

Building
Transformer Models

with
PyTorch 2.0

NLP, computer vision, and speech
processing with PyTorch and

Hugging Face

Prem Timsina

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2024

Copyright © BPB Publications, India

ISBN: 978-93-55517-494

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this
book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

My beloved wife:
Sunita

&
My Son Percival

About the Author

Prem Timsina is the Director of Engineering at Mount Sinai Health
Systems, where he oversees the development and implementation of
Machine Learning Data Products. He has overseen multiple Machine
Learning products that have been used as clinical decision support tool at
several hospitals within New York City. With over ten years of experience
in the field, Dr. Timsina is a dedicated Machine Learning enthusiast who
has worked on a variety of big data challenges using tools, such as PyTorch,
Deep Learning, Generative AI, Apache Spark, and various NoSQL
platforms. He has contributed to the field through more than 40 publications
in Machine Learning, text mining, and big data analytics. He earned his
Doctor of Science degree in Information Systems from Dakota State
University.

About the Reviewer

Pratik Kotian is an accomplished professional with 8 years of extensive
expertise in Natural Language Processing, Machine Learning, Generative
AI, and Python programming. With a versatile background spanning
various sectors including technology, telecommunications, finance, retail,
and more, Pratik has honed his skills across different domains. His
experience encompasses leadership roles in research and development,
technical consultancy, and team management. Currently, Pratik serves as a
Manager at Deloitte, where he leads the Generative AI Team with a focus
on pioneering innovative solutions for clients. In this capacity, he leverages
his expertise to drive transformative initiatives, enabling businesses to
unlock value through AI-driven strategies.

Acknowledgement

I extend my deepest appreciation to my wife, Sunita Ghimire, for her
constant support throughout the process of writing this book. Special love
to my son Percival for being a wonderful toddler and allowing daddy to
work on the book.

I am immensely thankful for dedicated collaboration of reviewers, editors,
and technical expert for revising and refining this book. Additionally, I am
grateful to the entire BPB Publications team who have worked tirelessly on
realizing this book.

My greatest thankful is to all the readers who have supported this work.
Your enthusiasm on this topic have been fundamental on bringing this book
to frutition.

Preface

Lately, transformer architecture has appeared as a swiss knife for Machine
Learning architecture. The transformer architecture is at the heart of most
recent breakthroughs in Generative Artificial Intelligence. For instance,
tools like ChatGPT and BARD, perceived by many as paving stones
towards artificial general intelligence, are built on Transformer foundations.
Thus, it is imperative for data scientists, ML Engineers, and Technologists
to understand how this architecture can solve various ML tasks.

This book provides both theoretical and practical understanding of
transformer architecture. Specifically, we will cover these ML tasks:
Natural Language Processing (NLP), Computer Vision, Speech
Processing, Tabular Data Processing, Reinforcement Learning, and Multi-
Modalities. Center to the book are four major ML tasks, each explored in
depth across two chapters. The initial chapter lays the groundwork by
discussing the conceptual understanding. Here, we discuss the inner
working of transformer architecture to solve tasks and discuss the
architecture of major foundational models. Following this, the subsequent
chapters focus on the practical understanding of pre-training, fine-tuning
and using open source models to solve the ML tasks. This book will
demonstrate practical applications through several comprehensive, end-to-
end projects.

To equip with comprehensive understanding, the book has dedicated
chapters for Hugging Face Ecosystem, transfer learning and deploying and
serving transformer models. We will also delve deeper into best practices
and debugging transfomer model developed utilizing PyTorch and Hugging
Face.

The pre-requisite for this book is basic understanding of PyTorch and deep
learning. This book will benefit data scientists and ML engineers who are
seeking to enhance their knowledge of transformer models and learn how to

develop ML engines using the transformer architecture and Hugging Face’s
transformer library. It will also be valuable for developers and software
architects looking to integrate transformer-based models into their existing
software products. Additionally, AI enthusiasts interested in the latest
developments in cutting-edge ML methods will find this book useful.

In summary, you will gain a conceptual understanding of transformer
architecture and practical knowledge on how to solve various ML tasks
using this architecture. Happy reading!

Chapter 1: Transformer Architecture – This chapter gives the readers an
overview of the evolution of NLP models over time and how each previous
development has influenced the transformer architecture. The majority of
this chapter discusses the conceptual understanding of the transformer
architecture, illustrating details on the encoder, decoder, positional
encoding, and embedding. The chapter also explains to readers about
different variations of the transformer architecture and their applications in
solving NLP tasks.

Chapter 2: Hugging Face Ecosystem – This chapter provides a thorough
understanding of the core functionalities and features of the Hugging Face
ecosystem, specifically focusing on the transformers, datasets, and
tokenizers libraries. The chapter explains how to use the Hugging Face
ecosystem for using pre-trained models, fine-tuning existing models, and
sharing your models. We will walk you through each step of this process,
using practical examples, specifically fine-tuning the Dreambooth model
(personalizing text to image generation).

Chapter 3: Transformer Model in PyTorch – This chapter will give the
readers a detailed understanding of the PyTorch implementation of the
transformer architecture, thoroughly examining its various components.
This includes learning how to build models in different configurations, such
as encoder only, decoder only, and the combined encoder-decoder setup in
PyTorch. All of these concepts are explaned through three projects
implemented in Pytorch: 1. Classifier—IMDB sentiment 2. Text Generation
—Shakespear poet 3. Machine Translation—English to German. This
chapter is all about getting you comfortable and confident with how
Transformer models work in PyTorch.

Chapter 4: Transfer Learning with PyTorch and Hugging Face – This
chapter provides a complete picture of what transfer learning is, why it is
useful, and where it can be used. We will showcase the transfer learning by
building the real news vs. fake news project.

Chapter 5: Large Language Models: BERT, GPT-3, and BART – This
chapter discusses the key concepts of Large Language Models (LLMs). It
will also discuss the key determinants of LLM performance. Additionally,
we will look at the architecture of pioneering LLMs. We will conclude this
chapter by showcasing how you can create your own LLM with your data.

Chapter 6: NLP Tasks with Transformers – This chapter will provide a
detailed understanding of key NLP tasks and the corresponding transformer
models used to solve these tasks. We will also discuss handling long
sequences in transformers. We will explore these concepts through three
projects: 1. Handling long sequences by chunking, 2. Handling long
sequences with hierarchical attention, and 3. Generating Shakespeare-like
text using GPT-2 and Tiny Shakespeare.

Chapter 7: CV Model Anatomy: ViT, DETR, and DeiT – This chapter
will provide a foundational understanding of image pre-processing
techniques and their significance in computer vision tasks. The chapter
delve into the architecture and workings of the Vision Transformer (ViT),
Distilled Vision Transformer (DeiT) and Detection Transformer
(DETR). We will illustrate all these concepts by three projects.

Chapter 8: Computer Vision Tasks with Transformers – This chapter
serves as a comprehensive understanding of various computer vision tasks
and their applications. We will look at three main tasks here, namely, Image
Segmentation, Classification, and Image Generation. We will explain these
concepts through training and developing three machine learning models: 1.
Food Image Segmentation, 2. Comparison of DEIT and RESNET, and 3.
Dog Image Generation.

Chapter 9: Speech Processing Model Anatomy: Whisper, SpeechT5,
and Wav2Vec – This chapter provides a foundational understanding of
speech pre-processing, and a detailed analysis of Whisper, SpeechT5, and
Wav2Vec Architecture.

Chapter 10: Speech Tasks with Transformers – This chapter will provide
a comprehensive understanding of various speech processing tasks and their
applications in real-world scenarios. We will look at into three major tasks
here: 1. Text-to-Speech 2. Automatic Speech Recognition, and 3. Audio-to-
Audio. We will explain these concepts through real world projects

Chapter 11: Transformer Architecture for Tabular Data Processing –
This chapter will look at the following architecture: 1. Google’s TAPAS for
quering the tabular data, 2. TabTransformer for Structured Data, and 3. FT
Transformer for structured data. We will explain these architecture through
real world examples.

Chapter 12: Transformers for Tabular Data Regression and
Classification – This chapter explores the application of transformers in
tabular data processing. We will also delve into the implementation of
transformers such as TabTransformer, FT Transformer, and TabNet for
solving classification and regression problems. The chapter illustrates these
models by solving both classification and regression problems and
comparing the results with XGBoost. In summary, the goal of this chapter is
to provide a detailed explanation of how we can use Transformer
Architecture for machine learning with structured data.

Chapter 13: Multimodal Transformers, Architectures and Applications
– This chapter is an explanation of how transformers can handle multiple
data types in a single model. We will discuss two major architectures:
ImageBind Architecture (Meta’s architecture that combines text, audio,
IMU, thermal, depth, and image) and CLIP Architecture (text and image).
This chapter also explains different multi-modal tasks.

Chapter 14: Explore Reinforcement Learning for Transformer – This
chapter discusses the fundamentals of Reinforcement Learning (RL) and
the most common tools in PyTorch, as well as the process of building an RL
model. This chapter will walk you through developing a Trading Model
using tools like Gym, Stable Baselines3, and Yfinance. Additionally, this
chapter illustrates two major RL architectures: Decision transformer and
trajectory transformer, which are significant transformer architectures used
in RL.

Chapter 15: Model Export, Serving, and Deployment – This chapter
provides a comprehensive exploration of the machine learning lifecycle,

focusing on model serialization, export, and deployment. Specifically, the
chapter illustrates exporting PyTorch models to interoperable formats like
ONNX, as well as the usage of PyTorch Script and Pickle. The chapter also
provides a practical illustration of serving a PyTorch model using FastAPI
and sharing model through Hugging Face. The goal is to equip readers with
the knowledge and tools needed to efficiently export, serve, and deploy
machine learning models.

Chapter 16: Transformer Model Interpretability, and Experimental
Visualization – This chapter discusses the concepts of model
interpretability and explainability. The chapter explores various tools that
can be used for model interpretability and explainability. It provides a
practical example of using CAPTUM for interpreting transformer models.
Additionally, the chapter showcases how to use TensorBoard for model
visualization, logging, and interpretation

Chapter 17: PyTorch Models: Best Practices and Debugging – The
chapter discusses practical guidelines and best practices for building
transformer models using both the general PyTorch Library and the
Hugging Face Library. It then discusses a structured approach to debugging
PyTorch models. The chapter illustrates all these concepts through real-
world examples.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/hydtz8g
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Building-Transformer-Models-
with-PyTorch-2.0. In case there’s an update to the code, it will be updated
on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

https://rebrand.ly/hydtz8g
https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch-2.0
https://github.com/bpbpublications
mailto:errata@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy
If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, please visit www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insights with the global
tech community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site
that you purchased it from? Potential readers can then see and use your unbiased opinion to make
purchase decisions. We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/
https://discord.bpbonline.com/

Table of Contents

1. Transformer Architecture
Introduction
Structure
Objectives
Chronology of NLP model development

Recurrent neural network
Limitation of RNN
LSTM
Limitation of LSTM
Cho’s (2014) RNN encoder decoder
Bahdanau’s (2014) attention mechanism

Transformer architecture
Embedding
Positional encoding
Model input
Encoding layer
Attention mechanism

Self-attention
Multiheaded attention
Decoder layer

Training process of transformer
Inference process of transformer
Types of transformers and their applications

Encoder only model

Decoder-only model
Encoder-decoder model

Conclusion
Quiz
Answers

2. Hugging Face Ecosystem
Introduction
Structure
Objectives

System resources
Overview of Hugging Face

Key component of Hugging Face
Tokenizers
Create your custom Tokenizer

Training
Inference

Use pre-trained tokenizer from Hugging Face
Datasets

Using Hugging Face dataset
Using the Hugging Face dataset on PyTorch

Models
Environmental setup
Training

Inference
Sharing your model on Hugging Face
Model
Spaces
Conclusion
Quiz

Answers

3. Transformer Model in PyTorch
Introduction
Structure
Objectives
System resources
Transformer components in PyTorch
Embedding

Example
Positional encoding
Masking
Encoder component of a transformer
Decoder component of a transformer
Transformer layer in PyTorch
Conclusion
Quiz
Answers

4. Transfer Learning with PyTorch and Hugging Face
Introduction
Structure
Objectives
System requirements
Need of transfer learning
Using transfer learning
Where can you get pre-trained model
Popular pre-trained model

NLP

Computer vision
Speech processing

Project: Develop classifier by fine tuning BERT-base-uncased
Custom dataset class
DataLoader

Inference
Conclusion
Quiz
Answers

5. Large Language Models:BERT, GPT-3, and BART
Introduction
Structure
Objectives
Large language model
Key determinants of performance

Size of network: Number of encoder and decoder layers
Number of model parameters
Max-sequence length
Size of embedding dimension
Pre-training dataset size and types

Pioneering LLMs and their impact
BERT and its variants

BERT pre-training
BERT fine-tunning
BERT Variations
Applications

Generative pre-trained Transformer
Pre-training of GPT
Applications

Bidirectional and Auto-Regressive Transformers

Pre-training
Application

Creating your own LLM
Clinical-Bert

Conclusion
Quiz
Answers

6. NLP Tasks with Transformers
Introduction
Structure
Objectives
System requirements
NLP tasks
Text classification

Most appropriate architecture for text classification
Text classification via fine-tunning transformer
Handling long sequence
Project 1: Document chunking
Project 2: Hierarchical attention

Text generation
Project 3: Shakespeare like text generation

Data preparation
Training

ChatBot with transformer
Project 4: Clinical question answering transformer

Data preparation
Model declaration
Creating prompt and tokenization

Training with PEFT and LORA

Conclusion
Quiz
Answers

7. CV Model Anatomy: ViT, DETR, and DeiT
Introduction
Structure
Objectives
System requirements
Image pre-processing

Example of image pre-processing
Vision transformer architecture

Project 1: AI eye doctor
Distillation transformer

Advantages of DeiT
Exercise

Detection transformer
Project 2: Object detection model

Conclusion
Quiz
Answers

8. Computer Vision Tasks with Transformers
Introduction
Structure
Objectives
System requirements
Computer vision task

Image classification
Exercise

Image segmentation
Project 1: Image segmentation for our diet calculator

Diffusion model: Unconditional image generation
Forward diffusion
Backward diffusion
Inference process
Learnable parameters
Project 2: DogGenDiffusion

Conclusion
Quiz
Answers

9. Speech Processing Model Anatomy: Whisper, SpeechT5, and
Wav2Vec

Introduction
Structure
Objectives
System requirements
Speech processing

Example of speech pre-processing
Whisper

Project 1: Whisper_Nep
Task
Approach

Wav2Vec
Applications of Wav2Vec

SpeechT5
Input/Output representation
Cross-modal representation
Encoder-decoder architecture

Pre-training
Fine-tuning and applications

Comparing Whisper, Wav2Vec 2.0 and Speech T5
Conclusion
Quiz
Answers

10. Speech Tasks with Transformers
Introduction
Structure
Objectives
System requirements
Speech processing tasks

Speech to text
Project 1: Custom audio transcription with ASR using Whisper

Text-to-speech
Project 2: Implementing text-to-Speech

Audio to audio
Project 3: Audio quality improvement through noise reduction

Conclusion
Quiz
Answers

11. Transformer Architecture for Tabular Data Processing
Introduction
Structure
Objectives
System requirements
Tabular data representation using transformer

TAPAS architecture

Pretraining objective
Fine-tuning
Applications
Example

TabTransformer architecture
FT transformer architecture

Feature tokenizer
Concatenation of numerical and categorical feature
Transformer

Conclusion
Quiz
Answers

12. Transformers for Tabular Data Regression and Classification
Introduction
Structure
Objectives
System requirements
Transformer for classification

Dataset
Target
Pre-process the data
Declare the configuration
Train and evaluate the model with three models
Evaluation
Analysis

Transformer for regression
The dataset
Pre-process the data
Define model configuration

Train and evaluate
Conclusion
Quiz
Answers

13. Multimodal Transformers, Architectures and Applications
Introduction
Structure
Objectives
System requirements
Multimodal architecture

ImageBind
Demonstration

CLIP
Pre-training objective
Applications and usage

Multimodal tasks
Feature extraction
Text-to-image
Image to-text
Visual question answering

Conclusion
Quiz
Answers

14. Explore Reinforcement Learning for Transformer
Introduction
Structure
Objectives
System requirements

Reinforcement learning
Important techniques in PyTorch for RL

Stable Baseline3
Gymnasium

Project 1: Stock Market Trading with RL
Transformer for reinforcement learning

Decision transformer
Trajectory transformer

Input
Conclusion
Quiz
Answers

15. Model Export, Serving, and Deployment
Introduction
Structure
Objectives
System resources
Model export and serialization

PyTorch model export and import
torch.save
torch.load
torch.nn.Module.load_state_dict

Saving multiple models
Exporting model on ONNX Format
Serving model with FastAPI

Benefits of FastAPI
Application of FastAPI for model serving
Project: FastAPI for semantic segmentation model serving

Serving Pytorch model in mobile devices

Deploying HuggingFace’s Transformers model on AWS
Deployment using Amazon SageMaker
Deployment using AWS Lambda and Amazon API gateway

Conclusion
Quiz
Answers

16. Transformer Model Interpretability, and Experimental
Visualization

Introduction
Structure
Objectives
Explainability vs. interpretability

Interpretability
Explainability

Tools for explainability and interpretability
CAPTUM for interpreting Transformer prediction

Model loading
Input preparation

Why Baseline Tensor
Layer Integrated Gradients
Visualization

TensorBoard for PyTorch models
Conclusion
Quiz
Answers

17. PyTorch Models: Best Practices
Introduction
Structure

Objectives
Best practices for building transformer models

Working with Hugging Face
General consideration with Pytorch model

The art of debugging in PyTorch
Syntax errors
Runtime errors

Shape mismatch
CUDA errors
Loss computation issues
Mismatched configuration
Memory error
Library/Dependency errors

Logical errors
General guidelines for debugging PyTorch ML models

Conclusion
Quiz
Answers

Index

CHAPTER 1
Transformer Architecture

Introduction
Imagine you are a software engineer working on an exciting project and
searching for a programming language to help create software quickly and
efficiently. You hear about a revolutionary new type of language that is the
Swiss knife of programming language: this language is most efficient in
creating Machine Learning (ML) models—plus, this programming
language creates stunning websites faster than other web development
frameworks and supports hardware programming. Furthermore, its
performance in network programming and other related tasks is also
outstanding. Would it not be interesting to learn about this powerful
programming language?

Similar developments can be observed in the world of ML frameworks. The
transformer architecture is an incredibly versatile ML architecture.
Transformers were initially developed for Natural Language Processing
(NLP). Due to their superior results, this architecture has rendered other
NLP architectures like RNN and long short-term memory networks
(LSTM) obsolete. More recently, transformers have begun impacting other
ML fields as well. According to SUPERB
(https://superbbenchmark.org/leaderboard) the best foundational model
for speech processing is also based on the transformer. Furthermore,
transformers have shown excellent results in computer vision and other

https://superbbenchmark.org/leaderboard

machine learning fields as well. Therefore, transformers have the potential to
converge all AI frameworks into a solitary, highly adaptable architecture.

In this chapter, we will look into the base architecture of this versatile
machine learning in depth. The chapter specifically focuses on
understanding the original transformer architecture proposed by Vaswani et
al. (2017). Since the transformer was originally proposed for NLP—we will
understand important NLP models and how the transformer was influenced
by those models.

Structure
This chapter covers the following topics:

Chronology of NLP model development.

Transformer architecture

Training process of transformer

Inference process of transformer

Types of transformers and their applications

Objectives
This book chapter intends to provide readers with a broad understanding of
the evolution and significant milestones in the development of NLP models,
with a special emphasis on the transformer architecture. It seeks to offer an
in-depth examination of various NLP models, drawing comparisons and
highlighting the distinctive ways in which the transformer model addresses
the limitations of its predecessors. A key focus will be placed on
investigating the essential components that make up the transformer
architecture. Additionally, the chapter aims to educate readers about the
different variations of the transformer model, showcasing their broad
spectrum of applications in the field of NLP. The overarching theme of this
chapter is to trace the journey of NLP models’ development, culminating in
the rise of the transformer as a ground-breaking innovation in the landscape
of language processing technologies.

Chronology of NLP model development
The transformer was originally proposed for NLP, specifically machine
translation, by Vaswani et al. in 20171. It is currently the most popular and
effective model in NLP, as well as other wide-ranging tasks (speech
processing, computer vision, and others). However, the development of the
transformer was not a sudden occurrence. In fact, it was the culmination of
years of research and development in NLP models, with each model building
upon the previous ones. Let us examine the chronological history of different
NLP models. This is important because as we understand the transformer
architecture, we will be able to contextualize it within the historical
development of NLP models, their shortcomings, and how transformer is
unique and versatile.

In the upcoming section, we will explore the timeline of NLP model
evolution and contrast various NLP models. Figure 1.1 shows the
chronology of NLP research:

Figure 1.1: Chronology of NLP models development

The transformer model was the culmination of all the previous research
developments. Vaswani et al., cited a few of that original research.

Specifically, Vaswani et al. cited the following research, and the transformer
model seems to have been highly influenced by them.

In the following sections, we will discuss a few of the most important NLP
models, their benefits, and their shortcomings.

Recurrent neural network
First, let us discuss the concept of next-word prediction. For instance, let us
say we have a sentence, The color of the sky is …. Based on the information
already processed by our brain, we can predict that the next word in this
sentence would be blue. However, this prediction is not solely based on
previous words, but rather on multiple preceding words.

Traditional machine learning algorithms, such as linear regression and
multilayer perceptron, are not equipped to store previous information and
utilize it for predictions. These algorithms do not have the capability to
retain information from prior inputs. Here, recurrent neural networks come
into play, which is capable of retaining prior information and utilizing it for
making accurate predictions.

Figure 1.2 shows the structure of RNN. Here, each cell takes the output of
its previous cell as its input. This allows the network to retain information
from previous time steps and incorporate it into the computation at each
subsequent iteration:

Figure 1.2: RNN structure

Limitation of RNN

Let us consider the following example: England is my hometown. I spent my
whole life there. I just moved to Spain two days ago. I can speak only one
language, which is In this example, the next word is English. The most
important contextual word, in this case, is England, which appears at the
beginning of the sentence. However, in some cases, the relevant information
may be located far away from where it is needed in an RNN. For example, in
this case, the gap between the relevant information and the predicted word is
about 26-time steps, that is, England is at time step 1, and the predicted word
is at time step 27. This large gap can pose a problem for RNNs, as they may
not be able to retain contextual information over such long sequences, or the
weights associated with that information may become very small. This is due
to the structure of RNNs, where the gradients can become very small or even
zero as they are repeatedly multiplied by the weight matrices in the network.
This can make it difficult for the network to learn and can cause training to
be slow or even fail altogether.

LSTM
To overcome the issue of the vanishing gradient problem, LSTM was
introduced.

In contrast to RNNs, LSTMs have a memory gate that allows them to store
information about long-term dependencies in data. Furthermore, they
possess a forget gate which helps filter out unnecessary information from
previous states.

Another advantage of LSTMs is their low likelihood of encountering the
problem of vanishing gradients. This occurs when gradients become very
small or even zero during backpropagation, making it difficult for the
network to learn. LSTMs address this issue by employing gates that regulate
information flow through the network, allowing it to retain relevant details
and discard irrelevant ones. Figure 1.3 shows the comparison of RNN and
LSTM structures. As compared to RNN, LSTM structure is complex:

Figure 1.3: Comparison of RNN and LSTM

Limitation of LSTM
Limited ability to handle long sequences: Even though LSTM has a memory
gate, they still struggle to handle long sequences. This is because they use a
fixed length hidden state, which may be a problem if the input sequence is
very long.

LSTMs process sequences sequentially, this can be slow and limit the ability
to parallelize computations across multiple processors.

Cho’s (2014) RNN encoder decoder2

The RNN encoder-decoder model is a sequence-to-sequence algorithm. It
has three major components. Let us explore the components of an RNN
encoder-decoder model with an example of English-to-French translation:

Encoder: This is an RNN that encodes a variable-length input
sequence (in this case, an English sentence) into a fixed-length vector.

Encoded vector: The fixed-length vector output by the encoder.

Decoder: This is also an RNN that takes the encoded vector as input
and produces a variable-length output sequence (in this case, the
French translation of the English input sequence).

The encoder-decoder model is especially beneficial for tasks such as
machine translation and speech recognition, where the input sequence and
output sequence may be of differing lengths. Figure 1.4 illustrates a
simplified representation of the RNN encoder-decoder model:

Figure 1.4: Simplified representation of Cho’s encoder-decoder model

Limitation: The major limitation is vanishing gradient problem. The model
generates a fixed-length vector representation of the input sequence using
the final hidden state of the encoder RNN, which can result in the loss of
important information from earlier time steps.

Bahdanau’s (2014) attention mechanism3

Bahdanau’s 2014 paper on attention mechanism introduced an extension to
the RNN encoder-decoder model. It is also the encoder-decoder model with
the addition of attention. Let us discuss what the attention mechanism is:

It allows the model to selectively attend to certain parts of the input
sequence that are more relevant to the output while ignoring others
that are not as relevant.

For example, in machine translation—the attention mechanism allows
the model to focus on the most important words or phrases in
predicting correct translation.

In essence, the attention mechanism mimics human cognitive behavior
by focusing on the most important words while filtering out noise.

Limitation: The major limitation is Bahdanau’s mechanism is a local
attention mechanism that only looks at a subset of the input sequence at a
time. This works fine for the shorter sentence. However, performance
reduces significantly if the input sentence is long.

Let us summarize the important concept based on the above four
architecture:

The encoder-decoder approach is effective because it can handle
different lengths of input and output sequences, which is often the case
in machine translation and other NLP tasks where the number of
words in input and output sequences may differ.

Attention-mechanism is a crucial component in this approach because
it enables a neural network to concentrate on specific parts of the input
data that are essential for the task being performed. This helps the
network to capture the relevant information more effectively, leading
to better performance on various NLP tasks.

In the next section, we will discuss the transformer architecture and
understand how encoder-decoder architecture and attention-mechanism are
the major components of transformer architecture.

Transformer architecture
There are many variants of the transformer; however, in this section, we will
discuss the original transformer architecture proposed by Vaswani et al.
(2017). They proposed the architecture for machine translation, (for
example, English to the French Language). Let us highlight the most
important aspects of transformer architecture before going into detail:

Transformer uses an encoder-decoder architecture for machine
translation.

The encoder converts the input sequence into a sequence vector, with
the length of the vector being equal to the length of the input
sequence. It consists of multiple encoder blocks.

The decoder also consists of multiple decoder blocks, and the
sequence vector (output of encoder) is fed to all decoder blocks.

Multi-head attention is a primary component of both the encoder and
decoder.

Positional encoding is a new concept introduced in the transformer
architecture that encodes the positional information of each input
token, representing its position in the input sequence.

Figure 1.5 shows the transformer architecture:

Figure 1.5: Transformer architecture

Embedding
As shown in Figure 1.5, the input sequence in the transformer is represented
by an embedding vector. Embedding is the process of representing a word or
token as vectors of fixed length.

Before we go in-depth about embeddings, let us understand how the text was
traditionally represented in NLP. This will help us appreciate why we use

embeddings. Traditionally, textual data in machine learning has been
represented as n-gram words. Let us consider the example of 1-gram: if the
total sample has 50,000 unique words, each input sequence would be
represented with a 50,000-dimensional vector. We would fill these
dimensions with the number of times each word appears in the specific input
sequence. However, this approach has several problems:

Even for small input sequences (for example, those with only two
tokens), we require a high-dimensional vector (50,000), resulting in a
highly sparse vector.

There is no meaningful way to perform mathematical operations on
these high-dimensional vector representations.

Embedding overcomes those challenges. Embedding is a technique used to
represent the word or sequence by a vector of real numbers that captures the
meaning and context of the word or phrase.

A very simple example of embedding is taking a set of words, such as
[cabbage, rabbit, eggplant, elephant, dog, cauliflower]; and representing
each word as a vector in 2-dimensional space capturing for animal and color
features. The embedding is shown in Figure 1.6. The final embedding vector
may look like as follows:

Figure 1.6: Embedding plotting

[cabbage, cauliflower, eggplant, dog, rabbit,

elephant]=[[0.2,0.1], [0.2,0.3], [0.2,0.8],

[0.8,0.4],[0.75,0.6], [0.9,0.7]

We can see that the first dimension of cabbage and cauliflower is almost the
same, as both represent vegetables. They are located nearby in the first
dimension. Also, we can perform addition and subtraction on these
embeddings because each dimension represents a specific concept, and
tokens are near if they represent similar concepts.

Interestingly, in the real world, we mostly use a pre-trained model like BERT
or word2vec, which has been trained with billions of examples and extract
large dimension of feature (BERT use 768 dimensions). The embedding is
highly accurate as compared to n-gram and offers greater flexibility during
NLP.

Positional encoding
Positional encoding in a transformer is used to provide the model with
information about the position of each word in the input sequence. Unlike

previous architecture (like LSTM) where each token is processed in
sequence (one by one); the transformer processes the input tokens in parallel.
This means each token should also have positional information.

Let us understand how positional encoding is done. In the Attention is All
You Need paper, the authors use a specific formula for positional encoding.
The formula is as follows:

PE(pos, 2i) and PE(pos, 2i + 1) are the i – th and (i + 1) – th dimensions of
the positional encoding vector for position pos in the input sequence.

pos is the position of the word in the input sequence, starting from 0.

i is the index of the dimension in the positional encoding vector, starting
from 0.

d is the dimensionality of the embedding (512 in the original architecture)

This formula generates a set of positional encodings that are unique for each
position in the input sequence and that change smoothly as the position
changes.

It is important to understand that there are 256 pairs (512/2) of sine and
cosine values. Thus, i goes from 0 to 255.

Let us unpack the formula:

| |

The encoding of first word (position=0) will be:

| |

Thus, positional encoding of the first word will look like [0,1,0,1,…1]. The
positional encoding for the second word will look like
[0.8414,0.5403,0.8218,..]. If the embedding is of 512 dimensions. The
position encoding vector looks like:

Model input
As depicted in Figure 1.7, model input is the pointwise addition of positional
encoding and embedding vector. Let us understand how we achieve this.

Figure 1.7: Model input

To represent “I Live In New York” with a tokenized length of 5, we add
1 tokens.

[‘ I,’ Live’, In, ‘NewYork’, <pad>]

At first, each token is represented by Integer. Here, word I is represented by
8667, Live is represented by 1362 , In is represented by 1300, New York is
represented by 1301 and <pad> represented by 0. The resulting will be

IntegerRepresentation = [8667, 1362, 1300, 1301, 0]

We then pass these tokenized sequences to the embedding layer. The
embedding of each token is represented by a vector of 512 dimensions. In
the below example, the dimension of the vector [embeddingtoke8667] is
512.

Embedding
=[[embeddingtoken_8667], [embeddingtoken1362], [embeddingtoken1300],
[embeddingtoken1301], [embeddingtoken0])
Finally, we perform the pointwise addition of Embedding and positional
Encoding before feeding into the model.

PositionalEncodingVector
= [[size=512], [size = 512], [size = 512], [size = 512], [size = 512]] +

Embedding
= [[embeddingtoken_8667], [embeddingtoken1362], [embeddingtoken1300],
[embeddingtoken1301]

[embeddingtoken0] =

ModelInput = [[size = 512], [size = 512], [size = 512], [size = 512], [size =
512]]

Encoding layer
The encoder layer is a crucial component in the transformer architecture,
responsible for processing and encoding input sequences into vector
representations. Refer to the following figure:

Figure 1.8: Encoder layer

Let us understand each subcomponent of the encoder layer in detail:

Input to the encoder: The input to the first layer of the encoder is the
pointwise summation of embeddings and positional encoding.

Multi-head attention: A key component of the encoder block in a
transformer is the multi-head self-attention mechanism. This
mechanism allows the model to weigh the importance of different
parts of the input when making a prediction. In a later section, we will
discuss the details of multi-head attention.

Add and norm layer: The add layer, also known as the residual
connection, is used to add the input to the output of the previous layer

before passing it through the next layer. This allows the model to learn
the residual function, which is the difference between the input and the
output, rather than the actual function. This can help to improve the
performance of the model, especially when the number of layers is
large. The norm layer normalizes the activations of a layer across all
of its hidden units. This can help to stabilize the training of the model
by preventing the input from getting too large or too small, which can
cause issues such as vanishing gradients or exploding gradients.

Feed-forward: The output of the multi-head self-attention mechanism
is fed to the input of the feed-forward layer. Additionally, a non-linear
activation function is applied. The feed-forward layer is important to
extract the higher-level feature from the data. We also have add and
norm layer after the feed-forward layer. The output of this is fed to
next encoding block

Encoder output: The last block of the encoder produces a sequence
vector, which is then sent to the decoder blocks as features.

Attention mechanism
The attention mechanism has emerged as a versatile and powerful neural
network component that allows models to weigh and prioritize relevant
information in a given context. Its core concepts, self-attention, and multi-
headed attention are instrumental in enabling the transformer architecture to
achieve remarkable results. Let us delve into these concepts in more detail.

Self-attention
Self-attention mechanism is the key to the performance of the transformer.
Let us understand how it works. Consider the following two examples:

Rabbit ate the carrot because it was hungry.

Rabbit ate the carrot because it was tasty.

What does it refers in each sentence. We cannot answer just by
understanding the location and structure of the sentence. According to

Vaswani et al. (2017): Meaning is a result of relationships between things,
and self-attention is a general way of learning relationships.

Self-attention calculates the relationship weight between each token in the
input sentence. Through this mechanism, the model understands the meaning
of the input sentence.

Let us look at the attention calculation for “it” in both sentences. Figure 1.9
demonstrates the calculation of relationship weights in the self-attention
mechanism. In the first sentence, when we are processing the word “it” the
model provides more weight to the rabbit than other words, whereas, in the
second sentence model provides more weight to tasty.

Figure 1.9: Self-attention mechanism

Multiheaded attention
Instead of using just one attention head, self-attention block use multiple
heads. Each head uses different parameters with a different focus to extract
different features from the input.

Figure 1.10 depicts the same example again with two attention heads. Head1
is represented in the diagram in red, whereas Head2 is represented in yellow.
We can see that different heads are capturing different contextual
relationships:

Figure 1.10: Multi-head attention

Decoder layer
The decoder has a similar structure to the encoder but with an additional
component called the masked self-attention mechanism. Let us look at the
decoder architecture in detail:

Figure 1.11: Decoder layer

Decoder input: During training, the input to the first layer of the
decoder are pointwise summation:

Embeddings of the target

Positional encoding of the target sequence.

Masked multi-head attention: The key difference between masked
multi-head attention and regular multi-head attention is that in masked
multi-head attention, certain parts of the input sequence are masked or
blocked so that the decoder cannot see them when generating the
output sequence. The positions of the input sequence that correspond
to the future target tokens (the tokens that have not been generated
yet) are masked. This is required because:

Decoder works on generating one word at a time.

We only show the word until the current position; thus, the decoder
will not be able to see the future targets that need to be generated.

As shown in the diagram, the input to the masked multi-head
attention is vector generated by step 1--pointwise summation of

Embeddings of the target

Positional encoding of the target sequence.

Multi-head attention: As you see in the diagram, the input to the
multi-head attention mechanism in the decoder is typically the output
of the encoder and the previously generated tokens in the output
sequence. Instead of just the first decoder block, all decoder blocks
receive the output of the encoder because:

The model can ensure that information from the input sequence is
propagated through the entire decoding process.

The model is effectively regularized since each decoder block has
access to the same information. This can help to prevent overfitting
and improve the generalization performance of the model.

Feed-forward: The output of the multi-head self-attention mechanism
is fed to the input of the feed-forward layer. Additionally, a non-linear
activation function is applied. The feed-forward layer is important for
extracting the higher-level feature from the data.

Linear layer: In transformer architecture, the linear layer in the
decoder is a component that is used to produce the final output of the
decoder. The input to the linear layer in the decoder is the output of
the final layer of the decoder. Additionally, the SoftMax activation
function is applied to generate the probabilities of the next word in the
sequence.

Training process of transformer
The training process of a transformer for machine translation typically
includes the following steps:

1. Data pre-processing and Generating Positional Encoding of Input and
target.

2. Passing through the encoder and decoder layer.
3. Loss calculation: The generated output sequence is compared to the

target output sequence, and a loss value is calculated using a loss
function such as cross-entropy.

4. Backpropagation: The gradients of the loss with respect to the
model’s parameters are calculated using backpropagation.

5. Optimization: The model’s parameters are updated using an
optimization algorithm, such as Adam, to minimize the loss value.
Repeat steps 3-7 for multiple epochs until the model’s performance on
a validation set stabilizes or reaches a satisfactory level.

It is also worth noting that during the training process, the model is exposed
to large amounts of parallel text data, where the input and output sequences
are already aligned, and the model learns to map the input sequence to the
output sequence through the attention mechanism and linear layers.

Inference process of transformer

The inference process of a transformer typically includes the following
steps:

1. Data pre-processing and Generating Positional Encoding of Input. It
is noteworthy that during inference, we will not have a target
sequence.

2. Passing through the encoder and decoder block. It is noteworthy that
for decoder input, there is a slight difference during training and
inference. During training, we pass the actual target to the first
decoder block. whereas, during inference, instead of a target, we will
pass tokens that are inferred till the current state. The reason is that
we do not have a target sequence during inference.

Types of transformers and their applications
Until now, we explained the architecture of the transformer for machine
translation. Nonetheless, there are many variations of the transformer. Let us
review them.

Encoder only model
It only has the encoder layer of a transformer model. The attention layer can
access all the words in the initial sentence. The encoder-only model often
has bi-directional attention and is called an auto-encoding model. Let us look
at examples and applications of the encoder-only model.

Some examples of encoder-only models that have been proposed include:

Bidirectional Encoder Representations from Transformers
(BERT): BERT is a pre-trained transformer encoder-only model that
has been trained on a large corpus of text and has been shown to be
effective in a wide range of natural language processing tasks,
including sentiment analysis, text classification, and question
answering.

A Lite BERT (ALBERT): ALBERT is a lightweight version of
BERT that has been shown to achieve similar performance as BERT
while using less computational resources.

Applications:

Sentiment analysis: The encoder can be trained to extract features
from a given text and predict its sentiment (positive, negative, or
neutral).

Text classification: The encoder can be trained to classify a given text
into different categories, such as news, sports, politics, and so on.

Named entity recognition: The encoder can be trained to identify
entities such as people, organizations, and locations in a given text.

Language modeling: The encoder can be trained to predict the next
token in a sequence of tokens.

Decoder-only model
It only uses the decoder layer of a Transformer architecture. The attention
layer only has access to the sequence till the current token. This type of
model is often called an autoregressive model because they are trained to
predict the next token in a sequence based on the previous tokens in the
same sequence:

Example:

GPT from the OpenAI.

A Conditional Transformer Language Model for Controllable
Generation (CTRL) Model.

Applications:

The decoder-only model has great usage in text generation and
Natural Language Generation (NLG).

Encoder-decoder model
Also called the sequence-to-sequence model, uses both an encoder and a
decoder. The original paper proposing transformer is encoder-decoder
model. The attention layer at the encoder has access to all tokens in the input
sequence, whereas the attention layer of the decoder has a view of only the
current and past tokens. The future tokens are masked to the attention layer
of the decoder.

Example:

BART (Denoising Autoencoder Pre-training for Sequence Generation
Tasks).

Applications:

Machine translation

Conclusion
In summary, this book chapter offers a thorough examination of the
development and significant milestones of NLP models. We appreciate how
the Transformer architecture incorporates the best aspects of preceding NLP
models. Additionally, we have delved into the prominent features of the
transformer, including the self-attention mechanism and positional encoding.
lastly, we explored various transformer variations and their applications,
recognizing the vast scope of its influence across multiple machine learning
tasks.

In the next chapter will be implementing the fundamental architecture of the
transformer model in PyTorch. This will give us a strong foundation in
understanding how each component works, which will be crucial when we
delve into applying the transformer in various fields such as NLP, computer
vision, speech processing, and tabular data processing.

Quiz

1. Which of the following is a key disadvantage of traditional RNNs?

a. They are computationally efficient for long sequences

b. They are unable to model long-range dependencies

c. They are easy to parallelize for faster training

d. None of the above

2. What is the primary advantage of using LSTM cells over
traditional RNN cells?

a. LSTMs are faster to train

b. LSTMs can better handle vanishing and exploding gradients

c. LSTMs require less memory to store

d. None of the above

3. In an RNN Encoder-Decoder model, what is the role of the
encoder?

a. To encode the input sequence into a fixed-length vector
representation

b. To decode the output sequence from the decoder

c. To perform attention-based operations on the input sequence

d. All of the above

4. What are the primary advantages of using transformer
architecture for natural language processing tasks?

a. Better ability to model long-range dependencies

b. Lower computational requirements compared to RNNs

c. Greater accuracy on low resource datasets

d. None of these.

5. Which of the following is an integral component of a transformer
architecture?

a. Convolutional layers

b. Recurrent layers

c. Self-attention layers

d. Fully connected layers.

6. What is the purpose of the self-attention mechanism in a
transformer architecture?

a. To enable selective focus on different parts of an input sequence

b. Calculating the dot product between input and weight vectors

c. Executing pooling operations on said input sequence

d. None of the Above

7. What role does the encoder layer in a transformer architecture
plays?

a. Encoding input sequence into a vector representation

b. Decoding the output sequence from the decoder

c. Applying attention-based operations on this input sequence

d. All of the above

8. What role does the decoder play in a transformer architecture?

a. Encodes input sequence into a vector representation

b. Decodes the output sequence from the encoder

c. Performs attention-based operations on that output sequence

d. None of the above.

9. What is multi-head attention in the transformer architecture?

a. Multi-head attention refers to an attention mechanism that
enables the model to attend simultaneously to multiple parts of
an input sequence

b. A mechanism for computing dot products between input and
weight vectors

c. A pooling operation which reduces the dimensionality of the
input sequence

d. None of the above

10. What is the purpose of positional encoding in the transformer
architecture?

a. To provide information about each token’s position within an
input sequence

b. To add noise to the input sequence in order to improve model
robustness

c. To reduce its dimensionality

d. None of the above

11. What is the purpose of layer normalization in a transformer
architecture?

a. To normalize each layer’s output to improve model stability

b. To randomly drop units out of the network to prevent overfitting

c. Adjusting the learning rate during training

d. None of the above.

12. What are the consequences of increasing the number of encoder
and decoder layers in a transformer architecture?

a. Improved model capacity with enhanced ability to capture
complex patterns from input/output sequences.

b. Decreased model capacity and ability to capture complex
patterns in the input and output sequences

c. No impact on model performance

d. None of the above

13. How is the output of the transformer architecture generated?

a. Applying a linear transformation to the final encoder state

b. Passing through a linear layer followed by softmax activation

c. Applying a fully connected layer to the final encoder state

d. None of the above.

14. What is the purpose of residual connections in a transformer
architecture?

a. To allow gradients to flow more easily during training and
improve model performance

b. To reduce parameters in the model

c. Adding noise into input sequence for improved robustness

d. None of the above

15. BERT is Decoder Only model

a. True

b. False

16. GPT from OpenAI is Decoder Only model

a. True

b. False

Answers

1. b.
2. b.
3. a.
4. a.
5. c.
6. a.
7. a.
8. b.
9. a.

10. a.
11. a.
12. a.

13. b
14. a.
15. b.
16. a.

1 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.
(2017). Attention is all you need. Advances in neural information processing systems, 30.

2 Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y.
(2014). Learning phrase representations using RNN encoder-decoder for statistical machine
translation.
arXiv preprint arXiv:1406.1078.

3 Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473.

CHAPTER 2
Hugging Face Ecosystem

Introduction
In this chapter, we delve into the universe of the Hugging Face ecosystem, a
pioneering machine learning platform for state-of-the-art ML models.
Hugging Face has become the premier resource for practitioners and
researchers alike, offering easy-to-use libraries, cutting-edge ML models, a
convenient model sharing platform, and a robust community. Importantly,
Hugging Face provides libraries for multiple frameworks (like TensorFlow,
PyTorch, etc.). However, almost all features are supported for PyTorch.
Through a comprehensive examination, this book chapter aims to provide a
solid understanding of the Hugging Face ecosystem, its components, and
how to leverage its capabilities to build PyTorch-based transformer models.

Structure
This chapter contains the following topics:

System resources

Overview of Hugging Face and its components

Datasets

Models

Sharing your model on Hugging Face

Models

Spaces

Objectives
In this book chapter, we intend to provide a thorough understanding on the
core functionalities and features of the Hugging Face ecosystem, specifically
focusing on the transformers, datasets, and tokenizers libraries. You will
learn those libraries with practical and real-world examples. The chapter will
also guide you through the process of training and fine-tuning open-source
models. You will learn how to share your fine-tuned models on the Hugging
Face platform. Additionally, the chapter delves into the specifics of fine-
tuning the stable-diffusion-based Dreambooth model. We will walk you
through each step of this process, using practical examples to illustrate how
to effectively share this model on Hugging Face. This journey will equip you
with the skills and knowledge to leverage these advanced tools in your
projects.

System resources
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.
Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages as follows:

pip3 install transformers

pip3 install datasets

pip3 install

git+https://github.com/huggingface/diffusers

pip3 install accelerate

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

pip3 install ftfy

pip3 install tensorboard

pip3 install Jinja2

Overview of Hugging Face
The Hugging Face ecosystem (https://huggingface.co/) is a comprehensive
suite of resources and tools that supports the development, implementation,
and deployment of state-of-the-art deep learning models. It was founded in
2016 to democratize artificial intelligence by providing accessible and user-
friendly tools to the border community. Specifically, Hugging Face is known
for its open-source transformer library, which has become a de-facto
package for transformer-based models like BERT, GPT, and the like.
Additionally, HuggingFace.co is a vibrant community with over 150K
models already uploaded by the community.

Figure 2.1 displays the Hugging Face user interface. It offers datasets and
models for a broad spectrum of ML tasks, including multimodal, computer
vision, audio, tabular, and reinforcement learning. Furthermore, the interface
enables users to explore specific subfields in more detail.

https://huggingface.co/

Figure 2.1: Hugging Face UI

Key component of Hugging Face
The Hugging Face ecosystem comprises six major components that together
create a comprehensive machine learning platform. Table 2.1 illustrates the
key elements of the Hugging Face ecosystem:

Sl.
No.

Name Description

1 Transformer
library

It open-source library offering a wide-range of pre-trained models (over
190).

2 Dataset
library

It has over 24K ready-to-use datasets for ML.

3 Tokenizer
library

Flexible library to handle pre-processing and tokenization of text data for
NLP

4 ML
integrations

It supports integration with multiple frameworks (PyTorch, TensorFlow,
and JAX/Flax). PyTorch is supported by all models. Other frameworks
have limited support.

Sl.
No.

Name Description

5 Inference
API

Enable user to deploy model from Hugging Face with just few lines of
code. Overall, allows production-ready model deployment for small to
large-scale project

6 Hugging
Face Spaces

Users can build web applications, host demos, and collaborate with the
community in a user-friendly environment.

Table 2.1: Key components of Hugging Face
Let us go over the major components in the next section.

Tokenizers
A tokenizer converts raw text into small units (character, word, sub-word)
processed by NLP. Table 2.2 shows the primary illustration of tokenization.
HuggingFace Tokenizer provides several pre-trained tokenizer algorithms, as
well as the mechanism to train your tokenizer algorithm.

The tokenizers

Character

Level

['T', 'h', 'e', ' ', 't', 'o', 'k', 'e', 'n', 'i',

'z', 'e', 'r', 's']

Word Level ['The', 'Tokenizers']

Sub-word

Level

['the', 'token', '##izer', '##s']

Table 2.2: Tokenization process

Create your custom Tokenizer
In certain situations, such as working in specialized fields like healthcare
with unique jargon, you may need to develop a custom tokenizer; this
section will guide you through the process of creating a tailor-made
tokenizer to suit your specific needs.

