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1: Introduction

Abstract

This is an instruction to concurrency, parallelism, and
structured parallelism.

Keywords
Concurrency; Parallelism; Structured Parallelism

Parallel computing [1] [2] is becoming more and more
important. Traditional parallelism often existed in
distributed computing, since distributed systems are
usually autonomous and local computer is single-core and
single-processor and timed (Timed computing is serial in
nature). Today, due to the progress of hardware, multi-
cores, multi-processors, and GPUs make the local computer
truly parallel.

Parallel programming language has a relatively long
research history. There have been always two ways: one is
the structured way, and the other is the graph-based (true
concurrent) way. The structured way is often based on the
interleaving semantics, such as process algebra CCS. Since
the parallelism in interleaving semantics is not a
fundamental computational pattern (the parallel operator
can be replaced by alternative composition and sequential



composition), the parallel operator often does not occur as
an explicit operator, such as the mainstream programming
languages C, C++, Java, etc.

The graph-based way is also called true concurrency [3]
[4] [5]. There also have been some ways to structure the
graph [6] [7], but these work only considered the causal
relation in the graph, and neglected the confliction and
even the communication. And there are also industrial
efforts to adopt the graph-based way, such as the workflow
description language WSFL. The later workflow description
language BPEL adopts both the structured way and the
graph-based way. Why does BPEL not adopt the structured
way only? It is because that the expressive power of the
structured way is limited. Then why does BPEL not adopt
the graph-based way only? It is just because that the graph
could not be structured at that time and the structured way
is the basis on implementing a compiler.

We have done some work on truly concurrent process
algebra [8], which proved that truly concurrent process
algebra is a generalization of traditional process algebra
and had a side effect on the structuring true concurrency.

Now, it is the time to do some work on structured parallel
programming under the background of programming
language and parallel software engineering. On one side,
traditional structured programming got great successes in
sequential computation [9] [10]; on the other side, current
structured parallel programming focused on parallel
patterns (also known as parallel skeletons, templates,



archetypes) [11] [12] [13] [14] [15], with comparison to
structured sequential programming, the corresponding
structured parallel programming with solid foundation still
is missing.

In this book, we try to clarify structured parallel
programming corresponding to traditional structured
sequential programming. This book is organized as follows.
In Chapter 2, we introduce the backgrounds of structured
and unstructured parallelism. We introduce truly
concurrent process algebra APTC in Chapter 3, guarded
APTC in Chapter 4, and distributed APTC in Chapter 5. The
so-called building blocks based structured parallel
programming is introduced in Chapter 6. We introduce the
modeling and verification of parallel programming
language in Chapter 7, of parallel programming patterns in
Chapter 8, and of distributed systems in Chapter 9. Finally,
in Appendix A, we introduce a parallel programming
language.
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2: Parallelism and
concurrency

Abstract

This is a general material of concurrency, parallelism,
and structured parallel programming.

Keywords

True Concurrency; Parallelism; Structured Parallel
Programming

In this chapter, we analyze the concepts of parallelism and
concurrency, unstructured parallelism, and structured
parallelism.

We introduce unstructured parallelism in Section 2.1,
structured parallelism in Section 2.2, and the way from
unstructured parallelism to structured parallelism in
Section 2.3. In Section 2.4, we give the foundation of
unstructured and structured parallel computation.

2.1 Unstructured parallelism - true
concurrency

True concurrency is usually defined by a graph-like
structure [4] [5], such as DAG (Directed Acyclic Graph),



Petri net, and event structure. As follows, we give the
definition of Prime Event Structure.

Definition 2.1

Prime event structure

Let A be a fixed set of labels, ranged over «.---. A (A-
labeled) prime event structure is a tuple € = (E. =2, 4),
where E is a denumerable set of events. Let +:E— A be a
labeling function. And <, # are binary relations on E,
called causality and conflict respectively, such that:

1. < is a partial order and l¢] ={¢' € El¢’' =¢} i5 finite for all
eclE,

2. # is irreflexive, symmetric, and hereditary with
respect to <, that is, for all e.¢".¢" €E, if ete’ <¢" then

e

ene

Then, the concepts of consistency and concurrency can
be drawn from the above definition:

1. ¢ €E are consistent, denoted as ¢ — ¢/, if —(ece’), A
subset X €E is called consistent, if ¢ ~ ¢ for all ¢.¢" € X,
2. ¢ €E are concurrent, denoted as ¢l ¢, if ~(e =¢’),
—(e' =e) and —flete),

In the Prime Event Structure defined true concurrency,
we can see that there exist two kinds of unstructured
relations: causality and confliction. Fig. 2.1 and Fig. 2.2



illustrates these two kinds of concurrency (for the
simplicity, we separate the causal relation and the conflict
relation).

Atomic

Action — P Causality

FIGURE 2.1 An example of unstructured
parallelism.



Atomic
Action

FIGURE 2.2 Another example of
unstructured parallelism.

Causality ----------- Confliction

Fig. 2.1 illustrates an example of primitives (atomic
actions, events) with causal relations. Note that, primitives,
atomic actions, and events are almost the same concepts
under different backgrounds of computer science, and we
will use them with no differences.



Fig. 2.2 illustrates an example of atomic actions with
causal relations and conflict relations. There exists a
conflict relation between the second action in the left
parallel branch and the second action in the right parallel
branch, if the condition b is true, then the second action
and its subsequent actions in the left branch can execute,
else the second action and its subsequent actions in the
right branch will execute.

2.2 Structured parallelism

Comparing to structured programming in sequential
computation [9] [10], we can intuitionally add a structured
parallelism to the existed three basic programming
structures (sequence, choice, and iteration) of structured
sequential programming, to form four basic programming
structures of structured parallel programming: sequence,
choice, iteration, and parallelism. The intuitions and flow
charts of the four basic structures are as follows.

The intuition of sequence (;) of two clauses ei:e2 is that
after the successful execution of ¢, &2 executes. The
corresponding flow chat is shown in Fig. 2.3.



€1

FIGURE 2.3 Sequence structure.

The intuition of choice if (b) then ¢ else e is that if the
condition b is true, then ¢ executes, else ¢ executes. The
corresponding flow chat is shown in Fig. 2.4.



@-True
False

FIGURE 2.4 Choice structure.

The intuition of iteration while (b) do ¢ is that while the
condition b is true, then ¢ executes many times. The
corresponding flow chat is shown in Fig. 2.5.



--True
@ False

FIGURE 2.5 Iteration structure.

The intuition of parallelism (]|) of two clauses ¢ l ¢z is that
er and e2 execute simultaneously. The corresponding flow
chat is shown in Fig. 2.6.



FIGURE 2.6 Parallelism structure.

The programming of atomic actions, mixed by the above
four structures is called structured parallel programming.
We define Structured Parallel Program inductively as
follows.

Definition 2.2

Structured parallel program

Let the set of all primitives denote . A Structured
Parallel Program SPP is inductively defined as follows:

1. PcSPP;

2. IfereSPPand e2e SPP, then e1:e2eSPP;

3. If b is a condition, ¢: € SPP, and ¢ €SPP, then if (b)
then ¢ else e2€ SPF;

4. If b is a condition, ¢ SPP, then while (b) do ¢ 5PP;

5. IfeicSPP and e2€SPP, then ¢ llez€ SPP,



2.3 From unstructured parallelism to
structured parallelism

The examples in Fig. 2.1 and 2.2 are two kinds of typical
unstructured parallelism. In this section, we try to
structure these unstructured parallelisms.

Firstly, the unstructured causalities in the same parallel
branch can be structured by the famous conclusion that
Goto statement is harmful [9] and also the similarly well-
known structured (sequential) programming [10]; and for
unstructured causalities, we find the example in Fig. 2.1
can not be structured, and the proof is stated in the
following conclusions.

Proposition 2.3

The example in Fig. 2.1 can not be structured.

Proof

The actions 3 and 6 have the same causal pioneer 1, they
should be in different parallel branches. But, the action 6
is the causal pioneer of the action 3 through the action 7,
so, they should be in the same parallel branch. These
cause contradictions. []

How can we deal this situation? Yes, we can classify the
causal relations into two kinds: one is traditional sequential



causality, and the other is the communication between
different parallel branches, since the causality between
parallel branches being communication is reasonable. Fig.
2.7 is the causality-classified one originated from Fig. 2.1.
This classification should be clarified during modeling time,
that is, the programmer should draw Fig. 2.7 directly,
instead of drawing Fig. 2.1 and then transforming it to
Fig. 2.7, in the modeling phase. Note that, multi-parties
communications can be steadied by a series of two-parties
communications without any loss.



A Sequential Communication
Atomic Action —Jp —_—)
O Causality Causality

FIGURE 2.7 An example of structuring
unstructured parallelism.

Then the causality-classified parallelism can be
structured, we show the structuring way of synchronous
and asynchronous communications.

For synchronous communication, the program
corresponding to Fig. 2.1 can be written as follows:



(1 ((2:4) [13):5) || (6:7; 8)

with three unstructured communications #c1, $¢7.3, and .,
The above program can be structured and equivalent to
the following program:

sc1.6: ((2;4) || s€7.3); s¢s.8

We can see that the above program is structured, though
the equivalence of the above two programs is not obvious.
We will explain it through an rigorous way in the following
chapters.

For asynchronous communication, the program
corresponding to Fig. 2.1 can be written as follows:

(L; ((2:4) |1 3):5) || (6;7; 8)

with three unstructured constraints 1 =6, 7=3, and 5 =8. Note
that, < is the causal relation.

The above program can be structured and equivalent to
the following program:



(1;((2;4) || if (7 < 3) then 3 else skip); 5) || (if (I < 6) then 6 else skip; 7; if (5 < 8) then § else skip).

Note that skip is a voidness primitive.

The above conditions, like 1 =6, 7=3, and 5 =8, are not
based on the traditional results of data manipulation.
Asynchronous communications are usually implemented by
inserting an intermediate data structure, like mailbox or
queue, between the two communicating partners, so, the
above conditions can be the results of checking the data
structure if the data are received in the data structure by
the receiver. If the receiver has the ability to be blocked
until the data are received, then the above conditions can
be removed, and the structured program is the original
one:

(L: ((2:4) [| 3):5) || (65 7; 8)

without any constraint.

Then, it is turn to consider the unstructured conflictions
between different parallel branches, since it is already
proven that conflictions in the same parallel branch can be
structured [10], as the choice structure is a kind of
structured confliction. Fig. 2.2 illustrates this kind of
unstructured conflictions and can be expressed by the
following program:



(1:2;3) || (4;5;6)

with an unstructured confliction 25, and a condition b, if b
is true then the primitive 2 and its successors execute, else
the primitive 5 and its successors execute.

Fig. 2.2 can be structured by Fig. 2.8. The structured
program corresponding to Fig. 2.8 is:

if (b) then (1;2:3) || 4else 1| (4;5:6)



True False

Atomic

Autinn —Pp Causality



FIGURE 2.8 Another example of
structuring unstructured parallelism.

2.4 Foundation of unstructured and
structured parallelism

There existed several parallel machines [17] [18] to
provide the foundation for unstructured and structured
parallelism since quite long time ago. Among them, the one
(or multi)-tapes multi-heads Turing machine called PTM
(Parallel Turing Machine) [17] provides an intuitive
foundation. The unstructured causalities and conflicts can
be modeled as communications among the tape heads.

Prather [19] built the so-called structured Turing
machines with the four basic structures (sequence, choice,
iteration, and parallelism), which can realize every partial
recursive function by a structured connection of simple
machines.
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3: Truly concurrent
process algebra

Abstract

This is an introduction to truly concurrent process
algebra.

Keywords
True Concurrency; Algebra; Process Algebra

In this chapter, we introduce the preliminaries on truly
concurrent process algebra [8], which is based on truly
concurrent operational semantics.

APTC eliminates the differences of structures of
transition system, event structure, etc., and discusses their
behavioral equivalences. It considers that there are two
kinds of causality relations: the chronological order
modeled by the sequential composition and the causal
order between different parallel branches modeled by the
communication merge. It also considers that there exist
two kinds of confliction relations: the structural confliction
modeled by the alternative composition and the conflictions
in different parallel branches which should be eliminated.
Based on conservative extension, there are four modules in



APTC: BATC (Basic Algebra for True Concurrency), APTC
(Algebra for Parallelism in True Concurrency), recursion,
and abstraction.

3.1 Operational semantics

The semantics of ACP is based on bisimulation/rooted
branching bisimulation equivalences, and the modularity of
ACP relies on the concept of conservative extension, for the
conveniences, we introduce some concepts and conclusions
on them.

Definition 3.1

Bisimulation

A bisimulation relation R is a binary relation on processes
such that: (1) if pRq and 7= ' then ¢ — ¢ with »'kd’; (2) if
pRq and ¢ =4’ then » = » with »'R¢’; (3) if pRq and pP, then
qP; (4) if pRq and ¢gP, then pP. Two processes p and g are
bisimilar, denoted by 7 ~#w 4, if there is a bisimulation
relation R such that pRgq.

Definition 3.2

Congruence

Let X be a signature. An equivalence relation R on 7(£) is

a congruence if for each f €%, if siR; fori € {l.---.ar(f)}, then
.fL"-'I v .'S'r,.r[_r]}Rf{.fl. ey fn'rlf_l"]}.



Definition 3.3

Branching bisimulation

A branching bisimulation relation R is a binary relation
on the collection of processes such that: (1) if pRq and

p = p' then either « = and 7'R4 or there is a sequence of
(zero or more) T-transitions ¢ — ---— 4 such that 7Re and
90— q' with »'Re’; (2) if pRq and ¢ = ¢’ then either « = r and
PRq" or there is a sequence of (zero or more) t-transitions
p—= = po such that roRe and ro= P with »'R4’; (3) if pRq and
pP, then there is a sequence of (zero or more) T-
transitions ¢ = - = @ such that #Ra and 4?; (4) if pRq and
qP, then there is a sequence of (zero or more) T-
transitions » = ---— po such that roRe and roP. Two processes
p and g are branching bisimilar, denoted by 7 *eu#u ¢, if
there is a branching bisimulation relation R such that

PRq.

Definition 3.4

Rooted branching bisimulation

A rooted branching bisimulation relation R is a binary
relation on processes such that: (1) if pRq and » = » then
9 =4 with P ~uua’; (2) if pRq and ¢ = 4’ then » = ' with
r'~=wum q; (3) if pRq and pP, then qP; (4) if pRq and gP,
then pP. Two processes p and g are rooted branching



bisimilar, denoted by » =+ru 4, if there is a rooted
branching bisimulation relation R such that pRqg.

Definition 3.5

Conservative extension

Let o and 71 be TSSs (transition system specifications)
over signatures *o and i, respectively. The TSSTvw&Ti is a
conservative extension of 7 if the LTSs (labeled transition
systems) generated by 7 and 7o ¢ 71 contain exactly the
same transitions + =+ and tP with 1 € 7(Zo),

Definition 3.6

Source-dependency

The source-dependent variables in a transition rule of p
are defined inductively as follows: (1) all variables in the
source of p are source-dependent; (2) if : = ' is a premise
of p and all variables in t are source-dependent, then all
variables in " are source-dependent. A transition rule is
source-dependent if all its variables are. A TSS is source-
dependent if all its rules are.

Definition 3.7

Freshness

Let 7o and 71 be TSSs over signatures *» and =,
respectively. A term in T(To @ T1) is said to be fresh if it



contains a function symbol from *: ' 2o, Similarly, a
transition label or predicate symbol in 71 is fresh if it does
not occur in 7.

Theorem 3.8

Conservative extension

Let Tv and i be TSSs over signatures *o and =,
respectively, where To and To & Ti are positive after
reduction. Under the following conditions, o & T is a
conservative extension of To. (1) Tvis source-dependent.
(2) For each » €T, either the source of p is fresh, or p has
a premise of the form ¢ = ¢ or tB, where t € T(Xu), all
variables in t occur in the source of p and ', a or P is
fresh.

3.2 Proof techniques

In this subsection, we introduce the concepts and
conclusions about elimination, which is very important in
the proof of completeness theorem.

Definition 3.9

Elimination property

Let a process algebra with a defined set of basic terms as
a subset of the set of closed terms over the process
algebra. Then the process algebra has the elimination to
basic terms property if for every closed term s of the



algebra, there exists a basic term t of the algebra such
that the algebra Fs=:.

Definition 3.10

Strongly normalizing

A term so is called strongly normalizing if does not have
an infinite series of reductions beginning in .

Definition 3.11

We write * =i ! if s -+t where —* is the transitive closure
of the reduction relation defined by the transition rules of
an algebra.

Theorem 3.12

Strong normalization

Let a term rewriting system (TRS) with finitely many
rewriting rules and let > be a well-founded ordering on
the signature of the corresponding algebra. If * =ir=! for
each rewriting rule s — in the TRS, then the term
rewriting system is strongly normalizing.

3.3 Basic algebra for true
concurrency



BATC has sequential composition - and alternative
composition + to capture the chronological ordered
causality and the structural confliction. The constants are
ranged over A, the set of atomic actions. The algebraic laws
on - and + are sound and complete modulo truly concurrent
bisimulation equivalences (including pomset bisimulation,
step bisimulation, hp-bisimulation, and hhp-bisimulation).

Definition 3.13

Prime event structure with silent event

Let A be a fixed set of labels, ranged over a.b.c.---and 7. A
(A-labeled) prime event structure with silent event 7 is a
tuple € = (E. =.2. 4}, where E is a denumerable set of events,
including the silent event 7. Let E=E\(7}, exactly excluding
T, it is obvious that r* =¢, where € is the empty event. Let
»:E— A be a labeling function and let #(t)=7, And <, # are
binary relations on E, called causality and conflict
respectively, such that:

1. < is a partial order and l¢] ={¢' € El¢’ =¢} is finite for all
eckE, Itiseasytoseethate=t"=e'=e=1t=---=1=¢ then

& =

'
=€,

2. # is irreflexive, symmetric and hereditary with
respect to <, that is, for all e.¢".¢" € £, if ete’ <" then

P

efe”

Then, the concepts of consistency and concurrency can
be drawn from the above definition:



1. ¢ ¢ <E are consistent, denoted as ¢ ~ ¢/, if —~(eze'), A
subset X €E is called consistent, if e ~¢ for all ¢.¢" € X,
2. e.¢ €E gre concurrent, denoted as ¢l ¢, if ~(e =¢),
—(e' =e) and —fege’),

Definition 3.14

Configuration

Let € be a PES. A (finite) configuration in ¢ is a (finite)
consistent subset of events € <&, closed with respect to
causality (i.e. [€1=C). The set of finite configurations of ¢
is denoted by ). We let € =C\(r),

A consistent subset of X £E of events can be seen as a
pomset. Given X.Y CE ¥ ~ ¥ if X and ¥ are isomorphic as
pomsets. In the following of the paper, we say €1~ Cz, we
mean Ci ~Ca,

Definition 3.15

Pomset transitions and step

Let £ be a PES and let C€C&), and "#X<E if cnx=# and
C'=CUXeCE), then ¢ > ¢’ is called a pomset transition from
C to ¢". When the events in X are pairwise concurrent, we
say that ¢ & ¢’ is a step.

Definition 3.16




Pomset, step bisimulation

Let €1, €2 be PESs. A pomset bisimulation is a relation

R CC(&) xC(&), such that if (C1.C2) e R, and ¢ 2 then ¢ - G,
with X1 CEi, X2 SEx X1~ Xz and (€1- €2 € R and vice-versa. We
say that ¢, & are pomset bisimilar, written 1 ~r £, if there
exists a pomset bisimulation R, such that /.¥) € k., By
replacing pomset transitions with steps, we can get the
definition of step bisimulation. When PESs ¢ and ¢: are
step bisimilar, we write €1 ~s &,

Definition 3.17

Posetal product

Given two PESs ¢, &, the posetal product of their
configurations, denoted C(&1)xC(£), is defined as

{(Cy, [, C2)|Cy €C(E)), C2 €C(E), f: C1 — Cy isomorphism}.

A subset RS C(&)xC(£) is called a posetal relation. We say

that R is downward closed when for any
(C1, f, C2), (€}, 7, €3) € C(ENXC(&) §F (C1, £, C2) S (€Y, [, C) pointwise

and (Ci- /. C) €R then (C1.f.C)) €R,

For f: X1 — Xz, we define flxi — x2]: X U{xi} — Xa U {xa},
zeXjUint (1) flxi = x2l(a) =xz if z=x1; (2) flxi = x20(2) = f(2),
otherwise. Where X1 SEi, X2 €E; xj €E), 2 € En,



Definition 3.18

(Hereditary) history-preserving bisimulation

A history-preserving (hp-)bisimulation is a posetal
relation R < C(€)%C(&) such that if (C1. £.C2) € R, and €1 = €,
then €: = €5 with (Ci. fler = e21. C)) € R and vice-versa. €i.& are
history-preserving (hp-)bisimilar and are written €1 ~m €2 if
there exists a hp-bisimulation R such that #.4.¥) € R,
A hereditary history-preserving (hhp-)bisimulation is a

downward closed hp-bisimulation. ¢i. €2 are hereditary
history-preserving (hhp-)bisimilar and are written &1~ £2

In the following, let ¢1-¢2-¢-©2€E and let variables . .2
range over the set of terms for true concurrency, 7-4:%
range over the set of closed terms. The set of axioms of
BATC consists of the laws given in Table 3.1.



Table 3.1

Axioms of BATC.

No. Axiom

Al X+y=y+Xx

A2 xX+y)+z=x+ (Y +2)
A3 X+X=X

A4 xX+y)rz=x-z2+y-2
AS x-y)z=x-(y-2)

We give the operational transition rules of operators - and
+ as Table 3.2 shows. And the predicate = represents
successful termination after execution of the event e.

Table 3.2

Transition rules of BATC.

[
=

] 1.3 ¥ ] . I3 ’
X — \.f X=X ¥ Yo— ¥

e i y & &
x4+ ¥ = \,-"r r+ y = x' T+ ¥ — \.-"r r+ ¥ = J.r




Theorem 3.19

Soundness of BATC modulo truly concurrent
bisimulation equivalences

The axiomatization of BATC is sound modulo truly
concurrent bisimulation equivalences ~r, ~s, ~hw, and i,
That is,

1. let x and y be BATC terms. If BATC -x=v, then * ~r?¥;
2. let x and y be BATC terms. If BATC ~x=v, then * ~s ¥;
3. let x and y be BATC terms. If BATC ~x=v, then * ~ip ¥
4. let x and y be BATC terms. If BATC -x=>, then

X N,I'J."i'lfl _T.

Theorem 3.20

Completeness of BATC modulo truly
concurrent bisimulation equivalences

The axiomatization of BATC is complete modulo truly
concurrent bisimulation equivalences ~r, ~s, “h, and i,
That is,

let p and q be closed BATC terms, if » ~r49 then P =4;
let p and q be closed BATC terms, if » ~s4 then P =4;
let p and q be closed BATC terms, if ? ~w 4 then r=4;
let p and q be closed BATC terms, if P ~iw 4 then rP =1

= )



3.4 Algebra for parallelism in true
concurrency

APTC uses the whole parallel operator §, the auxiliary
binary parallel || to model parallelism, and the
communication merge | to model communications among
different parallel branches, and also the unary conflict
elimination operator ® and the binary unless operator <« to
eliminate conflictions among different parallel branches.
Since a communication may be blocked, a new constant
called deadlock 6 is extended to A, and also a new unary
encapsulation operator dx is introduced to eliminate 6,
which may exist in the processes. The algebraic laws on
these operators are also sound and complete modulo truly
concurrent bisimulation equivalences (including pomset
bisimulation, step bisimulation, hp-bisimulation, but not
hhp-bisimulation). Note that, the parallel operator || in a
process cannot be eliminated by deductions on the process
using axioms of APTC, but other operators can eventually
be steadied by -, +, and ||, this is also why truly concurrent
bisimulations are called an truly concurrent semantics.
We design the axioms of APTC in Table 3.3, including
algebraic laws of parallel operator ||, communication
operator |, conflict elimination operator ® and unless
operator <, encapsulation operator ¢#, the deadlock
constant 6, and also the whole parallel operator §.



Table 3.3

Axioms of APTC.

No. Axiom

A6 X+6=x

A7 6:-x=06

Pl xqy = xlly + xly

P2 xlly = ylix

P3 xIyliz = xll(yllz)

P4 ejll(ey - y)=(elles)-y

P> (eq-x)lle, = (eqlley)-x

P6 (e1-x)ll(ez - y)=(eqllez)-(xqy)
P7 X+ Wliz = (xl2)+ll2)

P38 Xy + 2)=(Xxlly) +(xlI2)

P9 6lx=06

P10 x|[6 =6

C11 ejle; =y(eq,ep)

c12 el(ex-y)=y(ey.er)y

C13 (e -x)|le; =y(eq,ey)x

C14 (e1-x)l(ez - y)=p(ey,e3)-(xqy)




No.

Axiom

C15 X+ Yz = (xI2)+(yl2)

C16 X|(y + 2)=(x]y) +(xI2)

Cc17 6lx=06

C18 x|6=6

CE19 O(e)=e

CE20 ®(6)=6

CE21 OX+y)=0(x)+06(y)

CE22 O (x-y)=0(x)-0(y)

CE23 O (XIly)=((O ) ly)+((® (y)<x)IIx)
CE24 O (xly)=((® )W) Y+ ((O (<) IX)
U25 (#(eq,€))) eq<er, =T

U26 (#(e1,ey),e9<e3) e1<e3=T
U27 (B(eq,€7),ep<e3) e3<e;=T
U238 exb=e

U29 b<e =6

U30 (X + y)<z = (x<2) + (y<2)

U31 XY= (xw) (yw)

U32 xlly)<= = (x<2) [l (y<2)




No. Axiom

U33 (xly)<z = (x<2)|(y<2)
U34 X<y + 2)=(x«y)<z
U35 X<y - 2)=(x«qy)<z
U36 x<(yllz) = (x<y)<z

U37 x<(yl2)=(x«y)<z

D1 e¢H 0Jy(e)=e

D2 e€H dy(e)=6

D3 A (6)=6

D4 A (X + y)=0(X)+3 (V)
D5 I (X - Y)=0(X)- (V)
D6 A (XIIy)=0 ()10 (y)

We give the transition rules of APTC in Table 3.4, it is
suitable for all truly concurrent behavioral equivalence,

including pomset bisimulation, step bisimulation, hp-
bisimulation, and hhp-bisimulation.




Table 3.4

Transition rules of APTC.
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Theorem 3.21

Soundness of APTC modulo truly concurrent
bisimulation equivalences

The axiomatization of APTC is sound modulo truly
concurrent bisimulation equivalences ~r, ~s, and ~. That
is,

1. let x and y be APTC terms. If APTC -x=v, then *~r¥;
2. let x and y be APTC terms. If APTC F+=v, then * ™~ ;
3. let x and y be APTC terms. If APTC ~x=v, then * ~m Y

Theorem 3.22

Completeness of APTC modulo truly
concurrent bisimulation equivalences

The axiomatization of APTC is complete modulo truly
concurrent bisimulation equivalences ~r, ~s, and ~". That
IS,



1. let p and q be closed APTC terms, if » ~r4 then P =4;
2. let p and q be closed APTC terms, if P ~s4 then P =4;
3. let p and q be closed APTC terms, if ? ~w 4 then r=1.

3.5 Recursion

To model infinite computation, recursion is introduced into
APTC. In order to obtain a sound and complete theory,
guarded recursion and linear recursion are needed. The
corresponding axioms are RSP (Recursive Specification
Principle) and RDP (Recursive Definition Principle), RDP
says the solutions of a recursive specification can represent
the behaviors of the specification, while RSP says that a
guarded recursive specification has only one solution, they
are sound with respect to APTC with guarded recursion
modulo several truly concurrent bisimulation equivalences
(including pomset bisimulation, step bisimulation, and hp-
bisimulation), and they are complete with respect to APTC
with linear recursion modulo several truly concurrent
bisimulation equivalences (including pomset bisimulation,
step bisimulation, and hp-bisimulation). In the following,
E.F.G are recursion specifications, X.Y.Z are recursive
variables.

For a guarded recursive specifications E with the form



Xi=n(Xy, - ,Xy)

Xr.r zrfi(Xla”' aXn:)

the behavior of the solution (XiIE) for the recursion variable
Xiin E, where i €{l.---.n}, is exactly the behavior of their
right-hand sides (X1, --. X»), which is captured by the two
transition rules in Table 3.5.

Table 3.5

Transition rules of guarded recursion.

. {1, veg)
HUXED, o (X E)) L

e
(X E) feg k1

\'."r

. TT—
LUK IEY - (X EY) —2c

fe1. e
e I 4

¥

LA EY

The RDP (Recursive Definition Principle) and the RSP
(Recursive Specification Principle) are shown in Table 3.6.



Table 3.6

Recursive definition and specification principle.

No. Axiom

RDP | (X||E) =t;((X4|E,-- X,lE)) (i€{l,--,n})

RSP | if Vi= ti(yl,"',yn) fori = {1,"',n}, then Vi= <X1|E>
(ie{l,---,n}

Theorem 3.23

Soundness of Arrc with guarded recursion

Let x and y be ApTC with guarded recursion terms. If
APTC with guarded recursiont-x =y then

Theorem 3.24

Completeness of Arrc with linear recursion

Let p and q be closed ArTC with linear recursion terms,
then,

1. if P49 then r=4;
2. if P~rdthen r=4;



3. if P~w 4 then =4,

3.6 Abstraction

To abstract away internal implementations from the
external behaviors, a new constant 7 called silent step is
added to A, and also a new unary abstraction operator  is
used to rename actions in I into T (the resulted APTC with
silent step and abstraction operator is called APTC;), The
recursive specification is adapted to guarded linear
recursion to prevent infinite t-loops specifically. The
axioms of T and r are sound modulo rooted branching truly
concurrent bisimulation equivalences (several kinds of
weakly truly concurrent bisimulation equivalences,
including rooted branching pomset bisimulation, rooted
branching step bisimulation, and rooted branching hp-
bisimulation). To eliminate infinite t-loops caused by = and
obtain the completeness, CFAR (Cluster Fair Abstraction
Rule) is used to prevent infinite 7-loops in a constructible
way.

Definition 3.25

Weak pomset transitions and weak step

Let € be a PES and let <), and ## X <E, if cnx =9 and
C'=Cuxec®), then ¢ 2 ¢ is called a weak pomset transition
from C to ¢, where we define 2555 And 22555 for




every ¢ X. When the events in X are pairwise concurrent,
we say that ¢ = ¢’ is a weak step.

