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1: Introduction

Abstract

This is an instruction to concurrency, parallelism, and
structured parallelism.

Keywords

Concurrency; Parallelism; Structured Parallelism

Parallel computing [1] [2] is becoming more and more
important. Traditional parallelism often existed in
distributed computing, since distributed systems are
usually autonomous and local computer is single-core and
single-processor and timed (Timed computing is serial in
nature). Today, due to the progress of hardware, multi-
cores, multi-processors, and GPUs make the local computer
truly parallel.

Parallel programming language has a relatively long
research history. There have been always two ways: one is
the structured way, and the other is the graph-based (true
concurrent) way. The structured way is often based on the
interleaving semantics, such as process algebra CCS. Since
the parallelism in interleaving semantics is not a
fundamental computational pattern (the parallel operator
can be replaced by alternative composition and sequential



composition), the parallel operator often does not occur as
an explicit operator, such as the mainstream programming
languages C, C++, Java, etc.

The graph-based way is also called true concurrency [3]
[4] [5]. There also have been some ways to structure the
graph [6] [7], but these work only considered the causal
relation in the graph, and neglected the confliction and
even the communication. And there are also industrial
efforts to adopt the graph-based way, such as the workflow
description language WSFL. The later workflow description
language BPEL adopts both the structured way and the
graph-based way. Why does BPEL not adopt the structured
way only? It is because that the expressive power of the
structured way is limited. Then why does BPEL not adopt
the graph-based way only? It is just because that the graph
could not be structured at that time and the structured way
is the basis on implementing a compiler.

We have done some work on truly concurrent process
algebra [8], which proved that truly concurrent process
algebra is a generalization of traditional process algebra
and had a side effect on the structuring true concurrency.

Now, it is the time to do some work on structured parallel
programming under the background of programming
language and parallel software engineering. On one side,
traditional structured programming got great successes in
sequential computation [9] [10]; on the other side, current
structured parallel programming focused on parallel
patterns (also known as parallel skeletons, templates,



archetypes) [11] [12] [13] [14] [15], with comparison to
structured sequential programming, the corresponding
structured parallel programming with solid foundation still
is missing.

In this book, we try to clarify structured parallel
programming corresponding to traditional structured
sequential programming. This book is organized as follows.
In Chapter 2, we introduce the backgrounds of structured
and unstructured parallelism. We introduce truly
concurrent process algebra APTC in Chapter 3, guarded
APTC in Chapter 4, and distributed APTC in Chapter 5. The
so-called building blocks based structured parallel
programming is introduced in Chapter 6. We introduce the
modeling and verification of parallel programming
language in Chapter 7, of parallel programming patterns in
Chapter 8, and of distributed systems in Chapter 9. Finally,
in Appendix A, we introduce a parallel programming
language.
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2: Parallelism and

concurrency

Abstract

This is a general material of concurrency, parallelism,
and structured parallel programming.

Keywords

True Concurrency; Parallelism; Structured Parallel

Programming

In this chapter, we analyze the concepts of parallelism and
concurrency, unstructured parallelism, and structured
parallelism.

We introduce unstructured parallelism in Section 2.1,
structured parallelism in Section 2.2, and the way from
unstructured parallelism to structured parallelism in
Section 2.3. In Section 2.4, we give the foundation of
unstructured and structured parallel computation.

2.1 Unstructured parallelism – true

concurrency

True concurrency is usually defined by a graph-like
structure [4] [5], such as DAG (Directed Acyclic Graph),



Petri net, and event structure. As follows, we give the
definition of Prime Event Structure.

Definition 2.1

Prime event structure

Let Λ be a fixed set of labels, ranged over . A (Λ-
labeled) prime event structure is a tuple ,
where  is a denumerable set of events. Let  be a
labeling function. And ⩽, ♯ are binary relations on ,
called causality and conflict respectively, such that:

1.  ⩽ is a partial order and  is finite for all 
.

2.  ♯ is irreflexive, symmetric, and hereditary with
respect to ⩽, that is, for all , if , then 

.

Then, the concepts of consistency and concurrency can
be drawn from the above definition:

1.    are consistent, denoted as , if . A
subset  is called consistent, if  for all .

2.    are concurrent, denoted as , if , 
, and .

In the Prime Event Structure defined true concurrency,
we can see that there exist two kinds of unstructured
relations: causality and confliction. Fig. 2.1 and Fig. 2.2



illustrates these two kinds of concurrency (for the
simplicity, we separate the causal relation and the conflict
relation).

FIGURE 2.1  An example of unstructured
parallelism.



FIGURE 2.2  Another example of
unstructured parallelism.

Fig. 2.1 illustrates an example of primitives (atomic
actions, events) with causal relations. Note that, primitives,
atomic actions, and events are almost the same concepts
under different backgrounds of computer science, and we
will use them with no differences.



Fig. 2.2 illustrates an example of atomic actions with
causal relations and conflict relations. There exists a
conflict relation between the second action in the left
parallel branch and the second action in the right parallel
branch, if the condition b is true, then the second action
and its subsequent actions in the left branch can execute,
else the second action and its subsequent actions in the
right branch will execute.

2.2 Structured parallelism

Comparing to structured programming in sequential
computation [9] [10], we can intuitionally add a structured
parallelism to the existed three basic programming
structures (sequence, choice, and iteration) of structured
sequential programming, to form four basic programming
structures of structured parallel programming: sequence,
choice, iteration, and parallelism. The intuitions and flow
charts of the four basic structures are as follows.

The intuition of sequence (;) of two clauses  is that
after the successful execution of ,  executes. The
corresponding flow chat is shown in Fig. 2.3.



FIGURE 2.3  Sequence structure.

The intuition of choice if (b) then  else  is that if the
condition b is true, then  executes, else  executes. The
corresponding flow chat is shown in Fig. 2.4.



FIGURE 2.4  Choice structure.

The intuition of iteration while (b) do  is that while the
condition b is true, then  executes many times. The
corresponding flow chat is shown in Fig. 2.5.



FIGURE 2.5  Iteration structure.

The intuition of parallelism (∥) of two clauses  is that 
 and  execute simultaneously. The corresponding flow

chat is shown in Fig. 2.6.



FIGURE 2.6  Parallelism structure.

The programming of atomic actions, mixed by the above
four structures is called structured parallel programming.
We define Structured Parallel Program inductively as
follows.

Definition 2.2

Structured parallel program

Let the set of all primitives denote . A Structured
Parallel Program SPP is inductively defined as follows:

1.   ;
2.  If  and , then ;
3.  If b is a condition, , and , then if (b)

then  else ;
4.  If b is a condition, , then while (b) do ;
5.  If  and , then .



2.3 From unstructured parallelism to

structured parallelism

The examples in Fig. 2.1 and 2.2 are two kinds of typical
unstructured parallelism. In this section, we try to
structure these unstructured parallelisms.

Firstly, the unstructured causalities in the same parallel
branch can be structured by the famous conclusion that
Goto statement is harmful [9] and also the similarly well-
known structured (sequential) programming [10]; and for
unstructured causalities, we find the example in Fig. 2.1

can not be structured, and the proof is stated in the
following conclusions.

Proposition 2.3

The example in Fig. 2.1 can not be structured.

Proof

The actions 3 and 6 have the same causal pioneer 1, they
should be in different parallel branches. But, the action 6
is the causal pioneer of the action 3 through the action 7,
so, they should be in the same parallel branch. These
cause contradictions. □

How can we deal this situation? Yes, we can classify the
causal relations into two kinds: one is traditional sequential



causality, and the other is the communication between
different parallel branches, since the causality between
parallel branches being communication is reasonable. Fig.

2.7 is the causality-classified one originated from Fig. 2.1.
This classification should be clarified during modeling time,
that is, the programmer should draw Fig. 2.7 directly,
instead of drawing Fig. 2.1 and then transforming it to
Fig. 2.7, in the modeling phase. Note that, multi-parties
communications can be steadied by a series of two-parties
communications without any loss.



FIGURE 2.7  An example of structuring
unstructured parallelism.

Then the causality-classified parallelism can be
structured, we show the structuring way of synchronous
and asynchronous communications.

For synchronous communication, the program
corresponding to Fig. 2.1 can be written as follows:



with three unstructured communications , , and .
The above program can be structured and equivalent to

the following program:

We can see that the above program is structured, though
the equivalence of the above two programs is not obvious.
We will explain it through an rigorous way in the following
chapters.

For asynchronous communication, the program
corresponding to Fig. 2.1 can be written as follows:

with three unstructured constraints , , and . Note
that, ⩽ is the causal relation.

The above program can be structured and equivalent to
the following program:



Note that skip is a voidness primitive.
The above conditions, like , , and , are not

based on the traditional results of data manipulation.
Asynchronous communications are usually implemented by
inserting an intermediate data structure, like mailbox or
queue, between the two communicating partners, so, the
above conditions can be the results of checking the data
structure if the data are received in the data structure by
the receiver. If the receiver has the ability to be blocked
until the data are received, then the above conditions can
be removed, and the structured program is the original
one:

without any constraint.
Then, it is turn to consider the unstructured conflictions

between different parallel branches, since it is already
proven that conflictions in the same parallel branch can be
structured [10], as the choice structure is a kind of
structured confliction. Fig. 2.2 illustrates this kind of
unstructured conflictions and can be expressed by the
following program:



with an unstructured confliction , and a condition b, if b
is true then the primitive 2 and its successors execute, else
the primitive 5 and its successors execute.

Fig. 2.2 can be structured by Fig. 2.8. The structured
program corresponding to Fig. 2.8 is:





FIGURE 2.8  Another example of
structuring unstructured parallelism.

2.4 Foundation of unstructured and

structured parallelism

There existed several parallel machines [17] [18] to
provide the foundation for unstructured and structured
parallelism since quite long time ago. Among them, the one
(or multi)-tapes multi-heads Turing machine called PTM
(Parallel Turing Machine) [17] provides an intuitive
foundation. The unstructured causalities and conflicts can
be modeled as communications among the tape heads.

Prather [19] built the so-called structured Turing
machines with the four basic structures (sequence, choice,
iteration, and parallelism), which can realize every partial
recursive function by a structured connection of simple
machines.
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3: Truly concurrent

process algebra

Abstract

This is an introduction to truly concurrent process
algebra.

Keywords

True Concurrency; Algebra; Process Algebra

In this chapter, we introduce the preliminaries on truly
concurrent process algebra [8], which is based on truly
concurrent operational semantics.

APTC eliminates the differences of structures of
transition system, event structure, etc., and discusses their
behavioral equivalences. It considers that there are two
kinds of causality relations: the chronological order
modeled by the sequential composition and the causal
order between different parallel branches modeled by the
communication merge. It also considers that there exist
two kinds of confliction relations: the structural confliction
modeled by the alternative composition and the conflictions
in different parallel branches which should be eliminated.
Based on conservative extension, there are four modules in



APTC: BATC (Basic Algebra for True Concurrency), APTC
(Algebra for Parallelism in True Concurrency), recursion,
and abstraction.

3.1 Operational semantics

The semantics of ACP is based on bisimulation/rooted
branching bisimulation equivalences, and the modularity of
ACP relies on the concept of conservative extension, for the
conveniences, we introduce some concepts and conclusions
on them.

Definition 3.1

Bisimulation

A bisimulation relation R is a binary relation on processes
such that: (1) if pRq and  then  with ; (2) if
pRq and  then  with ; (3) if pRq and pP, then
qP; (4) if pRq and qP, then pP. Two processes p and q are
bisimilar, denoted by , if there is a bisimulation
relation R such that pRq.

Definition 3.2

Congruence

Let Σ be a signature. An equivalence relation R on  is
a congruence if for each , if  for , then 

.



Definition 3.3

Branching bisimulation

A branching bisimulation relation R is a binary relation
on the collection of processes such that: (1) if pRq and 

 then either  and  or there is a sequence of
(zero or more) τ-transitions  such that  and 

 with ; (2) if pRq and  then either  and 
 or there is a sequence of (zero or more) τ-transitions 

 such that  and  with ; (3) if pRq and
pP, then there is a sequence of (zero or more) τ-
transitions  such that  and ; (4) if pRq and
qP, then there is a sequence of (zero or more) τ-
transitions  such that  and . Two processes
p and q are branching bisimilar, denoted by , if
there is a branching bisimulation relation R such that
pRq.

Definition 3.4

Rooted branching bisimulation

A rooted branching bisimulation relation R is a binary
relation on processes such that: (1) if pRq and  then 

 with ; (2) if pRq and  then  with 
; (3) if pRq and pP, then qP; (4) if pRq and qP,

then pP. Two processes p and q are rooted branching



bisimilar, denoted by , if there is a rooted
branching bisimulation relation R such that pRq.

Definition 3.5

Conservative extension

Let  and  be TSSs (transition system specifications)
over signatures  and , respectively. The TSS  is a
conservative extension of  if the LTSs (labeled transition
systems) generated by  and  contain exactly the
same transitions  and tP with .

Definition 3.6

Source-dependency

The source-dependent variables in a transition rule of ρ
are defined inductively as follows: (1) all variables in the
source of ρ are source-dependent; (2) if  is a premise
of ρ and all variables in t are source-dependent, then all
variables in  are source-dependent. A transition rule is
source-dependent if all its variables are. A TSS is source-
dependent if all its rules are.

Definition 3.7

Freshness

Let  and  be TSSs over signatures  and ,
respectively. A term in  is said to be fresh if it



contains a function symbol from . Similarly, a
transition label or predicate symbol in  is fresh if it does
not occur in .

Theorem 3.8

Conservative extension

Let  and  be TSSs over signatures  and ,

respectively, where  and  are positive after

reduction. Under the following conditions,  is a

conservative extension of . (1)  is source-dependent.

(2) For each , either the source of ρ is fresh, or ρ has

a premise of the form  or tP, where , all

variables in t occur in the source of ρ and , a or P is

fresh.

3.2 Proof techniques

In this subsection, we introduce the concepts and
conclusions about elimination, which is very important in
the proof of completeness theorem.

Definition 3.9

Elimination property

Let a process algebra with a defined set of basic terms as
a subset of the set of closed terms over the process
algebra. Then the process algebra has the elimination to
basic terms property if for every closed term s of the



algebra, there exists a basic term t of the algebra such
that the algebra .

Definition 3.10

Strongly normalizing

A term  is called strongly normalizing if does not have
an infinite series of reductions beginning in .

Definition 3.11

We write  if  where  is the transitive closure
of the reduction relation defined by the transition rules of
an algebra.

Theorem 3.12

Strong normalization

Let a term rewriting system (TRS) with finitely many

rewriting rules and let > be a well-founded ordering on

the signature of the corresponding algebra. If  for

each rewriting rule  in the TRS, then the term

rewriting system is strongly normalizing.

3.3 Basic algebra for true

concurrency



BATC has sequential composition ⋅ and alternative
composition + to capture the chronological ordered
causality and the structural confliction. The constants are
ranged over A, the set of atomic actions. The algebraic laws
on ⋅ and + are sound and complete modulo truly concurrent
bisimulation equivalences (including pomset bisimulation,
step bisimulation, hp-bisimulation, and hhp-bisimulation).

Definition 3.13

Prime event structure with silent event

Let Λ be a fixed set of labels, ranged over  and τ. A
(Λ-labeled) prime event structure with silent event τ is a
tuple , where  is a denumerable set of events,
including the silent event τ. Let , exactly excluding
τ, it is obvious that , where ϵ is the empty event. Let 

 be a labeling function and let . And ⩽, ♯ are
binary relations on , called causality and conflict
respectively, such that:

1.  ⩽ is a partial order and  is finite for all 
. It is easy to see that , then
.

2.  ♯ is irreflexive, symmetric and hereditary with
respect to ⩽, that is, for all , if , then 

.

Then, the concepts of consistency and concurrency can
be drawn from the above definition:



1.    are consistent, denoted as , if . A
subset  is called consistent, if  for all .

2.    are concurrent, denoted as , if , 
, and .

Definition 3.14

Configuration

Let  be a PES. A (finite) configuration in  is a (finite)
consistent subset of events , closed with respect to
causality (i.e. ). The set of finite configurations of 
is denoted by . We let .

A consistent subset of  of events can be seen as a
pomset. Given ,  if  and  are isomorphic as
pomsets. In the following of the paper, we say , we
mean .

Definition 3.15

Pomset transitions and step

Let  be a PES and let , and , if  and 
, then  is called a pomset transition from

C to . When the events in X are pairwise concurrent, we
say that  is a step.

Definition 3.16



Pomset, step bisimulation

Let ,  be PESs. A pomset bisimulation is a relation 
, such that if , and  then ,

with , ,  and , and vice-versa. We
say that ,  are pomset bisimilar, written , if there
exists a pomset bisimulation R, such that . By
replacing pomset transitions with steps, we can get the
definition of step bisimulation. When PESs  and  are
step bisimilar, we write .

Definition 3.17

Posetal product

Given two PESs , , the posetal product of their
configurations, denoted , is defined as

A subset  is called a posetal relation. We say
that R is downward closed when for any 

, if  pointwise
and , then .

For , we define , 
, (1) , if ; (2) ,

otherwise. Where , , , .



Definition 3.18

(Hereditary) history-preserving bisimulation

A history-preserving (hp-)bisimulation is a posetal
relation  such that if , and ,
then , with , and vice-versa.  are
history-preserving (hp-)bisimilar and are written  if
there exists a hp-bisimulation R such that .

A hereditary history-preserving (hhp-)bisimulation is a
downward closed hp-bisimulation.  are hereditary
history-preserving (hhp-)bisimilar and are written 
.

In the following, let , and let variables 
range over the set of terms for true concurrency, 
range over the set of closed terms. The set of axioms of
BATC consists of the laws given in Table 3.1.



Table 3.1

Axioms of BATC.

No. Axiom

A1 x + y = y + x

A2 (x + y)+z = x + (y + z)

A3 x + x = x

A4 (x + y)⋅z = x ⋅ z + y ⋅ z

A5 (x ⋅ y)⋅z = x ⋅ (y ⋅ z)

We give the operational transition rules of operators ⋅ and
+ as Table 3.2 shows. And the predicate  represents
successful termination after execution of the event e.

Table 3.2

Transition rules of BATC.



Theorem 3.19

Soundness of BATC modulo truly concurrent

bisimulation equivalences

The axiomatization of BATC is sound modulo truly

concurrent bisimulation equivalences , , , and .

That is,

1.  let x and y be BATC terms. If BATC , then ;

2.  let x and y be BATC terms. If BATC , then ;

3.  let x and y be BATC terms. If BATC , then 
;

4.  let x and y be BATC terms. If BATC , then 
.

Theorem 3.20

Completeness of BATC modulo truly

concurrent bisimulation equivalences

The axiomatization of BATC is complete modulo truly

concurrent bisimulation equivalences , , , and .

That is,

1.  let p and q be closed BATC terms, if  then ;

2.  let p and q be closed BATC terms, if  then ;

3.  let p and q be closed BATC terms, if  then ;

4.  let p and q be closed BATC terms, if  then 
.