Training
The following code demonstrates how:

1. Train a tokenizer with your dataset

2. Save the trained tokenizer as a JSON file,
3. Use it for inference.

Please modify line 4 by providing the file path of the text file on your
computer. The accompanying documents contain the tokenizer_train.txt file;
however, you can train the tokenizer with any text based on your use case.
Additionally, modify line 13 by providing the location of your machine:

from tokenizers import Tokenizer, models,

pre_tokenizers, trainers

'''Training'''

Read the dataset from a file. The txt file is

available in book's GitHub repo

with

open("/Users/premtimsina/Documents/bpbbook/chapter2

_huggingFace/datasets/tokenizer_train.txt", "r") as

file:

 dataset = [line.strip() for line in

file.readlines()]

Initialize a BPE tokenizer. Byte Pair Encoding

(BPE) is a sub-word tokenizer technique.

tokenizer = Tokenizer(models.BPE())

Set the pre-tokenizer to split the input into

words

tokenizer.pre_tokenizer =

pre_tokenizers.Whitespace()

Train the BPE tokenizer on the dataset

trainer = trainers.BpeTrainer(special_tokens=["

[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])

tokenizer.train_from_iterator(dataset,

trainer=trainer)

tokenizer.save("/Users/premtimsina/Documents/bpbboo

k/chapter2_huggingFace/model/tokenizer.json")

Inference
Let us employ our tailor-made tokenizer to perform inference. In the
following code, PreTrainedTokenizerFast provides the mechanism to load
the pre-trained tokenizers:

'''Inference'''

from transformers import PreTrainedTokenizerFast

fast_tokenizer =

PreTrainedTokenizerFast(tokenizer_file="/Users/prem

timsina/Documents/bpbbook/chapter2_huggingFace/mode

l/tokenizer.json")

text = "The Tokenizers"

encoded = tokenizer.encode(text)

Print the tokenized text

print(encoded.tokens)

Output:

['T', 'h', 'e', 'T', 'o', 'ken', 'iz', 'ers']

Visualization:

from tokenizers.tools import EncodingVisualizer

Visualize the tokenization process

visualizer =

EncodingVisualizer(fast_tokenizer._tokenizer)

visualizer(text="The Tokenizers")

Output:
Figure 2.2 displays the tokenization output for the phrase The Tokenizers.
We can see that the tokenization process results in 8 tokens:

Figure 2.2: Tokenization output

Use pre-trained tokenizer from Hugging Face
In the following code, we utilize the pre-trained tokenizer bert-base-
uncased. For general language purposes, a pre-trained tokenizer is typically
more effective than a custom tokenizer:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained("bert-

base-uncased")

print(tokenizer.tokenize("The tokenizers"))

Output:
['the', 'token', '##izer', '##s']

When we compare the tokenization done by our custom tokenizer ([‘T’, ‘h’,
‘e’, ‘T’, ‘o’, ‘ken’, ‘iz’, ‘ers’]) with the pre-trained BertTokenizer ([‘the’,
‘token’, ‘##izer’, ‘##s’]), it is evident that BertTokenizer performs much
better. This is because we trained the custom tokenizer with only a few lines
of code. To produce an optimal tokenizer, it is necessary to provide a
sufficient amount of training data. However, creating a custom tokenizer is
extremely useful when working in a specialized field that requires a lot of
domain-specific vocabulary.

Datasets
Datasets is a powerful library that simplifies the process of downloading,
pre-processing, and managing datasets for machine learning. Here are some
salient features of the datasets:

Preloaded datasets: It provides a vast array of datasets in multiple
areas of ML tasks: computer vision, audio processing, NLP,
reinforcement learning, and so on.

Efficient data handling and ease of use: Under the hood, it uses
Apache Arrow, a columnar in-memory data format that allows for
efficient data processing and storage. Additionally, it has nice data
versioning (good for reproducibility), and UI to review the dataset
quickly.

Integration with Hugging Face Transformer and PyTorch: The
Datasets library is designed to be compatible with the Hugging Face
Transformers library. Additionally, it has seamless integration with
your PyTorch Framework.

Using Hugging Face dataset
Preparing the data: In the following example, we downloaded IMDb
dataset and printed the sample row. As you can see in line 3, you can
download the dataset just in one line:

from datasets import load_dataset

Load the IMDb movie review dataset

imdb_dataset = load_dataset("imdb")

Load the pre-trained model and tokenizer

Select a sample text from the dataset

sample_text = imdb_dataset["test"][0]["text"]

print (sample_text)

Output:
I love sci-fi and am willing to put up with a lot. Sci-fi movies/TV

are usually underfunded…..

Using the IMDB dataset for sentiment analysis, let us do the sentiment
analysis with the IMDB dataset:

from transformers import

AutoModelForSequenceClassification, pipeline

from transformers import AutoTokenizer

model_name = "distilbert-base-uncased-finetuned-

sst-2-english"

tokenizer =

AutoTokenizer.from_pretrained(model_name)

model =

AutoModelForSequenceClassification.from_pretrained(

model_name)

sentiment_analysis_pipeline = pipeline("sentiment-

analysis", model=model, tokenizer=tokenizer)

Select a sample text from the dataset

sample_text = imdb_dataset["test"][0]["text"]

Perform sentiment analysis on the sample text

result = sentiment_analysis_pipeline(sample_text)

Print the result

print("Sample Text:", sample_text)

print("Sentiment Analysis Result:", result)

Output:

Sentiment Analysis Result: [{'label': 'NEGATIVE', 'score':

0.999616265296936}]

Analysis:
This is an exciting development! With less than 20 lines of code, we were
able to perform end-to-end sentiment analysis. You can customize the above
code to suit your specific use case. In the above code, we use the pre-trained
model distilbert-base-uncased-finetuned-sst-2-english for both

tokenization and inference. This specific model is trained with an uncased
English vocabulary and has been fine-tuned on the Stanford Sentiment
Treebank (SST-2) dataset for sentiment analysis tasks. It is essential to
understand that when using a pre-trained model for inference, it is advisable
to use the same model for tokenization as well.

Using the Hugging Face dataset on PyTorch
Directly passing Hugging Face’s dataset to DataLoader: In the following
code, we are loading the dataset with torch format. This will convert the
data into PyTorch Tensor:

from datasets import load_dataset

from torch.utils.data import DataLoader, Dataset

import torch

Load the HuggingFace dataset (IMDb movie review

dataset as an example)

imdb_dataset =

load_dataset("imdb").with_format("torch")

Let us review the loaded dataset: We can review dataset using DatasetInfo:

from datasets import DatasetInfo

print(DatasetInfo(imdb_dataset))

Output:

DatasetInfo(description=DatasetDict({

 train: Dataset({

 features: ['text', 'label'],

 num_rows: 25000

 })

 test: Dataset({

 features: ['text', 'label'],

 num_rows: 25000

 })

 unsupervised: Dataset({

 features: ['text', 'label'],

 num_rows: 50000

 }))

Analysis:

The imdb_dataset has a train, test, and unsupervised components.
Additionally, each row contains both text and label components. Now let us
create the DataLoader:

from torch.utils.data import DataLoader, Dataset

train_loader = DataLoader(imdb_dataset['train'],

batch_size=8, shuffle=True)

test_loader = DataLoader(imdb_dataset['test'],

batch_size=8, shuffle=False)

The accompanying Notebook files contain an approach where we create
CustomDataset class.

Models
There are over 150K models on Hugging Face for many machine-learning
tasks. In the earlier example, we discussed the sentiment analysis on IMDB
dataset using the pre-trained transformer model.

In this section, we will focus on the fine-tuning of the stable diffusion-based
implementation of Dreambooth. Dreambooth is a text-to-image diffusion
model that generates images based on the text input provided. Typically, a
text-to-image model can generate an image based on a prompt like man
climbing Mount Everest. However, if you want the model to generate an
image of you climbing Mount Everest, Dreambooth can be used to fine-tune

the model with a few images of yourself. Once the model is fine-tuned, it
can generate any image that includes you doing something. This makes
Dreambooth an effective tool for subject-driven image generation.

Environmental setup
Please activate your Conda environment and enter the following command
in the terminal. Follow the prompts and input the necessary parameters
accordingly.

accelerate config

The accelerate config command is typically used to set up the default
parameters for the Accelerate library, such as the precision mode (for
example mixed precision or full precision), the gradient accumulation
settings, and other related parameters. This command must be run before any
other code is executed in the PyTorch script to ensure the Accelerate library
is configured correctly.

Training
Make sure to download train_dreambooth.py from the GitHub and place it
on your computer.
(https://github.com/huggingface/diffusers/tree/main/examples/dreamboo
th). Please run the following command on your Terminal. This will start
training the Dreambooth model:

export MODEL_NAME="CompVis/stable-diffusion-v1-4"

export

INSTANCE_DIR="/Users/premtimsina/Documents/bpbbook/

chapter2_huggingFace/datasets/dreambooth/photo"

export

OUTPUT_DIR="/Users/premtimsina/Documents/bpbbook/ch

apter2_huggingFace/datasets/dreambooth/model"

accelerate launch train_dreambooth.py \

https://github.com/huggingface/diffusers/tree/main/examples/dreambooth

 –pretrained_model_name_or_path=$MODEL_NAME \

 –instance_data_dir=$INSTANCE_DIR \

 –output_dir=$OUTPUT_DIR \

 –instance_prompt="a photo of sks boy" \

 –resolution=512 \

 –train_batch_size=1 \

 –gradient_accumulation_steps=1 \

 –learning_rate=5e-6 \

 –lr_scheduler="constant" \

 –lr_warmup_steps=0 \

 –max_train_steps=1000

To provide a better understanding of the parameter mentioned above, let us
explore its meaning in detail. To fine-tune the Dreambooth model, we need
to export three variables in the command line interface:

The first variable is MODEL_NAME, which specifies the name of the base model.
In this case, we are using the stable diffusion model.

The second variable is INSTANCE_DIR, which specifies the photo’s location for
fine-tuning the model. We recommend using 5-10 images in PNG format. I
used these three photos in my fine-tuning. You could use any subject,
including cat, flower, yourself, and so on. However, a photo with a clear face
and transparent background seems to work better:

Figure 2.3: Pictures used for training

The third variable is OUTPUT_DIR, which specifies the directory where
the fine-tuned model will be saved. Please ensure that this directory is
empty before running the code.

The instance_prompt parameter is a crucial identifier that is required
for inference. In the provided code, the instance_prompt is set as a
photo of sks boy. Please ensure that you provide an appropriate
identifier for your training process, as this will be necessary for
accurate inference.

The total training time for the model may vary based on the specifications of
your computer and the configuration you have set for acceleration. It
typically takes 30 minutes to 1 hour to complete the entire training process.
As an example, I conducted the training on a Mac with an M2 Max
processor and 32 GB of RAM, and it took me 45 minutes.

Inference
You have successfully created your Dreambooth model. Now, let us use that
model to generate images by providing various prompts:

from diffusers import StableDiffusionPipeline

import torch

model_id =

"/Users/premtimsina/Documents/bpbbook/chapter2_hugg

ingFace/datasets/dreambooth/model/"

pipe =

StableDiffusionPipeline.from_pretrained(model_id,

torch_dtype=torch.float16).to("mps")

prompt = "a photo of sks boy riding horse"

image = pipe(prompt, num_inference_steps=500,

guidance_scale=7.5).images[0]

image.save("/Users/premtimsina/Documents/bpbbook/ch

apter2_huggingFace/datasets/dreambooth/photo/boy_ri

dding_horse.png")

Explanation:

In line 4 of the code, we have converted the tensor to mps format as it
is required to run the code on Mac systems. However, if you are
running the code on a GPU, you need to convert the tensor to cuda
format instead.

It is crucial to ensure that the tensor is in the correct format to avoid
any errors during code execution. If you encounter any issues, please
double-check the format of the tensor and make the necessary
adjustments accordingly.

Additionally, please note that in line 6, the prompt starts with a photo
of sks boy. We have given this identifier during training, and during
inference, your identifier should always start with this identifier.

Figure 2.4 shows the image generated by the custom DreamBooth
model. The image generated by our model appears decent. The facial
features seem to match. If you want to generate high-quality images,
you can experiment and optimize the training parameters.

Here are a few images on Inference:

Figure 2.4: Image generated by custom DreamBooth model

This is awesome. With just a few lines of code—We create text to image
generator with the subject we specified.

Sharing your model on Hugging Face
In this section, we will cover the process of sharing your model on Hugging
Face and creating a space via Gradle. Detailed instructions for the process
can be found in the accompanying notebook. Once the model is successfully
shared, it will appear in your Hugging Face account as follows.

Model
The following figure displays the dreambooth_boy model on huggingface.co,
where you can enter a prompt and, as depicted in the illustration, obtain a
generated image corresponding to the given prompt:

Figure 2.5: Shared model in Hugging Face

Spaces
The following screenshot showcases the corresponding space for our
Dreambooth-boy model. Hugging Face Spaces offer a straightforward
approach to develop applications based on your model. Specifically, you can
perform the following tasks:

Deploy your mode

Host Jupyter notebooks

Utilize Gradio to design user-friendly interfaces,

Create interactive web applications using Streamlit

Share your space with collaborators, enabling multiple individuals
to work on the same app.

Figure 2.6: Your model space in Hugging Face

Conclusion
In this chapter, we have taken a detailed look at the Hugging Face
ecosystem, a key player in the world of machine learning. Focusing on its
core elements - the Transformers, Datasets, and Tokenizers libraries – we
have shown you how to apply these tools in real-world scenarios. We also
learned how to fine-tune models for specific tasks and share them on the
Hugging Face platform, making them accessible to others. This journey has
provided a practical understanding of how to use these advanced
technologies in various projects, particularly highlighting the process of
adapting the Dreambooth model for personalized use.

The Hugging Face ecosystem stands out as a versatile and comprehensive
resource for anyone in the field of AI, specifically Transformer based model.
It offers a range of functionalities, from creating custom tokenizers to
leveraging pre-trained models. By exploring its capabilities, we have
equipped you with the knowledge and skills to explore the vast possibilities
of machine learning, using Hugging Face’s innovative tools to enhance your
work. With this chapter, you are now ready to dive deeper into the world of
AI, using the Hugging Face ecosystem as a solid foundation for your future
projects.

Quiz

1. What is the purpose of the Tokenizers library in the Hugging
Face ecosystem?

a. To split text into individual tokens

b. To convert text to image data

c. To preprocess audio data

2. Which tokenizer algorithm is used in BERT?

a. Byte Pair Encoding (BPE)

b. WordPiece

c. SentencePiece

3. What is the purpose of a subword tokenizer?

a. To split words into their component morphemes

b. To split text into smaller pieces than words

c. To remove stopwords from text

4. How can you fine-tune a pre-trained model in Hugging Face?

a. By providing your own training data and labels

b. By adjusting the hyperparameters in the model configuration

c. By increasing the number of epochs during training

5. What is the purpose of the Datasets library in the Hugging Face
ecosystem?

a. To generate synthetic datasets for training

b. To preprocess and transform raw data for machine learning

c. To provide pre-labeled datasets for machine learning tasks

6. What is mixed-precision training in Hugging Face?

a. A technique for optimizing model performance using multiple
GPUs

b. A technique for combining multiple pre-trained models into a
single model

c. A technique for reducing the memory usage of deep learning
models during training

7. Which of the following is correct if you are running your code in
GPU?

a. pipe = StableDiffusionPipeline.from_pretrained(model_id,
torch_dtype=torch.float16).to(“mps”)

b. pipe = StableDiffusionPipeline.from_pretrained(model_id,
torch_dtype=torch.float16).to(“cuda”)

8. What is DreamBooth?

a. DreamBooth is a text-to-image generation implementation based
on Stable Diffusion that allows users to generate personalized
subject images.

b. It is image to text model

Answers

1. a.
2. b.
3. b.
4. a.
5. c.
6. c.
7. b.
8. a.

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 3
Transformer Model in PyTorch

Introduction
Welcome to this chapter where we will be breaking down PyTorch’s
implementation of the transformer model. We will look at each part of how
PyTorch runs transformer models, and go over different setups, such as
encoder only, decoder only, and the core transformer layer. We will also go
over two important ideas: Positional encoding and masking, which play a
huge role in how transformer models work. To ensure everything is clear, we
will discuss each component in detail, supplemented with practical
examples. This chapter is all about getting you comfortable and confident
with how transformer models work in PyTorch.

Structure
The chapter is organized in the following structure:

System resources

Transformer components in PyTorch

Embedding

Masking

Encoder component of a transformer

Decoder component of a transformer

Transformer layer

Objectives
In this chapter, our objective is to dive deeply into the PyTorch
implementation of the transformer architecture, thoroughly examining its
various components. We will guide you through the process of developing
end-to-end transformer models using PyTorch. This includes learning how to
build models in different configurations, such as Encoder Only, Decoder
Only, and the combined Encoder-Decoder setup. Our focus will be on
providing a comprehensive understanding of each aspect of these models,
ensuring you gain practical knowledge for implementing them effectively in
your projects.

System resources
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages as follows:

pip3 install transformers

pip3 install datasets

pip3 install torch

pip3 install torchtext

Transformer components in PyTorch
Figure 3.1 illustrates the transformer architecture discussed in Chapter 1,
Transformer Architecture:

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

Figure 3.1: Transformer architecture

Table 3.1 displays the key components of the transformer in PyTorch. In the
subsequent sections of this chapter, we will explore these components in
greater detail.

Embedding torch.nn.Embedding Implements an embedding
layer in neural networks. An
embedding layer is used to

convert discrete tokens (such
as words, characters, or other
discrete elements) into
continuous vector
representations.

Positional
Encoding
(PE)

Not Available Pytorch does not has inbuilt
implementation of PE

Transformer
Encoder

torch.nn.TransformerEncoder

torch.nn.TransformerEncoderLayer

It consists of two main
components: Multi-head
attention, feed-forward layer

Transformer
Decoder

torch.nn.TransformerDecoder

torch.nn.TransformerDecoderLayer

It consists of three main
components: self-attn, multi-
head-attn and feedforward
network

Transformer Torch.nn.Transformer It consists of both an encoder
and a decoder layer

Table 3.1: Major transformer components in PyTorch

Embedding
The torch.nn.Embedding is not a pre-trained embedding model. Instead, it
learns the embedding vectors during the training process. It utilizes a lookup
table (usually a matrix) to map each unique element (for example words or
characters) onto an integer-valued continuous vector with fixed dimensions.
The lookup table is initially filled with random values and learned by the
model during training. Here is a simple explanation of the algorithm behind
torch.nn:Embedding:

Assign each unique element in the vocabulary an index. You could
store this mapping using a dictionary-like structure; for instance,
assign {"apple": 0, "banana": 1, "orange": 2}

Create an embedding matrix (a lookup table) with the size
(number_of_unique_elements, embedding_dimension). Each row in
this matrix corresponds to an element’s index in the dictionary;
embedding_dimension determines how large each element’s continuous
vector representation should be.

Start the embedding matrix with random values; these will be adjusted
during training.

Embedding Matrix acts as a lookup table. When you need to convert
an element into its embedding representation, look up the row in the
embedding matrix.

During training, the model adjusts the value of the embedding matrix
so that the similar token has similar vector representation. This is
achieved by minimizing the loss function and updating the embedding
matrix using an optimizer (for example gradient descent).

Example
The following section presents an illustration of how the embedding layer is
implemented in PyTorch:

import torch

import torch.nn as nn

Define the parameters

num_embeddings = 10 # Size of the vocabulary

embedding_dim = 3 # Embedding vector size

Create the embedding layer

embedding =

nn.Embedding(num_embeddings=num_embeddings,

embedding_dim=embedding_dim)

input_tokens = torch.tensor([1, 5])

output_embeddings = embedding(input_tokens)

print(output_embeddings)

In line 9, num_embeddings represents the total number of unique tokens in
our dataset, and embedding_dim refers to the dimension of the vector used to
represent each token. The code above creates an embedding layer with 10

unique tokens, and each token is represented by a 3-dimensional vector.
When we pass tensor ([1, 5]) for embedding, the output is:

tensor([[-1.3973, -1.9344, 0.8324],

 [-0.8258, -0.6737, 0.2057]], grad_fn=<EmbeddingBackward0>)

In the transformer model, the embedding layer will be the first layer of your
neural nets. Also, in the default setting of the transformer model, the input to
the embedding layer should be of shape [max_seq_length, batch_size].

Positional encoding
PyTorch does not have an inbuilt positional encoding module. Thus, let us
write a class to do positional encoding: The positional embedding excepts
the embedding vector, and returns the positional encoding information
attached to the embedding vector. Importantly, Encoder excepts the data in
the form of [sequence length, batch size, embedding dimension].Thus,
the input and output of the PE should adhere to that dimension:

class PositionalEncoding(nn.Module):

 def __init__(self, dim_embedding, dropout=0.1,

max_seq_len=5000):

 super(PositionalEncoding, self).__init__()

 self.dropout = nn.Dropout(p=dropout)

 postional_encoding =

torch.zeros(max_seq_len, dim_embedding)

 position = torch.arange(0, max_seq_len,

dtype=torch.float).unsqueeze(1)

 denom_term = torch.exp(torch.arange(0,

dim_embedding, 2).float() * (-math.log(10000.0) /

dim_embedding))

 postional_encoding[:, 0::2] =

torch.sin(position * denom_term)

 postional_encoding[:, 1::2] =

torch.cos(position * denom_term)

 postional_encoding =

postional_encoding.unsqueeze(0).transpose(0, 1)

 self.register_buffer('postional_encoding',

postional_encoding)

 def forward(self, x):

 x = x + self.postional_encoding[:x.size(0),

:]

 return self.dropout(x)

Explanation:

In line 7, we are doing unsqueeze so that the position tensor changes
to the dimension of [max_seq_len ,1]. This is required for matrix
multiplication on lines 7 and 8.

In line 11, the unsqueeze(0).transpose(0, 1) operation is used to
change the shape of the positional encoding tensor to match the
expected input shape of the transformer model.

unsqueeze(0): This operation adds an extra dimension at position 0. If
the original shape of the positional encoding tensor pe is [max_len,
d_model], after unsqueeze(0), the shape becomes [1, max_len,

d_model]. This operation essentially turns the 2D tensor into a 3D
tensor with a batch dimension of size 1.

transpose(0, 1): This operation swaps the first two dimensions of the
tensor. So, the shape [1, max_len, d_model] becomes [max_len, 1,
d_model]. This transposition is done to make the positional encoding
tensor compatible with the input shape that the transformer expects,
which is [sequence length, batch size, embedding dimension].

The examples of using a Positional Encoder are provided in the
accompanying notebook.

Masking
Masking is a crucial concept in the transformer architecture, as it is used to
hide or replace specific input tokens during processing. A thorough
understanding of masking is essential to create an accurate transformer
model. These masking parameters are present in all variations of transformer
models, and it is important to have a good grasp of them before delving into
actual model development:

tgt_mask: An optional tensor of shape (seq_len, seq_len)

representing the mask for the input sequence. It is used to prevent the
decoder from attending to future tokens. The format should be:

tensor([[0., -inf, -inf],

 [0., 0., -inf],

 [0., 0., 0.]], device='mps:0')

In above example, seq_length=3

where -inf signifies the tokens that need to be masked

memory_mask: An optional tensor of shape (seq_len, src_seq_len)
representing the mask for the encoder output sequence. It is used to
prevent the decoder from attending future tokens in the encoder input
sequence:

tensor([[0., -inf, -inf],

 [0., 0., -inf],

 [0., 0., 0.]], device='mps:0')

in the above example, seq_length=3

where -inf signifies the tokens that need to be masked. Usually, you
will not mask the memory: Thus, you will pass:

tensor([[0., 0, 0],

 [0., 0., 0],

 [0., 0., 0.]], device='mps:0')

tgt_key_padding_mask: An optional tensor of shape (batch_size,
seq_len) representing the mask for padding tokens in the input
sequence:

tensor([[False, False, False],

 [False, False, False],

 [False, True, False],

 [True, True, False]], device='mps:0')

In the above example, batch_size=4, seq_len=3. True signifies the
particular token is a padded token and masks it. False signifies the
particular token is not a padded token and do not masks it.

memory_key_padding_mask: An optional tensor of shape (batch_size,
src_seq_len) representing the mask for padding tokens in the encoder
output sequence:

tensor([[False, False, False],

 [False, False, False],

 [False, True, False],

 [True, True, False]], device='mps:0')

In the above example, batch_size=4, seq_len=3. True signifies the
particular token is padded token. False signifies the particular token
is not padded token.

Accompanying notebook illustrates how to implement masking while you
create your PyTorch model.

Encoder component of a transformer
There are many use cases where you just need an encoder layer of the
transformer. Some of the examples are sentiment analysis, text classification,
NER, and the like. Thus, PyTorch provides us the flexibility of using just the
encoder layer. Below is an example of a simple classification model using
TransformerEncoder and TransformerEncoderLayer:

class TextClassifier(nn.Module):

 def __init__(self, vocab_size, embedding_dim,

nhead, num_layers, num_classes):

 super(TextClassifier, self).__init__()

 self.embedding = nn.Embedding(vocab_size,

embedding_dim)

 self.positional_encoding =

PositionalEncoding(embedding_dim)

 self.encoder_layer =

nn.TransformerEncoderLayer(embedding_dim, nhead)

 self.encoder =

nn.TransformerEncoder(self.encoder_layer,

num_layers)

 self.fc = nn.Linear(embedding_dim,

num_classes)

 self.embedding_dim=embedding_dim

 self.init_weights()

 def init_weights(self) -> None:

 initrange = 0.1

 self.embedding.weight.data.uniform_(-

initrange, initrange)

 for layer in self.encoder.layers:

nn.init.xavier_uniform_(layer.self_attn.out_proj.we

ight)

nn.init.zeros_(layer.self_attn.out_proj.bias)

nn.init.xavier_uniform_(layer.linear1.weight)

 nn.init.zeros_(layer.linear1.bias)

nn.init.xavier_uniform_(layer.linear2.weight)

 nn.init.zeros_(layer.linear2.bias)

 self.fc.bias.data.zero_()

 self.fc.weight.data.uniform_(-initrange,

initrange)

 def forward(self, x, key_padding_mask=None):

 x = self.embedding(x)*

math.sqrt(self.embedding_dim)

 x = self.positional_encoding(x)

 x = self.encoder(x,

src_key_padding_mask=key_padding_mask)

 # Pooling the last dimension and use the

first token representation

 x = x.mean(dim=0)

 # Fully connected layer for classification

 x = self.fc(x)

 x=torch.sigmoid(x)

 return x

Analysis:

In lines 7 and 8, we are constructing a TransformerEncoder in two
steps:

First, we define a single encoder block using
TransformerEncoderLayer(embedding_dim, nhead). Important
consideration while choosing nhead—the division (embedding_dim //
n_head) should result in an integer (remainder should be zero).

Second, we create the entire encoder by instantiating
TransformerEncoder and passing the TransformerEncoderLayer along
with the number of encoder blocks to be used.

Line 13 illustrates the weight initialization ensuring efficient learning
and improved convergence in neural networks. This is an essential
component; otherwise, you may notice the exploding gradient or
slow convergence.

In Line 35, the output of the last block of the encoder is passed to the
fully connected layer for classification.

It is interesting to understand what we are doing on line 32. After
passing the input through the embedding, positional encoding, and
transformer encoder layers, the tensor x has a shape of
(sequence_length, batch_size, embedding_dim). We want to create a
fixed-size representation of the entire sequence to feed into the Fully
Connected (FC) layer for classification. One simple way to do this is
to average the embeddings of all tokens in the sequence, which is
called mean pooling. To perform mean pooling, we use the mean()
function with the argument dim=0, which calculates the mean along
the sequence dimension. This reduces the tensor shape from
(sequence_length, batch_size, embedding_dim) to (batch_size,

embedding_dim).

The end-to-end implementation of text classification with IMDB dataset is
provided in the accompanying notebook.

Decoder component of a transformer
There are also many use cases where you just need a decoder layer of
transformer. Some examples are text generation, code generation, and music
generation. Thus, PyTorch provides the functionality of just using the
transformer’s decoder. Below is an example of simple text generation model
using just TransformerDecoderLayer, and TransformerDecoder:

class TransformerDecoder(nn.Module):

 def __init__(self, vocab_size, embedding_dim,

num_layers, dropout):

 super().__init__()

 self.memory_embedding =

nn.Embedding(vocab_size, embedding_dim)

 self.memory_pos_encoder =

PositionalEncoding(embedding_dim, dropout)

 self.tgt_embedding =

nn.Embedding(vocab_size, embedding_dim)

 self.tgt_pos_encoder =

PositionalEncoding(embedding_dim, dropout)

 self.decoder = nn.TransformerDecoder(

nn.TransformerDecoderLayer(d_model=embedding_dim,

nhead=8, dim_feedforward=2048, dropout=dropout),

 num_layers=num_layers)

 self.fc = nn.Linear(embedding_dim,

vocab_size)

 self.d_model=embedding_dim

 def forward(self, tgt, memory=None,

tgt_mask=None, memory_mask=None,

memory_key_padding_mask=None,tgt_key_padding_mask=N

one):

 tgt = self.tgt_embedding(tgt) *

self.d_model ** 0.5

 tgt=self.tgt_pos_encoder(tgt)

 print(tgt)

 memory=self.memory_embedding(memory) *

self.d_model ** 0.5

 memory=self.memory_pos_encoder(memory)

 print(memory)

 output = self.decoder(tgt=tgt,

memory=memory, tgt_mask=tgt_mask,

memory_mask=memory_mask,

memory_key_padding_mask=memory_key_padding_mask,tgt

_key_padding_mask=tgt_key_padding_mask)

 print(output)

 output = self.fc(output)

 return output

Let us now delve into a discussion of the code snippet provided above and
examine its functionality:

This model is a transformer-based decoder-only language model,
which takes as input a target sequence (tgt) and an memory sequence
(memory) and generates an output sequence of the same length as the
input sequence.

The input target sequence is first passed through an embedding layer
and a positional encoding layer. Similarly, the input memory sequence
is passed through an embedding layer and a positional encoding layer.

During training:

memory is training data of shape (seq_len, batch_size)

target: During model training, the target sequence would be the
input sequence shifted by one position.

These processed input sequences are then fed into the transformer
decoder, which consists of multiple transformer decoder layers. Each
decoder layer processes the input sequences using multi-head self-
attention and a feedforward neural network.

Finally, the output of the transformer decoder is passed through a
linear layer (fully-connected neural network) to generate the final
output sequence, with each element of the sequence representing the
probability distribution over the vocabulary of the target language.

Transformer layer in PyTorch
There are many situations where you will need a sequence-to-sequence
model, such as for machine translation. In such a scenario, you will use the
entire torch.nn.Transformer. Let us implement a Machine Translation
Model using torch.nn.Transformer:

class TransformerModel(nn.Module):

 def __init__(self,num_encoder_layers,

num_decoder_layers, d_model, nhead,

src_vocab_size=tokenizer_src.vocab_size,

tgt_vocab_size=tokenizer_tgt.vocab_size,

dim_feedforward=512, dropout=0.1):

 super(TransformerModel, self).__init__()

 self.src_embedding =

nn.Embedding(input_dim, d_model)

 self.trg_embedding =

nn.Embedding(output_dim, d_model)

 self.src_pos_encoder =

PositionalEncoding(d_model, dropout)

 self.trg_pos_encoder =

PositionalEncoding(d_model, dropout)

 self.transformer =

nn.Transformer(d_model=d_model, nhead=nhead,

num_encoder_layers=num_encoder_layers,

num_decoder_layers=num_decoder_layers,dim_feedforwa

rd=dim_feedforward, dropout=dropout)

 self.fc = nn.Linear(d_model,

tgt_vocab_size)

 self.dropout = nn.Dropout(dropout)

 self.d_model = d_model

 def forward(self, src, trg, src_mask=None,

src_padding_mask=None,trg_mask=None,

trg_padding_mask=None,

memory_key_padding_mask=None):

 src = self.src_embedding(src) *

(self.d_model ** 0.5)

 src = self.src_pos_encoder(src)

 trg = self.trg_embedding(trg) *

(self.d_model ** 0.5)

 trg = self.trg_pos_encoder(trg)

 output = self.transformer(src,

trg,src_mask, trg_mask, None,

 src_padding_mask,

trg_padding_mask, memory_key_padding_mask)

 output = self.fc(self.dropout(output))

 return output

Let us now delve into a discussion of the code snippet provided above and
examine its functionality:

The major components of the model are Embedding, Positional
Encoding, and transformer Layer. As shown in code snippet lines 4
and 5; make sure to have different Embedding for source and target
sequence.

Forward function: These are major operations in forward function.

The source and target sequences are embedded and scaled by the
square root of the embedding dimension. This scaling helps
mitigate the issue of gradients exploding or vanishing during the
training process.

The positional encodings are added to the embeddings.

The transformer processes the source and target sequences, with
masking:

src_mask, trg_mask==> This is done to prevent the future flow
of information.

src_padding_mask, trg_padding_mask ==> This is done to mask
padded data. We are doing this so that model do not attend to
padded tokens.

The output of the transformer is passed through a fully connected
layer to get the predicted target sequence.

The model predicts the next token in German, given all the tokens in
English and tokens until the current step in German.

The end-to-end Machine Translation Model is provided in the accompanying
notebook.

Conclusion
In this chapter, we delved into the core elements of the transformer
Architecture using PyTorch. We examined the transformer’s two critical
components: the encoder layer and the decoder layer. These components can
be combined in various configurations, such as utilizing only the encoder or
decoder, or integrating both. This adaptability allows the transformer model
to be applied to a wide range of tasks, from categorizing data to language
translation.

Key concepts crucial to the transformer model were also explored: Positional
Encoding and Masking. Positional encoding is vital for maintaining the
sequential order of data elements, and we demonstrated how to implement
this in PyTorch. Masking, another significant feature, enables the model to
concentrate on relevant data while disregarding unnecessary parts. To help
understand these concepts in practice, we provided real-world examples.

Furthermore, this chapter offered practical insights into creating positional
encoding and masking, and constructing models with either encoder only,
decoder only, or both (Encoder-Decoder) using PyTorch.

Quiz

1. What is the purpose of masking in the Transformer architecture?

a. To selectively hide or replace certain input tokens during
processing

b. To shuffle the input tokens randomly

c. To add noise to the input tokens

d. None of the above

2. What is the purpose of positional encoding in the Transformer
architecture?

a. To learn the embedding of each input token

b. To learn the relation between different input tokens

c. To add the concept of position to the input sequence

d. None of the above

3. Which variation of Transformer is used when only the encoding
of the input sequence is required?

a. Encoder Only

b. Decoder Only

c. Encoder-Decoder

d. None of the above

4. Which variation of Transformer is used when only the decoding
of the input sequence is required?

a. Encoder Only

b. Decoder Only

c. Encoder-Decoder

d. None of the above

5. Which variation of Transformer is used when both encoding and
decoding of the input sequence is required?

a. Encoder Only

b. Decoder Only

c. Encoder-Decoder

d. None of the above

6. What is the purpose of input masking in the Transformer
architecture?

a. To prevent attention from being paid to certain input tokens

b. To remove certain input tokens from the input sequence

c. To add noise to the input sequence

d. None of the above

7. What is the purpose of padding masking in the Transformer
architecture?

a. To prevent attention from being paid to padded tokens

b. To remove padded tokens from the input sequence

c. To add noise to the padded tokens

d. None of the above

8. What is the purpose of sequence masking in the Transformer
architecture?

a. To prevent attention from being paid to future tokens in the input
sequence

b. To prevent attention from being paid to past tokens in the input
sequence

c. To remove future tokens from the input sequence

d. None of the above

9. What is the dimension of input to the Transformer?

a. (batch_size, seq_len)

b. any dimension is fine

c. (seq_len, batch_size)

10. What is the dimension of src_mask?

a. (seq_len, seq_len)

b. (batch_size, seq_len)

11. In the src_mask, how would you signify the masking token?

a. 0

b. True

c. -inf

12. In the tgt_key_padding_mask, how would you signify the
masking token?

a. 0

b. True

c. -inf

Answers

1. a.
2. c.
3. a.
4. b.
5. c.
6. a.
7. a.
8. a.
9. c.

10. a.
11. c.
12. b.

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 4
Transfer Learning with PyTorch

and Hugging Face

Introduction
You are a computer programmer who excels in back-end development. Over
the years, you have perfected your skills in Python, mastered multi-threading
and multi-processing, and deeply understood how complex back-end
systems operate. One day, you decide to switch careers and venture into the
world of machine learning, focusing on model development, deployment,
and operations.

You will not wipe your memory clean or discard your years-earned
expertise. In fact, your knowledge of developing and maintaining large,
distributed systems is invaluable and ideally suited for your new career
endeavor. Your primary focus will now be on learning machine learning
algorithms and unique skills related to AI. The wealth of knowledge you
have accumulated over the years can be applied to the exciting task of
building next-generation AI systems. Before you know it, you will be
developing incredible models, deploying them seamlessly, and ensuring their
stability and scalability in production.

Transfer learning in the context of deep learning models operates on a
similar principle. A pre-trained model has already acquired a wealth of
knowledge from processing vast amounts of data. For instance, models like
ResNet have been trained on millions of images to accurately extract image

features. When you fine-tune this pre-trained model for a new, specific task
(such as using ResNet to analyze chest X-rays and classify COVID positive
or negative), it is akin to our back-end developer learning to create AI
models. The model does not need to start from scratch; it can capitalize on
its existing knowledge to rapidly adapt to the new task, resulting in superior
performance and quicker training. This approach is a departure from
traditional AI model development, where each use case requires building a
model entirely from the scratch.

Structure
This chapter is organized into following sections:

System requirements

Need of transfer learning

Using transfer learning

Where can you get pre-trained model

Popular pre-trained model

Project: develop classifier by fine tuning BERT-base-uncased

Objectives
In this book chapter, we have a few main goals we want to achieve. First off,
we want to make sure you get a complete picture of what transfer learning is,
why it is useful, and where it can be used. We also want to introduce you to
some pre-trained models that are very popular in fields like natural
language processing (NLP), speech processing, and computer vision.

We will not just want to talk about them, but also want to show how they are
used in real life. So, we will demonstrate how to use transfer learning with
tools called Hugging Face and PyTorch. We will even walk you through a
project where we develop a system that can tell the difference between real
and fake news. To do this, we will use a pre-trained model known as the
‘BERT-base-uncased’ model as our starting point. This way, you will be able
to see transfer learning in action.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages:

pip3 install transformers

pip3 install datasets

pip3 install torch

pip3 install torchtext

pip3 install accelerate

pip3 install sentencepiece

pip3 install sacremoses

Need of transfer learning
Suppose we want to build a deep learning model to diagnose pneumonia
from chest X-ray images using a transformer-based architecture. Collecting
hundreds of thousands of labeled chest X-ray images is practically very
difficult, if not impossible. A single institution may not have access to such a
vast number of pneumonia cases, and sharing data across multiple
institutions faces hurdles due to HIPAA and other government regulations.
Even if we somehow obtained thousands of labeled datasets, smaller
institutions like hospitals might not be able to afford weeks of substantial
GPU costs just for running experiments on model training. In this case,
model training would become a costly endeavor.

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

This is where transfer learning comes into play, offering a practical solution.
Instead of starting from scratch, our hospital can take a pre-trained vision
transformer which has been trained on an enormous corpus of image data
and has already learned to extract image features. The hospital can then
adapt this model to the task of diagnosing pneumonia from chest X-ray
images.

The following are some advantages of using transfer learning over
developing model from scratch. Please go through the Table 4.1:

1. Improve
performance

The pre-trained Vision Transformer (ViT) model has already learned
useful features and representations from its vast training dataset. This
knowledge can be adapted to our specific task, potentially leading to
better performance than a model trained from scratch on the limited
chest X-ray dataset.

2. Reduce
training time

Fine-tuning the pre-trained ViT model on our target task takes
significantly less time

3. Handling
small dataset

Transfer learning allows the hospital to make the most of their small
dataset of chest X-ray images.

4 Adaptability We can also use transfer learning to adapt the pre-trained ViT model to
various other medical imaging tasks, such as detecting tumors in MRI
scans or identifying retinal diseases.

5. Lower
computational
resources

We can achieve good results with relatively less computational power,
making the task more accessible to researchers with limited resources.

Table 4.1: Benefits of transfer learning

Using transfer learning
Figure 4.1 illustrates the general structure of pre-trained ML models. As
shown in Figure 4.1, the typical ML model has Feature Extractor Layers and
Fully Connected Layers. Specifically, we will understand the architecture by
explaining distilbert-base-uncased-finetuned-sst-2-english. It is a
lightweight transformer-based model that has been fine-tuned on the SST-2
dataset for English sentiment analysis. It gives positive or negative as output.
Let us delve into the components of a typical pre-trained model; refer to the
following figure:

Figure 4.1: General structure of pre-trained ml model

Following is the detailed explanation of some key terms:

Feature extractor: This component is responsible for taking raw
input data, extracting relevant features, and generating vector
representations of those features. In the case of distilbert-base-
uncased-finetuned-sst-2-english, the feature extractor is the
Transformer Encoder. The primary purpose of the feature extractor is
to convert the raw input into a more meaningful representation that
can be used for the target task.

Fully connected layer: This is a linear layer where all neurons are
connected to every neuron in the previous layer. In the distilbert-
base-uncased-finetuned-sst-2-english model, for example, the last
few fully connected layers provide the output by applying a softmax
function. This component is used to make predictions based on the
features extracted by the feature extractor.

Let us understand what the paradigm is for using the pre-trained ML model:

Pre-trained ML model: If your problem involves understanding the
sentiment of regular English text, you can use distilbert-base-
uncased-finetuned-sst-2-english as is for your new sentiment
analysis task.

Fixed feature extractor: In this approach, the feature extractor part of
the pre-trained model’s weights is not updated. You will freeze the
weights of the Encoder part of distilbert-base-uncased-finetuned-
sst-2-english and only retrain a few fully connected layers. Even
with a small amount of data, you can develop a decently performing
model.

Fine-tuning: In this step, the pre-trained model is adapted to the target
task by updating its weights for the specific task. You will update the

weights of both the feature extractor and the fully connected layer.
Fine-tuning can involve updating the weights of the entire model or
just a subset of layers. The learning rate is typically set to a smaller
value during fine-tuning to prevent the model from losing the
previously learned features.

Now, the question is how do you decide which paradigm you should follow
for Transfer Learning? The answer to our problem can be thought through
two dimensions (2S: Size & Similarity):

Size: The size of retraining data.

Similarity: Similarity with the original dataset and problem on which
the pre-trained model was trained.

Now, let us discuss when to use the above three paradigms from the Table
4.2:

Pre-
trained
model

A. The new problem is exactly the same as the original problem/dataset.
B. For example, if your problem is to understand the sentiment of movie comments.

You can use distilbert-base-uncased-finetuned-sst-2-english
without finetuning it. This is because distilbert-base-uncased-
finetuned-sst-2-english was trained on IMDB dataset

Fixed
feature
extractor

A. The new problem is similar to the original problem/dataset.
OR/AND

B. The size of new dataset is small
C. For example, if your problem is to understand the sentiment of amazon review; you

may want to use distilbert-base-uncased-finetuned-sst-2-
english as Fixed Feature Extractor.

Fine-
tunning

A. The new problem is not similar to the original problem/dataset.
OR/AND

B. You have large amount of Dataset
C. For example, if your problem is to understand the sentiment of clinical notes: you

want to fine-tune the distilbert-base-uncased-finetuned-sst-2-
english. The new problem is not similar to original dataset on which
distilbert-base-uncased-finetuned-sst-2-english was trained.

Table 4.2: Transfer learning paradigm

Where can you get pre-trained model
Here is a list of reporitories where you can get pre-trained model:

Hugging Face: A widely-used library that offers state-of-the-art pre-
trained models for machine learning tasks, such as BERT, GPT-2,
RoBERTa, T5, ViT, and many more
(https://huggingface.co/transformers/).

Pytorch Hub: A repository for pre-trained models provided by the
PyTorch team, including models for image classification, object
detection, and NLP tasks. (https://pytorch.org/hub/)

Torch Image Models (timm): A repository by Ross Wightman that
contains a collection of pre-trained image classification models,
including EfficientNet, ResNet, and many others.
(https://github.com/rwightman/pytorch-image-models).

These repositories and libraries offer a wide range of pre-trained models that
can be used for transfer learning, fine-tuning, or as feature extractors for
various machine learning tasks.

Popular pre-trained model
In this section, we are going to explore a variety of transformer-based pre-
trained models specifically used in the fields of Natural Language
Processing (NLP), computer vision, and speech processing. These models
are a huge time-saver since they come pre-trained on massive amounts of
data. This allows users to tweak them for specific tasks, saving time and
computational power.

Each of these models is unique, both in terms of their strengths and the areas
where they’re most commonly used. This means they can be used in a wide
variety of different projects. For instance, BERT was trained with a masked
language modeling objective, while GPT was trained with a sequence
modeling objective. There are also differences in each model’s structure.

Our goal in exploring these models is to help you better understand and use
these models in your own work. By the end of it, you should have a good
grasp of how you can take advantage of these powerful tools to improve
your own projects.

NLP

https://huggingface.co/transformers/
https://pytorch.org/hub/
https://github.com/rwightman/pytorch-image-models

Here is a list of some widely-used NLP pre-trained models.

Bidirectional Encoder Representations from Transformers
(BERT): A powerful pre-trained model for various NLP tasks, such as
sentiment analysis, named entity recognition, and question-answering.

Generative pre-trained Transformer (GPT-2): A large-scale
language model known for its impressive text generation capabilities.

Text-to-Text Transfer Transformer (T5): A versatile pre-trained
model designed to handle a wide range of NLP tasks using a unified
text-to-text format.

BART: This model incorporates a bi-directional encoder (similar to
BERT) and an autoregressive decoder, establishing itself as an
encoder-decoder framework

LLAMA2: As of the writing of this book in September 2023, it is
arguably the most popular open-source autoregressive model, holding
its ground against GPT3.5 in numerous benchmarks. It features a
range of models with varying parameters, spanning from 2 billion to
70 billion

Falcon: It is created by Technology Innovation Institute in Abu Dhabi,
and released under Apache 2.0 license. Falcon 180b is 2.5 times larger
than Llama2 70b. The Falcon 180b surpasses the performance of
Llama 2 70B and OpenAI’s GPT-3.5 in the MMLU tests, and is
comparable to Google’s PaLM 2-Large in various benchmarks1.

Computer vision
Here is a list of some widely-used computer vision pre-trained models:

ViT: A transformer-based model that applies the transformer
architecture to image classification tasks, dividing images into patches
and treating them as sequences.

Data-efficient Image Transformer (DeiT): A variant of the Vision
Transformer that is specifically designed for data-efficient training,
requiring fewer labeled images for good performance.

Swin transformer: A hierarchical transformer model for computer
vision tasks, using shifted windows to capture local and global
information efficiently.

Stable Diffusion: It is arguably the most popular model for generating
images from text. This model is grounded on latent diffusion
principles and incorporates three primary components: 1) An
Autoencoder, 2) U-Net, and 3) CLIP’s Text Encoder.

Speech processing
Here is a list of some widely-used speech processing pre-trained models:

Wav2Vec 2.0: A transformer-based model for self-supervised speech
recognition that learns speech representations directly from raw audio
data.

Conformer: A hybrid model that combines convolutional, recurrent,
and self-attention mechanisms, used for various speech processing
tasks, such as automatic speech recognition and keyword spotting.

Project: Develop classifier by fine tuning BERT-base-uncased
We have covered the basics of transfer learning. Now, let us create a
classifier fine-tuning the `BERT-uncased` model. We will build the real news
vs. fake news detection engine. We want to demonstrate how this pipeline
can be adapted to your organization’s specific needs. Instead of using a pre-
built dataset, we will download a dataset from Kaggle and utilize it in our
fine-tuning process. This approach will help illustrate how the pipeline can
be tailored to work with custom datasets in real-world applications. Figure
4.2 shows an outline of the fine-tuning process:

Figure 4.2: Outline for fine-tunning NLP classifier

The steps below guide you through the fine-tuning process.