Definition 3.26

Branching pomset, step bisimulation

Assume a special termination predicate |, and let
represent a state with +/|. Let €, &2 be PESs. A branching
pomset bisimulation is a relation & < C(&1) x C(&2), such that:

. A r
1. if (C1.Co)e R, and ¢ — € then
o either x=r*, and (€i-C2) €&,
« or there is a sequence of (zero or more) t-
. 0 S T 0X
transitions €2 — €2, such that (€1-©2) €k gnd 2= &
with (€. C3) € R,
. A r
2, if (Ci1.C2)e R, and ©2 — ¢: then
o either x=r", and (€. Y €&,
« or there is a sequence of (zero or more) t-
.y LT o PR 0 X
transitions ¢! — €1, such that (€i-€2) €k gnd €/ = €,
with (€. C3) € R,
3. if (Ci.Cy) e R gnd €1 |, then there is a sequence of (zero

VL. LT v 0y
or more) t-transitions ¢2 = ¢; such that ‘¢1-©2) € R gnd
.

4, if (¢,.C)eR gand €24, then there is a sequence of (zero

A A 0 ey
or more) t-transitions ¢! — €I such that ‘¢i-¢2) € R gnd
V'l
oy



We say that ¢, €2 are branching pomset bisimilar,
written € ~u» £, if there exists a branching pomset
bisimulation R, such that .¥) € R,

By replacing pomset transitions with steps, we can get
the definition of branching step bisimulation. When PESs
&1 and € are branching step bisimilar, we write €1 = &,

Definition 3.27

Rooted branching pomset, step bisimulation

Assume a special termination predicate |, and let v/
represent a state with +/|. Let €, &2 be PESs. A branching
pomset bisimulation is a relation R < C(&1) x C(&2), such that:

if (C1.C2)eR, and € > €| then C — €5 with Ci =& .
if (C1.C)e R, and €2 > €5 then €1 = €1 with € = 5
if (C1.C2) e R and €14, then €2 4;
if (C1.C2) R gand €24, then G 4,

= S Y B

We say that ¢, €2 are rooted branching pomset bisimilar,
written &1 = &2 if there exists a rooted branching pomset
bisimulation R, such that ¢.¥ € R,

By replacing pomset transitions with steps, we can get
the definition of rooted branching step bisimulation.
When PESs ¢ and ¢: are rooted branching step bisimilar,
we write €1 = &2,

Definition 3.28




Branching (hereditary) history-preserving
bisimulation

Assume a special termination predicate |, and let v/
represent a state with +/|. A branching history-preserving
(hp-)bisimulation is a weakly posetal relation R € C(&1)xC(£)
such that:

1. if (€1.£.C) R, and €1 = Ci then
o eithere1=7, and (€. fler=> Tl O ER,
» or there is a sequence of (zero or more) T-
transitions € — €3, such that (€1- . € € R and
CY = € with (). fler = e2], Ch) € R,
2. if (€1.£.C) e R, and €2 > €5 then
o either x =1, and (€. fle=7l.C) €&,
» or there is a sequence of (zero or more) T-
transitions €' — Ci, such that (€1 /. C2) € R gnd
C! = €} with (€1 flez+> 1], C5) € R,
3. if (Ci.f.C2) R and €14, then there is a sequence of
(zero or more) t-transitions ¢: = ¢ such that
(C1. f.CD eR gnd €3 4
4., if (Ci.f.C)eR and €24, then there is a sequence of

. r. LA
(zero or more) t-transitions ¢ — ¢i such that
(€. f.C)ER gnd €1 L.

€1.€2 are branching history-preserving (hp-)bisimilar and
are written ¢1 o &2 if there exists a branching hp-
bisimulation R such that ¥.4.%) € &,



A branching hereditary history-preserving
(hhp-)bisimulation is a downward closed branching hhp-
bisimulation. €i.€2 are branching hereditary history-
preserving (hhp-)bisimilar and are written €1 =eh &2,

Definition 3.29

Rooted branching (hereditary) history-
preserving bisimulation

Assume a special termination predicate |, and let /
represent a state with +/|. A rooted branching history-
preserving (hp-)bisimulation is a weakly posetal relation
R € C(£1)xC(&) such that:

1. if (C1.£.C) eR, and €1 — €, then €2~ C; with €1 omp Co;
2. if (C1.£.C)eR, and €2 = €1, then €1 = €5 with €1 ¥ O
3. if (C1.£.C)eR and €1 4, then C: 4;
4. if (Ci.f.C)eR and €z 4, then €1,

€1.& are rooted branching history-preserving
(hp-)bisimilar and are written ¢! =i &2 if there exists
rooted a branching hp-bisimulation R such that 4.4.%) € &,

A rooted branching hereditary history-preserving
(hhp-)bisimulation is a downward closed rooted
branching hhp-bisimulation. €i.¢2 are rooted branching
hereditary history-preserving (hhp-)bisimilar and are
written €1 Frbnnp €2,



The axioms and transition rules of APTC: are shown in
Table 3.7 and Table 3.8.



Table 3.7

Axioms of APTC,,

No. Axiom

B1 e-T=e

B2 e-(tT-(x+y)+x)=e-(x+y)

B3 X||T=x

TI1 e¢l Tt(e)=e

TI2 eecl T(e)=t

TI3 | 1,(6)=6

TIA | 7;(x +y)=1;0)+17(y)

TI5 | 1;(x - y)=1;()-T7(y)

T16 Tr(XlIy) =107 (W)

If X is in a cluster for I with exits

{(6111||“°||a1i)Y1,"',(am1||“'||ami)Ym,b11||“'||b1j,“',bn1||“'
”an}1

CFAR
then - 1;((X|E))=

T- Tr((@rqll--llag ) Y1IEY + -+ + (@ ll---lla@m;)
(YRlEY + byqll-+-bqj+ -+ + bpyll-[1by)




Table 3.8

Transition rule of APTC,,

Y eer 2T e
Tl — Tl — 1r(x")

Theorem 3.30

Soundness of APTC: with guarded linear
recursion

Let x and y be APTC: with guarded linear recursion terms.
If APTC: with guarded linear recursion ~x =y, then

1, X SEphy .'|",‘

2 X ”"M"J'bp v.
U ’

3. X Frbhp ¥

Theorem 3.31

Soundness of CFAR

CFAR is sound modulo rooted branching truly concurrent
bisimulation equivalences ~rs, ~rtv, and “rbhr,



Theorem 3.32

Completeness of APTC: with guarded linear
recursion and CFAR

Let p and q be closed APTC: with guarded linear recursion
and CFAR terms, then,

1. l.fP""“a-m-éf then Pz'ff;
2. if P=mpd then P=4;
3. if P =wipd then P =4,

3.7 Placeholder

We introduce a constant called shadow constant ® to act
for the placeholder that we ever used to deal entanglement
in quantum process algebra. The transition rule of the
shadow constant (® is shown in Table 3.9. The rule says
that ® can terminate successfully without executing any
action.

Table 3.9

Transition rule of the shadow constant.

o '
B — o

We need to adjust the definition of guarded linear
recursive specification to the following one.



Definition 3.33

Guarded linear recursive specification

A linear recursive specification E is guarded if there does
not exist an infinite sequence of t-transitions

(X|E} = (X'|E) = (X"|E) = --- and there does not exist an
infinite sequence of &-transitions (X|E} — (X'|E) — (X"|E} — -,

Theorem 3.34

Conservativity of ArTc with respect to the
shadow constant

APTC: with guarded linear recursion and shadow constant
is a conservative extension of APTC: with guarded linear
recursion.

We design the axioms for the shadow constant ® in
Table 3.10. And for ®, we add superscript e to denote ® is
belonging to e and subscript i to denote that it is the i-th

shadow of e. And we extend the set E to the set
Eu{riu{s} u{&}



Table 3.10

Axioms of shadow constant.

No. Axiom

SC1 ®-x=x

SC2 x-®=x

SC3 Sle=e

SC4 el(®°-y)=e-y

SC5 ©elite-y)=e-y

SC6 (e- )G =e-x

SC7 (®2-x)le=e-x

SC8 (e-0)I(®° - y)=e- (xiy)
SC9 (&°-x)le-y)=e- (x{y)

The mismatch of action and its shadows in parallelism
will cause deadlock, that is, ¢ I®" =3 with ¢#¢. We must
make all shadows ® are distinct, to ensure fin hp-
bisimulation is an isomorphism.

Theorem 3.35

Soundness of the shadow constant

Let x and y be APTC: with guarded linear recursion and
the shadow constant terms. If APTC. with guarded linear




recursion and the shadow constant —x=v, then

1. X FEppy .'|",'

2 X g.rblrﬁ v.
O V4

3. X g:'b.":p .'|".

Theorem 3.36

Completeness of the shadow constant

Let p and q be closed APTC: with guarded linear recursion
and cFAR and the shadow constant terms, then,

1. if p~ws4q then P=4;
2. if P =pd then P=4;
3. if P =rehed then pP=4,

With the shadow constant, we have

o ((a-rp) Qwp) = ((a-rp) ) (B - wp))

=da-cp

with H ={rs. ws} and v (re. ws) = cs,
And we see the following example:



alb=alb+alb
=al||lb+tallb+allb+alb
=a| @] b+ @) -a)lb+alb+alb
=@|®)-b+ @] lb)-a+alb+alb
=a-b+b-a+talb+alb

What do we see? Yes. The parallelism contains both
interleaving and true concurrency. This may be why true
concurrency is called true concurrency.

3.8 Axiomatization for hhp-
bisimilarity

Since hhp-bisimilarity is a downward closed hp-bisimilarity
and can be downward closed to single atomic event, which
implies bisimilarity. As Moller [23] proven, there is not a
finite sound and complete axiomatization for parallelism ||
modulo bisimulation equivalence, so there is not a finite
sound and complete axiomatization for parallelism || modulo
hhp-bisimulation equivalence either. Inspired by the way of
left merge to modeling the full merge for bisimilarity, we

introduce a left parallel composition |.|_ to model the full
parallelism || for hhp-bisimilarity.



In the following subsection, we add left parallel

composition |.|_ to the whole theory. Because the resulting
theory is similar to the former, we only list the significant
differences, and all proofs of the conclusions are left to the
reader.

3.8.1 Arrc with left parallel composition

The transition rules of left parallel composition |.|_ are
shown in Table 3.11. With a little abuse, we extend the
causal order relation < on E to include the original partial
order (denoted by <) and concurrency (denoted by =).

Table 3.11

Transition rules of left parallel operator |.|_

xi\/ yz (e; <ey) P \/
x| ym\/ x[Lny’
t5 Y Y <) 10 vy <o)
Py y Py vy

The new axioms for parallelism are listed in Table 3.12.



Table 3.12

Axioms of parallelism with left parallel composition.

No. Axiom

AG X+6=x

A7 6-x=6

P1 | xjy=xly+xly

P2 x|y = yllx

P3 XlInliz = xII(yll2)

Ppa xl|ly=x|ly+ylx

P5 [(e1<ey) ejll(ex-y)=(erller):-y

P6 |(e1<ey) (e1-x)|ex=1(erller)-x

P7 | (e;<ey) (e1-x)[(ea-y)=C(er [Lex)-(x(y)

P& ((x+y)lz=C&l2+ ]2

P9 |d||x=06

C10 ellez = V(el,ez)

C11 | eql(ey-y)=y(eq,e)y

C12 (91 . X)lez = V(el,ez)'x

C13 | (eq-x)l(ex-y)=V(e1,e3) (x1y)




No.

Axiom

Cl4d | (x+y)lz= xI2)+Ix)

C15 | x|(y+2)=Kxly)+(x|2)

C16 |6x=6

Cl7 | xl6=6

CE18 | ©O(e)=e

CE19 | 0(6)=6

CE20 | O(x+y)=0(x)+0(y)

CE21 | O(x-y)=0(x)-0(y)

ce22 | O(x [ y)=((O)<y) [ y)+((©C()<x) [x)
CE23 | O(xly)=((Bx)w)y)+((B ) <x)x)

U24 | (#(eq,ey)) e<er =T

U25 | (#(eg,ey).e5<e3) ej<e3=T

U26 | (#(ej,ey),ep,<e3) e3<e =T

U27 |eb=¢e

U28 |6<e=6

U29 | (x+y)<z=(xw)+(y<)

U30 | (x-y)we=(xw) (yw)

usl |(x [[y)<z=(x<2) [ (y<2)




No. Axiom

U32 | (xly)<z = (x<2)|(y<2)

U333 | x<(y+ 2)=(x«y)<z

U34 | x<(y-2)=(x«qy)<z

u3zs x<(y|]|2)=(Kx<y)<z
U36 | x<(ylz2)=(x<y)<z

Definition 3.37

Basic terms of Ar7c with left parallel
composition

The set of basic terms of Ap7c, BAPTC), is inductively
defined as follows:

Cal

EC B(APTC),
ifeck, 1e BIAPTC) then ¢-1 € BIAPTC);
if 1.s e BIAPTC) then t +5 € BIAPTC);

irscxarromen? LS € BAPTC)

Theorem 3.38

Generalization of the algebra for left
parallelism with respect to BATC




The algebra for left parallelism is a generalization of BATC

Theorem 3.39

Congruence theorem of ArTCc with left
parallel composition

Truly concurrent bisimulation equivalences ~r, ~s, ~h, and
~whp are all congruences with respect to ApTC with left
parallel composition.

Theorem 3.40

Elimination theorem of parallelism with left
parallel composition

Let p be a closed AprTC with left parallel composition

term. Then there is a basic APTC term q such that
APTCEp=yq,

Theorem 3.41

Soundness of parallelism with left parallel
composition modulo truly concurrent
bisimulation equivalences

Let x and y be ApTC with left parallel composition terms.
IfAPTCFx=y, then

1 . X ™y }II.



3. Y ~hp ),

4., X “hhp ¥,

Theorem 3.42

Completeness of parallelism with left
parallel composition modulo truly
concurrent bisimulation equivalences

Let x and y be APTC terms.

If x~s v, then APTCFx=y;
if ¥~ ¥, then APTCFx=y,

if * ~ ¥, then APTCHx=y;
if ¥ ~niw ¥, then APTCHx=y,

= 5

The transition rules of encapsulation operator are the
same, and the axioms are shown in Table 3.13.



Table 3.13

Axioms of encapsulation operator with left parallel
composition.

No. Axiom

D1 e¢H Jdy(e)=e

D2 ec€H 0dy(e)=6

D4 0 (X +y)=0(X)+3 (V)

D5 (X - y)=0y(x)-dg(y)

p6 |dg(x[y)=0dgx)|[dg(y)

Theorem 3.43

Conservativity of Ar7c with respect to the
algebra for parallelism with left parallel
composition

APTC is a conservative extension of the algebra for
parallelism with left parallel composition.

Theorem 3.44

Congruence theorem of encapsulation
operator ix




Truly concurrent bisimulation equivalences ~r, ~s, ~h, and
~whp are all congruences with respect to encapsulation
operator iu.

Theorem 3.45

Elimination theorem of ArPTC

Let p be a closed ArTC term including the encapsulation

operator #u, Then there is a basic APTC term q such that
APTCHp=gq,

Theorem 3.46

Soundness of Ar7c modulo truly concurrent
bisimulation equivalences

Let x and y be ArTC terms including encapsulation
operator du, If APTCFx=y then

W=
-
2
=

Theorem 3.47

Completeness of APT¢ modulo truly
concurrent bisimulation equivalences




Let p and q be closed ArTC terms including encapsulation
operator iu,

if P~s4 then r=4;
if P~rd then r=4q;
ifa’?““!;-,.«:f.l' then r=4;
if P~ 9 then p=4.

p= 5 B

3.8.2 Recursion

Definition 3.48

Recursive specification

A recursive specification is a finite set of recursive
equations

Xi=n(Xy,-,Xp)

Xn ZFH(X|,+“ -Xn)

where the left-hand sides of Xi are called recursion
variables, and the right-hand sides ‘(Xi.---. Xz} are process
terms in AP7TC with possible occurrences of the recursion
variables Xi. -, X,



Definition 3.49

Solution
Processes 71---- . P» are a solution for a recursive
specification {Xi =#i(Xy,---. Xyl € {l.--- . n}} (with respect to

truly concurrent bisimulation equivalences ~s(~r, ~hr, ~hir))
]_f Pi ™% {ﬂ“’fh e T hhﬂ”a(ﬂl- et Pnj for i e { l,.-. .H]f.

Definition 3.50

Guarded recursive specification

A recursive specification

Xi=n(X1,,Xn)

Xn =rn(XI=”’ -Xn)

is guarded if the right-hand sides of its recursive
equations can be adapted to the form by applications of
the axioms in APTC and replacing recursion variables by
the right-hand sides of their recursive equations,



o Lo )iy X ol [ g sp(Ky oo )
F 0y [ by oo (g L+ Ly

where @11 - caniy din s agi bbb by € E - gnd the sum
above is allowed to be empty, in which case it represents
the deadlock 6.

Definition 3.51

Linear recursive specification

A recursive specification is linear if its recursive
equations are of the form

g [ Lo Ko g Lo Lo Xt o [ Loy )4 0y L L)

where @11, - alij ki, iy, byvo-o- by by by € 3, and the sum
above is allowed to be empty, in which case it represents
the deadlock 6.

Theorem 3.52

Conservativity of aprc with guarded
recursion




APTC with guarded recursion is a conservative extension
of APTC.

Theorem 3.53

Congruence theorem of ArTc with guarded
recursion

Truly concurrent bisimulation equivalences ~r, ~s, ~hp, ~hip
are all congruences with respect to APTC with guarded
recursion.

Theorem 3.54

Elimination theorem of Arrc with linear
recursion

Each process term in APTC with linear recursion is equal
to a process term (X1lE) with E a linear recursive
specification.

Theorem 3.55

Soundness of Arrc with guarded recursion

Let x and y be Aprc with guarded recursion terms. If
APTC with guarded recursiont-x =y then

1.~
2. <pY;

3. XY



4. X ™hhp _T.

Theorem 3.56

Completeness of Arrc with linear recursion

Let p and q be closed ArTc with linear recursion terms,
then,

if P~ 4 then P =4;
if P~rd then r=g;
if P ~wd then r=4;
if P~nwd then r=4,

i~ £

3.8.3 Abstraction

Definition 3.57

Guarded linear recursive specification

A recursive specification is linear if its recursive
equations are of the form

o Lo Loyt o Lo L Xt oy Lo L) 0y L Ly

where @11 @t @kl ki b by b b e EUATE gnd the
sum above is allowed to be empty, in which case it



represents the deadlock 6.
A linear recursive specification E is guarded if there

does not exist an infinite sequence of T-transitions
(X|E} = (X'|E) = (X"|E) = -

The transition rules of T are the same, and axioms of 7
are as Table 3.14 shows.

Table 3.14

Axioms of silent step.

No. Axiom

B1 e-t=e

B2 e-(T-x+y+x)=e-(x+y)
B3 x|lt=x

Theorem 3.58

Conservativity of Arrc with silent step and
guarded linear recursion

APTC with silent step and guarded linear recursion is a
conservative extension of APTC with linear recursion.

Theorem 3.59




Congruence theorem of Ar7Cc with silent step
and guarded linear recursion

Rooted branching truly concurrent bisimulation
equivalences ~rbr, =, “rbip, and “rekhe are all congruences
with respect to ApTc with silent step and guarded linear
recursion.

Theorem 3.60

Elimination theorem of Arrc with silent step
and guarded linear recursion

Each process term in APTC with silent step and guarded
linear recursion is equal to a process term (X1lE) with E a
guarded linear recursive specification.

Theorem 3.61

Soundness of Arrc with silent step and
guarded linear recursion

Let x and y be ApTC with silent step and guarded linear
recursion terms. If ApTC with silent step and guarded
linear recursion —x=v, then

X = ppy ."",‘

X =

- V.
rhp ] B

X ”"N“’J'FJJ':;J y.
’

W N =

X b hp ¥



Theorem 3.62

Completeness of Aprc with silent step and
guarded linear recursion

Let p and q be closed ArTc with silent step and guarded
linear recursion terms, then,

if P ~wsq then P=9;
if P04 then p=4;
if P ~whp 9 then P=4;
if P =reiip 4 then P =4,

= )

The transition rules of = are the same, and the axioms are
shown in Table 3.15.



Table 3.15

Axioms of abstraction operator.

No. Axiom

TI1 eg¢l T/(e)=e

T12 ecl T(e)=t

TI3 T1(6)=6

T14 (X + V) =T;(X)+T17(y)

TI5 (X - V) =177 ()

e |[17(x | y)=17x) | 17 (y)

Theorem 3.63

Conservativity of APTC: with guarded linear
recursion

APTC: with guarded linear recursion is a conservative
extension of ApTC with silent step and guarded linear
recursion.

Theorem 3.64

Congruence theorem of APTC: with guarded
linear recursion




Rooted branching truly concurrent bisimulation
equivalences ~rr, =ws, “rbip, and “revhe are all congruences
with respect to APTC:. with guarded linear recursion.

Theorem 3.65

Soundness of APTC: with guarded linear
recursion

Let x and y be APTC: with guarded linear recursion terms.
If APTC: with guarded linear recursion ~x =y, then

X =Srhy _'1,‘

X ==, Ve
rip . |

" k- 1..
rbhp | |

-

W N e

=rbh hp ¥

Definition 3.66

Cluster

Let E be a guarded linear recursive specification, and / € E
. Two recursion variable X and Y in E are in the same
cluster for I iff there exist sequences of transitions

x|y Pt e bl gy gy ang (viE) A S (X,

where P11 bmicin e conp € T U|T)
aj |.|_' lLakor(al |_|_ u-ak)Xisan

exit for the cluster C iff: (1) al |.|_ "o |.|_ ak or




(ﬁl |.|_ e |.|. dk ) X is a summand at the right-

hand side of the recursive equation for a recursion
variable in C, and (2) in the case of

(al |.|_ U |.|. ak)X either @ ¢ TU{rlle(l.2,--- . k}) or

XgC,

The CFAR are shown in Table 3.16.

Table 3.16

Cluster fair abstraction rule.

No. Axiom

If X is in a cluster for I with exits

oy L+ L byl Lo Ll by Lo Ly By L Ly

CFAR
then 7 T;((X|E))=

ol L Lo B4y L Lo €100 L Loy 4y L Ly

Theorem 3.67

Soundness of CFAR

CFAR is sound modulo rooted branching truly concurrent
bisimulation equivalences ~rbs, “rbp, Zrohp, and “rbhhp,



Theorem 3.68

Completeness of APTC: with guarded linear
recursion and CFAR

Let p and q be closed APTC: with guarded linear recursion
and CFAR terms, then,

if P ~wsq then P=9;
if » =rerd then P =49;
ifP”‘"rbhpﬂf then r=4;
if P =iy 4 then p=4.

= )

3.9 APTC with asynchronous
communication

Let ¢ be a channel, A be a finite set of data. Fordea, ¢td ig
a potential action to send data d via channel ¢, ¢4 is an
actual action to send data d via channel ¢; and 44 is a
potential action to receive data d via channel ¢, ¢¥4 is an
actual action to receive data d via channel c. Let the action
beB be not related to channel ¢, and
E=BU{g)UfctdlUlcrdlUlcldlUlcld] Let o be the sequence of
data and o1 *02 be the concatenation of data sequences o
and o2, For o =<d.---.d, > last(o) =d, if 1 =n, For a queue-like
channel, the unary operator # ) denotes that in x, the
channel c initially contains the data sequence o and outside
X, no communications via ¢ are performed. For a bag-like
channel, the unary operator ' *) denoted the similar thing,



but M is a multiset of data. We remain the synchronous
communication merge |, and for causality-based
asynchronous communication, we just add the causal
constraints on the send and receive actions, any violation of
the constraints will cause deadlock, that is,
Bleld=ctd.cld<cfd)

We give the transition rules of APTC with asynchronous
communication as Table 3.17 shows.



Table 3.17

Transition rules of APTC with asynchronous

communication.

1 £ €] €3
x—=J v= ) x—=a ov=

tq’."] .'I'.""'_:'I ¢ |-!'|_.-!'3] B
xlly —— X||ly——x

x—=y vy (g<e) = yz«/ (e1 <€)
le1.¢)) ler.el
yy—> X[ y——x
xi«/ ye—W’ (e1 <o) vy yz‘}" (e1 <o)
xtLyMy’ X yMHf’Oy’

£ €2 €] €7
= v x—x v

_ yileg.ead ) ylej.eal
x|y ——= . x|y ——=x

£ €2 ] £3
= v x—=ax v

yiep.ead o ) yiep.ea) Lo,
X|ly———v X|ly———x"(v¥



x5 e e xBJ (tle).ea))
Bx) b O 2

ey (flee)) x2x' (fley.e2))

£'| I Ez I
B(x) —» B(x) Bix) — B

] £

x = v (fleez)) x—x v (fle),e2))

T T
ray— ./ ray—x'

X by v+ (flepen).epZes) x b’ v+ (Hep.e). e Ze3)

_r-cJ}’LJ x-:J_'rlr.r“

& L3

x> ¥+ (Hlepea).ep Se3) x—>x' y =T (fleer).ef <e3)
_x-qu.u-" x-qy;.r"

x5 efctd#cld x5y e#ctd#cld

HE ()= pl ()= ul (')
xiji o x—{iix'r

d At
u) ISl ) S e

A el
x(i: J xtJ,lf ¢

d 1
#E{x}iw-’ M?'dtx}inw?{x’)




.1'—:'1-3.-’ exctds#cld P exctdsFeld
pM

(x) = o/ uM ) S M ixy

ctdd ctd

T
L m— .'.."r K — X

M1
; fl‘- [(” ':.r.l':l

cird cird
pl (x)—  pMix)—p

el clld

X ¥ ——— ¥
- el !
pMix —r:J'“ T :"-Lf e NS o My

We define the basic terms for APTC with asynchronous
communication.

Definition 3.69

Basic terms of APTC with asynchronous
communication

The set of basic terms of APTC with asynchronous
communication, B(APTCAC), is inductively defined as
follows:

ECB(APTCAC);
ifeek, 1e BIAPTCAC) then ¢-1 € BIAPTCAC);
if 1.5 e BIAPTCAC) then t +s e BIAPTCAC),

ift.s e BIAPTCAC) then

t|s e BAPTCAC)

W N =



Theorem 3.70

Congruence theorem of APTC with
asynchronous communication

Truly concurrent bisimulation equivalences ~r, ~s, ~hr, and
~wp are all congruences with respect to APTC with
asynchronous communication.

So, we design the axioms of parallelism in Table 3.18,
including algebraic laws for parallel operator |,
communication operator |, conflict elimination operator ©
and unless operator «, and also the whole parallel operator
§. Since the communication between two communicating
events in different parallel branches may cause deadlock (a
state of inactivity), which is caused by mismatch of two
communicating events or the imperfectness of the
communication channel. We use the constant 6 to denote
the deadlock, and let the atomic event ecE,



Table 3.18

Axioms of parallelism.

No. Axiom

A6 X+6=x

A7 6-x=6

P1 | xqy=xly+Xly

P2 xlly = ylix

P3 xlwliz = xlI(yllz)

Pe x|ly=x[y+ylx

P5 |(e1<ep) erl(ex-y)=1(e;ex) -y
P6 |(ej=ey) (e1-x)|lex=(e;ler)-x
P7 (1 <ey) (ep-x)[(ea-y)=(e [Ler)-(x(y)
g |((x+y)|lz=C[l2+(y[2)

P9 |O|lx=9

C1 eile, =y(eq,er)

Cc2 ejl(ey-y)=y(ey,ey)y

C3 (e1-x)|le; =y(eq,ey)x

Ca | (e1-0l(ey-y)=y(e,e2)-(xqy)




No.

Axiom

C5 X+ Yz = (xI2)+(yl2)

C6 X|(y + 2)=(x]y) +(xI2)

C7 6lx=06

C38 x|6=06

CE1 O(e)=e

CE2 | 0(6)=6

CE3 OX+y)=0(x)+06(y)

CE4 | O(x-y)=0(x)-0()

CE> | Oxlly)=UO)wly)+((O(y)<x)Ix)
CE6 | OxIy)=((© )y y)+((O@(W<x)IX)
Ul (#(e1,e7)) ej<er, =T

U2 (#(e1,ey),e9<e3) e1<e3=T

U3 (#(e1,ep),e9<e3) e3<e; =T

U4 exb=e

U5 b<e =6

U6 (X + y)<z = (x<2) + (y<2)

U7 XY= (xw) (yw)

vs |(x[ly)<z=((x<2) | (y<2)




No.

Axiom

U9 (Xly)<z = (x<2)|(y<2)

U10 X<y + 2)=(x«y)<z

Ull x<(y - 2)=(x«y)<z

v12 (x<(y|l2)=(x<y)<z

Ul3 x<(yl2)=(x«y)<z

AM1 lefcetd#cld) plie)=e¢

AM?2 | e#Fetd#cld) ulle-x)=e-plix)

ars [ (eFcrdcld) plle[x)=c | pox)
AM4 | wilctdi=ctd

AMSH pletd - xvy=ctrd p?*ix)

AMG6 ug(ch”_x):Cﬂd”_Mg*ﬂ'(x)
AM?7 | weldy=cld

AMS8 | w*ield - v=cld-plix)

A0 2 (e b d L x) = bd | g (x)
AM10 | @#last@rore =i ulicldi=3

AM11 | @#last@iore =i ul(cld-x=3i

AM12| (d #last(o)oro =0) ul(cld|x)=4




No. Axiom
AM13 polr 4 v =pZ x4+ pul (v)
AM14 | te#ctd#eld pMie=e
AM15 | te#Fetd#zeld) wlte-x)=e puix)
AM16 | (o Lctd£cld) pMelx)=e| uM(x)
AM17 | wetrdi=cnd
AM18 | wierd-x=cpd u
AM19 M MUld
pe (etrdllx)y=ctdl| re { }(x)
AMR20 | wt™MNe L dy=cld
AM?21 | w™Meld n=cld-pMin
AM22 | MU{d
u e vd Ly =cld k)
AM?23 | deM wlicldy =4
AM?R2A4 | dgM pMicia-x=s
AM25 | (d ¢ M) uf}”f(c ld|x)=94
AM?26 pM i+ v =uMioo+ 1M
AM227 | nitdr=4é
AM?27 | eMmr=3




Based on the definition of basic terms for APTC with
asynchronous communication (see Definition 3.69) and
axioms of parallelism (see Table 3.18), we can prove the
elimination theorem of parallelism.

Theorem 3.71

Elimination theorem of parallelism

Let p be a closed APTC with asynchronous
communication term. Then there is a basic APTC with
asynchronous communication term q such that APTC
with asynchronous communication =7 =4,

Theorem 3.72

Generalization of APTC with asynchronous
communication with respect to BATC

APTC with asynchronous communication is a
generalization of BATC.

