

Building a Web App

with

Blazor and ASP

.NET Core

Create a Single Page App with

Blazor

Server and Entity Framework Core

by

Jignesh Trivedi

FIRST EDITION 2020

Copyright © BPB Publications, India

ISBN: 978-93-89845-457

All Rights Reserved. No part of this publication may be reproduced or distributed

in any form or by any means or stored in a database or retrieval system, without

the prior written permission of the publisher with the exception to the program

listings which may be entered, stored and executed in a computer system, but

they can not be reproduced by the means of publication.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s

& publisher’s knowledge. The author has made every effort to ensure the

accuracy of these publications, but cannot be held responsible for any loss or

damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their

respective owners.

Distributors:

BPB PUBLICATIONS

20, Ansari Road, Darya Ganj

New Delhi-110002

Ph: 23254990/23254991

MICRO MEDIA

Shop No. 5, Mahendra Chambers,

150 DN Rd. Next to Capital Cinema,

V.T. (C.S.T.) Station, MUMBAI-400 001

Ph: 22078296/22078297

DECCAN AGENCIES

4-3-329, Bank Street,

Hyderabad-500195

Ph: 24756967/24756400

BPB BOOK CENTRE

376 Old Lajpat Rai Market,

Delhi-110006

Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New

Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

Dedicated to

I would like to say many thanks to my mother Mrs

Saryuben Trivedi and my wife Mrs Poorvi for their

support. They deserve to have their name on the

cover as much as I do for all their support made this

possible. I would also like to say thanks to all my

family members Girish Kumar Trivedi (father),

Rakesh and Tejas (brother) for their continuous

guidance and support to achieve my goals.

-Jignesh Trivedi

About the Author

Jignesh Trivedi is working as a software developer with a

leading organization and having more than 14 years of

experience. He is very passionate about Microsoft

Technologies. He is an author, speaker, and Microsoft MVP.

He loves building great products and POC (proof of

concepts) using the best available technologies. He loves to

share his knowledge by contributing to the Developer

community.

He is awarded as MVP by Microsoft for his exceptional

contribution in Microsoft technologies under the category

“Developer Technologies” since year 2016. He is also a

blogger and author of articles on various technologies. He is

also a speaker and delivered talk on various technologies

like ASP.NET Core, Angular, MVC etc. in the public events.

About the Reviewer

Tejas Trivedi has over 14 years of industry experience and

currently works as a Software Architect for a leading

organization. He is technical enthisiastic and his experience

in Microsoft technologies raninging from VC++,C++ to his

current speciality in .NET with C#, ASP.NET, Azure Clould,

Micro services and DevOps.

Tejas has been developing in .NET technologies since .NET

was first in beta, and is a Technical architect for software

solutions using .NET technology. He is active member,

blogger and speaker of various Microsoft communities in

India. Tejas is currently focusing on overall architecture,

solution design and Microsoft cloud solutions.

Acknowledgement

There are a few people I would like to say thanks for their

continued and ongoing support given to me during the

writing of this book. First and foremost, I would like to thank

my wife for support me as I was spending many weekends

and evenings on writing this book. I could have never

completed this book without her support. I would like to say

thanks to my both brother for their support and guidance.

I would also like to say thanks BPB Publications for giving

me this opportunity to write my first book for them and also

say thanks to the all team member who are contribute in

this book.

Preface

Blazor is a new, open-source, and SPA web framework that

allows you to build a web application using C# and HTML.

Blazor enables you to write C# code instead of JavaScript.

This book is a comprehensive guide about the new modern

Blazor framework. It begins with an introduction to the

Blazor and its components and concepts. It explains how

you can start the development process, what tools you can

use to develop an application, and how you can deploy it.

You will then learn more about Data-bind, Event-binding,

layout, routing, JavaScript interop, and Dependency

Injection. Concepts such as Authentication and

authorization, error handling are also covered. Towards the

end, you will learn how to deploy your Single Page

Application Using Blazor. Over the 10 chapters in this book,

you will learn the following:

Chapter 1 explain basic of the Blazor, and the programmer

needs to get started with Blazor. Also, explain the Blazor

booting process and how component renders in Blazor

application.

Chapter 2 explain about the Blazor component, a different

way to create the Blazor component, the life cycle of

component, and the templated component.

Chapter 3 talk about the basic concept of Blazor, such as

data binding, event binding, layouts, routing, and validation.

Chapter 4 discusses about how to inject the service

dependency in Blazor application.

Chapter 5 explains how to invoke JavaScript function using

the .net code and invoke the .net function from JavaScript.

Chapter 6 talks about state management. Blazor

application is a stateful app framework. The user state is

held in server memory in the circuit. This chapter addresses

state persistence in Blazor server-side apps.

Chapter 7 explains the essentials of authentication &

authorization and how can we achieve in Blazor application.

It also explains the different ways to do authentication &

authorization using third-party services such as Google API,

Microsoft and Facebook API.

Chapter 8 describes about handling error and introduction

to the logging framework provided by ASP.net core. It also

explains about 3rd party logging framework providers.

Chapter 9 explains how to start the development of Blazor

server /client project / SPA. This chapter do revision of all

preceding chapters.

Chapter 10 explains the hosting and deployment of Blazor

server/client application on various platforms such as IIS

and Azure.

Downloading the code

bundle and coloured images:

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/t83tggi

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content

to provide with an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors if any,

occurred during the publishing processes involved. To let us

maintain the quality and help us reach out to any readers

who might be having difficulties due to any unforeseen

errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly

appreciated by the BPB Publications’ Family.

https://rebrand.ly/t83tggi
mailto:errata@bpbonline.com

Table of Contents

1. An Introduction to Blazor

Introduction

Objectives

What is Web Assembly?

Security considerations

WebAssembly limitations

Facts about WebAssembly

Is WASM kill JavaScript?

Is WASM a new programming language?

Can other programming languages write WASM

code other than C and Rust?

Is it an upgraded version of Silverlight?

What is Blazor?

Interpreted mode

Ahead-of-time compiled mode

Features of Blazor

Blazor (client) supported platforms

Prerequisite Blazor development

.NET Core Framework (.NET Core SDK)

Integrated Development Environment - IDE

Creating first Blazor application

Creating a project with Visual Studio 2019

Creating a project using dotnet CLI

Understand project structure and component

Understand Blazor booting process

Render tree in Blazor application

Blazor client-side

Blazor server side

Summary

What did you learn in this chapter?

What next?

Questions

2. Components and Structure for Blazor Applications

Introduction

Objectives

What is the Blazor component?

Create Blazor component

Using a single file - inline

Component with code behind

Class only component

Life Cycle methods of component

OnInitialized and OnInitializedAsync

OnParametersSet and OnParametersSetAsync

OnAfterRender and OnAfterRenderAsync

SetParametersAsync

StateHasChanged

Dispose component with IDisposable

Component parameters

Child component

Templated components

Grid view template example

List view template example

Define template inline - using Razor template syntax

Cascading values

Declaring HTML attributes using parameters

Import components

Summary

What did you learn in this chapter?

What next?

Questions

3. Blazor Concepts

Introduction

Objectives

Data Binding

One-way data binding

Two-way data binding

Event Binding

Event Callback

Layouts

Introduction to Layouts page

Specify a layout in a component

Define layout globally

Nested layouts

Example

Routing

@page directive/route attribute

Example

Route parameters

Route constraints

Example

Programmatically navigate one component to another

component

Query parameters

Forms and validation

Data annotations

Summary

What do you learn in this chapter?

What is next?

Questions

4. Dependency Injection

Introduction

Objective

Types of dependency injection

Construction injection

Setter injection

Interface based injection

Service lifetime

Scoped

Singleton

Transient

Add services to the application

Default services

Inject the service in the component

Example of adding service as a dependency

Use dependency in services

Using OwningComponentBase

Summary

What you learned in this chapter?

What next?

Questions

5. JavaScript Interop

Introduction

Objective

What is JavaScript Interop?

Invoke JavaScript functions from C# (.NET) methods

Invoke C# (.NET) methods from JavaScript

Capture references to elements

Detect when a Blazor app is pre-rendering

Share interop code in a class library

Summary

What you learned in this chapter?

What next?

Questions

6. State Management

Introduction

Objectives

Understand Blazor circuits

Preserve state across circuits

Where to persist state

On server in database

On client in the browser

URL

Third-party browser storage solutions

Summary

What you learned in this chapter?

What next?

Questions

7. Authentication and Authorization

Introduction

Objective

Authentication

AuthenticationStateProvider service

Custom AuthenticationStateProvider

Authorization

AuthorizeView

Authorize attribute

Custom content for unauthorized router component

Authorization rules check-in procedural logic

Authorization in Blazor client-side apps

Authentication using third party service

Using Microsoft API

Using Google API

Using Facebook API

Use multiple authentication providers together

Summary

What you learned in this chapter?

What next?

Questions

8. Handle Exception and Log Error

Introduction

Objective

The behavior of Blazor app for an unhandled exception

Places where errors may occur

Component instantiation

Lifecycle methods

Rendering logic

Component disposal

JavaScript interop

Event handlers

Circuit handlers and disposal

Prerendering

Enabling detailed errors

Introduction to the logging framework

Configure logging provider

Set default minimum log level

Logging using serilog

Write log to file using serilog

Summary

What you learned in this chapter?

What next?

Questions

9. Getting Started with Blazor Using Visual Studio

2019

Introduction

Objective

Setting up the Blazor development environment using

Visual Studio 2019

Creating a single page application using Blazor

Scaffolding the model using EF Core

CRUD operation with EF in Blazor server app

Create Add/Edit page with validation

Delete customer

Installed project template for Blazor

Summary

What you learned in this chapter?

What next?

Questions

10. Hosting and Deployment

Introduction

Objective

Publish Blazor server app

Deploying Blazor app on IIS

Prerequisites

Configure IIS

Deploying Blazor app on Azure

Prerequisites

Deploy app on Azure as app service

Create publish profile with create app service or

selecting existing one

Sign in using Azure account

Configure App Service.

Publish application on app service

Create database server and database on Azure

Login to Azure portal and select SQL databases

from the left menu

Create a database

Get connection string

Configure firewall for SQL server

Summary

What you learned in this chapter?

Questions

CHAPTER 1

An Introduction to Blazor

Introduction

The Blazor is a new web framework that can run in any

browser. Using the Blazor framework, you can create a rich

and modern Single Page Application (SPA). It allows us to

create both server-side and client-side applications. The

server application code runs on the server and

communicates with UI by SignalR. The client application runs

in the browser on mono via WebAssembly.

In this chapter, we’ll cover the following topics

What is Web Assembly?

What is Blazor?

Prerequisite Blazor development

Features of Blazor

Blazor supported platforms

Creating our first Blazor application

How Blazor application renders in the browser?

Understand Blazor booting process

Render tree in Blazor application

Blazor Client-side

Blazor Server-side

Objectives

Understand WebAssembly and Blazor

Understand the features of Blazor

Know prerequisite to start Blazor application

development

Know Blazor supported platforms

Understand the internal working of Blazor application

Understand the type of Blazor application

What is Web Assembly?

WebAssembly is an open standard and defined a portable

binary code format. It was developed at the World Wide

Web Consortium (W3C). The most modern browser

supports the WebAssembly without any plug-in. It is similar

to low-level assembly language with a compact binary that

runs with a near equal performance provided by native

language. It can also run along with JavaScript, and both can

work together. It enables you to create high-performance

applications on web pages. It is not a replacement for

JavaScript. It is also referred to as WASM. Following are some

features of WebAssembly:

Efficient and fast

Open and debuggable

Hardware independent

Language independent

Platform independent

Part of the open web platform

memory-safe

Developers do not write code directly in the WebAssembly

but write code in high-level languages such as C#, F#, and

so on. The respective language code compiler compiles code

into WebAssembly bytecode, and it runs on the client (that

is, a web browser) where this translated into native machine

code. The execution performance is nearly equal to

JavaScript, but there is overhead of downloading the WASM

module and setting it up. However, it is a one-time activity. It

provides a sandboxed execution model with the same

security models that exist for JavaScript. You can call

JavaScript function from the WebAssembly module and vice

versa.

Currently, WebAssembly runs under a web browser is the

most common scenario, but its future is not limited to the

web. It may be more useful in mobile apps, desktop apps,

and many more.

As the name suggests itself, it is more likely an assembly

language that consumed by the machine. Developers cannot

write code directly in WebAssembly, but code written in a

high-level language, and then it compiledinto WebAssembly.

This is done by any of the following three ways:

WebAssembly-based interpreter: In this way,

language is not translated into WebAssembly but

interpreter for the language written in WebAssembly.

Currently, Ruby and Python have interpreters that

translated code to WebAssembly.

Direct compilation: Some of the language compilers

has the ability to translate source code into

WebAssembly. Currently, C/C++, Kotlin/Native, and Rust

compiler have a native way to generate WebAssembly.

Third-party tools: If the language does not have

native support to generate WebAssembly, you can use a

third party tool/utility to convert source code to

WebAssembly.

The WebAssembly is not the replacement of the JavaScript. It

is designed to work with JavaScript and compatible with

other web technologies such as HTML and CSS. The higher-

level languages such as C#, VB.net, C++, and so on. can be

compiled into WebAssembly that runs under the same

browser sandbox environment as JavaScript code is running.

When JavaScript code gets executed, first goes through the

process of parsing and compilation, and then, the Just in

Time (JIT) compiler performs speculative execution of

binary code. The WebAssembly modules are compiled in a

higher-level language, and they are already parsed and

compiled, so they go through a decoding phase before

executed by JIT. Typical execution of JavaScript and

WebAssembly in browser sandboxas shown in the following

Figure 1.1: JavaScript and WebAssembly execution in

Browser sandbox:

Figure 1.1: JavaScript and WebAssembly execution in Browser sandbox

As you have seen here, both JavaScript and WebAssembly

code execution are similar at the JIT compiler.

Security considerations

WebAssembly does not provide full access to the computer

environment on that it executed. All the interaction with the

environment (such as I/O access, OS Call) can be done by

invoking function provided by Embedder. The Embedder can

be defined as security policies. The WebAssembly is

translated source code to machine code and run on the host

hardware, so it is vulnerable for side-channel attacks on

hardware. The embedder may have to do something to

isolate WebAssembly computations.

WebAssembly limitations

The WebAssembly is very powerful but has a certain

limitation:

The WebAssembly does not have support for direct

access to DOM and Browser API.

The WebAssembly has to rely on JavaScript interop to

update the DOM and access the browser API such as

SVG, Canvas, and built-in APIs (history, local storage,

location, and so on).

The JavaScript script has its own garbage collection, but

WebAssembly does not have a garbage collector. It uses

mono GC for the Blazor application.

Facts about WebAssembly

There are a few facts about the WebAssembly listed as

follows:

Is WASM kill JavaScript?

No, WASM is not a replacement for JavaScript, but it was

created to meet the performance requirement of the web

application.

Is WASM a new programming language?

It is not a programming language, but it is the intermediate

binary format that works as a compiler for higher-level

languages such as C, C++, and rust. The end-goal of WASM

had not become a programming language, but it is binary

text representation.

Can other programming languages write WASM

code other than C and Rust?

The WASM is not a programming language, but it more like

the compiler. Many high-level languages such as C#

supported by WASM. There are few limitations with WASM

that describe previously.

Is it an upgraded version of Silverlight?

No, it is not an upgraded version of Silverlight. The

Silverlight required plug-in to run the application on the

browser, whereas WebAssembly does not require any plug-

in.

These are the facts about the WebAssembly that one must

know before they start working with it.

What is Blazor?

Browser + Razor (Blazor) is a new web framework for

building Single Page Application (SPA) using .NET Core

framework that uses Mono WebAssembly runtime.

The Mono is an open-source framework sponsored by

Microsoft for implementation of the .NET framework (based

on the open standard for C# and Common Language

Runtime (CLR)). It allows you to write code that runs on

cross-platform, targeting macOS, Linux, iOS, Android, and

Windows. It provides .NET Standard support and has been

compiled to WebAssembly. The Mono runtimes compiled into

WebAssembly and using Mono Intermediate Language

(IL), it loads and executes .NET assemblies. In this way, the

.NET works in the browser. This runtime bootstraps by the

JavaScript file and download the dlls. This JavaScript also

provides access to browser API those required to run code. In

short, our code gets compiled to .NET standard dlls, and

those are downloaded by the browser and the Mono

runtimes compiled to WebAssembly.

Mono runs under WebAssembly in two modes: Interpreted

and Ahead-of-time (AOT).

Interpreted mode

In interpreted mode, the mono runtime compiled to

WebAssembly but not our code (in the form of assembly).

The browser loadedour .NET assembly (which is in the form

of dlls) and executed by mono runtime. This execution model

is very similar to desktop CLR. The desktop CLR uses JIT

compilation to make execution faster, but Mono is much

closer to the pure interpretation model. Figure 1.2:

interpreted compilation mode shows the graphical

representationof interpreted compilation mode working:

Figure 1.2: interpreted compilation mode

In this model, our .NET assemblies are executed by mono

runtime. It results in a performance delay.

Ahead-of-time compiled mode

In this mode, our .NET assemblies are transformed to

WebAssembly at build time; hence no interpretation required

runtime. The code executes directly as a regular

WebAssembly code. This removes unnecessary parsing of

.NET assemblies at runtime. It is required to load Mono

runtime to use .NET service such as GC (garbage collection).

This is very similar to the ngen tool allowed AOT compilation,

and CoreRT provides the AOT compilation for .NET core

runtime. Figure 1.3: AOT compiled mode, shows the

graphical representation of AOT compilation mode working:

Figure 1.3: AOT compiled mode

The interpreted mode is more useful in faster development

where our code gets change, and we can rebuild it using

.NET compiler. An AOT compilation takes a long time to

build, and it does not save much time in development as

may be build frequency is high during development.

However, AOT much and more effective in production.

Blazor provides almost all features provided by Single Page

Application (SPA) such as databinding, routing, and

component-based architecture (powered by .NET framework

and tooling). It provides a similar development experience as

.NET in that you can use the same language for the entire

development, and at the same time, it provides a great

client framework. The Blazor framework is based on Razor

pages that use to create components. This supports dynamic

HTML, DOM event, and bindings (both: one-way and two-

way). It also provides JavaScript interop, and that allows your

C# code and JavaScript can interact with each other. Blazor

inspired by top SPA framework such as Angular, React, Vue,

and Microsoft UI stacks -Razor pages.

Features of Blazor

Blazor application support most of the features of the SPA

provides. It inspires by modern SPA client frameworks such

as Angular, Vue, and React. The following are SPA features

supported by Blazor:

Component-based architecture: Blazor provides a

component-based architecture to develop rich SPA

applications. The component is a primary element of the

Blazor application. Most of the modern client

architecture, such as Angular, provides component-

based architecture.

Routing: The client request redirects from one

component to another component by using routing.

Blazor provides rich routing, and one component can

have multiple routes.

Layouts: The layout page provides a common UI

element that same across the application, for example,

header, navigation, footer, and so on. It helps to remove

duplicate code in every page.

Data and Event binding: Data binding is the most

powerful feature in software development technologies.

Blazor supportsboth one-way / two-way data banding.

Data binding providesa bridge between view model

(business logic) and view.

JavaScript interop: Blazor access browser API and

other functionality using JavaScript interoperability

(formally known as JavaScript interop). It also allows

calling JavaScript function from our C# code and vice

versa.

Forms and validation: Blazor allows to create

interactive forms with the handling of user input

validation. Blazor is also supporting client-side

validation. It also provides server-side events in the

component life cycle to handle validation.

Dependency injection: This is the beauty of .NET Core

framework;it provides built-in supports of Dependency

injection. It allows us to use services by injecting them.

Authentication and Authorization: Blazor server-side

allows us to add the functionality of Authentication and

Authorization. Blazor provides multiple built-in attributes

to achieve authentication. We can also do authentication

using third party services such as Facebook, Google, and

so on.

Multiple Hosing support: We can host a Blazor

application on Azure, IIS, Docker, and so on.

Developer friendly features:

a. Debugging support in both—browsers and IDE

b. Rich IntelliSense and tooling

c. Live reloading in the browser during development

when building application

The features listed above make Blazor to powerful

development framework. These features are very similar to

modern SPA client-side frameworks such as Angular.

Blazor (client) supported platforms

The Blazor application does not require any plug-in to run

under the modern browser. Blazor client applications running

under browser rely on browser support for WebAssembly.

Almost all modern browsers, including Edge, Chrome,

Firefox, support WebAssembly. The older browsers are not

supported WebAssembly, but still, the Blazor server

application can run on these browsers as it does not rely on

WebAssembly and all components of Blazor server

application executed on the server and event proxied over

socket connection (SignalR). Figure 1.4: Blazor browser

support, shows the list of browser that supports Blazor

application:

Figure 1.4: Blazor browser support

The Blazor application is not run under the older browser,

but by using additional polyfills, Blazor application can be

run on older browsers such as IE11.

Prerequisite Blazor development

To start development with Blazor, the following two

prerequisites must be installed in our machine.

.NET Core Framework (.NET Core SDK)

Blazor application runs on top of the .NET Core framework. It

provides a cross-platform solution (working on multiple OS

such as Linux, iOS, and Windows).

To develop a Blazor application, you must install .NET Core

SDK version 3.0 or above. The recommendation is to use the

latest version of .NET core SDK. You can download the latest

version of .NET Core SDK from

https://dotnet.microsoft.com/download.

Integrated Development Environment

- IDE

For the development environment, you have two options:

Visual Studio 2019 and Visual Studio Code. If you have a

license for Visual Studio, it is recommended to use else you

can use Visual Studio community edition. You can download

the latest version of Visual Studio

(Community/Professional/Enterprise) from

https://visualstudio.microsoft.com/downloads/.

Alternatively, you can use Visual Studio Code as IDE. It is a

free and cross-platform source code editor developed by

Microsoft for Windows, Linux, and iOS. It is a rich source

code editor that includes support for debugging, intelligence,

code completion, and code refactoring. It has built-in support

for source control such as GitHub. It supports a huge number

of extensions for different languages and tools. You can

download the latest version of the Visual Studio Code from

https://code.visualstudio.com/download.

It is required to install a couple of extensions. If you want to

use Visual Studio Code as an editor, especially C# extension.

To install the extension, select the Extensions tab from the

left side panel and write the extension name in the search

box to find the required extension. You must install two

extensions: one for C# and another for Razor (Extension

name: Razor+). Write C# in the search box to find an

extension for C# (refer Figure 1.5: Install C# Extension in

Visual Studio Code):

https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/downloads/
https://code.visualstudio.com/download

Figure 1.5: Install C# Extension in Visual Studio Code

Once the C# extension installed, you can install the Razor

extension. Write Razor+ in the search box to find an

extension for Razor extension in the following screenshot:

Figure 1.6: Install Razor+ Extension in Visual Studio Code

Additionally, you can install Blazor templates if you want to

create a Blazor application using Command Line Interface

(CLI). Using the following command, you can install the

Blazor Template from NuGet.

> dotnet new -i Microsoft.AspNetCore.Blazor.Templates

These templates allow you to create verity Blazor projects

such as Blazor library, Blazor stand alone, Blazor client-side.

As shown in Figure 1.7: Blazor templates for dotnet CLI, CLI

list down all available template when you run dotnet new

command from the command prompt:

Figure 1.7: Blazor templates for dotnet CLI

You can use either Visual Studio 2019 or Visual Studio code

or CLI to create a Blazor server application. The templates

for CLI and Visual Studio can be different.

Creating first Blazor application

The current version of Blazor is only supported for the server

application, but you can create a Blazor client application by

installing the template. Visual Studio only supports

blazorserverside template as of now but later on, support

multiple templates. If you want to create a Blazor application

other than the Blazor server, you can create by .NET CLI.

Creating a project with Visual Studio

2019

To create Blazor application using Visual Studio 2019, open

the Visual Studio >> Select Create New Project option in the

following screenshot:

Figure 1.8: Visual Studio new project dialog

Then select Blazor APP from the template and then click on

Next button as shown in the following screenshot:

Figure 1.9: Visual Studio project template selection

Now, you need to fill-up basic information of project such as

project and solution name, project location, and whether to

create project and solution file created in the same folder as

shown in the following screenshot:

Figure 1.10: Fill basic information about the project

As shown in the following screenshot, you need to select the

project template. As describe, currently, Visual studio only

supportsthe server app; that is why it shows only one

template. Later-on, the Visual Studio development team will

add more templates for Blazor application. Now click on

Create button:

Figure 1.11: Visual studio Blazor Server Template selection

Once you click on the Create button, Visual Studio creates a

default Blazor server application structure as defined in the

template.

Creating a project using dotnet CLI

As described earlier, you can create a Blazor project using

dotnet CLI. There are four templates available that allow you

to create verity Blazor projects such as Blazor library, Blazor

standalone, Blazor client-side (refer Figure 1.6).

The dotnet CLI command can be executed from the

Command Prompt / Line. Using the new command, you can

createa Blazor project from CLI. Using the following

command, you can create a Blazor server application. This

will create a new project in the same directory as currently,

you are using:

> dotnet new blazorserver

You can edit the project created using CLI by any of the

editors such as VS 2019 or VS code and build / run Blazor

application using dotnet CLI commands.

Understand project structure and

component

As described earlier, you can create Blazor server-side

project using both Visual Studio 2019 and dotnet CLI. When

you create a project using a blazorserver template, the

Project structure looks as shown in the following screenshot.

The Pages folder contains all the view files with .razor

extension. The .razor extension is used for the Blazor

component. The App.razor is a bootstrap component. The

Shared folder contains the layout page. The _Imports.razor

file contains the common reference of all namespace used

by the Blazor component. You will learn more about the

Blazor component in later chapters.