1. Import required libraries and packages using the following code
snippet for training a sequence classification model using the
Hugging Face transformers library and PyTorch:

import pandas as pd

from sklearn.model_selection import

train_test_split

from accelerate import Accelerator

import torch

from torch.utils.data import DataLoader,

RandomSampler, SequentialSampler

from tqdm import tqdm

from transformers import AutoTokenizer

from transformers import

AutoModelForSequenceClassification

from transformers import AdamW

from transformers import get_scheduler

Now, let us set up device. The code defines a function get_device()
that checks the available hardware (CUDA, Apple Metal Performance
Shaders, or CPU) and returns the appropriate device for PyTorch
tensor operations.

def get_device():

 device="cpu"

 if torch.cuda.is_available():

 device="cuda"

 elif torch.backends.mps.is_available():

 device='mps'

 else:

 device="cpu"

 return device

device = get_device()

print(device)

2. Load dataset: First, download the dataset from Kaggle
(https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-
news-dataset). Then perform the data cleaning. In the following
code, we are conducting these operations:

a. Reading data from two CSV files: True.csv (real news) and
Fake.csv (fake news)

b. Cleaning and preprocessing the data in each CSV file

c. Concatenating both data frames into a single data frame

https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset

d. The resulting data frame contains two columns: text for the
news content and ‘label’ for its corresponding category (real or
fake):

real=pd.read_csv('/Users/premtimsina/Documents

/bpbbook/chapter4/dataset/True.csv')

fake=pd.read_csv('/Users/premtimsina/Documents

/bpbbook/chapter4/dataset/Fake.csv')

real = real.drop(['title','subject','date'],

axis=1)

real['label']=1.0

fake = fake.drop(['title','subject','date'],

axis=1)

fake['label']=0.0

dataframe=pd.concat([real, fake], axis=0,

ignore_index=True)

df =

dataframe.sample(frac=0.1).reset_index(drop=Tr

ue)

3. Load pre-trained tokenizer: We will utilize the bert-base-uncased
as our pre-trained model for fine-tuning. As a result, it is essential to
use the corresponding tokenizer to ensure that the input data is
properly processed and compatible with the model. If an incorrect
tokenizer is used, the data fed into the model will be inadequate or
incorrect, negatively affecting the training process and resulting in
suboptimal performance.

tokenizer =

AutoTokenizer.from_pretrained("bert-base-

uncased")

4. Prepare dataset: The data preparation process for BERT-based
uncased models involves tokenizing the text, mapping tokens to
input_ids, creating attention masks (attention_mask), , and preparing

the tensor labels. Each item of the Dataset Class should be a
dictionary of the following structure:

{'input_ids':

torch.Tensor(),'attention_mask':torch.Tensor()

, 'labels': torch.Tensor() }

Let us discuss the component of the above dictionary:

input_ids: Each token from the tokenized text needs to be mapped to
an ID using BERT’s vocabulary. The resulting input IDs should be in
the form of a tensor or array with specified shape (batch_size,
max_sequence_length).

attention_mask: The attention mask is used to differentiate between
the actual tokens and padding tokens. It has the same shape as the
input_ids tensor, that is, (batch_size, max_sequence_length). The
mask has 1s for actual tokens and 0s for padding tokens.

labels: The labels tensor contains the true class for each example in
the dataset. It usually has a shape of (batch_size,). For classification
tasks, these labels are one-hot-encoded labels.

The following code illustrates the data processing. The output of the
following code is three lists: input_ids, attention_mask, and labels for both
the training and the validation dataset:

this is just creating a list of tuples. Each

tuple has (text, label)

data=list(zip(df['text'].tolist(),

df['label'].tolist()))

This function takes two lists as Parameter

This function return input_ids, attention_mask,

and labels_out

def tokenize_and_encode(texts, labels):

 input_ids, attention_masks, labels_out = [],

[], []

 for text, label in zip(texts, labels):

 encoded = tokenizer.encode_plus(text,

max_length=512, padding='max_length',

truncation=True)

 input_ids.append(encoded['input_ids'])

attention_masks.append(encoded['attention_mask'])

 labels_out.append(label)

 return torch.tensor(input_ids),

torch.tensor(attention_masks),

torch.tensor(labels_out)

seprate the tuples

generate two lists: a) containing texts, b)

containing labels

texts, labels = zip(*data)

train, validation split

train_texts, val_texts, train_labels, val_labels =

train_test_split(texts, labels, test_size=0.2)

tokenization

train_input_ids, train_attention_masks,

train_labels = tokenize_and_encode(train_texts,

train_labels)

val_input_ids, val_attention_masks, val_labels =

tokenize_and_encode(val_texts, val_labels)

Custom dataset class
Let us write custom dataset class:

class

TextClassificationDataset(torch.utils.data.Dataset)

:

 def __init__(self, input_ids, attention_masks,

labels, num_classes=2):

 self.input_ids = input_ids

 self.attention_masks = attention_masks

 self.labels = labels

 self.num_classes = num_classes

 self.one_hot_labels =

self.one_hot_encode(labels, num_classes)

 def __len__(self):

 return len(self.input_ids)

 def __getitem__(self, idx):

 return {

 'input_ids': self.input_ids[idx],

 'attention_mask':

self.attention_masks[idx],

 'labels': self.one_hot_labels[idx]

 }

 @staticmethod

 def one_hot_encode(targets, num_classes):

 targets = targets.long()

 one_hot_targets =

torch.zeros(targets.size(0), num_classes)

 one_hot_targets.scatter_(1,

targets.unsqueeze(1), 1.0)

 return one_hot_targets

train_dataset =

TextClassificationDataset(train_input_ids,

train_attention_masks, train_labels)

val_dataset =

TextClassificationDataset(val_input_ids,

val_attention_masks, val_labels)

Let us discuss what the above code is doing.

For tunning BERT-based-uncased: Each item of dataset must be of
type dictionary with at least following keys:

input_ids

attention_mask

labels

The__getitem__should return a dictionary of the following structure:

{

 'input_ids': self.input_ids[idx],

 'attention_mask':

self.attention_masks[idx],

 'labels': self.one_hot_labels[idx]

 }

one_hot_encode method: A static method that takes in targets
(labels) and num_classes as arguments. It converts the given targets
into one-hot encoded tensors. The method first converts the targets to
long tensors and then initializes a zero tensor of shape (number of
samples, num_classes). The scatter_ function is used to place 1.0 in
the appropriate position for each sample’s label, resulting in a one-hot
encoded tensor.

DataLoader
Now, let us create dataloader that we can feed to our fine tunning task:

train_dataloader = DataLoader(train_dataset,

batch_size=8, shuffle=True)

eval_dataloader = DataLoader(val_dataset,

batch_size=8)

Revisiting dimension requirements for Transformers in Pytorch from
Chapter 3, Transformer Model in PyTorch. The encoder expects data with
dimensions (seq_len, batch_size). However, Hugging Face’s BERT-based-
uncased model requires data with dimensions (batch_size, seq_len). As a
result, the output from the train_dataloader has dimensions of (batch_size,
seq_len). We can execute below code to review the dimension of dataloader:

item=next(iter(train_dataloader))

item_ids,item_mask,item_labels=item['input_ids'],it

em['attention_mask'],item['labels']

print ('item_ids, ',item_ids.shape, '\n',

 'item_mask, ',item_mask.shape, '\n',

 'item_labels, ',item_labels.shape, '\n',)

Output:

 item_ids, torch.Size([8, 512])

 item_mask, torch.Size([8, 512])

 item_labels, torch.Size([8, 2])

This is aligned with the shape requirement for fine-tuning `BERT-based-
uncased`

Load pre-trained BERT-based-uncased: There are two important
concepts in below code:

In this step, we are loading the BERT-base-uncased model using
the AutoModelForSequenceClassification class, which is a
convenient way to add a final fully connected layer to the
Transformer architecture for the classification task. By doing so,
we adapt the pre-trained model to handle our specific classification
problem.

Additionally, we are initializing the AdamW optimizer, which is a
popular optimization algorithm for training deep learning models,
specifically designed for training Transformer models.

model =

AutoModelForSequenceClassification.from_pretrai

ned("bert-base-uncased", num_labels=2)

optimizer = AdamW(model.parameters(), lr=5e-5)

Prepare accelerator: Let us take a moment to discuss the accelerator
and the benefits it offers when training deep learning models. The
accelerator delivers a user-friendly API for training various deep
learning models with ease. It offers two main advantages that make it
a valuable tool for the training process.

Flexibility to conduct training on various hardware accelerators,
such as GPUs, TPUs, and Apple’s Metal Performance Shaders
(MPS). In our example, during training, we do not specifically
select ‘mps’ device. The accelerator automatically detects it and
uses mps for training.

The accelerator library is particularly useful for distributed
training and mixed-precision training.

The following code is a general syntax for preparing the accelerator:

Declare accelerator

accelerator = Accelerator()

model, optimizer, train_dataloader, eval_dataloader

= accelerator.prepare(

 model, optimizer, train_dataloader,

eval_dataloader

)

Fine tune the model: The following code describes the fine-tuning
process:

num_epochs = 1

num_training_steps = num_epochs *

len(train_dataloader)

lr_scheduler = get_scheduler(

 "linear",

 optimizer=optimizer,

 num_warmup_steps=0,

 num_training_steps=num_training_steps

)

progress_bar = tqdm(range(num_training_steps))

for epoch in range(num_epochs):

 for batch in train_dataloader:

 outputs = model(**batch)

 loss = outputs.loss

 accelerator.backward(loss)

 optimizer.step()

 lr_scheduler.step()

 optimizer.zero_grad()

 progress_bar.update(1)

 model.eval()

 device = 'mps'

 preds = []

 out_label_ids = []

 for batch in eval_dataloader:

 with torch.no_grad():

 inputs = {k: v.to(device) for k, v

in batch.items()}

 outputs = model(**inputs)

 logits = outputs.logits

preds.extend(torch.argmax(logits.detach().cpu()

, dim=1).numpy())

out_label_ids.extend(torch.argmax(inputs["label

s"].detach().cpu(),dim=1).numpy())

 accuracy = accuracy_score(out_label_ids,

preds)

 f1 = f1_score(out_label_ids, preds,

average='weighted')

 recall = recall_score(out_label_ids, preds,

average='weighted')

 precision = precision_score(out_label_ids,

preds, average='weighted')

 print(f"Epoch {epoch + 1}/{num_epochs}

Evaluation Results:")

 print(f"Accuracy: {accuracy}")

 print(f"F1 Score: {f1}")

 print(f"Recall: {recall}")

 print(f"Precision: {precision}")

Now, let us discuss what we are doing in the above code:

`lr_scheduler` in the provided code is an instance of a learning rate
scheduler, which is responsible for adjusting the learning rate during
the training process. The learning rate scheduler helps improve the
training process by dynamically adjusting the learning rate based on
the number of training steps. In this code, the learning rate starts with
the initial value set in the optimizer and decreases linearly to 0 as the
training progresses. Some benefits of lr_scheduler over optimizer
alone are:

Avoid overshooting: When using a fixed learning rate, the optimizer
might overshoot the optimal solution, especially in the later stages of
training. By decreasing the learning rate over time, the model can
make smaller updates and fine-tune its weights.

`progress_bar` is just a utility to show the progress of training.

The following code block is the standard syntax for finetuning:

 outputs = model(**batch)

loss = outputs.loss

accelerator.backward(loss)

optimizer.step()

lr_scheduler.step()

optimizer.zero_grad()

progress_bar.update(1)

You can notice that during training, we are not explicitly converting `tensor`
into the device. `accelerator` is automatically identifying the `device` and
converts `tensor` into the appropriate format.

After each epoch, we are also printing the evaluation metrics over the
evaluation dataset.

The following output demonstrates the results of fine-tuning our classifier.
We have successfully created a capable classifier for distinguishing between
real and fake news. However, it is worth noting that the dataset contains
news provider names (for example ABC, CBS) for real news articles. This
might lead the model to rely on such information, resulting in exceptionally
high performance.

Figure 4.3: The output of fine-tuning process

Inference
We have developed a machine-learning model to distinguish between real
and fake news. Now it is time to create an inference pipeline that allows us
to input any text passage, and the model will return a result indicating
whether the given text block belongs to real news or fake news.

Let us discuss some crucial points in the below code:

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased'):
You need to use the same tokenizer that was used for fine-tunning

logits.detach().cpu():

detach is done to prevent unintentional back-propagation

cpu is done so that the output is compatible with scikit-learn
libraries for further computation:

from transformers import BertTokenizer

import torch

tokenizer =

BertTokenizer.from_pretrained('bert-base-

uncased')

def inference(text, model, label,

device='mps'):

 # Load the tokenizer

 # Tokenize the input text

 inputs = tokenizer(text,

return_tensors='pt', padding=True,

truncation=True)

 # Move input tensors to the specified

device (default: 'cpu')

 inputs = {k: v.to(device) for k, v in

inputs.items()}

 # Set the model to evaluation mode and

perform inference

 model.eval()

 with torch.no_grad():

 outputs = model(**inputs)

 logits = outputs.logits

 # Get the index of the predicted label

 pred_label_idx =

torch.argmax(logits.detach().cpu(),

dim=1).item()

 print(f"Predicted label index:

{pred_label_idx}, actual label {label}")

 return pred_label_idx

Now let us use the inference pipeline:

Example usage

text="CNN (Washington) General Motors plans to

phase out widely used Apple (AAPL) CarPlay and

Android Auto technologies that allow drivers to

bypass a vehicle's infotainment system, shifting

instead to built-in infotainment systems developed

with Google (GOOG) for future electric vehicles."

pred_label_idx = inference(text, model, 1.0)

Output:
Predicted label index: 1, actual label 1.0

This is the correct output, as the news article was retrieved from CNN.

Conclusion
In this chapter, we highlighted the significance of transfer learning in
efficiently training models for various tasks. We explored the fine-tuning
process, using pre-trained models as a base and adjusting their weights for
target tasks.

We introduced Hugging Face Transformers library as a popular resource for
pre-trained models and discussed popular models for NLP, Speech
Processing, and computer vision. Each model has its strengths and
weaknesses, making them suitable for different tasks.

The chapter concluded with a practical example, demonstrating how to fine-
tune the bert-base-uncased model using Hugging Face Transformers library
to create a real-news vs. fake-news classifier.

Quiz

1. What is transfer learning?

a. A technique that trains models from scratch

b. Using a pre-trained model as a starting point for a new task

c. Training models on unrelated tasks

d. None of the above

2. What is the purpose of using AutoModelForSequenceClassification
for loading bert-based-uncased?

a. It adds classification head

b. No particular purpose

3. What is the purpose of the AdamW optimizer?

a. To adjust model weights during training

b. To tokenize input text

c. To compute loss values

d. None of the above

4. What is the dimension requirement for input tensors in BERT-
based models?

a. (seq_len, batch_size)

b. (batch_size, seq_len)

c. (batch_size, seq_len, num_classes)

d. None of the above

5. What is the purpose of the “logits” variable in the code?

a. To store tokenized input text

b. To store the output probabilities for each class

c. To store model weights

d. None of the above

6. Why is it important to use the corresponding tokenizer for the
chosen pre-trained model?

a. To ensure compatibility with the pre-trained model

b. To prevent training with incorrect data

c. Both A and B

d. None of the above

7. Which of the following is an advantage of using Hugging Face
Accelerator?

a. Flexibility to conduct training on various hardware accelerators

b. Distributed training and mixed-precision training

c. Both a and b

d. None of the above

8. Which of the following is NOT an advantage of transfer learning?

a. Reduces training time

b. Requires fewer labeled examples

c. Always outperforms models trained from scratch

d. Leveraging pre-trained models for new tasks

9. In our project, which method was used to compute gradients for
the model parameters?

a. optimizer.step()

b. optimizer.zero_grad()

c. accelerator.backward()

d. None of the above

10. In the book chapter, what is the purpose of using
torch.backends.mps as a device?

a. To utilize Apple GPU acceleration if available

b. To make the code compatible with Hugging Face Accelerator

c. To store model weights

d. None of the above

11. In the Dataset class, what is the purpose of the one_hot_encode
function?

a. To convert label indices into one-hot encoded vectors

b. To tokenize input text

c. To pad input sequences

d. None of the above

12. What does the __getitem__ method in the Dataset class return?

a. A single training example with its corresponding input_ids,
attention_mask, and one-hot encoded labels

b. A batch of training examples

c. A single training example without any preprocessing

d. None of the above

13. What is the primary function of a tokenizer in the context of fine-
tuning a pre-trained model?

a. To optimize model weights

b. To convert input text into a format compatible with the model

c. To compute loss values

d. None of the above

Answers

1. b.
2. a.
3. a.
4. b.
5. b.
6. c.
7. c.
8. c.
9. c.

10. a.
11. a.
12. a.
13. b.

1 https://huggingface.co/blog/falcon-180b#what-is-falcon-180b

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://huggingface.co/blog/falcon-180b#what-is-falcon-180b
https://discord.bpbonline.com/

CHAPTER 5
Large Language Models: BERT,

GPT-3, and BART

Introduction
Over the past few years, transformer models have emerged as the
undisputed champions of NLP, consistently outperforming traditional
methods and setting new benchmarks in various tasks. From classification
to sentiment analysis, and from question-answering to text summarization,
these models have become the go-to choice for researchers and
practitioners.

Not only limited to traditional machine learning tasks, but transformers are
also involved in more exciting developments. NLP research has already
started moving toward Artificial General Intelligence (AGI). AGI
represents the quest for creating machines that possess the ability to
understand, learn, and reason across a wide range of tasks and domains,
much like human beings. As we progress in our pursuit of AGI, transformer
models have emerged as a promising stepping stone in this direction. We
already have some promising results, with the development of large-scale
language models like GPT-4 and Codex, which exhibit remarkable
performance and capabilities.

In this chapter, we will discuss the various variant of transformer models for
NLP, and we will also discuss creating your own language model to capture
your organizational context.

Structure
The book is organized into the following sections:

Large language model

Key determinants of performance

Pioneering LLMs and their impact

Creating your own LLM

Objectives
This chapter aims to provide an understanding of Large Language Models
(LLMs). The discussion begins by exploring the concept of LLMs and
delving into their significance in NLP. It subsequently explores the diverse
variants of LLMs, explaining their architectures and highlighting their
relevance in different NLP applications. The chapter also delves into
transformer models, distinguishing between pre-trained and task-specific
models. Lastly, it an explanation of the process involved in creating a
language model tailored to capture an organization’s unique context,
offering insights into the practical implementation of custom LLMs.

Large language model
A LLM is a computer program originally designed to understand and
generate text like humans. You can think of ChatGPT as an example of an
LLM: it can write poems like Shakespeare, pass pre-med exams, help you
find bugs in your code, and explain complex code in simple terms. It is as if
a human expert is helping you complete your tasks. In general, LLM can
understand and comprehend your questions and generate responses as if a
human expert is providing them. Let us understand how LLMs are created.
Creating an LLM involves several steps helping the model to learn from
vast amounts of data and apply that knowledge to various language tasks.
Here are the simplified steps of creating LLM:

1. Collect data: The first step is to gather a huge dataset containing text
from diverse sources, such as websites, books, articles, and social
media posts. This dataset provides the raw material that the model

will learn from, helping it understand language structure, grammar,
and context. For example, GPT-2 was trained on a dataset of 8
million web pages.

2. Pre-process the data: Before training the model, the text data needs
to be pre-processed and cleaned. After that, the data are prepared in a
shape required by model architecture.

3. Define the model architecture: We can develop the model
architecture by following the given steps:

a. It involves defining structure of model and choosing the
transformer variant (Encoder Only, Decoder Only, Encoder-
Decoder)

b. Defining number of layers and neurons

c. Defining how model learns and process the data. For example,
in GPT-2 model learns to predict the next word.

4. Pre-train: With the model architecture and dataset ready, the pre-
training phase begins. Normally, it is an unsupervised approach—the
model is exposed to the text data and learns to generate coherent text.
A typical pre-training approach is to predict the next word. Thus, the
data consists of a sequence of text, and the “labels” are essentially
the input texts shifted by one position. For example:

Data = ['I', 'live', 'in', 'New York']

Label = ['live', 'in', 'New York']

The core idea at the pre-training stage is to make the model
understand the general structure of language. An example of pre-
trained LLM is ` DistilBERT-base-uncased`

5. Fine tune the model: Once the model has learned the general
structure and nuances of language during pre-training, it is time to
fine-tune it for specific tasks, such as sentiment analysis, question-
answering, or text summarization. This is normally supervised
learning. This involves training the model on a smaller, task-specific
dataset, allowing it to specialize in that particular task. An example
of fine-tunned model is distilbert-base-uncased-finetuned-sst-2-

english. It is ` DistilBERT-base-uncased` fine-tunned on SST-2
dataset to predict the sentiment of given text.

6. Evaluate and test the model: After fine-tuning, it is essential to
evaluate the model’s performance. One of the gold-standard of
evaluating your LLM is via. Super General Language
Understanding Evaluation (SuperGLUE) benchmark. It is a
benchmark designed to evaluate performance on a diverse set of
tasks.

7. Deploy the model: After pre-training and fine-tuning your model on
a task-specific dataset, it is time to deploy it. If you fine-tuned the
model for question-answering, you could integrate it into a chatbot.
If you fine-tuned for classification, you could deploy it to solve
classification problems, and so on. The deployment will vary
depending on the specific task the model has been fine-tuned for.

In the later sections of this chapter, we will embark on an exciting journey
to create our own LLM. This will enable us to optimize our organization’s
AI capabilities by developing an LLM that captures the unique context and
problems of our organization.

Key determinants of performance
The performance of large language models is determined by various factors
related to their scale and complexity. In this section we will discuss these
factors in detail:

Size of network: Number of encoder and decoder layers
The depth of a neural network, represented by the number of encoder and
decoder layers, plays a crucial role in its ability to model complex patterns
and relationships in language. For instance, Bidirectional Encoder
Representations from Transformers (BERT) is a transformer-based
model with different configurations, such as BERT-Base and BERT-Large,
which have 12 and 24 encoder layers, respectively. Deeper networks can
capture higher-level abstractions and learn more sophisticated
representations of input data, which results in better performance.

Number of model parameters
In a neural network, parameters refer to the weights and biases associated
with the connections between neurons. Weights determine the strength of
the connection between neurons, while biases help adjust the output of a
neuron. The total number of parameters in a neural network is an indicator
of its complexity and capacity to learn intricate relationships in the data.
There are different LLMs with various parameters. For example, Bert-base
has 110 million parameters; whereas GPT-4 has 170 trillion parameters.
This allows GPT-4 to process the wider range of text with higher accuracy
compared to Bert-based.

Max-sequence length
The maximum sequence length of a model refers to the longest input text it
can process in a single pass. For BERT, the default max sequence length is
512 tokens; whereas Longformer has a max sequence length of 4096. This
length can impact the model’s ability to capture long-range dependencies
and process longer documents.

Size of embedding dimension
It is a fixed-length vector to represent each input token. BERT-Base has an
embedding dimension of 768, while BERT-Large has an embedding
dimension of 1024. Larger embedding dimensions can help the model
capture more information about the input tokens, leading to better
performance in NLP tasks.

Pre-training dataset size and types
A crucial aspect of model performance is the size and variety of pre-
training datasets used. Many pre-trained language models are trained on
vast amounts of data from diverse sources. For instance, GPT-3 was trained
on a dataset containing 489 billion tokens, which includes data from web
crawls, books, and Wikipedia. In contrast, BERT was trained on a smaller
dataset comprising BooksCorpus (800 million words) and English
Wikipedia (2,500 million words). The quality and diversity of these datasets
play a significant role in shaping the model’s understanding of language
patterns and its performance on various tasks.

Pioneering LLMs and their impact
In the following section, we will discuss three majors pioneering LLMS.

BERT and its variants
BERT is a powerful pre-trained language model developed by Google in
2018. It is encoder-only model. In the following section, we will discuss the
BERT, pre-training, fine-tunning, and different variations.

BERT pre-training
The model is trained on a large text corpus using Masked Language
Modeling (MLM), and Next Sentence Prediction (NSP). Figure 5.1
shows the BERT Pre-training Process. During the pre-training phase, BERT
processes input sequences that are prepared to include both masked words
for the Masked Language Model (MLM) task and sentence pairs for the
Next Sentence Prediction (NSP) task:

Figure 5.1: BERT pre-training process

Here is how to input sequences are created for pre-training:

Collecting sentence pairs: From the input corpus, consecutive pairs
of sentences (Sentence A and Sentence B) are extracted. Sentence
Pairs are Created in such a way that 50% of Pairs are consecutive
sentences and 50% of pairs are random pairs. As shown in Figure
5.1, during pre-training, the input sequence is the sentence pairs.

Tokenization: The sentence pairs are tokenized.

Add special tokens: Special tokens are added to the tokenized
sequences. [CLS] is added at the beginning of each sequence, and
[SEP] is added between Sentence A and Sentence B, as well as at the
end of Sentence B. For example:

[CLS] I Am Prem [SEP] I Live In New York City

[SEP]

Masking for MLM: A certain percentage of tokens (e.g., 15%) in the
input sequence are randomly selected to be masked. These tokens are
replaced with the [MASK] token. The following is the input sequence
after adding a special token and Masking token

[CLS] I [MASK] Prem [SEP] I Live In New York

City [SEP]

Creating input labels for MLM and NSP: For MLM, the labels are
the unmasked tokens corresponding to masked positions. For the NSP
task, the labels are binary 1 if Sentence B is the actual next sentence
of Sentence A, and 0 otherwise.

Optimization: As illustrated in Figure 5.1, during pre-training,
BERT utilizes two separate linear layers for MLM and NSP tasks.
For MLM, the number of the output node of the linear layer is
vocabulary size. This is because we are identifying the masked token
among all the tokens in the vocabulary. Whereas for NSP, the number
of output nodes in the linear layer is 2. This is because it is a binary
classification problem. The model is optimized by jointly considering
both tasks, where the total loss is computed as the average of the
MLM loss and the NSP loss. This combined optimization approach
allows BERT to learn a rich understanding of language through both
masked language modeling and next-sentence prediction tasks.

You can find the pre-trained Bert in Hugging Face: bert-base-uncased.

BERT fine-tunning
Following the pre-training of BERT, the subsequent step is to fine-tune the
model on a specific task or dataset. Fine-tuning involves training the pre-
trained model for a few additional epochs on a labeled dataset designed for
the target task.

For instance, if you aim to distinguish between satisfied and unsatisfied
customers, you could use customer chat logs from help-center interactions
as input texts. After manually creating labels for these interactions, you can

train the bert-base-uncased model with this labeled dataset to tackle your
classification problem. This fine-tuning process allows BERT to adapt to
the nuances of your specific task while leveraging the general language
understanding acquired during pre-training.

BERT Variations
Table 5.1 presents the primary variants of BERT. All these models share an
encoder-only architecture but differ in their pre-training objectives and
specific architectural designs.

Release
Date

Para
(base)

Architecture Salient
feature

BERT 2018 110M 12 Encoder Layers Standard
Feature

RoBERTa
(Robustly
Optimized
BERT
Approach)

2019 125M Use just MLM
It is dynamic masking. The masked
token change on each epoch

Use large
text corpus
for training
Improved
Performance
compared to
BERT

ALBERT (A Lite
BERT)

2019 12M Factorized embedding
parameterization (separates the size
of the word embeddings (E) from
the hidden layer size (H) in the
model).
Sentence Order Prediction (SOP) task
instead of NSP

Cross-layer
parameter
sharing

DistilBERT
(Distilled BERT)

2019 66 M 6 Encoder layers

LONGFORMER 2020 148
M

Use sliding window attention. Thus
reducing complexity from O(2n) to
O(n)

Max-seq
length=
4096
compared
to 512 in
BERT

Table 5.1: Variants of BERT

Applications

BERT is generally better suited for tasks requiring bidirectional context
understanding. Some of the NLP tasks where BERT excels are:

Text classification

Named Entity Recognition (NER)

Question-Answering (QA)

Sentiment analysis

Paraphrase detection

Generative pre-trained Transformer
It is a transformer decoder Only model developed by OpenAI for natural
language processing tasks. It is autoregressive, meaning it generates texts
by predicting one token at a time using the previously generated tokens as
context for the next predictions. Figure 5.2 shows the GPT architecture.
You can see in the diagram that gives prompt (Describe First Law of
Robotics) and previously generated tokens (<s>, A), the GPT predicts the
next token which is `Robot`:

Figure 5.2: GPT Architecture

Pre-training of GPT
Let us discuss the pre-training process of GPT:

Data collection and processing: GPT-2 is pre-trained on a large
corpus of text data collected from various sources, such as web pages,
books, and Wikipedia articles. The first step involves gathering and
cleaning this data to ensure it is suitable for training the model. The
data is tokenized, which means this process converts the text into a
sequence of tokens that can be processed by the model.

Input data preparation: The tokenized texts are chunked into fixed
lengths. For example, in GPT-2 max-sequence length is 512. Thus,
each input should consist of a sequence of length 512. If the certain
sequence is less than 512, you can pad it with special padding tokens.

Label preparation: The input sequence is the original chunk, and the
label sequence is the same chunk shifted by one position to the left.
For example, if you have the following sequence chunk:

Text Chunk=['A', 'robot', 'may', 'not',

'injure', 'a', 'human', 'being', 'or',',',

'through',' inaction',',', 'allow',

'a','human',' being',' to',' come',' to','

harm','.']

The input sequence will be:

Input=['A', 'robot', 'may', 'not', 'injure',

'a', 'human', 'being', 'or',',', 'through','

inaction',',', 'allow', 'a','human',' being','

to',' come',' to',' harm','.']

And the corresponding label sequence will be:

Label=['robot', 'may', 'not', 'injure', 'a',

'human', 'being', 'or',',', 'through','

inaction',',', 'allow', 'a','human',' being','

to',' come',' to',' harm','.',' <end>']

Batching: Create batches of input-label sequence pairs for training.
Each batch should have a specified batch size (e.g., 16, 32, or 64)

Model architecture: the GPT-2 model architecture is chosen, which
defines the number of layers, attention heads, and hidden dimensions.
There are several variants of GPT-2 with different sizes, such as small
(12 layers), medium (24 layers), large (36 layers), and extra-large (48
layers). The size of the model affects its performance and
computational requirements.

Training the model: Finally, you can pre-train the model

Fine-tunning model: Now, you can fine-tune the pre-trained model
with the task in your hand.

Table 5.2 illustrates the various iterations of the GPT architecture. It is
essential to note that GPT-2 is the latest open-source version of the
generative pre-trained model:

Version Description

GPT-2 Architecture: Decoder-only model that comes in multiple versions with different
layer counts. The various model sizes have 12, 24, 36, or 48 layers
Dataset: 40Gb Raw Text

Parameters: GPT-2 comes in four sizes with varying numbers of parameters: 117
million (small), 345 million (medium), 774 million (large), and 1.5 billion (extra-
large)

GPT-3 Architecture: Similar to GPT-2 and comes up with 96, 192, or 384 layers in various
model sizes
Pre-training Dataset: 45 TB

Parameters: 125 million (small), 350 million (medium), 760 million (large), 1.3
billion, 2.7 billion, 6.7 billion, 13 billion, and the largest model with 175 billion
parameters

GPT-4 Not Publicly Declared.

Table 5.2: GPT Versions

Applications
GPT is an autoregressive model; thus, is better suited for tasks involving
text generation or completion such as:

Text completion or continuation

Content generation (for example stories, articles, or poems)

Code completion or generation

Conversational AI and chatbots

Bidirectional and Auto-Regressive Transformers
Bidirectional and Auto-Regressive Transformers (BART) combines the
strength of both BERT and GPT architectures. It has a bidirectional encoder
and an autoregressive decoder, which allows the advantages of both BERT
and GPT pre-training methods. The encoder and decoder architecture of
BART is similar to the original transformer architecture. However, the pre-

training objective of BART is unique compared to other models. In the
following section, we will delve into the details of BART.

Pre-training
The pre-training objective is to reconstruct the original input text after it has
been corrupted, which helps to learn the structure and semantics of the
language. Let us describe the process in detail:

Data collection and pre-processing: Collect, clean, and pre-process
the data. This process is similar to what you would do for pre-training
with the BERT model.

Text corruption: Create a noise function that will be applied to the
input text. This function should introduce various types of
corruptions to the text, such as token masking, token deletion, token
replacement, and text shuffling.

Corrupting input text: Apply the noise function to the pre-processed
text to generate corrupted versions of the input text.

Model architecture: The BART-base model consists of 6 encoders
and 6 decoders, while the BART-large model is equipped with 12
encoders and 12 decoders.

Label: The true label for BART is the input sequence without
corruption.

Pre-training: BART’s pre-training objective is to minimize the
difference between the reconstructed text generated by the decoder
and the original, uncorrupted text. This is achieved by using a cross-
entropy loss function that compares the predicted token probabilities
at each position with the actual tokens in the original text.

Application
While BERT excels at tasks requiring bidirectional context understanding,
and GPT is better suited for text generation tasks due to its auto-regressive
nature, BART bridges the gap between these two models by combining
their strengths. BART has been found to perform particularly well in the
following application areas:

Text summarization

Machine translation

Text generation

Sentiment analysis

Conversational AI

Question-answering

In summary, if you require a large language model that excels in tasks
involving both auto-regression and bidirectional context understanding,
BART is an optimal choice.

Creating your own LLM
Imagine you are building a house. You could head to Home Depot,
purchase all the pre-made kitchens, doors, and quickly assemble your home.
However, would it not be fantastic if your house design could cater to your
unique needs and desires? Additionally, you should consider cost overruns;
thus, not building all the materials from scratch. That is where creating your
own Language Model (LM) comes in.

Off-the-shelf LLMs are impressive, but they might not capture your
organization’s specific data, industry jargon, and contextual information.
This challenge is intensified if you work in a specialized industry. Let us
discuss the healthcare domain. Real clinical notes, for example, are not
available for general LLMs during pre-training due to HIPAA and
government regulations. As a result, bert-based-uncased, which was
trained with internet datasets and book datasets, does not capture the way
doctors write clinical notes. By creating your own LLM, you can optimize
your organization’s language understanding. Moreover, you will not have to
start from scratch. Creating an LLM from scratch requires hundreds of
thousands of dollars (just for GPU costs). Instead, you can take a pre-
trained model and further pre-train it with your organization’s dataset. Let
us highlight some of the major benefits of creating LLMs tailored to your
organization.

Customized knowledge: An in-house LLM can be further trained on
your organization’s specific data, industry jargon, and contextual
information. This means it’ll understand your organization’s lingo
like a seasoned employee, ensuring better performance and more
accurate results.

Adaptability: You can continuously pre-train it based on the latest
trends, emerging technologies, and shifting priorities, ensuring it
stays relevant and effective.

Privacy and security: You can maintain control over sensitive data
while not sacrificing the performance of NLP.

Competitive advantage: The LLM tailored to your organization and
industry can deliver insights and understanding that generic LLMs
cannot. You will have a competitive advantage compared to industry
peers.

In the following section, we will create Clinical BERT by further pre-
training the bert-based-uncased model using healthcare data.

Clinical-Bert
Our goal is to further pre-train the bert-based-uncased model using a
clinical notes dataset. Here is the plan for this chapter:

Import necessary packages.

Obtain the dataset from Kaggle:

We will use the akashadesai/clinical-notes dataset.

Save the dataset on your computer.

Clean and organize the data:

Create a pandas dataframe, placing each sentence in a new row.

Ensure consecutive sentences are in consecutive rows (for
example Sentence A in row i and Sentence B in row i+1).

Develop a custom Dataset class:

For BERT training, format each item as: Sentence A + [SEP] +
Sentence B.

The getitem method should return the tokenization of (Sentence A
+ [SEP] + Sentence B).

Create a DataCollatorForPreTraining class for the DataLoader:

This class should inherit from DataCollatorForLanguageModeling

Mask a few tokens from Sentence A

Set up a DataLoader:

Pass the DataCollatorForPreTraining object as collate_fn to
DataLoader

Choose the model, loss function, and optimizer.

Get the accelerator ready for GPU and multi-device training.

Train the BERT-based-uncased model further, and you will have a
Clinical BERT model!

The accompanying notebook provides a comprehensive end-to-end
implementation of the plan outlined above. You can follow the approach
demonstrated in the notebook to create an LLM for your organization. Keep
in mind these key points before creating your LLM:

Choose the appropriate model architecture based on:

The task you are solving, which determines the variant of the
model (encoder only, decoder only, encoder-decoder)

The size of the pre-training data

The availability of computational resources

Prepare the dataset based on the pre-training objective:

Data cleaning is a crucial step – even with the finest model
architecture, a sub-optimal pre-training dataset will yield sub-optimal
results.

Conclusion
In this book chapter, we explored LLMs and delved into the pioneering
language models that have shaped the field. We then demonstrated how to
create a customized language model for an organization by further pre-
training the bert-based-uncased model, resulting in a tailored solution that
addresses specific needs and requirements.

In the next chapter, we will discuss various NLP tasks and how
transformers can be used to solve them. Additionally, we will devolve
deeper into classification, text generation and question-answer tasks.

Quiz

1. Which of the following is a encoder only language model?

a. BERT

b. GPT-3

c. BART

d. LSTM

2. Which language model is decoder only language model?

a. BERT

b. GPT-3

c. BART

d. LSTM

3. Which language model is encoder-decoder language model?

a. BERT

b. GPT-3

c. BART

d. LSTM

4. What is the purpose of pre-training in the context of LLMs?

a. Training the model on a specific task

b. Learning general language understanding

c. Fine-tuning the model on task-specific data

5. What is the purpose of fine-tuning in the context of LLMs?

a. Reducing over-fitting

b. Learning general language understanding

c. Adapting the model to a new task

d. Reducing overfitting

6. What is the main advantage of using bidirectional context in
BERT?

a. For text generation

b. Better understanding of context

c. Faster training

d. Reduced overfitting

7. Which language model uses a “MLM” and “NSP” objective
during pre-training?

a. BERT

b. GPT-3

c. BART

d. LSTM

8. What is the primary pre-training objective of GPT-3?

a. Masked language modeling

b. Denoising autoencoding

c. Autoregressive language modeling

d. Sequence-to-sequence modeling

9. What pre-training technique does BART use?

a. Masked language modeling

b. Denoising autoencoding

c. Autoregressive language modeling

d. Next Sentence Prediction

10. What is the main benefit of creating a custom LLM for your
organization?

a. Faster training

b. Lower computational cost

c. Tailored knowledge and understanding

d. Easier implementation

11. What is the key difference between BERT and GPT-3?

a. Bidirectional context vs. autoregressive generation

b. Denoising vs. autoregressive generation

c. MLM vs. Denoising

12. Which of these models is more suitable for text Classification?

a. BERT

b. GPT-3

13. What is the primary purpose of a custom Dataset class when
creating an Large Language Model?

a. To define the pre-processing steps

b. To define the model architecture

c. To prepare the input data for training

14. What objective function `BertForPreTraining` provides?

a. NSP and MLM

b. NSP

c. MLM

15. What is the primary goal of DataCollatorForPreTraining class in
the context of LLMs?

a. To define the model architecture

b. To create masked tokens for pre-training

16. Which of the following best describes the difference between pre-
training and fine-tuning?

a. Pre-training focuses on general language understanding, fine-
tuning adapts model for specific task

b. Both are same

c. None of the above

Answers

1. a.
2. b.
3. c.
4. d.
5. c.
6. b.
7. a.

8. c.
9. b.

10. c.
11. a.
12. a.
13. c.
14. a.
15. d.
16. a.

CHAPTER 6
NLP Tasks with Transformers

Introduction
The ultimate goal of Natural Language Processing (NLP) is to enable
computers to understand, interpret, and generate human-like language in a
manner that is both meaningful and useful. With the introduction of
transformer models such as T5, GPT, and BERT, NLP has seen a significant
leap in capabilities and performance, leading to state-of-the-art results in
various NLP tasks. In this chapter, we will discuss various NLP tasks and
how transformers can be used to solve them.

Structure
The chapter is organized in following structure:

System requirement

NLP Tasks

Text classification

Text generation

ChatBot with transformer

Training with PEFR and LORA

Objectives
By the end of this chapter, the reader will learn how to comprehend key NLP
tasks and their resolution using transformers, understand the utilization of
transformers for text classification, with an emphasis on handling long
sequences, and fine-tune transformers for text generation. The readers will
also be able to fine-tune transformers for creating instruction following
models, as well as understand how we can fine-tune the transformer on
commodity hardware.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.
Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as following:

pip install transformers

pip install datasets

pip install accelerate

pip install peft

pip install bitsandbytes

pip install sentencePiece

NLP tasks
Natural language processing is a diverse and expansive domain that
encompasses a multitude of tasks aimed at enabling machines to
comprehend and interact with textual data more effectively. In this section,

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

we will delve into various NLP tasks, showcasing how they are specifically
designed to facilitate machine understanding and interaction with textual
information. Table 6.1 shows the major NLP tasks. You can search for and
retrieve the model mentioned in the table from the Hugging Face Models
repository at https://huggingface.co/models:

Tasks Summary Popular models

Text
classification

Assign predefined classes/categories
to a given Text. Example, Sentiment
Analysis, Spam Detection, Topic
categorization

BERT, RoBERTa, DistilBERT,
cardiffnlp/twitter-roberta-base-
sentiment, distilbert-base-uncased-
finetuned-sst-2-english

Token
classification

Labeling individual tokens within
the text with specific categories.
Example, NER, POS tagging

BERT, BioBERT, Davlan/distilbert-
base-multilingual-cased-ner-hrl

Table question
answering

Extracting answers from structured
data.

tapas-base, tabex-base

Question
answering

Giving answer to the natural
language questions based on the
context

Roberta-base-squad2

Zero shot
classification

Ability of a model to classify
instances into categories it has never
seen before

GPT3, bart-large-mnli

Summarization Create concise representation of
given text

facebook/bart-large-cnn,
google/pegasus-cnn_dailymail

Text
generation

Generate coherent text based on the
prompt

gpt2, distilgpt2, Llama

Text2Text
generation

Transforming one-form of text into
another. Example, paraphrasing

T5,
prithivida/parrot_paraphraser_on_T5

Fill mask predicting the missing word(s) in a
given sentence with appropriate
contextual information.

BERT, GPT, xlm-roberta-base

Sentence
similarly

measuring the semantic similarity
between two sentences.

SBERT, USE (Universal Sentence
Encoder), sentence-transformers/all-
MiniLM-L6-v2

Translation Converting text from one language
to another.

t5-base, BART,

Conversational Creating human like conversation.
Example, chatbot

GPT, microsoft/DialoGPT-medium,
PygmalionAI/pygmalion-6b

Table 6.1: Major NLP tasks
In the following section, we will devolve deeper into some of the most
important NLP tasks.

https://huggingface.co/models

Text classification
Text classification is one of the most common NLP tasks you encounter in
any industry. Some of the use cases of text classification are sentiment
analysis, topic identification, spam detection, language identification, intent
recognition, emotion detection, and so on.

Most appropriate architecture for text classification
Generally, encoder-only models or BERT variations are most appropriate for
text classification for the following reasons:

Focus on understanding input text: BERT variations are designed to
understand input tokens by creating contextualized embeddings for
each token.

Bidirectional context: BERT and its variations are pre-trained to
understand bidirectional context, as opposed to autoregressive models
such as GPT. This helps to understand the context of language from
both directions.

Efficiency: Encoder-only models can be used for text classification by
simply adding a fully connected layer, whereas decoder-only models
may require more complex adaptations.

Text classification via fine-tunning transformer
Figure 6.1 shows the outline of text classification by fine tuning the existing
language model:

Figure 6.1: Text classification process

Handling long sequence
The majority of transformer architectures have a maximum limit on the
sequence length they can handle. For example, the max sequence length for
BERT is 512 tokens. Transformers have a low maximum sequence length
because of the quadratic complexity of self-attention computation.
Nevertheless, the real-world text data that you find in your company can
often be longer than the maximum sequence length that a transformer model
can handle. Thus, we need to find effective strategies to handle the max
sequence length. In the following sections, we enlist a few of them:

Truncate: If a sequence is longer than the model’s maximum
sequence length, you can simply truncate it. This is the easiest
approach but may result in a loss of information and poor performance
for tasks that require understanding the entire context.

Chunking: Divide the long sequences into non-overlapping chunks
and process the self-attention individually. You can combine the
outputs using various strategies such as mean, max pooling, or
concatenation. This approach may lose information related to context
between the chunks.

Hierarchical approach: Create a hierarchical structure by dividing
long sequences into sentences or paragraphs. Then, encode each
sentence or paragraph into a fixed-size encoding. Afterward, perform

attention on sentence or paragraph representations. This allows the
model to capture both local and global attention.

Custom architecture: Some transformers, like LongFormer (max-
seq_len=4096) and BigBird(max-seq_len=4096), are specifically
designed to handle long sequences. These architectures use a
combination of local and global attention so that the overall
complexity of attention computation is not quadratic.

In the real world, you will experiment with various approaches and also
consider the importance of capturing the entire context and resource
availability to choose the appropriate approach. Here, we will do two
projects where we will explore the mechanism to handle long sequence via
document chunking and Hierarchal Attention.

Project 1: Document chunking
In this project, we will fine-tune the BERT-base-uncased model to predict
sentiment in the IMDB dataset. The following steps provide an overview of
the model architecture:

1. Divide long text into smaller chunks: The code splits extensive text
data into smaller, more manageable chunks or sentences. This step is
crucial for handling long sequences effectively.

2. Process each chunk with BERT: Each of these smaller chunks is
then individually processed through the BERT model. This processing
generates a vector representation for each sentence, capturing its
essential features and meaning.

3. Create a composite representation: Finally, the code averages these
vector representations from all chunks to form a single,
comprehensive representation of the entire long text. This average
representation encapsulates the overall context or sentiment of the
text.

The complete end-to-end project implementation is provided in the
accompanying notebook.

Project 2: Hierarchical attention

Similar to the previous project, we will calculate the sentiment score on
IMDB dataset. However, instead of document chunking, we will use the
Hierarchical attention mechanism:

Hierarchical attention: This model uses a two-level hierarchical
attention mechanism:

Local attention: Applied to individual sentences in a document to
create sentence representations.

Global attention: Applied to sentence representations to create a
document representation.

Sentence representation:

Reshape the data to have dimensions (batch_size *

num_sentences, hidden_size) Pass input_ids and attention_mask
to the ALBERT model to get hidden states
(outputs.last_hidden_state).

Apply the attention layer (self.attention) to the hidden states,
followed by softmax function to compute attention weights
(attention_weights). The attention_weights gives the weight of
each token

Calculate the sentence representation by multiplying hidden states
with their corresponding attention weights and summing along the
sequence dimension (torch.sum(attention_weights *

hidden_states, dim=1)).

Reshape the sentence_representation tensor to have dimensions
(batch_size, num_sentences, hidden_size).

Document representation:

Apply the attention layer (self.attention) to the sentence
representations, followed by a softmax function to compute
document-level attention weights (doc_attention_weights).

Follow the same method to create document representation.

The complete end-to-end project implementation is provided in the
accompanying notebook.

Text generation
In this section, we will outline the text generation using the transformer-
based models. Typical steps for creating a text generation model involve:

1. Acquire and pre-process the data.
2. Choose a transformer model and fine tune it. Select an appropriate

pre-trained model. Typically, an autoregressive model such as GPT
works best for the text generation task.

3. Generate text: Utilize the trained model to generate new text by
providing an initial prompt or seed text, which the model will use as a
starting point.

4. Post-process: Clean up and format the generated text to make it more
human-readable or appropriate for your use case.

Project 3: Shakespeare like text generation
In this project, we will generate Shakespeare-like text using the GPT-2
model fine-tuned on the Tiny Shakespeare dataset.

Data preparation
Lines 14-16 in the following code block illustrate that the dataset is a long
sequence of text (num_rows=1). At the end of data preparation, this is what
each item of the dataset class looks like:

input_ids: Tokenized input text chunk. We will divide the whole text
into chunks of text (for example, 1 tokens).

attention_mask: A binary mask indicating which tokens should be
attended to by the model during the forward pass.

labels: Input_ids shifted by 1 position. This is crucial for text
generation fine-tuning, as the training objective is to train the model to
predict the next word given the tokens at the current position.