Theorem 3.73

Soundness of APTC with asynchronous
communication modulo pomset bisimulation
equivalence

Let x and y be APTC with asynchronous communication
terms. If APTC with asynchronous communication -+ =y,
then <~» 7,



Theorem 3.74

Completeness of APTC with asynchronous
communication modulo pomset bisimulation
equivalence

Let p and q be closed APTC with asynchronous
communication terms, if » ~r49 then r =4,

Theorem 3.75

Soundness of APTC with asynchronous
communication modulo step bisimulation
equivalence

Let x and y be APTC with asynchronous communication
terms. If APTC with asynchronous communication ~x =y,
then x~s v,

Theorem 3.76

Completeness of APTC with asynchronous
communication modulo step bisimulation
equivalence

Let p and q be closed APTC with asynchronous
communication terms, if 7 ~s4 then p =4,

Theorem 3.77




Soundness of APTC with asynchronous
communication modulo hp-bisimulation
equivalence

Let x and y be APTC with asynchronous communication
terms. If APTC with asynchronous communication -x =y,
then * ~ip ),

Theorem 3.78

Completeness of APTC with asynchronous
communication modulo hp-bisimulation
equivalence

Let p and q be closed APTC with asynchronous
communication terms, if ? ~w 4 then P =4.

Theorem 3.79

Soundness of APTC with asynchronous
communication modulo hhp-bisimulation
equivalence

Let x and y be APTC with asynchronous communication
terms. If APTC with asynchronous communication -x=v,
then X ~hip ¥,

Theorem 3.80

Completeness of APTC with asynchronous
communication modulo hhp-bisimulation



equivalence

Let p and q be closed APTC with asynchronous
communication terms, if ? ~wr 9 then pP =4,

3.10 Applications

APTC provides a formal framework based on truly
concurrent behavioral semantics, which can be used to
verify the correctness of system behaviors. In this
subsection, we tend to choose alternating bit protocol
(ABP) [24].

The ABP protocol is used to ensure successful
transmission of data through a corrupted channel. This
success is based on the assumption that data can be resent
an unlimited number of times, which is illustrated in Fig.
3.1, we alter it into the true concurrency situation.

1. Data elements 4i.d2.ds.--- from a finite set A are
communicated between a Sender and a Receiver.
2. If the Sender reads a datum from channel 4i, then
this datum is sent to the Receiver in parallel through

channel Az,

3. The Sender processes the data in A, forms new
data, and sends them to the Receiver through
channel B.

4. And the Receiver sends the datum into channel C:.

5. If channel B is corrupted, the message
communicated through B can be turn into an error
message 1.



6. Every time the Receiver receives a message via
channel B, it sends an acknowledgment to the
Sender via channel D, which is also corrupted.

7. Finally, then Sender and the Receiver send out their
outputs in parallel through channels €1 and ¢:.



8

Sender

Recemver

e

'

'

FIGURE 3.1 Alternating bit protocol.




In the truly concurrent ABP, the Sender sends its data to
the Receiver; and the Receiver can also send its data to the
Sender, for simplicity and without loss of generality, we
assume that only the Sender sends its data and the
Receiver only receives the data from the Sender. The
Sender attaches a bit 0 to data elements 4x-1and a bit 1 to
data elements 4x, when they are sent into channel B. When
the Receiver reads a datum, it sends back the attached bit
via channel D. If the Receiver receives a corrupted
message, then it sends back the previous acknowledgment
to the Sender.

Then the state transition of the Sender can be described
by APTC as follows.

Sp=)_ra,(d) T

deA
Tap= () (sg(d',b)-sc,(d") +s5(L)) - Uap
d'eA
Uap =rp(b) - Si—p+ (rp(1 = b) + rp(L) - Typ

where sz denotes sending data through channel B, o
denotes receiving data through channel D, similarly,
means receiving data via channel 41, & denotes sending
data via channel €1, and # €{0.1},

And the state transition of the Receiver can be described
by ApTC as follows.



Ry=Y ra,(d) R,

deA

Ry=Y {rg(d'.b) - sc,(d) - Qp+rpd,1=b)- Qi p}+rp(L)- Q1
d'eA

Op=(spb) +sp(L))  Ri_p

where "4: denotes receiving data via channel Az, 7 denotes
receiving data via channel B, *c: denotes sending data via

channel C;, sp denotes sending data via channel D, and
bef0, 1)

The send action and receive action of the same data
through the same channel can communicate each other,
otherwise, a deadlock 6 will be caused. We define the
following communication functions.

y(sp(d'.b).r(d', b)) £ cp(d', b)
y(sg(L), rp(L)) £cp(L)
y(sp(b), rp(b)) = cp(b)
y(sp(L),rp(L) £ ep(l)

Let Ro and % be in parallel, then the system &5 can be
represented by the following process term.



71 (3 (O(Rp () S0))) = 11 (3u (Ro () Sp))

where
H={sgld . b),rg(d.b),spb), rpb)ld € A, b {0, 1}Hsg( L), rg( L), sp(L). rp(L)}
I={cg(d. by, cpb)|d' € A.be 0. 11U (cp(L). cp(L)}

Then we get the following conclusion.

Theorem 3.81

Correctness of the ABP protocol

The ABP protocol t13n (ko 50)) can exhibit desired external
behaviors.

Proof

By use of the algebraic laws of ArP7C, we have the
following expansions.



P1 _
Ro()So=Ro| So+ Ro| So

RDP (Z ra,(d) - Ry) | (Z ra, (d)Tyo)

de de i
+ () ray@) - R 1 (O ra, (@) Tuo)
deh dei
P6,C14 ' !
= ray (@) 1l ray @)RG O Tao + 8- Ry 0 Tuo
deA
AB,AT !
=N (ray (@) | ra ()RG () Tao
deA

dr (Ro () Sp) = BH(Z{fﬂg(d) I ra, ()R O Tao)
de A

=Y " (ra, (@) | ra, (@d)dp (R) ) Tao)

ded

Similarly, we can get the following equations.



dr(Ro () So) = Z(rﬂg(d) | ra,(d)) - 3 (Tao (| Ry)
de

oy (Tao () Ry) =c(d’, 0)- (s, (d) || s¢,(d")) - 3 (Ugo ) Qo) + ep(L) - 0y (Uao | Q1)
0x (Uao | Q1) = (ep(1) +ep(L)) - ay(Tao | Ry)

0r(Qo ) Ugo) =cp(0) - a5 (R1 ( 1)+ ep(L) - 9 (R ) Tyo)

O (R) (| Tao) = (cp(d’,0) +cp(L)) - 3 (Qo § Uao)

(RIS =) (ray(d) | 74, (d)) - 3 (Tor | RY)

deA
o0n(Tyn O RY) =cp(d', 1) (sc,(d) || sc,(d")) - 3m (Ug1 ) Q1) + e (L) - 05 (U ) Qp)
0 (Ug1 () Q) = (cp(0) +cp(L)) - ag(Tyr ) RY)
05 (01 () Ug1) =cp(1) 35 (Ro ) So) + cp(L) - 05 (Ry 0 Ty )
0 (Ry O Tun) = (cp(d', 1) + (L)) - 85 (Q1 () Ugy)

Let 91 (Ro( So) = (X11E), where E is the following guarded
linear recursion specification:



(X1=) (ray(@d) [ ra, (@) - Xoa. Y1 =) (ray (@) [ r4,(d) - Yaa.

deA deA
Xoq =cp(d’,0) - Xgq +cp(L) - X30, Yoag =cp(d', 1) - Yag +cp(L) - Y3q,
X34 = (cp(D) +cp(L)) - Xag, Y34 = (cp(0) + ¢p(L)) - Yaq,
Xaa = (sc,(d') || s¢,(d") - X54, Yaa = (s¢,(d") || s¢,(d")) - Ysa,
Xsa=cp(0)- Y1 +ep(L) - Xeg, Ysa =cp(l) - Xi +ep(L) - Yo,
Xea = (cp(d,0) +cp(L)) - Xsq4, Yoq = (cp(d, 1) + cp(L)) - Ysq
d,d € A)

Then we apply abstraction operator = into (X1/£),

T (X1E) =) (ra, (@) [ ray(d)) - 1({X24] E))

de

— Z(r’m{d} I 7a,(d)) - 71 ((X4q|E))

deA

= Z (ra,(d) || ra,(d)) - (s¢, (@) || s¢, (@) - T ((Xsq|E))
d.d e

= Y (ra,@ [ ray@) - (s¢, (@) || sc, @) - Tr((N|E))
d.d'en

Similarly, we can get
T (NEN =34 preatra, (d) | ra,(d)) - (sc, (d') || sc,(d")) - T (X1 E))

We get
T (1 (Ro 0 S0)) = 2 area (ray () I may (d)) - (sey (d') ] sc,(d)) - T (Om (Ro 0 S0)) g



the ABP protocol ©(3r(Ro 0 50)) can exhibit desired external
behaviors. []

With the help of shadow constant, now we can verify the
traditional alternating bit protocol (ABP) [24].

The ABP protocol is used to ensure successful
transmission of data through a corrupted channel. This
success is based on the assumption that data can be resent
an unlimited number of times, which is illustrated in Fig.
3.2, we alter it into the true concurrency situation.

1. Data elements 41.4z2.4s.--- from a finite set A are
communicated between a Sender and a Receiver.

2. If the Sender reads a datum from channel A.

3. The Sender processes the data in A, forms new
data, and sends them to the Receiver through
channel B.

4. And the Receiver sends the datum into channel C.

5. If channel B is corrupted, the message
communicated through B can be turn into an error
message 1.

6. Every time the Receiver receives a message via
channel B, it sends an acknowledgment to the
Sender via channel D, which is also corrupted.



Sender Recerver

'

FIGURE 3.2 Alternating bit protocol.




The Sender attaches a bit 0 to data elements 9x-1 and a
bit 1 to data elements 42, when they are sent into channel
B. When the Receiver reads a datum, it sends back the
attached bit via channel D. If the Receiver receives a
corrupted message, then it sends back the previous
acknowledgment to the Sender.

Then the state transition of the Sender can be described
by ApTC as follows.

Sp = Zm(ﬂ') ~Tap
deh

Ty = (Y _ (sp(d.b)- &) +55(L) Uap
d'eh
Usp =rpb) - S1—p+ rp(1 =b) +rp(L)) - Typ

where s8 denotes sending data through channel B, o
denotes receiving data through channel D, similarly, 74
means receiving data via channel A, <" denotes the
shadow of sc(d),

And the state transition of the Receiver can be described
by ApTC as follows.



R.’J — Z@-‘}l @, R.;;r

deA
Ry= Y {r(d.b)-sc(d) Qp+rgd.1—-b) Qi_p}+rp(L) Qi
d'e
Op=(sp(b) +s5p(L))- Ri—p
where & denotes the shadow of ra(d), s denotes receiving
data via channel B, sc denotes sending data via channel C,
sp denotes sending data via channel D, and #¢<1{0.1},
The send action and receive action of the same data
through the same channel can communicate each other,

otherwise, a deadlock 6 will be caused. We define the
following communication functions.

y(sg(d' b),rg(d’ b)) = cp(d b)
y(sp(L), rp(L)) = ep(L)
y(sp(b), rp(b)) = cp(b)
y(sp(L),rp(L) £ cp(L)

Let o and % be in parallel, then the system oS can be
represented by the following process term.

77101 (O(Ro () S0))) = 71 (9u (Ro  So))



where
H={sgld . b),rg(d.b),spb), rpb)d € A, be{0, 1}){sg( L), rg( L), sp(L). rp(L)}
I={cp(d.b),cp®)d’ € A,be 0, 1]} U{cp(L), cp(L)).

Then we get the following conclusion.

Theorem 3.82

Correctness of the ABP protocol

The ABP protocol 713u (R [ S0)) can exhibit desired external
behaviors.

Proof

Similarly, we can get “(X11ED =2 pearatd) - scd) - t(NIE) gng
T (NIED =2 rearald)-scld) -1 ({(X[E))

So, the ABP protocol 7(@u(Ro ( 50)) can exhibit desired
external behaviors. [J
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4: Guarded APTC

Abstract

This is an introduction to guarded truly concurrent
process algebra.

Keywords
Guards; True Concurrency; Process Algebra

This chapter is organized as follows. We introduce the
operational semantics of guards in Section 4.1, BATC with
Guards in Section 4.2, Arrc with Guards 4.3, recursion in
Section 4.4, abstraction in Section 4.5.

4.1 Operational semantics

In this section, we extend truly concurrent bisimilarities to
the ones containing data states.

Definition 4.1

Prime event structure with silent event and
empty event

Let A be a fixed set of labels, ranged over «.b.c.--- and t.¢€,
A (A-labeled) prime event structure with silent event T



and empty event € is a tuple € = (E. =.t.4), where E is a
denumerable set of events, including the silent event T
and empty event €. Let E=E\(r.¢], exactly excluding T and
€, it is obvious that r*=¢. Let +:E— A be a labeling function
and let #(r)=1 and #(¢)=¢, And <, # are binary relations on
E, called causality and conflict respectively, such that:

1. < is a partial order and [e] =l¢' € El¢e’ =¢} is finite for all

ecE, It is easy to see that ¢ =

"_) 1-": "_)'I
1 .

# F__ e L o g
" =<1 =< ir—",thel’l

2. # is irreflexive, symmetric, and hereditary with
respect to <, that is, for all e.¢".¢" €E, if ete’ <" then

l’.’:t"”.

Then, the concepts of consistency and concurrency can
be drawn from the above definition:

1. e ¢ <E are consistent, denoted as ¢ ~ ¢/, if ~(ete), A
subset X <E is called consistent, if e —~¢ for all e.¢" € X,
2. ¢ €E are concurrent, denoted as ¢l ¢, if ~(e =¢'),
—(e' < ¢) and —(ege’),

Definition 4.2

Configuration

Let € be a PES. A (finite) configuration in ¢ is a (finite)
consistent subset of events € =€, closed with respect to
causality (i.e. [€1=C), and a data state s € S with S the set




of all data states, denoted C.s). The set of finite
configurations of ¢ is denoted by (€(©).5). We let € = C\(t] U e},

A consistent subset of X €E of events can be seen as a
pomset. Given X.Y€E ¥~ ¥ if X and ¥ are isomorphic as
pomsets. In the following of the paper, we say €1~ (2, we
mean €1~ Ca,

Definition 4.3

Pomset transitions and step

Let £ be a PES and let CC(€), and "#X<E if cnx=uand

[ . X ¥ LA o4 e
C'=CUXeC(€), then (C.s) = (C.5'} is called a pomset transition
from (C.s) to (C".s"), When the events in X are pairwise

X Py e q 2
concurrent, we say that (C.s) = (C'.s') is a step. It is obvious
that -*%—*=% and —*5—"=5 for any e<E and X CE,

Definition 4.4

Weak pomset transitions and weak step

Let € be a PES and let =€), and ## X <E, if cnx =# and
A.l - 5l ad ) [ -ﬁ- [ [} .
C'=CUX eC(&), then (C.5s) = (C.5) is called a weak pomset

z_f

transition from (C.s) to (C".s'), where we define =2 —=—.

*
T

X o o
And =£———, for every ¢ x. When the events in X are
. . Il Ny X f [ .
pairwise concurrent, we say that (C.s) = {C".5") is a weak
step.



We will also suppose that all the PESs in this paper are

image finite, that is, for any PES € and C€C(€) and a € A,

lecE

WC, 5) 5 {C', 5" A de) = .:.r}' and le s ._*:|{C' s} = (C', 5"} A Ae) = a} is finite.

Definition 4.5

Pomset, step bisimulation

Let €1, &2 be PESs. A pomset bisimulation is a relation

R C (C(£1), 8) x {C(&2), ) such that if ((C1.s). (C2.sh € R and

{{.’1.&'}&* (€15 then (€2 ﬂ} ﬁ:a_. -;, with X1 €E;, Xa CEy X; ~ X3,
and (€1-5" (€8N € R for all 5.5’ €S, and vice-versa. We say
that €, £ are pomset bisimilar, written &1 ~» &, if there
exists a pomset bisimulation R, such that ({4.¥). (#.4)) € kR, By
replacing pomset transitions with steps, we can get the
definition of step bisimulation. When PESs ¢ and ¢: are

step bisimilar, we write €1 ~s &,

Definition 4.6

Weak pomset, step bisimulation

Let €1, €2 be PESs. A weak pomset bisimulation is a
relation R € (C(£1), ) x (C(£2), 5}, such that if ((C1.s). (C2.5) € R, and
(C1.5) = (C].5") then (C2.5) = (C}.s) , with X1 €E;, X2 CE,, X;~X»,
and “C1-51.(C2. 5D € R for gll 5.5’ € S, and vice-versa. We say
that &, &2 are weak pomset bisimilar, written €' ~r &, if
there exists a weak pomset bisimulation R, such that
(1.9}, 0. 1) € R, By replacing weak pomset transitions with
weak steps, we can get the definition of weak step



bisimulation. When PESs ¢1 and ¢: are weak step bisimilar,

&2

we write €1 =5 ¢

Definition 4.7

Posetal product

Given two PESs ¢, &, the posetal product of their
configurations, denoted (€(€1). $)x(C(&2), 5}, is defined as

{({(C1,8), £, (Ca,8))ICy €C(E)), C2 €C(&2), f: €y — C; isomorphism}.

A subset R < (C(£1), 5)x(C(£2). 5) is called a posetal relation.
We say that R is downward closed when for any
({C1, ), £, (C2,5)), ((Cy, 8), £, (€5, 8) € (C(E1), S)X(C(£2), S) i
((C1.5). f{C2.5) € ((C.s). /' {C5.5) pointwise and
(€, s"), f Gy 5D € R then ((C1.s). f.(C2.5) € R,

For f: X1 — X2 we define flxi— x2]: X, Uy} — Xo Ufn}
ze XiUinl, (1) flxi=xl@) =x, if 2=xi; (2) flxi = x20(z) = f(2),
otherwise. Where X1 SEi, X2 CEz2 v €Ky xa e Ey,

Definition 4.8

Weakly posetal product

Given two PESs ¢, &, the weakly posetal product of their
configurations, denoted (€. $)x(C(&). 3), is defined as



(((C1.5), [, (Ca,5))|C1 €C(E)).C2 €C(&), [ : €1 — C, isomorphism}.

A subset R < (C(£1), 5)x(C(£2). 5) is called a weakly posetal
relation. We say that R is downward closed when for any
({C1, ), f,(C2,5)), ((Cy, ), £, (€3, 8°)) € (CCE1), $)X(C(£2), S if
({Cy, 5}, £, {C2.5)) S ((Cy,57), 1 {C5.5)) pointwise and
(€, 8", f G 5D € R then ((C1.s). f.(C2.5) € R,

For f: X1 — X2, we define flxi1+— x2]: X Uix )} — Xo U{xa}
ze X1 Uin), (1) flxim xl@ =x, if :=xi; (2) flxi = x20(2) = f(2),
otherwise. Where X1 SE;, X2 CE; x €k xel Also, we
define /(t") = r(r"),

Definition 4.9

(Hereditary) history-preserving bisimulation

A history-preserving (hp-)bisimulation is a posetal
relation R < (C(&1), S)x(C(£2), S) such that if ({(C1.s). f. (C2.s) € R, and
(C1.s) = (C].s") then (C2:9) = (C5.s") with (C].s). fler— 2] (Ch, 5N € R
for all s.s' €5, and vice-versa. ¢i.£: are history-preserving
(hp-)bisimilar and are written ¢!~ 2 if there exists a hp-
bisimulation R such that ({4.¥}. 4, (. 4}) €

A hereditary history-preserving (hhp-)bisimulation is a
downward closed hp-bisimulation. ¢1.¢2 are hereditary
history-preserving (hhp-)bisimilar and are written &1~ £2

Definition 4.10




Weak (hereditary) history-preserving
bisimulation

A weak history-preserving (hp-)bisimulation is a weakly
posetal relation & < (C(€1). $)x(C(£2). S) such that if
(C1.5). f.(C2us) € R, and (C1-5) = (C1.5) then (C2.5) = (C5.5) with
(€. 87). fler> e (€5, 5") € R for all s.s" €S, and vice-versa. 1. &
are weak history-preserving (hp-)bisimilar and are
written € ¥ €2 if there exists a weak hp-bisimulation R
such that ((4.¥). 0. (4. 4)) € R

A weakly hereditary history-preserving
(hhp-)bisimulation is a downward closed weak hp-
bisimulation. ¢i.¢: are weakly hereditary history-
preserving (hhp-)bisimilar and are written € ~m ¢2,

4.2 zarc With guards

In this section, we will discuss the guards for BATC, which is
denoted as BATCq, Let E be the set of atomic events
(actions), and we assume that there is a data set A and
data Pi.---. Dy € A, the data variable 4i1.---.d» range over A, and
di has the same data type as Di and can have a substitution
Di/d;, for process x, *[DPi/dil denotes that all occurrences of 4:
in x are replaced by Di. And also the atomic action e may
manipulate on data and has the form etdi.---.du) or e(Dy.---. Dy),
Ga be the set of atomic guards, 6 be the deadlock constant,
and € be the empty event. We extend G« to the set of basic
guards G with element ¢.¥.---, which is generated by the
following formation rules:



¢=dle[=@|lY € Gulp + VoV

In the following, let ¢1-¢2-¢-&2€E ¢, v € G and let variables
x.¥.z range over the set of terms for true concurrency, 7:4-5
range over the set of closed terms. The predicate fest(@.s)
represents that ¢ holds in the state s, and test(e.s) holds and
test(d,s) does not hold. effect(e.s) €S denotes s' in s = s'. The
predicate weakest precondition »rle.¢) denotes that
¥y e S.rest(g, ef fect(e.5)) holds.

The set of axioms of 8ATCe consists of the laws given in
Table 4.1.



Table 4.1

Axioms of BATCg.

No. Axiom

Al X+y=y+Xx

A2 xX+W+z=x+ (y+2)
A3 X+ X=X

Al xX+y)z=x-24+y-2
ADS xX-yz=x-(y-2)
A6 X+6=x

A7 6-x=6

A8 €- X=X

A9 X-€=X

G1 ¢--¢p=06

G2 o+-¢p=c¢

G3 P6=6

G4 P(x+y)=¢x + Py
G5 Gx-y)=¢x-y

G6 (@ + v)x =px + yx
G7 @-v)x=0¢-(y-x)




No. Axiom

G38 ¢ =€ if Vs € S.test(¢,s)

G9 ¢, =06 if Vs € S,3i < n.test(—¢;,s)

G10 wp(e,p)ep =wp(e,p)e

G11 —wp(e,p)e-¢p =-wp(e,p)e

Note that, by eliminating atomic event from the process
terms, the axioms in Table 4.1 will lead to a Boolean
Algebra. And G9 is a precondition of e and ¢, G10 is the
weakest precondition of e and ¢. A data environment with
effect function is sufficiently deterministic, and it is obvious
that if the weakest precondition is expressible and G9, G10
are sound, then the related data environment is sufficiently
deterministic.

Definition 4.11

Basic terms of BATCg

The set of basic terms of BATCq, BIBATCy), is inductively
defined as follows:

EcC B(BATCg);

G C B(BATCg);

ifecE te B(BATCg) then ¢t € BIBATCg);
if #€G.1€BIBATCg) then ¢ -t € BIBATCg),

o £

if 1.5 € BIBATC) then t +5 € BIBATCg),



Theorem 4.12

Elimination theorem of BATCg

Let p be a closed 8ATC:s term. Then there is a basic BATCs
term q such that BATCcFr=gq,

We will define a term-deduction system which gives the
operational semantics of BATCs, We give the operational
transition rules for €, atomic guard ¢ € G«, atomic event ¢ €E,
operators - and + as Table 4.2 shows. And the predicate
>V represents successful termination after execution of
the event e.



Table 4.2

Single event transition rules of BATC;.

le.s) = (V. 5)

if " ef fect (e, 5)

y 1
e 5] = 08"

—':ﬁ‘}- ) if testigh, 51

(x,5) — {5 (r,5) = (x', 5"}

X+ v, 58— P T e S x5

(v, 5) = (5} (v, 5) = (¥, 5"}

4+ y8) = (s x4 ys = (s

(x5} = (/) 5} fr.s) > (x5

royos) = (vs') (s S oy

Note that, we replace the single atomic event e<E by X SE,
we can obtain the pomset transition rules of BATCs, and
omit them.

Theorem 4.13

Congruence of B8ATC; with respect to truly
concurrent bisimulation equivalences




(1) Pomset bisimulation equivalence ~r is a congruence
with respect to BATCq,

(2) Step bisimulation equivalence ~s iS a congruence
with respect to BATCq,

(3) hp-bisimulation equivalence ~'r is a congruence
with respect to BATCq,

(4) hhp-bisimulation equivalence ~#vr is a congruence
with respect to BATCq,

Theorem 4.14

Soundness of 34TC¢ modulo truly concurrent
bisimulation equivalences

(1) Let x and y be BATCc terms. If BATCFx=y, then < ~rY,
(2) Let x and y be BATCc terms. If BATCFx=y, then *~s Y,
(3) Let x and y be BATCc terms. If BATCFx=y, then * ~hp Y,
(4) Let x and y be BATC:c terms. If BATCFx=y, then X ~hiw Y,

Theorem 4.15

Completeness of 54TCe modulo truly
concurrent bisimulation equivalences

(1) Let p and q be closed BATC: terms, if P ~r49 then r =4,
(2) Let p and q be closed BATCc terms, if P ~s4 then P =4.
(3) Let p and q be closed BATCs terms, if P ~mw 49 then r=4.
(4) Let p and q be closed BATC:s terms, if P ~wr 4 then P =4



Theorem 4.16

Sufficient determinacy

All related data environments with respect to 8ATCc can
be sufficiently deterministic.

4.3 srrc With guards

In this section, we will extend APTc with guards, which is
abbreviated AfTCq, The set of basic guards G with element
¢.¥.---, which is extended by the following formation rules:

¢ =0dle|=@lY € Gulo+ V¢ Vgl ¥

The set of axioms of APTCs including axioms of 8ATCe in
Table 4.1 and the axioms are shown in Table 4.3.



Table 4.3

Axioms of APTCg;.

No. Axiom

Pl | xQy=xlly+xly

P2 | eqli(ex-y)=(eqller)-y

P3 (eq-x)lle; = (eqlley)-x

P31 | (ey-X)ll(ez-y)=(e1llez)-(xqy)
PS5 | (x+yllz= xlz)+Wlz)

P6 | xll(y +2)=(Xly)+(xllz)

P7 |6lx=6

P8 | x|6=6

P9 |elx=x

P10 | x|le =x

C1 eile, =y(eq,er)

C2 | el(ey-y)=y(er.e7)y

C3 | (e1-x)lex=y(eq.ex)x

Ca | (ep-X)l(ez-y)=y(ey,e7) - (x]y)
C5 | x+ylz=xl)+(yl2)

C6 | xI(y+2)=Xy)+(xlz)




No. Axiom

C7 |6lx=6

C8 |xi6=56

C9 |elx=6

C10 | xle=6

CE1l | O(e)=e

CE2 | ©(6)=6

CE3 | O(e)=e€

CE4 | O(x +y)=0()+0(y)

CE5 | O(x-y)=0(x)-6(y)

CE6 | O(xlly)=((@)w)lly)+ (O y)<x)lIx)
CE7 | (xy)=(BO)w)ly)+((B (y)x)Ix)
Ul | (#(e1.€2)) er<ey=1

U2 | (#(er,ex).ep<e3) ej<ez3=t

U3 | (#(ej,ey),ep<e3) e3<e;=T

U4 |eb=e

U5 |b6<e=6

U6 |e<ec=e

U7 |e<e=e




No.

Axiom

U8

(X + y)w = (x<€2)+(y<z)

U9

(X - y)<z = (x<2)- (y<2)

U10

(xlly)<z = (x<2)|(y<2)

Ul1l

(xly)<z = (x<2)|(y<2)

Ul12

X<(y + 2)=(x«y)<z

U13

x<(y - 2)=(x<y)<w

Ul4

xX<(Yll2)=(x«y)<z

Ul5

X<A(y12)=(x«y)<z

D1

egH Jdy(e)=e

D2

e€H 0Jdy(e)=6

D3

D4

O (X +y)=0(X)+0x(Y)

D53

(X - y)=0g(X)-0(Y)

D6

g (XIly) =019 (V)

G12

¢ xlly)=dxlipy

G13

d(xly)=dx|py

G14

¢l6 =06

G15

Ollp =06




No. Axiom

G16 | pl6=06

G17 |6lp=6

G18 | dle=¢

G19 |elp=¢

G20 | ple=6

G21 (elp=6

G22 | pl-¢p=6

G23 | O(9)=9

G24 | dy(P)=¢

G25 | doll-+lep, =6 if Vsg,+-,5, €S,
3i < n.test(—¢;,sqU - US,)

Definition 4.17

Basic terms of APTCg

The set of basic terms of APTCs, G(APTCq), is inductively
defined as follows:

1. ECBAPTCg);
2. GCH{.J-‘[FT{:G};

3. ife€E reBAPTCg) then ¢t € BIAPTCg);
1

. if¢€GreBAPTCs) then ¢ -1 € BAPTCe);



5. if 1.5 BIAPTCs) then 1 +5 € BIAPTCy),
6. if1.s€BAPTCs) then ! |l s € BIAPTCg),

Based on the definition of basic terms for APTCe (see
Definition 4.17) and axioms of APTCs, we can prove the
elimination theorem of APTCg,

Theorem 4.18

Elimination theorem of AFPTCg

Let p be a closed AFTCs term. Then there is a basic APTCq
term q such that APTCc-p=q,

We will define a term-deduction system which gives the
operational semantics of APTCs, Two atomic events ¢ and e
are in race condition, which are denoted ¢ %, (See Table
4.4)



Table 4.4

Transition rules of APTCg.
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Theorem 4.19

Generalization of APTCc with respect to BATGg




APTCq ijs a generalization of BATCa,

Theorem 4.20

Congruence of APTCe with respect to truly
concurrent bisimulation equivalences

(1) Pomset bisimulation equivalence ~r is a congruence
with respect to APTCq,

(2) Step bisimulation equivalence ~s is a congruence
with respect to APTCq,

(3) hp-bisimulation equivalence ~'r is a congruence
with respect to APTCa,

(4) hhp-bisimulation equivalence ™~ is a congruence
with respect to APTCa,

Theorem 4.21

Soundness of APTCcs modulo truly concurrent
bisimulation equivalences

(1) Let x and y be APTCs terms. If APTCFx=y, then *~rJ.
(2) Let x and y be APTCc terms. If APTCFx=y, then *~: .
(3) Let x and y be APTCc terms. If APTCFx=y then ¥ ~he Y,

Theorem 4.22

Completeness of APTCc modulo truly
concurrent bisimulation equivalences

(1) Let p and q be closed AFTCs terms, if » ~r4 then P =4.



(2) Let p and q be closed AFTCs terms, if P ~+4 then P=4.
(3) Let p and q be closed AFTC: terms, if P ~w 4 then P =4,

Theorem 4.23

Sufficient determinacy

All related data environments with respect to APTCas can
be sufficiently deterministic.

4.4 Recursion

In this section, we introduce recursion to capture infinite
processes based on APTCq, In the following, £.F.G are
recursion specifications, X.Y.Z are recursive variables. (See
Table 4.5.)

Table 4.5

Transition rules of guarded recursion.