3.4 Algebra for parallelism in true

concurrency

APTC uses the whole parallel operator ≬, the auxiliary
binary parallel ∥ to model parallelism, and the
communication merge | to model communications among
different parallel branches, and also the unary conflict
elimination operator Θ and the binary unless operator ◃ to
eliminate conflictions among different parallel branches.
Since a communication may be blocked, a new constant
called deadlock δ is extended to A, and also a new unary
encapsulation operator  is introduced to eliminate δ,
which may exist in the processes. The algebraic laws on
these operators are also sound and complete modulo truly
concurrent bisimulation equivalences (including pomset
bisimulation, step bisimulation, hp-bisimulation, but not
hhp-bisimulation). Note that, the parallel operator ∥ in a
process cannot be eliminated by deductions on the process
using axioms of APTC, but other operators can eventually
be steadied by ⋅, +, and ∥, this is also why truly concurrent
bisimulations are called an truly concurrent semantics.

We design the axioms of APTC in Table 3.3, including
algebraic laws of parallel operator ∥, communication
operator |, conflict elimination operator Θ and unless
operator ◃, encapsulation operator , the deadlock
constant δ, and also the whole parallel operator ≬.



Table 3.3

Axioms of APTC.

No. Axiom

A6 x + δ = x

A7 δ ⋅ x = δ

P1 x≬y = x∥y + x|y

P2 x∥y = y∥x

P3 (x∥y)∥z = x∥(y∥z)

P4 e1∥(e2 ⋅ y)=(e1∥e2)⋅y

P5 (e1 ⋅ x)∥e2 = (e1∥e2)⋅x

P6 (e1 ⋅ x)∥(e2 ⋅ y)=(e1∥e2)⋅(x≬y)

P7 (x + y)∥z = (x∥z)+(y∥z)

P8 x∥(y + z)=(x∥y)+(x∥z)

P9 δ∥x = δ

P10 x∥δ = δ

C11 e1|e2 = γ(e1,e2)

C12 e1|(e2 ⋅ y)=γ(e1,e2)⋅y

C13 (e1 ⋅ x)|e2 = γ(e1,e2)⋅x

C14 (e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)



No. Axiom

C15 (x + y)|z = (x|z)+(y|z)

C16 x|(y + z)=(x|y)+(x|z)

C17 δ|x = δ

C18 x|δ = δ

CE19 Θ(e)=e

CE20 Θ(δ)=δ

CE21 Θ(x + y)=Θ(x)+Θ(y)

CE22 Θ(x ⋅ y)=Θ(x)⋅Θ(y)

CE23 Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)

CE24 Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)

U25 (♯(e1,e2)) e1◃e2 = τ

U26 (♯(e1,e2),e2 ⩽ e3) e1◃e3 = τ

U27 (♯(e1,e2),e2 ⩽ e3) e3◃e1 = τ

U28 e◃δ = e

U29 δ◃e = δ

U30 (x + y)◃z = (x◃z)+(y◃z)

U31 (x ⋅ y)◃z = (x◃z)⋅(y◃z)

U32 (x∥y)◃z = (x◃z)∥(y◃z)



No. Axiom

U33 (x|y)◃z = (x◃z)|(y◃z)

U34 x◃(y + z)=(x◃y)◃z

U35 x◃(y ⋅ z)=(x◃y)◃z

U36 x◃(y∥z)=(x◃y)◃z

U37 x◃(y|z)=(x◃y)◃z

D1 e ∉ H ∂H(e)=e

D2 e ∈ H ∂H(e)=δ

D3 ∂H(δ)=δ

D4 ∂H(x + y)=∂H(x)+∂H(y)

D5 ∂H(x ⋅ y)=∂H(x)⋅∂H(y)

D6 ∂H(x∥y)=∂H(x)∥∂H(y)

We give the transition rules of APTC in Table 3.4, it is
suitable for all truly concurrent behavioral equivalence,
including pomset bisimulation, step bisimulation, hp-
bisimulation, and hhp-bisimulation.



Table 3.4

Transition rules of APTC.



Theorem 3.21

Soundness of APTC modulo truly concurrent

bisimulation equivalences

The axiomatization of APTC is sound modulo truly

concurrent bisimulation equivalences , , and . That

is,

1.  let x and y be APTC terms. If APTC , then ;

2.  let x and y be APTC terms. If APTC , then ;

3.  let x and y be APTC terms. If APTC , then 
.

Theorem 3.22

Completeness of APTC modulo truly

concurrent bisimulation equivalences

The axiomatization of APTC is complete modulo truly

concurrent bisimulation equivalences , , and . That

is,



1.  let p and q be closed APTC terms, if  then ;

2.  let p and q be closed APTC terms, if  then ;

3.  let p and q be closed APTC terms, if  then .

3.5 Recursion

To model infinite computation, recursion is introduced into
APTC. In order to obtain a sound and complete theory,
guarded recursion and linear recursion are needed. The
corresponding axioms are RSP (Recursive Specification
Principle) and RDP (Recursive Definition Principle), RDP
says the solutions of a recursive specification can represent
the behaviors of the specification, while RSP says that a
guarded recursive specification has only one solution, they
are sound with respect to APTC with guarded recursion
modulo several truly concurrent bisimulation equivalences
(including pomset bisimulation, step bisimulation, and hp-
bisimulation), and they are complete with respect to APTC
with linear recursion modulo several truly concurrent
bisimulation equivalences (including pomset bisimulation,
step bisimulation, and hp-bisimulation). In the following, 

 are recursion specifications,  are recursive
variables.

For a guarded recursive specifications E with the form



the behavior of the solution  for the recursion variable 
 in E, where , is exactly the behavior of their

right-hand sides , which is captured by the two
transition rules in Table 3.5.

Table 3.5

Transition rules of guarded recursion.

The RDP (Recursive Definition Principle) and the RSP

(Recursive Specification Principle) are shown in Table 3.6.



Table 3.6

Recursive definition and specification principle.

No. Axiom

RDP 〈Xi|E〉 = ti(〈X1|E,⋯,Xn|E〉) (i ∈ {1,⋯,n})

RSP if yi = ti(y1,⋯,yn) for i ∈ {1,⋯,n}, then yi = 〈Xi|E〉
(i ∈ {1,⋯,n})

Theorem 3.23

Soundness of  with guarded recursion

Let x and y be  with guarded recursion terms. If 
, then

1.   ;

2.   ;

3.   .

Theorem 3.24

Completeness of  with linear recursion

Let p and q be closed  with linear recursion terms,

then,

1.  if  then ;

2.  if  then ;



3.  if  then .

3.6 Abstraction

To abstract away internal implementations from the
external behaviors, a new constant τ called silent step is
added to A, and also a new unary abstraction operator  is
used to rename actions in I into τ (the resulted APTC with
silent step and abstraction operator is called ). The
recursive specification is adapted to guarded linear
recursion to prevent infinite τ-loops specifically. The
axioms of τ and  are sound modulo rooted branching truly
concurrent bisimulation equivalences (several kinds of
weakly truly concurrent bisimulation equivalences,
including rooted branching pomset bisimulation, rooted
branching step bisimulation, and rooted branching hp-
bisimulation). To eliminate infinite τ-loops caused by  and
obtain the completeness, CFAR (Cluster Fair Abstraction
Rule) is used to prevent infinite τ-loops in a constructible
way.

Definition 3.25

Weak pomset transitions and weak step

Let  be a PES and let , and , if  and 
, then  is called a weak pomset transition

from C to , where we define . And , for



every . When the events in X are pairwise concurrent,
we say that  is a weak step.

Definition 3.26

Branching pomset, step bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. Let ,  be PESs. A branching
pomset bisimulation is a relation , such that:

1.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that  and 
with ;

2.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that  and 
with ;

3.  if  and , then there is a sequence of (zero
or more) τ-transitions  such that  and 

;
4.  if  and , then there is a sequence of (zero

or more) τ-transitions  such that  and 
.



We say that ,  are branching pomset bisimilar,
written , if there exists a branching pomset
bisimulation R, such that .

By replacing pomset transitions with steps, we can get
the definition of branching step bisimulation. When PESs 

 and  are branching step bisimilar, we write .

Definition 3.27

Rooted branching pomset, step bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. Let ,  be PESs. A branching
pomset bisimulation is a relation , such that:

1.  if , and  then  with ;
2.  if , and  then  with ;
3.  if  and , then ;
4.  if  and , then .

We say that ,  are rooted branching pomset bisimilar,
written , if there exists a rooted branching pomset
bisimulation R, such that .

By replacing pomset transitions with steps, we can get
the definition of rooted branching step bisimulation.
When PESs  and  are rooted branching step bisimilar,
we write .

Definition 3.28



Branching (hereditary) history-preserving

bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. A branching history-preserving
(hp-)bisimulation is a weakly posetal relation 
such that:

1.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that  and 
 with ;

2.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that  and 
 with ;

3.  if  and , then there is a sequence of
(zero or more) τ-transitions  such that 

 and ;
4.  if  and , then there is a sequence of

(zero or more) τ-transitions  such that 
 and .

 are branching history-preserving (hp-)bisimilar and
are written  if there exists a branching hp-
bisimulation R such that .



A branching hereditary history-preserving
(hhp-)bisimulation is a downward closed branching hhp-
bisimulation.  are branching hereditary history-
preserving (hhp-)bisimilar and are written .

Definition 3.29

Rooted branching (hereditary) history-

preserving bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. A rooted branching history-
preserving (hp-)bisimulation is a weakly posetal relation 

 such that:

1.  if , and , then  with ;
2.  if , and , then  with ;
3.  if  and , then ;
4.  if  and , then .

 are rooted branching history-preserving
(hp-)bisimilar and are written  if there exists
rooted a branching hp-bisimulation R such that .

A rooted branching hereditary history-preserving
(hhp-)bisimulation is a downward closed rooted
branching hhp-bisimulation.  are rooted branching
hereditary history-preserving (hhp-)bisimilar and are
written .



The axioms and transition rules of  are shown in
Table 3.7 and Table 3.8.



Table 3.7

Axioms of .

No. Axiom

B1 e ⋅ τ = e

B2 e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)

B3 x∥τ = x

TI1 e ∉ I τI(e)=e

TI2 e ∈ I τI(e)=τ

TI3 τI(δ)=δ

TI4 τI(x + y)=τI(x)+τI(y)

TI5 τI(x ⋅ y)=τI(x)⋅τI(y)

TI6 τI(x∥y)=τI(x)∥τI(y)

CFAR

If X is in a cluster for I with exits

{(a11∥⋯∥a1i)Y1,⋯,(am1∥⋯∥ami)Ym,b11∥⋯∥b1j,⋯,bn1∥⋯
∥bnj},

then τ ⋅ τI(〈X|E〉)=

τ ⋅ τI((a11∥⋯∥a1i)〈Y1|E〉 + ⋯ + (am1∥⋯∥ami)
〈Ym|E〉 + b11∥⋯∥b1j + ⋯ + bn1∥⋯∥bnj)



Table 3.8

Transition rule of .

Theorem 3.30

Soundness of  with guarded linear

recursion

Let x and y be  with guarded linear recursion terms.

If  with guarded linear recursion , then

1.   ;

2.   ;

3.   .

Theorem 3.31

Soundness of 

 is sound modulo rooted branching truly concurrent

bisimulation equivalences , , and .



Theorem 3.32

Completeness of  with guarded linear

recursion and 

Let p and q be closed  with guarded linear recursion

and  terms, then,

1.  if  then ;

2.  if  then ;

3.  if  then .

3.7 Placeholder

We introduce a constant called shadow constant Ⓢ to act
for the placeholder that we ever used to deal entanglement
in quantum process algebra. The transition rule of the
shadow constant Ⓢ is shown in Table 3.9. The rule says
that Ⓢ can terminate successfully without executing any
action.

Table 3.9

Transition rule of the shadow constant.

We need to adjust the definition of guarded linear
recursive specification to the following one.



Definition 3.33

Guarded linear recursive specification

A linear recursive specification E is guarded if there does
not exist an infinite sequence of τ-transitions 

, and there does not exist an
infinite sequence of Ⓢ-transitions .

Theorem 3.34

Conservativity of  with respect to the

shadow constant

 with guarded linear recursion and shadow constant

is a conservative extension of  with guarded linear

recursion.

We design the axioms for the shadow constant Ⓢ in
Table 3.10. And for , we add superscript e to denote Ⓢ is
belonging to e and subscript i to denote that it is the i-th
shadow of e. And we extend the set  to the set 

.



Table 3.10

Axioms of shadow constant.

No. Axiom

SC1 Ⓢ ⋅ x = x

SC2 x ⋅ Ⓢ = x

SC3 Ⓢe∥e = e

SC4 e∥(Ⓢe ⋅ y)=e ⋅ y

SC5 Ⓢe∥(e ⋅ y)=e ⋅ y

SC6 (e ⋅ x)∥Ⓢe = e ⋅ x

SC7 (Ⓢe ⋅ x)∥e = e ⋅ x

SC8 (e ⋅ x)∥(Ⓢe ⋅ y)=e ⋅ (x≬y)

SC9 (Ⓢe ⋅ x)∥(e ⋅ y)=e ⋅ (x≬y)

The mismatch of action and its shadows in parallelism
will cause deadlock, that is,  with . We must
make all shadows  are distinct, to ensure f in hp-
bisimulation is an isomorphism.

Theorem 3.35

Soundness of the shadow constant

Let x and y be  with guarded linear recursion and

the shadow constant terms. If  with guarded linear



recursion and the shadow constant , then

1.   ;

2.   ;

3.   .

Theorem 3.36

Completeness of the shadow constant

Let p and q be closed  with guarded linear recursion

and  and the shadow constant terms, then,

1.  if  then ;

2.  if  then ;

3.  if  then .

With the shadow constant, we have

with  and .
And we see the following example:



What do we see? Yes. The parallelism contains both
interleaving and true concurrency. This may be why true
concurrency is called true concurrency.

3.8 Axiomatization for hhp-

bisimilarity

Since hhp-bisimilarity is a downward closed hp-bisimilarity
and can be downward closed to single atomic event, which
implies bisimilarity. As Moller [23] proven, there is not a
finite sound and complete axiomatization for parallelism ∥
modulo bisimulation equivalence, so there is not a finite
sound and complete axiomatization for parallelism ∥ modulo
hhp-bisimulation equivalence either. Inspired by the way of
left merge to modeling the full merge for bisimilarity, we

introduce a left parallel composition  to model the full
parallelism ∥ for hhp-bisimilarity.



In the following subsection, we add left parallel

composition  to the whole theory. Because the resulting
theory is similar to the former, we only list the significant
differences, and all proofs of the conclusions are left to the
reader.

3.8.1  with left parallel composition

The transition rules of left parallel composition  are
shown in Table 3.11. With a little abuse, we extend the
causal order relation ⩽ on  to include the original partial
order (denoted by <) and concurrency (denoted by =).

Table 3.11

Transition rules of left parallel operator .

The new axioms for parallelism are listed in Table 3.12.



Table 3.12

Axioms of parallelism with left parallel composition.

No. Axiom

A6 x + δ = x

A7 δ ⋅ x = δ

P1 x≬y = x∥y + x|y

P2 x∥y = y∥x

P3 (x∥y)∥z = x∥(y∥z)

P4

P5

P6

P7

P8

P9

C10 e1|e2 = γ(e1,e2)

C11 e1|(e2 ⋅ y)=γ(e1,e2)⋅y

C12 (e1 ⋅ x)|e2 = γ(e1,e2)⋅x

C13 (e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)



No. Axiom

C14 (x + y)|z = (x|z)+(y|z)

C15 x|(y + z)=(x|y)+(x|z)

C16 δ|x = δ

C17 x|δ = δ

CE18 Θ(e)=e

CE19 Θ(δ)=δ

CE20 Θ(x + y)=Θ(x)+Θ(y)

CE21 Θ(x ⋅ y)=Θ(x)⋅Θ(y)

CE22

CE23 Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)

U24 (♯(e1,e2)) e1◃e2 = τ

U25 (♯(e1,e2),e2 ⩽ e3) e1◃e3 = τ

U26 (♯(e1,e2),e2 ⩽ e3) e3◃e1 = τ

U27 e◃δ = e

U28 δ◃e = δ

U29 (x + y)◃z = (x◃z)+(y◃z)

U30 (x ⋅ y)◃z = (x◃z)⋅(y◃z)

U31



No. Axiom

U32 (x|y)◃z = (x◃z)|(y◃z)

U33 x◃(y + z)=(x◃y)◃z

U34 x◃(y ⋅ z)=(x◃y)◃z

U35

U36 x◃(y|z)=(x◃y)◃z

Definition 3.37

Basic terms of  with left parallel

composition

The set of basic terms of , , is inductively
defined as follows:

1.   ;
2.  if ,  then ;
3.  if  then ;

4.  if  then .

Theorem 3.38

Generalization of the algebra for left

parallelism with respect to 



The algebra for left parallelism is a generalization of 
.

Theorem 3.39

Congruence theorem of  with left

parallel composition

Truly concurrent bisimulation equivalences , , , and

 are all congruences with respect to  with left

parallel composition.

Theorem 3.40

Elimination theorem of parallelism with left

parallel composition

Let p be a closed  with left parallel composition

term. Then there is a basic  term q such that 
.

Theorem 3.41

Soundness of parallelism with left parallel

composition modulo truly concurrent

bisimulation equivalences

Let x and y be  with left parallel composition terms.

If , then

1.   ;



2.   ;

3.   ;

4.   .

Theorem 3.42

Completeness of parallelism with left

parallel composition modulo truly

concurrent bisimulation equivalences

Let x and y be  terms.

1.  If , then ;

2.  if , then ;

3.  if , then ;

4.  if , then .

The transition rules of encapsulation operator are the
same, and the axioms are shown in Table 3.13.



Table 3.13

Axioms of encapsulation operator with left parallel

composition.

No. Axiom

D1 e ∉ H ∂H(e)=e

D2 e ∈ H ∂H(e)=δ

D3 ∂H(δ)=δ

D4 ∂H(x + y)=∂H(x)+∂H(y)

D5 ∂H(x ⋅ y)=∂H(x)⋅∂H(y)

D6

Theorem 3.43

Conservativity of  with respect to the

algebra for parallelism with left parallel

composition

 is a conservative extension of the algebra for

parallelism with left parallel composition.

Theorem 3.44

Congruence theorem of encapsulation

operator 



Truly concurrent bisimulation equivalences , , , and

 are all congruences with respect to encapsulation

operator .

Theorem 3.45

Elimination theorem of 

Let p be a closed  term including the encapsulation

operator . Then there is a basic  term q such that 
.

Theorem 3.46

Soundness of  modulo truly concurrent

bisimulation equivalences

Let x and y be  terms including encapsulation

operator . If , then

1.   ;

2.   ;

3.   ;

4.   .

Theorem 3.47

Completeness of  modulo truly

concurrent bisimulation equivalences



Let p and q be closed  terms including encapsulation

operator ,

1.  if  then ;

2.  if  then ;

3.  if  then ;

4.  if  then .

3.8.2 Recursion

Definition 3.48

Recursive specification

A recursive specification is a finite set of recursive
equations

where the left-hand sides of  are called recursion
variables, and the right-hand sides  are process
terms in  with possible occurrences of the recursion
variables .



Definition 3.49

Solution

Processes  are a solution for a recursive
specification  (with respect to
truly concurrent bisimulation equivalences ( , , ))
if  for .

Definition 3.50

Guarded recursive specification

A recursive specification

is guarded if the right-hand sides of its recursive
equations can be adapted to the form by applications of
the axioms in  and replacing recursion variables by
the right-hand sides of their recursive equations,



where , and the sum
above is allowed to be empty, in which case it represents
the deadlock δ.