Let us examine the most important aspect of the following code. Lines 31-37
split the entire text into chunks, with each chunk consisting of 100 tokens.
Refer to the following code:

import torch

from torch.utils.data import DataLoader, Dataset

from datasets import load_dataset

from transformers import GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

Set the padding token

tokenizer.pad_token = tokenizer.eos_token

Load the dataset

dataset = load_dataset("tiny_shakespeare")

'''

DatasetDict({

 train: Dataset({

 features: ['text'],

 num_rows: 1

 })

 validation: Dataset({

 features: ['text'],

 num_rows: 1

 })

 test: Dataset({

 features: ['text'],

 num_rows: 1

 })

})

'''

Split the continuous text into smaller chunks

def split_text(text, max_length=100):

 return [text[i:i+max_length] for i in range(0,

len(text), max_length)]

Apply the split_text function to the dataset

split_texts = split_text(dataset["train"]["text"]

[0])

Tokenize the split_texts

tokenized_texts = tokenizer(split_texts,

return_tensors="pt", padding=True, truncation=True)

Let us take a closer look at the key aspect of the next code block. The
ShiftedDataset class demonstrates the custom dataset preparation process.
Our primary objective in fine-tuning is to provide text and predict the next
token. As a result, the input_ids consist of tokenized text chunks, and the
labels represent the input text shifted by one position. Additionally, we
append an eos_token_id at the end of the labels:

class ShiftedDataset(Dataset):

 def __init__(self, encodings):

 self.encodings = encodings

 def __getitem__(self, idx):

 input_ids = self.encodings["input_ids"]

[idx]

 attention_mask =

self.encodings["attention_mask"][idx]

 labels = input_ids[1:].tolist() +

[tokenizer.eos_token_id]

 return {"input_ids": input_ids,

"attention_mask": attention_mask, "labels":

torch.tensor(labels)}

 def __len__(self):

 return len(self.encodings["input_ids"])

Create a DataLoader

train_dataset = ShiftedDataset(tokenized_texts)

train_dataloader = DataLoader(train_dataset,

shuffle=True, batch_size=4)

Training
In the following code block, we are just preparing the data loader, model,
and optimizer for the accelerator. Another important thing is that we use the
LMHeadModel variant (in this case, GPT2LMHeadModel) when fine-tuning GPT-2
for text generation tasks for the following reasons:

The LMHeadModel is designed explicitly for language modeling tasks,
which involve predicting the next token in a sequence of tokens. In the

case of GPT-2, GPT2LMHeadModel is tailored for such tasks, making
it suitable for text generation where the model needs to generate
coherent sequences of text.

The GPT2LMHeadModel adds the linear layer on top of transformer for
the next word prediction.

Refer to the following code:

from accelerate import Accelerator

from transformers import GPT2LMHeadModel

Initialize the Accelerator

accelerator = Accelerator()

Configure the training arguments

num_epochs = 20

learning_rate = 5e-5

Initialize the GPT-2 model and optimizer

model = GPT2LMHeadModel.from_pretrained("gpt2")

optimizer = torch.optim.Adam(model.parameters(),

lr=learning_rate)

Prepare the model and optimizer for training with

Accelerator

model, optimizer, train_dataloader =

accelerator.prepare(model, optimizer,

train_dataloader)

The important aspect of the following code is that we are saving the model
every five epochs. The reasons are:

Checkpointing: Saving the model periodically creates checkpoints,
allowing you to resume training from the latest saved epoch.

Early stopping: If the performance on validation sets starts
degrading, we can implement the early stopping technique.

Refer to the following code:

from transformers import AdamW

from tqdm import tqdm

Fine-tuning loop

for epoch in range(num_epochs):

 epoch_iterator = tqdm(train_dataloader,

desc=f"Epoch {epoch + 1}")

 for step, batch in enumerate(epoch_iterator):

 optimizer.zero_grad()

 input_ids = batch["input_ids"]

 attention_mask = batch["attention_mask"]

 labels = batch["labels"]

 outputs = model(input_ids=input_ids,

attention_mask=attention_mask, labels=labels)

 loss = outputs.loss

 accelerator.backward(loss)

 optimizer.step()

 if step % 500 == 0:

 epoch_iterator.set_postfix({"Loss":

loss.item()}, refresh=True)

 # Save the model every 5 epochs

 if (epoch + 1) % 5 == 0:

 model_save_path =

f"/Users/premtimsina/Documents/bpbbook/chapter6/mod

el/tiny_shakespeare/model_checkpoint_epoch_{epoch +

1}"

 model.save_pretrained(model_save_path)

 print(f"Model saved at epoch {epoch + 1}")

The model is ready; now, you can use it to write a poem as if it was written
by Shakespeare. The end-to-end implementation of the model with the
inference pipeline is included in the accompanying notebook.

ChatBot with transformer
In this section, we will develop a tool similar to ChatGPT for your
organization. This type of model is known as an instruction following
model, and we will delve into the reasons why it is essential for your
organization.

An instruction following model is designed to comprehend and carry out
tasks based on natural language instructions. These models often form the
foundation for chatbots, as they allow the systems to understand and respond
to user instructions in a human-like manner.

Let us explore why incorporating an instruction following model is crucial
for your organization’s competitive advantage:

Customized chatbot: You can create a transformer model tailored to
your organization’s data. Systems like ChatGPT do not possess your
organizational data and context.

Security and Privacy: Your organization’s chatbot will remain within
your firewall, ensuring that no data leaves your organization’s
network.

Under the hood, instruction following models encompass various types of
transformer models, such as QA, TAPAS, Summarization, and more.
Nevertheless, we will implement the instruction following model using only
a transformer fine-tuned for QA tasks. You can build upon this concept to
include other types of transformers.

Project 4: Clinical question answering transformer
Let us now go over the various stages in this project.

Data preparation
Loading Data: We use the Medical Question Answering Dataset
(MedQuAD) which includes 47,457 medical question-answer pairs. The
dataset can be downloaded from https://github.com/abachaa/MedQuAD.
The dataset is 1000s of XML files. We will do the data cleaning and produce
a single JSON file three keys [‘Instruction’, ‘Input’, ‘Output’] for each
document.

The JSON files look like:

[{'instruction':'How Can you treat my

diabetes?','input': 'I have uncontrolled diabetes.

MY A1C is above 7.5','output': 'You can treat in

following ways:\n 1. Get physical\n 2. take

medication as prescribed by your doctor \n3. check

your blood sugar regularly' }]

Model declaration
We will utilize the lama-7b-hf model created by Meta. LlaMA 7b is trained
with 1Trillion tokens with next word prediction as pre-training objective.
LLaMA outperformed GPT-3 in several natural language processing tasks,

https://github.com/abachaa/MedQuAD%60

such as sentiment analysis. This could be attributed to LLaMA’s extensive
training dataset, which gives it an advantage over GPT-3. LlaMA is released
under non-commercial license; thus, you need to be cognizant on using this
model. To obtain the model weights from Meta, you must submit a request
through https://ai.facebook.com/blog/large-language-model-llama-meta-
ai/. However, the Llama model’s weights were inadvertently leaked and
incorporated into Hugging Face’s decapoda-research/llama-7b-hf. As a
result, we will employ the Llama model from decapoda-research rather than
requesting the weights from Meta which takes longer time.

Creating prompt and tokenization
Prior to tokenization, we must construct the prompt. Here is the structure of
the prompt:1:

def generate_prompt(data_point):

 if data_point["input"]:

 return f"""Below is an instruction that

describes a task, paired with an input that

provides further context. Write a response that

appropriately completes the request.

Instruction:

{data_point["instruction"]}

Input:

{data_point["input"]}

Response:

{data_point["output"]}"""

 else:

https://ai.facebook.com/blog/large-language-model-llama-meta-ai/

 return f"""Below is an instruction that

describes a task. Write a response that

appropriately completes the request.

Instruction:

{data_point["instruction"]}

Response:

{data_point["output"]}"""

We tokenize the prompt and create the training and validation dataset with
the following format:

Dataset({

 features: ['instruction', 'input', 'output',

'input_ids', 'attention_mask'],

 num_rows: 14762

})

Training with PEFT and LORA
The general approach to using large language models involves two steps:

1. Pre-training the LLM with a huge amount of data (such as GPT,
BERT, T5)

2. Fine-tuning it for downstream tasks to improve performance.

However, as LLMs become larger, fine-tuning becomes computationally
expensive, making it impossible to fine-tune many LLMs on commodity
hardware. Additionally, storing task-specific fine-tuned models also
becomes a challenge as a single fine-tuned model can be in the range of
hundreds of gigabytes. To address these issues, Parameter-Efficient Fine-
Tuning (PEFT) was introduced.

PEFT freezes most of the parameters from the original pre-trained model
and only trains a small number of extra model parameters, which avoids the
problem of catastrophic forgetting behavior as most of the parameters from
the original model are kept fixed. Another important benefit of PEFT is that
it reduces the size of the task-specific fine-tuned models, making them more
portable. PEFT offers various methods such as Low Rank Adaptation of
Large Language Models (LORA)2, Prefix Tuning, P-Tuning, Prompt
Tuning, and AdaLoRA.

For the AI doctor project, LORA was chosen. LORA freezes all parameters
of the pre-trained model and injects trainable rank decomposition matrices
into each layer of the Transformer architecture, greatly reducing the number
of trainable parameters needed for downstream tasks. For the AI doctor
project, only 0.06% of the original parameters of LlaMA needed to be
trained, thanks to LORA.

The complete end-to-end code for model development, inference, and
sharing on hugging face are provided in the accompanying notebook.

Let us see few examples of inference done by AI doctor:

print(ask_ai_doctor('What are symptoms of

Cirrhosis?', model))

Output:

The following list of signs and symptoms may be

associated with

cirrhosis. Some people with cirrhosis do not have

any of these

symptoms. If you are concerned about how your

general health is

affected by cirrhosis, talk to your doctor or nurse

practitioner.

Signs and Symptoms of Cirrhosis -----------------

---- Abdominal swelling (ascites) Bleeding

problems Blurred vision Breath odor

Confusion Constipation Difficulty concentrating

Dizziness

Fatigue Fluid retention Gallstones Gout

Hair loss Headache

Itching Jaundice Liver cancer Memory loss

Muscle weakness

Nausea Neuropathy Night sweats Pain in the

upper right abdomen

Poor appetite Skin itching Sleepiness Stomach

pain Swollen

legs and feet Tiredness Weight gain Yellow

skin and eyes

It is incredible that we have developed an AI Doctor capable of answering a
diverse set of questions. What is even more fascinating is that we were able
to complete fine-tuning in just 30 minutes using a single GPU machine with
32 GB of RAM. Moreover, the cost of training was just a few dollars.

Conclusion
Through this chapter, we have explored the major NLP tasks and how
transformers can be effectively used to solve them. Additionally, we have
discussed how transformers can be fine-tuned for text classification, text
generation, and instruction following models. Finally, we discussed how we
can fine-tune transformers in commodity hardware.

Quiz

1. Which layer of transformer is responsible for processing the input
text?

a. Attention Layer

b. Feedforward Layer

c. Encoding Layer

d. Decoding Layer

2. What is the main challenge in handling long sequences in natural
language processing?

a. The computational complexity of seq_len is quadratic.

b. Insufficient training data

c. Poor quality of data

d. None of the above

3. What is the standard approach to handle long sequences in
transformers?

a. Truncation

b. Chunking

c. Padding

d. All of the above

4. What is the primary disadvantage of truncation?

a. Loss of information

b. Increase in training time

c. Decrease in accuracy

d. None of the above

5. What is the typial structure of Dataset before feeding into
classification model?

a. {‘input_ids’: input_ids_tensor, ‘attention_mask’:
attention_masks_tensor, ‘label’: labels_tensor}

b. {‘input_ids’: input_ids_tensor, ‘attention_mask’:
attention_masks_tensor}

6. What does the ‘pooler_output’ represent in the BERT model?

a. Sequence Embedding

b. First Token Embedding

7. Which of the following accelerators is supported by the Hugging
Face library?

a. GPU

b. TPU

c. MPS

d. All of the above

8. Which type of transformer is used for text generation?

a. Unidirectional Transformer

b. Bidirectional Transformer

c. Autoregressive Transformer

d. None of the above

9. Which pre-trained transformer model is widely used for text
generation?

a. GPT-2

b. BERT

c. RoBERTa

d. XLNet

10. What is the difference between GPT and BERT transformers?

a. BERT is bidirectional while GPT is unidirectional

b. GPT is bidirectional while BERT is unidirectional

c. Both are bidirectional transformers

d. Both are unidirectional transformers

11. Which transformer model is most commonly used for instruction
following tasks?

a. BERT

b. GPT-2

c. LlaMA

d. XLNet

12. What is the function of PEFT?

a. Enabling training of LLMs on commodity hardware.

b. Reducing the size of fine-tuned models for better portability.

c. Both A and B.

13. What is the purpose of LORA?

a. Freezes the parameters of pre-trained model and adds few
trainable parameters.

b. Increases training time.

Answers

1. c.
2. a.
3. a.
4. a.
5. a.
6. d.
7. c.
8. a.
9. a.

10. c.
11. c.
12. a.
13. a.

1 https://github.com/tloen/alpaca-lora

2 https://huggingface.co/docs/peft/conceptual_guides/lora

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://github.com/tloen/alpaca-lora
https://huggingface.co/docs/peft/conceptual_guides/lora
https://discord.bpbonline.com/

CHAPTER 7
CV Model Anatomy: ViT, DETR,

and DeiT

Introduction
This chapter presents an in-depth exploration of the Vision Transformer
(ViT), a novel approach in computer vision that leverages the transformer
architecture, which is traditionally associated with breakthroughs in natural
language processing. ViT is crucial in the field of computer vision as it
introduces a method for processing images as sequences of patches, applying
self-attention across these patches to understand the global context of the
image, enhancing performance on complex tasks like image classification.

Alongside ViT, we will delve into image pre-processing—an indispensable
stage that involves resizing, normalizing, and augmenting images to make
them compatible with transformer models. This process ensures that our
models are fed high-quality, standardized data, which is crucial for effective
learning and accurate results. The chapter also covers the Distilled Vision
Transformer (DeiT) and the Detection Transformer (DETR), two
advanced iterations of transformer-based models. DeiT refines the training
process through knowledge distillation, leading to more efficient learning
when data is scarce, while DETR revolutionizes object detection by
interpreting images as a set of objects, eliminating the need for the complex
region proposal networks used in traditional methods.

As we navigate through this chapter, we will not only dissect the theoretical
underpinnings of these models but also engage with practical applications,
using them to tackle real-world computer vision problems. This hands-on
approach will provide readers with a comprehensive toolkit to understand
and implement these cutting-edge technologies in their own projects,
signifying the broadening horizon of AI in visual understanding.

Structure
The chapter is organized in the following structure:

System requirement

Image pre-processing

Vision transformer architecture

Distillation transformer

Detection transformer

Objectives
This chapter will provide a foundational understanding of image pre-
processing techniques and their significance in computer vision tasks. It will
also delve into the architecture and workings of the ViT and its role in image
classification, explore the DeiT architecture, focusing on its unique
characteristics and advantages over ViT, as well as examine the architecture
of the DETR and its application in object detection tasks. Lastly, it will help
the reader understand ViT, DeiT, and DETR through practical examples.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as follows:

pip install transformers

pip install datasets

pip install accelerate

pip install torch

pip install torchvision

pip install scikit-learn

Image pre-processing
Image pre-processing is an essential step in computer vision. Similar to NLP,
where raw text is converted into embeddings, certain steps must be
conducted before feeding images into any machine learning model. The
essential steps of image pre-processing are:

1. Image resizing: Most ML models require fixed image dimensions.
Thus, based on the model requirement, you need to resize the image.
For example, if you are using vit_base_patch16_224, the model
requires your image to be of 224*224 dimensions. This is an essential
step.

2. Image normalization: This is the process of scaling pixel values to a
specific range, usually between 0 and 1, or -1 and 1. It helps stabilize
the learning process, making it easier for the model to converge and
learn optimal weights. There are many techniques, such as min-max
scaling, mean-standard deviation scaling, and dividing pixel values by
255. Although it is an optional step, it is highly recommended.

3. Data augmentation: This involves applying random transformations
to the original images. It helps improve the model’s generalization
capabilities by exposing it to a diverse set of examples. Additionally,
data augmentation techniques can be used to create new samples by
transforming original samples. This is an optional step. The following
Table 7.1 illustrates basic data augmentation techniques:

Methods Description

Rotation Rotating the image by a random angle.

Translation Shifting the image horizontally or vertically.

Flipping Mirroring the image horizontally or vertically.

Zooming Scaling the image while preserving its aspect ratio

Color perturbation Adjusting the brightness, contrast, or saturation of the image

Table 7.1: Data augmentation techniques
4. Grayscale conversion: This involves converting color images into

grayscale with a single channel. It is useful when color information is
not relevant to the task at hand. This reduces the image size, thus
decreasing the computation requirements for training and inference. It
is an optional step.

5. RGB conversion: Sometimes, color images may have additional
channels, like an alpha channel. In such cases, you need to convert the
images into RGB format. This is an optional step.

Example of image pre-processing
Now, let us have a demo of the image pre-processing technique.

Load the image using the following code:

import torch

import torchvision.transforms as T

from PIL import Image

import requests

from io import BytesIO

Load an example image

url = "

https://github.com/bpbpublications/Building-

Transformer-Models-with-

PyTorch/blob/main/chapter7_ComputerVisionArch/tulip

_field.png"

response = requests.get(url)

img = Image.open(BytesIO(response.content))

convert to RGB

img = img.convert("RGB")

Display original image using the following code:

from IPython.display import display

display(img)

Refer to the following Figure 7.1:

Figure 7.1: Example image before pre-processing

Performing pre-processing
The transformation does the following things:

RandomRotation: Randomly rotates the image between -15 and 15
degrees. Fills vacant pixels with zero.

RandomResizedCrop: Resizes the image to a size of 224 x 224 pixels.
Additionally, scales the image randomly between 80% and 100% of its
original size.

RandomHorizontalFlip: Applies a horizontal flip to the image with a
50% probability.

RandomVerticalFlip: Applies a vertical flip to the image with a 50%
probability.

ColorJitter: Adjusts the image’s brightness, contrast, and saturation.

ToTensor: Converts the image to a PyTorch tensor.

Normalize: Normalizes the image using the specified mean and
standard deviation values.

Refer to the following code:

Define the resizing, data augmentation, and

normalization pipeline

transforms = T.Compose([

 T.RandomRotation(degrees=(-15, 15), fill=0),

 T.RandomResizedCrop(size=(224, 224), scale=

(0.8, 1.0)),

 T.RandomHorizontalFlip(p=0.5),

 T.RandomVerticalFlip(p=0.5),

 T.ColorJitter(brightness=0.2, contrast=0.2,

saturation=0.2, hue=0.1),

 T.ToTensor(),

 T.Normalize(mean=[0.485, 0.456, 0.406], std=

[0.229, 0.224, 0.225]),

])

Apply the data augmentation pipeline to the image

augmented_img = transforms(img)

To visualize the augmented image, you can convert

it back to a PIL image

Don't forget to undo the normalization before

converting it

unnormalized_img = T.Compose([

 T.Normalize(mean=[-0.485/0.229, -0.456/0.224,

-0.406/0.225], std=[1/0.229, 1/0.224, 1/0.225]),

 T.ToPILImage(),

])(augmented_img)

Display the transformed Image using the following code:

from IPython.display import display

display(unnormalized_img)

Refer to the following Figure 7.2:

Figure 7.2: Example image after image pre-processing

Vision transformer architecture

Dosovitskiy1 et al. proposed the vision transformer architecture (ViT),
which is an adaptation of the original transformer architecture for image
classification tasks. The idea behind the ViT is to treat an image as a
sequence of fixed-sized non-overlapping patches. This is similar to how a
transformer treats natural language as a sequence of tokens.

The following Figure 7.3 depicts the architecture of ViT:

Figure 7.3: ViT architecture

The key components of ViT are as follows:

Image pre-processing: Resize the image and split it into non-
overlapping patches (for example, 16x16 pixels).

Patch embedding: Flatten each patch into a 1D vector and linearly
embed it into a high-dimensional representation. This is similar to
token embedding in NLP.

Positional encoding: Add location information to each patch.

Transformer layers: Pass the patch embedding through the
Transformer layers.

Classification: Pass the output of Transformer layers to the fully
connected layers and perform a softmax function to calculate the
probability for classification.

The original ViT model was pre-trained on the ImageNet-21k dataset, which
comprises 14 million images and 21K classes. Its pre-training objective was
to minimize the cross-entropy loss between predicted class probabilities and
true labels. You can obtain the ViT model through the timm or huggingface
libraries. Various ViT model variations exist, based on factors such as patch
size, image size, and more. As of April 30, 2023, there are 143 models
available in the timm library. To list all models available in timm, you can run
the following code:

import timm

all_models = timm.list_models()

vit_models = [model for model in all_models if

'vit' in model]

print("Available ViT models in timm:")

for model in vit_models:

 print(model)

Let us see how we can declare ViT model from timm:

import timm

model = timm.create_model("vit_base_patch16_224",

in_chans=3, num_classes=4, pretrained=True)

What the above code does is: it uses pre-trained ViT image with 12 layers, a
hidden size of 768, 12 heads, and a patch size of 16x16 pixels. The input
image size is 224x224 pixels. Additionally, it also add classification head
with 4 classes on the output.

Project 1: AI eye doctor
Carry out the following project:

Obtain the cataract dataset from Kaggle:
https://www.kaggle.com/datasets/jr2ngb/cataractdataset.

This dataset contains eye images and is categorized into four classes:
normal, cataract, glaucoma, and retina_diseases.

The objective is to develop a classifier capable of automatically
identifying the type of eye disease present in the images.

To aid you in this task, a complete end-to-end implementation provided in
the notebook located in the chapter’s directory on GitHub.

Distillation transformer
Distillation transformer (DeiT)2 is an extension of ViT. DeiT differs from
ViT only during the pre-training phase. During fine-tuning and inference, the
underlying architecture is exactly the same. Figure 7.4 depicts the
architecture diagram for the pre-training phase. Let us dig deeper into the
pre-training process of DeiT:

Teacher model: Choose a pre-trained teacher model, usually a CNN,
like ResNet-50. The teacher model is not updated during the training
process. Let us understand the concept behind this. The concept is
called knowledge distillation. The basic idea is that you have two
networks, one pre-trained larger network called the teacher, and a
second, randomly initialized student network. During the pre-training
phase, the student network tries to learn and behave like the teacher.

https://www.kaggle.com/datasets/jr2ngb/cataractdataset

Process the image.

Model training: As shown in Figure 7.4, during the pre-training
phase, models are optimized across two losses:

Classification loss: This optimizes the difference between the
predicted probability and the true label. As shown in the diagram,
LossCE is attached to the first token of the last layer of the
transformer.

Teacher loss/distillation loss: Measures the difference between the
student model’s (DeiT) output and the teacher model’s output. The
student model is trained to minimize this difference, effectively
learning from the teacher model.

There are different variations of knowledge distillation. DeiT uses
hard distillation. In hard distillation, the objective function aims to
reduce the cross-entropy loss between the teacher’s labels and the
student’s logits predictions.

Thus, the overall pre-training loss function becomes:

1/2 * CrossEntropy(true label, prediction logits)) + (1/2 *

CrossEntropy(teacher label, prediction logits)

Refer to the following Figure 7.4:

Figure 7.4: Architecture of DeiT

Advantages of DeiT
The primary advantage of DeiT over ViT is in scenarios where pre-training
or fine-tuning datasets are limited.

Another advantage is knowledge distillation. DeiT learns to mimic the
teacher model by minimizing the distillation loss. Due to knowledge
distillation, DeiT achieves faster convergence than ViT.

Exercise
For fine-tuning AI eye doctor, we had a small dataset. The hypothesis is that
DeiT should perform better than ViT. Please re-implement AI eye doctor
using the DeiT model.

Detection transformer

Figure 7.5 depicts the typical Detection transformer (DETR)3 architecture.
It has three main components:

CNN Backbone to extract image features

Transformer encoder and decoder

Two output heads for class prediction and bounding box prediction.

Refer to the following figure for DETR architecture:

Figure 7.5: DETR architecture

Let us understand architecture in detail:

Image feature extraction: A CNN model like ResNet-50 generates
the feature map. This feature map is used as input to the transformer.
Let us illustrate with an example. Suppose you have an image of size
256x256, and ResNet-50 generates a feature map of 8x8 with 2048
channels. Each 8x8 cell represents the spatial information about the
input image, and the 2048 channels represent the high-level features.

Transformer encoder: The extracted feature (for example, [2048, 8,
8]) is flattened and transformed into a sequence of 1D vectors that are
fed into the transformer encoder. The encoder applies positional
encoding and self-attention to capture both local and global contextual
information. In our example, to feed the 2048x8x8 feature map into
the transformer encoder, you need to reshape the feature map to be
64x2048 (8x8=64). Now, you have 64 vectors, each with a dimension
of 2048, representing the spatial locations in the image. Each of these
64 vectors is considered a token for the transformer encoder. The

sequence of 64 tokens (1D vectors of size 2048) is then fed to the
transformer encoder.

Transformer decoder: The transformer decoder takes in the output of
the transformer encoder and object queries. The object queries
represent potential object detections. In a typical example, there could
be 100 object queries, each with 256 dimensions. This means in a
single image, a maximum of 100 objects could be identified.

Output: The output of the transformer decoder is a set of predicted
bounding boxes and class probabilities for each object query. A loss
function like bi-partite matching loss is used, which matches the
predicted boxes with the ground truth boxes. For each object query,
the output head produces two predictions. During pre-training of
DETR, 100 object queries with 80 + 1 object categories were used (an
additional 1 for “no object”):

Bounding box coordinates: These are the coordinates (x, y, width,
height) that define the predicted bounding box for the image. The
output head will have four neurons dedicated to predicting the
bounding box coordinates for each object query.

Class Probabilities: These are the probabilities for each of the object
categories.

Project 2: Object detection model
Let us create a program for object detection2.

Import necessary packages using the following code:

import torch

import torchvision.transforms as T

from PIL import Image

import requests

from io import BytesIO

import matplotlib.pyplot as plt

from transformers import DetrForObjectDetection,

DetrImageProcessor

Perform data pre-processing using the following code:

url =

"https://raw.githubusercontent.com/pytorch/ios-

demo-

app/master/HelloWorld/HelloWorld/HelloWorld/image.p

ng"

response = requests.get(url)

img = Image.open(BytesIO(response.content))

Convert the image to RGB format

img = img.convert("RGB")

transform = T.Compose([

 T.Resize(800),

 T.ToTensor(),

 T.Normalize([0.485, 0.456, 0.406], [0.229,

0.224, 0.225]),

])

img_tensor = transform(img).unsqueeze(0)

Load model and make prediction using the following code:

processor =

DetrImageProcessor.from_pretrained("facebook/detr-

resnet-50")

model =

DetrForObjectDetection.from_pretrained("facebook/de

tr-resnet-50", config=config)

model.eval()

with torch.no_grad():

 outputs = model(img_tensor)

target_sizes = torch.tensor([img.size[::-1]])

results =

processor.post_process_object_detection(outputs,

target_sizes=target_sizes, threshold=0.9)[0]

Visualize the prediction using the following code:

fig, ax = plt.subplots(1, 1, figsize=(10, 10))

ax.imshow(img)

get_cmap("tab20b")`is a qualitative colormap

containing 20 distinct colors.

These colors are then used in the visualization

code to assign

unique colors to different object categories

detected in the image.

colors = plt.get_cmap("tab20b").colors

results["scores"] is prediction

results["labels"] is true label

results["boxes"] is the bounding box of object

for score, label, box in zip(results["scores"],

results["labels"], results["boxes"]):

 x, y, w, h = box

 w = w - x

 h = h - y

 rect = plt.Rectangle((x, y), w, h, linewidth=1,

edgecolor=colors[label % 20], facecolor="none")

 ax.add_patch(rect)

 ax.text(x, y, f"

{model.config.id2label[label.item()]}

{round(score.item(), 3)}", fontsize=15,

color=colors[label % 20])

plt.show()

Figure 7.6 shows the prediction. It is incredible, it is even able to identify the
blurry and far behind car with 97% accuracy.

Figure 7.6: Outcome of object detection

Conclusion
This chapter has provided a fundamental overview of image pre-processing
techniques and their importance in computer vision tasks. Following this, we
explored the architectures of ViT, DeiT, and DETR.

We began by discussing essential image pre-processing steps, including
resizing, normalization, and data augmentation. These steps are crucial for
preparing images for machine learning models and optimizing computer
vision performance. Subsequently, we delved into the architectural design of
three major transformer-based computer vision models.

Through practical examples from two projects, we demonstrated how these
transformer models can be applied to real-world scenarios, highlighting their

effectiveness and versatility. By understanding the transformer architecture
in computer vision, readers are equipped with the knowledge of how the
transformer architecture has become a versatile method, converging various
machine learning approaches.

The insights gained from this chapter will enable readers to appreciate the
power and flexibility of transformer models in computer vision applications
and motivate them to harness these advanced techniques in their own
projects.

Quiz

1. What is the primary benefit of data augmentation in image pre-
processing?

a. Reducing the file size of images

b. Improving model generalization

c. Converting images to grayscale

d. Reducing overfitting

2. What does following Normalization does?

transforms = T.Compose([

T.ToTensor(),

T.Normalize(mean=[0.485, 0.456, 0.406], std=

[0.229, 0.224, 0.225]),

])

a. convert to tensor, normalize with mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]

b. normalize to 0 and 1

3. How can you Horizontally flip the image?

a. RandomRotation(degrees=(-15, 15), fill=0)

b. RandomHorizontalFlip(p=0.5)

c. RandomVerticalFlip(p=0.5)

4. What is the primary purpose of image normalization in pre-
processing?

a. To create visually appealing images

b. To convert images to grayscale

c. To stabilize the learning process and help the model converge

d. To reduce the size of the dataset

5. What are architectural component of ViT?

a. dividing an image into non-overlapping patches, convert to 1-D
array and Positional Encoding, transformer encoder, output head

b. CNN, Encoder

6. In the below code: what should be size of input image

model =

timm.create_model("vit_base_patch16_224",

in_chans=3, num_classes=4, pretrained=True)

a. Any size

b. 224 * 224

7. In ViT, what is the purpose of dividing an image into non-
overlapping patches?

a. To reduce the size of the dataset

b. To create visually appealing images

c. To convert images into a sequence of tokens

d. To apply data augmentation techniques

8. What is the primary advantage of DeiT over ViT?

a. DeiT uses a convolutional neural network

b. DeiT performs better with a smaller fine-tuning dataset

c. DeiT has a larger architecture

d. DeiT requires fewer patches

9. How does DeiT use knowledge distillation to improve
performance compared to ViT?

a. By mimicking the teacher model and minimizing the distillation
loss

b. By using a larger architecture

c. By applying data augmentation techniques

d. By increasing the number of patches

10. In the DETR model, what is the purpose of the ResNet-50
backbone architecture?

a. To generate feature maps from the input image

b. To perform data augmentation

c. To convert images into grayscale

d. To reduce the size of the dataset

11. In the DETR model, what are two losses?

a. Prediction Loss, Teacher Loss

b. Prediction Loss, Student Loss

Answers

1. b.
2. a.
3. b.

4. c.
5. a.
6. b.
7. c.
8. b.
9. a.

10. a.
11. a.

1 Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... &Houlsby,
N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

2 https://huggingface.co/facebook/detr-resnet-50

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://huggingface.co/facebook/detr-resnet-50
https://discord.bpbonline.com/

CHAPTER 8
Computer Vision Tasks with

Transformers

Introduction
In this chapter, we will delve into teaching machines to see and interpret the
world around us, recognize images, decipher emotions, and even generate
visual data. By the time you reach the end of this chapter, you will
comprehend the fundamental computer vision tasks and learn how to apply
transformers to achieve these objectives. Additionally, we will also discuss
the ground-breaking concept of stable diffusion, which has taken the field of
image generation by storm.

Structure
The chapter is organized as follows:

Computer vision task

Image classification and comparison of DeiT, ViT and Resnet-50

Image segmentation

Diffusion model: Unconditional image generation

Objectives

This chapter will provide a comprehensive understanding of various
computer vision tasks and their applications in real-world scenarios, and
explore image classification techniques, comparing the performance of DeiT
with well-established models such as ResNet-50 and ViT, demonstrating
their effectiveness in solving classification problems.

The chapter will also offer an understanding of image segmentation and its
practical applications, focusing on food image segmentation. We will
implement an end-to-end food image segmentation model, demonstrating the
process of training and evaluation. Lastly, the chapter will explain the
principles behind diffusion models and their use in unconditional image
generation. We will showcase the capabilities of these models by creating
unique dog artwork, highlighting their potential in creative applications.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as follows:

pip install transformers

pip install datasets

pip install accelerate

pip install torch

pip install torchvision

pip install scikit-learn

pip install diffusers

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

Computer vision task
Table 8.1 illustrates the major tasks in computer vision. The model listed on
the table can be searched and retrieved from
https://huggingface.co/models:

Tasks Summary Popular models

Image
classification

Classify images into categories google/vit-base-
patch16-224,
microsoft/resnet-50*

Image
segmentation

Partitioning image into different segments. It is
pixel level partitioning.

facebook/detr-resnet-
50-panoptic,
nvidia/segformer-b0-
finetuned-ade-512-512

Unconditional
image
generation

Generate coherent image without constraint or
guidance. For example, create images of landscape,
animals and so on, create painting in Picasso style
based on its knowledge.

Denoising Diffusion
Probabilistic Models
(DDPM)

Zero-shot
image
classification

Classify images into categories which were not seen
during training. For example, clip-vit was trained
large dataset of image and its captions. The model
learns to map text and images into shared high
dimensional space. During inference, unseen image
is processed by the encoder and the transformer tries
identifying the class embedding that has highest
match to image embedding.

openai/clip-vit-large-
patch14

Depth
estimation

Determine distance between objects in image. Intel/dpt-large

Object
detection

Identify different objects in an image. DETR, facebook/detr-
resnet-50

Image-to-
image

Example, style transfer, colorization and so on. ControlNet,

Video
classification

Classify video on categories. microsoft/xclip-base-
patch32,
facebook/timesformer-
base-finetuned-k400

Table 8.1: Major tasks in computer vision
In the following section, we will delve deeper into the important computer
vision tasks we enlisted in Table 8.1.

Image classification

https://huggingface.co/models

In Chapter 7, CV Model Anatomy: ViT, DETR, and DeiT (ViT.ipynb), we
conducted a cataract image classification project using ViT. In the
accompanying notebook of this chapter
(deit_and_resnet_comparison.ipynb), we performed the same experiment
with DeiT and ResNet50. Here are the accuracy results after 5 epochs:

ViT: 61.16%

DeiT: 66.12%

ResNet50: 29.75%

This experiment demonstrates that DeiT outperforms both ResNet50 and
ViT. Prior research has also shown transformers to outperform ResNet50 in
many fine-tuning tasks. Here are a few benefits of using transformers for
image classification:

Complexity and transfer learning: Both ViT and DeiT have higher
complexity due to the self-attention mechanism. Pre-trained
transformers have been shown to generalize better across a wide
variety of tasks. If you are using transfer learning, then transformers
could be more beneficial than ResNet50.

Multi-modal tasks: Transformers can handle multi-modal data, such
as images and text or images and audio, more naturally than CNNs.
Thus, if your task involves multi-modal data, ViT and DeiT might be
more suitable.

Exercise
Our implementation of the cataract image classifier is relatively basic. There
are a couple of issues:

Our fine-tuning dataset was quite small

We performed minimal image pre-processing

To further improve the performance of the cataract dataset, consider
experimenting with various data augmentation techniques. One option might
be to double the dataset size using data augmentation.

Image segmentation

Image segmentation involves dividing the image into segments or regions,
where each segment represents a specific object or area of interest. It might
seem that object detection and image segmentation are similar; however,
there is a significant difference. The primary goal of object detection is to
identify the presence of objects and provide a rough estimate of their
location using bounding boxes. On the other hand, image segmentation
offers a more detailed representation of objects by assigning a class label to
every pixel in the image, resulting in pixel-wise classification. This allows
for the identification of not only the presence of objects but also their precise
shape and boundaries.

Consider the following examples to understand when to use object detection
and when to use image segmentation:

Object detection - autonomous vehicles: Object detection is used to
identify the presence of various objects, such as traffic lights,
pedestrians, and other vehicles. Object detection can quickly
determine the presence of these objects and their approximate
locations, which is crucial for real-time decision-making in
autonomous driving.

Image segmentation - medical imaging: In medical imaging, such as
CT scans or X-rays, it is essential to identify the exact structure of
organs or tumors. Image segmentation can assign pixel-level
classification, resulting in a fine-grained representation of the object.
For instance, using object detection on the liver would only produce a
rectangular bounding box, which is not helpful. In contrast, image
segmentation provides the precise structure of the liver, which is
crucial for accurate diagnosis and treatment planning.

Project 1: Image segmentation for our diet calculator
Problem statement: We are developing a calorie estimation app that
calculates the caloric content of food, based on a picture. The first step in
this process is to capture an image of the meal, then identify different food
categories through image segmentation. By analyzing the segmentation
results, we can estimate the quantities of various food items and ultimately
determine the total calorie count. In this project, we will create a machine-
learning model capable of performing image segmentation on food items.

Approach:

We can approach it in two steps:

1. Use FoodSeg103-BenchMark-V1 (https://github.com/LARC-CMU-
SMU/FoodSeg103-Benchmark-v1) dataset. It has 7118 images of
different food categories.

2. Use nvidia/mit-b0 as pre-trained model from huggingface.

Solution:

The end-to-end implementation is provided in the accompanying notebook.
Figure 8.1 shows the result of the inference:

Figure 8.1: Inference example of image segmentation

Diffusion model: Unconditional image generation
Unconditional image generation is the process of generating realistic images
without providing any conditional information as input. Over the past few
years, numerous generative models have been proposed to address this
problem, with diffusion models demonstrating some of the most promising
results. In this section, we will explore the principles behind diffusion
models and present a project that showcases end-to-end techniques for
training a model specifically tailored for unconditional image generation.

The following Figure 8.2 depicts the diffusion model, while the code block
corresponds to the model definition. The general principle behind the
diffusion model is to simulate a process that gradually transforms an original
image into random noise and then reverses the process to reconstruct the

https://github.com/LARC-CMU-SMU/FoodSeg103-Benchmark-v1

image from noise. In the context of image generation, diffusion models
consist of two main steps.

Figure 8.2: Unet architecture

Refer to the following code:

from diffusers import UNet2DModel

model = UNet2DModel(

 sample_size=config.image_size,

 in_channels=3,

 out_channels=3,

 layers_per_block=3,

 block_out_channels=(64, 128, 256, 512, 1024),

 down_block_types=(

 "DownBlock2D",

 "AttnDownBlock2D",

 "DownBlock2D",

 "DownBlock2D",

 "DownBlock2D",

),

 up_block_types=(

 "UpBlock2D",

 "UpBlock2D",

 "AttnUpBlock2D",

 "UpBlock2D",

 "UpBlock2D",

),

)

Forward diffusion
In this step, the model introduces noise into an image in a controlled manner,
making it more like random noise. At each iteration, a new noisy image is
generated based on the previous one and some predefined set of noise. The
process goes through a series of steps, ultimately transforming the original
image into pure noise. There are two major building blocks of forward
diffusion:

DownBlock2D: This block is responsible for downsampling the input
feature maps while increasing the number of channels. In the

preceding code example, we increased the channels in each
subsequent block (64, 128, 256, 512, 1024). Typically, it consists of
a series of convolutional layers followed by batch normalization and
activation functions (for example, ReLU) and a downsampling
operation, such as max-pooling or strided convolution.

AttnDownBlock2D: In addition to the functionality of DownBlock2D, it
includes an attention mechanism, such as self-attention or spatial
attention, within the block.

Backward diffusion
The model starts from pure noise and attempts to reverse the process and
reconstruct the original image. At each step, the model predicts the noise that
was added to the image and subtracts the noise from the image, gradually
reconstructing the image. There are two major building blocks of backward
diffusion:

UpBlock2D: This block is responsible for up-sampling the input feature
maps while decreasing the number of channels.

AttnUpBlock2D: Similar to AttnDownBlock2D, this block performs the
same up-sampling operation as UpBlock2D, but includes an attention
mechanism within the block.

Inference process
Figure 8.3 illustrates the inference process in a diffusion model. As depicted,
the model starts with pure noise as its input. In each subsequent step, the
model attempts to remove the noise, gradually reconstructing a new image.
The process follows these main steps:

Input pure noise: At the beginning of the inference process, the
model takes a pure noise image. This noise image serves as the
starting point for the model to reconstruct the target image.

Denoising steps: In each denoising step, the model tries to estimate
the amount of noise that was added during the forward diffusion
process. The model then subtracts the estimated noise from the current
image, refining the image’s appearance. These denoising steps are

performed for a predefined number of steps, with the model
continually refining the image at each step.

Final image reconstruction: At the end of the inference process, after
going through all the denoising steps, the model generates a new
image. This image is the result of the model’s attempt to reverse the
forward diffusion process, transforming the pure noise input into a
realistic image. As you can see in Figure 8.3, our diffusion model was
able to create the picture of baby at the final step.

In summary, the inference process in a diffusion model involves starting
with pure noise and, through a series of denoising steps, reconstructing a
new image. Figure 8.3 provides a visual representation of this process,
highlighting the gradual refinement of the image as noise is removed over
multiple steps:

Figure 8.3: Inference process diffusion model

Learnable parameters
The main learnable parameters are found in the denoising model, which is
used in both the forward and backward passes. The denoising model
typically consists of neural networks like U-net, transformers, and so on. The
learnable parameters in the denoising model include biases and weights of
various layers, including CNN layers, attention mechanisms, and linear
layers, depending on the specific architecture.

During forward diffusion, the denoising model is used to simulate the
process of introducing noise. During the backward diffusion, the same
denoising model is used, but the process is reversed. The model tries to
predict the amount of noise added in each step.

Project 2: DogGenDiffusion

You are part of a creative art company and want to develop unique dog
artwork for inspiration. Your task is to create a diffusion model that performs
unconditional image generation of dogs.

Project name: DogGenDiffusion

Dataset: We will utilize the BirdL/DALL-E-Dogs dataset from
HuggingFace, which contains 1,104 unique dog images.

Data transformation: All images will be resized to 128 x 128 pixels, and
we will experiment with various data transformation techniques.

Model: The UNet2DModel from HuggingFace’s Diffusers library will be
employed for this task.

A comprehensive pipeline for model development and inference can be
found in the accompanying notebook.

Conclusion
This book chapter provides a comprehensive overview of various computer
vision tasks, including image classification, segmentation, and unconditional
image generation. It delves into the comparison of DeiT with established
models like ResNet-50 and ViT for image classification, demonstrating their
effectiveness in solving real-world problems. The chapter also covers the
implementation of an end-to-end food image segmentation model,
showcasing the process of training and evaluation. Lastly, it explores the
principles behind diffusion models for unconditional image generation,
highlighting their potential in creative applications through the creation of
unique dog artwork.

Quiz

1. What type of model is DeiT?

a. Image classification model

b. Image segmentation model

c. Unconditional image generation model

d. None of the above

2. Which makes DeiT Unique compared to ViT?

a. teacher-student training strategy

b. DeiT is transformer where ViT is not

c. DeiT is GANs

3. How does the performance of DeiT compare to ResNet-50 and
ViT?

a. DeiT performs worse than both ResNet-50 and ViT

b. DeiT performs better than ResNet-50 but worse than ViT

c. DeiT performs worse than ResNet-50 but better than ViT

d. DeiT performs better than both ResNet-50 and ViT

4. What is the primary goal of image segmentation?

a. Classify images into categories

b. Generate new images based on input images

c. Assign each pixel into diffrent semantic categories

5. Which of the following is NOT a component of a U-Net
architecture?

a. DownBlock2D

b. UpBlock2D

c. AttnDownBlock2D

d. Adversarial loss

6. In the context of image generation, what is the primary purpose
of diffusion models?

a. Classify images into categories

b. Generate new images from noise

c. Perform image segmentation

d. Retrieve similar images from a database

7. Which of the following models is NOT a variation of diffusion
models?

a. DDPMPipeline

b. DDIMPipeline

c. PNDMPipeline

d. GANPipeline

8. What is the main learnable component in a diffusion model?

a. Denoising model

b. Attention mechanism

c. Pooling layer

d. Loss function

9. Which of the following is a typical building block of the forward
diffusion process in a diffusion model?

a. DownBlock2D

b. UpBlock2D

c. AttnUpBlock2D

d. None of the above

10. What is the primary difference between AttnDownBlock2D and
DownBlock2D?

a. AttnDownBlock2D includes an attention mechanism

b. AttnDownBlock2D performs upsampling instead of
downsampling

c. AttnDownBlock2D has fewer layers than DownBlock2D

d. None of the above

11. Which library provides the UNet2DModel used in the diffusion
model implementation?

a. TensorFlow

b. PyTorch

c. HuggingFace’s Diffusers

d. OpenCV

12. Which of the following tasks can be accomplished using computer
vision techniques?

a. Identifying objects in images

b. Generating new images based on input images

c. Dividing an image into semantically meaningful regions

d. All of the above

13. In the context of diffusion models, which building block is
responsible for upsampling the input feature maps while
decreasing the number of channels?

a. DownBlock2D

b. AttnDownBlock2D

c. UpBlock2D

d. AttnUpBlock2D

14. What evaluation metrics we used in this chapter for image
segmentation?

a. IOU

b. Sensitivity, Specificity

c. Accuracy

15. What is the SegFormer used for?

a. Image Generation

b. Image Segmentation

c. Text to Image

Answers

1. a.
2. a.
3. d.
4. c.
5. d.
6. b.
7. d.
8. a.
9. a.

10. a.
11. c.
12. d.
13. c.
14. a.
15. c.

CHAPTER 9
Speech Processing Model Anatomy:

Whisper, SpeechT5, and Wav2Vec

Introduction
Welcome to the exploration of speech processing using the transformer. It is
one of the less mature yet rapidly growing fields of artificial intelligence,
boasting a wide range of applications, including automated transcription,
automated voice translation, speaker identification, and audio generation.
Recently, transformer architectures, like Whisper, have outperformed
traditional speech processing techniques. In this chapter, we will delve into
the three most important speech processing transformer architectures and
illustrate those with practical examples.

Structure
The chapter is organized in the following structure:

System requirements

Speech pre-processing

Whisper

Wav2Vec

Speech T5

Comparison of Whisper, Wav2Vec 2.0 and Speech T5

Objectives
The objective of this chapter is three-fold. By the end of it, the reader will
have a foundational understanding of speech pre-processing, and a detailed
analysis of Whisper, SpeechT5, and Wav2Vec Architecture. Finally, the
chapter will also illustrate practical demonstrations. It aims to complement
the theoretical understanding with practical demonstrations of fine-tuning
Whisper with small dataset for new language transcription.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as follows:

pip install transformers

pip install datasets

pip install accelerate

pip install torch

pip install torchaudio

pip install scikit-learn

Speech processing
The preparation of raw audio signals for machine learning tasks includes
several critical pre-processing steps. These steps convert the raw audio data

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

into a format suitable for training and inference with transformers. Here are
the pre-processing steps for audio signals:

1. Pre-processing: A crucial step for most transformer models is
resampling. Transformers require an audio signal of a predefined
sample rate. For instance, Whisper needs a sampling rate of 16KHz.
Additional pre-processing, such as normalization or noise reduction,
can be done to ensure consistency and faster convergence.

2. Frame extraction: The audio signal is split into overlapping frames
of a fixed duration, typically between 20 to 40 milliseconds. Each
frame corresponds to a short segment of the audio waveform. A
standard principle is a 50% overlap, meaning that adjacent frames
share half of their samples. Overlapping ensures a smoother transition
between adjacent frames and reduces the impact of frame boundaries
on the extracted features.

3. Windowing: A windowing function, such as a hamming window, is
applied to mitigate artifacts at the start and end of the frame by
reducing the amplitude of the signal at these points.