Figure 1.12: Blazor Server project structure

The Blazor template generates server-side code inside Razor

pages using @code directive. It generates a single file for C#

code and Razor code; however, you can create a separate

file for view and code file (code behind). The following

screenshotshows the code snap of Counter.cshtml that

generated by the template by default. As you have seen

here, the page contains the three parts: routing, UI (HTML +

Razor), and C# code (code behind).

Figure 1.13: Blazor component example

Blazor component may have .cshtml extension. In the next

section, you will learn about the booting process of the

Blazor application.

Understand Blazor booting process

Blazor is made up of two-part: WebAssembly base .NET

runtime and component-based UI. The component of the

Blazor app executes on the server on .NET Core, so the entry

point for Blazor application is the Main method, defined in the

program.cs file. The following code is for the program.cs file

that was generated by the Blazor server template:

public class Program

{

public static void Main(string[] args)

{

CreateHostBuilder(args).Build().Run();

}

public static IWebAssemblyHostBuilder

CreateHostBuilder(string[] args) =>

BlazorWebAssemblyHost.CreateDefaultBuilder()

.UseBlazorStartup<Startup>();

}

The main method invokes the CreateHostBuilder method. This

method ensures two things get it done:

The BlazorWebAssemblyHost will call its own

CreateDefaultBuilder method

Call UseBlazorStartup method

The UseBlazorStartup method accepts the startup class type,

where the application is configured. This process is like the

ASP.NET Core web application bootup process; only default

builder is different. The Startup class may have different

name, So UseBlazorStartup method accept startup class type.

This class has two methods:

1. ConfigureServices: The ConfigureServices method is not

mandatory in startup class. The ConfigureServices method

is used to configure the service being used in the

application.

2. Configure:The Configure method is used to configure

middleware used the application. Using this method, we

can control the request pipeline.

To bootup the client side Blazor application, we need to add

just the client side app(it is the root component of Blazor

application). However, this will may different in the Blazor

server application. The following code shows the default

implementation of ConfigureServices and Configure methods in

Startup class.

public class Startup

{

public void ConfigureServices(IServiceCollection services)

{

}

public void Configure(IComponentsApplicationBuilder app)

{

app.AddComponent<App>(“app”);

}

}

You can compare the booting of Blazor application with the

following figure:

Figure 1.14: Booting Process of Blazor application

Once the Blazor application bootstrapped, the framework

generates the render tree for the Blazor component. In the

next section, you will learn about how the framework

generates a render tree.

Render tree in Blazor application

In the last section, we learned about the booting process of

the Blazor application. So, How HTML generate from the

Blazor component and render on the browser? This may be

the next question in our minds.

Blazor uses JavaScript interop to access the Document

Object Model (DOM) element, such as input controls, div,

span, and so on. The Blazor component is in the form of C#

and Razor code, so the first Razor view engine converts it to

the dynamic HTML, and then it renders to the browser.

The following figure shows a typical process of accessing

DOM by using C# code (Blazor client).

Figure 1.15: Process of accessing DOM by C# - Blazor client

The C# code generates a hierarchical structure of UI

components defined in the Razor page. Normally, it refers to

a render tree. Using the JavaScript code (blazor.js),

frameworks rendered the UI structure in browser DOM

according to render tree. The JavaScript code then starts to

listen to the UI event. When an event is generated by any UI

component, it internally invokes the

BrowserRendererEventDispatcher class to dispatch the event to

C#. Then, the event is processed by the C# Code and

changes transferred to the UI. The JavaScript code (Blazor)

analyzed the changes and applied them to DOM .

The following figure shows the typical process of accessing

DOM by using C# code in the Blazor server app.

Figure 1.16: Process of accessing DOM by C# - Blazor server

With server-side Blazor, the render tree is built on the server

and sentit to the browser using SignalR in serializingform.

Blazor JavaScript deserializes the render tree object and

updates the DOM. When any event gets triggered by UI,

event data gets serialized and then sends it to the server.

The .NET code process the render tree, serialized, and send

back to the browser.

Blazor client-side

Blazor client-side is a framework for developing a SPA with

.NET core framework. It uses WebAssembly and mono

runtime to run higher-level language code under browser.

WebAssembly is a binary code format for fast downloading

and maximum execution speed. It follows open web

standards and can be run in the browser without a plug-in.

WebAssembly able to access browser API and DOM using

JavaScript interoperability (formally known as JavaScript

interop). In Blazor client-side application, .NET core code

executed via WebAssembly in the browser sandbox with

protection that protects client machine against malicious

actions. Following Figure 1.17: Blazor client shows the

typical working structure of Blazor client-side application.

Figure 1.17: Blazor client

When Blazor client-side application builds and runs in

browser:

Higher-level language (C#, F#, and so on) code and

Razor files are compiled to .NET assemblies.

The .NET runtime and assemblies are loaded into the

browser.

Finally, Blazor client-side bootstraps .NET runtime and

load assemblies for the application. Using JavaScript

interop, Blazor client-side application handles DOM

manipulation.

Here, the major concern is a published app (payload) size. It

is very critical for the performance factor. The large app size

required more time to download to the browser. The Blazor

client-side payload must smaller as possible.

Blazor server side

Blazor server-side application is the host on servers in the

ASP.NET core application domain. The communication

between server and UI is done using SignalR. The SignalR is

an open source ASP.NET Core library. It adds supports for

real-time web functionality to the web, which enables the

server to push content from the server to clients without any

delay. The UI sending event from browser to server and

server process the request and push back to UI thread

running on the browser. The SignalR uses JavaScript interop

to handle communication between server and UI. Figure

1.18: Blazor server shows a typical working structure of

Blazor server-side application:

Figure 1.18: Blazor server

The Blazor component renders on the server-side on ASP.NET

core and communicates with UI is done using SignalR over

the network. In Blazor server-side application does not rely

on WebAssembly as components are rendered at the server-

side. The Blazor components are run under CoreCLR. This

providesa way to run components for client-side Blazor,

andthe same component can run on the server.

There are many advantages of Blazor server-side

application:

The app size is smaller; hence app loads faster in the

browser.

The application takes advantage of existing .NET tooling

such as debugging and JIT compilation.

It is not run under mono or WebAssembly, so it can also

run on a browser that does not support WebAssembly.

The UI thread and server communicate with each other

using SignalR. It helps to reduce unnecessary page

refreshes.

There are also a few drawbacks of Blazor server-side

application:

Latency of response: As UI interaction involved using

SignalR, so it adds an extra layer of network call.

Handle multiple client connections: Application

needs to handle multiple client connections that is also a

challenge.

No off-line support: The application stops working

when the client network connection goes down.

Blazor server-side and client-side having the same

programming structure, but with Blazor server-side, there is

no need to send Blazor assemblies and mono runtime to

browser to process a render tree. This is the biggest

difference between client-side and server-side app.

Summary

WebAssembly is developed by W3C, and it is an open

standard and defined a portable binary code format. All

the modern browser supports WebAssembly

WebAssembly allows you to create high-performance

applications on web pages.

WebAssembly can run inside the browser without

requiringany plug-in

It is not a replacement of JavaScript

Blazor = Browser + Razor

Blazor is a new web framework for building SPA using

.NET Core framework

Blazor supports almost all features that require to

develop modernweb application

You can use Visual Studio 2019 or Visual Studio Code as

IDE to develop Blazor application

You can also create / Build / run a Blazor application

using .NET Core CLI. However, it required a template to

be install

Blazor Support both Client-side and Server-side

application:

Client-side Blazor: It uses WebAssembly and mono

runtime to run higher-level language code under

browser. The major concern with the Blazor client-

side is a published app (payload) size.

Server-side Blazor: Blazor server-side application

is the host on server in ASP.NET core application.

The communication between server and UI is done

using SignalR. It is not used WebAssembly hence

app size is smaller compare to Blazor client, and app

loads faster in the browser.

What you learned in this chapter?

In this chapter, you have learned about WebAssembly,

Blazor, features of Blazor, template and project structure,

Blazor supported platforms, and internal working of Blazor

application. You also learned how to create a Blazor

application and what tool you can use for the development

of the Blazor app.

What next?

Blazor supports component-based architecture, and the

component is a core part of the Blazor application. In the

next chapter, you will learn about the component, different

ways to create the component, life cycle methods of

component, and templated component.

Questions

1. What is WebAssembly?

2. Is WebAssembly replacement of JavaScript?

3. Is WebAssembly a newer version of Silverlight?

4. What is Blazor?

5. What are the different ways to create a Blazor app?

6. What is the difference between Blazor server-side and

client-side app?

CHAPTER 2

Components and Structure

for Blazor Applications

Introduction

The component is a core part of Blazor application, and

Blazor supports component-based architecture. The

component is nothing but similar to the Razor page that

contains HTML and C# code. You can refer to the

component as a base element of the Blazor application. It

means that every views and partial views are components in

Blazor. The components may be nested and reused across

the projects.

In this chapter, we’ll cover the following topics

Following topics are covered:

What is the Blazor component?

Create Blazor component

Life Cycle methods of component

Component parameters

Child component

Templated components

Cascading values

Declaring HTML attributes using parameters

Import components

Objectives

Understand component and its life cycle methods

Understand different ways to create the component

Understand the component parameter

Understand how to create child component, templated

component, and import component

Understand how to pass the value to cascading

component

Understand how to declare HTML attribute using

component parameter

What is the Blazor component?

The componentsare created by using HTML and C# code,

just same as the Razor page in ASP.NET Core application. It

also refers to the Razor component. The component name

must start with uppercase. It has extension either .razor or

.cshtml. The razor component may contain the dynamic

rendering logic such as loops and conditional rendering.

When the Blazor application is compiled, the C# code and

HTML of the component converted into component class.

This class name is similar to the name of the component file

name.

The @code directive is used to define the member of the

component where you can define properties, methods,

events, and other component logic. You can also define

more than one @code block for the component. Using @

directive, you can define component member that defined

in @code block and used for component rendering logic. The

component regenerates its render tree when events are

triggered. Blazor engine will generate new render tree,

compare existing render tree, and applies only the

modification to the browser.

You can also include component to another component by

declaring them as HTML element syntax. The markup, such

as HTML tag and name of the tag is the same as the

component name (type). The @using statement used to

include component namespace that makes components

available to use.

Create Blazor component

The component is a core part of the Blazor application, so

every page in Blazor application can be considered as a

component. The Blazor component consists of C#, CSS, and

HTML. There are several ways to create Blazor Components:

inline, code behind, and class only.

Using a single file - inline

In this method, HTML markup and C# code are defined in

the same file. The C# code is written in the @code block.

The markup part contains the Razor syntax (along with C#

code) and HTML elements. At the time of compilation, the

Blazor engine converts HTML markup and C# code to C#

class. Following code shows the example for the inline

method of creating component:

@page "/routing"

<h1>Page HTML </h1>

@code{

//C# Code

}

This is the default way provided by the Visual Studio

template.

Component with code behind

In this method, HTML markup and C# code are in different

files. It helps you to separate HTML and C# code rather than

both are in the same file. The Razor component must inherit

from component code-behind class. Using the @inherit

directive, you can inherit components from code behind

class. The class must inherit from

Microsoft.AspNetCore.Components.ComponentBase class. In this

method, you can write all C# codes in code behind class,

such as to define variables/properties, methods, and events.

The following code shows the example for of method

creating component with code behind (codebehind.cs).

Your component must inherit from component class

(Codebehind.razor).

@page "/codebehind"

<h3>@Title</h3>

@inherits CodebehindClass

Class only component

The Blazor component ends up as a class when complied.

Blazor allows you to write component as C# class. This class

must inherit from ComponentBase class. This base class has

method BuildRenderTree that renders the component. By

adding elements to RenderTreeBuilder, you can create a

component using C# code. Using the Layout and Route

attribute, you can define the layout page and route for the

component. The RenderTreeBuilder class few methods such as

OpenElement, CloseElement that helps to add an element to

Blazor render tree. Also, the AddAttribute method uses to

associate the attribute with the element. The AddContent

method is used to appends a text inside the element.

In the following code example, the h4 and div elements are

added to the BuildRenderTree and some contents inside the

elements the element.

You have seen here, every method, such as OpenElement and

AddContent having a sequence parameter. It indicates the

order number of lines in which the Blazor engine renders the

HTML defined by code. It is used to generate efficient render

tree (refer as diff algorithms) in linear time that much faster

than the normally generated render tree using diffalgorithm.

Following code snippet shows how to define component

using C# class (ClassOnly.cs):

namespace Component.Pages

{

using Component.Shared;

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.RenderTree;

[Route("/classonly")]

[Layout(typeof(MainLayout))]

public class ClassOnly : ComponentBase

{

private string Text { get; set; } = "My Text";

protected override void BuildRenderTree(RenderTreeBuilder

builder)

{

builder.OpenElement(1, "h4");

builder.AddContent(2, "Class Only Component");

builder.CloseElement();

builder.OpenElement(3,"div");

builder.AddContent(2, Text);

builder.CloseElement();

}

}

}

Following Figure 2.1: Class only component output, shows

how preceding class only component render under the

browser and what are the elements are generated:

Figure 2.1: Class only component output

The sequence number must be unique within the

component. You can also generate sequence numbers

programmatically (using increment variable), but you must

be more careful when doing this because this will be used

for identifying the change in old render tree with newly

generated render tree. Based on this difference, Blazor will

update UI.

Life Cycle methods of component

The Blazor component is inherited from the ComponentBase

class. This class contains important life cycle methods that

raised when components created, updated, and disposed of.

This class contains a life cycle method, and you can override

within the component. Both sync and async methods are

available.

The Blazor component has mainly three life cycle events:

OnInitialized (OnInitializedAsync)

OnParametersSet (OnParametersSetAsync)

OnAfterRender (OnAfterRenderAsync)

OnInitialized and OnInitializedAsync

These methods are called when the component has been

initialized. The OnInitialized event first executed and then

OnInitializedAsync. Both event fire only onetime in the

component life cycle. You can use the OnInitializedAsync

event when any asynchronous operations need to perform

on component initialization and component re-rendered.

Following is the code snippet for defining both the method.

You can also use both methods together for one component.

protected override void OnInitialized()

{

…

}

protected override async Task OnInitializedAsync()

{

…

}

Once the component is initialized, it starts to receive and

bind the parameters from its parent.

OnParametersSet and

OnParametersSetAsync

These events are fired after the component initialized, and

the component is ready to receive the parameters from its

parent. Before this event, parameter values are already

assigned to the properties. These events fired every time

when updated parameters are received from the parent.

Following is the code snippet for defining both the methods:

protected override void OnParametersSet()

{

…

}

protected override async Task OnParametersSetAsync()

{

…

}

These methods allow you to modify parameters and rebind

with properties.

OnAfterRender and

OnAfterRenderAsync

These events are fired after rendering of components

finished, and all the references are available to use. This is

the best place to write JavaScript interop when using server-

side Blazor. The firstRender parameter supplied by the

framework when the event fired. This parameter is type

boolean. It set to true when the component instance is

renderedthe first time. This can help you to ensure that

initialization work performed once. Following is the code

snippet for defining both the methods:

protected override void OnAfterRender(bool firstRender)

{

…

}

protected override async Task OnAfterRenderAsync(bool

firstRenders)

{

…

}

There are a couple of more methods in ComponentBase class

those are not part of the component life cycle but very close

to life cycle events. These methods are SetParametersAsync

and ShouldRender.

SetParametersAsync

This method triggers before parameters are set. You can

modify the parameters before they are rendering to the

component. The modified values are not assigned by

default. They can be assigned if you call

base.SetParametersAsync method along with modified

parameters. Following is the code snippet for defining

SetParametersAsync method:

public override async Task SetParametersAsync(ParameterView

parameters)

{

//Write your code here to modify parameters

await base.SetParametersAsync(parameters);

}

This event is not part of the component life cycle but very

close to the life cycle event. It calls before the component is

initialized.

StateHasChanged

It notifies the component when the state has changed, so

the component to be re-rendered. This method calls after all

life cycle events. You cannot override this method. You can

also call this method manually to forcefully re-render

component. However, it rarely required to re-render

components manually.

Following code snippet shows the example of all life cycle

methods as well as supporting methods:

@page "/lifecyclemethods"

<h3>Life Cycle Methods</h3>

@code{

protected override void OnAfterRender(bool firstRenders)

{

Console.WriteLine("OnAfterRender");

}

protected override async Task OnAfterRenderAsync(bool

firstRenders)

{

Console.WriteLine("OnAfterRenderAsync");

}

protected override void OnInitialized()

{

Console.WriteLine("OnInitialized");

}

protected override async Task OnInitializedAsync()

{

Console.WriteLine("OnInitializedAsync");

}

protected override void OnParametersSet()

{

Console.WriteLine("OnParametersSet");

}

protected override async Task OnParametersSetAsync()

{

Console.WriteLine("OnParametersSetAsync");

}

public override async Task SetParametersAsync(ParameterView

parameters)

{

//Write your code here to modify parameters

Console.WriteLine("SetParametersAsync");

await base.SetParametersAsync(parameters);

}

}

When you run the preceding code, you can see sequences

of method execution (refer Figure 2.2: Component lifecycle

console output):

Figure 2.2: Component lifecycle console output

Following Figure 2.3: Component lifecycle sequence shows

the component life cycle method in sequence.

Figure 2.3: Component lifecycle sequence

Dispose component with IDisposable

The component class supports implementingthe Idisposable

interface. You can implement an Idisposable interface using

@implements directive. This interface contains the Dispose

method. The Dispose method is called when the component

removed from the UI. Following code snippet shows an

example to implement Idiposable interface with the

component:

@implements Idisposable

…

…

@code{

…

…

public void Dispose()

{

Console.WriteLine("Dispose");

}

}

You can invoke code that removes the object from memory

in the disposed method, so it helps in memory clean-up and

release.

Component parameters

The component may have one or more parameters. Blazor

engine automatically binds the value of parameters to

properties. To bind component parameters, properties must

be defined with public access modifier and decorated with

the Parameter attribute. The property name must match the

parameter name. Following code, snippet shows an example

to define the component parameter. As you have seen here,

the component acceptsName as a parameter and bind with

property:

@page "/test/{name}"

…

…

@code{

[Parameter]

public string Name { get; set; }

…

}

You will learn more about the component parameters in the

next chapter.

Child component

The component is a core part of the Blazor applicationthat is

every page is considered as a component. The component-

based architecture is a very famous concept as components

are reusable. You can use one component inside another

component, generally referred to as a nested component.

The inner component generally refers to as a child

component. There is no difference between parent

component and child component except routing. Child

component does not have routing defined as it is always a

part of another component, and it may not use as an

individual component.

Following is code snippet of child component

(Childcomponent.razor):

<h3>Child Component</h3>

<h5> Your Name: @Name</h5>

@code{

[Parameter]

public string Name { get; set; }

}

Following is code snippet of parent component

(Parentcomponent.razor):

@page "/parent"

<h3>Parent Component</h3>

<ChildComponent Name="@ChildName" />

@code{

public string ChildName { get; set; } = "Jignesh";

}

As you have seen here, the parent component contains the

child component, and its defined HTML element tag and

name of the tag is the same as component name (type).

When preceding code run, the Blazor engine renders Child

component inside the Parent Component (refer Figure 2.4: Parent-

child component output).

Figure 2.4: Parent-child component output

The parent component may contain one or more child

components, and one child component can use inside many

components (Parent Component).

Templated components

The Templated component is a similar concept as a child

component, but it accepts one or more templates as

parameters and components render using these

parameters. This is very useful to build high-level reusable

component. You can also write generic components such as

grid view and list view using the templated components.

The templated component defined by using one or more

component parameters of RenderFragment<T> or

RenderFragment. It defined a segment of UI that renders.

You can also pass strongly type with RenderFragment

parameter that used when render fragment is invoked.

Grid view template example

The following example shows how you can create a generic

grid template component. This grid component has three

fragments defined: Header, Row, and Footer. These fragments

are generated using the parameters. The parameter

contains the actual HTML and context data, which replaced

with a template during the generation of the HTML.

Following is the code snippet of the grid view component

(GridviewTemplate.razor).

@typeparam TItem

<table border="1">

<thead>

<tr>@Header</tr>

</thead>

<tbody>

@foreach (var item in Items)

{

<tr>@Row(item)</tr>

}

</tbody>

<tfoot>

<tr>@Footer</tr>

</tfoot>

</table>

@code{

[Parameter]

public RenderFragment Header { get; set; }

[Parameter]

public RenderFragment<TItem> Row { get; set; }

[Parameter]

public RenderFragment Footer { get; set; }

[Parameter]

public IReadOnlyList<TItem> Items { get; set; }

}

The Grid template component contains three properties

(Header, Footer, and Row) of RenderFragment and

RenderFragment<t> type and one property (Items) of type

IReadOnlyList<T> type. The Items property contains actual

data that replaced with the template. The RenderFragment<T>

is automatically set by the type of data passed to Items

property. You can also define this type using TItem property.

The templated component can be used as a child

component in any component. Using the context property,

you can access data passed to the templated component.

Following code snippet shows how to use grid templated

component (TamplatedComponentExample1.razor):

@page "/extemp1"

@using Component.Model

<h3>Tamplated Component Example</h3>

@if (employees == null)

{

<p>Loading…</p>

}

else

{

<GridviewTemplate Items="@employees">

<Header>

<th style="width:50px;">ID</th>

<th style="width:100px;">Code</th>

<th style="width:100px;">First Name</th>

<th style="width:100px;">Last Name</th>

</Header>

<Row>

<td>@context.Id</td>

<td>@context.Code</td>

<td>@context.FirstName</td>

<td>@context.LastName</td>

</Row>

<Footer>

<td colspan="4">Total 4 employees</td>

</Footer>

</GridviewTemplate>

}

@code{

Employee[] employees;

protected override void OnInitialized()

{

employees = new Employee[3];

employees[0] = new Employee { Id = 1, Code = "E001",

FirstName = "Jignesh", LastName = "Trivedi" };

employees[1] = new Employee { Id = 2, Code = "E002",

FirstName = "Rakesh", LastName = "Trivedi" };

employees[2] = new Employee { Id = 3, Code = "E003",

FirstName = "Tejas", LastName = "Trivedi" };

}

}

When you run the preceding code, it generates the grid

view (refer Figure 2.5: Grid view example using Templated

component).

Figure 2.5: Grid view example using Templated component

This example covers the grid view, but you can any kind of

templated component based on your requirement.

List view template example

The following example shows how you can create a generic

list template component. It defines in a generic way, so use

the @typeparam directive to specify type parameters. This

component has only one fragment defined (ItemTemplate) of

type RenderFragment<T> and one property (Items) of type

IReadOnlyList<T> type. The Items property contains actual

data that replaced with the template.

Following is the code snippet of list view component

(ListviewTemplate.razor):

@typeparam TItem

@foreach (var item in Items)

{

@ItemTemplate(item)

}

@code{

[Parameter]

public RenderFragment<TItem> ItemTemplate { get; set; }

[Parameter]

public IReadOnlyList<TItem> Items { get; set; }

}

Following code snippet shows how to use list view templated

component (TamplatedComponentExample2.razor):

@page "/extemp2"

@using Component.Model

<h3>Tamplated Component Example</h3>

@if (employees == null)

{

<p>Loading…</p>

}

else

{

<ui>

<ListviewTemplate Items="@employees" TItem="Employee">

<ItemTemplate>

@context.LastName, @context.FirstName

</ItemTemplate>

</ListviewTemplate>

</ui>

}

@code{

Employee[] employees;

protected override void OnInitialized()

{

employees = new Employee[3];

employees[0] = new Employee { Id = 1, Code = "E001",

FirstName = "Jignesh", LastName = "Trivedi" };

employees[1] = new Employee { Id = 2, Code = "E002",

FirstName = "Rakesh", LastName = "Trivedi" };

employees[2] = new Employee { Id = 3, Code = "E003",

FirstName = "Tejas", LastName = "Trivedi" };

}

}

When you run the preceding code, it generates the list view

(refer Figure 2.6: List view example using Templated

component).

Figure 2.6: List view example using Templated component

Apart from this, you can also define templated components

inline when there is only one instance of component usage.

You will learn how to define templated components inline in

the next section.

Define template inline - using Razor

template syntax

You can also use Razor template syntax to define

RenderFragment and Render Fragment<T> values. Following

example shows how to define the RenderFragment section

within the component.

Following is code snippet of templated component define

inline (Tamplated ComponentExample3.razor):

@page "/extemp3"

@using Component.Model

<h3>Tamplated Component Example</h3>

@if (employees == null)

{

<p>Loading…</p>

}

else

{

@template

@foreach (var employee in employees)

{

@ItemTemplate(employee)

}

}

@code{

Employee[] employees;

public RenderFragment template =@<p>Employee List</p>;

public RenderFragment<Employee> ItemTemplate = (item)

=>@@item.FirstName.;

protected override void OnInitialized()

{

employees = new Employee[3];

employees[0] = new Employee { Id = 1, Code = "E001",

FirstName = "Jignesh", LastName = "Trivedi" };

employees[1] = new Employee { Id = 2, Code = "E002",

FirstName = "Rakesh", LastName = "Trivedi" };

employees[2] = new Employee { Id = 3, Code = "E003",

FirstName = "Tejas", LastName = "Trivedi" };

}

}

When you run the preceding code, it generates the list view

(refer Figure 2.7: Define templated component inline).

Figure 2.7: Define templated component inline

The templated component is very useful to create a

reusable component that is generic in use.

