

 Build Your Own PaaS with Docker

 Table of Contents

 Build Your Own PaaS with Docker

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Installing Docker

 What is Docker?

 Docker on Ubuntu Trusty 14.04 LTS

 Upgrading Docker on Ubuntu Trusty 14.04 LTS

 User permissions

 Docker on Mac OS X

 Installation

 Upgrading Docker on Mac OS X

 Docker on Windows

 Installation

 Upgrading Docker on Windows

 Docker on Amazon EC2

 Installation

 Open ports

 Upgrading Docker on Amazon EC2

 User permissions

 Displaying Hello World

 Summary

 2. Exploring Docker

 The Docker image

 The Docker container

 The Docker command-line interface

 The Docker Registry Hub

 Browsing repositories

 Exploring published images

 Summary

 3. Creating Our First PaaS Image

 The WordPress image

 Moving from the defaults

 Our objective

 Preparing for caching

 Raising the upload limit

 Plugin installation

 Making our changes persist

 Hosting image sources on GitHub

 Publishing an image on the Docker Registry Hub

 Automated builds

 Summary

 4. Giving Containers Data and Parameters

 Data volumes

 Mounting a host directory as a data volume

 Mounting a data volume container

 Backing up and restoring data volumes

 Creating a data volume images

 Data volume image

 Exposing mount points

 The Dockerfile

 Hosting on GitHub

 Publishing on the Docker Registry Hub

 Running a data volume container

 Passing parameters to containers

 Creating a parameterized image

 Summary

 5. Connecting Containers

 Manually connecting containers

 Exploring the contents of a data volume container

 Connecting containers using Docker Compose

 Installing Docker Compose

 Basic Docker Compose commands

 Service

 Using the run command

 Using the scale command

 Setting up our PaaS with Docker Compose

 Connecting containers using Crane

 Installing Crane

 Usage

 Configuration

 Summary

 6. Reverse Proxy Requests

 Explaining the problem

 Finding a solution

 Implementing the solution

 Implementation with HAProxy

 Installing HAProxy

 Configuring HAProxy

 Adding more domains to HAProxy

 Implementation with Nginx

 Installing Nginx

 Configuring Nginx

 Adding more domains to Nginx

 Automating the process of mapping domains

 Summary

 7. Deployment on Our PaaS

 The problem with our current setup

 The tools/services available

 Dokku – Docker-powered mini-Heroku

 Installation

 Creating a sample Dokku app

 How Dokku works

 The receive process

 Dokku plugins

 Dokku domains plugin

 Dokku-docker-options

 Volume plugin for Dokku

 Dokku-link

 MariaDB plugin for Dokku

 Setting up a WordPress app with Dokku

 Starting multiple apps

 Adding a domain to Dokku

 More notes on Dokku

 Summary

 8. What's Next?

 What is a Twelve-Factor app?

 Flynn

 Deis

 Rocket

 Orchestration tools

 Summary

 Index

 Build Your Own PaaS with Docker

Build Your Own PaaS with Docker

Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: April 2015
Production reference: 1010415
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78439-394-6

www.packtpub.com

Credits

Author

Oskar Hane

Reviewers

Donald Simpson
Lawrence Taylor

Commissioning Editor

Sarah Crofton

Acquisition Editor

Rebecca Youe

Content Development Editor

Merwyn D'Souza

Technical Editors

Narsimha Pai
Mahesh Rao

Copy Editors

Dipti Kapadia
Vikrant Phadke

Project Coordinator

Neha Bhatnagar

Proofreaders

Ting Baker
Simran Bhogal

Indexer

Mariammal Chettiyar

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

About the Author

Oskar Hane is a full stack developer, with 15 years of experience in the development and deployment of web applications. During this period, he mostly worked with start-ups and small, fast-moving companies. He is the cofounder of several companies and has been working as an independent contractor for the past few years. These days, Oskar works with Neo4j, the world's leading graph database, where he spends most of his time on the frontend, writing JavaScript.
He lives in Sweden with his wife and daughter. He enjoys programming as well as all kinds of sports and outdoor activities, such as hunting and fishing.

About the Reviewers

Donald Simpson is an experienced build manager, software developer, and information technology consultant based in Scotland, UK.
He specializes in helping organizations improve the quality and reduce the cost of software development through the adoption of continuous integration and continuous delivery best practices.
He has designed and implemented fully automated code and environment build solutions for a range of clients and Agile projects.
You can find out more about Donald on his website (www.donaldsimpson.co.uk).

Lawrence Taylor is armed with a PhD in mathematics. He has 7 years of experience in developing software in a variety of sectors, from finance to travel. Charred by his number-theoretic past, he is drawn to the abstractions and techniques required to design and build extensible software systems.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Preface

Docker is an open source project with a high-level API that provides software containers to run processes in isolation. Packaging an app in a container that can run on any Linux server (as well as on OS X and Windows) helps developers focus on developing the app instead of server setups and other DevOps operations.

What this book covers

Chapter 1, Installing Docker, takes you through the Docker installation process to start a container.

Chapter 2, Exploring Docker, gives you an insight into how Docker works and the terminology used and introduces public images.

Chapter 3, Creating Our First PaaS Image, shows you how to create your own custom Docker image that will be a part of your PaaS.

Chapter 4, Giving Containers Data and Parameters, teaches you about the data storing alternatives available and how to pass parameters to your PaaS containers.

Chapter 5, Connecting Containers, shows you how to manually connect containers in order to form a complete platform, and introduces two tools that give you more control over multicontainer platforms.

Chapter 6, Reverse Proxy Requests, explains the problem and provides a solution to having multiple containers on the same host, where more than one host should be reachable on the same port.

Chapter 7, Deployment on Our PaaS, takes you through the process of deploying code to your PaaS. Here, you learn how to create your own mini-Heroku with Dokku.

Chapter 8, What's Next?, introduces a few projects that are in their early stages and look promising for the future of a Docker based PaaS.

What you need for this book

	A PC/laptop running OS X, Linux, or Windows
	Internet connection

Who this book is for

This book is intended for those who want to learn how to take full advantage of separating services into module containers and connecting them to form a complete platform. You may have, perhaps, heard of Docker but never installed or used it; or, you may have installed it and run a full stack container, not separating services in module containers that connect. In either case, this book will give you all the insights and knowledge required to run your own PaaS.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "After some dependent images are downloaded, we should be able to see our running container when we execute docker.ps."
A block of code is set as follows:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Hello</title>
</head>
<body>
<h1>First edit!</h1>
</body>
</html>

Any command-line input or output is written as follows:

curl -sSL https://get.docker.com/ubuntu/ | sudo sh

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Open the Finder window and navigate to your Applications folder; locate boot2docker and double-click on it."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Installing Docker

In this chapter, we will find out where to download and how to install Docker on various operating systems. Some basic Docker commands will be used so that we can verify whether the installation was successful and to interact with Docker for the very first time.
The following topics are covered in this chapter:
	What is Docker?
	Docker on Ubuntu Trusty 14.04 LTS
	Docker on Mac OS X
	Docker on Windows
	Docker on Amazon EC2

This book will take you through all the steps, from installing Docker to running your own Platform as a Service (PaaS) so that you can push your code without having to think about infrastructure or server provisioning.
The theme of this book will be to create a modular web application using an isolated web server and a database.

What is Docker?

On Docker's website, http://www.docker.com, the following definition is provided for Docker:
"Docker is an open platform for developers and sysadmins to build, ship, and run distributed applications."

What this means in a more practical sense is that Docker is a way of enclosing services in isolated environments, called
containers, so that they can be packaged with all they need in terms of libraries and dependencies and the developer can be certain that the service will run wherever Docker runs.

Docker on Ubuntu Trusty 14.04 LTS

The OS, flavor and version, where it's easiest to install Docker is in Ubuntu Trusty 14.04 LTS. This is a pretty quick task since we can use the built-in package manager apt-get.
Note
Note that Docker is called docker.io here and just docker on other platforms since Ubuntu (and Debian) already has a package named docker.

First we open a terminal and execute these commands one by one:

sudo apt-get update
sudo apt-get install docker.io
source /etc/bash_completion.d/docker.io

Here, we first update the lists of the packet manager apt-get in order to get information about all the packages, versions, and dependencies that are available. The next line actually installs Docker, and after that, we enable Ubuntu to tab-complete our Docker commands.
When you've done this without errors, run sudo docker.io version just to verify that it works as expected.
Note
Note that this installs the latest released Ubuntu package version, which might not necessarily be the latest released Docker version.

In order to have the latest version from an alternative Docker-maintained repository, we can execute the following command:

curl -sSL https://get.docker.com/ubuntu/ | sudo sh

This adds an alternative repository maintained by the Docker team and installs Docker for you as a much more updated version than the one that comes via the Ubuntu repository. Note that the Docker package is named lxc-docker when it is installed this way. The command used to run Docker commands is still docker.

Upgrading Docker on Ubuntu Trusty 14.04 LTS

To check and download upgrades, all you have to do is to execute this command in a terminal:

sudo apt-get update && sudo apt-get upgrade

User permissions

For convenience, it's preferred to add our user to the system's Docker user group so that we can control Docker without using sudo. This gives our user permission to execute Docker commands.
Replace USER with your username before you run the code:

sudo gpasswd -a USER docker

You might have to log out and log in again for it to work. When you are logged back in, run docker ps to verify that there are no permission problems.
Note
More detailed information can be found in the official installation guide at https://docs.docker.com/installation/ubuntulinux/.

Docker on Mac OS X

To be able to use Docker on Mac OS X, we have to run the Docker service inside a virtual machine (VM) since Docker uses Linux-specific features to run. We don't have to get frightened by this since the installation process is very short and straightforward.

Installation

There is an OS X installer that installs everything we need, that is, VirtualBox, boot2docker, and Docker.
VirtualBox is a virtualizer in which we can run the lightweight Linux distribution, and boot2docker is a virtual machine that runs completely in the RAM and occupies just about 27 MB of space.
Note
The latest released version of the OS X installer can be found at https://github.com/boot2docker/osx-installer/releases/latest.

Now, let's take a look at how the installation should be done with the following steps:
	Download the installer by clicking on the button named Boot2Docker-1.3.0.pkg to get the .pkg file, as shown in the following screenshot:[image: Installation]

	Double-click on the downloaded .pkg file and go through with the installation process.
	Open the Finder window and navigate to your Applications folder; locate boot2docker and double-click on it. A terminal window will open and issue a few commands, as shown here:[image: Installation]

This runs a Linux VM, named boot2docker-vm, that has Docker pre-installed in VirtualBox. The Docker service in the VM runs in daemon (background) mode, and a Docker client is installed in OS X, which communicates directly with the Docker daemon inside the VM via the Docker Remote API.

	You will see a screen similar to the following screenshot, which tells you to set some environment variables:[image: Installation]

We open up the ~/.bash_profile file and paste three lines from our output, as follows, at the end of this file:

export DOCKER_HOST=tcp://192.168.59.103:2376
export.DOCKER_CERT_PATH=/Users/xxx/.boot2docker/certs/boot2docker-vm
export DOCKER_TLS_VERIFY=1

The reason why we do this is so that our Docker client knows where to find the Docker daemon. If you want to find the IP in the future, you can do so by executing the boot2docker ip command. Adding the preceding lines will set these variables every time a new terminal session starts. When you're done, close the terminal window. Then, open a new window and type echo $DOCKER_HOST to verify that the environment variable is set as it should be. You should see the IP and port your boot2docker VM printed.

	Type docker version to verify that you can use the Docker command. An output that looks similar to the last few lines of the preceding screenshot will mean that we have succeeded.

Upgrading Docker on Mac OS X

Since Docker is relatively new, there could be a lot happening in every update, so make sure that you check for updates on a regular basis. From time to time, go to the Mac OS X installer download page and check whether there is an upgrade available. If there is, execute these commands to update it:

boot2docker stop
boot2docker download
boot2docker start

Docker on Windows

Just as we have to install a Linux virtual machine when installing Docker in OS X, we have to do the same in Windows in order to run Docker because of the Linux kernel features that Docker builds on. OS X has a native Docker client that directly communicates with the Docker daemon inside the virtual machine, but there isn't one available for Windows yet. There is a native Windows version of the Docker client coming, but it will not be available by the time this book is published.

Installation

There is a Windows installer that installs everything we need in order to run Docker. For this, go to https://github.com/boot2docker/windows-installer/releases/latest.
Now, let's take a look at how the installation should be done with the help of the following steps:
	Click on the docker-install.exe button to download the .exe file, as shown in the following screenshot:[image: Installation]

	When the download is complete, run the downloaded installer. Follow through the installation process, and you will get VirtualBox, msysGit, and boot2docker installed.
	Go to your Program Files folder and click on the newly installed boot2docker to start using Docker. If you are prompted to enter a passphrase, just press Enter.
	Type docker version to verify that you can use the Docker command.

Upgrading Docker on Windows

A new software changes often and to keep boot2docker updated, invoke these commands:

boot2docker stop
boot2docker download
boot2docker start

Docker on Amazon EC2

Throughout this book, I will use an Amazon EC2 instance, and since it is a superb place to host your PaaS, I will recommend that you do the same.

EC2 stands for Elastic Compute Cloud, and it is an infrastructure type of service. Amazon EC2 offers virtual servers that are created and available within a minute of ordering them.
Note
Amazon has instances named t[x].micro that you can use for free for 750 hours per month. You can read more about them at http://aws.amazon.com/free.

Amazon has its own Linux named Amazon Linux AMI that can be used to run Docker.

Installation

Let's see how the installation is done with the following steps:
	Create an account at http://aws.amazon.com and go to Amazon's Create EC2 Instance Wizard at https://console.aws.amazon.com/ec2/v2/home?#LaunchInstanceWizard.The next steps are shown in the screenshot as follows:
[image: Installation]

	Click on Community AMIs in the menu on the left-hand side and select the latest amzn-ami-pv. Make sure that you select the pv version and not the hvm version so that you have a virtualization that is more stable and has less overhead, as shown here:[image: Installation]

	When it's time to choose an instance type, you can choose t1.micro or t2.micro for now if they are available. The micro instances are very limited in their performance, but since they are available in the free usage tier in some regions and this is not for a live site at the moment, we can use them. Click on Next: Configure Instance Details and then click on the Review and Launch button, as shown in the following screenshot:[image: Installation]

	Verify all the details on the summary page and click on the Launch Instance button.
	You will be prompted whether you want to use an existing key-pair or create a new one. If this is your first time creating an Amazon EC2 instance, you will want to create a new key-pair. This makes it easy to securely connect to your instances.
	Download the new key-pair, move it to your ~/.ssh/ folder, and remove the .txt extension.
	It's also important to set the correct user permissions on the file or SSH will refuse to use it.In Linux or on a Mac, this is how the terminal command to do this looks:

mv ~/Downloads/amz.pem.txt ~/.ssh/amz.pem
chmod 600 ~/.ssh/amz.pem

On Windows, save the key anywhere and use a tool such as PuTTYgen to convert it to a .ppk file, so you can use it when connecting using PuTTY.

	You will be prompted to choose a security group for your instance. Pick the default one since this won't be a production server. When it's time to use a production server, we might want to add more security to our instance.
	Now we're up and running! Let's connect to it. Click on the View Instances button and select your newly created instance in the list, as shown here:[image: Installation]

	In the bottom of the screen, you can see some information about the instance. You should be looking for the public DNS information. This is how it should look:
ec2-54-187-234-27.us-west-2.compute.amazonaws.com

	On a Linux or Mac, open a terminal and connect to it:
ssh ec2-user@ec2-54-187-234-27.us-west-2.compute.amazonaws.com -i ~/.ssh/amz.pem

The screenshot is displayed as follows:
[image: Installation]

We use the ec2-user user that is the default user for Amazon's Linux instances, and amz.pem is the key we downloaded earlier. Replace the URL with your public DNS information from the last step.
When asked whether you want to continue because of an unknown host, type yes.
On Windows, use PuTTY and make sure that you have specified the converted private key from step 4 in the PuTTY Auth tab.

	Once you are connected to the instance, install Docker:
sudo yum update
sudo yum install -y docker
sudo service docker start

	To test whether it's working as expected, type docker version and make sure there's no error. You should see a few lines with the client version, API version, and so on.

Open ports

Amazon's default security policy is to block the default ports used to expose services from Docker, so we have to change this.
	We go back to the EC2 dashboard and click on the Security Groups option in the menu
	Select the security group that your EC2 instance uses and select the Inbound tab
	Docker uses ports in a range from 49000 - 50000, so we add a rule for this, as shown in the following screenshot:[image: Open ports]

Upgrading Docker on Amazon EC2

Upgrading an Amazon Linux AMI instance is as easy as it is for Ubuntu. Type sudo yum update and confirm whether there's an update waiting. This command will list all the available updates and upon your confirmation, install them.

User permissions

Docker requires commands to be run by users in the docker user group. For convenience, we add our user to the Docker group so that we can control Docker without using sudo:

sudo gpasswd -a ec2-user docker

You might have to log out and log in again for it to work. When you are logged back in, run docker ps to verify that there are no permission problems. You should see a row of capitalized words, such as CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES.

Displaying Hello World

Now that we have Docker running on a machine of our choice, it's time to make Docker work for us. Here are a few very basic commands that we can use for some basic interaction with the Docker daemon.
In the next chapter, all the concepts and phrases used in Docker will be explained:
	docker ps: This lists the running containers
	docker ps -a: This lists all the containers, both running and exited
	docker images: This lists local (downloaded and locally created) images
	docker run: This will launch a new instance container from an image
	docker stop: This is used to stop a container

Let's try the first one in the screenshot shown below:
[image: Displaying Hello World]

As expected, we have nothing running yet.
Launching a container is as easy as docker run [image] [command]. If the image doesn't exist locally, Docker will download it from the Docker Registry Hub and launch your container when it's downloaded.
The following steps are displayed as follows:
[image: Displaying Hello World]

Type the following command in a terminal to launch a container that prints the string Hello, let me out of here and then exits:

docker run oskarhane/hello echo "Hello, let me out of here"

This is not very useful, but we just ran a command in Ubuntu inside the container.
If we type docker ps again, we can see that we still have no running containers since we exited the one we just started straightaway. Try using docker ps -a instead, and try docker images.

Summary

In this chapter, we learned that Docker can be used on most operating systems and that the installation process varies a lot depending on the OS. We had our first interaction with the Docker daemon and launched our first container in Docker. Even though all the container did was write a command, that's how easy it is to start and run something inside a guest operating system.
We have also introduced the theme that shows what this book is all about, running a multicontainer web app of a web server container and a MySQL container: your own PaaS.
In the next chapter, we will further explore Docker, its terminology, and the community around it.

Chapter 2. Exploring Docker

After reading this chapter, you will find yourself more comfortable talking about and using Docker. The following topics will be covered here:
	The Docker image
	The Docker container
	The Docker command-line interface
	The Docker Registry Hub

You will find these topics important when building your PaaS, and you will use and interact with all of them throughout this book.