U UKD - (X D), 5) SLct)

bafsd g

(X: | E), 5y ——2 e (")

U XY ED - o (X  ED),5) ALkl o0y

. £ E )
X E), §) ———— wiv, 87

Definition 4.24

Guarded recursive specification




A recursive specification

Xi=n(X1,,Xn)

Xn =rn(XI=”’ -Xn)

is guarded if the right-hand sides of its recursive
equations can be adapted to the form by applications of
the axioms in APTC and replacing recursion variables by
the right-hand sides of their recursive equations,

(arr ||+ ar,) - si(Xy, o X))+ a | lawiy) - se(Xy, -, Xp)
+ bl b))+ gy e biy)
where @it - dlip. Akl -f"kipbll-"'J"J'l'bl.fl""*JH.-""‘:E, and the sum

above is allowed to be empty, in which case it represents
the deadlock 6. And there does not exist an infinite
sequence of e-transitions (X|E} - (X'|E}) — (X"|E} — -

Theorem 4.25

Conservativity of APTC;s with guarded
recursion

APTC with guarded recursion is a conservative extension
Of;"‘.PTC(;_



Theorem 4.26

Congruence theorem of AP7C; with guarded
recursion

Truly concurrent bisimulation equivalences ~r, ~s and ~h»
are all congruences with respect to AFTCc with guarded
recursion.

Theorem 4.27

Elimination theorem of APTCs with linear
recursion

Each process term in APTCs with linear recursion is equal
to a process term (X1lE) with E a linear recursive
specification.

Theorem 4.28

Soundness of APTCs with guarded recursion

Let x and y be APTCe with guarded recursion terms. If
APTCg with guarded recursion - x = v, then

(1) <~

(2) *~r;

(3) X ™hp ¥,

Theorem 4.29

Completeness of A?TC; with linear recursion




Let p and q be closed APTCs with linear recursion terms,
then,

(1) if »~s49 then P =9;

(2) if P ~r49 then r=4;

(3) if P ~mw4 then p=4,

4.5 Abstraction

To abstract away from the internal implementations of a
program, and verify that the program exhibits the desired
external behaviors, the silent step T and abstraction
operator © are introduced, where / SEU G« denotes the
internal events or guards. The silent step T represents the
internal events, and ™ for internal guards, when we
consider the external behaviors of a process, T steps can be
removed, that is, T steps must keep silent. The transition
rule of T is shown in Table 4.6. In the following, let the
atomic event e range over EU{e}U{é}U{r}, and ¢ range over
GU{r}, and let the communication function

yiEU{r} x EU{r}—EU{8} with each communication involved T
resulting in 6. We use 7(s) to denote effect(t.s), for the fact
that T only change the state of internal data environment,
that is, for the external data environments, s =t(s),



Table 4.6

Transition rule of the silent step.

——————— ifrestiTy, 5)
(T, 80— (. 5) (1g:

(1.5} = (. T(5))

In Section 4.1, we introduce T into event structure, and
also give the concept of weakly true concurrency. In this
section, we give the concepts of rooted branching truly
concurrent bisimulation equivalences, based on these
concepts, we can design the axiom system of the silent step
T and the abstraction operator .

Definition 4.30

Branching pomset, step bisimulation

Assume a special termination predicate |, and let v
represent a state with +|. Let ¢, €2 be PESs. A branching
pomset bisimulation is a relation R < (C(£1), 5) x (C(£2). 5), such
that:

1. if (Ci.s). (Cos) e R, and (€1 $) = (C}.5) then
o either x =%, and (Ci-s"-{C2.5h) € R with s € r(s);
o or thereis a sequence of (zero or more) T-

transitions (C2- s} = (C.s° ) such that ¢ (ch.s"er

and ‘- ) S (€4, with (€157, (Cy,5") € R,

2. if (Cr.5). (C2.s) € R, and (€2 $) > (Cp. ' ! then



o either x =17, and (C1.5). (G 5D € R,
» or there is a sequence of (zero or more) T-

transitions (C1.5) = (€1.s"), such that (C7.s"). (C2.5) € R
X 0 My et iy rall r -
and (c).s") = (C.5") with (€. 87, {C3, 7)) € R.

J

3. if ({Ch.5). (Ca,s)) € R gnd (C1.5) |, then there is a sequence

. PR P B 1
of (zero or more) t-transitions (€2-s) — (€3.57) such

that (Ci.s). (). s")eRr . (9, 5%) I

4. if (iCi.5).(C2.s) € R gand (C2.5) |, then there is a sequence
of (zero or more) t-transitions (!¢ 5 (5% such
that (7.5, (C2,s) € R gnd (€% 1.

We say that ¢, €2 are branching pomset bisimilar,
written €1 ~u £, if there exists a branching pomset
bisimulation R, such that (4. ¥}. . W) € K,

By replacing pomset transitions with steps, we can get
the definition of branching step bisimulation. When PESs
&1 and € are branching step bisimilar, we write €1 = &,

Definition 4.31

Rooted branching pomset, step bisimulation

Assume a special termination predicate |, and let
represent a state with +/|. Let &, &2 be PESs. A rooted
branching pomset bisimulation is a relation

R C (C(£)), S) x (C(&). S) such that:

y 1 X Tl ¥ y 1 X T i
1. if (C1.5).(Cos) e R and (C1-5) = (C1.5') then (C2.5) = (C).s)

. {."I.,.'rl:' . M _“I,.'ll.'.
with (€15 =ep (Cy ¥



] i w . P F 1l i K ] [ s
2. if ((Ci.s). (Cos)) e R gnd {C2-5) = (C5.5") then (C1.5) = (€, 5
W].th {f; . .“l"r::' hp {{-;}_‘ -'ill::".
3. if (€.} (Co.sD e R gnd (€15} 4, then (C2.5) {;

4. if (Cr.s5). (Cr.sh e R gnd (C2.5) 4, then (Ci.s} |,

We say that ¢, €2 are rooted branching pomset bisimilar,
written €~ &2, if there exists a rooted branching pomset
bisimulation R, such that ({¥.¥). ¥.#)) € R,

By replacing pomset transitions with steps, we can get
the definition of rooted branching step bisimulation.
When PESs ¢ and ¢: are rooted branching step bisimilar,
we write €1 s &2,

Definition 4.32

Branching (hereditary) history-preserving
bisimulation

Assume a special termination predicate |, and let v/
represent a state with +/|. A branching history-preserving
(hp-)bisimulation is a weakly posetal relation

R < (C(£1), )< (C(&2). S) such that:

1. if (Cis). f. (Co.sh € R and (€15) = (Cl.s)) then
e eitherei =1, and ({C}.5"), fler—= 1], {Ca.5)) € R,
» or there is a sequence of (zero or more) T-
transitions (€25 = (€Y. s") such that
({C1,5), £(C5.5") € R gpd (CY-s") = (Ch. s} with

({C},5"), fler = ea], (C5,5'}) € R.



2. if (Ci.s). f.(C2.s) € R, and (C2.5) = (C2.%) then
e eitherex=r, and ({Cr.5), flear= ] (C5.5")) .F-E‘;
» or there is a sequence of (zero or more) T-
transitions (- = (V. s") such that
(€T, 5", f.4C2s) € R gpd (€] 5") = (C].s") with
({C).5"), flear=e1], (Cy,5')) € R;’
3. if (iCi.s). f.{C2.5)) € R gand (€1.5) |, then there is a
sequence of (zero or more) t-transitions
(C2.5) 5 (€2.5") such that (C1-5). f. (€3.5°) € R gnd (€359 L.
4. if (Cy.5). f.(Crs)) € R gnd (C2.5) |, then there is a
sequence of (zero or more) t-transitions
(C1.5) 5 (€05 such that (€% s%. f.(C2.s) € R gnd (CPs% .

€1.£2 are branching history-preserving (hp-)bisimilar and
are written ¢ o & if there exists a branching hp-
bisimulation R such that (.4} ¥, (1.¥)) € R,

A branching hereditary history-preserving
(hhp-)bisimulation is a downward closed branching hp-
bisimulation. ¢i. €2 are branching hereditary history-
preserving (hhp-)bisimilar and are written €1 =ehn &2,

Definition 4.33

Rooted branching (hereditary) history-
preserving bisimulation

Assume a special termination predicate |, and let v/
represent a state with +/|. A rooted branching history-




preserving (hp-)bisimulation is a weakly posetal relation
R < (C(£1), §)<(C(&2). S) such that:

1. if ((Ci.s). f.{Ca.s)) e R gnd (€15 LN {C]..';'}’ then (Cz.s) 22 (Ch.s")
with (€i-5") =y (C3, 57,

2. if ((Ci.5). f.(C2.5)) € R and (C2-9) > {C2.5) then (C1.9) = (C). 5"
with (€1-5") =pp (Cy, 57,

3. if (Ci.s). f.{C2.5)) € R and (C1.5) |, then (C2.5) |;

4, if ((Ci.s). f.(Cas)) € R gnd (C2.5) |, then (Ci.s) |,

€1.& are rooted branching history-preserving
(hp-)bisimilar and are written ¢! =i &2 if there exists a
rooted branching hp-bisimulation R such that
({4, 9).0, (4, ) € R,

A rooted branching hereditary history-preserving
(hhp-)bisimulation is a downward closed rooted
branching hp-bisimulation. ¢i. € are rooted branching
hereditary history-preserving (hhp-)bisimilar and are
written €1 Frbnnp €2,

Definition 4.34

Guarded linear recursive specification

A linear recursive specification E is guarded if there does
not exist an infinite sequence of t-transitions

(X|E) = (X'|E) = (X"|E) > ---, and there does not exist an
infinite sequence of e-transitions (X|£} - {X'|E} — (X"|E} — ---



Theorem 4.35

Conservativity of AfTC; with silent step and
guarded linear recursion

APTCe with silent step and guarded linear recursion is a
conservative extension of APTCs with linear recursion.

Theorem 4.36

Congruence theorem of APTC; with silent step
and guarded linear recursion

Rooted branching truly concurrent bisimulation
equivalences ~r, = and “rvhe are all congruences with
respect to APTCa with silent step and guarded linear
recursion.

We design the axioms for the silent step 7 in Table 4.7.



Table 4.7

Axioms of silent step.

No. Axiom

B1 e-t=e

B2 e-(tT-(x+y)+x)=e- (x+y)
B3 X|IT=Xx

G26 Ty X=X

G27 X Typ=X

G28 X[ty =X

Theorem 4.37

Elimination theorem of AP7Cc with silent step
and guarded linear recursion

Each process term in APTCs with silent step and guarded
linear recursion is equal to a process term (X1|E) with E a
guarded linear recursive specification.

Theorem 4.38

Soundness of APTC; with silent step and
guarded linear recursion

Let x and y be APTCs with silent step and guarded linear
recursion terms. If APTCc with silent step and guarded



linear recursion —x=v, then

(1) X FEphy .'|"I‘
(2) X ﬁrbp _"'!;
(3) X ﬁ.l'f)."ilji _'I-'.

Theorem 4.39

Completeness of A?TC; with silent step and
guarded linear recursion

Let p and q be closed APTCs with silent step and guarded
linear recursion terms, then,

(1) if » =res 4 then P =4;

(2) if P =rpd then P=4d;

(3) if P =bhpd then P =4,

The unary abstraction operator = (! SEUGa) renames all
atomic events or atomic guards in I into 1. APTCe with silent
step and abstraction operator is called AP7Cs.. The
transition rules of operator m are shown in Table 4.8.



Table 4.8

Transition rule of the abstraction operator.

; & PR ; & P
sl — {5 (v, 50— (x5}
- - el

) (17 (), 8) = (17 (x"). 5

p , £
lrpx).s) — {8

(x.5) = (x',5")
= eel F I"T_> Ll ecl
frplx) s) — [, Tis)) irpixd, sy — {rpix’), ris))

e Fy
s = S8

Theorem 4.40

Conservativity of 4P7Ce. with guarded linear
recursion

APTCs. with guarded linear recursion is a conservative
extension of APTCe with silent step and guarded linear
recursion.

Theorem 4.41

Congruence theorem of 4P7Cs. with guarded
linear recursion

Rooted branching truly concurrent bisimulation
equivalences ~rr, =5, and ~rvhe are all congruences with
respect to APTCc. with guarded linear recursion.

We design the axioms for the abstraction operator = in
Table 4.9.



Table 4.9

Axioms of abstraction operator.

No. Axiom

TI1 e¢l Tt(e)=e

TI2 ecl T/(e)=T

TI3 71(6)=6

TI4 (X + Y)=1;0) +77(y)
TI5 Tr(x - Y)=71(X)-77(Y)
TI6 TI(XIY) =100 77 (y)
G29 &l T(d)=¢

G30 pel t(P)=T,

Theorem 4.42

Soundness of APTCs. with guarded linear
recursion

Let x and y be AFPTCa. with guarded linear recursion
terms. If APTCs. with guarded linear recursion -x=v, then
(1) x=rbs y;
(2) * e ¥;
(3) X Srohp ¥,



Though t-loops are prohibited in guarded linear recursive
specifications (see Definition 4.34) in a specifiable way,
they can be constructed using the abstraction operator, for
example, there exist t-loops in the process term ma(XIX =aX})
. To avoid t-loops caused by @ and ensure fairness, the
concepts of cluster and cFar (Cluster Fair Abstraction Rule)
[25] are still needed.

Theorem 4.43

Completeness of APTCs. with guarded linear
recursion and CFAR
Let p and q be closed APTCc. with guarded linear
recursion and CFAR terms, then,

(1) if r = qd then r=4;

(2) if P =rtr 4 then r=4;

(3) if P =rip 4 then P =4,
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5: Distributed APTC

Abstract

This is an introduction to distributed truly concurrent
process algebra.

Keywords
Distributed Computing; True Concurrency; Process Algebra

Distributed APTC makes APTC to have the ability to
express the locations or roles. Distributed APTC can be
used to model the roles of participants in WS composition.
This chapter is organized as follows. We introduce the
operational semantics of static location in Section 5.1,
distributed BATC in Section 5.2, distributed APTC in Section
5.3, recursion in Section 5.4, abstraction in Section 5.5.

5.1 Static location bisimulations

Let Loc be the set of locations, and u.v € Loc*, Let << be the
sequential ordering on Loc*, we call v is an extension or a
sublocation of u in # «v; and if « &vv&u, then u and v are

independent and denoted u o v,



Definition 5.1

Consistent location association

A relation ¢ € (Lec” x Loc®) is g consistent location association
(C].a.), if |::": U} = E[)&[:H.I, L‘II]' = {ﬁ" then [T “"' N IR 'Ll'r.

Definition 5.2

Static location pomset, step bisimulation

Let €, €2 be PESs. A static location pomset bisimulation is
X
a relation R SCE) xC€) such that if €1-C) € Ry and &' 7 ©

then T_’ 2, with X1 SEi, X2 SEs, X;~ X2, and (€1 €2 € Reutwn,
and vice-versa. We say that ¢i, ¢: are static location
pomset bisimilar, written ¢ ~p 2 , if there exists a static
location pomset bisimulation #v, such that ¥ ¥ € &, By
replacing pomset transitions with steps, we can get the
definition of static location step bisimulation. When PESs

I e

£ and & are static location step bisimilar, we write €1~ &,

Definition 5.3

Static location (hereditary) history-
preserving bisimulation

A static location history-preserving (hp-)bisimulation is a
posetal relation f¢ SC(€*C(&) gych that if (€1: f C2) € Ry and

C‘J—HC‘ C, 3

] the %! ; _; Wlth [{',|  Slep = ez, {,3} S R.,.al.l[-:u.t_l}, and vice-
versa. ¢1. €2 are static location history-preserving



(hp-)bisimilar and are written €15, €2 if there exists a
static location hp-bisimulation #+ such that %% & R

A static location hereditary history-preserving
(hhp-)bisimulation is a downward closed static location
hp-bisimulation. €. ¢z are static location hereditary

history-preserving (hhp-)bisimilar and are written ¢ ~hip €2

Definition 5.4

Weak static location pomset, step
bisimulation

Let €1, &2 be PESs. A weak static location pomset
bisimulation is a relation K« €& xC(&) gych that if

(C1.C) e Ry and © =€l then = ©> with X1 CE, X2CE> X~ Xs,
and (€1-©) € Ryuwwn and vice-versa. We say that €, & are
weak static location pomset bisimilar, written ¢! 7 &, if
there exists a weak static location pomset bisimulation %,
such that ¥ ") € R;, By replacing weak pomset transitions
with weak steps, we can get the definition of weak static
location step bisimulation. When PESs ¢ and ¢: are weak

g 0 o o o o il
static location step bisimilar, we write &1 =y &,

Definition 5.5

Weak static location (hereditary) history-
preserving bisimulation




A weak static location history-preserving
(hp-)bisimulation is a weakly posetal relation ¢ & C(E)=C(&2)

: : C) = C, 3L .
such that if (1. f.C2)eRy gnd ~' 7 ~1, then ~? 7 "2, with
(Cy. fler = e2]. C3) € Ryt and vice-versa. €i- €2 are weak static
location history-preserving (hp-)bisimilar and are written

4‘:] =

I

w €2 if there exists a weak static location hp-
bisimulation ® such that V.9 € Ry

A weak static location hereditary history-preserving
(hhp-)bisimulation is a downward closed weak static
location hp-bisimulation. ¢i. & are weak static location
hereditary history-preserving (hhp-)bisimilar and are

. £ =t g,
written “! “hip ©2,

Definition 5.6

Branching static location pomset, step
bisimulation

Assume a special termination predicate |, and let v
represent a state with +|. Let ¢, €2 be PESs. A branching
static location pomset bisimulation is a relation
Ry S C(&1) x C(&2) gyuch that:
X,
1. if €1.C€R, and ©' v 1 then
o either x =", and (€. ©2) € Ry,
« or there is a sequence of (zero or more) t-
transitions € — €%, such that (C1-€9) € Ry and =

with (C).Cy) e R,‘L,{,-”.!.”;



X o,

2. if €1.C)ER, and 7 ©2 then

« either x =1, and (€1-C)) € Ry,

« or there is a sequence of (zero or more) t-
transitions €1 — €1, such that (€i-€2) € Ry, and CY :x" Ci
with (C}.C3) R,.F“{,-”.!.H;

3. if (€12 € Ry gnd €1, then there is a sequence of
(zero or more) T-transitions €2 — €3 such that
(C1.CHeRy gnd €3 4

4. if (€1.C2) € Ry gnd C2 4, then there is a sequence of
(zero or more) T-transitions ¢! — €1 such that
(). C)e Ry gnd €7 L.

We say that ¢, &2 are branching static location pomset
il
“hp

£ if there exists a branching static
location pomset bisimulation #«, such that ¥ € Ry,

bisimilar, written

By replacing pomset transitions with steps, we can get
the definition of branching static location step
bisimulation. When PESs ¢ and ¢: are branching static
location step bisimilar, we write €1 = €,

Definition 5.7

Rooted branching static location pomset,
step bisimulation

Assume a special termination predicate |, and let v
represent a state with +/|. Let &, &2 be PESs. A rooted



branching static location pomset bisimulation is a
relation f¢ SCE) x C(&) gych that:
S e C! il
1. if €1.C0€Ry and ' W “1 then 7 2 with €1 b ©;
X X o c, sl
2. if €1.C0eR, and 7 2 then ©' 7 1 with €1 %h €
3. if (€12 Ry gnd C1 L, then €2 4;
4, if (1. eR; gnd G2 4, then €1 4,

We say that €, €2 are rooted branching static location

pomset bisimilar, written ¢!~ bp € 2, if there exists a rooted
branching static location pomset bisimulation ¢, such
that ¥.¥) € Ry,

By replacing pomset transitions with steps, we can get
the definition of rooted branching static location step
bisimulation. When PESs €1 and ¢: are rooted branching
static location step bisimilar, we write €1 ¥ €2,

Definition 5.8

Branching static location (hereditary)
history-preserving bisimulation

Assume a special termination predicate |, and let v
represent a state with +/|. A branching static location
history-preserving (hp-)bisimulation is a posetal relation
Ry € C(&1)=C(&2) guch that:

clL o
1. if C1.f.C)eR, and ' ¥ €l then
e eitherei=r, and lf-|~.flf-| = 7),C2) € Ry



« or there is a sequence of (zero or more) T-
" ™0 B
transitions ¢z — €2, such that ¢1- /. ©3) € Ry and

0 €2 ' . .
G — G with [(.'1. fle) — ea], f.:,i]' S R'.r-“[‘-"-"'%;

2. if (€. f.C)eRy and C2 = G, Tharn
« either x =1, and (€1 flez+—>7].C)) € Ry,
- or there is a sequence of (zero or more) T-

- LA Al e e
transitions ¢! — €1, such that (€1 /- ©2) € ke and
‘lll i

\ “f . Ty
C] — "1 Wlth [( |* ,lf |‘J3 = 'HI I (3} = Rq.-l][n:.u,|-|}’o

3. if (€1. /.G € Ry gand €1 |, then there is a sequence of

.. 0
(zero or more) t-transitions ¢z — ¢ such that
(C1, £, C) € Ry gnd €3 .
4. if (C1.f.C2)€Ry gnd €2 4, then there is a sequence of

.. oD
(zero or more) t-transitions ¢ — ¢i such that
(C}. f.C2) € Ry gand €1 4.

&1.& are branching static location history-preserving

fa=d

(hp-)bisimilar and are written € “i» 2 if there exists a
branching static location hp-bisimulation %« such that
(U h)e He-,

A branching static location hereditary history-
preserving (hhp-)bisimulation is a downward closed
branching static location hhp-bisimulation. €. ¢ are
branching static location hereditary history-preserving

-

o o o o " k"" i
(hhp-)bisimilar and are written ' b 2,

Definition 5.9




Rooted branching static location
(hereditary) history-preserving bisimulation

Assume a special termination predicate |, and let v/
represent a state with +/|. A rooted branching static
location history-preserving (hp-)bisimulation is a posetal
relation Re SC(ExC(E) gych that:

. l ¢ - E} ¢ . ot -l o
].f (. _,f Ca) e R‘,-,.’ and C u C], then Cz " C] W].th {-'] “bhp {‘3;

: 2 35 St sl o
if (C1.f.C)eRy and 27 2 then ©' 7 €1 with €1 S ©
if (€1. f.€2) € Ry gnd €1, then C:2 4;

if (C1.f.C2) Ry gnd C2 4, then €1 4.

call

€1.& are rooted branching static location history-
preserving (hp-)bisimilar and are written ' ~ £ if there
exists a rooted branching static location hp-bisimulation
Ry such that ¥.¥.M) € Ry,

A rooted branching static location hereditary history-
preserving (hhp-)bisimulation is a downward closed
rooted branching static location hp-bisimulation. ¢i.¢2 are
rooted branching static location hereditary history-

o o o o o m-""r "
preserving (hhp-)bisimilar and are written E1 = pnmp €2,

5.2 BATC with static localities

Let Loc be the set of locations, and lece Loc, u,ve Loc*, € is the
empty location. A distribution allocates a location « € Locx to
an action e denoted «::¢ or a process x denoted u :: x,

In the following, let ¢1-¢2-¢-&2€E and let variables *: .2
range over the set of terms for true concurrency, 7-4-5



range over the set of closed terms. The set of axioms of
BATC with static localities (BAT¢*) consists of the laws
given in Table 5.1.

Table 5.1

Axioms of BATC with static localities.

No. Axiom

Al X+y=y+Xx

A2 xX+y)+z=x+ Y +2)
A3 X+ X=X

A4 xX+y)z=x-z2+y-2
ADS x-y)z=x-(y-2)

L1 €::X =X

L2 u::(x-y)=u::x-u:y
L3 u:(x+y)=u:x+u:y
L4 u::(vi:x)=uv::x

Definition 5.10

Basic terms of BATC with static localities

The set of basic terms of BATC with static localities,
B(BATC") is inductively defined as follows:



E C B(BATCY),
if ue Loc*, t e BIBATC") then u::t € BIBATCY)

.
J

ife€k, t e BIBATCY) then ¢t € BIBATCY)

.
J

il

if 1.5 e BBBATC") then t +s € BIBATC™),

Theorem 5.11

Elimination theorem of BATC with static
localities
Let p be a closed BATC with static localities term. Then

there is a basic BATC with static localities term q such
that BATCY + p =q,

In this subsection, we will define a term-deduction system
which gives the operational semantics of BATC with static
localities. We give the operational transition rules for
operators - and + as Table 5.2 shows. And the predicate
%’ v represents successful termination after execution of
the event e at the location u.



Table 5.2

Single event transition rules of BATC with static

L] L]
localities.
[ [
e— o locie—
3 lew
& ]
X —X
i
o s x et Lo e 1!
loceu
= ¥ = x' ¥ — y =y
(F} "“I o i "Ill &}
I
tf = ke v=x ey pdy =y
I i I
[ ; & i
=y =

Theorem 5.12

Congruence of BATC with static localities
with respect to static location pomset
bisimulation equivalence

Static location pomset bisimulation equivalence ~risa
congruence with respect to BATC with static localities.

Theorem 5.13




Soundness of BATC with static localities
modulo static location pomset bisimulation
equivalence

Let x and y be BATC with static localities terms. If

BATC'Fx=y then * ™7 Y.

Theorem 5.14

Completeness of BATC with static localities
modulo static location pomset bisimulation
equivalence

Let p and q be closed BATC with static localities terms, if
P~y 4 then r=1.

Theorem 5.15

Congruence of BATC with static localities
with respect to static location step
bisimulation equivalence

Static location step bisimulation equivalence ™' is a
congruence with respect to BATC with static localities.

Theorem 5.16

Soundness of BATC with static localities
modulo static location step bisimulation
equivalence




Let x and y be BATC with static localities terms. If
BATC'Fx=y then * ™',

Theorem 5.17

Completeness of BATC with static localities
modulo static location step bisimulation
equivalence

Let p and q be closed BATC with static localities terms, if
p~'qthen r=aq,

Theorem 5.18

Congruence of BATC with static localities
with respect to static location hp-
bisimulation equivalence

. . . . . . -’v'll.r .
Static location hp-bisimulation equivalence i is a

congruence with respect to BATC with static localities.

Theorem 5.19

Soundness of BATC with static localities
modulo static location hp-bisimulation
equivalence

Let x and y be BATC with static localities terms. If
BATC' +x=y then * ~in?.



Theorem 5.20

Completeness of BATC with static localities
modulo static location hp-bisimulation
equivalence

Let p and q be closed BATC with static localities terms, if
P~ then p=4.

Theorem 5.21

Congruence of BATC with static localities
with respect to static location hhp-
bisimulation equivalence

Static location hhp-bisimulation equivalence ~hin is a
congruence with respect to BATC with static localities.

Theorem 5.22

Soundness of BATC with static localities
modulo static location hhp-bisimulation
equivalence

Let x and y be BATC with static localities terms. If
BATC'Fx=y then * “hw?,

Theorem 5.23

Completeness of BATC with static localities
modulo static location hhp-bisimulation



equivalence

Let p and q be closed BATC with static localities terms, if
P ~iip 9 then r=4.

5.3 APTC with static localities

We give the transition rules of APTC with static localities as
Table 5.3 shows.



Table 5.3

Transition rules of APTC with static localities.
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We define the basic terms for APTC with static localities.

Definition 5.24

Basic terms of APTC with static localities

The set of basic terms of APTC with static localities,

BAPTCY), is inductively defined as follows:

1. ECBAPTCY)

.
J

2. if ueLoc*.t € BIAPTCY) then u:t € BAAPTC™),

if e €E.1 € BLAPTCY) e-t € BLAPTC).
. 1 then ;



4. ift.5 e BLAPTCY) then t +5 € BIAPTCY)

.
J

s, iteresurronmenl LS € BLAPT C*!)

Theorem 5.25

Congruence theorem of APTC with static
localities

Static location truly concurrent bisimulation equivalences
sl

bl . R

7, ~, ~i», and ~w are all congruences with respect to
APTC with static localities.

So, we design the axioms of parallelism in Table 5.4,
including algebraic laws for parallel operator ||,
communication operator |, conflict elimination operator O,
and unless operator <, and also the whole parallel operator
§. Since the communication between two communicating
events in different parallel branches may cause deadlock (a
state of inactivity), which is caused by mismatch of two
communicating events or the imperfectness of the
communication channel. We introduce a new constant 6 to
denote the deadlock, and let the atomic event ¢ < EU {3},



Table 5.4

Axioms of parallelism.

No. Axiom

A6 | Xx+6=x

A7 |6-x=6

P1 | xqy=xlly+xly

P2 | xlly=ylix

P3 | xlyliz = xlIyll=)

Pa (x|ly=xlly+ylx

P5 |(e1 <ey) el (ex-y)=(erlLex)-y
P6 (e <ey) (er-x)|lex=(er[Lep)-x
P7 |(e1<e) (eg-x) [(e-y)=(er Lea) (x()y)
P8 |[(x+y)lz=C&l2a)+ (L2

P9 0| x=96

Cl | eqle;=vy(eq,er)

C2 | eql(ey-y)=v(e1.e)y

C3 | (e;-x)|lep=y(eq,e5)x

Ca | (ep-X)l(ey-y)=y(ey,er) (xly)




No.

Axiom

C5> | x+ylz=xR)+YI2)

C6 | xI(y+2)=(xIy)+(xI2)

C7 |06lx=6

C8 |xl6=6

CE1 | O(e)=e

CE2 | ©(6)=6

CE3 | O(x+y)=0(x)+0(y)

CE4 | 6(x-y)=609-6(y)

CES5 | O(xlly)=((B )w)lly)+((@()<x)lIx)
CE6 | O(xly)=((©)w)y)+({(BW)<x)X)
Ul | (#(eq,ep)) ej<ey,=T

U2 | (#(ej,e)),e5<e3) e1<e3=T

U3 | (#(eq,ep),ep<e3) e3<e; =T

U4 |eb=e¢e

U5 |6<e=6

Ub | (x+y)w=(xw)+(yw)

U7 | x-y)e=(xw) (yr)

v |[(x [[y)<z=(x<2)[[(y<2)




No.

Axiom

U9 | (xly)<z= (x2)|(y<w)
U10 | x<(y + 2)=(x«y)<z
Ull | x<«(y: 2)=(x«y)<z
vz x<(y|lz)=(kx<y)<z
U13 | x<(y]2)=(x«y)<z
L5 | u::(y)=u::xju::y
L6 | u:(xlly)=u::x|u::y
L7 | u:(xly)=u::xlu::y
L8 | u::(®(x))=0(u::x)
L9 | u:(x<qy)=u::x<u::y
L10 | u::6=56

Based on the definition of basic terms for APTC with

static localities (see Definition 5.24) and axioms of

parallelism (see Table 5.4), we can prove the elimination

theorem of parallelism.

Theorem 5.26

Elimination theorem of parallelism

Let p be a closed APTC with static localities term. Then

there is a basic APTC with static localities term q such




that APTC'Fp=gq.

Theorem 5.27

Generalization of APTC with static localities
with respect to BATC with static localities

APTC with static localities is a generalization of BATC
with static localities.

Theorem 5.28

Soundness of APTC with static localities
modulo static location pomset bisimulation
equivalence

Let x and y be APTC with static localities terms. If

APTC'Fx=y then* ™7 7.