Cascading values

Sometimes, you need to pass data from the parent

component to all its child components. It is possible with the

CascadingValue element and Cascading Parameter. It is very

useful when the parameter value needs to set for several

component layers. The cascading values and parameters

pass the value to all child components from its parent.

The following code snippet shows how to use the

CascadingValue element in the parent component. Here, the

parentData value to flow down the component hierarchy, so

all the child component can access this value:

@page "/cascad"

<h3>Parent Component</h3>

<CascadingValue Value="@parentData">

<ChildComponent/>

</CascadingValue>

@code{

private string parentData { get; set; } = "Test Cascading

Value";

}

The following code snippet shows how can you get use to

cascading value using the parameter in child component:

<h3>Child Component</h3>

Value: @parentData

@code{

[CascadingParameter]

public string parentData { get; set; }

}

If you define the CascadingValue element in the layout page to

share the property value than you can use casecading

parameter value to all components which are use same

layout page. For example, you can define the theme class at

the layout page, and it available to use for all components.

You can also cascade multiple values within the same sub-

tree. However, you need to provide a unique name to each

CascadingValue component and its corresponding

CascadingParameter.

Following code snippet shows example of defining multiple

cascading value elements:

@page "/cascad"

<h3>Parent Component</h3>

<CascadingValue Value="@parentData" Name="CascadingValue1">

<CascadingValue Value="@parentData1" Name="CascadingValue2">

<ChildComponent />

</CascadingValue>

</CascadingValue>

@code{

private string parentData { get; set; } = "Test Cascading

Value";

private int parentData1 { get; set; } = 100;

}

Following code snippet shows how to retrieve cascading

parameter value when multiple cascading value elements

defined in the parent:

<h3>Child Component</h3>

Value : @parentData - @parentData1

@code{

[CascadingParameter(Name = "CascadingValue1")]

public string parentData { get; set; }

[CascadingParameter(Name = "CascadingValue2")]

public int parentData1 { get; set; }

}

You can define the CascadingValue element as many as you

want, but the name of the parameter must be unique.

Declaring HTML attributes using

parameters

You can capture and render additional attributes of HTML

elements using the component parameter. The additional

attributes must be defined as a dictionary and using the

@attributes directive, and it can be assigned to the element

when the component is rendered. The @attributes directiveis

a Razor directive. This style of defining attribute for HTML

elements is very useful when multiple HTML elements are

having the same kind of attributes defined and required

variety of customizations. This concept is also known as

attribute splatting.

In the following example, the first input element uses

individual attributes, and the second input element use

attribute splatting. As you have seen here, both generate

similar HTML when rendered. The parameter must

implement IEnumerable<KeyValuePair<string, object>> where

key as attribute name and value is value for the attribute.

You can also use IReadOnlyDictionary<string, object> to define

attribute splatting:

<input id="parameter1" maxlength="10" placeholder="Enter the

value" required="required" size="40" />

<input id="parameter2" @attributes="MyAttributes" />

@code{

[Parameter]

public Dictionary<string, object> MyAttributes { get; set; } =

new Dictionary<string, object>()

{

{ "maxlength", "10" },

{ "placeholder", "Enter the value" },

{ "required", "required" },

{ "size", "40" }

};

}

When you run the preceding code and inspect the generate

HTML elements, you can see both input elements having the

same kind of HTML.

Figure 2.8: Attribute splatting

In addition, you can also define a parameter with

CaptureUnmatchedValues property set to true that allows the

parameter to match all attributes which do not match with

any other parameter.

[Parameter(CaptureUnmatchedValues = true)]

public Dictionary<string, object> MyAttributes { get; set; } =

new Dictionary<string, object>()

{

{ "maxlength", "10" },

{ "placeholder", "Enter the value" },

{ "required", "required" },

{ "size", "40" }

};

You can define only one parameter with

CaptureUnmatchedValues.

Import components

Import component is nothing but using one component as a

child in another component. You have seen an example in

the preceding section to use the component as a child in

another component, but both the components are placed in

the same location so, it does not require to import child

component namespace. The namespace of the component

determined by project root namespace and the location of

the component. For example, the project's root namespace

is Component, and it is located under the Shared folder, so

namespace for component Component.Shared. You can import

the namespace of the component to another component

using the @using directive:

@using Component.Shared

You can also import the component in _imports.razor file if it

is in almost all components.

Summary

Blazor supports component-based architecture, and the

component is a core part of Blazor application

The component is a simple Razor page that contains

HTML and C# code

It has extension either .razor or .cshtml

It may contain the dynamic rendering logic such as

loops conditional rendering and so on

There are several ways to create Blazor components:

Inline method: HTML markup and C# code are in

the same file. This is the default way provided by

the Visual Studio template.

With code behind: HTML markup and C# code

arein different files. It helps you to separate HTML,

and C# code rather than both are in same. The

component must inherit from component class, and

code behind class must inherit from ComponentBase

class.

Class only: There is no view file (no razor

component file). All the HTML generated by using

C# code.

The Blazor component has mainly three life cycle

events: OnInitialized (OnInitializedAsync),

OnParametersSet (OnParametersSetAsync) and

OnAfterRender (OnAfterRenderAsync). It supports both sync

and async methods:

OnInitialized (OnInitializedAsync): These

methods called when the component has been

initialized. The OnInitialized event first executed

and then execute OnInitializedAsync.

OnParametersSet (OnParametersSetAsync):

These events are fired when the component is

initialized, and the component also ready receive

the parameters from its parent.

OnAfterRender (OnAfterRenderAsync): These

events are fired after rendering of component

finished. The component and element references

are populated when these events fired.

Apart from these main events, the Blazor component

couple of more methods but those are not part of the

components life cycle, but they are very close to the life

cycle event. These methods are SetParametersAsync and

ShouldRender.

You can implement the IDisposable interface and

definethe Dispose method. It is called when the

component removed from the UI.

The component may have parameters that bind

automatically with properties. However, the property

name must match the parameter name.

You can also put the component inside another

component. The inner component generally refers to a

a child component.

The Templated component is a component that accepts

one or more templates as parameters and components

render using these parameters. It is very useful to build

high-level reusable component. Using the templated

component, you can write a generic component, such

as a gridview and listview.

Using the CascadingValue element and CascadingParameter,

you pass the parameter value from the parent

component to all its child components.

Using the @attributes directive, you can capture and

render additional attributes in the HTML element using

the parameter. This concept is also known as attribute

splatting.

What you learned in this chapter?

In this chapter, you learned about the Blazor component,

ways to create the Blazor component, and the life cycle

event of component. Apart from this, you had learned about

the child component, templated component, and how to

cascading the value to all child components from the

parent.

What next?

In the next chapter, you will be learned about the basic

concepts of Blazor, such as data binding, event binding,

layout, routing, forms, and validation.

Questions

1. Explain about the Blazor component?

2. What are the different ways to create a Blazor

component?

3. Explain different life cycle methods of the Blazor

component?

4. What is the use of the SetParametersAsync method? Is

it part of the component life cycle event?

5. How can you pass the parameter to the component?

6. What is the child component, and how to import child

components?

7. What is the templated component, and what is the use

of it?

8. Can we define HTML attributes using component

parameters?

CHAPTER 3

Blazor Concepts

Introduction

In the previous chapters, you learned about the basics of

Blazor. The Blazor framework allows us to write C# code for

the client-side application. Blazor concepts such as data-

bind, layout, routing, validation, and so on, are the same for

Blazor client-side and server-side applications. In this

chapter, you will learn about the Blazor concept: Data and

Event Binding, Layouts, routing, and forms and validation.

In this chapter, we’ll cover the following topics

Data binding

One-way data binding

Two-way data binding

Event Binding

Event Callback

Layouts

Specify a layout in a component

Define layout globally

Nested layouts

Routing

@page directive/route attribute

Route parameters

Route constraints

Programmatically navigate one component to

another component

Query parameters

Forms and validation

Data annotations

Objectives

Understand the basic concepts of Blazor such as

Data/Event bind, layout, routing, form, and validation.

Data Binding

Data binding is the most powerful feature of modern web

applications. Data binding is a bridge between your view

(UI) and ViewModel (business logic). Blazor is providing

precious data binding capabilities Which are very similar to

the modern client frameworks, such as Angular. ASP.NET

Core(Razor) similarly provides one-way and two-way data

bindings.

One-way data binding

It is also referred to as interpolation in some of the client

frameworks such as Angular. The one-way binding allows

you to bind the value of variables/properties to the HTML

element in DOM. It is very similar to Razor provide data

biding. It is not bound to change the value from UI to your

view model.

To do the one-way binding in Blazor, you need to add @

prefix to variable/property name that you want to bind and

assign it to the appropriate property of the HTML element.

Following code snippet shows the example of one-way

binding:

@page /databinding

<h3>Data binding example:</h3>

<h4>One-way binding</h4>

<p>

@myText

</p>

@code {

string myText = This is my test string for one-way binding!;

}

In preceding code, myText variable used in HTML. When you

run this code, myText variable value populate under <p>

element (refer Figure 3.1: One-way databinding example):

Figure 3.1: One-way databinding example

The one-way binding only allows you to bind

variable/property value to the HTML element. The other-side

data binding (HTML element to variable/property binding)

would not happen in one-way binding.

Two-way data binding

The two-way binding allows you to bind the value of

variables/properties to HTML elements in DOM and vice-

versa. The two-way binding is achieved by @bind directive.

This attribute used for both components class and DOM

elements in Razor syntax.

In the following code example, the string and bool type

properties are bind with textbox and checkbox, respectively.

The @bind directive bind changed value back to

variable/property when appropriate element event (default

event) raised. For example, textbox value copied to the

variable/property when lost focus event occurs and

checkbox value copied on click event:

@page /databinding

<h3>Data binding example:</h3>

<h4>Two-way binding</h4>

Enter your name:

<input type=text @bind=Name />

Have you visited India?

<input type=checkbox @bind=IsVisited />

<p>Summary</p>

You have entered: @Name

Visited India?: @(IsVisited ? Yes : No)

@code {

public string Name { get; set; }

public bool IsVisited { get; set; }

}

In the above code, UI gets updated when property/variable

value changes from background process and refill

property/variable value from UI when the user changes its

value (refer Figure 3.2: Two-way databinding example):

Figure 3.2: Two-way databinding example

With @bind attribute, the changes are not reflected

immediately; however, this is not true for every element.

When the component is rendered, the variable/property

value assigned to the input element. As you have seen in

the preceding example, textbox value change is not

reflected immediately but reflected on lost focus. When you

use @bind attribute with a textbox, It equivalent to the

following code. The onchange event of the textbox is

automatically bound to track the changes.

<input type=text value=@Name

@onchange=@((UIChangeEventArgs __e) => Name = __e.Value)/>

In summary, the property/variable used with @bind directive

is associated with the value attribute of the HTML element

and handles changes using the registered event handler.

As you have seen here, the changes are not getting

reflected immediately with @bind directive, but value gets

reflected when fired register event. Alternatively, you can

use the @bind-value directive with the event parameter

(@bind-value:event). Here, you can bind any event and value

of variable/property to get an update on the specified event.

In the following example code, Value property binds to

oninput event.

…

<input type=text @bind-value=Value @bind-value:event=oninput />

…

@code {

…

…

public string Value { get; set; }

…

}

The oninput event fires when the value of the textbox is

changing; it is not like onchange that fire on the lost focus of

the element. When you run the above code, the value of

variable/property gets reflected immediately.

The @bind directive also supports for culture parameter

(example, @bind:culture) that provides

System.Globalization.CultureInfo for parsing and formatting a

value before binding to HTML element.

In following example, double value bind to input element

and pass de-DE (German) culture, so Blazor will bind 12,34

instead of 12.34 to input element.

…

Number Value Check: <input @bind=doubleValue

@bind:culture=culture />

…

@code {

…

…

public double doubleValue { get; set; } = 12.34;

public System.Globalization.CultureInfo culture = new

System.Globalization.CultureInfo(de-DE);

…

}

You can also format data to the required format using

@bind:format directive. This directive only works with the

DateTime data type of variable/property. It is not working

with another data type, such as double. With this attribute,

you must specify the date format to apply. The specified

format is also used to parse date value when an onchange

event fired. The @bind:format supports the following .NET

data types:

System.DateTime

System.DateTimeOffset

System.DateTime?

System.DateTimeOffset?

In the following example, JoiningDate property value bind

with an input element, and dd-MM-yyyy format is specified:

@page /databinding

<h4>Format strings Example</h4>

Joining Date: <input @bind=JoiningDate @bind:format=dd-MM-yyyy

/>

@code {

public DateTime JoiningDate { get; set; } = new

DateTime(2019,3,23);

}

As you have seen here, the date gets formatted in the dd-MM-

yyyy format before it binds to the HTML element (refer Figure

3.3: Two-way databinding: date format example):

Figure 3.3: Two-way databinding: the date format example

This directive also formats input value back to system

format when it binds to variable/property.

Event Binding

Blazor components provide productive event handling. You

can register the event of any HTML element using @on{event}

directive. Here, the event is the name of the event

supported by the HTML element, for example, click, submit.

This attribute accepts a delegate-type value, and the Blazor

component binds attribute value as the event handler.

You can also define event handle as asynchronous that

return Task. Now, there is no need to update UI manually by

calling the StateHasChanged method as it is internally handled

by Blazor framework.

In the following code example, the button click event has

been registered using @onclick directive, and checkbox

change event has been registered using @onchange directive:

@page /eventhandling

<h3>Event handling</h3>

<h4>Handle click event of button</h4>

<button class=btn btn-primary @onclick=IncrementCount>Increment

Count</button>

Current Counter: @currentCount

<hr />

<h4>Handle Check change event of Checkbox</h4>

Visited India? <input type=checkbox @onchange=handleCheckChange

/>

Checkbox checked?: @(chkItem ? Yes : No)

@code {

int currentCount = 0;

bool chkItem = false;

void IncrementCount()

{

currentCount++;

}

private async Task handleCheckChange()

{

chkItem = !chkItem;

}

}

The registered events are fired when button clicked and

checkbox check change (refer Figure 3.4: Event

databinding):

Figure 3.4: Event databinding

The event arguments are also allowed for some events. It is

not mandatory to define the event argument in the method

definition. You can define an event argument in the method

definition. If you need information from it. The following

events are supported by UIEventArgs.

Event Argument class type

Change (for all input element) UIChangeEventArgs

Keyboard UIKeyboardEventArgs

Mouse UIMouseEventArgs

Mouse wheel UIWheelEventArgs

Mouse pointer UIPointerEventArgs

Progress UIProgressEventArgs

Touch UITouchEventArgs

Focus UIFocusEventArgs

Error UIErrorEventArgs

Clipboard UIClipboardEventArgs

Drag UIDragEventArgs

Table 3.1: Supported events

You can also define inline method definition (with HTML

element) using lambda expression. It is useful when you

want to perform small operation. It is not recommended to

use everywhere as it may be complex in some scenarios.

<button class=btn btn-primary @onclick=@(e=>

currentCount++)>Increment Count</button>

In the above code, click event for the button is defined

inline using a lambda expression.

Event Callback

Blazor also supports the nested component. The most

common scenario in the nested component is that the child

component event needs to handle from the parent

component method. EventCallback helps you to expose the

event across components. You can assign the child

component's event callback from the parent component.

Both EventCallback and EventCallback<T> permit asynchronous

delegates. The EventCallback structure provides weakly

typed. Hence it allows any argument type, but

EventCallback<T> is strongly typed, so it required specific

argument type.

In the following example, the child component button's

onclick event handler passes from the parent component

using the EventCallback delegate.

Following code snippet shows code for child component

(ChildComponent.razor):

<h3>Child Component</h3>

<button @onclick=OnButtonClick>Click Me(child component)

</button>

@code {

[Parameter]

public EventCallback OnButtonClick { get; set; }

}

Following code snippet shows code for child component

(ParentComponent.razor):

@page /eventcallback

<h3>Parent Component</h3>

<h4>Handle Child Component event in parent Component</h4>

<ChildComponent OnButtonClick=ShowMessage />

<hr />

<p>@message</p>

@code {

private string message;

private void ShowMessage()

{

message = Event: Child component button click!!!;

}

}

When you click to button element of child component, event

delegates defined in the parent is fired (refer Figure 3.5:

Event callback example).

Figure 3.5: Event callback example

The EventCallback is also allowed in multiple nested

components.

Layouts

Every application has consistent look and feel throughout

the application. Some of the parts of pages such as header,

footer, navigation, and copy-right text remain the same on

every page. It may result, you need to write duplicate code

in every page. The layout page helps you to prevent write

duplicate code so, contains common UI parts. Blazor

supports layouts that resolved the duplicate code problem.

The concept of Layout nearly the same as Master-page in

ASP.NET Application. The application may contain multiple

layouts. It is also a possible different page may have

different layout page.

Introduction to Layouts page

Blazor supports component-based architecture, so every

part of the application in Blazor is a component. The Layout

page is also one of the components in the Blazor app. It may

contain C#/Razor code, databinding, and so on.

Following are the characteristics of the Layout page in

Blazor application:

It inherits from LayoutComponetBase class that contains

Body property for renders the content inside the layout.

@Body directive used to specify the location where the

content of the component is rendered.

Following is a code sample of Layout page (MainLayout.razor):

@inherits LayoutComponentBase

<div class=sidebar>

<NavMenu />

</div>

<div class=main>

<div class=top-row px-4>

<a href=https://docs.microsoft.com/en-us/aspnet/

target=_blank>About

</div>

<div class=content px-4>

@Body

</div>

</div>

Typically, the layout looks as following defined by preceding

code. Header and left navigation menu are the part of the

layout:

Figure 3.6: Layout page

The content of the component is rendered under the

location of the layout page where @Body directive is specified.

Specify a layout in a component

Using the @layout directive, you can define the layout page

for the component. The Layout attribute is also available,

and it can be applied to the class-based component to

define layout.

Example: Using @layout directive:

@layout MainLayout

@page /

<h1>Hello, world!</h1>

Example: using Layout attribute

[Route(/classonly)]

[Layout(typeof(MainLayout))]

public class ClassbasedComponent : ComponentBase

{

public string Title { get; set; } = Component created by using

Class;

protected override void BuildRenderTree(RenderTreeBuilder

builder)

{

…

…

}

}

The above-defined method can be used to define the layout

page for an individual component. Still, you can also define

layout globally that automatically get applied to all the

components. You will learn about this in the next section.

Define layout globally

In the Blazor application structure, every folder can

optionally contain a file with name _Imports.razor. Whatever

directives defined in this file get applied to all Razor pages

(component) under located in the same folder structure

when application compiled. When directives defined in the

root level file, the directives get applied to every Razor page

in the application. This file can be used to define the current

layout page, so you aren't required to define it in every

component. The layout page defined in this file applied to all

Razor pages in the folder hierarchy. It is very similar to

_ViewImports.cshtml in ASP.NET core. You can also define the

namespaces in this file that used in all the views.

Example: _Imports.rozor

@layout MainLayout

Nested layouts

Blazor supports the nested layouts. It means that a

component reference layout page that also refers to another

layout page. This feature is useful when you want to create

a multi-level structure.

Example

In the following code example, the master layout page

(MainLayout.razor) contains the header and left navigation,

and another layout page (Layout2.razor) contains only the

header part. The Mainlayout page is layout page for Layout

page 2, and Layout page 2 is the layout for the component.

Layout2.razor:

@layout MainLayout

@inherits LayoutComponentBase

<div class=main>

<div class=px-4>

<div class=col-md-8 top-row2> Layout page 2 </div>

</div>

<div class=content px-4>

@Body

</div>

</div>

NestedlayoutExample.razor:

@layout Layout2

@page /nested

<h3>Nested layout Example</h3>

@code {

}

Typically, the layout looks as following defined by preceding

code:

Figure 3.7: Nested Layout page

The layout page is treated as a component in the Blazor

application. Typically, it is working as a parent component

but in a different manner.

Routing

The URL pattern refers to a route, and the URL pattern

matching process is referred to as routing. The routing

monitors the requests and decides which component needs

to load. Blazor provides a similar kind of routing as ASP.NET

Core provides. All the routes defined in the app are

configured when the app starts. The routing generates the

URL by using route information and map it to endpoint

selectors.

As discussed in the preceding chapter, the Blazor server

uses SignalR for communication between server and UI. To

allows the incoming request, it is necessary to map the

SignalR hub to the default path. So, you should configure

endpoints with MapBlazorHub method in configure method of

startup class (refer following code snippet):

public void Configure(IApplicationBuilder app,

IWebHostEnvironment env)

{

…

…

app.UseRouting();

app.UseEndpoints(endpoints =>

{

endpoints.MapBlazorHub<App>(selector: app);

endpoints.MapFallbackToPage(/_Host);

});

}

Blazor engine requires assembly that contains the routing

information when the app is initializing. Following code,

snippet shows how to configure the router in Blazor.

Internally, it finds all defined routes from the app. The

default route for the Blazor server application is defined in

_Host.razor (that is, @page /):

For Blazor server app:

<Router AppAssembly=typeof(Startup).Assembly />

For Blazor client app:

<Router AppAssembly=typeof(Program).Assembly />

@page directive/route attribute

You can define routing for the page using @page directive.

When razor page compiles, it generates a route attribute for

which @page directive defines and specifies the route

template. When the request is processed by the Blazor

engine, the route is found into the component classes with

route attribute that matches the route template and renders

the component if match with the template. You can also

define the route using route attribute when component

defined as a class.

Example: @page directive

@page /simplerouting

<h3>Simple Routing Example</h3>

Example: Route attribute

[Route(/simplerouting)]

[Layout(typeof(MainLayout))]

public class ClassbasedComponent : ComponentBase

{

…

…

}

You can also define multiple route templates for a single

component. The component responds to all the define

routes:

Example

@page /firstrouting

@page /secondrouting

<h3>Simple Routing Example</h3>

The router component allows you to specify a custom error

message when a route is not found for the requested route.

To set custom route not found message, you need to define

NotFoundContent element of router element in App.razor file

(refer following code in App.razor):

<CascadingAuthenticationState>

<Router AppAssembly=typeof(Startup).Assembly>

<NotFoundContent>

<p>Sorry, there's nothing at this address.</p>

</NotFoundContent>

</Router>

</CascadingAuthenticationState>

When the route is not found, the Blazor engine will show the

custom error message that you have defined (refer Figure

3.8: NotFoundContent output):

Figure 3.8: NotFoundContent output

When the component with @page directive is compiled, the

Blazor engine generates a class component with a route

attribute.

Route parameters

The route may have a route parameter. The route

parameters are the value that passed with a route. Using

parameters, you can pass data that can be accessed when

component initializes. It is defined using curly braces ({}) in

the routing template with @page directive or route attribute.

The route parameters are directly assigned to properties of

the component; hence property name and parameter name

must match. However, parameter names match with

property names and are case insensitive.

Currently, Blazor does not support optional parameter. If you

want optional parameter, define two routes: one with

parameter and another without parameter (refer following

code snippet—RouteParameter.razor).

@page /routingpara

@page /routingpara/{name}

<h3>Route Parameter Example</h3>

<h4>Your name: @Name </h4>

@code {

[Parameter]

public string Name { get; set; }

}

With preceding code, Name property value set to null when

the route does not contain the parameter. When the route

parameter contains a value, it automatically binds with Name

property (refer Figure 3.9: Route Parameter example):

Figure 3.9: Route Parameter example

You can also define multiple routes for the component, but

routes must unique within components.

Route constraints

Route constraints allow you to bind specific types of

parameter value to the property. It enforces type matching

defined in route with the property data type. It verifies the

URL and converts the value to the CLR type using the

invariant culture.

Example

Following code enforce, parameter ID must be a type of int.

If user pass ID value other than int, the router would not

able to find matching route hence return Notfoundcontent as a

response:

@page /routingcons/{id:int}

<h3>Route Constraints Example</h3>

<h4>Id: @Id </h4>

@code {

[Parameter]

public int Id { get; set; }

}

Blazor support for following route constraints. As you have

seen here, route constraints matching for some of the types

are always invariant culture.

Constraint Invariant

culture

matching

Example Example

Matches

int Yes {id:int} 895, 598, -569,

-456987

long Yes {id:long} 895, 598, -569,

-456987

float Yes {price:float} 1.25, 1.5e10,

1,265

double Yes {price:double} 1.25, 1.5e10,

1,265

decimal Yes {price:decimal} 55.65, 1,502.56

guid No {id:guid} 4d019947-e29f-

4540-a686-

c536c16521b8

bool No {enabled:bool} True, false

datetime Yes {joiningdate:datetim

e}

2019-10-25,

2018-02-14

07:45 pm

Table 3.2: Supported Route constraints

The navigation in the Blazor app can occur in two ways:

Using Anchor tag on page and user click on same to

navigate

Using the NavLink tag. It is introduced in Blazor. It

automatically sets a working CSS class if the route is

matched.

Example:

Anchor tag

<NavLink href=/test2 Match=NavLinkMatch.All>NavLink</NavLink>

The NavLink tag has Match property (NavLinkMatch enum type)

that tells Blazor app to the active navigation bar. There is

two option for NavLinkMatch:

NavLinkMatch.All: if entire URL match then the NavLink is

active

NavLinkMatch.Prefix: If any prefix of the URL then the

NavLink is active

Blazor app sets a working CSS class when the route is

matched according to the match option sets.