The Docker image

In the beginning, it can be hard to understand the difference between a Docker image and a Docker (or Linux) container.
Imagine that our Linux kernel is layer zero. Whenever we run a Docker image, a layer is put on top of our kernel layer. This image, layer one, is a read-only image and cannot be changed or cannot hold a state.
A Docker image can build on top of another Docker image that builds on top of another Docker image and so on. The first image layer is called a base image, and all other layers except the last image layer are called parent images. They inherit all the properties and settings of their parent images and add their own configuration in the Dockerfile.
Docker images are identified by an image ID, which is a 64-character long hexadecimal string, but when working with images, we will almost never reference an image by this ID but use the image names instead. To list all our locally available Docker images, we use the docker images command. Take a look at the following image to see how the images are listed:
[image: The Docker image]

Images can be distributed with different versions for us to choose from, and the mechanism for this is called tags. The preceding screenshot illustrates this with the neo4j image that has a latest and a 2.1.5 tag. This is how the command used to pull a specific tag looks:

docker pull ubuntu:14.04
docker pull ubuntu:12.02

The Docker container

A Docker container is created the moment we execute docker run imagename. A writeable layer is added on top of all the image layers. This layer has processes running on the CPU and can have two different states: running or exited. This is the container. When we start a container with the Docker run command, it enters the running state until it, for some reason, stops by itself or is stopped by us and then enters the exited state.
When we have a container running, all the changes we make to its filesystem are permanent between start and stop. Remember that changes made to the container's filesystem are not written to the underlying Docker image.
We can start as many instances of running containers as we want from the same image; they will all live side by side, totally separated by each other. All the changes we make to a container are limited to that container only.
If changes are made to the container's underlying image, the running container is unaffected and there is no autoupdate happening. If we want to update our container to a newer version of its image, we have to be careful and make sure that we have set up the data structure in a correct way, otherwise we have the risk of losing all the data in the container. Later in this book, I will show you where to keep important data without the risk of losing it.
The corresponding screenshot is shown as follows:
[image: The Docker container]

A 64-character long hexadecimal string called container ID identifies Docker containers. This ID can be used when interacting with the container, and depending on how many containers we have running, we will usually only have to type the first four characters of the container ID. We can use the container name as well, but it's often easier to type the beginning of the ID.

The Docker command-line interface

The command line interface is where we communicate with the daemon using the Docker command. The Docker daemon is the background process that receives the commands that are typed by us.
In the previous chapter, we ran a few Docker commands to start and stop containers as well as to list containers and images. Now, we are going to learn a few more that will help us when handling containers for our PaaS, as follows:
	docker logs <container-ID|name>: Everything that is written to the STDOUT containers will end up in the file that can be accessed via this command. This is a very handy way to output information from within a container, as shown here:[image: The Docker command-line interface]

	docker export <container-ID|name>: If you have a container that holds data that you want to export, this is the command to be used. This creates a tar archive and sends it to STDOUT:[image: The Docker command-line interface]

	docker cp CONTAINER:PATH HOSTPATH: If you don't want the whole file system from a container but just one directory or a file, you can use docker cp instead of export, as shown in the following screenshot:[image: The Docker command-line interface]

The Docker Registry Hub

One important part of Docker's popularity is its community and the ease with which you can share, find, and extend Docker images. The central place for this is the Docker Registry Hub that can be found at https://hub.docker.com/.

Browsing repositories

Here, we can search and, in many ways, browse for image repositories to find exactly what we're after. If we take a look at the popular ones, we will see what others are using the most.
If we click on the Ubuntu repository, we will see lots of information about the image, the tags that are available, users' comments, the number of stars it has, and when it was updated.
The screenshot is displayed as follows:
[image: Browsing repositories]

If we click on a tag in the main view, we'll see something called the Dockerfile. This is the image description that runs when an image is being created. Further in this book, we'll write our own.
If you're interested in an image in the Docker hub, I recommend that you read the Information/README as well as the other users' comments. Often, you will find valuable information there that will help you to choose the right image and show you how to run it in the way the maintaining developer intended to.
Often, you will find images that almost fit your needs since most images are quite general, but as a developer, you might need specific settings or services installed.

Exploring published images

Take the official WordPress Docker image, for example (https://registry.hub.docker.com/_/wordpress/). You'll find it on the Docker hub's browse page or you can search for it.
Let's forget about these shortcomings for now and see what the information page says:
[image: Exploring published images]

This image reads the settings from the Docker container's environment variables. This means that image has to be started with the environment variables injected using the docker run –e command, or you can --link another container to it that injects these variables. We'll discuss container linking more later in this book.
Let's see what we'll get if we were to pull this image. Click on the link to the Dockerfile in the apache directory:

FROM php:5.6-apache

RUN a2enmod rewrite

install the PHP extensions we need
RUN apt-get update && apt-get install -y libpng12-dev libjpeg-dev && rm -rf /var/lib/apt/lists/* \
 && docker-php-ext-configure gd --with-png-dir=/usr --with-jpeg-dir=/usr \
 && docker-php-ext-install gd
RUN docker-php-ext-install mysqli

VOLUME /var/www/html

ENV WORDPRESS_VERSION 4.1.1
ENV WORDPRESS_UPSTREAM_VERSION 4.1.1
ENV WORDPRESS_SHA1 15d38fe6c73121a20e63ccd8070153b89b2de6a9

upstream tarballs include ./wordpress/ so this gives us /usr/src/wordpress
RUN curl -o wordpress.tar.gz -SL https://wordpress.org/wordpress-${WORDPRESS_UPSTREAM_VERSION}.tar.gz \
 && echo "$WORDPRESS_SHA1 *wordpress.tar.gz" | sha1sum -c - \
 && tar -xzf wordpress.tar.gz -C /usr/src/ \
 && rm wordpress.tar.gz

COPY docker-entrypoint.sh /entrypoint.sh

grr, ENTRYPOINT resets CMD now
ENTRYPOINT ["/entrypoint.sh"]
CMD ["apache2-foreground"]

Ok, we see that it builds on Debian Wheezy and installs Apache2, PHP5, and some other stuff. After that, it sets a bunch of environment variables and then downloads WordPress.
We see a few lines starting with the command COPY. This means that files are shipped with the Docker image and are copied to the inside of the container when it's started. This is how the docker-apache.conf file shipped with the WordPress image looks:

<VirtualHost *:80>
 DocumentRoot /var/www/html
 <Directory /var/www/html>
 AllowOverride all
 </Directory>
</VirtualHost>
vim: syntax=apache ts=4 sw=4 sts=4 sr noet

The preceding line of code tells Apache where to look for files.
What about the docker-entrypoint.sh file?
The ENTRYPOINT keyword tells the Docker daemon that if nothing else is specified, this file should be executed whenever the container is run. It is as if the whole container is an executable file.
If we take a look at what is present inside this file, we'll see that it basically sets up the connection to the MySQL database and configures .htaccess and WordPress:

#!/bin/bash
set -e
if [-z "$MYSQL_PORT_3306_TCP"]; then
 echo >&2 'error: missing MYSQL_PORT_3306_TCP environment variable'
 echo >&2 ' Did you forget to --link some_mysql_container:mysql ?'
 exit 1
fi

The first thing that is done is to check whether the user has set environment variables for the MySQL connection. If not, it exits and writes some info to STDERR.
Why don't you try and see whether you can trigger the MySQL error that writes error: missing MYSQL_PORT_3306_TCP environment variable to the STDERR, as follows:

docker run –-name some-wordpress –d wordpress

[image: Exploring published images]

The --name some-wordpress command names the container, so we can reference it by this name later. Also, the –d argument tells the container to run in detached mode, which means that it does not listen to commands from where we started it anymore. The last wordpress argument is the name of the Docker image we want to run.
If we check the log for our new container, we'll see what the screenshot shows us: the expected error message.
Let's run a MySQL container and see whether we can get it to work. Navigate to https://registry.hub.docker.com/_/mysql/ in order to get to the official MySQL docker repository on the Docker registry hub. Here, it states that in order to start a MySQL instance, we need to invoke docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
 in the shell. Since we are doing this for educational purposes at the moment, we don't have to choose a strong root user password. After some dependent images are downloaded, we should be able to see our running container when we execute docker ps. If we do, have a look at the installation log by running docker logs some-mysql, as shown here:
[image: Exploring published images]

Great, now we have a running MySQL container that is needed to start a WordPress instance. Let's start a new WordPress instance with the MySQL link in place:

docker run --name some-wordpress --link some-mysql:mysql –p 80 -d wordpress

The --link parameter exposes the some-mysql containers' environment variables, interface, and exposed ports via the environment variables injected to the some-wordpress container.
To open a port that can be reached from the outside, port 80 is exposed via the –p 80 parameter.
If you get an error message saying Error response from daemon: Conflict, The name some-wordpress is already assigned to a11c101cacaf., you have to delete (or rename) that container to be able to assign some-wordpress to a container again. You need to give the new container a new name or delete the old (failing) WordPress container. Invoke docker rm some-wordpress to delete the old container using the desired name.
When you have the container running, invoke docker ps command to find out which of our ports was assigned to the container's private port 80.
We can either look at the ports column in the container list, or we can invoke docker port some-wordpress 80 to explicitly find it, as shown here:
[image: Exploring published images]

In my case, it was port 49155.
Enter your Docker hosts' ip:port in your web browser to see whether you can reach it. If you're on your local computer running Windows or OS X, you can find your Docker IP by invoking boot2docker ip. If you're on a local Linux, 127.0.0.1 should be fine.
I'm doing this on Amazon EC2, so I have to go to the EC2 Management console to get my public IP or public DNS.
Point your web browser to http://yourip:yourport (in my case, http://myamazon-dns.com:49155) and you should be presented with this:
[image: Exploring published images]

Note
The default Amazon AWS security policy is to block the default Docker public ports, so we have to change this in the Security Groups section in the EC2 dashboard. See the Docker on Amazon EC2 section in Chapter 1, Installing Docker, for how to do this.

Wonderful, it works!

Summary

The Docker image can be seen as a read-only template for containers, specifying what's supposed to be installed, copied, configured, and exposed when a container is started.
We learned more about how we can interact with the Docker daemon and with individual Docker containers to read logs, copy files, and export the complete filesystem.
The Docker hub was introduced and we looked at what the official WordPress Docker image consisted of and how they configured the OS in the Dockerfile as well as in an ENTRYPOINT file to some extent.
We downloaded and ran the WordPress image that failed as expected, and we fixed it by linking the required MySQL container to it.
In the next chapter, we will create a Dockerfile and publish a Docker image to the Docker registry hub so that we have a way to get our customized Docker images to wherever we decide to place our PaaS.

Chapter 3. Creating Our First PaaS Image

You are now ready to write your own Dockerfiles, publish them to the Docker Registry Hub, and create containers for them. In this chapter you will:
	Build your own image on top of another
	Host your Dockerfiles in your GitHub account
	Publish an image on the Docker Registry Hub

The WordPress image

For this project, we are going to use the official WordPress Docker image as a base, which has Apache2 as its web server.
Note
If you plan to host sites with a lot of traffic, I would recommend using an image based on Nginx instead of Apache2 as the web server. I have had great success running WordPress sites with Nginx and the memcached plugin, WP-FFPC. It can be a bit tricky to set up, and that's why it's out of the scope of this book.

First of all, let's run a MySQL container and a WordPress container and link to them to see what happens:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
docker run --name some-wordpress --link some-mysql:mysql -d -p 80 wordpress

The –p 80 option tells Docker to expose the private port 80 to the outer world. To find out which public port is bound to the private port 80, run docker ps command and look in the ports column or invoke the docker port <container-ID|name> 80 command.
The screenshot is shown below:
[image: The WordPress image]

In my case, the public port is 49154. Enter the full URL in the form of http://public_ip:public_port in your web browser. I'm doing this on an Amazon EC2 instance. I get a public domain, which is http://ec2-54-187-234-27.us-west-2.compute.amazonaws.com:49154 in my case.
The screenshot is displayed below:
[image: The WordPress image]

The WordPress installation page welcomes us, which means that the WordPress and the MySQL containers are working properly.

Moving from the defaults

Now we have a default installation of WordPress run on Apache2. Some WordPress plugins require you to make changes to the web server's configuration. How can we do that? What if we want to edit some of the files in the WordPress directory?
The first thing we need to do is to get our own copy of the official WordPress repository so that we can explore the Dockerfile. The current URL that is used to get the repository is https://github.com/docker-library/wordpress. Click on this link from the WordPress repo page on the Docker Registry Hub.
You can clone, fork, or just download the source for this Docker image. It doesn't matter how you get it because we're not going to use it later on. This image is for testing and exploring purposes. I used my EC2 instance to do this.
[image: Moving from the defaults]

Open the file in any text editor to view its content. If you are—like me—using the terminal, you can use vi apache/Dockerfile to open it in the vi file editor. The current Dockerfile for the official WordPress image looks like this:

FROM php:5.6-apache

RUN a2enmod rewrite

install the PHP extensions we need
RUN apt-get update && apt-get install -y libpng12-dev libjpeg-dev && rm -rf /var/lib/apt/lists/* \
 && docker-php-ext-configure gd --with-png-dir=/usr --with-jpeg-dir=/usr \
 && docker-php-ext-install gd
RUN docker-php-ext-install mysqli

VOLUME /var/www/html

ENV WORDPRESS_VERSION 4.1.1
ENV WORDPRESS_UPSTREAM_VERSION 4.1.1
ENV WORDPRESS_SHA1 15d38fe6c73121a20e63ccd8070153b89b2de6a9

upstream tarballs include ./wordpress/ so this gives us /usr/src/wordpress
RUN curl -o wordpress.tar.gz -SL https://wordpress.org/wordpress-${WORDPRESS_UPSTREAM_VERSION}.tar.gz \
 && echo "$WORDPRESS_SHA1 *wordpress.tar.gz" | sha1sum -c - \
 && tar -xzf wordpress.tar.gz -C /usr/src/ \
 && rm wordpress.tar.gz

COPY docker-entrypoint.sh /entrypoint.sh

grr, ENTRYPOINT resets CMD now
ENTRYPOINT ["/entrypoint.sh"]
CMD ["apache2-foreground"]

This image uses the php:5.6-apache image as a base and downloads and extracts WordPress 4.1 to /usr/src/wordpress. Then it adds an ENTRYPOINT and starts Apache2 in the foreground.

Our objective

To make this WordPress image useable for more than demo purposes, we need to modify the Dockerfile in three ways. Our objectives are as follows:
	Preparing Apache for caching (through the WP Super Cache plugin)
	Raising the upload limit in both PHP and Apache2
	Installing two plugins: WP Super Cache and WP Mail SMTP

Preparing for caching

There are two small steps to be performed to obtain website caching through WP Super Cache—we need to enable the mod_headers and mod_expires modules in Apache2.
On line 5 in the Dockerfile, you can see RUN a2enmod rewrite. The a2enmod command enables modules in Apache2, and modules are disabled by the a2dismod command. Enabling our desired modules is as easy as appending them to that line:

RUN a2enmod rewrite expires headers

We make those edits, build a new image, and see what happens. It takes a long time to build these images, since PHP is built from source. What we are looking for are lines that state that our modules are enabled. They will show up for just a few seconds in the build process.
You initiate a build from a Dockerfile by executing this:

docker build –t mod-wp .

The –t mod-wp command sets the name of our new image to mod-wp.
The screenshot is shown below:
[image: Preparing for caching]

The build should run through the whole process without any errors, and then the preparation for the cache plugin is done.

Raising the upload limit

The default upload size is limited to 2 MB by PHP. This limit is too low, especially since blogging from mobile phones is popular and the size of a mobile phone photo or video is often bigger than this. I would like to have the option to upload videos directly on my blogs, and they can be up to 32 MB.
For this limit to be raised, we need to change the limit for two parameters in the PHP configuration file: upload_max_filesize and post_max_size.
Looking at the php:5.6-Apache image, which is the base image of the WordPress image, Dockerfile we see that it runs Debian and PHP configuration files are supposed to be in the /usr/local/etc/php/conf.d/ directory. This means that if we add a file to that directory, it should get read in and parsed.
Note
The Dockerfile for PHP 5.6 can be found at https://github.com/docker-library/php/blob/master/5.6/Dockerfile.

To verify that the upload limit is as low as said before, I started and installed an unmodified WordPress container. Then I clicked on the Add new media button.
[image: Raising the upload limit]

It says that the upload limit is 2 MB.
Let's add a configuration file named upload-limit.ini to the configuration directory, and add the two parameters to the file.
These commands, all of which should be on a single line, are added to our Dockerfile right above the line we modified when preparing Apache for caching:

RUN touch /usr/local/etc/php/conf.d/upload-limit.ini \
 && echo "upload_max_filesize = 32M" >> /usr/local/etc/php/conf.d/upload-limit.ini \
 && echo "post_max_size = 32M" >> /usr/local/etc/php/conf.d/upload-limit.ini
#Paste above this line.
RUN a2enmod rewrite expires headers

Once again, build the image to ensure that no errors are produced. If you get an error saying that the image name already exists, you can delete the old image with the docker rmi mod-wp command or change the name to mod-wp:latest, which will update the image's tag to latest.
When the build finishes, we run a new container from the new image to check out what the WordPress administration interface says. We can run a container from our new image, like this:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
docker run --name some-wordpress --link some-mysql:mysql -d -p 80 mod-wp:latest

[image: Raising the upload limit]

We can now see that we can upload bigger files. Just to verify, if you upload a file bigger than 2 MB, it will prove that the limit has been raised.

Plugin installation

Here, we are going to download and install two plugins that we want in all our future WordPress sites. All the tasks for these plugins will be done in the entry point file, since we have to edit a few files in the WordPress installation.
The first plugin is WP Super Cache. We prepared Apache2 for this earlier, and now it's time to use that. With this plugin, our site will run faster and demand fewer resources from our host.
The second plugin is WP Mail SMTP, with the help of which WordPress can send outgoing e-mails. This container does not (and should not) include a mail server. With this plugin, we can make WordPress send e-mails via an external SMTP (Gmail, your ISPs, or anything else).

 Note
Even though I have hosted and managed my own mail server for a few years now, it is a hassle with keeping it up to date and managing spam filters and redundancy. We're better off leaving that to the specialists.

