural number m, then a is said to have infinite order. 

For example, in (Ζβ,Θ), the order of the element 2 is 3 and the order of 
the element 5 is 6, while in (Z, +), 0 has order 1 and every other element has 
infinite order. The following theorem shows that the order of every element 
in a group of finite order n can be no larger than n. 

Theorem 6.2.13: Let (G,°) be a group of order n < oo. If a e Q, then the 
order of a is less than or equal to n. 

Proof (by Contradiction): Let (£, o) be a group of order n < oo, 
and let a £ Q be ABF. Furthermore, suppose that the order of a > n. 
Since the order of a > n, it follows that am Φ e for m = 1, 2 , 3 , . . . , n. 

Consider A ~ {a1 : г = 0 ,1 ,2 , . . . ,n} С Q since Q is closed under 
o. Now, since the order of Q is n, it follows that at least two of 
the elements in A are equal, for otherwise A would contain n + 1 
elements and could not be a subset of Q. Suppose that ai = ak for 
some integers j and к with 0 < j < к < п. 

Since к > j , it follows that к — j + I for some natural number 
I < n. Now, ak = a ; + / = aJ о a'. Since ak - a\ it follows, by left 
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cancellation, that a1 = e. Hence, the order of a is less than or equal 
to I. Since / < n, this contradicts the assumption that the order of 
a is greater than n. 

Therefore, the order of any element in a group of finite order n must 
be less than or equal to n. 

Let (Q, o) be a group. Then, since Q is closed under o, it follows that 
the set of integral powers of any element a € Q will form a subset of Q. 
In particular, the set A — {ak : к e Z} is called the set of elements in Q 
generated by the element a. 

Definition 6.2.7: Let (G, °) be a group and a e Q. The subset of elements 
generated by an element a is defined to be 

(a) = {ak: к € N} = {a1,a2,a3,...} 

For example, if (£,o)= (Z,+), then ( 1) = Z and ( -1 ) = Z. Also, the 
subset of Z generated by element 2 is 

<2> = {0 ,±2 ,±4 , . . . }=2Z 

which is the set of even integers. Similarly, the subset of Z generated by 
element 4 is 

<-4> = {0 ,±4,±8, . . .} = 4Z 

Note that in general, for any integer к the subset of Z that is generated by к 
under ordinary addition is ( к ) = kZ. 

Example 6.2.16: Let (S,o)= (R+, x). Then 

The following theorem shows that if (G,°) is a group and a £ Q, then 
((a),o) forms an Abelian subgroup of (<7,o). 

Theorem 6.2.14: Let (G,°) be a group, and let a € Q. Then, ( (a ) ,o) forms 
a subgroup of (G, °). 

Proof: Let (G, °) be a group, and let a £ G be ABF. 
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Let b,с € ( a ) be ABF. Then, there exist integers j and к such that 
b = aJ and с = ak. Consider bo c: 

boc= a3 oak = aJ+fc e ( a ) 
By Theorem 6.2.12(i) 

Hence, {о ) is closed under o. 

Now, suppose that b,c,d € ( a ) are ABF. Then, there exist integers 
j,k, and / such that 6 = aJ, с = afc, and d — a1. Consider (b о с) о d 
and 60 (cod): 

(boC)od= (aj о ak) о a1 = a^+fc о a' = a-*+fc+' 

i> о (с о d) = α-Ό (afc о α') = о? о a
f c + l = oJ'+fc+' 

Thus, (b о с) od = bo (cod), and hence о is associative on {о ). 

Clearly, e e (a) since e = α°, and hence (a ) contains the identity 
element. 

Finally, suppose that b e ( a ). Then, there exists some integer к such 
that b = a-*. Since j is an integer, so is — j , and thus a~J £ (a). By 
Theorem 6.2.13, b _ 1 = (aJ) = a~J, and hence 6_ 1 € ( a ) whenever 
6 6 ( a ) . Thus, (a ) contains all the inverses of its elements. 

Therefore, ( (a) ,o) forms a group. 

Not only does ( (a) ,o) form a group; it is also an Abelian group since 

an+m = an о a
m = am о a", V n, m € Z 

Furthermore, (( a ), o) is the smallest subgroup of (<?, o) containing the element 
a. The subgroup ((<z),o) is said to be a cyclic subgroup of (G,°). 

Definition 6.2.8: Let (Q, o) be a group and a an element of Q. Then, 
the subgroup of (</,o) generated by a, namely, ((a),o), is called the cyclic 
subgroup generated by a. 

Recall that if (G,°) is a group of finite order n, then every element in 
Q has order no larger than n. Furthermore, if a has order m < n, then 
(a) = { a , a 2 , a 3 , . . . , a m } . 
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Example 6.2.17: For (Zg,®), determine 

a. The cyclic subgroup generated by 6. 
b. (5) . 
с (8) . 