Programmatically navigate one

component to another component

You can also navigate from one component to another

component in C# code using

Microsoft.AspNetCore.Components.IUriHelper. This helper

provides the following events and methods:

Event / Method Description

NavigateTo It navigates to specified URI. If the forceload

parameter is set to true, client-side routing is

bypassed, and the browser is forced to load a new

page

GetAbsoluteUri Gets the current absolute URI

GetBaseUri Gets the base URI with trailing slash

ToAbsoluteUri It converts relative URI to absolute URI

ToBaseRelativePath Returns relative URI with base URI prefix

OnLocationChanged This event is fired when browser location has changed

Table 3.3: IUriHelper Methods

First, you need to inject the IUriHelper service into

components to navigate from one component to another

using C# code. You can inject the service dependency using

@inject directive or inject attribute to your component.

Following is example, when a user clicks on the button, the

page is navigated to new URI (nextcomponent):

@using Microsoft.AspNetCore.Components;

@page /programmaticallynavigate

@inject IUriHelper UriHelper

<h3>Programmatically Navigate one component to another

component</h3>

<button @onclick=ButtonClicked>Programatically Change

Routing</button>

@code {

void ButtonClicked()

{

UriHelper.NavigateTo(nextcomponent);

}

}

You will learn more about injecting the dependency in the

next chapter.

Query parameters

The query string or query parameter is the most common

method to pass data from one component to another

component by defined data in URI. The namespace

Microsoft.AspNetCore.WebUtilities contains QueryHelpers class

that helps you to access query string and query parameters

within the component. Using the ParseQuery method of this

class, you can extract the value from the query string.

Following code snippet shows the example of accessing

query parameter in component:

@using Microsoft.AspNetCore.Components;

@using Microsoft.AspNetCore.WebUtilities;

@page /queryparameter

@inject IUriHelper UriHelper

<h3>Query Parameter Example</h3>

<p>Name : @Name</p>

@code {

public string Name { get; set; }

protected override void OnInitialized()

{

var uri = new Uri(UriHelper.GetAbsoluteUri());

Name = QueryHelpers.ParseQuery(uri.Query).TryGetValue(name,

out var type) ? type.First() : ;

}

}

The ParseQuery method returns the dictionary of type

Dictionary<string, StringValues> that contains all query

parameters of the route. As you have seen in Figure 3.10:

Query parameter example, query parameter or query string

value fetch using ParseQuery method, and you can bind it to

any property:

Figure 3.10: Query parameter example

Blazor provides similar type routing as ASP.NET core

provides. There are some features not supported by Blazor

but supported in ASP.NET core. In the nearest future, Blazor

supports all the features supported in ASP.NET core.

Forms and validation

The data validation is essential for any application. It helps

you to protect invalid data injected into your database.

Using data annotation, Blazor supports forms and validation.

Blazor introduced the EditForm component that use to define

a form in-app.

Data annotations

The validation is very critical for any application. To do the

validation, the developer writes many if-else conditions and

makes it more complicated. It might have defective code

and take more time to test. The data annotations help you

to reduce such complexity by reducing code that is written

for validation. It is decorated with attribute to model. It

allows to leverage the same annotations for client-side

validations in some .NET applications such as MVC.

There are many built-in data annotation attributes available

such as Required, StringLength, Range, EmailAddress, Phone,

RegularExpression, and so on. You can also create your

validation attribute that suits for your business rules.

In the following code snippet, EmployeeModel class contains a

couple of properties and all properties decorated with data

annotation:

public class EmployeeModel

{

[Required]

[StringLength(50, ErrorMessage = First Name is too long)]

public string FirstName { get; set; }

public string LastName { get; set; }

[Required]

[StringLength(10, ErrorMessage = Code is too long)]

public string Code { get; set; }

[Required]

[Range(1, 150, ErrorMessage = Invalid Age. It must be between

1 to 150.)]

public int Age { get; set; }

[Required]

public DateTime? DateOfJoining { get; set; }

}

You can also define multiple data annotations for a single

property.

Edit Forms and validation components

Using the EditForm component, you can define the form in

the Blazor app. The DataAnnotationsValidator component tells

the Blazor engine to do the validation using data

annotation. You can summarize validation messages using

the ValidationSummary component. Blazor form is also

provided OnValidSubmit event that triggered when the form

successfully submits and OnInvalidSubmit event when the

form has validation error on submit. Alternatively, you can

also use the OnSubmit event to trigger the validation.

Following code snippet shows how to validate with Blazor

component:

<EditForm Model=@employee OnValidSubmit=@HandleValidSubmit>

<DataAnnotationsValidator />

<ValidationSummary />

…

…

</EditForm>

There are many built-in input components available that

receive and validate user inputs. This component is made in

such a way that when they are changed, and form is

submitted, validation is fired. The following are available

input components.

Component Render as

InputText <input>

InputCheckbox <input type=checkbox>

InputNumber <input type=number>

InputTextArea <textarea>

InputSelect <select>

InputDate <input type=date>

Table 3.4: Built-in input components

These components are also providing default behavior such

as validating data on edit and changing CSS class. Also,

some input control, such as InputNumber and InputDate,

includes parsing logic.

In following example, form validates user input based on

data annotation defined in EmployeeModel:

@page /

@using FormsAndValidation.Data;

<h3>Validation Example</h3>

<hr />

<EditForm Model=@employee OnValidSubmit=@HandleValidSubmit>

<DataAnnotationsValidator />

<div class=row content>

<div class=col-md-2><label for=firstname>First Name</label>

</div>

<div class=col-md-3><InputText id=firstname @bind-

Value=@employee.FirstName /></div>

</div>

<div class=row content>

<div class=col-md-2><label for=lastname>Last Name</label>

</div>

<div class=col-md-3><InputText id=lastname @bind-

Value=@employee.LastName /></div>

</div>

<div class=row content>

<div class=col-md-2><label for=code>Code</label></div>

<div class=col-md-3><InputText id=code @bind-

Value=@employee.Code /></div>

</div>

<div class=row content>

<div class=col-md-2><label for=age>Age</label></div>

<div class=col-md-1><InputNumber id=age @bind-

Value=@employee.Age /></div>

</div>

<div class=row content>

<div class=col-md-2><label for=dateofjoining>Date Of

Joining</label></div>

<div class=col-md-1><InputDate id=dateofjoining @bind-

Value=@employee.DateOfJoining /></div>

</div>

<div class=row content>

<button type=submit>Submit</button>

</div>

<div class=row>

<ValidationSummary />

</div>

</EditForm>

@code {

private EmployeeModel employee = new EmployeeModel();

private void HandleValidSubmit()

{

Console.WriteLine(OnValidSubmit);

}

}

As you have seen in following Figure 3.11: Validation

Example: validation summary, the invalid data CSS is

applied and validation message list down in summary when

input having invalid data:

Figure 3.11: Validation Example: validation summary

The ValidationSummary component shows summarize

validation messages. You can also display validation

messages for specific input control. It can be achieved using

the ValidationMessage component. With this component, you

must specify the model property name using for attribute.

<ValidationMessage For=@(() => @employee.FirstName) />

As you have seen in the following Figure 3.12: Validation

Example: ValidationMessage, the invalid data CSS is applied,

and an individual validation message is shown when input

having invalid data:

Figure 3.12: Validation Example: ValidationMessage

Blazor provides rich support for validation. It automatically

applied or remove invalid CSS (red color border) based on

input change.

Summary

Blazor support one-way and two-way

databinding:

One-way binding:

One-way binding allows you to bind value

variables/properties to the HTML element in DOM.

Add @ prefix to variable/property name to

achieve One-way databinding.

Two-way binding:

The two-way binding allows you to bind the value

of variables/properties to the HTML element in

DOM and vice-versa.

It is achieved by the @bind attribute.

The changes are not reflected immediately with

the @bind attribute as it registers the onchange

event.

The @bind-value attribute allows you to bind an

event that fires when the value gets changed.

The @bind attribute also supports for culture

parameter (@bind:culture) that parsing and

formatting a value before binding to HTML

element to assigned culture.

Using @bind:format attribute, you can format the

date.

Event binding:

You can register the event of any HTML element

using the @on{event} attribute. Here, the event is the

name of the event.

The event arguments are also allowed for some

events. It is not mandatory to define the event

argument in the method definition.

Layout:

The layout page helps you to do a consistent look

and feel throughout the application and prevent to

write duplicate code.

You can specify a layout for the component using

the @layout directive and Layout attribute.

The different components may have different layout

pages.

The layout page defined in _Imports.razor file applied

to all Razor pages in the folder hierarchy.

Blazor supports the nested layouts.

Routing:

Routing is a process of a match URL pattern.

The default route for the Blazor server application is

defined in _Host.razor (@page /).

Routing can be done using the @page directive or

RouteAttribute.

You can also define multiple routes for a single

component.

Using the route parameter, you can pass to any

component when it initializes.

Blazor does not support the optional route

parameter.

Route constraints allow you to bind specific types of

parameters to property value.

Forms and validations:

You can define a form using the EditForm

component.

The DataAnnotationsValidator component tells the

Blazor engine to do the validation using data

annotation.

There are two options to display error messages on

the screen.

Summarized error messages: this can be

achieved using the ValidationSummary component.

Individual error message: this can be achieved

using the ValidationMessage component. With this

component, you must specify the model property

name using for attribute for all fields that you want

to perform validation.

There are built-in input components available to

receive and validate input. These components

automatically change the CSS classes to reflect field

state.

Some input control, such as InputNumber and

InputDate, includes parsing logic.

What you learned in this chapter?

In this chapter, you will learn about Blazor core concepts

such as data and event binding, the concept of layout page,

routing, route parameter, route constraints, query

parameter, form, and validation. Also, learn about the

essential directives and attributes used to describe the core

concept.

What is next?

Dependency injection is a design pattern that helps you to

create a loosely coupled application. It provides excellent

maintainability, testability, and re-usability. Blazor has built-

in support for dependency injection. In the next chapter, you

will learn about the dependency injection and how to inject

service into the component.

Questions

1. Explain data and event binding in the Blazor app?

2. What is EventCallBack?

3. How can you format the date with two-way binding?

4. What is the use of the StateHasChanged method?

5. What are events supported to UIEventArgs?

6. What is the use of the layout page?

7. How to define layout page globally?

8. What is routing?

9. How to set a route parameter with the Blazor app?

10. Does Blazor support an optional parameter?

11. What is the use of route constraints?

12. How can you validate the Blazor app?

13. What is the use of the ValidationSummary and

ValidationMessage component?

CHAPTER 4

Dependency Injection

Introduction

Dependency injection is a design pattern that helps you to

create a loosely coupled application. It provides excellent

maintainability, testability, and re-usability.

In this chapter, we’ll cover the following topics

Types of dependency injection

Service lifetime

Add services to the application

Default services

Inject the service in the component

Use dependency in services

Using OwningComponentBase

Objective

Understand Dependency injection and how to inject

Understand how to inject dependency in Blazor App

Understand default service in Blazor App

Understand OwningComponentBase class and its usage

Types of dependency injection

With DI, dependency required to complete is injected from

the outer world rather than created them inside the

functions/methods of the class.

You can inject the dependency by one of the following three

ways:

Construction injection

In this type, class dependencies are injected at the

constructor level. It means that when you create the

instance of the class, the class dependencies must inject. It

provides a strong dependency contract between objects.

Setter injection

It is also known as property injection. Here, class

dependencies are provided using properties instead of the

constructor. It provides loose dependency binding between

objects. It allows you to pass dependencies when they

required instead of the pass at the time of creating instance.

Interface based injection

It can be achieved by using a familiar interface, and all

classes are implements this interface to inject the

dependency. It is used with a combination of either

constructor injection or setter injection.

ASP.NET Core provides built-in support for dependency

injection. It is not limited to middleware but also supports in

model, view, controller, and Razor pages. There are many

built-in services available with ASP.NET core. Formally, built-

in services are known as framework services. You can also

create custom services formally known as application

services.

Blazor also supports the same type of dependency

injection (DI) that provided by ASP.NET core. You can inject

built-in services into the Blazor component to use them. You

can also inject custom service by define and register them

in the app.

Service lifetime

You can also specify the lifetime for registered services. The

service instance gets disposed of when the specified

lifetime reached. The service life can be configured using

the following three type:

Scoped

Using the scoped method, the service instance created and

shared per request to the application. The single service

instance available for request. The service instance created

in every request.

The Blazor WebAssembly (Client) does not support the

concept of dependency injection scopes. They behave like

singleton service. Blazor server app supports this concept,

but the scope is limited to the connection. So, it is useful

when services should be scoped to the current user.

Figure 4.1: Scoped service lifetime

As shown in the preceding figure, there is a single service

instance per request with a Scoped service lifetime.

Singleton

It creates and shares the single instance of service in

application life. It is more like a singleton design pattern, but

you do not care about the implementation, it maintained by

the Blazor app.

Figure 4.2: Singleton service lifetime

As shown in the preceding figure, there is a single service

instance shared in the entire application with a singleton

service lifetime.

Transient

It creates the instance of service whenever you ask for it.

Service should be very lightweight when you add service in

this way. Blazor app always creates a new service instance

when it is injected into the component. It means that every

component has its instance of service if service injected in

the component.

Figure 4.3: Transient service lifetime

As shown in the preceding figure, every component has its

instance of service with transient service lifetime.

Add services to the application

You can add services (framework or application) to an app in

the ConfigureService method of startup class. It takes

IServiceCollection as a parameter that is a list of service

descriptor objects. Service can be added to service

descriptor objects based on the service life you required.

Use the AddSingleton method to add service as a singleton

lifetime, use the AddTransient method to add service as

transient lifetime, and use the AddScoped method to add

service as a scoped lifetime.

Following is a code snippet to add service as Scoped

lifetime:

public void ConfigureServices(IServiceCollection services)

{

…

…

services.AddScoped<IMyService, MyService>();

…

}

Following is a code snippet to add service as Transient

lifetime:

public void ConfigureServices(IServiceCollection services)

{

…

…

services.AddTransient<IMyService, MyService>();

…

}

Following is a code snippet to add service as Singleton

lifetime:

public void ConfigureServices(IServiceCollection services)

{

…

…

services. AddSingleton<IMyService, MyService>();

…

}

The method described previously is a prevalent method to

add services. You can also add services using the following

methods:

Methods Disposed

object

automaticall

y

Multiple Pass

args?

Add{LIFETIME}<{SERVICE},

{IMPLEMENTATION}>()

Example:

services.AddScoped<IMySer, MySer>();

Yes Yes No

Add{LIFETIME}<{SERVICE}>(sp => new

{IMPLEMENTATION})

Example:

services.AddScoped< IMySer >(sp => new

MySer ());

Yes Yes Yes

Add{LIFETIME}<{SERVICE}>(sp => new

{IMPLEMENTATION})

Example:

services.AddScoped< IMySer >(sp => new

MySer ());

Yes Yes Yes

Add{LIFETIME}<{SERVICE}>(new

{IMPLEMENTATION})

Example:

services.AddScoped<IMySer>(new MySer

());

No Yes Yes

Add{LIFETIME}(new {IMPLEMENTATION})

Example:

services.AddScoped(new MySer());

No No Yes

Table 4.1: Common methods to add service

You can also use TryAdd{LIFETIME} methods that only register

the service if an implementation already registered. This

method is under

Microsoft.Extensions.DependencyInjection.Extensions

namespace. You can use either TryAdd, TryAddTransient,

TryAddScoped, or TryAddSingleton method to register the

service.

services.TryAddSingleton<IMyService>(MyService);

Apart from this, TryAddEnumerable(ServiceDescriptor) methods

are also available that register the service if the same type

of service is not already registered. It used to register

multiple services having the same implementation. In the

following example, Class MyService implements both

IMyService1 and IMyService2 interface:

public interface IMyService1 { }

public interface IMyService2 { }

public class MyService : IMyService1, IMyService2 { }

First line of following code is registered implementation of

IMyService1 and second line registered implementation of

IMyService2:

services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyServic

e1, MyService>());

services.TryAddEnumerable(ServiceDescriptor.Singleton<IMyServic

e2, MyService>());

If you are trying to re-register the service, this method

ignores the registration statement as service is already

registered.

Default services

There are few default services in Blazor application those

are automatically added to the service collection. These

services are added with a specific life, and you do not need

to add them. The following are the services added by

default.

Service Lifetime Description

HttpClient Singleton It provides the method for sending and

receiving HTTP request/response. This

service sets the base address of URI

automatically using HttpClient.BaseAddress

IJSRuntime Singleton This service provides API related to

JavaScript interop. It is an instance of

JavaScript runtime for JavaScript calls

NavigationManager Singleton It contains the API for working with URIs

and navigation state

Table 4.2: Default services

Note that custom service providers are not provided default

services automatically to use in service. If you want to use

default services with a custom service provider, you need to

add these services to a new service provider.

Inject the service in the component

Once you have added services in service collection, they are

available to use within the component. You can inject the

service to the Razor component by using the @inject

directive. It contains two parameters: service type and

service instance name. The service instance name is just

like property that you can access within the component, but

you don't care about creating a property, the compiler will

take care. You can also use multiple @inject directives for

injecting different services to the Blazor component.

Syntax:

@inject ServiceType InstanceName

Example:

@inject IMyService MyService

You can inject the service to class-based / code behind of

component using Inject attribute. The @inject directive is

converted to this attribute when the Blazor app compiled

and generate a class file for the component. This attribute

can only be used with the class-based component.

public class ClassOnly : ComponentBase

{

[Inject]

protected IEmployeeService EmployeeService { get; set; }

…

…

}

Example of adding service as a

dependency

The following example shows simple steps to create and

add the service to service collection using DI. The service is

created as the first step. Here, the service class is

implemented using the interface. It is not necessary for

service class to implement the interface. It is an excellent

design pattern that you implement the interface to create

service. The service contains the GetEmployees method that

returns all available employees; however, demo returns

hardcoded employee list.

EmployeeService.cs:

namespace DIExample.Data

{

using DIExample.Model;

using System.Threading.Tasks;

public interface IEmployeeService

{

Task<Employee[]> GetEmployees();

}

public class EmployeeService : IEmployeeService

{

public Task<Employee[]> GetEmployees()

{

var employees = new Employee[2];

employees[0] = new Employee { Id = 1, Code = "EMP01",

FirstName = "Jignesh", LastName = "Trivedi" };

employees[1] = new Employee { Id = 2, Code = "EMP02",

FirstName = "Tejas", LastName = "Trivedi" };

return Task.FromResult(employees);

}

}

}

The next step is to add service to service container in

ConfigureServices method of Startup class. As you aware,

there are three options available for different lifetime of

service. Base on your need, you can use any one of them.

Startup.cs:

public void ConfigureServices(IServiceCollection services)

{

…

…

services.AddSingleton<IEmployeeService, EmployeeService>();

…

}

If you do not register the service to the service container,

the component is not able to find service from the service

container; hence throw an exception as following (refer

Figure 4.4: Exception If service not registered).

Figure 4.4: Exception If service not registered

Now service is available to use in the Blazor component.

Using @inject directive, you can inject the service. If your

component having a code-behind class file or you have class

only component, then you can inject service using inject

attribute.

FetchEmpData.razor:

@page "/fetchdata"

@using DIExample.Data

@inject IEmployeeService EmployeeService

<h3>Employee List</h3>

…

…

…

@code {

Employee[] employees;

protected override async Task OnInitializedAsync()

{

employees = await EmployeeService.GetEmployees();

}

}

Following is the output when the above code has been run:

Figure 4.5: output - Employee list

Here, all employee list is populated (refer Figure 4.5: output

- Employee list) however example shows hardcode value,

but it may come from the database.

Use dependency in services

Your service might have complex scenarios such as your

service make a further call to another service over HTTP

using default service HttpClient. The default services are not

to be added using @inject directive or Inject attribute. You

must have to use constructor injection. The default service

is added to the service's constructor. In this scenario, you

must register your service using the AddHttpClient method

instead of AddTransient, AddSingleton, and AddScoped in

ConfigureService method of Startup class.

Following code shows service definition and inject default

service (HttpClient):

public class EmployeeServiceNew : IEmployeeService

{

public EmployeeServiceNew(HttpClient client)

{

…

}

…

…

}

Following code shows how to add service in request pipeline

(Startup.cs):

public void ConfigureServices(IServiceCollection services)

{

…

…

services.AddHttpClient<IEmployeeService, EmployeeServiceNew>

();

…

}

Using OwningComponentBase

You learned about Scoped service in the preceding section.

Once the request has been completed, scoped or transient

must be disposed by the DI system. With Blazor server

application, scope duration up to the connection that results

in scoped service available much longer time than expected

and behaves like singleton service. To limit the service life to

scoped to the component, you can use OwningComponentBase or

OwningComponentBase<T> base class.

All the Blazor components inherit from ComponentBase

class, and OwningComponentBase class is also inherited from

ComponentBase class. So, you can also inherit the Blazor

component from OwningComponentBase instead of ComponentBase

class. These base classes provide single service that can be

accessed using property Service:

@page "/fetchdata1"

@using DIExample.Data

@inherits OwningComponentBase<IEmployeeService>

<h3>Employee List</h3>

…

…

…

@code {

Employee[] employees;

protected override async Task OnInitializedAsync()

{

employees = await Service.GetEmployees();

}

}

This base class gets the required service from

IServiceCollection and set Service property. You can only

access a single service using this method of injecting

service; however, it provides scope to the lifetime of the

component. The instance of service is disposed of when the

component is disposed of.

Summary

Dependency Injection is a design pattern that helps you

to create a loosely coupled application

ASP.NET Core provides built-in support for dependency

injection

You can inject the dependency using

Construction injection

Class dependencies are injected at constructor

level

It provides firm dependency contract between

objects

Setter injection

It is also known as property injection

Class dependencies are provided using properties

It provides loose dependency binding between

objects

Interface based injection

The familiar interface used to implement class

and this interface used to inject the dependency

It is used with a combination of either constructor

injection or setter injection

You can also specify the lifetime for registered services

Scoped:

Service instance available for request only

The service instance created in every request

Blazor client does not support this concept, and in

Blazor server, the scope is limited to connection

Singleton:

It creates and shares the single instance of

service in the application of life

Transient:

It creates the instance of service whenever

requested

Blazor app always create new service instance

when it injected to component

You can add services (framework or application) to an

app in ConfigureService method of the startup class

You can also use TryAdd{LIFETIME} methods that only

register the service if an implementation already

registered

Blazor application provides three default services that

automatically added to the service collection

The @inject directive and Inject attribute can be used to

add service dependency in component

There are three easy steps to use dependency injection

into Blazor application

Create the service

Register the service

Inject the service in the component

The OwningComponentBase class can help you to control the

lifetime of service to scope for a component

What you learned in this chapter?

In this chapter, you have learned about dependency

injection and different types of dependency injection,

service lifetime, and different types of service lifetime

supported by Blazor App, default services, and usage of

OwningComponentBase class.

What next?

As you know, communication between UI and server code is

done using SignalR, and it uses JavaScript interop to do this.

In this next chapter, you will learn about the JavaScript

interop. Using JavaScript interop, you can call JavaScript

function from C# code and vice versa.

Questions

1. What is Dependency injection, and what are the

different ways to inject your dependency?

2. What is service lifetime for dependency and explain

different lifetime supported by ASP.NET Core?

3. What is the default service in the Blazor app?

4. Using which directive or attribute, you can add a

dependency in the Blazor component?

5. Explain the usage of OwningComponentBase class in

the Blazor App?

CHAPTER 5

JavaScript Interop

Introduction

Blazor applications use the JavaScript library to bootstrap;

typically, it is blazor.server.js, and Blazor also supports any

JavaScript library. With Blazor, you can call JavaScript

function from C# (.NET) code and vice versa. This feature

refers to JavaScript Interop. As you know, the Blazor server

app uses SignalR to do communication between UI and

server code. The SignalR uses JavaScript Interop to call

browser API and DOM manipulation.

In this chapter, we’ll cover the following topics

What is JavaScript Interop?

Invoke JavaScript functions from .NET methods

Invoke .NET (C#) function from JavaScript

Capture references to elements

Detect when a Blazor app is pre-rendering

Share interop code in a class library

Objective

Understand JavaScript Interop

Understand how to invoke JavaScript function from C#

code and vice versa

Understand how to invoke JavaScript Interop when

Blazor app is pre-rendering

Understand how to access HTML elements from C#

code

Understand how to invoke interop from the shared class

library

What is JavaScript Interop?

Blazor client is running on WebAssembly, and the Blazor

server does not require WebAssembly to run the application.

There are lot of things which could not be possible without

using JavaScript for Blazor Server and WebAssembly

applications, for example, DOM manipulation and accessing

browser API. The JavaScript Interop can help you to resolve

these problems. Using JavaScript Interop, you can call

JavaScript function from your C# (.NET) code and vice

versa.

Invoke JavaScript functions from C#

(.NET) methods

There are many scenarios where you need to call JavaScript

function from your C#(.NET) code as JavaScript can call API

to expose browser capabilities. Using IJSRuntime abstraction,

you can call JavaScript function from your C# (.NET) code.

The InvokeAsync<T> method of IJSRuntime abstraction is used

to invoked JavaScript function. This function takes two

parameters: identifier and arguments. The identifier is the

name of a JavaScript function that you want to invoke, and

arguments are the function parameters that any number of

JSON serializable objects. The identifier is defined as the

global scope by default; however, you can define the scope

of the identifier. The JavaScript function must return type T,

and JSON serializable. Following code shows the signatures

of InvokeAsync methods define in IJSRuntime abstraction and

its extensions:

ValueTask<TValue> InvokeAsync<TValue>(string identifier,

object[] args);

ValueTask<TValue> InvokeAsync<TValue>(string identifier,

CancellationToken cancellationToken, params object[] args);

ValueTask<TValue> InvokeAsync<TValue>(string identifier,

TimeSpan timeout, params object[] args);

The JSRuntimeExtensions class also contain InvokeVoidAsync

method that call JavaScript function return void(0) or void 0

or undefined. Following code shows the signatures of

InvokeVoidAsync methods defined in IJSRuntime extension:

ValueTask InvokeVoidAsync(this IJSRuntime jsRuntime, string

identifier, params object[] args);

ValueTask InvokeVoidAsync(this IJSRuntime jsRuntime, string

identifier, CancellationToken cancellationToken, params

object[] args);

ValueTask InvokeVoidAsync(this IJSRuntime jsRuntime, string

identifier, TimeSpan timeout, params object[] args);

You can also call the JavaScript function defined in the file

(.js), and this file must refer to the Script tag inside the

<head> element of either wwwroot/index.html (for Blazor Client

app) or Pages/_Host.cshtml (for Blazor Server app).