All plugins will be downloaded with CURL and unpacked with unzip. CURL is already installed but unzip is not, so we have to add it to our Dockerfile, close to the top where the apt-get install command is running:
RUN apt-get update && apt-get install -y unzip rsync && rm -r /var/lib/apt/lists/*

If we don't do this, we will get error messages during the build process.
Since there are two plugins we have to download, extract, and activate, we will create a function in the docker-entrypoint.sh file.
This function will go to Wordpress' plugin site and look for the download URL for the latest version of the plugin. It will download and then extract it to the plugin folder in our Wordpress installation:
dl_and_move_plugin() {
 name="$1"
 curl -O $(curl -i -s "https://wordpress.org/plugins/$name/" | egrep -o "https://downloads.wordpress.org/plugin/[^']+")
 unzip -o "$name".*.zip -d $(pwd)/wp-content/plugins
}

Now that we have the function there, we can add these lines near the end of the file, just above the line that says chown –R www-data:www-data ..:

dl_and_move_plugin "wp-super-cache"
dl_and_move_plugin "wp-mail-smtp"

Place the function and the function calls close to the bottom—in the docker-entrypoint.sh file, just above the exec command.
We will build the image again and start a container so that we can verify that everything is working as we want:

docker build –t mod-wp:latest

This will take a while, and when it's ready, you can fire up a MySQL container and a mod-wp container:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
docker run --name some-wordpress --link some-mysql:mysql -d -p 80 mod-wp:latest

If you get an error that tells you that you already have a container with that name, either remove the old container with docker rm some-wordpress or use another name for the new container.
Get the port by invoking docker ps, and look for the port binding to port 80 on the WordPress container. Then load the URL into your browser. This time, install WordPress, log in, and go to the plugins page, as shown in the following screenshot:
[image: Plugin installation]

This looks just like we want it to! Great!
Let's go ahead and activate and set up these plugins just to verify that they work. Start with the WP Mail SMTP plugin. I will use my Gmail account as the sender, but you can choose which SMTP you want. Here is a screenshot showing the settings for Gmail:
[image: Plugin installation]

From the bottom of this page, you can send a test e-mail. I strongly recommend doing this because Gmail sometimes blocks new SMTP clients. If you get an error message saying Please log in via your web browser and then try again, you've triggered that. In that case, you'll soon get an e-mail from Google explaining suspicious activity and asking you to go through a few steps to make it work. This is annoying but it's a good thing.
Now let's move on to the WP Super Cache plugin. Go ahead and activate the plugin from the plugin page. Before we can enable it, we have to go to Settings | Permalinks, check the Post name button, and save.
Then go to Settings | WP Super Cache.
Click on Caching On and then on Update Status. Now click on the Advanced tab and enable mod_rewrite caching, as shown:
[image: Plugin installation]

Scroll down to the Miscellaneous section and check the boxes that are shown in the following screenshot. If you want to know exactly what all of these checkboxes do, you can refer to the plugins' documents.
[image: Plugin installation]

When you've saved this, you'll get a notice at the top saying that you need to update the rewrite rules, as shown:
[image: Plugin installation]

Scroll down the page and click on the Update Mod_Rewrite Rules button to update the rewrite rules, as shown:
[image: Plugin installation]

The cache plugins' status should now be green, and all of the setup should be done. Since we are logged in to this web browser, we will not be served cached pages. This is important to know, and the advantage is that you won't have to disable the whole cache plugin just to see the uncached version of your site. Open another web browser (not just another window or tab in your current browser, unless you are using incognito or private mode) and go to your WordPress instance. Click on the Hello World title on the post. Go back to the start page. Click on the title again. It feels pretty fast, right?
To verify that it works, you can open the development tools in your browser. Make sure that you don't have caching disabled in your browser when the development tolls are open. Click on the Network tab, then click on the post's title again, and then inspect that call, as shown in the following screenshot:
[image: Plugin installation]

This is just what we wanted to see. Great!

Making our changes persist

Now that we have made our changes, we want to create our own Dockerfile to build on top of the official WordPress image.
This is what the Dockerfile should look like:

FROM wordpress:latest
RUN apt-get update && apt-get install -y unzip && rm -r /var/lib/apt/lists/*
RUN touch /usr/local/etc/php/conf.d/upload-limit.ini \
 && echo "upload_max_filesize = 32M" >> /usr/local/etc/php/conf.d/upload-limit.ini \
 && echo "post_max_size = 32M" >> /usr/local/etc/php/conf.d/upload-limit.ini
RUN a2enmod expires headers
VOLUME /var/www/html
COPY docker-entrypoint.sh /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]
CMD ["apache2", "-DFOREGROUND"]

Hosting image sources on GitHub

The Docker Registry Hub has very good support for automatic fetching of image updates from both Bitbucket and GitHub. You can pick whatever you want, but for this book, I will use GitHub. I have accounts on both services and they are both excellent.
[image: Hosting image sources on GitHub]

At GitHub, create a new empty repository called my-docker-images and add an appropriate license if you like.
Note
This book will not go into how to add your SSH keys to GitHub and so on. There are excellent guides for this online. GitHub has a great guide at https://help.github.com/articles/generating-ssh-keys/.

Let's create a branch and copy our files for the modified Docker image to it.
Clone the repository locally so that you can add files to it. Make sure you are not inside your wordpress-master directory, but on the same level as it is:

git clone git@github.com:yourusername/my-docker-images.git

The output of this command is as follows:
[image: Hosting image sources on GitHub]

We'll execute these commands one by one:

cd my-docker-images
git checkout -b wordpress
git add .
git commit –m "Adding new files."
git push origin wordpress

Go to your GitHub page and try to find the WordPress branch.
For every new Docker image we want to create and publish on the Docker Registry Hub, we need to create a new branch in this GitHub repository. If you have a lot of Docker images and the images have a lot of versions, you might want to consider a different structure, but for this book, this approach will be great!
[image: Hosting image sources on GitHub]

All files are in place, and you can click on them to verify that the contents are what we would expect.

Publishing an image on the Docker Registry Hub

If you're not a member of the Docker Registry Hub (https://hub.docker.com), now is the time to register so that you can publish your images on the public Docker repository, which can be accessed from anywhere.

Automated builds

When you add a repository, you should choose the Automated Build option so that you can fetch code from GitHub (or Bitbucket), as shown in the following screenshot:
[image: Automated builds]

We'll connect with our GitHub account and select the repository we just created and pushed to my-docker-images.
We will start to add our WordPress image, so let's set the repository name to wordpress on the next screen. It's important that you enter this name correctly, since it cannot be changed later.
At this time, we will just use one tag for our image—the latest tag. Ensure that the source: Type is set to Branch and that you've entered wordpress
 as its name.
Choose to add this as a public repository and check the active checkbox. This means that if you push any updates to this on GitHub, the Registry Hub will automatically pull it and publish its changes, as shown in the following screenshot:
[image: Automated builds]

The Registry Hub will now pull your branch and try to build your Docker image to verify that it works. You can head over to the Build Details tab to see the progress. Since it's the official WordPress image base, it should go pretty fast if they cache the images on their build servers. If not, it could take a few minutes, since PHP is compiled from source.
This is shown in the following screenshot:
[image: Automated builds]

Wow! We've just published an image on the Docker Registry Hub, which means that anyone can fetch and run containers on top of it. The status will go from Building to Finished when the image is published.
The next step would be to actually pull it ourselves to verify that it works as expected:
docker pull oskarhane/wordpress
docker images
docker run --name mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
docker run --name my-wordpress --link mysql:mysql -d -p 80 oskarhane/wordpress
docker ps

Open your web browser and head over to your new container. You should be presented with the WordPress setup page.

Summary

In this chapter, you learned quite a lot. The most part was about modifying the Dockerfile and ENTRYPOINT files in order to get the Docker image that we wanted. Bash knowledge and programming skills are very convenient, but since all of this is mostly about installation, moving files, and editing settings files, very basic knowledge can be enough.
GitHub is an excellent place to host your Docker repositories, and it's very easy to set up a new repository to get started. The Docker Registry Hub takes your GitHub repository and lets you pick a branch. This branch will be the source for a public Docker image that anyone can pull and use.
One question arises though; what about our data? It's trapped inside these MySQL and WordPress containers. The next chapter will show you how to handle your data.

Chapter 4. Giving Containers Data and Parameters

The WordPress data inside the WordPress container and the database's data inside the MySQL container may not be what we want. It's considered good practice to keep the data outside the service containers because you may want to separate the data from the service container. In this chapter, we'll cover the following topics:
	Data volumes
	Creating a data volume image
	Host on GitHub
	Publishing on Docker Registry Hub
	Running on Docker Registry Hub
	Passing parameters to containers
	Creating a parameterized image

Data volumes

There are two ways in which we can mount external volumes on our containers. A data volume lets you share data between containers, and the data inside the data volume is untouched if you update, stop, or even delete your service container.
A data volume is mounted with the –v option in the docker run statement:

docker run –v /host/dir:container/dir

You can add as many data volumes as you want to a container, simply by adding multiple –v directives.
A very good thing about data volumes is that the containers that get data volumes passed into them don't know about it, and don't need to know about it either. No changes are needed for the container; it works just as if it were writing to the local filesystem. You can override existing directories inside containers, which is a common thing to do. One usage of this is to have the web root (usually at /var/www inside the container) in a directory at the Docker host.

Mounting a host directory as a data volume

You can mount a directory (or file) from your host on your container:

docker run –d --name some-wordpress –v /home/web/wp-one:/var/www wordpress

This will mount the host's local directory, /home/web/wp-one, as /var/www on the container. If you want to give the container only the read permission, you can change the directive to –v /home/web/wp-one:/var/www:ro where the :ro is the read-only flag.
It's not very common to use a host directory as a data volume in production, since data in a directory isn't very portable. But it's very convenient when testing how your service container behaves when the source code changes.
Any change you make in the host directory is direct in the container's mounted data volume.

Mounting a data volume container

A more common way of handling data is to use a container whose only task is to hold data. The services running in the container should be as few as possible, thus keeping it as stable as possible.
Data volume containers can have exposed volumes via the Dockerfile's VOLUME keyword, and these volumes will be mounted on the service container while using the data volume container with the --volumes-from directive.
A very simple Dockerfile with a VOLUME directive can look like this:

FROM ubuntu:latest
VOLUME ["/var/www"]

A container using the preceding Dockerfile will mount /var/www. To mount the volumes from a data container onto a service container, we create the data container and then mount it, as follows:

docker run –d --name data-container our-data-container
docker run –d --name some-wordpress --volumes-from data-container wordpress

Backing up and restoring data volumes

Since the data in a data volume is shared between containers, it's easy to access the data by mounting it onto a temporary container. Here's how you can create a .zip file (from your host) from the data inside a data volume container that has VOLUME ["/var/www"] in its Dockerfile:

docker run --volumes-from data-container -v $(pwd):/host ubuntu zip -r /host/data-containers-www /var/www

This creates a .zip file named data-containers-www.zip, containing what was in the. www data container from var directory. This .zip file places that content in your current host directory.

Creating a data volume images

Since our data volume container will just hold our data, we should keep it as small as possible to start with so that it doesn't take lots of unnecessary space on the server. The data inside the container can, of course, grow to be as big as the space on the server's disk. We don't need anything fancy at all; we just need a working file storage system.
For this book, we'll keep all our data (MySQL database files and WordPress files) in the same container. You can, of course, separate them into two data volume containers named something like dbdata and webdata.

Data volume image

Our data volume image does not need anything other than a working filesystem that we can read and write to. That's why our base image of choice will be BusyBox. This is how BusyBox describes itself:
"BusyBox combines tiny versions of many common UNIX utilities into a single small executable. It provides replacements for most of the utilities you usually find in GNU fileutils, shellutils, etc. The utilities in BusyBox generally have fewer options than their full-featured GNU cousins; however, the options that are included provide the expected functionality and behave very much like their GNU counterparts. BusyBox provides a fairly complete environment for any small or embedded system."

That sounds great! We'll go ahead and add this to our Dockerfile:

FROM busybox:latest

Exposing mount points

There is a VOLUME instruction for the Dockerfile, where you can define which directories to expose to other containers when this data volume container is added using --volumes-from attribute. In our data volume containers, we first need to add a directory for MySQL data. Let's take a look inside the MySQL image we will be using to see which directory is used for the data storage, and expose that directory to our data volume container so that we can own it:

RUN mkdir –p /var/lib/mysql
VOLUME ["/var/lib/mysql"]

We also want our WordPress installation in this container, including all .php files and graphic images. Once again, we go to the image we will be using and find out which directory will be used. In this case, it's /var/www/html. When you add this to the Dockerfile, don't add new lines; just append the lines with the MySQL data directory:

RUN mkdir -p /var/lib/mysql && mkdir -p /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

The Dockerfile

The following is a simple Dockerfile for the data image:

FROM busybox:latest
MAINTAINER Oskar Hane <oh@oskarhane.com>
RUN mkdir -p /var/lib/mysql && mkdir -p /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

And that's it! When publishing images to the Docker Registry Hub, it's good to include a MAINTAINER instruction in the Dockerfiles so that you can be contacted if someone wants, for some reason.

Hosting on GitHub

When we use our knowledge on how to host Docker image sources on GitHub and how to publish images on the Docker Registry Hub, it'll be no problem creating our data volume image.
Let's create a branch and a Dockerfile and add the content for our data volume image:

git checkout -b data
vi Dockerfile
git add Dockerfile

On line number 2 in the preceding code, you can use the text editor of your choice. I just happen to find vi suits my needs. The content you should add to the Dockerfile is this:

FROM busybox:latest
MAINTAINER Oskar Hane <oh@oskarhane.com>
RUN mkdir /var/lib/mysql && mkdir /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

Replace the maintainer information with your name and e-mail.
You can—and should—always ensure that it works before committing and pushing to GitHub. To do so, you need to build a Docker image from your Dockerfile:

docker build –t data-test .

Make sure you notice the dot at the end of the line, which means that Docker should look for a Dockerfile in the current directory. Docker will try to build an image from the instructions in our Dockerfile. It should be pretty fast, since it's a small base image and there's nothing but a couple of VOLUME instructions on top of it.
The screenshot is as follows:
[image: Hosting on GitHub]

When everything works as we want, it's time to commit the changes and push it to our GitHub repository:

git commit –m "Dockerfile for data volume added."
git push origin data

When you have pushed it to the repository, head over to GitHub to verify that your new branch is present there.
The following screenshot shows the GitHub repository:
[image: Hosting on GitHub]

Publishing on the Docker Registry Hub

Now that we have our new branch on GitHub, we can go to the Docker Hub Registry and create a new automated build, named data. It will have our GitHub data branch as source.
[image: Publishing on the Docker Registry Hub]

Wait for the build to finish, and then try to pull the image with your Docker daemon to verify that it's there and it's working.
The screenshot will be as follows:
[image: Publishing on the Docker Registry Hub]

Amazing! Check out the size of the image; it's just less than 2.5 MB. This is perfect since we just want to store data in it. A container on top of this image can, of course, be as big as your hard drive allows. This is just to show how big the image is. The image is read-only, remember?

Running a data volume container

Data volume containers are special; they can be stopped and still fulfill their purpose. Personally, I like to see all containers in use when executing docker ps command, since I like to delete stopped containers once in a while.
This is totally up to you. If you're okay with keeping the container stopped, you can start it using this command:

docker run –d oskarhane/data true

The true argument is just there to enter a valid command, and the –d argument places the container in detached mode, running in the background.
If you want to keep the container running, you need to place a service in the foreground, like this:

docker run –d oskarhane/data tail –f /dev/null

The output of the preceding command is as follows:
[image: Running a data volume container]

The tail –f /dev/null command is a command that never ends, so the container will be running until we stop it. Resource-wise, the tail command is pretty harmless.

Passing parameters to containers

We have seen how to give containers parameters or environment variables when starting the official MySQL container:

docker run --name mysql-one -e MYSQL_ROOT_PASSWORD=pw -d mysql

The –e MYSQL_ROOT_PASSWORD=pw command is an example showing how you can do it. It means that the MYSQL_ROOT_PASSWORD environment variable inside the container has pw as the value.
This is a very convenient way to have configurable containers where you can have a setup script as ENTRYPOINT or a foreground script configuring passwords; hosts; test, staging, or production environments; and other settings that the container needs.

Creating a parameterized image

Just to get the hang of this feature, which is very good, let's create a small Docker image that converts a string to uppercase or lowercase, depending on the state of an environment variable.
The Docker image will be based on the latest Debian distribution and will have only an ENTRYPOINT command. This is the Dockerfile:

FROM debian:latest
ADD ./case.sh /root/case.sh
RUN chmod +x /root/case.sh
ENTRYPOINT /root/case.sh

This takes the case.sh file from our current directory, adds it to the container, makes it executable, and assigns it as ENTRYPOINT.
The case.sh file may look something like this:

#!/bin/bash

if [-z "$STR"]; then
 echo "No STR string specified."
 exit 0
fi

if [-z "$TO_CASE"]; then
 echo "No TO_CASE specified."
 exit 0
fi

if ["$TO_CASE" = "upper"]; then
 echo "${STR^^*}"
 exit 0
fi
if ["$TO_CASE" = "lower"]; then
 echo "${STR,,*}"
 exit 0
fi
echo "TO_CASE was not upper or lower"

This file checks whether the $STR and $TO_CASE environment variables are set. If the check on whether $TO_CASE is upper or lower is done and if that fails, an error message saying that we only handle upper and lower is displayed.
If $TO_STR was set to upper or lower, the content of the environment variable $STR is transformed to uppercase or lowercase respectively, and then printed to stdout.
Let's try this!
[image: Creating a parameterized image]

Here are some commands we can try:

docker run –i case
docker run –i -e STR="My String" case
docker run –i -e STR="My String" –e TO_CASE=camel case
docker run –i -e STR="My String" –e TO_CASE=upper case
docker run –i -e STR="My String" –e TO_CASE=lower case

This seems to be working as expected, at least for this purpose. Now we have created a container that takes parameters and acts upon them.

Summary

In this chapter, you learned that you can keep your data out of your service containers using data volumes. Data volumes can be any one of directories, files from the host's filesystem, or data volume containers.
We explored how we can pass parameters to containers and how to read them from inside ENTRYPOINT. Parameters are a great way to configure containers, making it easier to create more generalized Docker images.
We created a data volume container and published it to the Docker Registry Hub, preparing us for the next chapter, where we will connect our three containers to create one loosely coupled unit.

Chapter 5. Connecting Containers

It's time to connect all our three containers to form a single unit of modularized parts. I'll introduce you to two services, Docker Compose and Crane, which can be used to automate this. We'll go through the following topics in this chapter:
	Manually connecting containers together
	Exploring the contents of a data volume container
	Connecting containers to a configuration file using Docker Compose
	Connecting containers to a configuration file using Crane

Manually connecting containers

Let's take a look at how to connect our service containers to our data volume container. First, we have to run our data volume container, then run our MySQL container, and lastly run our WordPress container, as shown in the following command:

docker run -d --name data-one oskarhane/data tail -f /dev/null
docker run --name mysql-one --volumes-from data-one -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
docker run --name wordpress-one --volumes-from data-one --link mysql-one:mysql -d -p 80 oskarhane/wordpress

Here, we have fired up and named the data volume container data-one. The next line fires up the MySQL container, named mysql-one, and gives it the data volume container. The last line fires up our WordPress container, named wordpress-one, links mysql-one as the MySQL link, and gives it the data volume container.
The following output is displayed:
[image: Manually connecting containers]

Open your web browser and head over to the container's URL and port in order to verify that all the services are running and the containers are tied together as they should be. You should see the, now familiar, WordPress installation page.
As you may have figured out by now, you can fire up another WordPress container using the same MySQL link and the same data volume container. What do you think will happen?
The new WordPress container will be another instance of the same WordPress site, with the same files and the same database.
When you link containers, Docker will set some environment variables in the target container in order to enable you to get information about the linked source container. In our case, these environment variables will be set when we link the MySQL container, as shown in the following command:
MYSQL_NAME=/wordpress-one/mysql-one
MYSQL_PORT=tcp://ip:3306
MYSQL_3306_TCP=tcp://ip:3306
MYSQL_3306_TCP_PROTO=tcp
MYSQL_3306_TCP_PORT=3306
MYSQL_3306_TCP_ADDR=ip

Exploring the contents of a data volume container

Is the data being written to the data volume container? Or, is the data stored inside the MySQL and WordPress containers when connected? How can you tell?
One way to determine this is to enter a container via a shell so that you can navigate around its filesystem. Since version 1.3, Docker has the ability to start a new instance of a container's shell. Running the old docker attach command just gets you in the current shell instance, which in our case has tail –f /dev/null running. If we exit this tail command, the container will exit and shut down. Therefore, we need a new shell instance in a running container so that we can invoke any commands we want inside the container without the risk of the container exiting. The following command can be used to do this:

docker exec -i -t data-one /bin/sh

The –i and –t flags mean that we want to keep the session interactive and allocate a pseudo-TTY. data-one is the name of the container, but you can use the container ID if you like. I would choose /bin/bash over /bin/sh, but the container runs BusyBox and /bin/bash isn't available there. For the kinds of tasks that we are about to perform, it doesn't matter which shell we use.
What we want to do is to take a look in the directories we exposed as VOLUMES in this data volume container. The directories are /var/www/html and /var/lib/mysql.
Let's explore in the following command:

ls -la /var/www/html
ls -la /var/lib/mysql

The following output is displayed:
[image: Exploring the contents of a data volume container]

We see files on both those directories, which indicates that the two other containers are writing to this one. It separates the services with the data. If you want further proof, launch vi in the shell, edit a file, and reload the site in your browser.
This worked out really smooth and easy, didn't it? The containers interact with each other and all we have to do is to link them together with just one command.