Definition 3.51

Linear recursive specification

A recursive specification is linear if its recursive
equations are of the form

where , and the sum
above is allowed to be empty, in which case it represents
the deadlock δ.

Theorem 3.52

Conservativity of  with guarded

recursion



 with guarded recursion is a conservative extension

of .

Theorem 3.53

Congruence theorem of  with guarded

recursion

Truly concurrent bisimulation equivalences , , , 
are all congruences with respect to  with guarded

recursion.

Theorem 3.54

Elimination theorem of  with linear

recursion

Each process term in  with linear recursion is equal

to a process term  with E a linear recursive

specification.

Theorem 3.55

Soundness of  with guarded recursion

Let x and y be  with guarded recursion terms. If 
, then

1.   ;

2.   ;

3.   ;



4.   .

Theorem 3.56

Completeness of  with linear recursion

Let p and q be closed  with linear recursion terms,

then,

1.  if  then ;

2.  if  then ;

3.  if  then ;

4.  if  then .

3.8.3 Abstraction

Definition 3.57

Guarded linear recursive specification

A recursive specification is linear if its recursive
equations are of the form

where , and the
sum above is allowed to be empty, in which case it



represents the deadlock δ.
A linear recursive specification E is guarded if there

does not exist an infinite sequence of τ-transitions 
.

The transition rules of τ are the same, and axioms of τ
are as Table 3.14 shows.

Table 3.14

Axioms of silent step.

No. Axiom

B1 e ⋅ τ = e

B2 e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)

B3

Theorem 3.58

Conservativity of  with silent step and

guarded linear recursion

 with silent step and guarded linear recursion is a

conservative extension of  with linear recursion.

Theorem 3.59



Congruence theorem of  with silent step

and guarded linear recursion

Rooted branching truly concurrent bisimulation

equivalences , , , and  are all congruences

with respect to  with silent step and guarded linear

recursion.

Theorem 3.60

Elimination theorem of  with silent step

and guarded linear recursion

Each process term in  with silent step and guarded

linear recursion is equal to a process term  with E a

guarded linear recursive specification.

Theorem 3.61

Soundness of  with silent step and

guarded linear recursion

Let x and y be  with silent step and guarded linear

recursion terms. If  with silent step and guarded

linear recursion , then

1.   ;

2.   ;

3.   ;

4.   .



Theorem 3.62

Completeness of  with silent step and

guarded linear recursion

Let p and q be closed  with silent step and guarded

linear recursion terms, then,

1.  if  then ;

2.  if  then ;

3.  if  then ;

4.  if  then .

The transition rules of  are the same, and the axioms are
shown in Table 3.15.



Table 3.15

Axioms of abstraction operator.

No. Axiom

TI1 e ∉ I τI(e)=e

TI2 e ∈ I τI(e)=τ

TI3 τI(δ)=δ

TI4 τI(x + y)=τI(x)+τI(y)

TI5 τI(x ⋅ y)=τI(x)⋅τI(y)

TI6

Theorem 3.63

Conservativity of  with guarded linear

recursion

 with guarded linear recursion is a conservative

extension of  with silent step and guarded linear

recursion.

Theorem 3.64

Congruence theorem of  with guarded

linear recursion



Rooted branching truly concurrent bisimulation

equivalences , , , and  are all congruences

with respect to  with guarded linear recursion.

Theorem 3.65

Soundness of  with guarded linear

recursion

Let x and y be  with guarded linear recursion terms.

If  with guarded linear recursion , then

1.   ;

2.   ;

3.   ;

4.   .

Definition 3.66

Cluster

Let E be a guarded linear recursive specification, and 
. Two recursion variable X and Y in E are in the same
cluster for I iff there exist sequences of transitions 

 and ,
where .

 or  is an

exit for the cluster C iff: (1)  or 



 is a summand at the right-
hand side of the recursive equation for a recursion
variable in C, and (2) in the case of 

, either  or 
.

The CFAR are shown in Table 3.16.

Table 3.16

Cluster fair abstraction rule.

No. Axiom

CFAR

If X is in a cluster for I with exits

,

then τ ⋅ τI(〈X|E〉)=

Theorem 3.67

Soundness of 

 is sound modulo rooted branching truly concurrent

bisimulation equivalences , , , and .



Theorem 3.68

Completeness of  with guarded linear

recursion and 

Let p and q be closed  with guarded linear recursion

and  terms, then,

1.  if  then ;

2.  if  then ;

3.  if  then ;

4.  if  then .

3.9 APTC with asynchronous

communication

Let c be a channel, Δ be a finite set of data. For ,  is
a potential action to send data d via channel c,  is an
actual action to send data d via channel c; and  is a
potential action to receive data d via channel c,  is an
actual action to receive data d via channel c. Let the action 

 be not related to channel c, and 
. Let σ be the sequence of

data and  be the concatenation of data sequences 
and . For ,  if . For a queue-like
channel, the unary operator  denotes that in x, the
channel c initially contains the data sequence σ and outside
x, no communications via c are performed. For a bag-like
channel, the unary operator  denoted the similar thing,



but M is a multiset of data. We remain the synchronous
communication merge |, and for causality-based
asynchronous communication, we just add the causal
constraints on the send and receive actions, any violation of
the constraints will cause deadlock, that is, 

.
We give the transition rules of APTC with asynchronous

communication as Table 3.17 shows.



Table 3.17

Transition rules of APTC with asynchronous

communication.





We define the basic terms for APTC with asynchronous
communication.

Definition 3.69

Basic terms of APTC with asynchronous

communication

The set of basic terms of APTC with asynchronous
communication, , is inductively defined as
follows:

1.   ;
2.  if ,  then ;
3.  if  then ;
4.  if  then 

.



Theorem 3.70

Congruence theorem of APTC with

asynchronous communication

Truly concurrent bisimulation equivalences , , , and

 are all congruences with respect to APTC with

asynchronous communication.

So, we design the axioms of parallelism in Table 3.18,
including algebraic laws for parallel operator ∥,
communication operator |, conflict elimination operator Θ
and unless operator ◃, and also the whole parallel operator
≬. Since the communication between two communicating
events in different parallel branches may cause deadlock (a
state of inactivity), which is caused by mismatch of two
communicating events or the imperfectness of the
communication channel. We use the constant δ to denote
the deadlock, and let the atomic event .



Table 3.18

Axioms of parallelism.

No. Axiom

A6 x + δ = x

A7 δ ⋅ x = δ

P1 x≬y = x∥y + x|y

P2 x∥y = y∥x

P3 (x∥y)∥z = x∥(y∥z)

P4

P5

P6

P7

P8

P9

C1 e1|e2 = γ(e1,e2)

C2 e1|(e2 ⋅ y)=γ(e1,e2)⋅y

C3 (e1 ⋅ x)|e2 = γ(e1,e2)⋅x

C4 (e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)



No. Axiom

C5 (x + y)|z = (x|z)+(y|z)

C6 x|(y + z)=(x|y)+(x|z)

C7 δ|x = δ

C8 x|δ = δ

CE1 Θ(e)=e

CE2 Θ(δ)=δ

CE3 Θ(x + y)=Θ(x)+Θ(y)

CE4 Θ(x ⋅ y)=Θ(x)⋅Θ(y)

CE5 Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)

CE6 Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)

U1 (♯(e1,e2)) e1◃e2 = τ

U2 (♯(e1,e2),e2 ⩽ e3) e1◃e3 = τ

U3 (♯(e1,e2),e2 ⩽ e3) e3◃e1 = τ

U4 e◃δ = e

U5 δ◃e = δ

U6 (x + y)◃z = (x◃z)+(y◃z)

U7 (x ⋅ y)◃z = (x◃z)⋅(y◃z)

U8



No. Axiom

U9 (x|y)◃z = (x◃z)|(y◃z)

U10 x◃(y + z)=(x◃y)◃z

U11 x◃(y ⋅ z)=(x◃y)◃z

U12

U13 x◃(y|z)=(x◃y)◃z

AM1

AM2

AM3

AM4

AM5

AM6

AM7

AM8

AM9

AM10

AM11

AM12



No. Axiom

AM13

AM14

AM15

AM16

AM17

AM18

AM19

AM20

AM21

AM22

AM23

AM24

AM25

AM26

AM27

AM27



Based on the definition of basic terms for APTC with
asynchronous communication (see Definition 3.69) and
axioms of parallelism (see Table 3.18), we can prove the
elimination theorem of parallelism.

Theorem 3.71

Elimination theorem of parallelism

Let p be a closed APTC with asynchronous

communication term. Then there is a basic APTC with

asynchronous communication term q such that APTC

with asynchronous communication .

Theorem 3.72

Generalization of APTC with asynchronous

communication with respect to BATC

APTC with asynchronous communication is a

generalization of BATC.

Theorem 3.73

Soundness of APTC with asynchronous

communication modulo pomset bisimulation

equivalence

Let x and y be APTC with asynchronous communication

terms. If APTC with asynchronous communication ,

then .



Theorem 3.74

Completeness of APTC with asynchronous

communication modulo pomset bisimulation

equivalence

Let p and q be closed APTC with asynchronous

communication terms, if  then .

Theorem 3.75

Soundness of APTC with asynchronous

communication modulo step bisimulation

equivalence

Let x and y be APTC with asynchronous communication

terms. If APTC with asynchronous communication ,

then .

Theorem 3.76

Completeness of APTC with asynchronous

communication modulo step bisimulation

equivalence

Let p and q be closed APTC with asynchronous

communication terms, if  then .

Theorem 3.77



Soundness of APTC with asynchronous

communication modulo hp-bisimulation

equivalence

Let x and y be APTC with asynchronous communication

terms. If APTC with asynchronous communication ,

then .

Theorem 3.78

Completeness of APTC with asynchronous

communication modulo hp-bisimulation

equivalence

Let p and q be closed APTC with asynchronous

communication terms, if  then .

Theorem 3.79

Soundness of APTC with asynchronous

communication modulo hhp-bisimulation

equivalence

Let x and y be APTC with asynchronous communication

terms. If APTC with asynchronous communication ,

then .

Theorem 3.80

Completeness of APTC with asynchronous

communication modulo hhp-bisimulation



equivalence

Let p and q be closed APTC with asynchronous

communication terms, if  then .

3.10 Applications

 provides a formal framework based on truly
concurrent behavioral semantics, which can be used to
verify the correctness of system behaviors. In this
subsection, we tend to choose alternating bit protocol
(ABP) [24].

The ABP protocol is used to ensure successful
transmission of data through a corrupted channel. This
success is based on the assumption that data can be resent
an unlimited number of times, which is illustrated in Fig.

3.1, we alter it into the true concurrency situation.

1.  Data elements  from a finite set Δ are
communicated between a Sender and a Receiver.

2.  If the Sender reads a datum from channel , then
this datum is sent to the Receiver in parallel through
channel .

3.  The Sender processes the data in Δ, forms new
data, and sends them to the Receiver through
channel B.

4.  And the Receiver sends the datum into channel .
5.  If channel B is corrupted, the message

communicated through B can be turn into an error
message ⊥.



6.  Every time the Receiver receives a message via
channel B, it sends an acknowledgment to the
Sender via channel D, which is also corrupted.

7.  Finally, then Sender and the Receiver send out their
outputs in parallel through channels  and .



FIGURE 3.1  Alternating bit protocol.



In the truly concurrent ABP, the Sender sends its data to
the Receiver; and the Receiver can also send its data to the
Sender, for simplicity and without loss of generality, we
assume that only the Sender sends its data and the
Receiver only receives the data from the Sender. The
Sender attaches a bit 0 to data elements  and a bit 1 to
data elements , when they are sent into channel B. When
the Receiver reads a datum, it sends back the attached bit
via channel D. If the Receiver receives a corrupted
message, then it sends back the previous acknowledgment
to the Sender.

Then the state transition of the Sender can be described
by  as follows.

where  denotes sending data through channel B, 
denotes receiving data through channel D, similarly, 
means receiving data via channel ,  denotes sending
data via channel , and .

And the state transition of the Receiver can be described
by  as follows.



where  denotes receiving data via channel ,  denotes
receiving data via channel B,  denotes sending data via
channel ,  denotes sending data via channel D, and 

.
The send action and receive action of the same data

through the same channel can communicate each other,
otherwise, a deadlock δ will be caused. We define the
following communication functions.

Let  and  be in parallel, then the system  can be
represented by the following process term.



where 

.
Then we get the following conclusion.

Theorem 3.81

Correctness of the ABP protocol

The ABP protocol  can exhibit desired external

behaviors.

Proof

By use of the algebraic laws of , we have the
following expansions.



Similarly, we can get the following equations.



Let , where E is the following guarded
linear recursion specification:



Then we apply abstraction operator  into .

Similarly, we can get 
.

We get 
. So,



the ABP protocol  can exhibit desired external
behaviors. □

With the help of shadow constant, now we can verify the
traditional alternating bit protocol (ABP) [24].

The ABP protocol is used to ensure successful
transmission of data through a corrupted channel. This
success is based on the assumption that data can be resent
an unlimited number of times, which is illustrated in Fig.

3.2, we alter it into the true concurrency situation.

1.  Data elements  from a finite set Δ are
communicated between a Sender and a Receiver.

2.  If the Sender reads a datum from channel A.
3.  The Sender processes the data in Δ, forms new

data, and sends them to the Receiver through
channel B.

4.  And the Receiver sends the datum into channel C.
5.  If channel B is corrupted, the message

communicated through B can be turn into an error
message ⊥.

6.  Every time the Receiver receives a message via
channel B, it sends an acknowledgment to the
Sender via channel D, which is also corrupted.



FIGURE 3.2  Alternating bit protocol.



The Sender attaches a bit 0 to data elements  and a
bit 1 to data elements , when they are sent into channel
B. When the Receiver reads a datum, it sends back the
attached bit via channel D. If the Receiver receives a
corrupted message, then it sends back the previous
acknowledgment to the Sender.

Then the state transition of the Sender can be described
by  as follows.

where  denotes sending data through channel B, 
denotes receiving data through channel D, similarly, 
means receiving data via channel A,  denotes the
shadow of .

And the state transition of the Receiver can be described
by  as follows.



where  denotes the shadow of ,  denotes receiving
data via channel B,  denotes sending data via channel C, 

 denotes sending data via channel D, and .
The send action and receive action of the same data

through the same channel can communicate each other,
otherwise, a deadlock δ will be caused. We define the
following communication functions.

Let  and  be in parallel, then the system  can be
represented by the following process term.



where 

.
Then we get the following conclusion.

Theorem 3.82

Correctness of the ABP protocol

The ABP protocol  can exhibit desired external

behaviors.

Proof

Similarly, we can get  and 
.

So, the ABP protocol  can exhibit desired
external behaviors. □
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4: Guarded APTC

Abstract

This is an introduction to guarded truly concurrent
process algebra.

Keywords

Guards; True Concurrency; Process Algebra

This chapter is organized as follows. We introduce the
operational semantics of guards in Section 4.1,  with
Guards in Section 4.2,  with Guards 4.3, recursion in
Section 4.4, abstraction in Section 4.5.

4.1 Operational semantics

In this section, we extend truly concurrent bisimilarities to
the ones containing data states.

Definition 4.1

Prime event structure with silent event and

empty event

Let Λ be a fixed set of labels, ranged over  and .
A (Λ-labeled) prime event structure with silent event τ



and empty event ϵ is a tuple , where  is a
denumerable set of events, including the silent event τ
and empty event ϵ. Let , exactly excluding τ and
ϵ, it is obvious that . Let  be a labeling function
and let  and . And ⩽, ♯ are binary relations on 
, called causality and conflict respectively, such that:

1.  ⩽ is a partial order and  is finite for all 
. It is easy to see that , then
.

2.  ♯ is irreflexive, symmetric, and hereditary with
respect to ⩽, that is, for all , if , then 

.

Then, the concepts of consistency and concurrency can
be drawn from the above definition:

1.    are consistent, denoted as , if . A
subset  is called consistent, if  for all .

2.    are concurrent, denoted as , if , 
, and .

Definition 4.2

Configuration

Let  be a PES. A (finite) configuration in  is a (finite)
consistent subset of events , closed with respect to
causality (i.e. ), and a data state  with S the set



of all data states, denoted . The set of finite
configurations of  is denoted by . We let .

A consistent subset of  of events can be seen as a
pomset. Given ,  if  and  are isomorphic as
pomsets. In the following of the paper, we say , we
mean .

Definition 4.3

Pomset transitions and step

Let  be a PES and let , and , if  and 
, then  is called a pomset transition

from  to . When the events in X are pairwise
concurrent, we say that  is a step. It is obvious
that  and  for any  and .

Definition 4.4

Weak pomset transitions and weak step

Let  be a PES and let , and , if  and 
, then  is called a weak pomset

transition from  to , where we define .
And , for every . When the events in X are
pairwise concurrent, we say that  is a weak
step.



We will also suppose that all the PESs in this paper are
image finite, that is, for any PES  and  and , 

, and  is finite.

Definition 4.5

Pomset, step bisimulation

Let ,  be PESs. A pomset bisimulation is a relation 
, such that if , and 

 then , with , , ,
and  for all , and vice-versa. We say
that ,  are pomset bisimilar, written , if there
exists a pomset bisimulation R, such that . By
replacing pomset transitions with steps, we can get the
definition of step bisimulation. When PESs  and  are
step bisimilar, we write .

Definition 4.6

Weak pomset, step bisimulation

Let ,  be PESs. A weak pomset bisimulation is a
relation , such that if , and 

 then , with , , ,
and  for all , and vice-versa. We say
that ,  are weak pomset bisimilar, written , if
there exists a weak pomset bisimulation R, such that 

. By replacing weak pomset transitions with
weak steps, we can get the definition of weak step



bisimulation. When PESs  and  are weak step bisimilar,
we write .

Definition 4.7

Posetal product

Given two PESs , , the posetal product of their
configurations, denoted , is defined as

A subset  is called a posetal relation.
We say that R is downward closed when for any 

, if 
 pointwise and 

, then .
For , we define , 

, (1) , if ; (2) ,
otherwise. Where , , , .

Definition 4.8

Weakly posetal product

Given two PESs , , the weakly posetal product of their
configurations, denoted , is defined as



A subset  is called a weakly posetal
relation. We say that R is downward closed when for any 

, if 
 pointwise and 

, then .
For , we define , 

, (1) , if ; (2) ,
otherwise. Where , , , . Also, we
define .

Definition 4.9

(Hereditary) history-preserving bisimulation

A history-preserving (hp-)bisimulation is a posetal
relation  such that if , and

, then , with 
for all , and vice-versa.  are history-preserving
(hp-)bisimilar and are written  if there exists a hp-
bisimulation R such that .

A hereditary history-preserving (hhp-)bisimulation is a
downward closed hp-bisimulation.  are hereditary
history-preserving (hhp-)bisimilar and are written 
.

Definition 4.10



Weak (hereditary) history-preserving

bisimulation

A weak history-preserving (hp-)bisimulation is a weakly
posetal relation  such that if 

, and , then , with 
 for all , and vice-versa. 

are weak history-preserving (hp-)bisimilar and are
written  if there exists a weak hp-bisimulation R
such that .

A weakly hereditary history-preserving
(hhp-)bisimulation is a downward closed weak hp-
bisimulation.  are weakly hereditary history-
preserving (hhp-)bisimilar and are written .