Theorem 5.29

Completeness of APTC with static localities
modulo static location pomset bisimulation
equivalence

Let p and q be closed APTC with static localities terms, if
P~ 4 then r=1.

Theorem 5.30




Soundness of APTC with static localities
modulo static location step bisimulation
equivalence

Let x and y be APTC with static localities terms. If
APTCY b x = Y, then * M:::’l ¥,

Theorem 5.31

Completeness of APTC with static localities
modulo static location step bisimulation
equivalence

Let p and q be closed APTC with static localities terms, if
p~'qthen r=aq,

Theorem 5.32

Soundness of APTC with static localities
modulo static location hp-bisimulation
equivalence

Let x and y be APTC with static localities terms. If
APTC'x=y then * ~ip?,

Theorem 5.33

Completeness of APTC with static localities
modulo static location hp-bisimulation
equivalence




Let p and q be closed APTC with static localities terms, if
P~ 9 then p=4.

Theorem 5.34

Soundness of APTC with static localities
modulo static location hhp-bisimulation
equivalence

Let x and y be APTC with static localities terms. If
APTC Fx=y then * ~im .

Theorem 5.35

Completeness of APTC with static localities
modulo static location hhp-bisimulation
equivalence

Let p and q be closed APTC with static localities terms, if
P ~im 9 then p=4.

The transition rules of encapsulation operator 9# are
shown in Table 5.5.

Table 5.5

Transition rules of encapsulation operator .

e £ 0
= ¥ —x
L4

le g H)

" egd H)
dgglx) T \.-‘r dypixl T H”[.L‘I\J




Based on the transition rules for encapsulation operator
in in Table 5.5, we design the axioms as Table 5.6 shows.

Table 5.6

Axioms of encapsulation operator.

No. Axiom

D1 e¢H Jdy(e)=e

D2 ec€H 0dy(e)=06

D3 9y (6)=6

D4 (X +¥)=05(x)+3 (V)

D5 (X - Y)=0x(x)-0(y)

D6 dgxly)=0gx) |l og(y)
L11 u:: 9 () =0y (U::X)

Theorem 5.36

Congruence theorem of encapsulation
operator iu

Static location truly concurrent bisimulation equivalences
5l

n-..,-""'r ,,.\\_‘,.'u'.lI P

-"u""r .
r, s, ", and Thw are all congruences with respect to

7

encapsulation operator ds.



Theorem 5.37

Elimination theorem of APTC with static
localities

Let p be a closed APTC with static localities term
including the encapsulation operator ?xz. Then there is a

basic APTC with static localities term q such that
APTCEp=gq,

Theorem 5.38

Soundness of APTC with static localities
modulo static location pomset bisimulation
equivalence

Let x and y be APTC with static localities terms including
encapsulation operator du. If APTC"-x=y then * ~p 7,

Theorem 5.39

Completeness of APTC with static localities
modulo static location pomset bisimulation
equivalence

Let p and q be closed APTC with static localities terms
including encapsulation operator ou, if P ~7 4 then r=1.

Theorem 5.40




Soundness of APTC with static localities
modulo static location step bisimulation
equivalence

Let x and y be APTC with static localities terms including

o 5 " R 1
encapsulation operator du. If APTC"-x=y then *~i 7.

Theorem 5.41

Completeness of APTC with static localities
modulo static location step bisimulation
equivalence

Let p and q be closed APTC with static localities terms
including encapsulation operator s, if P~ 4 then r=4.

Theorem 5.42

Soundness of APTC with static localities
modulo static location hp-bisimulation
equivalence

Let x and y be APTC with static localities terms including
encapsulation operator ou. If APTC ' -x =7 then * ~i?.

Theorem 5.43

Completeness of APTC with static localities
modulo static location hp-bisimulation
equivalence




Let p and q be closed APTC with static localities terms
including encapsulation operator o, if ? ~i» 9 then r=4.

Theorem 5.44

Soundness of APTC with static localities
modulo static location hhp-bisimulation
equivalence

Let x and y be APTC with static localities terms including
encapsulation operator ou, [fAPTC" -x =y then * ~h?,

Theorem 5.45

Completeness of APTC with static localities
modulo static location hhp-bisimulation
equivalence

Let p and q be closed APTC with static localities terms
including encapsulation operator u, if P~ 9 then =4,

5.4 Recursion

In this section, we introduce recursion to capture infinite
processes based on APTC with static localities. Since in
APTC with static localities, there are four basic operators ::,

-, +, and |.|_ the recursion must be adapted this situation to

include |.|_



In the following, E.F.G are recursion specifications, X.Y.Z
are recursive variables.

Definition 5.46

Recursive specification

A recursive specification is a finite set of recursive
equations

Xi1=n(Xy,-,Xp)

Xn ZFH(X|,+“ -Xn)

where the left-hand sides of Xi are called recursion
variables, and the right-hand sides ‘(Xi1. - . Xx) are process
terms in APTC with static localities with possible
occurrences of the recursion variables X1. - Xu,

Definition 5.47

Solution
Processes 71--- . Pn are a solution for a recursive
specification {(Xi =Xy, - Xy)li € {I.---.n}} (with respect to

static location truly concurrent bisimulation equivalences
W‘Zi’(“’j'f, ’”?;ﬂ:, ’”?;ﬂr,,)) i P~ R~ (P ) for i e (L. - n),



Definition 5.48

Guarded recursive specification

A recursive specification

Xi=n(X1,-,Xn)

Xn ZIH(XI-.«”' -Xn)

is guarded if the right-hand sides of its recursive
equations can be adapted to the form by applications of
the axioms in APTC with static localities and replacing
recursion variables by the right-hand sides of their
recursive equations,

(T TR R T R BRI T T R TR T (R
by e L by o o by L Lty

Where LN [P TP * 13 ISy f 7.3 i bl [ ‘bl.fll'bl.fll NEEE ,b{_..l. = E, and the sum
above is allowed to be empty, in which case it represents
the deadlock 6.




Definition 5.49

Linear recursive specification

A recursive specification is linear if its recursive
equations are of the form

sy e Loy g Xy o4 Ong g [ Lo - 0 )Xy
by [ Loy by o4 g by L Lo by

where @il - auiy. gl - Qi by, b by b € E, and the sum
above is allowed to be empty, in which case it represents
the deadlock 6.

For a guarded recursive specifications E with the form

Xi=n(Xy, -, Xy

anrn':Xla”’ ,Xn)

the behavior of the solution (XilE) for the recursion variable
Xiin E, where i €{l.---.n}, is exactly the behavior of their
right-hand sides (X1, --. Xa), which is captured by the two
transition rules in Table 5.7.



Table 5.7

Transition rules of guarded recursion.

X IEY, - - X EN e enh

\.."r
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UK EY, - X ED dere e ¥
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Theorem 5.50

Conservativity of APTC with static localities
and guarded recursion

APTC with static localities and guarded recursion is a
conservative extension of APTC with static localities.

Theorem 5.51

Congruence theorem of APTC with static
localities and guarded recursion

Static location truly concurrent bisimulation equivalences
w""'r .,.\h‘_.'l'.lI o sl

7~ ~is, and ~iw are all congruences with respect to
APTC with static localities and guarded recursion.

The RDP (Recursive Definition Principle) and the RSP
(Recursive Specification Principle) are shown in Table 5.8.



Table 5.8

Recursive definition and specification principle.

No. Axiom

RDP | (X||E) = t;((X4|E),--- (XplE)) (i€{l,---,n})

RSP | if y;=t;(yqy,-:-,yy) forie{1,---,n}, then y; = (X|E)
(ie{l,--,n})

Theorem 5.52

Elimination theorem of APTC with static
localities and linear recursion

Each process term in APTC with static localities and
linear recursion is equal to a process term (X1lE) with E a
linear recursive specification.

Theorem 5.53

Soundness of APTC with static localities and
guarded recursion

Let x and y be APTC with static localities and guarded
recursion terms. If ArPTC with guarded recursion -x=v,
then



5l |
4. *im?,

Theorem 5.54

Completeness of APTC with static localities
and linear recursion

Let p and q be closed APTC with static localities and
linear recursion terms, then,

. 1)

ifP~'q then r=g;

. )

if * “r9then r=9;
)

lfp hp q then P :(j’-

)
if ¥ “ww 9 then r =1,

= £ Y

5.5 Abstraction

To abstract away from the internal implementations of a
program, and verify that the program exhibits the desired
external behaviors, the silent step 7 (and making T distinct
by %), and abstraction operator  are introduced, where

I <E denotes the internal events. The silent step T
represents the internal events, when we consider the
external behaviors of a process, T events can be removed,
that is, T events must keep silent. The transition rule of T is
shown in Table 5.9. In the following, let the atomic event e
range over EU{élU{r} and let the communication function



vy EU{r} x EU{r} > EU{8} with each communication involved T
resulting into 6.

Table 5.9

Transition rule of the silent step.

T
)
E-_}\,l

The silent step T as an atomic event, is introduced into E.
Considering the recursive specification x =rXx, ts, TTs, and
t---s are all its solutions, that is, the solutions make the
existence of t-loops which cause unfairness. To prevent -
loops, we extend the definition of linear recursive
specification (Definition 5.49) to the guarded one.

Definition 5.55

Guarded linear recursive specification

A recursive specification is linear if its recursive
equations are of the form

gz L Loy o )Xy o+ Gugg e [ Lo, 0Ky
oy abig e Loy by 44 g by e Lo b




where @i1: - atips @kl dig b by b e b e EULTY gnd the
sum above is allowed to be empty, in which case it
represents the deadlock 6.

A linear recursive specification E is guarded if there

does not exist an infinite sequence of T-transitions
(X|E} > (X'|E) = (X"|E) >

Theorem 5.56

Conservativity of APTC with static localities
and silent step and guarded linear recursion

APTC with static localities and silent step and guarded
linear recursion is a conservative extension of APTC with
static localities and linear recursion.

Theorem 5.57

Congruence theorem of APTC with static
localities and silent step and guarded linear
recursion

Rooted branching static Iocation truly Concurrent

bisimulation equivalences Hw ~hs and “rom are all
congruences with respect to APTC with static localities
and silent step and guarded linear recursion.

We design the axioms for the silent step 7 in Table 5.10.



Table 5.10

Axioms of silent step.

No. Axiom

B1 e-t=e

B2 e-(tT-(x+y)+x)=e- (x+y)
B3 x|lt=x

L13 UsT=Tt

Theorem 5.58

Elimination theorem of APTC with static
localities and silent step and guarded linear
recursion

Each process term in APTC with static localities and
silent step and guarded linear recursion is equal to a
process term (XilE) with E a guarded linear recursive
specification.

Theorem 5.59

Soundness of APTC with static localities and
silent step and guarded linear recursion

Let x and y be APTC with static localities and silent step
and guarded linear recursion terms. If APTC with static



localities and silent step and guarded linear recursion
~x=v, then

ol

1. X by }','
2.
3. * ﬁ::’;.mﬁ 1"Il
4. X H::-:'J.I'hri'!:l -T.

Theorem 5.60

Completeness of APTC with static localities
and silent step and guarded linear recursion

Let p and q be closed APTC with static localities and
silent step and guarded linear recursion terms, then,

iff}?"::::-xq then rP=4;
if ? <04 then p=4;
if P ~iom 9 then p=4;
iff?a:::n‘mp‘f' then 7 =4,

cal N

The unary abstraction operator @ ({ SE) renames all
atomic events in I into 7. APTC with static localities and
silent step and abstraction operator is called APTC: with
static localities. The transition rules of operator = are
shown in Table 5.11.



Table 5.11

Transition rule of the abstraction operator.

B 3 ¥
x—= ¥ —
= el . edl

¢ ¢
ETIEY ::- o Trix) T rpix’)

e e
x—= ¥—x
i 13
eel el

rpix) 5 W ryix} 5 T’y

Theorem 5.61

Conservativity of APTC: with static localities
and guarded linear recursion

APTC: with static localities and guarded linear recursion is
a conservative extension of APTC with static localities
and silent step and guarded linear recursion.

Theorem 5.62

Congruence theorem of APTC: with static
localities and guarded linear recursion

Rooted branching static location truly concurrent

.. . . Pty sl =il )
bisimulation equivalences “rbr, “rbs, “rbhp, and “rbhhe are all
congruences with respect to APTC. with static localities

and guarded linear recursion.



We design the axioms for the abstraction operator = in
Table 5.12.

Table 5.12

Axioms of abstraction operator.

No. Axiom

TI1 eg¢l Tt(e)=e

TI2 ecl T1(e)=t

TI3 T1(6)=6

TIA (X + V) =1;(X) +T17(y)

TI5 T (X - Y)=1;3)-7;(y)

TI6 Tix Ly)=11(x) |Lt7(y)
L14 s T () =T (Us:X)

L15 eg¢l Tt;(u::e)=u::e

L16 ecl Tt(u:e)=t

Theorem 5.63

Soundness of APTC: with static localities and
guarded linear recursion

Let x and y be APTC: with static localities and guarded
linear recursion terms. If APTC: with static localities and




guarded linear recursion -x=v, then

¥ %.ﬂ’

1 A ris ¥y 5
2.
3. * %:‘:‘}”,JP 1‘.,
4. X ﬁ;;I:J.;'J.I'J.f;lp }“

Though t-loops are prohibited in guarded linear recursive
specifications (see Definition 5.55) in a specifiable way,
they can be constructed using the abstraction operator, for
example, there exist t-loops in the process term T« (XIX =aX))
. To avoid t-loops caused by = and ensure fairness, the
concept of cluster and cFar (Cluster Fair Abstraction Rule)
[25] are still valid in true concurrency, we introduce them
below. (See Table 5.13.)



Table 5.13

Cluster fair abstraction rule.

No. Axiom

If X is in a cluster for I with exits

(g g L LoDy Gtz L Lo 2 ) i,

Vi by Lo Lvgg by stpg by Lo L by

CFAR
then 7 T;((X|E))=

1T S Rt P e )

by [ Logjicbyy +oeet vy by Lo Loy byy)

Definition 5.64

Cluster

Let E be a guarded linear recursive specification, and / € E
. Two recursion variable X and Y in E are in the same

cluster for I iff there eXist sequences of transitions

b1, b } 1o B fere gl {Cr1a nj )
" ¢ 7 . . :
(XIEy P ) L YIE) L g (YIE) (X|E)

v [

J

Where bll""-l !'E‘-'I-'i'”.'hflli s 1|':‘rr-l|! E.IIIU IT]I.

uip .. di ”_ [Luk::akor
(Hl al |.|_ ”_”k ak)Xlsane}ﬂtfor



the cluster C iff: (1)”1 m CI] |.|_ |.|_ uk .t ak
oty zay Lo Lug rar) X,

summand at the right-hand side of the recursive equation
for a recursion variable in C, and (2) in the case of

(Ml al |.|_ ”_Mk ak)X either

arg Tl e(l,2 kD or XécC,

Theorem 5.65

Soundness of CFAR

CFAR IS sound modulo rooted branching truly concurrent
o e . . il %-""r P
bisimulation equivalences s, “rer, “rohn, and by,

Theorem 5.66

Completeness of APTC: with static localities
and guarded linear recursion and CFAr

Let p and q be closed APTC: with static localities and
guarded linear recursion and CFAR terms, then,

if P~ 4 then p=4;
if ? <04 then p=4;
l'fF %::Lr;-,«;‘ﬂ' then P=a;
l'ff? %H;m;p‘f then P =41.

50 by
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6: Building blocks based
structured parallel
programming

Abstract

This is an introduction to building blocks based
structured parallel programming.

Keywords
Building Blocks; Parallelism; Parallel Programming

We will discuss the usual usage case in parallel
programming, then introduce the so-called building block
and building blocks based parallel programming.

6.1 Orchestration and choreography

In Chapter 2, we have discussed the structured and
unstructured parallelism in true concurrency. The usual
usage case in parallel computing is illustrated in Fig. 6.1.
There are two aspects in this case: orchestration and
choreography. Orchestration contains a control flow of
atomic actions, including ordinary atomic actions and
communicating actions, and interacts with outside through



the communicating actions. While choreography defines
the interactions among the involved parties.
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FIGURE 6.1 Orchestration and
choreography.



Usually, the orchestration is encapsulated as an object, or
a thread, or an application process, or a remote process, or
a distributed object, or a distributed application, as the two
smaller dashed squares in Fig. 6.1 illustrate.

The choreography defines the communications among the
orchestrations, and corresponding communications are
object call, communication among threads, communication
among processes, remote process call, distributed object
call, and distributed communications (may be synchronous
or asynchronous). And also the choreography can be
encapsulated as an entity, such as an object, a thread, a
process, a remote process, a distributed object, and a
distributed application, as the biggest dashed square in
Fig. 6.1 illustrates.

6.2 The building block in parallel
programming

According to the above analyses, both the orchestration
and the choreography can be encapsulated as an entity
which is called building block in parallel programming, as
Fig. 6.2 illustrates. The building block interacts with the

outside through m inputs and n outputs, and encapsulates a
control flow inside.



Building Block
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FIGURE 6.2 The building block.

The typical process is as follows.

1. The building block receives the input 4 from the
outside through the channel i (the corresponding
reading action is denoted 7 (d1));

2. Then it processes the input and generates the
output 4o through a processing function BBF;

3. Then it sends the output to the outside through the
channel 0: (the corresponding sending action is



denoted so: (o)),

We assume all data elements 4, 4o for1 <i <n are from a
finite set A.
The state transitions of the building block described by

APTC are as follows.
BB = Zfﬂl“ L --:f.r" Eﬂ{r‘rl I::ﬂr'rl ) I:I e D r-‘r.lll [d'r.u.-} ' B'B?}

BBy=BBF\{j---) BBF, - BB;
BBY=Y4, .4, es(0,(d0,) 0+ 50, (do,) - BB)

There are no communications in the building block.
Let all modules be in parallel, then the building block BB

can be presented by the following process term.
T(dg(Q(BBN)=1t(dy(BE))

where H=#, I ={BBF} for1=i=n,
Then we get the following conclusion on the building
block.

Theorem 6.1

Correctness of the building block

The building block 1(9u(BB)) can exhibit desired external
behaviors.

Proof

Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can
prove that



T(dy(BB)) = Zdllﬂr”l el g ea T @) | W (dy,) - so,(doy) |-+ | s0,(do, ) - T (0 (B B))

that is, the building block /(3# (85} can exhibit desired
external behaviors.

For the details of proof, please refer to Section 3.10,
and we omit it. [

6.3 Building blocks based parallel
programming
After the building blocks (may be encapsulated
orchestrations or encapsulated choreographies) are
defined, the parallel programming becomes choreography
among these building blocks, and then the integrated
choreography maybe encapsulated as a new bigger
building block. As Fig. 6.1 illustrates, the left orchestration
is encapsulated as a building block (BB1), the right
orchestration is encapsulated as another building block
(BB2), and the choreography between BB1 and BB2 is
encapsulated as the third building block (BB3).

Without loss of generality, we explain the building block
based parallel programming through the example in Fig.
6.1. The process of Fig. 6.1 is as follows.

1. The building block BB1 receives the input 9n from
the outside through the channel /i (the corresponding
reading action is denoted ")), then after an inner
processing function BB1Fi, generates the output data



do,, and sends it to BB2 through the channel 0: (the
corresponding sending action is denoted soi(do,));

2. The building block BB2 receives the input 4o from
BB1 through the channel 01 (the corresponding
reading action is denoted 7¢:(d0))), then after an inner
processing function BB2Fi, generates the output data
dos, and sends it to BB1 through the channel o5 (the
corresponding sending action is denoted sos(dos));

3. BB1 receives the input 4os from BB2 through the
channel Os (the corresponding reading action is
denoted 7os(dos)), then after an inner processing
function BB1F;, generates the output data 9e;, and
sends it to BB2 through the channel 9: (the
corresponding sending action is denoted *o:(do.));

4. BB2 receives the input 9o; from BB1 through the
channel 03 (the corresponding reading action is
denoted o:(d0,)), then after an inner processing
function BB2F:, generates the output data 9¢, and
sends it to the outside through the channel 9 (the
corresponding sending action is denoted sos(dos)),

We assume all data elements 9r, 4o for 1 =i =6 are from a
finite set A.

The state transitions of the building block BB1 described
by APTC are as follows.

BB1 =Yy, cari,(dr)- BB

BBl-=BE1F, -BE1;
EB14 =En"u|55‘m1 (do,)- BBy



BBl4=ro,(dos)- BBls)

BBls=BBIF; BBl

BBlg =s0,(do,) - BBI

There is no communications in the building block BB1.

Let all modules be in parallel, then the building block
BB1 can be presented by the following process term.

T (I (O(BB1))) =1/(dy(BB1))

where Hi1 =¥, I ={BBl1F} for 1 =i =2,

Then we get the following conclusion on the building
block BB1.

Theorem 6.2

Correctness of the building block BB1
The building block BB1 ™ @m(BE1) can exhibit desired
external behaviors.

Proof

Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can

prove that
Ty (dp (BB1)) = Z“’h do, ,:;r)i.:;”?a{r;. (dr,) 5o, (do,) - rosldp.) - 5p,(do,)) - 11, (0, (BE1))

that is, the building block BB1 ™ (@ (BB1) can exhibit
desired external behaviors.

For the details of proof, please refer to Section 3.10,
and we omit it. O



The state transitions of the building block BB2 described
by APTC are as follows.
BR? = Zﬁ':n ea o (do,)- BB2,

BB2, = BB2F, - BB2;

BB2 =Y, caS0s(dos) - BB

BB24 =ro,(do,) - BB2s)

BB2s = BB2F; - BB

BB2g = s0,(do,) - BB2

There is no communications in the building block BB2.

Let all modules be in parallel, then the building block
BB2 can be presented by the following process term.

1 (0 (O (BB2))) = 1/(dy (BB2))

where H: =¥ L={BB2F} forl=i=<2,

Then we get the following conclusion on the building
block BB2.

Theorem 6.3

Correctness of the building block BB2

The building block BB2 .9m.(BE2) can exhibit desired
external behaviors.

Proof

Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can
prove that



T (I, (BB2) =34, do, doy.doyenT01(d0)) - 505(dos) - ros(doy) - s0,(dog)) - 1, (31, (BB1))

that is, the building block BB2 731 (882) can exhibit
desired external behaviors.

For the details of proof, please refer to Section 3.10,
and we omit it. [

There are three communication functions between BB1
and BB2.

viro,(do). s0,(do,)) = co,(do,)

¥ (ros(dos). so(dos)) = cos(day)

viro,(doy). so,(doy)) = coy(da,)

Let all modules be in parallel, then the building block

BB3 can be presented by the following process term.
Ty, (3, (B(BB1(} BB2))) = 1/, (8, (BB1 [} BB2))

Where H} == {f'(h {dfjll }_. n‘i-ﬁll {dﬁll ), r{.:'-:_ {d!:.:'r, }- jf}; Edﬂ; }1 r”'l.':dfh_ :|1 -?I!’.Jq {dﬂq }}’
Iis={BB1F|.BB1F>;,. BB2F|. BB2F>.cp,(dp,). co(do. ). co,(dp, }I_

Then we get the following conclusion on the building
block.

Theorem 6.4

Correctness of the building block BB3
The building block BB3 ™1 (BE3) can exhibit desired
external behaviors.

Proof




Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can

prove that
T, (05, (BB3)) = Ed“ dogeaTntdn) - sog(dog)) - T (9, (BB3))

J

that is, the building block BB3 ™ (1 (883) can exhibit
desired external behaviors.

For the details of proof, please refer to Section 3.10,
and we omit it. [



7: Modeling and
verification of parallel
programming languages

Abstract

This chapter introduces the modeling and verification
of parallel programming language.

Keywords
Parallelism; Parallel Programming; Language

In this chapter, we will show the modeling of parallel
programming language. For an imperative language (for
details, please see Appendix A), the syntactic sets are as
follows.

« Numbers set N, with positive, negative integers, and
zero, and n.m e N;

o Truth values set T, with values {true. false},

« Storage locations Loc, and X.Y € Loc;

o Arithmetic expressions Aexp, and @ € Aexp;

« Boolean expressions Bexp, and ? € Bexp;

« Commands Com, and ¢ < Com,



The formation rules of PPL are:

For Aexp:

a:=n | X | a+a | a—a | apxa
For Bexp:
b:=true | false | agy=a; | ap<ay | —b | borby | byVvh
For Com:
cu=skip | X:=a | cp;¢; | ifbthencyelsec; | whilebdoc | ¢l ¢

In the following section, we will discuss the modeling of
such language by APTC and its guarded extensions.

7.1 Numbers and arithmetic
expressions

Numbers and arithmetic expressions are the data and data
related manipulation, after evaluation, the data may be
stored through the assign command, composed into a
Boolean expression, or exchanged through communication
channels (shared memory, wired or wireless channels).



APTC and guarded APTC do not support data
manipulation, but Boolean expressions and
communications, and also atomic actions manipulating
data.

7.2 Truth values and Boolean
expressions

Truth value and Boolean expressions can be modeled as
guards in guarded APTC, ture as € and false as 6 and
Boolean expressions as guards. And the axioms of guarded
APTC lead to a Boolean Algebra.

7.3 Storage locations and assign
command

Since data are hidden behind of the atomic actions, storage
location, and assign command are modeled as a kind of
atomic actions.

7.4 Commands

The assign command is modeled as a kind of atomic
actions, skip is modeled as the empty action € in APTC and
guarded APTC. ; is modeled as the sequential composition -
in APTC.
if b then ¢ else ¢, can be modeled as {b=true} -co+{b= false} - ¢
while bdo ¢, can be captured by the following recursive
specification:



X={b=true}-c- X+ {b="1false}-Y

The command < ll¢1 can be modeled by §, |, |.|_ and | in
APTC and guarded APTC.

7.5 Verification of parallel programs

By use of the axiom systems of APTC and guarded APTC,
putting the program segments into parallel, abstracting
internal actions, we can verify if the program is correct,
that is, if the program exhibits desired behaviors (please
see the example in Section 3.10).



8: Modeling and
verification of parallel
programming patterns

Abstract

This chapter introduces the modeling and verification of
parallel programming patterns.

Keywords
Patterns; Parallelism; Parallel Programming

In this chapter, we will introduce the modeling of parallel
programming patterns [15] by use of APTC and guarded
APTC.

8.1 Parallel control patterns

8.1.1 Fork-Join

The Fork-Join pattern forks the control flow into several
ones, and rejoins later, as Fig. 8.1 shows. In Fig. 8.1, the
clause @ forks into i, €2, and ¢, and later joins as .
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FIGURE 8.1 Fork-Join pattern.

The program segment in Fig. 8.1 can be modeled by APTC
as follows.

eo- (e |l ezl e3)-eq

8.1.2 Map

The Map pattern maps every element of the data set through
a function and then outputs, as Fig. 8.2 shows. In Fig. 8.2,
the data element 4: is processed through the clause ¢, and
then sends the result data outside.
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FIGURE 8.2 Map pattern.
The program segment in Fig. 8.2 can be modeled by APTC

as follows.



(recetvey(d)) - ey - send, (d;)] | (receivey(dy) - 7 - sendy (dﬁ)) | (receives(ds) - e 'sendg.(dg))

8.1.3 Stencil

The Stencil pattern is a generalization of the Map pattern
with the input data can come from the “neighbors”, as Fig.
8.3 shows. In Fig. 8.3, the clause inputs of ¢1 are coming
from the neighbors 411, di2, di3, and 414, the e1 executes and
generates the output.
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FIGURE 8.3 Stencil pattern.

The program segment in Fig. 8.3 can be modeled by APTC
as follows.



(receivey((dy)) || receiveia(d)n) || receiveiz(dy3) || receiveis(dis)) - ey - send,(d)

8.1.4 Reduction

The Reduction pattern combines every data element into a
single data element through associative functions, as Fig.
8.4 shows. In Fig. 8.4, the data elements 41 and 4 are
combined by ¢, 43 and 44+ are combined by ¢, and then
combined by ¢ and generates the data element 4'.
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FIGURE 8.4 Reduction pattern.

The program segment in Fig. 8.4 can be modeled by APTC
as follows.

(((receive(d,) | receivey(da)) - e1) || ((receives(ds) || receivey(dy)) - €2)) - e3 - send(d')

8.1.5 Scan

The Scan pattern computes all partial reductions, as Fig.
8.5 shows. In Fig. 8.5, the data element may be sent out
directly or may be processed by reductions.
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FIGURE 8.5 Scan pattern.

The program segment in Fig. 8.5 can be modeled by APTC

as follows.
(receive)(d,) - send, {d;]] |((receive;(d)) | receives ) - ¢ - n‘mdg(dé)) | (((receive; (d)) | receives(dh)) - e) | ((receives(ds) | receivey(ds))- ) -3 md{a‘;]] | (receivey(dy) - sendy

8.1.6 Recurrence

The Recurrence pattern is a generalization of iteration with
the input data can come from the output of “neighbors”, as
Fig. 8.6 shows. In Fig. 8.6, the clause inputs of & are
coming from the neighbors e, 42, d, and 42, the 2 executes
and generates the output.
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FIGURE 8.6 Recurrence pattern.

The program segment in Fig. 8.3 can be modeled by APTC

as follows.
((receiveyy(dy)) | receivep (dp) || receiveiy(diy)) - e -.\'mu’l(di;} ( ((recei uey(u’[] | receiven (dy) || receiveys(dys) | receivens(day)) - ey - senda(c



8.2 Parallel data management
patterns

8.2.1 Pack

The Pack pattern can be used to eliminate the unused data
element in a data collection, as Fig. 8.7 shows. In Fig. 8.7,
the data element 4 is unused and eliminated.
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FIGURE 8.7 Pack pattern.

The program segment in Fig. 8.7 can be modeled by APTC

as follows.



(receivey(d,) - ey - send, {d;)} | (receives(ds) - e3 - sena’3(d£}}

8.2.2 Pipeline

The Pipeline pattern connects data-processing tasks one step
by another, as Fig. 8.8 shows. In Fig. 8.8, there are two
steps ¢ and ¢ in the pipeline.
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FIGURE 8.8 Pipeline pattern.

The program segment in Fig. 8.8 can be modeled by APTC
as follows.

receive(d) - ey - e> - send(d’)

8.2.3 Geometric decomposition

The Geometric decomposition pattern breaks data into a set
of sub-collections, as Fig. 8.9 shows. In Fig. 8.9, the data
set 41 —ds4 is broken into two data collections: 41 —d2 and s —da,
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FIGURE 8.9 Geometric decomposition
pattern.

The program segment in Fig. 8.9 can be modeled by APTC
as follows.

((receive|(d)) || receiver(da)) - e - (send)(d)) || sendz(da))) | ((receives(da) | receives(dy)) - 1 - (sendz(dr) || sendy(dy



8.2.4 Gather

The Gather pattern reads a set of data collections according
to a set of indices, as Fig. 8.10 shows. In Fig. 8.10, the
indices are [0.1.1.3],



FIGURE 8.10 Gather pattern.

