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Preface to the Second Edition
This second edition contains several new topics and includes numerous updates to reflect
Version 8 of the SAS System. Chapter 15, “Generalized Estimating Equations,” is a new
chapter that discusses the use of the GEE method, particularly as a tool for analyzing
repeated measurements data. The book includes several comparisons of analyses using the
GEE method, weighted least squares, and conditional logistic regression; the use of
subject-specific models versus population-averaged models is discussed. Chapter 15 also
describes the use of GEE methods for some univariate response situations.

Chapter 12, “Poisson Regression,” is a new chapter on Poisson regression. Previously, this
topic was described in the chapter on time-to-event categorical data. The methodology is
illustrated with several examples.

Chapters on the analysis of tables now include much more material on the use of exact
tests of association, particularly Chapter 2, “The 2� 2 Table,” and Chapter 5, “Thes� r
Table.”

Exact logistic regression using the LOGISTIC procedure is discussed in Chapter 8,
“Logistic Regression I: Dichotomous Response.” Chapter 8 also describes the use of the
CLASS statement in PROC LOGISTIC, and all of the examples in the various chapters
using PROC LOGISTIC have been updated to take advantage of the new CLASS
statement. Chapter 10, “Conditional Logistic Regression,” has been largely revised to put
more emphasis on the stratified data setting.

In addition, miscellaneous revisions and additions appear throughout the book.

Computing Details

Writing a book for software that is constantly changing is not straightforward. This second
edition is targeted for Version 8 of the SAS System and takes advantage of many of the
features of that release. The examples were executed with the 8.1 release on the HP UNIX
platform, but most of the output can be reproduced using Version 8.0 with the following
changes for Release 8.1:

� PROC LOGISTIC adds exact logistic regression.

� PROC GENMOD models, by default, the probability of the lowest ordered response
variable levels. (The default has been changed from previous releases to make it
consistent with other procedures.)

To make things a little more complicated, the authors used an output template for the
LOGISTIC procedure that will become the default in Release 8.2. The main difference is
that the label for the chi-square statistic in the parameter estimates table is “Wald
Chi-Square” in Release 8.2 (which was the label used in Version 6).



Note that, because of limited space, not all of the output that is produced with the example
SAS code is shown. Generally, the output pertinent to the discussion is displayed. An ODS
SELECT statement is sometimes used in the example code to limit the tables produced.

For those users still running earlier versions of the SAS System, such as Release 6.09E on
the mainframe and Release 6.12 on UNIX and PC platforms, the main additions to those
releases with Version 8 are the CLASS statement in the LOGISTIC procedure, the
inclusion of complete GEE facilities in the GENMOD procedure, and the availability of
exactp-values for many of the tests produced by the FREQ procedure. The first example
in Chapter 8 discusses how to use indicator variables, and the remaining logistic regression
examples can be performed with indicator variables as well. Release 6.12 does contain a
preliminary version of the GEE facility in PROC GENMOD; refer to the documentation
for that release for more detail.

Some of the procedures such as PROC FREQ are printing more digits for various statistics
and parameter estimates than they did in previous releases of the SAS System. This was
done mainly to make the procedures more consistent with each other.

For More Information

The Website www.sas.com/catbook contains further information pertaining to topics in the
book, including archives and errata. In the future, these Web pages will also provide
information on using new features in SAS software for categorical data analysis, as well as
contain examples and references on methodological advances.

vi



Acknowledgments
The second edition proved to be a substantial undertaking. We are thankful for getting a lot
of help along the way.

We would like to thank Ozkan Zengin for his assistance in bringing this book up to date in
a number of ways, including adaptation to a new publishing system and running and
checking all of the examples. Dan Spitzner provided careful proofing.

Numerous colleagues contributed to this book with their conversations, reviews, and
suggestions, and we are very grateful for their time and effort. We thank Bob Derr, Diane
Catellier, Gordon Johnston, Lisa LaVange, John Preisser, David Schlotzhauer, Todd
Schwartz, and Donna Watts.

And, of course, we remain thankful to those persons who helped to launch the first edition
with their sundry feedback. They include Sonia Davis, William Duckworth II, Suzanne
Edwards, Stuart Gansky, Greg Goodwin, Wendy Greene, Duane Hayes, Allison Kinkead,
Antonio Pedroso-de-Lima, Annette Sanders, Catherine Tangen, Lisa Tomasko, and Greg
Weier.

We also thank our many readers who found the book useful and encouraged its continuing
life in a second edition.

Virginia Clark edited this book.

Ginny Matsey designed the cover.

Tim Arnold provided documentation programming support.



viii



Chapter 1

Introduction

Chapter Table of Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scale of Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Sampling Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Overview of Analysis Strategies . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Randomization Methods. . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Modeling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Working with Tables in the SAS System . . . . . . . . . . . . . . . . . . . . 10

1.6 Using This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



2 Introduction



Chapter 1

Introduction

1.1 Overview

Data analysts often encounter response measures that are categorical in nature; their
outcomes reflect categories of information rather than the usual interval scale. Frequently,
categorical data are presented in tabular form, known as contingency tables. Categorical
data analysis is concerned with the analysis of categorical response measures, regardless
of whether any accompanying explanatory variables are also categorical or are continuous.
This book discusses hypothesis testing strategies for the assessment of association in
contingency tables and sets of contingency tables. It also discusses various modeling
strategies available for describing the nature of the association between a categorical
response measure and a set of explanatory variables.

An important consideration in determining the appropriate analysis of categorical variables
is their scale of measurement. Section 1.2 describes the various scales and illustrates them
with data sets used in later chapters. Another important consideration is the sampling
framework that produced the data; it determines the possible analyses and the possible
inferences. Section 1.3 describes the typical sampling frameworks and their ramifications.
Section 1.4 introduces the various analysis strategies discussed in this book and describes
how they relate to one another. It also discusses the target populations generally assumed
for each type of analysis and what types of inferences you are able to make to them.
Section 1.5 reviews how the SAS System handles contingency tables and other forms of
categorical data. Finally, Section 1.6 provides a guide to the material in the book for
various types of readers, including indications of the difficulty level of the chapters.

1.2 Scale of Measurement

The scale of measurement of a categorical response variable is a key element in choosing
an appropriate analysis strategy. By taking advantage of the methodologies available for
the particular scale of measurement, you can choose a well-targeted strategy. If you do not
take the scale of measurement into account, you may choose an inappropriate strategy that
could lead to erroneous conclusions. Recognizing the scale of measurement and using it
properly are very important in categorical data analysis.
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Categorical response variables can be

� dichotomous
� ordinal
� nominal
� discrete counts
� grouped survival times

Dichotomousresponses are those that have two possible outcomes—most often they are
yes and no. Did the subject develop the disease? Did the voter cast a ballot for the
Democratic or Republican candidate? Did the student pass the exam? For example, the
objective of a clinical trial for a new medication for colds is whether patients obtained
relief from their pain-producing ailment. Consider Table 1.1, which is analyzed in
Chapter 2, “The 2� 2 Table.”

Table 1.1. Respiratory Outcomes

Treatment Favorable Unfavorable Total
Placebo 16 48 64
Test 40 20 60

The placebo group contains 64 patients, and the test medication group contains 60
patients. The columns contain the information concerning the categorical response
measure: 40 patients in the Test group had a favorable response to the medication, and 20
subjects did not. The outcome in this example is thus dichotomous, and the analysis
investigates the relationship between the response and the treatment.

Frequently, categorical data responses represent more than two possible outcomes, and
often these possible outcomes take on some inherent ordering. Such response variables
have anordinal scale of measurement. Did the new school curriculum produce little,
some, or high enthusiasm among the students? Does the water exhibit low, medium, or
high hardness? In the former case, the order of the response levels is clear, but there is no
clue as to the relative distances between the levels. In the latter case, there is a possible
distance between the levels: medium might have twice the hardness of low, and high might
have three times the hardness of low. Sometimes the distance is even clearer: a 50%
potency dose versus a 100% potency dose versus a 200% potency dose. All three cases are
examples of ordinal data.

An example of an ordinal measure occurs in data displayed in Table 1.2, which is analyzed
in Chapter 9, “Logistic Regression II: Polytomous Response.” A clinical trial investigated
a treatment for rheumatoid arthritis. Male and female patients were given either the active
treatment or a placebo; the outcome measured was whether they showed marked, some, or
no improvement at the end of the clinical trial. The analysis uses the proportional odds
model to assess the relationship between the response variable and gender and treatment.
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Table 1.2. Arthritis Data

Improvement
Sex Treatment Marked Some None Total
Female Active 16 5 6 27
Female Placebo 6 7 19 32
Male Active 5 2 7 14
Male Placebo 1 0 10 11

Note that categorical response variables can often be managed in different ways. You
could combine the Marked and Some columns in Table 1.2 to produce a dichotomous
outcome: No Improvement versus Improvement. Grouping categories is often done during
an analysis if the resulting dichotomous response is also of interest.

If you have more than two outcome categories, and there is no inherent ordering to the
categories, you have anominalmeasurement scale. Which of four candidates did you vote
for in the town council election? Do you prefer the beach, mountains, or lake for a
vacation? There is no underlying scale for such outcomes and no apparent way in which to
order them.

Consider Table 1.3, which is analyzed in Chapter 5, “Thes� r Table.” Residents in one
town were asked their political party affiliation and their neighborhood. Researchers were
interested in the association between political affiliation and neighborhood. Unlike ordinal
response levels, the classifications Bayside, Highland, Longview, and Sheffeld lie on no
conceivable underlying scale. However, you can still assess whether there is association in
the table, which is done in Chapter 5.

Table 1.3. Distribution of Parties in Neighborhoods

Neighborhood
Party Bayside Highland Longview Sheffeld
Democrat 221 160 360 140
Independent 200 291 160 311
Republican 208 106 316 97

Categorical response variables sometimes containdiscrete counts. Instead of falling into
categories that are labeled (yes, no) or (low, medium, high), the outcomes are numbers
themselves. Was the litter size 1, 2, 3, 4, or 5 members? Did the house contain 1, 2, 3, or 4
air conditioners? While the usual strategy would be to analyze the mean count, the
assumptions required for the standard linear model for continuous data are often not met
with discrete counts that have small range; the counts are not distributed normally and may
not have homogeneous variance.

For example, researchers examining respiratory disease in children visited children in
different regions two times and determined whether they showed symptoms of respiratory
illness. The response measure was whether the children exhibited symptoms in 0, 1, or 2
periods. Table 1.4 contains these data, which are analyzed in Chapter 13, “Weighted Least
Squares.”
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Table 1.4. Colds in Children

Periods with Colds
Sex Residence 0 1 2 Total
Female Rural 45 64 71 180
Female Urban 80 104 116 300
Male Rural 84 124 82 290
Male Urban 106 117 87 310

The table represents a cross-classification of gender, residence, and number of periods
with colds. The analysis is concerned with modeling mean colds as a function of gender
and residence.

Finally, another type of response variable in categorical data analysis is one that represents
survival times. With survival data, you are tracking the number of patients with certain
outcomes (possibly death) over time. Often, the times of the condition are grouped
together so that the response variable represents the number of patients who fail during a
specific time interval. Such data are calledgrouped survival times. For example, the data
displayed in Table 1.5 are from Chapter 17, “Categorized Time-to-Event Data.” A clinical
condition is treated with an active drug for some patients and with a placebo for others.
The response categories are whether there are recurrences, no recurrences, or whether the
patients withdrew from the study. The entries correspond to the time intervals 0–1 years,
1–2 years, and 2–3 years, which make up the rows of the table.

Table 1.5. Life Table Format for Clinical Condition Data

Controls
Interval No Recurrences Recurrences Withdrawals At Risk
0–1 Years 50 15 9 74
1–2 Years 30 13 7 50
2–3 Years 17 7 6 30
Active
Interval No Recurrences Recurrences Withdrawals At Risk
0–1 Years 69 12 9 90
1–2 Years 59 7 3 69
2–3 Years 45 10 4 59

1.3 Sampling Frameworks

Categorical data arise from different sampling frameworks. The nature of the sampling
framework determines the assumptions that can be made for the statistical analyses and in
turn influences the type of analysis that can be applied. The sampling framework also
determines the type of inference that is possible. Study populations are limited to target
populations, those populations to which inferences can be made, by assumptions justified
by the sampling framework.

Generally, data fall into one of three sampling frameworks: historical data, experimental
data, and sample survey data.Historical dataare observational data, which means that the
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study population has a geographic or circumstantial definition. These may include all the
occurrences of an infectious disease in a multicounty area, the children attending a
particular elementary school, or those persons appearing in court during a specified time
period. Highway safety data concerning injuries in motor vehicles is another example of
historical data.

Experimental dataare drawn from studies that involve the random allocation of subjects to
different treatments of one sort or another. Examples include studies where types of
fertilizer are applied to agricultural plots and studies where subjects are administered
different dosages of drug therapies. In the health sciences, experimental data may include
patients randomly administered a placebo or treatment for their medical condition.

In sample survey studies, subjects are randomly chosen from a larger study population.
Investigators may randomly choose students from their school IDs and survey them about
social behavior; national health care studies may randomly sample Medicare users and
investigate physician utilization patterns. In addition, some sampling designs may be a
combination of sample survey and experimental data processes. Researchers may
randomly select a study population and then randomly assign treatments to the resulting
study subjects.

The major difference in the three sampling frameworks described in this section is the use
of randomization to obtain them. Historical data involve no randomization, and so it is
often difficult to assume that they are representative of a convenient population.
Experimental data have good coverage of the possibilities of alternative treatments for the
restricted protocol population, and sample survey data have very good coverage of the
larger population from which they were selected.

Note that the unit of randomization can be a single subject or a cluster of subjects. In
addition, randomization may be applied within subsets, called strata or blocks, with equal
or unequal probabilities. In sample surveys, all of this can lead to more complicated
designs, such as stratified random samples, or even multistage cluster random samples. In
experimental design studies, such considerations lead to repeated measurements (or
split-plot) studies.

1.4 Overview of Analysis Strategies

Categorical data analysis strategies can be classified into those that are concerned with
hypothesis testing and those that are concerned with modeling. Many questions about a
categorical data set can be answered by addressing a specific hypothesis concerning
association. Such hypotheses are often investigated with randomization methods. In
addition to making statements about association, you may also want to describe the nature
of the association in the data set. Statistical modeling techniques using maximum
likelihood estimation or weighted least squares estimation are employed to describe
patterns of association or variation in terms of a parsimonious statistical model.

Most often the hypothesis of interest is whether association exists between the rows of a
contingency table and its columns. The only assumption that is required is randomized
allocation of subjects, either through the study design (experimental design) or through the
hypothesis itself (necessary for historical data). In addition, particularly for the use of
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historical data, you often want to control for other explanatory variables that may have
influenced the observed outcomes.

1.4.1 Randomization Methods

Table 1.1, the respiratory outcomes data, contains information obtained as part of a
randomized allocation process. The hypothesis of interest is whether there is an
association between treatment and outcome. For these data, the randomization is
accomplished by the study design.

Table 1.6 contains data from a similar study. The main difference is that the study was
conducted in two medical centers. The hypothesis of association is whether there is an
association between treatment and outcome, controlling for any effect of center.

Table 1.6. Respiratory Improvement

Center Treatment Yes No Total
1 Test 29 16 45
1 Placebo 14 31 45

Total 43 47 90
2 Test 37 8 45
2 Placebo 24 21 45

Total 61 29 90

Chapter 2, “The 2� 2 Table,” is primarily concerned with the association in 2� 2 tables;
in addition, it discusses measures of association, that is, statistics designed to evaluate the
strength of the association. Chapter 3, “Sets of 2� 2 Tables,” discusses the investigation
of association in sets of 2� 2 tables. When the table of interest has more than two rows
and two columns, the analysis is further complicated by the consideration of scale of
measurement. Chapter 4, “Sets of2� r ands� 2 Tables,” considers the assessment of
association in sets of tables where the rows (columns) have more than two levels.

Chapter 5 describes the assessment of association in the generals� r table, and Chapter 6,
“Sets ofs� r Tables,” describes the assessment of association in sets ofs� r tables. The
investigation of association in tables and sets of tables is further discussed in Chapter 7,
“Nonparametric Methods,” which discusses traditional nonparametric tests that have
counterparts among the strategies for analyzing contingency tables.

Another consideration in data analysis is whether you have enough data to support the
asymptotic theory required for many tests. Often, you may have an overall table sample
size that is too small or a number of zero or small cell counts that make the asymptotic
assumptions questionable. Recently, exact methods have been developed for a number of
association statistics that permit you to address the same hypotheses for these types of data.
The above-mentioned chapters illustrate the use of exact methods for many situations.

1.4.2 Modeling Strategies

Often, you are interested in describing the variation of your response variable in your data
with a statistical model. In the continuous data setting, you frequently fit a model to the
expected mean response. However, with categorical outcomes, there are a variety of
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response functions that you can model. Depending on the response function that you
choose, you can use weighted least squares or maximum likelihood methods to estimate
the model parameters.

Perhaps the most common response function modeled for categorical data is the logit. If
you have a dichotomous response and represent the proportion of those subjects with an
event (versus no event) outcome asp, then the logit can be written

log

�
p

1� p

�
Logistic regression is a modeling strategy that relates the logit to a set of explanatory
variables with a linear model. One of its benefits is that estimates of odds ratios, important
measures of association, can be obtained from the parameter estimates. Maximum
likelihood estimation is used to provide those estimates.

Chapter 8, “Logistic Regression I: Dichotomous Response,” discusses logistic regression
for a dichotomous outcome variable. Chapter 9, “Logistic Regression II: Polytomous
Response,” discusses logistic regression for the situation where there are more than two
outcomes for the response variable. Logits calledgeneralized logitscan be analyzed when
the outcomes are nominal. And logits calledcumulative logitscan be analyzed when the
outcomes are ordinal. Chapter 10, “Conditional Logistic Regression,” describes a
specialized form of logistic regression that is appropriate when the data are highly
stratified or arise from matched case-control studies. Chapter 8 and Chapter 10 describe
the use of exact conditional logistic regression for those situations where you have limited
or sparse data, and the asymptotic requirements for the usual maximum likelihood
approach are not met.

In logistic regression, the objective is to predict a response outcome from a set of
explanatory variables. However, sometimes you simply want to describe the structure of
association in a set of variables for which there are no obvious outcome or predictor
variables. This occurs frequently for sociological studies. The loglinear model is a
traditional modeling strategy for categorical data and is appropriate for describing the
association in such a set of variables. It is closely related to logistic regression, and the
parameters in a loglinear model are also estimated with maximum likelihood estimation.
Chapter 16, “Loglinear Models,” discusses the loglinear model, including several typical
applications.

Some application areas have features that led to the development of special statistical
techniques. One of these areas for categorical data is bioassay analysis. Bioassay is the
process of determining the potency or strength of a reagent or stimuli based on the
response it elicits in biological organisms. Logistic regression is a technique often applied
in bioassay analysis, where its parameters take on specific meaning. Chapter 11, “Quantal
Bioassay Analysis,” discusses the use of categorical data methods for quantal bioassay.

Poisson regression is a modeling strategy that is suitable for discrete counts, and it is
discussed in Chapter 12, “Poisson Regression.” Most often the log of the count is used as
the response function so the model used is a loglinear one.

Besides the logit and log counts, other useful response functions that can be modeled
include proportions, means, and measures of association. Weighted least squares
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estimation is a method of analyzing such response functions, based on large sample theory.
These methods are appropriate when you have sufficient sample size and when you have a
randomly selected sample, either directly through study design or indirectly via
assumptions concerning the representativeness of the data. Not only can you model a
variety of useful functions, but weighted least squares estimation also provides a useful
framework for the analysis of repeated categorical measurements, particularly those
limited to a small number of repeated values. Chapter 13, “Weighted Least Squares,”
addresses modeling categorical data with weighted least squares methods, and Chapter 14,
“Modeling Repeated Measurements Data with WLS,” discusses these techniques as
applied to the analysis of repeated measurements data.

More recently, generalized estimating equations (GEE) has become a widely used method
for the analysis of correlated responses, particularly for the analysis of categorical repeated
measurements. The GEE method applies to a broad range of repeated measurements
situations, such as those including time-dependent covariates and continuous explanatory
variables, that weighted least squares doesn’t handle. In addition, the GEE method is a
useful technique for some univariate analyses such as modeling overdispersed Poisson
counts and implementing the partial proportional odds model. Chapter 15, “Generalized
Estimating Equations,” discusses the GEE approach and illustrates its application with a
number of examples.

Finally, another special application area for categorical data analysis is the analysis of
grouped survival data. Chapter 17, “Categorized Time-to-Event Data,” discusses some
features of survival analysis that are pertinent to grouped survival data, including how to
model them with the piecewise exponential model.

1.5 Working with Tables in the SAS System

This section discusses some considerations of managing tables with the SAS System. If
you are already familiar with the FREQ procedure, you may want to skip this section.

Many times, categorical data are presented to the researcher in the form of tables, and
other times, they are presented in the form of case record data. SAS procedures can handle
either type of data. In addition, many categorical data have ordered categories, so that the
order of the levels of the rows and columns takes on special meaning. There are numerous
ways that you can specify a particular order to SAS procedures.

Consider the following SAS DATA step that inputs the data displayed in Table 1.1.

data respire;
input treat $ outcome $ count;
datalines;

placebo f 16
placebo u 48
test f 40
test u 20
;
proc freq;

weight count;
tables treat*outcome;

run;
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The data set RESPIRE contains three variables: TREAT is a character variable containing
values for treatment, OUTCOME is a character variable containing values for the outcome
(f for favorable and u for unfavorable), and COUNT contains the number of observations
that have the respective TREAT and OUTCOME values. Thus, COUNT effectively takes
values corresponding to the cells of Table 1.1. The PROC FREQ statements request that a
table be constructed using TREAT as the row variable and OUTCOME as the column
variable. By default, PROC FREQ orders the values of the rows (columns) in
alphanumeric order. The WEIGHT statement is necessary to tell the procedure that the
data are count data, or frequency data; the variable listed in the WEIGHT statement
contains the values of the count variable.

Output 1.1 contains the resulting frequency table.

Output 1.1 Frequency Table

Table of treat by outcome

treat outcome

Frequency|
Percent |
Row Pct |
Col Pct |f |u | Total
---------+--------+--------+
placebo | 16 | 48 | 64

| 12.90 | 38.71 | 51.61
| 25.00 | 75.00 |
| 28.57 | 70.59 |

---------+--------+--------+
test | 40 | 20 | 60

| 32.26 | 16.13 | 48.39
| 66.67 | 33.33 |
| 71.43 | 29.41 |

---------+--------+--------+
Total 56 68 124

45.16 54.84 100.00

Suppose that a different sample produced the numbers displayed in Table 1.7.

Table 1.7. Respiratory Outcomes

Treatment Favorable Unfavorable Total
Placebo 5 10 15
Test 8 20 28

These data may be stored in case record form, which means that each individual is
represented by a single observation. You can also use this type of input with the FREQ
procedure. The only difference is that the WEIGHT statement is not required.
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The following statements create a SAS data set for these data and invoke PROC FREQ for
case record data. The @@ symbol in the INPUT statement means that the data lines
contain multiple observations.

data respire;
input treat $ outcome $ @@;
datalines;

placebo f placebo f placebo f
placebo f placebo f
placebo u placebo u placebo u
placebo u placebo u placebo u
placebo u placebo u placebo u
placebo u
test f test f test f
test f test f test f
test f test f
test u test u test u
test u test u test u
test u test u test u
test u test u test u
test u test u test u
test u test u test u
test u test u
;
proc freq;

tables treat*outcome;
run;

Output 1.2 displays the resulting frequency table.

Output 1.2 Frequency Table

Table of treat by outcome

treat outcome

Frequency|
Percent |
Row Pct |
Col Pct |f |u | Total
---------+--------+--------+
placebo | 5 | 10 | 15

| 11.63 | 23.26 | 34.88
| 33.33 | 66.67 |
| 38.46 | 33.33 |

---------+--------+--------+
test | 8 | 20 | 28

| 18.60 | 46.51 | 65.12
| 28.57 | 71.43 |
| 61.54 | 66.67 |

---------+--------+--------+
Total 13 30 43

30.23 69.77 100.00

In this book, the data are generally presented in count form.
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When ordinal data are considered, it becomes quite important to ensure that the levels of
the rows and columns are sorted correctly. By default, the data are going to be sorted
alphanumerically. If this isn’t suitable, then you need to alter the default behavior.

Consider the data displayed in Table 1.2. IMPROVE is the outcome variable, and the
values marked, some, and none are listed in decreasing order. Suppose that the data set
ARTHRIT is created with the following statements.

data arthrit;
length treat $7. sex $6. ;
input sex $ treat $ improve $ count @@;
datalines;

female active marked 16 female active some 5 female active none 6
female placebo marked 6 female placebo some 7 female placebo none 19
male active marked 5 male active some 2 male active none 7
male placebo marked 1 male placebo some 0 male placebo none 10
;
run;

If you invoked PROC FREQ for this data set and used the default sort order, the levels of
the columns would be ordered marked, none, and some, which would be incorrect. One
way to change this default sort order is to use the ORDER=DATA option in the PROC
FREQ statement. This specifies that the sort order is the same order in which the values
are encountered in the data set. Thus, since ‘marked’ comes first, it is first in the sort order.
Since ‘some’ is the second value for IMPROVE encountered in the data set, then it is
second in the sort order. And ‘none’ would be third in the sort order. This is the desired
sort order. The following PROC FREQ statements produce a table displaying the sort
order resulting from the ORDER=DATA option.

proc freq order=data;
weight count;
tables treat*improve;

run;
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Output 1.3 displays the frequency table for the cross-classification of treatment and
improvement for these data; the values for IMPROVE are in the correct order.

Output 1.3 Frequency Table from ORDER=DATA Option

Table of treat by improve

treat improve

Frequency|
Percent |
Row Pct |
Col Pct |marked |some |none | Total
---------+--------+--------+--------+
active | 21 | 7 | 13 | 41

| 25.00 | 8.33 | 15.48 | 48.81
| 51.22 | 17.07 | 31.71 |
| 75.00 | 50.00 | 30.95 |

---------+--------+--------+--------+
placebo | 7 | 7 | 29 | 43

| 8.33 | 8.33 | 34.52 | 51.19
| 16.28 | 16.28 | 67.44 |
| 25.00 | 50.00 | 69.05 |

---------+--------+--------+--------+
Total 28 14 42 84

33.33 16.67 50.00 100.00

Other possible values for the ORDER= option include FORMATTED, which means sort
by the formatted values. The ORDER= option is also available with the CATMOD,
LOGISTIC, and GENMOD procedures. For information on the ORDER= option for the
FREQ procedure, refer to theSAS/STAT User’s Guide, Version 8. This option is used
frequently in this book.

Often, you want to analyze sets of tables. For example, you may want to analyze the
cross-classification of treatment and improvement for both males and females. You do this
in PROC FREQ by using a three-way crossing of the variables SEX, TREAT, and
IMPROVE.

proc freq order=data;
weight count;
tables sex*treat*improve / nocol nopct;

run;

The two rightmost variables in the TABLES statement determine the rows and columns of
the table, respectively. Separate tables are produced for the unique combination of values
of the other variables in the crossing. Since SEX has two levels, one table is produced for
males and one table is produced for females. If there were four variables in this crossing,
with the two variables on the left having two levels each, then four tables would be
produced, one for each unique combination of the two leftmost variables in the TABLES
statement.

Note also that the options NOCOL and NOPCT are included. These options suppress the
printing of column percentages and cell percentages, respectively. Since generally you are
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interested in row percentages, these options are often specified in the code displayed in this
book.

Output 1.4 contains the two tables produced with the preceding statements.

Output 1.4 Producing Sets of Tables

Table 1 of treat by improve
Controlling for sex=female

treat improve

Frequency|
Row Pct |marked |some |none | Total
---------+--------+--------+--------+
active | 16 | 5 | 6 | 27

| 59.26 | 18.52 | 22.22 |
---------+--------+--------+--------+
placebo | 6 | 7 | 19 | 32

| 18.75 | 21.88 | 59.38 |
---------+--------+--------+--------+
Total 22 12 25 59

Table 2 of treat by improve
Controlling for sex=male

treat improve

Frequency|
Row Pct |marked |some |none | Total
---------+--------+--------+--------+
active | 5 | 2 | 7 | 14

| 35.71 | 14.29 | 50.00 |
---------+--------+--------+--------+
placebo | 1 | 0 | 10 | 11

| 9.09 | 0.00 | 90.91 |
---------+--------+--------+--------+
Total 6 2 17 25

This section reviewed some of the basic table management necessary for using the FREQ
procedure. Other related options are discussed in the appropriate chapters.

1.6 Using This Book

This book is intended for a variety of audiences, including novice readers with some
statistical background (solid understanding of regression analysis), those readers with
substantial statistical background, and those readers with background in categorical data
analysis. Therefore, not all of this material will have the same importance to all readers.
Some chapters include a good deal of tutorial material, while others have a good deal of
advanced material. This book is not intended to be a comprehensive treatment of
categorical data analysis, so some topics are mentioned briefly for completeness and some
other topics are emphasized because they are not well documented.

The data used in this book come from a variety of sources and represent a wide breadth of
application. However, due to the biostatistical background of all three authors, there is a
certain inevitable weighting of biostatistical examples. Most of the data come from
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practice, and the original sources are cited when this is true; however, due to
confidentiality concerns and pedagogical requirements, some of the data are altered or
created. However, they still represent realistic situations.

Chapters 2–4 are intended to be accessible to all readers, as is most of Chapter 5. Chapter
6 is an integration of Mantel-Haenszel methods at a more advanced level, but scanning it is
probably a good idea for any reader interested in the topic. In particular, the discussion
about the analysis of repeated measurements data with extended Mantel-Haenszel methods
is useful material for all readers comfortable with the Mantel-Haenszel technique.

Chapter 7 is a special interest chapter relating Mantel-Haenszel procedures to traditional
nonparametric methods used for continuous data outcomes.

Chapters 8 and 9 on logistic regression are intended to be accessible to all readers,
particularly Chapter 8. The last section of Chapter 8 describes the statistical methodology
more completely for the advanced reader. Most of the material in Chapter 9 should be
accessible to most readers. Chapter 10 is a specialized chapter that discusses conditional
logistic regression and requires somewhat more statistical expertise. Chapter 11 discusses
the use of logistic regression in analyzing bioassay data.

Chapter 12 describes Poisson regression and should be fairly accessible.

Chapter 13 discusses weighted least squares and is written at a somewhat higher statistical
level than Chapters 8 and 9, but most readers should find this material useful, particularly
the examples.

Chapters 14–17 discuss advanced topics and are necessarily written at a higher statistical
level. Chapter 14 describes the analysis of repeated measurements data using weighted
least squares and Chapter 15 discusses the use of generalized estimating equations. The
opening sections both include a basic example that is intended to be accessible to a wide
range of readers. Chapter 16 discusses loglinear model analysis, and Chapter 17 discusses
the analysis of categorized time-to-event data.

All of the examples were executed with Release 8.1 of the SAS System with the few
exceptions noted in the “Preface to the Second Edition.” Software features upcoming in
future releases are also mentioned.
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Chapter 2

The 2� 2 Table

2.1 Introduction

The2� 2 contingency table is one of the most common ways to summarize categorical
data. Categorizing patients by their favorable or unfavorable response to two different
drugs, asking health survey participants whether they have regular physicians and regular
dentists, and asking residents of two cities whether they desire more environmental
regulations all result in data that can be summarized in a2� 2 table.

Generally, interest lies in whether there is an association between the row variable and the
column variable that produce the table; sometimes there is further interest in describing the
strength of that association. The data can arise from several different sampling
frameworks, and the interpretation of the hypothesis of no association depends on the
framework. Data in a2� 2 table can represent

� simple random samples from two groups that yield two independent binomial
distributions for a binary response

Asking residents from two cities whether they desire more environmental
regulations is an example of this framework. This is a stratified random sampling
setting, since the subjects from each city represent two independent random
samples. Because interest lies in whether the proportion favoring regulation is the
same for the two cities, the hypothesis of interest is the hypothesis of homogeneity.
Is the distribution of the response the same in both groups?

� a simple random sample from one group that yields a single multinomial distribution
for the cross-classification of two binary responses

Taking a random sample of subjects and asking whether they see both a regular
physician and a regular dentist is an example of this framework. The hypothesis of
interest is one of independence. Are having a regular dentist and having a regular
physician independent of each other?

� randomized assignment of patients to two equivalent treatments, resulting in the
hypergeometric distribution

This framework occurs when patients are randomly allocated to one of two drug
treatments, and their response to that treatment is the binary outcome. Under the
hypothesis that the effects of the two treatments are the same for each patient, a
hypergeometric distribution applies to the response distributions for the two
treatments. (A less frequent framework that produces data for the2� 2 table is the
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Poisson distribution. Each count is considered to be the result of an independent
Poisson process, and questions related to multiplicative effects in Poisson regression
(discussed in Chapter 12) are addressed by testing the hypothesis of no association.)

Table 2.1 summarizes the information from a randomized clinical trial that compared two
treatments (test, placebo) for a respiratory disorder.

Table 2.1. Respiratory Outcomes

Treatment Favorable Unfavorable Total
Placebo 16 48 64
Test 40 20 60

The question of interest is whether the rates of favorable response for test (67%) and
placebo (25%) are the same. You can address this question by investigating whether there
is a statistical association between treatment and outcome. The null hypothesis is stated

H0:There is no association between treatment and outcome.

There are several ways of testing this hypothesis; many of the tests are based on the
chi-square statistic. Section 2.2 discusses these methods. However, sometimes the counts
in the table cells are too small to meet the sample size requirements necessary for the
chi-square distribution to apply, and exact methods based on the hypergeometric
distribution are used to test the hypothesis of no association. Exact methods are discussed
in Section 2.3.

In addition to testing the hypothesis concerning the presence of association, you may be
interested in describing the association or gauging its strength. Section 2.4 discusses the
estimation of the difference in proportions from2� 2 tables. Section 2.5 discusses
measures of association, which assess strength of association, and Section 2.6 discusses
measures called sensitivity and specificity, which are useful when the two responses
correspond to two different methods for determining whether a particular disorder is
present. Finally,2� 2 tables often display data for matched pairs, and Section 2.7
discusses McNemar’s Test for assessing association for matched pairs data.

2.2 Chi-Square Statistics

Table 2.2 displays the generic2� 2 table, including row and column marginal totals.

Table 2.2. 2� 2 Contingency Table

Column Row Levels
Levels 1 2 Total

1 n11 n12 n1+
2 n21 n22 n2+

Total n+1 n+2 n
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Under the randomization framework that produced Table 2.1, the row marginal totalsn1+
andn2+ are fixed since 60 patients were randomly allocated to one of the treatment groups
and 64 to the other. The column marginal totals can be regarded as fixed under the null
hypothesis of no treatment difference for each patient. Then, given that all of the marginal
totalsn1+, n2+, n+1, andn+2 are fixed under the null hypothesis, the probability
distribution from the randomized allocation of patients to treatment can be written

Prfnijg = n1+!n2+!n+1!n+2!

n!n11!n12!n21!n22!

which is the hypergeometric distribution. The expected value ofnij is

Efnij jH0g = ni+n+j
n

= mij

and the variance is

V fnijjH0g = n1+n2+n+1n+2

n2(n� 1)
= vij

For a sufficiently large sample,n11 approximately has a normal distribution, which implies
that

Q =
(n11 �m11)

2

v11

approximately has a chi-square distribution with one degree of freedom. It is the ratio of a
squared difference from the expected value versus its variance, and such quantities follow
the chi-square distribution when the variable is distributed normally.Q is often called the
randomization chi-square. It doesn’t matter how the rows and columns are arranged,Q
takes the same value since

jn11 �m11j = jnij �mij j = jn11n22 � n12n21j
n

A related statistic is the Pearson chi-square statistic. This statistic is written

QP =
2X
i=1

2X
j=1

(nij �mij)
2

mij
=

n

(n� 1)
Q

If the cell counts are sufficiently large,QP is distributed as chi-square with one degree of
freedom. Asn grows large,QP andQ converge. A useful rule for determining adequate
sample size for bothQ andQP is that the expected valuemij should exceed 5 for all of
the cells (and preferably 10). WhileQ is discussed here in the framework of a randomized
allocation of patients to two groups,Q andQP are also appropriate for investigating the
hypothesis of no association for all of the sampling frameworks described previously.
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The following PROC FREQ statements produce a frequency table and the chi-square
statistics for the data in Table 2.1. The data are supplied in frequency, or count, form. An
observation is supplied for each configuration of the values of the variables TREAT and
OUTCOME. The variable COUNT holds the total number of observations that have that
particular configuration. The WEIGHT statement tells the FREQ procedure that the data
are in frequency form and names the variable that contains the frequencies.

The CHISQ option in the TABLES statement produces chi-square statistics.

data respire;
input treat $ outcome $ count;
datalines;

placebo f 16
placebo u 48
test f 40
test u 20
;
proc freq;

weight count;
tables treat*outcome / chisq;

run;

Output 2.1 displays the data in a2� 2 table. With an overall sample size of 124, and all
expected cell counts greater than 10, the sampling assumptions for the chi-square statistics
are met. PROC FREQ prints out a warning message when more than 20% of the cells in a
table have expected counts less than 5. (Note that you can specify the EXPECTED option
in the TABLE statement to produce the expected cell counts along with the cell
percentages.)

Output 2.1 Frequency Table

Table of treat by outcome

treat outcome

Frequency|
Percent |
Row Pct |
Col Pct |f |u | Total
---------+--------+--------+
placebo | 16 | 48 | 64

| 12.90 | 38.71 | 51.61
| 25.00 | 75.00 |
| 28.57 | 70.59 |

---------+--------+--------+
test | 40 | 20 | 60

| 32.26 | 16.13 | 48.39
| 66.67 | 33.33 |
| 71.43 | 29.41 |

---------+--------+--------+
Total 56 68 124

45.16 54.84 100.00

Output 2.2 contains the table with the chi-square statistics.
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Output 2.2 Chi-Square Statistics

Statistics for Table of treat by outcome

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 21.7087 <.0001
Likelihood Ratio Chi-Square 1 22.3768 <.0001
Continuity Adj. Chi-Square 1 20.0589 <.0001
Mantel-Haenszel Chi-Square 1 21.5336 <.0001
Phi Coefficient -0.4184
Contingency Coefficient 0.3860
Cramer’s V -0.4184

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 16
Left-sided Pr <= F 2.838E-06
Right-sided Pr >= F 1.0000

Table Probability (P) 2.397E-06
Two-sided Pr <= P 4.754E-06

Sample Size = 124

The randomization statisticQ is labeled “Mantel-Haenszel Chi-Square,” and the Pearson
chi-squareQP is labeled “Chi-Square.”Q has a value of 21.5336 andp < 0:0001; QP has
a value of 21.7087 andp < 0:0001. Both of these statistics are clearly significant. There is
a strong association between treatment and outcome such that the test treatment results in a
more favorable response outcome than the placebo. The row percentages in Output 2.1
show that the test treatment resulted in 67% favorable response and the placebo treatment
resulted in 25% favorable response.

Notice that the output also includes a statistic labeled “Likelihood Ratio Chi-Square.” This
statistic, often writtenQL, is asymptotically equivalent toQ andQP . The statisticQL is
described later in chapters on modeling; it is not often used in the analysis of2� 2 tables.
Some of the other statistics are discussed in the next section.

2.3 Exact Tests

Sometimes your data include small and zero cell counts. For example, consider the
following data from a study on treatments for healing severe infections. A test treatment
and a control are compared to determine whether the rates of favorable response are the
same.

Table 2.3. Severe Infection Treatment Outcomes

Treatment Favorable Unfavorable Total
Test 10 2 12
Control 2 4 6
Total 12 6 18
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Obviously, the sample sizes requirements for the chi-square tests described in Section 2.2
are not met by these data. However, if you can consider the margins (12, 6, 12, 6) to be
fixed, then you can assume that the data are distributed hypergeometrically and write

Prfnijg = n1+!n2+!n+1!n+2!

n!n11!n12!n21!n22!

The row margins may be fixed by the treatment allocation process; that is, subjects are
randomly assigned to Test and Control. The column totals can be regarded as fixed by the
null hypothesis; there are 12 patients with favorable response and 6 patients with
unfavorable response, regardless of treatment. If the data are the result of a sample of
convenience, you can still condition on marginal totals being fixed by addressing the null
hypothesis that patients are interchangeable; that is, an individual patient is as likely to
have a favorable response on Test as on Control.

Recall that ap-value is the probability of the observed data or more extreme data occurring
under the null hypothesis. With Fisher’s exact test, you determine thep-value for this table
by summing the probabilities of the tables that are as likely or less likely, given the fixed
margins. The following table includes all possible table configurations and their associated
probabilities.

Table 2.4. Table Probabilities

Table Cell
(1,1) (1,2) (2,1) (2,2) Probabilities
12 0 0 6 0.0001
11 1 1 5 0.0039
10 2 2 4 0.0533
9 3 3 3 0.2370
8 4 4 2 0.4000
7 5 5 1 0.2560
6 6 6 0 0.0498

To find the one-sidedp-value, you sum the probabilities as small or smaller than those
computed for the table observed, in the direction specified by the one-sided alternative. In
this case, it would be those tables in which the Test treatment had the more favorable
response, or

p = 0:0533 + 0:0039 + 0:0001 = 0:0573

To find the two-sidedp-value, you sum all of the probabilities that are as small or smaller
than that observed, or

p = 0:0533 + 0:0039 + 0:0001 + 0:0498 = 0:1071

Generally, you will be interested in the two-sidedp-value. Note that when the row (or
column) totals are nearly equal, thep-value for the two-sided Fisher’s exact test is
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approximately twice thep-value for the one-sided Fisher’s exact test for the better
treatment. When the row (or column) totals are equal, thep-value for the two-sided
Fisher’s exact test is exactly twice the value of thep-value for the one-sided Fisher’s exact
test.

The following SAS code produces the2� 2 frequency table for Table 2.3. Specifying the
CHISQ option also produces Fisher’s exact test for a2� 2 table. In addition, the
ORDER=DATA option specifies that PROC FREQ orders the levels of the rows (columns)
in the same order in which the values are encountered in the data set.

data severe;
input treat $ outcome $ count;
datalines;

Test f 10
Test u 2
Control f 2
Control u 4
;
proc freq order=data;

weight count;
tables treat*outcome / chisq nocol;

run;

The NOCOL option suppresses the column percentages, as seen in Output 2.3.

Output 2.3 Frequency Table

Table of treat by outcome

treat outcome

Frequency|
Percent |
Row Pct |f |u | Total
---------+--------+--------+
Test | 10 | 2 | 12

| 55.56 | 11.11 | 66.67
| 83.33 | 16.67 |

---------+--------+--------+
Control | 2 | 4 | 6

| 11.11 | 22.22 | 33.33
| 33.33 | 66.67 |

---------+--------+--------+
Total 12 6 18

66.67 33.33 100.00
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Output 2.4 contains the chi-square statistics, including the exact test. Note that the sample
size assumptions are not met for the chi-square tests: the warning beneath the table asserts
that this is the case.

Output 2.4 Table Statistics

Statistics for Table of treat by outcome

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.5000 0.0339
Likelihood Ratio Chi-Square 1 4.4629 0.0346
Continuity Adj. Chi-Square 1 2.5313 0.1116
Mantel-Haenszel Chi-Square 1 4.2500 0.0393
Phi Coefficient 0.5000
Contingency Coefficient 0.4472
Cramer’s V 0.5000

WARNING: 75% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 10
Left-sided Pr <= F 0.9961
Right-sided Pr >= F 0.0573

Table Probability (P) 0.0533
Two-sided Pr <= P 0.1070

Sample Size = 18

Note that the SAS System produces both a left-tail and right-tailp-value for Fisher’s exact
test. The left-tail probability is the probability of all tables such that the (1,1) cell value is
less than or equal to the one observed. The right-tail probability is the probability of all
tables such that the (1,1) cell value is greater than or equal to the one observed. Thus, the
one-sidedp-value is the same as the right-tailedp-value in this case, since large values for
the (1,1) cell correspond to better outcomes for Test treatment.

Both the two-sidedp-value of 0.1070 and the one-sidedp-value of 0.0573 are larger than
thep-values associated withQP (p = 0:0339) andQ (p = 0:0393). Depending on your
significance criterion, you may reach very different conclusions with these three test
statistics. The sample size requirements for the chi-square distribution are not met with
these data; hence the test statistics using this approximation are questionable. This
example illustrates the usefulness of Fisher’s exact test when the sample size requirements
for the usual chi-square tests are not met.

The output also includes a statistic labeled the “Continuity Adj. Chi-Square”; this is the
continuity-adjusted chi-square statistic suggested by Yates, which is intended to correct the
Pearson chi-square statistic so that it more closely approximates Fisher’s exact test. In this
case, the correction produces a chi-square value of 2.5313 withp = 0:1116, which is
certainly close to the two-sided Fisher’s exact test value. However, many statisticians
recommend that you should simply apply Fisher’s exact test when the sample size requires
it rather than try to approximate it. In particular, the continuity-corrected chi-square may
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be overly conservative for two-sided tests when the data are nonsymmetric, that is, the row
(column) totals are very different, and the sample sizes are small.

Note that Fisher’s exact test is always appropriate, even when the sample size is large.

2.3.1 Exactp-values for Chi-Square Statistics

For many years, the only practical way to assess association in2� 2 tables that had small
or zero counts was with Fisher’s exact test. This test is computationally quite easy for the
2� 2 case. However, you can also obtain exactp-values for the statistics discussed in
Section 2.2. This is possible due to the development of fast and efficient network
algorithms that provide a distinct advantage over direct enumeration. Although such
enumeration is reasonable for Fisher’s exact test, it can prove prohibitive in other
instances. Refer to Mehta, Patel, and Tsiatis (1984) for a description of these algorithms;
Agresti (1992) provides a useful overview of the various algorithms for the computation of
exactp-values.

In the case ofQ,QP , and a closely related statistic,QL (likelihood ratio statistic), large
values of the statistic imply a departure from the null hypothesis. The exactp-values for
these statistics are the sum of the probabilities for the tables having a test statistic greater
than or equal to the value of the observed test statistic.

The EXACT statement enables you to request exactp-values or confidence limits for many
of the statistics produced by the FREQ procedure. Refer to theSAS/STAT User’s Guide,
Version 8for details about specification and the options that control computation time.
Note that exact computations may take a considerable amount of memory and time for
large problems.

For the Table 2.3 data, the following SAS statements produce the exactp-values for the
chi-square tests of association. You include the keyword(s) for the statistics for which to
compute exactp-values, CHISQ in this case.

proc freq order=data;
weight count;
tables treat*outcome / chisq nocol;
exact chisq;

run;
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First, the usual table for the CHISQ statistics is displayed.

Output 2.5 Statistics for Table of Treat by Outcome

Statistics for Table of treat by outcome

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.5000 0.0339
Likelihood Ratio Chi-Square 1 4.4629 0.0346
Continuity Adj. Chi-Square 1 2.5313 0.1116
Mantel-Haenszel Chi-Square 1 4.2500 0.0393
Phi Coefficient 0.5000
Contingency Coefficient 0.4472
Cramer’s V 0.5000

WARNING: 75% of the cells have expected counts less than 5.
(Asymptotic) Chi-Square may not be a valid test.

Then, individual tables forQP ,QL, andQ are presented, including test values and both
asymptotic and exactp-values.

Output 2.6 Pearson Chi-Square Test

Statistics for Table of treat by outcome

Pearson Chi-Square Test
----------------------------------
Chi-Square 4.5000
DF 1
Asymptotic Pr > ChiSq 0.0339
Exact Pr >= ChiSq 0.1070

Output 2.7 Likelihood Ratio Chi-Square Test

Statistics for Table of treat by outcome

Likelihood Ratio Chi-Square Test
----------------------------------
Chi-Square 4.4629
DF 1
Asymptotic Pr > ChiSq 0.0346
Exact Pr >= ChiSq 0.1070

Output 2.8 Mantel-Haenszel Chi-Square Test

Statistics for Table of treat by outcome

Mantel-Haenszel Chi-Square Test
----------------------------------
Chi-Square 4.2500
DF 1
Asymptotic Pr > ChiSq 0.0393
Exact Pr >= ChiSq 0.1070
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QP = 4:5, with an exactp-value of 0.1070 (asymptoticp = 0:0339). Q = 4:25 with an
exactp-value of 0.1070 (asymptoticp = 0:0393). QL is similar, with a value of 4.4629
and an exactp-value 0.1070 (asymptoticp = 0:0346). Thus, a researcher using the
asymptoticp-values in this case may have found an inappropriate significance that is not
there when exactp-values are considered. Note that Fisher’s exact test provides an
identicalp-value of 0.1070, but this is not always the case.

Using the exactp-values for the association chi-square versus applying the Fisher exact
test is a matter of preference. However, there may be some interpretation advantage in
using the Fisher exact test since the comparison is to your actual table rather than to a test
statistic based on the table.

2.4 Difference in Proportions

The previous sections have addressed the question of whether there is an association
between the rows and columns of a2� 2 table. In addition, you may be interested in
describing the association in the table. For example, once you have established that the
proportions computed from a table are different, you may want to estimate their difference.

Consider the following table, which displays data from two independent groups:

Table 2.5. 2� 2 Contingency Table

Yes No Total Proportion Yes
Group 1 n11 n12 n1+ p1 = n11=n1+
Group 2 n21 n22 n2+ p2 = n21=n2+

Total n+1 n+2 n

If the two groups are simple random samples from populations with corresponding
probabilities Yes denoted as�1 and�2, you may be interested in estimating the difference
between the proportionsp1 andp2 with d = p1� p2. You can show that the expected value
is

Efp1 � p2g = �1 � �2

and the variance is

V fp1 � p2g = �1(1� �1)

n1+
+
�2(1� �2)

n2+

for which an unbiased estimate is

vd =
p1(1� p1)

n1+ � 1
+
p2(1� p2)

n2+ � 1

A 100(1 � �)% confidence interval for(�1 � �2) is written

d�
�
z�=2

p
vd +

1

2

�
1

n1+
+

1

n2+

��
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wherez�=2 is the100(1 � �=2) percentile of the standard normal distribution; this
confidence interval is based on Fleiss (1981, p. 29).

For example, consider Table 2.6, which reproduces the data analyzed in Section 2.2. In
addition to determining that there is a statistical association between treatment and
response, you may be interested in estimating the difference between the rates of favorable
response for the test and placebo treatments, including a 95% confidence interval.

Table 2.6. Respiratory Outcomes

Favorable
Treatment Favorable Unfavorable Total Proportion
Placebo 16 48 64 0.250
Test 40 20 60 0.667
Total 56 68 124 0.452

The difference isd = 0:667 � 0:25 = 0:417, and the confidence interval is written

0:417 �
(
(1:96)

�
0:667(1 � 0:667)

60� 1
+

0:25(1 � 0:25)

64� 1

�1=2
+

1

2

�
1

60
+

1

64

�)
= 0:417 � 0:177

= (0:240; 0:594)

A related measure of association is the Pearson correlation coefficient. This statistic is
proportional to the difference of proportions. SinceQP is also proportional to the squared
difference in proportions, the Pearson correlation coefficient is also proportional to

p
QP .

The Pearson correlation coefficient can be written

r =

(
(n11 � n1+n+1

n
)=

�
(n1+ � n1+

2

n
)(n+1 � n+1

2

n
)

�1=2)
=

n
(n11n22 � n12n21)=[(n1+n2+n+1n+2)]

1=2
o

= [n1+n2+=n+1n+2]
1=2d

= (QP=n)
1=2

For the data in Table 2.6,r is computed as

r = [(60)(64)=(56)(68)]1=2(0:417) = 0:418

The FREQ procedure does produce the difference in proportions and a confidence interval,
although the asymptotic confidence interval it produces requires a somewhat large sample
size, say cell counts of at least 12. The confidence limits described above are appropriate
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for more moderate sample sizes, say cell counts of at least 8, and will likely be an option
in a future PROC FREQ release.

You can request the difference of proportions with the RISKDIFF option in the TABLES
statement. The following statements produce the difference along with the Pearson
correlation coefficient, requested with the MEASURES option. Note that the table is input
with the Test row first. This is so the first difference produced will be in agreement with
that computed above, which is for Test versus Placebo.

The ODS SELECT statement is used to restrict the output produced to the RiskDiffCol1
table and the Measures table. You can use this statement, part of the Output Delivery
System, to customize your output. The names of all the tables comprising the output for
each SAS/STAT procedure are available in the “Details” section of each procedure chapter
in SAS/STAT User’s Guide, Version 8. Here, the RiskDiffCol1 table produces the
difference for column 1 of the frequency table. There is also a table for the column 2
difference called RiskDiffCol1, which is not produced in this example.

ods select RiskDiffCol1 Measures;
data respire2;

input treat $ outcome $ count @@;
datalines;

test f 40 test u 20
placebo f 16 placebo u 48
;
proc freq order=data;

weight count;
tables treat*outcome / riskdiff measures;

run;

Output 2.9 contains the value for the Pearson correlation coefficient, which is rounded as
0.418, as calculated above.

Output 2.9 Pearson Correlation Coefficient

Statistics for Table of treat by outcome

Statistic Value ASE
------------------------------------------------------
Gamma 0.7143 0.0974
Kendall’s Tau-b 0.4184 0.0816
Stuart’s Tau-c 0.4162 0.0814

Somers’ D C|R 0.4167 0.0814
Somers’ D R|C 0.4202 0.0818

Pearson Correlation 0.4184 0.0816
Spearman Correlation 0.4184 0.0816

Lambda Asymmetric C|R 0.3571 0.1109
Lambda Asymmetric R|C 0.4000 0.0966
Lambda Symmetric 0.3793 0.0983

Uncertainty Coefficient C|R 0.1311 0.0528
Uncertainty Coefficient R|C 0.1303 0.0525
Uncertainty Coefficient Symmetric 0.1307 0.0526
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Output 2.10 contains the value for the difference of proportions for Test versus Placebo for
the Favorable response, which is 0.4167 with confidence limits (0.2570, 0.5763). Note that
these limits are a little narrower than those computed above; again, these limits may not
provide adequate coverage for moderately small sample sizes. Note that this table also
includes the proportions of column 1 response in both rows, along with the asymptotic and
exact confidence limits. Although some methods for exact confidence limits for the
difference in proportions are available, statistical research concerning their properties and
the development of possibly better methods is still ongoing.

Output 2.10 Difference in Proportions

Statistics for Table of treat by outcome

Column 1 Risk Estimates

(Asymptotic) 95% (Exact) 95%
Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------------------
Row 1 0.6667 0.0609 0.5474 0.7859 0.5331 0.7831
Row 2 0.2500 0.0541 0.1439 0.3561 0.1502 0.3740
Total 0.4516 0.0447 0.3640 0.5392 0.3621 0.5435

Difference 0.4167 0.0814 0.2570 0.5763

Difference is (Row 1 - Row 2)

2.5 Odds Ratio and Relative Risk

Measures of association are used to assess the strength of an association. There are
numerous measures of association available for the contingency table, some of which are
described in Chapter 5, “Thes� r Table.” For the2� 2 table, one measure of association
is theodds ratio, and a related measure of association is therelative risk.

Consider Table 2.5. Theodds ratiocompares the odds of the Yes proportion for Group 1 to
the odds of the Yes proportion for Group 2. It is computed as

OR=
p1=(1� p1)

p2=(1� p2)
=
n11n22
n12n21

The odds ratio ranges from 0 to infinity. When OR is 1, there is no association between the
row variable and the column variable. When OR is greater than 1, Group 1 is more likely
than Group 2 to have the yes response; when OR is less than 1, Group 1 is less likely than
Group 2 to have the yes response.

Define thelogit for generalp as

logit(p) = log

�
p

1� p

�

If you take the log of the odds ratio,
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f = logfORg = log

�
p1(1� p2)

p2(1� p1)

�
= logfp1=(1 � p1)g � logfp2=(1� p2)g

you see that the odds ratio can be written in terms of the difference between two logits.
The logit is the function that is modeled in logistic regression. As you will see in
Chapter 8, “Logistic Regression I: Dichotomous Response,” the odds ratio and logistic
regression are closely connected.

The estimate of the variance off is

vf =

�
1

n11
+

1

n12
+

1

n21
+

1

n22

�

so a100(1 � �)% confidence interval for OR can be written as

exp(f � z�=2
p
vf )

The odds ratio is a useful measure of association regardless of how the data are collected.
However, it has special meaning for retrospective studies because it can be used to estimate
a quantity calledrelative risk, which is commonly used in epidemiological work. The
relative risk is the risk of developing a particular condition (often a disease) for one group
compared to another group. For data collected prospectively, the relative risk is written

RR=
p1
p2

You can show that

RR= OR� f1 + (n21=n22)g
f1 + (n11=n12)g

or that OR approximates RR whenn11 andn21 are small relative ton12 andn22,
respectively. This is called therare outcome assumption. Usually, the outcome of interest
needs to occur less than 10% of the time for OR and RR to be similar. However, many
times when the event under investigation is a relatively common occurrence, you are more
interested in looking at the difference in proportions rather than at the odds ratio or the
relative risk.

For cross-sectional data, the quantityp1=p2 is called theprevalence ratio; it does not
indicate risk since the disease and risk factor are assessed at the same time, but it does give
you an idea of the prevalence of a condition in one group compared to another.
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It is important to realize that the odds ratio can always be used as a measure of association,
and that relative risk and the odds ratio as an estimator of relative risk have meaning for
certain types of studies and require certain assumptions.

Table 2.7 contains data from a study on how general daily stress affects one’s opinion on a
proposed new health policy. Since information on stress level and opinion were collected
at the same time, the data are cross-sectional.

Table 2.7. Opinions on New Health Policy

Stress Favorable Unfavorable Total
Low 48 12 60
High 96 94 190

To produce the odds ratio and other measures of association from PROC FREQ, you
specify the MEASURES option in the TABLES statement. The ORDER=DATA option is
used in the PROC FREQ statement to produce a table that looks the same as that displayed
in Table 2.7. Without this option, the row corresponding to high stress would come first
and the row corresponding to low stress would come last.

data stress;
input stress $ outcome $ count;
datalines;

low f 48
low u 12
high f 96
high u 94
;
proc freq order=data;

weight count;
tables stress*outcome / chisq measures nocol nopct;

run;

Output 2.11 contains the resulting frequency table. Since the NOCOL and NOPCT options
are specified, only the row percentages are printed. 80% of the low stress group were
favorable, while the high stress group was nearly evenly split between favorable and
unfavorable.

Output 2.11 Frequency Table

Table of stress by outcome

stress outcome

Frequency|
Row Pct |f |u | Total
---------+--------+--------+
low | 48 | 12 | 60

| 80.00 | 20.00 |
---------+--------+--------+
high | 96 | 94 | 190

| 50.53 | 49.47 |
---------+--------+--------+
Total 144 106 250



2.5 Odds Ratio and Relative Risk 35

Output 2.12 displays the chi-square statistics. The statisticsQ andQP indicate a strong
association, with values of 16.1549 and 16.2198, respectively. Note how close the values
for these statistics are for a sample size of 250.

Output 2.12 Chi-Square Statistics

Statistics for Table of stress by outcome

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 16.2198 <.0001
Likelihood Ratio Chi-Square 1 17.3520 <.0001
Continuity Adj. Chi-Square 1 15.0354 0.0001
Mantel-Haenszel Chi-Square 1 16.1549 <.0001
Phi Coefficient 0.2547
Contingency Coefficient 0.2468
Cramer’s V 0.2547

Output 2.13 contains the measures of association such as Kendall’s tau-b, Pearson
correlation, Spearman correlation, and uncertainty coefficients. See Chapter 5 for more
information about some of these measures.

Output 2.13 Measures of Association

Statistics for Table of stress by outcome

Statistic Value ASE
------------------------------------------------------
Gamma 0.5932 0.1147
Kendall’s Tau-b 0.2547 0.0551
Stuart’s Tau-c 0.2150 0.0489

Somers’ D C|R 0.2947 0.0631
Somers’ D R|C 0.2201 0.0499

Pearson Correlation 0.2547 0.0551
Spearman Correlation 0.2547 0.0551

Lambda Asymmetric C|R 0.0000 0.0000
Lambda Asymmetric R|C 0.0000 0.0000
Lambda Symmetric 0.0000 0.0000

Uncertainty Coefficient C|R 0.0509 0.0231
Uncertainty Coefficient R|C 0.0630 0.0282
Uncertainty Coefficient Symmetric 0.0563 0.0253
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Output 2.14 displays the odds ratio information.

Output 2.14 Odds Ratio

Statistics for Table of stress by outcome

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 3.9167 1.9575 7.8366
Cohort (Col1 Risk) 1.5833 1.3104 1.9131
Cohort (Col2 Risk) 0.4043 0.2389 0.6841

Sample Size = 250

The odds ratio value is listed beside “Case-Control” in the section labeled “Estimates of
the Relative Risk (Row1/Row2).” The estimated OR is 3.9167, which means that the odds
of a favorable response are roughly four times higher for those with low stress than for
those with high stress. The confidence intervals are labeled “Confidence Limits” and are
95% confidence intervals by default. To change them, use the ALPHA= option in the
TABLES statement.

The values listed for “Cohort (Col1 Risk)” and “Cohort (Col2 Risk)” are the estimates of
relative risk for a cohort (prospective) study. Since these data are cross-sectional, you
cannot estimate relative risk. However, the value 1.5833 is the ratio of the prevalence of
favorable opinions for the low stress group compared to the high stress group. (The value
0.4043 is the prevalence ratio of the unfavorable opinions of the low stress group
compared to the high stress group.)

Table 2.8 contains data that concern respiratory illness. Two groups having the same
symptoms of respiratory illness were selected via simple random sampling: one group was
treated with a test treatment, and one group was treated with a placebo. This is an example
of a cohort study since the comparison groups were chosen before the responses were
measured. They are considered to come from independent binomial distributions.

Table 2.8. Respiratory Improvement

Treatment Yes No Total
Test 29 16 45
Placebo 14 31 45

In order to produce chi-square statistics, odds ratios, and relative risk measures for these
data, the following statements are submitted. The ALL option has the same action as
specifying both the CHISQ and the MEASURES options (and the CMH option, discussed
in Chapter 3.
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data respire;
input treat $ outcome $ count;
datalines;

test yes 29
test no 16
placebo yes 14
placebo no 31
;
proc freq order=data;

weight count;
tables treat*outcome / all nocol nopct;

run;

For these data,Q = 9:9085 andQP = 10:0198. Clearly, there is a strong association
between treatment and improvement.

Output 2.15 Table Statistics

Statistics for Table of treat by outcome

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 10.0198 0.0015
Likelihood Ratio Chi-Square 1 10.2162 0.0014
Continuity Adj. Chi-Square 1 8.7284 0.0031
Mantel-Haenszel Chi-Square 1 9.9085 0.0016
Phi Coefficient 0.3337
Contingency Coefficient 0.3165
Cramer’s V 0.3337

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 29
Left-sided Pr <= F 0.9997
Right-sided Pr >= F 0.0015

Table Probability (P) 0.0011
Two-sided Pr <= P 0.0029

Output 2.16 displays the estimates of relative risk and the odds ratio (other measures of
association produced by the ALL option are not displayed here). Two versions of the
relative risk are supplied: one is the relative risk of the attribute corresponding to the first
column, or the risk of improvement. The column 2 risk is the risk of no improvement. The
relative risk for improvement is 2.0714, with a 95% confidence interval of (1.2742,
3.3675).

Note that if these data had been obtained retrospectively, the odds ratio couldn’t be used as
an estimate of the relative risk since the proportions with improvement are 0.36 and 0.69.
The rare outcome assumption is not satisfied.
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Output 2.16 Odds Ratio and Relative Risk

Statistics for Table of treat by outcome

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 4.0134 1.6680 9.6564
Cohort (Col1 Risk) 2.0714 1.2742 3.3675
Cohort (Col2 Risk) 0.5161 0.3325 0.8011

Sample Size = 90

2.5.1 Exact Confidence Limits for the Odds Ratio

Section 2.3 discussed Fisher’s exact test for assessing association in2� 2 tables that were
too sparse for the usual asymptotic chi-square tests to apply. You may want to compute the
odds ratio as a measure of association for these data, but the usual asymptotic confidence
limits would not be appropriate because, again, the sparseness of the data violates the
asymptotic assumptions.

You can obtain exact confidence limits for the odds ratio by using the FREQ procedure.
The computation is based on work presented by Thomas (1971) and Gart (1971). These
confidence limits are conservative; the coefficient is not exactly1� �, but it is at least
1� �.

Consider the severe infection data in Table 2.3. To compute an odds ratio estimate for the
odds of having a favorable outcome for the treatment group compared to the control group,
you submit the following statements, including the EXACT statement with the OR
keyword.

data severe;
input treat $ outcome $ count;
datalines;

Test f 10
Test u 2
Control f 2
Control u 4
;
proc freq order=data;

weight count;
tables treat*outcome / nocol;
exact or;

run;
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Output 2.17 displays the estimate of the odds ratio, which is 10. Test subjects have 10
times higher odds for the favorable response than the control subjects.

Output 2.17 Odds Ratio (Case-Control Study)

Statistics for Table of treat by outcome

Odds Ratio (Case-Control Study)
-----------------------------------
Odds Ratio 10.0000

Asymptotic Conf Limits
95% Lower Conf Limit 1.0256
95% Upper Conf Limit 97.5005

Exact Conf Limits
95% Lower Conf Limit 0.6896
95% Upper Conf Limit 166.3562

Sample Size = 18

The exact confidence limits for the odds ratio are (0.6896, 166.3562), indicating low
precision. Note that the exact confidence bands are much wider than the asymptotic ones.

2.6 Sensitivity and Specificity

Some other measures frequently calculated for2� 2 tables aresensitivityandspecificity.
These measures are of particular interest when you are determining the efficacy of
screening tests for various disease outcomes. Sensitivity is the true proportion of positive
results that a test elicits when performed on subjects known to have the disease; specificity
is the true proportion of negative results that a test elicits when performed on subjects
known to be disease free.

Often, a standard screening method is used to determine whether disease is present and
compared to a new test method. Table 2.9 contains the results of a study investigating a
new screening device for a skin disease. The distributions for positive and negative results
for the test method are assumed to result from simple random samples from the
corresponding populations of persons with disease present and those with disease absent.

Table 2.9. Skin Disease Screening Test Results

Status Test + Test� Total
Disease Present 52 8 60
Disease Absent 20 100 120

Sensitivity and specificity for these data are estimated by

sensitivity= (n11=n1+)
:
= Pr(Test+ jdisease present)
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and

specificity= (n22=n2+)
:
= Pr(Test� jdisease absent)

For these data, sensitivity = 52/60 = 0.867 and specificity =100/120 = 0.833.

You may know the underlying percentage of those with and without the disease in a
population of interest. You may want to estimate the proportion of subjects with the
disease among those who have a positive test. You can determine these proportions with
the use of Bayes’ theorem.

Suppose that the underlying prevalence of disease for an appropriate target population for
these data is 15%. That is, 15% of the population have the disease and 85% do not. You
can compute joint probabilities by multiplying the conditional probabilities by the
marginal probabilities.

Pr(T;D) = Pr(T jD)� Pr(D)

Table 2.10. How Test Should Perform in General Population

Status Test + Test� Total
Disease Present 0:867(:15) = 0:130 0:133(:15) = 0:020 0.15
Disease Absent 0:167(:85) = 0:142 0:833(:85) = 0:708 0.85
Total 0:130 + 0:142 = 0:272 0:020 + 0:708 = 0:728

The values in the row titled “Total” are Pr(Test +) and Pr(Test�), respectively. You can
now determine the probability of those with the disease among those with a positive test:

Pr(DjT ) = Pr(T;D)

Pr(T )

Thus, Pr (disease|Test +) = 0.130/0.272 = 0.478 and Pr(no disease|Test�) =
0.708/0.728 = 0.972. Refer to Fleiss (1981, p. 4) for more detail, including the calculation
of false negative and false positive rates.

2.7 McNemar’s Test

The2� 2 table often contains information collected frommatched pairs, experimental
units for which two related responses are made. The sampling unit is no longer one
individual but a pair of related individuals, which could be two locations on the same
individual or two occasions for the same individual. For example, in case-control studies,
cases are often matched to controls on the basis of demographic characteristics; interest
lies in determining whether there is a difference between control exposure to a risk factor
and case exposure to the same risk factor. Other examples of matched pairs are left eye
and right eye measurements, and husband and wife voting preferences. Measurements at
two different time points can also be considered a matched pair, such as before and after
measurements.
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Data from a study on matched pairs are represented in Table 2.11. Then11 in the (1,1) cell
means thatn11 pairs responded yes for both Response 1 and Response 2; then21 in the
(2,1) cell means thatn21 pairs responded yes for Response 1 and no for Response 2.

Table 2.11. Matched Pairs Data

Response 1
Response 2 Yes No Total

Yes n11 n12 n1+
No n21 n22 n2+

Total n+1 n+2 n

The question of interest for such data is whether the proportion of pairs responding yes for
Response 1 is the same as the proportion of pairs responding yes for Response 2. This
question cannot be addressed with the chi-square tests of association of previous sections,
since the cell counts represent pairs instead of individuals.

The question is whether

p1 =
n+1

n

and

p2 =
n1+
n

are the same. McNemar (1947) developed a chi-square test based on the binomial
distribution to address this situation. He shows that only the off-diagonal elements are
important in determining whether there is a difference in these proportions. The test
statistic is written

QM =
(n12 � n21)

2

(n12 + n21)

and is approximately chi-square with one degree of freedom.

Table 2.12 displays data collected by political science researchers who polled husbands
and wives on whether they approved of one of their U.S. senators. The cell counts
represent the number of pairs of husbands and wives who fit the configurations indicated
by the row and column levels.

Table 2.12. State Senator Approval Ratings

Husband Wife Approval
Approval Yes No Total

Yes 20 5 25
No 10 10 20

Total 30 15 45
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McNemar’s test is easy to compute by hand.

QM =
(5� 10)2

(5 + 10)
= 1:67

Compared to a chi-square distribution with 1 df, this statistic is clearly nonsignificant.

The FREQ procedure computes McNemar’s Test with the AGREE option in the TABLE
statement (see Chapter 5 for other analyses available with the AGREE option for tables of
other dimensions). The following SAS statements request McNemar’s test. The ODS
SELECT statement is used to restrict the output to that test.

data approval;
input hus_resp $ wif_resp $ count;
datalines;

yes yes 20
yes no 5
no yes 10
no no 10
;

ods select McNemarsTest;
proc freq order=data;

weight count;
tables hus_resp*wif_resp / agree;

run;

Output 2.18 displays the output that is produced.QM = 1:67, the same value as computed
previously.

Output 2.18 McNemar’s Test

Statistics for Table of hus_resp by wif_resp

McNemar’s Test
-----------------------
Statistic (S) 1.6667
DF 1
Pr > S 0.1967

Note that exactp-values are also available for McNemar’s test. You would include the
statement

exact mcnem;

in your PROC FREQ invocation. The computations work in a similar fashion to those for
the chi-square tests of association; the exactp-value is the sum of the probabilities of those
tables with aQM greater than or equal to the actual one.
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Chapter 3

Sets of 2� 2 Tables

3.1 Introduction

The respiratory data displayed in Table 2.8 in the previous chapter are only a subset of the
data collected in the clinical trial. The study included patients at two medical centers and
produced the complete data shown in Table 3.1. These data comprise a set of two2� 2
tables.

Table 3.1. Respiratory Improvement

Center Treatment Yes No Total
1 Test 29 16 45
1 Placebo 14 31 45

Total 43 47 90
2 Test 37 8 45
2 Placebo 24 21 45

Total 61 29 90

Investigators were interested in whether there were overall differences in rates of
improvement; however, they were concerned that the patient populations at the two centers
were sufficiently different that center needed to be accounted for in the analysis. One
strategy for examining the association between two variables while adjusting for the
effects of others isstratified analysis.

In general, the strata may represent explanatory variables, or they may represent research
sites or hospitals in a multicenter study. Each table corresponds to one stratum; the strata
are determined by the levels of the explanatory variables (one for each unique combination
of the levels of the explanatory variables). The idea is to evaluate the association between
the row variable and the response variable, whileadjusting, or controlling, for the effects
of the stratification variables. In some cases, the stratification results from the study
design, such as in the case of a multicenter clinical trial; in other cases, it may arise from a
prespecified poststudy stratification performed to control for the effects of certain
explanatory variables that are thought to be related to the response variable.

The analysis of sets of tables addresses the same questions as the analysis of a single table:
is there an association between the row and column variables in the tables and what is the
strength of that association? These questions are investigated with similar strategies
involving chi-square statistics and measures of association such as the odds ratios; the key
difference is that you are investigating overall association instead of the association in just
one table.
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3.2 Mantel-Haenszel Test

For the data in Table 3.1, interest lies in determining whether there is a difference in the
favorable rates between Test and Placebo. Patients in both centers were randomized into
two treatment groups, which induces independent hypergeometric distributions for the
within-center frequencies under the hypothesis that treatments have equal effects for all
patients. Thus, the distribution for the two tables is the product of these two
hypergeometric distributions. You can induce the hypergeometric distribution via
conditional distribution arguments when you have postrandomization stratification or
when you have independent binomial distributions from simple random sampling.

Consider the following table as representative ofq 2� 2 tables,h = 1; 2; : : : ; q.

Table 3.2. hth 2� 2 Contingency Table

Yes No Total
Group 1 nh11 nh12 nh1+
Group 2 nh21 nh22 nh2+
Total nh+1 nh+2 nh

Under the null hypothesis of no treatment difference, the expected value ofnh11 is

Efnh11jH0g = nh1+nh+1

nh
= mh11

and its variance is

V fnh11jH0g = nh1+nh2+nh+1nh+2

n2h(nh � 1)
= vh11

One method for assessing the overall association of group and response, adjusting for the
stratification factor, is the Mantel-Haenszel (1959) statistic.

QMH =

�Pq
h=1 nh11 �

Pq
h=1mh11

	2Pq
h=1 vh11

=

�Pq
h=1(nh1+nh2+=nh)(ph11 � ph21)

	2Pq
h=1 vh11

wherephi1 = nhi1=nhi+ is the proportion of subjects from thehth stratum and theith
group who have a favorable response.QMH approximately has the chi-square distribution
with one degree of freedom when the combined row sample sizes (

Pq
h=1 nhi+ = n+i+)

are large, for example, greater than 30. This means that individual cell counts and table
sample sizes may be small, so long as the overall row sample sizes are large. For the case
of two tables, such as for Table 3.1,q = 2.

The Mantel-Haenszel strategy potentially removes the confounding influence of the
explanatory variables that comprise the stratification and so can provide increased power
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for detecting association in a randomized study by comparing like subjects with like
subjects. It can remove the bias that results in an observational study but possibly at the
cost of decreased power. In some sense, the strategy is similar to adjustment for blocks in
a two-way analysis of variance for randomized blocks; it is also like covariance adjustment
for a categorical explanatory variable.

QMH is effective for detecting patterns of association acrossq strata when there is a strong
tendency to expect the predominant majority of differencesfph11 � ph21g to have the
same sign. For this reason,QMH is often called anaverage partial association statistic.
QMH may fail to detect association when the differences are in opposite directions and are
of similar magnitude.QMH as formulated here is directed at thenh11 cell; however, it is
invariant to whatever cell is chosen. For a recent overview of Mantel-Haenszel methods,
refer to Landis et al. (1998).

Mantel and Fleiss (1980) proposed a criterion for determining whether the chi-square
approximation is appropriate for the distribution of the Mantel-Haenszel statistic forq
strata:

min

("
qX

h=1

mh11 �
qX

h=1

(nh11)L

#
;

"
qX

h=1

(nh11)U �
qX

h=1

mh11

#)
> 5

where(nh11)L = max(0; nh1+ � nh+2) and(nh11)U=min(nh+1; nh1+). The criterion
specifies that the across-strata sum of expected values for a particular cell has a difference
of at least 5 from both the minimum possible sum and the maximum possible sum of the
observed values.

3.2.1 Respiratory Data Example

For the data in Table 3.1, there is interest in the association between treatment and
respiratory outcome, after adjusting for the effects of the centers. The following DATA
step puts all the respiratory data into the SAS data set RESPIRE.

data respire;
input center treatment $ response $ count @@;
datalines;

1 test y 29 1 test n 16
1 placebo y 14 1 placebo n 31
2 test y 37 2 test n 8
2 placebo y 24 2 placebo n 21
;

Producing a Mantel-Haenszel analysis from PROC FREQ requires the specification of
multi-way tables. The triple crossing CENTER*TREATMENT*RESPONSE specifies that
the data consists of sets of two-way tables. The two rightmost variables TREATMENT
and RESPONSE determine the rows and columns of the tables, respectively, and the
variables to the left (CENTER) determine the stratification scheme. There will be one
table for each value of CENTER. If there are more variables to the left of the variables
determining the rows and columns of the tables, there will be strata for each unique
combination of values for those variables.
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The CHISQ option specifies that chi-square statistics be printed for each table. The CMH
option requests the Mantel-Haenszel statistics for the stratified analysis; these are also
called summary statistics. The ORDER=DATA option specifies that PROC FREQ order
the rows and columns according to the order in which the variable values are encountered
in the input data.

proc freq order=data;
weight count;
tables center*treatment*response /

nocol nopct chisq cmh;
run;

Output 3.1 and Output 3.2 display the frequency tables and chi-square statistics for each
center. For Center 1, the favorable rate for test treatment is 64%, versus 31% for placebo.
For Center 2, the favorable rate for test treatment is 82%, versus 53% for placebo.Q (the
randomization statistic discussed in Chapter 2) for Center 1 is 9.908;Q for Center 2 is
8.503. With 1 df, both of these statistics are strongly significant.

Output 3.1 Table 1 Results

Table 1 of treatment by response
Controlling for center=1

treatment response

Frequency|
Row Pct |y |n | Total
---------+--------+--------+
test | 29 | 16 | 45

| 64.44 | 35.56 |
---------+--------+--------+
placebo | 14 | 31 | 45

| 31.11 | 68.89 |
---------+--------+--------+
Total 43 47 90

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 10.0198 0.0015
Likelihood Ratio Chi-Square 1 10.2162 0.0014
Continuity Adj. Chi-Square 1 8.7284 0.0031
Mantel-Haenszel Chi-Square 1 9.9085 0.0016
Phi Coefficient 0.3337
Contingency Coefficient 0.3165
Cramer’s V 0.3337

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 29
Left-sided Pr <= F 0.9997
Right-sided Pr >= F 0.0015

Table Probability (P) 0.0011
Two-sided Pr <= P 0.0029
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Output 3.2 Table 2 Results

Table 2 of treatment by response
Controlling for center=2

treatment response

Frequency|
Row Pct |y |n | Total
---------+--------+--------+
test | 37 | 8 | 45

| 82.22 | 17.78 |
---------+--------+--------+
placebo | 24 | 21 | 45

| 53.33 | 46.67 |
---------+--------+--------+
Total 61 29 90

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 8.5981 0.0034
Likelihood Ratio Chi-Square 1 8.8322 0.0030
Continuity Adj. Chi-Square 1 7.3262 0.0068
Mantel-Haenszel Chi-Square 1 8.5025 0.0035
Phi Coefficient 0.3091
Contingency Coefficient 0.2953
Cramer’s V 0.3091

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 37
Left-sided Pr <= F 0.9993
Right-sided Pr >= F 0.0031

Table Probability (P) 0.0025
Two-sided Pr <= P 0.0063

Following the information for the individual tables, PROC FREQ prints out a section titled
“Summary Statistics for treatment by response Controlling for center.” This includes
tables containing Mantel-Haenszel (MH) statistics, estimates of the common relative risk,
and the Breslow-Day test for homogeneity of the odds ratio.
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Output 3.3 Summary Statistics

Summary Statistics for treatment by response
Controlling for center

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 18.4106 <.0001
2 Row Mean Scores Differ 1 18.4106 <.0001
3 General Association 1 18.4106 <.0001

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
-------------------------------------------------------------------------
Case-Control Mantel-Haenszel 4.0288 2.1057 7.7084

(Odds Ratio) Logit 4.0286 2.1057 7.7072

Cohort Mantel-Haenszel 1.7368 1.3301 2.2680
(Col1 Risk) Logit 1.6760 1.2943 2.1703

Cohort Mantel-Haenszel 0.4615 0.3162 0.6737
(Col2 Risk) Logit 0.4738 0.3264 0.6877

Breslow-Day Test for
Homogeneity of the Odds Ratios
------------------------------
Chi-Square 0.0002
DF 1
Pr > ChiSq 0.9900

Total Sample Size = 180

To find the value ofQMH , read the value for any of the statistics in the table labeled
“Cochran-Mantel-Haenszel Statistics”: “Nonzero Correlation,” “Row Mean Scores
Differ,” or “General Association.” These statistics pertain to the situation where you have
sets of tables with two or more rows or columns: they are discussed in Chapter 6, “Sets of
s� r Tables.” However, they all reduce to the MH statistic when you have2� 2 tables and
use the CMH option in its default mode (that is, no SCORE= option specified). Note that
the General Association statistic is always appropriate regardless of the scores used.

QMH for these data isQMH = 18:4106, with 1 df. This is clearly significant. The
associations in the individual tables reinforce each other so that the overall association is
stronger than that seen in the individual tables. There is a strong association between
treatment and response, adjusting for center. The test treatment had a significantly higher
favorable response rate than placebo.

The information in the rest of the summary statistics output is discussed later in this
chapter. Note that for these data, the Mantel-Fleiss criterion is satisfied:

2X
h=1

mh11 = 21:5 + 30:5 = 52
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2X
h=1

(nh11)L = 0 + 16 = 16

2X
h=1

(nh11)U = 43 + 45 = 88

so that(52� 16) � 5 and(88� 52) � 5.

3.2.2 Health Policy Data

Another data set discussed in Chapter 2 was also a subset of the complete data. The health
policy data displayed in Table 2.7 comes from a study that included interviews with
subjects from both rural and urban geographic regions. Table 2.7 displays the information
from the rural region, and Table 3.3 includes the complete data.

Table 3.3. Health Policy Opinion Data

Residence Stress Favorable Unfavorable Total
Urban Low 48 12 60
Urban High 96 94 190

Total 144 106 250
Rural Low 55 135 190
Rural High 7 53 60

Total 62 188 250

If you ignored region and pooled these two tables, you would obtain Table 3.4.

Table 3.4. Pooled Health Policy Opinion Data

Stress Favorable Unfavorable Total
Low 103 147 250
High 103 147 250
Total 206 294 500

There is clearly no association in this table; the proportions for favorable opinion are the
same for low stress and high stress. For this table,QP andQ take the value 0, and the odds
ratio is exactly 1. These data illustrate the need to consider the sampling framework in any
data analysis. If you note the row totals in Table 3.3, you see that high stress subjects were
oversampled for the urban region, and the low stress subjects were oversampled for the
rural region. This oversampling causes the pooled table to take its form, even though
favorable response is more likely for low stress persons in both regions.

The fact that a marginal table (pooled over residence) may exhibit an association
completely different from the partial tables (individual tables for urban and rural) is known
asSimpson’s Paradox(Simpson 1951, Yule 1903).

The following statements request a Mantel-Haenszel analysis for the health policy data.
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data stress;
input region $ stress $ outcome $ count @@;
datalines;

urban low f 48 urban low u 12
urban high f 96 urban high u 94
rural low f 55 rural low u 135
rural high f 7 rural high u 53
;
proc freq order=data;

weight count;
tables region*stress*outcome / chisq cmh nocol nopct;

run;

Output 3.4 and Output 3.5 display the results for the individual tables. The urban region
has aQ of 16.1549 for the association of stress level and health policy opinion; theQ for
the rural region is 7.2724. The rate of favorable response is higher for the low stress group
than for the high stress group in each region.

Output 3.4 Table 1 Results

Table 1 of stress by outcome
Controlling for region=urban

stress outcome

Frequency|
Row Pct |f |u | Total
---------+--------+--------+
low | 48 | 12 | 60

| 80.00 | 20.00 |
---------+--------+--------+
high | 96 | 94 | 190

| 50.53 | 49.47 |
---------+--------+--------+
Total 144 106 250

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 16.2198 <.0001
Likelihood Ratio Chi-Square 1 17.3520 <.0001
Continuity Adj. Chi-Square 1 15.0354 0.0001
Mantel-Haenszel Chi-Square 1 16.1549 <.0001
Phi Coefficient 0.2547
Contingency Coefficient 0.2468
Cramer’s V 0.2547

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 48
Left-sided Pr <= F 1.0000
Right-sided Pr >= F 3.247E-05

Table Probability (P) 2.472E-05
Two-sided Pr <= P 4.546E-05
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Output 3.5 Table 2 Results

Table 2 of stress by outcome
Controlling for region=rural

stress outcome

Frequency|
Row Pct |f |u | Total
---------+--------+--------+
low | 55 | 135 | 190

| 28.95 | 71.05 |
---------+--------+--------+
high | 7 | 53 | 60

| 11.67 | 88.33 |
---------+--------+--------+
Total 62 188 250

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 7.3016 0.0069
Likelihood Ratio Chi-Square 1 8.1976 0.0042
Continuity Adj. Chi-Square 1 6.4044 0.0114
Mantel-Haenszel Chi-Square 1 7.2724 0.0070
Phi Coefficient 0.1709
Contingency Coefficient 0.1685
Cramer’s V 0.1709

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 55
Left-sided Pr <= F 0.9988
Right-sided Pr >= F 0.0041

Table Probability (P) 0.0029
Two-sided Pr <= P 0.0061

From Output 3.6 you can see thatQMH has the value 23.050, which is strongly significant.
Stress is highly associated with health policy opinion, adjusting for regional effects.

Output 3.6 Summary Statistics

Summary Statistics for stress by outcome
Controlling for region

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 23.0502 <.0001
2 Row Mean Scores Differ 1 23.0502 <.0001
3 General Association 1 23.0502 <.0001
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3.2.3 Soft Drink Example

The following data come from a study on soft drink tastes by a company interested in
reactions to a new soft drink that was being targeted for both the United States and Great
Britain. Investigators poststratified on gender because they thought it was potentially
related to the response. After receiving a supply of the new soft drink and being given a
week in which to try it, subjects were asked whether they would want to switch from their
current soft drinks to this new soft drink.

Table 3.5. Soft Drink Data

Switch?
Gender Country Yes No Total
Male American 29 6 35
Male British 19 15 34
Total 48 21 69
Female American 7 23 30
Female British 24 29 53
Total 31 52 83

The following statements produce a Mantel-Haenszel analysis.

data soft;
input gender $ country $ question $ count @@;
datalines;

male American y 29 male American n 6
male British y 19 male British n 15
female American y 7 female American n 23
female British y 24 female British n 29
;
proc freq order=data;

weight count;
tables gender*country*question /

chisq cmh nocol nopct;
run;

Output 3.7 and Output 3.8 display the table results for males and females.
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Output 3.7 Summary Statistics for Males

Table 1 of country by question
Controlling for gender=male

country question

Frequency|
Row Pct |y |n | Total
---------+--------+--------+
American | 29 | 6 | 35

| 82.86 | 17.14 |
---------+--------+--------+
British | 19 | 15 | 34

| 55.88 | 44.12 |
---------+--------+--------+
Total 48 21 69

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 5.9272 0.0149
Likelihood Ratio Chi-Square 1 6.0690 0.0138
Continuity Adj. Chi-Square 1 4.7216 0.0298
Mantel-Haenszel Chi-Square 1 5.8413 0.0157
Phi Coefficient 0.2931
Contingency Coefficient 0.2813
Cramer’s V 0.2931

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 29
Left-sided Pr <= F 0.9968
Right-sided Pr >= F 0.0143

Table Probability (P) 0.0112
Two-sided Pr <= P 0.0194
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Output 3.8 Summary Statistics for Females

Table 2 of country by question
Controlling for gender=female

country question

Frequency|
Row Pct |y |n | Total
---------+--------+--------+
American | 7 | 23 | 30

| 23.33 | 76.67 |
---------+--------+--------+
British | 24 | 29 | 53

| 45.28 | 54.72 |
---------+--------+--------+
Total 31 52 83

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 3.9443 0.0470
Likelihood Ratio Chi-Square 1 4.0934 0.0431
Continuity Adj. Chi-Square 1 3.0620 0.0801
Mantel-Haenszel Chi-Square 1 3.8968 0.0484
Phi Coefficient -0.2180
Contingency Coefficient 0.2130
Cramer’s V -0.2180

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 7
Left-sided Pr <= F 0.0385
Right-sided Pr >= F 0.9881

Table Probability (P) 0.0267
Two-sided Pr <= P 0.0602

As indicated byQ for males (5.8413) andQ for females (3.8968), there is significant
association in both tables between country and willingness to switch. However, look at
QMH in the following output.

Output 3.9 Summary Statistics

Summary Statistics for country by question
Controlling for gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.0243 0.8762
2 Row Mean Scores Differ 1 0.0243 0.8762
3 General Association 1 0.0243 0.8762

QMH takes the value 0.024, indicating that there is no association between country and
willingness to switch, after adjusting for gender. However, if you examine the individual
tables more closely, you see that the association is manifested in opposite directions. For
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males, Americans are overwhelmingly favorable, and the British are a little more favorable
than unfavorable. For females, Americans are very opposed, while the British are mildly
opposed.

Thus, for these data,QMH fails to detect an association because the association is of
opposite directions with roughly the same magnitude. As discussed previously,QMH has
power against the alternative hypothesis of consistent patterns of association; it has low
power for detecting association in opposite directions. (However, regardless of these
matters of power, the method always performs at the specified significance level [or less]
under the null hypothesis, so it is always valid.)

Generally, this isn’t a problem because if there is association, it is usually in the same
direction across a set of tables, although often to varying degrees. However, you should
always examine the individual tables, especially if your results are questionable, to
determine if you have a situation in which the association is inconsistent and theQMH

statistic is not very powerful.

3.3 Measures of Association

Section 2.5 discusses the odds ratio as a measure of association for the2� 2 table. You
can compute average odds ratios for sets of2� 2 tables. For thehth stratum,

ORh =
ph1=(1 � ph1)

ph2=(1 � ph2)
=
nh11nh22
nh12nh21

so ORh estimates h, the population odds ratio for thehth stratum. If the h are
homogeneous, then you can compute the Mantel-Haenszel estimator for the common odds
ratio .

 ̂MH =

qX
h=1

nh11nh22
nh

. qX
h=1

nh12nh21
nh

The standard error for this estimator is based on work by Robins, Breslow, and Greenland
(1986) in which they provide an estimated variance for log ̂MH . The100%(1 � �)

confidence interval for̂ MH is

�
 ̂MH � exp(�z�=2�̂);  ̂MH � exp(z�=2�̂)

�
where

�̂2 = v̂ar[log( ̂MH)]

=

P
h(nh11 + nh22)(nh11 nh22)=n

2
h

2 (
P

h nh11 nh22=nh)
2
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+

P
h[(nh11 + nh22)(nh12 nh21) + (nh12 + nh21)(nh11 nh22)]=n

2
h

2 (
P

h nh11 nh22=nh) (
P

h nh12 nh21=nh)

+

P
h(nh12 + nh21)(nh12 nh21)=n

2
h

2 (
P

h nh12 nh21=nh)
2

Another estimator of is the logit estimator. This is a weighted regression estimate with
the form

 ̂L = exp

(
qX

h=1

whfh

. qX
h=1

wh

)
= expf �fg

wherefh = logORh and

wh =

�
1

nh11
+

1

nh12
+

1

nh21
+

1

nh22

��1

You can write a100(1 � �)% confidence interval for̂ L as

exp

8<: �f � z�=2

"
qX

h=1

wh

#�1=2
9=;

The logit estimator is also reasonable but requires adequate sample sizes (allnhij � 5); it
has problems with zero cells for thenhij, in which case you should proceed cautiously.
The Mantel-Haenszel estimator is not as sensitive to sample size.

Note that logistic regression provides a better strategy for estimating the common odds
ratio and produces a confidence interval based on maximum likelihood methods. This is
discussed in Chapter 8, “Logistic Regression I: Dichotomous Response.” Currently, you
need to perform an exact logistic regression to obtain exact confidence intervals for the
odds ratio for sets of2� 2 tables. See Section 8.8 for an example.

3.3.1 Homogeneity of Odds Ratios

You are generally interested in whether the odds ratios in a set of tables are homogeneous.
There are several test statistics that address the hypothesis of homogeneity, one of which is
the Breslow-Day statistic.

Consider Table 3.6. The top table shows the expected countsmij for a2� 2 table, and the
bottom table shows how you can write the expected counts for the rest of the cells if you
know the (1,1) expected countm11.
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Table 3.6. Odds Ratios
Yes No Total

Group 1 m11 m12 n1+
Group 2 m21 m22 n2+
Total n+1 n+2 n

Group 1 m11 n1+ �m11 n1+
Group 2 n+1 �m11 n� n1+ � n+1 +m11 n� n1+
Total n+1 n� n+1 n

If you assume that the odds ratio takes a certain value, =  0, then

m11(n� n1+ � n+1 +m11)

(n+1 �m11)(n1+ �m11)
=  0

You can put this expression into the form of a quadratic equation and then solve form11;
once you havem11, you can solve for the other expected counts.

To compute the Breslow-Day statistic, you use MH as 0 for each stratum and perform
the preceding computations for the expected counts for each table; that is, you compute the
mhij. Then,

QBD =

qX
h=1

2X
i=1

2X
j=1

(nhij �mhij)
2

mhij

Under the null hypothesis of homogeneity,QBD approximately has a chi-square
distribution with(q � 1) degrees of freedom. In addition, the cells in all of the tables must
have expected cell counts greater than 5 (or at least 80% of them should). Note that a
chi-square approximation forQMH requires only the total sample size to be large, but the
chi-square approximation forQBD requires each table to have a large sample size. If the
odds ratios are not homogeneous, then the overall odds ratio should be viewed cautiously;
the within-strata odds ratios should be emphasized.

Note that the Mantel-Haenszel statistics do not require homogeneous odds ratios, so the
Breslow-Day test should not be interpreted as an indicator of their validity. Refer to
Breslow and Day (1980, p. 182) for more information.

3.3.2 Coronary Artery Disease Data Example

The following data are based on a study on coronary artery disease (Koch, Imrey, et al.
1985). The sample is one of convenience since the patients studied were people who came
to a clinic and requested an evaluation.

Table 3.7. Coronary Artery Disease Data

Sex ECG Disease No DiseaseTotal
Female < 0.1 ST segment depression 4 11 15
Female � 0.1 ST segment depression 8 10 18
Male < 0.1 ST segment depression 9 9 18
Male � 0.1 ST segment depression 21 6 27
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Investigators were interested in whether electrocardiogram (ECG) measurement was
associated with disease status. Gender was thought to be associated with disease status, so
investigators poststratified the data into male and female groups. In addition, there was
interest in examining the odds ratios.

The following statements produce the SAS data set CA and request a stratified analysis.
The first TABLES statement requests chi-square tests for the association of gender and
disease status. The second TABLES statement requests the stratified analysis, including
the generation of odds ratios with the MEASURES option.

data ca;
input gender $ ECG $ disease $ count;
datalines;

female <0.1 yes 4
female <0.1 no 11
female >=0.1 yes 8
female >=0.1 no 10
male <0.1 yes 9
male <0.1 no 9
male >=0.1 yes 21
male >=0.1 no 6
;
proc freq;

weight count;
tables gender*disease / nocol nopct chisq;
tables gender*ECG*disease / nocol nopct cmh chisq measures;

run;

Output 3.10 contains the table of GENDER by DISEASE.Q takes the value 6.9444 and
QP takes the value 7.0346. Obviously there is a strong association between gender and
disease status. Males are much more likely to have symptoms of coronary artery disease
than females. The idea to control for gender in a stratified analysis is a good one.

Note that you are controlling for confounding in this example, which is different from the
adjustment performed in previous examples. Confounding variables are those related to
both the response and the factor under investigation. In previous examples, the
stratification variable was part of the study design (center) or thought to be related to the
response (gender in soft drink analysis). Adjusting for confounding is often required in
epidemiological studies.
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Output 3.10 GENDER � DISEASE

Table of gender by disease

gender disease

Frequency|
Row Pct |no |yes | Total
---------+--------+--------+
female | 21 | 12 | 33

| 63.64 | 36.36 |
---------+--------+--------+
male | 15 | 30 | 45

| 33.33 | 66.67 |
---------+--------+--------+
Total 36 42 78

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 7.0346 0.0080
Likelihood Ratio Chi-Square 1 7.1209 0.0076
Continuity Adj. Chi-Square 1 5.8681 0.0154
Mantel-Haenszel Chi-Square 1 6.9444 0.0084
Phi Coefficient 0.3003
Contingency Coefficient 0.2876
Cramer’s V 0.3003

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 21
Left-sided Pr <= F 0.9981
Right-sided Pr >= F 0.0075

Table Probability (P) 0.0056
Two-sided Pr <= P 0.0114

Output 3.11 and Output 3.12 display the individual tables results for ECG� disease
status; included are the table of chi-square statistics generated by the CHISQ option and
only the “Estimates of the Relative Risk” table part of the output generated by the
MEASURES option.
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Output 3.11 Results for Females

Statistics for Table 1 of ECG by disease
Controlling for gender=female

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 1.1175 0.2905
Likelihood Ratio Chi-Square 1 1.1337 0.2870
Continuity Adj. Chi-Square 1 0.4813 0.4879
Mantel-Haenszel Chi-Square 1 1.0836 0.2979
Phi Coefficient 0.1840
Contingency Coefficient 0.1810
Cramer’s V 0.1840

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9233
Right-sided Pr >= F 0.2450

Table Probability (P) 0.1683
Two-sided Pr <= P 0.4688

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 2.2000 0.5036 9.6107
Cohort (Col1 Risk) 1.3200 0.7897 2.2063
Cohort (Col2 Risk) 0.6000 0.2240 1.6073

QMH is 1.084 for females, with ap-value of 0.2979. The odds ratio for the females is
OR = 2.2, with a 95% confidence interval that includes 1. Those females with higher ST
segment depression levels had 2.2 times the odds of CA disease than those with lower
levels.
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Output 3.12 Results for Males

Statistics for Table 2 of ECG by disease
Controlling for gender=male

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 3.7500 0.0528
Likelihood Ratio Chi-Square 1 3.7288 0.0535
Continuity Adj. Chi-Square 1 2.6042 0.1066
Mantel-Haenszel Chi-Square 1 3.6667 0.0555
Phi Coefficient 0.2887
Contingency Coefficient 0.2774
Cramer’s V 0.2887

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 9
Left-sided Pr <= F 0.9880
Right-sided Pr >= F 0.0538

Table Probability (P) 0.0417
Two-sided Pr <= P 0.1049

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits
-----------------------------------------------------------------
Case-Control (Odds Ratio) 3.5000 0.9587 12.7775
Cohort (Col1 Risk) 2.2500 0.9680 5.2298
Cohort (Col2 Risk) 0.6429 0.3883 1.0642

QMH takes the value 3.667 for males, with ap-value of 0.056. The odds ratio for the
males is OR = 3.5, with a 95% confidence interval that barely contains the value 1. Those
men with higher ST segment depression levels had 3.5 times the odds of CA disease than
those with lower levels.

Output 3.13 contains theQMH statistic, which takes the value 4.503 with ap-value of
0.0338. By combining the genders, the power has been increased so that the association
detected byQMH is significant at the� = 0:05 level of significance.

Output 3.13 Stratified Analysis

Summary Statistics for ECG by disease
Controlling for gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 4.5026 0.0338
2 Row Mean Scores Differ 1 4.5026 0.0338
3 General Association 1 4.5026 0.0338

Output 3.14 contains the estimates of the common odds ratios. ̂MH = 2:847 and
 ̂L = 2:859. The confidence intervals do not contain the value 1. On the average, those
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persons with higher ST segment depression levels had nearly three times the odds of CA
disease than those with lower levels.

Output 3.14 Odds Ratios

Summary Statistics for ECG by disease
Controlling for gender

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits
-------------------------------------------------------------------------
Case-Control Mantel-Haenszel 2.8467 1.0765 7.5279

(Odds Ratio) Logit 2.8593 1.0807 7.5650

Cohort Mantel-Haenszel 1.6414 1.0410 2.5879
(Col1 Risk) Logit 1.5249 0.9833 2.3647

Cohort Mantel-Haenszel 0.6299 0.3980 0.9969
(Col2 Risk) Logit 0.6337 0.4046 0.9926

Breslow-Day Test for
Homogeneity of the Odds Ratios
------------------------------
Chi-Square 0.2155
DF 1
Pr > ChiSq 0.6425

Common measures of relative risk are also printed by the FREQ procedure. However,
since these data do not come from a prospective study, these statistics are not relevant and
should be ignored.

Finally, the Breslow-Day test is printed at the bottom and does not contradict the
assumption of homogeneous odds ratios for these data.QBD = 0:215 with p = 0:6425.
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Chapter 4

Sets of 2� r and s� 2 Tables

4.1 Introduction

While sets of2� 2 tables are very common, many sets of tables have other dimensions.
This chapter focuses on sets of tables that also occur frequently: sets of2� r tables in
which the column variable is ordinally scaled and sets ofs� 2 tables in which the row
variable is ordinally scaled. For2� r tables, there is interest in investigating a response
variable with multiple ordered outcomes for a combined set of strata. For example, you
may be comparing a new treatment and a placebo on the extent of patient improvement
that is rated as minimal, moderate, or substantial. Fors� 2 tables, there is interest in the
trend of proportions across ordered groups for a combined set of strata. For example, you
may be comparing the proportion of successful outcomes for different dosage levels of a
new drug.

Extensions of the Mantel-Haenszel strategy address association in sets of tables with these
characteristics. Section 4.2 addresses2� r tables and Section 4.3 addressess� 2 tables.
Each of these sections begins by discussing the assessment of association in a single table
where the column (row) variable is ordinally scaled and the row (column) variable is
dichotomous.

4.2 Sets of2� r Tables

Consider the data from Koch and Edwards (1988) displayed in Table 4.1. The information
comes from a randomized, double-blind clinical trial investigating a new treatment for
rheumatoid arthritis. Investigators compared the new treatment with a placebo; the
response measured was whether there was no, some, or marked improvement in the
symptoms of rheumatoid arthritis.

Table 4.1. Rheumatoid Arthritis Data

Improvement
Gender Treatment None Some Marked Total
Female Test Drug 6 5 16 27
Female Placebo 19 7 6 32
Total 25 12 22 59
Male Test Drug 7 2 5 14
Male Placebo 10 0 1 11
Total 17 2 6 25
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These data comprise a set of two 2� 3 tables. There is interest in the association between
treatment and degree of improvement, adjusting for gender effects. Degree of
improvement is an ordinal response, since none, some, and marked are gradations of
improvement.

Mantel (1963) proposed an extension of the Mantel-Haenszel strategy for the analysis of
2� r tables when the response variable is ordinal. The extension involves computing
mean scores for the responses and using the mean score differences across tables in the
computation of a suitable test statistic, much like the difference in proportions across
tables was the basis of the Mantel-Haenszel statistic.

4.2.1 The2� r Table

Before discussing the strategies for assessing association in sets of2� r tables, it is
necessary to discuss the assessment of association in a single2� r table that has an
ordinal outcome. Consider Table 4.2 corresponding to patients pooled over gender for the
rheumatoid arthritis data.

Table 4.2. Combined Rheumatoid Arthritis Data

Improvement
Treatment None Some Marked Total
Test Drug 13 7 21 41
Placebo 29 7 7 43
Total 42 14 28 84

As discussed in Chapter 1, “Introduction,” you want to use the information in the ordinal
column variable in forming a test statistic. This involves assigning scores to the response
levels, forming means, and then examining location shifts of the means across the levels of
the row variable.

Define the mean for the Test Drug group as

�f1 =
3X

j=1

ajn1j
n1+

wherea = fajg = (a1; a2; a3) are a set of scores reflecting the response levels. Then, if
the null hypothesisH0 is no location shifts,

Ef �f1jH0g =
3X

j=1

�
aj
n1+n+j
n1+n

�
=

3X
j=1

aj
n+j
n

= �a

It can be shown that

V f �f1jH0g =
n� n1+
n1+(n� 1)

3X
j=1

(aj � �a)
2
�n+j
n

�
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=
(n� n1+)va
n1+(n� 1)

where�a andva are the finite population mean and variance of scoresa for the patients in
the study. The quantity�f1 approximately has a normal distribution by randomization
central limit theory, so the quantity

QS =
( �f1 � �a)

2

f(n� n1+)=[n1+(n� 1)]gva

approximately has the chi-square distribution with one degree of freedom.QS is called the
mean score statistic. By taking advantage of the ordinality of the response variable,QS

can target the alternative hypothesis of location shifts to the hypothesis of no association
with fewer degrees of freedom. WhileQ andQP are useful for detecting general types of
association, they are not as effective asQS in detecting location shifts.QS is also a trend
statistic for the tendency for the patients in one treatment group to have better scores than
the patients in the other treatment group.

A very conservative sample size guideline is the guideline used for the Pearson chi-square
statistic (that is, all expected valuesni+n+j=n = mij being greater than or equal to 5).
However, one of the advantages of the mean score statistic is that it has less stringent
sample size requirements. A more realistic but still conservative sample size guideline is to
choose one or more cutpointsj = (2; : : : ; (r � 1)), add the 1st throughjth columns
together and add the(j + 1)th throughrth columns together. If both of these sums are 5 or
greater for each margin, then the sample size is adequate.

For example, for Table 4.2, choosej = 2. Adding the first and second columns together
yields the sums 20 for the first row and 36 for the second; the remaining sums are just the
third column cells (21 and 7, respectively). Thus, according to this criterion, the sample
size is adequate.

The following PROC FREQ statements generateQS . Note the use of the ORDER=DATA
option to ensure that the values for the variable RESPONSE are put in the correct order. If
they are not, the resulting statistics do not account for the intended ordering. Ensuring the
correct sort order is critical when you are using statistics that assume ordered values.

data arth;
input gender $ treat $ response $ count @@;
datalines;

female test none 6 female test some 5 female test marked 16
female placebo none 19 female placebo some 7 female placebo marked 6
male test none 7 male test some 2 male test marked 5
male placebo none 10 male placebo some 0 male placebo marked 1
;
proc freq data=arth order=data;

weight count;
tables treat*response / chisq nocol nopct;

run;
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The results are contained in Output 4.1.

Output 4.1 Mean Score Statistic

Table of treat by response

treat response

Frequency|
Row Pct |none |some |marked | Total
---------+--------+--------+--------+
test | 13 | 7 | 21 | 41

| 31.71 | 17.07 | 51.22 |
---------+--------+--------+--------+
placebo | 29 | 7 | 7 | 43

| 67.44 | 16.28 | 16.28 |
---------+--------+--------+--------+
Total 42 14 28 84

Statistics for Table of treat by response

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 13.0550 0.0015
Likelihood Ratio Chi-Square 2 13.5298 0.0012
Mantel-Haenszel Chi-Square 1 12.8590 0.0003
Phi Coefficient 0.3942
Contingency Coefficient 0.3668
Cramer’s V 0.3942

Sample Size = 84

For a2� r table, the statistic labeled “Mantel-Haenszel Chi-Square” isQS. The scores (1,
2, 3) are used for the response levels none, some, and marked in Table 4.2.QS takes the
value 12.8590, which is strongly significant. The test treatment performs better than the
placebo treatment.

You can also produceQS by specifying the CMH option and generating the summary
statistics, which will be for just one stratum.QS is the statistic labeled “Row Mean Scores
Differ” in the resulting summary statistics table.

4.2.2 Extension toQMH

Assessing association for sets of2� r tables where the response is ordinal also involves a
strategy of computing means based on a scoring system and looking at shifts in location.

Consider the following table as representative ofq 2� r tables,h = 1; 2; : : : ; q.

Table 4.3. hth 2 � r Contingency Table

Level of Column Variable
1 2 . . . r Total

Group 1 nh11 nh12 . . . nh1r nh1+
Group 2 nh21 nh22 . . . nh2r nh2+
Total nh+1 nh+2 . . . nh+r nh
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For the rheumatoid arthritis data in Table 4.1,r = 3 andq = 2. Under the null hypothesis
of no difference in treatment effects for each patient, the appropriate probability model is

Prfnhijg =
2Y

h=1

Q2
i=1 nhi+!

Q3
j=1 nh+j!

nh!
Q2

i=1

Q3
j=1 nhij!

Here,nhij represents the number of patients in thehth stratum who received theith
treatment and had thejth response.

Supposefahjg is a set of scores for the response levels in thehth stratum. Then you can
compute the sum of strata scores for the 1st treatment, test, as

f+1+ =

2X
h=1

3X
j=1

ahjnh1j =

2X
h=1

nh1+ �fh1

where

�fh1 =
3X

j=1

(ahjnh1j=nh1+)

is the mean score for Group 1 in thehth stratum. Under the null hypothesis of no
association,f+1+ has the expected value

Eff+1+jH0g =
2X

h=1

nh1+�h = ��

and variance

V ff+1+jH0g =
2X

h=1

nh1+(nh � nh1+)

(nh � 1)
vh = v�

where�h =
P3

j=1(ahjnh+j=nh) is the finite subpopulation mean and

vh =

3X
j=1

(ahj � �h)
2(nh+j=nh)

is the variance of scores for thehth stratum.

If the across-strata sample sizesn+i+ =
Pq

h=1

Pr
j=1 nhij are sufficiently large, then

f+1+ approximately has a normal distribution, and so the quantity

QSMH =
(f+1+ � ��)

2

v�
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approximately has a chi-square distribution with one degree of freedom.QSMH is known
as the extended Mantel-Haenszel mean score statistic; it is sometimes called the ANOVA
statistic. You can show thatQSMH is a linear function of the differences in the mean
scores of the two treatments for theq strata.

QSMH =

�Pq
h=1 nh1+(

�fh1 � �h)
	2Pq

h=1 nh1+nh2+vh=(nh � 1)

=

�Pq
h=1(nh1+nh2+=nh)(

�fh1 � �fh2)
	2Pq

h=1(nh1+nh2+=nh)
2�vh

where the

�vh =

�
1

nh1+
+

1

nh2+

�
nhvh
nh � 1

are the variances of the mean score differencesf �fh1 � �fh2g for the respective strata.

QSMH is effective for detecting consistent patterns of differences across the strata when
the( �fh1 � �fh2) predominantly have the same sign.

Besides the guideline that the across strata row totals (n+i+) be sufficiently large, another
guideline for sample size requirements forQSMH is to choose cutpoints and add columns
together so that each stratum table is collapsed to a 2� 2 table, similar to what is
described in Section 4.2.1; the cutpoints don’t have to be the same for each table. Then,
you apply the Mantel-Fleiss criterion to these2� 2 tables (see Section 3.2).

4.2.3 Choosing Scores

Ordinal data analysis strategies do involve some choice on the part of the analyst, and that
is the choice of scores to apply to the response levels. There are a variety of scoring
systems to consider; the following are often used.

� integer scores

Integer scores are defined asaj = j for j = 1; 2; : : : ; r: They are useful when the
response levels are ordered categories that can be viewed as equally spaced and
when the response levels correspond to discrete counts. They are also useful if you
have equal interest in detecting group differences for any binary partition� j
versus> j of outcomes forj = 1; 2; : : : ; r. Note that if you add the same number to
a set of scores, or multiply a set of scores by the same number, both sets of scores
produce the same test statistic because multiplication is cancelled by division by the
same factor in the variance and addition is cancelled by subtraction of the same
factor in the expected value. Thus, the integer scores (1, 2, 3,. . . ) and (0, 1, 2,. . . )
produce the same results.
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� standardized midranks

These scores are defined as

aj =
2[
Pj

k=1 n+k]� n+j + 1

2(n+ 1)

The {aj} are constrained to lie between 0 and 1. Their advantage over integer scores
is that they require no scaling of the response levels other than that implied by their
relative ordering. For sets of2� r tables, they provide somewhat more power than
actual midranks since they produce the van Elteren (1960) extension of the
Wilcoxon rank sum test (refer to Lehmann 1975 for a discussion). Standardized
midranks are also known asmodified ridit scores.

� logrank scores

aj = 1�

jX
k=1

�
n+kPr

m=k n+m

�

Logrank scores are useful when the distribution is thought to be L-shaped, and there
is greater interest in treatment differences for response levels with higher values than
with lower values.

Other scores that are sometimes used are ridit and rank scores. For a single stratum,
rank, ridit, and modified ridit scores produce the same result, which is the
categorical counterpart of the Wilcoxon rank sum test. For stratified analyses,
modified ridit scores produce van Elteren’s extension of the Wilcoxon rank sum test,
a property that makes them the preferred of these three types of scores. A possible
shortcoming of rank scores, relative to ridit or modified ridit scores, is that their use
tends to make the large strata overly influence the test statistic. See page 149 for
additional discussion on choosing scores.

You specify the choice of scores in the FREQ procedure by using the SCORES=
option in the TABLES statement. If you don’t specify SCORES=, then you get the
default table scores. The column (row) numbers are the table scores for character
data and the actual variable values are used as scores for numeric variables. Other
SCORES= values are RANK, MODRIDIT, and RIDIT. If you are interested in using
logrank scores, then you need to compute them in a DATA step and make them the
values of the row and column variables you list in the TABLES statement.

4.2.1 Analyzing the Arthritis Data

Applying the extension of the Mantel-Haenzsel strategy involves no new steps in the SAS
System. You specify the CMH option in the TABLES statement of the FREQ procedure.
Notice that the ORDER=DATA option is specified in the PROC statement to ensure that
the levels of RESPONSE are sorted correctly. The columns will be ordered none, some,
and marked; and the rows will be ordered test and placebo.
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data arth;
input gender $ treat $ response $ count @@;
datalines;

female test none 6 female test some 5 female test marked 16
female placebo none 19 female placebo some 7 female placebo marked 6
male test none 7 male test some 2 male test marked 5
male placebo none 10 male placebo some 0 male placebo marked 1
;
proc freq data=arth order=data;

weight count;
tables gender*treat*response / cmh nocol nopct;

run;

Output 4.2 Tables by Gender

Table 1 of treat by response
Controlling for gender=female

treat response

Frequency|
Row Pct |none |some |marked | Total
---------+--------+--------+--------+
test | 6 | 5 | 16 | 27

| 22.22 | 18.52 | 59.26 |
---------+--------+--------+--------+
placebo | 19 | 7 | 6 | 32

| 59.38 | 21.88 | 18.75 |
---------+--------+--------+--------+
Total 25 12 22 59

Table 2 of treat by response
Controlling for gender=male

treat response

Frequency|
Row Pct |none |some |marked | Total
---------+--------+--------+--------+
test | 7 | 2 | 5 | 14

| 50.00 | 14.29 | 35.71 |
---------+--------+--------+--------+
placebo | 10 | 0 | 1 | 11

| 90.91 | 0.00 | 9.09 |
---------+--------+--------+--------+
Total 17 2 6 25

Output 4.2 displays the frequency tables for females and males. Output 4.3 displays the
table of Mantel-Haenszel statistics. Note that the table heading includes “Table Scores” in
parentheses.QSMH is the “Row Mean Scores Differ” statistic. It has the value 14.6319,
with 1 df, and is clearly significant.

Note the small cell counts for several cells in the table for males. This is not a problem for
QSMH since the adequacy of the sample sizes is determined by the across strata sample
sizesn+i+, which aren+1+ = 41 andn+2+ = 43 for these data.
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Output 4.3 Mantel-Haenszel Results

Summary Statistics for treat by response
Controlling for gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 14.6319 0.0001
2 Row Mean Scores Differ 1 14.6319 0.0001
3 General Association 2 14.6323 0.0007

Total Sample Size = 84

If you can’t make the case that the response levels for degree of improvement are equally
spaced, then modified ridit scores are an alternative strategy. The following PROC FREQ
invocation requests that modified ridit scores be used in the computation ofQSMH through
the use of the SCORES=MODRIDIT option in the TABLES statement.

proc freq data=arth order=data;
weight count;
tables gender*treat*response/cmh scores=modridit nocol nopct;

run;

Output 4.4 contains the table of CMH statistics using modified ridit scores.QSMH takes
the value 15.004 with 1 df, which is clearly significant. Note that the different scoring
systems produced similar results. This is often the case.

Output 4.4 Mantel-Haenszel Results for Modified Ridit Scores

Summary Statistics for treat by response
Controlling for gender

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 14.9918 0.0001
2 Row Mean Scores Differ 1 15.0041 0.0001
3 General Association 2 14.6323 0.0007

Total Sample Size = 84

4.2.5 Colds Example

The following data come from a study on the presence of colds in children in two regions
(Stokes 1986). Researchers visited children several times and noted whether they had any
symptoms of colds. The outcome measure is the number of periods in which a child
exhibited cold symptoms.
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Table 4.4. Number of Periods with Colds by Gender and Residence

Periods With Colds
Gender Residence 0 1 2 Total
Female Urban 45 64 71 180
Female Rural 80 104 116 300
Total 125 168 187 480
Male Urban 84 124 82 290
Male Rural 106 117 87 310
Total 190 141 169 600

These data consist of two 2� 3 tables; there is interest in determining whether there is
association between residence (urban or rural) and number of periods with colds (0, 1, or
2) while controlling for gender. The response levels for these data consist of small discrete
counts, so number of colds can be considered an ordinal variable in which the levels are
equally spaced. The usual ANOVA strategy for interval-scaled response variables is not
appropriate since there is no reason to think that the number of periods with colds is
normally distributed with homogeneous variance.

The following statements produce an extended Mantel-Haenszel analysis. The default
table scores are used, which will be the actual scores of the variable PER–COLD (0, 1, 2).

data colds;
input gender $ residence $ per_cold count @@;
datalines;

female urban 0 45 female urban 1 64 female urban 2 71
female rural 0 80 female rural 1 104 female rural 2 116
male urban 0 84 male urban 1 124 male urban 2 82
male rural 0 106 male rural 1 117 male rural 2 87
;
proc freq data=colds order=data;

weight count;
tables gender*residence*per_cold / all nocol nopct;

run;

Output 4.5 and Output 4.6 contain the frequency tables for females and males and their
associated chi-square statistics. There is no significant association between residence and
number of periods with colds for females or males;Q = 0:1059 (p = 0:7448) for females
andQ = 0:7412 (p = 0:3893) for males.
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Output 4.5 Results for Females

Table 1 of residence by per_cold
Controlling for gender=female

residence per_cold

Frequency|
Row Pct | 0| 1| 2| Total
---------+--------+--------+--------+
urban | 45 | 64 | 71 | 180

| 25.00 | 35.56 | 39.44 |
---------+--------+--------+--------+
rural | 80 | 104 | 116 | 300

| 26.67 | 34.67 | 38.67 |
---------+--------+--------+--------+
Total 125 168 187 480

Statistics for Table 1 of residence by per_cold
Controlling for gender=female

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 0.1629 0.9218
Likelihood Ratio Chi-Square 2 0.1634 0.9215
Mantel-Haenszel Chi-Square 1 0.1059 0.7448
Phi Coefficient 0.0184
Contingency Coefficient 0.0184
Cramer’s V 0.0184

Output 4.6 Results for Males

Table 2 of residence by per_cold
Controlling for gender=male

residence per_cold

Frequency|
Row Pct | 0| 1| 2| Total
---------+--------+--------+--------+
urban | 84 | 124 | 82 | 290

| 28.97 | 42.76 | 28.28 |
---------+--------+--------+--------+
rural | 106 | 117 | 87 | 310

| 34.19 | 37.74 | 28.06 |
---------+--------+--------+--------+
Total 190 241 169 600

Statistics for Table 2 of residence by per_cold
Controlling for gender=male

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 2.2344 0.3272
Likelihood Ratio Chi-Square 2 2.2376 0.3267
Mantel-Haenszel Chi-Square 1 0.7412 0.3893
Phi Coefficient 0.0610
Contingency Coefficient 0.0609
Cramer’s V 0.0610
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Output 4.7 contains the Mantel-Haenszel statistics.QSMH has the value 0.7379, with
p = 0:3903. Even controlling for gender, there appears to be no association between
residence and number of periods with colds for these data.

Output 4.7 QSMH Statistic

Summary Statistics for residence by per_cold
Controlling for gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.7379 0.3903
2 Row Mean Scores Differ 1 0.7379 0.3903
3 General Association 2 1.9707 0.3733

Total Sample Size = 1080

4.3 Sets ofs� 2 Tables

The following data come from a study on adolescent usage of smokeless tobacco
(Bauman, Koch, and Lentz 1989). Interest focused on factors that affected usage, such as
perception of risk, father’s usage of smokeless tobacco, and educational background.
Table 4.5 contains twos� 2 tables of risk perception (minimal, moderate, and substantial)
and adolescent usage by father’s usage. This time, the row variable is ordinally scaled. The
question of interest is whether there is a discernible trend in the proportions of adolescent
usage over the levels of risk perception. Does usage decline with higher risk perception?

Table 4.5. Adolescent Smokeless Tobacco Usage

Father’s Risk Adolescent Usage
Usage Perception No Yes Total
No Minimal 59 25 84
No Moderate 169 29 198
No Substantial 196 9 205
Yes Minimal 11 8 19
Yes Moderate 33 11 44
Yes Substantial 22 2 24

Since the response variable is dichotomous, both risk perception and adolescent usage can
be considered ordinal variables. The strategy for assessing association when both row and
column variables are ordinal involves assigning scores to the levels of both variables and
evaluating their correlation.

4.3.1 Thes� 2 Table

Table 4.6 contains the data for those adolescents interviewed whose fathers did not use
smokeless tobacco.
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Table 4.6. Adolescent Smokeless Tobacco Usage When Fathers Did Not Use

Risk Adolescent Usage
Perception No Yes Total
Minimal 59 25 84
Moderate 169 29 198
Substantial 196 9 205

Form the linear function
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3X
i=1

ci �fi

�ni+
n

�
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2X
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n

wherec = (c1; c2; c3) represents scores for the groups anda = (a1; a2) represents scores
for the columns (effectively 0, 1). UnderH0,
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The quantity�f has an approximate normal distribution for large samples, so for these
situations

QCS =
( �f �Ef �f jH0g)2

Varf �f jH0g

=
(n� 1)[

P3
i=1

P2
j=1(ci � �c)(aj � �a)nij)]

2

[
P2

i=1(ci � �c)2ni+][
P2

j=1(ai � �a)2n+j]

= (n� 1)r2ac

whererac is the Pearson correlation coefficient. Thus,QCS is known as the correlation
statistic. It is approximately chi-square with one degree of freedom. This test is
comparable to the Cochran-Armitage trend test (Cochran 1954, Armitage 1955), which
tests for trends in binomial proportions across the levels of an ordinal covariate. In fact,
multiplyingQCS by n=(n� 1) yields the same value as thez2 of the Cochran-Armitage
test.
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4.3.2 Correlation Statistic

Mantel (1963) also proposed a statistic for the association of two variables that were
ordinal for a combined set of strata, based on assigning scoresfag andfcg to the columns
and rows of the tables.

QCSMH =

�Pq
h=1 nh(

�fh �Ef �fhjH0g)
	2Pq

h=1 n
2
hvarffhjH0g

=

�Pq
h=1 nh(vhcvha)

1=2rca;h
	2Pq

h=1[n
2
hvhcvha=(nh � 1)]

QCSMH is called the extended Mantel-Haenszel correlation statistic. It approximately
follows the chi-square distribution with one degree of freedom when the combined strata
sample sizes are sufficiently large, that is,

qX
h=1

nh � 40

4.3.3 Analysis of Smokeless Tobacco Data

The following SAS statements request that Mantel-Haenszel correlation statistics be
computed for the smokeless tobacco data. Two TABLES statements are included to specify
analyses using both integer scores and modified ridit scores. The Cochran-Armitage trend
test is also requested directly with the TREND option in the TABLES statement. You can
include as many TABLES statements in a PROC FREQ invocation as you like.

data tobacco;
length risk $11. ;
input f_usage $ risk $ usage $ count @@;
datalines;

no minimal no 59 no minimal yes 25
no moderate no 169 no moderate yes 29
no substantial no 196 no substantial yes 9
yes minimal no 11 yes minimal yes 8
yes moderate no 33 yes moderate yes 11
yes substantial no 22 yes substantial yes 2
;
proc freq;

weight count;
tables f_usage*risk*usage /cmh chisq measures trend;
tables f_usage*risk*usage /cmh scores=modridit;

run;

Output 4.8 contains the statistics for the table of risk perception by adolescent usage when
there is no father’s usage. Note thatQCS = 34:2843, with 1 df, signifying a strong
correlation between risk perception and smokeless tobacco usage.
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Output 4.8 Results for No Father’s Usage

Statistics for Table 1 of risk by usage
Controlling for f_usage=no

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 34.9217 <.0001
Likelihood Ratio Chi-Square 2 34.0684 <.0001
Mantel-Haenszel Chi-Square 1 34.2843 <.0001
Phi Coefficient 0.2678
Contingency Coefficient 0.2587
Cramer’s V 0.2678

Output 4.9 contains the Cochran-Armitage trend test table. The test statistic,Z, is 5.8613
and is highly significant. There is an increasing trend in binomial proportions as you go
from minimal to substantial risk perception.

Output 4.9 Cochran-Armitage Trend Test

Statistics for Table 1 of risk by usage
Controlling for f_usage=no

Cochran-Armitage Trend Test
--------------------------
Statistic (Z) 5.8613
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Output 4.10 contains the same association test results for those whose fathers used
smokeless tobacco, and Output 4.11 contains the corresponding trend text.

Output 4.10 Results for Father’s Usage

Statistics for Table 2 of risk by usage
Controlling for f_usage=yes

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 6.6413 0.0361
Likelihood Ratio Chi-Square 2 7.0461 0.0295
Mantel-Haenszel Chi-Square 1 6.5644 0.0104
Phi Coefficient 0.2763
Contingency Coefficient 0.2663
Cramer’s V 0.2763

Output 4.11 Cochran-Armitage Trend Test

Statistics for Table 2 of risk by usage
Controlling for f_usage=yes

Cochran-Armitage Trend Test
--------------------------
Statistic (Z) 2.5770
One-sided Pr > Z 0.0050
Two-sided Pr > |Z| 0.0100
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There is still a correlation between risk perception and adolescent usage, although it is not
as strong. The Cochran-ArmitageZ statistic has the value 2.5770 and a two-sidedp-value
of 0.0100. Note that exactp-values are available for the trend test for sparse data.

Output 4.12 contains the results for the combined tables.QCSMH is Statistic 1 in the table,
labeled the “Nonzero Correlation” statistic. It takes the value 40.6639 for integer scores,
and it takes the value 39.3048 for modified ridit scores. Both results are similar, with
strongly significant statistics; often, different sets of scores produce essentially the same
results.

Output 4.12 Results for Combined Tables

Summary Statistics for risk by usage
Controlling for f_usage

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 40.6639 <.0001
2 Row Mean Scores Differ 2 41.0577 <.0001
3 General Association 2 41.0577 <.0001

Total Sample Size = 574

Summary Statistics for risk by usage
Controlling for f_usage

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 39.3048 <.0001
2 Row Mean Scores Differ 2 41.0826 <.0001
3 General Association 2 41.0577 <.0001

Total Sample Size = 574

4.3.4 Pain Data Analysis

Clinical trials not only investigate measures of efficacy, or how well a drug works for its
designed purpose, but also address the matter of adverse effects, or whether the drug has
harmful side effects. Table 4.7 contains data from a study concerned with measuring the
adverse effects of a pain relief treatment that was given at five different dosages, including
placebo, to patients with one of two diagnoses. Investigators were interested in whether
there was a trend in the proportions with adverse effects.
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Table 4.7. Adverse Effects for Pain Treatment

Diagnosis
I II

Adverse Effects Adverse Effects
Treatment No Yes No Yes
Placebo 26 6 26 6
Dosage1 26 7 12 20
Dosage2 23 9 13 20
Dosage3 18 14 1 31
Dosage4 9 23 1 31

The following SAS statements request aQCSMH statistic from PROC FREQ, using both
integer scores and modified ridit scores. First, a TABLES statement requesting the table of
treatment by response pooled over the two diagnoses is requested. Note the use of the
ORDER=DATA option in the PROC statement. If this option was omitted, the levels of
TREATMENT would be ordered incorrectly, with placebo being placed last instead of first.

data pain;
input diagnosis $ treatment $ response $ count @@;
datalines;

I placebo no 26 I placebo yes 6
I dosage1 no 26 I dosage1 yes 7
I dosage2 no 23 I dosage2 yes 9
I dosage3 no 18 I dosage3 yes 14
I dosage4 no 9 I dosage4 yes 23
II placebo no 26 II placebo yes 6
II dosage1 no 12 II dosage1 yes 20
II dosage2 no 13 II dosage2 yes 20
II dosage3 no 1 II dosage3 yes 31
II dosage4 no 1 II dosage4 yes 31
;
proc freq order=data;

weight count;
tables treatment*response / chisq;
tables diagnosis*treatment*response / chisq cmh;
tables diagnosis*treatment*response / scores=modridit cmh;

run;

QCS for the combined table is strongly significant, with a value of 65.4730 and 1 df.



84 Sets of 2� r and s� 2 Tables

Output 4.13 Results for Combined Diagnoses

Table of treatment by response

treatment response

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
placebo | 52 | 12 | 64

| 16.15 | 3.73 | 19.88
| 81.25 | 18.75 |
| 33.55 | 7.19 |

---------+--------+--------+
dosage1 | 38 | 27 | 65

| 11.80 | 8.39 | 20.19
| 58.46 | 41.54 |
| 24.52 | 16.17 |

---------+--------+--------+
dosage2 | 36 | 29 | 65

| 11.18 | 9.01 | 20.19
| 55.38 | 44.62 |
| 23.23 | 17.37 |

---------+--------+--------+
dosage3 | 19 | 45 | 64

| 5.90 | 13.98 | 19.88
| 29.69 | 70.31 |
| 12.26 | 26.95 |

---------+--------+--------+
dosage4 | 10 | 54 | 64

| 3.11 | 16.77 | 19.88
| 15.63 | 84.38 |
| 6.45 | 32.34 |

---------+--------+--------+
Total 155 167 322

48.14 51.86 100.00

Statistics for Table of treatment by response

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 4 68.0752 <.0001
Likelihood Ratio Chi-Square 4 73.2533 <.0001
Mantel-Haenszel Chi-Square 1 65.4730 <.0001
Phi Coefficient 0.4598
Contingency Coefficient 0.4178
Cramer’s V 0.4598

Output 4.14 contains the statistics for the individual tables.QCS takes the value 22.8188
for Diagnosis I and the value 52.3306 for Diagnosis II.
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Output 4.14 Results for Separate Diagnoses

Statistics for Table 1 of treatment by response
Controlling for diagnosis=I

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 4 26.6025 <.0001
Likelihood Ratio Chi-Square 4 26.6689 <.0001
Mantel-Haenszel Chi-Square 1 22.8188 <.0001
Phi Coefficient 0.4065
Contingency Coefficient 0.3766
Cramer’s V 0.4065

Sample Size = 161

Statistics for Table 2 of treatment by response
Controlling for diagnosis=II

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 4 60.5073 <.0001
Likelihood Ratio Chi-Square 4 68.7446 <.0001
Mantel-Haenszel Chi-Square 1 52.3306 <.0001
Phi Coefficient 0.6130
Contingency Coefficient 0.5226
Cramer’s V 0.6130

Sample Size = 161

Output 4.15 contains the stratified analysis results. Integer scores produce aQCSMH of
71.7263, and modified ridit scores produce aQCSMH of 71.6471. These statistics are
clearly significant. The proportion of patients with adverse effects is correlated with level
of dosage; higher dosages produce more reports of adverse effects.
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Output 4.15 Combined Results

Summary Statistics for treatment by response
Controlling for diagnosis

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 71.7263 <.0001
2 Row Mean Scores Differ 4 74.5307 <.0001
3 General Association 4 74.5307 <.0001

Total Sample Size = 322

Summary Statistics for treatment by response
Controlling for diagnosis

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 71.6471 <.0001
2 Row Mean Scores Differ 4 74.5307 <.0001
3 General Association 4 74.5307 <.0001

Total Sample Size = 322

4.4 Relationships Between Sets of Tables

Suppose you transposed the rows and columns of Table 4.7. You would obtain the
following:

Table 4.8. Adverse Effects for Pain Treatment

Adverse
Diagnosis Effects Placebo Dosage1 Dosage2 Dosage3 Dosage4
I No 26 26 23 18 9
I Yes 6 7 9 14 23
II No 26 12 13 1 1
II Yes 6 20 20 31 31

Furthermore, suppose you analyzed these tables as two 2�r tables, making the response
variable the row variable and the grouping variable the column variable.

proc freq order=data;
weight count;
tables diagnosis*response*treatment / cmh;
tables diagnosis*treatment*response / cmh;

run;
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Look at the resulting table of Mantel-Haenszel statistics for DIAGNOSIS by RESPONSE
by TREATMENT and compare it to the reprinted table of DIAGNOSIS by TREATMENT
by RESPONSE.