4.2  with guards

In this section, we will discuss the guards for , which is
denoted as . Let  be the set of atomic events
(actions), and we assume that there is a data set Δ and
data , the data variable  range over Δ, and 
 has the same data type as  and can have a substitution 

, for process x,  denotes that all occurrences of 
in x are replaced by . And also the atomic action e may
manipulate on data and has the form  or . 

 be the set of atomic guards, δ be the deadlock constant,
and ϵ be the empty event. We extend  to the set of basic
guards G with element , which is generated by the
following formation rules:



In the following, let ,  and let variables 
 range over the set of terms for true concurrency, 

range over the set of closed terms. The predicate 
represents that ϕ holds in the state s, and  holds and 

 does not hold.  denotes  in . The
predicate weakest precondition  denotes that 

 holds.
The set of axioms of  consists of the laws given in

Table 4.1.



Table 4.1

Axioms of BATCG.

No. Axiom

A1 x + y = y + x

A2 (x + y)+z = x + (y + z)

A3 x + x = x

A4 (x + y)⋅z = x ⋅ z + y ⋅ z

A5 (x ⋅ y)⋅z = x ⋅ (y ⋅ z)

A6 x + δ = x

A7 δ ⋅ x = δ

A8 ϵ ⋅ x = x

A9 x ⋅ ϵ = x

G1 ϕ ⋅ ¬ϕ = δ

G2 ϕ + ¬ϕ = ϵ

G3 ϕδ = δ

G4 ϕ(x + y)=ϕx + ϕy

G5 ϕ(x ⋅ y)=ϕx ⋅ y

G6 (ϕ + ψ)x = ϕx + ψx

G7 (ϕ ⋅ ψ)⋅x = ϕ ⋅ (ψ ⋅ x)



No. Axiom

G8 ϕ = ϵ if ∀s ∈ S.test(ϕ,s)

G9 ϕ0 ⋅ ⋯ ⋅ ϕn = δ if ∀s ∈ S,∃i ⩽ n.test(¬ϕi,s)

G10 wp(e,ϕ)eϕ = wp(e,ϕ)e

G11 ¬wp(e,ϕ)e¬ϕ = ¬wp(e,ϕ)e

Note that, by eliminating atomic event from the process
terms, the axioms in Table 4.1 will lead to a Boolean
Algebra. And G9 is a precondition of e and ϕ, G10 is the
weakest precondition of e and ϕ. A data environment with 

 function is sufficiently deterministic, and it is obvious
that if the weakest precondition is expressible and G9, G10
are sound, then the related data environment is sufficiently
deterministic.

Definition 4.11

Basic terms of 

The set of basic terms of , , is inductively
defined as follows:

1.   ;
2.   ;
3.  if  then ;
4.  if  then ;
5.  if  then .



Theorem 4.12

Elimination theorem of 

Let p be a closed  term. Then there is a basic 
term q such that .

We will define a term-deduction system which gives the
operational semantics of . We give the operational
transition rules for ϵ, atomic guard , atomic event ,
operators ⋅ and + as Table 4.2 shows. And the predicate 

 represents successful termination after execution of
the event e.



Table 4.2

Single event transition rules of BATCG.

Note that, we replace the single atomic event  by ,
we can obtain the pomset transition rules of , and
omit them.

Theorem 4.13

Congruence of  with respect to truly

concurrent bisimulation equivalences



(1) Pomset bisimulation equivalence  is a congruence

with respect to .

(2) Step bisimulation equivalence  is a congruence

with respect to .

(3) hp-bisimulation equivalence  is a congruence

with respect to .

(4) hhp-bisimulation equivalence  is a congruence

with respect to .

Theorem 4.14

Soundness of  modulo truly concurrent

bisimulation equivalences

(1) Let x and y be  terms. If , then .

(2) Let x and y be  terms. If , then .

(3) Let x and y be  terms. If , then .

(4) Let x and y be  terms. If , then .

Theorem 4.15

Completeness of  modulo truly

concurrent bisimulation equivalences

(1) Let p and q be closed  terms, if  then .

(2) Let p and q be closed  terms, if  then .

(3) Let p and q be closed  terms, if  then .

(4) Let p and q be closed  terms, if  then 
.



Theorem 4.16

Sufficient determinacy

All related data environments with respect to  can

be sufficiently deterministic.

4.3  with guards

In this section, we will extend  with guards, which is
abbreviated . The set of basic guards G with element 

, which is extended by the following formation rules:

The set of axioms of  including axioms of  in
Table 4.1 and the axioms are shown in Table 4.3.



Table 4.3

Axioms of APTCG.

No. Axiom

P1 x≬y = x∥y + x|y

P2 e1∥(e2 ⋅ y)=(e1∥e2)⋅y

P3 (e1 ⋅ x)∥e2 = (e1∥e2)⋅x

P4 (e1 ⋅ x)∥(e2 ⋅ y)=(e1∥e2)⋅(x≬y)

P5 (x + y)∥z = (x∥z)+(y∥z)

P6 x∥(y + z)=(x∥y)+(x∥z)

P7 δ∥x = δ

P8 x∥δ = δ

P9 ϵ∥x = x

P10 x∥ϵ = x

C1 e1|e2 = γ(e1,e2)

C2 e1|(e2 ⋅ y)=γ(e1,e2)⋅y

C3 (e1 ⋅ x)|e2 = γ(e1,e2)⋅x

C4 (e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)

C5 (x + y)|z = (x|z)+(y|z)

C6 x|(y + z)=(x|y)+(x|z)



No. Axiom

C7 δ|x = δ

C8 x|δ = δ

C9 ϵ|x = δ

C10 x|ϵ = δ

CE1 Θ(e)=e

CE2 Θ(δ)=δ

CE3 Θ(ϵ)=ϵ

CE4 Θ(x + y)=Θ(x)+Θ(y)

CE5 Θ(x ⋅ y)=Θ(x)⋅Θ(y)

CE6 Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)

CE7 Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)

U1 (♯(e1,e2)) e1◃e2 = τ

U2 (♯(e1,e2),e2 ⩽ e3) e1◃e3 = τ

U3 (♯(e1,e2),e2 ⩽ e3) e3◃e1 = τ

U4 e◃δ = e

U5 δ◃e = δ

U6 e◃ϵ = e

U7 ϵ◃e = e



No. Axiom

U8 (x + y)◃z = (x◃z)+(y◃z)

U9 (x ⋅ y)◃z = (x◃z)⋅(y◃z)

U10 (x∥y)◃z = (x◃z)∥(y◃z)

U11 (x|y)◃z = (x◃z)|(y◃z)

U12 x◃(y + z)=(x◃y)◃z

U13 x◃(y ⋅ z)=(x◃y)◃z

U14 x◃(y∥z)=(x◃y)◃z

U15 x◃(y|z)=(x◃y)◃z

D1 e ∉ H ∂H(e)=e

D2 e ∈ H ∂H(e)=δ

D3 ∂H(δ)=δ

D4 ∂H(x + y)=∂H(x)+∂H(y)

D5 ∂H(x ⋅ y)=∂H(x)⋅∂H(y)

D6 ∂H(x∥y)=∂H(x)∥∂H(y)

G12 ϕ(x∥y)=ϕx∥ϕy

G13 ϕ(x|y)=ϕx|ϕy

G14 ϕ∥δ = δ

G15 δ∥ϕ = δ



No. Axiom

G16 ϕ|δ = δ

G17 δ|ϕ = δ

G18 ϕ∥ϵ = ϕ

G19 ϵ∥ϕ = ϕ

G20 ϕ|ϵ = δ

G21 ϵ|ϕ = δ

G22 ϕ∥¬ϕ = δ

G23 Θ(ϕ)=ϕ

G24 ∂H(ϕ)=ϕ

G25 ϕ0∥⋯∥ϕn = δ if ∀s0,⋯,sn ∈ S,
∃i ⩽ n.test(¬ϕi,s0 ∪ ⋯ ∪ sn)

Definition 4.17

Basic terms of 

The set of basic terms of , , is inductively
defined as follows:

1.   ;
2.   ;
3.  if  then ;
4.  if  then ;



5.  if  then .
6.  if  then .

Based on the definition of basic terms for  (see
Definition 4.17) and axioms of , we can prove the
elimination theorem of .

Theorem 4.18

Elimination theorem of 

Let p be a closed  term. Then there is a basic 
term q such that .

We will define a term-deduction system which gives the
operational semantics of . Two atomic events  and 
are in race condition, which are denoted . (See Table

4.4.)



Table 4.4

Transition rules of APTCG.



Theorem 4.19

Generalization of  with respect to 



 is a generalization of .

Theorem 4.20

Congruence of  with respect to truly

concurrent bisimulation equivalences

(1) Pomset bisimulation equivalence  is a congruence

with respect to .

(2) Step bisimulation equivalence  is a congruence

with respect to .

(3) hp-bisimulation equivalence  is a congruence

with respect to .

(4) hhp-bisimulation equivalence  is a congruence

with respect to .

Theorem 4.21

Soundness of  modulo truly concurrent

bisimulation equivalences

(1) Let x and y be  terms. If , then .

(2) Let x and y be  terms. If , then .

(3) Let x and y be  terms. If , then .

Theorem 4.22

Completeness of  modulo truly

concurrent bisimulation equivalences

(1) Let p and q be closed  terms, if  then .



(2) Let p and q be closed  terms, if  then .

(3) Let p and q be closed  terms, if  then .

Theorem 4.23

Sufficient determinacy

All related data environments with respect to  can

be sufficiently deterministic.

4.4 Recursion

In this section, we introduce recursion to capture infinite
processes based on . In the following,  are
recursion specifications,  are recursive variables. (See
Table 4.5.)

Table 4.5

Transition rules of guarded recursion.

Definition 4.24

Guarded recursive specification



A recursive specification

is guarded if the right-hand sides of its recursive
equations can be adapted to the form by applications of
the axioms in  and replacing recursion variables by
the right-hand sides of their recursive equations,

where , and the sum
above is allowed to be empty, in which case it represents
the deadlock δ. And there does not exist an infinite
sequence of ϵ-transitions .

Theorem 4.25

Conservativity of  with guarded

recursion

 with guarded recursion is a conservative extension

of .



Theorem 4.26

Congruence theorem of  with guarded

recursion

Truly concurrent bisimulation equivalences ,  and 
are all congruences with respect to  with guarded

recursion.

Theorem 4.27

Elimination theorem of  with linear

recursion

Each process term in  with linear recursion is equal

to a process term  with E a linear recursive

specification.

Theorem 4.28

Soundness of  with guarded recursion

Let x and y be  with guarded recursion terms. If 
, then

(1) ;

(2) ;

(3) .

Theorem 4.29

Completeness of  with linear recursion



Let p and q be closed  with linear recursion terms,

then,

(1) if  then ;

(2) if  then ;

(3) if  then .

4.5 Abstraction

To abstract away from the internal implementations of a
program, and verify that the program exhibits the desired
external behaviors, the silent step τ and abstraction
operator  are introduced, where  denotes the
internal events or guards. The silent step τ represents the
internal events, and  for internal guards, when we
consider the external behaviors of a process, τ steps can be
removed, that is, τ steps must keep silent. The transition
rule of τ is shown in Table 4.6. In the following, let the
atomic event e range over , and ϕ range over 

, and let the communication function 
, with each communication involved τ

resulting in δ. We use  to denote , for the fact
that τ only change the state of internal data environment,
that is, for the external data environments, .



Table 4.6

Transition rule of the silent step.

In Section 4.1, we introduce τ into event structure, and
also give the concept of weakly true concurrency. In this
section, we give the concepts of rooted branching truly
concurrent bisimulation equivalences, based on these
concepts, we can design the axiom system of the silent step
τ and the abstraction operator .

Definition 4.30

Branching pomset, step bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. Let ,  be PESs. A branching
pomset bisimulation is a relation , such
that:

1.  if , and  then
•  either , and  with ;
•  or there is a sequence of (zero or more) τ-

transitions , such that 
and  with ;

2.  if , and  then



•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that 
and  with ;

3.  if  and , then there is a sequence
of (zero or more) τ-transitions  such
that  and ;

4.  if  and , then there is a sequence
of (zero or more) τ-transitions  such
that  and .

We say that ,  are branching pomset bisimilar,
written , if there exists a branching pomset
bisimulation R, such that .

By replacing pomset transitions with steps, we can get
the definition of branching step bisimulation. When PESs 

 and  are branching step bisimilar, we write .

Definition 4.31

Rooted branching pomset, step bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. Let ,  be PESs. A rooted
branching pomset bisimulation is a relation 

, such that:

1.  if , and  then 
with ;



2.  if , and  then 
with ;

3.  if  and , then ;
4.  if  and , then .

We say that ,  are rooted branching pomset bisimilar,
written , if there exists a rooted branching pomset
bisimulation R, such that .

By replacing pomset transitions with steps, we can get
the definition of rooted branching step bisimulation.
When PESs  and  are rooted branching step bisimilar,
we write .

Definition 4.32

Branching (hereditary) history-preserving

bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. A branching history-preserving
(hp-)bisimulation is a weakly posetal relation 

 such that:

1.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that 
 and  with 

;



2.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that 
 and  with 

;
3.  if  and , then there is a

sequence of (zero or more) τ-transitions 
 such that  and ;

4.  if  and , then there is a
sequence of (zero or more) τ-transitions 

 such that  and .

 are branching history-preserving (hp-)bisimilar and
are written  if there exists a branching hp-
bisimulation R such that .

A branching hereditary history-preserving
(hhp-)bisimulation is a downward closed branching hp-
bisimulation.  are branching hereditary history-
preserving (hhp-)bisimilar and are written .

Definition 4.33

Rooted branching (hereditary) history-

preserving bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. A rooted branching history-



preserving (hp-)bisimulation is a weakly posetal relation 
 such that:

1.  if , and , then 
with ;

2.  if , and , then 
with ;

3.  if  and , then ;
4.  if  and , then .

 are rooted branching history-preserving
(hp-)bisimilar and are written  if there exists a
rooted branching hp-bisimulation R such that 

.
A rooted branching hereditary history-preserving

(hhp-)bisimulation is a downward closed rooted
branching hp-bisimulation.  are rooted branching
hereditary history-preserving (hhp-)bisimilar and are
written .

Definition 4.34

Guarded linear recursive specification

A linear recursive specification E is guarded if there does
not exist an infinite sequence of τ-transitions 

, and there does not exist an
infinite sequence of ϵ-transitions .



Theorem 4.35

Conservativity of  with silent step and

guarded linear recursion

 with silent step and guarded linear recursion is a

conservative extension of  with linear recursion.

Theorem 4.36

Congruence theorem of  with silent step

and guarded linear recursion

Rooted branching truly concurrent bisimulation

equivalences ,  and  are all congruences with

respect to  with silent step and guarded linear

recursion.

We design the axioms for the silent step τ in Table 4.7.



Table 4.7

Axioms of silent step.

No. Axiom

B1 e ⋅ τ = e

B2 e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)

B3 x∥τ = x

G26 τϕ ⋅ x = x

G27 x ⋅ τϕ = x

G28 x∥τϕ = x

Theorem 4.37

Elimination theorem of  with silent step

and guarded linear recursion

Each process term in  with silent step and guarded

linear recursion is equal to a process term  with E a

guarded linear recursive specification.

Theorem 4.38

Soundness of  with silent step and

guarded linear recursion

Let x and y be  with silent step and guarded linear

recursion terms. If  with silent step and guarded



linear recursion , then

(1) ;

(2) ;

(3) .

Theorem 4.39

Completeness of  with silent step and

guarded linear recursion

Let p and q be closed  with silent step and guarded

linear recursion terms, then,

(1) if  then ;

(2) if  then ;

(3) if  then .

The unary abstraction operator  ( ) renames all
atomic events or atomic guards in I into τ.  with silent
step and abstraction operator is called . The
transition rules of operator  are shown in Table 4.8.



Table 4.8

Transition rule of the abstraction operator.

Theorem 4.40

Conservativity of  with guarded linear

recursion

 with guarded linear recursion is a conservative

extension of  with silent step and guarded linear

recursion.

Theorem 4.41

Congruence theorem of  with guarded

linear recursion

Rooted branching truly concurrent bisimulation

equivalences , , and  are all congruences with

respect to  with guarded linear recursion.

We design the axioms for the abstraction operator  in
Table 4.9.



Table 4.9

Axioms of abstraction operator.

No. Axiom

TI1 e ∉ I τI(e)=e

TI2 e ∈ I τI(e)=τ

TI3 τI(δ)=δ

TI4 τI(x + y)=τI(x)+τI(y)

TI5 τI(x ⋅ y)=τI(x)⋅τI(y)

TI6 τI(x∥y)=τI(x)∥τI(y)

G29 ϕ ∉ I τI(ϕ)=ϕ

G30 ϕ ∈ I τI(ϕ)=τϕ

Theorem 4.42

Soundness of  with guarded linear

recursion

Let x and y be  with guarded linear recursion

terms. If  with guarded linear recursion , then

(1) ;

(2) ;

(3) .



Though τ-loops are prohibited in guarded linear recursive
specifications (see Definition 4.34) in a specifiable way,
they can be constructed using the abstraction operator, for
example, there exist τ-loops in the process term 
. To avoid τ-loops caused by  and ensure fairness, the
concepts of cluster and  (Cluster Fair Abstraction Rule)
[25] are still needed.

Theorem 4.43

Completeness of  with guarded linear

recursion and 

Let p and q be closed  with guarded linear

recursion and  terms, then,

(1) if  then ;

(2) if  then ;

(3) if  then .
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5: Distributed APTC

Abstract

This is an introduction to distributed truly concurrent
process algebra.

Keywords

Distributed Computing; True Concurrency; Process Algebra

Distributed APTC makes APTC to have the ability to
express the locations or roles. Distributed APTC can be
used to model the roles of participants in WS composition.

This chapter is organized as follows. We introduce the
operational semantics of static location in Section 5.1,
distributed  in Section 5.2, distributed  in Section
5.3, recursion in Section 5.4, abstraction in Section 5.5.

5.1 Static location bisimulations

Let Loc be the set of locations, and . Let ≪ be the
sequential ordering on , we call v is an extension or a
sublocation of u in ; and if  , then u and v are
independent and denoted .



Definition 5.1

Consistent location association

A relation  is a consistent location association
(cla), if , then .

Definition 5.2

Static location pomset, step bisimulation

Let ,  be PESs. A static location pomset bisimulation is

a relation , such that if , and 

then , with , , , and ,
and vice-versa. We say that ,  are static location
pomset bisimilar, written , if there exists a static
location pomset bisimulation , such that . By
replacing pomset transitions with steps, we can get the
definition of static location step bisimulation. When PESs 

 and  are static location step bisimilar, we write .

Definition 5.3

Static location (hereditary) history-

preserving bisimulation

A static location history-preserving (hp-)bisimulation is a
posetal relation  such that if , and 

, then , with , and vice-
versa.  are static location history-preserving



(hp-)bisimilar and are written  if there exists a
static location hp-bisimulation  such that .

A static location hereditary history-preserving
(hhp-)bisimulation is a downward closed static location
hp-bisimulation.  are static location hereditary
history-preserving (hhp-)bisimilar and are written 
.

Definition 5.4

Weak static location pomset, step

bisimulation

Let ,  be PESs. A weak static location pomset
bisimulation is a relation , such that if 

, and  then , with , , ,
and , and vice-versa. We say that ,  are
weak static location pomset bisimilar, written , if
there exists a weak static location pomset bisimulation ,
such that . By replacing weak pomset transitions
with weak steps, we can get the definition of weak static
location step bisimulation. When PESs  and  are weak
static location step bisimilar, we write .