The program segment in Fig. 8.10 can be modeled by
APTC as follows.

((receive|(d)) || receiver(da)) - e - (sendy(d)) || sendz(da))) | ((receivey(da) | receives(dy)) - 1 - (sendy(dr) || sendy(dy

8.2.5 Scatter



The Scatter pattern is the inverse of the Gather pattern, it
writes a set of data collections according to a set of indices,
as Fig. 8.11 shows. In Fig. 8.11, the indices are [0.1.2.2],

FIGURE 8.11 Scatter pattern.



The program segment in Fig. 8.11 can be modeled by
APTC as follows.

(receive|(d)) || receivea(da)) - e - (send)(dy) || sendz(d2))

8.3 Other parallel patterns

8.3.1 Superscalar sequences

The Superscalar sequence pattern operates according to the
data dependencies, as Fig. 8.12 shows. In Fig. 8.12, the
data dependencies are defined respectively.



FIGURE 8.12 Superscalar sequence
pattern.

The program segment in Fig. 8.12 can be modeled by
APTC as follows.

(receive;(d) - e -.\'endl{di )) () (receives(ds) - e3 -.mm’_q{d_;j) () ((receivey(da) || recei !.-‘E[{E”} [ m:efue;{d;jj ey - send(a



8.3.2 Speculative selection

The Speculative selection pattern generalizes the selection
to make the condition and both branches can run in parallel,
as Fig. 8.13 shows. In Fig. 8.13, both the condition and the
two branches can execute in parallel.

o e Falsel ¢

FIGURE 8.13 Speculative selection
pattern.

The program segment in Fig. 8.13 can be modeled by
guarded APTC as follows.



({b =true} - e;) || ({b =false} - ¢)

Note that, (»=true} and (b =false} agre guards.

8.3.3 Workpile

The Workpile pattern generalizes the Map pattern with each
function can generate one or more instances, as Fig. 8.14
shows. In Fig. 8.14, 1 generates €11 and €12, &2 generates e,
and e generates €.
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FIGURE 8.14 Workpile pattern.

The program segment in Fig. 8.14 can be modeled by
APTC as follows.

(receive|(d)) e - (e | en2) - .'rt'nd,{d[]} | (receivea(da) - e - en -.a‘endg{dé)) || (receives(ds) - e3-e3; - sends(d

8.3.4 Search

The Search pattern finds the required data from the data
collections, as Fig. 8.15 shows. In Fig. 8.15, ¢ finds 41 and 4
, and ¢ finds 41, 42, and 4.
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FIGURE 8.15 Search pattern.

The program segment in Fig. 8.15 can be modeled by
APTC as follows.

((receive(d)) | receivea(ds)) - e -.mw’ﬂd[); | ((receivey(dy) || receives(ds) || receives(ds)) - ey - senda(d

8.3.5 Segmentation



The Segmentation pattern operates on the segmented data
collections, as Fig. 8.16 shows. In Fig. 8.16, 41 and 4z are
one segment, and 4 and 4+ are another.

o b

FIGURE 8.16 Segmentation pattern.



The program segment in Fig. 8.16 can be modeled by
APTC as follows.

((receive)(d)) || receivey(dy)) - e - send| (df)) | ((receivey(ds) | receivey(dy)) - e -S(,’Hdg(d£ )

8.3.6 Expand

The Expand pattern can be deemed as a mixture of the Pack
pattern and the Map pattern, as Fig. 8.17 shows. In Fig.
8.17, 41 is split in 4 and %, and ¢ is unused.
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FIGURE 8.17 Expand pattern.
The program segment in Fig. 8.17 can be modeled by

APTC as follows.



(receive(d,) - ey - (send, (di} | send, {d&))} | (receives(ds) - e3 +send3(d§]}

8.3.7 Category reduction

The Category reduction pattern finds the data elements in
the same category and reduces them to one element, as Fig.
8.18 shows. In Fig. 8.18, the data 411 and 912 are in the same
category, and 421 and 92, and 4s1 and 43 are in the same
category.
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FIGURE 8.18 Category Reduction pattern.

The program segment in Fig. 8.18 can be modeled by
APTC as follows.

((receivey(dyy) | receivey(din))- e - send (d) || (receivey(day) | receives(d)) - e2 - send(dy)) | ((receives (ds) | receives(dsy)) - e3 - sendh(c



8.3.8 Term graph rewriting

The Term graph rewriting pattern provides a graph-like

concurrency, as Fig. 8.19 shows. In Fig. 8.19, this style
concurrency is only defined by causalities among atomic
actions, and is the so-called true concurrency.



FIGURE 8.19 Term graph rewriting
pattern 1.



In Chapter 2 and APTC in Chapter 3, we have already
proven that Fig. 8.19 is equivalent to Fig. 8.20 and can be
structured.



FIGURE 8.20 Term graph rewriting
pattern 2.



8.4 Verification of parallel
programming patterns

By use of the axiom systems of APTC and guarded APTC,
putting the parallel programming patterns based program
segments into parallel, abstracting internal actions, we can
verify if the program is correct, that is, if the program
exhibits desired behaviors (please see the example in
Section 3.10).
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9: Modeling and
verification of distributed
systems

Abstract

This chapter introduces the modeling and verification of
distributed systems.

Keywords
Distributed Computing; Verification; Process Algebra

In this chapter, we will introduce the modeling of distributed
systems [16] by use of APTC, guarded APTC, and distributed
APTC.

9.1 A model of distributed
computations

A distributed system consists of a set of processors and a set
of channels among the processors, as Fig. 9.1 shows. Each
processor may be a shared memories based multi-cores or
multi-processors system. The whole distributed
computational task is defined by atomic actions and causal
relations among them. And there exist two kinds of
causalities: one is executional order defined causality, and



the other is communication defined causality. Note that: (1)
In each processor, there also exists causality defined
concurrency (two actions without causal relations between
them will be executed concurrently); (2) Communications
will always occur between two different parallel branches, it
may occur between two different processors through
communication channels, or in the same processor, or occur
between two cores through the shared memories.



+

o Sequential Communication
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FIGURE 9.1 A model of distributed
computations.

A distributed system is a set of autonomous processors
with communications among them through the
communication channels, it can be modeled by APTC,
guarded APTC, and distributed APTC with the following
distinct features.



« No common physical clock. There is not a common
physical clock in the distributed systems. This feature
means that the asynchronous cooperation nature
among different processors. APTC and its extensions
can model the asynchronous cooperations among
processors by use of the placeholder extension in the
following way: (1) describe each processor's
behaviors by the language elements including send
and receive messages through some channels and the
appropriate placeholder; (2) put each processor in
parallel.

« No shared memories. There are not shared memories
among different processors. This feature means that
communications always occur as message exchanges
through some communication channels. APTC and its
extensions support the definition of the
communication functions, through which synchronous
or asynchronous communications can be defined.

« Geographical separation. The processors in the
distributed systems are geographical separated. This
feature means the same function actions performed
on different processors should be distinguished.
Distributed APTC can be used to model the
distribution of the different processors in the
distributed systems.

« Autonomy and heterogeneity. Each processor is
executed autonomously and implemented
heterogeneously. The autonomy is assured by the
abstraction mechanism of APTC and its extensions,



each processor is encapsulated and abstracted away
from its internal computations. And the heterogeneity
is assured by the neutrality of APTC and its
extensions, APTC and its extensions are neutral
languages independent to any concrete
implementation and just capture the computations
and concurrency.

Since the lack of global physical time, the logical time is
determined by the causalities among actions defined in the
distributed systems. The clock consistency condition says:

ei <ej = Cle;) <Clej)

where ¢ and ¢ are two events in the distributed systems, C(e)
is the logical time of event e.

The Lamport's scalar time represents the logical time
according to the following two time updating rules:

1. R1: In the process #i, before executing an event
(send, receive, internal), the logical time Ci of #i
updates according to:

C,:=C;+1



2. R2: Each message sent by another process 7
attaches with the logical time € of Fi, when P
receives the message with the timestamp, it
updates its logical time Ci according to:

C; :=max(C;,Cj)

then P executes the rule R1 and processes the message.

APTC and its extensions have the natural advantages to
analyze the logical time, for their explicit definition of causal
relation <, sequential composition -, communication merge |,
and communication function y.

9.2 Distributed transactions

Traditional transaction has ACID (Atomicity, Consistency,
Isolation, and Durability) properties, while distributed
transaction implements transactions in distributed system
and consists of a set of local transactions. In this section, we
will discuss the modeling and verification of several classical
distributed transaction protocols, including the so-called
Two-Phase Commit protocol (2PC), and Three-Phase Commit
protocol (3PC).

9.2.1 Two-phase commit protocol

The 2PC protocol introduces a transaction coordinator to
coordinate and manage the distributed transactions, and it



includes two phases: the preparation phase and the
commission phase, as Fig. 9.2 illustrates.

Database 1
@"\-
Q
—(o—P> .
Coordinator
4 —
%,
2
Database 2

FIGURE 9.2 Two-phase commit protocol.
The process of 2PC protocol is following.

1. Coordinator receives the transaction request d from
the outside through the channel Ccr (the
corresponding reading action is denoted "¢ (4)), the
Coordinator generates the preparation request 4 for
the Database i through the internal action rrerare, and



sends “r to the corresponding Database i through the
channel Ccpi (the corresponding sending action is
denoted sccoi dpreq:));

. Database i receives the preparation request 9rres from
Coordinator through the channel Ccoi (the
corresponding reading action is denoted "coi(dprea)),
then after an internal processing 7’i, generates the
preparation response 4rresi, and sends 9eres: to
Coordinator through the channel Cric (the
corresponding sending action is denoted *cuic@pres;));

. Coordinator receives the preparation response 9pres
from Database i through the channel Coic (the
corresponding reading action is denoted "Cvic(dpres:)), if
all responses are successful, it generates the
commission request 4 through an action cr, and sends
dr to Database i through the channel Ccoi (the
corresponding sending action is denoted *ccpi (der)); if
one response is unsuccessful, it generates the rollback
request 4+ through an action rr, and sends @ to
Database i through the channel Ccpi (the
corresponding sending action is denoted sccoi (drr));

. Database i receives the commission request or
rollback request 4- from Coordinator through the
channel Ccpi (the corresponding reading action is
denoted ceni(dr)), if dr is a commission request,
Database i commits the transaction through an action
com; and sends the commission response deres to
Coordinator through the channel Cric (the
corresponding sending action is denoted *cuic(deres)); if d;



is a rollback request, Database i rollbacks the
transaction through an action r2!i, and sends the
rollback response d-.s to Coordinator through the
channel Cnic (the corresponding sending action is
denoted Scpic(drres));

5. Coordinator receives the response 4rs from Database
i through the channel Cric (the corresponding reading
action is denoted "t (dres)) | if the response dres is a
commission response, Coordinator sends the
transaction success response 4s to the outside through
the channel €co (the corresponding sending action is
denoted *cco(d)); if the response dres is a rollback
response, Coordinator sends the transaction failure
response 4r to the outside through the channel Cco (the
corresponding sending action is denoted scco'dr)),

Where d< A, A is the set of data.
Coordinator's state transitions described by APTCe are

following.
C=Locc ) joptoe,ld) - Cr

Ca = prepare - Cy

C3 = (SCepy preg ) || - | s€epo (dpreg,)) - Ca

Ca=repcpres)) |- [l Pepue (dpres,)) - Cs

Cs={dyrog = SUCCESS |-+ | dyres, = SUCCESS)-cr +(sgyp () | =+ | 5o der)) CoF (dpresy = FAILURE -4 dyrgq, = FAILURE - 11+ (5 i) |+ |5 ()
Co = (repiedres) || ==+ 1 70 puc (dres)) - C7

C7=dres =COMMITY} - 5¢.,(ds) - C +{dyey = ROLLBACK ) - 5¢,(dy) - C

The state transitions of Database i described by APTCq are

following.
D; = Locp, ::rep o (dpreg; ) - Di;



D;, = pri - Dy,

Di, = s¢pic(dpres; ) - Diy

D, =repp de) - Dy,

Di, = \dy = dir} - comj - scpdepes) - Dy + {dy = dpe ) - rolly - s Adpres) - Dy

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock 6. We define the
following communication functions.

V(e (dpreg ). 5Cep; (dpreg;)) = ¢Cepy (dpreg;)

Y (e (dpres; ). SCpic (pres;)) = €Cpic (dpres; )

Y Ceps (der ). 5 ps (ler)) 2 gy (der)

V(€ (drr). 5o (dre)) £ g, (drr)

Y(rC pe (deres) s SCpe (deres)) 2 €0 pip (deres)

Y (repic (drres). S€pic (drres)) = cCpic (drres)

Let all modules be in parallel, then the protocol
C D1 - D.can be presented by the following process term.

(0 (O(C () D1 (-0 Dn))) =11@u(C () D1(-0 Dy))
where
= {r(”.r-n,- (dprrq'f)uJCW{diru'pq,‘}:r('n,‘;-Mpm‘f)njf&;(-{dpre.\;;}1 Cepi [dr‘r}:x('(-m (der), Cep; (drr}:-'i("(-p,;(ﬂll'r}~ TChic [dr‘re.\'}:5("””-["]{1'#.1}1 rC;}J(-[drrr.\'}~ SCF),‘r'(dri'P.'IHEI A

forl=i=n,
1= e e e o). e s o ), prepare. dyes = SUCCESS) dy = FAILURE e, (i = COMMITY, o = ROLLBACK), i comy. voll {d, = i ). 16 = i |

forl=i=n,
Then we get the following conclusion on the protocol.

Theorem 9.1




The 2PC protocol in Fig. 9.2 is correct.

Proof

Based on the above state transitions of the above modules,

by use of the algebraic laws of 4FTCs, we can prove that
(g (C Dy (- Do) =3 gep(Loce reg, (d) - (Loce wsep, (de) + Loce = sceo(dp)) - tp(dy (C ( Dy (- () Dy))

For the details of proof, please refer to Section 3.10, and
we omit it. [

9.2.2 Three-phase commit protocol

The 3PC protocol introduces a transaction coordinator to
coordinate and manage the distributed transactions, and it
includes three phases: the preparation phase, the pre-
commission phase, and the commission phase, as Fig. 9.3
illustrates.
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FIGURE 9.3 Three-phase commit protocol.
The process of 3PC protocol is following.

1. Coordinator receives the transaction request d from
the outside through the channel Ccr (the
corresponding reading action is denoted "¢ (@), the
Coordinator generates the preparation request 4 for
the Database i through the internal action rrerare, and
sends 9r to the corresponding Database i through the
channel Ccpi (the corresponding sending action is
denoted #ccoidpreq));



2. Database i receives the preparation request 9rres: from
Coordinator through the channel Ccoi (the
corresponding reading action is denoted "ccoi(dprea)),
then after an internal processing 7', generates the
preparation response 9eres, and sends 9rres to
Coordinator through the channel Cric (the
corresponding sending action is denoted *cuic(@pres));

3. Coordinator receives the preparation response 9pres
from Database i through the channel Coic (the
corresponding reading action is denoted "Coicdpres)), if
all responses are successful, it generates the pre-
commission request 9rr through an action pcr, and
sends 9rer to Database i through the channel Ccoi (the
corresponding sending action is denoted *ccpi (dper)); if
one response is unsuccessful, it sends the transaction
failure response in 4re to Database i through the
channel Cepi (the corresponding sending action is
denoted *ccpidper));

4. Database i receives the pre-commission request 9per
from Coordinator through the channel Ceoi (the
corresponding reading action is denoted "cco:(dper)),
Database i pre-commits the transaction through an
action r<i, and generates and sends the response reres
to Coordinator through the channel Coic (the
corresponding sending action is denoted *Coic (@pcres));

5. Coordinator receives the pre-commission response
dperes; from Database i through the channel Coic (the
corresponding reading action is denoted "Coic(dperes)), if
all responses are successful, it generates the



commission request 4 through an action cr, and sends
dr to Database i through the channel Ccoi (the
corresponding sending action is denoted *ccpi(der)); if
one response is unsuccessful, it sends the rollback
request 4+ to Database i through the channel Ccni (the
corresponding sending action is denoted *ccpi (drr));

. Database i receives the commission request or the
rollback request 4- from Coordinator through the
channel Ccpi (the corresponding reading action is
denoted ceni(dr)), if d; is a commission request,
Database i commits the transaction through an action
com;, and sends the commission response deres to
Coordinator through the channel Cric (the
corresponding sending action is denoted *cuic(deres)); if d;
is a rollback request, Database i rollbacks the
transaction through an action r2!i, and sends the
rollback response d-.s to Coordinator through the
channel Cric (the corresponding sending action is
denoted *Coic(drres));

. Coordinator receives the response dres from Database
i through the channel Cric (the corresponding reading
action is denoted "t (dres)) | if the response dres is a
commission response, Coordinator sends the
transaction success response 4s to the outside through
the channel €co (the corresponding sending action is
denoted *ccolds)); if the response d4res is a rollback
response, Coordinator sends the transaction failure
response 4r to the outside through the channel Cco (the
corresponding sending action is denoted scco'dr)),



Where d< A, A is the set of data.
Coordinator's state transitions described by AFTCe are

following.
C=Locc ) jop Voo (d) - Ca

Cr = prepare - Cy

C3 = (5cep Wpreq) | -~ || SCep (dpreg,)) - Ca

Cs = (reg e dpres)) |-+ | repue (dpres, ) - Cs

C5 = (dpresy = SUCCESS ||+ || dpres, = SUCCESS)- per - (s, @per) |-+ I 56, @per)) - Co +{dpresy = FAILURE 4 +++ 4 dyres, = FAILURE) - s, (d)
Co = (rep e dperes) |- | repue (dperes)) - C7

Cr = (dperes; = SUCCESS ||+ | dperes, = SUCCESS) - cr - (s (o) |-+ | Sy @) - Co 4 {dperesy = FAILURE 4+ 4 e, = FAILURE) 5. (d)
Cy = (repyedres) || -+ |l 7€ e (dres)) - Co

Co={dres =COMMITY} - 5¢c.,(ds) - C +{dres = ROLLBACK) - 5c.,(df) - C

The state transitions of Database i described by APTCe are

following.
D; = Locp, repe(dpres;) - Diy

Dj, = pri - Dy,

D, = scpic (dpres; ) - Diy

Dy, =rcep (dper) - D

Di; = pei - Dy,

D =5cpic (@peres;) - Diy

D, =repp(dr) - Dy

D, =\dy = dir} - comj - scpdepes) - Dy + {dp = dypp - rolly - s Adpres) - Dy

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock 6. We define the
following communication functions.

V(e (dpreg ). SCep; (dpreg;)) = e (dpreg;)

V(rCpie (dpres,). 5Cpic (dpres,)) = CCpyc (dpres,)

¥ {’-C'[_-”,- {dﬂrr IR SCr {dpt'r}} = CCri Edﬂtl'}



V(e pi (der ) S (der)) 2 ey (der)
Y (FCep (der ). 560 (dre)) = ccop (drr)
Y (FCpie (deres) s SCpie (deres)) = €0 (deres)
V(rcpe peres). 5Cpic (dperes)) £ eopeld peres)
Let all modules be in parallel, then the protocol
C D --- Du.can be presented by the following process term.

(O (OC (D1 (-0 D)) =1(@u(C () Dy (-0 Dy))

where

H= [rﬁ'u,‘ (dpn‘q,‘)Jﬁ‘n,mwiq,‘}:"'F,;‘-;‘(f',pm,‘)an;f-'[dpraw [T [“‘prr): f"('(-n,‘(dprr]w(-m'[drr}‘-\'Cr-m (dr'r]J'F(-m(f',J‘rL-\'Cf-,)i (drr]‘I'F,)fr-(f',{'mL ﬁ(,‘m('{df'fﬂ}\i‘r”l‘r'“‘,p{'rt‘ﬁ']w-EIC])J(‘(dfl{'J‘N)‘f', € A]

forl=i=n
L= g M e W s ey, = SUCCESS Wy = FATLURE) Ly = UCCESS) g = FAILURED .0k = COMMITY = ROLLBACK i e com sl 6 = =

forl=i=n,
Then we get the following conclusion on the protocol.

Theorem 9.2

The 3PC protocol in Fig. 9.3 is correct.

Proof

Based on the above state transitions of the above modules,

by use of the algebraic laws of 4PTCs, we can prove that
1@y (C Dy (- Du)) =Y genlLoce ree (d) - (Loce wsce (de) + Loce i sepy (dyp)) - 1@ (C () Dy (- () Dy))

For the details of proof, please refer to Section 3.10, and
we omit it. [



9.3 Authentication in distributed
systems

In the symmetric encryption and decryption, they use only
one key k. The inputs of symmetric encryption are the key k
and the plaintext D and the output is the ciphertext, so we
treat the symmetric encryption as an atomic action denoted
enci (D), We also use ENCi(D) to denote the ciphertext output.
The inputs of symmetric decryption are the same key k and
the ciphertext ENCi(D) and output is the plaintext D, we also
treat the symmetric decryption as an atomic action
deci(ENCr(D)), And we also use PECLENCi(D)) to denote the
output of the corresponding decryption.

For D is plaintext, it is obvious that PECG(ENC (D)) =D gand
encp (D) =decy (ENCr(D)), where < is the causal relation; and for D
is the ciphertext, ENC{(DEC(D) =D and dec(D) < ency(DECL(D))
hold.

In the asymmetric encryption and decryption, they use two
keys: the public key Pk and the private key sk generated from
the same seed s. The inputs of asymmetric encryption are
the key Pk or sk and the plaintext D and the output is the
ciphertext, so we treat the asymmetric encryption as an
atomic action denoted ¢n¢ (D) or encsk (D) We also use ENCp, (D)
and ENCw. (D) to denote the ciphertext outputs. The inputs of
asymmetric decryption are the corresponding key sk or pks
and the ciphertext ENCpi. (D) or ENCw (D) and output is the
plaintext D, we also treat the asymmetric decryption as an
atomic action decsk (ENCpi (D)) gnd decpr(ENCa. (D)) And we also



use PECu (ENCpr (D) gnd PECp (ENCy (D) to denote the
corresponding decryption outputs.

For D is plaintext, it is obvious that PECu (ENCp, (D)) =D gnd
DEC 1 (ENCy (D)) = D’ and encpr, (D) = decsy (ENCpi, (D)) and
encyk, (D) = decpr, (ENCwi, (D)) where < is the causal relation; and for
D is the ciphertext, ENCt,(PECu (D) =D gnd ENCpi (DECy, (D) =D,
and decpr, (D) = encg (DECp, (D)) gnd decs, (D) = encpr (DECy, (D))

The hash function is used to generate the digest of the
data. The input of the hash function hash is the data D and the
output is the digest of the data. We treat the hash function
as an atomic action denoted #fash(D), and we also use HASH(D)
to denote the output digest.

For D1 =Dz, it is obvious that #ASH(Dy) = HASH(D2),

Digital signature uses the private key st to encrypt some
data and the public key P* to decrypt the encrypted data to
implement the so-called non-repudiation. The inputs of sigh
function are some data D and the private key sk and the
output is the signature. We treat the signing function as an
atomic action *i&msx (D) and also use /6N (D) to denote the
signature. The inputs of the de-sign function are the public
key Pk and the signature S/¢Ns. (D) and the output is the
original data D. We also treat the de-sign function as an
atomic action de-signpk, (SIGN:, (D) and also we use
DE-SIGNp, (SIGNg, (D) to denote the output of the de-sign action.

It is obvious that PE-SIGNpk (SIGN, (D) =D,

MAC (Message Authentication Code) is used to
authenticate data by symmetric keys k and often assumed
that k is privately shared only between two principals A and
B. The inputs of the MAC function are the key k and some



data D, and the output is the MACs. We treat the MAC
function as an atomic action mac(D), and use MAC(D) to denote
the output MACs.

The MACs MAC(D) are generated by one principal A and
with D together sent to the other principal B. The other
principal B regenerate the MACs MAC(D), if MAC (D) = MAC(D)’,
then the data D are from A.

Random sequence generation is used to generate a
random sequence, which may be a symmetric key k, a pair of
public key Pk and sk, or a nonce nonce (usually used to resist
replay attacks). We treat the random sequence generation
function as an atomic action rs& for symmetric key
generation, "&rk.sk for asymmetric key pair generation, and
rsgv for nonce generation, and the corresponding outputs are
k, Pk and sk, N respectively.

9.3.1 Protocols based on symmetric
cryptosystems

The Wide-Mouth Frog protocol shown in Fig. 9.4 uses
symmetric keys for secure communication, that is, the key ks
between Alice and Bob is privately shared to Alice and Bob,
Alice, Bob have shared keys with Trent kar and kzr already.
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FIGURE 9.4 Wide-Mouth Frog protocol.
The process of the protocol is as follows.

1. Alice receives some messages D from the outside
through the channel Car (the corresponding reading
action is denoted "c.(P)) if kas is not established, she
generates a random session key k4 through an action



8, encrypts the key request message 7a. B.kas with kar
through an action ¢k (Ta. B.kar) where 7Ta Alice's time
stamp, and sends 4: ENCir(Ta. B.kap) to Trent through the
channel Car (the corresponding sending action is
denoted scir (A ENCry (Ta. B.kap))y.

2. Trent receives the message 4+ ENCrir (Ta. B.kas) through
the channel Car (the corresponding reading action is
denoted rcir (A ENCy; (Ta. B.kar))), he decrypts the
message through an action 9¢ck.r (ENCiy (Ta. B.kan)) If
isFresh(Ty) =TRUE where isFresh is a function to deciding
whether a time stamp is fresh, he encrypts 7s. 4. kap
with ks7 through an action ¢ (Ts. A.kar) sends T to
Alice through the channel Cra (the corresponding
sending action is denoted *cra(T)) and ENCisr (Tr: A kan) to
Bob through the channel Crs (the corresponding
sending action is denoted scra(ENCiyr (Ta. A.kap))). else if
isFresh(Tq) = FLASE he sends 1 to Alice and Bob (the
corresponding sending actions are denoted *cra (L) and
sers(L) respectively);

3. Bob receives 4rs from Trent through the channel Crs
(the corresponding reading action is denoted "crs(dra)),
If dre =1, he sends 1 to Alice through the channel Csa
(the corresponding sending action is denoted “csa(L)); if
dre#L1, he decrypts £NCi (Te. A.kas) through an action
deciy (ENCiyr (T, A kag)) [fisFresh(Tg)= TRUE, he gets kas, and
sends T to Alice (the corresponding sending action is
denoted scsi(T)); if isFresh(Tp) = FALSE  he sends L to Alice
through the channel Cs1 (the corresponding sending
action is denoted *csi(L));



4. Alice receives dra from Trent through the channel Cra
(the corresponding reading action is denoted "cra(dra)),
receives 4s4 from Bob through the channel Cza (the
corresponding reading action is denoted "csa(d8a)) If
dra=T-dga =T, after an encryption processing
enciy(Tap. D) Alice sends ENCis(Tayn- D) to Bob through the
channel Caz (the corresponding sending action is
denoted #canTap. ENCiy (D)), else if dra=L+dra=L1, Alice
sends L to the outside through the channel €40 (the
corresponding sending action is denoted scio(L));

5. Bob receives the message £¥Cki:(Tap: D) through the
channel Caz (the corresponding reading action is
denoted "casTap ENCiy(y (D)) - after a decryption
processing decy, JENC, . (Ta,. D}}, if isFresh(Ta,) = TRUE’ he
sends D to the outside through the channel Cso (the
corresponding sending action is denoted *cso (D)), if
isFresh(Tq,) = FALSE he sends L to the outside through
the channel €so (the corresponding sending action is
denoted scsoL)).

Where Dea, A is the set of data.

Alice's state transitions described by APTCs are as follows.
A=Locy ) poploy, (D) Ar

Ay ={kap=NULL) rsgp,, - A3+ lkap # NULL)- A3

Az =ency, (Ta, B, kag) - Ay

Ay =50, (A, ENCy,, (T4, B.kag)) - As

As = (rep (dra) | reg,(dpa)) - Ag

Asg=1{dra=T -dpa=T}) - A7+ {dra=L+dpa=1}- Ag

Aj=ency, (Ta,. D) Ag



Ag =505 (Tap. ENCy, (D)) - A

Ag=s0,,(L)-A

Bob's state transitions described by APTCc are as follows.
B=Locp ::{kap=NULL)- By + {kap # NULL} - Bs

By =rc ,ldrg)- B2

By ={drg# L} -Ba+ldrg= 1) s5c,,(L) - Bs

By =decp, (ENCry (Tp. A kag)) - By

By={isFresh(Tp) =TRUEY} -5¢,,(T): Bs+{isFresh(Tg)=FALSE} 5¢,,(L)-Bs
Bs=rc,,(Ty,. ENCy,, (D)) Bg

Bg =decy s (ENCy,z (Ta,. D)) - By

By = {isFresh(Ta,)=TRUE)-s5cy,(D)- B+ {isFresh(Ta,) = FALSE} - sc,,(L)- B
Trent's state transitions described by 4PTCs are as follows.
T = Locy 2 re, (A, ENCy, . (Ta. B. kag)) -T2

Iy =decy,  (ENCy, . (Ta, B kap)) - Tz

Iy={isFresh(Ty) = TRUE}- ency,, (Tp, A kap) - (s¢p (T) || 5; 5 (ENCryr (Tp, A, kap))T + {is Fresh(Ty) = FALSE} - (sc; (L) ] 5¢pp (L))

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock 6. We define the

following communication functions.
Y (rcay (A, ENCryp (Ta, B kag)). scap (A, ENCioy (Ta, B.kag))) = ¢y (A, ENCyy (T, B, kg

vire, (dra). sy, (dra)) = ey, (dra)

V(rcy (dga). scp, (dpa)) = ey (dpa)

Y(rcas (Tay, ENCi,y (D)), 50,5 (Tay, ENCi,y (D)) 2 ey (Tap. ENCi,, (D))

V(rc, s (dre). scpp (dTR)) 2 coypyldrp)

Let all modules be in parallel, then the protocol A B T can
be presented by the following process term.



(O OANBIT))=10u(A()B()T))

where
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Then we get the following conclusion on the protocol.

Theorem 9.3

The Wide-Mouth Frog protocol in Fig. 9.4 is secure.

Proof

Based on the above state transitions of the above modules,

by use of the algebraic laws of 4PTCs, we can prove that
Tr(dy(A j B |j = E”E&{Lﬁ't‘,ﬁ sre (D) ((Loey se, (L) || Locg sy, (L) + Locg tscy, (D)) - 1p(dg (A B';I 1))

For the details of proof, please refer to Section 3.10, and
we omit it.