Connecting containers using Docker Compose

Docker Compose was previously called Fig, but Docker acquired Fig and the name was changed. This is how Docker describes Docker Compose:
"Compose is a tool for defining and running complex applications with Docker. With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running."

Docker Compose basically gives us a way to define settings in a configuration file, so we don't have to remember all the names for all the containers when linking them together, the ports to expose, the data volume container to use, and so on.

Installing Docker Compose

Docker Compose has regular releases on GitHub, and at the time of writing this book, the latest release is 1.0.1.
We will install Docker Compose with the Python package manager, pip. Our EC2 instance does not come with pip installed, so we have to start with the installation, as shown here:

sudo su
wget https://bootstrap.pypa.io/get-pip.py && python ./get-pip.py

The following output is displayed:
[image: Installing Docker Compose]

After pip is installed, you can go ahead and install Docker Compose:

sudo pip install -U docker-compose

Now, you'll see Docker Compose installed along with all of its dependencies. Invoke docker-compose --version to verify that it works as expected.

Basic Docker Compose commands

The following are the basic Docker Compose commands that you should be familiar with:
	build: This is used to build or rebuild services
	kill: This forces the service containers to stop
	logs: This views the output from the services
	port: This is used to print the public port for a port binding
	ps: This is used to list containers
	pull: This is used to pull service images
	rm: This is used to remove stopped service containers
	run: This is used to run a one-off command on a service
	scale: This sets the number of containers to be run for a service
	start: This is used to start existing containers for a service
	stop: This stops running containers without removing them
	up: This builds, recreates, starts, and attaches to containers for a service; linked containers will be started, unless they are already running

As you can see, the commands are very similar to the Docker client commands and most of them do the exact same thing by forwarding the commands to the Docker daemon. We will go through some of them a little more in detail.
Service

When the word service is used with Docker Compose, it refers to a named container in a docker-compose.yml configuration file.

Using the run command

We are used to starting containers with the run command for the Docker client. With docker-compose, the run command is very different. When you run a command with docker-compose, it's a one-off command on a service. This means that if we name a container configuration Ubuntu and invoke docker-compose run ubuntu /bin/bash echo hello, the container will start and execute /bin/bash echo hello and then shut down. The difference with this and running the command directly with Docker is that all the linked containers and VOLUME containers will be started and connected when you use docker-compose.

Using the scale command

The scale command is very interesting. When we invoke docker-compose scale web=3, we actually start three containers of the service that we named web.

Setting up our PaaS with Docker Compose

Every Docker Compose instance lives in its own directory and has a configuration file named docker-compose.yml inside it:

mkdir docker-compose-wp && cd $_
touch docker-compose.yml

This is how the contents of our docker-compose.yml file will look:

wp:
 image: oskarhane/wordpress
 links:
 - mysql:mysql
 ports:
 - "80"
 volumes_from:
 - paasdata
mysql:
 image: mysql
 volumes_from:
 - paasdata
 environment:
 - MYSQL_ROOT_PASSWORD=myrootpass
paasdata:
 image: oskarhane/data
 command: tail -f /dev/null

You can see that we have defined three services here, namely wp, mysql, and paasdata.
Lets try these services and the following output is displayed:
[image: Setting up our PaaS with Docker Compose]

Invoke docker-compose up –d to run docker-compose and the containers in daemon mode.
That's how easy it is. Open your web browser and head to your Docker host and the port stated in the table (in my case, port 49155); you should see the very familiar WordPress installation page.

Connecting containers using Crane

Crane is much like Docker Compose, but it has more configuration possibilities. This is how its creator describes Crane:
"Crane is a tool to orchestrate Docker containers. It works by reading in some configuration (JSON or YAML) which describes how to obtain images and how to run containers. This simplifies setting up a development environment a lot as you don't have to bring up every container manually, remembering all the arguments you need to pass. By storing the configuration next to the data and the app(s) in a repository, you can easily share the whole environment."

This paragraph can be about Docker Compose as well, as you can see.

Installing Crane

Crane is easy to install but not easy to keep updated. The same command is used to install as well as update, so we have to invoke this once in a while in order to have the latest version.
Invoke the following command on a single line to install Crane:

bash -c "`curl -sL https://raw.githubusercontent.com/michaelsauter/crane/master/download.sh`" && sudo mv crane /usr/local/bin/crane

Crane is now installed in /usr/local/bin.

Usage

I won't go through all the commands here since they're similar to Docker Compose's commands, but I'll comment on a few here:
	lift: This command, like Docker Compose's up command, builds and runs containers from your configuration file
	graph: This prints your containers' relations from the configuration file
	logs: This maps to the Dockers Compose's command, but here you can get the logs for a whole group
	status: This also maps to the Dockers Compose's command but lets you get the logs for a group

Configuration

This is where Crane really leaves Docker Compose behind. You have many more configuration options for Crane apps. The configuration file must be named crane.json or crane.yaml. For every container, this is what you can configure:
	image (string, required): This is the name of the image to build/pull
	dockerfile (string, optional): This gives the relative path to the Dockerfile
	run (object, optional): These parameters are mapped to Docker's run and create commands:	add-host (array): This adds custom host-to-IP mappings
	cpuset (integer)
	cpu-shares (integer)
	detach (boolean) sudo docker attach <container name> will work as normal
	device (array): This adds host devices
	dns (array)
	entrypoint (string)
	env (array)
	expose (array): This denotes the ports to be exposed to linked containers
	hostname (string)
	interactive (boolean)
	link (array): This links containers
	memory (string)
	privileged (boolean)
	publish (array): This maps network ports to the container
	publish-all (boolean)
	restart (string) Restart policy
	rm (boolean)
	tty (boolean)
	volume (array): In contrast to plain Docker, the host path can be relative
	volumes-from (array): This is used to mount volumes from other containers
	workdir (string)
	cmd (array/string): This command is used to append to docker run (overwriting CMD)

	rm (object, optional): These parameters are mapped to Docker's rm command:	volumes (boolean)

	start (object, optional): These parameters are mapped to Docker's start command:	attach (boolean)
	interactive (boolean)

Set up the same configuration that you did in Docker Compose; it will look something like the following code. As you might understand, you can write this in the JSON format as well, but for the comparison to Docker Compose's version to be as easy as possible, I'll keep it in the yaml format:

containers:
 wp:
 image: oskarhane/wordpress
 run:
 volumes-from: ["mydata"]
 link:
 - mymysql:mysql
 publish: ["80"]
 detach: true
 mymysql:
 image: mysql
 run:
 volumes-from: ["mydata"]
 detach: true
 env: ["MYSQL_ROOT_PASSWORD=rootpass"]
 mydata:
 image: oskarhane/data
 run:
 detach: true
 cmd: "tail -f /dev/null"

Here, we specify three containers, where the data container is added as a data volume container to the others and the MySQL container is linked to the WordPress container.
Save this file as crane.yaml and type crane lift to run your app.
The following output is displayed:
[image: Configuration]

To see the containers' current statuses, we can type crane status. Take a look at the last column in our wp container. It says it's not running. Type crane logs wp and see what it says in following command:

wp * WordPress not found in /var/www/html - copying now...
wp * Complete! WordPress has been successfully copied to /var/www/html
wp |
wp | Warning: mysqli::mysqli(): (HY000/2002): Connection refused in - on line 5
wp * MySQL Connection Error: (2002) Connection refused

It seems that our WordPress container starts faster than our MySQL container, so the WordPress container can't find it when it starts.
This can happen in Docker Compose as well because there's no check if --link:ed containers are up, at least not at the time when this is being written.
This cannot be solved in Docker Compose; we have to rely on pure luck that the MySQL container will get ready before the WordPress container tries to use the linked MySQL container.
With Crane, you can group containers inside the configuration file in different groups and then run commands on that group instead of the whole configuration.
This is very easy; we just add these lines at the end of our crane.yaml file:

groups:
 default: ['mydata', 'mymysql', 'wp']
 data_db: ['mydata', 'mymysql']
 web: ['wp']

Here, we have separated the WordPress container from the other two containers we have so that we can run commands on them separately.
Let's start our data_db group first by invoking the crane lift data_db --recreate command. I added the flag --recreate and to make sure that we're creating new containers and not reusing the old ones. Run crane status data_db to make sure they're running.
Now that we know that the MySQL container is running, we can start the WordPress container by invoking the crane lift web --recreate command.
The following output is displayed:
[image: Configuration]

Summary

Now, we can connect containers in different ways to keep different services separate on different containers. We learned how to do this manually, which can be quite hard when you have lots of dependencies between containers.
We had a brief look at two orchestration tools: Docker Compose and Crane. Crane is an independent and more advanced tool for the administrators who want more control over containers. The ability to group containers in Crane makes it more reliable when there can be timing issues in dependencies.
In the next chapter, we will run two instances of our app using Crane to see what problems and possibilities crop up when we want to make both our blogs publicly accessible on the regular HTTP port (80).

Chapter 6. Reverse Proxy Requests

One big problem in having many containers with public ports on the same server is that they can't all listen to the standard ports for their kinds of services. If we have a MySQL backend service and have 10 MySQL containers running, only one of them can listen to the MySQL standard port 3306. For those who expose a web server, the standard port 80 can only be used by one of their WordPress containers. In this chapter, we'll cover the following topics:
	Explaining the problem
	Coming up with a solution to the problem
	Implementing the solution with Nginx and HAProxy
	Automating the process of mapping domains

Explaining the problem

The problem in having many containers with the same services on the same host is that there are standard ports used by user applications. Using a web browser and entering the IP to a Docker host running a WordPress container will ask for resources on port 80 by default. You can't expect your users to remember a nonstandard port in order to enter your website.
[image: Explaining the problem]The only way to reach each of the three containers is to manually enter the containers' exposed port number.

Finding a solution

Before we head to the solution, let me explain what a regular proxy server is, in case you're not familiar with it.
A proxy server is a server that connects to services on your behalf and forwards all the results to you. After you've set up to route all your traffic through the proxy server, you—as a user—won't notice it's there. Everything will work as usual.
However, service owners only see that a certain machine (the proxy server) is connected to them. If another user uses the same proxy server and the same service as you do, the service owner can't tell the difference and will perceive you as one single user.
[image: Finding a solution]Different users connecting through a proxy server appear as one user.

As you can see in the preceding diagram, the service owners just see that someone with an IP of 213.12.12.3 has connected to them.
So, what if we use this on the Docker host? What if we put something in front of all the containers? Depending on which domain name is being requested, this thing will forward the request to the right container and port and then just forward the request's response to the requesting user.
There are things especially made to solve this kind of problem. They're called reverse proxies (reverse because the proxy is at the other end, making the user only see one IP and forwarding the request).
If we install and configure a reverse proxy on our Docker host server, then this is how the diagram will look:
[image: Finding a solution]A reverse proxy lets all Docker containers appear as one.

The reverse proxy listens to port 80—the standard web port—and when a request for domain1.com comes in, the proxy looks at its configuration to see whether there is a specified forwarding endpoint for this domain. If there is, the reverse proxy forwards the request to the right Docker container, waits for its response, and forwards the container's response to the requesting users when it comes.
This is the solution we're after. The only question now is which reverse proxy we are going to use. There are quite a bunch of them out there; some reverse proxies have more specific purposes, such as load balancing, and some are services that do a lot of other stuff and have this feature as well, such as a web server.

Implementing the solution

You will always have preferences when selecting a tool to solve a problem. Sometimes, you select a tool because you're comfortable using it and it's good enough; sometimes, you select it because it has great performance or because you just want to try something new.
That's why we will go through this problem and solve it with two different tools. The end result will be the same, but the tools have a slightly different setup.
Before we start implementing the solutions, we use Crane to start an instance of our three-container application and verify that it's working by connecting it to the site. Have Docker decide the public port for you, so it's 491XX. Remember this port since we will use it when implementing the solutions.
We need to point out the domain names we want to use to our Docker host's IP address. We can do this either by setting the domain names A-record to our server's IP address or by adding a line in our local /etc/hosts file, which directs requests to the domain names to our server's IP address.
I'll go with the latter and enter this in my Mac's /etc/hosts file:

54.148.253.187 domain1.com
54.148.253.187 domain2.com
54.148.253.187 domain3.com

Note
Make sure you replace the above IP address with your server's IP address.

Implementation with HAProxy

HAProxy (http://www.haproxy.org) is a load balancer, which has the role of forwarding traffic to different services behind it.
This is how HAProxy describe themselves:
"HAProxy is a free, very fast and reliable solution offering high availability, load balancing, and proxying for TCP and HTTP-based applications. It is particularly suited for very high traffic web sites and powers quite a number of the world's most visited ones. Over the years it has become the de-facto standard open source load balancer, is now shipped with most mainstream Linux distributions, and is often deployed by default in cloud platforms."

This sounds like something that fits our needs.
Installing HAProxy

As noted in the quote, many systems are installed already and shipped with it. If you can't find it, it should be available in you package manager if you use Ubuntu or Debian (apt-get install haproxy) or in some other distro with a package manager.
On my Amazon EC2 instance that runs Amazon Linux, HAProxy can be installed using yum install haproxy.
The following output will be obtained as follows:
[image: Installing HAProxy]

It's not the most recent version, but that's OK for the things we are about to do.

Configuring HAProxy

We'll write an HAProxy configuration in the file /etc/haproxy/docker.cfg so that we don't have to remove everything in the default configuration file, as it may be good for reference in the future.
HAProxy divides its configuration into four parts: global, defaults, frontend, and backend. Don't confuse frontend and backend with frontend and backend development. Here, frontend means the server part that's facing the Internet, and backend is the server part that's behind HAProxy, which in our case are the Docker containers.
Open the configuration file and start by typing in the generic stuff, as shown here:
global
 daemon
 maxconn 4096
 pidfile /var/run/haproxy.pid
defaults
 mode http
 timeout connect 5000ms
 timeout client 50000ms
 timeout server 50000ms

Now, we enter the port to listen on and the backend configurations to use for which domain:
frontend http-in
 bind *:80
 acl is_site1 hdr_end(host) -i domain1.com
 use_backend site1 if is_site1

We define that regular incoming HTTP traffic on port 80 should be captured. The acl here means access control list and is a flexible solution to take decisions based on content extracted from the requests. The hdr_end(host) -i domain1.com function call means that the end of the header host is case-insensitive, matched against the string domain1.com. The result (Boolean) of this match is saved in the is_site1 variable.
Note that this means that all the subdomains for domain1.com will be matched with this setup. If you just want to match www.domain1.com, you can use hdr(host) -i www.domain1.com instead.
Now that we have the match result in the is_site1 variable, we can send the request to a backend configuration, named site1.
We append this to our configuration file:
backend site1
 balance roundrobin
 option httpclose
 option forwardfor
 server s1 127.0.0.1:49187 maxconn 450

We define our backend name as site1, set a few options, and add the server and the port to our WordPress container.
Note
Make sure you enter your WordPress container's exposed port instead of 49187 in the preceding code.

It's time to try this configuration. Save the configuration file and test it in a shell with this command:

haproxy -f /etc/haproxy/docker.cfg –c

The output should say Configuration file is valid.
Make sure you don't have something already listening to port 80 on your machine. You can use something such as netstat –a to verify that 80 or HTTP isn't listed. If they are, find the app that's listening and shut it down.
Start HAProxy with this command:

haproxy -f /etc/haproxy/docker.cfg –D

The -D option means that we want to run it as a daemon in the background. You shouldn't see any output when you invoke this command.
Let's check whether HAProxy is running by invoking ps aux | grep haproxy. You should see it listed there. Finally, let's verify that it is listening to port 80 by invoking netstat –a | grep http. Now, you should have something in that list.
The output obtained is displayed here:
[image: Configuring HAProxy]

It all looks good!
Just to recap what we have done here: we set up a service that listens for incoming requests on port 80 on our server. When a request on this port comes in, a check on the request header's host is performed to see whether it matches domain1.com. If we have a match, the request is forwarded to the IP address 127.0.0.1 and to the port 49187. The response from this IP and port are sent back to the requester.
Now to the moment of truth. Open your web browser and enter the URL domain1.com.
Make sure that you have entries for domain1.com in your host's file, pointing it to your server.
After you perform the preceding instructions, you will see the following website screen:
[image: Configuring HAProxy]

You can see that in the location bar, no port is specified. Wonderful!

Adding more domains to HAProxy

We did not go through all this just to serve a single web application on port 80, which can be done without a reverse proxy. Start another WordPress application with Crane by copying the old configuration to a new directory and change the service's names, as shown here:

cd..
cp –r crane-wp crane-wp2
cd crane-wp2
sed -i "s/wp/wp2/g" crane.yaml
sed -i "s/mydata/mydata2/g" crane.yaml
sed -i "s/mymysql/mymysql2/g" crane.yaml
crane lift data_db
crane lift wp2

#check out port for new container named wp2
docker ps

Open the HAProxy configuration file again and add two lines in the frontend:

acl is_site2 hdr_end(host) -i domain2.com
use_backend site2 if is_site2

After that, add a new backend configuration named site2:

backend site2
 balance roundrobin
 option httpclose
 option forwardfor
 server s2 127.0.0.1:49188 maxconn 450

Make sure that you replace the port with the one you got. Restart HAProxy and do the checks we did the last time we started it.
To restart HAProxy, run /etc/init.d/haproxy restart.
Note
HAProxy can reload a new configuration without dropping active sessions with this command:

haproxy -f /etc/haproxy/docker.cfg -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid)

Open your browser and go to domain1.com in order to make sure that the old one is working. If it does, go to domain2.com. You should see another WordPress installation site. Just to be sure that it's not the same, go ahead and install one of them. Or, go to domain3.com and see what happens when a domain points to the server without having it match in HAProxy.

Implementation with Nginx

Now, we are going to do the same thing as we did with HAProxy, but we will use the excellent web server Nginx (http://nginx.org/en/) as our reverse proxy instead. Nginx is a full featured and really fast web server that leaves a small footprint in the memory.
This is how Nginx is described:
"nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. For a long time, it has been running on many heavily loaded Russian sites including Yandex, Mail.Ru, VK, and Rambler. According to Netcraft, nginx served or proxied 20.41% busiest sites in November 2014. Here are some of the success stories: Netflix, Wordpress.com, FastMail.FM."

This also sounds like what we need, just like it did with HAProxy.
Installing Nginx

Nginx is available in all Linux package managers, such as aptitude/apt, yum, and others, so an install can be simply done with apt-get install nginx or yum install nginx. Since it's open source, you can, of course, install it from the source as well.