Definition 5.5

Weak static location (hereditary) history-

preserving bisimulation



A weak static location history-preserving
(hp-)bisimulation is a weakly posetal relation 
such that if , and , then , with 

, and vice-versa.  are weak static
location history-preserving (hp-)bisimilar and are written 

 if there exists a weak static location hp-
bisimulation  such that .

A weak static location hereditary history-preserving
(hhp-)bisimulation is a downward closed weak static
location hp-bisimulation.  are weak static location
hereditary history-preserving (hhp-)bisimilar and are
written .

Definition 5.6

Branching static location pomset, step

bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. Let ,  be PESs. A branching
static location pomset bisimulation is a relation 

, such that:

1.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that  and 
with ;



2.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that  and 
with ;

3.  if  and , then there is a sequence of
(zero or more) τ-transitions  such that 

 and ;
4.  if  and , then there is a sequence of

(zero or more) τ-transitions  such that 
 and .

We say that ,  are branching static location pomset
bisimilar, written , if there exists a branching static
location pomset bisimulation , such that .

By replacing pomset transitions with steps, we can get
the definition of branching static location step
bisimulation. When PESs  and  are branching static
location step bisimilar, we write .

Definition 5.7

Rooted branching static location pomset,

step bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. Let ,  be PESs. A rooted



branching static location pomset bisimulation is a
relation , such that:

1.  if , and  then  with ;

2.  if , and  then  with ;
3.  if  and , then ;
4.  if  and , then .

We say that ,  are rooted branching static location
pomset bisimilar, written , if there exists a rooted
branching static location pomset bisimulation , such
that .

By replacing pomset transitions with steps, we can get
the definition of rooted branching static location step
bisimulation. When PESs  and  are rooted branching
static location step bisimilar, we write .

Definition 5.8

Branching static location (hereditary)

history-preserving bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. A branching static location
history-preserving (hp-)bisimulation is a posetal relation 

 such that:

1.  if , and  then
•  either , and ;



•  or there is a sequence of (zero or more) τ-
transitions , such that  and 

 with ;

2.  if , and  then
•  either , and ;
•  or there is a sequence of (zero or more) τ-

transitions , such that  and 

 with ;
3.  if  and , then there is a sequence of

(zero or more) τ-transitions  such that 
 and ;

4.  if  and , then there is a sequence of
(zero or more) τ-transitions  such that 

 and .

 are branching static location history-preserving
(hp-)bisimilar and are written  if there exists a
branching static location hp-bisimulation  such that 

.
A branching static location hereditary history-

preserving (hhp-)bisimulation is a downward closed
branching static location hhp-bisimulation.  are
branching static location hereditary history-preserving
(hhp-)bisimilar and are written .

Definition 5.9



Rooted branching static location

(hereditary) history-preserving bisimulation

Assume a special termination predicate ↓, and let √
represent a state with √↓. A rooted branching static
location history-preserving (hp-)bisimulation is a posetal
relation  such that:

1.  if , and , then  with ;

2.  if , and , then  with ;
3.  if  and , then ;
4.  if  and , then .

 are rooted branching static location history-
preserving (hp-)bisimilar and are written  if there
exists a rooted branching static location hp-bisimulation 

 such that .
A rooted branching static location hereditary history-

preserving (hhp-)bisimulation is a downward closed
rooted branching static location hp-bisimulation.  are
rooted branching static location hereditary history-
preserving (hhp-)bisimilar and are written .

5.2 BATC with static localities

Let Loc be the set of locations, and , , ϵ is the
empty location. A distribution allocates a location  to
an action e denoted  or a process x denoted .

In the following, let , and let variables 
range over the set of terms for true concurrency, 



range over the set of closed terms. The set of axioms of
BATC with static localities ( ) consists of the laws
given in Table 5.1.

Table 5.1

Axioms of BATC with static localities.

No. Axiom

A1 x + y = y + x

A2 (x + y)+z = x + (y + z)

A3 x + x = x

A4 (x + y)⋅z = x ⋅ z + y ⋅ z

A5 (x ⋅ y)⋅z = x ⋅ (y ⋅ z)

L1 ϵ::x = x

L2 u::(x ⋅ y)=u::x ⋅ u::y

L3 u::(x + y)=u::x + u::y

L4 u::(v::x)=uv::x

Definition 5.10

Basic terms of BATC with static localities

The set of basic terms of BATC with static localities, 
, is inductively defined as follows:



1.   ;
2.  if  then ;
3.  if  then ;
4.  if  then .

Theorem 5.11

Elimination theorem of BATC with static

localities

Let p be a closed BATC with static localities term. Then

there is a basic BATC with static localities term q such

that .

In this subsection, we will define a term-deduction system
which gives the operational semantics of BATC with static
localities. We give the operational transition rules for
operators ⋅ and + as Table 5.2 shows. And the predicate 

 represents successful termination after execution of
the event e at the location u.



Table 5.2

Single event transition rules of BATC with static

localities.

Theorem 5.12

Congruence of BATC with static localities

with respect to static location pomset

bisimulation equivalence

Static location pomset bisimulation equivalence  is a

congruence with respect to BATC with static localities.

Theorem 5.13



Soundness of BATC with static localities

modulo static location pomset bisimulation

equivalence

Let x and y be BATC with static localities terms. If 
, then .

Theorem 5.14

Completeness of BATC with static localities

modulo static location pomset bisimulation

equivalence

Let p and q be closed BATC with static localities terms, if 
 then .

Theorem 5.15

Congruence of BATC with static localities

with respect to static location step

bisimulation equivalence

Static location step bisimulation equivalence  is a

congruence with respect to BATC with static localities.

Theorem 5.16

Soundness of BATC with static localities

modulo static location step bisimulation

equivalence



Let x and y be BATC with static localities terms. If 
, then .

Theorem 5.17

Completeness of BATC with static localities

modulo static location step bisimulation

equivalence

Let p and q be closed BATC with static localities terms, if 
 then .

Theorem 5.18

Congruence of BATC with static localities

with respect to static location hp-

bisimulation equivalence

Static location hp-bisimulation equivalence  is a

congruence with respect to BATC with static localities.

Theorem 5.19

Soundness of BATC with static localities

modulo static location hp-bisimulation

equivalence

Let x and y be BATC with static localities terms. If 
, then .



Theorem 5.20

Completeness of BATC with static localities

modulo static location hp-bisimulation

equivalence

Let p and q be closed BATC with static localities terms, if 
 then .

Theorem 5.21

Congruence of BATC with static localities

with respect to static location hhp-

bisimulation equivalence

Static location hhp-bisimulation equivalence  is a

congruence with respect to BATC with static localities.

Theorem 5.22

Soundness of BATC with static localities

modulo static location hhp-bisimulation

equivalence

Let x and y be BATC with static localities terms. If 
, then .

Theorem 5.23

Completeness of BATC with static localities

modulo static location hhp-bisimulation



equivalence

Let p and q be closed BATC with static localities terms, if 
 then .

5.3 APTC with static localities

We give the transition rules of APTC with static localities as
Table 5.3 shows.



Table 5.3

Transition rules of APTC with static localities.

Image



We define the basic terms for APTC with static localities.

Definition 5.24

Basic terms of APTC with static localities

The set of basic terms of APTC with static localities, 
, is inductively defined as follows:

1.   ;
2.  if  then ;
3.  if  then ;



4.  if  then ;

5.  if  then .

Theorem 5.25

Congruence theorem of APTC with static

localities

Static location truly concurrent bisimulation equivalences

, , , and  are all congruences with respect to

APTC with static localities.

So, we design the axioms of parallelism in Table 5.4,
including algebraic laws for parallel operator ∥,
communication operator |, conflict elimination operator Θ,
and unless operator ◃, and also the whole parallel operator
≬. Since the communication between two communicating
events in different parallel branches may cause deadlock (a
state of inactivity), which is caused by mismatch of two
communicating events or the imperfectness of the
communication channel. We introduce a new constant δ to
denote the deadlock, and let the atomic event .



Table 5.4

Axioms of parallelism.

No. Axiom

A6 x + δ = x

A7 δ ⋅ x = δ

P1 x≬y = x∥y + x|y

P2 x∥y = y∥x

P3 (x∥y)∥z = x∥(y∥z)

P4

P5

P6

P7

P8

P9

C1 e1|e2 = γ(e1,e2)

C2 e1|(e2 ⋅ y)=γ(e1,e2)⋅y

C3 (e1 ⋅ x)|e2 = γ(e1,e2)⋅x

C4 (e1 ⋅ x)|(e2 ⋅ y)=γ(e1,e2)⋅(x≬y)



No. Axiom

C5 (x + y)|z = (x|z)+(y|z)

C6 x|(y + z)=(x|y)+(x|z)

C7 δ|x = δ

C8 x|δ = δ

CE1 Θ(e)=e

CE2 Θ(δ)=δ

CE3 Θ(x + y)=Θ(x)+Θ(y)

CE4 Θ(x ⋅ y)=Θ(x)⋅Θ(y)

CE5 Θ(x∥y)=((Θ(x)◃y)∥y)+((Θ(y)◃x)∥x)

CE6 Θ(x|y)=((Θ(x)◃y)|y)+((Θ(y)◃x)|x)

U1 (♯(e1,e2)) e1◃e2 = τ

U2 (♯(e1,e2),e2 ⩽ e3) e1◃e3 = τ

U3 (♯(e1,e2),e2 ⩽ e3) e3◃e1 = τ

U4 e◃δ = e

U5 δ◃e = δ

U6 (x + y)◃z = (x◃z)+(y◃z)

U7 (x ⋅ y)◃z = (x◃z)⋅(y◃z)

U8



No. Axiom

U9 (x|y)◃z = (x◃z)|(y◃z)

U10 x◃(y + z)=(x◃y)◃z

U11 x◃(y ⋅ z)=(x◃y)◃z

U12

U13 x◃(y|z)=(x◃y)◃z

L5 u::(x≬y)=u::x≬u::y

L6 u::(x∥y)=u::x∥u::y

L7 u::(x|y)=u::x|u::y

L8 u::(Θ(x))=Θ(u::x)

L9 u::(x◃y)=u::x◃u::y

L10 u::δ = δ

Based on the definition of basic terms for APTC with
static localities (see Definition 5.24) and axioms of
parallelism (see Table 5.4), we can prove the elimination
theorem of parallelism.

Theorem 5.26

Elimination theorem of parallelism

Let p be a closed APTC with static localities term. Then

there is a basic APTC with static localities term q such



that .

Theorem 5.27

Generalization of APTC with static localities

with respect to BATC with static localities

APTC with static localities is a generalization of BATC

with static localities.

Theorem 5.28

Soundness of APTC with static localities

modulo static location pomset bisimulation

equivalence

Let x and y be APTC with static localities terms. If 
, then .

Theorem 5.29

Completeness of APTC with static localities

modulo static location pomset bisimulation

equivalence

Let p and q be closed APTC with static localities terms, if 
 then .

Theorem 5.30



Soundness of APTC with static localities

modulo static location step bisimulation

equivalence

Let x and y be APTC with static localities terms. If 
, then .

Theorem 5.31

Completeness of APTC with static localities

modulo static location step bisimulation

equivalence

Let p and q be closed APTC with static localities terms, if 
 then .

Theorem 5.32

Soundness of APTC with static localities

modulo static location hp-bisimulation

equivalence

Let x and y be APTC with static localities terms. If 
, then .

Theorem 5.33

Completeness of APTC with static localities

modulo static location hp-bisimulation

equivalence



Let p and q be closed APTC with static localities terms, if 
 then .

Theorem 5.34

Soundness of APTC with static localities

modulo static location hhp-bisimulation

equivalence

Let x and y be APTC with static localities terms. If 
, then .

Theorem 5.35

Completeness of APTC with static localities

modulo static location hhp-bisimulation

equivalence

Let p and q be closed APTC with static localities terms, if 
 then .

The transition rules of encapsulation operator  are
shown in Table 5.5.

Table 5.5

Transition rules of encapsulation operator ∂H.



Based on the transition rules for encapsulation operator 
 in Table 5.5, we design the axioms as Table 5.6 shows.

Table 5.6

Axioms of encapsulation operator.

No. Axiom

D1 e ∉ H ∂H(e)=e

D2 e ∈ H ∂H(e)=δ

D3 ∂H(δ)=δ

D4 ∂H(x + y)=∂H(x)+∂H(y)

D5 ∂H(x ⋅ y)=∂H(x)⋅∂H(y)

D6

L11 u::∂H(x)=∂H(u::x)

Theorem 5.36

Congruence theorem of encapsulation

operator 

Static location truly concurrent bisimulation equivalences

, , , and  are all congruences with respect to

encapsulation operator .



Theorem 5.37

Elimination theorem of APTC with static

localities

Let p be a closed APTC with static localities term

including the encapsulation operator . Then there is a

basic APTC with static localities term q such that 
.

Theorem 5.38

Soundness of APTC with static localities

modulo static location pomset bisimulation

equivalence

Let x and y be APTC with static localities terms including

encapsulation operator . If , then .

Theorem 5.39

Completeness of APTC with static localities

modulo static location pomset bisimulation

equivalence

Let p and q be closed APTC with static localities terms

including encapsulation operator , if  then .

Theorem 5.40



Soundness of APTC with static localities

modulo static location step bisimulation

equivalence

Let x and y be APTC with static localities terms including

encapsulation operator . If , then .

Theorem 5.41

Completeness of APTC with static localities

modulo static location step bisimulation

equivalence

Let p and q be closed APTC with static localities terms

including encapsulation operator , if  then .

Theorem 5.42

Soundness of APTC with static localities

modulo static location hp-bisimulation

equivalence

Let x and y be APTC with static localities terms including

encapsulation operator . If , then .

Theorem 5.43

Completeness of APTC with static localities

modulo static location hp-bisimulation

equivalence



Let p and q be closed APTC with static localities terms

including encapsulation operator , if  then .

Theorem 5.44

Soundness of APTC with static localities

modulo static location hhp-bisimulation

equivalence

Let x and y be APTC with static localities terms including

encapsulation operator . If , then .

Theorem 5.45

Completeness of APTC with static localities

modulo static location hhp-bisimulation

equivalence

Let p and q be closed APTC with static localities terms

including encapsulation operator , if  then .

5.4 Recursion

In this section, we introduce recursion to capture infinite
processes based on APTC with static localities. Since in
APTC with static localities, there are four basic operators ::,

⋅, +, and , the recursion must be adapted this situation to

include .



In the following,  are recursion specifications, 
are recursive variables.

Definition 5.46

Recursive specification

A recursive specification is a finite set of recursive
equations

where the left-hand sides of  are called recursion
variables, and the right-hand sides  are process
terms in APTC with static localities with possible
occurrences of the recursion variables .

Definition 5.47

Solution

Processes  are a solution for a recursive
specification  (with respect to
static location truly concurrent bisimulation equivalences

( , , )) if  for .



Definition 5.48

Guarded recursive specification

A recursive specification

is guarded if the right-hand sides of its recursive
equations can be adapted to the form by applications of
the axioms in APTC with static localities and replacing
recursion variables by the right-hand sides of their
recursive equations,

where , and the sum
above is allowed to be empty, in which case it represents
the deadlock δ.



Definition 5.49

Linear recursive specification

A recursive specification is linear if its recursive
equations are of the form

where , and the sum
above is allowed to be empty, in which case it represents
the deadlock δ.

For a guarded recursive specifications E with the form

the behavior of the solution  for the recursion variable 
 in E, where , is exactly the behavior of their

right-hand sides , which is captured by the two
transition rules in Table 5.7.



Table 5.7

Transition rules of guarded recursion.

Theorem 5.50

Conservativity of APTC with static localities

and guarded recursion

APTC with static localities and guarded recursion is a

conservative extension of APTC with static localities.

Theorem 5.51

Congruence theorem of APTC with static

localities and guarded recursion

Static location truly concurrent bisimulation equivalences

, , , and  are all congruences with respect to

APTC with static localities and guarded recursion.

The RDP (Recursive Definition Principle) and the RSP

(Recursive Specification Principle) are shown in Table 5.8.



Table 5.8

Recursive definition and specification principle.

No. Axiom

RDP 〈Xi|E〉 = ti(〈X1|E〉,⋯,〈Xn|E〉) (i ∈ {1,⋯,n})

RSP if yi = ti(y1,⋯,yn) for i ∈ {1,⋯,n}, then yi = 〈Xi|E〉
(i ∈ {1,⋯,n})

Theorem 5.52

Elimination theorem of APTC with static

localities and linear recursion

Each process term in APTC with static localities and

linear recursion is equal to a process term  with E a

linear recursive specification.

Theorem 5.53

Soundness of APTC with static localities and

guarded recursion

Let x and y be APTC with static localities and guarded

recursion terms. If  with guarded recursion ,

then

1.   ;

2.   ;

3.   ;



4.   .

Theorem 5.54

Completeness of APTC with static localities

and linear recursion

Let p and q be closed APTC with static localities and

linear recursion terms, then,

1.  if  then ;

2.  if  then ;

3.  if  then ;

4.  if  then .

5.5 Abstraction

To abstract away from the internal implementations of a
program, and verify that the program exhibits the desired
external behaviors, the silent step τ (and making τ distinct
by ), and abstraction operator  are introduced, where 

 denotes the internal events. The silent step τ
represents the internal events, when we consider the
external behaviors of a process, τ events can be removed,
that is, τ events must keep silent. The transition rule of τ is
shown in Table 5.9. In the following, let the atomic event e
range over , and let the communication function 



, with each communication involved τ
resulting into δ.

Table 5.9

Transition rule of the silent step.

The silent step τ as an atomic event, is introduced into E.
Considering the recursive specification , τs, ττs, and 

 are all its solutions, that is, the solutions make the
existence of τ-loops which cause unfairness. To prevent τ-
loops, we extend the definition of linear recursive
specification (Definition 5.49) to the guarded one.

Definition 5.55

Guarded linear recursive specification

A recursive specification is linear if its recursive
equations are of the form



where , and the
sum above is allowed to be empty, in which case it
represents the deadlock δ.

A linear recursive specification E is guarded if there
does not exist an infinite sequence of τ-transitions 

.

Theorem 5.56

Conservativity of APTC with static localities

and silent step and guarded linear recursion

APTC with static localities and silent step and guarded

linear recursion is a conservative extension of APTC with

static localities and linear recursion.

Theorem 5.57

Congruence theorem of APTC with static

localities and silent step and guarded linear

recursion

Rooted branching static location truly concurrent

bisimulation equivalences ,  and  are all

congruences with respect to APTC with static localities

and silent step and guarded linear recursion.

We design the axioms for the silent step τ in Table 5.10.



Table 5.10

Axioms of silent step.

No. Axiom

B1 e ⋅ τ = e

B2 e ⋅ (τ ⋅ (x + y)+x)=e ⋅ (x + y)

B3

L13 u::τ = τ

Theorem 5.58

Elimination theorem of APTC with static

localities and silent step and guarded linear

recursion

Each process term in APTC with static localities and

silent step and guarded linear recursion is equal to a

process term  with E a guarded linear recursive

specification.