Output 4.16 Combined Results

Summary Statistics for response by treatment
Controlling for diagnosis

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 71.7263 <.0001
2 Row Mean Scores Differ 1 71.7263 <.0001
3 General Association 4 74.5307 <.0001

Total Sample Size = 322

Summary Statistics for treatment by response
Controlling for diagnosis

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 71.7263 <.0001
2 Row Mean Scores Differ 4 74.5307 <.0001
3 General Association 4 74.5307 <.0001

Total Sample Size = 322

QSMH andQCSMH are identical here. One degree of freedom is needed to compare the
mean differences across two groups, in the case ofQSMH , and one degree of freedom is
needed to assess correlation, in the case ofQCSMH.

In Chapter 6, “Sets ofs� r Tables,” the Mantel-Haenszel statistic is extended to sets of
s� r tables. The mean score statistic for the case of more than two groups has(s� 1)
degrees of freedom, since you are comparing mean differences acrosss groups. Thus,QS

for the2� r table is a special case of the more general mean score statistic and has
(s� 1) = (2� 1) = 1 degree of freedom. Whens = 2,QSMH andQCSMH take the same
value with table scores and can be used interchangeably. Thus, transposing the Table 4.7
data and computing these statistics produced identical mean score and correlation
statistics, since the transposed data produced a mean score statistic with one degree of
freedom.

Similarly, whens = 2,QS andQCS take the same value. This is why, in Section 4.2.1,
you are able to use the Mantel-Haenszel statistic produced by the CHISQ option of PROC
FREQ. That statistic is actuallyQCS, but for2� r tables it is also the mean score statistic.

Table 4.9 summarizes the Mantel-Haenszel statistics for the tables discussed in this
chapter; it also lists the labels associated with these statistics in PROC FREQ output.
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Table 4.9. Summary of Extended Mantel-Haenszel Statistics

Table Corresponding
Dimensions Statistic DF PROC FREQ MH Label

2� 2 QMH 1 Nonzero Correlation
Row Mean Scores Differ
General Association

2� r QSMH 1 Nonzero Correlation
Row Mean Scores Differ

s� 2 QCSMH 1 Nonzero Correlation
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Chapter 5

The s� r Table

5.1 Introduction

Previous chapters address the concepts of association and measures of association in 2� 2
tables and association in2� r ands� 2 tables. This chapter extends these concepts to the
generals� r table. The main difference from these earlier chapters is that scale of
measurement is always a consideration; the statistics you choose depend on whether the
rows and columns of the table are nominally or ordinally scaled. This is true for
investigating whether association exists and for summarizing the degree of association.
Section 5.2 addresses tests for association, and Section 5.4 addresses measures of
association.

Often, subjects or experimental units are observed by two or more researchers, and the
question of interest is how closely their evaluations agree. Such studies are calledobserver
agreementstudies. The columns of the resulting table are the classifications of one
observer, and the rows are the classifications of the other observer. Subjects are
cross-classified into table cells according to their observed profiles. Observer agreement is
discussed in Section 5.5. Sometimes you are interested in ordered alternatives to the
hypothesis of no association. Section 5.6 discusses the Jonckheere-Terpstra test for
ordered differences.

Exactp-values are now available for many tests of association and measures of association.
The Fisher exact test for thes� r table and exactp-values for several chi-square statistics
are discussed in Section 5.3. Exactp-values are also discussed for measures of association,
observer agreement, and the Jonckheere-Terpstra test in those respective sections. Note
that the exactp-value computations for the actual test statistics such as chi-square
statistics, which take only non-negative values, are based on the sum of the exact
probabilities for those tables where the test statistic is greater than or equal to the one you
observe. The tables you consider are those with the same margins as the table you observe.

For those tests where you may consider one-sided or two-sided alternative hypotheses,
such as for the kappa coefficient, the computation is a bit more involved. For one-sided
tests, the FREQ procedure computes the right-sidedp-value when the observed value of
the test statistic is greater than its expected value, and it computes the left-sidedp-value
when the test statistic is less than or equal to its expected value. In each case, thep-value is
the sum of the probabilities for those tables having a more extreme test statistic than the
observed one. The two-sidedp-value is computed as the sum of the one-sidedp-value and
the area in the other tail of the distribution for the statistic that is at least as far from the
expected value. Refer to Agresti (1992) for a review of the strategies for exactp-value
computations for table statistics.
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5.2 Association

5.2.1 Tests for General Association

Table 5.1 contains data from a study concerning the distribution of party affiliation in a
city suburb. The interest was whether there was an association between registered political
party and neighborhood.

Table 5.1. Distribution of Parties in Neighborhoods

Neighborhood
Party Bayside Highland Longview Sheffeld
Democrat 221 160 360 140
Independent 200 291 160 311
Republican 208 106 316 97

For these data, both row and column variables are nominally scaled; there is no inherent
ordering of the response values for either neighborhood or political party. Thus, the
alternative to the null hypothesis of no association is general association, defined as
heterogeneous patterns of distribution of the response (column) levels across the row
levels. The following table represents the generals� r table.

Table 5.2. s � r Contingency Table

Response Variable Categories
Group 1 2 . . . r Total
1 n11 n12 . . . n1r n1+
2 n21 n22 . . . n2r n2+
...

...
...

...
...

s ns1 ns2 . . . nsr ns+
Total n+1 n+2 . . . n+r n

One test statistic for the hypothesis of no general association is the Pearson chi-square.
This statistic is defined the same as for the 2� 2 table, except that the summation fori is
from 1 tos, and the summation forj is from 1 tor.

QP =

sX
i=1

rX
j=1

(nij �mij)
2

mij

where

mij = Efnij jH0g = ni+n+j
n

is the expected value of the frequencies in theith row andjth column.
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If the sample size is sufficiently large, that is, all expected cell countsmij � 5, thenQP

approximately has the chi-square distribution with(s� 1)(r � 1) degrees of freedom. In
the case of the2� 2 table,r = 2 ands = 2 so thatQP has 1 df.

Just as for2� 2 tables, the randomization statisticQ can be written

Q =
n� 1

n
QP

and it also has an approximate chi-square distribution with(s� 1)(r � 1) degrees of
freedom under the null hypothesis.

For more detail, recall from Chapter 2, “The 2� 2 Table,” that the derivation ofQ depends
on the assumption of fixed marginal totals such that the table frequencies have a
hypergeometric distribution. For thes� r table, the distribution is multivariate
hypergeometric under the null hypothesis of no association.

You can write the probability distribution as

Prfnijg =
Qs

i=1 ni+!
Qr

j=1 n+j!

n!
Qs

i=1

Qr
j=1 nij!

The covariance structure underH0 is

Covfnij ; ni0j0 jH0g = mij(nÆii0 � ni0+)(nÆjj0 � n+j0)

n(n� 1)

whereÆkk0 = 1 if k = k0 andÆkk0 = 0 if k 6= k0.

Q is computed from the quadratic form

Q = (n�m)0A0(AVA0)�1A(n�m)

wheren = (n11; n12; : : : ; n1r; : : : ; ns1; : : : ; nsr)
0 is the compound vector of observed

frequencies,m is the corresponding vector of expected frequencies,V is the covariance
matrix, andA is a matrix of coefficients defined such thatAVA0 is nonsingular. The
symbol
 denotes the left-hand Kronecker product (the matrix on the left of the

multiplies each element in the matrix on the right).

The usual choice forA for testing general association is

A =
�
I(r�1);0(r�1)

�
 �I(s�1);0(s�1)

�
whereI(u�1) is the(u� 1)� (u� 1) identity matrix and0(u�1) is a(u� 1) vector of 0s.

For example, for a 2� 3 table,

A =

�
1 0 0 0 0 0
0 1 0 0 0 0

�
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GeneratingQP andQ requires no new PROC FREQ features. The CHISQ option in the
TABLES statement producesQP , and the CMH option producesQ. The following
statements produce these statistics for the neighborhood data.

data neighbor;
length party $ 11 neighborhood $ 10;
input party $ neighborhood $ count @@;
datalines;

democrat longview 360 democrat bayside 221
democrat sheffeld 140 democrat highland 160
republican longview 316 republican bayside 208
republican sheffeld 97 republican highland 106
independent longview 160 independent bayside 200
independent sheffeld 311 independent highland 291
;
proc freq ;

weight count;
tables party*neighborhood / chisq cmh nocol nopct;

run;

Output 5.1 contains the frequency table.

Output 5.1 Frequency Table

Table of party by neighborhood

party neighborhood

Frequency |
Row Pct |bayside |highland|longview|sheffeld| Total
------------+--------+--------+--------+--------+
democrat | 221 | 160 | 360 | 140 | 881

| 25.09 | 18.16 | 40.86 | 15.89 |
------------+--------+--------+--------+--------+
independent | 200 | 291 | 160 | 311 | 962

| 20.79 | 30.25 | 16.63 | 32.33 |
------------+--------+--------+--------+--------+
republican | 208 | 106 | 316 | 97 | 727

| 28.61 | 14.58 | 43.47 | 13.34 |
------------+--------+--------+--------+--------+
Total 629 557 836 548 2570

Output 5.2 displays the table statistics.QP = 273:9188 with 6 df, p < 0:0001.
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Output 5.2 Pearson Chi-Square

Statistics for Table of party by neighborhood

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 6 273.9188 <.0001
Likelihood Ratio Chi-Square 6 282.3266 <.0001
Mantel-Haenszel Chi-Square 1 0.8124 0.3674
Phi Coefficient 0.3265
Contingency Coefficient 0.3104
Cramer’s V 0.2308

Sample Size = 2570

Output 5.3 contains the MH statistics. PROC FREQ computesQ as the extended
Mantel-Haenszel statistic for one stratum.Q is the “General Association” statistic, with a
value of 273.8122 and 6 df. Notice how close the values ofQ andQP are for these data;
this is expected since the sample size is large (2570).

Output 5.3 Randomization Q

Summary Statistics for party by neighborhood

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 0.8124 0.3674
2 Row Mean Scores Differ 2 13.8938 0.0010
3 General Association 6 273.8122 <.0001

Total Sample Size = 2570

Political party and neighborhood are statistically associated. If you study the column
percentages, you can see that the neighborhoods that have relatively high numbers of
Democrats (Bayside, Longview) also have high numbers of Republicans. The
neighborhoods that have relatively high numbers of Independents, Highland and Sheffeld,
also have low numbers of both Democrats and Republicans.

5.2.2 Mean Score Test

The following data come from a study on headache pain relief. A new treatment was
compared with the standard treatment and a placebo. Researchers measured the number of
hours of substantial relief from headache pain.

Table 5.3. Pain Study Data

Hours of Relief
Treatment 0 1 2 3 4
Placebo 6 9 6 3 1
Standard 1 4 6 6 8
Test 2 5 6 8 6
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Clearly, number of hours of relief is an ordinally scaled response measure. WhileQ and
QP are good strategies for detecting general association, they aren’t as good as other
strategies when the response variable is ordinally scaled and the alternative to no
association is location shifts. Section 4.2.1 discusses the mean score test for a2� r table.
Scores are assigned to the levels of the response variable, and row mean scores are
computed. The statisticQS is then derived.QS also applies tos� r tables, in which case
it has(s� 1) degrees of freedom since you are comparing mean scores acrosss groups.

For more detail, the statisticQS is derived from the same general quadratic form asQ
discussed in Section 5.2. You chooseA so that it assigns scores to the response levels and
then compares the resulting linear functions of scores for(s� 1) groups to their expected
values.A is the(s� 1)� sr matrix

A =

26664
a0 0

¯
0 : : : 0

¯
0 0

¯
0

0
¯
0 a0 : : : 0

¯
0 0

¯
0

...
...

...
0
¯
0 0

¯
0 : : : a0 0

¯
0

37775
For example, if the actual values were used as scores for the columns in Table 5.3, then
a0 = (0 1 2 3 4).

It is interesting to note thatQS can be written in a one-way analysis of variance form

QS =
(n� 1)

Ps
i=1 ni+(

�fi � �a)
2

nva

where, as discussed in Section 4.2.1,

�fi =

rX
j=1

ajnij
ni+

and�a is its expected value

�a = Ef �fijH0g =
rX

j=1

ajn+j
n

va =

rX
j=1

(aj � �a)
2
�n+j
n

�

See Section 4.2.3 for choices of scoring systems. For the pain data, integer scores make
sense. The following statements request the mean score testQS for the pain data.



5.2 Association 97

data pain;
input treatment $ hours count @@;
datalines;

placebo 0 6 placebo 1 9 placebo 2 6 placebo 3 3 placebo 4 1
standard 0 1 standard 1 4 standard 2 6 standard 3 6 standard 4 8
test 0 2 test 1 5 test 2 6 test 3 8 test 4 6
;
proc freq;

weight count;
tables treatment*hours/ cmh nocol nopct;

run;

Output 5.4 contains the frequency table produced by PROC FREQ.

Output 5.4 Frequency Table

Table of treatment by hours

treatment hours

Frequency|
Row Pct | 0| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+--------+
placebo | 6 | 9 | 6 | 3 | 1 | 25

| 24.00 | 36.00 | 24.00 | 12.00 | 4.00 |
---------+--------+--------+--------+--------+--------+
standard | 1 | 4 | 6 | 6 | 8 | 25

| 4.00 | 16.00 | 24.00 | 24.00 | 32.00 |
---------+--------+--------+--------+--------+--------+
test | 2 | 5 | 6 | 8 | 6 | 27

| 7.41 | 18.52 | 22.22 | 29.63 | 22.22 |
---------+--------+--------+--------+--------+--------+
Total 9 18 18 17 15 77

Output 5.5 displays the summary statistics.

Output 5.5 Mean Score Statistic

Summary Statistics for treatment by hours

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.0668 0.0045
2 Row Mean Scores Differ 2 13.7346 0.0010
3 General Association 8 14.4030 0.0718

Total Sample Size = 77

QS is the “Row Mean Scores Differ” statistic.QS = 13:7346, with 2 df, and is clearly
significant. Note thatQ for these data takes the value 14.403, which has ap-value of
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0.0718 with 8 df. In fact, there are a number of cells whose expected values are less than
or equal to 5, so the chi-square approximation for the test for general association may not
even be valid. However, since the row totals of the table are all greater than 20, and each
row has counts� 5 for both outcomes� 1 and� 2, there is sufficient sample size forQS .
This is an example of where taking advantage of the ordinality of the data not only is the
more appropriate approach, it may be the only possible Mantel-Haenszel strategy due to
sample size constraints.

5.2.3 Correlation Test

Sometimes, both the row variable and the column variable are ordinally scaled. This is
common when you are studying responses that are evaluated on an ordinal scale and what
is being compared are different dosage levels, which are also ordinally scaled. Consider
the data in Table 5.4. A water treatment company is studying water additives and
investigating how they affect clothes washing. The treatments studied were no treatment
(plain water), the standard treatment, and a double dose of the standard treatment, called
super. Washability was measured as low, medium, and high.

Table 5.4. Washability Data

Washability
Treatment Low Medium High Total
Water 27 14 5 46
Standard 10 17 26 53
Super 5 12 50 67

As discussed in Section 4.2.1, the appropriate statistic to investigate association for this
situation is one that takes advantage of the ordinality of both the row variable and the
column variable and tests the null hypothesis of no association against the alternative of
linear association. In Chapter 4, “Sets of2� r ands� 2 Tables,” the test statisticQCS

was developed for thes� 2 table and was shown to have one degree of freedom. A similar
strategy applies to thes� r table. You assign scores both to the levels of the response
variable and to the levels of the grouping variable to obtainQCS, which is approximately
chi-square with one degree of freedom. Thus, whether the table is 2� 2, s� 2, or s� r,
QCS always has one degree of freedom. (See Section 4.4 for a related discussion.)

For more detail, this statistic is also derived from the general quadratic form

Q = (n�m)0A0(AVA0)�1A(n�m)

You obtainQCS by choosingA to be

A =
�
a0 
 c0� = [a1c1; : : : ; arc1; : : : ; arcs]

wherea0 = (a1; a2; : : : ; ar) are scores for the response levels andc0 = (c1; c2; : : : ; cs) are
scores for the levels of the grouping variable.A has dimension1� sr.
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The following PROC FREQ invocation produces the correlation statistic for the
washability data. It is of interest to use both integer scores and modified ridit scores and
compare the results. The following statements request both integer scores (the default) and
modified ridit scores. The ORDER= option maintains the desired order of the levels of the
rows and columns; it is the same as the order in which the variable values are encountered
in the DATA step. The NOPRINT option suppresses the printing of the individual tables.

data wash;
input treatment $ washability $ count @@;
datalines;

water low 27 water medium 14 water high 5
standard low 10 standard medium 17 standard high 26
super low 5 super medium 12 super high 50
;
proc freq order=data;

weight count;
tables treatment*washability / chisq cmh nocol nopct;
tables treatment*washability / scores=modridit cmh

noprint nocol nopct;
run;

Output 5.6 displays the frequency table.

Output 5.6 Frequency Table

Table of treatment by washability

treatment washability

Frequency|
Row Pct |low |medium |high | Total
---------+--------+--------+--------+
water | 27 | 14 | 5 | 46

| 58.70 | 30.43 | 10.87 |
---------+--------+--------+--------+
standard | 10 | 17 | 26 | 53

| 18.87 | 32.08 | 49.06 |
---------+--------+--------+--------+
super | 5 | 12 | 50 | 67

| 7.46 | 17.91 | 74.63 |
---------+--------+--------+--------+
Total 42 43 81 166

The CHISQ option always produces the correlation statisticQCS. Compare its value,
QCS = 50:6016 (displayed in Output 5.7), with the statistic displayed under “Nonzero
Correlation” in Output 5.8. These statistics are the same. Thus, you don’t need to specify
CMH to obtainQCS for a single table. For a2� 2 table,QCS is equivalent toQ andQS ;
for a2� r table,QCS is equivalent toQS.
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Output 5.7 Statistics for Table

Statistics for Table of treatment by washability

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 4 55.0879 <.0001
Likelihood Ratio Chi-Square 4 58.0366 <.0001
Mantel-Haenszel Chi-Square 1 50.6016 <.0001
Phi Coefficient 0.5761
Contingency Coefficient 0.4992
Cramer’s V 0.4073

Sample Size = 166

Output 5.8 QCS for Integer Scores

Summary Statistics for treatment by washability

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 50.6016 <.0001
2 Row Mean Scores Differ 2 52.7786 <.0001
3 General Association 4 54.7560 <.0001

Total Sample Size = 166

QCS is clearly significant. Washability increases with the degree of additive to the water.
Output 5.9 displaysQCS for the modified ridit scores. It has the value 49.541, which is
clearly significant.

Output 5.9 QCS for Modified Ridit Scores

Summary Statistics for treatment by washability

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 49.5410 <.0001
2 Row Mean Scores Differ 2 52.5148 <.0001
3 General Association 4 54.7560 <.0001

Total Sample Size = 166

5.3 Exact Tests for Association

5.3.1 General Association

In some cases, there is not sufficient sample size for the chi-square statistics discussed
earlier in this chapter to be valid (severalmij � 5). An alternative strategy for these
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situations is the Fisher exact test fors� r tables. This method follows the same principles
as Fisher’s exact test for the 2�2 table, except that the probabilities that are summed are
taken from the multivariate hypergeometric distribution. Mehta and Patel (1983) describe
a network algorithm for obtaining exactp-values that works much faster and more
efficiently than direct enumeration; Baglivo, Olivier, and Pagano (1988), Cox and Plackett
(1980), and Pagano and Halvorsen (1981) have also done work in this area. Besides
Fisher’s exact test, which produces the exactp-value for the table, exactp-values are
available for general association tests such asQ,QP , andQL.

Consider Table 5.5. A marketing research firm organized a focus group to consider issues
of new car marketing. Members of the group included those persons who had purchased a
car from a local dealer in the last month. Researchers were interested in whether there was
an association between the type of car bought and the manner in which group members
found out about the car in the media. Cars were classified as sedans, sporty, and utility.
The types of media included television, magazines, newspapers, and radio.

Table 5.5. Car Marketing Data

Advertising Source
Type of Car TV Magazine Newspaper RadioTotal
Sedan 4 0 0 2 6
Sporty 0 3 3 4 10
Utility 5 5 2 2 14

It is clear that the data do not meet the requirements for the usual tests of association via
the Pearson chi-square or the randomization chi-square. There are a number of zero cells
and a number of other cells whose expected values are less than 5. Under these
circumstances, the exact test for no association is an appropriate strategy.

The following SAS statements produce the exact test for the car marketing data. Recall
that Fisher’s exact test is produced automatically for2� 2 tables with the CHISQ option;
to generate the exact test fors� r tables, you need to specify the EXACT option in the
TABLES statement. This generates the usual statistics produced with the CHISQ option
and the exact test. Since the ORDER= option isn’t specified, the columns of the resulting
table will be ordered alphabetically. No ordering is assumed for this test, so this does not
matter.

data market;
length AdSource $ 9. ;
input car $ AdSource $ count @@;
datalines;

sporty paper 3 sporty radio 4 sporty tv 0 sporty magazine 3
sedan paper 0 sedan radio 2 sedan tv 4 sedan magazine 0
utility paper 2 utility radio 2 utility tv 5 utility magazine 5
;
run;
proc freq;

weight count;
table car*AdSource / norow nocol nopct;
exact fisher pchi lrchi;

run;
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Output 5.10 contains the frequency table.

Output 5.10 Car Marketing Frequency Table

Table of car by AdSource

car AdSource

Frequency|magazine|paper |radio |tv | Total
---------+--------+--------+--------+--------+
sedan | 0 | 0 | 2 | 4 | 6
---------+--------+--------+--------+--------+
sporty | 3 | 3 | 4 | 0 | 10
---------+--------+--------+--------+--------+
utility | 5 | 2 | 2 | 5 | 14
---------+--------+--------+--------+--------+
Total 8 5 8 9 30

Output 5.11 displays the Fisher exactp-value for the table, as well as the asymptotic and
exact results forQP andQL. For these data, the exactp-value for the table isp = 0:0473.
Note thatQP is 11.5984 with 6 df,p = 0:0716, andQL has the value 16.3095 with
p = 0:0122. QP tends to be more conservative andQL tends to be more liberal than the
exact test. Note that since the alternative hypothesis is general association, there is no
analogy to the left-tail or right-tail as there is for Fisher’s exact test for2� 2 tables, when
the alternative can be directional association.

The exactp-value forQP is 0.0664 and the exactp-value forQL is 0.0272. Thus, with the
exact computations,QP became somewhat stronger andQL became somewhat weaker but
still significant at the� = 0:05 level. For this table, you would typically use the Fisher
exactp-value as your indication of the strength of the association and consider the
association to be significant at the0:05 level of significance.

While you can’t directly produce an exactp-value for the general associationQ (that is,
the test produced by PROC FREQ with the CMH option for the one stratum case), the
exact distribution forQ is identical to the exact distribution forQP so the exactp-value for
QP is the same as the exactp-value forQ. This is because

Q =
(n� 1)QP

n

for general association.
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Output 5.11 Exact Test Results

Statistics for Table of car by AdSource

Pearson Chi-Square Test
----------------------------------
Chi-Square 11.5984
DF 6
Asymptotic Pr > ChiSq 0.0716
Exact Pr >= ChiSq 0.0664

Likelihood Ratio Chi-Square Test
----------------------------------
Chi-Square 16.3095
DF 6
Asymptotic Pr > ChiSq 0.0122
Exact Pr >= ChiSq 0.0272

Fisher’s Exact Test
----------------------------------
Table Probability (P) 2.545E-05
Pr <= P 0.0473

Sample Size = 30

Notes on Exact Computations
Even though the network algorithms used to produce these exact tests are very fast
compared to direct enumeration, exact methods are computationally intensive. The
memory requirements and CPU time requirements can be quite high. As the sample size
becomes larger, the test is likely to become computationally infeasible. For most situations
when the sample size is moderately large, asymptotic methods are valid. An exception
would be data that have marked sparseness in the row and column marginal totals. The
exact test is mainly useful when significance is suggested by the approximate results of
QP andQL. Also, in these situations, the computations are not overly lengthy.
Computations are lengthy when thep-value is somewhere around 0.5, and in this situation,
the exactp-value is usually not needed.

When the SAS System is performing exact computations, it prints a message to the log
stating that you can press the system interrupt key if you want to terminate them. In
addition, you can specify the MAXTIME= option in the EXACT statement to request, in
seconds, a length of time after which the procedure is to stop exact computations.

There are some data for which computing the exactp-values is going to be very memory
and time intensive and yet the asymptotic tests are not quite justifiable. You can request
Monte Carlo estimation for these situations by specifying MC as an EXACT statement
option. PROC FREQ uses Monte Carlo methods to estimate the exactp-value and give a
confidence interval for the estimate. Refer to Agresti, Wackerly, and Boyett (1979) for
more detail. With PROC FREQ, you can specify the number of samples (the default is
10,000) and the random number seed. For example, you can request Monte Carlo
estimation for the MHCHI option with the statement

exact mhchi / mc;
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As mentioned before, exact computations should be used only when the data require them
and then used judiciously. Refer to theSAS/STAT User’s Guide, Version 8for more
information about the exact computational algorithms used in the FREQ procedure.

5.3.2 Test of Correlation

Section 1.2 discusses Mantel-Haenszel test statistics for the evaluation of general
association, location shifts, and correlation. While exactp-values are not yet available in
the SAS System for the MH tests of location shifts, you can obtain exactp-values for the
correlation test for the case when both the rows and columns of your table are ordinally
scaled.

Consider the following data from a study on a new drug for a skin disorder. Subjects were
randomly assigned to one of four dosage levels and, after a suitable period of time, the
affected skin area was examined and classified on a five-point scale ranging from 0 for
terrible to 4 for excellent.

Table 5.6. Skin Disorder Data

Response
Dose in Mg Poor Fair Good Excellent
25 1 1 1 0
50 1 2 1 1
75 0 0 2 2
100 0 0 7 0

Since both the rows and columns can be considered to be on an ordinal scale, the type of
association involved is linear and the correlation Mantel-Haenszel statistic is suitable.
However, note that there are several zero cells, many other cells with counts of 1 or 2, and
a total sample size of 19. This is on the border of too small for the asymptotic MH test,
which requires an overall sample size of at least 20. In addition, if you collapse this table
into various2� 2 tables, many of the resulting cell counts are less than 5; for the
asymptotic MH correlation test you generally want any cell count of a collapsed2� 2
table to be 5 or larger.

However, you can compute an exactp-value, which is the sum of the exactp-values
associated with the tables where the test statistic is larger than the one you observe.

The following DATA step creates SAS data set DISORDER.

data disorder;
input dose outcome count @@;
datalines;

25 0 1 25 1 1 25 2 1 25 3 0
50 0 1 50 1 2 50 2 1 50 3 1
75 0 0 75 1 0 75 2 2 75 3 2

100 0 0 100 1 0 100 2 7 100 3 0
;

Specifying the EXACT statement with the MHCHI keyword produces both the asymptotic
and the exact MH test.
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proc freq;
weight count;
tables dose*outcome / nocol norow nopct;
exact mhchi;

run;

Output 5.12 displays the frequency table for the skin disorder data.

Output 5.12 Skin Disorder Data

Table of dose by outcome

dose outcome

Frequency| 0| 1| 2| 3| Total
---------+--------+--------+--------+--------+

25 | 1 | 1 | 1 | 0 | 3
---------+--------+--------+--------+--------+

50 | 1 | 2 | 1 | 1 | 5
---------+--------+--------+--------+--------+

75 | 0 | 0 | 2 | 2 | 4
---------+--------+--------+--------+--------+

100 | 0 | 0 | 7 | 0 | 7
---------+--------+--------+--------+--------+
Total 2 3 11 3 19

Output 5.13 displaysQCS and both the asymptotic and exactp-values.

Output 5.13 Exact Results for Correlation MH

Statistics for Table of dose by outcome

Mantel-Haenszel Chi-Square Test
----------------------------------
Chi-Square 3.9314
DF 1
Asymptotic Pr > ChiSq 0.0474
Exact Pr >= ChiSq 0.0488

Sample Size = 19

With aQCS value of 3.9314 and 1 df, the chi-square approximation provides a significant
p-value of0:0474. The exactp-value is a little higher,p=0.0488, but is still significant at
� = 0:05. These data clearly have an association that is detected with a linear correlation
statistic.

5.4 Measures of Association

Analysts are sometimes interested in assessing the strength of association in thes� r
table. Although there is no counterpart to the odds ratios in 2� 2 tables, there are several
measures of association available, and, as you might expect, their choice depends on the
scale of measurement.
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5.4.1 Ordinal Measures of Association

If the data in the table have an interval scale or have scores that are equally spaced, then
the Pearson correlation coefficient is an appropriate measure of association, and one that is
familiar to most readers.

If the data do not lie on an obvious scale, but are ordinal in nature, then there are other
measures of association that apply. The Spearman rank correlation coefficient is produced
by substituting ranks as variable values for the Pearson correlation coefficient. Other
measures are based on the classification of all possible pairs of subjects in the table as
concordantor discordantpairs. If a pair is concordant, then the subject ranking higher on
the row variable also ranks higher on the column variable. If a pair is discordant, then the
subject ranking higher on the row variable also ranks lower on the column variable. The
pair can also be tied on the row and column variables.

The gamma, Kendall’s tau-b, Stuart’s tau-c, and Somer’s D statistics are all based on
concordant and discordant pairs; that is, they use the relative ordering on the levels of the
variables to determine whether association is negative, positive, or present at all. For
example, gamma is estimated by


̂ =
(C �D)

(C +D)

whereC is the total number of concordant pairs andD is the total number of discordant
pairs.

These measures, like the Pearson correlation coefficient, take values between�1 and 1.
They differ mainly in their strategies for adjusting for ties and sample size. Somer’s D
depends on which variable is considered to be explanatory (the grouping
variable—adjustments for ties are made only on it). Somer’s D, Stuart’s tau-c, and
Kendall’s tau-b generally express less strength of association than gamma.

Asymptotic standard errors are available for these measures. Although the measure of
association is always valid, these standard errors are only valid if the sample size is large.
Very conservative guidelines are the usual requirements for the Pearson chi-square that the
expected cell counts are 5 or greater. A more realistic guideline is to collapse thes� r
table to a 2� 2 table by choosing cutpoints and then adding the appropriate rows and
columns. Think of this as a line under one row and beside one column; the 2� 2 table is
the result of summing the cells in the resulting quadrants. The sample size is adequate if
each of the cells of this 2� 2 table is 5 or greater.

If the sample size is adequate, then the measure of association is approximately normally
distributed and you can form the confidence intervals of interest. For example,

measure� 1:96 � ASE

forms the bounds of a 95% confidence interval. Refer to theSAS/STAT User’s Guide,
Version 8for more information on these ordinal measures of association.

Measures of association are produced in the PROC FREQ output by specifying
MEASURES as an option in the TABLES statement. In addition, you can request
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confidence limits by specifying the CL option. The following statements produce
measures of association for the washability data listed in Table 5.4. Using
SCORES=RANK in the second TABLES statement requests that rank scores are to be
used in calculating Pearson’s correlation coefficient.

data wash;
input treatment $ washability $ count @@;
datalines;

water low 27 water medium 14 water high 5
standard low 10 standard medium 17 standard high 26
super low 5 super medium 12 super high 50
;
proc freq order=data;

weight count;
tables treatment*washability / measures noprint nocol nopct cl;
tables treatment*washability / measures scores=rank noprint cl;

run;

Output 5.14 contains the table produced by the first PROC FREQ invocation. All of the
measures of ordinal association indicate a positive association. Note also that the Somer’s
D statistics, Kendall’s tau-b, and Stuart’s tau-c all have smaller values than gamma.
Somer’s D statistic has two forms: Somer’s D C|R means that the column variable is
considered the dependent, or response, variable, and Somer’s D R|C means that the row
variable is considered the response variable.

Output 5.14 Measures of Association

Statistics for Table of treatment by washability

95%
Statistic Value ASE Confidence Limits
----------------------------------------------------------------------------
Gamma 0.6974 0.0636 0.5728 0.8221
Kendall’s Tau-b 0.4969 0.0553 0.3885 0.6053
Stuart’s Tau-c 0.4803 0.0545 0.3734 0.5872

Somers’ D C|R 0.4864 0.0542 0.3802 0.5926
Somers’ D R|C 0.5077 0.0572 0.3956 0.6197

Pearson Correlation 0.5538 0.0590 0.4382 0.6693
Spearman Correlation 0.5479 0.0596 0.4311 0.6648

Lambda Asymmetric C|R 0.2588 0.0573 0.1465 0.3711
Lambda Asymmetric R|C 0.2727 0.0673 0.1409 0.4046
Lambda Symmetric 0.2663 0.0559 0.1567 0.3759

Uncertainty Coefficient C|R 0.1668 0.0389 0.0906 0.2431
Uncertainty Coefficient R|C 0.1609 0.0372 0.0880 0.2339
Uncertainty Coefficient Symmetric 0.1638 0.0380 0.0893 0.2383

Sample Size = 166
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Output 5.15 contains the output produced by the second PROC FREQ invocation. The
only difference is that rank scores were used in the calculation of Pearson’s correlation
coefficient. When rank scores are used, Pearson’s correlation coefficient is equivalent to
Spearman’s correlation, as illustrated in the output. (However, the asymptotic standard
errors are not equivalent.)

Output 5.15 Rank Scores for Pearson’s Correlation

Statistics for Table of treatment by washability

95%
Statistic Value ASE Confidence Limits
----------------------------------------------------------------------------
Gamma 0.6974 0.0636 0.5728 0.8221
Kendall’s Tau-b 0.4969 0.0553 0.3885 0.6053
Stuart’s Tau-c 0.4803 0.0545 0.3734 0.5872

Somers’ D C|R 0.4864 0.0542 0.3802 0.5926
Somers’ D R|C 0.5077 0.0572 0.3956 0.6197

Pearson Correlation (Rank Scores) 0.5479 0.0591 0.4322 0.6637
Spearman Correlation 0.5479 0.0596 0.4311 0.6648

Lambda Asymmetric C|R 0.2588 0.0573 0.1465 0.3711
Lambda Asymmetric R|C 0.2727 0.0673 0.1409 0.4046
Lambda Symmetric 0.2663 0.0559 0.1567 0.3759

Uncertainty Coefficient C|R 0.1668 0.0389 0.0906 0.2431
Uncertainty Coefficient R|C 0.1609 0.0372 0.0880 0.2339
Uncertainty Coefficient Symmetric 0.1638 0.0380 0.0893 0.2383

Sample Size = 166

5.4.2 Exact Tests for Ordinal Measures of Association

In addition to estimating measures of association, you can also test whether a particular
measure is equal to zero. In the case of the correlation coefficients, you can produce exact
p-values for this test. Thus, you have access to exact methods in the evaluation of the
correlation coefficients.

Table 5.7 displays data that a recreation supervisor collected from her girls’s soccer league
coaches. Hearing complaints about too-intense parental involvement, she surveyed each
coach to see whether they considered the parental interference to be of low, medium, or
high intensity for the three different grade leagues. Interference was considered to be
parents questioning their child’s playing time or position, questioning referee calls during
the games, or yelling very specific instructions to the children on the team. She was
interested in whether interference was associated with league grade. Since both grade level
and interference level lie on an ordinal scale, the Spearman rank correlation coefficient is
an appropriate statistic to consider.

Table 5.7. Soccer Coach Interviews
Parental Interference

Grades Low Medium High
1–2 3 1 0
3–4 3 2 1
5–6 1 3 2
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Since there were four teams in the 1st and 2nd grade league, and six teams each in the 3rd
and 4th and 5th and 6th grade leagues, the counts are necessarily small. If you apply
various cutpoints to produce collapsed 2�2 table as suggested previously to determine if
the asymptotic confidence intervals for the measures of association would be valid, you
determine that no cutpoints exist so that each component cell is� 5. However, you can
apply exact methods to get an exactp-value for the hypothesis that the Spearman rank
correlation coefficient is equal to zero.

The following DATA step inputs the soccer data into SAS data set SOCCER:

data soccer;
input grades $ degree $ count @@;
datalines;

1-2 low 3 1-2 medium 1 1-2 high 0
3-4 low 3 3-4 medium 2 3-4 high 1
5-6 low 1 5-6 medium 3 5-6 high 2
;
run;

In order to produce the exactp-value for the Spearman’s rank test, you specify an EXACT
statement that includes the keyword SCORR. The ORDER=DATA option is specified in
the PROC statement to ensure that the columns and rows maintain the correct ordering.

proc freq order=data;
weight count;
tables grades*degree / nocol nopct norow;
exact scorr;

run;

Output 5.16 displays the frequency table for the soccer data.

Output 5.16 Soccer Frequency Table

Table of grades by degree

grades degree

Frequency|low |medium |high | Total
---------+--------+--------+--------+
1-2 | 3 | 1 | 0 | 4
---------+--------+--------+--------+
3-4 | 3 | 2 | 1 | 6
---------+--------+--------+--------+
5-6 | 1 | 3 | 2 | 6
---------+--------+--------+--------+
Total 7 6 3 16

Output 5.17 contains the Spearman correlation coefficient, which has the value 0.4878,
indicating the possibility of modest correlation.
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Output 5.17 Spearman Correlation Coefficient

Statistics for Table of grades by degree

Spearman Correlation Coefficient
--------------------------------
Correlation (r) 0.4878
ASE 0.1843
95% Lower Conf Limit 0.1265
95% Upper Conf Limit 0.8491

Sample Size = 16

The results for the hypothesis test that the correlation is equal to zero is listed in
Output 5.18. The exact two-sidedp-value is 0.0637, a borderline result, although you
would reject the hypothesis at a strict� = 0:05 level of confidence. Note that the
asymptotic test results in a two-sidedp-value of 0.0092. However, with these counts, you
could not justify the use of the asymptotic test.

Output 5.18 Hypothesis Test for Spearman’s Rank Test

Statistics for Table of grades by degree

Test of H0: Correlation = 0

ASE under H0 0.1872
Z 2.6055
One-sided Pr > Z 0.0046
Two-sided Pr > |Z| 0.0092

Exact Test
One-sided Pr >= r 0.0354
Two-sided Pr >= |r| 0.0637

Sample Size = 16

Note that you can also test whether the asymptotic statistics produced by the MEASURES
option are equal to zero. You request such tests with the TEST statement in the FREQ
procedure; note that you can also test hypotheses concerning the kappa statistics discussed
in Section 5.5.

Refer toSAS/STAT User’s Guide: Version 8for more information.

5.4.3 Nominal Measures of Association

Measures of association when one or both variables are nominally scaled are more difficult
to define, since you can’t think of association in these circumstances as negative or positive
in any sense. However, indices of association in the nominal case have been constructed,
and most are based on mimicking R-squared in some fashion. One such measure is the
uncertainty coefficient, and another is the lambda coefficient. More information about
these statistics can be obtained in theSAS/STAT User’s Guide, Version 8, including the
appropriate references. Agresti (1990) also discusses some of these measures.
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The following PROC FREQ invocation produces nominal measures of association for the
neighborhood data.

data neighbor;
length party $ 11 neighborhood $ 10;
input party $ neighborhood $ count @@;
datalines;

democrat longview 360 democrat bayside 221
democrat sheffeld 140 democrat highland 160
republican longview 316 republican bayside 208
republican sheffeld 97 republican highland 106
independent longview 160 independent bayside 200
independent sheffeld 311 independent highland 291
;
proc freq ;

weight count;
tables party*neighborhood / chisq measures nocol nopct;

run;

Output 5.19 displays the resulting table.

Output 5.19 Nominal Measures of Association

Statistics for Table of party by neighborhood

Statistic Value ASE
------------------------------------------------------
Gamma -0.0183 0.0226
Kendall’s Tau-b -0.0130 0.0161
Stuart’s Tau-c -0.0137 0.0169

Somers’ D C|R -0.0138 0.0170
Somers’ D R|C -0.0123 0.0152

Pearson Correlation -0.0178 0.0190
Spearman Correlation -0.0150 0.0189

Lambda Asymmetric C|R 0.0871 0.0120
Lambda Asymmetric R|C 0.1374 0.0177
Lambda Symmetric 0.1113 0.0119

Uncertainty Coefficient C|R 0.0401 0.0046
Uncertainty Coefficient R|C 0.0503 0.0058
Uncertainty Coefficient Symmetric 0.0446 0.0051

Sample Size = 2570

You should ignore the ordinal measures of association here since the data are not ordinally
scaled. There are three versions of both the lambda coefficient and the uncertainty
coefficient: column variable as the response variable, row variable as the response variable,
and a symmetric version. Obviously, this makes a difference in the resulting statistic.
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5.5 Observer Agreement

5.5.1 Computing the Kappa Statistic

For many years, researchers in medicine, epidemiology, psychiatry, and psychological
measurement and testing have been aware of the importance of observer error as a major
source of measurement error. In many cases, different observers, or even the same
observer at a different time, may examine an x-ray or perform a physical examination and
reach different conclusions. It is important to evaluate observer agreement, both to
understand the possible contributions to measurement error and as part of the evaluation of
testing new instruments and procedures.

Often, the data collected as part of an observer agreement study form a contingency table,
where the column levels represent the ratings of one observer and the row levels represent
the ratings of another observer. Each cell represents one possible profile of the observers’
ratings. The cells on the diagonal represent the cases where the observers agree.

Consider Table 5.8. These data come from a study concerning the diagnostic classification
of multiple sclerosis patients. Patients from Winnipeg and New Orleans were classified
into one of four diagnostic classes by both a Winnipeg neurologist and a New Orleans
neurologist. Table 5.8 contains the data for the Winnipeg patients (Landis and Koch 1977).

Table 5.8. Ratings of Neurologists

New Orleans Winnipeg Neurologist
Neurologist 1 2 3 4

1 38 5 0 1
2 33 11 3 0
3 10 14 5 6
4 3 7 3 10

Certainly one way to assess the association between these two raters is to compute the
usual measures of association. However, while measures of association can reflect the
strength of the predictable relationship between two raters or observers, they don’t target
how well they agree. Agreement can be considered a special case of association—to what
degree do different observers classify a particular subject into the identical category? All
measures of agreement target the diagonal cells of a contingency table in their
computations, and some measures take into consideration how far away from the diagonal
elements other cells fall.

Suppose�ij is the probability of a subject being classified in theith category by the first
observer and thejth category by the second observer. Then

�o =
X

�ii

is the probability that the observers agree. If the ratings are independent, then the
probability of agreement is

�e =
X

�i+�+i
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So,�o ��e is the amount of agreement beyond that expected by chance. Thekappa
coefficient(Cohen 1960) is defined as

� =
�o ��e

1��e

Since�o = 1 when there is perfect agreement (all non-diagonal elements are zero),�
equals 1 when there is perfect agreement, and� equals 0 when the agreement equals that
expected by chance. The closer the value is to 1, the more agreement there is in the table.
It is possible to obtain negative values, but that rarely occurs. Note that� is analogous to
the intraclass correlation coefficient obtained from ANOVA models for quantitative
measurements; it can be used as a measure of reliability of multiple determinations on the
same subject (Fleiss and Cohen 1973, Fleiss 1975).

You may be interested in distinguishing degrees of agreement in a table, particularly if the
categories are ordered in some way. For example, you may want to take into account those
disagreements that are just one category away. A weighted form of the kappa statistic
allows you to assign weights, or scores, to the various categories so that you can
incorporate such considerations into the construction of the test statistic.

Weighted� is written

�w =

PP
wij�ij �

PP
wij�i+�+j

1�PP
ij wij�i+�+j

wherewij represents weights with values between 0 and 1. One possible set of weights is

wij = 1� jscore(i) � score(j)j
score(dim) � score(1)

where score(i) is the score for theith row, score(j) is the score for thejth column, anddim
is the dimension of ans� s table. This scoring system puts more weight on those cells
closest to the diagonal. These weights are known as Cicchetti-Allison weights (Cicchetti
and Allision 1969) and are the default weights for the weighted kappa statistic in PROC
FREQ. Fleiss-Cohen weights are also available (Fleiss and Cohen 1973).

The following SAS statements generate kappa statistics for the Winnipeg data. To produce
measures of agreement, you specify AGREE in the TABLES statement.

data classify;
input no_rater w_rater count @@;
datalines;

1 1 38 1 2 5 1 3 0 1 4 1
2 1 33 2 2 11 2 3 3 2 4 0
3 1 10 3 2 14 3 3 5 3 4 6
4 1 3 4 2 7 4 3 3 4 4 10
;
proc freq;

weight count;
tables no_rater*w_rater / agree norow nocol nopct;

run;
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Output 5.20 contains the table.

Output 5.20 Winnipeg Data

Table of no_rater by w_rater

no_rater w_rater

Frequency| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+

1 | 38 | 5 | 0 | 1 | 44
---------+--------+--------+--------+--------+

2 | 33 | 11 | 3 | 0 | 47
---------+--------+--------+--------+--------+

3 | 10 | 14 | 5 | 6 | 35
---------+--------+--------+--------+--------+

4 | 3 | 7 | 3 | 10 | 23
---------+--------+--------+--------+--------+
Total 84 37 11 17 149

Output 5.21 displays the measures of association.

Output 5.21 Kappa Statistics

Statistics for Table of no_rater by w_rater

Test of Symmetry
------------------------
Statistic (S) 46.7492
DF 6
Pr > S <.0001

Kappa Statistics

Statistic Value ASE 95% Confidence Limits
------------------------------------------------------------
Simple Kappa 0.2079 0.0505 0.1091 0.3068
Weighted Kappa 0.3797 0.0517 0.2785 0.4810

Sample Size = 149

�̂ has the value 0.2079. This is indicative of slight agreement. Values of 0.4 or above are
considered to indicate moderate agreement, and values of 0.8 or higher indicate excellent
agreement. The asymptotic standard error is also printed, as well as confidence bounds.
Since the confidence bounds do not contain the value 0, you can reject the hypothesis that
� is 0 for these data (no agreement) at the� = 0:05 level of significance.

Using the default scores,̂�w takes the value 0.3797. This means that if you consider
disagreement close to the diagonals less heavily than disagreement further away from the
diagonals, you get higher agreement.�̂ treats all off-diagonal cells the same. When�̂w is
high, for example,� 0.6 for moderate sample size, it may be preferable to produce
confidence bounds on a transformed scale like logarithms or the Fisherz transformation
and then exponentiate to compute the limits.
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The test of symmetry is Bowker’s test of symmetry (Bowker 1948). The null hypothesis of
this test is that the square table is symmetric, or that the cell probabilitiespij andpji are
equal. When you have a 2� 2 table, the test is the same as McNemar’s test.

5.5.2 Exactp-values for the Kappa Statistic

Exactp-values are also available for the kappa statistic. Consider the data in Table 5.9.
Elderly residents of a midwestern community enrolled in a pilot program that provided
resources to seniors and also sought to identify those persons requiring additional living
assistance. Researchers tested a tool for in-home evaluation of a resident’s agility. The test
rated the ease with which basic tasks could be performed and provided an overall rating of
ability on a four-point scale ranging from 1 for poor to 4 for excellent. Two raters
evaluated the same 24 people.

Table 5.9. Ratings of Social Workers

Rater One Rater Two
1 2 3 4

1 4 0 1 0
2 0 2 6 1
3 1 0 2 1
4 0 2 1 3

The table includes numerous 0 and 1 counts, too many for the asymptotic requirements to
be fulfilled. However, rater agreement can still be assessed with the use of exactp-values
for the test of null agreement with kappa statistics.

The following PROC FREQ statements produce the desired exact results. You specify the
keyword KAPPA in the EXACT statement to generate a table with both the asymptotic and
exact results.

data pilot;
input rater1 rater2 count @@;
datalines;

1 1 4 1 2 0 1 3 1 1 4 0
2 1 0 2 2 2 2 3 6 2 4 1
3 1 1 3 2 0 3 3 2 3 4 1
4 1 0 4 2 2 4 3 1 4 4 3
;
proc freq;

weight count;
tables rater1*rater2 /norow nocol nopct;
exact kappa;

run;

Output 5.22 contains the table of ratings.
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Output 5.22 Pilot Data

Table of rater1 by rater2

rater1 rater2

Frequency| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+

1 | 4 | 0 | 1 | 0 | 5
---------+--------+--------+--------+--------+

2 | 0 | 2 | 6 | 1 | 9
---------+--------+--------+--------+--------+

3 | 1 | 0 | 2 | 1 | 4
---------+--------+--------+--------+--------+

4 | 0 | 2 | 1 | 3 | 6
---------+--------+--------+--------+--------+
Total 5 4 10 5 24

Output 5.23 contains the estimate of the kappa coefficient, which is 0.2989 with 95%
confidence limits of (0.0469, 0.5509). The table “Test of HO: Kappa=0” presents both the
asymptotic test for the hypothesis that a constructedZ statistic is equal to zero as well as
the exactp-value for that test. The exactp-value is 0.0088, both one-sided and two-sided.
There is some agreement between raters.

Output 5.23 Exact Results for Kappa Test

Statistics for Table of rater1 by rater2

Simple Kappa Coefficient
--------------------------------
Kappa (K) 0.2989
ASE 0.1286
95% Lower Conf Limit 0.0469
95% Upper Conf Limit 0.5509

Test of H0: Kappa = 0

ASE under H0 0.1066
Z 2.8032
One-sided Pr > Z 0.0025
Two-sided Pr > |Z| 0.0051

Exact Test
One-sided Pr >= K 0.0088
Two-sided Pr >= |K| 0.0088

Sample Size = 24

5.6 Test for Ordered Differences

Sometimes you have a contingency table in which the columns represent an ordinal
outcome and the rows are either nominal or ordinal. One test of interest is whether there
are location shifts in the mean response; this is evaluated with the mean score test as
discussed in Section 5.2.2. However, you may also be interested in testing against an
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ordered alternative; that is, are the mean scores strictly increasing (or decreasing) across
the levels of the row variable? The Jonckheere-Terpstra test is designed to test the null
hypothesis that the distribution of the ordered responses is the same across the various
rows of the table. This test detects whether there are differences in

d1 � d2 � : : : � ds or ds � ds�1 � : : : � d1

wheredi represents theith group effect.

The Jonckheere-Terpstra test is a nonparametric test that is based on sums of
Mann-Whitney test statistics; the asymptoticp-values are produced by using the normal
approximation for the distribution of the standardized test statistic. Refer to theSAS/STAT
User’s Guide, Version 8for more computational detail, and refer to Pirie (1983) and
Hollander and Wolfe (1973) for more information on the Jonckheere-Terpstra test.

Table 5.10 displays the dumping syndrome data, which have appeared frequently in the
categorical data analysis literature, beginning with Grizzle, Starmer, and Koch (1969).
Investigators conducted a randomized clinical trial in four hospitals, where patients were
assigned to one of four surgical procedures for the treatment of severe duodenal ulcers.
The treatments include:

v + d: vagotomy and drainage

v + a: vagotomy and antrectomy (removal of 25% of gastric tissue)

v + h: vagatomy and hemigastrectomy (removal of 50% of gastric tissue)

gre: gastric resection (removal of 75% of gastric tissue)

The response measured was the severity (none, slight, moderate) of the dumping
syndrome, which is expected to increase directly with the proportion of gastric tissue
removed. This response, an adverse effect of surgery, can be considered ordinally scaled,
as can operation. Investigators wanted to determine if type of operation was associated
with severity of dumping syndrome, after adjusting for hospital. This analysis is
performed in the next chapter.
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Table 5.10. Dumping Syndrome Data

Severity of Symptoms
Hospital Operation None Slight Moderate Total

1 v + d 23 7 2 32
1 v + a 23 10 5 38
1 v + h 20 13 5 38
1 gre 24 10 6 40
2 v + d 18 6 1 25
2 v + a 18 6 2 26
2 v + h 13 13 2 28
2 gre 9 15 2 26
3 v + d 8 6 3 17
3 v + a 12 4 4 20
3 v + h 11 6 2 19
3 gre 7 7 4 18
4 v + d 12 9 1 22
4 v + a 15 3 2 20
4 v + h 14 8 3 25
4 gre 13 6 4 23

Ignoring hospital, there is interest in determining whether the responses are ordered the
same across the operations. The Jonckheere-Terpstra test is appropriate here. The
following SAS statements input these data.

data operate;
input hospital trt $ severity $ wt @@;
datalines;

1 v+d none 23 1 v+d slight 7 1 v+d moderate 2
1 v+a none 23 1 v+a slight 10 1 v+a moderate 5
1 v+h none 20 1 v+h slight 13 1 v+h moderate 5
1 gre none 24 1 gre slight 10 1 gre moderate 6
2 v+d none 18 2 v+d slight 6 2 v+d moderate 1
2 v+a none 18 2 v+a slight 6 2 v+a moderate 2
2 v+h none 13 2 v+h slight 13 2 v+h moderate 2
2 gre none 9 2 gre slight 15 2 gre moderate 2
3 v+d none 8 3 v+d slight 6 3 v+d moderate 3
3 v+a none 12 3 v+a slight 4 3 v+a moderate 4
3 v+h none 11 3 v+h slight 6 3 v+h moderate 2
3 gre none 7 3 gre slight 7 3 gre moderate 4
4 v+d none 12 4 v+d slight 9 4 v+d moderate 1
4 v+a none 15 4 v+a slight 3 4 v+a moderate 2
4 v+h none 14 4 v+h slight 8 4 v+h moderate 3
4 gre none 13 4 gre slight 6 4 gre moderate 4
;

The following PROC FREQ statements request the Jonckheere-Terpstra test by specifying
the JT option in the TABLES statement. Note that the order of the table columns is very
important for such a test; in this PROC FREQ invocation, the ORDER=DATA option in
the PROC statement produces the desired order.
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proc freq order=data;
weight wt;
tables trt*severity / norow nocol nopct jt;

run;

Output 5.24 contains the contingency table of treatment by severity.

Output 5.24 Dumping Syndrome Data

Table of trt by severity

trt severity

Frequency|none |slight |moderate| Total
---------+--------+--------+--------+
v+d | 61 | 28 | 7 | 96
---------+--------+--------+--------+
v+a | 68 | 23 | 13 | 104
---------+--------+--------+--------+
v+h | 58 | 40 | 12 | 110
---------+--------+--------+--------+
gre | 53 | 38 | 16 | 107
---------+--------+--------+--------+
Total 240 129 48 417

Output 5.25 displays the results.

Output 5.25 Jonckheere-Terpstra

Statistics for Table of trt by severity

Jonckheere-Terpstra Test
------------------------------
Statistic 35697.0000
Z 2.5712
One-sided Pr > Z 0.0051
Two-sided Pr > |Z| 0.0101

Sample Size = 417

The value of the actual Jonckheere-Terpstra statistic is 35697. The corresponding
Z-statistic has the value 2.5712 with a two-sidedp-value of 0.0101. At a 0.05� level, you
would conclude that there are significant differences among groups in their respective
ordering for the ordered response variable represented by the columns of the table.

Note that an exact version of the Jonckheere-Terpstra test is available. You simply specify
the option JT in an EXACT statement.
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Chapter 6

Sets of s� r Tables

6.1 Introduction

Previous chapters address stratified analysis as the assessment of association in sets of
2� 2 tables,2� r tables where the response variable, represented in the table columns, is
ordinally scaled, ands� 2 tables where the groups for the row variable are ordinally
scaled. Such analyses are special cases of the analysis of sets ofs� r tables, which
includes the cases where the row and column variables are both nominally scaled, the row
variable is nominally scaled and the column variable is ordinally scaled, and the row
variable and the column variable are both ordinally scaled. The Mantel-Haenszel
procedure can be extended to handle these situations. It provides statistics that detect
general association, mean score differences, and linear correlation as alternatives to the
null hypothesis of no association; the choice of statistic depends on the scale of the row
and column variables.

The general idea of stratified analyses is that you control for the effects of factors that are
part of the research design, such as medical centers or hospitals in a randomized clinical
trial, or factors that represent a prespecified poststudy stratification to adjust for
explanatory variables that are thought to be related to the response variable. This is a
common strategy for retrospective and observational studies. As mentioned in previous
chapters, the Mantel-Haenszel procedure potentially removes the confounding influence of
the explanatory variables that comprise the stratification and provides a gain of power for
detecting association by comparing like subjects. In some sense, the strategy is similar to
adjustment for blocks in a two-way analysis of variance for randomized blocks; it is also
similar to covariance adjustment for a categorical explanatory variable.

Historically, the principle of combining information across strata was identified by
Cochran (1954): this was in the context of combining differences of proportions from
binomial distributions. Mantel and Haenszel (1959) refined the procedure to apply to
hypergeometric distributions and produced a statistic to which central limit theory was
more applicable for the combined strata. Thus, only the overall sample size needed to be
reasonably large. The Mantel-Haenszel statistic proved more useful than Cochran’s
method. (Cochran’s influence is the reason why the FREQ procedure output is labeled
“Cochran-Mantel-Haenszel Statistics”; current literature tends to use the terms “extended
Mantel-Haenszel statistics” and “Mantel-Haenszel statistics.”)

Mantel (1963) discussed extensions to the MH strategy, including strategies for sets of
2� r tables, sets ofs� 2 tables, and the correlation statistic fors� r tables. The method
was further elaborated by Landis, Heyman, and Koch (1978) to encompass the family of
Mantel-Haenzsel statistics, which included the statistics for general association,
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nonparametric ANOVA (mean score), the correlation statistic, and other special cases.
Kuritz, Landis, and Koch (1988) present a useful overview of the Mantel-Haenszel
strategy, and so do Landis et al. (1998).

The Mantel-Haenszel procedure requires minimal assumptions. The methods it
encompasses are based on randomization considerations; the only assumptions required
are the randomization of the subjects to levels of the row variable. This can be done
explicitly, such as for randomized clinical trials; implicitly, via hypothesis; or
conditionally, such as for retrospective studies or observational data. The minimal
assumptions often allow you to perform hypothesis tests on data that do not meet the more
rigorous assumptions concerning random sampling or underlying distributions that are
required for statistical modeling. However, the conclusions of the analysis may be
restricted to the study population at hand, versus inference to a larger population. Most
often, a complete analysis includes the applications of these minimal assumption methods
to perform hypothesis tests and then statistical modeling to describe more completely the
variation in the data.

Another advantage of the Mantel-Haenszel procedure is the fact that sample size
requirements are based on total frequencies, or quantities summed across tables, rather
than on individual cell sizes. This is partly because the Mantel-Haenszel methods are
targeted at detecting average effects across strata; they are often called methods of
assessing average partial association.

Section 6.2 discusses the formulation of the Mantel-Haenszel statistics in matrix
terminology. Section 6.3 illustrates the use of the Mantel-Haenszel strategy for several
applications. Finally, Section 6.4 includes the advanced topic of the use of the
Mantel-Haenszel procedure in repeated measurements analysis.

6.2 General Mantel-Haenszel Methodology

Table 6.1 represents the generics� r table in a set ofq s� r tables.

Table 6.1. hth s� r Contingency Table

Response Variable Categories
Group 1 2 . . . r Total

1 nh11 nh12 . . . nh1r nh1+
2 nh21 nh22 . . . nh2r nh2+
...

...
...

...
...

s nhs1 nhs2 . . . nhsr nhs+
Total nh+1 nh+2 . . . nh+r nh

Under the assumption that the marginal totalsnhi+ andnh+j are fixed, the overall null
hypothesis of no partial association can be stated as follows:

For each of the levels of the stratification variableh = 1; 2; : : : ; q, the
response variable is distributed at random with respect to the groups (row
variable levels).
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Supposen0h = (nh11; nh12; : : : ; nh1r; : : : ; nhs1; : : : ; nhsr), wherenhij is the number of
subjects in thehth stratum in theith group in thejth response category. The probability
distribution for the vectornh underH0 can be written

PrfnhjH0g =
Qs

i=1 nhi+!
Qr

j=1 nh+j!

nh!
Qs

i=1

Qr
j=1 nhij!

For thehth stratum, suppose thatphi+ = nhi+=nh denotes the marginal proportion of
subjects belonging to theith group, and suppose thatph+j = nh+j=nh denotes the
marginal proportion of subjects classified as belonging to thejth response category. These
proportions can be denoted in vector notation as

p0h�+ = (ph1+; : : : ; phs+)

p0h+� = (ph+1; : : : ; ph+r)

Then,

Efnhij jH0g = mhij = nhphi+ph+j

and the expected value ofnh can be written

EfnhjH0g =mh = nh [ph+� 
 ph�+]

where
 denotes the left-hand Kronecker product (the matrix on the left of the

multiplies each element of the matrix on the right).

The variance ofnh underH0 is

Vh = VarfnhjH0g = n2h
(nh � 1)

�
[Dph+�

� ph+�p0h+�]
 [Dph�+ � ph�+p0h�+]
	

whereDph+�
andDph�+ are diagonal matrices with elements of the vectorsph+� and

ph�+ as the main diagonals.

The general form of the extended Mantel-Haenszel statistic fors� r tables is

QEMH =

� qX
h=1

(nh �mh)
0A0

h

�� qX
h=1

AhVhA
0
h

��1� qX
h=1

Ah(nh �mh)

�

whereAh is a matrix that specifies the linear functions of thefnh �mhg at which the test
statistic is directed. Choices of thefAhg provide stratification-adjusted counterparts to the
randomization chi-square statisticQ, the mean score statisticQS, and the correlation
statisticQCS that are discussed in Chapter 5, “Thes� r Table.”
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6.2.1 General Association Statistic

When both the row and column variables are nominally scaled, the alternative hypothesis
of interest is that of general association, where the pattern of distribution of the response
levels across the row levels is heterogeneous. This is the most general alternative
hypothesis and is always valid, no matter how the row and column variables are scaled.

In this case,

Ah =
�
[I(r�1);0(r�1)]
 [I(s�1);0(s�1)]

	
which, applied to(nh �mh), produces the differences between the observed and expected
frequencies underH0 for the(s� 1)(r � 1) cells of the table after eliminating the last row
and column. This results inQGMH , which is approximately chi-square with
(s� 1)(r � 1) degrees of freedom.QGMH is often called the test of general association.

6.2.2 Mean Score Statistic

When the response levels are ordinally scaled, you can assign scores to them to compute
row mean scores. In this case, the alternative hypothesis to the null hypothesis of no
association is that there are location shifts for these mean scores across the levels of the
row variables.

Here,

Ah = a0h 
 [I(s�1);0(s�1)]

wherefahg = (ah1; ah2; : : : ; ahr) specifies scores for thejth response level in thehth
stratum, from which the means

�yhi =

rX
j=1

(ahjnhij=nhi+)

are created for comparisons of thes populations across the strata.

This produces the extended Mantel-HaenszelQSMH , which is approximately chi-square
with (s� 1) degrees of freedom underH0. QSMH is called the mean score statistic and is
the general form of theQSMH statistic for2� r tables discussed in Chapter 4, “Sets of
2� r ands� 2 Tables,” where(s� 1) = 1. If marginal rank or ridit scores are used, with
midranks assigned for ties,QSMH is equivalent to an extension of the Kruskal-Wallis
ANOVA test on ranks to account for strata and the Friedman ANOVA test on ranks to
account for more than one subject per group within strata. See Chapter 7, “Nonparametric
Methods,” for further discussion on nonparametric tests that are special cases of
Mantel-Haenszel strategies.

6.2.3 Correlation Statistic

When both the response variable (columns) and the row variable (or groups) are ordinally
scaled, you can assign scores to both the response levels and the row levels in thehth
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stratum. The alternative hypothesis to no association in this situation is a linear trend on
the mean scores across the levels of the row variable. In this case,

Ah = [a0h 
 c0h]

where thefahg are defined as before and thefchg = (ch1; ch2; : : : ; chs) specify a set of
scores for theith level of the row variable in thehth stratum. This produces the differences
between the observed and expected sum of products of the row and column scores with the
frequenciesnhij, so that the resulting test statistic is directed at detecting correlation.

This test statistic isQCSMH , which is approximately chi-square with one degree of
freedom underH0. It is the general form ofQCSMH discussed in Chapter 4 for stratified
s� 2 tables where the row variable is ordinally scaled. It has increased power relative to
QGMH orQSMH for linear association alternatives to the null hypothesis of no association.

6.2.4 Summary

Table 6.2 summarizes the various types of extended Mantel-Haenszel statistics.

Table 6.2. Extended Mantel-Haenszel Statistics

Alternative SAS Output Degrees of Scale Nonparametric
MH Statistic Hypothesis Label Freedom Requirements Equivalents

QGMH general General (s� 1) � none
association Association (r � 1)

QSMH mean score Row Means (s� 1) column Kruskal-
location Scores Differ variable Wallis
shifts ordinal

QCSMH row and
linear Nonzero 1 column Spearman
association Correlation variable correlation

ordinal

6.3 Mantel-Haenszel Applications

The Mantel-Haenszel strategy has applications in many different settings, including a
number of different sampling frameworks. Chapter 3, “Sets of 2� 2 Tables,” demonstrates
the use of this strategy for analyzing sets of2� 2 tables, and Chapter 4 demonstrates the
use of the strategy for sets of2� r ands� 2 tables. If you haven’t read these chapters,
you should review them since they contain many general remarks on the application of
Mantel-Haenszel methods. Section 6.3 illustrates the use of these methods for sets ofs� r
tables, including examples from clinical trials, observational studies, and prospective
studies.
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6.3.1 Dumping Syndrome Data

The previous chapter described the dumping syndrome data, which are displayed in
Table 5.10. The response measured was the severity (none, slight, moderate) of the
dumping syndrome, which is expected to increase directly with the proportion of gastric
tissue removed. This response, an adverse effect of surgery, can be considered ordinally
scaled, as can operation. Investigators wanted to determine if type of operation was
associated with severity of dumping syndrome, after adjusting for hospital.

Since both the row and column variables are ordinally scaled, you can use the correlation
statisticQCSMH to assess the null hypothesis of no association against the alternative that
type of operation and severity of response are linearly associated.

The following SAS statements input the data into the SAS data set OPERATE and request
the MH analysis. Note the use of the option ORDER=DATA, as well as the request for
both integer scores (the default table scores) and standardized midrank scores
(SCORES=MODRIDIT).

data operate;
input hospital trt $ severity $ wt @@;
datalines;

1 v+d none 23 1 v+d slight 7 1 v+d moderate 2
1 v+a none 23 1 v+a slight 10 1 v+a moderate 5
1 v+h none 20 1 v+h slight 13 1 v+h moderate 5
1 gre none 24 1 gre slight 10 1 gre moderate 6
2 v+d none 18 2 v+d slight 6 2 v+d moderate 1
2 v+a none 18 2 v+a slight 6 2 v+a moderate 2
2 v+h none 13 2 v+h slight 13 2 v+h moderate 2
2 gre none 9 2 gre slight 15 2 gre moderate 2
3 v+d none 8 3 v+d slight 6 3 v+d moderate 3
3 v+a none 12 3 v+a slight 4 3 v+a moderate 4
3 v+h none 11 3 v+h slight 6 3 v+h moderate 2
3 gre none 7 3 gre slight 7 3 gre moderate 4
4 v+d none 12 4 v+d slight 9 4 v+d moderate 1
4 v+a none 15 4 v+a slight 3 4 v+a moderate 2
4 v+h none 14 4 v+h slight 8 4 v+h moderate 3
4 gre none 13 4 gre slight 6 4 gre moderate 4
;
proc freq order=data;

weight wt;
tables hospital*trt*severity / cmh;
tables hospital*trt*severity / cmh scores=modridit;

run;

Output 6.1 contains the results for the extended Mantel-Haenszel analysis using integer
scores.QCSMH takes the value 6.3404, which is significant at the� = 0:05 level; note that
the statistics for general association,QGMH , and mean score differences,QSMH , are not
significant at the� = 0:05 level of significance. This is an example of the utility of taking
advantage of the correlation statistic when it is appropriate; its greater power against the
alternative hypothesis of linear association has detected significant evidence against the
null hypothesis.
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Output 6.1 Table Scores

Summary Statistics for trt by severity
Controlling for hospital

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 6.3404 0.0118
2 Row Mean Scores Differ 3 6.5901 0.0862
3 General Association 6 10.5983 0.1016

Total Sample Size = 417

Output 6.2 contains the results for the standardized midrank scores.QCSMH = 6:9266,
with p = 0:0085. As with the integer scores, the other statistics do not detect as much
evidence against the null hypothesis of no association. Since the response variable levels
are subjective and undoubtedly not equally spaced, the analysis of standardized midrank
scores may provide the most appropriate test.

Output 6.2 Standardized Midrank Scores

Summary Statistics for trt by severity
Controlling for hospital

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 6.9266 0.0085
2 Row Mean Scores Differ 3 7.6370 0.0541
3 General Association 6 10.5983 0.1016

Total Sample Size = 417

This analysis shows that, adjusting for hospital, there is a clear monotonic association
between degree of gastric tissue removal and severity of dumping syndrome. The greater
the degree of gastric tissue removal, the worse the dumping syndrome.

6.3.2 Shoulder Harness Data

The following data were collected in a study of shoulder harness usage in observations for
a sample of North Carolina cars (Hochberg, Stutts, and Reinfurt 1977).
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Table 6.3. Shoulder Harness Data

Larger Cars Medium Smaller Cars
Area Location No Yes No Yes No Yes Total
Coast Urban 174 69 134 56 150 54 637
Coast Rural 52 14 31 14 25 17 153
Piedmont Urban 127 62 94 63 112 93 551
Piedmont Rural 35 29 32 30 46 34 206
Mountains Urban 111 26 120 47 145 68 517
Mountains Rural 62 31 44 32 85 43 297

For these data, researchers were interested in whether there was an association between the
size of car and shoulder harness usage, after controlling for geographic area and location.
First, there is interest in looking at the pooled table of car size� usage. Then, a
Mantel-Haenszel analysis is requested for a stratification consisting of the combinations of
levels of area and location, resulting in six strata. Finally, Mantel-Haenszel analyses are
requested for the association of size with usage stratified on area and location, singly.
Standardized midrank scores are specified.

The following SAS statements request these analyses. Note that the NOPRINT option is
specified in the last two TABLES statements to suppress the printing of tables.

data shoulder;
input area $ location $ size $ usage $ count @@;
datalines;

coast urban large no 174 coast urban large yes 69
coast urban medium no 134 coast urban medium yes 56
coast urban small no 150 coast urban small yes 54
coast rural large no 52 coast rural large yes 14
coast rural medium no 31 coast rural medium yes 14
coast rural small no 25 coast rural small yes 17
piedmont urban large no 127 piedmont urban large yes 62
piedmont urban medium no 94 piedmont urban medium yes 63
piedmont urban small no 112 piedmont urban small yes 93
piedmont rural large no 35 piedmont rural large yes 29
piedmont rural medium no 32 piedmont rural medium yes 30
piedmont rural small no 46 piedmont rural small yes 34
mountain urban large no 111 mountain urban large yes 26
mountain urban medium no 120 mountain urban medium yes 47
mountain urban small no 145 mountain urban small yes 68
mountain rural large no 62 mountain rural large yes 31
mountain rural medium no 44 mountain rural medium yes 32
mountain rural small no 85 mountain rural small yes 43
;
proc freq;

weight count;
tables size*usage / chisq;
tables area*location*size*usage / cmh scores=modridit;
tables area*size*usage / noprint cmh scores=modridit;
tables location*size*usage / noprint cmh scores=modridit;

run;



6.3 Mantel-Haenszel Applications 131

Output 6.3 displays the pooled frequency table. The “Mantel-Haenszel Chi-Square,”QCS ,
is valid for these data since SIZE is ordinally scaled, and the response is dichotomous; it
indicates that there is a strong association between size of car and shoulder harness usage
(QCS = 7:2050). By looking at the row percentages in the table cells, you can see that
drivers of small and medium sized cars exhibit a greater tendency to use shoulder
harnesses than the drivers of large cars.

Output 6.3 Pooled Table

Table of size by usage

size usage

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
large | 561 | 231 | 792

| 23.76 | 9.78 | 33.55
| 70.83 | 29.17 |
| 35.53 | 29.54 |

---------+--------+--------+
medium | 455 | 242 | 697

| 19.27 | 10.25 | 29.52
| 65.28 | 34.72 |
| 28.82 | 30.95 |

---------+--------+--------+
small | 563 | 309 | 872

| 23.85 | 13.09 | 36.93
| 64.56 | 35.44 |
| 35.66 | 39.51 |

---------+--------+--------+
Total 1579 782 2361

66.88 33.12 100.00

Statistics for Table of size by usage

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 8.5049 0.0142
Likelihood Ratio Chi-Square 2 8.5980 0.0136
Mantel-Haenszel Chi-Square 1 7.2050 0.0073
Phi Coefficient 0.0600
Contingency Coefficient 0.0599
Cramer’s V 0.0600

Sample Size = 2361

This association holds when you control for area and location. Output 6.4 contains the
frequency table for rural locations in the coast region (the other tables are not reproduced
here).
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Output 6.4 Table for AREA=coast and LOCATION=rural

Table 1 of size by usage
Controlling for area=coast location=rural

size usage

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
large | 52 | 14 | 66

| 33.99 | 9.15 | 43.14
| 78.79 | 21.21 |
| 48.15 | 31.11 |

---------+--------+--------+
medium | 31 | 14 | 45

| 20.26 | 9.15 | 29.41
| 68.89 | 31.11 |
| 28.70 | 31.11 |

---------+--------+--------+
small | 25 | 17 | 42

| 16.34 | 11.11 | 27.45
| 59.52 | 40.48 |
| 23.15 | 37.78 |

---------+--------+--------+
Total 108 45 153

70.59 29.41 100.00

Output 6.5 displays the Mantel-Haenszel results for the stratified analysis where the strata
are all combinations of area and location.QCSMH = 6:6398, which is strongly significant.
Controlling for area and location, shoulder harness usage is clearly associated with size of
car.

Output 6.5 Stratified by Area and Location

Summary Statistics for size by usage
Controlling for area and location

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 6.6398 0.0100
2 Row Mean Scores Differ 2 8.4226 0.0148
3 General Association 2 8.4258 0.0148

Total Sample Size = 2361

Output 6.6 and Output 6.7 contain the Mantel-Haenszel results for the association of size
and shoulder harness usage controlling for area and location singly.QCSMH = 6:5097 and
7.0702, respectively. Controlling only for area or location, the significant association
between shoulder harness and size of car remains evident.QGMH andQSMH are
significant too, for the preceding analyses, but most of the information is contained in the
correlation statisticQCSMH .
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However, you should use caution in interpreting the mean score statistic for modified ridit
scores when the outcome is a dichotomous response. Ordinarily, you would want the
values 0 and 1 to be maintained in such an analysis; by using modified ridit scores you are
effectively assigning different values from 0 and 1 to the columns, and these scores will be
different in the different strata.

Also, the fact thatQGMH andQSMH have very close or the same values in Output 6.5,
Output 6.6, and Output 6.7 is an artifact. However, these statistics are identical for sets of
s� 2 tables when integer scores are used.

Output 6.6 Stratified By Area

Summary Statistics for size by usage
Controlling for area

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 6.5097 0.0107
2 Row Mean Scores Differ 2 8.1203 0.0172
3 General Association 2 8.1203 0.0172

Total Sample Size = 2361

Output 6.7 Stratified By Location

Summary Statistics for size by usage
Controlling for location

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 7.0702 0.0078
2 Row Mean Scores Differ 2 8.5794 0.0137
3 General Association 2 8.5789 0.0137

Total Sample Size = 2361

6.3.3 Learning Preference Data

In this study, educational researchers compared three different approaches to mathematics
instruction for third graders. During the year, students were rotated through three different
styles: a self-instructional mode that was largely based on computer use, a team approach
in which students solved problems in groups of four students, and a traditional class
approach. Researchers were interested in how other school programs influenced the
effectiveness of the styles, as well as how they influenced the students’ perceptions of the
different styles. Table 6.4 displays data that reflect the students’ preferences of styles,
cross-classified by the school program they are in: Regular, which is a regular school
schedule, and After, which supplements the regular school day with an afternoon school
program involving the same classmates. The study included three different schools.
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Table 6.4. School Program Data

Learning Style Preference
School Program Self Team Class
1 Regular 10 17 26
1 After 5 12 50
2 Regular 21 17 26
2 After 16 12 36
3 Regular 15 15 16
3 After 12 12 20

The question of interest is whether students’ learning style preference is associated with
their school day program, after adjusting for any effects of individual school. There may
be some ordinality to the response measure, in the sense of increasing group participation,
but that doesn’t stand up when you try to distinguish the team approach from the
classroom approach. Thus, the appropriate extended Mantel-Haenszel statistic for the
stratified analysis of these data is the test for general association. Since(s� 1)(r � 1) for
these data is equal to 2,QGMH has two degrees of freedom.

The following SAS statements request the appropriate analysis.

data school;
input school program $ style $ count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 after self 5 1 after team 12 1 after class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 after self 16 2 after team 12 2 after class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 after self 12 3 after team 12 3 after class 20
;
proc freq;

weight count;
tables school*program*style / cmh chisq measures;

run;

Output 6.8 contains the results for the stratified analysis.QGMH has a value of 10.9577,
with 2 df, p = 0:0042. School program and learning style preference are strongly
associated. Note that for these data, the general association statistic is most appropriate.
The other statistics printed in this table are not applicable since the scale of the row and
column variables of these tables do not justify their use. Note that since the
ORDER=DATA option is not specified, the columns and rows of the tables are arranged
alphabetically. This has no bearing on the general association statistic. However, if you
wanted to order the rows and columns of the table as displayed in Table 6.4, then you
would use ORDER=DATA.
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Output 6.8 Stratified Analysis

Summary Statistics for program by style
Controlling for school

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 9.0072 0.0027
2 Row Mean Scores Differ 1 9.0072 0.0027
3 General Association 2 10.9577 0.0042

Total Sample Size = 338

Output 6.9, Output 6.10, and Output 6.11 contain the results for the individual tables. Note
that most of the association seems to be occurring in School 1, judging byQP .

Output 6.9 Results for School 1

Table 1 of program by style
Controlling for school=1

program style

Frequency|
Percent |
Row Pct |
Col Pct |class |self |team | Total
---------+--------+--------+--------+
after | 50 | 5 | 12 | 67

| 41.67 | 4.17 | 10.00 | 55.83
| 74.63 | 7.46 | 17.91 |
| 65.79 | 33.33 | 41.38 |

---------+--------+--------+--------+
regular | 26 | 10 | 17 | 53

| 21.67 | 8.33 | 14.17 | 44.17
| 49.06 | 18.87 | 32.08 |
| 34.21 | 66.67 | 58.62 |

---------+--------+--------+--------+
Total 76 15 29 120

63.33 12.50 24.17 100.00

Statistics for Table 1 of program by style
Controlling for school=1

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 8.5913 0.0136
Likelihood Ratio Chi-Square 2 8.6385 0.0133
Mantel-Haenszel Chi-Square 1 6.4209 0.0113
Phi Coefficient 0.2676
Contingency Coefficient 0.2585
Cramer’s V 0.2676
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Output 6.10 Results for School 2

Table 2 of program by style
Controlling for school=2

program style

Frequency|
Percent |
Row Pct |
Col Pct |class |self |team | Total
---------+--------+--------+--------+
after | 36 | 16 | 12 | 64

| 28.13 | 12.50 | 9.38 | 50.00
| 56.25 | 25.00 | 18.75 |
| 58.06 | 43.24 | 41.38 |

---------+--------+--------+--------+
regular | 26 | 21 | 17 | 64

| 20.31 | 16.41 | 13.28 | 50.00
| 40.63 | 32.81 | 26.56 |
| 41.94 | 56.76 | 58.62 |

---------+--------+--------+--------+
Total 62 37 29 128

48.44 28.91 22.66 100.00

Statistics for Table 2 of program by style
Controlling for school=2

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 3.1506 0.2069
Likelihood Ratio Chi-Square 2 3.1641 0.2056
Mantel-Haenszel Chi-Square 1 2.7062 0.1000
Phi Coefficient 0.1569
Contingency Coefficient 0.1550
Cramer’s V 0.1569
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Output 6.11 Results for School 3

Table 3 of program by style
Controlling for school=3

program style

Frequency|
Percent |
Row Pct |
Col Pct |class |self |team | Total
---------+--------+--------+--------+
after | 20 | 12 | 12 | 44

| 22.22 | 13.33 | 13.33 | 48.89
| 45.45 | 27.27 | 27.27 |
| 55.56 | 44.44 | 44.44 |

---------+--------+--------+--------+
regular | 16 | 15 | 15 | 46

| 17.78 | 16.67 | 16.67 | 51.11
| 34.78 | 32.61 | 32.61 |
| 44.44 | 55.56 | 55.56 |

---------+--------+--------+--------+
Total 36 27 27 90

40.00 30.00 30.00 100.00

Statistics for Table 3 of program by style
Controlling for school=3

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 1.0672 0.5865
Likelihood Ratio Chi-Square 2 1.0690 0.5860
Mantel-Haenszel Chi-Square 1 0.8259 0.3635
Phi Coefficient 0.1089
Contingency Coefficient 0.1083
Cramer’s V 0.1089

6.4 Advanced Topic: Application to Repeated Measures

6.4.1 Introduction

The Mantel-Haenszel strategy has a useful application to the analysis of repeated
measurements data. Such data occur when measurements are obtained over time; when
responses from experimental units are measured under multiple conditions, such as
multiple teeth in the same subject; and when multiple measurements are obtained from the
same experimental unit, such as from two or more observers. Using repeated
measurements enables comparisons among different times or conditions to avoid being
obscured by subject-to-subject variability.

By specifying the appropriate tables for the data, you construct a setting in which
Mantel-Haenszel methods can address the hypothesis of no association between a repeated
measurement factor, such as time or condition, and a response variable, adjusting for the
effect of subject. This type of analysis may be sufficient, or there may also be interest in
statistical modeling of the repeated measurements data, which is discussed in Chapter 14,
“Modeling Repeated Measurements Data with WLS,” and Chapter 15, “Generalized
Estimating Equations.”
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Consider the general situation in whicht measurements of a univariate response variable
Y are obtained from each ofn experimental units. One common application is to
longitudinal studies, in which repeated measurements are obtained att time points for each
subject. In other applications, the responses from each experimental unit are measured
under multiple conditions rather than at multiple time points. In some settings in which
repeated measures data are obtained, the independent experimental units are not individual
subjects. For example, in a matched case-control study, the experimental units are matched
sets and responses are obtained from the individual members of each set. In a
toxicological study, the experimental units may be litters; responses are then obtained from
the multiple newborns in each litter. In a genetic study, experimental units may be defined
by families; responses are then obtained from the members of each family.

Although interest will focus primarily on the situation in whichY is categorical, the
response may be either continuous or categorical. Letyij denote the response for subjecti
at time (or condition)j. The resulting data are commonly displayed in ann� t data
matrix, as shown in Table 6.5.

Table 6.5. One-Sample Repeated Measures Data

Time Point
Subject 1 : : : j : : : t

1 y11 : : : y1j : : : y1t
...

...
. . .

...
. . .

...
i yi1 : : : yij : : : yit
...

...
. . .

...
. . .

...
n yn1 : : : ynj : : : ynt

Alternatively, supposec denotes the number of distinct values ofY and suppose indicator
variables

nijk =
n
1 if subjecti is classified in response categoryk at timej
0 otherwise

for i = 1; : : : ; n; j = 1; : : : ; t; andk = 1; : : : ; c. In this case, the data from subjecti can
be displayed in at� c contingency table, as shown in Table 6.6. Thus, the data from a
one-sample repeated measures study can be viewed as a set ofn independent two-way
contingency tables, where each table hast rows andc columns.

Table 6.6. Contingency Table Layout for Subject i

Time Response Category
Point 1 : : : c Total

1 ni11 : : : ni1c ni1+
...

...
.. .

...
...

t nit1 : : : nitc nit+
Total ni+1 : : : ni+c ni
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If the response variableY is categorical with a limited number of possible values, the
number of columns in each table,c, will be relatively small. On the other hand, ifY is a
continuous variable, the number of distinct values ofY may be very large. The most
extreme case results when each of then subjects has a unique response at each time. In
this situation,c is equal tont and every column marginal totalni+k is equal to zero or one.

When the data are complete, the total sample size for each of then tables isni = t and
every row marginal totalnij+ is equal to 1. In this case, each row of Table 6.6 has exactly
onenijk value equal to 1 and the remaining values are equal to 0. This situation occurs
when the outcome variable is measured once at every time point for each subject.

However, if a particular subject has a missing response at one or more time points, the
corresponding row of the subject’s table will have eachnijk value equal to 0 and the
marginal totalnij+ will consequently equal 0. In this case, the total sample sizeni equals
t minus the number of missing observations.

Based on the framework displayed in Table 6.6, Mantel-Haenszel statistics can be used to
test the null hypothesis of no association between the row dimension (time) and the column
dimension (response), adjusted for subject. Under the assumption that the marginal totals
fnij+g andfni+kg of each table are fixed, the null hypothesis is that, for each subject, the
response variableY is distributed at random with respect to thet time points. As discussed
in Landis et al. (1988), this null hypothesis is precisely the interchangeability hypothesis
of Madansky (1963). Interchangeability states that all permutations of responses across
conditions within a subject are equally likely. In turn, the hypothesis of interchangeability
impliesmarginal homogeneityin the distribution ofY across thet time points; that is, the
marginal distribution ofY is the same at each of thet time points.

Although the interchangeability hypothesis is a somewhat stronger condition than marginal
homogeneity, the general association statisticQGMH , mean score statisticQSMH , and
correlation statisticQCSMH are directed at alternatives that correspond to various types of
departures from marginal homogeneity. The following examples demonstrate the use of
MH statistics in testing marginal homogeneity for repeated measures.

6.4.2 Dichotomous Response: Two Time Points (McNemar’s Test)

A running shoe company produces a new model of running shoe that includes a harder
material for the insert that corrects for overpronation. However, the company is concerned
that the material will induce heel tenderness as a result of some loss of cushioning on the
strike of each step. It conducted a study on 87 runners who used the new shoe for a month.
Researchers asked the participants whether they experienced occasional heel tenderness
before and after they used the new shoe.

The data was collected as one observation per time period, that is, two measurements were
collected for each subject, and they included the time period (before or after) and whether
heel tenderness was experienced (yes or no). Table 6.7 contains the contingency table
summarizing these data.
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Table 6.7. Heel Tenderness for Runners

After
Before No Yes Total

No 48 15 63
Yes 5 19 24

However, you can think of the measurements for each subject as being one of four2� 2
tables, corresponding to the four cells of Table 6.7. These tables are displayed in Table 6.8
through Table 6.11. Each subject’s set of responses can be represented by one of these
tables.

Table 6.8. (No, No) Configuration Table (48)

Heel Tenderness
Time No Yes Total

Before 1 0 1
After 1 0 1

Table 6.9. (No, Yes) Configuration Table (15)

Heel Tenderness
Time No Yes Total

Before 1 0 1
After 0 1 1

Table 6.10. (Yes, No) Configuration Table (5)

Heel Tenderness
Time No Yes Total

Before 0 1 1
After 1 0 1

Table 6.11. (Yes, Yes) Configuration Table (19)

Heel Tenderness
Time No Yes Total

Before 0 1 1
After 0 1 1

You can determine whether there is an association between the response and time for
before and after responses by performing a stratified analysis where each subject
constitutes a stratum. There are 87 tables altogether: 48 with the (no, no) configuration, 15
with the (no, yes) configuration, 5 with the (yes, no) configuration, and 19 with the (yes,
yes) configuration.
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If you study Table 6.7, you can see that these data effectively have the matched pairs
framework that was discussed in Section 2.7. In fact, the Mantel-Haenszel statistic for the
described analysis is equivalent to McNemar’s test. The following analysis demonstrates
the Mantel-Haenszel approach to analyzing these repeated measurements data. The same
strategy is followed when the tables involved have dimensions greater than2� 2 and there
is no alternative strategy such as McNemar’s test.

The following SAS statements input the running shoes data. The data are in case record
form: one observation per time point per subject. Thus, there are 174 observations
altogether.

data pump;
input subject time $ response $ @@;
datalines;

1 before no 1 after no 2 before no 2 after no
3 before no 3 after no 4 before no 4 after no
5 before no 5 after no 6 before no 6 after no
7 before no 7 after no 8 before no 8 after no
9 before no 9 after no 10 before no 10 after no

11 before no 11 after no 12 before no 12 after no
13 before no 13 after no 14 before no 14 after no
15 before no 15 after no 16 before no 16 after no
17 before no 17 after no 18 before no 18 after no
19 before no 19 after no 20 before no 20 after no
21 before no 21 after no 22 before no 22 after no
23 before no 23 after no 24 before no 24 after no
25 before no 25 after no 26 before no 26 after no
27 before no 27 after no 28 before no 28 after no
29 before no 29 after no 30 before no 30 after no
31 before no 31 after no 32 before no 32 after no
33 before no 33 after no 34 before no 34 after no
35 before no 35 after no 36 before no 36 after no
37 before no 37 after no 38 before no 38 after no
39 before no 39 after no 40 before no 40 after no
41 before no 41 after no 42 before no 42 after no
43 before no 43 after no 44 before no 44 after no
45 before no 45 after no 46 before no 46 after no
47 before no 47 after no 48 before no 48 after no
49 before no 49 after yes 50 before no 50 after yes
51 before no 51 after yes 52 before no 52 after yes
53 before no 53 after yes 54 before no 54 after yes
55 before no 55 after yes 56 before no 56 after yes
57 before no 57 after yes 58 before no 58 after yes
59 before no 59 after yes 60 before no 60 after yes
61 before no 61 after yes 62 before no 62 after yes
63 before no 63 after yes 64 before yes 64 after no
65 before yes 65 after no 66 before yes 66 after no
67 before yes 67 after no 68 before yes 68 after no
69 before yes 69 after yes 70 before yes 70 after yes
71 before yes 71 after yes 72 before yes 72 after yes
73 before yes 73 after yes 74 before yes 74 after yes
75 before yes 75 after yes 76 before yes 76 after yes
77 before yes 77 after yes 78 before yes 78 after yes
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79 before yes 79 after yes 80 before yes 80 after yes
81 before yes 81 after yes 82 before yes 82 after yes
83 before yes 83 after yes 84 before yes 84 after yes
85 before yes 85 after yes 86 before yes 86 after yes
87 before yes 87 after yes
;

The next statements request the Mantel-Haenszel analysis. Since the data are in case
record form, no WEIGHT statement is required. Since 87 tables are to be computed, the
NOPRINT option is specified so that the tables are not printed.

proc freq;
tables subject*time*response/ noprint cmh out=freqtab;

run;

Output 6.12 contains the Mantel-Haenszel results.QMH has the value 5.0000 with
p=0.0253. This is clearly significant. Runners reported more heel tenderness with the new
running shoes than with their old running shoes.

Output 6.12 Mantel-Haenszel Results

Summary Statistics for time by response
Controlling for subject

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 5.0000 0.0253
2 Row Mean Scores Differ 1 5.0000 0.0253
3 General Association 1 5.0000 0.0253

Total Sample Size = 174

Note that the CMH option always produces the “Estimates of Relative Risk” table and the
“Breslow-Day Test for Homogeneity” for sets of2� 2 tables. However,QBD is not valid
here.

Another way of obtaining these results for sets of2� 2 tables is to input the original2� 2
table and specify the AGREE option to obtain McNemar’s test (available in Release 6.10
of the SAS System).

data shoes;
input before $ after $ count ;
datalines;

yes yes 19
yes no 5
no yes 15
no no 48
;
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proc freq;
weight count;
tables before*after / agree;

run;

Output 6.13 contains the resulting frequency table and McNemar’s test.QM = 5:0000, the
same value as was obtained forQMH .

Output 6.13 Frequency Table and McNemar’s Test

Table of before by after

before after

Frequency|
Percent |
Row Pct |
Col Pct |no |yes | Total
---------+--------+--------+
no | 48 | 15 | 63

| 55.17 | 17.24 | 72.41
| 76.19 | 23.81 |
| 90.57 | 44.12 |

---------+--------+--------+
yes | 5 | 19 | 24

| 5.75 | 21.84 | 27.59
| 20.83 | 79.17 |
| 9.43 | 55.88 |

---------+--------+--------+
Total 53 34 87

60.92 39.08 100.00

Statistics for Table of before by after

McNemar’s Test
-----------------------
Statistic (S) 5.0000
DF 1
Pr > S 0.0253

Sample Size = 87

Recall that McNemar’s test did not make use of the diagonal cells, that is, the (no, no) and
(yes, yes) cells. Thus, if you repeated the Mantel-Haenszel analysis and eliminated the
tables corresponding to the (no, no) and (yes, yes) configurations, you would obtain
identical results.

6.4.3 Dichotomous Response: Three Repeated Measurements

Grizzle, Starmer, and Koch (1969) analyze data in which 46 patients were each treated
with three drugs (A, B, and C). The response to each drug was recorded as favorable (F) or
unfavorable (U). Table 6.12 summarizes the eight possible combinations of favorable or
unfavorable response for the three drugs and the number of patients with each response
pattern.
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Table 6.12. Drug Response Data

Drug
A B C Frequency
F F F 6
F F U 16
F U F 2
F U U 4
U F F 2
U F U 4
U U F 6
U U U 6

The objective of the analysis is to determine whether the three drugs have similar
probabilities for favorable response. Thus, the null hypothesis is interchangeability (that is,
no association between drug and response for each patient), which implies equality of the
marginal probabilities of a favorable response for the three drugs across patients. This
hypothesis can be tested using the general association statisticQGMH . The data in
Table 6.12 must first be restructured so that there are forty-six3� 2 contingency tables,
one for each of the 46 patients. For example, Table 6.13 shows the underlying table for a
patient who responded favorably to drugs A and C and unfavorably to drug B.

Table 6.13. Sample Contingency Table for a Single Patient

Response
Drug F U Total

A 1 0 1
B 0 1 1
C 1 0 1

Total 2 1 3

To apply the Mantel-Haenszel strategy to this data, you have to create a SAS data set that
contains46� 3 = 138 observations (one observation per measurement) and three
variables representing patient, drug, and measurement, respectively. If the data are
supplied in frequency count form, they must be rearranged. The following SAS statements
read the data in frequency form, as displayed in Table 6.12, and rearrange them into the
form displayed in Table 6.13. Thus, three observations are created for each patient, one for
each drug. Each of the observations in data set DRUG2 contains an arbitrary patient
identifier (numbered from 1 to 46), the drug code (A, B, or C), and the response (F or U).

Finally, the FREQ procedure computes the MH statistics that assess the association of drug
and response, adjusting for patient. The NOPRINT option of the TABLES statement
suppresses the printing of the 46 individual contingency tables. You almost always use this
option when analyzing repeated measures data using MH methods.
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data drug;
input druga $ drugb $ drugc $ count;
datalines;

F F F 6
F F U 16
F U F 2
F U U 4
U F F 2
U F U 4
U U F 6
U U U 6
;
data drug2; set drug;

keep patient drug response;
retain patient 0;
do i=1 to count;
patient=patient+1;
drug=’A’; response=druga; output;
drug=’B’; response=drugb; output;
drug=’C’; response=drugc; output;
end;

proc freq;
tables patient*drug*response / noprint cmh;

run;

Output 6.14 displays the results from PROC FREQ. Since the response is dichotomous,
the general association and mean score statistics both have 2 df. With table scores, their
values are identical. Since the repeated measures factor (drug) is not ordered, the
correlation statistic does not apply.

Output 6.14 Test of Marginal Homogeneity

Summary Statistics for drug by response
Controlling for patient

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 6.3529 0.0117
2 Row Mean Scores Differ 2 8.4706 0.0145
3 General Association 2 8.4706 0.0145

Total Sample Size = 138

The value ofQGMH is 8.4706. With reference to the approximate chi-square distribution
with 2 df, there is a clearly significant association between drug and response. This test is
the same as Cochran’sQ statistic (Cochran 1950). In order to summarize the nature of the
association, it is helpful to report the estimated marginal probabilities of a favorable
response for drugs A, B, and C. These can be computed from Table 6.12 and are equal to
28/46 = 0.61, 28/46 = 0.61, and 16/46 = 0.35, respectively. It is evident that the marginal
proportion for drug C differs considerably from that of drugs A and B. Drugs A and B
have a much greater probability of favorable response than Drug C.
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6.4.4 Ordinal Response

The same Mantel-Haenszel strategy is appropriate when the repeated measurements
response variable is ordinally scaled. In this case, the statistic of interest isQSMH , the
mean score statistic.

Macknin, Mathew, and Medendorp (1990) studied the efficacy of steam inhalation in the
treatment of common cold symptoms. Thirty patients with colds of recent onset
(symptoms of nasal drainage, nasal congestion, and sneezing for three days or less)
received two 20-minute steam inhalation treatments. On four successive days, these
patients self-assessed the severity of nasal drainage on a four-point ordinal scale (0=no
symptoms, 1=mild symptoms, 2=moderate symptoms, 3=severe symptoms). Table 6.14
displays the resulting data.

Table 6.14. Nasal Drainage Data

Patient Study Day Patient Study Day
ID 1 2 3 4 ID 1 2 3 4
1 1 1 2 2 16 2 1 1 1
2 0 0 0 0 17 1 1 1 1
3 1 1 1 1 18 2 2 2 2
4 1 1 1 1 19 3 1 1 1
5 0 2 2 0 20 1 1 2 1
6 2 0 0 0 21 2 1 1 2
7 2 2 1 2 22 2 2 2 2
8 1 1 1 0 23 1 1 1 1
9 3 2 1 1 24 2 2 3 1

10 2 2 2 3 25 2 0 0 0
11 1 0 1 1 26 1 1 1 1
12 2 3 2 2 27 0 1 1 0
13 1 3 2 1 28 1 1 1 1
14 2 1 1 1 29 1 1 1 0
15 2 3 3 3 30 3 3 3 3

The objective of the study was to determine if nasal drainage becomes less severe
following steam inhalation treatment. Thus, the relevant null hypothesis is that the
distribution of the symptom severity scores is the same on each of the four study days for
each patient. Since there are only four possible values of the response variable, the
assumptions for the usual parametric methods are not directly applicable. In addition, the
sample size is too small to justify analysis of the full44 contingency table obtained by the
joint cross-classification of the four-level response variable on four days. Thus,
randomization model MH methods seem appropriate.

Although the general association statisticQGMH may be considered for this example, its
use of 9 df would have low power to detect departures from marginal homogeneity in a
sample of only 30 patients. Since the response is ordinal, the mean score statisticQSMH ,
with 3 df, can be used to compare the average symptom scores across the four days. The
adequacy of the sample size to support the use of this statistic may also be questionable.
Alternatively, since the repeated measures factor (study day) is also ordinal, you could test
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for a linear trend over study day for symptom severity using the correlation statistic
QCSMH .

BothQSMH andQCSMH require that scores be assigned to the values of the repeated
measures and response variables. Since study day is quantitative, it is natural to use the
scores 1–4 for this variable. If it is reasonable to assume that the symptom severity ratings
are equally spaced, the actual scores 0–3 can be used. You could also assign scores that
incorporate unequal spacing between the four levels of symptom severity.

Another possibility is to use rank scores for the symptom severity ratings. In PROC FREQ,
the SCORES=RANK option of the TABLES statement uses rank scores for both the row
and column variables. However, since each patient contributes exactly one observation on
each of the four days, the rank scores for study day are also 1, 2, 3, and 4. Thus, this
option only affects the scoring of the symptom severity levels. The SCORES=RIDIT and
SCORES=MODRIDIT options compute rank scores that are standardized by a function of
the stratum-specific sample size. Since the sample sizes in the 30 underlying4� 4
contingency tables are all equal to 4, the results from the SCORES=RANK,
SCORES=RIDIT, and SCORES=MODRIDIT options would be identical.

The following SAS statements read in the data in case record form with responses for all
days on the same record and rearrange it so that there are four observations per patient.
PROC FREQ computes the MH statistics, first using equally spaced table scores and then
using rank scores.

data cold;
keep id day drainage;
input id day1-day4;
day=1; drainage=day1; output;
day=2; drainage=day2; output;
day=3; drainage=day3; output;
day=4; drainage=day4; output;
datalines;

1 1 1 2 2
2 0 0 0 0
3 1 1 1 1
4 1 1 1 1
5 0 2 2 0
6 2 0 0 0
7 2 2 1 2
8 1 1 1 0
9 3 2 1 1

10 2 2 2 3
11 1 0 1 1
12 2 3 2 2
13 1 3 2 1
14 2 1 1 1
15 2 3 3 3
16 2 1 1 1
17 1 1 1 1
18 2 2 2 2
19 3 1 1 1
20 1 1 2 1
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21 2 1 1 2
22 2 2 2 2
23 1 1 1 1
24 2 2 3 1
25 2 0 0 0
26 1 1 1 1
27 0 1 1 0
28 1 1 1 1
29 1 1 1 0
30 3 3 3 3
;
proc freq;

tables id*day*drainage / cmh noprint;
tables id*day*drainage / cmh noprint scores=rank;

run;

Output 6.15 displays the MH statistics based on table scores, and Output 6.16 displays the
corresponding results using rank scores. Using the default table scores, the test statistic
that the mean symptom severity scores are the same at all four days is not statistically
significant (QSMH = 4:9355, p = 0:1766). However, there is a statistically significant
trend between study day and nasal drainage severity (QCSMH=4.3548,p = 0:0369). The
observed mean scores at days 1–4 are 1.50, 1.37, 1.37, and 1.17; thus, symptom severity is
decreasing over time.

Output 6.15 MH Tests Using Table Scores

Summary Statistics for day by drainage
Controlling for id

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 4.3548 0.0369
2 Row Mean Scores Differ 3 4.9355 0.1766
3 General Association 9 10.1267 0.3403

Total Sample Size = 120

Output 6.16 MH Tests Using Rank Scores

Summary Statistics for day by drainage
Controlling for id

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 2.6825 0.1015
2 Row Mean Scores Differ 3 3.3504 0.3407
3 General Association 9 10.1267 0.3403

Total Sample Size = 120
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In this example, the use of rank scores leads to a less clear conclusion regarding the
statistical significance of the correlation statistic (QCSMH = 2:6825, p = 0:1015). Some
authors recommend the routine use of rank scores in preference to the arbitrary assignment
of scores (for example, Fleiss 1986, pp. 83–84). However, as demonstrated by Graubard
and Korn (1987), rank scores can be a poor choice when the column margin is far from
uniformly distributed. This occurs because rank scores also assign a spacing between the
levels of the categories. This spacing is generally not known by the analyst and may not be
as powerful as other spacings for certain patterns of differences among distributions.
Graubard and Korn (1987) recommend that you specify the scores whenever possible. If
the choice of scores is not apparent, they recommend integer (or equally spaced) scores.

When there is no natural set of scores, Agresti (1990, p. 294) recommends that the data be
analyzed using several reasonably assigned sets of scores to determine whether substantive
conclusions depend on the choice of scores. This type of sensitivity analysis seems
especially appropriate in this example, since the results assuming equally spaced scores
differ from those obtained using rank scores. For example, the scores 0, 1, 3, 5 assume that
the moderate category is equally spaced between the mild and severe categories, while
none and mild are less far apart. Another possibility would be 0, 1, 2, 4; this choice places
severe symptoms further from the other three categories. These alternative scoring
specifications are easily implemented by redefining the values of the DRAINAGE variable
in the DATA step and then using the default table scores, which are just the input numeric
values for drainage.

Note that since the general association statistic does not use scores, the value ofQGMH is
the same in both analyses.

6.4.5 Ordinal Response with Missing Data

Researchers at the C. S. Mott Children’s Hospital in Ann Arbor, Michigan, investigated the
effect of pulse duration on the development of acute electrical injury during
transesophageal atrial pacing in animals. In brief, this procedure involves placing a
pacemaker in the esophagus. Each of the 14 animals available for experimentation then
received atrial pacing at pulse durations of 2, 4, 6, 8, and 10 milliseconds (ms), with each
pulse delivered at a separate site in the esophagus for 30 minutes. The response variable,
lesion severity, was classified according to depth of injury by histologic examination using
an ordinal staging scale from 0 to 5 (0=no lesion, 5=acute inflammation of
extraesophageal fascia). Table 6.15 displays the resulting data (missing observations are
denoted by –). Landis et al. (1988) previously analyzed the data from the first 11 animals.
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Table 6.15. Lesion Severity Data

Pulse Duration (ms)
ID 2 4 6 8 10
6 0 0 5 0 3
7 0 3 3 4 5
8 0 3 4 3 2
9 2 2 3 0 4

10 0 0 4 4 3
12 0 0 0 4 4
13 0 4 4 4 0
15 0 4 0 0 0
16 0 3 0 1 1
17 – – 0 1 0
19 0 0 1 1 0
20 – 0 0 2 2
21 0 0 2 3 3
22 – 0 0 3 0

The investigators were primarily interested in determining the extent to which increasing
the pulse duration from 2 to 10 ms tends to increase the severity of the lesion. In an
experiment in which five repeated measurements of a six-category ordinal response are
obtained from only 14 experimental units, the choice of statistical methodology is limited.
The study is further complicated by the fact that 3 of the 14 animals have incomplete data.

The general association statisticQGMH has 20 df in this case (s = 5, r = 6). In addition
to the fact thatQGMH will not have a chi-square distribution when the sample size is so
small relative to the degrees of freedom, there will be very low power to detect general
departures from the null hypothesis of interchangeability. Although the alternative of
location shift for mean responses across the five pulse durations can be addressed using the
mean score statisticQSMH , this statistic does not take into account the ordering of the
pulse durations. The 1 df correlation statisticQCSMH specifically focuses on the narrow
alternative of a monotone relationship between lesion severity and pulse duration. This test
addresses the objective of the investigators and is also best justified given the small sample
size.

The following SAS statements read in the data in the format shown in Table 6.15,
rearrange them so that each subject has five observations, one for each pulse duration, and
request the MH statistics using table scores and all three types of rank scores. Since
QGMH is unaffected by the choice of scores, the CMH2 option is used in all but the first
TABLES statement. This option specifies that only the Mantel-Haenszel statisticsQSMH

andQCSMH be computed. (The CMH1 option specifies that only the correlation statistic
QCSMH be computed.)



6.4 Advanced Topic: Application to Repeated Measures 151

data animals;
keep id pulse severity;
input id sev2 sev4 sev6 sev8 sev10;
pulse=2; severity=sev2; output;
pulse=4; severity=sev4; output;
pulse=6; severity=sev6; output;
pulse=8; severity=sev8; output;
pulse=10; severity=sev10; output;
datalines;

6 0 0 5 0 3
7 0 3 3 4 5
8 0 3 4 3 2
9 2 2 3 0 4

10 0 0 4 4 3
12 0 0 0 4 4
13 0 4 4 4 0
15 0 4 0 0 0
16 0 3 0 1 1
17 . . 0 1 0
19 0 0 1 1 0
20 . 0 0 2 2
21 0 0 2 3 3
22 . 0 0 3 0
;
proc freq;

tables id*pulse*severity / noprint cmh;
tables id*pulse*severity / noprint cmh2 scores=rank;
tables id*pulse*severity / noprint cmh2 scores=ridit;
tables id*pulse*severity / noprint cmh2 scores=modridit;

run;

Output 6.17 displays the results using the default table scores. In this case, lesion severity
is scored using the integers0; : : : ; 5 in computing both the mean score statisticQSMH and
the correlation statisticQCSMH . In addition, pulse duration is scored as 2, 4, 6, 8, or 10 in
computingQCSMH . The correlation statisticQCSMH shows a highly significant monotone
association (trend) between pulse duration and lesion severity; the results from the mean
score statistic are also statistically significant.

Output 6.17 MH Tests Using Table Scores

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.8042 0.0030
2 Row Mean Scores Differ 4 12.3474 0.0149
3 General Association 20 22.8460 0.2964

Effective Sample Size = 66
Frequency Missing = 4



152 Sets of s� r Tables

Output 6.18, Output 6.19, and Output 6.20 display the corresponding results using rank,
ridit, and modified ridit scores, respectively. In this example, the values of the mean score
and correlation statistics differ slightly among the three types of rank statistics. This is due
to the fact that the sample sizes are no longer the same across the 14 tables (due to the
occurrence of missing data).

Output 6.18 MH Tests Using Rank Scores

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 9.9765 0.0016
2 Row Mean Scores Differ 4 13.6796 0.0084

Effective Sample Size = 66
Frequency Missing = 4

Output 6.19 MH Tests Using Ridit Scores

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-Haenszel Statistics (Based on Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 10.0335 0.0015
2 Row Mean Scores Differ 4 14.2628 0.0065

Effective Sample Size = 66
Frequency Missing = 4

Output 6.20 MH Tests Using Modified Ridit Scores

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 10.1102 0.0015
2 Row Mean Scores Differ 4 14.1328 0.0069

Effective Sample Size = 66
Frequency Missing = 4
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As shown in Table 6.15, 3 of the 14 animals had incomplete data. Table 6.16 through
Table 6.18 display the underlying contingency tables for these strata (ID numbers 17, 20,
and 22). Although each of these three tables has one or more rows with a marginal total of
zero, the remaining rows provide useful information concerning the association between
pulse duration and lesion severity.

Table 6.16. Contingency Table for ID 17

Pulse Lesion Severity
Duration 0 1 2 3 4 5 Total

2 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
6 1 0 0 0 0 0 1
8 0 1 0 0 0 0 1
10 1 0 0 0 0 0 1

Total 2 1 0 0 0 0 3

Table 6.17. Contingency Table for ID 20

Pulse Lesion Severity
Duration 0 1 2 3 4 5 Total

2 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1
6 1 0 0 0 0 0 1
8 0 0 1 0 0 0 1
10 0 0 1 0 0 0 1

Total 2 0 2 0 0 0 4

Table 6.18. Contingency Table for ID 22

Pulse Lesion Severity
Duration 0 1 2 3 4 5 Total

2 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1
6 1 0 0 0 0 0 1
8 0 0 0 1 0 0 1
10 1 0 0 0 0 0 1

Total 3 0 0 1 0 0 4

The following statements exclude these three animals from the analysis and compute the
test statistics for the subset of complete cases. In this case, all three types of rank scores
produce the same results; thus, only the SCORES=RANK option is used. The WHERE
clause is used to delete those observations with ID equal to 17, 20, or 22.

proc freq data=animals;
where id notin(17,20,22);
tables id*pulse*severity / noprint cmh;
tables id*pulse*severity / noprint cmh scores=rank;

run;
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Output 6.21 and Output 6.22 display the results from the analysis of complete cases. The
value of each of the test statistics is somewhat smaller than the corresponding value
computed using all available data. Thus, the partial data from the incomplete cases
strengthen the evidence in favor of the existence of a significant trend between pulse
duration and lesion severity.

Output 6.21 MH Tests Using Table Scores: Complete Cases Only

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 7.5610 0.0060
2 Row Mean Scores Differ 4 11.5930 0.0206
3 General Association 20 21.2489 0.3826

Total Sample Size = 55

Output 6.22 MH Tests Using Rank Scores: Complete Cases Only

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.5099 0.0035
2 Row Mean Scores Differ 4 12.2637 0.0155
3 General Association 20 21.2489 0.3826

Total Sample Size = 55

6.4.6 Continuous Response

Table 6.19 displays artificial data collected for the purpose of determining if pH level
alters action potential characteristics following administration of a drug (Harrell 1989).
The response variable of interest (Vmax) was measured at up to four pH levels for each of
25 patients. While at least two measurements were obtained from each patient, only three
patients provided data at all four pH levels.
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Table 6.19. Action Potential Data

pH Level pH Level
Patient 6.5 6.9 7.4 7.9 Patient 6.5 6.9 7.4 7.9

1 284 310 326 14 204 234 268
2 261 292 15 258 267
3 213 224 240 16 193 224 235
4 222 235 247 17 185 222 252 263
5 270 286 18 238 301 300
6 210 218 19 198 240
7 216 234 237 20 235 255
8 236 273 283 21 216 238
9 220 249 270 281 22 197 212 219

10 166 218 244 23 234 238
11 227 258 282 286 24 295 281
12 216 284 25 261 272
13 257 284

Although the response is a continuous measurement, MH statistics can still be used to
determine if the average Vmax differs among the four pH values (QSMH) and if there is a
trend between Vmax and pH (QCSMH). This approach offers the advantage of not
requiring any assumptions concerning the distribution of Vmax. In addition, the MH
methodology accommodates the varying numbers of observations per patient (under the
assumption that missing values are missing completely at random and the test statistic is
specified with either table scores or ranks).

The following SAS statements read in the data in the format shown in Table 6.19,
restructure the data set for PROC FREQ, and compute the MH mean score and correlation
statistics. The CMH2 option is used since it is not possible (or sensible) to compute the
general association statisticQGMH . Since both pH and Vmax are quantitative variables,
the default table scores are used. In addition, the trend is also assessed using modified ridit
scores.

data ph_vmax;
keep subject ph vmax;
input subject vmax1-vmax4;
ph=6.5; vmax=vmax1; output;
ph=6.9; vmax=vmax2; output;
ph=7.4; vmax=vmax3; output;
ph=7.9; vmax=vmax4; output;
datalines;

1 . 284 310 326
2 . . 261 292
3 . 213 224 240
4 . 222 235 247
5 . . 270 286
6 . . 210 218
7 . 216 234 237
8 . 236 273 283
9 220 249 270 281



156 Sets of s� r Tables

10 166 218 244 .
11 227 258 282 286
12 216 . 284 .
13 . . 257 284
14 204 234 268 .
15 . . 258 267
16 . 193 224 235
17 185 222 252 263
18 . 238 301 300
19 . 198 240 .
20 . 235 255 .
21 . 216 238 .
22 . 197 212 219
23 . 234 238 .
24 . . 295 281
25 . . 261 272
;
proc freq;

tables subject*ph*vmax / noprint cmh2;
tables subject*ph*vmax / noprint cmh2 scores=modridit;

run;

Output 6.23 shows that the mean Vmax differs significantly among the four pH levels
(QSMH = 27:7431, 3 df,p < 0:0001). In addition, there is a highly significant linear trend
between pH and Vmax (QCSMH = 27:3891, 1 df,p < 0:0001).

Output 6.23 MH Mean Score and Correlation Tests: Table Scores

Summary Statistics for ph by vmax
Controlling for subject

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 27.3891 <.0001
2 Row Mean Scores Differ 3 27.7431 <.0001

Effective Sample Size = 66
Frequency Missing = 34

WARNING: 34% of the data are missing.

The mean score and correlation statistics are even more significant when modified ridit
scores are used (Output 6.24). Note that Vmax tends to progressively increase with pH for
almost all patients (patients 18 and 24 are the exception).
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Output 6.24 MH Mean Score and Correlation Tests: Modified Ridit Scores

Summary Statistics for ph by vmax
Controlling for subject

Cochran-Mantel-Haenszel Statistics (Modified Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 35.3818 <.0001
2 Row Mean Scores Differ 3 34.7945 <.0001

Effective Sample Size = 66
Frequency Missing = 34

WARNING: 34% of the data are missing.

In this example, the column variable of each table was continuous and the row variable,
although quantitative, had only four possible values. Thus, bothQSMH andQCSMH could
be used. The MH approach to the analysis of one-sample repeated measures can also be
very useful when the row and column variables are both continuous. In this case, only
QCSMH can be used. This can be specified by using the CMH1 option in the TABLES
statement.

The methodology is also applicable when there are multiple groups (samples). However,
the observations are viewed as a single group when comparing conditions within subjects.
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Chapter 7

Nonparametric Methods

7.1 Introduction

Parametric methods of statistical inference require you to assume that your data come
from some underlying distribution whose general form is known, such as the normal,
binomial, Poisson, or Weibull distribution. Statistical methods for estimation and
hypothesis testing are then based on these assumptions. The focus is on estimating
parameters and testing hypotheses about them.

In contrast, nonparametric statistical methods make few assumptions about the underlying
distribution from which the data are sampled. One of their main advantages is that
inference is not focused on specific population parameters, and it is thus possible to test
hypotheses that are more general than statements about parameters. For example, they
allow you to test whether two distributions are the same without having to test hypotheses
concerning population parameters. Nonparametric procedures can also be used when the
underlying distribution is unknown or when parametric assumptions are not valid.

The main disadvantage is that a nonparametric test is generally less powerful than the
corresponding parametric test when the assumptions are satisfied. However, for many of
the commonly used nonparametric methods, the decrease in power is not large.

Most of this book concentrates on the analysis of categorical response variables measured
on nominal or ordinal scales. This chapter focuses on the analysis of continuous response
variables with the use of nonparametric statistical methods. The reason for considering
these methods is that many of the commonly used nonparametric tests, such as the
Wilcoxon-Mann-Whitney, Kruskal-Wallis, Spearman correlation, Friedman, and Durbin
tests, can be computed using Mantel-Haenszel procedures. While previous chapters have
shown how to use Mantel-Haenszel procedures to analyze two-way tables and sets of
two-way tables, this chapter shows how to use the same procedures to perform
nonparametric analyses of continuous response variables.

7.2 Wilcoxon-Mann-Whitney Test

The Wilcoxon-Mann-Whitney test is a nonparametric test of the null hypothesis that the
distribution of an ordinally scaled response variable is the same in two independently
sampled populations. It is sensitive to the alternative hypothesis that there is a location
difference between the two populations. This test was first proposed for the case of two
samples of equal size by Wilcoxon (1945). Mann and Whitney (1947) introduced an
equivalent statistic, and they were the first to consider unequal sample sizes and to furnish
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tables suitable for use with small samples. (Such tables are found in the appendices of
standard statistics textbooks.)

The Wilcoxon-Mann-Whitney test can be used whenever the two-samplet-test is
appropriate. One approach to comparing the nonparametric Wilcoxon-Mann-Whitney test
to the parametric two-samplet-test is based on the concept of asymptotic relative
efficiency, as developed by Pitman (1948) in a series of unpublished lecture notes. In brief,
the efficiency of a testT2 relative to a testT1 is the ration1=n2 of the sample sizes needed
to obtain the same power for the two tests. For normal distributions with a shift in the
mean, the asymptotic efficiency of the Wilcoxon-Mann-Whitney test relative to the
two-samplet-test is 0.955. Thus, a small price is paid for using the nonparametric test, in
return for greater applicability. If the underlying populations are not normally distributed
(for example, they have asymmetric distributions), the power of the
Wilcoxon-Mann-Whitney test can be much higher than that of the two-samplet-test. In
fact, the asymptotic relative efficiency can be as high as infinity.

When the sample sizes in the two groups are small, tables of the exact distribution of the
test statistic should be used. Alternatively, you can carry out exact tests of significance for
small sample sizes by using the EXACT statement in the NPAR1WAY procedure. If there
are at least 10 observations per group, thep-value can be approximated using the
asymptotic normal distribution of the test criteria. The asymptotic test is simply the
Mantel-Haenszel mean score statistic for the special case of one stratum when rank scores
are used.

Table 7.1 displays data from a study of the relationship between sodium chloride
preference and hypertension (Schechter, Horwitz, and Henkin 1973). Two groups of
subjects, 12 normal and 10 hypertensive, were isolated for a week and compared with
respect to their average daily Na+ intakes.

Table 7.1. Sodium Chloride Preference Data

Normal Group Hypertensive Group
Subject NA+ Subject NA+

1 10.2 1 92.8
2 2.2 2 54.8
3 0.0 3 51.6
4 2.6 4 61.7
5 0.0 5 250.8
6 43.1 6 84.5
7 45.8 7 34.7
8 63.6 8 62.2
9 1.8 9 11.0

10 0.0 10 39.1
11 3.7
12 0.0

The following statements create a SAS data set containing the data of Table 7.1 and
compare the two groups using the Wilcoxon-Mann-Whitney test. The statistic is computed
using the Mantel-Haenszel mean score test based on rank scores.
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data sodium;
input group $ subject intake;
datalines;

Normal 1 10.2
Normal 2 2.2
Normal 3 0.0
Normal 4 2.6
Normal 5 0.0
Normal 6 43.1
Normal 7 45.8
Normal 8 63.6
Normal 9 1.8
Normal 10 0.0
Normal 11 3.7
Normal 12 0.0
Hyperten 1 92.8
Hyperten 2 54.8
Hyperten 3 51.6
Hyperten 4 61.7
Hyperten 5 250.8
Hyperten 6 84.5
Hyperten 7 34.7
Hyperten 8 62.2
Hyperten 9 11.0
Hyperten 10 39.1
;
proc freq;

tables group*intake / noprint cmh2 scores=rank;
run;

The CMH2 option in the TABLES statement specifies that only the Mantel-Haenszel
correlation and mean score statistics are to be computed, since the general association
statistic is not useful in this example (for example, its use is for strictly categorical data).
As shown in Output 7.1, the mean score statistic indicates that there is a significant
difference between normal and hypertensive subjects (chi-square=9.6589, 1 df,
p = 0:0019). Since there are only two groups, the correlation and mean score statistics are
identical.

Output 7.1 Wilcoxon-Mann-Whitney Test Using the MH Mean Score Statistic

Summary Statistics for group by intake

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 9.6589 0.0019
2 Row Mean Scores Differ 1 9.6589 0.0019

Total Sample Size = 22

The Wilcoxon-Mann-Whitney test is also equivalent to the extended Mantel-Haenszel
correlation statistic in the tests of no association for a two-way contingency table (with
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s� 2 or 2� r structure), provided that rank scores are specified. The following SAS
statements produce the results shown in Output 7.2.

proc freq;
tables group*intake / noprint chisq scores=rank;

run;

The chi-square test statistic labeled “MH Chi-Square (Rank Scores)” is also equal to
9.6589. Note that chi-square and other contingency table results for this specification
should be ignored because of insufficient cell sizes.

Output 7.2 Wilcoxon-Mann-Whitney Test Using the MH Chi-Square Statistic

Statistics for Table of group by intake

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 18 22.0000 0.2320
Likelihood Ratio Chi-Square 18 30.3164 0.0345
MH Chi-Square (Rank Scores) 1 9.6589 0.0019
Phi Coefficient 1.0000
Contingency Coefficient 0.7071
Cramer’s V 1.0000

WARNING: 100% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Sample Size = 22

You can also use the NPAR1WAY procedure to compute the Wilcoxon-Mann-Whitney
statistic. You specify the WILCOXON option in the PROC statement, list GROUP in the
CLASS statement, and list INTAKE in the VAR statement. Output 7.3 displays the results
of the following statements.

proc npar1way wilcoxon;
class group;
var intake;

run;
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Output 7.3 Wilcoxon-Mann-Whitney Test Using PROC NPAR1WAY

Wilcoxon Scores (Rank Sums) for Variable intake
Classified by Variable group

Sum of Expected Std Dev Mean
group N Scores Under H0 Under H0 Score
------------------------------------------------------------------------
Normal 12 91.0 138.0 15.122873 7.583333
Hyperten 10 162.0 115.0 15.122873 16.200000

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 162.0000

Normal Approximation
Z 3.0748
One-Sided Pr > Z 0.0011
Two-Sided Pr > |Z| 0.0021

t Approximation
One-Sided Pr > Z 0.0029
Two-Sided Pr > |Z| 0.0057

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 9.6589
DF 1
Pr > Chi-Square 0.0019

The NPAR1WAY procedure computes a continuity-corrected Wilcoxon-Mann-Whitney
test that yields slightly different results from PROC FREQ. The normal approximation
statistic isZ = 3:0748 with a two-sidedp-value of 0.0021. Output 7.3 also displays a
chi-square statistic labeled “Kruskal-Wallis Test.” The value of this statistic is identical to
that resulting from the tests computed by the FREQ procedure.

7.3 Kruskal-Wallis Test

The Kruskal-Wallis (1952) test is a generalization of the two-sample
Wilcoxon-Mann-Whitney test to three or more groups. It is a nonparametric test of the null
hypothesis that the distribution of a response variable is the same in multiple
independently sampled populations. The test requires an ordinally scaled response variable
and is sensitive to the alternative hypothesis that there is a location difference among the
populations. The Kruskal-Wallis test can be used whenever a one-way analysis of variance
(ANOVA) model is appropriate.

When the sample sizes in the groups are small, tables of the exact distribution of the test
statistic should be used. Alternatively, you can carry out exact tests of significance for
small sample sizes (see page 162). If there are at least five observations per group, the
p-value can be approximated using the asymptotic chi-square distribution withs� 1
degrees of freedom, wheres is the number of groups. The approximate test is simply the
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Mantel-Haenszel mean score statistic for the special case of one stratum when rank scores
are used.

Table 7.2 displays data from a study of antecubital vein cortisol levels at time of delivery
in pregnant women (Cawson et al. 1974). The investigators wanted to determine if median
cortisol levels differed among three groups of women, all of whom had delivery between
38 and 42 weeks gestation. The data were obtained before the onset of labor at elective
Caesarean section (Group I), at emergency Caesarean section during induced labor
(Group II), or at the time of vaginal or Caesarean delivery in women in whom spontaneous
labor occurred (Group III).

Table 7.2. Antecubital Vein Cortisol Levels at Time of Delivery

Group I Group II Group III
Patient Level Patient Level Patient Level

1 262 1 465 1 343
2 307 2 501 2 772
3 211 3 455 3 207
4 323 4 355 4 1048
5 454 5 468 5 838
6 339 6 362 6 687
7 304
8 154
9 287
10 356

The following statements create a SAS data set containing the data of Table 7.2 and
request the Mantel-Haenszel mean score statistic comparing the mean rank scores in the
three groups of subjects.

data cortisol;
input group $ subject cortisol;
datalines;

I 1 262
I 2 307
I 3 211
I 4 323
I 5 454
I 6 339
I 7 304
I 8 154
I 9 287
I 10 356
II 1 465
II 2 501
II 3 455
II 4 355
II 5 468
II 6 362
III 1 343
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III 2 772
III 3 207
III 4 1048
III 5 838
III 6 687
;

proc freq;
tables group*cortisol / noprint cmh2 scores=rank;

run;

The Kruskal-Wallis statistic, labeled “Row Mean Scores Differ” in Output 7.4, is equal to
9.2316 with 2 df, corresponding to ap-value of 0.0099. Thus, the cortisol level
distributions differ among the three groups of patients. Since there are more than two
groups, the Mantel-Haenszel correlation statistic, labeled “Nonzero Correlation,” does not
produce the same results as the Kruskal-Wallis test. The correlation statistic uses rank
scores to test the null hypothesis that there is no association between group and cortisol
level, versus the alternative hypothesis of a monotone association between the two
variables. Thus, this statistic is only valid if the three groups are ordered (which might be
realistic for this example in terms of the timing for cortisol level determination).

Output 7.4 Kruskal-Wallis Test Using PROC FREQ

Summary Statistics for group by cortisol

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.2857 0.0040
2 Row Mean Scores Differ 2 9.2316 0.0099

Total Sample Size = 22

The Kruskal-Wallis test can also be computed using the WILCOXON option of the
NPAR1WAY procedure.

proc npar1way wilcoxon;
class group;
var cortisol;

run;

The Kruskal-Wallis test displayed in Output 7.5 is identical to the value shown in
Output 7.4. The NPAR1WAY procedure gives additional results showing that the mean
rank scores in groups II and III are nearly equivalent and are substantially greater than the
mean rank score in group I.
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Output 7.5 Kruskal-Wallis Test Using PROC NPAR1WAY

Wilcoxon Scores (Rank Sums) for Variable cortisol
Classified by Variable group

Sum of Expected Std Dev Mean
group N Scores Under H0 Under H0 Score
---------------------------------------------------------------------
I 10 69.0 115.0 15.165751 6.900000
II 6 90.0 69.0 13.564660 15.000000
III 6 94.0 69.0 13.564660 15.666667

Kruskal-Wallis Test

Chi-Square 9.2316
DF 2
Pr > Chi-Square 0.0099

7.4 Friedman’s Chi-Square Test

Friedman’s test (1937) is a nonparametric method for analyzing a randomized complete
block design. This type of study design is applicable when interest is focused on one
particular factor, but there are other factors whose effects you want to control. The
experimental units are first divided into blocks (groups) in such a way that units within a
block are relatively homogeneous. The size of each block is equal to the number of
treatments or conditions under study. The treatments are then assigned at random to the
experimental units within each block so that each treatment is given once and only once
per block. The basic design principle is to partition the experimental units in such a way
that background variability between blocks is maximized so that the variability within
blocks is minimized.

The standard parametric ANOVA methods for analyzing randomized complete block
designs require the assumption that the experimental errors are normally distributed. The
Friedman test, which does not require this assumption, depends only on the ranks of the
observations within each block and is sometimes called the two-way analysis of variance
by ranks.

For small randomized complete block designs, the exact distribution of the Friedman test
statistic should be used; for example, Odeh et al. (1977) tabulate the critical values of the
Friedman test for up to six blocks and up to six treatments. Alternatively, you can carry out
exact tests of significance for small sample sizes (see page 162). As the number of blocks
increases, the distribution of the Friedman statistic approaches that of a chi-square random
variable withs� 1 degrees of freedom, wheres is the number of treatments. The
approximate test is simply the Mantel-Haenszel mean score statistic for the special case of
rank scores and one subject per treatment group in each block.

Table 7.3 displays data from an experiment designed to determine if five electrode types
performed similarly (Berry 1987). In this study, all five types were applied to the arms of
16 subjects and the resistance was measured. Each subject is a block in this example, and
all five treatments are applied once and only once per block.
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Table 7.3. Electrical Resistance Data

Electrode Type
Subject 1 2 3 4 5

1 500 400 98 200 250
2 660 600 600 75 310
3 250 370 220 250 220
4 72 140 240 33 54
5 135 300 450 430 70
6 27 84 135 190 180
7 100 50 82 73 78
8 105 180 32 58 32
9 90 180 220 34 64

10 200 290 320 280 135
11 15 45 75 88 80
12 160 200 300 300 220
13 250 400 50 50 92
14 170 310 230 20 150
15 66 1000 1050 280 220
16 107 48 26 45 51

The following statements read in one record per subject and create a SAS data set
containing one observation per electrode per subject. The Mantel-Haenszel mean score
statistic is then computed using rank scores, where the 16 subjects define 16 strata.

data electrod;
input subject resist1-resist5;
type=1; resist=resist1; output;
type=2; resist=resist2; output;
type=3; resist=resist3; output;
type=4; resist=resist4; output;
type=5; resist=resist5; output;
datalines;

1 500 400 98 200 250
2 660 600 600 75 310
3 250 370 220 250 220
4 72 140 240 33 54
5 135 300 450 430 70
6 27 84 135 190 180
7 100 50 82 73 78
8 105 180 32 58 32
9 90 180 220 34 64

10 200 290 320 280 135
11 15 45 75 88 80
12 160 200 300 300 220
13 250 400 50 50 92
14 170 310 230 20 150
15 66 1000 1050 280 220
16 107 48 26 45 51
;
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proc freq;
tables subject*type*resist / noprint cmh2 scores=rank;

run;

Output 7.6 displays the results. The value of the test statistic is 5.4522 with 4 df. The
p-value of 0.2440 indicates that there is little evidence of a statistically significant
difference among the five types of electrodes.

Output 7.6 Friedman Test

Summary Statistics for type by resist
Controlling for subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 2.7745 0.0958
2 Row Mean Scores Differ 4 5.4522 0.2440

Total Sample Size = 80

In experimental situations with more than one subject per group in each block, PROC
FREQ can be used to compute generalizations of the Friedman test. The general principle
is that the strata are defined by the blocks, and the treatments or groups define the rows of
each table.

7.5 Aligned Ranks Test for Randomized Complete Blocks

When the number of blocks or treatments is small, the Friedman test has relatively low
power. This results from the fact that the test statistic is based on ranking the observations
within each block, which provides comparisons only of the within-block responses. Thus,
direct comparison of responses in different blocks is not meaningful, due to variation
between blocks. If the blocks are small, there are too few comparisons to permit an
effective overall comparison of the treatments. As an example, the Friedman test reduces
to the sign test if there are only two treatments. This disadvantage becomes less serious as
the number of treatments increases or as the number of subjects per block increases for a
fixed numbers of treatments.

An alternative to the Friedman test is to usealigned ranks. The basic idea is to make the
blocks more comparable by subtracting from each observation within a block some
estimate of the location of the block, such as the average or median of the observations.
The resulting differences are calledaligned observations. Instead of separately ranking the
observations within each block, you rank the complete set of aligned observations relative
to each other. Thus, the ranking scheme is the same as that used in computing the
Kruskal-Wallis statistic. The resulting ranks are called aligned ranks.

The aligned rank test was introduced by Hodges and Lehmann (1962). Koch and
Sen (1968) considered four cases of interest in the analysis of randomized complete block
experiments and independently proposed the aligned rank procedure for their Case IV.
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Apart from the fact that one set of aligned ranks is used instead of separate within-block
ranks, the computation of the aligned rank statistic is the same as for the Friedman test.

The exact distribution of the test statistic is cumbersome to compute. In addition, tables are
not feasible since the distribution depends on the way the aligned ranks are distributed over
the blocks. However, the null distribution of the test statistic is approximately chi-square
with s� 1 degrees of freedom, wheres is the number of treatments (or block size when
there is one observation per treatment in each block). Tardif (1980, 1981, 1985) studied the
asymptotic efficiency and other aspects of aligned rank tests in randomized block designs.