That is, the Wide-Mouth Frog protocol in Fig. 9.4
1 (@n(A0B1T) can exhibit desired external behaviors:

1. For information leakage, because kar is privately
shared only between Alice and Trent, ksr is privately
shared only between Bob and Trent, 4z is privately
shared only among Trent;



2. For replay attack, the using of time stamps 71, 75, and
Tap, makes that
1A AQBOT) =23 pealre, (D) - (50,5 (L) | sepp (L)) - T (3 (A B () )
it is desired;

3. Without replay attack, the protocol would be
T @r(AJBOT) = pearey (D) scyo(D) - 1i(@u(A) BT it is
desired;

4. For the man-in-the-middle attack, because ar is
privately shared only between Alice and Trent, k& is
privately shared only between Bob and Trent, ks is
privately shared only among Trent, Alice, and Bob.
For the modeling of the man-in-the-middle attack, the
Wide-Mouth Frog protocol can be against the man-in-
the-middle attack;

5. For the unexpected and non-technical leaking of kar,
ker, kap, or they being not strong enough, or Trent
being dishonest, they are out of the scope of analyses
of security protocols;

6. For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. []

The Otway-Rees protocol shown in Fig. 9.3 uses
symmetric keys for secure communication, that is, the key kaz
between Alice and Bob is privately shared to Alice and Bob,
Alice, Bob have shared keys with Trent kar and *zr already.
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FIGURE 9.5 Otway-Rees protocol.
The process of the protocol is as follows.

1. Alice receives some messages D from the outside
through the channel Car (the corresponding reading
action is denoted "c.(P)), if kas is not established, she
generates the random numbers I, Ra through the



actions 7s&r and "8, encrypts Ra. 1. A. B by kar through an
action "¢t (Ra. 1. A.B) and sends /- A-B. ENCy; (Ra. 1. A, B) tq
Bob through the channel Cas (the corresponding
sending action is denoted *cas/: A. B. ENCy;(Ra. 1, A, B))).

Bob receives {: 4. B. ENCy,; (Ra. I, A. B) from Alice through
the channel Cas (the corresponding reading action is
denoted rcastl. A B.ENCy(Ra. 1. A. B))) 'he generates a
random number Rs through an action "%&s, encrypts
Rs.I. A, B by ksr through an action ¢¢sr (Re. 1. A. B) and
sends [ A. B.ENCy, (Ra. 1. A, B). ENCiy (Rp. 1. A. B) to Trent
through the channel Csr (the corresponding sending
action is denoted
scar(I. A.B.ENCy (Ra. 1. A. B). ENCyy (Rp. 1. A. B)),

Trent receives /- A. B. ENCy,, (Ra.1.A. B), ENCy,, (Rp. 1. A, B)

through the channel Csr (the corresponding reading
action is denoted
rCyr (1. A B.ENCy, (Ra. 1. A, B). ENCiy, (Rp. 1A, B))  he decrypts

the message ENCir(Ra.1.A. B) through an action
decr,; (ENCiyr (Ra. 1. A. B) and the message ENCir (Rp.1.A. B)
through an action 9eckr (ENCiyr(Rs. 1. A. B)) generates a
random session key kaz through an action "8+, then he
encrypts Ra.kaz by kar through an action ¢k (Ra. kap),
encrypts Rs.kaz by ksr through an action €¢ksr (R kag),
and sends them to Bob through the channel Crs (the
corresponding sending action is denoted
scry(ls ENCiyr (Ra. kap), ENCiyy (R, kap))),

Bob receives the message from Trent through the
channel €7z (the corresponding reading action is
denoted rcra(dr. ENCiyr (Ra.kan). ENCiyr (dry.kas))), he decrypts



ENCiyr(dry.kas) by ksr through an action

deciyr (ENCiyr(dry. kap)) if dry = R gand dr =1, he sends

1. ENCrir(Ra.kap) to Alice through the channel Csa (the
corresponding sending action is denoted

scaa(l ENCryy (Ra.kan))); else if drs # Re or Di #1, he sends L
to Alice through the channel Cza (the corresponding
sending action is denoted *ca(L);

Alice receives ds4 from Bob (the corresponding
reading action is denoted 7cs(d84)), if dpa =1, she sends
1 to Bob through the channel Cas (the corresponding
sending action is denoted *cis(1); else if dsa # L, she
decrypts ENCiir(Ra.kas) by kar through an action
decy (ENCryr (Ra.kap)) if dry = Ra gand 41 =1, she generates a
random number R®» through an action "%&», encrypts
Rp, D by kas through an action ¢ Kp. D) and sends it to
Bob through the channel Cas (the corresponding
sending action is denoted *cis (ENCis(Rp. D)) else if
dry # Ra or dr #1, she sends L to Bob through the
channel Cas (the corresponding sending action is
denoted #can(L));

Bob receives 44z from Alice (the corresponding
reading action is denoted 7cas(da8)), if daz =1, he sends L
to the outside through the channel €s0 (the
corresponding sending action is denoted *cso(D); else if
dsn # L, she decrypts ENCeis(Rp. D) hy kas through an
action deck(ENCi,(Rp. D)) if isFresh(Rp) =TRUE, she sends
D to the outside through the channel Cso (the
corresponding sending action is denoted *cs0(D)), else if
isFresh(dg,) = FALSE he sends L to the outside through



the channel Crso (the corresponding sending action is
denoted ¥cso L)),

Where De A, A is the set of data.

Alice's state transitions described by APTCs are as follows.
A=Locy Y poarcy, (D) Az

Ay={kap=NULL) -rsg;-rsgr, Az +{kap#NULL}- Ay

Az =ency, . (Ra, 1. A, B) Ay

As=usc,,(I,AB,ENCy (Ra. 1. A, B)) - As

As=rc,, ldga) - Ag

Ap={dpa# L} A7 +{dpa= L} -5c,,(L)-A

A7 =decy, (ENCi,, (Ra, kag)) - Ag

Ag={dr, =Ra-dj =1} - Aa+{dg, #F Ra+d; #1}- A2

Ag=rsgr, - Ao

Ap=ency,,(Rp. D) Ay

A =sc,;(ENCy ,(Rp. D)) A

App=sc,,(L)-A

Bob's state transitions described by APTCc are as follows.
B=Locy:: (kag =NULL)- B, + {kag # NULL} - By

By =rc,,(I.A.B.ENCy,, (R4.1.A. B)) - B,

By =vrsgr, - B3

By =e¢ncy,, (Rg. [.A.B)- By

By=sc, (I.A.B.ENCy,,(Ra.1.A. B). ENCi,, (Rg. 1. A. B)) - Bs

Bs =rcpgldp, ENCiyp (Ra kag) ENCipp(dry . kag)) - Be

Bg =decp, (ENCpy (drg. kag)) - By

By=|dp, =Rp-dy =1} 5c,, (Il. ENCp,,(Ra.kap)) - By + {dg, # Rp +dj # 1} -5c,,(L)-.
Bg =rc,,(dag) - Bo

By ={dap=1) -5c,,(L)- B+ {dap# L) B

By =decy, ,(ENCy,,(Rp. D)) By



By ={isFresh(Rp)=TRUE}- Bia+ {isFresh(Rp) = FLASE} sc,,(L)-B

By =s¢,,(D)- B

Trent's state transitions described by APTCc are as follows.
T = Locy =rcy, (1A, B,ENCy, (Rg, 1. A, B), ENCy,, (Rg. I, A, B)) - T

T =decy . (ENCy,, (Ra. I, A, B)) - T

T3 =dec,, (ENCiyp(Rp. 1A B))- Ty

Ts=rsgis - Ts

Is =enci (Ra kap) - Tg

Ty =encry (Rp. kap) - T7

=50, (ILENCy  (Ro ko) ENCipr (Rp.kag)) - T

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock 6. We define the

following communication functions.
y(rcyy (1 A, B ENCiyp (Ra, 1, A, B)), scoy (1A, BENCyy (R 1A, BY) 2 cc,y (I, A, B.ENCyy (Ra 1 A, 1

V(rcy (dga). scp, (dpa)) = ey (dpa)

ey, 1A B.ENGy, (Ry. 1. A.B), ENCyy, (Ry, 1A, B)). sy (1 A, B.ENC, (R, 1. A, B ENCy, (R A, B) £ ccy (1, A, B, ENCY, (Ry. 1. A, B), ENCy, (R ], A,

Yy (1, ENCyy (Ra,kag), ENCiyy (dry. kan)), Sy (dr, ENCryp (Ra kag), ENCiyy (diy kan) 2 cpy (dr, ENChyy (Rakag), ENChy (dpy i

V(rc s (dag). sc,, (dag)) 2 ey (dag)

Let all modules be in parallel, then the protocolA B T can
be presented by the following process term.

10 (OAGB(OT)) =1 0u(A)B(T))

where
Bl ( q' (AT‘ ’fw“ ] Ity g [“” ”ﬁydﬂl y MM] ]r! BEW(N‘R MH il hr‘ “ ""ﬁr Ch}[ il \ N‘ ” EM H “w N‘ ]]lDEA]
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Then we get the following conclusion on the protocol.

Theorem 9.4

The Otway-Rees protocol in Fig. 9.5 is secure.

Proof

Based on the above state transitions of the above modules,

by use of the algebraic laws of APTCs, we can prove that
T(dg(AJB(T)) =3 pealLocy ire,, (D) - (Locp i scp, (L) + Locg i 5cy, (D)) - 1p (g (A B(T))

For the details of proof, please refer to Section 3.10, and
we omit it.

That is, the Otway-Rees protocol in Fig. 9.5 7@u(A0B( 1))
can exhibit desired external behaviors:

1. For information leakage, because kar is privately
shared only between Alice and Trent, ksr is privately
shared only between Bob and Trent, 4z is privately
shared only among Trent, Alice, and Bob;

2. For the man-in-the-middle attack, because kar is
privately shared only between Alice and Trent, 4s7 is
privately shared only between Bob and Trent, kas is
privately shared only among Trent, Alice, and Bob,
and the use of the random numbers I, R4, and Rs, the
protocol would be



T @u(AQBIT) =3 pealrc, (D) -scyo (L) 1@u(A)BIT)) it is
desired, the Otway-Rees protocol can be against the
man-in-the-middle attack;

3. For replay attack, the using of the random numbers
I, R4, and Rs, makes that
@A BOT) =3 pealrc, (D) -scpo (L) - 110 (AGTBIT)) it is
desired;

4. Without man-in-the-middle and replay attack, the
protocol would be
T @HAQNB )T = pealrcs (D) - scyo (D)) - 110y (A)B(T)) it is
desired;

5. For the unexpected and non-technical leaking of #ar,
kgr, kas, or they being not strong enough, or Trent
being dishonest, they are out of the scope of analyses
of security protocols;

6. For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. [

9.3.2 Protocols based on asymmetric
cryptosystems

The Denning-Sacco protocol shown in Fig. 9.6 uses
asymmetric keys and symmetric keys for secure
communication, that is, the key kas between Alice and Bob is
privately shared to Alice and Bob, Alice's, Bob's, and Trent's
public keys Pks, Pke, and pkr can be publicly gotten.
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FIGURE 9.6 Denning-Sacco protocol.
The process of the protocol is as follows.

1. Alice receives some messages D from the outside
through the channel Car (the corresponding reading
action is denoted "c.(P)) if kg is not established, she



sends 4. B to Trent through the channel Car (the
corresponding sending action is denoted scar (4. B));

2. Trent receives 4. B through the channel Car (the
corresponding reading action is denoted "car (4. B)) he
signs Alice's and Bob's public keys Pk4a and rks through
the actions signsir (A, pka) gnd signsir (B. pke) gand sends the
signatures to Alice through the channel Cra (the
corresponding sending action is denoted
3¢ (SIGNir (A, pka), SIGNyi (B, pkg))y .

3. Alice receives the message from Trent through the
channel Cra (the corresponding reading action is
denoted 7cra(SIGNuy (A, pka). SIGNw (B, pks)))  she de-signs
SIGNyu (B. pks) through an action de-signpir (SIG Nk (B. pkg)) to
get rks, generates a random session key ks through an
action "8k, signs 4. B.kas.Ta through an action
signsk, (A, B.kap. T4) and encrypts the signature by rks
through an action €7¢pks (STGNyk, (A, B.kagr. Ta)) then sends
ENCpiy(SIGNsk, (A, B kag. Tx)). SIGNyi (A, pka). SIG Ny, (B, pkp) to
Bob through the channel Cas (the corresponding
sending action is denoted
5Can(ENCpiy(STGNi, (A, B, kap. 1)), SIGNky (A, pka). SIGN,i, (B. pkp))).

4. Bob receives
ENCPI?H{SIG‘NrIk,L{A~ 31 k.‘#ﬂ"\- TA}}& SIGN.TE]"[A.' P'E{A }r SIGN.&'k}'[Bi Pkﬂ} from

Alice (the corresponding reading action is denoted
TCap (ENCpry (SIG N5k (A, B.kap. Ta)). SIGNyjr (A pka). SIG Ny (B. pkg))y
he de-signs $/GNskr (A, Pka) through an action

de-signpir (SIGNykr (A, pka)) to get Pka, decrypts

ENCpiy(SIGNsk, (A, B.kap. T4)) through an action

decsiy (ENCpiy (SIGNuwy (A, B.kas. TA) and de-sign



SIGNk, (A, B.kas. Ta) through an action

de-signpi, (SIGNsk, (A, B.kap. Ta) to get kar and Ta, if
isValid(Tp) =TRUE, he generates a random number Ko
through an action "$8&», encrypts ko by kas through an
action ¢"<t.sRp) and sends it to Alice through the
channel Cza (the corresponding sending action is
denoted csa {ENC;.':MERD}})’ else if isValid(T4) = FALSE  he
sends ENCiis (L) to Alice through the channel Csa (the
corresponding sending action is denoted #csi(ENCi,5 (L))
);

5. Alice receives ENCris(dsa) from Bob (the corresponding
reading action is denoted "cs (ENCiip(dBa)))  if dea =1, she
sends £NCiis (L) to Bob through the channel Cas (the
corresponding sending action is denoted cas(ENC,; (L))
); else if dsa# L, if isFresh(dpa)=TRUE, she generates a
random number #» through an action "*$%,, encrypts
Rp. D by kas through an action ¢ (Rp-2) and sends it to
Bob through the channel Cas (the corresponding
sending action is denoted cas (ENCiis (Rp. DY)y else if
isFresh(dga) = FALSE he sends £NCki» (L) to Bob through the
channel Caz (the corresponding sending action is
denoted scanENCi, (L)),

6. Bob receives #NCuis@ip) from Alice (the corresponding
reading action is denoted "cas (ENCiis(dip))y if dap =1 he
sends 1 to the outside through the channel €so (the
corresponding sending action is denoted *cs0(1)); else if
dyp#L jfiskreshldy)=TRUE she sends D to the outside

through the channel €so (the corresponding sending

action is denoted 5cso (D)), else if sFreshldy,) =FALSE 1q



sends 1 to the outside through the channel Cso (the
corresponding sending action is denoted *cso(1)),

Where DeA, A is the set of data.

Alice's state transitions described by APTCs are as follows.
A=Locy Y poarcy, (D) Az

Ay =1{kap=NULL)- A3+ {kag # NULL}- A3

Az =sc, (A, B) - Ay

As=rep (SIG Ny, (A, pka). SIGN;, (B, pkg)) - As

As=de-signp, (SIGNg (B, pkp)) - Ag

Ap=rsgh,,; - A7

Aj=uwigng (A, B, kap,Ty) - Ag

Ag = encpry (SIGNg, (A, B, kap, Ta)) - Ag

Ag =50, (ENCppp (SIGNg, (A, B kap, Ta)), SIGN, (A, pka). SIGN (B, pkg)) - Ang
A =rcy (ENCy, ,(dpa))- Ay

Ap ={dpa # L} Aia+{dpa = L} 50,5 (ENCy iy (L)) - A

Ap=lisFresh(dga) =TRUE} - A3+ {isFresh(dpa) = FALSE} - 5¢, ,(ENCy, (L)) A
Az =rsgg, - Ais

Alg=ency, (R, D) - Ajs

Ats =50,z (ENCi (R, D)) - A

Bob's state transitions described by APTCe are as follows.
B=Locg: (kag=NULL)- B, + {kag # NULL} - Bg

By =rc  y (ENCprp (SIGN (A B kap. Ta)), SIGNy (A, pka). SIGN . (B, pkp)) - B>
By =de-signpp (STG Ny, (A, pka)) - B3

By =decy, (ENCpiy (SIGN, (A, B kag, Ta))) - By

By =de-signpr, (SIGN (A, B.kag.Ta)) - Bs

Bs = {isValid(T4) = TRUEY} - Be + {isValid(Ts) = FALSE} - s¢, ,(ENCg,, (L)) - Bo
Bg=rsggr, - By

By =ency,,(Rp) - By



Bg =50 JENCy,,(dpa)) - By

By =rc, y(ENCy,,(d) ) - Blo

Bip =dec,, (ENCi,,(d) 5)) - By

Byy={dyg=1}) s5cuo(L)-B+{d,z# 1} B2

Biy = (isFresh(dg, ) = FLASE) - scy, (L) B + lisFresh(dg, ) = TRUE} - By
Biz=scy,(D)- B

Trent's state transitions described by 4PTCe are as follows.
T'=Locyrre, (A, B)-Ts

T =signg (A, pka)- T3

T3 =signg. (B, pkg)-Tj

Ty =scp, (SIGN, (A, pka), SIGN, (B, pkg)) - T

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock 6. We define the
following communication functions.

Y (rcay (A, B), scy (A, B)) 2 ccyy (A, B)

y(rcy, (S1GN, (A, pka), SIGNyi, (B, pkg)).scy, (STGN, (A, pka), SIGNy, (B. pkg)) £ ccy, (SIGNyi, (A, pka). SIGNy, (B, pk

i (ENC,, 16 4.8, ) STGH A, ph) 16N .t sy ENCyy S1GN (,B, TSIGN 3 .l ICNy 8 o), (NG S1GK (4,8 s, T)MSIGN k. 16N 8,

V(rcy AENCi,, (dpa)). scy (ENCi,,(dga)) 2 ccy (ENCy,, (dga))

Y (reas (ENCiy(d)y p)). 5c,5 (ENCryy(dy ) = ¢y (ENCryy (dly )

Let all modules be in parallel, then the protocol4 B T can
be presented by the following process term.

10 (OA(GB(OT)) =1 0@u(A)B(T))

where
H(({ \r ﬂ" (i, [ﬂA]},J‘(kh‘W%Mﬁ)]\,‘ffﬁ[ENCW\E’L”:",?[‘W{ENW%]},T{'J—WUN [AP H’ (] ”M PMU (D) ;‘ LM [[J Jm“ “HJ "( )5 ('”R' (Mh‘ k ‘)HJ i)‘r A]
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Then we get the following conclusion on the protocol.

Theorem 9.5

The Denning-Sacco protocol in Fig. 9.6 is secure.

Proof

Based on the above state transitions of the above modules,

by use of the algebraic laws of APTCs, we can prove that
Tr{dyi(A :I B Q- )= Z”Ej{Lr}m wre D) - (Locg seg L)+ Locg tisey,, (D)) - tp{dg (A OBOT))

For the details of proof, please refer to Section 3.10, and
we omit it.

That is, the Denning-Sacco protocol in Fig. 9.6
1 @n(A0B0T) can exhibit desired external behaviors:

1. For the man-in-the-middle attack, because 7%+ and rks
are signed by Trent, the protocol would be
(A BT =2 pealrcy (D) -scpo (L) - 1@ (AGB(T)) it is
desired, the Denning-Sacco protocol can be against
the man-in-the-middle attack;

2. For replay attack, the using of the time stamp 74,
random numbers &» and *», makes that
T (@r(AJBIT) =3 pealre, (D) s, (L) - 11@u(AQOBIT)) it is

desired;



3. Without man-in-the-middle and replay attack, the
protocol would be
@ (AGBIT)) = pealres (D) 5cyo (D) - 1r@u(A)B(T)) it is
desired;

4. For the unexpected and non-technical leaking of sk,
sk, kag, or they being not strong enough, or Trent
being dishonest, they are out of the scope of analyses
of security protocols;

5. For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. [

The Woo-Lam protocol shown in Fig. 9.7 uses asymmetric
keys and symmetric keys for secure communication, that is,
the key ka8 between Alice and Bob is privately shared to Alice
and Bob, Alice's, Bob's, and Trent's public keys Pka, ks, and
pkr can be publicly gotten.
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FIGURE 9.7 Woo-Lam protocol.
The process of the protocol is as follows.

1. Alice receives some messages D from the outside
through the channel Car (the corresponding reading
action is denoted c. (D)), if kas is not established, she



sends 4. B to Trent through the channel Car (the
corresponding sending action is denoted scar (4. B));

. Trent receives A. B through the channel Car (the
corresponding reading action is denoted car (4. B)) he
signs Bob's public key Pkz through the action *i&nskr (Pks),
and sends the signature to Alice through the channel
Cra (the corresponding sending action is denoted

5Crs (STG Nyt (Pkp))y

. Alice receives the message from Trent through the
channel €ra (the corresponding reading action is
denoted "cra(SIGNur (Pke)))  she de-signs $/CNskr (Pks)
through an action de-signpi (SIGNw, (Pks)) to get rks,
generates a random number Ra through an action 7$8k.
and encrypts 4. Ra by Pks through an action €¢pks (A Ra),
and sends ENCpis(A.Ra) to Bob through the channel Cas
(the corresponding sending action is denoted
-'*'{",m";ENCpknl:ArRA}});

. Bob receives ENCpiy(A. Ra) from Alice (the
corresponding reading action is denoted

rean(ENCpiy(A. Ra))) he decrypts ENCrin(4. R4) through an
action decskp (ENCpiy (A, Ra)) to get A and Ra, encrypts Ra by
pkr through an action €¢rkr (Ra), then sends 4. B: ENCpir (Ra)
to Trent through the channel Csr (the corresponding
sending action is denoted *car(A: B. ENCpir(Ra))),

. Trent receives 4: B ENCpir (Ra) from Bob through the
channel Csr (the corresponding reading action is
denoted rcsr (A B. ENCpir (Ra))) | he decrypts the message
through an action e (ENCpir (R4)) signs Pka through an
action *i&nsk-(Pka), generates a random session key kas



through an action "%t and signs Ra.kas. A, B through an
aCtion xi:gﬂ.‘l:kr{-ﬁl.dhkﬂﬂi A, B}I encrypts S.IIGN_-,-,ET{RA,;CAB1 A, B}
through an action encpks (SIGNsky (Ra.kag. A. B)) and sends
them to Bob through the channel Crs (the

corresponding sending action is denoted
S{"TH{SIGhr_-;kT I:P-kAL ENC]IJIEH{SII;NH.QT{ RA1 k.‘*.ﬂ'\- Ar B:I:”)

Bob receives the signatures from Trent through the
channel Crz (the corresponding reading action is
denoted "cra(SIGNsier (pka), ENCpip (SIGNyir (Ra. kap. A, B))))  he
de-signs S/GNsk; (Pka) through an action
de-sign pi, (SIG Ny (pka)) to get pk;,l decrypts
ENCpiy(SIGNsk; (Ra.kap. A. B)) through an action
decsiy (ENCpiy (SIGNyir (Rakan. A, B) generates a random
number ks through an action 5%, encrypts them
through an action €ncpk, (SIGNwu, (Ra.kas. A. B). Rp) and sends
ENCpiy (SIGNyky (Ra.kap. A, B). Rp) to Alice through the
channel Csa (the corresponding sending action is
denoted #cui(ENCpiy (SIGNg; (Ry. kap. A, B). Rp))y,

Alice receives ENCpk, (SIG Ny (dr, . kagp. A. B). Rg) from Bob
(the corresponding reading action is denoted
rCpa(ENCypiy (SIGNsir (dr, . kan. A. B). Rp))) | she decrypts the
message through an action
decsi, (ENCpi, (SIGNsir (Ra. kas. A, B), Rp)) de-sign

SIGNskr (Ra.kas, 4. B) through an action

de-sign pi (SIGNyy (Ra. kan, A, BY) if dr, # Ra she sends ENCe,s (D)
to Bob through the channel Cas (the corresponding
sending action is denoted cis (ENCiyu (L)) else if drs = Ra,
encrypts Rs. D by kas through an action ¢k (Rs. D) and
sends it to Bob through the channel Cas (the



corresponding sending action is denoted
5C4n(ENCy,y (Rp. D))y,

8. Bob receives ENCui:(das) from Alice (the corresponding
reading action is denoted s (ENCiyp(das))) if das =1 he
sends 1 to the outside through the channel €so (the
corresponding sending action is denoted *cs0(1)); else if
dsp# L, if drs = Re, she sends D to the outside through
the channel Crso (the corresponding sending action is
denoted *cs0 (D)), else if 9r: # K8, he sends L to the
outside through the channel Czo (the corresponding
sending action is denoted *cso (L)),

Where De A, A is the set of data.

Alice's state transitions described by 4PTCe are as follows.
A=Locy} poprcy, (D) Az

As={kap =NULL)- A3+ {kap # NULL} - Ag

Az =sc,, (A, B) - A4

Ag=ro (SIGNg, (pkg)) - As
As=de-signpp, (SIG Ny, (pkp)) - Ag

Ag=rsgr, - A7

A7 =encg, (A, Ry) - Ag

Ag =50, (ENCy (A Ra)) - Ag

Ag=rey AENCpp (SIGN, (dr, . kap. A, B). Rg)) - A
Aw=1{dr, = Ra)- An + {dr, # Ra} -5, , (ENCp (L)) A
Ay =encg,, (Rg. D) - A2

Ap=sc,  (ENCy, ,(Rp. D)) A

Bob's state transitions described by 4PTCe are as follows.
B=Locg :: (kag = NULL}- By + {kap # NULL} - By
By=rc,z(ENCy (A, Ry)) - B



By =decy, (ENCpi, (A Ra)) - B

By =s¢y, (A, B, ENCpiy (R4)) - By

By = rcyy (S1GNyty (pka)s ENCpry (SIG Nyt (Ra, kg, A, B))) - B
Bs =de-s5ignpi (SIG Ny, (pka)) - By

Bs =dec,py (ENCpiy (SIGNygp (Ra.kag. A, B))) - By

By =rsgr, - By

Bs = encpi, (SIGNyi, (Ra.kag. A, B), Rg) - Bo

By =5y, (ENCpi, (SIGNiy (Ra.kag. A, B), Rp)) - Bio
Byy=rc,; (ENCy, ,(dag)) - By

By =decy,, (ENCy,,(dag)) - B2

Bip={dap=1)-5¢c,,(L)- B+ {dap # L) B3

Byy=|dg, # Rp} scy,(L)B + ldr, = Rg} - Bi4
Byy=sc,,(D)-B

Trent's state transitions described by 4PTCs are as follows.
T'=Locrre, (A B)-Th

T =signg, (pkg) - T3

T3 =50, (SIGN . (pkp)) - Ty

Ty =rcyy (A, B, ENCpiy (R4)) - Ts

TIs =decgy  (ENCpi (Ra)) - Tg

To=signg (pka)-T7

Th=rsgr, Ty

Ty =signg, (Ra.kap. A, B)-Ty

Ty =encppg (SIGNy, (Ra, kap. A, B)) - Tho

T =505 (SIGN g (pka). ENCppp (SIGNg (Ra kap. A, B)))- T

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock 6. We define the

following communication functions.
yirc (A, B),sc (A, B)) = e,y (AL B)



Y(regr (AL B ENC iy (Ra)). SC,4p (A, B ENCpiy (Ra))) = ¢y (A B ENC iy (Ra))

V(rc, (SIGN, (pkg)). s, (SIG N, (pkg))) = ey (STG Ny, (pkg))

ey (STGNyty (pa), ENCyty (STGNgy (R kg, A, B)))cry (TGNt (pka), ENCpiy (STG Nty (Ra ka, A, B)))) 2 (TGN (A, p

V(rc g (ENCaapn(A, Ra))sc,  (ENCypp(A, Ra))) = e,y (ENCipp(A, Ra))

(rCyy (ENCyty (SNt (diy, kg, A, B), Re)), 55 (ENCpi, (TGN, (diy kas. A, B). R))) 2 ccyy (ENCpt, (SIGNsiy (dg, kg, A, B). R

v(rc, (ENCi,,(Rp. D)), sc,,(ENCy,,(Rg. D)) £ cc,,(ENCy,,(Rg. D))

Let all modules be in parallel, then the protocolA B T can
be presented by the following process term.

10 (OAGB(OT)) =1 0u(A)B(T))

where
B A e N T, i NG 1 B e B0 . 1 g A, EC 6, g A6, B D B B e

i Ll

g .,wwww,w rwa“\f\“\\w i va(u\‘m g el o i A

Then we get the following conclusion on the protocol.

Theorem 9.6

The Woo-Lam protocol in Fig. 9.7 is secure.

Proof

Based on the above state transitions of the above modules,

by use of the algebraic laws of A?TCs, we can prove that
T(dg(AJB(T)) =) penlLocy ire,, (D) - (Locp :: Scp, (L) + Locg i 5¢y, (D)) - 1p(dg(A( B(T))



For the details of proof, please refer to Section 3.10, and
we omit it.

That is, the Woo-Lam protocol in Fig. 9.7 1@ (A1 B (1))
can exhibit desired external behaviors:

1. For the man-in-the-middle attack, because rk4+ and rks
are signed by Trent, the protocol would be
T AGB TN =3 pealrcy (D) scy, (L) - 18 (A( B () '”1', it is
desired, the Woo-Lam protocol can be against the
man-in-the-middle attack;

2. For replay attack, the using of the random number R
, R3, makes that
TOHANBIT)) =2 peare, (D) - scyo (L) - 1@(ANBIT)) jt is
desired;

3. Without man-in-the-middle and replay attack, the
protocol would be
T dg(AJBOT) =3 pealre, (D) sy, (DY) -1 (0 (A () B 'z"}l}l it is
desired;

4. For the unexpected and non-technical leaking of sk,
sks, kap, or they being not strong enough, or Trent
being dishonest, they are out of the scope of analyses
of security protocols;

5. For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. [
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A: A parallel programming
language

In this appendix, we design a detailed parallel
programming language, abbreviated PPL. PPL includes the
four basic structures: sequence, choice, iteration, and
parallelism, and also non-determinism, communications
(causalities between different parallel branches), and
conflictions between different parallel branches. Note that,
for the integrity, the semantics of traditional parts are also
involved.

In Section A.1, we give the syntax of PPL. We give the
operational semantics and denotational semantics in
Sections A.2 and A.3, and the relation between them in
Section A.4, we give the axiomatic semantics in Section A.5.
We discuss non-determinism in Section A.6, communications
in Section A.7, and conflictions in Section A.8, and the
structuring algorithm in Section A.9.

A.l1 Syntax

The syntactic sets of PPL are as follows.

« Numbers set N, with positive, negative integers, and
zero, and n.m eN;



Truth values set T, with values {true. false}.

Storage locations Loc, and X.Y € Loc;

Arithmetic expressions Aexp, and ¢ € Aexp;

Boolean expressions Bexp, and ? € Bexp;
Commands Com, and ¢ Com,

The formation rules of PPL are:

For Aexp:
a::=n | X | a+a | a—a | apxa
For Bexp:
b:=true | false | ay=a; | ap<ay | =b | boAby | byVvbh
For Com:

co=skip | X:=a | cpep | ifbthencyelsec; | whilebdoe | ¢

We see that the syntax of PPL is almost same to traditional
imperative language, except for the explicit parallel operator
| in Com.