There are three steps to call JavaScript function from C#

code:

Create JavaScript function that you want to inject from

C# code

Inject IJSRuntime service to the component. It is a default

service, so it is not required to add this service in the

request pipeline

Invoke JavaScript function using InvokeVoidAsync or

InvokeAsync<T> method

The InvokeVoidAsync and InvokeAsync method invoke JavaScript

function asynchronously so that you can use await with both

methods.

The following example demonstrates how to invoke void

JavaScript function from the C# code using the

InvokeVoidAsync method.

Here, the JavaScript function is straightforward. It does not

accept any parameter and not returning any value but

shows an alert. Following code snippet shows JavaScript

function:

function calledJSFunction() {

alert("JavaScript function called from C# Code!!!");

}

As discussed, earlier chapter, if you want to use any service

in a component, then first you need to inject it in

component using @inject directive or inject attribute in code

behind then it must inject in a component. To use JavaScript

Interop, you need to IJSRuntime service into the component.

In this example, the C# function CallVoidJSFunction is called

on button click, and inside the function, it calls JavaScript

function using IJSRuntime service. Following code snippet

shows the component code:

@page "/example"

@inject IJSRuntime JsRuntime;

<h3>JavaScript Interop Example</h3>

<h4> Example 1: Call void JS Function</h4>

<button class="btn btn-primary"

@onclick="CallVoidJSFunction">Call Void JS Function</button>

@code {

private void CallVoidJSFunction()

{

JsRuntime.InvokeVoidAsync("calledJSFunction", null);

}

}

When you run preceding code and click on the button, a

JavaScript function is invoked and shows alert (refer Figure

5.1: JavaScript void function call from C# code):

Figure 5.1: JavaScript void function call from C# code

The following example demonstrates how to invoke the

JavaScript function that accepts the argument and returns

some value from the C# code using the InvokeAsync method.

Here, the JavaScript function is straightforward. It accepts

integer array and returns the sum of array elements:

function addNumbers(numbers) {

if (!Array.isArray(numbers)) {

return 0;

}

var sum = 0;

for (var i = 0; i < numbers.length; i++) {

sum = sum + numbers[i];

}

return sum;

}

In this example, the C# function AddNumbers is called on

button click and inside the function it calls JavaScript

function using IJSRuntime service and pass the integer array.

Following code snippet shows the component code:

@page "/example"

@inject IJSRuntime JsRuntime;

<h3>JavaScript Interop Example</h3>

<h4> Example 2: Call JS Function with parameter and return

value</h4>

<button class="btn btn-primary" @onclick="AddNumbers">Add

numbers</button>

<p>Total sum of array: @sum</p>

<hr>

@code {

private int[] array = new int[5] { 2, 3, 56, 76, 45 };

private int sum = 0;

private async Task AddNumbers()

{

sum = await JsRuntime.InvokeAsync<int>("addNumbers", array);

}

}

When you run preceding code and click on the button, a

JavaScript function is invoked, and this function returns the

sum of array elements (refer Figure 5.2: JavaScript function

with parameter and return value call from C# code):

Figure 5.2: JavaScript function with parameter and return value call from C#

code

With the Blazor server app, the calling of JavaScript function

in the pre-rendering event is not possible as the connection

between server and browser has not yet been established.

You will learn more about this in the upcoming section of

this chapter.

Invoke C# (.NET) methods from

JavaScript

It is also possible to call a C# (.NET) method from the

JavaScript in Blazor app. Blazor provides two methods:

DotNet.invokeMethod and DotNet.invokeMethodAsync to call

C# (.NET) method from the JavaScript. Here, you need to

pass three arguments: assembly name that contains the

function, function name, and function arguments, if any. It is

recommended to use DotNet.invokeMethodAsync method with

the Blazor server app. To call the C# method from

JavaScript, it must have the following characteristics:

C# method must be define as public

C# method must be decorate with JSInvokable attribute

Method name (or its identifier) must be unique across

the assembly

Currently, generic methods are not supported

The method can be defined as static or instance

Optionally, you can pass an identifier name with the

JSInvokable attribute. The method name becomes an

identifier by default if you do not pass the identifier with the

JSInvokable attribute.

In following example, JavaScript called C# (.NET) function by

calling DotNet.invokeMethodAsync. Here, you have to pass the

identifier name and assembly namespace with this method:

function CallCSFunction() {

DotNet.invokeMethodAsync("JavaScriptInterop",

"CalledByJavaScript")

.then(data => {

alert(data);

});

}

In the preceding code JavaScript method is being called on

click of HTML button. The C# code section contains

CalledByJavaScript method and this method decorated with

JSInvokable attribute:

@page "/example2"

@inject IJSRuntime JsRuntime;

<h3>JavaScript Interop Example</h3>

<h4> Example 1: Call void C# Function</h4>

<button class="btn btn-primary" onclick="CallCSFunction()">Call

Void C# Function</button>

@code {

[JSInvokable]

public static string CalledByJavaScript()

{

return "Hello Reader!!!";

}

}

When you run preceding code and click on the button, it

calls CS method and returns string message, and it shows

by JavaScript alert (refer Figure 5.3: C# method (without

parameter) called from JavaScript):

Figure 5.3: C# method (without parameter) called from JavaScript

In another example, integer array is passed to the C#

method from the JavaScript function. It returns the sum of

all array elements. Following code snippet shows the

JavaScript function definition:

function csAddNumbers() {

var array = [2, 3, 4, 56, 78];

DotNet.invokeMethodAsync("JavaScriptInterop", "AddNumbers",

array)

.then(data => {

document.getElementById('lblSum').innerText = data;

});

}

Same as previous example, the JavaScript function called by

clicking on HTML button. The C# method returns the sum of

all array element and JavaScript function shows it in a label

(refer following code):

@page "/example2"

@inject IJSRuntime JsRuntime;

<h3>JavaScript Interop Example</h3>

<h4> Example 2: Call C# Function with parameter and return

value</h4>

<button class="btn btn-primary" onclick="csAddNumbers()">Add

numbers</button>

<p>Total sum:<label id="lblSum">0</label></p>

<hr>

@code {

[JSInvokable]

public static int AddNumbers(int[] data)

{

return data.Sum();

}

}

When you run preceding code and click on the button, it

calls CS method and returns string message, and it shows

by JavaScript alert (refer Figure 5.4: C# method with

parameter and return type called from JavaScript):

Figure 5.4: C# method with parameter and return type called from JavaScript

In the preceding example, C# static methods are being

called from the JavaScript function, but it is also possible to

call the instance method from a JavaScript function.

Following code, snippet shows the class that contains the

AddNumberInstance non-static method:

public class InstanceMethodHelper

{

[JSInvokable]

public int AddNumberInstance(int[] data)

{

return data.Sum();

}

}

To invoke the C# instance method from JavaScript function,

you need to pass .NET instance to JavaScript using the

Create method of DotNetObjectReference class.

It is not necessary to pass .NET class instance when

JavaScript or Blazor component is loading. You can pass

.NET class instance to JavaScript any point of time, for

example, button click. In the following example, the .NET

class instance is created and passed to the JavaScript on the

OnInitializedAsync method of the component life cycle. Here,

IJSRuntime.InvokeAsync method has been used to pass the

instance of C# class:

@page "/example2"

@inject IJSRuntime JsRuntime;

<h3>JavaScript Interop Example</h3>

<h4> Example 3: Call C# instance method</h4>

<button class="btn btn-primary"

onclick="csInstanceAddNumbers()">Add numbers (instance)

</button>

<p>Total sum:<label id="lblSumIns">0</label></p>

@code {

protected override async Task OnInitializedAsync()

{

await JsRuntime.InvokeAsync<object>("passInstanceToJS",

DotNetObjectReference.Create(new InstanceMethodHelper()));

}

…

…

}

In preceding code snippet, passInstanceToJS JavaScript

method called from C# and it stores the C# class instance

to any JavaScript variable (refer following code):

var myClsObj;

function passInstanceToJS(instance) {

myClsObj = instance;

}

Now, you can invoke C# instance method on passed

instance using invokeMethod or invokeMethodAsync functions:

function csInstanceAddNumbers() {

var array = [12, 31, 4, 56, 78];

return myClsObj.invokeMethodAsync('AddNumberInstance', array)

.then(data => {

document.getElementById('lblSumIns').innerText = data;

});

}

You can call the C# instance method from the JavaScript

function by preceding code in the Blazor app. It is standard

for both the Blazor client app and the Blazor server app.

Capture references to elements

In some scenarios, you require an HTML element reference.

With the Blazor app, you can capture a reference to the

HTML element in a component. It can be achieved using the

@ref directive and define the ElementReference type in the

code section. The @ref directive used in HTML to capture

element or component reference and ElementReference type

variable defined for the same element or component.

In following code snippet, input element reference captured

to name variable:

<input @ref="name" type="text" />

…

@code {

ElementReference name;

…

…

}

The most common example to use element reference in

Blazor app is to set focus (on any event) to HTML element

using JavaScript Interop. In following example, input

element reference is passed to the JavaScript function

(using JavaScript Interop) and JavaScript set focus on

element using sent reference:

@page "/example3"

@inject IJSRuntime JsRuntime;

<h3>Element Reference</h3>

<input @ref="name" type="text" />

<button class="btn btn-primary" @onclick="SetFocus">Set

Focus</button>

@code {

ElementReference name;

private void SetFocus()

{

JsRuntime.InvokeVoidAsync("setFocusOnName", name);

}

}

The following JavaScript function accept element reference

as an argument and set focus:

function setFocusOnName(element) {

element.focus();

}

The element reference only available after the component is

rendered, so it is better to use element reference in

OnAfterRenderAsync or OnAfterRender component life cycle

methods or any other element event. The element reference

value is null before the OnAfterRender event of component life

cycle method.

Detect when a Blazor app is pre-

rendering

As you aware, Blazor server app uses SignalR to

communicate between UI and server. The server will

maintain a connection with the client browser. A specific

action (for example, calling into JavaScript) is not available

when the Blazor server app is pre-rendering as connection

with the browser has not been established.

In such cases, you can use the OnAfterRenderAsync method of

the component life cycle as when this event is called, the

Blazor app is fully rendered, and the server is connected

with the client browser.

Blazor server app always relies on the server. The JavaScript

Interop may not work due to some server connection issues,

and it treated as unreliable. The Blazor server app wait for a

minute to get server connection before JavaScript Interop is

being called. You can also modify this time-out value for the

entire application or a single JavaScript call.

You can specify time-out value by setting up a configuration

value of Blazor middleware (injected using the

AddServerSideBlazor method in Configure Services method of

Startup class). It will be applied to all the component

JavaScript Interop calls:

services.AddServerSideBlazor(

options => options.JSInteropDefaultCallTimeout =

TimeSpan.FromSeconds(60)

);

Optionally, you can also set time-out value for a single call

as InvokeAsync (or InvokeVoidAsync) method argument.

var result = await JsRuntime.InvokeAsync<string>

("TestJSFunction", TimeSpan.FromSeconds(60), "My name");

You can increase or decrease the time-out value based on

your requirements.

Share interop code in a class library

You can also include JavaScript Interop code into a class

library that allows sharing code between projects, and you

can also create NuGet packages. ASP.NET core allows you to

create Razor Class Library (RCL) project that may contain

razor pages, views, controller, and so on. It provides ways to

share a common UI component across multiple projects.

The RCL can handle embedding JavaScript resources of

assembly and JavaScript files placed under the wwwroot

folder. The embedding of the resources is taken care of

when RCL builds. The built-in library and NuGet package's

JavaScript call handle in a similar fashion.

Summary

Using JavaScript Interop, you can call JavaScript function

from C# (.NET) code and vice versa

Use InvokeAsync or InvokeVoidAsync method of IJSRuntime to

call JavaScript function from C# code

Use DotNet.invokeMethod and DotNet.invokeMethodAsync

method to call C# method from JavaScript code

To call the C# method from JavaScript, C# method must

have the following characteristics:

Must define as public

Must decorate with JSInvokable attribute

Method name (or its identifier) must unique across

the assembly

Method not defined as a generic method

The method can be defined as static or instance

To call the C# instance method from JavaScript, a class

instance must pass to JavaScript before invokes a

JavaScript function

You can pass a reference of C# class instance to

JavaScript using Create method of DotNetObjectReference

class

By define @ref directive and ElementReference type in the

code section, you can capture element reference

You can also share JavaScript Interop code by creating

RCL

What you learned in this chapter?

In this chapter, you learned about the JavaScript Interop,

how to call C# (.NET) function from JavaScript and vice

versa in the Blazor app, and how to capture element

reference.

What next?

The Blazor is a stateful application framework. With the

Blazor server app, the user state is held in server memory in

the circuit. When the Blazor server app is temporarily

disconnected from the server due to any reason, the app is

trying to reconnect to the original circuit from the server

memory. In the next chapter, you will learn about state

management and how to persist state for the Blazor server

app and Blazor client app.

Questions

1. What is JavaScript Interop?

2. How can you invoke JavaScript function from C# code?

3. How can you invoke the C# method from the JavaScript

function?

4. Can the C# instance method be called using JavaScript

Interop? If yes, then how?

5. How to capture element reference in then Blazor app?

6. Can JavaScript Interop code be shared in RCL (Razor

class Library)?

CHAPTER 6

State Management

Introduction

The Blazor is a stateful application framework. Blazor server

app always maintains the connection to the server, and for

the Blazor client (WebAssembly) app, there is no need to

connect with the server to maintain the state. The Blazor

server app maintains state in the circuit on server memory.

The state management is essential as it retrieves the

original app state from server memory when the app is

disconnected from the server for any reason.

You can maintain the user session or circuit using the

following ways:

The value stored in the variable or property of the

component instance

Data stored in service instance (injected using DI)

Rendered UI (most recent render output)

Blazor server app relies on server memory to store user

circuits. Still, the Blazor client app (WebAssembly) can take

the advantages of any client-side storage mechanism or can

use third party packages.

In this chapter, we’ll cover the following topics

Understand Blazor circuits

Preserve state across circuits

Where to persist state

Third-party browser storage solutions

Objective

Understand how to maintain user state in Blazor server

app

What are the Third-party browser storage solutions to

persist state

Understand Blazor circuits

When the Blazor server app is temporarily disconnected

from the server due to any reason like network connection

loss, the app tries to reconnect to the original circuit from

the server memory. However, an app connecting back to the

original state on the server is not always possible due to one

of the following reasons:

The server has release disconnected circuits due to

timeout or GC called due to low memory

In web garden deployment environments where

multiple servers and load-balanced available, any

server not available at any given time. When a user

attempts to connect, the original server not available

The issue with user browser, a user, might close and

reopen the browser, browser close due to exception

The user receives a new circuit (empty state) when a user

cannot connect with the original circuit due to any of the

above reasons. You can compare it with the situation of

closing and re-opening a desktop-based app.

Preserve state across circuits

Sometimes, it is required to preserve state across circuits as

the app can retain user data when the server becomes

unavailable or user browser force to start a new circuit for a

new server. It is most important when a user actively play

with data, not just reading existing data. You also need to

think to store data in the other storage location rather than

the data only stored on server memory to preserve the state

beyond a single circuit. State persistence is not

automatically done, but you must take care when you

design the app for stateful data persistence.

Data persistence is more important when users have put

effort in data creation. For example, in the shopping cart, a

user has added many items to cart that he/she needs to

purchase or with a multi-stage user info page, a user must

enter much information in every page. If connection or state

loss before the user submits data to the server for

processing, the user needs to re-enter all the information.

Usually, it is not required to preserve the state that quickly

recreated. For example, login page information, it is not

necessary to persist the value of username in the text box.

Where to persist state

Depending on data, you can select a location for a

persisting state in the Blazor server app. The following are

prevalent locations where you can store the state.

On Server in database

On client in the browser

URL

Base on scenario and requirement, you can select best-

suited approaches.

On server in database

You can persist the state of the Blazor server app on the

server in the database for data that need to be persisted for

forever or span across multiple users. You can choose a

relational database, Azure data storage, blob, or table

storage, key-value storage to persist data. The new circuit is

started by the user for any of the reasons; user data can be

retrieved from the database, and it available for the new

circuit.

On client in the browser

You can also persist in the user state in the browser's

LocalStorage and SessionStorage. The main advantage of

using client-side state management is you do not require to

manage or clear the stored state when the circuit

abandoned. There are few differences between LocalStorage

and SessionStorage as following:

LocalStorage SessionStorage

Its scoped to a user browser Its scoped to a user browser tab

It persists state even if user reload or

closes and re-opens browser page

It persists state only when the user

reloads the browser page

It shares user state between multiple

browser tabs

It maintains an independent version

of the user state for every tab of

browser

With LocalStorage, user state is

persisted until explicitly cleared

With SessionStorage, the user state

will be lost if browser tab or browser

closed

Table 6.1: Comparison between local storage and session storage

The SessionStorage is an excellent way to persist state as

LocalStorage shared state between multiple tabs, and

sometimes behavior is confusing when multiple tabs

overwrite user state. When an application needs to persist

state across the tab or closing and re-opening the browser,

the LocalStorage is the better choice.

URL

You can also persist in the state by sending small

information in the URL. For Example, you can carry id of

viewing entity or current page number of grid component in

URL. It retained the user state when the user manually

refreshes the page, but you cannot protect it from being

modified.

Third-party browser storage solutions

NuGet provides the API that works with SessionStorage and

LocalStorage. This API use ASP.NET core data protection that

encrypts stored data hence reduce the risk of tampering

stored data. If you stored the data in plain text JSON format,

users could view and modify data using browser developer

tools. It is recommended to store user sensitive data in

encrypted form.

For Example, the NuGet package provides DataProtection for

SessionStorage and LocalStorage using package

Microsoft.AspNetCore.ProtectedBrowserStorage. Currently, it is in

the experimental stage. However, you can also write your

own service. This package internally uses JavaScript interop

to store data into session or local storage. You can use this

package by installing the package, add middleware and add

package JavaScript to _Host.cshtml file.

You can also write your middleware that preserves data in

either SessionStorage or LocalStorage. In the following

example, it would be demonstrated how to create your

middleware to preserve data in SessionStorage step by

step:

1. Create a service that helps you to call the JavaScript

interop to store data in windows session. This service

contains three methods to get, add, and delete the

value from the session. Each method makes JavaScript

interop call to access the HTML windows session

storage.

Following is the code snippet of ProtectedSessionStorage

service. Here, data protection is also added so,

encrypted data stored in the session. The data is

encrypted before it saves to session and decrypts after

retrieves from the session.

using System;

using System.Collections.Concurrent;

using System.Text.Json;

using System.Threading.Tasks;

using Microsoft.AspNetCore.DataProtection;

using Microsoft.JSInterop;

namespace StateManagement.Services

{

public class ProtectedSessionStorage

{

private readonly static JsonSerializerOptions

SerializerOptions = new JsonSerializerOptions();

private readonly IJSRuntime _jsRuntime;

private readonly IDataProtectionProvider

_dataProtectionProvider;

private readonly ConcurrentDictionary<string,

IDataProtector> _cachedDataProtectorsByPurpose

= new ConcurrentDictionary<string, IDataProtector>();

public ProtectedSessionStorage(IJSRuntime jsRuntime,

IDataProtectionProvider dataProtectionProvider)

{

_jsRuntime = jsRuntime ?? throw new

ArgumentNullException(nameof(jsRuntime));

_dataProtectionProvider = dataProtectionProvider ??

throw new

ArgumentNullException(nameof(dataProtectionProvider));

}

private IDataProtector GetOrCreateCachedProtector(string

purpose)

=> _cachedDataProtectorsByPurpose.GetOrAdd(

purpose,

_dataProtectionProvider.CreateProtector);

public async ValueTask<T> GetAsync<T>(string key)

{

var protectedJson = await

_jsRuntime.InvokeAsync<string>(

$"ProtectedSessionStorage.get",

key);

if (protectedJson == null)

{

return default;

}

var protector = GetOrCreateCachedProtector(key);

var json = protector.Unprotect(protectedJson);

return JsonSerializer.Deserialize<T>(json, options:

SerializerOptions);

}

public ValueTask SetAsync(string key, object value)

{

if (string.IsNullOrEmpty(key))

{

throw new ArgumentException("Cannot be null or empty",

nameof(key));

}

var json = JsonSerializer.Serialize(value, options:

SerializerOptions);

var protector = GetOrCreateCachedProtector(key);

var protectedJson = protector.Protect(json);

return _jsRuntime.InvokeVoidAsync(

$"ProtectedSessionStorage.set",

key,

protectedJson);

}

public ValueTask DeleteAsync(string key)

{

return _jsRuntime.InvokeVoidAsync(

$"ProtectedSessionStorage.delete",

key);

}

}

}

2. Write JavaScript that invoked by the C# method from

service. Following is the code snippet of JavaScript. It

looks straight forward, and it is only responsible to

store, retrieve, and delete the data from the session. It

stores data in session in key-value pair:

(function () {

window.ProtectedSessionStorage = {

get: (key) => window["SessionStorage"][key],

set: (key, value) => { window["SessionStorage"][key] =

value; },

delete: (key) => { delete window["SessionStorage"][key];

}

};

})();

3. Register the service in ConfigureService method of Startup

class (refer following code snippet):

public void ConfigureServices(IServiceCollection services)

{

…

…

services.AddScoped<ProtectedSessionStorage>();

}

4. Register JavaScript file in top-level HTML file

(Pages/_Host.cshtml for Blazor server app) using script tag

(refer following code snippet):

<script src="~/ProtectedSessionStorage.js"></script>

Once, preceding defined steps are performed, your service

is ready to use. To use the service in component, you must

inject the service in component using @inject directive. In

following code snippet, value of currentCout variable is stored

as SessionStorage['count'] in browser storage. Service

encrypts the data before it stores it to the session, so, it

does not store data in plain text. The service SetAsync

method is used to stored data in session. Using service

method GetAsync data recovered from session:

@page "/counter"

@using StateManagement.Services;

@inject ProtectedSessionStorage ProtectedSessionStore

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click

me</button>

@code {

int currentCount = 0;

protected override async Task OnAfterRenderAsync(bool

firstRender)

{

if (firstRender)

{

currentCount = await ProtectedSessionStore.GetAsync<int>

("count");

StateHasChanged();

}

}

async Task IncrementCount()

{

currentCount++;

await ProtectedSessionStore.SetAsync("count", currentCount);

}

}

You can also verify data in browser storage (session

storage); However, it is not in readable format and

encrypted.(refer Figure 6.1: How to check session storage in

browser storage).

Figure 6.1: How to check session storage in browser storage

Similar way, you can create a service for local storage. In

the pre-rendering event, the interactive connection between

browser and server does not exist, so; the browser is not

able to find the JavaScript that needs to run. It is the reason,

Session Storage and Local Storage does not available in the

pre-rendering event of the Blazor root component. It throws

an error when the component is trying to access the

storage. There is only one solution to resolve this error: do

not access Local Storage or Session Storage in pre-rendering. It

is the reason, OnAfterRenderAsync method is used to reload the

state instead of the OnInitializedAsync method in the

preceding example.

Summary

Blazor is a stateful application. For the Blazor server

app, the user state is stored in server memory and For

Blazor client (WebAssembly) app, user state stored in

client memory, and also, you can take advantage of

client-side state management such as LocalStorage.

When the Blazor server app is temporarily disconnected

from the server due to any reason, it is trying to

connect to the original circuit and app connecting back

to the original state.

The user receives a new connection circuit (with the

empty state) when the app cannot connect with the

original circuit.

You may persist state in the following location:

On Server in database

On client in the browser

URL

Alternatively, you can use any third-party storage

solution to persist in the state.

What you learned in this chapter?

In this chapter, you learned about state management and

how to persist state for the Blazor server app and Blazor

client app. This chapter also explained how to create your

service to access client-side storage such as LocalStorage

and SessionStorage.

What next?

In the next chapter, you will be learned about authentication

and authorization with the Blazor app. You will also be

learned about a different way to do authentication and

authorization using third party services such as Google API

and Facebook API.

Questions

1. What is the Blazor circuit?

2. What are the locations where the session can persist?

3. Is it possible to access JavaScript interop in the

OnInitializedAsync method of the component?

4. Explain, how can you write middleware to persist state

using LocalStorage and SessionStorage?

CHAPTER 7

Authentication and

Authorization

Introduction

Authentication and authorization are the fundamental

requirements of most of the applications. Authentication is a

process to validate; the user has access to the application, and

Authorization is a process to validate; the user has the right to

access the application resource. Blazor uses the ASP.NET core

security model to provide authentication and authorization.

Both Blazor server app and client app (WebAssembly) have

different security scenarios as Blazor server app uses server

resource to provide authorization, and Blazor client app

(WebAssembly) runs on the client; hence authorization is only

determined which UI option can be accessible by the user.