In Section 7.4, Friedman’s test was used to analyze data from an experiment designed to
determine if five electrode types performed similarly (Table 7.3). Using the SAS data set
created in Section 7.4, the following statements compute the aligned rank statistic.

proc standard mean=0;
by subject;
var resist;

proc rank;
var resist;

proc freq;
tables subject*type*resist / noprint cmh2;

run;

The STANDARD procedure standardizes the observations within each block (subject) to
have mean zero. Thus, the subject-specific sample mean is subtracted from each response.
The RANK procedure computes a single set of rankings for the combined aligned
observations. Using the resulting aligned ranks as scores, the FREQ procedure computes
the aligned rank statistic.

Output 7.7 displays the results. The test statistic is equal to 13.6003 with 4 df. With
reference to the chi-square distribution with four degrees of freedom, there is a clearly
significant difference among the five electrode types. Recall that the Friedman test
(Output 7.6) was not statistically significant. Thus, this example illustrates the potentially
greater power of the aligned ranks test.

Output 7.7 Aligned Ranks Test

Summary Statistics for type by resist
Controlling for subject

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 4.9775 0.0257
2 Row Mean Scores Differ 4 13.6003 0.0087

Total Sample Size = 80
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7.6 Durbin’s Test for Balanced Incomplete Blocks

In the randomized complete block design, every treatment is applied in every block.
However, it is sometimes impractical or impossible for all of the treatments to be applied
to each block, especially when the number of treatments is large and the block size is
limited. Experimental designs in which not all treatments are applied to each block are
called incomplete block designs. If the design is balanced so that every block containsc
experimental units, every treatment appears inu blocks, and every treatment appears with
every other treatment an equal number of times, the design is then called a balanced
incomplete block design.

Durbin (1951) presented a rank test that can be used to test the null hypothesis of no
differences among treatments in a balanced incomplete block design. This test can be
computed using the stratified Mantel-Haenszel mean score statistic based on rank scores.
The Durbin test reduces to the Friedman test if the number of treatments equals the
number of experimental units per block.

As an example, Table 7.4 displays data taken from a mirror drawing experiment conducted
in 20 psychiatric patients (Ogilvie 1965). The subject’s task was to trace along a straight
line, seen in a mirror, with his or her hand hidden. The straight lines were oriented at five
different angles to the median plane of the subject (0Æ, 22:5Æ, 45Æ, 67:5Æ, and90Æ), and the
outcome variable was the time (in seconds) taken to complete the task. Ideally, every
subject should draw lines at each angle. However, the effect of practice on performance
could be considerable. In addition, it was difficult to maintain the subject’s interest and
cooperation in the experiment for more than a brief period. Consequently, a balanced
incomplete block design was used. Each of the 20 subjects completed the experiment at
two of the five angles; thus, each angle was studied eight times.

Table 7.4. Drawing Times (Seconds) from a Mirror Tracing Experiment

Angle (Degrees) Angle (Degrees)
Subject 0 22.5 45 67.5 90 Subject 0 22.5 45 67.5 90

1 7 15 11 17 9
2 20 72 12 100 15
3 8 26 13 16 32
4 33 36 14 19 32
5 7 16 15 36 39
6 68 67 16 44 54
7 33 64 17 16 38
8 34 12 18 17 12
9 10 96 19 37 11

10 29 59 20 56 6

The following statements read in one record per subject. The four input variables for each
subject contain the two angles used and the drawing times at these angles. The resulting
SAS data set contains two observations per subject and three variables per observation:
subject identifier, angle, and drawing time. The PROC FREQ statements compute the
extended Mantel-Haenszel mean score statistic, with one stratum for each subject. The
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rows of each table are defined by the five angles studied, and rank scores are used for the
response variable (drawing time).

data tracing;
keep subject angle time;
input subject angle1 angle2 time1 time2;
angle=angle1; time=time1; output;
angle=angle2; time=time2; output;
datalines;

1 0.0 22.5 7 15
2 0.0 45.0 20 72
3 0.0 67.5 8 26
4 0.0 90.0 33 36
5 22.5 0.0 16 7
6 22.5 45.0 68 67
7 22.5 67.5 33 64
8 22.5 90.0 34 12
9 45.0 0.0 96 10

10 45.0 22.5 59 29
11 45.0 67.5 17 9
12 45.0 90.0 100 15
13 67.5 0.0 32 16
14 67.5 22.5 32 19
15 67.5 45.0 39 36
16 67.5 90.0 44 54
17 90.0 0.0 38 16
18 90.0 22.5 12 17
19 90.0 45.0 11 37
20 90.0 67.5 6 56
;
proc freq;

tables subject*angle*time / noprint cmh2 scores=rank;
run;

Output 7.8 displays the results of Durbin’s test. The chi-square statistic is 10.4000 with
4 df (since there are five groups). Thep-value of 0.0342 indicates that there is a significant
difference among the drawing time distributions at the five angles.

Output 7.8 Results of Durbin’s Test

Summary Statistics for angle by time
Controlling for subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 1.8000 0.1797
2 Row Mean Scores Differ 4 10.4000 0.0342

Total Sample Size = 40
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While Durbin’s test uses within-block ranks, you could perform a similar test using
aligned ranks, as described in Section 7.5. In addition, Benard and van Elteren (1953)
generalized the Durbin test to the case where some experimental units may contain several
observations per treatment. This generalization can also be computed using the CMH
option of PROC FREQ.

7.7 Rank Analysis of Covariance

The analysis of covariance (ANCOVA) is a standard statistical methodology that combines
the features of analysis of variance (ANOVA) and linear regression to determine if there is
a difference in some response variable between two or more groups. The basic idea is to
augment the ANOVA model containing the group effects with one or more additional
categorical or quantitative variables that are related to the response variable. These
additional variablescovarywith the response and so are called covariables or covariates.

One of the main uses of ANCOVA is to increase precision in randomized experiments by
using the relationship between the response variable and the covariates to reduce the error
variability in comparing treatment groups. In this setting, ANCOVA often results in more
powerful tests, shorter confidence intervals, and a reduction in the sample size required to
establish differences among treatment groups. ANCOVA is also useful in adjusting for
sources of bias in observational studies.

The validity of classical parametric ANCOVA depends on several assumptions, including
normality of error terms, equality of error variances for different treatments, equality of
slopes for the different treatment regression lines, and linearity of regression. For
situations in which these assumptions may not be satisfied, Quade (1967) proposed the use
of rank analysis of covariance. This technique can be combined with the randomization
model framework of extended Mantel-Haenszel statistics to carry out nonparametric
comparisons between treatment groups, after adjusting for the effects of one or more
covariates. The methodology, which has been described by Koch et al. (1982, 1990), can
easily be implemented using the SAS System.

Table 7.5 displays exercise data from treadmill testing of healthy males and females
(Bruce, Kusumi, and Hosmer 1973; Fisher and van Belle 1993). The purpose of the
analysis is to determine if men and women use the same amount of oxygen. The outcome,
VO2MAX, is computed by determining the volume of oxygen used per minute per
kilogram of body weight. Since the effort expended to go further on the treadmill increases
with the duration of time on the treadmill, there should be some relationship between
VO2MAX and duration on the treadmill; thus, this variable is used as a covariate.
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Table 7.5. Exercise Data for Healthy Males and Females

Males Females
ID Durat. VO2 ID Durat. VO2 ID Durat. VO2 ID Durat. VO2

1 706 41.5 23 582 35.8 1 660 38.1 23 461 30.5
2 732 45.9 24 503 29.1 2 628 38.4 24 540 25.9
3 930 54.5 25 747 47.2 3 637 41.7 25 588 32.7
4 900 60.3 26 600 30.0 4 575 33.5 26 498 26.9
5 903 60.5 27 491 34.1 5 590 28.6 27 483 24.6
6 976 64.6 28 694 38.1 6 600 23.9 28 554 28.8
7 819 47.4 29 586 28.7 7 562 29.6 29 521 25.9
8 922 57.0 30 612 37.1 8 495 27.3 30 436 24.4
9 600 40.2 31 610 34.5 9 540 33.2 31 398 26.3

10 540 35.2 32 539 34.4 10 470 26.6 32 366 23.2
11 560 33.8 33 559 35.1 11 408 23.6 33 439 24.6
12 637 38.8 34 653 40.9 12 387 23.1 34 549 28.8
13 593 38.9 35 733 45.4 13 564 36.6 35 360 19.6
14 719 49.5 36 596 36.9 14 603 35.8 36 566 31.4
15 615 37.1 37 580 41.6 15 420 28.0 37 407 26.6
16 589 32.2 38 550 22.7 16 573 33.8 38 602 30.6
17 478 31.3 39 497 31.9 17 602 33.6 39 488 27.5
18 620 33.8 40 605 42.5 18 430 21.0 40 526 30.9
19 710 43.7 41 552 37.4 19 508 31.2 41 524 33.9
20 600 41.7 42 640 48.2 20 565 31.2 42 562 32.3
21 660 41.0 43 500 33.6 21 464 23.7 43 496 26.9
22 644 45.9 44 603 45.0 22 495 24.5

The following statements create a SAS data set containing the sex, subject ID, duration of
exercise (seconds), and VO2MAX values for each subject.

data exercise;
input sex $ case duration vo2max @@;
datalines;

M 1 706 41.5 M 2 732 45.9 M 3 930 54.5 M 4 900 60.3
M 5 903 60.5 M 6 976 64.6 M 7 819 47.4 M 8 922 57.0
M 9 600 40.2 M 10 540 35.2 M 11 560 33.8 M 12 637 38.8
M 13 593 38.9 M 14 719 49.5 M 15 615 37.1 M 16 589 32.2
M 17 478 31.3 M 18 620 33.8 M 19 710 43.7 M 20 600 41.7
M 21 660 41.0 M 22 644 45.9 M 23 582 35.8 M 24 503 29.1
M 25 747 47.2 M 26 600 30.0 M 27 491 34.1 M 28 694 38.1
M 29 586 28.7 M 30 612 37.1 M 31 610 34.5 M 32 539 34.4
M 33 559 35.1 M 34 653 40.9 M 35 733 45.4 M 36 596 36.9
M 37 580 41.6 M 38 550 22.7 M 39 497 31.9 M 40 605 42.5
M 41 552 37.4 M 42 640 48.2 M 43 500 33.6 M 44 603 45.0
F 1 660 38.1 F 2 628 38.4 F 3 637 41.7 F 4 575 33.5
F 5 590 28.6 F 6 600 23.9 F 7 562 29.6 F 8 495 27.3
F 9 540 33.2 F 10 470 26.6 F 11 408 23.6 F 12 387 23.1
F 13 564 36.6 F 14 603 35.8 F 15 420 28.0 F 16 573 33.8
F 17 602 33.6 F 18 430 21.0 F 19 508 31.2 F 20 565 31.2
F 21 464 23.7 F 22 495 24.5 F 23 461 30.5 F 24 540 25.9
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F 25 588 32.7 F 26 498 26.9 F 27 483 24.6 F 28 554 28.8
F 29 521 25.9 F 30 436 24.4 F 31 398 26.3 F 32 366 23.2
F 33 439 24.6 F 34 549 28.8 F 35 360 19.6 F 36 566 31.4
F 37 407 26.6 F 38 602 30.6 F 39 488 27.5 F 40 526 30.9
F 41 524 33.9 F 42 562 32.3 F 43 496 26.9
;
run;

The first step of the analysis is to compute the ranks of the response variable and covariate
in the combined group of males and females. You do this using PROC RANK, as follows:

proc rank out=ranks;
var duration vo2max;

run;

The next step is to calculate the residuals from the linear regression of the VO2MAX ranks
on the duration ranks using PROC REG. The residuals are saved in an output data set.

proc reg noprint;
model vo2max=duration;
output out=residual r=resid;

run;

Finally, the Mantel-Haenszel mean score statistic is used to compare the mean values of
the residuals in males and females using TABLE scores.

proc freq;
tables sex*resid / noprint cmh2;

run;

Output 7.9 displays the results, which indicate a clearly significant difference between
males and females (chi-square=11.7626, 1 df,p = 0:0006).

Output 7.9 Rank Analysis of Covariance Results

Summary Statistics for sex by resid

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 11.7626 0.0006
2 Row Mean Scores Differ 1 11.7626 0.0006

Total Sample Size = 87

The methodology can also be modified for the situation in which there are multiple strata.
Table 7.6 displays data from an experiment to evaluate the effectiveness of topically
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applied stannous fluoride and acid phosphate fluoride in reducing the incidence of dental
caries, as compared with a placebo treatment of distilled water (Cartwright, Lindahl, and
Bawden 1968; Quade 1982). These data are from 69 female children from three centers
who completed the two-year study. The stannous fluoride, acid phosphate fluoride, and
distilled water treatment groups are denoted by SF, APF, and W. The columns labeled B
and A represent the number of decayed, missing, or filled teeth (DMFT) before and after
the study, respectively. In this example, the response to be compared among the three
groups is the number of DMFT after treatment; the number of DMFT before treatment is
used as a covariate. In addition, the analysis is stratified by center.

Table 7.6. Dental Caries Data

Center 1 Center 2 Center 3
ID Grp B A ID Grp B A ID Grp B A ID Grp B A
1 W 7 11 1 W 10 14 1 W 2 4 18 APF 10 12
2 W 20 24 2 W 13 17 2 W 13 18 19 APF 7 11
3 W 21 25 3 W 3 4 3 W 9 12 20 APF 13 12
4 W 1 2 4 W 4 7 4 W 15 18 21 APF 5 8
5 W 3 7 5 W 4 9 5 W 13 17 22 APF 1 3
6 W 20 23 6 SF 15 18 6 W 2 5 23 APF 8 9
7 W 9 13 7 SF 6 8 7 W 9 12 24 APF 4 5
8 W 2 4 8 SF 4 6 8 SF 4 6 25 APF 4 7
9 SF 11 13 9 SF 18 19 9 SF 10 14 26 APF 14 14

10 SF 15 18 10 SF 11 12 10 SF 7 11 27 APF 8 10
11 APF 7 10 11 SF 9 9 11 SF 14 15 28 APF 3 5
12 APF 17 17 12 SF 4 7 12 SF 7 10 29 APF 11 12
13 APF 9 11 13 SF 5 7 13 SF 3 6 30 APF 16 18
14 APF 1 5 14 SF 11 14 14 SF 9 12 31 APF 8 8
15 APF 3 7 15 SF 4 6 15 SF 8 10 32 APF 0 1

16 APF 4 4 16 SF 19 19 33 APF 3 4
17 APF 7 7 17 SF 10 13
18 APF 0 4
19 APF 3 3
20 APF 0 1
21 APF 8 8

The following SAS statements read in the variables CENTER, ID, GROUP, BEFORE, and
AFTER, whose values are displayed in Table 7.6.

data caries;
input center id group $ before after @@;
datalines;

1 1 W 7 11 1 2 W 20 24 1 3 W 21 25 1 4 W 1 2
1 5 W 3 7 1 6 W 20 23 1 7 W 9 13 1 8 W 2 4
1 9 SF 11 13 1 10 SF 15 18 1 11 APF 7 10 1 12 APF 17 17
1 13 APF 9 11 1 14 APF 1 5 1 15 APF 3 7 2 1 W 10 14
2 2 W 13 17 2 3 W 3 4 2 4 W 4 7 2 5 W 4 9
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2 6 SF 15 18 2 7 SF 6 8 2 8 SF 4 6 2 9 SF 18 19
2 10 SF 11 12 2 11 SF 9 9 2 12 SF 4 7 2 13 SF 5 7
2 14 SF 11 14 2 15 SF 4 6 2 16 APF 4 4 2 17 APF 7 7
2 18 APF 0 4 2 19 APF 3 3 2 20 APF 0 1 2 21 APF 8 8
3 1 W 2 4 3 2 W 13 18 3 3 W 9 12 3 4 W 15 18
3 5 W 13 17 3 6 W 2 5 3 7 W 9 12 3 8 SF 4 6
3 9 SF 10 14 3 10 SF 7 11 3 11 SF 14 15 3 12 SF 7 10
3 13 SF 3 6 3 14 SF 9 12 3 15 SF 8 10 3 16 SF 19 19
3 17 SF 10 13 3 18 APF 10 12 3 19 APF 7 11 3 20 APF 13 12
3 21 APF 5 8 3 22 APF 1 3 3 23 APF 8 9 3 24 APF 4 5
3 25 APF 4 7 3 26 APF 14 14 3 27 APF 8 10 3 28 APF 3 5
3 29 APF 11 12 3 30 APF 16 18 3 31 APF 8 8 3 32 APF 0 1
3 33 APF 3 4
;
run;

The next statements produce standardized ranks for the covariate BEFORE and the
response variable AFTER in each of the three centers. Standardized ranks are used to
adjust for the fact that the number of patients differs among centers.

proc rank nplus1 ties=mean out=ranks;
by center;
var before after;

run;

The NPLUS1 option of the RANK procedure requests fractional ranks using the
denominatorn+ 1, wheren is the center-specific sample size. The TIES=MEAN option
requests that tied values receive the mean of the corresponding ranks (midranks). Since
TIES=MEAN is the default for PROC RANK, this option was not specified in the previous
example. However, when fractional ranks are requested using either the FRACTION
(denominator isn) or NPLUS1 (denominator isn+ 1) options, the TIES=HIGH option is
the default. Thus, you must specify both the NPLUS1 and TIES=MEAN options.

PROC REG is then used to fit separate linear regression models for the three centers. In
each model, the standardized ranks of the AFTER and BEFORE variables are used as the
dependent and independent variables, respectively. The following statements request these
models and output the corresponding residuals into an output data set named RESIDUAL.

proc reg noprint;
by center;
model after=before;
output out=residual r=resid;

run;

Finally, the stratified mean score test, using the values of the residuals as scores, compares
the three groups.

proc freq;
tables center*group*resid / noprint cmh2;

run;



7.7 Rank Analysis of Covariance 179

Output 7.10 displays the results. The difference among the three treatment groups, after
adjusting for the baseline number of DMFT and center, is clearly significant (row mean
score chi-square=17.5929, 2 df,p = 0:0002).

Output 7.10 Results of Stratified Rank Analysis of Covariance

Summary Statistics for group by resid
Controlling for center

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 17.1716 <.0001
2 Row Mean Scores Differ 2 17.5929 0.0002

Total Sample Size = 69

The analyses described in this section are generally limited to randomized clinical trials,
since the covariables should have similar distributions in the groups being compared. In
the dental caries example, patients were randomly assigned to one of the three treatment
groups, and Cartwright, Lindahl, and Bawden (1968) reported that the groups were
comparable with respect to the number of DMFT at baseline, as well as with respect to
other baseline variables. Although the patients in the APF group appear to have fewer
DMFT at baseline than the patients in the SF and W groups (the corresponding medians
were 7, 9, and 9, respectively), there is insufficient evidence to conclude that the
distributions are significantly different (Kruskal-Wallis chi-square=4.4 with 2 df,
p = 0:11); thus, rank analysis of covariance methods are appropriate.

In contrast, the exercise data (Table 7.5) were obtained from a nonrandomized experiment
comparing men and women, and the distributions of the covariate, duration of time on the
treadmill, differ significantly in the two samples. In particular, the average durations in
males and females are 647.4 and 514.9 seconds, respectively (p < 0:001 from the
two-samplet-test). Therefore, although the analysis presented in this section is a useful
illustration of the rank analysis of covariance methodology, its results should be
interpreted cautiously.
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Chapter 8

Logistic Regression I: Dichotomous
Response

8.1 Introduction

The previous chapters discussed the investigation of statistical association, primarily by
testing the hypothesis of no association between a set of groups and outcomes for a
response with adjustment for a set of strata. Recall that Mantel-Haenszel strategies
produced tests for specific alternatives to no association: general association, location
shifts for means, and linear trends. This chapter shifts the focus to statistical models,
methods aimed at describing the nature of the association in terms of a parsimonious
number of parameters. Besides describing the variation in the data, statistical modeling
allows you to address questions about association in terms of hypotheses concerning
model parameters.

If certain realistic sampling assumptions are plausible, a statistical model can be used to
make inferences from a study population to a larger target population. If you are analyzing
a clinical trial that assigned its subjects to a randomized protocol, then you can generalize
your results to the population from which the subjects were selected and possibly to a
more general target population. If you are analyzing observational data, and you can argue
that your study subjects are conceptually representative of some larger target population,
then you may make inferences to that target population.

Logistic regression is a form of statistical modeling that is often appropriate for categorical
outcome variables. It describes the relationship between a categorical response variable
and a set of explanatory variables. The response variable is usually dichotomous, but it
may be polytomous, that is, have more than two response levels. These multiple-level
response variables can be nominally or ordinally scaled. This chapter addresses logistic
regression when the response is dichotomous; typically the two outcomes are yes and no.
Logistic regression with more than two response variable levels is covered in Chapter 9,
“Logistic Regression II: Polytomous Response.” Another kind of logistic regression is
called conditional logistic regression and is often used for stratified data. Chapter 10,
“Conditional Logistic Regression,” describes this methodology.

Chapter 8 and Chapter 9 focus on asymptotic methods that require a certain sample size in
order for model fit and effect assessment tests to be valid. However, sometimes your data
are so sparse or have such small cell counts that these methods are not valid. This chapter
also discusses exact logistic regression, which is an alternative strategy for these situations.

The explanatory variables in logistic regression can be categorical or continuous.
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Sometimes the term “logistic regression” is restricted to analyses that include continuous
explanatory variables, and the term “logistic analysis” is used for those situations where all
the explanatory variables are categorical. In this book, logistic regression refers to both
cases. Logistic regression has applications in fields such as epidemiology, medical
research, banking, market research, and social research. As you will see, one of its
advantages is that model interpretation is possible through odds ratios, which are functions
of model parameters.

Several procedures in the SAS System can be used to perform logistic regression,
including the LOGISTIC procedure, the CATMOD procedure, and the GENMOD
procedure. The LOGISTIC procedure is designed primarily for logistic regression
analysis, and it provides useful information such as odds ratio estimates and model
diagnostics. The CATMOD procedure is a general procedure designed to fit models to
functions of categorical response variables. PROC GENMOD is a procedure for analyzing
generalized linear models, of which logistic regression is a simple case. In this chapter,
attention is focused on the use of the LOGISTIC procedure to perform logistic regression.

8.2 Dichotomous Explanatory Variables

8.2.1 Logistic Model

Table 8.1 displays the coronary artery disease data that were analyzed in Chapter 3, “Sets
of 2� 2 Tables.” Recall that the study population consists of people who visited a clinic
on a walk-in basis and required a catheterization. The response, presence of coronary
artery disease (CA), is dichotomous, as are the explanatory variables, sex and ECG. These
data were analyzed in Section 3.3.2 with Mantel-Haenszel methods; also, odds ratios and
the common odds ratio were computed. Recall that ECG was clearly associated with
disease status, adjusted for gender.

Table 8.1. Coronary Artery Disease Data

Sex ECG Disease No DiseaseTotal
Female < 0.1 ST segment depression 4 11 15
Female � 0.1 ST segment depression 8 10 18
Male < 0.1 ST segment depression 9 9 18
Male � 0.1 ST segment depression 21 6 27

Assume that these data arise from a stratified simple random sample so that presence of
coronary artery disease is distributed binomially for each sex� ECG combination, that is,
for each row of Table 8.1. These rows are called groups or subpopulations. You can then
write a model for the probability, or the likelihood, of these data. The sex by ECG by
disease status classification has the product binomial distribution

Prfnhijg =
2Y

h=1

2Y
i=1

nhi+!

nhi1!nhi2!
�nhi1hi (1� �hi)

nhi2

The quantity�hi is the probability that a person of thehth sex with anith ECG status has
coronary artery disease, andnhi1 andnhi2 are the numbers of persons of thehth sex and
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ith ECG with and without coronary artery disease, respectively (h = 1 for females,h = 2
for males;i = 1 for ECG < 0.1,i = 2 for ECG� 0.1;j = 1 for disease,j = 2 for no
disease, andnhi+ = (nhi1 + nhi2)). You can apply the logistic model to describe the
variation among thef�hig:

�hi =
1

1 + expf�(�+
Pt

k=1 �kxhik)g

Another form of this equation that is often used is

�hi =
expf�+

Pt
k=1 �kxhikg

1 + expf�+
Pt

k=1 �kxhikg

The quantity� is the intercept parameter; thefxhikg are thet explanatory variables for the
hth sex andith ECG;k = 1; : : : ; t; and thef�kg are thet regression parameters.

The matrix form of this equation is

�hi =
exp(�+ x0hi�)

1 + exp(�+ x0hi�)

where the quantity� is a vector oft regression parameters, andxhi is a vector of
explanatory variables corresponding to thehith group.

You can show that the odds of CA disease for thehith group is

�hi
1� �hi

= expf�+
Pt

k=1 �kxhikg

By taking natural logarithms on both sides, you obtain a linear model for the logit:

log

�
�hi

1� �hi

�
= �+

tX
k=1

�kxhik

The logit is the log of an odds, so this model is for the log odds of coronary artery disease
versus no coronary artery disease for thehith group. The log odds for thehith group can
be written as the sum of an intercept and a linear combination of explanatory variable
values multiplied by the appropriate parameter values. This result allows you to obtain the
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model-predicted odds ratios for variation in thexhik by exponentiating model parameter
estimates for the�k, as explained below.

Besides taking the familiar linear form, the logistic model has the useful property that all
possible values of(�+ x0hi�) in (�1;1) map into(0; 1) for �hi. Thus, predicted
probabilities produced by this model are constrained to lie between 0 and 1. This model
produces no negative predicted probabilities and no predicted probabilities greater than 1.
Maximum likelihood methods are generally used to estimate� and�. PROC LOGISTIC
uses the Fisher scoring method, which is equivalent to model fitting with iteratively
weighted least squares. PROC CATMOD and PROC GENMOD use Newton-Raphson
algorithms. When the overall sample sizen =

P
h

P
i nhi is sufficiently large, the

resulting estimates for� and� have a multivariate normal distribution for which a
consistent estimate of the corresponding covariance matrix is conveniently available. On
this basis, confidence intervals and test statistics are straightforward to construct for
inferences concerning� and�. See Appendix A in this chapter for more methodological
detail.

8.2.2 Model Fitting

A useful first model for the coronary disease data is one that includes main effects for sex
and ECG. Since these effects are dichotomous, there are three parameters in this model,
including the intercept.

You can write this main effects model as2664
logit(�11)
logit(�12)
logit(�21)
logit(�22)

3775 =

2664
�
� + �2
� + �1
� + �1 + �2

3775 =

2664
1 0 0
1 0 1
1 1 0
1 1 1

3775
24 �
�1
�2

35
This type of parameterization is often calledincremental effectsparameterization. It has a
model matrix (also called a design matrix) composed of 0s and 1s. The quantity� is the
log odds of coronary artery disease for females with an ECG of less than 0.1. Since
females with ST segment depression less than 0.1 are described by the intercept, this group
is known as thereference cellin this parameterization. The parameter�1 is the increment
in log odds for males, and�2 is the increment in log odds for having an ECG of at least
0.1. Table 8.2 displays the probabilities and odds predicted by this model.

Table 8.2. Model-Predicted Probabilities and Odds

Sex ECG Pr{CA Disease}=�hi Odds of CA Disease

Females < 0.1 e�=(1 + e�) e�

Females � 0.1 e�+�2=(1 + e�+�2) e�+�2

Males < 0.1 e�+�1=(1 + e�+�1) e�+�1

Males � 0.1 e�+�1+�2=(1 + e�+�1+�2) e�+�1+�2
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You can calculate the odds ratio for males versus females by forming the ratio of male
odds of CA disease to female odds of CA disease for either low or high ECG (see
Chapter 2,“The 2� 2 Table,” for a discussion of odds ratios):

e�+�1

e�
= e�1 or

e�+�1+�2

e�+�2
= e�1

Similarly, the odds ratio for high ECG versus low ECG is determined by forming the
corresponding ratio of the odds of CA disease for either sex:

e�+�1+�2

e�+�1
= e�2 or

e�+�2

e�
= e�2

Thus, you can obtain odds ratios as functions of the model parameters in logistic
regression. With incremental effects parameterization for a main effects model, you
simply exponentiate the parameter estimates. However, unlike the odds ratios you
calculate from individual 2� 2 tables, these odds ratios have been adjusted for all other
explanatory variables in the model.

8.2.3 Goodness of Fit

Once you have applied the model, you need to assess how well it fits the data, or how close
the model-predicted values are to the corresponding observed values. Test statistics that
assess fit in this manner are known asgoodness-of-fit statistics. They address the
differences between observed and predicted values, or their ratio, in some appropriate
manner. Departures of the predicted proportions from the observed proportions should be
essentially random. The test statistics have approximate chi-square distributions when the
fnhijg are sufficiently large. If they are larger than a tolerable value, then you have an
oversimplified model and you need to identify some other factors to better explain the
variation in the data.

Two traditional goodness-of-fit tests are the Pearson chi-square,QP , and the likelihood
ratio chi-square,QL, also known as thedeviance.

QP =
2X

h=1

2X
i=1

2X
j=1

(nhij �mhij)
2=mhij

QL =

2X
h=1

2X
i=1

2X
j=1

2nhij log

�
nhij
mhij

�

where themhij are the model-predicted counts defined as

mhij =

�
nhi+�̂hi for j=1
nhi+(1� �̂hi) for j=2
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The quantity�̂hi is the estimate of�hi using the estimates of� and the�k. If the model
fits, bothQP andQL are approximately distributed as chi-square with degrees of freedom
equal to the number of rows in the table minus the number of parameters. For the main
effects model being discussed, there are four rows in the table (four groups) and three
parameters, including the intercept, and soQP andQL have4� 3 = 1 degree of freedom.
Sample size guidelines for these statistics to be approximately chi-square include

� each of the groups has at least 10 subjects (nhi+ � 10)
� 80% of the predicted counts (mhij) are at least 5
� all other expected counts are greater than 2, with essentially no 0 counts

When the above guidelines do not apply, there is usually a tendency for the chi-square
approximation toQP andQL to overstate lack of fit, and so tolerably small values for them
are robustly interpretable as supporting goodness of fit. For a more rigorous evaluation of
goodness of fit when thefnhijg are not large enough to justify chi-square approximations
for QL andQP , exact methods for logistic regression are available (see Section 8.8).

8.2.4 Using PROC LOGISTIC

The LOGISTIC procedure was designed specifically to fit logistic regression models. You
specify the response variable and the explanatory variables in a MODEL statement, and it
fits the model via maximum likelihood estimation. PROC LOGISTIC produces the
parameter estimates, their standard errors, and statistics to assess model fit. In addition, it
also provides several model selection methods, puts predicted values and other statistics
into output data sets, and includes a number of options for controlling the model-fitting
process.

The following SAS code creates the data set CORONARY.

data coronary;
input sex ecg ca count @@;
datalines;

0 0 0 11 0 0 1 4
0 1 0 10 0 1 1 8
1 0 0 9 1 0 1 9
1 1 0 6 1 1 1 21
;
run;

The variable CA is the response variable, and SEX and ECG are the explanatory variables.
The variable SEX takes the value 0 for females and 1 for males, and ECG takes the value 0
for lower ST segment depression and 1 for higher ST segment depression. Thus, these
variables provide the values for the model matrix. Such coding is known as
indicator-codingor dummy-coding.

The variable CA takes the value 1 if CA disease is present and is 0 otherwise. By default,
PROC LOGISTIC orders the response variable values alphanumerically so that, for these
data, it bases its model on the probability of the smallest value, Pr{CA=0}, which is Pr{no
coronary artery disease}. This means that it models the log odds of {no coronary artery
disease}. If you want to change the basis of the model to be Pr{CA=1}, which is
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Pr{coronary artery disease}, you have to alter this default behavior. Data analysts usually
want their models to be based on the probability of the event (disease, success), which is
often coded as 1.

The DESCENDING option in the PROC LOGISTIC statement requests that the response
value ordering be reversed. For these data, this means that PROC LOGISTIC will model
Pr{coronary artery disease}. For a dichotomous response variable, the effect of reversing
the order of the response values is to change the sign of the parameter estimates. Thus, if
your estimates for the parameters have opposite signs from another logistic regression run,
you have modeled opposite forms for the dichotomous response variable.

The next group of SAS statements invokes PROC LOGISTIC. Note the use of the
DESCENDING option. Since the data are in frequency, or count, form, you need to
indicate that to PROC LOGISTIC. This is done with the FREQ statement, which is similar
in use to the WEIGHT statement in PROC FREQ. (Note that a WEIGHT statement is
available with the LOGISTIC procedure; however, it is used somewhat differently.) The
main effects model is specified in the MODEL statement, which also includes the options
SCALE=NONE and AGGREGATE. The SCALE option produces goodness-of-fit
statistics; the AGGREGATE option requests that PROC LOGISTIC treat each unique
combination of the explanatory variable values as a distinct group in computing the
goodness-of-fit statistics.

proc logistic descending;
freq count;
model ca=sex ecg / scale=none aggregate;

run;

Output 8.1 displays the resulting “Response Profile” table. The response variable values
are listed according to their PROC LOGISTICordered values. The DESCENDING option
has made CA=1 the first ordered value (1) and CA=0 the second ordered value (2). Thus,
the model is based on Pr{coronary artery disease}. It is always important to check the
“Response Profile” table to ensure that PROC LOGISTIC is ordering response variable
values the way you want. You can also use the ORDER= option in the PROC LOGISTIC
statement to establish a different set of ordered values, for example, by creating formats
for the levels of the response variable and using ORDER=FORMATTED.

Output 8.1 Response Profile

Response Profile

Ordered Total
Value ca Frequency

1 1 42
2 0 36

Output 8.2 contains the goodness-of-fit statistics.QP has the value 0.2155, andQL has the
value 0.2141. Compared to a chi-square distribution with 1 df, these values suggest that
the model fits the data adequately. The note that the number of unique profiles is 4 means
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that these statistics are computed based on the 4 groups that are the rows of Table 8.1, the
result of the AGGREGATE option.

Output 8.2 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 1 0.2141 0.2141 0.6436
Pearson 1 0.2155 0.2155 0.6425

Number of unique profiles: 4

Output 8.3 lists various criteria for assessing model fit through the quality of the
explanatory capacity of the model; for�2 log L and the score statistic, this is done by
testing whether the explanatory variables are jointly significant relative to the chi-square
distribution. AIC and SC serve a similar purpose while adjusting for the number of
explanatory variables in the model. All of these statistics are analogous to the overallF
test for the model parameters in a linear regression setting. Refer to theSAS/STAT User’s
Guide, Version 8, for more information on these statistics.

Output 8.3 Testing Joint Significance of the Explanatory Variables

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 109.669 101.900
SC 112.026 108.970
-2 Log L 107.669 95.900

8.2.5 Interpretation of Main Effects Model

With the satisfactory goodness of fit, it is appropriate to examine the parameter estimates
from the model. Note that these results apply only to the population consisting of those
persons who visited this medical clinic and required catheterization. The “Analysis of
Maximum Likelihood Estimates” table in Output 8.4 lists the estimated model parameters,
their standard errors, Wald chi-square tests, andp-values. A Wald test is a statistic that
takes the form of the squared value ratio for the estimate to its standard error; it follows an
approximate chi-square distribution when the sample size is sufficiently large. Wald
statistics are easy to compute and are based on normal theory; however, their statistical
properties are somewhat less optimal than those of the likelihood ratio statistics for small
samples. Moreover, when there is concern for the statistical properties of results from
small samples, exact methods can be helpful; see Section 8.8.
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Output 8.4 Main Effects Model: ANOVA Table

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.1747 0.4854 5.8571 0.0155
sex 1 1.2770 0.4980 6.5750 0.0103
ecg 1 1.0545 0.4980 4.4844 0.0342

The variable SEX is significant compared to a significance level of 0.05, with a Wald
statistic (usually denotedQW ) of 6.5750. The variable ECG is also significant, with
QW = 4:4844.

The model equation can be written as follows:

logit(�hi) = �1:1747 + 1:2770 SEX + 1:0545 ECG

Table 8.3 lists the parameter interpretations, and Table 8.4 displays the predicted logits and
odds of coronary disease.

Table 8.3. Interpretation of Parameters

Standard
Parameter Estimate Error Interpretation

� �1:1747 0.485 log odds of coronary disease
for females with ECG< 0:1

�1 1.2770 0.498 increment to log odds for males

�2 1.0545 0.498 increment to log odds for high ECG

Table 8.4. Model-Predicted Logits and Odds of CA Disease

Odds of
Sex ECG Logit Coronary Artery Disease

Female < 0.1 �̂ = �1:1747 e�̂ = e�1:1747 = 0:3089

Female � 0.1 �̂+ �̂2 = �0:1202 e�̂+�̂2 = e�0:1202 = 0:8867

Male < 0.1 �̂+ �̂1 = 0:1023 e�̂+�̂1 = e0:1023 = 1:1077

Male � 0.1 �̂+ �̂1 + �̂2 = 1:1568 e�̂+�̂1+�̂2 = e1:1568 = 3:1797
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The odds ratio for males compared to females is the ratio of the predicted odds of CA
disease for males versus females, which, on page 187, was shown to be

e�̂1 = e1:2770 = 3:586

Men in the study have three times higher odds for coronary artery disease than women in
the study. The odds ratio for ECG� 0:1 versus ECG< 0:1 is the ratio of the predicted
odds of CA disease for high ECG versus low ECG, which was shown to be

e�̂2 = e1:0545 = 2:871

Those persons with ECG� 0:1 have nearly three times the odds of coronary artery disease
as those with ECG< 0:1. This quantity is very similar to the common odds ratio estimates
computed by PROC FREQ and displayed in Section 3.3.2 ( ̂MH = 2:847 and ̂L=2.859).

Output 8.5 contains the adjusted odds ratios and their 95% Wald confidence limits. The
point estimates have the values calculated above. Neither of the confidence limits includes
the value 1 in agreement with the statistical significance of each factor relative to the
hypothesis of no association.

Predicted values are easily produced. The OUTPUT statement specifies that predicted
values for the first ordered value (CA=1) be put into the variable PROB and output into the
SAS data set PREDICT along with the variables from the input data set. You can print
these values with the PRINT procedure.

proc logistic descending;
freq count;
model ca=sex ecg;
output out=predict pred=prob;

run;
proc print data=predict;
run;

Output 8.5 Confidence Limits for Odds Ratios

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

sex 3.586 1.351 9.516
ecg 2.871 1.082 7.618

The data set PREDICT contains model-predicted values for each observation in the input
data set. The created variable named PROB contains these predicted values; the created
variable–LEVEL– tells you that they are the predicted values for the first ordered value,
or Pr{coronary artery disease}. Observations 7 and 8 display the predicted value 0.76075
for males with high ECG.
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Output 8.6 Predicted Values Output Data Set

Obs sex ecg ca count _LEVEL_ prob

1 0 0 0 11 1 0.23601
2 0 0 1 4 1 0.23601
3 0 1 0 10 1 0.46999
4 0 1 1 8 1 0.46999
5 1 0 0 9 1 0.52555
6 1 0 1 9 1 0.52555
7 1 1 0 6 1 0.76075
8 1 1 1 21 1 0.76075

In conclusion, the main effects model is satisfactory. Being male and having ECG� 0:1
are risk indicators for the presence of coronary artery disease for these data. If you can
make the argument that this convenience sample is representative of a target group of
coronary artery disease patients, possibly those persons who visit clinics on a walk-in
basis, then these results may also apply to that population.

8.2.6 Alternative Methods of Assessing Goodness of Fit

There are other strategies available for assessing goodness of fit; these are based on fitting
an appropriate expanded model and then evaluating whether the contribution of the
additional terms is nonsignificant. If so, you then conclude that the original model has an
adequate fit. You can compute likelihood ratio tests for the significance of the additional
terms by taking the difference in the log likelihood for both models (�2 Log L in the
“Model Fit Statistics” table); this difference has an approximate chi-square distribution
with degrees of freedom equal to the difference in the number of parameters in the models.
You can also examine the Wald statistic for the additional parameters in order to assess
goodness of fit.

For these data, the expanded model would be the one that contains the main effects for sex
and ECG and their interaction. The desired likelihood ratio statistic tests the significance
of the interaction term and thus serves as a goodness-of-fit test for the main effects model.

You can write this model as

2664
logit(�11)
logit(�12)
logit(�21)
logit(�22)

3775 =

2664
�
� + �2
� + �1
� + �1 + �2 + �3

3775 =

2664
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

3775
2664

�
�1
�2
�3

3775
The model matrix column corresponding to�3, the interaction term, is constructed by
multiplying the columns for�1 and�2 together. Note that this model is asaturatedmodel,
since there are as many parameters as there are logit functions being modeled.

The following SAS code fits this model. Since PROC LOGISTIC now includes a complete
model-building facility, you simply cross SEX and ECG in the MODEL statement to
specify their interaction. The interaction term in the resulting model matrix has the value 1
if both SEX and ECG are 1; otherwise, it is 0.
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ods select FitStatistics ParameterEstimates;
proc logistic descending;

freq count;
model ca=sex ecg sex*ecg;

run;

The resulting tables titled “Model Fit Statistics” and “Analysis of Maximum Likelihood
Estimates” follow.

Output 8.7 Results for Saturated Model

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 109.669 103.686
SC 112.026 113.112
-2 Log L 107.669 95.686

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.0116 0.5839 3.0018 0.0832
sex 1 1.0116 0.7504 1.8172 0.1776
ecg 1 0.7885 0.7523 1.0985 0.2946
sex*ecg 1 0.4643 1.0012 0.2151 0.6428

The value for�2(log likelihood) is 95.686 for the saturated model; this is the value for
�2 Log L listed under “Intercept and Covariates.” The value for the main effects model is
95.900 (see Output 8.3), yielding a difference of 0.214. This difference is the likelihood
ratio test value, with 1 df (4 parameters for the expanded model� 3 parameters for the
main effects model). Compared with a chi-square distribution with 1 df, the
non-significance of this statistic supports the adequacy of the main effects model. Note
that you can always compute a likelihood ratio test in this manner for the contribution of a
particular model term or a set of model terms.

This likelihood ratio test value is the same as the deviance reported for the main effects
model in Output 8.2. This is because the deviance statistic is effectively comparing the
model for which it is computed with a saturated model.

Note that thep-value for the Wald statistic is 0.2151 for the interaction listed in the
“Analysis of Maximum Likelihood Estimates” table. Both the likelihood ratio statistic and
the Wald statistic are evaluating the same hypothesis: whether or not the interaction
explains any of the variation among the different log odds beyond that explained by the
main effects. They support goodness of fit of the main effects model by indicating
nonsignificance of the interaction between sex and ECG. The Wald statistic and the
likelihood ratio statistic are essentially equivalent for large samples.
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8.2.7 Overdispersion

Sometimes a logistic model is considered reasonable, but the goodness-of-fit statistics
indicate that too much variation remains (usually the deviance or deviance/df is
examined). This condition is known asoverdispersion, and it occurs when the data do not
follow a binomial distribution well; the condition is also known as heterogeneity.

You can model the overdispersion by adjusting, or scaling, the covariance matrix to
account for it. This involves the additional estimation of a dispersion parameter, often
called a scaling parameter. PROC LOGISTIC allows you to specify a scaling parameter
through the use of the SCALE= option; this explains why the SCALE=NONE option is
used to generate the goodness-of-fit statistics, including the deviance, when no scale
adjustment is desired. McCullagh and Nelder (1989) and Collett (1991) discuss
overdispersion comprehensively. The SAS Institute publicationSAS/STAT User’s Guide,
Version 8, describes these options in detail. Another method for addressing overdispersion
is discussed in Section 15.12 in the context of methods involving generalized estimating
equations.

8.3 Using the CLASS Statement

In the previous example, PROC LOGISTIC used the values of the explanatory variables to
construct the model matrix. These values were already coded as 0s and 1s. However, often
your SAS data set contains a response variable or explanatory variables that have character
values. Or, your model may involve a number of explanatory variables and/or interaction
terms so that constructing and managing the required terms as variables becomes a chore.
The LOGISTIC procedure handles character-valued response variables by creating ordered
values based on the alphabetical order of the response variable values. In addition, PROC
LOGISTIC now includes a CLASS statement and allows GLM-like model specification so
that constructing variables to be model terms is no longer necessary. This next example
illustrates how the procedure handles character-valued response variables and how the
CLASS statement simplifies the use of classification variables in your model.

8.3.1 Analysis of Sentencing Data

Table 8.5 displays data based on a study on prison sentencing for persons convicted of a
burglary or larceny. Investigators collected information on whether there was a prior arrest
record and whether the crime was a nonresidential burglary, residential burglary, or
something else—usually some sort of larceny. Here, type of crime is divided into
nonresidential burglary versus all others. Sentence was recorded as to whether the offender
was sent to prison.

Table 8.5. Sentencing Data

Type Prior Arrest Prison No Prison Total
Nonresidential Some 42 109 151
Nonresidential None 17 75 92
Other Some 33 175 208
Other None 53 359 412
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Assume that these data arise from a stratified simple random sample so that sentence is
distributed binomially for each offense type� prior arrest record combination, that is, for
each row of Table 8.5. The type of offense by prior arrest status by sentence classification
has the product binomial distribution.

Prfnhijg =
2Y

h=1

2Y
i=1

nhi+!

nhi1!nhi2!
�nhi1hi (1� �hi)

nhi2

The quantity�hi is the probability that a person arrested for a crime of typeh with an ith
prior arrest record receives a prison sentence, andnhi1 andnhi2 are the number of persons
of thehth type andith prior record who did and did not receive prison sentences,
respectively (h=1 for nonresidential,h=2 for other;i=1 for prior arrest,i=2 for no arrest).

Similar to the previous example, a useful preliminary model for the sentencing data is one
that includes main effects for type of offense and prior arrest record. There are three
parameters in this model. The parameter� is the intercept,�1 is the increment in log odds
for committing a nonresidential burglary, and�2 is the increment in log odds for having a
prior arrest record. The probabilities and odds predicted by this model have identical
structure to those presented in Table 8.2, replacing the first column with the values
Nonresidential and Other and replacing the second column with the values Some and
None. The model matrix is identical to the one displayed on page 186.

The following DATA step creates the SAS data set SENTENCE.

data sentence;
input type $ prior $ sentence $ count @@;
datalines;

nrb some y 42 nrb some n 109
nrb none y 17 nrb none n 75
other some y 33 other some n 175
other none y 53 other none n 359
;
run;

The variable SENTENCE is the response variable, and TYPE and PRIOR are the
explanatory variables. Note that SENTENCE is character valued, with values ‘y’ for
prison sentence and ‘n’ for no prison sentence. PROC LOGISTIC orders these values
alphabetically by default so that it bases its model on the probability of the value ‘n’, or
Pr{no prison sentence}. If you want to change the basis of the model to be Pr{prison
sentence}, you have to alter this default behavior.

The following group of SAS statements invoke PROC LOGISTIC. Note that since the
desired model is based on Pr{prison sentence}, the DESCENDING option is specified to
request that ‘y’ be the first ordered value.

proc logistic descending;
class type prior(ref=first) / param=ref;
freq count;
model sentence = type prior / scale=none aggregate;

run;
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You list your classification variables in the CLASS statement. If you desire the
incremental effects parameterization, you specify the option PARAM=REF after a ‘/’. The
procedure provides a number of other parameterizations as well, including the effect
(deviation from the mean) parameterization used in PROC CATMOD and the less than full
rank parameterization used in PROC GLM and PROC GENMOD. The incremental effects
parameterization is a full rank parameterization.

By default, PROC LOGISTIC uses the last ordered value of the explanatory variable as the
reference level and assigns it the value 0. If you want another value to be the reference
level, you specify it with the REF= option after the slash or after each individual variable,
enclosed in parentheses. Here, REF=FIRST indicates that the ‘none’ level of PRIOR is the
reference. You could also specify this value directly with REF=‘none’. Since ‘other’ is the
last alphanumerical value in TYPE, it becomes the reference value for that effect, which is
desired.

The “Response Profile” table indicates that SENTENCE=‘y’ corresponds to the first
ordered value. Thus, the model is based on Pr{prison sentence}.

Output 8.8 Response Profiles

Response Profile

Ordered Total
Value sentence Frequency

1 y 145
2 n 718

The “Class Level Information” table informs you how the model matrix is constructed.
The design variables are the values associated with the explanatory variable levels. Since
you want PRIOR=‘some’ and TYPE=‘nrb’ to be the incremental effects, the design
variables take the value 1 for those levels.

Output 8.9 Class Level Information

Class Level Information

Design
Variables

Class Value 1

type nrb 1
other 0

prior none 0
some 1

The goodness-of-fit statisticsQL = 0:5076 andQP = 0:5025 indicate an adequate model
fit. Note that if these statistics have values that are dissimilar, it is an indication that sample
sizes in the groups are not large enough to support their use as goodness-of-fit statistics.
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Output 8.10 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 1 0.5076 0.5076 0.4762
Pearson 1 0.5025 0.5025 0.4784

Number of unique profiles: 4

Since there are CLASS variables in the model, PROC LOGISTIC prints out the “TYPE III
Analysis of Effects” table. These are Wald tests for the effects. Since both TYPE and
PRIOR have 1 df, these tests are the same as for the parameter estimates in Output 8.12

Output 8.11 TYPE III Analysis of Effects

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

type 1 9.0509 0.0026
prior 1 3.3127 0.0687

The variable TYPE is clearly significant, withQW = 9:0509. The variable PRIOR nearly
approaches significance, withQW = 3:3127 andp = 0:0687. While some analysts might
delete any effects that do not meet their designated 0.05 significance level, it is sometimes
reasonable to keep modestly suggestive effects in the model to avoid potential bias for
estimates of the other effects. In fact, for main effects models where presumably each
explanatory variable chosen has some potential basis for its inclusion, many analysts keep
all effects in the model, regardless of their significance. The model still appropriately
describes the data, and it is easier to compare with other researchers’ models where those
nonsignificant effects may prove to be more important.

Output 8.12 Main Effects Model

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.9523 0.1384 199.0994 <.0001
type nrb 1 0.5920 0.1968 9.0509 0.0026
prior some 1 0.3469 0.1906 3.3127 0.0687

However, you may want to consider removing modest or clearly nonsignificant effects if
some of them are redundant; that is, they are reflecting essentially the same factor. This
can induce collinearity, and sometimes the association of explanatory variables with each
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other may mask the true effect. The additional model terms lead to poorer quality of the
individual parameter estimates since they will be less precise (higher standard errors). In
this case, PRIOR is kept in the model.

The model equation can be written as follows:

logit(�hi) = �1:9523 + 0:5920 TYPE + 0:3469 PRIOR

The “Analysis of Maximum Likelihood Estimates” table for this model is displayed in
Output 8.12. The estimates of the�s are printed as well as standard errors and significance
tests. Output 8.13 displays the odds ratio estimates and confidence limits. The odds ratios
are 1.808 (e0:5920) for type of offense and 1.415 (e0:3469) for prior arrest record. Thus,
those persons committing a nonresidential burglary have nearly twice the odds of receiving
prison sentences as those committing another offense. Those with a prior arrest record are
somewhat more likely to receive a prison sentence than those with no prior record.

Output 8.13 Odds Ratio Estimates and Confidence Limits

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

type nrb vs other 1.808 1.229 2.658
prior some vs none 1.415 0.974 2.056

8.3.2 Requesting Goodness-of-Fit Statistics for Single Main Effect Model

Suppose that you did decide to fit the model with a single main effect, TYPE, and you
wanted to generate the appropriate goodness-of-fit statistics for that model. Using the
SCALE=NONE and AGGREGATE options would not work for this model, since the
AGGREGATE option creates groups on which to base the goodness-of-fit statistic
according to the values of the explanatory variables. Since there is just one dichotomous
explanatory variable remaining in the model, only two groups would be created. To
produce the groups consistent with the sampling framework, you need to specify
AGGREGATE=(TYPE PRIOR), where the list of variables inside the parentheses are
those whose unique values determine the rows of Table 8.5.

The following statements request the main effects model. The ODS SELECT statement
restricts the output to the goodness-of-fit information.

ods select GoodnessOfFit;
proc logistic descending;

class type prior (ref=first) / param=ref;
freq count;
model sentence = type / scale=none aggregate=(type prior);

run;

Output 8.14 includes the goodness-of-fit statistics. Note the SAS message that there are 4
unique covariate profiles; this tells you that the correct groups were formed and that the
statistics are based on the intended subpopulations.
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Output 8.14 Single Effect Model

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 2 3.8086 1.9043 0.1489
Pearson 2 3.7527 1.8763 0.1532

Number of unique profiles: 4

SinceQL = 3:8086 andQP = 3:7527, both with 2 df andp-values of about 0.15, this
single main effect model has a satisfactory fit.

8.3.3 Deviation from the Mean Parameterization

The preceding example used incremental effects parameterization, also called reference
cell parameterization. However, that is not the default parameterization for the LOGISTIC
procedure. If you do not specify the PARAM= option, you would obtaindeviation from
the meanparameterization, also known aseffectparameterization. You can specify this
explicitly in PROC LOGISTIC with the option PARAM=EFFECT in the CLASS
statement. Note that this is also the default parameterization used in the CATMOD
procedure.

In this parameterization, also a full rank parameterization like the incremental effects
parameterization, the effects are differential rather than incremental. This model is written
as follows:

2664
logit(�11)
logit(�12)
logit(�21)
logit(�22)

3775 =

2664
� + �1 + �2
� + �1 � �2
� � �1 + �2
� � �1 � �2

3775 =

2664
1 1 1
1 1 �1
1 �1 1
1 �1 �1

3775
24 �
�1
�2

35

Here,� is the average log odds (across the four populations) of a prison sentence,�1 is the
average differential change in log odds for whether a nonresidential burglary was
committed, and�2 is the differential change in log odds for having a prior arrest record.�1
is an added amount for a nonresidential burglary and a subtracted amount for other
burglary.�2 is an added amount for a prior arrest record and a subtracted amount for no
previous arrest record. The formulas for the model-predicted probabilities and odds for
this parameterization are listed in Table 8.6.
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Table 8.6. Model-Predicted Probabilities and Odds

Type Prior Arrest Pr{Prison} Odds of Prison

Nonresidential Some e�+�1+�2=(1 + e�+�1+�2) e�+�1+�2

Nonresidential None e�+�1��2=(1 + e�+�1��2) e�+�1��2

Other Some e���1+�2=(1 + e���1+�2) e���1+�2

Other None e���1��2=(1 + e���1��2) e���1��2

The odds of a prison sentence for nonresidential burglary (nrb) versus other is obtained by
forming the ratio of the odds for nrb versus other for either prior arrest level. Using some
prior arrest, this is computed as

e�+�1+�2

e���1+�2
= e2�1

The odds of a prison sentence for some arrest record versus none is obtained by forming
the ratio of the odds for some prior arrest versus no prior arrest for either level of burglary
type. Using nrb, this is computed as

e�+�1+�2

e�+�1��2
= e2�2

Thus, with this parameterization for a two-level explanatory variable, you need to
exponentiate twice the parameter estimates to calculate the odds ratios, instead of simply
exponentiating them, as was true for the reference cell model. However, this is taken care
of by the LOGISTIC procedure.

The following SAS statements request an analysis of the sentencing data with the
differential effects parameterization.

ods select ClassLevelInfo GoodnessOfFit
ParameterEstimates OddsRatios;

proc logistic data=sentence descending;
class type prior(ref=’none’);
freq count;
model sentence = type prior / scale=none aggregate;

run;
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Since not all of the output from the LOGISTIC procedure is desired, the ODS SELECT
statement is used to request that only specific tables be generated. Since no PARAM=
option is specified, the differential effects parameterization is used.

The “Class Level Information” table details the way in which the parameterization is
constructed. The values of the CLASS variables are ordered alphanumerically, and the first
ordered value gets the value 1 and the second gets the value�1, as illustrated in the case
of variable TYPE. Since REF=‘none’ was specified for variable PRIOR, the�1 is
assigned to ‘none’ as the reference level, and the 1 is assigned to the value ‘some’.

Output 8.15 Class Level Information

Class Level Information

Design
Variables

Class Value 1

type nrb 1
other -1

prior none -1
some 1

Next, the goodness-of-fit statisticsQP andQL have the values 0.5025 and 0.5076
respectively, the same as in the analysis with the incremental effects parameterization. In
both cases, the test is assessing the same effect. A geometric way of looking at this is to
say that the sets of explanatory variables for the two parameterizations span the same
space, and so their estimated parameters produce the same predicted values.

Output 8.16 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 1 0.5076 0.5076 0.4762
Pearson 1 0.5025 0.5025 0.4784

Number of unique profiles: 4

Output 8.17 displays the “Analysis of Maximum Likelihood Estimates” table.

Output 8.17 Analysis of Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.4828 0.0951 243.2458 <.0001
type nrb 1 0.2960 0.0984 9.0509 0.0026
prior some 1 0.1735 0.0953 3.3127 0.0687
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However, the parameter estimates are very different. This is because they represent very
different quantities. The intercept is now the average log odds (across the four
populations) of a prison sentence and the other parameters are the differential changes in
the log odds for prior arrest and type of offense.

Output 8.18 displays the “Odds Ratio Estimates” table.

Output 8.18 Odds Ratio Estimates

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

type nrb vs other 1.808 1.229 2.658
prior some vs none 1.415 0.974 2.056

The estimate for the odds ratio for a prison sentence comparing nonresidential burglary to
other ise2�1 = 1:808, which is the exponentiation of2� 0:2960; thus, PROC LOGISTIC
has computed the odds ratio correctly. Similarly, the odds ratio for a prison sentence
comparing prior arrest record to no arrest record is 1.415. The confidence limits for these
point estimates are (1.229, 2.658) and (0.974, 2.056), respectively.

8.4 Qualitative Explanatory Variables

The previous examples have been concerned with analyses of dichotomous outcomes
when the explanatory variables were also dichotomous. However, explanatory variables
can be nominal (qualitative) with three or more levels, ordinal, or continuous. Logistic
regression allows for any combination of these types of explanatory variables. This section
is concerned with handling explanatory variables that are qualitative and contain three or
more levels.

The following data come from a study on urinary tract infections (Koch, Imrey, et al.
1985). Investigators applied three treatments to patients who had either a complicated or
uncomplicated diagnosis of urinary tract infection. Since complicated cases of urinary
tract infections are difficult to cure, investigators were interested in whether the pattern of
treatment differences are the same across diagnoses: did the diagnosis status of the
patients affect the relative effectiveness of the three treatments? This is the same as
determining whether there is a treatment� diagnosis interaction. Diagnosis is a
dichotomous explanatory variable and treatment is a nominal explanatory variable
consisting of levels for treatments A, B, and C. Table 8.7 displays the data.
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Table 8.7. Urinary Tract Infection Data

Proportion
Diagnosis Treatment Cured Not Cured Cured
Complicated A 78 28 0.736
Complicated B 101 11 0.902
Complicated C 68 46 0.596
Uncomplicated A 40 5 0.889
Uncomplicated B 54 5 0.915
Uncomplicated C 34 6 0.850

These data can be assumed to arise from a stratified simple random sample so that the
response (cured or not cured) is distributed binomially for each diagnosis� treatment
combination, that is, for each row of Table 8.7. The diagnosis by treatment classification
has the product binomial distribution.

Prfnhijg =
2Y

h=1

3Y
i=1

nhi+!

nhi1!nhi2!
�nhi1hi (1� �hi)

nhi2

The quantity�hi is the probability that a person with thehth diagnosis receiving theith
treatment is cured, andnhi1 andnhi2 are the numbers of patients of thehth diagnosis and
ith treatment who were and were not cured, respectively (h = 1 for complicated,h = 2 for
uncomplicated;i = 1 for treatment A,i = 2 for treatment B,i = 3 for treatment C). You
can then apply the logistic model to describe the variation among thef�hig. This is the
same likelihood function as in the previous example except thati takes on the values 1, 2,
and 3 instead of 1, 2.

8.4.1 Model Fitting

Since there is interest in the interaction term, the preliminary model includes main effects
and their interaction (saturated model). There is one parameter for the intercept (�), which
is the reference parameter corresponding to the log odds of being cured if you have an
uncomplicated diagnosis and are getting treatment C. The parameter�1 is the increment
for complicated diagnosis. The effect for treatment consists of two parameters:�2 is the
incremental effect for treatment A, and�3 is the incremental effect for treatment B.

There is no particular reason to choose a parameterization that includes incremental effects
for treatments A and B; you could choose to parameterize the model by including
incremental effects for treatments A and C. Often, data analysts choose the reference
parameter to be the control group, with incremental effects representing various exposure
effects. However, it’s important to note that an effect withL levels must be represented by
(L� 1) parameters.

The interaction effect is comprised of two additional parameters,�4 and�5, which
represent the interaction terms for complicated diagnosis and treatment A, and
complicated diagnosis and treatment B, respectively. When you are creating interaction
terms from two effects, you create a number of terms equal to the product of the number of
terms for both effects.
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You can write this saturated model in matrix formulation as

26666664

logit(�11)
logit(�12)
logit(�13)
logit(�21)
logit(�22)
logit(�23)

37777775 =

26666664

� + �1 + �2 + �4
� + �1 + �3 + �5
� + �1
� + �2
� + �3
�

37777775 =

26666664

1 1 1 0 1 0
1 1 0 1 0 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 0

37777775

26666664

�
�1
�2
�3
�4
�5

37777775
Note that if you had parameterized the model so that there were three columns for
treatment effects, each consisting of 1s corresponding to those logits representing the
respective treatments, the columns would add up to a column of 1s. This would be
redundant with the column of 1s for the intercept, and so PROC LOGISTIC would set the
parameter corresponding to the third column of the effect equal to zero, since it is a linear
combination of other columns. You could of course fit this model by creating indicator
variables both for the incremental effects and for their interactions. You would need two
indicator variables for the incremental effects for treatment A and treatment B, one
indicator variable for complicated diagnosis, and two indicator variables for the interaction
of diagnosis and treatment. However, you can perform this analysis much more easily by
using a CLASS statement.

8.4.2 PROC LOGISTIC for Nominal Effects

The following DATA step creates SAS data set UTI.

data uti;
input diagnosis : $13. treatment $ response $ count @@;
datalines;

complicated A cured 78 complicated A not 28
complicated B cured 101 complicated B not 11
complicated C cured 68 complicated C not 46
uncomplicated A cured 40 uncomplicated A not 5
uncomplicated B cured 54 uncomplicated B not 5
uncomplicated C cured 34 uncomplicated C not 6
;
run;

Since this model is saturated, the goodness-of-fit statistics don’t apply; there are no
available degrees of freedom because the number of groups and the number of parameters
are the same (6). PROC LOGISTIC prints out near-zero values and zero df for saturated
models. However, fitting this model does allow you to determine whether there is an
interaction effect. Fitting the reduced model without the interaction terms and taking the
difference in the deviances allows you to determine whether the interaction is meaningful.
The following PROC LOGISTIC statements fit the full and reduced models.

ods select FitStatistics;
proc logistic;

freq count;
class diagnosis treatment /param=ref;
model response = diagnosis|treatment;

run;
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ods select FitStatistics GoodnessOfFit
TypeIII OddsRatios;

proc logistic;
freq count;
class diagnosis treatment;
model response = diagnosis treatment /

scale=none aggregate;
run;

Output 8.19 contains�2 Log L for the full model, and Output 8.20 contains the�2 Log L
for the reduced model.

Output 8.19 Log Likelihood for the Full Model

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 494.029 459.556
SC 498.194 484.549
-2 Log L 492.029 447.556

Output 8.20 Log Likelihood for the Reduced Model

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 494.029 458.071
SC 498.194 474.733
-2 Log L 492.029 450.071

The difference between 447.556 (full) and 450.071 (reduced) is 2.515; since the difference
in the number of parameters in these models is 2, this value should be compared to a
chi-square distribution with 2 df (you can use the PROBCHI function to compute the
probability with the DATA step). Thus, the likelihood ratio test for the hypothesis that the
additional terms in the expanded model are zero cannot be rejected. The interaction
between treatment and diagnosis is not significant. This test also serves as the
goodness-of-fit test for the reduced model, which is the main effects model; it supports the
model’s adequacy.

Output 8.21 contains the goodness-of-fit statisticsQP andQL. Note thatQL has the same
value as the likelihood ratio statistic; thus, you could have simply fit the main effects
model and usedQL as the test for interaction, knowing that the two omitted terms were the
two interaction terms.
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Output 8.21 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 2 2.5147 1.2573 0.2844
Pearson 2 2.7574 1.3787 0.2519

Number of unique profiles: 6

The following “TYPE III Analysis of Effects” table is from the main effects model.

Output 8.22 Main Effects Model

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

diagnosis 1 10.2885 0.0013
treatment 2 24.6219 <.0001

Note that in the previous examples, the Wald test for the interaction term could also be
used as a goodness-of-fit test for the main effects model. However, since in this case the
interaction consists of two terms, you can’t get a test for the total interaction effect from
this table. If both interaction terms are significant, you can often assume that the overall
interaction is also significant (Section 8.4.3 shows how to construct a test for the total
interaction using the CONTRAST statement).

Output 8.23 contains the odds ratio estimates and their confidence limits, which are the
95% Wald confidence limits. None of these limits contain the value 1, indicating that there
are sigificant treatment and diagnosis effects.

Output 8.23 Odds Ratio Estimates

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

diagnosis complicated vs uncomplicated 0.382 0.212 0.688
treatment A vs C 1.795 1.069 3.011
treatment B vs C 4.762 2.564 8.847

You have 4.8 times higher odds of being cured if you get treatment B compared with
treatment C, and 1.8 times higher odds of being cured if you get treatment A compared to
treatment C. You have 0.38 times lower odds of being cured if you have a complicated
diagnosis as compared to an uncomplicated diagnosis; you have(1=0:382) = 2:6 times
higher odds of being cured if you have uncomplicated diagnosis compared with
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complicated diagnosis. Note that all these odds ratios have been adjusted for the other
explanatory variable.

To confirm what these odds ratios represent, consider the the model-predicted probabilities
and odds listed in Table 8.8. Taking the ratio of odds for complicated diagnosis and
treatment A versus complicated diagnosis and treatment C yieldse�2 . A similar exercise
for treatment B yieldse�3 . To determine the odds ratio for complicated diagnosis to
uncomplicated diagnosis, take the ratio of the odds for complicated to uncomplicated
diagnosis at any level of treatment. You should gete�1 .

Table 8.8. Model-Predicted Probabilities and Odds

Diagnosis Treatment Pr{Cured} Odds of Cured

Complicated A e�+�1+�2=(1 + e�+�1+�2) e�+�1+�2

Complicated B e�+�1+�3=(1 + e�+�1+�3) e�+�1+�3

Complicated C e�+�1=(1 + e�+�1) e�+�1

Uncomplicated A e�+�2=(1 + e�+�2) e�+�2

Uncomplicated B e�+�3=(1 + e�+�3) e�+�3

Uncomplicated C e�=(1 + e�) e�

PROC LOGISTIC can also produce confidence limits for the odds ratios that are
likelihood-ratio based. These are also known as profile likelihood confidence intervals.
They are particularly desirable when the sample sizes are only moderately large rather than
very large. The following PROC LOGISTIC invocation requests profile likelihood
confidence intervals for the odds ratios with the CLODDS=PL option. It also requests
profile likelihood confidence intervals for the regression parameters with the
CLPARM=PL option (the CLPARM=WALD option specifies confidence intervals for the
parameters based on asymptotic normality of the parameter estimates).

ods select ClparmPL CloddsPL;
proc logistic;

freq count;
class diagnosis treatment;
model response = diagnosis treatment /

scale=none aggregate clodds=pl clparm=pl;
run;

Output 8.24 displays the output produced by the CLODDS and CLPARM options.
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Output 8.24 Confidence Limits for Odds Ratios

Profile Likelihood Confidence Interval for Parameters

Parameter Estimate 95% Confidence Limits

Intercept 1.6528 1.3621 1.9751
diagnosis complicated -0.4808 -0.7897 -0.1987
treatment A -0.1304 -0.4618 0.2052
treatment B 0.8456 0.4756 1.2523

Profile Likelihood Confidence Interval for Adjusted Odds Ratios

Effect Unit Estimate 95% Confidence Limits

diagnosis complicated vs uncomplicated 1.0000 0.382 0.206 0.672
treatment A vs C 1.0000 1.795 1.074 3.031
treatment B vs C 1.0000 4.762 2.615 9.085

If you compare the confidence intervals in Output 8.24 and Output 8.23, you will find that
they are similar.

8.4.3 Testing Hypotheses about the Parameters

In the previous analysis, the overall effect for treatment was significant and so were the
individual incremental effects parameters for treatment A and treatment B. However, you
may also be interested in determining whether the effect for treatment A is different from
the effect for treatment B. In addition, you may also want the odds ratio for the comparison
of treatment A and treatment B, because, as pointed out above, the odds ratios produced by
default are for treatments A and B relative to treatment C. You can request both the
comparison test and the odds ratio with the CONTRAST statement in PROC LOGISTIC.

If you recall the likelihood ratio test strategies, it should be clear that you can generate this
test by computing the likelihood ratio test for the main effects model compared to the
model containing the diagnosis effect only. In fact, if you do this, you will obtain a
likelihood ratio test of478:185 � 450:071 = 28:114, clearly significant with 2 df.

In order to assess whether any of the treatments are similar, linear combinations of the
parameters are tested to see if they are significantly different from zero.

H0:L� = 0

By choosing the appropriate elements ofL, you can construct linear combinations of the
parameters that will produce the test of interest. The Wald statistic for a given linear
combinationL is computed as

QW = (L�̂)0(LV(�̂)L0)�1(L�̂)

where�̂ is the vector of parameter estimates.QW follows the chi-square distribution with
degrees of freedom equal to the number of linearly independent rows ofL.

The test for whether treatment A is equivalent to treatment B is expressed as

H0:�2 � �3 = 0
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which correspond toL = [1� 1] for � = [�2;�3]. The test for whether treatment A is
equivalent to treatment C is expressed as

H0:�2 = 0

since, according to the model parameterization,�2 is an incremental effect for treatment A
in reference to Treatment C. If�2 equals zero, then treatment A is the same as treatment C,
and the intercept represents the logit for uncomplicated diagnosis for either treatment A or
treatment C. You follow the same logic to see whether treatment B is equivalent to
treatment C. TheL for this third contrast isL = [1 0; 0 1].

To compute the Wald test for the joint effect of treatment A and treatment B relative to
treatment C (or the equality of treatments A, B, and C to one another), you test the
hypothesis

H0:�2 = �3 = 0

This is the hypothesis tested in the “Type III Analysis of Effects” table. TheL for this
third contrast is

�
1 0
0 1

�

You specify these hypotheses in the CONTRAST statement. You list each hypothesis on a
different statement, providing a name for the test within quotes. This can be up to 256
characters long. You then list the effect variable name and provide the coefficients for the
L matrix. The following CONTRAST statements request the test comparing A and B, the
individual test for A, and the joint test for A, B, and C.

ods select ContrastTest ContrastEstimate;
proc logistic;

freq count;
class diagnosis treatment /param=ref;
model response = diagnosis treatment;
contrast ’B versus A’ treatment -1 1

/ estimate=exp;
contrast ’A’ treatment 1 0;
contrast ’joint test’ treatment 1 0,

treatment 0 1;
run;

The ESTIMATE= option in the CONTRAST statement requests the estimate of the linear
combinationL�. The ESTIMATE=EXP option requests that the estimate be produced and
exponentiated. Recall that the odds ratio for being cured for treatment B compared to
treatment A ise�3��2 . Thus, the ESTIMATE=EXP option should produce the correct
quantity.
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Output 8.25 contains the results. With a Wald chi-square of 8.6919 and ap-value of
0.0032, clearly treatments A and B are significantly different. The joint test statistic has
the value 24.6219, which is the same as displayed in the “Type III Analysis of Effects” for
the treatment effect.

Output 8.25 Contrast Test Results

Contrast Test Results

Wald
Contrast DF Chi-Square Pr > ChiSq

B versus A 1 8.6919 0.0032
A 1 4.9020 0.0268
joint test 2 24.6219 <.0001

Output 8.26 contains the results of the contrast estimation.

Output 8.26 Contrast Estimation Results

Contrast Rows Estimation and Testing Results

Standard Lower Upper
Contrast Type Row Estimate Error Alpha Limit Limit

B versus A EXP 1 2.6539 0.8786 0.05 1.3870 5.0778

Contrast Rows Estimation and Testing Results

Wald
Contrast Type Row Chi-Square Pr > ChiSq

B versus A EXP 1 8.6919 0.0032

The point estimate for the odds ratio is 2.6539, with a lower limit of 1.3870 and an upper
limit of 5.0778. This means that those on treatment B have 2.65 times higher odds of being
cured than those on treatment A.

8.5 Continuous and Ordinal Explanatory Variables

8.5.1 Goodness of Fit

Frequently, some or all of the explanatory variables in a logistic regression analysis are
continuous. Analysis strategies are the same as those described in previous sections,
except in the evaluation of goodness of fit.

The following data are from the same study on coronary artery disease as previously
analyzed; in addition, the continuous variable AGE is an explanatory variable. The
variable ECG is now treated as an ordinal variable, with values 0, 1, and 2. ECG is coded 0
if the ST segment depression is less than 0.1, 1 if it equals 0.1 or higher but less than 0.2,
and 2 if the ST segment depression is greater than or equal to 0.2. The variable AGE is age
in years.
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data coronary;
input sex ecg age ca @@ ;
datalines;

0 0 28 0 1 0 42 1 0 1 46 0 1 1 45 0
0 0 34 0 1 0 44 1 0 1 48 1 1 1 45 1
0 0 38 0 1 0 45 0 0 1 49 0 1 1 45 1
0 0 41 1 1 0 46 0 0 1 49 0 1 1 46 1
0 0 44 0 1 0 48 0 0 1 52 0 1 1 48 1
0 0 45 1 1 0 50 0 0 1 53 1 1 1 57 1
0 0 46 0 1 0 52 1 0 1 54 1 1 1 57 1
0 0 47 0 1 0 52 1 0 1 55 0 1 1 59 1
0 0 50 0 1 0 54 0 0 1 57 1 1 1 60 1
0 0 51 0 1 0 55 0 0 2 46 1 1 1 63 1
0 0 51 0 1 0 59 1 0 2 48 0 1 2 35 0
0 0 53 0 1 0 59 1 0 2 57 1 1 2 37 1
0 0 55 1 1 1 32 0 0 2 60 1 1 2 43 1
0 0 59 0 1 1 37 0 1 0 30 0 1 2 47 1
0 0 60 1 1 1 38 1 1 0 34 0 1 2 48 1
0 1 32 1 1 1 38 1 1 0 36 1 1 2 49 0
0 1 33 0 1 1 42 1 1 0 38 1 1 2 58 1
0 1 35 0 1 1 43 0 1 0 39 0 1 2 59 1
0 1 39 0 1 1 43 1 1 0 42 0 1 2 60 1
0 1 40 0 1 1 44 1
;
run;

Look at the values listed for AGE. While some observations share the same AGE value,
most of these values are unique. Thus, there will be only one observation in most of the
cells created by the cross-classification of the explanatory variable values. In fact, the SEX
by ECG by AGE cross-classification produces 68 groups from these 78 observations. This
means that the sample size requirement for the use of the Pearson chi-square
goodness-of-fit test and the likelihood ratio goodness-of-fit test—that each predicted cell
count tends to be at least 5—is not met. This is almost always the case when you have
continuous explanatory variables.

There are several alternative strategies. First, you can fit the desired model, fit an
appropriate expanded model with additional explanatory variables, and look at the
differences in the log-likelihood ratio statistics. This difference is distributed as chi-square
with degrees of freedom equal to the difference in degrees in freedom of the two models
(given sufficiently large samples to support approximate normal estimates from the
expanded model).

The second strategy is to examine the residual score statistic,QRS (Breslow and Day
1980). This criterion is directed at the extent to which the residuals from the model are
linearly associated with other potential explanatory variables. If there is an association,
this is an indication that these variables should also be included in the model. Thus, to
compute the residual score statistic, you need to have access to the variables that comprise
the potential expansion.QRS is distributed as chi-square, with degrees of freedom equal to
the difference in the number of parameters for the two models.

However, unlike computing the log-likelihood ratio statistic where you have to execute
PROC LOGISTIC twice and form the difference of the log-likelihood ratio statistics, you
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can generate this score goodness-of-fit statistic with one invocation of PROC LOGISTIC.
You do this by taking advantage of the LOGISTIC procedure’s model-building
capabilities. The SELECTION=FORWARD method adds variables to your model in the
manner in which you specify, computing model assessment statistics for each of the
models it fits. In addition, it prints a score statistic that assesses the joint contribution of
the remaining model effects that have not yet been incorporated into the model. With the
right choice of model effects in the MODEL statement, this is the score goodness-of-fit
statistic. You can also generate the constituent one degree of freedom score tests by
including the DETAILS option in the MODEL statement.

A third strategy is to compute an alternative goodness-of-fit statistic proposed by Hosmer
and Lemeshow (1989). This test places subjects into deciles based on the model-predicted
probabilities, then computes a Pearson chi-square test based on the observed and expected
number of subjects in the deciles. The statistic is compared to a chi-square distribution
with t degrees of freedom, wheret is the number of decile groups minus 2. Depending on
the number of observations, there may be less than ten groups. PROC LOGISTIC prints
this statistic when you specify the LACKFIT option in the MODEL statement. You should
note that this method may have low power for detecting departures from goodness of fit,
and so some caution may be needed in its interpretation.

8.5.2 Fitting a Main Effects Model

A model of interest for these data is a main effects model with terms for sex, ECG, and
age. To generate a score statistic, you need to choose the effects that constitute the
expanded model. Your choice depends partially on the sample size. There should be at
least 5 observations for the rarer outcome per parameter being considered in the expanded
model. Some analysts would prefer at least 10. In this data set, there are 37 observations
with no coronary artery disease and 41 observations with coronary artery disease. Thus, no
coronary artery disease is the rarer event, and the quotient 37/5 suggests that 7–8
parameters can be supported.

For these data, an appropriate expanded model consists of all second-order terms, which
are the squared terms for age and ECG plus all pairwise interactions. This creates eight
parameters beyond the intercept. One might also include the third-order terms, but their
inclusion would result in too few observations per parameter for the necessary sample size
requirements for these statistics. If there did happen to be substantial third-order variation,
this approach would not be appropriate.

The following PROC LOGISTIC statements fit the main effects model and compute the
score test. The first- and second-order terms are listed on the right-hand side of the
MODEL statement, with CA as the response variable. SELECTION=FORWARD is
specified as a MODEL statement option after a ‘/’. The option INCLUDE=3 requests that
the first three terms listed in the MODEL statement are to be included in each fitted model.
PROC LOGISTIC first fits this model, which is the main effects model, and then produces
the score goodness-of-fit statistic.

proc logistic descending;
model ca=sex ecg age ecg*ecg age*age

sex*ecg sex*age ecg*age /
selection=forward include=3 details lackfit;

run;
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Note that 1 is the first ordered value, since the DESCENDING option was specified in the
PROC statement, so the model is based on Pr{coronary artery disease}.

Output 8.27 Response Profile

Response Profile

Ordered Total
Value ca Frequency

1 1 41
2 0 37

Forward Selection Procedure

The following effects will be included in each model:

Intercept sex ecg age

Step 0. The INCLUDE effects were entered.

NOTE: No (additional) effects met the 0.05 significance level for entry into
the model.

After the “Response Profile” table, PROC LOGISTIC prints a list of the variables included
in each model. Note that the score statistic printed in the table “Testing Global Null
Hypothesis: BETA=0” is not the score goodness-of-fit statistic. This score statistic is
strictly testing the hypothesis that the specified model effects are jointly equal to zero.

Output 8.28 Assessing Fit

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 21.1145 3 <.0001
Score 18.5624 3 0.0003
Wald 14.4410 3 0.0024

The “Residual Chi-Square” is printed after the “Association of Predicted Probabilities and
Observed Responses” table. This is the score goodness-of-fit statistic.

Output 8.29 Residual Chi-Square

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.3277 5 0.8022
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Since the difference between the number of parameters for the expanded model and the
main effects model is9� 4 = 5, it has 5 degrees of freedom. SinceQRS = 2:3277 and
p = 0:8022, the main effects model fits adequately. The DETAILS option causes the
“Analysis of Effects Not in the Model” table to be printed. These tests are the score tests
for the addition of the single effects to the model. Each of these tests has one degree of
freedom. As one might expect, all of these tests indicate that the single effects add little to
the main effects model. Since the sample size requirements for the global test are very
roughly met, the confirmation of goodness of fit with the single tests is reasonable, since
sample size requirements for these individual expanded models are easily met.

Output 8.30 Analysis of Effects Not in the Model

Analysis of Effects Not in the Model

Score
Effect DF Chi-Square Pr > ChiSq

ecg*ecg 1 0.3766 0.5394
age*age 1 0.7712 0.3798
sex*ecg 1 0.0352 0.8513
sex*age 1 0.0290 0.8647
ecg*age 1 0.8825 0.3475

Note that this testing process is conservative with respect to confirming model fit.
Inadequate sample size may produce spuriously large chi-squares and correspondingly
smallp-values. However, this would mean that you decide that the fit is not adequate, and
you search for another model. Small sample sizes will not misleadingly cause these
methods to suggest that poor fit is adequate, although they would have the limitation of
low power to detect real departures from a model.

You may have a concern with the evaluation of multiple tests to assess model goodness of
fit. However, by requiring the global test and most single tests to be nonsignificant, the
assessment of goodness of fit is more stringent. Also, the multiplicity can be evaluated
relative to what might be expected by chance in an assessment of goodness of fit.

Output 8.31 displays the results produced by the LACKFIT option.
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Output 8.31 Results from the LACKFIT Option

Partition for the Hosmer and Lemeshow Test

ca = 1 ca = 0
Group Total Observed Expected Observed Expected

1 8 2 1.02 6 6.98
2 8 1 1.80 7 6.20
3 8 3 2.59 5 5.41
4 8 3 3.42 5 4.58
5 8 4 4.07 4 3.93
6 9 6 5.38 3 3.62
7 9 4 5.97 5 3.03
8 8 7 5.99 1 2.01
9 8 7 6.98 1 1.02

10 4 4 3.77 0 0.23

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

4.7766 8 0.7812

The Hosmer and Lemeshow statistic has a value of 4.7766 with 8 df;p = 0:7812. Thus,
this measure also supports the model’s adequacy for these data. The output also includes
the observed and expected counts for each predicted probability decile for each value of
the response variable. This criterion can also be used as a measure of goodness of fit for
the strictly qualitative explanatory variable situation.

The satisfactory goodness-of-fit statistics make it reasonable to examine the main effects
parameter estimates.

Output 8.32 Main Effects Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -5.6418 1.8061 9.7572 0.0018
sex 1 1.3564 0.5464 6.1616 0.0131
ecg 1 0.8732 0.3843 5.1619 0.0231
age 1 0.0929 0.0351 7.0003 0.0081

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

sex 3.882 1.330 11.330
ecg 2.395 1.127 5.086
age 1.097 1.024 1.175

The parameter estimates are all significant at the 0.05 level, as judged by the
accompanying Wald statistics. Thus, the estimated equation for the log odds is
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logit(�hi) = �5:6418 + 1:3564 SEX+ 0:8732 ECG+ 0:0929 AGE

Presence of coronary artery disease is positively associated with age and ST segment
depression, and it is more likely for males in this population. The odds ratio listed for
SEX, 3.882, is the odds of coronary disease presence for males relative to females adjusted
for age and ST segment depression. The value listed for ECG, 2.395, is the extent to which
the odds of coronary artery disease presence is higher per level increase in ST segment
depression. The value 1.097 for AGE is the extent to which the odds is higher each year. A
more desirable statistic may be the extent to which the odds of coronary artery disease
increase per ten years of age; instead of exponentiating the parameter estimate 0.0929, you
computee10�0:0929 to obtain 2.53. Thus, the odds of coronary artery disease increase by a
factor of 2.53 every ten years. However, note that this model is useful for prediction only
for persons in the walk-in population who fall into the age range of those in this
study—ages 28 to 60.

PROC LOGISTIC includes a UNITS statement that enables you to specify the units of
change for which you want the odds ratios computed. To obtain the odds ratio for AGE for
10 year units of change, you specify

proc logistic descending;
model ca=sex ecg age;
units age=10;

run;

The following results agree with those calculated by hand.

Output 8.33 Odds Ratios for Units of 10

Adjusted Odds Ratios

Effect Unit Estimate

age 10.0000 2.531

8.6 A Note on Diagnostics

While goodness-of-fit statistics can tell you how well a particular model fits the data, they
tell you little about the lack of fit, or where a particular model fails to fit the data.
Measures called regression diagnostics have long been useful tools to assess lack of fit for
linear regression models, and in the 1980s researchers proposed similar measures for the
analysis of binary data. In particular, work by Pregibon (1981) provided the theoretical
basis of extending diagnostics used in linear regression to logistic regression. Both
Hosmer and Lemeshow (1989) and Collett (1991) include lengthy discussions on
model-checking for logistic regression models; Collett includes many references for recent
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work in this area. Standard texts on regression analysis like Draper and Smith (1981)
discuss model-checking strategies for linear regression; Cook and Weisberg (1982) discuss
residual analysis and diagnostics extensively.

This section presents a basic description of a few diagnostic tools and an example of their
application with the urinary tract data set. The Pearson and deviance chi-square tests are
two measures that assess overall model fit. It makes some sense that by looking at the
individual components of these statistics, which are functions of the observed group
counts and their model-predicted values, you will gain insight into a model’s lack of fit.

Suppose that you haves groups,i = 1; : : : ; s, andni total subjects for theith group. Ifyi
is the number of events (success, yes) for theith group, and̂�i denotes the predicted
probability of success for theith group, then define theith residual as

ei =
yi � ni�̂iq
ni�̂i(1� �̂i)

These residuals are known as Pearson residuals, since the sum of their squares isQP .
They compare the differences between observed counts and their predicted values, scaled
by the observed count’s standard deviation. By examining theei, you can determine how
well the model fits the individual groups. Often, the residual values are considered to be
indicative of lack of fit if they exceed 2 in size.

Similarly, the deviance residual is a component of the deviance statistic. The deviance
residual is written

di = sgn(yi � ŷi)

�
2yi log

�
yi
ŷi

�
+ 2(ni � yi) log

�
ni � yi
ni � ŷi

�� 1

2

whereŷi = n�̂i. The sum of squares of thedi values is the deviance statistic.

These residuals are often presented in tabular form; however, graphical display usually
aids their inspection. One simple plot is called anindex plot, in which the residuals are
plotted against the corresponding observation number, the index. By examining these
plots, you can determine if there are unusually large residuals, possibly indicative of
outliers, or systematic patterns of variation, possibly indicative of a poor model choice.

These residuals are examined for the urinary tract data. As you will recall, the main effects
model was considered to have an adequate fit. The INFLUENCE option requests that
PROC LOGISTIC provide regression diagnostics.

Notice that the data are input differently than they were in Section 8.4. The variable
RESPONSE is now the number of cures in a group, and the variable TRIALS is the total
number of patients in that group, the sum of those who were cured and those who were
not. Theevents/trialsMODEL statement syntax allows you to specify the response as a
ratio of two variables, theeventsvariable and thetrials variable. When the response is
specified this way, developed to support the binomial trials framework, the residuals are
calculated using anni that is based on the group size, which is desired. (If you specify a
single response, calledactual modelsyntax, when you compute residuals, the residuals are
calculated using a group size of 1.)
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data uti2;
input diagnosis : $13. treatment $ response trials;

datalines;
complicated A 78 106
complicated B 101 112
complicated C 68 114
uncomplicated A 40 45
uncomplicated B 54 59
uncomplicated C 34 40
;
proc logistic data=uti2;

class diagnosis treatment / param=ref;
model response/trials = diagnosis treatment/

influence;
run;

Output 8.34 displays the table of covariate profiles that is first printed in the diagnostics
output. There should be one case for each group in your data.

Output 8.34 Covariates

Regression Diagnostics

Covariates

Case treatment treatment
Number diagnosiscomplicated A B

1 1.0000 1.0000 0
2 1.0000 0 1.0000
3 1.0000 0 0
4 0 1.0000 0
5 0 0 1.0000
6 0 0 0

Output 8.35 contains the Pearson and Deviance residuals for this model. The
INFLUENCE option produces other diagnostics as well; these are not reproduced here.

Output 8.35 Residuals

Regression Diagnostics

Pearson Residual Deviance Residual

Case (1 unit = 0.16) (1 unit = 0.15)
Number Value -8 -4 0 2 4 6 8 Value -8 -4 0 2 4 6 8

1 -0.0773 | * | -0.0772 | *| |
2 0.6300 | | * | 0.6460 | | * |
3 -0.3453 | * | | -0.3445 | * | |
4 0.1609 | |* | 0.1624 | |* |
5 -1.3020 |* | | -1.1823 |* | |
6 0.7171 | | * | 0.7406 | | * |
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Note that the largest Pearson residual for the main effects model is�1:3020 for the fifth
group (uncomplicated diagnosis, treatment B) and the largest deviance residual is
�1:1823, also for the fifth group. The other residuals are all less than 1 (in absolute value).
All these residuals are acceptable.

To see what happens in a model that doesn’t fit, the model with the single main effect
DIAGNOSIS is requested. The IPLOTS option is specified to produce index plots.

proc logistic;
class diagnosis treatment / param=ref;
model response/trials = diagnosis/

scale=none aggregate=(treatment diagnosis) influence iplots;
run;

The goodness-of-fit tests are displayed in Output 8.36.

Output 8.36 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 4 30.6284 7.6571 <.0001
Pearson 4 28.7265 7.1816 <.0001

Number of unique profiles: 6

With values of 30.6284 and 28.7265, respectively,QL andQP clearly do not support the
model.

The residuals for this model are displayed in Output 8.37.
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Output 8.37 Residuals

Regression Diagnostics

Pearson Residual
Covariates

Case (1 unit = 0.48)
Number diagnosiscomplicated Value -8 -4 0 2 4 6 8

1 1.0000 -0.1917 | * |
2 1.0000 3.8267 | | *|
3 1.0000 -3.6081 |* | |
4 0 0.000076 | * |
5 0 0.6445 | |* |
6 0 -0.7825 | * | |

Regression Diagnostics

Deviance Residual

Case (1 unit = 0.53)
Number Value -8 -4 0 2 4 6 8

1 -0.1911 | * |
2 4.2166 | | *|
3 -3.4358 | * | |
4 0.000076 | * |
5 0.6694 | |* |
6 -0.7477 | *| |

This model appears to fit very poorly for groups 2 and 3; the Pearson residuals take the
values 3.8267 and�3:6081, respectively, and the deviance residuals take the values 4.2166
and�3:4358 for the same groups. Output 8.38 displays the index plot for the Pearson
residuals.

This display obviously makes it easy to spot those residuals that are outside a desirable
range and then identify the corresponding group. The points for the second and third
observations stand out clearly.

Output 8.38 Index Plot for Pearson Residuals

-----+---------------------------------------+---------------------------------------+-----
P 5 + +
e | |
a | * |
r RESCHI | |
s | |
o | |
n | * |

0 + * * +
R | * |
e | |
s | |
i | |
d | * |
u | |
a -5 + +
l -----+---------------------------------------+---------------------------------------+-----

The Pearson and deviance residuals need to be used cautiously when the data contain
continuous explanatory variables so that most of the group sizes are 1. This is for the same
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reason thatQP and the deviance are inappropriate—the sample size requirements for
approximate chi-square distributions are not met. However, these residuals are often
considered useful as a rough indicator of model fit in this situation, and they are often
examined.

Other types of diagnostics include changes in theQP and deviance when theith
observation is excluded; theith leverage; and distances between estimated parameters and
the estimated parameters when theith observation is excluded. In addition, there are a
variety of plots that have been devised to assist in evaluating model adequacy. Refer to the
SAS/STAT User’s Guide, Version 8for information on what diagnostics are provided by the
LOGISTIC procedure. Diagnostics development is an active research area, particularly for
assessing model fit for generalized linear models, and additional tools will be available in
the future.

8.7 Maximum Likelihood Estimation Problems and Alternatives

If you perform enough logistic regressions, you will encounter data for which maximum
likelihood estimation does not produce a unique solution for the parameters; you do not
obtain convergence. In addition, for data with small cell counts, large sample theory may
not be applicable and thus tests based on the asymptotic normality of the maximum
likelihood estimates may be unreliable. This section discusses some of the situations in
which maximum likelihood methods may not produce solutions and Section 8.8 discusses
the alternative strategies based on exact methods.

8.7.1 Examples of Non-Convergence

To gain insight into the possible data configurations that result in non-convergence,
consider the following table:

Table 8.9. Infinite Odds Ratio Example

Factor Response=Yes Response=No
Factor 1 15 0
Factor 2 0 34

Computing the odds ratio for these data results in the quantity

a� d

b� c
=

15� 34

0� 0

which is infinite. Since the odds ratio ise�, where� is the parameter for the factor, this
means that� is infinite.

The LOGISTIC procedure performs some checking to determine whether the input data
have a configuration that leads to infinite parameter estimates. If convergence is not
attained within eight iterations, PROC LOGISTIC computes the probability of allocating
each observation to the correct response group. If this probability is equal to 1 for all
observations, there is said to becomplete separationof data points (this occurs if all the
observations having unique covariate profiles have the same response outcome—for
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example, all the Factor=1 subjects responded yes, and all the Factor=2 subjects responded
no). If complete separation is found, the iterative process is halted and a warning message
is printed.

If nearly all the observations have a probability of 1 of being allocated to the correct
response group, then the data configuration may be one ofquasicomplete separation. (For
quasicomplete separation to occur, the dispersion matrix also becomes unbounded.)
Iteration also stops when this condition is detected, and a warning message is printed,
since the parameter estimates are also infinite.

If neither of these conditions exists for the data, then they are said to beoverlapping. The
data points overlap so that observations with the same covariate profile have all possible
responses. Maximum likelihood estimates exist and are unique for overlapping
configurations. The problems of complete separation and quasi-complete separation
generally occur for small data sets. Usually quasi-complete separation does not occur if
you have a continuous explanatory variable; complete separation can always occur. Refer
to Albert and Anderson (1984) for more information about infinite parameters and the data
configurations that produce them; refer to Silvapulle (1981) for a discussion of the
necessary and sufficient conditions for the existence of maximum likelihood estimators in
binomial response models.

Earlier releases of PROC LOGISTIC did not check for these conditions, and if the data
configuration produced no unique solutions, then the procedure printed a message saying
that convergence was not attained. You then had the option of fine-tuning the estimation
process by increasing the number of iterations or changing the convergence criterion, or
assuming that the parameter estimates were infinite. Occasionally, unique parameter
estimates exist that require more iterations or a different convergence criterion for their
estimation than the default.

The following statements input a data set with several zero values for the response
outcome counts.

data quasi;
input treatA treatB response count @@;
datalines;

0 0 0 0 0 0 1 0
0 1 0 2 0 1 1 0
1 0 0 0 1 0 1 8
1 1 0 6 1 1 1 21
;
proc logistic;

freq count;
model response = TreatA TreatB;

run;

Output 8.39 contains the results from PROC LOGISTIC. Since there is quasi-complete
separation, the maximum likelihood solution may not exist.
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Output 8.39 Quasi-Complete Separation Note

Response Profile

Ordered Total
Value response Frequency

1 0 8
2 1 29

NOTE: 4 observations having zero frequencies or weights were excluded since
they do not contribute to the analysis.

Model Convergence Status

Quasi-complete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.
WARNING: The LOGISTIC procedure continues in spite of the above warning.

Results shown are based on the last maximum likelihood iteration.
Validity of the model fit is questionable.

The next statements input a data set that also includes two dichotomous explanatory
variables and the same number of zero counts; however, the placement of the zero counts
results in complete separation of the data points.

data complete;
input gender region count response @@;
datalines;

0 0 0 1 0 0 5 0
0 1 1 1 0 1 0 0
1 0 0 1 1 0 175 0
1 1 53 1 1 1 0 0
;
proc logistic;

freq count;
model response = gender region;

run;

Output 8.40 contains the results. Since there is complete separation, the maximum
likelihood solution does not exist.
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Output 8.40 Complete Separation Note

Response Profile

Ordered Total
Value response Frequency

1 0 180
2 1 54

NOTE: 4 observations having zero frequencies or weights were excluded since
they do not contribute to the analysis.

Model Convergence Status

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not exist.
WARNING: The LOGISTIC procedure continues in spite of the above warning.

Results shown are based on the last maximum likelihood iteration.
Validity of the model fit is questionable.

Most of the time, the data generating non-unique infinite solutions will not be this simple.

8.8 Exact Methods in Logistic Regression

Until recently, there was no convenient alternative in situations where maximum
likelihood estimation failed or small cell counts made the resulting maximum likelihood
estimates inappropriate. However, it is now possible to compute parameter estimates,
confidence intervals, andp-values for statistical tests using methodology based on exact
permutation distributions. The key is conditioning on the appropriate sufficient statistic.
The idea is not a new one, having been suggested by Cox (1970), but recent algorithmic
advances in computing the exact distributions have made the methodology
computationally feasible. Refer to Tritchler (1984) and Hirji, Mehta, and Patel (1987) for
more details regarding these algorithms. See Appendix B in Chapter 10 for a brief
overview of the methodology involved in deriving exact conditional distributions and
computing tests and point estimates.

With Release 8.1, the SAS System provides exact logistic regression for binary outcomes
in the LOGISTIC procedure. It provides an exact probability test and an exact score test
for the hypotheses that parameters for the specified hypothesis are equal to zero; these tests
produce an exactp-value which is the probability of obtaining a more extreme statistic
than the one observed and a midp-value, which adjusts for the discreteness of the
distribution. Simultaneous tests can be specified. You can also request the point estimates
of the parameters and the exponential (usually represents an odds ratio); these come with
one or two-sided confidence limits and one or two-sidedp-values for testing that the
parameter estimate is zero.

Consider the following data in Table 8.10 from a study on liver function outcomes for high
risk overdose patients in which antidote and historical control groups are compared. The
data are stratified by time to hospital admission (Koch, Gillings, and Stokes 1980).
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Table 8.10. Liver Function Outcomes

Time Antidote Control
to Hospital Severe Not Severe Severe Not Severe
Early 6 12 6 2
Delayed 3 4 3 0
Late 5 1 6 0

The small counts in many cells—seven of the twelve cells have values less than 5—make
the applicability of large sample theory somewhat questionable.

The following DATA step inputs the data.

data liver;
input time $ group $ status $ count @@;
datalines;

early antidote severe 6 early antidote not 12
early control severe 6 early control not 2
delayed antidote severe 3 delayed antidote not 4
delayed control severe 3 delayed control not 0
late antidote severe 5 late antidote not 1
late control severe 6 late control not 0
;
run;

The following PROC LOGISTIC statements request an unconditional logistic regression
analysis of the severity of the outcome with explanatory variables based on time to
admission and treatment group. The early level for TIME is the reference level and the
control level is the reference level for GROUP. The PARAM=REF option requests
incremental effects parameterization.

The EXACT statement requests the exact analysis. (Note that if you include the
EXACTONLY option in the PROC statement, only the exact analysis is performed.) You
can include more than one EXACT statement, so you can provide an individual label for
the output from each statement. Exact tests are performed for the variables listed in the
statement; in this case, this includes the intercept, TIME, and GROUP. The tests are
conditioned on any other variables included in either the MODEL statement or the
EXACT statement. The option ESTIMATE=BOTH in the first EXACT statement specifies
that point estimates for both the parameter and the exponentiated parameter be computed.
Note that exponentiated parameters are computed for CLASS variables only if
PARAM=REF is specified in the CLASS statement. The JOINT option in the second
EXACT statement requests a joint test for variables TIME and GROUP.

proc logistic descending;
freq count;
class time(ref=’early’) group(ref=’control’) /param=ref;
model status = time group / scale=none aggregate clparm=wald;
exact ’Model 1’ intercept time group /

estimate=both;
exact ’Joint Test’ time group / joint;

run;
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Output 8.41 contains the goodness-of-fit statistics, and Output 8.42 contains the resulting
maximum likelihood parameter estimates.

Output 8.41 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 2 1.1728 0.5864 0.5563
Pearson 2 0.7501 0.3750 0.6873

Number of unique profiles: 6

Output 8.42 MLE Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.4132 0.7970 3.1439 0.0762
time delayed 1 0.7024 0.8344 0.7087 0.3999
time late 1 2.5533 1.1667 4.7893 0.0286
group antidote 1 -2.2170 0.8799 6.3480 0.0118

The 95% confidence limits for the parameter estimates are displayed in Output 8.43.

Output 8.43 Confidence Limits for Estimates

Wald Confidence Interval for Parameters

Parameter Estimate 95% Confidence Limits

Intercept 1.4132 -0.1489 2.9754
time delayed 0.7024 -0.9330 2.3378
time late 2.5533 0.2666 4.8400
group antidote -2.2170 -3.9417 -0.4924

Odds ratios and their 95% confidence limits are displayed in Output 8.44.

Output 8.44 Odds Ratio Estimates

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

time delayed vs early 2.019 0.393 10.359
time late vs early 12.849 1.305 126.471
group antidote vs control 0.109 0.019 0.611
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Output 8.45 contains the exact test results. First, the exact tests corresponding to the first
EXACT statement are printed, followed by the results for the second EXACT statement.

Output 8.45 Exact Tests

Exact Conditional Analysis

Conditional Exact Tests for ’Model 1’

--- p-Value ---
Effect Test Statistic Exact Mid

Intercept Score 3.4724 0.1150 0.0922
Probability 0.0457 0.1150 0.0922

time Score 6.0734 0.0442 0.0418
Probability 0.00471 0.0442 0.0418

group Score 7.1656 0.0085 0.0050
Probability 0.00698 0.0085 0.0050

Conditional Exact Tests for ’Joint Test’

--- p-Value ---
Effect Test Statistic Exact Mid

Joint Score 13.1459 0.0027 0.0027
Probability 0.000015 0.0015 0.0015

time Score 6.0734 0.0442 0.0418
Probability 0.00471 0.0442 0.0418

group Score 7.1656 0.0085 0.0050
Probability 0.00698 0.0085 0.0050

For the ‘Model 1’ results, both the exact score conditional test and the probability test are
reported; in this instance, they both havep-values that are the same. This will not always
be the case. For the time effect, the exactp-value is0:0442, and for the group effect, the
exactp-value is0:0085. Again, these tests are conditioned on the other effects in the
model. Note that, if an effect consists of two or more parameters, then this test is
evaluating the hypthesis that all the relevant parameters are equal to zero simultaneously.
For the ‘Joint’ results, the score test produces an exactp-value of 0.0027, and the
probability test produces an exactp-value of 0.0015. Note that when you specify the
JOINT option, you also generate the tests for the individual components.

Output 8.46 displays the parameter estimates and their 95% confidence limits. Note that
the parameter estimates are fairly similar to those based on the large sample approximate
methods. The exactp-values for the group effect parameter has a different value that those
reported for the exact conditional tests. This is because the exactp-values for the single
parameters are the results of likelihood ratio tests based on the conditional pdf used to
estimate them. For the most part, you would rely on the exactp-values reported in the
“Exact Conditional Analysis” table.
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Output 8.46 Exact Parameter Estimates

Exact Conditional Analysis

Exact Parameter Estimates for ’Model 1’

95% Confidence
Parameter Estimate Limits p-Value

Intercept 1.3695 -0.2361 3.6386 0.1140
time delayed 0.6675 -1.2071 2.6444 0.6667

late 2.4387 0.1364 6.4078 0.0331
group antidote -2.0992 -4.5225 -0.3121 0.0154

Output 8.47 displays the odds ratio estimates and their 95% confidence limits.

Output 8.47 Exact Odds Ratio Estimates

Exact Conditional Analysis

Exact Odds Ratios for ’Model 1’

95% Confidence
Parameter Estimate Limits p-Value

Intercept 3.933 0.790 38.037 0.1140
time delayed 1.949 0.299 14.075 0.6667

late 11.458 1.146 606.546 0.0331
group antidote 0.123 0.011 0.732 0.0154

Table 8.11 provides a comparison of the unconditional maximum likelihood estimates and
the exact conditional estimates:

Table 8.11. Exact and Asymptotic Estimates

Inference Lower 95% Upper 95%
Variable Type Estimate CI bound CI bound p-value
Intercept Asymptotic 1.4132 �0:1489 2.9754 0.0762

Exact 1.3695 �0:2361 3.6386 0.1140
Delayed Asymptotic 0.7024 �0:9330 2.3378 0.3999

Exact 0.6675 �1:2071 2.6444 0.6667
Late Asymptotic 2.5535 0.2666 4.8404 0.0286

Exact 2.4387 0.1364 6.4078 0.0331
Antidote Asymptotic �2:2171 �3:9418 �0:4924 0.0118

Exact �2:0992 �4:5225 �0:3121 0.0154

For the exact computations performed with PROC LOGISTIC, thep-value listed is twice
the one-sidedp-value. Note that the exact methods do not produce a standard error for the
estimate. For these data, you can see that exact logistic regression produces estimates that
are different, although not substantially, from the maximum likelihood estimates. For each
parameter, thep-values listed for the exact estimates are larger than those for the
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asymptotic estimates. Usually, the exact methods lead to more conservative results than
the approximate methods. As a general rule, when the sample sizes are small and the
approximatep-values are less than 0.10, it is a good idea to look at the exact results. If the
approximatep-values are larger than 0.15, then the approximate methods are probably
satisfactory in the sense that the exact results are likely to agree with them.

Besides being appropriate for data sets with small cell counts, exact methods often can
produce estimates and corresponding confidence bounds for data sets for which maximum
likelihood methods fail to converge.

Exact Confidence Limits for Common Odds Ratios for2� 2 Tables
Section 3.3 in Chapter 3, “Sets of2� 2 Tables,” points out that while currently, the FREQ
procedure doesn’t provide exact confidence limits for the average odds ratio in a set of
2� 2 tables, you can obtain them with exact logistic regression. You formulate the
analysis as a regression where the column variable is the response variable and the row and
stratification variables are the explanatory variables. Then, you condition on the
stratification variable and estimate the odds ratio for the row variable. This odds ratio will
be an average odds ratio.

Consider the data in Table 8.12. A small company initiated exercise programs at both of its
locations, downtown and a satellite office in a nearby suburb. The office program consisted
of directed aerobic activities such as running, walking, and bicycling, conducted under the
guidance of an exercise counselor. The home program consisted of a range of activities
that were self-monitored. Each employee signed an agreement to participate in a program
and to check in monthly to ensure continual effort. After a year, participants and
non-participants underwent a cardiovascular stress test to assess their fitness, and their
result was recorded as good or not good depending on age-adjusted criteria. The exercise
counselor was interested in whether type of program was associated with good test results.

Table 8.12. Cardiovascular Test Outcomes

Location Program Good Not Good Total
Downtown Office 12 6 18
Downtown Home 3 5 8

Total 15 11 26
Satellite Office 6 1 7
Satellite Home 1 3 4

Total 7 4 11

Interest lies in computing an odds ratio comparing good results for the office program
compared to the home program. The sample sizes in these tables are too small to be able to
justify the asymptotic confidence limits for the odds ratio produced by the FREQ
procedure. However, you can obtain these odds ratios and exact confidence limits by
performing an exact logistic regression.

The following DATA step inputs these data into SAS data set EXERCISE.

data exercise;
input location $ program $ outcome $ count @@;
datalines;
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downtown office good 12 downtown office not 5
downtown home good 3 downtown home not 5
satellite office good 6 satellite office not 1
satellite home good 1 satellite home not 3
;
run;

To perform the exact logistic regression, you put both LOCATION and PROGRAM in the
CLASS statement and, in order to compare office to home, use the REF=FIRST option
with the PROGRAM variable. PROC LOGISTIC only estimates odds ratio for CLASS
variables for reference parameterization (incremental effects) so the PARAM=REF option
is included in the CLASS statement as well. The response variable is OUTCOME in the
MODEL statement; since ‘good’ outcome is the first alphanumerically ordered value (the
other is ‘not’), the model is based on the probability of good outcome.

You then specify the EXACT statement, requesting exact tests for the variable PROGRAM
and also specifying the ESTIMATE=BOTH option to obtain both the parameter estimate
and the odds ratio estimate.

proc logistic;
freq count;
class location program(ref=first) /param=ref;
model outcome = location program;
exact program / estimate=both;

run;

Output 8.48 displays the results of the exact tests for exercise program. Both the score and
probability tests have an exactp-value of 0.0307, indicating significance at the� = 0:05
level of significance.

Output 8.48 Exact Test Results

Exact Conditional Analysis

Conditional Exact Tests

--- p-Value ---
Effect Test Statistic Exact Mid

program Score 5.5739 0.0307 0.0215
Probability 0.0183 0.0307 0.0215

Output 8.49 displays the exact parameter estimate and the exact odds ratio estimate
comparing office program to home program; the odds ratio estimate takes the value 5.413
with 95% confidence limits of (1.049, 33.312). This means that those persons participating
in the office exercise program had roughly 5 times the odds of a good test outcome as the
odds of those participating in a home exercise program. However, note that the confidence
limits are very wide, and that the lower bound is just beyond the value 1.
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Output 8.49 Exact Estimates

Exact Conditional Analysis

Exact Parameter Estimates

95% Confidence
Parameter Estimate Limits p-Value

program office 1.6889 0.0474 3.5059 0.0424

Exact Odds Ratios

95% Confidence
Parameter Estimate Limits p-Value

program office 5.413 1.049 33.312 0.0424

Compare the exact results to those produced by the asymptotic analysis, which are
displayed in Output 8.50.

Output 8.50 Odds Ratio for Asymptotic Analysis

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

location downtown vs satellit 0.758 0.151 3.803
program office vs home 6.111 1.331 28.062

The point estimate here is 6.111 and the 95% Wald confidence limits are (1.331, 28.062).
Note that the Mantel-Haenszel estimator of the odds ratio (produced by PROC FREQ but
not shown here) takes the value 5.8421 with confidence limits (1.3012, 26.2296).

Thus, using the exact method provides a somewhat more conservative picture than the
inappropriate asymptotic method.

8.9 Using the CATMOD and GENMOD Procedures for Logistic
Regression

The CATMOD and GENMOD procedures provide alternative ways to perform logistic
regression in the SAS System. Prior to the inclusion of the CLASS statement in the
LOGISTIC procedure, these procedures provided a way to perform logistic regression
with classification variables without having to create a batch of indicator variables. Now
that PROC LOGISTIC handles classification variables, there is less need to point out the
availability of these procedures for binary logistic regression. However, the CATMOD
procedure currently provides the only way in which to perform generalized logits
regression in the SAS System (discussed in Chapter 9), and the GENMOD procedure
performs logistic regression for correlated responses via the generalized estimating
equations method (discussed in Chapter 15). Thus, this section provides an introduction to
these procedures for the relatively simple case of binary logistic regression.
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8.9.1 Performing Logistic Regression with the CATMOD Procedure

The CATMOD procedure is a general modeling procedure that fits linear models to
functions of proportions with weighted least squares. In addition, it performs maximum
likelihood estimation when the response functions are logits or generalized logits. To
understand how the CATMOD procedure works, consider the following example.

Assuming that data set SENTENCE from Section 8.3 has been created, the following
PROC CATMOD statements fit a main effects model.

proc catmod data=sentence order=data;
weight count;
model sentence = type prior;

run;

The following output is produced.

Output 8.51 PROC CATMOD

Data Summary

Response sentence Response Levels 2
Weight Variable count Populations 4
Data Set SENTENCE Total Frequency 863
Frequency Missing 0 Observations 8

Population Profiles

Sample type prior Sample Size
---------------------------------------

1 nrb some 151
2 nrb none 92
3 other some 208
4 other none 412

Response Profiles

Response sentence
--------------------

1 y
2 n

The CATMOD procedure determines the model matrix structure from the explanatory
variables listed in the MODEL statement. It forms a separate group, or ‘sample,’ for each
combination of explanatory variable values. These groups are displayed in the “Population
Profiles” table. The four different rows, or profiles, correspond to rows in Table 8.5. The
sample sizes correspond to the row totals listed in that table. The “Response Profiles” table
in the PROC CATMOD output lists the response variable and its values. The
ORDER=DATA option was used to put the response value ‘y’ first, so that the model fit
would be based on Pr{prison}. It is always important to check these tables in the PROC
CATMOD output to make sure that you understand the internal order of the response
variable values and the classification of explanatory effects.
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After the iteration history is printed (not shown here), PROC CATMOD prints the ANOVA
table and the table of maximum likelihood estimates, as displayed in Output 8.52. The
ANOVA table contains Wald statistics for the model effects; the entry labeled “Likelihood
Ratio” is the likelihood ratio goodness-of-fit test. Note that the likelihood ratio statistic
and the Wald statistics are identical to those computed for the main effects model fit with
PROC LOGISTIC, as displayed in Section 8.3.3.

Output 8.52 PROC CATMOD

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 243.25 <.0001
type 1 9.05 0.0026
prior 1 3.31 0.0687

Likelihood Ratio 1 0.51 0.4762

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 -1.4828 0.0951 243.25 <.0001
type 2 0.2960 0.0984 9.05 0.0026
prior 3 0.1735 0.0953 3.31 0.0687

If you compare the parameter estimates in this PROC CATMOD output to those for PROC
LOGISTIC in Output 8.17, you will find that they are the same. This is because the default
parameterization for PROC CATMOD is the same deviation from the mean
parameterization that is the default for PROC LOGISTIC, as demonstrated in Section
8.3.3. See the discussion in that section concerning the parameterization and how to
compute the odds ratio in this situation. You will have to do this yourself with the
CATMOD procedure, as it does not produce the odds ratios for you.

However, the CATMOD procedure can be a convenient way to perform logistic regression
when you have qualitative explanatory variables. It can also handle continuous variables
that have a relatively limited number of unique values. You just specify the variable in the
DIRECT statement, and PROC CATMOD inserts its values directly into the model matrix.
This feature is discussed in Chapter 13, “Weighted Least Squares,” which discusses the
CATMOD procedure comprehensively for weighted least squares applications.

However, PROC CATMOD is not an appropriate procedure for logistic regression when
you have continuous explanatory variables with many distinct values. The internal
CATMOD machinery always creates a separate group for each distinct combination of
explanatory variable values. With a very large number of continuous explanatory
variables, the underlying table can become too sparse and you may get messages about
dependent response functions and infinite parameter estimates.
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8.9.2 Performing Logistic Regression with the GENMOD Procedure

Generalized Linear Models
The GENMOD procedure fits generalized linear models. Such models are a generalization
of the general linear model that is fit by the GLM procedure. Generalized linear models
include not only classical linear models but logistic and probit models for binary data, and
Poisson regression models for Poisson data. You can also fit loglinear models for
multinomial data indirectly through computational equivalences with fitting Poisson
regression models. You can generate many other statistical models by the appropriate
selection of alink functionand the probability distribution of the response.

A generalized linear model has three components:

� a random sample of independent response variable {yi} with some probability
distribution,i = 1; 2; : : : ; n

� a set of explanatory variablesxi and parameter vector�

� a monotonic link functiong that describes how the expected value ofyi, �i, is
related toxi0�:

g(�i) = xi
0�

You construct a generalized linear model by choosing the appropriate link function and
response probability distribution. In the classical linear model, the probability distribution
is the normal and the usual link function is the identity:g(�) = �. For logistic regression,
the distribution is the binomial and the usual link function is the logit:

g(�) = log

�
�

1� �

�

For Poisson regression, the distribution is Poisson and the link function isg(�) = log(�).

In the SAS System, the GENMOD procedure fits the generalized linear model and thus
provides another mechanism for performing logistic regression analysis (SAS/INSIGHT
software also fits generalized linear models). The following section describes how to
perform logistic regression using PROC GENMOD. See Chapter 12, “Poisson
Regression,” for a discussion of Poisson regression and illustrations using the GENMOD
procedure. For a comprehensive discussion of the generalized linear model, refer to
McCullagh and Nelder (1989). For an introduction to the topic, refer to Dobson (1990) or
Agresti (1995).

Fitting Logistic Regression Models with PROC GENMOD
Fitting logistic regression models with the GENMOD procedure is a relatively
straightforward matter. PROC GENMOD includes a CLASS statement, so you simply list
your classification variables in it, just as you now do in PROC LOGISTIC. The
parameterization it produces is equivalent to the incremental effects parameterization
implemented for most of the analyses performed in this chapter. In PROC GENMOD, the
reference cell is the combination of the last sorted levels of the effects listed in the CLASS
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statement (and 0s for any continuous explanatory variables). Incremental effects
parameters are estimated for the remaining levels.

Consider the urinary tract infection data analyzed in Section 8.4. If you sorted the values
of TREATMENT and DIAGNOSIS, those observations that had an uncomplicated
diagnosis and treatment C would become the reference cell.

The following statements produce an analysis using PROC GENMOD. The CLASS
statement is a more basic version that the one available with PROC LOGISTIC; you can’t
specify choices of parameterization or reference levels. You need to specify
LINK=LOGIT and DIST=BINOMIAL to request logistic regression with PROC
GENMOD. The TYPE3 option requests tests of effects for the model.

proc genmod data=uti;
freq count;
class diagnosis treatment;
model response = diagnosis treatment /

link=logit dist=binomial type3
aggregate=(diagnosis treatment);

run;

The output is displayed in Output 8.53.

Output 8.53 Goodness of Fit

Class Level Information

Class Levels Values

diagnosis 2 complicated uncomplicated
treatment 3 A B C

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.5147 1.2573
Scaled Deviance 2 2.5147 1.2573
Pearson Chi-Square 2 2.7574 1.3787
Scaled Pearson X2 2 2.7574 1.3787
Log Likelihood -225.0355

The table labeled “Criteria for Assessing Goodness of Fit” includes the Log Likelihood
statistic, which has the value�225:0355. Note that if you multiply this value by two and
reverse the sign, you get the same value as�2LOG L displayed in the output for the same
model in the PROC LOGISTIC output. Other criteria displayed are approximate
chi-square statistics. The Deviance is the log-likelihood statistic for the difference between
this main effects model and the saturated model, the same as computed by PROC
LOGISTIC.

The estimates displayed in Output 8.54 are identical to those produced with PROC
LOGISTIC for the same model. However, those levels that become the reference levels
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under incremental effects coding, uncomplicated diagnosis and treatment C, are assigned
0s for the parameter estimate and related statistics.

The table labeled “LR Statistics For Type 3 Analysis” can be viewed as serving a similar
role to that of an ANOVA table. It includes likelihood ratio tests for each of the effects.
The effect for treatment, which has three levels, has 2 df. The effect for diagnosis, with
two levels, has 1 df. Both tests are clearly significant, with values of 28.11 and 11.72,
respectively.

Output 8.54 Parameter Estimates

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 1.4184 0.2987 0.8330 2.0038 22.55 <.0001
diagnosis complicated 1 -0.9616 0.2998 -1.5492 -0.3740 10.29 0.0013
diagnosis uncomplicated 0 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1 0.5847 0.2641 0.0671 1.1024 4.90 0.0268
treatment B 1 1.5608 0.3160 0.9415 2.1800 24.40 <.0001
treatment C 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

diagnosis 1 11.72 0.0006
treatment 2 28.11 <.0001

To assess whether any of the treatments are similar, linear combinations of the parameters
are tested to see if they are significantly different from zero.

H0:L� = 0

By choosing the right elements ofL, you can construct linear combinations of the
parameters that will produce the appropriate test. By default, PROC GENMOD computes
a likelihood ratio test; on request, it can produce the corresponding Wald test. The
likelihood ratio test for a contrast is twice the difference between the log likelihood of the
current fitted model and the log likelihood of the model fitted under the constraint that the
linear function of the parameters defined by the contrast is equal to zero.

The test for whether treatment A is equivalent to treatment B is expressed as

H0:�A = �B

and the test for whether treatment A is equivalent to treatment C is expressed as

H0:�A = �C
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You request these tests with the CONTRAST statement in PROC GENMOD. The
following CONTRAST statement is required to produce the first test. You place an
identifying name for the test in quotes, name the effect variable, and then list the
appropriate coefficients forL. These coefficients are listed according to the order in which
the levels of the variable are known to PROC GENMOD. When you use a CONTRAST
statement, or specify the ITPRINT, COVB, CORRB, WALDCI, or LRCI options in the
MODEL statement, the GENMOD output includes information on what levels of effects
the parameters represent.

The CONTRAST statement is very similar to the CONTRAST statement in PROC GLM.

contrast ’A-B’ treat 1 -1 0;

The following SAS code produces the tests of interest.

proc genmod data=uti;
freq count;
class diagnosis treatment;
model response = diagnosis treatment /

link=logit dist=binomial;
contrast ’treatment’ treatment 1 0 -1 ,

treatment 0 1 -1;
contrast ’A-B’ treatment 1 -1 0;
contrast ’A-C’ treatment 1 0 -1;

run;

Output 8.55 contains the information about what the parameters represent.

Output 8.55 Parameter Information

Parameter Information

Parameter Effect diagnosis treatment

Prm1 Intercept
Prm2 diagnosis complicated
Prm3 diagnosis uncomplicated
Prm4 treatment A
Prm5 treatment B
Prm6 treatment C

Output 8.56 contains the results of the hypothesis tests.

Output 8.56 Contrasts

Contrast Results

Chi-
Contrast DF Square Pr > ChiSq Type

treatment 2 28.11 <.0001 LR
A-B 1 9.22 0.0024 LR
A-C 1 4.99 0.0255 LR
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QL = 9:22 for the test of whether treatment A and treatment B are the same;QL = 4:99
for the test of whether treatment A and treatment C are the same; both of these are clearly
significant at the� = 0:05 level of significance. Note that these tests are similar to those
displayed in the analysis performed in Section 8.4. If you execute these same statements
using the WALD option, you will obtain identical results to the Wald tests obtained from
PROC LOGISTIC in Section 8.4.

Appendix A: Statistical Methodology for Dichotomous Logistic
Regression

Consider the relationship of a dichotomous outcome variable to a set of explanatory
variables. Such situations can arise from clinical trials where the explanatory variables are
treatment, stratification variables, and background covariables; another common source of
such analyses are observational studies where the explanatory variables represent factors
for evaluation and background variables.

The model for�, the probability of the event, can be specified as follows:

� =
exp(�+

Pt
k=1 �kxk)

1 + exp(�+
Pt

k=1 �kxk)

It follows that the odds are written

�

1� �
= exp(�+

tX
k=1

�kxk)

so the model for the logit is linear:

log

�
�

1� �

�
= �+

tX
k=1

�kxk

Theexp(�k) are the odds ratios for unit changes inxk, that is, the amount by which
�=(1� �) is multiplied per unit change inxk.

You can apply the product binomial distribution when the data for the dichotomous
outcome are from a sampling process equivalent to stratified simple random sampling
from subpopulations according to the explanatory variables. Relative to this structure, the
maximum likelihood estimates are obtained by iteratively solving the equations:

sX
i=1

ni+�̂i(1; xi1; : : : ; xit) =

sX
i=1

ni1(1; xi1; : : : ; xit)

whereni1 is the number of subjects who have the event corresponding to� amongni
subjects with(xi1; : : : ; xit) status.
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The quantity

�̂i =
expf�̂ +

Pt
k=1 �̂kxikg

1 + expf�̂+
Pt

k=1 �̂kxikg

is the model-predicted value for�i.

For sufficient sample size, the quantities�̂ and�̂k have approximate multivariate normal
distributions for which a consistent estimate of the covariance structure is available.

You can assess goodness of fit of the model with Pearson chi-square statistics when sample
sizes are sufficiently large (80% of thefni1g and thefni � ni1g are� 5 and all others are
� 2).

QP =

sX
i=1

(ni1 � ni+�̂i)
2

ni+�̂i(1� �̂i)

is approximately chi-square with(s� 1� t) degrees of freedom.

You can also use log-likelihood ratio statistics to evaluate goodness of fit by evaluating the
need for a model to include additional explanatory variables.

In the setting where you have continuous explanatory variables, you cannot useQP to
assess goodness of fit because you no longer have sufficient sample sizesni+. However,
you can still apply the strategy of fitting an expanded model and then verifying that the
effects not in the original model are nonsignificant. If the model matrix for the original
modelX has rankt, then the expanded model[X;W] has rankt+ w, wherew is the rank
of W. You can evaluate the significance ofW with the difference of the log-likelihood
statistics for the modelsX and[X;W].

QLR =

2X
i=1

2X
j=1

2nij log

�
mij;w

mij

�

wheres is the total number of groups with at least one subject,mij is the predicted value
of nij for modelX (mi1 = ni�̂i andmi2 = ni(1� �̂i)), andmij;w is the predicted value of
nij for model[X;W]. QLR has an approximate chi-square distribution withw degrees of
freedom.

Another approach that doesn’t involve fitting an expanded model is the score statistic for
assessing the association of the residuals(n�1 �m�1) with W via the linear functions
g =W0(n�1 �m�1). The score statistic is written

QS = g0fW0[D�1
v �D�1

v XA(X
0
AD

�1
v XA)

�1X0
AD

�1
v ]Wg�1g

wheren�1 = (n11; n21; : : : ; ns1)
0,XA = [1;X],m�1 = (m11;m21; : : : ;ms1)

0, andDv is
a diagonal matrix with diagonal elementsvi = [ni+�̂i(1� �̂i)]

�1. QS approximately has a
chi-square distribution withw degrees of freedom when the total sample size is large
enough to support an approximately multivariate normal distribution for the linear
functions[X0

A;W
0]n�1.
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Chapter 9

Logistic Regression II: Polytomous
Response

9.1 Introduction

While the typical logistic regression analysis models a dichotomous response as discussed
in Chapter 8, “Logistic Regression I: Dichotomous Response,” logistic regression is also
applicable to multilevel responses. The response may be ordinal (no pain, slight pain,
substantial pain) or nominal (Democrats, Republicans, Independents). For ordinal
response outcomes, you can model functions calledcumulative logitsby performing
ordered logistic regression using the proportional odds model (McCullagh 1980). For
nominal response outcomes, you formgeneralized logitsand perform a logistic analysis
similar to those described in the previous chapter, except that you model multiple logits
per subpopulation. The analysis of generalized logits is a form of the loglinear model,
discussed in Chapter 16, “Loglinear Models.” The LOGISTIC procedure is used to model
cumulative logits, and currently the CATMOD procedure is used to model generalized
logits.

9.2 Ordinal Response: Proportional Odds Model

9.2.1 Methodology

Consider the arthritis pain data in Table 9.1. Male and female subjects received an active
or placebo treatment for their arthritis pain, and the subsequent extent of improvement was
recorded as marked, some, or none (Koch and Edwards 1988).

Table 9.1. Arthritis Data

Improvement
Sex Treatment Marked Some None Total
Female Active 16 5 6 27
Female Placebo 6 7 19 32
Male Active 5 2 7 14
Male Placebo 1 0 10 11

One possible analysis strategy is to create a dichotomous response variable by combining
two of the response categories, basing a model on either Pr{marked improvement} versus
Pr{some or no improvement} or Pr{marked or some improvement} versus
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Pr{no improvement}. However, since there is a natural ordering to these response levels, it
makes sense to consider a strategy that takes advantage of this ordering.

Consider the quantities

�hi1 = �hi1; �hi2 = �hi1 + �hi2

where�hi1 denotes the probability of marked improvement,�hi2 denotes the probability of
some improvement, and�hi3 denotes the probability of no improvement. Thef�hijg
represent cumulative probabilities:�hi1 is the probability of marked improvement, and
�hi2 is the probability of marked or some improvement (h = 1 for females,h = 2 for
males;i = 1 for active treatment,i = 2 for placebo).

For a dichotomous response, you compute a logit function for each subpopulation. For a
multi-level response, you create more than one logit function for each subpopulation. With
ordinal data, you can computecumulative logits, which are based on the cumulative
probabilities. For three response levels, you compute two cumulative logits:

logit(�hi1) = log

�
�hi1

�hi2 + �hi3

�
; logit(�hi2) = log

�
�hi1 + �hi2

�hi3

�
These cumulative logits are the log odds of marked improvement to none or some
improvement and the log odds of marked or some improvement to no improvement,
respectively. Both log odds focus on more favorable to less favorable response. The
proportional odds model takes both of these odds into account.

Assuming that the data arise from a stratified simple random sample or are at least
conceptually representative of a stratified population, they have the following likelihood:

Prfnhijg =
2Y

h=1

2Y
i=1

nhi+!
3Y

j=1

�hij
nhij

nhij!

where

3X
j=1

�hij = 1

You could write a model that applies to both logits simultaneously for each combination of
gender and treatment:

logit(�hik) = �k + x
0
hi�k

wherek indexes the two logits. This says that there are separate intercept parameters(�k)
and different sets of regression parameters(�k) for each logit.

If you take the difference in logits between two subpopulations for this model, you get

logit(�hik)� logit(�hi0k) = (xhi � xhi0)0�k for k = 1; 2
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Thus, you would need to look at two differences in logits simultaneously to compare the
response between two subpopulations. This is the same number of comparisons you would
need to compare two subpopulations for a three-level nominal response, for example, in a
test for association in a contingency table (that is,r � 1 wherer is the number of response
outcomes). Therefore, this model doesn’t take the ordinality of the data into account.

The proportional odds assumption is that�k = � for all k, simplifying the model to

logit(�hik) = �k + x
0
hi�

If you take the difference in logits for this model, you obtain the equations

logit(�hi1)� logit(�hi01) = log

�
�hi1=(�hi2 + �hi3)

�hi01=(�hi02 + �hi03)

�
= (xhi � xhi0)0�

logit(�hi2)� logit(�hi02) = log

�
(�hi1 + �hi2)=�hi3
(�hi01 + �hi02)=�hi03

�
= (xhi � xhi0)0�

This says that the log cumulative odds are proportional to the distance between the
explanatory variable values and that the influence of the explanatory variables is
independent of the cutpoint for the cumulative logit. In this case, there is a “cut” at marked
improvement to form logit(�hi1) and a cut at some improvement to form logit(�hi2). This
proportionality is what gives the proportional odds model its name. For a single
continuous explanatory variable, the regression lines would be parallel to each other, their
relative position determined by the values of the intercept parameter.

This model can also be stated as

�hik =
exp(�k + x

0
hi�)

1 + exp(�k + x
0
hi�)

and is written in summation notation as

�hik =
expf�k +

Pt
g=1 �gxhigg

1 + expf�k +
Pt

g=1 �gxhigg

whereg = (1; 2; : : : ; t) references the explanatory variables. This model is similar to the
previous logistic regression models and is also fit with maximum likelihood methods. You
can determine the values for�hij from this model by performing the appropriate
subtractions of the�hik.
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�hi1 = �hi1

�hi2 = �hi2 � �hi1

�hi3 = 1� �hi2

The main effects model is an appropriate starting point for the analysis of the arthritis data.
You can write this model in matrix notation as

266666666664

logit(�111)
logit(�112)
logit(�121)
logit(�122)
logit(�211)
logit(�212)
logit(�221)
logit(�222)

377777777775
=

266666666664

�1 + �1 + �2
�2 + �1 + �2

�1 + �1
�2 + �1

�1 + �2
�2 + �2

�1
�2

377777777775
=

266666666664

1 0 1 1
0 1 1 1
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
1 0 0 0
0 1 0 0

377777777775

2664
�1
�2
�1
�2

3775

This is very similar to the models described in Chapter 8 except that there are two intercept
parameters corresponding to the two cumulative logit functions being modeled for each
group. The parameter�1 is the intercept for the first cumulative logit,�2 is the intercept
for the second cumulative logit,�1 is an incremental effect for females, and�2 is an
incremental effect for active. Males on placebo comprise the reference cell.

Table 9.2 contains the cell probabilities for marked improvement and no improvement
based on this model. Table 9.3 contains the odds. The cell probabilities for marked
improvement are based on the model for the first logit function, and the probabilities for
no improvement are based on the model for the second logit function (these probabilities
are computed from1� �hi2). Since the probabilities for all three levels sum to 1, you can
determine the cell probabilities for some improvement through subtraction.

The odds ratio for females versus males ise�1 , and the odds ratio for active treatment
versus placebo ise�2 . The odds ratios are computed in the same manner as for the logistic
regression analysis for a dichotomous response—you form the ratio of the appropriate
odds.

Table 9.2. Formulas for Cell Probabilities

Improvement
Sex Treatment Marked None
Female Active e�1+�1+�2=(1 + e�1+�1+�2) 1=(1 + e�2+�1+�2)

Female Placebo e�1+�1=(1 + e�1+�1) 1=(1 + e�2+�1)

Male Active e�1+�2=(1 + e�1+�2) 1=(1 + e�2+�2)

Male Placebo e�1=(1 + e�1) 1=(1 + e�2)
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Table 9.3. Formulas for Model Odds

Improvement
Marked Versus Marked or Some

Sex Treatment Some or None Versus None

Female Active e�1+�1+�2 e�2+�1+�2

Female Placebo e�1+�1 e�2+�1

Male Active e�1+�2 e�2+�2

Male Placebo e�1 e�2

For example, the odds of marked improvement versus some or no improvement for
females compared to males is

e�1+�1+�2

e�1+�2
= e�1

As constrained by the proportional odds model, this is also the odds ratio for marked or
some improvement versus no improvement.