Theorem 5.59

Soundness of APTC with static localities and

silent step and guarded linear recursion

Let x and y be APTC with static localities and silent step

and guarded linear recursion terms. If APTC with static



localities and silent step and guarded linear recursion 
, then

1.   ;

2.   ;

3.   ;

4.   .

Theorem 5.60

Completeness of APTC with static localities

and silent step and guarded linear recursion

Let p and q be closed APTC with static localities and

silent step and guarded linear recursion terms, then,

1.  if  then ;

2.  if  then ;

3.  if  then ;

4.  if  then .

The unary abstraction operator  ( ) renames all
atomic events in I into τ. APTC with static localities and
silent step and abstraction operator is called  with
static localities. The transition rules of operator  are
shown in Table 5.11.



Table 5.11

Transition rule of the abstraction operator.

Theorem 5.61

Conservativity of  with static localities

and guarded linear recursion

 with static localities and guarded linear recursion is

a conservative extension of APTC with static localities

and silent step and guarded linear recursion.

Theorem 5.62

Congruence theorem of  with static

localities and guarded linear recursion

Rooted branching static location truly concurrent

bisimulation equivalences , , , and  are all

congruences with respect to  with static localities

and guarded linear recursion.



We design the axioms for the abstraction operator  in
Table 5.12.

Table 5.12

Axioms of abstraction operator.

No. Axiom

TI1 e ∉ I τI(e)=e

TI2 e ∈ I τI(e)=τ

TI3 τI(δ)=δ

TI4 τI(x + y)=τI(x)+τI(y)

TI5 τI(x ⋅ y)=τI(x)⋅τI(y)

TI6

L14 u::τI(x)=τI(u::x)

L15 e ∉ I τI(u::e)=u::e

L16 e ∈ I τI(u::e)=τ

Theorem 5.63

Soundness of  with static localities and

guarded linear recursion

Let x and y be  with static localities and guarded

linear recursion terms. If  with static localities and



guarded linear recursion , then

1.   ;

2.   ;

3.   ;

4.   .

Though τ-loops are prohibited in guarded linear recursive
specifications (see Definition 5.55) in a specifiable way,
they can be constructed using the abstraction operator, for
example, there exist τ-loops in the process term 
. To avoid τ-loops caused by  and ensure fairness, the
concept of cluster and  (Cluster Fair Abstraction Rule)
[25] are still valid in true concurrency, we introduce them
below. (See Table 5.13.)



Table 5.13

Cluster fair abstraction rule.

No. Axiom

CFAR

If X is in a cluster for I with exits

,

,

then τ ⋅ τI(〈X|E〉)=

Definition 5.64

Cluster

Let E be a guarded linear recursive specification, and 
. Two recursion variable X and Y in E are in the same
cluster for I iff there exist sequences of transitions 

 and ,
where .

 or 

 is an exit for



the cluster C iff: (1) 

or  is a
summand at the right-hand side of the recursive equation
for a recursion variable in C, and (2) in the case of 

, either 
 or .

Theorem 5.65

Soundness of 

 is sound modulo rooted branching truly concurrent

bisimulation equivalences , , , and .

Theorem 5.66

Completeness of  with static localities

and guarded linear recursion and 

Let p and q be closed  with static localities and

guarded linear recursion and  terms, then,

1.  if  then ;

2.  if  then ;

3.  if  then ;

4.  if  then .
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6: Building blocks based

structured parallel

programming

Abstract

This is an introduction to building blocks based
structured parallel programming.

Keywords

Building Blocks; Parallelism; Parallel Programming

We will discuss the usual usage case in parallel
programming, then introduce the so-called building block
and building blocks based parallel programming.

6.1 Orchestration and choreography

In Chapter 2, we have discussed the structured and
unstructured parallelism in true concurrency. The usual
usage case in parallel computing is illustrated in Fig. 6.1.
There are two aspects in this case: orchestration and
choreography. Orchestration contains a control flow of
atomic actions, including ordinary atomic actions and
communicating actions, and interacts with outside through



the communicating actions. While choreography defines
the interactions among the involved parties.



FIGURE 6.1  Orchestration and
choreography.



Usually, the orchestration is encapsulated as an object, or
a thread, or an application process, or a remote process, or
a distributed object, or a distributed application, as the two
smaller dashed squares in Fig. 6.1 illustrate.

The choreography defines the communications among the
orchestrations, and corresponding communications are
object call, communication among threads, communication
among processes, remote process call, distributed object
call, and distributed communications (may be synchronous
or asynchronous). And also the choreography can be
encapsulated as an entity, such as an object, a thread, a
process, a remote process, a distributed object, and a
distributed application, as the biggest dashed square in
Fig. 6.1 illustrates.

6.2 The building block in parallel

programming

According to the above analyses, both the orchestration
and the choreography can be encapsulated as an entity
which is called building block in parallel programming, as
Fig. 6.2 illustrates. The building block interacts with the
outside through m inputs and n outputs, and encapsulates a
control flow inside.



FIGURE 6.2  The building block.

The typical process is as follows.

1.  The building block receives the input  from the
outside through the channel  (the corresponding
reading action is denoted );

2.  Then it processes the input and generates the
output  through a processing function ;

3.  Then it sends the output to the outside through the
channel  (the corresponding sending action is



denoted ).

We assume all data elements ,  for  are from a
finite set Δ.

The state transitions of the building block described by
APTC are as follows.

There are no communications in the building block.
Let all modules be in parallel, then the building block BB

can be presented by the following process term.

where ,  for .
Then we get the following conclusion on the building

block.

Theorem 6.1

Correctness of the building block

The building block  can exhibit desired external

behaviors.

Proof

Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can
prove that



,
that is, the building block  can exhibit desired

external behaviors.
For the details of proof, please refer to Section 3.10,

and we omit it. □

6.3 Building blocks based parallel

programming

After the building blocks (may be encapsulated
orchestrations or encapsulated choreographies) are
defined, the parallel programming becomes choreography
among these building blocks, and then the integrated
choreography maybe encapsulated as a new bigger
building block. As Fig. 6.1 illustrates, the left orchestration
is encapsulated as a building block (BB1), the right
orchestration is encapsulated as another building block
(BB2), and the choreography between BB1 and BB2 is
encapsulated as the third building block (BB3).

Without loss of generality, we explain the building block
based parallel programming through the example in Fig.

6.1. The process of Fig. 6.1 is as follows.

1.  The building block BB1 receives the input  from
the outside through the channel  (the corresponding
reading action is denoted ), then after an inner
processing function , generates the output data 



, and sends it to BB2 through the channel  (the
corresponding sending action is denoted );

2.  The building block BB2 receives the input  from
BB1 through the channel  (the corresponding
reading action is denoted ), then after an inner
processing function , generates the output data 

, and sends it to BB1 through the channel  (the
corresponding sending action is denoted );

3.  BB1 receives the input  from BB2 through the
channel  (the corresponding reading action is
denoted ), then after an inner processing
function , generates the output data , and
sends it to BB2 through the channel  (the
corresponding sending action is denoted );

4.  BB2 receives the input  from BB1 through the
channel  (the corresponding reading action is
denoted ), then after an inner processing
function , generates the output data , and
sends it to the outside through the channel  (the
corresponding sending action is denoted ).

We assume all data elements ,  for  are from a
finite set Δ.

The state transitions of the building block BB1 described
by APTC are as follows.



There is no communications in the building block BB1.
Let all modules be in parallel, then the building block

BB1 can be presented by the following process term.

where ,  for .
Then we get the following conclusion on the building

block BB1.

Theorem 6.2

Correctness of the building block BB1

The building block BB1  can exhibit desired

external behaviors.

Proof

Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can
prove that

,
that is, the building block BB1  can exhibit

desired external behaviors.
For the details of proof, please refer to Section 3.10,

and we omit it. □



The state transitions of the building block BB2 described
by APTC are as follows.

There is no communications in the building block BB2.
Let all modules be in parallel, then the building block

BB2 can be presented by the following process term.

where ,  for .
Then we get the following conclusion on the building

block BB2.

Theorem 6.3

Correctness of the building block BB2

The building block BB2  can exhibit desired

external behaviors.

Proof

Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can
prove that



,
that is, the building block BB2  can exhibit

desired external behaviors.
For the details of proof, please refer to Section 3.10,

and we omit it. □

There are three communication functions between BB1
and BB2.

Let all modules be in parallel, then the building block
BB3 can be presented by the following process term.

where ,
.

Then we get the following conclusion on the building
block.

Theorem 6.4

Correctness of the building block BB3

The building block BB3  can exhibit desired

external behaviors.

Proof



Based on the above state transitions of the above
modules, by use of the algebraic laws of APTC, we can
prove that

,
that is, the building block BB3  can exhibit

desired external behaviors.
For the details of proof, please refer to Section 3.10,

and we omit it. □



7: Modeling and

verification of parallel

programming languages

Abstract

This chapter introduces the modeling and verification
of parallel programming language.

Keywords

Parallelism; Parallel Programming; Language

In this chapter, we will show the modeling of parallel
programming language. For an imperative language (for
details, please see Appendix A), the syntactic sets are as
follows.

•  Numbers set N, with positive, negative integers, and
zero, and ;

•  Truth values set T, with values ;
•  Storage locations Loc, and ;
•  Arithmetic expressions Aexp, and ;
•  Boolean expressions Bexp, and ;
•  Commands Com, and .



The formation rules of PPL are:
For Aexp:

For Bexp:

For Com:

In the following section, we will discuss the modeling of
such language by APTC and its guarded extensions.

7.1 Numbers and arithmetic

expressions

Numbers and arithmetic expressions are the data and data
related manipulation, after evaluation, the data may be
stored through the assign command, composed into a
Boolean expression, or exchanged through communication
channels (shared memory, wired or wireless channels).



APTC and guarded APTC do not support data
manipulation, but Boolean expressions and
communications, and also atomic actions manipulating
data.

7.2 Truth values and Boolean

expressions

Truth value and Boolean expressions can be modeled as
guards in guarded APTC, ture as ϵ and false as δ and
Boolean expressions as guards. And the axioms of guarded
APTC lead to a Boolean Algebra.

7.3 Storage locations and assign

command

Since data are hidden behind of the atomic actions, storage
location, and assign command are modeled as a kind of
atomic actions.

7.4 Commands

The assign command is modeled as a kind of atomic
actions, skip is modeled as the empty action ϵ in APTC and
guarded APTC. ; is modeled as the sequential composition ⋅
in APTC.

, can be modeled as .
, can be captured by the following recursive

specification:



The command  can be modeled by ≬, ∥, , and | in
APTC and guarded APTC.

7.5 Verification of parallel programs

By use of the axiom systems of APTC and guarded APTC,
putting the program segments into parallel, abstracting
internal actions, we can verify if the program is correct,
that is, if the program exhibits desired behaviors (please
see the example in Section 3.10).



8: Modeling and

verification of parallel

programming patterns

Abstract

This chapter introduces the modeling and verification of
parallel programming patterns.

Keywords

Patterns; Parallelism; Parallel Programming

In this chapter, we will introduce the modeling of parallel
programming patterns [15] by use of APTC and guarded
APTC.

8.1 Parallel control patterns

8.1.1 Fork-Join

The Fork-Join pattern forks the control flow into several
ones, and rejoins later, as Fig. 8.1 shows. In Fig. 8.1, the
clause  forks into , , and , and later joins as .





FIGURE 8.1  Fork-Join pattern.

The program segment in Fig. 8.1 can be modeled by APTC
as follows.

8.1.2 Map

The Map pattern maps every element of the data set through
a function and then outputs, as Fig. 8.2 shows. In Fig. 8.2,
the data element  is processed through the clause , and
then sends the result data outside.



FIGURE 8.2  Map pattern.

The program segment in Fig. 8.2 can be modeled by APTC
as follows.



8.1.3 Stencil

The Stencil pattern is a generalization of the Map pattern
with the input data can come from the “neighbors”, as Fig.

8.3 shows. In Fig. 8.3, the clause inputs of  are coming
from the neighbors , , , and , the  executes and
generates the output.



FIGURE 8.3  Stencil pattern.

The program segment in Fig. 8.3 can be modeled by APTC
as follows.



8.1.4 Reduction

The Reduction pattern combines every data element into a
single data element through associative functions, as Fig.

8.4 shows. In Fig. 8.4, the data elements  and  are
combined by ,  and  are combined by , and then
combined by  and generates the data element .





FIGURE 8.4  Reduction pattern.

The program segment in Fig. 8.4 can be modeled by APTC
as follows.

8.1.5 Scan

The Scan pattern computes all partial reductions, as Fig.

8.5 shows. In Fig. 8.5, the data element may be sent out
directly or may be processed by reductions.





FIGURE 8.5  Scan pattern.

The program segment in Fig. 8.5 can be modeled by APTC
as follows.

8.1.6 Recurrence

The Recurrence pattern is a generalization of iteration with
the input data can come from the output of “neighbors”, as
Fig. 8.6 shows. In Fig. 8.6, the clause inputs of  are
coming from the neighbors , , , and , the  executes
and generates the output.



FIGURE 8.6  Recurrence pattern.

The program segment in Fig. 8.3 can be modeled by APTC
as follows.



8.2 Parallel data management

patterns

8.2.1 Pack

The Pack pattern can be used to eliminate the unused data
element in a data collection, as Fig. 8.7 shows. In Fig. 8.7,
the data element  is unused and eliminated.



FIGURE 8.7  Pack pattern.

The program segment in Fig. 8.7 can be modeled by APTC
as follows.



8.2.2 Pipeline

The Pipeline pattern connects data-processing tasks one step
by another, as Fig. 8.8 shows. In Fig. 8.8, there are two
steps  and  in the pipeline.





FIGURE 8.8  Pipeline pattern.

The program segment in Fig. 8.8 can be modeled by APTC
as follows.

8.2.3 Geometric decomposition

The Geometric decomposition pattern breaks data into a set
of sub-collections, as Fig. 8.9 shows. In Fig. 8.9, the data
set  is broken into two data collections:  and .



FIGURE 8.9  Geometric decomposition
pattern.

The program segment in Fig. 8.9 can be modeled by APTC
as follows.



8.2.4 Gather

The Gather pattern reads a set of data collections according
to a set of indices, as Fig. 8.10 shows. In Fig. 8.10, the
indices are .



FIGURE 8.10  Gather pattern.

The program segment in Fig. 8.10 can be modeled by
APTC as follows.

8.2.5 Scatter



The Scatter pattern is the inverse of the Gather pattern, it
writes a set of data collections according to a set of indices,
as Fig. 8.11 shows. In Fig. 8.11, the indices are .

FIGURE 8.11  Scatter pattern.



The program segment in Fig. 8.11 can be modeled by
APTC as follows.

8.3 Other parallel patterns

8.3.1 Superscalar sequences

The Superscalar sequence pattern operates according to the
data dependencies, as Fig. 8.12 shows. In Fig. 8.12, the
data dependencies are defined respectively.



FIGURE 8.12  Superscalar sequence
pattern.

The program segment in Fig. 8.12 can be modeled by
APTC as follows.



8.3.2 Speculative selection

The Speculative selection pattern generalizes the selection
to make the condition and both branches can run in parallel,
as Fig. 8.13 shows. In Fig. 8.13, both the condition and the
two branches can execute in parallel.

FIGURE 8.13  Speculative selection
pattern.

The program segment in Fig. 8.13 can be modeled by
guarded APTC as follows.



Note that,  and  are guards.

8.3.3 Workpile

The Workpile pattern generalizes the Map pattern with each
function can generate one or more instances, as Fig. 8.14

shows. In Fig. 8.14,  generates  and ,  generates ,
and  generates .





FIGURE 8.14  Workpile pattern.

The program segment in Fig. 8.14 can be modeled by
APTC as follows.

8.3.4 Search

The Search pattern finds the required data from the data
collections, as Fig. 8.15 shows. In Fig. 8.15,  finds  and 
, and  finds , , and .



FIGURE 8.15  Search pattern.

The program segment in Fig. 8.15 can be modeled by
APTC as follows.

8.3.5 Segmentation



The Segmentation pattern operates on the segmented data
collections, as Fig. 8.16 shows. In Fig. 8.16,  and  are
one segment, and  and  are another.

FIGURE 8.16  Segmentation pattern.



The program segment in Fig. 8.16 can be modeled by
APTC as follows.

8.3.6 Expand

The Expand pattern can be deemed as a mixture of the Pack
pattern and the Map pattern, as Fig. 8.17 shows. In Fig.

8.17,  is split in  and , and  is unused.



FIGURE 8.17  Expand pattern.

The program segment in Fig. 8.17 can be modeled by
APTC as follows.



8.3.7 Category reduction

The Category reduction pattern finds the data elements in
the same category and reduces them to one element, as Fig.

8.18 shows. In Fig. 8.18, the data  and  are in the same
category, and  and , and  and  are in the same
category.



FIGURE 8.18  Category Reduction pattern.

The program segment in Fig. 8.18 can be modeled by
APTC as follows.



8.3.8 Term graph rewriting

The Term graph rewriting pattern provides a graph-like
concurrency, as Fig. 8.19 shows. In Fig. 8.19, this style
concurrency is only defined by causalities among atomic
actions, and is the so-called true concurrency.



FIGURE 8.19  Term graph rewriting
pattern 1.



In Chapter 2 and APTC in Chapter 3, we have already
proven that Fig. 8.19 is equivalent to Fig. 8.20 and can be
structured.



FIGURE 8.20  Term graph rewriting
pattern 2.



8.4 Verification of parallel

programming patterns

By use of the axiom systems of APTC and guarded APTC,
putting the parallel programming patterns based program
segments into parallel, abstracting internal actions, we can
verify if the program is correct, that is, if the program
exhibits desired behaviors (please see the example in
Section 3.10).

References

[15] M. McCool, A.D. Robison, J. Reinders,
Structured Parallel Programming: Patterns for

Efficient Computation. Elsevier; 2012.



9: Modeling and

verification of distributed

systems

Abstract

This chapter introduces the modeling and verification of
distributed systems.

Keywords

Distributed Computing; Verification; Process Algebra

In this chapter, we will introduce the modeling of distributed
systems [16] by use of APTC, guarded APTC, and distributed
APTC.

9.1 A model of distributed

computations

A distributed system consists of a set of processors and a set
of channels among the processors, as Fig. 9.1 shows. Each
processor may be a shared memories based multi-cores or
multi-processors system. The whole distributed
computational task is defined by atomic actions and causal
relations among them. And there exist two kinds of
causalities: one is executional order defined causality, and



the other is communication defined causality. Note that: (1)
In each processor, there also exists causality defined
concurrency (two actions without causal relations between
them will be executed concurrently); (2) Communications
will always occur between two different parallel branches, it
may occur between two different processors through
communication channels, or in the same processor, or occur
between two cores through the shared memories.



FIGURE 9.1  A model of distributed
computations.

A distributed system is a set of autonomous processors
with communications among them through the
communication channels, it can be modeled by APTC,
guarded APTC, and distributed APTC with the following
distinct features.



•  No common physical clock. There is not a common
physical clock in the distributed systems. This feature
means that the asynchronous cooperation nature
among different processors. APTC and its extensions
can model the asynchronous cooperations among
processors by use of the placeholder extension in the
following way: (1) describe each processor's
behaviors by the language elements including send
and receive messages through some channels and the
appropriate placeholder; (2) put each processor in
parallel.

•  No shared memories. There are not shared memories
among different processors. This feature means that
communications always occur as message exchanges
through some communication channels. APTC and its
extensions support the definition of the
communication functions, through which synchronous
or asynchronous communications can be defined.