In this chapter, we’ll cover the following topics

Authentication

AuthenticationStateProvider service

Custom AuthenticationStateProvider

Authorization

AuthorizeView

Authorize attribute

Custom content for unauthorized router component

Authorization rules check-in procedural logic

Authorization in Blazor client-side apps

Authentication using third party service

Using Microsoft API

Using Google API

Using Facebook API

Use multiple authentication providers together

Objective

Understand the basics of authentication and authorization

Understand how to do authentication and authorization in

Blazor server app and Blazor client app (WebAssembly)

Understand how to do authentication and authorization

using third-party services such as Google and Facebook

API

Authentication

Blazor uses ASP.NET Core authentication mechanisms. It also

depends on how the Blazor app is developed and host, Blazor

server, or Blazor client (WebAssembly). Blazor server app uses

SignalR for real-time connection between UI and server.

SignalR is handled the authentication when connection

established.

When you create the Blazor server project using the template,

there is an option for setting up authentication for the project.

The default authentication mode is none.

Following options are available to select authentication:

No Authentication

Individual User Accounts:

Using ASP.NET core Identity

using Azure AD B2C

Work or School Accounts

Windows authentication

Figure 7.1: Change authentication option

The authentication in the Blazor client app (WebAssembly) can

be bypassed as the user can modify the client-side code. It is

true for all client-side frameworks such as Angular.

Blazor uses ASP.NET Core authentication mechanisms that

support user interface for login functionality using the ASP.NET

Core Identity membership system. You can create an account

with login information that stored in identity or external login

(such as Google, Microsoft, and Facebook account) can be

used. You can configure identity using the SQL Server database

to store user data such as name, password, and other profile

data. ASP.NET Core provides UI for login functionality, and you

can use one of the following to secure web apps:

Azure Active Directory

Azure Active Directory B2C (Azure AD B2C)

IdentityServer4

When you want to use ASP.NET core identity with Blazor server

app, select the Individual User Accounts option, as shown in

Figure 7.1: Change authentication option. As a result, your

application tracks the identity of the logged-in user. You can

also apply authorization rules to users and roles.

When you run the application created by the Blazor server app

template with an individual account, you find Register and Login

option at top right corner as shown in Figure 7.2: Output of

Blazor server app with Individual account option:

Figure 7.2: Output of Blazor server app with Individual account option

When you are accessing the database using this application

and database does not exist, it allows you to migrate the

database. The default connection string is stored in

appsettings.json files.

After the migration, various tables are generated, related to

the user and role management (refer Figure 7.3: SQL query

output after registration):

Figure 7.3: SQL query output after registration

Here, the login page and registration page are not Blazor

components, but they are Razor pages. These pages are

injected using ASP.NET core identity middleware. When you

look at ConfigureServices method of Startup class, you will find

the following code:

services.AddDefaultIdentity<IdentityUser>();

This middleware adds a login and registration Razor

component to the application; however, you can create your

own components and use them.

AuthenticationStateProvider service

Blazor server app uses built-in AuthenticationStateProvider

service. This service will find-out authentication state data

from HttpContext.User. In this way, the Blazor server app uses

ASP.NET Core existing authentication mechanisms. This service

is used by CascadingAuthenticationState and AuthorizeView

components to get the authentication states. With the Blazor

server app, do not use AuthenticationStateProvider service

directly as it does not notify automatically when authentication

state data gets changed. That is the reason why it is

recommended to use the AuthorizeView component.

In the following example code, AuthenticationStateProvider

retrieves the user from ASP.NET Core's HttpContext. User and

checks whether the user is authenticated or not. If the user is

authenticated, it fetches user claims:

@page /

@using Microsoft.AspNetCore.Components.Authorization

@inject AuthenticationStateProvider AuthenticationStateProvider

<h1>Hello, world!</h1>

Welcome to your new app.

<p>

@userAuthenticated

</p>

@code {

string userAuthenticated;

protected override async Task OnInitializedAsync()

{

var authState = await

AuthenticationStateProvider.GetAuthenticationStateAsync();

var user = authState.User;

if (user.Identity.IsAuthenticated)

{

userAuthenticated = ${user.Identity.Name} is authenticated.;

}

else

{

userAuthenticated = The user is NOT authenticated.;

}

}

}

If IsAuthenticated property of the user.Identity is true; the user

is authenticated else user is not authenticated (refer following

Figure 7.4: Blazor App output: before login and after login):

Figure 7.4: Blazor App output: before login and after login

The Blazor server app runs on the server; hence it able to fetch

current user information from the server. With the Blazor client

app, we need to configure custom AuthenticationStateProvider

that fetches user information from the server by making an API

call.

Custom AuthenticationStateProvider

The AuthenticationStateProvider service is built-in service in the

Blazor server app that helps you to obtain the authentication

state data from HttpContext.User. It is not very frequent scenario

where you require to implement CustomAuthenticationProvider.

The custom implementation may introduce security

vulnerabilities to your app.

Blazor client-side (WebAssembly) can require a custom

provider for AuthenticationStateProvider as you may want to

integrate it with external authentication mechanisms that

bypass server-side code. There are two easy steps to

implement a custom AuthenticationStateProvider.

1. Create class that inherit from AuthenticationStateProvider

abstract class and implement GetAuthenticationStateAsync

abstract method (refer following code):

public class CustomAuthenticationStateProvider :

AuthenticationStateProvider

{

public override Task<AuthenticationState>

GetAuthenticationStateAsync()

{

var identity = new ClaimsIdentity(new[]

{

new Claim(ClaimTypes.Name, dummyName),

}, Dummy authentication type);

var user = new ClaimsPrincipal(identity);

return Task.FromResult(new AuthenticationState(user));

}

}

2. Register the custom authentication state provider in

ConfigureServices method of startup class (refer following

code):

services.AddScoped<AuthenticationStateProvider,

CustomAuthenticationStateProvider>();

When you use preceding custom authentication state

providers, all users are authenticated with the dummyName users.

When you determine that authentication state data has

changed for any reason such as user has logged out, then you

can optionally call the NotifyAuthenticationStateChanged method

of AuthenticationState Provider base class that notify all

consumers of authentication state data such as AuthorizeView

component.

Authorization

Authorization is a process to validate that uses has right to

access the application resource. For example, the admin user

can modify the system resource, but other users can only view

the system resource. The authorization allows you to control

user access to a resource based on roles, claims, and policies.

The Blazor uses the same concept as ASP.NET Core uses for

authentication and authorization. Authorization can be

achieved in the Blazor app using an attribute, defined

authorizations rule, and built-in component.

AuthorizeView

The Blazor app provides the AuthorizeView component that

displays the page content, depending on user is authorized to

see the content. It supports policy-based authorization and

role-based authorization. This approach is beneficial when

page content needs to display based on the role, policy, or

authentication status of the user. You can access the

AuthenticationState object using the context variable of the

templated component.

In the following example code, the content under the

AuthorizeView component is rendered if the user is

authenticated. You can access user identity using

context.User.Identity property:

<AuthorizeView>

<h4>Hello, @context.User.Identity.Name!</h4>

<p>This content is only visible if user is authenticated.</p>

</AuthorizeView>

With the AuthorizeView component, you can also define different

content when the user is not authenticated. This component

provides Authorized, and NotAuthorized render fragments. The

Authorized fragment renders when the user is authenticated,

and NotAuthorized fragment renders when the user is not

authenticated. Both fragments accept other interactive

components.

In the following example code, UI shows different text for

authenticated and unauthenticated user:

<AuthorizeView>

<Authorized>

<h4>Hello, @context.User.Identity.Name!</h4>

<p>This content is only visible if user is authenticated.</p>

</Authorized>

<NotAuthorized>

<p>Please signed in.</p>

</NotAuthorized>

</AuthorizeView>

AuthorizeView component uses default policies when

authorization conditions are not defined. This component is

also working with role-based, claim-based, and policy-based

authorization.

The AuthorizeView component has the Roles parameter to

perform do role-based authorization. In the following code

example, page content is rendered based on roles:

<AuthorizeView Roles=Admin>

<p>This content is only visible if user is in Admin role.</p>

</AuthorizeView>

<AuthorizeView Roles=User>

<p>This content is only visible if user is in User role.</p>

</AuthorizeView>

Same way, the AuthorizeView component has the Policy

parameter to perform policy-based authorization. In the

following code example, page content is rendered only if policy

conditions are satisfied.

<AuthorizeView Policy=OnlyAdminAccess>

<p>This content is only visible if user is in Admin role.</p>

</AuthorizeView>

The claim-based authorization can be achieved using policy-

based authorization. You can define a policy that checks for a

particular claim. The default policy applies in AuthorizeView

component if roles or policy is not specified.

The AuthorizeView provides Authorizing element to display

content when authentication is in progress:

<AuthorizeView>

<Authorizing>

<h1>Authentication in progress</h1>

</Authorizing>

</AuthorizeView>

Usually, the Blazor app knows its authentication state when

the state is established, so content under the Authorizing

element displays only when authorization is in progress.

Authorize attribute

The AuthorizeView component display UI depending on user

authorization state. The Authorize attribute render Blazor

component depending on user authorization state. The

functionality of the Authorize attribute in the Blazor app is very

similar to ASP.NET core. This attribute can be used with the

Razor page as well as with the controller. The ASP.NET Core 3.0

introduced @attribute directive that helps you to define Razor

page attribute in page component (refer following code

snippet):

@page /home

@attribute [Authorize]

The Authorize attribute is applicable only if component reaches

via a router. It does not perform authorization for the child

components. AuthorizeView needs to be used instead of

Authorize attribute for child component.

You can define Authorize attribute to page component or

_Imports.razor page to apply authorization to all components

under folder. It also supports role-based and policy-based

authorization.

For role-based authorization, use Roles property and supplied a

comma-separated list of roles that can access (refer following

code snippet):

@page /home

@attribute [Authorize(Roles = admin, HR)]

For policy-based authorization, use Policy property and

supplied a comma-separated list of policy that can access

(refer following code snippet):

@page /home

@attribute [Authorize(Policy = OnlyAdminAccess)]

The default policy is applied in Authorize attribute if roles or

policy is not specified.

Custom content for unauthorized

router component

The route component allows you to specify custom content

when the user is not authorized; authorization is in progress

and content not found. This component provides <NotFound>,

<NotAuthorized>, and <Authorizing> render fragment to specify

custom content. The custom content can be added to the

app.razor file. The NotAuthorized and Authorizing tags must

specify under AuthorizeRouteView tags. If you do not specify

NotAuthorized element, Blazor app shows default message:

<Router AppAssembly=@typeof(Program).Assembly>

<Found Context=routeData>

<AuthorizeRouteView RouteData=@routeData

DefaultLayout=@typeof(MainLayout)>

<NotAuthorized>

<h4>Not authorized.</h4>

</NotAuthorized>

<Authorizing>

<h4>Authentication in progress…</h4>

</Authorizing>

</AuthorizeRouteView>

</Found>

<NotFound>

<CascadingAuthenticationState>

<LayoutView Layout=@typeof(MainLayout)>

<p>Sorry, there's nothing at this address.</p>

</LayoutView>

</CascadingAuthenticationState>

</NotFound>

</Router>

You can also include arbitrary items such as interactive

components under <NotFound>, <NotAuthorized>, and

<Authorizing> tags.

Authorization rules check-in procedural

logic

Sometimes, you required to check for authorization as part of

procedural logic. You can retrieve the user authentication state

using AuthenticationStateProvider (as describes earlier). Here,

you must retrieve the user authentication state whenever you

required. Alternatively, you can pass the user authentication

state using the cascaded parameter of type

Task<AuthenticationState>.

In the following code snippet, authenticationStateTask property

(a type of Task<AuthenticationState>) defined as a

CascadingParameter, and you can retrieve user info from User

property of authenticationStateTask:

@code {

[CascadingParameter]

Task<AuthenticationState> authenticationStateTask { get; set; }

string message = string.Empty;

protected override async Task OnInitializedAsync()

{

var user = (await authenticationStateTask).User;

if (user.Identity.IsAuthenticated)

{

message += User is Authenticated. ;

}

if (user.IsInRole(admin))

{

message += User is in Admin role.;

}

}

}

You can also use this cascading parameter in AuthorizeRouteView

using CascadingAuthenticationState components.

Authorization in Blazor client-side apps

In the Blazor server app, the app is running on the server, so

authorization checks cannot bypass. But in the Blazor client

app (WebAssembly), code is running on the client browser and

can be modified by the user and authorization can be

bypassed. You must perform an authorization check on the

server for any API call from the Blazor client app. It is true for

all client-side frameworks, including the JavaScript SPA

framework.

Authentication using third party

service

The Blazor use ASP.NET core authentication mechanisms, and

ASP.NET Core allows user to sign-in with external

authentication providers such as Google, Facebook, Twitter,

and Microsoft. The third-party authentication feature enables

the user to use their existing credentials. You need to pass

some of the original request information such as secure

request scheme (https), host, and client IP address to app

request header when app deploys behind a load balancer or

proxy server. The secure request scheme is used to generate

an authentication link with the external provider. If you are not

passing the correct secure scheme, it generates an incorrect

return URL.

If you want to use third-party service for authentication, you

need to create a respective social app, and the social app

provides you the Application Id and Application Secret tokens

that use to access a social app to verify the user. Once you get

the application id and secret, you can store it to configuration

files such as appsettings.json.

Using Microsoft API

To do authentication using the Microsoft developer portal, you

must register the app and link it to your Microsoft account. If

you did not have a Microsoft account, create one. The following

are the steps to register the app to Microsoft account.

1. Navigate to URL: https://go.microsoft.com/fwlink/?

linkid=2083908

Login with your existing Microsoft account credential or

create a new account. It validates the credential and

redirects to the Azure portal's App registrations page. Click

on New registration button (refer Figure 7.5: Microsoft

account – new project registration):

https://go.microsoft.com/fwlink/?linkid=2083908

Figure 7.5: Microsoft account – new project registration

2. Fill up required filed on the form such as Name, supported

account types and redirect to URI and click on Register

button (refer Figure 7.6: Microsoft account – registration

page):

Figure 7.6: Microsoft account – registration page

It will create the app on the Azure portal and provide you

client ID (application) and talent (directory) id.

3. Create a client secret. To create client secret, click on

Certificates & secrets from the left panel (refer Figure 7.6:

Microsoft account – registration page):

Figure 7.7: Microsoft account – after initial registration

Under Client secrets pane, click on the New client secret button.

It will pop the dialog box that allows you to add client secret

description and secret expiry (refer Figure 7.8: Microsoft

account – create client secret), and then, click on the Add

button.

It will generate the client secret that can be used along with

client ID for authentication:

Figure 7.8: Microsoft account – create a client secret

The next step is to configure Microsoft authentication in your

project, and the following are the steps to configure Microsoft

authentication in the Blazor server project.

1. The first step is to create a Blazor server app using a

Visual Studio template with an individual user account

option.

2. The next step is to install Microsoft authentication

middleware using the NuGet package manager. The

following code shows the command to install this

middleware that needs to run in the NuGet package

manager console. This NuGet package adds

AddMicrosoftAccount extension method:

Install-Package

Microsoft.AspNetCore.Authentication.MicrosoftAccount

3. The next step is to configure Microsoft account

authentication middleware in the ConfigureService method

of startup class using the AddMicrosoftAccount extension

method. Here, you must pass the client ID and secret that

you get by following the steps in the preceding section.

The best practice is to store this client ID and secret in the

configuration file (any of JSON file such as

appsettings.json). Following code shows the structure of the

configuration file:

{

Authentication: {

Microsoft: {

ClientId: client Id,

ClientSecret: Client secret

}

}

}

Following code is required to configure Microsoft account

authentication middle ware in your project:

services.AddAuthentication().AddMicrosoftAccount(microsoftOptions

=>

{

microsoftOptions.ClientId =

Configuration[Authentication:Microsoft:ClientId];

microsoftOptions.ClientSecret =

Configuration[Authentication:Microsoft:ClientSecret];

});

The Microsoft account authentication middleware adds

Microsoft button in both registration and login page (refer

following Figure 7.9: Microsoft account – login option).

Figure 7.9: Microsoft account – login option

When you click on the Microsoft button, the page is redirected

to the Microsoft login page (refer Figure 7.10: Microsoft

account – redirect to Microsoft login page), and if

authentication is get done successfully, it redirects to return

URL that supplied at the time of new registration page.

Figure 7.10: Microsoft account – redirect to Microsoft login page

You can modify callback URI when Microsoft account

authentication middleware is configured. Set new callback URI

to RemoteAuthenticationOptions.CallbackPath property of the

MicrosoftAccountOptions class.

Using Google API

To do authentication using Google API, you must create a

Google API console project that provides client id and secret.

This client id and secret use to configure authentication in your

project. The following are the steps to create a Google project.

1. Navigate to URL:

https://developers.google.com/identity/sign-

in/web/sign-in#before_you_begin

Login with your existing google account credential or

create a new account and then click on Configure a Project

button (refer Figure 7.11: Google – configure project):

Figure 7.11: Google – configure the project

2. It navigates to Configure a project for Google Sign-in dialog

box. Here, it required to provide a project name.

Alternatively, you can also select an existing project

(associated with your log in account) from the dropdown.

Click on next button to navigate to next screen (refer

Figure 7.12: Google – Create a new project or select

existing one):

Figure 7.12: Google – Create a new project or select existing one

Do not use word Google in your Project and Product name

as it is a prohibited word, and both must be between 4

and 30 characters.

3. Now, it navigates to Configure your OAuth client dialog box.

Here, you need to provide a product name. Click on the

NEXT button to navigate to the next screen (refer Figure

7.12: Google – Create a new project or select existing

one).

Figure 7.13: Google – configure the client

4. In the next screen, you need to select from where you are

supposed to call this Google API. For the Blazor app, you

need to select a web server from the options. Also, you

need to provide Authorized redirect URIs. It is base URL

with /sign in-google appended text and clicks on Create

button(refer Figure 7.12: Google – Create a new project or

select existing one):

Figure 7.14: Google – configure redirect URI

5. Now almost done for Google project and provides you a

Client ID and Client Secret that uses in google account

authentication (refer Figure 7.15: Google – provide client

Id and secret):

Figure 7.15: Google – provide client Id and secret

The next step is to configure Google authentication in your

project, and the following are the steps to configure Google

authentication in the Blazor server project.

1. The first step is to create the Blazor server app using a

Visual Studio template with an individual user account

option.

2. The next step is to install Google authentication

middleware using the NuGet package manager. The

following code shows the command to install this

middleware that needs to run in the NuGet package

manager console. This NuGet package adds AddGoogle

extension method:

PM> Install-Package

Microsoft.AspNetCore.Authentication.Google

3. The next step is to configure Google authentication

middleware in the ConfigureService method of startup class

using the AddGoogle extension method. Here, you must pass

the client ID and secret that you get by following the steps

in the preceding section. The best practice is to store this

client id and secret in the configuration file (any of JSON

file such as appsettings.json). Following code shows the

structure of the configuration file:

{

Authentication: {

Google: {

ClientId: client Id,

ClientSecret: Client secret

}

}

}

Following code is required to configure Google authentication

middleware in your project:

public void ConfigureServices(IServiceCollection services)

{

…

…

services.AddAuthentication()

.AddGoogle(googleOptions =>

{

googleOptions.ClientId =

Configuration[Authentication:Google:ClientId];

googleOptions.ClientSecret =

Configuration[Authentication:Google:ClientSecret];

});

}

The Google authentication middleware adds Google button in

both registration and login page (refer following Figure 7.16:

Google login option):

Figure 7.16: Google login option

When you click on the Google button, the page is redirected to

the Google login page (refer Figure 7.16: Google login option).

If authentication is get done successfully, it redirects to return

URL that supplied at the time of Google project setup:

Figure 7.17: Google – redirect to Google login page

You can modify callback URI when Google authentication

middleware is configured. Set new callback URI to

RemoteAuthenticationOptions.CallbackPath property of the

GoogleOptions class.

Using Facebook API

To setup Facebook authentication, you must create an app

project that provides app ID and secret. This app ID and secret

use to configure authentication in your project. The following

are the steps to create an app using Facebook API.

1. Navigate to URL:

https://developers.facebook.com/apps/

Login with your existing Facebook account credential or

create a new account. If your account is not registered

with the Facebook developer, then you need to register

(refer the Figure 7.18: Facebook – Become Facebook

Developer):

Figure 7.18: Facebook – Become Facebook Developer

2. Create App. Once you become a Facebook developer, it

allows you to create an app (refer to Figure 7.18:

Facebook – Become Facebook Developer):

Figure 7.19: Facebook – Create an app on Facebook

https://developers.facebook.com/apps/

When you click on Create App button, it is asking some

mandatory details such as app display name and contact

email. Click Create App ID button to create App Id (refer

Figure 7.20: Facebook – Create app Id):

Figure 7.20: Facebook – Create app Id

3. Setup Facebook Login. To setup Facebook login, click on the

Set Up button on Facebook Login card (refer Figure 7.21:

Facebook – Set up Facebook login). It redirects to the

quick start menu:

Figure 7.21: Facebook – Set up Facebook login

In the quick start option, it is asking for which kind of

application use this Facebook login. For Blazor server app,

you need to select the WWW (Web) app (refer Figure 7.21:

Facebook – Set up Facebook login):

Figure 7.22: Facebook – Quickstart menu

Here, you need to pass the Site URL that accesses the

Facebook page for authentication (refer Figure 7.23:

Facebook – Setup Web app in Facebook login). This page

also contains the other setting, and every setting has its

own save button.

Figure 7.23: Facebook – Setup Web app in Facebook login

4. Get App ID and App Secret. You can get app id and secret

from Setting > Basic tab (refer Figure 7.24: Facebook – Get

App Id and Secret). From here, you can modify other

details such as app domains, contact email, and so on:

Figure 7.24: Facebook – Get App Id and Secret

This app id and secret use for authentication Blazor App. The

next step is to configure Google authentication in your project,

and the following are the steps to configure Google

authentication in the Blazor server project.

1. The first step is to create the Blazor server app using the

Visual Studio template with an individual user account

option.

2. The next step is to install Facebook authentication

middleware using the NuGet package manager. The

following code shows the command to install this

middleware that needs to run in the NuGet package

manager console. This NuGet package adds the AddFacebook

extension method.

PM> Install-Package

Microsoft.AspNetCore.Authentication.Facebook

3. The next step is to configure Facebook authentication

middleware in the ConfigureService method of startup class

using the AddFacebook extension method. Here, you must

pass the AppId and secret that you get by following the

steps in the preceding section. The best practice is to

store this app id and secret in the configuration file (any of

JSON files such as appsettings.json). Following code shows

the structure of the configuration file:

{

Authentication: {

Facebook: {

AppId: App Id,

AppSecret: App secret

}

}

}

Following code is required to configure Facebook

authentication middle ware in your project:

public void ConfigureServices(IServiceCollection services)

{

…

…

services.AddAuthentication()

.AddFacebook(facebookOptions =>

{

facebookOptions.AppId =

Configuration[Authentication:Facebook:AppId];

facebookOptions.AppSecret =

Configuration[Authentication:Facebook:AppSecret];

});

}

The Facebook authentication middleware adds the Facebook

button in both registration and login page (refer following

Figure 7.25: Facebook login option):

Figure 7.25: Facebook login option

When you click on the Facebook button, the page is redirected to

the Facebook login page (refer Figure 7.26: Facebook – redirect

to the Facebook login page), and if authentication is get done

successfully, it redirects to return URL:

Figure 7.26: Facebook – redirect to the Facebook login page

You can modify callback URI when Facebook authentication

middleware is configured. Set new callback URI to

RemoteAuthenticationOptions.CallbackPath property of the

FacebookOptions class.

Use multiple authentication providers

together

You can also add multiple third-party authentication providers

to your Blazor server app. IT can be achieved by chaining the

provider extension after the AddAuthentication method in the

configureService method of Startup class.

In the following code snippet, four third-party (Microsoft

account, Google, Facebook, and Twitter) authentication

providers are added:

services.AddAuthentication()

.AddMicrosoftAccount(microsoftOptions => { … })

.AddGoogle(googleOptions => { … })

.AddFacebook(facebookOptions => { … })

.AddTwitter(twitterOptions => { … });

When you run the application, all four providers button will be

visible, and you can perform the authentication using any one

of them (refer Figure 7.27: Multiple authentication provider

option):

Figure 7.27: Multiple authentication provider option

The sequence of the provider login button is the same as the

sequence as you register the middleware for the providers.

When you are login with the external provider, and you are not

registered the user for an app, the app is asking for register

the user, and the Register button is visible on the page (refer

Figure 7.28: Registration for external users). It is applied to all

external providers.

Figure 7.28: Registration for external users

It is not required a password to register the user in the app

when you register with external login. When the external login

provider is unavailable, or you do not have an internet

connection, you cannot log in to the app.

Summary

Authentication is a process to validate; the user has

access to the application, and Authorization is a process to

validate; the user has the right to access the application

resource.

Blazor use ASP.NET core authentication and authorization

mechanisms

You can use built-in AuthenticationStateProvider service to

access user identity.

You can also write a custom AuthenticationStateProvider

server for your app, but it is not recommended as it

introduces security vulnerabilities.

Blazor provides AuthorizeView component that displays the

content based on user authentication and authorization

state:

It provides Authorized, and NotAuthorized render

fragments that display content when the user is

authenticated or not authenticated, respectively.

Using the Role parameter, you can do roles-based

authorization.

Using the Policy parameter, you can do policy-based

authorization.

Using the Authorizing element, you can display the

content when authentication is in progress.

The Authorize attribute render Blazor component

depending on user authorization state:

You can define Authorize attribute in Blazor

component using @attribute directive.

The Authorize attribute applicable only if component

reaches via a router. It does not perform authorization

for the child component.