9.2.2 Fitting the Proportional Odds Model with PROC LOGISTIC

PROC LOGISTIC fits the proportional odds model whenever the response variable has
more than two levels. Thus, you need to ensure that you do, indeed, have an ordinal
response variable because PROC LOGISTIC will assume that you do. Note that the
GENMOD and PROBIT procedures also fit the proportional odds model with maximum
likelihood estimation.

The following SAS statements create the data set ARTHRITIS. Note that these data are in
the form of counts, so a variable named COUNT is created to contain the frequencies for
each table cell. The variable IMPROVE is a character variable that takes the values
marked, some, or none to indicate the subject’s extent of improvement of arthritic pain.
The variable SEX takes the values male and female, and the variable TREATMENT takes
the values active and placebo.

data arthritis;
length treatment $7. sex $6.;
input sex $ treatment $ improve $ count @@;
datalines;

female active marked 16 female active some 5 female active none 6
female placebo marked 6 female placebo some 7 female placebo none 19
male active marked 5 male active some 2 male active none 7
male placebo marked 1 male placebo some 0 male placebo none 10
;
run;
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The use of PROC LOGISTIC is identical to previous invocations for dichotomous
response logistic regression. The response variable is listed on the left-hand side of the
equal sign and the explanatory variables are listed on the right-hand side. Since
ORDER=DATA is specified in the PROC statement, the values for IMPROVE are ordered
in the sequence in which PROC LOGISTIC encounters them in the data, which is marked,
some, and none. (Another legitimate ordering would be none, some, and marked.) It is
very important to ensure that the ordering is correct when you are using ordinal data
strategies. The procedure still performs an analysis if the response values are ordered
incorrectly, but the results will be erroneous. The burden is on the user to specifiy the
correct order and then to check the results.

The following code requests that PROC LOGISTIC fit a proportional odds model.

proc logistic order=data;
freq count;
class treatment sex / param=reference;
model improve = sex treatment / scale=none aggregate;

run;

The “Response Profile” table in Output 9.1 shows that the response variable values are
ordered correctly in terms of decreasing improvement. Thus, the cumulative logits
modeled are based on more to less improvement. The procedure also prints out a note that
a zero count observation has been encountered. For these data, this is not a problem since
the total row counts are acceptably large. Computationally, zero counts are discarded. The
model still produces predicted values for the cell that corresponds to the zero cell, males
on placebo who showed some improvement.

Output 9.1 Response Profiles

Response Profile

Ordered Total
Value improve Frequency

1 marked 28
2 some 14
3 none 42

NOTE: 1 observation having zero frequency or weight was excluded since it does
not contribute to the analysis.

The procedure next prints the “Class Level Information” table, which shows that the
parameterization takes the form of incremental effects for active treatment and females.
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Output 9.2 Class Level Information

Class Level Information

Design
Variables

Class Value 1

treatment active 1
placebo 0

sex female 1
male 0

Next, PROC LOGISTIC prints out a test for the appropriateness of the proportional odds
assumption. The test performed is a score test that determines whether, if you fit a
different set of explanatory variable parameters�k for each logit function, those sets of
parameters are equivalent. Thus, the model considered is

logit(�hik) = �k + x
0
hi�k

The hypothesis tested is that there is a common parameter vector� instead of distinct�k.
The hypothesis can be stated as�k = � for all k. Thus, if you reject the null hypothesis,
you reject the assumption of proportional odds and you need to consider a different
approach, such as modeling generalized logits, discussed in Section 9.3. If the null
hypothesis is not rejected, then the test supports the assumption of proportional odds.
Since the test is comparingt parameters for thet explanatory variables across(r � 1)
logits, wherer is the number of response levels, it hast � (r � 2) degrees of freedom.

The sample size requirements for this test are moderately demanding; you need
approximately five observations at each outcome at each level of each main effect, or
roughly the same sample size as if you were fitting a generalized logit model. Small
samples may artificially make the statistic large, meaning that any resulting significance
needs to be interpreted cautiously. However, nonsignificant results are always informative.

The partial proportional odds model is an alternative model that can be fit when the
proportionality assumption does not hold for all explanatory variables, but there is
proportionality for some. Refer to Koch, Amara, and Singer (1985) for a discussion of this
model and refer to Section 15.12 for an example of fitting this type of model using the
generalized estimating equations approach. When there appears to be no proportionality,
the best approach may be to treat the data as nominal and fit a model to the generalized
logits, as discussed in Section 9.3.

Output 9.3 displays this score test.

Output 9.3 Proportional Odds Test

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

1.8833 2 0.3900
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QRS takes the value 1.883 with 2 df. This is clearly nonsignificant, and so the assumption
of proportional odds is a reasonable one for these data.

The evaluation of goodness of fit for the proportional odds model is similar to the
evaluation of goodness of fit for the dichotomous response logistic regression model. If
you have sufficient sample size, with 80% of the observed cell counts at least 5, then you
can use counterparts ofQP andQL. QP is distributed as chi-square with df =
f(r � 1)(s� 1)� tg, wheret is the number of explanatory variables,r is the number of
response levels, ands is the number of subpopulations. Output 9.4 contains these
statistics. With values of 2.7121 and 1.9099, respectively, and 4 df,QL andQP support
the adequacy of the model. The 4 df come from(3� 1)(4� 1)� 2 = 4.

Output 9.4 Goodness of Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 4 2.7121 0.6780 0.6071
Pearson 4 1.9099 0.4775 0.7523

Number of unique profiles: 4

The tests for assessing model fit through explanatory capability are also supportive of the
model; the likelihood ratio test has a value of 19.8865 with 2 df and the score test has a
value of 17.8677 with 2 df, as displayed in Output 9.5.

Output 9.5 Global Tests

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 19.8865 2 <.0001
Score 17.8677 2 0.0001
Wald 16.7745 2 0.0002

You can also investigate goodness of fit by performing the score test for a set of additional
terms not in the model. In this case, this effect would simply be the treatment� sex
interaction. The following code requests that PROC LOGISTIC fit a main effects model
and then perform a score test for the other effect listed in the MODEL statement, which is
the interaction.

proc logistic order=data;
freq count;
class sex treatment / param=reference;
model improve = sex treatment sex*treatment /

selection=forward start=2;
run;
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The score test of interest is labeled “Residual Chi-Square” and is printed after the “Testing
Global Null Hypothesis: BETA=0” table; it is displayed in Output 9.6. The value is 0.2801
(1 df since you are testing the addition of one term to the model) withp = 0:5967. This
indicates that the main effects model is adequate.

Output 9.6 Score Statistic to Evaluate Goodness of Fit

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.2801 1 0.5967

An alternative goodness-of-fit test is the difference in the likelihood ratios for the main
effects model and the saturated model. Although the output is not displayed here, the
difference in these statistics is(150:029 � 149:721) = 0:308. This is also clearly
nonsignificant, compared to a chi-square distribution with 1 df. (Again, note that whenever
you form a test statistic based on the difference in likelihoods, then the corresponding
degrees of freedom are equal to the difference in the number of parameters for the two
models.)

Output 9.7 contains the “Type III Analysis of Effects” table. Both sex and treatment are
influential effects. Since these effects have 1 df each, the tests are the same as printed for
the parameter estimates listed in Output 9.8.

Output 9.7 Type III Analysis of Effects

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

sex 1 6.2096 0.0127
treatment 1 14.4493 0.0001

Output 9.8 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -2.6671 0.5997 19.7800 <.0001
Intercept2 1 -1.8127 0.5566 10.6064 0.0011
sex female 1 1.3187 0.5292 6.2096 0.0127
treatment active 1 1.7973 0.4728 14.4493 0.0001
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Table 9.4 displays the parameter interpretations.

Table 9.4. Parameter Estimates

Parameter Estimate(SE) Interpretation

�1 �2:667(0:600) log odds of marked improvement versus
some or no improvement for
males receiving placebo

�2 �1:813(0:557) log odds of marked or some
improvement versus no improvement
for males receiving placebo

�1 1:319(0:529) increment for both types of log odds
due to female sex

�2 1:797(0:473) increment for both types of log odds
due to active drug

Females havee1:319=3.7 times higher odds of showing improvement as males, both for
marked improvement versus some or no improvement and for marked or some
improvement versus no improvement. Those subjects receiving the active drug have
e1:8 = 6 times higher odds of showing improvement as those on placebo, both for marked
improvement versus some or no improvement and for some or marked improvement
versus no improvement. These odds ratio estimates are displayed in Output 9.9.

Output 9.9 Odds Ratio Estimates

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

sex female vs male 3.739 1.325 10.547
treatment active vs placebo 6.033 2.388 15.241

9.2.3 Multiple Qualitative Explanatory Variables

The inclusion of multiple explanatory variables in a proportional odds model produces no
additional problems. The data in Table 9.5 are from an epidemiological study of chronic
respiratory disease analyzed in Semenya and Koch (1980). Researchers collected
information on subjects’ exposure to general air pollution, exposure to pollution in their
jobs, and whether they smoked. The response measured was chronic respiratory disease
status. Subjects were assigned to one of four possible categories.
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� Level I: no symptoms
� Level II: cough or phlegm less than three months a year
� Level III: cough or phlegm more than three months a year
� Level IV: cough and phlegm plus shortness of breath more than three months a year

Table 9.5. Chronic Respiratory Disease Data

Air Job Smoking Response Level
Pollution Exposure Status I II III IV Total
Low No Non 158 9 5 0 172
Low No Ex 167 19 5 3 194
Low No Current 307 102 83 68 560
Low Yes Non 26 5 5 1 37
Low Yes Ex 38 12 4 4 58
Low Yes Current 94 48 46 60 248
High No Non 94 7 5 1 107
High No Ex 67 8 4 3 82
High No Current 184 65 33 36 318
High Yes Non 32 3 6 1 42
High Yes Ex 39 11 4 2 56
High Yes Current 77 48 39 51 215

The outcome is clearly ordinal, although there is no obvious distance between adjacent
levels. You could combine response categories and fit the set of models that compared
Level I versus Level II, III, and IV; Levels I and II versus Levels III and IV; and Levels I,
II, and III versus Level IV. Note that if you did this, you would be computing models for
the individual cumulative logits. The proportional odds model addresses these cumulative
logits simultaneously by assuming that the slope parameters for the explanatory variables
are the same regardless of the cumulative logit cutpoints.

From these data, you form three cumulative logits:

logit(�i1) = log

�
�i1

�i2 + �i3 + �i4

�

logit(�i2) = log

�
�i1 + �i2
�i3 + �i4

�

logit(�i3) = log

�
�i1 + �i2 + �i3

�i4

�

wherei = 1; 2; : : : ; 12 references the 12 populations determined by the levels of air
pollution, job exposure, and smoking status, as ordered in Table 9.5. These cumulative
logits are the log odds of a Level I response to a Level II, III, or IV response; the log odds
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of a Level I or II response to a Level III or IV response; and the log odds of a Level I, II, or
III response to a Level IV response, respectively.

However, if you are more interested in the odds of more severe responses to less severe
responses, you may want to order the cumulative logits in the opposite direction.

logit(�i1) = log

�
�i4

�i3 + �i2 + �i1

�

logit(�i2) = log

�
�i4 + �i3
�i2 + �i1

�

logit(�i3) = log

�
�i4 + �i3 + �i2

�i1

�

You can generate this ordering in PROC LOGISTIC by using the DESCENDING option
in the PROC statement, as shown in the following analysis.

The primary model of interest for these data is a main effects model. Besides three
intercept terms�1, �2, and�3 for the three cumulative logits, the main effects model
includes the parameters�1, �2, �3, and�4 for incremental effects for air pollution
exposure, job pollution exposure, ex-smoker status, and current smoking status,
respectively.

The following SAS statements create the data set RESPIRE.

data respire;
input air $ exposure $ smoking $ level count @@;
datalines;

low no non 1 158 low no non 2 9
low no ex 1 167 low no ex 2 19
low no cur 1 307 low no cur 2 102
low yes non 1 26 low yes non 2 5
low yes ex 1 38 low yes ex 2 12
low yes cur 1 94 low yes cur 2 48
high no non 1 94 high no non 2 7
high no ex 1 67 high no ex 2 8
high no cur 1 184 high no cur 2 65
high yes non 1 32 high yes non 2 3
high yes ex 1 39 high yes ex 2 11
high yes cur 1 77 high yes cur 2 48
low no non 3 5 low no non 4 0
low no ex 3 5 low no ex 4 3
low no cur 3 83 low no cur 4 68
low yes non 3 5 low yes non 4 1
low yes ex 3 4 low yes ex 4 4
low yes cur 3 46 low yes cur 4 60
high no non 3 5 high no non 4 1
high no ex 3 4 high no ex 4 3
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high no cur 3 33 high no cur 4 36
high yes non 3 6 high yes non 4 1
high yes ex 3 4 high yes ex 4 2
high yes cur 3 39 high yes cur 4 51
;
run;

The following PROC LOGISTIC code requests a main effects proportional odds model.
The statements are set up to specify a score statistic for the goodness of fit of the expanded
model containing all pairwise interaction terms. The SCALE=NONE and
AGGREGATE=(AIR EXPOSURE SMOKING) options request the goodness-of-fit tests
based on the 12 subpopulations. The REF=‘no’ option specified for the EXPOSURE
variable in the CLASS statement causes no exposure to be the reference level.

proc logistic descending;
freq count;
class air exposure(ref=’no’) smoking / param=reference;
model level = air exposure smoking

air*exposure air*smoking exposure*smoking /
selection=forward include=3 scale=none
aggregate=(air exposure smoking);

run;

Output 9.10 shows the internal ordered values that PROC LOGISTIC uses. Since the
response variable LEVEL has numeric values, the DESCENDING option causes PROC
LOGISTIC to sort the values numerically, then reverses them to form the ordered values.

Output 9.10 Response Profile

Response Profile

Ordered Total
Value level Frequency

1 4 230
2 3 239
3 2 337
4 1 1283

The score test for the proportional odds assumption takes the valueQRS = 12:0745
(p = 0:1479) with 8 df (4(4 � 2)). Thus, the proportional odds assumption is not
contradicted.

Output 9.11 Test for Proportionality

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

12.0745 8 0.1479



256 Logistic Regression II: Polytomous Response

The three intercepts and four indicator variables representing the main effects are first
entered into the model. The residual chi-square has a value of 2.7220 with 5 df and
p = 0:7428, so this measure of goodness of fit suggests that model-predicted cell
proportions are acceptably close to the observed proportions.

Output 9.12 Assessment of Fit

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.7220 5 0.7428

Output 9.13 displays the goodness-of-fit statistics.QL = 29:9969 andQP = 28:0796,
both with(r � 1)(s� 1)� t = 29 df (r = 4, s = 12, t = 4). Model adequacy is again
supported.

Output 9.13 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 29 29.9969 1.0344 0.4142
Pearson 29 28.0796 0.9683 0.5137

Number of unique profiles: 12

The “Type III Analysis of Effects” table displayed in Output 9.14 suggests a strong effect
for job pollution exposure but no significant effect for outside air pollution (p = 0:675).
The smoking effect is also highly significant.

Output 9.14 Type III Analysis of Effects

Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

air 1 0.1758 0.6750
exposure 1 82.0603 <.0001
smoking 2 209.8507 <.0001

The parameter estimates are displayed in Output 9.15.
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Output 9.15 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.8938 0.1779 479.2836 <.0001
Intercept2 1 -2.9696 0.1693 307.7931 <.0001
Intercept3 1 -2.0884 0.1633 163.5861 <.0001
air high 1 -0.0393 0.0937 0.1758 0.6750
exposure yes 1 0.8648 0.0955 82.0603 <.0001
smoking cur 1 1.8527 0.1650 126.0383 <.0001
smoking ex 1 0.4000 0.2019 3.9267 0.0475

The predicted odds ratios illustrate this model’s conclusions. Those with job exposure have
e0:8648 = 2:374 times higher odds of having serious problems to less serious problems
compared to those not exposed on the job. Current smokers havee1:8527 = 6:377 times
higher odds of having serious problems to less serious problems compared to nonsmokers.
Both of these odds ratios have been adjusted for the other variables in the model.

Output 9.16 Odds Ratios

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

air high vs low 0.961 0.800 1.155
exposure yes vs no 2.374 1.969 2.863
smoking cur vs non 6.377 4.615 8.812
smoking ex vs non 1.492 1.004 2.216

Note that if you fit the same model without reversing the order of the cumulative logits
with the DESCENDING option, you fit an equivalent model. The intercepts will be in the
opposite order and have opposite signs; that is, INTERCEP3 will have the value of this
model’s INTERCEP1 with the opposite sign. The parameters for the effects will have
opposite signs, and the odds ratios will be inverted since they would represent the odds of
less serious response to more serious response.

9.3 Nominal Response: Generalized Logits Model

9.3.1 Methodology

When you have nominal response variables, you can also use logistic regression to model
your data. Instead of fitting a model to cumulative logits, you fit a model to generalized
logits. Table 9.6 redisplays the data analyzed in Section 6.3.3. Recall that schoolchildren in
experimental learning settings were surveyed to determine which program they preferred.
Investigators were interested in whether their response was associated with their school
and their school day, which could be a standard school day or include afterschool care.
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Table 9.6. School Program Data

Learning Style Preference
School Program Self Team Class
1 Regular 10 17 26
1 After 5 12 50
2 Regular 21 17 26
2 After 16 12 36
3 Regular 15 15 16
3 After 12 12 20

Since the levels of the response variable (self, team, and class) have no inherent ordering,
the proportional odds model is not an appropriate mechanism for their analysis. You could
form logits comparing self to (team or class) or (self or team) to class, but that collapses
the original structure of the response levels, which you may want to keep in your analysis.
You can model a nominal response variable with more than two levels by performing a
logistic analysis on the generalized logits.

The generalized logit is defined as

logithij = log

�
�hij
�hir

�

for j = 1; 2; : : : ; (r � 1). A logit is formed for the probability of each succeeding category
over the last response category.

Thus, the generalized logits for a three-level response like that displayed in Table 9.6 is

logithi1 = log

�
�hi1
�hi3

�
; logithi2 = log

�
�hi2
�hi3

�

for h = 1; 2; 3 for the schools,i = 1 for regular program, andi = 2 for afterschool
program.

The model you fit for generalized logits is the model discussed in Section 9.2.1.

logithik = �k + x
0
hi�k

wherek indexes the two logits. This says that there are separate intercept parameters(�k)
and different sets of regression parameters(�k) for each logit. The matrixxhi is the set of
explanatory variable values for thehith group. Instead of estimating one set of parameters
for one logit function, as in logistic regression for a dichotomous response variable, you
are estimating sets of parameters for multiple logit functions. Whereas for the proportional
odds model you estimated multiple intercept parameters for the cumulative logit functions
but only one set of parameters corresponding to the explanatory variables, for the
generalized logits model you are estimating multiple sets of parameters for both the
intercept terms and the explanatory variables.
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This poses no particular problems. Since there are multiple response functions being
modeled per subpopulation, there are more degrees of freedom associated with each effect.
Since the model matrix needs to account for multiple response functions, it takes a more
complicated form. However, the modeling proceeds as usual; you fit your specified model,
examine goodness-of-fit statistics, and possibly perform model reduction. Note that since
you are predicting more than one response function per subpopulation, the sample size
needs to be large enough to support the number of functions you are modeling. Sometimes,
in those situations where there isn’t enough data to justify the analysis of generalized
logits, you will also encounter problems with parameter estimation and the software will
print out notes about infinite parameters. In those situations, you can often simplify the
response structure to a reasonable dichotomy and proceed with a binary logistic regression.

9.3.2 Fitting Models to Generalized Logits with PROC CATMOD

The CATMOD procedure is used to perform an analysis of generalized logits; the
LOGISTIC procedure currently does not perform this analysis, although it will have the
capability for fitting the generalized logits model for nominal data in a future release. You
should read Section 8.9.1 “Performing Logistic Regression with the CATMOD
Procedure,” before continuing with this section.

The following SAS statements request the desired analysis. First, the data set SCHOOL is
created, then the CATMOD procedure is invoked. Since the generalized logit is the default
response for PROC CATMOD, and maximum likelihood is the default estimation method
for generalized logit functions, all you have to specify are the WEIGHT and MODEL
statements. PROC CATMOD constructs two generalized logits per group from the levels
of the variable STYLE; it composes six groups based on the unique values of the
explanatory variables, SCHOOL and PROGRAM.

data school;
input school program $ style $ count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 after self 5 1 after team 12 1 after class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 after self 16 2 after team 12 2 after class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 after self 12 3 after team 12 3 after class 20
;
run;
proc catmod order=data;

weight count;
model style=school program school*program;

run;

Output 9.17 contains the population profiles for the data. There are six groups formed
based on the values of SCHOOL and PROGRAM. This table also contains the sample
sizes for each group. They are all moderately sized.



260 Logistic Regression II: Polytomous Response

Output 9.17 Population Profiles

Population Profiles

Sample school program Sample Size
------------------------------------------

1 1 regular 53
2 1 after 67
3 2 regular 64
4 2 after 64
5 3 regular 46
6 3 after 44

Output 9.18 contains the response profiles. While the analysis does not require the
response values to be ordered in any particular way, unlike the proportional odds model
analyses, it is often useful to order the levels in a manner that facilitates interpretation.
Since the ORDER=DATA option was specified, the response variable levels are in the
order self, team, and class. This means that generalized logits are formed for the
probability of self with respect to class, and for the probability of team with respect to
class.

Output 9.18 Response Profiles

Response Profiles

Response style
-----------------

1 self
2 team
3 class

The iteration history follows in the output but is not displayed here. Convergence took four
iterations, which is not unusual for these types of applications.

The analysis of variance table is displayed in Output 9.19.

Output 9.19 ANOVA Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 40.05 <.0001
school 4 14.55 0.0057
program 2 10.48 0.0053
school*program 4 1.74 0.7827

Likelihood Ratio 0 . .

Since the model is saturated, with as many response functions being modeled as there are
groups or subpopulations, the likelihood ratio test does not apply and PROC CATMOD
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prints missing values and 0 df. The school� program interaction is nonsignificant, with a
Wald chi-square of 1.74 with 4 df. Note that the degrees of freedom for modeling two
generalized logits are twice what you would expect for modeling one logit: instead of 1 df
for the intercept you have 2 df; instead of 2 df for SCHOOL, which has three levels, you
have 4 df. This is because you are simultaneously modeling two response functions
instead of one; you are doubling the number of parameters being estimated since you have
to estimate parameters for both logits. To determine the correct number of degrees of
freedom for effects in models using generalized logits, multiply the number you would
expect for modeling one logit (the usual logistic regression for a dichotomous outcome) by
r � 1, wherer is the number of response levels.

Since the interaction is nonsignificant, the main effects model is fit.

266666666666666666664
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Essentially, this model matrix has the same structure as one for modeling a single response
function, except that it models two response functions. Thus, the odd rows are for the first
logit, and the even rows are for the second logit. Similarly, the odd columns correspond to
parameters for the first logit, and the even columns correspond to parameters for the
second logit. Note that PROC CATMOD uses differential effects by default, as opposed to
the incremental effects fit with PROC LOGISTIC for the proportional odds model
discussed in the previous sections (see Section 8.9 for further discussion). See Table 9.7
for the interpretation of these parameters.

The following statements produce the main effects model.

proc catmod order=data;
weight count;
model style=school program;

run;

Output 9.20 contains the ANOVA table for the main effects model.
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Output 9.20 ANOVA Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 39.88 <.0001
school 4 14.84 0.0050
program 2 10.92 0.0043

Likelihood Ratio 4 1.78 0.7766

The likelihood ratio statistic has a value of 1.78 with 4 df, which is indicative of a good fit.
The tests for the school and program effects are also significant; SCHOOL has a Wald
chi-square value of 14.84 with 4 df, and PROGRAM has a Wald chi-square value of 10.92
with 2 df.

The parameter estimates and tests for individual parameters are displayed in Output 9.21.
The order of these parameters corresponds to the order in which the response variable and
explanatory variable levels are listed in the response profiles table and the population
profiles table.

Output 9.21 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 -0.7979 0.1465 29.65 <.0001

2 -0.6589 0.1367 23.23 <.0001
school 3 -0.7992 0.2198 13.22 0.0003

4 -0.2786 0.1867 2.23 0.1356
5 0.2836 0.1899 2.23 0.1352
6 -0.0985 0.1892 0.27 0.6028

program 7 0.3737 0.1410 7.03 0.0080
8 0.3713 0.1353 7.53 0.0061

For example, since the order of the response values is self, team, and class, Parameter 1 is
the intercept for logithi1 and Parameter 2 is the intercept for logithi2. For the SCHOOL
effect, Parameter 3 is the parameter for School 1 for the first logit, and Parameter 4 is the
parameter for School 1 for the second logit. Parameters 5 and 6 are the corresponding
parameters for School 2, and parameters 7 and 8 are the parameters for logithi1 and
logithi2, respectively, for the regular school program. If you go down the list of parameters
in order, the response function varies most quickly, and the groups vary the same way that
they vary in the population profiles table. Table 9.7 summarizes the correspondence
between the PROC CATMOD numbered parameters in the output and the model
parameters.
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Table 9.7. Parameter Interpretations

CATMOD Model
Parameter Parameter Interpretation

1 �1 Intercept for logithi1
2 �2 Intercept for logithi2
3 �1 Differential Effect for School 1 for logithi1
4 �2 Differential Effect for School 1 for logithi2
5 �3 Differential Effect for School 2 for logithi1
6 �4 Differential Effect for School 2 for logithi2
7 �5 Differential Effect for Regular School for logithi1
8 �6 Differential Effect for Regular School for logithi2

Table 9.8 contains the parameter estimates arranged according to the logits they reference.
This is often a useful way to display the results from an analysis of generalized logits.

Table 9.8. Coefficients from Final Model
logit(self/class) logit(team/class)

Standard Standard
Variable Coefficient Error Coefficient Error
Intercept �0:798 (�̂1) 0:146 �0:659 (�̂2) 0.137
School 1 �0:799 (�̂1) 0:220 �0:279 (�̂2) 0.187
School 2 0:284 (�̂3) 0:190 �0:099 (�̂4) 0.189
Program 0:374 (�̂5) 0:141 0:371 (�̂6) 0.135

School 1 has the largest effect of the schools, particularly for the logit comparing self to
class. Program has a nearly similar effect on both logits.

Odds ratios can also be used in models for generalized logits to facilitate model
interpretation. Table 9.9 contains the odds corresponding to each logit function for each
subpopulation in the data. However, unlike the proportional odds model where the form of
the odds ratio was the same regardless of the cumulative logit being considered, the
formulas for the odds ratio for the generalized logits model depend on which generalized
logit is being considered.

Table 9.9. Model-Predicted Odds
Odds

School Program Self/Class Team/Class
1 Regular e�1+�1+�5 e�2+�2+�6

1 After e�1+�1��5 e�2+�2��6

2 Regular e�1+�3+�5 e�2+�4+�6

2 After e�1+�3��5 e�2+�4��6

3 Regular e�1��1��3+�5 e�2��2��4+�6

3 After e�1��1��3��5 e�2��2��4��6
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To determine the odds ratio of self to class for school program, you compute (for School 1)

e�1+�1+�5

e�1+�1��5
= e2�5

Thus, the odds weree(2)(0:374) = 2:11 times higher of choosing the self-learning style over
the class learning style if students attended the regular school program versus the
afterschool program. Note that you obtain the same result if you do the comparison for
School 2 or School 3. If you work through the exercise for the odds ratio of team to class,
you find that the odds weree(2)(0:371) = 2:10 times higher of choosing the team learning
style as the class learning style if students attended the regular school program versus the
afterschool program.

Comparing the odds ratio for School 1 to School 2 produces a slightly more complicated
form for the odds ratio. You form the ratio of the odds for School 1, regular school
program to School 2, regular school program (afterschool program would also work) to
obtain (for self/class logit)

e�1+�1+�5

e�1+�3+�5
= e�1��3

Thus, the subjects from School 1 weree�0:799�0:284 = 0:33 times as likely to choose the
self-learning style over the class learning style as those students from School 2.

9.3.3 Activity Limitation Data Example

The data in Table 9.10 are derived from an analysis of activity limitation data that were
obtained in the 1989 National Health Interview Study (Lafata, Koch, and Weissert 1994).
Researchers were interested in generating estimates of activity limitation for the civilian
population of the United States for small areas such as individual states. The original data
included children, adults, and the elderly; a possible consequence of providing such
estimates is better health care resources to assist such persons. The data in Table 9.10 are
those corresponding to the older children’s age groups.
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Table 9.10. Activity Limitation Study

Activity Limitation
Age Sex Race Poverty Major Other None
10–14 males whites low 5.361 1.329 102.228
10–14 males whites medium 20.565 13.952 336.160
10–14 males whites high 21.299 5.884 284.931
10–14 males other low 53.314 16.402 827.900
10–14 males other medium102.076 36.551 1518.796
10–14 males other high 52.338 21.105 666.909
10–14 females whites low 1.172 1.199 87.292
10–14 females whites medium 11.169 2.945 304.234
10–14 females whites high 15.286 3.665 302.511
10–14 females other low 21.882 16.979 846.270
10–14 females other medium 52.354 33.106 1452.895
10–14 females other high 28.203 11.455 687.109
15–19 males whites low 0.915 1.711 91.071
15–19 males whites medium 12.591 8.026 326.930
15–19 males whites high 21.059 6.993 313.633
15–19 males other low 36.384 27.558 888.833
15–19 males other medium 85.974 42.755 1509.87
15–19 males other high 40.112 23.493 725.004
15–19 females whites low 5.876 2.550 115.968
15–19 females whites medium 8.772 6.922 344.076
15–19 females whites high 17.385 2.354 286.68
15–19 females other low 42.741 31.025 817.478
15–19 females other medium 72.688 35.979 1499.816
15–19 females other high 26.296 29.321 716.860

The counts are weighted because the data were collected as part of a complex survey
design and various sampling-related adjustments were performed. Normally, you would
use methods that account for the sample design in your analysis of such data, but for
illustrative purposes, stratified simple random sampling is assumed here.

Since there is some kind of order to the levels of the response variable (major limitation is
more than other limitation is more than no limitation), it may seem that activity limitation
could be treated as an ordinal response. However, the necessary proportional odds
assumption is not met by these data, so ordered regression is not a potential analysis
strategy. Thus, analyzing the generalized logits is the strategy of choice.

The logits of interest are

logithijk1 = log

�
�hijk1
�hijk3

�
; logithijk2 = log

�
�hijk2
�hijk3

�

where�hijk1 is the Pr{major limitation},�hijk2 is the Pr{other limitation}, and�hijk3 is
the Pr{no limitation} for thehijkth group (h = 1 for ages 10–14,h = 2 for ages 15–19;
i = 1 for males andi = 2 for females;j = 1 for whites andj = 2 for other;k = 1 for low
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poverty,k = 2 for medium poverty, andk = 3 for high poverty). The logits are comparing
major activity limitation to no activity limitation and other activity limitation to no activity
limitation.

The first model fit is the model with all pairwise interactions. The following SAS
statements input the data.

data survey;
input age sex race poverty function $ count @@;
datalines;

1 0 0 0 major 5.361 1 0 0 0 other 1.329 1 0 0 0 not 102.228
1 0 0 1 major 20.565 1 0 0 1 other 13.952 1 0 0 1 not 336.160
1 0 0 2 major 21.299 1 0 0 2 other 5.884 1 0 0 2 not 284.931
1 0 1 0 major 53.314 1 0 1 0 other 16.402 1 0 1 0 not 827.900
1 0 1 1 major 102.076 1 0 1 1 other 36.551 1 0 1 1 not 1518.796
1 0 1 2 major 52.338 1 0 1 2 other 21.105 1 0 1 2 not 666.909
1 1 0 0 major 1.172 1 1 0 0 other 1.199 1 1 0 0 not 87.292
1 1 0 1 major 11.169 1 1 0 1 other 2.945 1 1 0 1 not 304.234
1 1 0 2 major 15.286 1 1 0 2 other 3.665 1 1 0 2 not 302.511
1 1 1 0 major 21.882 1 1 1 0 other 16.979 1 1 1 0 not 846.270
1 1 1 1 major 52.354 1 1 1 1 other 33.106 1 1 1 1 not 1452.895
1 1 1 2 major 28.203 1 1 1 2 other 11.455 1 1 1 2 not 687.109
2 0 0 0 major .915 2 0 0 0 other 1.711 2 0 0 0 not 91.071
2 0 0 1 major 12.591 2 0 0 1 other 8.026 2 0 0 1 not 326.930
2 0 0 2 major 21.059 2 0 0 2 other 6.993 2 0 0 2 not 313.633
2 0 1 0 major 36.384 2 0 1 0 other 27.558 2 0 1 0 not 888.833
2 0 1 1 major 85.974 2 0 1 1 other 42.755 2 0 1 1 not 1509.87
2 0 1 2 major 40.112 2 0 1 2 other 23.493 2 0 1 2 not 725.004
2 1 0 0 major 5.876 2 1 0 0 other 2.550 2 1 0 0 not 115.968
2 1 0 1 major 8.772 2 1 0 1 other 6.922 2 1 0 1 not 344.076
2 1 0 2 major 17.385 2 1 0 2 other 2.354 2 1 0 2 not 286.68
2 1 1 0 major 42.741 2 1 1 0 other 31.025 2 1 1 0 not 817.478
2 1 1 1 major 72.688 2 1 1 1 other 35.979 2 1 1 1 not 1499.816
2 1 1 2 major 26.296 2 1 1 2 other 29.321 2 1 1 2 not 716.860
;
run;

The following PROC CATMOD invocation requests the model with all pairwise
interactions. Note the use of the @2 notation to request all pairwise interactions. The fact
that the counts are not integers is not a problem for the CATMOD procedure; it accepts all
counts that are non-negative. It does not truncate the values.

proc catmod order=data;
direct poverty;
weight count;
model function=age|sex|race|poverty@2;

run;

Output 9.22 contains the population profiles for these data. With two levels each for AGE,
SEX, and RACE, and three categories for POVERTY, 24 groups are formed. The counts
have been preserved in their noninteger form.
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Output 9.22 Population Profiles

Population Profiles

Sample
Sample age sex race poverty Size
---------------------------------------------------

1 1 0 0 0 108.918
2 1 0 0 1 370.677
3 1 0 0 2 312.114
4 1 0 1 0 897.616
5 1 0 1 1 1657.423
6 1 0 1 2 740.352
7 1 1 0 0 89.663
8 1 1 0 1 318.348
9 1 1 0 2 321.462

10 1 1 1 0 885.131
11 1 1 1 1 1538.355
12 1 1 1 2 726.767
13 2 0 0 0 93.697
14 2 0 0 1 347.547
15 2 0 0 2 341.685
16 2 0 1 0 952.775
17 2 0 1 1 1638.599
18 2 0 1 2 788.609
19 2 1 0 0 124.394
20 2 1 0 1 359.77
21 2 1 0 2 306.419
22 2 1 1 0 891.244
23 2 1 1 1 1608.483
24 2 1 1 2 772.477

Output 9.23 contains the response profiles. Since the ORDER=DATA option is specified,
the values of FUNCTION are ordered internally as major, other, and none. This means that
the desired generalized logit functions are formed, since PROC CATMOD forms the logit
for the first level compared to the third level and the second level compared to the third
level.

Output 9.23 Response Profiles

Response Profiles

Response function
--------------------

1 major
2 other
3 not

The ANOVA table and likelihood ratio goodness-of-fit statistic are displayed in
Output 9.24.QL = 25:66 with 26 df andp = 0:4818, which is supportive of model fit.
Note the degrees of freedom associated with each of the effects in the table. Since AGE,
SEX, and RACE would be associated with 1 df in the dichotomous outcome case, they are
associated with 2 df since two logits are being modeled. Similarly, POVERTY is
associated with 2 df, since it is entered on the DIRECT statement and its values are used
directly in a column of the model matrix. If you have interactions, you determine their df
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by multiplying the df of each constituent effect that would be associated with a
dichotomous outcome, then multiplying that by the number of functions being modeled.

A look at thep-values associated with these effects shows that the model could be
simplified by eliminating terms.

Output 9.24 ANOVA Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 1518.29 <.0001
age 2 1.21 0.5467
sex 2 2.89 0.2357
age*sex 2 14.72 0.0006
race 2 4.53 0.1037
age*race 2 1.27 0.5296
sex*race 2 4.00 0.1355
poverty 2 8.95 0.0114
poverty*age 2 0.72 0.6979
poverty*sex 2 1.53 0.4650
poverty*race 2 5.52 0.0632

Likelihood Ratio 26 25.66 0.4818

A reduced model is then fit, with only the AGE*SEX, SEX*RACE, and
RACE*POVERTY interactions being retained.

proc catmod order=data;
direct poverty;
weight count;
model function=age sex race poverty

age*sex sex*race race*poverty;
run;

The ANOVA table pertaining to this model is displayed in Output 9.25.

Output 9.25 ANOVA Table for Reduced Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 1527.92 <.0001
age 2 6.61 0.0367
sex 2 18.47 <.0001
race 2 4.62 0.0991
poverty 2 9.64 0.0081
age*sex 2 15.10 0.0005
sex*race 2 4.44 0.1088
poverty*race 2 5.28 0.0713

Likelihood Ratio 32 29.67 0.5848
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Since the model has been reduced by 6 parameters, the df for the likelihood ratio test is
increased by 6 df. However, sinceQL = 29:67 with 32 df, the reduced model has an
adequate fit. The only further model reduction that seems warranted at this point is the
removal of the SEX*RACE term. It would appear that RACE*POVERTY is marginally
influential, and that may change once the SEX*RACE effect is removed.

proc catmod order=data;
direct poverty;
weight count;
model function=age sex race poverty

age*sex race*poverty /pred=freq;
run;

Output 9.26 displays the results when the SEX*RACE term is removed.

Output 9.26 ANOVA Table for Final Reduced Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 1536.94 <.0001
age 2 6.51 0.0385
sex 2 26.44 <.0001
race 2 4.71 0.0950
poverty 2 9.59 0.0083
age*sex 2 15.09 0.0005
poverty*race 2 5.22 0.0736

Likelihood Ratio 34 34.27 0.4548

The goodness of fit is adequate for this model (QL = 34:27 with 34 df andp = 0:4548).
Since RACE*POVERTY remains marginally influential, it is kept in the model. Thus, this
model includes main effects for age, sex, race, and poverty, along with interactions for age
and sex and poverty and race. You could compute odds ratios to aid in model
interpretation.

The PRED=FREQ option in PROC CATMOD requests the computation of
model-predicted frequencies for this model (you can also generate model-predicted
probabilities with the PRED=PROB option). Output 9.27 contains a partial listing of these
predicted frequencies from the PROC CATMOD output. Table 9.11 contains the complete
set of predicted values. You can compare these to the original frequencies to see how well
the model works.
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Output 9.27 Partial Listing of Predicted Frequencies

Maximum Likelihood Predicted Values for Frequencies

-----Observed----- -----Predicted----
Standard Standard

age sex race poverty function Frequency Error Frequency Error Residual
----------------------------------------------------------------------------
1 0 0 0 major 5.361 2.257682 4.07892 0.849289 1.28208

other 1.329 1.145768 2.376429 0.652845 -1.04743
not 102.228 2.50581 102.4627 1.055218 -0.23465

1 0 0 1 major 20.565 4.407274 19.95014 2.191072 0.614855
other 13.952 3.664268 7.036412 1.140648 6.915588
not 336.16 5.594892 343.6904 2.433505 -7.53044

1 0 0 2 major 21.299 4.454833 23.95679 2.814102 -2.65779
other 5.884 2.402722 5.11516 1.108229 0.76884
not 284.931 4.98152 283.0421 2.980315 1.888946

1 0 1 0 major 53.314 7.081484 52.88666 4.391243 0.427342
other 16.402 4.012766 20.97862 2.684635 -4.57662
not 827.9 8.018809 823.7507 5.054315 4.149279

1 0 1 1 major 102.076 9.787207 104.3194 6.566059 -2.24344
other 36.551 5.978708 40.65949 4.206884 -4.10849
not 1518.796 11.27086 1512.444 7.647375 6.351926

1 0 1 2 major 52.338 6.974098 49.76105 4.154098 2.576947
other 21.105 4.528064 19.05689 2.474509 2.048109
not 666.909 8.133723 671.5341 4.731773 -4.62506

Table 9.11. Activity Limitation Study

Predicted % Limitation
Age Sex Race Poverty Major Other None
10-14 males whites low 4.0789 2.376 102.463
10-14 males whites medium 19.950 7.0364 343.690
10-14 males whites high 23.957 5.115 283.042
10-14 males other low 52.887 20.979 823.751
10-14 males other medium104.319 40.659 1512.444
10-14 males other high 49.761 19.057 671.534
10-14 females whites low 1.774 1.481 86.408
10-14 females whites medium 9.117 4.610 304.621
10-14 females whites high 13.272 4.063 304.127
10-14 females other low 27.854 15.839 841.438
10-14 females other medium 51.835 28.963 1457.557
10-14 females other high 26.215 14.393 686.159
15-19 males whites low 2.635 2.315 88.747
15-19 males whites medium 14.109 7.505 325.933
15-19 males whites high 19.907 6.410 315.368
15-19 males other low 42.376 25.351 885.048
15-19 males other medium 77.923 45.803 1514.873
15-19 males other high 40.085 23.152 725.372
15-19 females whites low 3.170 3.0737 118.15
15-19 females whites medium 13.254 7.779 338.738
15-19 females whites high 16.227 5.766 284.426
15-19 females other low 35.984 23.753 831.508
15-19 females other medium 69.457 45.050 1493.976
15-19 females other high 35.666 22.730 714.081
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Chapter 10

Conditional Logistic Regression

10.1 Introduction

Sometimes, the usual maximum likelihood approach to estimation in logistic regression is
not appropriate. As discussed in Chapter 8, “Logistic Regression I: Dichotomous
Response,” there may be insufficient sample size for logistic regression, particularly if the
data are highly stratified and there are a small number of subjects in each stratum. In these
situations, you have a small sample size relative to the number of parameters being
estimated since you will be estimating parameters for the stratification effects. For the
maximum likelihood estimates to be valid, you need a large sample size relative to the
number of parameters.

Often, highly stratified data come from a design with cluster sampling, that is, designs
with two or more observations for each primary sampling unit or cluster. Common
examples of such data are paired observations, such as fraternal twins (or litter mates),
right and left sides of the body in a dermatology study, or two occasions for an expression
of an opinion. Ordinary logistic regression may be inappropriate for such data, since you
have insufficient sample size to estimate the pair effect (family, litter, patient, respondent)
without bias. However, by using conditioning arguments, you can eliminate the pair effect
and estimate the other effects in which you are interested.

The appropriate form of logistic regression for these types of data is calledconditional
logistic regression. It takes the stratification into account by basing the maximum
likelihood estimation of the model parameters on a conditional likelihood. You can fit
these models in the SAS System with the PHREG procedure. In the following sections, the
conditional likelihood for paired observations from small clusters is derived, and the
methodology is illustrated with data from a randomized clinical trial and a two-period
crossover design study. Then, the more general stratified situation is discussed and
illustrated with data from a three-period crossover study and a repeated measurements
study.

Matched case control studies in epidemiology also produce highly stratified data. In these
studies, you match cases (those persons with a disease or condition) to controls (those
persons without the disease or condition) on the basis of variables thought to be potential
confounders such as age, race, and sex. The use of conditional logistic regression for
matched studies in epidemiological work is discussed and illustrated with two examples.

Finally, exact logistic regression is discussed for the stratified setting.
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10.2 Paired Observations from a Highly Stratified Cohort Study

Consider a randomized clinical trial wherei = 1; 2; : : : ; q centers are randomly selected,
and, at each center, one randomly selected patient is placed on treatment, and another
randomly selected patient is placed on placebo. Interest lies in whether the patients
improve; thus, improvement is the event of interest. Since there are only two observations
per center, it is not possible to estimate a center effect (pair effect) without bias. As a
general rule, you need each possible outcome to have five observations per explanatory
variable in the model for valid estimation to proceed.

Supposeyij = 1 if improvement occurs andyij = 0 if it does not (j = 1 for treatment and
j = 2 for the placebo;i = 1; 2; : : : ; q). Supposexij = 1 for treatment andxij = 0 for
placebo, andzij = (zij1; zij2; : : : ; zijt)

0 represents thet explanatory variables.

The usual logistic likelihood forfyijg is written

Prfyijg = �ij =
expf�i + �xij + 
 0zijg

1 + expf�i + �xij + 
0zijg

where�i is the effect of theith center,� is the treatment parameter, and

0 = (
1; 
2; : : : ; 
t) is the parameter vector for the covariatesz. Since there are only two
observations per center, you can’t estimate these parameters without bias. However, you
can fit a model based on conditional probabilities that condition away the center effects,
which results in a model that contains substantially fewer parameters. In this context, the
�i are known asnuisance parameters. It is useful to describe these data with a model that
considers the probability of a pair’s treatment patient improving and the pair’s placebo
patient not improving, compared to the probability that one of them improved.

You can write a conditional probability forfyijg as the ratio of the joint probability of a
pair’s treatment patient improving and the pair’s placebo patient not improving to the joint
probability that either the treatment patient or the placebo patient improved.

Pr
n
yi1=1; yi2=0

���yi1=1; yi2=0 or yi1=0; yi2=1
o
=

Prfyi1=1gPrfyi2=0g
Prfyi1=1gPrfyi2=0g+ Prfyi1=0gPrfyi2=1g

If you write the probabilities in terms of the logistic model,

Prfyi1=1gPrfyi2=0g = expf�i + � + 
0zi1g
1 + expf�i + � + 
 0zi1g �

1

1 + expf�i + 
 0zi2g

and

Prfyi1=1gPrfyi2=0g+Prfyi1=0gPrfyi2=1g =
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expf�i + � + 
0zi1g
1 + expf�i + � + 
0zi1g �

1

1 + expf�i + 
0zi2g

+
1

1 + expf�i + � + 
 0zi1g �
expf�i + 
 0zi2g

1 + expf�i + 
 0zi2g

If you form their ratio, you obtain

expf�i + � + 
0zi1g
expf�i + � + 
 0zi1g+ expf�i + 
 0zi2g

since the denominators cancel out.

This expression reduces to

expf� + 
 0(zi1 � zi2)g
1 + expf� + 
 0(zi1 � zi2)g

which no longer contains thef�ig. Thus, by focusing on modeling a meaningful
conditional probability, you develop a model with a reduced number of parameters that
can be estimated without bias.

The conditional likelihood for the entire data is written

qY
i=1

�
expf� + 
0(zi1 � zi2)g

1 + expf� + 
0(zi1 � zi2)g
�yi1(1�yi2)� 1

1 + expf� + 
0(zi1 � zi2)g
�(1�yi1)yi2

This is the unconditional likelihood for the usual logistic model, except that the intercept is
now�, the effect for treatment, and each observation represents a pair of observations
from a center where the response is 1 if the pair represents the combination
fyi1=1 andyi2=0g and 0 if the pair has the combinationfyi1=0 andyi2=1g. The
explanatory variables are the differences in values of the explanatory variables for the
treatment patient and the placebo patient. Since the likelihood conditioned on the
discordant pairs, the concordant pairs (the observations wherefyi1=1 andyi2=1g and
fyi1=0 andyi2=0g) are noninformative and thus can be ignored.

Note that the ratio above can also be rewritten as

expf� + 
0zi1g
expf� + 
0zi1g+ expf
 0zi2g

and the corresponding likelihood for the entire data as

qY
i=1

�
expf� + 
0zi1g

expf� + 
 0zi1g+ expf
 0zi2g
�yi1(1�yi2)� expf� + 
 0zi2g

expf� + 
 0zi1g+ expf
0zi2g
�(1�yi1)yi2
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This is the same likelihood that applies to paired data in a simple case of the Cox
regression model, or proportional hazards model, which is used in the analysis of survival
times. This means that the computing machinery that fits the proportional hazards model
can also be used for conditional logistic regression.

Note that if there are no covariates for such a study, so that the data represent a2� 2 table
where the responses for treatment are cross-classified with the responses for placebo, then
testing� = 0 is equivalent to McNemar’s test. Also, it can be shown thate� is estimated
by n12=n21, wheren12 andn21 are the off-diagonal counts from this table.

10.3 Clinical Trials Study Analysis

Researchers studying the effect of a new treatment on a skin condition collected
information from 79 clinics. In each clinic, one patient received the treatment, and another
patient received a placebo. Variables collected included age, sex, and an initial grade for
the skin condition, which ranged from 1 to 4 for mild to severe. The response variable was
whether the skin condition improved. Using conditional logistic regression is suitable for
the analysis of such data, and, in this example, both the LOGISTIC and PHREG
procedures are implemented. The PROC LOGISTIC analysis demonstrates that the case of
paired observations can be handled with the computations of the unconditional logistic
regression on the differences of the explanatory variables; this is useful to understand. The
PHREG procedure is used for subsequent analyses because it is more straightforward to
apply.

10.3.1 Analysis Using the LOGISTIC Procedure

Each data line in the following input data includes two observations from each clinic: one
for the patient receiving the treatment and one for the patient receiving the placebo. The
DATA step creates indicator variables for sex and treatment, which is required in order to
create their differences. Then, it creates various interaction terms. These must be created
before the observations are combined, so you can’t use the interaction term construction in
the MODEL statement. Then, the DATA step combines the paired observations and creates
variables whose values are the differences in their respective values. Since observations
where the response variable IMPROVE had the same value for both treatment and placebo
do not affect the analysis, only those observations with discordant responses are output to
the data set TRIAL.

data trial;
drop center1 i_sex1 age1 initial1 improve1 trtsex1 trtinit1

trtage1 isexage1 isexint1 iageint1;
retain center1 i_sex1 age1 initial1 improve1 trtsex1 trtinit1

trtage1 isexage1 isexint1 iageint1 0;
input center treat $ sex $ age improve initial @@;
/* compute model terms for each observation */
i_sex=(sex=’m’); i_trt=(treat=’t’);
trtsex=i_sex*i_trt; trtinit=i_trt*initial;
trtage=i_trt*age; isexage=i_sex*age;
isexinit=i_sex*initial;iageinit=age*initial;
/* compute differences for paired observation */
if (center=center1) then do;
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pair=10*improve + improve1;
i_sex=i_sex1-i_sex;
age=age1-age;
initial=initial1-initial;
trtsex=trtsex1-trtsex;
trtinit=trtinit1-trtinit;
trtage=trtage1-trtage;
isexage=isexage1-isexage;
isexinit=isexint1-isexinit;
iageinit=iageint1-iageinit;
if (pair=10 or pair=1) then do;

/* output discordant pair observations */
improve=(pair=1); output trial; end;

end;
else do;

center1=center; age1=age;
initial1=initial; i_sex1=i_sex; improve1=improve;
trtsex1=trtsex; trtinit1=trtinit; trtage1=trtage;
isexage1=isexage; isexint1=isexinit; iageint1=iageinit;
end;

datalines;
1 t f 27 0 1 1 p f 32 0 2 41 t f 13 1 2 41 p m 22 0 3
2 t f 41 1 3 2 p f 47 0 1 42 t m 31 1 1 42 p f 21 1 3
3 t m 19 1 4 3 p m 31 0 4 43 t f 19 1 3 43 p m 35 1 3
4 t m 55 1 1 4 p m 24 1 3 44 t m 31 1 3 44 p f 37 0 2
5 t f 51 1 4 5 p f 44 0 2 45 t f 44 0 1 45 p f 41 1 1
6 t m 23 0 1 6 p f 44 1 3 46 t m 41 1 2 46 p m 41 0 1
7 t m 31 1 2 7 p f 39 0 2 47 t m 41 1 2 47 p f 21 0 4
8 t m 22 0 1 8 p m 54 1 4 48 t f 51 1 2 48 p m 22 1 1
9 t m 37 1 3 9 p m 63 0 2 49 t f 62 1 3 49 p f 32 0 3
10 t m 33 0 3 10 p f 43 0 3 50 t m 21 0 1 50 p m 34 0 1
11 t f 32 1 1 11 p m 33 0 3 51 t m 55 1 3 51 p f 35 1 2
12 t m 47 1 4 12 p m 24 0 4 52 t f 61 0 1 52 p m 19 0 1
13 t m 55 1 3 13 p f 38 1 1 53 t m 43 1 2 53 p m 31 0 2
14 t f 33 0 1 14 p f 28 1 2 54 t f 44 1 1 54 p f 41 1 1
15 t f 48 1 1 15 p f 42 0 1 55 t m 67 1 2 55 p m 41 0 1
16 t m 55 1 3 16 p m 52 0 1 56 t m 41 0 2 56 p m 21 1 4
17 t m 30 0 4 17 p m 48 1 4 57 t f 51 1 3 57 p m 51 0 2
18 t f 31 1 2 18 p m 27 1 3 58 t m 62 1 3 58 p m 54 1 3
19 t m 66 1 3 19 p f 54 0 1 59 t m 22 0 1 59 p f 22 0 1
20 t f 45 0 2 20 p f 66 1 2 60 t m 42 1 2 60 p f 29 1 2
21 t m 19 1 4 21 p f 20 1 4 61 t f 51 1 1 61 p f 31 0 1
22 t m 34 1 4 22 p f 31 0 1 62 t m 27 0 2 62 p m 32 1 2
23 t f 46 0 1 23 p m 30 1 2 63 t m 31 1 1 63 p f 21 0 1
24 t m 48 1 3 24 p f 62 0 4 64 t m 35 0 3 64 p m 33 1 3
25 t m 50 1 4 25 p m 45 1 4 65 t m 67 1 2 65 p m 19 0 1
26 t m 57 1 3 26 p f 43 0 3 66 t m 41 0 2 66 p m 62 1 4
27 t f 13 0 2 27 p m 22 1 3 67 t f 31 1 2 67 p m 45 1 3
28 t m 31 1 1 28 p f 21 0 1 68 t m 34 1 1 68 p f 54 0 1
29 t m 35 1 3 29 p m 35 1 3 69 t f 21 0 1 69 p m 34 1 4
30 t f 36 1 3 30 p f 37 0 3 70 t m 64 1 3 70 p m 51 0 1
31 t f 45 0 1 31 p f 41 1 1 71 t f 61 1 3 71 p m 34 1 3
32 t m 13 1 2 32 p m 42 0 1 72 t m 33 0 1 72 p f 43 0 1
33 t m 14 0 4 33 p f 22 1 2 73 t f 36 0 2 73 p m 37 0 3
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34 t f 15 1 2 34 p m 24 0 1 74 t m 21 1 1 74 p m 55 0 1
35 t f 19 1 3 35 p f 31 0 1 75 t f 47 0 2 75 p f 42 1 3
36 t m 20 0 2 36 p m 32 1 3 76 t f 51 1 4 76 p m 44 0 2
37 t m 23 1 3 37 p f 35 0 1 77 t f 23 1 1 77 p m 41 1 3
38 t f 23 0 1 38 p m 21 1 1 78 t m 31 0 2 78 p f 23 1 4
39 t m 24 1 4 39 p m 30 1 3 79 t m 22 0 1 79 p m 19 1 4
40 t m 57 1 3 40 p f 43 1 3
;

The following PROC LOGISTIC invocation requests forward selection, forcing all the
main effects in the model with the INCLUDE=3 option and making all interaction terms
available for consideration.

proc logistic data=trial descending;
model improve = initial age i_sex

isexage isexinit iageinit
trtsex trtinit trtage /
selection=forward include=3 details;

run;

The response profiles shown in Output 10.1 indicate that 34 pairs of observations have the
(1,0) profile (treatment improved, placebo did not) and 20 pairs have the (0,1) profile
(treatment didn’t improve, placebo did).

Output 10.1 Response Profiles

Response Profile

Ordered Total
Value improve Frequency

1 1 34
2 0 20

Output 10.2 shows the residual score statistic (QRS = 4:7214 with 6 df andp = 0:5800)
as well as the score statistics for the addition of the individual terms into the model. Since
there are 20 observations with the less prevalent response, this model can support about
20=5 = 4 terms. Thus, there are possibly too many terms to rely entirely on the residual
score statistic to assess goodness of fit. However, considering the residual test as well as
the individual tests provides reasonable confidence that the model fits adequately. All of
the individual tests havep-values greater than 0.08, and most of them havep-values
greater than 0.5. This model doesn’t require the addition of any interaction terms. (Note
that you could have assessed goodness of fit by taking the difference of�2 LOG L for this
model and for one that included all the interaction terms.)
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Output 10.2 Score Statistics

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

4.7213 6 0.5800

Analysis of Effects Not in the Model

Score
Effect DF Chi-Square Pr > ChiSq

isexage 1 0.6593 0.4168
isexinit 1 0.1775 0.6736
iageinit 1 2.9194 0.0875
trtsex 1 0.2681 0.6046
trtinit 1 0.0121 0.9125
trtage 1 0.4336 0.5102

Output 10.3 contains the maximum likelihood estimates of the parameters. Recall that, in
this model, the treatment effect is represented by the intercept. It takes the value 0.7024,
which is nearly significant withp = 0:0511. Neither age nor sex appear to be very
influential but are left in the model as covariates. The effect for initial score is highly
significant (p = 0:0011).

Output 10.3 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 0.7024 0.3601 3.8053 0.0511
initial 1 1.0915 0.3351 10.6105 0.0011
age 1 0.0248 0.0224 1.2252 0.2683
i_sex 1 0.5312 0.5545 0.9176 0.3381

Output 10.4 contains the odds ratios and their 95% confidence limits.

Output 10.4 Odds Ratios

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

initial 2.979 1.545 5.745
age 1.025 0.981 1.071
i_sex 1.701 0.574 5.043
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Note that the LOGISTIC procedure does not print the odds ratio for the INTERCEPT, as
usually it is of no interest. However, since the intercept represents the treatment effect in
this model, it is appropriate to determine the odds ratio. The odds of improving for those
patients receiving the treatment ise0:7024 = 2:019 times higher than for those patients
receiving the placebo. The odds of improvement also increase by a factor of 2.979 for each
unit increase in the initial grade. Note that the confidence limits for this odds ratio are
(1.545, 5.745). Thus, even adjusting for the effect of initial grade, treatment has a nearly
significant effect. And, performing this stratified analysis has taken into account the effect
of center.

Consider the model where the intercept is the only term.

proc logistic data=trial descending;
model improve = ;

run;

Output 10.5 contains the parameter estimates.

Output 10.5 Treatment Effect Only Model

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 0.5306 0.2818 3.5457 0.0597

Note thate� = e0:5306 = 1:70. In addition, the Wald test for the intercept takes the value
3.5457 withp = 0:0597, which is nearly significant.

Table 10.1 displays the crosstabulation of pairs by treatment and response.

Table 10.1. Pairs Breakdown

Placebo Treatment Response
Response No Yes
No 7 34
Yes 20 18

Thus, McNemar’s test statistic is computed as

(34 � 20)2

(34 + 20)
= 3:63

which is also nearly significant. As the sample size grows, the Wald statistic for the
intercept and McNemar’s test statistic become asymptotically equivalent. In addition, note

thatn12=n21 = 1:7, which is the same ase�̂ = e0:5306.
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10.3.2 Analysis Using the PHREG Procedure

The advantage of using the PHREG procedure for conditional logistic regression is that
you can operate directly on the actual observations; you don’t have to create difference
observations. The following DATA step creates SAS data set TRIAL2. In order to fit into
the proportional hazards computing framework of PROC PHREG, the outcome of interest
must be ordered first. Thus, the value of response variable IMPROVE is subtracted from 2.
Indicator variables and interactions are created the same as in the PROC LOGISTIC
analysis.

data trial2;
input center treat $ sex $ age improve initial @@;
/* create indicator variables for sex and interaction terms */
improve=2-improve;
isex=(sex=’m’);
itreat=(treat=’t’);
sex_age=isex*age;
treat_age=itreat*age;
sex_treat=isex*itreat;
sex_initial=isex*initial;
treat_initial=itreat*initial;
age_initial=age*initial;
datalines;

1 t f 27 0 1 1 p f 32 0 2 41 t f 13 1 2 41 p m 22 0 3
2 t f 41 1 3 2 p f 47 0 1 42 t m 31 1 1 42 p f 21 1 3
3 t m 19 1 4 3 p m 31 0 4 43 t f 19 1 3 43 p m 35 1 3
4 t m 55 1 1 4 p m 24 1 3 44 t m 31 1 3 44 p f 37 0 2
5 t f 51 1 4 5 p f 44 0 2 45 t f 44 0 1 45 p f 41 1 1
6 t m 23 0 1 6 p f 44 1 3 46 t m 41 1 2 46 p m 41 0 1
7 t m 31 1 2 7 p f 39 0 2 47 t m 41 1 2 47 p f 21 0 4
8 t m 22 0 1 8 p m 54 1 4 48 t f 51 1 2 48 p m 22 1 1
9 t m 37 1 3 9 p m 63 0 2 49 t f 62 1 3 49 p f 32 0 3
10 t m 33 0 3 10 p f 43 0 3 50 t m 21 0 1 50 p m 34 0 1
11 t f 32 1 1 11 p m 33 0 3 51 t m 55 1 3 51 p f 35 1 2
12 t m 47 1 4 12 p m 24 0 4 52 t f 61 0 1 52 p m 19 0 1
13 t m 55 1 3 13 p f 38 1 1 53 t m 43 1 2 53 p m 31 0 2
14 t f 33 0 1 14 p f 28 1 2 54 t f 44 1 1 54 p f 41 1 1
15 t f 48 1 1 15 p f 42 0 1 55 t m 67 1 2 55 p m 41 0 1
16 t m 55 1 3 16 p m 52 0 1 56 t m 41 0 2 56 p m 21 1 4
17 t m 30 0 4 17 p m 48 1 4 57 t f 51 1 3 57 p m 51 0 2
18 t f 31 1 2 18 p m 27 1 3 58 t m 62 1 3 58 p m 54 1 3
19 t m 66 1 3 19 p f 54 0 1 59 t m 22 0 1 59 p f 22 0 1
20 t f 45 0 2 20 p f 66 1 2 60 t m 42 1 2 60 p f 29 1 2
21 t m 19 1 4 21 p f 20 1 4 61 t f 51 1 1 61 p f 31 0 1
22 t m 34 1 4 22 p f 31 0 1 62 t m 27 0 2 62 p m 32 1 2
23 t f 46 0 1 23 p m 30 1 2 63 t m 31 1 1 63 p f 21 0 1
24 t m 48 1 3 24 p f 62 0 4 64 t m 35 0 3 64 p m 33 1 3
25 t m 50 1 4 25 p m 45 1 4 65 t m 67 1 2 65 p m 19 0 1
26 t m 57 1 3 26 p f 43 0 3 66 t m 41 0 2 66 p m 62 1 4
27 t f 13 0 2 27 p m 22 1 3 67 t f 31 1 2 67 p m 45 1 3
28 t m 31 1 1 28 p f 21 0 1 68 t m 34 1 1 68 p f 54 0 1
29 t m 35 1 3 29 p m 35 1 3 69 t f 21 0 1 69 p m 34 1 4
30 t f 36 1 3 30 p f 37 0 3 70 t m 64 1 3 70 p m 51 0 1
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31 t f 45 0 1 31 p f 41 1 1 71 t f 61 1 3 71 p m 34 1 3
32 t m 13 1 2 32 p m 42 0 1 72 t m 33 0 1 72 p f 43 0 1
33 t m 14 0 4 33 p f 22 1 2 73 t f 36 0 2 73 p m 37 0 3
34 t f 15 1 2 34 p m 24 0 1 74 t m 21 1 1 74 p m 55 0 1
35 t f 19 1 3 35 p f 31 0 1 75 t f 47 0 2 75 p f 42 1 3
36 t m 20 0 2 36 p m 32 1 3 76 t f 51 1 4 76 p m 44 0 2
37 t m 23 1 3 37 p f 35 0 1 77 t f 23 1 1 77 p m 41 1 3
38 t f 23 0 1 38 p m 21 1 1 78 t m 31 0 2 78 p f 23 1 4
39 t m 24 1 4 39 p m 30 1 3 79 t m 22 0 1 79 p m 19 1 4
40 t m 57 1 3 40 p f 43 1 3
;

The same model is specified with the PHREG procedure. Since you are conditioning on
center, the variable CENTER is listed in the STRATA statement. The conditional logistic
model does not include an intercept, so the variable ITREAT is now included in the
MODEL statement. The PHREG procedure also supports model building, so the
SELECTION=FORWARD option is specified with the main effects model selected as the
first model fit.

proc phreg data=trial2 nosummary;
strata center;
model improve = initial age isex itreat
sex_age sex_initial age_initial
sex_treat treat_initial treat_age / ties=discrete
selection=forward include=4 details;

run;

The PHREG procedure first produces a table of model fit statistics, displayed in
Output 10.6. It then produces a table of global fit statistics that test whether the parameters
are jointly equal to zero.

Output 10.6 Model Fit Statistics

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 74.860 50.562
AIC 74.860 58.562
SBC 74.860 70.813

Output 10.7 Global Fit Statistics

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 24.2976 4 <.0001
Score 19.8658 4 0.0005
Wald 13.0099 4 0.0112
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Output 10.8 contains the parameter estimates. Note that this analysis produces no intercept
term.

Output 10.8 Parameter Estimates from PROC PHREG

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

initial 1 1.09148 0.33508 10.6104 0.0011 2.979
age 1 0.02483 0.02243 1.2252 0.2683 1.025
isex 1 0.53115 0.55451 0.9175 0.3381 1.701
itreat 1 0.70244 0.36009 3.8052 0.0511 2.019

The parameter estimates and standard errors are identical to those produced with the
LOGISTIC procedure on data consisting of the explanatory variable differences for each
case.

10.4 Crossover Design Studies

Conditional logistic regression is a useful technique in the analysis of thecrossover design
study, also called thechangeover study. In these designs, often used in clinical trials, the
study is divided into periods and patients receive a different treatment during each period.
Thus, the patients act as their own controls. Interest lies in comparing the efficacy of the
treatments, adjusting for period effects and carryover effects. The basic crossover design is
a two-period design, but designs with three or more periods are also implemented. This
section describes the use of conditional logistic regression for both two- and three- period
designs.

10.4.1 Two-Period Crossover Design

A two-period crossover study can be considered another example of paired data.
Table 10.2 contains data from a two-period crossover design clinical trial (Koch et al.
1977). Patients were stratified according to two age groups and then assigned to one of
three treatment sequences. Responses were measured as favorable (F) or unfavorable (U);
thus, FF indicates a favorable response in both Period 1 and Period 2.

Table 10.2. Two-Period Crossover Study

Response Profiles
Age Sequence FF FU UF UU Total
older A:B 12 12 6 20 50
older B:P 8 5 6 31 50
older P:A 5 3 22 20 50
younger B:A 19 3 25 3 50
younger A:P 25 6 6 13 50
younger P:B 13 5 21 11 50
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Sequence A:B means that Drug A was administered during the first period and Drug B was
administered during the second period. The value P indicates Placebo. There are six
possible sequences over the two age groups; each sequence occurs for one set of 50
patients.

These data can be considered paired data in the sense that there is a response for both
Period 1 and Period 2. One strategy for analyzing these data is to model the probability of
improvement for each patient in the first period (and not the second) versus the probability
of improvement in either the first or second period but not both. This can be expressed as
the conditional probability

PrfPeriod1=FgPrfPeriod2=Ug
PrfPeriod1=FgPrfPeriod2=Ug+ PrfPeriod1=UgPrfPeriod2=Fg

Thus, the analysis strategy can proceed in the same manner as for the highly stratified
paired data. In that example, the analysis adjusted out center-to-center variability
(intercenter variability) and concentrated on intracenter variability. In this example, you
are conditioning away, or adjusting out, patient-to-patient variability (interpatient
variability) and concentrating on intrapatient information. This allows you to perform
analyses that may not be possible with population-averaging methods (such as ordinary
logistic regression) because of small sample size, although the resulting strategy may not
be as efficient. These conditioning methods also lead to results with different
interpretation; for example, the resulting odds ratios apply to each patient individually in
the study rather than to patients on average.

The effects of interest are the period effect, effects for drugs A and B, and a carryover
effect for drugs A and B from Period 1 to Period 2. Table 10.3 and Table 10.4 display the
effects for Period 1 and Period 2, using incremental effects parameterization.

Table 10.3. Period 1 Data

Age Treatment Period1 Period� Age Drug A Drug B CarryA CarryB
older A 1 1 1 0 0 0
older B 1 1 0 1 0 0
older P 1 1 0 0 0 0
younger B 1 0 0 1 0 0
younger A 1 0 1 0 0 0
younger P 1 0 0 0 0 0

Table 10.4. Period 2 Data

Age Treatment Period1 Period� Age Drug A Drug B CarryA CarryB
older B 0 0 0 1 1 0
older P 0 0 0 0 0 1
older A 0 0 1 0 0 0
younger A 0 0 1 0 0 1
younger P 0 0 0 0 1 0
younger B 0 0 0 1 0 0
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To fit the paired observations paradigm, you subtract the values for the variables for Period
1 and Period 2 and proceed as in the first example. Or, you could use the general
conditional likelihood approach and proceed with the PHREG procedure, which is more
straightforward.

Note that there are six response functions, logits based on FU versus UF, and thus six
degrees of freedom with which to work. If you include the two effects for drugs A and B,
the age� period effect, and the period effect, then there are two degrees of freedom left
over. These can be used to explore the carryover effects or the age� drug effects. The two
degree-of-freedom tests for both sets of effects are identical.

The model employed includes the carryover effects. You can write this model as

PrfFU jFU or UFg = expf� + � 0zg
1 + expf� + � 0zg

wherez consists of the difference between the two periods for period� age, Drug A, Drug
B, CarryA, and CarryB. The parameter� is the effect for period,�0 is the effect for period
� age,�1 and�2 are the effects for Drug A and Drug B, respectively, and�3 and�4 are the
effects for CarryA and CarryB, respectively.

The following DATA step inputs the cell counts of the table one response profile at a time.

data cross1 (drop=count);
input age $ sequence $ time1 $ time2 $ count;
do i=1 to count;

output;
end;

datalines;
older AB F F 12
older AB F U 12
older AB U F 6
older AB U U 20
older BP F F 8
older BP F U 5
older BP U F 6
older BP U U 31
older PA F F 5
older PA F U 3
older PA U F 22
older PA U U 20
younger BA F F 19
younger BA F U 3
younger BA U F 25
younger BA U U 3
younger AP F F 25
younger AP F U 6
younger AP U F 6
younger AP U U 13
younger PB F F 13
younger PB F U 5
younger PB U F 21
younger PB U U 11
;
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The DATA step that creates SAS data set CROSS2 creates a series of indicator variables
for the observations coming from either Period 1 or Period 2. It creates indicator variables
DRUGA and DRUGB for whether the patient received those respective drugs and also
creates indicator variables CARRYA and CARRYB to indicate whether the previous
period included treatment with either of those drugs. Obviously, these variables have the
value 0 if they have come from Period 1. The response variable RESPONSE is re-defined
to take the value 1 for a favorable response. The PHREG procedure does not handle
character-valued response variables.

data cross2; set cross1;
subject=_n_;
period1=1;

druga = (substr(sequence, 1, 1)=’A’);
drugb = (substr(sequence, 1, 1)=’B’);
carrya=0;
carryb=0;
response =(time1=’F’);
output;

period1=0;
druga = (substr(sequence, 2, 1)=’A’);
drugb = (substr(sequence, 2, 1)=’B’);
carrya = (substr(sequence, 1, 1)=’A’);
carryb = (substr(sequence, 1, 1)=’B’);
response =(time2=’F’);
output;

run;

Finally, the DATA step that creates SAS data set CROSS3 creates indicator variables for
the desired interaction terms and also creates an indicator variable for age; the PHREG
procedure doesn’t yet handle CLASS variables or the full model specification of the GLM
procedure. The variable RESPONSE is redefined to be subtracted from 2 so that the
procedure will model the probability of favorable response (alphanumeric ordering).

data cross3;
set cross2;
response=2-response;
older=(age=’older’);
druga_older=druga*older;
drugb_older=drugb*older;
period1_older=period1*older;

run;

The following PROC PHREG statements request the desired analysis. The strata variable
is specified in the STRATA statement; these are the effects that will be conditioned out.
The NOSUMMARY option in the PROC PHREG statement eliminates the usual events
and trials listing (part of the survival machinery) from the output. The TIES=DISCRETE
option is necessary for proper estimation (since there are only two subjects in a stratum,
the default TIES=BRESLOW produces the same results, but getting into the habit of
specifying TIES=DISCRETE is a good idea).
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proc phreg data=cross3 nosummary;
strata subject;
model response = period1 druga drugb period1_older
carrya carryb / ties=discrete;

run;

Output 10.9 displays the fit statistics.

Output 10.9 Model Fit Statistics

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 166.355 117.579
AIC 166.355 129.579
SBC 166.355 155.961

The table of maximum likelihood estimates in Output 10.10 indicates that neither
carryover effect is influential. There appears to be a significant period effect and a
significant Drug A effect.

Output 10.10 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

period1 1 -1.43698 0.70258 4.1832 0.0408 0.238
druga 1 1.24669 0.68066 3.3547 0.0670 3.479
drugb 1 -0.00190 0.64116 0.0000 0.9976 0.998
period1_older 1 0.69125 0.46544 2.2056 0.1375 1.996
carrya 1 -0.19029 1.11248 0.0293 0.8642 0.827
carryb 1 -0.56532 1.15562 0.2393 0.6247 0.568

The reduced model that excludes the carryover effects is fit next. Since the period� age
effect is modestly suggestive, it is kept in the model. The following PROC PHREG
invocation fits this model. It also includes a test for whether Drug A and Drug B have
similar effects.

proc phreg data=cross3 nosummary;
strata subject;
model response = period1 druga drugb
period1_older / ties=discrete;
A_B: test druga=drugb;

run;



288 Conditional Logistic Regression

Output 10.11 displays the model fit statistics for the reduced model. If you take the
difference in�2 LOG L for the full and reduced models,117:826 � 117:579, you get the
log likelihood ratio test for the carryover effects. SinceQL = 0:247 with 2 df, this test is
nonsignificant. (If you fit the model with age and drug interactions and perform a similar
model reduction, this test would have the same value.)

Output 10.11 Model Assessment Statistics

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 166.355 117.826
AIC 166.355 125.826
SBC 166.355 143.413

The maximum likelihood estimates are displayed in Output 10.12. The period effect
remains clearly significant (QW = 12:9534, p = 0:0003). Drug A appears to be strongly
significant relative to placebo, while Drug B appears to be nonsignificant.

Output 10.12 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

period1 1 -1.19052 0.33078 12.9534 0.0003 0.304
druga 1 1.34622 0.32894 16.7497 <.0001 3.843
drugb 1 0.26618 0.32334 0.6777 0.4104 1.305
period1_older 1 0.71017 0.45757 2.4088 0.1207 2.034

The period� age effect is still suggestive. Whether you remove this effect from the model
depends on your approach to the analysis. If you think of the study as two separate studies
of older and younger people, then you probably will want to keep this effect in the model.
If your general structural purpose did not include the distinction of older and younger
groups, then you will probably want to remove this effect.

Output 10.13 contains the results of the test comparing the Drug B effect and the Drug A
effect. The test is clearly significant; the drugs have different effects.

Output 10.13 Drug A versus Drug B

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

A_B 10.9220 1 0.0010
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10.4.2 Three-Period Crossover Study

The three-period crossover study provides additional challenges. Consider the data from
an exercise study in which participants with chronic respiratory conditions were exposed
to low, medium, and high levels of air pollution while exercising on a stationary bike. The
outcome was the level of respiratory distress as measured on a scale from 0 for none to 3
for severe. A dichotomous baseline reading of 0 for no distress and 1 for some distress was
also recorded before each subject began bicycling. There was a two-week washout period
between each of the sessions. As in the two-period crossover study, there is interest in
examining carryover effects as well as period effects. The subjects were randomized to
one of six sequences: HLM, HML, LHM, LMH, MHL, and MLH, where L, M, and H
correspond to low, medium, and high amounts of air pollution. These data are loosely
based on an example discussed in Tudor, Koch, and Catellier (2000), which is a useful
discussion of biostatistical data from crossover studies.

The conditional analysis of these data provides a way to detect within-subject effects,
namely the pollution effect, and also investigates the period and carryover effects. The
response of interest is dichotomous—whether the subject had severe distress versus no
distress, the 3s versus all other outcomes. Table 10.5 contains the data organized by
randomization sequence scheme.

Table 10.5. Randomization Frequencies

Sequence Frequencies Percent
HLM 72 16.00
HML 78 17.33
LHM 72 16.00
LMH 72 16.00
MHL 60 13.33
MLH 96 21.33

Consider the possible outcome profiles similar to those discussed above for the two-period
crossover study. On page 284, the likelihood conditioned on the discordant pairs, or those
response profiles whereyi1 andyi2 were different. Those cases whereyi1 = yi2 were
considered noninformative. The sum

P2
j yij implies equal levels ofyi1 andyi2 when it is

is 0 (0,0) and 2 (1,1) but not when the sum is 1. In conditional logistic regression, you are
conditioning on thefPr

j yijg, which are the sufficient statistics for thef�ig.
For the three-period case,r = 3 and eight possible profiles exist, two of which are
noninformative, whenfP3

j yijg = 0 or 3. WhenfP3
j yijg = 1 or 2, there are three

possible patterns for(yi1; yi2; yi3).

The contributions to the conditional likelihood are:

Prfyij = 1; yij0 = 0 for all j0 6= jg
Prfyi1 + yi2 + yi3 = 1g =

exp(x0ij�)P3
j0 exp(x

0
ij0�)

for j = 1; 2; 3
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and

Prfyij = 0; yij0 = 1 for all j0 6= jg
Prfyi1 + yi2 + yi3 = 2g =

exp(
P3

j0=1 x
0
ij0� � x0ij�)P3

j0=1 exp(
P3

j0=1 x
0
ij0� � x0ij�)

This likelihood structure turns out to be the same as the trichotomous loglinear extension
of logistic regression, and you can use unconditional maximum likelihood to estimate�.
The functions you would analyze are generalized logits, which can be fit with the
CATMOD procedure. However, the PHREG procedure is much more straightforward in
fitting the conditional logistic model, and is used in the analysis of these data.

For the exercise data, there is interest in evaluating whether pollution has an effect on
respiratory distress and whether there are period effects and carryover effects. One could
consider carryover effects from one level to another from Period 1 to Period 2, and then
from Period 2 to Period 3. However, there are not enough degrees of freedom for these
data to pursue such a strategy. Instead, the analysis focuses on whether there is a carryover
effect from a medium pollution period to another period and a carryover effect from a high
pollution period to another period. This is a reasonable strategy.

The following DATA step inputs the exercise data. There is one observation per subject per
period. The variable SEQUENCE contains the sequence information, for example,
observations with the value ‘HML’ received the sequence high in the first period, medium
in the second period, and low in the third period. The indicator variables HIGH and
MEDIUM take the value 1 if the exposure is high or medium, respectively, for that period.
The variable ID is the subject ID within sequence group, PERIOD1 and PERIOD2 are
indicator variables for whether the observation is from Period 1 or Period 2, and
CARRYHIGH and CARRYMEDIUM are indicator variables for whether the previous
period was high exposure or medium exposure. The variable BASELINE takes the value 1
for respiratory distress at the beginning of the study.

The variable STRATA, a unique identifier for each subject based on a combination of
SEQUENCE and ID, is defined in this DATA step as well.

data exercise;
input Sequence $ ID $ Period1 Period2 High Medium Baseline

Response CarryHigh CarryMedium @@;
strata=sequence||id;
DichotResponse = 2-(Response >0);
datalines;

HML 1 1 0 1 0 0 3 0 0 HML 1 0 1 0 1 0 1 1 0 HML 1 0 0 0 0 0 0 0 1
HML 2 1 0 1 0 0 3 0 0 HML 2 0 1 0 1 0 2 1 0 HML 2 0 0 0 0 0 0 0 1
HML 3 1 0 1 0 1 3 0 0 HML 3 0 1 0 1 0 2 1 0 HML 3 0 0 0 0 0 0 0 1
HML 4 1 0 1 0 0 2 0 0 HML 4 0 1 0 1 0 0 1 0 HML 4 0 0 0 0 0 2 0 1
HML 5 1 0 1 0 0 3 0 0 HML 5 0 1 0 1 0 0 1 0 HML 5 0 0 0 0 0 1 0 1
HML 6 1 0 1 0 1 2 0 0 HML 6 0 1 0 1 0 1 1 0 HML 6 0 0 0 0 0 2 0 1
HML 7 1 0 1 0 0 3 0 0 HML 7 0 1 0 1 0 1 1 0 HML 7 0 0 0 0 0 2 0 1
HML 8 1 0 1 0 0 3 0 0 HML 8 0 1 0 1 0 2 1 0 HML 8 0 0 0 0 0 1 0 1
HML 9 1 0 1 0 1 2 0 0 HML 9 0 1 0 1 0 1 1 0 HML 9 0 0 0 0 0 1 0 1
HML 10 1 0 1 0 0 1 0 0 HML 10 0 1 0 1 0 1 1 0 HML 10 0 0 0 0 0 0 0 1
HML 11 1 0 1 0 0 2 0 0 HML 11 0 1 0 1 0 0 1 0 HML 11 0 0 0 0 0 0 0 1
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HML 12 1 0 1 0 0 3 0 0 HML 12 0 1 0 1 0 0 1 0 HML 12 0 0 0 0 0 0 0 1
HML 13 1 0 1 0 0 1 0 0 HML 13 0 1 0 1 0 3 1 0 HML 13 0 0 0 0 0 1 0 1
HML 14 1 0 1 0 0 2 0 0 HML 14 0 1 0 1 0 2 1 0 HML 14 0 0 0 0 0 0 0 1
HML 15 1 0 1 0 1 2 0 0 HML 15 0 1 0 1 0 2 1 0 HML 15 0 0 0 0 0 0 0 1
HML 16 1 0 1 0 1 2 0 0 HML 16 0 1 0 1 0 2 1 0 HML 16 0 0 0 0 0 0 0 1
HML 17 1 0 1 0 1 2 0 0 HML 17 0 1 0 1 0 2 1 0 HML 17 0 0 0 0 0 3 0 1
HML 18 1 0 1 0 0 2 0 0 HML 18 0 1 0 1 0 2 1 0 HML 18 0 0 0 0 0 2 0 1
HML 19 1 0 1 0 0 2 0 0 HML 19 0 1 0 1 0 0 1 0 HML 19 0 0 0 0 0 2 0 1
HML 20 1 0 1 0 0 3 0 0 HML 20 0 1 0 1 0 0 1 0 HML 20 0 0 0 0 0 1 0 1
HML 21 1 0 1 0 0 1 0 0 HML 21 0 1 0 1 0 1 1 0 HML 21 0 0 0 0 0 0 0 1
HML 22 1 0 1 0 0 2 0 0 HML 22 0 1 0 1 0 0 1 0 HML 22 0 0 0 0 0 2 0 1
HML 23 1 0 1 0 0 2 0 0 HML 23 0 1 0 1 0 1 1 0 HML 23 0 0 0 0 0 1 0 1
HML 24 1 0 1 0 1 3 0 0 HML 24 0 1 0 1 0 1 1 0 HML 24 0 0 0 0 0 0 0 1
HML 25 1 0 1 0 0 3 0 0 HML 25 0 1 0 1 0 2 1 0 HML 25 0 0 0 0 0 1 0 1
HML 26 1 0 1 0 0 3 0 0 HML 26 0 1 0 1 0 2 1 0 HML 26 0 0 0 0 0 0 0 1
HLM 1 1 0 1 0 0 3 0 0 HLM 1 0 1 0 0 0 0 1 0 HLM 1 0 0 0 1 0 2 0 0
HLM 2 1 0 1 0 0 2 0 0 HLM 2 0 1 0 0 0 1 1 0 HLM 2 0 0 0 1 0 1 0 0
HLM 3 1 0 1 0 1 2 0 0 HLM 3 0 1 0 0 0 2 1 0 HLM 3 0 0 0 1 0 2 0 0
HLM 4 1 0 1 0 0 2 0 0 HLM 4 0 1 0 0 0 2 1 0 HLM 4 0 0 0 1 0 1 0 0
HLM 5 1 0 1 0 0 3 0 0 HLM 5 0 1 0 0 0 1 1 0 HLM 5 0 0 0 1 0 1 0 0
HLM 6 1 0 1 0 1 1 0 0 HLM 6 0 1 0 0 0 0 1 0 HLM 6 0 0 0 1 0 1 0 0
HLM 7 1 0 1 0 0 2 0 0 HLM 7 0 1 0 0 0 1 1 0 HLM 7 0 0 0 1 0 1 0 0
HLM 8 1 0 1 0 0 2 0 0 HLM 8 0 1 0 0 0 1 1 0 HLM 8 0 0 0 1 0 1 0 0
HLM 9 1 0 1 0 1 2 0 0 HLM 9 0 1 0 0 0 1 1 0 HLM 9 0 0 0 1 0 0 0 0
HLM 10 1 0 1 0 0 2 0 0 HLM 10 0 1 0 0 0 0 1 0 HLM 10 0 0 0 1 0 2 0 0
HLM 11 1 0 1 0 0 3 0 0 HLM 11 0 1 0 0 0 0 1 0 HLM 11 0 0 0 1 0 1 0 0
HLM 12 1 0 1 0 0 1 0 0 HLM 12 0 1 0 0 0 1 1 0 HLM 12 0 0 0 1 0 0 0 0
HLM 13 1 0 1 0 0 0 0 0 HLM 13 0 1 0 0 0 1 1 0 HLM 13 0 0 0 1 0 0 0 0
HLM 14 1 0 1 0 0 3 0 0 HLM 14 0 1 0 0 0 0 1 0 HLM 14 0 0 0 1 0 2 0 0
HLM 15 1 0 1 0 1 0 0 0 HLM 15 0 1 0 0 0 2 1 0 HLM 15 0 0 0 1 0 0 0 0
HLM 16 1 0 1 0 1 3 0 0 HLM 16 0 1 0 0 0 0 1 0 HLM 16 0 0 0 1 0 1 0 0
HLM 17 1 0 1 0 1 2 0 0 HLM 17 0 1 0 0 0 0 1 0 HLM 17 0 0 0 1 0 1 0 0
HLM 18 1 0 1 0 0 3 0 0 HLM 18 0 1 0 0 0 1 1 0 HLM 18 0 0 0 1 0 1 0 0
HLM 19 1 0 1 0 0 3 0 0 HLM 19 0 1 0 0 0 0 1 0 HLM 19 0 0 0 1 0 1 0 0
HLM 20 1 0 1 0 0 2 0 0 HLM 20 0 1 0 0 0 1 1 0 HLM 20 0 0 0 1 0 2 0 0
HLM 21 1 0 1 0 0 2 0 0 HLM 21 0 1 0 0 0 0 1 0 HLM 21 0 0 0 1 0 2 0 0
HLM 22 1 0 1 0 0 1 0 0 HLM 22 0 1 0 0 0 1 1 0 HLM 22 0 0 0 1 0 3 0 0
HLM 23 1 0 1 0 0 3 0 0 HLM 23 0 1 0 0 0 1 1 0 HLM 23 0 0 0 1 0 2 0 0
HLM 24 1 0 1 0 1 2 0 0 HLM 24 0 1 0 0 0 1 1 0 HLM 24 0 0 0 1 0 2 0 0
MHL 1 1 0 0 1 0 1 0 0 MHL 1 0 1 1 0 0 2 0 1 MHL 1 0 0 0 0 0 0 1 0
MHL 2 1 0 0 1 0 0 0 0 MHL 2 0 1 1 0 0 3 0 1 MHL 2 0 0 0 0 0 1 1 0
MHL 3 1 0 0 1 1 2 0 0 MHL 3 0 1 1 0 0 2 0 1 MHL 3 0 0 0 0 0 0 1 0
MHL 4 1 0 0 1 0 1 0 0 MHL 4 0 1 1 0 0 3 0 1 MHL 4 0 0 0 0 0 1 1 0
MHL 5 1 0 0 1 0 1 0 0 MHL 5 0 1 1 0 0 2 0 1 MHL 5 0 0 0 0 0 2 1 0
MHL 6 1 0 0 1 1 0 0 0 MHL 6 0 1 1 0 0 3 0 1 MHL 6 0 0 0 0 0 0 1 0
MHL 7 1 0 0 1 0 2 0 0 MHL 7 0 1 1 0 0 1 0 1 MHL 7 0 0 0 0 0 1 1 0
MHL 8 1 0 0 1 0 1 0 0 MHL 8 0 1 1 0 0 1 0 1 MHL 8 0 0 0 0 0 2 1 0
MHL 9 1 0 0 1 1 0 0 0 MHL 9 0 1 1 0 0 2 0 1 MHL 9 0 0 0 0 0 0 1 0
MHL 10 1 0 0 1 0 0 0 0 MHL 10 0 1 1 0 0 2 0 1 MHL 10 0 0 0 0 0 0 1 0
MHL 11 1 0 0 1 0 2 0 0 MHL 11 0 1 1 0 0 1 0 1 MHL 11 0 0 0 0 0 0 1 0
MHL 12 1 0 0 1 0 0 0 0 MHL 12 0 1 1 0 0 1 0 1 MHL 12 0 0 0 0 0 0 1 0
MHL 13 1 0 0 1 0 1 0 0 MHL 13 0 1 1 0 0 2 0 1 MHL 13 0 0 0 0 0 1 1 0
MHL 14 1 0 0 1 0 1 0 0 MHL 14 0 1 1 0 0 3 0 1 MHL 14 0 0 0 0 0 1 1 0
MHL 15 1 0 0 1 1 0 0 0 MHL 15 0 1 1 0 0 3 0 1 MHL 15 0 0 0 0 0 1 1 0
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MHL 16 1 0 0 1 1 1 0 0 MHL 16 0 1 1 0 0 3 0 1 MHL 16 0 0 0 0 0 0 1 0
MHL 17 1 0 0 1 1 0 0 0 MHL 17 0 1 1 0 0 2 0 1 MHL 17 0 0 0 0 0 1 1 0
MHL 18 1 0 0 1 0 1 0 0 MHL 18 0 1 1 0 0 2 0 1 MHL 18 0 0 0 0 0 2 1 0
MHL 19 1 0 0 1 0 2 0 0 MHL 19 0 1 1 0 0 3 0 1 MHL 19 0 0 0 0 0 1 1 0
MHL 20 1 0 0 1 0 1 0 0 MHL 20 0 1 1 0 0 3 0 1 MHL 20 0 0 0 0 0 0 1 0
MLH 1 1 0 0 1 0 1 0 0 MLH 1 0 1 0 0 0 0 0 1 MLH 1 0 0 1 0 0 2 0 0
MLH 2 1 0 0 1 0 1 0 0 MLH 2 0 1 0 0 0 1 0 1 MLH 2 0 0 1 0 0 3 0 0
MLH 3 1 0 0 1 1 0 0 0 MLH 3 0 1 0 0 0 1 0 1 MLH 3 0 0 1 0 0 2 0 0
MLH 4 1 0 0 1 0 0 0 0 MLH 4 0 1 0 0 0 0 0 1 MLH 4 0 0 1 0 0 3 0 0
MLH 5 1 0 0 1 0 1 0 0 MLH 5 0 1 0 0 0 0 0 1 MLH 5 0 0 1 0 0 3 0 0
MLH 6 1 0 0 1 1 2 0 0 MLH 6 0 1 0 0 0 1 0 1 MLH 6 0 0 1 0 0 3 0 0
MLH 7 1 0 0 1 0 0 0 0 MLH 7 0 1 0 0 0 0 0 1 MLH 7 0 0 1 0 0 2 0 0
MLH 8 1 0 0 1 0 2 0 0 MLH 8 0 1 0 0 0 1 0 1 MLH 8 0 0 1 0 0 2 0 0
MLH 9 1 0 0 1 1 0 0 0 MLH 9 0 1 0 0 0 0 0 1 MLH 9 0 0 1 0 0 3 0 0
MLH 10 1 0 0 1 0 2 0 0 MLH 10 0 1 0 0 0 2 0 1 MLH 10 0 0 1 0 0 1 0 0
MLH 11 1 0 0 1 0 1 0 0 MLH 11 0 1 0 0 0 2 0 1 MLH 11 0 0 1 0 0 1 0 0
MLH 12 1 0 0 1 0 1 0 0 MLH 12 0 1 0 0 0 0 0 1 MLH 12 0 0 1 0 0 3 0 0
MLH 13 1 0 0 1 0 1 0 0 MLH 13 0 1 0 0 0 0 0 1 MLH 13 0 0 1 0 0 0 0 0
MLH 14 1 0 0 1 0 1 0 0 MLH 14 0 1 0 0 0 2 0 1 MLH 14 0 0 1 0 0 3 0 0
MLH 15 1 0 0 1 1 0 0 0 MLH 15 0 1 0 0 0 1 0 1 MLH 15 0 0 1 0 0 2 0 0
MLH 16 1 0 0 1 1 0 0 0 MLH 16 0 1 0 0 0 0 0 1 MLH 16 0 0 1 0 0 1 0 0
MLH 17 1 0 0 1 1 2 0 0 MLH 17 0 1 0 0 0 0 0 1 MLH 17 0 0 1 0 0 3 0 0
MLH 18 1 0 0 1 0 1 0 0 MLH 18 0 1 0 0 0 1 0 1 MLH 18 0 0 1 0 0 2 0 0
MLH 19 1 0 0 1 0 1 0 0 MLH 19 0 1 0 0 0 1 0 1 MLH 19 0 0 1 0 0 3 0 0
MLH 20 1 0 0 1 0 1 0 0 MLH 20 0 1 0 0 0 0 0 1 MLH 20 0 0 1 0 0 2 0 0
MLH 21 1 0 0 1 0 0 0 0 MLH 21 0 1 0 0 0 0 0 1 MLH 21 0 0 1 0 0 2 0 0
MLH 22 1 0 0 1 0 0 0 0 MLH 22 0 1 0 0 0 1 0 1 MLH 22 0 0 1 0 0 3 0 0
MLH 23 1 0 0 1 0 1 0 0 MLH 23 0 1 0 0 0 2 0 1 MLH 23 0 0 1 0 0 2 0 0
MLH 24 1 0 0 1 1 1 0 0 MLH 24 0 1 0 0 0 2 0 1 MLH 24 0 0 1 0 0 2 0 0
MLH 25 1 0 0 1 0 1 0 0 MLH 25 0 1 0 0 0 1 0 1 MLH 25 0 0 1 0 0 2 0 0
MLH 26 1 0 0 1 0 1 0 0 MLH 26 0 1 0 0 0 2 0 1 MLH 26 0 0 1 0 0 2 0 0
MLH 27 1 0 0 1 0 0 0 0 MLH 27 0 1 0 0 0 1 0 1 MLH 27 0 0 1 0 0 2 0 0
MLH 28 1 0 0 1 0 0 0 0 MLH 28 0 1 0 0 0 1 0 1 MLH 28 0 0 1 0 0 3 0 0
MLH 29 1 0 0 1 0 2 0 0 MLH 29 0 1 0 0 0 1 0 1 MLH 29 0 0 1 0 0 2 0 0
MLH 30 1 0 0 1 1 1 0 0 MLH 30 0 1 0 0 0 1 0 1 MLH 30 0 0 1 0 0 3 0 0
MLH 31 1 0 0 1 0 1 0 0 MLH 31 0 1 0 0 0 1 0 1 MLH 31 0 0 1 0 0 1 0 0
MLH 32 1 0 0 1 0 1 0 0 MLH 32 0 1 0 0 0 1 0 1 MLH 32 0 0 1 0 0 2 0 0
LHM 1 1 0 0 0 0 2 0 0 LHM 1 0 1 1 0 0 2 0 0 LHM 1 0 0 0 1 0 2 1 0
LHM 2 1 0 0 0 0 0 0 0 LHM 2 0 1 1 0 0 3 0 0 LHM 2 0 0 0 1 0 1 1 0
LHM 3 1 0 0 0 1 0 0 0 LHM 3 0 1 1 0 0 2 0 0 LHM 3 0 0 0 1 0 1 1 0
LHM 4 1 0 0 0 0 2 0 0 LHM 4 0 1 1 0 0 3 0 0 LHM 4 0 0 0 1 0 0 1 0
LHM 5 1 0 0 0 0 2 0 0 LHM 5 0 1 1 0 0 1 0 0 LHM 5 0 0 0 1 0 1 1 0
LHM 6 1 0 0 0 1 1 0 0 LHM 6 0 1 1 0 0 0 0 0 LHM 6 0 0 0 1 0 1 1 0
LHM 7 1 0 0 0 0 1 0 0 LHM 7 0 1 1 0 0 0 0 0 LHM 7 0 0 0 1 0 1 1 0
LHM 8 1 0 0 0 0 2 0 0 LHM 8 0 1 1 0 0 3 0 0 LHM 8 0 0 0 1 0 1 1 0
LHM 9 1 0 0 0 1 0 0 0 LHM 9 0 1 1 0 0 3 0 0 LHM 9 0 0 0 1 0 1 1 0
LHM 10 1 0 0 0 0 2 0 0 LHM 10 0 1 1 0 0 3 0 0 LHM 10 0 0 0 1 0 2 1 0
LHM 11 1 0 0 0 0 0 0 0 LHM 11 0 1 1 0 0 1 0 0 LHM 11 0 0 0 1 0 2 1 0
LHM 12 1 0 0 0 0 2 0 0 LHM 12 0 1 1 0 0 1 0 0 LHM 12 0 0 0 1 0 1 1 0
LHM 13 1 0 0 0 0 0 0 0 LHM 13 0 1 1 0 0 2 0 0 LHM 13 0 0 0 1 0 2 1 0
LHM 14 1 0 0 0 0 1 0 0 LHM 14 0 1 1 0 0 3 0 0 LHM 14 0 0 0 1 0 1 1 0
LHM 15 1 0 0 0 1 2 0 0 LHM 15 0 1 1 0 0 2 0 0 LHM 15 0 0 0 1 0 2 1 0
LHM 16 1 0 0 0 1 0 0 0 LHM 16 0 1 1 0 0 3 0 0 LHM 16 0 0 0 1 0 1 1 0
LHM 17 1 0 0 0 1 0 0 0 LHM 17 0 1 1 0 0 2 0 0 LHM 17 0 0 0 1 0 1 1 0
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LHM 18 1 0 0 0 0 1 0 0 LHM 18 0 1 1 0 0 3 0 0 LHM 18 0 0 0 1 0 0 1 0
LHM 19 1 0 0 0 0 1 0 0 LHM 19 0 1 1 0 0 0 0 0 LHM 19 0 0 0 1 0 0 1 0
LHM 20 1 0 0 0 0 1 0 0 LHM 20 0 1 1 0 0 2 0 0 LHM 20 0 0 0 1 0 1 1 0
LHM 21 1 0 0 0 0 1 0 0 LHM 21 0 1 1 0 0 1 0 0 LHM 21 0 0 0 1 0 1 1 0
LHM 22 1 0 0 0 0 2 0 0 LHM 22 0 1 1 0 0 1 0 0 LHM 22 0 0 0 1 0 0 1 0
LHM 23 1 0 0 0 0 2 0 0 LHM 23 0 1 1 0 0 2 0 0 LHM 23 0 0 0 1 0 1 1 0
LHM 24 1 0 0 0 1 2 0 0 LHM 24 0 1 1 0 0 3 0 0 LHM 24 0 0 0 1 0 1 1 0
LMH 1 1 0 0 0 0 0 0 0 LMH 1 0 1 0 1 0 2 0 0 LMH 1 0 0 1 0 0 3 0 1
LMH 2 1 0 0 0 0 1 0 0 LMH 2 0 1 0 1 0 2 0 0 LMH 2 0 0 1 0 0 3 0 1
LMH 3 1 0 0 0 1 1 0 0 LMH 3 0 1 0 1 0 1 0 0 LMH 3 0 0 1 0 0 2 0 1
LMH 4 1 0 0 0 0 1 0 0 LMH 4 0 1 0 1 0 2 0 0 LMH 4 0 0 1 0 0 3 0 1
LMH 5 1 0 0 0 0 1 0 0 LMH 5 0 1 0 1 0 1 0 0 LMH 5 0 0 1 0 0 2 0 1
LMH 6 1 0 0 0 1 2 0 0 LMH 6 0 1 0 1 0 0 0 0 LMH 6 0 0 1 0 0 3 0 1
LMH 7 1 0 0 0 0 3 0 0 LMH 7 0 1 0 1 0 0 0 0 LMH 7 0 0 1 0 0 2 0 1
LMH 8 1 0 0 0 0 2 0 0 LMH 8 0 1 0 1 0 2 0 0 LMH 8 0 0 1 0 0 3 0 1
LMH 9 1 0 0 0 1 1 0 0 LMH 9 0 1 0 1 0 1 0 0 LMH 9 0 0 1 0 0 2 0 1
LMH 10 1 0 0 0 0 3 0 0 LMH 10 0 1 0 1 0 2 0 0 LMH 10 0 0 1 0 0 3 0 1
LMH 11 1 0 0 0 0 1 0 0 LMH 11 0 1 0 1 0 1 0 0 LMH 11 0 0 1 0 0 3 0 1
LMH 12 1 0 0 0 0 1 0 0 LMH 12 0 1 0 1 0 2 0 0 LMH 12 0 0 1 0 0 3 0 1
LMH 13 1 0 0 0 0 0 0 0 LMH 13 0 1 0 1 0 1 0 0 LMH 13 0 0 1 0 0 1 0 1
LMH 14 1 0 0 0 0 0 0 0 LMH 14 0 1 0 1 0 2 0 0 LMH 14 0 0 1 0 0 2 0 1
LMH 15 1 0 0 0 1 0 0 0 LMH 15 0 1 0 1 0 1 0 0 LMH 15 0 0 1 0 0 1 0 1
LMH 16 1 0 0 0 1 1 0 0 LMH 16 0 1 0 1 0 2 0 0 LMH 16 0 0 1 0 0 0 0 1
LMH 17 1 0 0 0 1 2 0 0 LMH 17 0 1 0 1 0 1 0 0 LMH 17 0 0 1 0 0 0 0 1
LMH 18 1 0 0 0 0 1 0 0 LMH 18 0 1 0 1 0 0 0 0 LMH 18 0 0 1 0 0 1 0 1
LMH 19 1 0 0 0 0 1 0 0 LMH 19 0 1 0 1 0 2 0 0 LMH 19 0 0 1 0 0 2 0 1
LMH 20 1 0 0 0 0 0 0 0 LMH 20 0 1 0 1 0 2 0 0 LMH 20 0 0 1 0 0 3 0 1
LMH 21 1 0 0 0 0 0 0 0 LMH 21 0 1 0 1 0 1 0 0 LMH 21 0 0 1 0 0 1 0 1
LMH 22 1 0 0 0 0 0 0 0 LMH 22 0 1 0 1 0 2 0 0 LMH 22 0 0 1 0 0 2 0 1
LMH 23 1 0 0 0 0 0 0 0 LMH 23 0 1 0 1 0 1 0 0 LMH 23 0 0 1 0 0 2 0 1
LMH 24 1 0 0 0 1 0 0 0 LMH 24 0 1 0 1 0 2 0 0 LMH 24 0 0 1 0 0 2 0 1
;

The STRATA statement defines the strata; note that the specification TIES=DISCRETE is
required in order to produce the correct estimates. You use the TEST statement to specify
tests concerning the parameter estimates: here, the joint test for both the carryover and
period effects are requested.

proc phreg data=exercise nosummary;
strata strata;
model DichotResponse = period1 period2 high medium baseline

CarryHigh CarryMedium / ties=discrete;
Reduce: test CarryHigh=CarryMedium=period1=period2=0;

run;

Output 10.14 contains the parameter estimates from this analysis. If you look at the
p-values for the explanatory variables, you see that the carryover and period effects appear
to be non-influential, and so is the baseline measurement.
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Output 10.14 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Period1 1 -0.03277 0.50326 0.0042 0.9481 0.968
Period2 1 0.07135 0.32635 0.0478 0.8269 1.074
High 1 2.14726 0.42840 25.1227 <.0001 8.561
Medium 1 0.57396 0.32985 3.0278 0.0818 1.775
Baseline 1 -0.64124 0.56340 1.2954 0.2550 0.527
CarryHigh 1 -0.32336 0.48447 0.4455 0.5045 0.724
CarryMedium 1 -0.29047 0.60431 0.2310 0.6308 0.748

Output 10.15 displays the results of the joint test for whether the period effects and
carryover effects are equal to zero. This test has 4 df since they each have two parameters
associated with them. The joint test has a value of 0.6386 withp = 0:9587. This test
confirms the impression you get from the parameter estimates table and justifies a model
reduced by those four terms.

Output 10.15 Joint Tests

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

Reduce 0.6386 4 0.9587

The model with treatment effects and baseline is fit next; the forward selection method is
used to include the treatment effects and then evaluate whether the baseline variable also
enters the model. The RL option requests that confidence limits be produced for the odds
ratios, which are labeled “Hazard Ratio” in the PROC PHREG output. The TEST
statement tests the hypothesis that the effects for high pollution and medium pollution are
the same. The ODS SELECT statement is used to restrict the produced results to the
parameter estimates table, the score test, and the test statement results.

ods select ResidualChiSq ParameterEstimates TestStmts;
proc phreg data=exercise nosummary;

strata strata;
model DichotResponse = high medium baseline

/ selection=forward rl include=2 details ties=discrete;
Treat: test high = medium = 0;

run;

Output 10.16 contains the score test, labeled “Residual Chi-Square Test,” which has the
value 1.2087 and indicates adequate goodness of fit with 1 df andp = 0:2716. Thus, the
model containing only treatment effects is reasonable.
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Output 10.16 Score Test

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

1.2087 1 0.2716

Output 10.17 displays the parameter estimates for the final model.

Output 10.17 Final Model Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq

High 1 2.26349 0.39863 32.2410 <.0001
Medium 1 0.66054 0.25264 6.8360 0.0089

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio
Variable Ratio Confidence Limits

High 9.617 4.403 21.006
Medium 1.936 1.180 3.176

With the other effects out of the model, both the parameter for high and the parameter for
medium pollution levels are significant at the� = 0:05 level of significance.

Output 10.18 displays the test results for whether the high pollution and medium pollution
effects are equivalent.

Output 10.18 Test Results for Treatment

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

Treat 33.2115 2 <.0001

With a Wald chi-square statistic of 33.2115, 2 df, andp < 0:0001, this hypothesis is
strongly rejected. High pollution has a much stronger effect on response than medium
pollution.

The odds ratios are listed in the output as “Hazard Ratios” because this procedure is really
set up for survival analysis. The odds ratio listed for high level of pollution means that
those with a high level of pollution have roughly ten times higher odds of experiencing
severe respiratory distress than those at the low level of pollution. The 95% confidence
limits for this odds ratio are (4.403, 21.006). Similarly, those subjects exposed to medium
pollution levels have roughly two times higher odds of experiencing severe respiratory
distress than those subjects exposed to low levels, with 95% confidence limits of (1.180,
3.176).
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10.5 General Conditional Logistic Regression

When you have paired data or responses that comprise profiles considered to come from a
trinomial distribution, you can easily write down the possible response profiles and
identify the informative and noninformative observations. In the case of the paired
response, you can construct a likelihood that is similar to the unconditional likelihood for a
dichotomous response; in the case of a trinomial outcome, you can create a model and
likelihood that is based on generalized logits and is an extension of the loglinear model,
which is discussed in Chapter 16, “Loglinear Models.”

However, for more complicated data situations, equivalent unconditional strategies are not
conveniently available. Consider the case of the diagnosis data that are analyzed below.
Researchers studied subjects at two times under two conditions. You can treat these data as
repeated measurements, which is done in Chapter 14, “Modeling Repeated Measurements
Data with WLS,” and Chapter 15, “Generalized Estimating Equations,” or you can
perform a conditional logistic regression, considering each patient to be a separate stratum.
This is a reasonable strategy if you are only interested in within-subject effects since you
are conditioning out subject to subject variability. In addition, the resulting odds ratios
apply to subjects individually instead of on average. Such models are called
subject-specific models versus population-averaged models, which are discussed in
Chapter 15. If one of the purposes of your analysis is to come with a prediction model,
such as one you might use in a clinical setting to determine on treatments for patients, the
subject-specific model may be appealing. Random effect models, such as the mixed
models you fit with the MIXED procedure, are also examples of subject-specific models.

If you consider the diagnosis data, you see that there are two possible outcomes at four
different combinations of condition and time. Only two profiles are noninformative, the
case where all of the responses are ‘no’ and the case where all of the responses are ‘yes’.
There are, however, fourteen other profiles (24 total profiles): four in which only one ‘yes’
is recorded, six in which two ‘yes’s are recorded, and four profiles in which three ‘yes’s
are recorded.

Consider the general model for stratified logistic regression:

log

�
�

1� �

�
= �i + x�

The�i are stratum-specific parameters for each stratum,i = 1; : : : ; s. In conditional
inference, you treat the�i as nuisance parameters and eliminate them from the likelihood
function by conditioning on their sufficient statistic.

The sufficient statisticT for � is

t =

nX
i=1

yi

Recall the attention to the sum of theyijs in the previous discussions of the various
profiles possible in the paired case and the three-period crossover. They were the sufficient
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statistics in those cases. The analysis, and the elimination of the�s in the likelihood,
involved conditioning on those sufficient statistics.

Now, consider the model

logit(�) = X�

Partition thet� 1 vector� into two components:

�0, thes� 1 vector of stratum-specific intercepts

�1, thet� 1 vector of stratum-specific parameters

Also, consider the partition ofX accordingly intoX0 andX1.

You can write the sufficient statisticTj for �j as

Tj =

nX
i=1

xijyi; j = 1; : : :; t+ s

The conditional probability density function ofT1 givenT0 = t0 is

f�
1

(t1jt0) = C(t0; t1) exp(t
0
1�1)P

u1
C(t0;u1) exp(u01�1)

whereC(t0;u1) are the number ofys such thatfX0
0y = t0;X

0
1y = t1g.

You then create a conditional likelihood function and apply an algorithm such as
Newton-Raphson to obtain maximum likelihood estimates. Currently, the PHREG
procedure provides these estimates.

See Mehta and Patel (1995) for more detail.

10.5.1 Analyzing Diagnostic Data

MacMillan et al. (1981) analyze data from a one population (s = 1) observational study
involving 793 subjects. For each subject, two diagnostic procedures (standard and test)
were carried out at each of two times. The results of the four evaluations were classified as
positive or negative. Since a dichotomous response (c = 2) was measured att = 4
occasions, there arer = 24 = 16 response profiles. Table 10.6 displays the resulting data.

You can consider each of the subjects in this study to be a separate stratum, with four
measurements in each stratum. By performing a conditional logistic regression, you are
eliminating subject-to-subject variability. The effects of interest, time and treatment, are
within-subject effects, which can be handled by conditional logistic regression. Note that
other strategies would be required if between-subject effects were of interest, such as age,
clinic, and sex.



298 Conditional Logistic Regression

Table 10.6. Diagnostic Test Results for 793 Subjects

Time 1 Time 2 No. of
Standard Test Standard Test Subjects
Negative Negative Negative Negative 509
Negative Negative Negative Positive 4
Negative Negative Positive Negative 17
Negative Negative Positive Positive 3
Negative Positive Negative Negative 13
Negative Positive Negative Positive 8
Negative Positive Positive Negative 0
Negative Positive Positive Positive 8
Positive Negative Negative Negative 14
Positive Negative Negative Positive 1
Positive Negative Positive Negative 17
Positive Negative Positive Positive 9
Positive Positive Negative Negative 7
Positive Positive Negative Positive 4
Positive Positive Positive Negative 9
Positive Positive Positive Positive 170

The following DATA step creates SAS data set DIAGNOSIS:

data diagnosis;
input std1 $ test1 $ std2 $ test2 $ count;
do i=1 to count;

output;
end;
datalines;

Neg Neg Neg Neg 509
Neg Neg Neg Pos 4
Neg Neg Pos Neg 17
Neg Neg Pos Pos 3
Neg Pos Neg Neg 13
Neg Pos Neg Pos 8
Neg Pos Pos Neg 0
Neg Pos Pos Pos 8
Pos Neg Neg Neg 14
Pos Neg Neg Pos 1
Pos Neg Pos Neg 17
Pos Neg Pos Pos 9
Pos Pos Neg Neg 7
Pos Pos Neg Pos 4
Pos Pos Pos Neg 9
Pos Pos Pos Pos 170
;
run;

The next two DATA steps create one record per measurement per subject, indicator
variables for time and test procedure, a numerical response variable with the value 1 for a
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negative response and 2 for a positive response, and an indicator variable for the time and
procedure interaction. They also create a unique SUBJECT value for each subject in the
study.

data diagnosis2;
set diagnosis;
drop std1 test1 std2 test2;
subject=_n_;
time=0; procedure=0;
response=std1; output;
time=0; procedure=1;
response=test1; output;
time=1; procedure=0;
response=std2; output;
time=1; procedure=1;
response=test2; output;

run;

data diagnosis3;
set diagnosis2;
outcome = 2 - (response=’Neg’);
time_procedure=time*procedure;

The following PROC PHREG invocation requests the model including the variables
TIME, TREATMENT, and their interaction. The variable SUBJECT is placed in the
STRATA statement so that the estimation process conditions on subject.

proc phreg data=diagnosis3 nosummary;
strata subject;
model outcome=time procedure

time_procedure /ties=discrete;
run;

A look at the table of parameter estimates indicates that the interaction is not important.

Output 10.19 Parameter Estimates for Full Model

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

time 1 -0.06249 0.25001 0.0625 0.8026 0.939
procedure 1 0.38478 0.25439 2.2879 0.1304 1.469
time_procedure 1 0.47248 0.36297 1.6944 0.1930 1.604

The model is refit with just the variables TIME and PROCEDURE. The options
SELECTION=FORWARD, INCLUDE=2, and DETAILS are specified to obtain a score
test to serve as a goodness-of-fit test for the model. The RL option is specified to produce
confidence limits for the odds ratios.
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proc phreg data=diagnosis3 nosummary;
strata subject;

model outcome=time procedure time_procedure
/ties=discrete selection=forward include=2 details rl;

run;

Output 10.20 displays the score statistic based on the remaining influence of the time�
procedure interaction. It takes the value 1.7002 withp = 0:1923, indicating an adequate
model fit.

Output 10.20 Score Statistic

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

1.7002 1 0.1923

Output 10.21 contains the parameter estimates and odds ratio. The test procedure is highly
significant, and the odds of a positive response are almost twice as much for the test
procedure as for the standard procedure. The confidence limits for this odds ratio are
(1.292, 2.653).

Output 10.21 Parameter Estimates for Main Effects Model

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq

time 1 0.16273 0.18066 0.8114 0.3677
procedure 1 0.61592 0.18359 11.2551 0.0008

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio
Variable Ratio Confidence Limits

time 1.177 0.826 1.677
procedure 1.851 1.292 2.653

10.6 Paired Observations in a Retrospective Matched Study

Epidemiological investigations often involve the use of retrospective, or case-control
studies, where a person known to have the event of interest (case) is paired, or matched,
with a person who doesn’t have the event (control). The idea is to determine whether the
exposure factor is associated with the event; this is presumably made less complicated by
using matching to control for possible covariates.

� In a1:1 matched study, the matched set consists of one case and one control from
each stratum. This is the most common situation.
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� In a1:m matched study, the matched set consists of one case andm controls.
Usually,m ranges between 2 and 5.

� In them:n matched study, the matched set consists ofn cases withm controls,
where usually bothm andn are between 1 and 5.

Then, data are collected to determine whether the case and control were exposed to certain
risk factors, as measured by the explanatory variables. Through the use of a conditional
likelihood, you can define a model that allows you to predict the odds for the event given
the explanatory variables. This involves setting up the probabilities for having the
exposure given the event and then using Bayes’ Theorem to determine a relevant
conditional probability concerning the event. You derive the conditional likelihood by first
focusing on the conditional probability of observing the explanatory variables given the
outcome (event or not). The derivation of the likelihood in the matched pairs setting is
discussed in Appendix A in this chapter. This likelihood is similar to that seen in the
preceding sections for highly stratified data.

Note that the conditional likelihood for the matched pairs data is the unconditional
likelihood for a logistic regression model where the response is always equal to 1, the
covariate values are equal to the differences between the values for the case and the
control, and there is no intercept. This means that you can use standard logistic regression
computer programs by configuring your data appropriately and eliminating the intercept
term. You need to do the following:

� Make the sampling unit the matched pair by creating one record per matched set and
making the explanatory variables the differences between the case values and the
control values.

� Set the response variable equal to 1 (or any constant value).

� Set the model intercept equal to zero.

Through a similar process, you can show that the conditional likelihood for the1:m
matched setting is

qY
h=1

�
1 +

mX
i=1

exp

�
�0(xhi � xh0)

���1

wherei = 1; 2; : : : ;m indexes the controls andi = 0 corresponds to the case. However,
this is not equivalent to any unconditional form, so you have to use special computer
programs to fit models for the cases of1:m as well asm:n matched data.

Similar to the previous examples, the LOGISTIC procedure can be used to fit conditional
logistic models for1:1 matching. In addition, the PHREG procedure fits conditional
logistic models and must be used for the case of1:m andm:n matching. The following
sections illustrate the use of PROC LOGISTIC and PROC PHREG in applications of
conditional logistic regression. Refer to Breslow and Day (1980) and Collett (1991) for
more detail on conditional logistic regression.
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10.6.1 1:1 Conditional Logistic Regression

Researchers studied women in a retirement community in the 1970s to determine if there
was an association between the use of estrogen and the incidence of endometrial cancer
(Mack et al. 1976).� Cases were matched to controls who were within a year of the same
age, had the same marital status, and were living in the same community at the time of the
diagnosis of the case. Information was also collected on obesity, hypertension, gallbladder
disease history, and non-estrogen drug use. The data used here is a subset of the actual
data. There are 63 matched pairs, with the variable CASE=1 indicating a case and
CASE=0 indicating a control. The goal of the analysis is to determine whether the
presence of endometrial disease is associated with any of the explanatory variables.

Each matched pair is transformed into a single observation, where the explanatory variable
value is the difference between the corresponding values for the case and the control. The
outcome variable CASE has the value 0 for all paired observations; the value does not
matter as long as it is constant.

data match1;
drop id1 gall1 hyper1 age1 est1 nonest1 gallest1;
retain id1 gall1 hyper1 age1 est1 nonest1 gallest1 0;
input id case age est gall hyper nonest @@;
gallest=est*gall;
if (id = id1) then do;

gall=gall1-gall; hyper=hyper1-hyper; age=age1-age;
est=est1-est; nonest=nonest1-nonest;
gallest=gallest1-gallest;
output;

end;
else do;

id1=id; gall1=gall; hyper1=hyper; age1=age;
est1=est; nonest1=nonest; gallest1=gallest;

end;
datalines;

1 1 74 1 0 0 1 1 0 75 0 0 0 0
2 1 67 1 0 0 1 2 0 67 0 0 1 1
3 1 76 1 0 1 1 3 0 76 1 0 1 1
4 1 71 1 0 0 0 4 0 70 1 1 0 1
5 1 69 1 1 0 1 5 0 69 1 0 1 1
6 1 70 1 0 1 1 6 0 71 0 0 0 0
7 1 65 1 1 0 1 7 0 65 0 0 0 0
8 1 68 1 1 1 1 8 0 68 0 0 1 1
9 1 61 0 0 0 1 9 0 61 0 0 0 1

10 1 64 1 0 0 1 10 0 65 0 0 0 0
11 1 68 1 1 0 1 11 0 69 1 1 0 0
12 1 74 1 0 0 1 12 0 74 1 0 0 0
13 1 67 1 1 0 1 13 0 68 1 0 1 1
14 1 62 1 1 0 1 14 0 62 0 1 0 0
15 1 71 1 1 0 1 15 0 71 1 0 1 1
16 1 83 1 0 1 1 16 0 82 0 0 0 0
17 1 70 0 0 0 1 17 0 70 0 0 1 1

�Data provided by Norman Breslow.
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18 1 74 1 0 0 1 18 0 75 0 0 0 0
19 1 70 1 0 0 1 19 0 70 0 0 0 0
20 1 66 1 0 1 1 20 0 66 1 0 0 1
21 1 77 1 0 0 1 21 0 77 1 1 1 1
22 1 66 1 0 1 1 22 0 67 0 0 1 1
23 1 71 1 0 1 0 23 0 72 0 0 0 0
24 1 80 1 0 0 1 24 0 79 0 0 0 0
25 1 64 1 0 0 1 25 0 64 1 0 0 1
26 1 63 1 0 0 1 26 0 63 1 0 1 1
27 1 72 0 1 0 1 27 0 72 0 0 1 0
28 1 57 1 0 0 0 28 0 57 1 0 1 1
29 1 74 0 1 0 1 29 0 74 0 0 0 1
30 1 62 1 0 1 1 30 0 62 1 0 0 1
31 1 73 1 0 1 1 31 0 72 1 0 0 1
32 1 71 1 0 1 1 32 0 71 1 0 1 1
33 1 64 0 0 1 1 33 0 65 1 0 0 1
34 1 63 1 0 0 1 34 0 64 0 0 0 1
35 1 79 1 1 1 1 35 0 78 1 1 1 1
36 1 80 1 0 0 1 36 0 81 0 0 1 1
37 1 82 1 0 1 1 37 0 82 0 0 0 1
38 1 71 1 0 1 1 38 0 71 0 0 1 1
39 1 83 1 0 1 1 39 0 83 0 0 0 1
40 1 61 1 0 1 1 40 0 60 0 0 0 1
41 1 71 1 0 0 1 41 0 71 0 0 0 0
42 1 69 1 0 1 1 42 0 69 0 1 0 1
43 1 77 1 0 0 1 43 0 76 1 0 1 1
44 1 64 1 0 0 0 44 0 64 1 0 0 0
45 1 79 0 1 0 0 45 0 82 1 0 0 1
46 1 72 1 0 0 1 46 0 72 1 0 0 1
47 1 82 1 1 1 1 47 0 81 0 0 0 0
48 1 73 1 0 1 1 48 0 74 1 0 0 1
49 1 69 1 0 0 1 49 0 68 0 0 0 1
50 1 79 1 0 1 1 50 0 79 0 0 0 1
51 1 72 1 0 0 0 51 0 71 1 0 1 1
52 1 72 1 0 1 1 52 0 72 1 0 1 1
53 1 65 1 0 1 1 53 0 67 0 0 0 0
54 1 67 1 0 1 1 54 0 66 1 0 0 1
55 1 64 1 1 0 1 55 0 63 0 0 0 1
56 1 62 1 0 0 0 56 0 63 0 0 0 0
57 1 83 0 1 1 1 57 0 83 0 1 0 0
58 1 81 1 0 0 1 58 0 79 0 0 0 0
59 1 67 1 0 0 1 59 0 66 1 0 1 1
60 1 73 1 1 1 1 60 0 72 1 0 0 1
61 1 67 1 1 0 1 61 0 67 1 1 0 1
62 1 74 1 0 1 1 62 0 75 0 0 0 1
63 1 68 1 1 0 1 63 0 69 1 0 0 1
;
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The following PROC LOGISTIC invocation requests forward model selection; in addition,
the NOINT option is specified so that no intercept term is included.

proc logistic;
model case = gall est hyper age nonest /

noint selection=forward details;
run;

Output 10.22 contains the response profiles. Note that since all responses have been
assigned the value 0, there is effectively one profile.

Output 10.22 Response Profile

Response Profile

Ordered Total
Value case Frequency

1 0 63

In the model selection process, only EST and GALL are entered into the model.
Output 10.23 displays the residual score statistic, which has a value of 0.2077 with 3 df,
indicating an adequate fit. Output 10.24 displays the score statistic for each variable’s
entry into the model; since all of these are strongly nonsignificant, the model goodness of
fit is supported.

Output 10.23 Residual Chi-Square

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.2077 3 0.9763

Output 10.24 Model Selection Results

Analysis of Effects Not in the Model

Score
Effect DF Chi-Square Pr > ChiSq

hyper 1 0.0186 0.8915
age 1 0.1432 0.7051
nonest 1 0.0370 0.8474

Output 10.25 displays the statistics that assess the model’s explanatory capacity.
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Output 10.25 Explanatory Capacity

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 33.6457 2 <.0001
Score 27.0586 2 <.0001
Wald 15.3291 2 0.0005

Output 10.26 contains the parameter estimates for the model containing main effects EST
and GALL. Output 10.27 contains the odds ratios.

Output 10.26 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

gall 1 1.6551 0.7980 4.3017 0.0381
est 1 2.7786 0.7605 13.3492 0.0003

Parameter estimates for both GALL and EST are significant. The odds ratio for GALL
indicates that those persons with gallbladder disease history have 5.234 times higher odds
of contracting endometrial cancer as those persons without it, adjusting for estrogen use.
The odds ratio for EST indicates that those women who used estrogen have 16.096 times
higher odds for contracting endometrial cancer as those women who don’t use estrogen,
adjusting for gallbladder disease history.

Output 10.27 Odds Ratios

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

gall 5.234 1.095 25.006
est 16.096 3.626 71.457

10.6.2 Conditional Logistic Regression Using PROC PHREG

The PHREG procedure can analyze data from1:1 matched designs without your first
having to create a data set with difference variables; it also allows you to analyze data from
1:m andm:n matched studies. You must specify the TIES=DISCRETE option in the
MODEL statement (for the1:1 case, all TIES= options are equivalent, so using the default
is adequate).

In this section, the same analysis of the endometrial cancer data is performed using PROC
PHREG. The following statements create the data set MATCH2. The variable CASE is
redefined so it has the value 1 if the observation is a case and the value 2 if the observation
is a control. This is required so that the probability of being a case is modeled.
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data match2;
input id case age est gall hyper nonest @@;
case=2-case;
datalines;

1 1 74 1 0 0 1 1 0 75 0 0 0 0
2 1 67 1 0 0 1 2 0 67 0 0 1 1
3 1 76 1 0 1 1 3 0 76 1 0 1 1
4 1 71 1 0 0 0 4 0 70 1 1 0 1
5 1 69 1 1 0 1 5 0 69 1 0 1 1
6 1 70 1 0 1 1 6 0 71 0 0 0 0
7 1 65 1 1 0 1 7 0 65 0 0 0 0
8 1 68 1 1 1 1 8 0 68 0 0 1 1
9 1 61 0 0 0 1 9 0 61 0 0 0 1

10 1 64 1 0 0 1 10 0 65 0 0 0 0
11 1 68 1 1 0 1 11 0 69 1 1 0 0
12 1 74 1 0 0 1 12 0 74 1 0 0 0
13 1 67 1 1 0 1 13 0 68 1 0 1 1
14 1 62 1 1 0 1 14 0 62 0 1 0 0
15 1 71 1 1 0 1 15 0 71 1 0 1 1
16 1 83 1 0 1 1 16 0 82 0 0 0 0
17 1 70 0 0 0 1 17 0 70 0 0 1 1
18 1 74 1 0 0 1 18 0 75 0 0 0 0
19 1 70 1 0 0 1 19 0 70 0 0 0 0
20 1 66 1 0 1 1 20 0 66 1 0 0 1
21 1 77 1 0 0 1 21 0 77 1 1 1 1
22 1 66 1 0 1 1 22 0 67 0 0 1 1
23 1 71 1 0 1 0 23 0 72 0 0 0 0
24 1 80 1 0 0 1 24 0 79 0 0 0 0
25 1 64 1 0 0 1 25 0 64 1 0 0 1
26 1 63 1 0 0 1 26 0 63 1 0 1 1
27 1 72 0 1 0 1 27 0 72 0 0 1 0
28 1 57 1 0 0 0 28 0 57 1 0 1 1
29 1 74 0 1 0 1 29 0 74 0 0 0 1
30 1 62 1 0 1 1 30 0 62 1 0 0 1
31 1 73 1 0 1 1 31 0 72 1 0 0 1
32 1 71 1 0 1 1 32 0 71 1 0 1 1
33 1 64 0 0 1 1 33 0 65 1 0 0 1
34 1 63 1 0 0 1 34 0 64 0 0 0 1
35 1 79 1 1 1 1 35 0 78 1 1 1 1
36 1 80 1 0 0 1 36 0 81 0 0 1 1
37 1 82 1 0 1 1 37 0 82 0 0 0 1
38 1 71 1 0 1 1 38 0 71 0 0 1 1
39 1 83 1 0 1 1 39 0 83 0 0 0 1
40 1 61 1 0 1 1 40 0 60 0 0 0 1
41 1 71 1 0 0 1 41 0 71 0 0 0 0
42 1 69 1 0 1 1 42 0 69 0 1 0 1
43 1 77 1 0 0 1 43 0 76 1 0 1 1
44 1 64 1 0 0 0 44 0 64 1 0 0 0
45 1 79 0 1 0 0 45 0 82 1 0 0 1
46 1 72 1 0 0 1 46 0 72 1 0 0 1
47 1 82 1 1 1 1 47 0 81 0 0 0 0
48 1 73 1 0 1 1 48 0 74 1 0 0 1
49 1 69 1 0 0 1 49 0 68 0 0 0 1
50 1 79 1 0 1 1 50 0 79 0 0 0 1
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51 1 72 1 0 0 0 51 0 71 1 0 1 1
52 1 72 1 0 1 1 52 0 72 1 0 1 1
53 1 65 1 0 1 1 53 0 67 0 0 0 0
54 1 67 1 0 1 1 54 0 66 1 0 0 1
55 1 64 1 1 0 1 55 0 63 0 0 0 1
56 1 62 1 0 0 0 56 0 63 0 0 0 0
57 1 83 0 1 1 1 57 0 83 0 1 0 0
58 1 81 1 0 0 1 58 0 79 0 0 0 0
59 1 67 1 0 0 1 59 0 66 1 0 1 1
60 1 73 1 1 1 1 60 0 72 1 0 0 1
61 1 67 1 1 0 1 61 0 67 1 1 0 1
62 1 74 1 0 1 1 62 0 75 0 0 0 1
63 1 68 1 1 0 1 63 0 69 1 0 0 1
;

The following statements request the PHREG procedure to perform the conditional
logistic analysis. You use the name of the variable identifying the matched set as the
STRATA variable.

proc phreg;
strata id;
model case = gall est hyper age nonest /

selection=forward details rl;
run;

Output 10.28 contains a partial listing of the data. For1:1 matching, each stratum contains
two observations, the case and the control. You can check this table to see that the strata
have been set up correctly and contain the correct number of subjects.

Output 10.28 Summary Table

Summary of the Number of Event and Censored Values

Percent
Stratum id Total Event Censored Censored

1 1 2 2 0 0.00
2 2 2 2 0 0.00
3 3 2 2 0 0.00
4 4 2 2 0 0.00
5 5 2 2 0 0.00
6 6 2 2 0 0.00
7 7 2 2 0 0.00
8 8 2 2 0 0.00
9 9 2 2 0 0.00

10 10 2 2 0 0.00
11 11 2 2 0 0.00
12 12 2 2 0 0.00
13 13 2 2 0 0.00
14 14 2 2 0 0.00
15 15 2 2 0 0.00
16 16 2 2 0 0.00
17 17 2 2 0 0.00
18 18 2 2 0 0.00
19 19 2 2 0 0.00
20 20 2 2 0 0.00
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Output 10.29 and Output 10.30 contain the model-fitting results. Variables EST and
GALL were entered into the model, and HYPER, AGE, and NONEST were not. The
residual score statistic has the value 0.2077, with 3 df, andp = 0:9763. These are the same
results as produced with the PROC LOGISTIC analysis.

Output 10.29 Residual Score Statistic

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.2077 3 0.9763

Output 10.30 Analysis of Variables Not Entered

Analysis of Variables Not in the Model

Score
Variable Chi-Square Pr > ChiSq

hyper 0.0186 0.8915
age 0.1432 0.7051
nonest 0.0370 0.8474

Output 10.31 contains the table of statistics that assess the explanatory capability of the
model; note that the score test, with a value of 27.0586 and 2 df, is the same as the score
test printed in the PROC LOGISTIC output.

Output 10.31 Explanatory Capacity

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 33.6457 2 <.0001
Score 27.0586 2 <.0001
Wald 15.3291 2 0.0005

The parameter estimates table is identical to the one printed by the PROC LOGISTIC
analysis as well. The “Hazard Ratio” column contains the odds ratio estimates.
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Output 10.32 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq

gall 1 1.65509 0.79799 4.3017 0.0381
est 1 2.77856 0.76049 13.3492 0.0003

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio
Variable Ratio Confidence Limits

gall 5.234 1.095 25.006
est 16.096 3.626 71.457

The PHREG procedure also performs analyses for1:m andm:n matching; you follow the
same steps as previously described. For both of these cases, you must request the option
TIES=DISCRETE in the MODEL statement to obtain the correct results.

10.7 1:m Conditional Logistic Regression

Researchers in a midwestern county tracked flu cases requiring hospitalization in those
residents aged 65 and older during a two-month period in one winter. They matched each
case with two controls according to sex and age and also determined whether the cases and
controls had a flu vaccine shot and whether they had lung disease. Vaccines were then
verified by county health and individual medical practice records. Researchers were
interested in whether vaccination had a protective influence on the odds of getting a severe
case of flu.