•  Geographical separation. The processors in the
distributed systems are geographical separated. This
feature means the same function actions performed
on different processors should be distinguished.
Distributed APTC can be used to model the
distribution of the different processors in the
distributed systems.

•  Autonomy and heterogeneity. Each processor is
executed autonomously and implemented
heterogeneously. The autonomy is assured by the
abstraction mechanism of APTC and its extensions,



each processor is encapsulated and abstracted away
from its internal computations. And the heterogeneity
is assured by the neutrality of APTC and its
extensions, APTC and its extensions are neutral
languages independent to any concrete
implementation and just capture the computations
and concurrency.

Since the lack of global physical time, the logical time is
determined by the causalities among actions defined in the
distributed systems. The clock consistency condition says:

where  and  are two events in the distributed systems, 
is the logical time of event e.

The Lamport's scalar time represents the logical time
according to the following two time updating rules:

1.  R1: In the process , before executing an event
(send, receive, internal), the logical time  of 
updates according to:



2.  R2: Each message sent by another process 
attaches with the logical time  of , when 
receives the message with the timestamp, it
updates its logical time  according to:

then  executes the rule R1 and processes the message.

APTC and its extensions have the natural advantages to
analyze the logical time, for their explicit definition of causal
relation ⩽, sequential composition ⋅, communication merge |,
and communication function γ.

9.2 Distributed transactions

Traditional transaction has ACID (Atomicity, Consistency,
Isolation, and Durability) properties, while distributed
transaction implements transactions in distributed system
and consists of a set of local transactions. In this section, we
will discuss the modeling and verification of several classical
distributed transaction protocols, including the so-called
Two-Phase Commit protocol (2PC), and Three-Phase Commit
protocol (3PC).

9.2.1 Two-phase commit protocol

The 2PC protocol introduces a transaction coordinator to
coordinate and manage the distributed transactions, and it



includes two phases: the preparation phase and the
commission phase, as Fig. 9.2 illustrates.

FIGURE 9.2  Two-phase commit protocol.

The process of 2PC protocol is following.

1.  Coordinator receives the transaction request d from
the outside through the channel  (the
corresponding reading action is denoted ), the
Coordinator generates the preparation request  for
the Database i through the internal action , and



sends  to the corresponding Database i through the
channel  (the corresponding sending action is
denoted );

2.  Database i receives the preparation request  from
Coordinator through the channel  (the
corresponding reading action is denoted ),
then after an internal processing , generates the
preparation response , and sends  to
Coordinator through the channel  (the
corresponding sending action is denoted );

3.  Coordinator receives the preparation response 
from Database i through the channel  (the
corresponding reading action is denoted ), if
all responses are successful, it generates the
commission request  through an action cr, and sends

 to Database i through the channel  (the
corresponding sending action is denoted ); if
one response is unsuccessful, it generates the rollback
request  through an action rr, and sends  to
Database i through the channel  (the
corresponding sending action is denoted );

4.  Database i receives the commission request or
rollback request  from Coordinator through the
channel  (the corresponding reading action is
denoted ), if  is a commission request,
Database i commits the transaction through an action 

, and sends the commission response  to
Coordinator through the channel  (the
corresponding sending action is denoted ); if 



is a rollback request, Database i rollbacks the
transaction through an action , and sends the
rollback response  to Coordinator through the
channel  (the corresponding sending action is
denoted );

5.  Coordinator receives the response  from Database
i through the channel  (the corresponding reading
action is denoted ), if the response  is a
commission response, Coordinator sends the
transaction success response  to the outside through
the channel  (the corresponding sending action is
denoted ); if the response  is a rollback
response, Coordinator sends the transaction failure
response  to the outside through the channel  (the
corresponding sending action is denoted ).

Where , Δ is the set of data.
Coordinator's state transitions described by  are

following.

The state transitions of Database i described by  are
following.



The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock δ. We define the
following communication functions.

Let all modules be in parallel, then the protocol 
 can be presented by the following process term.

where 

for ,

for .
Then we get the following conclusion on the protocol.

Theorem 9.1



The 2PC protocol in Fig. 9.2 is correct.

Proof

Based on the above state transitions of the above modules,
by use of the algebraic laws of , we can prove that

.
For the details of proof, please refer to Section 3.10, and

we omit it. □

9.2.2 Three-phase commit protocol

The 3PC protocol introduces a transaction coordinator to
coordinate and manage the distributed transactions, and it
includes three phases: the preparation phase, the pre-
commission phase, and the commission phase, as Fig. 9.3

illustrates.



FIGURE 9.3  Three-phase commit protocol.

The process of 3PC protocol is following.

1.  Coordinator receives the transaction request d from
the outside through the channel  (the
corresponding reading action is denoted ), the
Coordinator generates the preparation request  for
the Database i through the internal action , and
sends  to the corresponding Database i through the
channel  (the corresponding sending action is
denoted );



2.  Database i receives the preparation request  from
Coordinator through the channel  (the
corresponding reading action is denoted ),
then after an internal processing , generates the
preparation response , and sends  to
Coordinator through the channel  (the
corresponding sending action is denoted );

3.  Coordinator receives the preparation response 
from Database i through the channel  (the
corresponding reading action is denoted ), if
all responses are successful, it generates the pre-
commission request  through an action pcr, and
sends  to Database i through the channel  (the
corresponding sending action is denoted ); if
one response is unsuccessful, it sends the transaction
failure response in  to Database i through the
channel  (the corresponding sending action is
denoted );

4.  Database i receives the pre-commission request 
from Coordinator through the channel  (the
corresponding reading action is denoted ),
Database i pre-commits the transaction through an
action , and generates and sends the response 
to Coordinator through the channel  (the
corresponding sending action is denoted );

5.  Coordinator receives the pre-commission response 
 from Database i through the channel  (the

corresponding reading action is denoted ), if
all responses are successful, it generates the



commission request  through an action cr, and sends
 to Database i through the channel  (the

corresponding sending action is denoted ); if
one response is unsuccessful, it sends the rollback
request  to Database i through the channel  (the
corresponding sending action is denoted );

6.  Database i receives the commission request or the
rollback request  from Coordinator through the
channel  (the corresponding reading action is
denoted ), if  is a commission request,
Database i commits the transaction through an action 

, and sends the commission response  to
Coordinator through the channel  (the
corresponding sending action is denoted ); if 
is a rollback request, Database i rollbacks the
transaction through an action , and sends the
rollback response  to Coordinator through the
channel  (the corresponding sending action is
denoted );

7.  Coordinator receives the response  from Database
i through the channel  (the corresponding reading
action is denoted ), if the response  is a
commission response, Coordinator sends the
transaction success response  to the outside through
the channel  (the corresponding sending action is
denoted ); if the response  is a rollback
response, Coordinator sends the transaction failure
response  to the outside through the channel  (the
corresponding sending action is denoted ).



Where , Δ is the set of data.
Coordinator's state transitions described by  are

following.

The state transitions of Database i described by  are
following.

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock δ. We define the
following communication functions.



Let all modules be in parallel, then the protocol 
 can be presented by the following process term.

where 

for ,

for .
Then we get the following conclusion on the protocol.

Theorem 9.2

The 3PC protocol in Fig. 9.3 is correct.

Proof

Based on the above state transitions of the above modules,
by use of the algebraic laws of , we can prove that

.
For the details of proof, please refer to Section 3.10, and

we omit it. □



9.3 Authentication in distributed

systems

In the symmetric encryption and decryption, they use only
one key k. The inputs of symmetric encryption are the key k
and the plaintext D and the output is the ciphertext, so we
treat the symmetric encryption as an atomic action denoted 

. We also use  to denote the ciphertext output.
The inputs of symmetric decryption are the same key k and
the ciphertext  and output is the plaintext D, we also
treat the symmetric decryption as an atomic action 

. And we also use  to denote the
output of the corresponding decryption.

For D is plaintext, it is obvious that  and 
, where ⩽ is the causal relation; and for D

is the ciphertext,  and 
hold.

In the asymmetric encryption and decryption, they use two
keys: the public key  and the private key  generated from
the same seed s. The inputs of asymmetric encryption are
the key  or  and the plaintext D and the output is the
ciphertext, so we treat the asymmetric encryption as an
atomic action denoted  or . We also use 
and  to denote the ciphertext outputs. The inputs of
asymmetric decryption are the corresponding key  or 
and the ciphertext  or , and output is the
plaintext D, we also treat the asymmetric decryption as an
atomic action  and . And we also



use  and  to denote the
corresponding decryption outputs.

For D is plaintext, it is obvious that  and 
, and  and 

, where ⩽ is the causal relation; and for
D is the ciphertext,  and ,
and  and .

The hash function is used to generate the digest of the
data. The input of the hash function  is the data D and the
output is the digest of the data. We treat the hash function
as an atomic action denoted , and we also use 
to denote the output digest.

For , it is obvious that .
Digital signature uses the private key  to encrypt some

data and the public key  to decrypt the encrypted data to
implement the so-called non-repudiation. The inputs of sigh
function are some data D and the private key  and the
output is the signature. We treat the signing function as an
atomic action , and also use  to denote the
signature. The inputs of the de-sign function are the public
key  and the signature , and the output is the
original data D. We also treat the de-sign function as an
atomic action , and also we use 

 to denote the output of the de-sign action.
It is obvious that .
MAC (Message Authentication Code) is used to

authenticate data by symmetric keys k and often assumed
that k is privately shared only between two principals A and
B. The inputs of the MAC function are the key k and some



data D, and the output is the MACs. We treat the MAC
function as an atomic action , and use  to denote
the output MACs.

The MACs  are generated by one principal A and
with D together sent to the other principal B. The other
principal B regenerate the MACs , if ,
then the data D are from A.

Random sequence generation is used to generate a
random sequence, which may be a symmetric key k, a pair of
public key  and , or a nonce  (usually used to resist
replay attacks). We treat the random sequence generation
function as an atomic action  for symmetric key
generation,  for asymmetric key pair generation, and 

 for nonce generation, and the corresponding outputs are
k,  and , N respectively.

9.3.1 Protocols based on symmetric

cryptosystems

The Wide-Mouth Frog protocol shown in Fig. 9.4 uses
symmetric keys for secure communication, that is, the key 
between Alice and Bob is privately shared to Alice and Bob,
Alice, Bob have shared keys with Trent  and  already.



FIGURE 9.4  Wide-Mouth Frog protocol.

The process of the protocol is as follows.

1.  Alice receives some messages D from the outside
through the channel  (the corresponding reading
action is denoted ), if  is not established, she
generates a random session key  through an action 



, encrypts the key request message  with 
through an action  where  Alice's time
stamp, and sends  to Trent through the
channel  (the corresponding sending action is
denoted );

2.  Trent receives the message  through
the channel  (the corresponding reading action is
denoted ), he decrypts the
message through an action . If 

 where  is a function to deciding
whether a time stamp is fresh, he encrypts 
with  through an action , sends ⊤ to
Alice through the channel  (the corresponding
sending action is denoted ) and  to
Bob through the channel  (the corresponding
sending action is denoted ); else if 

, he sends ⊥ to Alice and Bob (the
corresponding sending actions are denoted  and 

 respectively);
3.  Bob receives  from Trent through the channel 

(the corresponding reading action is denoted ).
If , he sends ⊥ to Alice through the channel 
(the corresponding sending action is denoted ); if

, he decrypts  through an action 
. If , he gets , and

sends ⊤ to Alice (the corresponding sending action is
denoted ); if , he sends ⊥ to Alice
through the channel  (the corresponding sending
action is denoted );



4.  Alice receives  from Trent through the channel 
(the corresponding reading action is denoted ),
receives  from Bob through the channel  (the
corresponding reading action is denoted ). If 

, after an encryption processing 
, Alice sends  to Bob through the

channel  (the corresponding sending action is
denoted ); else if , Alice
sends ⊥ to the outside through the channel  (the
corresponding sending action is denoted );

5.  Bob receives the message  through the
channel  (the corresponding reading action is
denoted ), after a decryption
processing , if , he
sends D to the outside through the channel  (the
corresponding sending action is denoted ), if 

, he sends ⊥ to the outside through
the channel  (the corresponding sending action is
denoted ).

Where , Δ is the set of data.
Alice's state transitions described by  are as follows.



Bob's state transitions described by  are as follows.

Trent's state transitions described by  are as follows.

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock δ. We define the
following communication functions.

Let all modules be in parallel, then the protocol  can
be presented by the following process term.



where 

,

.
Then we get the following conclusion on the protocol.

Theorem 9.3

The Wide-Mouth Frog protocol in Fig. 9.4 is secure.

Proof

Based on the above state transitions of the above modules,
by use of the algebraic laws of , we can prove that

.
For the details of proof, please refer to Section 3.10, and

we omit it.
That is, the Wide-Mouth Frog protocol in Fig. 9.4 

 can exhibit desired external behaviors:

1.  For information leakage, because  is privately
shared only between Alice and Trent,  is privately
shared only between Bob and Trent,  is privately
shared only among Trent;



2.  For replay attack, the using of time stamps , , and
, makes that 

,
it is desired;

3.  Without replay attack, the protocol would be 
, it is

desired;
4.  For the man-in-the-middle attack, because  is

privately shared only between Alice and Trent,  is
privately shared only between Bob and Trent,  is
privately shared only among Trent, Alice, and Bob.
For the modeling of the man-in-the-middle attack, the
Wide-Mouth Frog protocol can be against the man-in-
the-middle attack;

5.  For the unexpected and non-technical leaking of , 
, , or they being not strong enough, or Trent

being dishonest, they are out of the scope of analyses
of security protocols;

6.  For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. □

The Otway-Rees protocol shown in Fig. 9.5 uses
symmetric keys for secure communication, that is, the key 
between Alice and Bob is privately shared to Alice and Bob,
Alice, Bob have shared keys with Trent  and  already.



FIGURE 9.5  Otway-Rees protocol.

The process of the protocol is as follows.

1.  Alice receives some messages D from the outside
through the channel  (the corresponding reading
action is denoted ), if  is not established, she
generates the random numbers I,  through the



actions  and , encrypts  by  through an
action , and sends  to
Bob through the channel  (the corresponding
sending action is denoted );

2.  Bob receives  from Alice through
the channel  (the corresponding reading action is
denoted ), he generates a
random number  through an action , encrypts 

 by  through an action , and
sends  to Trent
through the channel  (the corresponding sending
action is denoted 

);
3.  Trent receives 

through the channel  (the corresponding reading
action is denoted 

), he decrypts
the message  through an action 

 and the message 
through an action , generates a
random session key  through an action , then he
encrypts  by  through an action ,
encrypts  by  through an action ,
and sends them to Bob through the channel  (the
corresponding sending action is denoted 

);
4.  Bob receives the message from Trent through the

channel  (the corresponding reading action is
denoted ), he decrypts



 by  through an action 
, if  and , he sends 

 to Alice through the channel  (the
corresponding sending action is denoted 

); else if  or , he sends ⊥
to Alice through the channel  (the corresponding
sending action is denoted );

5.  Alice receives  from Bob (the corresponding
reading action is denoted ), if , she sends
⊥ to Bob through the channel  (the corresponding
sending action is denoted ); else if , she
decrypts  by  through an action 

, if  and , she generates a
random number  through an action , encrypts 

 by  through an action , and sends it to
Bob through the channel  (the corresponding
sending action is denoted ), else if 

 or , she sends ⊥ to Bob through the
channel  (the corresponding sending action is
denoted );

6.  Bob receives  from Alice (the corresponding
reading action is denoted ), if , he sends ⊥
to the outside through the channel  (the
corresponding sending action is denoted ); else if

, she decrypts  by  through an
action , if , she sends
D to the outside through the channel  (the
corresponding sending action is denoted ), else if

, he sends ⊥ to the outside through



the channel  (the corresponding sending action is
denoted ).

Where , Δ is the set of data.
Alice's state transitions described by  are as follows.

Bob's state transitions described by  are as follows.



Trent's state transitions described by  are as follows.

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock δ. We define the
following communication functions.

Let all modules be in parallel, then the protocol  can
be presented by the following process term.

where 

,



.
Then we get the following conclusion on the protocol.

Theorem 9.4

The Otway-Rees protocol in Fig. 9.5 is secure.

Proof

Based on the above state transitions of the above modules,
by use of the algebraic laws of , we can prove that

.
For the details of proof, please refer to Section 3.10, and

we omit it.
That is, the Otway-Rees protocol in Fig. 9.5 

can exhibit desired external behaviors:

1.  For information leakage, because  is privately
shared only between Alice and Trent,  is privately
shared only between Bob and Trent,  is privately
shared only among Trent, Alice, and Bob;

2.  For the man-in-the-middle attack, because  is
privately shared only between Alice and Trent,  is
privately shared only between Bob and Trent,  is
privately shared only among Trent, Alice, and Bob,
and the use of the random numbers I, , and , the
protocol would be 



, it is
desired, the Otway-Rees protocol can be against the
man-in-the-middle attack;

3.  For replay attack, the using of the random numbers
I, , and , makes that 

, it is
desired;

4.  Without man-in-the-middle and replay attack, the
protocol would be 

, it is
desired;

5.  For the unexpected and non-technical leaking of , 
, , or they being not strong enough, or Trent

being dishonest, they are out of the scope of analyses
of security protocols;

6.  For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. □

9.3.2 Protocols based on asymmetric

cryptosystems

The Denning-Sacco protocol shown in Fig. 9.6 uses
asymmetric keys and symmetric keys for secure
communication, that is, the key  between Alice and Bob is
privately shared to Alice and Bob, Alice's, Bob's, and Trent's
public keys , , and  can be publicly gotten.



FIGURE 9.6  Denning-Sacco protocol.

The process of the protocol is as follows.

1.  Alice receives some messages D from the outside
through the channel  (the corresponding reading
action is denoted ), if  is not established, she



sends  to Trent through the channel  (the
corresponding sending action is denoted );

2.  Trent receives  through the channel  (the
corresponding reading action is denoted ), he
signs Alice's and Bob's public keys  and  through
the actions  and , and sends the
signatures to Alice through the channel  (the
corresponding sending action is denoted 

);
3.  Alice receives the message from Trent through the

channel  (the corresponding reading action is
denoted ), she de-signs 

 through an action  to
get , generates a random session key  through an
action , signs  through an action 

, and encrypts the signature by 
through an action , then sends 

 to
Bob through the channel  (the corresponding
sending action is denoted 

);
4.  Bob receives 

 from
Alice (the corresponding reading action is denoted 

),
he de-signs  through an action 

 to get , decrypts 
 through an action 

 and de-sign 



 through an action 
 to get  and , if 

, he generates a random number 
through an action , encrypts  by  through an
action , and sends it to Alice through the
channel  (the corresponding sending action is
denoted ), else if , he
sends  to Alice through the channel  (the
corresponding sending action is denoted 
);

5.  Alice receives  from Bob (the corresponding
reading action is denoted ), if , she
sends  to Bob through the channel  (the
corresponding sending action is denoted 
); else if , if , she generates a
random number  through an action , encrypts 

 by  through an action , and sends it to
Bob through the channel  (the corresponding
sending action is denoted ), else if 

, he sends  to Bob through the
channel  (the corresponding sending action is
denoted );

6.  Bob receives  from Alice (the corresponding
reading action is denoted ), if , he
sends ⊥ to the outside through the channel  (the
corresponding sending action is denoted ); else if

, if , she sends D to the outside
through the channel  (the corresponding sending
action is denoted ), else if , he



sends ⊥ to the outside through the channel  (the
corresponding sending action is denoted ).