4. Feature extraction: A feature extraction technique is applied to each
frame. Common techniques include log-mel spectrograms, Mel-
frequency cepstral coefficients (MFCC), or other time-frequency
representations.

5. Sequence generation: The extracted frames are arranged into
sequences, each sequence representing a series of consecutive frames.

6. Padding: Padding is applied to the sequences to ensure that all
sequences have the same length.

Example of speech pre-processing
In the following section, we will demo the speech pre-processing through
practical example:

import torch

import torchaudio

from torchaudio.transforms import MFCC

from torchaudio.utils import download_asset

Load the audio waveform

SAMPLE_SPEECH = download_asset("tutorial-

assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-

sg0042.wav")

waveform, sample_rate =

torchaudio.load(SAMPLE_SPEECH)

Get the duration of the waveform

waveform_duration = waveform.numel() / sample_rate

print("Waveform duration:", waveform_duration,

"seconds")

Define the frame length and frame shift in

seconds

frame_length = 0.025 # 25 milliseconds

frame_shift = 0.01 # 10 milliseconds

Define the desired sequence length and number of

MFCC coefficients

sequence_length = 40

num_mfcc = 40

Initialize the MFCC transform

mfcc_transform = MFCC(

 sample_rate=sample_rate,

 n_mfcc=num_mfcc,

 melkwargs={'hop_length': int(frame_shift *

sample_rate)}

)

Perform feature extraction

frames =

torchaudio.transforms.Resample(sample_rate, 16000)

(waveform)

print('number of frames',frames.shape[1])

print (frames.shape)

mfcc = mfcc_transform(frames)

Reshape the MFCC features into sequences

sequences = mfcc.unfold(1, sequence_length,

int(frame_shift * sample_rate))

Perform padding if necessary

num_sequences = sequences.shape[2]

if num_sequences < sequence_length:

 pad_frames = torch.zeros(mfcc.shape[0],

num_mfcc, sequence_length - num_sequences)

 sequences = torch.cat([sequences, pad_frames],

dim=1)

Print the shapes of the extracted features and

sequences

print("MFCC shape:", mfcc.shape)

print("Sequences shape:", sequences.shape)

Output:
Waveform duration: 3.4 seconds

torch.Size([1, 54400])

MFCC shape: torch.Size([1, 40, 341])

Sequences shape: torch.Size([1, 1, 341, 40])

Analysis
Let us delve into the details of the aforementioned code snippet to
understand its operation:

torch.Size([1, 54400]): This represents the shape of the waveform
tensor, which has a size of 1 along the first dimension (batch
dimension) and 54,400 along the second dimension (number of
samples in the waveform).

MFCC shape: torch.Size([1, 40, 341]): This indicates the shape of
the MFCC tensor obtained from the feature extraction process. It has a
size of 1 along the first dimension (batch dimension), 40 along the
second dimension (number of MFCC coefficients), and 341 along the
third dimension (number of frames).

Sequences shape: torch.Size([1, 1, 341, 40]): This represents the
shape of the sequences tensor after unfolding the MFCC features.

In summary, the output shows that the waveform has a duration of 3.4
seconds, the MFCC features have a shape of (1, 40, 341), and the
sequences have a shape of (1, 1, 341, 40).

Whisper

Whisper1 is a powerful automated speech recognition (ASR) system,
designed for multilingual and multitasking applications. It supports
transcriptions in multiple languages and facilitates translations from different
languages into English. Figure 9.1 illustrates the architecture of Whisper,
which we will now explore in detail:

Input: The raw waveform of the audio is divided into 30-second
segments, along with corresponding subsets of the transcript that occur
within that time frame. The raw audio signals are then transformed
into spectrograms using Log-mel spectrogram techniques.
Spectrograms provide a time-frequency representation of the audio,
capturing both temporal and spectral information. Next, two
consecutive Conv1D layers are applied to the spectrogram input.
These Conv1D layers help capture local temporal patterns present in
the spectrogram. Additionally, a Gaussian Error Linear Unit activation
function is applied to introduce non-linearity. To preserve positional
information, sinusoidal positional encoding is added to each input
token.

Encoder: The encoder block in Whisper follows the standard
transformer encoder architecture. It captures contextual information
from the input spectrogram, enabling the model to understand the
underlying acoustic features.

Decoder block: The decoder block in Whisper is similar to the
standard transformer decoder, with one crucial difference. While the
attention mechanism in the standard transformer decoder focuses on
the decoder’s own input tokens, in Whisper, attention is directed
towards the encoder’s feature sequence. This cross-attention
mechanism allows the decoder to leverage the encoded acoustic
information from the encoder, facilitating better alignment between
input and output sequences.

Multi-task training: Whisper serves as an entire speech processing
pipeline and involves multi-task training. The model is trained to
perform various tasks, such as language detection, transcription,
translation, and voice activity detection. If we examine the decoder
input, it consists of multiple components:

The first item is the Start of Token (SOT)

The second item represents the language (for example, EN for
English)

The third item indicates the task (for example, Transcription in
this example)

The fourth input determines whether to predict timestamps. With
these inputs, the task and desired format are fully specified, and the
model begins generating the corresponding output.

In summary, Whisper is a versatile ASR system that excels in multilingual
and multitask scenarios. It leverages advanced techniques, such as Conv1D
layers, cross-attention, and multi-task training, to deliver accurate
transcriptions, translations, and more. Refer to the following Figure 9.1:

Figure 9.1: Whisper architecture

Project 1: Whisper_Nep
Develop a model named Whisper_Nep that is capable of transcribing lesser
known languages.

Task
Construct a pipeline for fine-tuning the Whisper model for Automatic
Speech Recognition (ASR) in any language.

Approach
The approach will be as follows:

The dataset: The primary resource for this project is the mozilla-
foundation/common_voice_13_0 dataset1. This extensive dataset
includes MP3 audio files and their respective textual transcriptions. It
boasts an impressive collection covering 17,689 validated hours of
audio content across 108 different languages.

Methodology: Devise a pipeline for fine-tuning the Whisper model,
based on the specific language input.

Outcome: After the completion of the training process, the model
should be capable of performing ASR for the specified language.

Wav2Vec
Wav2Vec2 is a self-supervised learning framework used for speech-
processing tasks. The model undergoes two main stages: pre-training and
fine-tuning. In pre-training, the model is trained on a large amount of
unlabeled audio data. Figure 9.2 illustrates the architecture of Wav2Vec. Let
us explore its components:

Figure 9.2: Wav2Vec 2.0 architecture

Pre-processing of raw audio
The steps for pre-processing raw audio are as follows:

1. The raw audio is divided into short segments called context
windows, typically spanning a few seconds (~25 sec).

2. Within each context window, the audio is further divided into smaller
chunks known as input sequences, usually a few milliseconds long.

3. A feature extractor is applied to each input sequence, transforming the
audio into a fixed-dimensional representation that captures important
spectral and temporal information.

Encoder
The steps to be followed by the encoder are as follows:

1. The encoder comprises multiple blocks, each consisting of a
Convolutional Neural Network (CNN) followed by layer
normalization and the GELU activation function.

2. The GELU activation function smoothens the transition for negative
values, addressing the dying ReLU problem and ensuring better
gradient flow during training.

3. The CNN processes the input sequences, extracting low-level acoustic
features.

Quantization module
Follow the given steps:

1. For self-supervised pre-training, the output of the feature encoder is
discretized into a finite set of speech representations using product
quantization.

2. Contextualized representation with transformer: Relative
positional encoding information is added to the quantized feature
representation.

3. The quantized features are then passed through a transformer, which
generates contextualized representations.

Pre-training
Follow the given steps:

1. During pre-training, Wav2Vec employs self-supervised learning. The
model is trained to predict masked or corrupted speech
representations within each context window. This is very similar to
BERT pre-training.

2. As shown in Figure 9.2, 50% of the latent representations are masked
before feeding to the transformer.

3. By reconstructing the masked or corrupted parts, the model learns to
capture important speech features without explicit labels.

4. The loss function used in pre-training involves comparing the
predicted representations with the original unmasked or uncorrupted
representations.

Fine-tuning
Follow the given steps:

1. After pre-training, Wav2Vec can be fine-tuned on specific
downstream tasks, such as speech recognition or speaker
identification.

2. Fine-tuning involves training the model on labeled data specific to the
target task, enabling it to adapt to the task’s requirements.

Applications of Wav2Vec
Wav2Vec has found successful applications in various speech processing
tasks, including speech recognition, speaker identification, speech synthesis,
and keyword spotting.

SpeechT5
SpeechT53 is an adaptation of the T5 architecture, adapted for speech-
focused tasks, encompassing ASR, text-to-speech synthesis, language
comprehension, among others. The architecture of SpeechT5 is elucidated in
Figure 9.3 and Figure 9.4.

Depicted in Figure 9.3 is the encoder-decoder structure of the model, which
is composed of six modal-specific pre/post components. Let us dig deeper
into these components:

Figure 9.3: Speech T5 architecture

Input/Output representation
In SpeechT5, the problem is framed as converting speech/text into
speech/text:

Text Pre/Post-net: Here, we divide the text into units known as
tokens, which are typically characters. When the tokens enter the
system or the pre-net, they are transformed into embedding vectors.
Later, the post-net takes these vectors and calculates the probability of
each token being the right output, based on the learned information.

Speech Pre/Post-net: For handling speech data, the system uses a
component from Wav2Vec 2.0, known as a CNN feature extractor, as
the encoder pre-net. This helps break down the speech into a more
understandable format for the system. The decoder pre-net uses a
feature of the audio input known as a Log-melfilter bank. This decoder
pre-net comprises three fully connected layers followed bythe RELU
activation function. It also incorporates speaker embedding, which is a
way of differentiating between different speakers’ voices.

Finally, the decoder post-net does two things:

It predicts the processed sounds of the output (referred to as the log
Melfilterbank),

It converts the processed data (decoder output) into a single
number, known as a scalar.

This scalar helps determine when to conclude the processing often referred
to as predicting the stop token.

Refer to the following Figure 9.4:

Figure 9.4: Speech T5 architecture

Cross-modal representation
In Figure 9.4, we see how SpeechT5 connects speech and text
representations. It takes both speech and text inputs and changes them into
cross modal vector representations. To align these two different types of data
(speech and text), SpeechT5 uses something called vector quantized
embeddings.

This process takes the continuous embeddings (the mathematically
represented speech and text data) and splits them into a fixed set of distinct
symbols, or codewords. It uses a shared codebook to categorize these
codewords. Each mathematical representation of speech and text is matched
with the closest matching codeword in this shared codebook. This way,
SpeechT5 creates a common area where both speech and text inputs can be
aligned and compared, making tasks like speech recognition or text-to-
speech synthesis possible.

Encoder-decoder architecture
SpeechT5 is built around the transformer encoder-decoder structure.
Interestingly, it adds relative positional encoding information, unlike the
original architecture which uses absolute positional encoding.

Pre-training
Before being used, the T5 model was trained with a large amount of
unlabeled speech and text data. This initial training or pre-training aimed to
align text and speech information in the same feature dimension. Two goals
guided the speech pre-training: bidirectional masked prediction and
sequence-to-sequence generation. For text pre-training, about 30% of text
spans were masked, with their span length following a Poisson distribution.
The goal was to predict these masked text spans.

Fine-tuning and applications
After pre-training, the model was fine-tuned with the specific goal of
minimizing the loss for a particular task. Specifically, it was fine-tuned for
tasks like ASR, Text to Speech (TTS), Speech Translation (ST), Voice
Conversion (VC), Speech Enhancement (SE), and Speaker Identification
(SID).

Comparing Whisper, Wav2Vec 2.0 and Speech T5
Refer to the following Table 9.1:

Whisper Wav2Vec 2.0 SpeechT5

Whisper Wav2Vec 2.0 SpeechT5

Released
year

Whisper 2021 Sep 2020 Oct 2021

Architecture Encoder-decoder Encoder only Encoder
decoder

Tasks ASR, and ST ASR, SI ASR, TTS, ST,
VC, SE, SID

Accuracy Whisper performed
better than Speech T5
and Wav2Vec on ASR
and ST

Salient
features

Entire speech
processing pipeline:
voice activity
detection, speaker
diarization, and
inverse text
normalization.

Contrastive loss: representation
of a particular times-stamp should
be similar to nearby segments; and
different from the representations
of randomly sampled time steps

Combined pre-
training of
speech and text

Pre-training
objective

Supervised training on
680K hours of audio
and corresponding
transcription

Unsupervised: predict masked
latent feature representation

Unsupervised:
unified modal
representation
of text and
speech

Table 9.1: Comparison of Whisper, Wav2Vec 2.0 and Speech T5

Conclusion
In this chapter, we have examined the use of transformers, including
Whisper, SpeechT5, and Wav2Vec, in the realm of speech processing. We
have also delved into the intricate details of these three distinct transformer
architectures. Additionally, we have demonstrated how to refine, or fine-
tune, the Whisper model for use in multi-lingual ASR tasks.

Quiz

1. In audio signal pre-processing, what does windowing help
mitigate?

a. Artifacts at the start and end of the frame

b. Overlapping frames

c. High frequency components

d. Low frequency components

2. Which feature extraction technique is common for processing
frames in audio signal pre-processing?

a. Log-mel spectrograms

b. Fourier transforms

c. Principal Component Analysis (PCA)

3. Which of these is not a commonly used feature extraction
technique applied to each frame?

a. Log-mel spectrograms

b. Mel-frequency cepstral coefficients (MFCCs)

c. Fast Fourier Transform (FFT)

d. Time-frequency representations

4. Why is padding applied to the sequences in audio signal
preprocessing?

a. To reduce the size of the sequences

b. To ensure that all sequences have the same length

c. To add additional information to the sequences

d. To make the sequences easier to read

5. What does SpeechT5 aim to achieve?

a. Automated speech recognition

b. Text-to-speech synthesis

c. Unified-modal pre-training for spoken language processing

d. Speaker Identification

6. In SpeechT5, what is vector quantization used for?

a. Improving the efficiency of the model

b. Aligning speech and text representations

c. Reducing the size of the model

d. Increasing the speed of the model

7. What does the pre-net in SpeechT5 do with text tokens?

a. Transforms them into embedding vectors

b. None

8. Which model uses a contrastive loss during pre-training?

a. Whisper

b. Wav2Vec 2.0

c. SpeechT5

d. BERT

9. What is the purpose of dividing raw audio into short segments
called “context windows” in the Wav2Vec model?

a. To facilitate faster training

b. To capture important spectral and temporal information

c. To allow for parallel processing of audio data

d. All of the above

10. In the Wav2Vec model, what is the role of the GELU activation
function?

a. To discretize the output of the feature encoder

b. To smooth the transition for negative values and ensure better
gradient flow during training

c. To add relative positional encoding information

d. To perform self-supervised learning

11. After pre-training, how is Wav2Vec fine-tuned for specific
downstream tasks?

a. By predicting masked or corrupted speech representations within
each context window

b. By training the model on labeled data specific to the target task

c. By comparing the predicted representations with the original
unmasked or uncorrupted representations

d. None of the above

12. Which process involves discretizing continuous embeddings into a
finite set of discrete symbols or codewords?

a. Padding

b. Vector quantization

c. Sequence generation

d. Windowing

13. What is the sampling rate required by the Whisper model?

a. 8 KHz

b. 16 KHz

c. 24 KHz

d. 32 KHz

14. What is the function of the Conv1D layers in the Whisper
architecture?

a. To capture local temporal patterns present in the spectrogram

b. To divide the audio into segments

c. To create the spectrogram

d. To add positional encoding

15. What distinguishes the Whisper’s decoder block from the
standard transformer decoder?

a. Its use of sinusoidal positional encoding

b. Its cross-attention mechanism focusing on the encoder’s feature
sequence

c. Its use of Conv1D layers

d. Its ability to handle multiple languages

16. What type of training does the Whisper model use?

a. Single-task training

b. Binary-task training

c. Multi-task training

Answers

1. a.
2. a.
3. c.
4. b.
5. c.
6. b.
7. a.
8. b.
9. d.

10. b.
11. b.

12. d.
13. b.
14. a.
15. b.
16. c.

1 https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0

https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0

CHAPTER 10
Speech Tasks with Transformers

Introduction
In this chapter, we embark on a detailed exploration of speech processing, a
field that encompasses a variety of tasks aimed at facilitating and improving
human-computer audio interactions. Speech processing tasks such as
Automatic Speech Recognition (ASR), Text-to-Speech (TTS), and audio-
to-audio transformations are critical for developing applications that range
from virtual assistants to automated transcription services, underlining their
significance in both daily convenience and accessibility. We will investigate
how these tasks are approached using transformer-based models, which
have revolutionized the field with their ability to handle sequential data and
capture the nuances of human language.

As we progress through the chapter, we will focus on practical applications
by undertaking projects that demonstrate the power and versatility of these
models. We will utilize cutting-edge tools like Whisper for ASR, delve into
the intricacies of TTS with custom speaker embeddings to personalize
synthetic voices, and employ sophisticated techniques for enhancing audio
quality, particularly through noise reduction. These hands-on examples will
not only solidify the theoretical knowledge of speech processing tasks but
also provide a clear illustration of their applications, importance, and the
transformative role of transformer models in pushing the boundaries of
what’s possible in speech processing technology.

Structure
This chapter includes the following topics:

System requirements

Speech processing tasks

Text to speech

Audio to audio

Objectives
This chapter aims to provide a comprehensive understanding of various
speech processing tasks and their applications in real-world scenarios, as
well as discuss how TTS works. It will also discuss what ASR is and how it
functions, the process of transforming audio-to-audio, focusing specifically
on improving speech quality and lastly, show examples of these tasks in
action, to help readers understand better.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as follows:

pip install transformers

pip install datasets

pip install ipywebrtc

pip install soundfile

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

pip install pydub

pip install ffmpeg-python

pip install accelerate

pip install bitsandbytes

pip install sentencePiece

pip install speechbrain

Speech processing tasks
Table 10.1 illustrates the major tasks in speech processing:

Tasks Summary Popular models

Speech to text
(Automatic
speech
recognition)

Convert spoken language into text Whisper

Text to speech Convert text to spoken language/audio microsoft/speecht5_tts,
espnet/kan-
bayashi_ljspeech_vits

Audio to audio Transforming input audio into output
audio: speech enhancement, noise
removal, voice conversion

speechbrain/metricgan-plus-
voicebank,
microsoft/speecht5_vc

Audio
classification

Classify audio into different categories facebook/wav2vec2-base,
harshit345/xlsr-wav2vec-
speech-emotion-recognition,

Voice activity
detection

Detect presence or absence of voice pyannote/segmentation

Voice translation Translate voice in one language into
another language

Whisper

Table 10.1: Major tasks in speech processing
In the following section, we will delve deeper into the important computer
vision tasks we enlisted in Table 10.1.

Speech to text

ASR stands as a crucial process in the realm of speech processing. A
comprehensive ASR system entails several components, including voice
activity detection, speaker diarization, and inverse text normalization.
Historically, these tasks relied on an array of complex components, each
carrying out a specific function. However, the advent of Transformer
models such as Whisper has revolutionized this field. Whisper operates
directly on raw audio signals, effectively delivering high-performing ASR
outputs. In the subsequent section, we will embark on a project showcasing
this technology. We will record our own voice and utilize Whisper for
transcription, thereby demonstrating its practical application and
effectiveness.

Project 1: Custom audio transcription with ASR using Whisper
In this demonstration, we will illustrate how Whisper can be utilized to
transcribe any audio, regardless of its source. We will specifically be
recording our own voices and then employ Whisper to carry out the
transcription process. This will give us an opportunity to see how this
powerful transformer model operates in a real-world application.

Perform necessary import using the following code:

import torch

from transformers import pipeline

from datasets import load_dataset

import torchaudio

Record audio
We will use ipywebrtc library to record the audio. You could use any
library; or use external dedicated audio system (like Mac’s QuickTime
Player) to record high-quality audio. Refer to the following code:

from ipywebrtc import CameraStream, AudioRecorder

Create camera stream

camera = CameraStream(constraints={'audio': True,

'video': False})

Create audio recorder

recorder = AudioRecorder(stream=camera)

Display recorder

display(recorder)

Save the audio to disk
TorchAudio works with a finite set of audio file formats, such as WAV,
MP3, and others. In this project, we will be converting the audio files into
the WAV format. However, if your audio is already in a format supported by
TorchAudio, you will not need to perform this step. Refer to the following
code:

import ffmpeg

Save the recording to a file

recorder.save('output.webm')

Convert webm to wav

ffmpeg.input('output.webm').output('output.wav').r

un()

Pre-process the audio
Whisper requires the audio signal to be in monochrome format and sampled
at 16kHz. Additionally, Hugging Face’s ASR pipeline expects the audio
signal to be in the form of a numpy array. This preprocessing step is crucial
to ensure accurate transcription. The following code demonstrates how to
pre-process the data to meet these requirements:

import torchaudio

import torchaudio.transforms as T

waveform, sample_rate =

torchaudio.load('output.wav')

If audio is stereo, convert to mono

if waveform.shape[0] > 1:

 waveform = waveform.mean(dim=0)

Resample the waveform to 16kHz

resampler = T.Resample(orig_freq=sample_rate,

new_freq=16000)

waveform = resampler(waveform)

Squeeze the tensor to remove the channel

dimension

waveform = waveform.squeeze()

Convert tensor to numpy array

waveform_numpy = waveform.numpy()

Make the prediction
In this project, we will utilize the Hugging Face pipeline to make
predictions using a pre-trained model. The pipeline feature in Hugging Face
provides a user-friendly interface to work with pre-trained models. It
simplifies the process, especially for tasks that involve complex steps. For
more detailed information, you can refer to the pipeline documentation
available at the following link:
https://huggingface.co/docs/transformers/main/en/quicktour#pipeline.

Refer to the following code:

pipe = pipeline(

https://huggingface.co/docs/transformers/main/en/quicktour#pipeline

 "automatic-speech-recognition",

 model="openai/whisper-large-v2",

 chunk_length_s=30,

 device=device,

)

prediction = pipe(waveform_numpy, batch_size=8)

["text"]

print(prediction)

The accompanying notebook provides the end-to-end implementation
example.

Text-to-speech
Let us now go over a project.

Project 2: Implementing text-to-Speech
In this project, we introduce a personal touch to a text-to-speech system
using speaker embeddings. These embeddings act like voice fingerprints,
capturing the unique aspects of our voice. Instead of utilizing a pre-existing
one, we record our own voice to create a custom voice fingerprint. This
personalized voice print is subsequently incorporated into our speech
generation system, influencing the manner in which it converts written
words into spoken ones.

In the end, we subject our system to a test. We provide it with a piece of
text and allow it to perform its conversion magic, transforming that text into
speech.

Import necessary packages using the following code:

import os

import torch

from speechbrain.pretrained import

EncoderClassifier

import torchaudio

import torchaudio.transforms as T

from transformers import SpeechT5Processor,

SpeechT5ForTextToSpeech

from transformers import SpeechT5HifiGan

Declare function for creating speaker embedding
The microsoft/speecht5_tts model requires both text input and a speaker
embedding. The speaker embedding captures unique characteristics of
individual speakers, allowing downstream applications to recognize and
differentiate between speakers in different audio contexts. If you prefer to
use pre-built speaker embeddings based on various characteristics, you can
obtain them from the Matthijs/cmu-arctic-xvectors model.

However, in the following example, we will record our own audio and
create our own speaker embedding using the speechbrain/spkrec-xvect-
voxceleb model. The subsequent section will present a function to extract
the speaker embedding from the raw audio waveform.

Refer to the following code:

model_name = "speechbrain/spkrec-xvect-voxceleb"

speaker_classifier =

EncoderClassifier.from_hparams(

 source=model_name,

 run_opts={"device": device},

 savedir=os.path.join("/tmp", model_name)

)

def compute_speaker_embedding(audio_data):

 with torch.no_grad():

 embeddings =

speaker_classifier.encode_batch(torch.tensor(audio

_data))

 embeddings =

torch.nn.functional.normalize(embeddings, dim=2)

 embeddings =

embeddings.squeeze().cpu().numpy()

 return embeddings

Perform speaker embedding
The file audio_sample2.wav contains a recording of my voice. You have the
option to record your own voice, which can be a few seconds long. The
subsequent code will pre-process the raw audio data and extract the speaker
embedding based on the provided audio data.

Refer to the following code:

waveform, sample_rate =

torchaudio.load('/Users/premtimsina/Downloads/audi

o_sample2.wav')

If audio is stereo, convert to mono

if waveform.shape[0] > 1:

 waveform = waveform.mean(dim=0)

Resample the waveform to 16kHz

resampler = T.Resample(orig_freq=sample_rate,

new_freq=16000)

waveform = resampler(waveform)

Squeeze the tensor to remove the channel

dimension

waveform = waveform.squeeze()

speaker_emb=compute_speaker_embedding(waveform)

speaker_emb=torch.tensor(speaker_emb).reshape(-1,5

12)

print(speaker_emb.shape)

Declare model
Let us describe what the following modes do:

Processor: The SpeechT5Processor is responsible for processing the
input text for the TTS system. It handles tasks such as tokenization,
encoding, and preparing the input data for the TTS model.

Vocoder models are utilized to convert the synthesized speech into
the final waveform or audio signal. The SpeechT5HifiGan model
specifically employs the HiFi-GAN architecture, which is a high-
fidelity generative adversarial network. This model enhances the
quality of the generated speech waveform, ensuring that the output is
clear, natural, and pleasant to listen to.

The SpeechT5ForTextToSpeech model is the core component of the
TTS system. It takes the processed input from the processor, speaker
embedding, vcoder and performs the text-to-speech conversion.

Refer to the following code:

processor =

SpeechT5Processor.from_pretrained("microsoft/speec

ht5_tts")

model =

SpeechT5ForTextToSpeech.from_pretrained("microsoft

/speecht5_tts")

vocoder =

SpeechT5HifiGan.from_pretrained("microsoft/speecht

5_hifigan")

Perform TTS
Lastly, we will carry out the TTS task and listen to the audio generated
based on the provided text and speaker embedding. As you listen, you will
observe that the speaker style closely resembles the characteristics of the
raw audio you previously recorded to create the speaker embedding. This
demonstrates the ability of the TTS system to replicate the desired speaker’s
voice and produce synthesized speech that aligns with the provided input.

Refer to the following code:

inputs = processor(text="This is Harry. I live in

New York City", return_tensors="pt")

speech =

model.generate_speech(inputs["input_ids"],

speaker_emb, vocoder=vocoder)

from IPython.display import Audio

Audio(speech, rate=16000)

The accompanying notebook provides the end-to-end implementation
example.

Audio to audio
Audio-to-audio processing with transformers is an innovative approach to
handle various audio tasks like speech enhancement, source separation,

music translation, and even voice transformation. Audio-to-audio
processing can be thought of as a transformation function where the input
and output both are audio signals but with different characteristics. For
example, a noisy audio signal can be the input, and the output would be a
denoised version of the same audio. Some applications of audio-to-audio
Transformers are:

Speech enhancement: In this application, the transformer model
learns to filter out the noise and enhance the speech quality.

Source separation: Transformers can be used to separate different
audio sources in a mixed signal.

Music translation: Transformers can convert music from one style to
another, essentially learning the characteristics of different music
styles and applying them to input audio.

Voice transformation: In voice transformation, the transformer
model learns the unique features of a source and target voice. It then
takes an audio input in the source voice and transforms it to sound
like the target voice.

Project 3: Audio quality improvement through noise reduction
In the following code snippet, we are leveraging the power of the
SpeechBrain library to enhance audio quality. SpeechBrain, a versatile
Python library built on PyTorch, provides an array of pre-trained models
catering to a multitude of audio-related tasks. These tasks encompass
speech recognition, speech diarization, speech enhancement, among others.
Specifically, for our audio enhancement objective, we will employ the
speechbrain/metricgan-plus-voicebank model, renowned for its pre-
trained capabilities.

Download the noisy audio
The audio clip has background noise that sounds like a busy city. In the
following bit of code, we will be getting this audio from GitHub and saving
it onto our computer:

import urllib.request

URL of the audio file

url =

"https://raw.githubusercontent.com/bpbpublications

/Building-Transformer-Models-with-PyTorch/main/

chapter10_AudioTasks/audio_noisy.wav"

filename = "audio_noisy.wav"

Download the file from `url` and save it locally

under `filename`:

urllib.request.urlretrieve(url, filename)

Load the model and pre-process the audio signal
In the following code, we load the audio from a file, pre-process the audio
to make it single channel and 16kHz, and finally normalize the audio:

import torch

import torchaudio

from speechbrain.pretrained import

SpectralMaskEnhancement

from IPython.display import Audio

load the model

enhance_model =

SpectralMaskEnhancement.from_hparams(

 source="speechbrain/metricgan-plus-voicebank",

 savedir="pretrained_models/metricgan-plus-

voicebank",

)

#load the audio

waveform, sample_rate = torchaudio.load(filename)

If your waveform is stereo (2 channels) you can

convert it to mono (1 channel) like this:

waveform = torch.mean(waveform, dim=0,

keepdim=True)

Usually, the SpeechBrain's pre-trained models

expect audio at 16kHz,

so you might need to resample your audio if it's

not at 16kHz:

if sample_rate != 16000:

 resampler =

torchaudio.transforms.Resample(orig_freq=sample_ra

te, new_freq=16000)

 waveform = resampler(waveform)

Now your waveform tensor is ready to be used

with the enhancement model.

But remember to normalize the audio data before

using it:

noisy = waveform / torch.max(torch.abs(waveform))

Listen to the noisy audio

print("Noisy audio:")

display(Audio(noisy.squeeze().detach().numpy(),

rate=16000))

Perform voice enhancement removing the noise
In the next bit of code, we are going to use our pre-trained model to
improve the sound of the audio. After we do that, we will save the cleaned-
up audio and listen to it, to see how well our model did. Refer to the
following code:

Add relative length tensor

enhanced = enhance_model.enhance_batch(noisy,

lengths=torch.tensor([1.]))

Saving enhanced signal on disk

torchaudio.save('enhanced.wav', enhanced.cpu(),

16000)

Load and listen to the enhanced audio

print("Enhanced audio:")

enhanced_audio = torchaudio.load('enhanced.wav')

[0]

torchaudio.save('enhanced.wav', enhanced.cpu(),

16000)

display(Audio(enhanced_audio.detach().numpy(),

rate=16000))

Conclusion
This chapter examined key speech processing tasks and how transformer
models handle them. We dissected TTS, ASR, and Audio-to-Audio

conversion, focusing particularly on speech enhancement. These topics
were clarified through detailed examples.

We started by exploring the basics of speech processing and transformers.
Next, we delved into TTS, detailing its functioning and applications. This
was followed by a deep dive into ASR, underlining its role in converting
speech into written text. Finally, we ventured into the realm of Audio-to-
Audio conversion and speech enhancement, revealing how they enhance
audio signal quality.

This chapter demonstrated the versatility of transformers in managing
complex speech tasks, providing valuable knowledge for implementing
these models effectively. It showcased the promising future of transformers
in the sphere of audio and speech technology.

Quiz

1. What does Automatic Speech Recognition (ASR) convert?

a. Text into speech

b. Spoken language into text

c. Input audio into output audio

d. Different languages into another

2. Which model is used for Automatic Speech Recognition (ASR) in
the first project?

a. microsoft/speecht5_tts

b. Whisper

c. espnet/kan-bayashi_ljspeech_vits

d. facebook/wav2vec2-base

3. What is the purpose of pre-processing the audio in the first
project?

a. To convert audio into a text file

b. To convert audio to a video file

c. To meet the requirements of the Whisper model

d. To convert audio into different languages

4. What does ‘Voice Activity Detection’ task do?

a. Detects presence or absence of voice [Correct Answer]

b. Translates voice in one language into another

c. Transforms input audio into output audio

d. Classifies audio into different categories

5. What format does the Whisper model require the audio signal to
be in?

a. Stereo format and sampled at 44kHz

b. Monochrome format and sampled at 16kHz

c. Stereo format and sampled at 16kHz

d. Monochrome format and sampled at 44kHz

6. What audio format does ‘torchaudio’ support?

a. MP3

b. WAV

c. Both A and B

d. Neither A nor B

7. What does a speaker embedding capture in a Text-to-Speech
system?

a. The unique aspects of an individual’s voice

b. The text that needs to be converted into speech

c. The background noise of a speaker’s environment

d. The language of the spoken words

8. In the function 'compute_speaker_embedding', what does the line
'embeddings =

speaker_classifier.encode_batch(torch.tensor(audio_data))’ do?

a. It normalizes the audio data

b. It converts the audio data into text

c. It encodes the audio data into speaker embeddings

d. It saves the audio data into a file

9. In the ‘Perform TTS’ section, what is the function of the ‘Audio’
class from the 'IPython.display' module?

a. It generates speaker embeddings

b. It resamples the waveform

c. It allows us to listen to the generated speech

d. It processes the input text

10. What is Audio-to-audio processing?

a. It’s a way to convert audio signals into text

b. It’s a transformation function where the input and output both
are audio signals but with different characteristics

c. It’s a method of encoding and decoding audio files

d. None of the above

11. What is the role of the 'speechbrain/metricgan-plus-voicebank'
model in Project 3?

a. It is used to download audio from the web

b. It is used for audio quality enhancement

c. It is used to save audio files

d. None of the above

12. What does 'waveform = torch.mean(waveform, dim=0,

keepdim=True)’ do in the code?

a. It converts a stereo waveform to mono

b. It resamples the waveform to 16kHz

c. It normalizes the waveform

d. None of the above

13. What task is SpeechBrain library known for?

a. Image recognition

b. Natural language processing

c. A multitude of audio-related tasks

d. All of the above

Answers

1. b.
2. b.
3. c.
4. a.
5. b.
6. c.
7. a.
8. c.
9. c.

10. b.
11. b.

12. a.
13. c.

CHAPTER 11
Transformer Architecture for

Tabular Data Processing

Introduction
In the modern era of data analytics and machine learning, we are not limited
to unstructured data types like text, images, or audio; structured or tabular
data holds significant value as well. The potential of transformers when
applied to structured data is immense and offers an intriguing area for
exploration. This chapter seeks to illustrate the application of transformer-
based architectures to the realm of tabular data.

We will delve into three such transformer architectures designed specifically
for structured data processing: Google’s TAPAS, TabTransformer, and FT
Transformer.

Structure
The chapter is organized as follows:

Tabular data representation using transformer

TabTransformer architecture

FT Transformer architecture

Objectives

By the end of this chapter, the reader will be introduced to Google’s
TAblePArSing (TAPAS) model, demonstrating its ability to interpret and
respond to queries regarding tabular data. We will also explore the
TabTransformer model, discussing its use of the self-attention mechanism
of transformers in processing tabular data, and how this approach helps
capture complex relationships between features. Then, the reader will also
understand the FT transformer and how it is different from the
TabTransformer. Lastly, the chapter will impart an understanding of the
underlying architecture of each model, with a specific focus on their unique
components, how they operate, and the reasons behind their design.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.
Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages as follows:

pip install transformers

pip install datasets

pip install accelerate

pip install bitsandbytes

pip install sentencePiece

pip install speechbrain

Tabular data representation using transformer
Following the substantial success of representing natural language through
transformer models, there has been considerable interest in applying

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

transformer architectures to tabular data representation. Current research and
applications demonstrate a broad range of potential uses in this area,
including1:

Table-based fact checking: This application validates the veracity of
textual inputs based on structured data serving as a fact-checking
table.

Question-answering: This encompasses posing questions in free text
format and retrieving specific cells from a table or aggregating
information based on the query.

Semantic parsing: This involves the conversion of free text into SQL
queries, enabling direct interaction with databases.

Table retrieval: This task involves searching for and retrieving the
table that contains the answer to a specific query or requirement.

Table metadata prediction: In this scenario, given the tabular data,
the model predicts associated metadata.

Table content population: This functionality allows for the prediction
and filling in of corrupted or missing cells/rows in a table, helping
maintain data integrity.

TAPAS architecture
The Google TAPAS, Table Parser2 model is built on top of the BERT model,
one of the transformer-based models, and uses the BERT tokenizer. Figure
11.1 shows the architecture of TAPAS. The model is designed to read tables
as a form of input in addition to text. Each table’s cell is a token sequence.
The input is a linear sequence of tokens that includes a (CLS) token,
question tokens, (SEP) token, and flatten table. Additionally, there are two
classification heads attached:

Aggregation prediction

Cell selection

Refer to the following Figure 11.1:

Figure 11.1: TAPAS architecture

There is additional positional encoding compared to BERT. Let us discuss
each of them:

Token embedding: It is the token embedding information.

Positional embedding: It is the same as BERT.

Segment embedding: 0 for the question and 1 for table.

Column embedding: It is the index of the column.

Row embedding: It is the index of the row.

Rank embedding: Rank embeddings are used to encode the order of
cells in a row or column.

Figure 11.2 depicts positional encoding:

Figure 11.2: Positional encoding on TAPAS

Pretraining objective
The pretraining objective is similar to BERT, including masked language
modeling and next sentence prediction tasks. In addition, TAPAS is
pretrained using a new objective, which includes predicting whether a cell
will be selected in the answer to a query about the table.

Fine-tuning
The model is fine-tuned on downstream tasks using supervised learning. For
example, google/tapas-large-finetuned-wtqwas fine-tuned on the
WikiTableQuestions (WTQ) benchmark, a complex table-based question-
answering dataset. In this case, the model is trained to select the cells in the
table that contain the answer.

Applications
The main application of TAPAS is a question answering from tables.
Basically, there are three ways user can use the Tapas. Table 11.1 shows

those approaches:

Task Description

Conversational Cell selection question Example: Where was
Nelson Mandala
born?

Weak
supervision for
aggregation

It may involve aggregation, and model should be
able to select the type of aggregation. The correct
aggregator is not given to the model

Example: What is the
total number of
revenue on year
2020?

Strong
supervision for
aggregation

The correct aggregator is given to the model

Table 11.1: Tapas use cases

Example
The following Table 11.2 uses the Google TAPAS model, specifically the
“google/tapas-base-finetuned-wtq” version, to answer questions about a
tabular dataset. The dataset, in this case, is a simple table as shown in Table
11.2:

Company CEO Headquarters

Apple Tim Cook Cupertino

Microsoft Satya Nadella Redmond

Google Sundar Pichai Mountain View

Table 11.2: Sample table
We feed two questions to the model: Who is the CEO of Microsoft? and
Where is the headquarters of Google? The model then processes the table
along with these questions.

The first step in the processing is the tokenization of the table and questions.
Tokenization essentially converts the table and text into a format that the
model can understand and process. The tokenized table and questions are
then used as input to the TAPAS model.

The TAPAS model makes predictions based on this input. Specifically, it
outputs the coordinates of the cells in the table that contain the answers to
the questions, and the indices of the aggregation operations. Aggregation
operations refer to computations like counting, summing, averaging and so

on, that might be needed to answer certain questions. However, in our case,
no such operations are needed as the questions are straightforward.

We then convert these coordinates and indices into a more human-readable
format, and print out the answers to the questions. The answers are the
contents of the predicted cells, in case of no aggregation operation, or the
name of the aggregation operation otherwise. For our example, the expected
answers would be Satya Nadella and Mountain View for the two questions,
respectively.

Refer to the following code:

from transformers import AutoTokenizer,

TapasForQuestionAnswering

import pandas as pd

Define the tokenizer and model

tokenizer =

AutoTokenizer.from_pretrained("google/tapas-base-

finetuned-wtq")

model =

TapasForQuestionAnswering.from_pretrained("google/t

apas-base-finetuned-wtq")

Define the data for the table

data = {

 "Company": ["Apple", "Microsoft", "Google"],

 "CEO": ["Tim Cook", "Satya Nadella", "Sundar

Pichai"],

 "Headquarters": ["Cupertino", "Redmond",

"Mountain View"]

}

Convert the data into a pandas DataFrame

table = pd.DataFrame.from_dict(data)

Define the questions (queries)

queries = ["Who is the CEO of Microsoft?", "Where

is the headquarters of Google?"]

Tokenize the table and queries

inputs = tokenizer(table=table, queries=queries,

padding="max_length", return_tensors="pt")

Make predictions with the model

outputs = model(**inputs)

Extract the predicted answer coordinates and

aggregation indices

predicted_answer_coordinates,

predicted_aggregation_indices =

tokenizer.convert_logits_to_predictions(

 inputs,

 outputs.logits.detach(),

 outputs.logits_aggregation.detach()

)

Iterate over the queries and print the answers

for i, query in enumerate(queries):

 if predicted_aggregation_indices[i] == 0:

 # If there is no aggregation operation

(index 0), print the cells

 coords_to_answer = '

'.join([table.iat[coord] for coord in

predicted_answer_coordinates[i]])

 print(f"Question: {query}")

 print(f"Answer: {coords_to_answer}\n")

 else:

 # If there is an aggregation operation,

print the operation's name (from the list of

operations)

 print(f"Question: {query}")

 print(f"Answer:

{tokenizer.model.config.id2label[predicted_aggregat

ion_indices[i]]}\n")

Output:

Question: Who is the CEO of Microsoft?

Answer: Satya Nadella

Question: Where is the headquarters of Google?

Answer: Mountain View

TabTransformer architecture3

The fundamental concept anchoring the TabTransformer is the generation of
contextual embeddings for categorical variables. Let us delve into the details
of this architecture:

Categorical embeddings: Each categorical feature, denoted as xi, is
transformed into a parametric embedding of dimension d using a
process known as column embedding.

Transformer encoder: These embeddings of categorical features are
then passed to a transformer encoder, which treats each categorical
feature as a token or “word” in a sequence. This enables the model to
understand and learn complex interactions between different
categorical features.

Contextual embeddings: Inside the transformer encoder, a self-
attention mechanism is used to develop contextual embeddings for the
categorical variables. The self-attention mechanism helps the model to
weigh the importance and interaction of each categorical feature with
every other feature within a given instance (row). It is a pivotal aspect
as it allows the model to capture complex interdependencies among
the categorical features.

Concatenation of contextual embeddings and normalized
numerical variables: Once the transformer has created contextual
embeddings for the categorical variables, these are concatenated with
the normalized numerical variables. This creates a comprehensive
feature set, where both categorical and numerical variables are taken
into account, but the former has been enriched with contextual
information captured by the transformer.

Multilayer Perceptron (MLP): The concatenated data is then passed
to a MLP for the final prediction. The MLP serves as the final
classifier or regressor, depending on the specific task.

Pretraining and fine-tuning: Like many successful transformer-
based models, TabTransformer employs a two-step process of
pretraining and fine-tuning. During pretraining, the model is trained
on a large dataset with a reconstruction objective, learning to predict
masked (hidden) columns. Once this pretraining step is complete, the
model is then fine-tuned on the specific task, optimizing for the target
objective (for example, classification or regression).

By leveraging the strengths of transformer architectures for handling
categorical features in tabular data, TabTransformer can effectively model
intricate feature relationships, leading to high-performance predictions.

Refer to the following Figure 11.3 for a visual representation of the
TabTransformer’s architecture:

Figure 11.3: TabTransformer architecture

FT transformer architecture4

The main idea is to create the embedding of both numerical and categorical
features and pass to transformer encoder. This approach ensures a more

contextually rich representation of the input data than the TabTransformer, as
it calculates self-attention across both numerical and categorical features. In
contrast, the TabTransformer only applies self-attention to categorical
features. Let us now go over each component in detail.

Feature tokenizer
The Feature tokenizer module is a component of the FT-Transformer model
that is responsible for converting input features into embeddings.

As shown in Figure 11.4, the conversion process into embeddings happens
differently for numerical and categorical data:

Numerical features: For each numerical feature xj, the transformation
involves an element-wise multiplication of the feature value xj by a
learned weight vector Wj, and then an addition of a bias term bj. This
is represented as: Tj = bj + xj * Wj. The multiplication by Wj allows
the model to scale and adjust the influence of the numerical feature.
The bias term bj allows the model to have a base representation of the
feature from which adjustments can be made. For numerical features,
Wj is a weight vector with dimensionality equal to the desired
dimensionality d of the feature embeddings. This is represented as
W(num)j ∈R^d.

Categorical features: For each categorical feature, the transformation
involves a lookup in an embedding table Wj for the category in feature
xj. The bias term bj is then added. A one-hot vector eTj is used to
perform the lookup in the table, which retrieves the embedding for the
specific category in the feature. This is represented as: Tj = bj + eTj *
Wj. This method effectively gives each category in a feature its unique
embedding in the d-dimensional space. For categorical features, Wj is
an embedding lookup table. If Sj represents the number of unique
categories for the j-th categorical feature, then the embedding lookup
table Wj for this feature would have dimensions Sj by d. This is
represented as W(cat)j ∈R^Sj×d.

Therefore, in the resulting embeddings, each feature, whether numerical or
categorical, is represented in the same d-dimensional space, which makes it

possible to process them uniformly in the subsequent Transformer stages of
the model.

Concatenation of numerical and categorical feature
The numerical and categorical Feature embedding are concatenated. The
concatenated sequence is represented by T. Then, [CLS] token is added at
the beginning of the sequence. The input to the Transformer will be:

T= stack (T, [CLS])

Transformer
The input sequence is processed through the transformer encoder, which
mirrors the original transformer design as proposed by Vaswani and
colleagues. A classification or regression head, dependent on the task at
hand, is affixed to the first token emanating from the final layer of the
transformer encoder.

Figure 11.4 depicts the architecture of the FT Transformer:

Figure 11.4: FT architecture

Conclusion

In conclusion, this chapter provides a comprehensive examination of the use
of Transformer models for tabular data representation. Different
architectures such as TAPAS, TabTransformer, and FT Transformer are
explored, each employing unique strategies for handling categorical and
numerical data in tables.

The Google TAPAS model demonstrates its robustness by effectively
performing various tasks such as table-based fact-checking, question-
answering, semantic parsing, table retrieval, table metadata prediction, and
table content population.

The TabTransformer and FT Transformer models have shown to adeptly
manage categorical data through their unique methodologies. The
TabTransformer’s utilization of contextual embeddings for categorical
variables and its approach to combine these with normalized numerical
variables highlights the model’s capability to understand complex
interactions between different categorical features. On the other hand, the FT
Transformer’s feature tokenizer is instrumental in effectively converting
both numerical and categorical input features into embeddings, allowing for
the unified processing of these features in the subsequent transformer stages.

Each of these transformer architectures brings a distinct perspective on
managing tabular data, underscoring the versatility and adaptability of the
transformer model. They offer promising solutions for handling tabular data,
showing potential for further innovation and improvements in future
research.

It is important to understand that while these models have achieved
significant success, there are still many areas for exploration and
improvement in handling tabular data withstransformers. The future of
transformer architectures will likely see further advancements and
refinements, as research continues in this exciting area of machine learning
and artificial intelligence.