Configuring Nginx

We are going to add the configuration to a file named /etc/nginx/conf.d/wp1.conf.
Create and open this file in your favorite text editor:
server {
 listen 80;
 server_name domain1.com;
 charset UTF-8;

 if ($host !~ ^(domain1.com)$) {
 return 444;
 }
}

This block, as you can see, makes the server listen to port 80 and to match the domain domain1.com for this configuration to apply. It's always good to specify the server charset so that the website text does not get the wrong encoding during the forwarding process; so, we add that line as well. To just listen to domain1.com and nothing else (Nginx uses the first configuration found as a default configuration if there's no match in the server name part), we return the HTTP status code 444 (no response) on the other requests that get in there.
What are we going to do with the requests on port 80 for domain1.com then?
Add this inside the server's scope (curly brackets):
location / {
 proxy_pass http://wp1;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-NginX-Proxy true;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_redirect off;
}

The location block will match all the requests since it matches /. We will get back to the proxy_pass part in a while. Other than this, you'll see that we set a lot of headers, most of them telling our Docker container the requesters' real IP address and so on.
Back to the proxy_pass part. This is the part that actually forwards the request, to something named wp1. This is called an upstream, which we have to define.
Add this outside the server's scope:
upstream wp1 {
 server 127.0.0.1:49187;
}

The complete configuration file named /etc/nginx/conf.d/wp1.conf should look like this now:
upstream wp1 {
 server 127.0.0.1:49187;
}

server {
 listen 80;
 server_name domain1.com;
 charset UTF-8;

 if ($host !~ ^(domain1.com)$) {
 return 444;
 }

 location / {
 proxy_pass http://wp1;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-NginX-Proxy true;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_redirect off;
 }
}

Save the file and on most Linux systems, you can test it for syntax errors using the command sudo /etc/init.d/nginx configtest or sudo service nginx configtest.
Note
Make sure that you have shut down HAProxy before you start Nginx, or you will get an error saying that Nginx can't bind to port 80. You can do this with the following command:

/etc/init.d/haproxy stop

If the test was successful, we can now restart (or start) the Nginx server. Again, use sudo /etc/init.d/nginx restart or sudo service nginx restart on most systems.
Head over to your web browser and enter the URL domain1.com to take a look at our WordPress installation site. To make sure nothing but domain1.com works, try to go to domain2.com and expect no response.

Adding more domains to Nginx

To add another domain to match in Nginx, you can create a new file in the /etc/nginx/conf.d/ directory and reload the Nginx configuration, as shown in the following code:

cp /etc/nginx/conf.d/wp1.conf /etc/nginx/conf.d/wp2.conf
sed -i "s/wp1/wp2/g" /etc/nginx/conf.d/wp2.conf
sed -i "s/domain1/domain2/g" /etc/nginx/conf.d/wp2.conf
sed -i "s/49187/49188/g" /etc/nginx/conf.d/wp2.conf

#test config
/etc/init.d/nginx configtest

#reload config
/etc/init.d/nginx reload

Copy the configuration file, replace a few names, run configtest, and reload Nginx.
Try domain1.com in your browser to make sure it still works. You should still see the WordPress installation page (unless you installed WordPress, of course); head over to domain2.com after that to see whether our new configuration is used.
If you want to take a site down, just change the file's extension from .conf to something else and reload Nginx.

Automating the process of mapping domains

The limitations in this setup are that it's manual and hands-on every time a new domain is added. On my website (http://oskarhane.com), I've written some blog posts about how this process could be automated and those posts are my most-read posts of all time.
I was very glad when I found nginx-proxy by Jason Wilder. nginx-proxy solves this problem in a more clever way than me by monitoring Docker events via the Docker Remote API.
Note
You can read more about nginx-proxy on its GitHub page (https://github.com/jwilder/nginx-proxy).

nginx-proxy comes as a container and we can run it by executing the following command:

docker run -d -p 80:80 -v /var/run/docker.sock:/tmp/docker.sock jwilder/nginx-proxy

We are giving the container our Docker socket, so it can listen for the events we are interested in, which are container starts and stops. We also bind the Docker hosts' port 80 to this new container, making it the entrance container for all incoming web requests. Make sure you stop Nginx on the Docker host before starting the nginx-proxy container. You can do this with the following command:

/etc/init.d/nginx stop

When a container starts, nginx-proxy creates an nginx reverse proxy config file and reloads Nginx—just like we did, but fully automated with nginx-proxy.
To tell nginx-proxy which domain we want mapped to which container, we must run our containers with an environment variable named VIRTUAL_HOST.
In our crane.yaml file , we add an environment variable in the wp run section:

containers:
 wp:
 image: oskarhane/wordpress
 run:
 volumes-from: ["mydata"]
 link:
 - mymysql:mysql
 publish: ["80"]
 detach: true
 env: ["VIRTUAL_HOST=domain1.com"]

Now, we just have to lift this with crane again to have this container mapped to the domain domain1.com on port 80:

crane lift web --recreate

Summary

In this chapter, we saw how you can solve the problem of having multiple containers that want to serve data on the same public port. We learned what a proxy server and reverse proxy server is and how a reverse proxy is used in load balancing.
We installed and configured two different reverse proxies: HAProxy and Nginx. In my workflow, the Nginx setup fits better, just copying a file, replacing a few words, and then reloading Nginx to have it working. HAProxy might work better in your setup; the choice is yours and one cannot be said to be better than the other.

nginx-proxy automates the process of creating a reverse proxy for containers that are started and is an OK solution for a PaaS, except for one thing: easy and straightforward deployment. That's what the next chapter is all about.

Chapter 7. Deployment on Our PaaS

In the previous chapters, we went from setting up our PaaS in a very hands-on manner to a "hacked-together-automated" way by combining tools such as Crane and nginx-proxy. One part is still missing—how to deploy your code.
In this chapter we will go through the following topics:
	The problem with our current setup
	The tools/services available
	Dokku— mini-Heroku
	Setting up a WordPress app with Dokku

The problem with our current setup

Our current setup consists of three containers: a WordPress container, a MySQL container and a data volume container, tied together with Crane.
The main problem with our current setup using a VOLUME container as file storage is that we need a way into the volume to edit files. As of now, the only way to get into it is by mounting it on another container.
Another problem is that we don't version control our source code. We have just downloaded WordPress and some plugins and left it there. What if we update WordPress or make some other changes? We surely want to have that under version control.
If we want to keep the application architecture as it is, there are two options:
	Create a new container that mounts our data volume container, install it, and get access to it with SSH
	Install and open access to SSH in our WordPress container

With SSH installed, we can access the containers shell from a remote machine, and so, we can install Git to version control to our files. In this way, we can connect and push new code into the data volume container when we need to.
When connecting with SSH, you can go straight into the container without needing to connect to the Docker hosts shell.
If you are okay with connecting to the Docker host, and from there, if you open a new shell to get into your data volume container, a third option would be to SSH into your Docker hosts and then access the container with docker exec –it container_name /bin/sh.
While this certainly works, there are easier ways to do it.

The tools/services available

When we look at hosted PaaS providers available today, two of them come to mind—OpenShift and Heroku. Many developers love Heroku because of its ease of use. Their philosophy gives a hint why:
"Developer Productivity:
Developer productivity is our battle cry, at the core of everything we do. Why require three steps when one will do? Why require any action at all when zero steps will do?"

Developers usually want to spend time on their code, not managing servers, deployment, and so on.
[image: The tools/services available]

On Heroku, you get a remote Git repository into which you can push code. Your app's language and dependencies are identified by special files, depending on the language you use. Environment variables are used for configuration, and you instruct Heroku what to execute by specifying commands in a special file, called Procfile, that you include in your source code.
Whenever your push code into your remote Heroku Git repository, the app rebuilds and you have it online right away. If you have special build requirements, Heroku lets you create your own buildpacks where you can specify exactly what's to be done.
Basically, if you want to set up a WordPress blog on Heroku, you need to go through these steps:
	Locally download the latest version of WordPress.
	Create a Procfile and define what to execute (a buildpack that runs PHP and Apache2 in this case).
	Create a composer.json file that specifies that PHP is a dependency.
	Make some changes to the WordPress config files.
	Create the Heroku app, add add-ons (such as a database), and define environment variables on Heroku.
	Push your local code into Heroku.

When you make a change to the code, you just Git push to Heroku to deploy the new code. You cannot edit code directly on Heroku's servers, nor can you install themes or plugins (you have to do that locally and push the new code).
[image: The tools/services available]

If you chose a provider such as OpenShift instead, you will have a bit more control over your PaaS, You can connect to it with SSH and also store static files downloaded by apps.
It is something like this we are looking for; it's just that we want to host our own platform and have Docker containers used in the background.

Dokku – Docker-powered mini-Heroku

Dokku can be found at https://github.com/progrium/dokku. It is a project that is described by its authors as follows:
"Docker powered mini-Heroku in around 100 lines of Bash."

Feature wise, Dokku carries out deployment in the same way as Heroku does. Let's install Dokku and see what it can do for our PaaS.

Installation

Dokku requires Ubuntu 14.04 to run, and we start by creating a new EC2 instance running that.
Here is a screenshot of what we see:
[image: Installation]

When we have created an instance and have it up and running, we can start by installing Docker itself:

sudo apt-get install docker.io

When that is done, we go ahead and install Dokku.
The recommended bootstrap bash installation didn't work for me, so I cloned the repo instead:

cd /tmp
git clone https://github.com/progrium/dokku.git
cd dokku
sudo make install
dokku version

Note
You can read about the installation process on the official installation page at http://progrium.viewdocs.io/dokku/installation.

The installation part will take a while, but it should succeed.
According to the document through the preceding link, we should edit the /home/dokku/VHOST file to hold the content of a domain name we plan to use. We skip this for now because it includes setting some DNS records. When we leave that file empty, we will be reaching our PaaS in the form of http://ip:port. We will come back to this step at a later point.
The only step left now is to create an ssh key pair on our local machine and add the public part in the server user Dokku's authorized_keys file so that we can connect with Git in a very secure way without using a password.
On your local machine, use these commands:

cd ~/.ssh
ssh-keygen –t rsa
#I named my key pair id_rsa
cat id_rsa.pub
#copy the output so you have it in your clipboard

On the server, use the following:

#As your ubuntu user
#Replace <publickey> with the key you just copied
#<remoteuser> can be replaced with anything, like "remoteuser".
echo "<publickey>" | sudo sshcommand acl-add dokku <remoteuser>

If you name your ssh-key something other than id_rsa, you will have to edit your local .ssh/config file to get it to work.
Now the Dokku configuration is done and we should be able to start using it.

Creating a sample Dokku app

It is time for us to set up a demo app just so that you can learn the process. In this case, let's take Heroku's Node.js sample app.
We start off by cloning Heroku's node-js-sample GitHub repository to get the app's content. The following tasks are all supposed to be done on your local machine, and when I enter server.com, you should enter the URL or the IP address of your server. If you use a domain, make sure that you've set up DNS records for it or entered a record in your local /etc/hosts file:

#Clone the repo
git clone git@github.com:heroku/node-js-sample.git
cd node-js-sample
#Add a Dokku git remote
git remote add dokku dokku@server.com:first-app

#Push to Dokku
git push dokku master

When we push to a non-existing branch or app name in Dokku, Dokku will create a new app and deploy it. When the push is done, you should see something like this at the bottom of the output:

=====> Application deployed:
 http://54.191.69.5:49154

Of course, the IP address and port will not be the same for you.
The output is displayed, as follows:
[image: Creating a sample Dokku app]

Enter the ip:port in your web browser to find yourself a page saying Hello World. We've just deployed our first app on Dokku!
To modify and redeploy the site, we can create a file named index.html inside public/ folder in our node-js-sample project. This node app will always look for files in the public folder. If the requested file isn't found, the app falls back to just printing Hello World. So, if we create a file and request it, the node server will serve it to us.
Paste this as the content of the index.html file:
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Hello</title>  </head>
 <body>
 <h1>First edit!</h1>
 </body>
</html>

It's a simple HTML page.
Let's go ahead and create the file and push it, as shown in the following code:

nano public/index.html
#paste the HTML
#save the file

#commit your changes
git add public/index.html
git commit –m "Added first HTML page."

#push to dokku
git push dokku master

Note
Note from the output that the port will change every time you deploy, since a new container is created and your old container is shut down.

Later, when we add a domain name to deploy on, the URL will, of course, be the same. The Nginx config file is updated upon deployment. Point your browser to the new ip:port, and you should see a huge headline saying First edit!.
Whenever you make edits, just push them. Dokku will take care of the rest.

How Dokku works

As I described the basic step of Heroku earlier, you might recognize the steps when deploying on Dokku, and that is also Dokku's goal. They want people like us to feel comfortable with the deployment process.
Dokku can be seen as the glue between the following tools: Docker, Buildstep, ssh-command, pluginhook, ssh, git, and nginx. The source code is just about 100 lines long, and it ships with a few plugins that together contain about 500 lines of code. This is the power of Dokku—anyone can write plugins to extend the functionality of Dokku.
We have not yet installed any plugins, and a clean installation like ours can do only basic stuff such as deploy, see an app's logs, delete an app, and run a command in the app's container. There are quite a lot of plugins; they are all listed at http://progrium.viewdocs.io/dokku/plugins.
The receive process

If we take a look at the main Dokku file (named dokku in the projects root), we notice that whenever a receive action is triggered (which happens when we push to the master branch), we see this code:
case "$1" in
 receive)
 APP="$2"; IMAGE="dokku/$APP"
 echo "-----> Cleaning up ..."
 dokku cleanup
 echo "-----> Building $APP ..."
 cat | dokku build $APP
 echo "-----> Releasing $APP ..."
 dokku release $APP
 echo "-----> Deploying $APP ..."
 dokku deploy $APP
 echo "=====> Application deployed:"
 dokku urls $APP | sed "s/^/ /"
 echo
 ;;

Through this output we can recognize when we have pushed to the master.
If we follow the plugin chain when deploy is called, we end up with a plugin hook named post-deploy being called. A standard plugin, named nginx-vhosts, is triggered, and this in turn calls a function inside that plugin named nginx:build-config.
A code snippet from that preceding file looks like this:
case "$1" in
 nginx:build-config)
 APP="$2"; DOKKU_APP_LISTEN_PORT="$3"; DOKKU_APP_LISTEN_IP="${4}"
 VHOST_PATH="$DOKKU_ROOT/$APP/VHOST"
 WILDCARD_SSL="$DOKKU_ROOT/tls"
 SSL="$DOKKU_ROOT/$APP/tls"

 if [[-z "$DOKKU_APP_LISTEN_PORT"]] && [[-f "$DOKKU_ROOT/$APP/PORT"]]; then
 DOKKU_APP_LISTEN_PORT=$(< "$DOKKU_ROOT/$APP/PORT")
 fi
 if [[-z "$DOKKU_APP_LISTEN_IP"]] && [[-f "$DOKKU_ROOT/$APP/IP"]]; then
 DOKKU_APP_LISTEN_IP=$(< "$DOKKU_ROOT/$APP/IP")
 fi

 [[-f "$DOKKU_ROOT/$APP/ENV"]] && source $DOKKU_ROOT/$APP/ENV

 if [[! -n "$NO_VHOST"]] && [[-f "$DOKKU_ROOT/$APP/VHOST"]]; then
 ...
 NGINX_CONF="$PLUGIN_PATH/nginx-vhosts/templates/nginx.conf"
 SCHEME="http"
 ...
 APP_NGINX_TEMPLATE="$DOKKU_ROOT/$APP/nginx.conf.template"
 if [[-f $APP_NGINX_TEMPLATE]]; then
 echo "-----> Overriding default nginx.conf with detected nginx.conf.template"
 NGINX_CONF=$APP_NGINX_TEMPLATE
 fi

 xargs -i echo "-----> Configuring {}..." < $VHOST_PATH
 # Include SSL_VHOSTS so we can redirect http to https on that hostname as well
 NOSSL_SERVER_NAME=$(echo $NONSSL_VHOSTS $SSL_VHOSTS| tr '\n' ' ')

 if [[-n "$DOKKU_APP_LISTEN_PORT"]] && [[-n "$DOKKU_APP_LISTEN_IP"]]; then
 echo "-----> Creating $SCHEME nginx.conf"
 echo "upstream $APP { server $DOKKU_APP_LISTEN_IP:$DOKKU_APP_LISTEN_PORT; }" > $DOKKU_ROOT/$APP/nginx.conf
 eval "cat <<< \"$(< $NGINX_CONF)\" >> $DOKKU_ROOT/$APP/nginx.conf"

 echo "-----> Running nginx-pre-reload"
 pluginhook nginx-pre-reload $APP $DOKKU_APP_LISTEN_PORT $DOKKU_APP_LISTEN_IP

 echo " Reloading nginx"
 restart_nginx
 fi
 else
 if [[-f "$DOKKU_ROOT/$APP/VHOST"]]; then
 echo "-----> VHOST support disabled, deleting $APP/VHOST"
 rm "$DOKKU_ROOT/$APP/VHOST"
 fi
 if [[-f "$DOKKU_ROOT/$APP/nginx.conf"]]; then
 echo "-----> VHOST support disabled, deleting nginx.conf"
 rm "$DOKKU_ROOT/$APP/nginx.conf"

 echo "-----> VHOST support disabled, reloading nginx after nginx.conf deletion"
 restart_nginx
 fi
 fi
 ;;

If we look through that code, we can see that it looks for a domain name in the $DOKKU_ROOT/$APP/VHOST file, and if that is found, sets some config variables and inserts them into a copy of the templates/nginx.conf file.
That file has these contents:
server {
 listen [::]:80;
 listen 80;
 server_name $NOSSL_SERVER_NAME;
 location / {
 proxy_pass http://$APP;
 proxy_http_version 1.1;
 proxy_set_header Upgrade \$http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host \$http_host;
 proxy_set_header X-Forwarded-Proto \$scheme;
 proxy_set_header X-Forwarded-For \$remote_addr;
 proxy_set_header X-Forwarded-Port \$server_port;
 proxy_set_header X-Request-Start \$msec;
 }
 include $DOKKU_ROOT/$APP/nginx.conf.d/*.conf;
}

Now that looks very much like the nginx config we created in the last chapter, right? The post-deploy part of Dokku is basically Jason Wilder's nginx-proxy. They accomplish the same result, but they get there in very different ways.

Dokku plugins

Add-ons in Heroku are called plugins in Dokku. Since we cannot specify docker
run command parameters directly from Dokku, we need plugins to connect containers and add data volume containers.
Here's a list of a few usable Dokku plugins that we'll soon use.
Dokku domains plugin

Dokku domain plugin enables you to specify multiple domains in one app. By default, only one URL can be mapped to an app:

dokku domains:set myawesomeapp.com www.myawesomeapp.com

URL: https://github.com/wmluke/dokku-domains-plugin

Dokku-docker-options

With this plugin, you can pass any options to the Docker daemon when docker run command is executed. It can be used to mount volumes, link containers, and so on:
dokku docker-options:add myapp "-v /host/path:/container/path"
dokku docker-options:add myapp "-link container_name:alias"

URL: https://github.com/dyson/dokku-docker-options

Volume plugin for Dokku

Here's a plugin that enables you to mount volumes on your service containers. It also has commands to dump (export) and restore the data:

dokku volume:add foo /path/in/container
dokku volume:dump foo /path/in/container > foo.tar.gz

URL: https://github.com/ohardy/dokku-volume

Dokku-link

You can link containers with this plugin:

dokku link:create <app> NAME [ALIAS]
dokku link:delete <app> NAME [ALIAS]

URL: https://github.com/rlaneve/dokku-link

MariaDB plugin for Dokku

This plugin enables you to create and use MariaDB containers. MariaDB can be used as a replacement for MySQL and is generally faster:

dokku mariadb:create <app>
dokku mariadb:link <app> <db>
dokku mariadb:dumpraw <app>

URL: https://github.com/Kloadut/dokku-md-plugin

MySQL plugin: https://github.com/hughfletcher/dokku-mysql-plugin

Setting up a WordPress app with Dokku

Now that we have played around with Dokku for a while, exploring how it works and what plugins are available, it's time to set up a WordPress site. After all, that's why we were exploring it in the first place.
This is what we are going to do:
	Create a new local Git repository and download WordPress on it.
	Install the MariaDB plugin, create a database, and link it to our app.
	Configure WordPress to connect to our linked database.