A.2 Operational semantics



The set of states X~ are composed of ¢ :Loc— N, so, #(X) is the
values of storage location X under the state o. For more
about operational semantics, please refer to Plotkin's book
[20].

In this section, we give the operational semantics of PPL.

A.2.1 Operational rules of Aexp

la.a} is called the configuration of arithmetic expression q,
while (.o} —n denotes that the value of a is n under the state
.

The evaluation rule of integer n:

(n,o)—n

The evaluation rule of storage location X:

(X,0)— o(X)

The evaluation rule of sums:

(ap, 0) —ngp (aj.o) —n

I =np+n
(ap+ay.o) —n

The evaluation rule of subtractions:



(ap, 0) —ng (aj.o) — n

S =np — N
lap—ay, o) —>n
The evaluation rule of products:
(ap,o) —=>no f{ay,o) —>n
LN =ng X N

(ap x ay,0) —>n

Then we can define the following equivalence ~ as follows.

Definition A.1

Equivalence of operational semantics for

arithmetic expressions
ag ~ ay 1ff vn eN, Yo e X.ap.o) = ns{a.o)—n,

A.2.2 Operational rules of Bexp
The evaluation rule of true:

(true, o)} — true

The evaluation rule of false:



(false, o) — false

The evaluation rule of equality:

{(ap, o) —ngy (ay.o) — n

M) =Ny
(ap =ay,0) — true
(ap, o) = ny (ay,o) — nj
Lo F N
{ﬂ{}:ﬂ],ﬂ'}—:rfﬂlSE
The evaluation rule of <:
(ap, o) = ng {ay,o) — ny
o =1
lag < ay, o) — true
(ap,0) = no (a1,0) — nj
1 = 1

(ag < ay, o) — false

The evaluation rule of —:

(b, o) — true
(=b, o) — false
(b, o) — false
(—=b,0) — true

The evaluation rule of A:



(bo.o) =19 (b1,0)—1
(bo Aby,o) =1

. =true, 1y = true A t; = true; t = false, otherwise

The evaluation rule of v:

(bo.a) =1y (b1,0)—1
(boVv by,o) =1t

.t =true, fp = true v t; = true; t = false, otherwise

Then we can define the following equivalence ~ as follows.

Definition A.2

Equivalence of operational semantics for

boolean expressions
by ~ by 1ff it eT, Vo e Z.ibg.o) =t (b.o)—1,

A.2.3 Operational rules for Com
te.o) denotes the configuration of the command ¢, which
means that the command c executes under the state o. And
(co) = o' means that the command c executing under the state
o evolves to the state ¢'. For neN and X €Loc, oln/X] denotes
using n to replace the contents of X under the state o.

The execution rule of skip:



(skip,o) — o

The execution rule of assignment:

(a, o) —n

(X:=a,0) > o[n/X]

The execution rule of sequence:

(co, o) — o’

(cosc1,0) — (c1,07)

The execution rule of choice:

(b,o) — true (cp,o

if b then ¢y elsec;, o

o) —>
{ ) —
(b,o) — false (c|,0)—
(ifbthencpelsec, o) —

The execution rule of iteration:



(b, o) — false
(whilebdoc,0) — o
(b,o) —>true {(c,o)—oc” (whilebdoc,o")— o’
(whilebdoc,o) — o’

The execution rule of parallelism:

(c1,0) > 0" (cp,0)—> 0"

(colley,o) =" Wa”

where ¢'wo” are the final states after «o and <1 execute
simultaneously.

Note that, for true concurrency, there are still three other
properties should be processed: communications,
conflictions, and race conditions (we leave them to the next
section).

1. Communication is occurring between two atomic
communicating commands, which can be defined by a

Fay
=clep, o),

communication function v(co.c1)
Communications can be implemented by several ways:
share storage locations, invocation of functions by
values, or network communications. For a pure
imperative programming language, we only consider
the case of share storage locations, so, there is no
need to define new communicating commands. So,

two commands in communication are with a relation



&

ylco.c1) =cleo. 1), but rules of <o lle1 are still the same to the
above ones. We will discuss the general
communications in Section A.7;

. Confliction may have two forms: one exists as the
condition rules define; the other may exist among the
parallel branches, which must be eliminated. But the
elimination of confliction existing in parallel branches
may lead to non-deterministic results (refer to [8] for
details). For simplicity, we assume that the programs
written by PPL at this time have no conflictions,
because a program with the conflictions existing
among parallel branches has an equal program
without conflicts. That is, the conflictions can be
eliminated and structured, and we will discuss the
elimination of conflictions between parallel branches
in Section A.8;

. Race condition may exist in two parallel commands,
for example, they are all executing assignment to a
same storage location. Two parallel commands in race
condition must be executed serially. We should define
new rules for race condition, but, these rules also lead
to non-deterministic results. So, we also assume that
the programs written by PPL deal with this situation
and the non-deterministic execution is eliminated. In
fact, we can write c Il (skip: c1) or (skip: co) [l 1) or put . c1 in
a condition, where <« and ¢ are in race condition. But,
indeed, the above parallelism is still can be used
widely in non-sharing memory computation
(distributed computing), or non-racing of sharing



memory computation. For the general form of non-
determinism, we will discuss in Sections A.6 and A.7.

We can get the following propositions. Where ~ is an
equivalence relation on commands by the definition, and X is
the set of states:

Definition A.3

Equivalence of operational semantics for
commands

co~cyiffvo,6' € B, {cp. o) - ' & {c).o) = o’

Proposition A.4

co |l er~crlleo, for co.cr € Com,

Proof

By use of the transition rules of ||, we can get the following
derivations of <l 1 for vo € £:

(c1,o)—=>a" (cp,o)—> "

(co |l e1,0) = o' Wa”

And we can get the following derivations of ¢ Il co for vo e =



(co,0) > 0" (c1,0)—> "

(c1 || co,0) = o' Wa”

So, it is obvious that o llc1 ~«c1 | co, for co.c1 € Com gs
desired. []

Proposition A.5

(co |l cr) ez ~cp |l (e I e2), for cp, ¢1, ¢2 € Com

Proof

By use of the transition rules of |, we can get the following
derivations of (coll¢1) [l ¢z for vo e T

(co,o) > 0" (c1,0)—>a" (c2,0)—> "

((collc)) | cr,0) = o’ Wa" Wa

And we can get the following derivations of ¢ Il (ci [l ¢2) for
Vo € B;

(co,o)—>0c" (c1,0)—>a" (c2,0)— 0"

(co |l (c1 || €2),0) > o' Ha"Wa™



So, it is obvious that (o llc1) €2 ~eo |l (e1 | 2), for co.c1.¢2 € Com
as desired. [

Proposition A.6

(if b then cq else ) || c2 ~ if b then cy || ¢z elsec, | 3 for co.ci.c2 € Com,

Proof

By use of the transition rules of choice and ||, we can get
the following derivations of (if s then ¢ else c|) || cz;

(b,c) — true (cp,0)—0a' (cr,0)—=a”
((ifbthencyelsec)) | cr,0) > o' Wa”
(b,o) — false (c|,0) =o' (c2,0)— 0"

{((ifbthencyelsec)) | cr,0) = o' Wa”

And we can get the following derivations of

if b then ¢ || 2 else ¢y || ¢2-

(b,c) — true (co,0)— 0o’ (cr,0)— o
(ifbthency || crelsec) || c2,0) > o' Wa”
(b,o) — false (c|,0) =o' (c3,0)— 0"

((ifbthency || crelsec) | cr,0) > " Wa”



So, it is obvious that (if b thencyelsec)) || c; ~if b thencg || c2 else ¢y || c2
, for co.c1,c2€Com, a5 desired. [

Proposition A.7

For‘ . O, 02,03 £ Cﬂml

1. (core) lea~fleplle2)ie;

2. (epier) || (eziea) ~(eg || e2): (e || €3),

Proof

(1) By use of the transition rules of sequence and |, we can
get the following derivations of (co:¢i) [l c2;

(co,o) =o' (c2,0)—c"

((coi 1) €2, 0) = {c1, 0" W a")

And we can get the following derivations of (<ol c2);ci:

(co,o) =o' (c2,0)—> "

((co |l c2);c1,0) = (c1, 0" Wa”)

So, it is obvious that (co: c1) [l e2 ~ (e | e2)i 1, for co.c1.c2 € Com | gg
desired.



(2) By use of the transition rules of sequence and |, we
can get the following derivations of (co:¢1) [ (e2: e3);

(co,0) = 0a" (cr,0)— o

((cos c1) |l (25 ¢3),0) — (e || €3, 0" W)

And we can get the following derivations of (coll c2): (c1 || e3);

(co,o) =" {c2,0) ="

((colle2); (cr ]l e3),0) = (c1 | c3, 0" W)

So, it is obvious that fco: c1) | (25 e3) ~ (eo [ e2): (e1 | e3), for
co.c1, 2,03 € Com g5 desired. ]

Proposition A.8

c|Iskip~c, for ceCom,

Proof

By use of the transition rules of skip and |, we can get the
following derivations of ¢ Il skip:



(c,o) > o' (skip,o) — o
¢ | skip,o) — o' Wo

And it is obvious that:

{c,0) =o'

c,o) — o'

For ¢'wo =o', it is obvious that ¢ I skip ~ ¢ for ¢ € Com, as
desired. [

Lemma A.9

For co.c1 € Com

1. coller~col (skip:ey) ~coi ey,
2. coller ~ (skip:co) || cp ~ i e,

Proof

It is obvious by Proposition A.7 and A.8. []

From Lemma A.9, we can see that the execution orders of
¢ 1 cause non-determinism, they can be executed in any
sequential order or in parallel simultaneously. But, without



race condition, the final states after the execution of e llc1 are
deterministic.

A.3 Denotational semantics

Denotational semantics can be used to describe the
semantics of PPL. For more about denotational semantics,
please refer to Mosses's book [21].

In this section, we give the denotational semantics for PPL.

A.3.1 Denotational semantics of Aexp

We define the denotational semantics of Aexp as
A:Aexp— (£ —N) The concrete denotational semantics of Aexp

are following.
A[n] ={(o.n)|o € £}

[

A[X] = {(o.a(X))|o € X)

Alag + a1] = (o, ng + np)|(o, np) € Afag]&(o.ny) € Ala;]}

Alap — a1] = (6, no — ny)|(o, ng) € Afap]&(o.n) € Ala; ]}
[ ={(

Alag x a1] a,ng x ny)|(e, ng) € Afap&(o.ny) € Afa])

A.3.2 Denotational semantics of Bexp

We define the denotational semantics of Bexp as
B:Bexp— (X = T) The concrete denotational semantics of Bexp

are following.
B[true] = {(o, true)|o € £}

B[false]| = {(o, false)|o € L}

Blag = a;] = {(o, true)|c € T&Aap]o = Afa o} U {(o, false)|c € T& A[ap]o # Ala)]o}
Blag < a)] = {(o. true)|o € E&Afaplo < Afa o} U {(o, false)lo € T&Afap)le £ Ala) ]}
B[~b] = {(5. —r1)|o € £&(0.1) € B[b])

Bllbg A by = {{a. 0 ~7 )|a € Zé(a. i) € Blbp|&la, t) € B[bi])



B[[bﬂ. W b|]] =llo.ipvr h)|o e E&io, ty) € B[[b{]]]&{ﬂ', t) e E[[fi'[]]l

A.3.3 Denotational semantics of Com

We define the denotational semantics of Com as
C:Com— (£ — Z), The denotational semantics of Com are

following.
C[skip] = {(0.0)|o € X)

C[X :=a] ={(o,a[n/ X))o € E&n = Ala]o)

Cleo: ea] =C[e1] o Clen]

C[if b then ¢ else ¢i] = {(o, a")|B[b]o = trued(s, a') € C[eq]} U (o, a")|B[b]o = false&(o, o') € C[c
C[while b do ¢] = fix(I")

with T'i¢) = {(e. ")|B[b]o = true&(o.o’) € ¢p o C[c]} U {(o, o) |B[b]o = false]

Clleo | 1] = Cleal} U{CLen]

We can get the following propositions.

Proposition A.10

Clea ll 1] =Cler Il o], for co.ci € Com,

Proof

By the definition of the denotation of ||, we can get:
Cleo Il e1] =Clea] U C[eir]
Cler Il eo] = Cler ] U Clen]

So, Cleo leil =Cler I eol, for «o.c1 € Com, gs desired. [

Proposition A.11

Cltco lle)  e2] =Clen |l (1 [l e2), for co.c1,c2 € Com,



Proof

By the definition of the denotation of ||, we can get:
Clteco || e1) || e2] = (Clea] U C[e1]) U Cea]
Cleo || (1 || €2)] = Clleal U (Cller] W C[e2])

Clteo llen) N ezl =Clen Il (e1 I )] for cv.c1.c2 € Com | as desired. [

Proposition A.12

C[(if b then c; elsec)) || c2] = C[if b then ¢ || c2 elsec) || {'3]], fOT‘ o, c1, ¢2 € Com

Proof

By the definition of the denotation of choice and ||, we can

get:
C[(if b thencyelsec)) || 2] = {(o,0")|B[b]o = true&(a, a') € Cco]} U [, ¢")|B[blo = false&(o, o”) € Ce1]} U Clea]

C[ifbthency || cy else ) || c2] = {(o, 0")|Bb]o = true&(s, o) € C[eg] UC[ea]} U ({0, 0)|B[b]o =false&(a,a’) € C[e; | UC]er])
SO, C[(if b then cq else ¢ ) || 2] =C[if b then ¢y || ¢z else ¢y || ('3]], for

co.c1,c2 € Com 35 desired. []

Proposition A.13

For co.c1,¢2,¢5 € Com,

1. Cltcoicn) el =Clico | e2)i ]
2. Clicoien) || (c2:e3)] =C[len [l e2): (er e3)],



Proof

(1) By the definition of the denotation of sequence and ||,
we can get:

Clten: €1) || 2]l = (Cller] e Cleo]) U C[ez]

Cl(eo [ €2): e1] =Cler] o (Clea] UC[e2])

So, Clicoier) el =Clco I e2):e1] as desired.

(2) By the definition of the denotation of sequence and ||,

we can get:
Cltco: 1) || (e2;: e3)] = (C[ler] e Clea]) U (Clea] e Clez]
Cl(en | c2): (e1 || e3)] = (Cer] U C[es]) e (Clle2] W C[en]

So, Cllco: c) I (e2ie)] =Cl(en | e2): (er le3)] as desired. [

Proposition A.14

Cle Il skip] = Cl¢[, for ¢  Com,

Proof

By the definition of the denotation of skip and ||, we can

get:
C[e || skip] = C[c] U C[skip]

So, Cle |l skip] =C[c[ for ¢ € Com, as desired. []

Lemma A.15

For co.c1 € Com

1. coller~col (skip:cy) ~coicr,



2. coller~ (skip:co) || ¢ ~epicn,

Proof

It is obvious by Proposition A.13 and A.14. [

A.4 Relations between operational and
denotational semantics

The operational and denotational semantics still agree on
the evaluation of Aexp and Bexp, we do not repeat any
more, please refer to [22] for details. We will prove the
agreement of the case Com as follows.

Lemma A.16

For all commands ¢ and states ¢.7',

(c,0) = o' = (0,0") € C[c]

Proof

We will use rule-induction on the operational semantics of
commands. For ¢ Com and ¢.0' € £, define



P(c,0,0") ©yer (0,0") €C|c]

We will show P is closed under the rules for the
execution of commands, and we will only prove the new
case of ||, other commands please refer to [22] for details.

Recall the transition rules of || are:

(c1,0) —> 0" (cp,o)—> "

(coll ey, o) = o' Wa”

Assume that

(co,0) = ' &P(cy, 0.0)&(c1,0) = "&P(cy,0,0")

From the meaning of P, we can get that

Cleco]o =o' and Clci o ="

We can get

Clco || c1]o =o' Wa”



which means that Pl llci.0.0"Wo") holds for the consequence
of the rule, and is closed under this rule. []

Theorem A.17

For all commands ¢ and states ¢.7',

Clc] = {(o,0")|{c,0) = o'}

Proof

Lemma A.16 gives the < direction of proof, we only need
to prove

(0,06")eC[c] = (c.o) — o

It is sufficient to induct on the structure of command c,
we only prove the new case of c=«a lc1, other cases please
refer to [22] for detalils.

Suppose (¢.o'we") €C[<], Then there are some states, such
that (@.¢") €Cl«], (0.0 €Cle1], By the hypothesis of «.ci, we get

(cp,0) =o' and (c;,0) = o”



So, lcoller.o) —o'Wa" gg desired. [

A.5 Axiomatic semantics

In this section, we give an axiomatic semantics for PPL by
extending the Hoare rules with parallelism.

A.5.1 Extended Hoare rules for parallelism

PPL should be extended to support assertion.
For Aexp, it should be extended to:

a:=n | X | i | ay+a | ay—ay | apxa

where i ranges over integer variables, Intvar.

For Bexp, it should be extended to support boolean
assertion:

A = true|false|ay = a;|ag < aj|—~A|Ag A A|Ag Vv A|Ag = A |Vi.A]Ti.A

And the formation rule of Com is maintained:

cu=skip | X:=a | c¢p;c; | ifbthencelsec whilebdoc | ¢y ¢

Note that, Com contains a parallel composition ||.



The denotational semantics should also contain an
interpretation I.

The full extended Hoare rules are as follows.

Rule for skip:

{A}skip{A}

Rule for assignments:

{Bla/ X1} X :=a{B}

Rule for sequencing:

{A}co{C} {Cla{B}
{A}co; c1{B}

Rule for conditionals:

{AADjco{B} {AA—Djci{B}
{A}if b then ¢ else ¢, {B}

Rule for while loops:



(A Ab)c{A)
{Alwhile b do c{A A —b)

Rule for consequence:

=(A=A") (A)e(B'} E(B'= B)
{A}c{B]

Rule for parallelism:

{Alco{C} {Cla{B} {A}ci{D} {Dj}co{B}
{A}co || c1{B}

A.5.2 Soundness of the extended Hoare rules

We can prove that each rule is sound by the following
soundness theorem.

Theorem A.18

Let {Alc{B} be a partial correctness assertion, if - {Alc{B}, then
= {Alc{B],

Proof

It is sufficient to induct on the rule to prove each rule is
valid. We only prove the new case of || rule, other cases



please refer to [22] for details.

Assume that F{Al«wl{Cl and F1{CicaiBl, and ={Ale{P} and
=1{D}co{B), Let I be an interpretation. Suppose ¢ =' A, Then
Cleo)e E' € and Cleil(Cleolo) ' B, and Cleile ' D and Cleol Cleilo) ' B
. Hence, Fl{Alc I ei{B}, as desired. []

A.5.3 Completeness of the extended Hoare rules

Godel's Incompleteness Theorem implies that the extended
Hoare rules are incomplete. We prove the relative
completeness in the sense of Cook.

Theorem A.19

PPL extended with assertion is expressive.

Proof

It is sufficient to induct on the structure of command c,
such that for all assertions B there is an assertion wlc. 8],
for all interpretations I

wp' [e. B] = w[ec, B]!

We only prove the new case of parallelism ¢=«o |l ¢, other
cases please refer to [22] for details.

Inductively define wleo Il c1. B] = wleo. wler. B[l and
wleo |l er, B =wler. wleo. B]I, Then, for « € £ and any interpretation



o e wp'[eo |l 1. B] iff Cleo | 1o =" B

iff Cleil(Cleolo) &' B and Cleo]Cleilo) E' B
iff Cleole B wler. B] gnd Cleile E' weo. B]
iff o =" wlco, wler, Bl] and ¢ ' wler, wlco. B]]
iff o = wleoler. B], ]

Lemma A.20

For ¢c<Com and B is an assertion, let wlc. Bl be an assertion
expressing the weakest precondition with wle. B]' =wp'[c. B],
Then

- {w[c, B]}c{B}

Proof

It suffices to induct on the structure of commands ¢, we
only prove the new case of parallelism ¢=< |l ¢1, other cases
please refer to [22] for details.

For ¢ € © and any interpretation I,

o =" wleg | er. B] iff Cleo | e1]o =" B

iff CleilCleolo) =" B gnd Cleol (Clerlo) =" B

iff Cleolo B wler. B] gnd Cleile E' weo. B]

iff o &' wleo. wler. Bl] and o &' wler. wlco. B]],

We get F (wlco. wler. B[[)eo | e1{B} gnd F (wler. wlco. B[[)eo | e1{B),



Hence, by the consequence rule, we obtain

= {wlco I c1, Bl}eo || c1{B)

[l

Theorem A.21

For any partial correctness assertion {AlciB}, if ={Ale{Bl, then
H{A}e{B},

Proof

Suppose F {4lc(B}, then F (wle. B]}e(B) where wlc. B]' = wp'[c. B] for
any interpretation I (by the above Lemma). Hence,
(A= wlc. B]), we obtain F{AlclBl, [

A.6 Non-determinism

The guarded commands can make the use of non-
determinism more rigorous. To provide each command with
a conditional guard, it is useful to eliminate the uncontrolled
non-determinism.

The syntax of guarded commands is also composed of
Aexp, Bexp, and Com, and the syntax of Aexp and Bexp are
the same as those of PPL in Section A.1. And the formation
rules for the command ¢ and guarded commands gc are as
follows.



co=skip | abort | X:=a | cc | ifgefi | dogeod
=b-c | gepleer

where g CODg Cl is the alternative construct of ¢« and 1.
The operational rules of commands:

(skip, o) — o
la,o) —n
(X:=a,0)— on/X]
(cp,0) — o' (co.0) — (cy,0)

(co:c1.0) = (c1.0')  (coic1.0) — {¢y:c1,07)
(gc.o) — (c.0”)
(ifgcfi,o) — (c,0")
(gc, o) — fail (gc, o) — (c,0)
(dogcod,o) -0 (dogcod,o)— (c;do gcod,o’)

The operational rules of guarded commands:



(b,0) - true

(b—c,0) > {c,0)
go,0) > (e.0))  (ge,0) > (e,0)
)=

(geollgen o) = {e,0”) {geollger, o) = fe, ')
(b,0) — false  ({gcp, o) — false (gc),0) — false

(b— c,0) — fail (gcollgey, o) — fail

A.7 Communications

In this section, we extend communicating processes with the
support for true concurrency.

The syntax of PPL is also composed of Aexp, Bexp, the
names of communication channels @. 8.y € Chan agnd Com, and
the syntax of Aexp and Bexp are the same as those of PPL in
Section A.1. And the formation rules for the command ¢ and
guarded commands gc are as follows.

¢ :=skip[abortX :=a |o?X|ala]cy;c

el

ei=b-c | baalk-c | baale | ogeylec



where g CODg Cl is the alternative construct of £« and <1,
The operational rules of commands:



(skip,o) — o
la,c) — n
(X:=a,0)— o[n/X]

@?X, o) X o[n/ X

la,o) = n

1
(ala, o) e

(co,0) — o’ (co, o) = (cp.0")

{co; c1,0) = {c1,0")  (co; c1,0) = (cgs c1,07)
(gc,o) — (c,0")
(ifgefi,o) — (c,0’)

(ge, o) — fail (gc,0) — (c,0”)

(dogcod,o) -0 (dogcod,o)— (c;dogcod,o’)

(co,0) = (c), 0')  eoec

A
(coller.o) = (el c1,0")

1.0V S (e oy coc
(c1,0) | 0%cy

s
(collcr,o) = (coll cj.0")

) 1
(co.0) => (ch, ") (c1,0) => (¢}, 0"

{122}
(collcr,o) —— (¢l ¢}, 0" Wa"”)

oln on
(co,0) — (cy.0) (c1.0) — (c],0')

Valn)
(coll c1.0) — (c; |l c}. o)

ot o ln
(co,0) —> (L‘:},ﬂ’} (c1,0) — {c’l,a}

Yo (M)
(coll c1,0) — (cy Il ¢}, o)

) A WA
(c,0) = (¢, 0") ifia =0 and 3 = o'n do nnt hnld




A T G F Rl el W TS L S0 B el W AR T R R R A el

(c\a, o) i:» (c"\a,o’)

Here «%c1 denotes that « and < are in race condition.
The operational rules of guarded commands:



(b,0) - true

(b—c,0) > {c,0)
go,0) > (e.0))  (ge,0) > (e,0)
|

geollgen o) = {e,0”) {geollger, o) = fe,0')
(b,o) — false  (gcg,0) — false (gc),0) - false

(b— c,o)— fail (gcollgey, o) — fail
(b, o) — false
(bAa?X = c,0)— fail
(b, o) — false
(bAa!X = ¢, 0) - fail
(b,0) — true

an

bAaIX = c,a) — (c,aln/X])
(b,0)— true (a,0)—>n

!
(brdla—c,6) = (c,0)



Note that, for true concurrency, we can see that
communications, conflictions, and race conditions are solved
as follows.

1. Communication is explicitly supported in PPL, the
two communicating commands «?x and «!X will merge
to one communication command *«(X), and the
unstructured communication will be eliminated;

2. Since each command is with a guard, the conflictions
among actions can be achieved by set the commands
with exclusive guards;

3. As the operational rules state, the actions in parallel
in race condition must be executed sequentially and
will cause the non-deterministic execution order.
Though the execution order is non-deterministic, by
setting appropriate guards to the parallel commands,
the final execution configuration can be deterministic.

We can get the following propositions. Where ~ is an
equivalence relation on commands by the definition, where X~
is the set of states:

Definition A.22

Equivalence of operational semantics for
commands

cop~cyiffvo,6' € B, {cp. o) = ' & {c).0) = o’

Proposition A.23




co [ er~c1lleo, for co.ci € Com,

Proof

By use of the transition rules of ||, we can get the following
derivations of <« Il c1 for vo € x:

N}
(co.o) = o

Sy pray|
(collc1,0) —> o’

¢ {
{e1, o) LN {co, 0"y = co)o’

(
(collcr,o) — ci1:cp)o’

(c1,0) >0’ (co.0) > 0"

(co |l c1,0) 2L 57y o7

And we can get the following derivations of ¢ <o for vo e =



; ¢
{Cl ‘ I:'_T} L_l;._ JH-’ {C'{}, U."H} i} Uf

Crico
{c1 || co,0) — o

('{] . |

(co,0) — " (¢, 0") — o’

cn.

(c1 | cp,0) — o’

[N [N
(co.0) — o' (c1,0) —> "

{co.c1}
(c1 | co,o) ——> " Wa”

So, it is obvious that collc1~c1 llco, for co.ci € Com gg
desired. [

Proposition A.24

(cp || o) || [ Rl &) || (e ('3], for‘ O, ], €2 € Cmn‘

Proof

By use of the transition rules of ||, we can get the following
derivations of (collci) 2 for vo € x:

'y C (i)
(co,0) =0’ (c1,0) D a” {c2,0) > "

len.eq,02)
((co |l c1) || c2,0) —=2% 5" W o W o™

And we can get the following derivations of ¢ [l (c1 [ ¢2) for
Vo e X



ol c 3
(co,0) =o' (c1,0) = 0" {c2,0) = 0"

{co.cr.02}
(coll(cille),0) ———= o' Wo"Wa"
So, it is obvious that (collc1) [le2 ~co | (e1 | e2), for o, c1,¢2 € Com,
as desired.
For the case of the parallel commands in race condition,
we omit it. [

Proposition A.25

FOT‘ o, O, 02,03 £ Cﬂm,

1. (cosen) lea~(eplleadics

2. flepiep) [ (eaiez) ~(op |l e2)s (e || e3),

Proof

(1) By use of the transition rules of sequence and |, we can
get the following derivations of (co:¢i) [l c2;

o) ,

[y
(co,o) —> 0" (c2,0) = 0c”

((cos c1) || €2, 0) feocal (1,0 Wa”)

And we can get the following derivations of (coll c2);ci:



() '

[y
(co, o) —=>a’ {(c2,0) = "

{co.ca}
((co |l €2); €1, 0) —25 (¢1, 0" W o)
So, it is obvious that (co:c1) [le2 ~(co [ e2): e1, for co.c1,c2 € Com | gs
desired.
(2) By use of the transition rules of sequence and |, we
can get the following derivations of (co: 1) || (c2: c3);

[y

[y ]
(cop,0) —> 0" {(c2,0) = 0"

((coic1) |l (c25¢3), 0) de.c2), {e1 || c3, 0" Wa')

And we can get the following derivations of (<ol ¢2): (e1 || ¢3);

1] 3
(co.0) — o' {cr,0) = o

{co.ca) )
((co || €2); (c1 |l €3). 0) —=> (¢ || c3, 0" W 0")

So, it is obvious that fco: c1) | (c2: e3) ~ (eq [ e2): (e | e3), for
co.c1, 02,03 € Com gs desired. [

Proposition A.26

c|Iskip~c for ceCom,



Proof

By use of the transition rules of skip and ||, we can get the
following derivations of ¢ Il skip:

(c,o0) > o' (skip,o) — o

c||skip.::r}i>cr’|¢J::r

And it is obvious that:

(c,o) > o'

c.::r}i;»cr’

For ¢'wo =o', it is obvious that ¢ I skip ~ ¢ for ¢ < Com, as
desired. [J

Lemma A.27

For cu.c1 € Cnm,

1. coller~col (skip:c) ~ co: 1.
2. coller~ (skip:co) || ¢y ~epien,

Proof




It is obvious by Proposition A.25 and A.26. []

From Lemma A.27, we can see that the execution orders
of « llc1 cause non-determinism, they can be executed in any
sequential order or in parallel simultaneously. But, with the
assistance of guards, the final states after the execution of
¢ le1 can be deterministic.

Proposition A.28

For ¢.co, c1 € Com

Loaln|laln~y, (n),

. leraln)|la™n ~cye(n ].;

. (epreln) | (cria™) ~cp | cpi yu(n),

1
2
3. (cialn)|laln ~cye(n),
4
5

o lepra) || (epaln) ~cp |l ep: puln),

Proof

By use of the transition rules of |, we can prove the above
equations. [

From Proposition A.28, we can see that communications
among parallel branches are eliminated and the parallelism
is structured.

A.8 Conflictions



Corresponding to Fig. 2.2, the program is:
(1: (if (b) then (2;: 3))) || (4; (if (= b) then (5; 6)))

Corresponding to Fig. 2.8 , the program is:

if (b) then (1:2:3) || 4elsel | (4:5:6)

We can prove that the above two programs are equivalent,
and the confliction between parallel branches is eliminated
and the parallelism is structured.

A.9 Structuring algorithm

By PPL, we know that the truly concurrent graph can be
structured. As an implementation-independent language, the
structuring algorithm of PPL can be designed as follows:

1. Input the unstructured truly concurrent graph;
2. By use of PPL, implement the graph as a program;
3. By use of the laws of PPL, structure the program.
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