Quiz

1. What is the primary application of TAPAS?

a. Image recognition

b. Speech synthesis

c. Question-answering from tables

d. Video processing

2. What additional encoding does TAPAS use compared to BERT?

a. Rank Embedding

b. Row Embedding

c. Column Embedding

d. All of the above

3. What is the first step in processing the table and questions in the
TAPAS model?

a. The data is passed directly into the model

b. The table and questions are tokenized

c. The data is converted into images

d. The data is transformed into numerical values

4. What is the input to TAPAS?

a. Concat (CLS] token, question tokens, [SEP] token, and flatten
table)

b. Concat (question tokens, 2D Table)

5. In the TabTransformer architecture, how are the categorical
features initially processed?

a. They are normalized like numerical variables

b. They are passed directly into the Transformer Encoder

c. They are transformed into a parametric embedding using
Column Embedding

d. They are removed from the dataset

6. What is the role of the Transformer Encoder in the
TabTransformer architecture?

a. To convert numerical variables into categorical variables

b. To treat each categorical feature as a token and learn complex
interactions between different categorical features

c. To combine the contextual embeddings with the normalized
numerical variables

d. To serve as the final classifier or regressor

7. What mechanism does the Transformer Encoder use to develop
contextual embeddings for the categorical variables?

a. One-hot encoding mechanism

b. Self-attention mechanism

c. Normalization mechanism

d. Column embedding mechanism

8. After the Transformer Encoder has created contextual
embeddings for the categorical variables, what is the next step in
the TabTransformer architecture?

a. These embeddings are passed to another Transformer Encoder

b. These embeddings are concatenated with the normalized
numerical variables

c. These embeddings are normalized like numerical variables

d. These embeddings are transformed into a parametric embedding
using Column Embedding

9. What is the role of the Feature Tokenizer in the FT Transformer
model?

a. To convert input features into numerical data

b. To convert input features into categorical data

c. To convert input features into embeddings

d. To pass input features directly into the Transformer Encoder

10. How are numerical features processed in the FT Transformer
model?

a. They are converted into one-hot encoded vectors

b. They undergo an element-wise multiplication by a learned
weight vector and addition of a bias term

c. They are looked up in an embedding table

d. They are ignored

11. How are categorical features processed in the FT Transformer
model?

a. They are converted into one-hot encoded vectors

b. They undergo an element-wise multiplication by a learned
weight vector and addition of a bias term

c. They are looked up in an embedding table and a bias term is
added

d. They are ignored

12. What is done after the numerical and categorical feature
embeddings are created?

a. They are passed separately into the Transformer Encoder

b. They are combined into one feature and then passed into the
Transformer Encoder

c. They are concatenated, and a [CLS] token is added at the
beginning of the sequence

d. They are normalized

Answers

1. c.
2. d.
3. b.
4. a.
5. c.
6. b.
7. b.
8. b.
9. c.

10. b.
11. c.
12. c.

1 https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00544/115239/Transformers-for-Tabular-
Data-Representation-A

2 https://aclanthology.org/2020.acl-main.398.pdf

3 https://arxiv.org/pdf/2012.06678.pdf

4 https://arxiv.org/pdf/2106.11959.pdf

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00544/115239/Transformers-for-Tabular-Data-Representation-A
https://aclanthology.org/2020.acl-main.398.pdf
https://arxiv.org/pdf/2012.06678.pdf
https://arxiv.org/pdf/2106.11959.pdf

CHAPTER 12
Transformers for Tabular Data

Regression and Classification

Introduction
In this chapter, we will explore the application of transformers in tabular
data processing. We will also delve into the implementation of transformers
such as TabTransformer, FT Transformer, and TabNet for solving
classification and regression problems. By working with real-world datasets,
we demonstrate the effectiveness and versatility of these models,
highlighting their strengths and areas for further enhancement. Let us
uncover the potential of transformers in advancing machine learning
techniques.

Structure
The chapter contains the following topics:

System requirements

Transformer for classification

Transformer for regression

Objectives

By the end of this chapter, the reader will have explored and implemented
transformer models such as TabTransformer and FT Transformer, as well as
TabNet, a popular PyTorch model for tabular data that combines decision
trees and attention mechanisms. This chapter will also demonstrate the
application of transformers in classification and regression tasks, and
evaluate the performance of transformer models using real-world datasets.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages as follows:

pip install pytorch_tabular

pip install scikit_learn

Transformer for classification
In the upcoming section, we will delve into how to employ transformers for
tackling classification problems. These powerful models, which have
revolutionized the way we approach natural language processing tasks, are
now finding their way into a variety of other domains, including tabular data.
Our focus will be on three specific models, namely, TabTransformer, FT
Transformer, and TabNet:

The TabTransformer, developed by Amazon Web Services (AWS),
adapts transformer architectures for tabular data by treating the rows
as sequences, much like sentences in a text. This provides a unique
way to capture interactions between features in a row and between
different rows.

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

The FT Transformer, on the other hand, is a modification of the
original transformer model and is specifically tailored for handling
tabular data. It employs multi-headed self-attention mechanisms,
allowing it to learn a much richer set of feature interactions.

TabNet, another variant, integrates the best of scalable decision trees
and deep learning. Its unique design allows it to learn meaningful and
interpretable features that have direct implications for the decision-
making process.

To demonstrate the application of these models, we will be utilizing the UCI
Adult dataset, often referred to as the census income dataset. This dataset is a
popular choice for binary classification tasks, with the objective of
predicting whether an individual’s income exceeds $50K per year based on
various census data attributes.

Throughout this section, we will walk you through how to load the data, pre-
process it appropriately for each model, train the transformer models, and
evaluate their performance. We will also learn how these powerful
transformer models can be effectively used for classification tasks involving
tabular data.

Dataset
The Adult dataset, also known as the census income or adult.data dataset,
is widely used in machine learning for tasks that involve classifying two
different categories. It was created by Barry Becker from data collected by
the United States Census Bureau in 1994. The main goal with this data is to
predict if a person’s income is over $50,000 a year based on various other
pieces of information.

This dataset is made up of 15 different factors, or attributes, and one
outcome variable. These attributes include a mix of categorical (like race or
occupation) and continuous (like age or hours worked per week) data. These
are:

Age: Continuous.

Work class: Private, Self-emp-not-inc, or Self-emp-inc.

Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous (representing the number of people the census
takers believe that observation represents).

Education: Bachelors, Some-college, 11th, HS-grad, Prof-school,
Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th,
Doctorate, 5th-6th, Preschool.

Education-num: continuous.

Marital-status: Married-civ-spouse, Divorced, Never-married,
Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

Occupation: categorical

Relationship: Wife, Own-child, Husband, Not-in-family, Other-
relative, Unmarried.

Race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

Sex: Female, Male.

Capital-gain: continuous.

Capital-loss: continuous.

Hours-per-week: continuous.

Native-country: categorical

Target
The target variable is income, which is a binary variable with two categories:

“<=50K”

“>50K”

Pre-process the data
We are performing data pre-processing on the UCI Adult dataset. This
includes importing the dataset, assigning appropriate column names, saving
the data into a CSV file, splitting the dataset into training and testing sets,
and specifying the categorical, numerical, and target columns.

Code:

import pandas as pd

url = "http://archive.ics.uci.edu/ml/machine-

learning-databases/adult/adult.data"

column_names = ['age', 'workclass', 'fnlwgt',

'education', 'education-num', 'marital-status',

'occupation', 'relationship', 'race', 'sex',

'capital-gain', 'capital-loss', 'hours-per-week',

'native-country', 'income']

data = pd.read_csv(url, names=column_names)

Save the dataframe into a CSV file

data.to_csv('adult.csv', index=False)

Split the data into train and test sets

train = data.sample(frac=0.8, random_state=0)

test = data.drop(train.index)

Specify the categorical and numerical columns

cat_col_names = ['workclass', 'education',

'marital-status', 'occupation', 'relationship',

'race', 'sex', 'native-country']

num_col_names = ['age', 'fnlwgt', 'education-num',

'capital-gain', 'capital-loss', 'hours-per-week']

target_col_name = ["income"]

Declare the configuration
This is a critical step in the procedure. You will need to supply four
configurations (most of them come with sensible default values), which will

guide the rest of the process. They are:

DataConfig: This is where you specify the names of the target,
categorical, and numerical columns, as well as any transformations
that need to be done.

ModelConfig: Each model has its own specific configuration. This
config not only determines the model we will train but also allows you
to set the model’s hyperparameters.

TrainerConfig: This config allows you to tailor the training process
by setting parameters such as batch size, number of epochs, early
stopping criteria, and so on. Most of these parameters are taken
directly from PyTorch Lightning and are passed to the underlying
Trainer object during the training process.

OptimizerConfig: This configuration allows you to define and utilize
various optimizers and learning rate schedulers. Standard PyTorch
Optimizers and Learning Rate Schedulers are supported. If you want
to use custom optimizers, you can override this by using the parameter
in the fit method. Remember, the custom optimizer should be
compatible with PyTorch.

Refer to the following code:

data_config = DataConfig(

 target=target_col_name, # target column name

 continuous_cols=num_col_names, # numerical

column names

 categorical_cols=cat_col_names, # categorical

column names

 continuous_feature_transform="quantile_normal",

 normalize_continuous_features=True

)

trainer_config = TrainerConfig(

 auto_lr_find=True, # Runs the LRFinder to

automatically derive a learning rate

 batch_size=256,

 max_epochs=100,

 early_stopping="valid_loss",

 early_stopping_mode = "min",

 early_stopping_patience=5,

 checkpoints="valid_loss",

 load_best=True,

)

optimizer_config = OptimizerConfig()

Specify the model configuration

head_config = LinearHeadConfig(

 layers="",

 dropout=0.1,

 initialization="kaiming"

).__dict__

Train and evaluate the model with three models
We are creating and training three different types of models
(TabTransformer, FT Transformer, TabNet) for a classification task using the
predefined configurations. After training each model on the training set, we
then evaluate its performance on the test set. Refer to the following code:

#TabTransformer

model_config = TabTransformerConfig(

 task="classification",

 head = "LinearHead", #Linear Head

 head_config = head_config, # Linear Head Config

 learning_rate = 1e-3

)

tabular_model = TabularModel(

 data_config=data_config,

 model_config=model_config,

 optimizer_config=optimizer_config,

 trainer_config=trainer_config,

)

tabular_model.fit(train=train)

tabular_model.evaluate(test)

FT Transformer

model_config = FTTransformerConfig(

 task="classification",

 learning_rate = 1e-3,

 head = "LinearHead", #Linear Head

 head_config = head_config, # Linear Head Config

)

tabular_model = TabularModel(

 data_config=data_config,

 model_config=model_config,

 optimizer_config=optimizer_config,

 trainer_config=trainer_config,

)

tabular_model.fit(train=train)

tabular_model.evaluate(test)

TabNet

model_config = TabNetModelConfig(

 task="classification",

 learning_rate = 1e-3,

 head = "LinearHead", #Linear Head

 head_config = head_config, # Linear Head Config

)

tabular_model = TabularModel(

 data_config=data_config,

 model_config=model_config,

 optimizer_config=optimizer_config,

 trainer_config=trainer_config,

)

tabular_model.fit(train=train)

tabular_model.evaluate(test)

Evaluation

Figure 12.1 presents the benchmark results achieved from various machine
learning models. On the other hand, Table 12.1 displays the outcomes from
our own experiments:

Figure 12.1: Baseline result on various algorithm1

Refer to the following Table 12.1:

TabTransformer FT Transformer TabNet

Test_accuracy 0.843058943748474 0.85012286901474 0.845362424850463

Test_loss 0.33155241608619 0.323970586061477 0.3304014503955841

Table 12.1: Result of Our Experiments

Analysis
Figure 12.1 indicates that the best performance in several studies has been
achieved using the XG-Boost model, yielding an accuracy of approximately
87%. In our case, employing the FT Transformer resulted in an accuracy of
around 85%. This discrepancy suggests the potential for further investigation
and experimentation.

It is essential to note that our current model’s evaluation does not include
cross-validation, a technique often used to assess the robustness of a model.

In addition, we did not incorporate any feature transformation or feature
engineering methods, which are commonly used to enhance the performance
of a model.

Yet, it is impressive to see that our straightforward application of the FT
Transformer still managed to achieve results that are close to the best
performance recorded. This reinforces the potential of transformer models
and suggests that with some fine-tuning and enhancements, we may even
surpass the benchmark set by XG-Boost.

Transformer for regression
In this demonstration, we will explore the application of a transformer model
for regression tasks, specifically using the Ames Housing dataset.

The dataset
The Ames Housing dataset is a comprehensive record of individual
residential property sales that occurred in Ames, Iowa, between 2006 and
2010. With over 80 explanatory variables, this dataset provides a plethora of
information useful for predictive modeling, as it offers a rich array of factors
that contribute to home values.

These factors span a wide spectrum, including:

General attributes of the property, such as the type of dwelling, its
zoning classification, proximity to amenities and roads, and the overall
configuration and layout of the property and lot.

Detailed attributes of the house itself, including the roof type, exterior
materials, masonry work, and foundation type.

Comprehensive ratings of the overall quality and condition of various
parts of the house, ranging from the exterior finish to the heating
system.

Detailed information about specific areas within the house, such as the
basement, garage, and porch, as well as the presence of a pool. This
also includes details about the number and quality of rooms,
bedrooms, kitchens, and bathrooms.

Specifics about the sale transaction, like the type and condition of the
sale, and the month and year the sale took place.

The dataset aims to predict the final sale price of each property, making this
a regression problem when employing machine learning to forecast the sale
price based on all the other variables.

Pre-process the data
The code presented here performs several data processing tasks for a
machine learning experiment.

Firstly, it downloads the Ames Housing dataset from a specified URL
using pandas read_csv method, saving it to a dataframe.

It then defines lists of the categorical and numerical columns, as well
as the target column (SalePrice).

The code proceeds to handle missing values in the data. For
categorical columns, it fills in missing values with the most frequent
value (mode) for that column. For numerical columns, including the
target, it fills in missing values with the median value for that column.

After handling missing values, the code uses MinMaxScaler from
Scikit-learn library to scale the numerical columns. This normalization
adjusts all numerical values to fall within the same range (typically 0
to 1), which is often beneficial for machine learning algorithms.

Finally, it splits the pre-processed dataframe into a training set (80%
of the data) and a test set (the remaining 20% of the data), and
displays the first few rows of the resulting dataframe for verification.

Refer to the following code:

Download the dataset

import pandas as pd

url =

"https://raw.githubusercontent.com/wblakecannon/ame

s/master/data/housing.csv"

ames_df = pd.read_csv(url)

List of categorical and numerical columns

cat_cols = ['Garage Yr Blt', 'Mo Sold', 'Yr

Sold','Open Porch SF', 'Enclosed Porch', '3Ssn

Porch', 'Screen Porch','Wood Deck

SF','Fireplaces','Year Remod/Add','Year

Built','Overall Cond','Overall Qual','MS SubClass',

'MS Zoning', 'Street', 'Alley', 'Lot Shape', 'Land

Contour', 'Utilities', 'Lot Config', 'Land Slope',

'Neighborhood', 'Condition 1', 'Condition 2', 'Bldg

Type', 'House Style', 'Roof Style', 'Roof Matl',

'Exterior 1st', 'Exterior 2nd', 'Mas Vnr Type',

'Exter Qual', 'Exter Cond', 'Foundation', 'Bsmt

Qual', 'Bsmt Cond', 'Bsmt Exposure', 'BsmtFin Type

1', 'BsmtFin Type 2', 'Heating', 'Heating QC',

'Central Air', 'Electrical', 'Kitchen Qual',

'Functional', 'Fireplace Qu', 'Garage Type',

'Garage Finish', 'Garage Qual', 'Garage Cond',

'Paved Drive', 'Pool QC', 'Fence', 'Misc Feature',

'Sale Type', 'Sale Condition']

num_cols = ['Lot Frontage', 'Lot Area', 'Mas Vnr

Area', 'BsmtFin SF 1', 'BsmtFin SF 2', 'Bsmt Unf

SF', 'Total Bsmt SF', '1st Flr SF', '2nd Flr SF',

'Low Qual Fin SF', 'Gr Liv Area', 'Bsmt Full Bath',

'Bsmt Half Bath', 'Full Bath', 'Half Bath',

'Bedroom AbvGr', 'Kitchen AbvGr', 'TotRms AbvGrd',

'Garage Cars', 'Garage Area', 'Pool Area', 'Misc

Val']

target_col = ['SalePrice']

Perform Null Value Imputation

for col in cat_cols:

 ames_df[col].fillna(ames_df[col].mode()[0],

inplace=True)

Replace NaN in continuous columns with the median

for col in num_cols+target_col:

 ames_df[col].fillna(ames_df[col].median(),

inplace=True)

ames_df = ames_df.dropna()

Check the first few rows

print(ames_df.shape)

Min-max scalar

from sklearn.preprocessing import MinMaxScaler

Assuming df is your DataFrame and the columns you

want to scale are in the list 'cols_to_scale'

scaler = MinMaxScaler()

cols_to_scale=num_cols+target_col

Fit the scaler to the columns in 'cols_to_scale'

scaler.fit(ames_df[cols_to_scale])

Transform the columns

ames_df[cols_to_scale] =

scaler.transform(ames_df[cols_to_scale])

train, test split

train = ames_df.sample(frac=0.8, random_state=0)

test = ames_df.drop(train.index)

print(ames_df.head())

Define model configuration
The code for setting up a machine learning experiment with the
FTTransformer model is as follows:

data_config = DataConfig(

 target=target_col, # target column name

 continuous_cols=num_cols, # numerical column

names

 categorical_cols=cat_cols, # categorical

column names

 continuous_feature_transform="quantile_normal",

 normalize_continuous_features=True

)

trainer_config = TrainerConfig(

 auto_lr_find=True,

 batch_size=256,

 max_epochs=100,

 early_stopping="valid_loss",

 early_stopping_mode = "min",

 early_stopping_patience=5,

 checkpoints="valid_loss",

 load_best=True,

)

optimizer_config = OptimizerConfig()

Specify the model configuration

head_config = LinearHeadConfig(

 layers="", # No additional layer in head, just

a mapping layer to output_dim

 dropout=0.1,

 initialization="kaiming"

).__dict__ # Convert to dict to pass to the model

config (OmegaConf doesn't accept objects)

model_config = FTTransformerConfig(

 task="regression",

 learning_rate = 1e-3,

 head = "LinearHead", #Linear Head

 head_config = head_config, # Linear Head Config

)

tabular_model = TabularModel(

 data_config=data_config,

 model_config=model_config,

 optimizer_config=optimizer_config,

 trainer_config=trainer_config,

)

Train and evaluate
Here, we are running our experiment and calculating the r-squared on the
test-dataset:

tabular_model.fit(train=train)

tabular_model.evaluate(test)

prediction=tabular_model.predict(test)

from sklearn.metrics import r2_score

r2 = r2_score(prediction['SalePrice'],

prediction['SalePrice_prediction'])

print(f"R2 Score: {r2}")

Output:

R2 Score: 0.735613747041542

Analysis
The R-squared value achieved is decent, but there is still room for
improvement through further optimization. You might consider various
feature engineering strategies to boost the model’s performance. Some of
these strategies could include:

Using more sophisticated methods to impute null values, such as
nearest neighbors.

Conducting feature selection to reduce the dimensionality of your data
and focus on the most informative features.

Applying feature transformations or creating new features to better
capture the underlying patterns in your data.

Conclusion
In conclusion, this chapter offers an in-depth exploration of the use of
transformers for tackling both classification and regression problems,
specifically utilizing the TabTransformer, FT Transformer, and TabNet
models. We illustrated these techniques using two real-world datasets, the
adult dataset for classification and the Ames Housing dataset for regression.
The results showed that these transformers can offer competitive
performance with traditional machine learning models, even without
extensive feature engineering. However, we also noted areas for further
improvement and optimization, such as advanced null value imputation,
feature selection, and feature transformation. These techniques signify the
exciting potential of transformers in machine learning and suggest many
avenues for future research and application.

Quiz

1. Which three transformer models are discussed in the chapter?

a. TabTransformer, XG-Boost, TabNet

b. FT Transformer, BERT, TabNet

c. TabTransformer, FT Transformer, TabNet

d. GPT, FT Transformer, TabNet

2. The TabTransformer model treats rows in tabular data as
sequences, similar to sentences in text data.

a. True

b. False

3. Which configuration specifies the names of the target, categorical,
and numerical columns in the data?

a. DataConfig

b. ModelConfig

c. TrainerConfig

d. OptimizerConfig

4. Which configuration allows setting parameters such as batch size,
number of epochs, and early stopping criteria during training?

a. DataConfig

b. ModelConfig

c. TrainerConfig

d. OptimizerConfig

5. Which configuration is responsible for defining and utilizing
optimizers and learning rate schedulers?

a. DataConfig

b. ModelConfig

c. TrainerConfig

d. OptimizerConfig

6. Which head configuration is used in the TabTransformer model
for predictions?

a. LinearHead

b. MultiHead

c. AttentionHead

d. EmbeddingHead

7. Which model achieved the highest accuracy in the classification
task?

a. TabTransformer

b. FT Transformer

c. TabNet

d. XG-Boost

8. The FT Transformer achieved comparable results to the best-
performing XG-Boost model.

a. True

b. False

9. What is the objective of the regression problem in the Ames
Housing dataset?

a. Predicting the type of dwelling

b. Predicting the condition of the house

c. Predicting the final sale price of each property

d. Predicting the presence of a pool

10. What does the MinMaxScaler from Scikit-learn library do?

a. Removes outliers from numerical columns

b. Scales numerical values to a specific range

c. Performs feature selection on categorical columns

d. Converts categorical values to numerical values

11. What is the purpose of the head configuration in the model
configuration?

a. To specify the learning rate for the model

b. To define the structure of the output layer

c. To determine the optimizer used in training

d. To set the number of hidden layers in the model

Answers

1. c.
2. a.
3. a.
4. c.
5. d.
6. a.
7. b.
8. a.
9. c.

10. b.
11. b.

1 https://archive.ics.uci.edu/dataset/2/adult

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://archive.ics.uci.edu/dataset/2/adult
https://discord.bpbonline.com/

CHAPTER 13
Multimodal Transformers,

Architectures and Applications

Introduction
In this chapter, we dive into multimodal transformers, AI systems that
handle multiple types of data like text, images, and audio simultaneously.
We will first explore how transformers consolidate various modalities into a
common dimension, effectively enabling the AI to understand different
languages of data. Then, we will discuss major multimodal architectures,
such as ImageBind, and OpenAI’s CLIP, revealing how they are pushing the
boundaries of what AI can comprehend and produce. Finally, we will
examine tasks related to multimodal data, spanning domains from natural
language processing, and audio processing to computer vision.

Structure
The chapter is organized as follows:

System requirements

Multimodal architecture

Multimodal tasks

Objectives

The objectives of this chapter on Multimodal transformers, architectures,
and applications are to understand representation and thus explain how
transformers process and consolidate multiple modalities into a common
dimension, creating a unified language that AI systems can interpret. It will
also study architectures, and delve into major multimodal architectures,
including ImageBind, and OpenAI’s CLIP, elucidating their design,
functionality, and distinct features. The chapter will also explore
MultiModal Tasks, and provide an overview of tasks related to multimodal
data, encompassing various domains from natural language processing to
computer vision. Lastly, there will be practical demonstrations of
multimodal transformers, aiming to showcase their real-world applications
and enhance the reader’s understanding of the models.

System requirements
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb. Please
prepare your environment by following the given instructions:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as follows:

pip install diffusers

pip install transformers

pip install torch

pip install torchvision

pip install tqdm

pip install tensorboard

pip install accelerate

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

Multimodal architecture
Multimodal architectures refer to models that are designed to process and
understand information from multiple types of data or modalities such as
images, text, audio, and so on. The primary challenge in building such
architectures is how to represent these distinct types of data in a unified
manner so that the model can understand the relationships between them.

One common approach to tackle this is to map each modality into a shared
high-dimensional space, known as an embedding space. Each data modality
is processed through its own specialized neural network (such as a
convolutional neural network for images or a Transformer for text), which
transforms the raw data into a dense vector representation, or embedding.
These embeddings are designed such that they capture the essential
characteristics of the original data, but are represented in the same format,
regardless of the original data type.

Once all modalities are represented in the same space, the model can easily
compare, relate, and combine information across modalities. For instance,
in the shared embedding space, the text description a red apple and an
image of a red apple should be close together, as they represent the same
concept.

There are various techniques to learn these embeddings, such as using
contrastive loss which encourages the model to make the embeddings of
similar concepts closer together and those of different concepts further
apart, regardless of the original modality. This way, multimodal
architectures can achieve a more holistic understanding of the information,
leveraging the strengths of each data type to enhance overall performance
on tasks that require multimodal comprehension.

In the following section, we will discuss two multimodal architectures in
details.

ImageBind
ImageBind is probably the most flexible and ingenious strategy for
integrating diverse types of data modalities into a single representation
space. This system hinges on the idea of utilizing images as a unifying
element to link other data modalities, and thus the name ImageBind.

Specifically, it uses the six different modalities: images, text, audio, depth,
thermal, and IMU data. Figure 13.1 shows the diagram of how image binds
all the modalities into single feature dimension:

Figure 13.1: ImageBind: Image acts as center for binding all modalities

Let us illustrate ImageBind with a more concrete example: Suppose we
have an image of a beach scene, the sound of waves crashing (audio), and a
written description of the scene (text). The Transformer encoders convert
the different types of data into a common form known as embedding.
ImageBind use six distinct Transformer encoder, each corresponding to data
modalities. In this scenario, there are two data pairs (image, sound of
waves) and the pair (image, scene description). Here we can see that, the
image acts as a binding agent, linking the audio and text data. The
optimization process utilizes a technique called InfoNCE loss (variation of
contrastive loss), a measure of the similarity between embeddings. This
technique steers the learning process of the Transformer encoders, urging
them to generate embeddings that are as similar as possible for an image
and its corresponding modality (like the sound of waves or the scene
description). This way, the model learns to align the different data
modalities in the shared embedding space.

The magic of ImageBind lies in its ability to understand relationships
between different data types without explicitly seeing all possible

combinations. For instance, if we introduce a new modality such as the
temperature at the beach (thermal data), ImageBind can infer a relationship
between this new modality and the existing ones (like the sound of waves).
This is possible because ImageBind has learned to associate both the
temperature data and audio data with images. Leveraging the image as a
common reference point, ImageBind can infer a relationship between
temperature and audio data. This impressive emergent behavior opens up a
wide range of possibilities, allowing ImageBind to perform complex tasks
such as matching text to audio, even when it has not been trained on such
data pairings. This significantly enhances ImageBind’s versatility and
applicability across diverse real-world scenarios.

Demonstration
You can follow the link (https://imagebind.metademolab.com/demo) to
play with ImageBind.

You can also run the experiment following the tutorial
(https://github.com/facebookresearch/ImageBind) to create the
embedding of different modalities.

CLIP
OpenAI’s Contrastive Language–Image Pretraining (CLIP) is a model
designed to understand information from both images and text. The model
has two main components:

Vision Transformer (ViT): The visual part of the model is based on
the transformer architecture. The input image is divided into a fixed
number of patches, which are then linearly embedded and processed
sequentially by the transformer. The output of the ViT is an
embedding that represents the content of the image.

Transformer language model: The text part of the model is a
transformer-based neural network that is trained to understand and
generate human language. It is similar to models like GPT, with the
key difference being that it is trained to understand text in the context
of images. It takes a sequence of tokens (words, or parts of words) as

https://imagebind.metademolab.com/demo
https://github.com/facebookresearch/ImageBind

input and produces an embedding that represents the meaning of the
text.

Pre-training objective
The objective of the pre-training phase in CLIP is to learn to correctly
associate images and texts. During training, the model is presented with a
batch of images and a batch of texts. It is trained to maximize the similarity
between each image and its corresponding text while minimizing the
similarity between each image and all other texts in the batch.

This is achieved using a contrastive loss function, specifically, the Noise
Contrastive Estimation (NCE) loss. The model is encouraged to produce
embeddings such that the dot product of the embedding of an image and its
corresponding text is higher than the dot product of the embedding of the
image and the text of any other image-text pair in the batch.

Applications and usage
CLIP can be used for a wide range of tasks that involve understanding and
generating information about images and text. Some examples include:

Zero-shot classification: Given a set of class names and an image,
CLIP can predict the class of the image without needing any
examples of that class during training. This is done by comparing the
embedding of the image to the embeddings of the class names and
predicting the class with the highest similarity.

Text-to-image synthesis: Given a textual description, CLIP can
generate an image that fits the description.

Image-to-text synthesis: Given an image, CLIP can generate a
textual description of the image.

Cross-modal search: Given a query in one modality (for example,
text), you can search for content in another modality (for example,
images).

Multimodal tasks

Multimodal machine learning algorithms can be crafted for a myriad of
tasks. Take, for instance, identifying potential health issues in patients. This
involves creating a classifier that utilizes a patient’s structured data (tabular
data), clinical notes (natural language processing), chest X-rays (imaging),
and heart sounds (audio). This aligns with how doctors usually diagnose
patients, considering all modalities of information. Furthermore,
multimodal input is indispensable in other tasks such as text-image
association, audio transcription, and more. In the upcoming section, we will
delve deeper into tasks where multimodal data plays a crucial role.

Table 13.1 illustrates the major multimodal tasks1:

Task Description Models

Feature
extraction

Convert text sequence into single vector
representation. Essential for text search, information
retrieval, or other multiple downstream tasks.

intfloat/e5-large-v2,
facebook/bart-large

Text-to-
image

Generate image by giving text prompt runwayml/stable-
diffusion-v1-5, DALL-E
2

Image-to-
text

Generate text description of image openai/clip-vit-large-
patch14, nlpconnect/vit-
gpt2-image-captioning

Text-to-
video

Generate video from text description damo-vilab/text-to-
video-ms-1.7b

Visual
question
answering

Q&A based on the image. For example, provide the
image and ask question like, how many male are in
the picture?

Salesforce/blip-vqa-base

Document
question
answering

For example, given invoice pdf, ask what is the
invoice number

magorshunov/layoutlm-
invoices

Table 13.1: Multi-modal tasks
In the following sections, we will discuss in detail some most important
multi-modal tasks.

Feature extraction
Feature extraction is a crucial step in many machine-learning tasks. In the
context of text data, feature extraction involves transforming a text

sequence into a single vector representation that captures the essential
meaning and characteristics of the text.

Let us consider an example: a movie recommendation system. Here, the
feature extraction model can take movie reviews (text data) and convert
them into vector representations. These vectors can then be compared to
determine the similarity between different movies, based on the content of
their reviews. In this way, the system can recommend movies that have
received similar reviews, thereby personalizing the recommendations for
each user.

The following code demonstrates how we can use facebook/bart-large to
extract features from input text:

from transformers import BartTokenizer, BartModel

tokenizer =

BartTokenizer.from_pretrained('facebook/bart-

large')

model = BartModel.from_pretrained('facebook/bart-

large')

inputs = tokenizer("Hello, my dog is cute",

return_tensors="pt")

print (inputs)

outputs = model(**inputs)

last_hidden_states = outputs.last_hidden_state

The shape is in form of (batch_size, seq_len,

embedding_dim)

print(last_hidden_states.shape, '\n')

print(last_hidden_states)

Following is the output from the preceding code:

this is tokenized input

{'input_ids': tensor([[0, 31414, 6, 127, 2335, 16,

11962, 2]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1,

1]])}

#shape of last hidden state, this is shape of vector representation

of input data

(batch_size=1, seq_len=8,embedding_dim=1024)

torch.Size([1, 8, 1024])

vector representation of input text

tensor([[[0.5512, 0.8389, -1.4707, ..., 1.3124, -0.2047,

0.2392],

 [0.5512, 0.8389, -1.4707, ..., 1.3124, -0.2047,

0.2392],

 [0.9143, 0.9399, -1.2426, ..., 0.9184, -0.1838,

-0.9975],

 ...,

 [0.2561, 0.2253, 0.4470, ..., 0.3447, 0.0087,

1.5508],

 [0.2077, -1.3086, -1.4295, ..., -0.2998, 0.1828,

0.4700],

 [-0.4893, 2.5148, -1.5513, ..., 0.5783, 1.0961,

0.1736]]],

 grad_fn=<NativeLayerNormBackward0>)

Analysis
Let us dig deeper into the above code:

The code aims to convert the input sentence Hello, my dog is cute
into a vector representation.

This vector representation or encoding is obtained from the attribute
outputs.last_hidden_state.

The last_hidden_state provides the output from the final layer of the
BART model.

The shape of last_hidden_state is printed, which happens to be (1,
8, 1024).

The input sentence Hello, my dog is cute gets tokenized into a
sequence of length 8.

The dimensions of the last_hidden_state tensor are interpreted as
follows:

The first dimension, batch_size, represents the number of input
sentences processed at once. Here, it is 1.

The second dimension, seq_len, signifies the number of tokens in
the input sentence. In this case, it is 8.

The third dimension, hidden_state_size, refers to the size of the
model’s hidden state. For the ‘facebook/bart-large’ model, it is
1024.

Text-to-image
In the following code, we aim to provide a prompt, and the model should
generate an image based on our prompt:

from diffusers import StableDiffusionPipeline

import torch

from PIL import Image

import requests

from io import BytesIO

import matplotlib.pyplot as plt

model_id = "runwayml/stable-diffusion-v1-5"

pipe =

StableDiffusionPipeline.from_pretrained(model_id,

torch_dtype=torch.float16)

pipe = pipe.to("cuda")

prompt = "a photo of an cowboy man riding

dinosaurs in pacaso style"

Generate images from the prompt

image =

pipe(prompt,num_inference_steps=900).images[0]

plt.imshow(image)

plt.axis('off') # No axis for clarity

plt.show()

image.save("man_riding_dinosaurs.png")

The output of the above code is shown in the following figure:

Figure 13.2: Image generated by the stable diffusion model

Analysis
Let us dig deeper about the above code:

The model runwayml/stable-diffusion-v1-5 is utilized as the base
model for image generation.

The StableDiffusionPipeline class is used to encapsulate the steps
involved in the model. This helps to simplify the code; otherwise, the
raw model application would require significantly more lines of code.

The variable prompt contains the textual description which represents
the type of image we want to generate.

The number of inference steps is set to 900, overriding the default of
50. This is done with the expectation that a larger number of steps
will generate higher quality images.

The pipe function offers several parameters for the image generation
process, such as the shape of the image, among other options. You
can explore more about these options in the function’s
documentation2.

Image to-text
In the following code, we aim to provide an image and the model should
generate the description of the image:

from transformers import pipeline

image_url =

'https://raw.githubusercontent.com/bpbpublications

/Building-Transformer-Models-with-PyTorch/main/

chapter8_CVTask/food_image.jpg'

image_to_text = pipeline("image-to-text",

model="nlpconnect/vit-gpt2-image-captioning")

output=image_to_text(image_url)

response = requests.get(image_url)

img = Image.open(BytesIO(response.content))

if img.mode != "RGB":

 img = img.convert(mode="RGB")

Display the image

plt.imshow(img)

plt.axis('off') # No axis for clarity

plt.show()

print(output[0]['generated_text'])

Output
Figure 13.3 shows the image provided and the corresponding description
generated by the image:

Figure 13.3: Model captioning output

Analysis
As you can see the description, a plate of food with rice, beans and
vegetables is a fairly accurate description of the above picture.

Visual question answering
In the following code, we aim to provide an image and a question related to
that image, and the model should generate the answer to our question.
Figure 13.3 shows the picture we are passing to the model, and our question
is Is there rice on the plate?
Code:

import requests

from PIL import Image

from transformers import BlipProcessor,

BlipForQuestionAnswering

Instantiate the processor and model from the

pretrained "Salesforce/blip-vqa-base"

processor =

BlipProcessor.from_pretrained("Salesforce/blip-

vqa-base")

model =

BlipForQuestionAnswering.from_pretrained("Salesfor

ce/blip-vqa-base").to("cuda")

URL of the image for visual question answering

image_url =

'https://raw.githubusercontent.com/bpbpublications

/Building-Transformer-Models-with-

PyTorch/main/chapter8/food_image.jpg'

Request the image from the URL and convert it to

RGB

raw_image = Image.open(requests.get(image_url,

stream=True).raw).convert('RGB')

The question to be asked

question = "Is there rice in the plate?"

Prepare the inputs for the model

This includes the image and the question,

transformed to tensors and moved to the GPU

inputs = processor(raw_image, question,

return_tensors="pt").to("cuda")

Generate the answer using the model

out = model.generate(**inputs)

Decode the output into a string answer, skipping

special tokens

answer = processor.decode(out[0],

skip_special_tokens=True)

Print the answer

print(f"The answer to your question is :{answer}")

Output:

The answer to your question is :yes

Analysis
You can review the model accurately answer our question.

Conclusion
This exploration of multimodal Transformer models demonstrated the
potential these models hold for dealing with a variety of data types and
complex tasks. We used various techniques such as feature extraction for

text data, text-to-image, image-to-text, and visual question answering
models to leverage the versatility and robustness of transformer models.
Utilizing models like BART, Stable Diffusion, ViT-GPT2, and BLiP-VQA,
we showed how transformer models can efficiently understand and generate
both textual and visual content, indicating a significant stride towards
artificial general intelligence. However, as these models continue to evolve,
it is crucial to note that their implementation also presents challenges, such
as managing computational costs and handling nuanced tasks. Despite these
challenges, the potential for further enhancements and innovative
applications remains vast, making the field of multimodal transformers an
exciting frontier in AI research and development.

Quiz

1. What is feature extraction in the context of text data?

a. Comparing two texts

b. Transforming a text sequence into a vector representation

c. Correcting the grammar of a text

d. Compressing the text data

2. What does the ‘outputs.last_hidden_state’ represent in the
BART model?

a. The input sentence

b. The vector representation of the input sentence

c. The tokenized sequence of the input sentence

d. The sentiment of the input sentence

3. What are the dimensions of the ‘last_hidden_state’ tensor in the
BART model?

a. (batch_size, seq_len, hidden_state_size)

b. (seq_len, batch_size, hidden_state_size)

c. (hidden_state_size, batch_size, seq_len)

d. (seq_len, hidden_state_size, batch_size)

4. In the ‘stable-diffusion’ model, what does the variable ‘prompt’
represent?

a. The type of image to generate

b. The number of images to generate

c. The size of the image to generate

d. The style of the image to generate

5. What does the parameter ‘num_inference_steps’ in the ‘stable-
diffusion’ model control?

a. The quality of the generated image

b. The size of the generated image

c. The number of images to generate

d. The style of the generated image

6. What does the pipeline function ‘image-to-text’ do?

a. Generates a text description of an image

b. Converts an image into text format

c. Converts a text into image format

d. Generates an image based on a text description

7. What does the ‘BlipForQuestionAnswering’ model do?

a. Converts an image into text format

b. Generates a text description of an image

c. Answers a question related to an image

d. Generates an image based on a text description

8. What is the significance of ‘torch_dtype=torch.float16’ in the
StableDiffusionPipeline?

a. It determines the image size

b. It defines the data type of the model parameters

c. It sets the image color

d. It determines the style of the generated image

9. In the image-to-text pipeline, why is the image converted to
“RGB” mode?

a. To reduce the size of the image

b. To ensure compatibility with the model

c. To improve the quality of the image

d. To change the color of the image

10. In the ‘StableDiffusionPipeline’, what does the ‘.to(“cuda”)’
method do?

a. It transfers the pipeline to the GPU

b. It saves the pipeline

c. It prints the pipeline

d. It compiles the pipeline

11. In the BART model, what does the ‘embedding_dim’ represent?

a. The size of the model’s hidden state

b. The number of tokens in the input sentence

c. The number of input sentences processed at once

d. The number of features in the input sentence

Answers

1. b.
2. b.
3. a.
4. a.
5. a.
6. a.
7. c.
8. b.
9. b.

10. a.
11. a.

1 https://huggingface.co/models

2
https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/text2img#diffusers.
StableDiffusionPipeline

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://huggingface.co/models
https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline
https://discord.bpbonline.com/

CHAPTER 14
Explore Reinforcement Learning

for Transformer

Introduction
Reinforcement Learning (RL) is a subfield of machine learning that
focuses on how an agent can learn to behave in an environment by taking
actions that maximize some notion of cumulative reward. It is fundamentally
about learning to make decisions based on the consequences of previous
actions. Traditionally, reinforcement learning has been intertwined with
various types of algorithms and neural network architectures like
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). These approaches have had considerable success in
fields like robotics, game theory, and sequential decision-making tasks.

Recently, transformer architectures have been adapted to reinforcement
learning tasks. One such model is the decision transformer, which frames
reinforcement learning as a problem of ranking trajectories, thus shifting the
focus from traditional action-value based methods to more direct methods of
estimating the optimal trajectories. Another emerging model is the trajectory
transformer, which leverages the ability of transformers to understand
sequence data, hence enhancing the efficiency of reinforcement learning
with its power to predict the entire sequence of future states, actions, and
rewards.

In this new frontier of reinforcement learning research, the interplay of RL
principles with transformers could yield sophisticated, efficient, and
adaptable machine learning systems, thereby sparking advancements in the
field. This chapter will explore in detail the integration of these technologies,
their challenges, opportunities, and future prospects.

Structure
The book is organized as follows:

System requirements

Reinforcement learning

Important technique in PyTorch for reinforcement learning

Project 1

Transformer for reinforcement learning

Objectives
The objectives of this chapter are to explain the fundamentals of RL and the
most common tools in Pytorch, and the process of building RL model. We
will walk you through the process of developing a day trading model using
tools like Gym, Stable-baselines3, and Yfinance. The reader will also be
introduced to transformer architectures for RL. We will explain decision
transformer and trajectory transformer, two significant transformer
architectures used in RL.

System requirements
Please prepare your environment by following the given instructions. For
detailed instructions on setting the environment, please follow instructions at
https://github.com/bpbpublications/Building-Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as follows:

pip install gym

pip install pandas

pip install yfinance

pip install stable-baseline3

pip install shimmy

Reinforcement learning
RL is a type of machine learning where an agent learns how to behave in an
environment by performing certain actions and observing the results or
feedback from those actions. Let us illustrate through the example of stock
portfolio management.

Imagine you are managing a stock portfolio. In this situation, you, as the
portfolio manager (the agent), interact with the complex world of the stock
market (the environment) by making choices (like buying, selling, or holding
onto stocks). This environment is filled with different types of information:
technical data, fundamental data, recent news, and overall market trends.
Based on the state of the environment, if a choice (action) leads to a good
result (like making money from a stock sale or earning a dividend), it is
considered a good choice and should be repeated in similar situations later.
However, if a choice results in a bad outcome (like a big loss in a stock’s
value or missing a chance to make profit), it is seen as a bad choice and
should be avoided in the future. Reinforcement learning is the tool that helps
learn the best strategy (policy) for making decisions, depending on the state
of the environment, to earn the most rewards.

The reinforcement in reinforcement learning is the feedback, or the rewards
and punishments, from the environment. Positive rewards reinforce the
actions that led to them, encouraging the agent to repeat those actions in the
future. Negative rewards (or punishments) discourage the actions that led to
them. Over time, through a lot of trial and error, the agent learns the best
strategy or policy to perform well in the environment.

In a more technical language, reinforcement learning involves several key
components:

Agent: The learner or decision maker.

Environment: The context or world where the agent operates.

Actions: The set of all possible moves the agent can make.

States: The situation the agent finds itself in. It is a consequence of the
previous actions.

Reward: The feedback that the agent gets for each action. The agent’s
objective is to learn a policy that maximizes the cumulative reward
over time.

So, in reinforcement learning, the agent learns a policy, which is a mapping
from states to actions that maximize the expected sum of rewards.

Important techniques in PyTorch for RL
Some important techniques in PyTorch for Reinforcement learning are
discussed in the following section.

Stable Baseline3
Stable Baselines3 (SB3) is an open source library that provides high-quality
implementations of state-of-the-art RL algorithms in PyTorch. It is the
successor of Stable Baselines and Stable Baselines2, which were built with
TensorFlow.

The goal of Stable Baselines3 is to collect reliable implementations of RL
algorithms in one place, with unified structure and standardized code. The
algorithms are made accessible via a common interface, making it easier to
both use and understand them.

The library includes implementations of many popular reinforcement
learning algorithms, such as Proximal Policy Optimization (PPO), Soft
Actor-Critic (SAC), Advantage Actor-Critic (A2C), and Twin Delayed
DDPG (TD3).

Gymnasium

This library is a branch of OpenAI’s original Gym library, managed by its
maintainers. Gymnasium is a freely available Python library that allows for
the development and comparison of reinforcement learning algorithms. It
establishes a standard API for enabling communication between learning
algorithms and environments, and offers a set of environments that comply
with this API.

It provides a wide variety of pre-defined environments for training and
testing reinforcement learning agents, including simulations of robotics,
classic control tasks, computer games, and more.

Here is a breakdown of the main components:

Environments: OpenAI Gym provides a large set of environments
that simulate a variety of problems an RL agent needs to solve. These
environments adhere to a unified API, making it easier to develop
generic algorithms that can be applied across a range of scenarios. The
environments range from simple tasks like balancing a pole (CartPole)
or controlling a mountain car, to playing Atari video games,
navigating 2D and 3D mazes, and even playing board games like Go
and chess.

Spaces: Every gym environment comes with an action_space and an
observation_space. These spaces define the form of the agent’s
actions and observations. For example, in the CartPole environment,
the observation space represents the position and velocity of the cart
and pole, while the action space represents the possible forces applied
to the cart.

Steps: In each environment, an agent takes a step by calling the
step() function, which advances the environment by one step. This
function returns four values: the new observation, the reward, a done
flag indicating whether the episode has ended, and extra information
that can be used for debugging.

Tasks: Each environment encapsulates a task, or a goal that an agent
needs to achieve. For instance, in the CartPole environment, the task
is to balance a pole on a cart for as long as possible.

Benchmarking: OpenAI Gym also provides tools for benchmarking,
which allow you to compare the performance of different algorithms
on the same tasks.

Project 1: Stock Market Trading with RL
Here, we will illustrate how to use gym and stable baseline3 to conduct a
reinforcement learning.

Reinforcement learning in stock market trading

Objective: Development of a day trading model utilizing
reinforcement learning

Tools: Gym, Stable-baselines3, and Yfinance

Methodology: The environment incorporates Apple’s stock price over
the past 6 days. Our task is to develop a policy to:

Decide when to buy, hold, or sell the stock.

Determine the quantity to buy or sell.

Reward: The reward is the subsequent value of the portfolio after the
action has been taken.

Solution: The attached notebook provides a complete solution,
covering model development and inference1.

Exercise: Enhance the model to factor in multiple stocks. Establish a
policy to:

Determine which stocks to buy, sell, or hold.

Decide on the exact amount of each stock to buy or sell.

Transformer for reinforcement learning
There are two major transformer architectures for reinforcement learning:
The decision transformer and the trajectory transformer. In the following
section, we will discuss both in detail.

Decision transformer

At its heart, the decision transformer1 uses a different approach compared to
usual RL methods. Instead of teaching a system how to choose the best
action to get the most reward (something called a value function), the
decision transformer reformulates the problem as a sequence modeling
problem. Given a certain goal (the desired return), and information about
past actions and states, it tries to predict what actions should come next to
reach that goal. We will start with an examination of the decision
transformer, as illustrated in Figure 14.1. Here are its primary elements:

Input: The decision transformer’s input consists of Return (Rt), State
(St), and Action (at) tuples. The most recent K-step RSA (Return,
State, Action) tuples are presented as a sequence and embedded to
transform into a continuous vector representation.

Positional encoding: A process called positional encoding is utilized,
thus capturing the relative positions of the RSA elements within the
input sequence.

Transformer layers: The GPT-2 model processes the input in
autoregressive manner.

Linear layer for output: The culmination of the decision Transformer
structure is a linear layer. This layer maps the final decoder layer of
the transformer into the action space, subsequently producing a
sequence of actions to achieve the intended outcome.

Refer to the following figure:

Figure 14.1: Causal transformer

You can follow this tutorial2 for training your own decision transformer.

Trajectory transformer3

The trajectory transformer shares a similarity with the decision transformer
in that they both approach the reinforcement learning task as a sequence
learning problem. However, there are important distinctions, particularly in
how the sequence represents the action, reward, and state. Let us delve into
the details of the trajectory transformer. The architecture of the trajectory
transformer is illustrated in Figure 14.2.

Input
A trajectory, represented by τ is a sequence comprising T states, actions, and
individual rewards. This sequence can be expressed as:

τ = (s1, a1, r1, s2, a2, r2, …, sT, aT, rT)

Here, states, and actions are discretized independently. Given states of N
dimensions and actions of M dimensions, the trajectory τ is transformed into
a sequence of length T (N + M + 1):

for t = 1, ..., T

In this context, each token’s subscript represents the timestep, while the
superscripts on states and actions denote their respective dimensions. For
instance, at a given step, the states span N dimensions, denoted as s1, …sN,
and the actions occupy an M-dimensional space.

Refer to the following figure:

Figure 14.2: Trajectory transformer

The transformer model uses the GPT like structure with four decoders
layers.

Output
The model is autoregressive and outputs the sequence of states, actions and
rewards.

For a deeper understanding of trajectory transformers, kit is recommended to
explore their GitHub page4.