On your local computer, download and unpack the latest version of WordPress and create a new Git repository. Create a composer.json file to tell Dokku that this is a PHP app we are creating.
Note
You can read more about how to hint Dokku on what type of app you are creating at https://devcenter.heroku.com/articles/buildpacks (yes, Dokku uses Heroku buildpacks) and looks to detect functions. Dokku uses a library called Buildstep to make application builds using Docker and Buildpacks.

Let's go ahead and get started now.
I used a server on my domain, ohdokku.com, for this app:

#Download Wordpress
curl -O https://wordpress.org/latest.zip
unzip latest.zip
mv wordpress wp1
cd wp1

#Create a new Git repo
git init
git add .
git commit –m "Initial commit."

#Create a composer.json file to tell Dokku we are using php
echo '{}' > composer.json
git add .
git commit -am "Add composer.json for PHP app detection."

#Add a remote so we can push to Dokku
git remote add dokku dokku@ohdokku.com:wp1

On the server we have to install the MariaDB or MySQL plugin:

cd /var/lib/dokku/plugins
sudo git clone --recursive https://github.com/Kloadut/dokku-md-plugin mariadb
cd mariadb/dockerfiles/
git checkout master
cd ../../
sudo dokku plugins-install

Back to the client side (you can do this on the server as well, but the whole point of this type of PaaS is being able to do all of this repetitive stuff on the client).
The result is as follows:
[image: Setting up a WordPress app with Dokku]

As you can see, the output from the create command will show our database credentials.
Now that the database is set up, we can go ahead and push our app for the first time:

git push dokku master

You should notice that Dokku detects that you are pushing a PHP app. Since we haven't specified anything at all in our composer.json file, a default package of PHP and Apache2 will fire up.
Create a MariaDB database called wp1_db:

ssh dokku@ohdokku.com mariadb:create wp1_db
ssh dokku@ohdokku.com mariadb:link wp1 wp1_db

If we enter ip:port in a browser, a known page welcomes us—the WordPress installation page. When we click on the Continue button, we see that we can't continue before we create a wp-config.php file.
We have just created the link between the MariaDB container and the WP container, but we haven't made the link in code yet. WordPress has no idea how to connect to the database.
We start off by renaming the wp-config-sample.php file to wp-config.php and opening the file in an editor:
// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for Wordpress */
define('DB_NAME', getenv('DB_NAME'));

/** MySQL database username */
define('DB_USER', 'root');

/** MySQL database password */
define('DB_PASSWORD', getenv('DB_PASSWORD'));

/** MySQL hostname */
define('DB_HOST', getenv('DB_HOST').":".getenv('DB_PORT'));

Edit the credentials as you just saw to make WordPress look for environment variables that our linked MariaDB gives us:

git add –A .
git commit –m "Add wp-config.php and add credentials."
git push dokku master

Wait until you get a new ip:port that our app is deployed to, and then enter the info in your web browser.
Now you should be able to install WordPress.
The output is as follows:
[image: Setting up a WordPress app with Dokku]

Starting multiple apps

To start multiple apps with Dokku, just repeat the simple process, as follows:
	Create a local Git repository with WordPress in it, and create a remote Git repository.
	Create and link a database with the MariaDB plugin.Edit your wp-config.php file.

	Push to deploy.

The name you set on your app when adding the remote from Git command:

git remote add dokku dokku@ohdokku.com:wp1

This command will create the URL to the WordPress site (wp1.ohdokku.com). You can set a complete custom domain as the name like: git remote add dokku dokku@ohdokku.com:wp1.oskarhane.com that will work if I point wp1.oskarhane.com to my server.

Adding a domain to Dokku

I waited with setting up domains to Dokku, since it involves logging in to a DNS provider and setting up DNS records to point the domain to our server. We set up DNS records to point our domain name to our server's IP address so that our server can be reached by entering our domain name in the web browser's location bar.
I usually use Amazon Route 53 to handle DNS for domains, since they're very stable and easy to use. It costs about a dollar a month for low-traffic sites. The setup is the same for any DNS provider. You have to add two records, one for yourdomain.com and one for *.yourdomain.com.
The records we are going to enter are A-records, which means that we point the domain names to a specific IPv4 address. The Time To Live (TTL) value is not important right now, but it means TTL and tells all other DNS servers that get requests for this domain how long they can cache the current value.
The output is as follows:
[image: Adding a domain to Dokku]

You should, of course, change the IP to the public IP your server has. When setting the A-record for the wildcard subdomains, just enter * in the input field at the top.
To see whether your DNS provider can resolve your domain name, execute ping yourdomain.com in a terminal. You'll see the resolved IP right there. If you've just bought the domain, you should be able to see the result right away, but if you've used the domain for a while, the old TTL value might delay the effect a bit.
If you want to wait for the setting of DNS records (which is common during development), you can set local records on your computer by editing the /etc/hosts file, as shown in the following command snippet:

sudo nano /etc/hosts

#Add this line to the file
54.191.69.5 ohdokku.com
#Save and exit

One thing to remember here is that you can't enter records for wildcard subdomains. If you plan to develop multiple apps on subdomains, you have to enter one record for each of them. Also, don't forget to remove these records when you're done; it can get quite confusing (and interesting) when you forget you have records for the domains you used.
On the Dokku server, create a file named /home/dokku/VHOST and enter yourdomain.com in it.
All apps being created from now on will be subdomains of this domain, unless you give the apps complete domain names.

More notes on Dokku

Just like Heroku, Dokku makes it easy for developers to deploy and push code. If you download a WordPress plugin straight from your Dokku app, it will be gone when you restart your Dokku app. It is advisable to keep a local copy that can easily be started or a dev, test, and staging server that you can download new plugins on and push to your Dokku app from to ensure they are persistent.
Tip
Images and videos should be uploaded to something such as Amazon via a plugin when using this kind of infrastructure.

You must also have your WordPress site send e-mails from an external e-mail provider, such as Mandrill. A plugin like WP Mail SMTP will solve that for you.
We still have a few manual steps (for example, downloading WordPress and editing wp-config.php) to do when deploying a WordPress app on Dokku, but the task of creating a custom Buildstep to remove the manual parts is beyond the scope of this book.
Another option is to have Composer handle the installation of WordPress with the composer.json file, but WordPress does not officially support this and it requires a few hacks, so I'll leave that up to you.
Note
If you want to learn more about composer, you can go to the provided link http://wpackagist.org.

Summary

In this chapter, we went all the way to create our own PaaS by adding deployment to the process. What we looked into up to this chapter was all about organizing containers and direct incoming traffic so that visitors can reach the correct container.
With Dokku, we don't have to worry about that; all we have to care about is our code. As soon as we push our code, Dokku takes over and does the right things. Dokku makes it look really easy and that is why, I started from manually creating and linking containers and configuring reverse proxies—so that you would understand what Dokku does.
The next chapter takes us to the bleeding edge: what's being developed right now that can take private PaaS with Docker one step further?

Chapter 8. What's Next?

So far, we have run our PaaS on a single host, which can be a problem if we need to scale out. There is a lot happening in this space, and I have selected a few projects that I will introduce in this chapter. These projects vary a lot in how mature they are, one is ready for use in production while the other is in a prototype state. In this chapter, we will cover the following topics:
	What is a Twelve-Factor app?
	Flynn
	Deis
	Rocket
	Orchestration tools

What is a Twelve-Factor app?

Many of today's apps are, in fact, web apps that you run in your web browser. Gmail, Slack, Wunderlist, Trello, and so on are all web apps or software-as-a-service.
It is these kind of apps that are suitable to be run on a PaaS.
The Twelve-Factor app is a methodology for building software-as-a-service apps that fulfill the following criteria:
	Use declarative formats to set up automation as well as to minimize the time and cost for new developers who join the project
	Have a clean contract with the underlying operating system, offering maximum portability between execution environments
	Suitable for deployment on modern cloud platforms, obviating the need for servers and systems administration
	Minimize divergence between development and production, enabling continuous deployment for maximum agility
	Scale up without significant changes to tooling, architecture, or development practices

The Twelve Factors are defined as follows:
	Codebase (One codebase tracked in revision control, many deploys): This puts your code in a version control system such as Git.
	Dependencies (Explicitly declare and isolate dependencies): This lists all the versions of all the libraries that your app depends on in a single place.
	Config (Store config in the environment): Since config will vary between environments such as the username or pass to a database, it should not be part of the code. You can set the config file in environment variables and have your app read them in at runtime.
	Backing Services (Treat backing services as attached resources): These have all the backing services, such as mail server, database, and cache system, among others. These will be referenced by a URL endpoint. This way your code doesn't have to care whether the backing service is running on the same machine or across the world.
	Build, release, run (Strictly separate build and run stages): The build stage creates bundles, assets, and binaries. This is the developer's job. When you've placed a package on a server, you are ready to enter the run stage by starting your application and making it available on the server. This stage should be as easy as possible so that anyone can do it.
	Processes (Execute the app as one or more stateless processes): As stated earlier in this book, you should separate your application data from your application service, that is, it makes the service stateless. All the states should be in the shared storages and databases.
	Port binding (Export services via port binding): An example is backing services; your service should be reachable via a URL endpoint.
	Concurrency (Scale out via the process model): This keeps every process as an independent service. This way you can scale just the parts of your app that really need to be scaled.
	Disposability (Maximize robustness with a fast startup and graceful shutdown): This is for app startup, which should be fast, and your app should be able to recover from a crash by itself.
	Dev/prod parity (Keep development, staging, and production as similar as possible): This keeps your development environment and setup as equal as possible to your production environment and setup. Docker really excels here.
	Logs (Treat logs as event streams): Place your app's error logs into a central place where you get notified when a new error has occurred.
	Admin processes (Run admin/management tasks as one-off processes): If you are doing administrative tasks, run them on a machine in the production environment with the latest code base. You should run queries directly against the database.

I encourage you to go to http://12factor.net in order to read more about each one of the Twelve Factors. It's a good read; you will get an understanding of why some design decisions were made on the following projects.

Flynn

[image: Flynn]

The guy who created Dokku, Jeff Lindsay, has also co-created Flynn. Flynn is like a super-Dokku that, among other things, lets you run your PaaS on multiple hosts.
"Flynn is two things:
A distribution of components that out-of-the-box gives companies a reasonable starting point for an internal platform for running their applications and services.
The banner for a collection of independent projects that together make up a toolkit or loose framework for building distributed systems.
Flynn is both a whole and many parts, depending on what is most useful for you. The common goal is to democratize years of experience and best practices in building distributed systems. It is the software layer between operators and developers that makes both their lives easier."

I have tried using Flynn a few times, but I have always gone back to using Dokku again because I find Dokku easier to use, and my clients don't need the extra features such as multihost PaaS.
URL: http://flynn.io

Status: This is not suitable for use in the production environment because it's in a beta stage.

Deis

[image: Deis]

Deis is built on a lightweight Linux distribution that is built to run containers, called CoreOS, and on Docker to take advantage of the distributed services, such as etcd, available there.
"Deis is a lightweight application platform that deploys and scales Twelve-Factor apps as Docker containers across a cluster of CoreOS machines."

I found Deis to be a very promising project and would like to work with it more. I have barely touched it but what I have seen so far looks good.
Deis can deploy any language or framework running on Linux using Docker, and it also includes Heroku buildpacks for Ruby, Python, Node.js, Java, Clojure, Scala, Play, PHP, Perl, Dart, and Go.
The workflow is Heroku-like and you just need to deploy twelve-factor apps, that is, save the application state in a backing service.

Fun fact: Deis financially backs/supports Dokku.

URL: http://deis.io

State: Deis is ready for production from version 1.0.

Rocket

[image: Rocket]

CoreOS has been one of the most popular ways to run a multihost Docker PaaS. They have done excellent work and have built some multihost PaaS tools, such as Deis, that use CoreOS tools and services to deliver their version of PaaS.
In December 2014, the CoreOS team decided to announce their own container runtime: Rocket. Rocket is a direct competitor to the original Docker. The reason why they are launching Rocket is because they believe Docker has lost its initial idea: running reusable standard containers. The CoreOS team believes that Docker is stepping away from the initial idea by adding more and more features and services around the Docker environment.
"Rocket is a new container runtime, designed for composability, security, and speed. Today we are releasing a prototype version on GitHub to begin gathering feedback from our community and explain why we are building Rocket."

According to the CoreOS team, they will continue to have CoreOS to be the perfect thing to run Docker. I guess we will see what happens in the future, but I hope they stand by their words.

URL: https://github.com/coreos/rocket

State: Rocket is in its very early state and not ready for production.

Orchestration tools

The tools I have introduced now are tools that will help you keep your mind on the code and give you an easy way to deploy your apps to production. If you are more interested in an orchestration tool—a tool that helps you manage container clusters—there are a few of them out there as well. The tools that currently come to mind are Google's Kubernetes, Apache Mesos/Marathon, CoreOS Fleet, and the soon to be released Swarm from Docker.

Summary

When you feel it's time to move your PaaS from a single host to scale across multiple hosts, these tools are what you should be looking for. I'm sure some worthy competitors will pop up in the future since this is a hot area right now.

 Index

 A

 	Amazon	URL / Docker on Amazon EC2

 	Amazon EC2	using / Docker on Amazon EC2
	Docker, installing / Installation
	Docker, upgrading / Upgrading Docker on Amazon EC2

 	Apache	preparing, for caching / Preparing for caching

B

 	base image	about / The Docker image

 	Buildpacks	reference link / Setting up a WordPress app with Dokku

 	Buildstep	about / Setting up a WordPress app with Dokku

 	BusyBox	about / Data volume image

C

 	command-line interface	about / The Docker command-line interface

 	commands, Docker	about / Displaying Hello World
	docker ps / Displaying Hello World
	docker ps -a / Displaying Hello World
	docker images / Displaying Hello World
	docker run / Displaying Hello World
	docker stop / Displaying Hello World

 	composer	reference link / More notes on Dokku

 	container	about / The Docker container

 	container ID	about / The Docker container

 	containers	about / What is Docker?
	parameters, passing / Passing parameters to containers
	connecting, manually / Manually connecting containers
	connecting, Docker Compose used / Connecting containers using Docker Compose
	connecting, Crane used / Connecting containers using Crane
	setup issue / The problem with our current setup

 	Crane	used, for connecting containers / Connecting containers using Crane
	about / Connecting containers using Crane
	installing / Installing Crane
	usage / Usage
	lift command / Usage
	graph command / Usage
	logs command / Usage
	status command / Usage
	configuring / Configuration

D

 	data volume container	mounting / Mounting a data volume container
	executing / Running a data volume container
	contents, exploring / Exploring the contents of a data volume container

 	data volume image	creating / Creating a data volume images
	BusyBox / Data volume image
	mount points, exposing / Exposing mount points
	Dockerfile / The Dockerfile

 	data volumes	about / Data volumes
	host directory, mounting / Mounting a host directory as a data volume
	data volume container, mounting / Mounting a data volume container
	backup / Backing up and restoring data volumes
	restoring / Backing up and restoring data volumes

 	Deis	about / Deis
	URL / Deis

 	Docker	about / What is Docker?
	URL / What is Docker?
	URL, for installation / User permissions

 	Docker Compose	used, for connecting containers / Connecting containers using Docker Compose
	about / Connecting containers using Docker Compose
	installing / Installing Docker Compose
	build command / Basic Docker Compose commands
	kill command / Basic Docker Compose commands
	logs command / Basic Docker Compose commands
	port command / Basic Docker Compose commands
	ps command / Basic Docker Compose commands
	pull command / Basic Docker Compose commands
	rm command / Basic Docker Compose commands
	run command / Basic Docker Compose commands
	scale command / Basic Docker Compose commands
	start command / Basic Docker Compose commands
	stop command / Basic Docker Compose commands
	up command / Basic Docker Compose commands
	service / Service
	run command, using / Using the run command
	scale command, using / Using the scale command
	PaaS, setting up / Setting up our PaaS with Docker Compose

 	Dockerfile	about / Browsing repositories
	creating, on WordPress image / Making our changes persist

 	Dockerfile, for PHP 5.6	URL / Raising the upload limit

 	Docker Hub registry	about / The Docker Registry Hub
	URL / The Docker Registry Hub
	repositories, browsing / Browsing repositories
	published images, exploring / Exploring published images
	image, publishing / Publishing an image on the Docker Registry Hub
	image, publishing with automated build option / Automated builds

 	Docker image	about / The Docker image
	base image / The Docker image
	parent images / The Docker image
	hosting, on GitHub / Hosting on GitHub
	publishing, on Docker registry hub / Publishing on the Docker Registry Hub

 	docker images command	about / Displaying Hello World

 	Docker on Amazon EC2	installing / Installation
	open ports / Open ports
	upgrading / Upgrading Docker on Amazon EC2
	user permissions / User permissions

 	Docker on Mac OS X	installing / Docker on Mac OS X, Installation
	upgrading / Upgrading Docker on Mac OS X

 	Docker on Ubuntu Trusty 14.04 LTS	installing / Docker on Ubuntu Trusty 14.04 LTS
	upgrading / Upgrading Docker on Ubuntu Trusty 14.04 LTS
	user permissions / User permissions

 	Docker on Windows	installing / Docker on Windows, Installation
	upgrading / Upgrading Docker on Windows

 	docker ps -a command	about / Displaying Hello World

 	docker ps command	about / Displaying Hello World

 	Docker registry hub	Docker image, publishing / Publishing on the Docker Registry Hub

 	docker run command	about / Displaying Hello World

 	docker stop command	about / Displaying Hello World

 	Dokku	about / Dokku – Docker-powered mini-Heroku
	URL / Dokku – Docker-powered mini-Heroku
	installing / Installation
	URL, for installation / Installation
	sample app, creating / Creating a sample Dokku app
	deploying / How Dokku works
	receive process / The receive process
	plugins / Dokku plugins
	WordPress app, setting up / Setting up a WordPress app with Dokku
	multiple apps, starting / Starting multiple apps
	domains, adding / Adding a domain to Dokku
	WordPress app, deploying / More notes on Dokku

 	Dokku-docker-options	about / Dokku-docker-options
	URL / Dokku-docker-options

 	Dokku-link plugin	about / Dokku-link
	URL / Dokku-link

 	Dokku domains plugin	about / Dokku domains plugin
	URL / Dokku domains plugin

 	domains	mapping, nginx-proxy used / Automating the process of mapping domains
	adding, to Dokku / Adding a domain to Dokku

F

 	Flynn	about / Flynn
	URL / Flynn

G

 	GitHub	image sources, hosting / Hosting image sources on GitHub
	URL / Hosting image sources on GitHub
	Docker image, hosting / Hosting on GitHub

H

 	HAProxy	about / Implementation with HAProxy
	URL / Implementation with HAProxy
	installing / Installing HAProxy
	configuring / Configuring HAProxy
	multiple domains, adding / Adding more domains to HAProxy

 	Heroku	about / The tools/services available

 	host directory	mounting, as data volume / Mounting a host directory as a data volume