Solutions: 
a. The subgroup generated by 6 is (6) = {6,б2,63, . . . , 6 " } , where n is the 

order of 6. Now, the order of 6 is found by solving the equation 6" = e. 
Consider 6n for n = 0,1, 2 , . . . 9: 

6 ' = 6, 6 2 = 6 Θ 6 = 3, 63 = 6 φ 6 φ 6 = 0 

Thus, the order of 6 is 3 and ( ( 6 ) , θ ) = ({6 \6 2 ,6 3 } , θ ) = ({6,3,0},®). 
b. The solution to part (b) is left as an exercise. 
c. The solution to part (c) is left as an exercise. 

Recall that if \Q\ = n < oo, then for any element a € Q, (a) forms a 
cyclic group under the operation o. Furthermore, each of the following results 
holds for a group {Q, o). 

Theorem 6.2.15: Let (Q,o) be a group, and let ( (a) ,o) be the cyclic group 
generated by a € Q- If a has order n and be (a), then 

(i) a~l = a n ^ ' . 
(ii) b~x — an~i for some natural number 0 < j < n. 

Proof: Let (<y,o) be a group, let ( (a ) , o) be the cyclic group gener-
ated by a € G, and suppose that a has order n. 

Proof of part (i): First, since a has order n, it follows that a" = e. 
Consider a": 

e = a" = a n _ 1 о a 

Thus, e = an~l о a. Now, since ( (a) ,o) is a group, it follows that 
the inverses are unique, and hence a - 1 = a" - 1 . 

Proof of part (ii): Let b g ( a ) be ABF. Then, there exists а 
natural number 0 < j < n such that 6 = a}. Now, since a has order 
n, it follows that an = e. Consider a": 

e = an = a - Ό a n " · , = boa"'3 

Thus, e = bo a"_ J . Now, since ( (a) ,o) is a group, it follows that 
the inverses are unique, and hence b~l = a"--7. 
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Example 6.2.18: Let {Q,o)= (Ζ 3 0 ,θ ) . Determine 

a. The order of the element 4. 
b. (4) . 
c. 2 - 1 . 

Solutions: 
a. The order of the clement 4 is 15 since 415 = 0 and 15 is the smallest. 

natural number for which 4" = e. 
b. The solution to part (b) is left as an exercise. 
с The solution to part (c) is left as an exercise. 
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EXERCISES 

6.1 Let A, = f-i. χ - il 
г г 

and Bi = [ί,ι + ί 
г г 

а. Л], Л2, Л3 and Bx, B2, B3 

b. Л, U ß , 
с A3 Л ß 3 

d. В3ПАС
3 

6.2 Let Л = 2Z and 5 = 3Z. Determine 

а. Л Л В 
ь. ли д 
с. Лс 

d. ß c 

е. ЛсиВс 

f. Л С ЛВ С 

for г = 1,2,3. Determine 

6.3 Let Л, В С Ω. Prove that 

a. If Л £ ß , then ß c £ Лс. 
b. Л П ß С В. 
c. Л С Л U ß . 
d. В С A U В. 
e. Л П ß С Л U ß . 
f. (Л П В)с = Ас U ß c . 
g. Л С ß if and only if Bc с Лс. 
h. (Л U ß ) П (Л П ß ) c = (Л П ß c ) U ( ß П Ac). 

6.4 Let Л, ß , C be subsets of Ω. Prove that 

а. А П (B U С) = (Л П ß ) U (Л Л С). 
с. (Л Л В Л С)с = Лс U Вс U Сс. 

6.5 Let Л, В, С, О С Ω. Simplify each of the following expressions: 

a. ( Л и В ) с Л В с 

b. ( Л и В ) с и В с 

c. Л и ( В Л Л с ) и ( С л Л с л В с ) 
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d. (ЛпЯ)и(ЛпС)и(ЛП£>) 
e. ( Л и В ) П ( Л и С ) П ( Л и О ) 
f. {A U B)c П (Л U С)0 П (A U Z7)c 

and let Д = 0,1 + 6.6 Let At = 
1 1 

1 

n n 
oo 

a. U Л, 
г — 1 
oo 

ь. уд-
ϊ - 1 
oo 

с. f]At 
i = l 
oo 

d. [JB I 

Determine 

1 = ] 