This study is an example of a1:2 matched study since two controls were chosen for each
case. Thus, in order to analyze these data with the SAS System, you need to use the
PHREG procedure. The following DATA step reads the data and computes the frequency
of vaccine and lung disease for both cases and non-cases. The variable LUNG–VAC is the
interaction of lung and vaccination. The variable OUTCOME is redefined so that the
probability of being a case is modeled.

data matched;
input id outcome lung vaccine @@;
outcome=2-outcome;
lung_vac=lung*vaccine;
datalines;

1 1 0 0 1 0 1 0 1 0 0 0 2 1 0 0 2 0 0 0 2 0 1 0
3 1 0 1 3 0 0 1 3 0 0 0 4 1 1 0 4 0 0 0 4 0 1 0
5 1 1 0 5 0 0 1 5 0 0 1 6 1 0 0 6 0 0 0 6 0 0 1
7 1 0 0 7 0 0 0 7 0 0 1 8 1 1 1 8 0 0 0 8 0 0 1
9 1 0 0 9 0 0 1 9 0 0 0 10 1 0 0 10 0 1 0 10 0 0 0

11 1 1 0 11 0 0 1 11 0 0 0 12 1 1 1 12 0 0 1 12 0 0 0
13 1 0 0 13 0 0 1 13 0 1 0 14 1 0 0 14 0 0 0 14 0 0 1
15 1 1 0 15 0 0 0 15 0 0 1 16 1 0 1 16 0 0 1 16 0 0 1
17 1 0 0 17 0 1 0 17 0 0 0 18 1 1 0 18 0 0 1 18 0 0 1
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19 1 1 0 19 0 0 1 19 0 0 1 20 1 0 0 20 0 0 0 20 0 0 0
21 1 0 0 21 0 0 1 21 0 0 1 22 1 0 1 22 0 0 0 22 0 1 0
23 1 1 1 23 0 0 0 23 0 0 0 24 1 0 0 24 0 0 1 24 0 0 1
25 1 1 0 25 0 1 0 25 0 0 0 26 1 1 1 26 0 0 0 26 0 0 0
27 1 1 0 27 0 0 1 27 0 0 0 28 1 0 1 28 0 1 0 28 0 0 0
29 1 0 0 29 0 0 0 29 0 1 1 30 1 0 0 30 0 0 0 30 0 0 0
31 1 0 0 31 0 0 0 31 0 0 1 32 1 1 0 32 0 0 0 32 0 0 0
33 1 0 1 33 0 0 0 33 0 0 0 34 1 0 0 34 0 1 0 34 0 0 0
35 1 1 0 35 0 1 1 35 0 0 0 36 1 0 1 36 0 0 0 36 0 0 1
37 1 0 1 37 0 0 0 37 0 0 1 38 1 1 1 38 0 0 1 38 0 0 0
39 1 0 0 39 0 0 1 39 0 0 1 40 1 0 0 40 0 0 0 40 0 1 1
41 1 1 0 41 0 0 0 41 0 0 1 42 1 1 0 42 0 0 0 42 0 0 0
43 1 0 0 43 0 0 1 43 0 0 0 44 1 1 0 44 0 0 0 44 0 0 0
45 1 1 0 45 0 0 0 45 0 0 0 46 1 1 0 46 0 1 1 46 0 0 0
47 1 0 1 47 0 0 0 47 0 0 1 48 1 0 0 48 0 0 0 48 0 0 0
49 1 1 0 49 0 1 0 49 0 1 1 50 1 1 1 50 0 0 0 50 0 0 1
51 1 1 0 51 0 0 1 51 0 0 1 52 1 0 1 52 0 0 0 52 0 0 0
53 1 0 1 53 0 0 1 53 0 0 1 54 1 1 0 54 0 0 0 54 0 0 0
55 1 0 0 55 0 0 1 55 0 0 0 56 1 0 0 56 0 0 0 56 0 1 0
57 1 1 1 57 0 1 0 57 0 0 0 58 1 1 0 58 0 0 1 58 0 0 1
59 1 0 0 59 0 0 0 59 0 1 1 60 1 0 0 60 0 0 0 60 0 0 1
61 1 0 1 61 0 0 0 61 0 0 1 62 1 0 0 62 0 0 0 62 0 0 1
63 1 0 0 63 0 0 1 63 0 0 0 64 1 0 0 64 0 1 0 64 0 0 0
65 1 1 1 65 0 0 0 65 0 1 0 66 1 1 1 66 0 0 1 66 0 1 0
67 1 0 0 67 0 0 0 67 0 0 1 68 1 0 0 68 0 0 1 68 0 0 1
69 1 1 1 69 0 0 1 69 0 0 1 70 1 0 0 70 0 0 1 70 0 1 1
71 1 0 0 71 0 0 0 71 0 0 1 72 1 1 0 72 0 0 0 72 0 0 0
73 1 1 0 73 0 0 1 73 0 0 0 74 1 0 0 74 0 0 0 74 0 0 1
75 1 0 0 75 0 0 1 75 0 0 0 76 1 0 0 76 0 0 0 76 0 0 0
77 1 0 1 77 0 0 0 77 0 0 1 78 1 0 0 78 0 0 1 78 0 0 0
79 1 1 0 79 0 0 1 79 0 0 1 80 1 0 1 80 0 0 0 80 0 0 0
81 1 0 0 81 0 1 1 81 0 0 1 82 1 1 1 82 0 1 0 82 0 0 0
83 1 0 1 83 0 0 0 83 0 0 1 84 1 0 0 84 0 0 0 84 0 0 1
85 1 1 0 85 0 0 0 85 0 0 0 86 1 0 0 86 0 1 1 86 0 1 0
87 1 1 1 87 0 0 0 87 0 0 0 88 1 0 0 88 0 0 0 88 0 0 0
89 1 0 0 89 0 0 1 89 0 1 1 90 1 0 0 90 0 0 0 90 0 0 0
91 1 0 1 91 0 0 0 91 0 0 1 92 1 0 0 92 0 1 1 92 0 0 0
93 1 0 1 93 0 0 0 93 0 1 0 94 1 1 0 94 0 0 0 94 0 0 0
95 1 1 1 95 0 0 1 95 0 0 0 96 1 1 0 96 0 0 1 96 0 0 1
97 1 1 1 97 0 0 0 97 0 0 1 98 1 0 0 98 0 0 0 98 0 1 1
99 1 0 1 99 0 1 1 99 0 0 1 100 1 1 0 100 0 0 0 100 0 0 0
101 1 0 0 101 0 0 0 101 0 0 0 102 1 0 1 102 0 0 0 102 0 0 0
103 1 0 1 103 0 0 0 103 0 0 0 104 1 1 0 104 0 0 1 104 0 1 0
105 1 1 0 105 0 1 0 105 0 0 0 106 1 0 0 106 0 0 0 106 0 0 1
107 1 0 0 107 0 0 1 107 0 0 1 108 1 1 1 108 0 0 0 108 0 0 1
109 1 0 1 109 0 0 0 109 0 0 0 110 1 0 0 110 0 0 0 110 0 0 0
111 1 1 0 111 0 0 1 111 0 0 1 112 1 0 0 112 0 0 1 112 0 0 0
113 1 0 1 113 0 0 0 113 0 1 0 114 1 1 1 114 0 0 1 114 0 0 1
115 1 1 1 115 0 0 1 115 0 0 1 116 1 0 0 116 0 0 1 116 0 1 0
117 1 0 1 117 0 0 0 117 0 0 0 118 1 1 0 118 0 1 0 118 0 0 0
119 1 1 0 119 0 0 0 119 0 0 0 120 1 1 0 120 0 0 0 120 0 0 1
121 1 0 0 121 0 0 1 121 0 0 0 122 1 0 1 122 0 0 0 122 0 0 0
123 1 1 0 123 0 0 0 123 0 1 1 124 1 0 0 124 0 0 1 124 0 0 0
125 1 1 0 125 0 1 0 125 0 0 0 126 1 1 1 126 0 0 0 126 0 0 0
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127 1 1 0 127 0 0 1 127 0 0 0 128 1 0 1 128 0 1 0 128 0 0 0
129 1 0 0 129 0 0 0 129 0 1 1 130 1 0 0 130 0 0 0 130 0 0 0
131 1 0 0 131 0 0 0 131 0 0 1 132 1 1 0 132 0 0 0 132 0 0 1
133 1 0 1 133 0 0 0 133 0 0 0 134 1 0 0 134 0 1 0 134 0 0 1
135 1 1 0 135 0 1 1 135 0 0 0 136 1 0 0 136 0 0 0 136 0 0 0
137 1 0 0 137 0 0 0 137 0 0 1 138 1 1 0 138 0 0 0 138 0 0 0
139 1 0 0 139 0 0 0 139 0 0 0 140 1 0 0 140 0 0 1 140 0 1 1
141 1 1 1 141 0 0 0 141 0 0 1 142 1 1 0 142 0 0 0 142 0 0 0
143 1 0 0 143 0 0 1 143 0 1 1 144 1 1 1 144 0 0 1 144 0 0 1
145 1 1 0 145 0 0 1 145 0 0 0 146 1 1 0 146 0 1 0 146 0 0 0
147 1 0 1 147 0 0 0 147 0 0 1 148 1 0 0 148 0 0 1 148 0 0 0
149 1 1 0 149 0 1 0 149 0 1 0 150 1 1 1 150 0 0 0 150 0 0 1
;

The following PROC FREQ statements request crosstabulations of vaccine by outcome
status and lung disease by outcome status.

proc freq;
tables outcome*lung outcome*vaccine /nocol nopct;

run;

Output 10.33 contains the frequencies of vaccine and lung disease for both cases and
controls. In these data, 16% of the controls had lung disease, and 42% of the cases had
lung disease. Also, 39% of the controls and 31% of the cases had been vaccinated.

Output 10.33 Frequencies of Vaccine and Smoking by Cases and Controls

Table of outcome by lung

outcome lung

Frequency|
Row Pct | 0| 1| Total
---------+--------+--------+

1 | 87 | 63 | 150
| 58.00 | 42.00 |

---------+--------+--------+
2 | 252 | 48 | 300

| 84.00 | 16.00 |
---------+--------+--------+
Total 339 111 450

Table of outcome by vaccine

outcome vaccine

Frequency|
Row Pct | 0| 1| Total
---------+--------+--------+

1 | 103 | 47 | 150
| 68.67 | 31.33 |

---------+--------+--------+
2 | 183 | 117 | 300

| 61.00 | 39.00 |
---------+--------+--------+
Total 286 164 450
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The following statements request the conditional logistic regression analysis. The
SELECTION=FORWARD option is specified to request forward selection model building.

proc phreg;
strata id;
model outcome = lung vaccine lung_vac /

selection=forward details ties=discrete;
run;

Output 10.34 Model Building Results

Step 1. Variable lung is entered. The model contains the following
explanatory variables:

lung

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 32.9707 1 <.0001
Score 34.1798 1 <.0001
Wald 30.3502 1 <.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

lung 1 1.28198 0.23270 30.3502 <.0001 3.604

Analysis of Variables Not in the Model

Score
Variable Chi-Square Pr > ChiSq

vaccine 3.2528 0.0713
lung_vac 0.5916 0.4418

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

3.2981 2 0.1922

NOTE: No (additional) variables met the 0.05 level for entry into the model.

The variable LUNG is entered into the model, but variables VACCINE and LUNG–VAC
are not. However, thep-value of 0.0713 for VACCINE is suggestive, so the model
including LUNG and VACCINE is fit next. The interaction LUNG–VAC is included to
obtain the residual score test as a measure of goodness of fit.
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proc phreg;
strata id;
model outcome = lung vaccine lung_vac /

selection=forward details include=2 ties=discrete rl;
run;

Output 10.35 displays the residual score statistic. With a value of 0.0573 andp = 0:8107,
this statistic supports goodness of fit. Since there is only one variable, LUNG–VAC, being
considered by this test, it has the same value as the individual test for LUNG–VAC that is
displayed in the table “Analysis of Variables Not in the Model.”

Output 10.35 Residual Score Statistic

Analysis of Variables Not in the Model

Score
Variable Chi-Square Pr > ChiSq

lung_vac 0.0573 0.8107

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.0573 1 0.8107

Output 10.36 includes the parameter estimates.

Output 10.36 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq

lung 1 1.30515 0.23483 30.8899 <.0001
vaccine 1 -0.40078 0.22328 3.2220 0.0727

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio
Variable Ratio Confidence Limits

lung 3.688 2.328 5.844
vaccine 0.670 0.432 1.038

The odds ratio for getting a case of flu resulting in hospitalization ise�0:40078 = 0:67 for
those with vaccine versus those without vaccine. Thus, study participants with vaccination
reduced their odds of getting hospitalizable flu by 33% compared to their nonvaccinated
matched counterparts. This means that vaccination had a protective effect, controlling for
lung disease status (and age and sex, via matching). The confidence limits for this odds
ratio are (0.432,1.038).
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Note: The usage of the PHREG procedure described in this chapter is correct but
computationally inefficient, although the inefficiency is unlikely to produce noticeable
differences in time requirements. The usage described is the most straightforward for most
users and that is why it is illustrated here. If you are familiar with the PHREG procedure
for survival analysis, you may want to proceed more efficiently. If an outcome variable
named OUTCOME takes the value 1 for case and 0 for control, create a variable TIME
that is2� OUTCOME. Then use the syntax

TIME*OUTCOME(0)

as your response in the MODEL statement, remembering to use the TIES=DISCRETE
option form:n matching. The computations are more efficient, and the results are
identical.

10.8 Exact Conditional Logistic Regression in the Stratified
Setting

While conditional logistic regression often serves to counterbalance the small counts in a
strata by conditioning away the strata effect, sometimes the data are so sparse that these
methods also become inappropriate. The conditional exact inference described in Chapter
8 also applies to the stratified setting. Note that in the asymptotic logistic regression
setting, the methodology for the unstratified and stratified analysis is different (the former
is based on an unconditional likelihood and the latter is based on a conditional likelihood).
In the exact setting, you use the same methodology (involving conditioning). The only
difference is that, in the unstratified case, you don’t have stratification variables and you
are conditioning away only explanatory variables; in the stratified case, you are
conditioning away both stratification variables and explanatory variables.

The following example is from Luta et al. (1998), which describes methods for analyzing
clustered binary data with exact methods. The data are from a cardiovascular study of
eight animals who received various drug treatments. Researchers then arrested coronary
flow, which led to the development of regional ischemia, and they recorded whether an
adverse cardiovascular event occurred during an eight-minute interval. The heart was
reperfused for 50 minutes to allow the heart to return to normal, and then another
treatment was tested. Thus, there are up to five repeated measurements on eight clusters, or
animals. For various reasons, no animal received all of the five possible treatments.
Because of the sequences of treatments used by the investigators, the investigation was not
assumed to be a crossover study. Because of the reperfusion, the period and carryover
effects were considered to be ignorable.

The data include relatively small counts so a reasonable strategy is exact stratified logistic
regression, conditioning on the animals. The following DATA step inputs the data for this
analysis. Only the observations corresponding to drug treatments are included; those
observations corresponding to the shunt treatment are eliminated (the shunt is simply the
placement of the intracoronary artery catheter). The treatments are control (C) which is no
drug, test drug and counteracting agent (DA), low-dose test drug (D1), and high-dose test
drug (D2). For this analysis, the drug effect is assumed to be ordinal with equally spaced
intervals; the variable ORDTREAT is coded as 1 for control to 4 for high-dose drug. The
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variable ANIMAL takes the values from 1 to 8, and the variable RESPONSE is 1 if an
event was observed and 0 otherwise.

data animal;
input animal treatment $ response $ @@;
if treatment=’S’ then delete;
else if treatment=’C’ then ordtreat=1;
else if treatment=’DA’ then ordtreat=2;
else if treatment=’D1’ then ordtreat=3;
else if treatment=’D2’ then ordtreat=4;
datalines;

1 S no 1 C no 1 C no 1 D2 yes 1 D1 yes
2 S no 2 D2 yes 2 C no 2 D1 yes
3 S no 3 C yes 3 D1 yes 3 DA no 3 C no
4 S no 4 C no 4 D1 yes 4 DA no 4 C no
5 S yes 5 C no 5 DA no 5 D1 no 5 C no
6 S no 6 C no 6 D1 yes 6 DA no 6 C no
7 S no 7 C no 7 D1 yes 7 DA no 7 C no
8 S yes 8 C yes 8 D1 yes
;

In order to request the exact analysis, you specify a MODEL statement that includes both
the stratification variable, ANIMAL, and the explanatory variable of interest,
ORDTREAT, as well as the intercept. Then, you specify the variable ORDTREAT in the
EXACT statement; the analysis will condition on the remaining variable in the MODEL
statement, ANIMAL. The ESTIMATE=PARM option requests that the point estimate of
the parameter for the treatment effect be produced. The EXACTONLY option in the
PROC statement restricts the analysis to the exact analysis.

proc logistic data=animal descending exactonly;
class animal /param=ref;
model response = animal ordtreat;
exact ’parm’ ordtreat / estimate=parm;

run;

When the EXACTONLY option is specified, PROC LOGISTIC prints the “Model
Information” and “Response Profile” tables (not shown here) and then prints the results of
the exact conditional analysis. Output 10.37 displays the exact tests for the treatment
effect.

Output 10.37 Exact Tests

Exact Conditional Analysis

Conditional Exact Tests for ’parm’

--- p-Value ---
Effect Test Statistic Exact Mid

ordtreat Score 10.4411 0.0009 0.0005
Probability 0.000723 0.0009 0.0005
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Both the score and probability test have exactp-values of 0.0009, which is highly
significant.

Output 10.38 displays the point estimate of the drug effect, 1.9420 and a 95% confidence
interval (0.4824, 5.2932).

Output 10.38 Exact Parameter Estimate

Exact Conditional Analysis

Exact Parameter Estimates for ’parm’

95% Confidence
Parameter Estimate Limits p-Value

ordtreat 1.9420 0.4824 5.2932 0.0017

Compare the score test for the exact stratified analysis to the score test for the asymptotic
stratified analysis. In order to perform this analysis, you need to change the order of the
response values, convert them to numeric values, and use PROC PHREG with the
TIES=DISCRETE option. The following statements create SAS data set ANIMAL2.

data animal2;
set animal;
if response = ’yes’ then event = 1;
else event = 2;

run;

The following PROC PHREG statements request the conditional analysis. Note that the
options SELECTION=FORWARD and SLENTRY=.05 are used to produce the score
statistic for the drug effect. The clustering variable, ANIMAL, is put in the STRATA
statement. The ODS SELECT statement restricts the output to the score chi-square and the
parameter estimates table.

ods select ResidualChiSq ParameterEstimates;
proc phreg data=animal2;

strata animal;
model event = ordtreat /selection=forward

details ties=discrete slentry=.05;
run;

Output 10.39 displays the residual score statistic for treatment, which has the value
10.4411, and, with 1 df, ap-value of 0.0012.

Output 10.39 Residual Score Test

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

10.4411 1 0.0012
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Output 10.40 contains the parameter estimate, which is 1.94213 with ap-value of 0.0297
for the Wald chi-square. The estimate is very close to the estimate in the exact analysis.
Note that the asymptoticp-value is larger than the exact one, which is a bit unusual since
most often you find that the exactp-value is larger than the asymptoticp-value.

Output 10.40 Parameter Estimate

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

ordtreat 1 1.94213 0.89323 4.7275 0.0297 6.974

Note that, if you run an unstratified asymptotic analysis on these data, that is, use PROC
LOGISTIC and regress RESPONSE on ANIMAL and ORDTREAT, you would get the
following messages from PROC LOGISTIC:

Quasicomplete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.
WARNING: The LOGISTIC procedure continues in spite of the above
warning. Results shown are based on the last maximum likelihood
iteration. Validity of the model fit is questionable.

These messages are a red flag that your data are probably not suitable for asymptotic
analysis and that you should consider exact methods. In addition, in the table for global fit
in the asymptotic analysis (not shown here), the score statistic has the chi-square value
19.1924 (p = 0:0139) and the Wald statistic has the value 6.4478 (p = 0:972). Whenever
these tests indicate very different results, it’s another sign that your data may be most
suitable for exact methods.

Printing More Digits
Occasionally, you may want to generate more digits for thep-value than are printed
according to the default format in the LOGISTIC procedure. (PROC LOGISTIC actually
computes the number of digits that machine accuracy allows.) You can do this in a fairly
straightforward manner with ODS. You alter the default template for the LOGISTIC
procedure to incorporate the new format and use that template to print the new table with a
DATA –NULL– step. Appendix C in this chapter contains the programming statements
required to accomplish this task; Output 10.41 contains the results for the exact stratified
analysis printed with the default format and the same results printed with additional
decimal places.



318 Conditional Logistic Regression

Output 10.41 Exact Test Results

Exact Conditional Analysis

Conditional Exact Tests for ’parm’

--- p-Value ---
Effect Test Statistic Exact Mid

ordtreat Score 10.4411 0.0009 0.0005
Probability 0.000723 0.0009 0.0005

Listing of ExactTests Using a Customized Template
---- p-Value ----

Exact
Label Effect Test Statistic p-value Mid

parm ordtreat Score 10.4411 0.000868 0.0005
parm Probability 0.000723 0.000868 0.0005

These results make it easier to compare the results reported in the Luta et al. paper; refer to
that paper for additional analyses performed on these data.

Appendix A: Theory for the Case-Control Retrospective Setting

Suppose that you haveq matched pairs,h = 1; 2; : : : ; q, and�hi is the probability of the
ith subject in thehth matched pair having the event (i = 1; 2). Suppose thatxhi represents
the set of explanatory variables for theith subject in thehth matched pair.

The likelihood for the vector of explanatory variables beingxh1 given that subjecth1 is
the case (e) and beingxh2 given that subjecth2 is the control (�e) is

Prfxh1jegPrfxh2j�eg

The sum of this likelihood and that for its reverse counterpart, the likelihood for the vector
of explanatory variables beingxh1 given the control and beingxh2 given the case, is

Prfxh1jegPrfxh2j�eg+ Prfxh1j�egPrfxh2jeg

and thus the conditional likelihood for a particular matched pair having the observed
pairing of explanatory variablesxh1 with the casee and the explanatory variablesxh2 with
the control�e is

Prfxh1jegPrfxh2j�eg
Prfxh1jegPrfxh2j�eg+ Prfxh1j�egPrfxh2jeg

Applying Bayes’ Theorem, (P (AjB) = P (BjA)P (A)=P (B)), to each of the six terms in
the above expression, you can rewrite the preceding as

Prfejxh1gPrf�ejxh2g
Prfejxh1gPrf�ejxh2g+ Prf�ejxh1gPrfejxh2g
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Thus, the conditional probabilities have been reversed so that they are the probabilities of
the event given the explanatory variables.

If you assume a logistic model for�hi, the probability of theith subject in thehth matched
pair having the event, then you can make the appropriate substitutions into the conditional
likelihood. The following is the logistic model for�hi.

�hi =
expf�h + �0xhig

1 + expf�h + �0xhig

where�h is an effect for thehth stratum, or pair, thexhik are thek = 1; 2; : : : ; t
explanatory variables for theith subject in thehth matched pair, and the�k are the
corresponding parameters.

Substituting�hi for Prfejxhig and(1� �hi) for Prf�ejxhig produces

expf�h + �0xh1g
expf�h + �0xh1g+ expf�h + �0xh2g

which is equivalent to

expf�0(xh1 � xh2)g
1 + expf�0(xh1 � xh2)g

Note that the�h have dropped out and thus you have eliminated the stratum-specific
parameters.

The conditional likelihood for the entire data is the product of the likelihoods for the
individual strata.

qY
h=1

expf�0(xh1 � xh2)g
1 + expf�0(xh1 � xh2)g

For this conditional likelihood, matched pairs withxh1k = xh2k for all k are
noninformative (that is, their contribution to the likelihood is the constant 0.5), and so
these matched pairs can be excluded from the analysis.

Through a similar process, you can show that the conditional likelihood for the1:m
matched setting is

qY
h=1

�
1 +

mX
i=1

exp

�
�0(xhi � xh0)

���1

wherei = 1; 2; : : : ;m indexes the controls andi = 0 corresponds to the case. However,
this is not equivalent to any unconditional form, so you have to use special computer
programs to fit models for the cases of1:m as well asm:n matched data. The PHREG
procedure currently performs these analyses in the SAS System.
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Appendix B: Theory for Exact Conditional Inference

Section 10.5 provides a brief overview of the methodological ideas behind conditional
asymptotic inference. For the model

log

�
�

1� �

�
= X�

you partition thes+ t vector� into components�0, ans� 1 vector of stratum-specific
intercepts, and�1, a t� 1 vector of parameters of interest. For this discussion, consider
�0 to include the stratum-specific intercepts and/or any other nuisance parameters, that is,
parameters that correspond to explanatory variables beyond the ones of interest. Consider
�1 to be a vector of parameters of interest. PartitionX into a correspondingX0 andX1.

The sufficient statisticsTj for the�j are

Tj =

nX
i=1

yixij j = 1; : : : ; t+ s

If T0 andT1 are the sufficient statistics corresponding to�0 and�1, then you can define
the conditional probability density function ofT1 conditional onT0 as

f�1(t1jt0) =
C(t) exp(t01�1)P

uC(u; t0) exp(u
0�1)

C(u; t0) are the number of vectorsy such thaty0X1 = u andy0X0 = t0: The function
f�

1

(t1jt0) is also the conditional likelihood function for� givenT0 = t0. You can
maximize this likelihood to obtain MLEs and conditional tests in a similar fashion to the
way you would proceed with the unconditional likelihood.

Conditional exact inference involves generating the conditional permutational distribution
f�

1

(t1jt0) for the sufficient statistics of the parameter or parameters of interest. You could

proceed by completely enumerating the joint distribution of(t1; t0) but that becomes
computationally infeasible after a handful of observations. Hirji, Mehta, and Patel (1987)
devised the multivariate shift algorithm, a network algorithm, which makes the creation of
the exact joint distribution computationally possible. Refer to Derr (2000) for an overview
of how the algorithm works for a simple data set.

You can test hypothesesH0:�1 = 0 conditional onT0 = t0 with the exact probability test
or the exact conditional score test. UnderH0, the statistic for the exact probability test is

f�1=0(t1jt0)

and thep-value is the probability of getting a more extreme statistic:

p(t1t0) =
X
u2<p

f0(ujt0)
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whereu 2 <p are theu such thaty exist withy0X1 = u, y0X0 = t0, and

f0(ujt0) � f0(t1jt0)

For the exact conditional score test, you define the conditional mean�1 and variance
matrixV1 of T1 (conditional onT0 = t0) and compute the score statistic

s = (t1 � �1)
0V�1

1 (t1 � �1)

and compare it to the score for each member of the distribution

S = (T1 � �1)
0V1

�1(T1 � �1)

Thep-value is

p(t1jt0) = Pr(S � s) =
X
u2<s

f0(ujt0)

whereu 2 <s are theu such thaty exist withy0X1 = u, y0X0 = t0, andS(u) � s.

You obtain exact parameter estimates�j by considering all the other parameters as
nuisance parameters, forming the conditional pdf, and using Newton-Raphson to find the
maximum exact conditional likelihood estimates. Likelihood ratio tests based on the
conditional pdf are used to testH0:�j = 0.

Refer to Derr (2000) for more detail on the methods employed by the LOGISTIC
procedure, including a basic illustration of how the network algorithm works. Refer to
Mehta and Patel (1995) for a complete discussion of exact logistic regression methodology
and numerous applications.

Appendix C: ODS Macro

The following code updates the default template for the exact tests output in the PROC
LOGISTIC procedure to produce six decimal places.

ods output ExactTests=try1 ExactParmEst=try2;
proc logistic data=animal descending;

class animal /param=ref;
model response = animal ordtreat;
exact ’parm’ ordtreat / estimate=both;

run;
proc template;

define table ExactTests2;
parent=Stat.Logistic.Exacttests;
column Label Effect Test Statistic ExactPValue MidPValue;
define ExactPValue;
parent =Stat.Logistic.ExactPValue;
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format=D8.6;
end;
end;

data _null_;
title2 ’Listing of ExactTests Using a Customized Template’;

set try1;
file print ods=(template=’ExactTests2’);
put _ods_;

run;
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Chapter 11

Quantal Bioassay Analysis

11.1 Introduction

Bioassayis the process of determining the potency or strength of a reagent or stimuli based
on the response it elicits in biological organisms. Often, the reagent is a new drug and the
subjects are experimental animals. Other possible stimuli include radiation and
environmental exposures, and other possible subjects include humans and bacteria.
Researchers are interested in the tolerance of the subjects to the stimulus or drug, where
tolerance is defined as the amount of the stimulus required to produce a response. They are
also interested in the relative potency of a new drug to a standard drug. In a direct assay,
you steadily increase the doses until you generate the desired reaction. In an indirect assay,
you observe the reaction of groups of subjects to specified sets of doses.

The measured response to the drug in an indirect assay can be either quantitative or
quantal. An example of a quantitative response is red blood cells per milliliter of blood,
and an example of a quantal response is death or survival. This chapter is concerned with
quantal responses, which are analyzed with categorical data analysis strategies. Refer to
Tsutakawa (1982) for an overview of general bioassay methods, and refer to Finney (1978)
and Govindarajulu (1988) for textbook discussion of these areas.

11.2 Estimating Tolerance Distributions

Table 11.1 displays data from an experiment in which animals were exposed to bacterial
challenges after having one-quarter of their spleen removed (splenectomy). After 96
hours, their survival status was assessed. The stimulus is the bacterial challenge, and
interest lies in assessing the tolerances of the animals’ immune systems to the bacterial
challenge after they have had partial splenectomies (Koch and Edwards 1985).

Table 11.1. Status 96 Hours After Bacterial Challenge

Status
Bacterial Dose Dead Alive
1:2� 103 0 5
1:2� 104 0 5
1:2� 105 2 3
1:2� 106 4 2
1:2� 107 5 1
1:2� 108 5 0
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In bioassay analysis, you make the assumption that responses of subjects are determined
through a tolerance distribution. This means that at certain levels of the dose (bacterial
challenge in this case) the animals will die; that is, death will occur if dose exceeds the
tolerance, and survival will occur when dose is below tolerance. Historically, the
tolerances have been assumed to follow a normal distribution. This allows you to write the
probability of death at a levelxi of the bacterial challenge as

pi = �

�
xi � �

�

�

where� is the cumulative distribution function for the standard normal distribution with
mean 0 and variance 1; the parameter� is the mean (or median) of the tolerance
distribution, and� is the standard deviation.

If � = ��=� and� = 1=�, then

pi = �(�+ �xi)

and

��1(pi) = �+ �xi

The function��1(pi) is called theprobit (or normit), and its analysis is called probit
analysis. Sometimes the value 5 is added to��1(pi) in order to have positive values for all
pi.

Berkson (1951) pointed out that the logistic distribution also works well as a tolerance
distribution, generating essentially the same results as the normal distribution. This is
particularly true for values ofpi in the middle of the (0, 1) range and when the median� of
the tolerance distribution is the primary parameter. While sometimes a probit analysis of a
data set is of more interest to researchers in some disciplines (for example, growth and
development) because of the correspondence of its parameters to the mean and standard
deviation of the underlying tolerance distribution, the focus in this chapter is on logistic
analysis. Note that the measures discussed are also relevant to a model based on the probit.

If you assume the logistic distribution for the tolerances,

pi =
expf�+ �xig

1 + expf�+ �xig

and

log

�
pi

1� pi

�
= �+ �xi
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The parameters� and� are estimated with maximum likelihood estimation. Usually, the
log of the tolerances is most likely to have a logistic distribution, so frequently you work
with the log of the drug or concentration under investigation as thexi.

One parameter of interest for estimation is the median of the tolerance distribution, or the
dose at which 50% of the subjects produce a response. When the response is death, this
estimate is called the LD50, for lethal dose. Otherwise, this measure is called the ED50,
for effective dose. If you are working with log dose levels, you compute the log LD50 and
then exponentiate it if you are also interested in the actual LD50.

Supposex50 represents the log LD50 andp50 represents the probability of response at the
median of the tolerance distribution.

log

�
p50

1� p50

�
= log

�
:5

:5

�
= 0

Thus, the logistic parameterŝ� and�̂x50 can be set to zero to obtain

x̂50 =
��̂
�̂

An approximate form of the variance ofx̂50 for situations where� is clearly different from
0 is written

varfx̂50g = fx̂50g2
(
V (�̂)

�̂2
� 2V (�̂; �̂)

�̂�̂
+
V (�̂)

�̂2

)

where V(�̂), V(�̂; �̂), and V(�̂) represent the variance of�̂, the covariance of̂� and�̂,
and the variance of̂�, respectively. (Refer to page 333 for references on using Fieller’s
theorem to compute confidence intervals for these measures.)

This allows you to express the confidence interval for log LD50 as

x̂50 � z1��=2
p

varfx̂50g

In order to compute the LD50, the actual dosage at which 50% of the subjects die, you
exponentiatêx50 (and its confidence limits). Sometimes analysts work on the log log scale
for LD50 to produce more stable computations. In that case, you would use

var(x̂50)
x̂250
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as the applicable variance for loĝx50, and you would double exponentiate the results to
generate the estimate of the actual LD50 and its confidence interval.

The LOGISTIC procedure is used to fit these bioassay models. In the following section, a
logistic model is fit to the data in Table 11.1, and the log LD50 is computed.

11.2.1 Analyzing the Bacterial Challenge Data

The following SAS statements input the data from Table 11.1 and compute two additional
variables: LDOSE is the log dose (natural log), and SQ–LDOSE is the square of LDOSE.
Using the log scale results in more evenly spaced dose levels. The variable SQ–LDOSE is
used as a quadratic term in the model to help assess goodness of fit.

data bacteria;
input dose status $ count @@;
ldose=log(dose);
sq_ldose=ldose*ldose;
datalines;

1200 dead 0 1200 alive 5
12000 dead 0 12000 alive 5
120000 dead 2 120000 alive 3
1200000 dead 4 1200000 alive 2
12000000 dead 5 12000000 alive 1
120000000 dead 5 120000000 alive 0
;
proc print;
run;

In the PROC LOGISTIC specification, both LDOSE and SQ–LDOSE are listed in the
MODEL statement. The SELECTION=FORWARD option is specified so that a score
statistic for the quadratic term is computed. The COVB option requests that PROC
LOGISTIC print the covariance matrix for the parameter estimates, quantities necessary to
compute the confidence interval for the log LD50.

proc logistic data=bacteria descending;
freq count;
model status = ldose sq_ldose / scale=none aggregate

selection=forward start=1 details covb;
run;

Output 11.1 displays the data, including values for the created variables LDOSE and
SQ–LDOSE.
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Output 11.1 Data Listing

Obs dose status count ldose sq_ldose

1 1200 dead 0 7.0901 50.269
2 1200 alive 5 7.0901 50.269
3 12000 dead 0 9.3927 88.222
4 12000 alive 5 9.3927 88.222
5 120000 dead 2 11.6952 136.779
6 120000 alive 3 11.6952 136.779
7 1200000 dead 4 13.9978 195.939
8 1200000 alive 2 13.9978 195.939
9 12000000 dead 5 16.3004 265.704

10 12000000 alive 1 16.3004 265.704
11 120000000 dead 5 18.6030 346.072
12 120000000 alive 0 18.6030 346.072

Since the option START=1 is specified, the first model fit includes the intercept and the
LDOSE term. The residual score statistic for the SQ–LDOSE term is not significant with
QS = 0:2580 andp = 0:6115, so clearly this term makes no contribution to the model.
This result supports the satisfactory fit of the intercept and slope model; the residual score
test serves as a goodness-of-fit test for this model.

Output 11.2 Residual Score Statistic

Analysis of Effects Not in the Model

Score
Effect DF Chi-Square Pr > ChiSq

sq_ldose 1 0.2580 0.6115

The Pearson and deviance goodness-of-fit statistics also indicate that the model provides
an adequate fit, as displayed in Output 11.3. However, note that the sampling requirements
for these statistics are minimally met; certainly the expected values for all cell counts are
not greater than 4 for several cells. In such cases, it is better to support assessment of fit
with methods such as the residual score statistic for the addition of the quadratic term.

Output 11.3 Goodness of Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 4 1.7508 0.4377 0.7815
Pearson 4 1.3379 0.3345 0.8549

Number of unique profiles: 6

Output 11.4 contains the maximum likelihood estimates for� and�. The estimate
�̂ = 0:7071 hasp = 0:0027 for the test of its significance. The level of bacterial challenge
has a significant effect on survival. The intercept�̂ = �9:2680.
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Output 11.4 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -9.2680 3.1630 8.5857 0.0034
ldose 1 0.7071 0.2354 9.0223 0.0027

Output 11.5 contains the estimated covariance matrix for the parameter estimates. The
variance of�̂ is 10.0046, the variance of̂� is 0.05542, and the covariance of�̂ and�̂ is
�0:7334. Taking the square root of the variances produces the standard errors displayed in
Output 11.4.

Output 11.5 Estimated Covariance Matrix

Estimated Covariance Matrix

Variable Intercept ldose

Intercept 10.00458 -0.73338
ldose -0.73338 0.055418

To compute the log LD50, use the estimated values of�̂ and�̂.

log LD50=
��̂
�̂

=
9:2680

0:7071
= 13:1070

Using the covariances from Output 11.5 in the formula for varfx50g yields the value
0.6005. Thus, a confidence interval for the log LD50 is written

13:1070 � 1:96
p
0:6005

so that the confidence interval is (11.588, 14.626). To determine the LD50 on the actual
dose scale, you exponentiate the LD50 for the log scale.

actual LD50= e13:1070 = 4:9238 � 105

To determine its confidence interval, exponentiate both bounds of the confidence interval to
obtain (1:0780� 105, 2:2490� 106). This confidence interval describes the location of the
median bacterial challenge for the death of animals with one-fourth of the spleen removed.
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11.3 Comparing Two Drugs

Bioassay often involves the comparison of two drugs, usually a new drug versus a standard
drug. Consider the data in Table 11.2. Researchers studied the effects of the peptides
neurotensin and somatostatin in potentiating nonlethal doses of the barbiturate
pentobarbital. Groups of mice were administered various dose levels of either neurotensin
or somatostatin (Nemeroff et al. 1977; analyzed in Imrey, Koch, and Stokes 1982).

Many times, one drug acts as a dilution of another drug. If this is the case, then the dose
response relationship is parallel on the logit scale. Assays that are designed for the dilution
assumption are calledparallel lines assays. The quantity that describes the relationship of
such drugs to one another through the ratio of doses of the two drugs that produce the
same response is called therelative potency.

Table 11.2. N and S Comparison

Status
Dose Drug Dead Alive Total
0.01 N 0 30 30
0.03 N 1 29 30
0.10 N 1 9 10
0.30 N 1 9 10
0.30 S 0 10 10
1.00 N 4 6 10
1.00 S 0 10 10
3.00 N 4 6 10
3.00 S 1 9 10
10.00 N 5 5 10
10.00 S 4 6 10
30.00 S 5 5 10
30.00 N 7 3 10
100.00 S 8 2 10

The dilution assumption for doseszs of somatostatin andzn of neurotensin can be stated as

zs = �zn

which means that the doses with comparable response for the two drugs are related by the
constant�, the relative potency; that is,� units of neurotensin produce the same behavior
as one unit of somatostatin. Ifxn andxs represent log doses, then the dilution assumption
also implies that

xs = log �+ xn

Thus, assuming the logistic model structure for somatostatin is

ps(xsi) = f1 + exp(��s � �xsi)g�1
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wherexsi denotes log dose levels of somatostatin, you can write the implied structure for
log dose levelsxni of neurotensin as

pn(xni) = ps(log �+ xni) = f1 + exp(��s � � log �� �xni)g�1

= f1 + exp(��n � �xni)g�1

where�n = �s + � log �.

By forming

pn(xni)

1� pn(xni)

you obtain the result

log

�
pn(xni)

1� pn(xni)

�
= f�s + � log �g+ �xni

= �n + �xni

and

log

�
ps(xsi)

1� ps(xsi)

�
= �s + �xsi

Thus, the dilution assumption can be tested by fitting a model with separate intercepts and
slopes and then testing for a common slope.

The constant� is the relative potency, and since

�n = �s + � log �

then

� = exp

�
�n � �s

�

�
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This means that� units of somatostatin produce the same reaction as one unit of
neurotensin.

Fieller’s theorem can be used to produce confidence intervals for the relative potency. This
theorem is a general result that enables confidence intervals to be computed for the ratio of
two normally distributed random variables. Fieller’s theorem can also be used to produce
confidence intervals for the LD50. Refer to Read (1983) for a description of Fieller’s
formula, and refer to Collett (1991) for a discussion of how to apply it to LD50s and
relative potency. Zerbe (1978) describes a matrix implementation of Fieller’s formula for
use with the general linear model as illustrated in the following analysis.

11.3.1 Analysis of the Peptide Data

The following DATA step creates data set ASSAY for use with PROC LOGISTIC.
Indicator variables INT–S and INT–N are created to form the intercepts for each drug, and
indicator variables LDOSE–N and LDOSE–S are created to form separate dose columns
(slopes) for each drug. LDOSE is dose on the log scale. Since the cell counts in Table 11.2
are small, the squared terms SQLDOSE–S and SQLDOSE–N are created so that a test of
quadratic terms can be performed to help assess goodness of fit.

data assay;
input drug $ dose status $ count;
int_n=(drug=’n’);
int_s=(drug=’s’);
ldose=log(dose);
ldose_n=int_n*ldose;
ldose_s=int_s*ldose;
sqldose_n=int_n*ldose*ldose;
sqldose_s=int_s*ldose*ldose;
datalines;

n 0.01 dead 0
n 0.01 alive 30
n .03 dead 1
n .03 alive 29
n .10 dead 1
n .10 alive 9
n .30 dead 1
n .30 alive 9
n 1.00 dead 4
n 1.00 alive 6
n 3.00 dead 4
n 3.00 alive 6
n 10.00 dead 5
n 10.00 alive 5
n 30.00 dead 7
n 30.00 alive 3
s .30 dead 0
s .30 alive 10
s 1.00 dead 0
s 1.00 alive 10
s 3.00 dead 1
s 3.00 alive 9
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s 10.00 dead 4
s 10.00 alive 6
s 30.00 dead 5
s 30.00 alive 5
s 100.00 dead 8
s 100.00 alive 2
;

The following PROC LOGISTIC statements request the two intercepts and two slopes
model. The NOINT option must be specified to suppress the default intercept. The TEST
statement requests a test for equality of the two slope parameters�n and�s.

proc logistic data=assay descending;
freq count;
model status = int_n int_s ldose_n ldose_s

sqldose_n sqldose_s / noint
scale=none aggregate
start=4 selection=forward details;

eq_slope: test ldose_n=ldose_s;
run;

Output 11.6 contains a listing of the response profile. There are 14 groups based on the
drug and dose level combinations, and the model is estimating the probability of death.

Output 11.6 Response Profiles

Response Profile

Ordered Total
Value status Frequency

1 dead 41
2 alive 139

Output 11.7 displays the goodness-of-fit statistics. With values of 4.4144 and 3.6352 for
QL andQP , respectively, these statistics support an adequate model fit.

Output 11.7 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 10 4.4144 0.4414 0.9267
Pearson 10 3.6352 0.3635 0.9623

Number of unique profiles: 14

Output 11.8 contains the results for the residual score test for the two quadratic terms. It is
nonsignificant, as are each of the individual tests. These results support the goodness of fit
of the model.
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Output 11.8 Tests for Quadratic Terms

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

1.4817 2 0.4767

Analysis of Effects Not in the Model

Score
Effect DF Chi-Square Pr > ChiSq

sqldose_n 1 0.9311 0.3346
sqldose_s 1 0.5506 0.4581

The parameter estimates are all significant, as seen in the “Analysis of Maximum
Likelihood Estimates” table displayed in Output 11.9. However, if you examine the slope
estimates (labeled LDOSE–N and LDOSE–S) and their standard errors, you see that it is
possible that these two slopes can be represented by one slope. The Wald statistic for the
hypothesis testH0:�n = �s bears this out with a nonsignificantp = 0:1490, displayed in
Output 11.10.

Output 11.9 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

int_n 1 -1.1301 0.2948 14.6983 0.0001
int_s 1 -3.3782 0.8797 14.7479 0.0001
ldose_n 1 0.6199 0.1240 24.9907 <.0001
ldose_s 1 1.0615 0.2798 14.3914 0.0001

Output 11.10 Equal Slopes Hypothesis Test Results

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

eq_slope 2.0820 1 0.1490

Thus, it appears that a parallel lines model fits these data, and the following PROC
LOGISTIC statements request this model. The COVB option in the MODEL statement
requests that the covariances of the parameters be printed, and the OUTEST=ESTIMATE
and COVOUT options request that they be placed into a SAS data set for further
processing. Without the specification of the COVOUT option, only the parameter
estimates are placed in the OUTEST data set. For convenience, the–LINK – and

–LNLIKE – variables placed in the OUTEST data set by default are dropped.
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proc logistic data=assay descending outest=estimate
(drop= intercept _link_ _lnlike_) covout;

freq count;
model status = int_n int_s ldose /

noint scale=none aggregate covb;
run;

Output 11.11 contains the goodness-of-fit statistics for this model, and they indicate that
the model is adequate.

Output 11.11 Goodness-of-Fit Results

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 11 6.8461 0.6224 0.8114
Pearson 11 5.6480 0.5135 0.8958

Number of unique profiles: 14

Output 11.12 contains the parameter estimates; all of them are clearly significant.

Output 11.12 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

int_n 1 -1.1931 0.3158 14.2781 0.0002
int_s 1 -2.4476 0.4532 29.1632 <.0001
ldose 1 0.7234 0.1177 37.7681 <.0001

Output 11.13 contains the estimated covariance matrix.

Output 11.13 Covariance Matrix

Estimated Covariance Matrix

Variable int_n int_s ldose

int_n 0.099702 0.025907 -0.00984
int_s 0.025907 0.20542 -0.03648
ldose -0.00984 -0.03648 0.013856

The estimated log LD50s from this model are

log LD50n =
��̂n
�̂

=
1:1931

0:7234
= 1:65
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and

log LD50s =
��̂s
�̂

=
2:4476

0:7234
= 3:38

The log relative potency is estimated as

log �̂ =
�̂n � �̂s

�̂
=
�1:1931 � (�2:4476)

0:7234
= 1:73

You can compute approximate confidence intervals for these quantities using the linearized
Taylor series, as in the previous section for the log LD50, or you can produce confidence
intervals based on Fieller’s theorem. The following SAS/IML code produces confidence
intervals based on Fieller’s theorem for ratios of estimates from a general linear model
(Zerbe 1978).

proc iml;
use estimate;
start fieller;
title ’Confidence Intervals’;
use estimate;
read all into beta where (_type_=’PARMS’);
beta=beta‘;
read all into cov where (_type_=’COV’);
ratio=(k‘*beta) / (h‘*beta);
a=(h‘*beta)**2-(3.84)*(h‘*cov*h);
b=2*(3.84*(k‘*cov*h)-(k‘*beta)*(h‘*beta));
c=(k‘*beta)**2 -(3.84)*(k‘*cov*k);
disc=((b**2)-4*a*c);
if (disc<=0 | a<=0) then do;
print "confidence interval can’t be computed", ratio;
stop; end;
sroot=sqrt(disc);
l_b=((-b)-sroot)/(2*a);
u_b=((-b)+sroot)/(2*a);
interval=l_b||u_b;
lname={"l_bound", "u_bound"};
print "95 % ci for ratio based on fieller", ratio interval[colname=lname];
finish fieller;
k={ 1 -1 0 }‘;
h={ 0 0 1 }‘;
run fieller;
k={-1 0 0 }‘;
h={ 0 0 1 }‘;
run fieller;
k={ 0 -1 0 }‘;
h={ 0 0 1 }‘;
run fieller;

You specify coefficients for vectorsk andh that premultiply the parameter vector to form
the numerator and the denominator of the ratio of interest. For example, if
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� = f�n; �s; �g, k = f1;�1; 0g, andh = f0; 0; 1g, then

k0�

h0�
=
�n � �s

�

which is the relative potency. Other choices of coefficients producelog LD50n and
log LD50s. The program inputs the covariance matrix for the parameters and applies the
appropriate manipulations to produce the corresponding 95% confidence intervals for the
ratios that are specified. Executing the SAS/IML code produces the output in
Output 11.14.

The ratio estimates for the log potency, log LD50n, and log LD50s are displayed, and the
lower and upper bounds of their confidence intervals appear under “l–bound” and
“u–bound,” respectively.

Output 11.14 Confidence Intervals Based on Fieller’s Theorem

Confidence Intervals

95 % ci for ratio based on fieller

INTERVAL
RATIO l_bound u_bound

1.7341215 0.4262151 2.9994194

95 % ci for ratio based on fieller

INTERVAL
RATIO l_bound u_bound

1.6493371 0.8237277 2.6875216

95 % ci for ratio based on fieller

INTERVAL
RATIO l_bound u_bound

3.3834586 2.4863045 4.4505794

Table 11.3 contains these results. Thus, a dose of somatostatin must be 5.64 times higher
than a dose of neurotensin to have the same effect, with a 95% confidence interval of
(1.53, 20.07).

Table 11.3. Estimated Measures from Parallel Assay

95% Exponentiated Exponentiated
Estimate Value Confidence Interval Value Confidence Interval
log(Potency) 1.73 (0:4262; 2:9994) 5.64 ( 1.53, 20.07)
log LD50n 1.65 (0:8237; 2:6875) 5.21 ( 2.28, 14.69)
log LD50s 3.38 (2:4863; 4:4506) 29.37 (12.02, 85.68)
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11.4 Analysis of Pain Study

Researchers investigated a new drug for pain relief by studying its effect on groups of
subjects with two different diagnoses. The drug was administered at five dosages, and the
outcome measured was whether the subjects reported adverse effects. Table 11.4 contains
the data. Interest lies in investigating the association of adverse effects with dose and
diagnosis; in addition, there is interest in describing the influence of dose and diagnosis on
whether there are adverse effects with a statistical model.

Table 11.4. Pain Study

Diagnosis I Diagnosis II
Dose Adverse Not Adverse Not
1 3 26 6 26
5 7 26 20 12
10 10 22 26 6
12 14 18 28 4
15 18 14 31 1

Unlike the previous bioassay analysis, this study does not compare the tolerance
distributions of two drugs and is not strictly concerned with estimating the tolerance
distribution for either drug. But even though the study does not completely fall into the
usual realm of bioassay, it has a bioassay flavor. Its analysis also serves to illustrate the
blend of hypothesis testing and model fitting that is often desired in a statistical analysis of
categorical data.

Mantel-Haenzsel statistics are computed to determine if there is an association between
adverse effects and dose, adverse effects and diagnosis, and adverse effects and dose,
controlling for diagnosis. A logistic model is then fit to describe the influence of dose and
diagnosis on adverse effects, and ED50s are estimated for both diagnosis groups.

The following DATA step statements input the data and create indicator variables to be
used later for the PROC LOGISTIC runs.

data adverse;
input diagnos $ dose status $ count @@;
i_diagII=(diagnos=’II’);
i_diagI= (diagnos=’I’);
doseI=i_diagI*dose;
doseII=i_diagII*dose;
diagdose=i_diagII*dose;
if doseI > 0 then ldoseI=log(doseI); else ldoseI=0;
if doseII > 0 then ldoseII=log(doseII); else ldoseII=0;
datalines;

I 1 adverse 3 I 1 no 26
I 5 adverse 7 I 5 no 26
I 10 adverse 10 I 10 no 22
I 12 adverse 14 I 12 no 18
I 15 adverse 18 I 15 no 14
II 1 adverse 6 II 1 no 26
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II 5 adverse 20 II 5 no 12
II 10 adverse 26 II 10 no 6
II 12 adverse 28 II 12 no 4
II 15 adverse 31 II 15 no 1
;

proc freq data=adverse;
weight count;
tables dose*status diagnos*status diagnos*dose*status /

nopct nocol cmh;
run;

Output 11.15 contains the crosstabulation for DOSE� STATUS. There is a positive
association between dose level and proportion of adverse effects.

Output 11.15 Table of DOSE � STATUS

Table of dose by status

dose status

Frequency|
Row Pct |adverse |no | Total
---------+--------+--------+

1 | 9 | 52 | 61
| 14.75 | 85.25 |

---------+--------+--------+
5 | 27 | 38 | 65

| 41.54 | 58.46 |
---------+--------+--------+

10 | 36 | 28 | 64
| 56.25 | 43.75 |

---------+--------+--------+
12 | 42 | 22 | 64

| 65.63 | 34.38 |
---------+--------+--------+

15 | 49 | 15 | 64
| 76.56 | 23.44 |

---------+--------+--------+
Total 163 155 318

Output 11.16 contains the Mantel-Haenszel statistics. Since the dose levels are numeric,
the 1 df correlation statistic is appropriate.QCS = 55:7982, which is strongly significant.
As the dose increases, the proportion of subjects who experienced adverse effects also
increases.

Output 11.16 Mantel-Haenszel Statistics

Summary Statistics for dose by status

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 55.7982 <.0001
2 Row Mean Scores Differ 4 57.1403 <.0001
3 General Association 4 57.1403 <.0001
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Output 11.17 displays the crosstabulation for DIAGNOS� STATUS.

Output 11.17 DIAGNOS � STATUS Table

Table of diagnos by status

diagnos status

Frequency|
Row Pct |adverse |no | Total
---------+--------+--------+
I | 52 | 106 | 158

| 32.91 | 67.09 |
---------+--------+--------+
II | 111 | 49 | 160

| 69.38 | 30.63 |
---------+--------+--------+
Total 163 155 318

Output 11.18 contains the Mantel-Haenszel statistics.QMH = 42:1732 with 1 df, which is
also strongly significant. Subjects with diagnosis II were more likely to experience adverse
effects.

Output 11.18 Mantel-Haenszel Statistics

Summary Statistics for diagnos by status

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 42.1732 <.0001
2 Row Mean Scores Differ 1 42.1732 <.0001
3 General Association 1 42.1732 <.0001

Output 11.19 contains the extended Mantel-Haenszel statistics for the association of dose
and status after adjusting for diagnosis. The correlation statistic is appropriate, and
QCS = 65:5570 with 1 df, which is clearly significant.

Output 11.19 DIAGNOS*DOSE*STATUS

Summary Statistics for dose by status
Controlling for diagnos

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 65.5570 <.0001
2 Row Mean Scores Differ 4 67.4362 <.0001
3 General Association 4 67.4362 <.0001
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The following PROC LOGISTIC statements fit a model that contains separate intercepts
and slopes for the two diagnoses. First, the actual dose is used.

proc logistic data=adverse outest=estimate
(drop= intercept _link_ _lnlike_) covout;

freq count;
model status = i_diagI i_diagII doseI doseII /

noint scale=none aggregate;
eq_slope: test doseI=doseII;

run;

Output 11.20 contains the response profiles and goodness-of-fit statistics. The model fit
appears to be quite good.

Output 11.20 Response Profiles and Goodness of Fit

Response Profile

Ordered Total
Value status Frequency

1 adverse 163
2 no 155

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 6 2.7345 0.4557 0.8414
Pearson 6 2.7046 0.4508 0.8449

Number of unique profiles: 10

Output 11.21 contains the model parameters, and Output 11.22 contains the test for a
common slope. The hypothesis of a common slope is rejected at the� = 0:05 level of
significance.

Output 11.21 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

i_diagI 1 -2.2735 0.4573 24.7197 <.0001
i_diagII 1 -1.4341 0.3742 14.6887 0.0001
doseI 1 0.1654 0.0414 15.9478 <.0001
doseII 1 0.3064 0.0486 39.8186 <.0001
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Output 11.22 Hypothesis Test

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

eq_slope 4.8787 1 0.0272

Next, the model based on log doses is fit.

proc logistic data=adverse;
freq count;
model status = i_diagI i_diagII ldoseI ldoseII /

noint scale=none aggregate;
eq_slope: test ldoseI=ldoseII;

run;

Output 11.23 contains the goodness-of-fit tests, which are not as supportive of this model
as they are for the model based on actual dose; however, they are still entirely satisfactory.

Output 11.23 Goodness-of-Fit Tests

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 6 4.8774 0.8129 0.5596
Pearson 6 4.4884 0.7481 0.6109

Number of unique profiles: 10

Output 11.24 contains the results for the test that the slopes are equal.

Output 11.24 Hypothesis Test Results

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

eq_slope 2.4034 1 0.1211

With p = 0:1211, you would not usually reject the hypothesis that the slopes are equal.

Thus, both models do fit the data, and one model offers the possibility of a parallel lines
model. Frequently, you do encounter different model choices in your analyses and need to
make a decision about which model to present. Since this is not a true bioassay, in the
sense of a study comparing two drugs, the fact that you can fit a model with a common
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slope has less motivation. Potency in this setting means only that the shape of the tolerance
distribution of the analgesic is similar for the two diagnoses, which may not be as
important as simply determining that the drug works differently for the two diagnoses.

The model with the actual dose is used, since it fits very well and since there is noa priori
reason to need to use log doses. (One very good reason might be to compare results with
other studies if they worked with dose on the log scale.) It is of interest to compute ED50s
for both diagnoses, to help describe the median impact on adverse effects for the two
diagnoses. The SAS/IML routine is again used to compute the ED50s and to produce a
confidence interval based on Fieller’s formula. (The entire module is not displayed again.)

The required coefficients are

k={ -1 0 0 0}‘;
h={ 0 0 1 0}‘;

and

k={ 0 -1 0 0}‘;
h={ 0 0 0 1}‘;
run fieller;

Output 11.25 contains the results. You need 13.74 units of the analgesic to produce
adverse effects in 50% of the subjects with Diagnosis I; you only need 4.68 units of the
drug to produce adverse effects in 50% of the subjects with Diagnosis II. The respective
confidence intervals are(11:5095; 18:2537) and(2:9651; 6:0377).

Output 11.25 ED50s

Confidence Intervals

95 % ci for ratio based on fieller

INTERVAL
RATIO l_bound u_bound

13.741832 11.509478 18.253683

95 % ci for ratio based on fieller

INTERVAL
RATIO l_bound u_bound

4.6799535 2.9651466 6.0377151

This example illustrates that bioassay methods can be used for the analysis of data that are
not strictly bioassay data but are concerned with the investigation of drug responses.
Bioassay methods can also be extended to other application areas as well, such as child
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development studies. For example, concepts like ED50 can be applied to describe the
median ages at which certain physical developments occur. Understanding the strategies
that are designed for certain specialty areas can lead to useful applications in nonrelated
areas. Refer to Bock and Jones (1968) and Bock (1975) for some statistical methodology
related to child development and behavioral areas. Refer to Landis and Koch (1979) for
examples of categorical analysis of behavioral data.
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Chapter 12

Poisson Regression

12.1 Introduction

Categorical data often appear as discrete counts that are considered to be distributed as
Poisson. Examples include colony counts for bacteria or viruses, accidents, equipment
failures, insurance claims, and incidence of disease. Interest often lies in estimating a rate
or incidence (bacteria counts per unit volume or cancer deaths per person-months of
exposure to a carcinogen) and determining its relationship to a set of explanatory
variables. Poisson regression became popularized as an analysis method in the 1970s and
1980s (Frome, Kutner, and Beauchamp 1973; Charnes, Frome, and Yu 1976; and Frome
1981), although Cochran pointed out the possibilities in a 1940 paper (Cochran 1940),
along with the suggestion of the appropriateness of the loglinear model. Currently, Poisson
regression is a widely-used modeling technique; recent uses of Poisson regression include
a homicide incidence study (Shahpar and Guohua 1999), a study of injuries incurred by
electrical utility workers (Loomis et al. 1999), and an evaluation of the risk of endometrial
cancer as related to occupational physical activity (Moradi et al. 1998).

This chapter describes the methodology of Poisson regression in Section 12.2 and
illustrates the use of the strategy with applications in the next two sections. Section 12.5
describes the issue of overdispersion with Poisson data and offers one technique for
adjusting for it. Poisson regression is discussed in other chapters in this book as well.
Chapter 15, “Generalized Estimating Equations,” describes the analysis of
Poisson-distributed correlated data with the GEE method in Section 15.9 and describes a
GEE-based approach for managing overdispersion in Poisson regression for a univariate
outcome in Section 15.14. There is a proportionality relationship between the likelihood
for Poisson regression and the likelihood for the loglinear model, so the loglinear model
can be fit using Poisson regression methods. This is illustrated in Section 16.3 of Chapter
16, “Loglinear Models.” In addition, the likelihoods for Poisson regression and the
piecewise exponential model for analyzing time-to-event data are proportional, so the
former can be used to fit the latter. This is illustrated in Chapter 17, “Analyzing
Time-to-Event Data.”

12.2 Methodology for Poisson Regression

Suppose that a response variableY is distributed as Poisson and has expected value�.
Recall that the variance of a Poisson variable is also�. If you have a single explanatory
variable x, you can write a regression model for� as
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g(�) = �+ x�

whereg is a link function, in terms of a GLM (generalized linear model). Usually,g is
taken to be the log function. If so, you have a loglinear model

log(�) = �+ x�

You can rewrite this model as

� = e�ex�

If you increase the explanatory variablex by one unit, it has a multiplicative effect ofe�

on�. Since this model is specified as a GLM, with a log link and a Poisson distribution,
you can fit it with the GENMOD procedure and use the usual deviance and likelihood ratio
tests to assess model fit and use Wald or score statistics to assess the model effects.

Frequently, discrete counts represent information collected over time (days, years) or in
space (volume for bacteria counts) and interest lies in modeling rates. If the exposure time
or volume is denoted asN , you write the rate asY=N and write the expected value as
�=N . Modeling this rate with a loglinear model is written

log
�

N
= �+ x�

which can be rearranged as

log � = �+ x� + log(N)

The termlog(N) is called anoffsetand must be accounted for in the estimation process.
Note that if you exponentiate both sides of this expression you obtain

� = expf�+ x� + log(N)g = Ne�ex�

which means that the mean is proportional toN . Holding everything else constant, if you
multipliedN by some number, you would be multiplying the expected mean by the same
number.

More generally, when you have multiple explanatory variables, you can write the model in
matrix terms

�(x) = fN(x)gfg(�jx)g

where�(x) is the expected value of the number of eventsn(x), x is the vector of
explanatory variables,x = (x1; x2; : : : ; xt)

0, andN(x) is the known total exposure to risk
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in the units in which the events occur (subject-days, for example). The rate for incidence is
written

�(x) = �(x)=N(x)

The loglinear model is written as

log

�
�(x)

N(x)

�
= x0�

for countsn(x) with independent Poisson distributions. An equivalent form is

�(x) = fN(x)gfexp(x0�)g

If you haves independent groups referenced byi = 1; 2; : : : ; s, each with a vector
xi = (xi1; xi2; : : : ; xit) of t explanatory variables, you can write a likelihood function for
the data as

�(nj�) =
sY
i=1

�nii fexp(��i)g=ni!

wheren = (n1; n2; : : : ; ns)
0 and� = (�1; �2; : : : ; �s)

0.

The loglinear Poisson model is often written as

logfnig = logfNig+ x0i�

in the generalized linear models framework, where the quantitylogfNig is the offset. For
more information on Poisson regression, refer to Koch, Atkinson, and Stokes (1986).

12.3 Simple Poisson Counts Example

The following data come from a cross-sectional study of 400 patients who had malignant
melanoma (Roberts et al. 1981). The site of the tumor and the histological type were
recorded. These data are also analyzed in Chapter 16, “Loglinear Models,” from the
perspective of the loglinear model framework, in which you consider all dimensions for
classification to be response variables (not response and explanatory variables) and you
determine if there is association within that set of variables.

It is reasonable to consider the tumor counts to be distributed as Poisson and to determine
whether those counts are influenced by site and type of tumor. By taking the log of the
counts, you can fit a loglinear model.
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Table 12.1. Malignant Melanoma Data

Tumor Site
Tumor Type Head and Neck Trunk ExtremitiesTotal
Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56
Total 68 106 226 400

The following DATA step inputs the melanoma count data into the SAS data set
MELANOMA:

data melanoma;
input type $ site $ count;
datalines;

Hutchinson’s Head&Neck 22
Hutchinson’s Trunk 2
Hutchinson’s Extremities 10
Superficial Head&Neck 16
Superficial Trunk 54
Superficial Extremities 115
Nodular Head&Neck 19
Nodular Trunk 33
Nodular Extremities 73
Indeterminate Head&Neck 11
Indeterminate Trunk 17
Indeterminate Extremities 28
;
run;

Since Poisson regression is a form of the generalized linear model, you perform the
analysis with the GENMOD procedure. As described in Section 8.9.2, the GENMOD
procedure fits generalized linear models in the SAS System. See that section for a
discussion of using PROC GENMOD to fit the logistic model. In order to perform Poisson
regression, you specify the log link function with the LINK=LOG option and specify the
Poisson distribution with the DIST=POISSON option. Note that you could leave off the
LINK=LOG option because the default canonical link function is the log.

proc genmod;
class type site;
model count=type|site / dist=poisson link=log type3;

run;

Output 12.1 displays the model information for this analysis and Output 12.2 displays the
CLASS variable levels for the explanatory variables.
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Output 12.1 Model Information

Model Information

Data Set WORK.MELANOMA
Distribution Poisson
Link Function Log
Dependent Variable count
Observations Used 12

Output 12.2 Class Variable Information

Class Level Information

Class Levels Values

type 4 Hutchins Indeterm Nodular Superfic
site 3 Extremit Head&Nec Trunk

Output 12.3 contains the table with the goodness-of-fit statistics. Since this model fits
twelve parameters to twelve response functions, the log counts, it is saturated and no
goodness-of-fit statistics are defined.

Output 12.3 Assessment of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 0 0.0000 .
Scaled Deviance 0 0.0000 .
Pearson Chi-Square 0 0.0000 .
Scaled Pearson X2 0 0.0000 .
Log Likelihood 1150.2247

The Type 3 analysis is displayed in Output 12.4. The type� site interaction is highly
significant, and in this model, both main effects appear to be significant as well.

Output 12.4 Type 3 Analysis

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

type 3 85.07 <.0001
site 2 33.34 <.0001
type*site 6 51.80 <.0001

Further investigation might involve determining whether site is best included in the model
differently for Hutchinson’s type than the other types, since the cell counts seem to suggest
a different distribution of site for that type. However, this is not done here.
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12.4 Poisson Regression for Incidence Densities

Most of the time, Poisson regression is performed when you have counts plus some
measure of exposure. The next example also concerns data on melanoma cases, but
includes information on exposure. Thus, you are interested in fitting a model to the log
rate, or incidence densities, of melanoma exposure. This involves including an offset
variable in the model.

Consider Table 12.2. The countsnhi are the number of new melanoma cases reported in
1969–1971 for white males in two areas (Gail 1978 and Koch, Imrey et al. 1985). The
totalsNhi are the sizes of the estimated populations at risk; they may represent counts of
people or counts of exposure units. Researchers were interested in whether the rates
nhi=Nhi, which are incidence densities, varied across age groups or region (h = 1 for
Northern region,h = 2 for Southern region;i = 1; 2; 3; 4; 5; 6 for ascending age groups).

Table 12.2. New Melanoma Cases Among White Males: 1969-1971

Region Age Group Cases Total
Northern < 35 61 2880262
Northern 35–44 76 564535
Northern 45–54 98 592983
Northern 55–64 104 450740
Northern 65–74 63 270908
Northern > 75 80 161850
Southern < 35 64 1074246
Southern 35–44 75 220407
Southern 45–54 68 198119
Southern 55–64 63 134084
Southern 65–74 45 70708
Southern > 75 27 34233

For this application of Poisson regression, the model of interest includes incremental
effects for age levels and region. The following DATA step inputs the melanoma data.

data melanoma;
input age $ region $ cases total;
ltotal=log(total);
datalines;

35-44 south 75 220407
45-54 south 68 198119
55-64 south 63 134084
65-74 south 45 70708
75+ south 27 34233
<35 south 64 1074246
35-44 north 76 564535
45-54 north 98 592983
55-64 north 104 450740
65-74 north 63 270908
75+ north 80 161850
<35 north 61 2880262
;
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The next statements invoke the PROC GENMOD procedure.

proc genmod data=melanoma order=data;
class age region;
model cases = age region

/ dist=poisson link=log offset=ltotal;
run;

In PROC GENMOD, the last sorted value of the CLASS variable determines the reference
cell. In order for the reference cell to be those subjects from the North who are less than 35
years old, the data are entered so that those less than 35 appear last for each region, and the
data for the South appear before the data for the North. Then, the ORDER=DATA option
is specified in the PROC GENMOD statement.

The MODEL statement specifies that a main effects model be fit; CASES is the response
variable, and AGE and REGION are the effects. The option DIST=POISSON specifies the
Poisson distribution, and the option LINK=LOG specifies that the link function is the log
function. The variable LTOTAL is to be treated as the offset. If you look in the preceding
DATA step, you see that LTOTAL is the log of TOTAL. Thus, you are fitting a loglinear
model to the ratio of cancer incidence to exposure.

Output 12.5 contains model specification information, and Output 12.6 contains
information about the sort levels of the CLASS variables. This confirms that the reference
level for the parameterization are those persons from the northern region who are younger
than 35.

Output 12.5 Model Information

Model Information

Data Set WORK.MELANOMA
Distribution Poisson
Link Function Log
Dependent Variable cases
Offset Variable ltotal
Observations Used 12

Output 12.6 Class Variable Information

Class Level Information

Class Levels Values

age 6 35-44 45-54 55-64 65-74 75+ <35
region 2 south north

Output 12.7 contains information on assessment of fit. SinceQP = 6:1151 and the
deviance has the value 6.2149, each with 5 df for their approximately chi-square
distributions, the fit is satisfactory.
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Output 12.7 Assessment of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 6.2149 1.2430
Scaled Deviance 5 6.2149 1.2430
Pearson Chi-Square 5 6.1151 1.2230
Scaled Pearson X2 5 6.1151 1.2230
Log Likelihood 2694.9262

Output 12.8 contains the table of estimated model parameters. The log incidence density
increases over each of the age intervals and also increases for the southern region.

Output 12.8 Estimated Model Parameters

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -10.6583 0.0952 -10.8449 -10.4718 12538.4 <.0001
age 35-44 1 1.7974 0.1209 1.5604 2.0344 220.92 <.0001
age 45-54 1 1.9131 0.1184 1.6810 2.1452 260.90 <.0001
age 55-64 1 2.2418 0.1183 2.0099 2.4737 358.89 <.0001
age 65-74 1 2.3657 0.1315 2.1080 2.6235 323.56 <.0001
age 75+ 1 2.9447 0.1320 2.6859 3.2035 497.30 <.0001
age <35 0 0.0000 0.0000 0.0000 0.0000 . .
region south 1 0.8195 0.0710 0.6803 0.9587 133.11 <.0001
region north 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

You can exponentiate these parameters to express incidence density ratios in a similar
manner to exponentiating parameters in logistic regression to obtain odds ratios. For
example, exponentiating the parameter estimate for the increment for ages 45–54,
e1:9131 = 6:774, gives you the ratio of the incidence of melanoma for those aged 45–54
relative to those less than 35. Similarly,e0:8195 = 2:269 is the ratio of the incidence of
melanoma for those from the southern region relative to those in the northern region.

12.5 Overdispersion in Lower Respiratory Infection Example

Researchers studying the incidence of lower respiratory illness in infants took repeated
observations of infants over one year. They studied 284 children and examined them every
two weeks. Explanatory variables evaluated included passive smoking (one or more
smokers in the household), socioeconomic status, and crowding. Refer to LaVange et al.
(1994) for more information on the study and a discussion of the analysis of incidence
densities. One outcome of interest was the total number of times, or counts, of lower
respiratory infection recorded for the year. The strategy was to model these counts with
Poisson regression. However, it is reasonable to expect that the children experiencing
colds are more likely to have other infections; therefore, there may be some additional
variance, or overdispersion, in these data.
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Overdispersion
Section 8.2.7 mentions overdispersion in the case of logistic regression. Overdispersion
occurs when the observed variance is larger than the nominal variance for a particular
distribution. It occurs with some regularity in the analysis of proportions and discrete
counts. This is not surprising for the assumed distributions (binomial and Poisson,
respectively) because the respective variances are fixed by a single parameter, the mean.
When present, overdispersion can have a major impact on inference so it needs to be taken
into account. Note that underdispersion also occurs. Refer to McCullagh and Nelder
(1989) and Dean (1998) for more detail on overdispersion.

One way to manage the overdispersion is to assume a more flexible distribution, such as
the negative binomial in the case of overdispersed Poisson data. You can also adjust the
covariance matrix of a Poisson-based analysis with a scaling factor. You expect that the
goodness-of-fit chi-squares have values close to their degrees of freedom with this
distribution; an indication of overdispersion is when their ratio is greater than 1. One way
to manage this is to allow the variance function to have a multiplicative factor, that is, the
variance is assumed to be�� instead of�. The chi-square statistic value divided by its
degrees of freedom is used as the scaling factor�. The covariance matrix is pre-multiplied
by the scaling factor, and the scaled deviance and the log likelihoods are divided by�, as is
the profile likelihood function used in computing the confidence limits. Note that when
there are indications of overdispersion, you also have to consider other causes besides
overdispersion such as outliers and a misspecified model.

The following DATA step inputs the data into a SAS data set named LRI.�

data lri;
input id count risk passive crowding ses agegroup race @@;
logrisk =log(risk/52);
datalines;

1 0 42 1 0 2 2 0 96 1 41 1 0 1 2 0 191 0 44 1 0 0 2 0
2 0 43 1 0 0 2 0 97 1 26 1 1 2 2 0 192 0 45 0 0 0 2 1
3 0 41 1 0 1 2 0 98 0 36 0 0 0 2 0 193 0 42 0 0 0 2 0
4 1 36 0 1 0 2 0 99 0 34 0 0 0 2 0 194 1 31 0 0 0 2 1
5 1 31 0 0 0 2 0 100 1 3 1 1 2 3 1 195 0 35 0 0 0 2 0
6 0 43 1 0 0 2 0 101 0 45 1 0 0 2 0 196 1 35 1 0 0 2 0
7 0 45 0 0 0 2 0 102 0 38 0 0 1 2 0 197 1 27 1 0 1 2 0
8 0 42 0 0 0 2 1 103 0 41 1 1 1 2 1 198 1 33 0 0 0 2 0
9 0 45 0 0 0 2 1 104 1 37 0 1 0 2 0 199 0 39 1 0 1 2 0

10 0 35 1 1 0 2 0 105 0 40 0 0 0 2 0 200 3 40 0 1 2 2 0
11 0 43 0 0 0 2 0 106 1 35 1 0 0 2 0 201 4 26 1 0 1 2 0
12 2 38 0 0 0 2 0 107 0 28 0 1 2 2 0 202 0 14 1 1 1 1 1
13 0 41 0 0 0 2 0 108 3 33 0 1 2 2 0 203 0 39 0 1 1 2 0
14 0 12 1 1 0 1 0 109 0 38 0 0 0 2 0 204 0 4 1 1 1 3 0
15 0 6 0 0 0 3 0 110 0 42 1 1 2 2 1 205 1 27 1 1 1 2 1
16 0 43 0 0 0 2 0 111 0 40 1 1 2 2 0 206 0 36 1 0 0 2 1
17 2 39 1 0 1 2 0 112 0 38 0 0 0 2 0 207 0 30 1 0 2 2 1
18 0 43 0 1 0 2 0 113 2 37 0 1 1 2 0 208 0 34 0 1 0 2 0
19 2 37 0 0 0 2 1 114 1 42 0 1 0 2 0 209 1 40 1 1 1 2 0
20 0 31 1 1 1 2 0 115 5 37 1 1 1 2 1 210 0 6 1 0 1 1 1

�Data provided by Lisa LaVange.
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21 0 45 0 1 0 2 0 116 0 38 0 0 0 2 0 211 1 40 1 1 1 2 0
22 1 29 1 1 1 2 1 117 0 4 0 0 0 3 0 212 2 43 0 1 0 2 0
23 1 35 1 1 1 2 0 118 2 37 1 1 1 2 0 213 0 36 1 1 1 2 0
24 3 20 1 1 2 2 0 119 0 39 1 0 1 2 0 214 0 35 1 1 1 2 1
25 1 23 1 1 1 2 0 120 0 42 1 1 0 2 0 215 1 35 1 1 2 2 0
26 1 37 1 0 0 2 0 121 0 40 1 0 0 2 0 216 0 43 1 0 1 2 0
27 0 49 0 0 0 2 0 122 0 36 1 0 0 2 0 217 0 33 1 1 2 2 0
28 0 35 0 0 0 2 0 123 1 42 0 1 1 2 0 218 0 36 0 1 1 2 1
29 3 44 1 1 1 2 0 124 1 39 0 0 0 2 0 219 1 41 0 0 0 2 0
30 0 37 1 0 0 2 0 125 2 29 0 0 0 2 0 220 0 41 1 1 0 2 1
31 2 39 0 1 1 2 0 126 3 37 1 1 2 2 1 221 1 42 0 0 0 2 1
32 0 41 0 0 0 2 0 127 0 40 1 0 0 2 0 222 0 33 0 1 2 2 1
33 1 46 1 1 2 2 0 128 0 40 0 0 0 2 0 223 0 40 1 1 2 2 0
34 0 5 1 1 2 3 1 129 0 39 0 0 0 2 0 224 0 40 1 1 1 2 1
35 1 29 0 0 0 2 0 130 0 40 1 0 1 2 0 225 0 40 0 0 2 2 0
36 0 31 0 1 0 2 0 131 1 32 0 0 0 2 0 226 0 28 1 0 1 2 0
37 0 22 1 1 2 2 0 132 0 46 1 0 1 2 0 227 0 47 0 0 0 2 1
38 1 22 1 1 2 2 1 133 4 39 1 1 0 2 0 228 0 18 1 1 2 2 1
39 0 47 0 0 0 2 0 134 0 37 0 0 0 2 0 229 0 45 1 0 0 2 0
40 1 46 1 1 1 2 1 135 0 51 0 0 1 2 0 230 0 35 0 0 0 2 0
41 0 37 0 0 0 2 0 136 1 39 1 1 0 2 0 231 1 17 1 0 1 1 1
42 1 39 0 0 0 2 0 137 1 34 1 1 0 2 0 232 0 40 0 0 0 2 0
43 0 33 0 1 1 2 1 138 1 14 0 1 0 1 0 233 0 29 1 1 2 2 0
44 0 34 1 0 1 2 0 139 2 15 1 0 0 2 0 234 1 35 1 1 1 2 0
45 3 32 1 1 1 2 0 140 1 34 1 1 0 2 1 235 0 40 0 0 2 2 0
46 3 22 0 0 0 2 0 141 0 43 0 1 0 2 0 236 1 22 1 1 1 2 0
47 1 6 1 0 2 3 0 142 1 33 0 0 0 2 0 237 0 42 0 0 0 2 0
48 0 38 0 0 0 2 0 143 3 34 1 0 0 2 1 238 0 34 1 1 1 2 1
49 1 43 0 1 0 2 0 144 0 48 0 0 0 2 0 239 6 38 1 0 1 2 0
50 2 36 0 1 0 2 0 145 4 26 1 1 0 2 0 240 0 25 0 0 1 2 1
51 0 43 0 0 0 2 0 146 0 30 0 1 2 2 1 241 0 39 0 1 0 2 0
52 0 24 1 0 0 2 0 147 0 41 1 1 1 2 0 242 1 35 0 1 2 2 1
53 0 25 1 0 1 2 1 148 0 34 0 1 1 2 0 243 1 36 1 1 1 2 1
54 0 41 0 0 0 2 0 149 0 43 0 1 0 2 0 244 0 23 1 0 0 2 0
55 0 43 0 0 0 2 0 150 1 31 1 0 1 2 0 245 4 30 1 1 1 2 0
56 2 31 0 1 1 2 0 151 0 26 1 0 1 2 0 246 1 41 1 1 1 2 1
57 3 28 1 1 1 2 0 152 0 37 0 0 0 2 0 247 0 37 0 1 1 2 0
58 1 22 0 0 1 2 1 153 0 44 0 0 0 2 0 248 0 46 1 1 0 2 0
59 1 11 1 1 1 1 0 154 0 40 1 0 0 2 0 249 0 45 1 1 0 2 1
60 3 41 0 1 1 2 0 155 0 8 1 1 1 3 1 250 1 38 1 1 1 2 0
61 0 31 0 0 1 2 0 156 0 40 1 1 1 2 1 251 0 10 1 1 1 1 0
62 0 11 0 0 1 1 1 157 1 45 0 0 0 2 0 252 0 30 1 1 2 2 0
63 0 44 0 1 0 2 0 158 0 4 0 0 2 3 0 253 0 32 0 1 2 2 0
64 0 9 1 0 0 3 1 159 1 36 0 1 0 2 0 254 0 46 1 0 0 2 0
65 0 36 1 1 1 2 0 160 3 37 1 1 1 2 0 255 5 35 1 1 2 2 1
66 0 29 1 0 0 2 0 161 0 15 1 0 0 1 0 256 0 44 0 0 0 2 0
67 0 27 0 1 0 2 1 162 1 27 1 0 1 2 1 257 0 41 0 1 1 2 0
68 0 36 0 1 0 2 0 163 2 31 0 1 0 2 0 258 2 36 1 0 1 2 0
69 1 33 1 0 0 2 0 164 0 42 0 0 0 2 0 259 0 34 1 1 1 2 1
70 2 13 1 1 2 1 1 165 0 42 1 0 0 2 0 260 1 30 0 1 0 2 1
71 0 38 0 0 0 2 0 166 1 38 0 0 0 2 0 261 1 27 1 0 0 2 0
72 0 41 0 0 0 2 1 167 0 44 1 0 0 2 0 262 0 48 1 0 0 2 0
73 0 41 1 0 2 2 0 168 0 45 0 0 0 2 0 263 1 6 0 1 2 3 1
74 0 35 0 0 1 2 0 169 0 34 0 1 0 2 0 264 0 38 1 1 0 2 1
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75 0 45 0 0 0 2 0 170 2 41 0 0 0 2 0 265 0 29 1 1 1 2 1
76 4 38 1 0 2 2 1 171 2 30 1 1 1 2 0 266 1 43 0 1 2 2 1
77 1 42 1 0 0 2 1 172 0 44 0 0 0 2 0 267 0 43 0 1 0 2 0
78 1 42 1 1 2 2 1 173 0 40 1 0 0 2 0 268 0 37 1 0 2 2 0
79 6 36 1 1 0 2 0 174 2 31 0 0 0 2 0 269 1 23 1 1 0 2 1
80 2 23 1 1 1 2 1 175 0 41 1 0 0 2 0 270 0 44 0 0 1 2 0
81 1 32 0 0 1 2 0 176 0 41 0 0 0 2 0 271 0 5 0 1 1 3 1
82 0 41 0 1 0 2 0 177 0 39 1 0 0 2 0 272 0 25 1 0 2 2 0
83 0 50 0 0 0 2 0 178 0 40 1 0 0 2 0 273 0 25 1 0 1 2 0
84 0 42 1 1 1 2 1 179 2 35 1 0 2 2 0 274 1 28 1 1 1 2 1
85 1 30 0 0 0 2 0 180 1 43 1 0 0 2 0 275 0 7 0 1 0 3 1
86 2 47 0 1 0 2 0 181 2 39 0 0 0 2 0 276 0 32 0 0 0 2 0
87 1 35 1 1 2 2 0 182 0 35 1 1 0 2 0 277 0 41 0 0 0 2 0
88 1 38 1 0 1 2 1 183 0 37 0 0 0 2 0 278 1 33 1 1 2 2 1
89 1 38 1 1 1 2 1 184 3 37 0 0 0 2 0 279 2 36 1 1 2 2 0
90 1 38 1 1 1 2 1 185 0 43 0 0 0 2 0 280 0 31 0 0 0 2 0
91 0 32 1 1 1 2 0 186 0 42 0 0 0 2 0 281 0 18 0 0 0 2 0
92 1 3 1 0 1 3 1 187 0 42 0 0 0 2 0 282 1 32 1 0 2 2 0
93 0 26 1 0 0 2 1 188 0 38 0 0 0 2 0 283 0 22 1 1 2 2 1
94 0 35 1 0 0 2 0 189 0 36 1 0 0 2 0 284 0 35 0 0 0 2 1
95 3 37 1 0 0 2 0 190 0 39 0 1 0 2 0
;

proc genmod data=lri;
class ses id race agegroup;
model count = passive crowding ses race agegroup /

dist=poisson offset=logrisk type3;
run;

Output 12.9 contains the general model information.

Output 12.9 Model Information

Model Information

Data Set WORK.LRI
Distribution Poisson
Link Function Log
Dependent Variable count
Offset Variable logrisk
Observations Used 284

Output 12.10 contains the goodness-of-fit statistics, along with the ratios of their values to
their degrees of freedom. With values of 1.4788 for the Deviance/df and 1.7951 for
Pearson/df, there is evidence of overdispersion. The model-based estimates of standard
errors may not be appropriate and therefore any inference is questionable. (When such
ratios are close to 1, you conclude that little evidence of over- or underdispersion exists).
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Output 12.10 Fit Statistics

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 276 408.1549 1.4788
Scaled Deviance 276 408.1549 1.4788
Pearson Chi-Square 276 495.4494 1.7951
Scaled Pearson X2 276 495.4494 1.7951
Log Likelihood -260.4117

The model is refit with a scaling factor specified to adjust for the overdispersion. This is
requested with the SCALE=PEARSON option, which computes a scaling factor that is the
Pearson Q statistic divided by its degrees of freedom.

proc genmod data=lri;
class ses id race agegroup;
model count = passive crowding ses race agegroup /

dist=poisson offset=logrisk type3 scale=pearson;
run;

Output 12.11 displays the goodness-of-fit statistics. Note that the scaled deviance and the
scaled Pearson chi-square have different values because they have been divided by the
scaling factor. The scaled Pearson chi-square is now 1 because the scaling factor requested
was the Pearson chi-square value divided by the df.

Output 12.11 Assessment of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 276 408.1549 1.4788
Scaled Deviance 276 227.3708 0.8238
Pearson Chi-Square 276 495.4494 1.7951
Scaled Pearson X2 276 276.0000 1.0000
Log Likelihood -145.0676

Output 12.12 contains the results of the Type 3 analysis. The chi-square statistics have
different values than in the previous analysis because of the scaling adjustment. Note that
this table also includesF statistics; the chi-square approximation to the likelihood ratio
test may have a less clear basis in this situation. Refer toSAS/STAT User’s Guide, Version
8 for more detail about their computation.
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Output 12.12 Type 3 Analysis

LR Statistics For Type 3 Analysis

Chi-
Source Num DF Den DF F Value Pr > F Square Pr > ChiSq

passive 1 276 3.89 0.0494 3.89 0.0484
crowding 1 276 5.86 0.0162 5.86 0.0155
ses 2 276 1.22 0.2966 2.44 0.2950
race 1 276 0.38 0.5408 0.38 0.5403
agegroup 2 276 1.07 0.3443 2.14 0.3429

Both passive smoking and crowding are strongly significant. Social economic status and
race do not appear to be influential, and neither does age group.

Finally, Output 12.13 contains the parameter estimates. The standard errors are adjusted
due to the scaling factor, and they are larger than the standard errors for the unadjusted
model, which are displayed in Output 12.14.

Output 12.13 Estimated Model Parameters
Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 0.6047 0.7304 -0.8269 2.0362 0.69 0.4077
passive 1 0.4310 0.2214 -0.0029 0.8649 3.79 0.0515
crowding 1 0.5199 0.2166 0.0953 0.9444 5.76 0.0164
ses 0 1 -0.3970 0.2886 -0.9627 0.1687 1.89 0.1690
ses 1 1 -0.0681 0.2627 -0.5830 0.4469 0.07 0.7956
ses 2 0 0.0000 0.0000 0.0000 0.0000 . .
race 0 1 0.1402 0.2309 -0.3123 0.5928 0.37 0.5436
race 1 0 0.0000 0.0000 0.0000 0.0000 . .
agegrou p 1 1 -0.4792 0.9043 -2.2516 1.2931 0.28 0.5962
agegrou p 2 1 -0.9919 0.6858 -2.3361 0.3522 2.09 0.1481
agegroup 3 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.3398 0.0000 1.3398 1.3398

NOTE: The scale parameter was estimated by the square root of Pearson’s Chi-Square/DOF.

Output 12.14 Estimated Model Parameters for Unadjusted Model

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 0.6047 0.5452 -0.4638 1.6732 1.23 0.2673
passive 1 0.4310 0.1652 0.1072 0.7548 6.81 0.0091
crowding 1 0.5199 0.1617 0.2030 0.8367 10.34 0.0013
ses 0 1 -0.3970 0.2154 -0.8192 0.0252 3.40 0.0653
ses 1 1 -0.0681 0.1961 -0.4524 0.3163 0.12 0.7285
ses 2 0 0.0000 0.0000 0.0000 0.0000 . .
race 0 1 0.1402 0.1723 -0.1975 0.4780 0.66 0.4158
race 1 0 0.0000 0.0000 0.0000 0.0000 . .
agegrou p 1 1 -0.4792 0.6749 -1.8020 0.8436 0.50 0.4777
agegrou p 2 1 -0.9919 0.5119 -1.9951 0.0113 3.76 0.0526
agegroup 3 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

See Section 15.14 in Chapter 15 for another method to adjust for overdispersion in these
data.
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Chapter 13

Weighted Least Squares

13.1 Introduction

Previous chapters discussed statistical modeling of categorical data with logistic
regression. Maximum likelihood estimation (ML) was used to estimate parameters for
models based on logits and cumulative logits. Logistic regression is suitable for many
situations, particularly for dichotomous response outcomes. However, there are situations
where modeling techniques other than logistic regression are of interest. You may be
interested in modeling functions besides logits, such as mean scores, proportions, or more
complicated functions of the responses. In addition, the analysis framework may dictate a
different modeling approach, such as in the case of repeated measurements studies.

Weighted least squares (WLS) estimation provides a methodology for modeling a wide
range of categorical data outcomes. This chapter focuses on the application of weighted
least squares for the modeling of mean scores and proportions in the stratified simple
random sampling framework, as well as for the modeling of estimates produced by more
complex sampling mechanisms, such as those required for complex sample surveys. The
methodology is explained in the context of a basic example.

The CATMOD procedure is a general procedure for modeling categorical data. It performs
logistic regression analysis using maximum likelihood estimation when the response
functions are generalized logits, and it performs weighted least squares estimation for a
variety of other response functions. This chapter discusses the use of PROC CATMOD for
numerous applications of weighted least squares analyses. Chapter 14, “Modeling
Repeated Measurements Data with WLS,” discusses the use of weighted least squares for
the advanced topic of repeated measurements analysis.

You should be familiar with the material in Chapter 8, “Logistic Regression I:
Dichotomous Response,” and Chapter 9, “Logistic Regression II: Polytomous Response,”
before proceeding with this chapter.

13.2 Weighted Least Squares Methodology

To motivate the discussion of weighted least squares methodology, consider the following
example. Epidemiologists investigating air pollution effects conducted a study of
childhood respiratory disease (Stokes 1986). Investigators visited groups of children two
times and recorded whether they were exhibiting symptoms of colds. The children were
recorded as having no periods with a cold, one period with a cold, or two periods with a
cold. Investigators were interested in determining whether sex or residence affected the
distribution of colds. These data are displayed in Table 13.1.
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Table 13.1. Colds in Children

Periods with Colds
Sex Residence 0 1 2 Total
Female Rural 45 64 71 180
Female Urban 80 104 116 300
Male Rural 84 124 82 290
Male Urban 106 117 87 310

As previously discussed, statistical modeling addresses the question of how a response
outcome is distributed across the various levels of the explanatory variables. In the
standard linear model, this is done by fitting a model to the response mean. In logistic
regression, the function modeled is the logit or cumulative logit. For these data, a response
measure of interest is the mean number of periods with colds. However, because there are
a small, discrete number of response values, it is unlikely that the normality assumptions
usually required for the standard linear model are met. However, weighted least squares
methodology provides a useful strategy for analyzing these data.

13.2.1 Weighted Least Squares Framework

Underlying most types of weighted least squares methods for categorical data analysis is a
contingency table. The general idea is to model the distribution of the response variable,
represented in the columns of the table, across the levels of the explanatory variables,
represented by the rows of the table. These rows are determined by the cross-classification
of the levels, or values, of the explanatory variables. The contingency table for the colds
data has four rows and three columns. There are four rows since there are four
combinations of sex and residence; there are three columns because the response variable
has three possible outcomes: 0, 1, and 2.

The general contingency table is displayed in Table 13.2, wheres represents the number of
rows, or groups, in the table andr represents the number of responses. The rows of the
table are also referred to as subpopulations.

Table 13.2. Underlying Contingency Table

Response
Group 1 2 � � � r Total

1 n11 n12 � � � n1r n1+
2 n21 n22 � � � n2r n2+
� � � � � � � � � � � � � � � � � �
s ns1 ns2 � � � nsr ns+

The proportion of subjects in each group who have each response is written

pij = nij=ni+

wherenij is the number of subjects in theith group who have thejth response. For
example,p11 = 45=180 in Table 13.1. You can put the proportions for one group together
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in a proportion vector that describes the response distribution for that group. For the colds
data, it looks like the following:

pi = (pi1; pi2; pi3)
0

You can then form a proportion vector for each group in the contingency table. The
proportions for each group add up to 1. All the functions that can be modeled with
weighted least squares methodology are generated from these proportion vectors.

The rows of the contingency table are considered to be simple random samples from the
multinomial distribution; since the rows are independent, the entire table is distributed as
product multinomial. You can write the covariance matrix for the proportions in theith
row as

Vi =
1

ni+

26664
pi1(1� pi1) �pi1pi2 � � � �pi1pir
�pi2pi1 pi2(1� pi2) � � � �pi2pir

...
...

...
...

�pirpi1 �pirpi2 � � � pir(1� pir)

37775
and then write the covariance matrix for the entire table as

Vp =

26664
V1 0 � � � 0
0 V2 � � � 0
...

...
...

...
0 0 � � � Vs

37775
whereVi is the covariance matrix for theith row.

13.2.2 Weighted Least Squares Estimation

Once the proportion vector and covariance matrix are computed, the modeling phase
begins with the choice of a response function. You can model the proportions themselves;
mean scores, which are simple linear functions of the proportions; logits, which are
constructed by taking a linear function (difference) of the log proportions; and a number of
more complicated functions that are created by combinations of various transformations of
the proportions, such as the kappa statistic for observer agreement (refer to Landis and
Koch 1977) or rank measures of association (refer to Koch and Edwards 1988).

For the colds data, the response function is the mean number of periods with a cold. You
construct these means from the proportions of responses in each row of Table 13.1 and
then apply a statistical model that determines the effect of sex and residence on their
distribution. Table 13.3 displays the row proportions.
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Table 13.3. Colds in Children

Periods with Colds
Sex Residence 0 1 2 Total
Female Rural 0.25 0.36 0.39 1.00
Female Urban 0.27 0.35 0.39 1.00
Male Rural 0.29 0.43 0.28 1.00
Male Urban 0.34 0.38 0.28 1.00

For example, to compute the mean number of periods of colds for females in a rural
residence, you would perform the following computation.

mean colds= 0 � p11 + 1 � p12 + 2 � p13
= 0 � (0:25) + 1 � (0:36) + 2 � (0:39)
= 1:14

In matrix terms, you have multiplied the proportion vector by a linear transformation
matrix A.

Ap1 =
�
0 1 2

� 24 0:25
0:36
0:39

35 = 1:14

Means are generated for each sex� residence group to produce a total of four functions
for the table. Theith function is denotedF (pi) . The following expression shows how you
generate a function vector by applying a linear transformation matrix to the total
proportion vectorp = (p01;p

0
2;p

0
3;p

0
4)
0 to produce the four means of interest.

F (p) = Ap =

2664
0 1 2 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 1 2 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2

3775p =

2664
1:14
1:12
0:99
0:94

3775
If the groups have sufficient sample size, usuallyni+ � 25, then the variation among the
response functions can be investigated by fitting linear regression models with weighted
least squares.

EAfF(p)g = F(�) = X�

EA denotes asymptotic expectation, and� = Efpg denotes the vector of population
probabilities for all the populations together. The vector� contains the parameters that
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describe the variation among the response functions, andX is the model specification
matrix. The equations for WLS estimation are similar to those for least squares estimation.

b = (X0V�1
F X)�1X0V�1

F F

VF is the covariance matrix for the vector of response functions and is usually nonsingular
when the sample sizesni+ are sufficiently large (for example,ni+ � 25 and at least two
nij � 1 in each row). This is the weight matrix component of weighted least squares
estimation. Its form depends on the nature of the response functions. In the case of the
colds data, where the response functions are means computed asAp, the covariance
matrix is computed as

VF = AVpA
0

The covariance matrix forb is written

V (b) = (X0V�1
F X)�1

Model adequacy is assessed with Wald goodness-of-fit statistics. They are computed as

QW = (F�Xb)0V�1
F (F�Xb)

QW is distributed as chi-square for moderately large sample sizes (for example, all
ni+ � 25), and its degrees of freedom are equal to the difference between the number of
rows ofF (p) and the number of parameters. If only one response function is created per
row of the contingency table, then this is the number of table rows minus the number of
estimated parameters.

You can address questions about the parameters with the use of hypothesis tests. Each
hypothesis is written in the form

H0:C� = 0

and can investigate whether specified linear combinations of the parameters are equal to
zero. The test statistic employed is a Wald statistic that is expressed as

QC = (Cb)0[C(X0V�1
F X)�1C0]�1(Cb)

QC is distributed as chi-square with degrees of freedom equal to the number of linearly
independent rows inC.

You can also generate predicted valuesF̂ = Xb of the response functions and their
covariance matrixV

F̂
= XV(b)X0. See Appendix A in this chapter for more statistical

theory concerning weighted least squares estimation.
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13.2.3 Model Parameterization

The preliminary model of interest for a WLS analysis is often thesaturatedmodel, in
which all the variation is explained by the parameters. In a saturated model, there are as
many parameters in the model as there are response functions. For these data, the saturated
model is written

2664
F (p1)
F (p2)
F (p3)
F (p4)

3775 =

2664
� + �1 + �2 + �3
� + �1 � �2 � �3
� � �1 + �2 � �3
� � �1 � �2 + �3

3775 =

2664
1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3775
2664
�
�1
�2
�3

3775
Here,� is a centered intercept,�1 is the differential effect for sex,�2 is the differential
effect for residence, and�3 represents their interaction. The intercept is the mean number
of colds averaged over all the groups. The differential effects represent average deviations
from the mean;�1 is the amount you need to add to the average of the mean periods with
colds to compute the mean number of colds for females (averaged over residence); it is
also the amount you need to subtract from the average of the mean periods with colds to
compute the mean number of colds for males (averaged over residence).

As discussed in Section 8.8, this type of parameterization is the default for the CATMOD
procedure and is called deviation from the mean parameterization; it is afull rank
parameterization. This imposes restrictions on the parameters, unlike the GLM procedure,
which uses an overparameterized model that does not place restrictions on the parameters.
In PROC CATMOD, if an effect such as sex or residence hass levels, then it is represented
by s� 1 parameters. The same effect would be represented bys parameters in PROC
GLM. To understand the restrictions imposed by PROC CATMOD, consider the sex effect
for the colds data and consider a model that contains only the intercept and the sex effect.
You could write such a model as

EfF (pi)g = �+ �i

where� represents the overall mean, and�i represents theith level of the main effect.

EfF (p1)g = �+ �1; EfF (p2)g = �+ �1

and

EfF (p3)g = �+ �2; EfF (p4)g = �+ �2

In matrix terms, this model would be written

2664
F (p1)
F (p2)
F (p3)
F (p4)

3775 =

2664
� + �1
� + �1
� + �2
� + �2

3775 =

2664
1 1 0
1 1 0
1 0 1
1 0 1

3775
24 ��1
�2

35
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If you add these equations, you obtain

E

� 4X
i=1

F (pi)

�
= 4� + 2(�1 + �2)

or

Ef �F g = �+ (�1 + �2)=2

Since

Ef �F g = �

and� is the overall mean, there is an implied restriction that

�1 + �2 = 0

or that�1 = ��2. Thus,�2 would be redundant in the model since it is a linear combination
of other model parameters, and it can be eliminated. If you have an effect with two levels,
it is represented in PROC CATMOD with one parameter. Similarly, if you have an effect
that hass levels, then that effect is represented withs� 1 parameters. Understanding the
parameterization is important in understanding what the model coefficients represent, how
the degrees of freedom are determined, and how to construct contrast tests.

13.3 Using PROC CATMOD for Weighted Least Squares
Analysis

Since the CATMOD procedure is very general, it offers great flexibility in its input.
Standard uses that take advantage of defaults may require no more than three or four
statements. More statements are required if you take advantage of the facilities for
repeated measurements analysis or loglinear model analysis. And the input can be quite
rich if you choose to create your own response functions through the specification of the
appropriate matrix operations or create your own parameterization by directly inputting
your model matrix.

The analysis for the colds data requires minimal input. You need to specify the input data
set, the WEIGHT variable if the data are in count form, the response function, and the
desired model in a MODEL statement. The MODEL statement is the only required
statement for PROC CATMOD.

First, a SAS data set is created for the colds data.

data colds;
input sex $ residence $ periods count @@;
datalines;

female rural 0 45 female rural 1 64 female rural 2 71
female urban 0 80 female urban 1 104 female urban 2 116



372 Weighted Least Squares

male rural 0 84 male rural 1 124 male rural 2 82
male urban 0 106 male urban 1 117 male urban 2 87
;
run;

The following set of SAS statements request that a weighted least squares analysis be
performed for the mean response, using the saturated model.

proc catmod;
weight count;
response means;
model periods = sex residence sex*residence /freq prob;

run;

The WEIGHT statement works the same as it does for the FREQ procedure; the WEIGHT
variable contains the count of observations that have the values listed in the data line. As
with PROC FREQ, you can supply input data in raw form, one observation per data line,
or in count form. The RESPONSE statement specifies the response functions. If you leave
out this statement, PROC CATMOD models generalized logits with maximum likelihood
estimation. Specifying the MEANS keyword requests that mean response functions be
constructed for each subpopulation; the default estimation method for functions other than
generalized logits is weighted least squares.

The MODEL statement requests that PROC CATMOD fit a model that includes main
effects for sex and residence as well as their interaction. The effects specification is similar
to that used in the GLM procedure. The effects for sex and residence each have 1 df, and
their interaction also has 1 df. Since the model also includes an intercept by default, this
model is saturated. There are four parameters for the four response functions.

PROC CATMOD uses the explanatory variables listed in the right-hand side of the
MODEL statement to determine the rows of the underlying contingency table. Since the
variable SEX has two levels and the variable RESIDENCE has two levels, PROC
CATMOD forms a contingency table that has four rows. The columns of the underlying
contingency table are determined by the number of values for the response variable on the
left-hand side of the MODEL statement. Since there can be 0, 1, or 2 periods with colds,
there are three columns in this table.

The FREQ and PROB options in the MODEL statement cause the frequencies and
proportions from the underlying contingency table to be printed.

Output 13.1 displays the population and response profiles, which represent the rows and
columns of the underlying table, respectively. Output 13.2 displays the underlying
frequency table and the corresponding table of proportions. PROC CATMOD labels each
group or subpopulation “Sample n”; you often need to refer back to the “Population
Profiles” table to interpret other parts of the PROC CATMOD output. You should always
check the population and response profiles to ensure that you have defined the underlying
frequency table as you intended.
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Output 13.1 Population and Response Profiles

Population Profiles

Sample sex residence Sample Size
--------------------------------------------

1 female rural 180
2 female urban 300
3 male rural 290
4 male urban 310

Response Profiles

Response periods
-------------------

1 0
2 1
3 2

Output 13.2 Table Frequencies and Proportions

Response Frequencies

Response Number
Sample 1 2 3
---------------------------------

1 45 64 71
2 80 104 116
3 84 124 82
4 106 117 87

Response Probabilities

Response Number
Sampl e 1 2 3
---------------------------------------

1 0.25000 0.35556 0.39444
2 0.26667 0.34667 0.38667
3 0.28966 0.42759 0.28276
4 0.34194 0.37742 0.28065

PROC CATMOD output includes a table of response function values and the model
matrix, labeled “Design Matrix” in Output 13.3. The response functions are the mean
number of periods with colds for each of the populations.

Output 13.3 Observed Response Functions and Model Matrix

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4
--------------------------------------------------------

1 1.14444 1 1 1 1
2 1.12000 1 1 -1 -1
3 0.99310 1 -1 1 -1
4 0.93871 1 -1 -1 1
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Model-fitting results are displayed in Output 13.4 in a table labeled “Analysis of Variance”
for its similarity in function to an ANOVA table.

Output 13.4 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-----------------------------------------------
Intercept 1 1841.13 <.0001
sex 1 11.57 0.0007
residence 1 0.65 0.4202
sex*residence 1 0.09 0.7594

Residual 0 . .

The effects listed in the right-hand side of the MODEL statement are listed under
“Source.” Unless otherwise specified, an intercept is included in the model. If there is one
response function per subpopulation, the intercept has 1 df. The statistics printed under
“Chi-Square” are Wald statistics. Also provided are the degrees of freedom for each effect
and correspondingp-value.

The last row contains information labeled “Residual.” Normally, this line contains a
chi-square value that serves as a goodness-of-fit test for the specified model. However, in
this case, the model uses four parameters to fit four response functions. The fit must
necessarily be perfect, and thus the model explains all the variation among the response
functions. The degrees of freedom are zero since the degrees of freedom forQW are equal
to the difference in the number of response functions and the number of parameters. The
SAS System prints out missing values under “Chi-Square” and “Prob” for zero degrees of
freedom.

Since the model fits, it is appropriate to examine the chi-square statistics for the individual
effects. With a chi-square value of 0.09 andp = 0:7594, the SEX*RESIDENCE
interaction is clearly nonsignificant. SEX appears to be a strong effect and RESIDENCE a
negligible effect, but these are better assessed in the context of the main effects model that
remains after the interaction term is deleted, since the estimation of these main effects is
better in the absence of the interaction.

The following statements request the main effects model and produce the analysis of
variance table displayed in Output 13.5.

proc catmod;
weight count;
response means;
model periods = sex residence;

run;
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Output 13.5 Preliminary Colds Output

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 1882.77 <.0001
sex 1 12.08 0.0005
residence 1 0.76 0.3839

Residual 1 0.09 0.7594

Look at the goodness-of-fit statistic.QW = 0:09 with 1 df andp = 0:7594. The main
effects model adequately fits the data. The smaller the goodness-of-fit chi-square value,
and correspondingly the larger thep value, the better the fit. This is different from the
modelF statistic in the usual linear model setting, where theF value is high for a model
that fits the data well in the sense of explaining a large amount of the variation. Strictly
speaking, using the usual significance level of� = 0:05, anyp-value greater than 0.05
supports an adequate model fit. However, many analysts are more comfortable with
goodness-of-fitp-values that are greater than 0.15.

The effect for sex is highly significant,p < 0:001. However, the effect for residence
remains nonsignificant when the interaction is removed from the model,p = 0:3839.
These results suggest that a model with a single main effect for SEX is appropriate.

Consider the following statements to perform this task. The MODEL statement contains
the response variable PERIODS and a single explanatory variable, SEX. This should
produce the desired model. However, recall that the variables listed in the right-hand side
of the MODEL statement are also used to determine the underlying contingency table
structure. This table has its rows determined by both SEX and RESIDENCE. If
RESIDENCE isnot included in the MODEL statement, as shown in the following
statements, then PROC CATMOD would create two groups based on SEX instead of four
groups based on SEX and RESIDENCE.

proc catmod;
weight count;
response means;
model periods = sex;

run;

However, you need to maintain the sampling structure of the underlying table. The
solution is the addition of the POPULATION statement. When a POPULATION statement
is included, the variables listed in it determine the populations, not the variables listed in
the MODEL statement. So, you can let the right-hand variables on the MODEL statement
determine the populations so long as all the necessary variables are included; if not, you
need to use a POPULATION statement. Some analysts use the POPULATION statement
for all PROC CATMOD invocations as a precautionary measure.

The following code requests the single main effect model.



376 Weighted Least Squares

proc catmod;
population sex residence;
weight count;
response means;
model periods = sex;

run;

The table of population profiles for the invocation using the POPULATION statement is
identical to those produced by previous invocations without it, but including both SEX and
RESIDENCE as explanatory variables.

Output 13.6 POPULATION Statement Results

Population Profiles

Sample sex residence Sample Size
--------------------------------------------

1 female rural 180
2 female urban 300
3 male rural 290
4 male urban 310

The analysis of variance table now includes only one main effect, SEX. The residual
goodness-of-fitQW = 0:85, with 2 df andp = 0:6531, indicating an adequate fit.

Output 13.7 Single Main Effect ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 1899.55 <.0001
sex 1 11.53 0.0007

Residual 2 0.85 0.6531

Compare this analysis of variance table with that displayed in Output 13.5.

Note thatQW for the reduced model (0.85) is the sum ofQW for the two effects model
(QW = 0:09) plus the value of the Wald statistic for the effect for residence (0.76). This is
a property of weighted least squares. When you delete a term from a model, the residual
chi-square for the goodness of fit for the new model is equal to the old model’s residual
chi-square value plus the chi-square value for the particular effect. This is also true for
maximum likelihood estimation when likelihood ratio tests are used for goodness of fit and
for particular effects, but not when the Wald statistic is used with maximum likelihood
estimation. Similarly, note that theQW = 0:09 for the two main effects model of
Output 13.5 is equal to the chi-square for the interaction term in the saturated model
(Output 13.4).

When an effect is deleted, any variation attributed to that effect is put into the residual
variation, which is the variation that the model does not explain; this variation is
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essentially random for well-fitting models. If the residual variation is low, the residual
chi-square will be small, indicating that the model explains the variation in the response
fairly well. If the residual variation is high, the residual chi-square will be large, with a
correspondingly lowp-value, indicating that the residual variation is significantly different
from zero. The implication is that the model lacks necessary terms.

Finally, note that the degrees of freedom for the goodness of fit for the reduced model are
increased by the number of degrees of freedom for the deleted effect, in this case from 1
to 2, since residence had one degree of freedom.

PROC CATMOD also prints out a table containing the parameter estimates. Since the
model fits, it is appropriate to examine this table, displayed in Output 13.8.

Output 13.8 Single Main Effect Model

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 1.0477 0.0240 1899.55 <.0001
sex 2 0.0816 0.0240 11.53 0.0007

Listed under “Effect” are the parameters estimated for the model. Since sex is represented
by one parameter, only one estimate is listed. Since females are listed first under SEX in
the population profile of Output 13.6, the effect for sex is the differential effect for
females. If an effect has more than one parameter, each of them is listed, as well as the
associated standard error, Wald statistic, andp-value. Since sex is represented by only one
parameter, the chi-square value listed in the table of WLS estimates is identical to that
listed in the analysis of variance table. This won’t happen for those effects comprised of
more than one parameter, since the effect test listed in the analysis of variance table is the
test of whether all the effect’s parameters are jointly zero, and the chi-square tests listed in
the parameter estimates table are always one degree of freedom tests for each of the
individual parameters.

To summarize, the model that most effectively describes these data is a single main effect
model where sex is the main effect. Its goodness of fit is satisfactory and the model is
parsimonious in the sense of not including factors with essentially no association with the
response. Girls reported more colds than boys; the model-predicted mean number of
periods with colds for girls is

�Fgirls = �+ �1 = 1:0477 + 0:0816 = 1:1293

and the model-predicted mean number of periods with colds for boys is

�Fboys = �� �1 = 1:0477 � 0:0816 = 0:9661



378 Weighted Least Squares

13.4 Analysis of Means: Performing Contrast Tests

Frequently, the underlying contingency table is based on more than two factors. This
section discusses how to build models in a multifactor framework, how to specify scores
for the response variable, and how to construct contrast tests with the CATMOD
procedure. In addition, the interactive use of PROC CATMOD is explained.

Model building for more complicated cross-classification structures follows a similar
strategy to that illustrated in the analysis of the colds data set. Consider the following data
from a randomized clinical trial of chronic pain. Investigators were interested in
comparing an active treatment with a placebo for an aspect of the condition of patients in
the study. These patients were obtained from two investigators whose research design
included stratified randomization relative to four diagnostic classes.

Table 13.4. Chronic Pain Clinical Trial

Diagnostic Patient Status
Class Investigator TreatmentPoor Fair Moderate Good Excellent

I A Active 3 2 2 1 0
I A Placebo 7 0 1 1 1
I B Active 1 6 1 5 3
I B Placebo 5 4 2 3 3
II A Active 1 0 1 2 2
II A Placebo 1 1 0 1 1
II B Active 0 1 1 1 6
II B Placebo 3 1 1 5 0
III A Active 2 0 3 3 2
III A Placebo 5 0 0 8 1
III B Active 2 4 1 10 3
III B Placebo 2 5 1 4 2
IV A Active 8 1 3 4 0
IV A Placebo 5 0 3 3 0
IV B Active 1 5 2 3 1
IV B Placebo 3 4 3 4 2

If you look at the cell sizes in this table, you will see that they are small, ranging from 0 to
10. Such small sample sizes rule out the possibility of modeling multiple response
functions per group, such as generalized logits or cumulative logits, as was discussed in
previous chapters. However, there is marginally adequate sample size to model one
function per group, such as a mean score. If you assign scores to the categories of patient
status, such as the integers 1–5 to poor–excellent, respectively, then you can model the
mean patient response score with weighted least squares.

The following SAS statements input the data.
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data cpain;
input dstatus $ invest $ treat $ status $ count @@;
datalines;

I A active poor 3 I A active fair 2 I A active moderate 2
I A active good 1 I A active excel 0
I A placebo poor 7 I A placebo fair 0 I A placebo moderate 1
I A placebo good 1 I A placebo excel 1
I B active poor 1 I B active fair 6 I B active moderate 1
I B active good 5 I B active excel 3
I B placebo poor 5 I B placebo fair 4 I B placebo moderate 2
I B placebo good 3 I B placebo excel 3
II A active poor 1 II A active fair 0 II A active moderate 1
II A active good 2 II A active excel 2
II A placebo poor 1 II A placebo fair 1 II A placebo moderate 0
II A placebo good 1 II A placebo excel 1
II B active poor 0 II B active fair 1 II B active moderate 1
II B active good 1 II B active excel 6
II B placebo poor 3 II B placebo fair 1 II B placebo moderate 1
II B placebo good 5 II B placebo excel 0
III A active poor 2 III A active fair 0 III A active moderate 3
III A active good 3 III A active excel 2
III A placebo poor 5 III A placebo fair 0 III A placebo moderate 0
III A placebo good 8 III A placebo excel 1
III B active poor 2 III B active fair 4 III B active moderate 1
III B active good 10 III B active excel 3
III B placebo poor 2 III B placebo fair 5 III B placebo moderate 1
III B placebo good 4 III B placebo excel 2
IV A active poor 8 IV A active fair 1 IV A active moderate 3
IV A active good 4 IV A active excel 0
IV A placebo poor 5 IV A placebo fair 0 IV A placebo moderate 3
IV A placebo good 3 IV A placebo excel 0
IV B active poor 1 IV B active fair 5 IV B active moderate 2
IV B active good 3 IV B active excel 1
IV B placebo poor 3 IV B placebo fair 4 IV B placebo moderate 3
IV B placebo good 4 IV B placebo excel 2
;

The saturated model is fit as the preliminary model. The following PROC CATMOD
statements request this analysis. Note the use of the bar notation in the MODEL statement
to specify that the model includes all interactions of the specified factors in addition to
their main effects.

proc catmod order=data;
weight count;
response 1 2 3 4 5;
model status=dstatus|invest|treat;

run;

Since the response variable STATUS is character valued, you need to specify scores for its
levels. You can do this by specifying numeric values in the RESPONSE statement. This
RESPONSE statement causes a mean score to be created based on scoring the first
response variable level as 1, the second response variable level as 2, and so on. Specifying
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the ORDER=DATA option in the PROC CATMOD statement forces the levels of the
response variable to be the same as the order in which they appear in the data, that is, poor,
fair, moderate, good, and excellent.

Output 13.9 contains the population profiles, and Output 13.10 contains the response
profiles.

Output 13.9 Population Profiles

Population Profiles

Sample dstatus invest treat Sample Size
-----------------------------------------------------

1 I A active 8
2 I A placebo 10
3 I B active 16
4 I B placebo 17
5 II A active 6
6 II A placebo 4
7 II B active 9
8 II B placebo 10
9 III A active 10

10 III A placebo 14
11 III B active 20
12 III B placebo 14
13 IV A active 16
14 IV A placebo 11
15 IV B active 12
16 IV B placebo 16

Output 13.10 Response Profiles

Response Profiles

Response status
--------------------

1 poor
2 fair
3 moderate
4 good
5 excel

Output 13.11 contains the model matrix and the response functions. The functions are the
mean patient status scores based on integer scoring.
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Output 13.11 Response Functions

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5 6 7 8
--------------------------------------------------------------------------

1 2.12500 1 1 0 0 1 1 0 0
2 1.90000 1 1 0 0 1 1 0 0
3 3.18750 1 1 0 0 -1 -1 0 0
4 2.70588 1 1 0 0 -1 -1 0 0
5 3.66667 1 0 1 0 1 0 1 0
6 3.00000 1 0 1 0 1 0 1 0
7 4.33333 1 0 1 0 -1 0 -1 0
8 2.80000 1 0 1 0 -1 0 -1 0
9 3.30000 1 0 0 1 1 0 0 1

10 3.00000 1 0 0 1 1 0 0 1
11 3.40000 1 0 0 1 -1 0 0 -1
12 2.92857 1 0 0 1 -1 0 0 -1
13 2.18750 1 -1 -1 -1 1 -1 -1 -1
14 2.36364 1 -1 -1 -1 1 -1 -1 -1
15 2.83333 1 -1 -1 -1 - 1 1 1 1
16 2.87500 1 -1 -1 -1 - 1 1 1 1

Response Functions and Design Matrix

Design Matrix
Sample 9 10 11 12 13 14 15 16
----------------------------------------------------------------------------

1 1 1 0 0 1 1 0 0
2 -1 -1 0 0 -1 -1 0 0
3 1 1 0 0 -1 -1 0 0
4 -1 -1 0 0 1 1 0 0
5 1 0 1 0 1 0 1 0
6 -1 0 -1 0 -1 0 -1 0
7 1 0 1 0 -1 0 -1 0
8 -1 0 -1 0 1 0 1 0
9 1 0 0 1 1 0 0 1

10 -1 0 0 -1 -1 0 0 -1
11 1 0 0 1 -1 0 0 -1
12 -1 0 0 -1 1 0 0 1
13 1 -1 -1 -1 1 -1 -1 -1
14 -1 1 1 1 -1 1 1 1
15 1 -1 -1 -1 -1 1 1 1
16 -1 1 1 1 1 -1 -1 -1

The saturated model results are displayed in Output 13.12.

Output 13.12 ANOVA Table for Saturated Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
------------------------------------------------------
Intercept 1 764.24 <.0001
dstatus 3 13.83 0.0031
invest 1 4.36 0.0368
dstatus*invest 3 3.28 0.3506
treat 1 4.21 0.0401
dstatus*treat 3 3.55 0.3143
invest*treat 1 0.72 0.3966
dstatus*invest*treat 3 0.34 0.9515

Residual 0 . .
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Since the model is saturated, there is no residual variation and the fit is perfect. The
interaction DSTATUS*INVEST*TREAT has a chi-square of 0.34 with 3 df (p = 0:9515),
which is clearly nonsignificant. Thus, the next stage of modeling is to remove this
interaction and examine the two-way interactions to see if they change. Since the reduced
model is reduced by this one term, its goodness-of-fit chi-square will be equal to 0.34.
With PROC CATMOD, you can enter statements interactively. For example, you can
specify that the pairwise interactions model be fit by submitting the following MODEL
statement.

model status=dstatus|invest|treat@2; run;

The procedure will be invoked using the previously submitted statements (from page 379)
and substituting the new MODEL statement for the previous one. PROC CATMOD
remains in this interactive mode until it encounters a QUIT, PROC, or DATA statement.
(Most of the examples in this book contain the full code for completeness).

Output 13.13 contains the ANOVA table for this reduced model.

Output 13.13 ANOVA Table for Pairwise Interactions Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
------------------------------------------------
Intercept 1 776.58 <.0001
dstatus 3 13.50 0.0037
invest 1 4.87 0.0274
dstatus*invest 3 3.22 0.3589
treat 1 5.31 0.0212
dstatus*treat 3 5.33 0.1494
invest*treat 1 0.47 0.4943

Residual 3 0.34 0.9515

Since the pairwise interactions DSTATUS*INVEST, DSTATUS*TREAT, and
INVEST*TREAT are all nonsignificant, withp-values of 0.3589, 0.1494, and 0.4943,
respectively, the model excluding these terms is fit next.

model status=dstatus invest treat; run;

Output 13.14 contains the ANOVA table for the main effects model.

Output 13.14 ANOVA Table for Main Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 843.00 <.0001
dstatus 3 15.41 0.0015
invest 1 6.74 0.0094
treat 1 3.71 0.0540

Residual 10 10.20 0.4229
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QW = 10:20, with 10 df andp = 0:4229, and is indicative of a satisfactory fit. All of the
main effects are significant, although TREAT is on the border for the� = 0:05
significance level criterion withp = 0:0540. It is kept in the model.

The model matrix for this model is displayed in Output 13.15, and the parameter estimates
are displayed in Output 13.16.

Output 13.15 Model Matrix

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5 6
--------------------------------------------------------------------------

1 2.12500 1 1 0 0 1 1
2 1.90000 1 1 0 0 1 -1
3 3.18750 1 1 0 0 -1 1
4 2.70588 1 1 0 0 -1 -1
5 3.66667 1 0 1 0 1 1
6 3.00000 1 0 1 0 1 -1
7 4.33333 1 0 1 0 -1 1
8 2.80000 1 0 1 0 -1 -1
9 3.30000 1 0 0 1 1 1

10 3.00000 1 0 0 1 1 -1
11 3.40000 1 0 0 1 -1 1
12 2.92857 1 0 0 1 -1 -1
13 2.18750 1 -1 -1 -1 1 1
14 2.36364 1 -1 -1 -1 1 -1
15 2.83333 1 -1 -1 -1 -1 1
16 2.87500 1 -1 -1 -1 -1 -1

Output 13.16 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 2.9079 0.1002 843.00 <.0001
dstatus 2 -0.3904 0.1621 5.80 0.0161

3 0.5660 0.1916 8.73 0.0031
4 0.1893 0.1569 1.46 0.2275

invest 5 -0.2511 0.0967 6.74 0.0094
treat 6 0.1816 0.0942 3.71 0.0540

DSTATUS is represented by three parameters, and both INVEST and TREAT are
represented by one parameter. Table 13.5 contains the parameter interpretations and
illustrates how they relate to the numbered parameters in the PROC CATMOD output.
Referring to the order of the variable values in the population profiles of Output 13.9
enables you to determine that the three DSTATUS effects are for diagnostic classes I, II,
and III, respectively (the first three levels listed), and that the TREAT effect is for active
treatment.
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Table 13.5. Parameter Interpretations

CATMOD Model
Parameter Parameter Interpretation

1 � intercept
2 �1 differential effect for diagnosis I
3 �2 differential effect for diagnosis II
4 �3 differential effect for diagnosis III
5 �4 differential effect for investigator A
6 �5 differential effect for active treatment

13.4.1 Constructing Contrast Tests

Researchers were interested in whether there were differences between the diagnostic
classes. If you look at the values for these effects and their standard errors,
�̂1 = �0:3904(0:1621), �̂2 = 0:5660(0:1916), �̂3 = 0:1893(0:1569), and the implied
effect for diagnostic class IV, which is(��̂1 � �̂2 � �̂3) = �0:365, it seems like there are
probably several individual differences. You can formally address questions about the
parameters with the use of contrast tests.

The tests of interest, barring a priori considerations, are whether diagnostic class I is
different from classes II, III, and IV; whether diagnostic class II is different from classes
III and IV; and whether diagnostic class III is different from class IV. You perform the
hypothesis test

H0:�1 � �2 = 0

to determine whether the differential effect for diagnostic class I is equal to the differential
effect for diagnostic class II, and you construct similar hypotheses to test for the
differences between classes I and III and classes II and III.

Since the effect for diagnostic class IV is equal to(��̂1 � �̂2 � �̂3), you test whether there
is a difference between diagnostic class I and class IV with the hypothesis:

H0:�1 � (��1 � �2 � �3) = 2�1 + �2 + �3 = 0

You construct similar hypotheses to test whether there is a difference between the other
diagnostic classes and class IV.

In Chapter 8, the TEST statement in PROC LOGISTIC and the CONTRAST statement in
PROC GENMOD were discussed. These statements serve the same purpose as the
CONTRAST statement in PROC CATMOD, testing linear combinations of the parameters,
but they all function somewhat differently. With PROC CATMOD, you specify the
following CONTRAST statement to request the test of the first hypothesis listed:

contrast ’Diag I versus II’ dstatus 1 -1 0;
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You list a character string that labels the contrast, list the effect whose parameters you are
interested in, and then supply a coefficient for each of the effect parameters that PROC
CATMOD estimates. Remember that since PROC CATMOD uses full rank
parameterization, it producess� 1 estimated parameters for an effect that hass levels.
Thus, since DSTATUS is represented by parameters�1, �2, and�3, you need to specify
three coefficients when you name the variable DSTATUS in the CONTRAST statement.
Since the hypothesis being tested isH0:�1 � �2 = 0, you supply the coefficient 1 for�1,
�1 for �2, and 0 for�3. The other contrast statements are specified similarly, inserting the
coefficients corresponding to the hypothesis being tested.

The following statements produced the desired results. You can specify as many
CONTRASTS as you want; the results are placed into a single table.

contrast ’I versus II’ dstatus 1 -1 0;
contrast ’I versus III’ dstatus 1 0 -1;
contrast ’I versus IV’ dstatus 2 1 1;
contrast ’II versus III’ dstatus 0 1 -1;
contrast ’II versus IV’ dstatus 1 2 1;
contrast ’III versus IV’ dstatus 1 1 2;
contrast ’dstatus’ dstatus 1 0 0 ,

dstatus 0 1 0 ,
dstatus 0 0 1 ;

run;

The last contrast specified is included to demonstrate that the results in the ANOVA table
can be generated with contrast tests. This contrast is testing the hypothesis

H0:�1 = �2 = �3 = 0

and is performed with the contrast matrix

C =

24 1 0 0
0 1 0
0 0 1

35
The test has 3 df, one for each linearly independent row of the contrast matrix. It requires
three sets of coefficients in the CONTRAST statement, each separated by a comma. The
variable name DSTATUS needs to be listed in each of the three lines. All of the results are
displayed in Output 13.17.
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Output 13.17 Contrast Results

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
----------------------------------------------
I versus II 1 10.30 0.0013
I versus III 1 5.18 0.0229
I versus IV 1 0.01 0.9194
II versus III 1 1.67 0.1966
II versus IV 1 10.25 0.0014
III versus IV 1 5.11 0.0238
dstatus 3 15.41 0.0015

First, note thatQC = 15:41 for DSTATUS, with 3 df, which is the same as the chi-square
value listed for DSTATUS in Output 13.14 in the ANOVA table. This contrast test is the
same as the test automatically produced for the DSTATUS effect in the model.

The contrast test results indicate that diagnostic class I is different from both II and III but
not IV; both II and III are different from IV. There are substantial differences in how
diagnostic class influences patient response score; diagnostic classes I and IV decrease
patient scores, and diagnostic classes II and III increase patient scores. The influences of
classes I and IV are not significantly different from each other, and the influences of
classes II and III are not significantly different from each other.

13.5 Analysis of Proportions: Occupational Data

The previous section focused on the analysis of means with weighted least squares.
Weighted least squares analysis can be performed for many different types of response
functions composed from the proportions in a contingency table. The simplest of these is
the response proportions themselves, which are analyzed in this section. In addition, the
capability of the CATMOD procedure to fitnestedmodels is demonstrated.

13.5.1 Occupational Data Example

The data displayed in Table 13.6 are from a cross-sectional prevalence study done in 1973
to investigate textile worker complaints about respiratory symptoms experienced while
working in the mills (Higgins and Koch 1977). Investigators were interested in whether
occupational environment was related to the prevalence of respiratory ailments associated
with the disease byssinosis.

Since this was a cross-sectional study rather than a prospective one, you cannot make
inferences to a more general population without making some rather restrictive
assumptions. If such assumptions can be made—that the symptoms remained for the
duration of a worker’s presence in the same work environment, that worker departures
were not related to the presence or absence of symptoms, and so on—then you may be
able to make inferences to all workers employed in those mills or possibly even to workers
engaged in similar work in similar mills. If not, then the results of the analysis apply only
to the observed population and serve only to describe the variation found for that observed
population. It is always important to clarify the inferential implications of an analysis
based on the relevant sampling framework.
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Table 13.6. Byssinosis Complaints

Workplace Years Complaints
Condition Employment Smoking Yes No
Dusty <10 Yes 30 203
Dusty <10 No 7 119
Dusty � 10 Yes 57 161
Dusty � 10 No 11 81
Not Dusty <10 Yes 14 1340
Not Dusty <10 No 12 1004
Not Dusty � 10 Yes 24 1360
Not Dusty � 10 No 10 986

If you can assume that there is a justifiable target population, then it becomes reasonable to
think of these frequencies as coming from some stratified simple random sampling
scheme, so that the table is distributed as product multinomial. A logical response function
to model for these dichotomous responses is the logit, and logits are usually analyzed with
the maximum likelihood estimation of logistic regression. However, you may be interested
in modeling the proportion of byssinosis complaints in each classification group. Using
the proportion has the interpretative advantage that model parameters have a direct effect
on the size of the proportions. Fitting a model to proportions is not so easily performed
with maximum likelihood methods; however, it is easily done with weighted least squares
methods.

Since there are eight groups in the contingency table formed from the different
combinations of workplace condition, years of employment, and smoking status, and two
possible responses, respiratory complaints or not, there are sixteen elements in the overall
proportion vector. Consider the elementspij wherei = 1; : : : ; 8 represents the groups, and
j = 1; 2 represents yes and no, respectively. Since the proportions in each row add up to 1,
only one response per group needs to be included in the analysis. Otherwise, the responses
would be linearly dependent and the computations would fail.

The transformation matrix that generates the ‘yes’ proportions from the proportion vector
is straightforward: each row of the matrix picks up the ‘yes’ proportion from the
corresponding row of the underlying contingency table. The matrix formulation required
to construct the response functions is

F (p) = Ap =

266666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

377777777775
p =

266666666664

0:129
0:056
0:261
0:120
0:010
0:012
0:017
0:010

377777777775
This is a linear transformation, just as the transformation required to compute means from
the previous section’s proportion vector was a linear transformation. Thus, the covariance
matrix forF (p) isVF = AVpA

0.
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13.5.2 Fitting a Preliminary Model

The preliminary model for this analysis is the saturated model that includes all
interactions. This includes pairwise and three-way interactions.

266666666664

F (p11)
F (p21)
F (p31)
F (p41)
F (p51)
F (p61)
F (p71)
F (p81)

377777777775
=

266666666664

1 1 1 1 1 1 1 1
1 1 1 1 �1 �1 �1 �1
1 1 �1 �1 1 1 �1 �1
1 1 �1 �1 �1 �1 1 1
1 �1 1 �1 1 �1 1 �1
1 �1 1 �1 �1 1 �1 1
1 �1 �1 1 1 �1 �1 1
1 �1 �1 1 �1 1 1 �1

377777777775

266666666664

�
�1
�2
�3
�4
�5
�6
�7

377777777775
In this model,� is the intercept term, and�1, �2, and�4 are parameters for workplace,
years employment, and smoking behavior, respectively.�3 is the parameter for interaction
between workplace and years employment,�5 is the parameter for interaction between
workplace and smoking behavior, and�6 is the parameter for interaction between years of
employment and smoking behavior. Finally,�7 is the parameter for the three-way
interaction.

The following statements fit this model with PROC CATMOD. Instead of using the
keyword MEANS in the RESPONSE statement to generate the mean of the responses, you
use the keyword MARGINALS. This specifies that the response functions are marginal
proportions defined across the population profiles. For a dichotomous response outcome,
this generates the proportions corresponding to the first response level. For response
variables withr outcome levels, the keyword MARGINALS generates proportions for the
first r � 1 response levels. In Chapter 14, “Modeling Repeated Measurements Data with
WLS,” you learn about analyses where multiple response variables are used. In these
cases,marginal distributionsare of interest.