I

 	image sources	hosting, on GitHub / Hosting image sources on GitHub

 	installation, Crane	about / Installing Crane

 	installation, Docker	on Ubuntu Trusty 14.04 LTS / Docker on Ubuntu Trusty 14.04 LTS
	on Mac OS X / Docker on Mac OS X, Installation
	on Windows / Docker on Windows, Installation
	on Amazon EC2 / Installation

 	installation, Docker Compose	about / Installing Docker Compose

 	installation, Dokku	about / Installation

 	installation, HAProxy	about / Installing HAProxy

 	installation, Nginx	about / Installing Nginx

 	installation, WP Mail SMTP	about / Plugin installation

 	installation, WP Super Cache	about / Plugin installation

M

 	Mac OS X	Docker, installing / Docker on Mac OS X, Installation
	Docker, upgrading / Upgrading Docker on Mac OS X

 	MariaDB plugin	about / MariaDB plugin for Dokku
	URL / MariaDB plugin for Dokku

 	multiple containers, with same services	problem / Explaining the problem
	solution, finding / Finding a solution
	solution, implementing / Implementing the solution

 	MySQL docker repository	URL / Exploring published images

N

 	Nginx	about / Implementation with Nginx
	URL / Implementation with Nginx
	installing / Installing Nginx
	configuring / Configuring Nginx
	multiple domains, adding / Adding more domains to Nginx

 	nginx-proxy	used, for mapping domains / Automating the process of mapping domains
	URL / Automating the process of mapping domains

O

 	OpenShift	about / The tools/services available

 	orchestration tools	about / Orchestration tools

 	OS X installer	URL / Installation

P

 	PaaS	setting up, with Docker Compose / Setting up our PaaS with Docker Compose

 	parameterized image	creating / Creating a parameterized image

 	parent images	about / The Docker image

 	plugins, Dokku	about / Dokku plugins
	Dokku domain plugin / Dokku domains plugin
	Dokku-docker-options / Dokku-docker-options
	volume plugin / Volume plugin for Dokku
	Dokku-link plugin / Dokku-link
	MariaDB plugin / MariaDB plugin for Dokku

 	Procfile	about / The tools/services available

 	proxy server	about / Finding a solution

 	published images	exploring / Exploring published images

R

 	receive process, Dokku	about / The receive process

 	repositories	browsing / Browsing repositories

 	reverse proxies	about / Finding a solution

 	Rocket	about / Rocket
	URL / Rocket

S

 	solution, multiple containers with same services	implementing, with HAProxy / Implementation with HAProxy
	implementing, with Nginx / Implementation with Nginx

T

 	tags	about / The Docker image

 	Time to live (TTL)	about / Adding a domain to Dokku

 	tools/services	OpenShift / The tools/services available
	Heroku / The tools/services available

 	Twelve-Factor app	about / What is a Twelve-Factor app?
	URL / What is a Twelve-Factor app?

 	twelve factors	codebase / What is a Twelve-Factor app?
	dependencies / What is a Twelve-Factor app?
	config / What is a Twelve-Factor app?
	backing services / What is a Twelve-Factor app?
	build / What is a Twelve-Factor app?
	release / What is a Twelve-Factor app?
	run / What is a Twelve-Factor app?
	processes / What is a Twelve-Factor app?
	port binding / What is a Twelve-Factor app?
	concurrency / What is a Twelve-Factor app?
	disposability / What is a Twelve-Factor app?
	dev/prod parity / What is a Twelve-Factor app?
	logs / What is a Twelve-Factor app?
	admin processes / What is a Twelve-Factor app?

U

 	Ubuntu Trusty 14.04 LTS	Docker, installing / Docker on Ubuntu Trusty 14.04 LTS
	Docker, upgrading / Upgrading Docker on Ubuntu Trusty 14.04 LTS

V

 	volume plugin	about / Volume plugin for Dokku
	URL / Volume plugin for Dokku

W

 	Windows	Docker, installing / Docker on Windows, Installation
	Docker, upgrading / Upgrading Docker on Windows

 	Windows installer	URL / Installation

 	WordPress	configuring / Moving from the defaults

 	WordPress app	setting up, with Dokku / Setting up a WordPress app with Dokku
	multiple apps, starting / Starting multiple apps
	domains, adding to Dokku / Adding a domain to Dokku
	deploying, on Dokku / More notes on Dokku

 	WordPress Docker image	URL / Exploring published images

 	WordPress image	creating / The WordPress image
	objective / Our objective

 	WordPress image, objective	Apache, preparing for caching / Preparing for caching
	upload limit, raising / Raising the upload limit
	WP Super Cache, installing / Plugin installation
	WP Mail SMTP, installing / Plugin installation

 	WP Mail SMTP	installing / Plugin installation

 	WP Super Cache	installing / Plugin installation

 cover.jpeg
Build Your Own PaaS
with Docker

images/00011.jpeg
Description

Edit

Type (i

SSH

HTTP

Custom TCP Rule

Inbound | Outbound

Protocol (i

TcP
TCcP
TCcP

Tags

Port Range

2
80
49000 - 50000

Source

00000
0.0.0.00
0.0.0.00

images/00010.jpeg
oskarhanoB0skard] ~ § ssh ec2-usardec2-54-187-234-21. us-west-2. compute, smazonaws. com i /. ssh/amz.pen
The authenticity of host 'ec2-54-187-234-27.us-vest-2.compute. amazonaws. con (54.187.234.27)' can't be o

stablished.
RSA key Fingerprint is 61:59:ce:8a:45:51:67:59:5: b ec:od:81:d1:69:
Are you sure you want to contine connecting (yes/o)? yes

Worning: Persanently added *ec2-54-187-234-21. us-west-2. compute. smazonaws. cou,54.187.234.21" (RSA) to t

he 1ist of knom hasts.
L.,

e WATNING: UNPROTECTED PRIVATE KEY FILE e
P -

Pormissions 0644 for '/Users/oskarhane) .ssh/amz.pea’ are €0 open.

1t is required that your private key files are NOT accessible by others.

This private key will be igrored.

bad permissions; ignore key: /Users/oskarhane! .ssh/aaz.pen

Pormission donied (publickey).

oskarhanoa0skar4; ~ § chaod 660 /. ssh/oaz.pem

oskarhanoB0skard] ~ § ssh ec2-userdec2-54-187-234-21. us-west-2. compute, smazonows. com i /. ssh/amz. pem

)
1/ Amazon Linux a1
=

RS T P —
1o packages nencad or smcity; 4 packages evtlable

i ol yim udate" 1o sl all Lpiates,

“bash: warnig: setlocal; L CTYPE: canot changs locale (UTF-): Mo such il or directory
Tociusereipri72-a1-52-58 35 |

images/00013.jpeg
oskarhane@0skar4j ~ $ docker run oskarhane/hello echo “Hello, let me out of here*
Unable to find inage ‘oskarhane/hello’ locally

Pulling repository oskarhane/hello

26c2a293543f : Download complete

511136ea3c5a: Download complete

4497ad3926c8: Download complete

c5fcds669fas: Download complete

49bb1c57a82c: Download complete

67983a9b1599: Download complete

88fba6f3d2d8: Download complete

eca7633d783: Download complete

fesas29e24d0: Download complete

Status: Downloaded newer inage for oskarhane/hello: latest.
Hello, let me out of here

images/00012.jpeg
Last Login: Tho 0t 23 2036138 on st
omaretoskart - 5 dockar 21

csarhameosarts = £ 1

images/00015.jpeg
e

images/00014.jpeg
oskarhanedskar4;] = $ docker images C

REPOSITORY ™ UG 1D cREATED VIRTUAL STZE
oskarhane/docker-neot] latest 4as7b40106 16 days ago .18
neotj latest ccngi7EB4eD 10 days ago 7218
neot 215 3b200a0851F 10 days ago 2.1 8
<oone> <none> 2365ed7fds9c 16 days ago 28
oskarhane/hello Latest 26c2a293543¢ 11 days ago 192718
dockerfile/Sava Latest 9N3e4536095¢ 12 days ago ne2 e
wbunty latest ‘cca633ed783 13 days ago 192718
<oone> <none> 63165337910 12 weeks ago 1083 6

cskachanstcskard - $ |

images/00002.jpeg
w130
> ocsta02

v1.3.0

8] tinon reessed s 5 days ago 2 commits to master sincs i riease

« Boot2Docker 1.3.0 (Docker v1.3.0, Linux v3.16.4)
« Boot2Docker Management Tool v1.3.0

« Dockerv13.0

* VirtualBox v4.3.18-196516

Please see the OS X installation documentation for more details.

[T T

images/00001.jpeg

images/00004.jpeg
h — 89x21

To connect. the Docker client to the Docker dsemon, please set:
‘export DOCKER_HOST=tcp: //192.168.59.103:2376
‘export. DOCKER_CERT_PATH=/Users/oskarhane/ .boot2docker/certs/boot 2docker-va
export. DOCKER_TLS_VERIFY=1

oskarhane@Oskar4j ~ $ $(/usr/local/bin/boot2docker shellinit)
Writing /Users/oskarhane/. bootadocke/certs/bootadocker-va/ca.pen
Writing /Users/oskarhane/.boot2docker/certs/boot adockar-va/cert. pen
Writing /Users/oskarhane/ boot2docker/certs/boot 2docker-va/key.pem
oskarhane@0skar4j ~ $ docker version

prymigseriis i

Client 46T version: 1.15
Go version (client): gol.3.3
Git commit (client): c78088f
oS/Arch (cliont); darwin/ands
e e 1

Sarver 61 versions 1.15

Go version (server): gol.3.3
Git commit (server): c78088f
eckorhanatockars] = 3 1

images/00003.jpeg
© Introduction
Destination Select
Installation Type
Installation

Summary

@ Install Boot2Docker for Mac 0S X

Welcome to the Boot2Docker for Mac O X Installer

Boot2Docker for Mac OS X

“Tnis installer will uide you through the steps o install Boot2Docker for

Mac 0S Xv1.30.

The docker and boot 2docker binaries willbe installed t0 /usr/

Local/bin, and can then be run from your Terminal.
For furthe information, please soe the Docker OS X instalation
‘ocumentation

To continue, lick Continve.

Continue

images/00006.jpeg

images/00005.jpeg
8076026

v1.3.0

(8 tianon roieased this & days ago

« Boot2Docker 1.3.0 (Docker v1.3.0, Linux v3.16.4)
« Boot2Docker Management Tool v1.3.0

* VirtualBox v4.3.18-196516

« msysGit v1.9.4-preview20140929

Please see the Windows installation documentation for more details.

DSource code) [} Source codo (argn

images/00008.jpeg
Step 2: Choose an Instance Type

e o 0010w oy ey s .

oy | M+ | o

images/00007.jpeg
™ amzn-ami-pv-2014.09.1.x86_64-ebs - ami-55a7ea65 m

‘Amazon Linux AMI 2014.00.1 xB6_64 PV EBS H

Foctdevio type:sbs Vituaizaton type: paavital

images/00009.jpeg
Launch Status

' Yourinstance is now launching
e fosowing nstanceaunch nes boen iatd: -

14b8Beb View launch log

@ Get notified of estimated charges.

reate billng alets to get an emall ntifcation when estimated charges on your AWS bl exceed an
‘amount you defne fr example, ifyou excesd the fres usage tie.

How to connect to your instance.

Your nstance i launching, and it may take afew minutes unt t s i the running state, when i will be ready for you
o use. Usage hours on your new instance wilstart immedlately and continue to 3ccrue unti you stop or terminate
yournstance.

ick View Instances to monitor your instance’s status. Onice your nstance is i the running sate, you can connect
011 from the Instances screen. Find out how to connect to yourinstance.

~ Here are some helpful resources to get you started

+ Howto connect o your Linux nstance: + Amazon EC2: User Gude

+ Learn about AWS Free Usage Tier + Amazon EG2: Discussion Forum
‘While your instances are launching you can also

+ reate status check alarms to be notifed when these Instances fal status checks. (Additional charges may apply)
+ Creats and attach addtional E8S volumes (Addtional charges may apply)
+ Manage securty groups.

images/00031.jpeg
PR —

images/00030.jpeg
Upload New Media

ross

.
Conmens

5 sengs

°

images/00033.jpeg
WP Super Cache Settings

Easy Advanced CDN

Caching

Contents Preload Plugins De

| Cache hits to this website for quick
access. (Recommended)

) Use mod_rewrite to serve cache
files. (Recommended)

Use PHP to serve cache files.

Legacy page caching.

Mod._rewrite is fastest, PHP is almost as
fast and easier to get working, while
legacy caching is slower again, but more
flexible and also easy to get working. New
users should use PHP caching.

images/00032.jpeg
Bomm O1 B0+ New Howdy,admin I

Dusrbours Advanced Email Options

pages From el asarhancogmas

= s ht st ks et .y v s o e ok b

Rewun ot

SMTP Options

e ot smpgmaicom

Encypion

images/00035.jpeg
WP Super Cache Settings

Rewrite rules must be updated

‘The rewrite rules required by this plugin have changed or are missing. Scroll down the
Advanced Settings page and click the Update Mod_Rewrite Rules button.

images/00034.jpeg
Miscellaneous

| Compress pages so they're served more
quickly to visitors. (Recommended)
Compression is disabled by default because
some hosts have problems with compressed.
files. Switching it on and off clears the cache.

304 Not Modified browser caching.
Indicate when a page has not been modified
since last requested. (Recommended)

Warning! 304 browser caching is only
supported when not using mod_rewrite
caching.

V! Don't cache pages for known users.
(Recommended)

Don't cache pages with GET parameters
(x=y at the end of a url)

Make known users anonymous so
they're served supercached static files.

V| Cache rebuild. Serve a supercache file to
anonymous users while a new file is being
generated. (Recommended)

Proudly tell the world your server is

Stephen Fry proof! (places a message in
your blog’s footer)

images/00037.jpeg
] coamiy=LacK3A300%
25 foms goageis.com

(] senericonscstver=3.03
=) apcontentithemes .
S up-contenthermes v

Joueryjsher=111.1
2 upincudes s iqvery

(] e mismemngve
2 wp-incudes s jauery
| sdsigsosaicdseadsac

Ogeavatrcom/matar

= commentrephiminsher
1E) op-incucests
| fonctions sher=20140616.
2 Ivp-contentthemes .
| 2RiANSARaDHEP
ot gstaccom/s).
] MoadnsQ soTekvnua 2.
s gstac <o/t

MaNSYIC AEkEictm
L toms gtan comstor.

156/metlo-vorla)
Request Method: GeT
Status Code: @ 208 06

 Request Headers view source
Accept: text/ntal, eppt ot on/xhtatoxnl spplicot ion/xnl .9, iroge ey
Le/viaca.s
Accept-Encoding: gaip, deflate, sdeh
Accept-Language: £v-SE, viqe0. B, en-US1a=0.6,cniqes. 4
Connection: keep-stive
HOSE oc2-54-148-253-187.us-ves 2. conpute. arazonsus.co

“Modified-Since: Hon, 24 Nov 2014 19:56:50 GHT

Referer: http://6c2-54-148-251-187,vsves<-2. compute. anazonous. coni 49156
/
User-Agent Wez{11a/5.0 (Hacintosh; Tntel Mac 05 X 10.10.1) ApplewedKic
/537,38 (XHTHC, Like Gecko) Chrone/33.0.2171.65 Safari/s37.36

" Response Headers view source
‘Cache-Control: rax-sge=3, rust-revatidate
Connection: keep-Alive
Content-Encoding: zip
Content-Length: 3565
Content-Type: text/hnl; charset=uTr-
Date: Hon, 24 Now 2014 19:57:26 G
Keep-Alive: tireout=5, naxsd5.
Last-Modified: fon, 24 Nov 2614 19:55:10 GIT

images/00036.jpeg
</IfModnle>
P
SetEnvItiocass Request_URX \.g18 so-gaip
</rimodute>
<Htnodule mod hendera.c>
Hoador set Vary “Accept-Eacoding, Cookia®
Hoador sot Cache-Control ‘max-agers, msst-revalidate’
<Louodsle mod expizes.c>
Expicestytype text/htal 23
<xevosnte>

images/00028.jpeg
Chca-urareip-172-31-32-58 wordprass-mssterJs docker Suild -t sodrwp
Sanding buils contest 1o Oocker daemsn 11,26 18
Step 0 ¢ FROH o, 6-apnche

ey
Siep 14 RN apt-get wpdate 18 apt-get fnstall -y rayoc 48 rm - /a1
2 Sesstassains
Enabling sadule rewrite.
St
To sctivate the new configuration, you nend to ru
ety
Renoving intarendists container STaBTISBGec
Step 3 ¢ RN spi-get spdate 48 spt-get install — Mbpagi2-dev 44 ra -rf /var/Lib/apt/Lista/s
41189 "85 opt-get surke ~—auto-resovs -y Libpng12-dev

S aunning in Scserzasicse
GatiT Bt security.debionorg fessie/updates Tntelesse (841)
Gati2 Bt /security.debionork Sessio/updates/main smdsh Packages (20 81
Gati3 hetp/ /ety debisn et Jussie Tokelense (191 18]
pi) Sesvic-spdotes Tnkelesse (117 18]
s Seavia/nain sacis Packages (9102 18]
porir} Sesvie-spéstes/avin sedét Packages (28 8]
Fetched 0455 10 anm

Suilding dependency tra.
Randing seaes information.
Libepkg-perl Libespicl 1ibtisadote-perl potch
Use “apiepet suterasova” to remove then
Libpngi2-0 slibtg-dew
The following NEV packages will be instatied
Libpngi2-8 1ibpng1z-dev zLibTg-dev
o uptraded, 3 neely instalied, & to remove ond 37 not uppraded.
Nawd 1o gt 626 4 of archive.
Goti1 Witp://http. debion.net/debian/ jessie/mnin 1ibpng1-8 and6d 1.2.50-2081 (172 ki)
Gati2 hitp://http. deblan.net/deblont Sessiarasin £liorg-der sad6s 111.2.8.90ag2 (205 18]

[rer—

images/00027.jpeg
RIS 90854 hton)6 s o s e bren ar e esar 15
i 1t cam it oy 193305540

Connaceig 1o 14, cn (b o) 153,30 253 2040, .. cmmctn

e e o e Tyt o)

Saslvin codien. g1t e (oseond ith) 1900368 145

Largns T30 (70 Coppticnieras]

25 010515 20 K1) = "o

i o e
e e O ot

e matar s fcsarile
S
R Sttt

nTabngs ardeess-sesta e te tecare ey

iniatings Trseess sueer son. o
Ay T I 6 codorsaantr!
et et

images/00029.jpeg
»
=

Agpearance

Upload New Media

images/00020.jpeg
How to use this image

docker run --nane some-wordpress ~-link sone-mysqlimysql -d wordoress.

“The following environment variables are aiso honored for configuring your WordPress instance:

+ -e NORDPRESS_DB_USER=. .. (defauits to root’)

+ -e NORDPRESS_D8_PASSNORD-. .. (defaults to the value of the MYSQL_ROOT_PASSHORD. environment
variable from the lnked mysal container)

+ -e NORDPRESS_DB_NAME=. .. (defaults to “wordpress”)

« -e NOROPRESS_AUTH KEY=... , -¢ WORDPRESS_SECURE_AUTH.KEY. . , -
WORDPRESS_LOGGED_IN_KEY=. . , -¢ WORDPRESS_NONCE_KEY=. .. , -¢ WORDPRESS_AUTH.SALT=. .,
& WORDPRESS_SECURE_AUTH_SALT=.... , -& WORDPRESS_LOGGED_IN_SALT=.... , -¢

WORDPRESS_NONCE_SALT=. .. (default o unique random SHATs)

Ifthe WOROPRESS_0B_NAME specified does not already existn the given MySQL container, t will be
created automatically upon container startup, provided that the WOROPRESS_08_USER_ specified has the
necessary permissions to create i

1f you'd fike to be able to access the instance from the host without the containers IP, standard port
mappings can be used:

docker run --nane some-wordpress

Link sone-mysalimysal -p 8080:80 -d wordpress.