6.7 Prove that if А, С Ω, V г e N, and В с П , then 
/гг+l \ n H 

ß n ! у лЛ = U (я п л,), v n e N. 
.!=! i l 

6.8 Prove that if At С Ω, and В; С Ω, V ι € Ν, then 
/ m \ / n \ η τ η 

Vt = l г = 1 j = 

\ j = l / \ t = l / i = l >=1 

VJ = 1 / W l / i - l j = l 

6.9 Let Ai,A2,-.., An be subsets of Ω with [J Ai = Ω, let Д = Л ь and let, 
i - l 

i - 1 

Вг = А, П I У Aj j for г = 2, 3 , . . . , n. Prove that Bl,B2,...,Bn is a 

partition of Ω. 
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6.10 Prove that each of the following sets is a countable set: 

a. 2ΖΠ3Ζ 
b. 2ZU3Z 
c. {x : y/x = bior be Z + } 
d. V — {p € Z : p is a prime number} 
e. С = {с : с = a+ b\Ì2 for a, b € Q} 

6.11 Prove each of the following theorems: 

a. Theorem: If A and В are countable sets, then A UB is a countable 
set. 

b. Theorem: If A and В are countable sets, then Л Di? is a countable 
set. 

с Theorem: If A is an uncountable set and А с В, then В is an 
uncountable set. 

d. Theorem: If A is an uncountable set and В is a countable set, then 
An В is a countable set. 

e. Theorem: If A is an uncountable set and В is a countable set, then 
Au В is an uncountable set. 

6.12 Let Ω = {(x,y) : x,y G Z}. Prove that Ω is a countable set. 

6.13 Let Q = K+ and а о b = у . Prove that (С/, о) is a group. 

6.14 Let Q — K+ and aob — | . Prove that (G, °) does not form a group. 

6.15 Let G = Z and а о b = a + b + 1. Then 

a. Prove that oo—l = - l o o = a, V a € Z . 
b. Prove that а о (-a - 2) = ( - a - 2) о a = - 1 , V a € Z. 
с Determine the identity element in Z under o. 
d. Determine a о (bo c). 
e. Determine whether (6,°) forms a group. 

6.16 Prove each of the following theorems: 

a. Theorem: If (G, o) is a group and a,b € G, then 3 у € G such that 
а о у = b. 

b. Theorem: If (<7,o) is a group and a € G, then ( a - 1 ) - 1 = a. 
с Theorem: If (ö,°) is a group and ( a o b ) - 1 = а"1 о б - 1 , V a,b € i/, 

then (5, o) is an Abelian group. 
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6.17 Let Q be a set closed under an associative binary operation o. Prove 
that if G has a right identity element under о and a right inverse for each 
element under o, then (G, °) is a group. 

6.18 Prove each of the following theorems: 

a. Theorem: If (W, o) is a subgroup of (G, o), then the identity element 
in G is the identity element in Ή. 

b. Theorem: If (W, o) is a subgroup of (G, °) and a e Ή, then the 
inverse element of a in G is the inverse element, of a in Ή. 

с Theorem: Let (G,°) be a group and H С G- Then, (Ti, о) is a 
subgroup of (G,°) if and only if H is closed under о and a~l S Ή 
whenever a £ Ή. 

6.19 Prove that if (G,°) is a group and H = {a £ G '■ aoa = e}, then (Ή,o) 
is a subgroup of (G, °). 

6.20 Let G = Zi2 and о = ®. 

a. Find the inverses of elements 3, 4, 7, and 8. 
b. Find the order of elements 3, 4, 7, and 8. 
с Find (3) and (5). 
d. Solve x2 = 1. 
e. Solve 2 ф х ф 6 = 4. 

6.21 Let ö = Z1 8 and о = ©. 

a. Find the inverses of elements 3, 4, 7, and 8. 
b. Find the order of elements 3, 4, 7, and 8. 
с Find (3) and (5). 
d. Solve x2 — 1. 
e. Solve 12 Θ x Ф 16 = 4. 

6.22 Prove each of the following theorems: 

a. Theorem: Let (<?,o) be a group. If a e ö, then (a n ) m = a n m, 
\/ n,m€ N. 

b. Theorem: If (£, o) is a cyclic group, then (G, o) is an Abelian group. 
с Theorem: If (G,o) is a cyclic group and {Ή,ο) is a subgroup of 

(G,°), then (Ή,ο) is a cyclic group. 

6.23 Let (G, o) be a cyclic group and a,b e G elements of order 2. Prove that 
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a. а о b = b о а. 
b. {e, a,b,ao b} is a subgroup of (Q, o). 

6.24 Let (G, o) be a group. Prove that if (а о b)2 = a2 ob2, V a, 6 e G, then 
((?, o) is an Abelian group. 

6.25 Prove that if (Q, o) is a group of finite order, then there exists n € N such 
that a" = e, V a eQ. 

6.26 Let (G,°) be a cyclic group of order n. Prove that i f m e F J and n|m, 
then there exists a subgroup of order m. 

6.27 Prove that if (C/, o) is group of order p and p is a prime number, then 
(G, o) is a cyclic group. 
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