The following DATA step creates the data set BYSS.

data byss;
input workplace $ em_years $ smoking $ status $ count @@;
datalines ;

dusty <10 yes yes 30 dusty <10 yes no 203
dusty <10 no yes 7 dusty <10 no no 119
dusty >=10 yes yes 57 dusty >=10 yes no 161
dusty >=10 no yes 11 dusty >=10 no no 81
notdusty <10 yes yes 14 notdusty <10 yes no 1340
notdusty <10 no yes 12 notdusty <10 no no 1004
notdusty >=10 yes yes 24 notdusty >=10 yes no 1360
notdusty >=10 no yes 10 notdusty >=10 no no 986
;
run;

The CATMOD procedure invocation is very similar to those seen before; the keyword
MARGINALS in the RESPONSE statement is the only difference. Note the use of the
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ORDER=DATA option in the PROC CATMOD statement. This maintains the response
variable levels in the order in which they occur in the input data set. Thus, “yes” is the first
ordered value, as desired, and the response functions will be Pr{STATUS=yes}. PROC
CATMOD by default orders its response levels alphanumerically. Since the response
function is not the default logit, you get weighted least squares estimation.

proc catmod order=data;
weight count;
response marginals;
model status = workplace|em_years|smoking;

run;

Output 13.18 displays the population and response profiles as well as the response
functions and model matrix.

Output 13.18 Populations, Response Profiles, and Response Functions

Population Profiles

Sample workplace em_years smoking Sample Size
---------------------------------------------------------

1 dusty <10 yes 233
2 dusty <10 no 126
3 dusty >=10 yes 218
4 dusty >=10 no 92
5 notdusty <10 yes 1354
6 notdusty <10 no 1016
7 notdusty >=10 yes 1384
8 notdusty >=10 no 996

Response Profiles

Response status
------------------

1 yes
2 no

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5 6 7 8
--------------------------------------------------------------------------

1 0.12876 1 1 1 1 1 1 1 1
2 0.05556 1 1 1 1 -1 -1 -1 -1
3 0.26147 1 1 -1 -1 1 1 -1 -1
4 0.11957 1 1 -1 -1 -1 -1 1 1
5 0.01034 1 -1 1 -1 1 -1 1 -1
6 0.01181 1 -1 1 -1 -1 1 -1 1
7 0.01734 1 -1 -1 1 1 -1 -1 1
8 0.01004 1 -1 -1 1 -1 1 1 -1

The ANOVA table displayed in Output 13.19 indicates a nonsignificant three-way
interaction, with a Wald statistic ofQW = 1:21 and a correspondingp = 0:2714. Based
on this result, the model including all two-way interactions is fit. Recall that since the only
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effect being eliminated is the three-way interaction, the residual goodness-of-fit statistic
for the reduced model will have the same value as the three-way interaction in the full
model. Note that the label for the three-way interaction includes the truncation
WORKPLC for WORKPLCE.

Output 13.19 ANOVA Table for Saturated Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
Intercept 1 127.33 <.0001
workplace 1 89.61 <.0001
em_years 1 13.74 0.0002
workplace*em_years 1 12.35 0.0004
smoking 1 16.44 <.0001
workplace*smoking 1 14.75 0.0001
em_years*smoking 1 2.02 0.1551
workpla*em_years*smoking 1 1.21 0.2714

Residual 0 . .

The following code requests the model with all pairwise interactions.

proc catmod order=data;
weight count;
response marginals;
model status = workplace|em_years workplace|smoking

em_years|smoking;
run;

The resulting ANOVA table is displayed in Output 13.20.

Output 13.20 ANOVA Table for All Pairwise Interactions

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------
Intercept 1 131.73 <.0001
workplace 1 92.90 <.0001
em_years 1 14.33 0.0002
workplace*em_years 1 12.92 0.0003
smoking 1 15.46 <.0001
workplace*smoking 1 13.70 0.0002
em_years*smoking 1 2.26 0.1324

Residual 1 1.21 0.2714

Note that the residualQW = 1:21 for this model is the same as theQW for the three-way
interaction in the saturated model (Output 13.19). Thus, you could eliminate the step of
fitting the saturated model and assess the three-way interaction from the analysis results
for the model with all pairwise interactions.
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This model fits adequately; however, the years of employment and smoking behavior
interaction appears to be an unimportant source of variation, withQW = 2:26 and
p = 0:1324. Thus, a further reduced model is fit that includes all main effects and only the
workplace� smoking behavior and workplace� years of employment interactions. The
code required for this PROC CATMOD invocation is not reproduced here; the results are
displayed in Output 13.21.

Output 13.21 ANOVA Table for Reduced Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------
Intercept 1 131.56 <.0001
workplace 1 93.89 <.0001
em_years 1 14.47 0.0001
workplace*em_years 1 12.95 0.0003
smoking 1 14.82 0.0001
workplace*smoking 1 13.29 0.0003

Residual 2 3.47 0.1761

This model fits the data with a residual goodness-of-fit statistic ofQW = 3:47 with 2 df. It
includes the main effects workplace, years of employment, and smoking, as well as the
interactions workplace� years of employment and workplace� smoking. Often it is
useful to examine the nature of the interactions to determine exactly where the differences
are occurring.

13.5.3 Reduced Models Using Nested-By-Value Effects

Pairwise interactions occur when one variable’s effect depends on the level of a second
variable. A main effect in the absence of an interaction means that the variable’s effect has
roughly the same influence at all levels of the second variable. One explanation for the
occurrence of an interaction is when one variable has a measurable effect at one level of a
second variable but virtually no effect at a different level of that variable. Nested-by-value
effects coding enables you to determine whether this behavior is occurring and also allows
you to fit a reduced model that incorporates this behavior.

To investigate both the workplace� smoking behavior interaction and the workplace�
years of employment interaction with nested-by-value effects, you replace the interaction
term and the main effect for the term that you want nested with the corresponding
nested-by-value terms. For example,

workplace|em - years andem- years

in the MODEL statement are replaced with

em- years(workplace=’dusty’) andem- years(workplace=’notdusty’)
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You can see what happens by examining the model matrices that are produced by the two
different models in Table 13.7 and Table 13.8. In the first model matrix, the second
column corresponds to workplace, the third column to years of employment, and the
fourth column represents their interaction. In the second model matrix, the third and fourth
columns represent the effect of employment years nested in the dusty workplace and the
not dusty workplace, respectively. For each, there are nonzero coefficients only in the rows
that correspond to that particular value for workplace. You can think of this as splitting the
main effect for employment into two components: one for dusty workplace and one for not
dusty workplace. The same principle applies to splitting the main effect for smoking into
two such components.

Table 13.7. Model Matrix for Interactions Model

Columns
Group 1 2 3 4 5 6
dusty <10 yes 1 1 1 1 1 1
dusty <10 no 1 1 1 1 �1 �1
dusty >=10 yes 1 1 �1 �1 1 1
dusty >=10 no 1 1 �1 �1 �1 �1
notdusty <10 yes 1 �1 1 �1 1 �1
notdusty <10 no 1 �1 1 �1 �1 1
notdusty >=10 yes 1 �1 �1 1 1 �1
notdusty >=10 no 1 �1 �1 1 �1 1

Table 13.8. Model Matrix for Nested-by-Value Model

Columns
Group 1 2 3 4 5 6
dusty <10 yes 1 1 1 0 1 0
dusty <10 no 1 1 1 0 �1 0
dusty >=10 yes 1 1 �1 0 1 0
dusty >=10 no 1 1 �1 0 �1 0
notdusty <10 yes 1 �1 0 1 0 1
notdusty <10 no 1 �1 0 1 0 �1
notdusty >=10 yes 1 �1 0 �1 0 1
notdusty >=10 no 1 �1 0 �1 0 �1

The following statements fit the nested-by-value model.

proc catmod order=data;
weight count;
response marginals;
model status = workplace

em_years(workplace=’dusty’)
em_years(workplace=’notdusty’)
smoking(workplace=’dusty’)
smoking(workplace=’notdusty’) ;

run;
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The model matrix in Output 13.22 is the same as that displayed in Table 13.8.

Output 13.22 Model Matrix for Nested-By-Value Effects Model

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5 6
--------------------------------------------------------------------------

1 0.12876 1 1 1 0 1 0
2 0.05556 1 1 1 0 -1 0
3 0.26147 1 1 -1 0 1 0
4 0.11957 1 1 -1 0 -1 0
5 0.01034 1 -1 0 1 0 1
6 0.01181 1 -1 0 1 0 -1
7 0.01734 1 -1 0 -1 0 1
8 0.01004 1 -1 0 -1 0 -1

The ANOVA table displayed in Output 13.23 lists the nested-by-value effects.

Output 13.23 ANOVA Table for Nested-By-Value Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
Intercept 1 131.56 <.0001
workplace 1 93.89 <.0001
em_years(workplac=dusty) 1 13.90 0.0002
em_yea(workpla=notdusty) 1 0.75 0.3860
smoking(workplace=dusty) 1 14.27 0.0002
smokin(workpla=notdusty) 1 0.64 0.4225

Residual 2 3.47 0.1761

The residual goodness-of-fit test is the same as for the previous reduced model with
interactions. The degrees of freedom have not decreased with the nested-by-value model,
but they have been used differently with the new parameterization. The statistic for
WORKPLCE has also remained the same, since the new coding does not change the
meaning of the parameter for WORKPLCE. Neither years of employment nor smoking
behavior are significant effects for the notdusty level of WORKPLCE,p = 0:3860 and
p = 0:4225, respectively, while they both appear to be strongly significant for the dusty
level of WORKPLCE,p = 0:0002 for both effects. Thus, it appears that both interactions
can be explained by the interplay of years of employment and smoking behavior in the
dusty workplace.

The model excluding the nonsignificant nested-by-value effects is fit next.

proc catmod order=data;
weight count ;
response marginals;
model status = workplace

em_years(workplace=’dusty’)
smoking(workplace=’dusty’) / pred;

run;
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Output 13.24 contains the ANOVA table for the final model, and Output 13.25 contains the
parameter estimates.

Output 13.24 ANOVA Table for Final Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
Intercept 1 131.50 <.0001
workplace 1 93.98 <.0001
em_years(workplac=dusty) 1 13.90 0.0002
smoking(workplace=dusty) 1 14.27 0.0002

Residual 4 4.68 0.3215

Output 13.25 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------------
Intercept 1 0.0776 0.00677 131.50 <.0001
workplace 2 0.0656 0.00677 93.98 <.0001
em_years(workplac=dusty) 3 -0.0503 0.0135 13.90 0.0002
smoking(workplace=dusty) 4 0.0471 0.0125 14.27 0.0002

The model goodness-of-fit chi-square is 4.68 with 4 df, clearly an adequate fit. This model
contains a main effect for workplace and effects for years of employment and smoking
only in the dusty workplace. See Table 13.9 for a display of parameter interpretations.

Table 13.9. Parameter Interpretations

CATMOD Model
Parameter Parameter Interpretation

1 � intercept
2 �1 differential effect for dusty workplace
3 �2 differential effect for < 10 years employment

within a dusty workplace
4 �3 differential effect for smoking

within a dusty workplace

A dusty workplace increases the proportion of subjects in this study who had byssinosis
complaints. Having less than ten years employment lessens the proportion with byssinosis
complaints within a dusty workplace,̂�2 = �0:0503, which means that having ten or more
years of employment increases the proportion with byssinosis complaints in a dusty
workplace. Smoking increases the proportion with byssinosis complaints if the workplace
is dusty.
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The PRED option in the MODEL statement produces predicted values for the proportions
with byssinosis symptoms for each group. In order to interpret this table, compare the
“Sample” values with those listed in the “Population Profiles” of Output 13.18. For
example, the model-predicted proportion with byssinosis complaints for smokers with less
than ten years employment who also worked in a dusty workplace (sample 1) is 0.140�
0.020. For smokers with at least ten years employment who worked in a dusty workplace
(sample 3), the predicted proportion with byssinosis symptoms is 0.241� 0.025.

Output 13.26 Predicted Values for Final Model

Predicted Values for Response Functions

-----Observed---- ----Predicted----
Function Standard Standard

workplace em_years smoking Number Function Error Function Error Residual
--------------------------------------------------------------------------------
dusty <10 yes 1 0.128755 0.021942 0.140053 0.020057 -0.0113
dusty <10 no 1 0.055556 0.020406 0.045784 0.0189 0.009771
dusty >=10 yes 1 0.261468 0.029762 0.240683 0.024856 0.020785
dusty >=10 no 1 0.119565 0.033827 0.146415 0.026402 -0.02685
notdusty <10 yes 1 0.01034 0.002749 0.012003 0.00158 -0.00166
notdusty <10 no 1 0.011811 0.003389 0.012003 0.00158 -0.00019
notdusty >=10 yes 1 0.017341 0.003509 0.012003 0.00158 0.005338
notdusty >=10 no 1 0.01004 0.003159 0.012003 0.00158 -0.00196

13.6 Obstetrical Pain Data: Advanced Modeling of Means

Sections 13.3 and 13.4 discussed analyses of means. This section is concerned with an
advanced application of modeling means, and it includes a lengthy analysis of contrasts to
fully investigate various effects and interactions.

The data displayed in Table 13.10 are from a multicenter randomized study of
obstetrical-related pain for women who had recently delivered a baby (Koch et al. 1985).
Investigators were interested in comparing four treatments: placebo, drug a, drug b, and a
combined treatment of drug a and drug b. Each patient was classified as initially having
some pain or a lot of pain. Then, a randomly assigned treatment was administered at the
beginning of the study period and again at 4 hours. Each patient was observed at hourly
intervals for 8 hours and pain status was recorded as little or no pain or some or more pain.
The response measure of interest is the average proportion of hours for which the patient
reported little or no pain.

The patients for each center� initial status� treatment group can be considered to be
representative of some corresponding large target population in a manner that is consistent
with stratified simple random sampling. Each of the patient’s responses can also be
assumed to be independent of other patient responses. Thus, the data in Table 13.10 are
distributed as product multinomial. There are many small cell frequencies (less than 5) in
this table. This means that the asymptotic requirements necessary for modeling functions
such as multiple cell proportions or generalized logits are not met. However, the average
proportion of hours with little or no pain is a reasonable response measure, and there is
sufficient sample size for modeling means.
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Table 13.10. Number of Hours with Little or No Pain for Women Who Recently Delivered
a Baby

Initial Pain Hours With Little or No Pain
Center Status Treatment0 1 2 3 4 5 6 7 8 Total
1 lot placebo 6 1 2 2 2 3 7 3 0 26
1 lot a 6 3 1 2 4 4 7 1 0 28
1 lot b 3 1 0 4 2 3 11 4 0 28
1 lot ba 0 0 0 1 1 7 9 6 2 26
1 some placebo 1 0 3 0 2 2 4 4 2 18
1 some a 2 1 0 2 1 2 4 5 1 18
1 some b 0 0 0 1 0 3 7 6 2 19
1 some ba 0 0 0 0 1 3 5 4 6 19
2 lot placebo 7 2 3 2 3 2 3 2 2 26
2 lot a 3 1 0 0 3 2 9 7 1 26
2 lot b 0 0 0 1 1 5 8 7 4 26
2 lot ba 0 1 0 0 1 2 8 9 5 26
2 some placebo 2 0 2 1 3 1 2 5 4 20
2 some a 0 0 0 1 1 1 8 1 7 19
2 some b 0 2 0 1 0 1 4 6 6 20
2 some ba 0 0 0 1 3 0 4 7 5 20
3 lot placebo 6 0 2 2 2 6 1 2 1 22
3 lot a 4 2 1 5 1 1 3 2 3 22
3 lot b 5 0 2 3 1 0 2 6 7 26
3 lot ba 3 2 1 0 0 2 5 9 4 26
3 some placebo 5 0 0 1 3 1 4 4 5 23
3 some a 1 0 0 1 3 5 3 3 6 22
3 some b 3 0 1 1 0 0 3 7 11 26
3 some ba 0 0 0 1 1 4 2 4 13 25
4 lot placebo 4 0 1 3 2 1 1 2 2 16
4 lot a 0 1 3 1 1 6 1 3 6 22
4 lot b 0 0 0 0 2 7 2 2 9 22
4 lot ba 1 0 3 0 1 2 3 4 8 22
4 some placebo 1 0 1 1 4 1 1 0 10 19
4 some a 0 0 0 1 0 2 2 1 13 19
4 some b 0 0 0 1 1 1 1 5 11 20
4 some ba 1 0 0 0 0 2 2 2 14 21

The proportion vector for each groupi is written

p = (pi0; pi1; pi2; pi3; pi4; pi5; pi6; pi7; pi8)
0

wherepij is the proportion of patients withj hours of pain for theith group, and
i = 1; : : : ; 32 is the group corresponding to theith row of Table 13.10. You compute the
average proportion response function by applying the following matrix operation to the
proportion vector for each group.

Fi = F(pi) = Ap =
�
0
8 ;

1
8 ;

2
8 ;

3
8 ;

4
8 ;

5
8 ;

6
8 ;

7
8 ;

8
8

�
pi
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A useful preliminary model is one that includes effects for center, initial pain, treatment,
and initial pain� treatment interaction; initial pain and treatment are believed to be
similar across centers, so their interactions with center are not included.

13.6.1 Performing the Analysis with PROC CATMOD

The following DATA step creates the SAS data set PAIN. The raw data contains an
observation for each line of Table 13.10, although they are in a different order. The
ARRAY and OUTPUT statements in the DATA step modify the input data by creating an
individual observation for each different response value, or number of hours with little or
no pain. It creates the variables NO–HOURS and COUNT. The CATMOD procedure
requires that each response value be represented on a different observation. This data set
contains 288 observations, or 9 observations for each of the 32 original data lines. The
values for the variable INITIAL are ‘some’ for some pain and ‘lot’ for a lot of pain.

data pain (drop=h0-h8);
input center initial $ treat $ h0-h8;
array hours h0-h8;
do i=1 to 9;

no_hours=i-1; count=hours(i); output;
end;
datalines;

1 some placebo 1 0 3 0 2 2 4 4 2
1 some treat_a 2 1 0 2 1 2 4 5 1
1 some treat_b 0 0 0 1 0 3 7 6 2
1 some treat_ba 0 0 0 0 1 3 5 4 6
1 lot placebo 6 1 2 2 2 3 7 3 0
1 lot treat_a 6 3 1 2 4 4 7 1 0
1 lot treat_b 3 1 0 4 2 3 11 4 0
1 lot treat_ba 0 0 0 1 1 7 9 6 2
2 some placebo 2 0 2 1 3 1 2 5 4
2 some treat_a 0 0 0 1 1 1 8 1 7
2 some treat_b 0 2 0 1 0 1 4 6 6
2 some treat_ba 0 0 0 1 3 0 4 7 5
2 lot placebo 7 2 3 2 3 2 3 2 2
2 lot treat_a 3 1 0 0 3 2 9 7 1
2 lot treat_b 0 0 0 1 1 5 8 7 4
2 lot treat_ba 0 1 0 0 1 2 8 9 5
3 some placebo 5 0 0 1 3 1 4 4 5
3 some treat_a 1 0 0 1 3 5 3 3 6
3 some treat_b 3 0 1 1 0 0 3 7 11
3 some treat_ba 0 0 0 1 1 4 2 4 13
3 lot placebo 6 0 2 2 2 6 1 2 1
3 lot treat_a 4 2 1 5 1 1 3 2 3
3 lot treat_b 5 0 2 3 1 0 2 6 7
3 lot treat_ba 3 2 1 0 0 2 5 9 4
4 some placebo 1 0 1 1 4 1 1 0 10
4 some treat_a 0 0 0 1 0 2 2 1 13
4 some treat_b 0 0 0 1 1 1 1 5 11
4 some treat_ba 1 0 0 0 0 2 2 2 14
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4 lot placebo 4 0 1 3 2 1 1 2 2
4 lot treat_a 0 1 3 1 1 6 1 3 6
4 lot treat_b 0 0 0 0 2 7 2 2 9
4 lot treat_ba 1 0 3 0 1 2 3 4 8
;
proc print data=pain(obs=9);
run;

Output 13.27 displays the observations for the group from center 1 who had some initial
pain and received the placebo.

Output 13.27 Partial Listing of Data Set PAIN

OBS center initial treat i no_hours count

1 1 some placebo 1 0 1
2 1 some placebo 2 1 0
3 1 some placebo 3 2 3
4 1 some placebo 4 3 0
5 1 some placebo 5 4 2
6 1 some placebo 6 5 2
7 1 some placebo 7 6 4
8 1 some placebo 8 7 4
9 1 some placebo 9 8 2

The following SAS statements invoke the CATMOD procedure and fit the preliminary
model. Note that the RESPONSE statement includes the coefficients required to compute
the average proportions per group. Using the MEANS keyword on the RESPONSE
statement would compute the mean number of hours with little or no pain, not the average
proportion of hours with little or no pain, which is desired here. Actually the results will
be the same; the decision is whether you want the parameter estimates to apply to
proportions or means.

proc catmod;
weight count;
response 0 .125 .25 .375 .5 .625 .75 .875 1;
model no_hours = center initial treat

treat*initial;
run;

The population profiles and the response profiles are displayed in Output 13.28 and
Output 13.29, respectively.
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Output 13.28 Population Profiles

Population Profiles

Sample center initial treat Sample Size
------------------------------------------------------

1 1 lot placebo 26
2 1 lot treat_a 28
3 1 lot treat_b 28
4 1 lot treat_ba 26
5 1 some placebo 18
6 1 some treat_a 18
7 1 some treat_b 19
8 1 some treat_ba 19
9 2 lot placebo 26

10 2 lot treat_a 26
11 2 lot treat_b 26
12 2 lot treat_ba 26
13 2 some placebo 20
14 2 some treat_a 19
15 2 some treat_b 20
16 2 some treat_ba 20
17 3 lot placebo 22
18 3 lot treat_a 22
19 3 lot treat_b 26
20 3 lot treat_ba 26
21 3 some placebo 23
22 3 some treat_a 22
23 3 some treat_b 26
24 3 some treat_ba 25
25 4 lot placebo 16
26 4 lot treat_a 22
27 4 lot treat_b 22
28 4 lot treat_ba 22
29 4 some placebo 19
30 4 some treat_a 19
31 4 some treat_b 20
32 4 some treat_ba 21

Output 13.29 Response Profiles

Response Profiles

Response no_hours
--------------------

1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8

The response functions listed in Output 13.30 are the average proportions of hours with
little or no pain.
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Output 13.30 Model Matrix

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5 6 7 8
--------------------------------------------------------------------------

1 0.46635 1 1 0 0 1 1 0 0
2 0.42857 1 1 0 0 1 0 1 0
3 0.58036 1 1 0 0 1 0 0 1
4 0.74038 1 1 0 0 1 -1 -1 -1
5 0.63889 1 1 0 0 -1 1 0 0
6 0.61111 1 1 0 0 -1 0 1 0
7 0.77632 1 1 0 0 -1 0 0 1
8 0.82237 1 1 0 0 -1 -1 -1 -1
9 0.40385 1 0 1 0 1 1 0 0

10 0.64423 1 0 1 0 1 0 1 0
11 0.77404 1 0 1 0 1 0 0 1
12 0.79808 1 0 1 0 1 -1 -1 -1
13 0.64375 1 0 1 0 -1 1 0 0
14 0.80921 1 0 1 0 -1 0 1 0
15 0.77500 1 0 1 0 -1 0 0 1
16 0.80000 1 0 1 0 -1 -1 -1 -1
17 0.43182 1 0 0 1 1 1 0 0
18 0.47727 1 0 0 1 1 0 1 0
19 0.61058 1 0 0 1 1 0 0 1
20 0.66827 1 0 0 1 1 -1 -1 -1
21 0.60870 1 0 0 1 -1 1 0 0
22 0.72159 1 0 0 1 -1 0 1 0
23 0.76923 1 0 0 1 -1 0 0 1
24 0.85500 1 0 0 1 -1 -1 -1 -1
25 0.46875 1 -1 -1 - 1 1 1 0 0
26 0.67614 1 -1 -1 - 1 1 0 1 0
27 0.80114 1 -1 -1 - 1 1 0 0 1
28 0.73864 1 -1 -1 -1 1 -1 -1 -1
29 0.73684 1 -1 -1 -1 - 1 1 0 0
30 0.89474 1 -1 -1 -1 - 1 0 1 0
31 0.88125 1 -1 -1 -1 - 1 0 0 1
32 0.88095 1 -1 -1 -1 -1 -1 -1 -1
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Output 13.31 Model Matrix (continued)

Response Functions and Design Matrix

Design Matrix
Sample 9 10 11
-------------------------------

1 1 0 0
2 0 1 0
3 0 0 1
4 -1 -1 -1
5 -1 0 0
6 0 -1 0
7 0 0 -1
8 1 1 1
9 1 0 0

10 0 1 0
11 0 0 1
12 -1 -1 -1
13 -1 0 0
14 0 -1 0
15 0 0 -1
16 1 1 1
17 1 0 0
18 0 1 0
19 0 0 1
20 -1 -1 -1
21 -1 0 0
22 0 -1 0
23 0 0 -1
24 1 1 1
25 1 0 0
26 0 1 0
27 0 0 1
28 -1 -1 -1
29 -1 0 0
30 0 -1 0
31 0 0 -1
32 1 1 1

The goodness-of-fit statistic for this preliminary model isQW = 26:90 with 21 df, as
displayed in Output 13.32. Withp = 0:1743, this indicates that the model fits the data
adequately. All the constituent effects are highly significant,p < 0:01.

Output 13.32 Preliminary ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-----------------------------------------------
Intercept 1 5271.98 <.0001
center 3 29.02 <.0001
initial 1 62.65 <.0001
treat 3 92.15 <.0001
initial*treat 3 12.63 0.0055

Residual 21 26.90 0.1743

It is useful to examine further the interaction between the treatments and initial pain status.
The significant interaction means that some of the treatment effects depend on the level of
initial pain status.
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Some questions of interest are:

� Which treatment effects depend on the level of initial pain status? Where exactly is
the interaction occurring?

� In which levels of initial pain do treatments differ?

To address these questions, it is helpful to fit a differently parameterized model. If you nest
the effects of treatment within levels of initial pain, then these questions can be addressed
with the use of contrasts. By using the nested effects model, you are trading the 3 df for
TREAT and 3 df for TREAT*INITIAL for 6 df for the nested effect TREAT(INITIAL).
Accordingly, the TREAT(INITIAL) effect is associated with six parameters, three of
which pertain to the effects of treatment within some initial pain and three of which pertain
to the effects of treatment within a lot of initial pain.

The following PROC CATMOD statements fit the nested model. The difference between
specifying the nested effect TREAT(INITIAL) and the nested-by-values effects (see page
391) TREAT(INITIAL=some) and TREAT(INITIAL=lot) is that the former yields the 6 df
test in the ANOVA table that tests whether the six parameters for treatment effects within
both some and a lot of initial pain levels are essentially zero; the latter results in two
separate 3 df tests in the ANOVA table, one for whether the three treatment parameters for
some pain are essentially zero and one for whether the three treatment parameters for a lot
of pain are essentially zero.

proc catmod;
weight count;
response 0 .125 .25 .375 .5 .625 .75 .875 1;
model no_hours = center initial

treat(initial);
run;

Submitting these statements produces the results contained in Output 13.33.

Output 13.33 Nested Value ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
------------------------------------------------
Intercept 1 5271.98 <.0001
center 3 29.02 <.0001
initial 1 62.65 <.0001
treat(initial) 6 102.70 <.0001

Residual 21 26.90 0.1743

The model goodness-of-fit test is the same,QW = 26:90 with 21 df, since no model
reduction was performed. The current model simply redistributes the variation over
different degrees of freedom. Geometrically, you can think of the model space as being
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spanned by a different, but equivalent, vector set. The tests for CENTER effect and
INITIAL effect remain the same as well. However, now there is the 6 df nested effect
TREAT(INITIAL) in place of a TREAT effect and a TREAT*INITIAL interaction.

The next table that PROC CATMOD produces is the table of parameter estimates. These
are listed in the same order as the corresponding explanatory variables in the MODEL
statement. Besides the intercept, there are three parameters corresponding to CENTER for
the effects of center 1, center 2, and center 3, respectively. As discussed previously, for the
full rank parameterization that PROC CATMOD uses, you can determine the estimate of
the effect for center 4 by taking the negative of the sum of these three displayed center
effect parameters. Since INITIAL has two levels, it is represented by one parameter; this is
the effect for a lot of initial pain.

Output 13.34 Nested Value ANOVA Table

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
----------------------------------------------------------------------------
Intercept 1 0.6991 0.00963 5271.98 <.0001
center 2 -0.0484 0.0145 11.24 0.0008

3 0.0187 0.0145 1.66 0.1982
4 -0.0415 0.0176 5.56 0.0184

initial 5 -0.0753 0.00951 62.65 <.0001
treat(initial) 6 -0.1739 0.0283 37.81 <.0001

7 -0.0644 0.0255 6.39 0.0115
8 0.0952 0.0206 21.45 <.0001
9 -0.1159 0.0284 16.68 <.0001

10 0.00740 0.0217 0.12 0.7331
11 0.0347 0.0206 2.84 0.0921

The last six parameters are those for the nested effect TREAT(INITIAL). It is useful to
examine the model matrix to understand what these parameters mean. The model matrix is
displayed in Output 13.35–Output 13.36.

The first column of the model matrix corresponds to the intercept, columns 2–4
correspond to the parameters for CENTER, and column 5 corresponds to the parameter for
INITIAL. Notice the structure of the next six columns, 6–11. There are nonzero entries in
columns 6–8 for those rows that correspond to groups that are from the same initial pain
level. You can compare the “Sample” column value to the same values in the “Population
Profiles” table previously displayed to determine exactly which group is represented by
each row of the model matrix. Columns 6–8 are the effects for placebo, treatment a, and
treatment b, nested within the ‘a lot of pain’ level. This ordering is also determined by the
order in which the TREAT values are listed in the “Population Profiles” table. You see a
similar pattern in the final three columns of the model matrix, columns 9–11. Effects for
placebo, treatment a, and treatment b are nested within the ‘some pain’ level.
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Output 13.35 Model Matrix for Nested Model

Response Functions and Design Matrix

Response Design Matrix
Sample Function 1 2 3 4 5 6 7 8
--------------------------------------------------------------------------

1 0.46635 1 1 0 0 1 1 0 0
2 0.42857 1 1 0 0 1 0 1 0
3 0.58036 1 1 0 0 1 0 0 1
4 0.74038 1 1 0 0 1 -1 -1 -1
5 0.63889 1 1 0 0 -1 0 0 0
6 0.61111 1 1 0 0 -1 0 0 0
7 0.77632 1 1 0 0 -1 0 0 0
8 0.82237 1 1 0 0 -1 0 0 0
9 0.40385 1 0 1 0 1 1 0 0

10 0.64423 1 0 1 0 1 0 1 0
11 0.77404 1 0 1 0 1 0 0 1
12 0.79808 1 0 1 0 1 -1 -1 -1
13 0.64375 1 0 1 0 -1 0 0 0
14 0.80921 1 0 1 0 -1 0 0 0
15 0.77500 1 0 1 0 -1 0 0 0
16 0.80000 1 0 1 0 -1 0 0 0
17 0.43182 1 0 0 1 1 1 0 0
18 0.47727 1 0 0 1 1 0 1 0
19 0.61058 1 0 0 1 1 0 0 1
20 0.66827 1 0 0 1 1 -1 -1 -1
21 0.60870 1 0 0 1 -1 0 0 0
22 0.72159 1 0 0 1 -1 0 0 0
23 0.76923 1 0 0 1 -1 0 0 0
24 0.85500 1 0 0 1 -1 0 0 0
25 0.46875 1 -1 -1 - 1 1 1 0 0
26 0.67614 1 -1 -1 - 1 1 0 1 0
27 0.80114 1 -1 -1 - 1 1 0 0 1
28 0.73864 1 -1 -1 -1 1 -1 -1 -1
29 0.73684 1 -1 -1 -1 - 1 0 0 0
30 0.89474 1 -1 -1 -1 - 1 0 0 0
31 0.88125 1 -1 -1 -1 - 1 0 0 0
32 0.88095 1 -1 -1 -1 - 1 0 0 0
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Output 13.36 Model Matrix for Nested Model (continued)

Response Functions and Design Matrix

Design Matrix
Sample 9 10 11
-------------------------------

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 1 0 0
6 0 1 0
7 0 0 1
8 -1 -1 -1
9 0 0 0

10 0 0 0
11 0 0 0
12 0 0 0
13 1 0 0
14 0 1 0
15 0 0 1
16 -1 -1 -1
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0
21 1 0 0
22 0 1 0
23 0 0 1
24 -1 -1 -1
25 0 0 0
26 0 0 0
27 0 0 0
28 0 0 0
29 1 0 0
30 0 1 0
31 0 0 1
32 -1 -1 -1

Table 13.11 describes each parameter.

Table 13.11. Parameter Interpretations

CATMOD Model
Parameter Parameter Interpretation

1 � intercept
2 �1 differential effect for center 1
3 �2 differential effect for center 2
4 �3 differential effect for center 3
5 �4 differential effect for a lot of initial pain
6 �5 differential effect for placebo for a lot of pain
7 �6 differential effect for treatment a for a lot of pain
8 �7 differential effect for treatment b for a lot of pain
9 �8 differential effect for placebo for some pain
10 �9 differential effect for treatment a for some pain
11 �10 differential effect for treatment b for some pain
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Consider testing to see if the effect for treatment a is the same as the effect for placebo for
those patients with some pain. The appropriate hypothesis is stated

H0:�9 � �8 = 0

Since the implicit effect for treatment ba is written in terms of the other treatment
parameters,

�treatment ba = ��8 � �9 � �10

the hypothesis test to see if the effect for treatment ba is the same as the effect for placebo
is written

H0:�2�8 � �9 � �10 = 0

The hypotheses of interest and their corresponding contrasts and coefficients are displayed
in Table 13.12. The coefficients are required in the CONTRAST statement in PROC
CATMOD to perform a particular contrast test.

Table 13.12. Hypothesis Tests

Initial Coefficients
Hypothesis Pain Contrast e5 e6 e7 e8 e9 e10
treatment a vs. placebo a lot �e5 + e6 �1 1 0 0 0 0
treatment b vs. placebo a lot �e5 + e7 �1 0 1 0 0 0
treatment ba vs. placebo a lot �2e5 � e6 � e7 �2 �1 �1 0 0 0
treatment ba vs. a a lot �e5 � 2e6 � e7 �1 �2 �1 0 0 0
treatment ba vs. b a lot �e5 � e6 � 2e7 �1 �1 �2 0 0 0
treatment a vs. placebo some�e8 + e9 0 0 0 �1 1 0
treatment b vs. placebo some�e8 + e10 0 0 0 �1 0 1
treatment ba vs. placebo some�2e8 � e9 � e10 0 0 0 �2 �1 �1
treatment ba vs. a some�e8 � 2e9 � e10 0 0 0 �1 �2 �1
treatment ba vs. b some �e8 � e9 � 2e10 0 0 0 �1 �1 �2

The following CONTRAST statements request that the CATMOD procedure perform the
appropriate tests. The statements can be submitted interactively, following the previous
nested model invocation, or in batch, included at the end of the nested model invocation.
Since you are only interested in the parameters corresponding to the TREAT(INITIAL)
effect, you list that effect on the CONTRAST statement and then specify the appropriate
six coefficients that pertain to the contrast involving the parameterse5–e10.

contrast ’lot: a-placebo’ treat(initial) -1 1 0 0 0 0 ;
contrast ’lot: b-placebo’ treat(initial) -1 0 1 0 0 0 ;
contrast ’lot: ba-placebo’ treat(initial) -2 -1 -1 0 0 0 ;
contrast ’lot: ba-a’ treat(initial) -1 -2 -1 0 0 0 ;
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contrast ’lot: ba-b’ treat(initial) -1 -1 -2 0 0 0 ;
contrast ’some:a-placebo’ treat(initial) 0 0 0 -1 1 0 ;
contrast ’some:b-placebo’ treat(initial) 0 0 0 -1 0 1 ;
contrast ’some:ba-placebo’ treat(initial) 0 0 0 -2 -1 -1 ;
contrast ’some:ba-a’ treat(initial) 0 0 0 -1 -2 -1 ;
contrast ’some:ba-b’ treat(initial) 0 0 0 -1 -1 -2 ;
run;

These statements produce the following “Analysis of Contrasts” table. It includes the
results for all the individual hypothesis tests.

Output 13.37 Contrast Results

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
------------------------------------------------
lot: a-placebo 1 5.59 0.0180
lot: b-placebo 1 42.81 <.0001
lot: ba-placebo 1 61.48 <.0001
lot: ba-a 1 32.06 <.0001
lot: ba-b 1 2.59 0.1076
some:a-placebo 1 8.19 0.0042
some:b-placebo 1 12.83 0.0003
some:ba-placebo 1 21.45 <.0001
some:ba-a 1 4.37 0.0365
some:ba-b 1 1.67 0.1964

Most of these contrasts are significant, using the� = 0:05 criterion; however, it appears
that the difference between the ba treatment and the b treatment is marginal for both some
initial pain and a lot of initial pain.

Additional contrasts of interest are the individual components of the treatment� initial
pain status interaction, detailed in the first three rows of Table 13.13, as well as the
individual components of the overall treatment effect. The interaction components are
constructed by taking the difference of the pertinent contrasts for the some pain and a lot
of pain contrasts, that is, taking the differences of rows 1 and 6, 2 and 7, and 3 and 8, in
Table 13.12. The treatment effect is the joint effect of the various treatments averaged over
the some initial pain and a lot of initial pain domains, so the individual components are the
sum of the following rows from Table 13.12: 1 and 6, 2 and 7, 3 and 8. (You naturally
think of averaging as summing and dividing by the number of summands; however,
multiplying the contrast equations by a constant yields equivalent results, and so summing
is all you really have to do.)
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Table 13.13. Hypothesis Tests

Coefficients
Hypothesis e5 e6 e7 e8 e9 e10
treatment a vs. placebo, some vs. a lot 1 1 0 1 �1 0
treatment b vs. placebo, some vs. a lot�1 0 1 1 0 �1
treatment ba vs. placebo, some vs. a lot�2 �1 �1 2 1 1
treatment ba vs. a, some vs. a lot �1 �2 �1 1 2 1
treatment ba vs. b, some vs. a lot �1 �1 �2 1 1 2
average treatment a effect �1 1 0 �1 1 0
average treatment b effect �1 0 1 �1 0 1
average treatment ba effect �2 �1 �1 �2 �1 �1
average ba vs. a �1 �2 �1 �1 �2 �1
average ba vs. b �1 �1 �2 �1 �1 �2

The next block of CONTRAST statements performs these tests. The last two CONTRAST
statements request the 3 df TREAT*INITIAL interaction and the 3 df TREAT effect,
respectively. The output is displayed in Output 13.38.

contrast ’interact:a-placebo’ treat(initial) -1 1 0 1 -1 0 ;
contrast ’interact:b-placebo’ treat(initial) -1 0 1 1 0 -1 ;
contrast ’interact:ba-placebo’ treat(initial) -2 -1 -1 2 1 1 ;
contrast ’average:a-placebo’ treat(initial) -1 1 0 -1 1 0 ;
contrast ’average:b-placebo’ treat(initial) -1 0 1 -1 0 1 ;
contrast ’average:ba-placebo’ treat(initial) -2 -1 -1 -2 -1 -1 ;
contrast ’average:ba-a’ treat(initial) -1 -2 -1 -1 -2 -1 ;
contrast ’average:ba-b’ treat(initial) -1 -1 -2 -1 -1 -2 ;
contrast ’interaction’ treat(initial) -1 1 0 1 -1 0 ,

treat(initial) -1 0 1 1 0 -1 ,
treat(initial) -2 -1 -1 2 1 1 ;

contrast ’treatment effect’ treat(initial) -1 1 0 -1 1 0 ,
treat(initial) -1 0 1 -1 0 1 ,
treat(initial) -2 -1 -1 -2 -1 -1 ;

run;

Output 13.38 Contrast Results

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
----------------------------------------------------
interact:a-placebo 1 0.05 0.8266
interact:b-placebo 1 4.05 0.0441
interact:ba-placebo 1 4.89 0.0271
average:a-placebo 1 13.51 0.0002
average:b-placebo 1 50.93 <.0001
average:ba-placebo 1 77.60 <.0001
average:ba-a 1 31.42 <.0001
average:ba-b 1 4.22 0.0399
interaction 3 12.63 0.0055
treatment effect 3 92.15 <.0001
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These contrasts indicate that the interaction component corresponding to the comparison
of treatment a and placebo is nonsignificant; therefore, treatment a has similar effects for
an initial pain status of some or a lot. Treatments b and ba do appear to have different
effects at the different levels of initial pain when compared to placebo; however, these
effects may be quite similar. The interaction component corresponding to the comparison
of treatment a and treatment ba is significant; their difference depends on the level of
initial pain. This is not the case for treatment b compared to treatment ba; their interaction
component is nonsignificant.

All the components of the treatment effect, those tests marked average, are significant.

The ‘interaction’ and the ‘treatment effect’ are testing the same thing as the TREAT effect
and the TREAT*INITIAL effects listed in the ANOVA table for the preliminary model.
Compare theQW values, 12.63 and 92.15, to those listed in that table. They are identical.

These results address the pertinent questions of this analysis. Other approaches may
include fitting a reduced model that incorporates the results of these hypothesis tests. This
is not pursued in this example.

13.7 Analysis of Survey Sample Data

In addition to analyzing data based on an underlying contingency table, the CATMOD
procedure provides a convenient way to analyze data that come in the form of a function
vector and covariance matrix. Often, such data come from complex surveys, and the
covariance matrix has been computed using other software that takes the sampling design
into account. If the number of response function estimates and the corresponding
covariance matrix is large, then software designed for survey data analysis may be more
appropriate.

13.7.1 HANES Data

The following data are from the Health and Nutrition Examination Survey (HANES) that
was conducted in the United States from 1971–1974. This survey obtained various
information concerning health from over 10,000 households in the United States. One of
the measures constructed for analysis of these data was a well-being index, a composite
index comprised from the answers to a questionnaire on general well-being. Table 13.14
contains the well-being ordered categorical estimates and standard errors for a
cross-classification based on sex and age. The covariance matrix was computed using
other software that used balanced repeated replication and took into account the sampling
framework of the survey (Koch and Stokes 1979).
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Table 13.14. Well-being Index

Sex Age Estimate S.E.
Female 25–34 7.250 0.105
Female 35–44 7.190 0.153
Female 45–54 7.360 0.103
Female 55–64 7.319 0.152
Female 65–74 7.552 0.139
Male 25–34 7.937 0.086
Male 35–44 7.925 0.108
Male 45–54 7.828 0.102
Male 55–64 7.737 0.116
Male 65–74 8.168 0.120

13.7.2 Direct Input of Response Functions

In the typical PROC CATMOD analysis, you input a contingency table or raw data and
specify the response functions, and PROC CATMOD computes the appropriate covariance
matrix based on the product multinomial distribution. In this case, your data are the vector
of response functions and its covariance matrix. Thus, in order to describe the variation of
these functions across various groups, you need to inform the procedure of the structure of
your underlying cross-classification. Ordinarily, you would do this with the explanatory
variables that define the contingency table. For this case, you need to rely on the FACTOR
statement to express the cross-classification relationships.

The following is the DATA step that inputs the response functions and their covariance
matrix into the SAS data set WBEING. The first two data lines are the well-being
estimates, listed in the same order as they appear in Table 13.14. The following data lines
contain the 10� 10 covariance matrix corresponding to the estimates; each row takes two
lines. The variable–TYPE– identifies whether each data line corresponds to parameter
estimates or covariance estimates. The value ‘parms’ identifies the lines with parameter
estimates, and the value ‘cov’ identifies the lines with the covariance estimates. The
variable–NAME– identifies the name of the variable that has its covariance elements
stored in that data line. Note that the diagonal element in theith row of the covariance
matrix is the variance for theith well-being estimate. (The square root of the element is the
standard error for the estimate.)

data wbeing;
input #1 b1-b5 _type_ $ _name_ $8. #2 b6-b10;
datalines;

7.24978 7.18991 7.35960 7.31937 7.55184 parms
7.93726 7.92509 7.82815 7.73696 8.16791
0.01110 0.00101 0.00177 -0.00018 -0.00082 cov b1
0.00189 -0.00123 0.00434 0.00158 -0.00050
0.00101 0.02342 0.00144 0.00369 0.25300 cov b2
0.00118 -0.00629 -0.00059 0.00212 -0.00098
0.00177 0.00144 0.01060 0.00157 0.00226 cov b3
0.00140 -0.00088 -0.00055 0.00211 0.00239

-0.00018 0.00369 0.00157 0.02298 0.00918 cov b4
-0.00140 -0.00232 0.00023 0.00066 -0.00010
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-0.00082 0.00253 0.00226 0.00918 0.01921 cov b5
0.00039 0.00034 -0.00013 0.00240 0.00213
0.00189 0.00118 0.00140 -0.00140 0.00039 cov b6
0.00739 0.00019 0.00146 -0.00082 0.00076

-0.00123 -0.00629 -0.00088 -0.00232 0.00034 cov b7
0.00019 0.01172 0.00183 0.00029 0.00083
0.00434 -0.00059 -0.00055 0.00023 -0.00013 cov b8
0.00146 0.00183 0.01050 -0.00173 0.00011
0.00158 0.00212 0.00211 0.00066 0.00240 cov b9

-0.00082 0.00029 -0.00173 0.01335 0.00140
-0.00050 -0.00098 0.00239 -0.00010 0.00213 cov b10

0.00076 0.00083 0.00011 0.00140 0.01430
;

13.7.3 The FACTOR Statement

The FACTOR statement is where you define the cross-classification structure of the
estimates. You need to specify names for the CATMOD procedure to use internally that
correspond to grouping variables. You specify the number of levels for each and whether
their values are character. This is done in the first part of the FACTOR statement. The
internal variable SEX has two levels, and its values are character, as denoted by the dollar
sign; the internal variable AGE has five levels, and its values are also character. The values
for these internal variables are listed under the PROFILE option after a slash (/) in the
FACTOR statement. The values are listed according to the order of the estimates; thus,
they are listed in the same order as they appear in Table 13.14.

Since SEX and AGE are internal variables, not part of the input data set, you cannot refer
to them in the MODEL statement. Thus, you use the keyword–RESPONSE– to specify
the desired model effects. In the following code, the saturated model is assigned to the
keyword–RESPONSE– in the FACTOR statement. This keyword is later used on the
right-hand side of the MODEL statement. The–RESPONSE– construction is also used to
perform repeated measurements analyses and loglinear model analyses with the CATMOD
procedure. Since the response functions are input directly, the keyword–F– is used to
represent them on the left-hand side of the MODEL statement.

The following PROC CATMOD statements invoke the procedure and specify that a
saturated model be fit to the data. The keyword READ on the RESPONSE statement tells
PROC CATMOD that the response functions and covariance matrix are to be directly
input. The variables B1-B10 after the keyword READ specify that ten response functions
are involved and thus that the covariance matrix is 10� 10.

proc catmod data=wbeing;
response read b1-b10;
factors sex $ 2, age $ 5 /

_response_ = sex|age
profile = (female ’25-34’,

female ’35-44’,
female ’45-54’,
female ’55-64’,
female ’65-74’,
male ’25-34’,
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male ’35-44’,
male ’45-54’,
male ’55-64’,
male ’65-74’);

model _f_ = _response_;
run;

13.7.4 Preliminary Analysis

Since populations and responses are not determined by input data variables, the population
profiles and response profiles are not printed as usual at the beginning of the PROC
CATMOD output. Instead, the first table displayed contains the response functions and the
model matrix, as shown in Output 13.39.

Output 13.39 Directly Input Response Functions

Response Functions Directly Input from Data Set WBEING

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6 7
-----------------------------------------------------------------------------

1 1 7.24978 1 1 1 0 0 0 1
2 7.18991 1 1 0 1 0 0 0
3 7.35960 1 1 0 0 1 0 0
4 7.31937 1 1 0 0 0 1 0
5 7.55184 1 1 -1 -1 -1 -1 -1
6 7.93726 1 -1 1 0 0 0 -1
7 7.92509 1 -1 0 1 0 0 0
8 7.82815 1 -1 0 0 1 0 0
9 7.73696 1 -1 0 0 0 1 0

10 8.16791 1 -1 -1 -1 -1 -1 1

Response Functions and Design Matrix

Function Design Matrix
Sample Number 8 9 10
-----------------------------------------

1 1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 -1 -1 -1
6 0 0 0
7 -1 0 0
8 0 -1 0
9 0 0 -1

10 1 1 1

Next is the analysis of variance table. The internal variables SEX and AGE are listed under
“Source” just as if they were explanatory variables on the input data set. The SEX*AGE
interaction is clearly nonsignificant, withp = 0:5713. Thus, the additive model with
effects SEX and AGE has an adequate goodness of fit withQW = 2:92 and 4 df.
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Output 13.40 Saturated Model

Response Functions Directly Input from Data Set WBEING

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 27117.73 <.0001
sex 1 47.07 <.0001
age 4 10.87 0.0281
sex*age 4 2.92 0.5713

Residual 0 . .

The additive model is fit next, with contrasts requested to determine whether any of the
parameters for age are essentially the same. The following statements fit the additive
model.

proc catmod data=wbeing;
response read b1-b10;
factors sex $ 2, age $ 5 /

_response_ = sex age
profile = (male ’25-34’ ,

male ’35-44’,
male ’45-54’ ,
male ’55-64’,
male ’65-74’ ,
female ’25-34’,
female ’35-44’,
female ’45-54’,
female ’55-64’ ,
female ’65-74’);

model _f_ = _response_;

The contrasts are set up to compare the first parameter for the age effect with each of the
others. Recall that the implicit parameter for the last level age effect (ages 65–74) is the
negative of the sum of the other parameters. Since the response functions are input
directly, coefficients must be supplied for all the effects, including the intercept. Thus, the
ALL –PARMS keyword is required. When you specify this keyword, you must supply
coefficients for all the model parameters. Here, 0s are supplied on all contrasts for the
intercept term and the sex effect term, and the final four coefficients apply to the age effect.

contrast ’25-34 vs. 35-44’ all_parms 0 0 1 -1 0 0;
contrast ’25-34 vs. 45,54’ all_parms 0 0 1 0 -1 0;
contrast ’25-34 vs. 55,64’ all_parms 0 0 1 0 0 -1;
contrast ’25-34 vs. 65,74’ all_parms 0 0 2 1 1 1;
run;

When all these statements are submitted, they produce the results displayed in
Output 13.41 and Output 13.42. There are six parameters, one for the intercept, one for the
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sex effect, and four for the age effect. None of the age effect parameters listed appears to
be of much importance. However, there does appear to be suggestive variation among age
groups, with thep-value for the age effect at 0.0561.

Output 13.41 Additive Model

Response Functions Directly Input from Data Set WBEING

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 28089.07 <.0001
sex 1 65.84 <.0001
age 4 9.21 0.0561

Residual 4 2.92 0.5713

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 7.6319 0.0455 28089.07 <.0001
sex 2 -0.2900 0.0357 65.84 <.0001
age 3 -0.00780 0.0645 0.01 0.9037

4 -0.0465 0.0636 0.54 0.4642
5 -0.0343 0.0557 0.38 0.5387
6 -0.1098 0.0764 2.07 0.1506

The contrasts indicate that the first four age groups act essentially the same and that the
oldest age group is responsible for the age effect,p = 0:0744; note that its estimate is
�f�0:008 � 0:046 � 0:034 � 0:110g = 0:198.

Output 13.42 Contrasts for Age Effect

Response Functions Directly Input from Data Set WBEING

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
------------------------------------------------
25-34 vs. 35-44 1 0.16 0.6937
25-34 vs. 45,54 1 0.12 0.7288
25-34 vs. 55,64 1 0.72 0.3954
25-34 vs. 65,74 1 3.18 0.0744

One more contrast is specified to test the joint hypothesis that the lower four age groups
are essentially the same. The following CONTRAST statement is submitted. Note that
these three sets of coefficients, separated by commas, result in a 3 df test.
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contrast ’25-64 the same’ all_parms 0 0 1 -1 0 0,
all_parms 0 0 1 0 -1 0,
all_parms 0 0 1 0 0 -1;

run;

The result of this test is nonsignificant,p = 0:8678.

Output 13.43 Joint Test for Ages 25-64

Response Functions Directly Input from Data Set WBEING

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
-----------------------------------------------
25-64 the same 3 0.72 0.8678

13.7.5 Inputting the Model Matrix Directly

These results suggest that an appropriate model for these data is one that includes the sex
effect and an effect for the oldest age group. Since the response functions and their
covariance matrix are inputted directly, it isn’t possible to create a new explanatory
variable in a DATA step that takes the value 0 for ages 25-64 and the value 1 for ages
65–74 and then use it in a DIRECT statement.

However, PROC CATMOD does allow you to specify your model matrix directly, instead
of building one based on the explanatory variables or the effects represented by the

–RESPONSE– keyword. This means that you can fit the desired model with a sex effect
and an older age effect. The MODEL statement containing such a model matrix
specification follows. You write in the coefficients for the model matrix row-wise,
separating each row with a comma. The entire matrix is enclosed by parentheses. This is
similar to how you would input a matrix in the SAS/IML matrix programming language.

model _f_ = ( 1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 1 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 1 );

This matrix represents an incremental effects model. The first column of 1s is for the
intercept, the second column is for the incremental effect of sex, where the reference level
is for females and the incremental effect is for males, and the third column is an
incremental effect for age, where the increment is for those aged 65–74.
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Note that model matrices can be inputted directly for all applications of the CATMOD
procedure, if desired.

The PROC CATMOD statements required to fit this model follow. After the model matrix
is listed a set of labels for the effects; the numbers correspond to the columns of the model
matrix. Without the–RESPONSE– keyword in the MODEL statement, the CATMOD
procedure has no way of knowing how to divide the model variability into various
components. You can request that various column parameters be tested jointly, or singly,
as specified here. Refer to the CATMOD procedure chapter in theSAS/STAT User’s Guide,
Version 8for more detail. If you don’t specify information concerning the columns, PROC
CATMOD performs a joint test for the significance of the model beyond an overall mean,
labeling this effect MODEL|MEAN in the ANOVA table.

proc catmod data=wbeing;
response read b1-b10;
factors sex $ 2, age $ 5 /

_response_ = sex age
profile = (female ’25-34’,

female ’35-44’,
female ’45-54’,
female ’55-64’,
female ’65-74’,
male ’25-34’,
male ’35-44’,
male ’45-54’,
male ’55-64’,
male ’65-74’);

model _f_ = ( 1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 1 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 1 ) (1=’Intercept’, 2=’Sex’, 3=’65-74’)

/ pred;

The resulting tables for the analysis of variance and the parameter estimates are displayed
in Output 13.44. The model fits very well, with aQW of 3.64 and 7 df, which results in
p = 0:8198. The effects are listed as specified in the MODEL statement, and each is
significant.
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Output 13.44 Reduced Model

Response Functions Directly Input from Data Set WBEING

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 14432.10 <.0001
Sex 1 72.64 <.0001
65-74 1 8.49 0.0036

Residual 7 3.64 0.8198

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 7.3079 0.0608 14432.10 <.0001

2 0.5601 0.0657 72.64 <.0001
3 0.2607 0.0895 8.49 0.0036

Finally, the predicted values are displayed in Output 13.45. Fitting this model has resulted
in estimates of the standard error that are on the order of twice as small as the standard
errors for the original data.

Output 13.45 Reduced Model

Response Functions Directly Input from Data Set WBEING

Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

Number Function Error Function Error Residual
--------------------------------------------------------------------

1 7.24978 0.105357 7.30786 0.060831 -0.05808
2 7.18991 0.153036 7.30786 0.060831 -0.11795
3 7.3596 0.102956 7.30786 0.060831 0.05174
4 7.31937 0.151592 7.30786 0.060831 0.01151
5 7.55184 0.1386 7.568608 0.098147 -0.01677
6 7.93726 0.085965 7.867955 0.047737 0.069305
7 7.92509 0.108259 7.867955 0.047737 0.057135
8 7.82815 0.10247 7.867955 0.047737 -0.0398
9 7.73696 0.115542 7.867955 0.047737 -0.13099

10 8.16791 0.119583 8.128703 0.095929 0.039207
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13.8 Modeling Rank Measures of Association Statistics

Many studies include outcomes that are ordinal in nature. When the treatment is either
dichotomous or ordinal, you can model rank measures of correlation using WLS methods
and use that framework to investigate various treatment effects and interactions. Such an
analysis can often complement statistical models such as the proportional odds model.
Refer to Carr, Hafner, and Koch (1989) for an example of such an analysis applied to
Goodman-Kruskal rank correlation coefficients, also known as gamma coefficients.

The Mann-Whitney rank measure of association statistics are useful statistics for assessing
the association between an ordinal outcome and a dichotomous explanatory variable.
Consider the chronic pain data again. Investigators compared a new treatment with a
placebo and assessed the response for a particular condition. Patients were obtained from
two investigators whose design included stratification relative to four diagnostic classes.
See Table 13.4. You may be interested in computing the Mann-Whitney rank measure of
association as a way of assessing the extent to which patients with active treatments are
more likely to have better response status than those with placebo. You may then be
interested in seeing whether diagnostic status and investigator influence this association
through model-fitting. You can perform such modeling by first computing the
Mann-Whitney statistics and their standard errors and then using these estimates as input
to the CATMOD procedure to perform modeling.

You can compute the Mann-Whitney measures as functions of the Somer’s D measures,
which are produced by the FREQ procedure.

Ui =
fSomer’s D C|R+ 1g

2
andSi =

SE

2

Si is the standard error ofUi, the Mann-Whitney statistic.

The following statements produce measures of association for the eight 2� 5 tables
formed for the combination of investigator and treatment.

proc freq data=cpain;
weight count;
tables dstatus*invest*treat*status/ measures;

run;

Output 13.46 displays the table for Diagnostic Status I and Investigator A. Output 13.47
displays the measures of association for that table.
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Output 13.46 Frequency Counts

Table 1 of treat by status
Controlling for dstatus=I invest=A

treat status

Frequency|
Percent |
Row Pct |
Col Pct |excel |fair |good |moderate|poor | Total
---------+--------+--------+--------+--------+--------+
active | 0 | 2 | 1 | 2 | 3 | 8

| 0.00 | 11.11 | 5.56 | 11.11 | 16.67 | 44.44
| 0.00 | 25.00 | 12.50 | 25.00 | 37.50 |
| 0.00 | 100.00 | 50.00 | 66.67 | 30.00 |

---------+--------+--------+--------+--------+--------+
placebo | 1 | 0 | 1 | 1 | 7 | 10

| 5.56 | 0.00 | 5.56 | 5.56 | 38.89 | 55.56
| 10.00 | 0.00 | 10.00 | 10.00 | 70.00 |
| 100.00 | 0.00 | 50.00 | 33.33 | 70.00 |

---------+--------+--------+--------+--------+--------+
Total 1 2 2 3 10 18

5.56 11.11 11.11 16.67 55.56 100.00

Output 13.47 Measures of Association

Statistics for Table 1 of treat by status
Controlling for dstatus=I invest=A

Statistic Value ASE
------------------------------------------------------
Gamma 0.4286 0.3222
Kendall’s Tau-b 0.2644 0.2144
Stuart’s Tau-c 0.2963 0.2388

Somers’ D C|R 0.3000 0.2412
Somers’ D R|C 0.2330 0.1922

Pearson Correlation 0.2155 0.2392
Spearman Correlation 0.2850 0.2300

Lambda Asymmetric C|R 0.0000 0.0000
Lambda Asymmetric R|C 0.3750 0.2210
Lambda Symmetric 0.1875 0.1133

Uncertainty Coefficient C|R 0.1291 0.0650
Uncertainty Coefficient R|C 0.2394 0.1312
Uncertainty Coefficient Symmetric 0.1678 0.0864

Sample Size = 18

Table 13.15 displays Somer’s D values and asymptotic standard errors produced by the
FREQ procedure and the calculated values ofUi andSi.
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Table 13.15. Mann-Whitney Statistics

Diagnostic
Class Researcher Somer’s ASE Ui Si
I A 0.2000 0.3515 0.6000 0.1758
I B 0.2002 0.1915 0.6001 0.0958
II A 0.2083 0.3622 0.6042 0.1811
II B 0.6778 0.1834 0.8389 0.0917
III A 0.0260 0.2271 0.5130 0.1136
III B 0.1893 0.1923 0.5947 0.0962
IV A 0.0000 0.2007 0.5000 0.1004
IV B �0:0156 0.2116 0.4922 0.1058

You compute the variances and then create a data set that contains the estimates and the
covariance matrix. The following DATA step creates the data set MANNWHITNEY.

data MannWhitney;
input b1-b8 _type_ $ _name_ $8.;
datalines;

.6000 .6011 .6042 .8389 .5130 .5947 .5000 .4922 parms

.03091 .0000 .0000 .0000 .0000 .0000 .0000 .0000 cov b1

.0000 .00918 .0000 .0000 .0000 .0000 .0000 .0000 cov b2

.0000 .0000 .3280 .0000 .0000 .0000 .0000 .0000 cov b3

.0000 .0000 .0000 .0084 .0000 .0000 .0000 .0000 cov b4

.0000 .0000 .0000 .0000 .0129 .0000 .0000 .0000 cov b5

.0000 .0000 .0000 .0000 .0000 .0093 .0000 .0000 cov b6

.0000 .0000 .0000 .0000 .0000 .0000 .0101 .0000 cov b7

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0112 cov b8
;

This data set is then input into the CATMOD procedure. Instead of generating functions
from an underlying contingency table, the CATMOD procedure does modeling directly on
the input functions using the input covariance matrix as the weights. You define the
profiles for each function with the PROFILE option in the FACTORS statement. You also
define your factors, or explanatory variable structure, along with the number of levels for
each, and describe the effects you want to include in your model with the–RESPONSE–
option.
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proc catmod data=MannWhitney;
response read b1-b8;
factors diagnosis $ 4 , invest $ 2 /

_response_ = diagnosis invest
profile = (I A,

I B,
II A,
II B,
III A,
III B,
IV A,
IV B);

model _f_ = _response_ / cov;
run;

The ANOVA table results follow. The residual Wald test is a test of the diagnostic class
and investigator interaction on the treatment effect, which is nonsignificant with ap-value
of 0.9540. Neither diagnostic class nor investigator appear to explain significant variation,
with diagnostic class appearing to be modestly influential with ap-value of 0.0725.

Output 13.48 ANOVA Table

Response Functions Directly Input from Data Set MANNWHITNEY

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 193.69 <.0001
diagnosis 3 6.98 0.0725
invest 1 0.14 0.7122

Residual 3 0.33 0.9540

By submitting another MODEL statement that specifies the vector of 1s as the model
matrix, you can obtain a test of the hypothesis that the measures have the same value for
each diagnostic class and investigator combination through the residual Wald test.

model _f_ =( 1,
1,
1,
1,
1,
1,
1,
1 );

This is the seven degree test that is labeled ‘Residual.’ In the “Analysis of Variance” table.
Note that there are no degrees of freedom left over for the “Model|Mean” source of
variation, which is why the redundant or restricted parameter message appears.
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Output 13.49 ANOVA Table

Response Functions Directly Input from Data Set MANNWHITNEY

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Model|Mean 0* . .

Residual 7 9.41 0.2247

NOTE: Effects marked with ’*’ contain one or more
redundant or restricted parameters.

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 0.6027 0.0396 231.30 <.0001

Thep-value of 0.2247 suggests that this hypothesis is compatible with these data. The
estimate of the common Mann-Whitney rank measure for the eight strata is 0.6027 with
standard error 0.0396 andp < 0:0001. It is interpretable as an estimated probability of
0.6027 for a randomly selected patient with active treatment having better responses than
one with placebo.

Appendix A: Statistical Methodology for Weighted Least Squares

Consider the general contingency table displayed in Table 13.16, wheres represents the
number of rows, or groups, in the table, andr represents the number of responses.

Table 13.16. Underlying Contingency Table

Response
Group 1 2 � � � r Total

1 n11 n12 � � � n1r n1+
2 n21 n22 � � � n2r n2+
� � � � � � � � � � � � � � � � � �
s ns1 ns2 � � � nsr ns+

The proportion of subjects in theith group who have thejth response is written

pij = nij=ni+

Supposen0i=(ni1; ni2; : : : ; nir) represents the vector of responses for theith
subpopulation. Ifn0 = (n01;n

0
2; : : : ;n

0
r), thenn follows the product multinomial
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distribution, given that each group has an independent sample. You can write the
likelihood ofn as

Prfng =
sY
i=1

ni+!

rY
j=1

�ij
nij=nij !

where�ij is the probability that a randomly selected subject from theith group has thejth
response profile. The�ij satisfy the natural restrictions

rX
j=1

�ij = 1 for i = 1; 2; : : : ; s

Supposepi = ni=ni+ is ther � 1 vector of observed proportions associated with theith
group and supposep0 = (p01;p

0
2; : : : ;p

0
s) is the(sr � 1) compound vector of proportions.

A consistent estimator of the covariance matrix for the proportions in theith row is

V(pi) =
1

ni

26664
pi1(1� pi1) �pi1pi2 � � � �pi1pir
�pi2p1 pi2(1� pi2) � � � �pi2pir

...
...

...
...

�pirpi1 �pirpi2 � � � pir(1 � pir)

37775
and the covariance matrix for the vectorp is

Vp =

26664
V1 0 � � � 0
0 V2 � � � 0
...

...
...

...
0 0 � � � Vs

37775
whereVi is the covariance matrix forpi.

SupposeF1(p);F2(p); : : : ;Fu(p) is a set ofu functions ofp. Each of the functions is
required to have continuous partial derivatives through order two, andF must have a
nonsingular covariance matrix, which can be written

VF(�) = [H(�)][V(�)][H(�)]0

whereH(�) = [@F=@zjz = �] is the first derivative matrix ofF(z).

F is a consistent estimator ofF(�), so you can investigate the variation among the
elements ofF(�) with the linear model

EAfF(p)g = F(�) = X�
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whereX is a known model matrix with rankt � u, � is at� 1 vector of unknown
parameters, andEAs means asymptotic expectation.

The goodness of fit of the model is assessed with

Q(X;F) = (WF)0[WVFW
0]�1WF

whereW is any full rank[(u� t)� u] matrix orthogonal toX. The quantityQ(X;F) is
approximately distributed as chi-square with(u� t) degrees of freedom when the sample
sizesni+ are large enough so that the elements ofF have an approximate multivariate
normal distribution. Such statistics are known as Wald statistics (Wald 1943).

The following statistic

QW = (F�Xb)0V�1
F (F�Xb)

is identical toQ(X;F) and is obtained by using weighted least squares to produce an
estimate for�.

b = (X0V�1
F X)�1X0V�1

F F

which is the minimum modified chi-square estimator (Neyman 1949).

A consistent estimator for the covariance matrix ofb is given by

V (b) = (X0V�1
F X)�1

If the model adequately characterizes the data as indicated by the goodness-of-fit criterion,
then linear hypotheses of the formC� = 0, whereC is a knownc� t matrix of constants
of rankc, can be tested with the Wald statistic

QC = (Cb)0[C(X0V�1
F X)�1C0]�1(Cb)

QC is distributed as chi-square with degrees of freedom equal toc.

Predicted values forF(�) can be calculated from

F̂ = Xb = X(X0VF
�1X)�1X0VF

�1F

and consistent estimators for the variances ofF̂ can be obtained from the diagonal
elements of

V
F̂
= X(X0VF

�1X)�1X0
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While the functionsF(p) can take on a wide range of forms, a few functions are
commonly used. In particular, you can fit a strictly linear model

F(p) = Ap

whereA is a matrix of known constants. The covariance matrix ofF is written

VF = AVpA
0

Another common model is loglinear:

F(p) = A logp

wherelog transforms a vector to the corresponding vector of natural logarithms andA is
orthogonal to1 (vector of 1s), that is,A1 = 0. In this case,

VF = ADp
�1A0

whereDp is a diagonal matrix with the elements ofp on the diagonal.

Many other useful functions can be generated as a sequence of linear, logarithmic, and
exponential operations on the vectorp.

� linear transformations:F1(p) = A1p = a1

� logarithmic: F2(p) = log(p) = a2

� exponential:F3(p) = exp(p) = a3

The correspondingHk matrix operators needed to produce the covariance matrix forF are

� H1 = A1

� H2 = Dp
�1

� H3 = Da3

VF is estimated byVF = [H(p)]Vp[H(p)]0 whereH(p) is a product of the first
derivative matricesHk(p) wherek indicates theith operation in accordance with the
chain rule.
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Chapter 14

Modeling Repeated Measurements
Data with WLS

14.1 Introduction

Many types of studies have research designs that involve multiple measurements of a
response variable. Longitudinal studies, in which repeated measures are obtained over
time from each subject, are one important and commonly used type of repeated measures
study. In other applications, the response from each experimental unit is measured under
multiple conditions rather than at multiple time points. In some settings in which repeated
measures data are obtained, the independent experimental units are not individual subjects.
For example, in a toxicological study the experimental units might be litters; responses are
then obtained from the multiple newborns in each litter. In a genetic study, experimental
units might be defined by families; responses are then obtained from the members of each
family.

There are two main difficulties in the analysis of data from repeated measures studies.
First, the analysis is complicated by the dependence among repeated observations made on
the same experimental unit. Second, the investigator often cannot control the
circumstances for obtaining measurements, so that the data may be unbalanced or partially
incomplete. For example, in a longitudinal study the response from a subject may be
missing at one or more of the time points due to factors that are unrelated to the outcome
of interest. In toxicology or genetic studies, litter or family sizes are variable rather than
fixed; hence, the number of repeated measures is not constant across experimental units.

While many approaches to the analysis of repeated measures data have been studied, most
are restricted to the setting in which the response variable is normally distributed and the
data are balanced and complete. Although the development of methods for the analysis of
repeated measures categorical data has received substantially less attention in the past, this
has recently become an important and active area of research. Still, the methodology is not
nearly as well developed as for continuous, normally distributed outcomes.

The SAS System provides several useful methodologies for analyzing repeated measures
categorical data. These methodologies are applicable when a univariate response variable
is measured repeatedly for each independent experimental unit.

One of these approaches, based on Mantel-Haenszel (MH) test statistics, is described as an
advanced topic in Chapter 6, “Sets ofs� r Tables.” The MH methodology is useful for
testing the null hypothesis of no association between the response variable and the
repeated time points or conditions within each subject (that is, interchangeability).
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Although these randomization model methods require minimal assumptions and the
sample size requirements are less stringent than for other methods, they have important
limitations. First, the MH methods are restricted to the analysis of data from a single
sample; thus, the effects of additional factors (for example, treatment group) cannot be
incorporated. In addition, the methods are oriented primarily to hypothesis testing rather
than to parameter estimation.

Another approach is to model categorical repeated measurements in terms of a
parsimonious number of parameters. Chapter 8, “Logistic Regression I: Dichotomous
Response,” introduces statistical modeling of categorical data using maximum likelihood
to estimate parameters of models for logits, and Chapter 13, “Weighted Least Squares,”
describes weighted least squares (WLS) methodology for modeling a wide range of types
of categorical data outcomes. Both of these chapters, however, focus on statistical
modeling of the relationship between a single dependent categorical variable and one or
more explanatory variables. When you model repeated measurements data, you are
dealing with multiple dependent variables that reflect different times or conditions under
which the outcome of interest was measured.

This chapter describes methods for analyzing repeated measurements data with weighted
least squares methods. The WLS techniques are a direct extension of the general approach
introduced and described in Chapter 13. The WLS methodology is an extremely versatile
modeling approach that can be used efficiently for parameter estimation and hypothesis
testing. However, the price of this versatility is that large sample sizes are required.

While such methods are still useful in analyzing repeated measurements data, generalized
estimating equations (GEE) has become a popular technique for the analysis of repeated
categorical measures as well as clustered data. GEE methods handle continuous
explanatory variables, missing data, and time-dependent covariates. Chapter 15 discusses
the GEE methodology and its application through a series of practical examples.

Many repeated measurements analyses are now undertaken with the GEE strategy.
However, the weighted least squares approach is still a very reasonable one for data that
meet the sample size requirements and include a minimum number of discrete explanatory
variables, complete data, and limited time-dependent explanatory variables. For these
situations, weighted least squares offers full efficiency, provides well-defined
goodness-of-fit statistics, accounts for all degrees of freedom, and is asymptotically
equivalent to maximum likelihood methods. You do lose these properties with the GEE
approach, but you gain greater scope in your analysis. In some sense, you can consider the
analogy to the classical MANOVA model in the continuous response setting. The
weighted least squares and MANOVA methods have very desirable properties but limited
scope; GEE methods, like mixed model methods, extend the possible scope of analyses
with some reasonable choice of assumptions. Choosing one method or another depends on
the data at hand and your analysis objectives.

14.2 Weighted Least Squares

14.2.1 Introduction

Chapter 13 discusses the use of weighted least squares in modeling categorical data. The
first step of this methodology is to arrange the data from the experiment or study as an
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s� r contingency table. In this general WLS framework, there ares groups defined by the
cross-classification of the factors of interest (explanatory variables) andr response
profiles. Chapter 13 considers situations in which there is a single outcome (dependent)
variable, so that the response profiles are defined by ther possible levels of the dependent
variable. In each group, at mostr � 1 linearly independent response functions can be
analyzed. Thus, in the applications in which the response variable is dichotomous, there is
one response function per group. In other applications, the response is polytomous but a
single response function, such as a mean score, is computed for each group. In both of
these situations, there ares independent response functions (one for each row of the table)
and their estimated covariance matrixVF is diagonal.

However, the methodology can also be used when there are multiple response functions
per group. In these situations, the response functions from the same group are correlated
and their covariance matrixVF is block diagonal. Since the usual covariance structure
based on the multinomial distribution accounts for correlated proportions, it is a natural
candidate for handling the correlation structure of repeated measurements.

In repeated measures applications, interest generally focuses on the analysis of the
marginal distributions of the response at each time point, that is, regardless of the
responses at the other time points. Thus, there are multiple response functions per group,
and the correlation structure induced by the repeated measures must be taken into
consideration. In the general situation in which ac-category response variable is measured
at t time points, the cross-classification of the possible outcomes results inr = ct response
profiles. You will generally considert(c� 1) correlated marginal proportions, generalized
logits, or cumulative logits, ort correlated mean scores (if the response is ordinal), in the
analysis.

Provided that the appropriate covariance matrix is computed for these correlated response
functions, the WLS computations are no different from those described in Chapter 13.
Koch and Reinfurt (1971) and Koch et al. (1977) first described the application of WLS to
repeated measures categorical data. Further work is described in Stanish, Gillings, and
Koch (1978), Koch et al. (1985), and Koch et al (1989). Stanish (1986), Landis
et al. (1988), Agresti (1988, 1989), and Davis (1992) further developed this methodology
and also illustrated various aspects of the use of the CATMOD procedure in analyzing
categorical repeated measures.

The following sections illustrate several basic types of WLS analyses of repeated
measurements data when the outcome is categorical. The examples progress in difficulty
and gradually introduce more sophisticated analyses. Section 13.2.2 illustrates the
methodology with a basic example.

14.2.2 One Population, Dichotomous Response

Grizzle, Starmer, and Koch (1969) analyze data in which 46 subjects were treated with
three drugs (A, B, and C). The response to each drug was recorded as favorable or
unfavorable. The null hypothesis of interest is that the marginal probability of a favorable
response is the same for all three drugs, that is, the hypothesis of marginal homogeneity
(see 6.4.1). Since the same 46 subjects were used in testing each of the three drugs, the
estimates for the three marginal probabilities are correlated. In Section 6.4, this null
hypothesis was tested using the Mantel-Haenszel general association statistic. The
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conclusion of this analysis was that there was a statistically significant difference among
the three marginal probabilities.

Table 14.1 displays the data from Section 6.4 in the general WLS framework. There is one
subpopulation (since there is a single group of subjects) andr = 23 = 8 response profiles,
corresponding to the possible combinations of favorable and unfavorable response for the
three drugs. For example, there are 6 subjects who had a favorable response to all three
drugs (FFF) and 16 subjects who responded favorably to drugs A and B and unfavorably to
drug C (FFU). In the notation of Section 14.2.1,s = 1, c = 2, t = 3, andr = 23 = 8.

Based on the underlying multinomial distribution of the cell counts, computation of
response functions of interest and subsequent analysis using the WLS approach follows
the same principles described in Chapter 13. However, the eight response profiles are not
defined by the eight levels of a single response but rather by the response combinations
resulting from the measurement of three dichotomous variables. From the proportions of
these eight profiles, you can construct three correlated marginal proportions that
correspond to those subjects who responded favorably to Drug A, Drug B, and Drug C,
respectively.

Table 14.1. Drug Response Data

F=favorable, U=unfavorable
Drug A response F F F F U U U U
Drug B response F F U U F F U U
Drug C response F U F U F U F U Total

Number of subjects 6 16 2 4 2 4 6 6 46

Suppose thatpi denotes the observed proportion of subjects in theith response profile
(ordered from left to right as displayed in Table 14.1) and letp = (p1; : : : ; p8)

0. For
example,p1 = PrfFFFg is the probability of a favorable response to all three drugs. Now
let pA, pB , andpC denote the marginal proportions with a favorable response to drugs A,
B, and C, respectively. For example,pA = PrfFFF or FFU or FUF or FUUg. The
vector of response functionsF(p) = (pA; pB ; pC)

0 can be computed by the linear
transformationF(p) = Ap, where

A =

24 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

35
The first row ofA sumsp1, p2, p3, andp4 to compute the proportion of subjects with a
favorable response to drug A. Similarly, the second row ofA sumsp1, p2, p5, andp6 to
yield the proportion with a favorable response to drug B. Finally, the corresponding
proportion for drug C is computed by summingp1, p3, p5, andp7. The hypothesis of
marginal homogeneity specifies that the marginal proportions with a favorable response to
drugs A, B, and C are equal. This hypothesis can be tested by fitting a model of the form
F(�) = X�, where� is the vector of population probabilities estimated byp,X is a
known model matrix, and� is a vector of unknown parameters. If the drug effect is
significant, then the hypothesis of marginal homogeneity can be rejected.
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This analysis is performed with the CATMOD procedure. The following statements create
the SAS data set DRUG. The variables DRUGA, DRUGB, and DRUGC contain the
responses for drugs A, B, and C, respectively.

data drug;
input druga $ drugb $ drugc $ count;
datalines;

F F F 6
F F U 16
F U F 2
F U U 4
U F F 2
U F U 4
U U F 6
U U U 6
;

The next group of statements requests a repeated measurements analysis that tests the
hypothesis of marginal homogeneity.

proc catmod;
weight count;
response marginals;
model druga*drugb*drugc=_response_ / oneway cov;
repeated drug 3 / _response_=drug;

run;

A major difference between this PROC CATMOD invocation and those discussed in
Chapter 13 is the syntax of the MODEL statement. One function of the MODEL statement
is to specify the underlyings� r contingency table; that is, it defines ther response
profiles by the values of the response variable and thes population profiles by the
cross-classification of the levels of the explanatory variables. The fundamental distinction
of repeated measures analyses is that there are now multiple response variables and they
determine both the response functions and the variation to be modeled.

The response variables are crossed (separated by asterisks) on the left-hand side of the
MODEL statement, and ther response profiles are defined by the cross-classification of
their levels.

model druga*drugb*drugc=_response_ / oneway cov;

The response profiles are ordered so that the rightmost variable on the left-hand side of the
MODEL statement varies fastest and the leftmost variable varies slowest. In this example,
the drug C response changes from favorable to unfavorable most rapidly, followed by
drug B, with drug A changing the slowest. Look ahead to Output 14.2 to see these
response profiles listed in the resulting PROC CATMOD output. Since MARGINALS is
specified in the RESPONSE statement, the marginal proportions for Drug A, Drug B, and
Drug C are computed as the three response functions, as seen in Output 14.3.
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Since the right-hand side of the MODEL statement does not include any explanatory
variables, the data are correctly structured as a single population withr = 8 response
profiles. The keyword–RESPONSE– specifies that the variation among the dependent
variables is to be modeled; by default, PROC CATMOD builds a full factorial

–RESPONSE– effect with respect to the repeated measurement factors. In this case, there
is only one repeated factor, drug, so the full factorial includes only the drug main effect.

However, you can specify a different model matrix in the REPEATED statement, which is
usually used in repeated measurements analysis. The general purpose of the REPEATED
statement is to specify how to incorporate repeated measurement factors into the model.
You can specify a name for each repeated measurement factor in the REPEATED
statement, as well as specify the type (numeric or character), number of levels, and the
label or value of each level. You can also define the model matrix in terms of the repeated
measurement factors.

repeated drug 3 / _response_=drug;

In this example, the REPEATED statement specifies that there is a single repeated
measurement factor that has three levels (drugs A, B, C). Although it is convenient to
name this factor DRUG, any valid SAS variable name can be used, with the restriction that
it cannot be the same as the name of an existing variable in the data set. If there is only one
repeated measurements factor and the number of levels is omitted, then the CATMOD
procedure assumes that the number of levels is equal to the number of response functions
per group. So, in this case, the number 3 could have been omitted from the REPEATED
statement.

The–RESPONSE–= option in the REPEATED statement specifies the effects to be
included in the model matrix as a result of using the–RESPONSE– keyword in the
MODEL statement. The variables named in the effects must be listed in the REPEATED
statement. If this option is omitted, then PROC CATMOD builds a full factorial

–RESPONSE– effect with respect to the repeated measurement factors. In this example,
the–RESPONSE– option specifies that the model matrix include a DRUG main effect.
Note that since there is only one repeated measurement factor, you could replace the
preceding REPEATED statement with

repeated drug;

Note that the ONEWAY option in the MODEL statement prints one-way marginal
frequency distributions for each response variable in the MODEL statement. This is very
useful in verifying that your model is set up as intended. The COV option in the MODEL
statement prints the covariance matrix of the vector of response functionsF(p).

Output 14.1 displays the one-way frequency distributions of the variables DRUGA,
DRUGB, and DRUGC; they are useful for checking that the response functions are defined
as desired. The variables DRUGA, DRUGB, and DRUGC have two levels, so the marginal
proportion of subjects with the first level (F) is computed for each variable.
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Output 14.1 One-Way Frequency Distributions

One-Way Frequencies

Variable Value Frequency
-----------------------------
druga F 28

U 18

drugb F 28
U 18

drugc F 16
U 30

Output 14.2 displays the population and response profiles.

Output 14.2 Population and Response Profiles

Population Profiles

Sample Sample Size
---------------------

1 46

Response Profiles

Response druga drugb drugc
-----------------------------------

1 F F F
2 F F U
3 F U F
4 F U U
5 U F F
6 U F U
7 U U F
8 U U U

Output 14.3 displays the vector of response functions, its covariance matrix, and the model
matrix. Compare these three response functions with the one-way distributions in
Output 14.1 and verify that they are equal to the marginal proportions with a favorable
response to drugs A, B, and C, respectively; for example,28=(28 + 18) = 0:6087 for
drugs A and B,16=(16 + 30) = 0:34783 for drug C. The covariance matrix
VF = AVpA

0 of the response function vectorF is printed because the COV option was
specified in the MODEL statement. WhileVp is the8� 8 covariance matrix of the
proportions in the eight response categories,VF is the3� 3 covariance matrix ofF. Note
that the off-diagonal elements ofVF are nonzero, since the three marginal proportions are
correlated. The model matrix has three columns, and the corresponding parameters are an
overall intercept, an effect for drug A, and an effect for drug B.



436 Modeling Repeated Measurements Data with WLS

Output 14.3 Response Functions and Model Matrix

Response Functions and Covariance Matrix

Function Response Covariance Matrix
Sample Number Function 1 2 3
-----------------------------------------------------------------------

1 1 0.60870 0.0051779 0.0023424 -0.000822
2 0.60870 0.0023424 0.0051779 -0.000822
3 0.34783 -0.000822 -0.000822 0.0049314

Design Matrix

Function Design Matrix
Sample Number 1 2 3
---------------------------------------------

1 1 1 1 0
2 1 0 1
3 1 -1 -1

Output 14.4 displays the analysis of variance (ANOVA) table. The source of variation
labeled “drug” tests the null hypothesis that the probability of a favorable response is the
same for all three drugs. Since the observed value of the 2 df test statistic is 6.58, the
hypothesis of marginal homogeneity is rejected at the 0.05 level of significance
(p = 0:0372).

Output 14.4 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 146.84 <.0001
drug 2 6.58 0.0372

Residual 0 . .

From inspection of the marginal proportions of favorable response, it is clear that drug C is
inferior to drugs A and B. You can test the equality of drugs A and C using a contrast
statement. Since�2 and�3 are the parameters for drugs A and B (corresponding to the
second and third columns of the model matrix in Output 14.3), the null hypothesis is

H0:�2 = ��2 � �3

or, equivalently,
H0: 2�2 + �3 = 0

The corresponding CONTRAST statement is

contrast ’A versus C’ _response_ 2 1;
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Note that the keyword–RESPONSE– is specified in the CONTRAST statement. You
could also test this hypothesis using the ALL–PARMS keyword. The CONTRAST
statement would be

contrast ’A versus C’ all_parms 0 2 1;

The results in Output 14.5 indicate a significant difference between drugs A and C
(QW = 5:79, 1 df,p = 0:0161).

Output 14.5 Contrast Results

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
-------------------------------------------
A versus C 1 5.79 0.0161

14.2.3 Two Populations, Dichotomous Response

The previous example involved the analysis of three responses from a single population.
This section extends the methodology to situations in which there are multiple groups of
subjects.

The Iowa 65+ Rural Health Study (Cornoni-Huntley et al. 1986) followed a cohort of
elderly males and females over a six-year period. At each of three surveys, the response to
one of the variables of interest, church attendance, was classified as yes if the subject was a
regular church attender, and no if the subject was not a regular church attender. Table 14.2
displays the data from the 1311 females and 662 males who responded to all three surveys.
Interest focuses on determining if church attendance rates change over time, if the
attendance rates differ between females and males, and if the observed patterns of change
over time are the same for females and males.



438 Modeling Repeated Measurements Data with WLS

Table 14.2. Church Attendance Data

Regular Church Attender at:
Gender Year 0 Year 3 Year 6 Count
Female Yes Yes Yes 904

Yes Yes No 88
Yes No Yes 25
Yes No No 51
No Yes Yes 33
No Yes No 22
No No Yes 30
No No No 158

Male Yes Yes Yes 391
Yes Yes No 36
Yes No Yes 12
Yes No No 26
No Yes Yes 15
No Yes No 21
No No Yes 18
No No No 143

When you obtain repeated measures data from multiple populations, you are interested not
only in the effect of the repeated measures factor but also in the effect of the explanatory
variables defining the multiple populations. In fact, when there are explanatory variables
(factors) in a study involving repeated measures, there are three types of variation:

� main effects and interactions of the repeated measurement factors (within subjects
variation)

� main effects and interactions of the explanatory variables (between subjects
variation)

� interactions between the explanatory variables and the repeated measurement factors

In this example, there are two populations (females, males). Since a dichotomous response
variable is measured at each of three time points (the repeated measurement factor), there
arer = 23 = 8 response profiles. The between subjects variation is due to differences
between females and males, and the within subjects variation is due to differences among
time points. The analysis investigates both sources of variation, as well as the variation
due to their interaction.

The following SAS statements read in the counts displayed in Table 14.2 and fit a saturated
model with effects due to gender, time, and their interaction.

data church;
input gender $ attend0 $ attend3 $ attend6 $ count;
datalines;

F Y Y Y 904
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F Y Y N 88
F Y N Y 25
F Y N N 51
F N Y Y 33
F N Y N 22
F N N Y 30
F N N N 158
M Y Y Y 391
M Y Y N 36
M Y N Y 12
M Y N N 26
M N Y Y 15
M N Y N 21
M N N Y 18
M N N N 143
;
proc catmod order=data;

weight count;
response marginals;
model attend0*attend3*attend6=gender|_response_ / oneway;
repeated year;

run;

The ORDER=DATA option in the PROC CATMOD statement keeps the levels of the
explanatory and response variables in the same order as in Table 14.2 and ensures that the
response functions are the marginal probabilities of attendance, rather than nonattendance.
The MODEL statement specifies a saturated model with all potential sources of variation
for the marginal probabilities of regular church attendance using the usual vertical bar (j)
notation. The REPEATED statement is not necessary here, but it makes the output a little
clearer by naming the repeated effect YEAR instead of–RESPONSE–. The populations
are determined by the effects listed in the right-hand side of the MODEL statement since a
POPULATION statement is not used. Here, two populations based on the values of
GENDER will be formed.

Output 14.6 displays the one-way frequency distributions of the variables ATTEND0,
ATTEND3, ATTEND6, and GENDER.

Output 14.6 One-Way Frequency Distributions

One-Way Frequencies

Variable Value Frequency
-----------------------------
attend0 Y 1533

N 440

attend3 Y 1510
N 463

attend6 Y 1428
N 545

gender F 1311
M 662
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When a repeated measures analysis contains explanatory variables, the ONEWAY option
of the MODEL statement produces the marginal distributions of the response variables for
the total sample of observations. Thus, this option does not provide the marginal
distributions of females and males regularly attending church at each of the three surveys.
You can obtain the marginal distributions for females and males by using the FREQ
procedure as follows:

proc freq;
weight count;
by gender;
tables attend0 attend3 attend6;

run;

Output 14.7 shows that the proportions of females who regularly attend church at years 0,
3, and 6 are 0.815, 0.799, and 0.757, respectively.

Output 14.7 One-Way Frequency Distributions for Females

----------------------------------- gender=F -----------------------------------

Cumulative Cumulative
attend0 Frequency Percent Frequency Percent
------------------------------------------------------------
N 243 18.54 243 18.54
Y 1068 81.46 1311 100.00

Cumulative Cumulative
attend3 Frequency Percent Frequency Percent
------------------------------------------------------------
N 264 20.14 264 20.14
Y 1047 79.86 1311 100.00

Cumulative Cumulative
attend6 Frequency Percent Frequency Percent
------------------------------------------------------------
N 319 24.33 319 24.33
Y 992 75.67 1311 100.00

The corresponding proportions of males regularly attending church are 0.702, 0.699, and
0.659.

Output 14.8 displays the population and response profiles produced by the CATMOD
procedure. These results verify that there are two groups (populations) and eight response
profiles.
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Output 14.8 Population and Response Profiles

Population Profiles

Sample gender Sample Size
-------------------------------

1 F 1311
2 M 662

Response Profiles

Response attend0 attend3 attend6
-----------------------------------------

1 Y Y Y
2 Y Y N
3 Y N Y
4 Y N N
5 N Y Y
6 N Y N
7 N N Y
8 N N N

The response functions displayed in Output 14.9 agree with those from the FREQ
procedure. Refer to the population profiles (Output 14.8) to determine that sample 1
corresponds to females and sample 2 to males. The model has six parameters: an overall
intercept for the probability of regular church attendance, a gender effect, two survey year
effects (corresponding to columns 3 and 4 of the model matrix) and two differential survey
year effects for females and males, that is, the gender� year interaction (corresponding to
columns 5 and 6 of the model matrix).

Output 14.9 Response Functions and Model Matrix

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6
------------------------------------------------------------------------------

1 1 0.81465 1 1 1 0 1 0
2 0.79863 1 1 0 1 0 1
3 0.75667 1 1 -1 -1 -1 -1

2 1 0.70242 1 -1 1 0 -1 0
2 0.69940 1 -1 0 1 0 -1
3 0.65861 1 -1 -1 -1 1 1

Output 14.10 displays the ANOVA table. There are clearly significant effects due to
gender (QW = 30:04, 1 df,p < 0:001) and survey year (QW = 34:83, 2 df,p < 0:001),
but the gender� year interaction is not significant (QW = 0:87, 2 df,p = 0:6476).
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Output 14.10 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
---------------------------------------------------
Intercept 1 6154.13 <.0001
gender 1 30.04 <.0001
year 2 34.83 <.0001
gender*year 2 0.87 0.6476

Residual 0 . .

The following statements fit the model with main effects for gender and survey year.

proc catmod order=data;
weight count;
response marginals;
model attend0*attend3*attend6=gender _response_ / noprofile;
repeated year;

run;

The NOPROFILE option of the MODEL statement suppresses the listing of the population
and response profiles. You may want to use this option when fitting multiple models to the
same data.

Output 14.11 displays the resulting ANOVA table. Note that the residual chi-square
statistic from this model is identical to the chi-square statistic for the gender� survey year
interaction from the saturated model (Output 14.10).

Output 14.11 ANOVA Table for Main Effects Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 6156.36 <.0001
gender 1 30.63 <.0001
year 2 40.58 <.0001

Residual 2 0.87 0.6476

The results of this model indicate that the gender effect and the survey year effect are both
clearly significant. Moreover, since the interaction was not significant, the observed
patterns of change over time are not significantly different for males and females. You may
also want to test if the survey year effect departs from linearity. In terms of the default
parameterization, the effects at years 0, 3, and 6 are given by�3, �4, and��3 � �4,
respectively. The null hypothesis of no departure from linearity is thus equivalent to

H0:�4 � �3 = (��3 � �4)� �4

which simplifies toH0:�4 = 0. Although this hypothesis could be tested using a
CONTRAST statement, it is also provided in the table of parameter estimates, which are
displayed in Output 14.12.
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Output 14.12 Parameter Estimates for Main Effects Model

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.7385 0.00941 6156.36 <.0001
gender 2 0.0520 0.00940 30.63 <.0001
year 3 0.0216 0.00460 22.13 <.0001

4 0.00978 0.00418 5.47 0.0193

In this example, there is significant departure from linearity (QW = 5:47, 1 df,
p = 0:0193); the difference between year 6 and year 3 is significantly larger than that
between year 3 and baseline.

14.2.4 Two Populations, Polytomous Response

The previous two sections describe repeated measures analyses when the response variable
is dichotomous. In these situations, there is a single response function at each time point
(level of the repeated measurement factor). This section describes the application of the
WLS methodology when the response variable has more than two levels and the repeated
measurement factor isn’t time.

Table 14.3� displays unaided distance vision data from 30–39 year old employees of
United Kingdom Royal Ordnance factories during the years 1943–1946 (Kendall and
Stuart 1961, pp. 564 and 586). Vision was graded in both the right eye and the left eye on
a four-point ordinal categorical scale where 1=highest grade and 4=lowest grade. Interest
focuses on determining if the marginal vision grade distributions are the same in the right
eye as in the left eye, if the marginal distributions differ between females and males, and if
differences between right eye and left eye vision are the same for females and males.

Table 14.3. Unaided Distance Vision Data

Right Eye Left Eye Grade
Gender Grade 1 2 3 4 Total
Female 1 1520 266 124 66 1976

2 234 1512 432 78 2256
3 117 362 1772 205 2456
4 36 82 179 492 789

Total 1907 2222 2507 841 7477
Male 1 821 112 85 35 1053

2 116 494 145 27 782
3 72 151 583 87 893
4 43 34 106 331 514

Total 1952 791 919 480 3242

In this example, there are two populations (females, males). Two measurements of an
ordered four-category response variable were obtained from each subject. Thus, there are

�Reprinted by permission of Edward Arnold.
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r = 42 = 16 response profiles defined by the possible combinations of right-eye and
left-eye vision grade. The between subjects variation is due to differences between females
and males and the within subjects variation is due to differences between the right eye and
the left eye.

The following SAS statements read in the counts displayed in Table 14.3 and create the
SAS data set VISION.

data vision;
input gender $ right left count;
datalines;

F 1 1 1520
F 1 2 266
F 1 3 124
F 1 4 66
F 2 1 234
F 2 2 1512
F 2 3 432
F 2 4 78
F 3 1 117
F 3 2 362
F 3 3 1772
F 3 4 205
F 4 1 36
F 4 2 82
F 4 3 179
F 4 4 492
M 1 1 821
M 1 2 112
M 1 3 85
M 1 4 35
M 2 1 116
M 2 2 494
M 2 3 145
M 2 4 27
M 3 1 72
M 3 2 151
M 3 3 583
M 3 4 87
M 4 1 43
M 4 2 34
M 4 3 106
M 4 4 331
;

Since there are two populations, the null hypothesis of marginal homogeneity can be tested
separately for females and males. The marginal distribution of vision grade in each eye
involves three linearly independent proportions, since the proportions in the four
categories sum to one. Thus, the null hypothesis of marginal homogeneity has 3 df for
each gender. The following statements produce the analysis.
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proc catmod;
weight count;
response marginals;
model right*left=gender _response_(gender=’F’)

_response_(gender=’M’);
repeated eye 2;

run;

The RESPONSE statement computes six correlated marginal proportions in each of the
two populations. The first three response functions in each population are the proportions
of subjects with right-eye vision grades of 1, 2, and 3, while the next three are the
proportions with left-eye vision grades of 1, 2, and 3. For example, the response function
for sample 1 (females), function number 1 (right-eye vision grade of 1) is the marginal
proportion of subjects in this category:

number of females with right-eye grade 1
total number of females

=
1976

7477
= 0:26428

In this example, you must specify that the repeated measures factor labeled EYE has two
levels. If this specification is omitted, PROC CATMOD constructs a model matrix to test
the 5 df null hypothesis that the six response functions from each population are equal. It
is, however, not necessary to include the option–RESPONSE–=EYE in the REPEATED
statement, since there is only one repeated measures factor and the default factorial

–RESPONSE– effect is desired.

Output 14.13 displays the population and response profiles, and Output 14.14 displays the
response functions and model matrix.

Output 14.13 Population and Response Profiles

Population Profiles

Sample gender Sample Size
-------------------------------

1 F 7477
2 M 3242

Response Profiles

Response right left
-------------------------

1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 4
9 3 1

10 3 2
11 3 3
12 3 4
13 4 1
14 4 2
15 4 3
16 4 4
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Output 14.14 Response Functions and Model Matrix

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6 7
-----------------------------------------------------------------------------

1 1 0.26428 1 0 0 1 0 0 1
2 0.30173 0 1 0 0 1 0 0
3 0.32847 0 0 1 0 0 1 0
4 0.25505 1 0 0 1 0 0 -1
5 0.29718 0 1 0 0 1 0 0
6 0.33529 0 0 1 0 0 1 0

2 1 0.32480 1 0 0 -1 0 0 0
2 0.24121 0 1 0 0 -1 0 0
3 0.27545 0 0 1 0 0 -1 0
4 0.32449 1 0 0 -1 0 0 0
5 0.24399 0 1 0 0 -1 0 0
6 0.28347 0 0 1 0 0 -1 0

Response Functions and Design Matrix

Function Design Matrix
Sample Number 8 9 10 11 12
-----------------------------------------------------------

1 1 0 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 0 0 0
5 -1 0 0 0 0
6 0 -1 0 0 0

2 1 0 0 1 0 0
2 0 0 0 1 0
3 0 0 0 0 1
4 0 0 -1 0 0
5 0 0 0 -1 0
6 0 0 0 0 -1

The first three parameters, which correspond to the first three columns of the model matrix,
are overall intercepts for the probability of vision grades 1, 2, and 3. Recall that with a
dichotomous response, the first column of the model matrix is an overall intercept for the
probability of the first level of response. Likewise, with a polytomous response withr
levels, there arer � 1 columns in the model matrix corresponding to overall intercepts for
the probability of the firstr � 1 levels of response, respectively. The next three parameters
compare females to males at vision grades 1, 2, and 3, respectively. Parameters 7–9
(10–12) compare the right eye to the left eye at grades 1, 2, and 3 for females (males).

Output 14.15 displays the resulting ANOVA table. The test of marginal homogeneity is
clearly significant in females (QW = 11:98, 3 df,p = 0:0075), but the differences between
the right- and left- eye vision grade distributions in males are not statistically significant
(QW = 3:68, 3 df,p = 0:2984).
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Output 14.15 ANOVA Table for Gender-Specific Tests of Marginal Homogeneity

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
------------------------------------------------------
Intercept 3 71753.50 <.0001
gender 3 142.07 <.0001
eye(gender=F) 3 11.98 0.0075
eye(gender=M) 3 3.68 0.2984

Residual 0 . .

If the differences between right-eye and left-eye vision are the same for females and
males, there is no interaction between gender and eye. This hypothesis is tested using the
following CONTRAST statement to compare parameters within the EYE(GENDER=F)
and EYE(GENDER=M) effects.

contrast ’Interaction’ all_parms 0 0 0 0 0 0 1 0 0 -1 0 0,
all_parms 0 0 0 0 0 0 0 1 0 0 -1 0,
all_parms 0 0 0 0 0 0 0 0 1 0 0 -1;

run;

The results in Output 14.16 indicate that there is evidence of interaction (QW = 8:27, 3 df,
p = 0:0407).

Output 14.16 Test of Interaction

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
--------------------------------------------
Interaction 3 8.27 0.0407

You could also test the hypothesis of no interaction between gender and eye by fitting the
model

model right*left=gender|_response_;
repeated eye 2;
run;

and looking at the GENDER*EYE effect in the ANOVA table. Although this model would
provide a more straightforward test of no interaction, it would not provide tests of
marginal homogeneity in females and males.

Since vision grade is an ordinal dependent variable, an alternative approach is to assign
scores to its four levels and test the hypothesis that the average vision scores in the right
and left eyes are the same. Using the scores 1, 2, 3, and 4 (the actual vision grades
recorded), you can test the hypothesis of homogeneity for females and males by requesting
that mean scores be computed as follows:



448 Modeling Repeated Measurements Data with WLS

proc catmod;
weight count;
response means;
model right*left=gender _response_(gender=’F’)

_response_(gender=’M’) / noprofile;
repeated eye;

run;

You do not need to specify the number of levels of the repeated measures factor in the
REPEATED statement since there are only two response functions per group and, by
default, the model matrix will be constructed to test their equality.

Output 14.17 displays the response functions and model matrix. Response function 1 in
sample 1 is the average right-eye vision grade for females. This is computed as follows:

1� 1976 + 2� 2256 + 3� 2456 + 4� 789

7477
= 2:27524

The model matrix now includes an overall intercept, a gender effect, and two eye effects
(one for females and one for males).

Output 14.17 Response Functions and Model Matrix for Mean Score Model

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4
--------------------------------------------------------------------

1 1 2.27524 1 1 1 0
2 2.30520 1 1 -1 0

2 1 2.26774 1 -1 0 1
2 2.25509 1 -1 0 -1

Output 14.18 displays the resulting ANOVA table. The test of homogeneity is again
clearly significant in females (QW = 11:97, 1 df,p = 0:0005), and the difference between
the right- and left- average vision scores in males is not statistically significant
(QW = 0:73, 1 df,p = 0:3916).

Output 14.18 ANOVA Table for Mean Score Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
------------------------------------------------------
Intercept 1 50866.50 <.0001
gender 1 2.04 0.1534
eye(gender=F) 1 11.97 0.0005
eye(gender=M) 1 0.73 0.3916

Residual 0 . .
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The following CONTRAST statement tests the null hypothesis that the mean score
differences between right eye and left eye are equal for females and males.

contrast ’Interaction’ all_parms 0 0 1 -1;
run;

The results in Output 14.19 again indicate that there is evidence of interaction
(QW = 6:20, 1 df,p = 0:0128).

Output 14.19 Test of Interaction for Mean Score Model

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
--------------------------------------------
Interaction 1 6.20 0.0128

Note that the values of the test statistics are affected only by the spacing between scores,
not by their values. Thus, the same test statistics would have been obtained using any set
of equally spaced scores, for example, vision scores of (1 3 5 7) instead of (1 2 3 4). If it is
not reasonable to assume that the vision grades levels are equally-spaced, you may
redefine the values of the RIGHT and LEFT variables to a different set of scores in a
DATA step prior to invoking PROC CATMOD.

14.2.5 Multiple Repeated Measurement Factors

In each of the previous examples, a single categorical outcome variable was measured on
multiple occasions or under multiple conditions. The multiple measurements were defined
by the values of a single repeated measures factor, such as time, drug, and so on. In some
applications, there may be more than one repeated measurement factor. For example, an
outcome variable might be measured at four time points under each of two conditions,
resulting in a total of eight repeated measures.

MacMillan et al. (1981) analyze data from a one-population (s = 1) observational study
involving 793 subjects. For each subject, two diagnostic procedures (standard and test)
were carried out at each of two times. The results of the four evaluations were classified as
positive or negative. Since a dichotomous response (c = 2) was measured att = 4
occasions, there arer = 24 = 16 response profiles. Table 14.4 displays the resulting data.

In this example, the four repeated measures are obtained from a factorial design involving
two factors, each with two levels. Although the hypothesis of marginal homogeneity (with
3 df) could be tested, it is of greater interest to investigate the effects of time and treatment
on the probability of a positive test result.



450 Modeling Repeated Measurements Data with WLS

Table 14.4. Diagnostic Test Results for 793 Subjects

Time 1 Time 2 No. of
Standard Test Standard Test Subjects
Negative Negative Negative Negative 509
Negative Negative Negative Positive 4
Negative Negative Positive Negative 17
Negative Negative Positive Positive 3
Negative Positive Negative Negative 13
Negative Positive Negative Positive 8
Negative Positive Positive Negative 0
Negative Positive Positive Positive 8
Positive Negative Negative Negative 14
Positive Negative Negative Positive 1
Positive Negative Positive Negative 17
Positive Negative Positive Positive 9
Positive Positive Negative Negative 7
Positive Positive Negative Positive 4
Positive Positive Positive Negative 9
Positive Positive Positive Positive 170

The following statements read in the data and fit a model incorporating main effects for
time and treatment, as well as the time� treatment interaction.

data diagnos;
input std1 $ test1 $ std2 $ test2 $ count;
datalines;

Neg Neg Neg Neg 509
Neg Neg Neg Pos 4
Neg Neg Pos Neg 17
Neg Neg Pos Pos 3
Neg Pos Neg Neg 13
Neg Pos Neg Pos 8
Neg Pos Pos Neg 0
Neg Pos Pos Pos 8
Pos Neg Neg Neg 14
Pos Neg Neg Pos 1
Pos Neg Pos Neg 17
Pos Neg Pos Pos 9
Pos Pos Neg Neg 7
Pos Pos Neg Pos 4
Pos Pos Pos Neg 9
Pos Pos Pos Pos 170
;
proc catmod;

weight count;
response marginals;
model std1*test1*std2*test2=_response_ / oneway;
repeated time 2, trtment 2 / _response_=time|trtment;

run;
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Output 14.20 displays the one-way frequency distributions for each of the four response
variables. Since this is a single population example, these distributions are useful for
checking that the response functions are defined as desired.

Output 14.20 One-Way Frequency Distributions

One-Way Frequencies

Variable Value Frequency
-----------------------------
std1 Neg 562

Pos 231

test1 Neg 574
Pos 219

std2 Neg 560
Pos 233

test2 Neg 586
Pos 207

The population and response profiles are displayed in Output 14.21. Note that only 15 of
the 16 potential response profiles occur in the data. There were no subjects who were
negative for standard at time 1, positive for test at time 1, positive for standard at time 2,
and negative for test at time 2.

Output 14.21 Population and Response Profiles

Population Profiles

Sample Sample Size
---------------------

1 793

Response Profiles

Response std1 test1 std2 test2
------------------------------------------

1 Neg Neg Neg Neg
2 Neg Neg Neg Pos
3 Neg Neg Pos Neg
4 Neg Neg Pos Pos
5 Neg Pos Neg Neg
6 Neg Pos Neg Pos
7 Neg Pos Pos Pos
8 Pos Neg Neg Neg
9 Pos Neg Neg Pos

10 Pos Neg Pos Neg
11 Pos Neg Pos Pos
12 Pos Pos Neg Neg
13 Pos Pos Neg Pos
14 Pos Pos Pos Neg
15 Pos Pos Pos Pos
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Output 14.22 displays the response functions and the model matrix. Since the MODEL
statement lists the four dependent variables in the order standard at time 1, test at time 1,
standard at time 2, and test at time 2, the response functions computed by the keyword
MARGINALS on the RESPONSE statement are the corresponding four marginal
proportions with a negative response. The marginal probability of a negative response is
used since ‘Neg’ is the first level for each response variable. The REPEATED statement
specifies that there are two repeated measures factors, each with two levels, and that the
model matrix includes the main effects and interaction of these two factors. Since the
MODEL statement groups the results from time 1 together, followed by the results from
time 2, the repeated measures factor for time is listed first in the REPEATED statement.
Recall that the factor that changes most slowly is listed first.

Output 14.22 Response Functions and Model Matrix

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4
--------------------------------------------------------------------

1 1 0.70870 1 1 1 1
2 0.72383 1 1 -1 -1
3 0.70618 1 -1 1 -1
4 0.73897 1 -1 -1 1

The results of fitting this model (Output 14.23) indicate that the main effect of time
(QW = 0:85, 1 df,p = 0:3570) and the time� treatment interaction (QW = 2:40, 1 df,
p = 0:1215) are not significantly different from zero.

Output 14.23 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------
Intercept 1 2385.34 <.0001
time 1 0.85 0.3570
trtment 1 8.20 0.0042
time*trtment 1 2.40 0.1215

Residual 0 . .

The preceding results could also have been produced using a different ordering of the
response variables and repeated measurement factors on the MODEL and REPEATED
statements:

model std1*std2*test1*test2=_response_ / oneway;
repeated trtment 2, time 2 / _response_=time|trtment;

In this case, the responses from the standard treatment precede those from the test
treatment.

A reduced model including only the treatment main effect can be fit by modifying the

–RESPONSE–= option of the REPEATED statement, as shown below.
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proc catmod;
weight count;
response marginals;
model std1*test1*std2*test2=_response_ / noprofile;
repeated time 2, trtment 2 / _response_=trtment;

run;

The results in Output 14.24 indicate that this model provides a good fit to the observed
data (QW = 3:51, 2 df,p = 0:1731) and that the treatment effect is clearly significant
(QW = 9:55, 1 df,p = 0:0020). Since the parameter for the first treatment (standard) is
�0:0128, the parameter estimate for the test treatment is 0.0128. Consequently, it is
estimated that the marginal probability of a negative response is2� 0:0128 = 0:0256
higher for the test treatment than for the standard treatment.

Output 14.24 Results from the Reduced Model

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2
--------------------------------------------------

1 1 0.70870 1 1
2 0.72383 1 -1
3 0.70618 1 1
4 0.73897 1 -1

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 2386.97 <.0001
trtment 1 9.55 0.0020

Residual 2 3.51 0.1731

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.7196 0.0147 2386.97 <.0001
trtment 2 -0.0128 0.00416 9.55 0.0020

14.3 Advanced Topic: Further Weighted Least Squares
Applications

14.3.1 One Population Regression Analysis of Marginal Proportions and
Logits

In a longitudinal study of the health effects of air pollution (Ware, Lipsitz, and Speizer
1988), children were examined annually at ages 9, 10, 11, and 12. At each examination,
the response measured was the presence of wheezing. Two questions of interest are
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� Does the prevalence of wheezing change with age?
� Is there a quantifiable trend in the age-specific prevalence rates?

Table 14.5�, from Agresti (1990, p. 408), displays data from 1019 children included in
this study. In this single population example, the cross-classification of a dichotomous
outcome at four time points definesr = 24 = 16 response profiles.

Table 14.5. Breath Test Results at Four Ages for 1019 Children

Wheeze No. of
Age 9 Age 10 Age 11 Age 12 Children
Present Present Present Present 94
Present Present Present Absent 30
Present Present Absent Present 15
Present Present Absent Absent 28
Present Absent Present Present 14
Present Absent Present Absent 9
Present Absent Absent Present 12
Present Absent Absent Absent 63
Absent Present Present Present 19
Absent Present Present Absent 15
Absent Present Absent Present 10
Absent Present Absent Absent 44
Absent Absent Present Present 17
Absent Absent Present Absent 42
Absent Absent Absent Present 35
Absent Absent Absent Absent 572

The following SAS statements read the observed counts for each of the 16 response
profiles and test the hypothesis of marginal homogeneity using PROC CATMOD. The
RESPONSE, MODEL, and REPEATED statements are used in the same way as was
described in Section 14.2.

data wheeze;
input wheeze9 $ wheeze10 $ wheeze11 $ wheeze12 $ count;
datalines;

Present Present Present Present 94
Present Present Present Absent 30
Present Present Absent Present 15
Present Present Absent Absent 28
Present Absent Present Present 14
Present Absent Present Absent 9
Present Absent Absent Present 12
Present Absent Absent Absent 63
Absent Present Present Present 19
Absent Present Present Absent 15

�Reprinted by permission of John Wiley & Sons, Inc. Copyrightc
 John Wiley & Sons.
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Absent Present Absent Present 10
Absent Present Absent Absent 44
Absent Absent Present Present 17
Absent Absent Present Absent 42
Absent Absent Absent Present 35
Absent Absent Absent Absent 572
;
proc catmod order=data;

weight count;
response marginals;
model wheeze9*wheeze10*wheeze11*wheeze12=_response_ / oneway;
repeated age;

run;

Since this is a single population example, the one-way frequency distributions for each of
the four response variables (Output 14.25) are useful in checking that the response
functions are defined as desired.

Output 14.25 One-Way Frequency Distributions

One-Way Frequencies

Variable Value Frequency
-------------------------------
wheeze9 Present 265

Absent 754

wheeze10 Present 255
Absent 764

wheeze11 Present 240
Absent 779

wheeze12 Present 216
Absent 803

The response profile listing in Output 14.26 verifies that all 16 possible response profiles
occur in the data.
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Output 14.26 Response Profiles

Response Profiles

Response wheeze9 wheeze10 wheeze11 wheeze12
-------------------------------------------------------

1 Present Present Present Present
2 Present Present Present Absent
3 Present Present Absent Present
4 Present Present Absent Absent
5 Present Absent Present Present
6 Present Absent Present Absent
7 Present Absent Absent Present
8 Present Absent Absent Absent
9 Absent Present Present Present

10 Absent Present Present Absent
11 Absent Present Absent Present
12 Absent Present Absent Absent
13 Absent Absent Present Present
14 Absent Absent Present Absent
15 Absent Absent Absent Present
16 Absent Absent Absent Absent

Output 14.27 displays the response functions and the model matrix. The results of the
ANOVA table in Output 14.28 indicate that the hypothesis of marginal homogeneity is
rejected (QW = 12:85, 3 df,p = 0:0050). Thus, the prevalence of wheezing changes with
age.

Output 14.27 Response Functions and Model Matrix

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2 3 4
--------------------------------------------------------------------

1 1 0.26006 1 1 0 0
2 0.25025 1 0 1 0
3 0.23553 1 0 0 1
4 0.21197 1 -1 -1 -1

Output 14.28 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 523.63 <.0001
age 3 12.85 0.0050

Residual 0 . .

In order to quantify the trend in the age-specific prevalence rates, the proportion of
children with wheezing present is modeled as a linear function of age. In this case, it is not
possible to use the–RESPONSE– keyword of the MODEL statement in conjunction with
the REPEATED statement, since a repeated measurement factor cannot be specified in a
DIRECT statement. Therefore, the model matrix must be specified explicitly, as described
in Section 12.8.5 The SAS statements are as follows:
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proc catmod order=data;
weight count;
response marginals;
model wheeze9*wheeze10*wheeze11*wheeze12=(1 9,

1 10,
1 11,
1 12)

(1=’Intercept’,
2=’Linear Age’)

/ noprofile;
run;

When you input the model matrix directly, you have the option of testing the significance
of selected parameters or subsets of parameters. The specification enclosed in parentheses
after the model matrix stipulates that the ANOVA table include tests that the first
(intercept) and second (linear age) parameters are equal to zero. Note that the label
describing the parameter or subset to be tested must be 24 characters or less. The results of
this model statement are displayed in Output 14.29 and Output 14.30.

Output 14.29 Response Functions and Model Matrix

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2
--------------------------------------------------

1 1 0.26006 1 9
2 0.25025 1 10
3 0.23553 1 11
4 0.21197 1 12

Output 14.30 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 66.70 <.0001
Linear Age 1 12.31 0.0005

Residual 2 0.54 0.7620

The residual chi-square tests the null hypothesis that the nonlinear (quadratic, cubic)
components of the age effect are not significantly different from zero. These data provide
little evidence of nonlinearity (QW = 0:54, 2 df,p = 0:7620). If this test had been
statistically significant, the quadratic and, if necessary, cubic terms could also have been
specified in the model matrix. The test of the linear age effect is clearly significant
(QW = 12:31, 1 df,p < 0:0005).

With reference to the estimated parameters displayed in Output 14.31, the resulting model
for predicting the effect of age on the prevalence of wheezing is

Prfwheezingg = 0:4083 � 0:0161 � age in years
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Thus, the prevalence is estimated to decrease by 0.0161 per year of age.

Output 14.31 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 0.4083 0.0500 66.70 <.0001

2 -0.0161 0.00460 12.31 0.0005

Chapter 8 describes logistic models for dichotomous response variables. As an alternative
to modeling the probability of wheezing as a linear function of age, you could choose to
model the marginal logit of the probability of wheezing. In this case, the logarithm of the
odds is modeled as a linear function of age. Even if there are no substantive grounds for
preferring a logit analysis over the analysis on the proportion scale, you may decide to
consider both types of models and select the model that provides the simplest
interpretation.

Since it is not possible to analyze repeated measurements using the LOGISTIC procedure,
maximum likelihood parameter estimates can not be obtained. However, PROC CATMOD
can be used to estimate model parameters using weighted least squares.

SupposeLx denotes the observed log odds of wheezing at agex, for x = 9; 10; 11; 12,
respectively, that is,

Lx = log
� px
1� px

�
wherepx denotes the marginal probability of wheezing at agex. The following statements
fit the regression model

Lx = �+ �x

The only change from the previous model is that the keyword MARGINALS on the
RESPONSE statement is replaced by the keyword LOGITS.

proc catmod order=data;
weight count;
response logits;
model wheeze9*wheeze10*wheeze11*wheeze12=(1 9,

1 10,
1 11,
1 12)

(1=’Intercept’,
2=’Linear Age’) / noprofile;

run;

Output 14.32 displays the marginal logit response functions and the model matrix. The
ANOVA table in Output 14.33 indicates that the regression model for marginal logits also
provides a good fit to the observed data (QW = 0:67, 2 df,p = 0:7167) and that the linear
effect of age is clearly significant (QW = 11:77, 1 df,p = 0:0006).
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Output 14.32 Response Functions and Model Matrix

Response Functions and Design Matrix

Function Response Design Matrix
Sample Number Function 1 2
--------------------------------------------------

1 1 -1.04566 1 9
2 -1.09730 1 10
3 -1.17737 1 11
4 -1.31308 1 12

Output 14.33 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 0.76 0.3824
Linear Age 1 11.77 0.0006

Residual 2 0.67 0.7167

The model for predicting the log odds of wheezing (Output 14.34) is

logit[Prfwheezingg] = �0:2367 � 0:0879 � age in years

The parameter estimates are interpreted in the same manner as was described in Chapter 8.
For example, the odds of wheezing are estimated to decrease bye�0:0879 = 0:916 for each
one-year increase in age.

Output 14.34 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 -0.2367 0.2710 0.76 0.3824

2 -0.0879 0.0256 11.77 0.0006

As described in Section 12.6.1, the logit function is the default response function for the
CATMOD procedure, and maximum likelihood is the default estimation method.
However, Output 14.34 displays weighted least squares parameter estimates. In a repeated
measures analysis, the specification

response logits;

analyzes marginal logits using weighted least squares. If the RESPONSE statement is
omitted in this example, 15 generalized logits would be computed, comparing each of the
first 15 response profiles with the last one. Since the model matrix has only four rows, an
error message would then be printed.
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14.3.2 Analysis of Respiratory Data

The following example describes a repeated measurements analysis of logits for a data set
that has more explanatory variables than you can manage with WLS. An appropriate
analysis is performed, with the limitations noted. These data are analyzed again with the
GEE strategy in Chapter 15 in Section 15.6, which compares the WLS and GEE analyses
and then proceeds to discuss the more comprehensive analysis you can perform with the
GEE strategy.

A clinical trial compared two treatments for a respiratory illness (Koch et al. 1990). In
each of two centers, eligible patients were randomly assigned to active treatment or
placebo. During treatment, respiratory status was determined at four visits and recorded on
a five-point scale as 0 for terrible to 4 for excellent. Potential explanatory variables were
center, sex, and baseline respiratory status (all dichotomous), as well as age (in years) at
the time of study entry. There were 111 patients (54 active, 57 placebo), with no missing
data for responses or covariates. One direction of analysis was to focus on the
dichotomous response of good outcome (response is 3 or 4) versus poor outcome
(response is less than 3). Tables 14.6 displays the data from Center 1.
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Table 14.6. Respiratory Disorder Data for 56 Subjects from Center 1

Respiratory Status (0=poor, 1=good)
Patient Treatment Sex AgeBaseline Visit 1 Visit 2 Visit 3 Visit 4

1 P M 46 0 0 0 0 0
2 P M 28 0 0 0 0 0
3 A M 23 1 1 1 1 1
4 P M 44 1 1 1 1 0
5 P F 13 1 1 1 1 1
6 A M 34 0 0 0 0 0
7 P M 43 0 1 0 1 1
8 A M 28 0 0 0 0 0
9 A M 31 1 1 1 1 1
10 P M 37 1 0 1 1 0
11 A M 30 1 1 1 1 1
12 A M 14 0 1 1 1 0
13 P M 23 1 1 0 0 0
14 P M 30 0 0 0 0 0
15 P M 20 1 1 1 1 1
16 A M 22 0 0 0 0 1
17 P M 25 0 0 0 0 0
18 A F 47 0 0 1 1 1
19 P F 31 0 0 0 0 0
20 A M 20 1 1 0 1 0
21 A M 26 0 1 0 1 0
22 A M 46 1 1 1 1 1
23 A M 32 1 1 1 1 1
24 A M 48 0 1 0 0 0
25 P F 35 0 0 0 0 0
26 A M 26 0 0 0 0 0
27 P M 23 1 1 0 1 1
28 P F 36 0 1 1 0 0
29 P M 19 0 1 1 0 0
30 A M 28 0 0 0 0 0
31 P M 37 0 0 0 0 0
32 A M 23 0 1 1 1 1
33 A M 30 1 1 1 1 0
34 P M 15 0 0 1 1 0
35 A M 26 0 0 0 1 0
36 P F 45 0 0 0 0 0
37 A M 31 0 0 1 0 0
38 A M 50 0 0 0 0 0
39 P M 28 0 0 0 0 0
40 P M 26 0 0 0 0 0
41 P M 14 0 0 0 0 1
42 A M 31 0 0 1 0 0
43 P M 13 1 1 1 1 1
44 P M 27 0 0 0 0 0
45 P M 26 0 1 0 1 1
46 P M 49 0 0 0 0 0
47 P M 63 0 0 0 0 0
48 A M 57 1 1 1 1 1
49 P M 27 1 1 1 1 1
50 A M 22 0 0 1 1 1
51 A M 15 0 0 1 1 1
52 P M 43 0 0 0 1 0
53 A F 32 0 0 0 1 0
54 A M 11 1 1 1 1 0
55 P M 24 1 1 1 1 1
56 A M 25 0 1 1 0 1
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Consider performing a WLS analysis on the logit response. With four visits, that means
four logits are modeled for each subpopulation. If you want to include visit as an effect,
you can handle at most two other dichotomous explanatory variables. Use treatment since
it is the evaluation factor and use center since it is part of the study design structure. The
two dichotomous covariates define2� 2 = 4 subpopulations, which, when you have four
logits for the four visits, implies that you have 16 degrees of freedom. You are stretching
the limits of the preferred 15 plus subjects per response function. However, since these
visits act relatively independently, that is, there is not a tremendous amount of correlation,
you could view the sample size requirements as equivalent to those for two response
functions instead of four. With about 25 subjects in each subpopulation, you are close to
the preferred sample sizes.

The following DATA step inputs these data. The variables VISIT1-VISIT4 are created to
be the dichotomous response variables.

data resp;
input center id treatment $ sex $ age baseline visit1-visit4 @@;
datalines;

1 1 P M 46 0 0 0 0 0 2 1 P F 39 0 0 0 0 0
1 2 P M 28 0 0 0 0 0 2 2 A M 25 0 0 1 1 1
1 3 A M 23 1 1 1 1 1 2 3 A M 58 1 1 1 1 1
1 4 P M 44 1 1 1 1 0 2 4 P F 51 1 1 0 1 1
1 5 P F 13 1 1 1 1 1 2 5 P F 32 1 0 0 1 1
1 6 A M 34 0 0 0 0 0 2 6 P M 45 1 1 0 0 0
1 7 P M 43 0 1 0 1 1 2 7 P F 44 1 1 1 1 1
1 8 A M 28 0 0 0 0 0 2 8 P F 48 0 0 0 0 0
1 9 A M 31 1 1 1 1 1 2 9 A M 26 0 1 1 1 1
1 10 P M 37 1 0 1 1 0 2 10 A M 14 0 1 1 1 1
1 11 A M 30 1 1 1 1 1 2 11 P F 48 0 0 0 0 0
1 12 A M 14 0 1 1 1 0 2 12 A M 13 1 1 1 1 1
1 13 P M 23 1 1 0 0 0 2 13 P M 20 0 1 1 1 1
1 14 P M 30 0 0 0 0 0 2 14 A M 37 1 1 0 0 1
1 15 P M 20 1 1 1 1 1 2 15 A M 25 1 1 1 1 1
1 16 A M 22 0 0 0 0 1 2 16 A M 20 0 0 0 0 0
1 17 P M 25 0 0 0 0 0 2 17 P F 58 0 1 0 0 0
1 18 A F 47 0 0 1 1 1 2 18 P M 38 1 1 0 0 0
1 19 P F 31 0 0 0 0 0 2 19 A M 55 1 1 1 1 1
1 20 A M 20 1 1 0 1 0 2 20 A M 24 1 1 1 1 1
1 21 A M 26 0 1 0 1 0 2 21 P F 36 1 1 0 0 1
1 22 A M 46 1 1 1 1 1 2 22 P M 36 0 1 1 1 1
1 23 A M 32 1 1 1 1 1 2 23 A F 60 1 1 1 1 1
1 24 A M 48 0 1 0 0 0 2 24 P M 15 1 0 0 1 1
1 25 P F 35 0 0 0 0 0 2 25 A M 25 1 1 1 1 0
1 26 A M 26 0 0 0 0 0 2 26 A M 35 1 1 1 1 1
1 27 P M 23 1 1 0 1 1 2 27 A M 19 1 1 0 1 1
1 28 P F 36 0 1 1 0 0 2 28 P F 31 1 1 1 1 1
1 29 P M 19 0 1 1 0 0 2 29 A M 21 1 1 1 1 1
1 30 A M 28 0 0 0 0 0 2 30 A F 37 0 1 1 1 1
1 31 P M 37 0 0 0 0 0 2 31 P M 52 0 1 1 1 1
1 32 A M 23 0 1 1 1 1 2 32 A M 55 0 0 1 1 0
1 33 A M 30 1 1 1 1 0 2 33 P M 19 1 0 0 1 1
1 34 P M 15 0 0 1 1 0 2 34 P M 20 1 0 1 1 1
1 35 A M 26 0 0 0 1 0 2 35 P M 42 1 0 0 0 0
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1 36 P F 45 0 0 0 0 0 2 36 A M 41 1 1 1 1 1
1 37 A M 31 0 0 1 0 0 2 37 A M 52 0 0 0 0 0
1 38 A M 50 0 0 0 0 0 2 38 P F 47 0 1 1 0 1
1 39 P M 28 0 0 0 0 0 2 39 P M 11 1 1 1 1 1
1 40 P M 26 0 0 0 0 0 2 40 P M 14 0 0 0 1 0
1 41 P M 14 0 0 0 0 1 2 41 P M 15 1 1 1 1 1
1 42 A M 31 0 0 1 0 0 2 42 P M 66 1 1 1 1 1
1 43 P M 13 1 1 1 1 1 2 43 A M 34 0 1 1 0 1
1 44 P M 27 0 0 0 0 0 2 44 P M 43 0 0 0 0 0
1 45 P M 26 0 1 0 1 1 2 45 P M 33 1 1 1 0 1
1 46 P M 49 0 0 0 0 0 2 46 P M 48 1 1 0 0 0
1 47 P M 63 0 0 0 0 0 2 47 A M 20 0 1 1 1 1
1 48 A M 57 1 1 1 1 1 2 48 P F 39 1 0 1 0 0
1 49 P M 27 1 1 1 1 1 2 49 A M 28 0 1 0 0 0
1 50 A M 22 0 0 1 1 1 2 50 P F 38 0 0 0 0 0
1 51 A M 15 0 0 1 1 1 2 51 A M 43 1 1 1 1 0
1 52 P M 43 0 0 0 1 0 2 52 A F 39 0 1 1 1 1
1 53 A F 32 0 0 0 1 0 2 53 A M 68 0 1 1 1 1
1 54 A M 11 1 1 1 1 0 2 54 A F 63 1 1 1 1 1
1 55 P M 24 1 1 1 1 1 2 55 A M 31 1 1 1 1 1
1 56 A M 25 0 1 1 0 1
;

The following PROC CATMOD statements produce the desired repeated measurements
analysis. Since an incremental effects analysis is desired in order to make some
comparisons with analyses performed in Chapter 15, direct input of the model matrix is
required. As described in Section 13.7.5 you write the coefficients row-wise, separating
each row with a comma. This model includes main effects for treatment, center, and visits,
and all pairwise interactions. The numbers and labels in the parentheses after the model
matrix identify the parameter that each column of the model matrix represents.

proc catmod data=resp;
population treatment center;
response logits;
model visit1*visit2*visit3*visit4 =

( 1 1 1 1 0 0 1 0 0 1 0 0 1,
1 1 1 0 1 0 0 1 0 0 1 0 1,
1 1 1 0 0 1 0 0 1 0 0 1 1,
1 1 1 0 0 0 0 0 0 0 0 0 1,
1 1 0 1 0 0 1 0 0 0 0 0 0,
1 1 0 0 1 0 0 1 0 0 0 0 0,
1 1 0 0 0 1 0 0 1 0 0 0 0,
1 1 0 0 0 0 0 0 0 0 0 0 0,
1 0 1 1 0 0 0 0 0 1 0 0 0,
1 0 1 0 1 0 0 0 0 0 1 0 0,
1 0 1 0 0 1 0 0 0 0 0 1 0,
1 0 1 0 0 0 0 0 0 0 0 0 0,
1 0 0 1 0 0 0 0 0 0 0 0 0,
1 0 0 0 1 0 0 0 0 0 0 0 0,
1 0 0 0 0 1 0 0 0 0 0 0 0,
1 0 0 0 0 0 0 0 0 0 0 0 0)

(1=’Intercept’, 2=’treatment’, 3=’center’,
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4=’visit1’, 5=’visit2’, 6=’visit3’, 7=’tr*visit1’,
8=’tr*visit2’, 9=’tr*visit3’, 10=’ct*visit1’,
11=’ct*visit2’, 12=’ct*visit3’, 13=’trt*ct’);

The ANOVA table for this MODEL statement will only provide the single degree of
freedom tests. To produce the multidegree of freedom tests required, you need to supply
the appropriate CONTRAST statements. The following CONTRAST statements produce
a contrast table with tests for all of the desired effects. Note that you have to use the
ALL –PARMS keyword and supply coefficients for each column of the model matrix. The
following CONTRAST statements come after the MODEL statement in the PROC
CATMOD invocation.

contrast ’treatment’
all_parms 0 1 0 0 0 0 .25 .25 .25 0 0 0 .5;
contrast ’center’
all_parms 0 0 1 0 0 0 0 0 0 .25 .25 .25 .5;
contrast ’visit’ all_parms 0 0 0 1 0 0 .5 0 0 .5 0 0 0,

all_parms 0 0 0 0 1 0 0 .5 0 0 .5 0 0,
all_parms 0 0 0 0 0 1 0 0 .5 0 0 .5 0;

contrast ’trt*visit’ all_parms 0 0 0 0 0 0 1 0 0 0 0 0 0,
all_parms 0 0 0 0 0 0 0 1 0 0 0 0 0,
all_parms 0 0 0 0 0 0 0 0 1 0 0 0 0;

contrast ’ct*visit’ all_parms 0 0 0 0 0 0 0 0 0 1 0 0 0,
all_parms 0 0 0 0 0 0 0 0 0 0 1 0 0,
all_parms 0 0 0 0 0 0 0 0 0 0 0 1 0;

contrast ’trt*ct’ all_parms 0 0 0 0 0 0 0 0 0 0 0 0 1;
run;

In the resulting output, the population profiles tell you that the underlying contingency
table being analyzed is based on the cross-classification of treatment and center.

Output 14.35 Population Profiles

Population Profiles

Sample treatment center Sample Size
--------------------------------------------

1 A 1 27
2 A 2 27
3 P 1 29
4 P 2 28

There are 25 plus persons per subpopulation; as discussed, this sample size is usually
considered to be inadequate for the analysis of four response functions, the logits for each
visit. This analysis is stretching the limits by making the assumption that the expected low
correlation among the visits makes the sample size requirements for four logits to be more
like the sample size requirements for four logits.

The ANOVA table displays a one degree of freedom test for each parameter, which is of
limited value at this point. However, it also provides the residual goodness-of-fit test,
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which has the value 0.59 with 3 df and ap-value of 0.8994. Note that the analysis is a
weighted least squares analysis; you get a WLS analysis, not a ML analysis, when you
specify logits and you have multiple responses. With the adequate fit, you can proceed
with evaluating the contrasts.