Where , Δ is the set of data.
Alice's state transitions described by  are as follows.

Bob's state transitions described by  are as follows.



Trent's state transitions described by  are as follows.

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock δ. We define the
following communication functions.

Let all modules be in parallel, then the protocol  can
be presented by the following process term.

where 



,

.
Then we get the following conclusion on the protocol.

Theorem 9.5

The Denning-Sacco protocol in Fig. 9.6 is secure.

Proof

Based on the above state transitions of the above modules,
by use of the algebraic laws of , we can prove that

.
For the details of proof, please refer to Section 3.10, and

we omit it.
That is, the Denning-Sacco protocol in Fig. 9.6 

 can exhibit desired external behaviors:

1.  For the man-in-the-middle attack, because  and 
are signed by Trent, the protocol would be 

, it is
desired, the Denning-Sacco protocol can be against
the man-in-the-middle attack;

2.  For replay attack, the using of the time stamp ,
random numbers  and , makes that 

, it is
desired;



3.  Without man-in-the-middle and replay attack, the
protocol would be 

, it is
desired;

4.  For the unexpected and non-technical leaking of , 
, , or they being not strong enough, or Trent

being dishonest, they are out of the scope of analyses
of security protocols;

5.  For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. □

The Woo-Lam protocol shown in Fig. 9.7 uses asymmetric
keys and symmetric keys for secure communication, that is,
the key  between Alice and Bob is privately shared to Alice
and Bob, Alice's, Bob's, and Trent's public keys , , and 

 can be publicly gotten.



FIGURE 9.7  Woo-Lam protocol.

The process of the protocol is as follows.

1.  Alice receives some messages D from the outside
through the channel  (the corresponding reading
action is denoted ), if  is not established, she



sends  to Trent through the channel  (the
corresponding sending action is denoted );

2.  Trent receives  through the channel  (the
corresponding reading action is denoted ), he
signs Bob's public key  through the action ,
and sends the signature to Alice through the channel 

 (the corresponding sending action is denoted 
);

3.  Alice receives the message from Trent through the
channel  (the corresponding reading action is
denoted ), she de-signs 
through an action  to get ,
generates a random number  through an action 
and encrypts  by  through an action ,
and sends  to Bob through the channel 
(the corresponding sending action is denoted 

);
4.  Bob receives  from Alice (the

corresponding reading action is denoted 
), he decrypts  through an

action  to get A and , encrypts  by 
 through an action , then sends 

to Trent through the channel  (the corresponding
sending action is denoted );

5.  Trent receives  from Bob through the
channel  (the corresponding reading action is
denoted ), he decrypts the message
through an action , signs  through an
action , generates a random session key 



through an action  and signs  through an
action , encrypts 
through an action  and sends
them to Bob through the channel  (the
corresponding sending action is denoted 

);
6.  Bob receives the signatures from Trent through the

channel  (the corresponding reading action is
denoted ), he
de-signs  through an action 

 to get , decrypts 
 through an action 

, generates a random
number  through an action , encrypts them
through an action  and sends 

 to Alice through the
channel  (the corresponding sending action is
denoted );

7.  Alice receives  from Bob
(the corresponding reading action is denoted 

), she decrypts the
message through an action 

, de-sign 
 through an action 

, if , she sends 
to Bob through the channel  (the corresponding
sending action is denoted ); else if ,
encrypts  by  through an action , and
sends it to Bob through the channel  (the



corresponding sending action is denoted 
);

8.  Bob receives  from Alice (the corresponding
reading action is denoted ), if , he
sends ⊥ to the outside through the channel  (the
corresponding sending action is denoted ); else if

, if , she sends D to the outside through
the channel  (the corresponding sending action is
denoted ), else if , he sends ⊥ to the
outside through the channel  (the corresponding
sending action is denoted ).

Where , Δ is the set of data.
Alice's state transitions described by  are as follows.

Bob's state transitions described by  are as follows.



Trent's state transitions described by  are as follows.

The sending action and the reading action of the same type
data through the same channel can communicate with each
other, otherwise, will cause a deadlock δ. We define the
following communication functions.



Let all modules be in parallel, then the protocol  can
be presented by the following process term.

where 

,

.
Then we get the following conclusion on the protocol.

Theorem 9.6

The Woo-Lam protocol in Fig. 9.7 is secure.

Proof

Based on the above state transitions of the above modules,
by use of the algebraic laws of , we can prove that

.



For the details of proof, please refer to Section 3.10, and
we omit it.

That is, the Woo-Lam protocol in Fig. 9.7 
can exhibit desired external behaviors:

1.  For the man-in-the-middle attack, because  and 
are signed by Trent, the protocol would be 

, it is
desired, the Woo-Lam protocol can be against the
man-in-the-middle attack;

2.  For replay attack, the using of the random number 
, , makes that 

, it is
desired;

3.  Without man-in-the-middle and replay attack, the
protocol would be 

, it is
desired;

4.  For the unexpected and non-technical leaking of , 
, , or they being not strong enough, or Trent

being dishonest, they are out of the scope of analyses
of security protocols;

5.  For malicious tampering and transmission errors,
they are out of the scope of analyses of security
protocols. □
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A: A parallel programming

language

In this appendix, we design a detailed parallel
programming language, abbreviated PPL. PPL includes the
four basic structures: sequence, choice, iteration, and
parallelism, and also non-determinism, communications
(causalities between different parallel branches), and
conflictions between different parallel branches. Note that,
for the integrity, the semantics of traditional parts are also
involved.

In Section A.1, we give the syntax of PPL. We give the
operational semantics and denotational semantics in
Sections A.2 and A.3, and the relation between them in
Section A.4, we give the axiomatic semantics in Section A.5.
We discuss non-determinism in Section A.6, communications
in Section A.7, and conflictions in Section A.8, and the
structuring algorithm in Section A.9.

A.1 Syntax

The syntactic sets of PPL are as follows.

•  Numbers set N, with positive, negative integers, and
zero, and ;



•  Truth values set T, with values ;
•  Storage locations Loc, and ;
•  Arithmetic expressions Aexp, and ;
•  Boolean expressions Bexp, and ;
•  Commands Com, and .

The formation rules of PPL are:
For Aexp:

For Bexp:

For Com:

We see that the syntax of PPL is almost same to traditional
imperative language, except for the explicit parallel operator
∥ in Com.

A.2 Operational semantics



The set of states Σ are composed of , so,  is the
values of storage location X under the state σ. For more
about operational semantics, please refer to Plotkin's book
[20].

In this section, we give the operational semantics of PPL.

A.2.1 Operational rules of Aexp

 is called the configuration of arithmetic expression a,
while  denotes that the value of a is n under the state
σ.

The evaluation rule of integer n:

The evaluation rule of storage location X:

The evaluation rule of sums:

The evaluation rule of subtractions:



The evaluation rule of products:

Then we can define the following equivalence ∼ as follows.

Definition A.1

Equivalence of operational semantics for

arithmetic expressions

 iff , .

A.2.2 Operational rules of Bexp

The evaluation rule of true:

The evaluation rule of false:



The evaluation rule of equality:

The evaluation rule of ⩽:

The evaluation rule of ¬:

The evaluation rule of ∧:



The evaluation rule of ∨:

Then we can define the following equivalence ∼ as follows.

Definition A.2

Equivalence of operational semantics for

boolean expressions

 iff , .

A.2.3 Operational rules for Com

 denotes the configuration of the command c, which
means that the command c executes under the state σ. And 

 means that the command c executing under the state
σ evolves to the state . For  and ,  denotes
using n to replace the contents of X under the state σ.

The execution rule of skip:



The execution rule of assignment:

The execution rule of sequence:

The execution rule of choice:

The execution rule of iteration:



The execution rule of parallelism:

where  are the final states after  and  execute
simultaneously.

Note that, for true concurrency, there are still three other
properties should be processed: communications,
conflictions, and race conditions (we leave them to the next
section).

1.  Communication is occurring between two atomic
communicating commands, which can be defined by a
communication function .
Communications can be implemented by several ways:
share storage locations, invocation of functions by
values, or network communications. For a pure
imperative programming language, we only consider
the case of share storage locations, so, there is no
need to define new communicating commands. So,
two commands in communication are with a relation 



, but rules of  are still the same to the
above ones. We will discuss the general
communications in Section A.7;

2.  Confliction may have two forms: one exists as the
condition rules define; the other may exist among the
parallel branches, which must be eliminated. But the
elimination of confliction existing in parallel branches
may lead to non-deterministic results (refer to [8] for
details). For simplicity, we assume that the programs
written by PPL at this time have no conflictions,
because a program with the conflictions existing
among parallel branches has an equal program
without conflicts. That is, the conflictions can be
eliminated and structured, and we will discuss the
elimination of conflictions between parallel branches
in Section A.8;

3.  Race condition may exist in two parallel commands,
for example, they are all executing assignment to a
same storage location. Two parallel commands in race
condition must be executed serially. We should define
new rules for race condition, but, these rules also lead
to non-deterministic results. So, we also assume that
the programs written by PPL deal with this situation
and the non-deterministic execution is eliminated. In
fact, we can write  or , or put  in
a condition, where  and  are in race condition. But,
indeed, the above parallelism is still can be used
widely in non-sharing memory computation
(distributed computing), or non-racing of sharing



memory computation. For the general form of non-
determinism, we will discuss in Sections A.6 and A.7.

We can get the following propositions. Where ∼ is an
equivalence relation on commands by the definition, and Σ is
the set of states:

Definition A.3

Equivalence of operational semantics for

commands

Proposition A.4

, for .

Proof

By use of the transition rules of ∥, we can get the following
derivations of  for :

And we can get the following derivations of  for 
:



So, it is obvious that , for , as
desired. □

Proposition A.5

, for .

Proof

By use of the transition rules of ∥, we can get the following
derivations of  for :

And we can get the following derivations of  for 
:



So, it is obvious that , for ,
as desired. □

Proposition A.6

, for .

Proof

By use of the transition rules of choice and ∥, we can get
the following derivations of :

And we can get the following derivations of 
:



So, it is obvious that 
, for , as desired. □

Proposition A.7

For ,

1.   ;

2.   .

Proof

(1) By use of the transition rules of sequence and ∥, we can
get the following derivations of :

And we can get the following derivations of :

So, it is obvious that , for , as
desired.



(2) By use of the transition rules of sequence and ∥, we
can get the following derivations of :

And we can get the following derivations of :

So, it is obvious that , for 
, as desired.  □

Proposition A.8

, for .

Proof

By use of the transition rules of skip and ∥, we can get the
following derivations of :



And it is obvious that:

For , it is obvious that , for , as
desired. □

Lemma A.9

For ,

1.   ;

2.   .

Proof

It is obvious by Proposition A.7 and A.8. □

From Lemma A.9, we can see that the execution orders of
 cause non-determinism, they can be executed in any

sequential order or in parallel simultaneously. But, without



race condition, the final states after the execution of  are
deterministic.

A.3 Denotational semantics

Denotational semantics can be used to describe the
semantics of PPL. For more about denotational semantics,
please refer to Mosses's book [21].

In this section, we give the denotational semantics for PPL.

A.3.1 Denotational semantics of Aexp

We define the denotational semantics of Aexp as 
. The concrete denotational semantics of Aexp

are following.

A.3.2 Denotational semantics of Bexp

We define the denotational semantics of Bexp as 
. The concrete denotational semantics of Bexp

are following.



A.3.3 Denotational semantics of Com

We define the denotational semantics of Com as 
. The denotational semantics of Com are

following.

with 

We can get the following propositions.

Proposition A.10

, for .

Proof

By the definition of the denotation of ∥, we can get:

So, , for , as desired. □

Proposition A.11

, for .



Proof

By the definition of the denotation of ∥, we can get:

, for , as desired. □

Proposition A.12

, for .

Proof

By the definition of the denotation of choice and ∥, we can
get:

So, , for 
, as desired. □

Proposition A.13

For ,

1.   ;

2.   .



Proof

(1) By the definition of the denotation of sequence and ∥,
we can get:

So, , as desired.
(2) By the definition of the denotation of sequence and ∥,

we can get:

So, , as desired. □

Proposition A.14

, for .

Proof

By the definition of the denotation of skip and ∥, we can
get:

So, , for , as desired. □

Lemma A.15

For ,

1.   ;



2.   .

Proof

It is obvious by Proposition A.13 and A.14. □

A.4 Relations between operational and

denotational semantics

The operational and denotational semantics still agree on
the evaluation of Aexp and Bexp, we do not repeat any
more, please refer to [22] for details. We will prove the
agreement of the case Com as follows.

Lemma A.16

For all commands c and states ,

Proof

We will use rule-induction on the operational semantics of
commands. For  and , define



We will show P is closed under the rules for the
execution of commands, and we will only prove the new
case of ∥, other commands please refer to [22] for details.

Recall the transition rules of ∥ are:

Assume that

From the meaning of P, we can get that

We can get



which means that  holds for the consequence
of the rule, and is closed under this rule. □

Theorem A.17

For all commands c and states ,

Proof

Lemma A.16 gives the ⇐ direction of proof, we only need
to prove

It is sufficient to induct on the structure of command c,
we only prove the new case of , other cases please
refer to [22] for details.

Suppose . Then there are some states, such
that , . By the hypothesis of , we get



So, , as desired.  □

A.5 Axiomatic semantics

In this section, we give an axiomatic semantics for PPL by
extending the Hoare rules with parallelism.

A.5.1 Extended Hoare rules for parallelism

PPL should be extended to support assertion.
For Aexp, it should be extended to:

where i ranges over integer variables, Intvar.
For Bexp, it should be extended to support boolean

assertion:

And the formation rule of Com is maintained:

Note that, Com contains a parallel composition ∥.



The denotational semantics should also contain an
interpretation I.

The full extended Hoare rules are as follows.
Rule for skip:

Rule for assignments:

Rule for sequencing:

Rule for conditionals:

Rule for while loops:



Rule for consequence:

Rule for parallelism:

A.5.2 Soundness of the extended Hoare rules

We can prove that each rule is sound by the following
soundness theorem.

Theorem A.18

Let  be a partial correctness assertion, if , then

.

Proof

It is sufficient to induct on the rule to prove each rule is
valid. We only prove the new case of ∥ rule, other cases



please refer to [22] for details.
Assume that  and , and  and 

. Let I be an interpretation. Suppose . Then 
 and , and  and 

. Hence, , as desired. □

A.5.3 Completeness of the extended Hoare rules

Gödel's Incompleteness Theorem implies that the extended
Hoare rules are incomplete. We prove the relative
completeness in the sense of Cook.

Theorem A.19

PPL extended with assertion is expressive.

Proof

It is sufficient to induct on the structure of command c,
such that for all assertions B there is an assertion ,
for all interpretations I

We only prove the new case of parallelism , other
cases please refer to [22] for details.

Inductively define  and 
. Then, for  and any interpretation



I,
 iff 

iff  and 
iff  and 
iff  and 
iff . □

Lemma A.20

For  and B is an assertion, let  be an assertion

expressing the weakest precondition with .

Then

Proof

It suffices to induct on the structure of commands c, we
only prove the new case of parallelism , other cases
please refer to [22] for details.

For  and any interpretation I,
 iff 

iff  and 
iff  and 
iff  and .
We get  and .



Hence, by the consequence rule, we obtain

 □

Theorem A.21

For any partial correctness assertion , if , then

.

Proof

Suppose , then  where  for
any interpretation I (by the above Lemma). Hence, 

, we obtain . □

A.6 Non-determinism

The guarded commands can make the use of non-
determinism more rigorous. To provide each command with
a conditional guard, it is useful to eliminate the uncontrolled
non-determinism.

The syntax of guarded commands is also composed of
Aexp, Bexp, and Com, and the syntax of Aexp and Bexp are
the same as those of PPL in Section A.1. And the formation
rules for the command c and guarded commands gc are as
follows.



where  is the alternative construct of  and .
The operational rules of commands:

The operational rules of guarded commands:



A.7 Communications

In this section, we extend communicating processes with the
support for true concurrency.

The syntax of PPL is also composed of Aexp, Bexp, the
names of communication channels , and Com, and
the syntax of Aexp and Bexp are the same as those of PPL in
Section A.1. And the formation rules for the command c and
guarded commands gc are as follows.



where  is the alternative construct of  and .
The operational rules of commands:





Here  denotes that  and  are in race condition.
The operational rules of guarded commands:





Note that, for true concurrency, we can see that
communications, conflictions, and race conditions are solved
as follows.

1.  Communication is explicitly supported in PPL, the
two communicating commands  and  will merge
to one communication command , and the
unstructured communication will be eliminated;

2.  Since each command is with a guard, the conflictions
among actions can be achieved by set the commands
with exclusive guards;

3.  As the operational rules state, the actions in parallel
in race condition must be executed sequentially and
will cause the non-deterministic execution order.
Though the execution order is non-deterministic, by
setting appropriate guards to the parallel commands,
the final execution configuration can be deterministic.

We can get the following propositions. Where ∼ is an
equivalence relation on commands by the definition, where Σ
is the set of states:

Definition A.22

Equivalence of operational semantics for

commands

Proposition A.23



, for .

Proof

By use of the transition rules of ∥, we can get the following
derivations of  for :

And we can get the following derivations of  for 
:



So, it is obvious that , for , as
desired. □

Proposition A.24

, for .

Proof

By use of the transition rules of ∥, we can get the following
derivations of  for :

And we can get the following derivations of  for 
:



So, it is obvious that , for ,
as desired.

For the case of the parallel commands in race condition,
we omit it.  □

Proposition A.25

For ,

1.   ;

2.   .

Proof

(1) By use of the transition rules of sequence and ∥, we can
get the following derivations of :

And we can get the following derivations of :



So, it is obvious that , for , as
desired.

(2) By use of the transition rules of sequence and ∥, we
can get the following derivations of :

And we can get the following derivations of :

So, it is obvious that , for 
, as desired. □

Proposition A.26

, for .



Proof

By use of the transition rules of skip and ∥, we can get the
following derivations of :

And it is obvious that:

For , it is obvious that , for , as
desired.  □

Lemma A.27

For ,

1.   ;

2.   .

Proof



It is obvious by Proposition A.25 and A.26. □

From Lemma A.27, we can see that the execution orders
of  cause non-determinism, they can be executed in any
sequential order or in parallel simultaneously. But, with the
assistance of guards, the final states after the execution of 

 can be deterministic.

Proposition A.28

For ,

1.   ;

2.   ;

3.   ;

4.   ;

5.   .

Proof

By use of the transition rules of ∥, we can prove the above
equations. □

From Proposition A.28, we can see that communications
among parallel branches are eliminated and the parallelism
is structured.

A.8 Conflictions



Corresponding to Fig. 2.2, the program is:

Corresponding to Fig. 2.8 , the program is:

We can prove that the above two programs are equivalent,
and the confliction between parallel branches is eliminated
and the parallelism is structured.

A.9 Structuring algorithm

By PPL, we know that the truly concurrent graph can be
structured. As an implementation-independent language, the
structuring algorithm of PPL can be designed as follows:

1.  Input the unstructured truly concurrent graph;
2.  By use of PPL, implement the graph as a program;
3.  By use of the laws of PPL, structure the program.
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