Conclusion
This chapter provided a comprehensive overview of RL, a powerful tool
used in many areas, including game playing, robotics, finance, and
healthcare. We explored the fundamental principles, key technical aspects,
and practical applications of RL, using a stock portfolio management
scenario as an illustrative example. We further dove into state-of-the-art RL
tools and models, such as Stable Baselines3, Gymnasium, decision
transformer, and trajectory Transformer.

To conclude, it is clear that reinforcement learning offers an incredibly
versatile and robust approach for tackling complex decision-making tasks.
transformers for RL are still in the exploratory phase; however, algorithms
like the decision transformer and the trajectory transformer have shown clear
indications of their potential. As technology advances and more efficient
algorithms are developed, the future of RL holds immense promise, pushing
the boundaries of what we can achieve in the realm of artificial intelligence.

Quiz

1. What type of machine learning is reinforcement learning?

a. Supervised Learning

b. Unsupervised Learning

c. Semi-supervised Learning

d. None of the above

2. In reinforcement learning, what is the role of the agent?

a. To provide feedback

b. To learn or make decisions

c. To perform actions

d. Both b and c

3. What are some reinforcement learning algorithms provided by
Stable Baselines3?

a. Proximal Policy Optimization, Soft Actor-Critic, Advantage
Actor-Critic, Twin Delayed DDPG

b. Decision Trees, Random Forest, Gradient Boosting

c. K-means, DBSCAN, Hierarchical Clustering

d. Linear Regression, Logistic Regression, Ridge Regression

4. What is the Gymnasium library used for?

a. It is used for development and comparison of reinforcement
learning algorithms.

b. It is used for text processing in natural language processing.

c. It is used for image processing in computer vision.

d. None of the above

5. The transformer model in the Trajectory Transformer uses the
structure similar to which model?

a. BERT

b. Transformer-XL

c. GPT

d. None of the above

6. In reinforcement learning, what is the goal of the agent?

a. To maximize the cumulative reward over time.

b. To minimize the cumulative reward over time.

c. To have a neutral effect on the cumulative reward.

d. None of the above.

7. What does the term “reinforcement” refer to in reinforcement
learning?

a. The learning process

b. The rewards and punishments from the environment

c. The actions that an agent can take

d. None of the above

8. What are the main components of reinforcement learning?

a. Agent, Environment, Actions, States, Reward

b. Dataset, Model, Training, Validation, Testing

c. Features, Target variable, Model, Training, Validation

d. None of the above

9. In the context of reinforcement learning, what is a policy?

a. A mapping from states to actions that maximize the expected
sum of rewards

b. A specific set of actions that an agent can take

c. The environment where the agent operates

d. None of the above

10. What is the primary difference between the Decision Transformer
and Trajectory Transformer?

a. They use different algorithms.

b. They represent the sequence of action, reward, and state
differently.

c. They use different types of reinforcement learning.

d. None of the above.

11. What is the purpose of the ‘step’ method in the StockTradingEnv
class?

a. To initialize the environment

b. To specify what the agent should do at each step

c. To render the environment

d. To reset the environment to its initial state

12. Which Reinforcement Learning algorithm is being used in the
provided project?

a. DQN (Deep Q-Network)

b. A2C (Advantage Actor-Critic)

c. PPO (Proximal Policy Optimization)

d. SAC (Soft Actor-Critic)

13. What kind of action space is used in the StockTradingEnv class?

a. Discrete action space

b. Continuous action space

c. MultiDiscrete action space

d. Tuple action space

14. What is ‘gym’ in the context of the provided project?

a. It’s a reinforcement learning library that allows for the creation
and manipulation of environments to train agents.

b. It’s a physical fitness related library in Python.

c. It’s a library used to download stock data.

d. It’s a machine learning algorithm used for regression analysis.

15. Which method in the StockTradingEnv class is responsible for
determining what the environment looks like at the start of each
episode?

a. render()

b. step()

c. reset()

d. close()

Answers

1. d.
2. d.
3. a.
4. a.
5. c.
6. a.
7. b.
8. a.
9. a.

10. b.
11. b.
12. c.
13. b.
14. a.
15. c.

1 https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/tree/main

2 https://huggingface.co/blog/train-decision-transformers

3 https://arxiv.org/pdf/2106.02039.pdf

4 https://github.com/jannerm/trajectory-transformer

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/tree/main
https://huggingface.co/blog/train-decision-transformers
https://arxiv.org/pdf/2106.02039.pdf
https://github.com/jannerm/trajectory-transformer

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 15
Model Export, Serving, and

Deployment

Introduction
This chapter provides a comprehensive exploration into the crucial world of
machine learning lifecycle, focusing on model serialization, export, and
deployment. The importance of grasping these concepts lies in the reality
that machine learning models, regardless of their sophistication, yield no
value unless they are effectively deployed to make predictions in real-time
applications.

Structure
The chapter is structured as follows:

System requirements

Model export and serialization

Exporting model On ONNX format

Serving model with FastAPI

Serving Pytorch model in mobile devices

Deploying HuggingFace’s transformers model on AWS

Objectives
The objective of this chapter is to provide an understanding of machine
learning model deployment, specifically focusing on PyTorch models. This
includes illustrating the processes involved in saving, loading, and
exporting PyTorch models to interoperable formats like Open Neural
Network Exchange (ONNX), as well as discussing the usage of PyTorch
Script and Pickle. The chapter also aims to guide the reader on how to
leverage FastAPI for model serving, elucidate on serving PyTorch models
on mobile devices, and offer comprehensive guidance on deploying
HuggingFace’s Transformers models on AWS using various services. The
goal is to equip readers with the knowledge and tools needed to efficiently
export, serve, and deploy machine learning models, tailored to their specific
requirements and constraints.

System resources
Please follow the following instructions for setting the system environment.
For detailed instructions on setting the environment, please follow
instructions at https://github.com/bpbpublications/Building-
Transformer-Models-with-
PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb.

Activate virtual environment:

conda activate transformer_learn

To proceed with the coding tasks outlined in this chapter, please install the
necessary packages detailed as follows:

pip3 install transformers

pip3 install datasets

pip3 install torch

pip3 install torchtext

pip3 install onnx

pip3 install onnxruntime

https://github.com/bpbpublications/Building-Transformer-Models-with-PyTorch/blob/main/General/SettingVirtualEnvironment.ipynb

pip3 install optimum

pip3 install fastapi[all]

pip3 install uvicorn[standard]

Model export and serialization
Model export refers to the process of transforming a trained machine
learning model into a format that can be used independently of the original
training environment. This format could be a simple binary file, a set of
weights, or even a more structured format such as ONNX or PyTorch
Script. On the other hand, model serialization is the process of converting
the model into a format that can be stored or transmitted over the network
and then reconstructed or deserialized back into the original model
structure.

There are various formats for model export and serialization, including
ONNX, PyTorch Script, and Pickle. ONNX provides a platform-
independent format to represent models, which can be used across various
deep learning frameworks such as PyTorch, TensorFlow, and MXNet.
PyTorch Script offers a way to serialize PyTorch models by transcribing
them into a subset of Python, and Pickle is a standard Python tool for
serialization and deserialization. In the following section, we will discuss
model export in the PyTorch Format and ONNX format.

PyTorch model export and import
For saving and loading the PyTorch models, there are three core
functionalities. These three key functions are crucial when it comes to
storing and retrieving models are as follows.

torch.save
This function enables the saving of serialized objects to disk, utilizing
Python’s pickle utility for the serialization process. It can handle models,
tensors, and dictionaries comprising various objects. We can use this
function to save the entire module or just the state_dict of the module.

Let us understand more about the state_dict. In PyTorch, a state_dict is
essentially a Python dictionary object that maps each layer in the model to
its corresponding parameters (tensors). It is worth noting that only layers
with learnable parameters (convolutional layers, linear layers, and so on)
and registered buffers (batchnorm’s running mean) have entries in the
model’s state_dict. Optimizers also have a state_dict, which contains
information about the optimizer’s state, as well as the hyper-parameters
used.

torch.load
Leveraging pickle’s unpickling abilities, this function deserializes pickled
object files back into memory.

torch.nn.Module.load_state_dict
This function is utilized to load a model’s parameter dictionary using a
deserialized state_dict.

Let us understand this through an example:

Declare the model: Here, we are declaring simple CNN model for
illustration:

import torch

import torch.nn as nn

import torch.nn.functional as F

class SimpleCNN(nn.Module):

 def __init__(self):

 super(SimpleCNN, self).__init__()

 self.conv1 = nn.Conv2d(3, 6, 5) #

Assuming input image channel=3 (RGB), 6 output

channels, 5x5 kernel

 self.pool = nn.MaxPool2d(2, 2)

 self.conv2 = nn.Conv2d(6, 16, 5)

 self.fc1 = nn.Linear(16 * 5 * 5, 120) #

5*5 from image dimension

 self.fc2 = nn.Linear(120, 84)

 self.fc3 = nn.Linear(84, 10) # Assuming

10 classes for output

 def forward(self, x):

 x = self.pool(F.relu(self.conv1(x)))

 x = self.pool(F.relu(self.conv2(x)))

 x = x.view(-1, 16 * 5 * 5) # Reshape

before passing to fc layer

 x = F.relu(self.fc1(x))

 x = F.relu(self.fc2(x))

 x = self.fc3(x)

 return x

Initialize the model

model = SimpleCNN()

When saving the state_dict, we utilize the model.state_dict() method to
store the model’s learnable parameters. It is key to note that only the
model’s tunable parameters are being saved in this process.

Save model state_dict

torch.save(model.state_dict(),

"simple_cnn_state_dict.pt")

When loading and displaying the state_dict, it is important to recognize
that the model object must be declared prior to loading the state_dict. The
file simple_cnn_state_dict.pt does not contain any information linked to
the model class. Another important point is, we must call model.eval before
using the model for inference, and otherwise you will see inconsistencies in
your evaluation.

Refer to the following code:

Create a new model object

model2 = SimpleCNN()

Load the state_dict into the model

model2.load_state_dict(torch.load("simple_cnn_stat

e_dict.pt"))

model2.eval()

Print model's state_dict

print("Model's state_dict:")

for param_tensor in model2.state_dict():

 print(param_tensor, "\t", model.state_dict()

[param_tensor].size())

The output demonstrates that the state_dict is essentially a dictionary
containing learnable parameters. It becomes clear that the state_dict
encompasses the weights and biases for each layer within the neural
network:

Model's state_dict:

conv1.weight torch.Size([6, 3, 5, 5])

conv1.bias torch.Size([6])

conv2.weight torch.Size([16, 6, 5, 5])

conv2.bias torch.Size([16])

fc1.weight torch.Size([120, 400])

fc1.bias torch.Size([120])

fc2.weight torch.Size([84, 120])

fc2.bias torch.Size([84])

fc3.weight torch.Size([10, 84])

fc3.bias torch.Size([10])

The key question that we must address is, Why is it standard practice to
save the state_dict rather than the entire model? Several reasons
substantiate this approach:

Versatility: The state_dict is a Python dictionary object, hence it is
easy to manage, interpret, and if required, modify. It gives the liberty
to readily alter the parameters’ values before injecting them into a
different model.

Device compatibility: The state_dict can be loaded onto any device
regardless of its original save location. This facilitates better
portability and sharing of models.

Efficiency in storage: Typically, the state_dict takes up lesser disk
space as it solely contains the model weights, unlike the entire model
structure.

Model autonomy: By saving the state_dict, we have the option to
construct models that have similar structures but do not necessarily
belong to the same class. This can prove advantageous in scenarios
involving transfer learning.

Saving multiple models
There may be instances where your comprehensive model is composed of
multiple neural networks. Take Generative Adversarial Network (GAN)
as an example, which comprises two distinct networks: the generator and

the discriminator. In such cases, it is recommended to store the entire model
as a single dictionary. Here is a guide on how you can achieve this:

torch.save({

 'first_model_state':

model1.state_dict(),

 'second_model_state':

model2.state_dict(),

 'first_optimizer_state':

optimizer1.state_dict(),

 'second_optimizer_state':

optimizer2.state_dict(),

 # ... any other states

 }, file_path)

To load the model back to memory:

initialize your models and optimizers first

model1 = Model1Class(*args, **kwargs)

model2 = Model2Class(*args, **kwargs)

optimizer1 = Optimizer1Class(*args, **kwargs)

optimizer2 = Optimizer2Class(*args, **kwargs)

load the states from the file

saved_states = torch.load(file_path)

model1.load_state_dict(saved_states['first_model_s

tate'])

model2.load_state_dict(saved_states['second_model_

state'])

optimizer1.load_state_dict(saved_states['first_opt

imizer_state'])

optimizer2.load_state_dict(saved_states['second_op

timizer_state'])

switch to evaluation mode or training mode

model1.eval() # or model1.train()

model2.eval() # or model2.train()

Exporting model on ONNX Format
ONNX provides an open-source format for AI models, both deep learning
and traditional ML. It defines an extensible computation graph model, as
well as definitions of built-in operators and standard data types.

The main advantages of ONNX are:

Interoperability: ONNX is supported by a variety of frameworks
such as PyTorch, TensorFlow, MXNet, and tools like NVIDIA’s
TensorRT. You can train a model in one framework, export it to
ONNX, and use it in another framework for inference.

Portability: Models in ONNX format can be deployed on a variety of
platforms, from cloud-based servers with powerful GPUs to edge
devices like mobile phones and IoT devices.

Performance: Some runtimes, like ONNX Runtime, can optimize
the execution of the computation graph, leading to performance
improvements.

To export a PyTorch model to ONNX format, you can use the
torch.onnx.export function. The following code provides example of
exporting and using the ONNX model for inference. When exporting a

model to ONNX format, you need to provide a dummy input that matches
the input your model expects. By passing through the dummy input, the
exporter can infer the shape and data type of the input tensor, and these are
then used in the exported ONNX graph as metadata. This allows ONNX
runtime to understand what kind of input the model expects, including the
shape and type.

Code:

import torch

import torchvision

dummy_input = torch.randn(1, 3, 224, 224)

model =

torchvision.models.alexnet(pretrained=True)

torch.onnx.export(model, dummy_input,

"model.onnx")

Inference

import onnxruntime

import numpy as np

ort_session =

onnxruntime.InferenceSession('model.onnx')

compute ONNX Runtime output prediction

ort_inputs = {ort_session.get_inputs()[0].name:

np.random.randn(1,3,224,224).astype(np.float32)}

ort_outs = ort_session.run(None, ort_inputs)

The accompanying notebook provides additional example of exporting and
using HuggingFace models in ONNX.

Serving model with FastAPI
FastAPI is a modern, fast (high-performance), web framework for building
APIs with Python 3.6+, based on standard Python type hints. It was
developed as an efficient alternative to existing Python frameworks, such as
Flask and Django, providing significant performance benefits and
simplified syntax.

FastAPI takes advantage of Python’s type checking, which makes your code
more robust and simplifies debugging. It is also designed to work well with
modern frontend JavaScript frameworks, which often consume RESTful
APIs.

Key features of FastAPI include automatic interactive API documentation,
inherent validation using Pydantic models, OAuth2 support with JWT
tokens and password hashing, CORS handling, customizable exception
handling, and more. It is asynchronous friendly and allows the usage of
WebSockets and other web protocols.

Benefits of FastAPI
Some benefits of FastAPI are as follows:

Performance: FastAPI is one of the fastest Python frameworks
available, only lower than Starlette and Uvicorn, upon which it is
built. It is faster than traditional frameworks and can even compete
with NodeJS and Go.

Easy to code: FastAPI’s use of Python type hints and Pydantic
models makes it easier to define API schemas, validate request data,
and extract request data such as JSON fields, path parameters, and
query parameters.

Automatic API documentation: FastAPI generates an interactive
API documentation UI automatically, making it easier for developers
and users to understand and try out your API.

Support for modern Python features: FastAPI supports
asynchronous request handling, making it suitable for WebSockets

and other scenarios requiring asynchronicity. It also supports HTTP/2
and WebSockets.

Robustness: Thanks to automatic data validation and serialization
using Pydantic, and Python’s type hints, FastAPI applications tend to
be bug-resistant and easier to debug and maintain.

Application of FastAPI for model serving
FastAPI is an excellent choice for serving machine learning models because
it can quickly process incoming requests and make predictions using the
model. It is also straightforward to set up routes that accept specific data
types (for example, files for image processing models, JSON data for text
or tabular models) and generate meaningful responses.

FastAPI’s async capabilities make it possible to handle multiple requests
concurrently, crucial for model serving scenarios where high throughput is
necessary. Moreover, its support for Pydantic models and automatic
validation ensures that the data sent to the model for prediction is correctly
formatted, reducing the chance of errors.

Project: FastAPI for semantic segmentation model serving
We want to create model serving app for the food segmentation project we
did in the Chapter 8, Computer Vision Tasks with Transformers. In the
context of our food segmentation model, FastAPI provides a simple and
efficient way to create an API endpoint for processing images. Users can
send an image to the server, which processes the image, makes predictions
using the trained segmentation model, and returns the segmented image.

Follow the given steps to do the same:

1. Model initialization: The Segformer model and its feature extractor
are loaded when the FastAPI app is initialized. This allows the model
to remain in memory, avoiding the time cost of reloading the model
with each request.

Code:

feature_extractor =

SegformerFeatureExtractor()

model =

SegformerForSemanticSegmentation.from_pretrain

ed(

 "prem-timsina/segformer-b0-finetuned-

food",

 id2label=id2label,

 label2id=label2id

)

2. API route definition: FastAPI allows you to define API routes using
Python decorators. In this case, the @app.post("/segment/")

decorator is used to define a route that accepts POST requests at the
“/segment/" endpoint:

@app.post("/segment/")

async def segment_image(file: UploadFile):

3. Image processing: The image sent in the request is read and
converted into a format that the model can accept. This involves
reading the bytes of the uploaded image and converting it into a PIL
Image object.

4. Model prediction: The image is then passed through the feature
extractor and the model to get the semantic segmentation prediction.
The prediction is a 2D array with the same dimensions as the input
image, where each pixel is assigned a class label.

5. Result conversion: The raw prediction is then converted into an
image, where each class label is assigned a specific color, creating a
segmented image.

6. Response generation: The segmented image is returned to the client
as a response. With FastAPI, it is straightforward to create various
response types, including JSON, HTML, and in this case, image
files.

The complete code for both server and client-side operations can be found
in the corresponding GitHub repository. For deployment on the server side,

the following command can be executed to launch the application:

uvicornmain:app --host localhost --port 8000

You can interact with the API endpoint through RESTful calls. Sample code
for this process is available in the corresponding GitHub repository. In
summary, FastAPI provides an efficient and developer-friendly way to
serve machine learning models as APIs. Its performance, ease of use, and
modern features make it a top choice for such use cases.

Serving Pytorch model in mobile devices
Serving a PyTorch model on mobile devices involves converting the model
into a format that can be efficiently executed on mobile hardware. There are
several ways to accomplish this, but here are two of the main methods:

TorchScript: TorchScript is a tool offered by PyTorch that lets you
turn your Python machine learning models into a form that can be run
in a separate C++ program. This is helpful when you want to use your
model in a different environment like a mobile or embedded device.
To use TorchScript, you go through these steps:

1. First, you adjust and improve your model in Python using either
torch.jit.trace or torch.jit.script. These tools help you make
your model more efficient and ready for TorchScript.

2. Next, you turn the modified model into a script module and save
it as a file using torch.jit.save. This process is called
serialization.

3. Finally, in your mobile application, you load this script module
file using torch::jit::load.

4. By following these steps, you can use the PyTorch mobile library
to run your machine learning model on iOS or Android devices.

Now, you have an exercise. There is a tutorial that shows you
how to serve a specific model (DeepLabV3) on an iOS app. You

can find it here
https://pytorch.org/tutorials/beginner/deeplabv3_on_ios.html.

Your task is to go through this tutorial and apply what you learn
to create an iOS app that serves a different model: the 'prem-
timsina/segformer-b0-finetuned-food' model. This exercise is
an opportunity for you to apply what you have learned about
TorchScript and PyTorch mobile library in a practical setting.

5. ONNX and core ML: Another option is to export your PyTorch
model to the ONNX format, and then convert the ONNX model
to Core ML format for use on iOS. This requires using the ONNX
and Core ML tools, but allows your model to take advantage of
the performance optimizations in Core ML. This approach might
not support all types of PyTorch models, as the conversion from
PyTorch to ONNX to Core ML might not support all operations
used in the model. Here are the basic steps to use ONNX and
Core ML:
a. Export your PyTorch model to ONNX format using

torch.onnx.export.

b. Convert the ONNX model to Core ML format using the
ONNX-Core ML converter.

c. In your iOS app, load the Core ML model using the Core ML
APIs.

It is important to remember that the performance of your model on mobile
devices may vary, depending on the model and device. Some models might
need extra tuning to run smoothly on mobile. That is why it is crucial to test
your model in the environment you plan to deploy it in, to make sure that it
is performing well and accurately.

Your task is to look at a tutorial about integrating a Core ML model into an
app:
(https://developer.apple.com/documentation/coreml/integrating_a_core
_ml_model_into_your_app). Your goal is to understand how to serve a

https://pytorch.org/tutorials/beginner/deeplabv3_on_ios.html
https://developer.apple.com/documentation/coreml/integrating_a_core_ml_model_into_your_app

PyTorch model using Core ML, and apply this knowledge to create an iOS
app that serves the ‘prem-timsina/segformer-b0-finetuned-food’ model.

Deploying HuggingFace’s Transformers model on AWS
Deploying a transformers model on AWS can be done in several ways,
depending on your requirements. Here we discuss two general approaches:
deployment using Amazon SageMaker and using AWS Lambda and
Amazon API Gateway.

Deployment using Amazon SageMaker
Amazon SageMaker is a fully managed machine learning service that
provides developers and data scientists with the ability to build, train, and
deploy machine learning models quickly. It provides support for deploying
HuggingFace Transformer models directly. Here is one approach to deploy
a pre-trained model:

1. Create a SageMaker model: First, you need to create a SageMaker
model that specifies the S3 location of your model artifacts and the
Docker image containing your inference code. HuggingFace
provides pre-built Docker images for this purpose. Refer to the
following code:

from sagemaker.huggingface import

HuggingFaceModel

huggingface_model = HuggingFaceModel(

 # S3 path where the trained model is saved

 model_data='s3://my-

bucket/path/model.tar.gz',

 # IAM role with the necessary permissions

 role='MySageMakerRole',

 # Transformers version used

 transformers_version='4.6',

 # PyTorch version used

 pytorch_version='2.0',

 # Python version used

 py_version='py3'

)

2. Create a SageMaker endpoint: Next, you need to create a
SageMaker endpoint which will serve your model for real-time
inference:

predictor = huggingface_model.deploy(

 initial_instance_count=1,

 instance_type='ml.m5.large'

)

3. Inference: Once your endpoint is InService, you can use the predict
function of the predictor object to send inference requests to your
endpoint:

result = predictor.predict("Hello, world!")

Deployment using AWS Lambda and Amazon API gateway
AWS Lambda is a service that lets you run code without provisioning or
managing servers, while Amazon API Gateway is a fully managed service
that makes it easy for developers to create, publish, maintain, monitor, and
secure APIs at any scale. These two services can be used in tandem to serve
a machine learning model for inference. Follow the given steps:

1. Package your model and inference code: First, you need to
package your trained model along with the inference code (a script
that loads the model and makes predictions using it) into a zip file.
This zip file will be uploaded to AWS Lambda.

2. Create a Lambda function: Next, you create a new Lambda
function, choosing Python 3.8 as the runtime and uploading the zip
file you created earlier. You need to specify the function to call
within your script when the Lambda function is triggered (for
example, lambda_handler).

3. Create an API using API gateway: You then create a new API
using API gateway, setting the trigger of your Lambda function to be
this API. This means that every time your API is hit, your Lambda
function will be triggered to make a prediction.

4. Inference: Now you can make POST requests to your API, passing
the input data for your model in the body of the request. The API
Gateway triggers the Lambda function, which loads your model,
makes a prediction, and returns the result.

Remember that using AWS Lambda for deploying machine learning models
has limitations, especially in terms of payload size (the request/response
body must not exceed 6 MB) and execution time (the maximum execution
duration per request is 15 minutes). If your model is larger than the allowed
limits, consider using Amazon SageMaker instead.

Note: For a more comprehensive understanding, please refer to the
detailed documentation available at
https://huggingface.co/docs/sagemaker/index.

Conclusion
This chapter has provided an in-depth exploration of key concepts such as
model export and serialization, demonstrating methods including ONNX,
PyTorch Script, and Pickle. We delved into the intricacies of saving and
loading PyTorch models, highlighting the essential roles of torch.save,
torch.load, and torch.nn.Module.load_state_dict, and the pivotal role of
the state_dict.

Additionally, the process and benefits of exporting PyTorch models to
ONNX format were discussed, emphasizing the advantages of
interoperability, portability, and performance. We then examined the

https://huggingface.co/docs/sagemaker/index

application of FastAPI for model serving, showcased through the creation
of a model serving application for a food segmentation model.
Subsequently, the potential of serving PyTorch models on mobile devices
was discussed, comparing TorchScript to ONNX and Core ML, and
applying these concepts through the creation of iOS apps serving the 'prem-
timsina/segformer-b0-finetuned-food' model.

Finally, deploying Hugging Face’s Transformers model on AWS was
explored, using methods like Amazon SageMaker, AWS Lambda, and
Amazon API Gateway, providing a detailed guide on effectively leveraging
these services for model deployment.

It is important to stress that the choice of model serving, export, and
deployment methods should be tailored to your specific use case, model
type, intended audience, and infrastructure constraints, with the hope that
this chapter provides a comprehensive foundation for navigating these
crucial aspects of the machine learning lifecycle.

Quiz

1. What is model serialization in the context of machine learning?

a. Converting raw data into machine-readable form.

b. Packaging a model into a format that can be stored or
transferred.

c. Automating the process of tuning model parameters.

d. Developing machine learning models.

2. How does ONNX enhance the usability of machine learning
models?

a. It cleans the data for the models

b. It serves the models

c. It allows models to be used across different frameworks

d. It trains the models

3. What is FastAPI used for?

a. Data Visualization

b. Model Training

c. Building APIs

d. Data Cleaning

4. In the context of mobile applications, why is it beneficial to
deploy machine learning models?

a. To provide a user interface for the model

b. To enable on-device predictions

c. To clean the data for the model

d. To train the model

5. What does the following part of the code do?

outputs = model(**input_tensor)

predictions =

outputs.logits.argmax(dim=1).squeeze().cpu().n

umpy()

a. It performs the segmentation on the input image and converts
the output to a numpy array.

b. It computes the loss function of the model.

c. It initializes the transformer model.

d. It generates new input tensors for the model.

6. What is the purpose of the following decorator in FastAPI?

@app.post("/segment/")

a. It defines a route for HTTP GET requests.

b. It sets up an HTTP POST endpoint at the route “/segment/”.

c. It allows the function to handle both GET and POST requests.

d. It provides a name for the function below it.

7. In the context of the provided FastAPI code, why is the “async”
keyword used before defining the “segment_image” function?

async def segment_image(file: UploadFile)

a. It turns the function into a coroutine which allows for non-
blocking IO operations.

b. It allows the function to run on multiple threads.

c. It allows the function to be run in a separate process for parallel
execution.

d. It forces the function to complete execution before any other
functions can be run.

8. Which of the following statements about TorchScript is true?

a. TorchScript transforms your Python machine learning models
into JavaScript code.

b. TorchScript requires rewriting your model’s architecture in
C++.

c. TorchScript uses either torch.jit.trace or torch.jit.script to
prepare your model.

d. TorchScript is a tool exclusively used for deploying models on
servers.

9. What is the correct sequence of model conversion for deploying a
PyTorch model on an iOS device using ONNX and Core ML?

a. PyTorch -> Core ML -> ONNX

b. PyTorch -> ONNX -> Core ML

c. ONNX -> PyTorch -> Core ML

d. Core ML -> ONNX -> PyTorch

Answers

1. b.
2. c.
3. c.
4. b.
5. a.
6. b.
7. a.
8. c.
9. b.

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 16
Transformer Model

Interpretability, and Experimental
Visualization

Introduction
Machine learning interpretability is about understanding why a model
chooses certain results. It helps us explain model outcomes. Deep learning
models, like Transformers, can be very complicated. As they grow more
advanced, it becomes harder to know why they decide certain things. This is
especially important in areas like healthcare or self-driving cars, where
model decisions can really affect people’s lives. To use these models
responsibly, we must understand their decisions. By understanding how a
model thinks, we can make sure it is deciding things for good reasons and
correct any wrong or biased choices.

Similarly, experimental logging and visualization help in fine-tuning and
understanding machine learning models. Logging is recording how the
model behaves during training, and visualization shows this information in
charts or graphs. These tools make it easier to find and solve issues and get a
clear picture of how the model operates. As models and datasets grow
complex, it is crucial to log and visualize data to ensure things run correctly.

Considering the intricacy of Transformer models, in this chapter, we will
explore tools and methods to interpret them. We will also see how to make

these complex models more understandable. Plus, we will dive into tools
that visually represent experimental data.

Structure
The book chapter is organized as:

Explainability vs. interpretability

Tools for explainability and interpretability

CAPTUM for interpreting the transformer prediction.

TensorBoard for PyTorch models

Objectives
In this chapter, we will explore the interpretation and explanation of
transformer models. The chapter draws a clear line between interpretability
—understanding a model’s inner processes—and explainability—conveying
these processes in relatable terms. Given the increasing use of transformer
models in critical sectors like healthcare and autonomous vehicles, the
importance of transparency is emphasized. We highlight tools like
experimental logging and visualization to shed light on a model’s behavior
during training. The chapter introduces key tools like CAPTUM, which
interprets Transformer predictions, and TensorBoard for PyTorch Models,
aiding in making complex models more accessible and transparent.

Explainability vs. interpretability
Interpretability and explainability are two important concepts in the field of
machine learning, often used interchangeably, but they do have distinct
differences.

Interpretability is the degree to which a human can understand the inner
workings of a machine learning model or how the model makes decisions
based on given inputs. An interpretable model allows you to predict what is
going to happen, given a change in input or algorithmic parameters. For
example, linear regression models are considered highly interpretable
because it is clear how changes in the input variables affect the output.

Explainability, on the other hand, is the extent to which a machine learning
model’s behavior can be explained in human-understandable terms. It
focuses on providing understandable descriptions of how a model arrives at
a decision, even if the internal workings of the model itself are not fully
understood or transparent. This is often the case with complex models like
neural networks and ensemble models. For instance, explaining a decision
made by a deep learning model in terms of which features were most
influential in driving the prediction. In the following section, we will discuss
both interpretability and explainability in the context of transformer model.

Interpretability
Let us consider the self-attention mechanism in a transformer, which allows
the model to focus on different words when making predictions. In the
context of interpretability, we could look at the attention scores the model
assigns when processing the word intriguing.
If the model is functioning correctly, it should pay attention to the word
intriguing when trying to determine the sentiment of the sentence. We can
visualize this with an attention map. The attention map might show high
attention scores between intriguing and not only, and between intriguing and
but also. This is because these phrases indicate that the word intriguing is
being used in a positive context.

Explainability
In the context of explainability, we want to describe how the model arrived
at its final prediction. For our sentiment analysis example, let us say the
model correctly predicts that the sentiment of the sentence is positive.

An explainability tool like LIME could help us understand this decision.
LIME creates a simplified, locally linear version of the model around the
prediction we are interested in explaining. It perturbs the input sentence, gets
new predictions, and weighs them based on their proximity to the original
sentence.

LIME might show us that the words intriguing and suspense were highly
influential in the model’s decision to classify the sentiment as positive.

Tools for explainability and interpretability

When dealing with Transformer models, we have several tools and
techniques that aid both in interpretability and explainability, such as:

Attention maps: These are widely used for both interpretability and
explainability of Transformer models. They allow us to visualize the
attention weights in each layer of the model, highlighting the input
tokens that each output token is attending to. For example, in a
language translation task, an attention map can show which words in
the source sentence are being considered while generating each word
in the target sentence.

BERTViz: This tool is specifically designed for the BERT model, a
type of Transformer model. It visualizes attention in the model,
helping with both interpretability (understanding how different parts
of the model are interacting) and explainability (understanding which
parts of the input sentence were most important for a particular
output).

ExBERT: This tool allows interactive exploration of BERT models. It
provides multiple ways to analyze the model, such as neuron
activations and attention distributions, thus aiding in both
interpretability and explainability.

Local Interpretable Model-agnostic Explanations (LIME): While
not specifically designed for Transformers, LIME can be used with
any model to help explain individual predictions. It works by
approximating the model locally with an interpretable one and can
thus provide insights into what features the model is using to make
predictions.

Captum: Captum is a model interpretability library for PyTorch. It
allows researchers and developers to understand how the data is being
used and transformed within their models. Captum offers a wide
variety of attribution algorithms that provide insights into the
importance of individual features, and how they contribute to model
predictions.

Several other notable tools that should be mentioned include Eli51, SHAP2,
and TensorFlow Model Analysis (TFMA)3. In the next section, we will

demonstrate how we can use Captum for interpretability and explainability.

CAPTUM for interpreting Transformer prediction
In the following section, we will use Captum with the model distilbert-
base-uncased-finetuned-sst-2-english to interpret the sentiment analysis
of a given text. Let us explain the key components and how they work.

Model loading
We are using the pre-trained DistilBERT model fine-tuned for sentiment
analysis (SST-2). This model classifies given text into positive or negative
sentiment:

 # Pre-trained model and tokenizer

model_path = 'distilbert-base-uncased-finetuned-

sst-2-english'

model =

DistilBertForSequenceClassification.from_pretrained

(model_path)

tokenizer =

DistilBertTokenizer.from_pretrained(model_path)

model.eval()

Input preparation
The function construct_input_and_baseline is designed to take a textual
input and transform it into tensors that can be fed into a model, such as
DistilBERT. In addition to the model’s input tensor, the function also
constructs a baseline tensor. Let us break down what is happening here,
specifically focusing on the concept of the baseline tensor.

Input Tensor
Refer to the following:

Text tokenization: The input text is tokenized into a sequence of
integers using the model’s tokenizer. This sequence represents the

words and sub words in the original text.

Add special tokens: Special tokens [CLS] and [SEP] are added at the
beginning and end of the sequence, respectively.

Input IDs: The resulting sequence of integers (input_ids) is
converted into a tensor that can be fed into the model.

Baseline Tensor
The baseline tensor is a reference input that represents the absence or neutral
state of the features you are trying to interpret. In the context of NLP, a
common choice for the baseline is a sequence of padding tokens. Refer to
the following:

Baseline Token ID: The ID corresponding to the padding token is
retrieved (baseline_token_id).

Create Baseline Sequence: The baseline sequence is created by
replacing the text’s tokens with the padding token ID. The special
tokens [CLS] and [SEP] are retained at the beginning and end of the
sequence.

Baseline Input IDs: The resulting sequence (baseline_input_ids) is
converted into a tensor.

Example:

Suppose the input text is “I love movies”, and the corresponding token IDs
after tokenization are [10, 18, 27]. The constructed input tensor and
baseline tensor might look like this:

Input IDs: [CLS_ID, 10, 18, 27, SEP_ID]

Baseline Input IDs: [CLS_ID, PAD_ID, PAD_ID, PAD_ID, SEP_ID]

Why Baseline Tensor
The baseline tensor is used in certain attribution methods like Integrated
Gradients to understand how much each feature contributes to the difference
between the model’s prediction for the actual input and the baseline. By
comparing the model’s behavior on the input to its behavior on this baseline,
you can interpret how important each feature is for the prediction.

In summary, the following code snippet is constructing both the actual input
to the model (reflecting the text you want to analyze) and a baseline input
(reflecting a neutral or non-informative version of the text). The comparison
between these two inputs will be used to understand how the model is
interpreting the text.

The text and baseline are tokenized and converted into tensors. A baseline is
often a reference input that represents the absence of the features of interest
(for example, all padding tokens):

def construct_input_and_baseline(input_text: str):

 """Constructs input and baseline tensors for

the given text."""

 max_length = 768

 baseline_token_id = tokenizer.pad_token_id

 sep_token_id = tokenizer.sep_token_id

 cls_token_id = tokenizer.cls_token_id

 text_ids = tokenizer.encode(input_text,

max_length=max_length, truncation=True,

add_special_tokens=False)

 input_ids = [cls_token_id] + text_ids +

[sep_token_id]

 baseline_input_ids = [cls_token_id] +

[baseline_token_id] * len(text_ids) +

[sep_token_id]

 token_list =

tokenizer.convert_ids_to_tokens(input_ids)

 return torch.tensor([input_ids], device='cpu'),

torch.tensor([baseline_input_ids], device='cpu'),

token_list

Constructing input and baseline

input_ids, baseline_input_ids, all_tokens =

construct_input_and_baseline(text)

Layer Integrated Gradients
The code uses an attribution method to clarify how a model’s predictions are
influenced by different parts of its input, which are tokens in this case. Here
is a breakdown of its key components:

Model output function: The function named model_output is a
wrapper around the model’s forward pass. It extracts the prediction
scores (often referred to as logits) from the model’s output.

Setting up layer integrated gradients: The
LayerIntegratedGradients function is initialized with two primary
components:

The model’s forward function, represented by model_output.

The specific layer of the model we’re interested in examining,
which is the embeddings layer (model.distilbert.embeddings).

Attribution calculation:

The code computes attributions for both sentiment classes (positive
and negative). Attributions essentially give us a score, indicating
how much each token influenced the prediction for each sentiment
class.

Attribution summarization and normalization:

The importance scores (attributions) for each token are aggregated
by summing across the embedding dimensions.

These aggregated scores are then normalized to ensure that their
magnitudes are comparable. The outcome is a 1D tensor, where
each value signifies the relative significance of its corresponding
token. For instance, if we are looking at negative sentiment, a
higher score would mean that the token strongly suggests a
negative sentiment.

Choosing attributions based on prediction:

The model determines whether a given text is positive or negative
in sentiment.

Depending on this prediction, the code selects the corresponding
set of attributions, either positive or negative, to analyze further.

In essence, this approach provides an in-depth look into which words or
phrases have most sway the model’s sentiment prediction. Refer to the
following:

#Model Output Function

def model_output(inputs):

 return model(inputs)[0]

#Setting Up Layer Integrated Gradients

lig = LayerIntegratedGradients(model_output,

model.distilbert.embeddings)

Attribution Calculation

target_classes = [0, 1]

attributions = {}

delta = {}

Calculating attributions for both classes

We will calculate the attributions for each class

for target_class in target_classes:

 attributions[target_class], delta[target_class]

= lig.attribute(

 inputs=input_ids,

 baselines=baseline_input_ids,

 target=target_class,

 return_convergence_delta=True,

 internal_batch_size=1)

#Attributions summarization and normalization

neg_attributions =

attributions[0].sum(dim=-1).squeeze(0) /

torch.norm(attributions[0])

pos_attributions =

attributions[1].sum(dim=-1).squeeze(0) /

torch.norm(attributions[1])

Choosing Attribution based on the Prediction

pred_prob, pred_class = torch.max(model(input_ids)

[0]), int(torch.argmax(model(input_ids)[0]))

Selecting the attributions based on the predicted

class

summarized_attr = pos_attributions if pred_class ==

1 else neg_attributions

Visualization
Captum provides visualization tools like viz.visualize_text to represent
the attributions visually. It shows the tokens and their corresponding
importance scores, highlighting the tokens that are more influential in the
model’s decision. Let us understand the important aspect of the following
code:

true_class=None: This indicates the actual or ground-truth class for
the input text. Since we are not providing any ground truth in this
context, it is set to None.

raw_input_ids=all_tokens: This provides the tokenized version of the
input text (all_tokens) which helps in mapping attributions back to
their respective words/tokens in the visualization.

convergence_score=delta[pred_class]: This score measures the
quality or reliability of the calculated attributions. A smaller
convergence score indicates that the attributions are more reliable.

Refer to the following code:

score_vis = viz.VisualizationDataRecord(

word_attributions=summarized_attr,

 pred_prob=pred_prob,

 pred_class=pred_class,

 true_class=None,

 attr_class=text,

attr_score=summarized_attr.sum(),

 raw_input_ids=all_tokens,

convergence_score=delta[pred_class])

Visualizing the result

viz.visualize_text([score_vis])

Figure 16.1 is the captum visualization. As you can see, words awesome and
enjoyed has highest attributions score for the positive sentiment predictions:

Figure 16.1: The result of captum visualization

TensorBoard for PyTorch models
TensorBoard, initially developed for TensorFlow, has become a vital
visualization toolkit for neural network training across different frameworks.
For PyTorch enthusiasts, the torch.utils.tensorboard integration allows
them to leverage TensorBoard’s robust visualization capabilities, ranging
from monitoring training milestones to examining learned embeddings. To
initiate TensorBoard, input tensorboard --logdir=runs into the terminal. By
default, access to TensorBoard is available at http://localhost:6006.

You can visualize a variety of things related to your PyTorch models and
training sessions. Here are the key visualizations you can achieve using
TensorBoard with PyTorch:

Scalars: Scalars refer to simple, single-number metrics that you track
over time or iterations. They are typically used to log and visualize
metrics that change with each epoch or iteration, such as training loss,
validation accuracy, learning rate, and so on. The following code
shows how you can visualize the training loss over the 100 epochs:

import torch

from torch.utils.tensorboard import

SummaryWriter

http://localhost:6006/

Create a dummy model and optimizer

model = torch.nn.Linear(10, 1)

optimizer = torch.optim.SGD(model.parameters(),

lr=0.01)

Instantiate SummaryWriter

writer = SummaryWriter()

for epoch in range(100):

 # Dummy training loop

 optimizer.zero_grad()

 output = model(torch.randn(32, 10))

 loss = ((output - torch.randn(32,

1))**2).mean()

 loss.backward()

 optimizer.step()

 # Log loss to TensorBoard

 writer.add_scalar("Training loss", loss,

epoch)

Close the writer

writer.close()

Histogram: Visualize the distribution of tensor values, for example,
layer weights. The following code demonstrates how you can visualize
the model’s named parameter as histogram:

for name, weight in model.named_parameters():

 writer.add_histogram(name, weight, epoch)

Text: Log textual information. The following code snippet shows how
you can log textual data:

writer.add_text('Loss_Text', 'The training loss

was very low this epoch', epoch)

Distribution: It is just a smother version of the histogram. You can
use the same code you use for histogram.

Visualizing model graphs: Beyond just scalars, you can visualize the
architecture of your model. The following code shows how you can
visualize the Bert Architecture:

import torch

from transformers import BertModel,

BertTokenizer

from torch.utils.tensorboard import

SummaryWriter

Load pre-trained BERT model and tokenizer

model_name = "bert-base-uncased"

bert_model =

BertModel.from_pretrained(model_name)

tokenizer =

BertTokenizer.from_pretrained(model_name)

class SimpleBERT(torch.nn.Module):

 def __init__(self, bert_model):

 super(SimpleBERT, self).__init__()

 self.bert = bert_model

 def forward(self, input_ids,

attention_mask=None, token_type_ids=None):

 outputs = self.bert(input_ids,

attention_mask=attention_mask,

token_type_ids=token_type_ids)

 return outputs.last_hidden_state

model = SimpleBERT(bert_model)

Instantiate the SummaryWriter

writer = SummaryWriter()

Create a dummy input for the BERT model

tokens = tokenizer("Hello, TensorBoard!",

return_tensors="pt")

input_ids = tokens["input_ids"]

attention_mask = tokens["attention_mask"]

Add the BERT model graph to TensorBoard

writer.add_graph(model, [input_ids,

attention_mask])

Close the writer

writer.close()

Embedding: Using this functionality, you can visualize the
embedding of tokens in 3-D space. When you view the embeddings in
TensorBoard, you will see each token (word/sub-word) positioned in
the embedding space. The similar word should appear near whereas
dissimilar word should appear further. Refer to the following code:

with torch.no_grad():

 embeddings = model(input_ids,

attention_mask=attention_mask)

Just as an example, using the tokens as

metadata

Note: We remove the [CLS] and [SEP] tokens

for visualization.

metadata = [token for token in

tokenizer.tokenize(text)]

embeddings = embeddings[0, 1:-1, :] # Removing

embeddings for [CLS] and [SEP]

writer.add_embedding(embeddings,

metadata=metadata)

Close the writer

writer.close()

PR curves: For understanding classification performance. Refer to the
following code:

probs = model(input_data)

writer.add_pr_curve('pr_curve', true_labels,

probs, epoch)

Hyperparameters: Visualize hyperparameters. Refer to the following
code:

hparams = {'lr': 0.1, 'batch_size': 32}

metrics = {'accuracy': 0.8}

writer.add_hparams(hparams, metrics)

Profiling: In the case of PyTorch’s torch.profiler, it is specifically
designed to profile the execution of PyTorch models. When you
profile a PyTorch model, here are some things you are typically
interested in:

Operator-level performance: Which specific operations (for
example, matrix multiplications, convolutions) are taking the most
time? How long does each operation take to execute?

Memory consumption: Which operations consume the most
memory? This is crucial for deep learning models which can often
be memory-bound.

Call stack information: Which lines in your source code
correspond to the various operations? This helps link the profiled
performance data back to specific lines of your code.

CPU/GPU time: How long are operations taking on the CPU
versus the GPU? This can help in identifying data transfer
bottlenecks, among other things.

When this information is logged to TensorBoard using
writer.add_text(), you can visualize and analyze it, making it easier
to understand the performance characteristics of your model. This is
especially valuable when you are trying to optimize a model to run
faster or when diagnosing performance issues. The following code
snippet demonstrates how you can profile the training steps:

for inputs, targets in dataloader:

 with

torch.profiler.profile(with_stack=True) as

prof:

 train_step(inputs, targets)

 # Log the profiling results to TensorBoard

 writer.add_text("Profile",

str(prof.key_averages().table()))

Visualizing image data: For convolutional networks or any model
working with image data, visualizing the input or output can be
informative. Refer to the following code:

images = torch.randn(32, 3, 64, 64) #

Simulating a batch of 32 images

grid = torchvision.utils.make_grid(images)

writer.add_image("images", grid, 0)

The end-to-end code for Tensorboard logging discussed above is provided in
the accompanying notebook.

Conclusion
In this chapter, we dissected the subtle distinctions between interpretability
and explainability within the sphere of machine learning. We delved into

methods such as attention maps, LIME, and Captum to grasp the
interpretability and explainability of the transformer model, highlighting a
hands-on example with CAPTUM to comprehend DistilBERT’s predictions.
Moreover, we examined TensorBoard’s adaptability for PyTorch models,
emphasizing its pivotal role in tracking training phases, illustrating model
structures, and gauging performance. These tools provide professionals with
the requisite means to assess, hone, and enhance their models, ensuring their
optimal functionality. To conclude, even if Transformers and related deep
learning models seem like black boxes, the tools and strategies elaborated
on in this chapter provide insight into these mysteries. As we amplify the
influence of these models across vital societal sectors, the necessity to
decipher their core mechanisms becomes ever more pressing.

Quiz

1. Which of the following best describes the concept of
“interpretability” in machine learning?

a. The degree to which a machine learning model’s behavior can be
explained in human-understandable terms.

b. The degree to which a human can understand the inner workings
of a machine learning model.

c. A tool to visualize the attention weights in machine learning
models.

d. A method to predict the output of a model based on given inputs.

2. What is the primary focus of “explainability” in machine
learning?

a. Understanding the algorithms used within a model.

b. Understanding how a model makes decisions based on given
inputs.

c. Providing understandable descriptions of how a model arrives at
a decision.

d. Predicting the output of a model based on changes in inputs.

3. In the context of NLP, what is commonly used as a baseline
tensor?

a. A sequence of attention scores.

b. A sequence of padding tokens.

c. A sequence of special tokens.

d. A sequence of embedding layers.

4. What is the purpose of a baseline tensor in attribution methods
like Integrated Gradients?

a. To visualize the model’s behavior on input data.

b. To visualize the attention map of a transformer model.

c. To understand the importance of each feature for a prediction by
comparing the model’s behavior on the input to its behavior on a
baseline.

d. To visualize the neuron activations in a transformer model.