When you define, Authorize attribute to _Imports.razor

page that applied authorization to all components

under folder.

You can also do role-based and policy-based

authorization using the Authorize attribute.

Blazor allows users to sign-in with external authentication

providers such as Google, Facebook, Twitter, and

Microsoft.

You can also add multiple external authentication

providers to your Blazor server app.

What you learned in this chapter?

In this chapter, you learn about how to do authentication and

authorization in the Blazor server app, learn about the various

Blazor component such as AuthorizeView and Authorize

attribute and learn about how to do authentication using

external providers such as Google, Facebook, Twitter, and

Microsoft.

What next?

In the next chapter, you will be learned about how to handle

the exception in the Blazor app and how to use a built-in

logging framework to log the exception. It also explains about

3rd party logging framework providers such as serilog.

Questions

1. What are authentication and authorization?

2. What is the use of AuthenticationStateProvider service?

3. How can you access the user identity using

AuthenticationStateProvider service?

4. What is the use of the AuthorizeView component?

5. Describe the features of the AuthorizeView component?

6. What is the use of the Authorize attribute?

7. How can you do authentication using external providers

such as Google, Facebook, and so on?

CHAPTER 8

Handle Exception and Log

Error

Introduction

The exception is an unexpected error condition occured

while executing the code. Most of the exception occur due

to logical and technical errors in code. Handling the

exception is essential for every application as it allows code

defensively and minimizes the chance of crashing. Another

essential point is logging the exceptions in any storage so

that administrator users can analyze the exception the take

appropriate action.

There are multiple reasons and places where the exception

can arise, and there are multiple ways to handle the

exceptions. In this chapter, you will learn about the place

where the exceptions can generate and different ways to

handle and log the exceptions.

In this chapter, we’ll cover the following topics

The behavior of Blazor app for an unhandled exceptions

Places where errors may occur

Introduction to the logging framework

Configure logging provider

Logging using serilog

Objective

Understand how to handle the exception

Understand the logging framework

The behavior of Blazor app for an

unhandled exception

As you learned in the previous chapter, the Blazor server is

a stateful application framework, so it maintains the

connection to the server. It is generally known as the Blazor

circuit. The Blazor circuit holds many essential items such as

active component instance, most recent rendered

components, and event handling delegates. Blazor creates a

separate circuit for each user browser connection, so when

the user opens multiple tabs, there are multiple circuits. All

the circuit works independently.

Every unhandled exception considers as fatal to the circuit

for the Blazor server app. For some of the unhandled

exceptions, the Blazor app terminates the circuit, so the

user needs to reload the page to create a new circuit, and

the existing circuit cannot be retrieved. All the circuit work

independently, so terminated circuits don't affect any other

circuits. You can compare the scenario with the desktop app

as desktop app crashes, and it must restart to continue

work.

You must need to add suitable exception handling logic to

the app to continue work with the app (without interrupt)

after an exception is generated.

Places where errors may occur

Following are some places where an error may occur while

executing your code:

Component instantiation

When the component is initialized by Blazor, it invokes

constructor and then trying to retrieve the service instance

that supplied in the constructor using @inject directive or

[Inject] attribute. If any error occurred in the constructor or

setting service instance to local property, the framework

can't load the component.

Lifecycle methods

During the component initialization, Blazor invoked various

life cycle events such as OnInitialized / OnInitializedAsync,

OnParametersSet / OnParameters SetAsync, ShouldRender /

ShouldRenderAsync and OnAfterRender / OnAfter RenderAsync. If

any exception occurred during the execution of any life

cycle event, it is fatal to the circuit, and Blazor do not

understand how to load the component.

Rendering logic

Blazor framework generates the BlazorRenderTree for the

component when it renders, and during this time, data

binding and element rendering are happening. Render logic

may throw the exception when the model is not initialized,

or some of the properties are null and trying to access

internal properties. It is fatal to the circuit.

Component disposal

The component can implement the System.IDisposable

interface and abstract method Dispose called when the user

is navigated to one page to another page. The dispose logic

may throw an exception. It is also fatal for the circuit. You

can use a try-catch block when you know that your code can

fail for any reason when the component disposed.

JavaScript interop

Blazor supports the JavaScript interop that allows you to call

JavaScript function from C# code and vice-versa. The

JavaScript interop call can generate the unhandled

exception when supplied arguments are not serialized, and

Server-side / client-side code may have unexpected value,

the invalid parameter value of the method, and so on. When

C# code thrown the unhandled exception, it does not treat

as fatal for the circuit because of this misbehaving in

JavaScript code.

Event handlers

Blazor invoked the C# code when an event has occurred. It

might possible underlying code in the event handler is

generated an unhandled exception. It is fatal to the circuit.

You can use a try-catch block when you know that your code

can fail for any reason.

Circuit handlers and disposal

The circuit handler allows you to write code in a particular

state of user circuit such as initialized, connected,

disconnected, and disposed of. This notification managed by

the CircuitHandler service that registers using DI. When the

circuit handler method throws the unhandled exception, this

is fatal to the circuit.

Prerendering

When the page in Blazor app render, components are also

rendered at that time. The component use

RenderComponentAsync<TComponent> extension method of HTML

helper for pre-rendering. Any exception occurred the pre-

rendering, this is fatal to the circuit, and there is no meaning

to render this component as it does not work.

Enabling detailed errors

When an unhandled exception occurred, the Blazor server

app disconnects the circuit and adds an exception in the

browser console. However, it is not a detailed error as the

end-user does not require detail about the exception. When

an unhandled exception occurred, the high-level, Blazor only

shows that exception occurred but not provide any details

(refer Figure 8.1: Unhandled exception browser console):

Figure 8.1: Unhandled exception browser console

In the development environment, it is required a detailed

error for debugging purposes. Blazor provides an option to

enable detailed errors that provides you most useful

information about the exception.

You can enable detailed error by setting up DetailedErrors

property of circuit option to true. You can add circuit option

using AddCircuitOptions extension method just after

AddServerSideBlazor method in configure method of startup

class (refer following code snippet):

public void ConfigureServices(IServiceCollection services)

{

…

services.AddServerSideBlazor()

.AddCircuitOptions(options => { options.DetailedErrors =

true; });

…

…

}

Blazor app enables you to display detail error in the browser

console when an exception occurred (refer Figure 8.2: Detail

of exception in browser console):

Figure 8.2: Detail of exception in the browser console

The current version of Blazor does not provide costly

exception handling, and it does not use the ASP.NET Core

exception handling mechanism once the circuit is

established. So, you must use a try-catch block to handle

the exception. The catch block catches the exception, and

you can log the exception in file or database and show an

appropriate message to the user:

try

{

//Write your code that might generate exception.

}

catch(Exception ex)

{

}

So, you need to write a try-catch block in every code block

that might generate an exception.

Introduction to the logging

framework

Logging the exception is an essential part as it helps you to

debug code and investigate the problem in logic. The

ASP.NET core has built-in support for the logging framework,

and there are extensions available for the Blazor app that

help you to log the exceptions. These extensions are the

implementation of Microsoft.Extensions.Logging to support the

ILogger interface. This extension provides the same features

as Microsoft.Extensions.Logging provides for .NET Core.

Configure logging provider

The logging extensions are not coming with the default

Blazor server app template so, you need to configure

logging extension in the Blazor project. The extensions are

available on the NuGet. You can add a logging extensions to

the Blazor project using the NuGet package manager or

.NET core CLI. Following command is used to add an

extension to Blazor project using NuGet package manager:

PM> Install-Package Blazor.Extensions.Logging -Version 1.0.0

The next step is to register the logging extension. There are

different extension methods available to configure different

types of logging; for example, the AddBrowserConsole method

use to configure browser console logger. Using the following

code, you can set up the browser console logger for the

Blazor app:

public void ConfigureServices(IServiceCollection services)

{

…

services.AddLogging(builder => builder

.AddBrowserConsole()

.SetMinimumLevel(LogLevel.Trace)

);

…

}

To consume a logger in the Blazor component, you need to

inject ILogger service to the component. There are various

extension methods available to log the message. For

example, LogDebug method uses to format and write a debug

log message (refer following code snippet):

@page "/"

@inject ILogger<Index> logger

<h1>Hello, world!</h1>

Welcome to your new app.

@code{

protected override async Task OnInitializedAsync()

{

logger.LogDebug("Component init");

}

}

The logging framework provides built-in extension methods

based on the log level. Following log levels supported by

logging framework:

Trace

Debug

Information

Warning

Error

Critical

None

For example, to log information, you can use the

LogInformation extension method.

Set default minimum log level

You can set the minimum log level using the SetMinimumLevel

method of the LoggingBuilderExtensions class. It sets a

minimum logging level for log messages. The log level

below the minimum log level is ignored. The default

minimum logging level is information; hence Debug and Trace

are ignored.

Following code used to set the minimum log level to Warning,

so only Warning, Error and Critical log messages are logged:

services.AddLogging(builder => builder

.AddBrowserConsole()

.SetMinimumLevel(LogLevel.Warning)

);

Blazor logging extension provides nearly the same features

as Microsoft Extensions Logging (MEL) provides. You

can also use third-party logging providers such as serilog,

elmah.io, and so on.

Logging using serilog

The serilog provides diagnostic logging to various places

such as console, file, and so on. It is easy to implement and

highly configurable. The serilog provides various sinks to log

to various platforms such as browser console, file, MSSQL,

and so on.

The configuration of serilog is quite easy and slightly

different from the built-in logging provider configuration. You

need to configure serilog in the Program class. The

CreateLogger extension method of the LoggerConfiguration

class creates a logger instance using configured sinks and

another configuration. The Blazor client project supports log

to write to the browser console. Blazor server project

supports many options for logging, and it very similar to the

ASP.NET Core application.

For the client app, you need to install browser console sink

(Serilog.Sinks.BrowserConsole) using the NuGet package

manager or Core CLI. This sink provides method

BrowserConsole that enabled write log in the browser console.

Following code snippet shows serilog configuration for

logging to the browser console:

public class Program

{

public static void Main(string[] args)

{

Log.Logger = new LoggerConfiguration()

.Enrich.WithProperty("InstanceId",

Guid.NewGuid().ToString("n"))

.WriteTo.BrowserConsole()

.CreateLogger();

try

{

Log.Information("Starting up");

CreateHostBuilder(args).Build().Run();

}

catch (Exception ex)

{

Log.Fatal(ex, "Application start-up failed");

}

finally

{

Log.CloseAndFlush();

}

}

public static IHostBuilder CreateHostBuilder(string[] args) =>

Host.CreateDefaultBuilder(args)

.ConfigureWebHostDefaults(webBuilder =>

{

webBuilder.UseStartup<Startup>();

})

;

}

The CloseAndFlush method of Log class reset logger to default

and try to dispose of the original logger object. The

WriteTo.BrowserConsole method writes log event to the

browser console. It will only work with the Blazor client

project.

The Logging using serilog in the Blazor server project is very

similar to logging in the ASP.NET Core app. For the Blazor

server project, serilog provides various sinks to write log in

the file, database, and so on.

The first step to configure serilog in the Blazor server project

is to install Serilog.AspNetCore. You can install this package

either using the NuGet package manager or dotnet CLI.

Using the following command, you can install this package

to the Blazor server project using dotnet CLI.

> dotnet add package Serilog.AspNetCore

The next step is to configure serilog in the Program class. It is

very similar to the configuration in the Blazor client project

but additionally set serilog as a logging service provider

using UseSerilog method:

public class Program

{

public static void Main(string[] args)

{

Log.Logger = new LoggerConfiguration()

.Enrich.FromLogContext()

.WriteTo.Console()

.CreateLogger();

try

{

Log.Information("Starting up");

CreateHostBuilder(args).Build().Run();

}

catch (Exception ex)

{

Log.Fatal(ex, "Application start-up failed");

}

finally

{

Log.CloseAndFlush();

}

}

public static IHostBuilder CreateHostBuilder(string[] args) =>

Host.CreateDefaultBuilder(args)

.UseSerilog()

.ConfigureWebHostDefaults(webBuilder =>

{

webBuilder.UseStartup<Startup>();

})

;

}

For the Blazor server project, WriteTo.Console method does

not write log in browser console but server command

console (refer Figure 8.3: command prompt console):

Figure 8.3: command prompt console

The serilog does not use the logging section of the

appSetting.json file. If you use serilog as a logging provider,

you can remove this section from the appSetting.json file.

Write log to file using serilog

The serilog provides file sinks as default sinks. To write a log

to file, you don't need to install an additional sink, but you

need to do some additional configuration. The serilog sink

provides WriteTo.File method that use to write log to file.

The file will be written using the UTF-8-character set to

provide the location.

Following code snippet shows configuration of file sink that

write log file to specified location:

Log.Logger = new LoggerConfiguration()

.Enrich.FromLogContext()

.WriteTo.File(@"C:\logs\log.txt")

.CreateLogger();

The serilog is highly configurable. It provides various option

for configuring such as:

It allows specifying rolling interval and size

It allows specifying output template

It allows specifying the minimum log level

It allows log file to be shared by multiple processes

It allows changing character encoding used to write the

text file

All the configuration of serilog comes with a default value

so, you do not need specify all configuration value but

specify the configuration value that you want to change

from the default value.

Following code snippet specify minimum log level to

warning, rolling interval to daily and output format:

.WriteTo.File(@"C:\logs\log.txt",

Serilog.Events.LogEventLevel.Warning,

rollingInterval: RollingInterval.Day,

outputTemplate: "{Timestamp:yyyy-MM-dd HH:mm:ss}

[{Level:u3}] {Message:lj}{NewLine}{Exception}")

Above code generate a new file every day and log with

specified format (refer Figure 8.4: File logging example

using serilog):

Figure 8.4: File logging example using serilog

Here, every file name ends with the day (date) as the rolling

interval is set to daily. Similar way, serilog provides many

other sinks that help you to write log in different platforms

such as database and Seq.

Summary

The exception is an unexpected error condition that

generates due to logical error or technical error.

Every unhandled exception considers as fatal to the

circuit for the Blazor server app, and the Blazor app

terminated circuit when an unhandled exception

occurred.

There are many places in the application where an

exception can generate such as component

instantiation and life cycle method, JavaScript interop,

pre-rendering, and so on.

The current version of Blazor does not provide costly

exception handling, and it does not use the ASP.NET

Core exception handling mechanism once circuit

established. So, you must use a try-catch block to

handle the exception.

Blazor does not show error detail by default, but if you

configured for detailed error, it displays a detailed error

with cause and line number of exceptions.

Logging the exception is an essential part as it helps

you to debug code and investigate the problem in logic.

These extensions are available for the Blazor app, and

their implementation very similar to MEL

(Microsoft.Extensions.Logging).

The features of logging extension are very similar to

MEL (Microsoft.Extensions.Logging).

Blazor app also supports third-party logging providers

such as serilog, elmah.io, and so on.

What you learned in this chapter?

In this chapter, you learned about how the Blazor app reacts

to unhandled exception and what are different causes and

places of the app where an exception can generate. You also

learned about the logging extension supported by the Blazor

app.

What next?

In the next chapter, you will be learned about how to create

a single page application with the Blazor server project and

how to do CRUD operation with EF code.

Questions

1. What is the behavior of the Blazor app when any

unhandled exception occurred?

2. How can you handle the exception in the Blazor app?

3. Brief about the logging extension in the Blazor app?

CHAPTER 9

Getting Started with Blazor

Using Visual Studio 2019

Introduction

The Blazor is a new web framework that can run in any

browser. Using the Blazor framework, you can create a

vibrant and modern Single Page Application (SPA). In

previous chapters, you learned about the various features of

the Blazor app. In this chapter, you will learn about how to

create a SPA using Blazor and how to do Create Read

Update Delete (CRUD) operations using entity framework

core.

In this chapter, we’ll cover the following topics

Setting up the Blazor development environment using

Visual Studio 2019

Creating a single page application using Blazor

Scaffolding the model using EF Core

CRUD operation with EF in Blazor server app

Installed project template for Blazor

Objective

Understand how to setup development environment

using VS 2019

Understand how to do CRUD operation with EF in Blazor

server app

Setting up the Blazor development

environment using Visual Studio 2019

In Chapter 1, An Introduction to Blazor, you learned about

how to set up a development environment. To start

development using the Blazor framework, the .NET Core

framework and IDE must be installed in your machine.

The Blazor introduced in .NET Core 3.0 so, .NET Core 3.0 or

above version must install to start development Blazor app.

As an IDE, either you can choose VS 2019 (or latest version)

or VS Code. The VS 2019 is licensed IDE and available in

Community / Professional / Enterprise editions. The VS Code

is a free and cross-platform source code editor developed by

Microsoft for Windows, Linux, and iOS. It provides almost all

features that required for development, including

integrations to source control (GitHub).

The current version of Blazor is only supporting the server

app and provides a template for the server app. You can

also install an additional template that use to create the

Blazor app using CLI. After creating the Blazor app using an

additional template, you can edit the app using VS 2019.

Creating a single page application

using Blazor

The single-page application (SPA) is a website design

approach where the new html page content is loaded into a

pre-defined section of the page without re-render standard

components such as header, footer, and so on. It means it

rewrites page content without entire loading pages from a

server. All modern framework such as Angular, Knockout,

and so on, supports SPA. It helps to reduce the frequency of

HTML, CSS, and script files loaded throughout the lifespan of

the application.

There are some advantages of SPA like the SPA is fast as it

loads resources such as JavaScript, CSS, and HTML once

through the life of an application in the browser, and you

can effectively use client-side features such as local storage.

It also has some disadvantages, like it is challenging to

make SEO optimization, JavaScript must present and

enabled, and the SPA is less secure compared to the

traditional application.

The default template of the Blazor app creates a single page

application. When looking at the layout page of the default

template, there are three sections: header, left panel, and

body (refer Figure 9.1: Map code snippet with output page).

The left panel contains the menu items, the header may

contain the log and other information, and the body

contains an HTML page (Blazor component). In SPA, all

Blazor components are loaded to the body section. So, any

new component is loaded into the body section, the header

and left panel is not affected (not reload):

Figure 9.1: Map code snippet with output page

You can customize the layout based on your requirements.

The Blazor routing mechanism always replaces the @Body

directive with a new component. So, Blazor loads the

component without refreshing the whole page.

Scaffolding the model using EF Core

The entity framework (EF) is a popular object-relational

mapper (ORM) framework to work with the database. The

EF core is lightweight, cross-platform, and extensible version

of EF. The EF core provides database providers that use to

access various databases such as SQL server, Cosmos,

PostgreSQL, MySQL, Oracle DB, and so on. In ORM, data

access is performed by the model. The model is a map with

the database table, and the model's properties are mapped

with the table's columns. The EF contains the context object

that responsible for maintaining the session with a

database; that is, it allows to query and saves data to the

database using providers. You can also generate a model

from an existing database using the EF migration command-

line tool.

The EF core is not part of .NET Core framework as it has

multiple providers so, you need to install the EF core

database provider. You can install database providers using

NuGet package manager or .NET Core CLI. Using the

following command, you can install SQL server EF core

database provider using the NuGet package manager.

PM> Install-Package Microsoft.EntityFrameworkCore.SqlServer

EF core also supports database migration. The migration is a

database schema update that syncs with model changes

during the development. The EF migration provides a way to

update the database schema incrementally without losing

the data. The migration is done using command-line tools

(CLI) and API.

You can migrate using CLI, either package manager console

tools or .NET Core CLI tools. Using the following command,

you can install the .NET Core CLI tool for migration at the

global level:

> dotnet tool install --global dotnet-ef

Figure 9.2: Install EF migration tool using .net core CLI

Apart from this, you need to install .NET Core framework

SDK and Install-Package Microsoft.EntityFrameworkCore.Design

for your project. You can install this package using the

following command from the NuGet packages manager

console:

PM> Install-Package Microsoft.EntityFrameworkCore.Design -

Version 3.1.0

Using the following command, you can add initial migration.

This command is looking for your project file so, it must in

the root of the project file location:

> dotnet ef migrations add InitialCreate

This command generates two files to your project under the

Migrations folders:

Figure 9.3: Create the initial migration

Following are the files generated:

Xxxxxxxxxxxxxx_InitialCreate.cs: It is the main migration

file that contains a necessary command for upgrade

and downgrade the database.

EntityContextModelSnapshot.cs: This is a migration

snapshot of the current model that helps to determine

the changes that add to the next migration.

Using the following CLI command, you can apply the

migration to the database:

> dotnet ef database update

You can remove the last applied migration using the

following CLI command:

> dotnet ef migrations remove

The migration files generate based on the timestamp that

helps you analyze changes in the model. You can also do the

manual migration for the critical production site. The

migration generates a script that does not affect the data.

CRUD operation with EF in Blazor

server app

In Chapter 1, An Introduction to Blazor, you learned about

how to create the Blazor server using VS 2019. To start the

CRUD operation example, you need to create the Blazor

server app. Following is the step by step procedure with

detail explanation. The CRUD operation in the Blazor server

app is the same as what you in the ASP.NET Core app.

1. Create model: The model looks like POCO. You can use

DataAnnotation to define validation. There is schema

related DataAnnotation also provided, such as Table, Key,

and so on. The DatabaseGenerated DataAnnotation used to

specify property behavior when generates the database

column:

Namespace BlazorServerCrud.Model

{

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

[Table("Customer")]

public class Customer

{

[Key]

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

[StringLength(50)]

[Required]

public string Name { get; set; }

[StringLength(50)]

public string AddressLine1 { get; set; }

[StringLength(50)]

public string AddressLine2 { get; set; }

[StringLength(50)]

[Required]

public string City { get; set; }

[StringLength(50)]

[Required]

public string State { get; set; }

}

}

Following is the equivalent Table schema (SQL script) of

the model defined in the preceding step:

CREATE TABLE [dbo].[Customer](

[Id] [int] IDENTITY(1,1) NOT NULL,

[Name] [varchar](50) NULL,

[AddressLine1] [varchar](50) NULL,

[AddressLine2] [varchar](50) NULL,

[City] [varchar](50) NULL,

[State] [varchar](50) NULL,

CONSTRAINT [PK_Customer] PRIMARY KEY CLUSTERED

(

[Id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,

ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

2. Create a context class: The DbContext class instance

represents the session with the database, and it is used

to querying and save data to the database. In the

following code, the entity context class has two

constructors: one with parameter and another without

parameter. The without parameter construction is used

for migration. Here, you need to pass the hard code

connection string. The Parameterized constructor takes

connection string as a parameter. The context class

contains all entities instance as DbSet property that is

used to query and save the data in the database:

Namespace BlazorServerCrud.Model

{

using Microsoft.EntityFrameworkCore;

public class EntityContext : DbContext

{

string _connectionSting;

public EntityContext(string connectionString)

{

_connectionSting = connectionString;

}

public virtual DbSet<Customer> Customer { get; set; }

protected override void

OnConfiguring(DbContextOptionsBuilder optionsBuilder)

{

if (!optionsBuilder.IsConfigured)

{

optionsBuilder.UseSqlServer(_connectionSting);

}

}

}

}

3. Create a Service class: In this following example, CRUD

operation related methods are created, such as:

GetAll: It returns all customers list from the

database

GetDetail: It returns customer details based on the

provided identity

Add: It adds a new customer

Update: It updates the details of existing customers

Delete: It deletes the existing customer.

In the service class, you can also add business logic

related methods that help you to validate the business

scenario. In the following example, service class has

parameterized constructor with connection string as

parameter to initialize DBContext:

Namespace BlazorServerCrud.Data

{

using BlazorServerCrud.Model;

using Microsoft.EntityFrameworkCore;

using System.Collections.Generic;

using System.Threading.Tasks;

public class CustomerService

{

EntityContext context;

public CustomerService(string connectionString)

{

context = new EntityContext(connectionString);

}

//Get All

public Task<List<Customer>> GetAll()

{

return context.Customer.ToListAsync();

}

//Get the details

public Customer GetDetail(int id)

{

Customer customer = context.Customer.Find(id);

return customer;

}

//Add new

public void Add(Customer customer)

{

context.Customer.Add(customer);

context.SaveChanges();

}

//Update

public void Update(Customer customer)

{

context.Entry(customer).State = EntityState.Modified;

context.SaveChanges();

}

//Delete

public void Delete(int id)

{

Customer emp = context.Customer.Find(id);

context.Customer.Remove(emp);

context.SaveChanges();

}

}

}

4. Register the service in the ConfigureService method of

Startup class (refer to the following code). The service

class's constructor has a parameter that is defined in

the connection string section of appsettings.json:

public void ConfigureServices(IserviceCollection services)

{

services.AddRazorPages();

services.AddSingleton<CustomerService>(new

CustomerService(Configuration.GetConnectionString(“defaul

t”)));

services.AddServerSideBlazor()

.AddCircuitOptions(options => { options.DetailedErrors =

true; });

}

5. Create a list page: To create a list page, you need to

inject the customer service created in the preceding

section. The customer service's GetAll method returns

all the customers. In following code, the customers list

down using table structure and last column of table

contains icon for edit and delete. On top of table, there

is Add customer button for adding new customer:

@page "/fetchdata"

@using BlazorServerCrud.Data

@using BlazorServerCrud.Model

@inject CustomerService

<h1>Customer Master</h1>

@if (customers == null)

{

<p>Loading…</p>

}

else

{

<div style=”padding-bottom:10px;”>

Add

Customer

</div>

<table class=”table”>

<thead>

<tr>

<th>Id</th>

<th>Name</th>

<th>Address Line 1</th>

<th>Address Line 2</th>

<th>City</th>

<th>State</th>

<th></th>

</tr>

</thead>

<tbody>

@foreach (var customer in customers)

{

<tr>

<td>@customer.Id</td>

<td>@customer.Name</td>

<td>@customer.AddressLine1</td>

<td>@customer.AddressLine2</td>

<td>@customer.City</td>

<td>@customer.State</td>

<td>

<a class=”btn btn-info”

href=”/customers/@customer.Id”>Edit

<button class=”btn btn-danger”>Delete</button>

</td>

</tr>

}

</tbody>

</table>

}

@code {

List<Customer> customers;

protected override async Task OnInitializedAsync()

{

await BindCustomer();

}

private async Task BindCustomer()

{

customers = await customerService.GetAll();

}

}

When you run the preceding code, it generates the following

output (Figure 9.4: Example - Customer List page):

Figure 9.4: Example - Customer List page

Create Add/Edit page with validation

In Chapter 3, Blazor Concepts, you learned about the

databinding and form validation in the Blazor app. Blazor

app supports both one-way binding and two-way binding.