Then, access it via nttp://localhost:8080 or nttp://host-ip:8080. n a browser.

images/00022.jpeg
Cosaai-172-31-3-5 1 k. o syl 5 NS0T IASHImpncretasord ~
it o g ey ol
Rilig reenttr et
Fimre: boelosd comiets
i, conlosd comets
i, doelond et
T Doelond comlets
Tttt bomlosd et
3 o o
st ntopolnt e et o 10 s D/ o

certo 12213258 18 dcr Jogs 4
VAT 13103754 0 hring) TMSTA it (it BETALT el 1 dprcated, Plss e —wglicit el fo tomtom servr ot
o o dommtaton fo e et

AT 30054 12 Qi) Bffred vrine Chred it s g e, 124 (requstd 5080

U1 1950354 12 i) Bfford wning: e it bl cochr 1 roqstod 200

U1 1950315 12 D) o o sonics o ot it o sl g
U 510154 1 Do) et T vt mmry e 1 Soied
VLY 11415 1 Die] ol Woeas w1 e Tocks e G s bl
VAT 30015 1 D) et ey borrier 5 1o s

I 131435 1 D] It Compresd Sl e 18 1.2.3

U1 1514154 12 D) ot g Line v K10

patel 1 Dt vt g 5% er32 tretons
e 12 Dot et Ineiling et o, soe = 15,00
mn 1 Dt vt Gopltad i tatsatanof e sl
e 12 Dt et T Frs secin ot il /el did st s v ot 1 b crested

maan 13 Dt vt Secig e /bt son s 1218
et 12 Dot It Swtabse ysically it e il il it
i 1 Dt vt

images/00021.jpeg

images/00024.jpeg
Ll

Azarbaycan dii
Bbrapcin
Bosanski

Catala

Cymraeg

Dansk

Deutsch

English (Canada)
English (UK)
English (Australia)
Espariol

Espariol de Pert

images/00023.jpeg

images/00026.jpeg
S
Pombeycan o8
Bunrapcku
Bosanski

Catala

Cymraeg

Banek

Deutsch

English (Canada)
English (UK)
English (Australia)
Espafiol

Espafiol de Perti

images/00025.jpeg

images/00017.jpeg

images/00016.jpeg
oskarhane€Oskar4] ~ $ docker run oskarhane/hello echo “Let's go for this container again. This

is written to the stdout from inside the container.”
Let's go for this container again. This is written to the stdout from inside the container.

oskarhane€Oskar4] ~ § docker logs Sad7
Let's go for this container again. This is written to the stdout from inside the container.

oskarhanedskart] ~ §

images/00019.jpeg
Propertes

P

Supported tags and respective . links

St 4 e o s ot

et e o

images/00018.jpeg
o e

ToIST IS hRRisin

e o et

e e st e
e R
et g e (o Mt i il
e sy o ettt

Iiegn o el

iy |

i o

images/00051.jpeg
Cec2-

ip-172-31-32-

77815 -1a fvar fee/htal

drvcexrx

1

o-data
o-data
-dats
r-dats
o-data
-dats
o-data
-data
-dats
-data
or-dats
o-data
o-dats
-dats
o-data
—-dats
o-dats
-dats
o-data
o-dats
-dats
o-data
-dats
-dats
-dats
o-data

oe-data
o-dats
o-dats
oe-dats
-data
o-dats
oe-dats
e-data
o-data
-dats
o-dats
o-data
onc-dats
oe-dats
or-data
or-data
oc-dats
oe-dats
-data
o-data
-dats
o-data
o-dats
o-dats
o-dats
o-data

7% 1s -1a fvar/ib/aysal

total 110620

drarxrex 5
drrcrx 4
fehe 1
'
1
1
'
2
2
2

99
root
999
999
950
99
999
999
9%
999

Ioin/sh

htaccoss
index.php

License.txt

readse. htal
tvo-Factor-auth.4.4.zip.
wp-activate. pho
wp-blog-header.php
wp-conmenta-post.
wp-config-sanple.pho
p-config.php
wp-cron.pho
-includes
wp-Links-opal. php
p-1oad. pF
wo-Login.pho.

138096, p-mail-satp.0.9.5.zip
8252 p-sail.pho

s w-settings.oho

26286 p-signup.php

905473
026
2

wp-super-cache.1.4.2.2ip
wp-trackback. php
xalrpe. php.

4095
4096
2 8792608cbe0f. pid
s suto.cnt
seaneis ib_Logfil
soanteis ib_logfilel
12582012 ibdatal
005 aysal
4095 porformance_schans
4096 Nov vordpress

images/00050.jpeg

images/00053.jpeg
[Connand

Ports

dockerconposewp_nysa] Jantrypoint. sh aysald ~-da
dockercomposewp_paasdata_l tail ~F /dev/null
dockerconposewp_wp._1 Jantrypoint. sh apache2 -DF
Loc2-user@ip-172-31-32-58 docker-conpose-wp]S.
Cec2-user@ip-172-31-32-58 docker-conpose-wp1s

3306/tcp

9155->80/tcp.

images/00052.jpeg
Cro0taip-172-31-32-58 ec2-user]d uget. https://bootstrap.pypa. io/get-pip.py &8 python ./get-pip.py
converted ‘https: //bootstrap.pype. io/get-pip.py’ (ANSIX3.4-1968) -> ‘https://bootatrap.pypa. iolg
et-pip.py’ (UTF-8)

--2014-12-62 21:09:34-- _https: //bootstrap. pypa. io/get-pip.py.

Resolving bootstrap.pyps. io (bootstrap.pypa.ic). . 199.27.79.175

Connecting to bootstrap.pypa.io (bootstrap.pypa. i0) 199.27.79.175]:443. . connected.

HITP request sent, waiting response. .. 200 0K

Length: 1340903 (1.34) [text/x-python]
Saving to:

set-pip.py.2 eeememememeeeeeneees>] 1.26M 3.43M8/s in .48
20141 .2 saved [1340903/1340903)

Requiresent already up-to-date: pip in /usr/Lib/python2. /site-packages
Cleaning up. .

Croot@ip-172-31-32-58 ec2-userlé pip -V

Bip 1.5.6 fron /usr/Lib/pythond. 6/site-packages (python 2.6)
Croot@ip-172-31-32-58 ec2-userld

images/00055.jpeg
Coc2-usardip-172-31-32-58 crane-vpl$ crane 1ift web.
Rumning container vp ... $7¢5516320875 bAebasf4a6278509934157e476d08edcT0ab6abETe21580
s

s

w18 crane status

Coc2-userdip-172-31-32-58 cran

e Duce ™ wrouE poaTs oG
eydateoskarhane/date eossasdesse true mretse - trve
eymysal aysal COrIbeIbgsE true mAes aes, tree
W oskarhane/wordpress BICES1208 trve 208 8/ecs, trve

Toc2-user@ip-172-31-32-58 crane-wp$.

images/00054.jpeg
(oc2-user@ip-172-21-22-58 crane-vp]$ crane 1ift
Running container aydata .. 15060C5bE3bc5be4dd3a8af625477186as435388674840BFSETcTeFotbese
Running container aymysql ... 9919F0467d1ccd1F2adfcSE0bEbBESAS 506 1a71SOI6ITE21E2BOS50LT 130
Running container vp .. 63600142623b7a60720F 3330887077 F38bcSaS640FE8I86H6 3675 4a7a081424.
Coc2-userip:172-31-32-58 crane-vp)s crane status

Wi TGE ™ woowE pogrs oG
eydataoskarhane/data 15%00csbEbe true .1, - trve
eymysal mysal T —— 217 Mercn, tre
W oskarhane/vordpress 936001420235 trve - - falae

[ec2-user@ip-172-31-32-68 crane-wpls.

images/00057.jpeg
Proxy server
1P:21312.12.3

Youtube

Google

Facebook

images/00056.jpeg
€srca

http://domain1.com:49256

€srca

http://domain2.com:49257

€srca

http:/idomain3.com

Docker host

Docker containers

=

:
]

images/00059.jpeg
Crootbip-172-31-32-58 eca-vaer3t yum inatald by
Loaded plugins: priorities, update-sot

wparade-beloar

semenain/latast S
e updataa/intest 123 s
o St
2 Phckage haprony.a86-64 8:1.4.22-5.3, s w1 ba fntalled
[———

o Version Repesitors Sine
Tnstatting

Transaction Summary

Total dounlond size: 512 k
12 this ok Cysas y
Sounlouding packages
Raprory-1.4.73-5.3.saant186_54. o 1 e
Riening tramspction heck
Rueming transaction test
Ruening transhetion

Varifying. © haprony-1.4.2:

"

Instatled

172-31-32-58 eca-uner3e mprosy v
Vachrasy varaion 1.4.33 313/08/98
Copyright 2600-2013 Villy Tarrass diut. o>

images/00058.jpeg
csca

hitp://domain1.com

csca

http://domain.2.com

€sca

http://domain3.com

Docker host

Docker containers.

images/00049.jpeg
Lec2-user@ip-172-31-32-58 ca:

18 docker build -t case:

Sending build context to Docker dacnon 3.584 k8

Sending build context to Docker daemon
Step @ : FROM dobian:latest
F6Fab3bT98be
Step 1 : ADD ./case.sh /root/c
Using cache
4e37401a786F
Step 2 : RUN chaod +x /root/ca:
Using cache
> 4c309F47960d
ENTRYPOINT /root/ca
Using cache
142096145173
Successfully built 142696145173
Lec2-user@ip-172-31-32-58 casels docker run
No STR string specified.
Loc2-user@ip-172-31-32-58 ca:
No TO_CASE spacified.
Lec2-user@ip-172-31-32-58 ca:
TO_CASE was not upper or Lower.

18 docker run

18 docker run

Loc2-user@ip-172-31-32-58 casels docker run
Y STRING

Lec2-user@ip-172-31-32-58 ca: run
my string

Cec2-user@ip-172-31-32-58 ca:

cose
-e STR="My String®
-e STRe"My String®
-e STRe"My String®

“e STR="My String®

TO_CASE=camel <

e TO_CASE=upper <

To_CASE=lover c:

images/00040.jpeg
[] oskarhane / my-docker-images

Docker Images that the Docker Registry Hub can acoess. — Edit
2c0mmie branchas Oreleasen

[—

b wordpross (2 mintes 0

(B} vore worspress - | my-docker-images /+

Adaios.

(7 L e r—

B Doskerie A ties
B REAOHE m Addtios
B doker ominpointsn A e

B goneats-stacktrow ey sh Addtion

Bupdatosn Addios.

@ umeten 1

ppe—

1Pt 2 compare

atest commit SRsseeFIde
2mintessgo
2mintes e
2 miutes g0
2minten g0

2 mintes ag0

images/00042.jpeg
Namespace (optional) and Repository Name
osamane v 1 woraprss

Now U g e 3 - 30 chaacers.Ony lwecaseafters, 5t 403 _ . charactas s alowsd

Tags

e Name Dockertie Locaton Docker Tog Name
Branch v v 7 et

© Pusic
4 Ayons canpu, and st an sesrchabie o the ocke .
Prvate

18 Oy you can pu, an ot e n th cocker .

PR ————

images/00041.jpeg
Select the source you want to use for your Automated Build

| -
GitHub Bitbucket
soec

You are connected as oskarhane

images/00044.jpeg
[ec2-userdip-172-31-32-58 my-docker-inages]$ docker build -t dats
Sending build context to Docker damon 66.56 kB

Sending build context to Docker daemon

Step © ¢ FROM busybor:latest

busybox:latest: The inage you are pulling has been verified

4F754565¢050: Pull complete
e43306c5b276: Pull complete
72c6647478: Pull complete
511136eadcSa: Already exists
Status: Downlosded newer isage for busybor:lat
e72acs64f4To
MAINTAINER Oskar. Hane <ohdoskarhane. com>
Running in GeSeaté?fote
d2adeecs26r3
Removing intersediate container GeBesdi7fade
Step 2 ¢ RUN sk /mysal_data 88 ekdir /wm_date
Running in a315Fcd3bsd
706085578768
internediate contaner a315Fcd38b5d
VOLUME nysal_data we_data
Running in Sc87F4a1891
bSe34df266b3
Renoving intersediate container 9c87F4a1891F
Successfully built bSe344£268b3

stop 1

Cocz-unerdip-172-31-32-58 my-docker-inages)s docker imsges
REposTTORY o Toace 10 coearen ViR stze
detorteat s euns 9 smeonds s 2433 K0
crkarhase/helle Latest ezl 3 weeks ape 2.7
Latest ST G masks ai0 261
ip-172-31-32-58 my-docker-insgas3s |

images/00043.jpeg
No description set
00050

Information

Build Details

Type Name

Branch wordpress

Builds History

build 4

bdebwe2BbizthTxoOveyC

Dockerfile

Build Details

Dockerfle Location

Status

Buiding

Greated Date

2014-11-24 22:59:33

Tags

Edit Build Details

Tag Name

latest

Last Updated

2014-11-26 23:0008

images/00046.jpeg
Namespace (optional) and Repository Name
cxsamane v /o

Now U Fpo name; 3 -3 charactrs. Ol lowsrcase i, g and_-.characiers r alowed

Tags

e Namo Dockertie Locaten DockerTag Name.

images/00045.jpeg

images/00048.jpeg

images/00047.jpeg
[oc2-user8ip-172-31-32-58 my-docker-
Pulling repository oskarhane/data
8a18c3872c3c: Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Download complete
Status: Downloaded newer inage for askarhane/data

atest

Cec2-userdip-172-31-32-58 my-docker-inages]s docker images
REPOSTTORY IHAGE 1D
oskarhane/data 18c3872¢3c
01884ab1542
26044972490
oskarhane/hello latest 26c20203543¢
Coc2-userdip-172-31-32-58 my-docker-inages]$

inages]$ docker pull oskarhane/data

CREATED.
16 minutes ago
8 days ago
3 weeks ag0
3 weeks ago

VIRTUAL SIZE
2.433 18
235.5 1
196.5 48
192.7 18

images/00039.jpeg
Coc2-usar@ip-172-31-32-58 ~15 git clone gitegithub. com:oskarhane/ay-docker-inage:
Cloning into "sy-docker-isages”..

remote: Counting objects: 3, don

remote: Copressing objects: 160% (2/2), done.
resote: Total 3 (delta 8), reused 8 (deita 8)
Receiving sbjects: 100% (3/3), done.

Chacking comectivity. .. done.

[ec2-user@ip-172-31-32-58 -18 cd ay-docker-insges &4 1s -lo
total 16

17 2050
§ ec2-user ec2-user 4096 Nov 17 2015
drvxrar-x 8 ec2-user ec2-user 4996 ov

T ec2-user ec2-user 90 Nov 17 20159 READKE.d
ip-172-31-32-58 my-dockar-inages$ git status
O branch aastar

Your Branch is up-to-dte with "origin/asst
nothing to conmit, working directory clean
Cec2-user@ip-172-31-32-58 my-docker-imeges]$

images/00038.jpeg
Owner Repostory name.
] (@ ovarane~ /| mydockerimages v
(Great eposiory names are shot and memaratle Nead inpiation? How about yolo-tibbl.
Descripton (optona)
Docker images hathe Docker Regaty Hub can access.
© [public
= Ao cansee s roposny. You hoose who can comi
 Luipeed

You 608 Who ca s comit 01 9o

© Intaize this repository with a README.
T il aow you g1t clone h rpostor inmediate. Sp 4 sep you have atady g1t i ocaly

Akt gigpore Nonew | Add lconso: None =

images/00071.jpeg
@ Rocket

images/00070.jpeg
i DEIS

images/00060.jpeg
32-58 crane-wp1# hapraxy ~f /atc/haproxy/dockar. <fg -0
‘e-wp1# ps aux | grep haproxy

root | 21322 0.0 0.0 16852 9567 Ss 20:57 8:60 haprony -f Jetc/haproxy/docker. g -D
root 21334 00 0.0 116256 646 pts/o Se 2057 0:00 grep haprosy

[root@ip-172-31-32-58 crane-sp]# netatat -a | grep http.

Py o ot pey LrsTe

72-21-22-58 crana-wo1t

images/00062.jpeg
heroku

images/00061.jpeg
€ - C [domaini.com/wp-admin/install.php Qv =

Ty
Reoroayean il
ot
Bocan

G

Symrees

[

Devicn

English (Canada)
English (UK)
English (Australia)
Scpatl
Scpafol do Perd

images/00064.jpeg
Uounty

IEESIITTITN ot Server 14.04 LTS (UM, ESS General Prpose (SS0) Volumo Tpe,

Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami
34501200

Supportavaablefrom Canonical (tp/www.ubuntu com/cloudsarvics)

Rootdevco ype:aba Veustaton ype:

Babit

images/00063.jpeg
£ OPENSHIFT

images/00066.jpeg
‘oskarhane@Oskar43-2 ~/tep/paas/wp1 (master)$ ssh dokkudohdokku.com mariadb:create wpl

> MariaDB container created: mariadb/wpl

172.17.42.1

49153

o

: *m6agxgMIRTFWiu"
P

oskarhane@Oskar4j-2 ~/tap/paas/wpl (master)s ||

images/00065.jpeg
1 et 5.1 (creds.a. 1)
| dubgh. 1.1 Ceat0.6.2)
= 5andt0. 1.0 (Gnstroye1 0.3, nstd
1 on-finisheds2 2.0 (ee-rirstel 1.
1 type-ist1 5.5 (aime-typest2.0.7)
1 proxy-sddra1.0.5 (foruardedss 1
1 Seceptsd1 2.2 (negotistorss. 5

> Caching node_sodules Sirectory for futurs builds
Clasning w node-gyp and npm artifacts

Mo Proctile found; Adding npa start to new Procfile

Building runtine environsent

Discovaring process types

Proctile deciares types > web

Relaasing First-app

Oeploying First-sps ..

Rumning pre-Flighe checks

chack-deploy: /home/dokku/First-apo/CHECKS ok found. attempting to retrieve Lt from container ..

(CHECKS F1la not found i container. skiping checks

Running post-deploy

nsupported vhost confiy found. disabling vhest suppert

e hoplication deployed:

Netp: /54,1169, 5149154

ainen 2.11)

To dodutondods. consFirat-app
« Cnow branch] master > mas
floipmibat o e dmeayedi o

e sierse |

images/00068.jpeg
Create Record Set

Nam ohdokku.com

Type: | A-IPvé address

Alias: OYes ONo

TTL (Seconds]

300/ [1m |[sm | 1n][10

Value: | 54.19169.5

1Py adress. Enter multple addresses
on separate lines.

Example:
18202235
198.51.100.234

Routing Policy: Simple

Route 53 responds to queries based only on the values in ths record. Learn
More

images/00067.jpeg
Dashboard

Welcome to WordPress!
We've assembled some links to get you started:

Get Started

Customize Your Site

or, change your theme completely

images/00069.jpeg
Flynn