Output 14.36 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 0.33 0.5675
treatment 1 4.20 0.0405
center 1 3.44 0.0635
visit1 1 0.19 0.6635
visit2 1 2.76 0.0967
visit3 1 1.26 0.2613
tr*visit1 1 0.10 0.7464
tr*visit2 1 2.31 0.1284
tr*visit3 1 1.32 0.2507
ct*visit1 1 0.23 0.6291
ct*visit2 1 1.75 0.1855
ct*visit3 1 3.67 0.0554
trt*ct 1 1.18 0.2770

Residual 3 0.59 0.8994

The following table contains the contrasts requested, which provides the multiple degree
of freedom effects. All of the pairwise interactions are not significant, withp-values
ranging from 0.4338 for the treatment� visit interaction to 0.2770 for the treatment�
center interaction. Since the visit effect is represented by 3 parameters, and the effects for
treatment and center are represented by 1 each, the corresponding visit interaction effects
are represented by 3 parameters each, respectively.

Output 14.37 Analysis of Contrasts

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
------------------------------------------
treatment 1 10.92 0.0010
center 1 8.37 0.0038
visit 3 3.86 0.2769
trt*visit 3 2.74 0.4338
ct*visit 3 3.82 0.2821
trt*ct 1 1.18 0.2770

The analysis continues with the main effects model including treatment, center, and visit.
Note that, if the interactions were significant, it would be problematic. With the
too-limited sample size, it would not be clear whether the interactions effects were real or
possibly an artifact of that small sample size.

The following PROC CATMOD statements produce the main effects model.
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proc catmod data=resp;
population treatment center;
response logits;
model visit1*visit2*visit3*visit4 =

( 1 1 1 1 0 0 ,
1 1 1 0 1 0 ,
1 1 1 0 0 1 ,
1 1 1 0 0 0 ,
1 1 0 1 0 0 ,
1 1 0 0 1 0 ,
1 1 0 0 0 1 ,
1 1 0 0 0 0 ,
1 0 1 1 0 0 ,
1 0 1 0 1 0 ,
1 0 1 0 0 1 ,
1 0 1 0 0 0 ,
1 0 0 1 0 0 ,
1 0 0 0 1 0 ,
1 0 0 0 0 1 ,
1 0 0 0 0 0 )

(1=’Intercept’, 2=’treatment’, 3=’center’,
4=’visit1’, 5=’visit2’, 6=’visit3’ );

contrast ’treatment’ all_parms 0 1 0 0 0 0 ;
contrast ’center’ all_parms 0 0 1 0 0 0 ;
contrast ’visit’ all_parms 0 0 0 1 0 0,

all_parms 0 0 0 0 1 0,
all_parms 0 0 0 0 0 1;

run;

The ANOVA table for this analysis is displayed next and shows a residual chi-square with
a value of 13.04 for 10 df and ap-value of 0.2212. This supports adequate fit.

Output 14.38 ANOVA

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 0.00 0.9538
treatment 1 10.61 0.0011
center 1 7.62 0.0058
visit2 1 1.39 0.2392
visit2 1 0.01 0.9158
visit3 1 1.16 0.2813

Residual 10 13.04 0.2212

Note that if you subtracted the residual chi-square for the main effects model from the
chi-square for the model with interactions,13:04 � 0:59 = 12:45 (10 df minus 3 df equals
7 df), you have a chi-square test for the joint test of the three pairwise interactions. This
test is nonsignificant.

The analysis of contrasts displayed in Output 14.39 shows that the treatment and center
effects are highly significant withp-values of 0.0011 and 0.0058, respectively. The joint
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test for the visit effect has a chi-square value of 2.76, and ap-value of 0.4303 for 3 df. The
visit effect does not appear to be influential.

Output 14.39 Analysis of Contrasts

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
------------------------------------------
treatment 1 10.61 0.0011
center 1 7.62 0.0058
visit 3 2.76 0.4303

The parameter estimates are displayed in Output 14.40.

Output 14.40 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 -0.0168 0.2901 0.00 0.9538

2 -1.0434 0.3203 10.61 0.0011
3 0.8803 0.3188 7.62 0.0058
4 -0.2216 0.1883 1.39 0.2392
5 -0.0201 0.1896 0.01 0.9158
6 -0.1811 0.1681 1.16 0.2813

No further model reductions are attempted because visit is considered part of the analysis
structure. This analysis demonstrates that weighted least squares analysis of logits can be a
reasonable strategy for the evaluation of a small number of main effects. However, when
your data contains additional explanatory variables such as baseline, sex, and age, which
were ignored in this analysis, the WLS approach is not appropriate. While more sample
size would eventually support the inclusion of the sex variable, it would still not support
the inclusion of the continuous variable age. Chapter 15 discusses the generalized
estimating equations approach for analyzing repeated categorical responses, and this
method does handle continuous explanatory variables as well as time-dependent
explanatory variables. See Section 15.6 for the GEE analysis of the same data set and a
comparison of the GEE and WLS analyses.
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Chapter 15

Generalized Estimating Equations

15.1 Introduction

The weighted least squares methodology described in Chapter 12 is a useful approach to
the analysis of repeated binary and ordered categorical outcome variables. However, it can
only accommodate categorical explanatory variables and can’t easily handle missing
values. In addition, the WLS methodology requires sufficient sample size for the marginal
response functions at each time in each subpopulation to have an approximately
multivariate normal distribution. This requirement can be very restrictive.

In recent years, researchers have begun to use a new method for the repeated
measurements analysis of categorical outcomes. The generalized estimating equation
(GEE) approach (Liang and Zeger 1986) is an extension of generalized linear models that
provides a semiparametric approach to longitudinal data analysis with univariate outcomes
for which the quasi-likelihood formulation is sensible, for example, normal, Poisson,
binomial, and gamma response variables. This approach encompasses a broad range of
data situations, including missing observations, continuous explanatory variables, and
time-dependent explanatory variables.

The scope for the GEE strategy is useful for many situations, including the following:

� a two-period crossover study in which researchers study the effects of two
treatments and a placebo

� a longitudinal study on the efficacy of a new drug designed to prevent fractures in
the elderly. The outcome of interest is the number of fractures that occur.

� a large study on the effects of air pollution on children in which measurements on
respiratory symptoms are taken every year for three years. Many children have one
or two measurements missing.

In this chapter, the generalized estimating equations approach for the analysis of repeated
measurements is discussed and illustrated with a series of examples using the GENMOD
procedure. In addition, the use of GEE methods for the analysis of some univariate
response outcomes is also discussed.



472 Generalized Estimating Equations

15.2 Methodology

15.2.1 Motivation

Correlated data come from many sources: longitudinal studies on health care outcomes,
crossover studies concerned with drug comparisons, split plot experiments in agriculture,
and clinical trials investigating new treatments with baseline and follow-up visits. You
may have multiple measurements taken at the same time, such as in a psychometric study.
You may also have clusters of correlated measurements: one example results from group
randomization, such as randomizations of litters of animals to experimental conditions.
Another example is sample selection of physician practices and the assessment of all of the
patients in each practice, or cluster. Often, particularly with longitudinal studies, missing
data are common.

An important consideration in each of these situations is how to account for the correlated
measurements in the analysis. Within-subject factors (visit, time) are likely to have
correlated measurements, while between-subject factors (age, gender) are likely to have
independent measurements. The correlation must be taken into account, because, if you
don’t, you may produce incorrect standard errors. In the presence of positive correlations,
you would underestimate the standard errors of the between-subject effects and
overestimate the standard errors of the within-subject effects, resulting in inefficient
estimation.

As discussed in Chapter 14, weighted least squares provides a reasonable strategy for
repeated categorical outcomes when you have all of the following:

� complete data

� small number of discrete explanatory variables

� samples that are large enough to support approximately normal distributions

However, when you have continuous explanatory variables, a larger number of categorical
variables, missing response values, and/or time-dependent covariates, the WLS approach
does not apply. The GEE strategy, however, can handle these situations.

When you have continuous outcomes, the general linear multivariate model for normally
distributed errors is often appropriate. It requires complete data for all outcomes and
requires the covariates to be measured at the cluster level. If you can assume that the
covariances have a spherical structure (compound symmetry), then repeated measures
ANOVA applies for univariate tests about the within-subject effects. However, if you have
time-dependent covariates, missing data, or non-normality, then that approach may not be
adequate. You might consider the mixed model, which handles these issues, but that
requires certain covariance matrix assumptions. If these are not met, the GEE method
provides an alternative strategy.

GEEs were introduced by Liang and Zeger (1986) as a way of handling correlated data
that, except for the correlation among responses, can be modeled with a generalized linear
model (GLM). They are ideal for discrete response data such as binary outcomes and
Poisson counts. They work for longitudinal studies data and cluster sampling data. You
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model these data using the same link functions and linear predictor set-up as you do in the
GLM for the independent case. The difference between the GLM and GEE methods is
that, with the GEE method, you account for the structure of the covariances of the
response outcomes through its specification in the estimating process, much like you
specify the covariance structure in mixed model analysis, but there is robustness to it. See
Liang and Zeger (1986), Zeger and Liang (1986), Wei and Stram (1988), Stram, Wei, and
Ware (1988), Moulton and Zeger (1989), and Zhao and Prentice (1990) for more detail.

The focus of this chapter is the analysis of categorical repeated measurements; however, as
mentioned above, the GEE methodology also applies to continuous outcomes and often is
used as an adjunct to other types of analyses.

15.2.2 Generalized Linear Models

The GEE method is an extension of generalized linear models (GLM), which are an
extension of traditional linear models (Nelder and Wedderburn 1972). The GLM relates a
mean response to a vector of explanatory variables through a link function:

g(E(yi)) = g(�i) = xi
0�

whereyi is a response variable(i = 1; : : : ; n), �i = E(yi), g is a link function,xi is a
vector of independent variables, and� is a vector of regression parameters to be estimated.

Additionally,

� The variance ofyi is vi = vi(�i) and is a specified function of its mean�i.

� Theyi are from the exponential family. This includes the binomial, Poisson, normal,
gamma, and inverse Gaussian distributions. When you assume the normal
distribution and specify the identity link functiong(�i) = �i, you are fitting the
same model as the general linear model.

For logistic regression, the link and variance functions are

g(�) = log

�
�

1� �

�
andv(�) = �(1� �)

For Poisson regression, the link and variance functions are

g(�) = log(�) andv(�) = �

You obtain the maximum likelihood estimator�̂ of thep� 1 parameter vector� by
solving the estimating equations, which are the score equations shown below. These
estimators also maximize the log likelihood.

nX
i=1

@�0i
@�

v�1
i (yi � �i(�)) = 0
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Generally, these are a set of nonlinear equations with no closed form solution, so you must
solve them iteratively. The Newton-Raphson or Fisher scoring methods are often used; the
fitting algorithm in the GENMOD procedure begins with a few Fisher scoring steps and
then switches to a ridge-stabilized Newton Raphson method.

15.2.3 Generalized Estimating Equations Methodology

Generalized estimating equations are an extension of GLMs to accommodate correlated
data; they are an extension of quasi-score equations. The GEE methodology models a
known function of the marginal expectation of the dependent variable as a linear function
of one or more explanatory variables. With quasi-likelihood methods, you can pursue
statistical models by making assumptions about the link function and the relationship
between the first two moments, but without fully specifying the complete distribution of
the response. With GEEs, you describe the random component of the model for each
marginal response with a common link and variance function, similar to what you do with
a GLM model. However, unlike GLMs, you have to account for the covariance structure of
the correlated measures, although there is robustness to how this is done.

The GEE methodology provides consistent estimators of the regression coefficients and
their variances under weak assumptions about the actual correlation among a subject’s
observations. This approach avoids the need for multivariate distributions by assuming
only a functional form for the marginal distribution at each time point or condition. The
covariance structure across time or conditions is managed as a nuisance parameter. The
method relies on the independence across subjects to consistently estimate the variance of
the proposed estimators even when the assumed working correlation structure is incorrect.
Zeger (1988), Zeger, Liang, and Albert (1988), and Liang, Zeger, and Qaqish (1992)
provide further detail on the GEE methodology.

Data Structure
Suppose repeated measurements are obtained atti time points,1 � ti � t from each of
n subjects. (Note that if the number and spacing of the repeated measurements are fixed
and do not vary among subjects,ti is equal to the total number of distinct measurement
times.) Although this notation is most natural for longitudinal studies, it also applies to the
general case of correlated responses. For example,t might instead denote the number of
conditions under which dependent measurements are obtained, or there might ben clusters
with at mostt experimental units per cluster.

Now, supposeyij denotes the response from subjecti at time or conditionj, for
i = 1; : : : ; n andj = 1; : : : ; ti. Theseyij may be binary outcomes or Poisson counts, for
example. Also, supposexij = (xij1; : : : ; xijp)

0 denote ap� 1 vector of explanatory
variables (covariates) associated withyij. If all covariates are time independent, then
xi1 = xi2 = � � � = xit. Note thatyij andxij are missing if observations are not obtained at
time j.

Generalized Estimating Equations
Assume that you have chosen a model that relates a marginal mean to the linear predictor
x0i� through a link function. The generalized estimating equations for estimating�, an
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extension of the GLM estimating equation, follow:

nX
i=1

@�0

@�
Vi

�1(Yi � �i(�)) = 0

where�i is the corresponding vector of means�i = (�i1; : : : ; �iti)
0,

Yi = (yi1; yi2; : : : ; yiti), andVi is an estimator of the covariance matrix ofYi. These
equations are similar to the GLM estimating equations except that, since you have multiple
outcomes, they include a vector of means instead of a single mean and a covariance matrix
instead of a scalar variance. The covariance matrix ofYi is specified as the estimator

Vi = �Ai
1

2Ri(�)Ai
1

2

whereAi is ati � ti diagonal matrix withv(�ij) as thejth diagonal element. Note thatVi

can be different from subject to subject, but generally you use a specification that
approximates the average dependence among repeated observations over time. Note that
the GEE facilities in the GENMOD procedure only allow you to specify the same form of
Vi for all subjects.

Ri(�) is theworking correlation matrix. The(j; j0) element ofRi(�) is the known,
hypothesized, or estimated correlation betweenyij andyij0. This working correlation
matrix may depend on a vector of unknown parameters�, which is the same for all
subjects. You assume thatRi(�) is known except for a fixed number of parameters� that
must be estimated from the data.

Choosing the Working Correlation Matrix
Several possibilities for the working correlation structure have been suggested (Liang and
Zeger 1986). First, when the number of subjects is large relative to the number of
observations per subject, the influence of correlation is often small enough so that the
GLM regression coefficients are nearly efficient. The correlations among repeated
measures, however, may have a substantial effect on the estimated variances of the
regression coefficients and hence must be taken into account to make correct inferences.

The following are some choices forR with matrix formulations fort = 4.

Independence: R = R0 = I.

R =

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775
The independence model adopts the working assumption that repeated observations for a
subject are independent. In this case, solving the GEE is the same as fitting the usual
regression models for independent data and the resulting parameter estimates are the same.
However, their standard errors are different. You are choosing not to specify the
correlation explicitly but the GEE method still accounts for that correlation by operating at
the cluster level. However, the estimation is done with estimation of� only at each step,
and not�, so it doesn’t improve the precision of the parameter estimates with additional
iterations. In this case, the GEE simplifies to the GLM estimating equations.
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Fixed: R = R0.

Fixed correlation matrices arise when you have determined the form from a previous
analysis. You simply input your covariance matrix directly.

Exchangeable:

Corr(yij; yi;j0) =

�
1 j = j0

� j 6= j0

�

R =

2664
1 � � �
� 1 � �
� � 1 �
� � � 1

3775
Theexchangeableworking correlation specification makes constant the correlations
between any two measurements within a subject, that is,Rjj0 = �, for j 6= j0. This is the
correlation structure assumed in a random effects model with a random intercept and is
also known ascompound symmetryin the repeated measures ANOVA literature. Although
the specification of constant correlation between any two repeated measurements may not
be justified in a longitudinal study, it is often reasonable in situations in which the repeated
measures are not obtained over time. It is probably reasonable when there are a few
repeated measurements. An arbitrary number of observations per subject is permissible
with both the independence and exchangeable working correlation structures. This
structure is commonly used and is relatively easy to explain to investigators. The
exchangeable structure is also appropriate when cluster sampling is involved, such as
studies in which physician practices are selected as clusters and measurements are
obtained for the patients in those practices.

Unstructured:

Corr(yij; yi;j0) =

�
1 j = j0

�jk j 6= j0

�

R =

2664
1 �21 �31 �41
�21 1 �32 �42
�31 �32 1 �43
�41 �42 �43 1

3775
When the correlation matrix is completely unspecified, there areti(ti � 1)=2 parameters to
be estimated. This provides the most efficient estimator for� but is useful only when there
are relatively few observation times or conditions. In addition, when there are missing data
and/or varying numbers of observations per subject, estimation of the complete correlation
structure may result in a nonpositive definite matrix and parameter estimation may not
proceed.

m-dependent:

Corr(yij; yi;j+s) =

8<:
1 s = 0
�s s = 1; 2; : : : ;m
0 s > m

35
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R =

2664
1 �1 �2 0
�1 1 �1 �2
�2 �1 1 �1
0 �2 �1 1

3775
With them-dependent structure, the correlations depend on the distances between
measures; eventually, they diminish to zero fors � m.

Auto-regressive (AR-1):

Corr(yij; yi;j+s) = �s s = 0; 1; 2; : : : ; ti � j

R =

2664
1 � �2 �3

� 1 � �2

�2 � 1 �
�3 �2 � 1

3775
With an auto-regressive correlation structure, the correlations also depend on the distance
between the measures; they diminish with increasing distance.

See the PROC GENMOD documentation for specific estimators of theRi(�) parameters
for each of the working correlation matrix types; they involve using the current value of�

to compute functions of the Pearson residual

rij =
yij � �̂ijp
v(�̂ij)

R is called a working correlation matrix because, for non-normal data, the actual values
may depend on the mean value and onx0i�. See Appendix A at the end of this chapter for
more detail on the steps in the GEE solution.

Estimating the Covariance of the Parameter Estimates
The model-based estimator of the covariance matrix for�̂ is the inverse of the observed
information matrix

�m(�̂) = I�1
0

where

I0 =
KX
i=1

@�i
@�

0

V�1
i

@�i
@�

This is a consistent estimator if the model and working correlation matrix are correctly
specified. Its use may be preferable in those situations where you have a moderate number
of large clusters (Albert and McShane 1995).

The empirical sandwich (robust) estimator of Cov(�̂) is given by

�e = I�1
0 I1I

�1
0
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where

I1 =
KX
i=1

@�i
@�

0

V�1
i Cov(Yi)V

�1
i

@�i
@�

Cov(Yi) is estimated by

(Yi � �i(�̂))(Yi � �i(�̂))
0

This is a consistent estimator even whenVar(yij) 6= v(�ij) or whenRi(�) is not the
correlation matrix ofYi or when the true correlation varies across clusters. You lose
efficiency with the misspecification, but if the working correlation structure is
approximately correct, the asymptotic efficiency is expected to be relatively high.

You can test linear hypotheses of the formH0:C� = 0, whereC is a knownc� p matrix
of constants of rankc, with the Wald statistic

QC = (C�̂)0[CV�C
0]�1(C�̂)

The statisticQC is approximately distributed as chi-square underH0 with degrees of
freedom equal toc. These are also known as tests for contrasts.

15.3 Summary of the GEE Methodology

The GEE method is a practical strategy for the analysis of repeated measurements,
particularly categorical repeated measurements. It provides a way to handle continuous
explanatory variables, a moderate number of explanatory categorical variables, and
time-dependent explanatory variables. It handles missing values, that is, the number of
measurements in each cluster can vary from 1 tot.

The following are the important properties of the GEE method:

� GEEs reduce to GLM estimating equations forti = 1.

� GEEs are the maximum likelihood score equations for multivariate Gaussian data
when you specify unstructured correlation.

� The regression parameter estimates are consistent as the number of clusters become
large, even if you have misspecified the working correlation matrix, as long as the
model for the mean is correct.

� The empirical sandwich estimator of the covariance matrix of�̂ is also consistent
relative to the number of clusters becoming large, even if you have misspecified the
working correlation matrix, as long as the model for the mean is correct.

While the GEE method handles missing values, it is important to note that the method
requires the missing data to be missing completely at random (MCAR), which roughly
means that the missing values may depend only on the explanatory variables that appear in
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the model. This requirement is more restrictive than the missing at random (MAR)
assumption, which is the assumption for likelihood-based inference.

The GEE method depends on asymptotic theory; the number of clusters needs to be large
for the method to produce consistent estimates. By that is meant that the sample size is
large enough to support the properties of consistency and approximate normality for the
estimates from the method. Note that the number of clusters determines adequate sample
size, not the number of measurements per cluster or the total number of measurements.
The desired number of clusters depends on other factors: if you have a very small number
of continuous or dichotomous explanatory variables, 25 clusters may be minimally enough
so that you aren’t badly misled by your results. If you have 5–12 explanatory variables,
you need at least 100 clusters. If you want to be reasonably confident, you probably need
200 clusters. Note that if the correlations are relatively small, you may be able to handle
more time-dependent explanatory variables within a subject than if you have a high degree
of correlation.

TheZ statistics and Wald statistics (with the former being the square root of the latter)
presently used in the GENMOD procedure to assess parameter significance and Type 3
contrasts require around 200 clusters to provide a great deal of confidence concerning
assessments of statistical significance at the 0.05 confidence level or smaller; the score
statistics produced in the Type 3 analyses of the model effects procedure have similar
properties (Boos 1992, and Rotnitzky and Jewell 1990) although they are often more
conservative in the presence of small numbers of clusters. As the number of degrees of
freedom of the contrast for the hypothesis test approaches the number of clusters, these
tests are likely to become less reliable. Several simulation studies (for example, Hendricks
et al. 1996) show that the Type I errors associated with the robust variance estimators can
be inflated. Researchers are investigating adjustments to the Wald statistic based on the
number of clusters in order to produce statistics with better properties for moderate sample
sizes. Shah, Holt, and Folsom (1977) discuss such strategies in the context of sample
survey data analysis. It’s likely that the GENMOD procedure will offer some different
statistics to assess the significance of the effects in the future. See Section 15.7 for an
example of the use of one of these adjusted Wald statistics and the availability of a SAS
macro to compute it.

GEE methods are robust to an assigned correlation structure; you can misspecify that
correlation structure and still obtain consistent parameter estimates. However, note that the
closer the working correlation matrix is to the true structure, the more efficient your
estimates will be. You can compare this property to the mixed model, which heavily
leverages the correlation assumption; this means that if you have misspecified the
correlation structure, you may obtain biased estimates.

The previous discussion did not include goodness-of-fit criteria for the GEE model. Since
the GEE method is quasi-likelihood based, there are not readily defined analogs to the fit
statistics for maximum likelihood estimation. This is an area of active research, and the
current GENMOD procedure does not include any measures for the assessment of fit.
Barnhart and Williamson (1998) describe an empirical procedure for GEE fit based on the
Hosmer and Lemeshow approach for logistic regression (1989). Preisser and Qaqish
(1996) describe diagnostics for GEE that are extensions of Cook’sD and DBETA for
linear regression.
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Marginal Model
The robustness of the GEE method is due to the fact that the GEE method produces a
marginal model. It models a known function of the marginal expectation of the dependent
variable as a linear function of the explanatory variables. The resulting parameter
estimates are population-averaged, or estimates “on the average.” You can also think of the
GEE model as a variational model in which you use estimation to describe the variation
among a set of population parameters (Koch, Gillings, and Stokes 1980). You are relying
on the independence across clusters to consistently estimate the variance; the covariance
matrix parameters are effectively managed as nuisance parameters.

Compare the marginal model to the subject-specific model fit with the conditional logistic
regression method described in Chapter 10 or with mixed models. In those analyses, you
characterize behavior as a process for individuals. The predictions you produce are
individual-based, rather than predictions that apply on average. Your choice of strategy
often depends on the goals of your analysis—whether you want to make population
statements about your results, on average, or whether you want to produce a model that
permits individual prediction. Note that in the standard linear model there is no distinction
between the marginal and subject-specific model. Refer to Diggle, Liang, and Zeger
(1994) and Zeger, Liang, and Albert (1988) for more discussion of marginal models in
longitudinal data analysis.

15.4 Passive Smoking Example

The following data are from a hypothetical study of the effects of air pollution on children.
Researchers followed 25 children and recorded whether they were exhibiting wheezing
symptoms during the periods of evaluation at ages 8, 9, 10, and 11. The response is
recorded as 1 for symptoms and 0 for no symptoms. Explanatory variables included age,
city, and a passive smoking index with values 0, 1, and 2 that reflected the degree of
smoking in the home.

Note that age and the passive smoking index are time-dependent explanatory variables;
their values depend on the period of measurement. This example provides a basic
introduction to fitting GEE models with the GENMOD procedure. The dichotomous
outcome is modeled with a logistic regression analysis; while four response times may be
pushing the limits for the exchangeable structure, the small number of clusters makes a
single-parameter covariance structure a more reasonable choice. Since there are only 25
experimental units, or clusters, only a few explanatory variables can be included in the
analysis.
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Table 15.1. Pollution Study Data

Age 8 Age 9 Age 10 Age 11
ID City Smoke Symp Smoke Symp Smoke Symp Smoke Symp
1 steelcity 0 1 0 1 0 1 0 0
2 steelcity 2 1 2 1 2 1 1 0
3 steelcity 2 1 2 0 1 0 0 0
4 greenhills 0 0 1 1 1 1 0 0
5 steelcity 0 0 1 0 1 0 1 0
6 greenhills 0 1 0 0 0 0 0 1
7 steelcity 1 1 1 1 0 1 0 0
8 greenhills 1 0 1 0 1 0 2 0
9 greenhills 2 1 2 0 1 1 1 0
10 steelcity 0 0 0 0 0 0 1 0
11 steelcity 1 1 0 0 0 0 0 1
12 greenhills 0 0 0 0 0 0 0 0
13 steelcity 2 1 2 1 1 0 0 1
14 greenhills 0 1 0 1 0 0 0 0
15 steelcity 2 0 0 0 0 0 2 1
16 greenhills 1 0 1 0 0 0 1 0
17 greenhills 0 0 0 1 0 1 1 1
18 steelcity 1 1 2 1 0 0 1 0
19 steelcity 2 1 1 0 0 1 0 0
20 greenhills 0 0 0 1 0 1 0 0
21 steelcity 1 0 1 0 1 0 2 1
22 greenhills 0 1 0 1 0 0 0 0
23 steelcity 1 1 1 0 0 1 0 0
24 greenhills 1 0 1 1 1 1 2 1
25 greenhills 0 1 0 0 0 0 0 0

The following DATA step inputs the collected measures into the SAS data set named
CHILDREN. Note that the data are stored with all of a particular child’s measurements on
a single data line. However, the GENMOD procedure requires that each repeated measure
be managed as a separate observation. So, the DO loop included in the DATA step
statements inputs each measure, age, and the passive smoking index and outputs them,
along with the variable CITY, to the CHILDREN data set. You often need to rearrange
data in this manner when you are dealing with repeated measurements data.

data children;
input id city$ @@;
do i=1 to 4;

input age smoke symptom @@;
output;

end;
datalines;

1 steelcity 8 0 1 9 0 1 10 0 1 11 0 0
2 steelcity 8 2 1 9 2 1 10 2 1 11 1 0
3 steelcity 8 2 1 9 2 0 10 1 0 11 0 0
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4 greenhills 8 0 0 9 1 1 10 1 1 11 0 0
5 steelcity 8 0 0 9 1 0 10 1 0 11 1 0
6 greenhills 8 0 1 9 0 0 10 0 0 11 0 1
7 steelcity 8 1 1 9 1 1 10 0 1 11 0 0
8 greenhills 8 1 0 9 1 0 10 1 0 11 2 0
9 greenhills 8 2 1 9 2 0 10 1 1 11 1 0

10 steelcity 8 0 0 9 0 0 10 0 0 11 1 0
11 steelcity 8 1 1 9 0 0 10 0 0 11 0 1
12 greenhills 8 0 0 9 0 0 10 0 0 11 0 0
13 steelcity 8 2 1 9 2 1 10 1 0 11 0 1
14 greenhills 8 0 1 9 0 1 10 0 0 11 0 0
15 steelcity 8 2 0 9 0 0 10 0 0 11 2 1
16 greenhills 8 1 0 9 1 0 10 0 0 11 1 0
17 greenhills 8 0 0 9 0 1 10 0 1 11 1 1
18 steelcity 8 1 1 9 2 1 10 0 0 11 1 0
19 steelcity 8 2 1 9 1 0 10 0 1 11 0 0
20 greenhills 8 0 0 9 0 1 10 0 1 11 0 0
21 steelcity 8 1 0 9 1 0 10 1 0 11 2 1
22 greenhills 8 0 1 9 0 1 10 0 0 11 0 0
23 steelcity 8 1 1 9 1 0 10 0 1 11 0 0
24 greenhills 8 1 0 9 1 1 10 1 1 11 2 1
25 greenhills 8 0 1 9 0 0 10 0 0 11 0 0
;

The PROC GENMOD invocation includes the usual MODEL statement as well as the
REPEATED statement. You use the MODEL statement to request the logit link function,
binomial distribution, and a Type 3 analysis by specifying LINK=LOGIT, DIST=BIN, and
TYPE3, respectively. So far, this specification is the same as for any logistic regression
using PROC GENMOD. The DESCENDING option in the PROC statement specifies that
the model is based on the probability of the largest value of the response variable, which is
1.

proc genmod data=children descending;
class id city;
model symptom = city age smoke /

link=logit dist=bin type3;
repeated subject=id / type=exch covb corrw;

run;

You request a GEE analysis with the REPEATED statement. The SUBJECT=ID identifies
the clustering variable. The SUBJECT= variable must be listed in the CLASS statement
and needs to have a unique value for each cluster. Specifying TYPE=EXCH requests the
exchangeable working correlation structure. The COVB option requests that the parameter
estimate covariance matrix be printed, and the CORRW option specifies that the final
working correlation matrix be printed.

Output 15.1 displays the “Model Information” table which provides information about the
model specifications, including the specified distribution and link function. In addition, the
table describes on which level of the outcome variable the model is based. By default,
beginning with Release 8.1, the default is to model the lower alphanumeric ordered
response values for dichotomous outcomes. (Note that this is a change from previous
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versions of the GENMOD procedure.) Thus, by using the DESCENDING option here,
you are basing your model on the favorable outcome (SYMPTOM=1).

Output 15.1 Basic Model Information

Model Information

Data Set WORK.CHILDREN
Distribution Binomial
Link Function Logit
Dependent Variable symptom
Observations Used 100
Probability Modeled Pr( symptom = 1 )

Output 15.2 displays the class levels and response profiles, respectively. Since the
DESCENDING option is used, the first ordered value is 1 in the “Response Profile” table.

Output 15.2 Class Levels and Response Profiles

Class Level Information

Class Levels Values

id 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25

city 2 greenhil steelcit

Response Profile

Ordered Ordered
Level Value Count

1 1 42
2 0 58

Output 15.3 displays information concerning the parameters, including which parameter
pertains to which level of the CLASS variables.

Output 15.3 Information About Parameters

Parameter Information

Parameter Effect city

Prm1 Intercept
Prm2 city greenhil
Prm3 city steelcit
Prm4 age
Prm5 smoke
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Output 15.4 contains the initial parameter estimates. To generate a starting solution, the
GENMOD procedure first treats all of the measurements as independent and fits a
generalized linear model. These parameter estimates are then used as the starting values
for the GEE solution.

Output 15.4 Initial Parameter Estimates

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 2.4161 1.8673 -1.2438 6.0760 1.67
city greenhil 1 0.0017 0.4350 -0.8508 0.8543 0.00
city steelcit 0 0.0000 0.0000 0.0000 0.0000 .
age 1 -0.3283 0.1914 -0.7035 0.0468 2.94
smoke 1 0.5598 0.2952 -0.0188 1.1385 3.60
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Initial
Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.1957
city greenhil 0.9968
city steelcit .
age 0.0863
smoke 0.0579
Scale

NOTE: The scale parameter was held fixed.

The beginning of the output produced by the GEE analysis is the general model
information that is displayed in Output 15.5. Since there are 25 subjects with repeated
measures, there are 25 clusters. Each subject has 4 measures, and the data are complete.
Thus, the minimum and maximum cluster size is 4.

Output 15.5 General GEE Model Information

GEE Model Information

Correlation Structure Exchangeable
Subject Effect id (25 levels)
Number of Clusters 25
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Output 15.6 contains the Type 3 analysis results for the model effects.

The results indicate that city is not a factor in wheezing status. However, smoking
exposure has a nearly significant association (p = 0:0583). Age is marginally influential
(p = 0:0981).
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Output 15.6 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

city 1 0.01 0.9388
age 1 2.74 0.0981
smoke 1 3.59 0.0583

Output 15.7 contains the parameter estimates produced by the GEE analysis. The table
also supplies standard errors, confidence intervals,Z statistics, andp-values. The
empirical standard errors are produced by default. Since the effects reported in the Type 3
analysis are single degree of freedom effects, the score statistics in that table are assessing
the same hypotheses as theZ statistics in this table. Note that thep-value for theZ for
smoking is 0.0211, compared to the0:0583 reported with the score statistic in the “Type 3”
table. In a strict testing situation, you would assess the null hypothesis with the score
statistic. TheZ and Wald statistic generally produce more liberalp-values than the score
statistic. Particularly for small sample sizes, you would want to report the more
conservative value.

Output 15.7 GEE Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 2.2615 2.0243 -1.7060 6.2290 1.12 0.2639
city greenhil 0.0418 0.5435 -1.0234 1.1070 0.08 0.9387
city steelcit 0.0000 0.0000 0.0000 0.0000 . .
age -0.3201 0.1884 -0.6894 0.0492 -1.70 0.0893
smoke 0.6506 0.2821 0.0978 1.2035 2.31 0.0211

The procedure prints both the empirical and model-based covariance matrix of the
parameter estimates; these are displayed in Output 15.8. Note that their values are often
similar, especially for large samples. If these matrices are very similar, you may have some
confidence that you have correctly specified the correlation structure and the estimates are
relatively efficient. However, recall that, even if you have misspecified the correlation
structure, both the parameter estimates and their empirical standard errors are consistent,
provided that the specification is correct for the explanatory variables.
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Output 15.8 Covariance Matrix Estimates

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 3.26069 -0.16313 -0.32274 -0.12257
Prm2 -0.16313 0.24015 0.002520 0.03422
Prm4 -0.32274 0.002520 0.03379 0.004471
Prm5 -0.12257 0.03422 0.004471 0.09533

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 4.09770 -0.55261 -0.37280 -0.29397
Prm2 -0.55261 0.29538 0.03719 0.09143
Prm4 -0.37280 0.03719 0.03550 0.02064
Prm5 -0.29397 0.09143 0.02064 0.07957

Finally, the exchangeable working correlation matrix is also printed. The estimated
correlation is fairly low at 0.0883.

Output 15.9 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.0883 0.0883 0.0883
Row2 0.0883 1.0000 0.0883 0.0883
Row3 0.0883 0.0883 1.0000 0.0883
Row4 0.0883 0.0883 0.0883 1.0000

Since this is a logistic regression based on reference cell coding, you can exponentiate the
parameter estimates to obtain estimates of odds ratios for various explanatory factors.
Since the parameter estimate for smoking exposure is0:6506, the odds of symptoms for
those with one higher category of smoking exposure aree0:6506=1.9 times the odds of
symptoms for those children with the lower exposure.

The GENMOD procedure can produce the odds ratio estimate via the ESTIMATE
statement, along with 95% confidence limits. You can produce such results for any
estimable linear combination of the parameters from the GEE analysis.

Since the smoking effect is represented by a single parameter, you place the coefficient 1
after listing a label and the SMOKE variable. The EXP option requests that the estimate be
exponentiated, which, in the case of reference parameterization, produces the odds ratio
estimate.

ods select Estimates;
proc genmod data=children descending;

class id city;
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model symptom = city age smoke /
link=logit dist=bin type3;

repeated subject=id / type=exch covb corrw;
estimate ’smoking’ smoke 1 / exp;

run;

Output 15.10 displays the results from the ESTIMATE statement. The point estimate for
the odds ratio is 1.9 with 95% confidence limits of (1.1027, 3.3318) for the extent of
increased odds of symptoms per category of increase in passive smoking exposure. The
confidence limits are based on the Wald statistic.

Output 15.10 ESTIMATE Results

Contrast Estimate Results

Standard Chi-
Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

smoking 0.6506 0.2821 0.05 0.0978 1.2035 5.32 0.0211
Exp(smoking) 1.9168 0.5407 0.05 1.1027 3.3318

Note that specifying the coefficients in the ESTIMATE statement can be more involved
with CLASS variables, due to the less than full rank parameterization that is used by
PROC GENMOD. Consider a two-level treatment variable, say TREATMENT, with levels
A and B and a default reference level of B. The ESTIMATE statement required to produce
the estimated odds ratio for A compared to B would be

estimate ’treatment’ treatment 1 -1 /exp;

Refer to theSAS/STAT User’s Guide, Version 8for more information regarding the
ESTIMATE statement and parameterization.

15.5 Crossover Example

Crossover designs provide another form of repeated measurements. In a crossover design,
subjects serve as their own controls and receive two or more treatments or conditions in
two or more consecutive periods. You can use the GEE method to analyze such data,
managing the subjects as clusters and managing the treatment as a time-varying covariate.

The following data are from a two-period crossover study investigating three treatments.
These data were analyzed with conditional logistic regression in Chapter 10.

Table 15.2. Crossover Design Data

Response Profiles
Age Sequence FF FU UF UU Total
older A:B 12 12 6 20 50
older B:P 8 5 6 31 50
older P:A 5 3 22 20 50
younger B:A 19 3 25 3 50
younger A:P 25 6 6 13 50
younger P:B 13 5 21 11 50
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As described in Chapter 10, this is a two-period crossover design where patients have been
stratified to two age groups and, within age group, have been assigned to one of three
treatment sequences. These data can be modeled with parameters for period effect, effects
for Drug A and Drug B relative to the placebo (P), carryover effects for Drug A and Drug
B, and interactions of period with age and drug with age.

The following DATA step enters the data into SAS data set CROSS. The variable AGE
contains information on whether the subject is older or younger, and the variable
SEQUENCE contains two letters describing the sequence of treatments for that group. For
example, the value AB means that treatment A was received in the first period and
treatment B was received in the second, and the value BP means that treatment B was
received in the first period and the placebo was received in the second. The variables
TIME1 and TIME2 have the values F and U depending on whether the treatment produced
a favorable or unfavorable response. The data are frequency counts, and the variable
COUNT contains the frequency for each response profile for each sequence and age
combination. The following DATA step creates an observation for each subject.

data cross (drop=count);
input age $ sequence $ time1 $ time2 $ count;
do i=1 to count;

output;
end;
datalines;

older AB F F 12
older AB F U 12
older AB U F 6
older AB U U 20
older BP F F 8
older BP F U 5
older BP U F 6
older BP U U 31
older PA F F 5
older PA F U 3
older PA U F 22
older PA U U 20
younger BA F F 19
younger BA F U 3
younger BA U F 25
younger BA U U 3
younger AP F F 25
younger AP F U 6
younger AP U F 6
younger AP U U 13
younger PB F F 13
younger PB F U 5
younger PB U F 21
younger PB U U 11
;

The next DATA step creates an observation for each response in each period so that the
data are in the correct data structure for the GEE analysis. The variable PERIOD is an
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indicator variable for whether the observation is from the first period. The RESPONSE
variable contains the value 1 if the response was favorable and 0 if it was not.

data cross2;
set cross;
subject=_n_;

period=1;
drug = substr(sequence, 1, 1);
carry=’N’;
response = time1;
output;

period=0;
drug = substr(sequence, 2, 1);
carry = substr(sequence, 1, 1);
if carry=’P’ then carry=’N’;
response = time2;
output;

run;
proc print data=cross2(obs=15);
run;

The variable CARRY takes the value N (no) if the observation is from the first period; it
takes the value A or B if it comes from the second period and the treatment in the first
period is A or B, respectively. If the subject received the placebo in the first period, the
value of CARRY is also set to N for the observations in the second period.

Output 15.11 displays the first 15 observations of SAS data set CROSS2.

Output 15.11 First 15 Observations of Data Set CROSS2

Obs age sequence time1 time2 i subject period drug carry response

1 older AB F F 1 1 1 A N F
2 older AB F F 1 1 0 B A F
3 older AB F F 2 2 1 A N F
4 older AB F F 2 2 0 B A F
5 older AB F F 3 3 1 A N F
6 older AB F F 3 3 0 B A F
7 older AB F F 4 4 1 A N F
8 older AB F F 4 4 0 B A F
9 older AB F F 5 5 1 A N F

10 older AB F F 5 5 0 B A F
11 older AB F F 6 6 1 A N F
12 older AB F F 6 6 0 B A F
13 older AB F F 7 7 1 A N F
14 older AB F F 7 7 0 B A F
15 older AB F F 8 8 1 A N F

The following PROC GENMOD statements fit the GEE model. Since there are 300
subjects in the crossover study, there are 300 clusters or experimental units in the GEE
analysis. With responses for both periods, the cluster size is two. There are no missing
values, so both the minimum and maximum cluster size is two. A logistic regression
analysis is appropriate for these data so DIST=BIN is specified in the MODEL statement.
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The logit link is used by default. Both SUBJECT and AGE are specified in the CLASS
statement, since AGE reflects a classification into two groups. The model includes main
effects for period, age, drug, and carryover effects and interactions for period and age and
drug and age. The option TYPE=UNSTR specifies the unstructured correlation structure.
Since there are only two measurements per subject, this is the same as the exchangeable
structure.

proc genmod data=cross2;
class subject age drug carry;
model response = period age drug

period*age carry
drug*age / dist=bin type3;

repeated subject=subject/type=unstr;
run;

The “Class Level Information” table lists the variables treated as classification variables
and their values.

Output 15.12 Class Level Information

Class Level Information

Class Levels Values

subject 300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
...

age 2 older younger
drug 3 A B P
carry 3 A B N

Response Profile

Ordered Ordered
Level Value Count

1 F 284
2 U 316

The “Parameter Information” table lists the 18 parameters and tells you what they
represent.
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Output 15.13 Parameter Information

Parameter Information

Parameter Effect age drug carry

Prm1 Intercept
Prm2 period
Prm3 age older
Prm4 age younger
Prm5 drug A
Prm6 drug B
Prm7 drug P
Prm8 period*age older
Prm9 period*age younger
Prm10 carry A
Prm11 carry B
Prm12 carry N
Prm13 age*drug older A
Prm14 age*drug older B
Prm15 age*drug older P
Prm16 age*drug younger A
Prm17 age*drug younger B
Prm18 age*drug younger P

After the initial estimates are printed, the “GEE Model Information” table is displayed and
confirms that you have 300 clusters, each containing two responses.

Output 15.14 GEE Model Information

GEE Model Information

Correlation Structure Unstructured
Subject Effect subject (300 levels)
Number of Clusters 300
Correlation Matrix Dimension 2
Maximum Cluster Size 2
Minimum Cluster Size 2

The Type 3 table contains the results of effect tests for all the terms specified in the
MODEL statement. When you are conducting an analysis of crossover data, you hope that
there are no carryover effects. Having such effects greatly complicates the model and
interpretation. In this analysis, the carryover effect is not significant. The score statistic for
the two-level CARRY variable is 1.15 withp-value equal to 0.5626. In addition, the age�
drug interaction appears to be unimportant, with a score chi-square statistic of 0.72 for 2 df
(p = 0:6981).
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Output 15.15 Type 3 Table

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

period 1 4.61 0.0318
age 1 36.03 <.0001
drug 2 27.66 <.0001
period*age 1 4.69 0.0303
carry 2 1.15 0.5626
age*drug 2 0.72 0.6981

You can use the CONTRAST statement to obtain the joint test for CARRY and the
AGE*DRUG interaction. You submit the following statements. The ODS SELECT
statement restricts the output to the test results. The contrast labeled ‘joint’ is the joint test
for both the CARRY and AGE*DRUG effects. The contrasts labeled ‘carry’ and ‘inter’ are
the main effects tests and should match the results displayed in the Type 3 analysis for
those effects.

ods select Contrasts;
proc genmod data=cross2;

class subject age drug carry;
model response = period age drug

period*age carry
drug*age / dist=bin type3;

repeated subject=subject/type=unstr;
contrast ’carry’ carry 1 0 -1,

carry 0 1 -1;
contrast ’inter’ age*drug 1 0 -1 -1 0 1 ,

age*drug 0 1 -1 0 -1 1 ;
contrast ’joint’ carry 1 0 -1,

carry 0 1 -1,
age*drug 1 0 -1 -1 0 1 ,
age*drug 0 1 -1 0 -1 1 ;

run;

Output 15.16 contains the results of these tests. The joint test is definitely nonsignificant,
with a chi-square value of 1.31 for 4 df and ap-value of 0.8595.

Output 15.16 Type 3 Table

Contrast Results for GEE Analysis

Chi-
Contrast DF Square Pr > ChiSq Type

carry 2 1.15 0.5626 Score
inter 2 0.72 0.6981 Score
joint 4 1.31 0.8595 Score
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A reduced model was then specified, with main effects for period, age, and drug, as well as
the period� age interaction. The terms of the reduced model are listed in the MODEL
statement, and the CORRW option requests that the estimate of the working correlation
matrix be printed. Since interest now lies in the Type 3 effects, the parameter estimates,
and the working correlation matrix, the ODS SELECT statement is used to specify that
only those tables be produced.

ods select GEEEmpPEst Type3 GEEWCorr;
proc genmod data=cross2;

class subject age drug;
model response = period age drug

period*age
/ dist=bin type3;

repeated subject=subject/type=unstr corrw;
run;

The Type 3 tests indicate that period, age, and drug are highly significant. With ap-value
of 0.0240, the period� age interaction cannot be dismissed.

Output 15.17 Type III Table

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

period 1 24.98 <.0001
age 1 35.53 <.0001
drug 2 39.31 <.0001
period*age 1 5.10 0.0240

Output 15.18 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.5127 0.2063 0.1084 0.9170 2.49 0.0129
period -1.1553 0.2304 -1.6069 -0.7037 -5.01 <.0001
age older -1.4994 0.2583 -2.0056 -0.9931 -5.80 <.0001
age younger 0.0000 0.0000 0.0000 0.0000 . .
drug A 1.2542 0.2010 0.8602 1.6483 6.24 <.0001
drug B 0.3404 0.2016 -0.0546 0.7355 1.69 0.0912
drug P 0.0000 0.0000 0.0000 0.0000 . .
period*age older 0.7088 0.3131 0.0951 1.3224 2.26 0.0236
period*age younger 0.0000 0.0000 0.0000 0.0000 . .

Finally, the working correlation matrix is also printed. As discussed, the unstructured
correlation structure is the same as the exchangeable correlation structure when you have
two responses per cluster. The correlation is estimated to be 0.2274.
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Output 15.19 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2

Row1 1.0000 0.2274
Row2 0.2274 1.0000

Note that these results are similar to those presented for the conditional logistic analysis in
Chapter 10. Most of the time, the general conclusions for a GEE analysis and the
corresponding conditional logistic regression are the same; thep-values are similar, but
estimates may be somewhat different. The conditional logistic model is a subject-specific
model, producing odds ratio estimates for the individual, while the GEE model is a
marginal model, producing odds ratios “on the average.”

You may be interested in comparing the two drugs, A and B. This is done with a
CONTRAST statement. You test to see if the difference of the two parameters for drugs A
and B is equal to zero. The following statements request a contrast test for drug A versus
drug B. The ODS SELECT statement restricts the output to just the CONTRAST
statement results.

ods select Contrasts;
proc genmod data=cross2;

class subject age drug;
model response = period age drug

period*age
/ dist=bin type3;

repeated subject=subject/type=unstr;
contrast ’A versus B’ drug 1 -1 0;

run;

Output 15.20 Contrast Results

Contrast Results for GEE Analysis

Chi-
Contrast DF Square Pr > ChiSq Type

A versus B 1 19.15 <.0001 Score

This is a single degree of freedom test, and the chi-square value of 19.15 for the score test
is highly significant. If you want the Wald statistic, instead of the score statistic, you
specify the WALD option in the CONTRAST statement.

15.6 Respiratory Data

In Chapter 14, a repeated measurements analysis of the respiratory data was performed.
The response function modeled was the logit, and the response was whether the outcome
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was good or excellent versus all other responses such as fair, poor, and so on. Explanatory
variables included treatment, center, and visit. These data also included other explanatory
variables, such as age, sex, and baseline, that couldn’t be handled in the WLS repeated
measurements setting because there wasn’t adequate sample size. The GEE method
enables you to take such explanatory variables into account.

First, the same model that resulted from the WLS is fit with the GEE method. The WLS
strategy is also a marginal method that provides a robust covariance estimate, and, given
large sample sizes, the WLS approach and GEE approach produce very similar estimates.
Refer to Miller, Davis, and Landis (1993) for more detail on the relationship between the
WLS and GEE methods.

The following SAS DATA step inputs the respiratory data and creates an observation for
each response. The baseline and follow-up responses are actually measured on a five-point
scale, from terrible to excellent, and this ordinal response is analyzed later in the chapter.
For this analysis, the dichotomous outcome of whether the patient experienced good or
excellent response is analyzed with a logistic regression. The second DATA step creates
the SAS data set RESP2 and computes response variable DICHOT and dichotomous
baseline variable DI–BASE. Note that the baseline variable, which was recorded on a
five-point scale, could be managed as either ordinal or dichotomous.

data resp;
input center id treatment $ sex $ age baseline
visit1-visit4 @@;
visit=1; outcome=visit1; output;
visit=2; outcome=visit2; output;
visit=3; outcome=visit3; output;
visit=4; outcome=visit4; output;
datalines;

1 53 A F 32 1 2 2 4 2 2 30 A F 37 1 3 4 4 4
1 18 A F 47 2 2 3 4 4 2 52 A F 39 2 3 4 4 4
1 54 A M 11 4 4 4 4 2 2 23 A F 60 4 4 3 3 4
1 12 A M 14 2 3 3 3 2 2 54 A F 63 4 4 4 4 4
1 51 A M 15 0 2 3 3 3 2 12 A M 13 4 4 4 4 4
1 20 A M 20 3 3 2 3 1 2 10 A M 14 1 4 4 4 4
1 16 A M 22 1 2 2 2 3 2 27 A M 19 3 3 2 3 3
1 50 A M 22 2 1 3 4 4 2 16 A M 20 2 4 4 4 3
1 3 A M 23 3 3 4 4 3 2 47 A M 20 2 1 1 0 0
1 32 A M 23 2 3 4 4 4 2 29 A M 21 3 3 4 4 4
1 56 A M 25 2 3 3 2 3 2 20 A M 24 4 4 4 4 4
1 35 A M 26 1 2 2 3 2 2 2 A M 25 3 4 3 3 1
1 26 A M 26 2 2 2 2 2 2 15 A M 25 3 4 4 3 3
1 21 A M 26 2 4 1 4 2 2 25 A M 25 2 2 4 4 4
1 8 A M 28 1 2 2 1 2 2 9 A M 26 2 3 4 4 4
1 30 A M 28 0 0 1 2 1 2 49 A M 28 2 3 2 2 1
1 33 A M 30 3 3 4 4 2 2 55 A M 31 4 4 4 4 4
1 11 A M 30 3 4 4 4 3 2 43 A M 34 2 4 4 2 4
1 42 A M 31 1 2 3 1 1 2 26 A M 35 4 4 4 4 4
1 9 A M 31 3 3 4 4 4 2 14 A M 37 4 3 2 2 4
1 37 A M 31 0 2 3 2 1 2 36 A M 41 3 4 4 3 4
1 23 A M 32 3 4 4 3 3 2 51 A M 43 3 3 4 4 2
1 6 A M 34 1 1 2 1 1 2 37 A M 52 1 2 1 2 2
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1 22 A M 46 4 3 4 3 4 2 19 A M 55 4 4 4 4 4
1 24 A M 48 2 3 2 0 2 2 32 A M 55 2 2 3 3 1
1 38 A M 50 2 2 2 2 2 2 3 A M 58 4 4 4 4 4
1 48 A M 57 3 3 4 3 4 2 53 A M 68 2 3 3 3 4
1 5 P F 13 4 4 4 4 4 2 28 P F 31 3 4 4 4 4
1 19 P F 31 2 1 0 2 2 2 5 P F 32 3 2 2 3 4
1 25 P F 35 1 0 0 0 0 2 21 P F 36 3 3 2 1 3
1 28 P F 36 2 3 3 2 2 2 50 P F 38 1 2 0 0 0
1 36 P F 45 2 2 2 2 1 2 1 P F 39 1 2 1 1 2
1 43 P M 13 3 4 4 4 4 2 48 P F 39 3 2 3 0 0
1 41 P M 14 2 2 1 2 3 2 7 P F 44 3 4 4 4 4
1 34 P M 15 2 2 3 3 2 2 38 P F 47 2 3 3 2 3
1 29 P M 19 2 3 3 0 0 2 8 P F 48 2 2 1 0 0
1 15 P M 20 4 4 4 4 4 2 11 P F 48 2 2 2 2 2
1 13 P M 23 3 3 1 1 1 2 4 P F 51 3 4 2 4 4
1 27 P M 23 4 4 2 4 4 2 17 P F 58 1 4 2 2 0
1 55 P M 24 3 4 4 4 3 2 39 P M 11 3 4 4 4 4
1 17 P M 25 1 1 2 2 2 2 40 P M 14 2 1 2 3 2
1 45 P M 26 2 4 2 4 3 2 24 P M 15 3 2 2 3 3
1 40 P M 26 1 2 1 2 2 2 41 P M 15 4 3 3 3 4
1 44 P M 27 1 2 2 1 2 2 33 P M 19 4 2 2 3 3
1 49 P M 27 3 3 4 3 3 2 13 P M 20 1 4 4 4 4
1 39 P M 28 2 1 1 1 1 2 34 P M 20 3 2 4 4 4
1 2 P M 28 2 0 0 0 0 2 45 P M 33 3 3 3 2 3
1 14 P M 30 1 0 0 0 0 2 22 P M 36 2 4 3 3 4
1 10 P M 37 3 2 3 3 2 2 18 P M 38 4 3 0 0 0
1 31 P M 37 1 0 0 0 0 2 35 P M 42 3 2 2 2 2
1 7 P M 43 2 3 2 4 4 2 44 P M 43 2 1 0 0 0
1 52 P M 43 1 1 1 3 2 2 6 P M 45 3 4 2 1 2
1 4 P M 44 3 4 3 4 2 2 46 P M 48 4 4 0 0 0
1 1 P M 46 2 2 2 2 2 2 31 P M 52 2 3 4 3 4
1 46 P M 49 2 2 2 2 2 2 42 P M 66 3 3 3 4 4
1 47 P M 63 2 2 2 2 2
;
data resp2; set resp;

dichot=(outcome=3 or outcome=4);
di_base = (baseline=3 or baseline=4);

run;

Since the final WLS model included terms for treatment, center, and visit, these main
effects are included in this PROC GENMOD invocation. The options DIST=BIN and
LINK=LOGIT request logistic regression. Since unique identification of the clusters
requires both variables ID and CENTER, their crossing is specified in the SUBJECT=
option. The WLS method computes a fully specified covariance matrix, so, for comparison
purposes, the unstructured working correlation matrix is specified for the GEE analysis
with TYPE=UNSTR. The DESCENDING option in the PROC GENMOD statement
specifies that the highest ordered response level, 1, is to be modeled.
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proc genmod descending;
class id center treatment visit;
model dichot = center treatment visit /

link=logit dist=bin type3;
repeated subject=id*center / type=unstr;

run;

Output 15.21 displays the general model information.

Output 15.21 Model Information

Model Information

Data Set WORK.RESP2
Distribution Binomial
Link Function Logit
Dependent Variable dichot
Observations Used 444
Probability Modeled Pr( dichot = 1 )

The following table of the response profiles also demonstrates that the model is based on
the outcome of good or excellent (DICHOT=1).

Output 15.22 Response Profiles

Response Profile

Ordered Ordered
Level Value Count

1 1 248
2 0 196

In the “GEE Model Information” table, you can see that there are 111 clusters in the
analysis, with all clusters having responses for each of the four visits.

Output 15.23 GEE Model Information

GEE Model Information

Correlation Structure Unstructured
Subject Effect id*center (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

The Type 3 analysis displayed in Output 15.24 finds the treatment and center effects to be
influential but not the visit effect.
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Output 15.24 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 8.01 0.0047
treatment 1 9.89 0.0017
visit 3 3.47 0.3251

Output 15.25 displays the parameter estimates. These are very similar to those obtained
from the WLS solution, and so are the standard errors.

Output 15.25 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.0732 0.2946 -0.5042 0.6506 0.25 0.8039
center 1 -0.9168 0.3157 -1.5355 -0.2982 -2.90 0.0037
center 2 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1.0145 0.3165 0.3941 1.6349 3.21 0.0013
treatment P 0.0000 0.0000 0.0000 0.0000 . .
visit 1 0.2835 0.2094 -0.1269 0.6939 1.35 0.1757
visit 2 0.0804 0.2053 -0.3220 0.4829 0.39 0.6953
visit 3 0.2840 0.1932 -0.0946 0.6627 1.47 0.1415
visit 4 0.0000 0.0000 0.0000 0.0000 . .

Table 15.3 displays these estimates side-by-side for a closer comparison.

Table 15.3. Comparison of WLS and GEE Estimates

WLS Standard GEE Standard
Parameter Estimate Error Estimate Error
Intercept 0.0168 0.2901 0.0732 0.2946
Treatment A 1.0434 0.3203 1.0145 0.3165
Visit 1 0.2216 0.1883 0.2835 0.2094
Visit 2 0.0201 0.1896 0.0804 0.2053
Visit 3 0.1811 0.1681 0.2840 0.1932
Center �0:8803 0.3188 �0:9168 0.3157

If you were to compare WLS and GEE analyses with unstructured correlation matrix for
data sets with cluster sizes of 400 plus, you would find that the estimates and standard
errors were reasonably similar.

Recall that Chapter 14 indicated that fitting treatment, center, and visit for these data and
considering their interactions was on the verge of not being defensible in terms of sample
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size. The data set includes other explanatory variables such as age, a continuous variable
that is not generally handled by a WLS analysis, and sex and baseline. The GEE analysis
can handle these additional variables reasonably well with 111 clusters.

The next GEE analysis includes the additional explanatory variables in the model and also
includes the visit� treatment interaction and the treatment� center interaction. The
exchangeable working correlation structure is thought to be a reasonable choice so it is
specified with the TYPE=EXCH option in the REPEATED statement.

proc genmod descending;
class id center sex treatment visit;
model dichot = treatment sex age center di_base

visit visit*treatment treatment*center/
link=logit dist=bin type3;

repeated subject=id*center / type=exch;
run;

Output 15.26 displays the general model information. Because the DESCENDING option
is specified, the probability that the response DICHOT is 1 is modeled.

Output 15.26 Model Information

Model Information

Data Set WORK.RESP2
Distribution Binomial
Link Function Logit
Dependent Variable dichot
Observations Used 444
Probability Modeled Pr( dichot = 1 )

In the “GEE Model Information” table, you can see that there are 111 clusters in the
analysis, with all clusters having responses for each of the four visits.

Output 15.27 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable
Subject Effect id*center (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

The Type 3 analysis displayed in Output 15.28 indicates that the two interaction terms are
nonsignificant. The TREAT*VISIT interaction has a score test statistic of 3.10 and a
p-value of 0.3760 with 3 df. The CENTER*TREATMENT interaction has a score test
statistic value of 2.46 with ap-value of 0.1169 and 1 df.
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Output 15.28 Type 3 Tests for Model with Interactions

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

treatment 1 12.85 0.0003
sex 1 0.24 0.6247
age 1 2.23 0.1351
center 1 3.32 0.0683
di_base 1 23.06 <.0001
visit 3 3.33 0.3429
treatment*visit 3 3.10 0.3760
center*treatment 1 2.46 0.1169

The same analysis was repeated with the following MODEL statement inserted. Both
interactions have been dropped from the model.

model dichot = center sex treatment age di_base
visit / link=logit dist=bin type3;

Output 15.29 displays the resulting Type 3 analysis. Visit does not appear to be influential
(p = 0:3251), and neither does sex (p = 0:7565) nor age (p = 0:1345).

Output 15.29 Type 3 Tests for Reduced Model

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 3.24 0.0720
sex 1 0.10 0.7565
treatment 1 12.11 0.0005
age 1 2.24 0.1345
di_base 1 22.53 <.0001
visit 3 3.47 0.3251

The further reduced model has all of the main effects except for visit. Since sex and age
were identified as covariates for this analysis ahead of time, they remain in the analysis.
The following statements produce the desired GEE analysis:

proc genmod descending;
class id center sex treatment visit;
model dichot = center sex treatment age di_base

/ link=logit dist=bin type3;
repeated subject=id*center / type=exch corrw;

run;

Output 15.30 displays the Type 3 tests for the final model.
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Output 15.30 Type 3 Tests for Final Model

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 3.11 0.0780
sex 1 0.10 0.7562
treatment 1 12.52 0.0004
age 1 2.28 0.1312
di_base 1 22.97 <.0001

There is a very significant treatment effect. As seen in the parameter estimates table in
Output 15.31, active treatment increases the odds of a good or excellent response. Baseline
is also very influential, with ap-value of less than 0.0001. Sex and age remain
nonsignificant, and center is marginally influential with ap-value of 0.0780.

Using the parameter estimates displayed in Output 15.31 you see that those patients on
active treatment, have, on the average,e1:2654 = 3:5 times greater odds of a good or
excellent response as those patients on placebo, adjusted for the other effects in the model.

Output 15.31 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.2066 0.5776 -1.3388 0.9255 -0.36 0.7206
center 1 -0.6495 0.3532 -1.3418 0.0428 -1.84 0.0660
center 2 0.0000 0.0000 0.0000 0.0000 . .
sex F 0.1368 0.4402 -0.7261 0.9996 0.31 0.7560
sex M 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1.2654 0.3467 0.5859 1.9448 3.65 0.0003
treatment P 0.0000 0.0000 0.0000 0.0000 . .
age -0.0188 0.0130 -0.0442 0.0067 -1.45 0.1480
di_base 1.8457 0.3460 1.1676 2.5238 5.33 <.0001

Note that visit is usually considered part of the design configuration and generally would
be kept in the model, particularly in a clinical trials type of analysis. The design is
balanced, and you would not gain that much precision by deleting effects such as visit,
age, and sex. However, in the case of an observational study, in which the design was not
planned, you will probably encounter collinearity in the predictors and may need to
simplify your model to some extent in order to reduce the “noise” and make very real
gains in precision. However, such simplification should not be excessive in order to avoid
potential bias from overfitting.

The estimated exchangeable working correlation matrix is displayed in Output 15.32.
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Output 15.32 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.3270 0.3270 0.3270
Row2 0.3270 1.0000 0.3270 0.3270
Row3 0.3270 0.3270 1.0000 0.3270
Row4 0.3270 0.3270 0.3270 1.0000

There may be some interest in considering the unstructured working correlation matrix,
since there are 4 visits per subject. This requires the estimation of more parameters, but
that might be appropriate given that the model only contains five terms. The following
PROC GENMOD invocation fits the same model but specifies the unstructured working
correlation matrix. Note that using the unstructured correlation here, for four responses,
requires you to ensure that your responses are in a consistent order, that is, the first
observation in a cluster contains the first response, followed by the observation containing
the second response, and so on. The DATA step used to create data set RESP on page 495
creates the proper ordering. However, if your data are not ordered correctly, then you need
to create a variable that can be used by the GENMOD procedure to identify the correct
sequence of responses. You use the WITHINSUBJECT option to specify that variable in
the REPEATED statement.

proc genmod descending;
class id center sex treatment visit;
model dichot = center sex treatment age di_base

/ link=logit dist=bin type3;
repeated subject=id*center / type=unstr corrw;

run;

Output 15.33 displays the estimated correlation matrix. You can see that there is
reasonable homogeneity in the various visit-wise correlations.

Output 15.33 Unstructured Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.3351 0.2140 0.2953
Row2 0.3351 1.0000 0.4429 0.3581
Row3 0.2140 0.4429 1.0000 0.3964
Row4 0.2953 0.3581 0.3964 1.0000

Output 15.34 displays the parameter estimates that result from this model.
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Output 15.34 Parameter Estimates for Unstructured Working Structure

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.2324 0.5763 -1.3620 0.8972 -0.40 0.6868
center 1 -0.6558 0.3512 -1.3442 0.0326 -1.87 0.0619
center 2 0.0000 0.0000 0.0000 0.0000 . .
sex F 0.1128 0.4408 -0.7512 0.9768 0.26 0.7981
sex M 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1.2442 0.3455 0.5669 1.9214 3.60 0.0003
treatment P 0.0000 0.0000 0.0000 0.0000 . .
age -0.0175 0.0129 -0.0427 0.0077 -1.36 0.1728
di_base 1.8981 0.3441 1.2237 2.5725 5.52 <.0001

Compare these estimates to those in Output 15.31. The parameter estimates themselves are
quite similar, and, while most of the standard errors are a little smaller for the unstructured
correlation model, there really is very little gain in efficiency. Your choice of working
correlation structures depends on what you believe is most realistic for your particular data.

If you have no idea of what to specify for your correlation structure, you might want to
consider the independent working correlation matrix for these data. Many analysts
regularly use the independent working structure with GEE analysis and don’t attempt to
postulate a correlation structure. They rely on the GEE properties that both the parameter
estimates and their standard errors are consistent even if the correlation structure has not
been correctly specified. They are not that concerned about the potential loss of efficiency.

Output 15.35 displays the parameter estimates and standard errors that result when you
repeat this analysis with the independent working correlation matrix. Again, the parameter
estimates are very similar to those obtained by specifying the exchangeable and
unstructured correlation structures, respectively.

Output 15.35 Parameter Estimates for Independent Working Structure

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.2066 0.5776 -1.3388 0.9255 -0.36 0.7206
center 1 -0.6495 0.3532 -1.3418 0.0428 -1.84 0.0660
center 2 0.0000 0.0000 0.0000 0.0000 . .
sex F 0.1368 0.4402 -0.7261 0.9996 0.31 0.7560
sex M 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1.2654 0.3467 0.5859 1.9448 3.65 0.0003
treatment P 0.0000 0.0000 0.0000 0.0000 . .
age -0.0188 0.0130 -0.0442 0.0067 -1.45 0.1480
di_base 1.8457 0.3460 1.1676 2.5238 5.33 <.0001
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15.7 Using a Modified Wald Statistic to Assess Model Effects

Section 15.3 discusses the possibility of using an adjusted Wald statistic to evaluate model
effects in the GEE approach. Shah, Holt, and Folsom (1977) describe a modification of the
Wald statistic based on a HotellingT 2 type of transformation ofQC :

(d� c+ 1)QC

dc
is distributed as Fc;d�c+1

The quantityd is equal to the number of clusters minus 1 andc is equal to the number of
rows of the contrast. Thus, for tests concerning effects of explanatory factors, it is equal to
the corresponding number of df. This test is more conservative than the Wald test;
LaVange, Koch, and Schwartz (2000) suggest that you can use the Wald andF -transform
statisticp-values as the lower and upper bounds for judging the robustness of the actual
p-value. As the number of clusters becomes very large, these statistics produce very
similar conclusions.

The Output Delivery System makes it relatively easy to write a macro that produces these
F -transform statistics and append a table containing them to the end of the PROC
GENMOD output. Appendix B of this chapter contains the SAS statements making up the
macro GEEF that performs this task. It first produces output data sets from the GENMOD
invocation that contain the number of clusters, the appropriate Wald statistics, and df for
the Type 3 analysis. Then, it does some DATA step manipulations to produce a data set
that includes the desired computations. The TEMPLATE procedure is then used to create a
template for the new type of table containing theF statistics, and a DATA–NULL– step is
used to print it.

The following example illustrates how to use this macro with the first reduced model fit for
the respiratory data in the preceding section. The statements assume that the macro GEEF
has been included in a file named MACROS.SAS that is stored in the directory in which
you are running your SAS program. The ODS OUTPUT statement puts the GEE model
information, including the number of clusters, into a SAS data set named CLUSTOUT,
and it puts the Type 3 analysis results, which include the Wald chi-square values and their
df, into a SAS data set named SCOREOUT. Because the GEEF macro expects them, the
names CLUSTOUT and SCOREOUT must be used. The PROC GENMOD invocation is
exactly the same as before except that the WALD option is specified in the MODEL
statement to produce Wald statistics in the Type 3 analysis.

%include ’macros.sas’;
ods output GEEModInfo=clustout

Type3=scoreout;
proc genmod descending data=resp2;

class id center sex treatment visit;
model dichot = treatment sex center age di_base

visit / link=logit dist=bin type3 wald;
repeated subject=id*center / type=exch;

run;
%geef;

The statements produce the usual PROC GENMOD output, including the model
information, initial parameter estimates, the GEE information, the GEE parameter
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estimates, and the GEE Type 3 analysis. The created GEE Type 3 table with theF
statistics is printed next. Both Type 3 tables are displayed in Output 15.36.

Output 15.36 Type 3 Analyses

Wald Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

treatment 1 12.95 0.0003
sex 1 0.10 0.7551
center 1 3.52 0.0605
age 1 2.06 0.1516
di_base 1 27.90 <.0001
visit 3 3.63 0.3047

F-Statistics for Type 3 GEE Analysis

Source DF F Value Pr > F

treatment 1 12.95 0.0005
sex 1 0.10 0.7557
center 1 3.52 0.0631
age 1 2.06 0.1545
di_base 1 27.90 <.0001
visit 3 1.19 0.3182

Note that the values of theF statistics are the same as the values for the Wald statistics for
the single degree of freedom tests. However, all of thep-values are more conservative.
You might choose to generate the transformedF statistics when you are dealing with a
small number of clusters, especially when you have marginal significance. Note that the
default score statistics for this Type 3 analysis provide the most conservativep-values for
all of these effects except the age effect, in which case the score statistic results in the most
liberal p-value (0.1345 compared to 0.1516 for the Wald test and 0.1545 for theF
statistic).

15.8 Diagnostic Data

The diagnostic data analyzed in Chapter 10 and Chapter 14 are now analyzed with the
GEE method. Recall that subjects received test and standard procedures at two times, and
researchers recorded response as positive or negative. Besides analyzing these data with
conditional logistic regression and repeated measures WLS, you can also analyze these
data with the GEE method. There are 793 clusters (corresponding to the number of
subjects) and four measurements per subject (corresponding to the two types of tests at
two times).

The following DATA steps input the diagnosis data and create an observation for each
measurement so that the GEE facilities in the GENMOD procedure can be used. In
addition, an indicator variables is created for time. The variable PROCEDURE takes the
values of the standard or test procedures.
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data diagnos;
input std1 $ test1 $ std2 $ test2 $ count;
do i=1 to count;

output;
end;
datalines;

Neg Neg Neg Neg 509
Neg Neg Neg Pos 4
Neg Neg Pos Neg 17
Neg Neg Pos Pos 3
Neg Pos Neg Neg 13
Neg Pos Neg Pos 8
Neg Pos Pos Neg 0
Neg Pos Pos Pos 8
Pos Neg Neg Neg 14
Pos Neg Neg Pos 1
Pos Neg Pos Neg 17
Pos Neg Pos Pos 9
Pos Pos Neg Neg 7
Pos Pos Neg Pos 4
Pos Pos Pos Neg 9
Pos Pos Pos Pos 170
;
data diagnos2;

set diagnos;
drop std1 test1 std2 test2;

subject=_n_;
time=1; procedure=’standard’;
response=std1; output;

time=1; procedure=’test’;
response=test1; output;
time=2; procedure=’standard’;

response=std2; output;
time=2; procedure=’test’;

response=test2; output;
run;

The model consists of time and procedure main effects as well as their interaction. The
exchangeable working correlation structure is specified with the TYPE=EXCH option.
Logistic regression is requested with the LINK=LOGIT and DIST=BIN options in the
MODEL statement. The model is based on the probability of the positive response since
the DESCENDING option is used in the PROC statement.

proc genmod descending;
class subject time procedure;
model response = time procedure time*procedure /

link=logit dist=bin type3;
repeated subject=subject /type=exch;

run;

Output 15.37 displays the model information. Note that ‘Pos’ is the first ordered response
value.
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Output 15.37 Model Information

Model Information

Data Set WORK.DIAGNOS2
Distribution Binomial
Link Function Logit
Dependent Variable response
Observations Used 3172
Probability Modeled Pr( response = Pos )

Output 15.38 defines the parameters.

Output 15.38 Parameter Information

Parameter Information

Parameter Effect time procedure

Prm1 Intercept
Prm2 time 1
Prm3 time 2
Prm4 procedure standard
Prm5 procedure test
Prm6 time*procedure 1 standard
Prm7 time*procedure 1 test
Prm8 time*procedure 2 standard
Prm9 time*procedure 2 test

The model information indicates that 793 clusters are analyzed with a cluster size of four
and no missing data; the exchangeable working correlation structure is requested.

Output 15.39 Model Information

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (793 levels)
Number of Clusters 793
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

The score statistics in the Type 3 analysis indicate that the time� procedure interaction is
not significant, using an� = 0:05 criterion.

Output 15.40 Type 3 Test Results

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

time 1 0.91 0.3390
procedure 1 8.17 0.0043
time*procedure 1 2.49 0.1142
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The reduced model fit consists of the main effects only.

proc genmod descending;
class subject time procedure;
model response = time procedure /

link=logit dist=bin type3;
repeated subject=subject / type=exch corrw;

run;

The Type 3 analysis for the reduced model finds procedure significant with a chi-square
value of 8.11 and 1 df (p = 0:0044).

Output 15.41 Reduced Model

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

time 1 0.85 0.3573
procedure 1 8.11 0.0044

Output 15.42 displays the parameter estimates and their test statistics. The first procedure,
the standard, is associated with a higher odds of getting the positive response as compared
to the test treatment. The odds of the positive response with the standard procedure are
e0:1188 or 1.13 times higher than the odds for the test procedure.

Output 15.42 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -1.0173 0.0792 -1.1726 -0.8621 -12.84 <.0001
time 1 0.0313 0.0340 -0.0353 0.0978 0.92 0.3573
time 2 0.0000 0.0000 0.0000 0.0000 . .
procedure standard 0.1188 0.0415 0.0373 0.2002 2.86 0.0042
procedure test 0.0000 0.0000 0.0000 0.0000 . .

Output 15.43 contains the estimated exchangeable working correlation matrix. Note that
with over 700 cluster and four measurements, you may want to specify the unstructured
correlation matrix for a possible gain in precision of the estimates.
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Output 15.43 Estimated Exchangeable Correlation

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.8041 0.8041 0.8041
Row2 0.8041 1.0000 0.8041 0.8041
Row3 0.8041 0.8041 1.0000 0.8041
Row4 0.8041 0.8041 0.8041 1.0000

When you re-submit the preceding PROC GENMOD statements with the following
REPEATED statement

repeated subject=subject /type=unstr corrw;

you obtain the following parameter estimates. These have minimally smaller standard
errors than those for the exchangeable structure.

Output 15.44 Parameter Estimates for Unstructured

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -1.0208 0.0793 -1.1762 -0.8654 -12.88 <.0001
time 1 0.0344 0.0339 -0.0321 0.1009 1.01 0.3103
time 2 0.0000 0.0000 0.0000 0.0000 . .
procedure standard 0.1240 0.0414 0.0429 0.2052 3.00 0.0027
procedure test 0.0000 0.0000 0.0000 0.0000 . .

When you compare the estimated unstructured correlation matrix with the estimated
exchangeable correlation matrix, you can see that they are fairly similar.

Output 15.45 Estimated Unstructured Correlation

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.7855 0.8369 0.7763
Row2 0.7855 1.0000 0.7691 0.8560
Row3 0.8369 0.7691 1.0000 0.8163
Row4 0.7763 0.8560 0.8163 1.0000

Note that the results of the analyses for these data—a GEE analysis, the WLS repeated
analysis, and the conditional logistic regression analysis—all provided similar conclusions.
The WLS analysis focused on the marginal proportion of the negative response, the GEE
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analysis was a marginal analysis of the logit function, and the conditional logistic analysis
was a subject-specific analysis of the logit function. The conditional analysis, through its
subject-specific focus, found the standard procedure effect to be stronger, with the odds of
positive response for the standard procedure being nearly twice the odds of positive
response for the test procedure. However, note that the conditional analysis produces a
subject-specific odds ratio, whereas the GEE odds ratio is a population-averaged odds
ratio. Your choice of strategy depends on the overall objectives of the study analysis.

15.9 Using GEE for Count Data

Sometimes, categorical data come in the form of count data. For example, you may record
the number of acute pain episodes in a time interval in a clinical trial evaluating treatments.
Other examples might be the number of insurance claims registered during the year or the
number of unscheduled medical visits made during a study of a new protocol for asthma
medication. Often, Poisson regression is the appropriate strategy for analyzing such data.
See Chapter 12,“Poisson Regression,” for further discussion of Poisson regression.

Since Poisson regression is an application of the generalized linear model with the Poisson
distribution and the log link function, you can fit models for clustered or repeated data
with GEE methods. In this example, researchers evaluated a new drug to treat osteoporosis
in women past menopause. In a double-blind study, a group of women were assigned the
treatment and a group of women were assigned the placebo. Both groups of women were
provided with calcium supplements, given nutritional counseling, and encouraged to be
physically active through the availability of exercise programs.

The study ran for three years, and the number of fractures occurring in each of those years
was recorded. The length of each of the years, the corresponding risk periods, is 12
months. However, there were a few drop-outs in the third year, and those risk periods were
set at 6 months. The offset variable is log of months at risk, as contained in the variable
LMONTHS.

The following DATA step inputs the fracture data.

data fracture;
input ID age center $ treatment $ year1 year2 year3 @@;
total=year1+year2+year3;
lmonths=log(12);
datalines;

1 56 A p 0 0 0 2 71 A p 1 0 0 3 60 A p 0 0 1 4 71 A p 0 1 0
5 78 A p 0 0 0 6 67 A p 0 0 0 7 49 A p 0 0 0
9 75 A p 1 0 0 8 68 A p 0 0 0 11 82 A p 0 0 0

13 56 A p 0 0 0 12 71 A p 0 0 0 15 66 A p 1 0 0
17 78 A p 0 0 0 16 63 A p 0 2 0 19 61 A p 0 0 0
21 75 A p 1 0 0 20 68 A p 0 0 0 23 63 A p 1 1 1
25 54 A p 0 0 0 24 65 A p 0 0 0 27 71 A p 0 0 0
29 56 A p 0 0 0 28 64 A p 0 0 0 31 78 A p 0 0 2
33 76 A p 0 0 0 32 61 A p 0 0 0 35 76 A p 0 0 0
37 74 A p 0 0 0 36 56 A p 0 0 0 39 62 A p 0 0 0
41 56 A p 0 0 0 40 72 A p 0 0 1 43 76 A p 0 0 0
45 75 A p 0 0 0 44 77 A p 2 2 0 47 78 A p 0 0 0
49 71 A p 0 0 0 48 68 A p 0 0 0 51 74 A p 0 0 0
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53 69 A p 0 0 0 52 78 A p 1 0 0 55 81 A p 2 0 1
57 68 A p 0 0 0 56 77 A p 0 0 0 59 77 A p 0 0 0
61 75 A p 0 0 0 60 83 A p 0 0 0 63 72 A p 0 0 0 64 88 A p 0 0 0
65 69 A p 0 0 0 66 55 A p 0 0 0 67 76 A p 0 0 0 68 55 A p 0 0 0
69 63 A t 0 0 2 70 52 A t 0 0 0 71 56 A t 0 0 0 72 52 A t 0 0 0
73 74 A t 0 0 0 74 61 A t 0 0 0 75 69 A t 0 0 0 76 61 A t 0 0 0
77 84 A t 0 0 0 78 76 A t 0 1 0 79 59 A t 0 0 1 80 76 A t 0 0 0
81 66 A t 0 0 1 82 78 A t 0 0 1 83 77 A t 0 0 0 84 75 A t 1 0 0
85 75 A t 0 0 0 86 62 A t 0 0 0 87 67 A t 0 0 0 88 62 A t 0 0 0
89 71 A t 0 0 0 90 63 A t 0 0 0 92 68 A t 0 0 0
93 69 A t 0 0 0 94 61 A t 0 0 0 96 61 A t 0 0 0
97 67 A t 0 0 0 98 77 A t 0 0 0 91 70 A t 0 0 1 102 81 A t 0 0 0
95 49 A t 0 0 0 106 55 A t 0 0 0
99 63 A t 2 1 0 100 52 A t 0 0 0 101 48 A t 0 0 0
103 71 A t 0 0 0 104 61 A t 0 0 0 105 74 A t 0 0 0
107 67 A t 0 0 0 108 56 A t 0 0 0 109 54 A t 0 0 0
111 56 A t 0 0 0 112 77 A t 1 0 0 113 65 A t 0 0 0
115 66 A t 0 0 0 116 71 A t 0 0 0 117 71 A t 0 0 0 128 71 A t 0 0 0
119 86 A t 1 0 0 120 81 A t 0 0 0 121 64 A t 0 0 0 132 76 A t 0 0 0
123 71 A t 0 0 0 124 76 A t 0 0 0 125 66 A t 0 0 0 136 76 A t 0 0 0
1 68 B p 0 0 0 2 63 B p 0 0 0 3 66 B p 0 0 0 4 63 B p 0 0 0
5 70 B p 0 1 0 6 62 B p 0 0 0 7 54 B p 1 0 0 8 66 B p 0 0 0
9 71 B p 0 0 0 10 76 B p 0 0 0 11 72 B p 0 0 1 12 65 B p 0 1 0
13 55 B p 0 1 0 14 59 B p 0 0 2 15 61 B p 1 0 0 16 56 B p 0 1 0
17 54 B p 0 0 0 18 68 B p 0 0 0 19 68 B p 0 0 0 20 81 B p 0 0 0
21 81 B p 1 0 0 22 61 B p 2 0 1 23 72 B p 1 0 0 24 67 B p 0 0 0
25 56 B p 0 0 0 26 66 B p 0 0 0 27 71 B p 0 1 0 28 75 B p 0 1 0
29 76 B p 0 0 0 30 73 B p 2 0 0 31 56 B p 0 0 0 32 89 B p 0 0 0
33 56 B p 0 0 0 34 78 B p 0 0 0 35 55 B p 0 0 0 36 73 B p 0 0 1
37 71 B p 0 0 0 38 56 B p 0 0 0 39 69 B p 0 0 0 40 77 B p 0 0 0
41 89 B p 0 0 0 42 63 B p 0 0 0 43 67 B p 0 0 0 44 73 B p 0 0 0
45 60 B p 0 0 0 46 67 B p 0 0 0 47 56 B p 0 0 0 48 78 B p 0 0 0
49 73 B t 1 0 0 50 76 B t 0 0 0 51 61 B t 0 0 0 52 81 B t 0 0 0
53 55 B t 0 0 0 54 82 B t 0 0 0 55 78 B t 0 0 0 56 60 B t 0 0 0
57 56 B t 0 0 0 58 83 B t 0 0 0 59 55 B t 0 0 0 60 60 B t 0 0 0
61 80 B t 0 0 0 62 78 B t 0 0 0 63 67 B t 0 0 0 64 67 B t 0 0 0
65 56 B t 0 0 0 66 72 B t 0 0 0 67 71 B t 0 0 0 68 83 B t 0 0 0
69 66 B t 0 0 0 70 71 B t 0 0 1 71 78 B t 1 0 2 72 61 B t 0 0 0
73 56 B t 0 0 0 74 61 B t 0 0 0 75 55 B t 0 0 0 76 69 B t 1 1 0
77 71 B t 0 0 0 78 76 B t 0 0 0 79 56 B t 0 0 0 80 75 B t 0 0 0
81 89 B t 0 0 0 82 77 B t 0 0 0 83 77 B t 1 0 0 84 73 B t 0 0 0
85 60 B t 0 0 0 86 61 B t 0 0 0 87 79 B t 0 0 0 88 71 B t 0 0 0
89 61 B t 0 0 0 90 79 B t 0 0 0 91 87 B t 1 0 0 92 55 B t 0 0 0
93 55 B t 0 0 0 94 79 B t 0 0 0 95 66 B t 0 0 0 96 49 B t 0 0 0
97 56 B t 0 0 0 98 64 B t 0 0 0 99 88 B t 0 0 0 100 62 B t 1 0 0
101 80 B t 0 0 1 102 65 B t 0 0 0 103 57 B t 0 0 1 104 85 B t 0 0 0
;

The next DATA step creates one observation per year. It also sets the variable LMONTHS
to a value of log(6) for the known drop-outs in the third year. Counts were recorded for
that year for each subject, for the time they were still in the study.
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data fracture2;
set fracture;
drop year1-year3;
year=1; fractures=year1; output;
year=2; fractures=year2; output;
do; if center = A then do;

if (ID=85 or ID=66 or ID=124 or ID=51) then lmonths=log(6); end;
if center = B then do;
if (ID=29 or ID=45 or ID=55) then lmonths=log(6); end;

end;
year=3; fractures=year3; output;

run;

The specification for the Poisson GEE analysis is straightforward. You specify the link
function, LINK=LOG, and also specify the distribution, DIST=POISSON. The response
variable is FRACTURES and the variables in the model include CENTER, TREATMENT,
AGE, YEAR, the TREATMENT*CENTER interaction, and the TREATMENT*YEAR
interaction. In addition, in Poisson regression you usually specify an offset variable. In
this situation, this is the variable LMONTHS which is the log length of time at risk in each
year. The offset is specified with the OFFSET=LMONTHS option in the MODEL
statement. Since there is not a unique subject identifier, you use the crossing of ID and
CENTER with the SUBJECT= option to create unique values that determine the
experimental units.

proc genmod;
class id treatment center year;
model fractures = center treatment age year treatment*center

treatment*year/
dist=poisson type3 offset=lmonths;

repeated subject=id*center / type=exch corrw;
run;

Output 15.46 displays the general information about the model being fit: the Poisson
distribution is requested, the offset variable is LMONTHS, and the response variable is
FRACTURES.

Output 15.46 Model Information

Model Information

Data Set WORK.FRACTURE2
Distribution Poisson
Link Function Log
Dependent Variable fractures
Offset Variable lmonths
Observations Used 642

In Output 15.47, you can see that there are 214 clusters in the analysis, with all clusters
having responses for each of the three years (even though some of the responses for the
third year were for a reduced risk period).
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Output 15.47 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable
Subject Effect ID*center (214 levels)
Number of Clusters 214
Correlation Matrix Dimension 3
Maximum Cluster Size 3
Minimum Cluster Size 3

The Type 3 analysis displayed in Output 15.48 finds the two interaction terms to be
nonsignificant. The treatment� center interaction has a score test statistic of 0.04 and a
p-value of 0.8364 with 1 df. The treatment� year interaction has a score test statistic
value of 3.15 with ap-value of 0.2074 and 2 df.

Output 15.48 Type 3 Tests for Model with Interactions

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 0.02 0.8750
treatment 1 4.69 0.0303
age 1 2.44 0.1180
year 2 7.64 0.0220
treatment*center 1 0.04 0.8364
treatment*year 2 3.15 0.2074

The same analysis was repeated with just the main effects. Note that the nesting of ID and
CENTER in the SUBJECT= option is just another way to specify a unique set of values
with which to identify the individual experimental units. The CORRW option requests that
the working correlation matrix be printed.

proc genmod;
class id treatment center year;
model fractures = center treatment age year /

dist=poisson type3 offset=lmonths;
repeated subject=id(center) / type=exch corrw;

run;

Output 15.49 displays the resulting Type 3 analysis.

Output 15.49 Type 3 Tests for Reduced Model

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 0.02 0.8930
treatment 1 3.41 0.0647
age 1 2.22 0.1359
year 2 4.71 0.0948
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Treatment is nearly significant here, with ap-value of 0.0647. Year also has some modest
influence, with ap-value of 0.0948.

Output 15.50 contains the parameter estimates.

Output 15.50 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -6.6379 1.1201 -8.8333 -4.4424 -5.93 <.0001
center A 0.0400 0.2968 -0.5416 0.6216 0.13 0.8928
center B 0.0000 0.0000 0.0000 0.0000 . .
treatment p 0.5715 0.3042 -0.0248 1.1678 1.88 0.0603
treatment t 0.0000 0.0000 0.0000 0.0000 . .
age 0.0223 0.0147 -0.0065 0.0512 1.52 0.1294
year 1 0.2763 0.2940 -0.2999 0.8524 0.94 0.3473
year 2 -0.3830 0.3747 -1.1173 0.3513 -1.02 0.3067
year 3 0.0000 0.0000 0.0000 0.0000 . .

The placebo increases the log fracture rate by 0.5715; the test treatment lowers the log
fracture rate by�0:5715:
Output 15.51 contains the estimate of the working correlation matrix. It indicates small,
but not ignorable, correlations among the respective years.

Output 15.51 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.1049 0.1049
Row2 0.1049 1.0000 0.1049
Row3 0.1049 0.1049 1.0000

15.10 Fitting the Proportional Odds Model

Recall that the respiratory data analyzed in Section 15.6 contained an ordinal response that
ranged from 0 for poor to 4 for excellent. (The responses were dichotomized in the
previous analyses.) The proportional odds model provides a strategy that takes into
account the ordinality of the data. See Chapter 9, “Logistic Regression II: Polytomous
Response,” for a discussion of the proportional odds model in the univariate case, and refer
to Lipsitz, Kim, and Zhao (1994) and Miller, Davis, and Landis (1993) for discussions on
fitting the proportional odds model with GEE.

The following statements request a proportional odds model to be fit with the GEE
method. The SAS data set RESP is the same as created in Section 15.6.
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proc genmod data=resp2 descending;
class id center sex treatment visit;
model outcome = treatment sex center age baseline

visit visit*treatment /
link=clogit dist=mult type3;

repeated subject=id*center / type=ind;
run;

The variable OUTCOME has five levels, ranging from 0 to 4, for poor to excellent. Since
interest lies in assessing how much better the subjects receiving the active treatment were,
you form the cumulative logits that focus on the comparison of better to poorer outcomes.
By default, the GENMOD procedure forms the cumulative logits based on the ratio of the
probability of the lower ordered response values to the probability of the higher ordered
response values. In this case, this would be poorer outcomes compared to better outcomes.
To reverse this ordering, you simply specify the DESCENDING option in the PROC
statement.

You specify the LINK=CLOGIT option to request the cumulative logit link and the
DIST=MULT option to request the multinomial distribution. Together, these options
specify the proportional odds model. The preliminary model includes TREATMENT,
SEX, CENTER, AGE, BASELINE, VISIT, and the VISIT*TREATMENT interaction as
the explanatory variables. Note that the BASELINE variable also lies on a 0–4 scale.

Since a unique patient identification requires the ID value and the CENTER value, you
specify the SUBJECT=ID*CENTER option in the REPEATED statement. The
TYPE=IND option specifies the independent working correlation matrix, which is
currently the only correlation structure available with the ordinal response model.
Output 15.52 displays the class level and response profile information. Since the ordered
values are listed in descending order, the cumulative logits are modeling the better
outcomes compared to the poorer outcomes.
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Output 15.52 Class Level and Response Information

Class Level Information

Class Levels Values

id 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56

center 2 1 2
sex 2 F M
treatment 2 A P
visit 4 1 2 3 4

Response Profile

Ordered Ordered
Level Value Count

1 4 152
2 3 96
3 2 116
4 1 40
5 0 40

The parameter information is displayed in Output 15.53.

Output 15.53 Parameter Information

Parameter Information

Parameter Effect center sex treatment visit

Prm1 treatment A
Prm2 treatment P
Prm3 sex F
Prm4 sex M
Prm5 center 1
Prm6 center 2
Prm7 age
Prm8 baseline
Prm9 visit 1
Prm10 visit 2
Prm11 visit 3
Prm12 visit 4
Prm13 treatment*visit A 1
Prm14 treatment*visit A 2
Prm15 treatment*visit A 3
Prm16 treatment*visit A 4
Prm17 treatment*visit P 1
Prm18 treatment*visit P 2
Prm19 treatment*visit P 3
Prm20 treatment*visit P 4

From the GEE Model Information table, you can see that there are 111 clusters, with four
visit outcomes in each of the clusters.
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Output 15.54 Model Information

GEE Model Information

Correlation Structure Independent
Subject Effect id*center (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

The Type 3 analysis indicates that the treatment� visit interaction is significant, at least at
the� = 0:05 level. Gender doesn’t appear to be an important factor, and neither does age.
Center also appears to be non-influential, but as a pre-stated design covariate, it stays in
the model regardless.

Baseline and treatment (for visit 4) have strongly significant effects.

Output 15.55 Type 3 Test Results

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

treatment 1 15.33 <.0001
sex 1 0.53 0.4664
center 1 1.33 0.2482
age 1 2.68 0.1016
baseline 1 21.60 <.0001
visit 3 0.66 0.8837
treatment*visit 3 10.47 0.0150

The next PROC GENMOD invocation simplifies the model by excluding the AGE and
SEX terms. Since CENTER is part of the study design, it remains in the model. The
VISIT*TREATMENT term also stays.

proc genmod data=resp2 descending;
class id center sex treatment visit;
model outcome = treatment center baseline

visit visit*treatment /
link=clogit dist=mult type3;

repeated subject=id*center / type=ind;
run;

The treatment� visit interaction remains important in this simplified model, as indicated
in Output 15.56. Note that the analysis of the dichotomous outcome did not find the
treatment� visit interaction to be noteworthy.
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Output 15.56 Reduced Model

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

treatment 1 16.40 <.0001
center 1 1.25 0.2636
baseline 1 21.27 <.0001
visit 3 0.54 0.9106
treatment*visit 3 10.50 0.0148

Baseline and treatment (for visit 4) remain extremely significant in this reduced model,
with p-values less than 0.001.

Output 15.57 contains the parameter estimates.

Output 15.57 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept1 -3.3645 0.5766 -4.4945 -2.2345 -5.84 <.0001
Intercept2 -2.2049 0.5412 -3.2657 -1.1441 -4.07 <.0001
Intercept3 -0.6060 0.5193 -1.6239 0.4119 -1.17 0.2433
Intercept4 0.2929 0.5643 -0.8131 1.3988 0.52 0.6037
treatment A 0.9995 0.3625 0.2891 1.7100 2.76 0.0058
treatment P 0.0000 0.0000 0.0000 0.0000 . .
center 1 -0.3491 0.3023 -0.9415 0.2434 -1.15 0.2482
center 2 0.0000 0.0000 0.0000 0.0000 . .
baseline 0.8993 0.1670 0.5719 1.2266 5.38 <.0001
visit 1 0.2581 0.2501 -0.2321 0.7484 1.03 0.3021
visit 2 -0.2505 0.2303 -0.7019 0.2010 -1.09 0.2768
visit 3 -0.0360 0.1615 -0.3525 0.2806 -0.22 0.8238
visit 4 0.0000 0.0000 0.0000 0.0000 . .
treatment*visit A 1 -0.3049 0.3927 -1.0746 0.4648 -0.78 0.4375
treatment*visit A 2 0.7247 0.3547 0.0296 1.4198 2.04 0.0410
treatment*visit A 3 0.2990 0.3321 -0.3519 0.9500 0.90 0.3679
treatment*visit A 4 0.0000 0.0000 0.0000 0.0000 . .
treatment*visit P 1 0.0000 0.0000 0.0000 0.0000 . .
treatment*visit P 2 0.0000 0.0000 0.0000 0.0000 . .
treatment*visit P 3 0.0000 0.0000 0.0000 0.0000 . .
treatment*visit P 4 0.0000 0.0000 0.0000 0.0000 . .

15.11 GEE Analyses for Data with Missing Values

One of the main advantages of the GEE method is that it addresses the possibility of
missing values. The number of responses per subject, or cluster, can vary; recall that you
can haveti responses per subject, whereti depends on theith subject. While the data sets
analyzed in previous sections were complete, or balanced, you are faced with missing data
in many situations, especially for observational data that are longitudinal. Loss to
follow-up is a common problem for planned studies that involve repeated visits. The GEE
method works nicely for many of these data situations. Note however, that the GEE
method does assume that the missing values are missing completely at random, or MCAR.



15.11 GEE Analyses for Data with Missing Values 519

Crossover Study with Missing Data
Consider a two-period crossover study on treatments for a skin disorder where patients
were given sequences of the standard drug A, a new drug B, and a placebo. Investigators
introduced a skin irritant and then applied topical treatments. Subjects were stratified by
gender. 300 patients participated at the first session, but 50 patients failed to attend the
second session one week later. Investigators determined that none of the losses to
follow-up was actually due to the failure of the treatments, but rather due to the usual
attrition plus a breakdown in the communication to emphasize the importance of the return
visit. For this reason, although much more missing data occurred than was expected, the
analysis proceeded.

You can analyze these data in a similar manner to the way in which the crossover data
were analyzed in Section 15.5. The design is exactly the same; the only difference is that
the 50 subjects with only one measurement have a cluster size of 1. Note the number of
missing values for the second period. These data are input into SAS data set SKINCROSS.

data skincross;
input subject gender $ sequence $ Time1 $ Time2 $ @@;
datalines;

1 m AB Y Y 101 m PA Y Y 201 f AP Y Y
2 m AB Y . 102 m PA Y Y 202 f AP Y Y
3 m AB Y Y 103 m PA Y Y 203 f AP Y Y
4 m AB Y . 104 m PA Y Y 204 f AP Y Y
5 m AB Y Y 105 m PA Y Y 205 f AP Y Y
6 m AB Y . 106 m PA Y N 206 f AP Y Y
7 m AB Y . 107 m PA Y . 207 f AP Y Y
8 m AB Y Y 108 m PA Y N 208 f AP Y Y
9 m AB Y Y 109 m PA N . 209 f AP Y Y

10 m AB Y Y 110 m PA N Y 210 f AP Y Y
11 m AB Y . 111 m PA N Y 211 f AP Y Y
12 m AB Y Y 112 m PA N Y 212 f AP Y Y
13 m AB Y N 113 m PA N . 213 f AP Y Y
14 m AB Y N 114 m PA N . 214 f AP Y .
15 m AB Y N 115 m PA N Y 215 f AP Y .
16 m AB Y N 116 m PA N Y 216 f AP Y .
17 m AB Y N 117 m PA N Y 217 f AP Y Y
18 m AB Y N 118 m PA N Y 218 f AP Y Y
19 m AB Y . 119 m PA N Y 219 f AP Y Y
20 m AB Y N 120 m PA N Y 220 f AP Y Y
21 m AB Y N 121 m PA N Y 221 f AP Y .
22 m AB Y N 122 m PA N Y 222 f AP Y Y
23 m AB Y . 123 m PA N Y 223 f AP Y Y
24 m AB Y N 124 m PA N Y 224 f AP Y Y
25 m AB N Y 125 m PA N Y 225 f AP Y Y
26 m AB N . 126 m PA N Y 226 f AP Y N
27 m AB N . 127 m PA N Y 227 f AP Y N
28 m AB N . 128 m PA N Y 228 f AP Y N
29 m AB N Y 129 m PA N Y 229 f AP Y .
30 m AB N Y 130 m PA N Y 230 f AP Y N
31 m AB N . 131 m PA N . 231 f AP Y N
32 m AB N N 132 m PA N N 232 f AP N Y
33 m AB N N 133 m PA N N 233 f AP N Y
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34 m AB N N 134 m PA N N 234 f AP N Y
35 m AB N N 135 m PA N N 235 f AP N Y
36 m AB N N 136 m PA N . 236 f AP N Y
37 m AB N N 137 m PA N N 237 f AP N Y
38 m AB N N 138 m PA N N 238 f AP N N
39 m AB N N 139 m PA N . 239 f AP N N
40 m AB N N 140 m PA N N 240 f AP N N
41 m AB N . 141 m PA N N 241 f AP N N
42 m AB N N 142 m PA N N 242 f AP N N
43 m AB N N 143 m PA N N 243 f AP N N
44 m AB N N 144 m PA N N 244 f AP N N
45 m AB N . 145 m PA N N 245 f AP N N
46 m AB N N 146 m PA N N 246 f AP N N
47 m AB N N 147 m PA N N 247 f AP N N
48 m AB N N 148 m PA N N 248 f AP N N
49 m AB N N 149 m PA N N 249 f AP N N
50 m AB N N 150 m PA N . 250 f AP N N
51 m BP Y Y 151 f BA Y Y 251 f PB Y .
52 m BP Y Y 152 f BA Y Y 252 f PB Y Y
53 m BP Y Y 153 f BA Y Y 253 f PB Y Y
54 m BP Y Y 154 f BA Y . 254 f PB Y Y
55 m BP Y Y 155 f BA Y Y 255 f PB Y Y
56 m BP Y Y 156 f BA Y Y 256 f PB Y .
57 m BP Y Y 157 f BA Y Y 257 f PB Y Y
58 m BP Y Y 158 f BA Y Y 258 f PB Y .
59 m BP Y N 159 f BA Y Y 259 f PB Y Y
60 m BP Y . 160 f BA Y Y 260 f PB Y Y
61 m BP Y N 161 f BA Y . 261 f PB Y Y
62 m BP Y . 162 f BA Y . 262 f PB Y .
63 m BP Y N 163 f BA Y Y 263 f PB Y .
64 m BP N Y 164 f BA Y Y 264 f PB Y N
65 m BP N Y 165 f BA Y Y 265 f PB Y N
66 m BP N Y 166 f BA Y Y 266 f PB Y N
67 m BP N Y 167 f BA Y Y 267 f PB Y N
68 m BP N Y 168 f BA Y Y 268 f PB Y N
69 m BP N Y 169 f BA Y Y 269 f PB N Y
70 m BP N . 170 f BA Y . 270 f PB N Y
71 m BP N N 171 f BA Y N 271 f PB N Y
72 m BP N N 172 f BA Y N 272 f PB N .
73 m BP N N 173 f BA N Y 273 f PB N .
74 m BP N N 174 f BA N Y 274 f PB N Y
75 m BP N N 175 f BA N . 275 f PB N Y
76 m BP N N 176 f BA N Y 276 f PB N Y
77 m BP N N 177 f BA N Y 277 f PB N .
78 m BP N N 178 f BA N Y 278 f PB N Y
79 m BP N N 179 f BA N . 279 f PB N Y
80 m BP N N 180 f BA N . 280 f PB N Y
81 m BP N . 181 f BA N Y 281 f PB N Y
82 m BP N N 182 f BA N Y 282 f PB N Y
83 m BP N . 183 f BA N Y 283 f PB N Y
84 m BP N N 184 f BA N Y 284 f PB N Y
85 m BP N . 185 f BA N Y 285 f PB N Y
86 m BP N N 186 f BA N Y 286 f PB N Y
87 m BP N N 187 f BA N Y 287 f PB N Y
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88 m BP N N 188 f BA N Y 288 f PB N Y
89 m BP N N 189 f BA N Y 289 f PB N Y
90 m BP N N 190 f BA N Y 290 f PB N N
91 m BP N N 191 f BA N Y 291 f PB N N
92 m BP N . 192 f BA N Y 292 f PB N .
93 m BP N N 193 f BA N Y 293 f PB N N
94 m BP N N 194 f BA N Y 294 f PB N N
95 m BP N N 195 f BA N Y 295 f PB N N
96 m BP N N 196 f BA N Y 296 f PB N N
97 m BP N N 197 f BA N Y 297 f PB N N
98 m BP N N 198 f BA N N 298 f PB N N
99 m BP N N 199 f BA N N 299 f PB N N

100 m BP N . 200 f BA N N 300 f PB N N
;

The next step manipulates the data the same as in Section 15.5. The DATA step creates
observations for each period and creates indicator variables for the carryover effects.

data skincross2;
set skincross;
period=1;
treatment=substr(sequence, 1, 1);
carryA=0;
carryB=0;
response=Time1;
output;
period=2;
Treatment=substr(sequence, 2, 1);
carrya=(substr(sequence, 1, 1)=’A’);
carryb=(substr(sequence, 1, 1)=’B’);
response=Time2;
output;

run;

The following PROC GENMOD invocation requests a GEE analysis for a model including
effects for treatment, period, gender, carryover, and the period� gender interaction. The
DESCENDING option specifies that the probability of a ‘yes’ response is to be modeled.
Logistic regression is used along with the exchangeable working correlation structure.

proc genmod data=skincross2 descending;
class subject treatment period gender;
model response = treatment period carrya carryb

gender gender*period /type3
dist=bin link=logit;

repeated subject=subject / type=exch;
run;

The “GEE Model Information” table shows that there are 300 clusters total and 50 clusters
with missing data; 250 clusters have two measurements and 50 clusters have only one
measurement corresponding to the first period.
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Output 15.58 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (300 levels)
Number of Clusters 300
Clusters With Missing Values 50
Correlation Matrix Dimension 2
Maximum Cluster Size 2
Minimum Cluster Size 1

The Type 3 analysis displayed in Output 15.58 suggests that the carryover effects are not
influential.

Output 15.59 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

Treatment 2 29.38 <.0001
period 1 7.11 0.0077
carryA 1 0.02 0.8870
carryB 1 0.68 0.4088
gender 1 29.94 <.0001
period*gender 1 4.21 0.0401

The next model fit includes the treatment, period, and gender main effects as well as the
gender� period interaction. The ESTIMATE specifies that odds ratio estimates be
computed to compare the effect of drug A to the placebo effect, the effect of drug B to the
placebo effect, and the effect of drug A to the effect of drug B.

proc genmod data=skincross2 descending;
class subject treatment period gender;
model response = treatment period gender*period

gender /type3
dist=bin link=logit;

repeated subject=subject / type=exch;
estimate ’OR:A-B’ treatment 1 -1 0 /exp;
estimate ’OR:A-P’ treatment 1 0 -1 / exp;
estimate ’OR:B-P’ treatment 0 1 -1 / exp;

run;

The main effects and gender� period interaction remain important, as indicated in
Output 15.60.
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Output 15.60 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

Treatment 2 40.02 <.0001
period 1 20.97 <.0001
period*gender 1 3.93 0.0474
gender 1 28.89 <.0001

The parameter estimates are displayed in Output 15.61.

Output 15.61 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.9287 0.2249 -1.3696 -0.4879 -4.13 <.0001
Treatment A 1.2622 0.2079 0.8548 1.6696 6.07 <.0001
Treatment B 0.1722 0.2141 -0.2473 0.5918 0.80 0.4210
Treatment P 0.0000 0.0000 0.0000 0.0000 . .
period 1 -0.4520 0.2257 -0.8944 -0.0095 -2.00 0.0453
period 2 0.0000 0.0000 0.0000 0.0000 . .
period*gender 1 f 0.7938 0.2531 0.2978 1.2898 3.14 0.0017
period*gender 1 m 0.0000 0.0000 0.0000 0.0000 . .
period*gender 2 f 1.4443 0.2816 0.8925 1.9961 5.13 <.0001
period*gender 2 m 0.0000 0.0000 0.0000 0.0000 . .
gender f 0.0000 0.0000 0.0000 0.0000 . .
gender m 0.0000 0.0000 0.0000 0.0000 . .

The odds ratio estimates displayed in Output 15.62 show that those subjects receiving drug
A had almost 3.5 higher odds of improvement as those on the placebo. Those subjects
receiving drug A have almost three times higher odds of improvement as those subjects
receiving drug B. The odds ratio estimate comparing the odds of drug B and placebo is
1.1880 and its confidence limits contain the value 1. Subjects on the new drug B did no
better than the placebo.

Output 15.62 Odds Ratio Estimates

Contrast Estimate Results

Standard Chi-
Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

OR:A-B 1.0899 0.2193 0.05 0.6601 1.5198 24.70 <.0001
Exp(OR:A-B) 2.9741 0.6523 0.05 1.9350 4.5713
OR:A-P 1.2622 0.2079 0.05 0.8548 1.6696 36.87 <.0001
Exp(OR:A-P) 3.5331 0.7344 0.05 2.3508 5.3099
OR:B-P 0.1722 0.2141 0.05 -0.2473 0.5918 0.65 0.4210
Exp(OR:B-P) 1.1880 0.2543 0.05 0.7809 1.8072
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Observational Study with Missing Data
Missing data in a longitudinal study is almost a certainty, particularly if the study has an
observational nature. Environmental researchers in the 1970s studied various aspects of
the air pollution impacting various cities under investigation, including the potential effect
of air pollution on children. In one part of the overall study, researchers collected
information on colds that children experienced during each of three years. The following
DATA step includes information on over 5000 children and whether they experienced
substantial colds during three years in the middle 1970s. More than 3000 children had
missing data for at least one of the three years (Stokes 1986).

While there is an excessive amount of missing data, its extent is not unusual. You can still
apply the GEE method with this much missing data, but you would want to be cautious
about your findings. Often, you would complement your analysis with a complete data
analysis for those children with all three years of data. Researchers felt that the missing
data occurred at random so the MCAR assumption required for GEE analysis was
considered to be realistic.

The following DATA step creates SAS data set COLDS. These data represent two areas, 1
and 2; gender of the subject, f for female and m for male; and whether the response was
yes, no, or missing, y for yes, n for no, and a ‘.’ for missing. These characteristics are
assigned to the variables AREA, GENDER, and YEAR1 through YEAR3. The variable
COUNT contains the number of children who had the various possible profiles based on
the possible combinations of y, n, and ‘.’ for the three years. The variable PATTERN is
created to contain type of missing data pattern for each set of responses; these can be
single year missing, two combinations of two years missing, or no missing data. None of
the subjects had all missing data.

data colds;
input area gender $ year1 $ year2 $ year3 $ count @@;

if year1 =’ ’ and year2 =’ ’ and year3=’ ’ then pattern =’mmm’;
else if year1=’ ’ and year2=’ ’ then pattern=’mmh’;

else if year1=’ ’ and year3=’ ’ then pattern= ’mhm’;
else if year2=’ ’ and year3 =’ ’ then pattern =’hmm’;

else if year1=’ ’ then pattern= ’mhh’;
else if year2=’ ’ then pattern=’hmh’;

else if year3=’ ’ then pattern=’hhm’;
else pattern= ’hhh’;

do i=1 to count; output; end;
datalines;

1 m y y y 80 1 m y y n 46 1 m y n y 38 1 m y n n 61
1 m n y y 57 1 m n y n 60 1 m n n y 59 1 m n n n 121
1 m y y . 20 1 m y n . 14 1 m n y . 14 1 m n n . 39
1 m y . y 16 1 m y . n 5 1 m n . y 15 1 m n . n 13
1 m . y y 47 1 m . y n 32 1 m . n y 32 1 m . n n 50
1 m y . . 141 1 m n . . 191 1 m . y . 87 1 m . n . 83
1 m . . y 156 1 m . . n 173
1 f y y y 109 1 f y y n 48 1 f y n y 39 1 f y n n 47
1 f n y y 45 1 f n y n 43 1 f n n y 47 1 f n n n 79
1 f y y . 34 1 f y n . 10 1 f n y . 19 1 f n n . 28
1 f y . y 13 1 f y . n 8 1 f n . y 14 1 f n . n 9
1 f . y y 60 1 f . y n 15 1 f . n y 30 1 f . n n 39
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1 f y . . 170 1 f n . . 155 1 f . y . 91 1 f . n . 84
1 f . . y 173 1 f . . n 152
2 m y y y 59 2 m y y n 31 2 m y n y 22 2 m y n n 30
2 m n y y 35 2 m n y n 15 2 m n n y 41 2 m n n n 55
2 m y y . 44 2 m y n . 23 2 m n y . 28 2 m n n . 41
2 m y . y 7 2 m y . n 4 2 m n . y 10 2 m n . n 16
2 m . y y 26 2 m . y n 26 2 m . n y 23 2 m . n n 22
2 m y . . 129 2 m n . . 140 2 m . y . 65 2 m . n . 88
2 m . . y 129 2 m . . n 167
2 f y y y 94 2 f y y n 31 2 f y n y 11 2 f y n n 32
2 f n y y 28 2 f n y n 21 2 f n n y 30 2 f n n n 45
2 f y y . 34 2 f y n . 17 2 f n y . 10 2 f n n . 28
2 f y . y 9 2 f y . n 4 2 f n . y 6 2 f n . n 6
2 f . y y 23 2 f . y n 11 2 f . n y 11 2 f . n n 7
2 f y . . 133 2 f n . . 91 2 f . y . 85 2 f . n . 51
2 f . . y 116 2 f . . n 113
;

The next DATA step assigns a subject number to each subject and creates an observation
for each of the three response periods to produce SAS data set COLDS2.

data colds2; set colds;
drop year1 year2 year3;
subject=_n_;
resp= year1; year=1; output;
resp=year2; year=2; output;
resp=year3; year=3; output;

run;

The GEE analysis begins with the main effects and all pairwise interactions. The
exchangeable working correlation structure is reasonable for three time points. The
variable PATTERN is included to assess the relationship of the missing data pattern to the
response variable and to see if it interacts with explanatory variables GENDER and
AREA. If such effects are nonsignificant, this can be interpreted as evidence supporting
the assumption of MCAR, or the missing completely at random assumption. The visit�
pattern interaction is not included although it could be; the relationship between these two
variables makes interpretation of any interaction less than straightforward.

proc genmod;
class subject area gender year pattern;
model resp = pattern area gender pattern*area pattern*gender

year area*gender area*year gender*year/
dist=bin link=logit type3;

repeated subject=subject / type=exch;
run;

The “GEE Model Information” table shows that 5534 children are included in the analysis,
and 3975 children had missing responses for at least one year.
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Output 15.63 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable
Subject Effect subject (5534 levels)
Number of Clusters 5534
Clusters With Missing Values 3975
Correlation Matrix Dimension 3
Maximum Cluster Size 3
Minimum Cluster Size 1

Output 15.64 displays the Type 3 analysis. All of the interaction terms are nonsignificant.
Also, neither the missing pattern effect or its interactions with AREA or GENDER are
significant. This can be interpreted as evidence for the reasonableness of the MCAR
assumption.

Output 15.64 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

pattern 6 9.91 0.1285
area 1 1.56 0.2111
gender 1 33.40 <.0001
area*pattern 6 9.62 0.1416
gender*pattern 6 0.92 0.9885
year 2 2.70 0.2597
area*gender 1 0.39 0.5345
area*year 2 0.34 0.8451
gender*year 2 1.21 0.5471

The next PROC GENMOD invocation includes only the main effects. Note that, to
proceed with more certainty, you could first perform a joint test of the pattern effect plus
its interactions, and then perform a joint test of the pattern-related effects and the other
interactions.

proc genmod;
class subject area gender year ;

model resp = area gender year/
dist=bin link=logit type3;

repeated subject=subject / type=exch;
run;

Output 15.65 contains the Type 3 analysis for the main effects model. Both the area and
gender effects are very significant; year does not have an effect on whether colds were
reported.
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Output 15.65 Type 3 Analysis Results for Final Model

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

area 1 7.42 0.0064
gender 1 53.75 <.0001
year 2 3.95 0.1386

Finally, Output 15.66 contains the parameter estimates.

Output 15.66 Parameter Estimates for Final Model

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.0364 0.0483 -0.0582 0.1311 0.75 0.4507
area 1 0.1256 0.0461 0.0353 0.2159 2.73 0.0064
area 2 0.0000 0.0000 0.0000 0.0000 . .
gender f -0.3330 0.0454 -0.4220 -0.2440 -7.33 <.0001
gender m 0.0000 0.0000 0.0000 0.0000 . .
year 1 0.0743 0.0473 -0.0185 0.1670 1.57 0.1166
year 2 -0.0106 0.0459 -0.1006 0.0794 -0.23 0.8179
year 3 0.0000 0.0000 0.0000 0.0000 . .

15.12 Alternating Logistic Regression

There are some limitations of the correlation approach to fit models to binary data. The
data influences the range of the correlation since the estimates ofrjk are constrained by
the means,�jk = Prfyij = 1g. Consider:

Corr(Yij ; Yik) = rjk =
Pr(Yij = 1; Yik = 1)� �ij�ikp

�ij(1� �ij)�ik(1� �ik)

The odds ratio appears to be a more natural choice for modeling the association in binary
data as they are not constrained by the means.

OR(Yij; Yik) =
Pr(Yij = 1; Yik = 1)Pr(Yij = 0; Yik = 0)

Pr(Yij = 1; Yik = 0)Pr(Yij = 0; Yik = 1)

In GEE, the correlations are treated as nuisance parameters, and the use of correlations
versus odds ratios usually has little influence on inference on�, the regression parameters
for the marginal mean model.

In some applications, you may want your analysis to focus both on regressing the outcome
on the explanatory variables and describing the association between the outcomes. The
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generalized estimating equations discussed in this chapter are known as the first-order
estimating equations, and they are efficient for the estimation of� but not necessarily
efficient in the estimation of the association parameters, which are the correlations
estimated in PROC GENMOD with the method of moments. Prentice (1988) describes
second-order estimating equations and the simultaneous modeling of the responses and all
pairwise products as a method of producing more efficient estimation of the association
parameters. However, as the number of clusters grows large, this method can become
computationally infeasible.

Carey, Zeger, and Diggle (1993) describe the alternating logistic regression (ALR)
algorithm, which provides a means of both fitting the first-order GEE model and
simultaneously modeling the association in a manner that produces relatively efficient
estimators. With this method, you obtain�̂ and also obtain estimates of the association
parameters that relate to log odds ratios, as well as their standard errors and confidence
intervals.

The ALR algorithm models the log of the odds ratio as

 ijk = z0�

where ijk = log(OR(yij; yik)), � is aq � 1 vector of regression parameters, andzijk is
a fixed vector of coefficients. The method switches between the first-order GEE estimation
of the� and a modified (with offset) logistic regression estimate of the� until
convergence, updating the GEE with product-moments from the newly estimated OR, and
then updating the offsets in the association model with the new�̂s. Thus, you are applying
alternating logistic regressions, one for� and one for�.

There are numerous choices for modeling the log odds ratio: you can choose to specify the
log odds ratio as a constant across clusters; for pairs(j; k), you can specify that the log
odds ratio is a constant within different levels of a blocking factor such as clinics; and you
can specify fully parameterized clusters in which each cluster is parameterized the same
way. There are numerous other possibilities for model structures for the log odds ratio. For
more information on the motivation and the details of the ALR approach, refer to Carey,
Zeger, and Diggle (1993), Lipsitz, Laird, and Harrington (1991), and Firth (1992).

Beginning with Version 8, the GENMOD procedure produces the ALR algorithm for
binary data. The following log odds ratio structures are available:

� exchangeable (constant over all clusters)

� covariate (block effect)

� fully parameterized within cluster (parameter for each pair)

� nested (one parameter for pairs within same subcluster, one for between subclusters)

� user-specifiedZ-matrix

The ALR algorithm provides a reasonable approach when the focus of your analysis is
estimating association as much as modeling the response; this method provides estimates
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of association with more efficiency than the usual GEE method. The resulting parameter
estimates� are consistent (Pickles 1998) and so is the estimated covariance matrix of�.
That is, you retain the robustness properties of the first-order GEE even if the association
structure is misspecified. A possible limitation of ALR is that no covariance estimator has
been suggested that is analogous to the model-based estimator of GEE.

15.12.1 Respiratory Data

You may recall the respiratory data analyzed in previous sections of this book. In this
example, the ALR algorithm is applied in modeling the dichotomous outcome of whether
respiratory symptoms were good or excellent at the four visits. The first analysis models
the log odds ratios as exchangeable: in this case,� is the common log odds ratio.

log(OR(Yij ; Yik)) = � for all i; j 6= k

The following SAS statements produce this analysis. The DATA step creating RESP2 is
listed on page 495. To specify the ALR algorithm, you include the LOGOR option in the
REPEATED statement. Here, the exchangeable structure for the log odds ratio is
requested.

proc genmod data=resp2 descending;
class id treatment sex center visit;
model dichot = center sex treatment age di_base visit

/ dist=bin type3 link=logit;
repeated subject=id*center / logor=exch;

run;

Output 15.67 contains information about the GEE modeling; it tells you that the log OR
structure is exchangeable.

Output 15.67 GEE Model Information

GEE Model Information

Log Odds Ratio Structure Exchangeable
Subject Effect id*center (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Output 15.68 contains Type 3 tests; the results are very similar to those obtained in the
first-order GEE based on the exchangeable structure defined with the Pearson correlations.
See Output 15.29.
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Output 15.68 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 3.13 0.0767
sex 1 0.09 0.7642
treatment 1 12.56 0.0004
age 1 2.03 0.1542
di_base 1 22.48 <.0001
visit 3 2.99 0.3932

Output 15.69 displays the parameter estimates for the elements of�. The estimates are
also similar to those obtained in the standard GEE model; the parameter labeled ‘Alpha 1’
is the estimate of the common log odds ratio and has the value1:7524. Note that you need
to interpret the ‘Alpha’ estimates somewhat cautiously since they assume their model
specification is correct (as compared to the estimates of�, which are robust.)

Output 15.69 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.4137 0.5760 -1.5428 0.7153 -0.72 0.4726
center 1 -0.6590 0.3517 -1.3483 0.0303 -1.87 0.0610
center 2 0.0000 0.0000 0.0000 0.0000 . .
sex F 0.1329 0.4365 -0.7226 0.9884 0.30 0.7608
sex M 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1.2696 0.3432 0.5969 1.9423 3.70 0.0002
treatment P 0.0000 0.0000 0.0000 0.0000 . .
age -0.0180 0.0127 -0.0429 0.0068 -1.42 0.1552
di_base 1.8381 0.3439 1.1642 2.5121 5.35 <.0001
visit 1 0.3138 0.2494 -0.1751 0.8027 1.26 0.2084
visit 2 0.1065 0.2409 -0.3657 0.5786 0.44 0.6585
visit 3 0.3269 0.2314 -0.1266 0.7804 1.41 0.1577
visit 4 0.0000 0.0000 0.0000 0.0000 . .
Alpha1 1.7524 0.2767 1.2102 2.2947 6.33 <.0001

Another approach with the ALR strategy is to estimate a separate log odds ratio for each
center. The following PROC GENMOD statements produce that analysis. The
LOGOR=LOGORVAR(CENTER) specifies that each center has its own log odds ratio.

proc genmod data=resp2 descending;
class id treatment sex center visit;
model dichot = center sex treatment age di_base visit

/ dist=bin type3 link=logit;
repeated subject=id*center / logor=logorvar(center) corrw;

run;
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Output 15.70 indicates that, this time, the exchangeable structure for the log OR is based
on the CENTER variable in this specification.

Output 15.70 GEE Model Information

GEE Model Information

Log Odds Ratio Covariate center
Subject Effect id*center (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Output 15.71 is produced when the log OR structure has more than one� parameter; this
table lists the group(center) levels associated with the log OR parameters. In this case,
there is a common log OR for all clusters in Center 1 and a common log OR for all clusters
in Center 2.

Output 15.71 Log Odds Ratio Parameter Information

Log Odds Ratio Parameter
Information

Parameter Group

Alpha1 1
Alpha2 2

Output 15.72 contains Type 3 tests; the results are still similar to those obtained in the
usual GEE model.

Output 15.72 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 2.96 0.0852
sex 1 0.12 0.7325
treatment 1 12.31 0.0004
age 1 2.32 0.1276
di_base 1 22.53 <.0001
visit 3 2.77 0.4292

Output 15.73 displays the parameter estimates. The parameter labeled ‘Alpha 1’ is the
common log odds ratio for the Center 1 subjects; the parameter labeled ‘Alpha 2’ is the
common log odds ratio for the Center 2 subjects. In Center 1, the common log odds ratio
is 1.3677 with a 95% confidence interval of (0.7423, 1.9930). For Center 2, the common
log odds ratio is 2.0886 with a 95% confidence interval of (1.2362, 2.9410). The
association would appear to be slightly stronger in Center 2.
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Output 15.73 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.3729 0.5693 -1.4887 0.7430 -0.65 0.5125
center 1 -0.6423 0.3527 -1.3335 0.0489 -1.82 0.0686
center 2 0.0000 0.0000 0.0000 0.0000 . .
sex F 0.1506 0.4318 -0.6958 0.9969 0.35 0.7273
sex M 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1.2392 0.3396 0.5735 1.9048 3.65 0.0003
treatment P 0.0000 0.0000 0.0000 0.0000 . .
age -0.0194 0.0126 -0.0440 0.0052 -1.54 0.1226
di_base 1.9210 0.3396 1.2555 2.5866 5.66 <.0001
visit 1 0.3017 0.2511 -0.1904 0.7937 1.20 0.2295
visit 2 0.0640 0.2398 -0.4060 0.5341 0.27 0.7895
visit 3 0.2782 0.2310 -0.1745 0.7310 1.20 0.2284
visit 4 0.0000 0.0000 0.0000 0.0000 . .
Alpha1 1.3677 0.3191 0.7423 1.9930 4.29 <.0001
Alpha2 2.0886 0.4349 1.2362 2.9410 4.80 <.0001

Note that inserting the following statement in the previous PROC GENMOD invocation
requests a fully parameterized cluster model for the log odds ratio parameters:

repeated subject=id*center / logor=fullclust;

Information about what the parameters mean is presented in Output 15.74.

Output 15.74 Log OR Parameter Information

Log Odds Ratio Parameter
Information

Parameter Group

Alpha1 (1, 2)
Alpha2 (1, 3)
Alpha3 (1, 4)
Alpha4 (2, 3)
Alpha5 (2, 4)
Alpha6 (3, 4)

The estimated parameters are presented in Output 15.75.
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Output 15.75 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept -0.0871 0.6174 -1.2972 1.1230 -0.14 0.8878
center 1 -0.6343 0.3487 -1.3177 0.0491 -1.82 0.0689
center 2 0.0000 0.0000 0.0000 0.0000 . .
sex F 0.1110 0.4369 -0.7454 0.9674 0.25 0.7995
sex M 0.0000 0.0000 0.0000 0.0000 . .
treatment A 1.2581 0.3405 0.5906 1.9255 3.69 0.0002
treatment P 0.0000 0.0000 0.0000 0.0000 . .
age -0.0164 0.0126 -0.0410 0.0082 -1.31 0.1916
di_base 1.8983 0.3407 1.2306 2.5660 5.57 <.0001
visit -0.0839 0.0805 -0.2417 0.0740 -1.04 0.2978
Alpha1 1.6242 0.4911 0.6617 2.5867 3.31 0.0009
Alpha2 1.0553 0.4862 0.1023 2.0083 2.17 0.0300
Alpha3 1.6305 0.4818 0.6863 2.5747 3.38 0.0007
Alpha4 2.0924 0.5016 1.1093 3.0756 4.17 <.0001
Alpha5 1.8811 0.4694 0.9610 2.8011 4.01 <.0001
Alpha6 2.1411 0.4943 1.1724 3.1099 4.33 <.0001

The relative magnitudes of these six estimated log odds ratios have a similar pattern as the
unstructured working correlation estimates presented on page 503, and this is what you
expect. This pattern seems consistent with exchangeable structure.

15.13 Using GEE to Fit a Partial Proportional Odds Model:
Univariate Outcome

Chapter 9, “Logistic Regression II: Polytomous Response,” describes the use of the
proportional odds model for response outcomes that are ordinal. Instead of modeling logits
as in logistic regression for a dichotomous response, you model cumulative logits.
However, sometimes you have data with an ordinal outcome for which the proportional
odds assumption doesn’t apply. You can use the GEE approach to fit apartial proportional
oddsmodel in which you assume proportional odds for some of the explanatory variables
but not others. You form multiple response outcomes from your univariate outcome by
forming logits corresponding to the different cutpoints of the ordinal values. For example,
if your response variable has the values 1, 2, and 3, you would form two logits: the first
logit would compare 1 versus 2 and 3, and the second logit would compare 1 and 2 versus
3. Then, you consider the logits to be multiple response functions for the same subject and
perform a GEE analysis with a model that includes interactions between the explanatory
variables and different types of logit. If some interactions are significant, there is a
relationship between those explanatory variables and type of logit, and proportional odds
doesn’t hold for those explanatory variables. If an interaction is nonsignificant, then you
do have proportional odds for that explanatory variable and you can remove the interaction
terms.

The following data come from a study on dental pain for a new analgesic (Gansky, Koch,
and Wilson 1994). Patients were administered the treatment and followed up at one hour,
two hours, and three hours. The outcome at the first hour is of interest here. The response
was measured on a five-point scale from 0 to 4, where 0 represents no relief and 4
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represents maximum relief. Also recorded was the baseline severity of the pain, 1 for
substantial and 0 for not substantial. There were five types of treatment, representing
various levels of the dosages of the treatment drug. The study was conducted at two dental
research centers.