5. In the code snippet, what does the Layer Integrated Gradients
(LIG) method primarily do?

a. Visualizes the model’s forward function.

b. Creates a simplified, locally linear version of the model.

c. Clarifies how a model’s predictions are influenced by different
parts of its input.

d. Loads pre-trained models and tokenizers.

6. What does the viz.visualize_text function do in the code snippet
provided in the chapter?

a. Initializes Layer Integrated Gradients.

b. Computes attributions for both sentiment classes.

c. Visualizes the attributions and their corresponding importance
scores.

d. Loads pre-trained models and tokenizers.

7. What is TensorBoard primarily used for?

a. Profiling the execution of TensorFlow models only

b. Visualizing training and analyzing neural network models across
different frameworks

c. Logging errors during the model training process

d. Testing the performance of PyTorch models exclusively

8. How do you initiate TensorBoard?

a. tensorboard --logdir=runs

b. tensorboard --start=runs

c. tensorboard --init=runs

d. tensorboard --launch=runs

9. Which of the following can be used to visualize the training loss
over epochs in TensorBoard?

a. writer.add_text

b. writer.add_histogram

c. writer.add_scalar

d. writer.add_image

10. Which visualization technique enables the visualization of
embeddings of tokens in 3-D space?

a. Scalars

b. Histogram

c. Embedding

d. PR Curves

11. What can you analyze with the profiling feature in TensorBoard
with PyTorch integration?

a. Only memory consumption

b. Only CPU/GPU time

c. Only operator-level performance

d. Operator-level performance, memory consumption, call stack
information, and CPU/GPU time

12. Where can you access TensorBoard by default?

a. http://localhost:8000

b. http://localhost:6006

c. http://localhost:5000

d. http://localhost:3000

Answers

1. b.
2. c.
3. b.
4. c.
5. c.
6. c.
7. b.
8. a.
9. b.

10. c.
11. d.

12. b.

1 https://eli5.readthedocs.io/en/latest/overview.html

2 https://shap.readthedocs.io/en/latest/

3 https://www.tensorflow.org/tfx/tutorials/model_analysis/tfma_basic

https://eli5.readthedocs.io/en/latest/overview.html
https://shap.readthedocs.io/en/latest/
https://www.tensorflow.org/tfx/tutorials/model_analysis/tfma_basic

CHAPTER 17
PyTorch Models: Best Practices

and Debugging

Introduction
The cliché quotation, great power comes with great responsibility is
somehow true for the transformer model. The very characteristics that make
transformer models so potent, such as their deep architecture, multi-headed
attention mechanisms, and large parameter count, also make them
susceptible to a variety of issues during the implementation and training
phases. Simple mistakes, be it in model initialization, data pre-processing,
or even in the configuration of the optimizer, can lead to hours, if not days,
of debugging.

This reality has ushered in the need for a structured approach to building
and troubleshooting transformer models in PyTorch. As the community
around the framework grows and shares its collective experiences, certain
best practices and common pitfalls have come to light. Whether you are a
seasoned developer looking to fine-tune your models or a newcomer eager
to get your hands dirty, understanding these practices and pitfalls is crucial.

This chapter aims to be your guiding hand in this endeavor. By weaving
together theoretical insights with hands-on examples, we provide a
comprehensive overview of best practices when constructing transformers
in PyTorch. Additionally, we delve deep into practical techniques that will
empower you to swiftly identify and rectify common issues.

By the end of this chapter, you will possess the knowledge and tools needed
to harness the full potential of transformer models while navigating the
intricacies of PyTorch with confidence and efficiency.

Structure
The book is organized as follows:

Best practices for building transformer models

The Art of Debugging in PyTorch

Objectives
The primary objective of this chapter is to arm readers with a
comprehensive understanding of the intricacies involved in constructing
and debugging transformer models using PyTorch. Through detailed
exploration of best practices, from model initialization to optimization, we
aim to enhance efficiency, bolster reproducibility, and facilitate a smooth
transition across diverse modeling scenarios. By demystifying the
challenges, particularly in the realm of debugging, this chapter seeks to
empower practitioners to confidently navigate the complex landscape of
modern machine learning with transformer models.

Best practices for building transformer models
Whether you are fine-tuning a pre-trained model or training one from
scratch, certain best practices can ensure your work is efficient,
reproducible, and effective. In this section, we will delve deep into these
practices, highlighting the nuances of both scenarios.

Working with Hugging Face
The subsequent section outlines best practices specifically for working with
Hugging Face models. However, these guidelines are also relevant and
applicable to other libraries.

Tokenization: Choosing the right tokenizer and managing special
tokens are crucial aspects. Let us dig deeper into this.

Select the right tokenizer: Always use the tokenizer that matches
your chosen pre-trained model. For each model type (BERT, GPT-
2, RoBERTa, and so on), you have to choose the corresponding
tokenizer.

Manage special tokens: Not all models implicitly handle special
tokens like [CLS], [SEP], <s>, and <\s>. While it is vital to ensure
these tokens are incorporated where needed, it is also worth noting
that not every tokenizer automatically includes them. For instance,
with GPT-2, special tokens often need manual specification.
Following is a code snippet demonstrating how to add special
tokens for the GPT-2 model:

special_tokens_dict = {'bos_token': '<BOS>',

'eos_token': '<EOS>', 'pad_token': '<PAD>'}

num_added_toks =

tokenizer.add_special_tokens(special_tokens_

dict)

Handling sequence length: Be aware of the maximum length when
working with models, as different models have varying token limits.
For instance, BERT has a token limit of 512, while GPT-2 has a limit
of 768. It is essential to ensure that your sequences do not surpass
these limits. Additionally, pay attention to truncation and padding.
Handling longer sequences may require truncation or other
techniques, while shorter sequences might need padding. Fortunately,
most Hugging Face tokenizers provide automatic padding and
truncation features to streamline this process.

Attention masks: Here are a few considerations related to the
attention mask.

Differentiate real tokens from pads: Attention masks should be
set to 1 for real tokens and 0 for padding tokens, so that the model
does not pay attention to padding.

Use the Tokenizer's output: Hugging Face’s tokenizer provides
the attention mask automatically when you tokenize. The

following code illustrates the attention mask on hugging face
library:

from transformers import BertTokenizer

tokenizer =

BertTokenizer.from_pretrained('bert-base-

uncased')

Example sentences

sentences = ["Hello world!", "Attention

masks are important."]

encoded_input = tokenizer(sentences,

padding='max_length', truncation=True,

max_length=10, return_attention_mask=True)

print(encoded_input['input_ids'])

print(encoded_input['attention_mask'])

The output of the above code is shown as follows. In the attention
mask, 1 represents actual tokens while 0 indicates padding tokens:

input_ids: [[101, 7592, 2088, 999, 102, 0,

0, 0, 0, 0], [101, 3086, 10047, 2024, 2590,

1012, 102, 0, 0, 0]]

attention_mask: [[1, 1, 1, 1, 1, 0, 0, 0, 0,

0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0]]

Batching: All sequences in a batch should have the same length. This
might mean padding shorter sequences in a batch to match the length
of the longest sequence. For better efficiency, consider padding to the
maximum length in each batch rather than a global maximum length.

Following is the example where we are doing dynamic batching. In
the context of batching, it is important to grasp the variability in
sequence lengths. For instance, dataset[0] and dataset[1] have
different lengths of 5 and 7, respectively. The role of the
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) is
crucial here. It ensures dynamic batching, where the sequence length
within each batch matches the length of the longest sequence in that
batch. This functionality becomes indispensable when working with
real-world datasets that may contain both very short and very long
sequences. Implementing this can notably accelerate the training
process while optimizing computational efficiency and memory
usage.

Code:

from transformers import BertTokenizer,

BertForSequenceClassification,

TrainingArguments, Trainer,

DataCollatorWithPadding

from torch.utils.data import Dataset

1. Initialization

tokenizer =

BertTokenizer.from_pretrained('bert-base-

uncased')

Data preparation

sentences = ["Hello world!", "I love machine

learning.", "Transformers are powerful.",

"HuggingFace is great for NLP tasks."]

labels = [0, 1, 1, 0]

Tokenize without padding and without

converting to tensors

encodings = tokenizer(sentences,

truncation=True, padding=False,

return_tensors=None)

Custom dataset

class CustomDataset(Dataset):

 def __init__(self, encodings, labels):

 self.encodings = encodings

 self.labels = labels

 def __getitem__(self, idx):

 item = {key: torch.tensor(val[idx])

for key, val in self.encodings.items()}

 item["labels"] =

torch.tensor(self.labels[idx])

 return item

 def __len__(self):

 return len(self.labels)

dataset = CustomDataset(encodings, labels)

2. Model Initialization

model =

BertForSequenceClassification.from_pretrained(

'bert-base-uncased', num_labels=2)

3. Data Collator for Dynamic Padding

data_collator =

DataCollatorWithPadding(tokenizer=tokenizer)

4. Training Arguments

training_args = TrainingArguments(

 per_device_train_batch_size=2,

 logging_dir='./logs',

 logging_steps=1,

 evaluation_strategy="steps",

 eval_steps=1,

 save_strategy="steps",

 save_steps=1,

 no_cuda=False,

 output_dir="./results",

 overwrite_output_dir=True,

 do_train=True

)

5. Trainer Initialization

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=dataset,

 data_collator=data_collator

)

6. Training

trainer.train()

Let us print some samples from the dataset:

print('dataset[0]',dataset[0]['input_ids'])

print('dataset[1]',dataset[1]['input_ids'])

Output:

dataset[0] tensor([101, 7592, 2088, 999,

102])

dataset[1] tensor([101, 1045, 2293, 3698,

4083, 1012, 102])

Leverage pipelines from Hugging Face: Often, leveraging Hugging
Face’s high-level functionalities simplifies data pre-processing,
training, and inference tasks. For a comprehensive list and detailed
insights, refer to the official documentation

(https://huggingface.co/docs/transformers/main_classes/pipelines)
.

Table 17.1 lists a brief overview of some valuable pipelines they offer:

Higher order function Description Usage

Feature extraction
pipeline

Extracts the model’s hidden states pipeline(‘feature-
extraction’)

Sentiment analysis
pipeline

Determines if a sentence is positive or
negative

pipeline(‘sentiment-
analysis’)

Text generation
pipeline

Generates text based on a given
prompt

pipeline(‘text-
generation’)

Text classification
pipeline

Classifies texts based on given labels pipeline(‘text-
classification’)

Token classification
pipeline

Named Entity Recognition pipeline(‘token-
classification’)

Image classification
pipeline

Classifies images based on given
labels.

pipeline(‘image-
classification’)

Object detection
pipeline

Identifies objects within images. pipeline(‘object-
detection’)

Table 17.1: List of Hugging Face Pipelines

Use higher level functions for training: After diligently crafting
your code and testing it, the next step is to train your model on the
complete dataset in a distributed manner. Fortunately, there are
advanced tools that empower you to flexibly select and fine-tune
aspects like the type of device, number of available GPUs, mixed-
precision training, and gradient accumulation. Three of the most
prominent tools in this domain are accelerate, Trainer, and
torchrun. It is prudent to familiarize yourself with these tools,
leveraging their capabilities, rather than reinventing the wheel.

Accelerate by Hugging Face: Accelerate is a lightweight library
developed by Hugging Face to simplify the sophistications of
mixed precision and distributed training in PyTorch. This tool is
particularly advantageous when there is a need for a direct method
to harness the benefits of mixed precision training, multi-GPU,
and distributed training without diving deep into modifications of
existing PyTorch code. Moreover, for those seeking flexibility in

https://huggingface.co/docs/transformers/main_classes/pipelines

training configurations without being entirely dependent on the
Hugging Face ecosystem, accelerate offers an ideal solution. In the
domain of distributed training, the library presents an easy
approach to distribute computations over an array of devices,
including CPUs and GPUs, spanning even across multiple
machines. It effectively abstracts the setup intricacies of
torch.distributed, enabling users to toggle between single and
multi-GPU training with minimal alterations in the code.

Trainer from Hugging Face: Hugging Face’s Trainer module
offers a top-notch API designed for training and checking their
models. If you are using datasets and models from the Hugging
Face library, this tool is perfect. It comes packed with features
such as keeping track of data, saving models, and assessing them.
With Trainer, you do not have to build your training process from
scratch. When it comes to distributed training (using multiple
GPUs or TPUs), Trainer makes things simple.

Torchrun: In PyTorch, the torchrun module, formerly known as
torch.distributed.launch, plays a crucial role in facilitating
distributed training by launching multiple processes. For those
leveraging PyTorch and aiming to establish distributed training
without the need for additional libraries, torchrun is an ideal
choice. It is particularly beneficial for those seeking granular
control over the distributed setup and the training loop. Examining
its distributed training capabilities, torchrun efficiently sets up the
distributed environment and starts training across all available
nodes or GPUs. As a foundational method for implementing
distributed training in PyTorch, torchrun requires users to handle
tasks like setting the distributed strategy, merging gradients, and
determining device placements manually.

Conclusion: If you are primarily working with Hugging Face
models and datasets, Trainer offers a comprehensive solution. On
the other hand, if you are working with pure PyTorch and have a
custom training loop, or want maximum control, torchrun offers a

direct way to set up distributed training. If you want to abstract
some of the complexities, accelerate might be a good addition.

General consideration with Pytorch model
Following are the general guidelines that are applicable for general Pytorch
based model:

Model parameters: Use appropriate weight initialization methods
(like Xavier or He initialization) depending on the activation function
used.

Training: Following are some guidelines related to training:

Autograd: Ensure you zero out the gradients at the start of each
training iteration using optimizer.zero_grad() to prevent
accumulation.

Checkpoints: Save intermediate model states during training to
resume training or use the best model later. Remember to save not
just the model’s state_dict but also the optimizer’s state if
needed.

Model Modes: Use model.train() before training and
model.eval() before evaluation/testing to ensure layers like
dropout and batch normalization work correctly.

Perform Gradient Clipping: Gradient clipping involves limiting
the value of gradients to a small range to prevent undesirable
changes in model parameters during updates. Consider using
gradient clipping if you notice extremely large gradients or NaN
values during training. As shown in the following code, you will
do gradient clipping before the optimizer.step:

Forward pass

output = model(input_tensor)

loss = loss_fn(output, target_tensor)

Backward pass

optimizer.zero_grad()

loss.backward()

Gradient Clipping

torch.nn.utils.clip_grad_norm_(model.paramet

ers(), max_norm=1.0)

Optimizer step

optimizer.step()

Optimization: During the training process, it is beneficial to employ
learning rate scheduling techniques such as step decay or one-cycle
learning rate. These methods dynamically adjust the learning rate as
training progresses. Additionally, it is advisable to implement early
stopping by monitoring a specific validation metric. Training should
be halted once this metric ceases to show improvement.

Evaluation: To ensure deterministic results, especially during
evaluations, it is essential to set random seeds and turn off any non-
deterministic algorithms. This ensures that results are consistent
across runs. Additionally, when performing inference, it is
recommended to enclose forward passes within the torch.no_grad()
context. This action not only helps in conserving memory but also
boosts the inference speed.

Device Management: It is crucial to develop device-agnostic code to
ensure compatibility across various hardware. One way to achieve
this is by setting the device variable with the code snippet: device =
torch.device("cuda" if torch.cuda.is_available() else "cpu").
This ensures that your code runs on a GPU if available, or falls back
to the CPU. Additionally, when managing memory, especially on
GPUs, be diligent. Utilize the .to(device) method to transfer tensors
or models to the GPU and the .cpu() method to revert them back to
the CPU. Proper memory management will optimize performance
and prevent potential memory-related issues.

The art of debugging in PyTorch
In the realm of deep learning, even a minute error can hinder a model’s
ability to converge or function effectively. Debugging in PyTorch requires a
keen understanding of not just the Python code, but the mathematical and
computational intricacies that underlie model training. Before you can
address an issue, you need to understand its nature. In a broad sense, there
are three types of error: syntax, runtime, and logical error. In the following
section, we will discuss in detail these errors and how we should approach
debugging.

Syntax errors
These pertain directly to mistakes in the Python code structure. Often, these
are the easiest to address since most Integrated Development
Environments (IDE) will highlight the precise location of the error for
you. Additionally, if your IDE cannot identify it, your Python interpreter
will point out the error during the run. Once you identify the error, you can
follow official documentation to fix the error.

Runtime errors
The Python runtime environment will raise the error during the execution of
valid Python code. Let us understand a few Runtime errors and how to
debug them.

Shape mismatch
One of the most common pitfalls in PyTorch involves tensor shapes.
Always ensure that the tensor shapes are compatible, especially when
performing operations that involve multiple tensors. Table 17.2 lists some
situations where you could encounter these issues:

Situation Cause and Remedies

Situation Cause and Remedies

Not
complying
with
dimensional
requirement

Key components such as the model, loss
function, and optimizer often have specific
shape requirements. For instance, PyTorch’s
nn.Transformer expects the 'src'
input to have dimensions
(sequence_length, batch_size,
embed_size). In contrast, the Transformer
model from Hugging Face anticipates the
input to be of shape (batch_size,
sequence_length).

It is best practice to
understand the requirements
of the PyTorch component
you are using and prepare
the data accordingly. You
might need to use operations
like squeeze, unsqueeze, or
transpose to prepare the data

Feedforward
Networks

The shape mismatch in the feed-forward
layers inside each transformer block.

Incorrect input or output
feature dimensions when
defining linear layers.

Input
Embedding
shape

The input token IDs tensor might have a
shape like (batch_size,
sequence_length), but the model expects
a shape of (batch_size,
max_sequence_length)

This could arise if some
sequences in the batch are
shorter than others and you
have not padded them to a
consistent length.

Batching
Issues

If data is not batched properly, especially
when using dynamic padding, the tensors in a
batch might have varying sequence lengths.

Improperly handling
padding can be an issue. It is
often recommended to create
a CustomDataSet class,
which gives you more
control over data
preparation. For dynamic
padding, you can use
functions like
collate_fn or other
advanced methods

Positional
Encoding
Shape
Mismatch

The positional encoding tensor’s shape does
not match that of the input embeddings

Using a fixed positional
encoding length that does
not adjust to varying
sequence lengths in different
batches. Another situation
could be using different
dimensions for Positional
Encoding Vectors and
embedding.

Multi-head
Attention

During multi-head self-attention, if the
reshaped Q, K, and V tensors’ dimensions
aren’t properly handled.

Not reshaping or splitting
the tensor correctly into
multiple heads.

Table 17.2: Runtime errors related to the shape mismatch

CUDA errors

Attempting to process tensors on a CUDA device (GPU) can lead to errors
if all model components, including its parameters and input data, are not
consistently placed on that device. For instance, if your model resides on
the GPU while your input tensors remain on the CPU, you will encounter a
RuntimeError: expected device cuda:0 but got device CPU. A
recommended approach is to initialize a device variable at the start, or
dynamically determine the appropriate device. Subsequently, consistently
reference this device variable throughout your code. It is crucial to ensure
that the Model, Input, Output, and Optimizer all share the same device. If
the error persists despite these precautions, employ the assert statement as a
safety mechanism to validate that both the model and input tensors are
indeed on the same device:

assert tensor.device ==

next(model.parameters()).device, "Discrepancy

between model and tensor device placements!"

Loss computation issues
Using inappropriate loss functions or failing to properly align tensor shapes
in the loss computation may trigger runtime error. Consider a scenario
where you are building a multi-class text classification model using a
transformer. If you mistakenly employ the MSELoss (a regression-based
loss function) instead of CrossEntropyLoss (ideal for multi-class
classification), not only will your model fail to converge effectively, but it
could also throw runtime errors.

Mismatched configuration
Using a configuration that does not match the transformer’s requirements
can lead to issues. For instance, setting the number of heads in multi-head
attention to a value that is not divisible by the embedding dimension is
problematic. The best way to address these configuration mismatches is by
diligently following the provided documentation.

Memory error
Memory management is crucial when working with large models like
transformers in PyTorch. Frequently, developers encounter CUDA out-of-

memory (OOM) errors due to overconsumption, often resulting from oversized
batches or simply an enormous model architecture. To diagnose this, you
can utilize PyTorch’s memory profiler functions
(torch.cuda.memory_allocated() and torch.cuda.memory_cached()) or
employ tools like nvidia-smi for real-time monitoring.

However, identifying the problem is only half the battle. Here are several
actionable strategies to mitigate memory errors:

Reduce batch size: This is a straightforward adjustment, although be
wary of the potential compromise on model generalization.

Gradient accumulation: If a smaller batch size is not feasible due to
convergence issues, consider accumulating gradients over multiple
passes before performing a model update.

Model checkpointing: Use PyTorch’s utilities to save and reload
intermediate activations, trading off memory for computation time.

Mixed precision training: Implement 16-bit precision (FP16) to cut
down memory requirements and potentially boost computation
speeds.

Optimize the model: Adopt smaller transformer variants or
techniques like knowledge distillation to compress model size
without sacrificing performance.

Clear unused variables: Periodically purge unneeded tensors and
clear the CUDA cache with torch.cuda.empty_cache().

Gradient clipping: By constraining gradient values to a narrow
range, you can deter sudden spikes in memory usage.

Model parallelism: For multi-GPU setups, distribute different model
components across GPUs.

Efficient data handling: Streamline data loading and augmentation
processes, using PyTorch’s DataLoader with suitable batch sizes.

Adjust training configurations: Modify settings that might be
inflating memory consumption, such as gradient accumulation or
longer sequence lengths in transformers.

Library/Dependency errors
Deep learning libraries, given their rapid evolution and intricate
interdependencies, often lead developers into a maze of compatibility issues
and library interdependencies conflict. When building models or pipelines,
these issues can halt progress or cause obscure errors that are challenging to
debug. Here is a structured approach to mitigate these issues:

Using Python’s virtual environment: Creating an isolated
environment for each project ensures that the libraries and their
respective versions do not interfere with each other, minimizing the
risk of unexpected behavior.

Reviewing documentation for dependencies: Documentation
provides insights into the tested and supported versions of libraries
and their dependencies. Relying on this can save hours of debugging.
When using HuggingFace’s transformers, the documentation might
specify that it is compatible with PyTorch version 2.0 or above.
Installing an older version of PyTorch might result in obscure errors
or even failed installations. Thus, before installing, always skim
through the ‘Requirements’ or ‘Installation’ section of the library’s
official documentation.

Staying updated in a fast-moving space: Deep learning tools
change fast. Sometimes, problems in one version can be fixed in the
next update, which might come out in just a few weeks or months. A
good example is how older versions of the Hugging Face’s
transformer and PyTorch did not fully support Apple’s M1/M2 chips.
But in newer versions, many more models can work with these chips.
So, it’s good to keep an eye on the latest updates.

Logical errors
The code runs without any errors, but the output is not what is expected.
Often, these are the errors which are most difficult to debug. Here are some
of the most common logical errors.

Mismatched dataset shape: A frequent logical error arises from
incorrect data shapes, which can occur during pre-processing,

training, or evaluation. For instance, while torch.nn.Transformer
expects data in the format [seq_length, batch_size, emb_dim],
mistakenly inputting it as [batch_size, seq_len, emb_dim] (a format
suitable for Hugging face models) will shuffle the sequence data.
This mistake will result in feeding garbage to the model. If your
model is not improving, ensure your data preparation and shape align
with model expectations.

Mismatched tokenizer and model: Using a tokenizer from one pre-
trained model but the weights from another causes misalignment in
embeddings.

Improper padding: Not properly handling padding tokens, leading
to incorrect attention scores and inefficient training. For instance,
forgetting to set attention_mask during training or evaluation.

Incorrect learning rate scheduling: Using an inappropriate learning
rate or scheduler that makes the model converge too quickly or not at
all. For instance, using a large learning rate in transfer learning can
lead to overfitting, especially if you are working with a limited
amount of data.

Wrong loss function: Using a loss function that does not raise errors
but is not suited for your task can hinder model convergence. For
instance, using Mean Squared Error (MSE) for binary
classification is technically correct but unsuitable, likely leading to
poor model performance. Always match the loss function to the
problem type.

Not freezing pre-trained weights: When fine-tuning, forgetting to
freeze certain layers can sometimes lead to overfitting or destroying
the valuable pre-trained representations.

Ignoring batch sizes: Especially in transfer learning, using batch
sizes that are too large or too small might not reproduce the
conditions under which the model was originally trained.

Not shuffling training data: Overlooking the need to shuffle
training data can lead to patterns that the model might pick up on,

which are not genuine features of the data.

Gradient imploding: Gradient issues, especially gradient imploding,
can be a critical roadblock during the training of deep learning
models, including transformers in PyTorch. If you observe that your
model output suddenly becomes NaN or Inf during training, it is a
clear indication that you might be dealing with this problem. You can
mitigate this issue by:

Weight initialization strategy

Clipping gradients

Choosing different activation functions

General guidelines for debugging PyTorch ML models
When an error surfaces in your PyTorch machine-learning model, it can
sometimes be daunting to pinpoint its origin. Here are streamlined steps to
effectively debug and rectify issues:

1. Categorize the error: Start by determining the nature of the error.
Does it resemble any of the common pitfalls previously discussed? If
so, the resolution may already be at your fingertips.

2. Inspect data pre-processing: Often, the root of the problem lies in
data preparation. Thoroughly scrutinize this step. The optimal way to
ensure accurate preprocessing is to grasp the exact input format that
your model necessitates. Once you have understood this, work
backward from there, designing a systematic procedure to transform
your raw data to meet the model’s input specifications.

3. Print and validate: Embrace the humble print statement. By
peppering your code with print statements, you can actively monitor
and verify the transformations at each step. Employ assertions in
your code to validate assumptions and ensure that data retains the
expected structure and values.

4. Benchmark with established datasets: Before fully diving into
custom models tailored for specific problems, first, validate your
approach using benchmark datasets with well-established
performance metrics. If your tailored model falters on these datasets,

it is a clear indicator that the issue likely lies in your approach rather
than inherent complexities or nuances of your unique problem.

5. Visualization and logging: Making the invisible visible can provide
invaluable insights. Use tools to visualize intermediate outputs,
tensor shapes, and values. Logging, whether through traditional
methods or tools like TensorBoard, can help track the model’s
progress over time and pinpoint when and where things go awry.

Following these guidelines systematically will empower you to identify and
rectify the majority of issues that may arise during your model development
journey. Remember, debugging is as much an art as it is a science. Stay
patient, methodical, and persistent.

Conclusion
As we reach the end of this chapter, it becomes unmistakably clear that the
revolutionary capabilities of transformer models are accompanied by
inherent complexities. Given this intricacy, attention to detail is paramount
during the construction of transformer models, and equally vital when
undertaking the task of debugging potential bugs.

The detailed best practices outlined in this chapter, ranging from the
intricacies of model initialization to the nuances of optimization, emerge as
foundational keystones for architecting resilient transformer models. These
principles do more than just enhance computational efficiency; they
underscore the importance of reproducibility, ensuring an unobstructed
transition across diverse modeling paradigms, whether one is fine-tuning an
existing structure or creating new model. Moreover, the practical examples
dispersed within the chapter provide readers with tangible insights, poised
for direct implementation in empirical scenarios.

Debugging is an underestimated aspect of model development. While
syntactical anomalies present overt hurdles, it is the covert, logical errors
and runtime errors that warrant vigilant scrutiny. These errors, though
insidious, can divert outcomes substantially. Therefore, the systematic
debugging methodologies articulated herein are indispensable for
professionals venturing into the intricate realm of deep learning via
PyTorch.

Absorbing the insights of this chapter, one can significantly reduce
countless hours otherwise spent on unproductive attempts at debugging
transformer models. Following the recommended best practices not only
prevents many pitfalls but also minimizes the potential for error.

Quiz

1. Why is it important to select the right tokenizer in Hugging
Face?

a. For better memory utilization

b. To match the chosen pre-trained model

c. For faster training

d. To prevent model overfitting

2. Which model has a token limit of 512?

a. GPT-2

b. RoBERTa

c. BERT

d. TransformerXL

3. In the Hugging Face attention mask, what value represents
padding tokens?

a. 1

b. 2

c. 0

d. -1

4. Why is dynamic batching important?

a. For tokenization

b. To consistently use the same sequence length

c. To handle variability in sequence lengths efficiently

d. For model initialization

5. What is the primary use of torchrun?

a. For mixed precision training

b. To simplify distributed training in PyTorch

c. For leveraging Hugging Face functionalities

d. To spawn multiple distributed processes in PyTorch

6. When is gradient clipping particularly useful?

a. During data preprocessing

b. When facing overfitting

c. When encountering large gradients or NaNvalues

d. When using a deep architecture

7. Which method should be used to zero out the gradients at the
start of each training iteration?

a. optimizer.empty_grad()

b. model.zero_grad()

c. torch.empty_grad()

d. optimizer.zero_grad()

8. Which mode should be activated before model evaluation or
testing?

a. model.start()

b. model.train()

c. model.test()

d. model.eval()

9. Why is it important to use the correct model mode during
training and evaluation?

a. To ensure tokenization is accurate

b. To ensure model parameters are not updated during evaluation

c. To utilize dynamic padding

d. To ensure correct token limit

10. When you encounter a RuntimeError: expected device cuda:0
but got device cpu, what could be the possible issue?

a. Syntax error in the code

b. Memory overflow

c. Model and input tensors are on different devices

d. Inappropriate loss function used

11. Which error type does not halt the program but provides
unexpected output?

a. Syntax Errors

b. CUDA Errors

c. Logical Errors

d. Runtime Errors

12. What could be a sign that you’re dealing with gradient
imploding in PyTorch?

a. Model converges too quickly

b. Model output becomes NaN or Inf during training

c. Model throws a CUDA error

d. Syntax error in the code

13. In PyTorch, what is the primary purpose of
torch.cuda.empty_cache()?

a. Increase memory usage

b. Store model weights

c. Clear the CUDA cache

d. Manage multi-GPU setups

14. What is a recommended strategy when encountering CUDA
errors regarding tensor placement?

a. Increase the batch size

b. Use a different loss function

c. Make sure the Model, Input, Output, and Optimizer are on the
same device

d. Implement gradient clipping

Answers

1. b.
2. c.
3. c.
4. c.
5. d.
6. c.
7. a.
8. d.
9. b.

10. b.

11. c.
12. b.
13. c.
14. c.

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Index
A
accelerator library 68
Adult dataset 187
Advantage Actor-Critic (A2C) 220
AI eye doctor project 118
Amazon API Gateway 240
Amazon SageMaker 239
Ames Housing dataset 193
Artificial General Intelligence (AGI) 77
attention maps 247
attention mechanism, transformer

decoder layer 15, 16
multiheaded attention 15
self-attention 14

audio quality improvement
through noise reduction 165-167

audio-to-audio processing 165
automated speech recognition (ASR) system 145

custom audio transcription 160
AWS Lambda 240, 241

B
backward diffusion 136
Bahdanau’s (2014) attention mechanism 6, 7
baseline tensor 249
BERT 81

applications 83
fine-tunning 82, 83
pre-training 81, 82
variations 83

BERTViz 247
Bidirectional and Auto-Regressive Transformers (BART) 86

application 87
pre-training 86, 87

C
Captum 248
Captum, for interpreting Transformer prediction 248

baseline tensor 249, 250

input preparation 249
layer integrated gradients 250, 251
model loading 248
visualization 252, 253

census income or adult.data dataset 187
ChatBot with transformer 103, 104

clinical question answering transformer
project 104

classifier
developing, by fine tuning BERT-base-uncased 62-64

Clinical BERT
creating 88, 89

clinical question answering transformer project
data preparation 104
model declaration 104
prompt, creating 104
tokenization, creating 105

computer vision pre-trained models
Data-efficient Image Transformer (DeiT) 61
stable diffusion 61
Swin transformer 61
ViT 61

computer vision task 130, 131
image classification 131, 132
image segmentation 132, 133
image segmentation for diet calculator project 133

context windows 148
Contrastive Language Image Pretraining (CLIP) 204

applications 205
examples 205
pre-training objective 205
transformer language model 204, 205
Vision Transformer (ViT) 204

Convolutional Neural Networks (CNNs) 217
custom audio transcription

with ASR 160-162
custom LLM

creating 87, 88

D
DataConfig 189
datasets, Hugging Face ecosystem 29

using 29, 30
using, on PyTorch 30, 31

debugging, in PyTorch 269
guidelines 274, 275
logical errors 273, 274
runtime errors 269

syntax errors 269
decision transformer 221, 222
decoder-only model 18
Detection Transformer (DETR) 111

architecture 120-122
object detection model project 122, 123

diffusion model
DogGenDiffusion 137
unconditional image generation 134

Distilled Vision Transformer (DeiT) 111, 119
advantages 120
exercise 120

document chunking project 97, 98
DogGenDiffusion project 137

E
embedding 255
embedding space 202
encoder-decoder model 19
encoder-only model 17

applications 18
examples 18

ExBERT 248
explainability 246, 247

tools, for 247

F
FastAPI 236

application, for model serving 236, 237
benefits 236
for semantic segmentation model serving 237, 238

feature extraction 206
Feature tokenizer module 179
fine-tuning BERT-based-uncased 62-64

custom dataset class 65, 66
dataloader 67-70
inference 70-72

forward diffusion 135
FT transformer architecture 179

concatenation of numerical and categorical feature 180
Feature tokenizer 179-181

Fully Connected (FC) layer 48

G
Generative Adversarial Network (GAN) 234
Generative pre-trained Transformer 84

applications 86
pre-training process 84, 85

Google TAPAS model 175
Gymnasium 220

H
hierarchical attention project 98
histogram 254
Hugging Face ecosystem 23

components 25, 26
datasets 29
models 31
overview 24, 25
spaces 35, 36
tokenizer 26
URL 24

Hugging Face models
working 262-267

Hugging Face Transformer deployment, on AWS
Amazon API gateway, using 240, 241
Amazon SageMaker, using 239, 240
AWS Lambda, using 240, 241

hyperparameters 256

I
ImageBind 203, 204

demonstration 204
image pre-processing 113

example 114-116
image segmentation for diet calculator project 133
InfoNCE loss 204
input sequences 148
Integrated Development Environments (IDE) 269
interpretability 246, 247

tools, for 247

L
Large Language Models (LLMs) 78, 79

custom LLM, creating 87, 88
key determinants of performance 80

LIME 248
LLMS pioneering 81

BART 86
BERT 81
Generative pre-trained Transformer 84

long short-term memory networks (LSTM) 1, 4, 5

limitation 5
Low Rank Adaptation of Large Language Models (LORA) 105, 106

M
Machine Learning (ML) models 1
Masked Language Modeling (MLM) 81
Medical Question Answering Dataset (MedQuAD) 104
Mel-frequency cepstral coefficients (MFCC) 143
memory_key_padding_mask 46
memory_mask 45
Metal Performance Shaders (MPS) 68
modalities 202
ModelConfig 189
model export 230
models, Hugging Face ecosystem 31

environmental setup 32
inference 33, 34
shared model 35
training 32, 33

multimodal architectures 202, 203
CLIP 204
ImageBind 203

multimodal tasks 205, 206
feature extraction 206-208
image-to-text 210, 211
text-to-image 208-210
visual question answering 211, 212

multiple models
saving 234

N
Natural Language Processing (NLP) 1, 60, 93
Next Sentence Prediction (NSP) 81
NLP model development 2, 3

Bahdanau’s (2014) attention mechanism 6, 7
LSTMs 4, 5
recurrent neural network 3, 4
RNN encoder-decoder model 5, 6

NLP pre-trained models
BART 61
BERT 60, 61
GPT-2 61
LLAMA2 61
Text-to-Text Transfer Transformer (T5) 61

NLP tasks 94, 95

O
object detection model project 122, 123
one_hot_encode method 66
OpenAI Gym

benchmarking 220
environments 220
spaces 220
steps 220
tasks 220

Open Neural Network Exchange (ONNX) 230, 231, 235
advantages 235
PyTorch model, exporting to 235

OptimizerConfig 189

P
Parameter-Efficient Fine-Tuning (PEFT) 105, 106
performance, LLM

dataset size and types, pre-training 80, 81
max-sequence length 80
network size 80
size of embedding dimension 80

PR curves 256
pre-trained model 60

computer vision 61
Falcon 61
Natural Language Processing (NLP) 60
speech processing 61, 62

Proximal Policy Optimization (PPO) 220
PyTorch

debugging 269
Pytorch Hub 60
PyTorch model

export and import 231
exporting, to ONNX format 235
general consideration 267-269
serving, in mobile devices 238, 239
torch.load 231
torch.nn.Module.load_state_dict 231-233
torch.save 231

PyTorch techniques, for RL 219
Gymnasium 220
Stable Baselines3 (SB3) 219, 220

R
recurrent neural network (RNN) 3, 4, 217

limitation 4
Reinforcement Learning (RL) 217-219

stock market trading 221
techniques in PyTorch 219

RNN encoder-decoder model 5, 6
RSA (Return, State, Action) 222
runtime errors debugging, in PyTorch

CUDA errors 271
library/dependency errors 272, 273
loss computation issues 271
memory error 271, 272
mismatched configuration 271
shape mismatch 269, 270

S
scalars 253
sentiment analysis (SST-2) 248
sequence-to-sequence model 19
Shakespeare like text generation project 99

data preparation 99, 101
training 101-103

Soft Actor-Critic (SAC) 220
spaces, Hugging Face ecosystem 35, 36
speaker embeddings 162
Speaker Identification (SID) 152
SpeechBrain 165
Speech Enhancement (SE) 152
speech processing 142, 143

pre-processing 142, 143
speech pre-processing example 143-145

speech processing pre-trained models
conformer 62
Wav2Vec 2.0 61

speech processing tasks 159
audio-to-audio 165
speech to text 159
text to speech 162

SpeechT5 150
applications 152
architecture 150
cross-modal representation 152
encoder-decoder architecture 152
fine-tuning 152
Input/Output representation 150, 151
pre-training 152

Speech Translation (ST) 152
Stable Baselines3 (SB3) 219, 220
Start of Token (SOT) 146
state_dict 233
stock market trading, with RL 221

SuperGLUE benchmark 79

T
T5 architecture 150
TabTransformer architecture 177, 178
tabular data representation

with transformer 172, 173
TAPAS architecture 173, 174

applications 175
example 175-177
fine-tuning 175
pretraining objective 174

TensorBoard 253
for PyTorch models 253-257

TensorFlow Model Analysis (TFMA) 248
text classification 96

architecture 96
long sequence, handling 97
via fine-tunning transformer 96

text generation 99
text-to-image 208
Text to Speech (TTS) 152

implementing 162-164
tgt_key_padding_mask 45
tgt_mask 45
tokenizer, Hugging Face ecosystem 26

custom tokenizer, creating 26
inference, performing 27, 28
pre-trained tokenizer, using 28
training 27

TorchAudio 160
Torch Image Models (timm) 60
TorchScript 238
TrainerConfig 189
trajectory transformer 223

input 223, 224
transfer learning

advantages 57
need of 57
using 58, 59

transformer
inference process 17
training process 17

transformer architecture 7, 8
attention mechanism 14
embedding 8, 9
encoder layer 12, 13
model input 11, 12

positional encoding 9-11
transformer for classification 186, 187

analysis 192
configuration, declaring 188, 189
data pre-processing 188
dataset 187
model evaluation 191, 192
model training 190, 191
target 188

transformer for regression 193
data pre-processing 193-195
dataset 193
model configuration, defining 195
model evaluation 197
model training 197

transformer for reinforcement learning 221
decision transformer 221, 222
trajectory transformer 223

transformer, in PyTorch
components 40-42
decoder component 48, 49
embedding 42
embedding example 43
encode component 46-48
layer 50, 51
masking 45, 46
positional encoding 43, 44

transformer models
decoder-only model 18
encoder-decoder model 19
encoder only model 17, 18

transformer models
best practices, for building 262

Twin Delayed DDPG (TD3) 220

U
unconditional image generation 134

backward diffusion 136
forward diffusion 135
inference process 136
learnable parameters 137

V
Vision Transformer (ViT) 111

AI eye doctor project 118
architecture 116-118

Voice Conversion (VC) 152

W
Wav2Vec 147

applications 150
architecture 148, 149

Whisper 145
architecture 145, 146
custom audio transcription, with ASR 160

Whisper_Nep project 147
WikiTableQuestions (WTQ) 175

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Table of Contents
	1. Transformer Architecture
	Introduction
	Structure
	Objectives
	Chronology of NLP model development
	Recurrent neural network
	Limitation of RNN
	LSTM
	Limitation of LSTM
	Cho’s (2014) RNN encoder decoder
	Bahdanau’s (2014) attention mechanism

	Transformer architecture
	Embedding
	Positional encoding
	Model input
	Encoding layer
	Attention mechanism
	Self-attention
	Multiheaded attention
	Decoder layer

	Training process of transformer
	Inference process of transformer
	Types of transformers and their applications
	Encoder only model
	Decoder-only model
	Encoder-decoder model

	Conclusion
	Quiz
	Answers

	2. Hugging Face Ecosystem
	Introduction
	Structure
	Objectives
	System resources

	Overview of Hugging Face
	Key component of Hugging Face
	Tokenizers
	Create your custom Tokenizer
	Training
	Inference

	Use pre-trained tokenizer from Hugging Face

	Datasets
	Using Hugging Face dataset
	Using the Hugging Face dataset on PyTorch

	Models
	Environmental setup
	Training
	Inference

	Sharing your model on Hugging Face
	Model
	Spaces
	Conclusion
	Quiz
	Answers

	3. Transformer Model in PyTorch
	Introduction
	Structure
	Objectives
	System resources
	Transformer components in PyTorch
	Embedding
	Example

	Positional encoding
	Masking
	Encoder component of a transformer
	Decoder component of a transformer
	Transformer layer in PyTorch
	Conclusion
	Quiz
	Answers

	4. Transfer Learning with PyTorch and Hugging Face
	Introduction
	Structure
	Objectives
	System requirements
	Need of transfer learning
	Using transfer learning
	Where can you get pre-trained model
	Popular pre-trained model
	NLP
	Computer vision
	Speech processing

	Project: Develop classifier by fine tuning BERT-base-uncased
	Custom dataset class
	DataLoader
	Inference

	Conclusion
	Quiz
	Answers

	5. Large Language Models:BERT, GPT-3, and BART
	Introduction
	Structure
	Objectives
	Large language model
	Key determinants of performance
	Size of network: Number of encoder and decoder layers
	Number of model parameters
	Max-sequence length
	Size of embedding dimension
	Pre-training dataset size and types

	Pioneering LLMs and their impact
	BERT and its variants
	BERT pre-training
	BERT fine-tunning
	BERT Variations
	Applications

	Generative pre-trained Transformer
	Pre-training of GPT
	Applications

	Bidirectional and Auto-Regressive Transformers
	Pre-training
	Application

	Creating your own LLM
	Clinical-Bert

	Conclusion
	Quiz
	Answers

	6. NLP Tasks with Transformers
	Introduction
	Structure
	Objectives
	System requirements
	NLP tasks
	Text classification
	Most appropriate architecture for text classification
	Text classification via fine-tunning transformer
	Handling long sequence
	Project 1: Document chunking
	Project 2: Hierarchical attention

	Text generation
	Project 3: Shakespeare like text generation
	Data preparation
	Training

	ChatBot with transformer
	Project 4: Clinical question answering transformer
	Data preparation
	Model declaration
	Creating prompt and tokenization

	Training with PEFT and LORA
	Conclusion
	Quiz
	Answers

	7. CV Model Anatomy: ViT, DETR, and DeiT
	Introduction
	Structure
	Objectives
	System requirements
	Image pre-processing
	Example of image pre-processing

	Vision transformer architecture
	Project 1: AI eye doctor

	Distillation transformer
	Advantages of DeiT
	Exercise

	Detection transformer
	Project 2: Object detection model

	Conclusion
	Quiz
	Answers

	8. Computer Vision Tasks with Transformers
	Introduction
	Structure
	Objectives
	System requirements
	Computer vision task
	Image classification
	Exercise

	Image segmentation
	Project 1: Image segmentation for our diet calculator

	Diffusion model: Unconditional image generation
	Forward diffusion
	Backward diffusion
	Inference process
	Learnable parameters
	Project 2: DogGenDiffusion

	Conclusion
	Quiz
	Answers

	9. Speech Processing Model Anatomy: Whisper, SpeechT5, and Wav2Vec
	Introduction
	Structure
	Objectives
	System requirements
	Speech processing
	Example of speech pre-processing

	Whisper
	Project 1: Whisper_Nep
	Task
	Approach

	Wav2Vec
	Applications of Wav2Vec

	SpeechT5
	Input/Output representation
	Cross-modal representation
	Encoder-decoder architecture
	Pre-training
	Fine-tuning and applications

	Comparing Whisper, Wav2Vec 2.0 and Speech T5
	Conclusion
	Quiz
	Answers

	10. Speech Tasks with Transformers
	Introduction
	Structure
	Objectives
	System requirements
	Speech processing tasks
	Speech to text
	Project 1: Custom audio transcription with ASR using Whisper

	Text-to-speech
	Project 2: Implementing text-to-Speech

	Audio to audio
	Project 3: Audio quality improvement through noise reduction

	Conclusion
	Quiz
	Answers

	11. Transformer Architecture for Tabular Data Processing
	Introduction
	Structure
	Objectives
	System requirements
	Tabular data representation using transformer
	TAPAS architecture
	Pretraining objective
	Fine-tuning
	Applications
	Example

	TabTransformer architecture
	FT transformer architecture
	Feature tokenizer
	Concatenation of numerical and categorical feature
	Transformer

	Conclusion
	Quiz
	Answers

	12. Transformers for Tabular Data Regression and Classification
	Introduction
	Structure
	Objectives
	System requirements
	Transformer for classification
	Dataset
	Target
	Pre-process the data
	Declare the configuration
	Train and evaluate the model with three models
	Evaluation
	Analysis

	Transformer for regression
	The dataset
	Pre-process the data
	Define model configuration
	Train and evaluate

	Conclusion
	Quiz
	Answers

	13. Multimodal Transformers, Architectures and Applications
	Introduction
	Structure
	Objectives
	System requirements
	Multimodal architecture
	ImageBind
	Demonstration

	CLIP
	Pre-training objective
	Applications and usage

	Multimodal tasks
	Feature extraction
	Text-to-image
	Image to-text
	Visual question answering

	Conclusion
	Quiz
	Answers

	14. Explore Reinforcement Learning for Transformer
	Introduction
	Structure
	Objectives
	System requirements
	Reinforcement learning
	Important techniques in PyTorch for RL
	Stable Baseline3
	Gymnasium

	Project 1: Stock Market Trading with RL
	Transformer for reinforcement learning
	Decision transformer
	Trajectory transformer
	Input

	Conclusion
	Quiz
	Answers

	15. Model Export, Serving, and Deployment
	Introduction
	Structure
	Objectives
	System resources
	Model export and serialization
	PyTorch model export and import
	torch.save
	torch.load
	torch.nn.Module.load_state_dict

	Saving multiple models

	Exporting model on ONNX Format
	Serving model with FastAPI
	Benefits of FastAPI
	Application of FastAPI for model serving
	Project: FastAPI for semantic segmentation model serving

	Serving Pytorch model in mobile devices
	Deploying HuggingFace’s Transformers model on AWS
	Deployment using Amazon SageMaker
	Deployment using AWS Lambda and Amazon API gateway

	Conclusion
	Quiz
	Answers

	16. Transformer Model Interpretability, and Experimental Visualization
	Introduction
	Structure
	Objectives
	Explainability vs. interpretability
	Interpretability
	Explainability

	Tools for explainability and interpretability
	CAPTUM for interpreting Transformer prediction
	Model loading
	Input preparation
	Why Baseline Tensor

	Layer Integrated Gradients
	Visualization

	TensorBoard for PyTorch models
	Conclusion
	Quiz
	Answers

	17. PyTorch Models: Best Practices
	Introduction
	Structure
	Objectives
	Best practices for building transformer models
	Working with Hugging Face
	General consideration with Pytorch model

	The art of debugging in PyTorch
	Syntax errors
	Runtime errors
	Shape mismatch
	CUDA errors
	Loss computation issues
	Mismatched configuration
	Memory error
	Library/Dependency errors

	Logical errors
	General guidelines for debugging PyTorch ML models

	Conclusion
	Quiz
	Answers

	Index