The two-way binding allows you to bind the value of the

variables/properties to the HTML element in DOM and vice-

versa. The form is defined using the EditForm component in

the Blazor app. Blazor app provides two components to

show validation message: ValidationSummary component and

ValidationMessage component. The ValidationSummary

component used to summaries all the forms validation

message and ValidationMessage component is used to display

validation messages for a specific field. The Blazor form is

also provided OnValidSubmit event that triggered when the

form successfully submits and OnInvalidSubmit event when

the form has validation error on submit.

The following code uses the ValidationSummary component to

summaries all the forms of validation message and

OnValidSubmit event to save valid data into the database.

Here, Add or Edit customers identified by the value of the

CustomerId parameter. If it is zero (0), then the page is for

add a new customer else page is to update the existing

component.

In edit customer page, existing customer information is

retrieved in the OnInitializedAsync page life cycle method.

The Add method of customer service is called when a page

is in add mode else Update method is called in

HandleValidSubmit event. After successfully insert or update

customer record, it navigates to customer list page:

@page "/customers/{customerId:int}"

@using BlazorServerCrud.Data

@using BlazorServerCrud.Model

@inject CustomerService customerService

@inject NavigationManager NavigationManager

<h3>@(CustomerId == 0 ? "Add" : "Edit") Customer</h3>

<EditForm Model="@customer" OnValidSubmit="@HandleValidSubmit">

<DataAnnotationsValidator />

<div class="row content">

<div class="col-md-2"><label for="name">Name*</label></div>

<div class="col-md-3"><InputText id="name" @bind-

Value="@customer.Name" /></div>

</div>

<div class="row content">

<div class="col-md-2"><label for="addressLine1">Address Line

1</label></div>

<div class="col-md-3"><InputText id="addressLine1" @bind-

Value="@customer.AddressLine1" /></div>

</div>

<div class="row content">

<div class="col-md-2"><label for="addressLine2">Address Line

2</label></div>

<div class="col-md-3"><InputText id="addressLine2" @bind-

Value="@customer.AddressLine2" /></div>

</div>

<div class="row content">

<div class="col-md-2"><label for="city">City*</label></div>

<div class="col-md-1"><InputText id="city" @bind-

Value="@customer.City" /></div>

</div>

<div class="row content">

<div class="col-md-2"><label for="state">State*</label>

</div>

<div class="col-md-1"><InputText id="state" @bind-

Value="@customer.State" /></div>

</div>

<div class="row content">

<button class="btn btn-info" type="submit">Save</button>

</div>

<div class="row">

<ValidationSummary />

</div>

</EditForm>

@code {

[Parameter]

public int CustomerId { get; set; }

Customer customer;

protected override async Task OnInitializedAsync()

{

if (CustomerId > 0)

{

customer = customerService.GetDetail(CustomerId);

}

else

{

customer = new Customer();

}

}

private void HandleValidSubmit()

{

SaveCustomer();

}

private void SaveCustomer()

{

if (CustomerId == 0)

{

customerService.Add(customer);

}

else

{

customerService.Update(customer);

}

NavigationManager.NavigateTo("fetchdata");

}

}

The Add customer page looks like as following Figure 9.5:

Example – Add Customer page:

Figure 9.5: Example – Add Customer page

When you press the Save button, the Blazor engine will

perform the validation defined using DataAnnotation. If

anything is invalid in form, it shows message in summary

(refer Figure 9.6: Example – Add Customer with validation

messages):

Figure 9.6: Example – Add Customer with validation messages

The validation works similarly in add and edits the customer

page. In the case of multiple validations defined on the

model's property, the Blazor engine performs the validation

one by one and stops validating property when the first

invalid instance found. For example, Name property

contains two validation Required and StringLength. When the

Name filed is empty, required validation fired but not string

length.

Delete customer

Delete customer functionality is quite easy to implement.

You need to pass customer ID (that you want to delete) to

the customer service's Delete method. The record

permanently removes from the database in delete

functionality so, you may want to ask for confirmation about

whether the user sure to delete the record or not.

The Blazor does not provide a built-in component to display

confirmation. You can use the Bootstrap model component

or JavaScript 's confirm box in this case. To invoke these

options, you can use JavaScript interop.

The idea is when a user clicks on the delete button, the

customer id temporary stored and JavaScript method calls

to show confirmation. Once a user confirms delete, the C#

method is called from JavaScript to delete records.

In the following code, the component instance is passed to

JavaScript using the OnAfterRender life cycle event, and the

ConfirmDelete method called when a user clicks on the Delete

button. In this method, customerId is temporarily stored in

the variable and call the confirmDelete of JavaScript:

@page "/fetchdata"

…

…

@inject IJSRuntime JsRuntime;

<h1>Customer Master</h1>

@if (customers == null)

{

<p>Loading…</p>

}

else

{

…

…

…

<table class="table">

<thead>

<tr>

…

…

…

</tr>

</thead>

<tbody>

@foreach (var customer in customers)

{

<tr>

…

…

…

<td>

<a class="btn btn-info"

href="/customers/@customer.Id">Edit

<button class="btn btn-danger" @onclick="@(() =>

ConfirmDelete(customer.Id))">Delete</button>

</td>

</tr>

}

</tbody>

</table>

}

@code {

…

…

…

protected override void OnAfterRender(bool firstRender)

{

if (firstRender)

{

JsRuntime.InvokeAsync<object>("passInstanceToJS",

DotNetObjectReference.Create(this));

}

}

protected void ConfirmDelete(int id)

{

DeleteId = id;

JsRuntime.InvokeAsync<int>("confirmDelete");

}

[JSInvokable]

public bool DeleteCustomer(bool confirmed)

{

if (confirmed)

{

customerService.Delete(DeleteId);

return true;

}

return false;

}

}

The JavaScript method looks like the following code. It asks

for confirm delete and call DeleteCustomer method (C#) if a

user confirms for delete:

function confirmDelete() {

var r = confirm("Are you sure you want to delete Customer");

myClsObj.invokeMethodAsync("DeleteCustomer", r)

.then(data => {

if (data) {

window.location.reload();

}

});

}

var myClsObj;

function passInstanceToJS(instance) {

myClsObj = instance;

}

This code shows JavaScript 's confirm box when you click on

the Delete button (refer Figure 9.7: Example – Delete

Customer confirm box):

Figure 9.7: Example – Delete Customer confirm box

Once the deleted customer gets deleted, function pointer

return to JavaScript function's then block. Here, you may

reload the page so, updated customer data can be available

in the table.

Installed project template for Blazor

The default template to create the Blazor server app is

provided with the .NET Core framework 3.0. You can also

install templates from the Visual Studio marketplace. To

install the project templates, go to Extensions | Manage

Extensions. It lists down all available temples in the Visual

Studio marketplace. You can also search required template

and then download it (refer Figure 9.8: Install third party

project template):

Figure 9.8: Install third party project template

When you select any available template, it shows template

related information such as author, version, no of

downloads, release note, and so on.

You can also create own project template using the VSIX

project template and uploaded it to the Visual Studio

market; hence it available to another person for use. Once

the project template is installed, the project template listed

in the New Project dialog (File | New | Project) in VS 2019.

Summary

You can use Visual Studio 2019 or Visual Studio Code as

IDE to develop Blazor application

You can also create/Build/run Blazor application using

.NET Core CLI; however, it required a template to be

install

The default template of Blazor app creates single page

application

To develop a data access layer in Blazor app, you can

use any ORM such as entity framework core

Entity framework core supports database migration

You can migrate using CLI either package manager

console tools or .NET Core CLI tools

You can use the third party project template to create

Blazor app

What you learned in this chapter?

Up to this chapter, you learned about the various concept of

the Blazor app and how you can use this concept in various

scenarios. In this chapter, you learn how to create an end to

end application using the Blazor server app project template

with EF core and also learned how to install the third party

project template.

What next?

In the next chapter, you will be learned about the various

hosting models that can use to deploy the Blazor server

app, such as IIS and Azure.

Questions

1. Brief about how to create the Blazor server app using

VS 2019?

2. Brief about the EF core migration process?

3. How to install a third party project template in VS 2019?

CHAPTER 10

Hosting and Deployment

Introduction

In previous chapters, you learned about the various features

of the Blazor server app that required to develop business

applications. The next step is to deploy the application so that

it is available for use. There are multiple options to deploy

Blazor server app such as deploy on IIS, Azure, and so on. In

this chapter, you will learn how to deploy the Blazor server

app on IIS and Azure.

In this chapter, we’ll cover the following topics

Publish Blazor App

Deploying Blazor app on IIS

Deploying Blazor app on Azure

Objective

Understand the hosting and deployment model of the Blazor

server app and learn how to deploy an app on IIS and Azure.

Publish Blazor server app

To deploy the application, the first step is to publish an

application. When you publish an application, all application

files compiled into the assembly (dll) and copied to the

specified location. The project dependencies and static files

are also copied in the same folder. The views are also

compiled in the project assembly file.

The Blazor use ASP.NET Core publishing and hosting model so

you can publish Blazor application using VS 2019 editor and

.NET Core CLI.

To publish the Blazor server app, right-click on the project, and

click Publish option from the context menu (refer Figure 10.1:

Create a profile - Publish option in VS 2019). Now it asks for

the publish options. There are multiple publish the target

available such as AppService, Azure virtual machine FTP,

Folder, and so on. You can select the Folder option to generate

publish build on the local machine. Your selection of

publishing target stored as Profile in the Visual Studio:

Figure 10.1: Create a profile - Publish option in VS 2019

Once the profile is created in visual studio, it can be used for

the next time when publishing the application. After storing

the profile, the Publish button available (refer Figure 10.2:

Publish Blazor server app):

Figure 10.2: Publish Blazor server app

Once the application publishes successfully, it is ready to

host. You can also configure for Continuous Integration

and Continuous Delivery (CICD).

Alternatively, you can publish the Blazor app using .NET Core

CLI. The dotnet publish command generates the application

deployment files and their dependency into the specified

folder. You can also define configuration parameters with this

command, such as configuration (debug/release), framework,

manifest file, output directory, and so on.

Deploying Blazor app on IIS

The Blazor server uses the same hosting model as ASP.NET

Core used so, deployment of the Blazor app on IIS is very

similar to deploy the ASP.NET Core app on IIS. It executes

server from ASP.NET core app and UI handling (UI update and

event handing) is managed using the SignalR.

Prerequisites

The following are prerequisites that need to install before

starting to deploy the Blazor app on IIS. Before installing these

prerequisites, IIS must properly configure:

.NET Core Runtime

Hosting Bundle Installer

These prerequisites are download from

https://dotnet.microsoft.com/download (refer Figure

10.3: Download prerequisites):

Figure 10.3: Download prerequisites

For .NET Core runtime, Both 64 / 32-bit download options are

available. On the same page, you can download Hosting Bundle

Installer (refer Figure 10.4: Download prerequisites: .net core

runtime and hosting bundle):

https://dotnet.microsoft.com/download

Figure 10.4: Download prerequisites: .net core runtime and hosting bundle

It is recommended to install the latest version of .NET Core

runtime and hosting bundle. The host bundle must install after

the successful installation of .NET Core runtime. It is

recommended to restart the machine after installing all

prerequisites.

Configure IIS

Once both prerequisites installed, you can start the configure

IIS. Following are the steps to configure IIS:

1. Add Website on IIS. To add a new website, right-click on

Sites, and select Add Website option in the following

screenshot:

Figure 10.5: Add new web site in IIS

It will open a window where you can do the configuration

for your website, such as site name, application pool, IP

address/port, the path of application build, and so on.

(refer Figure 10.6: IIS – Add Website configuration):

Figure 10.6: IIS – Add Website configuration

2. Configure the application pool. In preceding step, the Edit

Application Pool selected to run the Blazor app. Go to Edit

Application Pool and double click on application pool so, it

opens in Edit mode (refer Figure 10.7: IIS – Manage

Application pool):

Figure 10.7: IIS – Manage Application pool

The ASP.NET Core does not use .NET CLR, so; you need to

select No Managed Code from .NET CLR version dropdown. The

IIS use AspNetCoreModuleV2 to host Blazor application (refer

Figure 10.8: IIS – AspNetCoreModuleV2):

Figure 10.8: IIS – AspNetCoreModuleV2

In this way, you can deploy Blazor application on IIS on

windows operating system. The VS 2019 also provides an

option that allows you to configure IIS and push application

build using web deploy or file transfer.

Deploying Blazor app on Azure

There are multiple ways to host applications on Azure, such as

host application as static content, host as App service, and so

on. The VS 2019 allows hosting applications on Azure as App

Service and App service Linux. The VS2019 also provides an

option to host applications on Azure Virtual machines.

Prerequisites

To host an application on Azure as App service, you must have

an Azure subscription account. If you haven't an Azure

subscription account, you can create a free Azure account. It

is only the prerequisites to host a Blazor application on Azure.

Deploy app on Azure as app service

The following are the steps to host an application on Azure as

App service.

Create publish profile with create app service or

selecting existing one

The VS2019 provides an option that enables you to host

application in-app service from the published app. To publish

the Blazor server app, right-click on the project, and click

publish option from the context menu (refer Figure 10.1:

Create a profile - Publish option in VS 2019). It Provides the

various options for publishing; one of them is App Service (refer

Figure 10.9: Publish App in Azure app service):

Figure 10.9: Publish App in Azure app service

You can either create a new App Service or select the existing

one. By clicking of Create Profile button, VS 2019 will create a

profile that host application on Azure App Service.

Sign in using Azure account

Now, you need to sign-in with Azure account. If you did not

have an Azure account, you could create a free account. To

sign-in with existing Azure account, click Sign In link (refer

Figure 10.10: Create new App Service):

Figure 10.10: Create new App Service

Configure App Service.

When you click on Sign In link, it will ask Azure account

credentials. After a successful login, it allows you to configure

App Service (refer Figure 10.11: Create New App service- Add

configuration):

Figure 10.11: Create New App service- Add configuration

Here, you can configure the following items of App Service:

Name: Name of the App Service. The name of App Service

is unique across the world. The URL of your site is {App

Service name}.azurewebsites.net.

Subscription: Select the subscription that used for this App

service. The subscription is used for billing purposes.

Resource Group: You can either create and select a new

resource group or select an existing resource group.

Hosting Plan: you can either select the existing plan or

create and select a new plan for App Service.

Application Insights: Application Insights is used to

monitor live application in terms of performance

anomalies. If you do not want any kind of monitoring of

service, select none from the dropdown list.

Now, click on Create button to create App Service and save

created profile in VS2019. It takes a few minutes to deploy App

Service on Azure Portal. The time for deploying App service

depends on your internet connection speed.

Once App Service created successfully, the Publish button is

available (refer Figure 10.12: Publish app on Azure App

Service). Here, it also shows a summary of your configuration

such URL, resource group, target framework, and so on:

Figure 10.12: Publish app on Azure App Service

Publish application on app service

Click on the Publish button to publish the application as an App

Service on Azure Portal. After successfully, publish the

application on Azure, the website automatically launches to

default browser (refer Figure 10.13: Run application from

Azure portal):

Figure 10.13: Run application from Azure portal

You can also edit the configuration App Service from Azure

Portal. The App Service created from publishing option is

available on Azure Portal (refer Figure 10.14: App service

located on Azure portal):

Figure 10.14: App service located on the Azure portal

When you hosted an application in App Services, your database

must be online; otherwise, your application cannot able to

access the database. There are many security concerns when

your database is online. You can use the SQL service provided

by Azure. The advantage of use SQL service is security

concerns taken care of by Azure.

Create database server and database

on Azure

You can create an SQL server and database using Azure

Portal. The followings are the step to create a DB server and

SQL DB on Azure.

Login to Azure portal and select SQL databases

from the left menu

To create SQL DB, first, log in to Azure Portal and select SQL

databases from the left menu. Now click on Add to add new

database (refer Figure 10.15: Azure Portal - Add SQL

database):

Figure 10.15: Azure Portal - Add SQL database

Next step is to fill-up required information to create SQL

database (refer Figure 10.16: Azure Portal - Configure SQL

server database):

Figure 10.16: Azure Portal - Configure SQL server database

Following information need to fill-up to create a new SQL

database:

Subscription: Select the subscription that used for the SQL

database. The subscription is used for billing purposes

Resource group: You can either create and select a new

resource group or select the existing resource group

Database name: Name of the database

Server: You can use the existing database server or create

a new server

Want to use SQL elastic pool?: It provides a solution for

performance management using multiple database

usage. It is a cost-effective solution

Compute + storage: This is the SQL server configuration tire.

The default configuration is two vCores with 32 GB of

HDD

To create a SQL database, you can use either select existing

server or create a new server. You can create a new SQL

server from Create SQL Database screen (refer Figure 10.16:

Azure Portal - Configure SQL server database). To create a

new SQL server, click Create new link of server label (refer

Figure 10.17: Azure Portal - Add new SQL server):

Figure 10.17: Azure Portal - Add new SQL server

Following information need to fill-up to create new SQL Server

on Azure Portal:

Server name: name of the SQL server

Server admin login: SQL server admin user name

Password: admin user password

Confirm Password: confirm admin password

Location: location of SQL server

When you click on the OK button, Azure will create the SQL

server, and it available to use to create SQL database after

server deployment.

Create a database

When you click on Review + Create button of Create SQL Database

screen (Figure 10.16: Azure Portal - Configure SQL server

database), database information that you have fill-up in

previously is available for review (refer Figure 10.18: Azure

Portal - Create SQL server database) and click on Create

button, Azure will create SQL database on specified server:

Figure 10.18: Azure Portal - Create a SQL server database

You can modify the SQL database information when clicking

on the Previous button.

Get connection string

After creating the SQL database, you need a connection string

to access this SQL database from your application.

To get connection string, click SQL Server and then click

Connection strings menu under the Settings menu (refer Figure

10.19: Azure Portal - SQL server Connection string). This

connection string is replaced with default connection mention

in appSettings.json in Blazor app:

Figure 10.19: Azure Portal - SQL server Connection string

Configure firewall for SQL server

The next step is to configure a firewall. You can create firewall

rules that allow the client IP address to access the Azure SQL

server.

Figure 10.20: Azure Portal - Configure firewall for SQL server

To configure a firewall, select SQL server, and select Firewalls

and virtual networks under the Security menu. The firewall rules

allow you to specify the client IP address that can be allowed

to access and click on the Save button to save new firewall

rule:

Figure 10.21: Azure Portal – Retrieve data from Azure SQL database

Once the SQL server and database configured, you can access

the database from your application. Still, your client IP

address must specify in firewall rule (refer Figure 10.21: Azure

Portal – Retrieve data from Azure SQL database).

Summary

You can publish Blazor server app using VS 2019 or .NET

Core CLI

There are multiple publish targets available such as

AppService, Azure virtual machine FTP, Folder, and so on.

The .NET Core Runtime and Hosting Bundle installer need

to install to deploy Blazor app on IIS.

The ASP.NET core does not use .NET CLR so; you need to

select No Managed Code from .NET CLR version dropdown

when creating an application pool

You can deploy the Blazor server app on Azure using the

VS2019 publish option by selecting App Service.

You must have Azure subscription to deploy the

application on Azure.

You can also host your SQL database on Azure.

What you learned in this chapter?

In this chapter, you learned about how to host a Blazor server

application on the IIS and Azure App service and also learned

how to configure SQL Server on Azure using portal.

Questions

1. What are prerequisites need to install to deploy the Blazor

app on IIS?

2. Explain steps to host the Blazor app on IIS?

3. What are the prerequisites required to deploy an

application on Azure?

4. Explain steps to host the Blazor app on Azure?

5. Explain steps to deploy the SQL database on Azure?

	Cover Page
	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. An Introduction to Blazor
	Introduction
	Objectives
	What is Web Assembly?
	Security considerations
	WebAssembly limitations
	Facts about WebAssembly
	Is WASM kill JavaScript?
	Is WASM a new programming language?
	Can other programming languages write WASM code other than C and Rust?
	Is it an upgraded version of Silverlight?

	What is Blazor?
	Interpreted mode
	Ahead-of-time compiled mode

	Features of Blazor
	Blazor (client) supported platforms
	Prerequisite Blazor development
	.NET Core Framework (.NET Core SDK)
	Integrated Development Environment - IDE

	Creating first Blazor application
	Creating a project with Visual Studio 2019
	Creating a project using dotnet CLI
	Understand project structure and component

	Understand Blazor booting process
	Render tree in Blazor application
	Blazor client-side
	Blazor server side
	Summary
	What did you learn in this chapter?
	What next?
	Questions

	2. Components and Structure for Blazor Applications
	Introduction
	Objectives
	What is the Blazor component?
	Create Blazor component
	Using a single file - inline
	Component with code behind
	Class only component

	Life Cycle methods of component
	OnInitialized and OnInitializedAsync
	OnParametersSet and OnParametersSetAsync
	OnAfterRender and OnAfterRenderAsync
	SetParametersAsync
	StateHasChanged
	Dispose component with IDisposable

	Component parameters
	Child component
	Templated components
	Grid view template example
	List view template example
	Define template inline - using Razor template syntax

	Cascading values
	Declaring HTML attributes using parameters
	Import components
	Summary
	What did you learn in this chapter?
	What next?
	Questions

	3. Blazor Concepts
	Introduction
	Objectives
	Data Binding
	One-way data binding
	Two-way data binding

	Event Binding
	Event Callback

	Layouts
	Introduction to Layouts page
	Specify a layout in a component
	Define layout globally
	Nested layouts
	Example

	Routing
	@page directive/route attribute
	Example

	Route parameters
	Route constraints
	Example

	Programmatically navigate one component to another component
	Query parameters

	Forms and validation
	Data annotations

	Summary
	What do you learn in this chapter?
	What is next?
	Questions

	4. Dependency Injection
	Introduction
	Objective
	Types of dependency injection
	Construction injection
	Setter injection
	Interface based injection

	Service lifetime
	Scoped
	Singleton
	Transient

	Add services to the application
	Default services
	Inject the service in the component
	Example of adding service as a dependency

	Use dependency in services
	Using OwningComponentBase
	Summary
	What you learned in this chapter?
	What next?
	Questions

	5. JavaScript Interop
	Introduction
	Objective
	What is JavaScript Interop?
	Invoke JavaScript functions from C# (.NET) methods
	Invoke C# (.NET) methods from JavaScript
	Capture references to elements
	Detect when a Blazor app is pre-rendering
	Share interop code in a class library
	Summary
	What you learned in this chapter?
	What next?
	Questions

	6. State Management
	Introduction
	Objectives
	Understand Blazor circuits
	Preserve state across circuits
	Where to persist state
	On server in database
	On client in the browser
	URL

	Third-party browser storage solutions
	Summary
	What you learned in this chapter?
	What next?
	Questions

	7. Authentication and Authorization
	Introduction
	Objective
	Authentication
	AuthenticationStateProvider service
	Custom AuthenticationStateProvider
	Authorization
	AuthorizeView
	Authorize attribute
	Custom content for unauthorized router component

	Authorization rules check-in procedural logic
	Authorization in Blazor client-side apps
	Authentication using third party service
	Using Microsoft API
	Using Google API
	Using Facebook API
	Use multiple authentication providers together

	Summary
	What you learned in this chapter?
	What next?
	Questions

	8. Handle Exception and Log Error
	Introduction
	Objective
	The behavior of Blazor app for an unhandled exception
	Places where errors may occur
	Component instantiation
	Lifecycle methods
	Rendering logic
	Component disposal
	JavaScript interop
	Event handlers
	Circuit handlers and disposal
	Prerendering
	Enabling detailed errors

	Introduction to the logging framework
	Configure logging provider
	Set default minimum log level

	Logging using serilog
	Write log to file using serilog

	Summary
	What you learned in this chapter?
	What next?
	Questions

	9. Getting Started with Blazor Using Visual Studio 2019
	Introduction
	Objective
	Setting up the Blazor development environment using Visual Studio 2019
	Creating a single page application using Blazor
	Scaffolding the model using EF Core
	CRUD operation with EF in Blazor server app
	Create Add/Edit page with validation
	Delete customer

	Installed project template for Blazor
	Summary
	What you learned in this chapter?
	What next?
	Questions

	10. Hosting and Deployment
	Introduction
	Objective
	Publish Blazor server app
	Deploying Blazor app on IIS
	Prerequisites
	Configure IIS

	Deploying Blazor app on Azure
	Prerequisites
	Deploy app on Azure as app service
	Create publish profile with create app service or selecting existing one
	Sign in using Azure account
	Configure App Service.
	Publish application on app service

	Create database server and database on Azure
	Login to Azure portal and select SQL databases from the left menu
	Create a database
	Get connection string
	Configure firewall for SQL server

	Summary
	What you learned in this chapter?
	Questions