The following DATA step creates SAS data set DENT:

data dent;
input patient center trt $ baseline ldose resp @@;
datalines;

2 1 ACL 0 5.29832 0 131 1 TL 0 3.91202 2
1 1 ACH 1 5.99146 1 3 1 TH 0 4.60517 1
130 1 P 0 0.00000 0 132 1 P 0 0.00000 0
4 1 P 0 0.00000 0 133 1 P 0 0.00000 0
5 1 P 0 0.00000 0 134 2 ACH 0 5.99146 4
6 1 TL 1 3.91202 2 135 2 ACL 0 5.29832 4
7 1 ACH 0 5.99146 1 136 2 TH 0 4.60517 3
8 1 ACL 0 5.29832 0 137 2 ACL 0 5.29832 4
9 1 TL 1 3.91202 0 138 2 TL 0 3.91202 3

10 1 TL 1 3.91202 4 139 2 P 0 0.00000 4
11 1 ACL 0 5.29832 2 140 2 TL 0 3.91202 3
12 1 ACH 0 5.99146 0 141 2 TL 0 3.91202 3
13 1 P 0 0.00000 0 142 2 ACL 1 5.29832 3
14 1 TL 0 3.91202 0 143 2 ACH 0 5.99146 1
15 1 P 0 0.00000 0 144 2 ACH 0 5.99146 3
16 1 TH 1 4.60517 4 145 2 P 0 0.00000 1
17 1 TH 0 4.60517 2 146 2 P 0 0.00000 0
18 1 ACH 0 5.99146 1 147 2 ACH 0 5.99146 4
19 1 ACL 0 5.29832 0 148 2 TL 0 3.91202 2
20 1 TH 0 4.60517 3 149 2 TH 0 4.60517 3
21 1 P 1 0.00000 1 150 2 P 0 0.00000 0
22 1 TH 1 4.60517 0 151 2 TH 0 4.60517 2
23 1 TL 0 3.91202 2 152 2 ACL 1 5.29832 3
24 1 ACL 1 5.29832 0 153 2 TH 0 4.60517 2
25 1 P 0 0.00000 0 154 2 ACH 0 5.99146 3
26 1 ACH 0 5.99146 0 155 2 ACL 0 5.29832 1
27 1 ACL 0 5.29832 0 156 2 ACL 0 5.29832 0
28 1 P 0 0.00000 0 157 2 ACL 0 5.29832 3
29 1 ACH 0 5.99146 2 158 2 TH 0 4.60517 3
30 1 TL 0 3.91202 0 159 2 ACL 0 5.29832 1
31 1 P 0 0.00000 0 160 2 TL 0 3.91202 3
32 1 ACH 0 5.99146 1 161 2 P 0 0.00000 2
33 1 TL 0 3.91202 0 162 2 TH 0 4.60517 3
34 1 TH 1 4.60517 4 163 2 TH 0 4.60517 4
35 1 TL 0 3.91202 2 164 2 ACH 0 5.99146 3
36 1 ACH 0 5.99146 0 165 2 TH 0 4.60517 2
37 1 ACL 1 5.29832 1 166 2 P 0 0.00000 3
38 1 ACL 0 5.29832 3 167 2 ACH 0 5.99146 1
39 1 TH 0 4.60517 2 168 2 P 0 0.00000 2
40 1 TH 0 4.60517 0 169 2 TL 1 3.91202 2
41 1 ACL 0 5.29832 2 170 2 P 0 0.00000 0
42 1 TL 0 3.91202 3 171 2 TL 0 3.91202 0
43 1 ACL 0 5.29832 2 172 2 TL 0 3.91202 3
44 1 ACL 0 5.29832 0 173 2 ACH 1 5.99146 2
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45 1 TH 0 4.60517 2 174 2 ACL 0 5.29832 3
46 1 ACH 0 5.99146 0 175 2 P 0 0.00000 4
47 1 P 0 0.00000 0 176 2 TL 1 3.91202 0
48 1 ACL 0 5.29832 0 177 2 ACH 0 5.99146 1
49 1 TL 0 3.91202 0 178 2 ACH 1 5.99146 2
50 1 TL 0 3.91202 2 179 2 ACL 0 5.29832 2
51 1 TL 0 3.91202 0 180 2 ACL 0 5.29832 2
52 1 ACH 0 5.99146 4 181 2 TH 0 4.60517 2
53 1 TH 0 4.60517 4 182 2 TL 0 3.91202 3
54 1 TH 0 4.60517 0 183 2 TH 0 4.60517 3
55 1 P 0 0.00000 0 184 2 ACH 0 5.99146 1
56 1 ACH 0 5.99146 3 185 2 P 0 0.00000 1
57 1 ACH 0 5.99146 2 186 2 ACL 0 5.29832 1
58 1 P 0 0.00000 0 187 2 TH 0 4.60517 2
59 1 TH 0 4.60517 0 188 2 ACH 1 5.99146 3
60 1 P 0 0.00000 0 189 2 TH 0 4.60517 2
61 1 TL 0 3.91202 1 190 2 TL 0 3.91202 3
62 1 P 0 0.00000 0 191 2 P 0 0.00000 1
63 1 TH 1 4.60517 1 192 2 TL 0 3.91202 3
64 1 TL 0 3.91202 0 193 2 P 0 0.00000 0
65 1 ACH 0 5.99146 2 194 2 TH 0 4.60517 2
66 1 ACL 0 5.29832 2 195 2 ACH 0 5.99146 4
67 1 P 0 0.00000 2 196 2 ACH 0 5.99146 2
68 1 TH 0 4.60517 1 197 2 ACL 0 5.29832 3
69 1 ACH 0 5.99146 0 198 2 P 0 0.00000 0
70 1 P 0 0.00000 0 199 2 P 0 0.00000 3
71 1 TL 0 3.91202 0 200 2 ACL 0 5.29832 0
72 1 ACH 0 5.99146 2 201 2 ACL 1 5.29832 4
73 1 P 0 0.00000 0 202 2 TH 0 4.60517 3
74 1 TL 0 3.91202 2 203 2 P 0 0.00000 1
75 1 TH 0 4.60517 2 204 2 TH 0 4.60517 1
76 1 ACL 1 5.29832 0 205 2 TH 0 4.60517 3
77 1 TH 1 4.60517 0 206 2 TL 0 3.91202 3
78 1 ACL 0 5.29832 0 207 2 TL 0 3.91202 3
79 1 ACL 1 5.29832 3 208 2 TL 0 3.91202 3
80 1 ACH 0 5.99146 2 209 2 ACL 0 5.29832 2
81 1 ACL 0 5.29832 0 210 2 ACH 0 5.99146 3
82 1 P 0 0.00000 0 211 2 TL 1 3.91202 1
83 1 TH 0 4.60517 0 212 2 ACH 0 5.99146 3
84 1 ACH 0 5.99146 1 213 2 P 0 0.00000 2
85 1 TL 0 3.91202 0 214 2 P 0 0.00000 0
86 1 TH 0 4.60517 3 215 2 TL 0 3.91202 0
87 1 ACH 0 5.99146 0 216 2 TH 0 4.60517 4
88 1 P 0 0.00000 0 217 2 ACH 0 5.99146 2
89 1 ACH 0 5.99146 1 218 2 P 0 0.00000 0
90 1 TL 0 3.91202 0 219 2 TH 0 4.60517 2
91 1 ACL 0 5.29832 1 220 2 TL 0 3.91202 1
92 1 TH 0 4.60517 0 221 2 ACH 0 5.99146 2
93 1 ACL 0 5.29832 1 222 2 TL 0 3.91202 4
94 1 TL 1 3.91202 1 223 2 TH 0 4.60517 2
95 1 TL 1 3.91202 3 224 2 TH 1 4.60517 1
96 1 P 0 0.00000 0 225 2 ACH 0 5.99146 1
97 1 TH 0 4.60517 0 226 2 ACL 0 5.29832 4
98 1 ACL 0 5.29832 0 227 2 P 1 0.00000 3
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99 1 P 1 0.00000 0 228 2 ACL 0 5.29832 2
100 1 ACH 0 5.99146 2 229 2 TL 0 3.91202 0
101 1 TH 0 4.60517 0 230 2 ACL 0 5.29832 1
102 1 TL 0 3.91202 0 231 2 ACH 0 5.99146 3
103 1 ACL 0 5.29832 1 232 2 ACL 0 5.29832 3
104 1 TL 0 3.91202 0 233 2 P 0 0.00000 1
105 1 P 0 0.00000 1 234 2 ACL 0 5.29832 4
106 1 ACL 0 5.29832 0 235 2 ACH 0 5.99146 1
107 1 TH 1 4.60517 2 236 2 TH 0 4.60517 1
108 1 P 0 0.00000 0 237 2 ACL 0 5.29832 0
109 1 ACH 0 5.99146 1 238 2 ACL 1 5.29832 4
110 1 TH 1 4.60517 1 239 2 ACL 0 5.29832 3
111 1 TL 0 3.91202 0 240 2 P 0 0.00000 0
112 1 ACH 0 5.99146 0 241 2 P 1 0.00000 3
113 1 TL 0 3.91202 0 242 2 TL 0 3.91202 2
114 1 ACH 0 5.99146 1 243 2 P 0 0.00000 0
115 1 P 0 0.00000 0 244 2 TH 0 4.60517 3
116 1 ACL 0 5.29832 0 245 2 TL 1 3.91202 4
117 1 P 0 0.00000 0 246 2 ACH 1 5.99146 1
118 1 ACH 0 5.99146 3 247 2 P 0 0.00000 1
119 1 TH 0 4.60517 3 248 2 TH 0 4.60517 4
120 1 ACL 0 5.29832 2 249 2 TL 0 3.91202 0
121 1 TH 0 4.60517 2 250 2 TL 0 3.91202 3
122 1 TH 0 4.60517 1 251 2 ACH 0 5.99146 3
123 1 TL 0 3.91202 0 252 2 TH 0 4.60517 3
124 1 ACH 0 5.99146 0 253 2 ACH 0 5.99146 1
125 1 ACL 0 5.29832 0 254 2 TH 0 4.60517 3
126 1 TH 1 4.60517 0 255 2 ACL 0 5.29832 0
127 1 ACL 0 5.29832 0 256 2 TL 0 3.91202 3
128 1 ACH 0 5.99146 1 257 2 P 0 0.00000 1
129 1 ACL 0 5.29832 3 258 2 ACH 0 5.99146 3
;

First, PROC LOGISTIC is employed to see whether the proportional odds model fits these
data. The following SAS statements invoke the LOGISTIC procedure and specify a main
effects model. Since the response variable RESP has five values, the LOGISTIC procedure
fits a proportional odds model: it forms the cumulative logits and performs the test of the
proportional odds assumption.

proc logistic data=dent descending;
class patient center baseline trt;
model resp = center baseline trt;

run;

The results are displayed in Output 15.76 and indicate that the proportional odds
assumption does not hold.
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Output 15.76 Test for Proportional Odds Assumption

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

35.2185 18 0.0089

To proceed with the partial proportional odds model, you first assess whether you have
adequate sample size. When you form two-way cross-classifications of the explanatory
variables with the response variable, the counts for each cell need to be at least 5. The
following PROC FREQ statements request these crosstabulations.

proc freq data=dent;
tables center*resp baseline*resp trt*resp /

nocol norow nopct;
run;

Output 15.77, Output 15.78, and Output 15.79 contain the resulting tables: there appears
to be adequate sample size. The table for treatment� response is a five� five table with a
few counts less than 5; however, most of these counts are 4, so the sample size is likely to
be adequate.

Output 15.77 CENTER*RESP

Table of center by resp

center resp

Frequency| 0| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+--------+

1 | 72 | 22 | 24 | 10 | 5 | 133
---------+--------+--------+--------+--------+--------+

2 | 18 | 24 | 24 | 43 | 16 | 125
---------+--------+--------+--------+--------+--------+
Total 90 46 48 53 21 258

Output 15.78 BASELINE*RESP

Table of baseline by resp

baseline resp

Frequency| 0| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+--------+

0 | 82 | 37 | 43 | 46 | 15 | 223
---------+--------+--------+--------+--------+--------+

1 | 8 | 9 | 5 | 7 | 6 | 35
---------+--------+--------+--------+--------+--------+
Total 90 46 48 53 21 258
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Output 15.79 TRT*RESP

Table of trt by resp

trt resp

Frequency| 0| 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+--------+
ACH | 8 | 17 | 11 | 11 | 4 | 51
---------+--------+--------+--------+--------+--------+
ACL | 19 | 8 | 9 | 10 | 6 | 52
---------+--------+--------+--------+--------+--------+
P | 33 | 9 | 4 | 4 | 2 | 52
---------+--------+--------+--------+--------+--------+
TH | 10 | 8 | 15 | 13 | 6 | 52
---------+--------+--------+--------+--------+--------+
TL | 20 | 4 | 9 | 15 | 3 | 51
---------+--------+--------+--------+--------+--------+
Total 90 46 48 53 21 258

The following DATA step creates four logits for each observation. They compare levels 4
versus levels 3, 2, 1, and 0; levels 4 and 3 versus 2, 1, 0; levels 4, 3, 2 versus levels 1 and 0;
and levels 4, 3, 2, and 1 versus 0. The type of logit is contained in the variable LOGTYPE
with the values 4, 3, 2, or 1 to represent the cutpoint, and the new response variable
PRESP is assigned a 1 if that observation’s value meets that cutpoint criteria and is 0
otherwise. Then, the response is output. Four observations are created from each
individual observation, one for each type of logit.

data dent2; set dent;
do; if resp=4 then presp =1;
else presp=0; logtype=4; output; end;
do; if resp=4 or resp=3 then presp=1;
else presp=0; logtype=3 ; output; end;
do; if resp=4 or resp=3 or resp=2 then presp=1;
else presp=0; logtype=2; output; end;
do; if resp=4 or resp=3 or resp=2 or resp=1 then presp=1;
else presp=0; logtype=1; output; end;

run;

The following PROC GENMOD statements request the GEE method. Each patient is now
considered a cluster in the GEE machinery, with the four types of logits comprising the
multiple responses. The main effects are included in the model along with interactions of
each explanatory variable with the variable LOGTYPE. The unstructured working
correlation matrix is specified. In order to make the placebo the reference level for
treatment, the ORDER=DATA option is used in the PROC GENMOD statement. This
creates an ordering of the classification variables that is determined by the order in which
the variable values appear in the data. (The careful reader may have noticed that the first
three data lines in the DATA step were adjusted in order to produce the desired order.)
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proc genmod descending order=data;
class logtype patient center baseline trt;
model presp = center baseline trt logtype

logtype*center logtype*baseline logtype*trt /
link=logit dist=bin type3;

repeated subject=patient / type=unstr;
run;

The “Class Level Information” table in Output 15.80 displays the classification levels. The
placebo is the reference level for variable TRT, and logit type 1 is the reference level for
variable LOGTYPE.

Output 15.80 Class Level Information

Class Level Information

Class Levels Values

logtype 4 4 3 2 1
patient 258 2 131 1 3 130 132 4 133 5 134 6 135 7 136 8 137 9

138 10 139 11 140 12 141 13 142 14 143 15 144 16
145 17 146 18 147 19 148 20 149 21 150 22 151 23
152 24 153 25 154 26 155 27 156 28 157 29 158 30
159 31 160 32 161 33 162 34 163 35 164 36 165 37
166 38 ...

center 2 1 2
baseline 2 0 1
trt 5 ACL TL ACH TH P

The information in the “GEE Model Information” table contained in Output 15.81
indicates that the analysis includes 258 clusters with four responses for each cluster; there
are four types of logits.

Output 15.81 GEE Model Information

GEE Model Information

Correlation Structure Unstructured
Subject Effect patient (258 levels)
Number of Clusters 258
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

The score statistics for the effects of the model are displayed in Output 15.82. Only the
BASELINE*LOGTYPE interaction is definitely nonsignificant.
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Output 15.82 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 37.94 <.0001
baseline 1 2.76 0.0964
trt 4 23.45 0.0001
logtype 3 36.28 <.0001
logtype*center 3 7.01 0.0715
logtype*baseline 3 5.73 0.1256
logtype*trt 12 21.49 0.0437

Variable BASELINE is kept in the model since it was part of the original study design.
The next model fit assumes proportional odds for the baseline effect but not for center and
treatment.

proc genmod descending order=data;
class logtype patient center baseline trt;
model presp = center trt baseline logtype

logtype*center logtype*trt /
link=logit dist=bin type3;

repeated subject=patient / type=unstr;
run;

Output 15.83 contains the results of the Type 3 analysis for the reduced model. Both center
and treatment for reference logit 1 are strongly significant. The treatment interaction with
type of logit is significant at the 0.05 level of significance, and the center interaction with
type of logit is not; however, no further model reduction is performed.

Output 15.83 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

center 1 37.39 <.0001
trt 4 23.19 0.0001
baseline 1 1.73 0.1884
logtype 3 120.68 <.0001
logtype*center 3 6.41 0.0934
logtype*trt 12 19.96 0.0679

Finally, Output 15.84 contains the final parameter estimates. The main effects pertain to
effects of corresponding factors for logit type 1, and interactions are the increments to the
main effects to obtain the effects of the corresponding factors for logit types 2, 3, and 4.
For example, 1.4333 is the estimated log odds ratio for ACL versus placebo for logit type
1, and 1.4333 plus 0.1326 is the estimated log odds ratio for ACL versus placebo for logit
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type 2. Thus,e1:4333 = 4:19 means that those patients receiving ACL had 4.19 higher odds
of having relief than those patients receiving the placebo (responses 1–4 represented
varying levels of relief and 0 represented no relief). Sincee1:4333+0:1326 = 4:78, those
patients receiving ACL had 4.78 times higher odds of the three highest levels of relief (4,
3, 2) than those patients receiving the placebo.

Output 15.84 Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 1.0397 0.4936 0.0723 2.0072 2.11 0.0352
center 1 -2.2838 0.3288 -2.9282 -1.6394 -6.95 <.0001
center 2 0.0000 0.0000 0.0000 0.0000 . .
trt ACL 1.4333 0.4746 0.5031 2.3634 3.02 0.0025
trt TL 1.2548 0.4829 0.3084 2.2013 2.60 0.0094
trt ACH 2.5795 0.4830 1.6328 3.5261 5.34 <.0001
trt TH 2.3633 0.4674 1.4472 3.2793 5.06 <.0001
trt P 0.0000 0.0000 0.0000 0.0000 . .
baseline 0 -0.5977 0.3733 -1.3294 0.1339 -1.60 0.1093
baseline 1 0.0000 0.0000 0.0000 0.0000 . .
logtype 4 -3.2324 0.7778 -4.7569 -1.7078 -4.16 <.0001
logtype 3 -1.8885 0.4387 -2.7483 -1.0286 -4.30 <.0001
logtype 2 -1.2480 0.3330 -1.9008 -0.5953 -3.75 0.0002
logtype 1 0.0000 0.0000 0.0000 0.0000 . .
logtype*center 4 1 0.8837 0.5770 -0.2471 2.0146 1.53 0.1256
logtype*center 4 2 0.0000 0.0000 0.0000 0.0000 . .
logtype*center 3 1 0.2325 0.3788 -0.5099 0.9749 0.61 0.5393
logtype*center 3 2 0.0000 0.0000 0.0000 0.0000 . .
logtype*center 2 1 0.5866 0.2705 0.0565 1.1167 2.17 0.0301
logtype*center 2 2 0.0000 0.0000 0.0000 0.0000 . .
logtype*center 1 1 0.0000 0.0000 0.0000 0.0000 . .
logtype*center 1 2 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 4 ACL -0.2481 0.8977 -2.0075 1.5113 -0.28 0.7822
logtype*trt 4 TL -0.7605 0.9620 -2.6461 1.1250 -0.79 0.4292
logtype*trt 4 ACH -1.8277 0.9663 -3.7217 0.0663 -1.89 0.0586
logtype*trt 4 TH -1.1877 0.9167 -2.9844 0.6091 -1.30 0.1951
logtype*trt 4 P 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 3 ACL 0.0092 0.5554 -1.0793 1.0978 0.02 0.9867
logtype*trt 3 TL 0.4377 0.5366 -0.6140 1.4894 0.82 0.4147
logtype*trt 3 ACH -1.3127 0.6102 -2.5087 -0.1167 -2.15 0.0315
logtype*trt 3 TH -0.7568 0.5923 -1.9178 0.4041 -1.28 0.2013
logtype*trt 3 P 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 2 ACL 0.1326 0.4194 -0.6895 0.9546 0.32 0.7520
logtype*trt 2 TL 0.5389 0.3823 -0.2105 1.2883 1.41 0.1587
logtype*trt 2 ACH -1.0781 0.4885 -2.0355 -0.1208 -2.21 0.0273
logtype*trt 2 TH -0.2013 0.4284 -1.0408 0.6383 -0.47 0.6384
logtype*trt 2 P 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 1 ACL 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 1 TL 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 1 ACH 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 1 TH 0.0000 0.0000 0.0000 0.0000 . .
logtype*trt 1 P 0.0000 0.0000 0.0000 0.0000 . .

Note that using the unstructured working correlation matrix instead of the independent
working correlation matrix provides a more powerful assessment of the logit type
interactions; it produces smaller standard errors for within-subject effects. However, if you
used the independent working correlation matrix, you would produce estimates that are
most similar to those obtained by performing separate analyses of these logit functions.
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15.14 Using GEE to Account for Overdispersion: Univariate
Outcome

Section 8.2.7 mentions overdispersion in the case of logistic regression. Overdispersion
occurs when the observed variance is larger than the nominal variance for a particular
distribution. It occurs with some regularity in the analysis of proportions and discrete
counts. This is not surprising for the assumed distributions (binomial and Poisson,
respectively) because their respective variances are fixed by a single parameter, the mean.
Overdispersion can have a major impact on inference so it needs to be taken into account.
Underdispersion also occurs. See McCullagh and Nelder (1989) and Dean (1998) for more
detail on overdispersion.

One way to manage overdispersion is to assume a more flexible distribution, such as the
negative binomial in the case of overdispersed Poisson data (DIST=NEGBIN in the
GENMOD procedure.) You can also adjust the covariance matrix of a Poisson-based
analysis with a scaling factor, which is the method PROC GENMOD uses with the
SCALE= option in the MODEL statement. Then the covariance matrix is pre-multiplied
by the scaling factor�, and the scaled deviance and the log likelihood ratio tests are
divided by�, as are the confidence limits based on the profile likelihood. This type of
analysis is performed in Section 12.5 of Chapter 12.

Another way of managing the overdispersion is to take the generalized estimating
approach. Recall that the robust, or empirical, covariance matrix estimated by the GEE
method is robust to the misspecification of the covariance structure, and misspecification is
occurring in the case of overdispersion. The variance is not “acting” as it should; it does
not take the form for data from a Poisson distribution. With GEE estimation, you are using
a subject-to-subject measure for variance estimation instead of a model-based one. The
robustness comes from the fact that the variance estimation process involves aggregates at
the cluster level. While GEE was devised for the analysis of correlated data with more
than one response per subject, you can also use it for the analysis of single outcomes and
derive the benefits of the robust standard errors. This section describes the use of GEE for
adjusting for overdispersion in the univariate case.

Researchers studying the incidence of lower respiratory illness in infants took repeated
observations of infants over one year. They studied 284 children and examined them every
two weeks. Explanatory variables evaluated included passive smoking (one or more
smokers in the household), socioeconomic status, and crowding. See LaVange et al.
(1994) for more information on the study and a discussion of the analysis of incidence
densities. One outcome of interest was the total number of times, or counts, of lower
respiratory infection recorded for the year. The strategy was to model these counts with
Poisson regression. However, it is reasonable to expect some overdispersion since the
children that have an infection are more likely to have other infections.

The following DATA step inputs the data into a SAS data set named LRI. The variable
COUNT is the total number of infections that year, and the variable RISK is the number of
weeks during that year for which the child is considered at risk (when a lower respiratory
infection is ongoing, the child is not considered to be at risk for a new one). The variable
CROWDING is an indicator variable for whether crowded conditions occur in the
household, and SES is an indicator variable for whether the family’s socioeconomic status
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was considered low (0), medium (1), or high (2). The variable RACE is an indicator
variable for whether the child was white (1) or not (0), and the variable PASSIVE is an
indicator variable for whether the child was exposed to cigarette smoking. Finally, the
AGEGROUP variable takes the values 1, 2, and 3 for under four, four to six, or more than
six months.

data lri;
input id count risk passive crowding ses agegroup race @@;
logrisk =log(risk/52);
datalines;

1 0 42 1 0 2 2 0 96 1 41 1 0 1 2 0 191 0 44 1 0 0 2 0
2 0 43 1 0 0 2 0 97 1 26 1 1 2 2 0 192 0 45 0 0 0 2 1
3 0 41 1 0 1 2 0 98 0 36 0 0 0 2 0 193 0 42 0 0 0 2 0
4 1 36 0 1 0 2 0 99 0 34 0 0 0 2 0 194 1 31 0 0 0 2 1
5 1 31 0 0 0 2 0 100 1 3 1 1 2 3 1 195 0 35 0 0 0 2 0
6 0 43 1 0 0 2 0 101 0 45 1 0 0 2 0 196 1 35 1 0 0 2 0
7 0 45 0 0 0 2 0 102 0 38 0 0 1 2 0 197 1 27 1 0 1 2 0
8 0 42 0 0 0 2 1 103 0 41 1 1 1 2 1 198 1 33 0 0 0 2 0
9 0 45 0 0 0 2 1 104 1 37 0 1 0 2 0 199 0 39 1 0 1 2 0

10 0 35 1 1 0 2 0 105 0 40 0 0 0 2 0 200 3 40 0 1 2 2 0
11 0 43 0 0 0 2 0 106 1 35 1 0 0 2 0 201 4 26 1 0 1 2 0
12 2 38 0 0 0 2 0 107 0 28 0 1 2 2 0 202 0 14 1 1 1 1 1
13 0 41 0 0 0 2 0 108 3 33 0 1 2 2 0 203 0 39 0 1 1 2 0
14 0 12 1 1 0 1 0 109 0 38 0 0 0 2 0 204 0 4 1 1 1 3 0
15 0 6 0 0 0 3 0 110 0 42 1 1 2 2 1 205 1 27 1 1 1 2 1
16 0 43 0 0 0 2 0 111 0 40 1 1 2 2 0 206 0 36 1 0 0 2 1
17 2 39 1 0 1 2 0 112 0 38 0 0 0 2 0 207 0 30 1 0 2 2 1
18 0 43 0 1 0 2 0 113 2 37 0 1 1 2 0 208 0 34 0 1 0 2 0
19 2 37 0 0 0 2 1 114 1 42 0 1 0 2 0 209 1 40 1 1 1 2 0
20 0 31 1 1 1 2 0 115 5 37 1 1 1 2 1 210 0 6 1 0 1 1 1
21 0 45 0 1 0 2 0 116 0 38 0 0 0 2 0 211 1 40 1 1 1 2 0
22 1 29 1 1 1 2 1 117 0 4 0 0 0 3 0 212 2 43 0 1 0 2 0
23 1 35 1 1 1 2 0 118 2 37 1 1 1 2 0 213 0 36 1 1 1 2 0
24 3 20 1 1 2 2 0 119 0 39 1 0 1 2 0 214 0 35 1 1 1 2 1
25 1 23 1 1 1 2 0 120 0 42 1 1 0 2 0 215 1 35 1 1 2 2 0
26 1 37 1 0 0 2 0 121 0 40 1 0 0 2 0 216 0 43 1 0 1 2 0
27 0 49 0 0 0 2 0 122 0 36 1 0 0 2 0 217 0 33 1 1 2 2 0
28 0 35 0 0 0 2 0 123 1 42 0 1 1 2 0 218 0 36 0 1 1 2 1
29 3 44 1 1 1 2 0 124 1 39 0 0 0 2 0 219 1 41 0 0 0 2 0
30 0 37 1 0 0 2 0 125 2 29 0 0 0 2 0 220 0 41 1 1 0 2 1
31 2 39 0 1 1 2 0 126 3 37 1 1 2 2 1 221 1 42 0 0 0 2 1
32 0 41 0 0 0 2 0 127 0 40 1 0 0 2 0 222 0 33 0 1 2 2 1
33 1 46 1 1 2 2 0 128 0 40 0 0 0 2 0 223 0 40 1 1 2 2 0
34 0 5 1 1 2 3 1 129 0 39 0 0 0 2 0 224 0 40 1 1 1 2 1
35 1 29 0 0 0 2 0 130 0 40 1 0 1 2 0 225 0 40 0 0 2 2 0
36 0 31 0 1 0 2 0 131 1 32 0 0 0 2 0 226 0 28 1 0 1 2 0
37 0 22 1 1 2 2 0 132 0 46 1 0 1 2 0 227 0 47 0 0 0 2 1
38 1 22 1 1 2 2 1 133 4 39 1 1 0 2 0 228 0 18 1 1 2 2 1
39 0 47 0 0 0 2 0 134 0 37 0 0 0 2 0 229 0 45 1 0 0 2 0
40 1 46 1 1 1 2 1 135 0 51 0 0 1 2 0 230 0 35 0 0 0 2 0
41 0 37 0 0 0 2 0 136 1 39 1 1 0 2 0 231 1 17 1 0 1 1 1
42 1 39 0 0 0 2 0 137 1 34 1 1 0 2 0 232 0 40 0 0 0 2 0
43 0 33 0 1 1 2 1 138 1 14 0 1 0 1 0 233 0 29 1 1 2 2 0
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44 0 34 1 0 1 2 0 139 2 15 1 0 0 2 0 234 1 35 1 1 1 2 0
45 3 32 1 1 1 2 0 140 1 34 1 1 0 2 1 235 0 40 0 0 2 2 0
46 3 22 0 0 0 2 0 141 0 43 0 1 0 2 0 236 1 22 1 1 1 2 0
47 1 6 1 0 2 3 0 142 1 33 0 0 0 2 0 237 0 42 0 0 0 2 0
48 0 38 0 0 0 2 0 143 3 34 1 0 0 2 1 238 0 34 1 1 1 2 1
49 1 43 0 1 0 2 0 144 0 48 0 0 0 2 0 239 6 38 1 0 1 2 0
50 2 36 0 1 0 2 0 145 4 26 1 1 0 2 0 240 0 25 0 0 1 2 1
51 0 43 0 0 0 2 0 146 0 30 0 1 2 2 1 241 0 39 0 1 0 2 0
52 0 24 1 0 0 2 0 147 0 41 1 1 1 2 0 242 1 35 0 1 2 2 1
53 0 25 1 0 1 2 1 148 0 34 0 1 1 2 0 243 1 36 1 1 1 2 1
54 0 41 0 0 0 2 0 149 0 43 0 1 0 2 0 244 0 23 1 0 0 2 0
55 0 43 0 0 0 2 0 150 1 31 1 0 1 2 0 245 4 30 1 1 1 2 0
56 2 31 0 1 1 2 0 151 0 26 1 0 1 2 0 246 1 41 1 1 1 2 1
57 3 28 1 1 1 2 0 152 0 37 0 0 0 2 0 247 0 37 0 1 1 2 0
58 1 22 0 0 1 2 1 153 0 44 0 0 0 2 0 248 0 46 1 1 0 2 0
59 1 11 1 1 1 1 0 154 0 40 1 0 0 2 0 249 0 45 1 1 0 2 1
60 3 41 0 1 1 2 0 155 0 8 1 1 1 3 1 250 1 38 1 1 1 2 0
61 0 31 0 0 1 2 0 156 0 40 1 1 1 2 1 251 0 10 1 1 1 1 0
62 0 11 0 0 1 1 1 157 1 45 0 0 0 2 0 252 0 30 1 1 2 2 0
63 0 44 0 1 0 2 0 158 0 4 0 0 2 3 0 253 0 32 0 1 2 2 0
64 0 9 1 0 0 3 1 159 1 36 0 1 0 2 0 254 0 46 1 0 0 2 0
65 0 36 1 1 1 2 0 160 3 37 1 1 1 2 0 255 5 35 1 1 2 2 1
66 0 29 1 0 0 2 0 161 0 15 1 0 0 1 0 256 0 44 0 0 0 2 0
67 0 27 0 1 0 2 1 162 1 27 1 0 1 2 1 257 0 41 0 1 1 2 0
68 0 36 0 1 0 2 0 163 2 31 0 1 0 2 0 258 2 36 1 0 1 2 0
69 1 33 1 0 0 2 0 164 0 42 0 0 0 2 0 259 0 34 1 1 1 2 1
70 2 13 1 1 2 1 1 165 0 42 1 0 0 2 0 260 1 30 0 1 0 2 1
71 0 38 0 0 0 2 0 166 1 38 0 0 0 2 0 261 1 27 1 0 0 2 0
72 0 41 0 0 0 2 1 167 0 44 1 0 0 2 0 262 0 48 1 0 0 2 0
73 0 41 1 0 2 2 0 168 0 45 0 0 0 2 0 263 1 6 0 1 2 3 1
74 0 35 0 0 1 2 0 169 0 34 0 1 0 2 0 264 0 38 1 1 0 2 1
75 0 45 0 0 0 2 0 170 2 41 0 0 0 2 0 265 0 29 1 1 1 2 1
76 4 38 1 0 2 2 1 171 2 30 1 1 1 2 0 266 1 43 0 1 2 2 1
77 1 42 1 0 0 2 1 172 0 44 0 0 0 2 0 267 0 43 0 1 0 2 0
78 1 42 1 1 2 2 1 173 0 40 1 0 0 2 0 268 0 37 1 0 2 2 0
79 6 36 1 1 0 2 0 174 2 31 0 0 0 2 0 269 1 23 1 1 0 2 1
80 2 23 1 1 1 2 1 175 0 41 1 0 0 2 0 270 0 44 0 0 1 2 0
81 1 32 0 0 1 2 0 176 0 41 0 0 0 2 0 271 0 5 0 1 1 3 1
82 0 41 0 1 0 2 0 177 0 39 1 0 0 2 0 272 0 25 1 0 2 2 0
83 0 50 0 0 0 2 0 178 0 40 1 0 0 2 0 273 0 25 1 0 1 2 0
84 0 42 1 1 1 2 1 179 2 35 1 0 2 2 0 274 1 28 1 1 1 2 1
85 1 30 0 0 0 2 0 180 1 43 1 0 0 2 0 275 0 7 0 1 0 3 1
86 2 47 0 1 0 2 0 181 2 39 0 0 0 2 0 276 0 32 0 0 0 2 0
87 1 35 1 1 2 2 0 182 0 35 1 1 0 2 0 277 0 41 0 0 0 2 0
88 1 38 1 0 1 2 1 183 0 37 0 0 0 2 0 278 1 33 1 1 2 2 1
89 1 38 1 1 1 2 1 184 3 37 0 0 0 2 0 279 2 36 1 1 2 2 0
90 1 38 1 1 1 2 1 185 0 43 0 0 0 2 0 280 0 31 0 0 0 2 0
91 0 32 1 1 1 2 0 186 0 42 0 0 0 2 0 281 0 18 0 0 0 2 0
92 1 3 1 0 1 3 1 187 0 42 0 0 0 2 0 282 1 32 1 0 2 2 0
93 0 26 1 0 0 2 1 188 0 38 0 0 0 2 0 283 0 22 1 1 2 2 1
94 0 35 1 0 0 2 0 189 0 36 1 0 0 2 0 284 0 35 0 0 0 2 1
95 3 37 1 0 0 2 0 190 0 39 0 1 0 2 0
;
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The following SAS statements request the analysis. To produce the Poisson regression,
options LINK=LOG and DIST=POISSON are specified. The variable LOGRISK is the
offset, and the main effects model is requested.

proc genmod data=lri;
class ses id race agegroup;
model count = passive crowding ses race agegroup/

dist=poisson link=log offset=logrisk type3;
run;

Output 15.85 contains the general model information.

Output 15.85 Model Information

Model Information

Data Set WORK.LRI
Distribution Poisson
Link Function Log
Dependent Variable count
Offset Variable logrisk
Observations Used 284

Output 15.86 contains the goodness-of-fit statistics, along with the ratios of their values to
their degrees of freedom. With values of 1.4788 for the Deviance/df and 1.7951 for
Pearson/df, there is evidence of overdispersion. The model-based estimates of standard
errors may not be appropriate and therefore any inference is questionable. (When this ratio
is close to 1, you conclude that little evidence of over- or under- dispersion exists). The
next step is to account for this overdispersion with the GEE-generated robust covariances.

Output 15.86 Goodness-of-Fit Statistics

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 276 408.1549 1.4788
Scaled Deviance 276 408.1549 1.4788
Pearson Chi-Square 276 495.4494 1.7951
Scaled Pearson X2 276 495.4494 1.7951
Log Likelihood -260.4117

The following statements produce the desired GEE analysis. In this case, the subject is the
cluster and there is only one measurement per cluster. The working independent
correlation structure with the TYPE=IND option although, with a cluster size of 1, the
estimates will be the same if you specify exchangeable or unstructured. Otherwise, the
model specification is the same as in the previous analysis.
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proc genmod data=lri;
class id ses race agegroup;
model count = passive crowding ses race agegroup /

dist=poisson link=log offset=logrisk type3;
repeated subject=id / type=ind;

run;

Output 15.87 reports that the GEE analysis involves one measurement per subject, and that
there are 284 subjects, or clusters, in the analysis.

Output 15.87 GEE Model Information

GEE Model Information

Correlation Structure Independent
Subject Effect id (284 levels)
Number of Clusters 284
Correlation Matrix Dimension 1
Maximum Cluster Size 1
Minimum Cluster Size 1

Output 15.88 contains the parameter estimates. They are the same as displayed for the
unadjusted GLM analysis in Chapter 12, as you would expect, but the standard errors are
different. They are larger than the corresponding standard errors in the GLM analysis; this
is also what you would expect because overdispersion means that the data are exhibiting
additional variance.

Output 15.88 GEE Parameter Estimates

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.6047 0.5564 -0.4858 1.6952 1.09 0.2771
passive 0.4310 0.2105 0.0184 0.8436 2.05 0.0406
crowding 0.5199 0.2367 0.0559 0.9839 2.20 0.0281
ses 0 -0.3970 0.2977 -0.9805 0.1865 -1.33 0.1824
ses 1 -0.0681 0.2520 -0.5619 0.4258 -0.27 0.7871
ses 2 0.0000 0.0000 0.0000 0.0000 . .
race 0 0.1402 0.2211 -0.2931 0.5736 0.63 0.5259
race 1 0.0000 0.0000 0.0000 0.0000 . .
agegroup 1 -0.4792 0.6033 -1.6617 0.7033 -0.79 0.4270
agegroup 2 -0.9919 0.4675 -1.9082 -0.0756 -2.12 0.0339
agegroup 3 0.0000 0.0000 0.0000 0.0000 . .

Output 15.89 contains the Type 3 analysis. SES, race, and age group are non-influential.
Crowding and smoking exposure are significant at the� = 0:05 level of significance.
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Output 15.89 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Chi-
Source DF Square Pr > ChiSq

passive 1 3.90 0.0484
crowding 1 4.72 0.0298
ses 2 2.11 0.3478
race 1 0.42 0.5176
agegroup 2 2.79 0.2484

Thus, this section provides an alternative strategy for adjusting for overdispersion to the
scaling factor adjustment discussed in Section 12.5 in Chapter 12. Using the GEE method,
you are using a measure of variability based on the data to do the adjustment, rather than a
single parameter (scaling factor) applied to the covariance matrix. With the GEE method,
using the robust variances, you are providing a measure of variability for each parameter
you estimate together with the corresponding covariances, all based on your data. In many
situations, this strategy may be a practical approach to handling overdispersion.

Appendix A: Steps to Find the GEE Solution

Finding the GEE solution requires a number of steps, including specifying the marginal
model for the first moment, specifying the variance function for the relationship between
the first and second moments, choosing a working correlation matrix, computing an initial
estimate of�, and then using this estimate in an iterative estimation process. In detail:

Thefirst step of the GEE method is to relate the marginal response�ij = E(yij) to a
linear combination of the covariates:g(�ij) = x0ij �, where� = (�1; : : : ; �p)

0 is ap� 1
vector of unknown parameters andg is a known link function. Common link functions are
the logit functiong(x) = log(x=(1 � x)) for binary responses and the log function
g(x) = log(x) for Poisson counts. Thep� 1 parameter vector� characterizes how the
cross-sectional response distribution depends on the explanatory variables.

Thesecond stepis to describe the variance ofyij as a function of the mean:
Var(yij) = v(�ij)�, wherev is a known variance function and� is a possibly unknown
scale parameter. For binary responses,v(�ij) = �ij(1� �ij); and for Poisson responses,
v(�ij) = �ij. For these two types of response variables,� = 1. Overdispersion(� > 1)
may exist for binomial-like or count data, but use of the empirical covariance matrix for
the GEE procedure is robust to this overdispersion.

Thethird step is to choose the form of ati � ti working correlation matrixRi(�) for
eachyi = (yi1; : : : ; yit)

0. The(j; j0) element ofRi(�) is the known, hypothesized, or
estimated correlation betweenyij andyij0 . This working correlation matrix may depend
on a vector of unknown parameters�, which is the same for all subjects. You assume that
Ri(�) is known except for a fixed number of parameters� that must be estimated from
the data. Although this correlation matrix can differ from subject to subject, you
commonly use a working correlation matrixR(�) that approximates the average
dependence among repeated observations over subjects.
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The GEE method yields consistent estimates of the regression coefficients and their
variances, even with misspecification of the structure of the covariance matrix. In addition,
the loss of efficiency from an incorrect choice ofR is usually not consequential when the
number of subjects is large.

Thefourth step of the GEE method is to estimate the parameter vector� and its
covariance matrix. First, letAi be theti � ti diagonal matrix withv(�ij) as thejth

diagonal element. The working covariance matrix foryi isVi(�) = �A
1=2
i Ri(�)A

1=2
i .

The GEE estimate of� is the solution of the estimating equation

U(�) =
nX
i=1

�@�i
@�

�0
[Vi(b�)]�1(yi � �i) = 0p

where�i = (�i1; : : : ; �iti)
0, 0p is thep� 1 vector(0; : : : ; 0)0, andb� is a consistent

estimate of�.

The estimating equation is solved by iterating between quasi-likelihood methods for
estimating� and method of moments estimation of� as a function of�, as follows:

1. Compute an initial estimate of�, using a GLM model or some other method.

2. Compute the standardized Pearson residuals

rij =
yij � b�ijp
v(b�ij)

and obtain the estimates for the nuisance parameters� and� using moment
estimation.

3. Update�̂ with

�̂ �
"

KX
i=1

@�i
@�

0

V�1
i

@�i
@�

#�1 " KX
i=1

@�i
@�

0

V�1
i (Yi ��i)

#

4. Iterate until convergence.

Appendix B: Macro for Adjusted Wald Statistic

The following macro is used in Section 15.7.

%macro geef;
data temp1;

set clustout;
drop Label1 cvalue1;
if Label1=’Number of Clusters’;

run;
data temp2;

set scoreout;
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drop ProbChiSq;
run;
data temp3;

merge temp1 temp2;
run;
data temp4; set temp3;

retain nclusters; drop nvalue1;
if _n_=1 then nclusters=nvalue1;

run;
data temp5;

set temp4;
drop ChiSq nclusters d;
d=nclusters-1;
NewF= ((d-df+1)*ChiSq)/(d*df);
ProbF=1-cdf(’F’, NewF,df,d-df+1);

run;

/* Set the ODS path to include your store first (this
sets the search path order so that ODS looks in your
store first, followed by the default store */

ods path sasuser.templat (update)
sashelp.tmplmst (read);

/* Print the path to the log to make sure you will get
what you expect */

*ods path show;

/* Define your table, and store it */
proc template;

define table GEEType3F;
parent=Stat.Genmod.Type3GEESc;
header "#F-Statistics for Type 3 GEE Analysis##";
column Source DF i NewF ProbF;
define NewF;
parent = Common.ANOVA.FValue;

end;
end;
run;
title1;
data _null_;

set temp5;
file print ods=(template=’GEEType3F’);
put _ods_;

run;
;
%mend geef;
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Chapter 16

Loglinear Models

16.1 Introduction

Chapters 2–6 discuss methods for testing hypotheses of no association in two-way and
stratified two-way contingency tables. These approaches focus on hypothesis testing rather
than on model fitting and parameter estimation. In contrast, Chapters 8–12 describe
logistic regression and weighted least squares methods for modeling a categorical response
variable as a function of one or more categorical and/or continuous explanatory variables.
These methods, which are analogous to ANOVA and regression techniques for normally
distributed response variables, are appropriate when there is a clearly defined response
variable of interest and you want to model how the response is affected by a set of
explanatory variables or design factors. In such situations, you are most interested in
estimating the parameters of a statistical model and in testing hypotheses concerning
model parameters.

Loglinear models are another important tool for the analysis of categorical data. This
methodology was primarily developed during the 1960s. Although many investigators
made significant contributions, Leo Goodman was a particularly influential researcher who
popularized the method in the social sciences. Two of his key papers (Goodman 1968,
1970) summarize much of the earlier work. Bishop, Fienberg, and Holland (1975) first
comprehensively described the methodology for the general statistical community.

Loglinear model methodology is most appropriate when there is no clear distinction
between response and explanatory variables, for example, when all of the variables are
observed simultaneously. The loglinear model point of view treats all variables as response
variables, and the focus is on statistical independence and dependence. Loglinear
modeling of categorical data is analogous to correlation analysis for normally distributed
response variables and is useful in assessing patterns of statistical dependence among
subsets of variables.

You perform loglinear model analysis in the SAS System by using the CATMOD
procedure, even though the structure and syntax of PROC CATMOD was designed
originally for regression analyses of categorical response variables. You can also use the
GENMOD procedure to fit loglinear models, although the parameterization of PROC
GENMOD (the less than full rank parameterization of PROC GLM) makes it more
complicated to interpret lower-order effects in the presence of higher-order effects,
although simply testing for only higher order associations is very straightforward and
convenient with PROC GENMOD. Other software designed specifically for loglinear
modeling may be more convenient to use than PROC CATMOD in carrying out certain
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routine analyses, such as fitting all possible hierarchical loglinear models to a given data
set. On the other hand, the CATMOD procedure permits the fitting of complicated types of
loglinear models, some of which can not be fit conveniently using other programs.

Section 16.2 describes the loglinear model for a two-way contingency table and introduces
the use of PROC CATMOD for loglinear modeling. Although the simplest application of
loglinear models is in testing statistical independence between two categorical variables,
the methodology is most useful in situations in which there are several variables.
Section 16.3 considers the loglinear model for three-way contingency tables and illustrates
how to use PROC GENMOD for fitting loglinear models. Section 16.4 demonstrates
loglinear modeling for higher-order tables, and Section 16.5 describes the correspondence
between logistic models and loglinear models.

16.2 Two-Way Contingency Tables

16.2.1 Loglinear Model for the2� 2 Table

Table 16.1 displays the2� 2 table of frequencies resulting from the cross-classification of
a row variableX and a column variableY , each with two levels. Chapter 2 discusses tests
and estimators of association for2� 2 contingency tables arising from several different
sampling frameworks described in Section 2.1. In this chapter, attention focuses on tables
representing a simple random sample from one population. Therefore, the
cross-classification of the two binary responsesX andY yields a single multinomial
distribution with total sample sizen and cell probabilities�ij displayed in Table 16.2.

Table 16.1. Cell Counts in a 2� 2 Contingency Table

Level ofY
Level ofX 1 2 Total

1 n11 n12 n1+
2 n21 n22 n2+

Total n+1 n+2 n

Table 16.2. Cell Probabilities in a 2� 2 Contingency Table

Level ofY
Level ofX 1 2 Total

1 �11 �12 �1+
2 �21 �22 �2+

Total �+1 �+2 1

The motivation for the use of loglinear models is that statistical independence can be
expressed in terms of a linear combination of the logarithms of the cell probabilities. In
particular, if the variablesX andY in a2� 2 table are statistically independent, then the
probability of individuals being in the first row (level 1 ofX) among those in the first
column (level 1 ofY ) would be the same as the probability for the first row among those in
the second column (level 2 ofY ). Therefore,

�11
�+1

=
�12
�+2

= �1+
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and�11 = �1+�+1. Similar arguments lead to the general result that if the row and column
variables are independent, then�ij = �i+�+j, for i; j = 1; 2.

You can then express independence as a general relation involving all four cell
probabilities. First, ifX andY are statistically independent

�11
�+1

=
�12
�+2

Since�+1 = �11 + �21 and�+2 = �12 + �22, the relationship is

�11
�11 + �21

=
�12

�12 + �22

so that�11(�12 + �22) = �12(�11 + �21). This simplifies to�11�22 = �12�21. Therefore,
the row and column variables are independent if

	 =
�11�22
�12�21

= 1

where	 is called thecross-product ratio, or the odds ratio. Taking logarithms of both
sides expresses statistical independence as a linear combination of the logarithms of the
cell probabilities:

log	 = log �11 � log �12 � log �21 + log �22 = 0

Loglinear models for2� 2 contingency tables involve the logarithm of the cross-product
ratio in a special way. Thesaturated loglinear modelfor a 2� 2 table is

log(mij) = �+ �Xi + �Yj + �XYij i; j = 1; 2

wheremij = n�ij is the expected frequency in the (i; j) cell. This model is similar to the
two-way analysis of variance model for a continuous responsey:

E(yij) = �+ �i + �j + (��)ij

with overall mean�, main effects�i and�j , and interaction effects(��)ij . The use of the
terms�Xi , �Yj , and�XYij instead of�i, �j, and(��)ij is common loglinear model notation
and is especially convenient when considering tables of higher dimensions.

Since there are1+2+2+4 = 9 parameters in the saturated loglinear model, but only four
observations, the model is overparameterized. Imposing the usual sum-to-zero constraints

2X
i=1

�Xi = 0

2X
j=1

�Yj = 0

2X
i=1

�XYij =

2X
j=1

�XYij = 0

yields three nonredundant� parameters (�X1 , �Y1 , �XY11 ). The fourth parameter,�, is fixed
by the total sample sizen. Table 16.3 displays the expected cell frequenciesmij in terms
of the model parameters�, �X1 , �Y1 , and�XY11 .
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Table 16.3. Loglinear Model Expected Cell Counts

Level ofY

Level ofX 1 2

1 exp(�+ �X1 + �Y1 + �XY11 ) exp(�+ �X1 � �Y1 � �XY11 )

2 exp(�� �X1 + �Y1 � �XY11 ) exp(�� �X1 � �Y1 + �XY11 )

The odds ratio can also be expressed as a function of the expected frequencies:

	 =
m11m22

m12m21

so that
log 	 = logm11 � logm12 � logm21 + logm22 = 4�XY11

Therefore, the hypothesis of independence ofX andY is equivalent toH0:�
XY
11 = 0. The

correspondingindependence loglinear modelis given by

log(mij) = �+ �Xi + �Yj i; j = 1; 2

This model has one degree of freedom for testing lack of fit.

Chapter 2 discusses the Pearson chi-square test of independence for a2� 2 contingency
table. An alternative approach is to testH0:�

XY
11 = 0 using the likelihood ratio test to

compare the fit of the independence and saturated loglinear models.

The likelihood ratio test of independence can be derived directly from the multinomial
likelihood

f(n11; n12; n21; n22) =
n!

n11!n12!n21!n22!
�n1111 �n1212 �n2121 �n2222

The unrestricted maximum likelihood estimates (MLEs) of the�ij values are given by
pij = nij=n. The maximized likelihood is then

maxL =
n!

n11!n12!n21!n22!

2Y
i=1

2Y
j=1

�nij
n

�nij
Under the independence hypothesisH0:�ij = �i+�+j , the likelihood is

L0 =
n!

n11!n12!n21!n22!
�
n1+
1+ �

n2+
2+ �

n+1
+1 �

n+2
+2

The MLEs for the�ij under this model arepij = ni+n+j=n
2 and the maximized log

likelihood is

maxL0 =
n!

n11!n12!n21!n22!

2Y
i=1

2Y
j=1

�ni+n+j
n2

�nij
The likelihood ratio is

� =
maxL0

maxL
=

2Y
i=1

2Y
j=1

� bmij

nij

�nij
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wherebmij = ni+n+j=n, and the likelihood ratio statistic is

G2 = �2 log � = 2
2X
i=1

2X
j=1

nij log
� nijbmij

�
The statisticG2 has an asymptotic chi-square distribution with 1 df ifH0 is true, and it is
asymptotically equivalent to the Pearson chi-square statisticQP discussed in Chapter 2.

16.2.2 Bicycle Example

Table 16.4 displays the cross-classification of type of bicycle (categorized as mountain or
other) and safety helmet usage for a sample of 100 bicycle riders. Under the assumption
that the variables bicycle type and helmet usage are observed for a sample of 100 riders,
both are response variables.

Table 16.4. Bicycle Data

Wearing Helmet
Bicycle Type Yes No Total

Mountain 34 32 66
Other 10 24 34
Total 44 56 100

The following statements create a SAS data set containing the cell counts.

data bicycle;
input type $ helmet $ count;
datalines;

Mountain Yes 34
Mountain No 32
Other Yes 10
Other No 24
;
run;

SupposeX denotes the row variable (bicycle type) andY denotes the column variable
(helmet usage). The saturated model

log(mij) = �+ �Xi + �Yj + �XYij i; j = 1; 2

is requested by the following PROC CATMOD invocation.

proc catmod;
weight count;
model type*helmet=_response_ / noresponse noiter noparm;
loglin type|helmet;

run;
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The response variables TYPE and HELMET are both listed on the left-hand side of the
MODEL statement (separated by an asterisk). This usage of the MODEL statement is
similar to that for repeated measures analyses (Chapter 13). Since PROC CATMOD
allows only independent variables on the right-hand side of the MODEL statement, you
can’t specify a loglinear model directly in the MODEL statement. Instead, you use the
special keyword–RESPONSE– on the right-hand side and specify the loglinear model
effects in the LOGLIN statement. In this example, the saturated model includes the TYPE
and HELMET main effects, as well as the TYPE� HELMET interaction through the
TYPE|HELMET specification.

The three options specified in the MODEL statement suppress printed output that may not
always be necessary in loglinear model analysis. The NORESPONSE option suppresses
printing of the loglinear model design matrix, the NOITER option suppresses printing of
the parameter estimates and other information at each iteration of the maximum likelihood
procedure, and the NOPARM option suppresses printing of the estimated parameters.

Output 16.1 displays the population and response profiles. There is one population, and
the four response profiles are defined by the cross-classification of the response variables
TYPE and HELMET.

Output 16.1 Population and Response Profiles

Population Profiles

Sample Sample Size
---------------------

1 100

Response Profiles

Response type helmet
------------------------------

1 Mountain No
2 Mountain Yes
3 Other No
4 Other Yes

Output 16.2 displays the analysis of variance table. Since the four multinomial cell
probabilities sum to one, there are three linearly independent expected frequenciesmij.
Since there are also three parameters, the model is saturated and the expected countsmij

are equal to the observed countsnij . Thus, the likelihood ratio statisticG2 is equal to zero.
Although the model was fit using maximum likelihood, the test statistics in the analysis of
variance table are Wald tests.
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Output 16.2 Analysis of Variance Table for Saturated Loglinear Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
type 1 11.29 0.0008
helmet 1 3.28 0.0700
type*helmet 1 4.33 0.0374

Likelihood Ratio 0 . .

The next PROC CATMOD invocation fits the independence loglinear model

log(mij) = �+ �Xi + �Yj i; j = 1; 2

which is specified by excluding the TYPE� HELMET term from the LOGLIN statement.

proc catmod;
weight count;
model type*helmet=_response_ / noprofile noresponse noiter noparm;
loglin type helmet;

run;

As shown in Output 16.3, the likelihood ratio statistic for testing the null hypothesis of
independence of HELMET and TYPE isG2 = 4:56. Therefore, there is clear evidence
that the two variables are not independent. Helmet usage is more associated with mountain
bikes than other bikes. The main effect TYPE tests the null hypothesis that the subjects are
distributed evenly over the two levels of this variable. The strongly significant results of
this test (QW = 9:87, 1 df,p = 0:0017) reflect the fact that 66% of the cyclists were riding
mountain bikes and only 34% were riding other types of bicycles (Table 16.4). The
subjects were relatively evenly distributed over the levels of the HELMET variable (44%
wore helmets, 56% did not); this is reflected in the nonsignificant HELMET main effect
(QW = 1:43). However, since there is evidence of interaction between HELMET and
TYPE, the main effects should be interpreted with caution.

Output 16.3 Analysis of Variance Table for Independence Loglinear Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
type 1 9.87 0.0017
helmet 1 1.43 0.2313

Likelihood Ratio 1 4.56 0.0328

For comparison, the FREQ procedure can also be used to compute the likelihood ratio test
of independence. The statements
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proc freq order=data;
weight count;
tables type*helmet / nopercent norow chisq;

run;

produce the results shown in Output 16.4. The statisticG2 is labeled “Likelihood Ratio
Chi-Square.”

Output 16.4 Likelihood Ratio Test of Independence Using PROC FREQ

Table of type by helmet

type helmet

Frequency|
Col Pct |Yes |No | Total
---------+--------+--------+
Mountain | 34 | 32 | 66

| 77.27 | 57.14 |
---------+--------+--------+
Other | 10 | 24 | 34

| 22.73 | 42.86 |
---------+--------+--------+
Total 44 56 100

Statistics for Table of type by helmet

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 1 4.4494 0.0349
Likelihood Ratio Chi-Square 1 4.5569 0.0328
Continuity Adj. Chi-Square 1 3.5975 0.0579
Mantel-Haenszel Chi-Square 1 4.4049 0.0358
Phi Coefficient 0.2109
Contingency Coefficient 0.2064
Cramer’s V 0.2109

Fisher’s Exact Test
----------------------------------
Cell (1,1) Frequency (F) 34
Left-sided Pr <= F 0.9906
Right-sided Pr >= F 0.0280

Table Probability (P) 0.0186
Two-sided Pr <= P 0.0549

Sample Size = 100

16.2.3 Loglinear Model for thes� r Table

When a sample ofn observations is classified with respect to two categorical variables, one
havings levels and the other havingr levels, the resulting frequencies can be displayed in
ans� r contingency table, as shown in Table 16.5. The corresponding cell probabilities
are�ij, with row and column marginal probabilitiesf�i+g andf�+jg, respectively.
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Table 16.5. Cell Counts in an s� r Contingency Table

Level ofY
Level ofX 1 2 � � � r Total

1 n11 n12 � � � n1r n1+
2 n21 n22 � � � n2r n2+
...

...
...

...
...

s ns1 ns2 � � � nsr ns+
Total n+1 n+2 � � � n+r n

The generalization of the loglinear model from the2� 2 table to thes� r table is
straightforward. The saturated model is

log(mij) = �+ �Xi + �Yj + �XYij i = 1; : : : ; s; j = 1; : : : ; r

wheremij = n�ij is the expected frequency in the (i; j) cell. The parameter� is fixed by
the sample sizen and the model hass+ r + sr parameters�Xi , �Yj , and�XYij . The
sum-to-zero constraints

sX
i=1

�Xi = 0

rX
j=1

�Yj = 0

sX
i=1

�XYij =

rX
j=1

�XYij = 0

implies(s� 1) + (r � 1) + (s� 1)(r � 1) = sr � 1 parameters and zero df for testing
lack of fit. Letting bmij = ni+n+j=n, the likelihood ratio statistic

G2 = 2
sX
i=1

rX
j=1

nij log (nij=bmij)

tests the null hypothesisH0:�
XY
ij = 0, for i = 1; : : : ; s� 1, j = 1; : : : ; r � 1. Under the

null hypothesis of independence,G2 has an approximate chi-square distribution with
(s� 1)(r � 1) df.

If H0 is true, the reduced modellog(mij) = �+ �Xi + �Yj is the model of independence
of X andY . This model has(s� 1) + (r � 1) linearly independent� parameters and
(s� 1)(r � 1) df for testing lack of fit.

16.2.4 Malignant Melanoma Example

Table 16.6 displays data from a cross-sectional study of 400 patients with malignant
melanoma (Roberts et al. 1981). For each patient, the site of the tumor and its histological
type were recorded. The following statements create a SAS data set containing the cell
frequencies for this4� 3 contingency table.

Table 16.6. Malignant Melanoma Data

Tumor Site
Tumor Type Head and Neck Trunk ExtremitiesTotal
Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56
Total 68 106 226 400
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data melanoma;
input type $ site $ count;
datalines;

Hutchinson’s Head&Neck 22
Hutchinson’s Trunk 2
Hutchinson’s Extremities 10
Superficial Head&Neck 16
Superficial Trunk 54
Superficial Extremities 115
Nodular Head&Neck 19
Nodular Trunk 33
Nodular Extremities 73
Indeterminate Head&Neck 11
Indeterminate Trunk 17
Indeterminate Extremities 28
;
run;

The following PROC CATMOD invocation fits the independence loglinear model

log(mij) = �+ �Xi + �Yj i = 1; : : : ; 4; ; j = 1; : : : ; 3

proc catmod;
weight count;
model type*site=_response_ / noresponse noiter noparm;
loglin type site;

run; quit;

The analysis of variance table in Output 16.5 provides strong evidence that tumor type and
tumor site are not independent (G2 = 51:80, 6 df,p < 0:0001). Hutchinson’s tumor type is
more associated with head and neck, and other types are more associated with extremities.

Output 16.5 Analysis of Variance Table for Independence Loglinear Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
type 3 121.48 <.0001
site 2 93.30 <.0001

Likelihood Ratio 6 51.80 <.0001

Fitting the Loglinear Model with PROC GENMOD
To perform loglinear modeling with PROC GENMOD, you actually fit a Poisson
regression model. Proportionality of the respective likelihoods implies that the maximum
likelihood estimates for the parameters in the Poisson regression model are identical to the
corresponding maximum likelihood estimates for the parameters in the loglinear model.
See Appendix A in this chapter for more detail concerning this comparability.

The following PROC GENMOD invocation fits the saturated loglinear model:
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ods select Type3;
proc genmod;

class type site;
model count=type|site / link=log dist=poisson type3;

run;

You specify the LINK=LOG option and the DIST=POISSON option in the MODEL
statement. The ODS SELECT statement restricts the output produced to the table of
likelihood ratio statistics. The table of likelihood ratio statistics in Output 16.6 includes
G2 = 51:80 (6 df, p < 0:0001), which is the same statistic displayed in Output 16.5 as the
likelihood ratio test. However, the tests for the single effects are different because PROC
GENMOD is producing likelihood ratio tests and PROC CATMOD is producing Wald
statistics.

Output 16.6 Likelihood Ratio Statistics from Saturated Loglinear Model

LR Statistics For Type 3 Analysis

Chi-
Source DF Square Pr > ChiSq

type 3 85.07 <.0001
site 2 33.34 <.0001
type*site 6 51.80 <.0001

As mentioned in the “Introduction,” the GENMOD procedure is a good way to evaluate
the association in a loglinear model and to evaluate higher order effects in the process of
determining a set of lower order effects that describe the association adequately. However,
when it comes to the interpretation of lower order effects in the presence of higher order
effects, the parameterization of the CATMOD procedure has advantages. Since the usual
constraints of the loglinear model that effects add to zero maps into the
deviation-from-the-mean parameterization of the CATMOD procedure, these lower order
effects can usually be interpreted as effects averaged over the levels of a variable with
which it has an interaction. For the reference cell parameterization that PROC GENMOD
uses, such effects are nested within the reference levels of the interacting variables, a much
more complicated scenario.

16.2.5 Hierarchical and Nonhierarchical Loglinear Models

Hierarchical loglinear models are defined to be members of the family of models such that
if any �-term is set equal to zero, all effects at the same or higher order with the
subscripted�-terms contained in them are also set equal to zero (Bishop, Fienberg, and
Holland 1975, p. 34). Thus, whenever a model contains higher-order effects, it also must
contain the corresponding lower-order effects. For two-way tables, the saturated model

log(mij) = �+ �Xi + �Yj + �XYij i = 1; : : : ; s; j = 1; : : : ; r

and the independence model

log(mij) = �+ �Xi + �Yj i = 1; : : : ; s; j = 1; : : : ; r
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are the only hierarchical loglinear models that involve both variables. The other possible
hierarchical models are

log(mij) = �+ �Xi

log(mij) = �+ �Yj

log(mij) = �

An example of a nonhierarchical model would be

log(mij) = �+ �Xi + �XYij

This model is nonhierarchical since it contains the higher-order term�XYij but not the

lower-order effect�Yj .

For two-way tables, closed-form estimates of the cell frequencies can be obtained for
hierarchical models:bmij = nij for the saturated model andbmij = ni+n+j=n for the
independence model. In multiway tables, explicit estimates are not usually available.
Historically, the restriction to consideration of hierarchical loglinear models was at least
partially due to the fact that the more readily accessible methods of obtaining MLEs of the
cell frequencies were primarily applicable to hierarchical models.

16.3 Three-Way Contingency Tables

16.3.1 Mutual, Joint, Marginal, and Conditional Independence

Consider a three-dimensional table containing the cross-classification of variablesX, Y ,
andZ. The distributions ofX;Y cell counts at different levels ofZ can be displayed using
cross-sections of the three-way table. These cross-sections are calledpartial tables. In the
partial tables, the value ofZ is held constant.

For example, Section 3.2.2 of Chapter 3 discusses health policy opinion data with variables
X=stress,Y =opinion, andZ=residence. Table 16.7 displays the two partial tables of the
stress� opinion cross-classification for subjects from urban and rural residences.

Table 16.7. Partial Tables for Health Policy Opinion Data

Opinion
Residence Stress Favorable Unfavorable Total
Urban Low 48 12 60

High 96 94 190
Total 144 106 250

Rural Low 55 135 190
High 7 53 60
Total 62 188 250

Alternatively, the two-way contingency table obtained by adding the cell counts in the
partial tables is called theX;Y marginal table. This table ignores the variableZ.
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Table 16.8 displays the marginal stress� opinion cross-classification ignoring the variable
residence.

Table 16.8. Marginal Table for Health Policy Opinion Data

Opinion
Stress Favorable Unfavorable Total
Low 103 147 250
High 103 147 250
Total 206 294 500

Partial tables can exhibit quite different associations than marginal tables, as was described
in Section 3.2.2 for the health policy opinion data. In fact, it can be quite misleading to
analyze only the marginal tables of a multiway contingency table. Simpson’s Paradox, the
result that a pair of variables can have marginal association of different strength from their
partial associations, is discussed in Section 3.2.2.

Before describing some of the various types of loglinear models, it is important to consider
the four types of independence for cell probabilities in the three-way cross-classification of
variablesX, Y , andZ. Denote the cell probabilities by�ijk, for i = 1; : : : ; I,
j = 1; : : : ; J , andk = 1; : : : ;K, whereI, J , andK denote the number of levels of
variablesX, Y , andZ, respectively.

The three variables aremutually independentwhen

�ijk = �i++ �+j+ �++k i = 1; : : : ; I; j = 1; : : : ; J; k = 1; : : : ;K

VariableY is jointly independentof X andZ when

�ijk = �i+k �+j+ i = 1; : : : ; I; j = 1; : : : ; J; k = 1; : : : ;K

This is ordinary two-way independence betweenY and a new variable composed of the
IK combinations of the levels ofX andZ. Similar definitions apply forX to be jointly
independent ofY andZ, and forZ to be jointly independent ofX andY . Note that
mutual independence implies joint independence of any one variable from the others.

VariablesX andY aremarginally independentif

�ij+ = �i++ �+j+ i = 1; : : : ; I; j = 1; : : : ; J

In general, two variables are marginally independent if they are independent in the
two-way table obtained by collapsing over the levels of the remaining variables. IfY is
jointly independent ofX andZ, thenX andY , as well asY andZ, are marginally
independent. Thus, joint independence implies marginal independence.

Next consider the relationship between any pair of variables, controlling for the levels of
the third variable. For example, ifX andY are independent in the partial table for thekth
category ofZ, thenX andY are said to beconditionally independent at levelk ofZ.
Suppose

�ijjk = �ijk=�++k i = 1; : : : ; I; j = 1; : : : ; J
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denotes the joint distribution ofX andY at levelk of Z. Then conditional independence
at levelk of Z is

�ijk = �i+jk �+jjk i = 1; : : : ; I; j = 1; : : : ; J

More generally, the variablesX andY areconditionally independent givenZ when they
are conditionally independent at every level ofZ, or when

�ijk = �i+k �+jk=�++k i = 1; : : : ; I; j = 1; : : : ; J; k = 1; : : : ;K

Suppose thatY is jointly independent ofX andZ. ThenX andY are conditionally
independent, as areY andZ.

In summary, two variables (sayX andY ) are conditionally independent and marginally
independent whenX, Y , andZ are mutually independent, or whenY is jointly
independent ofX andZ. However, conditional independence ofX andY , givenZ, does
not imply thatX andY are marginally independent.

16.3.2 Hierarchical Loglinear Models

The saturated loglinear model for a three-way table is

log(mijk) = �+ �Xi + �Yj + �Zk + �XYij + �XZik + �Y Zjk + �XY Zijk

This model has

1 + (I � 1) + (J � 1) + (K � 1) + (I � 1)(J � 1) + (I � 1)(K � 1)

+(J � 1)(K � 1) + (I � 1)(J � 1)(K � 1) = IJK

parameters and zero df for testing lack of fit. The saturated model allows for three-way
interaction, that is, each pair of variables may be conditionally dependent, and an odds
ratio for any pair of variables may vary across levels of the third variable.

The reduced model

log(mijk) = �+ �Xi + �Yj + �Zk + �XYij + �XZik + �Y Zjk

is called the loglinear model ofno three-factor interaction. In this model, no pair of
variables is conditionally independent. Thus, for each pair of variables, marginal odds
ratios may differ from partial odds ratios. The “no three-factor interaction” model implies
that the conditional odds ratios between any two variables are identical at each level of the
third variable. Except in special cases, closed form expressions for the expected cell
frequencies do not exist.

There are three hierarchical models in which only one pair of variables is conditionally
independent. For example, ifX andY are conditionally independent, givenZ, the
corresponding loglinear model is

log(mijk) = �+ �Xi + �Yj + �Zk + �XZik + �Y Zjk
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The parametersf�XZik g andf�Y Zjk g pertain to theX;Z andY;Z partial associations.
There are also three models in which only one pair of variables is conditionally dependent.
For example, ifY is jointly independent ofX andZ, the corresponding model is

log(mijk) = �+ �Xi + �Yj + �Zk + �XZik

In this model, the parametersf�XZik g pertain to the dependence betweenX andZ.

Finally, the loglinear model corresponding to mutual independence is

log(mijk) = �+ �Xi + �Yj + �Zk

In this model, each pair of variables is also conditionally and marginally independent.

16.3.3 Fitting Loglinear Models

After selecting a loglinear model, the observed data are used to estimate model
parameters, cell probabilities, and expected frequencies. Although alternative methods of
estimation are sometimes useful, the maximum likelihood (ML) method offers several
advantages. First of all, the MLEs for hierarchical loglinear models are relatively easy to
compute, since the estimates satisfy certain intuitive marginal constraints. In addition, the
ML method can be used when data are sparse, that is, when there are several observed cell
counts of zero. (Note that marginal totals, however, cannot be equal to zero.) Although
beyond the scope of this book, the ML method also has some theoretical advantages over
other approaches (Rao 1961, 1962).

Birch (1963) showed that the MLEs are the same for simple multinomial sampling,
independent Poisson sampling, and product multinomial sampling. For hierarchical
loglinear models, Birch’s (1963) results also enable the derivation of estimates of the
expected cell counts without first going through the intermediate step of estimating the
�-terms. For some models, the cell estimates are explicit closed-form functions of the
marginal totals. For example, the expected cell frequencies for the independence loglinear
model in a two-way table are functions of the row and column marginal totals; specificallybmij = ni+n+j=n (Section 16.2.3). However, many loglinear models do not have direct
ML estimates. As one example, direct estimates do not exist for unsaturated models
containing all two-factor interactions. When direct estimates do not exist, iterative
procedures must be used.

The iterative proportional fitting (IPF) algorithm, originally presented by Deming and
Stephan (1940), is a simple method for calculating MLEs of cell frequencies for
hierarchical loglinear models. Since the estimated cell counts depend only on the marginal
totals, no special provision need be made for sporadic cells with no observations. Any set
of starting values may be chosen that conforms to the model being fit; for example, all
expected cell counts can initially be set equal to one. If direct estimates exist, the
procedure yields these estimates in one cycle. IPF is used by many computer programs,
since it is a simple method not requiring matrix inversion or complicated calculations.

The Newton-Raphson method can also be used to fit loglinear models. This method is
more complex, since each step requires solving a system of equations. When the
contingency table has several dimensions and the parameter vector is large, the
Newton-Raphson method may not be feasible. However, since Newton-Raphson is a



568 Loglinear Models

general purpose method that can solve more complex systems of likelihood equations,
restriction to the class of hierarchical loglinear models is not necessary. In addition,
Newton-Raphson is more efficient numerically, since the rate of convergence is quadratic
(compared to linear for IPF). Of course, this is partially counterbalanced by the fact that
each cycle takes less time with IPF. Another advantage of the Newton-Raphson method is
that the estimated covariance matrix of the parameter estimates is automatically produced
as a by-product. The CATMOD procedure uses the Newton-Raphson method to fit
loglinear models.

16.3.4 Testing Goodness of Fit

The goodness of fit of a loglinear model can be assessed by comparing the fitted cell
counts to the observed cell counts. The general form of the likelihood ratio chi-square
statistic isG2 = 2

P
n log(n=bm), wheren and bm denote the observed and fitted cell

frequencies. The corresponding Pearson chi-square statistic is equal to
QP =

P
(n� bm)2=bm. When the model holds, both statistics have asymptotic chi-square

distributions with degrees of freedom equal to the number of cells in the table minus the
number of linearly independent parameters.

The likelihood ratio statisticG2 has two important properties not possessed byQP . First,
it is the statistic that is minimized by the MLEs. In addition, suppose you want to compare
two modelsM1 andM2, whereM2 is a special case ofM1. In terms of loglinear model
parameters,M2 contains only a subset of the�-terms contained inM1. In this case, the
simpler modelM2 is said to be nested withinM1.

SupposeG2(M1) andG2(M2) denote the goodness-of-fit statistics for modelsM1 and
M2, and supposev1 andv2 denote the corresponding df. SinceM2 is simpler thanM1,
v1 < v2 andG2(M1) � G2(M2). Assuming modelM1 holds, the likelihood ratio
approach for testing thatM2 holds uses the statistic

G2(M2 jM1) = G2(M2)�G2(M1)

which has an asymptotic chi-square distribution with(v2 � v1) df when modelM2 holds.
A comparable decomposition for the Pearson chi-square statisticQP does not
correspondingly apply.

16.3.5 Job Satisfaction Example

Table 16.9 displays the three-way cross-classification of quality of management,
supervisor’s job satisfaction, and worker’s job satisfaction for a random sample of 715
workers selected from Danish industry (Andersen 1991, p. 155).� Quality of management
was categorized from an external evaluation of each factory, while the job satisfaction
ratings were based on questionnaires completed by each worker and his or her supervisor.
Since all three variables are response variables, the use of loglinear models to investigate
the patterns of association among management quality, supervisor’s job satisfaction, and
worker’s job satisfaction seems appropriate.

�Reprinted by permission of Springer-Verlag.
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Table 16.9. Job Satisfaction Data

Quality of Supervisor’s Worker’s Job Satisfaction
Management Job Satisfaction Low High Total

Bad Low 103 87 190
High 32 42 74

Good Low 59 109 168
High 78 205 283

LetX, Y , andZ denote quality of management, supervisor’s job satisfaction, and
worker’s job satisfaction, respectively, and let�ijk denote the corresponding multinomial
cell probabilities fori = 1; 2, j = 1; 2, andk = 1; 2. The following statements read in the
cell counts and fit the saturated loglinear model

log(mijk) = �+ �Xi + �Yj + �Zk + �XYij + �XZik + �Y Zjk + �XY Zijk

which is expressed using the vertical bar (j) notation in the LOGLIN statement.

data satisfac;
input managmnt $ supervis $ worker $ count;
datalines;

Bad Low Low 103
Bad Low High 87
Bad High Low 32
Bad High High 42
Good Low Low 59
Good Low High 109
Good High Low 78
Good High High 205
;
proc catmod order=data;

weight count;
model managmnt*supervis*worker=_response_

/ noresponse noiter noparm;
loglin managmnt|supervis|worker;

run;

Output 16.7 displays the population and response profiles. There is a single multinomial
sample with eight categories of response. Since the model is saturated, the likelihood ratio
test of fit is equal to zero (see Output 16.8). The Wald test of the three-factor interaction is
nonsignificant (QW = 0:06, 1 df,p = 0:7989).
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Output 16.7 Population and Response Profiles

Population Profiles

Sample Sample Size
---------------------

1 715

Response Profiles

Response managmnt supervis worker
------------------------------------------

1 Bad Low Low
2 Bad Low High
3 Bad High Low
4 Bad High High
5 Good Low Low
6 Good Low High
7 Good High Low
8 Good High High

Output 16.8 Analysis of Variance Table for Saturated Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
managmnt 1 38.30 <.0001
supervis 1 8.10 0.0044
managmnt*supervis 1 65.67 <.0001
worker 1 23.59 <.0001
managmnt*worker 1 18.17 <.0001
supervis*worker 1 5.24 0.0221
managmnt*supervis*worker 1 0.06 0.7989

Likelihood Ratio 0 . .

The second model includes only the main effects and two-factor interactions.

proc catmod order=data;
weight count;
model managmnt*supervis*worker=_response_

/ noprofile noresponse noiter p=freq;
loglin managmnt|supervis managmnt|worker supervis|worker;

run;

The likelihood ratio test in the analysis of variance table (Output 16.9) compares this
model to the saturated model and thus tests the null hypothesis of no three-factor
interaction. In this example, theG2 statistic of 0.06 is the same as the Wald statistic from
the saturated model. Although the two statistics are asymptotically equivalent, they are not
identical in general.
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Output 16.9 Analysis of Variance Table for Model with No Three-Factor Interaction

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
---------------------------------------------------
managmnt 1 38.37 <.0001
supervis 1 8.32 0.0039
managmnt*supervis 1 67.06 <.0001
worker 1 25.96 <.0001
managmnt*worker 1 19.57 <.0001
supervis*worker 1 5.33 0.0210

Likelihood Ratio 1 0.06 0.7989

The Wald tests of the two-factor interactions and main effects are all significant. This
indicates that a more parsimonious model for the data may not be justified. However, you
may wish to fit each of the three models containing only two of the two-factor interactions
and compare these models to the model with no three-factor interaction using likelihood
ratio tests. The SAS statements are as follows:

proc catmod order=data;
weight count;
model managmnt*supervis*worker=_response_

/ noprofile noresponse noiter noparm;
loglin managmnt|supervis managmnt|worker;

proc catmod order=data;
weight count;
model managmnt*supervis*worker=_response_

/ noprofile noresponse noiter noparm;
loglin managmnt|supervis supervis|worker;

proc catmod order=data;
weight count;
model managmnt*supervis*worker=_response_

/ noprofile noresponse noiter noparm;
loglin managmnt|worker supervis|worker;

run;

The corresponding likelihood ratio statistics for goodness of fit (output not shown) are
G2 = 5:39, 19.71, and 71.90, all with 2 df. The 1 df likelihood ratio statistics comparing
each of these three models to the model with no three-factor interaction are
5:39 � 0:06 = 5:33, 19:71 � 0:06 = 19:65, and71:90 � 0:06 = 71:84, respectively.
Relative to the chi-square distribution with 1 df, all indicate a significant lack of fit.

The model with no three-factor interaction provides a good fit to the observed data. Thus,
no pair of variables is conditionally independent. In this model, the conditional odds ratios
between any two variables are identical at each level of the third variable. For example, the
odds ratio for the association between the employee’s job satisfaction and the supervisor’s
job satisfaction is the same at each level of management quality. You can compute the
estimated odds ratios from the table of maximum likelihood estimates (Output 16.10).
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Output 16.10 Parameter Estimates from Model with No Three-Factor Interaction

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-------------------------------------------------------------------------------
managmnt 1 -0.2672 0.0431 38.37 <.0001
supervis 2 0.1243 0.0431 8.32 0.0039
managmnt*supervis 3 0.3491 0.0426 67.06 <.0001
worker 4 -0.2065 0.0405 25.96 <.0001
managmnt*worker 5 0.1870 0.0423 19.57 <.0001
supervis*worker 6 0.0962 0.0417 5.33 0.0210

From the model with no three-factor interaction, the log odds of low job satisfaction for
employees, at fixed levels of management quality and supervisor’s job satisfaction, is

log(mij1=mij2) = log(mij1)� log(mij2)

= �Z1 + �XZi1 + �Y Zj1 � (�Z2 + �XZi2 + �Y Zj2 )

= 2�Z1 + 2�XZi1 + 2�Y Zj1

since�Z1 + �Z2 = 0, �XZi1 + �XZi2 = 0, and�Y Zj1 + �Y Zj2 = 0. Thus, at a fixed level of
management quality, the logarithm of the odds ratio at low and high levels of supervisor
satisfaction is

log(mi11=mi12)� log(mi21=mi22) = (2�Z1 + 2�XZi1 + 2�Y Z11 )� (2�Z1 + 2�XZi1 + 2�Y Z21 )

= 2�Y Z11 � 2�Y Z21

= 4�Y Z11

Since the estimate of�Y Z11 from Output 16.10 is 0.0962, the odds of low worker job
satisfaction are estimated to beexp(4� 0:0962) = 1:47 times higher when the
supervisor’s job satisfaction is low than when the supervisor’s job satisfaction is high. Note
that this estimate of the odds ratio is the same for factories with bad and good management
quality. Using the observed counts from Table 16.9, the observed odds ratios are

103 � 42

87� 32
= 1:55

in factories where the external evaluation of management quality was bad and

59 � 205

109 � 78
= 1:42

in factories where the quality of management was good.

You can estimate additional odds ratios using the parameter estimates listed in
Output 16.10. For a fixed level of supervisor job satisfaction, the odds of low worker
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satisfaction are estimated to beexp(4� 0:1870) = 2:1 times higher when the quality of
management is bad than when the management quality is good. This value is in between
the corresponding observed odds ratios of

103� 109

87� 59
= 2:19

when supervisor job satisfaction is low and

32 � 205

42� 78
= 2:00

when supervisor job satisfaction is high. Similarly, for a fixed level of worker job
satisfaction, the odds of low supervisor job satisfaction are estimated to be
exp(4� 0:3491) = 4:0 times higher when the quality of management is bad than when the
management quality is good. This value is in between the corresponding observed odds
ratios of

103 � 78

32� 59
= 4:26

when worker job satisfaction is low and

87 � 205

42 � 109
= 3:90

when worker job satisfaction is high.

These results show that the odds of low worker job satisfaction are somewhat more
affected by the quality of management than by the supervisor’s job satisfaction. In
addition, bad quality management has a greater effect on the job satisfaction of supervisors
than on worker job satisfaction.

The P=FREQ option of the MODEL statement prints predicted cell frequencies.
Output 16.11 displays the resulting output from the model with no three-factor interaction.
The first seven rows are the observed and predicted response functions, given by
log(mijk)� log(m222). The next eight rows, labeled F1–F8, are the observed and
predicted cell counts. Instead of using the parameter estimates from Output 16.10, you
could compute the estimated odds ratios using the predicted cell frequencies.
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Output 16.11 Predicted Cell Counts

Maximum Likelihood Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

Number Function Error Function Error Residual
--------------------------------------------------------------------

1 -0.68828 0.120776 -0.69904 0.113356 0.010757
2 -0.8571 0.127954 -0.85226 0.1261 -0.00484
3 -1.85727 0.190074 -1.83812 0.172903 -0.01916
4 -1.58534 0.169374 -1.60661 0.148406 0.021266
5 -1.24547 0.14774 -1.23666 0.142911 -0.00881
6 -0.63166 0.118543 -0.64202 0.111524 0.01036
7 -0.9663 0.133036 -0.97937 0.12311 0.013066

Maximum Likelihood Predicted Values for Frequencies

------Observed----- -----Predicted-----
Standard Standard

managmnt supervis worker Frequency Error Frequency Error Residual
------------------------------------------------------------------------------
Bad Low Low 103 9.389475 102.2639 8.904231 0.736105
Bad Low High 87 8.741509 87.73611 8.283433 -0.73611
Bad High Low 32 5.528818 32.73611 4.783695 -0.73611
Bad High High 42 6.287517 41.26389 5.525364 0.736105
Good Low Low 59 7.357409 59.73611 6.811457 -0.73611
Good Low High 109 9.611619 108.2639 9.138839 0.736105
Good High Low 78 8.336121 77.26389 7.782186 0.736105
Good High High 205 12.0923 205.7361 11.75535 -0.73611

16.4 Higher-Order Contingency Tables

16.4.1 Dyke-Patterson Cancer Knowledge Data

As the number of dimensions of a contingency table increases, there are some
complicating factors. One difficulty is the tremendous increase in the number of possible
interaction parameters. Another problem is caused by the dramatic increase in the number
of cells. Unless the sample size is very large, there may be many observed cell counts
equal to zero. There may even be marginal totals equal to zero.

Table 16.10 displays data obtained from a sample of 1729 individuals cross-classified
according to five dichotomous variables (Dyke and Patterson 1952). The purpose of the
study was to investigate the relationship between cancer knowledge (good, poor) and four
media exposure variables.

� Do you read newspapers?
� Do you listen to the radio?
� Do you read books and magazines? (solid reading)
� Do you attend lectures?
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Table 16.10. Cancer Knowledge Data

Read Listen Solid Attend Cancer Knowledge
Newspapers to Radio Reading Lectures Good Poor

Yes Yes Yes Yes 23 8
Yes Yes Yes No 102 67
Yes Yes No Yes 8 4
Yes Yes No No 35 59
Yes No Yes Yes 27 18
Yes No Yes No 201 177
Yes No No Yes 7 6
Yes No No No 75 156
No Yes Yes Yes 1 3
No Yes Yes No 16 16
No Yes No Yes 4 3
No Yes No No 13 50
No No Yes Yes 3 8
No No Yes No 67 83
No No No Yes 2 10
No No No No 84 393

Since this was a cross-sectional study, it is reasonable to treat all five variables as response
variables and to investigate the patterns of dependence using loglinear models.

16.4.2 Hierarchical Loglinear Models

There are a large number of possible hierarchical models that can be considered for the
cancer knowledge data of Table 16.10. The possible terms to be included in a model are
the intercept�, 5 main effects, 10 two-factor interaction terms, 10 three-factor
interactions, 5 four-factor interactions, and the five-factor interaction.

The following statements read in the observed cell frequencies and fit the loglinear model
of no five-factor interaction.

data cancer;
input news $ radio $ reading $ lectures $ knowledg $ count;
datalines;

Yes Yes Yes Yes Good 23
Yes Yes Yes Yes Poor 8
Yes Yes Yes No Good 102
Yes Yes Yes No Poor 67
Yes Yes No Yes Good 8
Yes Yes No Yes Poor 4
Yes Yes No No Good 35
Yes Yes No No Poor 59
Yes No Yes Yes Good 27
Yes No Yes Yes Poor 18
Yes No Yes No Good 201
Yes No Yes No Poor 177
Yes No No Yes Good 7
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Yes No No Yes Poor 6
Yes No No No Good 75
Yes No No No Poor 156
No Yes Yes Yes Good 1
No Yes Yes Yes Poor 3
No Yes Yes No Good 16
No Yes Yes No Poor 16
No Yes No Yes Good 4
No Yes No Yes Poor 3
No Yes No No Good 13
No Yes No No Poor 50
No No Yes Yes Good 3
No No Yes Yes Poor 8
No No Yes No Good 67
No No Yes No Poor 83
No No No Yes Good 2
No No No Yes Poor 10
No No No No Good 84
No No No No Poor 393
;
proc catmod order=data;

weight count;
model news*radio*reading*lectures*knowledg=_response_

/ noresponse noiter noparm;
loglin news|radio|reading|lectures news|radio|reading|knowledg

news|radio|lectures|knowledg news|reading|lectures|knowledg
radio|reading|lectures|knowledg;

run;

Although the model could be specified by listing the5+ 10+ 10 + 5 = 30 main effect and
interaction terms, it is simpler to use the vertical bar notation to specify the five four-factor
interactions.

Output 16.12 displays the population and response profiles. There is a single multinomial
population and25 = 32 response profiles. The likelihood ratio goodness-of-fit statistic
from this model isG2 = 1:02 (see Output 16.13). This statistic, with 1 df, tests the null
hypothesis of no five-factor interaction and is not significant (p = 0:3116). Note that it is
not necessary to fit the saturated model first in order to test this hypothesis.
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Output 16.12 Population and Response Profiles

Population Profiles

Sample Sample Size
---------------------

1 1729

Response Profiles

Response news radio reading lectures knowledg
------------------------------------------------------------

1 Yes Yes Yes Yes Good
2 Yes Yes Yes Yes Poor
3 Yes Yes Yes No Good
4 Yes Yes Yes No Poor
5 Yes Yes No Yes Good
6 Yes Yes No Yes Poor
7 Yes Yes No No Good
8 Yes Yes No No Poor
9 Yes No Yes Yes Good

10 Yes No Yes Yes Poor
11 Yes No Yes No Good
12 Yes No Yes No Poor
13 Yes No No Yes Good
14 Yes No No Yes Poor
15 Yes No No No Good
16 Yes No No No Poor
17 No Yes Yes Yes Good
18 No Yes Yes Yes Poor
19 No Yes Yes No Good
20 No Yes Yes No Poor
21 No Yes No Yes Good
22 No Yes No Yes Poor
23 No Yes No No Good
24 No Yes No No Poor
25 No No Yes Yes Good
26 No No Yes Yes Poor
27 No No Yes No Good
28 No No Yes No Poor
29 No No No Yes Good
30 No No No Yes Poor
31 No No No No Good
32 No No No No Poor
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Output 16.13 Analysis of Variance Table from Model with No Five-Factor Interaction

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
news 1 47.96 <.0001
radio 1 49.57 <.0001
news*radio 1 5.60 0.0180
reading 1 1.66 0.1976
news*reading 1 28.96 <.0001
radio*reading 1 0.15 0.7024
news*radio*reading 1 0.01 0.9099
lectures 1 377.03 <.0001
news*lectures 1 2.72 0.0989
radio*lectures 1 11.28 0.0008
news*radio*lectures 1 1.52 0.2177
reading*lectures 1 2.94 0.0864
news*reading*lectures 1 0.08 0.7833
radio*reading*lectures 1 1.78 0.1825
news*radio*readin*lectur 1 0.39 0.5348
knowledg 1 5.34 0.0209
news*knowledg 1 15.37 <.0001
radio*knowledg 1 4.96 0.0259
news*radio*knowledg 1 0.07 0.7868
reading*knowledg 1 5.22 0.0224
news*reading*knowledg 1 0.01 0.9307
radio*reading*knowledg 1 0.27 0.6013
news*radio*readin*knowle 1 0.19 0.6667
lectures*knowledg 1 2.41 0.1208
news*lectures*knowledg 1 2.26 0.1329
radio*lectures*knowledg 1 1.79 0.1806
news*radio*lectur*knowle 1 0.14 0.7115
reading*lecture*knowledg 1 4.67 0.0307
news*readi*lectur*knowle 1 0.77 0.3795
radio*readi*lectu*knowle 1 0.32 0.5703

Likelihood Ratio 1 1.02 0.3116

In Output 16.13, none of the Wald statistics for the four-factor interaction terms is larger
than 0.77. Thus, the next statements fit the loglinear model with no four-way and five-way
interaction terms. Again, the vertical bar notation is used to specify the 10 three-factor
interactions. This is simpler than explicitly listing the 5 main effects, 10 two-factor
interactions, and 10 three-factor interactions.

proc catmod order=data;
weight count;
model news*radio*reading*lectures*knowledg=_response_

/ noprofile noresponse noiter noparm;
loglin news|radio|reading news|radio|lectures

news|radio|knowledg news|reading|lectures
news|reading|knowledg news|lectures|knowledg
radio|reading|lectures radio|reading|knowledg
radio|lectures|knowledg reading|lectures|knowledg;

run;

In the analysis of variance table displayed in Output 16.14, the likelihood ratio
goodness-of-fit statistic tests the null hypothesis that the four-factor and five-factor
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interactions are jointly equal to zero. You would not reject this hypothesis (G2 = 3:23,
6 df, p = 0:7791). You can also compare this model to the model with no five-way
interaction. The value of the test statistic is3:23 � 1:02 = 2:21 with 5 df, which is clearly
nonsignificant.

Output 16.14 Analysis of Variance Table from Model with No Four-Factor Interactions

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
news 1 47.86 <.0001
radio 1 57.25 <.0001
news*radio 1 6.36 0.0117
reading 1 2.96 0.0855
news*reading 1 28.47 <.0001
radio*reading 1 0.04 0.8408
news*radio*reading 1 1.26 0.2616
lectures 1 391.77 <.0001
news*lectures 1 2.37 0.1236
radio*lectures 1 13.84 0.0002
news*radio*lectures 1 1.51 0.2187
knowledg 1 4.70 0.0302
news*knowledg 1 16.85 <.0001
radio*knowledg 1 5.20 0.0226
news*radio*knowledg 1 0.00 0.9528
reading*lectures 1 5.24 0.0221
news*reading*lectures 1 0.01 0.9418
reading*knowledg 1 9.29 0.0023
news*reading*knowledg 1 2.76 0.0969
lectures*knowledg 1 3.10 0.0782
news*lectures*knowledg 1 3.03 0.0818
radio*reading*lectures 1 1.50 0.2213
radio*reading*knowledg 1 0.01 0.9434
radio*lectures*knowledg 1 1.38 0.2409
reading*lecture*knowledg 1 3.84 0.0500

Likelihood Ratio 6 3.23 0.7791

Output 16.14 also displays Wald statistics for the 10 three-factor interactions. The one df
Wald statistics for seven of these interactions are relatively small (1.5 or less). However,
the statistics for the NEWS� READING� KNOWLEDG, NEWS� LECTURES�
KNOWLEDG, and READING� LECTURES� KNOWLEDG interactions range from
2.76 to 3.84. The next statements fit the model that includes these three interaction terms,
as well as all main effects and two-factor interactions.

proc catmod order=data;
weight count;
model news*radio*reading*lectures*knowledg=_response_

/ noprofile noresponse noiter noparm;
loglin news|radio radio|reading

radio|lectures radio|knowledg
news|reading|knowledg news|lectures|knowledg
reading|lectures|knowledg;

run;
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As shown in Output 16.15, this model provides a good fit relative to the saturated model
(G2 = 9:50, 13 df,p = 0:7341). In comparison to the previous model with no four-factor
and higher interactions, the likelihood ratio test that the seven excluded three-factor
interactions are jointly equal to zero isG2 = 9:50� 3:23 = 6:27 with 13� 6 = 7 df
(p = 0:39). Thus, you would not reject the null hypothesis that the excluded three-factor
interactions are jointly equal to zero.

Output 16.15 Analysis of Variance Table from Model with 3 Three-Factor Interactions

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
news 1 53.36 <.0001
radio 1 100.01 <.0001
news*radio 1 43.62 <.0001
reading 1 2.88 0.0899
radio*reading 1 0.48 0.4864
lectures 1 434.50 <.0001
radio*lectures 1 10.60 0.0011
knowledg 1 5.22 0.0224
radio*knowledg 1 6.28 0.0122
news*reading 1 142.56 <.0001
news*knowledg 1 17.99 <.0001
reading*knowledg 1 9.17 0.0025
news*reading*knowledg 1 3.03 0.0818
news*lectures 1 4.29 0.0384
lectures*knowledg 1 2.80 0.0941
news*lectures*knowledg 1 3.09 0.0787
reading*lectures 1 7.90 0.0049
reading*lecture*knowledg 1 5.49 0.0191

Likelihood Ratio 13 9.50 0.7341

With five exceptions, all of the Wald tests in Output 16.15 are statistically significant
(p < 0:05). One of these nonsignificant effects is the main effect for READING. Since the
main effect terms in a loglinear model fix the marginal totals, these are generally included
in the model regardless of statistical significance. In addition, since READING is a
lower-order effect for interactions included in the model, its removal would complicate
interpretation of the retained interaction terms involving READING. This principle also
motivates retention of the nonsignificant LECTURES� KNOWLEDG interaction; its
removal would make it difficult to interpret the statistically significant READING�
LECTURES� KNOWLEDG interaction.

Both of the nonsignificant three-factor interactions are suggestive withp < 0:10: NEWS
� READING� KNOWLEDG (QW = 3:03, p = 0:0818) and NEWS� LECTURES�
KNOWLEDG (QW = 3:09, p = 0:0787). Higher-order interactions like these are often
retained to avoid oversimplification of the model. Finally, the RADIO� READING
interaction has the smallest chi-square statistic of the effects in Output 16.15 (QW = 0:48,
p = 0:4864). In addition, none of the higher-order interactions involves this effect.
Therefore, the following statements fit a reduced model that excludes the RADIO�
READING interaction.
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proc catmod order=data;
weight count;
model news*radio*reading*lectures*knowledg=_response_

/ noprofile noresponse noiter noparm;
loglin news|radio radio|lectures

radio|knowledg news|reading|knowledg
news|lectures|knowledg reading|lectures|knowledg;

run;

Output 16.16 indicates that this model provides a good fit to the observed cell counts
(G2 = 9:99, 14 df,p = 0:7632). The likelihood ratio statistic for testing the RADIO�
READING effect isG2 = 9:99� 9:50 = 0:49 with 1 df (p = 0:48).

Output 16.16 Analysis of Variance Table from Reduced Hierarchical Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
news 1 54.21 <.0001
radio 1 99.63 <.0001
news*radio 1 50.94 <.0001
lectures 1 434.52 <.0001
radio*lectures 1 10.97 0.0009
knowledg 1 5.09 0.0240
radio*knowledg 1 7.35 0.0067
reading 1 2.47 0.1160
news*reading 1 149.31 <.0001
news*knowledg 1 17.82 <.0001
reading*knowledg 1 9.35 0.0022
news*reading*knowledg 1 3.00 0.0835
news*lectures 1 4.20 0.0404
lectures*knowledg 1 2.76 0.0968
news*lectures*knowledg 1 3.08 0.0792
reading*lectures 1 8.27 0.0040
reading*lecture*knowledg 1 5.47 0.0194

Likelihood Ratio 14 9.99 0.7632

The three-factor interaction between READING, LECTURES, and KNOWLEDG is
significant at the� = 0:05 level. Thus, the dependence between any pair of these variables
is affected by the third variable. The two other three-factor interactions included in this
model are NEWS� READING� KNOWLEDG and NEWS� LECTURES�
KNOWLEDG. Both are suggestive at the� = 0:10 level of significance. In addition, all
three two-factor interactions involving NEWS, READING, and KNOWLEDG, as well as
two of the three NEWS, LECTURES, and KNOWLEDG two-way interactions, are
significant at� = 0:05.

Thus, the model indicates that all four media exposure variables (NEWS, RADIO,
READING, LECTURES) are associated with cancer knowledge. In addition, there are
significant associations between NEWS and RADIO, NEWS and READING, NEWS and
LECTURES, RADIO and LECTURES, and READING and LECTURES.
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16.4.3 Loglinear Models with Nested Effects

The hierarchical model displayed in Output 16.16 contains 3 three-factor interaction terms.
Each of these three-way interactions represents heterogeneity of the association between
two of the variables across the levels of the third variable. A useful way to interpret these
patterns of association more fully is to fit a model that specifically incorporates separate
two-factor interactions across the levels of the third factor.

Since all three of the three-way interactions in Output 16.16 include the KNOWLEDG
variable, the next statements use nested-by-value effects in the LOGLIN statement to fit a
model with separate two-factor interactions for each level of KNOWLEDG.

proc catmod order=data;
weight count;
model news*radio*reading*lectures*knowledg=_response_

/ noprofile noresponse noiter noparm;
loglin news|radio radio|lectures

radio|knowledg reading|knowledg
news|knowledg lectures|knowledg
news*reading(knowledg=’Good’)
news*reading(knowledg=’Poor’)
news*lectures(knowledg=’Good’)
news*lectures(knowledg=’Poor’)
reading*lectures(knowledg=’Good’)
reading*lectures(knowledg=’Poor’);

run;

Output 16.17 displays the analysis of variance table for this model. Note that the
likelihood ratio statistic is identical to that in Output 16.16. The two models are
equivalent, even though they are parameterized differently. For example, Output 16.16
includes the NEWS� READING and NEWS� READING� KNOWLEDG interactions.
These two effects are replaced in Output 16.17 by two NEWS� READING interactions,
one for subjects with good cancer knowledge and one for subjects with poor cancer
knowledge. Since the two models are equivalent, the hierarchical principle is actually still
maintained, but the structure of the model is modified through nesting.
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Output 16.17 Analysis of Variance Table from Model with Nested Effects

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
news 1 54.21 <.0001
radio 1 99.63 <.0001
news*radio 1 50.94 <.0001
lectures 1 434.52 <.0001
radio*lectures 1 10.97 0.0009
knowledg 1 5.09 0.0240
radio*knowledg 1 7.35 0.0067
reading 1 2.47 0.1160
reading*knowledg 1 9.35 0.0022
news*knowledg 1 17.82 <.0001
lectures*knowledg 1 2.76 0.0968
news*readin(knowle=Good) 1 44.17 <.0001
news*readin(knowle=Poor) 1 128.92 <.0001
news*lectur(knowle=Good) 1 6.05 0.0139
news*lectur(knowle=Poor) 1 0.06 0.8001
readi*lectu(knowle=Good) 1 0.15 0.6962
readi*lectu(knowle=Poor) 1 12.91 0.0003

Likelihood Ratio 14 9.99 0.7632

The nested effects for NEWS� LECTURES in individuals with poor cancer knowledge
and for READING� LECTURES in individuals with good cancer knowledge are clearly
nonsignificant. The next CATMOD invocation excludes these two effects.

proc catmod order=data;
weight count;
model news*radio*reading*lectures*knowledg=_response_

/ noprofile noresponse noiter;
loglin news|radio radio|lectures

radio|knowledg reading|knowledg
news|knowledg lectures|knowledg
news*reading(knowledg=’Good’)
news*reading(knowledg=’Poor’)
news*lectures(knowledg=’Good’)
reading*lectures(knowledg=’Poor’);

run;

The analysis of variance table displayed in Output 16.18 indicates that this model provides
a good fit to the observed data (G2 = 10:20, 16 df,p = 0:8557). In addition, it has two
fewer parameters than the final model in Section 16.4.2 (Output 16.16). The READING
main effect and the LECTURES� KNOWLEDG interaction are the only nonsignificant
effects at the� = 0:05 level of significance; both of these terms are retained in the model
to preserve hierarchy.
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Output 16.18 Analysis of Variance Table from Reduced Model with Nested Effects

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
news 1 74.74 <.0001
radio 1 100.03 <.0001
news*radio 1 51.18 <.0001
lectures 1 444.55 <.0001
radio*lectures 1 11.32 0.0008
knowledg 1 5.07 0.0244
radio*knowledg 1 7.32 0.0068
reading 1 3.11 0.0778
reading*knowledg 1 12.06 0.0005
news*knowledg 1 28.40 <.0001
lectures*knowledg 1 2.96 0.0856
news*readin(knowle=Good) 1 45.47 <.0001
news*readin(knowle=Poor) 1 131.33 <.0001
news*lectur(knowle=Good) 1 6.75 0.0094
readi*lectu(knowle=Poor) 1 15.71 <.0001

Likelihood Ratio 16 10.20 0.8557

You interpret the results of this model in the same manner as was described in
Section 16.3.5. Output 16.19 displays the parameter estimates, from which you can
compute estimated odds ratios.

Output 16.19 Parameter Estimates from Reduced Model with Nested Effects

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------------
news 1 0.4443 0.0514 74.74 <.0001
radio 2 -0.4979 0.0498 100.03 <.0001
news*radio 3 0.2308 0.0323 51.18 <.0001
lectures 4 -1.2210 0.0579 444.55 <.0001
radio*lectures 5 0.1597 0.0475 11.32 0.0008
knowledg 6 -0.1305 0.0580 5.07 0.0244
radio*knowledg 7 0.0808 0.0299 7.32 0.0068
reading 8 0.0732 0.0415 3.11 0.0778
reading*knowledg 9 0.1441 0.0415 12.06 0.0005
news*knowledg 10 0.2564 0.0481 28.40 <.0001
lectures*knowledg 11 0.0960 0.0559 2.96 0.0856
news*readin(knowle=Good) 12 0.3017 0.0447 45.47 <.0001
news*readin(knowle=Poor) 13 0.3995 0.0349 131.33 <.0001
news*lectur(knowle=Good) 14 0.2296 0.0884 6.75 0.0094
readi*lectu(knowle=Poor) 15 0.2716 0.0685 15.71 <.0001

For example, the model includes two parameters pertaining to the NEWS� READING
association. The estimate for individuals with good cancer knowledge is 0.3017, from
which the odds of reading newspapers are estimated to beexp(4� 0:3017) = 3:3 times
higher in individuals who do solid reading than in individuals who do not. The
corresponding parameter estimate in individuals with poor cancer knowledge is 0.3995,
with an associated estimated odds ratio ofexp(4� 0:3995) = 4:9. Similarly, in
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individuals with good cancer knowledge, the odds of reading newspapers are estimated to
beexp(4� 0:2296) = 2:5 times higher in those who attend lectures than in individuals
who do not, and in individuals with poor cancer knowledge, the odds of reading books and
magazines are estimated to beexp(4� 0:2716) = 3:0 times higher in those who attend
lectures than in individuals who do not.

When higher-order interactions are included in a model, either directly or through the use
of nested effects, you should be cautious in interpreting lower-order main effects or
interactions. Since the NEWS� READING� KNOWLEDG interaction is included
through the two nested effects, the NEWS� KNOWLEDG effect is difficult to interpret in
light of the interaction with the READING effect. Similarly, the READING�
KNOWLEDG and LECTURES� KNOWLEDG effects are difficult to interpret due to the
three-factor interactions containing these effects.

You can, however, interpret the NEWS� RADIO, RADIO� LECTURES, and RADIO�
KNOWLEDG effects. For example, the odds of good cancer knowledge are estimated to
beexp(4� 0:0808) = 1:4 times higher for individuals who listen to the radio than for
individuals who do not listen to the radio.

16.5 Correspondence Between Logistic Models and Loglinear
Models

In Section 16.3.5, loglinear models were used to investigate the patterns of association in
the three-way cross-classification of quality of management, supervisor’s job satisfaction,
and worker’s job satisfaction for a random sample of 715 workers selected from Danish
industry. The final model included main effects for MANAGMNT, SUPERVIS, and
WORKER, as well as the three two-factor interactions.

Now suppose that the data displayed in Table 16.9 had instead been obtained from the four
subpopulations defined by the cross-classification of quality of management and
supervisor job satisfaction. In this case, you would be interested in modeling the
probability of worker job satisfaction as a function of management quality and
supervisor’s job satisfaction. In practice, for situations where all of the variables are
technically response variables, interest often focuses on modeling one of the variables as a
function of the remaining ones.

The following statements model the logit of the probability of low worker job satisfaction
as a function of management quality and supervisor job satisfaction.

proc catmod data=satisfac order=data;
weight count;
model worker=managmnt supervis

/ noprofile noresponse noiter p=freq;
run;

Output 16.20 displays the resulting analysis of variance table. For comparison, examine
Output 16.21 for the corresponding analysis of variance table from the loglinear model
with no three-factor interaction (Output 16.9 from Section 16.3.5).
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Output 16.20 Analysis of Variance Table from Logistic Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 25.96 <.0001
managmnt 1 19.57 <.0001
supervis 1 5.33 0.0210

Likelihood Ratio 1 0.06 0.7989

Output 16.21 Analysis of Variance Table from Loglinear Model

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
---------------------------------------------------
managmnt 1 38.37 <.0001
supervis 1 8.32 0.0039
managmnt*supervis 1 67.06 <.0001
worker 1 25.96 <.0001
managmnt*worker 1 19.57 <.0001
supervis*worker 1 5.33 0.0210

Likelihood Ratio 1 0.06 0.7989

The likelihood ratio goodness of fit statistics for the two models are identical. In addition,
the logistic model Wald chi-square statistics for the MANAGMNT and SUPERVIS main
effects are identical to the loglinear model Wald statistics for the MANAGMNT�
WORKER and SUPERVIS� WORKER interactions, and the logistic model
INTERCEPT chi-square statistic is identical to the loglinear model Wald statistic for the
WORKER main effect.

Output 16.22 displays the parameter estimates from the logistic model. The log odds of
low worker satisfaction are estimated to beexp(2� 0:3739) = 2:1 times higher when the
quality of management is bad than when the management quality is good and
exp(2� 0:1924) = 1:47 times higher when the supervisor’s job satisfaction is low than
when the supervisor’s job satisfaction is high. These estimates are the same as those
computed in Section 16.3.5.

Output 16.22 Parameter Estimates from Logistic Model

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 -0.4131 0.0811 25.96 <.0001
managmnt 2 0.3739 0.0845 19.57 <.0001
supervis 3 0.1924 0.0833 5.33 0.0210
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Finally, Output 16.23 displays the observed and predicted response functions and
frequencies from the logistic model. The predicted cell counts in each of the four logistic
model subpopulations are the same as the predicted loglinear model frequencies in the
2� 2� 2 contingency table, as displayed in Output 16.24 (Output 16.11 from
Section 16.3.5).

Output 16.23 Predicted Response Functions and Cell Frequencies from Logistic Model

Maximum Likelihood Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

managmnt supervis Number Function Error Function Error Residual
--------------------------------------------------------------------------------------------
Bad Low 1 0.168821 0.145612 0.153223 0.132027 0.015598
Bad High 1 -0.27193 0.234648 -0.23151 0.17239 -0.04042
Good Low 1 -0.61381 0.161628 -0.59464 0.142623 -0.01918
Good High 1 -0.9663 0.133036 -0.97937 0.12311 0.013066

Maximum Likelihood Predicted Values for Frequencies

-------Observed------ ------Predicted------
Standard Standard

managmnt supervis worker Frequency Error Frequency Error Residual
--------------------------------------------------------------------------------------------
Bad Low Low 103 6.867544 102.2639 6.234641 0.736105

High 87 6.867544 87.73611 6.234641 -0.73611

Bad High Low 32 4.261709 32.73611 3.146866 -0.73611
High 42 4.261709 41.26389 3.146866 0.736105

Good Low Low 59 6.187064 59.73611 5.490361 -0.73611
High 109 6.187064 108.2639 5.490361 0.736105

Good High Low 78 7.516766 77.26389 6.915053 0.736105
High 205 7.516766 205.7361 6.915053 -0.73611
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Output 16.24 Predicted Cell Counts from Loglinear Model

Maximum Likelihood Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

Number Function Error Function Error Residual
--------------------------------------------------------------------

1 -0.68828 0.120776 -0.69904 0.113356 0.010757
2 -0.8571 0.127954 -0.85226 0.1261 -0.00484
3 -1.85727 0.190074 -1.83812 0.172903 -0.01916
4 -1.58534 0.169374 -1.60661 0.148406 0.021266
5 -1.24547 0.14774 -1.23666 0.142911 -0.00881
6 -0.63166 0.118543 -0.64202 0.111524 0.01036
7 -0.9663 0.133036 -0.97937 0.12311 0.013066

Maximum Likelihood Predicted Values for Frequencies

------Observed----- -----Predicted-----
Standard Standard

managmnt supervis worker Frequency Error Frequency Error Residual
------------------------------------------------------------------------------
Bad Low Low 103 9.389475 102.2639 8.904231 0.736105
Bad Low High 87 8.741509 87.73611 8.283433 -0.73611
Bad High Low 32 5.528818 32.73611 4.783695 -0.73611
Bad High High 42 6.287517 41.26389 5.525364 0.736105
Good Low Low 59 7.357409 59.73611 6.811457 -0.73611
Good Low High 109 9.611619 108.2639 9.138839 0.736105
Good High Low 78 8.336121 77.26389 7.782186 0.736105
Good High High 205 12.0923 205.7361 11.75535 -0.73611

In summary, the cross-classification of the explanatory variables is fixed for logistic
models and the effects of the factors are specified explicitly in the model statement. The
loglinear model counterpart has the effects of factors specified through interactions with
the response. In addition, the cross-classification of the explanatory variables is
incorporated as a further component of the structure of the model.

The general result is that you can always rewrite a logistic analysis with one response
variable as a loglinear model. First, move the explanatory variables to the left-hand side of
the MODEL statement and use–RESPONSE– as the only effect on the right-hand side of
the MODEL statement. In addition, use a LOGLIN statement that includes all the main
effects and interactions of the explanatory variables, as well as each effect from the logistic
analysis crossed with the response variable.

Appendix A: Equivalence of the Loglinear and Poisson Regression
Models

Supposen = (n1; n2; : : : ; ns)
0 denotes a vector of independent Poisson variables and let

� = (�1; �2; : : : ; �s)
0 denote the corresponding vector of expected values. Suppose

variation among the elements of� can be described with the loglinear model

� = exp(Xp�p)
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whereXp = [1;X] is an(s� (t+ 1)) matrix of known coefficients with full rank
(t+ 1) � s and�p = [�0;�

0]0 is a(t+ 1) vector of unknown coefficients. The likelihood
function forn is

�(nj�) =
sY
i=1

�nii fexp(��i)g=ni! = f�n++ fexp(��+)g=n+!g � fn+!=
sY
i=1

ni!gf
sY
i=1

�nii g

wheren+ =
Ps

i=1 ni, �+ =
Ps

i=1 �i, and�i = (�i=�+) for i = 1; 2; : : : ; s. Thus, the
likelihood forn can be expressed as the product of a Poisson likelihood forn+ and a
multinomial likelihood�(njn+;�) with � = (�1; �2; : : : ; �s)

0 for the conditional
distribution ofn givenn+. Since

� = exp(Xp�p) = exp(�0) exp(X�)

it follows that

(�1; �2; : : : ; �s)
0 = � =

exp(X�)

10t exp(X�)

where1t is the(t� 1) vectors of 1s. The structure shown here for� corresponds to the
loglinear model for countsn with a multinomial distribution, either on the basis of
conditioning independent Poisson counts on their sum or through simple random sampling
(with replacement).

Since the maximization of the Poisson likelihood

�(nj�) = �(nj�0;�)

= �(n+j�0;1
0
t exp(X�))�(njn+;�)

relative to�p = (�0;�
0)0 correspondingly involves maximization of the multinomial

likelihood �(njn+;�) relative to� as a byproduct, the maximum likelihood estimates of
� in the Poisson regression model

� = exp(�0) exp(X�)

are as well the maximum likelihood estimates of� in the multinomal loglinear model

� =
exp(X;�)

(10t exp(X�))

Also, the maximum likelihood estimate for the covariance matrix ofb� is the same in both
situations. A convenient consequence of these considerations is thatb� for the multinomial
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loglinear model can have convenient computation through the use of Poisson regression
via the GENMOD procedure to determine the maximum likelihood estimator

c�p = (c�0; b�0
)0

for �p followed by removal ofc�0. In other words, the estimatorc�0 for the intercept in

Poisson regression is ignored when this method is used to obtainb� for the multinomial
loglinear model. A further point of interest is that the Poisson loglinear model is strictly
loglinear since

log(�) = Xp�p

whereas the multinomial loglinear model corresponds to

log(�) = X� � flog(10t exp(X�)g1t

and so is loglinear with a constraint to assure10s� =
Ps

i=1 = 1.
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Chapter 17

Categorized Time-to-Event Data

17.1 Introduction

Categorical data often are generated from studies that have time from treatment or
exposure until some event as their outcome. Such data are known astime-to-eventdata.
The event may be death, the recurrence of some condition, or the emergence of a
developmental characteristic. Often, the outcome is the actual lifetime (or waiting time),
which is the response analyzed in typical survival analyses. However, due to resource
constraints or the need to perform a diagnostic procedure, you sometimes can determine
only the interval of time during which an event occurs. Examples include examining
dental patients for caries at six-month periods, evaluating animals every four hours after
their exposure to bacteria, and examining patients every six weeks for the recurrence of a
medical condition for which they’ve been treated. Such data are often referred to as
grouped survival dataor ascategorized survival data.

Since the study is conducted over a period of time, some subjects may leave before the
study ends. This is calledwithdrawal. There may be protocol violations, subjects may join
the study in progress and not complete the desired number of evaluations, or the subjects
may drop out for other reasons. Thus, not only is status determined for each interval
between successive evaluations, but the number of withdrawals for that interval is also
determined. Most analysis strategies assume that withdrawal is independent of the
condition being studied and that multiple withdrawals occur uniformly throughout the
interval.

Frequently, interest lies in computing the survival rates. Section 17.2 discusses life table
methods for computing these results. In addition, you generally want to compare survival
rates for treatment groups and determine whether there is a treatment effect. Section 17.3
discusses the Mantel-Cox test, one strategy for addressing this question. It is similar to the
log rank test used in traditional survival analysis. In addition to hypothesis testing, you
may be interested in describing the variation in survival rates. Section 17.4 discusses the
piecewise exponential model, one that is commonly used to model grouped survival data,
as well as how to implement it using a Poisson regression strategy.

For an overview of grouped survival data analysis, refer to Deddens and Koch (1988).

17.2 Life Table Estimation of Survival Rates

Consider Table 17.1. Investigators were interested in comparing an active and control
treatment to prevent the recurrence of a medical condition that had been healed. They
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applied a diagnostic procedure at the end of the first, second, and third years to determine
whether there was a recurrence (based on Johnson and Koch 1978).

Table 17.1. Recurrences of Medical Condition

Withdrawals Recurrences
Treatment Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 No Recurrence Total
Control 9 7 6 15 13 7 17 74
Active 9 3 4 12 7 10 45 90

The survival rate, or the waiting time rate, is a key measure in the analysis of time-to-event
data. It is written

S(y) = 1� F (y) = PrfY � yg

whereY denotes the continuous lifetime of a subject andF (y) = PrfY � yg is the
cumulative probability distribution function. The exact form ofS(y) depends on the
nature ofF (y), the probability distribution. The Weibull distribution and the exponential
distribution are commonly used.

One way of estimating survival rates is with thelife table, or actuarial method. Table 17.2
displays the life table format for the data displayed in Table 17.1. You determine the
number of subjects at risk for each interval (the sum of those with no recurrence, those
with recurrences, and those who withdrew). By knowing the number who survived all
three intervals with no recurrence, you can determine the number with no recurrence for
each interval.

Table 17.2. Life Table Format for Medical Condition Data

Controls
Interval No Recurrences Recurrences Withdrawals At Risk

0–1 Years 50 15 9 74
1–2 Years 30 13 7 50
2–3 Years 17 7 6 30

Active
Interval No Recurrences Recurrences Withdrawals At Risk

0–1 Years 69 12 9 90
1–2 Years 59 7 3 69
2–3 Years 45 10 4 59

Definenijk to be the number of patients in theith group with thejth status for thekth
time interval wherej = 0 corresponds to no recurrence during the time interval, and
j = 1; 2 corresponds to those with recurrence and those withdrawn during thekth interval,
respectively;i = 1; 2 for the control and active groups andk = 1; 2; : : : ; t. Theni0k are
determined from

ni0k =

2X
j=1

tX
g=k+1

nijg + ni0t
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The life table estimates for the probability of surviving at leastk intervals are computed as

Gik =
kY

g=1

ni0g + 0:5ni2g
ni0g + ni1g + 0:5ni2g

=
kY

g=1

pig

wherepig denotes the estimated conditional probability for surviving thegth interval given
that survival of all preceding intervals has occurred.

The standard error ofGik is estimated as

s.e.(Gik) = Gik

� kX
g=1

(1� pig)

(ni0g + ni1g + 0:5ni2g)pig

�1=2

= Gik

� kX
g=1

(1� pig)

(ni0g + 0:5ni2g)

�1=2

where(ni0g + ni1g + 0:5ni2g) is the effective number at risk during thegth interval. Since

pig =
ni0g + 0:5ni2g

ni0g + ni1g + 0:5ni2g

then

1� pig =
ni1g

ni0g + ni1g + 0:5ni2g

The quantity0:5� ni2g is used in the numerator and denominator ofpig since uniform
withdrawals throughout the interval are assumed; the average exposure to risk for the
withdrawing subjects is assumed to be one-half the interval.

For the active treatment, the life table estimates of surviving thekth interval are

G21 =
69 + 0:5(9)

69 + 12 + 0:5(9)
= 0:8596

G22 = 0:8596 � 59 + 0:5(3)

59 + 7 + 0:5(3)
= 0:7705

G23 = 0:7705 � 45 + 0:5(4)

45 + 10 + 0:5(4)
= 0:6353

Their standard errors are computed as follows:

s.e.(G21) = 0:8596 �
�

12=85:5

69 + 0:5(9)

�1=2

= 0:0376
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s.e.(G22) = 0:7705 �
�

12=85:5

69 + 0:5(9)
+

7=67:5

59 + 0:5(3)

�1=2

= 0:0464

s.e.(G23) = 0:6352 �
�

12=85:5

69 + 0:5(9)
+

7=67:5

59 + 0:5(3)
+

10=57

45 + 0:5(4)

�1=2

= 0:0545

Table 17.3 contains the estimated survival rates and their standard errors for both active
treatment and controls. The estimated survival rates for the active treatment are higher
than for the controls for each of the intervals.

Table 17.3. Life Table Format for Medical Condition Data

Estimated Standard
Survival Rates Errors

Controls
0–1 Years 0.7842 0.0493
1–2 Years 0.5650 0.0627
2–3 Years 0.4185 0.0665

Active
0–1 Years 0.8596 0.0376
1–2 Years 0.7705 0.0463
2–3 Years 0.6353 0.0545

Section 15.3 discusses the Mantel-Cox test, which tests the null hypothesis that the
survival rates are the same.

17.3 Mantel-Cox Test

You are often interested in comparing survival curves to determine which treatment had
the more favorable outcome. Mantel (1966) and later Cox (1972) suggested an extension
of the Mantel-Haenszel methodology that applies to survival data. You restructure the
usual frequency table format of the data to a set of2� 2 tables, each with a life table
format, and perform the Mantel-Haenszel computations on that set of tables.

The tables are generated by regarding treatment as the row variable, the numbers recurred
and not recurred as the column variable, and the intervals as the strata. You are thus
proceeding as though the time interval results are uncorrelated; methodological results for
survival analysis establish that you can consider the respective time intervals to be
essentially uncorrelated risk sets for survival information. It turns out that the Mantel-Cox
test for grouped data is equivalent to the log rank test for comparing survival curves for
ungrouped data (refer to Koch, Sen, and Amara 1985). Withdrawals are handled by either
grouping them with the no recurrences or eliminating them entirely (this is the more
conservative approach).

Table 17.4 contains the life table format for the study of the medical condition recurrence
with the data grouped together by intervals and with the withdrawals excluded.
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Table 17.4. Medical Condition Data

Years Treatment Recurrences No Recurrences
0–1 Control 15 50

Active 12 69
1–2 Control 13 30

Active 7 59
2–3 Control 7 17

Active 10 45

The following DATA step inputs these data, and the PROC FREQ statements specify that
the MH test be computed. Recall that for sets of2� 2 tables, all scores are equivalent, so
no scores need to be specified.

data clinical;
input time $ treatment $ status $ count @@;
datalines;

0-1 control recur 15 0-1 control not 50
0-1 active recur 12 0-1 active not 69
1-2 control recur 13 1-2 control not 30
1-2 active recur 7 1-2 active not 59
2-3 control recur 7 2-3 control not 17
2-3 active recur 10 2-3 active not 45
;
proc freq order=data;

weight count;
tables time*treatment*status / cmh;

run;

Output 17.1 contains the PROC FREQ output (the individual printed tables are not
displayed).QMC = 8:0294 with 1 df, p = 0:0046. There is a significant treatment effect
on survival.

Output 17.1 Results for Mantel-Cox Test

Summary Statistics for treatment by status
Controlling for time

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 8.0294 0.0046
2 Row Mean Scores Differ 1 8.0294 0.0046
3 General Association 1 8.0294 0.0046

Total Sample Size = 334

You can also apply the Mantel-Cox test when you have additional explanatory variables.
Table 17.5 contains data from a study on gastrointestinal patients being treated for ulcers.
Investigations conducted in three medical centers compared an active treatment to a
placebo.
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Table 17.5. Healing for Gastrointestinal Patients

Healed at Healed at Not Healed at
Center Treatment Two Weeks Four Weeks Four WeeksTotal

1 A 15 17 2 34
1 P 15 17 7 39
2 A 17 17 10 44
2 P 12 13 15 40
3 A 7 17 16 40
3 P 3 17 18 38

Table 17.6 contains the life table format for the same data.

Table 17.6. Healing for Gastrointestinal Patients

Number Number Not
Center Weeks Treatment Healed Healed Total

1 0–2 A 15 19 34
P 15 24 39

2–4 A 17 2 19
P 17 7 24

2 0–2 A 17 27 44
P 12 28 40

2–4 A 17 10 27
P 13 15 28

3 0–2 A 7 33 40
P 3 35 38

2–4 A 17 16 33
P 17 18 35

The following DATA step inputs these data, and the PROC FREQ statements specify that
the MH test be computed. For these data, both TIME and CENTER are used as
stratification variables.

data duodenal;
input center time $ treatment $ status $ count @@;
datalines;

1 0-2 A healed 15 1 0-2 A not 19
1 0-2 P healed 15 1 0-2 P not 24
1 2-4 A healed 17 1 2-4 A not 2
1 2-4 P healed 17 1 2-4 P not 7
2 0-2 A healed 17 2 0-2 A not 27
2 0-2 P healed 12 2 0-2 P not 28
2 2-4 A healed 17 2 2-4 A not 10
2 2-4 P healed 13 2 2-4 P not 15
3 0-2 A healed 7 3 0-2 A not 33
3 0-2 P healed 3 3 0-2 P not 35
3 2-4 A healed 17 3 2-4 A not 16
3 2-4 P healed 17 3 2-4 P not 18
;
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proc freq;
weight count;
tables center*time*treatment*status / cmh;

run;

Output 17.2 contains the results.

Output 17.2 Results for Mantel-Cox Test

Summary Statistics for treatment by status
Controlling for center and time

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 4.2527 0.0392
2 Row Mean Scores Differ 1 4.2527 0.0392
3 General Association 1 4.2527 0.0392

Total Sample Size = 401

The null hypothesis is that within each center, the distribution of time to healing is the
same for placebo and active treatment.QMC = 4:2527 with 1 df (p = 0:0392), so that
there is a significant effect of active treatment on time to healing after adjusting for center.

17.4 Piecewise Exponential Models

Statistical models can extend the analysis of grouped survival data by providing a
description of the pattern of event rates. They can describe this pattern over time as well as
describe the variation due to the influence of treatment and other explanatory variables.
One particularly useful model is the piecewise exponential model.

Consider Table 17.7, which contains information pertaining to the experience of patients
undergoing treatment for duodenal ulcers (based on Johnson and Koch 1978). One of two
types of surgeries was randomly assigned: vagotomy and drainage or antrectomy, or
vagotomy and hemigastrectomy. The patients were evaluated at 6 months, 24 months, and
60 months. Death and recurrence are considered failure events, and reoperation and loss to
follow-up are considered withdrawal events.

Table 17.7. Comparison of Two Surgeries for Duodenal Ulcer

Time Death or Reoperation or Exposure
Operation (months) Recurrence Lost Satisfactory (months)

0–6 23 15 630 3894
V + D/A 7–24 32 20 578 10872

25–60 45 71 462 18720
0–6 9 5 329 2016

V + H 7–24 5 17 307 5724
25–60 10 24 273 10440
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In this study there are two treatment groups:i = 1 for V and D/A, i = 2 for V + H and
three time intervals:k = 1 for 0–6 months,k = 2 for 7–24 months, andk = 3 for 25–60
months.

If you can make the following assumptions, then you can fit the piecewise exponential
model to these data.

� The withdrawals are uniformly distributed during the time intervals in which they
occur and are unrelated to treatment failures.

� The within-interval probabilities of the treatment failures are small. The
time-to-failure events have independent exponential distributions.

The piecewise exponential likelihood is written

�PE =
2Y
i=1

3Y
k=1

�ni1kik

�
exp[��ikNik]

�

whereni1k is the number of failures for theith group during thekth interval,Nik is the
total person-months of exposure, and�ik is the hazard parameter. The piecewise
exponential model assumes that there are independent exponential distributions with
hazard parameters�ik for the respective time periods.

TheNik are computed as

Nik = ak(ni0k + 0:5ni1k + 0:5ni2k)

whereak = 6; 18; 36 is the length of thekth interval,ni0k is the number of patients
completing thekth interval without failure or withdrawal, andni2k denotes the number of
withdrawals. The quantityni1k is the number of failures during the interval.

If you think of the number of deathsni1k, conditional on the exposuresNik, as having
independent Poisson distributions, then you can write a Poisson likelihood for these data.

�PO =
2Y
i=1

3Y
k=1

(Nik�ik)
ni1k

�
exp[�Nik�ik]

ni1k!

�

= �PE

� 2Y
i=1

3Y
k=1

Nni1k
ik

ni1k!

�

Since these likelihoods are proportional, whatever maximizes�PO also maximizes�PE.
Thus, you can still assume the piecewise exponential model but obtain the estimates from
Poisson regression computations, which are more accessible, regardless of whether you
want to make the conditional arguments necessary to assume a Poisson distribution.
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The relationship of the failure events to the explanatory variables is specified through
models for the�ik. One class of models has the structure

�ik = exp(x0ik�)

A useful subset of these models has the specification

�ik = exp(�+ �k + x
0
i�)

This latter model has the proportional hazards structure, wheref�kg is the constant value
of the hazard function within thekth interval whenxi = 0. The parameter vector� relates
the hazard function for theith population to the explanatory variablesxi.

Those readers familiar with survival analysis may recognize the general form of the
proportional hazards model as

h(y;x) = h0(y)fexp(x0�)g

wherey denotes continuous time andh0(y) is the hazard function for the reference
population. In reference to this general form,exp(�+ �k) corresponds toh0(y) for y in
thekth interval.

17.4.1 An Application of the Proportional Hazards Piecewise Exponential
Model

Since the GENMOD procedure fits Poisson regression models in the SAS System, you
also use it to fit piecewise exponential models. The DATA step inputs the duodenal ulcer
data and computes the variable NMONTHS as the log of MONTHS. The following PROC
GENMOD statements request that the main effects model consisting of time and treatment
be fit. The variable TREATMENT has the value ‘vda’ for V and D/A and the value ‘vh’ for
V + H. Note that the value for 0–6 months for the variable TIME is ‘–0-6’ so that it will
sort last and thus become the reference value in the PROC GENMOD parameterization.

data vda;
input treatment $ time $ failure months;
nmonths=log(months);
datalines;

vda _0-6 23 3894
vda 7-24 32 10872
vda 25-60 45 18720
vh _0-6 9 2016
vh 7-24 5 5724
vh 25-60 10 10440
;
proc genmod data=vda;

class treatment time;
model failure = time treatment

/ dist=poisson link=log offset=nmonths;
run;
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Both TIME and TREAT are defined as CLASS variables. The LINK=LOG option is
specified so that the model is in loglinear form, and the OFFSET=NMONTHS is specified
since the quantitynik=Nik is being modeled.

Information about the model specification and the sort levels of the CLASS variables are
displayed in Output 17.3.

Output 17.3 Model Information

Model Information

Data Set WORK.VDA
Distribution Poisson
Link Function Log
Dependent Variable failure
Offset Variable nmonths
Observations Used 6

Class Level Information

Class Levels Values

treatment 2 vda vh
time 3 25-60 7-24 _0-6

Statistics for assessing fit are displayed in Output 17.4.QP and the deviance both indicate
an adequate fit, with values of 2.6730 and 2.5529, respectively, and 2 df for their
approximately chi-square distributions.

Output 17.4 Goodness-of-Fit Criteria

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.5529 1.2764
Scaled Deviance 2 2.5529 1.2764
Pearson Chi-Square 2 2.6730 1.3365
Scaled Pearson X2 2 2.6730 1.3365
Log Likelihood 279.8914

The “Analysis of Parameter Estimates” table includes an intercept parameter, incremental
effects for 7–24 months and 25–60 months, and an incremental effect for the V + D/A
treatment. The 0–6 months time interval and the V + H treatment are the reference cell.
See Output 17.5.
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Output 17.5 Parameter Estimates

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -5.8164 0.2556 -6.3174 -5.3153 517.66 <.0001
time 25-60 1 -1.0429 0.2223 -1.4787 -0.6071 22.00 <.0001
time 7-24 1 -0.8847 0.2414 -1.3579 -0.4116 13.43 0.0002
time _0-6 0 0.0000 0.0000 0.0000 0.0000 . .
treatment vda 1 0.8071 0.2273 0.3616 1.2527 12.61 0.0004
treatment vh 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

All of these effects are significant. Table 17.8 contains the parameter interpretations.

Table 17.8. Parameter Interpretations

GENMOD Model
Parameter Parameter Value Interpretation

INTERCEPT � �5:8164 log incidence density for V + H, 0-6 months (reference)
TIME 25-60 �2 �1:0429 increment for 25-60 interval
TIME 7-24 �1 �0:8847 increment for 7-25 interval
TREAT vda � 0:8071 increment for treatment V + D/A

Log incidence density decreases with the 7–24 interval and further decreases with the
25–60 interval. The V + D/A treatment increases log incidence density. What this means is
that the failure rate is highest for the first interval and lower for the other two intervals; the
failure rate is higher for V + D/A than for V + H. Table 17.9 displays the estimated failure
rates (incidence densities) per person-month for each group and interval.

The survival rates can be calculated as follows:

Prfsurvival fork intervalsg = Prfsurvival fork � 1 intervalsg � e��ikak

whereak is the length of thekth interval,k = 1; 2; : : : ; t. Table 17.9 contains the survival
estimates for each interval for each treatment group.

Table 17.9. Model-Estimated Failure Rates

Failure Estimated Estimated
Group Interval Rate Formula Failure Rate Survival Rate
V + H 0–6 e�̂ 0.002978 0.9823
V + H 7–24 e�̂+�̂1 0.001230 0.9608
V + H 25–60 e�̂+�̂2 0.001050 0.9252

V + D/A 0–6 e�̂+�̂ 0.006676 0.9607

V + D/A 7–24 e�̂+�̂+�̂1 0.002756 0.9142

V + D/A 25–60 e�̂+�̂+�̂2 0.002353 0.8399
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17.4.2 Using PROC LOGISTIC to Fit the Piecewise Exponential Model

When the incidence ratesf�ikg are small (less than 0.05) and the exposuresNik are very
large, then you can approximate Poisson regression with logistic regression (Vine et al.
1990). Thus, you can take advantage of the features of the LOGISTIC procedure, such as
its model-building facilities, to fit models such as the piecewise exponential model. You
can facilitate the approximation by rescaling the exposure factor by multiplying it by a
number such as 10,000; the only adjustment you need to make after parameter estimation
is to add the log of the multiplier you choose to the resulting intercept estimate.

The following SAS statements fit a piecewise exponential model to the duodenal ulcer data
using the LOGISTIC procedure. In the DATA step, the variable SMONTHS is the
exposure in months multiplied by a factor of 100,000.

The events/trials syntax is employed in the MODEL statement, with FAILURE in the
numerator and SMONTHS in the denominator. The SELECTION=FORWARD option
specifies forward model selection, and INCLUDE=2 specifies that the first two variables
listed in the MODEL statement, TIME and TREATMENT, be forced into the first model
so that a score test is produced for the contribution of the remaining variables to the model
(interactions). This serves as a goodness-of-fit test.

data vda;
input treatment time $ failure months;
smonths=100000*months;
datalines;

1 _0-6 23 3894
1 7-24 32 10872
1 25-60 45 18720
0 _0-6 9 2016
0 7-24 5 5724
0 25-60 10 10440
;
proc logistic;

class time/param=ref;
model failure/smonths = time treatment time*treatment /

scale=none include=2 selection=forward;
run;

Output 17.6 contains the resulting statistics for explanatory variable contribution and the
score statistic (Residual Chi-Square) for the contribution of variables not in the model.QS

has a value of 2.6730 and is nonsignificant with 2 df andp = 0:2628. The model fits
adequately and the proportional hazards assumption is reasonable (no time� treatment
interaction).
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Output 17.6 Score Statistic

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 34.7700 3 <.0001
Score 39.0554 3 <.0001
Wald 36.2836 3 <.0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.6730 2 0.2628

Output 17.7 displays the goodness-of-fit statistics, which are adequate.

Output 17.7 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion DF Value Value/DF Pr > ChiSq

Deviance 2 2.5529 1.2764 0.2790
Pearson 2 2.6730 1.3365 0.2628

Number of events/trials observations: 6

The results are very similar to what was obtained with the PROC GENMOD analysis.

The resulting parameter estimates are displayed in Output 17.8. The parameter estimates
for the time and treatment effects are very close to the estimates resulting from the PROC
GENMOD analysis in the previous section, and if you add log(100000) to the intercept,
�17:3293, you obtain�5:8164, which is identical to the intercept estimate obtained from
PROC GENMOD. This approximation is usually very good.

Output 17.8 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -17.3293 0.2556 4595.1888 <.0001
time 25-60 1 -1.0430 0.2223 22.0023 <.0001
time 7-24 1 -0.8848 0.2414 13.4324 0.0002
treatment 1 0.8071 0.2273 12.6068 0.0004

At this point, you would proceed to produce survival rates and survival estimates as
computed in the previous section.
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